

Periodic Review Report (April 14, 2022 through April 12, 2023)

Former Scott Aviation Facility, Area 1 BCP Lancaster, New York

Project reference: NYSDEC Site Code: C915233

June 29, 2023

Quality information

Prepared by	Checked by	Verified by	Approved by
Dino Zack. PG, STS	Timothy Renn, PE	James Kaczor, PG	Dino Zack, PG, STS

Prepared for:

Scott Technologies, Inc. Aka Scott Figgie LLC Frankford, DE

Prepared by:

AECOM 50 Lakefront Blvd Buffalo, NY 14202

Table of Contents

1.	Introduction	1
	1.1 Report Organization	1
2.	Site Overview	3
	2.1 Site Location	3
	2.2 Physical Setting	3
	2.2.1 Land Use	3
	2.2.2 Site Geology/Hydrogeology	3
	2.2.3 Site Investigation and Remedial History	4
	2.2.3.1 Phase I	4
	2.2.3.2 Phase II	4
	2.2.3.3 Interim Remedial Measure - Soil Excavation	5
	2.2.3.4 Preliminary Groundwater Assessment	5
	2.2.3.5 Remedial Investigation	5
	2.2.3.6 Soil Vapor Intrusion Evaluation	6
	2.2.3.7 Interim Remedial Measures – 2014	7
	2.2.3.8 Supplemental Groundwater Injection	9
	2.2.3.9 Storm Sewer Pipe Replacement	10
	2.2.3.10 Bioaugmentation Injection Program	11
	2.3 Remedial Action Objectives	11
	2.3.1 Groundwater	11
	2.3.2 Soil	11
	2.3.3 Soil Vapor	12
	2.4 Contaminants of Concern	12
3.	Groundwater Monitoring Program Summary	13
	3.1 Groundwater Monitoring Activities	13
	3.2 April 2023 Groundwater Elevation and Flow Direction	14
	3.3 October 2022 and April 2023 Groundwater Analytical Data	14
	October 2022 and April 2023 Storm Sewer Catch Basin and Storm Sewer Pipe Bedding Analytical Data	15
	3.5 Comparison of April 2023 COCs in Groundwater with Pre-IRM Groundwater Analytical Data	
	3.6 Monitored Natural Attenuation	16
	3.7 Total Organic Carbon	16
	3.8 Dechlorinating Bacteria Analysis	17
	3.8.1 Volatile Fatty Acids	17
	3.8.2 Gene-Trac [®]	18
	3.9 Dechlorinating Chemical Analysis	19
4.	Site Inspection	20
	4.1 Boiler Room	20
	4.2 Monitoring Wells	20
5.	Conclusions and Recommendations	21
	5.1 Conclusions	21
	5.2 Recommendations	21
	5.3 Proposed Monitoring and Compliance Sampling Schedule	21
6.	Evaluate Remedy Performance, Effectiveness, and Protectiveness	23

6	6.1 Institutional Controls and Engineering Controls Certification	23
7. F	References	24
Figures	es	26
Tables	S	27
Append	ndix A Pre-Injection and Post-Injection Groundwater Quality Data	28
Append	ndix B Current and Historical Summary of VOCs in Groundwater	29
Append	ndix C Purge Logs (October 2022 and April 2023)	30
Append	ndix D Analytical Laboratory Data Packages (Provided on CD)	31
Append	ndix E Institutional Controls and Engineering Controls Certification Form	32
3	33	

Figures

1	Cito I	Location	Man
	Sile	LUCALIUII	iviau

- 2 Site Layout Map
- 3 Monitoring Well, Piezometer and Catch Basin Locations
- 4 Geologic Cross-Section
- 5 Pre-Injection Shallow Overburden Groundwater Total VOC Contaminant Plume
- 6 Pre-Injection Deep Overburden Groundwater Total VOC Contaminant Plume
- 7 Pre-Injection Shallow Overburden Groundwater TCE Contaminant Plume
- 8 Pre-Injection Deep Overburden Groundwater TCE Contaminant Plume
- 9 2015 IRM Injection Zone Details
- 10 2019 Supplemental Groundwater Injection Area
- 11 2021 Bioaugmentation Injection Area
- 12 Shallow Overburden Groundwater Surface Contour Elevations April 2023
- 13 Deep Overburden Groundwater Surface Contour Elevations April 2023
- 14 Shallow Overburden Groundwater 1,1-Dichloroethane Plume April 2023
- 15 Deep Overburden Groundwater 1,1-Dichloroethane Plume April 2023
- 16 Shallow Overburden Groundwater 1,1,1-Trichloroethane Plume April 2023
- 17 Deep Overburden Groundwater 1,1,1-Trichloroethane Plume April 2023
- 18 Shallow Overburden Groundwater cis-1,2-Dichloroethene Plume April 2023
- 19 Shallow Overburden Groundwater Vinyl Chloride Plume April 2023
- 20 Shallow Overburden Groundwater Total VOCs Plume April 2023
- 21 Deep Overburden Groundwater Total VOCs Plume April 2023
- 22 Shallow Overburden Groundwater TOC Plume April 2023
- 23 Deep Overburden Groundwater TOC Plume April 2023

Tables

- 1 Groundwater Monitoring Program
- 2 Monitoring Well and Piezometer Specifications
- 3 Groundwater Elevation Data April 2023
- 4 Summary of Monitoring Well Analytical Data October 2022
- 5 Summary of Monitoring Well Analytical Data April 2023
- Summary of Catch Basin and Temporary Piezometer Analytical Data April 2020 through April 2023
- 7 Bioattenuation Screening Summary April 2023
- 8 Pre- and Post-Bioaugmentation Injection VFA Data Comparison
- 9 Pre- and Post-Bioaugmentation Injection Gene-Trac Data Comparison

List of Appendices

Appendix A Pre-Injection and Post-Injection Groundwater Quality Data Appendix B Current and Historical Summary of VOCs in Groundwater

Appendix C Purge Logs (October 2022 and April 2023)

Appendix D Analytical Laboratory Data Packages (Provided on CD)

Appendix E Institutional Controls and Engineering Controls Certification Form

List of Acronyms

1,1-DCA1,1-dichloroethane1,1-DCE1,1-dichloroethene1,2-DCA1,2-dichloroethane1,1,1-TCA1,1,1-trichloroethane1,1,2-TCA1,1,2-trichloroethane

AAR Alternatives Analysis Report

ABC® Anaerobic Biochem

ABC+® Anaerobic Biochem with Zero Valence Iron

ABC-Ole[®] a mixture of Anaerobic Biochem, zero valent iron, and emulsified fatty acids

AECOM Technical Services, Inc.

AMSL above mean sea level AVOX AVOX Systems Inc

BCP Brownfield Cleanup Program

bgs below ground surface

CCR Construction Completion Report

cis-1,2 DCE cis-1,2-dichloroethene cm/sec centimeters per second contaminants of concern

COPC constituents of potential concern

CVOC chlorinated volatile organic compound

Dhb dehalobacter
Dhc dehalococcoides

DPT Direct Push Technology

ERD Enhanced Reductive Dechlorination
ESA Environmental Site Assessment

ft feet

HPT hydraulic profiling tool

IC/EC Institutional Controls/Engineering Controls

IRM interim remedial measure K hydraulic conductivity

Matrix Environmental Technologies, Inc.

mg/L milligrams per liter

MIP membrane interface probe
MNA monitored natural attenuation

NYCRR New York Codes, Rules and Regulations

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health

O&M operation and maintenance
ORP oxygen reduction potential
PCB polychlorinated biphenyl

PCE Tetrachloroethene (Perchloroethene)
PGA Preliminary Groundwater Assessment

PID photoionization detector PRR Periodic Review Report

QA/QC quality assurance / quality control

RAO remedial action objective
RAWP Remedial Action Work Plan
RI remedial investigation
SCO soil cleanup objective

SRI Supplemental Remedial Investigation

Site Management Plan

SVI soil vapor intrusion

sq square

SMP

SVOC semi volatile organic compound

TCE trichloroethene
TOC total organic carbon

TOGS Technical and Operational Guidance Series

TVOC total volatile organic compounds

μg/L micrograms per liter

USEPA United States Environmental Protection Agency

UST underground storage tank

VFA volatile fatty acids VC vinyl chloride

VOC volatile organic compound

wt. % weight percent

XSD halogen specific detector

ZVI zero valence iron

Executive Summary

On September 1, 2004, the former Scott Aviation Facility (three plant facility) was sold by Scott Technologies, Inc. to the current facility owner/operator, AVOX Systems Inc (AVOX). On September 11, 2008, Scott Technologies, Inc. submitted an application for the area located adjacent to the southwest corner of the Plant 1 property (the "Site", also known as Area 1) to enter the New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP), per Title 6 New York Codes, Rules, and Regulations Part 375-3.4 (Applications), effective December 14, 2006. Scott Technologies, Inc. applied for entry into NYSDEC BCP as a participant to investigate and remediate, as appropriate, potential areas of environmental concern associated with the Site. On July 8, 2009, NYSDEC approved the application and Scott Technologies was accepted into the BCP as a participant (NYSDEC Site Code No. C915233). Scott Technologies, a successor to Figgie International, is now known as Scott Figgie LLC. In December 2015, AVOX was added to the Brownfield Cleanup Agreement as a Volunteer.

Soil, groundwater, surface water, and soil vapor impacts at the Site were outlined in reports submitted to the NYSDEC that describe the results of a series of investigations which took place over several years. Impacts identified during these investigations were addressed via interim remedial measures (IRMs) prior to the issuance in December 2015 of a final Decision Document and Certificate of Completion for the Site.

Based on the implementation of the IRMs and a groundwater injection program conducted in March 2019, findings from the investigation of the Site indicate that the Site no longer poses a threat to human health or the environment; therefore, No Further Action is the selected remedy by NYSDEC. The No Further Action remedy currently includes semi-annual groundwater monitoring, and quarterly inspections of the boiler room repairs to the floor cracks and joints and sealing of the annulus around each floor drain to mitigate the potential for subslab volatile organic compound (VOC) vapors to enter the building.

Periodic groundwater monitoring has shown a notable decrease in the concentrations of contaminants of concern (COC) and no off-Site migration of COCs in groundwater. Additionally, microbial analysis of shallow and deep overburden groundwater has indicated that the necessary microbes, such as Dehalococcoides, and degradation enzymes are present in subsurface groundwater.

A continuation of semi-annual groundwater monitoring for VOCs and monitored natural attenuation parameters at select Site wells, quarterly inspections of the boiler room floor, and annual reporting per the NYSDEC-approved Site Management Plan (SMP) is recommended for the next reporting period. No change is recommended to the existing SMP.

1. Introduction

On behalf of Scott Figgie LLC (successor to Scott Technologies, Inc.), and pursuant to the requirements of New York State Department of Environmental Conservation (NYSDEC), Decision Document (NYSDEC, December 2015) and Site Management Plan (SMP) (AECOM, December 2015), AECOM Technical Services, Inc. (AECOM) has prepared this Periodic Review Report (PRR) to summarize the groundwater monitoring activities for the former Scott Aviation facility (the "Site", also known as Area 1), NYSDEC Site Code No. C915233, located within two parcels at 215 and 221 Erie Street, Village of Lancaster, County of Erie, State of New York (**Figure 1**). The reporting period discussed herein encompasses the period from April 14, 2022 through April 12, 2023. During the reporting period, the Site has been owned and operated by AVOX Systems Inc (AVOX).

1.1 Report Organization

The purpose of this PRR is to provide a summary of the controls implemented for the Site as required by Section 7.2 of the SMP and to provide recommendations for future controls at the Site.

This PRR was developed to adhere to NYSDEC site investigation and remediation requirements (NYSDEC DER-10, May 2010). More specifically, this report provides the following information:

- An Executive Summary including a brief summary of the Site, nature and extent of contamination, remedial history, the effectiveness of the remedial program, and recommendations for changes to the SMP;
- A brief summary of the Site and PRR organizational details (Section 1);
- A Site overview, describing the Site location, significant features, surrounding areas, and the extent
 of environmental impacts prior to Site remediation. A description of the chronology of the main
 features of the remedial program for the Site, the components of the selected remedy, cleanup goals,
 site closure criteria, and any significant changes to the selected remedy that have been made since
 remedy selection (Section 2);
- A groundwater monitoring program summary including a description of the requirements of the
 monitoring, a summary of the groundwater monitoring activities completed during the PRR reporting
 period, a comparison of the most recent (April 2023) groundwater results to the Remedial Action
 Objectives (RAOs) of the Site, and conclusions regarding the monitoring completed and the resulting
 evaluations regarding remedial performance, effectiveness, and protectiveness (Section 3);
- A description of the Site inspections, associated operations and maintenance (O&M) tasks completed and recommendations for improvements (Section 4);
- A summary of overall conclusions and recommendations regarding compliance with the SMP, performance and effectiveness of the remedy, a description of upcoming Site-related activities, and a proposed monitoring and compliance sampling and reporting schedule (Section 5);
- A review of the Institutional Controls/Engineering Controls (IC/EC) for the Site (Section 6); and,
- References used in the preparation of this report (Section 7).

Supporting information used in the preparation of this PRR is included in five appendices:

- Appendix A provides a summary of pre-injection and post-injection groundwater quality data;
- Appendix B provides a current and historical summary of the volatile organic compounds (VOCs)
 detected in the Site monitoring wells sampled in October 2022 and April 2023;
- Appendix C provides the groundwater purge logs for the Site monitoring wells sampled in October 2022 and April 2023;

- Appendix D provides all October 2022 and April 2023 analytical data packages on compact disc; and
- Appendix E includes the completed IC/EC certification.

2. Site Overview

The following subsections present a description of the Site location, significant features, surrounding areas, and the extent of contamination prior to the Site remediation. A description of the chronology of the main features of the remedial program for the Site, the components of the selected remedy, cleanup goals, site closure criteria, and any significant changes to the selected remedy that have been made since remedy selection are also presented.

2.1 Site Location

The Site is located in Lancaster, Erie County, New York and is identified as Section 104 Block 5 and Lots 8 and 9 on the Erie County Tax Map; refer to **Figure 1** for the Site Location Map. The Site is approximately 1.25 acres in area and is bounded by non-impacted AVOX land and then Erie Street to the north, railroad tracks to the south, AVOX Plant 1 (currently vacant) to the east, and residential zoned property (with a house) to the west; refer to **Figure 2** for the Site Layout Map).

2.2 Physical Setting

2.2.1 Land Use

The Site consists of the following: outbuildings that support Plant 1 (which is not part of the Site), asphalt driveways and parking areas, and lawn and brush-covered areas. Site occupants include only occasional maintenance and shipping/receiving personal, as manufacturing activities have been moved to the two plants located on the north side of Erie Street.

The land adjoining the Site and in the neighborhood surrounding the Site includes both commercial and residential properties. The property immediately south of the Site includes railroad tracks; the properties immediately north of the Site include additional AVOX land and commercial properties; the properties immediately east of the Site include AVOX Plant 1 and its parking lot, and then residential properties (including vacant land); and the properties to the west of the Site include residential parcels.

2.2.2 Site Geology/Hydrogeology

The native soils underlying the Site generally consist of interbedded silts and clays, with discontinuous sporadic fine sand lenses (shallow overburden). A thin coarse-grained layer of weathered shale is located above the bedrock (deep overburden). Overburden thickness ranges from 20 feet (ft) in the southern portion of the Site to 26 ft in the northern portion of the Site.

The average depth to bedrock is approximately 21 ft. Bedrock was observed to consist of black shale of the Marcellus Formation (Hamilton Group).

A transect for a geologic cross section with monitoring well and piezometer locations is shown on **Figure 3**, and the geologic cross-section is shown on **Figure 4**.

Groundwater monitoring wells were installed at three intervals: shallow overburden, deep overburden, and bedrock; the one bedrock well was decommissioned in October 2017. Overburden groundwater is first encountered at the Site in the shallow overburden, and then again just above the bedrock. An observation of the groundwater within the deep overburden, which is present on top of bedrock, indicates a semi-confined state.

Results of the in-situ hydraulic conductivity (K) tests performed in the monitoring wells at the Site during the BCP Remedial Investigation (RI) showed that K values range from 1.49E-03 centimeters per second (cm/sec) to 3.13E-05 cm/sec in the shallow overburden and range from 4.72E-03 cm/sec to 8.96E-05 cm/sec in the deep overburden. Hydraulic conductivity testing was not performed in the bedrock monitoring well.

The natural flow of groundwater at the Site in both the shallow and deep overburden is to the northwest. The flow direction is most pronounced in the deep overburden, as the flow of shallow overburden groundwater within the Site is significantly influenced by seasonal standing water to the southwest, a storm sewer network cutting through the Site, large asphalt areas to the north and east, and Plant 1 to the east. Depth to groundwater across the Site in both the shallow and deep overburden was measured in April 2023 and is discussed in detail in Section 3 of this report.

2.2.3 Site Investigation and Remedial History

The following narrative provides a remedial history timeline and a brief summary of the available project records to document key investigative and remedial milestones for the Site. Full titles for each of the reports referenced below are provided in Section 7.

The general historical operations that existed in the Plant 1 building adjacent to the Site were primarily manufacturing, development, testing, and distribution for aircraft and military supplied-air systems. The oldest portion of Plant 1 dates to the early 1950s. That original building was expanded several times, with most of it in place by 1975 except for a small warehouse addition in 1996. Plant 1 historical activities included the chemical cleaning and repainting of oxygen cylinders, the chemical cleaning (with inorganic acid solutions) and chromium plating (in a non-electrolytic "soak bath") of metallic components of oxygen supply systems, and the fabrication of oxygen-regulating assemblies. Plant 1 also supported a Class 10,000 clean room and a Class 100,000 clean room. The office area contained management, administrative, engineering, training, and other support activities, and a cafeteria.

Since 2010, Plant 1 has no longer been used for production (i.e., painting and plating activities have terminated). The BCP boundary for the Site is located immediately west/southwest of Plant 1. In general, the pre-remediated areas as described below consisted of low-level metals in the top of the shallow overburden soil immediately south of Plant 1, VOCs in shallow overburden soil at the fence gate southwest of Plant 2, and VOCs in shallow and deep overburden groundwater west/southwest of Plant 1. Note: the BCP boundary, or VOC-impacted groundwater plume, does not extend off the AVOX property.

2.2.3.1 Phase I

In 2004, a Phase I Environmental Site Assessment (ESA) was performed at the Site by Earth Tech, Inc. (now AECOM) on behalf of then owner, Scott Technologies, Inc. The entire facility was sold to the current owner, AVOX, in September 2004. Historical aerial photographs included in the Phase I ESA Report indicated an area of potentially disturbed soil on the west side of Plant 1, south of the existing visitor parking area, and just outside the Plant 1 western perimeter fence line on the adjacent vacant parcel (Earth Tech, April 2004). The Phase I ESA also identified two former underground storage tanks (USTs) that had contained gasoline starting in the early 1970s that were removed from the southeastern portion of the Plant 1 Area in November of 1987; however, no records were found to indicate that any post-excavation sampling was done to demonstrate that the soil and groundwater in their vicinity had not been impacted.

Another former UST that had contained gasoline from an unknown date until the early 1970s was reportedly cleaned and closed in place at that time by filling it with sand. It is believed to be located beneath the current hazardous materials storage shed. No records were found to indicate exactly where that tank is located, when closure occurred, or that any post-closure sampling was done to demonstrate that soil and ground water in the vicinity had not been impacted. From the early 1950s to about 1973, used sand from a steel-casting foundry operation, located in the western portion of Plant 1, was disposed behind (south of) Plant 1.

2.2.3.2 Phase II

A Phase II Environmental Site Investigation was completed in 2004 for the entire Scott Aviation facility, to address environmental concerns described in the Phase I ESA Report, including the area of potentially disturbed soil on the west side of Plant I. During the Phase II ESI, seven test pits were excavated. Residual paint sludge of unknown origin was observed in two of the test pits. The paint sludge area was approximately 150 square ft (sq ft) in size and located just west and south of the vehicle gate located in the western perimeter fence, immediately north of the water tower. Elevated levels of VOCs and semi-

volatile organic compounds (SVOCs) present in the soil immediately below the waste indicated that some leaching of the waste had occurred (Earth Tech, June 2004).

2.2.3.3 Interim Remedial Measure - Soil Excavation

On June 28, 2005, Earth Tech, in accordance with a NYSDEC-approved Interim Remedial Measures (IRM) / Supplemental Site Investigation Work Plan, performed an initial excavation of the buried paint sludge material located to the west of Plant 1. A total of 60 cubic yards of soil was excavated to the west of Plant 1, down to the level at which groundwater was encountered - about 6 ft below ground surface (ft bgs). Further excavation was not completed during the IRM, as the scope of work only addressed vadose zone soil.

2.2.3.4 Preliminary Groundwater Assessment

The above investigations identified the general areas of concern at the Site. As a result of the elevated VOC and SVOC soil concentrations detected in the excavation bottom at Area 1 during the 2005 IRM, a Preliminary Groundwater Assessment (PGA) was performed in 2006 and 2007. The purpose of the PGA was to assess the nature and extent of VOCs in groundwater in the vicinity of Area 1. A series of groundwater wells was installed, and samples were collected and analyzed as a part of the PGA (Earth Tech, January 2008). Eighteen temporary piezometers were installed during the PGA to monitor shallow overburden groundwater. Groundwater samples collected from these piezometers contained VOCs, with 18 of these compounds detected at concentrations that exceeded the NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 (NYSDEC, June 1998, January 1999 errata sheet, April 2000 addendum, June 2004 addendum) protection for source of drinking water (groundwater) standards (i.e., water class GA); herein referred to as TOGS 1.1.1 groundwater standards. Samples of deep overburden groundwater also contained VOCs but to a lesser degree than the shallow overburden groundwater.

2.2.3.5 Remedial Investigation

The BCP RI began in December 2010 with the completion of soil borings, the installation of monitoring wells, and the collection of soil, groundwater, and vapor samples for chemical analysis. This initial work was completed during the summer of 2010 following the approval of the Remedial Investigation / Alternatives Analysis Work Plan (AECOM, February 2010) and addendum to the Remedial Investigation / Alternatives Analysis Work Plan (AECOM, May 2010). A Supplemental RI (SRI) (Supplemental Remedial Investigation Report, AECOM, April 2012), describing work completed in June 2011, included the installation of additional monitoring wells, groundwater sampling, and an evaluation of a storm sewer system that was located throughout the BCP Site. The RI and SRI were performed to gather the data necessary to complete the characterization of chemical presence in on-site groundwater, soil, and soil vapor, in order to identify and evaluate necessary and appropriate remedial alternatives as presented in the Remedial Investigation Report (AECOM, September 2011). The proposed remedial alternatives were presented in an Alternatives Analysis Report (AAR) (AECOM, September 2015). That AAR was completed in accordance with the NYSDEC DER Draft BCP Guide (NYSDEC, May 2004), 6 New York Codes, Rules and Regulations (NYCRR) Part 375 Environmental Remediation Programs (NYSDEC, December 14, 2006), and NYSDEC DER-10 (NYSDEC, May 3, 2010).

These studies investigated Area 1 for contamination in surface soil, subsurface soil, groundwater, and impacts to on-site storm sewers. Constituents of potential concern (COPCs) were identified for soil by comparison of maximum detected concentrations for VOCs to 6 NYCRR Part 375 Unrestricted Use soil cleanup objectives (SCOs), and for SVOCs, metals, pesticides, and polychlorinated biphenyls (PCBs) by comparison to 6 NYCRR Part 375 Commercial Use SCOs. COPCs were identified for groundwater by comparison of maximum detected concentrations for VOCs, SVOCs, metals, pesticides, and PCBs to TOGS 1.1.1 groundwater standards. The results of this comparison to applicable standards are detailed below:

Surface Soil - VOC concentrations for surface soil (i.e., 0 to 2 inches bgs) were below the NYSDEC Subpart 375-6 SCOs for Unrestricted Use at the borings sampled. SVOC, metal, polychlorinated biphenyl (PCB), and pesticide concentrations were below the SCOs for Commercial Use, with the exceptions of benzo(a)pyrene (potentially resulting from asphalt paving and/or the adjacent active rail line) and the metals cadmium and nickel.

- Subsurface Soil VOC concentrations from subsurface soil samples collected from borings during the RI and SRI were below the SCO for Unrestricted Use, with the exception of acetone and methylene chloride (common laboratory contaminants) at two direct push technology (DPT) borings: DPT8 2A and DPT8-2B, both located south of Plant 1. VOC concentrations from one confirmation sample collected from the bottom of the historic IRM (B-1A) had seven compounds exceeding Unrestricted Use SCOs (all seven compounds were below Commercial Use SCOs). SVOC, pesticide and PCB concentrations from subsurface soil samples were all below Unrestricted Use SCOs. Regarding metals, only mercury, copper, and cadmium exceeded SCOs for Commercial Use. These exceedances occurred at two borings: DPT8-1A and DPT8-2A.
- Groundwater Analytical data for groundwater samples collected from the shallow and deep overburden wells during the RI and SRI identified the presence of VOCs exceeding TOGS 1.1.1 groundwater standards. Refer to Figure 5 and Figure 6 for the RI/SRI total VOC (TVOC) contaminant concentration contours for shallow and deep overburden, respectively. There were no exceedances of TOGS 1.1.1 groundwater standards in the bedrock groundwater. The most frequently detected VOCs were trichloroethene (TCE) and its decomposition product cis-1,2dichloroethene (cis-1,2 DCE). Refer to Figure 7 and Figure 8 for the RI/SRI TCE contaminant concentration contours for shallow and deep overburden respectively. The greatest VOC concentrations were detected in the area of the previously-excavated source area during the 2005 IRM. At perimeter wells, VOCs were either not detected or were detected at concentrations below or slightly above TOGS 1.1.1 groundwater standards for TCE. See Appendix A for a summary of groundwater VOC data collected during the RI, SRI, and subsequent quarterly and semi-annual monitoring, and Appendix B for trend plots illustrating concentrations of COCs over time which include 1,1,1-trichloroethane (1,1,1-TCA), 1,1,2-trichloroethane (1,1,2-TCA), 1,1-dichloroethane (1,1-DCA), 1,1-dichloroethene (1,1-DCE), 1,2-dichlroethane (1,2-DCA), tetrachloroethene (PCE), TCE, cis-1,2-DCE, and vinyl chloride (VC). Per a NYSDEC comment letter dated August 23, 2019, cis-1,2-DCE was added as a Site COC. SVOCs in groundwater were below TOGS 1.1.1 groundwater standards. Three naturally occurring metals (iron, magnesium, and sodium) were detected in groundwater above TOGS 1.1.1 groundwater standards. No PCBs were detected, and only one pesticide was tentatively detected in one groundwater sample at a concentration greater than TOGS 1.1.1 groundwater standards. Refer to the AAR (AECOM, April 2015) for groundwater VOC, SVOC, metal, and PCB/pesticide data.
- Storm Sewer Catch Basins A storm sewer with several catch basins is present in Area 1; refer to Figure 3 for the location of the storm sewer system. VOCs were detected within storm sewer catch basins located on the Site and from water within the storm sewer pipe bedding. Groundwater is present above the storm sewer piping; refer to Appendix A for a summary of storm sewer VOC data from CB-1 and for temporary piezometer water sample data that was collected from within the storm sewer pipe bedding gravel near catch basin CB-1 at temporary piezometer TP-5 and approximately 130 ft to the north at TP-6.
- Soil Vapor Based on the evaluation of the data against the decision matrices, a vapor intrusion condition is not present at the Site, and indoor air quality has not been adversely impacted by the presence of the adjacent groundwater plume. However, per a June 1, 2012 letter from the NYSDEC to Scott Figgie LLC, the New York State Department of Health (NYSDOH) considered this Site to be a significant threat due to elevated concentrations of VOCs in sub-slab soil vapor, and the potential for this vapor to impact indoor air. Refer to the AAR (AECOM, September 2015) for air sampling data, for vapor data compared to 2006 NYSDOH guidance values, and for the United States Environmental Protection Agency (USEPA) 2001 Building Assessment and Survey Evaluation database indoor air values, respectively.

2.2.3.6 Soil Vapor Intrusion Evaluation

Based on NYSDEC comments on the draft AAR (AECOM, April 2013), AECOM completed a targeted soil vapor intrusion (SVI) investigation for the Site in July 2013. The purpose of that SVI investigation was to assess whether soil vapor on the Site in the vicinity of a nearby residence at 205 Erie Street contained chlorinated VOCs (CVOCs), and if so, were they detected at concentrations sufficiently elevated to represent a potential indoor air quality issue for the nearby buildings (AECOM, August 2013). A second

investigation and report were completed in September 2013 to follow up on one TCE detection in soil vapor above the method detection limit. Both groundwater and soil samples were collected hydraulically downgradient of Area 1, between the facility and the 205 Erie Street residence, and focused on seven CVOCs that, per NYSDOH guidance values, should be considered as part of an SVI analysis for the residence: 1,1,1-TCA; cis-1,2-DCE; VC; 1,1-DCE; carbon tetrachloride, PCE, and TCE.

No CVOC listed above was reported in any of the soil or groundwater samples. Acetone was reported in one soil sample at 12 micrograms per kilogram. Acetone was also reported in five of the six groundwater samples and in the trip blank. The only other VOC reported was 2 butanone (methyl ethyl ketone) at 4.1 micrograms per liter (µg/L). AECOM reviewed historical soil, groundwater, soil vapor, and stormwater data from the northern portion of the Area 1 Site to assess the potential relationship between the low level TCE concentration reported in SV-1 in July 2013 and the Area 1 contamination. The collective data did not identify a clear relationship between the two that would warrant further SVI sampling at the residential property. Multiple media were evaluated. The property boundary between AVOX (which includes the Site) and 205 Erie Street does not appear to be impacted by the BCP Site (AECOM, October 2013).

2.2.3.7 Interim Remedial Measures - 2014

During a conference call between NYSDEC, Scott Figgie LLC, AECOM, and AVOX representatives on February 28, 2014, the NYSDEC recommended moving forward with the BCP cleanup in advance of an approved Final AAR by completing four IRMs to address soil and selected groundwater impacts at the Site. They included:

- Excavation and off-site disposal of shallow soils impacted by metals (cadmium, copper and nickel);
- Excavation and off-site disposal of subsurface soils impacted by VOCs in some locations;
- Grout sealing on-site storm sewer joints to prevent groundwater infiltration, and installation of impermeable plugs across the pipe bedding to prevent migration of groundwater; and
- Mitigation of SVI concerns at the AVOX boiler room (the only structure within Area 1 that is occasionally occupied).

Those four IRMs were described in an IRM Remedial Action Work Plan (RAWP) dated June 4, 2014 (AECOM). On August 14, 2014, NYSDEC provided approval to begin the described work per the 2014 IRM RAWP.

2.2.3.7.1 Soil Excavation and Storm Sewer Interim Remedial Measures

The 2014 IRM activities were initiated on September 8, 2014. The soil excavation and storm sewer IRMs were completed during October 2014. Metals-impacted soil was excavated to 1 ft bgs in the vicinity of MW-41B, with all confirmatory samples passing metal Commercial Use SCOs for the target parameters. Confirmation soil samples were collected from the excavation sidewalls and bottoms. Soil was excavated to 2 ft bgs in the vicinity of DPT8-1 and DPT8-2. Following the initial excavation, an additional 2 ft wide by 2 ft deep excavation occurred on the south side wall of DPT8-1 and on the north side wall of DPT8-2, until sample results were below Commercial Use SCOs. Following receipt of passing sample confirmation data, and with concurrence from the NYSDEC, the excavated areas were backfilled with imported soil that met NYSDEC Unrestricted Use SCOs and restored to pre-excavation conditions. Each excavation remained open until receipt of soil analytical results determined that confirmation soil samples were below respective SCOs, and the NYSDEC issued approval to discontinue excavation.

VOC concentrations from soil confirmation bottom samples collected in 2005 following an IRM soil excavation were found to be in exceedance of the Unrestricted Use SCO. These samples were collected at or below typical shallow overburden groundwater depths. The concentrations of 1,1 DCE, cis-1,2-DCE, ethylbenzene, toluene, 1,1,1-TCA, TCE, and total xylenes exceeded NYSDEC Subpart 375-6 Unrestricted Use SCOs. An initial horizontal excavation limit was established following the same footprint of the previously excavated area (approximately 14 ft by 18 ft, by 6 ft deep). The 2014 IRM scope was to remove the top 0 to 6 ft of previous clean fill and excavate material from 6 to 8 ft bgs. Elevated Photoionization Detector (PID) headspace readings on side wall and bottom samples were observed following excavation of the 6 to 8 ft bgs interval and reported to NYSDEC. Due to the depth of observed

elevated PID readings and below-average shallow groundwater elevations, an additional 2 ft of soil was removed from the side walls (where physical constraints allowed) and from the bottom of the excavation. Characterization samples from the side walls and bottom of the excavation were collected and resulted in VOC detections exceeding Unrestricted Use SCOs. Refer to the 2014 IRM Construction Completion Report (CCR) for characterization sample results and for the location of the VOC IRM. With approval from the NYSDEC, no further excavation of soil took place; impacts were left in place to be addressed as part of the groundwater IRM, since all impacted material was below the water table. Prior to backfilling, and with approval from the NYSDEC, 270 pounds of Klozur® CR (engineered calcium peroxide) was placed on the bottom of the excavation area and mixed with the small amount of groundwater that had accumulated in the excavation. Fill from the 2005 IRM and imported fill in compliance with NYSDEC DER-10 was used to backfill the excavation areas created for this IRM.

Following the completion of the IRMs in October 2014, AECOM submitted a draft IRM CCR on February 15, 2015 describing those 2014 IRMs. The 2014 IRM CCR was written in compliance with DER-10 Section 5.8, Construction Completion Report and Final Engineering Report, and summarized these IRM activities. The Final 2014 IRM CCR was approved by NYSDEC on March 27, 2015 (AECOM, March 2015).

2.2.3.7.2 Sub-slab Soil Vapor Interim Remedial Measure

On November 4, 2014, AECOM and NYSDEC inspected the concrete floor of the boiler room, and AECOM sealed visible floor cracks with concrete caulking. In addition, the annulus between a drain line effluent and the associated floor penetration and foundation perforations were sealed with expanding foam. Two other foundation perforations (drains) were observed and temporarily plugged with modelling clay just prior to a sampling event. The floor drains appeared to discharge to the bedding gravel beneath the concrete floor slab. On December 24, 2014 one sub-slab vapor sample, one indoor vapor sample, one ambient (outdoor) air sample, and an associated quality assurance / quality control (QA/QC) sample were collected from the boiler room building at AVOX Plant 1, to determine if CVOCs were currently at indoor concentrations sufficiently elevated to trigger a need for mitigation activities. The December 2014 indoor air sample did not detect any CVOCs listed in the NYSDOH Guidance document. The 2014 subslab vapor sample detected 1,1,1-TCA, cis-1,2-DCE, 1,1-DCE, PCE, and TCE. According to the NYSDOH decision matrices, PCE and TCE concentrations triggered an action of 'monitor' only, while the 1,1,1-TCA, cis 1,2-DCE, and 1,1-DCE concentrations were below an action level. Low concentrations of 1,1,1-TCA, cis-1,2-DCE, and TCE were detected in the ambient (outdoor) air sample. The sealing of floor cracks and foundation perforations decreased the concentrations in the indoor air samples and lowered the action level from 'mitigation' to 'monitoring' (AECOM, January 2015).

2.2.3.7.3 Groundwater Interim Remedial Measure

In 2014, an IRM pre-design investigation utilizing a combined membrane interface probe (MIP) and hydraulic profiling tool (HPT) was performed in Area 1; refer to **Figure 9** for MIP locations. That pre-design investigation was performed in accordance with the NYSDEC-approved MIP/HPT and Baseline Sampling Work Plan (AECOM, October 2014).

On November 24-25, 2014, 11 borings were completed throughout the groundwater plume in Area 1 to a depth of 20 ft bgs, with the objective of verifying the distribution of VOC COPCs within that area. The MIP/HPT was used to capture data at continuous depths at each boring.

The 3D Imaging Summary, MIP/HPT Boring Summary, and MIP Data Cross Section figures summarized the field activities and results of the MIP/HPT analysis. Halogen specific detector (XSD) data were used as the prime indicator of CVOC impacts, as they are highly sensitive to CVOCs compared to the other data collection methods. Within the investigated zones, target treatment depths were identified using K data provided by the HPT analysis. The MIP/HPT results were generally consistent with the RI groundwater data collected from June 2010 through June 2011. The data indicated that there were lower VOC concentrations present in the northern portion of the Site and that, where present, they were limited to the upper 14 ft of the overburden. In the southern portion of the Site, VOC concentrations were greater and also present in significant concentrations throughout the entire depth of the soil borings, with the 5-15 ft bgs region exhibiting the highest XSD response. In addition to MIP-8 located in the center of the

groundwater plume, the easternmost and westernmost boring locations, MIP-1 and MIP-11, showed the highest VOC concentrations.

Remedial activities for the groundwater IRM were described in the Final Remedial Action Work Plan - 2015 Interim Remedial Measures - Groundwater Treatment (2015 IRM RAWP) (AECOM, March 25, 2015). On April 10, 2015 the NYSDEC provided approval to begin the described work per the 2015 IRM RAWP; the groundwater injections commenced in April 2015 and were completed in May 2015. In accordance with the AAR and the 2015 IRM RAWP, the remedial approach to address VOCs in Site groundwater was in-situ enhanced reductive dechlorination (ERD) via direct-push injections of Anaerobic Biochem (ABC®) with zero valent iron (ZVI), i.e., ABC+®. Per the 2015 IRM RAWP, the treatment area was divided into two target depths zones: a 12,600 sq ft shallow injection zone and a 20,025 sq ft deep injection zone. In general, the shallow zone was defined as groundwater from 5 to 15 ft bgs, and the deep zone as groundwater from 15 to 25 ft bgs.

A total of 41 of the 47 planned injection point locations were successfully completed in the "shallow only" zone. Six of the 47 planned injection locations were not completed to avoid interference with utilities or as a result of observed breakthrough along the south and west sections of the injection grid. Approximately 23,370 pounds of ABC+® were injected to treat the shallow (only) zone at approximately 570 pounds of ABC+® per point. Mixed at approximately a 15 weight percent (wt. %) solution, this resulted in approximately 16,000 gallons of solution. Each injection point received approximately 390 gallons, divided up among intervals that had the highest permeability.

A total of 79 of the 89 planned injection points were successfully completed in the combined "shallow and deep" zone. Ten of the 89 planned injection locations were not completed to avoid interference with utilities or as a result of observed breakthrough along the south and west sections of the injection grid. Approximately 59,800 pounds of ABC+® was required to treat the shallow and deep zone at 757 pounds of ABC+® per point. Mixed at approximately a 15 wt. % solution, this resulted in approximately 40,300 gallons of solution. Each injection point received approximately 510 gallons, divided up among intervals that had the highest permeability.

Additional injection points were completed adjacent to the storm sewer system to reduce VOCs in the vicinity of the sewer pipe and to apply treatment into the storm sewer pipe bedding. Injection points were performed approximately five to six ft offset (upgradient) from the storm sewer line to establish a biobarrier that groundwater must flow through before entering the storm sewer bedding. Injection locations within the footprint of the TVOC plume that were adjacent to the storm sewer also addressed the storm sewer bedding. Injections associated with the storm sewer bedding were completed between 4 and 6 ft bgs. To protect the existing subsurface utility, injections immediately adjacent to the storm sewer consisted of only ABC® (without ZVI). One location received the planned 390 gallons of injectate; two other locations received only 50 gallons each to limit the volume of injectate breaking through to the ground surface.

The final 2015 IRM CCR describes work completed to remediate VOCs in Site groundwater (AECOM, August 12, 2015). Refer to **Figure 9** for the 2015 IRM injection zone details.

2.2.3.8 Supplemental Groundwater Injection

On May 15, 2019, NYSDEC approved the 2019 Supplemental Injection Work Plan (AECOM, May 10, 2020). Between May 20, 2019 and May 22, 2019, AECOM and subcontractor Matrix Environmental Technologies, Inc. (Matrix) and their teaming partner Redox completed the supplemental groundwater injection event using ABC-Ole[®] and ZVI.

ABC-Ole® is an emulsified fatty acid product designed to address anaerobic bioremediation sites. It is a modified blend of ABC®, which contains a high fatty acid content ranging from 50-85% ABC®. The addition of ZVI to the ABC-Ole® immediately provides a large drop in oxidative reduction potential in the surrounding groundwater which is conducive to biotic reductive dechlorination. The ZVI also promotes an abiotic reductive dechlorination process where the degradation of the targeted groundwater VOCs occurs via the β -elimination pathway. This pathway does not create the degradation intermediates cis-1,2-DCE

and VC which are produced via the biotic reductive dechlorination pathway, and it also does not rely on the presence of *dehalococcoides* (Dhc) to achieve complete VOC destruction.

The combined ABC-Ole® and ZVI mixture was specifically designed to remediate impacted groundwater in an approximate 6,750 sq ft area within the approximate 1,000 μ g/L TVOC shallow overburden zone contour (which also overlies the 1,000 μ g/L TVOC deep overburden zone contour). The area of injection encompasses the area around the most TVOC-impacted monitoring wells located on the Site: A1-GP02-S, A1-GP06-S, A1-GP10-S, MW-42S, MW-38D, and MW-40D. **Figure 10** depicts the 2019 supplemental injection area.

The injectate ABC-Ole®, mixed with ZVI, was injected at 30 locations using a DPT drill rig. Each injection point received approximately 240 gallons of injectate. The injectate was distributed at depth intervals 11, 14, 17, and 20 ft bgs, targeting the shallow and deep water bearing units, and was performed from a bottom to top sequence.

Approximately 7,500 pounds of ABC Ole[®] and 7,500 pounds of ZVI were injected to treat the approximately 10 foot thick zone at approximately 500 pounds of ABC-Ole[®] and ZVI per point. Mixed at approximately a 20 wt. % solution, this resulted in approximately 7,200 gallons of solution. Each injection point received approximately 240 gallons, divided up among intervals that had the highest permeability.

2.2.3.9 Storm Sewer Pipe Replacement

Per the NYSDEC-approved Storm Sewer Replacement Work Plan dated June 12, 2020, approximately 200 linear ft of storm sewer piping was replaced by Matrix in June of 2020 between CB-4 and CB-E, CB-E and CB-3, and CB-3 and CB-2 (refer to **Figure 3** for the location of catch basins). This work was performed based on the ongoing detections of VOCs in quarterly Site stormwater grab samples collected since the 2014 IRM was completed. This section of storm sewer piping was replaced with a new 12-inch diameter SDR35 solid PVC pipe with watertight joints. It was presumed that over time, shallow groundwater entered the storm sewer pipes through pipe joints that may not have been sealed or through previously sealed pipe joints and at catch basins that were no longer watertight.

The impermeable "plugs" along the sections of pipe that were removed during replacement of the storm sewer pipe were re-installed with a grout slurry prior to backfilling activities, to continue to potentially prevent VOC-impacted groundwater from migrating off-Site through the pipe bedding material. In addition, a non-shrinking concrete/grout was used at four catch basins (CB-2, CB-3, CB E, and CB-4) to seal the connections where the stormwater pipes enter and exit the catch basins.

During excavation activities, soils were scanned with a PID. Soils excavated between CB-E and CB-3 were observed to have elevated PID readings and were segregated and sampled for VOC and metals analysis. Per the analytical data and associated historic soil characterization data from the Site, the impacted soil was characterized as non-hazardous. Approximately 18.76 tons of soil was sent to Waste Management's landfill in Chaffee, New York for disposal.

During backfilling of the pipe section between CB-E and CB-3 (where the impacted soil was observed), coarse ZVI (80 percent between 150 and 600 microns) was scratch mixed using an excavator with the backfill material placed from the bottom of the excavation to approximately 2 ft bgs (i.e., within the saturated groundwater zone). Due to the concentration of VOCs in groundwater in this area and the size of the excavation required to replace the stormwater pipe in this section (approximately 4 ft wide by 5 feet deep by 85 ft long), approximately 1,100 pounds or approximately 1.1 percent by weight of ZVI was used. The depth of soil to be treated by ZVI was approximately 3 ft since the top 2 ft of soil was above the water table, and vadose zone soil is not effectively treated by ZVI.

The removed sections of storm sewer pipe were decontaminated (i.e., soil was brushed and/or washed from pipe), cut to size, and placed in a roll-off box for disposal as municipal waste.

Following backfilling activities, the disturbed areas were restored in kind (i.e., crushed stone, asphalt, and grass seed depending on the pre-excavation conditions).

2.2.3.10 Bioaugmentation Injection Program

On September 20 and 21, 2021, AECOM and subcontractor Matrix completed bioaugmentation injections using microbial culture KB-1® Plus and the KB-1® Primer supplied by SiREM. The bioaugmentation solution was injected in to the subsurface via DPT injections, targeting either three or four discrete intervals ranging between 5 and 20 ft bgs depending on the location. Each injection point around locations A1-GP10-S/MW-40D received approximately 200 gallons of KB-1® Plus/Primer (i.e., injectate) which was distributed at 5-foot depth intervals (5, 10, 15, and 20 ft bgs), targeting either the shallow or shallow and deep overburden groundwater zones. Each injection point around locations A1-GP06-S and MW-42S received approximately 150 gallons of injectate and was distributed at three depth intervals (8, 13, and 18 ft bgs), targeting the shallow overburden groundwater zone. Refer to **Figure 11** for injection locations.

The KB-1® Primer came in pouches suitable for mixing with approximately 250 gallons of potable water. An appropriate amount of the KB-1® Primer was weighed with a scale provided by SiREM and mixed with the amount of water required for each injection location (i.e., 60% of a KB-1® Primer pouch for 150 gallons or 80% of a pouch for 200 gallons). The KB-1® Primer water mix was ready to inject when fully dissolved and upon pH and oxygen reduction potential (ORP) readings meeting the specifications designated by SiREM (i.e., 6 to 8.3 standard units for pH, and < -75 milliVolts for ORP).

Injection flow rates for the injections ranged from approximately 3 to 12.5 gallons per minute. The target volume of injections for each discrete interval regardless of location was 50 gallons (to minimize short circuiting or breakthrough). This is the minimum amount of KB-1® Primer water recommended by SiREM to support the KB-1® Plus. At each interval, approximately half the injection amount of KB-1® Primer water (25 gallons) was injected. A target amount of KB-1® Plus (approximately 0.6 liters) was then injected using nitrogen gas to push the anaerobic microbial injectate into the targeted interval. The remaining half of the primer water was subsequently injected. Injections were conducted using a bottom-up approach, starting at the lowest designated interval, and raising the rods up the next interval following completion of the lower interval injection.

2.3 Remedial Action Objectives

The objectives for the remedial program have been established through the remedy selection process stated in 6 NYCRR Part 375. The goal for the remedial program is to restore the Site to pre-disposal conditions to the extent feasible. At a minimum, the remedy must eliminate or mitigate all significant threats to the public health and the environment presented by the CVOCs and metals identified at the Site through the proper application of scientific and engineering principles.

The RAOs for the Site as listed in the Decision Document (NYSDEC, December 2015) are as follows:

2.3.1 Groundwater

- RAOs for Public Health Protection
- Prevent ingestion of groundwater with contaminant levels exceeding drinking water standards.
- Prevent contact with, or inhalation of, VOCs from impacted groundwater.
- RAOs for Environmental Protection
- Restore the ground water aquifer to pre-disposal/pre-release conditions, to the extent practicable.
- Prevent the discharge of COCs to surface water.
- Remove the source of ground or surface water constituents of concern.

2.3.2 Soil

- RAOs for Public Health Protection
 - Prevent ingestion/direct contact with impacted soil.

- Project reference: NYSDEC Site Code:
- Prevent inhalation of or exposure from contaminants volatilizing from soil.
- RAOs for Environmental Protection
 - Prevent migration of constituents that would result in groundwater or surface water contamination.

2.3.3 Soil Vapor

- RAOs for Public Health Protection
 - Mitigate impacts to public health resulting from existing, or the potential for, SVI into buildings at a site.

2.4 Contaminants of Concern

Eight COCs in groundwater have been determined through sampling associated with the RI and SRI. Per the Decision Document (NYSDEC, December 2015), Section 6.1.2 (NYSDEC, December 2015), a "contaminant of concern" is a contaminant that is sufficiently present in frequency and concentration in the environment to require evaluation for remedial action. Not all constituents identified on the Site are COCs. The groundwater COCs identified at the Site and their associated RAOs (Guidance or Standard Values) from TOGS 1.1.1 groundwater standards are listed below:

- 1,1,1-TCA 5 μg/L
- 1,1,2-TCA 5 μg/L
- 1,1-DCA 5 μg/L
- 1,1-DCE 5 μg/L
- 1,2-DCA 0.6 μg/L
- *cis-1,2-DCE 5 μg/L
- PCE 5 μg/L
- TCE 5 μg/L
- VC 2 μg/L

^{*}Per NYSDEC comment letter dated August 23, 2019, cis-1,2-DCE was added as a Site COC.

3. Groundwater Monitoring Program Summary

The following sections provide a summary of the groundwater monitoring program completed during the reporting period (April 14, 2022 through April 12, 2023); a comparison of the groundwater data collected from the October 2022 and April 2023 monitoring events to the COCs and historical groundwater analytical data; and conclusions regarding the monitoring completed and the resulting evaluations regarding remedial performance, effectiveness, and protectiveness.

3.1 Groundwater Monitoring Activities

In accordance with the SMP and NYSDEC February 28, 2020 approval to change the groundwater monitoring frequency from quarterly to semi-annually, the groundwater monitoring program during the reporting period consisted of two comprehensive semi-annual monitoring events (October 2022 and April 2023). These sampling events, following the IRMs and the supplemental groundwater injections described in Sections 2.2.3.7 through Section 2.2.3.10, were conducted to determine the effectiveness of the groundwater remedy.

Semi-annual sampling was performed at 20 wells, two temporary piezometers screened in the storm sewer pipe bedding, and five on-site stormwater catch basins. Refer to **Figure 3** for the location of the sampling points.

Groundwater samples from the monitoring wells were analyzed for VOCs and total organic carbon (TOC). Seven monitoring wells (four shallow overburden and three deep overburden) were also sampled for monitored natural attenuation (MNA) parameters. The two temporary piezometers screened in the storm sewer pipe bedding, and five on-Site stormwater catch basin, were analyzed for VOCs only. Groundwater analyses for VOCs, TOC, and MNA were performed by Eurofins Testing Northeast, LLC located in Amherst, New York. Two monitoring wells (MW-42S and A1-GP10-S) were sampled for volatile fatty acids (VFA) analysis in October 2022 and April 2023 as part of the post-bioaugmentation injection program. In addition, one monitoring well (MW-42S) was sampled in October 2022 and April 2023 to determine concentrations of dechlorinating bacteria (Dhc and *dehalobacter* Dhb) and reductive enzymes. Analysis was performed by SiREM located in Knoxville, Tennessee. The groundwater monitoring program is summarized in **Table 1**.

Monitoring of groundwater conditions at this Site includes both groundwater level measurements and groundwater sampling and analysis. All monitoring and laboratory data, including QA/QC samples, have been uploaded to the NYSDEC EQuIS database. In addition, groundwater purge data, water levels, and VOC, TOC, MNA, and microbial data from these two semi-annual events, as well as groundwater data collected prior to the IRMs, are summarized in **Appendix A**.

Groundwater samples were divided into three different groups based on historical analytical concentrations from individual wells: plume wells, downgradient wells, and upgradient wells (refer to **Table 2** for monitoring well and piezometer specifications). To the extent practical, wells were sampled from lowest to highest historical VOC concentrations. QA/QC samples including field duplicates, rinse blanks, and trip blanks were collected at the recommended rates stated in the SMP.

In accordance with the SMP, standard low-flow sampling procedures were followed. Each well was purged using a peristaltic pump with dedicated/disposable polyethylene and silicone tubing. During purging, field parameters (pH, dissolved oxygen, ORP, specific conductance, turbidity, and temperature) were measured and recorded. Refer to **Appendix A** for the final field parameter readings that were recorded prior to sample collection from each well and to **Appendix C** for purge logs from the October 2022 and April 2023 groundwater monitoring events. Purging continued until field parameters had stabilized and/or between three and five well volumes had been purged. After purging was complete, groundwater samples were collected from the wells, with VOC samples being collected first.

Grab samples were collected from the catch basin and temporary piezometers screened in the storm sewer pipe bedding.

A discussion of the groundwater analytical results for the two semi-annual sampling events as well as a detailed discussion of the most recent monitoring event (April 2023) are presented below.

3.2 April 2023 Groundwater Elevation and Flow Direction

A comprehensive round of groundwater levels was measured from all 20 Site wells and piezometers during the April 2023 sampling event. **Table 3** provides a summary of groundwater elevations measured on April 10, 2023.

Two groundwater surface contour maps for April 2023 are provided. Shallow overburden groundwater surface contour elevations are presented in **Figure 12**, and deep overburden groundwater surface contour elevations are presented in **Figure 13**; note that the groundwater elevation from MW-30 was not included in the groundwater surface contour figures as this well is screened through both the shallow and deep groundwater overburden units. Groundwater elevations measured on April 10, 2023 from the shallow overburden ranged from 683.43 ft above mean sea level (AMSL) at MW-44S to 687.71 ft AMSL at MW-35S. Groundwater elevations measured on April 10, 2023 from the deep overburden ranged from 681.39 ft AMSL at MW-38D to 685.84 ft AMSL at MW-40D. Based on these water level measurements, the groundwater beneath the Site indicates a northwesterly flow direction. This flow direction is most pronounced in the deep overburden, as the shallow overburden groundwater flow within Area 1 is significantly influenced by Site features such as the on-site stormwater system as described in Section 2.2.2.

3.3 October 2022 and April 2023 Groundwater Analytical Data

The October 2022 and April 2023 groundwater sampling event were the twentieth and twenty first comprehensive sampling event conducted at the Site since completion of the groundwater injection IRM in May 2015. VOCs detected in groundwater during the October 2022 and April 2023 sampling events are presented in **Table 4** and **Table 5**, respectively. The analytical results are compared to the Site RAOs or groundwater criteria presented in TOGS 1.1.1 groundwater standards. The following table summarizes the VOCs detected, their respective concentration ranges, the number of detections, and the number of those detections that exceeded Site-specific groundwater RAOs or TOGS 1.1.1 groundwater standards from the most recent sampling event (April 2023).

Groundwater Contaminants of Concern Summary of Results, April 2023

VOCs Detected in Groundwater	Concentration Range (μg/L)	Number of Detections	RAO/TOGS 1.1.1 Exceedances
Chloroethane	480 – 9,000	4	4
1,1-Dichloroethane*	130 – 740	4	4
1,1,1-Trichloroethane*	51 – 74	2	2
cis-1,2-Dichloroethene*	1.5 – 4,600	2	1
Vinyl chloride*	2,400	1	1
Toluene	390	1	1
1,1,2-Trichloro-1,2,2-trifluoroethane	330	1	1
2-Butanone (MEK)	11 - 20	2	0
Acetone	7.2 – 15	2	0

Note: VOCs in the table above followed by an asterisk (*) are Site COCs.

Nine VOCs were detected in groundwater from the monitoring wells (not including the five on-Site stormwater catch basins and two temporary piezometers screened in the storm sewer pipe bedding)

during the April 2023 sampling event. Seven of the nine VOCs detected exceeded either the Site-specific RAOs or the TOGS 1.1.1 groundwater standards at one or more wells. Site COCs were detected at only four of the nine wells, all of which reflect a marked decrease in concentration of the parent VOCs (1,1,1-TCA, PCE and TCE) following the IRMs. **Figures 14 through 19** illustrate April 2023 contours for individual COCs which were detected in shallow and/or deep overburden groundwater. **Figures 20** and **21** illustrate April 2023 contours for TVOCs in shallow and deep overburden groundwater respectively.

The highest concentrations of VOCs in shallow overburden groundwater were detected at A1-GP10-S, MW-42S, and A1-GP02-S; chloroethane was observed at A1-GP10-S (9,000 μ g/L) and MW-42S (6,600 μ g/L) and cis-1,2-DCE was observed at A1-GP02-S (4,600 μ g/L). The highest concentrations of VOCs in deep overburden groundwater were detected at MW-40D (chloroethane at 480 μ g/L). Chloroethane, VC, cis-1,2-DCE, and 1,1-DCA, exhibited the highest overall concentrations in groundwater, all of which are degradation products of 1,1,1-TCA, PCE, and/or TCE.

Historical trend plots for the wells sampled in October 2022 and April 2023 for concentrations of 1,1,1-TCA, 1,1,2-TCA, 1,1-DCA, 1,1-DCE, 1,2-DCA, cis-1,2-DCE, PCE, TCE, and VC are provided in **Appendix B**. As stated above, the VOC concentrations in groundwater continue to show a degradation trend both as a result of naturally occurring reductive dechlorination processes and as a result of the 2015 injection IRM, the 2019 supplemental groundwater injection program, and the 2021 bioaugmentation injection program.

Based on the October 2022 and April 2023 groundwater monitoring well data, there were no detections of 1,1,1-TCA, PCE or TCA in October 2022 and only two detections of 1,1,1-TCA (A1-GP06-S and MW-40D) in April 2023 (no detections of PCE or TCE were observed in April 2023). Overall, decreases in 1,1,1-TCA, PCE or TCE concentrations observed since the 2015 injection IRM continue to show reductions of VOC concentrations in overburden groundwater. This is most clearly demonstrated on the TCE trend plots for monitoring wells MW-42S and MW-38D, and piezometers A1-GP02-S, A1-GP06-S and A1-GP10-S (refer to **Appendix B**).

Electronic copies of the analytical laboratory data package for the October 2022 and April 2023 sampling events are provided in **Appendix D** on a compact disc.

3.4 October 2022 and April 2023 Storm Sewer Catch Basin and Storm Sewer Pipe Bedding Analytical Data

VOC data collected from on-site storm sewer catch basins CB-1, CB-2, CB-3, and CB-4 exhibited a decrease in TVOCs since the June 2020 storm sewer pipe replacement activity as well as following the IRMs, the 2019 supplemental groundwater injection program, and the 2021 bioaugmentation injection program. TVOC concentrations have decreased in all locations between April 2020 (pre-bioaugmentation injection) and the most recent April 2023 sampling event. Refer to **Table 6** for a summary of the VOC data collected between April 2020 and April 2023 at storm sewer catch basins.

Two temporary piezometers screened in the storm sewer pipe bedding (TP-5 and TP-6) were sampled for VOCs. TP-5 is located adjacent to CB-1 and TP-6 is located approximately 110 ft north (down-gradient) of CB-1. Between the October 2022 and April 2023 sampling events, no COC's were detected above the site-specific RAOs in TP-5 or TP-6. Refer to **Table 6** for a summary analytical data collected at the two temporary piezometers between April 2020 and April 2023.

3.5 Comparison of April 2023 COCs in Groundwater with Pre-IRM Groundwater Analytical Data

Trend plots illustrating concentrations of COCs (1,1,1-TCA, 1,1,2-TCA, 1,1-DCA, 1,1-DCE, 1,2-DCA, PCE, TCE, and VC) in monitoring wells over time are provided in **Appendix B**. Because concentrations of TCE were historically the highest of the COCs detected at the Site, a discussion of historical and current TCE concentrations in groundwater at Site monitoring wells and piezometers is provided below.

In April 2023, TCE was not detected at any of the monitoring wells, however, TCE was detected at on-Site catch basins CB-1 (2.5 μ g/L), CB-3 (0.51 μ g/L) and CB-E (1.0 μ g/L); TCE was not detected at temporary piezometers TP-5 and TP-6. Based on the substantial decreases in concentrations of TCE at locations with historical detections of TCE, the 2015 IRM injection of ABC+®, the 2019 supplemental groundwater injection of ABC-Ole® with ZVI, and the 2021 bioaugmentation injection program appear to be promoting the continual degradation of TCE. This decrease is most clearly demonstrated on the trend plots in **Appendix B** for monitoring wells A1-GP02-S (20,000 μ g/L to below the detection limit), MW-42S (13,000 μ g/L to below the detection limit), and MW-38D (11,000 μ g/L to below the detection limit).

3.6 Monitored Natural Attenuation

To monitor the effectiveness of the injections over time, MNA parameters were collected from A1-GP06-S, A1-GP10-S, A1-GP18-S, MW-42S, MW-35D, MW-38D, and MW-40D. Results of the April 2023 MNA samples are summarized in **Table 7**. Per **Table 7**, all source area wells sampled for MNA parameters show strong to adequate evidence for anerobic biodegradation of chlorinated organics to occur; wells outside the contaminant plume show limited to inadequate evidence for anerobic biodegradation of chlorinated organics. It should be noted that during the April 2023 groundwater sampling event, sidegradient/background well A1-GP18-S had a TVOC concentration of 0 μg/L, and downgradient wells MW-35D and MW-38D had TVOC concentrations of 0 μg/L and 18 μg/L respectively.

The use of the ERD amendments ABC+® and ABC-Ole® with ZVI were designed to provide needed nutrients, such as a soluble lactic acid carbon source, a phosphate buffer to control pH for optimum microbial growth, and ZVI which accelerates abiotic dechlorination of chlorinated ethenes and ethanes. In September of 2021, AECOM completed bioaugmentation injections using microbial culture KB-1® Plus and KB-1® Primer. The microbial analyses indicates that the necessary concentrations of bacteria such as Dhc species that can produce the enzymes VC Reductase, BAV1 VC, Reductase and TCE Reductase remain present in the subsurface. Further discussion of these results is presented in Section 3.8.2.

The stimulation of the native bacteria by the injection of ABC+® and extra nutrients in the presence of CVOCs in Site groundwater as well as by bioaugmentation have dramatically reduced the concentrations of the original parent CVOCs, TCE and 1,1,1-TCA, over time. The initial concentrations of known TCA degradation products (1,1-DCA and chloroethane), as well as of TCE degradation products (1,2-DCE isomers and VC), suggest that reductive dechlorination of the chlorinated organic compounds present in Site groundwater is occurring as a result of the amendment injection events. Induction of reducing conditions by the injection of ABC+® accelerates the reductive dechlorination of parent chlorinated VOCs and increases the relative accumulation of degradation intermediates such as cis-1,2-DCE and VC before complete mineralization occurs. As the naturally more aerobic aquifer conditions return after treatment using ERD, VC oxidizing bacteria should increase and complete the dechlorination process to ethene followed by complete mineralization.

3.7 Total Organic Carbon

Samples were collected for TOC analysis to monitor the concentration of available carbon sources for the optimum microbial growth. Although TOC concentrations have decreased over time in the areas outside of the 2019 supplemental groundwater injection area (refer to **Figure 10**), locations within the 2019 supplemental groundwater injection area continue to exhibit elevated TOC concentrations as compared to background. A TOC concentration of 20 milligrams per liter (mg/L) is a common rule-of thumb considered the minimum concentration of carbon necessary for effective reductive dechlorination to occur. The bioaugmentation event conducted at the site in September 2021 would not be expected to increase the concentration of TOC in the area targeted by the injections. The TOC detected is the result of natural organic carbon present in site groundwater and also from previous injections of an organic carbon substrate. The most recent organic carbon injection event conducted at the site was performed between May 20, 2019 and May 22, 2019 as described in Section 2.2.3.8. Refer to **Appendix A**, **Table 4**, and **Table 5** for a summary of TOC concentrations for October 2022 and April 2023. Refer to **Figure 22** and **Figure 23** for shallow and deep overburden groundwater TOC plume figures respectively.

3.8 Dechlorinating Bacteria Analysis

During the October 2022 and April 2023 groundwater sampling event, AECOM collected groundwater samples at MW-42S and A1-GP10-S, and submitted the samples to SiREM in Knoxville, Tennessee for analysis for VFA (MW-42S and A1-GP10-S) and Gene-Trac[®] analysis (MW-42S). The following sections summarize the VFA and Gene-Trac[®] analyses. An electronic copy of the analytical laboratory data packages for the October 2022 and April 2023 sampling events are provided in **Appendix D** on CD.

3.8.1 Volatile Fatty Acids

In addition to a TOC concentration greater than 20 mg/L, the quantification of VFAs is useful to assess the form of TOC present and its availability to promote the reductive dechlorination process. VFAs are fermented by a variety of pathways to produce the hydrogen necessary for complete reductive dechlorination to occur. In general, VFAs should be in excess of 10 to 20 mg/L to be useful. Pre- and post-injection VFA data is summarized in **Table 8**; the associated laboratory data reports are included in **Appendix D**.

Six VFAs were analyzed for by SiREM during pre-bioaugmentation injection monitoring event activities conducted in August 2021, and subsequent post-injection bioaugmentation monitoring events have been conducted in December 2021, April 2022, October 2022, and April 2023. The following compares the pre-bioaugmentation injection event concentrations with the most recent post-bioaugmentation injection sampling event performed in April 2023.

Lactate is a component of the ABC-Ole'® that was previously injected at the Site. Lactate ferments to the VFAs acetate and propionate. Lactate can be used as a measure of the remaining unused reducing potential of the previously injected ABC-Ole'®. For monitoring well MW-42S, lactate increased from <0.39 mg/L to <12 mg/L between August 2021 and April 2023; however, the sample dilution factor increased from 50 to 1,000 so there likely is little, if any, lactate from the previous injections left in the vicinity of this well. For monitoring well A1-GP10-S, lactate increased from <0.39 mg/L to <0.62 mg/L between August 2021 and April 2023, which indicates limited, if any, lactate from the previous injections remain in the vicinity of this well.

Acetate is fermented from lactate, ABC-Ole'®, and sugars. Dhb can use acetate as a low energy source while Dhc cannot use acetate as an energy source. Dhb is implicated in the biodegradation of chlorinated ethenes such as PCE and TCE to cis-1,2-DCE and in the biodegradation of the chlorinated ethane 1,1,1-TCA to 1,1-DCA and subsequently to chloroethane. As a result, the presence of acetate indicates that partial reductive dechlorination can occur. However, complete reductive dechlorination to ethene and ethane will not occur without the presence of other VFAs and Dhc. Between August 2021 and April 2023, Acetate increased in monitoring well MW-42S (574 mg/L to 816 mg/L) and decreased in monitoring well A1-GP10-S (471 mg/L to 14 mg/L). The current low concentration of acetate in the vicinity of A1-GP10-S suggests that partial dechlorination by Dhb will be limited in the future. More time is required to see the impact of this decrease in acetate.

Propionate is fermented from lactate, ABC-Ole'®, and alcohols. Propionate subsequently ferments to produce hydrogen and formate. Hydrogen is the preferred electron acceptor for reductive dechlorination because of the high energy yield. Dhc can only use hydrogen as an energy source. Slow fermentation of propionate results in efficient reductive dechlorination (less methanogenesis) and optimal Dhc growth. Propionate was detected in MW-42S in August 2021 but decreased in concentration from 148 mg/L to <0.10 mg/L in April 2023. Propionate was also detected in monitoring well A1-GP10-S but also decreased in concentration from 68 mg/L to <0.01 mg/L in April 2023. The lack of detection of propionate at both wells indicates that the ABC-Ole'® from the last injection event in May 2019 is close to being used up or has been expended or that the quantity of Dhc and/or Dhb in the vicinity of these two wells is insufficient to produce a measurable quantity of propionate.

Formate is created from the fermentation of propionate. Formate is fermented to produce hydrogen and bicarbonate. Formate increased in monitoring wells MW-42S and A1-GP10-S between August 2021 and

April 2023 from <0.22 mg/L to <25 mg/L and from <0.22 mg/L to <1.3 mg/L respectively. However, because the quantities in April 2023 were still non-detect for both wells, it is uncertain whether formate exists at the wells. Because formate is created from the fermentation of propionate, it is likely that formate is not present at these wells.

Butyrate is created from the fermentation of ABC-Ole^{*®} and alcohols. Butyrate ferments to produce hydrogen and acetate. Slow fermentation of butyrate results in efficient reductive dechlorination (less methanogenesis) and optimal Dhc growth. Butyrate was detected in monitoring well MW-42S during both August 2021 and April 2023 sampling events but decreased from 108 mg/L to 50 mg/L. Butyrate decreased from 46 mg/L to <0.06 mg/L at A1-GP10-S. The results for butyrate indicate the same as described for propionate (i.e., the ABC-Ole^{*®} from the last injection event in May 2019 is close to being used up or has been expended).

Pyruvate is created from the fermentation of sugars. Pyruvate is subsequently fermented to propionate and acetate with some hydrogen production. Pyruvate was detected in monitoring well MW-42S during both August 2021 and April 2023 but decreased from 26 mg/L to 16 mg/L. Pyruvate decreased from 5.3 mg/L in August 2021 to <0.15 mg/L in April 2023. The decreasing concentration of pyruvate also contributes to the lowered concentration of propionate and acetate that were detected in April 2023.

Overall, the April 2023 VFA results for monitoring well MW-42S and A1-GP10-S indicate that the remaining TOC (155 mg/L and 70 mg/L, respectively) in the vicinity of these wells is sufficient to promote complete reductive dechlorination according to the general rule of thumb of 20 mg/L; however, the quantity of ABC-Ole'® remaining to promote efficient reductive dechlorination appears to be close to being expended, particularly in the vicinity of A1-GP10-S. Three of the six VFAs were detected in MW-42S, and one of six VFAs were detected in A1-GP10-S.

A discussion of Dhc, Dhb, and reductase results is provided in the next subsection.

3.8.2 Gene-Trac[®]

Gene-Trac[®] Dhc is used to detect Dhc in a groundwater sample. The detection of Dhc is significant as Dhc contain the greatest number of reductive dehalogenase genes of any microbial group. Dhc is capable of the reductive dechlorination of PCE, TCE, cis-1,2-DCE, 1,1-DCA, trans-1,2-DCE, and VC. Pre- and post-injection Gene-Trac[®] data are summarized in **Table 9**; the associated laboratory data reports are included in **Appendix D**.

Gene-Trac® samples from MW-42S were analyzed by SiREM during the pre-bioaugmentation injection monitoring event conducted in August 2021 and during subsequent post-injection monitoring events conducted in December 2021, April 2022, October 2022, and April 2023. The following compares the pre-bioaugmentation injection monitoring event concentrations with the most recent post-bioaugmentation injection sampling event performed in April 2023.

The post-injection Gene-Trac[®] Dhc results decreased from 5-13 % to 0.7-2% Dhc (decrease from 2 x 10^8 enumerations per liter in August 2021 to 1 x 10^7 enumerations per liter in April 2023). Per the technical notes from SiREM regarding interpretation of data, when the density of Dhc gene copies per liter is 1 x 10^7 or higher, this concentration is generally associated with significant rates of dechlorination.

Gene-Trac® vinyl chloride reductases (*vcrA* and *bvcA*) and TCE reductase (*tceA*) quantify genes that code for reductase enzymes that dechlorinate chlorinated ethenes and other compounds. The *vcrA*, *bvcA*, and *tceA* genes play specific roles in reductive dechlorination. Specifically, the Gene-Trac® *vcrA* and *bvcA* test quantifies VC-reductase genes that produce enzymes that convert VC to ethene. The *vcrA* reductase gene is reported to be the most commonly identified VC reductase gene in the environment, whereas *bvcA* is generally less common but can predominate in more oxidizing groundwater and possibly where DCE is dominant. The Gene-Trac® *tceA* test quantifies the TCE reductase gene that produces an enzyme that primarily converts TCE to cis-1,2-DCE and VC.

The *vcrA* reductase gene was detected in monitoring well MW-42S at 3 x 10⁸ gene copies per liter in the pre-injection sample and decreased slightly to 1 x 10⁷ gene copies per liter in the April 2023 post-injection sample collected. The *bvcA* reductase gene was detected in monitoring well MW-42S at 2 x 10⁵ gene copies per liter in August 2021 and decreased to 3 x 10⁴ gene copies per liter in April 2023. The *tceA* reductase gene was detected in monitoring well MW-42S at 2 x 10⁷ gene copies per liter in August 2021 and decreased to 2 x 10⁶ gene copies per liter in April 2023. Per the technical notes from SiREM, the potential for complete dechlorination is very high when Dhc, *vcrA*, *bvcA*, and *tceA* are present at concentrations greater than or equal to 1 x 10⁷ gene copies per liter. In this case, *bvcA* and *tceA* were detected at less than 1 x 10⁷ gene copies per liter; however, the *vcrA* and Dhc numbers remained at and above 1 x 10⁷ gene copies per liter, respectively. Therefore, the potential for complete dechlorination remains high. Additionally, VC stall is unlikely when *vcrA* greater than 1 x 10⁷ gene copies per liter, and ethene is detectable. At monitoring well MW-42S, ethene was detected at 3,700 μg/L and 2,800 μg/L in October 2022 and April 2023, respectively.

Gene-Trac® Dhb is used to detect Dhb in a groundwater sample. Dhb are implicated in the biodegradation of PCE and TCE to cis-1,2-DCE. The detection of Dhb indicates that dechlorination activities attributed to Dhb may be active. Increasing concentrations of Dhb are indicative of increased potential for degradation. Dhb was detected at 6 x 10⁶ gene copies per liter in August 2021 and at 6 x 10⁵ gene copies per liter in April 2023. This is a decrease by an order of magnitude in the quantity of Dhb detected near MW-42S and is in the moderate quantity or concentration range for Dhb. This moderate quantity may limit dechlorination by Dhb.

In summary, Dhc, *vcrA*, *bvcA*, and *tceA* are present at monitoring well MW-42S at concentrations that indicate the potential for complete dechlorination to occur. Additional time is needed to evaluate the overall impact of the September 2021 bioaugmentation event in the vicinity of this well.

3.9 Dechlorinating Chemical Analysis

In addition to the dechlorinating bacteria and degradative enzyme results, the presence and distribution of TCE degradation products (cis-1,2-DCE and VC) and 1,1,1-TCA degradation products (1,1-DCA and chloroethane) provide supportive evidence that the attenuation of TCE and 1,1,1-TCA and their degradation products via reductive dechlorination continues to occur in-situ at the Site. The occurrence and concentrations of these degradation products are directly related to the historic distribution of TCE and 1,1,1-TCA in the subsurface. During the October 2022 and April 2023 sampling events, the degradation products of TCE and 1,1,1-TCA were detected at their highest concentrations within the suspected source area near A1-GP02-S, A1-GP06-S, A1-GP10-S, MW-42S, and MW-40D, with most of these detections in groundwater located at wells A1-GP02-S, A1-GP06-S, A1-GP10-S, MW 42S, and MW-40D; refer to **Table 4** and **Table 5**.

4. Site Inspection

This section describes the Site inspections, O&M tasks completed, and recommendations for improvements.

4.1 Boiler Room

Inspections of the boiler room floor were performed concurrently during the October 2022 and April 2023 semi-annual groundwater sampling events as well as in July 2022 and January 2023. All previous repairs that were completed in November 2014 and November 2017 remain intact, and no additional cracks or perforations were observed. Note, as stated in the SMP, if the boiler room becomes occupied or its usage changes, additional treatment and/or control measures will need to be evaluated.

4.2 Monitoring Wells

As per the SMP, Site monitoring wells were inspected during each of the semi-annual groundwater sampling events; no issues were observed regarding the condition of the wells. No O&M activities at the wells were needed.

5. Conclusions and Recommendations

Based on results of the groundwater analytical data collected during the reporting period, conclusions, upcoming Site-related activities, recommendations, and a proposed monitoring and reporting schedule are presented below.

5.1 Conclusions

- 1. Groundwater elevations measured on April 10, 2023 from the shallow overburden ranged from 683.43 ft AMSL at MW-44S to 687.71 ft AMSL at MW-35S. Groundwater elevations measured on April 10, 2023 from the deep overburden ranged from 681.39 ft AMSL at MW-38D to 685.84 ft AMSL at MW-40D. Based on these water level measurements, the groundwater beneath the Site exhibits a northwesterly flow direction. This flow direction is most pronounced in the deep overburden, as the shallow overburden groundwater is significantly influenced by Site features (e.g., the stormwater sewer system and adjacent paved areas).
- 2. The groundwater analytical data indicate that the IRMs, the 2019 supplemental groundwater injection, and 2021 bioaugmentation injection were, and continue to be, successful in the continued attenuation of Site-related CVOCs.
- 3. The groundwater microbial analyses indicate that the necessary microbes, (Dhc in particular), and degradative enzymes (*vcrA* in particular) are present in the shallow overburden in the vicinity of MW-42S at sufficient concentrations to promote complete reductive dechlorination.
- 4. VOC data collected from the on-site catch basins in April 2023 exhibited detections just above the Site-specific RAOs or TOGS 1.1.1 groundwater standards at CB-1, CB-2, and CB-E but continued to show a general decreasing trend in concentration of COCs.
- 5. There were no VOCs detected above the screening criteria in samples collected in April 2023 from the temporary piezometers screened in the storm sewer bedding.
- 6. Semi-annual monitoring data collected during the reporting period demonstrate that TOC concentrations in the areas targeted for injections, although decreasing in concentration, remain above pre-injection levels, and therefore maintain conditions that promote microbial growth. The TOC results combined with the VFA results indicate that the ABC-Ole® injected in May 2019 is close to being expended or at a concentration that may limit reductive dechlorination in the future.
- 7. The boiler room floor crack caulking and drainpipe annulus seals (i.e., sub-slab mitigation controls) were inspected quarterly and did not need repair. No additional floor cracks or perforations in the floor were noted during the reporting period.

5.2 Recommendations

Based on information gathered during the current reporting period, the following recommendations are proposed for the Site:

- 1. Continue quarterly inspections of the boiler room sub-slab mitigation controls.
- 2. Continue semi-annual inspections of the monitoring well network.
- 3. Perform semi-annual comprehensive groundwater sampling events (October 2023 and April 2024); refer to **Table 1** for a list of locations to be sampled and associated analyses.
- 4. Review and update the Site health and safety plan as necessary.

5.3 Proposed Monitoring and Compliance Sampling Schedule

The proposed schedule for groundwater sampling at the Site during the next reporting period includes semi-annual sampling of 20 wells, five on-site catch basins, and two temporary piezometers screened in

the storm sewer pipe bedding; refer to **Table 1** for a list of locations to be sampled and associated analyses.

It is anticipated that the next PRR will be prepared following receipt of laboratory analytical results for the April 2023 comprehensive groundwater sampling event and will include the results from groundwater sampling events scheduled for October 2023 and April 2024.

6. Evaluate Remedy Performance, Effectiveness, and Protectiveness

6.1 Institutional Controls and Engineering Controls Certification

As a component of the PRR requirement, included in **Appendix E** is the completed IC/EC certification form. Note an IC/EC certification form was not distributed by NYSDEC for this reporting period; NYSDEC directed AECOM to update the February 19, 2021 IC/EC certification form for the current reporting period. AECOM verified that the institutional and engineering controls listed below are being implemented and are in compliance with the February 19, 2021 IC/EC certification form.

Institutional controls include:

- 1. Groundwater Use Restrictions
- 2. Land Use Restrictions
- 3. Site Management Plan
- 4. Soils Monitoring Plan
- 5. Groundwater Monitoring Plan
- 6. IC/EC Plan

Engineering controls include:

1. None listed.

7. References

AECOM. June 2022. "2021 Periodic Review Report, April 9, 2021 through April 14, 2022, Former Scott Aviation Facility Area 1 BCP Site", NYSDEC Site Code No. C915233, Lancaster, New York".

AECOM. August 2021. "Bioaugmentation Injection Work Plan, Former Scott Aviation Facility Area 1 BCP Site", NYSDEC Site Code No. C915233, Lancaster, New York".

AECOM. June 2020. "Storm Sewer Replacement Work Plan - Former Scott Aviation Facility Area 1 BCP Site", NYSDEC Site Code No. C915233, Lancaster, New York"

AECOM. May 2019. "2019 Supplemental Injection Work Plan - Former Scott Aviation Facility Area 1 BCP Site", NYSDEC Site Code No. C915233, Lancaster, New York"

AECOM. December 2015. "Site Management Plan", Former Scott Aviation Facility Area 1 BCP Site, Lancaster, New York, Erie County.

AECOM. December 2015. "Final Alternatives Analysis Report - Former Scott Aviation Facility Area 1 BCP Site, NYSDEC Site Code No. C915233, Lancaster, New York".

AECOM. March 2015. "Interim Remedial Measures Construction Completion Report - Former Scott Aviation Facility Area 1 BCP Site, NYSDEC Site Code No. C915233, Lancaster, New York".

AECOM. January 2015. "Sub-Slab Vapor Evaluation - Former Scott Aviation Facility Area 1 BCP Site, NYSDEC Site Code No. C915233, Lancaster, New York".

AECOM. October 2014. "MIP/HPT and Baseline Sampling Work Plan – Former Scott Aviation Facility Area 1 BCP Site No. C915233, Lancaster, New York".

AECOM, June 2014. "2014 Interim Remedial Measures Remedial Action Work Plan, Former Scott Aviation Facility Area 1, Lancaster New York".

AECOM. March 2015. "2014 Interim Remedial Measures Construction Completion Report - Former Scott Aviation Facility Area 1 BCP Site, NYSDEC Site Code No. C915233, Lancaster, New York".

AECOM. October 2013. "Soil Vapor Intrusion Evaluation: Supplemental Soil and Groundwater Data Report - Former Scott Aviation Facility Area 1 BCP Site, NYSDEC Site Code No. C915233, Lancaster, New York".

AECOM. August 2013. "Soil Vapor Intrusion Evaluation - Former Scott Aviation Facility Area 1 BCP Site, NYSDEC Site Code No. C915233, Lancaster, New York".

AECOM. April 2013. "Draft Alternatives Analysis Report - Former Scott Aviation Facility Area 1 BCP Site, NYSDEC Site Code No. C915233, Lancaster, New York".

AECOM. April 2012. "Supplemental Remedial Investigation Report - Former Scott Aviation Facility Area 1 BCP Site, NYSDEC Site Code No. C915233, Lancaster, New York".

AECOM. September 2011. "Remedial Investigation Report - Former Scott Aviation Facility Area 1 BCP Site, NYSDEC Site Code No. C915233, Lancaster, New York".

AECOM. May 2010. "Addendum to the Remedial Investigation / Alternatives Analysis Work Plan - Former Scott Aviation Facility Area 1 BCP Site, NYSDEC Site Code No. C915233, Lancaster, New York".

AECOM. February 2010. "Remedial Investigation / Alternatives Analysis Work Plan - Former Scott Aviation Facility Area 1 BCP Site, NYSDEC Site Code No. C915233, Lancaster, New York".

Earth Tech. January 2008. "Preliminary Groundwater Assessment Report", Former Scott Aviation Facility, Lancaster, New York.

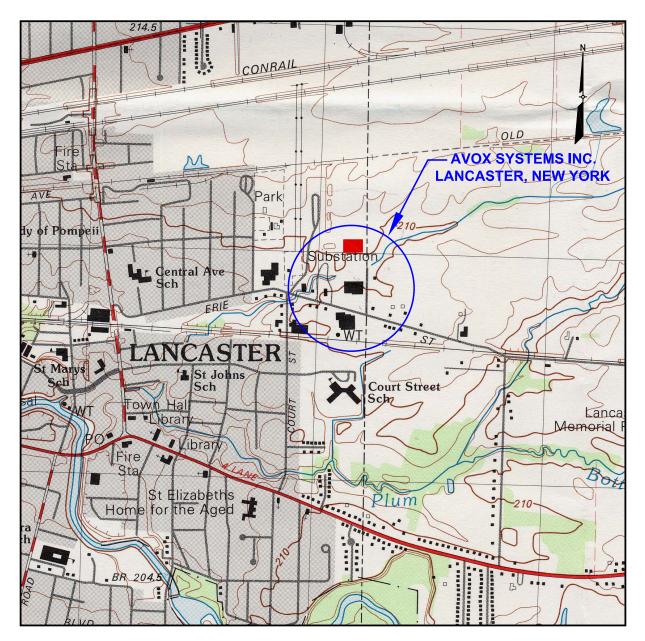
Earth Tech. June 2004. "Phase II Environmental Site Investigation", Tyco/Scott Aviation Facility, Lancaster, New York.

Earth Tech. April 2004. "Phase I Environmental Site Assessment and Modified Compliance Assessment", Tyco/Scott Aviation Facility, Lancaster, New York.

Lu, X., J.T. Wilson, and D.H. Kampbell. 2006. "Relationship Between Dehalococcoides DNA in Ground Water and Rates of Reductive Dechlorination at Field Scale". Water Research 40:3131-3140.

NYSDEC. December 2015. "Decision Document", Former Scott Aviation Facility (Area 1) Brownfield Cleanup Program, Lancaster, Erie County, Site No. C915233.

NYSDEC. May 2010. Program Policy DER-10, Technical Guidance for Site Investigation and Remediation.


NYSDEC. May 2004. "Draft Brownfield Cleanup Program Guide."

NYSDEC, 1998. Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1. June 1998 (June 2004 addendum).

NYSDEC, June 1998. "Division of Water Quality New York Codes, Rules and Regulations (NYCRR), Title 6, Parts 702.15(a)(2) and 703.5".

Figures

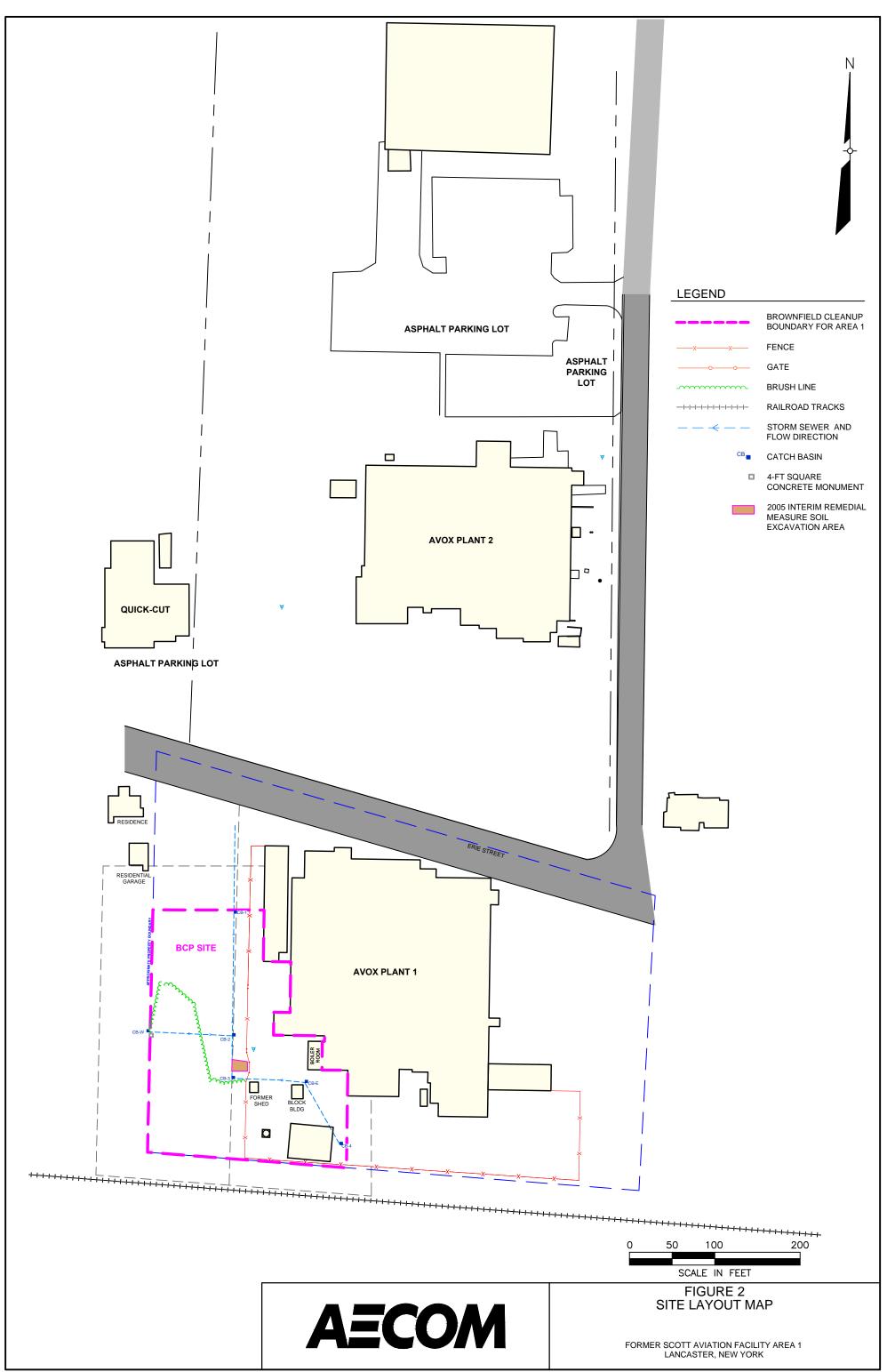
Project reference: NYSDEC Site Code: C915233

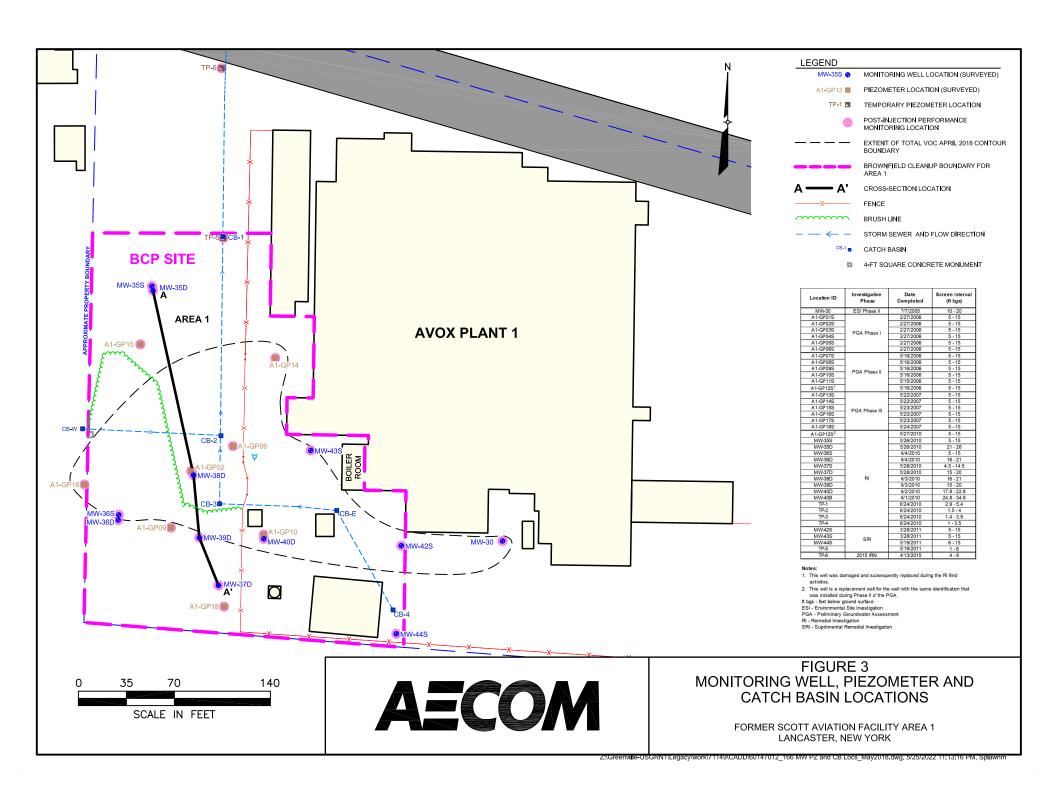


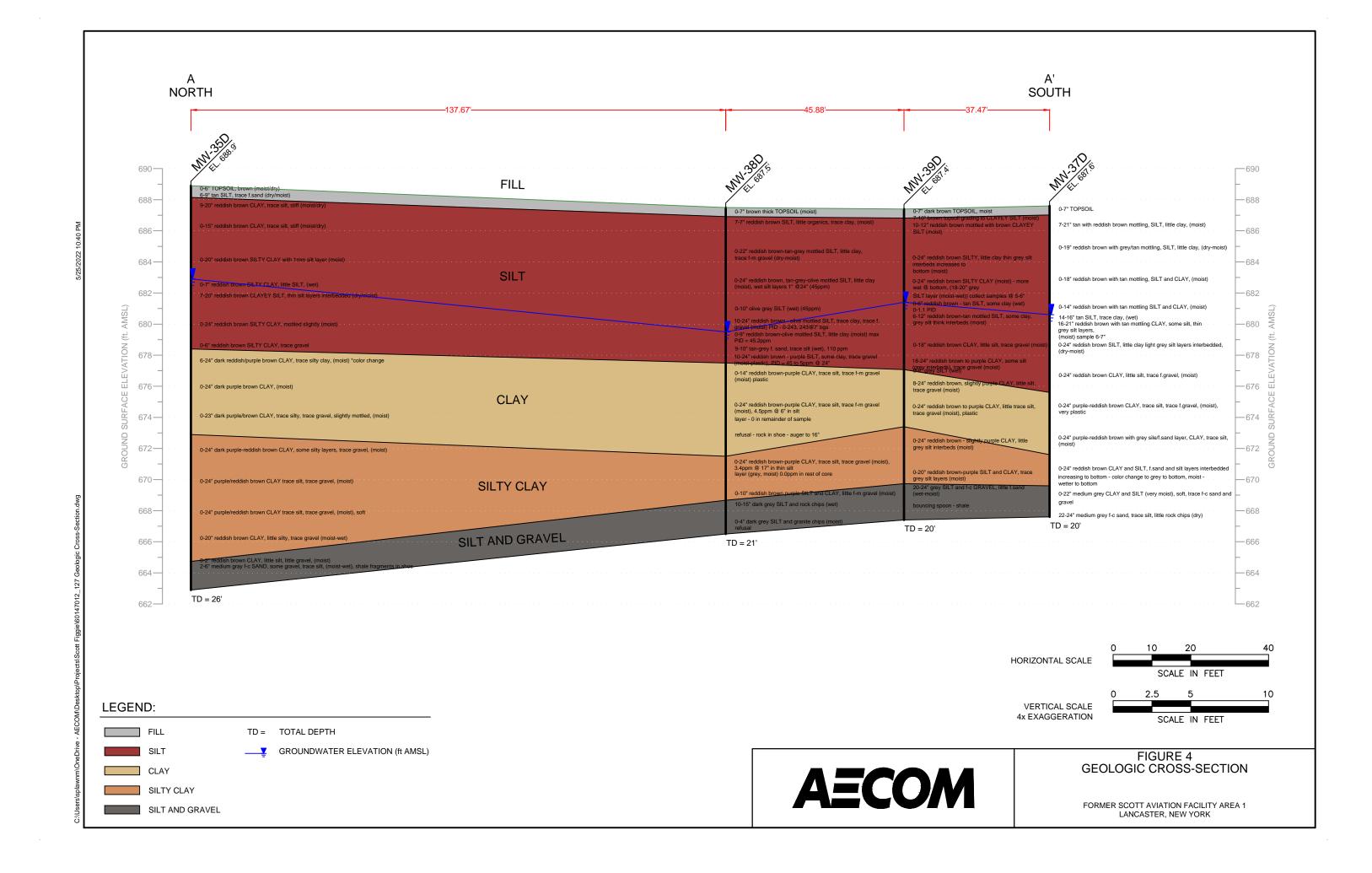
SOURCE:

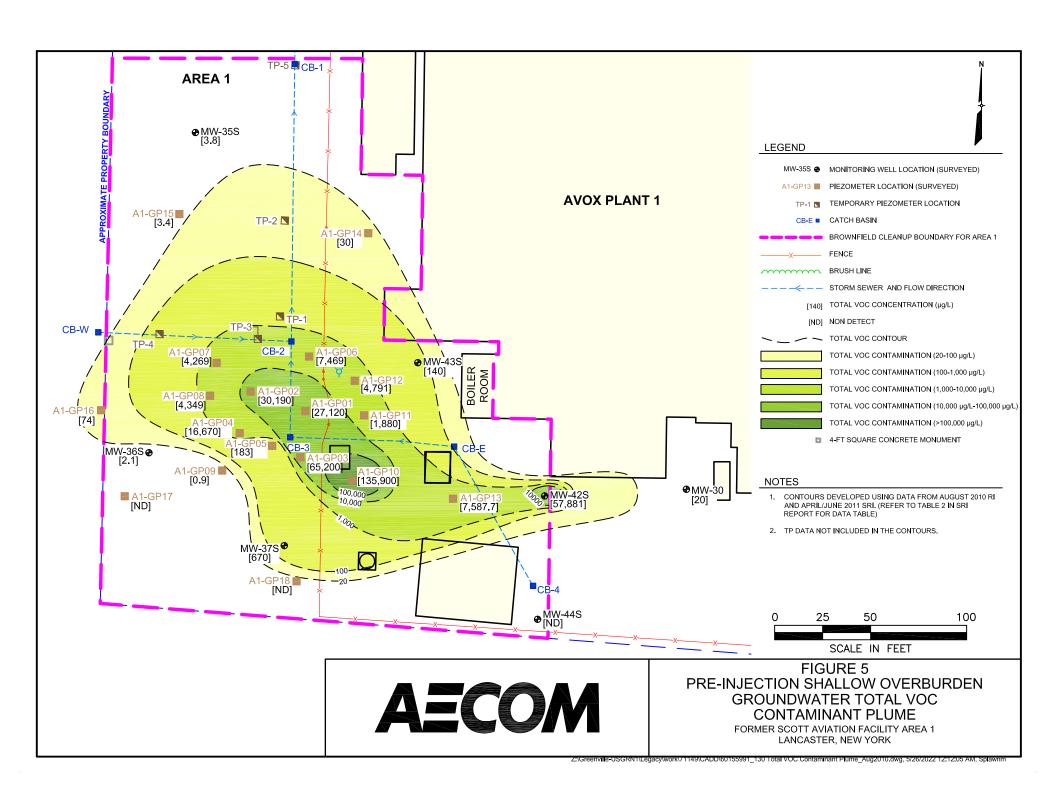
1982 U.S. GEOLOGIC SURVEY 7.5 X 15 MINUTE TOPOGRAPHIC QUADRANGLE LANCASTER, NEW YORK

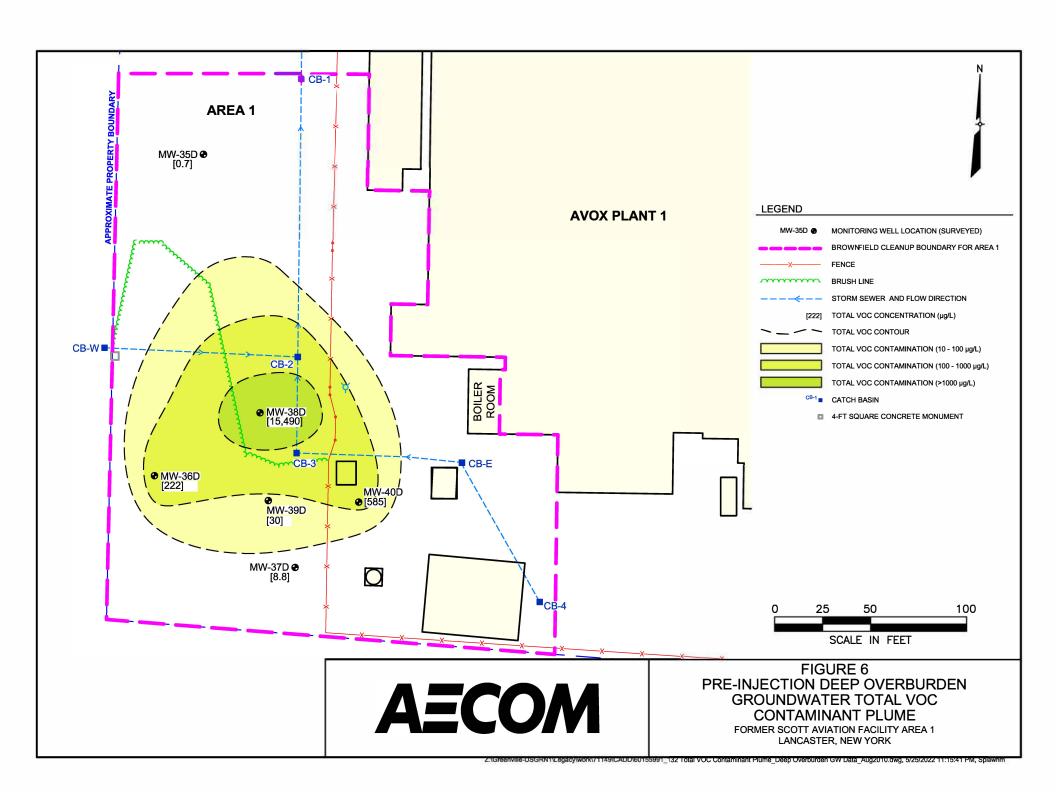
LEGEND

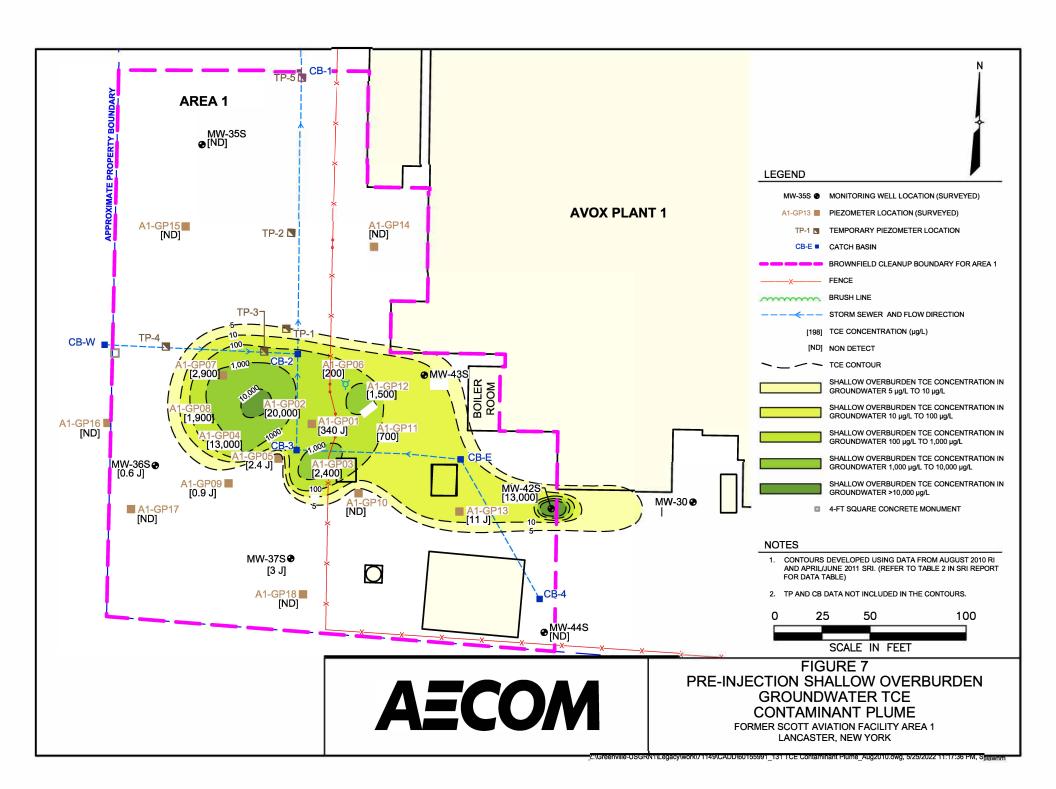

AVOX PLANT 3 ADDED AFTER PUBLICATION OF LANCASTER, NEW YORK TOPOGRAPHIC QUADRANGLE.

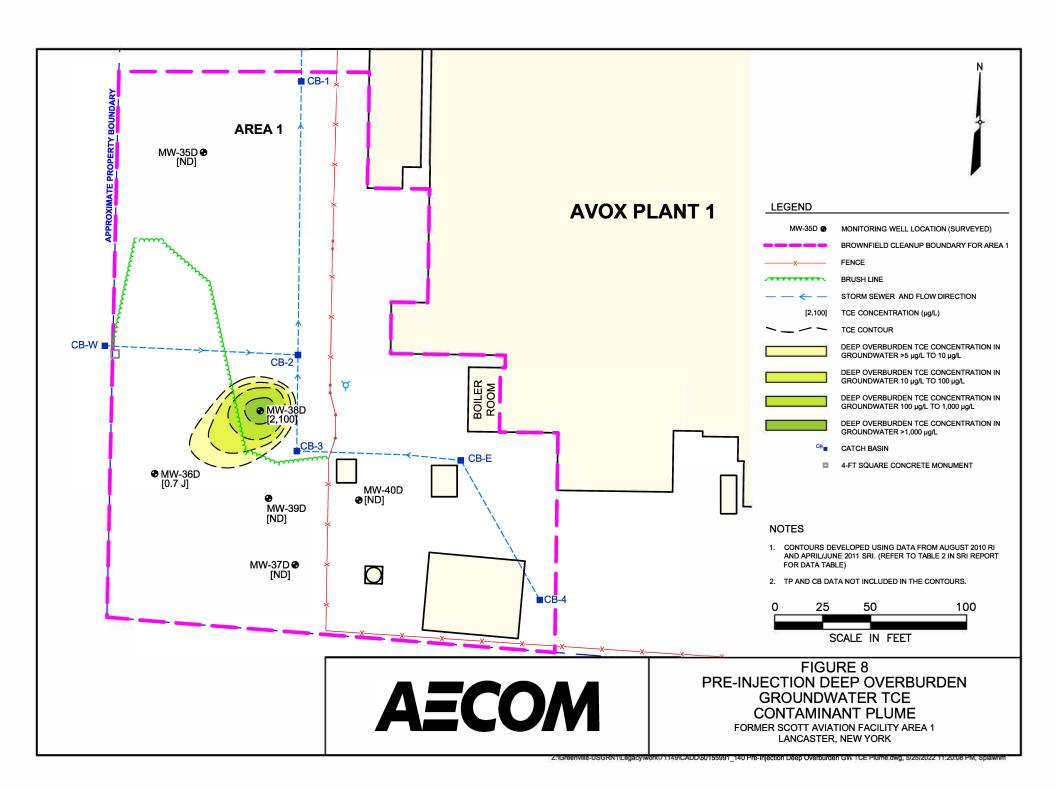


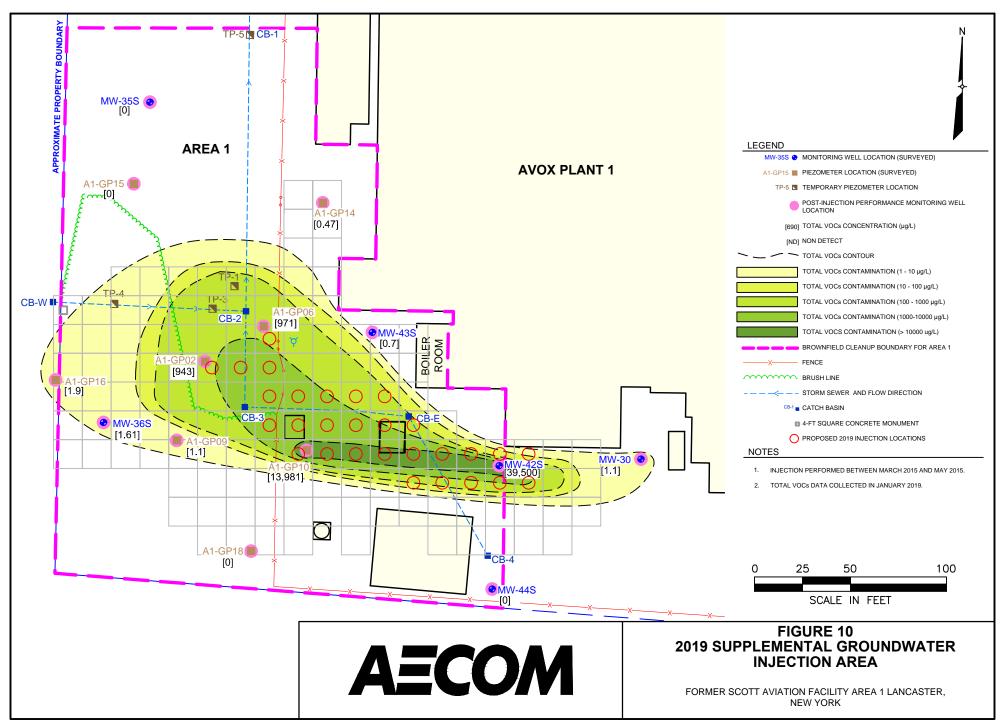

AECOM

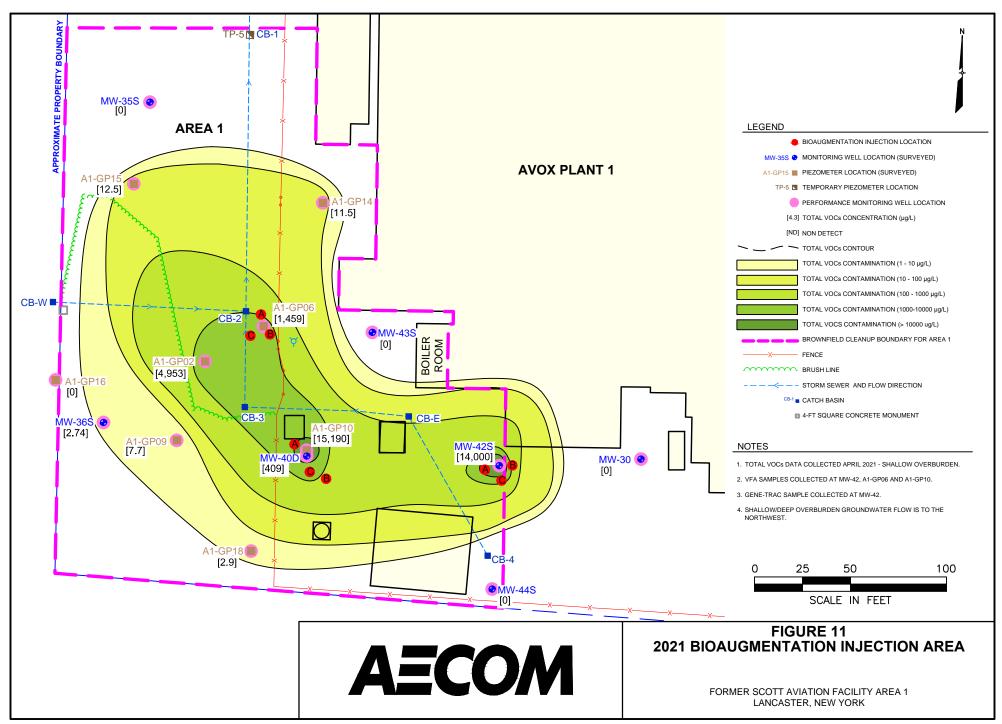

FIGURE 1 SITE LOCATION MAP

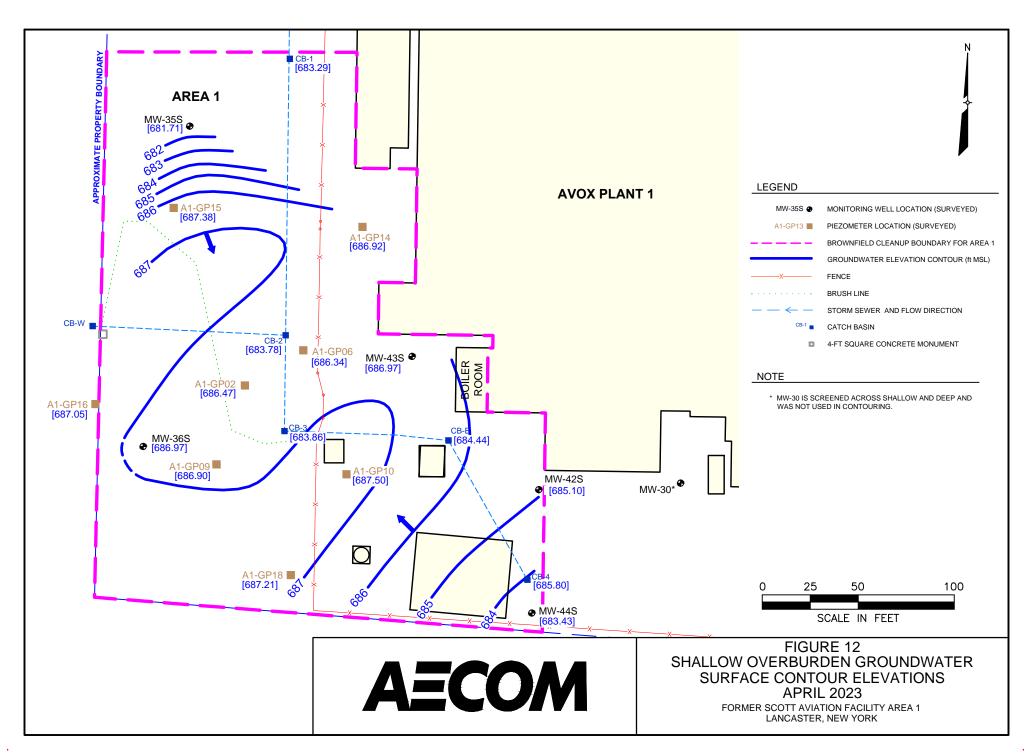

FORMER SCOTT AVIATION FACILITY AREA 1 LANCASTER, NEW YORK

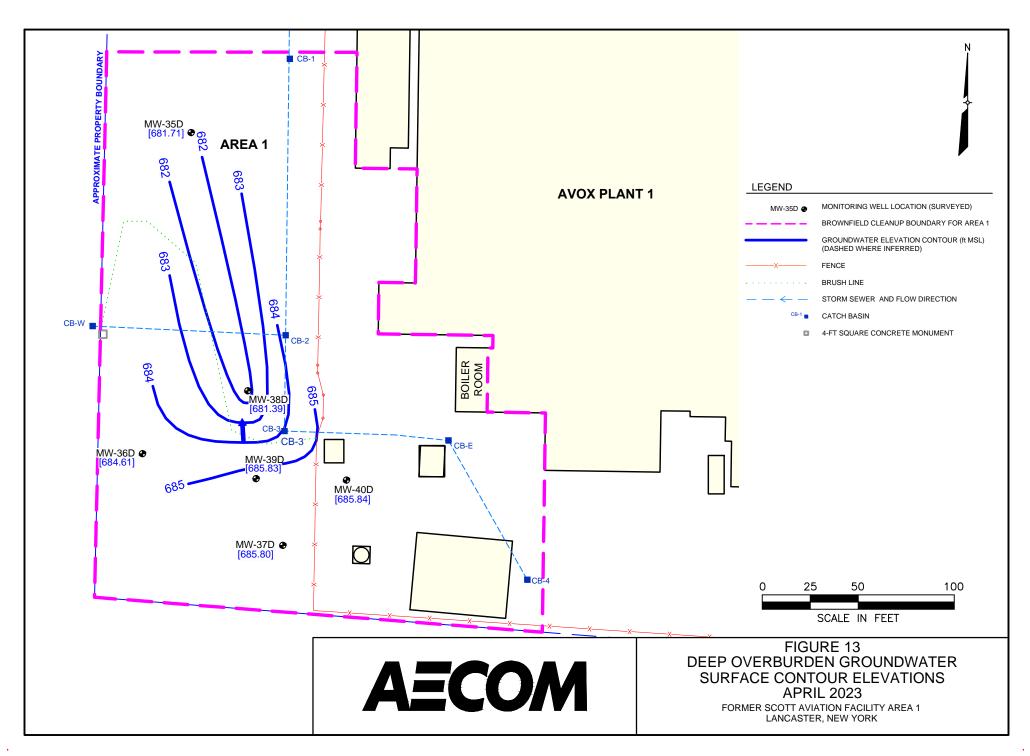


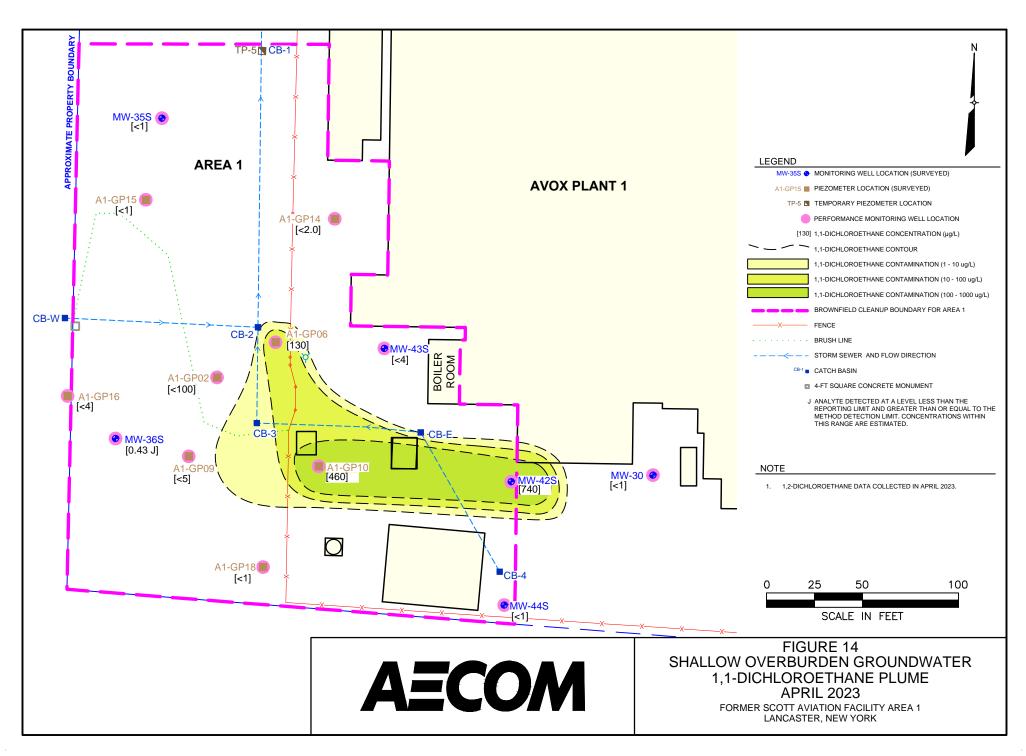


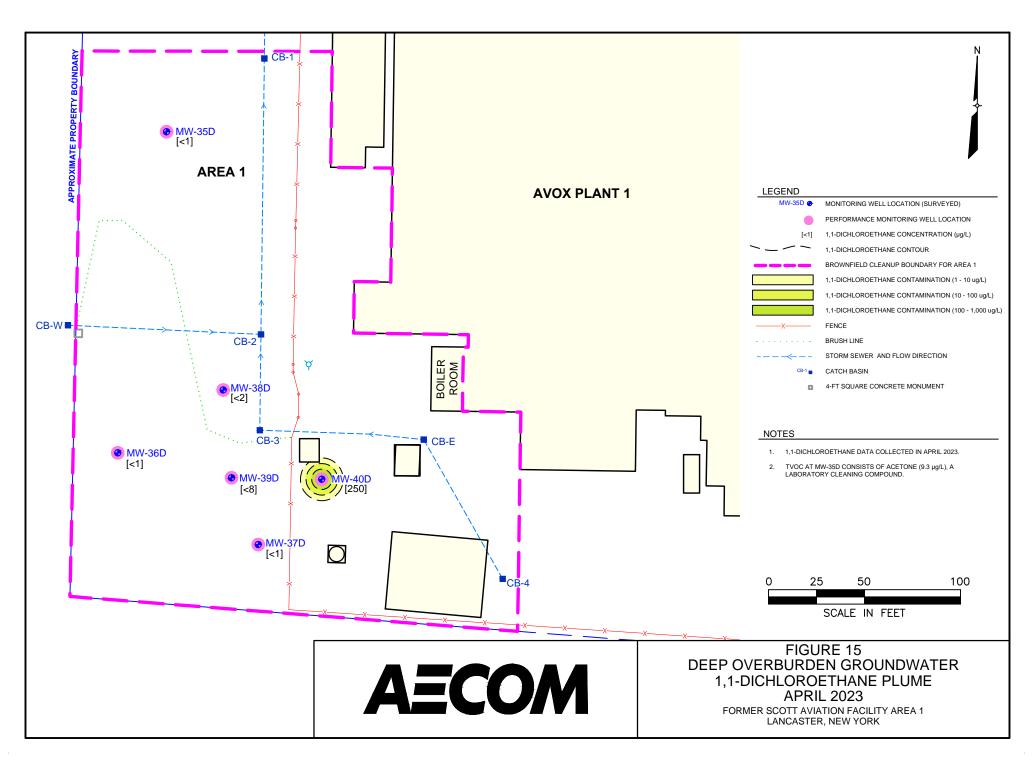


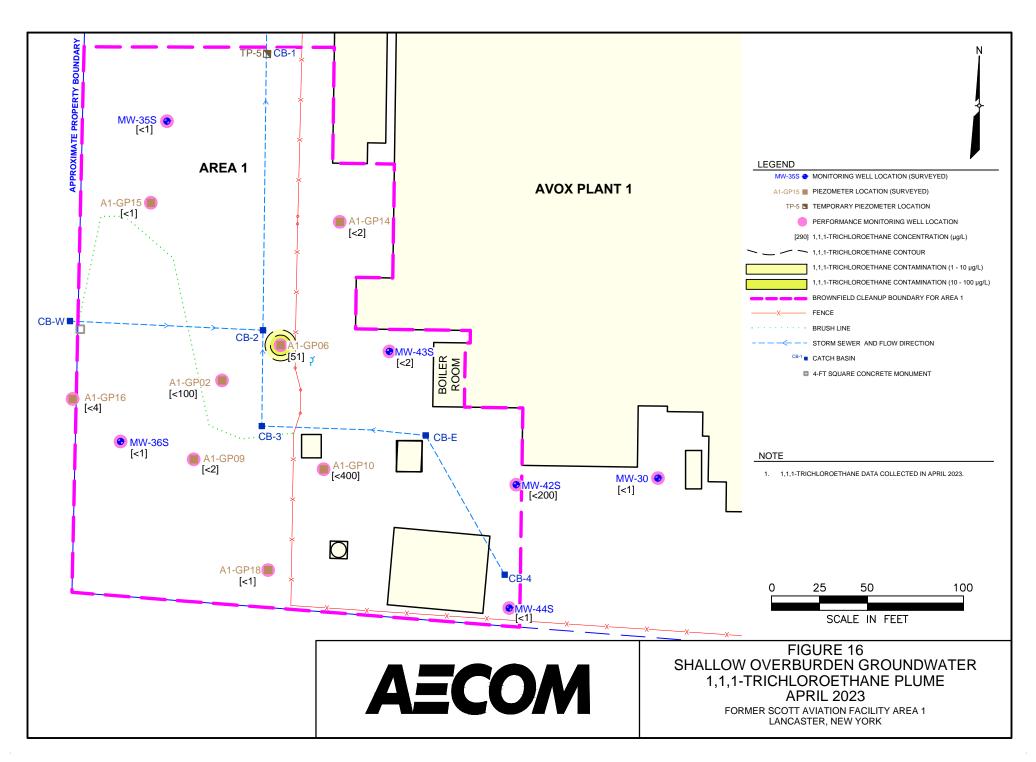


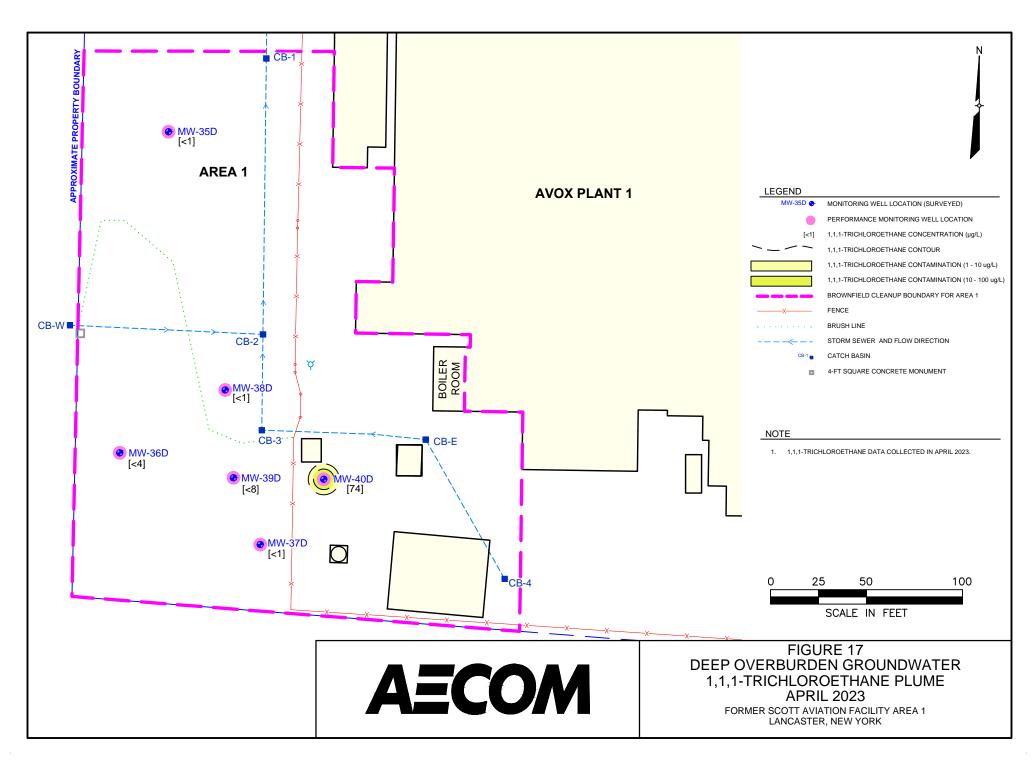


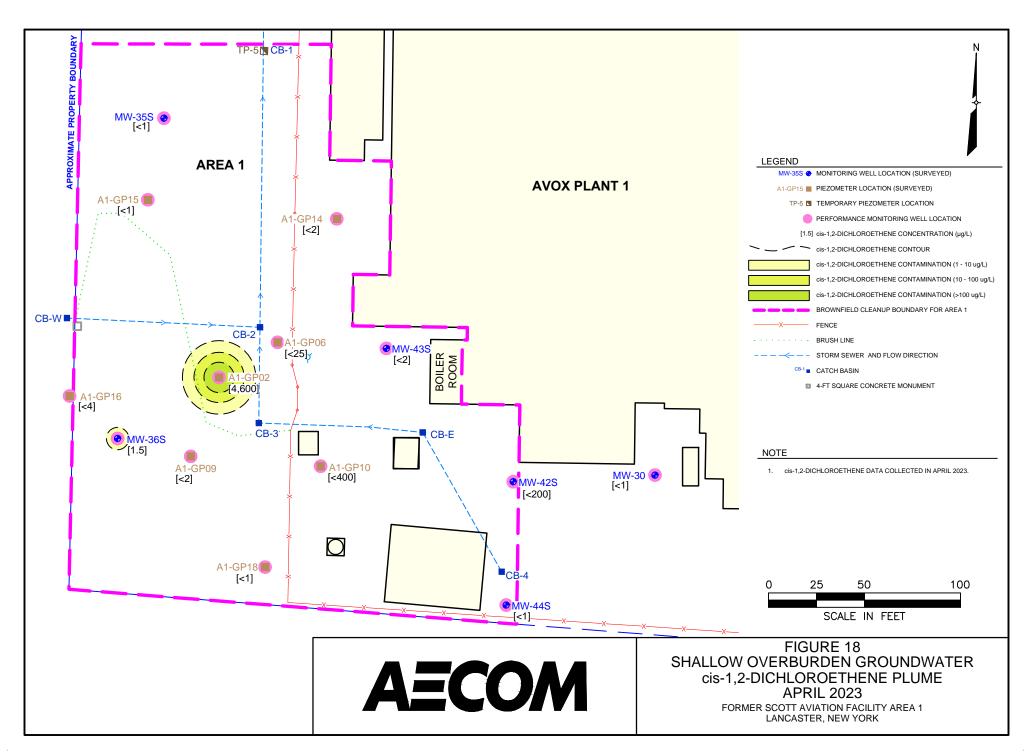


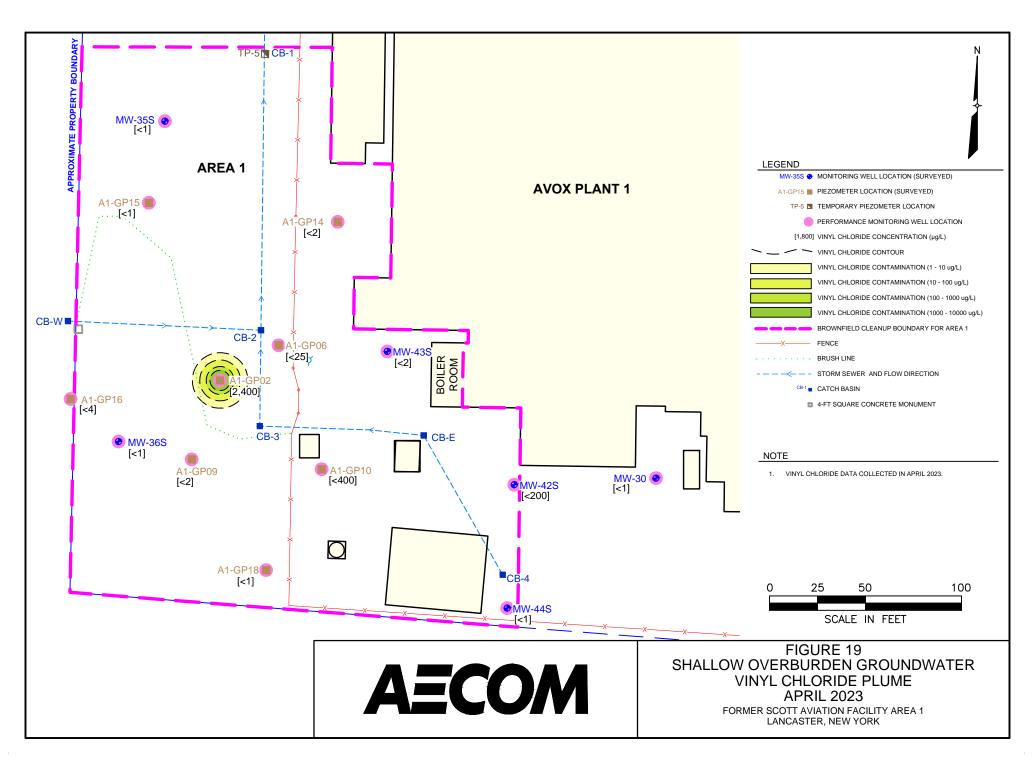


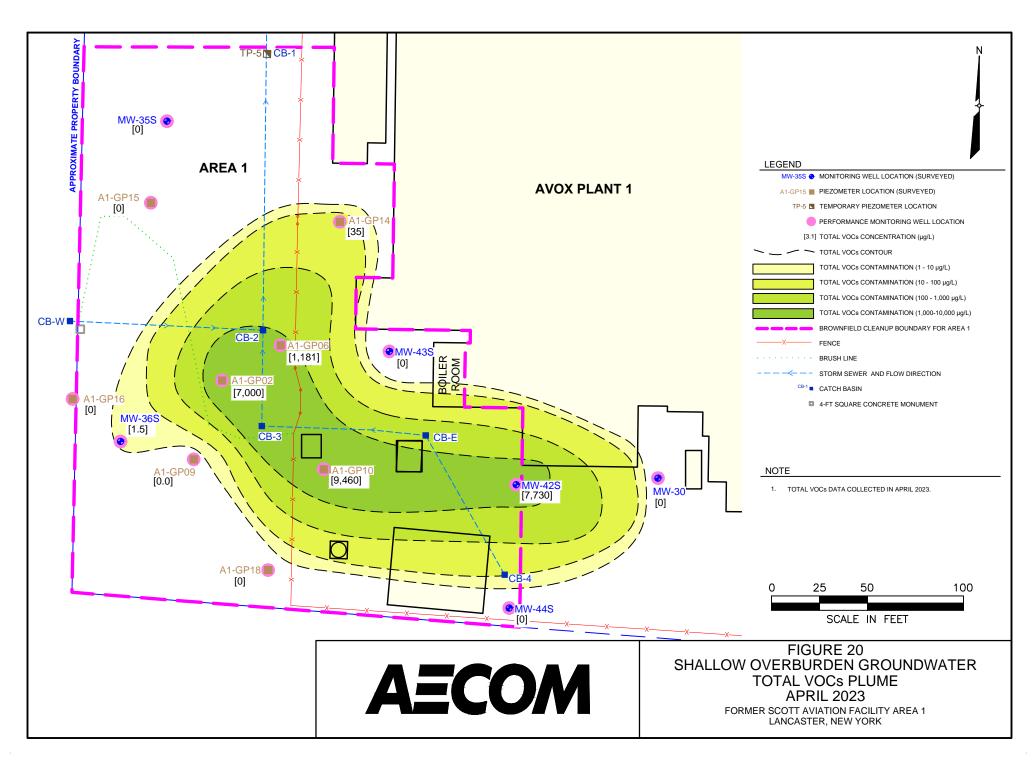


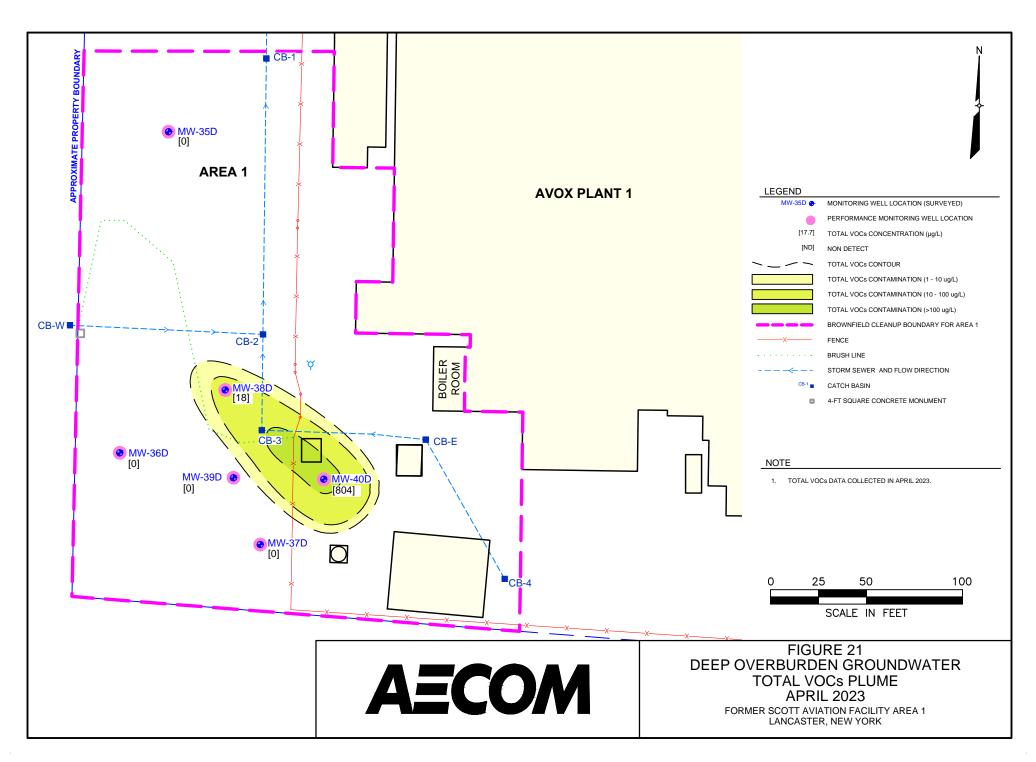


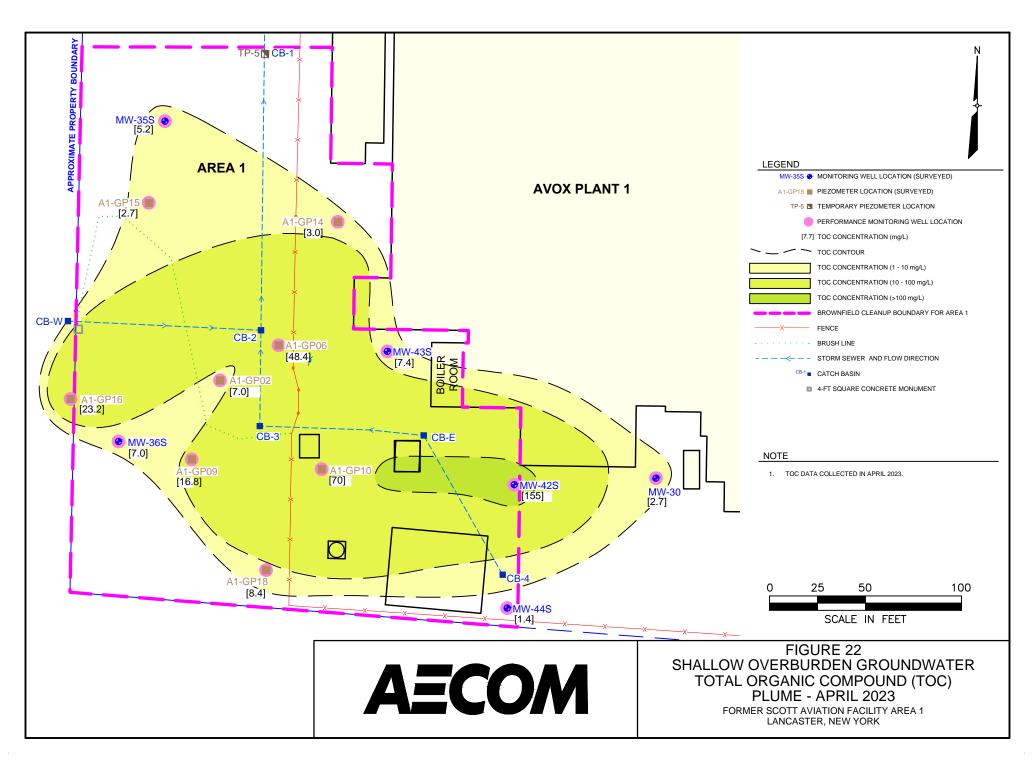


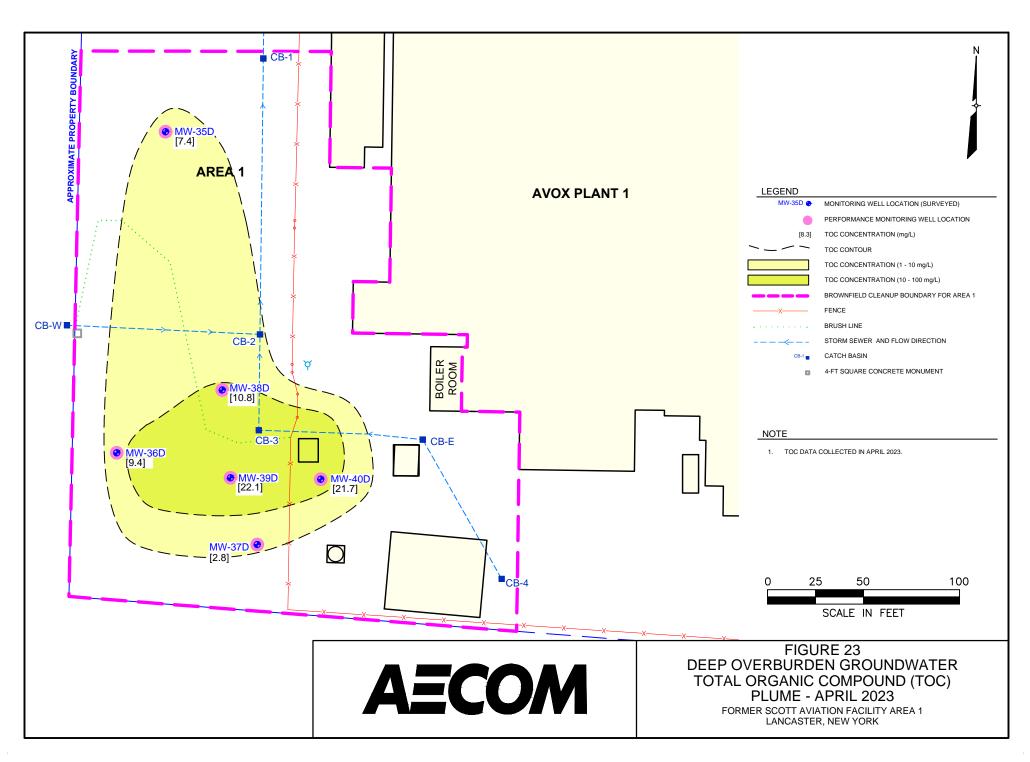












Tables

Project reference: NYSDEC Site Code: C915233

Table 1 Groundwater Monitoring Program Former Scott Aviation Facility NYSDEC Site Code No. C915233 Lancaster, New York

	Field Parameters	VOCs	TOC	Ferrous Iron	Nitrate	Sulfate	Sulfide	Total Alkalinity	Dissolved Gases	Gene-Trac	VFA
Location		(SW846 8260C)	(SW846 9060A)	(SM 3500 FE D)	(EPA 353.2)	(MCAWW 300.0)	(SM 4500 S2 F)	(MCAWW 310.2)	(RSK-175)		
		,	,	Monitoring Well a	nd Temporar	v Piezometer Gro	undwater Sampli	ng	/1		
MW-30	✓	✓	✓			ĺ					
MW-35S	✓	✓	✓								
MW-35D	✓	✓	✓	✓	✓	✓	✓	✓	✓		
MW-36S	✓	✓	✓								
MW-36D	✓	✓	✓								
MW-37D	✓	✓	✓								
MW-38D	✓	✓	✓	✓	✓	✓	✓	✓	✓		
MW-39D	✓	✓	✓								
MW-40D	✓	✓	✓	✓	✓	✓	✓	✓	✓		
MW-42S	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
MW-43S	✓	✓	✓								
MW-44S	✓	✓	✓								
A1-GP02-S	✓	✓	✓								
A1-GP06-S	✓	✓	✓	✓	✓	✓	✓	✓	✓		
A1-GP09-S	✓	✓	✓								
A1-GP10-S	✓	✓	✓	✓	✓	✓	✓	✓	✓		✓
A1-GP14-S	✓	✓	✓								
A1-GP15-S	✓	✓	✓								
A1-GP16-S	✓	✓	✓								
A1-GP18-S	✓	✓	✓	✓	✓	✓	✓	✓	✓		
		-		Storm S	Sewer and Pip	e Bedding Water	Sampling		-		
CB-1	✓	✓									
CB-2	✓	✓									
CB-3	✓	✓									
CB-4	✓	✓									
CB-E	✓	✓									
TP-5	✓	✓									
TP-6	✓	✓									

Notes:

Sampling performed in April and October.

