

REMEDIAL INVESTIGATION / ALTERNATIVES ANALYSIS / INTERIM REMEDIAL MEASURES REPORT

Niagara Transformer Corporation – 1755 Dale Road Cheektowaga, New York **BCP Site No. C915234**

ין

Submitted To: Mr. David P. Locey, Project Manager New York State Department of Environmental Conservation Division of Environmental Conservation 270 Michigan Ave. Buffalo, NY 14203

Submitted By: Golder Associates Inc. 2221 Niagara Falls Boulevard, Suite 9 Niagara Falls, NY 14304 USA

Distribution:

1 copy	NYSDEC – Region 9
1 copy	Public Repository – Cheektowaga Public Library
1 copy	Niagara Transformer Corp
1 copy	Harter Secrest & Emery, LLP
1 copy	Golder Associates Inc.

August 2010

Project No. 093-89144-02

A world of capabilities delivered locally

Table of Contents

1.0	INTRO	DUCTION	. 1
1.1	Purp	ose and Scope	. 1
1.2	Back	kground	. 1
1	.2.1	Site Description	. 1
1	.2.2	Summary of Previous Investigations	. 2
	1.2.2.1	Phase I ESA	. 2
	1.2.2.2	Soil Investigations – PCB Assessments	. 3
1.3	Con	stituents of Primary Concern (COPCs)	. 5
2.0	INVES	TIGATION APPROACH	. 6
2.1	Field	I Investigation Activities	. 6
2	.1.1	Soil/Fill Investigation	. 6
2	.1.2	Soil/Fill Sample Analyses	.7
2	.1.3	Groundwater Investigation	. 8
2	.1.4	Monitoring Well Installation	. 8
2	.1.5	Groundwater Sample Collection	. 9
2	.1.6	Groundwater Sample Analyses	10
2	.1.7	Sediment and Surface Water Sample Collection and Analysis	10
2	.1.8	Field Specific Quality Assurance/Quality Control Sampling	10
2.2	Site	Mapping	10
3.0	SITE P	HYSICAL CHARACTERISTICS	12
3.1	Site	Topography and Surface Features	12
3.2	Geo	logy and Hydrogeology	12
3	.2.1	Overburden	12
3	.2.2	Bedrock	12
3	.2.3	Hydrogeology	12
4.0	INVES	TIGATION REULSTS BY MEDIA	14
4.1	Soil/	Fill	14
4	.1.1	Volatile Organic Compounds	14
4	.1.2	Semi-Volatile Organic Compounds	14
4	.1.3	Metals	14
4	.1.4	Pesticides, Herbicides and Cyanide	14
4	.1.5	PCBs	15
4	.1.6	Summary	15
4.2	Grou	Indwater	16
4	.2.1	Volatile Organic Compounds	16
4	.2.2	Semi-Volatile Organic Compounds	16
4	.2.3	Metals	16
4	.2.4	Pesticides, Herbicides and Cyanide	16

4	.2.5	PCBs	. 16
4	.2.6	Summary	. 17
4.3	Data	a Usability Summary	. 17
5.0	INTER	IM REMEDIAL MEASURES (IRM)	. 19
5	.1.1	Post Excavation Verification Sampling Results	. 22
6.0	FATE	AND TRANSPORT OF COPCS	. 23
6.1	Fugi	tive Dust Generation	. 23
6.2	Vola	tilization	. 23
6.3	Surf	ace Water Runoff	. 23
6.4	Lead	ching	. 24
6.5	Grou	undwater Transport	. 24
6.6	Exp	osure Pathways	. 24
7.0	QUALI	ATIVE RISK ASSESSMENT	. 25
7.1	Pote	ntial Human Health Risks	. 25
7.2	Pote	ntial Ecological Risks	. 25
8.0	REME	DIAL ALTERNATIVES EVALUATION	. 26
8.1	Rem	nedial Action Objectives	. 26
8.2	Futu	re Land Use Evaluation	. 27
8.3	Alter	natives Evaluation	. 28
8	.3.1	No Further Action	
8	.3.2	IRM and Implementation of a Site Management Plan	. 29
8	.3.3	Restricted Commercial Use Alternative and Implementation of a Site Management Plan	. 31
8	.3.4	Unrestricted Use Alternative	. 32
8.4	Rec	ommended Remedial Measure	. 34
9.0	0.0 RI/AA/IRM SUMMARY AND CONCLUSIONS		. 35
10.0	.0 REFERENCES		. 36

ii

List of Tables

- Table 4-1ASoil/Fill Analytical Results
- Table 4-1B
 Soil/Fill Analytical Results (PCBs Only)
- Table 4-2January 2010 Supplemental RI Sample Results
- Table 4-3Groundwater Analytical Results
- Table 5-1 IRM Verification Sample Results
- Table 8-1
 Cost Estimate for IRM & Implementation of a Site Management Plan
- Table 8-2
 Cost Estimate for Restricted Commercial Use & Implementation of a Site Management Plan
- Table 8-3 Cost Estimate for Unrestricted Use
- Table 8-4
 Summary of Remedial Cost Alternatives

List of Figures

- Figure 1-1 Site Vicinity Map
- Figure 3-1 RI Sampling Locations
- Figure 5-1 Excavation Grid Plan and Limits of IRM Excavation
- Figure 5-2 Summary of IRM Verification

List of Appendices

- Appendix A Sheet 1 Dale Road Expansion Sampling Results (December 2007 Investigation)
- Appendix B Field Borehole Logs, Monitoring Well Completion Details & Well Development Records
- Appendix C RI / IRM Analytical Laboratory Reports
- Appendix D Data Usability Summary Report (DUSR)
- Appendix E IRM Photo Log

1.0 INTRODUCTION

This Remedial Investigation / Alternatives Analysis / Interim Remedial Measures (RI/AA/IRM) Report has been prepared on behalf of Niagara Transformer Corporation (NTC) for the 1755 Dale Road Site in the Town of Cheektowaga.

1

NTC executed a Brownfield Cleanup Agreement (BCA) in November 2009 (Site No. C915234) for redevelopment of the Site under the New York State Brownfield Cleanup Program (BCP). The RI / IRM Work Plan was approved by the NYSDEC in January, 2010. The Site consists of a vacant parcel of approximately 3 acres located adjacent to and due east of NTC's main manufacturing complex at 1747 Dale Road (refer to Figure 1-1). Golder performed RI activities in accordance with the Work Plan at the Site in September and October of 2009 with supplemental sampling conducted in January 2010 at the request of the Department. NTC implemented the IRM with oversight from Golder from February 12 through April 21, 2010. NTC is proposing to construct a manufacturing building on a portion of the vacant parcel that can be integrated into their existing manufacturing operations at 1747 Dale Road.

1.1 **Purpose and Scope**

This RI/AA/IRM Report has been prepared on behalf of NTC to describe and present the findings of the 2009-2010 RI and subsequent IRM activities and evaluates the IRM as the final remedial alternative for the Site.

The Report is structured as follows:

- Section 2 summarizes the soil and groundwater investigation approach;
- Section 3 describes the physical characteristics of the Site as they relate to the investigation findings;
- Section 4 presents the investigation results by media;
- Section 5 summarizes the IRM activities;
- Section 6 describes the fate and transport of the constituents of primary concern (COPCs);
- Section 7 presents the qualitative risk assessment;
- Section 8 presents and evaluation of remedial alternatives for the Site;
- Section 9 presents the RI/AA/IRM summary and conclusions; and
- Section 10 contains a list of references for this report.

1.2 Background

1.2.1 Site Description

The property is approximately 3 acres in size and located at 1755 Dale Road in the Town of Cheektowaga, New York (Erie County S.B.L No. 102.3-3-6.1). The site is located due south of the intersection of Anderson and Dale Roads.

The parcel was purchased by NTC in 1983 and has remained vacant since that time. To the knowledge and understanding of NTC, the parcel was vacant and unused as far back as the late 1950s and prior to that contained several rail sidings and may have served as a contractor's storage yard or scrap yard.

The southern half of the Site is mostly wooded with dense undergrowth (shrubs and woody vegetation) while the northern half is mostly open grass land. The Site is directly bordered by Dale Road to the north, NTC's manufacturing complex to the west (1747 Dale Rd.), CSX Railroad to the south, and an undeveloped 1.5 acre parcel of land to the east also owned by NTC.

1.2.2 Summary of Previous Investigations

A detailed description and summary of the previous investigations conducted at the Site is presented in Section 1.3 of the Remedial Investigation and Interim Remedial Measures Work Plan prepared by Golder Associates, Inc. in August 2009 (Ref. 1). In summary, A Phase I Environmental Site Assessment (ESA) was completed and three previous limited surface and subsurface soil investigations were conducted on the Site related to both the potential Site cleanup itself and remedial activities performed in conjunction with the adjacent parcel, 1747 Dale Road, under a NYSDEC State superfund cleanup. The three previous investigations were limited to characterization of PCBs in the soil/fill and groundwater based on the known impacts of this contaminant on the adjacent parcel.

1.2.2.1 Phase I ESA

A Phase I ESA was completed by Golder Associates Inc. in August 2009 (Ref. 2) in conjunction with preparation of the BCP Application. The Phase I ESA identified Recognized Environmental Conditions (RECs) and de minimis conditions found during the conduct of the ESA are listed below:

- The known presence of PCB contaminated surficial and subsurface soils on the Site.
- The potential for hazardous materials to be released from approximately eight 55-gallon drums located on the Site. The contents of the drums are unknown and it was not determined that the contents of any of the drums have been released. The assessment was based on the physical condition of the drums and the determination that liquid was present in 2 or 3 of the drums.

The following de minimis conditions in connection with the Site were identified in the Phase I ESA:

A light oily sheen was observed in the standing water observed adjacent to and surrounding the decommissioned oil tank (from former 1747 Dale Rd, tank farm). NTC stated that the NYSDEC contractor had cleaned the tank several times prior to relocation on the Site and it did not contain mineral oil with PCBs prior to being taken out of service.

1.2.2.2 Soil Investigations – PCB Assessments

1996/1997 Remediation Staging Area IRM

As previously noted, in conjunction with the 1747 Dale Road NTC Manufacturing Site remediation conducted in 1996 and 1997, the remediation contractor was granted permission to use portions of the Site for staging and storage of equipment and placement of field/office trailers.

Section 2.5.9 of the December 1997 "Remediation Summary Report" prepared by Ecology and Environment (Ref. 3) describes the finding of PCBs in Site soils prior to mobilization of the remedial contractor. The report indicates that "the majority of PCB contamination was found on the west side of the staging area and on the slope immediately adjacent to the NTC driveway". Based on this data the NYSDEC directed the remedial contractor to place geotextile and stone down prior to occupying the Site. At the conclusion of the 1747 Dale Road remediation project, the remedial contractor was required to perform an IRM for the "staging area" on the Site to remove PCB-impacted stone and soils. Specifically, it was documented that 1,330.6 tons of hazardous waste were removed from the staging area from depths ranging between 6 to 18 inches below grade in grids located on the western slope and within the staging area. It was noted that verification sampling conducted after the soil excavation/removal confirmed the presence of PCBs in at concentrations less than 10 parts per million (ppm) in surface and shallow subsurface soils on the Site. It was stated that removal of these remaining impacted soils was not practicable based on the industrial site setting, access issues and economic considerations.

2004 Staging Area IRM

In 2004, a supplemental IRM was conducted on the 1747 Dale Road Manufacturing Site to mitigate onsite and off-site storm water system recontamination issues. As part of this IRM, the remediation contractor was allowed to perform equipment wash down and staging on a portion of the Site (estimated to be approximately a quarter acre) located east of the NTC south parking area and near the western boundary of the Site. Pre-mobilization sampling of the proposed staging area was performed by Ecology and Environment (E & E) on behalf of the NYSDEC and indicated elevated PCB concentrations at some of the sampling locations (in particular SP-6, SP-7 and SP-8). Immediately following sampling, the upper six inches of the soil in the staging area was stockpiled and a decontamination pad and stockpile liner were installed prior to receipt of the elevated results from the pre-mobilization samples. Subsequently the stockpiled soil was covered and fenced to limit access.

Prior to demobilization by the IRM remedial contractor, additional sampling of the staging area was conducted by E & E to more fully characterize the lateral and vertical limits of PCB contamination identified during the pre-mobilization of the staging area. An additional 25 soil samples were collected via manual auger and excavator test pits around the perimeter and within the footprint of the soil stockpile area. Based on the results obtained from this sampling program, the IRM contractor was directed by the NYSDEC to remove soils to depths ranging from 24 to 48 inches bgs beneath the former stockpile area.

A total of 407 tons of soil were excavated and disposed of from the Site as a result of this action (including the original soil stockpile material). A detailed description of the sampling performed, data summaries and excavation work performed under this IRM were included in Section 6.4 (East Yard Excavation) from the January 2005 "Interim Remedial Measure Summary Report" prepared by Ecology and Environment (Ref. 4).

4

2007 NTC Soil Investigation

In November and December of 2007, NTC performed a comprehensive grid based shallow soil/fill sampling program on the Site in order to characterize surface and selected subsurface soils for PCB impacts in anticipation of the potential redevelopment of the Site for additional manufacturing capacity in support of their current operations at 1747 Dale Road.

The investigation was performed by Benchmark Environmental Engineering and Science, PLLC on behalf of NTC and consisted of:

- Collection of forty (40) shallow (0-6 inches bgs) soil samples on a fifty foot grid interval spacing across the parcel (with the exception of the northwest and northeast corners of the Site) and analysis for total PCBs; and
- Advancement of seven (7) deeper (0-6 feet bgs) soil borings and collection of soil composite samples from each boring for analysis of total PCBs. The seven soil boring locations were selected primarily to assess subsurface soil conditions for foundation design purposes and were located in areas projected for excavation for building footers. Samples collected from these seven locations were analyzed for total PCBs, however as the samples were composited across the entire six foot boring depth, assignment of any detected PCB impacts to a particular depth is not feasible based on the sample collection method.

The results of the soil sampling investigation were transmitted to the NYSDEC and indicated that PCBs were detected at concentrations exceeding the 6 NYCRR Part 375 PCB SCOs for restricted residential or commercial uses (i.e., greater than 1 ppm) or restricted industrial use of the parcel (i.e., greater than 25 ppm). In particular, concentrations of PCBs at Surface Sample Locations 42 and 43 (approximately 20 feet east of the Site's western property line) were 1,060 and 443 ppm, respectively. These locations are located south of the staging area and sample locations associated with the 2004 IRM project. Seven other sample locations in the southwestern and central portions of the Site exceeded the Part 375 restricted industrial SCO. Lower detected concentrations (i.e., typically less than 5 ppm), however, were found to be widespread across the northern half of the Site. In addition to the soil/fill samples collected and analyzed, one 1-inch temporary shallow monitoring well (PZ-01) was installed and sampled. One sample was collected from this location and analyzed for total PCBs and the result reported a concentration of 6.76 µg/L (Arochlor 1260).

This investigation was conducted specifically to assess PCB impacts in soils as NTC evaluated options for a potential manufacturing expansion on the Site at that time. NTC explored the potential for entering

the NYSDEC BCP program at that time, however due to a variety of programmatic and economic reasons did not pursue further. No additional investigations prior to the BCP RI activities were subsequently performed on the Site.

1.3 Constituents of Primary Concern (COPCs)

Based on historic investigations, the Constituent of Primary Concern (COPCs) in the soil/fill and / or groundwater were identified to be PCBs. The Remedial Investigation approach described in the RI and IRM Work Plan (Ref. 4) focused on these COPCs as well as collecting data on volatile organic compounds (VOCs), semi volatile organic compounds (SVOCs), pesticides, heavy metals and cyanide based on the historic presence on the Site of railroads and in part for storage of construction materials and as a scrap yard.

2.0 INVESTIGATION APPROACH

The Remedial Investigation focused on identifying contaminants in soil/fill and groundwater that had not been characterized through the previous soil/fill investigations (in particular the comprehensive 2007 shallow PCB soil/fill investigation) or more fully characterize areas of the site for PCBs that were not addressed by previous investigations.

The RI supplemented the surface soil/fill PCB data for areas in the northwest and northeast portions of the Site where data gaps from the 2007 investigation existed. A total of four (4) additional surface soil locations were collected in these areas. In addition, ten (10) subsurface soil borings were advanced and five (5) groundwater monitoring wells were installed across the entire site for collection/characterization of representative subsurface soil/fill and groundwater samples for the RI.

Subsequent to receiving NYSDEC approval of the proposed sampling locations and testing parameters for the RI Work Plan, Golder performed the RI activities in September and October of 2009. The major components of the completed RI tasks are described in detail below. Remedial Investigation sample and groundwater monitoring well locations are illustrated on Figure 3-1. Any deviations from the proposed samples and analyses are described in the following sections.

2.1 Field Investigation Activities

2.1.1 Soil/Fill Investigation

As previously noted, the surface soil sampling program performed by NTC on the Site in 2007 provided an extensive characterization of PCB concentrations in the upper six inches of soil/fill. However, no samples were collected at that time from the northeast and northwest corners of the Site (refer to Sheet 1, "Dale Road Expansion Sampling Results, Dec. 2007 in Appendix A). Therefore, to more fully characterize the potential PCB impacts for the entire site, four additional surface soil samples (0-6 inches below grade) were collected and analyzed for total PCBs at the locations designated as SS-1 through SS-4 on Figure 3-1. The samples were collected using a stainless steel spade, which was decontaminated between each sample location.

A soil boring program was also implemented to thoroughly characterize the subsurface soil/fill and groundwater media, and to better characterize the overall site soil/fill overburden material for other potential contaminants of concern. The subsurface soil sampling program consisted of a total of ten (10) soil samples (B-1 through B-10) at evenly spaced intervals across the Site. Borehole locations as depicted on Figure 3-1 were adjusted in the field based on site conditions, accessibility, NYSDEC preferences, or other logistical concerns. In general, the final boring locations were nearly identical to those propose in the RI and IRM Work Plan.