QA/QC samples to be collected per QAPP.

Field Parameters include pH, temperature, turbidity, oxidation-reduction potential (ORP), dissolved oxygen (DO), and specific conductivity.

VOC - Volatile Organic Compound

TOC - Total Organic Carbon

VFA - Volatile Fatty Acids

Dissolved gases analyzed under RSK-175 included Methane, Ethane, Ethene, and Carbon dioxide.

Table 2
Monitoring Well and Piezometer Specifications
Former Scott Aviation Facility
NYSDEC Site Code No. C915233
Lancaster, New York

			Well Diameter	El	evation (fe	et above mea	n sea level)	Feet from Casing
Well ID	Well Location	Coordinates (longitude/latitude)	(inches)	Casing	Surface	Screen Top	Screen Bottom	Mid-Screen
A1-GP02-S	Plume	42.9047° N, 78.6593° W	0.75	689.82	687.3	682.3	672.3	12.5
A1-GP06-S	Plume	42.9047° N, 78.6592° W	0.75	687.71	687.8	682.8	672.8	9.9
A1-GP09-S	Downgradient	42.9045° N, 78.6594° W	0.75	689.36	686.8	681.8	671.8	12.6
A1-GP10-S	Plume	42.9045° N, 78.6591° W	0.75	689.10	689.2	684.2	674.2	9.9
A1-GP14-S	Downgradient	42.9049° N, 78.6591° W	0.75	689.43	689.7	684.7	674.7	9.7
A1-GP15-S	Downgradient	42.9049° N, 78.6595° W	0.75	687.69	688.0	683.0	673.0	9.7
A1-GP16-S	Downgradient	42.9046° N, 78.6596° W	0.75	689.86	686.6	681.6	671.6	13.3
A1-GP18-S	Upgradient	42.9044° N, 78.6592° W	0.75	690.37	687.5	682.5	672.5	12.9
MW-30	Upgradient	42.9045° N, 78.6585° W	2.0	689.69	689.8	679.8	669.8	14.9
MW-35D	Downgradient	42.9050° N, 78.6594° W	2.0	688.40	688.9	667.9	662.9	23.0
MW-35S	Downgradient	42.9050° N, 78.6594° W	2.0	688.56	689.1	684.1	674.1	9.5
MW-36D	Plume	42.9046° N, 78.6595° W	2.0	689.66	687.1	671.1	666.1	21.1
MW-36S	Upgradient	42.9046° N, 78.6595° W	2.0	689.82	687.1	683.1	672.1	12.2
MW-37D	Upgradient	42.9044° N, 78.6593° W	2.0	690.05	687.6	672.6	667.6	19.9
MW-38D	Plume	42.9047° N, 78.6593° W	2.0	689.66	687.5	671.5	666.5	20.7
MW-39D	Plume	42.9045° N, 78.6593° W	2.0	689.72	687.4	672.4	667.4	19.8
MW-40D	Plume	42.9045° N, 78.6591° W	2.0	689.19	689.5	671.7	666.7	20.0
MW-42S	Plume	42.9045° N, 78.6588° W	2.0	689.08	689.7	684.7	674.7	9.4
MW-43S	Plume	42.9047° N, 78.6590° W	2.0	689.14	689.6	684.6	674.6	9.5
MW-44S	Upgradient	42.9043° N, 78.6588° W	2.0	688.98	689.4	684.4	674.4	9.6
TP-5	Storm Sewer Bedding	42.9051° N, 78.6592° W	0.75	690.53	689.53	685.53	682.53	5.50
TP-6	Storm Sewer Bedding	42.9051° N, 78.6592° W	0.75	690.25	690.45	686.45	681.45	4.30

Table 3 Groundwater Elevation Data - April 2023 Former Scott Aviation Facility NYSDEC Site Code No. C915233 Lancaster, New York

		April 10	0, 2023
Monitoring Point Identification	Top of Casing Elevation	Depth to Groundwater (feet from TOC)	Groundwater Elevation (feet AMSL)
Monitoring	y Wells		
MW-30 ¹	689.69	2.95	686.74
MW-35S	688.56	0.85	687.71
MW-35D	688.40	6.69	681.71
MW-36S	689.82	2.85	686.97
MW-36D	689.66	5.05	684.61
MW-37D	690.05	4.25	685.80
MW-38D	689.66	8.27	681.39
MW-39D	689.72	3.89	685.83
MW-40D	689.19	3.35	685.84
MW-42S	689.08	3.98	685.10
MW-43S	689.13	2.16	686.97
MW-44S	688.96	5.53	683.43
Piezome	eters		
A1-GP02-S	689.82	3.35	686.47
A1-GP06-S	687.71	1.37	686.34
A1-GP09-S	689.36	2.46	686.90
A1-GP10-S	689.10	1.60	687.50
A1-GP14-S	689.43	2.51	686.92
A1-GP15-S	687.69	0.31	687.38
A1-GP16-S	689.86	2.81	687.05
A1-GP18-S	690.37	3.16	687.21
Storm S	ewer		
TP-5	690.53	7.70	682.83
TP-6	690.25	7.45	682.80
CB-1	689.53	6.24	683.29
CB-2	687.40	3.62	683.78
CB-3	687.55	3.69	683.86
CB-4	689.00	3.20	685.80
CB-E	689.35	4.91	684.44

Notes:

1 - Well is screened across both shallow and deep overburden units.

TOC - Top of Casing

AMSL - Above Mean Sea Level

S - well is screened in shallow overburden

D - well is screened in deep overburden

Table 4 Summary of Monitoring Well Analytical Data - October 2022 Former Scott Aviation Facility NYSDEC Site Code No. C915233 Lancaster, New York

Sample ID	Groundwater	F	1-GP02-	S	Α	1-GP06-	-S	Α	1-GP09	-S	A	\1-GP10-	S	A	1-GP14	-S	Α	1-GP15	-S	Α	1-GP16	i-S
Date Collected	RAO/TOGS 1.1.1		10/06/22			10/06/22	2		10/05/2	2		10/10/22	!		10/10/2	2		10/06/2	2		10/05/2	2
	Objective	48	30-202443	3-6	48	0-20244	3-2	480	0-20237	' 9-1	48	30-202540	0-2	480	0-20254	10-6	480)-20244	13-7	480	0-20238	30-1
Volatile Organic Compounds by Metho	od 8260 (µg/L)																					
1,1,2-Trichloro-1,2,2-trifluoroethane	5	<	25	U	<	20	С	<	5.0	U	<	400	U	<	2.0	U	<	1.0	U	٧	4.0	U
1,1-Dichloroethane*	5	<	25	U		21		<	5.0	U		230	J	<	2.0	U	<	1.0	U	<	4.0	U
2-Butanone (MIBK)	50	<	250	U	<	200	U	<	50	U	<	1,000	U	<	20	U	<	10	U	<	40	U
2-Hexanone	50	<	130	U	<	100	U	<	25	U	<	1,000	U	<	10	U	<	5.0	U	<	20	U
Acetone	50	<	250	U	<	200	U	<	50	U	<	2,000	U	<	20	U	<	10	U	<	40	U
Chloroethane	5	<	25	U		840		<	5.0	U		8,700		<	2.0	U	<	1.0	U	<	4.0	U
cis-1,2-Dichloroethene*	5		5,100		<	20	U	<	5.0	U	<	200	U	<	2.0	U	<	1.0	U	<	4.0	U
Ethylbenzene	5		53		<	20	U	<	5.0	U	<	200	U	<	2.0	U	<	1.0	U	<	4.0	U
Toluene	5	<	25	U	<	20	U	<	5.0	U	<	200	U	<	2.0	U	<	1.0	U	<	4.0	U
Vinyl chloride*	2		3,400		<	20	U	<	5.0	U	<	200	U	<	2.0	U	<	1.0	U	<	4.0	U
Xylenes, Total	5		50		<	40	U	<	10	U	<	400	U	<	4.0	U	<	2.0	U	<	8.0	U
Total Volatile Organic Compounds	NL		8,603			861			0			8,930			2.0			0			0	
Total Organic Carbon	NL	Ť	7.1	, and the second	,	25.8			14.3	,		90.6			5.8			2.8	,		27.0	

April 2023

Table 4 Summary of Monitoring Well Analytical Data - October 2022 Former Scott Aviation Facility NYSDEC Site Code No. C915233 Lancaster, New York

Sample ID	Groundwater	A	1-GP18	-S		MW-30			MW-359	3	I	Duplicate	е	N	лW-36	S		MW-42S		ı	MW-43	S
Date Collected	RAO/TOGS 1.1.1		10/06/22	2		10/10/22	2		10/07/2	2		10/07/22	2		10/5//22	2		10/07/22			10/10/2	2
Lab Sample ID	Objective	480)-20244	3-3	480	0-20254	0-3	480)-20248	2-12	48	0-20238	2-8	480	-20237	78-1	48	0-202482	-11	480	0-20254	10-4
Volatile Organic Compounds by Metho	od 8260 (µg/L)																					
1,1,2-Trichloro-1,2,2-trifluoroethane	5	<	1.0	U	<	1.0	U	<	1.0	С	<	1.0	U	<	1.0	C		800		٧	4.0	U
1,1-Dichloroethane*	5	<	1.0	U	<	1.0	U	<	1.0	U	<	1.0	U	<	1.0	U		580		<	4.0	U
2-Butanone (MIBK)	50	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U	<	2,000	U	<	40	U
2-Hexanone	50	<	5.0	U	<	5.0	U	<	5.0	U	<	5.0	U	<	5.0	U	<	1,000	U	<	20	U
Acetone	50		28		<	10	U	<	10	U	<	10	U		5.1	J	٧	2,000	U	<	40	U
Chloroethane	5	<	1.0	U	<	1.0	U	<	1.0	U	<	1.0	U	<	1.0	U		11,000		<	4.0	U
cis-1,2-Dichloroethene*	5	<	1.0	U		0.81	J	<	1.0	U	<	1.0	U	<	1.0	U	<	200	U	<	4.0	U
Ethylbenzene	5	<	1.0	U	<	1.0	U	<	1.0	U	<	1.0	U	<	1.0	U	<	200	U	<	4.0	U
Toluene	5	<	1.0	U	<	1.0	U	<	1.0	U	<	1.0	U	<	1.0	U		900		<	4.0	U
Vinyl chloride*	2	<	1.0	U	<	1.0	U	<	1.0	U	<	1.0	U	<	1.0	U		420		<	4.0	U
Xylenes, Total	5	<	2.0	U	<	2.0	U	<	2.0	U	<	2.0	U	<	2.0	U	<	400	U	<	8.0	U
Total Volatile Organic Compounds	NL		28.0			10.0			0			0			5.1			13,700			0	
Total Organic Carbon	NL		4.9			3.0			3.7			NS			10.4			264	,		5.0	

Table 4

Summary of Monitoring Well Analytical Data - October 2022 Former Scott Aviation Facility NYSDEC Site Code No. C915233 Lancaster, New York

Sample ID	Groundwater	1	лW-44	S	ı	MW-35E)		MW-361)		MW-37D		I	MW-381	D		MW-391	D		MW-40I	D
Date Collected	RAO/TOGS 1.1.1		10/10/2	2		10/07/22	2		10/05/2	2		10/06/22			10/06/2	2		10/06/2	2		10/07/2	2
Lab Sample ID	Objective	480)-20254	0-5	480	0-20248	2-9	48	0-20237	78-2	48	0-202443	3-4	480	0-20244	13-1	48	0-20244	13-5	480	0-20248	32-9
Volatile Organic Compounds by Metho	od 8260 (µg/L)																					
1,1,2-Trichloro-1,2,2-trifluoroethane	5	<	1.0	U	<	1.0	U	<	4.0	U	<	1.0	U	<	4.0	U	٧	8.0	U	<	8.0	U
1,1-Dichloroethane*	5	<	1.0	U	<	1.0	U	<	4.0	U	<	1.0	U	<	4.0	U	<	8.0	U	<	8.0	U
2-Butanone (MIBK)	50	<	10	U	<	10	U	<	40	U	<	10	U	<	40	U		15	J	<	80	U
2-Hexanone	50	<	5.0	U	<	5.0	U	<	20	U	<	5.0	U	<	20	U		110		<	40	U
Acetone	50	<	10	U	<	10	U	<	40	U	<	10	U	<	40	U		54	J	٧	80	U
Chloroethane	5	<	1.0	U	<	1.0	U	<	4.0	U	<	1.0	U	<	4.0	U	<	8.0	U		370	
cis-1,2-Dichloroethene*	5	<	1.0	U	<	1.0	U	<	4.0	U	<	1.0	U	<	4.0	U	<	8.0	U	<	8.0	U
Ethylbenzene	5	<	1.0	U	<	1.0	U	<	4.0	U	<	1.0	U	<	4.0	U	<	8.0	U	<	8.0	U
Toluene	5	<	1.0	U	<	1.0	U	<	4.0	U	<	1.0	U	<	4.0	U	<	8.0	U	<	8.0	U
Vinyl chloride*	2	<	1.0	U	<	1.0	U	<	4.0	U	<	1.0	U	<	4.0	U	<	8.0	U	<	8.0	U
Xylenes, Total	5	<	2.0	U	<	2.0	U	<	8.0	U	<	2.0	U	<	8.0	U	<	16	U	<	16	U
Total Volatile Organic Compounds	NL		0			0			0			0			0			179			370	
Total Organic Carbon	NL		1.2			10.4			10.5			1.8			11.2			53.9			21.7	

Notes:

Bold font indicates the analyte was detected.

Bold font and bold outline indicates the screening criteria was exceeded.

- * Site-specific Contaminants of Concern per Decision Document (December 2015). Per NYSDEC comment letter dated August 29, 2019, cis-1,2-DCE was added as a Site-Specific Contaminant of Concern.
- J Analyte detected at a level less than the reporting limit and greater than or equal to the method detection limit. Concentrations within this range are estimated.
- U Not detected at or above reporting limit.
- F1- MS and/or MSD recovery exceeds control limits.
- NL Not listed
- NS Not sampled

Duplicate collected at MW-35S

Table 5 Summary of Monitoring Well Analytical Data - April 2023 Former Scott Aviation Facility NYSDEC Site Code No. C915233 Lancaster, New York

Sample ID	Groundwater	ŀ	A1-GP02-	S	/	A1-GP06-	S	Α	1-GP09	-S	ŀ	A1-GP10-	S	A.	1-GP14	-S	A	1-GP15	-S	A	1-GP16	-S
Date Collected	RAO/TOGS 1.1.1		04/06/23			04/07/23		(04/12/2	3		04/11/23		()4/11/2	3	(04/11/2	3	(04/06/2	3
Lab Sample ID	Objective	48	0-207637	-15	48	0-207637	-11	480	0-20780)5-1	48	30-207715	5-2	480)-20771	15-5	480)-20771	5-4	480	-20763	7-16
Volatile Organic Compounds by Metho	d 8260 (µg/L)																					
1,1,1-Trichloroethane*	5	<	100	С		51		٧	2.0	U	<	400	U	<	1.0	U	<	1.0	U	<	4.0	U
1,1,2-Trichloro-1,2,2-trifluoroethane	5	<	100	U		330		<	2.0	U	<	400	U	<	2.0	U	<	1.0	U	<	4.0	U
1,1-Dichloroethane*	5	<	100	U		130		<	5.0	U		460		<	2.0	U	<	1.0	U	<	4.0	U
2-Butanone (MIBK)	50	<	1,000	U	<	250	U	<	20	U	<	4,000	U		20	*+	<	10	U	<	40	U
Acetone	50	<	1,000	U	<	250	U	<	20	U	<	4,000	U		15	*+	<	10	U	<	40	U
Chloroethane	5	<	100	U		670		<	2.0	U		9,000		<	2.0	U	<	1.0	U	<	4.0	U
cis-1,2-Dichloroethene*	5		4,600	F1	<	25	U	<	2.0	U	<	400	U	<	2.0	U	<	1.0	U	<	4.0	U
Toluene	5	<	100	U	<	25	U	<	2.0	U	<	400	U	<	2.0	U	<	1.0	U	<	4.0	U
Vinyl chloride*	2		2,400	F1	<	25	U	<	2.0	U	<	400	U	<	2.0	U	<	1.0	U	<	4.0	U
Total Volatile Organic Compounds	NL		7,000			1,181			0.0			9,460			35			0.0			0.0	
Total Organic Carbon (mg/L)	NL		7.0			48.4			16.8			70.0			3.0			2.7			23.2	

Table 5 Summary of Monitoring Well Analytical Data - April 2023 Former Scott Aviation Facility NYSDEC Site Code No. C915233 Lancaster, New York

Sample ID	Groundwater	A	1-GP18	-S		MW-30			MW-359	3		MW-369	3		MW-42S		N	лW-439	3	1	лW-44	S
Date Collected	RAO/TOGS 1.1.1	(04/07/2	3	(04/12/23	3	(04/06/23	3	(04/12/23	3		04/11/23		()4/12/23	3	()4/11/2	3
Lab Sample ID	Objective	480	-20763 ⁻	7-12	480	0-20780	5-4	480	-20763	7-13	480	0-20780	5-6	48	0-207715	5-3	480	-20780	5-5	480)-20771	5-7
Volatile Organic Compounds by Metho	d 8260 (µg/L)																					
1,1,1-Trichloroethane	5	<	1.0	U	<	1.0	U	<	1.0	U	<	1.0	U	<	200	U	<	2.0	U	<	1.0	U
1,1,2-Trichloro-1,2,2-trifluoroethane	5	<	1.0	U	<	1.0	U	<	1.0	U	<	1.0	U	٧	200	U	<	2.0	U	<	1.0	U
1,1-Dichloroethane*	5	<	1.0	U	<	1.0	U	<	1.0	U	<	1.0	U		740		<	2.0	U	<	1.0	U
2-Butanone (MIBK)	50	<	10	U	<	10	U	<	10	U	<	10	U	<	2,000	U	<	20	U	<	10	U
Acetone	50	<	10	U	<	10	U	<	10	U	<	10	U	<	2,000	U	<	20	U	<	10	U
Chloroethane	5	<	1.0	U	<	1.0	U	<	1.0	U	<	1.0	U		6,600		<	2.0	U	<	1.0	U
cis-1,2-Dichloroethene*	5	<	1.0	U	<	1.0	U	<	1.0	U		1.5		<	200	U	<	2.0	U	<	1.0	U
Toluene	5	<	1.0	U	<	1.0	U	<	1.0	U	<	1.0	U		390		<	2.0	U	<	1.0	U
Vinyl chloride*	2	<	1.0	U	<	1.0	U	<	1.0	U	<	1.0	U	<	200	U	<	2.0	U	<	1.0	U
Total Volatile Organic Compounds	NL		0.0			0.0			0.0			1.5			7,730			0.0			0.0	
Total Organic Carbon (mg/L)	NL		8.4			2.7			5.2			7.0			155			7.4			1.4	

Table 5 Summary of Monitoring Well Analytical Data - April 2023 Former Scott Aviation Facility NYSDEC Site Code No. C915233 Lancaster, New York

Sample ID	Groundwater	ı	MW-35I)		MW-36[)	ı	MW-37[)	١	/W-38E)	1	MW-39[)	N	MW-40[)
Date Collected	RAO/TOGS 1.1.1	(04/07/2	3		04/12/2	3	(04/12/23	3	C	4/07/23	3	(04/06/23	3	(04/11/23	3
Lab Sample ID	Objective	480	0-20763	37-9	48	0-20780	5-7	480	0-20780	5-2	480-	-20763	7-10	480	-20763	7-14	480)-20771	5-1
Volatile Organic Compounds by Metho	d 8260 (µg/L)																		
1,1,1-Trichloroethane	5	٧	1.0	U	٧	4.0	С	٧	1.0	U	٧	1.0	С	<	8.0	C		74	
1,1,2-Trichloro-1,2,2-trifluoroethane	5	<	1.0	U	<	4.0	U	<	1.0	U	<	4.0	U	<	8.0	U	<	8.0	U
1,1-Dichloroethane*	5	<	1.0	U	<	4.0	U	<	1.0	U	<	4.0	U	<	8.0	U		250	
2-Butanone (MIBK)	50	<	10	U	<	40	U	<	10	U		11	*+	<	80	U	<	80	C
Acetone	50	<	10	U	<	40	U	<	10	U		7.2	J	<	80	U	<	80	U
Chloroethane	5	<	1.0	U	<	4.0	U	<	1.0	U	<	4.0	U	<	8.0	U		480	
cis-1,2-Dichloroethene*	5	<	1.0	U	<	4.0	U	<	1.0	U	<	4.0	U	<	8.0	U	<	8.0	U
Toluene	5	<	1.0	U	<	4.0	U	<	1.0	U	<	4.0	U	<	8.0	U	<	8.0	U
Vinyl chloride*	2	<	1.0	U	<	4.0	U	<	1.0	U	<	4.0	U	<	8.0	U	<	8.0	U
Total Volatile Organic Compounds	NL		0.0			0.0			0.0			18			0.0			804	
Total Organic Carbon (mg/L)	NL		7.4			9.4			2.8			10.8			22.1			21.7	

Notes:

Bold font indicates the analyte was detected.

Bold font and bold outline indicates the screening criteria was exceeded.

- * Site-specific Contaminants of Concern per Decision Document (December 2015). Per NYSDEC comment letter dated August 29, 2019, cis-1,2-DCE was added as a Site-Specific Contaminant of Concern.
- J Analyte detected at a level less than the reporting limit and greater than or equal to the method detection limit. Concentrations within this range are estimated.
- U Not detected at or above reporting limit.
- F1- MS and/or MSD recovery exceeds control limits.
- *+ LCS and/or LCSD is outside acceptance limits, high biased.
- NL Not listed
- NS Not sampled

Duplicate collected at MW-35D

Table 6 Summary of Catch Basin and Temporary Piezometers Analytical Data - April 2020 through April 2023

Former Scott Aviation Facility NYSDEC Site Code No. C915233 Lancaster, New York

Sample ID	Groundwater	CB-1	CB-1	CB-1	CB-1	CB-1	CB-1	CB-1	CB-2	CB-2	CB-2	CB-2	CB-2	CB-2	CB-2	CB-2
Date Collected	RAO/NYCRR	07/23/20	10/05/20	04/01/21	10/22/21	04/12/22	10/07/22	04/06/23	04/09/20	07/23/20	10/05/20	04/01/20	10/22/21	04/12/22	10/07/22	04/06/23
Lab Sample ID		480-172828-1	480-176049-1	480-182787-13	480-191327-1	480-196702-1	480-202482-1	480-207637-1	480-16849-2	480-172828-2	480-176049-2	480-182787-14	480-191327-2	480-196702-2	480-202482-2	480-207637-2
Volatile Organic Compounds by Metho	od 8260 (µg/L)															
1,1,1-Trichloroethane*	5	ND	ND	2.5	ND	2.2	ND	1.4	35	ND	ND	3.2	ND	1.2	ND	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	5	4.4	7.1	27	3.7	29	1.8	22	19	ND	1.6	7.7	ND	8.4	ND	2.0
1,1-Dichloroethane*	5	0.94 J	1.3	5.4	ND	5.4	0.54 J	2.2	13	1 J	6.7	9.1	ND	5.8	2.1	1.9
1,1-Dichloroethene*	5	ND	ND	0.64 J	ND	ND	ND	ND	3.9	ND	ND	0.70 J	ND	ND	ND	ND
Acetone	50	ND	3.3 J	ND	ND	ND	ND	ND	ND	ND	6.0 J	ND	ND	ND	ND	ND
Carbon Disulfide	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	5	ND	1.6	2.5	ND	3.8	ND	ND	6.3	2.3	18	6.2	ND	5.2	4.7	ND
Chloromethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene*	5	4.2	1.2	24	1.7 J	19	0.93 J	5.9	90	ND	13	48	1.9 J	30	9.9	8.6
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylcyclohexane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.30 J	ND	ND	ND	ND
Methylene chloride	5	0.89 J	ND	ND	ND	ND	ND	ND	ND	1.6 J	ND	ND	ND	ND	ND	ND
Tetrachloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	0.59 J	ND	ND	ND	ND	3.8	ND	ND	2.0	ND	ND	ND	ND
trans-1,2-Dichloroethene	5	ND	ND	1.0	ND	1.3	ND	ND	ND	ND	1.2	2.4	ND	1.9	ND	ND
Trichloroethene*	5	2.1	0.50 J	9.9	ND	9.3	0.52 J	2.5	7.6	ND	3.8	20	ND	15	4.9	ND
Vinyl chloride*	2	ND	ND	3.1	ND	3.1	ND	ND	12	ND	4.4	8.3	ND	4.2	1.6	ND
Xylenes, Total	5	ND	ND	2.0	ND	ND	ND	ND	6.6	9.3	ND	6.0	ND	1.0 J	ND	ND
TVOC	NL	13	15	79	5.4	73	3.8	34	197	14	55	114	1.9	73	23.2	12.5

Page 1 of 4

Table 6 Summary of Catch Basin and Temporary Piezometers Analytical Data - April 2020 through April 2023 Former Scott Aviation Facility NYSDEC Site Code No. C915233 Lancaster, New York

Sample ID	Groundwater	CB-3	CB-3	CB-3	CB-3	CB-3	CB-3	CB-3	CB-3	CB-E	CB-E	CB-E	CB-E	CB-E	CB-E	CB-E	CB-E
Date Collected	RAO/NYCRR	04/09/20	07/23/20	10/05/20	04/01/21	10/22/21	04/12/22	10/07/22	04/06/23	04/09/20	07/23/20	10/05/20	04/01/21	10/22/21	04/12/22	10/07/22	04/06/23
Lab Sample ID	Objective	480-16849-3	480-172828-3	480-176049-3	480-182787-15	480-191327-3	480-196702-3	480-196702-3	480-207637-3	480-16849-4	480-172828-5	480-176049-5	480-182787-16	480-191327-5	480-196702-5	480-202482-5	480-207637-5
Volatile Organic Compounds by Metho	od 8260 (µg/L)																
1,1,1-Trichloroethane*	5	2,700	ND	ND	ND	ND	ND	ND	ND	11	ND	ND	1.4	ND	ND	ND	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	5	710	ND	0.60 J	1.8	ND	1.5	ND	ND	15	0.49 J	ND	3.7	ND	2.3	ND	1.6
1,1-Dichloroethane*	5	750	1.8	2.6	7.4	1.4	5.4	1.0	3.8	11	3.3	2.5	17	2.4	9.1	1.6	6.5
1,1-Dichloroethene*	5	240	ND	ND	0.58 J	ND	ND	ND	ND	4.1	ND	ND	1.5	ND	0.50 J	ND	ND
Acetone	50	ND	9.0 J	6.1 J	ND	ND	ND	4.5 J	ND	ND	5.6 J	4.3 J	ND	ND	ND	3.7 J	ND
Carbon Disulfide	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	5	250	3.6	7.8	9.4	3.3	6.0	2.7	4.3	7.0	6.2	9.8	23	6.8	11	3.4	8.3
Chloromethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene*	5	3,500	ND	ND	5.0	ND	1.9	ND	3.1	33	0.99 J	ND	12	ND	3.0	ND	5.7
Ethylbenzene	5	55	1.3	ND	3.3	ND	0.85 J	ND	ND	2.6	2.6	2.1	2.1	1.5	1.9	ND	1.5
Methylcyclohexane	5	ND	ND	ND	1.7	0.31 J	0.53 J	ND	ND	0.54	0.45 J	0.27 J	3.9	0.45 J	0.79 J	ND	0.31 J
Methylene chloride	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.58 J	ND	ND	ND	ND
Toluene	5	260	1.7	ND	11	ND	0.90 J	ND	ND	5.8	3.4	1.4	37	ND	2.0	ND	ND
trans-1,2-Dichloroethene	5	56	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.1	ND	ND	ND	ND
Trichloroethene*	5	28	ND	ND	ND	ND	0.71 J	ND	0.51 J	ND	ND	ND	0.99 J	ND	1.1	ND	1.0
Vinyl chloride*	2	600	ND	ND	2.7	ND	1.2	ND	ND	6.0	ND	ND	8.3	ND	2.8	ND	2.7
Xylenes, Total	5	270	17	3.8	35	2.1	6.0	ND	1.1 J	36	41	30	120	4.3	12	ND	2.8
TVOC	NL	9,419	34	21	78	7.1	25	8.2	12.8	132	64	50	233	15.5	45	9.6	30.4

Table 6

Summary of Catch Basin and Temporary Piezometers Analytical Data - April 2020 through April 2023 Former Scott Aviation Facility NYSDEC Site Code No. C915233 Lancaster, New York

Sample ID	Groundwater	CB-4	CB-4	CB-4	CB-4	CB-4	CB-4	CB-4	CB-4	TP-5	TP-5	TP-5	TP-5	TP-5	TP-5	TP-5	TP-5
Date Collected	RAO/NYCRR	04/09/20	07/23/20	10/05/20	04/01/21	10/22/21	04/12/22	10/07/22	04/06/23	04/09/20	07/23/20	10/05/20	04/01/21	10/22/21	04/12/22	10/07/22	04/06/23
Lab Sample ID	Objective	480-16849-5	480-172828-4	480-176049-4	480-182787-17	480-191327-4	480-196702-5	480-202482-4	480-207637-4	480-16849-6	480-172828-6	480-176049-6	480-182787-18	480-191327-6	480-196702-6	480-202482-6	480-207637-6
Volatile Organic Compounds by Metho	d 8260 (µg/L)																
1,1,1-Trichloroethane*	5	59	ND	ND	ND	ND	ND	ND	ND	25	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	5	59	ND	1.9	ND	ND	ND	ND	ND	25	2.7	3.2	2.6	1.0	1.1	1.0	ND
1,1-Dichloroethane*	5	53	ND	2.6	ND	ND	ND	ND	ND	10	1.4	1.0	ND	ND	0.55 J	ND	ND
1,1-Dichloroethene*	5	28	ND	ND	ND	ND	ND	ND	ND	2.9	ND	ND	ND	ND	ND	ND	ND
Acetone	50	ND	3.7 J	ND	3.7 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	5	29	0.40 J	2.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	5	ND	ND	ND	ND	ND	ND	ND	ND	4.4	0.61 J	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene*	5	200	ND	ND	ND	ND	ND	ND	ND	58	3.4	1.7	1.9	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylcyclohexane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	1.4	ND	ND	ND	ND	ND	ND	ND
Trichloroethene*	5	ND	ND	ND	ND	ND	ND	ND	ND	2.6	0.81 J	0.88 J	0.87 J	0.76 J	0.48 J	0.76 J	ND
Vinyl chloride*	2	27	ND	ND	ND	ND	ND	ND	ND	4.9	ND	ND	ND	ND	ND	ND	ND
Xylenes, Total	5	ND	ND	0.79 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TVOC	NL	455	4.1	8.0	3.7	0.0	0.0	0.0	0.0	134	8.9	6.8	5.4	1.8	2.1	1.8	0.0

Table 6

Summary of Catch Basin and Temporary Piezometers Analytical Data - April 2020 through April 2023 Former Scott Aviation Facility NYSDEC Site Code No. C915233 Lancaster, New York

Sample ID	Groundwater	TP-6	TP-6	TP-6	TP-6	TP-6	TP-6	TP-6	TP-6
Date Collected	RAO/NYCRR	04/09/20	07/23/20	10/05/20	04/01/21	10/22/21	04/12/22	10/07/22	04/06/23
Lab Sample ID	Objective	480-16849-7	480-172828-7	480-176049-7	480-182787-19	480-191327-7	480-196702-7	480-202482-7	480-207637-6
Volatile Organic Compounds by Method 8260 (μg/L)				•					•
1,1,1-Trichloroethane*	5	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	5	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane*	5	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene*	5	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	50	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	5	ND	ND	ND	ND	ND	ND	0.39 J	ND
Chloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	5	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene*	5	1.3	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND
Methylcyclohexane	5	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	5	0.50	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene*	5	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride*	2	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes, Total	5	ND	ND	ND	ND	ND	ND	ND	ND
TVOC	NL	1.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Notes:

Storm sewer piping replaced in June 2020.

Bold font indicates the analyte was detected.

Bold font and bold outline indicates the screening criteria was exceeded.

ND - Not detected at or above reporting limit.

NL - Not listed.

^{*} Site-specific Contaminants of Concern.

J - Result is less than the reporting limit but greater than or equal to the method detection limit; the concentration is an approximate value.

Table 7 Bioattenuation Screening Summary - April 2023 Former Scott Aviation Facility NYSDEC Site Code No. C915233 Lancaster, New York

									Mo	nitoring We	II Identificat	ion					
Parameter Un	Units	Criteria	Caara	A1-GP18-S (side-gradient/ background)		A1-GP10-S (source area)		MW-42S (source area)		A1-GP06-S (source area)		MW-40D (source area)		MW-38D (downgradient)		MW-35D (far downgradient)	
			Score Value														
				4/7/23	Score	4/11/23	Score	4/11/23	Score	4/7/23	Score	4/11/23	Score	4/7/23	Score	4/7/23	Score
Dissolved	mg/L	< 0.5 mg/L	3	0.19	3	0.45	3	0.20	3	0.24	3	0.31	3	0.15	3	4.54	0
Oxygen		> 5 mg/L	-3														
Nitrate	mg/L	< 1 mg/L	2	<0.050	2	0.025	2	< 0.050	2	<0.050	2	<0.050	2	<0.050	2	0.068	2
Ferrous Iron	mg/L	> 1 mg/L	3	<0.10	0	<0.10	0	<0.10	0	<0.10	0	<0.10	0	<0.10	0	<0.10	0
Sulfate	mg/L	< 20 mg/L	2	5.0	0	1.6	2	1.8	2	1.4	2	<10	2	5.2	2	2.2	2
Sulfide	mg/L	> 1 mg/L	3	<1.0	0	<1.0	0	<1.0	0	<1.0	0	<1.0	0	<1.0	0	<1.0	0
Methane μg/L	μg/L	< 500 μg/L	0														
		> 500 µg/L	3	3,300	3	10,000	3	9,900	3	20,000	3	21,000	3	28,000	3	550	3
Ethene	μg/L	> 10 µg/L	2	<170	0	<170	0	2,800	2	<170	0	<170	0	<170	0	<7.0	0
Ethane	μg/L	> 100 µg/L	3	<150	0	<150	0	720	3	<150	0	<150	0	<150	0	<7.5	0
ORP mV	mV	< 50 mV	1	-32.6	1	-9.6	1	-65.1	1	-13.7	1	-85.9	1	9.0	1	164.3	0
		< -100 mV	2														
рН	s.u.	5 < pH < 9	0	6.95	0	7.11	0	6.77	0	6.91	0	7.57	0	7.17	0	6.84	0
		5 > pH > 9	-2														
Temperature	°C	> 20°C	1	8.50	0	9.30	0	10.10	0	7.20	0	10.80	0	8.90	0	9.80	0
TOC	mg/L	> 20 mg/L	2	8.4	0	70.0	2	155	2	48.4	2	21.7	2	10.8	0	7.4	0
Alkalinity	mg/L	> 2x background	1	297	0	487	0	560	0	445	0	248	0	344	0	236	0
PCE ¹	μg/L		0	ND	0	ND	0	ND	0	ND	0	ND	0	ND	0	ND	0
TCE ²	μg/L		0	ND	0	ND	0	ND	0	ND	0	ND	0	ND	0	ND	0
DCE ³	μg/L		2	ND	0	ND	0	ND	0	ND	0	ND	0	ND	0	ND	0
VC⁴	μg/L		2	ND	0	ND	0	ND	0	ND	0	ND	0	ND	0	ND	0
1,1,1-TCA ⁵	μg/L		0	ND	0	ND	0	ND	0	51	0	74	0	ND	0	ND	0
1,1-DCA ⁶	μg/L		2	ND	0	460	2	740	2	130	2	250	2	ND	0	ND	0
CA ⁷	μg/L		2	ND	0	9,000	2	6,600	2	670	2	480	2	ND	0	ND	0
					9		17		22		17		17		11		7

Notes:

DCE = dichloroethene

°C = degrees Celsius

μg/L = micrograms per liter

mg/L = milligrams per liter

mV = millivolts

ORP = oxidation-reduction potential

s.u. = standard unit

PCE = tetrachloroethene

TCE = trichloroethene

* MNA parameters **not** collected so <u>cannot</u> adequately evaluate and score

6 to 14 points 15 to 20 points

0 to 5 points: There is inadequate evidence for anaerobic biodegradation of chlorinated organics.

6 to 14 points: There is <u>limited</u> evidence for anaerobic biodegradation of chlorinated organics.

15 to 20 points: There is <u>adequate</u> evidence for anaerobic biodegradation of chlorinated organics. >20 points: There is <u>strong</u> evidence for anaerobic biodegradation of chlorinated organics.

Monitoring wells outside the contaminant plume.

1 = Material Released

² = Daughter product of PCE

³ = Daughter product of TCE (score if cis-1,2-DCE is 80% of total DCE)

⁴ = Daughter product of DCE

5 = Material Released

⁶ = Daughter product of 1,1,1-TCA under reducing conditions

⁷ = Daughter product of 1,1-DCA or VC under reducing conditions

ASCOM Page 1 of 1 April 2023

Table 8 Pre- and Post-Bioaugmentation Injection VFA Data Comparison Former Scott Aviation Facility - Area 1 BCP Site NYSDEC Site Code No. C915233

Lancaster, New York

Sample ID Sample	Sample Date	Sample Dilution	Lactate	Acetate	Propionate	Formate	Butyrate	Pyruvate	
		Factor	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	
MW-42S	8/26/2021	50	<0.39	574	148	<0.22	108	26	
MW-42S	12/9/2021	50	<0.39	476	118	<0.22	75	18	
MW-42S	4/8/2022	1,000	<7.8	813	124	7.2	81	18	
MW-42S	10/10/2022	1,000	<7.8	1253	12	<4.4	71	34	
MW-42S	4/12/2023	1,000	<12	816	<0.10	<25	50	16	
A1-GP10-S	8/26/2021	50	<0.39	471	68	<0.22	46	5.3	
A1-GP10-S	12/9/2021	50	<0.39	494	151	6.3	55	15	
A1-GP10-S	4/8/2022	50	7.9	147	35	0.4	18	4.7	
A1-GP10-S	10/10/2022	1,000	<7.8	609	<6.2	<4.4	23	<13.8	
A1-GP10-S	4/12/2023	50	<0.62	14	<0.10	<1.3	<0.06	<0.15	

Notes:

VFA - Volatile Fatty Acids mg/L - milligrams per liter Biougmentation injection 9/2021

NS - Not Sampled

Table 9

Pre- and Post-Bioaugmentation Injection Gene-Trac Data Comparison Former Scott Aviation Facility - Area 1 BCP Site NYSDEC Site Code No. C915233 Lancaster, New York

S	Savela Bala	Deha	lococcoides (Dhc)	Del	nalobacter (Dhb)	_	eductase vcrA)	BAV1 VC Red (bvcA		_	ductase <i>eA</i>)
Sample ID	Sample Date	Percent	Enumeration/Liter	Percent	Gene Copies/Liter	Percent	Gene	Percent	Gene	Percent	Gene
		Dhc	, , , , , , , , , , , , , , , , , , , ,	Dhb		vcrA	Copies/Liter	bvcA	Copies/Liter	tceA	Copies/Liter
MW-42S	8/26/2021	5 - 13 %	2 x 10 ⁸	0.2 - 0.5 %	6 x 10 ⁶	8 - 21 %	3 x 10 ⁸	0.007 - 0.02 %	2 x 10 ⁵	0.6 - 2 %	2 x 10 ⁷
MW-42S	12/9/2021	2 - 5 %	2 x 10 ⁸	0.1 - 0.3 %	1 x 10 ⁷	2 - 6 %	2 x 10 ⁸	0.001 - 0.004 %	1 x 10 ⁵	0.08 - 0.2 %	8 x 10 ⁶
MW-42S	4/8/2022	5 - 14 %	2 x 10 ⁸	0.1 - 0.4 %	5 x 10 ⁶	5 - 15 %	2 x 10 ⁸	0.01 - 0.03 %	4 x 10 ⁵	0.3 - 0.8 %	1 x 10 ⁷
MW-42S	10/2/2022	4 - 11 %	1 x 10 ⁸	0.1 - 0.3 %	3 x 10 ⁶	2 - 6 %	2 x 10 ⁷	0.0006 - 0.002 %	4 x 10 ⁴	0.2 - 0.7 %	1 x 10 ⁶
MW-42S	4/12/2023	0.7 - 2 %	1 x 10 ⁷	0.03 - 0.1 %	6 x 10 ⁵	0.7 - 2 %	1 x 10 ⁷	0.002 - 0.005 %	3 x 10 ⁴	0.1 - 0.3 %	2 x 10 ⁶

Appendix A Pre-Injection and Post-Injection Groundwater Quality Data

						Well		Field Parar	neters							v	/OCs						Disso	ved Gasse	es es			Wet	t Chemistr	у			QI	Potential (DNA)
Well ID	Event Descripti		Date	Elapsed Time (Days)		(ft. AMSL) Top of Casing Elevation	2	(su) pH (mg/L) Dissolved Oxygen (mg/L) Oxidation Reduction Potential	(NTUs) Turbidity	(°C) i emperature (mg/L) Carbon, Total Organic		1,1,2-Trichloroethane 1,1-Dichloroethane	1,1-Dichloroethene 1,2-Dichloroethane	2-Butanone (MEK)	4-Methyl-2-pentanone Acetone Benzene	Carbon Disulfide Chloroethane	(ug/L) Chloroform Chloromethane	cis-1,2-Dichloroethene Dichlorodifluoromethane	Ethylbenzene Methylcyclohexane Methylene chloride	Methyl Acetate Tetrachloroethene	Toluene trans-1,2-Dichloroethene	Trichloroethene Vinyl chloride	Carbon Dioxide	(ug/L) Ethene	Nitrate Managemen	Manganese Ferric Iron Sulfate	Sulfide Nitrite	Phosphorous Ammonia COD	(mg/L) Total Alkalinity Farrous Iron	Iron Acetic Acid	Formic Acid Lactic Acid n-Butyric Acid	Propionic Acid Chloride Pyruvic Acid	Dechlorinat Bacteria (1) dds sepiocococococococococococococococococococ		BAVI VC R-Dase (1) VC R-Dase
	Monitoring event	BL1	6/1/2011	-1434		NA 689.5	₹ Z			SN	420 400 J	1.6	4 Q	99	5 2 S	2.8	2 2	8 D 5	222	OND 0.5 J	6: 8:	8.4	2												
	Monitoring event	BL2	6/16/2011	-1419	6.34	NA 689.5	ΑĀ			SN		0.87 J 18	4 Q	2 2	390 J	0.6 J	2 2	P 0 5	2 2 2			81 4.1	2												
	Monitoring event	BL3	10/7/2011	-1306		NA 689.5	¥ Z			SN	170	1.4	S □	99	2 2 2	22		N 25	2 2 2	UD 0.73 J	99														
	Monitoring event	P1	6/12/2015	38		NA 689.5	≨	NA (Grab S	ample)	SZ	27	2 P	3.7 ND	98 :	5 8 S	ND ND	ON O	4 Q 2	0 14:0 N D	22	3.2 ND	1.5	ŧ.												
	Monitoring event	P2	1/6/2016	246		NA 689.5	A A			SN	140	0.29 J 42	8.2).28 J	22	2 2 QN	37	2 Q	01 D	0.75 0.18 J (22	6.2	13 13	2												
	Monitoring event	P3	4/8/2016	339	6.34		681.9			SZ	10	Q 4.4	3.2 J ND (9 9	임위임			위망			22	2.9 J	2												
	Monitoring event	P4	7/11/2016	433	6.34	6.31	683.2 681.9 NA			SN		Q 09	9 9			-						2 2 2													
	Monitoring event	P5	10/13/2016	527	6.34			7.62	5.98	SS 15	3.5	3.2 3.2	0.81 J	99	2 2 2	2.6 2.6		2 ⁴ D	2 2 2	99	99	O.92	2												
07.4	Monitoring event	P6	1/20/2017	626	6.34	NA 689.5	A A	NA (Grab S		SN	21		5.0 ND		2 2 2	ND 5.6	2 2	8 8	222	22	1.4 ND	3.2	0.4								_				
CB-1	Monitoring event	P7	4/7/2017	703	6.34		683.3	7.71 NA 25.9	17.9	A N	£ 6	D 1.3	8. D	99	2 2 2	₽.5 P.5	99	8 2 9	2 2 2	99		1.8	9					Not Sam	ipled Fo	r These	Parame	eters			
	Monitoring event	P8	7/10/2017	797		6.3 6.19 690.5 689.5		0.63	4.95	17.8 NS	ND 4.3	3.8	99	99	S 8 8	D.76	2 2	0.8		22	99	222													
	Monitoring event	P9	10/18/2017	897	6.34	6.25		5.79	12.9	16.9 NS	23	0.31	3.0 ND	99	2 2 2	ND 12:0	99	0.6 E	222	99	0.42	0.67	₽												
	Monitoring event	P10	1/2/2018	973	6.34	NA 689.5	A A	NS (Grab S		SN	83	S3 PD	8.8 DD	99	2 2 2	2 2	99	28 B	999	22	2 2	6 8 5	2												
	Monitoring event	P11	4/9/2018	1070	6.34	6.28	-	14.8	NA	3.85 NS			B 33	99	222	5 =	99	280	999	22	11	11 17	9												
	Monitoring event	P12	7/11/2018	1163	6.34	6.32	683.2	1.72	11.1	18.7 NS	58 2.3 82 8.5	ND 6.2	0.44 J	2 2	N 2 N	2 2	N 0.84 J N ON O	3.6 ND	2 2 2	22	2 Q	1.1	2												
	Monitoring event	P13	10/23/2018	1267	6.34	6.32		1.24 67.7	9.6	13.6 NS	82	0.41 J 41	5.1 0.23 J	2 2	2 2 2	S 4	99	120 PD 120	2 2 2	2 2	0.75 J	9.7	2												
	Monitoring event	P14	1/8/2019	1344	6.34	NA 689.5		0.63	29.0	6.3 NS	9.1	2.2	99.0 N	z z :	Z 3.6 Z	Z ÷		6 Z 3	z z z	ZZ	뒫뒫	2.0	3												
	Monitoring event	P15	4/12/2019	1071	6.34	NA 689.5	Ϋ́	NS (Grab S			110	0.47 J 49	₽ 2	99	2 2 2	₽ 8	99	02 <u>9</u>	222	99	3.2	13	5.												

						Well		Field I	Parameters									VOC	3							Dissolv	ved Gas	ses				Wet	Chemis	try					2 Potent	ial (DNA)
Well ID	Event Descript		Date	Elapsed Time (Days)	feet) Total Depth	(ft. ATOC) Water Level Measurement (ft. AMSL) Top of Casing Elevation	AMSL) Head Elevation	(SU) pH (mg/L) Dissolved Oxygen	(ms/cm) Specific Conductance (NTUs) Turbidity	(°C) Temperature	1,1,1-Trichlor	1,1,2-Trichloro-1,2,2-trifluoroethane 1,1,2-Trichloroethane	1,1-Dichloroethane	1,2-Dichloroethane	2-Butanone (MEK)	4-Methyl-2-pentanone Acetone	Benzene Carbon Disulfide	(ug/L) Chloroform	Chloromethane cis-1,2-Dichloroethene	Dichlorodifluoromethane Ethylbenzene	Methylcyclohexane Methylene chloride	Methyl Acetate	Toluene	trans-1,2-Dichloroethene Trichloroethene	Vinyl chloride Xylenes, Total	Carbon Dioxide Ethane	(ug/L) Ethene	Methane	Manganese Farricina	Suffide Suffide	Nitrite Phosphorous	Ammonia COD	(mg/L) Total Alkalinity	Ferrous Iron Iron	Acetic Acid Formic Acid	Lactic Acid n-Butyric Acid	Propionic Acid Chloride	Dechloring Bacter	ia	TCE R-Dase (1)	Genes VC R-Dase
	Monitoring event	P16	7/22/2019	1539	L	NA 689.5		NS (Gra	ab Sample	T		2 2	2 2	2 2	22!	22		2 2	22	2 2	2 2 2	2 2 2	2 2 2		9 9																
	Monitoring event	P17	10/14/2019	1623	6.34	NS 89.5		NS (Gra	ab Sample) 9	N2 45	39 ND	29 CN	2 2	2 2	2 2 :	2 2	4 Q	₽ 8	2 2	2 2	2 2	2 2 2	0.4 J	Q Q																
	Monitoring event	P18	1/9/2020	1710	6.34	NA 889.5	A A	7.26	0.726	2.8	88 88	140 ND	39	2	2 2 !	22	2 2	9 Q	ND 200	99	2 2	2 2	7.5 J	13.0	29 ND																
	Monitoring event	P19	4/9/2020	1072	6.34	6.08	683.4	NA (Gra	ab Sample							22					2 2	\perp	3.4	5.3	12																
	Monitoring event	P20	7/23/2020	1906	6.34	NA 689.5	¥ Y	NS (Gra	ab Sample) !	2 2	4.4 QN	0.94J	2 2	2 2 !	99	2 2	99	ND 4.2	99	ON 189	2	2 2 2	2.1	9 9																
CB-1	Monitoring event	P21	10/5/2020	1980	6.34	NA 689.5		NS (Gra	ab Sample							3.3J	2 2	1.6 D	1.2 N	2 2	2 2	2 2	2 2 2	0.50J	2 2						No	ot Sam	pled F	or The	se Pa	ramet	ers				
	Monitoring event	P22	4/1/2021	2158	6.34	6.24	_	NS (Gr	ab Sample) !	2.5	27 ND	5.4	2	2 2	22	2 2	2.5 ND	ND 24	2 2	2 2 2	2 2	0.59J	9.9	3.1																
	Monitoring event	P23	10/22/2021	2362	6.34	NA 889.5	-	NS (Gr	ab Sample) 9	2 2	3.7 D	2 2	9 9	2 2 !	99	2 2	99	₽ 7.1	99	999	9 9	2 2 2	2 2	2 2																
	Monitoring event	P24	4/12/2022	2534	6.34			NS (Gr	ab Sample												999	\perp	\perp																		
	Monitoring event	P25	10/7/2022	2712	6.34	_	-	NS (Gr	ab Sample) :	2 2	4.8 0 0 0	0.54 J	2 2	2 2	99	2 2	99	0.93 J	2 2	2 2	2 2	222	0.52 J	2 Q																
	Monitoring event	P26	4/6/2023	2893	6.34	6.24	¥	NS (Gra	ab Sample)	4.1 4.1	2 2	2.2 UN	2	2 2	2 2	9 9	2 2	ND 5.9	9 9	2 2	2 2	2 2 2	2.5	2 Q																

Well ID	Event Descripti		Date	Elapsed Time (Days)	Total Depth Water Level Measurement	ISL) Top of Casing Elevation	PH Dissolved Oxygen Oxygen Potential Oxygen Potential Dissolved Oxygen Oxygen Potential Dx	L) Carbon, Total Organic 1,1,1-Trichloroethane 1,1,2-Trichloro-1,22-triftuoroethane	11.2-77-chloroethane 11.2-77-chloroethane 11.4-10-10-10-10-10-10-10-10-10-10-10-10-10-	Dehallococooldes spot (1) TCE R-Dase (1) BAVI VC R-Dase (1) CR-Dase (2) CR-Dase (3) CR-Dase (4)
					(feet)		(SU) (mg/L) (mX/cm) (NTUs)	(E)	(mg/L)	(cells / mL)
	Monitoring event	BL1	6/1/2011	-1434	7.0 A	9		83 83 60 J		
	Monitoring event	P1	7/28/2015	84	7.0	690.5	7.07 3.62 -66.7 1.153 9.43 19.5	NS 2.5 23	2 S D D D D D D D D D D D D D D D D D D	
	Monitoring event	P2	1/6/2016	246	0.7 Ā	_		8 8 8		
	Monitoring event	P3	4/8/2016	339	7.64	690.5 690.5	NA (Grab Sample)	8 8 8		
	Monitoring event	P4	7/11/2016	433	7.7	5 690.5			0 0 <th></th>	
	Monitoring event	P5	10/13/2016	527	7.0		7.48 5.94 116 0.549 11.4			
	Monitoring event	P6	1/20/2017	626	0.7 A			0		
	Monitoring event Monitoring	P7	4/7/2017	703	7.0					
	event Monitoring	P8	7/10/2017	797	0.7 7.8		3.92 4.06 221 26.5 0.740 0.670 122 40.3 17.1 19.1		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	event	P9	1/2/2018	897 973	7.0 7.0 NA 7.64				2 1 1 2	
TP-05	Monitoring	P11	4/9/2018	1070	7.0 7 7.76 N			0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	Monitoring	P12	7/11/2018	1163	7.0 7				8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
	Monitoring	P13	10/23/2018	1267	7.0 7	10 (0	7.56 7 5.57 2 45.9 45.0 0.575 0.0 4.0 4.0		2 2 2 4 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	Monitoring	P14	1/8/2019	1344	7.0				D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	Monitoring	P15	4/12/2019	1438	7.0				5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
	event Monitoring event	P16	7/22/2019	1539	0.7 AN			SN ON ON		
		P13	10/14/2019	1623	7.0				9 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
		P14	1/8/2020	1709	7.0				N N N N N N N N N N N N N N N N N N N	
	Manitoring	P15	4/9/2020	1801	7.0			NS 25 25 25		
		P16	7/23/2020	1906	0.7 AN		NA (Grab Sample)	NS DN 2.7	8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	

				Well	Field Parameters		VOCs		Dissolved Gasses	Wet Chem	nistry	Q Pote	ential (DNA)
												Dechlorinating Bacteria	Functional Genes
Well ID	Event / Description	Date	Elapsed Time (Days)	Total Depth Water Level Measurement Top of Casing Elevation Head Elevation	pH Dissolved Oxygen Oxidation Reduction Potential Specific Conductance Turbidity Temporature	Carbon, Total Organic 1,1,1-Trichloroethane 1,1,2-Trichloro-1,22-trifluoroethan	11,2-7 reinforcettane 11,4 Dictionations 11,4 Dictionations 12,2 bickarons 12,2 bickarons 12,2 bickarons 12,2 bickarons 12,2 bickarons 14,4 Methyl-2-pentanone (MEK) 2-8 duarons (MEK) 14,4 Methyl-2-pentanone (MEK) 15,1 Bickarons 16,1 Bickarons 16,	Coloromentalina cier 1,2 Dehiorosthan Dichlorodifluoromethane Ethylbarcosto Methylene chloride Methylene chloride Methylene chloride Tetrachicosthane Trans-1,2 Dichlorosthane Trichicosthane	Ayerres, roca Carbon Dioxide Ethane Ethene	Nitrate Managenese Ferricino Sufface Sufface Sufface Annonia COD BOD	To a reasonation of the control of t	Dehalococcoides spp (1)	TCE R-Dase (1) BAVI VC R-Dase (1) VC R-Dase
				(ft. ATOC) (ft. AMSL) (ft. AMSL)		(mg/L)	(ngh.)		(ug/L)	(mg/L)			(cells / mL)
	Monitoring P17	10/5/2020	1980	7.0 NA NA NA	NA (Grab Sample)	NS NS 2 2	9-999999999	DN C DN	2				
	Monitoring P18	4/1/2021	2158	7.7 7.74 690.5	NA (Grab Sample)	N	999999999999	0. 6. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9				
TP-05	Monitoring event P19	10/22/2021	2362	7.0 NA 690.5	NA (Grab Sample)	8 9 - 8	999999999999	ON O	2	Not Sampled	For These Parameters		
	Monitoring event P20	4/12/2022	2534	7.0 7.76 690.5 682.7	NA (Grab Sample)	N ON 7.4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.873 ND ND N	2	Not Sampled	TO THOSE FURNITURE		
	Monitoring event P21	10/7/2022	2712	7.0 7.76 690.5 NA	NA (Grab Sample)	1.1 D	0.55.0 0.00	M	2				
	Monitoring event P22	4/6/2023	2893	7.7 7.70 690.5	NA (Grab Sample)	8 8 8 8			2				

				Well	Field Parameters		VOCs	Dissolved Gasses	Wet Chemistry	Q Potential (DNA)
Well ID	Event / Descriptio		Elapsec Time (Days)	Total Depth Water Level Measu Top of Casing Elev	Head Elevation PH Dissolved Oxygen Oxidation Reduction Potential Specific Conductance Turbidity Tennoreality		1.1.2-7:returbocethane 1.1.2-7:rethorosthane 1.1.2-7:rethorosthane 1.1.0-fall-foorethane 1.1.0-fall-foorethane 1.1.0-fall-foorethane 1.1.0-fall-foorethane 1.1.0-fall-foorethane 1.1.0-fall-foorethane 1.1.0-fall-foorethane 1.1.0-fall-foorethane 2-Beatmanne (BEC) 4-Mehtly/2-pertamone 4-Mehtly/2-pertamone 6-Mehtly/2-pertamone Mehtly/2-pertamone 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	Carbon Dioxide Ethane Ethene Methane	Mirate Managenese Ferrieron Sulfate Sulfate Burlide Nitrite Phosphorous Ammonia COD Total Abalinity Ferrous fron Total Abalinity Ferrous Abalinity Ferrous Abalinity Ferrous Abalinity Ferrous Abalinity Ferrous Abalinity Ferrous Add Total Add	Dehlorinalide Bacteria LOE R-Dase (1) BAVI VC R-Dase (2) NC R-Dase (3) NC R-Dase (1) NC R-Dase (1)
				(feet) (ff. ATOC) (ff. AMSL)	(ft. AMSL) (SU) (mg/L) (mV) (mS/cm)	(mg/L)	(ug/L)	(ng/L)	(mg/L)	(cells / mL)
	Monitoring event	P1 6/12/20	15 38	9.0 NA 690.3	NA (Grab Sample)	NS 1.8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
	Monitoring event	P2 7/28/20	15 84	9.0	682.5 7.13 1.54 54.5 3.082 2.82	8 8 8				
	Monitoring event	P3 1/6/201	6 246	9.0 NA 690.3	₹	8 8 8				
	Monitoring event	P4 4/8/201	6 339	9.0	NA (Grab Sample)	S S S				
	Monitoring event	P5 7/11/20	16 433	9.0 7.52 690.3	682.7	S S S				
	Monitoring event	P6 10/13/20	16 527	8.6 7.43 690.3	682.8 7.34 4.61 175.9 2.302 24.2	S S S	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
	Monitoring event	P7 1/20/20	17 626	9.0 NA 690.3	NA (Grab Sample)		D			
	Monitoring event	P8 4/7/201	7 703		9.51 NA 18.4 1.525	8 8 8				
	Monitoring event	P9 7/10/20	17 797	9.0 9.0 8.5 7.33 690.3 690.3	682.9 681.8 682.9 7.71 7.27 9.51 5.21 1.10 NA 207.2 19.6 18.4 2.44 3.16 1.525 5.21 150		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
	event	P10 10/18/20	17 897	9.0 7.45 690.3	682.9 7.71 5.21 207.2 2.44 2.44	8 8 8		1		
TP-06	event	211 1/2/201	8 973	9.0 8 690.3	NA (Grab Sample)	8 S S			Not Sampled For These Parameters	
	event	P12 4/19/20	18 1080	9.0 7.48 8 690.3	682.8 7.09 7.09 14.63 61.13 NA		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
	event	P13 7/11/20	18 1163	9.0 7.48 3 690.3	7.20 7.20 1.53 -32.9 3.410 48.1					
	event	214 10/23/20	18 1267	9.0 9 7.4 3 690.3	2.71 2.71 96.1 96.1 0 1.340					
	event	P15 1/8/201	9 1344	9.0 7.19 3 690.3	7.02 7.02 7.4 7.4 7.4 5 3.930 7.5 7.6 7.6					
	event	P16 4/12/20	19 1438	9.0	6.57 -0.3 4.865					
	event	P17 7/22/20	19 1539	9.0 NA 690.3	NA (Grab Sample)	8 S S	Q Q			
	Monitoring event	P18 10/14/20	19 1623	9.0 7.49 690.3	NA (Grab Sample)	8 8 8	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
	Monitoring event	219 1/8/202	0 1709	9.0 7.48 690.3	682.8 6.95 5.56 103.4 4.45 46.7					
	Monitoring event	20 4/9/202	0 1801	9.0 7.49 690.3	NA (Grab Sample)	8 5 5	Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q			

						Well		Field Parameters								VOC	Ss							Diss	solved	Gasses				1	Wet Ch	emistry	у					Potenti	al (DNA)	
Well ID	Event Descripti	/ on	Date	Elapsed Time (Days)	(feet) Total Depth (ft. ATOC) Water Level Measurement	(ft. AMSL) Top of Casing Elevation	(ft. AMSL)		Carb 1,1,1	1,1,2-Trichloro-1,2,2-trifluoroethane	1,1,2-Trichloroethane 1,1-Dichloroethane	1,1-Dichloroethene 1,2-Dichloroethane	2-Hexanone 2-Butanone (MEK)	4-Methyl-2-pentanone Acetone	Benzene Carbon Disulfide	Chloroethane (ug/L) Chloroform	, 0 ,	Cis-1,∠-Dichloroethene Dichlorodifluoromethane	Ethylbenzene Methylcyclohexane	Methylene chloride Methyl Acetate	Tetrachloroethene Toluene	trans-1,2-Dichloroethene	Vinyl chloride	Xylenes, Total Carbon Dloxide	(ug/L)	Ethene	Nitrate	Manganese Ferric iron Sulfate	Sulfide	Phosphorous Ammonia	COD	Total Alkalinity Ferrous Iron	Iron Acetic Acid	Formic Acid Lactic Acid	n-Butyric Acid Propionic Acid	Chloride Pyruvic Acid	Dechlorium Bacte Department B	ia	mL) TCE R-Dase (1) BAVI VC R-Dase (1)	VC R-Dase
	Monitoring event	P21	7/23/2020	1906	9.0		0		SN ON	2	2 2	99	9 9	99	99	9 9	2 2 2	2 2	99	22	99	999	2 2 !	2																
	Monitoring event	P21	10/5/2020	1980	9.0		20	NA (Grab Sample)	SN ON	9 !	2 2	99	2 2	99	ON 0.	2 2	2 2 2	2 2	9 9	99	22	2 2 2	2 2 !	2																
	Monitoring event	P22	4/1/2021	2158	9.0	690.3	6.289	NA (Grab Sample)	SN ON	2	2 2	Q Q	Q Q	2 2	2 2	2 2	2 2 2	2 2	QN QN	22	Q Q	2 2 2	2 2 :	O N																
TP-06	Monitoring event	P23	10/22/2021	2362	0.6 AN	690.3	₹	NA (Grab Sample)	SN ON	9 !	2 2	99	9 9	99	99	99	2 2 2	2 2	99	22	99	2 2 2	2 2 !	2						Not S	Sample	ed For	These	e Para	ımeter	rs				
	Monitoring event	P24	4/12/2022	2534	9.0	690.3	682.9	NA (Grab Sample)	SN ON	9 !	2 2	99	9 9	9 9	99	99	2 2 2	2 2 !	22	22	2 2	2 2 2	2 2 !	2																
	Monitoring event	P25	10/7/2022	2712	9.0	690.3	¥ Z	NA (Grab Sample)	SN ON	2	2 2	22	Q Q	9 9	OND 0.39 J	2 2	2 2 2	2 2	Q Q	g z	2 2	2 2	2 2 !	Q Z																
	Monitoring event	P26	4/6/2023	2893	9.0	690.3	¥	NA (Grab Sample)	SN ON	Q !	2 2	Q Q	Q Q	2 2	2 2	2 2	2 2 2	28	QN QN	Q Q	ON CO	2 2	2 2	Q Z																

						Well		Fi	eld Par	ameter	s								v	OCs								Dissolve	d Gass	ses				v	Vet Che	mistry					Q Po	otential (DNA)	
Well ID	Event Descript		Date	Elapsed Time (Days)	Total Depth Water I evel Measurement	Top of Casing Elevation	Head Elevation	pH Dissolved Oxygen	Oxidation Reduction Potential	Specific Conductance	Temperature	S	1,1,1-Irichioroethane 1,1,2-Trichioro-1,2,2-trifluoroethane	1,1,2-Trichloroethane	1,1-Dichloroethane 1,1-Dichloroethene	1,2-Dichloroethane 2-Hexanone	2-Butanone (MEK) 4-Methyl-2-pentanone	Acetone Benzene	Carbon Disulfide Chloroethane	Chloromethane	cis-1,2-Dichloroethene	Dichlorodifluoromethane Ethylbenzene	Methylcyclohexane Methylene chloride	Methyl Acetate Tetrachloroethene	Toluene trans-1.2-Dichloroethene	Trichloroethene	Xylenes, Total	Ethane	Ethene	Methane	Nanganese	Ferric iron Sulfate	Sulfide Nitrite	Phosphorous Ammonia	вор	Total Alkalinity Ferrous Iron	Iron Acetic Acid	Formic Acid Lactic Acid	n-Butyric Acid Propionic Acid Chloride	В	Dehalococcoides spp (1) Dehalococcoides spp (1)	TCE R-Dase (1)	BAVI VC R-Dase (1)	
					(feet)	(ft. AMSL)	(ft. AMSL)	(SU)	(m)	(mS/cm)	(SUTUS)	(mg/L)								(ng/L)									(ug/L)						(ma/L)							(cells/ mL)		
	Monitoring event	BL1	6/22/2010	-1778	15	4.12	685.7	6.93	47.1	1.117	18.4	SN	2 2	2 5	2 2	22	2 2	9 g	22	2 2	6,400	2 2	2 2	22	ND 1. 4.9	11,000 ND	2																	Ī
	Monitoring event	BL2	8/4/2010	-1735	15	689.8	684.9	6.82	-31.9	1.170	21.27	SN	2 2	2 9	22		П	9 9	99	2 2	9	-		99		20,000 Z0,000																		
	Monitoring event	BL3	3/10/2015	-56	15	3.95 689.8	682.9	7.24	6:0-	0.850	52.7	3.3	9 9	2 5	9 9	999	2 2	9 9	99	99	က	- -	22	99	2 2	5,400 ND	2																	
	Monitoring event	P1	7/28/2015	84	15	689.8	685.3	5.75	48.2	5.212	72 79	3,700	9 9	2 9	£ ₹	999	2 2	360 J	99	9 9	23,000	2 2	₽ 8	99	D 02	8,000	2																	
	Monitoring event	P2	1/7/2016	247	5 2	4.1 689.8	685.7	6.06	21.8	4,	9.23		9 9	2 5	9 9	999	2 2	9 9	99	99	29,000	2 2	99	99	9 9	.,	2																	
	Monitoring event	P3	4/8/2016	339	15	_	3 687.2	6.24			69.3		2 2	2 9	22	999	2 2		99	2 2	6,400 32,000 22,000 29	2 2	7	99	2 2	ON 02.400	2																	
	Monitoring event Monitoring	P4	7/11/2016	433	15	_	2 683.8	9 3.9	'	4	2 18.39	-	2 2	2 5	22	999	2 2	99	99	22	0 32,00	2 2	99	99	2 2	ON 00	ND ND ON																	
	event	P5	10/10/2016	524		9.689 8.	7. 683.2	6.59			7 18.42			2 5	22		2 2		22	2 2			_	22	2 2																			
A1-GP02-S	event	P6	1/23/2017 4/11/2017	629 707		2.75 3.75 689.8 689.8	687.1 686.7	6.52 6.68 4.88 3.1	7	- 0	125 20.3 10.7 8.27	**						9 9 9 9		2 2			-	22		ON O	QN QN							Not Sa	ample	d For	These	Paran	neters					
	event	P8	7/6/2017	793		5.7 2. 689.8 68	684.1 68	6.79 6.72	_	390 1.4	7.0 10			Н										22		ND ND N	1																	
	Monitoring event		10/17/2017	896		689.8		6.84 6	-	2	36.2		_			999	-				1					000 T																		
	Monitoring event	P10	1/5/2018	976		3.61 689.8 6		8.21 (0	8.9 8.9			Н	99		2 S			9 9	\perp	- 1 - 1	99	99	2 2	ND 6700	3 8																	
	Monitoring event	P11	4/12/2018	1073		3.45	686.4	6.96			8.5 A	210	2 2	2 5	2 2	22	2 2	ON ON	9 9	2 2	230	Q 64	0.4 J	99	2 2	ND 4 200	4																	
	Monitoring event	P12	7/9/2018	1161	15	9.70	684.1	3.01		,	17.2	232 B	2 2	2		22	2 2	Q Q	2 2	2 2				22	2 2	OND 009.9	ND																	
	Monitoring event	P23	4/12/2022	2534		2.34	8 687.5	7.02		_	37.34		2 2				- 1 - 1	99			-	§ 4		99			35 J																	
	Monitoring event	P13	10/18/2018	1262		9.00	5 684.8	7.31		,	14.7																																	
	Monitoring event	P14	1/2/2019	1338	15	5.3	686.5	3.45	-97.2	1.300	9.1	75.8	2 2	2	99	99	2 2	99	99	2 2	15	2 8	99	99	2 2	₩ Q2	20 7																	

						Well			Field Pa	arametei	s									voc)s							Di	ssolved	Gasses				w	et Che	mistry					Q	Potenti	al (DNA))
Well ID	Event Descript		Date	Elapsed Time (Days)	Total	Water Level Measurement Top of Casing Elevation	Head Ele	pH	Dissolved Oxygen Oxidation Reduction Potential	Specific Conductance			1,1,1-Trichloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane	1,1,2-Trichloroethane	1,1-Dichloroethane 1,1-Dichloroethene	1,2-Dichloroethane	2-Butanone (MEK)	4-Methyl-2-pentanone Acetone	Benzene Carbon Disulfide	Chloroethane	Chloromethane cis-1.2-Dichloroethane	Dichlorodifluoromethane	Methylcyclohexane	Methylene chloride Methyl Acetate	Tetrachloroethene Toluene	trans-1,2-Dichloroethene Trichloroethene	Vinyl chloride	Xylenes, Total Carbon Dioxide	Ethane	Ethene Methane	Nitrate Manganese	Ferric iron Sulfate	Sulfide Nitrite	Phosphorous Ammonia	BOD	Total Alkalinity Ferrous Iron	Acetic Acid	Formic Acid Lactic Acid	n-Butyric Acid Propionic Acid	Chloride Pyruvic Acid	Dechlorina Bacteri Departococcopides & bb (1)	1	TCE R-Dase (1)	Genes (1)
					(feet)	(ft. ATOC)	(ft. AMSL)	(ns)	(mg/L)	(mS/cm)	(%)	(mg/L)								(ug/L)									(na/L)						(mg/L)							(cells/	Ę	
	Monitoring event	P15	4/18/2019	1444	15	2.89	6.989	7.11	43.9	1.366	8.9	8.99	2 2	Q.	99	2 2	2 2	2 2	9 9	2 2	ND ND	2	2 2 3	ON O	2 2	2 2	1,300	a N																
	Monitoring event	P16	7/25/2019	1542	15	5.39	684.4	7.48	2.3	1.363	18.7	30.8	9 9	9	9 9	2 2	2 2 2	02 P	99	2 2	5 5 4	9 9	2 2 3	G Q :	99	2 2	1,200	13.5																
	Monitoring event	P17	10/14/2019	1623	15	4.00	685.8	6.4	41.6	1.427	14.1	37.2	2 2	Q.	9 9	2 2	2 2	2 2	2 2	2 2	5 8 4	S S	2 2 2	2 2	2 2	Q 2	380	76 J																
	Monitoring event	P18	1/7/2020	1708	15	3.19	9.989	7.02	2.42	1.230	7.3	21.8	2 2	Q	9 9	2 2	2 2	Q Q	9	2 2	N 08	2 2	2 2 2	2 2	Q Q	Q Q	450	a N																
A1-GP02-S	Monitoring event	P19	4/13/2020	1805	15	2.61	687.2	7.02	2.53	1.199	9.6	15.8	9 9	9	9 9	2 2	2 2 2	9 9	9 9	2 2	S S S	2 2	2 2 2	2 2	9 9	2 2	1,500	CLZ						Not Sa	mpler	d Eor T	hoco	Daras	notore					
Al-Gruz-G	Monitoring event	P20	10/12/2020	1987	15	3.6	686.2	6.47	1.33	0.864	16.0	15.6	Q Q	Q	2 2	2 2	2 2	Q Q	Q Q	2 2	Q Q (5)	ND 22	ND 1	ON :	Q Q	Q Q	2,300	337						NOT GA	iiipied	11011	nese	raiai	neters					
	Monitoring event	P19	4/13/2020	1805	15	2.61	687.2	7.02	2.53	1.199	9.6	15.8	2 2	2	9 9	2 2	2 2		9 9	2 2	₽ Q 2	2 2	2 2	2 2	9	2 2	1,500	CLZ																
	Monitoring event	P22	10/22/2021	2362	15	2.56	687.2	7.19	1.29	1.020	14.9	10.9	2 2	9	9	2 2	\perp	2 2					9 2		9 9	2 2	2,800	45 J																
	Monitoring event	P23	10/6/2022	2711	12	4.90	684.9	7.04	5.03	1.200	17.8	7.1	9 9	2	2 2	2 2	2 2	2 2	2 2	2 2	ND ND	2 2	2 2	2 2	2 2	2 2	3,400	O N																
	Monitoring event	P24	4/6/2023	2893	12	2.55	687.3	6.79	-19.8	1.063	8.2	7.0	2 2	2	9 9	2 2	2 2	2 2	9	2 2	N 08	2	999	2 2	9 9	2 2	2,400	2																

					V	Vell		Field	Param	eters								VOC	Cs							Dissol	ved Ga	sses				١	Wet CI	hemistr	ry					Q Po	otentia	I (DNA)	
Well ID	Event Descript		Date	Elapsed Time (Days)	(feet) Total Depth (ft. ATOC) Water Level Measurement	(ft. AMSL.) Top of Casing Elevation	(ft. AMSL) read Levenori	(mg/L) Dissolved Oxygen Oxidation Reduction Potential	(mV) Specific Conductance	Turbidit	(°C) Temperature	1,1,1	1,1,2-Trichloro-1,2,2-trifluoroethane	1,1-Dichloroethane	1,2-Dichloroethane 2-Hexanone	2-Butanone (MEK)	4-Methyl-2-pentanone Acetone Banzene	Chloroethane (uq/L)	Chloromethane cis-1,2-Dichloroethene	Dichlorodifluoromethane	Ethylbenzene Methylcyclohexane Methylene chloride	Methyl Acetate	Toluene Trane-1-2-Dichlorosthane	Trichloroethene	Vinyl chloride Xylenes, Total	Carbon Dioxide	(ug/L) Ethene	Methane	Nitrate Manganese	Ferric iron Sulfate	Sulfide	Phosphorous Ammonia	COD	(mg/L) Total Alkalinity Ferrous Iron	Iron	Acetic Acid Formic Acid	Lactic Acid n-Butyric Acid	Propionic Acid Chloride		Dehalococcoides spp (1)	(cells/ mL) TCER-Dase (1)		VC R-Dase
	<u> </u>								_		٤	-						-									2							٤							<u> </u>		
	Monitoring event	BL1	6/21/2010	-1779	3.40	7. 687.7	6.88		83.7	9	1 N		2 2		99	- -	222		S S S	2	S S S	2	2 2 2		1,300 ND							Not S	Sampl	ed Fo	r The	se Pa	rame	eters					
	Monitoring event	BL2	8/4/2010	-1735	3.24	687.7	7.1	-	NA 0.793		19.3	1,700	1,900	3,200	99	2 2	2 2 2 2	2 2 2	5 5 5 5	33	2 2 2	99	999	200																			
	Monitoring event	BL3	11/5/2014	-181	15		685.6 7.19	1.0	-57.4			2				Not	Sampled	i For T	These F	arar				1_1		9,500	2 2	4	0.05	22	S S	ND 0.23	19.6 CN	376 ND	0.27	2 2	8 8	8 8	S			led For ameters	
	Monitoring event	BL4	3/11/2015	-55	15		5.8		257	8.54		_	4. Z	0	99	2 2	2 2 2 2		2 2 2	2	₹ 9 £	2 2	2 2 2	0.81	99							Not S	Sampl	ed Fo	r The	se Pa	rame	eters					
	Monitoring event	P1	7/27/2015	83	15	687.7	685.0 6.8	0.63	3.365	11.8	15.83	110	300	3,300	3.1 ND	140	N 02 02 0	36	ND 270	190	2 2 2	9 5	15 5	18	16 ND	10,000	2 2	099	1.6 B	45.5 ND	S S	0.42	3220	2430	73.1	14.4	137 DD	836 NS	Q N				
	Monitoring event	P2	1/7/2016	247	15	687.7	7.18	0.51	-115.7	17.0	10.28	Q Q	2 2	8 8	2 2				ND ND		ND S.5 J	2	2 2 2	2 2	16 ND	4,000	2 2				z z	- 0	443	787 B	2 2 2	2 2	s s	888	S				
	Monitoring event	P3	4/8/2016	339	15	687.7	7.11		1,126	33.2	6.42	73	88	450	99	28 J	222	280	2 2 2	2 :	S.1.5	2	6.1 5	5.4 J	£ 33	00009	2 2	2,200	0.46	9.2	99	0.059 0.019 J	453 552 b	102 102 102	15.8	S S	NS NS	S S S	S S				
A1-GP06-S	Monitoring event	P4	7/12/2016	434	3.23		7.22	1.18	-137.2	47.9	17.81	35	19	08 Q	99	C 69	3 2 S	1,300	2 2 2	2 :	222	99	299	2 2	4 Q	49,000	2 2	410	ND 0.25 B	4.7 ON	22	0.16	2030 B	1360 1.2 H F	9.8	S S S	S S	SN SN	y Z				
	Monitoring event	P5	10/10/2016	524	3.55	687.7	7.28	1.92	-83.5	11.4	17.64	ND	26	270 ND	9 9	2 2	2 2 2 2	070	2 2 2	2	2 2 2	2 2	2 2 2	2 2	S S	36,000	9	2,600	ND 0.23 B	4.9 ND	0.80 J	0.14	1,750 ND	1,080 ND	4.9	2 2 5		S S					
	Monitoring event	P6	1/24/2017	630	15		0.989	0.47	1.177	19.5	10.65	24	£ 5	00 Q	99	2 2	2 2 2 2	1,300	222	2	2 N 5	99	2 2 2	2 2			2 2		0.024 J			0.060 F1 ND					99	O S	2			led For ameters	
	Monitoring event	P7	4/11/2017	707	15	687.7	7.17	0.58	-90.7	33	11.6	34	52	210 6.2 J	9 9	32 J	2 2 2 2	730	2 2 2	2	2 2 2	2 2	2 2 2	2 2	2 2	23,000	2 2	2,500	0.12	12	22	0.05	574 118 Hb	769 ND	2 2		2 2	Q S	Q				
	Monitoring event	P7	7/6/2017	793	3.3		7.31		1.300		15.7	63	88 68	5 5 S	99	2 2	2 2 2 2	1,400	2 S &	9	222	9 9	2 2 2	2 2	2 Q	38,000	9		0.26	7.3	₽ ¹²		531		1.6	2 2 5	99	S S	2				
	Monitoring event	P8	10/18/2017	897	3.95	_	7.59	_	1.440	-	15.0	ND	2 2	200 2	9 9	42	S 2 2 2			2	2 2 2	2	4.4 CN	2 2	14 ND	32,000 3	2 2	_	0.048		일을	0.068	178		8.6		2 2	Q S S	ON N				
	Monitoring event	P9	1/5/2018	976	15		11.05		-196.2	₹	11.22 4.6	44	1.6 J	400 3.7 J	2.1 J ND	16 J	2 2 2 2	2 2 2	2 2 2	2	2 2 2	2 2	2 2 2	2 2	Q Q	46,000 3	2 2	2,600		15.6	$\overline{}$	0.25		515 ND	10.3	2 2 5	2 2	2 S	O N				
	Monitoring event	P10	4/10/2018	1071	1.65	_			-108.3			110	95			2 2	2222	940	ND ND	2	2 2 2	2 2	2 2 2	7.2 J	L Q	38,000 4			0.59	3.1 J		0.24 NS (110 274 H b 28	565 B	18.0	SS	S S	S S S	S Z				

					Well		Fiel	d Parame	eters								VO	Cs						Dis	solved	Gasses				w	et Chem	nistry				Q	Potential (I	ONA)
Well ID	Event / Description	Date	Elapsed Time (Days)		Water Level Measurement Top of Casing Elevation	Head Elevation		Oxidation Reduction Potential Specific Conductance		Carbon, Total Organic		1,1,2-Trichloroethane 1,1-Dichloroethane	1,1-Dichloroethene	2-Hexanone	Z-Butanone (MEK) 4-Methyl-2-pentanone	Benzene Carbon Disulfide	Chloroethane	Chloromethane	cis-1,2-Dichloroethene Dichlorodifluoromethane	Ethylbenzene Methylcyclohexane	Methylene chloride Methyl Acetate Tetrachloroethene	Toluene trans-1,2-Dichloroethene	Trichloroethene Vinyl chloride	Xylenes, Total Carbon Dioxide	Ethane	Methane	Nitrate Manganese	Ferric iron Sulfate	Suffide Nitrite	Phosphorous Ammonia) m i	Ferrous Iron	Acetic Acid	Lactic Acid n-Butyric Acid	Propionic Acid Chloride Pyruvic Acid	Dechlorina Bacteria 9 by (1)		BAVY VC R-Dase (1) VC R-Dase
				(feet)	(ft. ATOC)	(ft. AMSL)	(mg/L)	(mV) (mS/cm)	(NTUs)	(C)							(na/L)	(all all all all all all all all all all							(ng/L)						(mg/L)						(cells /	
	Monitoring event P11	7/9/2018	1161	15	2.55	685.2	3.86	-86.2	28	15.55 215 B	18	ND 250	4.1 J	Q E	ND 2	2 2	2,600	2 2	22	225	2 2 2	5.1 J ND	ND 20	ND 25,000	2	17,000	ND 0.23 B	7.4 6.5 J	- 2	0.099 B 0.1 0.059 0.025	378 H 646 B	ND 47	t S S		S S S			
	Monitoring event P12	10/19/2018	1263	15	3.62	684.1	0.55	45.8	26.9	15.0	15 3.5 J	ND 210 F1	ND - 2.5	QN S	24 GN GN	2 2 2	1,500	2 2	2 Z	Q Q	ND ND	5.1 J	QN 0.9 J	0	Q !	13,000	ND 0.12 B	3.0 ND	2 2	0.099 B	>189.81 538	QN 08	S S	SN SN	S S S			
	Monitoring event P13	1/4/2019	1340	15	0.95	6.989	0.36	-133.6	16	9.9	21 J	DN 170	2 2	2 2 5	2 2 2	2 2 2	087	2 2	9 9	99	222	99	9 9	ND 26,000	2	ON 19,000	ON 0.98	14.9	99	0.21	57.2 Hb 417 B	ND 853	SN S		S S S			
	Monitoring event P14	4/15/2019	1441	15	1.55	686.2	6.94	108.5	18.54	70.5	23 J	ND 150	2 2	2 2 2	2 2 2	2 2 2	2 2	260 560	Q Q	22	222	2 2	QN	ND 44,000	Q !	2 2	QN QN	2 2		222	2 2 2	2 2	2 2 2	2 2 2	S S S			
	Monitoring event P15	7/22/2019	1539	15	2.73	685.0	1.16	-11.8		519.0		ND 230	2 2	2 2 5	5 5 5	2 2 2	820	2 2	9 9	99	2 2 2	99	9 9	1E+05	2	ON 4,	1-10	38.6 ND	-1-1	0.023	1 1-4				89.2 ND			
	Monitoring event P16	10/14/2019	1623	15	2.00	685.7	0.7	-73.8	24.45	375,0	2 2	QN 68	2 2	2 2 2	2 2 2	2 2 2	510	S S	2 2	22	2 2 2	22	9 9	ND 87,000	2	ND 7,500	ND 0.52 B	49.9 ND	0.059	0.026	S S S	0.11 H	S S	S S S	73.7 NS			
	Monitoring event P17	1/7/2020	1708	15	2.41	685.3	1.51	-79.8	94.1	168.0	9 9	Q 8	2 2	2 2 5	999	999	092	2 2	99	99	999	99	9 9	57	1.9 J	20,000	ND 0.34	"I I	99	0				8 8 8	76.5 NS	Not Co	maled E	or Thosa
A1-GP06-S	Monitoring event P18	4/13/2020	1805	15	2.35	685.4	6.89	90.1	43	155.0	33	ND 200	2 2	2 2 2	2 2 2	2 2 2	1,100	2 2	2 2	22	222	99	QN	000'29	Q !	20,000		3.11	22	0.036	SN SS	0.34HF	SI SI	SN SN	NS 78.9		mpled Foramete	
	Monitoring event P19	10/8/2020	1983	15	2.87	684.8	1.27	-88.8	48.1	79.6	2 2	08 8	2 2	2 2 5	2 2 2	2 2 2	099	2 2	Q Q	22	222	22	Q Q	000'09	2	13,000	0.66	_		ap		0.26HF		S S S	80.6 S0.6 S0.6			
	monitoring event P20	4/2/2021	2159	15	2.00	685.7	3.48	-53	14.1	155.0	36	ND 210	2 2	2 2 2	2 2 2	2 2 2	1,000	2 2	2 Z	2 2	E 8 8	99	QN QN	ND 47,000	Q !	19,000	ND 0.46B	6.03						SN SN	NS 65.2			
	monitoring event P21	10/22/2021	2362	15	2.14	685.6	0.38	-131.8	20	13.3	2 2	ND 54	2 2	2 2 2	2 2 2	2 2 2	88 2	2 2	22	2 2	2 2 2	99	Q Q	ND 74,000	Q !	15,000	0.019 NS	65.2 2.2 J	1.6 0.040 JB	S S S	NS S73 B	ND HF	S S S	S S S	S S S			
	monitoring event P22	4/11/2022	2533	15	1.22	686.5	0.46	-138.8	42.89	38.1	2 2	ND 21 J	2 5	2 2 2	2 2 2	2 2 2	670	2 2	2 Q	2 2	2 2 2	2 2	QN QN	ND 77,000	Q.	17,000	0.037 J NS	7.4 ND	0.80 ND	S S S	NS 512	ND HF	t SZ	S S S	S S S			
	Monitoring event P23	10/6/2022	2711	15	2.69	685.0	0.63	-162.3	125	76.3 25.8 F1	2 2	₽ 5	2 2	2 2 9	2 2 2	2 2 2	840	2 2	99	99	2 2 2	99	99	33,000	2	15,000				S S S		ND HF			S S S			
	Monitoring event P24	4/7/2023	2894	15	0.69	687.0	0.24	-13.7		48.4		3 B	9 9	99	2 9 9	2 2 2	670	2 2	99	99	222	99	99	ND 46,000	9 !	Z0,000	N S	1.4 J	99	S S S	NS 445	ND HF	SSS	S S S	S S S			

					Well		Field	l Parame	eters							v	/OCs						Diss	solved	Gasses			V	Vet Chemi	stry				Q Potent	ial (DNA)
Well ID	Event / Description	Date	Elapsed Time (Days)	Total Depth		Head Elevation	$\overline{}$	Oxidation Reduction Potential Specific Conductance	Turbidity		1,1,1-Trichloroethane	1,1,2-Trichloro-1,2,2-trifluoroethane 1,1,2-Trichloroethane	1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane	2-Hexanone 2-Butanone (MEK)	4-Methyl-2-pentanone Acetone Benzene	Carbon Disulfide Chloroethane	Chloromethane	cis-1,2-Dichloroethene Dichlorodifluoromethane	Ethylbenzene Methylcyclohexane Methylene chloride	Methyl Acetate Tetrachloroethene	Toluene trans-1,2-Dichloroethene	Trichloroethene Vinyl chloride	Carbon Dioxide	Ethane	Ethene Methane	Nitrate Manganese Ferric Iron	Suffate Suffide	Nitrite Phosphorous Ammonia	0 10 1-	Ferrous Iron Iron	Acetic Acid Form ic Acid Lactic Acid	n-Butyric Acid Propionic Acid Chloride	Decidion Bacte Dehalococodides spp (1)	ria	TCE R-Dase (1) BAVI VC R-Dase (1) VC R-Dase
				(feet)	(ft. AMSL)	(ft. AMSL)	(mg/L)	(mV) (mS/cm)	(NTUs)	(7) (mg/L)	i b						(ug/L)							(ug/L)					(mg/L)					(cells/	ਵਿ
	Monitoring event BL	1 6/22/2010	-1778	15	4.10 689.4	685.3	0.57	46.2	220	NS	Q Q	2 2		2 2	999	2 2	99	2 2 2		2 2	22	9 9	2												
	Monitoring event BL	2 8/3/2010	-1736	15	5.35	683.5	4.46	-108	>500	NS/	2 2	9 9 9	2 2 2	22	999	99	99	2 2 2	222	22	22	0.88 J	2												
	Monitoring event	10/18/2017	897	15	8.13 689.4	681.2	99'0	1.040	21.4	12.9 9.6 B	QN .	2 2	2 2 2	22	999	2 2	99	2 2 2	222	2 2	22														
	Monitoring event P:	1/2/2018	973	15	9	₹						Not Sa	mpled	(well ha	ad ice fr	ozen ir	n stick u	p)																	
	Monitoring event P:	4/12/2018	1073	_	NA 689.4			₹ Z		100		9 9 9	2 2 2	99	999	99	99	999	2 S S	222	99	999	2												
	Monitoring event	7/11/2018	1163		689.4			1.019		σ.	2	9 9 9	2 2 2	99	₹ 5	22	99	2 2 2	222	99	99	999	2												
	Monitoring event P	10/19/2018	1263	15.5	10.19	679.2	1.68	-21.2	63.2			999	2 2 2	99	S 5.5	22	99	222	999	22	99	999	2												
	Monitoring event Po	1/3/2019	1339		NA 4.689.4			₹ ₹		-			2 2		999				222		99	999	2												
	Monitoring event P	4/17/2019	1443		2.40	_	2.91	45.0		7.1	2		G Q Q	22	999	2 2	99	222	2 2 2	22	99	222	2								_				
A1-GP09-S	Monitoring event P8	7/22/2019	1539	_	6.49	682.9	.,	1.9			_	9 9 9	2 2 2	10 1	999	22	99	229	222	99	99	999	2					Not Sa	ampled f	For The	se Para	meters			
	Monitoring event	10/15/2019	1624		3.30			-67.2		35.	_		2 2 2	1 1 1	5 4 E		99!		222																
	Monitoring event P1		1708		6 2.88 .4 689.4	9 686.5		1 -94	36.1	3 20.0		2 2 5	2 2 2	22	23 J	8.2 ND	99	222		22	22	222	2												
	Monitoring event P1		1805		.2 2.46 9.4 689.4			17 1.374		13.8 6.71 14.0 47.3						2 2							-												
	event P1		2158	_	2.25 11.2 689.4 689.4			-74.7 -68.4 0.655 1.117			_			1 1 1			99				1 1														
	event Monitoring D4		2361		2.54 2.3 689.4 689			-81.4 <mark>-7-</mark>	44.4 55		_		222						222			222	7												
	Monitoring P1		2535		2.15 2. 689.4 68	7.3		-96.3 -8 1.073 0.9		4 O	_	_					\vdash																		
	Monitoring P1		2710	15				-56.6 -9 0.660 1.0									99	\rightarrow			-														
	Monitoring event P1	7 4/12/2023	2899	_	2.50 3 689.4 68			-98.9 0.987	51.9				_	+		_	99	_				999													

						Well		Fi	ield Par	ameters								V	OCs .						Dis	solved G	isses				Wet	t Chemis	try					Q Poter	itial (DNA)	
Well ID	Event Descript		Date	Elapsed Time (Days)	Total Depth	Water Level Measurement Top of Casing Elevation	Head Elevation	pH Dissolved Oxygen	Oxidation Reduction Potential	Specific Conductance Turbidity	Temperature	Carbon, Total Organic	1,1,1-Trichloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane	1,1-Dichloroethane	1,2-Dichloroethane	2-Butanone (MEK)	Acetone Benzene	Carbon Disulfide Chloroethane	Chloroform Chloromethane	cis-1,2-Dichloroethene Dichlorodifluoromethane	Ethylbenzene Methylcyclohexane Methylone chloride	Methyl Acetate Tetrachloroethene	Toluene trans-1,2-Dichloroethene	Trichloroethene Vinyl chloride	Xylenes, Total Carbon Dioxide	Ethane Ethene	Methane	Nitrate Manganese	Sulfate	Nitrite Phosphorous	Ammonia	BOD Total Alkalinity	Ferrous Iron Iron	Acetic Acid	Lactic Acid n-Butyric Acid	Propionic Acid Chloride Personal Acid	Dechlor Bact		TCE R-Dase (1) BAVY VC R-Dase (1) BAVY VC R-Dase (1)	VC K-Dase
					(feet)	(ft. ATOC)	(ft. AMSL)	(SU)	(v m)	(mS/cm)	(0,0)	(mg/L)							(ng/L)							(ng/L)						(mg/L)							ar (a)	
	Monitoring event	BL1	6/21/2010	-1779	15	2.7	686.4	6.57	1.9	1.171	17.45	SN	55,000 1400 J	43,000	25 - 5	96	S Q Q	0.87 J ND	7.3	1.2 J	2 J ND	ND 1.2.1	8 5	92	16															Ī
	Monitoring event	BL2	8/3/2010	-1736	15	3.8	685.3	6.64	-58.6	1.036	20.32	SN	1,900 J	48,000	S Q C	2 2 2	2 2 2		22	2 2 5	2 2 2	2 2 2	2 2	22	2					No	ot Sam	npled F	or The	se Pa	ramet	ers				
	Monitoring event	BL3	11/5/2014	-181	15	4.3	684.8	6.9	-68.2	1.007 NA	12.65	SN					Sample	ed For	r These	Parar	neters				008'6	S S	91	0.042	8.3 NS	2 S	0.033	388	0.17 0.8	S S	SN SN	SZ Z			mpled For arameters	
	Monitoring event	BL4	3/11/2015	-55	15	1.8	687.3	1.84	49.8	1.096	7.56	2.7	را اے	440	1.6 J	2 2 2	2 2 2	Q ε	2 2	4.4 DN	S S	QN CN	2 2	6.6 ND	Q	'	•						or Tho	oo Do	ramat	toro	•			
	Monitoring event	P1	6/12/2015	38			NS (G	rab Sa	ample)		SN	790	15,000	0 P	2 9 9	2 2 2	99	99	06 D	999	9 9 9	99	99	2					INC	ot Sam	npled F	or rne:	se Pa	ramei	ers				
	Monitoring event	P2	7/27/2015	83	15	2.29	8.989	6.33	13.4	3.454	15.9	1570	430	2,900	9.6 J	380	950 ND	99	16 J	S 원	9 9 8	200	99	98 ND	39,000	9 Q	91	22 S	2 2	ND 0.044	0.039	>3,531.33 2650	4.6	15.2	131	NS NS	2			
	Monitoring event	P3	1/7/2016	247	15	1.85	687.3	7.12	-50.8	1.330	9.97	37.7B	290	4,300	2 2	2 2 2	2 2 2	ND 250	22	2 Q	999	2 2 2	2 2	22	009'9	2 2	2,000	2.4 2.4	52 J ND	0.14	0.082	154 734 B	0.6 6.6	2 2	S S	S S S	2			
A1-GP10-S	Monitoring event	P4	4/8/2016	339	15	3.65	685.5	6.75	-33.6	1.791	19.36	303	140	29,000	72	2 2 2	999	ND 6,700	99	ND CN	999	222	99	Q Q	180,000	Q Q	150	1.6 B	0.66 J	ND 0.034	ND 761	1040	0.35 HF 4.4	2 2 2	S S	S S S	2			
	Monitoring event	P5	7/11/2016	433	15	3.65	685.5	6.75	-33.6	1.791	19.36	303	140	29,000	22 ON	2 2 2	2 2 2	ND 6,700	99	ND CN	999	222	99	Q Q	180,000	Q Q	150	1.6 B	0.66 J	ND 0.034	ND 761		ö	S S S	SN SN	S S S	2			
	Monitoring event	P6	10/7/2016	521	15	3.65	685.5	6.75	-33.6	1.791	19.36	303	140	29,000	72	2 2 2	2 2 2	00Z,8	99	22	999	2 2 2	99	99	180,000	9 9	150	1.6 B	0.66 J	ND 0.034	2 6	1040	0.35 HF 4.4	S S S	SN SN	SN SN			npled For arameters	
	Monitoring event	P7	1/23/2017	629	15	1.75	687.4	7.82	-62.2	0.493	11.09	39.9	2 2 2	288	2 2	2 2 2	2 2 2	ND 4,100	99	2 2 9	999	2 2 2	2 2	9 9	ND 74,000	2 2	Q	1.5	11.5 ND	ND 0.036	ND 252	111 H b 468	2.6	S S S	S S	S S S	2			
	Monitoring event	P8	4/10/2017	706	15	3.65	685.5	6.75	-33.6	1.791	19.36	303	140	1 28	22 CN	- - -	999	ON 6,700	99	22	222	299	99	22	180,000	2 2	150	1.6 B	0.66 J	ND 0.034	ND 761	1040	0.35 HF 4.4	S S S	SN SN	S S S	2			
	Monitoring event	P9	7/6/2017	793	12	2.65	686.5	3.67	-79	1.520	15.7	185		9,600	8 9 9		2 2 2	2	99		999	2 2 2	2 2	99	O 8	9 9	530	G 5.	2 2	0.077	ND 218		0 P P P P P P P P P P P P P P P P P P P	S S	SN SN	S S S	2			
	Monitoring event	P10	10/17/2017	896	15	3.65	685.5	6.75	<u>ب</u>	1.791	19.36	303					99		99				22	Q Q	9	Q Q	1	1.6 B				1040	0.35 HF 4.4			888				
	Monitoring event	P11	1/4/2018	975	15	2.16	6.989	9.6	-124.5	0.459 NA	9.75	16.5	30 5	200	5 5	2 2	2 2 2	3,300	99	2 2 9	999	2 2 2	2 2	₽ 8	ND 52,000	9 9	2,300	O.60	12.7 ND	ON 0.39	0.62	13.6	3.3	NS NS	NS NS	15.3 NS	2			

						Well		Field P	aramet	ers							,	VOCs						Di	ssolved	Gasses	5				Wet	Chemis	stry					a	Potentia	ıl (DNA)	
Well ID	Event Descript		Date	Elapsed Time (Days)	Total Depth Total Depth Water Level Measurement	L) Top of Casing Elevation	됩	Dissolved Oxygen Oxidation Reduction Potential	Specific Conductance	Turbidity Temperature	Ö,	1,1,2-Trichloro-1,2,2-trifluoroethane	1,1,2-Trichloroethane	1,1-Dichloro ethene 1,2-Dichloro ethane	2-Butanone (MEK)	4-metry1-z-pentanone Acetone Benzene	Carbon Disulfide	5 5 5	cis-1,2-Dichloroethene Dichlorodifluoromethane	Ethylbenzene Methylcyclohexane	Methylene chloride Methyl Acetate	Toluene trans-1.2-Dichloroethene	Trichloroethene Vinyl chloride	Xylenes, Total Carbon Dioxide	Ethane	Ethene Methane	Nitrate	Manganese Ferric Iron	Suffate Suffide	Nitrite Phosphorous	Ammonia COD	ш	Ferrous Iron Iron	Acetic Acid Formic Acid	Lactic Acid n-Butyric Acid	Propionic Acid		Dechloring Bacteri	ia S		VC R-Dase
					(feet)	(ft. AMSL)	(rt. AMSL)	(mg/L)	(mS/cm)	(NTUs)	(mg/L)							(ug/L)							(na/c)							(mg/L)							(cells /	Î	
	Monitoring event	P12	4/10/2018	1071	15 49		_	5.64	_	AN 25	5	140	3,900	18 1	2 2 2	2 2 2	ND 400	ND ND ON	98	99	999	2 2 2	260 ND	ND 80,000	Q	ON 4.900		3.5	7.7 ND	0.1	ND 503 B	L 4	3.5	SN SN		1 1					
	Monitoring event	P13	7/9/2018	1161	15	689.1	6.76	2.09	1.178	40.3	87.3	230 20 20 20 20 20 20 20 20 20 20 20 20 20	ND 8.100	51 J	2 2 2	2 2 2	ND ND	ND ND	9 9	99	999	9 9	320 R	OND 98,000	2	QN 190	2	1.7	99		304 B	NS 642 B	0.098	8 8	8 8	8 8	S S				
	Monitoring event	P14	10/19/2018	1263	15	689.1	6.81	3.08	0.955	8.02	18.9	₽ Q	ND 1,200	22	2 2 2	2 2 2	ND 02.6	QN QN	Q Q	ND 74 J	222	2 2 2	99	95,000	Q	ND 250		0.80 B 5.6	23.6 ND	0.0073 JB	115 D	57.6 417	ND 5.6	SN SN	SN SN	S S	S S				
	Monitoring event	P15	1/4/2019	1340	15	689.1	9.6	5.42	0.459	17.7	12.7	130	ND 4.400	. P □	2 2 2	2 2 2	ON O	ON ON	2 2	99	999	2 2 2	£ 26 €	ND 120,000	Ð	ON 4.800			2.1 J	0.42 0.	48.2	34.2 Hb 397 B	₽ s	8 8							
	Monitoring event	P16	4/15/2019	1441	15	689.1	6.29	5.29	0.712	11.45	33	2 2	ND 1.200	22	2 2 2	2 2 2	ND 9300 F	ND QN	Q Q	22	999	2 2 2	2 2	ND 72,000	Q	ND 5300	QN	0.51 B 1.7		NS ND				SN SN	SN SN	SN	SN SN				
	Monitoring event	P17	7/22/2019	1539	15	689.1	6.12	3.17	2.030	774.86	350	006 Q	ND 14,000	130 J 78 J	2 2 2	2 2 2		9 9	9 9	99	999	2 2 2	22	ND 310,000	9	Q 240	0.020 J	1.7 B 13.6	99	99	9 9		13.6	1 1	SN SN						
	Monitoring event	P18	10/14/2019	1623	1.68	689.1	6.02	3.11	1.648	20.17	529			310 J ND	2 2 2	2 2 2	ND 47000 F	ND ND ND	Q Q	22	ND F1*	2 2 2	99	_		ND 2.600			9 9	0.049 J NS	0.041 F1 NS	NS 749	0.096 J HF 34.4	SN SN	SN SN	NS	149.0 NS				
A1-GP10-S	Monitoring event	P19	1/7/2020	1708	109	689.1	6.65	3.42	1.770	57	307	08/ Q	ND 20.000	480 J ND	2 2 2	2 2 2	ND 24 000	1 - -	Q Q	99	999	2 2 2	99	ND 240,000	Ð	ON 5.000			99			NS 635	ND HF 9.8	SN SN	SN SN	S S	S S	The		oled For ameters	
	Monitoring event	P20	4/13/2020	1805	15	689.1	6.92	10.5	1.748	26	180	250	ND 15,000	440	2 2 2	2 2 2	19 000		Q Q	22	999	2 2 2	2 2	ND 120,000	Q	ND 4.500	0.034J	3.7	Q Q		2	5	ш	s s	S S	NS S	146.0 NS				
	Monitoring event	P21	10/13/2020	1988	3.38	689.1	6.27	2.31	1.220	25.3	284	1,300	ND 15,000	270 ND	2 2 2	2 2 2	ND 22 000	ND QN	170J ND	22	999	2 2 2	99	ND 130,000		ND 000	2	1.80	8.5J	Q S	0.038B NS	NS 774	ND HF 41	s s							
	Monitoring event	P22	4/1/2021	2158	151	689.1	6.65	8.7	0.846	16	71.1	490	3.700	200 ND	222	2 2 2	ND ND	ON ON	Q Q	99	999	2 2 2	99	93,000		ND 7.600	0.12	2.4B 4.9	99				ND HF 4.9	S S	SN SN	NS	165.0 NS				
	Monitoring event	P23	10/27/2021	2367	15	689.1	6.85	4.99	0.001	60.9	41.6	2 2	000 1,000	22	2 2 2	2 2 2	ND S	ON ON	Q Q	99	999	2 2 2	99	ND 120,000		10.000	QN Q	NS 12.5	2.2 ND	S S	SN SN	NS 563	0.23 HF 12.7	S S							
	Monitoring event	P24	4/8/2022	2530	15	689.1	6.72	3.3	1.905	50.02			ND 2.000	99	2 2 2	2 2 2		2	Q Q		2 2 2	2 2 2	2 2	ND 84,000		1,300		NS 51.2	1.9 J	NS	SN SN		ш	SN SN	SN SN	SN S	SN SN				
	Monitoring event	P25	10/10/2022	2715	15	689.1	6.50	1.20	1.710	14.0	9.06	2 2	ND 230 J	99	2 2 2	2 2 2		9 9	Q Q	99	9 9 9	2 2 2	99	140,000		26 J	2	9.5	0.4 ND	NSN	S S	NS 629	ND HF 9.5	S S	SN SN	SN	SN SN				
	Monitoring event	P26	4/11/2023	2898	15	689.1	7.11	5.18	1.063	11.8	70.07	2 2	ND 460	99	2 2 2	2 2 2	QN o	ON ON	9 9	99	999	99	99	ON 87,000		10.000	0.025 J	SN SN	1.6 J	NS NS	SN SN	NS 487	ND HF	SN SN	SN SN	SN	S S				

						Well		Fie	ld Para	meters	s								VOCs	;						D	issolve	d Gasse	98				Wet Che	mistry					Q Pote	ential (DNA)	
Well ID	Event Descripti		Date	Elapsed Time (Days)	Total Depth Water I avai Measurement	SL) Top of Casing Elevation			ŏ	m) Specific Conductance Turbidity	Temperature	Carbon, Total Organic	1,1,2-Trichloro-1,2,2-trifluoroethane	1,1,2-Trichloroethane	1,1-Dichloroethene	2-Hexanone 2-Butanone (MEK)	4-Methyl-2-pentanone Acetone	Benzene Carbon Disulfide	Chloro	Cis-1,2-Dichloroethene	Dichlorodifluoromethane Ethylbenzene	Methylcyclohexane Methylene chloride	Methyl Acetate Tetrachloroethene	Toluene trans-1,2-Dichloroethene	Trichloroethene Vinyl chloride	Xylenes, Total Carbon Dloxide	ũ	Ethene Methane	Nitrate	Manganese Ferric Iron	Suffate Suffide	Nitrite Phosphorous Ammonia	ОШ	Total Alkalinity Ferrous Iron	Iron Acetic Acid	Formic Acid Lactic Acid	n-sutyric Acid Propionic Acid Chloride	Bac	rinating teria (1) dds sapiococcordes (1)	TCE R-Dase (1) BAVI VC R-Dase (1)	VC R-Dase
					(feet)	(ft. AMSL)		(SU) (mg/L)			(°)	E)							(ng/L)									(ng/c)					(mg/L)							(cells /	
	Monitoring event	BL1	6/21/2010	-1779	5 5			1.3	-59.5	1.040	17.4		9	2 2	2 2 2	- - -	-	5.1 5	99	99	28	99	99	₽ 13.1	<u>5</u> 8 €	2															
	Monitoring event	BL2	8/3/2010	-1736	15	3.08	686.4	6.95	-125	1.377	22.05	8 2	2 2		2 2 2	2 2	ND 5.2 J	5.5 ND	0.62 J ND	0.74 J 0.88 J		2 2	9 9			2															
	Monitoring event	P1	10/17/2017	896	15	2.61 689.4	686.8	7.26	-229	0.900	16.4	6.3 B	2 2	N c	S S	2 2	9 9	1.9 ON		3.2	22	밀밀	2 2	0.87 J	0.70 7.9	Q.															
	Monitoring event	P2	1/4/2018	975	15	2.95	686.5	10.01	-148.9	0.464	9.11	4.8 B			2 2 2	2 2	S 55	1.5 0.26 J	99	99	2 2	99	99		5 N 6.4																
	Monitoring event	P3	4/10/2018	1071	15	0.82		§ §		₹ ₹		5.1	9 9	2 2	واوا	22	9 9	9 9	22	99	Q Q	99	일 일	22	2 2 2	Q.															
	Monitoring event	P4	7/9/2018	1161		5.3		3.44		0.793	19.99	4.9 B	2 2	QN 8		Q 7	2 P	09. QN	DN D	22	Q Q	Q Q	2 2	99	5 N 5	Q.															
	Monitoring event	P5	10/23/2018	1267	15			1.38	52.8	0.537	. 0			ON -	2 2 2	22	₽ 2 2	.72 J O	9 9	99	9 9	ND .51 J	99	99	Q Q 0	2															
	Monitoring event	P6	1/2/2019	1338		689.4		7.84			9.3	6:1	2 2	ND 44		2 2	99	9 Q	99	99	Q Q		9 9	99	2 2 2	Q.															
	Monitoring event	P7	4/15/2019	1441		7.63 689.4		5.27	217.9		7.70		2 2	ND -		2 2	22	2 2	222	22	Q Q		9 9	22	1. N S	Q															
A1-GP14-S	Monitoring	P8	7/23/2019	1540		2.83 689.4 6		3.86		0.754 0	_	3.6			± 2 2						9 9				5 B 5.							Not \$	Sample	d For	These	Param	neters				
	event Monitoring	P9	10/15/2019	1624	15	-	_	7.25 8	-65.1 12		13.90 18	5.6		-			ON 1 6.7 J	2 5 0 0 0 0 0 0			Q Q					Q															
	event Monitoring	P10	1/7/2020	1708		2.3 2 689.4 68		7.4 7.			7.8 13		2 2	9 -	99	99	6 9 6	990 0.1	0.91 J						5.3 ND 5.3																
	Monitoring event	P11	4/13/2020	1805		1.// 689.4 68	687.6 68	7.31	6.6 4	30 0 1	0 0		2 2	2 2	2 2 2	2 2	99	2.1 ND 0.	99	99	22	99	99	99	2 2 2	2															
	Monitoring	P12	10/8/2020	1983		689.4 6		1.06		53	17.2 1			9 9	2 2 2	99	5 4	.6. D	747. ND	99	9 9	9 9	9 9	99	5 N S	9															
	Monitoring	P13	4/1/2021	2158	5 3			7.16 7			9.08		2 2	99	2 2 2		N 0.4.0		99	99		2.7	99	99	8 2 S	_															
	Monitoring	P14	10/25/2021	2365	15			7.42 7 6.75 9		0.790 0.7	0	7.6		99	999	-		-	99		99			99	999																
	Monitoring	P15	4/12/2022	2534	15	_		7.43 7		0.524 0.					999	99	99	27			99				222																
	Monitoring	P16	10/10/2022	2715		1.89 1		7.16 7 0.38 7	-79.4 -6	0.580 0.	9 6				999	99	99	99	22						999																
	Monitoring	P17	4/11/2023	2898		2./ 7		7.46 7	-12.6 -7	0.322 0.			_		2 2 2		-	\vdash	-		-		-	\vdash	2 2 2	\perp															
	event				1, 1	7 89	88	7.	7	0 7	- =	m 2	- -		- - -	121"	121		2 2			22	2 2		- - -	-															

						Well		F	ield Pa	ırametei	s		VOCs Dissolved Gasses	Wet Chemistry	Q Po	otential (DNA)											
Well ID	Event / Descriptio		Date	Elapsed Time (Days)		Top of Casir) pH Dissolved Oxygen		m) Specific Conductance	— <u> </u>	L) Carbon, Total Organic	1.1-Distillor contrains 1.1-Distillor contrains 2-Newamone 2-Newamone 2-Newamone 2-Newamone 2-Newamone 2-Newamone 2-Newamone Activate Activate Carbon Disulfide Carbon Disulfide Carbon Disulfide Carbon Disulfide Carbon Disulfide Carbon Disulfide Dichlorociflumorenthane Chilorociflumorenthane Carbon Dioxide Ethane Managenee Carbon Dioxide Ethane Managenee Ferric icon Narate Managenee Ferric icon Sulfate Sulfate Sulfate	Nitrite Phrosphorous Ammonia COD BOD I, Bod Ferrous fron Ironal Akalinity Ferrous fron Latic Add Latic Add Latic Add Latic Add Chloride Pyruvic Acid Pyruvic Acid	Dechlorinatir Bacteria Departococcoldes spb (1)	TCE R.Dase (1) BAVI VC R.Dase (1)											
					_	(ft. ATOC)		(SU)		-	(NTUS)			B.		18) TE											
	event	BL1 6	5/17/2010	-1783	15		687.2	98.98	_		12.9																
	event	BL3 8	8/2/2010	-1737		4.2	683.5	6.97	-21.2		20.7		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5														
	event	BL4 3	/11/2015	-55	12	- 4	686.5	6.85			6.37	2.2	Not Sampled For These Parameters														
	Monitoring event	P1 7	/29/2015	85	15	3.2	684.5	7.61			22	3.6 B	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5														
	Monitoring event	P2 4	4/8/2016	339	15	0.1		7.14	3.5		8.46	2.9	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2														
	Monitoring event	P3 7	/11/2016	433	5 5	6.11		7.3	14.2		18.69	3.4	5 6 5														
	Monitoring event	P4 1	0/7/2016	521	12	11	676.7	3.2	139	0.675	15.5	2.7		10													
	Monitoring event	P5 1	/23/2017	629	12	NA 687.7	ΑĀ	9.66	75.2	0.687	9.6	5.2															
	Monitoring event	P6 4	/12/2017	708	15	0.35	687.3	7.48	50.6	0.494	11.4	3.2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2														
	Monitoring event	P7 7	7/6/2017	793	15	4.35	683.3	7.64	-61		17.5	2.2															
A1-GP15-S	Monitoring event	P8 10	0/17/2017	896	15	6.4	681.3	3.95	-220		13.3	3.4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Not Sampled For These Parameters													
	Monitoring event	P9 1	1/2/2018	973	12		¥						(well could not be located under snow)														
	Monitoring event	P10 4	/10/2018	1071	12	h	685.4	7.2	51.8	0.318	7.7	4.7	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	State Stat													
	Monitoring event	P11 7	7/9/2018	1161	15	4.25		7.15	-92.8		15.6	2.3															
	Monitoring event	P12 10	0/22/2018	1266		8.66		7.62			38.2	2.9															
	Monitoring	P13 1	1/2/2019	1338		9.0		7.13	_		ω		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2														
		P14 4	/15/2019	1441	15	0.7	687.0	6.82		12	7.16	7.3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2														
	Manitoring	P15 7	/25/2019	1542		4 687.7 6		7.5			16.1	1.9	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2														
	Monitoring	P16 10	0/14/2019	1623	15	5 687.7 6		7.06			13.7			Q Q													
	Monitoring	P17 1	1/7/2020	1708	15			7.5 7	_	0.682 0.			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q													
	event				ĽĽ.	- %	1 %	ي	ري ا	0		14															

					Well			Field Pa	aramet	ers								V	OCs							Diss	olved C	Sasses					Wet C	hemist	try				Q Po	tential (DNA)	
Well ID	Event / Description	Date	Elapsed Time (Days)	Total Depth	Water Level Measurement Top of Casing Elevation	Head Eleval	Н	Dissolved Oxygen Oxidation Reduction Potential	Specific Conductance	Turbidity	Carbon, Total Organic	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane 1,1-Dichloroethene	1,2-Dichloroethane 2-Hexanone	2-Butanone (MEK) 4-Methyl-2-pentanone	Acetone Benzene	Carbon Disulfide Chloroethane	Chloroform Chloromethane	cis-1,2-Dichloroethene Dichlorodifluoromethane	Ethylbenzene Methylcyclohexane	Methylene chloride Methyl Acetate	Tetrachloroethene	Toluene trans-1,2-Dichloroethene	Trichloroethene Vinyl chloride	Carbon Dioxide	Ethane	Methane	Nitrate Manganese	Ferric Iron Sulfate	Suffide	Phosphorous	COD	Total Alkalinity	Ferrous Iron Iron	Acetic Acid Formic Acid	Lactic Acid n-Butyric Acid	Propionic Acid Chloride	Dehalococcoides spp (1)	TCER-Dase (1)	BAV1 VC R-Dase (1)	VC R-Dase
				(feet)	(ft. ATOC)		(SU)	(mg/L)	(mS/cm)	(NTUs)	(mg/L)								(ug/L)								(ug/L)							(mg/L)						(cells /		
	Monitoring event P18	4/13/2020	1805	15	7 2 2 2	0.789	6.89	2.51	0.670	¥ K	3.6	2 2	2 2	9 9	99	2 2	2 2 2	99	99	99	99	99	2 2	2 2 5	2 2 2	2																
	Monitoring event P19	10/8/2020	1983	15	11.31		7.02	10.4	10		3.2	2 2	2 2	9 9	9 9	9 9	2 2 2	99	9 9	99	99	99	2 2	2 2 9	2 2 2	2																
	Monitoring event P20	4/1/2021	2158	15	0.2		7.44	5.4		19.4	3.0	2 2	2 2	0.52J ND	9 9	2 2	2 P	9 9	2 2	2 2	22	2 2	2 2		2 2 2	2																
A1-GP15-S	Monitoring event P21	10/20/2021	2360	15	0.98		7.17	2.3	9.0		3.0	2 2	2 2	9 9	9 9	2 2	2 2	9 9	9 9	9 9	22	2 2	2 2		2.4	Ž						Not	Samp	led Fo	or The	ese Pa	arame	eters				
	Monitoring event P22	4/11/2022	2533	15	0.52	687.2	7.16	0.35	0	- ,	3.2	2	2 2	9	99	2 2	3.8 J	2 2	9 9	9 9	22	2 2	2 2	2 2 5	2 2 2	₹																
	Monitoring event P23	10/6/2022	2711		2.27		6.99	0.92	101	52.3	2 2	2 2	9	9 9	9 9	2 2	2 2	9 9	9 9	9 9	22	99	9 9	2 2 2	2 2 2	Ž																
	Monitoring event P24	4/11/2023	2898	12	1.1	9.989	7.3	3.74	0.718	20.4	2.7	2 2	2 2	99	99	9 9	99	99	99	99	99	99	2 2	2 2 9	2 2 2	2																

					Well		Field	Param	eters								voc	s						Di	ssolved	Gasses	s			w	et Chem	istry				QP	otential (I	ONA)
Well ID	Event / Description	Date	Elapsed Time (Days)			Head Elevation	Dissolved Oxygen			Carbon, Total Organic	1,1,1-Trichloroethane	1,1,2-Trichloro-1,2,2-trifluoroethane 1,1,2-Trichloroethane 1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane 2-Hexanone	2-Butanone (MEK) 4-Methyl-2-pentanone	Acetone Benzene Carbon Disulfide	5 5 5	Chloromethane cis-1,2-Dichloroethene	Dichlorodifluoromethane Ethylbenzene	Methylcyclohexane Methylene chloride	Methyl Acetate Tetrachloroethene	Toluene trans-1,2-Dichloroethene	Trichlor oethene Vinyl chloride	Xylenes, Total Carbon Dioxide	Ethane	Ethene Methane	Nitrate	Manganese Ferric iron Sulfate	Sulfide Nitrite	Phosphorous Ammonia	Э Ш Г	Ferrous Iron Iron	Acetic Acid Formic Acid	Lactic Acid n-Butyric Acid Propionic Acid		Dehalococcoides spp (1)	TCER-Dase (1)	BAVI VC R-Dase (1) VC R-Dase
				(feet)	(ft. ATOC)	(ft. AMSL)	(mg/L)	(mS/cm)	(NTUs)	("C)							(ug/L)								(nat)	}					(mg/L)						(cells / mL)	
	Monitoring event BL1	6/17/2010	-1783	15	3 689.9	686.9	6.63	-39.4		12.84 NS	QN	2 2 2	2 2		2 2	222	2 2 2	UND 19	QN QN	Q Q	Q Q	ND	9 Q	ND														
	Monitoring BL2	8/2/2010	-1737	12	5.55	684.3	0.97	-52.2	28.2	20.52 NS	2	2 2 2	2		2 2		2 2 2	Q 69	Q Q	2 2	22	Q Q	ND 5 J	2														
	Monitoring P1	10/17/2017	896	15	4.17	685.7	0.29	-302	14.3	12.8 11.7 B	2	₩ ₩ 1.77.0	2 9	2 2 9	2 2	2 2 2	2 2 2	9 ₽ ₽	9 9	99	99	ND 0.64 J	UN 4:1	2														
	Monitoring event P2	1/2/2018	973	12	- 6	≨				,		Not Sar																										
	Monitoring event P3	4/9/2018	1070	12	NA 689.9	¥ ×	₹	₹ ₹	. ₹	17.2 B	2	2 2 2	2	2 2 2	2 2	2 2 2	2 2 2	2 2	Q Q	22	9 9	Q Q	2 Q	Q.														
	Monitoring event P4	7/10/2018	1162	15	6.35	683.5	0.97	1.101	48.2	9.8		2	2 9	2 2 9	2 2	E 8 8	999	₽ 2 2 2 2	9 9	99	99	9 9	3.0 B	9														
	Monitoring event P5	10/2/2018	1246		4.37	685.5		-5.6		13.8	2	ON ON ON		2 2 2	2 2	2505	2 2 2	2 P E	Q Q	ND 2.5	99	Q Q	2 2	Q.														
	Monitoring event P6	1/3/2019	1339		2.8	687.1		-28.2		6.8		999				999		_	99	99	99	99	99	9														
	Monitoring event P7	4/17/2019	1443	14.28	2.81	1.789		42.8		19.8	Q.	2 2 2	2 2	2 2 5	2 2	222	2 2 2	US 1.9.1	Q Q	9 9	99	Q Q	22	Q Q														
A1-GP16-S	Monitoring event P8	7/26/2019	1543		6.04	683.8	9.03	0.978		9.3 ND	Q.	2 2 2	2 9	2 2 5	2 2	2 2 2	2 2 2				99	9 Q	9 9	Q						Not Sa	mpled	For The	ese Pai	rameter	s			
	Monitoring event P9	10/15/2019	1624		3.7	686.2	0.18	44.5	_	13.4	2	999	2 9	2 2 9	2 2 !	222	2 2 2	2 2 2	99	99	99		99	9														
	Monitoring event P10	1/7/2020	1708	12	2.74	6.96		42.9	9.11	5.9		2 2 2	2 9	2 2 5	2 2	2 2 2	2 2 2	2 2	Q Q	22	22	Q Q	22	2														
	Monitoring event P11	4/15/2020	1807		2.79	687.1	1.18	1.049	28.4	28.8	2	2 2 2	2	2 2 2	2 2	2 2 2							22															
	Monitoring event P12	10/8/2020	1983	12	5	684.9	0.88	-66.7	44.2	13.1	2	2 2 2	2	2 2 2	2 2	2 2 2	2 2 2	S S 5	Q Q	9 9	22	Q Q	2 2	Q.														
	Monitoring event P13	4/1/2021	2158		2.77	687.1		36.5	5.21	21.3	_			_	_						_																	
	Monitoring event P14	10/25/2021	2365		2.65	687.3		-50.6		13.1					_	2 2 2																						
	Monitoring event P15	4/11/2022	2533	12		1 687.2		-62.9	17.2	19.7	_	2 2 2	-	_	_		_				_		2 2															
	Monitoring event P16	10/5/2022	2710		3.49	6 78		-1.1		14.3	į	999		2 2 9	22	222	999		99																			
	Monitoring event P17	4/6/2023	2893	12	2.7	687.2	0.18	6.6-	61.8	23.2	2	999				2 2 2	999	2 2	99	99	99	99	99	2														

					Well		Field P	aramet	ers								VOCs							Dis	solved (Gasses					Wet Ch	emistry					QP	otential (DN	NA)
Well ID	Event / Description	n Date	Elapsec Time (Days)	asn		(ft. AMSL) Treat Levanori	(mg/L) Dissolved Oxygen (mV) Oxidation Reduction Potential	(mS/cm) Specific Conductance	(NTUs) Turbidity (*C) Temperature	(mg/L) Carbon, Total Organic	1,1,1-Trichloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane	1,1,2-Trichloroethane	1,1-Dichloroethene	2-Hexanone 2-Butanone (MEK)	4-Methyl-2-pentanone Acetone	Benzene Carbon Disulfide	(ug/L) Chloroform	cis-1,2-Dichloroethene	Dichlorodinuorometriane Ethylbenzene	Methylcyclohexane Methylene chloride	Methyl Acetate Tetrachloroethene	Toluene trans-1,2-Dichloroethene	Trichloroethene Vinyl chloride	Xylenes, Total Carbon Dioxide	Ethane (ug/L) Frhone		Nitrate	Ferric Iron Sulfate	Suffide	Phosphorous Ammonia	O m	(mg/L) Total Alkalinity Ferrous Iron	Iron Acetic Acid	Formic Acid Lactic Acid	n-Butyric Acid Propionic Acid Chloride	Acid	Dehalococcoides spp (1)	Function	BAVI VC R-Dase (1) VC R-Dase
				$\overline{}$					2	1 5							2								=							5				<u> </u>		<u> </u>	
	Monitoring event E	BL1 6/18/201	-1782	18 14 7	690.4	6.95	6.28	0.737	30	SN	9 9	22	22	99	99	999	222	2 2 2	2 2 9	2 2 2	99	99	99	2						Not S	Sampl	ed For	These	Parar	meters				
	Monitoring event	BL2 8/2/2010	-1737	15	690.4	7.12	3.36	0.677	5.1		2 2	22	22	2 2	2 2	999	2 2 2	2 2	2 2 2	2 2 2	2 2	2 2	99	2							Ċ								
	Monitoring event	3L3 11/5/201	4 -181	18	690.4	7.3	3.11	0.587	NS 12.36	NS				N	ot Sam	pled Fo	or The	se Pai	ramet	ers				8,200	S 5	260 260	ND 2.3	121	SN ON	0.65 0.18 B	2 2	359 B ND HF	121 NS	S S	S S S	SS		Sampled e Parame	
	Monitoring event	3/11/201	5 -55	18	_		1.93	0.699	11	1.0	2 2	9 9	2 2	9 9	2 2	222		2 2 2	2 2 2	2 2 2	99	9 9	99									ed For							
	Manitoring	P1 7/27/201	5 83	18			0.89		22.9	829 B	2 2	99	22	130 N	ND 140			2 m 2		2 2 2	22		99	17,000	Q S	250 520	ND 0.83	7.8 ND	S S	1.2	2440	2.1	329	S S	111 NS	S S			
	Monitoring	P2 1/7/2016	247	18			NA 48.2	1,,	A 24	1 82	2 2		22					-	++		+					UN 1,800			99			775 B 1	2 4S	လို လို	S S S	Š			
	event	P3 4/8/2016					1.41	-	23 28 28 8	, .			Q Q							+		+	22			1,100 1,1	ND 7	1 1	1 1	0.41 0.0		1. 1			SN SN SN				
	event	F3 4/6/2010	339					,	88									-	++		+						1 1	m Z	ZZ	0 Z	B 14	99 Z							
A1-GP18-S	Monitoring event	P4 7/8/2016	430	18	690.4	883.3 ₹	1.47	1.05	>1000	20.5	2 2	99	22	8 8	P E	222	2 2 2	2 2 2	22	222	22	22	22	99		910 100 100 100 100 100 100 100 100 100	ON 0.39	19.3 ON	22	2.0 6	41.7	0 (19.4 NS	88	888	S			
	Monitoring event	P5 10/7/201	521	8 6	690.4	7.05	6.46	1.414	69	8.9	2 2	2 2	2 2	ND 4.2 J	ND 5.3 J	222		2 2	2 2 2		2 2	2 2	99	000'08	2 2	2,400	ND 0.73 B	32.7 1.8 J	2.8 ND	1.7	54.7 5.8 B	442 ND	32.7 NS	88	8 8 8	S S			
	Monitoring event	P6 1/23/201	7 629	18 AN	690.4	7.14	0.45	0.758	50		2 2	99	22	99	99	999	2 2 2	2 2 2		0.16 J	22	99	99	9		000,1	O.63	8.2	99	0.72 0.015 J	6.5 JF1	415 ND	8.2 NS	s s	S S S	9		Sampled e Parame	
	Monitoring event	P7 4/10/201	7 706	18	690.4	7.04	NA -70.1		333	4.9	2 2	2 2	22	2 2	3.3 J	Q Q 2	2 2 2	2 2 2	2 2 2	2 2 2	2 2	2 2	2 2	0	2 5	1,900	O.65	16.4		0.5 ND		435 ND	8.1 NS	S S	S S S	SS			
	Monitoring event	P8 7/6/2017	793	18	690.4	7.21	0.51	0.790	3308	4.8	2 2	2 2	22	9 9	9 9	999		2 2 2	2 2 2	2 2 2	2 2	22	99	0	9 9	350	0.42	7.5	9 9	0.45	10.8	451 ND	7.5 NS	S S	S S S	SN			
	Monitoring event	P9 10/16/20 ⁻	7 895	18	690.4	7.09	3.02	0.900	1474	3.5	9 9	2 2	22	99	8 8	999	2 2 2	2 2 2	2 2 5	2 2 2	99	99	99	9	2 5	3,900	ND 0.32	6.9	22	0.073	ND 2.3	513 ND	4.9 NS	SN SN	S S S	SS			
	Monitoring event	210 1/5/2018	976	8 4 A	4		1.2	0.580	72.6	72.4	4 %	1.6 J	3.7 J 2.1 J	DD 16.	22 Z	999	2 2 5	8.2	2 2 5	2 2 2	99	3.2 J	2.4 J 22	0		UN 14,000	ND 2.2	99.8	99	3.2 .1 F1	, JB			_	S S S				
	Monitoring event	P11 4/9/2018	1070	8 %		7.16	19.7		8.12	3.8	9 9	2 2	22	22	22	999	222	2 2 2	299	225	22	22	99	ON 65	2 9	3,600	ND 0.54	7.9	22	0.18 ND	20.2 4.9 b	377 ND	7.9 NS	SN SN	S S S	SN			

						Well		Field I	Paramete	rs							VOCs	,						Dissol	ved Gas	ses				We	t Chemi	stry					Q Poter	ntial (DNA)
Well ID	Event / Description	n D	Date	Elapsed Time (Days)	Total Depth Total Depth Water Level Measurement		ASL) Head Elevation J) PH	(L) Dissolved Oxygen Oxidation Reduction Potential	(mS/cm) Specific Conductance		(JL) Carbon, Total Organic	1,1,2-Trichloro-1,2,2-trifluoroethane	1,1,5-ircnioroethane 1,1-Dichloroethane 1,1-Dichloroethene	1,2-Dichloroethane 2-Hexanone	2-Butanone (MEK) 4-Methyl-2-pentanone	Acetone Benzene Carbon Disulfide	Chlorof	Chloromethane cis-1,2-Dichloroethene	Dichlorodifluoromethane Ethylbenzene	Methylcyclonexane Methylene chloride Methyl Acetate	Tetrachloroethene Toluene	trans-1,2-Dichloroethene Trichloroethene	Vinyl chloride Xylenes, Total	Carbon Dioxide Ethane		Methane	Manganese Ferric Iron	Suffate	Nirite Phosphorous	Ammonia	(mg/L) Total Alkalinity	Ferrous Iron Iron	Acetic Acid Formic Acid	Lactic Acid n-Butyric Acid	Propionic Acid Chloride Pvruvic Acid	Bac	rinating teria	TCE R-Dase (1)	al Genes
					(feet)	(ft. AMSL)	(ft. AMSL) (SU)	(mg/L)	(mS/cm	(NTUs)	E)						(ng/L)								(ng/L)						E,							(cells/	
	Monitoring event	7/9	9/2018	1161	18	690.4	6.92	0.69	0.873	1230	4.8 B	2 2	2 2 2	999	225	2.4. ON C	2 2 2	99	999	2 2 2	99	22	99	12,000	2 2	11,000	0.38 B	1.8.1 CN	O.16	0.15 28.3 B	3.6 b 450 B	3.6	S S	S S	8 8 8	2			
	Monitoring event	213 10/1	19/2018	1263	18	690.4	683.0			13.8	2.5 ND	2 2	N N N	22	2 2 2	222	2 2 2	2 2	222	0.55 J	2 2	22	2 2 2	47,000	2 2	000,7	2.8 B	23.6 UN	0N 4.4	0.16	ND 415	120	S S	S S	S S S	2			
	Monitoring event	214 1/4	4/2019	1340	362	690.4	686.8	2.73	0.750	101.4	2.8 ND	2 2	2 2 2	99	2 2 2	2 2 2	2 2 2	99	222	2 2 2	99	2 2	2 2	48,000 B	2 2	4,100	0.55	1212	O.15	0.018 J	3.6 310 B				S S S				
	Monitoring event	15 4/15	5/2019	1441	18	690.4	687.1	4.86	0.701	71.8	4.2 ND	2 2	2 2 2	2 2	QN -	ON ON	2 2 2	2 2	2 2 3	0.55 J	ND 0.58 J	22	2 2	62,000	Q Q		0.52 B	32.5 ND	Q S	0.014 J	NS 282	0.075 J 11.6 B	S S	S S	S S S	2			
	Monitoring event F	7/22	2/2019	1539	18	690.4	684.9	2.8	0.765	12.81	1.8 DN	2 2	2 2 2	99	2 2 2	2 2 2	2 2 2	99	222	2 2 2	99	22	98	53,000	2 2	6,2	0.25 B	22.4 CN	2 2				S S	S S	24.4 NS	2			
	Monitoring event F	217 10/1	14/2019	1623	18	690.4	685.9	0.77	0.936	12.0	4.2 ND	2 2	2 2 2	99	2 2 3	S S S	2 2 2	99	999	2 2 2	99	22	2 2 2	81,000	2 2	000'9	0.41B	54.3 ND			NS 409 B				S S S				
A1-GP18-S	Monitoring event	218 1/7	7/2020	1708	8 8 8	690.4	687.0	2.15	. \circ		6.2 ND	9 9	2 2 2	99	222	999	99	99	999	999	99	99		110,000	2 2	3,400	0.71 0.71	18. Z	9 8	0.037 NS	366 366	ND HF 6.1	S S	S S	NS 14.3	2		mpled F	
	Monitoring event	219 4/13	3/2020	1805	18 25 5	690.4	687.3	1.24	0.761	2057.0	7.2 ND	2 2	2 2 2	99		222	2 2 2	2 2	999	2 2 2	99	22		71,000	Q Q	-, c	0.0203	17.8 GN	Q S	0.053 NS	NS 450	0.37 HF 8.8	SN SN	S S	16.6 NS)	illese r	aramet	315
	Monitoring event	20 10/8	/8/2020	1983	18	690.4	682.8	1.35	0.638	12.6	3.3 ND	2 2	2 2 2	999	2 2 2	2 2 2	2 2 2	22	222	2 2 2	99	22	99	61,000		၈ -	0.27	23.7	2 2	0.15B	NS 495	NS H	1.7 NS	S S	22.5 SS 5.5	2			
	Monitoring event	21 4/1	1/2021	2158	18	-	686.3	2.74	_	90.0	3.8 ND	2 2	2 2 2	993	2.9J	2 2 2	2 2 2	22	222	222	22	22		70,000	2		0.84B	62.1 CN	S S	0.081 NS	NS 454	- 0.33 HF	S S	S S	33.3 SN SN S	2			
	Monitoring event	22 10/2	21/2021	2361	18 2	_	6.98			13.9	10.8 DN	2 2	222	99	222	2 2 2	2 2 2	22	222	2 2 2	22	22		000,86	2 2	4 0	NS 8	26.8	0.047J	8 8	377	0.28 HF 18.3	8 8	S S	NS N	2			
	Monitoring event	23 4/13	3/2022	2535	18		687.5			.,	11.8 ND	2 2	2 2 2	2 2 5	ND 24	2 8 8	2 2 2	2 2	222	2 2 2	2 2	2 2		000,00	2 2	4,400	NS NS	Ž			N 55	ND F	S S	S S	8 8 8	2			
	Monitoring event	24 10/6	6/2022	2711	18	_	6.86				6.4 QN	2 2	2 2 2	99	228	9 2	2 2 2	22	222	2 2 2	22	22		48,000			NS OF	29.1	2 2	8 8	321 321	31.0			2 2 2				
	Monitoring event	25 4/7	7/2023	2894	18	690.4	6.95	0.19	0.597	658.0	8.4 ND	2 2	222	99		2 2 2	2 2 2	2 2	22	2 2 2	99	22	999	62,000	2 2	3,300	S S S	5.0 CN	2 2 2	S S	NS 297	ND HF	S S	S S	S S S				

				w	/ell	F	eld Para	meters								VOCs						Di	ssolved	Gasses				Wet Cher	mistry			o c	Potentia	(DNA)
Well ID	Event / Description	Date	Elapsed Time (Days)		tSL) Top of Casing Elevation	pH (L) Dissolved Oxygen		Spec	;) Temperature /L) Carbon, Total Organic		1,1,2-Trichloroethane	1,1-Dichloroethene	2-Hexanone	4-Methyl-2-pentanone Acetone	Benzene Carbon Disulfide	Chloroethane Chloroform	Chloromethane cis-1,2-Dichloroethene Dichlorodifluoromethane	hylbenzene ethylcyclohex	Methylene chloride Methyl Acetate	Toluene Trans-1 2-Dichlorosthene	Trichloroethene Vinyl chloride	Xylenes, Total Carbon Dioxide		Ethene Methane	Nitrate Manganese	Ferric iron Sulfate Sulfide	Nitrite Phosphorous			Acetic Acid Formic Acid Lactic Acid	n-Butyric Acid Propionic Acid Chloride Chloride	Dechloring Bacteri	a TCER-Dase (1)	
				(feet) (ft. ATOC)	(ft. AMSL)	(SU)	_	_	(,c)							(ng/L)							(ua/L)	!				(mg/L)					(cells /	
	Monitoring event BL1	6/18/2010	-1782	3.09	689.7	3.16		16.4	17.8 NS	9 9	₹ 2 E	2 2	2 2 2	99	99	99	S 6.4	99	999	2 2 2	1.4 J	2												
	Monitoring event BL2	8/3/2010	-1736	3.9	689.7	7.7	-123	0.917	19.27 NS	2 2	S 5 4 5 1	2 2	2 2 2	99	99	99	2 /: S	99	999	2 2 2	1.6 J	2												
	Monitoring event P1	7/29/2015	85	3.95	689.7	7.34	-120	1.49	18.73	2 2	N P	2 2	2 2	9 9	9 9	99	5.2 ND	99	2 2 2	2 2 2	1.1	S												
	Monitoring P2	4/8/2016	339	18.9	689.7	7.47	-72	10.9	10.4 2.5 B	2 2	2 8	2 2	2 2 2	99	9 9	2 2	Z. Z	99	999	2 2 2	S S 5.	2												
	Monitoring P3	7/14/2016	436	3.95	689.7	7.37		0.734	17.6	2 2	Q 8	2 2	2 2 2	99	99	99	S & S	99	999	2 2 2	2.4 ND	9												
	Monitoring P4	10/11/2016	525	18.85	689.7	7.50			18.11	2 2	N 2	2 2	2 2	99	9 9	22	2 = S	99	2 2 2	2 2 2	0.56 J	Q												
	Monitoring P5	1/25/2017	631	3.95	689.7	7.41	-59	0.785	11.7	2 2	2 2 2	2 2	2 2 2	99	9 9	22	3.5 ND	99	999	2 2 2		9												
	Monitoring P6	4/12/2017	708	18.85	689.7	7.43			11.2	2 2	9 2	99	2 2 2	99	99	99	2 2 2	99	999	2 2 2	₹ 2 2	9												
	Monitoring P7	7/7/2017	794	18.85 3.95	689.7	7.56		0.730	17.4	2 2	N N	2 2	2 2 2	2 2	22	22	2 2 2	99	2 2 2	2 2 2	2.0 ND NS	Q												
MW-30	Monitoring P8	10/19/2017	898	18.85	689.7	7.45		0.930	3.1	2 2	2 8	9 9	2 2 2	99	9 9	99	0.58 C	99	9 9 9	2 2 2	2.5 10 20	Q.					Not	Sampled	d For The	ese Para	ameters			
	Monitoring P9	1/2/2018	973	3.95	689.7 (7.57		ယ	7.6					2 2					222	2 2 2	N 0 1.3	Q												
	Monitoring event P10	4/11/2018	1072	18.9	689.7	7.32			10.9 2.2 B	2 2	N 02 52	2 2	2 2 2	99	99	99	2 2 2	99	9 9 9	2 2 2	O.95	Ð												
	Monitoring event P11	7/11/2018	1163	3.95	689.7 6	7.18			17.14 2.9 B		ON 0		2 2 2				2 2 2				2 2 2													
	Monitoring P12	10/23/2018	1267	18.9 1	689.7 6	7.09		_	15.7		2 P	2 2	2 2 2	3.6J	9 9	9 9	2 2 2	22	2 2 2	2 2 2	S 0 1.5	Q												
	Monitoring event P13	1/8/2019	1344	3.95	689.7 6	7.49		0.720	11.7					99							222													
	Monitoring event P14	4/18/2019	1444	18.85 1	689.7 6	7.68		0.679 0	15.3		99			9 9	99		2 2 2		999	2 2 2	2 2 2	Q.												
	Monitoring P15	7/26/2019	1543	3.95	689.7 6	7.37 7		0.626 0	1.9		_			S S S	_	_	2 2 2	99	999	299	5 5 t	9												
	Monitoring P16	10/17/2019	1626	18.9 18 2.95 3	689.7 68	3 19		4.94		99	999		999	9 6	99	4 Q																		
	Monitoring P17	1/8/2020	1709	3.95 2.	689.7 68 685.7 68	7.25 7.00	40.8	0.750 0.3 12.7 4.	0.8	9 9	999	999		3.3 LE.S.	99	78 J O.		99	999		9 9 9	9												
	event			<u>−</u> ω	8 8	7 0	4	0 +	= 0		2 2	2 2	- 2 2	2 2	Z Z	0 2	- - -		2 2 2	- - -	- 2	2												

						Well		Fie	eld Para	meters									voc	s							Dissol	ved Ga	asses					Wet	Chemi	istry						Q Poter	ntial (DN	NA)
Well ID	Event / Descriptio	on .	Date	Elapsed Time (Days)	Total Depth Total Depth Water Level Measurement	Topo			Oxidatio	Specific Conductance Turbidity		Carbon, Total Organic 1,1,1-Trichloroethane	1,1,2-Trichloro-1,2,2-trifluoroethane	1,1,2-Trichloroethane 1,1-Dichloroethane	1,1-Dichloroethene	2-Hexanone 2-Butanone (MEK)	4-Methyl-2-pentanone Acetone	Benzene Carbon Disulfide	Chloroethane	Chloromethane cis-1.2-Dichloroethene	Dichlorodifluoromethane Ethylbenzene	Methylcyclohexane Methylene chloride	Methyl Acetate Tetrachlor oethene	Toluene	loroethene	Vinyl chloride Xylenes, Total	Carbon Dioxide Ethane	Ethene	Methane	Nifrate Manganese	Ferric iron Sulfate	Sulfide	Nitrité Phosphorous	Ammonia COD	BOD Total Alkalinity	Ferrous Iron	Acetic Acid Formic Acid	Formic Acid	n-Butyric Acid Propionic Acid	Chloride Pyruvic Acid	Dechlori Bacte	eria .	TCE R-Dase (1)	BAV1 VC R-Dase (1)
					(feet)	(ft. AMSL)	(ft. AMSL)	(mg/L)	(m)	(mS/cm) (NTUs)	(0,0)	(mg/L)							(ng/L)									(ng/L)							(mg/L)							į	al (sells)	
	Monitoring event	P18	4/15/2020	1807	18.9	689.7	686.7	1.06	57.5	0.534	10.4	2.2 UN	2	2 2	22	99	2 2	2 2	2 2	2 2	2 2	2 2	22	2 2	2 2 5	2 2																		
	Monitoring event	P19	10/7/2020	1982	3.95	689.7	685.7	0.29		0.551	17.6	3.2 ND	2	9 9	2 2	2 2	3.6.J		0.91J	2 2	2 2	2 2	2 2	2		0.1 ON																		
	Monitoring event	P20	4/5/2021	2162	18.9	689.7	686.7	1.18	-36.3	0.136	12.2	2.7 CIN	2	9 9	2 2	99	2 2	2 2	2 2	2 2	2 2	99	22	2 2	2 2 !	2 2																		
MW-30	Monitoring event	P21	10/25/2021	2365	3.95	689.7	685.7	0.11		3.45		3.3	2	2 2	2 2	2 2	ND 28	2 2	0.75 J	2 2	9 9	9 9	2 2	2	2 2 5	2 2							No	t Sam	pled I	For T	hese F	Paran	neters					
	Monitoring event	P22	4/14/2022	2536	18.85	689.7	686.7	0.28	-121	0.470	12.5	2.4 CN	2	9 9	99	99	Q 8.9	2 2	2 2	2 2	9 9	9 9	22	99	2 2 !	2 2																		
	Monitoring event	P23	10/10/2022	2715	18.85	689.7	685.3	0.13	-105	0.700	17.8	3.0 ND	2	9	9 9	2 2	2 2	2 2	2 2	ND 1.18.0	9 9	9 9	2 2	2 2	2 2 :	2 2																		
	Monitoring event	P24	4/12/2023	2899	18.85	7.689	6.989	0.05	-71.5	0.608	.							2 2		1 1																								

						Well		Fi	eld Par	amete	rs									VOC								Disse	olved G	asses				We	t Chemis	stry				Q	Potentia	I (DNA)	
Well ID	Event / Descriptio		Date	Elapsed Time (Days)	(feet) Total Depth	(ft. AMSL) Top of Casing Elevation	2	(SU) PH (mg/L) Dissolved Oxygen	ÖXİ	ις i	Us) Turbidity Temperature	(mg/L) Carbon, Total Organic	1,1,1-Trichloroethane	1,1,2-Trichloro-1,2,2-trifluoroethane	1,1-Dichloroethane	1,1-Dichloroethane	2-Butanone (MEK)	4-Methyl-2-pentanone Acetone	Benzene Carbon Disulfide	(ug/L) Chloroform	Chloromethane cis-1,2-Dichloroethene	Dichlorodiflu oromethane Ethylbenzene	Methylcyclohexane	Methyl Acetate	Tetrachloroethene Toluene	trans-1,2-Dichloroethene Trichloroethene	Vinyl chloride Xylenes, Total	Carbon Dioxide	(ug/L) Ethene	Methane	Nitrate Manganese	Ferric iron Sulfate	Suffide	Prosphorous Ammonia COD	(mg/L) BOD Total Alkalinity	Ferrous Iron Iron	Acetic Acid Formic Acid	Lactic Acid n-Butyric Acid Propionic Acid		Dechloring Bacteri			VC R-Dase
		4						_			Ę	- E								<u>5</u>									Bn)						Ĕ						<u>8</u> E		
	Monitoring event	BL1	6/17/2010	-1783	14.5			6.49	146	0	1.6	NS NS	2	2 2	2 2	2 2 2	2 2	2 2	1.4 J	9 9	99	9 9	2 2 2	2 2 2	2 2	2 2	22																
	Monitoring event	BL2	8/2/2010	-1737	14.5	9.889	682.9	6.33	-3.9	0.955	0.89	S 8	2	2 2	2 2	2 2 2	2 2	3.8 J	2 2	2 2	2 2	2 2	2 2 2	2 2 2	2	2 2	22																
	Monitoring event	BL3	3/11/2015	-55	15	3.0 688.6	685.0	3.9	82.4	0.873	5.65	2.4	2	2 2	2 2	2 2 2	2 2	9 9	9 9	9 9	9 9	2 2	2 2	2 2 2	2 2	2 2	9 9																
	Monitoring event	P1	7/28/2015	84	15			7.15	106	0.865	2.51	2 B	2	2 2	2 2	2 2 2	2 2	9 9	9 9	9 9	9 9	2 2	2 2	2 2 2	2 2	2 2	9 9																
	Monitoring event	P2	4/8/2016	339	15		0.889	7.3	29.2	0.540	11.2	5.4	2	2 2	2 2	2 2 2	2 2	9 9	9 9	9 9	9 9	9 9	2 2 2	2 2 2	9 9	2 2	9 9																
	Monitoring event	P3	7/13/2016	435	15			7.07	-13.3	374	5.24	2.1	2	2 2	2 2	2 2 2	2 2	9 9	99	99	99	9 9	2 2 2	2 2 2	2 2	99	99																
	Monitoring event	P4	10/11/2016	525	15	9.889	675.4	7.24		0.811	5.47	3.	2		2 2	2 2 2	5.1	2 2	2 2	2 Q	2 2	2 2	2 2 2	2 2 2	2 2	22	22																
		P5	1/23/2017	629	_	9.889		7.16	32.2	325	2.96	2.1	2	2 2	2 2	2 2 2	2 2	9 9	9 9	9 9	9 9	99	2 2 2	2 2 2	2 2	2 2	99																
	Monitoring event	P6	4/10/2017	706	15			6.96		10	3.21	2.3	2	2 2	2 2	2 2 2		9 9			99	9 9	2 2 2	2 2 2	9 9	99	99																
MW-35S	Manifestan	P7	7/7/2017	794	15 4	9.889		7.18	_	068	8.57	2	2	2 2	2 2	2 2 2	2 2	2 2	2 2	9 9	9 9	2 2	2 2 2	2 2 2	2 2	22	99						-	Not San	npled F	or The	ese Pa	rametei	rs				
	Monitoring event	P8	10/17/2017	896	15	9.889	679.1	7.15			1.06	2.6	9	2 2	2 2	2 2 2	2 2	99	99	9 9	99	9 9	2 2 2	2 2 2	2 2	99	22																
	Monitoring event	P9	1/4/2018	975	15	688.6		8.6	_		A S	2.4	2	2 2	9 9	2 2 2	2 2	99	9 9	99	99	99	2 2 2	2 2 2	2 2	99	99																
		P10	4/9/2018	1070	5 0	(0	688.6	7.28		N	A N		2		2 2		2 2		2 2	Q Q	2 2	2 2	2 2 2		2 2	Q Q	22																
	Manifestore	P11	7/11/2018	1163	15	688.6	682.3	3.65	_	_	4.01		2	2 2	9 9	2 2 2	2 2	9 9	99	99	99	99	2 2 2	2 2 2	9 9	99	99																
		P12	10/19/2018	1263		9.889	677.0	7.1			5.29	1.2	2	2 2	9 9	222	2 2	99	99	99	99	99	2 2 2	2 2 2	2 2	99	99																
	Manifestore	P13	1/7/2019	1343		0.7	687.9	7.21			_			_	++	2 2 2		9 9				2 2	2 2 2	2 2 2	2 2	2 2		-															
	Manifestore	P14	4/17/2019	1443	13.9			5.9 (0.13	01				222	\rightarrow	22	_	_			2 2 2		_	22																	
	Manifestra	P15	7/25/2019	1542		9 9.889		7.26 7			831.7			_		2 2 2										99																	
	Manitarian	P16	10/17/2019	1626	15 16			6.99 7 0.43 3			3.95 83			2 2		2 2 2	2 2	99	22	99	2 2	2 2	299	2 2 2	22	99	99		9 9	U.4.1	0.052 0.63 B	112	223	S S S	348	0.024 J	S S	S S S	24.5 NS		ot Samp	led For ameters	

					Well		Fie	ld Para	meters								VO	Cs						D	issolved G	Gasses				Wet C	Chemistry				QP	otential (I	ONA)
																			П							Т									Dechlorinati Bacteria	ng Func	tional Genes
Well ID	Event / Description	Date	Elapsed Time (Days)	Total	Water Level Measurement Top of Casing Elevation	Head Elevation	pri Dissolved Oxygen	Oxidation		Temperature Carbon Total Organic	1,1,1-Trichlord	1,1,2-Trichloro-1,2,2-trifluoroethan 1,1,2-Trichloroethan	1,1-Dichloroethane 1,1-Dichloroethene	1,2-Dichloroethane 2-Hexanone	2-Butanone (MEK) 4-Methyl-2-pentanone	Acetone Benzene	arbon	Chloromethane	Dichlorodifluoromethane	EthylDenzene Methylcyclohexane Methylene chloride	Methyl Acetate Tetrachloroethene	Toluene trans-1,2-Dichloroethene	Trichloroethene Vinyl chloride	Xylenes, Total Carbon Dioxide	Ethane	Methane	Nitrate Manganese	Sulfate Sulfide	Nitrite Phosphorous	Ammonia COD	BOD Total Alkalinity Ferrous Iron	Iron Acetic Acid Formir Acid	Lactic Acid n-Butvric Acid	Propionic Acid Chloride	Dehalococcoides spp (1)	TCE R-Dase (1)	BAVI VC R-Dase (1) VC R-Dase
				(feet)	(ft. ATOC)	(ft. AMSL)	(SU)	(m)	(mS/cm) (NTUs)	(0,0)	(mg/L)						(Control	(ug/L)							(ng/L)						(mg/L)					(cells / mL)	
	Monitoring event P17	1/8/2020	1709	15	0.52	688.0	7.06	37.3	0.716	7	3.2 ND	9 Q	2 Q	ND ON	Q Q	200	2 2	2 2 2	2 2 2	2 2 2	Q Q	Q Q	Q Q	ND 43,000	ON CA	S S	0.096	58.6 ND	Q SN	2 S	325 ND	0.31 NS	S S S	18.4 18.4	Not Thes	Sample e Paran	
	Monitoring event P18	4/14/2020	1806	15	0.18		4.87		3.19	7.16	S Q	9 9	99	9 9	9 9	998	0.75J	999	2 2 2	2 2 2	99	99	99	9													
	Monitoring event P19	10/6/2020	1981	15	9.58		0.6		3.55	13.9	ND ND	2 2	2 2	Q Q	Q Q	2 2 2	2 2	999	2 2 2	2 2 2	22	22	22	Q.													
MW-35S	Monitoring event P20	4/5/2021	2162	15	0.65	688.0	10.5	52.3	0.279	8.73	ND O	9	9 9	Q Q	9 9	9 9	9 9	999	2 2	2 2 2	22	22	22	g													
	Monitoring event P21	10/20/2021	2360	15	1.36	687.2	2.93	92.6	0.900	15.5	ND ON	9	9 9	N O	S S	2 2	2 2	2 2 2	2 2 2	2 2 2	28	2 2	28	Q.					Not	t Samp	led For	These F	Param	eters			
	Monitoring event P22	4/7/2022	2529	15	0.49		6.99	56.1	14.7	8.2	N ON	9 9	9 9	2 2	9 9	22	9 9	9 9 9	2 2	2 2 2	22	22	22	9													
	Monitoring event P23	10/7/2022	2712	15	10.03		6.97		0.820	13.5	S Q	9 9	9 9	9 9	9 9	22	9 9	9 9 9	2 2 2	2 2 2	99	99	99	2													
	Monitoring event P24	4/6/2023	2893	15	0.54	688.1	6.97	198	37.5	7.8	Q Q	9 9	9 9	2 2	2 2	22	9 9	2 2 2	2 2	2 2 2	22	99	9 9	9													

						Well			Field P	arame	ters									VOCs							Diss	solved G	asses				Wet CI	hemistry	,				2 Potenti	al (DNA)
Well ID	Event Description		Date	Elapsed Time (Days)		water Level	I		(mg/L) Dissolved Oxygen Oxidation Reduction Potential	(mS/cm) Specific Conductance	(NTUs) Turbidity	- 0	-	1,1,2-Trichloro-1,2,2-trifluoroethane 1,1,2-Trichloroethane	1,1-Dichloroethane 1,1-Dichloroethene	1,2-Dichloroethane 2-Hexanone	2-Butanone (MEK)	Acetone	Carbon Disulfide	(ug/L) Chloroform Chloromethane	cis-1,2-Dichloroethene Dichlorodifluoromethane	Ethylbenzene Methylcyclohexane	Methylene chloride Methyl Acetate	Tetrachloroethene Toluene	trans-1,2-Dichloroethene	Trichloroethene Vinyl chloride Xylenes. Total	Carbon Dioxide	Ethane (ug/L) Ethone	Methane	Nitrate Manganese Formi inco	Suffide	Nitrite Phosphorous	4 0 1	(mg/L) Total Alkalinity Ferrous Iron	Iron Acetic Acid	Formic Acid Lactic Acid n-Butwic Acid	Propionic Acid Chloride Pyruvic Acid	Dechloring Bacter	ia	DAVI VCR-Dase (1) BAVI VCR-Dase (1) VCR-Dase
	Monitoring				_	_						+				H			- -	T T	- -							3						Ē					8	E
	event	BL1	6/17/2010	-1783	15				13.1	-	(,)				22				-							2 2 2														
	event	BL2	8/3/2010	-1736	-	5.4		•	1.6						0.38 J ND							2 2				0 Q Q														
	event	BL3	3/10/2015	-56	12	_			2.87		2.43			2 2			2 2	2 2	2 2	2 2 2	99	2 2	2 2	2 2 2	2 2 2	222	2													
	Monitoring event	P1	7/29/2015	85	12	3.85	_	6.12	0.18		3.81	17.43 1130 B	2	2 2	0.52 J ND	N S	122	8 8	12 Z	2 2	4: Q	22	2 2	2 2 2	2 2 2	2 2 2	2													
	Monitoring event	P2	4/8/2016	339	12	3.1	686.7	6.87	0.83	1.552	1.2	76.5	2	9 9	9 9	9 9	4 5	8 2	2 2	2 2	9 9	22	2 2	9 9	2 2 2	2 2 2	2													
	Monitoring event	P3	7/11/2016	433	12	7.54	682.2	98.9	0.45	_	10.4	21.5	2	9 9	9 9	9 9	22 5	8 5	2 2	2 2	1. 5	2 2	2 2	2 2 2	2 2 2	222	2													
	Monitoring event	P4	10/12/2016	526	15		_	5.79	0.3	_			Q.				3.2	2 2	2 2	2 2	1.8 DN	2 2	2 2			2 2 2														
	Monitoring event	P5	1/24/2017	630	15	2.9		7.05	0.2		7.44	6.84	2	9 9	99	99	9 9	2 2	20.7	2 2	9. D	99	2 2	2 2 2	2 2 2	2 2 2	2													
	Monitoring event	P6	4/12/2017	708	15	5.15		6.8	0.07				2	9 9	99	9 9	2 2	0.4 D	27 J CN	2 2 2	1.5 ND	222	2 2	2 2 2	2 2 2		2													
MW-36S	Monitoring event	P7	7/6/2017	793		689.8			0.07			16.2	9				999	99	2 2					999		2 2 2						No	t Sampl	ed For	These	Param	eters			
	Monitoring event	P8	10/17/2017	896	15		682.3		0.16				2	9 9	99	99	999	999	2 2	2 2 2	1.5 ND	222	2 2	2 2 2	2 2 2	2 2 2	2													
	Monitoring event	P9	1/4/2018	975		3.06	686.7		-33.7	_					2 2	9 9	2 2	2 2	2 2	2 2	1.3 N	2 2	2 2	2 2 2	2 2 2	2 2 2	2													
	Manitoring	P10	4/9/2018	1070		2.81	687.0		1.16	0.781	¥ S	3.7	Q.	2 2	2 2	2 2	2 2	2 2	2 2	2 2 2	1.2 ND	2 2	2 2	2 2 2	2 2 2		2													
	Monitoring	P11	7/10/2018	1162	12				0.57		2.95		2		9 9									2 2 2	2 2 2	2 2 2	2													
	Manadandan	P12	10/18/2018	1262	12				0.2				-				255 CIN	14 J	2 2	2 2 2	22		2 2	2 2 2	2 2 2	2 2 2	2													
	Manakasiasa	P13	1/7/2019	1343		6.55			0.21			9.5	2	9 9	L 41 U	99	2 2	2 2	2 2	999	1.2 N	2 2	2 2	2 2 2	2 2 2	2 2 2	2													
	Monitoring	P14	4/16/2019	1442	_	2.79		7.36 7				1.7	9	9 9	410 VD	99	999	999	99	999	1.5	99	99	999	999		2													
	Monitoring	P15	7/25/2019	1542		6.23 2 689 8 68			1.89 3	_	_	4. 4		99	99	99	999	999	99	3.5	€. 🗖	99	99	999	ا و و	999	9													
	Monitoring	P16	10/18/2019	1627	_	2.91 6. 689.8 68			0.29 1.	_		3 3	9	99	207	99	999	999	99		0.0	99	99	-		222	2													
	event					6	8 8	7	-2	1 -	23.	- 4		2 2	0 2	22	- 2 2	2 2	2 2	- 2 2	NZ	- 2	2 2	- 2 2	- - -	_ Z Z														

				W	Vell		Field Par	ameters								VOCs							Dissolve	d Gasse	es			Wet Chemi	istry			Q Pot	ential (DN	NA)
Well ID	Event / Description	Date	Elapsed Time (Days)	Tot	Top of Casing Elevation	Hq		Specific Conductance Turbidity	Temperature Carbon Total Organic		1,1,2-Trichloro-1,2,2-trifluoroethane 1,1,2-Trichloroethane	1,1-Dichloroethane 1,1-Dichloroethene	1,2-Dichloroethane 2-Hexanone	2-Butanone (MEK) 4-Methyl-2-pentanone	Benzene Carbon Disulfide	ם ס	Chloromethane cis-1,2-Dichloroethene	Dichlorodifluoromethane Ethylbenzene	Methylcyclohexane Methylene chloride	Methyl Acetate Tetrachloroethene	Toluene trans-1,2-Dichloroethene Trichloroethene	Vinyl chloride Xylenes, Total	Carbon Dioxide Ethane	Ethene	Nitrate Manganese	Ferric iron Sulfate Sulfide	Nitrite Phosphorous Ammonia	S B P	Ferrous Iron	Acetic Acid Formic Acid	Lacute Acid n-Butyric Acid Propionic Acid	Dechlorinating Bacteria (1) Departure of the second of t	TCE R-Dase (1)	BAV1 VC R-Dase (1) C R-Dase
				(feet) (ft. ATOC)	(ft. AMSL)	(SU)		(mS/cm) (NTUs)		6						(ug/L)								(ug/L)				(mg/L)					(cells /	
	Monitoring event P17	1/8/2020	1709	15	689.8	7.04	41.4	1.290	7.4	§ ₽					2 2 2		- 1 1	99	2 2 2	2 2 9	999	99												
	Monitoring event P18	4/16/2020	1808	15	8.689	6.93	- 2	1.247	7.41	N Q					2 2 2						999													
	Monitoring event P19	10/9/2020	1984	15	689.8	6.9	-98.4	0.999	4 2	- Q	2 2	0.53J			2 2 2	2 2	1.6 D	22	2 2 2	2 2 2	222	2 2												
MW-36S	Monitoring event P20	4/16/2021	2173	15	689.8	7.11	-78.2	3.25	7.24	2. Q	9 9	0.54 J	2 2 2	2 2 2	2 2 2	9 9	ND 2:2	28	2 2 2	2 2 5	222	9 9					Not 0	Sampled	Cor Th	ooo Do	-amatara			
IMAA-202	Monitoring event P21	10/22/2021	2362	15	689.8	7.53	-91	1.300	13.4		9 9	\neg					- 1 1				999						NOLS	oampieu i	rui III	lese Fai	ameters			
	Monitoring event P22	4/11/2022	2533	15		7.13	-107	1.280	8.5	S. D	9 9	0.43 J ND	2 2 3	9.5 J	2 2	2 2	1.5	2 2	2 2 2	2 2 9	222	2 2												
	Monitoring event P23	10/5/2022	2710	3.57		7.08	-94.5	1.190	13.7	S Q	9 9	99	9 9 9	2 2 2	2 2	2 2	99	2 2	2 2 2	2 2 9	999	9 9												
	Monitoring event P24	4/12/2023	2899	3.1	689.8	7.15	-89.4	1.122	8	2 2	9 9	99	2 2 2	2 2	2 2 2	2 2	1.5	2 2	2 2 2	2 2 9	222	9 9												

						Well			Field P	aramete	rs									VOCs								Dis	solved	Gasses					W	et Che	mistry						Q Pot	ential (DNA)	
Well ID	Event Descripti		Date	Elapsed Time (Days)		(ft. ATOC) water Level measurement (ft. AMSL) Top of Casing Elevation			(mg/L) Oxidation Reduction Potential		(NTUs) Turbidity	+-	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane 1,1-Dichloroethene	1,2-Dichloroethane	2-Butanone (MEK)	4-Methyl-2-pentanone Acetone	Benzene Carbon Disulfide	(ug/L) Chloroethane Chloroform	Chloromethane cis-1,2-Dichloroethene	Dichlorodifluoromethane	Etriyloetzene Methylcyclohexane Methylone chloride	Methyl Acetate	Tetrachloroethene Toluene	trans-1,2-Dichloroethene	Vinyl chloride	Carbon Dioxide	Ethane (ug/L)	Ethene Methane	Nitrate	Manganese Ferric iron	Sulfate Sulfide	Nitrite	Ammonia	(ma/L)	Total Alkalinity Ferrous Iron	Iron Acetic Acid	Formic Acid	n-Butyric Acid	Propionic Add Chloride Pyruvic Acid	Dechlor Bact	teria	(cells / mL) TCE R-Dase (1)	BAVI VC R-Dase (1)	VC R-Dase
					_	_	_	<u>ε</u> ,	Ē 5		_	+								3											<u>_</u>					٤	-							8 =		
	Monitoring event	BL1	4/7/2011	-1489	14.3	10.9	678.2	6.92	70.8	1.692	2.3	NS NS	25000	240 J	8550 6100	76	510 J	3.5 J	<u>6</u>	100 J 4.8	1000			2	5.6	31	27																			
	Monitoring event	BL2	3/12/2015	-54	14.3	1.8	687.3	6.94	-101.3	1.855	8.04	15.7	19,000	240	12,000 6,300	2	2 2 !	2 2 !	2 2	160 J ND	ND 5,700	2 2	2 2 2	2 2	ND 1,200	ND	000'S	2						N	lot Sa	mple	d For	These	Par	amete	ers					
	Monitoring event	P1	6/12/2015	38			NA (C	Grab S	Sampl			Q.	3,700	9, 6	2,300	. 44 . C	2 2 5	22	2 2	9 9	ND 6,400	2 2	2 2 2	2 2	ND 520	ON S	000,21 007,2 ON ON ON	2																		
	Monitoring event	P2	7/27/2015	83	14.3	2.7	686.4	6.28	-92.7	2.521	2.85	1560		71 J	9,700	44 J	2 2 !	22	2 2	170 J ND	ND 6,700	2 2	2 2 2	2 2			08 Q					Not S	ample	d Fo	r Thes	se Pa	ramet	ers				, c	×2.3E+01	<2.5E+01	<2.5E+01	<2.5E+01
	Monitoring event	P3	4/8/2016	339	14.3	3 689.1	686.1	6.67	-111.7	1.960	7.48	620	3,600	ND O	7,100	2	2 2 :	9 9 9	2 2	15,000 ND	ND 13,000	2 2	2 2 5	Q Q	1,000	2	610 R	2														•				
	Monitoring event	P4	7/14/2016	436	14.3	5.38		6.47	-81.4		5.54	796	2,000	120 J	1,000	110 J	2 2 :	2 2 5	2 2	0,000 ND	QN 9,000	890	S S S	ND	ND 2,100	ND	530	2																		
	Monitoring event	P5	10/13/2016	527		2.3		_	12.0		3.76	287	440	2 2	520	2 2	2 2 :	9 9 9	2 2	4,000 1 ND	ND 2	2 2	2 2 2	2 2	340 340	2 2	2 2 2	2						N	lot Sai	mple	d For	These	Par	amete	ers					
MW-42S	Monitoring event	P6	1/25/2017	631	14.3	3.06	_		95.7		3.12	238	1,200	QN QN	2,900 2	130 J	2 2 !	22	2 2	1,000 1. ND	ND 2,800	2 2	222	ND	O00,1	2 2	2,400 ND 530 6	2																		
	Monitoring event	P7	4/12/2017	708	14.3			7.02	-115.3		4.89																004,1					Not S	ample	d Fo	r Thes	se Pa	ramet	ers				VOT 100 C	3.90E 104	1.28E+04	<2.50E+01	1.04E+03
	Monitoring event	P8	7/10/2017	797	14.3	2.1	687.0	6.8	12.0	1.390	4.68	238	ON S	Q.	1,800	2 2	2 2 !	99	2 2	24,000 ND	QN 069	2 2	2 2 2	2 2	1,100	2	3,600	2														•				
	Monitoring event	P9	10/19/2017	898	14.3	6.35	_	6.56	-344.2	2.660	3.77	395	4,100	_			_		J.100	000'6	10	9 9	2 9 9	2 2	U)	280	12,000	Ē						N	lot Sa	mple	d For	These	Par	amete	ers					
	Monitoring event	P10	1/2/2018	973	14.3	3.6	_	7.98	-28.2		NA A		740	2	2,500 ND	2 2	2 9 !	22	2 2	21,000 1 ND	1,200	1 1	2 2 2	2 2	ON 056	2 2		Ş																		
	Monitoring event	P11	4/11/2018	1072	14.3			6.91	-78.4		NA CT	625	390										2 2 2	2 2	029	2 2	2,800					Not S	ample	d Fo	r Thes	se Pa	ramet	ers				4 04E+04	40.4	4.29E+04	3.33E+01	3.56E+03
	Monitoring event	P12	7/12/2018	1164	14.3	2.95	686.1	7.13	98.8	1.409	1.48	141 B	QN -	G Q	2 2	Q S	2 2 !	22	2 2	15,000 ND	ND 210	2 2	222	S S	ON 009	2 2	1,400	2						N	lot Sai	mple	d For	These	e Par	amete	ers					

						Well		Fie	eld Para	meters	,								vo	Cs							Diss	solved (Gasses					Wet	Chemi	stry					(2 Potent	ial (DNA)	
Weli ID	Event Descript		Date	Elapsed Time (Days)	(feet) Total Depth (f.e. ATOC) Water Level Measurement		3	(SU) PH (mg/L) Dissolved Oxygen		(mS/cm) Specific Conductance	(°C) Temperature	g/L) Carbon, Total Organic	1,1,2-Trichloro-1,2,2-trifluoroethane	1,1,2-Trichloroethane	1,1-Dichloroethene	2-Hexanone 2-Butanone (MEK)	4-Methyl-2-pentanone	Benzene Garbon Dieuffile	Chloroethane	5 5 8	Dichlorodifluoromethane	Ethylbenzene Methylcyclohexane	Methylene chloride Methyl Acetate	Tetrachloroethene Toluene	trans-1,2-Dichloroethene	Vinyl chloride	Carbon Dioxide	Ethane (ug/L) Ethana	Methane	Nitrate	Ferric iron	Suffide	Phosphorous	Ammonia	(mg/L) BOD Total Alkalinity	Ferrous Iron Iron	Acetic Acid Formic Acid	Lactic Acid n-Butyric Acid	Propionic Acid	Chloride Pyruvic Acid	Dehalococcoides sbb (1)	ia	nL) TCER-Dase (1) nL BAV1 VC R-Dase (1) epu	VC R-Dase
	1					_		+		_	+		_	Σ			T	TT		1						TT		3		<u></u>					£							8	-	
	Monitoring event	P13	10/23/2018	1267	14.3	689.1	683.1	6.37	-32.4	1.410	16.9	23.1	1,000	D 01.1	130 J	_	99		16,000	2 2 2	2 2 !	99	09 Q	₽ 00.	22	9 5	2																	
	Monitoring event	P14	1/8/2019	1344	14.3	689.1	682.7	6.71	-117.9	2.530	12.6	258	2,200	ND 2.400	160 J	Q Q	2 2	2 2 2	25,000	ON ON	88	Q Q	Q Q	1,700	22	6,700	2																	
	Monitoring event	P15	4/18/2019	1444	14.3	689.1	6.789	7.47	-125.2	1341	10.6	63.6	390 J	ND 1.600	9 9	2 2	2 2	2 2 2	8,000	2 2 2	2 2 5	Q Q	210 J ND	370 J	22	940	2						Not	Sam	nled F	or Th	ese P	aramı	eters					
	Monitoring event	P16	7/26/2019	1543	16.3	689.1	687.4	1.57	-65.35	2.195	19.5	737	240 J	ND 4.400	140 J	2 2	9 9	2 2 2	008'6	2 2 5	200	99	99	330 J	2 2	1,800	2							Juni	piou i	J		aram	0.0.0					
	Monitoring event	P17	10/18/2019	1627	14.3			6.22		2.242 58.76		895	_	ND 2,800	190 J	99	2 2	2 2 2	16,000	20 N	2 2 5	99				000'9	2																	
	Monitoring event	P18	1/10/2020	1711	14.3		688.5	5.52		1.250	9.5	341			150		2 2	2 2 2			3 2 5	99		ND 530		1200	2																	
	Monitoring event	P19	4/16/2020	1808	14.3	689.1	687.1	6.34	118.2	1.532	8.14	368	850	ON 1	130	1407 1407	9 9	2 9 9	11,000	2 2 5	3 2 !	99	99	QN 099	99	01,100	92,000	9 9	2 2	9 9	67.5	299	2 2	0.18	ND 659	2.8HF 70.3	SN SN	S S	SN	283 NS	7.73E+01		<2.50E+01 <2.50E+02	7.00E+00
MW-42S	Monitoring event	P20	10/12/2020	1987	14.3	689.1	687.6	6.55	-111.5	1.302	18.3	392	240	1.900	99.1	2 2	2 2	2 2 2	17,000		QN.	Q Q	130J ND	088	Q Q	2,500	000'62	370	13,000	0.031J	42.6		SN	0.093 NS	SN 666	1.3 HF 43.9	SN SN	SN SN	S S	366 NS		ot Sam	pled For	
	Monitoring event	P21	4/2/2021	2159	14.3	689.1	688.5	2.33	-103.1	1.221 2.56	8.05	427	380	ND 210	99	99	2 2	2 2 2	12,000	2 2 2	2 2 2	99	100J ND	ND 620	22	1907	47,000	410	3,400	QN G	42.8	N ON S	NS NS	0.11 NS	NS 798	2.0HF 44.8	S S	SN SN	S S	317 NS	4.22E+04		1.95E+03 <2.50E+01	4.77E+03
	Monitoring event	P22	10/27/2021	2367	14.3	689.1	688.5	6.6	-93.2	1.590	17.4	333	430	ND 550	Q Q	2 2 2	2 2	2 2 2	10,000	2 2 2	2 2	Q Q	QN QN	0V 570	Q Q	2 2 2	65,000	089	11,000	0.088	31.8		SN S	S S	NS 497	6.1 HF 37.9	SN SN	SN SN	S S	SN	2-5%		0.08-0.2%	2-6%
	Monitoring event	P23	4/8/2022	2530	14.3	689.1	687.7	6.82	-108.7	1.990	8.6	349	2,500	ON 880	9 9	99	99	2 2 2	15,000	2 2 2	2 2 2	99	99	910	99	280	000'68	062	13,000	0.1	32.4	2 2 2	S S	S S	NS 759	3.9 HF 36.3	SN SN	S S	2 S	SN SN	5-14%		0.3-0.8%	5-15%
	Monitoring event	P24	10/7/2022	2712	14.3	689.1	684.0	6.59	-83.0	1.880	17.9	264	800	ND 280	22	2 2 2	2 2	2 2 2	11,000		2 2 :	Q Q	Q Q	006 006	22	420 N	81,000	640	3,700	0.43	20.9		SN	SNS	8N 269	4.8 HF 25.7	NS NS	SN SN	S S	SN SN	4-11%		0.2-0.7%	2-6%
	Monitoring event	P25	4/11/2023	2898	14.3	689.1	686.1	7.15	-65.1	1.570	10.1	155	ON ON	ND 740	222	2 2 2	2 2	2 2 2	6,600	222	2 2	Q Q	Q Q	390	22	2 2 2	53,000	720	9,900	0.35	S S	C8.F	SN SN	S S	NS 260	NS HS	SN SN	S S	SS	S S	0.7-2%		0.1-0.3%	0.7-2%

						Well		Fie	eld Para	meters	3									VOCs								Dissolv	ed Gas	ses				w	et Chem	nistry					Q Po	otential	(DNA)	
Well ID	Event Descript		Date	Elapsed Time (Days)	Total Depth Total Depth Water Level Measurement	(SL) Top of Casing Elevation				cm) Specific Conductance		ő,	1,1,1-Irichloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane	1,1,2-Trichloroethane	1,1-Dichloroethane 1,1-Dichloroethene	1,2-Dichloroethane 2-Hexanone	2-Butanone (MEK) 4-Methyl-2-pentanone		Carbon Disulfide	Chloroform	cis-1,2-Dichloroethene	Dichlorodifluoromethane Ethylbenzene	Methylcyclohexane Methylene chloride	Methyl Acetate Tetrachloroethene	Toluene trans-12-Dichloroethene	Trichloroethene	Xylenes, Total	Carbon Dioxide Ethane	A) Ethene	Methane	Manganese	Ferric iron Sulfate	Suffide	Phosphorous Ammonia	(mg/L) Total Alkalinity	Ferrous Iron	Acetic Acid Formic Acid	Lactic Acid	Propionic Acid Chloride		Dehalococcoides spp (1)	TCER-Dase (1)		VC R-Dase
	1					(ft. AMSL)	E	(SU)		_	(0)									(ng/L)			-				Tall		(ug/L)						Ĕ.					<u> </u>		(cells / mL)		
	Monitoring event	BL1	4/7/2011	-1489	14.5		-	7.04		3.62		_	7.4	₽:	3.5	9 9	3.3	€ 5	7.	2 2 5	울	22		99	2.1 CN	5 5 5	1.7																	
	Monitoring event	BL2	3/12/2015	-54	14.5	689.1	686.5	1.45	-140	0 0	9.48		2 2	2	8. 8. 8.	9 9	2 5	22	2	2 2 2	3.7	99	0.82 ND	99	9 9	2 2 2	0.73							Not Sa	mpled	For T	hasa F	Parami	eters					
	Monitoring event	P1	7/29/2015	85	14.5	689.1	686.8	5.63	-23.2	4.348	21.25	2,060 B	2 2	2	89	3.1 ∫	250 CIN	1.3	₽ 9	2 2 2	94	2 2	2 2	99	U 76.0	09.0	1.7 J							1401 00	impica	1011	11030 1	arann	Cicio					
	Monitoring event	P2	4/8/2016	339	14.5	689.1	8.989	6.82	-102		22.29		2 2	2 :	9 9	9 9	25 CN	33.5	28	8.8	2 2	99	2.4 2.4			2 2 2	2 2																	
	Monitoring event	P3	7/13/2016	435	14.5	689.1	0.789	6.82	-101.6	2.230	22.29	21	2 2	2	22	9 9	9 9	99	2 :	2 2	2 2	22	22	99	2 2	2 2 2	2 2				Not	Samp	led F	or The	se Para	amete	rs				1.77E+02	1.58E+01	<2.5E+01	<2.5E+01
	Monitoring event	P4	10/13/2016	527	14.5	3.27 689.1		6.88	-80.7	1.870	18.9	22.2	2 2	2	2 2	2 2	2 2	22	2	2 2 2	2 2	2 2	2 2	9 9	2 2	2 2 8	S Q																	
	Monitoring event	P5	1/25/2017	631	14.5	689.1		6.81	-100	`	9.41	17	2	2	2 2	2 2	2 2		₽;	2 2	2 2	2 2	3.0 J	9 9	2 2	2 2 2	2 2																	
	Monitoring event	P6	4/11/2017	707	14.5	2.94 689.1		6.77	_		13.7		9 9	2	9 9	9 9	9 9	99	2	E 8		9 9	9 9	99	9 9	999	2 2																	
MW-43S	Monitoring event	P7	7/10/2017	797	14.5	3.35 689.1	-	7.02	-77.3	`	18.4	11.9	2 2	2	2 2			22		\rightarrow	\rightarrow	\rightarrow	\rightarrow	99	9 9	2 2 2	2 2																	
	Monitoring event	P8	10/19/2017	898	14.5	689.1	-	6.88		1.530	25 8	12.3	2 2	1 1	0.48 ND	9 9	2 2	Q 0.98	2	2 2 2	0.64	0.54	0.12 ND	- 1 1		8 2 2																		
	Monitoring event	P9	1/2/2018	973	14.5	3.35 689.1		1.92	-83.7	0	6.65	11.9	2 2	2	9 9	9 9	2 2	22	₽;	8 Q 2	2 2	9 9	9 9																					
	Monitoring event	P10	4/11/2018	1072	14.5	_	9	6.9		0	7 =		9 9	2	9 9	9 9	2 2	99	9	2 2 2	2 2	99	99	99	2 2	2 2 2	3.0 J							Not Sa	mpled	For T	hese F	Param	eters					
	Monitoring event	P11	7/12/2018	1164	14.5	689.1	-	7.01	-85.9	_	18.7	5.8 B	2 2	2	2 2	9 9	2 2	22	2	2 2 2	- 1 - 1		1.4	99	9 9	2 2 2	2 2																	
	Monitoring event	P12	10/19/2018	1263	14.5	3.32 689.1	_	6.96	-89.1	1.118	18.6	7	2 2	2	9 9	9 9	2 2	99	2 3	S S	2 2	99	2.7 J	99	2 2	999	2 2																	
	Monitoring event	P13	1/8/2019	1344	_	689.1	_	7.01			13.1							22								2 2 2																		
	Monitoring event	P14	4/17/2019	1443	14.5		w	2.79		0	11.6							99		_		_																						
	Monitoring event	P15	7/26/2019	1543	14.5			6.24			19.5	143	2 2	9	2 2	9.8 J	26 J	8 8	2	2 2 2	2 2	99	99	99	2 2	2 2 2	2 2																	
	Monitoring event	P16	10/18/2019	1627	14.5	689.1	686.5	6.77	-62.8	1.169	17.6	4	2 2	2	2 2	9 9	2 2	22	2	2 2 2	2 2	99	99	99	2 2	2 2 2	2 2																	

						Well		Fiel	d Parai	neters									voc	s							Dissol	ved Ga	sses				We	t Chemi	istry					Q Pote	ntial (DNA)
Well ID	Event / Description	n	Date	Elapsed Time (Days)	Total Depth Total Depth OC) Water Level Measurement	Topo	AMSL) Head Elevation	Dissolved Oxygen	Oxidatio	and L		L) Carbon, Total Organic 1,1,1-Trichloroethane	1,1,2-Trichloro-1,2,2-trifluoroethane	1,1,2-Trichloroethane 1,1-Dichloroethane	1,1-Dichloroethene	2-Hexanone 2-Butanone (MEK)	4-Methyl-2-pentanone	Benzene Carbon Disulfide		Chloromethane cis-1.2-Dichloroethene	Dichlorodifluoromethane Ethylbenzene	Methylcyclohexane Methylene chloride	Methyl Acetate Tetrachloroethone		trans-1,2-Dichloroethene Trichloroethene	Vinyl chloride Xylenes, Total	Carbon Dioxide Ethane	L) Ethene	Methane	Manganese	Suffide	Nitrite		L) BOD Total Alkalinity	Ferrous Iron Iron	Acetic Acid Formic Acid	Lactic Acid n-Butyric Acid	Propionic Acid Chloride Demois Acid	Bac	Dehalococcoides spp (1)	TCER-Dase (1)	- Dane
					(feet)	(ft. AMSL)	(ft. AM	(mg/L)	E S	D/Sm)	(°)	m)							(ug/L)									(ng/						m)							[S] [H]	
	Monitoring event	P17	1/8/2020	1709	14.5	689.1	687.1	0.26	-49.2	1.410	11.1	19.8 E	2	2 2	99	2 2	99	9 9	5.4 D	2 2	22	99	2 2 2	2 2 9	99	99																
	Monitoring event	P18 4	4/14/2020	1806	14.5		_	0.83	35.6	1.337	10.01	12.8 ND	2 5	2 2	9 9	2 2	2 2	2 2	K.4.3	2 2	2 2	2 2	2 2 2	2 2	9 9	9 9																
	Monitoring event	P19 1	10/7/2020	1982	14.5	689.1	686.7	0.64	-126	1.185	18.2	14.1 DN	2 5	2 2	99	2 2	9 9	2 2	2 2	5.5 ND	99	99	2 2 2	2 2 9	9 9	<u>R</u>																
MW-43S	Monitoring event	20 4	4/2/2021	2159	14.5	689.1	687.0	3.32	-82.8	5.63	7.64	8.9 DN	2 5	2 2	2 2	2 2	2 2	2 2	4.3 DN	2 2	2 2	2 2	2 2 2	2 2	9 9	N O							lat Car	nnlad	Cor Ti	nese P	arama	storo				
MIAA-422	Monitoring event	21 10	0/25/2021	2365	14.5		6.8	0.11		٠ ١	17.7	11.9 E	2	2 2	2 2	2 2	9 9	2 2	2 2	2 2	99	9 9	9 9	2 2	9 9	9 9						N	iot oal	iipied	1 01 11	iese P	arante	1612				
	Monitoring event	P22 4	4/14/2022	2536	14.5	689.1	687.2	0.02		10.3	10.4	7.3 ND	2	Q Q	2 2	2 2	2 2	2 2	3.1 J	2 2	2 2	2 2	2 2 2	2 2	2 2	2 Q																
	Monitoring event	23 10	0/10/2022	2715	14.5	689.1	686.7	0.16	-118.2	19.4	18.3	2	2	Q Q	2 2	2 2	2 2	2 2	2 2	2 2	2 2	2 2	2 2	2 2	2 2	2 2																
	Monitoring event	24 4	4/12/2023	2899	14.5	689.1	686.6	0.11	-65.1	7.13	11.9	7.4 ND	S S	Q N	2 2	2 2	2 2	2 5	2 2	2 2	2 2	2 2	2 2	2 2	Q Q	9																

				w	/ell	Fie	ld Paran	neters								VOC	s							Dissolv	ed Gas	ses				We	t Chemi	istry					Q Poten	tial (DNA)	
Well ID	Event / Description	Date	Elapsed Time (Days)				Oxidation Reduction Potential	Turbidity	Temperature , Carbon, Total Organic	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane 1,1-Dichloroethene	1,2-Dichloroethane 2-Hexanone	4-Methyl-2-pentanone	Benzene Carbon Disulfide	Chloro	Chloromethane cis-1,2-Dichloroethene	Dichlorodifluoromethane Ethylbenzene	Methylcyclohexane Methylene chloride	Methyl Acetate Tetrachloroethene	Toluene trans-1.2-Dichloroethene	Trichloroethene	Xylenes, Total		Ethene	Methane	Manganese	Ferric iron Sulfate	Nitrite	Ammonia		Ferrous Iron Iron	Acetic Acid Form ic Acid	Lactic Acid n-Butyric Acid	Propionic Acid Chloride Pyruvic Acid	Dechlori Bacte	ria	TCER-Dase (1) BAVI VCR-Dase (1) VCR-Dase	
				(feet)	(ft. AMSL)				(°C) (mg/L)							(ug/L)									(ng/L)						(mg/L)						slleo)	JE JE	
	Monitoring event BL	6/1/2011	-1434	15				45.1		2 2	2 2	999	2 2 2	2 2 2	2 2 2	2 2	9 9	28	99	99	2 2	2 2	2 2																
	Monitoring event P1	7/29/2015	85	1.6	689.0	7.08		_	15.84 31.6 B	9 9	2 2	999	2 2 2	2 2 2	2 2 8	2 2	99	22	99	99	2 2	2 2	2 2																
	Monitoring event P2	4/8/2016	339	15	689.0	7.23		4.1	3.1	2 2	2 2	99	2 2 2	2 2 2	2 2 2	2 2	9 9	9 9	99	99	2 2	2 2 2	2 2																
	Monitoring event P3	7/14/2016	436	4 4	689.0	7.18		3.99	15.5	2 2	2 2	225	2 2 2	2 2 2	2 2	2 2	22	22	22	22	2 2	2 2	2 2																
	Monitoring event P4	10/11/2016	525	15	689.0	7.21		6.9	15.3	2 2	2 2	999	2 2 2	2 2 2	999	2 2	99	99	99	99	2 2	999	2 2																
	Monitoring event P5	1/25/2017	631	1.09	689.0	7.22	-82.6	7.86	8.32	9 9	2 2	999	999	2 2 2	999	2 2	99	99	99	99	99	2 2 2	2 2																
	Monitoring event P6	4/7/2017	703	15	689.0	7.12	-94.1	10.1	7.4	2 2	2 2	22		2 2 2	2 2	2 2	2 2	2 2	2 2	9 9	2 2	2 2	2 2																
	Monitoring event P7	7/10/2017	797	15	689.0	7.32	-66.7	4.62	1.5	2 2	2 2	999	2 2 2	2 2 2	2 2 2	2 2	22	2 2	22	22	2 2	2 2 2	2 2																
	Monitoring event P8	10/16/2017	895	15	689.0	7.29	-286	2.36	13.8	2 2	2 2	2 2		2 2	2 2	2 2	22	2 2	22	2 2	2 2	2 2	2 2																
	Monitoring P9	1/2/2018	973	1.32	689.0	1.36	-60.4	NA A	7.5	DN 28	2	999	2 2 2	2 2 2	9 9	2 2	99	99	99	99	2 2	999	2 2																
MW-44S	Monitoring event P10	4/11/2018	1072	15	689.0	7.32	-111	NA NA	6.75	9 9		99		2 2 2		2 2		99	99	99	2 2	999	9							Not Sar	npled l	For Th	nese P	aramet	ers				
	Monitoring event P11	7/12/2018	1164	15	689.0	7.2	-83.5	1.51	14 1.2 B	2 2	2 2	999		2 2 2	2 2 2	2 2	22	22	22	22	2 2	2 2 2	2 2																
	Monitoring event P12	10/23/2018	1267	15		6.77	-66.9		14.0		- 1 - 1	2 2		2 2 2		2 2					2 2	2 2 2	2 2																
	Monitoring event P13	1/8/2019	1344	15	689.0	7.25	-78.8	1.020	9.9	2 2	2 2	999	2 2 2	2 2 2	2 2 2	2 2	22	2 2	22	2 2	2 2	2 2 2	2 2																
	Monitoring event P14	4/18/2019	1444	15		7.43			9.1	2 2	2 2	99	2 2 2	2 2 2	9 9	222	99	99	99	99	22	99	2 2																
	Monitoring event P15	7/26/2019	1543	15	689.0	7.37	23.2	0.964 538.2	15.6 0.77 J	2 2	2 2	2 2		2 2 2	2 2	2 2	2 2	2 2	2 2	9 9	2 2	2 2	2 2																
	Monitoring event P16	10/17/2019	1626	1.29	689.0	7.01	22.8	4.88		9 9	2 2	999	2 2 2	2 2 2	9 9	2 2	9 9	9 9	99	99	2 2	2 2 2	2 2																
	Monitoring event P17	1/8/2020	1709	15	689.0	7.09	81.3	2.39	7.0	2 2	2 2	2 2		2 2 2	2 2 2	2 2	ON ON	Q Q	S S	Q Q	2 2	2 2 2	2 2																
	Monitoring event P18	4/14/2020	1806	15		7.13		_	7.8	9 9	_	999		999	-		99		99		-	999	_																
	Monitoring event P19	10/7/2020	1982	15		3.01	44.8		14.7	2 2	2 2	999									2 2	2 2	2 2																
	Monitoring event P20	4/2/2021	2159	15	689.0	13.7	-55.1	13.01	1.4	2 2	2 2	225	2 2 2	2 2 2	2 2 2	2 2	22	2 2	22	99	-	2 2 2	_																
	Monitoring event P21	10/25/2021	2365	15	689.0	7.17	-39.2	4.30	14.5	2 2	2 2	999	2 2 2	2 2 2	9 9	2 2	99	2 2	99	99	2 2	9 9	2 2																

						Well		F	ield Pa	ramete	rs									VO	S								Disso	lved G	iasses					W	Vet Ch	emistr	у						Q Pote	ntial (I	DNA)	
Well ID	Event Descripti		Date	Elapsed Time (Days)	otal Depth	op of Casing Elevation	lead Elevation	H issolved Oxygen	Oxidation Reduction Potential	pecific Conductance	urbidity emperature	arbon, Total Organic	,1,1-Trichloroethane ,1,2-Trichloro-1,2,2-trifluoroethane	1,1,2-Trichloroethane	,1-Dichloroethane	,2-Dichloroethane -Hexanone	-Butanone (MEK)	-Metnyl-z-pentanone cetone	enzene arbon Disulfide	Chloroethane	hloromethane	is-1,2-Dichloroethene lichlorodifluoromethane	thylbenzene	lethylene chloride	letnyl Acetate etrachloroethene	oluene ans-1,2-Dichloroethene	richloroethene	Inyl chloride ylenes, Total	arbon Dioxide	thene	lethane	litrate	Mangan ese - erric ir on	ulfate ulfide	litrite	Ammonia	00	otal Alkalinity	ron	cornic Acid	actic Acid	ĕ	s Acid	Parlocicococides spp (1)	nating ria	CE R-Dase (1)	AV1 VC R-Dase (1)	Genes
					(feet) T	(ft. AMSL)		d (ns)		(mS/cm) S	(NTUs)	(mg/L)	- -	-	- -	- 2	01 4	4 4	ш	(Jay)		0 0	ш 2	: 2 4	2 1-	F 5	- >	> X	0 11	(ug/L)	Z	Z	2 11	ω ω	Z a	LIKI	5 11	(J ₀ 6E)	= <	4 LL	2 -	I a C) E.			mL) T	_ 6	_>_
	Monitoring event	P22	4/12/2022	2534	15	0.89	682.2	7.15	-71.4	1.006	10.0	0.79 J	2 2	2	Q Q	2 2	2 2	2 2	2 2	2 2	2 2	2 2	2 2	2 2 2	2 2	2 2	2 2	S S																				
MW-44S	Monitoring event	F23	10/10/2022	2715	15	- 8		7.01		1.050		\perp	9 9	2	2 2	9 9	2 2	2 2	9 9	2 2	2 2	2 2	2 2	2 2	2 2	9 9	2 2	2 2							N	Not Sa	ample	ed Fo	r The	se Pa	aram	eters						
	Monitoring event	P24	4/11/2023	2898	15	4.57	684.4	7.22	57.6	1.020	18.10	1.4	9 9	2	2 2	9 9	2	2 2	9 9	2	2 2	9	9 9	2 2	2 2	9 9	2	2 2																				

						Well		Fiel	d Parai	neters									V	OCs								Dissol	ved G	asses					w	et Ch	emistr	у					Q	Potent	ial (DNA	i)
Well ID	Event Descript		Date	Elapsed Time (Days)	Total Depth Water Level Measurement	Top of Casing Elevation	Head Elevation		Oxidatio	Turbidity		Carbon, Total Organic	1,1,2-Trichloro-1,2,2-trifluoroethane	1,1,2-Trichloroethane	1,1-Dichloroethene	1,2-Dichloroethane 2-Hexanone 2-Butanone (MEK)	4-Methyl-2-pentanone	Benzene Benzene Carbon Dissellido	טןט	S S	cis-1,2-Dichloroethene	Ethylbenzene Methylcyclohevane	Methylene chloride	Methyl Acetate Tetrachloroethene	Toluene trans-1,2-Dichloroethene	Trichloroethene	Xylenes, Total	Carbon Dioxide	Ethene	Methane	Nitrate	Ferric Iron	Suffate Suffide	Nitrite	Ammonia	υ <u>m</u>	Total Alkalinity Ferrous Iron	Iron Acetic Acid	Formic Acid	n-Butyric Acid	Propionic Acid Chloride	Pyruvic Acid	Dehalococcoides spp (1)	a	TCE R-Dase (1)	BAVI VC K-Dase (1)
					(feet)	(ft. AMSL)	(ft. AMSL)	(mg/L)	E)	(mS/cm)	(0,)	(mg/L)								(ug/L)									(ng/L)							ĵ,								(cells/	Ę	
	Monitoring event	BL1	6/17/2010	-1783	26	698.7	690.5	8.32	61.4	0.492		SN	2 2	2 2	2 2	2 2 2	S -	ND 17.1	ND ON	9 9	2 2	2 2 2	2 2 5	2 2	9 9	2 2	2 2							N	ot Sa	ımple	d Fo	r Thes	se Para	ame	ters					
	Monitoring event	BL2	8/2/2010	-1737	26	698.7	8.069	90.7		_	-	S S	2 2	2 2	2 2	2 2 2	2 2	2 2 3	ON O	99	2 2	9 9	2 2 5	9 9	9 9	9 9	2 2								or ou	пріс		11100	oc i aic	amo	1013					
	Monitoring event	BL3	11/5/2014	-181	SZ «	9	w	0.87	_	_	-	SN				N	lot Sa	mpled	For	These	e Par	amete	ers					3,200	S S	3,900	Q S	2.3	9.1 NS	ON 000	0.37	18.7	260	2.4 NS	S S S	SS	SN SN	SS			pled For	
	Monitoring event	BL4	3/12/2015	-54	29	698.7	692.0	1.08	\$	10.01	8.41	7.4	2 2	2 2	2 2	2 2 2	2 2	9 9	2 2	99	2 2	9 9	2 2 5	9 9	9 9	2 2	2 2							N	ot Sa	ımple	d Fo	r Thes	se Para	ame	ters					
	Monitoring event	P1	7/28/2015	84	26	698.7	691.9	6.0	-104.4	4.18	13.97	3.3 B	Q Q	Q Z	2 2	2 2 2	2 2	2 2	2 2	9 9	2 2	2 2	2 2	2 2	9 9	2 2	2 2	1,600	ON ON	2,900	ND S	QN Q	4.4 NS	2 2	0.32	9.9 2.6	256	0.49 NS	2 8 8	2 8	SN SN	SS				
	Monitoring event	P2	1/8/2016	248	26	698.7	691.1	0.84	-91.9	9.95	10.21	2.0 B	2 2	2 2	2 2 2	2 2 2	99	2 2 2	2 2	99	2 2	2 2 2	2 2 5	22	99	2 2	2 2	_	2 2	1,200	P 5	1.3	s Q	O.094	0.31	0.3 b	269 B ND		S S S							
	Monitoring event	P3	4/8/2016	339	26	698.7	691.7	0.38	-28.5	7.11	9.53	6.1	2 9	2 2	99	299	99	299	2 2	99	99	999	2 2 9	99	99	9 9	2 2	2 2	2 2	1,600	Q S	5.1	8.9 QN		0.23		221 0.094 J HF F1	5.2	S S S	SN	SN NS	SS				
MW-35D	Monitoring event	P4	7/12/2016	434	26	7:869	691.2	0.13	98.6	0.466	15.93	3.1	2 2	2 2	2 2 2	2 2 2	99	2 2 2	2 2	99	9 9	2 2 2	2 2 5	99	99	9 9	2 2	10,000	2 2	099	ND a	2.6	3.4 J B	O.034	0.26	2.8 b	253 0.10 H F	2.7	S S S	S S	SN SN	SS				
	Monitoring event	P5	10/11/2016	525	26	7.869	0.069	0.78	-115	0.455	14.3	6.1	Q Q	QN C	2 2	2 2 2	2 2	2 2 2	N O	2 2	2 2	2 2 2	2 2 5	2 2	9 9	2 2	2 2	11,000	2 2	1,300	ND a so	11.5	3.3 0.8 J		12.2			1 1	S S S	- 1			No	ot Sam	pled F	or
	Monitoring event	P6	1/24/2017	630	26	698.7	9.069	0.35	-117.8	0.294	10.28	3.6 B	2 2	2 2	2 2 2	2 2 2	99	2 2 2	2 2	9 9	2 2	2 2 2	2 2 5	22	99	2 2	2 2	8,900	2 2		QN O	3.7		O.12	0.13 F1	10.1 3.3 b	157 ND	3.7	S S S	SS	SN SN	S S	The	ese Pa	ramete	ers
	Monitoring event	P7	4/10/2017	706	26	7.869	691.2	0.16	-154	0.390	13.4	2.9	S S	Q Z	2 2 2	2 2 2	2 - Z	S S	N ON	2 2	2 2	2 2 2	2 2	2 2	2 2	2 2	2 2	9,200	2 2	2,500	ND 00723		2.7 ND	0.059	0.26	3.7			SN SN	SN	SN	NS				
	Monitoring event	P8	7/7/2017	794	26	698.7	690.4	0.22	-77.2	20.8	14.9	9.1	2 2	2 2	2 2	2 2 2	99	2 2 2	2 2	9 9	9 9	2 2 2	2 2 5	2 2	99	9 9		~	2 2	<u>س</u>	9	1.8	P.4.	9 8	0.26	4.2 DN	263 ND	8. 8	S S S	SZ	SN SN	SS				
	Monitoring event	P9	10/17/2017	896	26	698.7	689.8	0.23	-321.4	11.8	13.4	2.2	2 2	2 2	2 2	2 2 2	2 2	2 2 2	S S	9 9	2 2	2 2 2	2 2	2 2	2 2	2 2		-	2 2	5,300	ND 200	1.3	2.7 ND	ND 0.033	0.29	2.7	275 ND	6. L	S S S	SN	SN SN	NS				
	Monitoring event	P10	1/3/2018	974	26	698.7	691.4	1.46	-145.2	0.319 NA	9.88	2.6	2 2	2 2	2 2	2 2 2	2 5	2 2	2 2	99	2 2	2 2	2 2	2 2	9 9	2 2	2 2	-	2 2	9,800	QN S		2.0 ND						2 8 8	2 8	S S	SS				
	Monitoring event	P11	4/10/2018	1071	26	698.7	692.1	0.78	-108.8	N AN	9.77	7.3	2 2	2 2	9 9	2 2 2	2 2	2 2 2	2 2	2 2	2 2	2 2	2 2 5	2 2	99	2 2	2 2	19,000	2 2	8100	0.037 J	5.7	2.4 J ND	0.042	0.070	10.3 b	228 ND	5.7	2 8 8	2 8	SN SN	SS				

						Well		Field	d Paran	neters									VC	OCs							Dis	ssolved	i Gass	es				١	Wet C	hemistr	ry					(Q Potent	tial (DNA))
Well ID	Event Descript		Date	Elapsed Time (Days)	(feet) Total Depth	ASL) Top of Casing Elevation	ASL) Head Elevation D PH	-	Oxidation Reduction Potential Specific Conductance	Turbidity	(°C) Temperature	(L) Carbon, Total Organic	1,1,2-Trichloro-1,2,2-trifluoroethane	1,1,2-Trichloroethane 1,1-Dichloroethane	1,1-Dichloroethene	2-Hexanone (MEK)	4-Methyl-2-pentanone Acetone	Benzene Carbon Disulfide	Chloroe	(ug/L) Chloroform Chloromethane	cis-1,2-Dichloroethene Dichlorodifluoromethane	Ethylbenzene Methylcyclohexane	Methylene chloride Methyl Acetate	Tetrachloroethene	trans-1,2-Dichloroethene	Vinyl chloride	Xylenes, Total Carbon Dioxide		Ethene	Methane	Manganese	Sulfate	Nitrite	Phosphorous Ammonia	COD	(mg/L) Total Alkalinity Ferrous Iron	Iron	Acetic Acid Formic Acid	Lactic Acid n-Butyric Acid	Propionic Acid Chloride	Pyruvic Acid	Department	ia	TCE R-Dase (1)	
					(feet)	(ft. AMSL)	(ft. AMSL)	(mg/L)	(v m)	(NTUs)	5	Ĕ.								5								(na/L)	<u> </u>	\perp						Ĕ							8	JE (
	Monitoring event	P12	7/9/2018	1161	26	7.869	691.1	0.2	-145.1	49.7	14.5	2.9 B	2 2	9 9	2 2	2 2 2	ND S	Q Q	2 2	2 2	9	2 2	2 2	2 2	2 2 5	2 2	000'E9	Q	S	6,200	0.75 B	2.5	2 2	0.63	26.5 B	248 B	7.7	S S	SN SN	SN SN	S S				
	Monitoring event	P13	10/22/2018	1266	29	7.869	675.2	0.35		90	11.9	2.5 ND	2 2	9 9	2 2 2	2 2 2	2 2	2 2	2 2	22	9 9	2 2	0.55 J ND	2 2	2 2 5	2 2	9,200	Q.	_	0009	0.34 B	1.8.1	2 2	0.89 B			17.8	S S	S S	SN SN	S S				
	Monitoring event	P14	1/4/2019	1340	26		675.3	0.55	-176.4	980	10.7	2.6	2 2	9 9	999	2 2 2	2 2	99	2 2	99	9 9	99	99	9 9	2 2 5	2 2	11,000 B		9	10,000	, I .	رادا،			16.1 F1	190 B	98.8	S S	SN SN	s s	S S				
	Monitoring event	P15	4/18/2019	1444	29	698.7	691.5	2.41	19.9	17.37	11.4	5.6 UN	2 2	2 2	2 2 2	2 2 2	ON P.	2 2	2 2	22	9 9	Q Q	2 2	2 2	2 2	2 2	15,000 B	QN	Q.	009'6	0.4	2.1		0.89 B	SN	163 E8	14.3	S S S	SS SS	S S	S S				
	Monitoring event	P16	7/22/2019	1539	29	698.7	691.2	2.16	-70.8	0.429	13.7	8; E	2 2	9 9	9 9	2 2 2	2 2	99	2 2	99	9 9	99	99	9 9	2 2 5	2 2	11,000		2	10,000	0.066B	2 9	2 2	0.31	2 2	227	7.1	S S S	S S	NS 7.5	SN				
	Monitoring event	P17	10/17/2019	1626	29	698.7	692.0	0.16	-105.6	0.450		2.6	2 2	2 2	2 2 2	2 2 2	Q Z	2 2	Q Q	22	2 2	22	22	2 2	22	2 2	QN					Samp	led Fo	or The	ese P	'arame	eters								
	Monitoring event	P18	1/8/2020	1709	29	698.7	691.9	0.46	33.7	51.6	8.5	2.5	9	9 9	99	2 2 2	₽ 2.5.	2 2	2 2	99	9 9	99	99	99	2 2 9	2 2	2				Not	Samp	led Fo	or The	ese P	'arame	eters								
MW-35D	Monitoring event	P19	4/14/2020	1806	29	7.869	692.2	0.74	87.9	48	9.79	3.5	2 2	9 9	999	2 2 2	9 9	2 2	2 2	0.45J	9 9	99	99	99	2 2 5	2 2	11,000		9	11,000	0.83	14.1	2 2	0.22	S S	313	2 2	S S S	SN SN	8.4	NS O			npled Fo	
	Monitoring event	P20	10/6/2020	1981	29	698.7	690.3	0.3	-146.1	324	13	8.1 CN	Q Q	2 2	2 2	2 2 2	Q Z	2 2	Q Q	2 2	2 2	ND 31J	2 2	2 2	22	2 2	13,000	ND	Q	11,000	1.9B			0.36			; - .	S S S	S S	NS 6.4	SN S				
	Monitoring event	P21	4/5/2021	2162	29	698.7	692.1	6.71	75.2	12.4	11.15	4.7 CIN	2 2	9 9	999	99	2 5	99	2 2	99	9 9	99	99	2 2	2 2 5	2 2	12,000	9	9	230	0.20 B	9.5	0.029 JB	0.026	SN S	227 0.094.IHF	4.7	S S	SN SN	NS 01	NS S				
	Monitoring event	P22	10/21/2021	2361	29	698.7	692.1	0.17	-543	25.5	13.1	5.3	2 2	9 9	2 2	2 2 2	2 2	2 2	2 2	22	9 9	Q Q	2 2	2 2	2 2 5	2 2	13,000	QN	2	7,300			의	SN SN		4	:l. l.	S S	s s	S S	SN				
	Monitoring event	P23	4/7/2022	2529	29	698.7	693.7	7.75	32.5	50.25	10.9	8.3	Q Q	9 9	2 2	2 2 2	Q S	2 2 2	Q Q	22	2 2	Q Q	Q Q	2 2	2 2 5	2 2	ND 41,000	ND	Q.	260	SN	4.6	2 2	NS ND	SN SN	237 B	2.5	S S S	SN SN	SN SN	SN				
	Monitoring event	P24	10/7/2022	2712	29	698.7	691.3	0.22	-155.3	113	12.9	4.01 CN	2 2	9 9	9 9	2 2 2	9 9	999	2 2	99	99	99	99	99	2 2 5	2 2	34,000	9	9	2,700	NS	1.1.	2 2	SN SN	SN SN	249 B		S S	SN SN	SN SN	SN				
	Monitoring event	P25	4/7/2023	2894	29	698.7	692.9	4.54	164.3	228	9.8	4.7 CN	Q Q	2 2	2 2 2	2 2 2	2 2	2 2	Q Q	22	9 9	22	2 2	2 2	2 2 5	S S	48,000	Q	Q	550	S S S	2.2 J	2 2	S S	S S	236 ND HF	SZ S	S S S	S S	o z	SN				

						Well		F	ield Par	ameters	,								VOCs							D	issolved	Gasses				Wet	Chemistr	у				Q Poten	tial (DNA)	
Well ID	Event Descripti		Date	Elapsed Time (Days)		DC) Water Level measurement SL) Top of Casing Elevation		pH Dissolved Oxygen	ŏ	m) Specific Conductance Turbidity		L) Carbon, Total Organic	1,1,2-Trichloro-1,2,2-trifluoroethane	1,1,2-Trichloroethane 1,1-Dichloroethane	1,1-Dichloroethene	2-Hexanone (MEK)	4-Methyl-2-pentanone Acetone	Carbon Disulfide		cis-1,2-Dichloroethene	Ethylbenzene Methylczclobosene	Methylene chloride	Methyl Acetate Tetrachloroethene	Toluene trans-1,2-Dichloroethene	Trichloroethene Vinyl chloride	Xylenes, Total Carbon Dioxide		Ethene Methane	Nitrate Manganese	Sulfate	Suffide Nifrite Phosphorous	Ammonia	BOD Total Alkalinity Ferrous Iron	Iron Acetic Acid	Formic Acid Lactic Acid	n-Butyric Acid Propionic Acid Chloride	Dechlor Bact	eria		VC R-Dase
					(feet)	(ft. ATOC)		(SU)	+-		\vdash	(mg/L)							(ng/L)							1	(ua/L)	?					(mg/L)					, ,	(F	
	Monitoring event	BL1	6/17/2010	-1783	21	5.4		7.02	111	0.652	11.4	SN	2 2	2 2 5	2 2 !		2 2 2		2 2 2	2 2 2	2 2 2	2 2 2	22!		2. S €	2														
	Monitoring event	BL2	8/2/2010	-1737	21	9	683.4	6.92	-118	0.711	29.2	SZ	2 2			2002	21.7 21.7	0.93	2 2 2	2 2 2	2 2 2	2 2 2	2 2 5	2 2	0.74 J ND	Q N														
	Monitoring event	BL3	3/10/2015	-56	23.5	5.9	683.8	7.8	46.3	0.647	8.59	1.2	2 2			2 2 2	2 2 2	2 2 5	2 2 2	2 2 2	2 2 2				22															
	Monitoring event	P1	7/29/2015	85	23.5	6.25	683.4	5.75	-64.1	5.357	15	4,880 B	2 2	UN 0.57 J	2 2	130	2 2 2	9 9	2 2 2	2 2 2	2 2 2	US J	99	9 9	999	2														
	Monitoring event	P2	4/8/2016	339	23.5	5.4	684.3	5.55	3.5	4.533	9.03	4,530 B	2 2	22	2 2 :	009	288	2 2 5	2 2 2	2 2 2	2 2 2	2 2 2	22!	22	999	2														
	Monitoring event	P3	7/11/2016	433	23.5	7.65	682.1	1.38	-36.4	7.885	13.82	4,210	2 2	22	2 2	910	330	2 2 5	2 2 2	2 2 2	2 2 2	222	22	Q Q	2 2 2	Q N														
	Monitoring event	P4	10/12/2016	526	23.5	9.1	_	5.79	-145.2	10.070	17.16	4)		2 2		1	020 020	- 1	2 2 2				22		2 2 2															
MW-36D	Monitoring event	P5	1/24/2017	630	23.5	5.88		6.76	-146	4.677	8.07	· I	2 2	2 2 5	2 2 :	ON 199	280 Z	0.96.0	2 2 2	2 2 2	2 2 2	0.0	22	2 2	222	Q N					N	ot Samp	pled Fo	r These	Paran	neters				
	Monitoring event	P6	4/12/2017	708	23.5	5.15		6.4	-116	4.997	9.3	2,970	9 9	2 2 5	2 2	2 8 2	84 5	2 2 5	2 2 2	2 2	2 2 2	2 2 2	99!	9 9	999	2														
	Monitoring event	P7	7/6/2017	793	23.5	6.95	682.8	7.11	-57.5	3.040	15.7	870		2 2 5									2 2 !	9 9	999	2														
	Monitoring event	P8	10/18/2017	897	23.5	7.5	682.2	7.15	-317	2.520	14.9	152	9	2 2 5	2 2	260	5 5 5	0.53	2 2 2		2 2 2		22		999	2														
	Monitoring event	P9	1/4/2018	975	23.5	5.12	684.6	9.52	-9	1.444 AA	8.23	31.9	9	2 2 5	2 2				2 2 2	2 2	2 2 2	2 2 2	2 2	0.88 ND	999	2														
	Monitoring event	P10	4/9/2018	1070	23.5	5.21		7.35	-108	1.334 NA	8.17	21.3	2 2	2 2 5	2 2	Z 2 2	2 2 2	2 2 9	2 2 2	2 2	2 2 2	2 2 2			999	2														
	Monitoring event	P11	7/10/2018	1162	23.5	6.35	683.4	7.03	-174	2.160	15.7	48.1	9 9	2 2 9	2 2 !	25 J*	2 2	2 2 9	2 2 2	999	2 2 2	2 2 2	22	9 9	999	2														
	Monitoring event	P12	10/18/2018	1262	23.5	_		7.21		36.8	11.9	15.8	2 2	2 2	2 2			2 2 5	2 2 2	2 2	2 2 2	2 2 2	2 2	2 2	222	Q N														
	Monitoring event	P13	1/8/2019	1344		5.54		7.39		1.810	9.8	12.5	2 2	2 2 5	2 2	2 2 2	2 2 2	2 2 5	2 2 2	2 2	2 2 2	2 2 2	2 2 :	9 9	999	Q														
	Monitoring event	P14	4/16/2019	1442	23.5			7.71			\rightarrow	14.4	2 2	22	2 2	202	2 2 2	2 2 5	2 2 2	2 2 2	2 2 2	2 2 2	22	2 2	999	Q N														

						Well		Fi	ield Par	ameter	s									voc	s								Disso	Ived G	asses					Wet 0	Chemis	stry						Q Pote	ntial (D	ONA)	
Well ID	Event / Descriptio	/ on	Date	Elapsed Time (Days)	(feet) Total Depth		(ft. AMSL) Head Elevation	(SU) PH Dissolved Oxygen	ŏ	(mS/cm) Specific Conductance	NTUS) Lucidity (*C) Temperature	Carl	1,1,1-Trichloroethane	ane	1,1-Dichloroethane	1,2-Dichloroethane	2-Butanone (MEK)	4-Methyl-2-pentanone Acetone	Benzene Carbon Disulfide	Chloroethane (ug/L) Chloroform	, 0	cis-1,2-Dichloroethene Dichlorodifluoromethane	Ethylbenzene	Methylcyclohexane Methylene chloride	Methyl Acetate Tetrachloroethene	Toluene	trans-1,z-Dichloroethene Trichloroethene	Vinyl chloride Xylenes, Total	Carbon Dioxide	(ug/L) Ethene	Methane	Nitrate	Ferriciron	Suffide	Phosphorous	COD	(mg/L) Total Alkalinity	Ferrous Iron Iron	Acetic Acid Formic Acid	Lactic Acid	n-Butyric Acid Proplonic Acid	Chloride Pyruvic Acid	Dechlori Bacte (1) Devaloccocoides Devaloccocoides (2)	eria	(cells / TCE R-Dase (1)	BAVI VC R-Dase (1)	VC R-Dase
	Monitoring event	P15	7/25/2019	1542	23.5	₹.		7.52		0	350.2	Τ	9 9	2 2	9 9	2 2 2	2 2 :	22	9 9			2 2	2 2	2 2	9 g	9 2	2 2	99																			
	Monitoring event	P16	10/18/2019	1627	23.5		_	7.2	-99.4	-	11.6		2 2	N O	2 2	2 2 2	2 2	9 9	2 2	2 2	2 2 2	2 2	2 2	2 2	9 9	2	2 2	2 2																			
	Monitoring event	P17	1/8/2020	1709	23.5	4.90 689.7	684.7	6.99	-20	1.570	14	17.9	2 2	S O	2 2	2 2 2	2 2 5	9 9	9 9	2 2	2 2 2	2 2	2 2	3.6J	9 9	2	2 2	9 9																			
	Monitoring event	P18	4/15/2020	1807	23.5	4.75	685.0	6.97	28.7	1.388	8.48	13.6	9 9	2 2	2 2	2 2 2	2	9 9	9 9	2 2	2 2 9	2 2	2	2 2	9 9	2	2 2	9 9																			
MW-36D	Monitoring event	P19	10/9/2020	1984	23.5	9		7.46	-111	-	13.3	6.6	2 2	S S	2	2 2 2	2	2 2	2 2	2 2	2 2 2	2 2	2 :	3.6J	2 2	2	2 2	2 2										n									
	Monitoring event	P20	4/6/2021	2163	23.5	_		7.5	-76.3	0	9.06	12.9	2 2	S S	2 2	999	2 2	9 9	9	2 2	2 2	2 2	2	2 2	9 9	2 2	2 2	9 9										"									
	Monitoring event	P21	10/22/2021	2362	23.5	7.1.6		7.76	-169	-	12.7	13	9 9	2 2	9 9	999	2 2 !	9 9	9 9	9 9	9 9	2 2	2 9	3.62	9 9	2 2	2 2	99																			
	Monitoring event	P22	4/11/2022	2533	23.5	689.7		7.39	-159	-	9.8	11.8	2 2	S S	2 2	999	2 2	9 9	2 2	2 5	2 2	2 2	2	2 2	9 9	2	2 2	2 2																			
	Monitoring event	P23	10/5/2022	2710	23.5			7.21	-149	,	17.1	10.5	9 9	2 2	9 9	9 9	2 9	9 9	9 9	2 2	9 9	2 2	2	9 9	9 9	2 2	2 2	9 9																			
	Monitoring event	P24	4/12/2023	2899	23.5	4./4	685.0	7.14	-98.1	1.409	10.7	9.4	9 9	2 2	2 2	2 2	2 !	9 9	9 9	2 2	2 2 2	2 2	2	2 2	9 9	2	2 2	9 9																			

				Well	F	ield Parai	neters							VOCs						Dis	ssolved (Gasses	Wet Chemi	stry	QP	otential (DNA)
Well ID	Event / Description	Date	Elapsed Time (Days)	Total Depth CO) Water Level Measurement SL) Top of Casing Elevation	SL) read Elevation PH Dissolved Oxygen		m) specific Conductance s) Turbidity Temberature	. 0	1,1,1-Trichloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane 1,1,2-Trichloroethane	1,1-Dichloroethane 1,1-Dichloroethane	2-Hexanone (MEK)	4-Methyl-2-pentanone Acetone	Carbon Disuffide		cis-1,2-Dichloroethene Dichlorodifluoromethane	hylbenzene	Methylene chloride Methyl Acetate Toward Incommend	Toluene trans-1,2-Dichloroethene	Trichloroethene Vinyl chloride	Xylenes, Total Carbon Dioxide	Ethane Ethane	Methane	Mirrate Marganese Ferriciran Sulfrate Sunfrate Mirrite Mirrate Ammonia COB	Ferrous fron Iron Acetic Add Formit Add Leafle Add In Buryr Add Orborion: Add Chorde Pyruve Acid	Dechlorinati Bacteria	TCER-Dase (1) BAVI VCR-Dase (1) VCR-Dase
					(ft. AMSL) (SU)		-	(mg/L)						(ng/L)							(ug/L)		(mg/L)			(cells / mL)
	Monitoring event BL1	6/18/2010	-1782		685.7 7.23 5.14		8.9	SN SN	999	999	2 2 2	99	2 2 2	2 2 2	99	99	999	222	99	2						
	Monitoring event BL2	8/3/2010	-1736		7.15		2.98		999	999	2 2	Ø 7.7	5 5	2 2 2	99	99	999	99	99	2						
	Monitoring event BL3	3/10/2015	-56	22.5 4.98 690.1	8 85.1	-80.3	0.073	101	999	999	2 2	99	2 2 2	2 2 2	99	99	999	222	99	9						
	Monitoring event P1	7/29/2015	85	22.5 5.4 690.1	6.42	-84.5	29.6	1,060 B	Q Q Q	2 2 2	28 28	2 6	2 2 2	2 2 2	22	22	2 2 2	2 2 2	2 2	2						
	Monitoring P2	4/8/2016	339	22.5 4.28 690.1	685.8	-107	20 20 8 28		Q Q Q Q	2 2 2	390 J	22	2 2 2	2 2 2	2 2	Q Q	2 2 2	2 2 2	Q Q	Q.						
	Monitoring P3	7/12/2016	434		9.95		7.34	60.9	999	9 9 9	130	₽ 8 !	2 2 2	2 2 2	99	99	999	99	22	9						
	Monitoring P4	10/12/2016	526		6.98		10.8		Q Q Q		2 Q 0	-	2 2 2	2 2 2	222	Q Q		2 2 2	Q Q	Q						
	Monitoring P5	1/24/2017	630		6.93	-87.7	11.1	18.3	9 9 9	2 2 2	2 S S	22	2 2 2	2 2 2	99	22	2 2 2	2 2 2	9 9	Q.						
	Monitoring P6	4/11/2017	707		7		11.4	6.3	999	999	2 2 2	99	2 2 2	2 2 2	22	99	999	999	99	9						
MW-37D	Monitoring event P7	7/10/2017	797		7.08		13.3	4.4	9 9 9	2 2 2	2 2 2	99	2 2 2	2 2 2	22	22	2 2 2	2 2 2	22	Q.			Not Sampled F	For These Parameters		
	Monitoring P8	10/18/2017	897		7.13		6.8	5.3	999	999	2 2 2	99	2 2 2	2 2 2	2 2	99	999	2 2 2	99	2						
	Monitoring P9	1/5/2018	976		10.22		0.764 NA	6.2 B	9 9 9	999	2 2 2	99	2 2 2	2 2 2	99	99	999	2 2 2	99	9						
	Monitoring P10	4/11/2018	1072		7.86		0.639 NA		2 2 2 2		2 2 2	22	2 2 2	2 2 2	22	Q Q	222	2 2 2	Q Q	Q						
	Monitoring event P11	7/11/2018	1163		7.29		8.27	1.6 B	9 9 9	2 2 2	2 2 2	99	2 2 2	2 2 2	22	22	222	2 2 2	2 Z	Q						
	Monitoring event P12	10/18/2018	1262		682.8		10.2		9 9 9	2 2 2	2 2 2	22	2 2 2	2 2 2	22	22	222	2 2 2	Q Q	Q.						
	Monitoring event P13	1/19/2019	1355		7.33	-132	1.060	3.4	999	999	2 2 2	99	2 2 2	2 2 2	99	99	999	99	99	9						
	Monitoring event P14	4/17/2019	1443		7.43		29.7	2.9	2 2 2	2 2 2	2 2 2	22	2 2 2	2 2 2	2 2	Q Q	2 2 2	2 2 2	22	Q Q						
	Monitoring event P15	7/24/2019	1541		7.19			1.6	999	999	2 2 2	99	2 2 2	2 2 2	99	99	999	99	99	9						
	Monitoring event P16	10/18/2019	1627		7.22			1.8	9 9 9		2 2 2		2 2 2					2 2 2	28	2						

					Well		Fiel	d Param	eters								VO	Cs							Dissolv	ed Gasse	es			w	Vet Chem	nistry				QP	otential (E	NA)
					\top						Π,		Τ																					П		Dechlorinatii Bacteria	Funct	ional Genes
Well ID	Event / Description	Date	Elapsed Time (Days)	Total	Water Level	Head Elevation		Oxidation Reduction Potential Specific Conductance	F F	Carbon, Total Organic	1213	1,1,2-Trichloroethane	1,1-Dichloroethane	1,2-Dichloroethane 2-Hexanone	2-Butanone (MEK) 4-Methyl-2-pentanone	Acetone Benzene		Chloromethane	Cis-1,z-Dichloroemene Dichlorodifluoromethane	Ethylbenzene Methylcyclohexane Methylene chloride	Methyl Acetate	등 :	trans-1,2-Dichloroethene Trichloroethene	Vinyl chloride Xylenes, Total	Carbon Dioxide Ethane	Ethene Methane	Nitrate	Manganese Ferric iron Sulfate	Suffide Nitrite	Phosphorous Ammonia	COD BOD Total Akalinity	Ferrous Iron	Acetic Acid Formic Acid	Lactic Acid n-Butyric Acid Pronionic Acid	Proponic Acid Chloride Pyruvic Acid	Dehalococcoides spp (1)	TCE R-Dase (1)	BAVI VC R-Dase (1) VC R-Dase
				(feet)	(ft. AMSL)	(ft. AMSL)	(mg/L)	(ms/cm)	(NTUS)	(ag/L)							(Indi)	(ngvr)								(ng/L)					(mg/L)						(cells / mL)	
	Monitoring event P	1/8/2020	1709	22.5	4.06	686.0	0.33	45.5	3.55	2.1	2 2	S S	2	Q Q	g g	22	1.3	2 2 2	2 2 2	2 2 2	2 2 2	2 2 2	2 2 2	9 9														
	Monitoring event P1	8 4/15/2020	1807	22.5	3.98	9	0.78	64.4		1.8	2 2	2 2	9 9	Q Q	9 g	99		2 2 2		2 2 2	2 2 2		2 2 2	2 2														
	Monitoring event	10/7/2020	1982	22.5	6.52	683.6	0.3	113	6.01	12.6	2 2	2 2	9 9	Q Q	9 9	99	2 2	9 9 9	2 2 5	999	2 2 2		2 2 2	9 9														
	Monitoring event P2	20 4/5/2021	2162	22.5	4.41	5.7	2.19	-53.5	3.75	9.93	2 2	2 2	9 9	ON ON	9 8	22		2 2 2	2 2	2 2 2	2 2 2	2 2 2	2 2	9 9									_					
MW-37D	Monitoring event P2	10/21/2020	1996	22.5	4.38	685.7	0.19	-100	4.08	13.1	2 2	9 9	9 9	9 8	9 9	99	2 2 2	9 9 9	2 2 5	999	2 2 2	2 2 2	2 2 2	9 9						Not Sa	ampled	For Ih	ese Pa	ramete	ers			
	Monitoring event P2	22 4/13/2022	2535	22.5	3.75		0.11	-112	21.94	11.5	2 2	2 2	9 9	Q Q	Q Q	22	2 2	2 2 2	2 2		2 2 2	2 2 2	2 2 2	9														
	Monitoring event P2	10/6/2022	2711	22.5	5.80	684.3	0.02	-91.3	24.8	12.5	2 2	2 2	2 2	Q Q	9 g	22	2 2 2	2 2 2	2 2 2	2 2	2 2 2	2 2 2	2 2 2	9 9														
	Monitoring event P2	4/12/2023	2899	22.5	3.75	686.4	0.1	-74.8	14.3	10.1	2 2	2 2	2 2	N N	9 N	28	2 2 2	2 2 2	2 2	2 2 2	2 2 2	2 2 2	2 2 2	2 2														

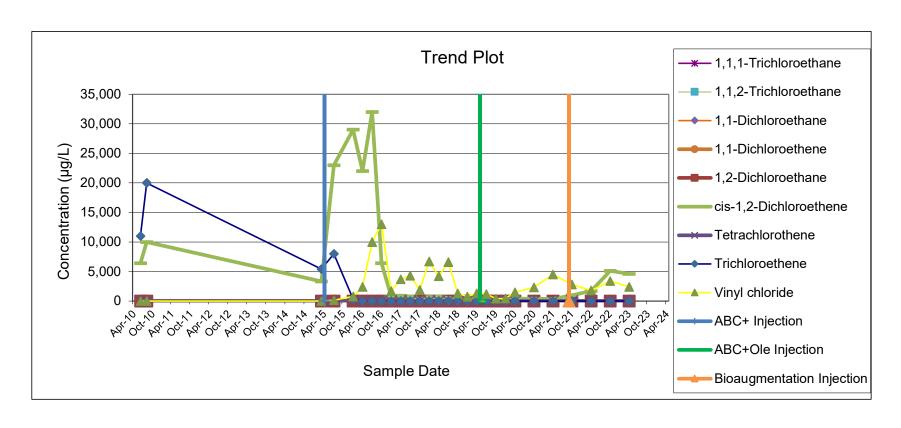
						Well		Fie	ld Parai	meters								,	VOCs							Diss	olved G	asses					Wet	Chemis	itry					Q Pot	ential (D	NA)
Well ID	Event Descript		Date	Elapsed Time (Days)	Total Depth Water Level Measurement	Top of Casing Elevation		pH Dissolved Oxygen	ŏ	Specific Conductance Turbidity		2 -	1,1,2-Trichloro-1,2,2-trifluoroethane	1,1-Dichloroethane	1,2-Dichloroethane 2-Hexanone	2-Butanone (MEK)	Acetone Benzene	Carbon Disulfide	Chloromethane	cis-1,2-Dichloroethene	Ethylbenzene Methylcyclohexane	Methylene chloride Methyl Acetate	Tetrachloroethene Toluene	trans-1,2-Dichloroethene Trichloroethene	Vinyl chloride Xylenes, Total	Carbon Dloxide	Ethane	Methane	Nitrate Manganese	Ferric iron Sulfate	Suffide	Phosphorous	COD	BOD Total Alkalinity	Ferrous Iron Iron	Acetic Acid Formic Acid	Lactic Acid n-Butyric Acid	Propionic Acid	Ba	Dehalococcoides spp (1)	TCE R-Dase (1)	BAVI VC R-Dase (1)
					(feet)	(ft. AMSL)	(ft. AMSL)	(SU)	(m V)	(mS/cm) (NTUs)	(C)	(mg/L)							(ng/L)								(ug/L)							(mg/L)							(cells /	
	Monitoring event	BL	6/22/2010	-1778	21	13.21	674.5	1.1	20.5	0.716	14.23	SN ON	Q Q	2 2	2 2	2 2	2 2	2 2	2 2 2	4	270 ND	22	230 J 300	ND 11,000	ND 730 J							NI-4	C	-11-	Th	D-						
	Monitoring event	BL2	8/4/2010	-1735	21		-	6.92		_	18.1	SN G	9 9	99	99	99	99	9 9	2 2	13,000	2 2 2	99	130	2,100	ND 260 J										or The				_			
	Monitoring event	BL3	11/5/2014	-181	24	689.7	9	0.21		0.658 NS	12.85	SZ				Not	Sampl	ed Fo	or Thes	e Par	amete	ers				5,500	8 8	1,200	ND 0.025	0.98	S S	0.27	229	489	0.98	88	S S	SN SN	2		ampled Param	
	Monitoring event	BL4	3/10/2015	-56	24	5:32	684.3	7.78	-2.3	0.778	7.89	2.5 ND	2 2	99	2 2	99	22	1	2 2 2	.,					260 ND										or The							
	Monitoring event	P1	6/12/2015	38		- 1	NS (G	rab Sa	mple)			2	2 2	2 2	2 2	2 2	22	2 2	2 2 2	6 5	2 2 2	22	28	18 J	20 ND			1			1											
	Monitoring event	P2	7/27/2015	83	24	7.689	684.0	5.67	-57.6	739	17.39	7,240 ND	2 2	99	2 2	9 9	99	2 2	2 2 2	390	3.8	99	2 2	QN 8.9	60	7	2 2	000'9	₽ 8	397 UD	2 2				105	693	746 1860	996 SN	2	8.41E+02	<2.50E+01	1.20E+02 1.47E+01J
	Monitoring event	P3	1/7/2016	247	24	5.6	684.5	5.39	22.2	6.189	9.7	4,650 ND	9 9	2 2	99	610 ND	8 2	2 2	999	280	999	99	99	99	4 8	20,000	9 9	570	9 €	ND 2.0.5	22	1.8	14,300	ND 5860	664 HF 477	S S	SN SN	SN SN	2			_
MW-38D	Monitoring event	P4	4/8/2016	339	24	689.7	685.0	6.31	-75	4.248	8.83	2,540 ND	2 2	3.8.1	Q 69	1,000	129 129	2 2	2 2 2	820	2.3 E. G	1.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	22	99	240	9,700	9 9	1,300	DN 2.4	102 ND	99	1. 2	8,670	>1499.20 H 4220	347 HF 449	S S	s s	SN SN	0	Not S These	ampled Param	For eters
	Monitoring event	P5	7/12/2016	434	24	689.7	683.4	6.89	-159				QN CN	2 2	2 2 2	1,100 CN	130 ND	2 2		8 8	2 2 2	2 2 2	QN QN	98	29 ND	14	2 2	5,400	ND ND 1.0 B	108 ND	0.064 J ND	2 2 3 5	37600	>1477.73 H b 3910	119 HF 227	S S	SN SN	SN	2	4.00E+04	1.78E+02	2.22E+04 6.96E+02
	Monitoring event	P6	10/12/2016	526	7.35	689.7	682.3	7.33	-149.4	51.9	14.3	1,310 B	2 2	5.1.5	99	98 5	£ 5	5 4	2 2 2	99	2 2	99	UD 7.7.	99	58 8.2 J	100,000	9 9	1,900	0.042B	32.8 ND	99		3,860	3,020	33.2	2 2	S S	SN SN S	2	Not C	omplod	For
	Monitoring event	P7	1/23/2017	629	24	5.22	684.4	1.08	-138.8	2.997			QN CN	2 2	2 2 2	520 CN	87 J ND	N &	2 2 2	2 2	2 2 2	99	ND 6.7 J	2 2	14 9.3 J		2 2		0.022	1 1		0.69	2,050	2,040 H b 3	15.3 HF 33.5	S S	S S	SN SN S	2		ampled Param	
	Monitoring event	P8	4/12/2017	708	24	4.4	685.3	7.32	-163.5	2.526	8.4	459 B	9 9	2.1.J	99	099	98 QN	ND 17	2 2	99	5.7 DN	2.0 J	ND 7.5	99	6.7	120,000	9 9	4,300	0.017	24 ND	9 9	0.59	1300	667 Hb 2,290 B	노니	S S	S S	SN SN	2	1.09E+04	1.60E+02	<2.50E+01 1.08E+03
	Monitoring event	P9	7/7/2017	794	24	7.689	684.0	7.61	-115.7	19.5	18.4	370 ND	QN CN	2 2	2 2	720 CN	47 QN	0.81 J	2 2	2 2	3.9 J	2 2	ND 5.9	Q Q	11	92,000	2 2	4,			Q Q			708 H b 1,840	11.2	S S		SN SN		Not S	ampled	For
	Monitoring event	P10	10/18/2017	897	24	7.689	685.3	0.49	-278.7	2.060	13.6	113 ND	2 2	19 1	22	2 4 5	33	S K	2 2 2	27	9.6	2 2	98 38	5.1 ND	30		2 2	15,000	ND 0.0062	1.3 ND	20	0.85	323	133 Hb 1,300 B	1.0 JHF 2.3	S S	S S	SN SN	0		Param	

						Well		Field	Param	eters								voo	Cs						Diss	olved Ga	sses					Wet Ch	emistr	у				Q	Potential (I	DNA)
Well ID	Event Descript		Date	Elapsed Time (Days)	(feet) Total Depth (f. ATOC) Water Level Measurement	(ft. AMSL) Top of Casing Elevation	(ft. AMSL) read Elevation (SU) PH	(mg/L) Dissolved Oxygen	(mV) Oxidation Reduction Potential (mV) Specific Conductance		ng/L) Carbon, Total Organic	1,1,1-Trichloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane	1,1,2-Trichloroethane 1,1-Dichloroethane	1,1-Dichloroethene	2-Hexanone	4-Methyl-2-pentanone	Benzene Benzene	Chloroethane Chloroform	Chloromethane	Dichlorodifluoromethane Ethylbenzene	Methylcyclohexane Methylene chloride	Methyl Acetate Tetrachloroethene	I oluene trans-1,2-Dichloroethene Trichloroethene	Vinyl chloride Xylenes, Total	Carbon Dioxide	(ug/L) Ethene	Methane	Nitrate Manganese	Ferric iron Suffate	Sulfide Nitrite	Phosphorous Ammonia	COD	(mg/L) Total Alkalinity Ferrous Iron	Iron Acetic Acid	Formic Acid Lactic Acid	n-Butyric Acid Propionic Acid	Chloride Pyruvic Acid	Dechlorina Bacteria (t) dd % s s s s s s s s s s s s s s s s s	(cells / mL) TCER-Dase (1)	BAVI VC R-Dase (1)
					€	<u> </u>	£ _	5	٤	. &	٤								_														5						<u> </u>	
	Monitoring event	P11	1/4/2018	975	24 NA	689.7	₹	¥	¥ 4	A A	77.1	2 2	9 9	2 5	ND SE	S Q Y	S S	23	2 2 2	Q 4.1	28	요요;	S S	5.1	81,000	9 9	22,000	0.0059	6.8 ND	Q Q	0.56 0.095 F1	245 147 H b	1,680 CN	SN SN	SN SN	S S	8 8 8	The	t Sample se Paran	neters
	Monitoring event	P12	4/10/2018	1071	24	689.7	NA 7.51	1.09	1381	A P	19.2	9 9	99	99	2 2	2 2 2	2 2 2	5 4 5	299	3.15	99	993		£ 8 €	œ l	9 9	30	OND 0.0067	3.6 ND	99	0.45		1440 B	3.6 NS	s s	S S	2 8 8	1.81E+02	6.36E+01	1.25E+01 5.16E+01
	Monitoring event	P13	7/11/2018	1163	24		682.8		-180.6 2 296	2 2	29.9	2 2	N 4.3	2 2	N ±	- - -		2 8 2	2 2 2	0.9 0.9	22	229	2 2 2	9 8	6	9 9	18,000	0.014 B	5.3 ND	Q Q	0.97	220 B 125	1520 B	7.8 NS	s s	S S	SSSS		t Sample se Paran	
	Monitoring event	P14	10/17/2018	1261	24	689.7	7.76	0.25	1.836	20.1	32.5	2 2	2 S	2 2	2 2	3 2	ND 2	55	2 2 8	2.2 S	2 2	2 2 3	8 2 2	2 2 2	71,000	9 9	12,000	0.008	2.8 ND	밀밀	0.78 B 0.60	14.6	1,280 UN	8.8 NS	8 8	S S	2 8 8		t Sample se Paran	
	Monitoring event	P15	1/4/2019	1340	24	689.7	684.6	0.2	-138.9	14.8	11.5	2 2	2 2	2 2	2 2	2 2 2			222	22	22	223	GN CN	2 2	73,000 B	21 ND	16,000	0.0044	1.9 ND	QN QN	0.48		1370 B ND HF		SN SN	S S	S S S	No The	t Sample se Paran	d For neters
	Monitoring event	P16	4/16/2019	1442	24	689.7	7.82	2.89	1 952	49.17	15.9	Q Q	Q Q	2 2	2 2	2 2 2	2 2 2	5 6 5	2 2 2	22	22	223	Z.4.3	ON 18.	73,000	32	13,000	O.0068 B	2.1 ND	Q Q	1.1	s s	1 1	_	s s	S S	S S S		t Sample se Paran	
	Monitoring event	P17	7/24/2019	1541	24	689.7	684.7	0.51	-134	123.11	641	2 2	22	2 2	12 J	2 2	8 8 2	8.7 G	S Q 7	99	2 2	2 2 3	C GN CN	4.5 J	290,000	2 2	8,400	0.17 B	65.9 ND	Q Q	ND 0.24	9 9	1,410 3.5 HF	68.4 B	S S	SZ SZ	52.3 NS		t Sample se Paran	
	Monitoring event	P18	10/17/2019	1626	24	689.7	685.0	0.19	-148.2	39.45	148	9 9	99	9 9	2 2	3 2 2	2 2 2	5 5.0	299	S 8.3	99	993	5 B S	9 2	180,000	9 9	12,000	O 1.0	55.9 ND	0.12	NS 0.08	s s	1,330 0.12 HF	S Z	S S	SN SN	21.6 NS		t Sample se Paran	
MW-38D	Monitoring event	P19	1/7/2020	1708	24	689.7	685.5	0.62	-121.6	13.8	126	Q Q	Q Q	2 2	5.7 J	ND S	2 2	3.1	2 2 2	3.7.J	Q Q	98:	4.4 ON	S 5 =	160,000	2 2	12,000	0.082	34.6 ND	QN QN	NS QN	S S		0,0	SN SN	S S	19.4 NS		t Sample se Paran	
	Monitoring event	P20	4/14/2020	1806	24	689.7	7.09	0.95	1.736	27.2	58.9	2 2	22	2 5	2 2	2 2 2	2 2 2	2 2 2	2 2 2	ON 4.4	99	223	2. S S	₽ P E	180,000	9 9	160,000	0.068	17.3 ND	9 9	SN ON	S S	1,090		s s	S S	15.9 NS		t Sample	
	Monitoring event	P21	10/12/2020	1987	24	689.7	683.4	0.88	-98.3	22.3	170	Q Q	2 2	2 2	QN Sec	ND SE	8 2 2	2 2 2	2 2 2	22	ND 4.2	222	2 2 2	ON 15.3	48,000	2 Q	14,000	0.021	4.2 ND	QN Q	NS	SN SN	1,040 ND HF	4.2 NS	SN SN	SZ SZ	NS 18	The	se Paran	
	Monitoring event	P22	4/5/2021	2162	24	689.7	7.43	2.08	-87.4	9.04	25.3	2 2	22	2 2	2 2	2 2 2	2 2 2	2 2 2	2 2 2	99	22	225	2 2 2	2 2	000'86	9 9	20,000	0.40B	10.3	Q Q	NS 0.12	S S	640 ND HF	10.3 NS	S S	S S	13.3 NS	2.18E+02	3.63E+01	<2.50E+01
	Monitoring event	P23	10/22/2021	2362	3 91	689.7	685.8	0.13	1.76.1	16.2	24.8	Q Q	Q Q	2 2	2 2	2 2 2	2 2 2	2 2 2	222	2 2	Q Q	22	222	2 2	51,000	2 2	15,000	0.042J	8.5 ND	QN QN	NS NS	S S	803 B	8.5 NS	S S	S S	S S S			
	Monitoring event	P24	4/12/2022	2534	24	689.7	6.95	0.13	2.6	38.82	6.2	9 9	99	9 9	2 2	2 2 2	2 2 2	2 9 9	299	99	99	999	2 2 2	99	000'69	9 9	16,000	0:030 J NS	2.8	99	SN SN	SN SN	402 ND HF	2.8 NS	SN SN	SZ SZ	S S S	No	t Sample	d For
	Monitoring event	P25	10/6/2022	2711	24	689.7	684.7	0.14	-99.5	50.6	11.2	2 2	22	2 2	2 2	2 2 2	2 2 2	2 2 2	2 2 2	99	28	225	2 2 2	99	31,000	9 9	20,000	0.02J NS	3.1 8.7 J	9 Q	NS NS	S S	486 0.30 HF	3.4 NS	SN SN	S S	S S S		se Paran	
	Monitoring event	P26	4/7/2023	2894	24	689.7	7.17	0.15	9	29.5	10.8	2 2	22	22	5 S ±	- 8 %	2 2 2	2 2 2	2 2 2	99	2 2	225	222	99	35,000	9 9	28,000	S S	NS 5.2	22	SN SN	SN SN	344 ND HF	S S	SN SN	SZ SZ	S S S			

					١ .	Well		Field	Param	eters									VOCs							Dis	solved	Gasses				١	Vet Che	mistry					2 Potenti		
Well ID	Event / Descriptio		Date	Elapsed Time (Days)	Total Depth Total Depth Water Level Measurement	L) Top of Casing Elevation	pH	Dissolved Oxygen			Temperature Carbon, Total Organic	1.	1,1,2-Trichloro-1,2,2-trifluoroethane	1,1-Dichloroethane	1,2-Dichloroethane	2-Butanone (MEK)	4-Methyl-2-pentanone Acetone	Carbon Disulfide	Chloroform	cis-1,2-Dichloroethene	Ethylbenzene	Methylcyclohexane Methylene chloride	Methyl Acetate Tetrachloroethene	Toluene trans-1,2-Dichloroethene	Trichloroethene Vinyl chloride	Xylenes, Total Carbon Dioxide	Ethane		Nitrate	Manganese Ferric iron Suffato	Suffide	Phosphorous Ammonia		Total Alkalinity Ferrous Iron	Acetic Acid	Formic Acid Lactic Acid n-Butwic Acid	Propionic Acid Chloride Pyruvic Acid	ides spp (1)		TCE R-Dase (1)	
					(feet)	(ft. AMSL)	(ft. AMSL)	(mg/L)	(mS/cm)	(NTUs	(°C)	, ,							(ug/L)								(ug/L)						(mg/L)						/slleo)	<u>į</u>	
	Monitoring event	BL1 6	6/18/2010	-1782	20		685.7	4.93	-49.6		_	17	2 2	4.7 J	GN CN	2 2	2 2 2	2 2 2	2 2 2	2 2 2	2 2 2	2 2 2	2 2	2 2	99	2															
	Monitoring event	BL2 8	8/3/2010	-1736	20		7.1	_	-138		15.89		2 2	5.8	2 2	9 9	5 4 5	2 2 2	2 2 2	2 2 2	2 2 2	2 2 2	2 2	9 9	99	9															
	Monitoring event	BL3 3	3/10/2015	-56	22.5		685.0	0.77	-47.4			2	9 9	2 2	9 9	2 2 2	2 2 2	2 2 2	2 2 2	2 2 2	2 2 2	2 2 2	2 2	99	99	2															
	Monitoring event	P1 7	7/29/2015	85	22.5	689.7	5.76	0.4	-63	767	17.12	Q.	2 2	0.80	2 2					2 2 2	2 2 2	2 2 2	2 0	9 9	98	Q.															
	Monitoring event	P2 4	4/8/2016	339	22.5	689.7	685.6	0.43	3.505	120	7.17		2 2		2 2 2	910	250 J	2 2 2	2 2 2	2 2 2	2 2 2	2 2 2	2 2	9 9	99	2															
	Monitoring event	P3 7	7/12/2016	434	22.5		683.0	0.45	-119		14.8	9	2 2	2 2	₽ Q - Z	340	2 8 5		2 2 2	2 2 2	2 2 2	2 2 2	2 2	9 9	99	9															
	Monitoring event	P4 10	0/13/2016	527	22.5	_	681.9 6.85	0.41	1 807		12.2		2 2	1 1	5 5 5		5 8 5	1 1	2 2 2	2 2 2	2 2 2	2 2 2	2 2	99	99	9															
	Monitoring event	P5 1	1/24/2017	630	22.5		6.85		-117		_			2 2 2	1 1	-	A 43	0	_ _ -	2 2 2					99																
	event	P6 4	1/11/2017	707	3.84		685.9		1350			9	2 2	2 2	2 5 5	28 5	5 6 5	2 2 2	2 2 2	2 2 2	2 2 2	2 2 2	2 2	0.73 J ND	28	2															
MW-39D	event	P7 7	7/6/2017	793	22.5	689.7	7.03		-90.9																99							Not S	ampled	d For Ti	hese l	Param	eters				
	event	P8 10	0/18/2017	897	22.5		683.5		3 -314				2 2	-	-	-	-		2 2 2	-		2 2 2	2 2	0.86 ND	99	2															
	event	P9 -	1/9/2018	980	3.7		6 9.33		2 -53.8	A N			2 2	-	_	_	2 2 2		2 2 2		2 2 2				2 2																
	event	P10 4	1/12/2018	1073	3.89		7.15		-85.2		5 8.75					_			2 2 2		2 2 2		-		99																
	event	P11 7	7/11/2018	1163	22.5		7.06		-103							-		+		-		_			99																
	event	P12 10	0/17/2018	1261	5 22.5	7 689.7	0 683.2		7.0.7		11.7	_			2 2 2				2 2 2		2 2 2				22	2															
	event	P13	1/7/2019	1343	5 22.5		9 685.0		-126					222			2 2 2		2 2 2		2 2 2	-1-1-			99	2															
	Monitoring		1/15/2019	1441	5 22.5		7 7.25		3 -79			2 2							2 2 2				_	_	22	_															
	event	P15 7	7/24/2019	1541	22.5		5.47		2 049				_	_	2 2 2	_	_	-		_	_	_	_	_	99																
	Monitoring event	P16 10	0/18/2019	1627	22.5	689.7	683.4 5.93	0.07	-81.9	4482	10.8	2 2	2 2	2 2	2 2 2	8 8	2 2 2	2 2 3	Q.49 Q.49	2 2 2	2 2 2	2 2 2	2 2	22	28	2															

				l w	'ell	F	ield Par	ameters									VOCs							Dissolve	d Gass	es				Wet Ch	emistry					Q Pot	ential (D	NA)
Well ID	Event / Description	Date	Elapsed Time (Days)	easurement	Top of Casing Elevation	Hd Signory Oxygen	on Potential	Specific Conductance Turbidity	ure	Sarbon, Total Organic 1,1,1-Trichloroethane	1,1,2-Trichloro-1,2,2-trifluoroethane	.z-irichloroethane -Dichloroethane	1,1-Dichloroethane	Butanone (MEK)	Wethyl-2-pentanone etone			sis-1,2-Dichloroethene	nylbenzene thylcyclohexane	sthylene chloride	trachloroethene	rans-1,2-Dichloroethene rrichloroethene			Ethene		anganese erric iron	ffate ffide	Phosphorous		Alkalinity ous Iron	on cetic Acid	ctic Acid	Propionic Acid				BAVI VC R-Dase (1)
						(SU)		(mS/cm) Sp		(mg/L) Ca	 	<u> </u>		- - - - - - - - - -	<u>4</u> ¥ 1	<u>a</u> 0 t	(ug/L)	8 5 5	ŭ Š	ğğ	<u> </u> <u> </u> <u> </u>	1 1 2	\$ \$ \$		(ug/L)	ž	M H	8 8	ž ā š	(O)m	(mg/L)	<u>=</u> & :	ב ב	[<u>[</u>]	à	å	(cells /	A N
	Monitoring event P17	1/10/2020	1711	22.5	689.7	5.11	39.7	1.390	9.7	388.0 ND	2	2 2 5	2 2 5	85	25 25	0.40 J	2 2 2	99	22	99	2 2	999	2 2															
	Monitoring event P18	4/16/2020	1808	3.61	689.7	5.77	132	1.124	89.9	Z23												222																
	Monitoring event P19	10/9/2020	1984	22.5	689.7	6.32	-83.2	0.752	12.3	218.0 ND	2 5	2 2 5	2 2 2	2 8 2	28 5	N ON S	N ON C	2 2	Q Q	2 2	2 2	999	28															
	Monitoring event P20	4/5/2021	2162	22.5	689.7	6.95	-45.3	0.539	10.33	251 ND	2 5	2 2 5	2 2	5.4	0.47 0.47	N N	2 2	22	2 2	2 2	2 2	999	2 2															
MW-39D	Monitoring event P21	10/21/2021	2361	3.95	689.7	5.67	-106.1	1.270	14.1	244 ND	Q S	2 2 5	2 9 2	2 4 5	2 2 2	2 2	2 2 2	2 2	2 2	9 9	2 2	999	28						Not	Sample	ed For	These	Param	eters				
	Monitoring event P22	4/13/2022	2535	3.69	689.7	6.91	-142	1.461	12	82.5 ND	2 5	2 2 5	2 2 2	S 2	2 2 2	2 2 2	2 2 2	22	9 9	9 9	9 9	999	2 2															
	Monitoring event P23	10/6/2022	2711	22.5	689.7	6.98	-129.9	0.580	13.3	53.9 ND	2	2 2 9	2 2 5	15.1	2 Z	2 2 2	2 2 2	99	99	99	99	999	2 2															
	Monitoring event P24	4/6/2023	2893	3.82	689.7	6.82		1.409	8.2	22.1 ND	2 5	2 2 5	2 2 2	2 2 2	9 9 9	999	2 2 2	99	99	2 2	22	999	2 2															

						Well		F	ield Pa	rameters									VOCs							Diss	olved Ga	asses				W	et Che	mistry					Q	Potential	(DNA)
Well ID	Event Descript		Date	Elapsed Time (Days)	-	Top of Casir	Head Elevat	PH Dissolved Oxygen	ŏ	Specific Conductance Turbidity		-	1,1,1-Trichloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane	1,1,2-Trichloroethane 1,1-Dichloroethane	1,1-Dichloroethene	2-Hexanone 2-Butanone (MEK)	4-Methyl-2-pentanone Acetone	Benzene Carbon Disulfide	Chloroethane Chloroform	Chloromethane cis-1,2-Dichloroethene	Ethylbenzene Methylcyclohexane	Methylene chloride Methyl Acetate	Tetrachloroethene	trans-1,2-Dichloroethene	Vinyl chloride Xylenes, Total	Carbon Dioxide	Ethane	Methane	Nifrate Manganese	Ferric iron Sulfate	Suffide	Phosphorous Ammonia	00D	Total Alkalinity Ferrous Iron	Acetic Acid Formic Acid	Lactic Acid	Propionic Acid	Chloride Pyruvic Acid	Dechlorinate Bacteria	TCE R-Dase (1)	
					(feet)	(ft. AMSL)	(ft. AMSL)	(ns)	(vm)	(mS/cm)	(°C)	(mg/L)							(ng/L)								(ug/L)						(ma/L)							(cells /	
	Monitoring event	BL1	6/21/2010	-1779	22.8	3.53		6.91	69	9.779	, –	SN	23 ND	ND 280	1.8 J ND	9 9	3.4 J	Q Q	1.4.1 ND	12 J	2 2 2	2 2	2 2 2	2 2 3	ND 11.1	-						Not Sa	ample	d For T	hese F	aram	eters				
	Monitoring event	BL2	8/3/2010	-1736		4.3		7.2	-	3.5	-		₽ 2	220 ND	_ 9 ₽	99	99	Q 7	99	2 2 2	2 2 2	99	999	999	2 2 2														NI-		-45
	Monitoring event Monitoring	BL3	11/6/2014	-180		S NA		1 8.31		39 0.624		SN	8 0	000	00				For The						J.	1,400	S S	1,400			S S	0.6	12.9	S S S	SN		SS	SN		t Sampl se Para	ea For imeters
	event	BL4	3/11/2015 6/12/2015	-55 38	22	3.95		Grab S			• •			ND NG ,800 5,40		22			380 1,100 ND ND		222											Not Sa	ample	d For T	hese F	aram	eters				
	event	P2	7/27/2015	83	rti i	4.25						_		D 000		ZZ	ZZ	ZZ	1,100 ND ND									1,800	O 2	<u>- </u>	ω <u>α</u>	2 2 3	8 8	8 m 2	t 8 c		20				
	event	P3	1/7/2016	247				47 6.54	4	.497 2.820					DN ON ON N		N N ON		5							7,	Q Q		ND ND N.23	4. J	ZZ	F F 6	0 B 42 8 H 28	6 4 4	£ 8 8	Z	67	QN S			
	event	P3	1///2016	247		3.25		7.7	-16	- 0	÷ E	31	ZZ	D 061	ZZ	ZZ	ZZ						222	2 2 2	ZZZ	က်	2 2		Z 0	24	80 Z	0.27 F1	736	986 H	1 1	S S S	11	NS			
MW-40D	Monitoring event	P4	4/8/2016	339	22.5	2.892	686.3	7.59	-161	1.092	7.16	202	2 2	ND 220	2 2	2 2	QN QN	Q Q	2,500 ND	2 2 2	2 2 2	46 J	2 2 2	222	2 2 2	3,100	9 9	1,200	O.077	19.7 ND	0.13 ND	0.32	623	0.078 J	S N S	SZ	SS	SN			
MVV-40D	Monitoring event	P5	7/11/2016	433	22.5	4.95	684.2	7.12	-135	2.045	18.53	614	Q Q	ND 12 J	Q Q	380	ND ND	Q Q	950 F1 ND	2 2 2	2 2 2	222	2 2 2	2 2 2	2 2 2	46,000	2 2	1,200	0.064 B	17.1 ND	Q Q	0.29	2080 B >1374.27 H b	1330 0.77 HF	SNS		11	SN			
	Monitoring event	P6	10/11/2016	525	22.5	5.77	683.4	7.13	-94.9	1.788	15.42	267	2 2	2 P	ND 5.2 J	140 J	Q Q	Q Q	1,800 ND	2 2 2	2 2 2	2 2	222	2 2 2	2 2 2	81,000	9 9	1,500	0.025 B			را برا م	817 254 HB	9,066 0.21 HF	2 2	2 2	2 2	QN	No: The	t Sampl se Para	ed For imeters
	Monitoring event	P7	1/25/2017	631	22.5	3.64	685.6	7.08	-118.3	13.0	9.5	146	Q Q	D81	ND 4.8 J	130 J	QN QN	N O	-	2 2 2	2 2 2	14 J	2 2 2	2 2 2	2 2 2	54,000	2 2	1,100	0.011	0.4 ND		0.24	466 222 b	697 0.13 HF	2 2	2 2	2 2	ND			
	Monitoring event	P8	4/10/2017	706	22.5	2.88		7.05	-136.3	1.115	13.9	172	8 ₽	99	99	99	Q Q	9 9	2,200 ND	2 2 2	999	- F	999	9 9	999	43,000	9 9		0.0052	- 1 1		0.2	331	620 MD €20	9 9	99	2 2	Q			
	Monitoring event	P9	7/10/2017	797		4.1		7.85			4 4	SN	9 9	150 ND	9 9	061 061	Q Q	S S	820 ND 820	2 2 2	2 2 2	2 2	2 2 2	222	2 2 2	g _ o	9 9							089 ND	2 2 2	2 2	20	2			
	Monitoring event	P10	10/16/2017	895	22.5	4.55		7.09	-330	0.960			9 9	2 PD	D 6.1	8 B	13 ND	2 2	01 A	222	2 2 2	2 2	2 2 8	S Q	6.9		9 9		0			0.18	175	518 ND	3 2 2	2 2	2	2			
	Monitoring event	P11	1/4/2018	975	22.5	3.39	685.8	A A	₹	¥ ×	₹ ₹	168B	2 2	32 ND	99	160	9 9	2 2	380 ND	2 2 2	2 2 2	2 2	2 2 2	222	2 2 2	27,000	9 9	16,000	0.086	19. 19.	0.034	0.050	8 Q	579 ND	282	2 2	14 5	2			

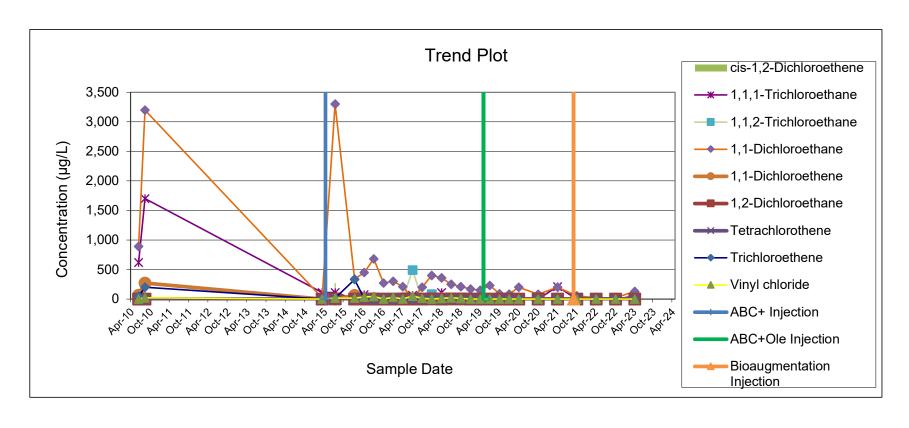

						Well		Field	d Param	neters									VOC	3							Diss	olved	Gasse	s					Wet C	hemis	try						QI	Potenti	tial (DNA	()	
Well ID	Event Descript		Date	Elapsed Time (Days)	Total Depth Total Depth Water Level Measurement	Top of Casing Elevation	pH		Oxidation Reduction Potential Specific Conductance	Turbidit	Temperature	\neg	1,1,2-Trichloro-1,2,2-trifluoroethane	1,1-Dichlorethane	1,1-Dichloroethane	2-Bexanone 2-Butanone (MEK)	4-Methyl-2-pentanone Acetone	Benzene Carbon Disulfide	Chloroethane Chloroform	Chloromethane cis-1,2-Dichloroethene	Dichlorodifluoromethane Ethylbenzene	Methylcyclohexane	Methylene chloride Methyl Acetate	Teluene Toluene	trans-1,2-Dichloroethene Trichloroethene	Vinyl chloride Xvlenes. Total	Carbon Dioxide	Ethane		Nitrate	Manganese Ferric Iron	Suffate	Nitrite	Phosphorous Ammonia	COD		refrous Iron Iron	Acetic Acid Formic Acid	Lactic Acid	n-Butyric Acid Propionic Acid	Chloride Pornici Acid	E	Dehalococcoides spp (1)			BAV1 VC R-Dase (1)	
					(feet)	(ft. AMSL)	(ft. AMSL)	(mg/L)	(mV)	(NTUs)	(S)	(mg/L)							(ng/L)									(ug/L)								(mg/L)								/slleo)	Ē		_
	Monitoring event	P12	4/10/2018	1071	22.5	689.2	686.5	0.36	-105	NA N	10.13	20	2	400 5	2 2	2 2 2	2 2 :	2 2	970 ND	2 2	2 2	2 2 :	2 2	2 2	2 2	2 2	32	Q	ND 15,000	QN QN	3.1	2	2 2	0.13 0.33 F1	139	325	oil I	S S	S S	SZ SZ	2 2	2					
	Monitoring event	P13	7/10/2018	1162	3.81	689.2	685.4	0.38	-130.5	24.5	13.85	ND ND	2	4.6 J	2 2	29 J	2 2	2 2	1,100 ND	9 9	2 2	2 2	2 2	2 2	S S	2 2	50,000	Q.	ND 18	ON ON	0.017				1221		9 I	SN SN	S S	SN SN	S S S	2					ľ
	Monitoring event	P14	10/18/2018	1262	22.5	689.2	677.9	0.3	-125.4	21.7	12.7	ND ND	2 2	2 2 2	2 2	35 J	2 2 :	2 2	1,100 890 F1	2 2	2 2	2 2 !	2 2	2 2	2 2	2 2	0	Q	ND 1			Q Q	2 2	0.07	ND 182 42	419 B	13.5	S S	8 8	S S	S S S	2					
	Monitoring event	P15	1/7/2019	1343	22.5	689.2	684.5	0.38	-126.2	10.2	9.6	C.21	Q Z	2 9 9	20	999	2 2 !				9 9	2 2 !	2 2 :	2 2	99	2 2	0	Q	ND 23	ON ON	0.030	2 2	2 2	0.33	75.2	355 B	3.084 J HF 8.4	SN SN	S S S	SN SN	S S S	2					
	Monitoring event	P16	4/16/2019	1442	3.2	689.2	686.0	2.88	-230.9	68.46	9.2	0.4 ON	2 2	8 2	2 2	225	2 2 !	2 2	1,100 ND	99	9 9	2 2 !	2 2	2 2	99	9 9	9,700	9	D 2	- 1	0.0059 B			ND 0.24			2 2				S S S						
	Monitoring event	P17	7/22/2019	1539	22.5	689.2	684.7 5.89	1.99	-80.7	0.030	13.4	QN	2 2	15 J	2 2	340	2 2 !	2 2	1,000 ND	99	2 2	2 2 !	2 2	2 2	2 2	2 2	9,800	Q	ND 000		0.33 B C	9.8 J	0.19 B	9 9	2 2	87 87	398	SN SN	S S	SN SN	159	2					
	Monitoring event	P18	10/18/2019	1627	22.5	689.2	687.5	0.15	-95.6	54.97	12.3	ND G	9 9	2 2 2	2 2	36 J	ND 480	2 2	99	260 ND	2 2	2 2 !	2 2	2 2	99	2 5	00	2			0.28 B	2 S	0.36 B			1380	13.0 HF 267	S S	SN S	SZ SZ	157 NS	2					
MW-40D	Monitoring event	P19	1/8/2020	1709	22.5	689.2	6.13	0.43	-74.8	10.44	8.8	Q Q	2 2	2 2 2	2 2	110 J	2 2 !	2 2	920 N	99	9 9	2 2 !	2 2 !	2 2	99	2 2	110,000	Q	ND 15,000		0.120		_	0.043				NS SN	SNS	SN SN	108 NA	2			npled F aramete		
	Monitoring event	P20	4/16/2020	1808	3.0	689.2	686.2	0.79	123.5	46.2	6.73	COS ON	2 2	2 2 2	2 2	0 P	35.	2 2	510 ND	9 9	2 2	2 2	0.03 ND	2 2	9 9	2 5		Q	ND 02	Q Q	0.056B	2 2	2 2	S S	S S						95.6						
	Monitoring event	P21	10/12/2020	1987	22.5	689.2	683.7	0.31	-197.9	55.6	14.4		2 2	2 2 2	2 2	23. 53.	2 2 !	2 2	270 ND	99	99	2 2 !	2 2	2 2	99	9 9	61,000	9	ND ND		_	2 2	2 2	NS 0.052	SN SN	SN S	0.62 HF 49.9	SN SN	S S	8 8	128 NS	2					
	Monitoring event	P22	4/2/2021	2159	3.2	689.2	686.0	2.19	-186.4	13.6	9.5	<u>8</u> 9	9 9	9.6	2 2	2 2 9	2 2 !	2 2	00 A	22	2 2	2 2 !	2 2	2 2	99	9 9	42,000	9	Q 2		0.057B	2 2	2 2	NS 0.022	SN SN	S S	31.2	SN SN	S S	S S	91.2 NS	2					
	Monitoring event	P23	10/27/2021	2367	22.5	689.2	671.2	0.83	-149.6	1583	13.3	ND ON	2 2	2 2 2	2 2	2 2 2	2 2 !	2 2	230 ND	2 2	2 2	2 2	2 2	2 2	Q Q	2 2	64,000	Q	ND 2400		SN SS S		SS			S S	<u>∔</u>		S S	S S	S S S	2					
	Monitoring event	P22	4/8/2022	2530	3.7	689.2	7.41		-182.9	40.7	11	ND ND	9 9	2 2 9	2 9	225	2 2 !	2 2	490 PD	99	9 9	2 2 !	2 2	2 2	99	2 2	9	9	ND OF	200	SS SS	2 2	2 2	SN SN	SN SN	S S	34.1	S S	S S	S S	S S S	2					
	Monitoring event	P23	10/7/2022	2712	22.5	689.2	682.6	_	-157.9	127	14	ND	Q Z	2 2 2	2 2	22	2 2 !	2 2	370 ND	2 2	2 2	22	22	Q Q	Q Q	2 2	0	Q	ND of		NS 17.1	2 2	0.031 J	SN SN	SN SN	248B	17.1	SN SN	S S	S S	S S S	2					
	Monitoring event	P24	4/11/2023	2898	22.5	689.2	682.1	0.31	-85.9	51.2	10.8	74	QV Z	250	N Q	2 2 2	2 2 !	S S	480 ND	22	2 2	2 2	2 2	S S	Q Q	2 2		Q	O 25									SN SN	SS	SN SN	S S S	2					

Appendix B Current and Historical Summary of VOCs in Groundwater

MONITORING WELL A1-GP02S SUMMARY OF VOCs IN GROUNDWATER Former Scott Aviation Site Lancaster, New York

				Analytic	al Resul	lts (µg/L)			
Sample Date	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	cis-1,2-Dichloroethene	Tetrachlorothene	Trichloroethene	Vinyl chloride
6/22/2010	ND	ND	ND	ND	ND	6,400	ND	11,000	ND
8/4/2010	ND	ND	ND	ND	ND	10,000	ND	20,000	ND
3/10/2015	ND	ND	ND	ND	ND	3,300	ND	5,400	ND
7/28/2015	ND	ND	ND	34	ND	23,000	ND	8,000	140
1/7/2016	ND	ND	ND	ND	ND	29,000	ND	330	770
4/8/2016	ND	ND	ND	ND	ND	22,000	ND	ND	2,400
7/11/2016	ND	ND	ND	ND	ND	32,000	ND	ND	10,000
10/10/2016	ND	ND	ND	ND	ND	6,400	ND	ND	13,000
1/23/2017	ND	ND	ND	ND	ND	810	ND	ND	1,700
4/11/2017	ND	ND	ND	ND	ND	900	ND	ND	3,700
7/6/2017	ND	ND	ND	ND	ND	790	ND	ND	4,300
10/17/2017	ND	ND	ND	ND	ND	230	ND	ND	1,900
1/5/2018	ND	ND	ND	ND	ND	680	ND	ND	6,700
4/12/2018	ND	ND	ND	ND	ND	730	ND	ND	4,200
7/9/2018	ND	ND	ND	ND	ND	460	ND	ND	6,600
10/18/2018	ND	ND	ND	ND	ND	74	ND	ND	1,300
1/2/2019	ND	ND	ND	ND	ND	150	ND	ND	750
4/18/2019	ND	ND	ND	ND	ND	450	ND	ND	1,300
7/25/2019	ND	ND	ND	ND	ND	46	ND	ND	1,200
10/14/2019	ND	ND	ND	ND	ND	44	ND	ND	390
1/7/2020	ND	ND	ND	ND	ND	64	ND	ND	450
4/13/2020	ND	ND	ND	ND	ND	420	ND	ND	1,500
10/12/2020	ND	ND	ND	ND	ND	390	ND	ND	2,300
4/1/2021	ND	ND	ND	ND	ND	340	ND	ND	4,500
10/22/2021	ND	ND	ND	ND	ND	970	ND	ND	2,800
4/12/2022	ND	ND	ND	ND	ND	1,700	ND	ND	1,800
10/6/2022	ND	ND	ND	ND	ND	5,100	ND	ND	3,400
4/6/2023	ND	ND	ND	ND	ND	4,600	ND	ND	2,400

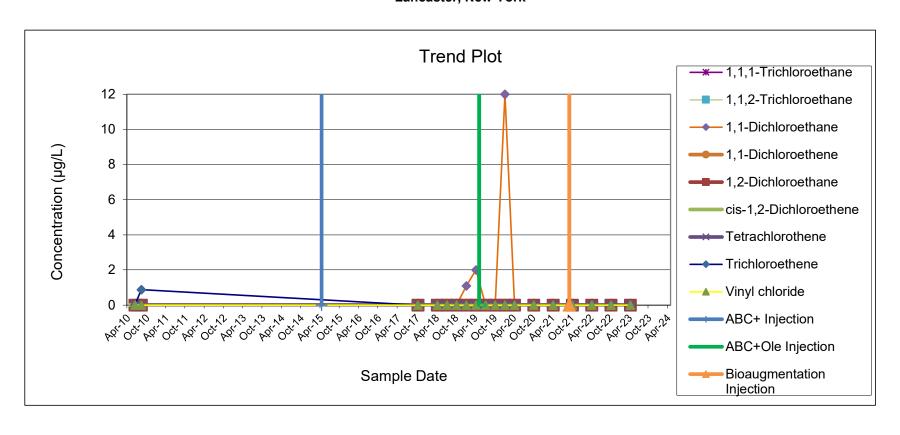
MONITORING WELL A1-GP02S SUMMARY OF VOCs IN GROUNDWATER Former Scott Aviation Site Lancaster, New York



MONITORING WELL A1-GP06S SUMMARY OF VOCs IN GROUNDWATER Former Scott Aviation Site Lancaster, New York

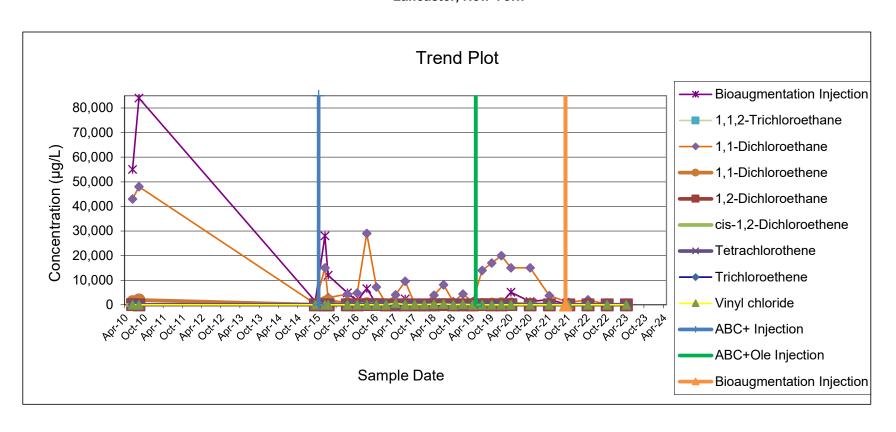
				Analytic	al Resul	ts (µg/L)			
Sample Date	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	cis-1,2-Dichloroethene	Tetrachlorothene	Trichloroethene	Vinyl chloride
6/21/2010	620	ND —	890	63	ND 	32	ND	46	ND
8/4/2010	1,700	16	3,200	270	ND	130	ND	200	20
3/11/2015	110	ND	21	ND	ND	ND	ND	0.81	ND
7/27/2015	110	4.1	3,300	0.89	3.1	270	ND	18	16
1/7/2016	ND	ND	340	60	ND	25	ND	330	16
4/8/2016	73	ND	450	ND	ND	ND	ND	5.4	33
7/12/2016	35	ND	680	7.8	ND	ND	ND	ND	44
10/10/2016	ND	ND	270	ND	ND	ND	ND	ND	ND
1/24/2017	24	ND	300	ND	ND	ND	ND	ND	29
4/11/2017	34	ND	210	6.2	ND	ND	ND	ND	ND
7/6/2017	63	490	13	ND	ND	16	ND	ND	50
10/18/2017	ND	ND	200	ND	ND	ND	ND	ND	14
1/5/2018	44	84	400	3.7	2.1	ND	ND	ND	ND
4/10/2018	110	ND	360	6.8	ND	8	ND	7.2	11
7/9/2018	18	ND	250	4.1	2.6	ND	ND	ND	20
10/19/2018	15	ND	210	ND	3.3	ND	ND	ND	9.9
1/4/2019	21	ND	170	ND	ND	ND	ND	ND	ND
4/10/2019	23	ND	150	ND	ND	ND	ND	ND	ND
7/22/2019	22	ND	230	ND	ND	ND	ND	ND	ND
10/14/2019	ND	ND	89	ND	ND	ND	ND	ND	ND
1/7/2020	ND	ND	86	ND	ND	ND	ND	ND	ND
4/13/2020	ND	ND	200	ND	ND	ND	ND	ND	ND
10/8/2020	ND	ND	80	ND	ND	ND	ND	ND	ND
4/1/2021	210	ND	200	ND	ND	ND	ND	ND	ND
10/22/2021	ND	ND	54	ND	ND	ND	ND	ND	ND
4/11/2022	ND	ND	21	ND	ND	ND	ND	ND	ND
10/6/2022	ND	ND	21	ND	ND	ND	ND	ND	ND
4/7/2023	51	ND	130	ND	ND	ND	ND	ND	ND

MONITORING WELL A1-GP06S SUMMARY OF VOCs IN GROUNDWATER Former Scott Aviation Site


Lancaster, New York

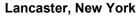
MONITORING WELL A1-GP09S SUMMARY OF VOCs IN GROUNDWATER Former Scott Aviation Site Lancaster, New York

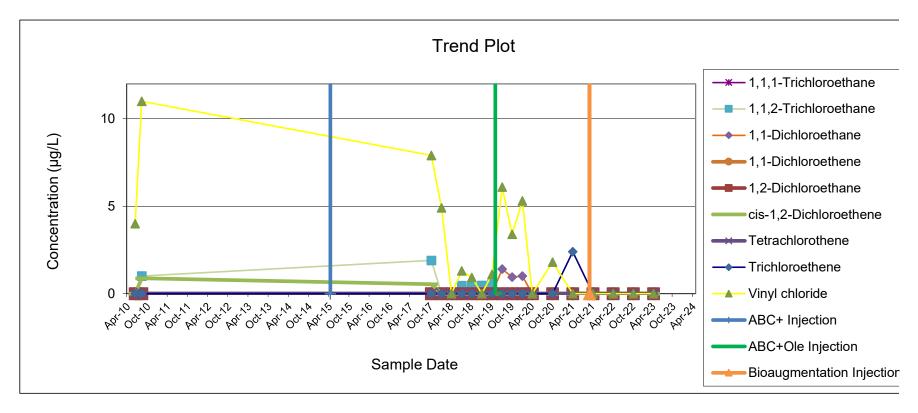
				Analytic	al Resul	ts (µg/L)			
Sample Date	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	cis-1,2-Dichloroethene	Tetrachlorothene	Trichloroethene	Vinyl chloride
6/22/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND
8/3/2010	ND	ND	ND	ND	ND	ND	ND	0.88	ND
10/18/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/12/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/11/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/19/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/3/2019	ND	ND	1.1	ND	ND	ND	ND	ND	ND
4/17/2019	ND	ND	2.0	ND	ND	ND	ND	ND	ND
7/25/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/15/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/7/2020	ND	ND	12	ND	ND	ND	ND	ND	ND
4/13/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/9/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/1/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/21/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/13/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/5/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/12/2023	ND	ND	ND	ND	ND	ND	ND	ND	ND


MONITORING WELL A1-GP09S SUMMARY OF VOCs IN GROUNDWATER

MONITORING WELL A1-GP10S SUMMARY OF VOCs IN GROUNDWATER Former Scott Aviation Site Lancaster, New York

		Analytical Results (μg/L)									
Sample Date	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	cis-1,2-Dichloroethene	Tetrachlorothene	Trichloroethene	Vinyl chloride		
6/21/2010	55,000	84	43,000	1,300	77	ND	1.2	92	41		
8/3/2010	84,000	ND	48,000	2,000	ND	ND	ND	ND	ND		
3/11/2015	1,500	1.2	440	65	1.6	7.4	ND	6.6	ND		
6/12/2015	28,000	ND	15,000	1,000	40	190	ND	ND	ND		
7/27/2015	12,000	ND	2,900	1,600	9.6	45	ND	36	ND		
1/7/2016	4,900	ND	4,300	470	ND	51	ND	ND	ND		
4/8/2016	1,700	ND	4,800	220	ND	ND	ND	ND	ND		
7/11/2016	6,600	ND	29,000	500	72	270	ND	ND	ND		
10/7/2016	360	ND	7,200	190	47	ND	ND	ND	ND		
1/23/2017	ND	ND	580	ND	ND	ND	ND	ND	ND		
4/10/2017	240	ND	4,100	45	ND	ND	ND	ND	690		
7/6/2017	2,400	ND	9,600	380	ND	ND	ND	ND	ND		
10/17/2017	23	ND	240	4	1.4	0.5	ND	0.47	45		
1/4/2018	44	ND	600	ND	11	ND	ND	ND	85		
4/10/2018	140	ND	3,900	19	18	ND	ND	ND	260		
7/9/2018	530	ND	8,100	51	77	ND	ND	ND	320		
10/19/2018	640	ND	1,200	ND	ND	ND	ND	ND	ND		
1/4/2019	200	ND	4,400	91	ND	ND	ND	ND	260		
4/15/2019	ND	ND	1,200	ND	ND	ND	ND	ND	ND		
7/22/2019	690	ND	14,000	130	78	ND	ND	ND	ND		
10/14/2019	780	ND	17,000	310	ND	ND	ND	ND	ND		
1/7/2020	730	ND	20,000	480	ND	ND	ND	ND	ND		
4/13/2020	5,100	ND	15,000	400	44	ND	ND	ND	ND		
10/8/2020	1,300	ND	15,000	270	ND	170	ND	ND	ND		
4/1/2021	2,200	ND	3,700	200	ND	ND	ND	ND	ND		
10/27/2021	ND	ND	1,000	ND	ND	ND	ND	ND	ND		
4/8/2022	290	ND	2,000	ND	ND	ND	ND	ND	ND		
10/10/2022	ND	ND	230	ND	ND	ND	ND	ND	nd		
4/11/2023	ND	ND	460	ND	ND	ND	ND	ND	ND		