A drilling rig using direct push drilling methods via a Geoprobe® equipped with a concrete core barrel was used to advance the five subsurface soil borings that were not completed as monitoring wells (B-2, B-3,

B-4, B-7 and B-8) through the soil/fill to a maximum of eight feet into the underlying native soil. Native soil material in the area(s) of investigation was encountered in each boring between 2-4 feet below ground surface (bgs). The drilling method used a 1.5-inch diameter, 4-foot core sampler with a dedicated PVC sleeve to advance and retrieve soil core samples at four foot intervals. Visual or olfactory contaminant impacts were not noted in any of the borings and saturated conditions were also not encountered; therefore, the total depth of the borings did not exceed the proposed eight feet.

Upon retrieval of each soil/fill core, the soil/fill samples were screened for total organic vapors using a photo-ionization detector (PID). The organic vapor measurements were recorded and the soil/fill material described on boring logs by a Golder field representative (provided in Appendix B). The recovered soils were characterized by visual observation in accordance with ASTM Method D2488, Standard Practice for Description and Identification of Soils (Visual-Manual Procedure). Subsurface soil samples were collected for chemical analysis at the boring locations. The depth from which samples were collected was determined based on screening results of visual and olfactory observations and PID measurements. Samples were collected from the discrete depth interval that displayed the greatest evidence of contamination, if any. If there were no discernable differences across the entire boring depth based on the visual, olfactory or PID screening methods, the default sample collection approach consisted of collecting a composite from the 0 to 4 feet bgs strata.

The boring locations that were advanced only for soil/fill sampling purposes (i.e., Borings B-1, B-2, B-3, B-4, B-7 and B-8) were grouted from total depth to ground level with a grout mixture of 95%cement and 5% bentonite.

2.1.2 Soil/Fill Sample Analyses

Surface soil/fill samples were collected using a stainless steel spade. Subsurface soil/fill samples were collected using a 1.5-inch diameter, 4-foot core sampler with a dedicated PVC sleeve. All non-dedicated, downhole sampling equipment was decontaminated between soil boring locations in accordance with accepted drilling practices using a high-pressure hot water "steam" cleaner, or scrubbed using Alconox® and a hot water followed by a clean potable water rinse. Representative soil samples were placed in precleaned laboratory-provided sample bottles, cooled to 4°C in the field, and transported under chain-of-custody command to Test America, located in Amherst, NY, a New York State Department of Health (NYSDOH) ELAP-certified analytical laboratory. Subsurface soil/fill samples were analyzed for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), target compound list (TCL) pesticides, PCBs, target analyte list (TAL) metals, and cyanide. Soil samples were collected from the 0'-4' bgs interval and analyzed for PCB content in borings B-1 and B-9. Prior to commencement of further borings, Mr. David Locey of the NYSDEC requested that the remaining samples from the borings be split into discrete 0'-2' bgs and 2'-4' bgs intervals and analyzed for PCB content in borings. Therefore, soil samples were collected from the 0'-2' bgs and 2'-4' bgs intervals and analyzed for PCB content in borings.

B-7 and B-8. Because sample recovery at boring location B-10 was insufficient to allow for a separate 2'-4' bgs interval sample, a 0'-2' bgs sample and a 0'-4' bgs sample was collected.

In December 2009, as part of the final RI/IRM Work Plan approval process, the NYSDEC requested the collection and analysis for PCBs of supplemental RI surface soil/fill samples both on and off the Site in order to address potential data gaps. On January 8, 2010, two surface soil/fill samples were collected east of Boring B-6/MW-3 on-Site and three surface soil/fill samples were collected off-site on the 1747 Dale Road parcel just west of the property line and Boring B-7. The sample locations are also presented on Figure 3-1.

All samples were collected and analyzed in accordance with USEPA SW-846 methodology, while the laboratory is required to furnish an equivalent ASP Category B deliverables package to facilitate data evaluation and preparation of a DUSR by a third party validation expert. Accordingly, the samples were analyzed by an NYSDOH ELAP-approved laboratory certified to perform CLP work.

2.1.3 Groundwater Investigation

Golder personnel provided oversight for the installation of five new groundwater monitoring wells (i.e. MW-1 through MW-5) from September 17 through September 21, 2009 to investigate groundwater flow and quality. Figure 3-1 shows the locations of the monitoring wells. Monitoring well installation, well development, and groundwater sample collection are discussed in the following sections.

2.1.4 Monitoring Well Installation

Monitoring wells were installed in accordance with the approved RI/IRM Work Plan. Monitoring Well construction details are presented on the Field Borehole Logs in Appendix B.

Subsequent to borehole advancement and soil/fill sampling at boring locations B-1, B-5, B-6, B-9 and B-10, temporary monitoring wells were installed in each of the boreholes (Monitoring Wells 1, 2, 3, 4, and 5, respectively). Due to the apparent northward slope of the subsurface groundwater table, wells were installed to a greater depth at the northern end of the Site, and became shallower towards the southern end of the Site. As such, Monitoring Well 1 (MW-1) was installed to a depth of 20' bgs; MW-2 and MW-3 to a depth of 16' bgs, and MW-4 and MW-5 to a depth of 14' bgs.

Shallow overburden well borings were advanced using 4.25-inch I.D. hollow stem augers (HSA). A 2-inch diameter, 2-foot long split spoon sampler was advanced ahead of the auger string with a standard 140-pound hammer. Recovered samples were examined by qualified Golder personnel and characterized in accordance with ASTM Method D2488, Standard Practice for Description and Identification of Soils (Visual-Manual Procedure), scanned for total volatile organic vapors with a calibrated PID equipped with a 10.6 eV lamp, and characterized for impacts via visual and/or olfactory observations. All non-dedicated drilling tools and equipment were decontaminated between boring locations using potable tap water and a phosphate-free detergent (i.e., Alconox).

z:\projects\093-89144-02 ntc bcp services\reports\ri-irm-aar report\final ri-aa-irm report aug 2010\final ri-aa-irm report 8-19-10.docx

Each monitoring well was constructed of 2-inch I.D. flush-joint Schedule 40 PVC solid riser and machine slotted screen (0.010-inch slot size). The monitoring well screen measured approximately 10 feet in length in MW-1, MW-2 and MW-3, and 7 feet in length in MW-4 and MW-5. Approximately 6 inches of silica sand was placed at the bottom of each boring as a base for the well screen and as part of the sand pack. The well screen and attached riser were placed within the borehole on top of the 6-inch sand layer and the remainder of the sand pack was installed within the borehole annulus to a level of about 3 feet above the top of the well screen. A bentonite seal (2 feet thick) was installed immediately above the sand layer. The bentonite seal was constructed with 3/8-inch bentonite pellets or medium bentonite chips and allowed to hydrate sufficiently to mitigate the potential for down-hole grout contamination. The top of the well riser pipes extended approximately 3 feet above grade and were fitted with a lockable J-plug.

2.1.5 Groundwater Sample Collection

Newly-installed monitoring wells were developed prior to sampling to remove residual sediments and ensure hydraulic connection within the water-bearing zone. The development procedure required purging of the groundwater and periodical surging of the groundwater in the well to loosen and remove suspended fines from the well screen and sandpack. Measurements of the water volume removed and water quality parameters including temperature, pH, conductivity, and turbidity were recorded at regular intervals throughout the development process. Development continued until water quality measurements stabilized to within 10 percent of the previous measurement.

Originally, groundwater was to be collected from each well using low flow sampling techniques (typically less than 0.1 L/min) via dedicated plastic flex tubing and a peristaltic pump. However, it was determined that low-flow sampling was not feasible due to insufficient groundwater recharge rate. Therefore, new and dedicated disposable HDPE bailers were used to collect the groundwater samples.

Field measurements for pH, specific conductivity, temperature, turbidity and water level as well as visual and olfactory field observations were periodically recorded and monitored for stabilization during well purging prior to sampling. Copies of these well development records are provided in Appendix B. Purging was considered complete when pH, specific conductivity and temperature stabilize. Stability is defined as variation of between field measurements of 10 percent or less and no overall upward or downward trend in the measurements. Turbidity was determined by visual inspection of the purge water. The purge water remained slightly turbid with a brown to gray color with little variation in appearance throughout purging. Turbidity was therefore not considered as an indicator in the completion of purging. It should be noted that each sample collected was analyzed by the laboratory for turbidity.

Prior to and immediately following collection of groundwater samples, field measurements for pH, specific conductivity, temperature, turbidity and water level as well as visual and olfactory field observations were recorded. All groundwater samples were collected in the pre-cleaned and pre-preserved laboratory sample bottles in accordance with the RI/IRM Work Plan protocols for analyses.

z:\projects\093-89144-02 ntc bcp services\reports\ri-irm-aar report\final ri-aa-irm report aug 2010\final ri-aa-irm report 8-19-10.docx

Subsequent to sample collection all groundwater samples were placed on ice and shipped under chain of custody to the selected analytical laboratory.

2.1.6 Groundwater Sample Analyses

Groundwater samples were collected from MW-1, MW-2, and MW-4. Groundwater samples were not collected from MW-3 and MW-5, as those wells were dry at the time of sampling. Collected groundwater samples were analyzed for VOCs, SVOCs, TCL Pesticides, PCBs, TAL metals, and cyanide. All samples were collected and analyzed in accordance with USEPA SW-846 methodology, while the laboratory is required to furnish an equivalent ASP Category B deliverables package to facilitate data evaluation and preparation of a DUSR by a third party validation expert. Accordingly, the samples were analyzed by an NYSDOH ELAP-approved laboratory certified to perform CLP work.

2.1.7 Sediment and Surface Water Sample Collection and Analysis

In December 2009, as part of the final RI/IRM Work Plan approval process, the NYSDEC requested the collection and analysis for PCBs of supplemental RI off-site drainage ditch surface water and sediment samples in order to better assess potential off-site PCB impacts from run-off. On January 8, 2010, three surface water and two sediment samples were collected from the water drainage ditch located immediately south of the Site property line. The SW-1/SED-1 location was selected to be representative of upgradient off-site drainage, the SW-2/SED-2 location was selected to be representative of Site runoff and the SW-3/SED-3 location was selected to be representative of the Site. A sediment sample from the SED-3 location was not obtained due to the lack of sediment at this location (concrete construction of the ditch was surmised to have enhanced scouring here). The sample locations are also presented on Figure 3-1.

2.1.8 Field Specific Quality Assurance/Quality Control Sampling

In addition to the soil/fill and groundwater samples described above, field-specific quality Assurance/Quality Control (QA/QC) samples were collected and analyzed to confirm the reliability of the reported data as described in the QAPP and to support the required third-party data usability assessment. Site specific QA/QC samples included one trip blank (accompanying VOC samples only), one matrix spike (MS), one matrix spike duplicate (MSD), and one field duplicate sample.

2.2 Site Mapping

Figure 3-1 shows the relevant features of the Site, monitoring well and sample locations, and final remedial excavation boundaries. Surface soil/fill and boring locations were field located based on measurements from known benchmarks (e.g., rebar, pins, etc.) established during the 2007 boundary survey of the Site. Final monitoring well locations as depicted on Figure 3-1 and elevations were surveyed after installation.

The Site Map (Figure 3-1) was prepared by a New York State licensed surveyor. The surveyor established the horizontal and vertical elevations using the New York State Plane Coordinate System and most recent vertical datum. Elevations of the ground surface and top of PVC riser were measured and recorded for each monitoring well.

3.0 SITE PHYSICAL CHARACTERISTICS

The physical characteristics of the Site observed during the RI are described in the following sections.

3.1 Site Topography and Surface Features

The Site generally rectangular is shape with the long axis of the parcel oriented along the North-South axis. It slopes slightly to the southwest with limited distinguishable Site features. The Site is vacant with no current structures. The northern half of the site's surface is mainly covered by grassy vegetation with limited patches of stone and soil. The southern half of the site is mostly wooded or covered by dense brush.

3.2 Geology and Hydrogeology

3.2.1 Overburden

Soil boring logs collected during the RI indicate that the majority of the Site is overlain by a two to three feet-thick fill layer that is shallower on the northern half and increases in thickness to the south. Below the fill, the native soils composed of varying layers of either silty clays or fine sand strata. The silty clay or sand units transition generally below 5 feet bgs to a stiff or hard clay unit that is relatively consistent at these depths across the site. The clay layer is characterized as hard and dry with occasional to frequent rock clasts and trace amounts of silt within the clay matrix.

3.2.2 Bedrock

The Site is situated over the Onondaga Formation of the Middle Devonian Series based on a review of the bedrock geologic map of Erie County. The Onondaga limestone is comprised of a varying texture from coarse to very finely crystalline limestone with a dark gray to tan color and chert and fossils within. The unit has an approximate thickness of 110 to 160 feet. Structurally, the bedrock formations strike in an east-west direction and exhibit a regional dip that approximates 40 feet per mile (3 to 5 degrees) toward the south and southwest. As a result of this dip, the older Onondaga limestone outcrops or subcrops north of the Hamilton Group. An intersecting, orthogonal patter of fractures and joint sets are common throughout the bedrock strata. The surficial geomorphology of the bedrock strata was modified by period subaerial erosion and continental glaciation. Based on geotechnical borings performed for predevelopment design purposes, bedrock is known to be 40 feet or greater bgs and was not encountered during RI soil boring advancement.

3.2.3 Hydrogeology

Based on historical groundwater potentiometric data collected at both the 1747 Dale Road parcel and the ROCO Ltd. site located at 1746 Dale Road to the north/northwest of the Site, the general direction of groundwater flow in the vicinity of the Site is generally known to be to the south and south east. This historical data correlates with groundwater elevation measurements collected from RI monitoring wells MW-1, MW-2 and MW-4 during well development and sampling activities on October 8, 2009. The

groundwater elevation measured at MW-1 (located in the northwest corner of the Site) was 652.37 and the groundwater elevation measured at MW-4 (located in the southwest corner of the Site) was 639.72. This is an elevation differential of approximately 12.6 feet from the north to the south of the Site.

A review of historical groundwater elevation information from the adjacent 1747 Dale Road parcel to the west of the Site indicated that the groundwater depth is highly variable on a seasonable basis and the first water bearing zone (i.e., water table) has ranged from less than 0.1 to greater than 12 feet bgs. The most recent semiannual groundwater monitoring event was performed in May 2009 (Ecology & Environment) and recorded groundwater depths on the 1747 Dale Road parcel ranging between 3.7 and 4.7 feet bgs.

4.0 INVESTIGATION REULSTS BY MEDIA

The following sections discuss the analytical results of the Remedial Investigation. Tables 4-1A and 4-1B, 4-2 and 4-3 summarize the soil/fill, sediment/surface water and groundwater analytical data, respectively. Analytical laboratory data reports are included in Appendix C. Figure 3-1 presents the soil/fill, sediment, surface water sampling and groundwater monitoring locations.

4.1 Soil/Fill

Tables 4-1A (volatile organic compounds, semi-volatile organic compounds, pesticides/herbicides and metals) and 4-1B (PCBs) present a comparison of the detected soil/fill parameters to Restricted Industrial and Commercial Use Soil Cleanup Objectives (SCOs) contained in 6NYCRR Part 375-6.4. Although the Site is intended to be used for industrial purposes, evaluating a more restricted-use scenario is a requirement of the BCP. Soil/fill analytical data compared to Part 375 Restricted Commercial SCOs is further discussed in Sections 8.3.2 and 8.3.3. Sample results are described below according to contaminant class.

4.1.1 Volatile Organic Compounds

The majority of the analyzed volatile organic compounds (VOCs) were reported as non-detectable or at trace (estimated) concentrations below the sample reporting limits. Detected VOC sample concentrations did not exceed Part 375 Restricted Industrial or Commercial SCOs.

4.1.2 Semi-Volatile Organic Compounds

As presented in Table 4-1A, the majority of the samples analyzed had semi-volatile organic compounds (SVOCs) reported as non-detectable or at trace (estimated) concentrations below the sample reporting limit. All but two sample locations had SVOCs concentrations below Part 375 Restricted Industrial or Commercial SCOs. The only constituent detected above the SCOs was one polycyclic aromatic hydrocarbon (PAH) [i.e., benzo(a)pyrene] in samples B-2 (1.4 PPM) and B-7 (1.9 PPM). Based on the lack of elevated PID readings, visual and/or olfactory evidence of contamination, the slightly elevated SVOC appears to be associated with the historic fill, which is common for developed, industrialized areas.

4.1.3 Metals

Metals detected in the soil/fill samples did not exceed Part 375 Restricted Industrial or Commercial SCOs at any of the sampling locations.

4.1.4 Pesticides, Herbicides and Cyanide

Pesticides or cyanide detected in the soil/fill samples did not exceed the Part 375 Restricted Industrial or Commercial SCOs at any of the sampling locations. Herbicides were not detected in any of the samples.

4.1.5 PCBs

Soil Borings

Table 4-1B summarizes the PCB sample analysis data for all soil boring locations. PCBs did not exceed Part 375 Restricted Industrial SCO of 25 ppm in any soil/fill boring samples. At boring locations B-3(0-2 ft) [1.7 ppm], B-5 (0-2 and 2-4 ft) [10 and 3.5 ppm], B-6 (0-2) [2.2 ppm] and B-7 (0-2 ft) [22 ppm] the soil/fill exceeded the Restricted Commercial SCO of 1 ppm.

Surface Soil/Fill Samples

Surface soil analytical results are summarized in Tables 4-1B and 4-2 (Supplemental RI Sample Results). The on-Site surface soil/fill samples did not exceed the Part 375 Restricted Industrial SCOs for PCBs. Three on-Site surface soil/fill locations (SS-3 [4.5 ppm], SS-5 [6 ppm] and SS-6 [4.1 ppm]) exceeded the Restricted Commercial SCO. The off-site surface soil/fill sample SS-7 [49 ppm] exceeded the Restricted Industrial SCOs for PCBs. Off-Site surface soil/fill samples SS-8 [1.2 ppm] and SS-9 [1.3 ppm] exceeded the Restricted Commercial SCO.

Surface Water and Sediment

Surface water and sediment analytical results are summarized in Table 4-2 (January 2010 Supplemental RI Sample Results). PCBs were not detected in the three off-site surface water samples collected from the drainage ditch adjacent to the south property line. PCBs were detected in both sediment samples collected from the same ditch. At SED-1 (upstream) the detected concentration was 0.24 ppm and at SED-2 the detected concentration was 0.38 ppm.