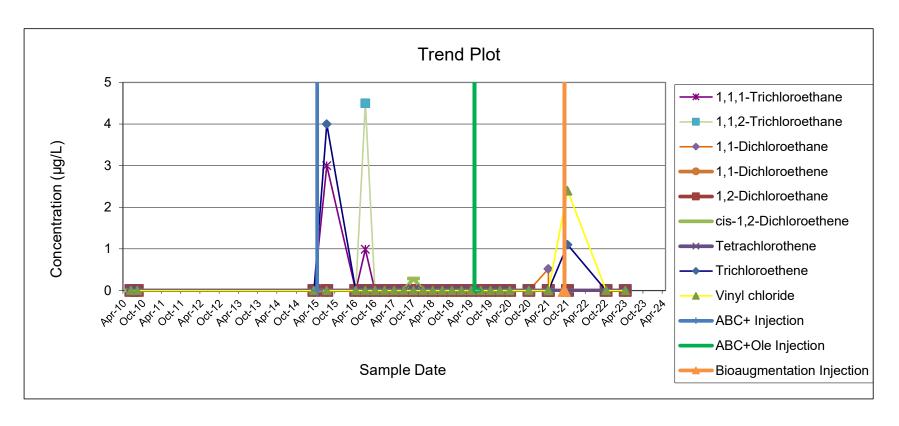

MONITORING WELL A1-GP10S SUMMARY OF VOCs IN GROUNDWATER



MONITORING WELL A1-GP14S SUMMARY OF VOCs IN GROUNDWATER Former Scott Aviation Site Lancaster, New York

				Analytia	al Daguil	to /um/l \			
				Analytic	ai Kesul	ts (μg/L) Ψ		ı	ı
Sample Date	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	cis-1,2-Dichloroethene	Tetrachlorothene	Trichloroethene	Vinyl chloride
6/21/2010	ND	ND	ND	ND	ND	ND	ND	ND	4.0
8/3/2010	ND	1.0	ND	ND	ND	0.88	ND	ND	11.0
10/17/2017	ND	1.9	ND	ND	ND	0.53	ND	ND	7.9
1/4/2018	ND	ND	ND	ND	ND	ND	ND	ND	4.9
4/10/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/9/2018	ND	0.46	ND	ND	ND	ND	ND	ND	1.3
10/23/2018	ND	0.44	ND	ND	ND	ND	ND	ND	0.9
1/2/2019	ND	0.47	ND	ND	ND	ND	ND	ND	ND
4/15/2019	ND	0.54	ND	ND	ND	ND	ND	ND	1.1
7/23/2019	ND	ND	1.4	ND	ND	ND	ND	ND	6.1
10/15/2019	ND	ND	1.0	ND	ND	ND	ND	ND	3.4
1/7/2020	ND	ND	1.0	ND	ND	ND	ND	ND	5.3
4/13/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/8/2020	ND	ND	ND	ND	ND	ND	ND	ND	1.8
4/1/2021	ND	ND	ND	ND	ND	ND	ND	2.4	ND
10/25/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/12/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/10/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/11/2023	ND	ND	ND	ND	ND	ND	ND	ND	ND

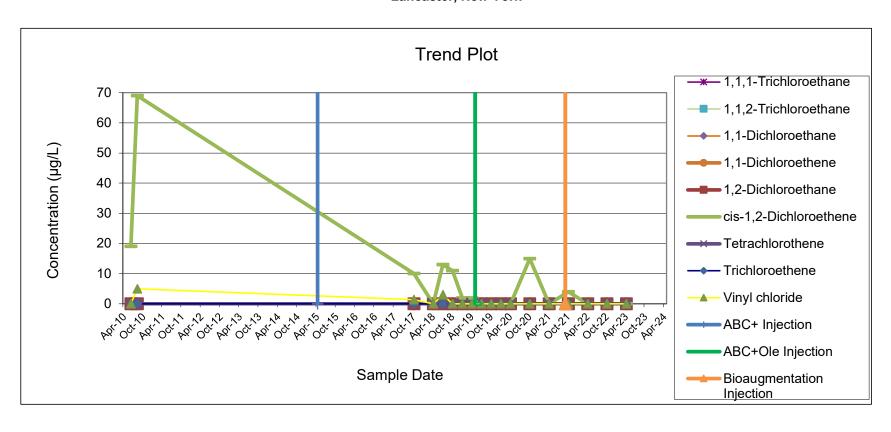
MONITORING WELL A1-GP14S SUMMARY OF VOCs IN GROUNDWATER Former Scott Aviation Site



MONITORING WELL A1-GP15S SUMMARY OF VOCs IN GROUNDWATER Former Scott Aviation Site Lancaster, New York

		Analytical Results (μg/L)									
Sample Date	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	cis-1,2-Dichloroethene	Tetrachlorothene	Trichloroethene	Vinyl chloride		
6/17/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND		
8/2/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND		
3/11/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND		
7/29/2015	3.0	ND	ND	ND	ND	ND	ND	4.0	ND		
4/8/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND		
7/11/2016	0.99	4.5	ND	ND	ND	ND	ND	ND	ND		
10/7/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1/23/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND		
4/12/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND		
7/6/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND		
10/17/2017	ND	ND	ND	ND	ND	0.29	ND	ND	ND		
1/2/2018	NS	NS	NS	NS	NS	NS	NS	NS	NS		
4/10/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND		
7/9/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND		
10/22/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1/2/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND		
4/10/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND		
7/25/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND		
10/14/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1/7/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND		
4/13/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND		
10/8/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND		
4/1/2021	ND	ND	0.52	ND	ND	ND	ND	ND	ND		
10/20/2021	ND	ND	ND	ND	ND	ND	ND	1.1	2.4		
4/1/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND		
10/6/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND		
4/11/2023	ND	ND	ND	ND	ND	ND	ND	ND	ND		

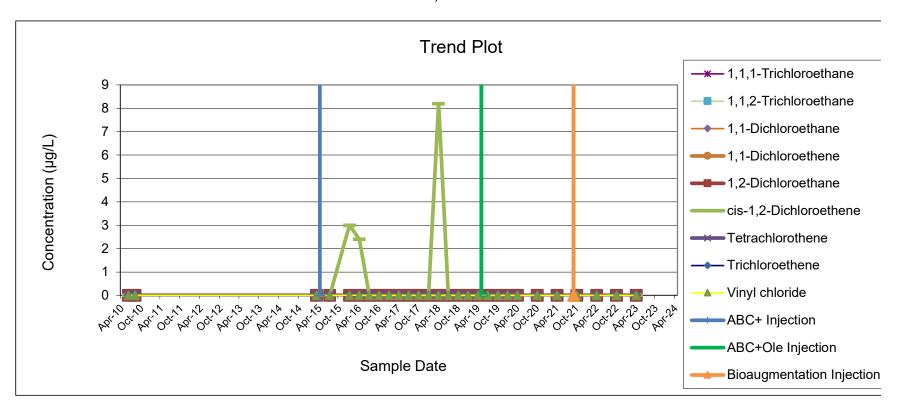
MONITORING WELL A1-GP15S SUMMARY OF VOCs IN GROUNDWATER Former Scott Aviation Site


Lancaster, New York

MONITORING WELL A1-GP16S SUMMARY OF VOCs IN GROUNDWATER Former Scott Aviation Site Lancaster, New York

		Analytical Results (μg/L)									
Sample Date	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	Tetrachlorothene	cis-1,2-Dichloroethene	Trichloroethene	Vinyl chloride		
6/17/2010	ND	ND	ND	ND	ND	ND	19	ND	ND		
8/2/2010	ND	ND	ND	ND	ND	ND	69	ND	5.0		
10/17/2017	ND	ND	0.27	ND	ND	ND	10	ND	1.4		
4/9/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND		
7/10/2018	ND	ND	0.38	ND	ND	ND	13	ND	3.0		
10/2/2018	ND	ND	ND	ND	ND	ND	11	ND	ND		
1/3/2019	ND	ND	ND	ND	ND	ND	1.9	ND	ND		
4/17/2019	ND	ND	ND	ND	ND	ND	1.9	ND	ND		
7/26/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND		
10/15/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1/7/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND		
4/15/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND		
10/8/2020	ND	ND	ND	ND	ND	ND	15	ND	ND		
4/1/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND		
10/25/2021	ND	ND	ND	ND	ND	ND	4	ND	ND		
4/11/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND		
10/5/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND		
4/6/2023	ND	ND	ND	ND	ND	ND	ND	ND	ND		

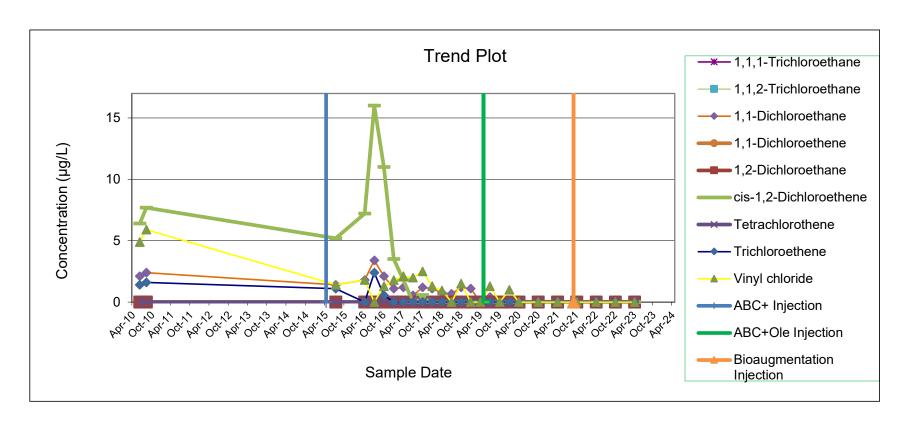
MONITORING WELL A1-GP16S SUMMARY OF VOCs IN GROUNDWATER



MONITORING WELL A1-GP18S SUMMARY OF VOCs IN GROUNDWATER Former Scott Aviation Site Lancaster, New York

		Analytical Results (μg/L)									
Sample Date	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	Tetrachlorothene	cis-1,2-Dichloroethene	Trichloroethene	Vinyl chloride		
6/18/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND		
8/2/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND		
3/11/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND		
7/27/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1/7/2016	ND	ND	ND	ND	ND	ND	3.0	ND	ND		
4/8/2016	ND	ND	ND	ND	ND	ND	2.4	ND	ND		
7/8/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND		
10/7/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1/23/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND		
4/10/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND		
7/6/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND		
10/16/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1/5/2018	NA	NA	NA	NA	NA	NA	ND	NA	NA		
4/9/2018	ND	ND	ND	ND	ND	ND	8.2	ND	ND		
7/9/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND		
10/19/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1/4/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND		
4/9/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND		
7/22/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND		
10/14/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1/7/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND		
4/13/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND		
10/8/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND		
4/1/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND		
10/21/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND		
4/13/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND		
10/6/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND		
4/7/2023	ND	ND	ND	ND	ND	ND	ND	ND	ND		

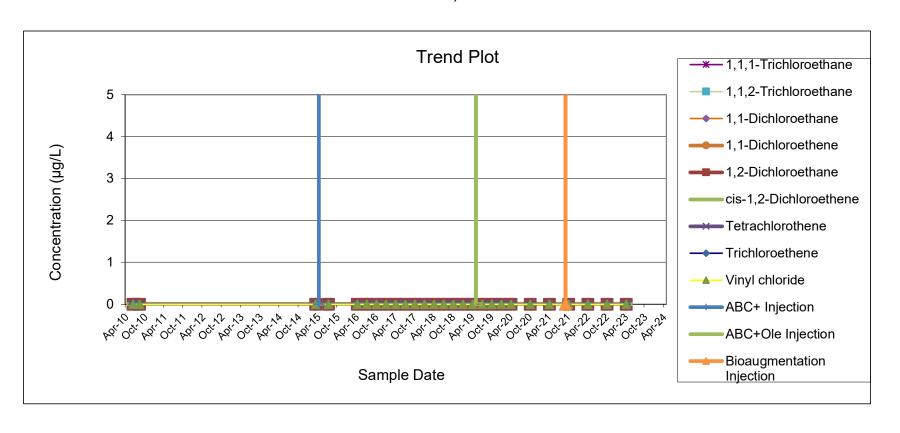
NA - Not available


MONITORING WELL A1-GP18S SUMMARY OF VOCS IN GROUNDWATER

MONITORING WELL MW-30 SUMMARY OF VOCs IN GROUNDWATER Former Scott Aviation Site Lancaster, New York

		Analytical Results (μg/L)									
Sample Date	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	cis-1,2-Dichloroethene	Tetrachlorothene	Trichloroethene	Vinyl chloride		
6/18/2010	ND	ND	2.1	ND	ND	6.4	ND	1.4	4.9		
8/3/2010	ND	ND	2.4	ND	ND	7.7	ND	1.6	5.9		
7/29/2015	ND	ND	1.4	ND	ND	5.2	ND	1.1	1.4		
4/8/2016	ND	ND	1.8	ND	ND	7.2	ND	ND	1.8		
7/14/2016	ND	ND	3.4	ND	ND	16	ND	2.4	ND		
10/11/2016	ND	ND	2.1	ND	ND	11	ND	0.56	1.3		
1/25/2017	ND	ND	1.1	ND	ND	3.5	ND	ND	1.8		
4/12/2017	ND	ND	1.2	ND	ND	1.8	ND	ND	2.1		
7/7/2017	ND	ND	0.54	ND	ND	ND	ND	ND	2.0		
10/19/2017	ND	ND	1.2	ND	ND	0.6	ND	ND	2.5		
1/2/2018	ND	ND	1.1	ND	ND	ND	ND	ND	1.3		
4/11/2018	ND	ND	0.75	ND	ND	ND	ND	ND	0.95		
7/11/2018	ND	ND	0.68	ND	ND	ND	ND	ND	ND		
10/23/2018	ND	ND	1.20	ND	ND	ND	ND	ND	1.50		
1/8/2019	ND	ND	1.10	ND	ND	ND	ND	ND	ND		
4/11/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND		
7/26/2019	ND	ND	0.42	ND	ND	ND	ND	ND	1.30		
10/17/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1/8/2020	ND	ND	ND	ND	ND	ND	ND	ND	1.00		
4/15/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND		
10/7/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND		
4/5/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND		
10/25/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND		
4/14/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND		
10/10/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND		
4/12/2023	ND	ND	ND	ND	ND	ND	ND	ND	ND		

MONITORING WELL MW-30 SUMMARY OF VOCs IN GROUNDWATER

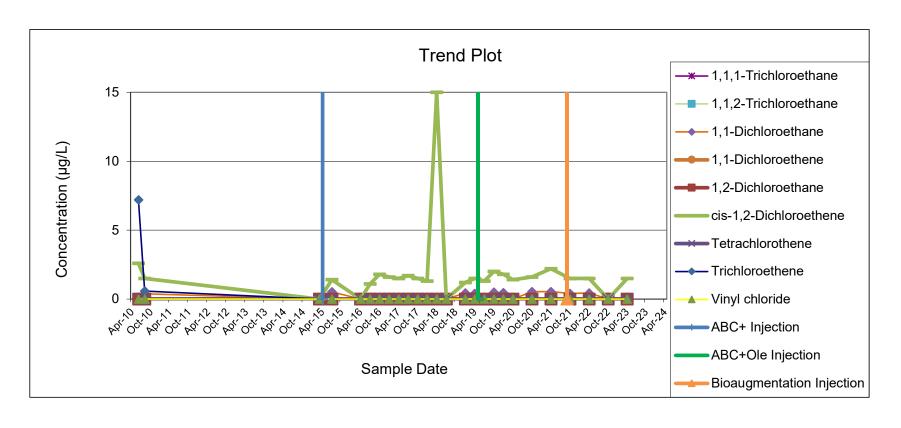


MONITORING WELL MW-35S SUMMARY OF VOCs IN GROUNDWATER Former Scott Aviation Site

Lancaster, New York

				Analytic	al Resul	ts (µg/L)			
Sample Date	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	Tetrachlorothene	cis-1,2-Dichloroethene	Trichloroethene	Vinyl chloride
6/17/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND
8/2/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND
3/11/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/28/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/8/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/13/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/11/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/23/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/10/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/7/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/17/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/4/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/9/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/11/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/19/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/7/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/17/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/25/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/17/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/8/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/14/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/6/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/5/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/20/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/7/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/7/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/6/2023	ND	ND	ND	ND	ND	ND	ND	ND	ND

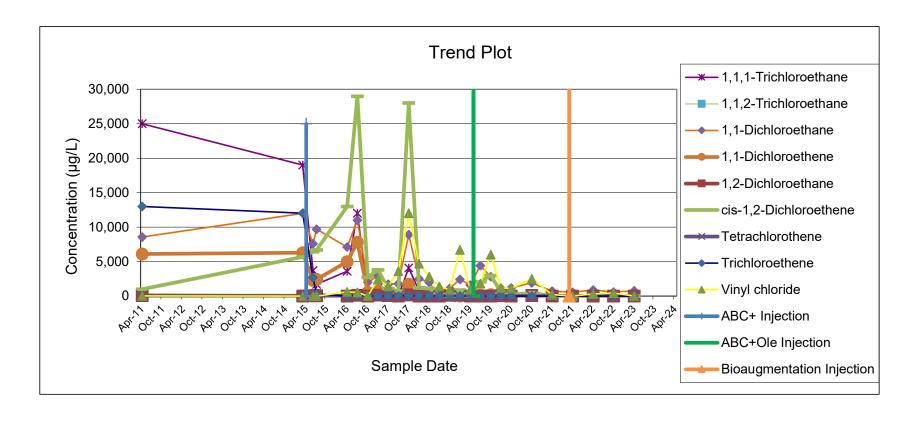
MONITORING WELL MW-35S SUMMARY OF VOCs IN GROUNDWATER



MONITORING WELL MW-36S SUMMARY OF VOCs IN GROUNDWATER Former Scott Aviation Site

Lancaster, New York

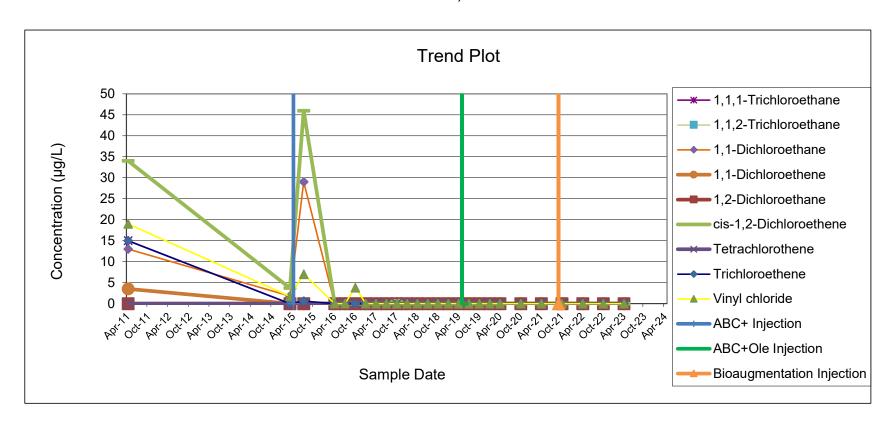
				Analytic	al Resul	ts (µg/L)			
Sample Date	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	cis-1,2-Dichloroethene	Tetrachlorothene	Trichloroethene	Z Vinyl chloride
6/17/2010	ND	ND	ND	ND	ND	2.6	ND	7.2	ND
8/3/2010	ND	ND	0.38	ND	ND	1.5	ND	0.58	ND
3/10/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/29/2015	ND	ND	0.52	ND	ND	1.4	ND	ND	ND
4/8/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/11/2016	ND	ND	ND	ND	ND	1.1	ND	ND	ND
10/12/2016	ND	ND	ND	ND	ND	1.8	ND	ND	ND
1/24/2017	ND	ND	ND	ND	ND	1.6	ND	ND	ND
4/12/2017	ND	ND	ND	ND	ND	1.5	ND	ND	ND
7/6/2017	ND	ND	ND	ND	ND	1.7	ND	ND	ND
10/17/2017	ND	ND	ND	ND	ND	1.5	ND	ND	ND
1/4/2018	ND	ND	ND	ND	ND	1.3	ND	ND	ND
4/9/2018	ND	ND	ND	ND	ND	15	ND	ND	ND
7/10/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/7/2019	ND	ND	0.44	ND	ND	1.2	ND	ND	ND
4/16/2019	ND	ND	0.41	ND	ND	1.5	ND	ND	ND
7/25/2019	ND	ND	ND	ND	ND	1.3	ND	ND	ND
10/18/2019	ND	ND	0.50	ND	ND	2.0	ND	ND	ND
1/8/2020	ND	ND	0.47	ND	ND	1.8	ND	ND	ND
4/16/2020	ND	ND	0.40J	ND	ND	1.4	ND	ND	ND
10/9/2020	ND	ND	0.53	ND	ND	1.6	ND	ND	ND
4/6/2021	ND	ND	0.54	ND	ND	2.2	ND	ND	ND
10/22/2021	ND	ND	0.40	ND	ND	1.5	ND	ND	ND
4/11/2022	ND	ND	0.43	ND	ND	1.5	ND	ND	ND
10/5/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/12/2023	ND	ND	ND	ND	ND	1.5	ND	ND	ND


MONITORING WELL MW-36S SUMMARY OF VOCs IN GROUNDWATER

MONITORING WELL MW-42S SUMMARY OF VOCs IN GROUNDWATER Former Scott Aviation Site Lancaster, New York

				Analytic	Analytical Results (μg/L)									
Sample Date	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	cis-1,2-Dichloroethene	Tetrachlorothene	Trichloroethene	2 Vinyl chloride					
4/7/2011	25,000	240	8,550	6,100	76	1,000	6	13,000	27					
3/12/2015	19,000	240	12,000	6,300	ND	5,700	ND	12,000	ND					
6/12/2015	3,700	100	7,600	2,300	44	6,400	ND	2,700	ND					
7/27/2015	1,700	71	9,700	2,400	44	6,700	ND	280	ND					
4/8/2016	3,600	ND	7,100	5,000	ND	13,000	ND	ND	610					
7/14/2016	12,000	120	11,000	7,800	110	29,000	ND	100	530					
10/13/2016	440	ND	2,000	520	ND	2,700	ND	ND	ND					
1/25/2017	1,200	ND	2,900	790	130	3,800	ND	ND	2,400					
4/12/2017	230	ND	1,700	220	74	1,100	ND	ND	1,400					
7/10/2017	ND	ND	1,800	150	ND	690	ND	ND	3,600					
10/19/2017	4,100	48	8,900	1,700	170	28,000	ND	54	12,000					
1/2/2018	740	ND	2,500	ND	ND	1,200	ND	ND	4,700					
4/11/2018	390	ND	2,000	120	ND	1,100	ND	ND	2,800					
7/12/2018	ND	ND	ND	ND	ND	210	ND	ND	1,400					
10/23/2018	ND	ND	1,100	130	110	ND	ND	ND	910					
1/8/2019	490	ND	2,400	ND	160	850	ND	ND	6,700					
4/18/2019	ND	ND	1,600	ND	ND	ND	ND	ND	940					
7/26/2019	ND	ND	4,400	140	ND	2,100	ND	ND	1,800					
10/18/2019	ND	ND	2,800	190	ND	3,000	ND	ND	6,000					
1/10/2020	160	390	1,100	150	43	610	ND	ND	1,200					
4/16/2020	200	ND	1,200	130	58J	160	ND	ND	1,100					
10/12/2020	160	ND	1,900	99	76	490	ND	ND	2,500					
4/1/2021	ND	ND	710	ND	ND	ND	ND	ND	190					
10/27/2021	ND	ND	550	ND	ND	ND	ND	ND	ND					
4/8/2022	240	ND	880	ND	ND	ND	ND	ND	290					
10/7/2022	ND	ND	580	ND	ND	ND	ND	ND	420					
4/11/2023	ND	ND	740	ND	ND	ND	ND	ND	ND					

MONITORING WELL MW-42S SUMMARY OF VOCs IN GROUNDWATER Former Scott Aviation Site Lancaster, New York

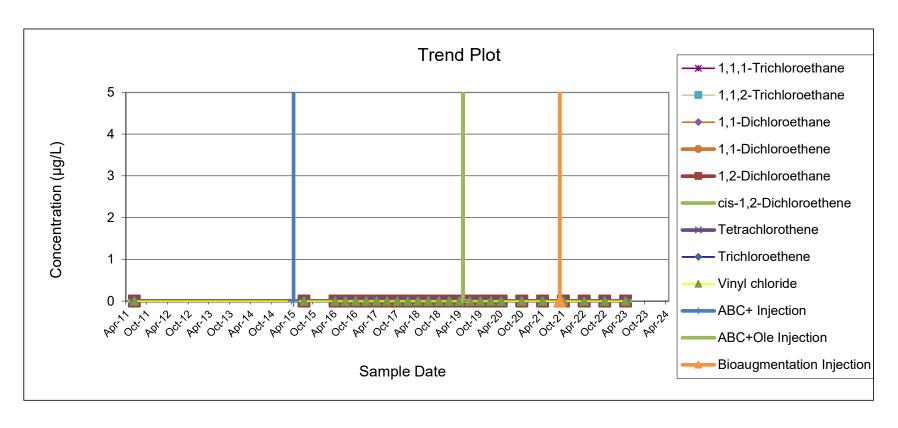


MONITORING WELL MW-43S SUMMARY OF VOCs IN GROUNDWATER Former Scott Aviation Site

Lancaster, New York

		Analytical Results (μg/L)									
Sample Date	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	cis-1,2-Dichloroethene	Tetrachlorothene	Trichloroethene	6 Vinyl chloride		
4/7/2011	15	ND	13	3.5	ND	34	ND	15	19		
3/12/2015	ND	ND	1.8	ND	ND	3.7	ND	ND	1.7		
7/29/2015	ND	ND	29	ND	ND	46	ND	0.60	7		
4/8/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND		
7/13/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND		
10/13/2016	ND	ND	ND	ND	ND	ND	ND	ND	3.8		
1/25/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND		
4/11/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND		
7/10/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND		
10/19/2017	ND	ND	0.48	ND	ND	0.6	ND	ND	ND		
1/2/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND		
4/11/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND		
7/12/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND		
10/19/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1/8/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND		
4/17/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND		
7/26/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND		
10/18/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND		
1/8/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND		
4/14/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND		
10/7/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND		
4/1/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND		
10/25/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND		
4/14/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND		
10/10/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND		
4/12/2023	ND	ND	ND	ND	ND	ND	ND	ND	ND		

MONITORING WELL MW-43S SUMMARY OF VOCs IN GROUNDWATER

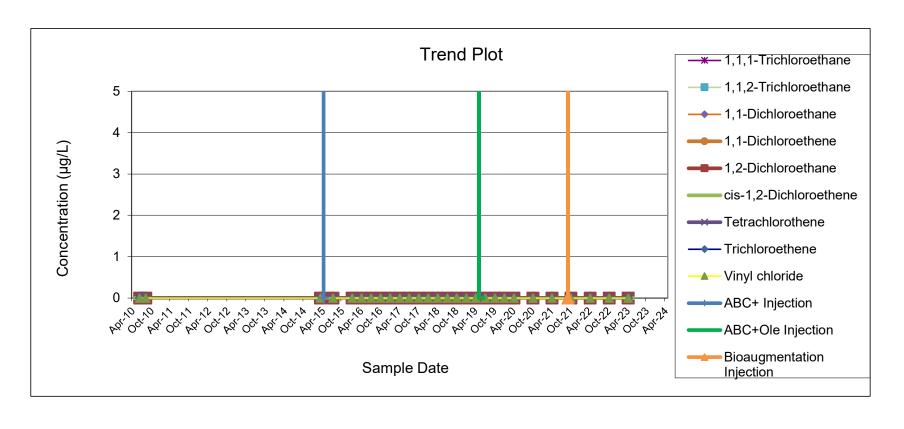

MONITORING WELL MW-44S SUMMARY OF VOCS IN GROUNDWATER

Former Scott Aviation Site Lancaster, New York

				Analytic	al Resul				
Sample Date	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	cis-1,2-Dichloroethene	Tetrachlorothene	Trichloroethene	Vinyl chloride
6/1/2011	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/29/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/8/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/14/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/11/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/25/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/7/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/10/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/16/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/2/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/11/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/12/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/23/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/8/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/18/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/26/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/17/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/8/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/14/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/7/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/1/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/25/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/12/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/10/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/11/2023	ND	ND	ND	ND	ND	ND	ND	ND	ND

MONITORING WELL MW-44S SUMMARY OF VOCs IN GROUNDWATER Former Scott Aviation Site

Lancaster, New York

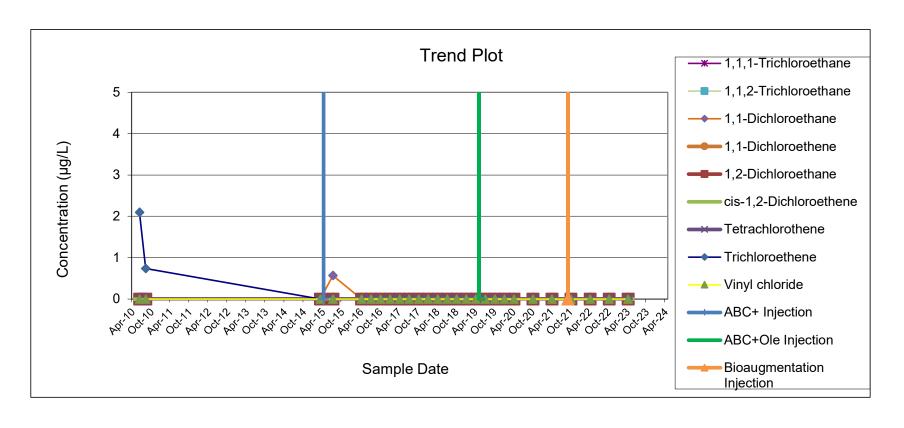

MONITORING WELL MW-35D SUMMARY OF VOCs IN GROUNDWATER Former Scott Aviation Site

Lancaster, New York

				Analytic	al Resul	ts (µg/L)			
Sample Date	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	cis-1,2-Dichloroethene	Tetrachlorothene	Trichloroethene	Vinyl chloride
6/17/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND
8/2/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND
3/12/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/28/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/8/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/8/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/12/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/11/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/24/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/10/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/7/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/17/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/3/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/10/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/9/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/22/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/4/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/18/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/22/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/17/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/8/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/14/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/6/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/5/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/21/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/7/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/7/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/7/2023	ND	ND	ND	ND	ND	ND	ND	ND	ND

MONITORING WELL MW-35D SUMMARY OF VOCs IN GROUNDWATER

Former Scott Aviation Site Lancaster, New York

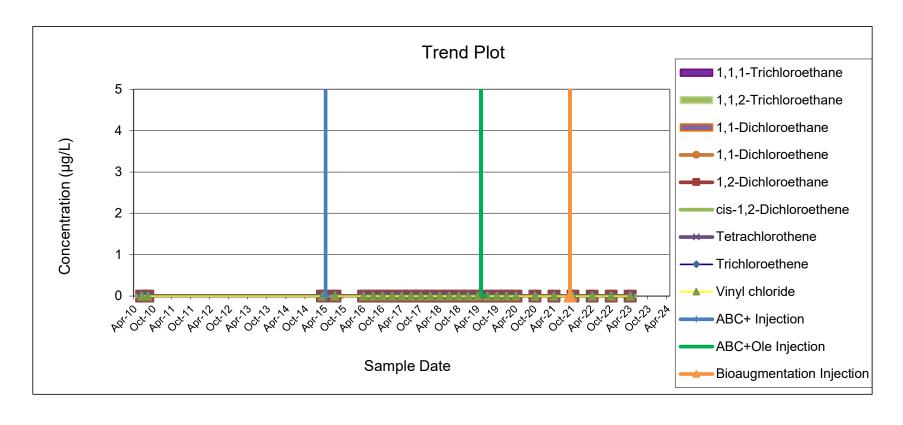

MONITORING WELL MW-36D SUMMARY OF VOCs IN GROUNDWATER Former Scott Aviation Site

Lancaster, New York

				Analytic	al Resul	ts (µg/L)			
Sample Date	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	cis-1,2-Dichloroethene	Tetrachlorothene	Trichloroethene	Z Vinyl chloride
6/17/2010	ND	ND	ND	ND	ND	ND	ND	2.1	ND
8/2/2010	ND	ND	ND	ND	ND	ND	ND	0.74	ND
3/10/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/29/2015	ND	ND	0.57	ND	ND	ND	ND	ND	ND
4/8/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/11/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/12/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/24/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/12/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/6/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/18/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/4/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/9/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/10/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/18/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/8/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/16/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/25/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/18/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/8/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/15/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/9/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/6/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/22/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/11/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/5/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/12/2023	ND	ND	ND	ND	ND	ND	ND	ND	ND

MONITORING WELL MW-36D SUMMARY OF VOCs IN GROUNDWATER

Former Scott Aviation Site Lancaster, New York

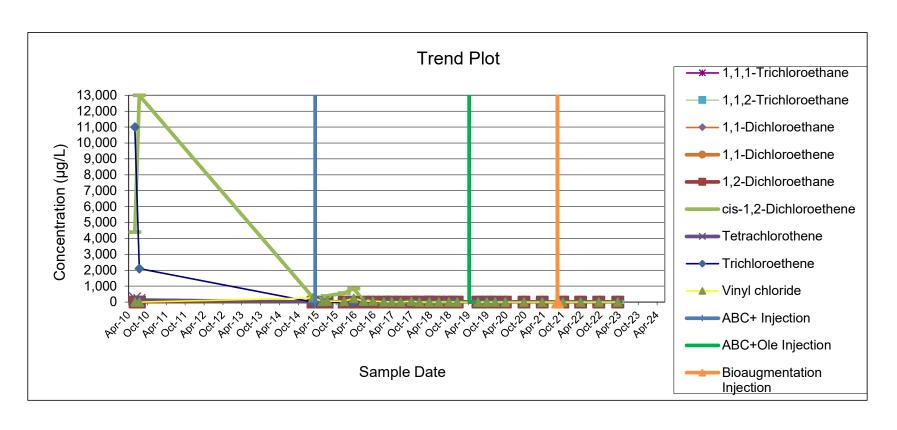

MONITORING WELL MW-37D SUMMARY OF VOCs IN GROUNDWATER Former Scott Aviation Site

Lancaster, New York

				Analytic	al Resul	ts (µg/L)			
Sample Date	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	cis-1,2-Dichloroethene	Tetrachlorothene	Trichloroethene	Vinyl chloride
6/18/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND
8/3/2010	ND	ND	ND	ND	ND	ND	ND	ND	ND
3/10/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/29/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/8/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/12/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/12/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/24/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/11/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/10/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/18/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/5/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/11/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/11/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/18/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/19/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/17/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/24/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/18/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/8/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/15/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/7/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/5/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/21/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/13/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/6/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/12/2023	ND	ND	ND	ND	ND	ND	ND	ND	ND

MONITORING WELL MW-37D SUMMARY OF VOCs IN GROUNDWATER Former Scott Aviation Site

Lancaster, New York

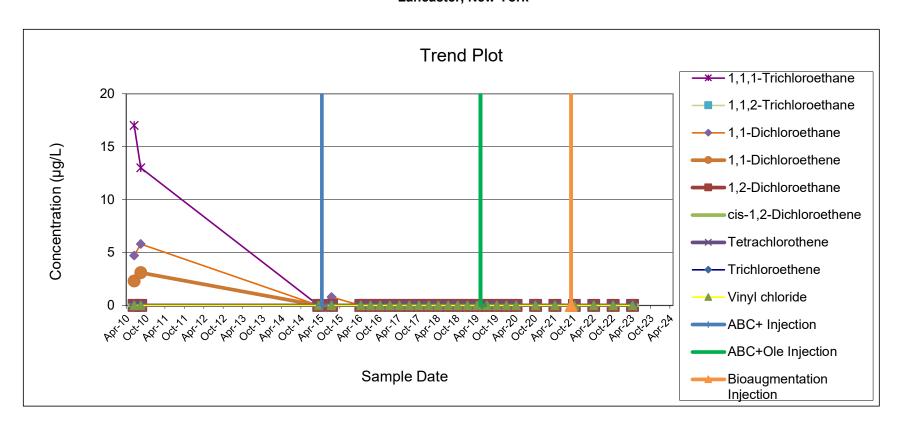


MONITORING WELL MW-38D SUMMARY OF VOCs IN GROUNDWATER Former Scott Aviation Site Lancaster, New York

				Analytic	al Resul	ts (µg/L)			
Sample Date	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	cis-1,2-Dichloroethene	Tetrachlorothene	Trichloroethene	Vinyl chloride
6/22/2010	ND	ND	ND	ND	ND	4,400	230	11,000	ND
8/4/2010	ND	ND	ND	ND	ND	13,000	130	2,100	ND
3/10/2015	ND	ND	ND	ND	ND	290	ND	1.9	260
6/12/2015	ND	ND	ND	ND	ND	190	ND	18	50
7/27/2015	ND	ND	ND	ND	ND	390	ND	6.8	60
1/7/2016	ND	ND	ND	ND	ND	560	ND	ND	44
4/8/2016	ND	ND	3.8	1.3	ND	850	ND	ND	240
7/12/2016	ND	ND	ND	ND	ND	80	ND	ND	59
10/12/2016	ND	ND	5.1	ND	ND	ND	ND	ND	58
1/23/2017	ND	ND	ND	ND	ND	ND	ND	ND	14
4/12/2017	ND	ND	2.1	ND	ND	ND	ND	ND	6.7
7/7/2017	ND	ND	ND	ND	ND	ND	ND	ND	5.1
10/18/2017	ND	ND	19	1.1	ND	27	ND	ND	47
1/4/2018	ND	ND	ND	ND	ND	ND	ND	ND	5.1
4/10/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/11/2018	ND	ND	4.3	ND	ND	ND	ND	ND	ND
10/17/2018	ND	ND	20	ND	ND	20	ND	ND	11
1/4/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/10/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/24/2019	ND	ND	ND	ND	ND	4	ND	ND	4.0
10/17/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/7/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/14/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/12/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/5/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/22/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/12/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/6/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/7/2023	ND	ND	ND	ND	ND	ND	ND	ND	ND

MONITORING WELL MW-38D SUMMARY OF VOCs IN GROUNDWATER

Former Scott Aviation Site Lancaster, New York

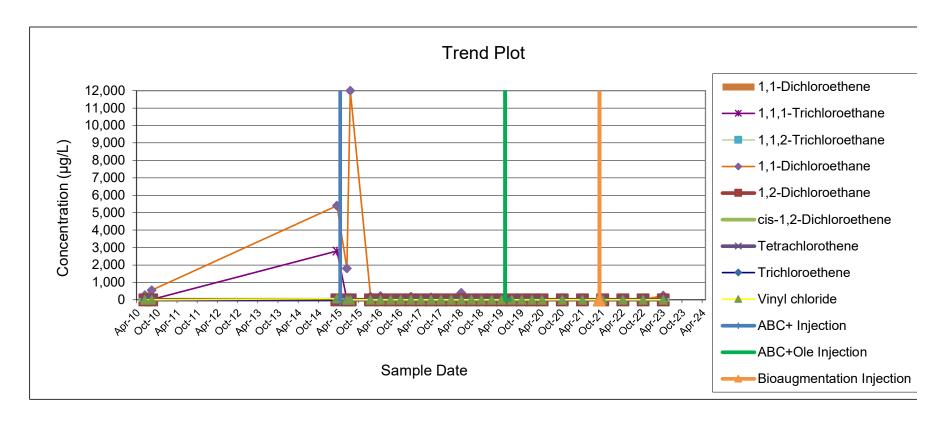


MONITORING WELL MW-39D SUMMARY OF VOCs IN GROUNDWATER Former Scott Aviation Site Lancaster, New York

				Analytic	al Resul	ts (ua/L)			
	(h)	d)			u. 1100ui	e (Fa.F)			
	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	cis-1,2-Dichloroethene	Tetrachlorothene	Trichloroethene	Vinyl chloride
Sample Date		1,							Vi
6/18/2010	17	ND	4.7	2.3	ND	ND	ND	ND	ND
8/3/2010	13	ND	5.8	3.1	ND	ND	ND	ND	ND
3/10/2015	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/29/2015	ND	ND	0.80	ND	ND	ND	ND	ND	ND
4/8/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/12/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/13/2016	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/24/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/11/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/6/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/18/2017	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/9/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/12/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/11/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/17/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/7/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/15/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
7/29/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/18/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/10/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/16/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/9/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/5/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/21/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/13/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/6/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/6/2023	ND	ND	ND	ND	ND	ND	ND	ND	ND

MONITORING WELL MW-39D SUMMARY OF VOCs IN GROUNDWATER

Former Scott Aviation Site Lancaster, New York


MONITORING WELL MW-40D SUMMARY OF VOCs IN GROUNDWATER

Former Scott Aviation Site Lancaster, New York

				Analytic	al Resul	ts (µg/L)			
Sample Date	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	cis-1,2-Dichloroethene	Tetrachlorothene	Trichloroethene	Vinyl chloride
6/21/2010	23	ND	260	1.8	ND	1.2	ND	2.8	ND
8/3/2010	25	ND	550	6	ND	ND	ND	ND	ND
3/11/2015	2,800	ND	5,400	200	ND	ND	ND	ND	67
6/12/2015	ND	ND	1,800	ND	ND	ND	ND	ND	ND
7/27/2015	ND	ND	12,000	64	ND	ND	ND	ND	ND
1/7/2016	ND	ND	190	ND	ND	ND	ND	ND	ND
4/8/2016	ND	ND	220	ND	ND	ND	ND	ND	ND
7/11/2016	ND	ND	12	ND	ND	ND	ND	ND	ND
10/11/2016	ND	ND	71	ND	5.2	ND	ND	ND	ND
1/25/2017	ND	ND	180	ND	4.8	ND	ND	ND	ND
4/10/2017	43	ND	ND	ND	ND	ND	ND	ND	ND
7/10/2017	ND	ND	150	ND	ND	ND	ND	ND	ND
10/16/2017	ND	ND	51	ND	1.3	ND	ND	ND	0.9
1/4/2018	ND	ND	32	ND	ND	ND	ND	ND	ND
4/10/2018	20	ND	400	ND	ND	ND	ND	ND	ND
7/10/2018	ND	ND	4.6	ND	ND	ND	ND	ND	ND
10/18/2018	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/7/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/16/2019	20	ND	78	ND	ND	ND	ND	ND	ND
7/29/2019	ND	ND	15	ND	ND	ND	ND	ND	ND
10/18/2019	ND	ND	ND	ND	ND	ND	ND	ND	ND
1/8/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/16/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/12/2020	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/1/2021	ND	ND	8.6	ND	ND	ND	ND	ND	ND
10/27/2021	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/8/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND
10/7/2022	ND	ND	ND	ND	ND	ND	ND	ND	ND
4/11/2023	74	ND	250	ND	ND	ND	ND	ND	ND

MONITORING WELL MW-40D SUMMARY OF VOCs IN GROUNDWATER Former Scott Aviation Site

Lancaster, New York

Appendix C Purge Logs (October 2022 and April 2023)

Date (mo/day/yr	10/6/2	2022		Casing Diameter			1		inches
Field Personnel	Collin H	orrocks		Casing Material		P\	/C		<u>.</u>
Site Name For	mer Scott Aviation S	ite - Lancaster, NY		Measuring Point Eleva	ation		689.82		1/100 ft
AECOM Job #	606	576146		Height of Riser (above	e land surface)		2.52	2	1/100 ft
Well ID #	A1-GP02	2-S		Land Surface Elevation	on		687.3		1/100 ft
Upgra	adient	Downgradient		Screened Interval (be	low land surface		5-15	5	1/100 ft
Weather Conditions	Parlty	y Cloudy							
Air Temperature	66		° F	Container	Analysis (I	Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top of	of Casing :	15	1/100 ft	VOA 40 mL glass	TCL VOCs	(8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW) E	Below Top of Casing =	4.9	1/100 ft	VOA 40 mL glass	TO	0	2	HCL, 4°C	
Length of Water Column (LWC)	= TWD - DGW =	10.1	1/100 ft						
1 Casing Volume (OCV) = LWC	x <u>0.0408</u> =	0.41	gal						
3 Casing Volumes =	1.2	24	gal						
Method of Well Evacuation	Pe	eristaltic Pump							
Method of Sample Collectior	Peristalti								
Total Volume of Water Remove	(1.0	gal						
			_						
				FIELD ANALYSES				<u> </u>	
Flow Rate (ml/min)	100	100	100	100	100	100			
Time (Military)	1250	1255	1300	1305	1310	1315			
Depth to Groundwater Below Top of Casing (ft)	7.82	7.85	12.09	12.11	12.09	12.11			
Drawdown (ft)	-2.92	-0.03	-4.24	-0.02	0.02	-0.02			
pH (S.U.)	6.97	6.97	7.04	7.07	7.02	7.04			
Sp. Cond. (mS/cm)	1.16	1.13	1.22	1.22	1.19	1.20			
Turbidity (NTUs)	74.3	328	252	110	108	103			
Dissolved Oxygen (mg/L)	0.65	0.54	4.97	5.15	4.75	5.03			
Water Temperature (°C)	16.9	16.9	17.6	17.8	17.8	17.8			
ORP (mV)	-84.2	-90.3	-94.1	-89.0	-89.0	-89.6			
	Physical appeara	ance at start Col	or <u>Cloudy</u>	Phys	sical appearance a	t sampling Col	or C	loudy	
		Ode	or None	_		Od	or <u>1</u>	None	
	Sheen/Free Prod		None	_ Sheen/Fre	ee Product	N	lone		
COMMENTS/OBSERVATIONS									
	Sampled at 13:15 hrs	S							

Date (mo/day/yr	10/6/2	022		Casing Diameter			1		inches
Field Personnel	Collin Ho	rrocks		Casing Material		F	PVC		<u>-</u>
Site Name Fo	rmer Scott Aviation Si	te - Lancaster, NY	,	Measuring Point Elev	ation		687.71		1/100 ft
AECOM Job #	6067	76146		Height of Riser (abov	e land surface)		-0.0	9	1/100 ft
Well ID #	A1-GP06	-S		Land Surface Elevation	on		687.8		1/100 ft
Upg	radient	Downgradient		Screened Interval (be	low land surfac		5-1	5	1/100 ft
Weather Conditions	Su	inny							
Air Temperature	66			Container	Analysis ((Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top	of Casing	15.0	1/100 ft	VOA 40 mL glass	TCL VOC	s (8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW)	Below Top of Casing =	2.69	1/100 ft	VOA 40 mL glass	TC	OC .	2	HCL, 4°C	
Length of Water Column (LW	C) = TWD - DGW =	12.3	1/100 ft	Various	MNA Ar	nalyses	15	Varies	
1 Casing Volume (OCV) = LW	$^{\prime}$ C x 0.0408 =	0.50	gal						
3 Casing Volumes =	1.5	gal							
Method of Well Evacuation	Per	istaltic Pump							
Method of Sample Collectio	Peristaltic	Pump/Poly Tubing	J						
Total Volume of Water Remov	/e	1.0	gal						
	i -			FIELD ANALYSES		1			
Flow Rate (ml/min)	100	100	125	125	125				
Time (Military) Depth to Groundwater	1345	1350	1355	1400	1405				
Below Top of Casing (ft)	5.96	10.05	10.40	12.41	14.41				
Drawdown (ft)	-3.27	-4.09	-0.35	-2.01	-2.00				
рН (S.U.)	7.10	7.08	7.14	7.17	7.19				
Sp. Cond. (mS/cm)	1.70	1.70	1.72	1.71	1.70				
Turbidity (NTUs)	124	94.1	132	127	125				
Dissolved Oxygen (mg/L)	0.41	0.29	0.63	0.69	0.63				
Water Temperature (°C)	16.4	16.6	17.8	16.4	16.3				
ORP (mV)	-131.3	-140.1	-161.1	-165.3	-162.3				
	Physical appeara	nce at start Co	lor <u>Clear</u>	Phy	sical appearance	at sampling C	olor (Clear	
		Od	or <u>No</u>	_		0	dor	No	
	Sheen/Free Prod	uct	None	Sheen/Fr	ee Product		None		
COMMENTS/OBSERVATION	S Started purge at 13:4	3 hrs.							_
	Sampled at 14:05 hrs								

Date (mo/day/yr	10/5/2	2022		Casing Diameter			1		inches
Field Personnel	Collin H	orrocks		Casing Material			VC		<u>.</u>
Site Name For	mer Scott Aviation S	ite - Lancaster, NY		Measuring Point Eleva	ition				1/100 ft
AECOM Job #	606	76146		Height of Riser (above	land surface)				1/100 ft
Well ID #	A1-GP09)-S		Land Surface Elevatio					1/100 ft
	idient			Screened Interval (bel				;	1/100 ft
Weather Conditions	S	unny							
Air Temperature	63		° F	Container	Analysis (M	ethod)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top of	of Casing :	17.3	1/100 ft	VOA 40 mL glass	TCL VOCs (8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW) B	elow Top of Casing =	3.33	1/100 ft	VOA 40 mL glass	TOC		2	HCL, 4°C	
Length of Water Column (LWC)	= TWD - DGW =	13.97	1/100 ft						
1 Casing Volume (OCV) = LWC	x <u>0.0</u> =	0.57	gal						
3 Casing Volumes =	1.7	1	gal						
Method of Well Evacuation	Pe	ristaltic Pump							
Method of Sample Collection	Peristalti	Pump/Poly Tubing							
Total Volume of Water Remove	(1.0	gal						
				FIELD ANALYSES					
Flow Rate (ml/min)	150	100	100	150	150	150			
Time (Military)	1235	1240	1245	1250	1255	1300			
Depth to Groundwater Below Top of Casing (ft)	7.21	7.22	6.97	6.95	6.97	6.97			
Drawdown (ft)	-3.88	-0.01	0.25	0.02	-0.02	0.00			
pH (S.U.)	6.82	6.85	6.85	6.91	6.94	6.95			
Sp. Cond. (mS/cm)	0.74	0.70	0.69	0.67	0.66	0.66			
Turbidity (NTUs)	51.5	71.2	61.0	49.5	48.2	47.5			
Dissolved Oxygen (mg/L)	5.00	5.44	6.16	6.20	6.61	6.53			
Water Temperature (°C)	14.9	14.9	15.0	15.0	15.1	15.1			
ORP (mV)	-84.7	-65.1	-60.9	-57.7	-57.5	-56.6			
	Physical appeara	ince at start Cole	or Clear	Phys	ical appearance at	sampling Co	lor <u> </u>	Clear	
		Odd	or None	<u>_</u>		Od	or N	None	
	Sheen/Free Prod	luct N	lone	Shee	en/Free Product		None		
COMMENTS/OBSERVATIONS	Started purge at 12:3	2 hrs.							
	Sampled at 13:00 hrs	S.							

Date (mo/day/yr				Casing Diameter			1		inches
Field Personnel	Collin Ho	rrocks		Casing Material			PVC		<u>.</u>
Site Name	Former Scott Aviation Si	te - Lancaster, NY	·	Measuring Point Eleva	tion		689.10		1/100 ft
AECOM Job #	6067	76146		Height of Riser (above	land surface)		-0.1	0	1/100 ft
Well ID #	A1-GP10	-S		Land Surface Elevation	n		689.2		1/100 ft
U	pgradient	Downgradient		Screened Interval (beld	ow land surfac		5-1	5	1/100 ft
Weather Conditions	Clo	oudy							
Air Temperature	52			Container	Analysis (N	/lethod)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below T	op of Casing	15	1/100 ft	VOA 40 mL glass	TCL VOCs	(8260B)	3	HCL, 4°C	
Depth to Groundwater (DG)	W) Below Top of Casing =	2.02	1/100 ft	VOA 40 mL glass	TOO		2	HCL, 4°C	
Length of Water Column (L	WC) = TWD - DGW =	12.98	1/100 ft	Various	MNA Ana	alyses	15	Varies	
1 Casing Volume (OCV) = L	WC x <u>0.0408</u> =	0.53	gal	VOA 40 mL glass	VFA	١	2	none	
3 Casing Volumes =	1.59	9	gal						
Method of Well Evacuation	Per	istaltic Pump							
Method of Sample Collectio	Peristaltic	Pump/Poly Tubing							
Total Volume of Water Rem	nove	0.5	gal						
		FIELD A	NALYSES			7/10/17	post sample	1	1
Flow Rate (ml/min)	100	100	100	150					
Time (Military)	1130	1135	1140	1145					
Depth to Groundwater Below Top of Casing (ft)	6.22	9.82	10.42	12.17					
Drawdown (ft)	-4.20	-3.60	-0.60	-1.75					
pH (S.U.)	6.40	6.45	6.47	6.50					
Sp. Cond. (mS/cm)	2.16	1.80	1.73	1.71					
Turbidity (NTUs)	88.8	97.0	92.3	91.7					
Dissolved Oxygen (mg/L)	0.40	0.49	0.46	0.45					
Water Temperature (°C)	15.3	15.5	15.3	14.9					
ORP (mV)	-32.5	-42.2	-45.9	-48.4					
	Physical appeara	nce at start Col	or Clear	Phys	ical appearance at	sampling (Color	Clear	
		Ode	or None	_		(Odor	None	
	Sheen/Free Prod	uct	None	Sheen/Fre	e Product		None		
COMMENTS/OBSERVATION	ONS Started purge at 11:2	6 hrs, dry at 11:47 l	nrs.						
	Sampled on 10/10/22	at 09:45 hrs for MN	NA, VOC and TO	C. VFA sampled at 13:30	hrs.				
									_

Date (mo/day/yr	10/10/	_	Casing Diameter				1				inches	
Field Personnel		orrocks		Casing Material				PVC				
Site Name F	ormer Scott Aviation Si	ite - Lancaster, NY		Measuring Point Eleva	tion			687	.69			1/100 ft
AECOM Job #	606	76146		Height of Riser (above					-1.74		<u>.</u>	1/100 ft
Well ID #	A1-GP14	I-S		Land Surface Elevation				689.4	1		<u>.</u>	1/100 ft
Up	gradient	Downgradient		Screened Interval (belo					5-15			1/100 ft
Weather Conditions	Cl	oudy										
Air Temperature	51			Container	Analysis (N	fethod)	# Bottles		Preservati	ve	Dup -	- MS/MSD
Total Depth (TWD) Below To	p of Casing_	15	1/100 ft	VOA 40 mL glass	TCL VOCs	(8260B)	3		HCL, 4°C			
Depth to Groundwater (DGW	/) Below Top of Casing	1.89	1/100 ft	VOA 40 mL glass	TOO	;	2		HCL, 4°0			
Length of Water Column (LW	/C) = TWD - DGW	13.11	1/100 ft									
1 Casing Volume (OCV) = L\	<i>NC</i> x 0.0408 =	0.53	gal									
3 Casing Volumes =	1.6	60	gal									
Method of Well Evacuation												
Method of Sample Collection	Peristaltio											
Total Volume of Water Remo	ne of Water Remover 1.0 gs											
	<u> </u>				EIEL D	ANALVETE						
Flow Boto (ml/min)	125	125	125	125	125	ANALYSES						
Flow Rate (ml/min) Time (Military)	1020	1025	1030	1035	1040							
Depth to Groundwater	1020	1025	1030	1035	1040							
Below Top of Casing (ft)	3.36	3.98	5.13	11.45	14.60							
Drawdown (ft)	-1.47	-0.62	-1.15	-6.32	-3.15							
pH (S.U.)	6.98	7.19	7.18	7.12	7.16							
Sp. Cond. (mS/cm)	0.79	0.64	0.58	0.532	0.58							
Turbidity (NTUs)	128	245	61.5	99.9	235							
Dissolved Oxygen (mg/L)	1.10	0.49	0.33	0.46	0.38							
Water Temperature (°C)	17.4	17.6	17.8	17.5	17.1							
ORP (mV)	-77.8	-106.0	-94.0	-79.1	-79.4							
	Physical appeara	ance at start Cold	or <u>Clear</u>	Physi	ical appearance at	sampling Co	olor	cloudy				
		Odo	or None	_		O	dor	None				
	Sheen/Free Prod	duc <u>N</u>	one	Sheen/Fre	e Product		None					
COMMENTS/OBSERVATION	OMMENTS/OBSERVATIONS Started purge at 10:18 hrs, dry at 10:42 hrs.											
	Sampled at 11:45 hrs.											
	,											

Field Personnel Collin Horrocks Casing Material PVC	
Site Name Former Scott Aviation Site - Lancaster, NY Measuring Point Elevation 687.69	1/100 ft
AECOM Job # 60676146 Height of Riser (above land surface) -0.31	1/100 ft
Well ID# A1-GP15-S Land Surface Elevation 688.0	1/100 ft
Upgradient Downgradient Screened Interval (below land surfac 5-15	1/100 ft
Weather Conditions Cloudy	
Air Temperature 66 Container Analysis (Method) # Bottles Preservative Dup - M	S/MSD
Total Depth (TWD) Below Top of Casinç 14.82 1/100 ft VOA 40 mL glass TCL VOCs (8260B) 3 HCL, 4°C	
Depth to Groundwater (DGW) Below Top of Casing 2.27 1/100 ft VOA 40 mL glass TOC 2 HCL, 4°C	
Length of Water Column (LWC) = TWD - DGW 12.55 1/100 ft	
1 Casing Volume (OCV) = LWC x 0.0408 = 0.51 gal	
3 Casing Volumes = 1.54 gal	
Method of Well Evacuation Peristaltic Pump	
Method of Sample Collectio Peristaltic Pump/Poly Tubing	
Total Volume of Water Remove 1.0 gal	
FIELD ANALYSES	
Flow Rate (ml/min) 150 100 100 100 100 100	
Time (Military) 1435 1440 1445 1450 1455 1500	
Depth to Groundwater 5.48 7.90 10.60 11.82 12.50 13.13	
Drawdown (ft) -3.21 -2.42 -2.70 -1.22 -0.68 -0.63	
pH (S.U.) ND 6.95 6.95 6.98 7.02 6.99	
Sp. Cond. (mS/cm) ND 0.71 0.72 0.73 0.72 0.72	
Turbidity (NTUs) ND 54.8 52.7 53.5 51.7 52.3	
Dissolved Oxygen (mg/L) ND 4.57 3.47 0.98 0.89 0.92	
Water Temperature (°C) ND 16.2 16.2 16.1 16.2 16.1	
ORP (mV) ND 15.3 13.7 13.6 12.6 12.8	
Physical appearance at start Color Clear Physical appearance at sampling Color Clear	
Odor None Odor None	
Sheen/Free Product None Sheen/Free Product None	
COMMENTS/OBSERVATIONS Started purge at 14:27 hrs, YSI batteries died at 14:36 hrs.	
Sampled at 15:00 hrs.	

Date (mo/day/yr	10/5/		Casing Diameter 1					inches	
Field Personnel	Collin H	lorrocks		Casing Material		PV	С		<u>.</u>
Site Name For	mer Scott Aviation S	Site - Lancaster, NY		Measuring Point Eleva	ition		687.69		1/100 ft
AECOM Job #	600	676146		Height of Riser (above	land surface)		-0.31		1/100 ft
Well ID #	A1-GP1	6-S		Land Surface Elevatio	n		688.0		1/100 ft
Upgra	adient	Downgradient		Screened Interval (bel	ow land surfac		5-15		1/100 ft
Weather Conditions	S	Sunny							
Air Temperature	68			Container	Analysis (Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top	of Casin <u>ę</u>	17.52	1/100 ft	VOA 40 mL glass	TCL VOCs	TCL VOCs (8260B)		HCL, 4°C	
Depth to Groundwater (DGW)	Below Top of Casing	3.49	1/100 ft	VOA 40 mL glass	ТО	С	2	HCL, 4°C	
Length of Water Column (LWC	(c) = TWD - DGW	14.03	1/100 ft						
1 Casing Volume (OCV) = LW0	C x <u>0.0408</u> =	0.57	gal						
3 Casing Volumes =	1.	72	gal						
Method of Well Evacuation	Pe	eristaltic Pump							
Method of Sample Collectio	thod of Sample Collectio Peristaltic Pump/Poly Tubing								
Total Volume of Water Remove 1.0 ga			gal						
			FI	ELD ANALYSES		T			
Flow Rate (ml/min)	150	150	150	150	150	150			
Time (Military)	1425	1430	1435	1440	1445	1450			
Depth to Groundwater Below Top of Casing (ft)	5.55	5.72	5.87	6.02	6.06	6.15			
Drawdown (ft)	-2.06	-0.17	-0.15	-0.15	-0.04	-0.09			
pH (S.U.)	6.82	6.76	6.76	6.77	6.80	6.78			
Sp. Cond. (mS/cm)	0.79	0.79	0.80	0.80	0.81	0.81			
Turbidity (NTUs)	178	194	147	116	112	114			
Dissolved Oxygen (mg/L)	0.87	0.67	0.53	0.38	0.25	0.29			
Water Temperature (°C)	14.3	14.3	14.4	14.3	14.2	14.3			
ORP (mV)	-24.8	-16.7	-11.3	-2.2	-0.5	-1.1			
	Physical appea	rance at start Cold	or <u>Clear</u>	Phys	ical appearance a	at sampling Cold	or <u>C</u>	Clear	
	Sheen/Free Produc	Odo	or None	_		Odo	r <u>N</u>	lone	
COMMENTS/ODSEDVATIONS	_ Sheen/Fre	e Product	No	one					
COMMENTS/OBSERVATIONS	Started purge at 14 Sampled at 14:50 h								
	,								_

Date (mo/day/yr	10/0	6/22		Casing Diameter		0.	75		inches
Field Personnel	Collin H	orrocks		Casing Material			/C		<u>.</u>
Site Name Form	ner Scott Aviation S	ite - Lancaster, NY		Measuring Point Eleva	ation		690.37		1/100 ft
AECOM Job #	606	76146		Height of Riser (above	e land surface)		2.87		1/100 ft
Well ID #	A1GP-1	8-S		Land Surface Elevation	on		687.5		1/100 ft
Upgra	dient	Downgradient		Screened Interval (be	Screened Interval (below land surfac 5-15				1/100 ft
Weather Conditions	С	oudy							
Air Temperature	52			Container	Analysis (I	Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top of	f Casinţ	18	1/100 ft	VOA 40 mL glass	TCL VOCs	TCL VOCs (8260B)		HCL, 4°C	
· · · · · · · · · · · · · · · · · · ·			1/100 ft	VOA 40 mL glass	TO	TOC 2		HCL, 4°C	
Length of Water Column (LWC)	= TWD - DGW	13	1/100 ft	Various	MNA An	alyses	15	Varies	
1 Casing Volume (OCV) = LWC	x <u>0.0408</u> =	0.53	gal						
3 Casing Volumes =	1.9	59	gal						
Method of Well Evacuation	Pe	ristaltic Pump							
Method of Sample Collectio Peristaltic Pump/Poly Tubing									
Total Volume of Water Remove 1.0 gal									
		I		FIELD ANALYSES		1			
Flow Rate (ml/min)	200	100	100	150	150	100			
Time (Military)	900	905	910	915	920	925			
Depth to Groundwater Below Top of Casing (ft)	7.23	8.35	8.36	9.67	11.81	13.89			
Drawdown (ft)	-2.23	-1.12	-0.01	-1.31	-2.14	-2.08			
pH (S.U.)	6.95	6.83	6.80	6.86	6.89	6.86			
Sp. Cond. (mS/cm)	0.83	0.76	0.76	0.76	0.75	0.76			
Turbidity (NTUs)	185	331	358	257	254	247			
Dissolved Oxygen (mg/L)	0.90	0.43	0.37	0.44	0.38	0.40			
Water Temperature (°C)	13.2	13.1	13.1	13.2	13.2	13.1			
ORP (mV)	-65.6	-82.0	-86.0	-86.8	-86.4	-83.7			
Physical appearance at start Color Odor None Sheen/Free Product None COMMENTS/OBSERVATIONS Started purge at 08:58 hrs. Physical appearance at sampling Color Odor None None Sheen/Free Product None Sheen/Free Product None Sheen/Free Product None									
	p 2 - 4 - 0 - 0 - 11	-							

Date (mo/day/yr	10/10/	2022		Casing Diameter		2			inches
Field Personnel	Collin H	orrocks		Casing Material		PVC			<u>.</u>
Site Name For	ner Scott Aviation S	ite - Lancaster, NY		Measuring Point Eleva	ation				1/100 ft
AECOM Job #	606	76146		Height of Riser (above	e land surface)		0.00)	1/100 ft
Well ID #)		Land Surface Elevation					1/100 ft
Upgra	dient	Downgradient		Screened Interval (below land surface 10-20				1/100 ft	
Weather Conditions	С	oudy							
Air Temperature	54			Container	Analysis (I	Method) #	Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top o	f Casing :	20	1/100 ft	VOA 40 mL glass	TCL VOCs	TCL VOCs (8260B) 3 HCL, 4°(
Depth to Groundwater (DGW) B	elow Top of Casing =	4.42	1/100 ft	VOA 40 mL glass	TO	C	2	HCL, 4°C	
Length of Water Column (LWC)	= TWD - DGW =	15.58	1/100 ft						
1 Casing Volume (OCV) = LWC	x 0.163 =	2.54	gal						
3 Casing Volumes =	7.6	32	gal						
Method of Well Evacuation		ristaltic Pump							
Method of Sample Collectior Peristaltic Pump/Poly Tubing									
Total Volume of Water Removed 2.0			gal						
				FIELD ANALYSES		,			
Flow Rate (ml/min)	250	250	200	200	200	200			
Time (Military)	1205	1210	1215	1220	1225	1230			
Depth to Groundwater Below Top of Casing (ft)	4.98	6.56	7.87	9.23	9.71	9.95			
Drawdown (ft)	-0.56	-1.58	-1.31	-1.36	-0.48	-0.24			
pH (S.U.)	7.37	7.25	7.25	7.27	7.26	7.27			
Sp. Cond. (mS/cm)	0.71	0.70	0.70	0.70	0.70	0.70			
Turbidity (NTUs)	23.1	24.4	18.2	18.2	18.2	15.2			
Dissolved Oxygen (mg/L)	0.52	0.21	0.16	0.15	0.13	0.13			
Water Temperature (°C)	17.5	17.5	17.7	17.7	17.7	17.8			
ORP (mV)	-77.6	-117.8	-110.3	-106.6	-106.0	-105.0			
	r Clear None	Phys	sical appearance a	t sampling Color Odor		Clear None			
	Sheen/Free Prod		one	Sheen/Fre	ee Product	Non	е		
COMMENTS/OBSERVATIONS Started purge at 12:02 hrs.									
	Sampled at 12:30 hrs	S.							

Date (mo/day/yr	e (mo/day/yr10/7/2022					2			inches
Field Personnel	Collin H	orrocks		Casing Material		PV	С		<u>.</u>
Site Name Form	ner Scott Aviation S	ite - Lancaster, NY	,	Measuring Point Elev	ation		688.56		1/100 ft
AECOM Job #	606	76146		Height of Riser (above	e land surface)		-0.5	4	1/100 ft
Well ID #	MW-35	is		Land Surface Elevation	on		689.1		1/100 ft
Upgra	ndient	Downgradient		Screened Interval (be	elow land surfac		5-1	5	1/100 ft
Weather Conditions	С	loudy							
Air Temperature	52		°F	Container	Analysis (Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top of	of Casin(14.01	1/100 ft	VOA 40 mL glass	TCL VOCs	s (8260B)	3	HCL, 4°C	Dup
Depth to Groundwater (DGW) E	Below Top of Casing	10.03	1/100 ft	VOA 40 mL glass	ТО	С	2	HCL, 4°C	
Length of Water Column (LWC)) = TWD - DGW	3.98	1/100 ft						
1 Casing Volume (OCV) = LWC	0.163 =	0.65	gal						
3 Casing Volumes =	1.9	95	gal						
Method of Well Evacuation	Pe	ristaltic Pump							
Method of Sample Collection	hod of Sample Collectio Peristaltic Pump/Poly Tubing								
Total Volume of Water Remove 1.5			gal						
				FIELD ANALYSES		T		T	
Flow Rate (ml/min)	200	200	200	200	200	200		200	
Time (Military)	930	935	940	945	950	955		1000	
Depth to Groundwater Below Top of Casing (ft)	10.52	10.87	11.21	11.64	12.02	12.34		12.69	
Drawdown (ft)	-0.49	-0.35	-0.34	-0.43	-0.38	-0.32		-0.35	
pH (S.U.)	7.08	7.00	6.99	7.00	7.01	6.95		6.97	
Sp. Cond. (mS/cm)	0.80	0.80	0.82	0.83	0.83	0.82		0.82	
Turbidity (NTUs)	47.80	28.80	17.80	11.80	10.9	10.3		10.4	
Dissolved Oxygen (mg/L)	2.57	2.72	1.76	1.05	0.84	0.82		0.83	
Water Temperature (°C)	13.3	13.5	13.6	13.7	13.5	13.4		13.5	
ORP (mV)	6.0	22.8	38.1	42.4	45.1	41.6		42.8	
	Physical appear	ance at start Col	or Clear	Phys	sical appearance a	at sampling Col	or	Clear	
		Odd	or <u>None</u>	_		Odo	or	None	
	Sheen/Free Produc	t <u> </u>	lone	Sheen/Fr	ee Product	N	one		
COMMENTS/OBSERVATIONS	Started purge at 09:	27 hrs.							
	Sampled at 10:00 h	rs.							

Date (mo/day/yr	10/7/	2022		Casing Diameter		2			inches
Field Personnel	Collin H	orrocks		Casing Material		PV	С		
Site Name Form	mer Scott Aviation S	ite - Lancaster, NY	<u>, </u>	Measuring Point Elev	vation		698.66		1/100 ft
AECOM Job #	606	76146		Height of Riser (abov	e land surface)		2.83		1/100 ft
Well ID #	MW-35	5D		Land Surface Elevation	on	ı	687.1		1/100 ft
Upgra	adient	Downgradient		Screened Interval (be	elow land surfac		21-26	3	1/100 ft
Weather Conditions	С	loudy					•		
Air Temperature	50			Container	Analysis (I	Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top	Below Top of Casing 25.22 1/100 ft			VOA 40 mL glass	TCL VOCs	TCL VOCs (8260B)		HCL, 4°C	
Depth to Groundwater (DGW) E	oundwater (DGW) Below Top of Casing 7.45 1/100 ft			VOA 40 mL glass	TO	TOC		HCL, 4°C	
Length of Water Column (LWC	s) = TWD - DGW	17.77	1/100 ft	Various	MNA An	alyses	15	Varies	
1 Casing Volume (OCV) = LWC	C x <u>0.163</u> =	2.90	gal						
3 Casing Volumes =	8.6	69	gal						
Method of Well Evacuation	Pe	eristaltic Pump							
Method of Sample Collection	Peristalti	c Pump/Poly Tubing	J						
Total Volume of Water Remove	Volume of Water Remove 2.5 gal								
			F	FIELD ANALYSES					
Flow Rate (ml/min)	300	300	250	250	250	250			
Time (Military)	1025	1030	1035	1040	1045	1050			
Depth to Groundwater Below Top of Casing (ft)	7.62	8.75	10.12	11.33	11.97	12.46			
Drawdown (ft)	-0.17	-1.13	-1.37	-1.21	-0.64	-0.49			
pH (S.U.)	7.29	7.21	7.25	7.27	7.28	7.32			
Sp. Cond. (mS/cm)	0.479	0.489	0.470	0.466	0.462	0.462			
Turbidity (NTUs)	327.00	229.00	126.00	117.00	114.00	113.00			
Dissolved Oxygen (mg/L)	1.18	0.33	0.21	0.24	0.23	0.22			
Water Temperature (°C)	12.9	12.6	12.7	12.7	13.0	12.9			
ORP (mV)	-80.3	-131.7	-150.6	-152.7	-153.7	-155.3			
	Physical appear	rance at start Cole	or Cloudy/Gray	_ Phy	sical appearance a	it sampling Colo	or <u>C</u>	lear	
		Odd	or <u>None</u>	_		Odo	r <u>N</u>	lone	
	Sheen/Free Produc		lone	_ Sheen/Fr	ee Product	No	ne		
COMMENTS/OBSERVATIONS Started purge at 10:22 hrs. Sampled at 10:50 hrs.									
	Campied at 10.30 II	10.							_

Date (mo/day/yr	10/5	5/2022		Casing Diameter			2		inches
Field Personnel	Collin	Horrocks		Casing Material			PVC		<u>.</u>
Site Name	Former Scott Aviation	Site - Lancaster, N	Υ	Measuring Point Elev	ration		689.82		1/100 ft
AECOM Job #	60	0676146		Height of Riser (abov	e land surface)		2.72	2	1/100 ft
Well ID #	MW-3	36S		Land Surface Elevation	on		687.1		1/100 ft
	Upgradient	Downgradient		Screened Interval (be	elow land surfac		5-15	1/100 ft	
Weather Conditions	•	Sunny							
Air Temperature	60)		Container	Analysis (Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Belo	ow Top of Casin(17.7	1/100 ft	VOA 40 mL glass	TCL VOC	TCL VOCs (8260B) 3 H		HCL, 4°C	
Depth to Groundwater (ndwater (DGW) Below Top of Casing 3.57 1/100			VOA 40 mL glass	TC	С	2	HCL, 4°C	
Length of Water Column	n (LWC) = TWD - DGW	14.13	1/100 ft						
1 Casing Volume (OCV)) = LWC x <u>0.163</u> =	2.30	gal						
3 Casing Volumes =	6	.91	gal						
Method of Well Evacuat	tionF	Peristaltic Pump							
Method of Sample Collectio Peristaltic Pump/Poly Tubing			g						
Total Volume of Water Remove 2.0 ga			gal						
		I		FIELD ANALYSES		1			
Flow Rate (ml/min)	350	250	250	250	250	<u> </u>			
Time (Military)	1155	1200	1205	1210	1215				
Depth to Groundwater Below Top of Casing (ft)	4.36	5.21	6.55	7.50	8.22				
Drawdown (ft)	-0.79	-0.85	-1.34	-0.95	-0.72				
pH (S.U.)	7.10	7.06	7.05	7.04	7.08				
Sp. Cond. (mS/cm)	1.23	1.21	1.18	1.15	1.19				
Turbidity (NTUs)	10.7	11.3	7.83	11.5	11.2				
Dissolved Oxygen (mg/l	_) 0.59	0.66	0.65	0.61	0.64				
Water Temperature (°C) 13.0	13.2	13.3	13.7	13.7				
ORP (mV)	-86.0	-89.0	-90.9	-91.5	-94.5				
	Physical appea	arance at start Co	lor Clear	Phy	sical appearance	at sampling	Color	Clear	
		Od	or None	_			Odor1	None	
	Sheen/Free Produ		None	Sheen/Fr	ee Product		None		
COMMENTS/OBSERVA	ATIONS Started purge at 1 Sampled at 12:15								

Date (mo/day/yr 10/5/2022 Casing Diameter 2 Inches
AECOM Job # 60676146 Height of Riser (above land surface) 2.56 1/100 ft Well ID # MW-36D Land Surface Elevation 687.1 1/100 ft Upgradient Downgradient Screened Interval (below land surface) 16-21 1/100 ft Weather Conditions Sunny Screened Interval (below land surface) 16-21 1/100 ft Air Temperature 55 Container Analysis (Method) # Bottles Preservative Dup - MS/MSD Total Depth (TWD) Below Top of Casing 6.62 1/100 ft VOA 40 mL glass TCL VOCs (8260B) 3 HCL, 4°C Length of Water Column (LWC) = TWD - DGW 16.88 1/100 ft VOA 40 mL glass TOC 2 HCL, 4°C 1 Casing Volume (OCV) = LWC x 0.163 2.75 gal Gal </td
Well ID # MW-36D Land Surface Elevation 687.1 1/100 ft Upgradient Downgradient Screened Interval (below land surfac 16-21 1/100 ft Weather Conditions Sunny Container Analysis (Method) # Bottles Preservative Dup - MS/MSD Total Depth (TWD) Below Top of Casing 23.5 1/100 ft VOA 40 mL glass TCL VOCs (8260B) 3 HCL, 4°C Depth to Groundwater (DGW) Below Top of Casing 6.62 1/100 ft VOA 40 mL glass TOC 2 HCL, 4°C Length of Water Column (LWC) = TWD - DGW 16.88 1/100 ft VOA 40 mL glass TOC 2 HCL, 4°C 1 Casing Volume (OCV) = LWC x 0.163 = 2.75 gal Method of Well Evacuation Peristaltic Pump Peristaltic Pump/Poly Tubing
Upgradient Downgradient Screened Interval (below land surfac 16-21 1/100 ft
Weather Conditions Sunny Air Temperature 55 Container Analysis (Method) # Bottles Preservative Dup - MS/MSD Total Depth (TWD) Below Top of Casing 23.5 1/100 ft VOA 40 mL glass TCL VOCs (8260B) 3 HCL, 4°C Depth to Groundwater (DGW) Below Top of Casing 6.62 1/100 ft VOA 40 mL glass TOC 2 HCL, 4°C Length of Water Column (LWC) = TWD - DGW 16.88 1/100 ft VOA 40 mL glass TOC 2 HCL, 4°C 1 Casing Volume (OCV) = LWC x 0.163 = 2.75 gal 9 9 9 9 Method of Well Evacuation Peristaltic Pump Peristaltic Pump/Poly Tubing 9 9 9 9 9
Air Temperature 55 Container Analysis (Method) # Bottles Preservative Dup - MS/MSD Total Depth (TWD) Below Top of Casing 23.5 1/100 ft VOA 40 mL glass TCL VOCs (8260B) 3 HCL, 4°C H
Total Depth (TWD) Below Top of Casing 23.5 1/100 ft VOA 40 mL glass TCL VOCs (8260B) 3 HCL, 4°C Depth to Groundwater (DGW) Below Top of Casing 6.62 1/100 ft VOA 40 mL glass TOC 2 HCL, 4°C Length of Water Column (LWC) = TWD - DGW 16.88 1/100 ft Include the column of th
Depth to Groundwater (DGW) Below Top of Casing 6.62 1/100 ft VOA 40 mL glass TOC 2 HCL, 4°C Length of Water Column (LWC) = TWD - DGW 16.88 1/100 ft Image: Column (LWC) = LWC x
Length of Water Column (LWC) = TWD - DGW 16.88 1/100 ft 1 Casing Volume (OCV) = LWC x 0.163 = 2.75 gal 3 Casing Volumes = 8.25 gal Method of Well Evacuation Peristaltic Pump Method of Sample Collection Peristaltic Pump/Poly Tubing
1 Casing Volume (OCV) = LWC x
3 Casing Volumes = 8.25 gal Method of Well Evacuation Peristaltic Pump Method of Sample Collection Peristaltic Pump/Poly Tubing
Method of Well Evacuation Peristaltic Pump Method of Sample Collection Peristaltic Pump/Poly Tubing
Method of Sample Collectio Peristaltic Pump/Poly Tubing
Total Values of Water Barraya
Total Volume of Water Remove 2.0 gal
FIELD ANALYSES
Flow Rate (ml/min) 300 250 250 250 250 250
Time (Military) 1110 1115 1120 1125 1130 1135
Depth to Groundwater 8.97 10.21 11.82 13.48 14.75
Drawdown (ft) -0.99 -1.36 -1.24 -1.61 -1.66 -1.27
pH (S.U.) 7.40 7.38 7.29 7.27 7.23 7.21
Sp. Cond. (mS/cm) 1.45 1.44 1.44 1.44 1.44 1.44 1.44
Turbidity (NTUs) 17.2 15.6 20.0 18.8 17.6 17.1
Dissolved Oxygen (mg/L) 0.96 0.75 0.51 0.46 0.49 0.48
Water Temperature (°C) 13.0 12.7 12.6 12.6 12.6 12.5
ORP (mV) -143.5 -160.0 -154.3 -152.9 -149.4 -148.5
Physical appearance at start Color Clear Physical appearance at sampling Color Clear
Odor None Odor None
Sheen/Free Product None Sheen/Free Product None
COMMENTS/OBSERVATIONS Started purge at 11:08 hrs.
Sampled at 11:35 hrs.

Date (mo/day/yr	·					2	2		inches
Field Personnel	Collin H	orrocks		Casing Material			′C		
Site Name For	rmer Scott Aviation S	ite - Lancaster, NY		Measuring Point Elev	ation		690.05		1/100 ft
AECOM Job #	606	676146		Height of Riser (above	ve land surface)		2.45		1/100 ft
Well ID #	MW-37	'D		Land Surface Elevati			687.6		1/100 ft
Upg	radient	Downgradient		Screened Interval (be	Screened Interval (below land surfac 15-20				
Weather Conditions	С	loudy							
Air Temperature	59			Container	Analysis (I	Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top	of Casinç	22.5	1/100 ft	VOA 40 mL glass	TCL VOCs	(8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW)	oth to Groundwater (DGW) Below Top of Casing 5.8 1/100			VOA 40 mL glass	TO	0	2	HCL, 4°C	
Length of Water Column (LWC	C) = TWD - DGW	16.7	1/100 ft						
1 Casing Volume (OCV) = LW	C x 0.163 =	2.72	gal						
3 Casing Volumes =	8.	17	gal						
Method of Well Evacuation	Pe	eristaltic Pump							
Method of Sample Collection	Peristalti	c Pump/Poly Tubing							
			gal						
				FIELD ANALYSES	T	T	1		
Flow Rate (ml/min)	400	250	250	250	250	250			
Time (Military)	1010	1015	1020	1025	1030	1035			
Depth to Groundwater Below Top of Casing (ft)	7.22	8.01	8.64	9.18	9.48	9.69			
Drawdown (ft)	-1.42	-0.79	-0.63	-0.54	-0.30	-0.21			
pH (S.U.)	7.01	6.96	6.85	6.80	6.84	6.82			
Sp. Cond. (mS/cm)	0.96	0.97	1.04	1.06	1.03	1.04			
Turbidity (NTUs)	ND	121	66.9	27.7	21.3	24.8			
Dissolved Oxygen (mg/L)	0.22	0.18	0.15	0.24	0.16	0.20			
Water Temperature (°C)	12.50	12.80	12.70	12.50	12.50	12.50			
ORP (mV)	-79.9	-94.1	-90.9	-88.3	-90.7	-91.3			
	Physical appear	rance at start Cold	or <u>Clear</u>	Phy	sical appearance a	t sampling Col	or <u>C</u>	Clear	
		Odo	or None	_		Odd	or <u>N</u>	lone	
	Sheen/Free Produc		one	Sheen/Fr	ree Product	N	one		
COMMENTS/OBSERVATION	S Started purge at 10: Sampled at 10:35 h								
	Sampled at 10.35 ft	10.							

Date (mo/day/yr	10/6/2	2022		Casing Diameter 2					inches
Field Personnel	Collin Ho	orrocks		Casing Material		PVC			<u> </u>
Site Name For	mer Scott Aviation S	ite - Lancaster, NY		Measuring Point Eleva	ition		689.66		1/100 ft
AECOM Job #	606	76146		Height of Riser (above	land surface)		2.72		1/100 ft
Well ID #	MW-38	D		Land Surface Elevatio	n	6	87.5		1/100 ft
Upgra	dient	Downgradient		Screened Interval (bel	ow land surface		16-2	1	1/100 ft
Weather Conditions	Partly	/ Cloudy							
Air Temperature	64		° F	Container	Analysis (N	Method) #	Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top o	f Casing :	20.9	1/100 ft	VOA 40 mL glass	TCL VOCs	(8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW) B	epth to Groundwater (DGW) Below Top of Casing = 5			VOA 40 mL glass	TOO		2	HCL, 4°C	
Length of Water Column (LWC)	ngth of Water Column (LWC) = TWD - DGW =15.9			Various	MNA Ana	alyses	15	Varies	
1 Casing Volume (OCV) = LWC	x <u>0.163</u> =	2.59	gal						
3 Casing Volumes =	7.7	78	gal						
Method of Well Evacuation	Pe	ristaltic Pump							
Method of Sample Collectior	thod of Sample Collectior Peristaltic Pump/Poly Tubing								
Total Volume of Water Removed	Total Volume of Water Removec 1.5								
				FIELD ANALYSES					
Flow Rata (ml/min)	350	250	250	200	200	200			
Flow Rate (ml/min)									
Time (Military) Depth to Groundwater	1155	1200	1205	1210	1215	1220			
Below Top of Casing (ft)	5.21	6.79	9.07	10.62	12.25	13.23			
Drawdown (ft)	-0.21	-1.58	-2.28	-1.55	-1.63	-0.98			
pH (S.U.)	7.54	7.45	7.46	7.46	7.47	7.47			
Sp. Cond. (mS/cm)	0.91	0.89	0.88	0.88	0.88	0.88			
Turbidity (NTUs)	55.0	40.0	52.5	50.7	51.2	50.6			
Dissolved Oxygen (mg/L)	0.38	0.12	0.12	0.14	0.15	0.14			
Water Temperature (°C)	15.4	15.1	15.1	15.3	15.3	15.3			
ORP (mV)	-11.2	-87.0	-100.9	-102.2	-100.8	-100.2			
	Physical appeara	ince at start Co Od		Phys	sical appearance at	t sampling Color Odor		Clear None	
	Sheen/Free Prod		None	 Sheen/Fre	e Product	Nor			
COMMENTS/OBSERVATIONS		_				1401			
	Sampled at 12:20 hrs	S.							

Date (mo/day/yr	10/6/2		Casing Diameter			2		inches	
Field Personnel	Collin Ho	orrocks		Casing Material		F	PVC		<u>.</u>
Site Name Form	mer Scott Aviation S	ite - Lancaster, NY		Measuring Point Eleva	ation		689.72		1/100 ft
AECOM Job #	606	76146		Height of Riser (above	e land surface)		2.	57	1/100 ft
Well ID #	MW-39	D		Land Surface Elevation			687.4		1/100 ft
Upgra	dient	Downgradient		Screened Interval (be	low land surface		15-	-20	1/100 ft
Weather Conditions	CI	oudy							
Air Temperature	64			Container	Analysis (N	Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top o	elow Top of Casing : 22.5			VOA 40 mL glass	TCL VOCs	TCL VOCs (8260B) 3 4°C			
Depth to Groundwater (DGW) B	pth to Groundwater (DGW) Below Top of Casing = 5.57			VOA 40 mL glass	TOO	<u> </u>	2	HCL, 4°C	
Length of Water Column (LWC)	= TWD - DGW =	16.93	1/100 ft						
1 Casing Volume (OCV) = LWC	x <u>0.163</u> =	2.76	gal						
3 Casing Volumes =	8.2	8	gal						
Method of Well Evacuation	Pe	ristaltic Pump							
Method of Sample Collectior	od of Sample Collectior Peristaltic Pump/Poly Tubing								
Total Volume of Water Remover 2.0 ga			gal						
				TIELD AMALVEES					
Flow Rate (ml/min)	250	250	250	200	200				
, ,			1120	1125					
Time (Military) Depth to Groundwater	1110	1115	1120	1125	1130				
Below Top of Casing (ft)	6.63	8.14	9.80	10.75	11.30				
Drawdown (ft)	-1.06	-1.51	-1.66	-0.95	-0.55				
pH (S.U.)	6.97	6.96	6.98	7.00	6.98				
Sp. Cond. (mS/cm)	1.570	1.580	1.580	1.590	1.580				
Turbidity (NTUs)	193	198	178	186	179				
Dissolved Oxygen (mg/L)	0.44	0.25	0.17	0.20	0.19				
Water Temperature (°C)	13.7	13.7	13.5	13.4	13.3				
ORP (mV)	-112.7	-122.4	-129.5	-131.6	-129.9				
	Physical appeara			Phys	sical appearance at		olor	Clear	
	Sheen/Free Prod	Odo	or <u>None</u> Ione		ee Product	0	dor None	None	
COMMENTS/OBSERVATIONS			IONE	Sileeil/File	se i-Toduct		None		
	Sampled at 11:30 hrs								

Date (mo/day/yr	10/7/2	2022		Casing Diameter			2		inches
Field Personnel	Collin H	orrocks		Casing Material			VC		<u>.</u>
Site Name Form	ner Scott Aviation S	ite - Lancaster, NY		Measuring Point Eleva	tion		689.19		1/100 ft
AECOM Job #	606	76146		Height of Riser (above	land surface)		-0.3	3	1/100 ft
Well ID #	MW-40	D		Land Surface Elevation	n		689.5		1/100 ft
Upgrad	dient	Downgradient		Screened Interval (belo	ow land surface		17.8-2	22.8	1/100 ft
Weather Conditions	Cl	oudy							
Air Temperature	54			Container	Analysis (I	Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top of			1/100 ft	VOA 40 mL glass	TCL VOCs	TCL VOCs (8260B)		HCL, 4°C	
Depth to Groundwater (DGW) Be	th to Groundwater (DGW) Below Top of Casing = 6.63		1/100 ft	VOA 40 mL glass	TOO	2	2	HCL, 4°C	
Length of Water Column (LWC)	ength of Water Column (LWC) = TWD - DGW = 15.87 1/100 ft			Various	MNA Ana	alyses	15	Varies	
1 Casing Volume (OCV) = LWC	x <u>0.163</u> =	2.77	gal						
3 Casing Volumes =	8.3	31	gal						
Method of Well Evacuation	Pe	ristaltic Pump							
Method of Sample Collectior	Dilectior Peristaltic Pump/Poly Tubing								
Total Volume of Water Removed	tal Volume of Water Remover 2.5 gal								
				FIELD ANALYSES					
Flow Rate (ml/min)	300	300	300	300	250				
Time (Military)	1215	1220	1225	1230	1235				
Depth to Groundwater	1210	1220	1223	1230	1200				
Below Top of Casing (ft)	6.63	7.05	9.12	11.15	12.43				
Drawdown (ft)	0.00	-0.42	-2.07	-2.03	-1.28				
pH (S.U.)	7.12	7.24	7.24	7.28	7.27				
Sp. Cond. (mS/cm)	1.03	0.99	0.97	0.96	0.96				
Turbidity (NTUs)	105	122	126	125	127				
Dissolved Oxygen (mg/L)	0.23	0.12	0.09	0.08	0.08				
Water Temperature (°C)	13.6	13.8	13.9	14.0	14.0				
ORP (mV)	-92.4	-124.7	-148.7	-163.9	-157.9				
	Physical appeara	ance at start Col	or <u>Clear</u>	Phys	ical appearance a	t sampling Co	olor	Clear	
		Ode	or None	_		O	dor	None	
COMMENTS/ODGEDVATIONS	Sheen/Free Prod		lone	Sheen/Fre	e Product		None		
COMMENTS/OBSERVATIONS	Started purge at 12:1 Sampled at 12:35 hrs								

Date (mo/day/yr 10/7/2022				Casing Diameter 2					inches	
Field Personnel	eld Personnel Collin Horrocks				Casing Material PVC					
Site Name Form	Site Name Former Scott Aviation Site - Lancaster, NY				Measuring Point Elevation 689.08					
AECOM Job #	AECOM Job # 60676146				Height of Riser (above land surface) -0.58					
Well ID #	MW-42	2S		Land Surface Elevation	n	68	39.66		1/100 ft	
Upgra	dient	Downgradient		Screened Interval (bel	ow land surface		5-15	j	1/100 ft	
Weather Conditions	C	loudy				_			T	
Air Temperature	54			Container	Analysis (Method) #	Bottles	Preservative	Dup - MS/MSD	
Total Depth (TWD) Below Top or	f Casing :	14.3	1/100 ft	VOA 40 mL glass	TCL VOCs	s (8260B)	3	HCL, 4°C		
Depth to Groundwater (DGW) B	elow Top of Casing =	5.12	1/100 ft	Various	MN	As	15	Various		
Length of Water Column (LWC)	= TWD - DGW =	9.18	1/100 ft	VOA 40 mL glass	ТО	С	2	HCL, 4°C		
1 Casing Volume (OCV) = LWC	x <u>0.163</u> =	1.50	gal	1 L Plastic	Gene-	Trac	1	none		
3 Casing Volumes =	4.	49	gal	VOA 40 mL glass	VF	A	2	none		
Method of Well Evacuation	Pe	eristaltic Pump								
Method of Sample Collection	Peristalt	ic Pump/Poly Tubing								
Total Volume of Water Removec 2.5			gal							
				FIELD ANALYSES						
Flow Rate (ml/min)	300	300	300	300	300	300				
Time (Military)	1300	1305	1310	1315	1320	1325				
Depth to Groundwater	1000	1000	1010	1010	1020	1020				
Below Top of Casing (ft)	5.23	5.42	6.17	6.79	7.34	7.96				
Drawdown (ft)	-0.11	-0.19	-0.75	-0.62	-0.55	-0.62				
pH (S.U.)	6.75	6.79	6.65	6.60	6.57	6.59				
Sp. Cond. (mS/cm)	2.80	2.69	2.13	1.87	1.89	1.88				
Turbidity (NTUs)	27.20	13.30	14.30	13.30	11.5	11.3				
Dissolved Oxygen (mg/L)	0.24	0.11	0.09	0.16	0.16	0.16				
Water Temperature (°C)	16.8	17.2	17.6	17.8	17.9	17.9				
ORP (mV)	-73.8	-97.6	-91.9	-87.9	-83.6	-83.0				
Physical appearance at start Color Clear			Physical appearance at sampling Color Clear							
Odor None Shoon/Free Bredust Yee gold color		Odor None Sheen/Free Product Yes in purge water, gold color								
Sheen/Free Product Yes, gold color Sheen/Free Product Yes in purge w COMMENTS/OBSERVATIONS Started purge at 12:59 hrs.					iei, goia c	.0101				
Sampled at 13:25 hrs for MNA, VOC and TOC. Gene-Trac and VFA sampled on 10/10 at 13:40 hrs.										

Date (mo/day/yr	10/10/2022				Casing Diameter 2				
Field Personnel	Collin Horrocks				PVC				
					Measuring Point Elevation 689.14				
AECOM Job # 60676146				Height of Riser (above land surface) -0.46					1/100 ft
Well ID #	MW-43	S		Land Surface Elevation 689.6					
Upgrad	dient	Downgradient		Screened Interval (below land surface 5-15					1/100 ft
Weather Conditions	CI	oudy							
Air Temperature	52			Container	Analysis (Method) # E	Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top of	f Casing :	14.5	1/100 ft	VOA 40 mL glass	TCL VOC	s (8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW) Be	elow Top of Casing =	2.36	1/100 ft	VOA 40 mL glass	ТО	С	2	HCL, 4°C	
Length of Water Column (LWC)	= TWD - DGW =	12.14	1/100 ft						
1 Casing Volume (OCV) = LWC	x <u>0.163</u> 0	1.98	gal						
3 Casing Volumes =	5.9	4	gal						
Method of Well Evacuation	Pe	ristaltic Pump							
Method of Sample Collectior	Method of Sample Collection Peristaltic Pump/Poly Tubing								
Total Volume of Water Removed 2.5 gal			gal						
				FIELD AMALYOFO					
Fly Bota (villata)	000	200		FIELD ANALYSES	200	000	1		
Flow Rate (ml/min)	200	200	200	200	200	200			
Time (Military) Depth to Groundwater	1055	1100	1105	1110	1115	1120			
Below Top of Casing (ft)	3.30	4.13	4.68	4.97	5.32	5.63			
Drawdown (ft)	-0.94	-0.83	-0.55	-0.29	-0.35	-0.31			
pH (S.U.)	6.97	6.97	6.94	6.93	6.92	6.93			
Sp. Cond. (mS/cm)	1.37	1.37	1.34	1.33	1.27	1.30			
Turbidity (NTUs)	98.5	86.3	23.5	16.4	20.3	19.4			
Dissolved Oxygen (mg/L)	0.33	0.31	0.24	0.20	0.18	0.16			
Water Temperature (°C)	17.3	17.7	17.8	18.2	18.2	18.3			
ORP (mV)	-80.2	-111.0	-117.5	-122.5	-121.8	-118.2			
Physical appearance at start Color Clear			Physical appearance at sampling Color Clear					-	
Odor None		Odor None							
Sheen/Free Product None				Sheen/Fre	ee Product	None	9		
COMMENTS/OBSERVATIONS Started purge at 10:53 hrs. Sampled at 11:20 hrs.									
•									

Date (mo/day/yr	mo/day/yr 10/10/2022					Casing Diameter 2					
Field Personnel	d Personnel Collin Horrocks				Casing Material PVC						
Site Name For	mer Scott Aviation S	Measuring Point Elevat	ion				1/100 ft				
AECOM Job #	AECOM Job # 60676146				Height of Riser (above land surface) 0.00						
Well ID #	MW-44	S		Land Surface Elevation							
Upgra	adient	Downgradient		Screened Interval (belo	w land surface		5-1	5	1/100 ft		
Weather Conditions	Partly	/ Cloudy									
Air Temperature	54			Container	Analysis (Method)	# Bottles	Preservative	Dup - MS/MSD		
Total Depth (TWD) Below Top of	of Casing :	15	1/100 ft	VOA 40 mL glass	TCL VOCs	s (8260B)	3	HCL, 4°C			
Depth to Groundwater (DGW) B	Below Top of Casing =	1.52	1/100 ft	VOA 40 mL glass	TO	С	2	HCL, 4°C			
Length of Water Column (LWC)	= TWD - DGW =	13.48	1/100 ft								
1 Casing Volume (OCV) = LWC	x 0.163 =	2.20	gal								
3 Casing Volumes =	6.5	59	gal								
Method of Well Evacuation	Pe	ristaltic Pump									
Method of Sample Collectior	Peristalti	c Pump/Poly Tubing									
Total Volume of Water Removed 2.5 ga			gal								
		FIELD ANALYSES									
Flow Rate (ml/min)	350	300	300	250	250	250		250			
Time (Military)	1250	1255	1300	1305	1310	1315		1320			
Depth to Groundwater											
Below Top of Casing (ft)	1.93	3.16	4.94	5.82	6.12	6.48		6.83			
Drawdown (ft)	-0.41	-1.23	-1.78	-0.88	-0.30	-0.36		-0.35			
pH (S.U.)	7.13	6.87	6.87	6.95	6.99	7.02		7.01			
Sp. Cond. (mS/cm)	1.05	1.06	1.05	1.05	1.04	1.05		1.05			
Turbidity (NTUs)	47.5	32.3	23.5	32.5	28.7	29.5		28.3			
Dissolved Oxygen (mg/L)	0.83	0.24	0.50	3.86	4.06	4.07		4.08			
Water Temperature (°C)	13.7	13.9	14.3	14.4	14.3	14.3		14.3			
ORP (mV)	-41.7	-76.5	-80.3	-50.1	-29.7	-28.0		-27.3			
Physical appearance at start Color <u>Clear</u> Physical appearance at sampling Color <u>Clear</u> Odor None Odor None											
	_		Odo		None						
Sheen/Free Product None Sheen/Free Product None COMMENTS/OBSERVATIONS Started purge at 12:49 hrs.											
Sampled at 13:20 hrs.											

AECOM

_		_		
Page	1	of	1	

Date (mo/day/yr	ау/уг4/6/2023				Casing Diameter 1					
Field Personnel					Casing Material PVC					
Site Name For	Former Scott Aviation Site - Lancaster, NY				Measuring Point Elevation 689.82					
AECOM Job #	# 60536398				Height of Riser (above land surface) 2.52					
	A1-GP02	-S		Land Surface Elevation	on	68	7.3		1/100 ft	
Upgra	adient	Downgradient		Screened Interval (be	low land surfac		5-15		1/100 ft	
Weather Conditions	Sı	ınny		-						
Air Temperature	48		°F	Container	Analysis (Method	d) # B	ottles Preser	vative	Dup - MS/MSD	
Total Depth (TWD) Below Top of	of Casing	15	1/100 ft	VOA 40 mL glass	TCL VOCs (8260	TCL VOCs (8260B) 3 HCL, 4°C				
Depth to Groundwater (DGW) E	Below Top of Casing =	2.55	1/100 ft	VOA 40 mL glass	TOC		2 HCL,	4°C		
Length of Water Column (LWC)) = TWD - DGW =	12.45	1/100 ft							
1 Casing Volume (OCV) = LWC	C x <u>0.0408</u> =	0.51	gal							
3 Casing Volumes =	1.5	2	gal							
Method of Well Evacuation	Per	ristaltic Pump								
Method of Sample Collection	Peristaltio	Pump/Poly Tubing								
Total Volume of Water Remove		1	gal							
				FIELD ANALYSES	<u> </u>		T			
Flow Rate (ml/min)	150	150	150	150			1	_		
Time (Military)	12:10	12:15	12:20	12:25			1	_		
Depth to Groundwater Below Top of Casing (ft)										
Drawdown (ft)										
pH (S.U.)	6.90	6.88	6.76	6.79						
Sp. Cond. (mS/cm)	1.057	1.045	1.072	1.063						
Turbidity (NTUs)	267	204	178	176						
Dissolved Oxygen (mg/L)	0.41	0.32	1.85	6.28						
Water Temperature (°C)	8.3	7.9	7.8	8.2						
ORP (mV)	-32.5	-31.1	-25.7	-19.8						
	Physical appeara	nce at start Col	or Slightly Cloud	l <u>y</u> Phy	sical appearance at samp	oling Color	Slightly Cloudy			
		Odd	or None	_		Odor	None			
Sheen/Free Product None			_ Sheen/Fr	ee Product	None					
COMMENTS/OBSERVATIONS Started purge at 12:08 hrs. Dry at 12:25 hrs.										
				·						

Page <u>1</u> of <u>1</u>

Date (mo/day/yr	4/7/2	023		Casing Diameter			1		inches
Field Personnel		rocks		Casing Material			PVC		
Site Name Fo	rmer Scott Aviation S	ite - Lancaster, NY		Measuring Point Eleva	ation		687.71		1/100 ft
AECOM Job #	605	36398		Height of Riser (above	e land surface)		-0.0	9	1/100 ft
Well ID #		S-S		Land Surface Elevation	on		687.8		1/100 ft
Upgr	adient	Downgradient		Screened Interval (be	low land surfac		5-1	5	1/100 ft
Weather Conditions	Sı	unny							
Air Temperature	38		°F	Container	Analysis (N	Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top	of Casing	15.0	1/100 ft	VOA 40 mL glass	TCL VOCs	(8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW)	Below Top of Casing =	0.69	1/100 ft	VOA 40 mL glass	TOO		2	HCL, 4°C	
ength of Water Column (LWC) = TWD - DGW = 14.3			1/100 ft	Various	MNA Ana	alyses	12	Varies	
1 Casing Volume (OCV) = LW	C x <u>0.0408</u> =	0.58	gal						
3 Casing Volumes =	1.7	5	gal						
Method of Well Evacuation		ristaltic Pump							
Method of Sample Collection	Peristaltio	Pump/Poly Tubing							
Total Volume of Water Remov	е	0.50	gal						
				-					
				FIELD ANALYSES		<u> </u>			
Flow Rate (ml/min)	150	150	150						
Time (Military)	10:05	10:10	10:15						
Depth to Groundwater Below Top of Casing (ft)									
Drawdown (ft)									
рН (S.U.)	7.00	6.84	6.91						
Sp. Cond. (mS/cm)	0.815	0.718	0.828						
Turbidity (NTUs)	70.7	53.0	48.8						
Dissolved Oxygen (mg/L)	0.54	0.30	0.24						
Water Temperature (°C)	7.2	6.9	7.2						
ORP (mV)	3.5	-11.7	-13.7						
	Physical appeara	ince at start Cold	or Clear	Phys	sical appearance a	t sampling (Color	Clear	
		Odo	r None	_		(OdorI	None	
	Sheen/Free Prod	luctN	one	Sheen/Fre	ee Product		None		
COMMENTS/OBSERVATION:	S Started purge at 10:0	3 hrs. Dry at 10:15 h	nrs.						
	Sampled at 11:15 hrs	S							

Date (mo/day/yr	4/12/2	023		Casing Diameter			1		inches
Field Personnel		ΛU		Casing Material		P\	/C		<u></u>
	rmer Scott Aviation Si	te - Lancaster, NY		Measuring Point Eleva	ation				1/100 ft
AECOM Job #	605	36398		Height of Riser (above					1/100 ft
Well ID#	A1-GP09	-S		Land Surface Elevatio					1/100 ft
	adient			Screened Interval (bel				15	1/100 ft
Weather Conditions	Sı	ınny							
Air Temperature			•F	Container	Analysis (M	ethod)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top	of Casing	17.3	1/100 ft	VOA 40 mL glass	TCL VOCs (8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW) Below Top of Casing =				VOA 40 mL glass	TOC		2	HCL, 4°C	
Length of Water Column (LWC) = TWD - DGW = 14.8 1/									
1 Casing Volume (OCV) = LW0	C x 0.0408 =	0.60	gal						
3 Casing Volumes =	1.8	1	gal						
Method of Well Evacuation		istaltic Pump							
Method of Sample Collectio	Peristaltio	Pump/Poly Tubing							
Total Volume of Water Remove	e	1.0	gal						
				FIELD ANALYSES	1				
Flow Rate (ml/min)	150	150	200	200	175	175		175	
Time (Military)	8:55	9:00	9:05	9:10	9:15	9:20		9:25	
Depth to Groundwater Below Top of Casing (ft)									
Drawdown (ft)									
pH (S.U.)	6.75	6.44	6.75	6.76	6.71	6.69		6.67	
Sp. Cond. (mS/cm)	1.111	1.044	1.036	1.034	1.021	1.005		0.987	
Turbidity (NTUs)	120	124	114	95.7	101	50.4		51.9	
Dissolved Oxygen (mg/L)	1.60	0.24	0.18	0.16	0.23	0.23		0.2	
Water Temperature (°C)	8.6	7.9	7.6	7.5	7.6	7.6		7.6	
ORP (mV)	20.4	-60.3	-82.1	-90.8	-95.4	-98.4		-98.9	
	Physical appeara	nce at start Cold	r <u>Clear</u>	Phys	sical appearance at	sampling Co	lor	Clear	
		Odo	r <u>No</u>	_		Od	or	No	
	Sheen/Free Prod	uct	No	_ Shee	en/Free Product		No		
COMMENTS/OBSERVATIONS	Started purge at 08:5	3 hrs.							
	Sampled at 09:30 hrs	5.							

Date (mo/day/yr	4/11/2	2023		Casing Diameter			1		inches
Field Personnel		Au		Casing Material			VC		
Site Name For	mer Scott Aviation S	ite - Lancaster, NY		Measuring Point Eleva	ation		689.10		1/100 ft
AECOM Job #	605	36398		Height of Riser (above	land surface)		-0.1	0	1/100 ft
Well ID#	A1-GP1)-S		Land Surface Elevation			689.2		1/100 ft
Upgra	dient	Downgradient		Screened Interval (below land surface 5-15					1/100 ft
Weather Conditions	Sun/some cl	ouds/slight wind							
Air Temperature	57		°F	Container	Analysis (I	Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top o	f Casing :	15	1/100 ft	VOA 40 mL glass	TCL VOCs	(8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW) B	1/100 ft	VOA 40 mL glass	TO	0	2	HCL, 4°C			
Length of Water Column (LWC)	ength of Water Column (LWC) = TWD - DGW = 12.57			Various	MNA An	alyses	12	Varies	
1 Casing Volume (OCV) = LWC	x 0.0408 =	0.51	gal						
3 Casing Volumes =	1.5	54	gal						
Method of Well Evacuation	Pe	ristaltic Pump							
Method of Sample Collection	Peristalti	c Pump/Poly Tubing							
Total Volume of Water Remove	1	0.5	gal						
	r	FIELD A	NALYSES	1		1			
Flow Rate (ml/min)	150	150	150	150	150				
Time (Military)	9:38	9:41	9:45	10:55	11:00				
Depth to Groundwater Below Top of Casing (ft)									
Drawdown (ft)									
pH (S.U.)	6.75	6.86	6.87	7.09	7.11				
Sp. Cond. (mS/cm)	1.447	1.088	1.136	1.397	1.063				
Turbidity (NTUs)	116	64.8	Dry	34.9	11.8				
Dissolved Oxygen (mg/L)	1.23	0.45	1.87	5.96	5.18				
Water Temperature (°C)	9.0	8.6	8.9	9.7	9.3				
ORP (mV)	32.4	15.1	-0.4	23.1	-9.6				
	Physical appeara	ance at start Col	or Slightly Cloudy	<u>y</u> Phys	sical appearance a	t sampling C	olor		
		Odd	or <u>No</u>	_		0	dor		
	Sheen/Free Prod	luct	No	Sheen/Fre	ee Product				
COMMENTS/OBSERVATIONS	Started purge at 9:36	6 hrs. Dry at 09:45 h	rs. Restarted at 10	:55 hrs. Dry at 11:05 hr	s. Sampled at 12:0	0 hrs. Dry at 12	2:10 hrs .		
	Restarted sampling a	at 13:00 hrs and com	npleted sampling.						

_		_		
Page	1	of	1	

Date (mo/day/yr	4/11/	2023		Casing Diameter			1		
Field Personnel		Au		Casing Material			PVC		
Site Name Form	er Scott Aviation	Site - Lancaster, NY		Measuring Point Elev	ation		687.6	9	
AECOM Job #	60	536398		Height of Riser (abov	e land surface)		-	1.74	
Well ID #	A1-GP1	4-S		Land Surface Elevation	Land Surface Elevation 689.4				
Upgrad	dient	Downgradient	_	Screened Interval (be	Screened Interval (below land surfac 5-15				
Weather Conditions	Parlty Cl	oduy, Breezy							
Air Temperature	60	•F	Container	Analysis (N	/lethod)	# Bottles	Preservat	ive	
Total Depth (TWD) Below Top or	otal Depth (TWD) Below Top of Casing 15 1/10			VOA 40 mL glass	TCL VOCs	(8260B)	3	HCL, 4°	С
Depth to Groundwater (DGW) Be	elow Top of Casing	2.7	1/100 ft	VOA 40 mL glass	TOO		2	HCL, 4°	С
Length of Water Column (LWC)	= TWD - DGW	12.3	1/100 ft						
1 Casing Volume (OCV) = LWC	x 0.0408 =	0.50	 gal						
3 Casing Volumes =	1.	51	gal						
Method of Well Evacuation	Pe	eristaltic Pump							
Method of Sample Collection	Peristalt	ic Pump/Poly Tubing							
Total Volume of Water Remove	gal								
				EIELD A	NALYSES				
Flow Poto (ml/min)	100	100	100	100		100			
Flow Rate (ml/min)	100				100				
Time (Military) Depth to Groundwater	12:30	12:35	12:40	12:45	12:50	12:55			
Below Top of Casing (ft)									
Drawdown (ft)									
pH (S.U.)	7.41	7.55	7.59	7.56	7.50	7.46			
Sp. Cond. (mS/cm)	0.432	0.371	0.342	0.318	0.320	0.322			
Turbidity (NTUs)	115.00	209.00	74.40	33.60	42.10	108.00			
Dissolved Oxygen (mg/L)	1.18	0.52	0.48	0.56	0.42	1.09			
Water Temperature (°C)	11.4	10.6	10.6	10.7	10.9	11.4			
ORP (mV)	47.4	17.5	1.6	-2.5	-3.8	-12.6			
	Physical appea	rance at start Colo	r Slightly Cloud	l <u>y</u> Phy	sical appearance at	t sampling Co	olor (Clear	
	_		Oc	lor	No				
	Sheen/Free Pro		lo	-	ee Product		No		
COMMENTS/OBSERVATIONS	Started purge at 12	:28 hrs. Dry at 12:55	hrs. Let recharde	e and sampled at 14:10	hrs.				

Date (mo/day/yr)	4/1	1/2023		Casing Diameter 1					inches
Field Personnel	E	. Au		Casing Material		PVC	2		
Site Name For	mer Scott Aviation	Site - Lancaster, NY		Measuring Point Eleva	ation		687.69		1/100 ft
AECOM Job #	6	0536398		Height of Riser (above	e land surface)		-0.31		1/100 ft
Well ID#	A1-GP	15-S		Land Surface Elevation	n	(688.0		1/100 ft
Upgra	adient	Downgradient		Screened Interval (bel	low land surface		5-15		1/100 ft
Weather Conditions	Clo	udy, Windy							
Air Temperature	60)	•F	Container	Analysis (N	Method) #	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top of	of Casing	14.82	1/100 ft	VOA 40 mL glass	TCL VOCs	(8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW) E	to Groundwater (DGW) Below Top of Casing =1.10			VOA 40 mL glass	TOO	C	2	HCL, 4°C	
Length of Water Column (LWC)	n of Water Column (LWC) = TWD - DGW = 13.72								
1 Casing Volume (OCV) = LWC	OCV) = LWC x 0.0408 = 0.56								
3 Casing Volumes =		1.68	gal						
Method of Well Evacuation	F	Peristaltic Pump							
Method of Sample Collectior	Collectior Peristaltic Pump/Poly Tubing								
Total Volume of Water Remove	lume of Water Removec 0.5 gal								
				FIELD A	NALYSES				
Flow Rate (ml/min)	150	150	150	150	150	150			
Time (Military)	11:15	11:20	11:25	11:30	11:35	11:40			
Depth to Groundwater Below Top of Casing (ft)									
Drawdown (ft)									
pH (S.U.)	7.42	7.30	7.28	7.24	7.27	7.30			
Sp. Cond. (mS/cm)	0.727	0.707	0.696	0.705	0.717	0.718			
Turbidity (NTUs)	65.6	36.7	20.4	13.9	26.6	20.4			
Dissolved Oxygen (mg/L)	6.34	3.77	3.44	3.56	4.44	3.74			
Water Temperature (°C)	10.2	9.7	10.1	10.0	10.2	10.6			
ORP (mV)	11.1	21.3	26.3	32.0	38.6	41.8			
	Physical appea	arance at start Cold	or <u>Clear</u>	Phys	sical appearance at	t sampling Colo	r <u>Cl</u>	ear	
		Odo	r <u>No</u>	<u>_</u>		Odor	r <u> </u>	lo	
Sheen/Free Produc No				Sheen/Fre	ee Product	N	0		
COMMENTS/OBSERVATIONS	Started purge at 1	1:15 hrs.							
	Sampled at 11:40	hrs.							

Date (mo/day/yr	4/6/2023			Casing Diameter			1		inches
Field Personnel		rocks		Casing Material			√C		<u>-</u>
Site Name Form	mer Scott Aviation S	ite - Lancaster, NY		Measuring Point Eleva	ation		687.69		1/100 ft
AECOM Job #	605	36398		Height of Riser (above	e land surface)		-0.3	1	1/100 ft
Well ID #	A1-GP16	i-S		Land Surface Elevation	on		688.0		1/100 ft
Upgra	adient	Downgradient		Screened Interval (bel	low land surface		5-1	5	1/100 ft
Weather Conditions	Sı	ınny	_						
Air Temperature	48		•F	Container	Analysis (I	Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top of	WD) Below Top of Casing 17.52			VOA 40 mL glass	TCL VOCs	(8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW) B	th to Groundwater (DGW) Below Top of Casing : 2.70			VOA 40 mL glass	TO)	2	HCL, 4°C	
Length of Water Column (LWC)	= TWD - DGW =	14.82	1/100 ft						
1 Casing Volume (OCV) = LWC	x <u>0.0408</u> =	0.60	gal						
3 Casing Volumes =	1.8	1	gal						
Method of Well Evacuation	Pe	ristaltic Pump							
Method of Sample Collectior	of Sample Collectior Peristaltic Pump/Poly Tubing								
Total Volume of Water Remove	gal								
			F	IELD ANALYSES					-
Flow Rate (ml/min)	150	150	150	150	150	150			
Time (Military)	11:30	11:35	11:40	11:45	11:50	11:55			
Depth to Groundwater Below Top of Casing (ft)									
Drawdown (ft)									
pH (S.U.)	6.86	6.88	6.86	6.78	6.78	6.81			
Sp. Cond. (mS/cm)	1.010	1.010	1.017	0.987	0.983	0.983			
Turbidity (NTUs)	272	176	69.5	65.8	62.3	61.8			
Dissolved Oxygen (mg/L)	0.59	0.22	0.17	0.13	0.21	0.18			
Water Temperature (°C)	8.8	8.1	8.0	8.1	8.2	8.0			
ORP (mV)	33.0	-1.0	-7.3	-9.7	-9.7	-9.9			
	Physical appeara	ance at start Colo	or Cloudy	Phys	sical appearance a	sampling Co	lor	Clear	
		Odo	r None	_		Od	or	None	
	Sheen/Free Prod		one	Sheen/Fre	ee Product	N	lone		
COMMENTS/OBSERVATIONS	Started purge at 11:2	28 hrs.							
Sampled at 11:55 hrs.									

Date (mo/day/yr	04/0	7/23		Casing Diameter		0.7	75		inches
Field Personnel		rocks		Casing Material		P۱	/C		
Site Name Form	mer Scott Aviation S	Site - Lancaster, NY		Measuring Point Eleva	ation		690.37		1/100 ft
AECOM Job #	60:	536398		Height of Riser (above	e land surface)		2.87		1/100 ft
Well ID#	A1GP-1	8-S		Land Surface Elevation			687.5		1/100 ft
Upgra	ndient	Downgradient		Screened Interval (be	low land surface		5-15		1/100 ft
Weather Conditions		unny							
Air Temperature	39		eF	Container	Analysis (Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top o	of Casing	18	1/100 ft	VOA 40 mL glass	TCL VOCs	(8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW) B	epth to Groundwater (DGW) Below Top of Casing : 2.87			VOA 40 mL glass	TO	C	2	HCL, 4°C	
Length of Water Column (LWC)	gth of Water Column (LWC) = TWD - DGW = 15.13			Various	MNA An	alyses	12	Varies	
1 Casing Volume (OCV) = LWC	x <u>0.0408</u> =	0.62	gal						
3 Casing Volumes =	1.	35	gal						
Method of Well Evacuation	Pe	eristaltic Pump							
Method of Sample Collectior	of Sample Collectior Peristaltic Pump/Poly Tubing								
Total Volume of Water Removed	gal								
				FIELD ANALYSES		1			
Flow Rate (ml/min)	150	150	150	150	150	150			
Time (Military)	11:45	11:50	11:55	12:00	12:05	12:10			
Depth to Groundwater Below Top of Casing (ft)									
Drawdown (ft)									
pH (S.U.)	7.10	7.10	7.21	6.98	6.99	6.95			
Sp. Cond. (mS/cm)	0.672	0.597	0.592	0.592	0.594	0.594			
Turbidity (NTUs)	Overrange	696	688	643	672	658			
Dissolved Oxygen (mg/L)	0.40	0.20	0.28	0.23	0.21	0.19			
Water Temperature (°C)	7.7	8.2	8.2	8.3	8.3	8.5			
ORP (mV)	-1.8	-24.7	-28.8	-30.2	-31.8	-32.6			
	Physical appear	ance at start Colo	r <u>Cloudy</u>	Phy	sical appearance a	t sampling Col	or Cl	loudy	
		Odor		_		Ode		lone	
		en/Free Product	None	Sheen/Fre	ee Product	N	one		
COMMENTS/OBSERVATIONS	Started purge at 11:	43 hrs.							
	Sampled at 12:10 h	S.							

Date (mo/day/yr	4/12/2	2023		Casing Diameter		2			inches
Field Personnel		Au		Casing Material			C		
Site Name Form		Site - Lancaster, N	IY	Measuring Point Elev	ation				1/100 ft
AECOM Job #	605	36398		Height of Riser (abov	e land surface)		0.00)	1/100 ft
Well ID#	MW-3	0		Land Surface Elevation					1/100 ft
Upgrad	dient	Downgradient		Screened Interval (be				0	1/100 ft
Weather Conditions	Sunn	y, Breezy							
Air Temperature	60		°F	Container	Analysis (Analysis (Method) # Bottles F			Dup - MS/MSD
Total Depth (TWD) Below Top o	f Casing	20	1/100 ft	VOA 40 mL glass	TCL VOC	s (8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW) B	epth to Groundwater (DGW) Below Top of Casing =2.75			VOA 40 mL glass	ТО	С	2	HCL, 4°C	
Length of Water Column (LWC)	ength of Water Column (LWC) = TWD - DGW = 17.25								
1 Casing Volume (OCV) = LWC	x <u>0.163</u> =	2.81	gal						
3 Casing Volumes =	8.4	14	gal						
Method of Well Evacuation	Pe	eristaltic Pump							
Method of Sample Collection	ng								
Total Volume of Water Remove	gal								
			F	FIELD ANALYSES		_			
Flow Rate (ml/min)	200	200	200	200	200	200		200	
Time (Military)	13:25	13:35	13:45	13:50	13:55	14:00		14:05	
Depth to Groundwater Below Top of Casing (ft)	3.50	5.00	7.20	8.40	9.50	9.65		10.00	
Drawdown (ft)	-0.75	-1.50	-2.20	-1.20	-1.10	-0.15		-0.35	
pH (S.U.)	7.35	7.44	7.46	7.46	7.47	7.48		7.48	
Sp. Cond. (mS/cm)	0.602	0.593	0.595	0.594	0.597	0.597		0.608	
Turbidity (NTUs)	15.60	8.95	7.89	12.10	6.23	8.12		12.5	
Dissolved Oxygen (mg/L)	2.05	0.14	0.08	0.07	0.05	0.05		0.05	
Water Temperature (°C)	13.50	12.90	12.80	12.70	12.80	12.80		12.70	
ORP (mV)	59.5	-12.6	-44.3	-53.2	-63.4	-67.3		-71.5	
•	Physical appeara	ance at start C	olor Clear	Phy	sical appearance a	at sampling Cold	or (Clear	.
		0	dor None	_		Odo	or I	None	
	Sheen/Free Prod	duct	None	Sheen/Fr	ee Product	No	one		
COMMENTS/OBSERVATIONS	Started purge at 13:2	24 hrs.							
	Sampled at 14:10 hr	S.							

Date (mo/day/yr	4/7/2	Casing Diameter 2					inches		
Field Personnel	C. Ho	rrocks		Casing Material		PV	С		<u>.</u>
Site Name Form	er Scott Aviation	Site - Lancaster, NY		Measuring Point Eleva	tion		688.56		1/100 ft
AECOM Job #	60	536398		Height of Riser (above	land surface)		-0.54	1	1/100 ft
Well ID #	MW-3	5S		Land Surface Elevation	n		689.1		1/100 ft
Upgrad	dient	Downgradient		Screened Interval (bel	ow land surface		5-15	i	1/100 ft
Weather Conditions	C	loudy							
Air Temperature	54		° F	Container	Analysis (I	Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top of	Casing	14.01	1/100 ft	VOA 40 mL glass	TCL VOCs	(8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW) Be	elow Top of Casing	0.54	1/100 ft	VOA 40 mL glass	TO	C	2	HCL, 4°C	
Length of Water Column (LWC)	= TWD - DGW =	13.47	1/100 ft						
1 Casing Volume (OCV) = LWC	0.163 =	2.20	gal						
3 Casing Volumes =	6.	59	gal						
Method of Well Evacuation	Pe	eristaltic Pump							
Method of Sample Collection	Peristalt	ic Pump/Poly Tubing							
Total Volume of Water Removec 2 ga									
,				FIELD ANALYSES		1			
Flow Rate (ml/min)	200	200	200	200	200	200			
Time (Military)	10:45	10:50	10:55	11:00	11:05	11:10			
Depth to Groundwater Below Top of Casing (ft)	1.15	3.21	4.72	5.19	5.67	6.34			
Drawdown (ft)	-0.61	-2.06	-1.51	-0.47	-0.48	-0.67			
pH (S.U.)	6.29	6.85	6.95	7.04	6.92	6.97			
Sp. Cond. (mS/cm)	0.611	0.563	0.556	0.556	0.568	0.567			
Turbidity (NTUs)	58.7	46.8	37.7	37.0	39.7	37.5			
Dissolved Oxygen (mg/L)	2.46	2.17	2.08	2.09	2.03	2.02			
Water Temperature (°C)	8.2	7.8	7.8	7.7	7.8	7.8			
ORP (mV)	238.9	220.6	213.8	207.4	202.5	198.4			
	Physical appear	ance at start Colo	r <u>Clear</u>	Phys	ical appearance at	sampling Colo	or <u>C</u>	Clear	
		Odor	None	_		Odo	r <u> </u>	lone	
	Sheen/Free Produc None				e Product	No	ne		
COMMENTS/OBSERVATIONS	Started purge at 10	42 hrs.							
Sampled at 11:10 hrs.									

Date (mo/day/yr	y/yr __ 4/7/2023				Casing Diameter 2				
Field Personnel	C. Ho	orrocks		Casing Material		P\	/C		<u>.</u>
Site Name Forr	ner Scott Aviation	Site - Lancaster, NY		Measuring Point Eleva	ation		698.66		1/100 ft
AECOM Job #	60	536398		Height of Riser (above	e land surface)		2.83	3	1/100 ft
Well ID#	MW-3	5D		Land Surface Elevation	on		687.1		1/100 ft
Upgra	dient	Downgradient		Screened Interval (be	low land surface		21-2	26	1/100 ft
Weather Conditions		Sunny							
Air Temperature	36	i	° F	Container	Analysis (I	Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top o	tal Depth (TWD) Below Top of Casing 25.22			VOA 40 mL glass	TCL VOCs	(8260B)	3	HCL, 4°C	Dup
Depth to Groundwater (DGW) Below Top of Casing : 5.80			1/100 ft	VOA 40 mL glass	TO	<u> </u>	2	HCL, 4°C	
Length of Water Column (LWC)	= TWD - DGW =	19.42	1/100 ft	Various	MNA An	alyses	12	Varies	
1 Casing Volume (OCV) = LWC	x <u>0.163</u> =	3.17	gal						
3 Casing Volumes =	9	.50	gal						
Method of Well Evacuation	P	eristaltic Pump							
Method of Sample Collectior	d of Sample Collectior Peristaltic Pump/Poly Tubing								
Total Volume of Water Removed	gal								
				FIELD ANALYSES					
Flow Rate (ml/min)	200	200	200	200	200	200		200	
Time (Military)	9:00	9:05	9:10	9:15	9:20	9:25		9:30	
Depth to Groundwater Below Top of Casing (ft)	7.10	9.46	10.70	11.53	12.32	13.68		13.77	
Drawdown (ft)	-1.30	-2.36	-1.24	-0.83	-0.79	-1.36		-0.09	
pH (S.U.)	6.37	6.81	6.69	6.73	6.79	6.82		6.84	
Sp. Cond. (mS/cm)	0.411	0.411	0.413	0.416	0.422	0.426		0.431	
Turbidity (NTUs)	597.00	378.00	272.00	273.00	252.00	248.00		228.00	
Dissolved Oxygen (mg/L)	5.28	5.80	508	4.82	4.78	4.61		4.54	
Water Temperature (°C)	10.0	9.7	9.5	9.2	9.6	9.5		9.8	
ORP (mV)	167.0	167.3	167.9	166.9	163.1	162.3		164.3	
	Physical appea	rance at start Col	or <u>Clear</u>	Phy	sical appearance a	sampling Co	lor	Clear	
		Odd	or None	<u> </u>		Od	or	None	
	Sheen/Free Pro	oducN	lone	Sheen/Fr	ee Product	N	lone		
COMMENTS/OBSERVATIONS	Started purge at 08	3:58 hrs.							
Sampled at 09:30 hrs									

Date (mo/day/yr		4/12/2	2023		Casing Diameter		2			inches
Field Personnel		E. <i>F</i>	Au		Casing Material		PV	0		
Site Name	Former	Scott Aviation S	ite - Lancaster, NY		Measuring Point Elev	ation		689.82		1/100 ft
AECOM Job #		605	36398		Height of Riser (above	e land surface)		2.72	2	1/100 ft
Well ID #		MW-36	S		Land Surface Elevation	on		687.1		1/100 ft
	Upgradier	nt	Downgradient		Screened Interval (be			5-15	5	1/100 ft
Weather Conditions		Sunny	, Breezy							
Air Temperature		55		° F	Container	Analysis (Analysis (Method) #		Preservative	Dup - MS/MSD
Total Depth (TWD) Be	low Top of Ca	asing	17.7	1/100 ft	VOA 40 mL glass	TCL VOCs	(8260B)	3	HCL, 4°C	
Depth to Groundwater	pth to Groundwater (DGW) Below Top of Casing : 3.10			1/100 ft	VOA 40 mL glass	TO	С	2	HCL, 4°C	
Length of Water Colum	ngth of Water Column (LWC) = TWD - DGW = 14.6									
1 Casing Volume (OC)	V) = LWC x	0.163 =	2.38	gal						
3 Casing Volumes =		7.1	4	gal						
Method of Well Evacua	ation	Pe	ristaltic Pump							
Method of Sample Coll	of Sample Collectior Peristaltic Pump/Poly Tubing									
Total Volume of Water Removec 2.0										
	_				FIELD ANALYSES		1			
Flow Rate (ml/min)	<u> </u>	200	200	200	200	200	200		200	
Time (Military)	<u> </u>	9:45	9:50	9:55	10:00	10:05	10:10		10:15	
Depth to Groundwater Below Top of Casing (1)		3.75	4.85	5.85	6.65	7.25	7.75		8.30	
Drawdown (ft)	, <u> </u>	-0.65	-1.10	-1.00	-0.80	-0.60	-0.50		-0.55	
pH (S.U.)		7.05	7.04	7.05	7.13	7.13	7.14		7.15	
Sp. Cond. (mS/cm)		1.117	1.118	1.114	1.118	1.122	1.123		1.122	
Turbidity (NTUs)		31.7	22.8	28.7	21.3	17.8	10.2		14.8	
Dissolved Oxygen (mg	ı/L)	1.95	0.14	0.16	0.15	0.13	0.11		0.10	
Water Temperature (°0	C)	8.3	8.0	8.2	8.0	8.1	8.1		8.0	
ORP (mV)		-41.7	-64.1	-72.4	-79.3	-83.4	-86.4		-89.4	
		Physical appeara	ance at start Colo	r <u>Clear</u>	Phy	sical appearance a	t sampling Cold	or (Clear	
			Odoi	r <u>No</u>			Odo	r	No	
		Sheen/Free Prod	duct	No	Sheen/Fr	ee Product	N	lo		
COMMENTS/OBSERV	/ATIONS Sta	arted purge at 09:4	14 hrs.							
	Sai	mpled at 10:20 hrs	S.							

Date (mo/day/yr	4/12/2	023		Casing Diameter		;	2		inches	
Field Personnel		ΛU			Casing Material PVC					
	rmer Scott Aviation Si	te - Lancaster, NY		Measuring Point Elev	Measuring Point Elevation 689.66					
AECOM Job #	AECOM Job # 60536398			Height of Riser (abov	e land surface)		2.	56	1/100 ft	
Well ID #)		Land Surface Elevation			687.1		1/100 ft	
	radient	Downgradient		Screened Interval (be			16-	21	1/100 ft	
Weather Conditions		, Breezy								
Air Temperature	60		°F	Container	Analysis (I	Method)	# Bottles	Preservative	Dup - MS/MSD	
Total Depth (TWD) Below Top	o of Casinç	23.5	1/100 ft	VOA 40 mL glass	TCL VOCs	(8260B)	3	HCL, 4°C		
Depth to Groundwater (DGW)	Below Top of Casing	4.74	1/100 ft	VOA 40 mL glass	TOO	0	2	HCL, 4°C		
Length of Water Column (LW	C) = TWD - DGW	18.76	1/100 ft							
1 Casing Volume (OCV) = LW	C x 0.163 =	3.06	gal							
3 Casing Volumes =	9.17	7	gal							
Method of Well Evacuation	Per	istaltic Pump								
Method of Sample Collectior_	Peristaltic	Pump/Poly Tubing								
Total Volume of Water Remov	/e(4.5	gal							
				FIELD ANALYSES					<u> </u>	
Flow Rate (ml/min)	700	500	500	500	200	200		200	200	200
Time (Military)	10:30	10:35	10:45	10:55	11:00	11:05		11:10	11:15	11:20
Depth to Groundwater Below Top of Casing (ft)	7.75	9.50	14.50	19.00	20.95	21.15		21.65	22.05	22.20
Drawdown (ft)	-3.01	-1.75	-5.00	-4.50	-1.95	-0.20		-0.50	-0.40	-0.15
pH (S.U.)	7.37	7.48	7.45	7.43	7.36	7.29		7.23	7.14	7.14
Sp. Cond. (mS/cm)	1.403	1.395	1.382	1.385	1.381	1.381		1.387	1.404	1.409
Turbidity (NTUs)	20.3	17.5	18.0	24.2	41.7	39.8		70.4	35.5	28.3
Dissolved Oxygen (mg/L)	0.22	0.09	0.10	0.07	0.04	0.08		0.13	0.13	0.13
Water Temperature (°C)	9.0	8.8	8.8	9.0	9.3	10.1		10.3	10.5	10.7
ORP (mV)	-36.7	-68.8	-92.2	-99.5	-102.5	-102.5		-101.0	-98.8	-98.1
	Physical appeara	ance at start Colo	r <u>Clear</u>	Phy	sical appearance a	t sampling Co	lor	Clear		
		Odor	No No	_		Od	lor	No		
	Sheen/Free Prod	lucN	lo	Sheen/Fr	ee Product		No			
COMMENTS/OBSERVATION	COMMENTS/OBSERVATIONS Started purge at 10:29 hrs.									
	Sampled at 11:25 hrs	S.								

Date (mo/day/yr)	ri4/12/2023			Casing Diameter		2	Casing Diameter 2			
Field Personnel	E.	Au		Casing Material		PV	С		<u>.</u>	
Site Name Form	ner Scott Aviation S	Site - Lancaster, NY	,	Measuring Point Eleva	ation		690.05		1/100 ft	
AECOM Job #	609	536398		Height of Riser (above land surface) 2.45					1/100 ft	
Well ID #	MW-37	'D		Land Surface Elevation			687.6		1/100 ft	
Upgrad	Upgradient Downgradient			Screened Interval (bel	ow land surface		15-20)	1/100 ft	
Weather Conditions	Sunn	y, Breezy								
Air Temperature	60		° F	Container	Analysis (Method)	# Bottles	Preservative	Dup - MS/MSD	
Total Depth (TWD) Below Top of	Casing	22.5	1/100 ft	VOA 40 mL glass	TCL VOCs	(8260B)	3	HCL, 4°C		
Depth to Groundwater (DGW) Be	elow Top of Casing	4.55	1/100 ft	VOA 40 mL glass	ТО	С	2	HCL, 4°C		
Length of Water Column (LWC)	= TWD - DGW =	17.95	1/100 ft							
1 Casing Volume (OCV) = LWC	x <u>0.163</u> =	2.93	gal							
3 Casing Volumes =	8.	78	gal							
Method of Well Evacuation	Pe	eristaltic Pump								
Method of Sample Collection	Peristalt	ic Pump/Poly Tubing	1							
Total Volume of Water Removed		3	gal							
ı		1		FIELD ANALYSES		1		<u> </u>		
Flow Rate (ml/min)	200	200	200	200	200	200				
Time (Military)	11:45	11:55	12:05	12:20	12:25	12:30				
Depth to Groundwater Below Top of Casing (ft)	5.55	7.25	7.65	8.65	9.00	9.30				
Drawdown (ft)	-1.00	-1.70	-0.40	-1.00	-0.35	-0.30				
pH (S.U.)	7.89	7.90	7.64	7.40	7.40	7.40				
Sp. Cond. (mS/cm)	0.869	0.860	0.871	0.858	0.853	0.849				
Turbidity (NTUs)	25.1	25.4	27.4	19.3	15.1	14.3				
Dissolved Oxygen (mg/L)	0.38	0.37	0.10	0.11	0.12	0.10				
Water Temperature (°C)	9.5	9.5	9.7	10.0	10.0	10.1				
ORP (mV)	13.7	-47.8	-53.7	-68.2	-71.6	-74.8				
	Physical appear	ance at start Col	or <u>Clear</u>	Phys	sical appearance a	t sampling Cold	or <u>C</u>	Clear		
	_		Odo	r	No					
	Sheen/Free Pro	duc	No	Sheen/Fre	ee Product	Ν	lo			
COMMENTS/OBSERVATIONS	Started purge at 11:	40 hrs.								
	Sampled at 12:30 h	rs.								

Date (mo/day/yr	4/7/2	2023		Casing Diameter		2	2		inches
Field Personnel		rrocks		Casing Material		P۱	/C		
Site Name For		Site - Lancaster, NY	,	Measuring Point Elev	ation		689.66		1/100 ft
AECOM Job #	605	536398		Height of Riser (above land surface) 2.72					1/100 ft
Well ID#	MW-38	BD		Land Surface Elevation			687.5		1/100 ft
Upgra	Upgradient Downgradient			Screened Interval (be	low land surfac		16-2	1	1/100 ft
Weather Conditions		Sunny							
Air Temperature			°F	Container	Analysis (Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top o	of Casing	20.9	1/100 ft	VOA 40 mL glass	TCL VOCs	(8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW) E	Below Top of Casing	8.58	1/100 ft	VOA 40 mL glass	ТО	С	2	HCL, 4°C	
Length of Water Column (LWC)	= TWD - DGW =	12.32	1/100 ft	Various	MNA An	alyses	12	Varies	
1 Casing Volume (OCV) = LWC	x 0.163 =	2.01	gal						
3 Casing Volumes =	6.0	02	gal						
Method of Well Evacuation	Pe	eristaltic Pump							
Method of Sample Collection	Peristalti	ic Pump/Poly Tubing	<u> </u>						
Total Volume of Water Remove	1	2	gal						
				FIELD ANALYSES					
Flow Rate (ml/min)	200	200	200	200	200	200			
Time (Military)	10:25	10:30	10:35	10:40	10:45	10:50			
Depth to Groundwater									
Below Top of Casing (ft)	9.64	10.63	11.72	13.12	13.83	15.13			
Drawdown (ft)	-1.06	-0.99	-1.09	-1.40	-0.71	-1.30			
pH (S.U.)	7.33	7.17	7.18	7.21	7.20	7.17			
Sp. Cond. (mS/cm)	0.593	0.592	0.592	0.593	0.590	0.592			
Turbidity (NTUs)	41.0	37.0	32.5	31.9	29.6	29.5			
Dissolved Oxygen (mg/L)	1.30	0.29	0.20	0.14	0.16	0.15			
Water Temperature (°C)	9.2	8.9	9.0	9.1	9.0	8.9			
ORP (mV)	-6.7	-1.3	-1.4	2.2	4.6	9.0			
	Physical appears	ance at start Co	lor <u>Clear</u>	Phy	sical appearance a	t sampling Col	or <u> </u>	Clear	
		Od	or None	_		Ode	or <u> </u>	None	
	Sheen/Free Pro	ductI	None	Sheen/Fr	ee Product	N	one		
COMMENTS/OBSERVATIONS	Started purge at 10:	22 hrs.							
	Sampled at 10:50 hr	S.							

Date (mo/day/yr	4/6/2	2023		Casing Diameter		2			inches
Field Personnel		rrocks		Casing Material		PVC	;		<u> </u>
Site Name For		Site - Lancaster, N	/	Measuring Point Elev	ation		689.72		1/100 ft
AECOM Job #	609	536398		Height of Riser (above land surface) 2.57					1/100 ft
Well ID#	MW-39)D		Land Surface Elevation 687.4				1/100 ft	
Upgra	Upgradient Downgradient			Screened Interval (be	elow land surfac		15-20	0	1/100 ft
Weather Conditions		loudy							
Air Temperature			°F	Container	Analysis (Method) #	Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top o	of Casing	22.5	1/100 ft	VOA 40 mL glass	TCL VOCs	(8260B)	3	4°C	
Depth to Groundwater (DGW) E	Below Top of Casing	3.82	1/100 ft	VOA 40 mL glass	ТО	С	2	HCL, 4°C	
Length of Water Column (LWC)	= TWD - DGW =	18.7	1/100 ft						
1 Casing Volume (OCV) = LWC	x 0.163 =	3.04	gal						
3 Casing Volumes =	9.	13	gal						
Method of Well Evacuation	Pe	eristaltic Pump							
Method of Sample Collection	Peristalti	ic Pump/Poly Tubing	9						
Total Volume of Water Remove		2	gal						
		1		FIELD ANALYSES		1			
Flow Rate (ml/min)	200	200	200	200	200	200			
Time (Military) Depth to Groundwater	12:50	12:55	13:00	13:05	13:10	13:15			
Below Top of Casing (ft)	4.50	5.65	7.19	7.95	8.60	9.00			
Drawdown (ft)	-0.68	-1.15	-1.54	-0.76	-0.65	-0.40			
pH (S.U.)	6.67	6.73	6.81	6.80	6.81	6.82			
Sp. Cond. (mS/cm)	1.420	1.409	1.404	1.403	1.402	1.409			
Turbidity (NTUs)	274.0	212.0	193.0	172.0	177.0	171			
Dissolved Oxygen (mg/L)	0.55	0.18	0.17	0.24	0.16	0.13			
Water Temperature (°C)	8.0	7.8	7.8	8.0	8.2	8.2			
ORP (mV)	16.6	-21.2	-29.2	-34.2	-39.1	-40.5			
	Physical appear	ance at start Co	lor Cloudy	Phy	sical appearance a	at sampling Color	Slighl	ty Cloudy_	-
		Od	lor None			Odor	N	lone	
	Sheen/Free Pro		None	Sheen/Fr	ee Product		None	<u></u>	
COMMENTS/OBSERVATIONS	Started purge at 12:	48 hrs.							
	Sampled at 13:15 hr	S.							

Date (mo/day/yr	mo/day/yr4/11/2023					2			inches
Field Personnel		Au		Casing Material					<u>.</u>
Site Name Forn	ner Scott Aviation S	Site - Lancaster, NY	<u> </u>	Measuring Point Elevation 689.19					1/100 ft
AECOM Job #	605	36398		Height of Riser (above land surface)					1/100 ft
Well ID #	MW-40	D		Land Surface Elevation 689.5					1/100 ft
Upgrad	Upgradient Downgradient			Screened Interval (be	elow land surfac		17.8-22	2.8	1/100 ft
Weather Conditions									
Air Temperature	57		° F	Container	Analysis (Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top of	f Casing	22.5	1/100 ft	VOA 40 mL glass	TCL VOCs	s (8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW) Be	elow Top of Casing =	7.10	1/100 ft	VOA 40 mL glass	ТО	С	2	HCL, 4°C	
Length of Water Column (LWC)	= TWD - DGW =	15.4	1/100 ft	Various	MNA An	alyses	12	Varies	
1 Casing Volume (OCV) = LWC	x <u>0.163</u> =	2.77	gal						
3 Casing Volumes =	8.3	31	gal						
Method of Well Evacuation	Pe	eristaltic Pump							
Method of Sample Collection	Peristalti	c Pump/Poly Tubing	9						
Total Volume of Water Remove		2.0	gal						
				FIELD ANALYSES					
Flow Rate (ml/min)	250	175	175	175	175	175		175	
Time (Military)	9:55	10:00	10:05	10:10	10:15	10:20		10:25	
Depth to Groundwater	9.55	10.00	10.03	10.10	10.13	10.20		10.23	
Below Top of Casing (ft)	7.10	8.50	9.75	10.25	11.45	12.05		12.85	
Drawdown (ft)	0.00	-1.40	-1.25	-0.50	-1.20	-0.60		-0.80	
pH (S.U.)	7.50	7.52	7.57	7.53	7.51	7.57		7.57	
Sp. Cond. (mS/cm)	0.942	0.939	0.937	0.941	0.940	0.946		0.940	
Turbidity (NTUs)	86.3	61.6	57.1	51.6	51.6	50.4		51.2	
Dissolved Oxygen (mg/L)	3.66	0.43	0.27	0.29	0.25	0.27		0.31	
Water Temperature (°C)	10.3	10.5	10.6	10.6	10.8	10.7		10.8	
DRP (mV) 20.4 -12.3 -42.9				-50.7	-62.5	-69		-85.9	
	Physical appeara	ance at start Co	lor Clear	Phy	sical appearance a	at sampling Colo	r	Clear	
		Od	lor <u>No</u>	_		Odo	r	No	
			No	_	ee Product	N	0		
COMMENTS/OBSERVATIONS 4/10/23 Purged 4 gallons from well. 4/11/23 Started purge at 09:55 hrs. Sampled at 10:30 hrs.									
-	4/12/23 Resampled	carbon dioxide in ur	preserved vial.						

Date (mo/day/yr	4/11/2	023		Casing Diameter			2		inches	
Field Personnel	E. <i>A</i>	ΛU		Casing Material			/C			
Site Name For		te - Lancaster, NY		Measuring Point Elevation 689.08				1/100 ft		
AECOM Job #	1 Job #			Height of Riser (above	e land surface)		-0.	58	1/100 ft	
Well ID#	ID#MW-42S			Land Surface Elevatio	on		689.66		1/100 ft	
Upgra	dient	Downgradient		Screened Interval (bel	low land surface		5-1	5	1/100 ft	
Weather Conditions	Breez	/, cloudy								
Air Temperature	60		° F	Container	Analysis (I	Method)	# Bottles	Preservative	Dup - MS/MSD	
Total Depth (TWD) Below Top o	f Casing :	14.3	1/100 ft	VOA 40 mL glass	TCL VOCs	(8260B)	3	HCL, 4°C		
Depth to Groundwater (DGW) B	elow Top of Casing =	3.00	1/100 ft	Various	MNA	As .	2	Various		
Length of Water Column (LWC)	= TWD - DGW =	11.3	1/100 ft							
1 Casing Volume (OCV) = LWC	x <u>0.163</u> =	1.84	gal							
3 Casing Volumes =	5.5	3	gal							
Method of Well Evacuation	Per	ristaltic Pump								
Method of Sample Collectior	Peristaltion	Pump/Poly Tubing								
Total Volume of Water Removed		2.0	gal							
			ı	FIELD ANALYSES						
Flow Rate (ml/min)	250	250	200	200	200	225		225	225	225
Time (Military)	14:36	14:41	14:46	14:51	14:56	15:01		15:06	15:11	15:16
Depth to Groundwater Below Top of Casing (ft)	3.10	4.40	4.90	5.22	5.60	6.00		6.45	6.85	7.15
Drawdown (ft)	-0.10	-1.30	-0.50	-0.32	-0.38	-0.40		-0.45	-0.40	-0.30
pH (S.U.)	6.84	6.82	6.79	6.73	6.69	6.72		6.85	6.8	6.77
Sp. Cond. (mS/cm)	2.779	2.705	2.642	2.402	2.022	1.778		1.582	1.495	1.570
Turbidity (NTUs)	37.4	24.7	23.6	17.2	19.3	24.5		16.9	11.1	6.56
Dissolved Oxygen (mg/L)	0.40	0.29	0.28	0.16	0.12	0.11		0.30	0.23	0.20
Water Temperature (°C)	11.3	11.5	11.2	10.7	10.8	10.5		10.3	10.4	10.1
ORP (mV)	-32.6	-52.8	-60.7	-69.8	-74.6	-74.1		-78.1	-68.7	-65.1
	Physical appeara	nce at start Colo	r Clear/Blac	k flecks Phys	sical appearance a	t sampling Co	lor Clea	ar/Black flecks		
		Odor	No	_		Oc	or	No		
	Sheen/Free Prod	uct N	lo	Sheen/Fre	ee Product		No			
COMMENTS/OBSERVATIONS	Started purge at 14:3	5 hrs. Sampled at 15	20 hrs.							
	Resampled carbon di	oxide on 4/12/23 at 1	3:00.							

Date (mo/day/yr	4/12/	2023		Casing Diameter_		2			inches
Field Personnel	E.	Au		Casing Material		PV	С		
Site Name For	mer Scott Aviation S	Site - Lancaster, NY		Measuring Point Eleva	ation		689.14		1/100 ft
AECOM Job #	605	536398	_	Height of Riser (above	e land surface)		-0.46	;	1/100 ft
Well ID #	MW-43	3S		Land Surface Elevation			689.6		1/100 ft
Upgra	Upgradient Downgradient			Screened Interval (be	low land surfac		5-15		1/100 ft
Weather Conditions	Sunn	y, Breezy							
Air Temperature	60		° F	Container	Analysis (Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top	of Casing	14.5	1/100 ft	VOA 40 mL glass	TCL VOCs	(8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW)	Below Top of Casing =	2.16	1/100 ft	VOA 40 mL glass	ТО	С	2	HCL, 4°C	
Length of Water Column (LWC) = TWD - DGW =	12.34	1/100 ft						
1 Casing Volume (OCV) = LW0	C x <u>0.163</u> 0	2.01	gal						
3 Casing Volumes =	6.0	03	gal						
Method of Well Evacuation	Pe	eristaltic Pump							
Method of Sample Collection	Peristalti	c Pump/Poly Tubing							
Total Volume of Water Remove	ei		gal						
			,	FIELD ANALYSES					
Flow Rate (ml/min)	250	200	200	200	200	200			
Time (Military)	14:32	14:37	14:42	14:47	14:52	14:57			
Depth to Groundwater									
Below Top of Casing (ft)	2.55	4.35	4.60	5.00	5.00	5.25			
Drawdown (ft)	0.00	-1.80	-0.25	-0.40	0.00	-0.25			
pH (S.U.)	7.13	7.12	7.13	7.12	7.12	7.1			
Sp. Cond. (mS/cm)	0.932	0.932	0.931	0.929	0.928	0.933			
Turbidity (NTUs)	5.61	6.24	5.94	6.68	9.07	7.13			
Dissolved Oxygen (mg/L)	1.92	0.13	0.12	0.11	0.11	0.11			
Water Temperature (°C)	12.7	12.1	12.0	11.9	11.8	11.9			
ORP (mV)	32.4	-42.7	-47.0	-55.6	-61.8	-65.1			
	Physical appears	ance at start Cold	or <u>Clear</u>	Phys	sical appearance a	at sampling Col	or	Clear	
		Odo	or <u>No</u>	_		Odo	or	No	
			No	Sheen/Fre	ee Product	<u> </u>	lo		
COMMENTS/OBSERVATIONS	COMMENTS/OBSERVATIONS Started purge at 14:30 hrs.								
	Sampled at 15:00 hr	S.							

Date (mo/day/yr	4/11/	2023		Casing Diameter		2			inches
Field Personnel	E	Au		Casing Material			С		
Site Name Form	ner Scott Aviation S	Site - Lancaster, NY		Measuring Point Eleva	ition				1/100 ft
AECOM Job #	605	36398		Height of Riser (above land surface)					1/100 ft
Well ID #	MW-44	IS .		Land Surface Elevatio	n				1/100 ft
Upgra	dient	Downgradient		Screened Interval (bel	ow land surfac		5-15	5	1/100 ft
Weather Conditions	Partly Clo	oudy, Breezy							
Air Temperature	60		°F	Container	Analysis (Method)	# Bottles	Preservative	Dup - MS/MSD
Total Depth (TWD) Below Top o	f Casing	15	1/100 ft	VOA 40 mL glass	TCL VOCs	s (8260B)	3	HCL, 4°C	
Depth to Groundwater (DGW) B	elow Top of Casing =	4.57	1/100 ft	VOA 40 mL glass	ТО	С	2	HCL, 4°C	
Length of Water Column (LWC)	= TWD - DGW =	10.43	1/100 ft						
1 Casing Volume (OCV) = LWC	x <u>0.163</u> =	1.70	gal						
3 Casing Volumes =	5.	10	gal						
Method of Well Evacuation	Pe	eristaltic Pump							
Method of Sample Collection	Peristalti	c Pump/Poly Tubing							
Total Volume of Water Remove		2	gal						
		1		IELD ANALYSES		1	<u> </u>		
Flow Rate (ml/min)	200	200	200	200	200	200		200	
Time (Military)	13:27	13:32	13:37	13:42	13:47	13:52		13:57	
Depth to Groundwater Below Top of Casing (ft)	5.30	5.81	6.05	6.35	6.70	7.00		7.20	
Drawdown (ft)	-0.73	-0.51	-0.24	-0.30	-0.35	-0.30		-0.20	
pH (S.U.)	7.13	7.18	7.22	7.25	7.26	7.24		7.22	
Sp. Cond. (mS/cm)	1.024	1.026	1.022	1.024	1.022	1.021		1.020	
Turbidity (NTUs)	54.5	24.3	26.8	24.2	19.5	14.9		18.1	
Dissolved Oxygen (mg/L)	0.81	0.52	0.58	1.30	2.11	2.89		3.47	
Water Temperature (°C)	9.7	9.0	9.3	9.2	9.0	8.8		9.0	
ORP (mV)	78.8	64.6	59.0	54.3	53.9	55.3		57.6	
	Physical appeara	ance at start Col	or <u>Clear</u>	_ Phys	ical appearance a	at sampling Colo	or <u>(</u>	Clear	
		Odd	or <u>No</u>	_		Odo	r	No	
	Sheen/Free Prod	duct	No	_ Sheen/Fre	e Product	N	lo		
COMMENTS/OBSERVATIONS	Started purge at 13:2	26 hrs.							
	Sampled at 14:00 hr	S.							

Appendix D Analytical Laboratory Data Packages (Provided on CD)

Gene-Trac® Certificate of Analysis

Customer: Dino ZackBatch Reference: S-9433Email: dino.zack@aecom.comReport Date: 26-Oct-22

Company: AECOM

Test Location(s): Knoxville and Guelph

Project Name: Area 1 BCP

Customer Reference: 60676145

Method Reference: SOP-002, 019, 108, 114, & 116

The results included herein only apply to the samples described within and are applicable to the items as received.

SOP-116 (DNA Extraction) and SOP-114 (DNA Quantification) were performed at SiREM Knoxville, the remainder of testing was performed at SiREM Guelph.

This certificate is not to be reproduced unless in full.

Certificate of Analysis: Gene-Trac® Dehalococcoides Assay

Certificate Number: CAG-0182

Data File(s): QS3A-DHCT-TM-QPCR-2072

Run Date(s): 21-Oct-22

Table 1a: Test Results

Sample ID	Dehalococcoides (Dhc)						
	Percent Dhc ⁽¹⁾	Enumeration/Liter ⁽²⁾					
MW-42S	4 - 11 %	1 x 10 ⁸					

See final page for notes.

Melody Vachon, M.Sc. Laboratory Technician II

// Jen Wilkinson

Senior Laboratory Technician II

Certificate of Analysis: Gene-Trac® Functional Gene Assay

Certificate Number: CAG-0182

Data File(s): QS3B-FGA-QPCR-1363

Run Date(s): 20-Oct-22

Table 1b: Test Results

Sample ID	VC Reductase (vcrA) Percent Gene vcrA (3) Copies/Liter			C Reductase	TCE Reductase (tceA)		
			Percent bvcA (3)	Gene Copies/Liter	Percent tceA (3)	Gene Copies/Liter	
MW-42S	2 - 6 %	6 x 10 ⁷	0.0006 - 0.002 %	2 x 10 ⁴	0.2 - 0.7 %	7 x 10 ⁶	

See final page for notes.

Melody Vachon, M.Sc. **Laboratory Technician II**

Jen Wilkinson Senior Laboratory Technician II

Certificate of Analysis: Gene-Trac® Dehalobacter Assay

Certificate Number: CAG-0182

Data File(s): QS3B-DHB-QPCR-0611

Run Date(s): 17-Oct-22

Table 1c: Test Results

Sample ID	Dehalobacter (Dhb)					
	Percent Dhb ⁽¹⁾	Dhb Gene Copies/liter				
MW-42S	0.1 - 0.3 %	3 x 10 ⁶				

See final page for notes.

Melody Vachon, M.Sc.
Laboratory Technician II

Senior Laboratory Technician II

 Table 2: Detailed Test Parameters, Test Certificate CAG-0182

Customer Sample ID	MW-42S
Date Sampled ⁽⁴⁾	10-Oct-22
Matrix	Groundwater
Date Received ⁽⁴⁾	11-Oct-22
Sample Temperature	3.2 °C
Filtration Date ⁽⁴⁾	12-Oct-22
Volume Used for DNA Extraction	100 mL
DNA Extraction Date	13-Oct-22
DNA Concentration in Sample (extractable)	6,383 ng/L
PCR Amplifiable DNA	Detected
DNA Extraction Control ⁽⁵⁾	Passed
Detection Limit (copies/L)	2 x 10 ³
Quantitation Limit (copies/L)	6 x 10 ³
qPCR Controls (see Tables 3, 4, & 5)	Passed
Comments	

Table 3: Gene-Trac Dhc Control Results, Test Reference CAG-0182

			Dhc 16	S rRNA		
Laboratory Control	Analysis Date	Control Description	Spiked Gene Copies per Liter	Recovered Gene Copies per Liter	Comments	
Positive Control Low Concentration	21-Oct-22	Synthetic DNA (CSLD-1710)	7.9 x 10 ⁶	4.7 x 10 ⁶	Passed	
Positive Control High Concentration	21-Oct-22	Synthetic DNA (CSHD-1710)	1.5 x 10 ⁸ 1.7 x 10 ⁸		Passed	
DNA Extraction Blank	21-Oct-22	Sterile Water (FB-4184)	0	5.0 x 10 ² U	Passed	
Negative Control	21-Oct-22	Reagent Blank (TBD-1669)	0 5.0 x 10^2 U		Passed	

Table 4: Gene-Trac FGA Control Results, Test Reference CAG-0182

			VC	rA	bv	cA	tce		
Laboratory Control	Analysis Date	Control Description	Spiked Gene Copies per Liter	Recovered Gene Copies per Liter	Spiked Gene Copies per Liter	Recovered Gene Copies per Liter	Spiked Gene Copies per Liter	Recovered Gene Copies per Liter	Comments
Positive Control Low Concentration	20-Oct-22	Synthetic DNA (CSLF-1231)	5.2 x 10 ⁶	4.8 x 10 ⁶	5.8 x 10 ⁶	5.0 x 10 ⁶	4.9 x 10 ⁶	4.1 x 10 ⁶	Passed
Positive Control High Concentration	20-Oct-22	Synthetic DNA (CSHF-1231)	5.1 x 10 ⁸	6.0 x 10 ⁸	5.7 x 10 ⁸	6.0 x 10 ⁸	5.5 x 10 ⁸	5.7 x 10 ⁸	Passed
DNA Extraction Blank	20-Oct-22	Sterile Water (FB-4184)	0	5.0 x 10 ² U	0	5.0 x 10 ² U	0	5.0 x 10 ² U	Passed
Negative Control	20-Oct-22	Reagent Blank (TBF-1202)	0	5.0 x 10 ² U	0	5.0 x 10 ² U	0	5.0 x 10 ² U	Passed

Table 5: Gene-Trac Dhb Control Results, Test Reference CAG-0182

			Dhb 16	S rRNA		
Laboratory Control	Analysis Date	Control Description	Spiked Gene Copies per Liter	Recovered Gene Copies per Liter	Comments	
Positive Control Low Concentration	17-Oct-22	Synthetic DNA (CSLDB-0570)	1.8 x 10 ⁷	2.0 x 10 ⁷	Passed	
Positive Control High Concentration	17-Oct-22	Synthetic DNA (CSHDB-0570)	1.8×10^9 $7.9 \times 10^{8 (6)}$		See note 6	
DNA Extraction Blank	17-Oct-22	Sterile Water (FB-4184)	0	5.0 x 10 ² U	Passed	
Negative Control	17-Oct-22	Reagent Blank (TBDB-0570)	0 5.0 x 10 ² U		Passed	

Notes:

Dhc = Dehalococcoides

vcrA = VC reductase

bvcA = BAV1 VC reductase

tceA = TCE reductase

FGA = functional gene assay

Dhb = Dehalobacter

M Non-specific amplification was observed via melt curve analysis

J The associated value is an estimated quantity between the detection limit and quantitation limit.

U Not detected, associated value is the detection limit.

B Analyte was detected in the method blank within an order of magnitude of the test sample.

E Extracted genomic DNA was not detected in the sample.

I Sample inhibited the test reaction based on inability to PCR amplify extracted DNA with universal primers.

ng/L = nanograms per liter

mL = milliliter

NA = not applicable

ND = not detected

DNA = deoxyribonucleic acid

16S rRNA = 16S ribosomal ribonucleic acid

PCR = polymerase chain reaction

qPCR = quantitative PCR

°C = degrees Celsius

¹ Percent *Dehalococcoides* (Dhc) or *Dehalobacter* (Dhb) in microbial population. This value is calculated by dividing the number of Dhc or Dhb 16S ribosomal ribonucleic acid (rRNA) gene copies by the total number of bacteria as estimated by the mass of DNA extracted from the sample. Range represents normal variation in Dhc or Dhb enumeration.

² Based on quantification of Dhc 16S rRNA gene copies. Dhc are generally reported to contain one 16S rRNA gene copy per cell; therefore, this number is often interpreted to represent the number of Dhc cells present in the sample.

³ Percent of functional gene in microbial population. This value is calculated by dividing the functional gene copies quantified by the total number of estimated prokaryotes in the sample (based on the total quantity of DNA extracted from the sample). A value of 100% would suggest that all microbes in the sample contain the gene.

⁴ Samples are stabilized by freezing at -80 °C upon sample reception (field filters) or in-lab filtration (groundwater). Hold time not exceeded if sampling date is within 14 days of date received or filtration date.

⁵ DNA is extracted from a standardized bacterial culture sample once per week and Total Bacteria qPCR is performed using standard methods. A recovery greater than 25% of the expected value is deemed acceptable.

⁶ Control was outside recovery limit guidelines (+/- 50%), however, test results are deemed acceptable if one of two positive controls fall within the recovery limit guidelines.

Chain-of-Custody Form

siremlab.com

180B Market Place Blvd Knoxville, TN 37922 1-865-291-4718 or 1-866-251-1747 S-9433

Area I BYP	Project # 6	067 (5/4/							Ana	lvele				
*Project Name Area PSOP *Project # 6067 6145 *Company A From *Email Address		-	Γ			T -	T	70.5	Т						
*Email Address Address (Street) JUhn Tames Anduban Pkny Saite 210 City Amberst State/Province my *Phone # 716 - Call (227)			-	-			-		ψ	-			Preservative Key		
Address (Street))// I				Gene-Trac DHC			5	-		gases				0, None 1. HCL
City AmberSt State/Province	PKW	ountry	· re	210			İ		Gene-Trac SRB	gs	Sarbor	>			2 Other ICE
*Phone # 11/ Project		4	>			FGA	DHB	DHG		itty Ac	hydroc	y Stud			3, Other
2000-8777						Gene-Trac FGA	Gene-Trac DHB	Sene-Trac DHGM		Volatile Fatty Acids	Dissolved hydrocarbon	Treatability Study			4. Other5. Other
*Sampler's Signature *Sampler's Pi)	2		,		Gen	Gen	Gen	Gen	Vola	Diss	Trea			6, Other
Client Sample ID	Sam Date	pling Time	Matrix	# of Containers											Other Information
mn-425	1011012		Gw	3	X	×	~						-		
41-GP10-S	10110122		Gw	2		~	Χ.			X			-		Per POSSION
													-		Please Contina
															Carri Van
															Othe Nat
The state of the s															
													_		
												_			
P.O. # Billing Information	Turnaro	und Time Re	quested		-		For I	ah Ilaa	Only	2011			T	ab Nas Ostu	
147.162		Normal K			ondition: For Lab Use Only INTACT WET ICE							Bottle order #32045			
*BILL TO: USAP Imasing @ appointen	No:				emperature: 3.2°C (KK000S)										V
CL. Dino, 2ack C accomeon		Custody S			4773 am								1		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,															
Relinquished By: Received By:	ſ	R	elinquishe	d Bv:	T		Doce	ived By				Delle		ceal #:	
Signature Signature Kulaw of		ignature	emiqueme	u by.	Sign	nature	Mece	iveu by			Signatu		iquished	і Ву;	Received By: Signature
Name Din 2 2 . k Name Kultund Cracum		Wola Printed Name			Printed Name				-:	Printed Name				Printed Name	
Firm HEUN SIREM	Fir				Firm					Firm				Firm	
Date/Time 10/10/22 1530 Date/Time 10/10/22 0936	Da	Date/Time			Date	Date/Time Date/Time				Date/Time					

Environment Testing America

ANALYTICAL REPORT

Eurofins Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-202378-1

Client Project/Site: Scott Figgie Area 1 BCP

For:

AECOM
One John James Audubon Parkway
Suite 210
Amherst, New York 14228

Attn: Mr. Dino Zack

Wystl Bloton

Authorized for release by: 10/26/2022 2:30:45 PM Wyatt Watson, Project Management Assistant I

Wyatt.Watson@et.eurofinsus.com

Designee for

Brian Fischer, Manager of Project Management (716)504-9835

Brian.Fischer@et.eurofinsus.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

----- LINKS -----

Review your project results through

EOL

Have a Question?

www.eurofinsus.com/Env

Visit us at:

Client: AECOM

Project/Site: Scott Figgie Area 1 BCP

Laboratory Job ID: 480-202378-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	
Client Sample Results	7
Lab Chronicle	71
Certification Summary	79
Method Summary	80
Sample Summary	81
Receipt Checklists	82
Chain of Custody	91

A

5

7

10

10

Definitions/Glossary

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Qualifiers

GC/MS VOA

 Qualifier
 Qualifier Description

 *+
 LCS and/or LCSD is outside acceptance limits, high biased.

E Result exceeded calibration range.
F2 MS/MSD RPD exceeds control limits

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC VOA

J

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualifier	Qualifier Description						
В	Compound was found in the blank and sample.						
F1	MS and/or MSD recovery exceeds control limits.						
Н	Sample was prepped or analyzed beyond the specified holding time						
HF	Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.						

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.				
Listed under the "D" column to designate that the result is reported on a dry weight basis					
%R	Percent Recovery				
CFL	Contains Free Liquid				
CFU	Colony Forming Unit				
CNF	Contains No Free Liquid				

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Buffalo

Page 3 of 105

3

4

7

10

1

10/26/2022

Case Narrative

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Job ID: 480-202378-1

Laboratory: Eurofins Buffalo

Narrative

Job Narrative 480-202378-1

Comments

No additional comments.

Receipt

The samples were received on 10/5/2022 4:50 PM, 10/6/2022 10:01 AM, 10/6/2022 4:40 PM, 10/7/2022 2:50 PM and 10/10/2022 4:40 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 6 coolers at receipt time were 2.6° C, 2.8° C, 3.5° C, 3.5° C, 3.7° C and 3.9° C.

GC/MS VOA

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-644728 recovered outside acceptance criteria, low biased, for 1,1,2-Trichloroethane, Isopropylbenzene and Ethylbenzene. A reporting limit (RL) standard was analyzed, and the target analytes are detected. Since the associated samples were non-detect for the analyte(s), the data are reported. The associated sample is impacted: A1-GP15-S (480-202443-7).

Method 8260C: The following volatiles samples were diluted due to foaming at the time of purging during the original sample analysis: A1-GP16-S (480-202380-1), (480-202380-A-1 MS) and (480-202380-A-1 MSD). Elevated reporting limits (RLs) are provided.

Method 8260C: The matrix spike / matrix spike duplicate / sample duplicate (MS/MSD/DUP) precision for analytical batch 480-644907 was outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory control sample duplicate (LCS/LCSD) precision was within acceptance limits.

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-644798 recovered above the upper control limit for 1,1,2-Trichloro-1,2,2-trifluoroethane and Cyclohexane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are impacted: MW-36S (480-202378-1), MW-36D (480-202378-2) and A1-GP09-S (480-202379-1).

Method 8260C: The following volatiles samples were diluted due to foaming at the time of purging during the original sample analysis: MW-36D (480-202378-2) and A1-GP09-S (480-202379-1). Elevated reporting limits (RLs) are provided.

Method 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-40D (480-202482-10) and MW-42S (480-202482-11). Elevated reporting limits (RLs) are provided.

Method 8260C: The following volatiles samples were diluted due to foaming at the time of purging during the original sample analysis: MW-38D (480-202443-1) and MW-39D (480-202443-5). Elevated reporting limits (RLs) are provided.

Method 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: A1-GP06-S (480-202443-2) and A1-GP02-S (480-202443-6). Elevated reporting limits (RLs) are provided.

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-645217 recovered above the upper control limit for 1,1,2-Trichloro-1,2,2-trifluoroethane and Cyclohexane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are impacted: MW-38D (480-202443-1), A1-GP06-S (480-202443-2), A1-GP18-S (480-202443-3), MW-37D (480-202443-4), MW-39D (480-202443-5) and A1-GP02-S (480-202443-6).

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-645440 recovered above the upper control limit for Cyclohexane, Acetone, 1,1,2-Trichloro-1,2,2-trifluoroethane and 2-Butanone (MEK). The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: A1-GP02-S (480-202443-6).

Method 8260C: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for analytical batch 480-645440 recovered outside control limits for the following analytes: Acetone. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported. The associated sample is impacted: A1-GP02-S (480-202443-6).

3

4

9

0

8

9

10

Eurofins Buffalo 10/26/2022

Job ID: 480-202378-1 (Continued)

Laboratory: Eurofins Buffalo (Continued)

Method 8260C: The following sample was diluted to bring the concentration of target analytes within the calibration range: A1-GP02-S (480-202443-6). Elevated reporting limits (RLs) are provided.

Method 8260C: The following sample was diluted to bring the concentration of target analytes within the calibration range: A1-GP10-S (480-202540-2). Elevated reporting limits (RLs) are provided.

Method 8260C: The following volatiles samples were diluted due to foaming at the time of purging during the original sample analysis: MW-43S (480-202540-4) and A1-GP14-S (480-202540-6). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Method 300.0: The following samples were diluted due to the abundance of non-target analytes: MW-38D (480-202443-1) and A1-GP18-S (480-202443-3). Elevated reporting limits (RLs) are provided.

Method 300.0: The following sample was diluted due to the nature of the sample matrix: MW-35D (480-202482-9). Elevated reporting limits (RLs) are provided.

Method 300.0: The following samples were diluted due to the abundance of non-target analytes: MW-40D (480-202482-10), MW-42S (480-202482-11) and A1-GP06-S (480-202482-13). Elevated reporting limits (RLs) are provided.

Method 300.0: The following sample was diluted due to the abundance of non-target analytes: A1-GP10-S (480-202540-2). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC VOA

Method RSK-175: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-38D (480-202443-1), A1-GP18-S (480-202443-3), MW-35D (480-202482-9), MW-40D (480-202482-10), MW-42S (480-202482-11) and A1-GP06-S (480-202482-13). Elevated reporting limits (RLs) are provided.

Method RSK-175: The following sample was diluted to bring the concentration of target analytes within the calibration range: A1-GP10-S (480-202540-2). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

Method SM 3500 FE D: This analysis is normally performed in the field and has a method-defined holding time of 15 minutes. The following samples has been qualified with the "HF" flag to indicate analysis was performed in the laboratory outside the 15 minute timeframe: MW-38D (480-202443-1) and A1-GP18-S (480-202443-3).

Method 353.2: The following sample(s) was received with less than 2 days remaining on the holding time or less than one shift (8 hours) remaining on a test with a holding time of 48 hours or less. As such, the laboratory had insufficient time remaining to perform the analysis within holding time: (480-202438-G-16), (480-202438-G-16 DU) and (480-202438-G-16 MS).

Method SM 3500 FE D: This analysis is normally performed in the field and has a method-defined holding time of 15 minutes. The following samples has been qualified with the "HF" flag to indicate analysis was performed in the laboratory outside the 15 minute timeframe: MW-35D (480-202482-9), MW-40D (480-202482-10), MW-42S (480-202482-11), A1-GP06-S (480-202482-13) and A1-GP10-S (480-202540-2).

Method 9060A: The reference method requires samples to be preserved to a pH of below 2. The following sample was received with insufficient preservation at a pH of above 2: (480-202378-D-2 DU). The sample(s) was preserved to the appropriate pH in the laboratory.

Case Narrative

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Job ID: 480-202378-1 (Continued)

Laboratory: Eurofins Buffalo (Continued)

Method 353.2: Reanalysis of the following sample(s) was performed outside of the analytical holding time due to failure of quality control parameters in the initial analysis. MW-35D (480-202482-9), MW-40D (480-202482-10) and MW-42S (480-202482-11)

Method 353.2: The following sample(s) was prepared outside of holding time due to laboratory error: A1-GP10-S (480-202540-2).

Method 9060A: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for analytical batch 480-645787 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits. the samples were reanalyzed and the results were confirmed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

- 0

4

5

U

40

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-36S

Date Received: 10/05/22 16:50

Lab Sample ID: 480-202378-1 Date Collected: 10/05/22 12:15

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L		-	10/11/22 16:41	-
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			10/11/22 16:41	
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			10/11/22 16:41	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			10/11/22 16:41	
1,1-Dichloroethane	ND		1.0		ug/L			10/11/22 16:41	
1,1-Dichloroethene	ND		1.0	0.29	ug/L			10/11/22 16:41	
1,2,4-Trichlorobenzene	ND		1.0		ug/L			10/11/22 16:41	
1,2-Dibromo-3-Chloropropane	ND		1.0		ug/L			10/11/22 16:41	
1,2-Dichlorobenzene	ND		1.0		ug/L			10/11/22 16:41	
1,2-Dichloroethane	ND		1.0		ug/L			10/11/22 16:41	
1,2-Dichloropropane	ND		1.0		ug/L			10/11/22 16:41	
1,3-Dichlorobenzene	ND		1.0		ug/L			10/11/22 16:41	
1,4-Dichlorobenzene	ND		1.0		ug/L			10/11/22 16:41	
2-Butanone (MEK)	ND		10		ug/L			10/11/22 16:41	
2-Hexanone	ND		5.0		ug/L			10/11/22 16:41	
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			10/11/22 16:41	
Acetone	5.1	J	10		ug/L			10/11/22 16:41	
Benzene	ND		1.0		ug/L			10/11/22 16:41	
Bromodichloromethane	ND		1.0		ug/L			10/11/22 16:41	
Bromoform	ND		1.0		ug/L			10/11/22 16:41	
Bromomethane	ND		1.0		ug/L			10/11/22 16:41	
Carbon disulfide	ND		1.0		ug/L			10/11/22 16:41	
Carbon tetrachloride	ND		1.0		ug/L			10/11/22 16:41	
Chlorobenzene	ND		1.0		ug/L			10/11/22 16:41	
Dibromochloromethane	ND		1.0		ug/L			10/11/22 16:41	
Chloroethane	ND		1.0		ug/L			10/11/22 16:41	
Chloroform	ND		1.0		ug/L			10/11/22 16:41	
Chloromethane	ND		1.0		ug/L			10/11/22 16:41	
cis-1,2-Dichloroethene	ND		1.0		ug/L			10/11/22 16:41	
cis-1,3-Dichloropropene	ND		1.0		ug/L			10/11/22 16:41	
Cyclohexane	ND		1.0		ug/L			10/11/22 16:41	
Dichlorodifluoromethane	ND		1.0		ug/L			10/11/22 16:41	
Ethylbenzene	ND		1.0		ug/L			10/11/22 16:41	
1,2-Dibromoethane	ND		1.0		ug/L			10/11/22 16:41	
Isopropylbenzene	ND		1.0		ug/L			10/11/22 16:41	
Methyl acetate	ND		2.5		ug/L			10/11/22 16:41	
Methyl tert-butyl ether	ND		1.0		ug/L			10/11/22 16:41	
Methylcyclohexane	ND		1.0		ug/L			10/11/22 16:41	
Methylene Chloride	ND		1.0		ug/L			10/11/22 16:41	
Styrene	ND		1.0		ug/L			10/11/22 16:41	
Tetrachloroethene	ND		1.0		ug/L			10/11/22 16:41	
Toluene	ND ND		1.0		ug/L ug/L			10/11/22 16:41	
trans-1,2-Dichloroethene	ND		1.0		ug/L			10/11/22 16:41	
trans-1,3-Dichloropropene	ND ND		1.0		ug/L ug/L			10/11/22 16:41	
Trichloroethene	ND ND		1.0		ug/L ug/L			10/11/22 16:41	
Trichlorofluoromethane	ND		1.0		ug/L ug/L			10/11/22 16:41	
Vinyl chloride	ND ND		1.0		ug/L ug/L			10/11/22 16:41	
Xylenes, Total	ND ND		2.0		ug/L ug/L			10/11/22 16:41	

Eurofins Buffalo

10/26/2022

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-36S Lab Sample ID: 480-202378-1

Date Collected: 10/05/22 12:15

Matrix: Water

Date Received: 10/05/22 16:50

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
Toluene-d8 (Surr)	101	80 - 120	10/11/22 16:41	1
1,2-Dichloroethane-d4 (Surr)	101	77 - 120	10/11/22 16:41	1
4-Bromofluorobenzene (Surr)	101	73 - 120	10/11/22 16:41	1
Dibromofluoromethane (Surr)	102	75 - 123	10/11/22 16:41	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon (SW846	10.4		1.0	0.43	mg/L			10/13/22 03:00	1
9060A)									

6

_

0

9

10

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-36D

Lab Sample ID: 480-202378-2 Date Collected: 10/05/22 11:35

Matrix: Water

Date Received: 10/05/22 16:50

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	4.0	3.3	ug/L			10/11/22 17:03	
1,1,2,2-Tetrachloroethane	ND	4.0	0.84	ug/L			10/11/22 17:03	
1,1,2-Trichloroethane	ND	4.0	0.92	ug/L			10/11/22 17:03	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.0	1.2	ug/L			10/11/22 17:03	
1,1-Dichloroethane	ND	4.0	1.5	ug/L			10/11/22 17:03	
1,1-Dichloroethene	ND	4.0	1.2	ug/L			10/11/22 17:03	
1,2,4-Trichlorobenzene	ND	4.0	1.6	ug/L			10/11/22 17:03	
1,2-Dibromo-3-Chloropropane	ND	4.0	1.6	ug/L			10/11/22 17:03	
1,2-Dichlorobenzene	ND	4.0	3.2	ug/L			10/11/22 17:03	
1,2-Dichloroethane	ND	4.0	0.84	ug/L			10/11/22 17:03	
1,2-Dichloropropane	ND	4.0	2.9	ug/L			10/11/22 17:03	
1,3-Dichlorobenzene	ND	4.0		ug/L			10/11/22 17:03	
1,4-Dichlorobenzene	ND	4.0		ug/L			10/11/22 17:03	
2-Butanone (MEK)	ND	40		ug/L			10/11/22 17:03	
2-Hexanone	ND	20		ug/L			10/11/22 17:03	
4-Methyl-2-pentanone (MIBK)	ND	20		ug/L			10/11/22 17:03	
Acetone	ND	40		ug/L			10/11/22 17:03	
Benzene	ND	4.0		ug/L			10/11/22 17:03	
Bromodichloromethane	ND	4.0		ug/L			10/11/22 17:03	
Bromoform	ND	4.0		ug/L			10/11/22 17:03	
Bromomethane	ND	4.0		ug/L			10/11/22 17:03	
Carbon disulfide	ND	4.0		ug/L			10/11/22 17:03	
Carbon tetrachloride	ND	4.0		ug/L			10/11/22 17:03	
Chlorobenzene	ND	4.0		ug/L			10/11/22 17:03	
Dibromochloromethane	ND	4.0		ug/L			10/11/22 17:03	
Chloroethane	ND	4.0		ug/L			10/11/22 17:03	
Chloroform	ND	4.0		ug/L			10/11/22 17:03	
Chloromethane	ND	4.0		ug/L			10/11/22 17:03	
cis-1,2-Dichloroethene	ND	4.0		ug/L			10/11/22 17:03	
cis-1,3-Dichloropropene	ND	4.0		ug/L			10/11/22 17:03	
Cyclohexane	ND	4.0		ug/L			10/11/22 17:03	
Dichlorodifluoromethane	ND	4.0		ug/L			10/11/22 17:03	
Ethylbenzene	ND	4.0		ug/L			10/11/22 17:03	
1,2-Dibromoethane	ND	4.0		ug/L			10/11/22 17:03	
sopropylbenzene	ND	4.0		ug/L			10/11/22 17:03	
Methyl acetate	ND	10		ug/L			10/11/22 17:03	
Methyl tert-butyl ether	ND	4.0		ug/L			10/11/22 17:03	
Methylcyclohexane	ND	4.0		ug/L			10/11/22 17:03	
Methylene Chloride	ND	4.0		ug/L			10/11/22 17:03	
Styrene	ND	4.0		ug/L			10/11/22 17:03	
Tetrachloroethene	ND	4.0		ug/L			10/11/22 17:03	
Foluene	ND ND	4.0		ug/L ug/L			10/11/22 17:03	
rans-1,2-Dichloroethene	ND ND						10/11/22 17:03	
•	ND ND	4.0 4.0		ug/L				
rans-1,3-Dichloropropene				ug/L			10/11/22 17:03	
Trichlorofluoromothono	ND	4.0		ug/L			10/11/22 17:03	
Trichlorofluoromethane	ND ND	4.0		ug/L			10/11/22 17:03	
Vinyl chloride Xylenes, Total	ND ND	4.0 8.0		ug/L ug/L			10/11/22 17:03 10/11/22 17:03	

Eurofins Buffalo

10/26/2022

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-36D Lab Sample ID: 480-202378-2

Date Collected: 10/05/22 11:35

Matrix: Water

Date Received: 10/05/22 16:50

Surrogate	%Recovery Qua	lifier Limits	Prepared Analyzed	Dil Fac
Toluene-d8 (Surr)	101	80 - 120	10/11/22 17:03	4
1,2-Dichloroethane-d4 (Surr)	101	77 - 120	10/11/22 17:03	4
4-Bromofluorobenzene (Surr)	100	73 - 120	10/11/22 17:03	4
Dibromofluoromethane (Surr)	101	75 - 123	10/11/22 17:03	4

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon (SW846	10.5		1.0	0.43	mg/L			10/13/22 03:57	1
9060A)									

5

6

4.0

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: A1-GP09-S Lab Sample ID: 480-202379-1

Date Collected: 10/05/22 13:00 **Matrix: Water**

Date Received: 10/05/22 16:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		5.0	4.1	ug/L			10/11/22 17:25	
1,1,2,2-Tetrachloroethane	ND		5.0	1.1	ug/L			10/11/22 17:25	į
1,1,2-Trichloroethane	ND		5.0	1.2	ug/L			10/11/22 17:25	į
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.0	1.6	ug/L			10/11/22 17:25	
1,1-Dichloroethane	ND		5.0	1.9	ug/L			10/11/22 17:25	
1,1-Dichloroethene	ND		5.0	1.5	ug/L			10/11/22 17:25	į
1,2,4-Trichlorobenzene	ND		5.0		ug/L			10/11/22 17:25	
1,2-Dibromo-3-Chloropropane	ND		5.0		ug/L			10/11/22 17:25	į
1,2-Dichlorobenzene	ND		5.0		ug/L			10/11/22 17:25	
1,2-Dichloroethane	ND		5.0	1.1	ug/L			10/11/22 17:25	
1,2-Dichloropropane	ND		5.0		ug/L			10/11/22 17:25	į
1,3-Dichlorobenzene	ND		5.0		ug/L			10/11/22 17:25	
1,4-Dichlorobenzene	ND		5.0		ug/L			10/11/22 17:25	
2-Butanone (MEK)	ND		50		ug/L			10/11/22 17:25	į
2-Hexanone	ND		25		ug/L			10/11/22 17:25	į
4-Methyl-2-pentanone (MIBK)	ND		25		ug/L			10/11/22 17:25	
Acetone	ND		50		ug/L			10/11/22 17:25	
Benzene	ND		5.0		ug/L			10/11/22 17:25	
Bromodichloromethane	ND		5.0		ug/L			10/11/22 17:25	
Bromoform	ND		5.0		ug/L			10/11/22 17:25	
Bromomethane	ND		5.0		ug/L			10/11/22 17:25	
Carbon disulfide	ND		5.0		ug/L ug/L			10/11/22 17:25	
Carbon tetrachloride	ND ND		5.0		ug/L ug/L			10/11/22 17:25	
	ND ND				_				,
Chlorobenzene			5.0		ug/L			10/11/22 17:25	
Dibromochloromethane	ND		5.0		ug/L			10/11/22 17:25	
Chloroform	ND		5.0		ug/L			10/11/22 17:25	;
Chloroform	ND		5.0		ug/L			10/11/22 17:25	
Chloromethane	ND		5.0		ug/L			10/11/22 17:25	
cis-1,2-Dichloroethene	ND		5.0		ug/L			10/11/22 17:25	;
cis-1,3-Dichloropropene	ND		5.0		ug/L			10/11/22 17:25	
Cyclohexane	ND		5.0		ug/L			10/11/22 17:25	;
Dichlorodifluoromethane	ND		5.0		ug/L			10/11/22 17:25	,
Ethylbenzene	ND		5.0		ug/L			10/11/22 17:25	
1,2-Dibromoethane	ND		5.0		ug/L			10/11/22 17:25	;
Isopropylbenzene	ND		5.0		ug/L			10/11/22 17:25	!
Methyl acetate	ND		13		ug/L			10/11/22 17:25	
Methyl tert-butyl ether	ND		5.0		ug/L			10/11/22 17:25	
Methylcyclohexane	ND		5.0		ug/L			10/11/22 17:25	
Methylene Chloride	ND		5.0		ug/L			10/11/22 17:25	
Styrene	ND		5.0	3.7	ug/L			10/11/22 17:25	
Tetrachloroethene	ND		5.0		ug/L			10/11/22 17:25	
Toluene	ND		5.0		ug/L			10/11/22 17:25	
trans-1,2-Dichloroethene	ND		5.0		ug/L			10/11/22 17:25	
trans-1,3-Dichloropropene	ND		5.0	1.9	ug/L			10/11/22 17:25	
Trichloroethene	ND		5.0	2.3	ug/L			10/11/22 17:25	
Trichlorofluoromethane	ND		5.0	4.4	ug/L			10/11/22 17:25	
Vinyl chloride	ND		5.0	4.5	ug/L			10/11/22 17:25	į
Xylenes, Total	ND		10	3.3	ug/L			10/11/22 17:25	

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Date Received: 10/05/22 16:50

Client Sample ID: A1-GP09-S Lab Sample ID: 480-202379-1

Date Collected: 10/05/22 13:00 **Matrix: Water**

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		80 - 120					10/11/22 17:25	5
1,2-Dichloroethane-d4 (Surr)	101		77 - 120					10/11/22 17:25	5
4-Bromofluorobenzene (Surr)	98		73 - 120					10/11/22 17:25	5
Dibromofluoromethane (Surr)	102		75 - 123					10/11/22 17:25	5
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon (SW846 9060A)	14.3		1.0	0.43	mg/L			10/13/22 04:26	1

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: A1-GP16-S Date Collected: 10/05/22 14:50 Lab Sample ID: 480-202380-1

Matrix: Water

Date Received: 10/06/22 10:01

Analyte	Result	·	_	Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	4.		ug/L			10/11/22 15:17	
1,1,2,2-Tetrachloroethane	ND	4.		ug/L			10/11/22 15:17	
1,1,2-Trichloroethane	ND	4.	0 0.92	ug/L			10/11/22 15:17	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND F	2 4.	0 1.2	ug/L			10/11/22 15:17	
1,1-Dichloroethane	ND	4.	0 1.5	ug/L			10/11/22 15:17	
1,1-Dichloroethene	ND	4.	0 1.2	ug/L			10/11/22 15:17	
1,2,4-Trichlorobenzene	ND	4.	0 1.6	ug/L			10/11/22 15:17	
1,2-Dibromo-3-Chloropropane	ND	4.	0 1.6	ug/L			10/11/22 15:17	
1,2-Dichlorobenzene	ND	4.	0 3.2	ug/L			10/11/22 15:17	
1,2-Dichloroethane	ND	4.	0 0.84	ug/L			10/11/22 15:17	
1,2-Dichloropropane	ND	4.	0 2.9	ug/L			10/11/22 15:17	
1,3-Dichlorobenzene	ND	4.	0 3.1	ug/L			10/11/22 15:17	
1,4-Dichlorobenzene	ND	4.	0 3.4	ug/L			10/11/22 15:17	
2-Butanone (MEK)	ND	4	0 5.3	ug/L			10/11/22 15:17	
2-Hexanone	ND	2		ug/L			10/11/22 15:17	
1-Methyl-2-pentanone (MIBK)	ND	2	0 8.4	ug/L			10/11/22 15:17	
Acetone	ND	4		ug/L			10/11/22 15:17	
Benzene	ND	4.		ug/L			10/11/22 15:17	
Bromodichloromethane	ND	4.		ug/L			10/11/22 15:17	
Bromoform	ND	4.		ug/L			10/11/22 15:17	
Bromomethane	ND	4.		ug/L			10/11/22 15:17	
Carbon disulfide	ND	4.		ug/L			10/11/22 15:17	
Carbon tetrachloride	ND	4.		ug/L			10/11/22 15:17	
Chlorobenzene	ND	4.		ug/L			10/11/22 15:17	
Dibromochloromethane	ND	4.		ug/L			10/11/22 15:17	
Chloroethane	ND	4.		ug/L			10/11/22 15:17	
Chloroform	ND	4.		ug/L			10/11/22 15:17	
Chloromethane	ND	4		ug/L			10/11/22 15:17	
cis-1,2-Dichloroethene	ND	4.		ug/L			10/11/22 15:17	
cis-1,3-Dichloropropene	ND	4.		ug/L			10/11/22 15:17	
Cyclohexane	ND	4.		ug/L			10/11/22 15:17	
Dichlorodifluoromethane	ND	4.		ug/L			10/11/22 15:17	
Ethylbenzene	ND	4		ug/L			10/11/22 15:17	
1,2-Dibromoethane	ND	4.		ug/L			10/11/22 15:17	
sopropylbenzene	ND	4		ug/L ug/L			10/11/22 15:17	
Methyl acetate	ND			ug/L ug/L			10/11/22 15:17	
Methyl tert-butyl ether	ND	4.					10/11/22 15:17	
Methylcyclohexane				ug/L				
• •	ND	4.		ug/L			10/11/22 15:17	
Methylene Chloride	ND ND	4.		ug/L			10/11/22 15:17 10/11/22 15:17	
Styrene		4.		ug/L				
Tetrachloroethene	ND	4.		ug/L			10/11/22 15:17	
Foluene	ND	4.		ug/L			10/11/22 15:17	
rans-1,2-Dichloroethene	ND	4.		ug/L			10/11/22 15:17	
rans-1,3-Dichloropropene	ND	4.		ug/L			10/11/22 15:17	
Frichloroethene	ND	4		ug/L			10/11/22 15:17	
Frichlorofluoromethane	ND	4.		ug/L			10/11/22 15:17	
/inyl chloride Kylenes, Total	ND ND	4.	0 3.6 0 2.6	ug/L			10/11/22 15:17 10/11/22 15:17	

Eurofins Buffalo

5

b

8

11

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: A1-GP16-S Lab Sample ID: 480-202380-1

Date Collected: 10/05/22 14:50 Date Received: 10/06/22 10:01

Matrix: Water

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101	80 - 120		10/11/22 15:17	4
1,2-Dichloroethane-d4 (Surr)	105	77 - 120		10/11/22 15:17	4
4-Bromofluorobenzene (Surr)	99	73 - 120		10/11/22 15:17	4
Dibromofluoromethane (Surr)	101	75 - 123		10/11/22 15:17	4

General Chemistry Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon (SW846	27.0	1.0	0.43	mg/L			10/13/22 20:47	1
9060A)								

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-38D

Lab Sample ID: 480-202443-1 Date Collected: 10/06/22 12:20

Matrix: Water

Date Received: 10/06/22 16:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		4.0	3.3	ug/L			10/13/22 18:24	
1,1,2,2-Tetrachloroethane	ND		4.0	0.84	ug/L			10/13/22 18:24	4
1,1,2-Trichloroethane	ND		4.0	0.92	ug/L			10/13/22 18:24	4
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.0	1.2	ug/L			10/13/22 18:24	
1,1-Dichloroethane	ND		4.0	1.5	ug/L			10/13/22 18:24	
1,1-Dichloroethene	ND		4.0	1.2	ug/L			10/13/22 18:24	
1,2,4-Trichlorobenzene	ND		4.0	1.6	ug/L			10/13/22 18:24	
1,2-Dibromo-3-Chloropropane	ND		4.0	1.6	ug/L			10/13/22 18:24	
1,2-Dichlorobenzene	ND		4.0	3.2	ug/L			10/13/22 18:24	
1,2-Dichloroethane	ND		4.0	0.84	ug/L			10/13/22 18:24	
1,2-Dichloropropane	ND		4.0	2.9	ug/L			10/13/22 18:24	4
1,3-Dichlorobenzene	ND		4.0		ug/L			10/13/22 18:24	4
1,4-Dichlorobenzene	ND		4.0		ug/L			10/13/22 18:24	
2-Butanone (MEK)	ND		40		ug/L			10/13/22 18:24	
2-Hexanone	ND		20		ug/L			10/13/22 18:24	
4-Methyl-2-pentanone (MIBK)	ND		20		ug/L			10/13/22 18:24	
Acetone	ND		40		ug/L			10/13/22 18:24	4
Benzene	ND		4.0		ug/L			10/13/22 18:24	
Bromodichloromethane	ND		4.0		ug/L			10/13/22 18:24	
Bromoform	ND		4.0		ug/L			10/13/22 18:24	
Bromomethane	ND		4.0		ug/L			10/13/22 18:24	
Carbon disulfide	ND		4.0		ug/L			10/13/22 18:24	
Carbon tetrachloride	ND		4.0		-			10/13/22 18:24	
Chlorobenzene	ND		4.0		ug/L			10/13/22 18:24	
Dibromochloromethane	ND		4.0		ug/L			10/13/22 18:24	
Chloroethane	ND		4.0		ug/L			10/13/22 18:24	
Chloroform	ND		4.0		ug/L			10/13/22 18:24	
Chloromethane	ND		4.0		ug/L			10/13/22 18:24	
cis-1,2-Dichloroethene	ND		4.0		ug/L			10/13/22 18:24	
cis-1,3-Dichloropropene	ND		4.0		ug/L			10/13/22 18:24	
Cyclohexane	ND		4.0		ug/L			10/13/22 18:24	
Dichlorodifluoromethane	ND		4.0		ug/L			10/13/22 18:24	
Ethylbenzene	ND		4.0		ug/L			10/13/22 18:24	
1.2-Dibromoethane	ND		4.0		ug/L			10/13/22 18:24	
Isopropylbenzene	ND		4.0		ug/L			10/13/22 18:24	
Methyl acetate	ND		10		ug/L			10/13/22 18:24	4
Methyl tert-butyl ether	ND		4.0		ug/L			10/13/22 18:24	
Methylcyclohexane	ND		4.0		ug/L			10/13/22 18:24	4
Methylene Chloride	ND		4.0		ug/L			10/13/22 18:24	
Styrene	ND		4.0		ug/L			10/13/22 18:24	
Tetrachloroethene	ND		4.0		ug/L			10/13/22 18:24	
Toluene	ND		4.0		ug/L			10/13/22 18:24	
trans-1,2-Dichloroethene	ND		4.0		ug/L			10/13/22 18:24	
trans-1,3-Dichloropropene	ND ND		4.0		ug/L ug/L			10/13/22 18:24	
Trichloroethene	ND ND		4.0		ug/L ug/L			10/13/22 18:24	•
Trichlorofluoromethane					ug/L ug/L				
	ND ND		4.0		-			10/13/22 18:24 10/13/22 18:24	4
Vinyl chloride Xylenes, Total	ND ND		4.0 8.0		ug/L ug/L			10/13/22 18:24	2

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Date Received: 10/06/22 16:40

Client Sample ID: MW-38D Lab Sample ID: 480-202443-1 Date Collected: 10/06/22 12:20

Matrix: Water

	0/5								5.7.5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101		80 - 120					10/13/22 18:24	4
1,2-Dichloroethane-d4 (Surr)	101		77 - 120					10/13/22 18:24	4
4-Bromofluorobenzene (Surr)	101		73 - 120					10/13/22 18:24	4
Dibromofluoromethane (Surr)	102		75 - 123					10/13/22 18:24	4
Method: RSK-175 - Dissolved	d Gases (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon dioxide	31000		5000	1300	ug/L			10/10/22 15:27	1
Ethane	ND		170	33	ug/L			10/09/22 19:04	22
Ethene	ND		150	33	ug/L			10/09/22 19:04	22
Method: RSK-175 - Dissolved	d Gases (GC)) - DL							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methane	20000	<u> </u>	440	110	ug/L			10/10/22 06:22	110
Method: EPA 200.7 Rev 4.4 -	Motals (ICP)								
Analyte	, ,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	3.4		0.050	0.019	mg/L		10/10/22 09:29	10/11/22 19:48	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate (MCAWW 300.0)	8.7	J	10.0	1.7	mg/L			10/14/22 00:01	5
Alkalinity, Total (MCAWW 310.2)	486		50.0	20.0	mg/L			10/11/22 13:24	5
Nitrate as N (EPA 353.2)	0.020	J	0.050	0.020	mg/L			10/07/22 18:24	1
Nitrite as N (MCAWW 353.2)	ND		0.050	0.020	mg/L			10/07/22 18:24	1
Total Organic Carbon (SW846	11.2		1.0	0.43	mg/L			10/12/22 16:40	1
9060A) Ferric Iron (SM 3500)	3.1		0.10	0.075	mg/L			10/13/22 12:27	1
Ferrous Iron (SM 3500 FE D)	0.30	HE	0.10	0.075				10/07/22 16:30	1
Sulfide (SM 4500 S2 F)	ND		1.0		mg/L			10/12/22 11:06	1

10/26/2022

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: A1-GP06-S Date Collected: 10/06/22 14:05 Lab Sample ID: 480-202443-2

Matrix: Water

Date Received: 10/06/22 16:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		20	16	ug/L			10/13/22 18:46	20
1,1,2,2-Tetrachloroethane	ND		20	4.2	ug/L			10/13/22 18:46	20
1,1,2-Trichloroethane	ND		20	4.6	ug/L			10/13/22 18:46	20
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		20	6.2	ug/L			10/13/22 18:46	20
1,1-Dichloroethane	21		20	7.6	ug/L			10/13/22 18:46	20
1,1-Dichloroethene	ND		20	5.8	ug/L			10/13/22 18:46	20
1,2,4-Trichlorobenzene	ND		20	8.2	ug/L			10/13/22 18:46	20
1,2-Dibromo-3-Chloropropane	ND		20		ug/L			10/13/22 18:46	2
1,2-Dichlorobenzene	ND		20		ug/L			10/13/22 18:46	2
1,2-Dichloroethane	ND		20		ug/L			10/13/22 18:46	20
1,2-Dichloropropane	ND		20		ug/L			10/13/22 18:46	20
1,3-Dichlorobenzene	ND		20		ug/L			10/13/22 18:46	2
1,4-Dichlorobenzene	ND		20		ug/L			10/13/22 18:46	20
2-Butanone (MEK)	ND		200		ug/L			10/13/22 18:46	20
2-Hexanone	ND		100		ug/L			10/13/22 18:46	20
4-Methyl-2-pentanone (MIBK)	ND		100		ug/L			10/13/22 18:46	20
Acetone	ND		200		ug/L			10/13/22 18:46	20
Benzene	ND		20		ug/L			10/13/22 18:46	20
Bromodichloromethane	ND		20		ug/L			10/13/22 18:46	20
Bromoform	ND ND		20		ug/L ug/L			10/13/22 18:46	20
Bromomethane	ND ND				_				
			20		ug/L			10/13/22 18:46	20
Carbon disulfide	ND		20		ug/L			10/13/22 18:46	20
Carbon tetrachloride	ND		20		ug/L			10/13/22 18:46	2
Chlorobenzene	ND		20		ug/L			10/13/22 18:46	2
Dibromochloromethane	ND		20		ug/L			10/13/22 18:46	20
Chloroethane	840		20		ug/L			10/13/22 18:46	2
Chloroform	ND		20		ug/L			10/13/22 18:46	2
Chloromethane	ND		20		ug/L			10/13/22 18:46	20
cis-1,2-Dichloroethene	ND		20		ug/L			10/13/22 18:46	20
cis-1,3-Dichloropropene	ND		20		ug/L			10/13/22 18:46	20
Cyclohexane	ND		20		ug/L			10/13/22 18:46	20
Dichlorodifluoromethane	ND		20	14	ug/L			10/13/22 18:46	2
Ethylbenzene	ND		20		ug/L			10/13/22 18:46	
1,2-Dibromoethane	ND		20		ug/L			10/13/22 18:46	20
Isopropylbenzene	ND		20	16	ug/L			10/13/22 18:46	20
Methyl acetate	ND		50		ug/L			10/13/22 18:46	20
Methyl tert-butyl ether	ND		20	3.2	ug/L			10/13/22 18:46	20
Methylcyclohexane	ND		20	3.2	ug/L			10/13/22 18:46	20
Methylene Chloride	ND		20	8.8	ug/L			10/13/22 18:46	20
Styrene	ND		20	15	ug/L			10/13/22 18:46	20
Tetrachloroethene	ND		20	7.2	ug/L			10/13/22 18:46	20
Toluene	ND		20	10	ug/L			10/13/22 18:46	2
trans-1,2-Dichloroethene	ND		20	18	ug/L			10/13/22 18:46	20
trans-1,3-Dichloropropene	ND		20		ug/L			10/13/22 18:46	20
Trichloroethene	ND		20		ug/L			10/13/22 18:46	20
Trichlorofluoromethane	ND		20		ug/L			10/13/22 18:46	20
Vinyl chloride	ND		20		ug/L			10/13/22 18:46	20
Xylenes, Total	ND		40		ug/L			10/13/22 18:46	20

Eurofins Buffalo

_

5

-

9

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: A1-GP06-S Lab Sample ID: 480-202443-2

Date Collected: 10/06/22 14:05 **Matrix: Water** Date Received: 10/06/22 16:40

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		80 - 120					10/13/22 18:46	20
1,2-Dichloroethane-d4 (Surr)	101		77 - 120					10/13/22 18:46	20
4-Bromofluorobenzene (Surr)	102		73 - 120					10/13/22 18:46	20
Dibromofluoromethane (Surr)	101		75 - 123					10/13/22 18:46	20
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon (SW846 9060A)	25.8	F1	1.0	0.43	mg/L			10/16/22 15:33	1

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: A1-GP18-S

Lab Sample ID: 480-202443-3

Matrix: Water

Date Collected: 10/06/22 09:25 Date Received: 10/06/22 16:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			10/13/22 19:08	
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			10/13/22 19:08	•
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			10/13/22 19:08	•
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			10/13/22 19:08	
1,1-Dichloroethane	ND		1.0		ug/L			10/13/22 19:08	
1,1-Dichloroethene	ND		1.0		ug/L			10/13/22 19:08	
1,2,4-Trichlorobenzene	ND		1.0		ug/L			10/13/22 19:08	,
1,2-Dibromo-3-Chloropropane	ND		1.0		ug/L			10/13/22 19:08	
1,2-Dichlorobenzene	ND		1.0		ug/L			10/13/22 19:08	
1,2-Dichloroethane	ND		1.0		ug/L			10/13/22 19:08	,
1,2-Dichloropropane	ND		1.0		ug/L			10/13/22 19:08	
1,3-Dichlorobenzene	ND		1.0		ug/L			10/13/22 19:08	
1,4-Dichlorobenzene	ND		1.0		ug/L			10/13/22 19:08	,
2-Butanone (MEK)	ND		10		ug/L			10/13/22 19:08	,
2-Hexanone	ND		5.0		ug/L			10/13/22 19:08	,
	ND		5.0					10/13/22 19:08	
4-Methyl-2-pentanone (MIBK)			10		ug/L ug/L			10/13/22 19:08	,
Acetone	28 ND				-				•
Benzene			1.0		ug/L			10/13/22 19:08	
Bromodichloromethane	ND		1.0		ug/L			10/13/22 19:08	
Bromoform	ND		1.0		ug/L			10/13/22 19:08	•
Bromomethane	ND		1.0		ug/L			10/13/22 19:08	
Carbon disulfide	ND		1.0		ug/L			10/13/22 19:08	•
Carbon tetrachloride	ND		1.0		ug/L			10/13/22 19:08	•
Chlorobenzene	ND		1.0		ug/L			10/13/22 19:08	
Dibromochloromethane	ND		1.0		ug/L			10/13/22 19:08	•
Chloroethane	ND		1.0		ug/L			10/13/22 19:08	•
Chloroform	ND		1.0	0.34	ug/L			10/13/22 19:08	
Chloromethane	ND		1.0	0.35	ug/L			10/13/22 19:08	•
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			10/13/22 19:08	•
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			10/13/22 19:08	,
Cyclohexane	ND		1.0	0.18	ug/L			10/13/22 19:08	
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			10/13/22 19:08	•
Ethylbenzene	ND		1.0	0.74	ug/L			10/13/22 19:08	,
1,2-Dibromoethane	ND		1.0	0.73	ug/L			10/13/22 19:08	
Isopropylbenzene	ND		1.0	0.79	ug/L			10/13/22 19:08	
Methyl acetate	ND		2.5		ug/L			10/13/22 19:08	
Methyl tert-butyl ether	ND		1.0		ug/L			10/13/22 19:08	,
Methylcyclohexane	ND		1.0		ug/L			10/13/22 19:08	
Methylene Chloride	ND		1.0		ug/L			10/13/22 19:08	
Styrene	ND		1.0		ug/L			10/13/22 19:08	,
Tetrachloroethene	ND		1.0		ug/L			10/13/22 19:08	
Toluene	ND		1.0		ug/L			10/13/22 19:08	,
trans-1,2-Dichloroethene	ND		1.0		ug/L			10/13/22 19:08	,
trans-1,3-Dichloropropene	ND		1.0		ug/L ug/L			10/13/22 19:08	,
Trichloroethene	ND		1.0		ug/L ug/L			10/13/22 19:08	,
Trichlorofluoromethane									
	ND		1.0		ug/L			10/13/22 19:08	,
Vinyl chloride Xylenes, Total	ND ND		1.0 2.0		ug/L ug/L			10/13/22 19:08 10/13/22 19:08	

Eurofins Buffalo

2

_

8

9

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: A1-GP18-S

Lab Sample ID: 480-202443-3

Matrix: Water

Date Collected: 10/06/22 09:25 Date Received: 10/06/22 16:40

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		80 - 120					10/13/22 19:08	1
1,2-Dichloroethane-d4 (Surr)	100		77 - 120					10/13/22 19:08	1
4-Bromofluorobenzene (Surr)	100		73 - 120					10/13/22 19:08	1
Dibromofluoromethane (Surr)	99		75 - 123					10/13/22 19:08	1
- Method: RSK-175 - Dissolved	Gases (GC))							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon dioxide	48000		5000	1300	ug/L			10/10/22 15:36	1
Ethane	ND		83	17	ug/L			10/09/22 19:23	11
Ethene	ND		77	17	ug/L			10/09/22 19:23	11
_ Method: RSK-175 - Dissolved	Gases (GC)) - DL							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methane	8000		350	88	ug/L			10/10/22 06:41	88
- Method: EPA 200.7 Rev 4.4 - I	Metals (ICP)								
Analyte	, ,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	31.0		0.050	0.019	mg/L		10/10/22 09:29	10/11/22 19:52	1
- General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate (MCAWW 300.0)	29.1		4.0	0.70	mg/L			10/14/22 00:21	2
Alkalinity, Total (MCAWW 310.2)	321		50.0	20.0	mg/L			10/11/22 13:24	5
Nitrate as N (EPA 353.2)	0.039	J	0.050	0.020	mg/L			10/07/22 18:25	1
Nitrite as N (MCAWW 353.2)	ND		0.050	0.020	mg/L			10/07/22 18:25	1
Total Organic Carbon (SW846 9060A)	4.9		1.0	0.43	mg/L			10/12/22 18:39	1
Ferric Iron (SM 3500)	30.7		0.10	0.075	mg/L			10/13/22 12:27	1
Ferrous Iron (SM 3500 FE D)	0.31	HF	0.10	0.075				10/07/22 16:30	1
Sulfide (SM 4500 S2 F)	ND		1.0		mg/L			10/12/22 11:06	1

10/26/2022

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-37D

Lab Sample ID: 480-202443-4 Date Collected: 10/06/22 10:35

Matrix: Water

Date Received: 10/06/22 16:40

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND -	1.0	0.82	ug/L			10/13/22 19:30	
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			10/13/22 19:30	
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			10/13/22 19:30	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			10/13/22 19:30	
1,1-Dichloroethane	ND	1.0	0.38	ug/L			10/13/22 19:30	
1,1-Dichloroethene	ND	1.0	0.29	ug/L			10/13/22 19:30	
1,2,4-Trichlorobenzene	ND	1.0		ug/L			10/13/22 19:30	
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			10/13/22 19:30	
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			10/13/22 19:30	
1,2-Dichloroethane	ND	1.0		ug/L			10/13/22 19:30	
1,2-Dichloropropane	ND	1.0		ug/L			10/13/22 19:30	
1,3-Dichlorobenzene	ND	1.0		ug/L			10/13/22 19:30	
1,4-Dichlorobenzene	ND	1.0		ug/L			10/13/22 19:30	
2-Butanone (MEK)	ND	10		ug/L			10/13/22 19:30	
2-Hexanone	ND	5.0		ug/L			10/13/22 19:30	
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			10/13/22 19:30	
Acetone	ND	10		ug/L			10/13/22 19:30	
Benzene	ND	1.0		ug/L			10/13/22 19:30	
Bromodichloromethane	ND	1.0		ug/L			10/13/22 19:30	
Bromoform	ND	1.0		ug/L			10/13/22 19:30	
Bromomethane	ND	1.0		ug/L			10/13/22 19:30	
Carbon disulfide	ND	1.0		ug/L			10/13/22 19:30	
Carbon tetrachloride	ND	1.0		ug/L			10/13/22 19:30	
Chlorobenzene	ND	1.0		ug/L			10/13/22 19:30	
Dibromochloromethane	ND	1.0		ug/L			10/13/22 19:30	
Chloroethane	ND	1.0		ug/L			10/13/22 19:30	
Chloroform	ND	1.0		ug/L			10/13/22 19:30	
Chloromethane	ND	1.0		ug/L			10/13/22 19:30	
cis-1,2-Dichloroethene	ND	1.0		ug/L			10/13/22 19:30	
cis-1,3-Dichloropropene	ND	1.0		ug/L			10/13/22 19:30	
Cyclohexane	ND	1.0		ug/L			10/13/22 19:30	
Dichlorodifluoromethane	ND	1.0		ug/L			10/13/22 19:30	
Ethylbenzene	ND	1.0		ug/L			10/13/22 19:30	
1,2-Dibromoethane	ND	1.0		ug/L			10/13/22 19:30	
Isopropylbenzene	ND	1.0		ug/L			10/13/22 19:30	
Methyl acetate	ND	2.5		ug/L			10/13/22 19:30	
Methyl tert-butyl ether	ND	1.0		ug/L			10/13/22 19:30	
Methylcyclohexane	ND	1.0		ug/L			10/13/22 19:30	
Methylene Chloride	ND	1.0		ug/L			10/13/22 19:30	
Styrene	ND	1.0		ug/L			10/13/22 19:30	
Tetrachloroethene	ND	1.0		ug/L			10/13/22 19:30	
Toluene	ND ND			ug/L ug/L			10/13/22 19:30	
trans-1,2-Dichloroethene		1.0					10/13/22 19:30	
·	ND ND	1.0 1.0		ug/L			10/13/22 19:30	
trans-1,3-Dichloropropene				ug/L				
Trichloroethene	ND	1.0		ug/L			10/13/22 19:30	
Trichlorofluoromethane	ND ND	1.0		ug/L			10/13/22 19:30	
Vinyl chloride Xylenes, Total	ND ND	1.0 2.0		ug/L ug/L			10/13/22 19:30 10/13/22 19:30	

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-37D Lab Sample ID: 480-202443-4

Date Collected: 10/06/22 10:35 Matrix: Water

Date Received: 10/06/22 16:40

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	l Dil Fac
Toluene-d8 (Surr)	98	80 - 120	10/13/22 19	:30 1
1,2-Dichloroethane-d4 (Surr)	101	77 - 120	10/13/22 19	:30 1
4-Bromofluorobenzene (Surr)	100	73 - 120	10/13/22 19	:30 1
Dibromofluoromethane (Surr)	100	75 - 123	10/13/22 19	:30 1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon (SW846	1.8		1.0	0.43	mg/L			10/12/22 19:08	1
9060A)									

5

6

8

9

10

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-39D

Lab Sample ID: 480-202443-5

Date Collected: 10/06/22 11:30 **Matrix: Water** Date Received: 10/06/22 16:40

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	8.0	6.6	ug/L			10/13/22 19:52	
1,1,2,2-Tetrachloroethane	ND	8.0	1.7	ug/L			10/13/22 19:52	
1,1,2-Trichloroethane	ND	8.0	1.8	ug/L			10/13/22 19:52	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	8.0	2.5	ug/L			10/13/22 19:52	
1,1-Dichloroethane	ND	8.0	3.0	ug/L			10/13/22 19:52	
1,1-Dichloroethene	ND	8.0	2.3	ug/L			10/13/22 19:52	
1,2,4-Trichlorobenzene	ND	8.0	3.3	ug/L			10/13/22 19:52	
1,2-Dibromo-3-Chloropropane	ND	8.0	3.1	ug/L			10/13/22 19:52	
1,2-Dichlorobenzene	ND	8.0	6.3	ug/L			10/13/22 19:52	
1,2-Dichloroethane	ND	8.0	1.7	ug/L			10/13/22 19:52	
1,2-Dichloropropane	ND	8.0	5.8	ug/L			10/13/22 19:52	
1,3-Dichlorobenzene	ND	8.0	6.2	ug/L			10/13/22 19:52	
1,4-Dichlorobenzene	ND	8.0	6.7	ug/L			10/13/22 19:52	
2-Butanone (MEK)	15 J	80	11	ug/L			10/13/22 19:52	
2-Hexanone	110	40		ug/L			10/13/22 19:52	
4-Methyl-2-pentanone (MIBK)	ND	40		ug/L			10/13/22 19:52	
Acetone	54 J	80		ug/L			10/13/22 19:52	
Benzene	ND	8.0		ug/L			10/13/22 19:52	
Bromodichloromethane	ND	8.0		ug/L			10/13/22 19:52	
Bromoform	ND	8.0		ug/L			10/13/22 19:52	
3romomethane	ND	8.0		ug/L			10/13/22 19:52	
Carbon disulfide	ND	8.0		ug/L			10/13/22 19:52	
Carbon tetrachloride	ND	8.0		ug/L			10/13/22 19:52	
Chlorobenzene	ND	8.0		ug/L			10/13/22 19:52	
Dibromochloromethane	ND	8.0		ug/L			10/13/22 19:52	
Chloroethane	ND	8.0		ug/L			10/13/22 19:52	
Chloroform	ND	8.0		ug/L			10/13/22 19:52	
Chloromethane	ND	8.0		ug/L			10/13/22 19:52	
cis-1,2-Dichloroethene	ND	8.0		ug/L			10/13/22 19:52	
cis-1,3-Dichloropropene	ND	8.0		ug/L			10/13/22 19:52	
Cyclohexane	ND	8.0		ug/L			10/13/22 19:52	
Dichlorodifluoromethane	ND	8.0		ug/L			10/13/22 19:52	
Ethylbenzene	ND	8.0		ug/L			10/13/22 19:52	
1,2-Dibromoethane	ND	8.0		ug/L			10/13/22 19:52	
sopropylbenzene	ND	8.0		ug/L			10/13/22 19:52	
Methyl acetate	ND	20		ug/L			10/13/22 19:52	
Methyl tert-butyl ether	ND	8.0		ug/L			10/13/22 19:52	
Methylcyclohexane	ND	8.0		ug/L			10/13/22 19:52	
Methylene Chloride	ND	8.0		ug/L			10/13/22 19:52	
Styrene	ND	8.0		ug/L			10/13/22 19:52	
Tetrachloroethene	ND	8.0		ug/L			10/13/22 19:52	
Foluene	ND	8.0		ug/L			10/13/22 19:52	
rans-1,2-Dichloroethene	ND	8.0		ug/L			10/13/22 19:52	
rans-1,3-Dichloropropene	ND	8.0		ug/L			10/13/22 19:52	
Frichloroethene	ND	8.0		ug/L			10/13/22 19:52	
Frichlorofluoromethane	ND	8.0		ug/L			10/13/22 19:52	
/inyl chloride	ND ND	8.0		ug/L ug/L			10/13/22 19:52	
Viriyi chloride Xylenes, Total	ND ND	6.0 16		ug/L ug/L			10/13/22 19:52	

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-39D Lab Sample ID: 480-202443-5

Date Collected: 10/06/22 11:30 Matrix: Water

Date Received: 10/06/22 16:40

Surrogate	%Recovery 0	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)			80 - 120		10/13/22 19:52	8
1,2-Dichloroethane-d4 (Surr)	101		77 - 120		10/13/22 19:52	8
4-Bromofluorobenzene (Surr)	99		73 - 120		10/13/22 19:52	8
Dibromofluoromethane (Surr)	101		75 - 123		10/13/22 19:52	8

General Chemistry Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon (SW846	53.9	1.0	0.43	mg/L			10/12/22 19:39	1
9060A)								

6

8

9

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: A1-GP02-S Date Collected: 10/06/22 13:15

Lab Sample ID: 480-202443-6

Matrix: Water

Date Received: 10/06/22 16:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		25	21	ug/L			10/13/22 20:14	2
1,1,2,2-Tetrachloroethane	ND		25	5.3	ug/L			10/13/22 20:14	25
1,1,2-Trichloroethane	ND		25	5.8	ug/L			10/13/22 20:14	25
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		25	7.8	ug/L			10/13/22 20:14	25
1,1-Dichloroethane	ND		25		ug/L			10/13/22 20:14	25
1,1-Dichloroethene	ND		25		ug/L			10/13/22 20:14	25
1,2,4-Trichlorobenzene	ND		25		ug/L			10/13/22 20:14	25
1,2-Dibromo-3-Chloropropane	ND		25		ug/L			10/13/22 20:14	25
1,2-Dichlorobenzene	ND		25		ug/L			10/13/22 20:14	25
1,2-Dichloroethane	ND		25		ug/L			10/13/22 20:14	25
1,2-Dichloropropane	ND		25		ug/L			10/13/22 20:14	25
1,3-Dichlorobenzene	ND		25		ug/L			10/13/22 20:14	25
1,4-Dichlorobenzene	ND		25		ug/L			10/13/22 20:14	25
2-Butanone (MEK)	ND		250		ug/L			10/13/22 20:14	25
2-Hexanone	ND		130		ug/L			10/13/22 20:14	25
	ND							10/13/22 20:14	
4-Methyl-2-pentanone (MIBK)			130		ug/L				25
Acetone	ND		250		ug/L			10/13/22 20:14	25
Benzene	ND		25		ug/L			10/13/22 20:14	25
Bromodichloromethane	ND		25		ug/L			10/13/22 20:14	25
Bromoform	ND		25		ug/L			10/13/22 20:14	25
Bromomethane	ND		25		ug/L			10/13/22 20:14	25
Carbon disulfide	ND		25		ug/L			10/13/22 20:14	25
Carbon tetrachloride	ND		25		ug/L			10/13/22 20:14	25
Chlorobenzene	ND		25		ug/L			10/13/22 20:14	25
Dibromochloromethane	ND		25	8.0	ug/L			10/13/22 20:14	25
Chloroethane	ND		25	8.0	ug/L			10/13/22 20:14	25
Chloroform	ND		25	8.5	ug/L			10/13/22 20:14	25
Chloromethane	ND		25	8.8	ug/L			10/13/22 20:14	25
cis-1,2-Dichloroethene	5400	E	25	20	ug/L			10/13/22 20:14	25
cis-1,3-Dichloropropene	ND		25	9.0	ug/L			10/13/22 20:14	25
Cyclohexane	ND		25	4.5	ug/L			10/13/22 20:14	25
Dichlorodifluoromethane	ND		25		ug/L			10/13/22 20:14	25
Ethylbenzene	53		25		ug/L			10/13/22 20:14	25
1.2-Dibromoethane	ND		25		ug/L			10/13/22 20:14	25
Isopropylbenzene	ND		25		ug/L			10/13/22 20:14	25
Methyl acetate	ND		63		ug/L			10/13/22 20:14	25
Methyl tert-butyl ether	ND		25		ug/L			10/13/22 20:14	25
Methylcyclohexane	ND		25		ug/L			10/13/22 20:14	25
Methylene Chloride	ND		25 25		ug/L			10/13/22 20:14	25
Styrene	ND		25		ug/L			10/13/22 20:14	25
Tetrachloroethene Toluene	ND ND		25 25		ug/L			10/13/22 20:14 10/13/22 20:14	25 25
					ug/L				
trans-1,2-Dichloroethene	ND		25		ug/L			10/13/22 20:14	25
trans-1,3-Dichloropropene	ND		25		ug/L			10/13/22 20:14	25
Trichloroethene	ND		25		ug/L			10/13/22 20:14	25
Trichlorofluoromethane	ND		25		ug/L			10/13/22 20:14	25
Vinyl chloride	3600	E	25	23	ug/L			10/13/22 20:14	25

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: A1-GP02-S Lab Sample ID: 480-202443-6

Date Collected: 10/06/22 13:15 Matrix: Water

Date Received: 10/06/22 15:15 Matrix: Water

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	97	80 - 120		10/13/22 20:14	25
1,2-Dichloroethane-d4 (Surr)	101	77 - 120		10/13/22 20:14	25
4-Bromofluorobenzene (Surr)	100	73 - 120		10/13/22 20:14	25
Dibromofluoromethane (Surr)	100	75 - 123		10/13/22 20:14	25

	700		70-720					10, 10, 22 20.14	20
Method: SW846 8260C - Volati Analyte		Compound Qualifier	s by GC/MS RL	- DL MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		100		ug/L	<u>-</u>	· ropurou	10/14/22 16:43	100
1,1,2,2-Tetrachloroethane	ND		100		_			10/14/22 16:43	100
1,1,2-Trichloroethane	ND		100		ug/L			10/14/22 16:43	100
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		100		ug/L			10/14/22 16:43	100
1,1-Dichloroethane	ND		100		ug/L			10/14/22 16:43	100
1,1-Dichloroethene	ND		100		ug/L			10/14/22 16:43	100
1,2,4-Trichlorobenzene	ND		100		ug/L			10/14/22 16:43	100
1,2-Dibromo-3-Chloropropane	ND		100		ug/L			10/14/22 16:43	100
1,2-Dichlorobenzene	ND		100		ug/L			10/14/22 16:43	100
1,2-Dichloroethane	ND		100		ug/L			10/14/22 16:43	100
1,2-Dichloropropane	ND		100		ug/L			10/14/22 16:43	100
1,3-Dichlorobenzene	ND		100		ug/L			10/14/22 16:43	100
1,4-Dichlorobenzene	ND		100		ug/L			10/14/22 16:43	100
2-Butanone (MEK)	ND		1000		ug/L			10/14/22 16:43	100
2-Hexanone	ND		500		ug/L			10/14/22 16:43	100
4-Methyl-2-pentanone (MIBK)	ND		500		ug/L			10/14/22 16:43	100
Acetone	ND	*+	1000		ug/L			10/14/22 16:43	100
Benzene	ND		100	41	ug/L			10/14/22 16:43	100
Bromodichloromethane	ND		100	39	ug/L			10/14/22 16:43	100
Bromoform	ND		100		ug/L			10/14/22 16:43	100
Bromomethane	ND		100		ug/L			10/14/22 16:43	100
Carbon disulfide	ND		100		ug/L			10/14/22 16:43	100
Carbon tetrachloride	ND		100		ug/L			10/14/22 16:43	100
Chlorobenzene	ND		100		ug/L			10/14/22 16:43	100
Dibromochloromethane	ND		100		ug/L			10/14/22 16:43	100
Chloroethane	ND		100		ug/L			10/14/22 16:43	100
Chloroform	ND		100		ug/L			10/14/22 16:43	100
Chloromethane	ND		100		ug/L			10/14/22 16:43	100
cis-1,2-Dichloroethene	5100		100		_			10/14/22 16:43	100
cis-1,3-Dichloropropene	ND		100		ug/L			10/14/22 16:43	100
Cyclohexane	ND		100		ug/L			10/14/22 16:43	100
Dichlorodifluoromethane	ND		100		ug/L			10/14/22 16:43	100
Ethylbenzene	ND		100		ug/L			10/14/22 16:43	100
1,2-Dibromoethane	ND		100		ug/L			10/14/22 16:43	100
Isopropylbenzene	ND		100		ug/L			10/14/22 16:43	100
Methyl acetate	ND		250		ug/L			10/14/22 16:43	100
Methyl tert-butyl ether	ND		100		ug/L			10/14/22 16:43	100
Methylcyclohexane	ND		100		ug/L			10/14/22 16:43	100
Methylene Chloride	ND		100		ug/L			10/14/22 16:43	100
Styrene	ND		100		ug/L			10/14/22 16:43	100
Tetrachloroethene	ND		100		ug/L			10/14/22 16:43	100
Toluene	ND		100		ug/L			10/14/22 16:43	100
trans-1,2-Dichloroethene	ND		100		ug/L			10/14/22 16:43	100

Eurofins Buffalo

4

5

7

9

10

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Total Organic Carbon (SW846

9060A)

Client Sample ID: A1-GP02-S Lab Sample ID: 480-202443-6

Date Collected: 10/06/22 13:15 **Matrix: Water** Date Received: 10/06/22 16:40

Method: SW846 8260C - Vo	latile Organic	Compound	ds by GC/MS	- DL (C	ontinued	i)			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,3-Dichloropropene	ND		100	37	ug/L			10/14/22 16:43	100
Trichloroethene	ND		100	46	ug/L			10/14/22 16:43	100
Trichlorofluoromethane	ND		100	88	ug/L			10/14/22 16:43	100
Vinyl chloride	3400		100	90	ug/L			10/14/22 16:43	100
Xylenes, Total	ND		200	66	ug/L			10/14/22 16:43	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	102		80 - 120			=		10/14/22 16:43	100
1,2-Dichloroethane-d4 (Surr)	100		77 - 120					10/14/22 16:43	100
4-Bromofluorobenzene (Surr)	98		73 - 120					10/14/22 16:43	100
Dibromofluoromethane (Surr)	102		75 - 123					10/14/22 16:43	100
_ General Chemistry									
Analyte	Posult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

1.0

0.43 mg/L

7.1

Analyzed 10/12/22 21:37

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: A1-GP15-S

Lab Sample ID: 480-202443-7

Matrix: Water

Date Collected: 10/06/22 15:00
Date Received: 10/06/22 16:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			10/11/22 07:02	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			10/11/22 07:02	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			10/11/22 07:02	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			10/11/22 07:02	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			10/11/22 07:02	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			10/11/22 07:02	
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			10/11/22 07:02	1
1,2-Dibromo-3-Chloropropane	ND		1.0		ug/L			10/11/22 07:02	
1,2-Dichlorobenzene	ND		1.0		ug/L			10/11/22 07:02	
1,2-Dichloroethane	ND		1.0		ug/L			10/11/22 07:02	,
1,2-Dichloropropane	ND		1.0		ug/L			10/11/22 07:02	
1,3-Dichlorobenzene	ND		1.0		ug/L			10/11/22 07:02	
1,4-Dichlorobenzene	ND		1.0		ug/L			10/11/22 07:02	
2-Butanone (MEK)	ND		10		ug/L			10/11/22 07:02	
2-Hexanone	ND		5.0		ug/L			10/11/22 07:02	
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			10/11/22 07:02	
Acetone	ND		10		ug/L			10/11/22 07:02	
Benzene	ND		1.0		ug/L			10/11/22 07:02	
Bromodichloromethane	ND		1.0		ug/L			10/11/22 07:02	,
Bromoform	ND ND		1.0		ug/L ug/L			10/11/22 07:02	,
Bromomethane	ND		1.0		-			10/11/22 07:02	,
Carbon disulfide	ND		1.0		ug/L ug/L			10/11/22 07:02	,
Carbon tetrachloride	ND ND		1.0		ug/L ug/L			10/11/22 07:02	
	ND ND				_				
Chlorobenzene Dibromochloromethane			1.0		ug/L			10/11/22 07:02	
	ND		1.0		ug/L			10/11/22 07:02	,
Chloroform	ND		1.0		ug/L			10/11/22 07:02	
Chloroform	ND		1.0		ug/L			10/11/22 07:02	
Chloromethane	ND		1.0		ug/L			10/11/22 07:02	,
cis-1,2-Dichloroethene	ND		1.0		ug/L			10/11/22 07:02	
cis-1,3-Dichloropropene	ND		1.0		ug/L			10/11/22 07:02	
Cyclohexane	ND		1.0		ug/L			10/11/22 07:02	1
Dichlorodifluoromethane	ND		1.0		ug/L			10/11/22 07:02	,
Ethylbenzene	ND		1.0		ug/L			10/11/22 07:02	
1,2-Dibromoethane	ND		1.0		ug/L			10/11/22 07:02	•
Isopropylbenzene	ND		1.0		ug/L			10/11/22 07:02	•
Methyl acetate	ND		2.5		ug/L			10/11/22 07:02	
Methyl tert-butyl ether	ND		1.0		ug/L			10/11/22 07:02	•
Methylcyclohexane	ND		1.0	0.16	ug/L			10/11/22 07:02	,
Methylene Chloride	ND		1.0		ug/L			10/11/22 07:02	1
Styrene	ND		1.0		ug/L			10/11/22 07:02	•
Tetrachloroethene	ND		1.0		ug/L			10/11/22 07:02	•
Toluene	ND		1.0	0.51	ug/L			10/11/22 07:02	
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			10/11/22 07:02	•
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			10/11/22 07:02	
Trichloroethene	ND		1.0	0.46	ug/L			10/11/22 07:02	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			10/11/22 07:02	1
Vinyl chloride	ND		1.0	0.90	ug/L			10/11/22 07:02	1
Xylenes, Total	ND		2.0	0.66	ug/L			10/11/22 07:02	

Eurofins Buffalo

3

5

7

9

10

1'

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: A1-GP15-S Lab Sample ID: 480-202443-7

Date Collected: 10/06/22 15:00 Date Received: 10/06/22 16:40

Total Organic Carbon (SW846

9060A)

Matrix: Water

Surrogate	%Recovery Qualifi	er Limits		Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	101	80 - 120			10/11/22 07:02	1
1,2-Dichloroethane-d4 (Surr)	110	77 - 120			10/11/22 07:02	1
4-Bromofluorobenzene (Surr)	110	73 - 120			10/11/22 07:02	1
Dibromofluoromethane (Surr)	115	75 - 123			10/11/22 07:02	1
General Chemistry	Result Qualifi	er RL	MDL Unit	D Prepared	Analyzed	Dil Fac

1.0

2.8

 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 0.43
 mg/L
 10/12/22 22:37
 1

9

10

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: CB-1

Lab Sample ID: 480-202482-1

Matrix: Water

Date Collected: 10/07/22 08:00 Date Received: 10/07/22 14:50

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			10/13/22 02:57	
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			10/13/22 02:57	
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			10/13/22 02:57	
1,1,2-Trichloro-1,2,2-trifluoroetha	1.8		1.0	0.31	ug/L			10/13/22 02:57	
ne									
1,1-Dichloroethane	0.54	J	1.0		ug/L			10/13/22 02:57	
1,1-Dichloroethene	ND		1.0		ug/L			10/13/22 02:57	
1,2,4-Trichlorobenzene	ND		1.0		ug/L			10/13/22 02:57	
1,2-Dibromo-3-Chloropropane	ND		1.0		ug/L			10/13/22 02:57	
1,2-Dichlorobenzene	ND		1.0		ug/L			10/13/22 02:57	
1,2-Dichloroethane	ND		1.0		ug/L			10/13/22 02:57	
1,2-Dichloropropane	ND		1.0	0.72	ug/L			10/13/22 02:57	
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			10/13/22 02:57	
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			10/13/22 02:57	
2-Butanone (MEK)	ND		10	1.3	ug/L			10/13/22 02:57	
2-Hexanone	ND		5.0	1.2	ug/L			10/13/22 02:57	
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			10/13/22 02:57	
Acetone	ND		10	3.0	ug/L			10/13/22 02:57	
Benzene	ND		1.0	0.41	ug/L			10/13/22 02:57	
Bromodichloromethane	ND		1.0	0.39	ug/L			10/13/22 02:57	
Bromoform	ND		1.0	0.26	ug/L			10/13/22 02:57	
Bromomethane	ND		1.0	0.69	ug/L			10/13/22 02:57	
Carbon disulfide	ND		1.0		ug/L			10/13/22 02:57	
Carbon tetrachloride	ND		1.0		ug/L			10/13/22 02:57	
Chlorobenzene	ND		1.0		ug/L			10/13/22 02:57	
Dibromochloromethane	ND		1.0		ug/L			10/13/22 02:57	
Chloroethane	ND		1.0		ug/L			10/13/22 02:57	
Chloroform	ND		1.0		ug/L			10/13/22 02:57	
Chloromethane	ND		1.0		ug/L			10/13/22 02:57	
cis-1,2-Dichloroethene	0.93	J	1.0		ug/L			10/13/22 02:57	
cis-1,3-Dichloropropene	ND		1.0		ug/L			10/13/22 02:57	
Cyclohexane	ND		1.0		ug/L			10/13/22 02:57	
Dichlorodifluoromethane	ND		1.0		ug/L			10/13/22 02:57	
Ethylbenzene	ND		1.0		ug/L			10/13/22 02:57	
1.2-Dibromoethane	ND		1.0		ug/L			10/13/22 02:57	
Isopropylbenzene	ND		1.0	0.79	-			10/13/22 02:57	
Methyl acetate	ND		2.5		ug/L			10/13/22 02:57	
Methyl tert-butyl ether	ND		1.0		ug/L			10/13/22 02:57	
Methylcyclohexane	ND		1.0		ug/L			10/13/22 02:57	
Methylene Chloride	ND		1.0		ug/L			10/13/22 02:57	
	ND				.				
Styrene Tetrachloroethene	ND ND		1.0 1.0		ug/L			10/13/22 02:57	
					ug/L			10/13/22 02:57	
Toluene	ND		1.0		ug/L			10/13/22 02:57	
trans-1,2-Dichloroethene	ND		1.0		ug/L			10/13/22 02:57	
trans-1,3-Dichloropropene	ND	_	1.0		ug/L			10/13/22 02:57	
Trichloroethene	0.52	J	1.0		ug/L			10/13/22 02:57	
Trichlorofluoromethane	ND		1.0		ug/L			10/13/22 02:57	
Vinyl chloride	ND		1.0	0.90	ug/L			10/13/22 02:57	

Eurofins Buffalo

10/26/2022

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: CB-1 Lab Sample ID: 480-202482-1

Matrix: Water

Date Collected: 10/07/22 08:00 Date Received: 10/07/22 14:50

Surrogate	%Recovery Qualifie	r Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99	80 - 120		10/13/22 02:57	1
1,2-Dichloroethane-d4 (Surr)	99	77 - 120		10/13/22 02:57	1
4-Bromofluorobenzene (Surr)	99	73 - 120		10/13/22 02:57	1
Dibromofluoromethane (Surr)	96	75 - 123		10/13/22 02:57	1

5

R

9

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: CB-2 Lab Sample ID: 480-202482-2

Date Collected: 10/07/22 07:40 Matrix: Water Date Received: 10/07/22 14:50

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			10/13/22 03:20	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			10/13/22 03:20	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			10/13/22 03:20	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			10/13/22 03:20	1
1,1-Dichloroethane	2.1	1.0	0.38	ug/L			10/13/22 03:20	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			10/13/22 03:20	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			10/13/22 03:20	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			10/13/22 03:20	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			10/13/22 03:20	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			10/13/22 03:20	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			10/13/22 03:20	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			10/13/22 03:20	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			10/13/22 03:20	1
2-Butanone (MEK)	ND	10	1.3	ug/L			10/13/22 03:20	1
2-Hexanone	ND	5.0	1.2	ug/L			10/13/22 03:20	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			10/13/22 03:20	1
Acetone	ND	10	3.0	ug/L			10/13/22 03:20	1
Benzene	ND	1.0	0.41	ug/L			10/13/22 03:20	1
Bromodichloromethane	ND	1.0	0.39	ug/L			10/13/22 03:20	1
Bromoform	ND	1.0	0.26	ug/L			10/13/22 03:20	1
Bromomethane	ND	1.0	0.69	ug/L			10/13/22 03:20	1
Carbon disulfide	ND	1.0	0.19	ug/L			10/13/22 03:20	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			10/13/22 03:20	1
Chlorobenzene	ND	1.0	0.75	ug/L			10/13/22 03:20	1
Dibromochloromethane	ND	1.0	0.32	ug/L			10/13/22 03:20	1
Chloroethane	4.7	1.0	0.32	ug/L			10/13/22 03:20	1
Chloroform	ND	1.0	0.34	ug/L			10/13/22 03:20	1
Chloromethane	ND	1.0	0.35	ug/L			10/13/22 03:20	1
cis-1,2-Dichloroethene	9.9	1.0	0.81	ug/L			10/13/22 03:20	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			10/13/22 03:20	1
Cyclohexane	ND	1.0	0.18	ug/L			10/13/22 03:20	1
Dichlorodifluoromethane	ND	1.0	0.68	ug/L			10/13/22 03:20	1
Ethylbenzene	ND	1.0	0.74	ug/L			10/13/22 03:20	1
1,2-Dibromoethane	ND	1.0	0.73	ug/L			10/13/22 03:20	1
Isopropylbenzene	ND	1.0		ug/L			10/13/22 03:20	1
Methyl acetate	ND	2.5	1.3	ug/L			10/13/22 03:20	1
Methyl tert-butyl ether	ND	1.0	0.16	ug/L			10/13/22 03:20	1
Methylcyclohexane	ND	1.0		ug/L			10/13/22 03:20	1
Methylene Chloride	ND	1.0		ug/L			10/13/22 03:20	1
Styrene	ND	1.0	0.73	ug/L			10/13/22 03:20	1
Tetrachloroethene	ND	1.0		ug/L			10/13/22 03:20	1
Toluene	ND	1.0		ug/L			10/13/22 03:20	1
trans-1,2-Dichloroethene	ND	1.0		ug/L			10/13/22 03:20	1
trans-1,3-Dichloropropene	ND	1.0		ug/L			10/13/22 03:20	1
Trichloroethene	4.9	1.0		ug/L			10/13/22 03:20	1
Trichlorofluoromethane	ND	1.0		ug/L			10/13/22 03:20	1
Vinyl chloride	1.6	1.0		ug/L			10/13/22 03:20	1
Xylenes, Total	ND	2.0	0.66	_			10/13/22 03:20	1

Eurofins Buffalo

3

5

7

9

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: CB-2 Lab Sample ID: 480-202482-2

Matrix: Water

Date Collected: 10/07/22 07:40 Date Received: 10/07/22 14:50

Surrogate		%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)				80 - 120	_		10/13/22 03:20	1
1,2-Dichloroethane	e-d4 (Surr)	103		77 - 120			10/13/22 03:20	1
4-Bromofluoroben:	zene (Surr)	101		73 - 120			10/13/22 03:20	1
Dibromofluorometi	hane (Surr)	96		75 - 123			10/13/22 03:20	1

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: CB-3 Lab Sample ID: 480-202482-3

Date Collected: 10/07/22 06:40 Matrix: Water

Date Received: 10/07/22 14:50

Method: SW846 8260C - Volatile Organic Compounds by GC/MS

Analyte	Result Qu	ıalifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			10/13/22 03:43	
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			10/13/22 03:43	
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			10/13/22 03:43	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			10/13/22 03:43	
1,1-Dichloroethane	1.0	1.0	0.38	ug/L			10/13/22 03:43	
1,1-Dichloroethene	ND	1.0	0.29	ug/L			10/13/22 03:43	
1,2,4-Trichlorobenzene	ND	1.0		ug/L			10/13/22 03:43	
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			10/13/22 03:43	
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			10/13/22 03:43	
1,2-Dichloroethane	ND	1.0		ug/L			10/13/22 03:43	
1,2-Dichloropropane	ND	1.0		ug/L			10/13/22 03:43	
1,3-Dichlorobenzene	ND	1.0		ug/L			10/13/22 03:43	
1,4-Dichlorobenzene	ND	1.0		ug/L			10/13/22 03:43	
2-Butanone (MEK)	ND	10		ug/L			10/13/22 03:43	
2-Hexanone	ND	5.0		ug/L			10/13/22 03:43	
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			10/13/22 03:43	
Acetone	4.5 J	10		ug/L			10/13/22 03:43	
Benzene	ND	1.0		ug/L			10/13/22 03:43	
Bromodichloromethane	ND	1.0		ug/L			10/13/22 03:43	
Bromoform	ND	1.0		ug/L			10/13/22 03:43	
Bromomethane	ND	1.0		ug/L			10/13/22 03:43	
Carbon disulfide	ND	1.0		ug/L			10/13/22 03:43	
Carbon disumde Carbon tetrachloride	ND	1.0		ug/L ug/L			10/13/22 03:43	
Chlorobenzene	ND ND	1.0		ug/L ug/L			10/13/22 03:43	
Dibromochloromethane	ND	1.0		ug/L ug/L			10/13/22 03:43	
Chloroethane		1.0		ug/L ug/L			10/13/22 03:43	
Chloroform	2.7 ND	1.0		•			10/13/22 03:43	
Chloromethane				ug/L				
	ND ND	1.0		ug/L			10/13/22 03:43	
cis-1,2-Dichloroethene	ND ND	1.0 1.0		ug/L			10/13/22 03:43	
cis-1,3-Dichloropropene				ug/L			10/13/22 03:43	
Cyclohexane	ND	1.0		ug/L			10/13/22 03:43	
Dichlorodifluoromethane	ND	1.0		ug/L			10/13/22 03:43	
Ethylbenzene	ND	1.0		ug/L			10/13/22 03:43	
1,2-Dibromoethane	ND	1.0		ug/L			10/13/22 03:43	
Isopropylbenzene	ND	1.0		ug/L			10/13/22 03:43	
Methyl acetate	ND	2.5		ug/L			10/13/22 03:43	
Methyl tert-butyl ether	ND	1.0		ug/L			10/13/22 03:43	
Methylcyclohexane	ND	1.0		ug/L			10/13/22 03:43	
Methylene Chloride	ND	1.0		ug/L			10/13/22 03:43	
Styrene	ND	1.0		ug/L			10/13/22 03:43	
Tetrachloroethene	ND	1.0		ug/L			10/13/22 03:43	
Toluene	ND	1.0		ug/L			10/13/22 03:43	
trans-1,2-Dichloroethene	ND	1.0		ug/L			10/13/22 03:43	
trans-1,3-Dichloropropene	ND	1.0		ug/L			10/13/22 03:43	
Trichloroethene	ND	1.0	0.46	ug/L			10/13/22 03:43	
Trichlorofluoromethane	ND	1.0	0.88	ug/L			10/13/22 03:43	
Vinyl chloride	ND	1.0	0.90	ug/L			10/13/22 03:43	
Xylenes, Total	ND	2.0	0.66	ug/L			10/13/22 03:43	

Eurofins Buffalo

2

5

6

8

10

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: CB-3 Lab Sample ID: 480-202482-3 Date Collected: 10/07/22 06:40

Matrix: Water

Date Received: 10/07/22 14:50

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		80 - 120	_		10/13/22 03:43	1
1,2-Dichloroethane-d4 (Surr)	99		77 - 120			10/13/22 03:43	1
4-Bromofluorobenzene (Surr)	100		73 - 120			10/13/22 03:43	1
Dibromofluoromethane (Surr)	98		75 - 123			10/13/22 03:43	1

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: CB-4 Lab Sample ID: 480-202482-4

Date Collected: 10/07/22 07:00 **Matrix: Water** Date Received: 10/07/22 14:50

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			10/13/22 04:06	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			10/13/22 04:06	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			10/13/22 04:06	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			10/13/22 04:06	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			10/13/22 04:06	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			10/13/22 04:06	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			10/13/22 04:06	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			10/13/22 04:06	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			10/13/22 04:06	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			10/13/22 04:06	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			10/13/22 04:06	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			10/13/22 04:06	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			10/13/22 04:06	1
2-Butanone (MEK)	ND	10	1.3	ug/L			10/13/22 04:06	1
2-Hexanone	ND	5.0	1.2	ug/L			10/13/22 04:06	1
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			10/13/22 04:06	1
Acetone	ND	10		ug/L			10/13/22 04:06	1
Benzene	ND	1.0	0.41	ug/L			10/13/22 04:06	1
Bromodichloromethane	ND	1.0	0.39	ug/L			10/13/22 04:06	1
Bromoform	ND	1.0		ug/L			10/13/22 04:06	1
Bromomethane	ND	1.0		ug/L			10/13/22 04:06	1
Carbon disulfide	ND	1.0		ug/L			10/13/22 04:06	1
Carbon tetrachloride	ND	1.0		ug/L			10/13/22 04:06	1
Chlorobenzene	ND	1.0		ug/L			10/13/22 04:06	1
Dibromochloromethane	ND	1.0		ug/L			10/13/22 04:06	1
Chloroethane	ND	1.0		ug/L			10/13/22 04:06	1
Chloroform	ND	1.0		ug/L			10/13/22 04:06	1
Chloromethane	ND	1.0		ug/L			10/13/22 04:06	1
cis-1,2-Dichloroethene	ND	1.0		ug/L			10/13/22 04:06	1
cis-1,3-Dichloropropene	ND	1.0		ug/L			10/13/22 04:06	1
Cyclohexane	ND	1.0		ug/L			10/13/22 04:06	1
Dichlorodifluoromethane	ND	1.0		ug/L			10/13/22 04:06	1
Ethylbenzene	ND	1.0		ug/L			10/13/22 04:06	1
1,2-Dibromoethane	ND	1.0		ug/L			10/13/22 04:06	
Isopropylbenzene	ND	1.0		ug/L			10/13/22 04:06	1
Methyl acetate	ND	2.5		ug/L			10/13/22 04:06	1
Methyl tert-butyl ether	ND	1.0		ug/L			10/13/22 04:06	· · · · · · · · · · · · · · · · · · ·
Methylcyclohexane	ND	1.0		ug/L			10/13/22 04:06	1
Methylene Chloride	ND	1.0		ug/L			10/13/22 04:06	1
Styrene	ND	1.0		ug/L			10/13/22 04:06	· · · · · · · · · · · · · · · · · · ·
Tetrachloroethene	ND	1.0		ug/L			10/13/22 04:06	1
Toluene	ND	1.0		ug/L			10/13/22 04:06	1
trans-1,2-Dichloroethene	ND	1.0		ug/L			10/13/22 04:06	······່
trans-1,3-Dichloropropene	ND ND	1.0		ug/L ug/L			10/13/22 04:06	1
Trichloroethene	ND ND			-				1
HIGHOLOGUIGHE	ND	1.0		ug/L			10/13/22 04:06	
Trichlorofluoromothess	ND	4 ^	\cap				10/12/22 01.00	
Trichlorofluoromethane Vinyl chloride	ND ND	1.0 1.0		ug/L ug/L			10/13/22 04:06 10/13/22 04:06	1 1

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: CB-4 Lab Sample ID: 480-202482-4

Matrix: Water

Date Collected: 10/07/22 07:00
Date Received: 10/07/22 14:50

Surrogate	%Recovery Qu	ualifier Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98	80 - 120		10/13/22 04:06	1
1,2-Dichloroethane-d4 (Surr)	102	77 - 120		10/13/22 04:06	1
4-Bromofluorobenzene (Surr)	99	73 - 120		10/13/22 04:06	1
Dibromofluoromethane (Surr)	98	75 - 123		10/13/22 04:06	1

5

6

8

9

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: CB-E Lab Sample ID: 480-202482-5

Date Collected: 10/07/22 07:10 Matrix: Water

Date Received: 10/07/22 14:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L		-	10/13/22 04:29	
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			10/13/22 04:29	
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			10/13/22 04:29	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			10/13/22 04:29	
1,1-Dichloroethane	1.6		1.0		ug/L			10/13/22 04:29	
1,1-Dichloroethene	ND		1.0	0.29	ug/L			10/13/22 04:29	
1,2,4-Trichlorobenzene	ND		1.0		ug/L			10/13/22 04:29	
1,2-Dibromo-3-Chloropropane	ND		1.0		ug/L			10/13/22 04:29	
1,2-Dichlorobenzene	ND		1.0		ug/L			10/13/22 04:29	
1,2-Dichloroethane	ND		1.0		ug/L			10/13/22 04:29	
1,2-Dichloropropane	ND		1.0		ug/L			10/13/22 04:29	
1,3-Dichlorobenzene	ND		1.0		ug/L			10/13/22 04:29	
1,4-Dichlorobenzene	ND		1.0		ug/L			10/13/22 04:29	
2-Butanone (MEK)	ND		10		ug/L			10/13/22 04:29	
2-Hexanone	ND		5.0		ug/L			10/13/22 04:29	
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			10/13/22 04:29	
Acetone	3.7	J	10		ug/L			10/13/22 04:29	
Benzene	ND		1.0		ug/L			10/13/22 04:29	
Bromodichloromethane	ND		1.0		ug/L			10/13/22 04:29	
Bromoform	ND		1.0		ug/L			10/13/22 04:29	
Bromomethane	ND		1.0		ug/L			10/13/22 04:29	
Carbon disulfide	ND		1.0		ug/L			10/13/22 04:29	
Carbon tetrachloride	ND		1.0		ug/L			10/13/22 04:29	
Chlorobenzene	ND		1.0		ug/L			10/13/22 04:29	
Dibromochloromethane	ND		1.0		ug/L			10/13/22 04:29	
Chloroethane	3.4		1.0		ug/L			10/13/22 04:29	
Chloroform	ND.		1.0		ug/L			10/13/22 04:29	
Chloromethane	ND		1.0		ug/L			10/13/22 04:29	
cis-1,2-Dichloroethene	ND		1.0		ug/L			10/13/22 04:29	
cis-1,3-Dichloropropene	ND		1.0		ug/L			10/13/22 04:29	
Cyclohexane	ND		1.0		ug/L			10/13/22 04:29	
Dichlorodifluoromethane	ND		1.0		ug/L			10/13/22 04:29	
Ethylbenzene	ND		1.0		ug/L			10/13/22 04:29	
1,2-Dibromoethane	ND		1.0		ug/L			10/13/22 04:29	
Isopropylbenzene	ND		1.0		ug/L			10/13/22 04:29	
Methyl acetate	ND		2.5		ug/L			10/13/22 04:29	
Methyl tert-butyl ether	ND		1.0		ug/L			10/13/22 04:29	
Methylcyclohexane	ND		1.0		ug/L			10/13/22 04:29	
Methylene Chloride	ND		1.0		ug/L			10/13/22 04:29	
Styrene	ND		1.0		ug/L			10/13/22 04:29	
Tetrachloroethene	ND		1.0		ug/L			10/13/22 04:29	
Toluene	ND ND		1.0		ug/L ug/L			10/13/22 04:29	
trans-1,2-Dichloroethene	ND		1.0		ug/L			10/13/22 04:29	
trans-1,3-Dichloropropene	ND ND		1.0		ug/L ug/L			10/13/22 04:29	
trans-1,3-Dichloropropene Trichloroethene	ND ND		1.0		-			10/13/22 04:29	
Trichlorofluoromethane					ug/L				
	ND		1.0		ug/L			10/13/22 04:29	
Vinyl chloride Xylenes, Total	ND ND		1.0 2.0		ug/L ug/L			10/13/22 04:29 10/13/22 04:29	

Eurofins Buffalo

2

5

7

9

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: CB-E Lab Sample ID: 480-202482-5 Date Collected: 10/07/22 07:10

Matrix: Water

Date Received: 10/07/22 14:50

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	102	80 - 120		10/13/22 04:29	1
1,2-Dichloroethane-d4 (Surr)	103	77 - 120		10/13/22 04:29	1
4-Bromofluorobenzene (Surr)	100	73 - 120		10/13/22 04:29	1
Dibromofluoromethane (Surr)	98	75 - 123		10/13/22 04:29	1

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: TP-5 Lab Sample ID: 480-202482-6

Date Collected: 10/07/22 08:20 Matrix: Water Date Received: 10/07/22 14:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			10/13/22 04:52	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			10/13/22 04:52	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			10/13/22 04:52	1
1,1,2-Trichloro-1,2,2-trifluoroetha ne	1.1		1.0	0.31	ug/L			10/13/22 04:52	1
1,1-Dichloroethane	0.55	a.	1.0	0.38	ug/L			10/13/22 04:52	1
1.1-Dichloroethene	ND		1.0		ug/L			10/13/22 04:52	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			10/13/22 04:52	· · · · · · · · · · · · · · · · · · ·
1,2-Dibromo-3-Chloropropane	ND		1.0		ug/L			10/13/22 04:52	1
1,2-Dichlorobenzene	ND		1.0		ug/L			10/13/22 04:52	1
1,2-Dichloroethane	ND		1.0		ug/L			10/13/22 04:52	
1,2-Dichloropropane	ND		1.0		ug/L			10/13/22 04:52	1
1,3-Dichlorobenzene	ND		1.0		ug/L			10/13/22 04:52	1
1,4-Dichlorobenzene	ND		1.0		ug/L ug/L			10/13/22 04:52	· · · · · · · · · · · · · · · · · · ·
	ND ND		1.0		-			10/13/22 04:52	
2-Butanone (MEK)					ug/L				1
2-Hexanone	ND		5.0		ug/L			10/13/22 04:52	1
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			10/13/22 04:52	1
Acetone	ND		10		ug/L			10/13/22 04:52	1
Benzene	ND		1.0		ug/L			10/13/22 04:52	1
Bromodichloromethane	ND		1.0		ug/L			10/13/22 04:52	1
Bromoform	ND		1.0		ug/L			10/13/22 04:52	1
Bromomethane	ND		1.0		ug/L			10/13/22 04:52	1
Carbon disulfide	ND		1.0		ug/L			10/13/22 04:52	1
Carbon tetrachloride	ND		1.0		ug/L			10/13/22 04:52	1
Chlorobenzene	ND		1.0		ug/L			10/13/22 04:52	1
Dibromochloromethane	ND		1.0	0.32	ug/L			10/13/22 04:52	1
Chloroethane	ND		1.0	0.32	ug/L			10/13/22 04:52	1
Chloroform	ND		1.0	0.34	ug/L			10/13/22 04:52	1
Chloromethane	ND		1.0	0.35	ug/L			10/13/22 04:52	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			10/13/22 04:52	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			10/13/22 04:52	1
Cyclohexane	ND		1.0	0.18	ug/L			10/13/22 04:52	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			10/13/22 04:52	1
Ethylbenzene	ND		1.0	0.74	ug/L			10/13/22 04:52	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			10/13/22 04:52	1
Isopropylbenzene	ND		1.0		ug/L			10/13/22 04:52	1
Methyl acetate	ND		2.5		ug/L			10/13/22 04:52	1
Methyl tert-butyl ether	ND		1.0		ug/L			10/13/22 04:52	1
Methylcyclohexane	ND		1.0		ug/L			10/13/22 04:52	1
Methylene Chloride	ND		1.0		ug/L			10/13/22 04:52	1
Styrene	ND		1.0		ug/L			10/13/22 04:52	
Tetrachloroethene	ND		1.0		ug/L			10/13/22 04:52	1
Toluene	ND		1.0		ug/L			10/13/22 04:52	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			10/13/22 04:52	· · · · · · · · · · · · · · · · · · ·
trans-1,3-Dichloropropene	ND				ug/L ug/L			10/13/22 04:52	
			1.0		•			10/13/22 04:52	1
Trichloroethene Trichlorofluoromethane	0.48		1.0		ug/L				1
	ND		1.0		ug/L			10/13/22 04:52	1
Vinyl chloride	ND		1.0	0.90	ug/L			10/13/22 04:52	1

Eurofins Buffalo

3

5

7

9

10

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: TP-5 Lab Sample ID: 480-202482-6

Date Collected: 10/07/22 08:20

Matrix: Water

Date Received: 10/07/22 14:50

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
Toluene-d8 (Surr)	102	80 - 120	10/13/22 04:52	1
1,2-Dichloroethane-d4 (Surr)	100	77 - 120	10/13/22 04:52	1
4-Bromofluorobenzene (Surr)	101	73 - 120	10/13/22 04:52	1
Dibromofluoromethane (Surr)	95	75 - 123	10/13/22 04:52	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon (SW846	5.1		1.0	0.43	mg/L			10/14/22 16:19	1
9060A)									

5

7

8

9

10

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: TP-6

Lab Sample ID: 480-202482-7 Date Collected: 10/07/22 08:40

Matrix: Water

Date Received: 10/07/22 14:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			10/13/22 05:15	
1,1,2,2-Tetrachloroethane	ND		1.0		ug/L			10/13/22 05:15	
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			10/13/22 05:15	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			10/13/22 05:15	
1,1-Dichloroethane	ND		1.0	0.38	ug/L			10/13/22 05:15	
1,1-Dichloroethene	ND		1.0	0.29	ug/L			10/13/22 05:15	
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			10/13/22 05:15	
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			10/13/22 05:15	
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			10/13/22 05:15	
1,2-Dichloroethane	ND		1.0	0.21	ug/L			10/13/22 05:15	
1,2-Dichloropropane	ND		1.0	0.72	ug/L			10/13/22 05:15	
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			10/13/22 05:15	
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			10/13/22 05:15	
2-Butanone (MEK)	ND		10		ug/L			10/13/22 05:15	
2-Hexanone	ND		5.0		ug/L			10/13/22 05:15	
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			10/13/22 05:15	
Acetone	ND		10	3.0	ug/L			10/13/22 05:15	
Benzene	ND		1.0	0.41	-			10/13/22 05:15	
Bromodichloromethane	ND		1.0		ug/L			10/13/22 05:15	
Bromoform	ND		1.0	0.26	-			10/13/22 05:15	
Bromomethane	ND		1.0	0.69	-			10/13/22 05:15	
Carbon disulfide	0.39		1.0	0.19	ug/L			10/13/22 05:15	
Carbon tetrachloride	ND		1.0	0.27	-			10/13/22 05:15	
Chlorobenzene	ND		1.0	0.75	-			10/13/22 05:15	
Dibromochloromethane	ND		1.0		ug/L			10/13/22 05:15	
Chloroethane	ND		1.0	0.32	_			10/13/22 05:15	
Chloroform	ND		1.0	0.34	-			10/13/22 05:15	
Chloromethane	ND		1.0		ug/L			10/13/22 05:15	
sis-1,2-Dichloroethene	ND		1.0	0.81	-			10/13/22 05:15	
cis-1,3-Dichloropropene	ND		1.0	0.36	-			10/13/22 05:15	
Cyclohexane	ND		1.0		ug/L			10/13/22 05:15	
Dichlorodifluoromethane	ND		1.0	0.68	-			10/13/22 05:15	
Ethylbenzene	ND		1.0	0.74	_			10/13/22 05:15	
1.2-Dibromoethane	ND		1.0		ug/L			10/13/22 05:15	
sopropylbenzene	ND		1.0	0.79	-			10/13/22 05:15	
Methyl acetate	ND		2.5		ug/L			10/13/22 05:15	
Methyl tert-butyl ether	ND		1.0		ug/L			10/13/22 05:15	
Methylcyclohexane	ND		1.0		ug/L			10/13/22 05:15	
Methylene Chloride	ND		1.0		ug/L			10/13/22 05:15	
Styrene	ND		1.0		ug/L			10/13/22 05:15	
Tetrachloroethene	ND		1.0		ug/L			10/13/22 05:15	
Toluene	ND		1.0		ug/L			10/13/22 05:15	
rans-1,2-Dichloroethene	ND		1.0		ug/L			10/13/22 05:15	
rans-1,3-Dichloropropene	ND		1.0		ug/L			10/13/22 05:15	
Frichloroethene	ND ND		1.0		ug/L ug/L			10/13/22 05:15	
Trichlorofluoromethane	ND		1.0		ug/L ug/L			10/13/22 05:15	
Vinyl chloride	ND ND		1.0		ug/L ug/L			10/13/22 05:15	
Viriyi chloride Xylenes, Total	ND ND		2.0		ug/L ug/L			10/13/22 05:15	

Eurofins Buffalo

10/26/2022

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: TP-6 Lab Sample ID: 480-202482-7

Date Collected: 10/07/22 08:40 **Matrix: Water** Date Received: 10/07/22 14:50

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
Toluene-d8 (Surr)	98		80 - 120	10/13/22 05:15	1
1,2-Dichloroethane-d4 (Surr)	101		77 - 120	10/13/22 05:15	1
4-Bromofluorobenzene (Surr)	100		73 - 120	10/13/22 05:15	1
Dibromofluoromethane (Surr)	96		75 - 123	10/13/22 05:15	1

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: DUPLICATE

Lab Sample ID: 480-202482-8 Date Collected: 10/07/22 08:00

Matrix: Water

Date Received: 10/07/22 14:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			10/13/22 05:38	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			10/13/22 05:38	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			10/13/22 05:38	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			10/13/22 05:38	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			10/13/22 05:38	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			10/13/22 05:38	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			10/13/22 05:38	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			10/13/22 05:38	1
1,2-Dichlorobenzene	ND		1.0	0.79	_			10/13/22 05:38	1
1,2-Dichloroethane	ND		1.0		ug/L			10/13/22 05:38	1
1,2-Dichloropropane	ND		1.0		ug/L			10/13/22 05:38	1
1,3-Dichlorobenzene	ND		1.0		ug/L			10/13/22 05:38	1
1,4-Dichlorobenzene	ND		1.0		ug/L			10/13/22 05:38	1
2-Butanone (MEK)	ND		10		ug/L			10/13/22 05:38	1
2-Hexanone	ND		5.0		ug/L			10/13/22 05:38	1
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			10/13/22 05:38	· · · · · · · · · · · · · · · · · · ·
Acetone	ND		10		ug/L			10/13/22 05:38	1
Benzene	ND		1.0		ug/L			10/13/22 05:38	1
Bromodichloromethane	ND		1.0		ug/L			10/13/22 05:38	· · · · · · · · · · · · · · · · · · ·
Bromoform	ND		1.0		ug/L			10/13/22 05:38	1
Bromomethane	ND		1.0		ug/L			10/13/22 05:38	1
Carbon disulfide	ND		1.0		ug/L ug/L			10/13/22 05:38	
Carbon disulide Carbon tetrachloride	ND ND		1.0		ug/L ug/L			10/13/22 05:38	
	ND ND				-				1
Chlorobenzene			1.0		ug/L			10/13/22 05:38	1
Dibromochloromethane	ND		1.0		ug/L			10/13/22 05:38	1
Chloroform	ND		1.0		ug/L			10/13/22 05:38	1
Chloroform	ND		1.0		ug/L			10/13/22 05:38	
Chloromethane	ND		1.0		ug/L			10/13/22 05:38	1
cis-1,2-Dichloroethene	ND		1.0		ug/L			10/13/22 05:38	1
cis-1,3-Dichloropropene	ND		1.0		ug/L			10/13/22 05:38	1
Cyclohexane	ND		1.0		ug/L			10/13/22 05:38	1
Dichlorodifluoromethane	ND		1.0		ug/L			10/13/22 05:38	1
Ethylbenzene	ND		1.0		ug/L			10/13/22 05:38	1
1,2-Dibromoethane	ND		1.0		ug/L			10/13/22 05:38	1
Isopropylbenzene	ND		1.0		ug/L			10/13/22 05:38	1
Methyl acetate	ND		2.5		ug/L			10/13/22 05:38	1
Methyl tert-butyl ether	ND		1.0		ug/L			10/13/22 05:38	1
Methylcyclohexane	ND		1.0	0.16	ug/L			10/13/22 05:38	1
Methylene Chloride	ND		1.0		ug/L			10/13/22 05:38	1
Styrene	ND		1.0	0.73	ug/L			10/13/22 05:38	1
Tetrachloroethene	ND		1.0	0.36	ug/L			10/13/22 05:38	1
Toluene	ND		1.0	0.51	ug/L			10/13/22 05:38	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			10/13/22 05:38	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			10/13/22 05:38	1
Trichloroethene	ND		1.0	0.46	ug/L			10/13/22 05:38	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			10/13/22 05:38	1
Vinyl chloride	ND		1.0	0.90	ug/L			10/13/22 05:38	1
Xylenes, Total	ND		2.0	0.66	ug/L			10/13/22 05:38	1

Eurofins Buffalo

10/26/2022

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Date Received: 10/07/22 14:50

Client Sample ID: DUPLICATE Lab Sample ID: 480-202482-8

Date Collected: 10/07/22 08:00

Surrogate	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99	80 - 120		10/13/22 05:38	1
1,2-Dichloroethane-d4 (Surr)	101	77 - 120		10/13/22 05:38	1
4-Bromofluorobenzene (Surr)	96	73 - 120		10/13/22 05:38	1
Dibromofluoromethane (Surr)	99	75 - 123		10/13/22 05:38	1

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-35D

Lab Sample ID: 480-202482-9 Date Collected: 10/07/22 08:45

Matrix: Water Date Received: 10/07/22 14:50

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			10/13/22 06:01	
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			10/13/22 06:01	
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			10/13/22 06:01	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			10/13/22 06:01	
1,1-Dichloroethane	ND	1.0	0.38	ug/L			10/13/22 06:01	
1,1-Dichloroethene	ND	1.0	0.29	ug/L			10/13/22 06:01	
1,2,4-Trichlorobenzene	ND	1.0		ug/L			10/13/22 06:01	
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			10/13/22 06:01	
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			10/13/22 06:01	
1,2-Dichloroethane	ND	1.0		ug/L			10/13/22 06:01	
1,2-Dichloropropane	ND	1.0		ug/L			10/13/22 06:01	
1,3-Dichlorobenzene	ND	1.0		ug/L			10/13/22 06:01	
1,4-Dichlorobenzene	ND	1.0		ug/L			10/13/22 06:01	
2-Butanone (MEK)	ND	10		ug/L			10/13/22 06:01	
2-Hexanone	ND	5.0		ug/L			10/13/22 06:01	
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			10/13/22 06:01	
Acetone	ND	10		ug/L			10/13/22 06:01	
Benzene	ND	1.0		ug/L			10/13/22 06:01	
Bromodichloromethane	ND	1.0		ug/L			10/13/22 06:01	
Bromoform	ND	1.0		ug/L			10/13/22 06:01	
Bromomethane	ND	1.0		ug/L			10/13/22 06:01	
Carbon disulfide	ND	1.0		ug/L			10/13/22 06:01	
Carbon tetrachloride	ND	1.0		ug/L			10/13/22 06:01	
Chlorobenzene	ND	1.0		ug/L			10/13/22 06:01	
Dibromochloromethane	ND	1.0		ug/L			10/13/22 06:01	
Chloroethane	ND	1.0		ug/L			10/13/22 06:01	
Chloroform	ND	1.0		ug/L			10/13/22 06:01	
Chloromethane	ND	1.0		ug/L			10/13/22 06:01	
cis-1,2-Dichloroethene	ND	1.0		ug/L			10/13/22 06:01	
cis-1,3-Dichloropropene	ND	1.0		ug/L			10/13/22 06:01	
Cyclohexane	ND	1.0		ug/L			10/13/22 06:01	
Dichlorodifluoromethane	ND	1.0		ug/L			10/13/22 06:01	
Ethylbenzene	ND	1.0		ug/L			10/13/22 06:01	
1,2-Dibromoethane	ND	1.0		ug/L			10/13/22 06:01	
Isopropylbenzene	ND	1.0		ug/L			10/13/22 06:01	
Methyl acetate	ND	2.5		ug/L			10/13/22 06:01	
Methyl tert-butyl ether	ND	1.0		ug/L			10/13/22 06:01	
Methylcyclohexane	ND	1.0		ug/L			10/13/22 06:01	
Methylene Chloride	ND ND	1.0		ug/L ug/L			10/13/22 06:01	
	ND	1.0		ug/L ug/L			10/13/22 06:01	
Styrene Tetrachloroethene								
Toluene	ND ND	1.0		ug/L ug/L			10/13/22 06:01 10/13/22 06:01	
		1.0						
trans-1,2-Dichloroethene	ND ND	1.0		ug/L			10/13/22 06:01 10/13/22 06:01	
trans-1,3-Dichloropropene	ND ND	1.0		ug/L				
Trichloroftuaramethona	ND	1.0		ug/L			10/13/22 06:01	
Trichlorofluoromethane	ND	1.0		ug/L			10/13/22 06:01	
Vinyl chloride Xylenes, Total	ND ND	1.0 2.0		ug/L ug/L			10/13/22 06:01 10/13/22 06:01	

Eurofins Buffalo

10/26/2022

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-35D

Date Received: 10/07/22 14:50

Sulfide (SM 4500 S2 F)

Lab Sample ID: 480-202482-9 Date Collected: 10/07/22 08:45

Matrix: Water

1,2-Dichloroethane-d4 (Surr) 96 77 - 120 10/13/22 06:01 4-Bromofluorobenzene (Surr) 99 73 - 120 10/13/22 06:01 Dibromofluoromethane (Surr) 93 75 - 123 10/13/22 06:01 Dibromofluoromethane (Surr) 93 75 - 123 10/13/22 06:01 Dibromofluoromethane (Surr) 93 75 - 123 10/13/22 06:01 Dibromofluoromethane (Surr) 93 75 - 123 10/13/22 06:01 Dibromofluoromethane (Surr) 93 75 - 123 10/13/22 06:01 Dibromofluoromethane (Surr) 93 75 - 123 10/13/22 06:01 Dibromofluoromethane (Surr) 93 75 - 123 10/13/22 06:01 Dibromofluoromethane (Surr) 93 75 - 123 10/13/22 06:01 Dibromofluoromethane (Surr) 93 75 - 123 10/13/22 06:01 Dibromofluoromethane (Surr) 93 75 - 123 10/13/22 06:01 Dibromofluoromethane (Surr) 93 75 - 123 10/13/22 06:01 Dibromofluoromethane (Surr) 93 75 - 123 10/13/22 06:01 Dibromofluoromethane (Surr) 93 75 - 123 10/13/22 12:00 Dibromofluoromethane (Surr) 93 75 - 123 10/13/22 12:00 Dibromofluoromethane (Surr) 93 75 - 123 10/13/22 12:00 Dibromofluoromethane (Surr) 93 75 - 123 10/13/22 12:00 Dibromofluoromethane (Surr) 93 75 - 123 10/13/22 12:00 Dibromofluoromethane (Surr) 93 75 - 123 10/13/22 12:00 Dibromofluoromethane (Surr) 93 75 - 123 10/13/22 12:00 Dibromofluoromethane (Surr) 93 75 - 123 10/13/22 12:00 Dibromofluoromethane (Surr) 93 75 - 123 10/13/22 12:00 Dibromofluoromethane (Surr) 93 75 - 123 10/13/22 12:00 Dibromofluoromethane (Surr) 93 75 - 123 10/13/22 12:00 Dibromofluoromethane (Surr) 94 75 10/13/22 12:00 Dibromofluoromethane (Surr) 93 75 - 123 10/13/22 12:00 Dibromofluoromethane (Surr) 94 75 10/13/22 12:00 Dibromofluoromethane (Surr) 93 75 - 123 10/13/22 12:00 Dibromofluoromethane (Surr) 94 75 10/13/22 12:00 Dibromofluoromethane (Surr) 94 75 10/13/22 12:00 Dibromofluoromethane (Surr) 95 75 10/13/22 12:00 Dibromofluoromethane (Surr) 95 75 10/13/22 12:00 Dibromofluoromethane (Surr) 95 75 10/13/22 12:00 Dibromofluoromethane (Surr) 95 75 10/13/22 12:00 Dibromofluoromethane (Surr) 95 75 10/13/22 12:00 Dibromofluoromethane (Surr) 95 75 10/13/22 12:00 Dibromofluoromethane (Surr) 95 75 10/13/22 12:00 Dibromofluoromethane	Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
### A-Bromofluorobenzene (Surr) ### Dibromofluoromethane (Surr) ### Dibromofluoromethane (Surr) ### Dibromofluoromethane (Surr) ### Dibromofluoromethane (Surr) ### Method: RSK-175 - Dissolved Gases (GC) ### Analyte Result Qualifier RL MDL Unit Unit Unit Unit Unit Unit Unit Unit	Toluene-d8 (Surr)	97		80 - 120					10/13/22 06:01	
Method: RSK-175 - Dissolved Gases (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fa	1,2-Dichloroethane-d4 (Surr)	96		77 - 120					10/13/22 06:01	
Method: RSK-175 - Dissolved Gases (GC) Result Carbon dioxide Qualifier RL MDL Unit D Prepared Analyzed Dil Fa Dil Fa Carbon dioxide 34000 5000 1300 ug/L 10/13/22 12:06 10/13/22 12:06 10/13/22 12:06 10/19/22 19:42 10/19/22 19:42 10/10/9/22 19:42	4-Bromofluorobenzene (Surr)	99		73 - 120					10/13/22 06:01	
Analyte	Dibromofluoromethane (Surr)	93		75 - 123					10/13/22 06:01	
Carbon dioxide 34000 5000 1300 ug/L 10/13/22 12:06 Ethane ND 7.5 1.5 ug/L 10/09/22 19:42 Ethene ND 7.0 1.5 ug/L 10/09/22 19:42 Method: RSK-175 - Dissolved Gases (GC) - DL Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fa Method: EPA 200.7 Rev 4.4 - Metals (ICP) 88 22 ug/L 10/10/22 07:00 2 Method: EPA 200.7 Rev 4.4 - Metals (ICP) Result Qualifier RL MDL Unit Mg/L D Prepared Analyzed Dil Fa Iron 10.5 0.050 0.019 mg/L 10/11/22 08:59 10/12/22 01:58 General Chemistry Analyte Result Qualifier RL MDL Unit Mg/L D Prepared Analyzed Dil Fa Sulfate (MCAWW 300.0) 1.1 J J 4.0 0.70 mg/L 10/11/22 00:40 Alkalinity, Total (MCAWW 310.2) 249 B 50.0 20.0 mg/L 10/14/22 00:40 Nitrate as N (EPA 353.2) 0.030 J 0.050 0.020 mg/L 10/17/22 18:48 Nitrate as N (MCAWW 353.2) ND H 0.050 0.0	Method: RSK-175 - Dissolved	Gases (GC))							
Ethane ND 7.5 1.5 ug/L 10/09/22 19:42 Ethane ND 7.0 1.5 ug/L 10/09/22 19:42 Ethane ND 7.0 1.5 ug/L 10/09/22 19:42 Ethane ND 7.0 1.5 ug/L 10/09/22 19:42 Ethane ND 7.0 1.5 ug/L 10/09/22 19:42 Ethane ND 7.0 1.5 ug/L 10/09/22 19:42 Ethane ND 7.0 1.5 ug/L 10/09/22 19:42 Ethane ND ND ND ND ND ND ND ND ND ND ND ND ND	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Method: RSK-175 - Dissolved Gases (GC) - DL	Carbon dioxide	34000		5000	1300	ug/L			10/13/22 12:06	
Method: RSK-175 - Dissolved Gases (GC) - DL Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fa Methane 2700 88 22 ug/L 10/10/22 07:00 2 Method: EPA 200.7 Rev 4.4 - Metals (ICP) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fa Iron 10.5 0.050 0.019 mg/L 10/11/22 08:59 10/12/22 01:58 General Chemistry Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fa Sulfate (MCAWW 300.0) 1.1 J 4.0 0.70 mg/L 10/11/22 08:59 10/12/22 01:58 Alkalinity, Total (MCAWW 310.2) 249 B 50.0 20.0 mg/L 10/18/22 12:29 Nitrate as N (EPA 353.2) 0.030 J 0.050 0.020 mg/L 10/14/22 00:29	Ethane	ND		7.5	1.5	ug/L			10/09/22 19:42	•
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fa	Ethene	ND		7.0	1.5	ug/L			10/09/22 19:42	•
Methane 2700 88 22 ug/L 10/10/22 07:00 2 Method: EPA 200.7 Rev 4.4 - Metals (ICP) Result Iron Qualifier RL MDL Unit D Prepared Analyzed Dil Fa Dil Fa Iron 10.5 0.050 0.019 mg/L 10/11/22 08:59 10/12/22 01:58 Dil Fa General Chemistry Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fa Sulfate (MCAWW 300.0) 1.1 J 4.0 0.70 mg/L 10/14/22 00:40 Alkalinity, Total (MCAWW 310.2) 249 B 50.0 20.0 mg/L 10/18/22 12:29 Nitrate as N (EPA 353.2) 0.030 J 0.050 0.020 mg/L 10/07/22 18:48 Nitrite as N (MCAWW 353.2) ND H 0.050 0.020 mg/L 10/14/22 00:29 Total Organic Carbon (SW846 10.4 1.0 0.43 mg/L 10/14/22 17:15 9060A) Ferric Iron (SM 3500) 10.4 0.10 0.075 mg/L 10/13/22 12:30	Method: RSK-175 - Dissolved	Gases (GC)) - DL							
Method: EPA 200.7 Rev 4.4 - Metals (ICP) Result Iron Qualifier RL MDL Unit D Prepared Analyzed 10/11/22 01:58 Dil Fa General Chemistry Analyte Result Sulfate (MCAWW 300.0) Qualifier RL MDL Unit MD Unit MD MD/MD/MD/MD/MD/MD/MD/MD/MD/MD/MD/MD/MD/M	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fa	Methane	2700		88	22	ug/L			10/10/22 07:00	22
Ton 10.5 0.050 0.019 mg/L 10/11/22 08:59 10/12/22 01:58	Method: EPA 200.7 Rev 4.4 - I	Metals (ICP)								
General Chemistry Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fa Sulfate (MCAWW 300.0) 1.1 J 4.0 0.70 mg/L 10/14/22 00:40 Alkalinity, Total (MCAWW 310.2) 249 B 50.0 20.0 mg/L 10/18/22 12:29 Nitrate as N (EPA 353.2) 0.030 J 0.050 0.020 mg/L 10/07/22 18:48 Nitrite as N (MCAWW 353.2) ND H 0.050 0.020 mg/L 10/14/22 00:29 Total Organic Carbon (SW846 10.4 1.0 0.43 mg/L 10/14/22 17:15 9060A) Ferric Iron (SM 3500) 10.4 0.10 0.075 mg/L 10/13/22 12:30	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fa Sulfate (MCAWW 300.0) 1.1 J 4.0 0.70 mg/L 10/14/22 00:40 10/14/22 00:40 Alkalinity, Total (MCAWW 310.2) 249 B 50.0 20.0 mg/L 10/18/22 12:29 Nitrate as N (EPA 353.2) 0.030 J 0.050 0.020 mg/L 10/07/22 18:48 Nitrite as N (MCAWW 353.2) ND H 0.050 0.020 mg/L 10/14/22 00:29 Total Organic Carbon (SW846 10.4 1.0 0.43 mg/L 10/14/22 17:15 9060A) Ferric Iron (SM 3500) 10.4 0.10 0.075 mg/L 10/13/22 12:30	Iron	10.5		0.050	0.019	mg/L	 _	10/11/22 08:59	10/12/22 01:58	•
Sulfate (MCAWW 300.0) 1.1 J 4.0 0.70 mg/L 10/14/22 00:40 Alkalinity, Total (MCAWW 310.2) 249 B 50.0 20.0 mg/L 10/18/22 12:29 Nitrate as N (EPA 353.2) 0.030 J 0.050 0.020 mg/L 10/07/22 18:48 Nitrite as N (MCAWW 353.2) ND H 0.050 0.020 mg/L 10/14/22 00:29 Total Organic Carbon (SW846 10.4 1.0 0.43 mg/L 10/14/22 17:15 9060A) Ferric Iron (SM 3500) 10.4 0.10 0.075 mg/L 10/13/22 12:30	General Chemistry									
Alkalinity, Total (MCAWW 310.2) 249 B 50.0 20.0 mg/L 10/18/22 12:29 Nitrate as N (EPA 353.2) 0.030 J 0.050 0.020 mg/L 10/07/22 18:48 Nitrite as N (MCAWW 353.2) ND H 0.050 0.020 mg/L 10/14/22 00:29 Total Organic Carbon (SW846 10.4 1.0 0.43 mg/L 10/14/22 17:15 9060A) Ferric Iron (SM 3500) 10.4 0.10 0.075 mg/L 10/13/22 12:30	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N (EPA 353.2) 0.030 J 0.050 0.020 mg/L 10/07/22 18:48 Nitrite as N (MCAWW 353.2) ND H 0.050 0.020 mg/L 10/14/22 00:29 Total Organic Carbon (SW846 10.4 1.0 0.43 mg/L 10/14/22 17:15 9060A) 10.4 0.10 0.075 mg/L 10/13/22 12:30	Sulfate (MCAWW 300.0)	1.1	J	4.0	0.70	mg/L			10/14/22 00:40	
Nitrite as N (MCAWW 353.2) ND H 0.050 0.020 mg/L 10/14/22 00:29 Total Organic Carbon (SW846 10.4 1.0 0.43 mg/L 10/14/22 17:15 9060A) Ferric Iron (SM 3500) 10.4 0.10 0.075 mg/L 10/13/22 12:30	Alkalinity, Total (MCAWW 310.2)	249	В	50.0	20.0	mg/L			10/18/22 12:29	Ę
Total Organic Carbon (SW846 10.4 1.0 0.43 mg/L 10/14/22 17:15 9060A) Ferric Iron (SM 3500) 10.4 0.10 0.075 mg/L 10/13/22 12:30	Nitrate as N (EPA 353.2)	0.030	J	0.050	0.020	mg/L			10/07/22 18:48	•
9060A) Ferric Iron (SM 3500) 10.4 0.10 0.075 mg/L 10/13/22 12:30	Nitrite as N (MCAWW 353.2)	ND	Н	0.050	0.020	mg/L			10/14/22 00:29	
Ferric Iron (SM 3500) 10.4 0.10 0.075 mg/L 10/13/22 12:30	· · · · · · · · · · · · · · · · · · ·	10.4		1.0	0.43	mg/L			10/14/22 17:15	•
Ferrous Iron (SM 3500 FE D) 0.15 HF 0.10 0.075 mg/L 10/13/22 00:30	Ferric Iron (SM 3500)	10.4		0.10	0.075	mg/L			10/13/22 12:30	
	Ferrous Iron (SM 3500 FF D)	0.15	HE	0.10	0.075	ma/l			10/13/22 00:30	

1.0

ND

0.67 mg/L

10/14/22 10:21

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Method: SW846 8260C - Volatile Organic Compounds by GC/MS

Client Sample ID: MW-40D

Trichlorofluoromethane

Vinyl chloride

Xylenes, Total

Lab Sample ID: 480-202482-10

Date Collected: 10/07/22 12:35 **Matrix: Water** Date Received: 10/07/22 14:50

Result Qualifier Dil Fac Analyte **MDL** Unit D Prepared Analyzed 1,1,1-Trichloroethane ND 8.0 6.6 ug/L 10/13/22 06:24 8 ND 8.0 8 1,1,2,2-Tetrachloroethane 1.7 ug/L 10/13/22 06:24 1,1,2-Trichloroethane ND 8.0 1.8 ug/L 10/13/22 06:24 8 ND 8.0 2.5 8 1,1,2-Trichloro-1,2,2-trifluoroethane ug/L 10/13/22 06:24 1.1-Dichloroethane ND 8.0 3.0 ug/L 10/13/22 06:24 8 8 1,1-Dichloroethene ND 8.0 2.3 ug/L 10/13/22 06:24 1,2,4-Trichlorobenzene ND 8.0 ug/L 10/13/22 06:24 8 1,2-Dibromo-3-Chloropropane ND 8.0 10/13/22 06:24 8 3.1 ug/L 1,2-Dichlorobenzene ND 8.0 ug/L 10/13/22 06:24 8 1,2-Dichloroethane ND 8.0 1.7 ug/L 10/13/22 06:24 8 1,2-Dichloropropane ND 8.0 5.8 ug/L 10/13/22 06:24 8 1.3-Dichlorobenzene ND 8.0 6.2 ug/L 10/13/22 06:24 8 1,4-Dichlorobenzene ND 8.0 6.7 ug/L 10/13/22 06:24 8 2-Butanone (MEK) ND 80 ug/L 10/13/22 06:24 8 11 R 2-Hexanone ND 40 9.9 ug/L 10/13/22 06:24 40 4-Methyl-2-pentanone (MIBK) ND 17 ug/L 10/13/22 06:24 8 Acetone ND 80 24 ug/L 10/13/22 06:24 8 Benzene ND 8.0 3.3 ug/L 10/13/22 06:24 8 Bromodichloromethane ND 8.0 3.1 ug/L 10/13/22 06:24 8 **Bromoform** ND 8.0 2.1 ug/L 10/13/22 06:24 8 Bromomethane ND 8.0 5.5 ug/L 10/13/22 06:24 8 Carbon disulfide ND 8.0 1.5 ug/L 10/13/22 06:24 8 Carbon tetrachloride ND 8.0 2.2 ug/L 8 10/13/22 06:24 Chlorobenzene ND 8.0 6.0 ug/L 10/13/22 06:24 8 Dibromochloromethane ND 8.0 2.6 ug/L 10/13/22 06:24 8 2.6 8 Chloroethane 370 8.0 ug/L 10/13/22 06:24 Chloroform ND 8.0 2.7 ug/L 10/13/22 06:24 8 Chloromethane ND 2.8 8 8.0 ug/L 10/13/22 06:24 8 cis-1,2-Dichloroethene ND 8.0 6.5 ug/L 10/13/22 06:24 cis-1,3-Dichloropropene ND 8.0 2.9 ug/L 8 10/13/22 06:24 Cyclohexane ND 8.0 1.4 ug/L 10/13/22 06:24 8 Dichlorodifluoromethane ND 8.0 5.4 ug/L 10/13/22 06:24 8 Ethylbenzene ND 8.0 5.9 ug/L 10/13/22 06:24 8 ND 8 1,2-Dibromoethane 80 5.8 ug/L 10/13/22 06:24 Isopropylbenzene ND 8.0 ug/L 10/13/22 06:24 8 Methyl acetate ND 20 10/13/22 06:24 8 10 ug/L Methyl tert-butyl ether ND 8.0 1.3 ug/L 10/13/22 06:24 8 Methylcyclohexane ND 8.0 1.3 ug/L 10/13/22 06:24 8 Methylene Chloride ND 8.0 3.5 8 ug/L 10/13/22 06:24 Styrene ND 8.0 5.8 ug/L 10/13/22 06:24 8 Tetrachloroethene ND 8.0 2.9 ug/L 10/13/22 06:24 8 Toluene ND 8.0 ug/L 10/13/22 06:24 8 trans-1,2-Dichloroethene ND 7.2 R 8.0 ug/L 10/13/22 06:24 trans-1,3-Dichloropropene 3.0 8 ND 8.0 ug/L 10/13/22 06:24 ND 8 Trichloroethene 8.0 3.7 ug/L 10/13/22 06:24

Eurofins Buffalo

10/13/22 06:24

10/13/22 06:24

10/13/22 06:24

8.0

8.0

16

7.0 ug/L

7.2 ug/L

5.3 ug/L

ND

ND

ND

8

8

8

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Date Received: 10/07/22 14:50

Methane

Client Sample ID: MW-40D

19000

Lab Sample ID: 480-202482-10 Date Collected: 10/07/22 12:35

Matrix: Water

10/10/22 07:19

Surrogate	%Recovery Q	Qualifier Lim	its	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98	80 -	120		10/13/22 06:24	8
1,2-Dichloroethane-d4 (Surr)	101	77 -	120		10/13/22 06:24	8
4-Bromofluorobenzene (Surr)	100	73 -	120		10/13/22 06:24	8
Dibromofluoromethane (Surr)	97	75 -	123		10/13/22 06:24	8
Method: RSK-175 - Dissolv	red Gases (GC)					

Method. Kok-175 - Dissolve	u Gases (GC)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon dioxide	35000	5000	1300	ug/L			10/13/22 12:15	1
Ethane	ND	83	17	ug/L			10/09/22 20:01	11
Ethene	ND	77	17	ug/L			10/09/22 20:01	11
Method: RSK-175 - Dissolve	d Gases (GC) - DL							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Method: EPA 200.7 Rev 4.4 - N	Metals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	17.1		0.050	0.019	mg/L		10/11/22 08:59	10/12/22 02:02	1

350

88 ug/L

General Chemistry						_			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate (MCAWW 300.0)	ND		10.0	1.7	mg/L			10/17/22 05:52	5
Alkalinity, Total (MCAWW 310.2)	248	В	50.0	20.0	mg/L			10/18/22 12:31	5
Nitrate as N (EPA 353.2)	0.031	J	0.050	0.020	mg/L			10/07/22 18:51	1
Nitrite as N (MCAWW 353.2)	ND	Н	0.050	0.020	mg/L			10/14/22 00:30	1
Total Organic Carbon (SW846 9060A)	21.7		1.0	0.43	mg/L			10/14/22 18:14	1
Ferric Iron (SM 3500)	17.1		0.10	0.075	mg/L			10/13/22 12:30	1
Ferrous Iron (SM 3500 FE D)	ND	HF	0.10	0.075	mg/L			10/13/22 00:30	1
Sulfide (SM 4500 S2 F)	ND		1.0	0.67	mg/L			10/14/22 10:21	1

88

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-42S Lab Sample ID: 480-202482-11

Date Collected: 10/07/22 13:25 **Matrix: Water**

Date Received: 10/07/22 14:50

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	200	160	ug/L			10/13/22 06:47	20
1,1,2,2-Tetrachloroethane	ND	200	42	ug/L			10/13/22 06:47	20
1,1,2-Trichloroethane	ND	200	46	ug/L			10/13/22 06:47	20
1,1,2-Trichloro-1,2,2-trifluoroetha ne	800	200	62	ug/L			10/13/22 06:47	20
1,1-Dichloroethane	580	200	76	ug/L			10/13/22 06:47	20
1,1-Dichloroethene	ND	200		ug/L			10/13/22 06:47	20
1,2,4-Trichlorobenzene	ND	200		ug/L			10/13/22 06:47	20
1,2-Dibromo-3-Chloropropane	ND	200		ug/L			10/13/22 06:47	20
1,2-Dishorno-3-Chloroproparie	ND	200		ug/L			10/13/22 06:47	20
1,2-Dichloroethane	ND	200		ug/L			10/13/22 06:47	20
1,2-Dichloropropane	ND ND	200		_			10/13/22 06:47	20
1,3-Dichlorobenzene	ND ND	200		ug/L				20
	ND			ug/L			10/13/22 06:47	20
1,4-Dichlorobenzene	ND ND	200		ug/L			10/13/22 06:47	
2-Butanone (MEK)		2000		ug/L			10/13/22 06:47	20
2-Hexanone	ND	1000		ug/L			10/13/22 06:47	20
4-Methyl-2-pentanone (MIBK)	ND	1000		ug/L			10/13/22 06:47	20
Acetone	ND	2000		ug/L			10/13/22 06:47	20
Benzene	ND	200		ug/L			10/13/22 06:47	20
Bromodichloromethane	ND	200		ug/L			10/13/22 06:47	20
Bromoform	ND	200		ug/L			10/13/22 06:47	20
Bromomethane	ND	200		ug/L			10/13/22 06:47	20
Carbon disulfide	ND	200		ug/L			10/13/22 06:47	20
Carbon tetrachloride	ND	200		ug/L			10/13/22 06:47	20
Chlorobenzene	ND	200	150	ug/L			10/13/22 06:47	20
Dibromochloromethane	ND	200		ug/L			10/13/22 06:47	20
Chloroethane	11000	200	64	ug/L			10/13/22 06:47	20
Chloroform	ND	200	68	ug/L			10/13/22 06:47	20
Chloromethane	ND	200	70	ug/L			10/13/22 06:47	20
cis-1,2-Dichloroethene	ND	200	160	ug/L			10/13/22 06:47	20
cis-1,3-Dichloropropene	ND	200	72	ug/L			10/13/22 06:47	20
Cyclohexane	ND	200	36	ug/L			10/13/22 06:47	20
Dichlorodifluoromethane	ND	200	140	ug/L			10/13/22 06:47	20
Ethylbenzene	ND	200	150	ug/L			10/13/22 06:47	20
1,2-Dibromoethane	ND	200	150	ug/L			10/13/22 06:47	20
Isopropylbenzene	ND	200	160	ug/L			10/13/22 06:47	20
Methyl acetate	ND	500		ug/L			10/13/22 06:47	20
Methyl tert-butyl ether	ND	200	32	ug/L			10/13/22 06:47	20
Methylcyclohexane	ND	200		ug/L			10/13/22 06:47	20
Methylene Chloride	ND	200		ug/L			10/13/22 06:47	20
Styrene	ND	200		ug/L			10/13/22 06:47	20
Tetrachloroethene	ND	200		ug/L			10/13/22 06:47	20
Toluene	900	200		ug/L			10/13/22 06:47	20
trans-1,2-Dichloroethene	ND	200		ug/L			10/13/22 06:47	20
trans-1,3-Dichloropropene	ND	200		ug/L			10/13/22 06:47	20
Trichloroethene	ND	200		ug/L			10/13/22 06:47	20
Trichlorofluoromethane	ND	200		ug/L			10/13/22 06:47	20
Vinyl chloride	420	200		ug/L			10/13/22 06:47	20
Xylenes, Total	ND	400		ug/L ug/L			10/13/22 06:47	20

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Total Organic Carbon (SW846

Ferrous Iron (SM 3500 FE D)

Ferric Iron (SM 3500)

Sulfide (SM 4500 S2 F)

Client Sample ID: MW-42S

264

20.9

ND

4.8 HF

Lab Sample ID: 480-202482-11 Date Collected: 10/07/22 13:25 Date Received: 10/07/22 14:50

Matrix: Water

10/18/22 17:44

10/13/22 12:30

10/13/22 00:30

10/14/22 10:21

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Toluene-d8 (Surr)	96		80 - 120					10/13/22 06:47	200
1,2-Dichloroethane-d4 (Surr)	102		77 - 120					10/13/22 06:47	200
4-Bromofluorobenzene (Surr)	100		73 - 120					10/13/22 06:47	200
Dibromofluoromethane (Surr)	99		75 - 123					10/13/22 06:47	200
Method: RSK-175 - Dissolved	Gases (GC))							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon dioxide	81000		5000	1300	ug/L			10/13/22 12:25	
Ethane	640		170	33	ug/L			10/09/22 20:20	22
Ethene	3700		150	33	ug/L			10/09/22 20:20	22
Method: RSK-175 - Dissolved	Gases (GC	- DL							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methane	8900		350	88	ug/L			10/10/22 07:38	88
Method: EPA 200.7 Rev 4.4 - I	Metals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	25.7		0.050	0.040	ma/l		10/11/22 08:59	10/12/22 02:06	
	20.1		0.050	0.019	IIIg/L		10/11/22 00.00	10/12/22 02.00	,
General Chemistry	20.7		0.050	0.019	mg/L		10/11/22 00.03	10/12/22 02:00	•
General Chemistry		Qualifier	0.050 RL	0.019 MDL	J	D	Prepared	Analyzed	Dil Fac
		Qualifier			J	<u>D</u>			Dil Fac
General Chemistry Analyte Sulfate (MCAWW 300.0)	Result	Qualifier	RL	MDL 1.7	Unit	<u>D</u>		Analyzed	
General Chemistry Analyte	Result ND	Qualifier	RL 10.0	MDL 1.7	Unit mg/L mg/L	<u>D</u>		Analyzed 10/17/22 06:11	

10.0

0.10

0.50

1.0

4.3 mg/L

0.075 mg/L

0.38 mg/L

0.67 mg/L

10/26/2022

10

5

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-35S

Lab Sample ID: 480-202482-12 Date Collected: 10/07/22 10:00

Matrix: Water

Date Received: 10/07/22 14:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			10/13/22 07:10	•
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			10/13/22 07:10	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			10/13/22 07:10	•
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			10/13/22 07:10	
1,1-Dichloroethane	ND		1.0	0.38	ug/L			10/13/22 07:10	•
1,1-Dichloroethene	ND		1.0	0.29	ug/L			10/13/22 07:10	•
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			10/13/22 07:10	
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			10/13/22 07:10	
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			10/13/22 07:10	
1,2-Dichloroethane	ND		1.0	0.21	ug/L			10/13/22 07:10	
1,2-Dichloropropane	ND		1.0	0.72	ug/L			10/13/22 07:10	
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			10/13/22 07:10	
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			10/13/22 07:10	
2-Butanone (MEK)	ND		10	1.3	ug/L			10/13/22 07:10	
2-Hexanone	ND		5.0		ug/L			10/13/22 07:10	
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			10/13/22 07:10	
Acetone	ND		10		ug/L			10/13/22 07:10	
Benzene	ND		1.0	0.41	ug/L			10/13/22 07:10	
Bromodichloromethane	ND		1.0	0.39	ug/L			10/13/22 07:10	
Bromoform	ND		1.0		ug/L			10/13/22 07:10	
Bromomethane	ND		1.0		ug/L			10/13/22 07:10	
Carbon disulfide	ND		1.0	0.19	ug/L			10/13/22 07:10	
Carbon tetrachloride	ND		1.0		ug/L			10/13/22 07:10	
Chlorobenzene	ND		1.0		ug/L			10/13/22 07:10	
Dibromochloromethane	ND		1.0		ug/L			10/13/22 07:10	
Chloroethane	ND		1.0		ug/L			10/13/22 07:10	
Chloroform	ND		1.0		ug/L			10/13/22 07:10	
Chloromethane	ND		1.0		ug/L			10/13/22 07:10	
cis-1,2-Dichloroethene	ND		1.0		ug/L			10/13/22 07:10	
cis-1,3-Dichloropropene	ND		1.0		ug/L			10/13/22 07:10	
Cyclohexane	ND		1.0		ug/L			10/13/22 07:10	
Dichlorodifluoromethane	ND		1.0		ug/L			10/13/22 07:10	
Ethylbenzene	ND		1.0		ug/L			10/13/22 07:10	
1,2-Dibromoethane	ND		1.0		ug/L			10/13/22 07:10	
Isopropylbenzene	ND		1.0		ug/L			10/13/22 07:10	
Methyl acetate	ND		2.5		ug/L			10/13/22 07:10	
Methyl tert-butyl ether	ND		1.0		ug/L			10/13/22 07:10	
Methylcyclohexane	ND		1.0		ug/L			10/13/22 07:10	
Methylene Chloride	ND		1.0		ug/L			10/13/22 07:10	
Styrene	ND		1.0		ug/L			10/13/22 07:10	
Tetrachloroethene	ND		1.0		ug/L			10/13/22 07:10	
Toluene	ND		1.0		ug/L			10/13/22 07:10	
trans-1,2-Dichloroethene	ND		1.0		ug/L			10/13/22 07:10	
trans-1,3-Dichloropropene	ND		1.0		ug/L			10/13/22 07:10	
Trichloroethene	ND		1.0		ug/L			10/13/22 07:10	
Trichlorofluoromethane	ND		1.0		ug/L			10/13/22 07:10	
Vinyl chloride	ND		1.0		ug/L			10/13/22 07:10	
Xylenes, Total	ND		2.0		ug/L			10/13/22 07:10	

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-35S Lab Sample ID: 480-202482-12

Date Collected: 10/07/22 10:00 Lab Gample 1D: 400-202402-12

Date Received: 10/07/22 14:50

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
Toluene-d8 (Surr)	100	80 - 120	10/13/22 07:	10 1
1,2-Dichloroethane-d4 (Surr)	101	77 - 120	10/13/22 07:	10 1
4-Bromofluorobenzene (Surr)	101	73 - 120	10/13/22 07:	10 1
Dibromofluoromethane (Surr)	96	75 ₋ 123	10/13/22 07:	10 1

Analyte Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon (SW846 3.7 9060A)		1.0		mg/L	= .		10/14/22 19:11	1

7

8

9

10

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: A1-GP06-S Lab Sample ID: 480-202482-13

Date Collected: 10/07/22 08:45 **Matrix: Water**

Date Received: 10/07/22 14:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon dioxide	33000		5000	1300	ug/L			10/13/22 12:34	
Ethane	ND		83	17	ug/L			10/09/22 20:39	11
Ethene	ND		77	17	ug/L			10/09/22 20:39	1′
Method: RSK-175 - Dissolved G	ases (GC)	- DL							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methane	15000		350	88	ug/L			10/10/22 07:57	88
Analyte Iron General Chemistry Analyte	16.6	Qualifier Qualifier	RL	0.019	mg/L	<u>D</u>	Prepared 10/11/22 08:59 Prepared	Analyzed 10/12/22 02:17 Analyzed	Dil Fa
				4.7	mg/L			10/17/22 06:31	
	4.6	J	10.0	1.7					
Sulfate (MCAWW 300.0)	4.6 579		10.0 100		U			10/18/22 12:44	10
Sulfate (MCAWW 300.0) Alkalinity, Total (MCAWW 310.2)					mg/L			10/18/22 12:44 10/07/22 18:54	1
Sulfate (MCAWW 300.0) Alkalinity, Total (MCAWW 310.2) Nitrate as N (EPA 353.2)	579		100	40.0	mg/L mg/L				10
Sulfate (MCAWW 300.0) Alkalinity, Total (MCAWW 310.2) Nitrate as N (EPA 353.2) Nitrite as N (MCAWW 353.2)	579 ND		100 0.050	40.0 0.020	mg/L mg/L mg/L			10/07/22 18:54	1
	579 ND ND	В	100 0.050 0.050	40.0 0.020 0.020	mg/L mg/L mg/L mg/L			10/07/22 18:54 10/08/22 18:20	1 .