4.1.6 Summary

As described above, concentrations of VOCs, SVOCs, metals, pesticides, herbicides, and cyanide were below Part 375 Restricted Industrial and Commercial SCOs with the exception of benzo(a)pyrene which was detected at sample locations B-2 and B-7 slightly above the respective Part 375 SCOs. Sample B-7 was collected from a depth of 0-4 ft, this sample location was within the IRM excavation area where the fill was excavated to a depth of approximately 1.5 ft. It is therefore likely that some or the entire fill exhibiting elevated PAHs in the B-7 sample location may have been removed with the fill excavated from this grid area. PAHs tend to be ubiquitous in the environment, as they are produced from incomplete combustion of fossil fuels and other organic fuel sources, and are commonly found in historic fill and industrialized environments. Table 4-1A provides a summary of all detected compounds and all analytical data reports are provided in Appendix C.

PCBs were not found at concentrations exceeding the Part 375 Restricted Industrial SCO in any of the on-Site investigation locations outside of the IRM excavated grid areas. PCBs were detected above the Part 375 Commercial SCO in four boring samples (primarily from 0-2 feet bgs) and three surface sample locations distributed across the Site. Tables 4-1B and 4-2 provide a summary of all detected compounds and all analytical data reports are provided in Appendix C. One off-site surface sample (SS-7) was

detected above the Restricted SCO, however the adjacent surface samples directly south and at a lower elevation with respect to this location were found to have concentrations of 1.2 and 1.3 ppm respectively. This was determined to be an anomalous result and inconsistent with the data collected at adjacent sampling locations.

4.2 Groundwater

Table 4-3 presents a comparison of the detected groundwater parameters to the Class GA Groundwater Quality Standards (GWQS) per NYSDEC Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations (June 1988). The sampling results for groundwater monitoring completed in the December 2007 Investigation for Piezometer PZ-01 and the BCP RI October 2009 for monitoring wells MW-1, MW-2 and MW-4 are discussed in the following sections. Samples were not obtained or analyzed from MW-3 or MW-5, as the wells were repeatedly found to be dry during and subsequent to the initial sampling event.

4.2.1 Volatile Organic Compounds

VOCs were not detected in any of the groundwater samples collected from monitoring wells MW-1, MW-2 or MW-4.

4.2.2 Semi-Volatile Organic Compounds

With the exception of three compounds, the majority of samples analyzed for SVOCs were not detected. All SVOC detections reported were at trace (estimated) concentrations below the sample reporting limit. None of the samples exceeded the GWQS.

4.2.3 Metals

Metals detected at concentrations above GWQS were limited to naturally-occurring metals typically detected in this concentration range , including iron, manganese, and sodium.

4.2.4 Pesticides, Herbicides and Cyanide

Herbicides or pesticides were not detected above GWQS in any of the samples. Cyanide was not detected in the groundwater samples analyzed.

4.2.5 PCBs

PCBs were detected at a concentration of 6.7 ppb in temporary Piezometer PZ-01 which was installed at boring location SB-66 during the December 2007 Investigation. Although this concentration exceeds the GWQS for PCBs (i.e., 0.09 ug/L), the construction and installation features of this piezometer combined with the additional data collected during the 2007 Investigation and BCP RI indicate that this result is most likely anomalous and not representative of groundwater at this location. Specifically, it should be noted that PCBs were not detected in the 0-6 foot composite soil sample collection at this boring location prior to the installation of the piezometer in 2007. Furthermore, as the piezometer was intended as a temporary

monitoring location, it was installed directly into the completed soil boring and did not incorporate a sand pack or bentonite seal that would typically be used on a monitoring well designed to prevent downhole or sediment intrusion into the water column, which is the suspected source of the PCBs detected in this piezometer. As part of the BCP RI, monitoring well MW-4 was installed approximately 35 feet northwest of the PZ-01 location. PCBs were not detected in samples collected from MW-4 in October 2005 nor were they detected in the remaining RI monitoring wells (MW-1 and MW-2) where samples were obtained, All RI monitoring wells incorporated ten feet of continuous well screen across the shallow aquifer and were installed with a sand filter pack and bentonite seals.

4.2.6 Summary

As described above and in Table 4-3, concentrations of VOCs, SVOCs, pesticides, herbicides, cyanide, and PCBs were below GWQS with the exception of naturally-occurring metals, including iron, manganese, and sodium.

4.3 Data Usability Summary

In accordance with the RI Work Plan, the laboratory analytical data from this investigation was independently assessed and, as required, submitted for independent review. Ms. Judy Harry of Data Validation Services located in North Creek, New York performed the data usability summary assessment, which involved a review of the summary form information and sample raw data, and a limited review of associated QC raw data. Specifically, the following items were reviewed:

- Laboratory Narrative Discussion
- Custody Documentation
- Holding Times
- Surrogate and Internal Standard Recoveries
- Matrix Spike Recoveries/Duplicate Recoveries
- Field Duplicate Correlation
- Preparation/Calibration Blanks
- Control Spike/Laboratory Control Samples
- Instrumental IDLs
- Calibration/CRI/CRA Standards
- ICP Interference Check Standards
- ICP Serial Dilution Correlations
- Sample Results Verification

The Data Usability Summary Report (DUSR) was conducted using guidance from the USEPA Region 2 validation Standard Operating Procedures, the USEPA National Functional Guidelines for Data Review, as well as professional judgment.

In summary, most sample results are usable as reported, or with minor qualification. However, the following issues were noted:

- Results for one volatile analyte were rejected in two soil samples
- Reporting limits are elevated in most of the semi-volatile soil samples due to excessive dilution
- Many of the pesticide reported detections were qualified and are suspect as being the result of interferences from the Aroclor constituents.

Any additional qualifications of the data have been incorporated to the summary data tables. The DUSR is included in Appendix D.

5.0 INTERIM REMEDIAL MEASURES (IRM)

An IRM was implemented at the Niagara Transformer 1755 Dale Road Site subsequent to completion of RI activities. Details of the IRM approach are described in the August 2009 RI/IRM Work Plan (Ref.1). Based on the nature and extent of contamination as indicated by prior investigations (primarily based on the PCB impacts identified as a result of the 2007 NTC Soil Investigation) and the planned redevelopment of the subject property, the IRM Work Plan called for source removal via excavation, with off-site disposal of impacted soil. The IRM Work Plan was advertised with the Brownfield Cleanup Program Application for the Site in October 2009. The Work Plan was approved in January 2010.

The IRM work was implemented by Golder Associates Inc. on behalf of the Site owner, Niagara Transformer Corp (NTC). Excavation and associated remedial activities were contracted by NTC to Trec Environmental, Inc. Remediation was initiated on February 12, 2010 and was substantially completed by April 21, 2010. Impacted soil that exceeded the NYSDEC Part 375 restricted industrial SCOs for total poly-chlorinated biphenyls (PCBs) was identified in thirteen (13) excavation grids that were approximately 50 ft. by 50 ft. in area. Refer to Figure 5-1 for a delineation of the excavation grid numbering system. These soils were further characterized as hazardous (i.e., greater than 50 ppm for total PCBs) or non-hazardous (i.e., less than 50 ppm for total PBCs) in each of the grids. All soils that exceeded the Part 375 Restricted Industrial SCO were removed by excavation and transported off-site for disposal at CWM Chemical Services, L.L.C. in Model City, NY. Specific elements of the IRM included:

- Clearing and removal of large trees and brush within the planned excavation footprint;
- Excavation and on-site staging of non-hazardous soil grids. Approximately 1,097 tons of non-hazardous soil was temporarily relocated to an onsite spoils lay down area for further testing and characterization prior to disposal off site. Grids identified as numbers 3, 4, 5 and 7 were characterized as non-hazardous based on the 2007 surface soil investigation performed by NTC. Grid 3, 4 and 7 sample results from the 2007 investigation indicated that the surficial soils were technically below the Part 375 Restricted Industrial SCO. However, it was determined that based on their location between other grids that exceeded the SCO that it was impractical to leave the soil/fill from these grids in place. Therefore they were included in the non-hazardous excavation plan.
- Excavation of PCBs hazardous (i.e.> 50 ppm) soil/fill. Approximately 2,075 tons of soil/fill were removed as hazardous waste for off-site disposal. Grids identified as numbers 1, 2, 6, 8, 9, 10, 11, 12 and 13 were characterized as hazardous based on the 2007 surface soil investigation performed by NTC.
- Characterization and off-site disposal of approximately 6 partially crushed and deteriorated drums containing non-hazardous roofing tar residuals;
- Excavation and on-site relocation of large pieces of concrete rubble from several designated grid areas;
- Verification sampling of the sidewalls and floor areas of the excavated. Golder personnel collected 11 sidewall, 20 floor and 4 sidewall verification samples within the excavation limits and from stockpiled soil from the non-hazardous grids;
- Off-site transportation and disposal of hazardous and non-hazardous soil/fill to the CWM Chemical Services TSD Facility, Model City, New York. All trucks were lined with polyethylene liners so as to allow the soil to be fully removed from the truck;

Community dust monitoring program implemented during excavation activities. Golder personnel set up and monitored dust monitoring equipment upwind and downwind of excavation activities throughout the project

In general, each individual grid was excavated using a track mounted John Deere 200C LC excavator with a smooth-edged grading blade attached to the excavator bucket. Excavated soils from hazardous characterized grids were direct-transferred into the bucket of a Volvo L70E bucket loader and transported to haul trucks waiting on site for direct loading.

Excavation of the hazardous soil grids (i.e., grids containing soils greater than 50 ppm for total PCBs) was completed first beginning at the southwest corner of the site at Grid 13, so as to complete excavation activities by working from the south end towards the north end of the site. Such activities consisted of performing an excavation measuring approximately 50 feet by 50 feet by approximately 1 foot deep. Typically the excavations followed the existing ground surface contours so as to adhere to the proposed 1 foot excavation depth at each grid. In Grids 2, 6, 8, 9 and 13 the majority of the excavations were continued from 1 to 2 feet deeper than the proposed 1 foot maximum depth based on either initial floor verification sample results that indicated the Restricted Industrial SCO for PCBs had not been met or was below the SCO but considered to be too close to the threshold. In addition, in Grids 6 and 8 excess mounded fill due to an existing topsoil pile present on the western property line border was also excavated and removed. The base of this topsoil pile extended approximately ten feet into the western edge of Grids 6 and 8 and was excavated until it appeared that no fill was present and native soil was encountered.

Special provisions were undertaken to complete the IRM excavation at Grid 13, located at the southwest corner of the Site. Although the floor verification sample collected after the initial excavation of the grid indicated a PCB concentration of 0.2 ppm, subsequent sampling of all the sidewalls indicated concentrations in excess of the Part 375 Restricted Industrial SCO for PCBs (and in some cases in excess of 50 ppm) and led to multiple rounds of additional excavation on every sidewall. In particular, at the southern perimeter of this grid, a soil berm that remained after the initial grid excavation was completely removed based on high sidewall PCB concentrations. The excavation along the southern property line was completed when the floor of the grid was observed to be native soil material and extended to the edge of the concrete lined drainage ditch for the majority of the 50 foot grid length along the Site property line. The northern, western and eastern edges of the grid were also re- excavated approximately 2 – 4 feet further in each direction to address non-conforming initial verification results. The south berm was excavated and removed approximately ten feet east of the original grid footprint to a point where the berm tapered out to existing surrounding grade. A verification sample taken approximately 80 feet east along the southern property line where the berm again was observed to reemerge beyond the excavation, verified that this soil/fill was well below the IRM SCO.

It should be noted that excavation of Grid 13 to its originally planned western boundary along the property line of the Site could not be performed due to the presence of the 18-inch HDPE storm sewer drainage pipe and associated bedding material. This pipe, which collects all stormwater from the 1747 Dale Road parking and roof drains, appears to have been mistakenly installed across the southwest corner of the BCP parcel during the completion of the 1747 Dale Road remedial activities. Therefore it was determined to leave the pipe bedding and pipe in this area undisturbed which required termination of the grid excavation 2-3 feet east of the original grid layout. The verification soil sample collected from the west wall of Grid 13 resulted in a PCB concentration of 0.37 ppm, therefore further excavation west towards the property line was not necessary as the SCO objective was achieved along this excavation perimeter.

Excavation of the non-hazardous grids (i.e., grids containing soils less than 50 ppm for total PBCs) was performed following removal of the surrounding hazardous soil grids. Typically the excavations followed the existing ground surface contours so as to adhere to the proposed 1 foot excavation depth at each grid. In Grids 3 and 7 the excavations were continued from 1 to 2 feet deeper than the proposed 1 foot maximum depth based on either initial floor verification sample results that indicated the Restricted Industrial SCO for PCBs had not been met or was below but considered to be too close to the cleanup threshold. For example, this approach was applied at Grid 3 where, after three rounds of excavation, the floor verification sample still returned a result of 24 ppm. As this concentration was just below the SCO and not consistent with the residual concentrations achieved in adjacent grids, a fourth floor excavation was performed and resulted in a total approximate soil/fill excavation depth in this grid of over 3 feet from original grade. This fourth excavation effort achieved a final soil/fill concentration consistent with the adjacent grids.

Subsequent to IRM excavation activities, geotechnical borings were conducted across the Site to delineate remaining fill depths for future redevelopment activities. At one of these geotechnical borings (FB-60) located approximately 80 feet northeast of MW-4 and 70 feet northwest of MW-5, a layer of tarlike material was encountered approximately 6 – 8 inches thick. This location is consistent with the area where approximately six drums of roofing tar residuals were removed during the IRM and is on the eastern central border of IRM excavation Grid 12. At the direction of Golder, 12 additional borings were conducted in a radial compass pattern around boring location FB-60 to delineate the extent of this tar and for collection of analytical samples. This focused investigation determined that a layer of tar approximately 6-inches thick encompassed an area approximately 10 feet by 10 feet extending to the east and southeast of boring FB-60. Based on the average thickness of 6 inches encountered in the three borings where it was observed, it is estimated that the total quantity of tar is approximately 2 cubic yards. A representative sample of the tar material was collected from the borings where tar was observed and analyzed for PCBs, SVOCs and TCLP VOCs. PCBs were not detected in the sample and the results for all TCLP VOCs parameters were non-detect. Twenty SVOCs were detected in the sample, however none of the detected constituents exceeded the Part 375 Restricted Commercial or Industrial SCOs [Table 375-6.8(b)]. As part of the initial Site redevelopment activities, the fill encompassing the entire

area where the tar layer was delineated is planned for excavation and relocation to the adjoining East Parcel pending approval under the Excavation Work Plan. The layer of tar material, however, will be excavated prior to general fill excavation, characterized for waste profiling as industrial, non-hazardous waste and placed in a dedicated roll-off container for off-site disposal at a permitted facility.

The surveyed limits of all IRM excavation areas are included on Figure 5-2. A photographic log documenting the IRM activities is presented in Appendix E.

5.1.1 Post Excavation Verification Sampling Results

As indicated above. Golder personnel collected 11 sidewall. 20 floor and 4 soil/fill stockpile verification samples during the course of the IRM grid excavation activities in conformance with the sampling plan provisions of the RI/IRM Work Plan. A summary of the verification sample analytical results is provided in Table 5-1. The table includes the results for all verification samples collected and illustrates where multiple rounds of verification samples were collected until the final cleanup objective was satisfied (e.g., refer to Grid 3 Floor sample progression). Figure 5-2 illustrates the final floor and sidewall soil/fill verification sample results for each grid and the berm located east of Grid 13 locations. Figure 5-2 also includes test results from the December 2007 Investigation and BCP RI samples collected outside the IRM excavated areas to delineate the locations and concentrations of PCBs that remain in shallow soil/fill on the Site. All verification laboratory analytical data reports are provided in Appendix C. All floor and sidewall samples verified conformance with the Part 375 Restricted Industrial SCO for PCBs and confirmed achievement of remedial objectives for subsurface soil/fill as outlined in the RI/IRM Work Plan. Although not initially proposed in the RI/IRM Work Plan, many of the sidewall verification samples were collected and analyzed at the request of the NYSDEC with concurrence from Niagara Transformer Corp. In particular, it was agreed that assessing the residual concentrations along the western property line shared with the 1747 Dale Road parcel (i.e., Grids 2, 6, 11 and 13) would provide a better understanding as to what contaminants still remained in those area.

6.0 FATE AND TRANSPORT OF COPCS

The soil/fill and groundwater sample analytical results were correlated with the physical characterization of the Site to evaluate the fate and transport of Constituents of Primary Concern (COPCs) in Site media. The mechanisms by which the COPCs can migrate to other areas or media are briefly outlined below.

6.1 Fugitive Dust Generation

Volatile and non-volatile chemicals present in soil can be released to ambient air as a result of fugitive dust generation. Since the Site was primarily characterized as flat with limited distinguishable features and heavily vegetated prior to the initiation of the IRM, suspension of soil particulates due to wind erosion or physical disturbance of surface soil/fill is unlikely. IRM work activities were performed during the winter and early spring of 2010 and continuous particulate monitoring performed during these activities documented that dust generation was insignificant and could not be quantified beyond background levels during the excavation and associated IRM activities.

As a result of the completed IRM activities, the areas of the Site that exhibited elevated PCB concentrations in surficial soil/fill have been removed to levels well below the Part 375 Restricted Industrial SCO. Furthermore, under the planned redevelopment of the Site, the majority of the Site will be developed for industrial land use and will be covered by structures, asphalt, concrete, with associated vegetative cover in all areas not otherwise covered by manmade materials. Therefore, this migration pathway is not considered relevant under the current and reasonably anticipated future land use.

6.2 Volatilization

Volatile chemicals present in soil/fill and groundwater may be released to ambient or indoor air through volatilization either from or through the soil/fill underlying current or future building structures. Volatile chemicals typically have a low organic-carbon partition coefficient (Koc), low molecular weight, and a high Henry's Law constant. No volatile organic compounds were detected during the RI sampling program in on-Site soil/fill above 6NYCRR Part 375 unrestricted Residential use SCOs, (refer to Table 4-1A).