10/26/2022

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-202482-14

Matrix: Water

Date Collected: 10/07/22 06:30 Date Received: 10/07/22 14:50

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND —	1.0	0.82	ug/L			10/13/22 07:33	
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			10/13/22 07:33	
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			10/13/22 07:33	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			10/13/22 07:33	
1,1-Dichloroethane	ND	1.0	0.38	ug/L			10/13/22 07:33	
1,1-Dichloroethene	ND	1.0	0.29	ug/L			10/13/22 07:33	
1,2,4-Trichlorobenzene	ND	1.0		ug/L			10/13/22 07:33	
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			10/13/22 07:33	
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			10/13/22 07:33	
1,2-Dichloroethane	ND	1.0		ug/L			10/13/22 07:33	
1,2-Dichloropropane	ND	1.0		ug/L			10/13/22 07:33	
1,3-Dichlorobenzene	ND	1.0		ug/L			10/13/22 07:33	
1,4-Dichlorobenzene	ND	1.0		ug/L			10/13/22 07:33	
2-Butanone (MEK)	ND	10		ug/L			10/13/22 07:33	
2-Hexanone	ND	5.0		ug/L			10/13/22 07:33	
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			10/13/22 07:33	
Acetone	ND	10		ug/L			10/13/22 07:33	
Benzene	ND	1.0		ug/L			10/13/22 07:33	
Bromodichloromethane	ND	1.0		ug/L			10/13/22 07:33	
Bromoform	ND	1.0		ug/L			10/13/22 07:33	
Bromomethane	ND	1.0		ug/L			10/13/22 07:33	
Carbon disulfide	ND	1.0		ug/L ug/L			10/13/22 07:33	
Carbon disullide Carbon tetrachloride	ND	1.0		-			10/13/22 07:33	
Chlorobenzene	ND ND	1.0		ug/L			10/13/22 07:33	
Dibromochloromethane				ug/L				
	ND ND	1.0		ug/L			10/13/22 07:33	
Chloroethane Chloroform	ND ND	1.0		ug/L			10/13/22 07:33	
		1.0		ug/L			10/13/22 07:33	
Chloromethane	ND	1.0		ug/L			10/13/22 07:33	
cis-1,2-Dichloroethene	ND	1.0		ug/L			10/13/22 07:33	
cis-1,3-Dichloropropene	ND	1.0		ug/L			10/13/22 07:33	
Cyclohexane	ND	1.0		ug/L			10/13/22 07:33	
Dichlorodifluoromethane	ND	1.0		ug/L			10/13/22 07:33	
Ethylbenzene	ND	1.0		ug/L			10/13/22 07:33	
1,2-Dibromoethane	ND	1.0		ug/L			10/13/22 07:33	
Isopropylbenzene	ND	1.0		ug/L			10/13/22 07:33	
Methyl acetate	ND	2.5		ug/L			10/13/22 07:33	
Methyl tert-butyl ether	ND	1.0		ug/L			10/13/22 07:33	
Methylcyclohexane	ND	1.0		ug/L			10/13/22 07:33	
Methylene Chloride	ND	1.0		ug/L			10/13/22 07:33	
Styrene	ND	1.0		ug/L			10/13/22 07:33	
Tetrachloroethene	ND	1.0	0.36	ug/L			10/13/22 07:33	
Toluene	ND	1.0	0.51	ug/L			10/13/22 07:33	
trans-1,2-Dichloroethene	ND	1.0	0.90	ug/L			10/13/22 07:33	
trans-1,3-Dichloropropene	ND	1.0	0.37	ug/L			10/13/22 07:33	
Trichloroethene	ND	1.0	0.46	ug/L			10/13/22 07:33	
Trichlorofluoromethane	ND	1.0	0.88	ug/L			10/13/22 07:33	
Vinyl chloride	ND	1.0	0.90	ug/L			10/13/22 07:33	
Xylenes, Total	ND	2.0	0.66	ug/L			10/13/22 07:33	

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: TRIP BLANK Lab Sample ID: 480-202482-14

Date Collected: 10/07/22 06:30

Matrix: Water Date Received: 10/07/22 14:50

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		80 - 120	_		10/13/22 07:33	1
1,2-Dichloroethane-d4 (Surr)	104		77 - 120			10/13/22 07:33	1
4-Bromofluorobenzene (Surr)	100		73 - 120			10/13/22 07:33	1
Dibromofluoromethane (Surr)	99		75 - 123			10/13/22 07:33	1

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: RINSE BLANK

Lab Sample ID: 480-202540-1 Date Collected: 10/10/22 14:00

Matrix: Water Date Received: 10/10/22 16:40

ND ND ND ND ND ND ND ND ND ND ND ND ND N	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.82 0.21 0.23 0.31 0.38 0.29 0.41 0.39 0.79	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L			10/15/22 08:02 10/15/22 08:02 10/15/22 08:02 10/15/22 08:02 10/15/22 08:02 10/15/22 08:02 10/15/22 08:02 10/15/22 08:02 10/15/22 08:02	
ND ND ND ND ND ND ND ND ND ND ND ND ND N	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.23 0.31 0.38 0.29 0.41 0.39 0.79 0.21 0.72	ug/L ug/L ug/L ug/L ug/L ug/L ug/L			10/15/22 08:02 10/15/22 08:02 10/15/22 08:02 10/15/22 08:02 10/15/22 08:02 10/15/22 08:02	
ND ND ND ND ND ND ND ND ND ND ND ND ND N	1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.31 0.38 0.29 0.41 0.39 0.79 0.21 0.72	ug/L ug/L ug/L ug/L ug/L ug/L ug/L			10/15/22 08:02 10/15/22 08:02 10/15/22 08:02 10/15/22 08:02 10/15/22 08:02	
ND ND ND ND ND ND ND ND ND ND ND ND ND	1.0 1.0 1.0 1.0 1.0 1.0 1.0	0.38 0.29 0.41 0.39 0.79 0.21 0.72	ug/L ug/L ug/L ug/L ug/L ug/L			10/15/22 08:02 10/15/22 08:02 10/15/22 08:02 10/15/22 08:02	
ND ND ND ND ND ND ND ND ND ND ND	1.0 1.0 1.0 1.0 1.0 1.0	0.29 0.41 0.39 0.79 0.21 0.72	ug/L ug/L ug/L ug/L ug/L			10/15/22 08:02 10/15/22 08:02 10/15/22 08:02	
ND ND ND ND ND ND	1.0 1.0 1.0 1.0 1.0	0.41 0.39 0.79 0.21 0.72	ug/L ug/L ug/L ug/L			10/15/22 08:02 10/15/22 08:02	
ND ND ND ND ND ND	1.0 1.0 1.0 1.0	0.39 0.79 0.21 0.72	ug/L ug/L ug/L			10/15/22 08:02	
ND ND ND ND ND	1.0 1.0 1.0 1.0	0.79 0.21 0.72	ug/L ug/L				
ND ND ND ND	1.0 1.0 1.0	0.21 0.72	ug/L			10/15/22 08:02	
ND ND ND	1.0 1.0	0.72	-			10/10/22 00:02	
ND ND	1.0					10/15/22 08:02	
ND		c =-	ug/L			10/15/22 08:02	
	1 0	0.78	ug/L			10/15/22 08:02	
ND	1.0	0.84				10/15/22 08:02	
	10		ug/L			10/15/22 08:02	
ND	5.0		ug/L			10/15/22 08:02	
ND	5.0					10/15/22 08:02	
ND	10		_			10/15/22 08:02	
ND	1.0		_			10/15/22 08:02	
ND							
			_				
			-				
			-				
			_				
			-				
			-				
			_				
			-				
			-				
			-				
			-				
			-				
			-				
			-				
			•				
			_				
			-				
	ND	ND 10 ND 1.0 ND 1.0	ND 10 3.0 ND 1.0 0.41 ND 1.0 0.39 ND 1.0 0.26 ND 1.0 0.69 ND 1.0 0.19 ND 1.0 0.27 ND 1.0 0.32 ND 1.0 0.32 ND 1.0 0.34 ND 1.0 0.35 ND 1.0 0.35 ND 1.0 0.36 ND 1.0 0.18 ND 1.0 0.74 ND 1.0 0.74 ND 1.0 0.73 ND 1.0 0.79 ND 1.0 0.79 ND 1.0 0.16 ND 1.0 0.16 ND 1.0 0.36 ND 1.0 0.36	ND 10 3.0 ug/L ND 1.0 0.41 ug/L ND 1.0 0.39 ug/L ND 1.0 0.26 ug/L ND 1.0 0.69 ug/L ND 1.0 0.19 ug/L ND 1.0 0.27 ug/L ND 1.0 0.75 ug/L ND 1.0 0.32 ug/L ND 1.0 0.32 ug/L ND 1.0 0.32 ug/L ND 1.0 0.34 ug/L ND 1.0 0.35 ug/L ND 1.0 0.36 ug/L ND 1.0 0.36 ug/L ND 1.0 0.68 ug/L ND 1.0 0.73 ug/L ND 1.0 0.73 ug/L ND 1.0 0.73 ug/L ND 1.0 0.16 ug/L ND 1.0 0.73 ug/L N	ND 10 3.0 ug/L ND 1.0 0.41 ug/L ND 1.0 0.39 ug/L ND 1.0 0.26 ug/L ND 1.0 0.69 ug/L ND 1.0 0.19 ug/L ND 1.0 0.27 ug/L ND 1.0 0.75 ug/L ND 1.0 0.32 ug/L ND 1.0 0.32 ug/L ND 1.0 0.34 ug/L ND 1.0 0.35 ug/L ND 1.0 0.35 ug/L ND 1.0 0.36 ug/L ND 1.0 0.36 ug/L ND 1.0 0.18 ug/L ND 1.0 0.18 ug/L ND 1.0 0.74 ug/L ND 1.0 0.74 ug/L ND 1.0 0.79 ug/L ND 1.0 0.16 ug/L N	ND 10 3.0 ug/L ND 1.0 0.41 ug/L ND 1.0 0.39 ug/L ND 1.0 0.26 ug/L ND 1.0 0.69 ug/L ND 1.0 0.19 ug/L ND 1.0 0.27 ug/L ND 1.0 0.27 ug/L ND 1.0 0.32 ug/L ND 1.0 0.32 ug/L ND 1.0 0.34 ug/L ND 1.0 0.35 ug/L ND 1.0 0.35 ug/L ND 1.0 0.36 ug/L ND 1.0 0.36 ug/L ND 1.0 0.68 ug/L ND 1.0 0.73 ug/L ND 1.0 0.73 ug/L ND 1.0 0.73 ug/L ND 1.0 0.16 ug/L ND 1.0 0.16 ug/L N	ND 10 3.0 ug/L 10/15/22 08:02 ND 1.0 0.41 ug/L 10/15/22 08:02 ND 1.0 0.39 ug/L 10/15/22 08:02 ND 1.0 0.26 ug/L 10/15/22 08:02 ND 1.0 0.69 ug/L 10/15/22 08:02 ND 1.0 0.19 ug/L 10/15/22 08:02 ND 1.0 0.27 ug/L 10/15/22 08:02 ND 1.0 0.75 ug/L 10/15/22 08:02 ND 1.0 0.32 ug/L 10/15/22 08:02 ND 1.0 0.32 ug/L 10/15/22 08:02 ND 1.0 0.34 ug/L 10/15/22 08:02 ND 1.0 0.35 ug/L 10/15/22 08:02 ND 1.0 0.35 ug/L 10/15/22 08:02 ND 1.0 0.36 ug/L 10/15/22 08:02 ND 1.0 0.36 ug/L 10/15/22 08:02 <

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Date Received: 10/10/22 16:40

Client Sample ID: RINSE BLANK Lab Sample ID: 480-202540-1

Date Collected: 10/10/22 14:00

Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	97	80 - 120	_		10/15/22 08:02	1
1,2-Dichloroethane-d4 (Surr)	100	77 - 120			10/15/22 08:02	1
4-Bromofluorobenzene (Surr)	99	73 - 120			10/15/22 08:02	1
Dibromofluoromethane (Surr)	100	75 - 123			10/15/22 08:02	1

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: A1-GP10-S Lab Sample ID: 480-202540-2

Date Collected: 10/10/22 09:45 **Matrix: Water** Date Received: 10/10/22 16:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		400	330	ug/L			10/15/22 08:25	400
1,1,2,2-Tetrachloroethane	ND		400	84	ug/L			10/15/22 08:25	400
1,1,2-Trichloroethane	ND		400	92	ug/L			10/15/22 08:25	400
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		400	120	ug/L			10/15/22 08:25	400
1,1-Dichloroethane	230	J	400	150	ug/L			10/15/22 08:25	400
1,1-Dichloroethene	ND		400	120	ug/L			10/15/22 08:25	400
1,2,4-Trichlorobenzene	ND		400	160	ug/L			10/15/22 08:25	400
1,2-Dibromo-3-Chloropropane	ND		400	160	ug/L			10/15/22 08:25	400
1,2-Dichlorobenzene	ND		400	320	ug/L			10/15/22 08:25	400
1,2-Dichloroethane	ND		400	84	ug/L			10/15/22 08:25	400
1,2-Dichloropropane	ND		400	290	ug/L			10/15/22 08:25	400
1,3-Dichlorobenzene	ND		400	310	ug/L			10/15/22 08:25	400
1,4-Dichlorobenzene	ND		400		ug/L			10/15/22 08:25	400
2-Butanone (MEK)	ND		4000	530	ug/L			10/15/22 08:25	400
2-Hexanone	ND		2000	500	ug/L			10/15/22 08:25	400
4-Methyl-2-pentanone (MIBK)	ND		2000		ug/L			10/15/22 08:25	400
Acetone	ND		4000	1200	ug/L			10/15/22 08:25	400
Benzene	ND		400					10/15/22 08:25	400
Bromodichloromethane	ND		400	160	ug/L			10/15/22 08:25	400
Bromoform	ND		400	100	ug/L			10/15/22 08:25	400
Bromomethane	ND		400		ug/L			10/15/22 08:25	400
Carbon disulfide	ND		400		ug/L			10/15/22 08:25	400
Carbon tetrachloride	ND		400		ug/L			10/15/22 08:25	400
Chlorobenzene	ND		400		ug/L			10/15/22 08:25	400
Dibromochloromethane	ND		400		ug/L			10/15/22 08:25	400
Chloroethane	8700		400		ug/L			10/15/22 08:25	400
Chloroform	ND		400		ug/L			10/15/22 08:25	400
Chloromethane	ND		400		ug/L			10/15/22 08:25	400
cis-1,2-Dichloroethene	ND		400		ug/L			10/15/22 08:25	400
cis-1,3-Dichloropropene	ND ND		400		ug/L ug/L			10/15/22 08:25	400
Cyclohexane	ND		400					10/15/22 08:25	400
Dichlorodifluoromethane	ND ND		400		ug/L			10/15/22 08:25	400
	ND ND				ug/L			10/15/22 08:25	
Ethylbenzene			400		ug/L				400
1,2-Dibromoethane	ND ND		400		ug/L			10/15/22 08:25	400
Isopropylbenzene			400		ug/L			10/15/22 08:25	400
Methyl acetate	ND		1000		ug/L			10/15/22 08:25	400
Methyl tert-butyl ether	ND		400		ug/L			10/15/22 08:25	400
Methylcyclohexane	ND		400		ug/L			10/15/22 08:25	400
Methylene Chloride	ND		400		ug/L			10/15/22 08:25	400
Styrene	ND		400		ug/L			10/15/22 08:25	400
Tetrachloroethene	ND		400		ug/L			10/15/22 08:25	400
Toluene	ND		400		ug/L			10/15/22 08:25	400
trans-1,2-Dichloroethene	ND		400		ug/L			10/15/22 08:25	400
trans-1,3-Dichloropropene	ND		400		ug/L			10/15/22 08:25	400
Trichloroethene	ND		400		ug/L			10/15/22 08:25	400
Trichlorofluoromethane	ND		400		ug/L			10/15/22 08:25	400
Vinyl chloride	ND		400	360	ug/L			10/15/22 08:25	400
Xylenes, Total	ND		800	260	ug/L			10/15/22 08:25	400

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: A1-GP10-S

Lab Sample ID: 480-202540-2 Date Collected: 10/10/22 09:45 **Matrix: Water**

Date Received: 10/10/22 16:40

Methane

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil F
Toluene-d8 (Surr)	97		80 - 120	_		10/15/22 08:25	40
1,2-Dichloroethane-d4 (Surr)	98		77 - 120			10/15/22 08:25	40
4-Bromofluorobenzene (Surr)	93		73 - 120			10/15/22 08:25	40
Dibromofluoromethane (Surr)	96		75 - 123			10/15/22 08:25	40

Method: RSK-175 - Dissolved	Gases (GC))							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon dioxide	140000		5000	1300	ug/L			10/13/22 12:53	1
Ethane	ND		83	17	ug/L			10/11/22 17:53	11
Ethene	26	J	77	17	ug/L			10/11/22 17:53	11
Method: RSK-175 - Dissolved	Gases (GC)	- DL							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Method: EPA 200.7 Rev 4.4 - N	letals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	9.5		0.050	0.019	mg/L		10/12/22 09:38	10/12/22 20:02	1

350

88 ug/L

8900

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate (MCAWW 300.0)	4.6	J	10.0	1.7	mg/L			10/17/22 23:42	5
Alkalinity, Total (MCAWW 310.2)	659		100	40.0	mg/L			10/18/22 16:34	10
Nitrate as N (EPA 353.2)	ND		0.050	0.020	mg/L			10/11/22 15:21	1
Nitrite as N (MCAWW 353.2)	ND	Н	0.050	0.020	mg/L			10/14/22 00:47	1
Total Organic Carbon (SW846 9060A)	90.6		1.0	0.43	mg/L			10/17/22 19:48	1
Ferric Iron (SM 3500)	9.5		0.10	0.075	mg/L			10/13/22 15:12	1
Ferrous Iron (SM 3500 FE D)	ND	HF	0.10	0.075	mg/L			10/13/22 00:30	1
Sulfide (SM 4500 S2 F)	ND		1.0	0.67	mg/L			10/14/22 10:21	1

10/11/22 19:36

10/26/2022

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-30

Lab Sample ID: 480-202540-3

Date Collected: 10/10/22 12:30 **Matrix: Water** Date Received: 10/10/22 16:40

Analyte	Result Qualifi	er RL	MDL		D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			10/15/22 08:48	
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			10/15/22 08:48	
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			10/15/22 08:48	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			10/15/22 08:48	
1,1-Dichloroethane	ND	1.0	0.38	ug/L			10/15/22 08:48	
1,1-Dichloroethene	ND	1.0	0.29	ug/L			10/15/22 08:48	
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			10/15/22 08:48	
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			10/15/22 08:48	
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			10/15/22 08:48	
1,2-Dichloroethane	ND	1.0	0.21	ug/L			10/15/22 08:48	
1,2-Dichloropropane	ND	1.0	0.72	ug/L			10/15/22 08:48	
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			10/15/22 08:48	
1,4-Dichlorobenzene	ND	1.0		ug/L			10/15/22 08:48	
2-Butanone (MEK)	ND	10		ug/L			10/15/22 08:48	
2-Hexanone	ND	5.0		ug/L			10/15/22 08:48	
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			10/15/22 08:48	
Acetone	ND	10		ug/L			10/15/22 08:48	
Benzene	ND	1.0	0.41	•			10/15/22 08:48	
Bromodichloromethane	ND	1.0	0.39				10/15/22 08:48	
Bromoform	ND	1.0	0.26	-			10/15/22 08:48	
Bromomethane	ND	1.0	0.69	-			10/15/22 08:48	
Carbon disulfide	ND	1.0	0.19				10/15/22 08:48	
Carbon tetrachloride	ND	1.0	0.27	-			10/15/22 08:48	
Chlorobenzene	ND	1.0	0.75	-			10/15/22 08:48	
Dibromochloromethane	ND	1.0	0.32				10/15/22 08:48	
Chloroethane	ND	1.0	0.32	-			10/15/22 08:48	
Chloroform	ND	1.0	0.34	-			10/15/22 08:48	
Chloromethane	ND	1.0	0.35				10/15/22 08:48	
cis-1,2-Dichloroethene	0.81 J	1.0	0.81	-			10/15/22 08:48	
cis-1,3-Dichloropropene	ND	1.0		ug/L			10/15/22 08:48	
Cyclohexane	ND	1.0		ug/L			10/15/22 08:48	
Dichlorodifluoromethane	ND	1.0		ug/L			10/15/22 08:48	
Ethylbenzene	ND	1.0		ug/L			10/15/22 08:48	
1,2-Dibromoethane	ND	1.0		ug/L			10/15/22 08:48	
Isopropylbenzene	ND	1.0		ug/L			10/15/22 08:48	
Methyl acetate	ND	2.5		ug/L			10/15/22 08:48	
Methyl tert-butyl ether	ND	1.0		ug/L			10/15/22 08:48	
Methylcyclohexane	ND	1.0		ug/L			10/15/22 08:48	
Methylene Chloride	ND	1.0		ug/L			10/15/22 08:48	
Styrene	ND	1.0		ug/L			10/15/22 08:48	
Tetrachloroethene	ND	1.0		ug/L			10/15/22 08:48	
Toluene	ND	1.0		ug/L			10/15/22 08:48	
trans-1,2-Dichloroethene	ND ND	1.0		ug/L ug/L			10/15/22 08:48	
trans-1,3-Dichloropropene	ND ND			-			10/15/22 08:48	
trans-1,3-Dicnioropropene Trichloroethene		1.0		ug/L				
	ND	1.0		ug/L			10/15/22 08:48	
Trichlorofluoromethane	ND ND	1.0		ug/L			10/15/22 08:48	
Vinyl chloride Xylenes, Total	ND ND	1.0 2.0		ug/L ug/L			10/15/22 08:48 10/15/22 08:48	

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-30 Lab Sample ID: 480-202540-3

Date Collected: 10/10/22 12:30 **Matrix: Water**

Date Received: 10/10/22 16:40

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	l Dil Fac
Toluene-d8 (Surr)	100	80 - 120	10/15/22 08	:48 1
1,2-Dichloroethane-d4 (Surr)	101	77 - 120	10/15/22 08	:48 1
4-Bromofluorobenzene (Surr)	102	73 - 120	10/15/22 08	:48 1
Dibromofluoromethane (Surr)	99	75 - 123	10/15/22 08	:48 1

General Chemistry Analyte	Rosult	Qualifier	RL	MDL	Unit	n	Prepared	Analvzed	Dil Fac
Analyte	Nesuit	Qualifier	IXL	IVIDE	Oilit		riepaieu	Allalyzeu	Diriac
Total Organic Carbon (SW846	3.0		1.0	0.43	mg/L			10/17/22 20:46	1
9060A)									

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-43S

Lab Sample ID: 480-202540-4 Date Collected: 10/10/22 11:20

Matrix: Water

Date Received: 10/10/22 16:40

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	4.0	3.3	ug/L			10/15/22 09:11	
1,1,2,2-Tetrachloroethane	ND	4.0	0.84	ug/L			10/15/22 09:11	4
1,1,2-Trichloroethane	ND	4.0	0.92	ug/L			10/15/22 09:11	4
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.0	1.2	ug/L			10/15/22 09:11	
1,1-Dichloroethane	ND	4.0		ug/L			10/15/22 09:11	4
1,1-Dichloroethene	ND	4.0	1.2	ug/L			10/15/22 09:11	4
1,2,4-Trichlorobenzene	ND	4.0		ug/L			10/15/22 09:11	
1,2-Dibromo-3-Chloropropane	ND	4.0		ug/L			10/15/22 09:11	4
1,2-Dichlorobenzene	ND	4.0		ug/L			10/15/22 09:11	4
1,2-Dichloroethane	ND	4.0		ug/L			10/15/22 09:11	
1,2-Dichloropropane	ND	4.0		ug/L			10/15/22 09:11	4
1,3-Dichlorobenzene	ND	4.0		ug/L			10/15/22 09:11	4
1,4-Dichlorobenzene	ND	4.0		ug/L			10/15/22 09:11	
2-Butanone (MEK)	ND	40		ug/L			10/15/22 09:11	4
2-Hexanone	ND	20		ug/L			10/15/22 09:11	4
4-Methyl-2-pentanone (MIBK)	ND	20		ug/L			10/15/22 09:11	
Acetone	ND	40		ug/L			10/15/22 09:11	2
Benzene	ND	4.0		ug/L			10/15/22 09:11	2
Bromodichloromethane	ND	4.0		ug/L			10/15/22 09:11	
Bromoform	ND	4.0		ug/L ug/L			10/15/22 09:11	
Bromomethane	ND	4.0		ug/L			10/15/22 09:11	
Carbon disulfide	ND	4.0		ug/L ug/L			10/15/22 09:11	
Carbon disulide Carbon tetrachloride	ND ND	4.0		ug/L ug/L			10/15/22 09:11	2
Chlorobenzene	ND ND	4.0		-			10/15/22 09:11	2
Dibromochloromethane	ND	4.0		ug/L ug/L			10/15/22 09:11	
				-				
Chloroform	ND	4.0		ug/L			10/15/22 09:11	4
Chloroform	ND	4.0		ug/L			10/15/22 09:11	
Chloromethane	ND	4.0		ug/L			10/15/22 09:11	4
cis-1,2-Dichloroethene	ND	4.0		ug/L			10/15/22 09:11	2
cis-1,3-Dichloropropene	ND	4.0		ug/L			10/15/22 09:11	
Cyclohexane	ND	4.0		ug/L			10/15/22 09:11	2
Dichlorodifluoromethane	ND	4.0		ug/L			10/15/22 09:11	2
Ethylbenzene	ND	4.0		ug/L			10/15/22 09:11	
1,2-Dibromoethane	ND	4.0		ug/L			10/15/22 09:11	2
Isopropylbenzene	ND	4.0		ug/L			10/15/22 09:11	2
Methyl acetate	ND	10		ug/L			10/15/22 09:11	
Methyl tert-butyl ether	ND	4.0		ug/L			10/15/22 09:11	2
Methylcyclohexane	ND	4.0		ug/L			10/15/22 09:11	4
Methylene Chloride	ND	4.0		ug/L			10/15/22 09:11	
Styrene	ND	4.0		ug/L			10/15/22 09:11	4
Tetrachloroethene	ND	4.0		ug/L			10/15/22 09:11	4
Toluene	ND	4.0		ug/L			10/15/22 09:11	
trans-1,2-Dichloroethene	ND	4.0		ug/L			10/15/22 09:11	4
trans-1,3-Dichloropropene	ND	4.0		ug/L			10/15/22 09:11	4
Trichloroethene	ND	4.0	1.8	ug/L			10/15/22 09:11	
Trichlorofluoromethane	ND	4.0		ug/L			10/15/22 09:11	4
Vinyl chloride	ND	4.0	3.6	ug/L			10/15/22 09:11	4
Xylenes, Total	ND	8.0	2.6	ug/L			10/15/22 09:11	4

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-43S Lab Sample ID: 480-202540-4

Date Collected: 10/10/22 11:20 Matrix: Water Date Received: 10/10/22 16:40

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	97	80 - 120		10/15/22 09:11	4
1,2-Dichloroethane-d4 (Surr)	99	77 - 120		10/15/22 09:11	4
4-Bromofluorobenzene (Surr)	97	73 - 120		10/15/22 09:11	4
Dibromofluoromethane (Surr)	96	75 - 123		10/15/22 09:11	4

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon (SW846	5.0		1.0	0.43	mg/L			10/17/22 21:45	1
9060A)									

_

5

7

8

9

10

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-44S

Lab Sample ID: 480-202540-5 Date Collected: 10/10/22 13:20

Matrix: Water

Date Received: 10/10/22 16:40

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	1.0		ug/L			10/15/22 09:34	
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			10/15/22 09:34	
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			10/15/22 09:34	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			10/15/22 09:34	
1,1-Dichloroethane	ND	1.0	0.38	ug/L			10/15/22 09:34	
1,1-Dichloroethene	ND	1.0	0.29	ug/L			10/15/22 09:34	
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			10/15/22 09:34	
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			10/15/22 09:34	
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			10/15/22 09:34	
1,2-Dichloroethane	ND	1.0	0.21	ug/L			10/15/22 09:34	
1,2-Dichloropropane	ND	1.0	0.72	ug/L			10/15/22 09:34	
1,3-Dichlorobenzene	ND	1.0		ug/L			10/15/22 09:34	
1,4-Dichlorobenzene	ND	1.0		ug/L			10/15/22 09:34	
2-Butanone (MEK)	ND	10		ug/L			10/15/22 09:34	
2-Hexanone	ND	5.0		ug/L			10/15/22 09:34	
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			10/15/22 09:34	
Acetone	ND	10		ug/L			10/15/22 09:34	
Benzene	ND	1.0		ug/L			10/15/22 09:34	
Bromodichloromethane	ND	1.0		ug/L			10/15/22 09:34	
Bromoform	ND	1.0		ug/L			10/15/22 09:34	
Bromomethane	ND	1.0		ug/L			10/15/22 09:34	
Carbon disulfide	ND	1.0		ug/L			10/15/22 09:34	
Carbon tetrachloride	ND	1.0		ug/L			10/15/22 09:34	
Chlorobenzene	ND	1.0		ug/L			10/15/22 09:34	
Dibromochloromethane	ND	1.0		ug/L			10/15/22 09:34	
Chloroethane	ND	1.0		ug/L			10/15/22 09:34	
Chloroform	ND	1.0		ug/L			10/15/22 09:34	
Chloromethane	ND	1.0		ug/L			10/15/22 09:34	
cis-1,2-Dichloroethene	ND	1.0		ug/L			10/15/22 09:34	
sis-1,3-Dichloropropene	ND	1.0		ug/L			10/15/22 09:34	
Cyclohexane	ND	1.0		ug/L			10/15/22 09:34	
Dichlorodifluoromethane	ND	1.0		ug/L			10/15/22 09:34	
Ethylbenzene	ND	1.0		ug/L			10/15/22 09:34	
I,2-Dibromoethane	ND	1.0		ug/L			10/15/22 09:34	
sopropylbenzene	ND	1.0		ug/L			10/15/22 09:34	
Methyl acetate	ND	2.5		ug/L			10/15/22 09:34	
Methyl tert-butyl ether	ND	1.0		ug/L			10/15/22 09:34	
Methylcyclohexane	ND	1.0		ug/L			10/15/22 09:34	
Methylene Chloride	ND	1.0		ug/L			10/15/22 09:34	
Styrene	ND	1.0		ug/L			10/15/22 09:34	
etrachloroethene	ND	1.0		ug/L			10/15/22 09:34	
oluene	ND ND	1.0		ug/L ug/L			10/15/22 09:34	
rans-1,2-Dichloroethene	ND ND						10/15/22 09:34	
·		1.0		ug/L				
rans-1,3-Dichloropropene	ND ND	1.0		ug/L			10/15/22 09:34	
Trichloroethene	ND	1.0		ug/L			10/15/22 09:34	
Frichlorofluoromethane	ND	1.0		ug/L			10/15/22 09:34	
√inyl chloride Kylenes, Total	ND ND	1.0 2.0	0.90	ug/L			10/15/22 09:34 10/15/22 09:34	

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-44S Lab Sample ID: 480-202540-5

Date Collected: 10/10/22 13:20 Matrix: Water

Date Received: 10/10/22 16:40

Total Organic Carbon (SW846

9060A)

Surrogate	%Recovery Quar	lifier Limits			Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	96	80 - 120		-		10/15/22 09:34	1
1,2-Dichloroethane-d4 (Surr)	97	77 - 120				10/15/22 09:34	1
4-Bromofluorobenzene (Surr)	95	73 - 120				10/15/22 09:34	1
Dibromofluoromethane (Surr)	94	75 - 123				10/15/22 09:34	1
General Chemistry							
Analyte	Result Qual	lifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac

1.0

0.43 mg/L

1.2

8

10/17/22 22:14

9

10

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: A1-GP14-S

Lab Sample ID: 480-202540-6

Matrix: Water

Date Collected: 10/10/22 11:45 Date Received: 10/10/22 16:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		2.0	1.6	ug/L			10/15/22 09:57	
1,1,2,2-Tetrachloroethane	ND		2.0	0.42	ug/L			10/15/22 09:57	2
1,1,2-Trichloroethane	ND		2.0	0.46	ug/L			10/15/22 09:57	:
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		2.0	0.62	ug/L			10/15/22 09:57	2
1,1-Dichloroethane	ND		2.0	0.76	ug/L			10/15/22 09:57	2
1,1-Dichloroethene	ND		2.0	0.58	ug/L			10/15/22 09:57	2
1,2,4-Trichlorobenzene	ND		2.0	0.82	ug/L			10/15/22 09:57	
1,2-Dibromo-3-Chloropropane	ND		2.0	0.78	ug/L			10/15/22 09:57	2
1,2-Dichlorobenzene	ND		2.0	1.6	ug/L			10/15/22 09:57	:
1,2-Dichloroethane	ND		2.0	0.42	ug/L			10/15/22 09:57	
1,2-Dichloropropane	ND		2.0	1.4	ug/L			10/15/22 09:57	2
1,3-Dichlorobenzene	ND		2.0		ug/L			10/15/22 09:57	2
1,4-Dichlorobenzene	ND		2.0		ug/L			10/15/22 09:57	
2-Butanone (MEK)	ND		20		ug/L			10/15/22 09:57	:
2-Hexanone	ND		10		ug/L			10/15/22 09:57	:
4-Methyl-2-pentanone (MIBK)	ND		10		ug/L			10/15/22 09:57	
Acetone	ND		20		ug/L			10/15/22 09:57	:
Benzene	ND		2.0		ug/L			10/15/22 09:57	:
Bromodichloromethane	ND		2.0		ug/L			10/15/22 09:57	
Bromoform	ND		2.0		ug/L			10/15/22 09:57	:
Bromomethane	ND		2.0		ug/L			10/15/22 09:57	:
Carbon disulfide	ND		2.0		ug/L			10/15/22 09:57	
Carbon tetrachloride	ND		2.0		ug/L			10/15/22 09:57	
Chlorobenzene	ND		2.0		ug/L			10/15/22 09:57	
Dibromochloromethane	ND		2.0		ug/L			10/15/22 09:57	
Chloroethane	ND		2.0		ug/L			10/15/22 09:57	
Chloroform	ND		2.0		ug/L			10/15/22 09:57	:
Chloromethane	ND		2.0		ug/L			10/15/22 09:57	
cis-1,2-Dichloroethene	ND		2.0		ug/L			10/15/22 09:57	
cis-1,3-Dichloropropene	ND		2.0		ug/L			10/15/22 09:57	:
Cyclohexane	ND		2.0		ug/L			10/15/22 09:57	
Dichlorodifluoromethane	ND		2.0		ug/L			10/15/22 09:57	
Ethylbenzene	ND		2.0		ug/L			10/15/22 09:57	:
1.2-Dibromoethane	ND		2.0		ug/L			10/15/22 09:57	
Isopropylbenzene	ND		2.0		ug/L			10/15/22 09:57	2
Methyl acetate	ND		5.0		ug/L			10/15/22 09:57	2
Methyl tert-butyl ether	ND		2.0		ug/L			10/15/22 09:57	
Methylcyclohexane	ND		2.0		ug/L			10/15/22 09:57	2
Methylene Chloride	ND		2.0		ug/L			10/15/22 09:57	2
Styrene	ND		2.0		ug/L			10/15/22 09:57	
Tetrachloroethene	ND		2.0		ug/L			10/15/22 09:57	2
Toluene	ND		2.0		ug/L			10/15/22 09:57	2
trans-1,2-Dichloroethene	ND		2.0		ug/L			10/15/22 09:57	
trans-1,3-Dichloropropene	ND ND		2.0		ug/L ug/L			10/15/22 09:57	2
Trichloroethene	ND		2.0		ug/L			10/15/22 09:57	2
Trichlorofluoromethane	ND		2.0		ug/L ug/L			10/15/22 09:57	
Vinyl chloride	ND ND		2.0		ug/L ug/L			10/15/22 09:57	2
Xylenes, Total	ND		4.0		ug/L ug/L			10/15/22 09:57	2

Eurofins Buffalo

4

7

8

10

11

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: A1-GP14-S Lab Sample ID: 480-202540-6

Date Collected: 10/10/22 11:45
Date Received: 10/10/22 16:40

Matrix: Water

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	96		80 - 120					10/15/22 09:57	2
1,2-Dichloroethane-d4 (Surr)	99		77 - 120					10/15/22 09:57	2
4-Bromofluorobenzene (Surr)	98		73 - 120					10/15/22 09:57	2
Dibromofluoromethane (Surr)	98		75 - 123					10/15/22 09:57	2
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon (SW846 9060A)	5.8		1.0	0.43	mg/L			10/17/22 22:43	1

9

10

-10

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-202540-7 Date Collected: 10/10/22 08:00

Matrix: Water Date Received: 10/10/22 16:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			10/15/22 10:20	-
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			10/15/22 10:20	
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			10/15/22 10:20	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			10/15/22 10:20	
1,1-Dichloroethane	ND		1.0	0.38	ug/L			10/15/22 10:20	
1,1-Dichloroethene	ND		1.0	0.29	ug/L			10/15/22 10:20	
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			10/15/22 10:20	
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			10/15/22 10:20	
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			10/15/22 10:20	
1,2-Dichloroethane	ND		1.0	0.21	ug/L			10/15/22 10:20	
1,2-Dichloropropane	ND		1.0	0.72				10/15/22 10:20	
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			10/15/22 10:20	
1,4-Dichlorobenzene	ND		1.0	0.84				10/15/22 10:20	
2-Butanone (MEK)	ND		10		ug/L			10/15/22 10:20	
2-Hexanone	ND		5.0		ug/L			10/15/22 10:20	
4-Methyl-2-pentanone (MIBK)	ND		5.0					10/15/22 10:20	
Acetone	ND		10		ug/L			10/15/22 10:20	
Benzene	ND		1.0		ug/L			10/15/22 10:20	
Bromodichloromethane	ND		1.0		ug/L			10/15/22 10:20	
Bromoform	ND		1.0		ug/L			10/15/22 10:20	
Bromomethane	ND		1.0		ug/L			10/15/22 10:20	
Carbon disulfide	ND		1.0	0.19	ug/L			10/15/22 10:20	
Carbon tetrachloride	ND		1.0		ug/L			10/15/22 10:20	
Chlorobenzene	ND		1.0		ug/L			10/15/22 10:20	
Dibromochloromethane	ND		1.0		ug/L			10/15/22 10:20	
Chloroethane	ND		1.0		ug/L			10/15/22 10:20	
Chloroform	ND		1.0		ug/L			10/15/22 10:20	
Chloromethane	ND		1.0		ug/L			10/15/22 10:20	
cis-1,2-Dichloroethene	ND		1.0		ug/L			10/15/22 10:20	
cis-1,3-Dichloropropene	ND		1.0		ug/L			10/15/22 10:20	
Cyclohexane	ND		1.0		ug/L			10/15/22 10:20	
Dichlorodifluoromethane	ND		1.0		ug/L			10/15/22 10:20	
Ethylbenzene	ND		1.0		ug/L			10/15/22 10:20	
1,2-Dibromoethane	ND		1.0		ug/L			10/15/22 10:20	
Isopropylbenzene	ND		1.0		ug/L			10/15/22 10:20	
Methyl acetate	ND		2.5		ug/L			10/15/22 10:20	
Methyl tert-butyl ether	ND		1.0		ug/L			10/15/22 10:20	
Methylcyclohexane	ND		1.0		ug/L			10/15/22 10:20	
Methylene Chloride	ND		1.0		ug/L			10/15/22 10:20	
Styrene	ND		1.0		ug/L			10/15/22 10:20	
Tetrachloroethene	ND		1.0		ug/L			10/15/22 10:20	
Toluene	ND		1.0		ug/L			10/15/22 10:20	
trans-1,2-Dichloroethene	ND		1.0		ug/L			10/15/22 10:20	
trans-1,3-Dichloropropene	ND		1.0		ug/L			10/15/22 10:20	
Trichloroethene	ND		1.0		ug/L			10/15/22 10:20	
Trichlorofluoromethane	ND		1.0		ug/L			10/15/22 10:20	
Vinyl chloride	ND		1.0		ug/L			10/15/22 10:20	
Xylenes, Total	ND		2.0		ug/L			10/15/22 10:20	

Eurofins Buffalo

10/26/2022

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Date Received: 10/10/22 16:40

Client Sample ID: TRIP BLANK Lab Sample ID: 480-202540-7

Date Collected: 10/10/22 08:00

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	97	80 - 120		10/15/22 10:20	1
1,2-Dichloroethane-d4 (Surr)	100	77 - 120		10/15/22 10:20	1
4-Bromofluorobenzene (Surr)	100	73 - 120		10/15/22 10:20	1
Dibromofluoromethane (Surr)	98	75 - 123		10/15/22 10:20	1

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-36S

Date Collected: 10/05/22 12:15 Date Received: 10/05/22 16:50 Lab Sample ID: 480-202378-1

Matrix: Water

	Batch	Batch		Dilution	Batch		Prepared
Prep Type	Type	Method	Run	Factor	Number Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	644798 AXK	EET BUF	10/11/22 16:41
Total/NA	Analysis	9060A		1	645233 KER	EET BUF	10/13/22 03:00

Client Sample ID: MW-36D

Date Collected: 10/05/22 11:35 Date Received: 10/05/22 16:50 Lab Sample ID: 480-202378-2

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		4	644798	AXK	EET BUF	10/11/22 17:03
Total/NA	Analysis	9060A		1	645233	KER	EET BUF	10/13/22 03:57

Client Sample ID: A1-GP09-S

Date Collected: 10/05/22 13:00 Date Received: 10/05/22 16:50 Lab Sample ID: 480-202379-1

Matrix: Water

	Batch	Batch		Dilution	Batch		Prepared
Prep Type	Туре	Method	Run	Factor	Number Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		5	644798 AXK	EET BUF	10/11/22 17:25
Total/NA	Analysis	9060A		1	645233 KER	EET BUF	10/13/22 04:26

Client Sample ID: A1-GP16-S

Date Collected: 10/05/22 14:50

Date Received: 10/06/22 10:01

Lab Sample ID: 480-202380-1

Lab Sample ID: 480-202443-1

Matrix: Water

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		4	644907	ATG	EET BUF	10/11/22 15:17
Total/NA	Analysis	9060A		1	645442	KER	EET BUF	10/13/22 20:47

Client Sample ID: MW-38D

Date Collected: 10/06/22 12:20

Date Received: 10/06/22 16:40

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C	 -	4	645217	AXK	EET BUF	10/13/22 18:24
Total/NA	Analysis	RSK-175		1	184469	RMG	EET BUR	10/10/22 15:27
Total/NA	Analysis	RSK-175		22	644615	MAN	EET BUF	10/09/22 19:04
Total/NA	Analysis	RSK-175	DL	110	644615	MAN	EET BUF	10/10/22 06:22
Total/NA	Prep	200.7			644519	NVK	EET BUF	10/10/22 09:29
Total/NA	Analysis	200.7 Rev 4.4		1	645057	LMH	EET BUF	10/11/22 19:48
Total/NA	Analysis	300.0		5	645267	IMZ	EET BUF	10/14/22 00:01
Total/NA	Analysis	310.2		5	644918	STR	EET BUF	10/11/22 13:24
Total/NA	Analysis	353.2		1	644549	CSS	EET BUF	10/07/22 18:24
Total/NA	Analysis	353.2		1	644550	CSS	EET BUF	10/07/22 18:24
Total/NA	Analysis	9060A		1	645442	KER	EET BUF	10/12/22 16:40
Total/NA	Analysis	SM 3500		1	645292	LMH	EET BUF	10/13/22 12:27

Client: AECOM Job ID: 480-202378-1
Project/Site: Scott Figgie Area 1 BCP

Froject/Site. Scott riggle Area i BCF

Client Sample ID: MW-38D

Date Collected: 10/06/22 12:20 Date Received: 10/06/22 16:40 Lab Sample ID: 480-202443-1

Matrix: Water

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	SM 3500 FE D		1	644547	CSS	EET BUF	10/07/22 16:30
Total/NA	Analysis	SM 4500 S2 F		1	645103	CC	EET BUF	10/12/22 11:06

Client Sample ID: A1-GP06-S Lab Sample ID:

Date Collected: 10/06/22 14:05 Date Received: 10/06/22 16:40 Lab Sample ID: 480-202443-2 Matrix: Water

Prepared Batch Dilution Batch Batch Number Analyst **Prep Type** Type Method Run **Factor** Lab or Analyzed Total/NA Analysis 8260C 20 645217 AXK **EET BUF** 10/13/22 18:46 Total/NA EET BUF 10/16/22 15:33 Analysis 9060A 1 645787 KER

Client Sample ID: A1-GP18-S Lab Sample ID: 480-202443-3

Date Collected: 10/06/22 09:25

Date Received: 10/06/22 16:40

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	645217	AXK	EET BUF	10/13/22 19:08
Total/NA	Analysis	RSK-175		1	184469	RMG	EET BUR	10/10/22 15:36
Total/NA	Analysis	RSK-175		11	644615	MAN	EET BUF	10/09/22 19:23
Total/NA	Analysis	RSK-175	DL	88	644615	MAN	EET BUF	10/10/22 06:4
Total/NA	Prep	200.7			644519	NVK	EET BUF	10/10/22 09:29
Total/NA	Analysis	200.7 Rev 4.4		1	645057	LMH	EET BUF	10/11/22 19:52
Total/NA	Analysis	300.0		2	645267	IMZ	EET BUF	10/14/22 00:21
Total/NA	Analysis	310.2		5	644918	STR	EET BUF	10/11/22 13:24
Total/NA	Analysis	353.2		1	644549	CSS	EET BUF	10/07/22 18:25
Total/NA	Analysis	353.2		1	644550	CSS	EET BUF	10/07/22 18:25
Total/NA	Analysis	9060A		1	645442	KER	EET BUF	10/12/22 18:39
Total/NA	Analysis	SM 3500		1	645292	LMH	EET BUF	10/13/22 12:23
Total/NA	Analysis	SM 3500 FE D		1	644547	CSS	EET BUF	10/07/22 16:30
Total/NA	Analysis	SM 4500 S2 F		1	645103	CC	EET BUF	10/12/22 11:06

Client Sample ID: MW-37D

Date Collected: 10/06/22 10:35

Lab Sample ID: 480-202443-4

Matrix: Water

Date Received: 10/06/22 16:40

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	645217	AXK	EET BUF	10/13/22 19:30
Total/NA	Analysis	9060A		1	645442	KER	EET BUF	10/12/22 19:08

Job ID: 480-202378-1

Client: AECOM Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-39D

Date Collected: 10/06/22 11:30

Lab Sample ID: 480-202443-5

Matrix: Water

Date Received: 10/06/22 16:40

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		8	645217	AXK	EET BUF	10/13/22 19:52
Total/NA	Analysis	9060A		1	645442	KER	EET BUF	10/12/22 19:39

Client Sample ID: A1-GP02-S

Date Collected: 10/06/22 13:15 Date Received: 10/06/22 16:40 Lab Sample ID: 480-202443-6

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		25	645217	AXK	EET BUF	10/13/22 20:14
Total/NA	Analysis	8260C	DL	100	645440	AXK	EET BUF	10/14/22 16:43
Total/NA	Analysis	9060A		1	645442	KER	EET BUF	10/12/22 21:37

Client Sample ID: A1-GP15-S

Date Collected: 10/06/22 15:00 Date Received: 10/06/22 16:40 Lab Sample ID: 480-202443-7

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	644728	CR	EET BUF	10/11/22 07:02
Total/NA	Analysis	9060A		1	645442	KER	EET BUF	10/12/22 22:37

Client Sample ID: CB-1

Date Collected: 10/07/22 08:00

Date Received: 10/07/22 14:50

Lab Sample ID: 480-202482-1

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C			645123	CR	EET BUF	10/13/22 02:57

Client Sample ID: CB-2

Date Collected: 10/07/22 07:40

Date Received: 10/07/22 14:50

Lab Sample ID:	480-202482-2
----------------	--------------

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	645123	CR	EET BUF	10/13/22 03:20

Client Sample ID: CB-3

Date Collected: 10/07/22 06:40

Date Received: 10/07/22 14:50

Lab Sample	ID:	480-202482-3
		Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	645123	CR	EET BUF	10/13/22 03:43

Job ID: 480-202378-1

Client: AECOM Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: CB-4

Date Collected: 10/07/22 07:00 Date Received: 10/07/22 14:50

Lab Sample ID: 480-202482-4

Matrix: Water

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	645123	CR	EET BUF	10/13/22 04:06

Client Sample ID: CB-E Lab Sample ID: 480-202482-5

Date Collected: 10/07/22 07:10 Date Received: 10/07/22 14:50

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run **Factor Number Analyst** Lab or Analyzed Total/NA 8260C 645123 CR EET BUF 10/13/22 04:29

Analysis

Client Sample ID: TP-5 Lab Sample ID: 480-202482-6 Date Collected: 10/07/22 08:20

Matrix: Water

Date Received: 10/07/22 14:50

Batch Batch Dilution Batch Prepared or Analyzed **Prep Type** Method **Factor Number Analyst** Type Run Lab 10/13/22 04:52 Total/NA Analysis 8260C 645123 CR EET BUF Total/NA Analysis 9060A 1 645783 KER **EET BUF** 10/14/22 16:19

Client Sample ID: TP-6 Lab Sample ID: 480-202482-7

Date Collected: 10/07/22 08:40 **Matrix: Water**

Date Received: 10/07/22 14:50

Batch Batch Dilution Batch **Prepared** Method **Number Analyst** or Analyzed **Prep Type** Type Run **Factor** Lab Total/NA Analysis 8260C 645123 CR EET BUF 10/13/22 05:15

Client Sample ID: DUPLICATE Lab Sample ID: 480-202482-8

Date Collected: 10/07/22 08:00 **Matrix: Water**

Date Received: 10/07/22 14:50

645123 CR

EET BUF

Batch **Batch** Dilution Batch Prepared **Prep Type** Type Method Run **Factor Number Analyst** Lab or Analyzed 10/13/22 05:38

Client Sample ID: MW-35D Lab Sample ID: 480-202482-9

Date Collected: 10/07/22 08:45 **Matrix: Water**

Date Received: 10/07/22 14:50

Analysis

8260C

Total/NA

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	645123	CR	EET BUF	10/13/22 06:01
Total/NA	Analysis	RSK-175		1	184657	RMG	EET BUR	10/13/22 12:06
Total/NA	Analysis	RSK-175		1	644615	MAN	EET BUF	10/09/22 19:42
Total/NA	Analysis	RSK-175	DL	22	644615	MAN	EET BUF	10/10/22 07:00
Total/NA	Prep	200.7			644765	VAK	EET BUF	10/11/22 08:59
Total/NA	Analysis	200.7 Rev 4.4		1	645061	LMH	EET BUF	10/12/22 01:58
Total/NA	Analysis	300.0		2	645267	IMZ	EET BUF	10/14/22 00:40
Total/NA	Analysis	310.2		5	646040	ARR	EET BUF	10/18/22 12:29
Total/NA	Analysis	353.2		1	644549	CSS	EET BUF	10/07/22 18:48

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-35D

Lab Sample ID: 480-202482-9

Matrix: Water

Date Collected: 10/07/22 08:45 Date Received: 10/07/22 14:50

Client: AECOM

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	353.2		1	645406	CSS	EET BUF	10/14/22 00:29
Total/NA	Analysis	9060A		1	645783	KER	EET BUF	10/14/22 17:15
Total/NA	Analysis	SM 3500		1	645292	LMH	EET BUF	10/13/22 12:30
Total/NA	Analysis	SM 3500 FE D		1	645196	CSS	EET BUF	10/13/22 00:30
Total/NA	Analysis	SM 4500 S2 F		1	645493	CC	EET BUF	10/14/22 10:21

Lab Sample ID: 480-202482-10

Lab Sample ID: 480-202482-11

Matrix: Water

Date Collected: 10/07/22 12:35 Date Received: 10/07/22 14:50

Client Sample ID: MW-40D

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		8	645123	CR	EET BUF	10/13/22 06:24
Total/NA	Analysis	RSK-175		1	184657	RMG	EET BUR	10/13/22 12:15
Total/NA	Analysis	RSK-175		11	644615	MAN	EET BUF	10/09/22 20:01
Total/NA	Analysis	RSK-175	DL	88	644615	MAN	EET BUF	10/10/22 07:19
Total/NA	Prep	200.7			644765	VAK	EET BUF	10/11/22 08:59
Total/NA	Analysis	200.7 Rev 4.4		1	645061	LMH	EET BUF	10/12/22 02:02
Total/NA	Analysis	300.0		5	645723	IMZ	EET BUF	10/17/22 05:52
Total/NA	Analysis	310.2		5	646040	ARR	EET BUF	10/18/22 12:31
Total/NA	Analysis	353.2		1	644549	CSS	EET BUF	10/07/22 18:51
Total/NA	Analysis	353.2		1	645406	CSS	EET BUF	10/14/22 00:30
Total/NA	Analysis	9060A		1	645783	KER	EET BUF	10/14/22 18:14
Total/NA	Analysis	SM 3500		1	645292	LMH	EET BUF	10/13/22 12:30
Total/NA	Analysis	SM 3500 FE D		1	645196	CSS	EET BUF	10/13/22 00:30
Total/NA	Analysis	SM 4500 S2 F		1	645493	CC	EET BUF	10/14/22 10:21

Client Sample ID: MW-42S

Date Collected: 10/07/22 13:25

Date Received: 10/07/22 14:50

-	u. 10/01/22 1	4.50						
	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		200	645123	CR	EET BUF	10/13/22 06:47
Total/NA	Analysis	RSK-175		1	184657	RMG	EET BUR	10/13/22 12:25
Total/NA	Analysis	RSK-175		22	644615	MAN	EET BUF	10/09/22 20:20
Total/NA	Analysis	RSK-175	DL	88	644615	MAN	EET BUF	10/10/22 07:38
Total/NA	Prep	200.7			644765	VAK	EET BUF	10/11/22 08:59
Total/NA	Analysis	200.7 Rev 4.4		1	645061	LMH	EET BUF	10/12/22 02:06
Total/NA	Analysis	300.0		5	645723	IMZ	EET BUF	10/17/22 06:11
Total/NA	Analysis	310.2		10	646040	ARR	EET BUF	10/18/22 12:42
Total/NA	Analysis	353.2		1	644549	CSS	EET BUF	10/07/22 18:53
Total/NA	Analysis	353.2		1	645406	CSS	EET BUF	10/14/22 00:31
Total/NA	Analysis	9060A		10	646366	KER	EET BUF	10/18/22 17:44

Eurofins Buffalo

Client: AECOM

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-42S

Date Collected: 10/07/22 13:25 Date Received: 10/07/22 14:50

Lab Sample ID: 480-202482-11

Matrix: Water

Job ID: 480-202378-1

Batch Batch Dilution Batch Prepared Method Number Analyst or Analyzed **Prep Type** Type Run **Factor** Lab Total/NA SM 3500 EET BUF 10/13/22 12:30 Analysis 645292 LMH Total/NA 5 Analysis SM 3500 FE D 645196 CSS **EET BUF** 10/13/22 00:30 Total/NA Analysis SM 4500 S2 F 1 645493 CC **EET BUF** 10/14/22 10:21

Client Sample ID: MW-35S Lab Sample ID: 480-202482-12

Matrix: Water

Date Collected: 10/07/22 10:00 Date Received: 10/07/22 14:50

Batch Dilution Batch Batch Prepared **Prep Type** Type Method Run Factor Number Analyst or Analyzed Lab 10/13/22 07:10 8260C 645123 CR Total/NA Analysis EET BUF Total/NA 9060A EET BUF 10/14/22 19:11 Analysis 1 645783 KER

Client Sample ID: A1-GP06-S Lab Sample ID: 480-202482-13

Matrix: Water

Date Collected: 10/07/22 08:45 Date Received: 10/07/22 14:50

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	RSK-175		1	184657	RMG	EET BUR	10/13/22 12:34
Total/NA	Analysis	RSK-175		11	644615	MAN	EET BUF	10/09/22 20:39
Total/NA	Analysis	RSK-175	DL	88	644615	MAN	EET BUF	10/10/22 07:57
Total/NA	Prep	200.7			644765	VAK	EET BUF	10/11/22 08:59
Total/NA	Analysis	200.7 Rev 4.4		1	645061	LMH	EET BUF	10/12/22 02:17
Total/NA	Analysis	300.0		5	645723	IMZ	EET BUF	10/17/22 06:31
Total/NA	Analysis	310.2		10	646040	ARR	EET BUF	10/18/22 12:44
Total/NA	Analysis	353.2		1	644549	CSS	EET BUF	10/07/22 18:54
Total/NA	Analysis	353.2		1	644581	CC	EET BUF	10/08/22 18:20
Total/NA	Analysis	SM 3500		1	645292	LMH	EET BUF	10/13/22 12:30
Total/NA	Analysis	SM 3500 FE D		1	645196	CSS	EET BUF	10/13/22 00:30
Total/NA	Analysis	SM 4500 S2 F		1	645493	CC	EET BUF	10/14/22 10:21

Client Sample ID: TRIP BLANK Lab Sample ID: 480-202482-14 Date Collected: 10/07/22 06:30

Date Received: 10/07/22 14:50

Ratch Ratch Dilution Batch Prepared **Prep Type** Type Method Run **Factor Number Analyst** or Analyzed Total/NA 8260C 645123 CR EET BUF 10/13/22 07:33 Analysis

Client Sample ID: RINSE BLANK Lab Sample ID: 480-202540-1

Date Collected: 10/10/22 14:00 Date Received: 10/10/22 16:40

Batch Batch Dilution Batch Prepared Method **Number Analyst** or Analyzed **Prep Type** Type Run **Factor** Lab 10/15/22 08:02 8260C 645540 CB EET BUF Total/NA Analysis

Eurofins Buffalo

Matrix: Water

Client: AECOM Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: A1-GP10-S

Date Collected: 10/10/22 09:45

Lab Sample ID: 480-202540-2

Matrix: Water

Date Received: 10/10/22 16:40

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		400	645540	СВ	EET BUF	10/15/22 08:25
Total/NA	Analysis	RSK-175		1	184657	RMG	EET BUR	10/13/22 12:53
Total/NA	Analysis	RSK-175		11	644836	MAN	EET BUF	10/11/22 17:53
Total/NA	Analysis	RSK-175	DL	88	644836	MAN	EET BUF	10/11/22 19:36
Total/NA	Prep	200.7			644968	NVK	EET BUF	10/12/22 09:38
Total/NA	Analysis	200.7 Rev 4.4		1	645262	LMH	EET BUF	10/12/22 20:02
Total/NA	Analysis	300.0		5	645913	IMZ	EET BUF	10/17/22 23:42
Total/NA	Analysis	310.2		10	646085	STR	EET BUF	10/18/22 16:34
Total/NA	Analysis	353.2		1	644976	CC	EET BUF	10/11/22 15:21
Total/NA	Analysis	353.2		1	645406	CSS	EET BUF	10/14/22 00:47
Total/NA	Analysis	9060A		1	646191	KER	EET BUF	10/17/22 19:48
Total/NA	Analysis	SM 3500		1	645346	JJP	EET BUF	10/13/22 15:12
Total/NA	Analysis	SM 3500 FE D		1	645196	CSS	EET BUF	10/13/22 00:30
Total/NA	Analysis	SM 4500 S2 F		1	645493	CC	EET BUF	10/14/22 10:21

Client Sample ID: MW-30

Date Collected: 10/10/22 12:30 Date Received: 10/10/22 16:40

Lab Sample ID: 480-202540-3

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	645540	СВ	EET BUF	10/15/22 08:48
Total/NA	Analysis	9060A		1	646191	KER	EET BUF	10/17/22 20:46

Client Sample ID: MW-43S

Date Collected: 10/10/22 11:20 Date Received: 10/10/22 16:40

Lab Sample ID: 480-202540-4

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		4	645540	СВ	EET BUF	10/15/22 09:11
Total/NA	Analysis	9060A		1	646191	KER	EET BUF	10/17/22 21:45

Client Sample ID: MW-44S

Date Collected: 10/10/22 13:20

Date Received: 10/10/22 16:40

Lab Sample ID: 480-202540-5

		Batch	Batch		Dilution	Batch			Prepared
Pr	ер Туре	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
To	tal/NA	Analysis	8260C		1	645540	СВ	EET BUF	10/15/22 09:34
Tot	tal/NA	Analysis	9060A		1	646191	KER	EET BUF	10/17/22 22:14

Lab Chronicle

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: A1-GP14-S Lab Sample ID: 480-202540-6

Date Collected: 10/10/22 11:45 **Matrix: Water**

Date Received: 10/10/22 16:40

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		2	645540	СВ	EET BUF	10/15/22 09:57
Total/NA	Analysis	9060A		1	646191	KER	EET BUF	10/17/22 22:43

Lab Sample ID: 480-202540-7 **Client Sample ID: TRIP BLANK**

Date Collected: 10/10/22 08:00 **Matrix: Water**

Date Received: 10/10/22 16:40

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C			645540	СВ	EET BUF	10/15/22 10:20

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

EET BUR = Eurofins Burlington, 530 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

Accreditation/Certification Summary

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Laboratory: Eurofins Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date	
New York	NE	ELAP	10026	03-31-23	
The following analyte	s are included in this rend	ort but the laboratory is r	not certified by the governing authority.	This list may include analytes for which	
the agency does not	•	ort, but the laboratory to t	not continue by the governing duthonly.	This list may include unarytes for which	
,	•	Matrix	Analyte	This list may morade analytes for while	
the agency does not	offer certification.	•	, , ,	This list may include analytes for while	

Laboratory: Eurofins Burlington

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
ANAB	Dept. of Defense ELAP	L2336	02-25-23
Connecticut	State	PH-0751	09-30-23
DE Haz. Subst. Cleanup Act (HSCA)	State	N/A	05-17-23
Florida	NELAP	E87467	06-30-23
Minnesota	NELAP	050-999-436	12-31-22
New Hampshire	NELAP	2006	12-18-22
New Jersey	NELAP	VT972	06-30-23
New York	NELAP	10391	04-01-23
Pennsylvania	NELAP	68-00489	04-30-23
Rhode Island	State	LAO00298	12-30-22
US Fish & Wildlife	US Federal Programs	058448	07-31-23
USDA	US Federal Programs	P330-17-00272	10-30-23
Vermont	State	VT4000	02-10-23
Virginia	NELAP	460209	12-14-22
Wisconsin	State	399133350	08-31-23

3

4

6

0

9

10

Method Summary

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	EET BUF
RSK-175	Dissolved Gases (GC)	RSK	EET BUF
RSK-175	Dissolved Gases (GC)	RSK	EET BUR
200.7 Rev 4.4	Metals (ICP)	EPA	EET BUF
300.0	Anions, Ion Chromatography	MCAWW	EET BUF
310.2	Alkalinity	MCAWW	EET BUF
353.2	Nitrate	EPA	EET BUF
353.2	Nitrogen, Nitrite	MCAWW	EET BUF
9060A	Organic Carbon, Total (TOC)	SW846	EET BUF
SM 3500	Iron, Ferric	SM	EET BUF
SM 3500 FE D	Iron, Ferrous and Ferric	SM	EET BUF
SM 4500 S2 F	Sulfide, Total	SM	EET BUF
200.7	Preparation, Total Metals	EPA	EET BUF
5030C	Purge and Trap	SW846	EET BUF

Protocol References:

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

RSK = Sample Prep And Calculations For Dissolved Gas Analysis In Water Samples Using A GC Headspace Equilibration Technique, RSKSOP-175, Rev. 0, 8/11/94, USEPA Research Lab

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

EET BUR = Eurofins Burlington, 530 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

Eurofins Buffalo

2

E

7

ŏ

9

10

11

Sample Summary

Client: AECOM Job ID: 480-202378-1

Project/Site: Scott Figgie Area 1 BCP

480-202540-7

TRIP BLANK

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	
480-202378-1	MW-36S	Water	10/05/22 12:15	10/05/22 16:50	
480-202378-2	MW-36D	Water	10/05/22 11:35	10/05/22 16:50	
480-202379-1	A1-GP09-S	Water	10/05/22 13:00	10/05/22 16:50	
480-202380-1	A1-GP16-S	Water	10/05/22 14:50	10/06/22 10:01	
480-202443-1	MW-38D	Water	10/06/22 12:20	10/06/22 16:40	
480-202443-2	A1-GP06-S	Water	10/06/22 14:05	10/06/22 16:40	
480-202443-3	A1-GP18-S	Water	10/06/22 09:25	10/06/22 16:40	
480-202443-4	MW-37D	Water	10/06/22 10:35	10/06/22 16:40	
480-202443-5	MW-39D	Water	10/06/22 11:30	10/06/22 16:40	
480-202443-6	A1-GP02-S	Water	10/06/22 13:15	10/06/22 16:40	
480-202443-7	A1-GP15-S	Water	10/06/22 15:00	10/06/22 16:40	
480-202482-1	CB-1	Water	10/07/22 08:00	10/07/22 14:50	
480-202482-2	CB-2	Water	10/07/22 07:40	10/07/22 14:50	
480-202482-3	CB-3	Water	10/07/22 06:40	10/07/22 14:50	
480-202482-4	CB-4	Water	10/07/22 07:00	10/07/22 14:50	
480-202482-5	CB-E	Water	10/07/22 07:10	10/07/22 14:50	
480-202482-6	TP-5	Water	10/07/22 08:20	10/07/22 14:50	
480-202482-7	TP-6	Water	10/07/22 08:40	10/07/22 14:50	
480-202482-8	DUPLICATE	Water	10/07/22 08:00	10/07/22 14:50	
480-202482-9	MW-35D	Water	10/07/22 08:45	10/07/22 14:50	
480-202482-10	MW-40D	Water	10/07/22 12:35	10/07/22 14:50	
480-202482-11	MW-42S	Water	10/07/22 13:25	10/07/22 14:50	
480-202482-12	MW-35S	Water	10/07/22 10:00	10/07/22 14:50	
480-202482-13	A1-GP06-S	Water	10/07/22 08:45	10/07/22 14:50	
480-202482-14	TRIP BLANK	Water	10/07/22 06:30	10/07/22 14:50	
480-202540-1	RINSE BLANK	Water	10/10/22 14:00	10/10/22 16:40	
480-202540-2	A1-GP10-S	Water	10/10/22 09:45	10/10/22 16:40	
480-202540-3	MW-30	Water	10/10/22 12:30	10/10/22 16:40	
480-202540-4	MW-43S	Water	10/10/22 11:20	10/10/22 16:40	
480-202540-5	MW-44S	Water	10/10/22 13:20	10/10/22 16:40	
480-202540-6	A1-GP14-S	Water	10/10/22 11:45	10/10/22 16:40	

Water

10/10/22 08:00 10/10/22 16:40

1

4

D

7

9

10

44

Job Number: 480-202378-1

Client: AECOM

Login Number: 202378 **List Source: Eurofins Buffalo**

List Number: 1

Creator: Yeager, Brian A

oroator: rougor, Brian A		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	AECOM
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

Login Number: 202379 List Source: Eurofins Buffalo

List Number: 1

Creator: Stopa, Erik S

ordatori Otopa, Erik O		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	AECOM
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

Login Number: 202380 List Source: Eurofins Buffalo

List Number: 1

Creator: Stopa, Erik S

ordatori Otopa, Erik O		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	AECOM
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

Eurofins Buffalo

Login Number: 202443 List Source: Eurofins Buffalo

List Number: 1

Creator: Stopa, Erik S

Creator. Stopa, Erik S		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	AECOM
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

List Number: 202443
List Number: 2
List Creation: 10/08/22 11:16 AM

Creator: Cunningham, Caroline R

Creator: Cunningnam, Caroline R		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	True	1963680
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.6°C
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Login Number: 202482 List Source: Eurofins Buffalo

List Number: 1

Creator: Wallace, Cameron

Grouter: Trainese, Cameron		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	AECOM
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

Eurofins Buffalo

List Number: 202482
List Number: 2
List Creation: 10/12/22 04:00 PM

Creator: Reynolds, Jamie K

oreator. Neyriolus, Jaille K		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	True	1963695, 1963696
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	0.6°C, 0.4°C
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	N/A	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	Check done at department level as required.

Login Number: 202540 List Source: Eurofins Buffalo

List Number: 1

Creator: Yeager, Brian A

ordator. rougor, Erian A		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	AECOM
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

Eurofins Buffalo

List Number: 202540
List Number: 2
List Creation: 10/12/22 04:00 PM

Creator: Reynolds, Jamie K

oreator. Neyriolus, Jainie N		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	True	1963695, 1963696
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or ampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	0.6°C, 0.4°C
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	N/A	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	N/A	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	Check done at department level as required.

Eurofins Buffalo

10 Hazelwood Drive Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991	Chain of	Chain of Custody Record	cord	_						- Gn	: eurotins	Environment Testing America
Client Information	Sampler Ollin Hurracks		Lab PM Fischer, Brian J	_			Carrier	Carrier Tracking No(s)	40(s).	COC No 480-17	COC No: 480-176659-19195	35.2
Citent Contact Mr. Dino Zack	866	22	E-Mail Brian Fischer@et.eurofinsus.com	et eurofir	isus.com		State	State of Origin	7/	Page Page 2 of	2 of 4	
Company: AECOM	PWSID				Ana	Analysis R	Requested	pe		Job #		
Address One John James Audubon Parkway Suite 210	Due Date Requested: BLPO	STD	W/A							Prese	Preservation Codes	es: M - Hexane
Gity. Amherst	TAT Requested (days):		No. of Contract of							B - Na(C - Zn	B - NaOH C - Zn Acetate	N - None O - AsNaO2 P - Na2O4S
State, Zip. NY, 14228	oliance Project: A Yes									E Nat		Q - Na2S203 R - Na2S203
Phone 716 866 8222	PO#. 142167		le le							G-A-H	-	S - H2SO4 T - TSP Dodecahydrate
om.com	wo# 60676146			ols.	a		_	·				V - MCAA W - oH 4-5
Project Name. Oct-22	Project #. 48011352		10 80	O_eisit		1		Carbor		K-EDTA		Y - Trizma Z - other (specify)
Site	SSOW#		Y) ds	ite, Ni		stoT ,				of con		
Sample Identification	Sample Date Time G:	Sample Matrix Type Sasold. (C=comp, owassoid. G=grab) BT-frace, Ada;)	Field Filtered S Perform MS/M: 8260C - TCL list	353.2, 353.2_Nit.	3200_Fe+3_D_C	310.2 - Alkalinity	88K_175 - meth	108 - 085_0.005 10 IstoT - A0809		redmuM istoT	Special Ins	Special Instructions/Note:
	X	ation Code.	X	۵ 2	10	z	4	-				
- GO- MW		Water										
44 GP95-6		Water								3		
41-0F19-G-		Water							-	85		
A1.CD18 6-		Water										
MW 425		Water										
-05-MM		Water						480-7	7378	480-202328 Chair 6		
MM 35S		Water					-			airi or Custo	λς.	
WW-55D		Water										
MW-36S	5121 7215101	G Water	8					7		5		
MW-36D	1015/22/135	6 Water	3					7		5		
#WY.STD		Water								48		
ant	Poison B Unknown Rad	Radiological	Sample	le Disposal (A 1 Return To Client	al (A fee Client	may be	assess Dispos	assessed if san Disposal By Lab	nples ar	Sample Disposal (A fee may be, assessed if samples are retained longer than 1 month) Return To Client Obsposal By Lab Archive For Mon	ger than 1	month) Months
Deliverable Requested: I, III, IV, Other (specify)			Special	Special Instructions/QC Requirements	ons/QC F	Requirem	ents:					
Empty Kit Relinquished by:	Date:		Time:					Method of Shipment	hipment			
Relinquished by: Limit Hong	3/ 22/53	Sompany Com		Received by	SM	chin	7	the	ate/Time:	1510	2 16	Sompany of
Relinquished by	Date/Time	Company	Rec	Received by:					Date/Time			Company
Relinquished by	Date/Time	Company	Rec	Received by					Date/Time:			Сотрапу
Custody Seals Intact: Custody Seal No.			⁸	Cooler Temperature(s) °C and Other Remarks.	iture(s) °C	and Other	Remarks	J)				
												Ver: 06/08/2021

🔆 eurofins

Carrier Tracking No(s)

Chain of Custody Record

0 - ANNaO2
P - Ma2O4S
Q - Na2SO3
R - Na2S2O3
S - H2SO4
T - TSP Dodecahydrate
U - Acctione Special Instructions/Note: Ver: 06/08/202 Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) 000 480-176659-19195.3 Preservation Codes: A - HCL
B - NaOH
C - Zn Acetate
C - Ntric Acid
E - NahSO4
F - MeOH
G - Amchlor
H - Ascorbic Acid Page 3 of 4 1 · Ice J · DI Water K · EDTA Archive For # Total Number of containers S Sold Time Date/Time lethod of Shipment 1 Disposal By Lab nodraS pinagro latoT - A080e State of Origin **Analysis Requested** etallu2 - 082_0.008 3 Cooler Temperature(s) °C and Other Remarks Special Instructions/QC Requirements RSK_175_CO2_D5 - Carbon dioxide 310.2 - Alkalinity, Total CB Fischer, Brian J E-Mail: Brian Fischer@et.eurofinsus.com SM4500_S2_D - Sulfide Return To Client 3200 Ee+3 D Cal, 3500 FE D Received by 153.2, 353.2_Nitrite, Nitrate_Calc 8260C - TCL IIst OLM04.2 AECON 2 (OH TO BOY) GEMISH mother Time Field Filtered Sample (Yes or No) Preservation Code: Water Matrix Water Water Water Water Water Water Water Water Water Water Radiological Type (C=comp, G=grab) Sample 1650 COLLIN HUNDOUS 9 Der 60 Due Date Requested: 5TD 300 Sample 2/6 866 Date/Time 16/5/22 Date Unknown (AT Requested (days) 10/5122 Sample Date WO#: 60676146 Project #: 48011352 PO# 142167 Date/Time Poison B Skin Irritant Deliverable Requested: I, II, III, IV, Other (specify) One John James Audubon Parkway Suite 210 Custody Seal No. mound Flammable Possible Hazard Identification Empty Kit Relinquished by 718811 Custody Seals Intact: Client Information dino zack@aecom.com Sample Identification Non-Hazard Client Contact
Mr. Dino Zack 100100 S 9000 elinquished by 90400 linquished by A1-GP09-S 1000 State, Zip: NY, 14228 1 000 M 1 254 W 1-GP02-S roject Name 400 W 435 W-38D Company Amherst Oct-22 Address :euou

Ver: 06/08/2021

	Eurofins Buffalo 10 Hazelwood Drive Amherst, VY 14228-2298	Cha	hain of Custody Record	stody R	ecord							💸 eurofins	rofins	Environment Testing America
	Client Information	Sampler (AII.)	12-rocues	Lab P Fisch	Lab PM Fischer, Brian J				Carrier Tra	Carrier Tracking No(s)	-	COC No.	COC No. 480-176659-19195	35.4
	Client Contact Mr. Dino Zack	10	6 8222	E-Mail Brian	E-Mail Brian Fischer@et.eurofinsus.com	et.eurofins	us.com		State of Origin	Ngin V	8	Page 4	of 4	
	Company. AECOM		PWSID				Analysis	sis Req	Requested			# qor		
	Address: One John James Audubon Parkway Suite 210	Due Date Requested:	570									Preserv	Preservation Codes	es: M - Hexane
	City Amherst	TAT Requested (days):	00									B - NaOH C - Zn Acetate		N · None O · AsNaO2 P · Na2O4S
	State, ZIP: NY, 14228		A Yes A No									E - NaHS		Q - Na2SO3 R - Na2S2O3
	7728 998 7	PO#: 142167			(0			•				G - Amch	P	S - H2SO4 T - TSP Dodecahydrate
		wo# 60676146				ple	a	bixoit	snedt	ı				V - MCAA W - pH 4-5
	Project Name Oct-22	Project # 48011352			TO 86	O_estant			e/ensh	Carbor		L-EDA		Y - Trizma Z - other (specify)
	Site	\$SOW#			N) ds	iN ,esti				oinag		of cot		
		Sar	Sample (C=comp,	Watrix (wwwster, Sasolid, Owwasteroid,	MSM moon from MS/M soc - TCL list	no11 - 7.0	14200 25 D ·	V_175_CO2_I	M_175 - meth	10 lajoT - A08		redmuM isi		
Pac	Sample Identification	Sample Date Ti	Time G=grab)	B =	dX	- -	+		-	06 <			pecial Ins	Special Instructions/Note:
ae 9	ALGPIAS			Water										
3 of	A16946 E-			Water										
f 10	A1-GP16-S	HI 72/5/01	50 62	Water	3					2		5		
5	Frip Diank			Water								F.83		
,	Trip Blank			Water					_			50.4 50.6		
									-08	202380	480-202380 Chain of Custody	Custody		
	Possible Hazard Identification Non-Hazard — Flammable — Skin Imlant — Pois	Poison B Unknown	Radiological	sal	Sample	Sample Disposal (A fee may be assessed if samples	I (A fee I	nay be a	be assessed if sam	if samp 3y Lab	les are re	are retained longer than 1 month,	er than 1 i	month) Months
	ested: I, II, III, IV, Other (specify)				Special	Special Instructions/QC Requirements:	ns/QC Re	quiremer						
	linquished by:	Date			Time		1 /		Meth	Method of Shipment	ment			
	Curren	Date/Time.	057	Company	E Cent Rec	Received by	, LAKE	Law	11/1/19	12	Date/Time (O	22/51	21650	Company
10/	Relinquished by:	Date/Time:		Company	Rec	Received by				Da	Date/Time:			Company
26/2	Relinquished by	Date/Time:		Company	Rec	Received by				Da	Date/Time:			Company
2022	Custody Seals Intact: Custody Seal No.				8	Cooler Temperature(s) °C and Other Remarks.	ure(s) °C an	d Other Re	narks.					
2														Vor. 06/08/2021

C S C C C C C C C C	Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991				Amento
The State State	Client Information	(e/(:)	Lab PM: Fischer, Brian J	Carrier Tracking No(s):	COC No. 480-176659-19195.1
Compared Compared	Clent Confact Mr Dino Zack	716 866 822	E-Mail: Brian. Fischer@et.eurofinsus.com		Page: Page 1 of 4
	Company AECOM		lysis	equested	Job #
	Address: One John James Audubon Parkway Suite 210				ပ္ပိ
	Oly: Amherst	0			
16 866 8222 112/16 1	State, Z.p. NY, 14228	ct: A Yes			
Comparison Com	278 998 91.	PO# 142167			D
Sample Date Matrix Sample Carloon Sample Carloon Carlo	Email: dino.zack@aecom.com	WO#: 60676146) Salc	anerit	I - Ice J - DI Water
Sample Oate Sample Oate	Project Name:	Project #: 48011352	2.2 .2=================================	a/ane	K - EDTA L - EDA
Sample Date Tripe (Corons Corons Coron	Sile	#MOSS	OLMO4 OLMO4 ite, Nitr sl, 3500 Sulfide	este O zinaç	Other:
Sample Date Time Graph Image Freservation Code: X A N D N GB N N A N A Y Y Y Y Y Y Y Y Y		Sample Type (C=comp, c	aid Filtered S 60C - TCL list 60C - TCL list 73.2, 353.2 With 70.7 - Iron 60C - Fe+3 D.Ca 64500_S2.D - 3 64500_S2.D - 3	stlu2 - 082_0.0 19102 - 082_0.0 1910 IstoT - A03	
Water Wate	Sample Identification	Time G=grab)	20 20 20 20 20 20 20 20 20 20 20 20 20 2	06 A 300 Z	
Water Sample bysoal (A fee may be assessed if samples are retained longer than 1 in Sample bysoal (A fee may be assessed if samples are retained longer than 1 in Sample bysoal (A fee may be assessed if samples are retained longer than 1 in Sample bysoal (A fee may be assessed if samples are retained longer than 1 in Sample bysoal (A fee may be assessed if samples are retained longer than 1 in Sample bysoal (A fee may be assessed if samples are retained longer than 1 in Sample bysoal (A fee may be assessed if samples are retained longer than 1 in Sample bysoal (A fee may be assessed if samples are retained longer than 1 in Sample bysoal (A fee may be assessed if samples are retained longer than 1 in Sample bysoal (A fee may be assessed if samples are retained longer than 1 in Sample bysoal (A fee may be assessed if samples are retained longer than 1 in Sample bysoal (A fee may be assessed if samples are retained longer than 1 in Sample bysoal (A fee may be assessed if samples are retained longer than 1 in Sample bysoal (A fee may be assessed if samples are retained longer than 1 in Sample bysoal (A fee may be assessed if samples are retained longer than 1 in Sample bysoal (A fee may be assessed if samples are retained longer than 1 in Sample bysoal (A fee may be assessed if samples are retained longer than 1 in Sample bysoal (A fee may be assessed if samples are retained longer than 1 in Samples are retained longer than 1 in Samples are retained longer than 1 in Samples are retained longer than 1 in Samples are retained longer than 1 in Samples are retained longer than 1 in Samples are retained longer than 1 in Samples are retained longer	483				
Water Water	08-2		Water		
Volter Water W	1		Water		
Water Water	CBA		Water		Custody
Water Wate			Water	480-202443 Chair	
Water Wat	tb-6		Water		
Water Water Water Water Water Water Water Special Institutions/IC Requirements Volter (specify) Date: Skin Irritant Delta: She Irring Delta: Special Institutions/IC Requirements Special Institutions/IC Remarks Special	P-6		Water		
Vater Water Water Water Water Water Water Sample Disposal (A fee may be assessed if samples are retained longer than 1n Sample Disposal (A fee may be assessed if samples are retained longer than 1n Sample Disposal (A fee may be assessed if samples are retained longer than 1n Sample Disposal (A fee may be assessed if samples are retained longer than 1n Sample Disposal (A fee may be assessed if samples are retained longer than 1n Sample Disposal (A fee may be assessed if samples are retained longer than 1n Sample Disposal (A fee may be assessed if samples are retained longer than 1n Sample Disposal (A fee may be assessed if samples are retained longer than 1n Sample Disposal (A fee may be assessed if samples are retained longer than 1n Sample Disposal (A fee may be assessed if samples are retained longer than 1n Sample Disposal (A fee may be assessed if samples are retained longer than 1n Sample Disposal (A fee may be assessed if samples are retained longer than 1n Sample Disposal (A fee may be assessed if samples are retained longer than 1n Sample Disposal (A fee may be assessed if samples are retained longer than 1n Sample Disposal (A fee may be assessed if samples are retained longer than 1n Sample Disposal (A fee may be assessed if samples are retained longer than 1n Samples are retained longer than 1n Samples are retained longer than 1n Samples are retained longer than 1n Samples are retained longer than 1n Samples are retained longer than 1n Samples are retained longer than 1n Samples are retained longer than 1n Samples are retained longer than 1n Samples are retained longer than 1n Samples are retained longer than 1n Samples are retained longer than 1n Samples are retained longer than 1n Samples are retained longer than 1n Samples are retained longer than 1n Samples are retained longer than 1n Samples are retained longer than 1n Samples are retained longer than 1n Samples are retained longer than 1n Samples are retained lon	Buplicate		Water		
	Riose Blank		Water		
Coler Temperature(s) **C and Other Remarks Sample Disposal (A fee may be assessed if samples are retained longer than 1 n Sample Disposal (A fee may be assessed if samples are retained longer than 1 n Sample Disposal (A fee may be assessed if samples are retained longer than 1 n Sample Disposal (A fee may be assessed if samples are retained longer than 1 n Special Instructions/OC Requirements: Special Instructions/OC Requirements:	MW 350		Water		
Sample Disposal (A fee may be assessed if samples are retained longer than 1 no Citient Special Instructions/QC Requirements: Special Instructions/QC Requiremen	MW-38D	(220 6	X X X X	X	
Date: Time: Time: Time: Time: Time: Time: Old 22 6	/, Other	Unknown	Sample Disposal (A fee may be Return To Client Special Instructions/QC Requirem	assessed if samples are retain $1_{ m Disposal}$ By Laberts:	ined longer than 1 month) chive For Months
Light Company Company Received by Company MMM Cov Closs Cover temperature(s) °C and Other Remarks Color Temperature(s) °C and Other Remarks Date/Time A No A No Cooler Temperature(s) °C and Other Remarks 3 9 # 12 E	Empty Kit Relinquished by:	Date:	Time:	Method of Shipment	
Date/Time Company Received by Date/Time Date/T	K 1	(2h9) 72,	Received by:	/ Clus of Date Time:	10/22 RUGT
Sals Intact: Custody Seal No: Cooler Temperature(s) °C and Other Remarks: 3/9 # ICE	Reinquished by			Date/Time:	Company
Cooler Temperature(s) °C and Other Remarks: 3,9 \(\mathbb{T} \) \(\mathbb{T} \) (E	Reinquished by:			Date/Time	Company
			Cooler Temperature(s) ^o C and Other F	3,9#	3)

Eurofins Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Phone: 716-691-2600 Fax 716-691-7991	Chain of Custody Record	ody Recor	p			eurofins Environment Testing America
Client Information	Sampler Collin Homo CES	Lab PM: Fischer, Brian	ף	Carrier Tracking No(s)		COC No. 480-176659-19195.2
Client Contact Mr. Dino Zack	20	E-Mail: Brian Fische	E-Mait Brian. Fischer@et.eurofinsus.com	State of Origin	Page	Page Page 2 of 4
Company: AECOM			Analysis Requested	quested	# qor	**
Address. One John James Audubon Parkway Suite 210	Due Date Requested: STD	erije grazi			Pre	
City. Amherst	TAT Requested (days):				▼ m ∪ i	
State, ZIP. NY, 14228	Compliance Project: Δ Yes Δ No				Ш	
Phone 71686 8222	PO# 142167	(6			. 9 H	
Email: dino.zack@aecom.com	W0 # 60676146		C			
Project Name. Oct-22	Project # 48011352		C.FE_I			K - EDTA Y - Trizma L - EDA Z - other (specify)
Site	SSOW#		nite, Nin al, 350 Sulfide	əte	noo to	
Sample Identification	Sample Date Time G=cmp, o	Matrix (W-water. S=solid, O-wastell) Pield Fillsteed	3260C - TCL list 363.2, 363.2 Juliu 200.7 - Iron 3600_Fe+3_D_C 5M4500_S2_D - 510.2 - Alkalinity 340.2 - Alkalinity	306.0_28D - Sulf	Tedmuh Isto	Snecial Instructions Note
	Preserva	X	N CB N	z		openial metactions more.
- GOT NAM		Water			53	
A1-GP06-S	9 5041 22/2/91	Water	×	X	7.4	
A1-07-10-6		Water			部本	
A1-GP18-S	10/6/22/0925 6	Water	X X X X X X X	X X		
MMM 42S	10/6/34	Water			双道	
TAIN 30		Water				
MM 35S		Water				
MW-33B-		Water				
MAN 30S		Water			786	
WWW 36D		Water			Fig	
MW-37D	10/6/22 1035 6	Water	×	×	7	
ant 🗀	Poison B Unknown Radiological	Sam	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Mon	Disposal By Lab	les are retained lo	onger than 1 month) For Months
V, Oth		Spec	Special Instructions/QC Requirements	nts.		
Empty Kit Relinquished by:	Date:	Time		Method of Shipment	ment	
Relinquished by Curr Harra	10/6/12 1640	Elan	Received by WW (HCV	(14.dby)/	10/01	22 (646 14
			}	Dat	Date/Time	Company
Relinquished by	Date/Time. Con	Company	Received by	Oat	Date/Time	Company
Custody Seals Intact: Custody Seal No.:			Cooler Temperature(s) °C and Other Remarks	emarks		
			11	9	7 8	Ver: 06/08/2021

Environment Testing

🔆 eurofins

arrier Tracking No(s)

Chain of Custody Record

Phone: 716-691-2600 Fax: 716-691-7991

Amherst, NY 14228-2298

10 Hazelwood Drive

Eurofins Buffalo

N - None
O - ANAO2
P - NA2O4S
Q - NA2C9C
R - NA2SC03
S - H2SO4
T - TSP Dodecahydrate
U - Acetone
V - MGAA
W - pH 4-5
Y - Trizma Special Instructions/Note: Z - other (specify) Ver: 06/08/2021 Months 480-176659-19195.3 Preservation Codes C - Zn Acetate
D - Nitric Acid
E - Natho Acid
F - MeOH
G - Amchlor
H - Ascorbic Acid
I - Ice
J - Di Water
K - EDTA Page 3 of 4 Total Number of containers Date/Time Method of Shipmen 9000A - Total Organic Carbon ィ State of Origin **Analysis Requested** Cooler Temperature(s) °C and Other Remarks. 42K_175 - methane/ethane/ethene Special Instructions/QC Requirements: MM (CVC) 310.2 - Alkalinity, Total 8 2 M4200 25 D - 2 milige Brian.Fischer@et.eurofinsus.com no11 - 7.00S ۵ Received by: Received by: 153.2, 353.2 Nitrite, Nitrate_Calc Lab PM: Fischer, Brian J × Company

Company (off to self) GEM/SM michel Time E-Mail BT=Tissue, A=Air) (W=water. S=solid. O=waste/oil. Preservation Code: Matrix Water Water Water Water Water Water Water Water Water Water Water Company 2778 Type (C=comp, Radiological G=grab) Hrass 029 Sample 5 S Due Date Requested: 5701130 716 866 RPBO Sample Time 1315 Collin Unknown Date AT Requested (days): 22/9/01 72/9/o1 Sample Date 10/6/22 Project #: 48011352 60676146 PO#. 142167 Date/Time # OM Poison B Skin Irritant Deliverable Requested: I, II, III, IV, Other (specify One John James Audubon Parkway Suite 210 Custody Seal No.: Come A1-6002-5 Flammable Possible Hazard Identification mi 988 91 Empty Kit Relinquished by Custody Seals Intact:

Δ Yes Δ No Client Information dino.zack@aecom.com Sample Identification Non-Hazard Mr. Dino Zack 7-0P92.S T-CP00 S 1-Spec 6-Phone ri-GPTD-9 elinquished by: elinquished by: 3 81 d 5 t 4 elinquished by State, Zip: NY, 14228 Project Name CC+ ANIM city: Amherst 97 AN CHT-MM Company MW-39D COT-AMA Oct-22 Site Address

10/26/2022

eurofins Environment Testing

Carrier Tracking No(s)

Chain of Custody Record

Lab PM

T - TSP Dodecahydrate Special Instructions/Note: other (specify) Ver: 06/08/2021 N - None O - AsNaO2 P - Na2O4S Q - Na2SO3 R - Na2S2O3 S - H2SO4 U - Acetone V - MCAA W - pH 4-5 Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mon 7000 480-176659-19195.4 Preservation Codes A - HCL
B - NaOH
C - Zn Acetate
C - Zn Acetate
D - Nitric Acid
F - NahSO4
F - MeOH
G - Amchlor
H - Ascorbic Acid Page Page 4 of 4 Job #: loe Di Water - EDTA War (UC) Batertime (O/O/O) Total Number of containers Method of Shipment 3 M 9060A - Total Organic Carbon State of Origin **Analysis Requested** etstlu2 - G82_0.008 Cooler Temperature(s) °C and Other Remarks Special Instructions/QC Requirements: SK_175_CO2_D5 - Carbon dioxide 310.2 - Alkalinity, Total CB 2M4200_52_D - Sulfide Brian. Fischer@et.eurofinsus.com 600_Fe+3_D_Cal, 3500_FE_D Received by Received by Received by 353.2, 353.2 Mitrite, Mitrate_Calc Fischer, Brian J (oh so seY) GEM/SM mnohe Company Com Time Field Filtered Sample (Yes or No) E-Mail Preservation Code: Water Water Water Water Water 2728 Radiological (C=comp, G=grab) Sample Type 047/ ٥ CUIT. HUNDLES De 100 A Yes A No 570 1500 Sample 886 Date Unknown TAT Requested (days): Due Date Requested: Compliance Project: Jate/Time 10/16/12 9/1 Sample Date 22/9/01 wo#. 60676146 Project # 48011352 Jate/Time PO# 142167 Phone Poison B Skin Irritant Deliverable Requested: I, II, III, IV, Other (specify) One John James Audubon Parkway Suite 210 Custody Seal No. Flammable | Possible Hazard Identification uers The Empty Kit Relinquished by: 711866 Custody Seals Intact: A Yes A No Client Information dino zack@aecom com Sample Identification Non-Hazard Mr. Dino Zack inquished by. inquished by 11-6P 16-5 elinquished by A1-GP15-S State, Zip NY, 14228 CP14 6 P Blank Project Name rip Blank AECOM Amherst Oct-22

Phone: 716-691-2600 Fax: 716-691-7991 Amherst, NY 14228-2298 10 Hazelwood Drive

Page 97 of 105

Seurofins Engrounent Testing.
Anterico

Core for the figure of the fig	
A fee may be a second dioxide a second d	marks.
Received by	Cooler Temperature(s) °C and Other Remark
Sample (Water Company) Sample (Water Company) C Water C Wate	
Chain c	
Eurofins Buffalo 10 Hazekwood Dive Amherst, NY 14228-2298 Phone 716-691-7991 Client Information Client Contact Mr. Divo Zack Company: Amherst Size, Zio. NY. 14228 Phone Tile \$8.22 Final Client Contact NY. 14228 Phone Tile \$8.22 Final Client Contact NY. 14228 Phone Tile \$8.22 Final Client Contact Size Zio. Size CB-1 CB-1 CB-2 CB-1 CB-2 CB-4 CB-6 Duplicate Rinse Blank MW-35D MW	Custody Seals Intact: Custody Seal No.: A Yes A No

: eurofins

arrier Tracking No(s)

Chain of Custody Record

T - TSP Dodecahydrate Special Instructions/Note: Ver: 06/08/2021 N - None O - AsNaO2 P - Na2O4S Q - Na2SO3 R - Na2S2O3 S - H2SO4 U - Acetone
V - MCAA
W - pH 4-5
Y - Trizma Months A House Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mon COC No. 480-176659-19195.2 Preservation Codes A - HCL
B - NaOH
C - Zn Acetate
C - Nitro Acid
E - NahSO4
F - MeOH
G - Amchlor
H - Ascorbic Acid 22 Page: Page 2 of 4 Job# · DI Water 〈 - EDTA L - EDA Total Number of containers Method of Shipment State of Origin \prec メイメ nodisO cinsgiO IstoT - A0806 Analysis Requested Cooler Temperature(s) °C and Other Remarks RSK_175 - methane/ethane/ethene Special Instructions/QC Requirements Y XX SSK_175_CO2_D5 - Carbon dioxide X De メメヤ 2M4500_52_D - Sulfide CB E-Mail. Brian. Fischer@et.eurofinsus.com Return To Client 7 3200 Fe+3 D Cal, 3500 FE D Received by 7 X 353.2, 353.2_Nitrite, Nitrate_Calc Lab PM: Fischer, Brian J X 3260C - TCL Iist OLM04.2 erform MS/MSD (Yes or No) Time Field Fiftered Sample (Yes or No) Company Matrix Preservation Code: Water Water Water Water Water Water Water Water Water Water Water Radiological Sample Type (C=comp, G=grab) 25/21 0 0 0 2 A Yes A No TAT Requested (days): STD Sample Time 07112/1325 000 200 Date Unknown 2216/0 Due Date Requested: Compliance Project: 9/ 16/7122 Sample Date なだら 1 WO# 60676146 Project #: 48011352 SSOW#: Date/Time 142167 Poison B Skin Irritant | Non-Hazard | Flammaore | Poliverable Requested: |, II, III, IV, Other (specify) Suite 210 Custody Seal No. uni Herm One John James Audubon Parkway 716 86 Possible Hazard Identification Empty Kit Relinquished by: Custody Seals Intact:

Δ Yes Δ No 茶 Client Information dino.zack@aecom.com Sample Identification Mr. Dino Zack elinquished by dinquished by ndnished by 1-GP06.S 1-6048 S SPIUS State, Zip: NY, 14228 100€ 100€ - 06 MM SOC-MAIN DAR-SED Company: AECOM MW-42S MW-40D MW-35S Amherst Oct-22

Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991 10 Hazelwood Drive

Page 99 of 105

	Eurofins Buffalo 10 Hazelwood Drive Ambrest, NY 14228-2298 Phone: 716-691-2600 Fav. 716-691-7991	Chain of Custody Record	tody Rec	ord			र्ंं eurofins	Environment Testing America
	Client Information	Sampler CH/02	Lab PM Fischer, Brian J	3rian J	Carrie	Carrier Tracking No(s):	COC No. 480-176659-19195	95.3
	Client Contact Mr. Dino Zack	Phone 716 866 822	2	E-Mail Brian Fischer@et eurofinsus.com		State of Origin	Page 3 of 4	
	Company AECOM	M			Analysis Requested		# doc	
	Address: One John James Audubon Parkway Suite 210	Due Date Requested:	E546	55.00			lš	es: M - Hexane
	City. Amherst	TAT Requested (days):					B NaOH C - Zn Acetate	N · None O · AsNaO2 P · Na2O4S
	NY, 14228	oliance Project: A						Q - Na2SO3 R - Na2S2O3
	Phone 716 868 8722	PO#. 142167	(0	res and			О	S - H2SO4 T - TSP Dodecahydrate
	Email: dino.zack@aecom.com	wo# 60676146		ole	•bixoit	ı		U - Acetone V - MCAA W - pH 4-5
	Project Name: Oct-22	Project # 48011352		2.1 D_ets1	nod1	nodis		Y - Trizma Z - other (specify)
	Site	SSOW#		OLM04	Sulfide IstoT ,		oop to	
		Sample	Matrix (wwwater, S=solld, O=washvoll,	60C - TCL IIst 1 3.2, 353.2_Nitr 0.7 - Iron	M4500_52_D - 5 0.2 - Alkalinity iK_175_CO2_E iK_175 - metha	stlu2 -	o and muber of	
Pag	Sample Identification	Sample Date Time G=grab) 81*Thsus, A*A Preservation Code:	E K	20 C 20 Z 28 Z	NS C	+		Special Instructions/Note:
ge 1	WW 38D		Water		2	8		
00	MIVV-39D		Water				1 39	
of 10	MAW 40B-		Water					
ວ5່	MW-425		Water				100	
1	MIN 436		Water					
,	WWTATS		Water					
	***************************************		Water					
,	**************************************		Water	3		E L	200	
	A1-GP06-S	9 5/180 22/1/101	Water	X	X X X X	XXX		
	A1 6000 6		Water					
	A1-0P18-6		Water					
	ant	Poison B Unknown Radiological	S	ample Disposal (A 1	4 fee may be asses	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Sposal By Lab Hordine For Mor	tained longer than 1 Archive For	month) Months
	Deliverable Requested I, II, III, IV, Other (specify)		S	Special Instructions/QC Requirements	ac Requirements:			
	Empty Kit Relinquished by:	Date	Time	20	14	Method of Shipment:	,	
	Relinquished by Court MMM	10/7/22 14Q	Company		Will	Date/Timer	34/48	Subediales
10/	Relinquished by:	Date/Time.	Company	Received by:		Dåle/Time		Compañy
26/2	Relinquished by	Date/Time.	Company	Received by		Date/Time:		Company
2022	Custody Seals Intact: Custody Seal No.: △ Yes △ No			Cooler Temperature(Cooler Temperature(s) °C and Other Remarks			

Ver: 06/08/2021

Clear in from tion Chief	10 Hazelwood Drive Amherst, NY 1428-2298 Phone 716-691-2600 Fax 716-691-7991	Chain of Custody Record	tody Record		s eurorins	Environment Testing America
1	Client Information	Sampler: CH/OZ	Lab PM Fischer, Brian J	Carrier Tracking No(s)	COC No.	
Analysis Requested Analysi	Client Contact Mr. Dino Zack	7/6 866 8	E-Mail: Brian Fischer@et.eurofinsus.com	State of Origin	Page:	
Control Cont	Company: AECOM		Analy	sis Requested	Job#	
	hn James Audubon Parkway	Due Date Requested: STD			Preservation Code	as: M - Hexane
	City: Amherst	00/0			B - NaOH C - Zn Acetate	N-None O-AsNaO2
Committee Comm	State, Zip NY, 14228	SeY ∆				C - Na2SO3 R - Na2S2O3
Sample S	99% 9/	PO# 142167	(0			S · H2SO4 T • TSP Dodecahydr
Sample Date Sample Date	Email dino zack@aecom.com	wo # 60676146	ole:	pueue	i - Ice J - DI Water	V - MCAA
Sample Date Sample Date Sample Water Sample Cargoop	Project Name Oct-22	Project #. 48011352	es or I	o nodii		Y - Trizma Z - other (specify)
Sample Carper C	Site	SSOW#	SD (Y	D5 - Ca ane/eth		
Tricetion Sanite Unit Carlo Sanite Carlo Water		Sample C=comp.	eid Filtered 5 erform MS/M 560C - TCL list 53.2, 353.2 Ultu 70.7 - Iron 500 Fe+3_D_C	SK_175_CO2_ SK_175 - meth		
Water Water	Sample Identification	Preserva	2 C C C C C C C C C C C C C C C C C C C	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		structions/Note:
Of 7122 C6 50 6 Water X	A1-6P44-6)				
Of 11/2 C C S C Water X	JC-01-0-1A		Water		500	
Water X Water Water X Water Water X Water Water X Wate	A1-GP16-5		Water			
Water learnification and interested in the initial and initial formation of Shapes and Flammable Skin initial and Date. Sample Disposal (A fee may be assessed if samples are retained tonger than 1 mc Sample Disposal (A fee may be assessed if samples are retained tonger than 1 mc Sample Disposal (A fee may be assessed if samples are retained tonger than 1 mc Sample Disposal (A fee may be assessed if samples are retained tonger than 1 mc Sample Disposal (A fee may be assessed if samples are retained tonger than 1 mc Sample Disposal (A fee may be assessed if samples are retained tonger than 1 mc Sample Disposal (A fee may be assessed if samples are retained tonger than 1 mc Sample Disposal (A fee may be assessed if samples are retained tonger than 1 mc Samples are retained tonger than 1 mc Sample Disposal (A fee may be assessed if samples are retained tonger than 1 mc Samples are retained tonger	Trip Blank	0830				
Sample Disposal (A fee may be assessed if samples are retained longer than 1 mc	Trip Blank	_	Water			
Sample Disposal (A fee may be assessed if samples are retained longer than 1 mo lequested: 1, 11, 111, IV. Other (specify) Imquished by Cuniv yuur Custody Seal No: Cooler Temperature(s) *C and Other Remarks: Cooler Temperature(s) *C and Othe						
Sample Disposal (A fee may be assessed if samples are retained longer than 1 mc						
Inquished by Date: Time: Time: Date: Time: Date: Time: Date: Time: Date: Date: Date: Time: Date:	[]	Unknown	Sample Disposal (A fee r	may be assessed if sample	es are retained longer than 1 i	month) Months
Impairs big Date Time: Date Time: Company Received by: Method of Shipment Cutiv jum Date Time: Company Received by: Date Time: Date Time: Date Time: Company Received by: Date Time: Date Time: A No. Cooker Temperature(s) °C and Other Remarks: Date Time:	Deliverable Requested: I, II, III, IV, Other (specify)		Special Instructions/QC Re	equirements		
Company Received by CMM PaterTime. DaterTime. DaterTime. Company Received by CMM DaterTime. Company Received by DaterTime. Company Received by DaterTime.	Empty Kit Relinquished by	Date:	Time:	// Method of Shipm	nent.	
Pate/Time: Company Received by. Cooler Temperature(s) °C and Other Remarks:		07152 1460	Scom	M Dates	1/4	Company
Custody Seal No∴	Reinquished by			Date	Time:	Company
			Cooler Temperature(s) °C an	d Other Remarks:		

Ver: 06/08/2021

Eurofins Buffalo
10 Hazelwood Drive
Amherst, NY 14228-2298
Phone: 716-691-7991

eurofins Environment Testing America

Client Information		Lab PM:	Carrier Tracking No(s):	COC No
Client Contact:	reca	Fischer, Brian J		480-176659-19195.1
Mr. Dino Zack	71/2 866 8222	E-Mail: Brian.Fischer@et.eurofinsus.com	State of Origin.	Page:
Company:				rage 1 of 4 Job#:
Address:	Due Date Requested:	Analysis Requested	quested	
One John James Audubon Parkway Suite 210	570			Preservation Codes:
Amherst	ا ښا			
State, Zip.	7			C - Zn Acetate O - AsNaO2
	Compliance Project: A Yes A No	<i>Y</i>		
116 866 8222	PO# 142167			G - Amchlor T TOS 2
Email:	#0M			H - Ascorbic Acid 1 - 1SP Dodecahyd
Project Name	60676146	Oslo Oslo	ıpeu	
Oct-22	Froject #: 48011352	S Or ste_	arbor	K - EDTA W - pri 4-5
Site:	SSOW#	D (Yee) LM04 e, Nitr	e/eths	2 - other (specify) Other:
		S/MSI S/MSI list O Nitrito (Nitrito	othan ulfate sgnO	
	Sample Type	Matrix (Wawaler, Sassie) Sasolid, 175_CO	- S71 S - G82 S - Total	
Sample Identification	Sample Date Time G=grab) BT=Tiss	Field Perfe 82600 3500.7 3500.	88K_ 300.0 300.0	Special Instructions/Note
	Preservation Code:	ode: X A N D N CB N N	⋖	
CB-1	W	Water		
CB-2	M	Water		
CB-3		Water		
CB-4	W	Water		
H-80				
	W	Water		
TP-5	·M	Water		
TP-6	M	Water		
Duplicate	N .	Water		
Rinse Blank	10/10/22 14/28 6 W	Water		
MW-35D		Water	480-202540 Chain of Custody	f Custody
MW-38D	M	Water		
Possible Hazard Identification Non-Hazard Elammahle Cuin Irritary		fee ma)	assessed if samples are retain	ed longer than 1 month)
/, Other	roson b Onkriown Radiological	Special Instructions/OC Requirements:	oosal By Lab	Archive For Months
Fmoty Kit Relinguished by:	4			
Relinquished by:	Date:	Time:	Method of Shipment:	
Relinantished by	Agree 10/10/22 1640 Company	Ecan Received by:	MUW Date/Time C	0122 ((04 Company + 1)
. An antendance of	Date/Time: Company	ny Received by:	Date/Time:	Company
Г	Date/Time: Company	ny Received by:	Date/Time:	Company
Custody Seals Infact: Custody Seal No.:		Cooler Temperature(s) C and Other Remarks:	lemarks:	
		JT 0.0),	

Chain of Custody Record

Environment Testing

🔆 eurofins

Phone: 716-691-2600 Fax: 716-691-7991

Amherst, NY 14228-2298

10 Hazelwood Drive

Eurofins Buffalo

N - None
O - Ashaoo2
P - Na2045
Q - Na2045
Q - Na2803
S - H2504
T - TSP Dodecahydrate
U - Acetone
V - MGAA
W - PH 4.5
Y - Trizma Special Instructions/Note: Z - other (specify) Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mon COC No: 480-176659-19195.2 Preservation Codes C - Zn Acetate D - Nitric Acid E - NaHSO4 F - MeOH G - Amchlor H - Ascorbic Acid 10/28 Page: Page 2 of 4 I - Ice J - DI Water K - EDTA L - EDA 0 Total Number of containers Jate/Time: Method of Shipment State of Origin: Sarrier Tracking No(s) A 9060A - Total Organic Carbon **Analysis Requested** X X Cooler Temperature(s) °C and Other Remarks. Special Instructions/QC Requirements X SSK_175_CO2_D5 - Carbon dioxide 4 X E-Mail Brian.Fischer@et.eurofinsus.com SM4500_S2_D - Suffide メ 200 Fe+3 D Cal, 3500 FE D 0 Received by: Received by: Received by: X 353.2, 353.2_Nitrite, Nitrate_Calc Lab PM: Fischer, Brian J X SZEOC - TCL IIst OLMO4.2 × (on io seY) GSM/SM moher Time: AFCON Field Filtered Sample (Yes or No) BT=Tissue, A=Air) Matrix Preservation Code: Water Water Water Water Water Water Water Water Water Water Water Company 2728 Radiological G=grab) (C=comp, 0491 22/01/0 GIII Horacles Sample Type Per 20 S 9 Due Date Requested: STD 1230 866 Sample Time S469 72 101101 Date: Unknown TAT Requested (days) Compliance Project: 10/10122 Sample Date wo #. 60676146 Project #: 48011352 142167 Date/Time Poison B Skin Irritant Deliverable Requested: I, II, III, IV, Other (specify) un Hunn One John James Audubon Parkway Suite 210 Custody Seals Infact: Custody Seal No. Flammable Possible Hazard Identification Empty Kit Relinquished by: dino.zack@aecom.com Project Name: Client Information Sample Identification Non-Hazard Relinquished by: Mr. Dino Zack delinquished by linquished by State, Zip: NY, 14228 A1-GP10-S A1-GP06-S A1-GP18-S city. Amherst MW-42S MW-35S MW-40D MW-35D MW-36S MW-36D MW-37D AECOM MW-30 Oct-22 Phone:

Chain of Custody Record

eurofins Environment Testing America Eurofins Buffalo
10 Hazelwood Drive
Amherst, NY 14228-2298
Phone: 716-691-2600 Fax: 716-691-7991

Cliont Information					Carrier Tracking No(s)	No(e)	- N 000	
Client Contact:	STORY LINES		an J			,	480-176659-19195.3	5.3
Mr. Dino Zack	7/6 8/6		E-Mail: Brian Eischer@ot ourgenous		State of Origin:	11/1/	Page:	
Company.	Olswal	7	a @et.euronnsus.	com		7 7	Page 3 of 4	
AECOM			•	Analysis Requested	luested		Job #	
One John James Audubon Parkway Suite 210	Due Date Requested: 570						Preservation Codes	S:
City. Amherst	TAT Requested (days):	2.00						M - Hexane N - None
State, Zip: NY: 14228	04727							0 - AsNaO2 P - Na2O4S
Phone: 716 41 412	- [E - NaHSO4 F - MeOH	0 - Na2SO3 R - Na2S2O3
- 1	142167	(0)						5 - H2SO4 T - TSP Dodecahydrate
dino.zack@aecom.com	WO#. 60676146				əuəı		I - Ice	U - Acetone V - MCAA
Project Name: Oct-22	Project #: 48011352		J_ətr	-			K - EDTA	W - pH 4-5 Y - Trizma
Site:	SSOW#:		Hitra	ulfide	Э		Other:	Z - other (specify)
Sample Identification	Sample Type Imple (C=comp,	Matrix (Wawater, Sesolid, O-waster), ii eld Filtsure A=Atr)	3260C - TCL IIst C 153.2, 353.2 Nitri 1600_Fe+3_D_C81	10.2 - Alkalinity,	.SK_175 - methar 00.0_28D - Sulfat 060A - Total Orgs		otal Number of	
	Preserva	×	2 2	E 2	ε 2			Special Instructions/Note:
MW-38D		Water	2	2	2			
MW-39D		Water				-		
MW 40D		Water						
MW-42S		Water					大司 (1 (4)() (5)	
MW-43S	10/10/22 1120 6	Water	د					
MW-44S	1320	Water	< >		()			
A1-GP02-S	1_	Water	2			X		
A1-GP18-S		Water						
A1-GP06-S		Water						
A1-GP09-S		Water						
A1-GP10-S		Water						
ant	Poison B	Sai	nple Disposal (4 fee may be a	ssessed if	samples are	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	nonth)
V, Other (specify)		Spe	Special Instructions/QC Requirements:	ac Requiremen	Disposal By Lab ents:	ab	Archive For	Months
Empty Kit Relinquished by:	Date:	Time:			Method	Method of Shipment:		
Relinquished by Affer Car my	01/01/22 1640	Company	Received by:	My IKON	/	i i	0/10/27 160	Company
veilirduisirea by.	Date/Time:	Company	Received by:			Date/Time:	9	Company
	Date/Time: Co	Company	Received by:			Date/Time:		Company
Custody Seals Intact: Custody Seal No.:			Cooler Temperature(s) °C and Other Remarks:	s) °C and Other Re	marks:			
2								

Ver: 06/08/2021

Cooler Temperature(s) °C and Other Remarks

Chain of Custody Record

Eurofins Buffalo

10 Hazelwood Drive

Environment Testing

: eurofins

Phone: 716-691-2600 Fax: 716-691-7991 Amherst, NY 14228-2298

N - None
O - AsNaO2
P - Na2O4S
Q - Na2SO3
R - Na2SO3
S - H2SO4
T - TSP Dodecahydrate Special Instructions/Note: U - Acetone V - MCAA W - pH 4-5 Y - Trizma Z - other (specify) Months Company Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Sisposal By Lab Archive For Mon COC No: 480-176659-19195.4 Preservation Codes G - Amchlor H - Ascorbic Acid - Zn Acetate - Nitric Acid - NaHSO4 Page: Page 4 of 4 I - Ice J - DI Water F - MeOH Date/Time | 0 | 10 | 2 Total Number of containers Date/Time Method of Shipment: State of Origin: Carrier Tracking No(s) Disposal By Lab X nodisa Sinegio IstoT - A0806 **Analysis Requested** RSK_175 - methane/ethane/ethene Special Instructions/QC Requirements RSK_175_CO2_D5 - Carbon dioxide 310.2 - Alkalinity, Total CB SM4500_S2_D - Sulfide Brian.Fischer@et.eurofinsus.com 3200 Fe+3 D Cal, 3500 FE D 0 eceived by Received by Received by 553.2, 353.2 Nitrite, Nitrate_Calc Lab PM: Fischer, Brian J × 3260C - TCL IIst OLM04.2 × Company (oN to seY) CSM/SM mnohed Time: Field Filtered Sample (Yes or No) BT=Tissue, A=Air (W=water, S=solid, O=waste/oil, Preservation Code: Water Water Matrix Water Water Water Company 2228 Radiological Cellin Heracks Sample G=grab) (C=comp, Type 01/01/2/01/0 0 O TAT Requested (days): $\rho_{CC}\rho_{C}$ Due Date Requested: 5TD Sample 145 298 914 00/10/22 0600 Time Unknown Compliance Project: 16/10/22 Sample Date wo #: 60676146 Project #: 48011352 Date/Time 142167 Poison B Skin Irritant Deliverable Requested: I, II, III, IV, Other (specify) my One John James Audubon Parkway Suite 210 Custody Seal No. Non-Hazard Flammable Possible Hazard Identification Empty Kit Relinquished by: 116 866 Custody Seals Intact:

Δ Yes Δ No dino.zack@aecom.com Client Information Sample Identification Mr. Dino Zack linquished by: linquished by elinquished by 41-GP14-S A1-GP15-S A1-GP16-S State, Zip: NY, 14228 roject Name rip Blank rip Blank Company: AECOM Amherst Oct-22

SiREM File Reference: S-9433

Analytical Results

Client: AECOM

Client Project Number: 60676146 Date Samples Received: October 11, 2022 Date Samples Analyzed: October 17, 2022

Sample Lactate Propionate **Acetate Formate Butyrate Pyruvate** Client Sample **Client Sample ID** SiREM Reference ID Dilution Date Factor mg/L mg/L mg/L mg/L mg/L mg/L MW-42s 22-11632 10-Oct-22 1,000 <7.8 1,253 12 <4.4 71 34 A1-GP10-S 22-11633 10-Oct-22 1,000 <7.8 609 <6.2 <4.4 23 <13.8 QL 1000 7.8 10.8 6.2 4.4 8.2 13.8

nts:
nts

Method: Ion Chromatography with Electrical Conductivity Detection

QL = Quantitation limit

Laboratory Technician

< = compound analysed for but not detected, associated value is QL. Sample QL is corrected for dilution.</p>

Analyst: Results approved: Date:

Walk Sweett, B.Sc.

Kela Ashworth, B.Sc.

Senior Laboratory Technician

siremlab com Page 1 of 1

Chain-of-Custody Form

siremlab.com

180B Market Place Blvd Knoxville, TN 37922 1-865-291-4718 or 1-866-251-1747 S-9433

Area I Byp	Project # 6	067 6	5/4/					14		Anal	lvele				
*Project Manager Dino Zack	Company A	E	- 12		-	Γ				T	70.5	Т			
*Email Address Address (Street) Address (Street) JUhn Tames Andubon City Amberst State/Province *Phone # 116 - CEL (227)	200	LCOIVI			-	-			-		v)	-			Preservative Key
Address (Street))// I			21.							gases				0, None 1. HCL
City AmberSt State/Province my	PKW	ountry	· re	210				5		spi	carbor	>			2 Other ICE
*Phone # 11/ Par		4	>		DHC	FGA	DHB	DHG	SRB	itty Ac	hydroc	y Stud			3, Other
2000-8777					Sene-Trac DHC	Gene-Trac FGA	Gene-Trac DHB	Sene-Trac DHGM	Gene-Trac SRB	Volatile Fatty Acids	Dissolved hydrocarbon	Treatability Study			4. Other5. Other
*Sampler's Signature *Sampler's Pi)	2			Ger	Ger	Gen	Gen	Gen	Vola	Diss	Trea			6, Other
Client Sample ID	Sam Date	pilng Time	Matrix	# of Containers											Other Information
mn-425	1011012		Gw	3	X	×							-		
A1-GP10-S	10110122		Gw	2		*	Χ.			X			-		Per Possing
													-		Olemen CA
															Please Contina
															Dene IVac
3															THE PART OF THE PA
					-								-		
P.O. # Billing Information	Turnaro	and Time Re	quested		_			ab Use	0-1	2011			1_		*
147.162			questeu	Cooler Co.	ndition:	10	nota		72	co,			Ro	ttly and	Y(#32045
*BILL TO: USAP Imasing @ appointen	No: Rus	mal 🚫		Cooler Ter	nperati								100	tite visi	
CL. D: no , 2ack @ accome com				Custody S	aale.	Yo	5.2.C		· []	088)			+		
or year of the contract of the				1 413.61, 5	- LIO.	10	V K1	14	° Ш						
Relinquished By: Received By:	T			<u> </u>	_									ceal #:	
Signature Signature What of		gnature	elInquishe	а Ву:	Sign	nature	Rece	ived By	:		Signatu		quished	I Ву:	Received By: Signature
Name Ding 2 . k Printed Name Kutland (MCC)	WOLA Pri	nted me			Print					-:	Printed Name				Printed Name
Firm HEUN FIRM SIREM	Fir	m			Firm						Firm				Firm
Date/Time 10/10/12 1530 Date/Time 10/11/22 0936	Da	te/Time			Date	/Time					Date/Tim	ie			Date/Time

Gene-Trac® Certificate of Analysis

Customer: Dino Zack Batch Reference: S-9742

Email: dino.zack@aecom.com Report Date: 2-May-23

Phone: 716-866-8222

Certificate Number: CAG-0395

Company: AECOM

Test Location(s): Guelph & Knoxville

Project Name: Area 1 BCP Customer Reference: 60676146

Method Reference: SOP-002, 019, 108, 114, & 116

The results included herein only apply to the samples described within and are applicable to the items as received.

SOP-116 (DNA Extraction) and SOP-114 (DNA Quantification) were performed at SiREM Knoxville, the remainder of testing was performed at SiREM Guelph.

This certificate is not to be reproduced unless in full.

Certificate of Analysis: Gene-Trac® Dehalococcoides Assay

Certificate Number: CAG-0395

Data File(s): QS3A-DHCT-TM-QPCR-2133

Run Date(s): 27-Apr-23

Table 1a: Test Results

Sample ID	Dehalococcoides (Dhc)			
	Percent Dhc ⁽¹⁾	Enumeration/Liter ^(2,3)		
MW-42S	0.7 - 2 %	1 x 10 ⁷		

See final page for notes.

Taylor Aris, B.Sc.