VOCs were not detected above GWQS in the upgradient or downgradient monitoring wells, (MW-1 and MW-2 and MW-4, respectively). Accordingly, the volatilization pathway is not considered relevant from the soil or groundwater at this Site.

6.3 Surface Water Runoff

Erosion and transport of surface soils and associated sorbed chemicals in surface water runoff is a potential migration pathway. The potential for long-term PCB-impacted soil particle transport with surface water runoff is low, as the IRM has addressed removal of elevated PCB impacted soil/fill in shallow soils. As described above, under the reasonably anticipated future industrial based land use proposed, a significant portion of the Site will be covered with man-made materials, (e.g., asphalt, buildings, etc.). Furthermore, the redevelopment of the Site will incorporate a new stormwater collection, retention and

discharge system designed in accordance with New York State stormwater standards to provide a mechanism for controlled surface water transport that will result in minimization of sediment erosion and provide an on-Site capture mechanism within a stormwater retention basin. However, since stormwater generated during excavation activities under both the current and future use scenarios could entrain sediment particles potentially containing low concentrations of PCBs, this pathway is potentially relevant under the current and reasonably anticipated future land use.

6.4 Leaching

Leaching refers to chemicals present in soil/fill migrating downward to groundwater as a result of infiltration of precipitation. However the primary COPC at the Site is PCBs which is known to have very low mobility and solubility characteristics in soil matrices. Furthermore, the known impacted PCB soil/fill has been removed from the Site during IRM activities to below the Part 375 Restricted Industrial SCO, therefore, leaching is not considered a relevant migration pathway.

6.5 Groundwater Transport

Groundwater sampling conducted during the RI confirmed that groundwater has not been impacted by the COPC and no contaminants were detected above New York State Class GA GWQS in any of the Site monitoring wells. Therefore, groundwater transport is not considered a relevant migration pathway.

6.6 Exposure Pathways

Based on the analysis of chemical fate and transport provided above, the potential exposure pathway by which COPCs may reach offsite receptors is surface water migration. This potential exposure pathway is anticipated to be substantially mitigated over the long term by both the completion of the soil/fill IRM and, as described above, the installation and implementation of a Site stormwater collection and management system designed in accordance with New York State standards to significantly mitigate the potential for soil erosion on-Site and the potential for off-site transport of soil particles in the form of sediment. This stormwater management system and the anticipated future redevelopment plans for the Site should substantially if not completely address and mitigate this exposure pathway.

The Site Management Plan under preparation for the Site provides proposed strategies to perform stormwater discharge monitoring and evaluation of this potential exposure pathway subsequent to Site redevelopment, to determine the effectiveness of the planned mitigation measures and whether additional measures are required to further reduce off-site exposure to PCB impacted stormwater.

During proposed construction activities, erosion and sediment control strategies required under a NYSDEC Construction Stormwater permit and Stormwater Pollution Prevention Plan (SWPPP) will be implemented to mitigate off-site exposure from stormwater generated during construction related activities.

7.0 QUALIATIVE RISK ASSESSMENT

7.1 Potential Human Health Risks

The Site is presently unoccupied, but planned for redevelopment as an industrial manufacturing facility. As such, under current and future conditions, human contact with the Site can be expected to occur primarily by three types of receptors: trespassers who may traverse the property, construction workers involved in redevelopment related construction activities and industrial workers. Trespassers may be comprised of adolescents or adults, whereas construction and industrial workers would be limited to adults. In all instances, exposure frequency is expected to be minimal. The Site is located in an area where the predominate land use is commercial or industrial, and separated from residential areas by a large rail corridor and major road or highway arteries, further reducing the potential for casual trespassers.

For trespassers, construction and industrial workers, the Site contaminants in soil were removed to industrial cleanup standards. The reasonably anticipated future use of the Site is consistent with its current industrial zoning, with exposed receptors comprised of adults who may work on the property in an occupational setting, customers and vendors (adults), who visit the property for short durations, and occasional construction workers who may access subsurface utilities during non-routine maintenance activities. Site soils were remediated to levels deemed protective under Part 375 of this type of end use.

For stormwater, the proposed design of the proposed dedicated collection and management facilities at the Site mitigates the potential for routine, direct human contact or ingestion. Non-routine contact with Site stormwater is expected to be limited to short durations under specific construction conditions (e.g., a construction worker managing accumulated stormwater during subsurface excavation work). Given the limited frequency and duration of these non-routine activities, and the relatively low level of remaining PCB impacted soils (i.e., < 5 ppm in post IRM Site soil/fill), direct stormwater exposure pathways for onsite and offsite receptors are considered relevant but minimal in risk.

7.2 Potential Ecological Risks

The 1755 Dale Road BCP Site is a located within a highly developed, industrialized area in the Town of Cheektowaga and has a long history of use for industrial or commercial purposes. The Site is currently vacant, providing minimal wildlife habitat or food value. No natural waterways are present on or adjacent to the Site. The reasonably anticipated future use is industrial with the majority of the Site covered by buildings, asphalt and associated concrete structures. As such, no unacceptable ecological risks are anticipated under the current or reasonably anticipated future use scenario.

8.0 REMEDIAL ALTERNATIVES EVALUATION

8.1 Remedial Action Objectives

The final remedial measures for the Niagara Street and Pennsylvania Avenue Site must satisfy Remedial Action Objectives (RAOs). Remedial Action Objectives are site specific statements that convey the goals for minimizing or eliminating substantial risks to public health and the environment. Appropriate RAOs for the 1755 Dale Road Site are:

- Removal of PCB -impacted soil/fill within the Site to levels protective of human health for the intended future use of the Site (industrial SCOs)
- Mitigate and minimize loadings to stormwater from residual PCB-impacted soil/fill.

As discussed in Section 5.0, Part 375 Restricted Industrial SCOs were employed as soil cleanup goals to provide a measure of performance against these RAOs. The SCOs are soil concentration limits protective of human health and groundwater quality. Achievement of the SCOs was confirmed through verification sampling.

Because the IRM achieved removal of soil/fill within the limits of the Site to below Part 375 SCOs, the IRM successfully achieved the above-described RAOs.

In addition to achieving RAOs, NYSDEC's Brownfield Cleanup Program calls for remedy evaluation in accordance with DER-10 Technical Guidance for Site Investigation and Remediation. Specifically, the guidance states "When proposing an appropriate remedy, the person responsible for conducting the investigation and/or remediation should identify and develop a remedial action that is based on the following criteria..."

- Overall Protection of Public Health and the Environment. This criterion is an evaluation of the remedy's ability to protect public health and the environment, assessing how risks posed through each existing or potential pathway of exposure are eliminated, reduced, or controlled through removal, treatment, engineering controls, or institutional controls.
- Compliance with Standards, Criteria, and Guidance (SCGs). Compliance with SCGs addresses whether a remedy will meet applicable environmental laws, regulations, standards, and guidance.
- Long-Term Effectiveness and Permanence. This criterion evaluates the long term effectiveness of the remedy after implementation. If wastes or treated residuals remain on-site after the selected remedy has been implemented, the following items are evaluated: (i) the magnitude of the remaining risks (i.e., will there be any significant threats, exposure pathways, or risks to the community and environment from the remaining wastes or treated residuals), (ii) the adequacy of the engineering and institutional controls intended to limit the risk, (iii) the reliability of these controls, and (iv) the ability of the remedy to continue to meet RAOs in the future.
- Reduction of Toxicity, Mobility or Volume with Treatment. This criterion evaluates the remedy's ability to reduce the toxicity, mobility, or volume of Site contamination.

Preference is given to remedies that permanently and significantly reduce the toxicity, mobility, or volume of the wastes at the Site.

- Short-Term Effectiveness. Short-term effectiveness is an evaluation of the potential short-term adverse impacts and risks of the remedy upon the community, the workers, and the environment during construction and/or implementation. This includes a discussion of how the identified adverse impacts and health risks to the community or workers at the Site will be controlled, and the effectiveness of the controls. This criterion also includes a discussion of engineering controls that will be used to mitigate short term impacts (i.e., dust control measures), and an estimate of the length of time needed to achieve the remedial objectives.
- Implementability. The implementability criterion evaluates the technical and administrative feasibility of implementing the remedy. Technical feasibility includes the difficulties associated with the construction and the ability to monitor the effectiveness of the remedy. For administrative feasibility, the availability of the necessary personnel and material is evaluated along with potential difficulties in obtaining specific operating approvals, access for construction, etc.
- **Cost.** Capital, operation, maintenance, and monitoring costs are estimated for the remedy and presented on a present worth basis.
- Community Acceptance. This criterion evaluates the public's comments, concerns, and overall perception of the remedy.

8.2 Future Land Use Evaluation

In developing and screening remedial alternatives, NYSDEC's Part 375 regulations require that the reasonableness of the anticipated future land be factored into the evaluation. The regulations identify 16 criteria that must be considered. These criteria were reviewed for the 1755 Dale Rd BCP Site and the evaluation supports industrial redevelopment as the reasonably anticipated future use of the Site, consistent with current Town of Cheektowaga zoning ordinances, surrounding land use, historical use, distance from current residential land use, flood plains or cultural resources, absence of significant natural resources, wetlands or other State or Federal land use designations. Accordingly, remedial alternatives to clean up the Site to restricted industrial end use are identified and evaluated herein.

In addition to the evaluation of alternatives to remediate to the likely end use of the Site, NYSDEC regulation and policy calls for evaluation of less restrictive end-use scenarios. These include an unrestricted use scenario (considered under 6NYCRR Part 375-2.8 to be representative of cleanup to pre-disposal conditions), and a scenario less restrictive than the reasonably anticipated future use (which would be restricted commercial use). Per NYSDEC DER-10 Technical Guidance for Site Investigation and Remediation, evaluation of a "no action" alternative is also required to provide a baseline for comparison against other alternatives.

Since an IRM has already been completed for the Site, the alternatives discussed in greater detail in Section 8.3 include:

- No Further Action (IRM only);
- IRM and Implementation of a Site Management Plan;

- Restricted Commercial Use Cleanup and Implementation of a SMP; and,
- Unrestricted Use (pre-disposal condition)

8.3 Alternatives Evaluation

8.3.1 No Further Action

Under this alternative, the Site would remain in its current state, post-IRM with no additional controls inplace.

Overall Protection of Public Health and the Environment – The Site as it exists is not protective of human health and the environment, due to the absence of institutional controls to prevent less restrictive forms of future site use (e.g., unrestricted). Accordingly, no further action is not protective of public health and does not satisfy the RAOs.

Compliance with SCGs – Under the current and reasonably anticipated future use scenario, the concentrations of constituents detected in the soil/fill and groundwater comply with applicable SCOs and GWQS.

Long-Term Effectiveness and Permanence – The no further action alternative involves no additional equipment, institutional controls or facilities subject to maintenance, but provides no long-term effectiveness toward achieving the RAOs.

Reduction of Toxicity, Mobility, or Volume with Treatment – The interim remedial measures completed at the Site have reduced the toxicity, mobility and volume of prior constituents of concern. With the exception of low-level residual PCBs in surficial soil/fill, further reduction in toxicity, mobility, or volume of PCBs in the soil/fill or groundwater is not necessary based on the RI findings.

Short-Term Effectiveness – There would be no short-term adverse impacts and risks to the community, workers, or the environment attributable to implementation of the no further action alternative.

Implementability – No technical or action-specific administrative implementability issues are associated with the No Further Action alternative.

Cost – The capital cost of the completed IRM was approximately \$470,500. There would be no capital or long-term operation, maintenance, or monitoring costs associated with the no further action alternative.

Community Acceptance – The RI/IRM Work Plan was made available for comment from September 23, 2009 through October 22, 2009. No comments were received opposing the proposed work plan.

8.3.2 IRM and Implementation of a Site Management Plan

The IRM achieved removal of the PCB-impacted soil/fill on-site to below Restricted Industrial SCOs, which is expected to be protective of anticipated on-Site construction and long-term industrial worker occupants and substantially eliminate the off-site stormwater exposure pathway. The "Implementation of a Site Management Plan" alternative is defined as performing no additional cleanup activities at the Site beyond that which was already performed as an IRM (refer to Section 5.0), with implementation of a Site Management Plan (SMP). The SMP will include:

- An Institutional Controls Plan. Institutional controls at the site will include groundwater use restrictions and use restrictions of the Site to restricted use (i.e. industrial purposes).
- A Soil/Fill Management Plan to assure that future intrusive activities and soil/fill handling at the Site are completed in a safe and environmentally responsible manner.
- A Site Monitoring Plan that includes: provisions for a limited stormwater monitoring plan; and, a Site-wide Inspection program to assure that the Institutional controls have not been altered and remain effective.

Overall Protection of Public Health and the Environment - Since the IRM achieved removal of impacted soil/fill to well below industrial SCOs, this alternative is fully protective of human health and the environment, and successfully achieves all RAOs for the Site. The Site Management Plan will include a stormwater monitoring plan to monitor residual PCBs in stormwater, a soil/fill management plan to address any impacted soil/fill encountered during post-development maintenance activities; and a Sitewide Inspection program to assure that the Institutional controls placed on the Site have not been altered and remain effective. Furthermore, although not technically required under the approved IRM Work Plan, Niagara Transformer Corp committed to achieving the lowest reasonable reduction in soil/fill PCB concentrations (below the Restricted Industrial SCO for PCBs) through extensive additional soil/fill excavation and off-site disposal. This approach resulted in the removal of nearly two times more soil/fill by weight than originally proposed in the IRM Work Plan. Final verification testing confirmed that the maximum residual PCB concentration detected in any one excavated grid was 4.8 ppm (Grid 3 Floor) and the average residual concentration of the floor verification samples from the excavated grids is 1.6 ppm and the sidewall samples is 1.5 ppm. These results demonstrate that the IRM cleanup was highly successful in meeting the Restricted Industrial SCO for PCBs of 25 ppm and practically achieved the Restricted Commercial SCO for PCBs of 1 ppm (on average) across all remediated areas of the Site.

Compliance with SCGs – The IRM was performed in accordance with applicable, relevant, and appropriate standards, guidance, and criteria. The IRM achieved removal of impacted soil/fill to below industrial SCOs, this alternative is fully protective of human health and the environment, and successfully achieves all RAOs for the Site. The Site Management Plan will include a stormwater monitoring plan to monitor residual PCBs in stormwater, a soil/fill management plan to address any impacted soil/fill encountered during post-development maintenance activities; and a Site-wide Inspection program to assure that the Institutional controls placed on the Site have not been altered and remain effective.

Long-Term Effectiveness and Permanence – The IRM achieved removal of PCB-impacted soil/fill in all areas of the Site where surficial/shallow soil/fill impacts were known to exceed Restricted Industrial SCO for PCBs. The Site Management Plan will include a stormwater monitoring plan to monitor residual PCBs in stormwater, a soil/fill management plan to address any impacted soil/fill encountered during post-development maintenance activities; and a Site-wide Inspection program to assure that the Institutional controls placed on the Site have not been altered and remain effective. As such, this alternative is expected to provide long-term effectiveness and permanence.

Reduction of Toxicity, Mobility, or Volume with Treatment – Through removal of impacted soil/fill exceeding Restricted Industrial SCOs, the IRM permanently and significantly reduced the toxicity, mobility, and volume of Site contamination. As noted above, the IRM was nearly successful in achieving the more conservative cleanup criteria for Restricted Commercial SCOs. The Site Management Plan will include a stormwater monitoring plan to monitor residual PCBs in stormwater, a soil/fill management plan to address any impacted soil/fill encountered during post-development maintenance activities; and a Sitewide Inspection program to assure that the Institutional controls placed on the Site have not been altered and remain effective. Accordingly, this alternative satisfies this criterion.

Short-Term Effectiveness – The short-term adverse impacts and risks to the community, workers, and environment during implementation of the IRM were effectively controlled. During soil/fill excavation and loading activities, continuous dust and VOC monitoring were performed to assure conformance with NYSDOH-approved community air monitoring action levels. The potential for chemical exposures and physical injuries were reduced through safe work practices; proper personal protection equipment; environmental monitoring; establishment of work zones and Site control; and appropriate decontamination procedures. The IRM achieved the RAOs for the Site in approximately two months.

Implementability – No technical or action-specific administrative implementability issues are associated with implementation of the IRM or the SMP. An Environmental Easement will be filed with Erie County documenting the controls placed on the Site.

Cost –The capital cost of the IRM was approximately \$470,500. Stormwater monitoring and annual certification is estimated at approximately \$4,800 per year. Based on an assumed 30 years of stormwater monitoring and annual certifications, the net present value of this alternative is approximately \$543,000 as shown on Table 8-1. Table 8-4 is a summary of costs of each of the alternatives.

Community Acceptance – The RI/AAR/IRM Work Plan was made available for comment from November 20, 2008 through December 19, 2008. No comments opposing the work were received.

8.3.3 Restricted Commercial Use Alternative and Implementation of a Site Management Plan

A Restricted Commercial Use alternative would necessitate remediation of all soil/fill where PCB concentrations exceed the Restricted Commercial SCO for PCBs per 6NYCRR Part 375 Table 6.8(b) of 1 ppm. For this scenario, excavation and off-site disposal of impacted soil/fill combined or use of engineering controls, such as clean soil cover systems are generally regarded as the most applicable remedial measures. The Restricted Commercial Use alternative assumes that based on the 2007 Soil Investigation results that approximately 80 percent of the northern half of the Site's shallow soil/fill would be excavated and disposed at an off-site commercial solid waste landfill or covered with 1 foot of clean soils to meet the Restricted Commercial SCO. Additionally, selected grids in the southern half of the Site that were not required to be addressed under the IRM would also require excavation or cover to meet the SCO requirements. The estimated total volume of impacted soil/fill that would be removed under this scenario from these areas assuming an average excavation depth of 2 feet (based on final IRM excavation survey) is approximately 3,500 cubic yards. Implementation of a cover system as an alternative remedial strategy was considered but not deemed practical for the long term redevelopment of the site which is planned as a multi-phased expansion program with intrusive building requirements. The phased Site redevelopment approach would require the disturbance or removal of portions of the cover soil system in the areas of the Site planned for future building additions and associated infrastructure improvements and require the management and handling of sub-grade impacted soils that remain in Repairs to the disturbed cover areas in accordance with Site Management Plan (SMP) place. engineering controls requirements and the annual maintenance and certification of an engineered cover system under the planned Site redevelopment scenario, while feasible, would present a challenge to NTC for long term compliance and liability under the provisions of a SMP, based on the operational focus on manufacturing and associated business activities by NTC at the Site.