Analyst: Taylor A

Genetic Testing Analyst

Approved: 노

Jen Wilkinson

Senior Genetic Testing Specialist

Certificate of Analysis: Gene-Trac® Functional Gene Assay

Certificate Number: CAG-0395

Data File(s): QS3A-FGA-QPCR-1396

Run Date(s): 28-Apr-23

Table 1b: Test Results

Sample ID	VC Reductase (vcrA)			C Reductase	TCE Reductase (tceA)	
	Percent			Gene	Percent	Gene
	vcrA (4)	Copies/Liter ⁽²⁾	bvcA (4)	Copies/Liter ⁽²⁾	tceA (4)	Copies/Liter ⁽²⁾
MW-42S	0.7 - 2 %	1 x 10 ⁷	0.002 - 0.005 %	3 x 10 ⁴	0.1 - 0.3 %	2 x 10 ⁶

See final page for notes.

Analyst: Taylor Aris, B.Sc.

Genetic Testing Analyst

Approved:

Jen Wilkinson

Senior Genetic Testing Specialist

Certificate of Analysis: Gene-Trac® Dehalobacter Assay

Certificate number: CAG-0395

Data File(s): QS3B-DHB-QPCR-0633

Run Date(s): 2-May-23

Table 1c: Test Results

Sample ID	<i>Dehalobacter</i> (Dhb)			
	Percent Dhb ⁽¹⁾	Dhb Gene Copies/liter ⁽²⁾		
MW-42S	0.03 - 0.1 %	6 x 10 ⁵		

See final page for notes.

Analyst: Taylor A Taylor Aris, B.Sc. **Genetic Testing Analyst**

Senior Genetic Testing Specialist

Table 2: Detailed Test Parameters, Test Certificate CAG-0395

Customer Sample ID	MW-42S
Date Sampled ⁽⁵⁾	12-Apr-23
Matrix	Groundwater
Date Received ⁽⁵⁾	13-Apr-23
Sample Temperature	6.1 °C
Filtration Date ⁽⁵⁾	13-Apr-23
Volume Used for DNA Extraction	100 mL
DNA Extraction Date	19-Apr-23
DNA Concentration in Sample (extractable)	3,608 ng/L
PCR Amplifiable DNA	Detected
DNA Extraction Control ⁽⁶⁾	Passed
Detection Limit (copies/L)	3 x 10 ³
Quantitation Limit (copies/L)	7 x 10 ³
qPCR Controls (see Tables 3 - 5)	Passed
Comments	

See final page for notes.

Table 3: Gene-Trac Dhc Control Results, Test Reference CAG-0395

			Dhc 16			
Laboratory Control	Analysis Date	Control Description	Spiked Gene Copies per Liter	Recovered Gene Copies per Liter	Comments	
Positive Control Low Concentration	27-Apr-23	Synthetic DNA (CSLD-1771)	1.1 x 10 ⁷	1.4 x 10 ⁷	Passed	
Positive Control High Concentration	27-Apr-23	Synthetic DNA (CSHD-1771)	1.1 x 10 ⁹	1.1 x 10 ⁹	Passed	
DNA Extraction Blank	27-Apr-23	Sterile Water (FB-4252)	0	6.6 x 10 ² U	Passed	
Negative Control	27-Apr-23	Reagent Blank (TBD-1730)	0	6.6 x 10 ² U	Passed	

See final page for notes.

Table 4: Gene-Trac FGA Control Results, Test Reference CAG-0395

			vcrA		bvcA		tceA		
Laboratory Control	Analysis Date	Control Description	Spiked Gene Copies per Liter	Recovered Gene Copies per Liter	Spiked Gene Copies per Liter	Recovered Gene Copies per Liter	Spiked Gene Copies per Liter	Recovered Gene Copies per Liter	Comments
Positive Control Low Concentration	28-Apr-23	Synthetic DNA (CSLF-1264)	9.4 x 10 ⁶	9.7 x 10 ⁶	9.4 x 10 ⁶	1.1 x 10 ⁷	9.4 x 10 ⁶	1.2 x 10 ⁷	Passed
Positive Control High Concentration	28-Apr-23	Synthetic DNA (CSHF-1264)	9.9 x 10 ⁸	9.2 x 10 ⁸	1.0 x 10 ⁹	1.2 x 10 ⁹	8.8 x 10 ⁸	9.4 x 10 ⁸	Passed
DNA Extraction Blank	28-Apr-23	Sterile Water (FB-4252)	0	6.6 x 10 ² U	0	6.6 x 10 ² U	0	6.6 x 10 ² U	Passed
Negative Control	28-Apr-23	Reagent Blank (TBF-1235)	0	6.6 x 10 ² U	0	6.6 x 10 ² U	0	6.6 x 10 ² U	Passed

See final page for notes.

Table 5: Gene-Trac Dhb Control Results, Test Reference CAG-0395

			Dhb 16		
Laboratory Control	Analysis Date	Control Description	Spiked Gene Copies per Liter	Recovered Gene Copies per Liter	Comments
Positive Control Low Concentration	2-May-23	Synthetic DNA Fragment (CSLDB-0592)	1.3 x 10 ⁷	1.3 x 10 ⁷	Passed
Positive Control High Concentration	2-May-23	Synthetic DNA Fragment (CSHDB-0592)	1.3 x 10 ⁹	1.3 x 10 ⁹	Passed
DNA Extraction Blank	2-May-23	Sterile Water (FB-4252)	0	6.6 x 10 ² U	Passed
Negative Control	2-May-23	Test Reagent Blank (TBDB-0592)	0	6.6 x 10 ² U	Passed

See final page for notes.

Notes:

Dhc = Dehalococcoides

vcrA = VC reductase

bvcA = BAV1 VC reductase

tceA = TCE reductase

FGA = functional gene assay

M Non-specific amplification was observed via melt curve analysis

J The associated value is an estimated quantity between the detection limit and quantitation limit.

U Not detected, associated value is the detection limit.

B Analyte was detected in the method blank within an order of magnitude of the test sample.

E Extracted genomic DNA was not detected in the sample.

I Sample inhibited the test reaction based on inability to PCR amplify extracted DNA with universal primers.

ng/L = nanograms per liter

mL = milliliter

NA = not applicable

ND = not detected

DNA = deoxyribonucleic acid

16S rRNA = 16S ribosomal ribonucleic acid

PCR = polymerase chain reaction

qPCR = quantitative PCR

°C = degrees Celsius

¹ Percent *Dehalococcoides* (Dhc) in microbial population. This value is calculated by dividing the number of Dhc 16S ribosomal ribonucleic acid (rRNA) gene copies by the total number of bacteria as estimated by the mass of DNA extracted from the sample. Range represents normal variation in Dhc enumeration.

² Target quantitation is subject to the variability of the method, this variability has been demonstrated to be +/- 60%.

³ Based on quantification of Dhc 16S rRNA gene copies. Dhc are generally reported to contain one 16S rRNA gene copy per cell; therefore, this number is often interpreted to represent the number of Dhc cells present in the sample.

⁴ Percent of functional gene in microbial population. This value is calculated by dividing the functional gene copies quantified by the total number of estimated prokaryotes in the sample (based on the total quantity of DNA extracted from the sample). A value of 100% would suggest that all microbes in the sample contain the gene.

⁵ Samples are stabilized by freezing at -80 °C upon sample reception (field filters) or in-lab filtration (groundwater). Hold time not exceeded if sampling date is within 14 days of date received or filtration date.

⁶ DNA is extracted from a standardized bacterial culture sample once per week and Total Bacteria qPCR is performed using standard methods. A recovery greater than 25% of the expected value is deemed acceptable.

⁷ Control was outside recovery limit guidelines (+/- 50%), however, test results are deemed acceptable if one of two positive controls fall within the recovery limit guidelines.

Chain-of-Custody Form

siremlab.com

180B Market Place Blvd Knoxville, TN 37922 1-865-291-4718 or 1-866-251-1747

*Project Name Frea 1 BCP	*Project #	6067	6146		I -			-		Ana	lysis					
*Project Manager Dina Zuch	*Company	AF/do	40		-		T	1	_	T-	liyala	Т	т	1	т —	
*Email Address					┢	-	-	-	_	1	-					Preservative Key
Address (Street)	- 1				1						gases		1			O None
City a	Suite	213						1		S	rbon					1 HCL 2 Other ICE
Amherst New York	Co	ountry U	5		J.C	₹5	말	HGM	RB	/ Acid	droca	tudy				3 Other
7/6-866-822Z					riac [rac F	rac D	rac D	rac S	Fatty	ed hy	ollity 9				4. Other
Address (Street) I Sum Somes Auduban Parking Suite Zis City Amherst State/Province York Country US *Phone # 716 - 866 - 8222 *Sampler's Signature Und Auduban Parking Sampling Sampling				Gene-Trac DHC	Gene-Trac FGA	Gene-Trac DHB	Gene-Trac DHGM	Gene-Trac SRB	Volatile Fatty Acids	Dissolved hydrocarbon gases	Treatability Study				5. Other6. Other	
Client Sample ID	Sam	pling	Ĭ	# of	¥.	X	V		-	1	 -		-			0,00.0
	Date	Time	Matrix	Containers	96	X	X			¥						Other Information
MW-425	4/12/23		GW	3	X	X	X			X			2×	401	ul	pr POBK-09844
A1- GP10-S	4/12/23	1100	GW	2						V						per PUBH- 2xx10m1
																ST 209 CM
			ļ													
PO 142162	Тиглаго	und Time Re	equested	Cooler Co	ndition:	22	For t	ab Use	Only				F	or Lab U	se Only	/ 1/2
	No	mal 🖈		Cooler Col		60	od	KK	0	054	2		6	BHI	ea	rder#32140
*BILL TO: US APImaging @ accom. com	Rus	mal 👉		Cooler Ter	nperati	ire:	6.1	00	14	1 pg	100	2				
CC dins. zack e accom.com				Custody S	eals	Υe	es V	No	о П				\dashv			
							0.000									
Relinquished By: Received By				JL	7				=			_	Pi	roposal	01	
Signature Signat	, s	ignature R	elinquishe	1 By:	Sign	nature	Rece	eived By	:		Signatu		linquist	ned By:		Received By: Signature
Printed Dina Zuck Printed Sun Th	MAGS Pr	inted			Print						Printed			-		Printed
Firm AGGIN Firm SINFM	Fir				Nam Firm			-	-		Name Firm					Name Firm
Firm AG(1m Firm SINEM Date/Time 4/12/23 (315/hg Date/Time 37023	0915 Da	te/Time			Date	/Time					Date/Tim	ie .				Date/Time
istribution: White - return to Originator; Yellow - Lab Copy: Pink - Retained by Client	0740										210,					Date/ Iline

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Dino Zack AECOM One John James Audubon Parkway Suite 210 Amherst, New York 14228

JOB DESCRIPTION

Scott Figgie Area 1 BCP

Generated 5/4/2023 11:09:46 AM

JOB NUMBER

480-207637-1

Eurofins Buffalo 10 Hazelwood Drive Amherst NY 14228-2298

Eurofins Buffalo

Job Notes

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. This report is confidential and is intended for the sole use of Eurofins Environment Testing Northeast, LLC Buffalo and its client. All questions regarding this report should be directed to the Eurofins Environment Testing Northeast, LLC Buffalo Project Manager or designee who has signed this report.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northeast, LLC Project Manager.

Authorization

Generated 5/4/2023 11:09:46 AM

Authorized for release by Rebecca Jones, Project Management Assistant I

Rebecca.Jones@et.eurofinsus.com

Designee for

Brian Fischer, Manager of Project Management

Brian.Fischer@et.eurofinsus.com

(716)504-9835

Client: AECOM

Project/Site: Scott Figgie Area 1 BCP

Laboratory Job ID: 480-207637-1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	9
Lab Chronicle	74
Certification Summary	82
Method Summary	83
Sample Summary	84
Receipt Checklists	85
Chain of Custody	90

Δ

0

9

Definitions/Glossary

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
*_	LCS and/or LCSD is outside accontance limits, high biased

LCS and/or LCSD is outside acceptance limits, high biased.

F1 MS and/or MSD recovery exceeds control limits.

F2 MS/MSD RPD exceeds control limits

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualifier	Qualifier Description
Н	Sample was prepped or analyzed beyond the specified holding time. This does not meet regulatory requirements.
HF	Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit Minimum Level (Dioxin) ML MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

Practical Quantitation Limit PQL

PRES Presumptive **Quality Control** QC

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RI

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) **TEF** Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Eurofins Buffalo

Page 4 of 97 5/4/2023

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Job ID: 480-207637-1

Laboratory: Eurofins Buffalo

Narrative

Job Narrative 480-207637-1

Comments

No additional comments.

Receipt

The samples were received on 4/7/2023 1:45 PM, 4/12/2023 9:00 AM and 4/13/2023 4:20 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 3 coolers at receipt time were 2.7° C, 3.5° C and 4.9° C.

Receipt Exceptions

Method RSK-175: Preserved volume received for a unpreserved method. Method was logged but canceled. Client is going to resample: MW-40D (480-207715-1), A1-GP10-S (480-207715-2) and MW-42S (480-207715-3).

GC/MS VOA

Method 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: A1-GP06-S (480-207637-11), A1-GP02-S (480-207637-15), (480-207637-A-15 MS) and (480-207637-A-15 MSD). Elevated reporting limits (RLs) are provided.

Method 8260C: The following volatiles samples were diluted due to foaming at the time of purging during the original sample analysis: MW-39D (480-207637-14) and A1-GP16-S (480-207637-16). Elevated reporting limits (RLs) are provided.

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-664564 recovered above the upper control limit for 2-Hexanone and 2-Butanone (MEK). The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are impacted: CB-1 (480-207637-1), CB-2 (480-207637-2), CB-3 (480-207637-3), CB-4 (480-207637-4), CB-E (480-207637-5), TP-5 (480-207637-6), TP-6 (480-207637-7), DUP (480-207637-8), MW-35D (480-207637-9), A1-GP06-S (480-207637-11), A1-GP18-S (480-207637-12), MW-35S (480-207637-13), MW-39D (480-207637-14), A1-GP02-S (480-207637-15) and A1-GP16-S (480-207637-16).

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-664564 recovered outside acceptance criteria, low biased, for Carbon disulfide and 1,2,4-Trichlorobenzene. A reporting limit (RL) standard was analyzed, and the target analytes are detected. Since the associated samples were non-detect for the analyte(s), the data are reported. The associated samples are impacted: CB-1 (480-207637-1), CB-2 (480-207637-2), CB-3 (480-207637-3), CB-4 (480-207637-4), CB-E (480-207637-5), TP-5 (480-207637-6), TP-6 (480-207637-7), DUP (480-207637-8), MW-35D (480-207637-9), A1-GP06-S (480-207637-11), A1-GP18-S (480-207637-12), MW-35D (480-207637-14), A1-GP02-S (480-207637-15) and A1-GP16-S (480-207637-16).

Method 8260C: The laboratory control sample (LCS) for analytical batch 480-664564 recovered outside control limits for the following analyte: 2-Hexanone. This analyte was biased high in the LCS and was not detected in the associated samples; therefore, the data have been reported. The associated samples are impacted: CB-1 (480-207637-1), CB-2 (480-207637-2), CB-3 (480-207637-3), CB-4 (480-207637-4), CB-E (480-207637-5), TP-5 (480-207637-6), TP-6 (480-207637-7), DUP (480-207637-8), MW-35D (480-207637-9), A1-GP06-S (480-207637-11), A1-GP18-S (480-207637-12), MW-35S (480-207637-13), MW-39D (480-207637-14), A1-GP02-S (480-207637-15) and A1-GP16-S (480-207637-16).

Method 8260C: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for analytical batch 480-664564 were outside control limits for one or more analytes, see QC Sample Results for detail.

Method 8260C: The following sample(s) was collected in a properly preserved vial; however, the pH was outside the required criteria when verified by the laboratory. The sample was analyzed within the 7-day holding time specified for unpreserved samples: MW-39D (480-207637-14). oH is 7.

Method 8260C: The continuing calibration verification (CCV) associated with batch 664702 recovered above the upper control limit for 2-Hexanone, cis-1,3-Dichloropropene, Styrene, trans-1,3-Dichloropropene, Chlorodibromomethane, and 4-Methyl-2-pentanone (MIBK). The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated

2

4

5

6

9

10

4-

Client: AECOM

Project/Site: Scott Figgie Area 1 BCP

Job ID: 480-207637-1

Job ID: 480-207637-1 (Continued)

Laboratory: Eurofins Buffalo (Continued)

sample is impacted: MW-38D (480-207637-10).

Method 8260C: The continuing calibration verification (CCV) analyzed in 664702 was outside the method criteria for the following analyte: 2-Butanone (MEK). As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte is considered estimated. The associated sample is impacted: MW-38D (480-207637-10).

Method 8260C: The laboratory control sample (LCS) for analytical batch 480-664702 recovered outside control limits for the following analytes: 2-Hexanone, trans-1,3-Dichloropropene, Chlorodibromomethane, Bromoform, and 4-Methyl-2-pentanone (MIBK). These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported. The associated sample is impacted: MW-38D (480-207637-10).

Method 8260C: The laboratory control sample (LCS) for analytical batch 480-664702 recovered outside control limits for the following analyte: 2-Butanone (MEK). 2-Butanone (MEK) has been identified as a poor performing analyte when analyzed using this method; therefore, re-analysis was not performed. Batch precision also exceeded control limits for these analyte. These results have been reported and qualified. The associated sample is impacted: MW-38D (480-207637-10).

Method 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-40D (480-207715-1), A1-GP10-S (480-207715-2) and MW-42S (480-207715-3). Elevated reporting limits (RLs) are provided.

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-664894 recovered above the upper control limit for Acetone, 2-Hexanone, trans-1,3-Dichloropropene, Chlorodibromomethane, 4-Methyl-2-pentanone (MIBK), and 2-Butanone (MEK). The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are impacted: MW-40D (480-207715-1), A1-GP10-S (480-207715-2), MW-42S (480-207715-3), A1-GP15-S (480-207715-4), TRIP BLANK (480-207715-6), MW-44S (480-207715-7) and RINSE BLANK (480-207715-8).

Method 8260C: The laboratory control sample (LCS) for analytical batch 480-664894 recovered outside control limits for the following analytes: 2-Hexanone, trans-1,3-Dichloropropene, 1,1,2,2-Tetrachloroethane, and Bromoform. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported. The associated samples are impacted: MW-40D (480-207715-1), A1-GP10-S (480-207715-2), MW-42S (480-207715-3), A1-GP15-S (480-207715-4), TRIP BLANK (480-207715-6), MW-44S (480-207715-7) and RINSE BLANK (480-207715-8).

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-665134 recovered above the upper control limit for 2-Hexanone, Styrene and trans-1,3-Dichloropropene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: A1-GP14-S (480-207715-5).

Method 8260C: The continuing calibration verification (CCV) analyzed in batch 480-665134 was outside the method criteria for the following analyte(s): 2-Butanone (MEK). A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated. The associated sample is impacted: A1-GP14-S (480-207715-5).

Method 8260C: The laboratory control sample and/or the laboratory control sample duplicate (LCS/LCSD) for analytical batch 480-665134 recovered outside control limits for the following analyte(s): Acetone. Acetone has been identified as a poor performing analyte when analyzed using this method; therefore, re-extraction/re-analysis was not performed. Batch precision also exceeded control limits for these analyte(s). These results have been reported and qualified. The associated sample is impacted: A1-GP14-S (480-207715-5).

Method 8260C: The laboratory control sample and/or the laboratory control sample duplicate (LCS/LCSD) for analytical batch 480-665134 recovered outside control limits for the following analyte(s): 2-Butanone (MEK). 2-Butanone (MEK) has been identified as a poor performing analyte when analyzed using this method; therefore, re-extraction/re-analysis was not performed. Batch precision also exceeded control limits for these analyte(s). These results have been reported and qualified. The associated sample is impacted: A1-GP14-S (480-207715-5).

Method 8260C: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for analytical batch 480-665134 recovered outside control limits for the following analytes: 2-Hexanone and trans-1,3-Dichloropropene. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported. The associated sample is impacted: A1-GP14-S (480-207715-5).

Client: AECOM

Job ID: 480-207637-1 Project/Site: Scott Figgie Area 1 BCP

Job ID: 480-207637-1 (Continued)

Laboratory: Eurofins Buffalo (Continued)

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-665426 recovered above the upper control limit for 2-Butanone (MEK), Acetone, Carbon tetrachloride, Cyclohexane and Methylcyclohexane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are impacted: MW-37D (480-207805-2), TRIP BLANK-041223 (480-207805-3), MW-30 (480-207805-4), MW-43S (480-207805-5), MW-36S (480-207805-6) and MW-36D (480-207805-7).

Method 8260C: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for analytical batch 480-665426 recovered outside control limits for the following analytes: Dichlorodifluoromethane. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported. The associated samples are impacted: MW-37D (480-207805-2), TRIP BLANK-041223 (480-207805-3), MW-30 (480-207805-4), MW-43S (480-207805-5), MW-36S (480-207805-6) and MW-36D (480-207805-7).

Method 8260C: The following volatiles samples were diluted due to foaming at the time of purging during the original sample analysis: MW-43S (480-207805-5) and MW-36D (480-207805-7). Elevated reporting limits (RLs) are provided.

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-665491 recovered above the upper control limit for 2-Butanone (MEK). The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: AL-GP09-S (480-207805-1).

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-665491 recovered outside acceptance criteria, low biased, for 1,2,4-Trichlorobenzene, Cyclohexane and Methylcyclohexane. A reporting limit (RL) standard was analyzed, and the target analytes are detected. Since the associated samples were non-detect for the analyte(s), the data are reported. The associated sample is impacted: AL-GP09-S (480-207805-1).

Method 8260C: The following volatiles sample was diluted due to foaming at the time of purging during the original sample analysis: AL-GP09-S (480-207805-1). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Method 300.0: The following samples were diluted due to the abundance of non-target analytes: MW-35D (480-207637-9), MW-38D (480-207637-10), A1-GP06-S (480-207637-11) and A1-GP18-S (480-207637-12). Elevated reporting limits (RLs) are provided.

Method 300.0: The following samples were diluted due to the abundance of non-target analytes: MW-40D (480-207715-1), A1-GP10-S (480-207715-2) and MW-42S (480-207715-3). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC VOA

Method RSK-175: The following sample(s) was collected in a properly preserved vial; however, the pH was outside the required criteria when verified by the laboratory. The sample was analyzed within the 7-day holding time specified for unpreserved samples: A1-GP18-S (480-207637-12).

Method RSK-175: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-35D (480-207637-9), MW-38D (480-207637-10), A1-GP06-S (480-207637-11) and A1-GP18-S (480-207637-12). Elevated reporting limits (RLs) are provided.

Method RSK-175: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-40D (480-207715-1), A1-GP10-S (480-207715-2) and MW-42S (480-207715-3). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

Method SM 3500 FE D: This analysis is normally performed in the field and has a method-defined holding time of 15 minutes. The

Client: AECOM

Project/Site: Scott Figgie Area 1 BCP

Job ID: 480-207637-1

Job ID: 480-207637-1 (Continued)

Laboratory: Eurofins Buffalo (Continued)

following samples has been qualified with the "HF" flag to indicate analysis was performed in the laboratory outside the 15 minute timeframe: MW-35D (480-207637-9), MW-38D (480-207637-10), A1-GP06-S (480-207637-11) and A1-GP18-S (480-207637-12).

Methods 9060A, SM 5310C: The reference method requires samples to be preserved to a pH of below 2. The following sample was received with insufficient preservation at a pH of above 2: MW-39D (480-207637-14). The sample(s) was preserved to the appropriate pH in the laboratory.

Method 9060A: The reference method requires samples to be preserved to a pH of below 2. The following sample was received with insufficient preservation at a pH of above 2: A1-GP02-S (480-207637-15). The sample(s) was preserved to the appropriate pH in the laboratory.

Method 353.2: The following sample was analyzed outside of analytical holding time due to lab error due to new instrumentation implementation: MW-42S (480-207715-3).

Method 353.2: The following sample was analyzed outside of analytical holding time due to lab error due to new instrumentation implementation: MW-42S (480-207715-3).

Method 9060A: The sample duplicate (DUP) precision for analytical batch 480-665659 was outside control limits. Sample matrix interference is suspected.

Method 353.2: Reanalysis of the following sample was performed outside of the analytical holding time due to instrument QC failures: MW-42S (480-207715-3).

Method 353.2: Reanalysis of the following sample was performed outside of the analytical holding time due to Failed instrument QC: MW-42S (480-207715-3).

Method 353.2: Sample MW-42S was analyzed for 353.2 in batch 665223. The instrument malfunctioned while obtaining this result, therefore this result is suspect. This sample point was reanalyzed out of hold time. Both results have been reported: MW-42S (480-207715-3).

Method Nitrate by calc: The following sample(s) was analyzed outside of analytical holding time due to instrumentation malfunction in original dataset for Nitrate and Nitrite: .MW-42S (480-207715-3).

Method 9060A: The sample duplicate precision for the following sample associated with analytical batch 480-666388 was outside control limits: (480-207715-P-2 DU). Non-homogeneity of the sample matrix is suspected. The sample was re-analyzed with confirming results.

Method SM 3500 FE D: This analysis is normally performed in the field and has a method-defined holding time of 15 minutes. The following samples has been qualified with the "HF" flag to indicate analysis was performed in the laboratory outside the 15 minute timeframe: MW-40D (480-207715-1), A1-GP10-S (480-207715-2) and MW-42S (480-207715-3).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

5

0

8

9

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: CB-1 Lab Sample ID: 480-207637-1

Date Collected: 04/06/23 15:25 Matrix: Water Date Received: 04/07/23 13:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	1.4		1.0	0.82	ug/L			04/11/23 01:12	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			04/11/23 01:12	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			04/11/23 01:12	1
1,1,2-Trichloro-1,2,2-trifluoroetha	22		1.0	0.31	ug/L			04/11/23 01:12	1
ne									
1,1-Dichloroethane	2.2		1.0	0.38	-			04/11/23 01:12	1
1,1-Dichloroethene	ND		1.0		ug/L			04/11/23 01:12	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			04/11/23 01:12	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	-			04/11/23 01:12	1
1,2-Dichlorobenzene	ND		1.0		ug/L			04/11/23 01:12	1
1,2-Dichloroethane	ND		1.0	0.21	-			04/11/23 01:12	1
1,2-Dichloropropane	ND		1.0	0.72	-			04/11/23 01:12	1
1,3-Dichlorobenzene	ND		1.0	0.78				04/11/23 01:12	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			04/11/23 01:12	1
2-Butanone (MEK)	ND		10	1.3	ug/L			04/11/23 01:12	1
2-Hexanone	ND	*+	5.0		ug/L			04/11/23 01:12	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			04/11/23 01:12	1
Acetone	ND		10	3.0	ug/L			04/11/23 01:12	1
Benzene	ND		1.0	0.41	ug/L			04/11/23 01:12	1
Bromodichloromethane	ND		1.0	0.39	ug/L			04/11/23 01:12	1
Bromoform	ND		1.0	0.26	ug/L			04/11/23 01:12	1
Bromomethane	ND		1.0	0.69	ug/L			04/11/23 01:12	1
Carbon disulfide	ND		1.0	0.19	ug/L			04/11/23 01:12	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			04/11/23 01:12	1
Chlorobenzene	ND		1.0	0.75	ug/L			04/11/23 01:12	1
Dibromochloromethane	ND		1.0	0.32	ug/L			04/11/23 01:12	1
Chloroethane	ND		1.0	0.32	ug/L			04/11/23 01:12	1
Chloroform	ND		1.0	0.34	ug/L			04/11/23 01:12	1
Chloromethane	ND		1.0	0.35	ug/L			04/11/23 01:12	1
cis-1,2-Dichloroethene	5.9		1.0	0.81	ug/L			04/11/23 01:12	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			04/11/23 01:12	1
Cyclohexane	ND		1.0	0.18	ug/L			04/11/23 01:12	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			04/11/23 01:12	1
Ethylbenzene	ND		1.0	0.74	ug/L			04/11/23 01:12	1
1,2-Dibromoethane	ND		1.0		ug/L			04/11/23 01:12	1
Isopropylbenzene	ND		1.0	0.79	-			04/11/23 01:12	1
Methyl acetate	ND		2.5		ug/L			04/11/23 01:12	1
Methyl tert-butyl ether	ND		1.0		ug/L			04/11/23 01:12	1
Methylcyclohexane	ND		1.0		ug/L			04/11/23 01:12	1
Methylene Chloride	ND		1.0		ug/L			04/11/23 01:12	1
Styrene	ND		1.0		ug/L			04/11/23 01:12	1
Tetrachloroethene	ND		1.0		ug/L			04/11/23 01:12	1
Toluene	ND		1.0		ug/L			04/11/23 01:12	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			04/11/23 01:12	1
trans-1,3-Dichloropropene	ND		1.0		ug/L			04/11/23 01:12	1
Trichloroethene	2.5		1.0		ug/L			04/11/23 01:12	1
Trichlorofluoromethane	ND		1.0		ug/L			04/11/23 01:12	· · · · · · · · · · · 1
Vinyl chloride	ND		1.0		ug/L			04/11/23 01:12	1
Xylenes, Total	ND		2.0		ug/L			04/11/23 01:12	1

Eurofins Buffalo

Page 9 of 97 5/4/2023

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: CB-1 Lab Sample ID: 480-207637-1

Matrix: Water

Date Collected: 04/06/23 15:25 Date Received: 04/07/23 13:45

Surrogate	%Recovery Qualifier	Limits	Pre	pared	Analyzed	Dil Fac
Toluene-d8 (Surr)	91	80 - 120			04/11/23 01:12	1
1,2-Dichloroethane-d4 (Surr)	104	77 - 120			04/11/23 01:12	1
4-Bromofluorobenzene (Surr)	94	73 - 120			04/11/23 01:12	1
Dibromofluoromethane (Surr)	97	75 - 123			04/11/23 01:12	1

5

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: CB-2 Lab Sample ID: 480-207637-2

Date Collected: 04/06/23 15:40 Matrix: Water Date Received: 04/07/23 13:45

Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND -	1.0	0.82	ug/L			04/11/23 01:35	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			04/11/23 01:35	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			04/11/23 01:35	1
1,1,2-Trichloro-1,2,2-trifluoroetha	2.0	1.0	0.31	ug/L			04/11/23 01:35	1
ne								
1,1-Dichloroethane	1.9	1.0		ug/L			04/11/23 01:35	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			04/11/23 01:35	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			04/11/23 01:35	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			04/11/23 01:35	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			04/11/23 01:35	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			04/11/23 01:35	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			04/11/23 01:35	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			04/11/23 01:35	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			04/11/23 01:35	1
2-Butanone (MEK)	ND	10	1.3	ug/L			04/11/23 01:35	1
2-Hexanone	ND *+	5.0	1.2	ug/L			04/11/23 01:35	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			04/11/23 01:35	1
Acetone	ND	10	3.0	ug/L			04/11/23 01:35	1
Benzene	ND	1.0	0.41	ug/L			04/11/23 01:35	1
Bromodichloromethane	ND	1.0	0.39	ug/L			04/11/23 01:35	1
Bromoform	ND	1.0		ug/L			04/11/23 01:35	1
Bromomethane	ND	1.0		ug/L			04/11/23 01:35	1
Carbon disulfide	ND	1.0		ug/L			04/11/23 01:35	1
Carbon tetrachloride	ND	1.0		ug/L			04/11/23 01:35	1
Chlorobenzene	ND	1.0		ug/L			04/11/23 01:35	1
Dibromochloromethane	ND	1.0		ug/L			04/11/23 01:35	1
Chloroethane	ND	1.0		ug/L			04/11/23 01:35	1
Chloroform	ND	1.0		ug/L			04/11/23 01:35	1
Chloromethane	ND	1.0		ug/L			04/11/23 01:35	· · · · · · · · · · · · · · · · · · ·
cis-1,2-Dichloroethene	8.6	1.0		ug/L			04/11/23 01:35	1
cis-1,3-Dichloropropene	ND	1.0		ug/L			04/11/23 01:35	
Cyclohexane	ND	1.0		ug/L			04/11/23 01:35	· · · · · · · · · · · · · · · · · · ·
Dichlorodifluoromethane	ND	1.0		ug/L			04/11/23 01:35	
Ethylbenzene	ND	1.0		ug/L			04/11/23 01:35	1
1,2-Dibromoethane	ND	1.0		ug/L			04/11/23 01:35	'
Isopropylbenzene	ND ND	1.0		ug/L ug/L			04/11/23 01:35	1
Methyl acetate	ND ND	2.5		ug/L ug/L			04/11/23 01:35	
								1
Methyl tert-butyl ether	ND	1.0		ug/L			04/11/23 01:35	1
Methylcyclohexane	ND	1.0		ug/L			04/11/23 01:35	1
Methylene Chloride	ND	1.0		ug/L			04/11/23 01:35	1
Styrene	ND	1.0		ug/L			04/11/23 01:35	1
Tetrachloroethene	ND	1.0		ug/L			04/11/23 01:35	1
Toluene	ND	1.0		ug/L			04/11/23 01:35	
trans-1,2-Dichloroethene	ND	1.0		ug/L			04/11/23 01:35	1
trans-1,3-Dichloropropene	ND	1.0		ug/L			04/11/23 01:35	1
Trichloroethene	4.0	1.0		ug/L			04/11/23 01:35	1
Trichlorofluoromethane	ND	1.0		ug/L			04/11/23 01:35	1
Vinyl chloride	ND	1.0		ug/L			04/11/23 01:35	1
Xylenes, Total	ND	2.0	0.66	ug/L			04/11/23 01:35	1

Eurofins Buffalo

5/4/2023

2

6

0

10

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: CB-2 Lab Sample ID: 480-207637-2 Date Collected: 04/06/23 15:40

Matrix: Water

Date Received: 04/07/23 13:45

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	95	80 - 120		04/11/23 01:35	1
1,2-Dichloroethane-d4 (Surr)	106	77 - 120		04/11/23 01:35	1
4-Bromofluorobenzene (Surr)	97	73 - 120		04/11/23 01:35	1
Dibromofluoromethane (Surr)	100	75 - 123		04/11/23 01:35	1

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: CB-3 Lab Sample ID: 480-207637-3

Date Collected: 04/06/23 15:50 Matrix: Water Date Received: 04/07/23 13:45

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			04/11/23 01:58	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			04/11/23 01:58	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			04/11/23 01:58	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			04/11/23 01:58	1
1,1-Dichloroethane	3.8	1.0	0.38	ug/L			04/11/23 01:58	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			04/11/23 01:58	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			04/11/23 01:58	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			04/11/23 01:58	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			04/11/23 01:58	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			04/11/23 01:58	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			04/11/23 01:58	1
1,3-Dichlorobenzene	ND	1.0		ug/L			04/11/23 01:58	1
1,4-Dichlorobenzene	ND	1.0		ug/L			04/11/23 01:58	1
2-Butanone (MEK)	ND	10		ug/L			04/11/23 01:58	1
2-Hexanone	ND *+	5.0		ug/L			04/11/23 01:58	1
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			04/11/23 01:58	1
Acetone	ND	10		ug/L			04/11/23 01:58	1
Benzene	ND	1.0		ug/L			04/11/23 01:58	1
Bromodichloromethane	ND	1.0		ug/L			04/11/23 01:58	1
Bromoform	ND	1.0		ug/L			04/11/23 01:58	1
Bromomethane	ND	1.0		ug/L			04/11/23 01:58	1
Carbon disulfide	ND	1.0		ug/L			04/11/23 01:58	1
Carbon tetrachloride	ND	1.0		ug/L			04/11/23 01:58	1
Chlorobenzene	ND	1.0		ug/L			04/11/23 01:58	1
Dibromochloromethane	ND	1.0		ug/L			04/11/23 01:58	· · · · · · · · · · · · · · · · · · ·
Chloroethane	4.3	1.0		ug/L			04/11/23 01:58	1
Chloroform	ND	1.0		ug/L			04/11/23 01:58	1
Chloromethane	ND	1.0		ug/L			04/11/23 01:58	
cis-1,2-Dichloroethene	3.1	1.0		ug/L			04/11/23 01:58	1
cis-1,3-Dichloropropene	ND	1.0		ug/L			04/11/23 01:58	1
Cyclohexane	ND	1.0		ug/L			04/11/23 01:58	· · · · · · · · · · 1
Dichlorodifluoromethane	ND	1.0		ug/L			04/11/23 01:58	1
Ethylbenzene	ND	1.0		ug/L			04/11/23 01:58	1
1,2-Dibromoethane	ND	1.0		ug/L			04/11/23 01:58	
Isopropylbenzene	ND	1.0		ug/L			04/11/23 01:58	1
Methyl acetate	ND	2.5		ug/L			04/11/23 01:58	
Methyl tert-butyl ether	ND	1.0		ug/L			04/11/23 01:58	
Methylcyclohexane	ND	1.0		ug/L			04/11/23 01:58	
Methylene Chloride	ND	1.0		ug/L			04/11/23 01:58	1
Styrene	ND	1.0		ug/L			04/11/23 01:58	
Tetrachloroethene	ND	1.0		ug/L			04/11/23 01:58	
Toluene	ND	1.0		ug/L			04/11/23 01:58	1
trans-1,2-Dichloroethene	ND	1.0		ug/L			04/11/23 01:58	
trans-1,3-Dichloropropene	ND	1.0		ug/L ug/L			04/11/23 01:58	1
Trichloroethene	0.51 J	1.0		ug/L ug/L			04/11/23 01:58	1
Trichloroethene Trichlorofluoromethane				ug/L ug/L				
	ND ND	1.0 1.0		ug/L ug/L			04/11/23 01:58	1
Vinyl chloride Xylenes, Total	1.1 J	1.0 2.0	0.90	ug/L ug/L			04/11/23 01:58 04/11/23 01:58	1

Eurofins Buffalo

3

_

6

8

3

a a

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: CB-3 Lab Sample ID: 480-207637-3 Date Collected: 04/06/23 15:50

Matrix: Water

Date Received: 04/07/23 13:45

Surrogate	%Recovery Qu	ualifier Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	90	80 - 120		04/11/23 01:58	1
1,2-Dichloroethane-d4 (Surr)	106	77 - 120		04/11/23 01:58	1
4-Bromofluorobenzene (Surr)	94	73 - 120		04/11/23 01:58	1
Dibromofluoromethane (Surr)	102	75 - 123		04/11/23 01:58	1

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: CB-4

Date Collected: 04/06/23 16:25 Date Received: 04/07/23 13:45 Lab Sample ID: 480-207637-4

Matrix: Water

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	1.0	0.82 ug/L		04/11/23 02:21	
1,1,2,2-Tetrachloroethane	ND	1.0	0.21 ug/L		04/11/23 02:21	
1,1,2-Trichloroethane	ND	1.0	0.23 ug/L		04/11/23 02:21	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31 ug/L		04/11/23 02:21	
1,1-Dichloroethane	ND	1.0	0.38 ug/L		04/11/23 02:21	
1,1-Dichloroethene	ND	1.0	0.29 ug/L		04/11/23 02:21	
1,2,4-Trichlorobenzene	ND	1.0	0.41 ug/L		04/11/23 02:21	
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39 ug/L		04/11/23 02:21	
1,2-Dichlorobenzene	ND	1.0	0.79 ug/L		04/11/23 02:21	
1,2-Dichloroethane	ND	1.0	0.21 ug/L		04/11/23 02:21	
1,2-Dichloropropane	ND	1.0	0.72 ug/L		04/11/23 02:21	
1,3-Dichlorobenzene	ND	1.0	0.78 ug/L		04/11/23 02:21	
1,4-Dichlorobenzene	ND	1.0	0.84 ug/L		04/11/23 02:21	
2-Butanone (MEK)	ND	10	1.3 ug/L		04/11/23 02:21	
2-Hexanone	ND *+	5.0	1.2 ug/L		04/11/23 02:21	
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1 ug/L		04/11/23 02:21	
Acetone	ND	10	3.0 ug/L		04/11/23 02:21	
Benzene	ND	1.0	0.41 ug/L		04/11/23 02:21	
Bromodichloromethane	ND	1.0	0.39 ug/L		04/11/23 02:21	
Bromoform	ND	1.0	0.26 ug/L		04/11/23 02:21	
Bromomethane	ND	1.0	0.69 ug/L		04/11/23 02:21	
Carbon disulfide	ND	1.0	0.19 ug/L		04/11/23 02:21	
Carbon tetrachloride	ND	1.0	0.27 ug/L		04/11/23 02:21	
Chlorobenzene	ND	1.0	0.75 ug/L		04/11/23 02:21	
Dibromochloromethane	ND	1.0	0.32 ug/L		04/11/23 02:21	
Chloroethane	ND	1.0	0.32 ug/L		04/11/23 02:21	
Chloroform	ND	1.0	0.34 ug/L		04/11/23 02:21	
Chloromethane	ND	1.0	0.35 ug/L		04/11/23 02:21	
cis-1,2-Dichloroethene	ND	1.0	0.81 ug/L		04/11/23 02:21	
cis-1,3-Dichloropropene	ND	1.0	0.36 ug/L		04/11/23 02:21	
Cyclohexane	ND	1.0	0.18 ug/L		04/11/23 02:21	
Dichlorodifluoromethane	ND	1.0	0.68 ug/L		04/11/23 02:21	
Ethylbenzene	ND	1.0	0.74 ug/L		04/11/23 02:21	
1,2-Dibromoethane	ND	1.0	0.73 ug/L		04/11/23 02:21	
sopropylbenzene	ND	1.0	0.79 ug/L		04/11/23 02:21	
Methyl acetate	ND	2.5	1.3 ug/L		04/11/23 02:21	
Methyl tert-butyl ether	ND	1.0	0.16 ug/L		04/11/23 02:21	
Methylcyclohexane	ND	1.0	0.16 ug/L		04/11/23 02:21	
Methylene Chloride	ND	1.0	0.10 ug/L 0.44 ug/L		04/11/23 02:21	
Styrene	ND	1.0	0.44 ug/L 0.73 ug/L		04/11/23 02:21	
Tetrachloroethene	ND	1.0	0.75 ug/L 0.36 ug/L		04/11/23 02:21	
Toluene	ND ND	1.0	~		04/11/23 02:21	
			0.51 ug/L			
rans-1,2-Dichloroethene	ND ND	1.0	0.90 ug/L		04/11/23 02:21	
rans-1,3-Dichloropropene	ND	1.0	0.37 ug/L		04/11/23 02:21	
Trichlandian	ND	1.0	0.46 ug/L		04/11/23 02:21	
Trichlorofluoromethane	ND	1.0	0.88 ug/L		04/11/23 02:21	
Vinyl chloride	ND	1.0	0.90 ug/L		04/11/23 02:21	

Eurofins Buffalo

3

5

7

9

10

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: CB-4 Lab Sample ID: 480-207637-4

. Matrix: Water

Date Collected: 04/06/23 16:25 Date Received: 04/07/23 13:45

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	94	80 - 120		04/11/23 02:21	1
1,2-Dichloroethane-d4 (Surr)	107	77 - 120		04/11/23 02:21	1
4-Bromofluorobenzene (Surr)	95	73 - 120		04/11/23 02:21	1
Dibromofluoromethane (Surr)	99	75 - 123		04/11/23 02:21	1

5

9

10

1,6

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: CB-E

Lab Sample ID: 480-207637-5

Date Collected: 04/06/23 16:40 **Matrix: Water** Date Received: 04/07/23 13:45

Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			04/11/23 02:45	
1,1,2,2-Tetrachloroethane	ND	1.0		ug/L			04/11/23 02:45	
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			04/11/23 02:45	
1,1,2-Trichloro-1,2,2-trifluoroetha	1.6	1.0	0.31	ug/L			04/11/23 02:45	
ne								
1,1-Dichloroethane	6.5	1.0		ug/L			04/11/23 02:45	
1,1-Dichloroethene	ND	1.0		ug/L			04/11/23 02:45	
1,2,4-Trichlorobenzene	ND	1.0		ug/L			04/11/23 02:45	
1,2-Dibromo-3-Chloropropane	ND	1.0		ug/L			04/11/23 02:45	
1,2-Dichlorobenzene	ND	1.0		ug/L			04/11/23 02:45	
1,2-Dichloroethane	ND	1.0		ug/L			04/11/23 02:45	
1,2-Dichloropropane	ND	1.0	0.72	ug/L			04/11/23 02:45	
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			04/11/23 02:45	
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			04/11/23 02:45	
2-Butanone (MEK)	ND	10	1.3	ug/L			04/11/23 02:45	
2-Hexanone	ND *+	5.0	1.2	ug/L			04/11/23 02:45	
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			04/11/23 02:45	
Acetone	ND	10	3.0	ug/L			04/11/23 02:45	
Benzene	ND	1.0	0.41	ug/L			04/11/23 02:45	
Bromodichloromethane	ND	1.0		ug/L			04/11/23 02:45	
Bromoform	ND	1.0		ug/L			04/11/23 02:45	
Bromomethane	ND	1.0		ug/L			04/11/23 02:45	
Carbon disulfide	ND	1.0		ug/L			04/11/23 02:45	
Carbon tetrachloride	ND	1.0		ug/L			04/11/23 02:45	
Chlorobenzene	ND	1.0		ug/L			04/11/23 02:45	
Dibromochloromethane	ND	1.0		ug/L			04/11/23 02:45	
Chloroethane	8.3	1.0		ug/L			04/11/23 02:45	
Chloroform	ND	1.0		ug/L			04/11/23 02:45	
Chloromethane	ND	1.0		ug/L			04/11/23 02:45	
cis-1,2-Dichloroethene	5.7	1.0		ug/L			04/11/23 02:45	
cis-1,3-Dichloropropene	ND	1.0		ug/L			04/11/23 02:45	
Cyclohexane	ND	1.0		ug/L			04/11/23 02:45	
Dichlorodifluoromethane	ND	1.0		ug/L			04/11/23 02:45	
	1.5	1.0		ug/L			04/11/23 02:45	
Ethylbenzene 1,2-Dibromoethane	ND	1.0		ug/L			04/11/23 02:45	
,	ND ND	1.0		-				
Isopropylbenzene				ug/L			04/11/23 02:45	
Methyl acetate	ND	2.5		ug/L			04/11/23 02:45	
Methyl tert-butyl ether	ND	1.0		ug/L			04/11/23 02:45	
Methylcyclohexane	0.31 J	1.0		ug/L			04/11/23 02:45	
Methylene Chloride	ND	1.0		ug/L			04/11/23 02:45	
Styrene	ND	1.0		ug/L			04/11/23 02:45	
Tetrachloroethene	ND	1.0		ug/L			04/11/23 02:45	
Toluene	ND	1.0		ug/L			04/11/23 02:45	
trans-1,2-Dichloroethene	ND	1.0		ug/L			04/11/23 02:45	
trans-1,3-Dichloropropene	ND	1.0		ug/L			04/11/23 02:45	
Trichloroethene	1.0	1.0		ug/L			04/11/23 02:45	
Trichlorofluoromethane	ND	1.0		ug/L			04/11/23 02:45	
Vinyl chloride	2.7	1.0	0.90	ug/L			04/11/23 02:45	
Xylenes, Total	2.8	2.0	0.66	ug/L			04/11/23 02:45	

Eurofins Buffalo

5/4/2023

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: CB-E Lab Sample ID: 480-207637-5 Date Collected: 04/06/23 16:40

Matrix: Water

Date Received: 04/07/23 13:45

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	94	80 - 120		04/11/23 02:45	1
1,2-Dichloroethane-d4 (Surr)	108	77 - 120		04/11/23 02:45	1
4-Bromofluorobenzene (Surr)	100	73 - 120		04/11/23 02:45	1
Dibromofluoromethane (Surr)	106	75 - 123		04/11/23 02:45	1

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: TP-5 Lab Sample ID: 480-207637-6

Date Collected: 04/06/23 15:15

Date Received: 04/07/23 13:45

Matrix: Water

1.12_2-Trichlorochane ND 1.0 0.21 ugl. 0.411123 035. 1.1_2-Trichlorochane ND 1.0 0.33 ugl. 0.411123 035. 1.1_Dichlorochane ND 1.0 0.33 ugl. 0.411123 035. 1.1_Dichlorochane ND 1.0 0.39 ugl. 0.411123 035. 1.2_Chichlorochane ND 1.0 0.49 ugl. 0.411123 035. 1.2_Chichlorobenzene ND 1.0 0.79 ugl. 0.411123 035. 1.2_Chichlorochane ND 1.0 0.79 ugl. 0.411123 035. <th>nalyte</th> <th>Result Qualifier</th> <th>RL</th> <th>MDL</th> <th></th> <th> D</th> <th>Prepared</th> <th>Analyzed</th> <th>Dil Fa</th>	nalyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1.1,2-Trichloroethane ND 1.0 0.23 ugl. 0.411/123 03.6 1.1,2-Trichloroethane ND 1.0 0.31 ugl. 0.411/123 03.6 1.1,1-Dichloroethane ND 1.0 0.38 ugl. 0.411/123 03.6 1.1-Dichloroethane ND 1.0 0.28 ugl. 0.411/123 03.6 1.1-Dichloroethane ND 1.0 0.29 ugl. 0.411/123 03.6 1.1-Dichloroethane ND 1.0 0.39 ugl. 0.411/123 03.6 1.2-Dichloroethane ND 1.0 0.39 ugl. 0.411/123 03.6 1.2-Dichloroethane ND 1.0 0.79 ugl. 0.411/123 03.6 1.2-Dichloroethane ND 1.0 0.79 ugl. 0.411/123 03.6 1.2-Dichloroethane ND 1.0 0.72 ugl. 0.411/123 03.6 1.2-Dichloroethane ND 1.0 0.72 ugl. 0.411/123 03.6 1.2-Dichloroethane ND 1.0 0.72 ugl. 0.411/123 03.6 1.2-Dichloroethane ND 1.0 0.78 ugl. 0.411/123 03.6 1.2-Dichloroethane ND 1.0 0.78 ugl. 0.411/123 03.6 1.2-Dichloroethane ND 1.0 0.78 ugl. 0.411/123 03.6 1.4-Dichloroethane ND 1.0 0.78 ugl. 0.411/123 03.6 1.4-Dichloroethane ND 1.0 0.84 ugl. 0.411/123 03.6 1.4-Dichloroethane ND 1.0 0.85 ugl. 0.411/123 03.6 1.4-Dichloroethane ND 1.0 0.41 ugl. 0.411/123 03.6 1.4-Dichloroethane ND 1.0 0.41 ugl. 0.411/123 03.6 1.4-Dichloroethane ND 1.0 0.41 ugl. 0.411/123 03.6 1.4-Dichloroethane ND 1.0 0.41 ugl. 0.411/123 03.6 1.4-Dichloroethane ND 1.0 0.41 ugl. 0.411/123 03.6 1.4-Dichloroethane ND 1.0 0.41 ugl. 0.411/123 03.6 1.4-Dichloroethane ND 1.0 0.41 ugl. 0.411/123 03.6 1.4-Dichloroethane ND 1.0 0.41 ugl. 0.411/123 03.6 1.4-Dichloroethane ND 1.0 0.42 ugl. 0.411/123 03.6 1.4-Dichloroethane ND 1.0 0.40 ugl. 0.411/123 03.6 1.4-Dichloroethane ND 1.0 0.40 ugl. 0.411/123 03.6 1.4-Dichloroethane ND 1.0 0.40 ugl. 0.411/123 03.6 1.4-Dichloroethane ND 1.0 0.40 ugl. 0.411/123 03.6 1.4-Dichloroethane ND 1.0 0.40 ugl. 0.411/123 03.6 1.4-Dichloroethane ND 1.0 0.40 ugl. 0.411/123 03.6 1.4-Dichloroethane ND 1.0 0.40 ugl. 0.411/123 03.6 1.4-Dichloroethane ND 1.0 0.40 ugl. 0.411/123 03.6 1.4-Dichloroethane ND 1.0 0.40 ugl. 0.411/123 03.6 1.4-Dichloroethane ND 1.0 0.40 ugl. 0.411/123 03.6 1.4-Dichloroethane ND 1.0 0.40 ugl. 0.411/123 03.6 1.4-Dichloroethane ND 1.0 0.40 ugl. 0.411/123 03.6 1.4-Dichloroethane ND 1.0 0.40 ugl. 0.411/123 03.	1,1-Trichloroethane	ND	1.0	0.82	ug/L			04/11/23 03:08	
1.1.2-Tichloro-1,2.2-Influoroethane ND 1.0 0.31 ugL 04/11/23 03/ 1.1.2-Tichloroethane ND 1.0 0.38 ugL 04/11/23 03/ 1.2,4-Trichlorobethane ND 1.0 0.41 ugL 04/11/23 03/ 1.2,4-Trichlorobenzane ND 1.0 0.41 ugL 04/11/23 03/ 1.2-Dichlorobenzane ND 1.0 0.79 ugL 04/11/23 03/ 1.2-Dichlorobenzane ND 1.0 0.72 ugL 04/11/23 03/ 1.2-Dichlorobenzane ND 1.0 0.72 ugL 04/11/23 03/ 1.3-Dichlorobenzane ND 1.0 0.78 ugL 04/11/23 03/ 2-Butanone ND 1.0 0.78 ugL 04/11/23 03/ 2-Butanone ND 1.0 0.84 ugL 04/11/23 03/ 2-Butanone ND 1.0 0.81 ugL 04/11/23 03/ 2-Butanone ND 1.0 0.30 ugL 04/11/23 03/	1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			04/11/23 03:08	
1.1-Dichloroethane	1,2-Trichloroethane	ND	1.0	0.23	ug/L			04/11/23 03:08	
1.1-Dichloroethene	1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			04/11/23 03:08	
1.2.4-Trichlorobenzene	1-Dichloroethane	ND	1.0	0.38	ug/L			04/11/23 03:08	
1.2-Dibriomo-3-Chloropropane	1-Dichloroethene	ND	1.0	0.29	ug/L			04/11/23 03:08	
1.2-Dichlorobenzene ND 1.0 0.79 ug/L 04/11/23 03/L 1.2-Dichlorocethane ND 1.0 0.72 ug/L 04/11/23 03/L 1.3-Dichloropropane ND 1.0 0.72 ug/L 04/11/23 03/L 1.3-Dichlorobenzene ND 1.0 0.78 ug/L 04/11/23 03/L 2-Butanone (MEK) ND 1.0 0.84 ug/L 04/11/23 03/L 2-Hoxanone ND + 5.0 1.2 ug/L 04/11/23 03/L 2-Hoxanone ND 5.0 2.1 ug/L 04/11/23 03/L 4-Methyl-2-pentanone (MIBK) ND 5.0 2.1 ug/L 04/11/23 03/L 2-Brozene ND 1.0 0.41 ug/L 04/11/23 03/L Bernzene ND 1.0 0.26 ug/L 04/11/23 03/L Bromodichloromethane ND 1.0 0.26 ug/L 04/11/23 03/L Bromodichloromethane ND 1.0 0.19 ug/L 04/11/23 03/L </td <td>2,4-Trichlorobenzene</td> <td>ND</td> <td>1.0</td> <td>0.41</td> <td>ug/L</td> <td></td> <td></td> <td>04/11/23 03:08</td> <td></td>	2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			04/11/23 03:08	
2-Dichloroethane	2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			04/11/23 03:08	
1.2-Dichloropropane ND 1.0 0.72 ug/L 04/11/23 03:d 1.3-Dichlorobenzene ND 1.0 0.78 ug/L 04/11/23 03:d 1.4-Dichlorobenzene ND 1.0 0.84 ug/L 04/11/23 03:d 2-Butanone (MEK) ND 10 1.3 ug/L 04/11/23 03:d 2-Hexanone ND 10 1.3 ug/L 04/11/23 03:d Acetone ND 10 3.0 ug/L 04/11/23 03:d Acetone ND 1.0 0.41 ug/L 04/11/23 03:d Benzene ND 1.0 0.41 ug/L 04/11/23 03:d Bromofichioromethane ND 1.0 0.26 ug/L 04/11/23 03:d Bromofichioromethane ND 1.0 0.26 ug/L 04/11/23 03:d Bromofichioromethane ND 1.0 0.27 ug/L 04/11/23 03:d Bromofichioromethane ND 1.0 0.27 ug/L 04/11/23 03:d Carbon de	2-Dichlorobenzene	ND	1.0	0.79	ug/L			04/11/23 03:08	
1,3-Dichlorobenzene ND 1.0 0.78 ug/L 04/11/23 03:0 (1,4-Dichlorobenzene ND 1.0 0.84 ug/L 04/11/23 03:0 (2-Butanone (MIBK) ND 10 1.3 ug/L 04/11/23 03:0 (2-Hexanone ND + 5.0 1.2 ug/L 04/11/23 03:0 (3-Hethyl-2-pentanone (MIBK) ND 5.0 1.1 ug/L 04/11/23 03:0 (3-Hethyl-2-pentanone (MIBK) ND 5.0 1.1 ug/L 04/11/23 03:0 (3-Hethyl-2-pentanone (MIBK) ND 5.0 1.1 ug/L 04/11/23 03:0 (3-Benzene ND 1.0 0.41 ug/L 04/11/23 03:0 (3-Benzene ND 1.0 0.41 ug/L 04/11/23 03:0 (3-Bromodichloromethane ND 1.0 0.49 ug/L 04/11/23 03:0 (3-Bromodichloromethane ND 1.0 0.69 ug/L 04/11/23 03:0 (3-Bromodichloromethane ND 1.0 0.79 ug/L 04/11/23 03:0 (3-Bromodichloromethane ND 1.0 0.79 ug/L 04/11/23 03:0 (3-Bromodichloromethane ND 1.0 0.75 ug/L 04/11/23 03:0 (3-Bromodichloromethane ND 1.0 0.75 ug/L 04/11/23 03:0 (3-Bromodichloromethane ND 1.0 0.32 ug/L 04/11/23 03:0 (3-Bromodichloromethane ND 1.0 0.32 ug/L 04/11/23 03:0 (3-Bromodichloromethane ND 1.0 0.35 ug/L 04/11/23 03:0 (3-Bromodichloromethane ND 1.0 0.35 ug/L 04/11/23 03:0 (3-Bromodichloromethane ND 1.0 0.35 ug/L 04/11/23 03:0 (3-Bromodichloromethane ND 1.0 0.36 ug/L 04/11/23 03:0 (3-Bromodichloromethane ND 1.0 0.36 ug/L 04/11/23 03:0 (3-Bromodichloromethane ND 1.0 0.74 ug/L 04/11/23 03:0 (3-Bromodichloromethane ND 1.0 0.73 ug/L 04/11/23 03:0 (3-Bromodichloromethane ND 1.0 0.73 ug/L 04/11/23 03:0 (3-Bromodichloromethane ND 1.0 0.74 ug/L 04/11/23 03:0 (3-Bromodichloromethane ND 1.0 0.75 ug/L 04/11/23 03:0 (3-Bromodichloromethane ND 1.0 0.76 ug/L 04/11/23 03:0 (3-Bromodichloromethane ND 1.0 0.77 ug/L 04/11/23 03:0 (3-Bromodichloromethane ND 1.0 0.78 ug/L 04/11/23 03:0 (3-Bromodichloromethane ND 1.0 0.79 ug/L 04/11/23 03:0 (3-Bromodichloromethane ND 1.0 0.79 ug/L 04/11/23 03:0 (3-Bromodichloromethane ND 1.0 0.79 ug/L 04/11/23 03:0 (3-Bromodichloromethane ND 1.0 0.79 ug/L 04/11/23 03:0 (3-Bromodichloromethane ND 1.0 0.79 ug/L 04/11/23	2-Dichloroethane	ND	1.0	0.21	ug/L			04/11/23 03:08	
1.4-Dichlorobenzene ND 1.0 0.84 ug/L 04/11/23 03:0 2-Butanone (MEK) ND 10 1.3 ug/L 04/11/23 03:0 <t< td=""><td>2-Dichloropropane</td><td>ND</td><td>1.0</td><td>0.72</td><td>ug/L</td><td></td><td></td><td>04/11/23 03:08</td><td></td></t<>	2-Dichloropropane	ND	1.0	0.72	ug/L			04/11/23 03:08	
2-Butanone (MEK) ND ND ND ND ND ND ND ND ND ND ND ND ND	3-Dichlorobenzene	ND	1.0	0.78	ug/L			04/11/23 03:08	
2-Hexanone ND *+ 5.0 1.2 ug/L 04/11/23 03:0 1-Methyl-2-pentanone (MIBK) ND 5.0 2.1 ug/L 04/11/23 03:0 1-Methyl-2-pentanone (MIBK) ND 5.0 2.1 ug/L 04/11/23 03:0 2-Bromofelore ND 10 3.0 ug/L 04/11/23 03:0 2-Bromofichloromethane ND 1.0 0.41 ug/L 04/11/23 03:0 2-Bromofichloromethane ND 1.0 0.39 ug/L 04/11/23 03:0 2-Bromofichloromethane ND 1.0 0.69 ug/L 04/11/23 03:0 2-Bromofelore ND 1.0 0.69 ug/L 04/11/23 03:0 2-Bromofelore ND 1.0 0.75 ug/L 04/11/23 03:0 2-Bromofelore ND 1.0 0.75 ug/L 04/11/23 03:0 2-Bromofelore ND 1.0 0.75 ug/L 04/11/23 03:0 2-Bromofelore ND 1.0 0.32 ug/L 04/11/23 03:0 2-Bromofelore ND 1.0 0.32 ug/L 04/11/23 03:0 2-Bromofelore ND 1.0 0.32 ug/L 04/11/23 03:0 2-Bromofelore ND 1.0 0.32 ug/L 04/11/23 03:0 2-Bromofelore ND 1.0 0.32 ug/L 04/11/23 03:0 2-Bromofelore ND 1.0 0.32 ug/L 04/11/23 03:0 2-Bromofelore ND 1.0 0.35 ug/L 04/11/23 03:0 2-Bromofelore ND 1.0 0.35 ug/L 04/11/23 03:0 2-Bromofelore ND 1.0 0.35 ug/L 04/11/23 03:0 2-Bromofelore ND 1.0 0.35 ug/L 04/11/23 03:0 2-Bromofelore ND 1.0 0.36 ug/L 04/11/23 03:0 2-Bromofelore ND 1.0 0.36 ug/L 04/11/23 03:0 2-Bromofelore ND 1.0 0.73 ug/L 04/11/23 03:0 2-Bromofelore ND 1.0 0.79 ug/L 04/11/23 03:0 2-Bromofelore ND	4-Dichlorobenzene	ND	1.0	0.84	ug/L			04/11/23 03:08	
A-Methyl-2-pentanone (MIBK)	Butanone (MEK)	ND	10	1.3	ug/L			04/11/23 03:08	
A-Methyl-2-pentanone (MIBK)		ND *+	5.0		-			04/11/23 03:08	
Acetone ND 10 3.0 ug/L 04/11/23 03:0 Benzene ND 1.0 0.41 ug/L 04/11/23 03:0 Benzene ND 1.0 0.41 ug/L 04/11/23 03:0 Benzene ND 1.0 0.49 ug/L 04/11/23 03:0 Bromotichloromethane ND 1.0 0.26 ug/L 04/11/23 03:0 Bromotethane ND 1.0 0.69 ug/L 04/11/23 03:0 Bromotethane ND 1.0 0.69 ug/L 04/11/23 03:0 Carbon disulfide ND 1.0 0.69 ug/L 04/11/23 03:0 Carbon disulfide ND 1.0 0.97 ug/L 04/11/23 03:0 Carbon disulfide ND 1.0 0.75 ug/L 04/11/23 03:0 Carbon disulfide ND 1.0 0.75 ug/L 04/11/23 03:0 Chlorobenzene ND 1.0 0.75 ug/L 04/11/23 03:0 Chlorobenzene ND 1.0 0.75 ug/L 04/11/23 03:0 Chlorobenzene ND 1.0 0.32 ug/L 04/11/23 03:0 Chlorotethane ND 1.0 0.32 ug/L 04/11/23 03:0 Chlorotethane ND 1.0 0.32 ug/L 04/11/23 03:0 Chlorotethane ND 1.0 0.34 ug/L 04/11/23 03:0 Chlorotethane ND 1.0 0.34 ug/L 04/11/23 03:0 cis-1,2-Dichlorotethene ND 1.0 0.35 ug/L 04/11/23 03:0 cis-1,2-Dichlorotethene ND 1.0 0.36 ug/L 04/11/23 03:0 cis-1,3-Dichloropropene ND 1.0 0.36 ug/L 04/11/23 03:0 cis-1,3-Dichloropropene ND 1.0 0.36 ug/L 04/11/23 03:0 Cyclohexane ND 1.0 0.88 ug/L 04/11/23 03:0 Cyclohexane ND 1.0 0.89 ug/L 04/11/23 03:0 Cyclohexane ND 1.0 0.73 ug/L 04/11/23 03:0 Cyclohexane ND 1.0 0.74 ug/L 04/11/23 03:0 Cyclohexane ND 1.0 0.75 ug/L 04/11/2	Methyl-2-pentanone (MIBK)	ND	5.0					04/11/23 03:08	
Benzene ND 1.0 0.41 ug/L 0.4/11/23 03/3 Bromofichioromethane ND 1.0 0.39 ug/L 0.4/11/23 03/3 Bromoform ND 1.0 0.26 ug/L 0.4/11/23 03/3 Bromomethane ND 1.0 0.69 ug/L 0.4/11/23 03/3 Carbon disulfide ND 1.0 0.19 ug/L 0.4/11/23 03/3 Carbon tetrachloride ND 1.0 0.27 ug/L 0.4/11/23 03/3 Chlorobenzene ND 1.0 0.75 ug/L 0.4/11/23 03/3 Chlorobenzene ND 1.0 0.32 ug/L 0.4/11/23 03/3 Chlorobenzene ND 1.0 0.32 ug/L 0.4/11/23 03/3 Chlorobenzene ND 1.0 0.34 ug/L 0.4/11/23 03/3 Chlorobenzene ND 1.0 0.35 ug/L 0.4/11/23 03/3 Chlorobenzene ND 1.0 0.81 ug/L 0.4/11/23 03/3 Chlorobenzene	• • • • • • • • • • • • • • • • • • • •	ND	10		-			04/11/23 03:08	
Seromodichloromethane ND 1.0 0.39 ug/L 04/11/23 03/3	enzene	ND	1.0		•			04/11/23 03:08	
Seromoform ND	romodichloromethane	ND	1.0					04/11/23 03:08	
Seromomethane					-			04/11/23 03:08	
Carbon disulfide ND 1.0 0.19 ug/L 04/11/23 03:0 Carbon tetrachloride ND 1.0 0.27 ug/L 04/11/23 03:0 Chlorobenzene ND 1.0 0.75 ug/L 04/11/23 03:0 Chloromethane ND 1.0 0.32 ug/L 04/11/23 03:0 Chloroform ND 1.0 0.32 ug/L 04/11/23 03:0 Chloroform ND 1.0 0.34 ug/L 04/11/23 03:0 Chloroformethane ND 1.0 0.35 ug/L 04/11/23 03:0 Chloroforethane ND 1.0 0.35 ug/L 04/11/23 03:0 Chloroforethane ND 1.0 0.81 ug/L 04/11/23 03:0 Cyclohexane ND 1.0 0.81 ug/L 04/11/23 03:0 Cyclohexane ND 1.0 0.68 ug/L 04/11/23 03:0 Cyclohexane ND 1.0 0.74 ug/L 04/11/23 03:0 Cithlorodifluoromethane <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>04/11/23 03:08</td> <td></td>					-			04/11/23 03:08	
Carbon tetrachloride ND 1.0 0.27 ug/L 04/11/23 03:0 Chlorobenzene ND 1.0 0.75 ug/L 04/11/23 03:0 Dibromochloromethane ND 1.0 0.32 ug/L 04/11/23 03:0 Chloroethane ND 1.0 0.32 ug/L 04/11/23 03:0 Chloromethane ND 1.0 0.34 ug/L 04/11/23 03:0 Chloromethane ND 1.0 0.35 ug/L 04/11/23 03:0 Chloromethane ND 1.0 0.81 ug/L 04/11/23 03:0 Cis-1,2-Dichloroethene ND 1.0 0.81 ug/L 04/11/23 03:0 Cis-1,2-Dichloroptopene ND 1.0 0.81 ug/L 04/11/23 03:0 Opclohexane ND 1.0 0.18 ug/L 04/11/23 03:0 Cithylbenzene ND 1.0 0.79 ug/L 04/11/23 03:0 1,2-Dibromoethane ND 1.0 0.79 ug/L 04/11/23 03:0 <									
Chlorobenzene ND 1.0 0.75 ug/L 04/11/23 03:0 Dibromochloromethane ND 1.0 0.32 ug/L 04/11/23 03:0 Chloroethane ND 1.0 0.32 ug/L 04/11/23 03:0 Chloroform ND 1.0 0.34 ug/L 04/11/23 03:0 Chloromethane ND 1.0 0.35 ug/L 04/11/23 03:0 Cis-1,2-Dichloroethene ND 1.0 0.81 ug/L 04/11/23 03:0 cis-1,3-Dichloropropene ND 1.0 0.81 ug/L 04/11/23 03:0 Cyclohexane ND 1.0 0.18 ug/L 04/11/23 03:0 Cyclohexane ND 1.0 0.68 ug/L 04/11/23 03:0 Cithyloenzene ND 1.0 0.74 ug/L 04/11/23 03:0 Cithyloenzene ND 1.0 0.73 ug/L 04/11/23 03:0 Methyl sert-butyl ether ND 1.0 0.73 ug/L 04/11/23 03:0 Met					_				
Dibromochloromethane ND 1.0 0.32 ug/L 04/11/23 03:0 Chloroethane ND 1.0 0.32 ug/L 04/11/23 03:0 Chloroform ND 1.0 0.34 ug/L 04/11/23 03:0 Chloromethane ND 1.0 0.35 ug/L 04/11/23 03:0 cis-1,2-Dichloroethene ND 1.0 0.81 ug/L 04/11/23 03:0 cis-1,3-Dichloropropene ND 1.0 0.36 ug/L 04/11/23 03:0 Cyclohexane ND 1.0 0.18 ug/L 04/11/23 03:0 Cyclohexane ND 1.0 0.68 ug/L 04/11/23 03:0 Ethylbenzene ND 1.0 0.74 ug/L 04/11/23 03:0 Ethylbenzene ND 1.0 0.73 ug/L 04/11/23 03:0 Sepropylbenzene ND 1.0 0.73 ug/L 04/11/23 03:0 Wethyl acetate ND 2.5 1.3 ug/L 04/11/23 03:0 Methylercblup					•				
Chloroethane ND 1.0 0.32 ug/L 04/11/23 03:0 Chloroform ND 1.0 0.34 ug/L 04/11/23 03:0 Chloromethane ND 1.0 0.35 ug/L 04/11/23 03:0 cis-1,2-Dichloroethene ND 1.0 0.81 ug/L 04/11/23 03:0 cis-1,2-Dichloropropene ND 1.0 0.81 ug/L 04/11/23 03:0 Cyclohexane ND 1.0 0.18 ug/L 04/11/23 03:0 Dichlorodifluoromethane ND 1.0 0.68 ug/L 04/11/23 03:0 Eithylbenzene ND 1.0 0.74 ug/L 04/11/23 03:0 1, 2-Dibromoethane ND 1.0 0.73 ug/L 04/11/23 03:0									
Chloroform ND 1.0 0.34 ug/L 04/11/23 03:0 Chloromethane ND 1.0 0.35 ug/L 04/11/23 03:0 cis-1,2-Dichloroethene ND 1.0 0.81 ug/L 04/11/23 03:0 Cyclohexane ND 1.0 0.18 ug/L 04/11/23 03:0 Dichlorodifluoromethane ND 1.0 0.68 ug/L 04/11/23 03:0 Ethylbenzene ND 1.0 0.74 ug/L 04/11/23 03:0 Ethylbenzene ND 1.0 0.74 ug/L 04/11/23 03:0 Ethylbenzene ND 1.0 0.74 ug/L 04/11/23 03:0 Sepropylbenzene ND 1.0 0.73 ug/L 04/11/23 03:0 Methyl cetate ND 1.0 0.79 ug/L 04/11/23 03:0 Methyle tert-butyl ether ND 1.0 0.16 ug/L 04/11/23 03:0 Methylecyclohexane ND 1.0 0.16 ug/L 04/11/23 03:0 St					_				
Chloromethane ND 1.0 0.35 ug/L 04/11/23 03:0 cis-1,2-Dichloroethene ND 1.0 0.81 ug/L 04/11/23 03:0 cis-1,3-Dichloropropene ND 1.0 0.36 ug/L 04/11/23 03:0 Cyclohexane ND 1.0 0.18 ug/L 04/11/23 03:0 Dichlorodifluoromethane ND 1.0 0.68 ug/L 04/11/23 03:0 Ethylbenzene ND 1.0 0.74 ug/L 04/11/23 03:0 1,2-Dibromoethane ND 1.0 0.73 ug/L 04/11/23 03:0 sopropylbenzene ND 1.0 0.73 ug/L 04/11/23 03:0 Methyl acetate ND 1.0 0.79 ug/L 04/11/23 03:0 Methyl tert-butyl ether ND 1.0 0.16 ug/L 04/11/23 03:0 Methylcyclohexane ND 1.0 0.16 ug/L 04/11/23 03:0 Methylcyclohexane ND 1.0 0.4 ug/L 04/11/23 03:0					-				
Discription Discription									
Discription Discription					-				
Cyclohexane ND 1.0 0.18 ug/L 04/11/23 03:0 Dichlorodifluoromethane ND 1.0 0.68 ug/L 04/11/23 03:0 Ethylbenzene ND 1.0 0.74 ug/L 04/11/23 03:0 1,2-Dibromoethane ND 1.0 0.73 ug/L 04/11/23 03:0 sopropylbenzene ND 1.0 0.79 ug/L 04/11/23 03:0 Methyl acetate ND 2.5 1.3 ug/L 04/11/23 03:0 Methyl tert-butyl ether ND 1.0 0.16 ug/L 04/11/23 03:0 Methylcyclohexane ND 1.0 0.16 ug/L 04/11/23 03:0 Methylene Chloride ND 1.0 0.44 ug/L 04/11/23 03:0 Styrene ND 1.0 0.73 ug/L 04/11/23 03:0 Tetrachloroethene ND 1.0 0.36 ug/L 04/11/23 03:0 Trans-1,2-Dichloropropene ND 1.0 0.90 ug/L 04/11/23 03:0	•				-				
Dichlorodifluoromethane ND 1.0 0.68 ug/L 04/11/23 03:0 Ethylbenzene ND 1.0 0.74 ug/L 04/11/23 03:0 1,2-Dibromoethane ND 1.0 0.73 ug/L 04/11/23 03:0 Isopropylbenzene ND 1.0 0.79 ug/L 04/11/23 03:0 Methyl acetate ND 2.5 1.3 ug/L 04/11/23 03:0 Methyl tert-butyl ether ND 1.0 0.16 ug/L 04/11/23 03:0 Methylcyclohexane ND 1.0 0.16 ug/L 04/11/23 03:0 Methylene Chloride ND 1.0 0.44 ug/L 04/11/23 03:0 Styrene ND 1.0 0.73 ug/L 04/11/23 03:0 Tetrachloroethene ND 1.0 0.36 ug/L 04/11/23 03:0 Trans-1,2-Dichloroethene ND 1.0 0.51 ug/L 04/11/23 03:0 trans-1,3-Dichloropropene ND 1.0 0.37 ug/L 04/11/23 03:0 Trichloroethene ND 1.0 0.46 ug/L 04/11/23 03:0 Trichlorofluoromethane									
Ethylbenzene ND 1.0 0.74 ug/L 04/11/23 03:0 1,2-Dibromoethane ND 1.0 0.73 ug/L 04/11/23 03:0 Isopropylbenzene ND 1.0 0.79 ug/L 04/11/23 03:0 Methyl acetate ND 2.5 1.3 ug/L 04/11/23 03:0 Methyl tert-butyl ether ND 1.0 0.16 ug/L 04/11/23 03:0 Methylcyclohexane ND 1.0 0.16 ug/L 04/11/23 03:0 Methylene Chloride ND 1.0 0.44 ug/L 04/11/23 03:0 Styrene ND 1.0 0.73 ug/L 04/11/23 03:0 Tetrachloroethene ND 1.0 0.36 ug/L 04/11/23 03:0 Troblene ND 1.0 0.51 ug/L 04/11/23 03:0 trans-1,2-Dichloroethene ND 1.0 0.90 ug/L 04/11/23 03:0 trans-1,3-Dichloropropene ND 1.0 0.37 ug/L 04/11/23 03:0					-				
1,2-Dibromoethane ND 1.0 0.73 ug/L 04/11/23 03:0 sopropylbenzene ND 1.0 0.79 ug/L 04/11/23 03:0 Methyl acetate ND 2.5 1.3 ug/L 04/11/23 03:0 Methyl tert-butyl ether ND 1.0 0.16 ug/L 04/11/23 03:0 Methylcyclohexane ND 1.0 0.16 ug/L 04/11/23 03:0 Methylene Chloride ND 1.0 0.44 ug/L 04/11/23 03:0 Styrene ND 1.0 0.73 ug/L 04/11/23 03:0 Tetrachloroethene ND 1.0 0.36 ug/L 04/11/23 03:0 Trans-1,2-Dichloroethene ND 1.0 0.51 ug/L 04/11/23 03:0 trans-1,3-Dichloropropene ND 1.0 0.37 ug/L 04/11/23 03:0 Trichloroethene ND 1.0 0.46 ug/L 04/11/23 03:0 Trichlorofluoromethane ND 1.0 0.88 ug/L 04/11/23 03:0					_				
Sopropylbenzene ND									
Methyl acetate ND 2.5 1.3 ug/L 04/11/23 03:0 Methyl tert-butyl ether ND 1.0 0.16 ug/L 04/11/23 03:0 Methylcyclohexane ND 1.0 0.16 ug/L 04/11/23 03:0 Methylene Chloride ND 1.0 0.44 ug/L 04/11/23 03:0 Styrene ND 1.0 0.73 ug/L 04/11/23 03:0 Tetrachloroethene ND 1.0 0.36 ug/L 04/11/23 03:0 Toluene ND 1.0 0.51 ug/L 04/11/23 03:0 trans-1,2-Dichloroethene ND 1.0 0.90 ug/L 04/11/23 03:0 trans-1,3-Dichloropropene ND 1.0 0.37 ug/L 04/11/23 03:0 Trichloroethene ND 1.0 0.46 ug/L 04/11/23 03:0 Trichlorofluoromethane ND 1.0 0.88 ug/L 04/11/23 03:0					•				
Methyl tert-butyl ether ND 1.0 0.16 ug/L 04/11/23 03:0 Methylcyclohexane ND 1.0 0.16 ug/L 04/11/23 03:0 Methylene Chloride ND 1.0 0.44 ug/L 04/11/23 03:0 Styrene ND 1.0 0.73 ug/L 04/11/23 03:0 Tetrachloroethene ND 1.0 0.36 ug/L 04/11/23 03:0 Toluene ND 1.0 0.51 ug/L 04/11/23 03:0 trans-1,2-Dichloroethene ND 1.0 0.90 ug/L 04/11/23 03:0 trans-1,3-Dichloropropene ND 1.0 0.37 ug/L 04/11/23 03:0 Trichloroethene ND 1.0 0.46 ug/L 04/11/23 03:0 Trichlorofluoromethane ND 1.0 0.88 ug/L 04/11/23 03:0					_				
Methylcyclohexane ND 1.0 0.16 ug/L 04/11/23 03:0 Methylene Chloride ND 1.0 0.44 ug/L 04/11/23 03:0 Styrene ND 1.0 0.73 ug/L 04/11/23 03:0 Tetrachloroethene ND 1.0 0.36 ug/L 04/11/23 03:0 Toluene ND 1.0 0.51 ug/L 04/11/23 03:0 trans-1,2-Dichloroethene ND 1.0 0.90 ug/L 04/11/23 03:0 trans-1,3-Dichloropropene ND 1.0 0.37 ug/L 04/11/23 03:0 Trichloroethene ND 1.0 0.46 ug/L 04/11/23 03:0 Trichlorofluoromethane ND 1.0 0.88 ug/L 04/11/23 03:0									
Methylene Chloride ND 1.0 0.44 ug/L 04/11/23 03:0 Styrene ND 1.0 0.73 ug/L 04/11/23 03:0 Tetrachloroethene ND 1.0 0.36 ug/L 04/11/23 03:0 Toluene ND 1.0 0.51 ug/L 04/11/23 03:0 trans-1,2-Dichloroethene ND 1.0 0.90 ug/L 04/11/23 03:0 trans-1,3-Dichloropropene ND 1.0 0.37 ug/L 04/11/23 03:0 Trichloroethene ND 1.0 0.46 ug/L 04/11/23 03:0 Trichlorofluoromethane ND 1.0 0.88 ug/L 04/11/23 03:0									
Styrene ND 1.0 0.73 ug/L 04/11/23 03:0 Tetrachloroethene ND 1.0 0.36 ug/L 04/11/23 03:0 Toluene ND 1.0 0.51 ug/L 04/11/23 03:0 trans-1,2-Dichloroethene ND 1.0 0.90 ug/L 04/11/23 03:0 trans-1,3-Dichloropropene ND 1.0 0.37 ug/L 04/11/23 03:0 Trichloroethene ND 1.0 0.46 ug/L 04/11/23 03:0 Trichlorofluoromethane ND 1.0 0.88 ug/L 04/11/23 03:0					-				
Fetrachloroethene ND 1.0 0.36 ug/L 04/11/23 03:0 Foluene ND 1.0 0.51 ug/L 04/11/23 03:0 rans-1,2-Dichloroethene ND 1.0 0.90 ug/L 04/11/23 03:0 rans-1,3-Dichloropropene ND 1.0 0.37 ug/L 04/11/23 03:0 Frichloroethene ND 1.0 0.46 ug/L 04/11/23 03:0 Frichlorofluoromethane ND 1.0 0.88 ug/L 04/11/23 03:0									
Foluene ND 1.0 0.51 ug/L 04/11/23 03:0 rans-1,2-Dichloroethene ND 1.0 0.90 ug/L 04/11/23 03:0 rans-1,3-Dichloropropene ND 1.0 0.37 ug/L 04/11/23 03:0 Frichloroethene ND 1.0 0.46 ug/L 04/11/23 03:0 Frichlorofluoromethane ND 1.0 0.88 ug/L 04/11/23 03:0									
rans-1,2-Dichloroethene ND 1.0 0.90 ug/L 04/11/23 03:0 rans-1,3-Dichloropropene ND 1.0 0.37 ug/L 04/11/23 03:0 Frichloroethene ND 1.0 0.46 ug/L 04/11/23 03:0 Frichlorofluoromethane ND 1.0 0.88 ug/L 04/11/23 03:0					-				
rans-1,3-Dichloropropene ND 1.0 0.37 ug/L 04/11/23 03:0 Frichloroethene ND 1.0 0.46 ug/L 04/11/23 03:0 Frichlorofluoromethane ND 1.0 0.88 ug/L 04/11/23 03:0									
Frichloroethene ND 1.0 0.46 ug/L 04/11/23 03:0 Frichlorofluoromethane ND 1.0 0.88 ug/L 04/11/23 03:0	· ·				_				
Trichlorofluoromethane ND 1.0 0.88 ug/L 04/11/23 03:0					-				
•								04/11/23 03:08	
					-			04/11/23 03:08	
·	•				_			04/11/23 03:08 04/11/23 03:08	

Eurofins Buffalo

4

6

8

3

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: TP-5 Lab Sample ID: 480-207637-6

. Matrix: Water

Date Collected: 04/06/23 15:15 Date Received: 04/07/23 13:45

Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	93	80 - 120	_		04/11/23 03:08	1
1,2-Dichloroethane-d4 (Surr)	108	77 - 120			04/11/23 03:08	1
4-Bromofluorobenzene (Surr)	99	73 - 120			04/11/23 03:08	1
Dibromofluoromethane (Surr)	97	75 - 123			04/11/23 03:08	1

9

10

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: TP-6

Date Received: 04/07/23 13:45

Date Collected: 04/06/23 15:00

Lab Sample ID: 480-207637-7

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			04/11/23 03:31	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			04/11/23 03:31	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			04/11/23 03:31	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			04/11/23 03:31	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			04/11/23 03:31	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			04/11/23 03:31	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			04/11/23 03:31	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			04/11/23 03:31	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			04/11/23 03:31	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			04/11/23 03:31	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			04/11/23 03:31	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			04/11/23 03:31	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			04/11/23 03:31	1
2-Butanone (MEK)	ND		10	1.3	ug/L			04/11/23 03:31	1
2-Hexanone	ND	*+	5.0	1.2	ug/L			04/11/23 03:31	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			04/11/23 03:31	1
Acetone	ND		10		ug/L			04/11/23 03:31	1
Benzene	ND		1.0	0.41	ug/L			04/11/23 03:31	1
Bromodichloromethane	ND		1.0	0.39				04/11/23 03:31	1
Bromoform	ND		1.0	0.26	-			04/11/23 03:31	1
Bromomethane	ND		1.0	0.69	-			04/11/23 03:31	1
Carbon disulfide	ND		1.0	0.19				04/11/23 03:31	1
Carbon tetrachloride	ND		1.0	0.27	-			04/11/23 03:31	1
Chlorobenzene	ND		1.0	0.75	-			04/11/23 03:31	1
Dibromochloromethane	ND		1.0	0.32				04/11/23 03:31	1
Chloroethane	ND		1.0	0.32				04/11/23 03:31	1
Chloroform	ND		1.0	0.34	-			04/11/23 03:31	1
Chloromethane	ND		1.0	0.35				04/11/23 03:31	1
cis-1,2-Dichloroethene	ND		1.0	0.81				04/11/23 03:31	1
cis-1,3-Dichloropropene	ND		1.0	0.36	-			04/11/23 03:31	1
Cyclohexane	ND		1.0	0.18				04/11/23 03:31	1
Dichlorodifluoromethane	ND		1.0	0.68	-			04/11/23 03:31	1
Ethylbenzene	ND		1.0	0.74	-			04/11/23 03:31	1
1,2-Dibromoethane	ND		1.0	0.73				04/11/23 03:31	1
Isopropylbenzene	ND		1.0	0.79	-			04/11/23 03:31	1
Methyl acetate	ND		2.5		ug/L			04/11/23 03:31	1
Methyl tert-butyl ether	ND		1.0		ug/L			04/11/23 03:31	1
Methylcyclohexane	ND		1.0		ug/L			04/11/23 03:31	1
Methylene Chloride	ND		1.0		ug/L			04/11/23 03:31	1
Styrene	ND		1.0		ug/L			04/11/23 03:31	1
Tetrachloroethene	ND		1.0		ug/L			04/11/23 03:31	1
Toluene	ND		1.0		ug/L			04/11/23 03:31	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			04/11/23 03:31	
trans-1,3-Dichloropropene	ND		1.0		ug/L			04/11/23 03:31	1
Trichloroethene	ND		1.0		ug/L			04/11/23 03:31	1
Trichlorofluoromethane	ND		1.0		ug/L			04/11/23 03:31	
Vinyl chloride	ND ND		1.0		ug/L			04/11/23 03:31	1
Xylenes, Total	ND		2.0	0.66	-			04/11/23 03:31	1

Eurofins Buffalo

5/4/2023

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: TP-6 Lab Sample ID: 480-207637-7

Matrix: Water

Date Collected: 04/06/23 15:00 Date Received: 04/07/23 13:45

Surrogate	%Recovery Qualifier	Limits	ı	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	93	80 - 120	_		04/11/23 03:31	1
1,2-Dichloroethane-d4 (Surr)	108	77 - 120			04/11/23 03:31	1
4-Bromofluorobenzene (Surr)	99	73 - 120			04/11/23 03:31	1
Dibromofluoromethane (Surr)	101	75 - 123			04/11/23 03:31	1

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: DUP

Date Received: 04/07/23 13:45

Lab Sample ID: 480-207637-8 Date Collected: 04/07/23 08:00

_ ~~	Campio	 		•••	_
		Ma	atrix:	Wat	eı

Analyte	Result Qua	lifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			04/11/23 03:55	
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			04/11/23 03:55	
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			04/11/23 03:55	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			04/11/23 03:55	
1,1-Dichloroethane	ND	1.0	0.38	ug/L			04/11/23 03:55	
1,1-Dichloroethene	ND	1.0	0.29	ug/L			04/11/23 03:55	
1,2,4-Trichlorobenzene	ND	1.0		ug/L			04/11/23 03:55	
1,2-Dibromo-3-Chloropropane	ND	1.0		ug/L			04/11/23 03:55	
1,2-Dichlorobenzene	ND	1.0		ug/L			04/11/23 03:55	
1,2-Dichloroethane	ND	1.0		ug/L			04/11/23 03:55	
1,2-Dichloropropane	ND	1.0		ug/L			04/11/23 03:55	
1,3-Dichlorobenzene	ND	1.0		ug/L			04/11/23 03:55	
1,4-Dichlorobenzene	ND	1.0		ug/L			04/11/23 03:55	
2-Butanone (MEK)	ND	10		ug/L			04/11/23 03:55	
2-Hexanone	ND *+	5.0		ug/L			04/11/23 03:55	
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			04/11/23 03:55	
Acetone	ND	10		ug/L			04/11/23 03:55	
Benzene	ND	1.0		ug/L			04/11/23 03:55	
Bromodichloromethane	ND	1.0		ug/L			04/11/23 03:55	
Bromoform	ND	1.0		ug/L			04/11/23 03:55	
Bromomethane	ND	1.0		ug/L			04/11/23 03:55	
Carbon disulfide	ND	1.0		ug/L			04/11/23 03:55	
Carbon tetrachloride	ND	1.0		ug/L			04/11/23 03:55	
Chlorobenzene	ND	1.0		ug/L			04/11/23 03:55	
Dibromochloromethane	ND	1.0		ug/L			04/11/23 03:55	
Chloroethane	ND	1.0		ug/L			04/11/23 03:55	
Chloroform	ND	1.0		ug/L			04/11/23 03:55	
Chloromethane	ND	1.0		ug/L			04/11/23 03:55	
cis-1,2-Dichloroethene	ND	1.0		ug/L ug/L			04/11/23 03:55	
cis-1,3-Dichloropropene	ND	1.0		ug/L ug/L			04/11/23 03:55	
Cyclohexane	ND	1.0		ug/L ug/L			04/11/23 03:55	
Dichlorodifluoromethane	ND	1.0		ug/L ug/L			04/11/23 03:55	
	ND			-				
Ethylbenzene		1.0		ug/L			04/11/23 03:55 04/11/23 03:55	
1,2-Dibromoethane	ND	1.0		ug/L				
Isopropylbenzene	ND	1.0		ug/L			04/11/23 03:55	
Methyl acetate	ND	2.5		ug/L			04/11/23 03:55	
Methyl tert-butyl ether	ND	1.0		ug/L			04/11/23 03:55	
Methylcyclohexane	ND	1.0		ug/L			04/11/23 03:55	
Methylene Chloride	ND	1.0		ug/L			04/11/23 03:55	
Styrene	ND	1.0		ug/L			04/11/23 03:55	
Tetrachloroethene	ND	1.0		ug/L			04/11/23 03:55	
Toluene	ND	1.0		ug/L			04/11/23 03:55	
trans-1,2-Dichloroethene	ND	1.0		ug/L			04/11/23 03:55	
trans-1,3-Dichloropropene	ND	1.0		ug/L			04/11/23 03:55	
Trichloroethene	ND	1.0		ug/L			04/11/23 03:55	
Trichlorofluoromethane	ND	1.0		ug/L			04/11/23 03:55	
Vinyl chloride	ND	1.0	0.90	ug/L			04/11/23 03:55	
Xylenes, Total	ND	2.0	0.66	ug/L			04/11/23 03:55	

Eurofins Buffalo

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: DUP Lab Sample ID: 480-207637-8

. Matrix: Water

Date Collected: 04/07/23 08:00 Date Received: 04/07/23 13:45

Surrogate	%Recovery Q	Qualifier Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	95	80 - 120		04/11/23 03:55	1
1,2-Dichloroethane-d4 (Surr)	110	77 - 120		04/11/23 03:55	1
4-Bromofluorobenzene (Surr)	99	73 - 120		04/11/23 03:55	1
Dibromofluoromethane (Surr)	102	75 - 123		04/11/23 03:55	1

د

8

9

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-35D

Lab Sample ID: 480-207637-9 Date Collected: 04/07/23 09:30

Matrix: Water

Date Received: 04/07/23 13:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			04/11/23 04:18	
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			04/11/23 04:18	•
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			04/11/23 04:18	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			04/11/23 04:18	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			04/11/23 04:18	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			04/11/23 04:18	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			04/11/23 04:18	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			04/11/23 04:18	1
1,2-Dichlorobenzene	ND		1.0	0.79	-			04/11/23 04:18	1
1,2-Dichloroethane	ND		1.0		ug/L			04/11/23 04:18	
1,2-Dichloropropane	ND		1.0	0.72				04/11/23 04:18	1
1,3-Dichlorobenzene	ND		1.0		ug/L			04/11/23 04:18	1
1,4-Dichlorobenzene	ND		1.0		ug/L			04/11/23 04:18	1
2-Butanone (MEK)	ND		10		ug/L			04/11/23 04:18	
2-Hexanone	ND	*+	5.0		ug/L			04/11/23 04:18	
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			04/11/23 04:18	1
Acetone	ND		10		ug/L			04/11/23 04:18	
Benzene	ND		1.0		ug/L			04/11/23 04:18	1
Bromodichloromethane	ND		1.0		ug/L			04/11/23 04:18	,
Bromoform	ND		1.0		ug/L			04/11/23 04:18	,
Bromomethane	ND		1.0		ug/L			04/11/23 04:18	,
Carbon disulfide	ND		1.0		ug/L			04/11/23 04:18	,
Carbon tetrachloride	ND		1.0		ug/L			04/11/23 04:18	,
Chlorobenzene	ND		1.0		ug/L			04/11/23 04:18	,
Dibromochloromethane	ND		1.0		ug/L			04/11/23 04:18	
Chloroethane	ND		1.0		ug/L			04/11/23 04:18	-
Chloroform	ND		1.0		ug/L			04/11/23 04:18	,
Chloromethane	ND		1.0		ug/L			04/11/23 04:18	,
cis-1,2-Dichloroethene	ND		1.0		ug/L ug/L			04/11/23 04:18	,
cis-1,3-Dichloropropene	ND ND		1.0		ug/L ug/L			04/11/23 04:18	,
Cyclohexane	ND		1.0	0.30				04/11/23 04:18	
Dichlorodifluoromethane	ND ND		1.0		ug/L ug/L			04/11/23 04:18	
					-				
Ethylbenzene	ND		1.0		ug/L			04/11/23 04:18	
1,2-Dibromoethane	ND		1.0		ug/L			04/11/23 04:18	•
Isopropylbenzene	ND		1.0	0.79				04/11/23 04:18	
Methyl acetate	ND		2.5		ug/L			04/11/23 04:18	
Methyl tert-butyl ether	ND		1.0		ug/L			04/11/23 04:18	•
Methylcyclohexane	ND		1.0		ug/L			04/11/23 04:18	ŕ
Methylene Chloride	ND		1.0		ug/L			04/11/23 04:18	1
Styrene	ND		1.0		ug/L			04/11/23 04:18	ŕ
Tetrachloroethene	ND		1.0		ug/L			04/11/23 04:18	•
Toluene	ND		1.0		ug/L			04/11/23 04:18	
trans-1,2-Dichloroethene	ND		1.0		ug/L			04/11/23 04:18	•
trans-1,3-Dichloropropene	ND		1.0		ug/L			04/11/23 04:18	•
Trichloroethene	ND		1.0		ug/L			04/11/23 04:18	
Trichlorofluoromethane	ND		1.0		ug/L			04/11/23 04:18	•
Vinyl chloride	ND		1.0	0.90	ug/L			04/11/23 04:18	•
Xylenes, Total	ND		2.0	0.66	ug/L			04/11/23 04:18	•

Eurofins Buffalo

5/4/2023

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-35D

Lab Sample ID: 480-207637-9 Date Collected: 04/07/23 09:30

Matrix: Water

Date Received: 04/07/23 13:45

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	94		80 - 120			-		04/11/23 04:18	1
1,2-Dichloroethane-d4 (Surr)	106		77 - 120					04/11/23 04:18	1
4-Bromofluorobenzene (Surr)	96		73 - 120					04/11/23 04:18	1
Dibromofluoromethane (Surr)	100		75 - 123					04/11/23 04:18	1
Method: RSK-175 - Dissolve	d Gases (GC))							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon dioxide	48000		10000	5000	ug/L			04/13/23 11:09	1
Ethane	ND		7.5	1.5	ug/L			04/10/23 09:08	1
Ethene	ND		7.0	1.5	ug/L			04/10/23 09:08	1
Method: RSK-175 - Dissolve	d Gases (GC	\							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methane	550		88	22	ug/L		-	04/10/23 10:24	22
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate (EPA 300.0)	2.2	J	4.0	0.70	mg/L			04/12/23 18:23	2
Alkalinity, Total (EPA 310.2)	236		50.0	20.0	mg/L			04/17/23 17:43	5
Nitrate as N (EPA 353.2)	0.068		0.050	0.020	mg/L	₩		04/07/23 16:42	1
Nitrite as N (EPA 353.2)	ND		0.050	0.020	mg/L			04/07/23 18:48	1
			1.0	0.43	mg/L			04/13/23 06:43	1
Total Organic Carbon (SW846	7.4								
Total Organic Carbon (SW846 9060A) Sulfide (SM 4500 S2 F)	7.4 ND		1.0	0.67	mg/L			04/10/23 13:00	1
9060A) Sulfide (SM 4500 S2 F)	ND		1.0	0.67	mg/L			04/10/23 13:00	1
9060A)	ND ed	Qualifier	1.0 RL	0.67 MDL	-	D	Prepared	04/10/23 13:00 Analyzed	1 Dil Fac

5/4/2023

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Method: SW846 8260C - Volatile Organic Compounds by GC/MS

Result Qualifier

ND

ND

ND

ND

ND

ND

ND

ND

Client Sample ID: MW-38D

Analyte

Tetrachloroethene

Trichloroethene

Vinyl chloride

Xylenes, Total

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Trichlorofluoromethane

Toluene

Lab Sample ID: 480-207637-10

Date Collected: 04/07/23 10:50 **Matrix: Water** Date Received: 04/07/23 13:45

MDL Unit

D

Prepared

1,1,1-Trichloroethane ND 1.0 0.82 ug/L 04/11/23 20:35 1,1,2,2-Tetrachloroethane ND 1.0 0.21 ug/L 04/11/23 20:35 1,1,2-Trichloroethane ND 1.0 0.23 ug/L 04/11/23 20:35 ND 1,1,2-Trichloro-1,2,2-trifluoroethane 1.0 0.31 ug/L 04/11/23 20:35 1.1-Dichloroethane ND 0.38 ug/L 04/11/23 20:35 1.0 1,1-Dichloroethene ND 1.0 0.29 ug/L 04/11/23 20:35 1,2,4-Trichlorobenzene ND 1.0 0.41 ug/L 04/11/23 20:35 1,2-Dibromo-3-Chloropropane ND 1.0 0.39 04/11/23 20:35 ug/L 1,2-Dichlorobenzene ND 1.0 0.79 ug/L 04/11/23 20:35 1,2-Dichloroethane ND 1.0 0.21 ug/L 04/11/23 20:35 1,2-Dichloropropane ND 1.0 0.72 ug/L 04/11/23 20:35 1.3-Dichlorobenzene ND 1.0 0.78 ug/L 04/11/23 20:35 1,4-Dichlorobenzene ND 1.0 0.84 ug/L 04/11/23 20:35 11 10 1.3 ug/L 04/11/23 20:35 2-Butanone (MEK) ND *+ 5.0 1.2 ug/L 2-Hexanone 04/11/23 20:35 2.1 4-Methyl-2-pentanone (MIBK) ND 5.0 ug/L 04/11/23 20:35 7.2 10 3.0 ug/L 04/11/23 20:35 **Acetone** Benzene ND 1.0 ug/L 04/11/23 20:35 Bromodichloromethane 1.0 ND 0.39 ug/L 04/11/23 20:35 **Bromoform** ND 1.0 0.26 ug/L 04/11/23 20:35 Bromomethane ND 1.0 0.69 ug/L 04/11/23 20:35 Carbon disulfide ND 1.0 0.19 ug/L 04/11/23 20:35 Carbon tetrachloride ND 0.27 04/11/23 20:35 1.0 ug/L Chlorobenzene ND 1.0 0.75 ug/L 04/11/23 20:35 Dibromochloromethane ND 1.0 0.32 ug/L 04/11/23 20:35 0.32 Chloroethane ND 1.0 ug/L 04/11/23 20:35 Chloroform ND 1.0 0.34 ug/L 04/11/23 20:35 Chloromethane ND 0.35 ug/L 1.0 04/11/23 20:35 cis-1,2-Dichloroethene ND 1.0 0.81 ug/L 04/11/23 20:35 cis-1,3-Dichloropropene 1.0 ND ug/L 0.36 04/11/23 20:35 Cyclohexane ND 1.0 0.18 ug/L 04/11/23 20:35 Dichlorodifluoromethane ND 1.0 0.68 ug/L 04/11/23 20:35 Ethylbenzene ND 1.0 0.74 ug/L 04/11/23 20:35 ND 1,2-Dibromoethane 10 0.73 ug/L 04/11/23 20:35 Isopropylbenzene ND 1.0 0.79 ug/L 04/11/23 20:35 Methyl acetate ND 2.5 04/11/23 20:35 1.3 ug/L Methyl tert-butyl ether ND 1.0 0.16 ug/L 04/11/23 20:35 Methylcyclohexane ND 1.0 0.16 ug/L 04/11/23 20:35 Methylene Chloride ND 1.0 0.44 ug/L 04/11/23 20:35 Styrene ND 1.0 0.73 ug/L 04/11/23 20:35

Eurofins Buffalo

5/4/2023

04/11/23 20:35

04/11/23 20:35

04/11/23 20:35

04/11/23 20:35

04/11/23 20:35

04/11/23 20:35

04/11/23 20:35

04/11/23 20:35

1.0

1.0

1.0

1.0

1.0

1.0

1.0

2.0

0.36 ug/L

0.51 ug/L

0.90 ug/L

0.37

0.88 ug/L

ug/L

0.46 ug/L

0.90 ug/L

0.66 ug/L

Dil Fac

Analyzed

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-38D

Lab Sample ID: 480-207637-10 Date Collected: 04/07/23 10:50

Matrix: Water

Date Received: 04/07/23 13:45

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Toluene-d8 (Surr)	92		80 - 120			-		04/11/23 20:35	
1,2-Dichloroethane-d4 (Surr)	110		77 - 120					04/11/23 20:35	
4-Bromofluorobenzene (Surr)	100		73 - 120					04/11/23 20:35	
Dibromofluoromethane (Surr)	104		75 - 123					04/11/23 20:35	
Method: RSK-175 - Dissolve	d Gases (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Carbon dioxide	35000		10000	5000	ug/L			04/13/23 11:18	
Ethane	ND		170	33	ug/L			04/10/23 09:27	:
Ethene	ND		150	33	ug/L			04/10/23 09:27	:
Method: RSK-175 - Dissolve	d Gases (GC) - DL							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Methane	28000		880	220	ug/L			04/10/23 10:43	2:
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Sulfate (EPA 300.0)	5.2		4.0	0.70	mg/L			04/12/23 19:57	
Alkalinity, Total (EPA 310.2)	344		50.0	20.0	mg/L			04/17/23 17:41	
Nitrate as N (EPA 353.2)	ND		0.050	0.020	mg/L	₩		04/07/23 16:46	
Nitrite as N (EPA 353.2)	ND		0.050	0.020	mg/L			04/07/23 18:52	
Total Organic Carbon (SW846 9060A)	10.8		1.0	0.43	mg/L			04/13/23 07:12	
Sulfide (SM 4500 S2 F)	ND		1.0	0.67	mg/L			04/10/23 13:00	
General Chemistry - Dissolv	ed								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Ferrous Iron (SM 3500 FE D)	ND	HF	0.10		mg/L				

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: A1-GP06-S Lab Sample ID: 480-207637-11

Date Collected: 04/07/23 11:15 East Sample 15: 455-257-577

Date Received: 04/07/23 13:45

Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	51	25		ug/L			04/11/23 05:05	2
1,1,2,2-Tetrachloroethane	ND	25	5.3	ug/L			04/11/23 05:05	2
1,1,2-Trichloroethane	ND	25	5.8	ug/L			04/11/23 05:05	2
1,1,2-Trichloro-1,2,2-trifluoroetha	330	25	7.8	ug/L			04/11/23 05:05	2
ne								
1,1-Dichloroethane	130	25		ug/L			04/11/23 05:05	2
1,1-Dichloroethene	ND	25		ug/L			04/11/23 05:05	2
1,2,4-Trichlorobenzene	ND	25		ug/L			04/11/23 05:05	2
1,2-Dibromo-3-Chloropropane	ND	25		ug/L			04/11/23 05:05	2
1,2-Dichlorobenzene	ND	25		ug/L			04/11/23 05:05	2
1,2-Dichloroethane	ND	25		ug/L			04/11/23 05:05	2
1,2-Dichloropropane	ND	25	18	ug/L			04/11/23 05:05	2
1,3-Dichlorobenzene	ND	25	20	ug/L			04/11/23 05:05	2
1,4-Dichlorobenzene	ND	25	21	ug/L			04/11/23 05:05	2
2-Butanone (MEK)	ND	250	33	ug/L			04/11/23 05:05	2
2-Hexanone	ND *+	130	31	ug/L			04/11/23 05:05	2
4-Methyl-2-pentanone (MIBK)	ND	130	53	ug/L			04/11/23 05:05	2
Acetone	ND	250	75	ug/L			04/11/23 05:05	2
Benzene	ND	25	10	ug/L			04/11/23 05:05	2
Bromodichloromethane	ND	25	9.8	ug/L			04/11/23 05:05	2
Bromoform	ND	25	6.5	ug/L			04/11/23 05:05	2
Bromomethane	ND	25	17	ug/L			04/11/23 05:05	2
Carbon disulfide	ND	25	4.8	ug/L			04/11/23 05:05	2
Carbon tetrachloride	ND	25	6.8	ug/L			04/11/23 05:05	2
Chlorobenzene	ND	25	19	ug/L			04/11/23 05:05	2
Dibromochloromethane	ND	25	8.0	ug/L			04/11/23 05:05	2
Chloroethane	670	25		ug/L			04/11/23 05:05	2
Chloroform	ND	25		ug/L			04/11/23 05:05	2
Chloromethane	ND	25		ug/L			04/11/23 05:05	2
cis-1,2-Dichloroethene	ND	25		ug/L			04/11/23 05:05	2
cis-1,3-Dichloropropene	ND	25		ug/L			04/11/23 05:05	2
Cyclohexane	ND	25		ug/L			04/11/23 05:05	2
Dichlorodifluoromethane	ND	25		ug/L			04/11/23 05:05	2
Ethylbenzene	ND	25		ug/L			04/11/23 05:05	2
1,2-Dibromoethane	ND	25		ug/L			04/11/23 05:05	2
Isopropylbenzene	ND	25		ug/L			04/11/23 05:05	2
Methyl acetate	ND	63		ug/L			04/11/23 05:05	2
Methyl tert-butyl ether	ND	25		ug/L			04/11/23 05:05	2
Methylcyclohexane	ND	25		ug/L			04/11/23 05:05	2
Methylene Chloride	ND	25		ug/L			04/11/23 05:05	2
Styrene	ND	25		ug/L			04/11/23 05:05	2
Tetrachloroethene	ND	25		ug/L			04/11/23 05:05	2
Toluene	ND	25		ug/L ug/L			04/11/23 05:05	2:
trans-1,2-Dichloroethene	ND	25					04/11/23 05:05	2
trans-1,2-Dichloropropene				ug/L				
• •	ND ND	25 25		ug/L			04/11/23 05:05	2
Trichlerefluszemethene	ND	25		ug/L			04/11/23 05:05	2
Trichlorofluoromethane	ND ND	25		ug/L			04/11/23 05:05	2
Vinyl chloride Xylenes, Total	ND ND	25 50		ug/L ug/L			04/11/23 05:05 04/11/23 05:05	2 2

Eurofins Buffalo

5/4/2023

2

6

8

11

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: A1-GP06-S

Lab Sample ID: 480-207637-11 Date Collected: 04/07/23 11:15

Matrix: Water

Date Received: 04/07/23 13:45

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	92		80 - 120					04/11/23 05:05	25
1,2-Dichloroethane-d4 (Surr)	106		77 - 120					04/11/23 05:05	25
4-Bromofluorobenzene (Surr)	97		73 - 120					04/11/23 05:05	25
Dibromofluoromethane (Surr)	100		75 - 123					04/11/23 05:05	25
Method: RSK-175 - Dissolve	d Gases (GC))							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon dioxide	46000		10000	5000	ug/L			04/13/23 11:26	1
Ethane	ND		170	33	ug/L			04/10/23 09:46	22
Ethene	ND		150	33	ug/L			04/10/23 09:46	22
Method: RSK-175 - Dissolve	d Gases (GC)) - DL							
	(/	, – –							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Methane	Result 20000	Qualifier	RL 890		Unit ug/L	D	Prepared	Analyzed 04/10/23 11:02	
Methane		Qualifier				<u>D</u> .	Prepared		
-	20000	Qualifier Qualifier		220		<u>D</u> . D	Prepared Prepared		Dil Fac
Methane General Chemistry	20000 Result	Qualifier	890	220 MDL	ug/L		•	04/10/23 11:02	222
Methane General Chemistry Analyte	20000 Result	Qualifier	890 RL	220 MDL 0.70	ug/L Unit		•	04/10/23 11:02 Analyzed	Dil Fac
Methane General Chemistry Analyte Sulfate (EPA 300.0)	20000 Result 1.4	Qualifier	RL 4.0	220 MDL 0.70	ug/L Unit mg/L mg/L		•	04/10/23 11:02 Analyzed 04/12/23 20:16	222
Methane General Chemistry Analyte Sulfate (EPA 300.0) Alkalinity, Total (EPA 310.2)	20000 Result 1.4 445	Qualifier	RL 4.0 50.0	MDL 0.70 20.0	ug/L Unit mg/L mg/L mg/L	<u>D</u>	•	04/10/23 11:02 Analyzed 04/12/23 20:16 04/17/23 17:41	Dil Fac
Methane General Chemistry Analyte Sulfate (EPA 300.0) Alkalinity, Total (EPA 310.2) Nitrate as N (EPA 353.2) Nitrite as N (EPA 353.2) Total Organic Carbon (SW846	20000 Result 1.4 445 ND	Qualifier	890 RL 4.0 50.0 0.050	220 MDL 0.70 20.0 0.020 0.020	ug/L Unit mg/L mg/L mg/L	<u>D</u>	•	04/10/23 11:02 Analyzed 04/12/23 20:16 04/17/23 17:41 04/07/23 16:49	Dil Fac
Methane General Chemistry Analyte Sulfate (EPA 300.0) Alkalinity, Total (EPA 310.2) Nitrate as N (EPA 353.2) Nitrite as N (EPA 353.2)	20000 Result 1.4 445 ND ND	Qualifier	890 RL 4.0 50.0 0.050 0.050	220 MDL 0.70 20.0 0.020 0.020 0.43	Unit mg/L mg/L mg/L mg/L	<u>D</u>	•	04/10/23 11:02 Analyzed 04/12/23 20:16 04/17/23 17:41 04/07/23 16:49 04/07/23 16:49	Dil Fac
Methane General Chemistry Analyte Sulfate (EPA 300.0) Alkalinity, Total (EPA 310.2) Nitrate as N (EPA 353.2) Nitrite as N (EPA 353.2) Total Organic Carbon (SW846 9060A)	20000 Result 1.4 445 ND ND 48.4	Qualifier	RL 4.0 50.0 0.050 0.050 1.0	220 MDL 0.70 20.0 0.020 0.020 0.43	Unit mg/L mg/L mg/L mg/L mg/L	<u>D</u>	•	Analyzed 04/10/23 11:02 Analyzed 04/12/23 20:16 04/17/23 17:41 04/07/23 16:49 04/07/23 16:49 04/15/23 04:21	Dil Fac

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: A1-GP18-S Date Collected: 04/07/23 12:10

Date Received: 04/07/23 13:45

Lab Sample ID: 480-207637-12

Matrix: Water

Result Qualifier	RL			D	Prepared	Analyzed	Dil Fa
ND	1.0		-			04/11/23 05:28	
	1.0	0.21	ug/L			04/11/23 05:28	
ND	1.0					04/11/23 05:28	
ND	1.0		-			04/11/23 05:28	
ND	1.0	0.38	ug/L			04/11/23 05:28	
ND	1.0	0.29	ug/L			04/11/23 05:28	
ND	1.0	0.41	ug/L			04/11/23 05:28	
ND	1.0	0.39	ug/L			04/11/23 05:28	
ND	1.0	0.79	ug/L			04/11/23 05:28	
ND	1.0	0.21	ug/L			04/11/23 05:28	
ND	1.0	0.72	ug/L			04/11/23 05:28	
ND	1.0	0.78	ug/L			04/11/23 05:28	
ND	1.0	0.84	ug/L			04/11/23 05:28	
ND	10		-			04/11/23 05:28	
ND *+	5.0		-			04/11/23 05:28	
ND	5.0					04/11/23 05:28	
ND	10		-			04/11/23 05:28	
ND	1.0		-			04/11/23 05:28	
ND	1.0					04/11/23 05:28	
ND	1.0		-			04/11/23 05:28	
ND	1.0		-			04/11/23 05:28	
						04/11/23 05:28	
			-				
			-				
			-				
			-				
			-				
			-				
			•				
			-				
			-				
			-				
			-				
			-				
			-				
ND	1.0	0.90	ug/L			04/11/23 05:28	
	Result Qualifier ND ND ND ND ND ND ND ND ND N	ND 1.0 ND 1.0	Result Qualifier RL MDL ND 1.0 0.82 ND 1.0 0.21 ND 1.0 0.23 ND 1.0 0.38 ND 1.0 0.29 ND 1.0 0.41 ND 1.0 0.39 ND 1.0 0.79 ND 1.0 0.72 ND 1.0 0.72 ND 1.0 0.78 ND 1.0 0.72 ND 1.0 0.41 ND 1.0 0.41 ND 1.0 0.44 ND 1.0 0.75 ND 1.0 <td> Result Qualifier RL MDL Unit </td> <td> Result Qualifier RL MDL Unit D </td> <td> Result Qualifier RL</td> <td> ND</td>	Result Qualifier RL MDL Unit	Result Qualifier RL MDL Unit D	Result Qualifier RL	ND

Eurofins Buffalo

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: A1-GP18-S Date Collected: 04/07/23 12:10 Lab Sample ID: 480-207637-12

Matrix: Water

Date Received: 04/07/23 13:45

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	94		80 - 120					04/11/23 05:28	1
1,2-Dichloroethane-d4 (Surr)	108		77 - 120					04/11/23 05:28	1
4-Bromofluorobenzene (Surr)	98		73 - 120					04/11/23 05:28	1
Dibromofluoromethane (Surr)	102		75 - 123					04/11/23 05:28	
Method: RSK-175 - Dissolved	Gases (GC))							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon dioxide	62000		10000	5000	ug/L			04/13/23 11:35	
Ethane	ND		170	33	ug/L			04/10/23 10:05	22
Ethene	ND		150	33	ug/L			04/10/23 10:05	22
Methane	3300		88	22	ug/L			04/10/23 10:05	22
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate (EPA 300.0)	5.0		4.0	0.70	mg/L			04/12/23 20:35	2
Alkalinity, Total (EPA 310.2)	297		50.0	20.0	mg/L			04/17/23 17:41	5
Nitrate as N (EPA 353.2)	ND		0.050	0.020	mg/L	≎		04/07/23 16:50	1
Nitrite as N (EPA 353.2)	ND		0.050	0.020	mg/L			04/07/23 16:50	1
Total Organic Carbon (SW846 9060A)	8.4		1.0	0.43	mg/L			04/13/23 09:10	1
Sulfide (SM 4500 S2 F)	ND		1.0	0.67	mg/L			04/10/23 13:00	•
General Chemistry - Dissolve	ed								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
							•	•	

5

7

9

10

11

5/4/2023

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-35S

Lab Sample ID: 480-207637-13

Date Collected: 04/06/23 11:10 **Matrix: Water** Date Received: 04/07/23 13:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			04/11/23 05:51	
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			04/11/23 05:51	•
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			04/11/23 05:51	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			04/11/23 05:51	
1,1-Dichloroethane	ND		1.0	0.38	ug/L			04/11/23 05:51	
1,1-Dichloroethene	ND		1.0	0.29	ug/L			04/11/23 05:51	
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			04/11/23 05:51	
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			04/11/23 05:51	
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			04/11/23 05:51	
1,2-Dichloroethane	ND		1.0	0.21	ug/L			04/11/23 05:51	
1,2-Dichloropropane	ND		1.0	0.72				04/11/23 05:51	
1,3-Dichlorobenzene	ND		1.0		ug/L			04/11/23 05:51	
1,4-Dichlorobenzene	ND		1.0		ug/L			04/11/23 05:51	
2-Butanone (MEK)	ND		10		ug/L			04/11/23 05:51	
2-Hexanone	ND	*+	5.0		ug/L			04/11/23 05:51	
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			04/11/23 05:51	
Acetone	ND		10		ug/L			04/11/23 05:51	
Benzene	ND		1.0		ug/L			04/11/23 05:51	
Bromodichloromethane	ND		1.0		ug/L			04/11/23 05:51	
Bromoform	ND		1.0		ug/L			04/11/23 05:51	
Bromomethane	ND		1.0		ug/L			04/11/23 05:51	
Carbon disulfide	ND		1.0		ug/L			04/11/23 05:51	
Carbon tetrachloride	ND		1.0	0.17	_			04/11/23 05:51	
Chlorobenzene	ND		1.0		ug/L			04/11/23 05:51	
Dibromochloromethane	ND		1.0		ug/L			04/11/23 05:51	
Chloroethane	ND		1.0		ug/L			04/11/23 05:51	
Chloroform	ND		1.0		ug/L			04/11/23 05:51	
Chloromethane	ND		1.0		ug/L			04/11/23 05:51	
cis-1,2-Dichloroethene	ND ND		1.0	0.81	J			04/11/23 05:51	
cis-1,3-Dichloropropene	ND		1.0	0.36	-			04/11/23 05:51	
Cyclohexane	ND		1.0	0.30				04/11/23 05:51	
Dichlorodifluoromethane	ND ND		1.0		ug/L ug/L			04/11/23 05:51	
	ND ND				-				
Ethylbenzene 1.2-Dibromoethane			1.0		ug/L			04/11/23 05:51	
,	ND		1.0		ug/L			04/11/23 05:51	
Isopropylbenzene	ND		1.0	0.79				04/11/23 05:51	
Methyl acetate	ND ND		2.5		ug/L			04/11/23 05:51	
Methyl tert-butyl ether	ND		1.0		ug/L			04/11/23 05:51	
Methylcyclohexane	ND		1.0		ug/L			04/11/23 05:51	
Methylene Chloride	ND		1.0		ug/L			04/11/23 05:51	
Styrene	ND		1.0		ug/L			04/11/23 05:51	•
Tetrachloroethene 	ND		1.0		ug/L			04/11/23 05:51	•
Toluene	ND		1.0		ug/L			04/11/23 05:51	
trans-1,2-Dichloroethene	ND		1.0		ug/L			04/11/23 05:51	•
trans-1,3-Dichloropropene	ND		1.0		ug/L			04/11/23 05:51	
Trichloroethene	ND		1.0		ug/L			04/11/23 05:51	
Trichlorofluoromethane	ND		1.0		ug/L			04/11/23 05:51	
Vinyl chloride	ND		1.0	0.90	ug/L			04/11/23 05:51	
Xylenes, Total	ND		2.0	0.66	ug/L			04/11/23 05:51	

Eurofins Buffalo

5/4/2023

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-35S Lab Sample ID: 480-207637-13

Date Collected: 04/06/23 11:10 Matrix: Water

Date Received: 04/07/23 13:45

%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
92	80 - 120	_	•	04/11/23 05:51	
106	77 - 120			04/11/23 05:51	1
90	73 - 120			04/11/23 05:51	1
101	75 - 123			04/11/23 05:51	1
	92 106 90	92 80 - 120 106 77 - 120 90 73 - 120	92 80 - 120 106 77 - 120 90 73 - 120	92 80 - 120 106 77 - 120 90 73 - 120	92 80 - 120 04/11/23 05:51 106 77 - 120 04/11/23 05:51 90 73 - 120 04/11/23 05:51

General Chemistry Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon (SW846	5.2		1.0	0.43	mg/L			04/13/23 09:40	1
9060A)									

8

9

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-39D Lab Sample ID: 480-207637-14

Date Collected: 04/06/23 13:15 Matrix: Water

Date Received: 04/07/23 13:45

1,1,1-Trichloroethane ND 1,1,2,2-Tetrachloroethane ND 1,1,2-Trichloroethane ND 1,1,2-Trichloroethane ND 1,1-Dichloroethane ND 1,1-Dichloroethane ND 1,1-Dichloroethane ND 1,2-Trichlorobenzene ND 1,2-Dichlorobenzene ND 1,2-Dichlorobenzene ND 1,2-Dichlorobenzene ND 1,2-Dichlorobenzene ND 1,3-Dichlorobenzene ND 2-Butanone (MEK) ND 2-Hexanone ND 4-Methyl-2-pentanone (MIBK) ND Benzene ND Bromodichloromethane ND Bromoform ND Bromoform ND Bromomethane ND Carbon disulfide ND Carbon tetrachloride ND Chloroethane ND Chloroform ND Chloroform ND Chloromethane ND Chlorodifluoromethane ND cis-1,2-Dichloroethene ND <t< th=""><th>8.0 8.0 8.0</th><th>6.6</th><th></th><th></th><th></th><th>Dil Fa</th></t<>	8.0 8.0 8.0	6.6				Dil Fa
1,1,2-Trichloroethane ND 1,1,2-Trichloro-1,2,2-trifluoroethane ND 1,1-Dichloroethane ND 1,1-Dichloroethane ND 1,1-Dichloroethane ND 1,2-Trichlorobenzene ND 1,2-Dichlorobenzene ND 1,2-Dichloroethane ND 1,2-Dichloropropane ND 1,3-Dichlorobenzene ND 2-Butanone (MEK) ND 2-Hexanone ND 4-Methyl-2-pentanone (MIBK) ND Acetone ND Benzene ND Bromodichloromethane ND Bromoform ND Bromomethane ND Carbon disulfide ND Carbon tetrachloride ND Chlorobenzene ND Dibromochloromethane ND Chloroform ND Chloromethane ND Chlorodifluoromethane ND Dichlorodifluoromethane ND Dichlorodifluoromethane ND Isopropylb		0.0	ug/L		04/11/23 06:15	
1,1,2-Trichloro-1,2,2-trifluoroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethene 1,2-Dibromo-3-Chloropropane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Methyl-2-pentanone (MIBK) 1,2-Dichloromethane 1,3-Dichloromethane 1,3-Dichloromethane 1,4-Methyl-2-pentanone (MIBK) 1,4-Dichloromethane 1,5-Dichloromethane 1,5-Dichloromethane 1,5-Dichloromethane 1,5-Dichloromethane 1,5-Dichloromethane 1,5-Dichloroethene 1,5-Dichloroethene 1,5-Dichloroethane 1,2-Dibromoethane 1,3-Dichloroform 1,3-Dichloroform 1,3-Dichloroform 1,3-Dichloropropene 1,3-Dichloroethane 1,3-Dichlor	8 N	1.7	ug/L		04/11/23 06:15	
1,1-Dichloroethane ND 1,1-Dichloroethene ND 1,2-Trichlorobenzene ND 1,2-Dibromo-3-Chloropropane ND 1,2-Dichlorobenzene ND 1,2-Dichlorobenzene ND 1,2-Dichloropropane ND 1,2-Dichloropropane ND 1,3-Dichlorobenzene ND 1,3-Dichlorobenzene ND 1,4-Dichlorobenzene ND 2-Butanone (MEK) ND 2-Hexanone (MEK) ND 2-Hexanone ND 3-Genzene ND 3-Gromofichloromethane ND 3-Gromofichloromethane ND 3-Gromoform ND 3-	0.0	1.8	ug/L		04/11/23 06:15	
1,1-Dichloroethene ND 1,2,4-Trichlorobenzene ND 1,2-Dibromo-3-Chloropropane ND 1,2-Dichlorobenzene ND 1,2-Dichloroethane ND 1,2-Dichloropropane ND 1,3-Dichlorobenzene ND 1,3-Dichlorobenzene ND 1,4-Dichlorobenzene ND 2-Butanone (MEK) ND 2-Hexanone ND 3-Dichlorobenzene ND 3-Dichlorobenzene ND 3-Dichlorobenzene ND 3-Dichlorobenzene ND 3-Dichlorobenzene ND 3-Dichloromethane ND 3-Dichloromethane ND 3-Dichloromethane ND 3-Dichloromethane ND 3-Dichlorobenzene ND 3-Dichlorobenzene ND 3-Dichloromethane ND 3-Dichloromethane ND 3-Dichloroform ND 3-Dichloroethane ND 3-Dichloroethene ND 3-Dichloroethene ND 3-Dichlorodifluoromethane 8.0	2.5	ug/L		04/11/23 06:15		
1,2,4-Trichlorobenzene ND 1,2-Dibromo-3-Chloropropane ND 1,2-Dichlorobenzene ND 1,2-Dichlorobenzene ND 1,2-Dichloropropane ND 1,2-Dichloropropane ND 1,3-Dichlorobenzene ND 1,4-Dichlorobenzene ND 2-Butanone (MEK) ND 2-Hexanone ND 3-Methyl-2-pentanone (MIBK) ND 3-Cetone ND 3-Bromodichloromethane ND 3-Brom	8.0	3.0	ug/L		04/11/23 06:15	
1,2-Dibromo-3-Chloropropane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichloropenzene 1,4-Dichloropenzene 1,4-Dichloromethane 1,4-Dichloromethane 1,4-Dichloromethane 1,4-Dichloromethane 1,5-Dichloromethane 1,5-Dichloropenzene 1,5-Dichloropenzene 1,5-Dichloropenzene 1,5-Dichloropenzene 1,5-Dichloropenzene 1,5-Dichloropenzene 1,5-Dichloromethane	8.0	2.3	ug/L		04/11/23 06:15	
1,2-Dichlorobenzene ND 1,2-Dichloroethane ND 1,2-Dichloropropane ND 1,3-Dichlorobenzene ND 1,4-Dichlorobenzene ND 2-Butanone (MEK) ND 2-Hexanone ND 3-Cetone ND 3-Cetone ND 3-Commodichloromethane ND 3-	8.0	3.3	ug/L		04/11/23 06:15	
,2-Dichloroethane ND ,2-Dichloropropane ND ,3-Dichlorobenzene ND ,4-Dichlorobenzene ND -Butanone (MEK) ND -Hexanone ND -Hexanone ND -Acetone ND -Aceto	8.0	3.1	ug/L		04/11/23 06:15	
A,2-Dichloropropane A,3-Dichlorobenzene A,4-Dichlorobenzene B-Butanone (MEK) A-Hexanone	8.0	6.3	ug/L		04/11/23 06:15	
,3-Dichlorobenzene ND ,4-Dichlorobenzene ND ,2-Butanone (MEK) ND ,2-Hexanone ND ,4-Methyl-2-pentanone (MIBK) ND ,4-Cetone ND ,5-Cetone	8.0	1.7	ug/L		04/11/23 06:15	
A-Dichlorobenzene ND B-Butanone (MEK) ND B-Hexanone ND *+ I-Methyl-2-pentanone (MIBK) ND Acetone ND Boromodichloromethane ND Bromodichloromethane ND Bromomethane ND Bromomethane ND Carbon disulfide ND Chlorobenzene ND Chlorobenzene ND Chlorothane ND Chlorothane ND Chlorothane ND Chlorothane ND Chloromethane ND Chlorodifluoromethane ND Chlo	8.0	5.8	ug/L		04/11/23 06:15	
A-Butanone (MEK) A-Hexanone A-Methyl-2-pentanone (MIBK) Accetone Benzene Bromodichloromethane Bromomethane Br	8.0		ug/L		04/11/23 06:15	
2-Hexanone ND *+ 1-Methyl-2-pentanone (MIBK) ND Acetone ND 3-cenzene ND 3-comodichloromethane ND 3-comomethane ND	8.0		ug/L		04/11/23 06:15	
Acetone ND Acetone ND Acetone ND Acetone ND Bromodichloromethane ND Bromodichloromethane ND Bromomethane ND Bromomethane ND Carbon disulfide ND Carbon tetrachloride ND Chlorobenzene ND Chlorothane ND Chlorothane ND Chloroethane ND Chloromethane ND Chlorodifluoromethane ND Cyclohexane ND Cyclohexane ND Chlorodifluoromethane	80		ug/L		04/11/23 06:15	
scetone ND servence ND	40		ug/L		04/11/23 06:15	
Acetone ND Benzene ND Bromodichloromethane ND Bromodichloromethane ND Bromodichloromethane ND Bromomethane ND Bromomethane ND Bromomethane ND Carbon disulfide ND Chlorobenzene ND Chlorobenzene ND Chloroform ND Chloroform ND Chloromethane ND Chloromethane ND Chloromethane ND Chloromethane ND Chloromethane ND Chloromethane ND Chloromethane ND Chloromethane ND Chloromethane ND Chloromethane ND Chloromethane ND Chloromethane ND Chloromethane ND Chloromethane ND Chlorodifluoromethane ND Chlorodif	40		ug/L		04/11/23 06:15	
stromodichloromethane stromoform ND stromoform ND stromomethane ND stromomethane ND stromomethane ND stromochloromethane ND schlorobenzene ND schloroethane ND schloromethane ND schloroform ND schloromethane ND schlorodifluoromethane ND scyclohexane ND schlorodifluoromethane	80		ug/L		04/11/23 06:15	
stromoform ND stromomethane ND stromomet	8.0		ug/L		04/11/23 06:15	
stromoform ND stromomethane ND starbon disulfide ND starbon tetrachloride ND shlorobenzene ND shlorobenzene ND shloroform ND shloroform ND shloromethane ND shloromethane ND shloromethane ND shloromethane ND sis-1,2-Dichloroethene ND sis-1,3-Dichloropropene ND syclohexane ND striplenzene ND striplenzene ND striplenzene ND striplenzene ND stetryl acetate ND stetryl acetate ND stetryl tert-butyl ether ND striplenzene ND stetryl tert-butyl ether ND stetrylene Chloride ND stryrene ND	8.0		ug/L		04/11/23 06:15	
sromomethane ND sarbon disulfide ND sarbon tetrachloride ND shlorobenzene ND shloromochloromethane ND shloroform ND shloromethane ND shloromethane ND shloromethane ND shloromethane ND shloromethane ND shloromethane ND sis-1,2-Dichloroethene ND sis-1,3-Dichloropropene ND syclohexane ND sichlorodifluoromethane ND shlorodifluoromethane ND shlorodifluoromethane ND strylbenzene ND strylbenzene ND stethyl acetate ND stethyl acetate ND stethyl tert-butyl ether ND stethylorodide ND styrene ND styrene ND styrene ND styrene ND styrene ND styrene ND soluene ND	8.0		ug/L		04/11/23 06:15	
arbon disulfide ND arbon tetrachloride ND hlorobenzene ND ibromochloromethane ND hloroethane ND hloroethane ND hloromethane ND s-1,2-Dichloroethene ND is-1,3-Dichloropropene ND yclohexane ND ichlorodifluoromethane ND ttylbenzene ND -,2-Dibromoethane ND dethyl acetate ND lethyl tert-butyl ether ND lethylcyclohexane ND lethylene Chloride ND tyrene etrachloroethene ND	8.0		ug/L		04/11/23 06:15	
arbon tetrachloride ND hlorobenzene ND ibromochloromethane ND hloroethane ND hloroform ND hloromethane ND s-1,2-Dichloroethene ND s-1,3-Dichloropropene ND yclohexane ND ichlorodifluoromethane ND thylbenzene ND copropylbenzene ND lethyl acetate ND lethyl tert-butyl ether ND lethylene Chloride ND tyrene ND coluene ND	8.0		ug/L		04/11/23 06:15	
chlorobenzene ND chloroethane ND chloroethane ND chloroform ND chloromethane ND chloromethane ND chloromethane ND chloromethane ND chloromethane ND chloromethane ND chloropropene ND cyclohexane ND cyclohexane ND cyclohexane ND cyclohexane ND cyclohexane ND cyclohexane ND chlorodifluoromethane ND cyclohexane ND cyclohexa	8.0		ug/L		04/11/23 06:15	
bibromochloromethane chloroethane chloroform chloromethane chloromethane chloromethane chloromethane chloromethane chloromethane chloromethane chloromethane chloropropene chlorodifluoromethane chlorodifluoromethane chlorodifluoromethane chlorodifluoromethane chloropropylbenzene chlorop	8.0		ug/L		04/11/23 06:15	
Chloroethane ND Chloroform ND Chloromethane ND Chloromethane ND Chloromethane ND Chloromethane ND Chloromethane ND Chlorodifluoroethene ND Cyclohexane ND Cy	8.0		ug/L		04/11/23 06:15	
chloroform ND chloromethane ND chloromethane ND cis-1,2-Dichloroethene ND cis-1,3-Dichloropropene ND cyclohexane ND cichlorodifluoromethane ND cithylbenzene ND copropylbenzene ND dethyl acetate ND dethyl tert-butyl ether ND dethylcyclohexane ND dethylene Chloride ND cityrene ND	8.0		ug/L		04/11/23 06:15	
Chloromethane Indicate the content of the content	8.0		ug/L		04/11/23 06:15	
is-1,2-Dichloroethene ND is-1,3-Dichloropropene ND cyclohexane ND cyclohexane ND cithylbenzene ND cyclohexane N	8.0		ug/L		04/11/23 06:15	
is-1,3-Dichloropropene ND Cyclohexane ND Methyl acetate ND Methyl tert-butyl ether ND Methylcyclohexane ND Methylene Chloride ND Cyclohexane	8.0		ug/L		04/11/23 06:15	
Cyclohexane ND Dichlorodifluoromethane ND Cithylbenzene ND Cyclohromoethane ND Sopropylbenzene ND Methyl acetate ND Methyl tert-butyl ether ND Methylcyclohexane ND Methylene Chloride ND Styrene ND Soluene ND	8.0		ug/L		04/11/23 06:15	
Dichlorodifluoromethane Ithylbenzene ND Ithylbenzene ND Ithylbenzene ND Ithylbenzene ND Ithylbenzene ND Ithylbenzene ND Ithylbenzene Ithylbenzene ND Ithylbenzene Ithylbenzene ND Ithylbenzene I	8.0		ug/L		04/11/23 06:15	
thylbenzene ND ,2-Dibromoethane ND sopropylbenzene ND flethyl acetate ND flethyl tert-butyl ether ND flethylcyclohexane ND flethylene Chloride ND styrene ND soluene ND	8.0		ug/L		04/11/23 06:15	
,2-Dibromoethane ND sopropylbenzene ND Methyl acetate ND Methyl tert-butyl ether ND Methylcyclohexane ND Methylene Chloride ND styrene ND setrachloroethene ND	8.0		ug/L		04/11/23 06:15	
Sopropylbenzene ND Methyl acetate ND Methyl tert-butyl ether ND Methylcyclohexane ND Methylene Chloride ND Styrene ND Setrachloroethene ND	8.0		ug/L		04/11/23 06:15	
Methyl acetate ND Methyl tert-butyl ether ND Methylcyclohexane ND Methylene Chloride ND Styrene ND Metrachloroethene ND Mothylene ND Mothylene ND Mothylene ND Mothylene ND Mothylene ND	8.0		ug/L		04/11/23 06:15	
Methyl tert-butyl ether ND Methylcyclohexane ND Methylene Chloride ND Styrene ND Metrachloroethene ND Modernachloroethene ND Modernachloroethene ND	20		ug/L		04/11/23 06:15	
Methylcyclohexane ND Methylene Chloride ND Attyrene ND Attrachloroethene ND Attrachloroethene ND Attrachloroethene ND Attrachloroethene ND	8.0		ug/L		04/11/23 06:15	
/lethylene Chloride ND etyrene ND etrachloroethene ND oluene ND	8.0		ug/L ug/L		04/11/23 06:15	
otyrene ND etrachloroethene ND oluene ND	8.0		ug/L ug/L		04/11/23 06:15	
etrachloroethene ND oluene ND	8.0				04/11/23 06:15	
oluene ND			ug/L			
	8.0 8.0		ug/L ug/L		04/11/23 06:15	
ans-n.z-Dichioroethene ND					04/11/23 06:15	
•	8.0		ug/L		04/11/23 06:15	
ans-1,3-Dichloropropene ND	8.0		ug/L		04/11/23 06:15	
richloroethene ND	8.0		ug/L		04/11/23 06:15	
richlorofluoromethane ND	8.0		ug/L		04/11/23 06:15	
/inyl chloride ND (ylenes, Total ND	8.0		ug/L ug/L		04/11/23 06:15 04/11/23 06:15	

Eurofins Buffalo

5/4/2023

2

5

6

1(

1-

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-39D Lab Sample ID: 480-207637-14 Date Collected: 04/06/23 13:15

Matrix: Water

Date Received: 04/07/23 13:45

Surrogate	%Recovery Qualifi	ier Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	94	80 - 120		04/11/23 06:15	8
1,2-Dichloroethane-d4 (Surr)	108	77 - 120		04/11/23 06:15	8
4-Bromofluorobenzene (Surr)	100	73 - 120		04/11/23 06:15	8
Dibromofluoromethane (Surr)	103	75 ₋ 123		04/11/23 06:15	8

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon (SW846	22.1		1.0	0.43	mg/L			04/13/23 10:10	1
9060A)									

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: A1-GP02-S Lab Sample ID: 480-207637-15

Date Collected: 04/06/23 12:35 **Matrix: Water** Date Received: 04/07/23 13:45

Method: SW846 8260C - Volatile Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		100	82	ug/L		· · · · · · · · · · · · · · · · · · ·	04/11/23 06:38	10
1,1,2,2-Tetrachloroethane	ND		100		ug/L			04/11/23 06:38	10
1,1,2-Trichloroethane	ND		100		ug/L			04/11/23 06:38	10
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	F2	100	31	ug/L			04/11/23 06:38	10
1,1-Dichloroethane	ND		100		ug/L			04/11/23 06:38	10
1,1-Dichloroethene	ND		100		ug/L			04/11/23 06:38	10
1,2,4-Trichlorobenzene	ND	F1	100		ug/L			04/11/23 06:38	10
1,2-Dibromo-3-Chloropropane	ND		100		ug/L			04/11/23 06:38	10
1,2-Dichlorobenzene	ND		100	79	ug/L			04/11/23 06:38	10
1,2-Dichloroethane	ND		100	21	ug/L			04/11/23 06:38	10
1,2-Dichloropropane	ND		100		ug/L			04/11/23 06:38	10
I,3-Dichlorobenzene	ND		100		ug/L			04/11/23 06:38	10
1,4-Dichlorobenzene	ND		100		ug/L			04/11/23 06:38	10
2-Butanone (MEK)	ND		1000		ug/L			04/11/23 06:38	10
2-Hexanone	ND	*+ F1	500		ug/L			04/11/23 06:38	10
I-Methyl-2-pentanone (MIBK)	ND		500		ug/L			04/11/23 06:38	10
Acetone	ND		1000		ug/L			04/11/23 06:38	10
Benzene	ND		100		ug/L			04/11/23 06:38	10
Bromodichloromethane	ND		100		ug/L			04/11/23 06:38	10
Bromoform	ND		100		ug/L			04/11/23 06:38	10
Bromomethane	ND	F2	100		ug/L			04/11/23 06:38	10
Carbon disulfide	ND		100		ug/L			04/11/23 06:38	10
Carbon tetrachloride	ND		100		ug/L			04/11/23 06:38	10
Chlorobenzene	ND		100		ug/L			04/11/23 06:38	10
Dibromochloromethane	ND		100		ug/L			04/11/23 06:38	10
Chloroethane	ND	F2	100		ug/L			04/11/23 06:38	10
Chloroform	ND		100		ug/L			04/11/23 06:38	10
Chloromethane	ND		100		ug/L			04/11/23 06:38	10
cis-1,2-Dichloroethene	4600	F1	100		ug/L			04/11/23 06:38	10
is-1,3-Dichloropropene	ND		100		ug/L			04/11/23 06:38	10
Cyclohexane	ND		100		ug/L			04/11/23 06:38	10
Dichlorodifluoromethane	ND		100		ug/L			04/11/23 06:38	10
Ethylbenzene	ND		100		ug/L			04/11/23 06:38	10
I,2-Dibromoethane	ND		100		ug/L			04/11/23 06:38	10
sopropylbenzene	ND		100		ug/L			04/11/23 06:38	10
Methyl acetate	ND		250		ug/L			04/11/23 06:38	10
Methyl tert-butyl ether	ND		100		ug/L			04/11/23 06:38	10
Methylcyclohexane	ND		100		ug/L			04/11/23 06:38	10
Methylene Chloride	ND		100		ug/L			04/11/23 06:38	10
Styrene	ND		100		ug/L			04/11/23 06:38	10
etrachloroethene	ND		100		ug/L			04/11/23 06:38	10
oluene	ND		100		ug/L			04/11/23 06:38	10
rans-1,2-Dichloroethene	ND		100		ug/L			04/11/23 06:38	10
rans-1,3-Dichloropropene	ND		100		ug/L			04/11/23 06:38	10
richloroethene	ND		100		ug/L			04/11/23 06:38	10
Frichlorofluoromethane	ND		100		ug/L			04/11/23 06:38	10
/inyl chloride	2400	F1	100		ug/L			04/11/23 06:38	10
Xylenes, Total	ND	• •	200		ug/L			04/11/23 06:38	10

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: A1-GP02-S Lab Sample ID: 480-207637-15

Date Collected: 04/06/23 12:35
Date Received: 04/07/23 13:45

Matrix: Water

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	92		80 - 120					04/11/23 06:38	100
1,2-Dichloroethane-d4 (Surr)	105		77 - 120					04/11/23 06:38	100
4-Bromofluorobenzene (Surr)	94		73 - 120					04/11/23 06:38	100
Dibromofluoromethane (Surr)	99		75 - 123					04/11/23 06:38	100
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon (SW846 9060A)	7.0		1.0	0.43	mg/L			04/12/23 16:37	1

0

4.6

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: A1-GP16-S Date Collected: 04/06/23 11:55 Lab Sample ID: 480-207637-16

Matrix: Water

Date Received: 04/07/23 13:45

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		4.0	3.3	ug/L			04/11/23 07:01	
1,1,2,2-Tetrachloroethane	ND		4.0	0.84	ug/L			04/11/23 07:01	
1,1,2-Trichloroethane	ND		4.0	0.92	ug/L			04/11/23 07:01	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.0	1.2	ug/L			04/11/23 07:01	
1,1-Dichloroethane	ND		4.0	1.5	ug/L			04/11/23 07:01	
1,1-Dichloroethene	ND		4.0	1.2	ug/L			04/11/23 07:01	
1,2,4-Trichlorobenzene	ND		4.0	1.6	ug/L			04/11/23 07:01	
1,2-Dibromo-3-Chloropropane	ND		4.0	1.6	ug/L			04/11/23 07:01	
1,2-Dichlorobenzene	ND		4.0	3.2	ug/L			04/11/23 07:01	
1,2-Dichloroethane	ND		4.0	0.84	ug/L			04/11/23 07:01	
1,2-Dichloropropane	ND		4.0	2.9	ug/L			04/11/23 07:01	
1,3-Dichlorobenzene	ND		4.0	3.1	ug/L			04/11/23 07:01	
1,4-Dichlorobenzene	ND		4.0	3.4	ug/L			04/11/23 07:01	
2-Butanone (MEK)	ND		40	5.3	ug/L			04/11/23 07:01	
2-Hexanone	ND	*+	20		ug/L			04/11/23 07:01	
4-Methyl-2-pentanone (MIBK)	ND		20		ug/L			04/11/23 07:01	
Acetone	ND		40		ug/L			04/11/23 07:01	
Benzene	ND		4.0		ug/L			04/11/23 07:01	
Bromodichloromethane	ND		4.0		ug/L			04/11/23 07:01	
Bromoform	ND		4.0		ug/L			04/11/23 07:01	
Bromomethane	ND		4.0		ug/L			04/11/23 07:01	
Carbon disulfide	ND		4.0	0.76				04/11/23 07:01	
Carbon tetrachloride	ND		4.0		ug/L			04/11/23 07:01	
Chlorobenzene	ND		4.0		ug/L			04/11/23 07:01	
Dibromochloromethane	ND		4.0		ug/L			04/11/23 07:01	
Chloroethane	ND		4.0		ug/L			04/11/23 07:01	
Chloroform	ND		4.0		ug/L			04/11/23 07:01	
Chloromethane	ND		4.0		ug/L			04/11/23 07:01	
cis-1,2-Dichloroethene	ND		4.0		ug/L			04/11/23 07:01	
cis-1,3-Dichloropropene	ND		4.0		ug/L			04/11/23 07:01	
Cyclohexane	ND		4.0	0.72				04/11/23 07:01	
Dichlorodifluoromethane	ND		4.0		ug/L			04/11/23 07:01	
Ethylbenzene	ND		4.0		ug/L			04/11/23 07:01	
1,2-Dibromoethane	ND		4.0		ug/L			04/11/23 07:01	
Isopropylbenzene	ND		4.0		ug/L			04/11/23 07:01	
Methyl acetate	ND		10		ug/L			04/11/23 07:01	
Methyl tert-butyl ether	ND		4.0	0.64				04/11/23 07:01	
Methylcyclohexane	ND		4.0		ug/L			04/11/23 07:01	
Methylene Chloride	ND		4.0		ug/L			04/11/23 07:01	
Styrene	ND		4.0		ug/L			04/11/23 07:01	
Tetrachloroethene	ND		4.0		ug/L			04/11/23 07:01	·
Toluene	ND ND		4.0		ug/L ug/L			04/11/23 07:01	
trans-1,2-Dichloroethene	ND		4.0		ug/L ug/L			04/11/23 07:01	
trans-1,3-Dichloropropene	ND ND		4.0		ug/L ug/L			04/11/23 07:01	
Trichloroethene	ND ND		4.0		ug/L ug/L			04/11/23 07:01	
Trichlorofluoromethane	ND				ug/L ug/L			04/11/23 07:01	
	ND ND		4.0 4.0		-			04/11/23 07:01	
Vinyl chloride Xylenes, Total	ND ND		4.0 8.0		ug/L ug/L			04/11/23 07:01	

Eurofins Buffalo

2

4

5

9

. .