Overall Protection of Public Health and the Environment – The Restricted Commercial Use alternative would achieve the corresponding Part 375 SCOs, which are designed to be protective of human health under a commercial reuse scenario.

Compliance with SCGs – Similar to the IRM soil/fill removal activities, the Restricted Commercial Use alternative would need to be performed in accordance with applicable, relevant, and appropriate standards, guidance, and criteria. The Site Management Plan will include a stormwater monitoring plan to monitor residual PCBs in stormwater, a soil/fill management plan to address any impacted soil/fill encountered during post-development maintenance activities; and a Site-wide Inspection program to assure that the Institutional controls placed on the Site have not been altered and remain effective.

Long-Term Effectiveness and Permanence – The Restricted Commercial Use alternative would achieve removal of residual impacted soil/fill; therefore, soil/fill exceeding the Restricted Commercial SCOs would be removed from the Site. The Site Management Plan will include a stormwater monitoring

plan to monitor residual PCBs in stormwater, a soil/fill management plan to address any impacted soil/fill encountered during post-development maintenance activities; and a Site-wide Inspection program to assure that the Institutional controls placed on the Site have not been altered and remain effective. As such, the Restricted Commercial Use alternative would provide long-term effectiveness and permanence.

32

Reduction of Toxicity, Mobility, or Volume with Treatment – Through removal all impacted soil/fill, the Restricted Commercial Use alternative would permanently and significantly reduce the toxicity, mobility, and volume of Site contamination. The Site Management Plan will include a stormwater monitoring plan to monitor residual PCBs in stormwater, a soil/fill management plan to address any impacted soil/fill encountered during post-development maintenance activities; and a Site-wide Inspection program to assure that the Institutional controls placed on the Site have not been altered and remain effective. Accordingly, this alternative satisfies this criterion.

Short-Term Effectiveness – The short-term adverse impacts and risks to the community, workers, and environment during implementation of the Restricted Commercial Use alternative are not considered significant and are controllable, but would increase the duration of time community, workers, and the environment is exposed to fugitive dust emissions at the site or stormwater migrating off the site during remediation activities.

Implementability – No technical implementability issues would be encountered in construction of the Restricted Commercial Use alternative. Administrative implementability issues may include the need for rezoning of the area, since commercial zoning uses are not consistent with current General Manufacturing zoning designation or the reasonably anticipated future use of the Site.

Cost – The capital cost of the IRM was approximately \$470,500. The capital cost of implementing a Restricted Commercial Use alternative (post-IRM) is estimated to be \$405,300. Stormwater monitoring and annual certification is estimated at approximately \$4,800 per year. Based on an assumed 30 years of stormwater monitoring and annual certifications, the net present value of this alternative is estimated at \$952,500 (see Table 8-2). Table 8-4 is a summary of costs of each of the alternatives.

Community Acceptance – Community acceptance will be evaluated based on comments to be received from the public in response to Fact Sheets and other planned Citizen Participation activities.

8.3.4 Unrestricted Use Alternative

The Unrestricted Use alternative would necessitate remediation of all soil/fill where PCB concentrations exceed the Unrestricted SCO for PCBs per 6NYCRR Part 375 Table 6.8(a) of 0.1 ppm. For this scenario, excavation and off-site disposal of impacted soil/fill with concentrations of PCBs in excess of 0.1 ppm would be regarded as the most applicable remedial measure. The Unrestricted Use alternative assumes

that based on the 2007 Soil Investigation results, BCP RI and IRM verification sample results that approximately 90 percent of the of the Site's remaining shallow soil/fill would be required to be excavated down to native soil and disposed at an off-site commercial solid waste landfill to meet the Unrestricted SCO. The estimated total volume of impacted soil/fill that would be removed under this scenario from these areas based on a detailed geotechnical survey to delineate the fill thickness conducted across the site (subsequent to completion of the IRM) is approximately 10,500 cubic yards.

Overall Protection of Public Health and the Environment – The Unrestricted Use alternative would achieve the corresponding Part 375 SCOs, which are designed to be protective of human health under any unrestricted reuse scenario.

Compliance with SCGs – Similar to the IRM soil/fill removal activities, the Unrestricted Use alternative would need to be performed in accordance with applicable, relevant, and appropriate standards, guidance, and criteria.

Long-Term Effectiveness and Permanence – The Unrestricted Use alternative would achieve removal of residual impacted soil/fill; therefore, soil/fill exceeding the Unrestricted Use SCOs would be removed from the Site. As such, the Unrestricted Use alternative would provide long-term effectiveness and permanence.

Reduction of Toxicity, Mobility, or Volume with Treatment – Through removal all impacted soil/fill below the 0.1 ppm SCO threshold, the Unrestricted Use alternative would permanently and significantly reduce the toxicity, mobility, and volume of Site contamination. Accordingly, this alternative satisfies this criterion.

Short-Term Effectiveness – The short-term adverse impacts and risks to the community, workers, and environment during implementation of the Unrestricted Use alternative are not considered significant and are controllable, but would increase the duration of time community, workers, and the environment is exposed to fugitive dust emissions at the site or stormwater migrating off the site during remediation activities.

Implementability – No technical implementability issues would be encountered in implementation of the Restricted Commercial Use alternative. Administrative implementability issues may include the need for rezoning of the area, since residential or commercial zoning uses are not consistent with current General Manufacturing zoning designation by the Town of Cheektowaga or the reasonably anticipated future use of the Site.

Cost – The capital cost of the IRM was approximately \$470,500. The capital cost of implementing an Unrestricted Use alternative (post-IRM) is estimated to be \$1,713,144. Therefore the cost to implement

33

this alternative is estimated at \$2,183,644 (see Table 8-3). Table 8-4 is a summary of costs of each of the alternatives.

Community Acceptance – Community acceptance will be evaluated based on comments to be received from the public in response to Fact Sheets and other planned Citizen Participation activities.

8.4 Recommended Remedial Measure

Based on the Alternatives Analysis evaluation, the completed IRM and implementation of the proposed Site Management Plan alternative fully satisfies the remedial action objectives and is fully protective of human health and the environment. Accordingly, the implementation of a Site Management Plan encompassing institutional controls mandated by the Site's recorded Environmental Easement and periodic stormwater monitoring is the recommended final remedial approach for the 1755 Dale Road BCP Site.

9.0 RI/AA/IRM SUMMARY AND CONCLUSIONS

Based on the data and analyses presented in the preceding sections, we offer the following summary and conclusions:

- An IRM was implemented at the Site subsequent to the completion of RI activities. The IRM included: installation of a temporary stone access road to minimize Site soil disturbance; implementation of extensive erosion and sediment control measures around the planned excavation areas; excavation of approximately 2,075-tons of hazardous PCB-impacted soil/fill and 1097 tons of non-hazardous PCB-impacted soil/fill followed by off-site transportation and disposal at a permitted hazardous waste landfill. The IRM also included the removal, characterization and disposal at a permitted landfill of approximately 6 drums of roofing tar material located on the surface of the Site. On-site post-excavation soil sample results were below 6NYCRR Part 375 Industrial SCO for PCBs.
- Based on the soil data collected during the RI, concentrations of VOCs, metals, pesticides, and PCBs were below Part 375 Industrial SCOs. One SVOC (benzo(a)pyrene) was detected at concentrations slightly above their respective 6NYCRR Part 375 Restricted Industrial SCO at sample locations B-2 (0-4 ft) and B-2 (0-4 ft), respectively. Based on the lack of elevated PID readings, as well as absence of any visual or olfactory evidence of contamination, the elevated SVOC appears to be attributable to background concentrations of PAHs, which is common in historic fill and industrialized settings.
- Based on the groundwater data collected during the RI, the three sampled monitoring wells did not contain concentrations of VOCs, SVOCs, metals, pesticides, and PCBs above applicable GWQS. Metals detected above GWQS are limited to naturally occurring minerals.
- Based on the Alternatives Analysis evaluation, the IRM satisfies the remedial action objectives and is protective of human health and the environment. Accordingly, Implementation of a Site Management Plan is the recommended final remedial approach for the 1755 Dale road BCP Site.

10.0 REFERENCES

- 1. Remedial Investigation & Interim Remedial Measures Work Plan, *Niagara Transformer Corporation – 1755 Dale Road Cheektowaga, New York,* prepared for *New York State Department of Environmental Conservation,* August 2009.
- 2. Golder Associates Inc., *Report on Phase 1 Environmental Site Assessment Vacant Parcel, 1755 Dale Road, Cheektowaga*, New York, August 2009.
- 3. Ecology and Environment, Inc., *Niagara Transformer Corporation Site, Cheektowaga, New York Remediation Summary Report*, prepared for *New York State Department of Environmental Conservation*, December 1997.
- 4. Ecology and Environment, Inc., *Niagara Transformer Corporation NYSDEC Site No. 9-15-146, Town of Cheektowaga, Erie, New York; Interim Remedial Measure Summary Report,* prepared for *New York State Department of Environmental Conservation,* January 2005.

TABLES

TABLE 4-1A RI/AA/IRM REPORT SOIL/FILL ANALYTICAL RESULTS COMPARISON TO NYSDEC PART375 SOIL CLEANUP OBJECTIVES

Lab ID		Restricted	RSI0643-01 - Solid	RSI07/1	I-03 - Solid	RSI0741-09 - Solid	RSI0741-06 - Solid	RSING	05-07 - Solid	RSING	95-10 - Solid	RSI0741-15 - Solid	RSI0741-12 - Solid	R SI06/3	-02 - Solid	RSI06/3	-03 - Solid
Sample ID	Restricted	Commercial	B-1 (0-4)		B-2	B-3	B-4	131003	B-5	KSIUU	B-6	B-7	B-8		-02 - 30110 3-9		-10
Sample Date	Industrial SCOs	SCOs	9/17/09		21/09	9/21/2009	9/21/2009	9/	18/2009	9	/18/2009	9/21/2009	9/21/2009		/2009		/2009
Sample Depth	Table 375-6.8(b)	Table 375-6.8(b)	0-4 ft		-4 ft	0-4 ft	0-4 ft		0-4 ft		0-4 ft	0-4 ft	0-4 ft		-4 ft		-4 ft
Units	(PPM)	(PPM)	PPM		PPM	PPM	PPM		PPM		PPM	PPM	PPM	-	PM	-	PM
		0.1.00															
Volatile Organics (8260B)																	
Acetone	1000	500		0.017	J									0.0054	J		
Methylene Chloride	1000	500		0.012		0.018	0.013	0.026		0.019		0.015	0.028				
Xylenes, total	1000	500						0.0013	J								
Semivolatile Organics (GC/MS)	NIA	NIA					0.0075			0.11	D10 I	0.44 - D40 - L	0.47 D40 L				
2-Methylnaphthalene	NA 1000	NA 500			D10		0.0075 J			0.11	D10, J	0.11 D10, J 0.39 D10, J	0.17 D10, J				
Acenaphthene Acenaphthylene	1000	500			D10 D10							0.39 D10, J	0.1 D10, J				
Anthracene	1000	500			D10							1.1 D10	0.087 D10, J	0.12	D10, J		
Benz[a]anthracene	11	5.6		0.77	D10, J	0.1 D10, J	0.092 J	0.68	D12, J	0.39	D10, J	2.1 D10	0.007 D10, J	0.12	D10, J	0.34	D12,J
Benzo[a]pyrene	1.1	1		1.4	D10, J	0.087 D10, L, J	0.032 3 0.11 L, J	0.79		0.33	D10, J	1.9 D10, J, L1	0.68 D10, L, J	0.62	D10, J	0.29	D12,J
Benzo[b]fluoranthene	11	5.6		1.7	D10, J	0.11 D10, J	0.12 J	0.81	D12, J	0.51		2.2 D10	0.89 D10, J	0.8	D10, J	0.4	D12,J
Benzo[g,h,i]perylene	1000	500		0.95	D10, J	0 0.10,0	0.081 J	0.62		0.31	D10, J	1.3 D10	0.62 D10, J	0.51	D10, J	0.1	,0
Benzo[k]fluoranthene	110	56		0.61	D10, J		0.046 J	0.42		0.24		0.91 D10, J	0.31 D10, J	0.4	D10, J	0.22	D12,J
Bis(2-ethylhexyl) phthalate	NA	NA		1	D10, J		0.32				-,-	0.5 D10, J	0.42 D10, J	1.1	D10, J		
Carbazole	NA	NA							1	İ		0.6 D10, J					
Chrysene	110	56		1	D10, J	0.089 D10, J	0.097 J	0.63	D12, J	0.43	D10, J	2 D10	0.67 D10, J	0.62	D10, J	0.25	D12, J
Dibenz[a,h]anthracene	1.1	0.56		0.25	D10, J		0.022 J					0.36 D10, J	0.15 D10, J	0.15	D10, J		
Dibenzofuran	NA	NA										0.33 D10, J	0.055 D10, J				
Fluoranthene	1000	500		0.83	D10, J	0.16 D10, J	0.14 J	1.2	D12, J	0.69	D10, J	5 D10	1.2 D10	1.1	D10, J	0.41	D12, J
Fluorene	1000	500										0.51 D10, J					
Indeno[1,2,3-cd]pyrene	11	5.6		0.79	D10, J		0.069 J	0.53	D12, J	0.24	D10, J	1.2 D10	0.49 D10, J	0.38	D10, J	0.22	D12, J
Naphthalene	1000	500			540.1		0.050		546.4	0.40	540.1	1.7 5.40	0.12 D10, J		.		
Phenanthrene	1000	500		0.22	D10, J	0.12 D10, J	0.058 J	0.66		0.42		4.7 D10	0.63 D10, J	0.72	D10, J	0.31	D12, J
Pyrene	1000	500		0.74	D10, J	0.14 D10, J	0.13 J	0.98	D12, J	0.59	D10, J	3.9 D10	0.96 D10	0.93	D10, J	0.37	D12, J
Organochlorine Pesticides (8081A)				[2C]		[2C]	[2C]	[2C]		[2C]		[2C]	[2C]				
4,4'-DDD	180	92		[20]		[20]	[20]	[20]		[20]		[20]	0.0028 QFL, D04, J				
4,4'-DDT	94	47						15	QFL, D04				0.0020 QI L, DOH, 0				
delta-BHC	1000	500					0.00085 QFL, J		Q. 2, 201					0.0015	QFL, J	0.0016	QFL, J
Dieldrin	2.8	1.4	0.014 QFL				0.0012 QFL, J	0.34	QFL, D04, J	0.023	QFL, D04		0.0032 QFL, D04, J	0.0086	QFL, J	0.0025	QFL, J
Endrin	410	89	0.0047 QFL			0.021 QFL, D04, J	0.0011 QFL, J		QFL, D04, J		QFL, D04, J	0.21 QFL, D04, J	0.0034 QFL, D04, J		,	0.0027	QFL, J
gamma-Chlordane	NA	NA	0.0021 QFL, J											0.0023	QFL, J		
Heptachlor	29	15											0.0016 QFL, D04, J				
Heptachlor epoxide	NA	NA												0.0018	QFL, J		
Total Metals (SW 846 Series)			5000	10100		11000	0.400	4 4 9 9 9				7000	5050	1000		0.570	
Aluminum	NA 16	NA	5930	13100		11200	6160	14800		7670		7680	5950	4960		8570	
Arsenic	16 10000	16 400	6.2 J	5.4 118	J	6 J 95 J	2.4 J	5.9		5.4		6.8 J	9.7 J 102 J	8.2	J	10.5 273	J
Barium Beryllium	2700	400 590	50.6 J 0.359	0.643	J	95 J 0.561	39.8 J 0.293	118 0.657	J	108 0.404		107 J 0.449	0.369	108 0.404	J	0.501	J
Cadmium	60	9.3	0.373	0.043		0.511	0.293	0.037	1	0.404		1.02	1.63	1.05		1.27	
Calcium	NA	NA State	83800 D08, J	73100	D08, J	33900 J	41500 J	4490		10900		47400 J	4630 J	113000	D08, J	27000	J
Chromium	6800	1500	8.26 J	20.9	J	13.9 J	9.88 J	18.6		11		17.1 J	18.6 J	26.1	J	21 21	 J
Cobalt	NA	NA	3.83	8.45		5.25	4.7	10.6		4.89		6.4	7.76	4.72		9.05	· · · ·
Copper	10000	270	18.3 J	19.8	J	33.4 J	11.1 J	27.1		33.2		58.1 J	124 J	60.1	J	89.1	J
Iron	NA	NA	13400 B3, B1, B, J	22700	B1, B3, B, J	17400 B1, B3, B, J	11700 B1, B3, B, J	24500	B1, B3, B, J		B1, B3, B, J	33500 B1, B3, B, J	66600 D08, B, J	25300	B1, B3, B, J	54200	B1, B3, B, J
Lead	3900	1000	291 J	11.7	J	208 J	13.8 J	26.2		104		206 J	322 J	192	J	1840	J
Magnesium	NA	NA	10800 J	12700	J	10000 J	3390 J	5040		5580		6790 J	2280 J	5150	J	6600	J
Manganese	10000	10000	385 B1, B, J	312	B1, B, J	1450 B1, B, J	337 B1, B, J	614	, ,	473		514 B1, B, J	521 B1, B, J	1080	B1, B, J	725	B1, B, J
Mercury	5.7	2.8	0.149	0.0264		0.259		0.168		0.167		0.393	1.02 D08	0.976	D08	0.238	
Nickel	10000	310	8.07 J	23.5	J	12.3 J	10.3 J	22.2		11.7		22.9 J	25 J	17.1	J	26.2	J
Potassium	NA	NA	993	1760		1420	1170	1900		1130		1060	783	674		1300	
Sodium	NA	NA	363	00 7		184	14.6	00.4		47	<u> </u>	47.4	16	40.0		04.0	
Vanadium	NA 10000	NA 10000	13.2 J 154 J	23.7 59.2	J	22 J 147 J	14.6 J 62.8 J	28.1 86.9		17 113		17.4 J 348 J	16 J 635 J	16.3 475	J	21.3 894	J
Zinc	10000	10000	104 J	59.Z	J	14/ J	02.0 J	00.9	J	113	J	340 J	030 J	4/3	J	094	J
General Chemistry Parameters																	
Cyanide	10000	27						1	J							2	J
Percent Solids	NA	NA	88%	90%		86%	88%	85%		91%		90%	91%	93%		87%	
				20,0				2070	11							21.75	

TABLE 4-1A RI/AA/IRM REPORT SOIL/FILL ANALYTICAL RESULTS COMPARISON TO NYSDEC PART375 SOIL CLEANUP OBJECTIVES

1755 DALE RD. BCP SITE # C915234 - NIAGARA TRANSFORMER CORP. CHEEKTOWAGA, NY

Data Qualifiers:

- B = Analyte was detected in associated method blank.
- B1 = Analyte was detected in associated method blank. Analyte concentration in the sample is greater than 10x the concentration found in the method blank.
- B3 = Target analyte detected in calibration blank at or above the method reporting limit.
- D04 = Dilution required due to high levels of non-target compounds.
- D08 = Dilution required due to high concentration of target analyte(s)
- D10 = Dilution required due to sample color.
- D12 = Dilution required due to sample viscosity.
- J = Analyte detected at a level less than the reporting limit (RL) and greater than or equal to the Method Detection Limit (MDL). Concentrations within this range are estimated.
- L = Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above the acceptance limits. Analyte not detected, data not impacted.
- L1 = Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above the acceptance limits.
- M8 = The MS and/or MSD were below the acceptance limits.

N1 = See Case Narrative.

- QFL = Florisil clean-up (EPA 3620) performed on extract.
- [2C] = Results taken from second column.

Footnotes:

All values are in Parts per Million (PPM).

- blank = Not detected above the practical quantitation limits (PQL), lower limit of quantitation (LLQ), or reporting limit (RL).
- 0.34 = Sample concentration exceeds the respective Soil Cleanup Objectives (SCO)

NA = Not Applicable

NS = Not Specified.

Sample B-7 which exceeded the SCO for Benzo[a]pyrenewas collected from a depth of 0-4 ft and was located within the IRM excavation area which was excavated to a depth of approximately 1.5

Table by:	AML
Checked by:	DML
Reviewed by:	PTM

093-89144-02

TABLE 4-1B **RI/AA/IRM REPORT** SOIL ANALYTICAL RESULTS (PCBS ONLY) COMPARISON TO NYSDEC PART 375 SOIL CLEANUP OBJECTIVES

1755 DALE RD. BCP SITE # C915234 - NIAGARA TRANSFORMER CORP CHEEKTOWAGA, NY

Lab ID	Restricted	Restricted	RSI0643-01 - Solid	RSI0741- 01 - Solid	RSI0741-02 - Solid	RSI0741-07 - Solid	RSI0741-08 - Solid	RSI0741-04 - Solid	RSI0741-05 - Solid	RSI0695-05 - Solid	RSI0695-06 - Solid	RSI0695-08 - Solid	RSI0695-09 - Solid
Sample ID	Industrial	Commercial	B-1 (0-4)	B-2 (0-2)	B-2 (2-4)	B-3 (0-2)	B-3 (2-4)	B-4 (0-2)	B-4 (2-4)	B-5 (0-2)	B-5 (2-4)	B-6 (0-2)	B-6 (2-4)
Sample Date	SCOs	SCOs	9/17/09	9/21/09	9/21/09	9/21/2009	9/21/2009	9/21/2009	9/21/2009	9/18/2009	9/18/2009	9/18/2009	9/18/2009
Sample Depth	Table 375-6.8(b)	Table 375-6.8(b)	0-4 ft	0-2 ft	2-4 ft	0-2 ft	2-4 ft	0-2 ft	2-4 ft	0-2 ft	2-4- ft	0-2 ft	2-4 ft
Units	(PPM)	(PPM)	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM
Polychlorinated Biphenyls (8082)				[2C]	[2C]	[2C]	[2C]	[2C]	[2C]	[2C]	[2C]	[2C]	[2C]
Aroclor 1016	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1221	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1232	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1242	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1248	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1254	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1260	NA	NA	0.49 QSU, D08, J	0.14	ND	1.7 D08	0.029	0.084	ND	10 D08	3.5 D08	2.2 D08	0.052
TOTAL PCBs	25	1	0.49	0.14	0	1.7	0.029	0.084	0	10	3.5	2.2	0.052

Lab ID	Restricted	Restricted	RSI0741-13 - Solid	RSI0741-14 - Solid	RSI0741-10 - Solid	RSI0741-11 - Solid	RSI0643-02 - Solid	RSI0643-03 - Solid	RSI0643-06 - Solid	RSI0695-01 - Solid	RSI0695-02 - Solid	RSI0695-03 - Solid	RSI0695-04 - Solid
Sample ID	Industrial	Commercial	B-7 (0-2)	B-7 (2-4)	B-8 (0-2)	B-8 (2-4)	B-9	B-10	B-10 (0-2)	SS-1	SS-2	SS-3	SS-4
Sample Date	SCOs	SCOs	9/21/2009	9/21/2009	9/21/2009	9/21/2009	9/17/2009	9/17/2009	9/17/2009	9/18/2009	9/18/2009	9/18/2009	9/18/2009
Sample Depth	Table 375-6.8(b)	Table 375-6.8(b)	0-2 ft	2-4 ft	0-2 ft	2-4 ft	0-4 ft	0-4 ft	0-2 ft	0-6 in	0-6 in	0-6 in	0-6 in
Units	(PPM)	(PPM)	PPM										
Polychlorinated Biphenyls (8082)			[2C]	[2C]	[2C]	[2C]				[2C]	[2C]	[2C]	[2C]
Aroclor 1016	NA	NA	ND										
Aroclor 1221	NA	NA	ND										
Aroclor 1232	NA	NA	ND										
Aroclor 1242	NA	NA	ND										
Aroclor 1248	NA	NA	ND										
Aroclor 1254	NA	NA	ND										
Aroclor 1260	NA	NA	22 D08	0.22	0.25 D08	ND	0.33 J, QSU	0.075 J, QSU	0.18 J, QSU	0.15	0.25	4.5 D08	0.69 D08
TOTAL PCBs	25	1	22	0.22	0.25	0	0.33	0.075	0.18	0.15	0.25	4.5	0.69

Data Qualifiers:

- D08 = Dilution required due to high concentration of target analyte(s) QSU = Sulfur (EPA 3660) clean-up performed on extract. [2C] = Results taken from second column.

Footnotes:

All values are in Parts per Million (PPM).

- blank = Not detected above the practical quantitation limits (PQL) or lower limit of quantitation (LLQ).
- NA = Not applicable
- ND = Not detected above the practical quantitation limits (PQL), lower limit of quantitation (LLQ), or reporting limit (RL).

Table by:	AML
Checked by:	DML
Reviewed by:	PTM

TABLE 4-2 RI/AA/IRM REPORT JANUARY 2010 SUPPLEMENTAL RI SAMPLE RESULTS SOIL, SEDIMENT, AND SURFACE WATER

1755 DALE RD. BCP SITE #C915234 - NIAGARA TRANSFORMER CORP. CHEEKTOWAGA, NY

Lab ID	Restricted		RTA0293-01 - Solid	RTA0293-02 - Solid	RTA0293-03 - Solid	RTA0293-04 - Solid	RTA0293-05 - Solid	RTA0293-06 - Water	RTA0293-08 - Water	RTA0293-10 - Water	RTA0293-07 - Solid	RTA0293-09 - Solid
Sample ID	Industrial	Restricted	SS-5	SS-6	SS-7	SS-8	SS-9	SW-1	SW-2	SW-3	SED-1	SED-2
Sample Date	SCOs	Commercial SCOs Table 375-6.8(b)	1/8/10	1/8/10	1/8/10	1/8/10	1/8/10	1/8/10	1/8/10	1/8/10	1/8/10	1/8/10
Sample Depth	Table 375-6.8(b) (PPM)	(PPM)	0-6 in	-	-	-	-	-				
Units	(FFW)		PPM									
Polychlorinated Biphenyls (8082)			[2C]									
Aroclor 1016	NA	NA	ND									
Aroclor 1221	NA	NA	ND									
Aroclor 1232	NA	NA	ND									
Aroclor 1242	NA	NA	ND									
Aroclor 1248	NA	NA	ND									
Aroclor 1254	NA	NA	ND									
Aroclor 1260	NA	NA	6 D08	4.1 D08	49 D08	1.2 D08	1.3 D08	ND	ND	ND	0.24	0.38
TOTAL PCBs	25	1	6	4.1	49	1.2	1.3	0	0	0	0.24	0.38

Data Qualifiers:

D08 = Dilution required due to high concentration of target analyte(s)

[2C] = Results taken from second column.

Footnotes:

All values are in Parts per Million (PPM).

SS = Surface Sample

SW = Surface Water sample

SED = Sediment sample

ND = Not detected above the practical quantitation limits (PQL), lower limit of quantitation (LLQ), or reporting limit (RL).

Table by:	AML
Checked by:	JRS
Reviewed by:	PTM

TABLE 4-3

RI/AA/IRM REPORT GROUNDWATER ANALYTICAL RESULTS COMPARISON TO 6 NYCRR PART 703 WATER QUALITY STANDARDS

Lab ID	Water Quality Standards	RSJ0	665-01	RSJ066	5-02	RSJ0665	-05	RSJ0665	-06
Sample ID	Surface Waters and Groundwater (6 NYCRR	M	W-1	MW-2	2	DUP		MW-4	
Sample Date	Part 703) (PPM)	10/	9/09	10/9/0	9	10/9/09	Э	10/9/09	Э
Units		P	РМ	PPM		PPM		PPM	
Semivolatile Organics (GC/MS)									
Diethyl phthalate	NA	ND		0.00082	J	ND		ND	
Di-n-butyl phthalate	0.05	0.00051	J	0.00057	J	0.00046	J	0.0004	
Phenanthrene	NA	ND		0.00088	J	ND		0.00086	
Organochlorine Pesticides (8081A)		[2C]		[2C]		[2C]		[2C]	
beta-BHC	NA	0.00021	D02, J	ND		ND		ND	
Endrin ketone	0.005	0.00024	D02, J	ND		ND		ND	
Methoxychlor	0.035	ND		0.00026	D02	ND		ND	
Total Metals (SW 846 Series)									
Aluminum	NA	6.61		9.62		5.75		9.04	
Barium	NA	0.12		0.108		0.13		0.099	
Calcium	NA	71		203		67.9		192	
Chromium	0.05	0.0079		0.0148		0.0072		0.0143	
Cobalt	NA	ND		ND		ND		0.0046	
Copper	0.2	ND		0.0179		ND		0.0113	
Iron	0.3	6.27		9.73		5.42		12.6	
Lead	0.025	ND		0.0165		ND		0.0137	
Magnesium	NA	57.7		121		54.8		96.8	
Manganese	0.3	0.113		0.307		0.103		0.527	
Nickel	0.1	ND		ND		ND		0.0107	
Potassium	NA	3.36		7.48		3.28		6.6	
Sodium	20	26.6		52.2		27.2		24.5	
Vanadium	NA	0.0085		0.0139		0.0076		0.0163	
Zinc	NA	0.0162		0.0493		0.0145		0.0825	
General Chemistry Parameters									
Turbidity (NTU)	NA	358	B, J	391	В	137	B, J	467	В

RI/AA/IRM REPORT GROUNDWATER ANALYTICAL RESULTS COMPARISON TO 6 NYCRR PART 703 WATER QUALITY STANDARDS

1755 DALE RD. BCP SITE # C915234 - NIAGARA TRANSFORMER CORP. CHEEKTOWAGA, NY

Data Qualifiers:

- B = Analyte was detected in associated method blank.
- D02 = Dilution required due to sample matrix effects.
- J = Analyte detected at a level less than the reporting limit (RL) and greater than or equal to the Method Detection Limit (MDL). Concentrations within this range are estimated.
- [2C] = Results taken from second column.
- ND = Not detected above the practical quantitation limits (PQL), lower limit of quantitation (LLQ), or reporting limit (RL).

Footnotes:

- 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
- 2. All results are in Parts per Million (PPM) unless stated otherwise.
- 3. All turbidity results are in Nephelometric Turbidity Units (NTU).
- 4. Monitoring Wells MW-3 and WM-5 were dry. No water samples were taken from these wells.
- 0.79 = Sample concentration exceeds the respective Water Quality Standards from 6 NYCRR Part 703.
- NA = Not applicable

Table by:	AML
Checked by:	DML
Reviewed by:	PTM

TABLE 5-1

RI/AA/IRM REPORT IRM VERIFICATION SAMPLE RESULTS COMPARISON TO NYSDEC PART 375 SOIL CLEANUP OBJECTIVES

Lab ID	Restricted Industrial	Restricted	RTB0801-01	RTB0801-02	RTB0938-01	RTB0801-03	RTB0856-02	RTC0498-01	RTC0635-01	RTC1037-01	RTD1659-01	RTB0856-04
Sample ID	SCOs	Commercial SCOs	Grid 1 Floor	Grid 2 Foor	Grid 2 Floor	Grid 2 West Wall	Grid 3 Pile	Grid 3 Floor	Grid 3 Floor	Grid 3 Floor	Grid 3 Floor	Grid 4 Pile
Sample Date	Table 375-6.8(b)	Table 375-6.8(b)	2/18/10	2/18/10	2/23/10	2/18/10	2/19/2010	3/4/2010	3/8/2010	3/17/2010	4/21/2010	2/19/2010
Units	(PPM)	(PPM)	PPM	РРМ	РРМ	РРМ	PPM	PPM	PPM	PPM	PPM	PPM
Polychlorinated Biphenyls (8082)												
Aroclor 1016	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1221	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1232	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1242	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1248	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1254	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1260	NA	NA	4.5 D08	1000 D08, Z3	1.1	2.7 D08	42 D08	63 D08	21 D08	24 D08	4.8	1.8 D08
TOTAL PCBs	25	1	4.5	1000	1.1	2.7	42	63	21	24	4.8	1.8

093-89144-02

TABLE 5-1

RI/AA/IRM REPORT IRM VERIFICATION SAMPLE RESULTS COMPARISON TO NYSDEC PART 375 SOIL CLEANUP OBJECTIVES

Lab ID	Restricted Industrial	Restricted	RTC0498-02	RTB0856-03	RTC0498-03	RTB0938-02	RTB0756-03	RTB0856-05	RTB0938-03	RTC0498-04	RTB0856-01
Sample ID	SCOs	Commercial SCOs	Grid 4 Floor	Grid 5 Pile	Grid 5 Floor	Grid 6 Floor	Grid 6 West Wall	Grid 7 Floor	Grid 7 Floor	Grid 7 Floor	Grid 7 Pile
Sample Date	Table 375-6.8(b)	Table 375-6.8(b)	3/4/2010	2/19/2010	3/4/2010	2/23/2010	2/17/2010	2/19/2010	2/23/2010	3/4/2010	2/19/2010
Units	(PPM)	(PPM)	PPM	PPM	PPM	РРМ	РРМ	РРМ	PPM	РРМ	PPM
Polychlorinated Biphenyls (8082)											
Aroclor 1016	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1221	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1232	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1242	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1248	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1254	NA	NA	ND	ND	ND	ND	ND	ND	ND	2	ND
Aroclor 1260	NA	NA	4.4 D08	5.5 D08	0.62	0.17 J	1.2	27 D08	44 D08	1	15 D08
TOTAL PCBs	25	1	4.4	5.5	0.62	0.17	1.2	27	44	3	15

TABLE 5-1

RI/AA/IRM REPORT IRM VERIFICATION SAMPLE RESULTS COMPARISON TO NYSDEC PART 375 SOIL CLEANUP OBJECTIVES

Lab ID	Restricted Industrial	Restricted	RTB0756-02	RTC1039-01	RTB0756-01	RTB0693-04	RTB0655-01	RTB0655-02	RTB0693-03	RTB0693-01	RTB0693-02	RTB0801-04
Sample ID	SCOs	Commercial SCOs	Grid 8 Floor	Grid 8 Floor	Grid 9 Floor	Grid 10 Floor	Grid 11 Floor	Grid 11 West Wall	Grid 12 Floor	Grid 13 Floor	Grid 13 South Wall	Grid 13 South Wall 2
Sample Date	Table 375-6.8(b)	Table 375-6.8(b)	2/17/2010	3/17/2010	2/17/2010	2/16/2010	2/15/2010	2/15/2010	2/16/2010	2/16/2010	2/16/2010	2/18/2010
Units	(PPM)	(PPM)	РРМ	РРМ	PPM	PPM	PPM	РРМ	PPM	PPM	PPM	PPM
Polychlorinated Biphenyls (8082)												
Aroclor 1016	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1221	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1232	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1242	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1248	NA	NA	ND	ND	ND	ND	0.17 J	ND	ND	ND	ND	ND
Aroclor 1254	NA	NA	7.1	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1260	NA	NA	10	ND	0.2 J	0.068 J	0.77	0.46	0.18 J	0.2 J	34 D08	370 D08, Z3
TOTAL PCBs	25	1	17.1	ND	0.2	0.068	0.94	0.46	0.18	0.2	34	370

TABLE 5-1

RI/AA/IRM REPORT IRM VERIFICATION SAMPLE RESULTS COMPARISON TO NYSDEC PART 375 SOIL CLEANUP OBJECTIVES

1755 DALE RD. BCP SITE # C915234 - NIAGARA TRANSFORMER CORP. CHEEKTOWAGA, NY

Lab ID	Restricted Industrial	Restricted	RTC0498-05	RTC0498-06	RTC0498-07	RTC0787-02	RTC0635-02	RTC0787-03	RTC0787-01
Sample ID	SCOs	Commercial	Grid 13 South Wall	Grid 13 West Wall	Grid 13 East Wall	Grid 13 East Wall	Grid 13 North Wall	Grid 13 North Wall	Grid 13 South Berm (EAST OF GRID 13)
Sample Date	Table 375-6.8(b)	SCOs Table 375-6.8(b)	3/4/2010	3/4/2010	3/4/2010	3/11/2010	3/8/2010	3/11/2010	3/11/2010
Units	(PPM)	(PPM)	PPM	PPM	PPM	РРМ	PPM	PPM	РРМ
Polychlorinated Biphenyls (8082)									
Aroclor 1016	NA	NA	ND	ND	ND		ND	ND	ND
Aroclor 1221	NA	NA	ND	ND	ND	ND	ND	ND	ND
Aroclor 1232	NA	NA	ND	ND	ND	ND	ND	ND	ND
Aroclor 1242	NA	NA	ND	ND	ND	ND	ND	ND	ND
Aroclor 1248	NA	NA	ND	ND	ND	ND	ND	ND	ND
Aroclor 1254	NA	NA	ND	ND	ND	ND	ND	ND	ND
Aroclor 1260	NA	NA	0.24 J	0.37	16 D08	4.1	93 D08	1.2	1
TOTAL PCBs	25	1	0.24	0.37	16	4.1	93	1.2	1

Data Qualifiers:

J = Analyte detected at a level less than the reporting limit (RL) and greater than or equal to the Method Detection Limit (MDL). Concentrations within this range are estimated.