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Total Organic Carbon (SW846

9060A)

Client Sample ID: A1-GP16-S Lab Sample ID: 480-207637-16

Date Collected: 04/06/23 11:55

Matrix: Water

Date Collected: 04/06/23 11:55 Matrix: Wat Date Received: 04/07/23 13:45

Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	91	80 - 120				04/11/23 07:01	4
1,2-Dichloroethane-d4 (Surr)	108	77 - 120				04/11/23 07:01	4
4-Bromofluorobenzene (Surr)	97	73 - 120				04/11/23 07:01	4
Dibromofluoromethane (Surr)	102	75 - 123				04/11/23 07:01	4
General Chemistry							
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac

1.0

0.43 mg/L

23.2

9

04/12/23 17:06

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-40D

Lab Sample ID: 480-207715-1 Date Collected: 04/11/23 10:03

Matrix: Water Date Received: 04/12/23 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	74		8.0	6.6	ug/L			04/12/23 16:46	
1,1,2,2-Tetrachloroethane	ND	*+	8.0	1.7	ug/L			04/12/23 16:46	;
1,1,2-Trichloroethane	ND		8.0	1.8	ug/L			04/12/23 16:46	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		8.0	2.5	ug/L			04/12/23 16:46	
1,1-Dichloroethane	250		8.0	3.0	ug/L			04/12/23 16:46	
1,1-Dichloroethene	ND		8.0	2.3	ug/L			04/12/23 16:46	
1,2,4-Trichlorobenzene	ND		8.0	3.3	ug/L			04/12/23 16:46	
1,2-Dibromo-3-Chloropropane	ND		8.0	3.1	ug/L			04/12/23 16:46	
1,2-Dichlorobenzene	ND		8.0	6.3	ug/L			04/12/23 16:46	
1,2-Dichloroethane	ND		8.0	1.7	ug/L			04/12/23 16:46	
1,2-Dichloropropane	ND		8.0	5.8	ug/L			04/12/23 16:46	
1,3-Dichlorobenzene	ND		8.0		ug/L			04/12/23 16:46	
1,4-Dichlorobenzene	ND		8.0		ug/L			04/12/23 16:46	
2-Butanone (MEK)	ND		80		ug/L			04/12/23 16:46	
2-Hexanone	ND	*+	40		•			04/12/23 16:46	
4-Methyl-2-pentanone (MIBK)	ND		40		ug/L			04/12/23 16:46	
Acetone	ND		80					04/12/23 16:46	
Benzene	ND		8.0		ug/L			04/12/23 16:46	
Bromodichloromethane	ND		8.0	3.1	ug/L			04/12/23 16:46	;
Bromoform	ND	*+	8.0	2.1	ug/L			04/12/23 16:46	
Bromomethane	ND		8.0		ug/L			04/12/23 16:46	
Carbon disulfide	ND		8.0		ug/L			04/12/23 16:46	
Carbon tetrachloride	ND		8.0		ug/L			04/12/23 16:46	
Chlorobenzene	ND		8.0		ug/L			04/12/23 16:46	
Dibromochloromethane	ND		8.0		ug/L			04/12/23 16:46	
Chloroethane	480		8.0		ug/L			04/12/23 16:46	
Chloroform	ND		8.0		ug/L			04/12/23 16:46	·
Chloromethane	ND		8.0		ug/L			04/12/23 16:46	
cis-1,2-Dichloroethene	ND		8.0		ug/L			04/12/23 16:46	
cis-1,3-Dichloropropene	ND		8.0		ug/L			04/12/23 16:46	·
Cyclohexane	ND		8.0		ug/L			04/12/23 16:46	
Dichlorodifluoromethane	ND		8.0		ug/L			04/12/23 16:46	,
Ethylbenzene	ND		8.0		ug/L			04/12/23 16:46	,
1,2-Dibromoethane	ND		8.0		ug/L			04/12/23 16:46	
Isopropylbenzene	ND		8.0		ug/L			04/12/23 16:46	,
Methyl acetate	ND		20		ug/L			04/12/23 16:46	,
Methyl tert-butyl ether	ND		8.0		ug/L			04/12/23 16:46	'
Methylcyclohexane	ND		8.0		ug/L			04/12/23 16:46	,
	ND ND				-				
Methylene Chloride	ND		8.0		ug/L			04/12/23 16:46 04/12/23 16:46	;
Styrene Tetrachloroethene	ND ND		8.0 8.0		ug/L			04/12/23 16:46	
Tetrachioroethene Toluene	ND ND		8.0 8.0		ug/L			04/12/23 16:46	
					ug/L				
trans-1,2-Dichloroethene	ND	*	8.0		ug/L			04/12/23 16:46	;
trans-1,3-Dichloropropene	ND	+	8.0		ug/L			04/12/23 16:46	
Trichlandinannathan	ND		8.0		ug/L			04/12/23 16:46	
Trichlorofluoromethane	ND		8.0		ug/L			04/12/23 16:46	
Vinyl chloride	ND		8.0	7.2	ug/L			04/12/23 16:46	;

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-40D

Lab Sample ID: 480-207715-1 Date Collected: 04/11/23 10:03

Matrix: Water

Date Received: 04/12/23 09:00

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Toluene-d8 (Surr)	99		80 - 120			-	. ropurou	04/12/23 16:46	- Dii i u
1,2-Dichloroethane-d4 (Surr)	104		77 - 120					04/12/23 16:46	
4-Bromofluorobenzene (Surr)	101		73 - 120					04/12/23 16:46	
Dibromofluoromethane (Surr)	100		75 - 123					04/12/23 16:46	
Method: RSK-175 - Dissolve	d Gases (GC))							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Ethane	ND		170	33	ug/L			04/13/23 09:05	2:
Ethene	ND		150	33	ug/L			04/13/23 09:05	2:
Method: RSK-175 - Dissolve	d Gases (GC)) - DL							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Methane	21000		440	110	ug/L			04/13/23 10:02	11
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Sulfate (EPA 300.0)	ND		10.0	1.7	mg/L			04/20/23 05:35	
Alkalinity, Total (EPA 310.2)	301		50.0	20.0	mg/L			04/18/23 13:41	:
Nitrate as N (EPA 353.2)	0.029	J	0.050	0.020	mg/L	₩		04/12/23 19:41	
Nitrite as N (EPA 353.2)	ND		0.050	0.020	mg/L			04/12/23 19:41	
Total Organic Carbon (SW846 9060A)	21.7		1.0	0.43	mg/L			04/13/23 19:16	
Sulfide (SM 4500 S2 F)	ND		1.0	0.67	mg/L			04/17/23 14:00	
- General Chemistry - Dissolv	red								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Ferrous Iron (SM 3500 FE D)	ND	HF	0.10	0.075	ma/l			04/26/23 13:30	

5/4/2023

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: A1-GP10-S Date Collected: 04/11/23 12:00

Date Received: 04/12/23 09:00

Lab Sample ID: 480-207715-2

Matrix: Water

Method: SW846 8260C - Volatil Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		400	330	ug/L			04/12/23 17:09	400
1,1,2,2-Tetrachloroethane	ND	*+	400		ug/L			04/12/23 17:09	400
1,1,2-Trichloroethane	ND		400		ug/L			04/12/23 17:09	400
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		400		ug/L			04/12/23 17:09	400
1,1-Dichloroethane	460		400		ug/L			04/12/23 17:09	400
1,1-Dichloroethene	ND		400		ug/L			04/12/23 17:09	400
1,2,4-Trichlorobenzene	ND		400		ug/L			04/12/23 17:09	400
1,2-Dibromo-3-Chloropropane	ND		400		ug/L			04/12/23 17:09	400
1,2-Dichlorobenzene	ND		400		ug/L			04/12/23 17:09	400
1,2-Dichloroethane	ND		400		ug/L			04/12/23 17:09	400
1,2-Dichloropropane	ND		400		ug/L			04/12/23 17:09	400
1,3-Dichlorobenzene	ND		400		ug/L			04/12/23 17:09	400
1,4-Dichlorobenzene	ND		400		ug/L			04/12/23 17:09	400
2-Butanone (MEK)	ND		4000		ug/L			04/12/23 17:09	400
2-Hexanone	ND	*+	2000		ug/L			04/12/23 17:09	400
4-Methyl-2-pentanone (MIBK)	ND	.	2000		ug/L			04/12/23 17:09	400
Acetone	ND ND		4000	1200	-			04/12/23 17:09	400
Benzene	ND ND		4000		ug/L ug/L			04/12/23 17:09	400
								04/12/23 17:09	
Bromodichloromethane	ND ND	*.	400		ug/L				400
Bromoform		+	400		ug/L			04/12/23 17:09	400
Bromomethane	ND		400		ug/L			04/12/23 17:09	400
Carbon disulfide	ND		400		ug/L			04/12/23 17:09	400
Carbon tetrachloride	ND		400		ug/L			04/12/23 17:09	400
Chlorobenzene	ND		400		ug/L			04/12/23 17:09	400
Dibromochloromethane	ND		400		ug/L			04/12/23 17:09	400
Chloroethane	9000		400		ug/L			04/12/23 17:09	400
Chloroform	ND		400		ug/L			04/12/23 17:09	400
Chloromethane	ND		400		ug/L			04/12/23 17:09	400
cis-1,2-Dichloroethene	ND		400		ug/L			04/12/23 17:09	400
cis-1,3-Dichloropropene	ND		400		ug/L			04/12/23 17:09	400
Cyclohexane	ND		400		ug/L			04/12/23 17:09	400
Dichlorodifluoromethane	ND		400		ug/L			04/12/23 17:09	400
Ethylbenzene	ND		400		ug/L			04/12/23 17:09	400
1,2-Dibromoethane	ND		400		ug/L			04/12/23 17:09	400
Isopropylbenzene	ND		400	320	ug/L			04/12/23 17:09	400
Methyl acetate	ND		1000		ug/L			04/12/23 17:09	400
Methyl tert-butyl ether	ND		400	64	ug/L			04/12/23 17:09	400
Methylcyclohexane	ND		400	64	ug/L			04/12/23 17:09	400
Methylene Chloride	ND		400	180	ug/L			04/12/23 17:09	400
Styrene	ND		400	290	ug/L			04/12/23 17:09	400
Tetrachloroethene	ND		400	140	ug/L			04/12/23 17:09	400
Toluene	ND		400	200	ug/L			04/12/23 17:09	400
trans-1,2-Dichloroethene	ND		400		ug/L			04/12/23 17:09	400
trans-1,3-Dichloropropene	ND	*+	400		ug/L			04/12/23 17:09	400
Trichloroethene	ND		400		ug/L			04/12/23 17:09	400
Trichlorofluoromethane	ND		400		ug/L			04/12/23 17:09	400
Vinyl chloride	ND		400		ug/L			04/12/23 17:09	400
Xylenes, Total	ND		800		ug/L			04/12/23 17:09	400

Eurofins Buffalo

2

5

9

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: A1-GP10-S

Lab Sample ID: 480-207715-2

Matrix: Water

Date Collected: 04/11/23 12:00 Date Received: 04/12/23 09:00

Ferrous Iron (SM 3500 FE D)

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		80 - 120					04/12/23 17:09	400
1,2-Dichloroethane-d4 (Surr)	107		77 - 120					04/12/23 17:09	400
4-Bromofluorobenzene (Surr)	97		73 - 120					04/12/23 17:09	400
Dibromofluoromethane (Surr)	102		75 - 123					04/12/23 17:09	400
Method: RSK-175 - Dissolve	d Gases (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethane	ND		170	33	ug/L			04/13/23 09:24	22
Ethene	ND		150	33	ug/L			04/13/23 09:24	22
Method: RSK-175 - Dissolve	d Gases (GC) - DL							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methane	10000		440	110	ug/L		<u> </u>	04/13/23 10:21	110
- General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate (EPA 300.0)	1.6	J	4.0	0.70	mg/L			04/20/23 07:09	2
Alkalinity, Total (EPA 310.2)	487		50.0	20.0	mg/L			04/18/23 13:59	5
Nitrate as N (EPA 353.2)	0.025	J	0.050	0.020	mg/L	₩		04/12/23 19:41	1
Nitrite as N (EPA 353.2)	ND		0.050	0.020	mg/L			04/12/23 19:41	1
Total Organic Carbon (SW846 9060A)	70.0		1.0	0.43	mg/L			04/21/23 07:14	1
Sulfide (SM 4500 S2 F)	ND		1.0	0.67	mg/L			04/17/23 14:00	,
- General Chemistry - Dissolv	red								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

0.10

0.075 mg/L

ND HF

04/26/23 13:30

5/4/2023

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-42S Lab Sample ID: 480-207715-3

Matrix: Water

Date Collected: 04/11/23 15:20 Date Received: 04/12/23 09:00

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	200	160	ug/L			04/12/23 17:33	200
1,1,2,2-Tetrachloroethane	ND *+	200	42	ug/L			04/12/23 17:33	200
1,1,2-Trichloroethane	ND	200	46	ug/L			04/12/23 17:33	200
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	200	62	ug/L			04/12/23 17:33	200
1,1-Dichloroethane	740	200	76	ug/L			04/12/23 17:33	200
1,1-Dichloroethene	ND	200	58	ug/L			04/12/23 17:33	200
1,2,4-Trichlorobenzene	ND	200	82	ug/L			04/12/23 17:33	200
1,2-Dibromo-3-Chloropropane	ND	200	78	ug/L			04/12/23 17:33	200
1,2-Dichlorobenzene	ND	200	160	ug/L			04/12/23 17:33	200
1,2-Dichloroethane	ND	200	42	ug/L			04/12/23 17:33	200
1,2-Dichloropropane	ND	200	140	ug/L			04/12/23 17:33	200
1,3-Dichlorobenzene	ND	200	160	ug/L			04/12/23 17:33	200
1,4-Dichlorobenzene	ND	200	170	ug/L			04/12/23 17:33	200
2-Butanone (MEK)	ND	2000	260	ug/L			04/12/23 17:33	200
2-Hexanone	ND *+	1000		ug/L			04/12/23 17:33	200
4-Methyl-2-pentanone (MIBK)	ND	1000		ug/L			04/12/23 17:33	200
Acetone	ND	2000		ug/L			04/12/23 17:33	200
Benzene	ND	200		ug/L			04/12/23 17:33	200
Bromodichloromethane	ND	200		ug/L			04/12/23 17:33	200
Bromoform	ND *+	200		ug/L			04/12/23 17:33	200
Bromomethane	ND	200		ug/L			04/12/23 17:33	200
Carbon disulfide	ND	200		ug/L			04/12/23 17:33	200
Carbon tetrachloride	ND	200		ug/L			04/12/23 17:33	200
Chlorobenzene	ND	200		ug/L			04/12/23 17:33	200
Dibromochloromethane	ND	200		ug/L			04/12/23 17:33	200
Chloroethane	6600	200		ug/L			04/12/23 17:33	200
Chloroform	ND	200		ug/L			04/12/23 17:33	200
Chloromethane	ND	200		ug/L			04/12/23 17:33	200
cis-1,2-Dichloroethene	ND	200		ug/L			04/12/23 17:33	200
cis-1,3-Dichloropropene	ND	200		ug/L			04/12/23 17:33	200
Cyclohexane	ND	200		ug/L			04/12/23 17:33	200
Dichlorodifluoromethane	ND	200		ug/L			04/12/23 17:33	200
Ethylbenzene	ND	200		ug/L			04/12/23 17:33	200
1,2-Dibromoethane	ND	200		ug/L			04/12/23 17:33	200
Isopropylbenzene	ND	200		ug/L			04/12/23 17:33	200
Methyl acetate	ND	500		ug/L			04/12/23 17:33	200
Methyl tert-butyl ether	ND	200		ug/L			04/12/23 17:33	200
Methylcyclohexane	ND	200		ug/L			04/12/23 17:33	200
Methylene Chloride	ND	200		ug/L			04/12/23 17:33	200
Styrene	ND	200		ug/L			04/12/23 17:33	200
Tetrachloroethene	ND	200		ug/L			04/12/23 17:33	200
Toluene	390	200		ug/L			04/12/23 17:33	200
trans-1,2-Dichloroethene	ND	200		ug/L			04/12/23 17:33	200
trans-1,3-Dichloropropene	ND *+	200		ug/L			04/12/23 17:33	200
Trichloroethene	ND	200		ug/L			04/12/23 17:33	200
Trichlorofluoromethane	ND	200		ug/L			04/12/23 17:33	200
Vinyl chloride	ND	200		ug/L ug/L			04/12/23 17:33	200
Xylenes, Total	ND	400		ug/L ug/L			04/12/23 17:33	200

Eurofins Buffalo

1

<u>ی</u>

9

10

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-42S Lab Sample ID: 480-207715-3

Date Collected: 04/11/23 15:20

Matrix: Water Date Received: 04/12/23 09:00

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Toluene-d8 (Surr)	97		80 - 120					04/12/23 17:33	200
1,2-Dichloroethane-d4 (Surr)	106		77 - 120					04/12/23 17:33	200
4-Bromofluorobenzene (Surr)	102		73 - 120					04/12/23 17:33	200
Dibromofluoromethane (Surr)	97		75 - 123					04/12/23 17:33	200
Method: RSK-175 - Dissolved	I Gases (GC))							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Ethane	720		330	66	ug/L			04/13/23 09:43	44
Ethene	2800		310	66	ug/L			04/13/23 09:43	4
Methane	9900		180	44	ug/L			04/13/23 09:43	4
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Sulfate (EPA 300.0)	1.8	J	10.0	1.7	mg/L			04/20/23 07:28	
Alkalinity, Total (EPA 310.2)	560		210	84.0	mg/L			04/18/23 14:15	2
Nitrate as N (EPA 353.2)	0.35		0.050	0.020	mg/L	☼		04/12/23 20:25	
Nitrite as N (EPA 353.2)	ND		0.050	0.020	mg/L			04/12/23 19:41	
Total Organic Carbon (SW846 9060A)	155		4.0	1.7	mg/L			04/21/23 07:44	
Sulfide (SM 4500 S2 F)	ND		1.0	0.67	mg/L			04/17/23 14:00	
General Chemistry - RA									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Nitrate as N (EPA 353.2)	0.35	Н	0.050	0.020	mg/L	<u> </u>		04/19/23 22:14	
Nitrite as N (EPA 353.2)	ND	Н	0.050	0.020	mg/L			04/19/23 22:14	
General Chemistry - Dissolve	ed								
Analyte	Regult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: A1-GP15-S Date Collected: 04/11/23 11:40

Lab Sample ID: 480-207715-4

Matrix: Water

Date Received: 04/12/23 09:00

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			04/12/23 17:56	
1,1,2,2-Tetrachloroethane	ND *+	1.0	0.21	ug/L			04/12/23 17:56	
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			04/12/23 17:56	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			04/12/23 17:56	
1,1-Dichloroethane	ND	1.0	0.38	ug/L			04/12/23 17:56	
1,1-Dichloroethene	ND	1.0	0.29	ug/L			04/12/23 17:56	
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			04/12/23 17:56	
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			04/12/23 17:56	
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			04/12/23 17:56	
1,2-Dichloroethane	ND	1.0	0.21	ug/L			04/12/23 17:56	
1,2-Dichloropropane	ND	1.0	0.72	ug/L			04/12/23 17:56	
1,3-Dichlorobenzene	ND	1.0		ug/L			04/12/23 17:56	
1,4-Dichlorobenzene	ND	1.0		ug/L			04/12/23 17:56	
2-Butanone (MEK)	ND	10		ug/L			04/12/23 17:56	
2-Hexanone	ND *+	5.0		ug/L			04/12/23 17:56	
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			04/12/23 17:56	
Acetone	ND	10		ug/L			04/12/23 17:56	
Benzene	ND	1.0		ug/L			04/12/23 17:56	
Bromodichloromethane	ND	1.0		ug/L			04/12/23 17:56	
Bromoform	ND *+	1.0		ug/L			04/12/23 17:56	
Bromomethane	ND	1.0		ug/L			04/12/23 17:56	
Carbon disulfide	ND	1.0		ug/L			04/12/23 17:56	
Carbon tetrachloride	ND	1.0		ug/L			04/12/23 17:56	
Chlorobenzene	ND	1.0		ug/L			04/12/23 17:56	
Dibromochloromethane	ND	1.0		ug/L			04/12/23 17:56	
Chloroethane	ND	1.0		ug/L			04/12/23 17:56	
Chloroform	ND ND	1.0		ug/L ug/L			04/12/23 17:56	
Chloromethane	ND	1.0		ug/L			04/12/23 17:56	
cis-1,2-Dichloroethene	ND ND	1.0		ug/L ug/L			04/12/23 17:56	
·	ND ND	1.0		ug/L ug/L			04/12/23 17:56	
cis-1,3-Dichloropropene								
Cyclohexane	ND ND	1.0		ug/L			04/12/23 17:56	
Dichlorodifluoromethane	ND	1.0		ug/L			04/12/23 17:56	
Ethylbenzene	ND	1.0		ug/L			04/12/23 17:56	
1,2-Dibromoethane	ND	1.0		ug/L			04/12/23 17:56	
sopropylbenzene	ND	1.0		ug/L			04/12/23 17:56	
Methyl acetate	ND	2.5		ug/L			04/12/23 17:56	
Methyl tert-butyl ether	ND	1.0		ug/L			04/12/23 17:56	
Methylcyclohexane	ND	1.0		ug/L			04/12/23 17:56	
Methylene Chloride	ND	1.0		ug/L			04/12/23 17:56	
Styrene	ND	1.0		ug/L			04/12/23 17:56	
etrachloroethene	ND	1.0		ug/L			04/12/23 17:56	
oluene	ND	1.0		ug/L			04/12/23 17:56	
rans-1,2-Dichloroethene	ND	1.0		ug/L			04/12/23 17:56	
rans-1,3-Dichloropropene	ND *+	1.0		ug/L			04/12/23 17:56	
Trichloroethene	ND	1.0	0.46	ug/L			04/12/23 17:56	
Γrichlorofluoromethane	ND	1.0	0.88	ug/L			04/12/23 17:56	
√inyl chloride	ND	1.0	0.90	ug/L			04/12/23 17:56	
Xylenes, Total	ND	2.0	0.66	ug/L			04/12/23 17:56	

Eurofins Buffalo

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

9060A)

Client Sample ID: A1-GP15-S Lab Sample ID: 480-207715-4

Date Collected: 04/11/23 11:40 **Matrix: Water**

Date Received: 04/12/23 09:00

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	95		80 - 120				· ·	04/12/23 17:56	
1,2-Dichloroethane-d4 (Surr)	105		77 - 120					04/12/23 17:56	1
4-Bromofluorobenzene (Surr)	99		73 - 120					04/12/23 17:56	1
Dibromofluoromethane (Surr)	99		75 - 123					04/12/23 17:56	1
- General Chemistry									
Analyte	Result	Qualifier	RL	MDL (Jnit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon (SW846	2.7		1.0	0.43 r	ng/L			04/13/23 23:11	1

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: A1-GP14-S

Lab Sample ID: 480-207715-5 Date Collected: 04/11/23 14:10

Matrix: Water

Date Received: 04/12/23 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			04/13/23 18:29	
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			04/13/23 18:29	
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			04/13/23 18:29	•
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			04/13/23 18:29	· · · · · · · · ·
1,1-Dichloroethane	ND		1.0	0.38	ug/L			04/13/23 18:29	
1,1-Dichloroethene	ND		1.0	0.29	ug/L			04/13/23 18:29	
1,2,4-Trichlorobenzene	ND		1.0		ug/L			04/13/23 18:29	
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			04/13/23 18:29	
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			04/13/23 18:29	
1,2-Dichloroethane	ND		1.0		ug/L			04/13/23 18:29	
1,2-Dichloropropane	ND		1.0		ug/L			04/13/23 18:29	
1,3-Dichlorobenzene	ND		1.0		ug/L			04/13/23 18:29	
1,4-Dichlorobenzene	ND		1.0		ug/L			04/13/23 18:29	
2-Butanone (MEK)		*+	10		ug/L			04/13/23 18:29	
2-Hexanone	ND		5.0		ug/L			04/13/23 18:29	
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			04/13/23 18:29	
Acetone	15	*+	10		ug/L			04/13/23 18:29	
Benzene	ND		1.0		ug/L			04/13/23 18:29	
Bromodichloromethane	ND		1.0		ug/L			04/13/23 18:29	,
Bromoform	ND		1.0		ug/L			04/13/23 18:29	
Bromomethane	ND		1.0		ug/L			04/13/23 18:29	
Carbon disulfide	ND		1.0		ug/L			04/13/23 18:29	· · · · · · .
Carbon tetrachloride	ND		1.0		ug/L			04/13/23 18:29	
Chlorobenzene	ND		1.0		ug/L			04/13/23 18:29	
Dibromochloromethane	ND		1.0		ug/L			04/13/23 18:29	,
Chloroethane	ND		1.0		ug/L			04/13/23 18:29	
Chloroform	ND		1.0		ug/L			04/13/23 18:29	
Chloromethane	ND		1.0		ug/L			04/13/23 18:29	
cis-1,2-Dichloroethene	ND		1.0		ug/L			04/13/23 18:29	
cis-1,3-Dichloropropene	ND		1.0		ug/L			04/13/23 18:29	
Cyclohexane	ND		1.0		ug/L			04/13/23 18:29	
Dichlorodifluoromethane	ND		1.0		ug/L			04/13/23 18:29	
Ethylbenzene	ND		1.0		ug/L			04/13/23 18:29	
1,2-Dibromoethane	ND		1.0		ug/L			04/13/23 18:29	
Isopropylbenzene	ND		1.0	0.79				04/13/23 18:29	
Methyl acetate	ND		2.5		ug/L			04/13/23 18:29	
Methyl tert-butyl ether	ND		1.0		ug/L			04/13/23 18:29	
Methylcyclohexane	ND		1.0		ug/L			04/13/23 18:29	
Methylene Chloride	ND		1.0		ug/L			04/13/23 18:29	
Styrene	ND		1.0		ug/L			04/13/23 18:29	,
Tetrachloroethene	ND		1.0		ug/L			04/13/23 18:29	
Toluene	ND		1.0		ug/L			04/13/23 18:29	
trans-1,2-Dichloroethene	ND		1.0		ug/L			04/13/23 18:29	
trans-1,3-Dichloropropene	ND	*+	1.0		ug/L ug/L			04/13/23 18:29	
Trichloroethene	ND	•	1.0		ug/L ug/L			04/13/23 18:29	
Trichlorofluoromethane	ND		1.0		ug/L			04/13/23 18:29	,
Vinyl chloride	ND		1.0		ug/L ug/L			04/13/23 18:29	,
Xylenes, Total	ND		2.0		ug/L ug/L			04/13/23 18:29	,

Eurofins Buffalo

5/4/2023

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Total Organic Carbon (SW846

9060A)

Client Sample ID: A1-GP14-S Lab Sample ID: 480-207715-5

Date Collected: 04/11/23 14:10 **Matrix: Water**

Date Received: 04/12/23 09:00

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	95		80 - 120					04/13/23 18:29	1
1,2-Dichloroethane-d4 (Surr)	110		77 - 120					04/13/23 18:29	1
4-Bromofluorobenzene (Surr)	94		73 - 120					04/13/23 18:29	1
Dibromofluoromethane (Surr)	99		75 - 123					04/13/23 18:29	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon (SW846	3.0		1.0	0.43	mg/L			04/13/23 23:41	1

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: TRIP BLANK

Date Collected: 04/11/23 00:00 Date Received: 04/12/23 09:00 Lab Sample ID: 480-207715-6

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			04/12/23 18:42	1
I,1,2,2-Tetrachloroethane	ND	*+	1.0	0.21	ug/L			04/12/23 18:42	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			04/12/23 18:42	1
,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			04/12/23 18:42	
,1-Dichloroethane	ND		1.0	0.38	ug/L			04/12/23 18:42	
,1-Dichloroethene	ND		1.0	0.29	ug/L			04/12/23 18:42	•
,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			04/12/23 18:42	
,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			04/12/23 18:42	
,2-Dichlorobenzene	ND		1.0	0.79	ug/L			04/12/23 18:42	
,2-Dichloroethane	ND		1.0	0.21	ug/L			04/12/23 18:42	
,2-Dichloropropane	ND		1.0	0.72	ug/L			04/12/23 18:42	
,3-Dichlorobenzene	ND		1.0	0.78	ug/L			04/12/23 18:42	•
.4-Dichlorobenzene	ND		1.0	0.84	ua/l			04/12/23 18:42	

1,1,1-Trichioroethane	ND	1.0	0.82 ug/L	04/12/23 18:42
1,1,2,2-Tetrachloroethane	ND *+	1.0	0.21 ug/L	04/12/23 18:42 1
1,1,2-Trichloroethane	ND	1.0	0.23 ug/L	04/12/23 18:42 1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31 ug/L	04/12/23 18:42 1
1,1-Dichloroethane	ND	1.0	0.38 ug/L	04/12/23 18:42 1
1,1-Dichloroethene	ND	1.0	0.29 ug/L	04/12/23 18:42 1
1,2,4-Trichlorobenzene	ND	1.0	0.41 ug/L	04/12/23 18:42 1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39 ug/L	04/12/23 18:42 1
1,2-Dichlorobenzene	ND	1.0	0.79 ug/L	04/12/23 18:42 1
1,2-Dichloroethane	ND	1.0	0.21 ug/L	04/12/23 18:42 1
1,2-Dichloropropane	ND	1.0	0.72 ug/L	04/12/23 18:42 1
1,3-Dichlorobenzene	ND	1.0	0.78 ug/L	04/12/23 18:42 1
1,4-Dichlorobenzene	ND	1.0	0.84 ug/L	04/12/23 18:42 1
2-Butanone (MEK)	ND	10	1.3 ug/L	04/12/23 18:42 1
2-Hexanone	ND *+	5.0	1.2 ug/L	04/12/23 18:42 1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1 ug/L	04/12/23 18:42 1
Acetone	ND	10	3.0 ug/L	04/12/23 18:42 1
Benzene	ND	1.0	0.41 ug/L	04/12/23 18:42 1
Bromodichloromethane	ND	1.0	0.39 ug/L	04/12/23 18:42 1
Bromoform	ND *+	1.0	0.26 ug/L	04/12/23 18:42 1
Bromomethane	ND	1.0	0.69 ug/L	04/12/23 18:42 1
Carbon disulfide	ND	1.0	0.19 ug/L	04/12/23 18:42 1
Carbon tetrachloride	ND	1.0	0.27 ug/L	04/12/23 18:42 1
Chlorobenzene	ND	1.0	0.75 ug/L	04/12/23 18:42 1
Dibromochloromethane	ND	1.0	0.32 ug/L	04/12/23 18:42 1
Chloroethane	ND	1.0	0.32 ug/L	04/12/23 18:42 1
Chloroform	ND	1.0	0.34 ug/L	04/12/23 18:42 1
Chloromethane	ND	1.0	0.35 ug/L	04/12/23 18:42 1
cis-1,2-Dichloroethene	ND	1.0	0.81 ug/L	04/12/23 18:42 1
cis-1,3-Dichloropropene	ND	1.0	0.36 ug/L	04/12/23 18:42 1
Cyclohexane	ND	1.0	0.18 ug/L	04/12/23 18:42 1
Dichlorodifluoromethane	ND	1.0	0.68 ug/L	04/12/23 18:42 1
Ethylbenzene	ND	1.0	0.74 ug/L	04/12/23 18:42 1
1,2-Dibromoethane	ND	1.0	0.74 ug/L	04/12/23 18:42 1
Isopropylbenzene	ND	1.0	0.79 ug/L	04/12/23 18:42 1
Methyl acetate	ND	2.5	1.3 ug/L	04/12/23 18:42 1
Methyl tert-butyl ether	ND	1.0	0.16 ug/L	04/12/23 18:42 1
Methylcyclohexane	ND	1.0	0.16 ug/L	04/12/23 18:42 1
Methylene Chloride	ND	1.0	0.44 ug/L	04/12/23 18:42 1
Styrene	ND	1.0	0.73 ug/L	04/12/23 18:42 1
Tetrachloroethene	ND	1.0	0.36 ug/L	04/12/23 18:42 1
Toluene	ND	1.0	0.51 ug/L	04/12/23 18:42 1
trans-1,2-Dichloroethene	ND	1.0	0.90 ug/L	04/12/23 18:42 1
trans-1,3-Dichloropropene	ND *+	1.0	0.37 ug/L	04/12/23 18:42 1
Trichloroethene	ND +	1.0	0.46 ug/L	04/12/23 18:42
Trichlorofluoromethane	ND	1.0	0.88 ug/L	04/12/23 18:42 1
Vinyl chloride	ND ND	1.0	0.90 ug/L	04/12/23 18:42
			-	
Xylenes, Total	ND	2.0	0.66 ug/L	04/12/23 18:42 1

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Date Received: 04/12/23 09:00

Client Sample ID: TRIP BLANK Lab Sample ID: 480-207715-6

Date Collected: 04/11/23 00:00

Matrix: Water

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
Toluene-d8 (Surr)	97	80 - 120	04/12/23 18:42	1
1,2-Dichloroethane-d4 (Surr)	104	77 - 120	04/12/23 18:42	1
4-Bromofluorobenzene (Surr)	99	73 - 120	04/12/23 18:42	1
Dibromofluoromethane (Surr)	100	75 - 123	04/12/23 18:42	1

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-44S

Date Received: 04/12/23 09:00

Date Collected: 04/11/23 14:00

Lab Sample ID: 480-207715-7

Matrix: Water

		- 4
_		 _

Analyte	Result Qualifier	RL _		Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	1.0		ug/L			04/12/23 19:05	•
1,1,2,2-Tetrachloroethane	ND *+	1.0	0.21	ug/L			04/12/23 19:05	
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			04/12/23 19:05	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			04/12/23 19:05	
1,1-Dichloroethane	ND	1.0	0.38	ug/L			04/12/23 19:05	
1,1-Dichloroethene	ND	1.0	0.29	ug/L			04/12/23 19:05	
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			04/12/23 19:05	
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			04/12/23 19:05	
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			04/12/23 19:05	
1,2-Dichloroethane	ND	1.0	0.21	ug/L			04/12/23 19:05	
1,2-Dichloropropane	ND	1.0	0.72	ug/L			04/12/23 19:05	
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			04/12/23 19:05	
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			04/12/23 19:05	
2-Butanone (MEK)	ND	10		ug/L			04/12/23 19:05	
2-Hexanone	ND *+	5.0		ug/L			04/12/23 19:05	
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			04/12/23 19:05	
Acetone	ND	10		ug/L			04/12/23 19:05	
Benzene	ND	1.0		ug/L			04/12/23 19:05	
Bromodichloromethane	ND	1.0		ug/L			04/12/23 19:05	
Bromoform	ND *+	1.0		ug/L			04/12/23 19:05	
Bromomethane	ND	1.0		ug/L			04/12/23 19:05	
Carbon disulfide	ND	1.0		ug/L			04/12/23 19:05	
Carbon tetrachloride	ND	1.0		ug/L			04/12/23 19:05	
Chlorobenzene	ND	1.0		ug/L			04/12/23 19:05	
Dibromochloromethane	ND	1.0		ug/L			04/12/23 19:05	
Chloroethane	ND	1.0		ug/L			04/12/23 19:05	
Chloroform	ND	1.0		ug/L			04/12/23 19:05	
Chloromethane	ND	1.0		ug/L			04/12/23 19:05	
cis-1,2-Dichloroethene	ND	1.0		ug/L			04/12/23 19:05	
cis-1,3-Dichloropropene	ND	1.0		ug/L			04/12/23 19:05	
Cyclohexane	ND	1.0		ug/L			04/12/23 19:05	
Dichlorodifluoromethane	ND	1.0		ug/L			04/12/23 19:05	
Ethylbenzene	ND	1.0		ug/L			04/12/23 19:05	
1,2-Dibromoethane	ND	1.0		ug/L			04/12/23 19:05	
Isopropylbenzene	ND	1.0		ug/L			04/12/23 19:05	
Methyl acetate	ND	2.5		ug/L			04/12/23 19:05	
Methyl tert-butyl ether	ND	1.0					04/12/23 19:05	
				ug/L				
Methylcyclohexane	ND	1.0		ug/L			04/12/23 19:05	
Methylene Chloride	ND	1.0		ug/L			04/12/23 19:05	
Styrene	ND	1.0		ug/L			04/12/23 19:05	
Tetrachloroethene	ND	1.0		ug/L			04/12/23 19:05	
Toluene	ND	1.0		ug/L			04/12/23 19:05	
trans-1,2-Dichloroethene	ND	1.0		ug/L			04/12/23 19:05	
trans-1,3-Dichloropropene	ND *+	1.0		ug/L			04/12/23 19:05	
Trichloroethene	ND	1.0		ug/L			04/12/23 19:05	
Trichlorofluoromethane	ND	1.0		ug/L			04/12/23 19:05	
Vinyl chloride	ND	1.0		ug/L			04/12/23 19:05	
Xylenes, Total	ND	2.0	0.66	ug/L			04/12/23 19:05	

Eurofins Buffalo

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

9060A)

Client Sample ID: MW-44S Lab Sample ID: 480-207715-7

Date Collected: 04/11/23 14:00 Matrix: Water Date Received: 04/12/23 09:00

Surrogate	%Recovery Qualifier	Limits		Prepared	Analvzed	Dil Fac
Toluene-d8 (Surr)	96	80 - 120			04/12/23 19:05	1
1,2-Dichloroethane-d4 (Surr)	102	77 - 120			04/12/23 19:05	1
4-Bromofluorobenzene (Surr)	94	73 - 120			04/12/23 19:05	1
Dibromofluoromethane (Surr)	100	75 - 123			04/12/23 19:05	1
- General Chemistry						
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Total Organic Carbon (SW846	14	10	0.43 mg/l		04/14/23 00:10	

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: RINSE BLANK

Date Collected: 04/11/23 16:00 Date Received: 04/12/23 09:00 Lab Sample ID: 480-207715-8

Matrix: Water

Analyte	Result Qualifier	RL		Unit	<u>D</u> .	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0		ug/L			04/12/23 19:28	1
1,1,2,2-Tetrachloroethane	ND *+	1.0		ug/L			04/12/23 19:28	1
1,1,2-Trichloroethane	ND	1.0		ug/L			04/12/23 19:28	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0		ug/L			04/12/23 19:28	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			04/12/23 19:28	1
1,1-Dichloroethene	ND	1.0		ug/L			04/12/23 19:28	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			04/12/23 19:28	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			04/12/23 19:28	1
1,2-Dichlorobenzene	ND	1.0		ug/L			04/12/23 19:28	1
1,2-Dichloroethane	ND	1.0		ug/L			04/12/23 19:28	1
1,2-Dichloropropane	ND	1.0		ug/L			04/12/23 19:28	1
1,3-Dichlorobenzene	ND	1.0		ug/L			04/12/23 19:28	1
1,4-Dichlorobenzene	ND	1.0		ug/L			04/12/23 19:28	1
2-Butanone (MEK)	ND	10		ug/L			04/12/23 19:28	1
2-Hexanone	ND *+	5.0		ug/L			04/12/23 19:28	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			04/12/23 19:28	1
Acetone	ND	10		ug/L			04/12/23 19:28	1
Benzene	ND	1.0		ug/L			04/12/23 19:28	1
Bromodichloromethane	ND	1.0		ug/L			04/12/23 19:28	1
Bromoform	ND *+	1.0		ug/L			04/12/23 19:28	1
Bromomethane	ND	1.0		ug/L			04/12/23 19:28	1
Carbon disulfide	ND	1.0		ug/L			04/12/23 19:28	1
Carbon tetrachloride	ND	1.0		ug/L			04/12/23 19:28	1
Chlorobenzene	ND	1.0	0.75	ug/L			04/12/23 19:28	1
Dibromochloromethane	ND	1.0		ug/L			04/12/23 19:28	1
Chloroethane	ND	1.0		ug/L			04/12/23 19:28	1
Chloroform	ND	1.0		ug/L			04/12/23 19:28	1
Chloromethane	ND	1.0	0.35	ug/L			04/12/23 19:28	1
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			04/12/23 19:28	1
cis-1,3-Dichloropropene	ND	1.0		ug/L			04/12/23 19:28	1
Cyclohexane	ND	1.0		ug/L			04/12/23 19:28	1
Dichlorodifluoromethane	ND	1.0	0.68	ug/L			04/12/23 19:28	1
Ethylbenzene	ND	1.0		ug/L			04/12/23 19:28	1
1,2-Dibromoethane	ND	1.0		ug/L			04/12/23 19:28	1
Isopropylbenzene	ND	1.0	0.79	ug/L			04/12/23 19:28	1
Methyl acetate	ND	2.5	1.3	ug/L			04/12/23 19:28	1
Methyl tert-butyl ether	ND	1.0	0.16	ug/L			04/12/23 19:28	1
Methylcyclohexane	ND	1.0	0.16	ug/L			04/12/23 19:28	1
Methylene Chloride	ND	1.0	0.44	ug/L			04/12/23 19:28	1
Styrene	ND	1.0	0.73	ug/L			04/12/23 19:28	1
Tetrachloroethene	ND	1.0	0.36	ug/L			04/12/23 19:28	1
Toluene	ND	1.0	0.51	ug/L			04/12/23 19:28	1
trans-1,2-Dichloroethene	ND	1.0	0.90	ug/L			04/12/23 19:28	1
trans-1,3-Dichloropropene	ND *+	1.0	0.37	ug/L			04/12/23 19:28	1
Trichloroethene	ND	1.0	0.46	ug/L			04/12/23 19:28	1
Trichlorofluoromethane	ND	1.0	0.88	ug/L			04/12/23 19:28	1
Vinyl chloride	ND	1.0	0.90	ug/L			04/12/23 19:28	1
Xylenes, Total	ND	2.0	0.66	ug/L			04/12/23 19:28	1

Eurofins Buffalo

5/4/2023

3

5

7

9

10

1'

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: RINSE BLANK Lab Sample ID: 480-207715-8

Date Collected: 04/11/23 16:00
Date Received: 04/12/23 09:00

-	 				. •	_
		M	atrix	: '	Wat	er

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	96	80 - 120		04/12/23 19:28	1
1,2-Dichloroethane-d4 (Surr)	101	77 - 120		04/12/23 19:28	1
4-Bromofluorobenzene (Surr)	95	73 - 120		04/12/23 19:28	1
Dibromofluoromethane (Surr)	96	75 - 123		04/12/23 19:28	1

5

5

_

9

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: AL-GP09-S Date Collected: 04/12/23 09:30

Date Received: 04/13/23 16:20

Lab Sample ID: 480-207805-1

Matrix: Water

Wati

Kesuit	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
ND		2.0	1.6	ug/L			04/16/23 18:10	
ND		2.0	0.42	ug/L			04/16/23 18:10	:
ND		2.0	0.46	ug/L			04/16/23 18:10	:
ND		2.0	0.62	ug/L			04/16/23 18:10	
ND		2.0	0.76	ug/L			04/16/23 18:10	:
ND		2.0	0.58	ug/L			04/16/23 18:10	:
ND		2.0	0.82	ug/L			04/16/23 18:10	
ND		2.0	0.78	ug/L			04/16/23 18:10	:
ND		2.0	1.6	ug/L			04/16/23 18:10	:
ND		2.0	0.42	ug/L			04/16/23 18:10	
ND		2.0	1.4	ug/L			04/16/23 18:10	:
ND		2.0		_			04/16/23 18:10	:
ND		2.0					04/16/23 18:10	:
ND		20		•			04/16/23 18:10	:
ND		10		-			04/16/23 18:10	
ND		10					04/16/23 18:10	:
				-				:
				-				:
								:
				-				
				-				:
				_				:
				-				:
				-				:
				-				
				-				
				-				
				_				:
				•				
				•				:
								:
				-				:
				-				
				-				:
								:
				-				:
				•				:
				-				:
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 2.0 ND 2.0 ND 2.0 ND 2.0 ND 2.0 ND 2.0 ND 2.0 ND 2.0 ND 2.0 ND 2.0 ND 2.0 ND 2.0 ND 2.0 ND 10 ND 20 ND 10 ND 2.0 ND	ND 2.0 1.6 ND 2.0 0.42 ND 2.0 0.46 ND 2.0 0.62 ND 2.0 0.76 ND 2.0 0.58 ND 2.0 0.82 ND 2.0 0.78 ND 2.0 1.6 ND 2.0 1.6 ND 2.0 1.4 ND 2.0 1.4 ND 2.0 1.7 ND 2.0 1.6 ND 2.0 0.82 ND 2.0 0.82 ND 2.0 0.82 ND 2.0 0.52 ND 2.0 0.54 ND 2.0 0.54 ND 2.0 0.54 <	ND	ND	ND	ND

Eurofins Buffalo

6

8

10

4 -

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Date Received: 04/13/23 16:20

9060A)

Client Sample ID: AL-GP09-S Lab Sample ID: 480-207805-1

Date Collected: 04/12/23 09:30

Matrix: Water

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analvzed	Dil Fac
Toluene-d8 (Surr)	97	Quanner	80 - 120				rrepared	04/16/23 18:10	2011 40
1.2-Dichloroethane-d4 (Surr)	96		77 - 120					04/16/23 18:10	2
4-Bromofluorobenzene (Surr)	96		73 - 120					04/16/23 18:10	2
Dibromofluoromethane (Surr)	95		75 - 123					04/16/23 18:10	2
_ General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon (SW846	16.8		1.0	0.43	mg/L			04/16/23 03:50	

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-37D

Date Received: 04/13/23 16:20

Lab Sample ID: 480-207805-2 Date Collected: 04/12/23 12:30

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			04/15/23 14:57	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			04/15/23 14:57	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			04/15/23 14:57	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			04/15/23 14:57	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			04/15/23 14:57	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			04/15/23 14:57	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			04/15/23 14:57	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			04/15/23 14:57	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			04/15/23 14:57	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			04/15/23 14:57	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			04/15/23 14:57	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			04/15/23 14:57	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			04/15/23 14:57	1
2-Butanone (MEK)	ND	10	1.3	ug/L			04/15/23 14:57	1
2-Hexanone	ND	5.0	1.2	ug/L			04/15/23 14:57	1
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			04/15/23 14:57	1
Acetone	ND	10		ug/L			04/15/23 14:57	1
Benzene	ND	1.0		ug/L			04/15/23 14:57	1
Bromodichloromethane	ND	1.0		ug/L			04/15/23 14:57	1
Bromoform	ND	1.0		ug/L			04/15/23 14:57	1
Bromomethane	ND	1.0		ug/L			04/15/23 14:57	1
Carbon disulfide	ND	1.0		ug/L			04/15/23 14:57	1
Carbon tetrachloride	ND	1.0		ug/L			04/15/23 14:57	1
Chlorobenzene	ND	1.0		ug/L			04/15/23 14:57	1
Dibromochloromethane	ND	1.0		ug/L			04/15/23 14:57	1
Chloroethane	ND	1.0		ug/L			04/15/23 14:57	1
Chloroform	ND	1.0		ug/L			04/15/23 14:57	1
Chloromethane	ND	1.0		ug/L			04/15/23 14:57	1
cis-1,2-Dichloroethene	ND	1.0		ug/L			04/15/23 14:57	1
cis-1,3-Dichloropropene	ND	1.0		ug/L			04/15/23 14:57	1
Cyclohexane	ND	1.0		ug/L			04/15/23 14:57	1
Dichlorodifluoromethane	ND *+	1.0		ug/L			04/15/23 14:57	1
Ethylbenzene	ND	1.0		ug/L			04/15/23 14:57	1
1,2-Dibromoethane	ND	1.0		ug/L			04/15/23 14:57	1
Isopropylbenzene	ND	1.0		ug/L			04/15/23 14:57	1
Methyl acetate	ND	2.5		ug/L			04/15/23 14:57	1
Methyl tert-butyl ether	ND	1.0		ug/L			04/15/23 14:57	1
Methylcyclohexane	ND	1.0		ug/L			04/15/23 14:57	1
Methylene Chloride	ND	1.0		ug/L			04/15/23 14:57	1
Styrene	ND	1.0		ug/L			04/15/23 14:57	1
Tetrachloroethene	ND	1.0		ug/L			04/15/23 14:57	1
Toluene	ND	1.0		ug/L			04/15/23 14:57	1
trans-1,2-Dichloroethene	ND	1.0		ug/L			04/15/23 14:57	1
trans-1,3-Dichloropropene	ND	1.0		ug/L			04/15/23 14:57	1
Trichloroethene	ND	1.0		ug/L			04/15/23 14:57	1
Trichlorofluoromethane	ND	1.0		ug/L			04/15/23 14:57	1
Vinyl chloride	ND ND	1.0		ug/L ug/L			04/15/23 14:57	1
VILLYL OFFICE ICC	ואט	1.0	0.50	44/L			UT/ 1U/2U 14.U/	I

Eurofins Buffalo

5/4/2023

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-37D Lab Sample ID: 480-207805-2

Matrix: Water

Date Collected: 04/12/23 12:30 Date Received: 04/13/23 16:20

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzo	ed Dil Fac
Toluene-d8 (Surr)	99	80 - 120	04/15/23 1	4:57 1
1,2-Dichloroethane-d4 (Surr)	117	77 - 120	04/15/23 1	4:57 1
4-Bromofluorobenzene (Surr)	107	73 - 120	04/15/23 1	4:57 1
Dibromofluoromethane (Surr)	113	75 - 123	04/15/23 1	4:57 1

General Chemistry							
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon (SW846	2.8	1.0	0.43 mg/L			04/16/23 04:47	1
9060A)							

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: TRIP BLANK-041223

Date Collected: 04/12/23 00:00 Date Received: 04/13/23 16:20 Lab Sample ID: 480-207805-3

Matrix: Water

Analyte	Result Qualifier	RL	MDL		<u>D</u> .	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			04/15/23 15:21	
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			04/15/23 15:21	
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			04/15/23 15:21	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			04/15/23 15:21	
1,1-Dichloroethane	ND	1.0	0.38	ug/L			04/15/23 15:21	
1,1-Dichloroethene	ND	1.0	0.29	ug/L			04/15/23 15:21	
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			04/15/23 15:21	
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			04/15/23 15:21	
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			04/15/23 15:21	
1,2-Dichloroethane	ND	1.0	0.21	ug/L			04/15/23 15:21	
1,2-Dichloropropane	ND	1.0	0.72	ug/L			04/15/23 15:21	
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			04/15/23 15:21	
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			04/15/23 15:21	
2-Butanone (MEK)	ND	10	1.3	ug/L			04/15/23 15:21	
2-Hexanone	ND	5.0	1.2	ug/L			04/15/23 15:21	
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			04/15/23 15:21	
Acetone	ND	10	3.0	ug/L			04/15/23 15:21	
Benzene	ND	1.0	0.41	ug/L			04/15/23 15:21	
Bromodichloromethane	ND	1.0	0.39	ug/L			04/15/23 15:21	
Bromoform	ND	1.0		ug/L			04/15/23 15:21	
Bromomethane	ND	1.0	0.69	ug/L			04/15/23 15:21	
Carbon disulfide	ND	1.0		ug/L			04/15/23 15:21	
Carbon tetrachloride	ND	1.0		ug/L			04/15/23 15:21	
Chlorobenzene	ND	1.0		ug/L			04/15/23 15:21	
Dibromochloromethane	ND	1.0		ug/L			04/15/23 15:21	
Chloroethane	ND	1.0	0.32	ug/L			04/15/23 15:21	
Chloroform	ND	1.0		ug/L			04/15/23 15:21	
Chloromethane	ND	1.0	0.35	ug/L			04/15/23 15:21	
cis-1,2-Dichloroethene	ND	1.0		ug/L			04/15/23 15:21	
cis-1,3-Dichloropropene	ND	1.0		ug/L			04/15/23 15:21	
Cyclohexane	ND	1.0		ug/L			04/15/23 15:21	
Dichlorodifluoromethane	ND *+	1.0		ug/L			04/15/23 15:21	
Ethylbenzene	ND	1.0		ug/L			04/15/23 15:21	
1,2-Dibromoethane	ND	1.0		ug/L			04/15/23 15:21	
Isopropylbenzene	ND	1.0		ug/L			04/15/23 15:21	
Methyl acetate	ND	2.5		ug/L			04/15/23 15:21	
Methyl tert-butyl ether	ND	1.0		ug/L			04/15/23 15:21	
Methylcyclohexane	ND	1.0		ug/L			04/15/23 15:21	
Methylene Chloride	ND	1.0		ug/L			04/15/23 15:21	
Styrene	ND	1.0		ug/L			04/15/23 15:21	
Tetrachloroethene	ND	1.0		ug/L			04/15/23 15:21	
Toluene	ND	1.0		ug/L			04/15/23 15:21	
trans-1,2-Dichloroethene	ND	1.0		ug/L			04/15/23 15:21	
trans-1,3-Dichloropropene	ND	1.0		ug/L			04/15/23 15:21	
Trichloroethene	ND	1.0		ug/L			04/15/23 15:21	
Trichlorofluoromethane	ND	1.0		ug/L			04/15/23 15:21	
Vinyl chloride	ND	1.0		ug/L			04/15/23 15:21	
Xylenes, Total	ND	2.0		ug/L			04/15/23 15:21	

Eurofins Buffalo

5/4/2023

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Date Received: 04/13/23 16:20

Client Sample ID: TRIP BLANK-041223 Lab Sample ID: 480-207805-3

Date Collected: 04/12/23 00:00

Matrix: Water

0	0/ Bassassas - O	l insite	Post of the second		D:// E
Surrogate	%Recovery Qualifier	Limits	Prepa	ared Analyzed	Dil Fac
Toluene-d8 (Surr)	101	80 - 120		04/15/23 15:21	1
1,2-Dichloroethane-d4 (Surr)	117	77 - 120		04/15/23 15:21	1
4-Bromofluorobenzene (Surr)	104	73 - 120		04/15/23 15:21	1
Dibromofluoromethane (Surr)	111	75 - 123		04/15/23 15:21	1

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-30

Lab Sample ID: 480-207805-4

Date Collected: 04/12/23 14:10 **Matrix: Water** Date Received: 04/13/23 16:20

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			04/15/23 15:46	
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			04/15/23 15:46	
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			04/15/23 15:46	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			04/15/23 15:46	
1,1-Dichloroethane	ND	1.0	0.38	ug/L			04/15/23 15:46	
1,1-Dichloroethene	ND	1.0	0.29	ug/L			04/15/23 15:46	
1,2,4-Trichlorobenzene	ND	1.0		ug/L			04/15/23 15:46	
1,2-Dibromo-3-Chloropropane	ND	1.0		ug/L			04/15/23 15:46	
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			04/15/23 15:46	
1,2-Dichloroethane	ND	1.0		ug/L			04/15/23 15:46	
1,2-Dichloropropane	ND	1.0		ug/L			04/15/23 15:46	
1,3-Dichlorobenzene	ND	1.0		ug/L			04/15/23 15:46	
1,4-Dichlorobenzene	ND	1.0		ug/L			04/15/23 15:46	
2-Butanone (MEK)	ND	10		ug/L			04/15/23 15:46	
2-Hexanone	ND	5.0		ug/L			04/15/23 15:46	
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			04/15/23 15:46	
Acetone	ND	10		ug/L			04/15/23 15:46	
Benzene	ND	1.0		ug/L			04/15/23 15:46	
Bromodichloromethane	ND	1.0		ug/L			04/15/23 15:46	
Bromoform	ND	1.0		ug/L			04/15/23 15:46	
Bromomethane	ND	1.0		ug/L			04/15/23 15:46	
Carbon disulfide	ND	1.0		ug/L			04/15/23 15:46	
Carbon tetrachloride	ND	1.0		ug/L			04/15/23 15:46	
Chlorobenzene	ND	1.0		ug/L			04/15/23 15:46	
Dibromochloromethane	ND	1.0		ug/L			04/15/23 15:46	
Chloroethane	ND	1.0		ug/L			04/15/23 15:46	
Chloroform	ND	1.0		ug/L			04/15/23 15:46	
Chloromethane	ND	1.0		ug/L			04/15/23 15:46	
cis-1,2-Dichloroethene	ND	1.0		ug/L ug/L			04/15/23 15:46	
cis-1,3-Dichloropropene	ND	1.0		ug/L			04/15/23 15:46	
Cyclohexane	ND	1.0		ug/L			04/15/23 15:46	
Dichlorodifluoromethane	ND *+	1.0		ug/L ug/L			04/15/23 15:46	
Ethylbenzene	ND 1	1.0		ug/L			04/15/23 15:46	
1,2-Dibromoethane	ND ND	1.0		ug/L ug/L			04/15/23 15:46	
Isopropylbenzene	ND	1.0		ug/L ug/L			04/15/23 15:46	
Methyl acetate Methyl tert-butyl ether	ND ND	2.5		ug/L ug/L			04/15/23 15:46	
				ug/L ug/L			04/15/23 15:46	
Methylogo Chlorida	ND	1.0		-			04/15/23 15:46	
Methylene Chloride	ND	1.0		ug/L			04/15/23 15:46	
Styrene	ND	1.0		ug/L			04/15/23 15:46	
Tetrachloroethene	ND ND	1.0		ug/L			04/15/23 15:46	
Toluene	ND	1.0		ug/L			04/15/23 15:46	
trans-1,2-Dichloroethene	ND	1.0		ug/L			04/15/23 15:46	
trans-1,3-Dichloropropene	ND	1.0		ug/L			04/15/23 15:46	
Trichlandinannah	ND	1.0		ug/L			04/15/23 15:46	
Trichlorofluoromethane	ND	1.0		ug/L			04/15/23 15:46	
Vinyl chloride Xylenes, Total	ND ND	1.0 2.0		ug/L ug/L			04/15/23 15:46 04/15/23 15:46	

Eurofins Buffalo

5/4/2023

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-30 Lab Sample ID: 480-207805-4

Date Collected: 04/12/23 14:10 Matrix: Water Date Received: 04/13/23 16:20

Surrogate	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98	80 - 120		04/15/23 15:46	1
1,2-Dichloroethane-d4 (Surr)	114	77 - 120		04/15/23 15:46	1
4-Bromofluorobenzene (Surr)	98	73 - 120		04/15/23 15:46	1
Dibromofluoromethane (Surr)	109	75 - 123		04/15/23 15:46	1

General Chemistry Analyte	Result Qı	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon (SW846 9060A)	2.7		1.0	0.43	mg/L			04/17/23 17:39	1

5/4/2023

2

1

5

7

8

9

10

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-43S

Date Received: 04/13/23 16:20

Dibromochloromethane

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Dichlorodifluoromethane

Chloroethane

Chloromethane

Cyclohexane

Ethylbenzene

1,2-Dibromoethane

Isopropylbenzene

Methyl tert-butyl ether

Methylcyclohexane

Methylene Chloride

Tetrachloroethene

Trichloroethene

Vinyl chloride

Xylenes, Total

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Trichlorofluoromethane

Methyl acetate

Styrene

Toluene

Chloroform

Date Collected: 04/12/23 15:00

Lab Sample ID: 480-207805-5

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	2.0	1.6	ug/L			04/15/23 16:10	
1,1,2,2-Tetrachloroethane	ND	2.0	0.42	ug/L			04/15/23 16:10	2
1,1,2-Trichloroethane	ND	2.0	0.46	ug/L			04/15/23 16:10	2
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	2.0	0.62	ug/L			04/15/23 16:10	2
1,1-Dichloroethane	ND	2.0	0.76	ug/L			04/15/23 16:10	2
1,1-Dichloroethene	ND	2.0	0.58	ug/L			04/15/23 16:10	2
1,2,4-Trichlorobenzene	ND	2.0	0.82	ug/L			04/15/23 16:10	2
1,2-Dibromo-3-Chloropropane	ND	2.0	0.78	ug/L			04/15/23 16:10	:
1,2-Dichlorobenzene	ND	2.0	1.6	ug/L			04/15/23 16:10	
1,2-Dichloroethane	ND	2.0	0.42	ug/L			04/15/23 16:10	:
1,2-Dichloropropane	ND	2.0	1.4	ug/L			04/15/23 16:10	:
1,3-Dichlorobenzene	ND	2.0	1.6	ug/L			04/15/23 16:10	:
1,4-Dichlorobenzene	ND	2.0	1.7	ug/L			04/15/23 16:10	
2-Butanone (MEK)	ND	20	2.6	ug/L			04/15/23 16:10	
2-Hexanone	ND	10	2.5	ug/L			04/15/23 16:10	
4-Methyl-2-pentanone (MIBK)	ND	10	4.2	ug/L			04/15/23 16:10	:
Acetone	ND	20	6.0	ug/L			04/15/23 16:10	:
Benzene	ND	2.0	0.82	ug/L			04/15/23 16:10	2
Bromodichloromethane	ND	2.0	0.78	ug/L			04/15/23 16:10	:
Bromoform	ND	2.0	0.52	ug/L			04/15/23 16:10	:
Bromomethane	ND	2.0	1.4	ug/L			04/15/23 16:10	:
Carbon disulfide	ND	2.0	0.38	ug/L			04/15/23 16:10	:
Carbon tetrachloride	ND	2.0	0.54	ug/L			04/15/23 16:10	2
Chlorobenzene	ND	2.0	1.5	ug/L			04/15/23 16:10	

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

5.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

4.0

0.64 ug/L

0.64 ug/L

0.68 ug/L

0.70 ug/L

1.6 ug/L

0.72 ug/L

0.36 ug/L

1.4 ug/L

1.5 ug/L

1.5 ug/L

2.6 ug/L

0.32 ug/L

0.32 ug/L

0.88 ug/L

1.5 ug/L

0.72 ug/L

1.0 ug/L

1.8 ug/L

0.74 ug/L

0.92 ug/L

1.8 ug/L

1.8 ug/L

1.3 ug/L

1.6 ug/L

ND

Eurofins Buffalo

04/15/23 16:10

04/15/23 16:10

04/15/23 16:10

04/15/23 16:10

04/15/23 16:10

04/15/23 16:10

04/15/23 16:10

04/15/23 16:10

04/15/23 16:10

04/15/23 16:10

04/15/23 16:10

04/15/23 16:10

04/15/23 16:10

04/15/23 16:10

04/15/23 16:10

04/15/23 16:10

04/15/23 16:10

04/15/23 16:10

04/15/23 16:10

04/15/23 16:10

04/15/23 16:10

04/15/23 16:10

04/15/23 16:10

04/15/23 16:10

2

2

2

2

2 2

2

2

2

2

2 2

2

2

2

2

2

2 2

2

2

2

2

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-43S Lab Sample ID: 480-207805-5

Matrix: Water

Date Collected: 04/12/23 15:00 Date Received: 04/13/23 16:20

9060A)

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	97		80 - 120					04/15/23 16:10	2
1,2-Dichloroethane-d4 (Surr)	116		77 - 120					04/15/23 16:10	2
4-Bromofluorobenzene (Surr)	97		73 - 120					04/15/23 16:10	2
Dibromofluoromethane (Surr)	114		75 - 123					04/15/23 16:10	2
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon (SW846	7.4		1.0	0.43	mg/L			04/17/23 18:36	1

4.6

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-36S

Lab Sample ID: 480-207805-6 Date Collected: 04/12/23 10:20

Matrix: Water Date Received: 04/13/23 16:20

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			04/15/23 16:34	
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			04/15/23 16:34	
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			04/15/23 16:34	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			04/15/23 16:34	
1,1-Dichloroethane	ND	1.0	0.38	ug/L			04/15/23 16:34	
1,1-Dichloroethene	ND	1.0	0.29	ug/L			04/15/23 16:34	
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			04/15/23 16:34	
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			04/15/23 16:34	
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			04/15/23 16:34	
1,2-Dichloroethane	ND	1.0	0.21	ug/L			04/15/23 16:34	
1,2-Dichloropropane	ND	1.0	0.72	ug/L			04/15/23 16:34	
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			04/15/23 16:34	
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			04/15/23 16:34	
2-Butanone (MEK)	ND	10		ug/L			04/15/23 16:34	
2-Hexanone	ND	5.0		ug/L			04/15/23 16:34	
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			04/15/23 16:34	
Acetone	ND	10		ug/L			04/15/23 16:34	
Benzene	ND	1.0		ug/L			04/15/23 16:34	
Bromodichloromethane	ND	1.0		ug/L			04/15/23 16:34	
3romoform	ND	1.0		ug/L			04/15/23 16:34	
Bromomethane	ND	1.0		ug/L			04/15/23 16:34	
Carbon disulfide	ND	1.0		ug/L			04/15/23 16:34	
Carbon tetrachloride	ND	1.0		ug/L			04/15/23 16:34	
Chlorobenzene	ND	1.0		ug/L			04/15/23 16:34	
Dibromochloromethane	ND	1.0		ug/L			04/15/23 16:34	
Chloroethane	ND	1.0		ug/L			04/15/23 16:34	
Chloroform	ND	1.0		ug/L			04/15/23 16:34	
Chloromethane	ND	1.0		ug/L			04/15/23 16:34	
cis-1,2-Dichloroethene	1.5	1.0		ug/L			04/15/23 16:34	
cis-1,2-Dichloropropene	ND	1.0		ug/L			04/15/23 16:34	
Cyclohexane	ND	1.0		ug/L			04/15/23 16:34	
Dichlorodifluoromethane	ND *+	1.0		ug/L			04/15/23 16:34	
Ethylbenzene	ND	1.0		ug/L			04/15/23 16:34	
1,2-Dibromoethane	ND	1.0		ug/L			04/15/23 16:34	
sopropylbenzene	ND	1.0		ug/L			04/15/23 16:34	
Methyl acetate	ND	2.5		ug/L			04/15/23 16:34	
Methyl tert-butyl ether	ND	1.0		ug/L			04/15/23 16:34	
Methylcyclohexane	ND							
	ND ND	1.0 1.0		ug/L			04/15/23 16:34 04/15/23 16:34	
Methylene Chloride	ND ND			ug/L ug/L			04/15/23 16:34	
Styrene		1.0						
Tetrachloroethene	ND	1.0		ug/L			04/15/23 16:34	
Foliuene	ND	1.0		ug/L			04/15/23 16:34	
rans-1,2-Dichloroethene	ND	1.0		ug/L			04/15/23 16:34	
rans-1,3-Dichloropropene	ND	1.0		ug/L			04/15/23 16:34	
Trichloroethene	ND	1.0		ug/L			04/15/23 16:34	
Trichlorofluoromethane	ND	1.0		ug/L			04/15/23 16:34	
Vinyl chloride	ND	1.0	0.90	ug/L			04/15/23 16:34	

Eurofins Buffalo

5/4/2023

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-36S Lab Sample ID: 480-207805-6 Date Collected: 04/12/23 10:20

Matrix: Water

Date Received: 04/13/23 16:20

Surrogate	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
Toluene-d8 (Surr)	101	80 - 120	04/15/23 16:3	4 1
1,2-Dichloroethane-d4 (Surr)	116	77 - 120	04/15/23 16:3	4 1
4-Bromofluorobenzene (Surr)	102	73 - 120	04/15/23 16:3	4 1
Dibromofluoromethane (Surr)	115	75 - 123	04/15/23 16:3	4 1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon (SW846	7.0		1.0	0.43	mg/L			04/17/23 19:33	1
9060A)									

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-36D

Lab Sample ID: 480-207805-7 Date Collected: 04/12/23 11:25

Matrix: Water

Date Received: 04/13/23 16:20

Analyte	Result Qual	ifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	4.0	3.3	ug/L		-	04/15/23 16:58	
1,1,2,2-Tetrachloroethane	ND	4.0	0.84	ug/L			04/15/23 16:58	4
1,1,2-Trichloroethane	ND	4.0	0.92	-			04/15/23 16:58	4
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.0	1.2	ug/L			04/15/23 16:58	
1,1-Dichloroethane	ND	4.0		ug/L			04/15/23 16:58	4
1,1-Dichloroethene	ND	4.0		ug/L			04/15/23 16:58	
1,2,4-Trichlorobenzene	ND	4.0		ug/L			04/15/23 16:58	
1,2-Dibromo-3-Chloropropane	ND	4.0		ug/L			04/15/23 16:58	
1.2-Dichlorobenzene	ND	4.0		ug/L			04/15/23 16:58	
1,2-Dichloroethane	ND	4.0	0.84				04/15/23 16:58	
1,2-Dichloropropane	ND	4.0		ug/L			04/15/23 16:58	
1,3-Dichlorobenzene	ND	4.0	3.1	ug/L			04/15/23 16:58	
1,4-Dichlorobenzene	ND	4.0		ug/L			04/15/23 16:58	
2-Butanone (MEK)	ND	40		ug/L			04/15/23 16:58	
2-Hexanone	ND	20		ug/L			04/15/23 16:58	
4-Methyl-2-pentanone (MIBK)	ND	20		ug/L			04/15/23 16:58	
Acetone	ND	40		ug/L			04/15/23 16:58	
Benzene	ND	4.0		ug/L			04/15/23 16:58	
Bromodichloromethane	ND	4.0		ug/L			04/15/23 16:58	
Bromoform	ND	4.0		ug/L			04/15/23 16:58	
Bromomethane	ND	4.0		ug/L			04/15/23 16:58	
Carbon disulfide	ND	4.0	0.76				04/15/23 16:58	
Carbon disdilide Carbon tetrachloride	ND	4.0		ug/L			04/15/23 16:58	·
Chlorobenzene	ND	4.0		ug/L ug/L			04/15/23 16:58	
Dibromochloromethane	ND	4.0		ug/L ug/L			04/15/23 16:58	
Chloroethane	ND ND	4.0		-			04/15/23 16:58	
Chloroform	ND ND	4.0		ug/L			04/15/23 16:58	
Chloromethane	ND ND			ug/L				'
	ND ND	4.0		ug/L			04/15/23 16:58	
cis-1,2-Dichloroethene	ND ND	4.0		ug/L			04/15/23 16:58	
cis-1,3-Dichloropropene		4.0		ug/L			04/15/23 16:58	
Cyclohexane Dichlorodifluoromethane	ND *:	4.0	0.72	-			04/15/23 16:58	•
	ND *+	4.0		ug/L			04/15/23 16:58	
Ethylbenzene	ND ND	4.0		ug/L			04/15/23 16:58	
1,2-Dibromoethane	ND	4.0		ug/L			04/15/23 16:58	
Isopropylbenzene	ND	4.0		ug/L			04/15/23 16:58	
Methyl acetate	ND	10		ug/L			04/15/23 16:58	
Methyl tert-butyl ether	ND	4.0		ug/L			04/15/23 16:58	•
Methylcyclohexane	ND	4.0	0.64	-			04/15/23 16:58	•
Methylene Chloride	ND	4.0		ug/L			04/15/23 16:58	
Styrene	ND	4.0		ug/L			04/15/23 16:58	•
Tetrachloroethene	ND	4.0		ug/L			04/15/23 16:58	•
Toluene	ND	4.0		ug/L			04/15/23 16:58	
trans-1,2-Dichloroethene	ND	4.0		ug/L			04/15/23 16:58	•
trans-1,3-Dichloropropene	ND	4.0		ug/L			04/15/23 16:58	•
Trichloroethene	ND	4.0		ug/L			04/15/23 16:58	
Trichlorofluoromethane	ND	4.0		ug/L			04/15/23 16:58	•
Vinyl chloride	ND	4.0	3.6	ug/L			04/15/23 16:58	
Xylenes, Total	ND	8.0	2.6	ug/L			04/15/23 16:58	

Eurofins Buffalo

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-36D Lab Sample ID: 480-207805-7

. Matrix: Water

Date Collected: 04/12/23 11:25 Date Received: 04/13/23 16:20

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	104	80 - 120		04/15/23 16:58	4
1,2-Dichloroethane-d4 (Surr)	119	77 - 120		04/15/23 16:58	4
4-Bromofluorobenzene (Surr)	108	73 - 120		04/15/23 16:58	4
Dibromofluoromethane (Surr)	112	75 - 123		04/15/23 16:58	4

General Chemistry Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon (SW846	9.4	1.0	0.43	mg/L			04/17/23 20:59	1
9060A)								

_

8

9

10

a a

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-40D Lab Sample ID: 480-207805-8

Date Collected: 04/12/23 12:50 Matrix: Water

Date Received: 04/13/23 16:20

Method: RSK-175 - Dissolved Gases (GC)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

 Carbon dioxide
 16000
 10000
 5000 ug/L
 04/18/23 12:14
 1

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-42S Lab Sample ID: 480-207805-9

Date Collected: 04/12/23 13:00 **Matrix: Water**

Date Received: 04/13/23 16:20

Method: RSK-175 - Dissolved Gases (GC)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 04/18/23 12:23 Carbon dioxide 10000

53000 5000 ug/L

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: AL-GP10-S Lab Sample ID: 480-207805-10

Date Collected: 04/12/23 12:55

Matrix: Water

Date Received: 04/13/23 16:20

Method: RSK-175 - Dissolved Gases (GC)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

 Carbon dioxide
 87000
 10000
 5000 ug/L
 04/18/23 12:31
 1

Eurofins Buffalo

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: CB-1

Date Collected: 04/06/23 15:25 Date Received: 04/07/23 13:45 Lab Sample ID: 480-207637-1

Matrix: Water

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	664564	ATG	EET BUF	04/11/23 01:12

Client Sample ID: CB-2 Lab Sample ID: 480-207637-2

Date Collected: 04/06/23 15:40 Date Received: 04/07/23 13:45

Batch Batch Dilution Batch F

Prep TypeTypeMethodRunFactorNumberAnalystLabor AnalyzedTotal/NAAnalysis8260C1664564ATGEET BUF04/11/23 01:35

Client Sample ID: CB-3 Lab Sample ID: 480-207637-3

Date Collected: 04/06/23 15:50 Matrix: Water Date Received: 04/07/23 13:45

Batch Batch Dilution Batch Prepared

 Prep Type
 Type
 Method
 Run
 Factor
 Number
 Analyst
 Lab
 or Analyzed

 Total/NA
 Analysis
 8260C
 1
 664564
 ATG
 EET BUF
 04/11/23 01:58

Client Sample ID: CB-4 Lab Sample ID: 480-207637-4

Date Collected: 04/06/23 16:25 Matrix: Water

Date Received: 04/07/23 13:45

Batch Batch Dilution Batch Prepared **Prep Type** Method Run Factor **Number Analyst** or Analyzed Type Lab Total/NA Analysis 8260C 664564 ATG EET BUF 04/11/23 02:21

Client Sample ID: CB-E Lab Sample ID: 480-207637-5

Date Collected: 04/06/23 16:40 Matrix: Water

Date Received: 04/07/23 13:45

Batch Batch Dilution Batch Prepared Method Run Factor Number Analyst or Analyzed **Prep Type** Type Lab 04/11/23 02:45 Total/NA Analysis 8260C 664564 ATG **EET BUF**

Client Sample ID: TP-5 Lab Sample ID: 480-207637-6

Date Collected: 04/06/23 15:15 Matrix: Water

Date Received: 04/07/23 13:45

Batch Dilution Batch Batch Prepared **Prep Type** Type Method Run **Factor Number Analyst** or Analyzed Lab EET BUF 04/11/23 03:08 Total/NA Analysis 8260C 664564 ATG

Client Sample ID: TP-6 Lab Sample ID: 480-207637-7

Date Collected: 04/06/23 15:00 Matrix: Water

Date Received: 04/07/23 13:45

Batch Batch Dilution Batch **Prepared** Method or Analyzed **Prep Type** Type Run **Factor Number Analyst** Lab 04/11/23 03:31 664564 ATG EET BUF Total/NA Analysis 8260C

Lab Chronicle

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: DUP

Date Collected: 04/07/23 08:00 Date Received: 04/07/23 13:45 Lab Sample ID: 480-207637-8

Matrix: Water

Batch Batch Dilution Batch Prepared **Prep Type** Туре Method Run Factor Number Analyst or Analyzed Lab 04/11/23 03:55 Total/NA Analysis 8260C 664564 ATG EET BUF

Client Sample ID: MW-35D Lab Sample ID: 480-207637-9

Matrix: Water

Date Collected: 04/07/23 09:30

Date Received: 04/07/23 13:45

Γ	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	664564	ATG	EET BUF	04/11/23 04:18
Total/NA	Analysis	RSK-175		1	190336	RMG	EET BUR	04/13/23 11:09
Total/NA	Analysis	RSK-175		1	664449	MAN	EET BUF	04/10/23 09:08
Total/NA	Analysis	RSK-175	DL	22	664449	MAN	EET BUF	04/10/23 10:24
Total/NA	Analysis	300.0		2	664951	RJS	EET BUF	04/12/23 18:23
Total/NA	Analysis	310.2		5	665684	CG	EET BUF	04/17/23 17:43
Total/NA	Analysis	353.2		1	664615	IMZ	EET BUF	04/07/23 16:42
Total/NA	Analysis	353.2		1	664403	IMZ	EET BUF	04/07/23 18:48
Total/NA	Analysis	9060A		1	665135	KER	EET BUF	04/13/23 06:43
Dissolved	Filtration	Filtration			664610	DLG	EET BUF	04/10/23 15:00
Dissolved	Analysis	SM 3500 FE D		1	664612	DLG	EET BUF	04/10/23 15:10
Total/NA	Analysis	SM 4500 S2 F		1	664578	EV	EET BUF	04/10/23 13:00

Lab Sample ID: 480-207637-10 **Client Sample ID: MW-38D**

Date Collected: 04/07/23 10:50 **Matrix: Water**

Date Received: 04/07/23 13:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C			664702	ATG	EET BUF	04/11/23 20:35
Total/NA	Analysis	RSK-175		1	190336	RMG	EET BUR	04/13/23 11:18
Total/NA	Analysis	RSK-175		22	664449	MAN	EET BUF	04/10/23 09:27
Total/NA	Analysis	RSK-175	DL	220	664449	MAN	EET BUF	04/10/23 10:43
Total/NA	Analysis	300.0		2	664951	RJS	EET BUF	04/12/23 19:57
Total/NA	Analysis	310.2		5	665684	CG	EET BUF	04/17/23 17:41
Total/NA	Analysis	353.2		1	664615	IMZ	EET BUF	04/07/23 16:46
Total/NA	Analysis	353.2		1	664403	IMZ	EET BUF	04/07/23 18:52
Total/NA	Analysis	9060A		1	665135	KER	EET BUF	04/13/23 07:12
Dissolved	Filtration	Filtration			664610	DLG	EET BUF	04/10/23 15:00
Dissolved	Analysis	SM 3500 FE D		1	664612	DLG	EET BUF	04/10/23 15:10
Total/NA	Analysis	SM 4500 S2 F		1	664578	EV	EET BUF	04/10/23 13:00

Client: AECOM Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: A1-GP06-S

Date Collected: 04/07/23 11:15 Date Received: 04/07/23 13:45 Lab Sample ID: 480-207637-11

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		25	664564	ATG	EET BUF	04/11/23 05:05
Total/NA	Analysis	RSK-175		1	190336	RMG	EET BUR	04/13/23 11:26
Total/NA	Analysis	RSK-175		22	664449	MAN	EET BUF	04/10/23 09:46
Total/NA	Analysis	RSK-175	DL	222	664449	MAN	EET BUF	04/10/23 11:02
Total/NA	Analysis	300.0		2	664951	RJS	EET BUF	04/12/23 20:16
Total/NA	Analysis	310.2		5	665684	CG	EET BUF	04/17/23 17:41
Total/NA	Analysis	353.2		1	664615	IMZ	EET BUF	04/07/23 16:49
Total/NA	Analysis	353.2		1	664618	IMZ	EET BUF	04/07/23 16:49
Total/NA	Analysis	9060A		1	665659	KER	EET BUF	04/15/23 04:21
Dissolved	Filtration	Filtration			664610	DLG	EET BUF	04/10/23 15:00
Dissolved	Analysis	SM 3500 FE D		1	664612	DLG	EET BUF	04/10/23 15:10
Total/NA	Analysis	SM 4500 S2 F		1	664578	EV	EET BUF	04/10/23 13:00

Client Sample ID: A1-GP18-S

Date Collected: 04/07/23 12:10 Date Received: 04/07/23 13:45

Lab Sample ID: 480-207637-12

Lab Sample ID: 480-207637-13

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C			664564	ATG	EET BUF	04/11/23 05:28
Total/NA	Analysis	RSK-175		1	190336	RMG	EET BUR	04/13/23 11:35
Total/NA	Analysis	RSK-175		22	664449	MAN	EET BUF	04/10/23 10:05
Total/NA	Analysis	300.0		2	664951	RJS	EET BUF	04/12/23 20:35
Total/NA	Analysis	310.2		5	665684	CG	EET BUF	04/17/23 17:41
Total/NA	Analysis	353.2		1	664615	IMZ	EET BUF	04/07/23 16:50
Total/NA	Analysis	353.2		1	664618	IMZ	EET BUF	04/07/23 16:50
Total/NA	Analysis	9060A		1	665135	KER	EET BUF	04/13/23 09:10
Dissolved	Filtration	Filtration			664610	DLG	EET BUF	04/10/23 15:00
Dissolved	Analysis	SM 3500 FE D		1	664612	DLG	EET BUF	04/10/23 15:10
Total/NA	Analysis	SM 4500 S2 F		1	664578	EV	EET BUF	04/10/23 13:00

Client Sample ID: MW-35S

Date Collected: 04/06/23 11:10

Date Received: 04/07/23 13:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	664564	ATG	EET BUF	04/11/23 05:51
Total/NA	Analysis	9060A		1	665135	KER	EET BUF	04/13/23 09:40

Eurofins Buffalo

Matrix: Water

Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: MW-39D

Client: AECOM

Lab Sample ID: 480-207637-14 Date Collected: 04/06/23 13:15

Matrix: Water

Date Received: 04/07/23 13:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		8	664564	ATG	EET BUF	04/11/23 06:15
Total/NA	Analysis	9060A		1	665135	KER	EET BUF	04/13/23 10:10

Client Sample ID: A1-GP02-S

Lab Sample ID: 480-207637-15

Matrix: Water

Date Collected: 04/06/23 12:35 Date Received: 04/07/23 13:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number A	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		100	664564 A	ATG	EET BUF	04/11/23 06:38
Total/NA	Analysis	9060A		1	665416 K	KER	EET BUF	04/12/23 16:37

Client Sample ID: A1-GP16-S

Lab Sample ID: 480-207637-16 Date Collected: 04/06/23 11:55

Matrix: Water

Date Received: 04/07/23 13:45

	Batch	Batch		Dilution	Batch		Prepared
Prep Type	Туре	Method	Run	Factor	Number Analys	Lab	or Analyzed
Total/NA	Analysis	8260C		4	664564 ATG	EET BUF	04/11/23 07:01
Total/NA	Analysis	9060A		1	665416 KER	EET BUF	04/12/23 17:06

Client Sample ID: MW-40D

Date Received: 04/12/23 09:00

Lab Sample ID: 480-207715-1 Date Collected: 04/11/23 10:03

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C			664894	ATG	EET BUF	04/12/23 16:46
Total/NA	Analysis	RSK-175		22	665038	MAN	EET BUF	04/13/23 09:05
Total/NA	Analysis	RSK-175	DL	110	665038	MAN	EET BUF	04/13/23 10:02
Total/NA	Analysis	300.0		5	666028	RJS	EET BUF	04/20/23 05:35
Total/NA	Analysis	310.2		5	665886	CG	EET BUF	04/18/23 13:41
Total/NA	Analysis	353.2		1	665224	IMZ	EET BUF	04/12/23 19:41
Total/NA	Analysis	353.2		1	665418	IMZ	EET BUF	04/12/23 19:41
Total/NA	Analysis	9060A		1	665662	KER	EET BUF	04/13/23 19:16

Client Sample ID: A1-GP10-S

Filtration

Analysis

Analysis

Filtration

SM 3500 FE D

SM 4500 S2 F

Lab Sample ID: 480-207715-2 Date Collected: 04/11/23 12:00 **Matrix: Water**

1

1

666968 DLG

666972 DLG

665638 EV

EET BUF

EET BUF

EET BUF

04/26/23 13:00

04/26/23 13:30

04/17/23 14:00

Date Received: 04/12/23 09:00

Dissolved

Dissolved

Total/NA

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		400	664894	ATG	EET BUF	04/12/23 17:09
Total/NA	Analysis	RSK-175		22	665038	MAN	EET BUF	04/13/23 09:24
Total/NA	Analysis	RSK-175	DL	110	665038	MAN	EET BUF	04/13/23 10:21

Eurofins Buffalo

Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: A1-GP10-S Date Collected: 04/11/23 12:00

Lab Sample ID: 480-207715-2

Matrix: Water

Date Received: 04/12/23 09:00

Client: AECOM

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	300.0			666028	RJS	EET BUF	04/20/23 07:09
Total/NA	Analysis	310.2		5	665886	CG	EET BUF	04/18/23 13:59
Total/NA	Analysis	353.2		1	665224	IMZ	EET BUF	04/12/23 19:41
Total/NA	Analysis	353.2		1	665418	IMZ	EET BUF	04/12/23 19:41
Total/NA	Analysis	9060A		1	666388	RJS	EET BUF	04/21/23 07:14
Dissolved	Filtration	Filtration			666968	DLG	EET BUF	04/26/23 13:00
Dissolved	Analysis	SM 3500 FE D		1	666972	DLG	EET BUF	04/26/23 13:30
Total/NA	Analysis	SM 4500 S2 F		1	665638	EV	EET BUF	04/17/23 14:00

Client Sample ID: MW-42S Lab Sample ID: 480-207715-3

Date Collected: 04/11/23 15:20 **Matrix: Water**

Date Received: 04/12/23 09:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		200	664894	ATG	EET BUF	04/12/23 17:33
Total/NA	Analysis	RSK-175		44	665038	MAN	EET BUF	04/13/23 09:43
Total/NA	Analysis	300.0		5	666028	RJS	EET BUF	04/20/23 07:28
Total/NA	Analysis	310.2		21	665886	CG	EET BUF	04/18/23 14:15
Total/NA	Analysis	353.2		1	665224	IMZ	EET BUF	04/12/23 19:41
Total/NA	Analysis	353.2		1	665418	IMZ	EET BUF	04/12/23 20:25
Total/NA	Analysis	353.2	RA	1	666100	IMZ	EET BUF	04/19/23 22:14
Total/NA	Analysis	353.2	RA	1	666101	IMZ	EET BUF	04/19/23 22:14
Total/NA	Analysis	9060A		4	666388	RJS	EET BUF	04/21/23 07:44
Dissolved	Filtration	Filtration			666968	DLG	EET BUF	04/26/23 13:00
Dissolved	Analysis	SM 3500 FE D		1	666972	DLG	EET BUF	04/26/23 13:30
Total/NA	Analysis	SM 4500 S2 F		1	665638	EV	EET BUF	04/17/23 14:00

Lab Sample ID: 480-207715-4 Client Sample ID: A1-GP15-S

Date Collected: 04/11/23 11:40 Date Received: 04/12/23 09:00

Date Received: 04/12/23 09:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	664894	ATG	EET BUF	04/12/23 17:56
Total/NA	Analysis	9060A		1	665662	KER	EET BUF	04/13/23 23:11

Client Sample ID: A1-GP14-S Lab Sample ID: 480-207715-5

Date Collected: 04/11/23 14:10 **Matrix: Water**

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	665134	СВ	EET BUF	04/13/23 18:29
Total/NA	Analysis	9060A		1	665662	KER	EET BUF	04/13/23 23:41

Eurofins Buffalo

Matrix: Water

Job ID: 480-207637-1

Client: AECOM Project/Site: Scott Figgie Area 1 BCP

Client Sample ID: TRIP BLANK

Date Collected: 04/11/23 00:00 Date Received: 04/12/23 09:00 Lab Sample ID: 480-207715-6

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	664894	ATG	EET BUF	04/12/23 18:42

Client Sample ID: MW-44S Lab Sample ID: 480-207715-7

Matrix: Water

Date Collected: 04/11/23 14:00 Date Received: 04/12/23 09:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	664894	ATG	EET BUF	04/12/23 19:05
Total/NA	Analysis	9060A		1	665662	KER	EET BUF	04/14/23 00:10

Client Sample ID: RINSE BLANK

Lab Sample ID: 480-207715-8 Date Collected: 04/11/23 16:00

Matrix: Water

Date Received: 04/12/23 09:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		1	664894	ATG	EET BUF	04/12/23 19:28

Lab Sample ID: 480-207805-1 Client Sample ID: AL-GP09-S Date Collected: 04/12/23 09:30 **Matrix: Water**

Date Received: 04/13/23 16:20

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		2	665491	СВ	EET BUF	04/16/23 18:10
Total/NA	Analysis	9060A		1	665659	KER	EET BUF	04/16/23 03:50

Client Sample ID: MW-37D Lab Sample ID: 480-207805-2

Date Collected: 04/12/23 12:30

Date Collecte	ed: 04/12/23	12:30						Matrix: Water		
Date Received: 04/13/23 16:20										
	Batch	Batch		Dilution	Batch		Prepared			
Pren Tyne	Type	Method	Run	Factor	Number Analyst	l ah	or Analyzed			

Prep Type Total/NA 8260C 665426 CB EET BUF 04/15/23 14:57 Analysis EET BUF Total/NA Analysis 9060A 665659 KER 04/16/23 04:47 1

Client Sample ID: TRIP BLANK-041223 Lab Sample ID: 480-207805-3

Date Collected: 04/12/23 00:00

Date Received: 04/13/23 16:20

	Batch	Batch		Dilution	Batch		Prepared
Prep Type	Type	Method	Run	Factor	Number Ana	alyst Lab	or Analyzed
Total/NA	Analysis	8260C			665426 CB	EET BUF	04/15/23 15:21

Lab Sample ID: 480-207805-4 Client Sample ID: MW-30

Date Collected: 04/12/23 14:10 **Matrix: Water**

Date Received: 04/13/23 16:20

	Batch	Batch		Dilution	Batch		Prepared
Prep Type	Type	Method	Run	Factor	Number Analy	st Lab	or Analyzed
Total/NA	Analysis	8260C			665426 CB	EET BUF	04/15/23 15:46

Eurofins Buffalo

Matrix: Water

Page 79 of 97

5/4/2023

Job ID: 480-207637-1

Client Sample ID: MW-30

Client: AECOM

Date Collected: 04/12/23 14:10 Date Received: 04/13/23 16:20

Project/Site: Scott Figgie Area 1 BCP

Lab Sample ID: 480-207805-4

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	9060A		1	665992	KER	EET BUF	04/17/23 17:39

Client Sample ID: MW-43S Lab Sample ID: 480-207805-5

Date Collected: 04/12/23 15:00 Date Received: 04/13/23 16:20

Matrix: Water

	1	Batch	Batch		Dilution	Batch			Prepared
Prep T	ype	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/N	A	Analysis	8260C		2	665426	СВ	EET BUF	04/15/23 16:10
Total/N	Α ,	Analysis	9060A		1	665992	KER	EET BUF	04/17/23 18:36

Client Sample ID: MW-36S Lab Sample ID: 480-207805-6

Matrix: Water

Date Collected: 04/12/23 10:20 Date Received: 04/13/23 16:20

Batch Dilution Batch Batch Prepared Method Number Analyst or Analyzed **Prep Type** Type Run **Factor** Lab 04/15/23 16:34 8260C Total/NA Analysis 665426 CB **EET BUF** Total/NA Analysis 9060A 665992 KER **EET BUF** 04/17/23 19:33 1

Client Sample ID: MW-36D Lab Sample ID: 480-207805-7

Date Collected: 04/12/23 11:25 **Matrix: Water**

Date Received: 04/13/23 16:20

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260C		4	665426	СВ	EET BUF	04/15/23 16:58
Total/NA	Analysis	9060A		1	665992	KER	EET BUF	04/17/23 20:59

Client Sample ID: MW-40D Lab Sample ID: 480-207805-8

Date Collected: 04/12/23 12:50 **Matrix: Water**

Date Received: 04/13/23 16:20

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	RSK-175			190482	RMG	EET BUR	04/18/23 12:14

Client Sample ID: MW-42S Lab Sample ID: 480-207805-9

Date Collected: 04/12/23 13:00 Date Received: 04/13/23 16:20

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	RSK-175		1	190482	RMG	EET BUR	04/18/23 12:23

Client Sample ID: AL-GP10-S Lab Sample ID: 480-207805-10

Date Collected: 04/12/23 12:55 **Matrix: Water** Date Received: 04/13/23 16:20

Batch **Batch** Dilution **Prepared** Batch **Prep Type** Method Factor **Number Analyst** or Analyzed Type Run Lab 04/18/23 12:31 Total/NA Analysis **RSK-175** 190482 RMG EET BUR

Eurofins Buffalo

Lab Chronicle

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600
EET BUR = Eurofins Burlington, 530 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

-

3

4

0

9

Accreditation/Certification Summary

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Laboratory: Eurofins Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pro	ogram	Identification Number	Expiration Date
New York	NE	ELAP	10026	03-31-24
	•	ort, but the laboratory is r	not certified by the governing authority.	This list may include analytes for w
The following analytes the agency does not o	•	ort, but the laboratory is r	not certified by the governing authority.	This list may include analytes for w
	•	ort, but the laboratory is r Matrix	not certified by the governing authority. Analyte	This list may include analytes for w

Laboratory: Eurofins Burlington

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
ANAB	Dept. of Defense ELAP	L2336	02-25-26
Connecticut	State	PH-0751	09-30-23
DE Haz. Subst. Cleanup Act (HSCA)	State	N/A	05-17-23
Florida	NELAP	E87467	06-30-23
Minnesota	NELAP	050-999-436	12-31-23
New Hampshire	NELAP	2006	12-18-23
New Jersey	NELAP	VT972	06-30-23
New York	NELAP	10391	04-01-24
Pennsylvania	NELAP	68-00489	04-30-24
Rhode Island	State	LAO00298	12-30-23
US Fish & Wildlife	US Federal Programs	058448	07-31-23
USDA	US Federal Programs	P330-17-00272	10-30-23
Vermont	State	VT4000	02-10-24
Virginia	NELAP	460209	12-14-23
Wisconsin	State	399133350	08-31-23

3

4

5

7

8

9

Method Summary

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	EET BUF
RSK-175	Dissolved Gases (GC)	RSK	EET BUF
RSK-175	Dissolved Gases (GC)	RSK	EET BUR
300.0	Anions, Ion Chromatography	EPA	EET BUF
310.2	Alkalinity	EPA	EET BUF
353.2	Nitrate	EPA	EET BUF
353.2	Nitrogen, Nitrite	EPA	EET BUF
9060A	Organic Carbon, Total (TOC)	SW846	EET BUF
SM 3500 FE D	Iron, Ferrous and Ferric	SM	EET BUF
SM 4500 S2 F	Sulfide, Total	SM	EET BUF
5030C	Purge and Trap	SW846	EET BUF
Filtration	Sample Filtration	None	EET BUF

Protocol References:

EPA = US Environmental Protection Agency

None = None

RSK = Sample Prep And Calculations For Dissolved Gas Analysis In Water Samples Using A GC Headspace Equilibration Technique, RSKSOP-175, Rev. 0, 8/11/94, USEPA Research Lab

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

EET BUR = Eurofins Burlington, 530 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

Eurofins Buffalo

5/4/2023

6

8

9

10

Sample Summary

Client: AECOM Job ID: 480-207637-1

Project/Site: Scott Figgie Area 1 BCP

480-207805-10

AL-GP10-S

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	
480-207637-1	CB-1	Water	04/06/23 15:25	04/07/23 13:45	
480-207637-2	CB-2	Water	04/06/23 15:40	04/07/23 13:45	
480-207637-3	CB-3	Water	04/06/23 15:50	04/07/23 13:45	
480-207637-4	CB-4	Water	04/06/23 16:25	04/07/23 13:45	
480-207637-5	CB-E	Water	04/06/23 16:40	04/07/23 13:45	
480-207637-6	TP-5	Water	04/06/23 15:15	04/07/23 13:45	
480-207637-7	TP-6	Water	04/06/23 15:00	04/07/23 13:45	
480-207637-8	DUP	Water	04/07/23 08:00	04/07/23 13:45	
480-207637-9	MW-35D	Water	04/07/23 09:30	04/07/23 13:45	
480-207637-10	MW-38D	Water	04/07/23 10:50	04/07/23 13:45	
480-207637-11	A1-GP06-S	Water	04/07/23 11:15	04/07/23 13:45	
480-207637-12	A1-GP18-S	Water	04/07/23 12:10	04/07/23 13:45	
480-207637-13	MW-35S	Water	04/06/23 11:10	04/07/23 13:45	
480-207637-14	MW-39D	Water	04/06/23 13:15	04/07/23 13:45	
180-207637-15	A1-GP02-S	Water	04/06/23 12:35	04/07/23 13:45	
180-207637-16	A1-GP16-S	Water	04/06/23 11:55	04/07/23 13:45	
180-207715-1	MW-40D	Water	04/11/23 10:03	04/12/23 09:00	
480-207715-2	A1-GP10-S	Water	04/11/23 12:00	04/12/23 09:00	
480-207715-3	MW-42S	Water	04/11/23 15:20	04/12/23 09:00	
480-207715-4	A1-GP15-S	Water	04/11/23 11:40	04/12/23 09:00	
180-207715-5	A1-GP14-S	Water	04/11/23 14:10	04/12/23 09:00	
180-207715-6	TRIP BLANK	Water	04/11/23 00:00	04/12/23 09:00	
480-207715-7	MW-44S	Water	04/11/23 14:00	04/12/23 09:00	
480-207715-8	RINSE BLANK	Water	04/11/23 16:00	04/12/23 09:00	
180-207805-1	AL-GP09-S	Water	04/12/23 09:30	04/13/23 16:20	
180-207805-2	MW-37D	Water	04/12/23 12:30	04/13/23 16:20	
180-207805-3	TRIP BLANK-041223	Water	04/12/23 00:00	04/13/23 16:20	
180-207805-4	MW-30	Water	04/12/23 14:10	04/13/23 16:20	
180-207805-5	MW-43S	Water	04/12/23 15:00	04/13/23 16:20	
180-207805-6	MW-36S	Water	04/12/23 10:20	04/13/23 16:20	
180-207805-7	MW-36D	Water	04/12/23 11:25	04/13/23 16:20	
180-207805-8	MW-40D	Water	04/12/23 12:50	04/13/23 16:20	
80-207805-9	MW-42S	Water	04/12/23 13:00		

Water

04/12/23 12:55 04/13/23 16:20

1

4

4

D

9

Login Number: 207637 List Source: Eurofins Buffalo

List Number: 1

Creator: Stopa, Erik S

oroutor. Otopa, Erik o		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	AECOM
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

Eurofins Buffalo

Login Number: 207637 List Source: Eurofins Burlington
List Number: 2 List Creation: 04/11/23 05:22 PM

Creator: Reynolds, Jamie K

oreator. Reynolds, Janne R		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>2059074</td>	N/A	2059074
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	3.1°C
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	N/A	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	Check done at department level as required.

Login Number: 207715 List Source: Eurofins Buffalo

List Number: 1

Creator: Wallace, Cameron

Creator. Wallace, Califeron		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	False	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	AECOM
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

Eurofins Buffalo

Login Number: 207805 List Source: Eurofins Buffalo

List Number: 1

Creator: Sabuda, Brendan D

Answer	Comment
True	
True	4.9 #1 ICE
True	
	True True True True True True True True

Eurofins Buffalo

List Source: Eurofins Burlington
List Number: 2
List Creation: 04/15/23 12:49 PM

Creator: Reynolds, Jamie K

oreator. Neyriolus, Jainie N		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	True	2059124, 9125
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or ampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.2°C, 0.6°C
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	N/A	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	N/A	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	Check done at department level as required.

Chain of Custody Record

Lab PM:

💸 eurofins

Page 1014 Page	Client Information	Sampler: C. Horrow's	Lab P Fisch	Lab PM: Fischer, Brian J		Carrier Tracking No(s):	g No(s):	COC No: 480-182788-19195.1	
Column Analyzia Paper Analyzia Pap	Client Contect: Mr. Dino Zack	585-317	7	r n.Fischer@et.eurof	finsus.com	State of Origin:	U	ठ	
Control Cont	Company: AECOM				Analysis Re	quested		Job 等:	
Simple S	Address: One John James Audubon Parkway Suite 210	,						Codes:	
No. 1, 12, 20	City: Amherst	Pe	90						
Entrance Entrance	State, Zip: NY, 14228	A Yes	10						
Control Cont	Phone:	PO#: 151701		(0					decahydrate
Sumple identification Sample Date Time Sample S	Email: dino.zack@aecom.com	WO#: 60676146		(oN			S)	I - Ice J - Di Water	
Sample dentification Sample Date Sample Date Sample Date Sample Date Sample Date Sample Date Sample Cocon Sample Sample Cocon Sample	Project Name: Oct-22	Project #: 48011352		trate trate	nochie		anistr	K-EDTA Y	ecify)
Sample identification Sample Date Samp	Site:	SSOW#:		ISD (Y	y, Tota D5 - C	SUNOA	of cor	Other:	
CB-1 Holo 25 Freeservation Code X N N N N N N N N N N N N N N N N N N N		Sample		Perform MSAN 3260C - TCL list 353.2_Uip	310.2 - Alkalinify 35K_175_CO2_ 35K_175 - meth	1200 EE D - (PA	Otal Number		9
1962 1962 1963 1964 1965		X	- 63	Z	Z	z	X		
18-2 18-2		1 82/	-						
CB-3 1550 C Water Y		123		×					
1640 CS Water Y		1 22/		*					
CB-E 4/6 / 2 3 15 / 5 G Water ¥ X		1 52/2	_	メ					
TP-6	CB-E	123 1		*				n of Custody	
TP-8	TP-5	16/23 1		メ		1	480-20/63/ 21/2		
Delicate Delication Delic	TP-6	16/23 1		メ					
Water	Duplicate	17/23 08		×					
MW-35D Water X X X X X X X X X X X X X X X X X X X	Rinse Blank		Waks		+				
Www.38D Possible Hazard Identification H/7123 10-50 C5 Water X X X X X X X X X X X X X X X X X	MW-35D				×	x			
Possible Hazard Identification Possible Hazard Identification Cooper temptress Sample Bisposal (A fee may be assessed if samples are retained longer than 1 mc	MW-38D	17123 10	6 Water		X	X			
Empty Kit Relinquished by: Relinquished by: Relinquished by: Relinquished by: Relinquished by: Relinquished by: Relinquished by: Relinquished by: Relinquished by: Relinquished by: Relinquished by: Relinquished by: Received by: Company Received by: Company Received by: Cooler Temperature(s) **C and Other Remarks: Cooler Tempe	tant	Poison B Unknown	diological	Sample Dispo	sal (A fee may be	assessed if s Disposal By L	amples are retain	ed longer than 1 month) hive For Months	
Empty Kit Relinquished by: Date: Time: Method of Shipment: Relinquished by: Company Received by: Date/Time: Date/Time: Date/Time: Relinquished by: Custody Seals Infact: Custody Seals Infact: Custody Seal No.: Cooler Temperature(s) *C and Other Remarks: Date/Time:	Deliveration Addressed: 1, III, IV, Other (specify)			Special instruc	nons/dc Requirem	ants:			
Relinquished by: Company Received by: Page 1777	Empty Kit Relinquished by:	۵		Time:		Method of	Shipment:		
Reinquished by: Reinquished by: Reinquished by: Received by: Custody Seals Intact: Custody Seal No.: Company Received by: Company Recei		1123 1	TT		My		Date/Time: 7	73 13 48 COMPRING	5
Relinquished by: Custody Seals Intact: Custody Seal No.: Custody Seals Intact: Custody Seal No.: Cooler Temperature(s) °C and Other Remarks: Cooler Tem		Date/Time:	Company	Received by:			Date/Time:	Сотрану	
Custody Seals Intact: Custody Seal No.:	Relinquished by:	Date/Time:	Сотрапу	Received by:			Date	Company	
	Custody Seals Intact: Δ Yes Δ No			Cooler Tempe	orature(s) °C and Other F	lemarks:	1	ろらあり	

Chain of Custody Record

10 Hazelwood Drive Amherst, NY 14228-2298 Phone (716) 691-2600 Phone (716) 691-7991

Eurofins Buffalo

🛟 eurofins

Prione (716) 091-2000 Prione (716) 091-7991																
Client Information	Sampler: C. 175	Speck		Lab PN Fisch	Lab PM: Fischer, Brian J	7				Carrie	Carrier Tracking No(s):	No(s):		COC No:	COC No: 480-182788-19195.2	
Cifent Contact: Mr. Dino Zack	Phone: 585	317-61	37	E-Mail: Brian.	E-Mail: Brian.Fischer@et.eurofinsus.com	@et.eu	rofinsus	moo:		State	State of Origin:	X		Page: Page 2 of 4	17.4	
Company:			PWSID:								1			H doc		
AECOM						-	1	Analysis		Rednested			I			
Address: One John James Audubon Parkway Suite 210	Due Date Requested:	577	0											Preserva A - HCL		
Crty: Amherst	TAT Requested (days)		4000											B - NaOH C - Zn Ace		
State, Zlp: NY, 14228	Compliance Project:	٥	» °N											D - Nitric A		
Phone:	Po#: 151701	1			lo									G - Amchlor	S - H2SO4 T - TSP Dodecahydrate	ydrate
Email: dino.zack@aecom.com	wo#: 60676146					oleC		pbixolb	enerti	(ı					
Project Name: Oct-22	Project #: 48011352				JO SO				plensi	Fe (LF)	odreO			× EDTA	Y - Trizma Z - other (specify)	_
Site:	SSOW#:				N) as						ojue6.			of cor		
Sample Identification	Sample Date	Sample	Sample Type (C=comp,	Matrix (www.ater, 8-acolds, Ownesshool,	benediii bieii	3260C - TCL list	- 0_S2_002 bM 2 chinilexIA - 2.018	SSK_175_CO2_	Nu2 - G8S_0.008	1500 FE_D - fer	O IsloT - A0800			redmuli lato	Crock Instructions/Notes	
	X		433		X	1	15	1-	-	1-	6 <					
WW 40B				Water						П						
A1-GP06-S	41713	115	6	Water		X	+	X	λ λ	λ	X					
A1 GP10.S				Water		\prod										
A1-GP18-S	417123	1210	0	Water		X	X	x	X	X	X					
MW-42S				Water					\parallel							
WW-30				Water		\prod			H	П		\parallel	П	1		
MW-35S	4/6123	1110	9	Water		X		•	+		X		_			
MW 35D				Water					H					1		
MW-36S				Water				H	+	П				1		
MW-36D				Water		\parallel				П				1		
MW. 37D				VV BIGN		-			+	I	H		H	1		
Possible Hazard Identification Non-Hazard	Poison B (Inknown		Radiological		Sami	ole Dis	le Disposal (A i	A fee	ag /g	38888	/ be assessed if sam	se/dun	are 🗆	tained longer	Sample Disposal (A fee may be essessed if samples are retained longer than 1 month) Rainin To Client Manthe	
/, Other (specify)			3		Spec	al Instr	Special Instructions/QC Requirements:	OC Re	quireme	onts:						
Empty Kit Relinquished by:	Dat	ate:			Time:						Method of Shipment:	Shipment				
Relinquished by: Ver Three	Date/Time: 17/23	-	345	n	m R	Received by:	. .					Date/Time	::		Company	
Relinquished by:	Date/Time:		0	Сотрвлу	œ	Received by	×					Data/Time	::		Company	
Relinquished by:	Date/Time:		0	Company	œ	Received by:	5					Sate O	ĕ(-		Company	
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No					ŏ	ooler Ten	Cooler Temperature(s)	(a) ⁹ C an	^a C and Other Remarks	emarks		-	٧			
									1	1					Var. 01/16/7010	c

	Frome (7 10) 691-2000 Priorie (7 10) 691-199	Complex			Lab DAA					Ç	Carrier Tracking Notal	Wind Note	1	2	No.	
	mation	CITES	mach 5		Fischer, Brian	Brian J								48	480-182788-19195.	9195.3
		Phone: 565-	317-613	37	E-Mail: Brian.F	E-Mait: Brian.Fischer@et.eurofinsus.com	eurofi	nsus.co	8	S	State of Origin:	Olin: N	×	P. P.	Page: Page 3 of 4	
	Company: AECOM			PWSID:				Ā	VSIS	Regn	Requested			Jot	Job #:	
	James Audubon Parkway Suite 210	Due Date Requested:	STD	0					-					g 4	Preservation Codes	18
		TAT Requested (days)		0000										(m U	B - NaOH C - Zn Acetate	
	8	Compilance Project:	⊲	-										١٤٠	- Nitric Acid	D - N82803
		Po#: 151701			(0				•					UI	- Amchlor - Ascorbic Acid	
	Email: dino.zack@aecom.com	wo #: 60676146			N 10 I		plec								I - Ice J - DI Water	U - Acetone V - MCAA
		Project #: 48011352			ie (Ver	JO 50	_	i	_				-		- EDTA	Y - Trizma Z - other (specify)
		SSOW#:			dwes	N) as		etoT ,	_						Other:	
	Sample Identification	Sample Date	Sample	Sample Type (C=comp,	Matrix (www.etar, 8moold, Owestavold, Owestavold, Elifered	Perform MSM sil 13T - 30828	353.2, 353.2 UIE	chinilisallA - S.Ot E	RSK_175 - meth	Mu2 - G85_0.005	161 - Q_33_0028			Total Mumber	8000	Special Instructions/Note:
Pag		V	X	1 60		X	80 N	z	12	z				X		
ge S	MW-38D				Water		+	1	+	#		+		1		
)2 o	MW-39D	2119/12	1315	2	Water	X					X	1				
7 f 97	MW-40D				Weiter	\parallel	+		+	I		+				
- (MW 42S				Water		#		+	#	H		#	r		
	MW-435				Water				H	\parallel						
	MW 245				Water							H	#	1		
	A1-GP02-S	4/423	1235	2	Water	X	_		-			X				
4	A1-GP18-S				Water				H					1		
	A1-GP06-S				Water				+			+				
-	A1-6P09.S				Water					\parallel				1		
,	An-6P10.S				Water				-							
	dentification					Sample	Dispos	391 (A)	99 may	be as	pesses	if samp	les are	retained	Sample Disposal (A fee may be assessed if samples are retained longer than	1 mo
		Poison B Unknow		Radiological		Special	Special Instructions/QC Requirements:	o Client	Requi	ements	rements:	y Lab		Archive For	For	Months
	Empty Kit Relinquished by:		Date:		Ē	Time:					Metho	Method of Shipment:	ment:			
	Relinquished by: Carry	Date/Time:	3 (348	Company		Received by:				1	Dat	Date/Time:			Company
5	Relinquished by:	Date/Time:		0	Company	Rece	Received by:					Oat	Data/Time:			Company
/4/20		Date/Time:		0	Company	Rece	Received by:					Dag	Date/Time:	7		Company
)23	Custody Seals Intact: Custody Seal No.:					C00}	Cooler Temperature(s) °C and Other Remarks:	rature(s)	C and O	ther Rem	arks:			_		
										14	10	9	8	7	5	2 3 4

Chain of Custody Record

💸 eurofins

Carrier Tracking No(s):

Chain of Custody Record

P - Ne204S Q - Ne2SO3 R - Ne2SO3 S - H2SO4 T - TSP Dodecahydrate Special Instructions/Note: Z - other (specify) Company U - Acetone V - MCAA Months W - pH 4-5 Company Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Month COC No: 480-182788-19195.4 reservation Codes G - Amchlor H - Ascorbic Acid A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
E - NaHSO4
F - MeOH Page: Page 4 of 4 I - Ice J - Di Water K - EDTA L - EDA Total Number of containers # Date/Time Method of Shipment State of Origin: **Analysis Requested** Cooler Temperature(s) °C and Other Remarks Special Instructions/QC Requirements: 600.0 280 - Sumate z E-Mail: Brian.Fischer@et.eurofinsus.com SSK 175 CO2 D5 - Carbon dioxide CB SM4500_SZ_D - Sulide Received by: eceived by Lab PM: Fischer, Brian J Perform MS/MSD (Yes or No) me Field Filtered Sample (Yes or No) BT «Tissue, A»Air) (Www.star, Sweolid, Oww.sete/oil. Preservation Code: Water Water Water Matrix Water Water Company Radiological (C=comp, G=grab) Sample Type 3 Phone: 585-317-6137 Compilance Project: A Yes A No グロ Sampler: C. Harours 155 Sample Date Unknown (AT Requested (days): Due Date Requested: Sample Date 7/9/1 WO #: 60676146 Project #: 48011352 Cate/Time: Po#: 151701 SSOW#: Poison B Skin Irritant Deliverable Requested: I, II, III, IV, Other (specify) Address: One John James Audubon Parkway Suite 210 Custody Seal No. Empty Kit Relinquished by: Custody Seals Intact: Client Information dino.zack@aecom.com Sample Identification Mr. Dino Zack linquished by: slinquished by: elinquished by: Project Name: Oct-22 Client Contact: 1-CP14-B 4 CP16 6 A1-GP16-S State, Zip: NY, 14228 Frip Blank Frip Blank Amherst Company:

Phone (716) 691-2600 Phone (716) 691-7991 Amherst, NY 14228-2298

Page 93 of 97

Ver: 01/16/2019

Chain of Custody Record

🛟 eurofins

Carrier Tracking No(s)

Phone (716) 691-2600 Phone (716) 691-7991

Amherst, NY 14228-2298

10 Hazelwood Drive

Eurofins Buffalo

TIME
LAB FILTER FE SAMPLE - SHORT HOLD
TIME LAB FILTER FE SAMPLE - SHORT HOLD LAB FILTER FE SAMPLE - SHORT HOLD lecahydrate W - pH 4-5 Y - Trizma Z - other (specify) Special Instructions/Note: Months Company Sample Disposal (A fee may be assessed If samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mon COC No: 480-182788-19195.1 Page: Page 1 of 2 Job #: LOCS ON Preservation Codes Vocs J - DI Water K - EDTA L - EDA 480-207715 Chain of Custody Date/Times Total Number of containers Method of Shipment: State of Origin: New York **Analysis Requested** × × × × * × × nodreO oinegrO letoT - A030 Cooler Temperature(s) °C and Other Remarks: \times \times × Special Instructions/QC Requirements: × × × edeflu2 - G82_0.008 × × × Lab PM: Fischer, Brian J E-Mait Brian.Fischer@et.eurofinsus.com × × × × × × CB × × 904175 - CT ZS 00514WS Received by: × × × × × × \star × × × × × (oh to self) (Namali mohe me AECON Field Filtered Sample (Yes or No) Preservation Code: Water Water Matrix Water Water Water Water Water Water Water Water Water Company Radiological Sample (C=comp, G=grab) Турв G O O PWSID: ഗ G O ф ф G ഗ ഗ 5 Compliance Project: A Yes A No C-1600 1520 00/1 282 0411 0/61 Sample 1030 TIM9 Date: Unknown TAT Requested (days): Per PO 33 Due Date Requested: Per PO Phone: 716-531-3312 Sample Date 62/11/h 4/11/23 4/11/23 62/11/4 4/1/23 wo #: 60676146 Project #: 48011352 **Emily Au** Date/Time: Po#: 151701 Poison B AECom Skin Irritant E1140 Deliverable Requested: I, II, III, IV, Other (specify) Address: One John James Audubon Parkway Suite 210 RINSE BLANK Custody Seal No. Scott Figgie Area 1 BCP, Lancaster, NY Flammable TRIP Blank ossible Hazard Identification Empty Kit Relinquished by: 0 Custody Seals Intact: Client Information lino.zack@aecom.com Sample Identification ţ A Yes A No nject Name: Area 1 BCP - 2Q23 Non-Hazard 1-GP09-S hone: /16-866-8222 Client Contact: Mr. Dino Zack linquished by: linquished by: elinquished by: State, Zip: NY, 14228 A1-GP10-S 11-GP14-S WW 97D MW-42S AW 436 Sompany: Amherst **486-W MW-44S** MW-40D Day-set 96 44

B(BOB B \mathcal{B}

	Sampler:	Lab PM				Company	Andrew Market			
Client Information	Emily Au	Fisch	Fischer, Brian J			Carrier Tracking No(s):	XING NO(8):	COC No:	COC No: 480-182788-19195 2	
Client Contact: Mr. Dino Zack	Phone: 716-531-3312	E-Mail: Brian	E-Mail: Brian Fischer@et eurofineus com	o silveile c	1 8	State of Origin:	gin:	Page:	3000	
Company:	PWSID			O.G. III O.G.		INGW TON		N	of 2	
AECOM Address:				A	alysis F	Analysis Requested		# qop		
One John James Audubon Parkway Suite 210	Due Date Requested: Per PO							Preserv	88	
Crty: Amherst	TAT Requested (days): Per PO							A - HCL B - NaOF		- Hexane - None
State, Zip: NY, 14228	Compliance Project: A Yes A No							C - Zn Acetate D - Nitric Acid		U - AsnaO2 P - Na2O4S Q - Na2SO3
Phone: 716-866-8222	Po#: 151701							G - Amot		4a2S2O3 12SO4
Email: dino.zack@aecom.com	WO#: 60676146		(0)							SP Dodecahydrate Icetone ICAA
Project Name: Area 1 BCP - 2Q23	Project #: 48011352		M 10 21					X-EDTA K-EDTA L-EDA		W - pH 4-5 Y - Trizma
Site: Scott Figgie Area 1 BCP, Lancaster, NY	SSOW#:		SD (Ye	ebillus		3 suno				Z - other (specify)
Samole (dentification	Sample	Matrix (www.etsr., 8*solid, Oww.ests/off,	eld Filtered S wform MS/W: 60C - TCL list 3.2, 353.2 Nib	M500_S2_D -	K_175_CO2_L	illu2 - G82_0.0 mei - G_37_00 gvO listoT - A06		al Number o		
	Sample Date	Preservation Code:	28 82	vs C	SA S	35			Special Instructions/Note	tions/Note:
MOPIS A1 - 6909-5	4/12/22 930	G Water	×		<	× ×		X		
Plines MW-37D	23 13	G Water	×			< ×				
Trip Blank - 041223	4/12/23 -	G Water	×							
	4/12/23 1410	G Water	X			×				
MW - 43S	4/12/23 1500	Water	×			X				
MW - 365	4/12/23 1020	√ Water	×			X				
	4/12/23 1125	(Water	×			X				
MW - 40D	4/12/23 1250				×					
MW -425	4/12/23 1300	(S Water			×		480-	480-207805 Chain of Custody	of Custody	
A1. 6710-5	1/12/23 1255	(S Water			X		- -			
Donelly Description		Water								
ole Skin Irritant	Poison B	Radiological	Sample DI	le Disposal (A f	fee may (Passessed If sam	if samples ar	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	er than 1 mos	nth)
Deliverable Requested: I, II, III, IV, Other (specify)			Special Instructions/QC Requirements:	tructions/Q	C Require	nents:	y Lab	Archive For		Months
Empty Kit Relinquished by:	Date:		Time:			Metho	Method of Shipment:			
Reminduence Dy:	12/23 162	O Company AE(6	(SM) Received by:	lby:	7		Date/Time:	77 1	Je Con	Company
Kelinquished by:		Company	Received by:	1 by:			Date/Time:	9,	Con	Company
	Date/Time:	Сотралу	Received by	1 by:			Date/Time:		Com	Company
Custody Seals infact: Custody Seal No.: △ Yes △ No			Cooler T	Cooler Temperature(s) °C and Other Remarks:	°C and Othe	Remarks:	614	1741 #	nl	
							1			

🛟 eurofins

Chain of Custody Record

10 Hazelwood Drive Amherst, NY 14228-2298 Phone (716) 691-2600 Phone (716) 691-7991

Eurofins Buffalo															
10 Hazelwood Drive		hain	hain of Custody Becord	מ אס	Š	7						•	🥳 eurofins	(6	
Amherst, NY 14228-2298 Phone 716-691-2600 Fax 716-691-7991	,		0000	ouy N		==== 3									Environment Testing
Client Information (Sub Contract Lab)	Sampler			Lab PM Fische	Lab PM Fischer, Brian J		480-207637 Chain of Custody	7 Chair	n of Cust	tody		1	COC No 480-79710 1		
Client Contact: Shipping/Receiving	Phone			E-Mail Brian	lechoi	100	E-Mail	1	State	State of Origin			Page		
Company TestAmerica Laboratories, Inc					ccreditati	Accreditations Required	Accreditations Required (See note) NFI AP - New York	(a)	2	A LOIR			Job #		
Address 530 Community Drive, Surte 11,	Due Date Requested: 4/20/2023	ÿ						lycic	Analysis Dogmostod	604			Preservation Codes:	sepc:	
	TAT Bosingsbad (de	1		1	130	ŀ	₹ -	13513	Sadne			ŀ	A-HCL	M - Hexane	
South Burlington	IAI Kequested (days):	ys):											B - NaOH	N - None O - AsNaO2	
State, Zip VT, 05403													D - Nitric Acid E - NaHSO4	P - Na204S Q - Na2SO3	
Phone. 802-660-1990(TeI) 802-660-1919(Fax)	PO #:												F - MeOH G - Amchlor	R - Nazszos S - H2SO4 T - TSP Dodecahydrate	scahydrate
Email	.#OM				Adecourant a								H - Ascorbic Acid I - Ice	U - Acetone V - MCAA	
Project Name Scott Figgie Area 1 BCP	Project #* 48011352				8 (Yes o							etenisi	y - Di water K - EDTA L - EDA	W - pH 4-5 Y - Trizma Z - other (specify)	ecify)
Site.	:RSOW#:				1000000000000							nos le	Other:		:
			Sample	Matrix	W/SM	700) Tedr			
Sample Identification - Client ID (Lab ID)	Sample Date	Sample		(W=water, S=solid, O=waste/oil,	l miolie	38K_175_						nuM Isto			
	$\frac{1}{2}$	X	7 10		X							¹ X	opecial	IIIsu ucuoiis	Note.
MW-35D (480-207637-9)	4/7/23	09 30 Eastern		Water		×						8			
MW-38D (480-207637-10)	4/7/23	10:50 Eastern		Water		×						n			
A1-GP06-S (480-207637-11)	4/7/23	11·15 Eastern		Water		×						60			
A1-GP18-S (480-207637-12)	4/7/23	12 10 Eastern		Water		×						8			
			1	1	‡	+	+	Ŧ	_	1	+	1			

Note Since laboratory accreditations are subject to change, Eurofins Environment Testing Northeast, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/fests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing Northeast, LLC laboratory and analysis/fests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing Northeast, LLC attention immediately. If all requested accreditations are current to date return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing Northeast, LLC. Possible Hazard Identification

	rossinie nazaru identification		S	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	if samples are retail	ined longer than 1	month)
	Unconfirmed			Return To Client Disposal By Lab	3v Lab	Archive For	Months
	Deliverable Requested I, II, III, IV, Other (specify)	Primary Deliverable Rank 4	S	Requi			
	Empty Kit Relinguished by:	Date.	Time		Method of Shipment:		
	Reinquished by	3.23 (doc)	Company	Received by:	Date/Time	Hir 123 1030	Company CTA BUR
	Verintidusined by	Date/Time (Company	Received by	Date/Time.		Company
5/4	Relinquished by	Date/Time (Сотрапу	Received by:	Date/Time.		Company
./2021	Custody Seals Intact. Custody Seal No.: A Yes A No			Cooler Temperature(s) °C and Other Remarks			
3							

ORIGIN ID:DKKA (716) 691-2600 SAMPLE RECEIPT EUROFINS BUFFALO 10 HAZELWOOD DR

AMHERST, NY 14228 UNITED STATES US SHIP DATE: 10APR23 ACTWGT: 42.20 LB CAD: 846654/CAFE3704 DIMS: 26x15x14 IN

ILL SENDER

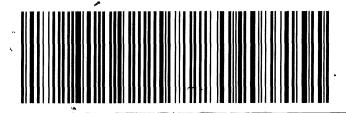
SAMPLE MGT. EUROFINS BURLINGTON

EUROFINS BURLINGTON 530 COMMUNITY DRIVE SUITE 11

SOUTH BURLINGTON VT 05403

02) 923 – 1026

EÉ: EUROFINS BURLINGTON


FedEx Express

TRK# 6159 4587 3717

TUE - 11 APR 10:30A PRIORITY OVERNIGHT

NX BTVA

05403 vr-us BTV

Page 97 of 97

2

3

5

7

8

9

SiREM File Reference: S-9742

Analytical Results

Client: AECOM Client Project Number: 60676146

Date Samples Received: April 13, 2023 Date Samples Analyzed: April 19, 2023

Client Sample ID	SiREM Reference ID	Client Sample	Sample Dilution	Lactate	Acetate	Propionate	Formate	Butyrate	Pryuvate
Onem Campie 12	OINEM NOICEONG ID	Date	Factor	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
MW-42 S	23-13577	12-Apr-23	1,000	<12	816	<2.0	<25	50	16 J
A1-GP10-S	23-13578	12-Apr-23	50	<0.62	14	<0.10	<1.3	<0.06	<0.15
					1	•			
		QL	50	0.62	1.4	0.10	1.3	0.06	0.15
		QL	1,000	12	28	2.0	25	1.2	2.9
		RL	50	2.0	2.0	2.0	2.0	2.0	2.0
		IXL	1,000	40	40	40	40	40	40

Comments:

Method: Ion Chromatography with Electrical Conductivity Detection

J = the associated value is an estimated result between the QL and the RL

QL = Quantitation limit

Laboratory Technician

RL = Reprting Limit

< = compound analysed for but not detected, associated value is QL. Sample QL is corrected for dilution.</p>

Analyst:	Results approved:	Date:
Brooke Rapien	Keladohworth	25-Apr-23
Brooke Rapien, B.Sc.	Kela Ashworth, B.Sc.	<u> </u>

Senior Laboratory Technician

siremlab.com Page 1 of 1

Chain-of-Custody Form

siremlab.com

180B Market Place Blvd Knoxville, TN 37922 1-865-291-4718 or 1-866-251-1747

*Project Name Frea 1 BCP	*Project #	6067	6146		I -					Ana	lysis					
*Project Manager Dina Zuch	*Company	AF/do	40		-	T	T	1	_	T-	liyala	Т	т	1	т —	
*Email Address					┢	-	-	-	_	1	-					Preservative Key
Address (Street)	- 1				1						gases		1			O None
City a	Suite	213						1		S	rbon					1 HCL 2 Other ICE
Amherst New York	Co	ountry U	5		J.C	₹5	말	HGM	RB	/ Acid	droca	tudy				3 Other
**************************************					riac [rac F	rac D	rac D	rac S	Fatty	ed hy	ollity S				4. Other
Address (Street) I Som Somes Auduben Parking City Amherst *Phone # 716 - 866 - 8222 *Sampler's Signature Client Sample ID	's Printed Div	10 20	ch		Gene-Trac DHC	Gene-Trac FGA	Gene-Trac DHB	Gene-Trac DHGM	Gene-Trac SRB	Volatile Fatty Acids	Dissolved hydrocarbon gases	Treatability Study				5. Other6. Other
Client Sample ID	Sam	pling	Ĭ	# of	¥.	X	V		-	1	 -		-			0,00.0
	Date	Time	Matrix	Containers	96	X	X			¥						Other Information
MW-425	4/12/23		GW	3	X	X	X			X			2×	401	ul	pr POBK-09844
A1- GP10-S	4/12/23	1100	GW	2						V						per PUBH- 2xx10m1
																ST 209 CM
			ļ													
PO 142162	Тиглаго	und Time Re	equested	Cooler Co	ndition:	22	For t	ab Use	Only				F	or Lab U	se Only	/ 1/2
	No	mal 🖈		Cooler Col		60	od	KK	0	054	2		6	BHI	ea	rder#32140
*BILL TO: US APImaging @ accom. com	Rus	mal 👉		Cooler Ter	nperati	ire:	6.1	00	14	1 pg	100	2				
CC dins. zack e accom.com				Custody S	eals	Υe	es V	No	о П				\dashv			
							0.000									
Relinquished By: Received By				JL	7				=			_	Pi	roposal	01	
Signature Signat	, s	ignature R	elinquishe	1 By:	Sign	nature	Rece	eived By	:		Signatu		linquist	ned By:		Received By: Signature
Printed Dina Zuck Printed Sun Th	MAGS Pr	inted			Print						Printed			-		Printed
Firm AGGIN Firm SINFM	Fir				Nam Firm			-	-		Name Firm					Name Firm
Firm AG(1m Firm SINEM Date/Time 4/12/23 (315/hg Date/Time 37023	0915 Da	te/Time			Date	/Time					Date/Tim	ie .				Date/Time
istribution: White - return to Originator; Yellow - Lab Copy: Pink - Retained by Client	0740										210,					Date/ Iline

Chain-of-Custody Form

siremlabcom

1808 Market Place Blvd Knoxville, TN 37922 -4718 or 1-866-251-1747

*Project Name Freu 1 BCP	*Project #	6067	6146						10000	Anal	lysis					
*Email Address In Zuch	*Company	45(01	m													Preservative Key
"Email Address dinor Zach & alcom. Co. Address (Street) I Sohn Somes Anduban Parkway City Anherst State/Province York "Phone # 7// (16	Suite	210 Duntry U	5		DHC	FGA	ОНВ	DHGM	SRB	tly Acids	Dissolved hydrocarbon gases	Study				0 None 1 HCL 2 Other 1CC 3 Other
Phone # 7/6 - 8/66 - 8222 Sampler's Ond Bul *Sample Name	er's Printed Div	10 20	ich		Gene-Trac DHC	Gene-Trac FGA	Gene-Trac DHB	Gene-Trac DHGM	Gene-Trac SRB	Volatile Fatty Acids	Dissolved t	Treatability Study				4. Other 5. Other
Client Sample ID		pling	Matrix	# of Containers	¥.	*	×			¥						Other Information
MW-42 5 Al-GPIO-S	4/12/23	-	GW	71	X	041	723	-		X			2×	401	и [per POBL-09844
0# PO 142162 Billing information 142162 Billing USAPImaging @ alcom. com CC dins. zack e accom. com		und Time R		Cooler Te	mperati	GO ire:	od	C	w	056 184	, cee		Fo	tab Ih	pe Only	nder#32140
				6.75						VII			Pr	opossi e		
nature mature ma	week!	KID	aahet	2	1	nature Cisu	ton	ived By			Signatur		lingulah	ed By:		Received By: Signature
ne Jin Luci Name) (Lau T	toures Pri	nie Kaut I	and co	rechusi	Prief	PA	nica i	CUNT	nepay		Printed Name					Printed Name
AG(1m Firm SIRFA) Viline 4/12/23 (315ks 24/13-2023	PH	SIRE	M		Firm	SIP!	И				Firm		98505			Firm
1/11/23 1315 ks 27-73-2023	0945	04/17/2	23 140	00	Date	/Time 18 Ac	- 23	150	0		Date/Tim	е				Date/Time

Appendix E Institutional Controls and Engineering Controls Certification Form

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	e No.	C915233	Site Details	Box 1	
Sit	e Name Fo	ormer Scott Aviation Facilit	ty (Area 1)		
City Co	e Address: y/Town: La unty: Erie e Acreage:		Zip Code: 14086		
-R	l eporting-Pe	riod:April-01;-2020 to-April-	01, 2021		
R	Reporting Pe	eriod: April 14, 2022 to April	12, 2023		
				YES	NO
1.	Is the infor	mation above correct?			X
	If NO, inclu	ude handwritten above or on	a separate sheet.		
2.		or all of the site property been mendment during this Report	en sold, subdivided, merged, or undergone a ting Period?		X
3.		been any change of use at th CRR 375-1.11(d))?	he site during this Reporting Period		X
4.	•	federal, state, and/or local pe e property during this Report	ermits (e.g., building, discharge) been issued ting Period?		X
	-		thru 4, include documentation or evidence busly submitted with this certification form		
5.	Is the site	currently undergoing develor	pment?		X
				Box 2	
				YES	NO
6.		ent site use consistent with thal	he use(s) listed below?	X	
7.	Are all ICs	in place and functioning as	designed?	X	
	IF T		JESTION 6 OR 7 IS NO, sign and date below REST OF THIS FORM. Otherwise continue.	and	
AC	Corrective M	leasures Work Plan must be	e submitted along with this form to address t	these iss	ues.
 Sia	nature of Ov	vner, Remedial Party or Desig	anated Representative Date		

		Box 2A	
		YES	NO
8.	Has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid?		X
	If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.		
9.	Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years)	X	
	If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.		

SITE NO. C915233 Box 3

Description of Institutional Controls

<u>Parcel</u> <u>Owner</u> <u>Institutional Control</u>

104.16-5-8 AVOX Systems, Inc.

Ground Water Use Restriction Landuse Restriction Site Management Plan Soil Management Plan Monitoring Plan IC/EC Plan

An Environmental Easement was filed with the Erie County Clerk's Office on November 19, 2015. The Controlled Property may be used for commercial and industrial use as long as the following long-term institutional controls are employed: (1) restrict the use of site groundwater as a source of potable or process water without necessary water quality treatment as determined by the NYSDOH or Erie County Department of Health; (2) all future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the Site Management Plan; and (3) monitoring to assess the performance and effectiveness of the remedy must be conducted as defined in the Site management Plan.

104.16-5-9 AVOX Systems, Inc.

Soil Management Plan Monitoring Plan IC/EC Plan Ground Water Use Restriction Landuse Restriction Site Management Plan

An Environmental Easement was filed with the Erie County Clerk's Office on November 19, 2015. The Controlled Property may be used for commercial and industrial use as long as the following long-term institutional controls are employed: (1) restrict the use of site groundwater as a source of potable or process water without necessary water quality treatment as determined by the NYSDOH or Erie County Department of Health; (2) all future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the Site Management Plan; and (3) monitoring to assess the performance and effectiveness of the remedy must be conducted as defined in the Site management Plan.

Box 4

Description of Engineering Controls

None Required

Not Applicable/No EC's

Box	5
-----	---

	Periodic Review Report (PRR) Certification Statements						
1.	I certify by checking "YES" below that:						
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;						
	b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted						
	engineering practices; and the information presented is accurate and compete. YES NO						
	\mathbf{X}						
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:						
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;						
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;						
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;						
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and						
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.						
	YES NO						
	\mathbf{X}						
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.						
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.						
	Signature of Owner, Remedial Party or Designated Representative Date						

IC CERTIFICATIONS SITE NO. C915233

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I <u>Dino Zack, PG, STS</u> at <u>AECOM, 50 Lakefront Blvd., Suit 111, Buffalo 14202</u>, print name print business address am certifying on behalf of Scott Figgie LLC (Owner or <u>Remedial Party</u>)

for the Site named in the Site Details Section of this form.

Dino J. Jack

on behalf of Scott Figgie LLC

June 16, 2023

Signature of Owner, Remedial Party, or Designated Representative Rendering Certification

Date