D08 = Dilution required due to high concentration of target analyte(s)

Z3 = The sample required a dilution due to the nature of the sample matrix. Because of this dilution, the surrogate spike concentration in the sample was reduced to a level where the recovery calculation does not provide useful information.

Footnotes:

All values are in Parts per Million (PPM).

- SS = Surface Sample
- SW = Surface Water sample
- SED = Sediment sample
- ND = Not detected above the practical quantitation limits (PQL), lower limit of quantitation (LLQ), or reporting limit (RL).
- Pile = Temporarily staged soil/fill from designated grids

Table by: <u>AML</u> Checked by: <u>JRS</u> Reviewed by: <u>PTM</u>

1755 DALE RD. BCP SITE # C915234 - NIAGARA TRANSFORMER CORP. CHEEKTOWAGA, NEW YORK

COST ESTIMATE FOR IRM & IMPLEMENTATION OF A SITE MANAGEMENT PLAN

Direct Capital Cost (\$)								
Item	Unit Cost	Unit	Quantity	Years Incurred	Total Cost	30 Yr. Present Value @ 5%		
Implementation of IRM (February -April 2010)	\$420,000	LS	1	1	\$420,000	\$420,000		
	Subtotal, Direct Capital Cos							
Indirect Capital Costs (\$)								
					Total Cost	Present Value Cost @ 5%		
Engineering/Administration		12% of (Capital Cos	sts	\$50,400	\$50,400		
Subtotal, Indirect Capital Costs						\$50,400		
	Tota	I Capital	Costs (Dire	ect and Indirect)	\$470,400	\$470,400		
Annual Operations Maintenance & Monitoring (C	DM & M), Direct							
Item	Unit Cost	Unit	Quantity	Years Incurred	Annual Cost	Present Value Cost @ 5%		
Annual Stormwater Monitoring	\$2,000	Year	1	30	\$2,000	\$30,304		
Annual Certifications	\$1,500	Year	1	30	\$1,500	\$22,728		
			To	tal Annual Cost	\$3,500			
	Sub	total, Dire	ect O&M C	osts (30 Years)	\$105,000	\$53,033		
						Present Value		
Annual Operation Maintenance & Monitoring (O	M & M), Indirect				Annual Cost	Cost @ 5%		
Engineering/Administration			O&M Cost		\$420	\$6,364		
Contingencies			O&M Cost		\$875	\$13,258		
	Total Arra		,	ect O&M Costs	\$1,295 \$4,705	\$19,622		
				ct and Indirect)	\$4,795			
	То	tal O&M (Costs (Dire	ect and Indirect)	\$143,850	\$72,655		
Total Present Worth (PW): IRM Costs + OM & M	PW							
					Total 30 Year	Present Value		
					Cost	Cost @ 5%		
			Total Cost	t of Alternative	\$614,250	\$543,055		

Notes/Assumptions:

A 5% rate of return was used for calculating present value costs.

1755 DALE RD. BCP SITE # C915234 - NIAGARA TRANSFORMER CORP. CHEEKTOWAGA, NEW YORK

COST ESTIMATE FOR RESTRICTED COMMERCIAL USE & IMPLEMENTATION OF A SITE MANAGEMENT PLAN

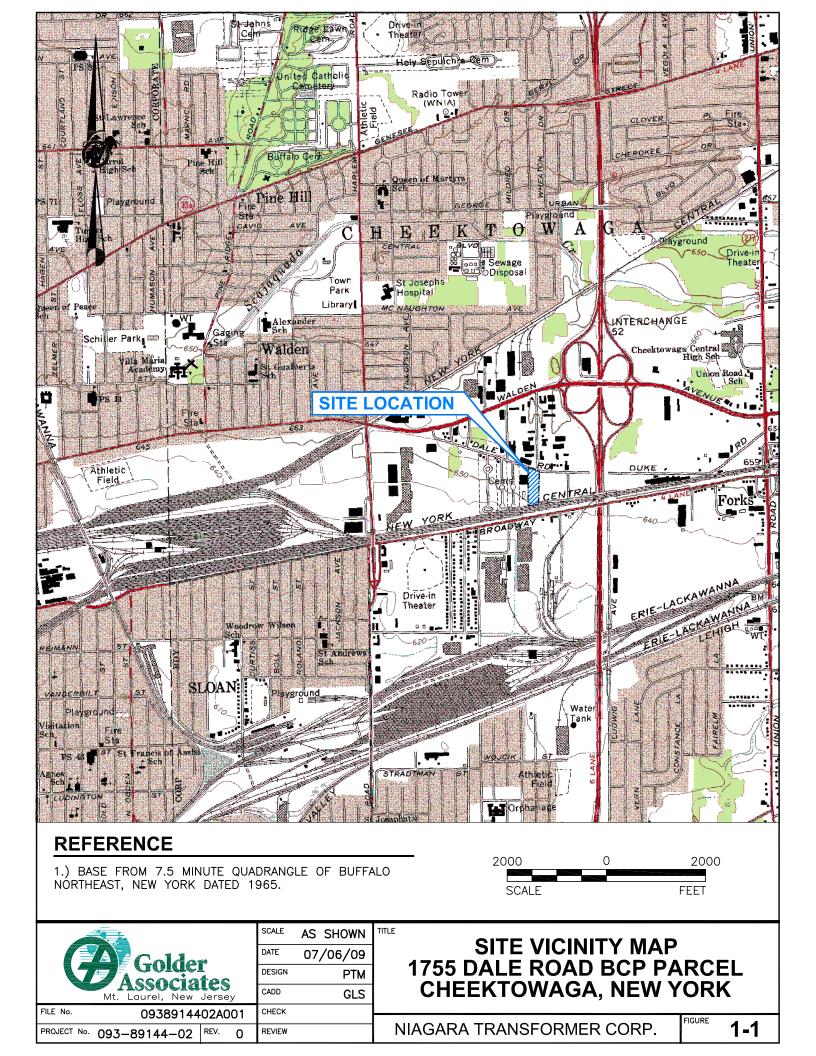
Direct Capital Cost (\$)						
						30 Yr. Present
Item	Unit Cost	Unit	Quantity	Years Incurred	Total Cost	Value @ 5%
Implementation of IRM (February -April 2010)	\$420,000	LS	1	1	\$420,000	\$420,000
Impacted Soil/Fill Excavation, Staging & Hauling	\$25	CY	2500	1	\$62,500	\$62,500
PCB-Imapcted Non-Hazardous Soil/Fill Disposal	\$80	TON	3750	1	\$300,000	\$300,000
Verification Sampling	\$120	EA	25	1	\$3,000	\$3,000
		Sub	total, Direc	t Capital Costs	\$785,500	\$785,500
Indirect Capital Costs (\$)						
					Total Cost	Present Value Cost @ 5%
Engineering/Administration		12% of (Capital Cos	sts	\$94,260	\$94,260
		Subto	otal, Indired	t Capital Costs	\$94,260	\$94,260
	Tota	I Capital	Costs (Dire	ct and Indirect)	\$879,760	\$879,760
Annual Operations Maintenance & Monitoring (OM & M)), Direct		1			Present Value
Item	Unit Cost	Unit	Quantity	Years Incurred	Annual Cost	Cost @ 5%
Annual Stormwater Monitoring	\$2,000	Year	1	30	\$2,000	\$30,304
Annual Certifications	\$1,500	Year	1 	30	\$1,500	\$22,728
				tal Annual Cost	<i>t -)</i>	
	Sub	total, Dire	ect O&M C	osts (30 Years)	\$105,000	\$53,033
Annual Operation Maintenance & Monitoring (OM & M)	, Indirect				Annual Cost	Present Value Cost @ 5%
Engineering/Administration			O&M Cos	-	\$420	\$6,364
Contingencies			O&M Cos		\$875	\$13,258
	-		,	ect O&M Costs ct and Indirect)	\$1,295	\$19,622
	\$4,795					
	То	tal O&M (Costs (Dire	ct and Indirect)	\$143,850	\$72,655
Total Present Worth (PW): IRM Costs + OM & M PW						
					Total 30 Year	Present Value
					Cost	Cost @ 5%
		•	Total Cost	of Alternative	\$1,023,610	\$952,415

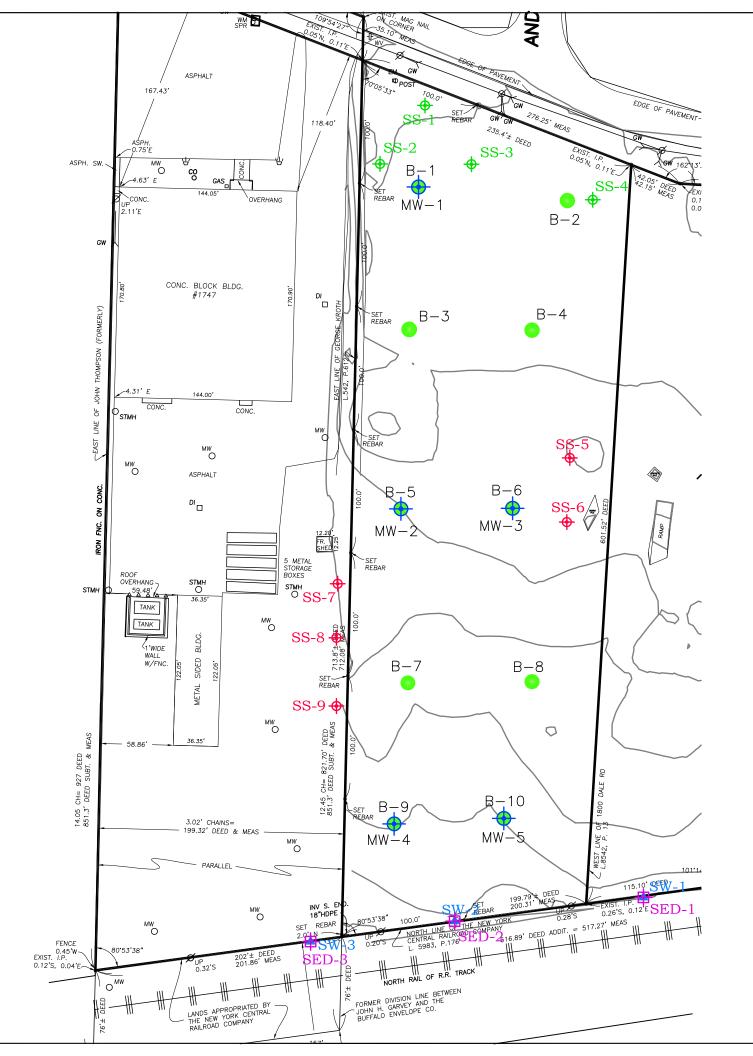
Notes/Assumptions:

A 5% rate of return was used for calculating present value costs.

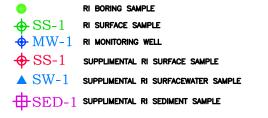
1755 DALE RD. BCP SITE # C915234 - NIAGARA TRANSFORMER CORP. CHEEKTOWAGA, NEW YORK

COST ESTIMATE FOR UNRESTRICTED USE


Unit Cost	Unit	Quantity	Years Incurred	Total Cost	
\$420,000	LS	1	1	\$420,000	
\$25	CY	10500	1	\$262,500	
\$80	TON	15750	1	\$1,260,000	
\$120	EA	60	1	\$7,200	
	Sub	total, Direc	ct Capital Costs	\$1,949,700	
				Total Cost	
	12% of 0	Capital Cos	sts	\$233,964	
	Subto	ct Capital Costs	\$233,964		
Total C	apital Co	\$2,183,664			
	\$420,000 \$25 \$80 \$120	\$420,000 LS \$25 CY \$80 TON \$120 EA Sub 12% of C Subto	\$420,000 LS 1 \$25 CY 10500 \$80 TON 15750 \$120 EA 60 Subtotal, Direct 12% of Capital Cos Subtotal, Indirect	\$420,000 LS 1 1 \$25 CY 10500 1 \$80 TON 15750 1 \$120 EA 60 1 Subtotal, Direct Capital Costs 12% of Capital Costs Subtotal, Indirect Capital Costs	\$420,000 LS 1 1 \$420,000 \$25 CY 10500 1 \$262,500 \$80 TON 15750 1 \$1,260,000 \$120 EA 60 1 \$7,200 Subtotal, Direct Capital Costs \$1,949,700 Total Costs 12% of Capital Costs \$233,964 Subtotal, Indirect Capital Costs \$233,964


1755 DALE RD. BCP SITE # C915234 - NIAGARA TRANSFORMER CORP. CHEEKTOWAGA, NEW YORK

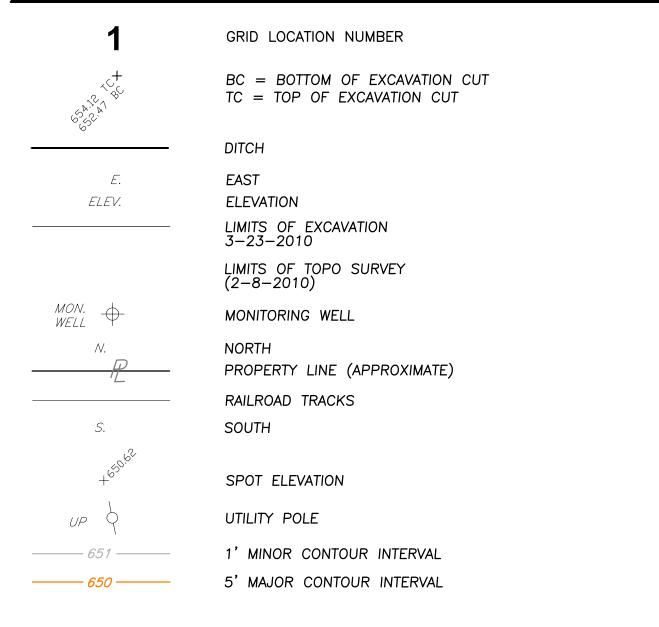
SUMMARY OF REMEDIAL COST ALTERNATIVES


REMEDIAL ALTERNATIVE	ESTIMATED 30 YR PRESENT WORTH COST
<u>No Further Action</u> (Cost of Completed IRM)	\$470,400
IRM & Implementation of Site Management Plan (SMP) (Cost of Completed IRM, plus SMP and Future OM & M)	\$543,500
Restricted Commercial Use Cleanup & Implementation of SMP (Cost of Completed IRM, restricted commercial cleanup plus SMP and Future OM & M)	\$952,500
<u>Unrestricted Use Cleanup</u> (Cost of Completed IRM and unrestricted use cleanup)	\$2,183,664

FIGURES

LEGEND

	L	EGEND
ASPH		ASPHALT
BLDG		BUILDING
CLF	 *	CHAIN LINK FENCE
co	0	CLEAN OUT
CONC		CONCRETE
D		DEED
DI		DRAINAGE INLET
EM		ELECTRIC METER
FLT	4	FLOOD LIGHT
GAS		gas meter
GP	۵	GUIDE POST
GW	Ĭ	GUY WIRE
HYD	Ψ	HYDRANT
INV	(INVERT ELEVATION
L.		LIBER
MB		MAILBOX
MW	0	MONITORING WELL
Ρ.		PAGE
SA MH	0	SANITARY MANHOLE
ST MH	0	STORM MANHOLE
SW		SIDEWALK
UP	Ø	UTILITY POLE
wv	Ŧ	WATER VALVE
		PROPERTY BOUNDARY


REFERENCE

1.) BOUNDARY SURVEY AND BUILDING STRUCTURES PROVIDED BY DEBORAH A. NAYBOR PLS, P.C. LAND SURVEYING - LAND PLANNING DATED 11/15/2007 (REVISED 12/11/2007).

ı	I		40 SCALE	0	4() a FEE	50 T	1				
REV	DATE	DES	REVISION DESCRIPTION						СНК	RVW		
PRO	RI/AAR/IRM REPORT NIAGARA TRANSFORMER CORP. CHEEKTOWAGA, NEW YORK											
TITLE	REMEDIAL INVESTIGATION SAMPLE LOCATIONS											
\vdash		NJ	Authorization #24GA28029100	PROJECT	' No. 09	3-8914402	FILE No	. 093	891440	2A014		
			-	PROJECT	No. 09 AML	3-8914402 08/12/09	FILE No SCALE	. 093 As show				
		G	Authorization #24GA28029100				SCALE		VN REV	. 0		

LEGEND

NOTES

1.) BOUNDARY SURVEY AND BUILDING STRUCTURES PROVIDED BY DEBORAH A. NAYBOR PLS, P.C. LAND SURVEYING – LAND PLANNING DATED 11/15/2007 (REVISED 12/11/2007).

2.) HATCHED GRIDS TO BE EXCAVATED TO A DEPTH OF 1 FOOT BELOW GRADE SURFACE.

REFERENCES

1.) MAP FROM DIGITAL CAD FILE NEW AML SAMPLING RESULTS.DWG ENTITLED "PROPOSED IRM EXCAVATION PLAN," DATED DECEMBER 13, 2007, PREPARED BY BENCHMARK ENVIRONMENTAL ENGINEERING & SCIENCE, PLLC.

2.) EXCAVATION SURVEY FROM DIGITAL CAD FILE EXCAVATION SURVEY WITH GRID LAYOUT PLAN.DWG, ENTITLED "BOTTOM OF EXCAVATION CONTOUR MAP," PREPARED BY WENDEL DUCHSCHERE SURVEY DATED MARCH 23, 2010.

			40	0	4(3 (30			
			SCALE			FEE	∎ T			
REV	DATE	DES		REVISION	DESCRIPTI	NC		CADD	СНК	RVW
PROJ	ECT									
			NIAGARA ⁻	FRAN	SFOR	MER CO	DRP.			
			CHEEKT	OWA	GA, N	EW YOF	RK			
					,					
TITLE										
			EXCAV	ΆΤΙ	ON S	SURVE	EY			
		NJ	Authorization #24GA28029100	PROJECT	「 No. 09	3-8914402	FILE No.		Figur	e 5-1
		-		DESIGN	AL	08/12/09	SCALE AS	SHOW	VN RE\	/. 0
		ĒG	older	CADD	AM	04/09/10				
	J	Ass	ociates	CHECK			FIGU	JR	E 5	5-1
	M		rel, New Jersey	REVIEW						_

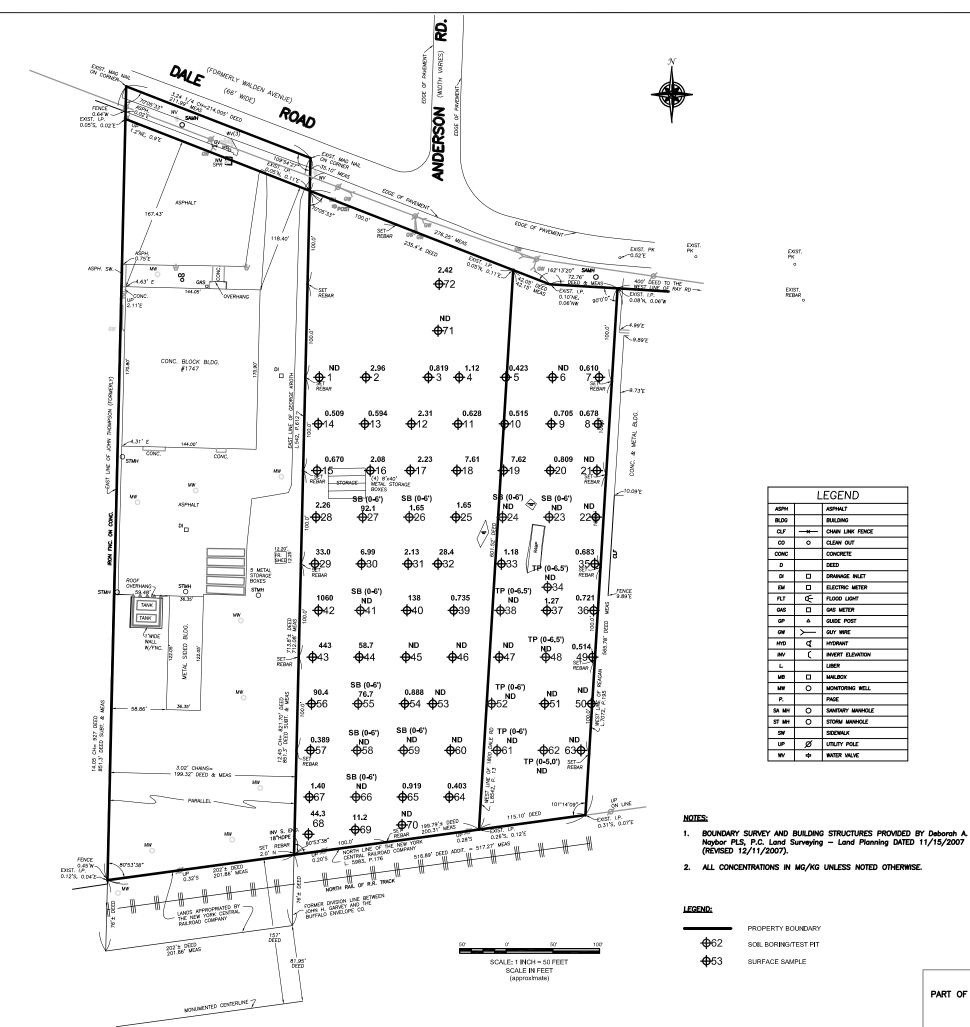
LEGEND

0.2	FINAL SOIL SAMPLE PCB CONCENTRATION (PPM)
13	GRID LOCATION NUMBER
2.31	SURFACE SOIL SAMPLE RESULT
\oplus 53	SURFACE SOIL SAMPLE LOCATION

	LEGEND							
ASPH		ASPHALT						
BLDG		BUILDING						
CLF	— × —	CHAIN LINK FENCE						
со	0	CLEAN OUT						
CONC		CONCRETE						
D		DEED						
DI		DRAINAGE INLET						
ЕМ		ELECTRIC METER						
FLT	d-	FLOOD LIGHT						
GAS		GAS METER						
GP	Δ	GUIDE POST						
GW	\succ	GUY WIRE						
HYD	đ	HYDRANT						
INV	(INVERT ELEVATION						
L.		LIBER						
мв		MAILBOX						
MW	0	MONITORING WELL						
Ρ.		PAGE						
SA MH	0	SANITARY MANHOLE						
ST MH	0	STORM MANHOLE						
SW		SIDEWALK						
UP	Ø	UTILITY POLE						
wv	¢	WATER VALVE						
		PROPERTY BOUNDARY						

GENERAL NOTES

1.) BOUNDARY SURVEY AND BUILDING STRUCTURES PROVIDED BY DEBORAH A. NAYBOR PLS, P.C. LAND SURVEYING – LAND PLANNING DATED 11/15/2007 (REVISED 12/11/2007).


2.) ALL CONFIRMATORY SAMPLES COLLECTED FROM FLOOR OF EACH GRID, UNLESS OTHERWISE NOTED, FOLLOWING EXCAVATION.

REFERENCE

1.) MAP FROM DIGITAL CAD FILE NEW AML SAMPLING RESULTS.DWG ENTITLED "PROPOSED IRM EXCAVATION PLAN," DATED DECEMBER 13, 2007, PREPARED BY BENCHMARK ENVIRONMENTAL ENGINEERING & SCIENCE, PLLC.

			40 SCALE	0		40 Ff	80 EET					
REV	DATE	DES		REVISION	DESCRIPTI	ON		CADD	СНК	RVW		
	RI/AA/IRM REPORT NIAGARA TRANSFORMER CORP. CHEEKTOWAGA, NEW YORK											
TITLE	SUMMARY OF IRM EXCAVATION VERIFICATION SAMPLE RESULTS AND RESIDUAL SITE PCB CONCENTRATIONS											
		NJ	Authorization #24GA28029100	PROJECT	No. 09	3-8914402	FILE No.	093	891440	2A023		
				DESIGN	AML	08/12/09	SCALE A	S SHO	VN RE	v. 0		
		E G	older	CADD	AML	06/17/10						
				CHECK						-		
		ASS	sociates	CHECK			FIG	UK	E 5	-2		

APPENDIX A SHEET 1 – DALE ROAD EXPANSION SAMPLING RESULTS (DECEMBER 2007 INVESTIGATION)

CO O CLEAN OUT CONCRETE DEED DI DRAINAGE EM 🔲 ELECTRIC FLT 🧲 FLOOD LIG GAS GAS METER GP A GUIDE POS GW >---- GUY WIRE HYD C HYDRANT INV (INVERT ELE LIBER MW O MONITORING P. PAGE SAMH O SANITARY ST MH O STORM MA SIDEWALK

DRAWN BY: AZ REVISIONS DATE: 12/13/07 NO: BY DATE DATE: 12/13/07 NO: BY DATE CHECKED BY: MO: BY DATE REVISIONS APPROVED BY: MO: BY DATE REVISIONS MO: BY DATE MO: BY REMARKS MO: BY DATE BY REMARKS REMARKS MO: BY DATE BY REMARKS REMARKS
107 107 107 10. BV No. BV
107 Long to the second
107 Long to the second

L	EGEND
	ASPHALT
	BUILDING
-	CHAIN LINK FENCE
	CLEAN OUT
	CONCRETE
	DEED
	DRAINAGE INLET
	ELECTRIC METER
	FLOOD LIGHT
	gas meter
	GUIDE POST
-	GUY WIRE
	HYDRANT
	INVERT ELEVATION
	LIBER
	MAILBOX
	MONITORING WELL
	PAGE
	SANITARY MANHOLE
	STORM MANHOLE
	SIDEWALK
	UTILITY POLE
	WATER VALVE

					VEY			
PART	OF	LOT	24,	TOV	VNSHIP	11,	RANGE	7
		TO	NN O	F CH	EEKTOW/	AGA		
					of erie			
		S	TATE	OFI	NEW YOR	K		

APPENDIX B FIELD BOREHOLE LOGS, MONITORING WELL COMPLETION DETAILS & WELL DEVELOPMENT RECORDS

DEPT DEPT	h hole <u>20'</u> h soil drill <u>20'</u> h rock core <u>N/A</u> dist. <u>10</u> us. <u>N/A</u>	.GA IN: .WEATH	SP. <u>AJN</u> IER <u>SUN</u>	/AL NY	DRILLI DRILLI	NG METHO NG CO	RA TH	-1/4" H DIME	RMER/BCP SERVICES/NY ID Hollow Stem Augers INSIONS DRILLER <u>A MORRIS</u>	BORING_NO. <u>B</u> 1 SHEET1_of_1 SURFACE_EL DATUMSITE
	H WL. <u>N/A</u> WL. <u>N/A</u>					AMPLER H			<u>lb.</u> DROP <u>30</u> "	STARTED_0843/9-17-09 COMPLETED_0930/9-17-09
	MPLE TYPES		DELATED.	ABBRE						RANGE OF PROPORTION
A.S. C.S.O. D.S.S. P.S. S.T.O. T.P. W.S.	AUGER SAMPLE OHUNK SAMPLE DRIVE OPEN DENISON SAMPLE PTICHER SAMPLE ROCK CORE SLOTTED TUBE SLOTTED TUBE THICHELED, PISTON HITH-WALLED, PISTON WASH SAMPLE	CA C CL C F F FRAG F	RAGMENTS	M MIC MOT NP OG ORG PH PM	MEDIUM MICACEO MOTTLED NON-PL/ ORANGE	US ASTIC E-HYDRAULIC E-MANUAL	SA SD SIY SIM TR WH WR Y	SAMPLE SATURATI SAND SILT SILTY SOME TRACE WATER LI WEIGHT C YELLOW	"TRACE" "LITILE" ED "SOME" "AND"	- 0-5% - 5-12% - 12-30% - 30-50% STENCY
ELEV. DEPTH	DESCRIPTION		BLOWS/ FT.	N	IO. TYPE	SAMPLES VOC CONTENT (P.I.D.) (UPPER/LOWER)	REC/ATT	DEPTH	SAMPLE DESCRIPTIO	N AND BORING NOTES
	CLAY TILL UI	NIT	N/A		1 DO	0.0 ppm 0.0 ppm	1 <u>2</u> " 24"	_	some coarse gravel, s 1.0-2.0 ft. Firm, dark	y-brown SILT and fine SAND, slightly moist. brown SILT, some fine to y, trace coarse gravel, moist.
2	0'-8.0'		N/A		2 D0	0.0 ppm 0.0 ppm	20" 24"		SA-2 2.0-4.0 ft. Stiff, light t SILT to SILTY CLAY, fine to coarse sand, v	little fine to coarse gravel, trace
			N/A		3 DO	0.0 ppm 0.0 ppm	2 <u>0"</u> 24"		CLAY, little fine to co sand, very moist	n, brown to mottled gray SILTY arse gravel, trace fine to coarse gray CLAYEY SILT, trace fine d. moist. (ML-CL)
			N/A		4 DO	0.0 ppm 0.0 ppm	24" 24"		SA-4 6.0-8.0 ft. Compact,	gray-brown, trace orange LT, trace fine gravel, trace fine
- 8 - - - - - - - - - - - - - - - - - -								_	8.0-20.0 ft. AUGERE	D WITH NO SAMPLING
- - - 12								-		
- - - 14								-		
- - - 16								-		
- - - - 18								-		
20	20.0 FT. END OF BOR	EHOLF								
	0.200							-		
								_		

DEPT DEPT NO. [H HOLE <u>8'</u> H SOIL DRILL <u>8'</u> H ROCK CORE <u>N/A</u> DIST. <u>10</u> US. <u>N/A</u> H WL. <u>N/A</u>	_GA INS _WEATHI _TEMP	SP. <u>AJ</u> ER <u>SUN</u> 63° F	IN NY	DF DF DF	ROJE RILLI RILLI RILL	NG METH NG CO	GEOPF	RANSFO DIRECT TH DIME	INSIONS DRILLER <u>A MORRIS</u>	BORING_NO <u>B-2</u> SHEET1 of 1 SURFACE_EL DATUM <u>SITE</u> STARTED_0820/9-21-09
	WL. <u>N/A</u>						AMPLER ASING H				
SA A.S. DOS. P.S.C S.T. T.P. W.S.	MPLE TYPES AUGER SAMPLE CHURK SAMPLE DRIVE OPEN DENISON SAMPLE PITCHER SAMPLE ROCK CORE SLOTTED TUBE ROCK CORE HILLED, PISTON HILLED, PISTON WASH SAMPLE	CA CA CL CL CLY CL F FII FRAG FR	RAGMENTS	ABB MIC MOT NP OG ORG PH PM R RES RX	ME MO NO OR PR		JS ASTIC E-HYDRAULIC F-MANUAI	SA SAT SI SI SIY SM WH WH Y Y	SAMPLE SATURAT SAND SILT SILTY SOME TRACE WATER L WEIGHT (YELLOW		
ELEV. DEPTH	DESCRIPTION		BLOWS/ FT.		NO.	TYPE	SAMPLES VOC CONTEN (P.I.D.) (UPPER/LOWE	REC/A		SAMPLE DESCRIPTION	I AND BORING NOTES
2	FILL 0'-1.5' CLAY TILL LA 1.5'-8.0'	 YER	N/A		1	DO	0.0 ppr 0.0 ppr 0.0 ppr 0.0 ppn	n n <u>32</u> " n	-	some coarse gravel, lit (ML-SM)	r to brown SILT and fine SAND, ttle plant material, moist. ed-brown to brown CLAYEY , moist. (ML-CL)
				-	-		0.0 ppr	n			, CLAYEY SILT to SILTY CLAY,
Ē				-			0.0 ppr			- (ML-CL)	avel, trace fine sand, moist.
Ē6			N/A	-	2	DO	0.0 ppr	4 <u>8</u> " 48"	-		
				-	-				-	-	
- 8	8.0 FT. END OF BORE			-			0.0 ppr	n 			

					<u>4</u> PF	ROJE		ARA TI	RANSFO	RMER/BCP SERVICES/NY	BORING NO. B-3
	H SOIL DRILL 8'										SHEET 1 of 1
	H ROCK CORE <u>N/A</u> NIST. <u>10</u> US. <u>N/A</u>							GEOPR		DRILLER A MORRIS	SURFACE_EL DATUM <u>SITE</u>
							AMPLER H				
TIME	st / s						AMPLER F ASING HA		N/A		
SA	MPLE TYPES			ABB	REVI	ATI	ONS				RANGE OF PROPORTION
A.S. C.S.	AUGER SAMPLE CHUNK SAMPLE	BL BL BR BF	ACK OWN	M MIC	ME		JS	SA SAT	SAMPLE SATURAT	"TRACE" "LITTLE" ED "SOME"	- 0-5% - 5-12% - 12-30% - 30-50%
A.S. C.S. D.S. P.S. R.C. S.T.O. T.P.	AUGER SAMPLE CHUNK SAMPLE DRIVE OPEN DENISON SAMPLE PITCHER SAMPLE ROCK CORE SLOTTED TUBE		ARSE	MOT NP OG ORG PH	MO		STIC	SA SAT SD SI SIY SM TR WL WH	SAND		
R.C. S.T. T.O	ROCK CORE SLOTTED TUBE THIN-WALLED OPEN	CLY CL F FII FRAG FR	AGMENTS	PM	OR PR	GANIC ESSUR	E-HYDRAULIC E-MANUAL	SM TR WI	SOME TRACE WATER LI		STENCY S SOFT
T.P. W.S.	THIN-WALLED, OPEN THIN-WALLED, PISTON WASH SAMPLE		AVEL YERED ITLE	R RES RX		D SIDUAL CK		WH WR Y	WEIGHT C WEIGHT C YELLOW	EVEL LS LOOSE DF HAMMER CP COMPACT DF RODS DN DENSE V VERY	S SOFT T FM FIRM ST STIFF H HARD
ELEV. DEPTH	DESCRIPTION		BLOWS/ FT.		NO.	TYPE	SAMPLES VOC CONTENT (P.I.D.) (UPPER/LOWER)	REC/ATT	DEPTH	SAMPLE DESCRIPTION	N AND BORING NOTES
-	FILL			-	-		(UPPER/LOWER)			SA-1 0.0-0.5 ft. Loose, gray	/ SILT and fine SAND, some
E		_		-			0.0 ppm			coarse gravel, slightly	moist. (ML-SM)
F	0'—1.5'			-			0.0 ppm		-		lark brown to black SILT and gravel, moist. (ML-SM)
E			1					<u>28</u> "			SILTY CLAY, trace fine sand,
E 2	SILT TILL LA		N/A	-	1	DO	0.0	48"	-	trace fine gravel, mois	
E	1.5'-8.0'			-			0.0 ppm				
E				-			0.0		-	1	
E ₄							0.0 ppm				
E +				-	-		0.0 ppm				prown SILT, some clay, trace fine
ΕI				-					_	gravel, very moist. (MI	_)
F				-			0.0 ppm				
E ₆			N/A	-	2	DO		3 <u>8</u> " 48"	_		
ΕŬΙ				-	-		0.0 ppm	40			
E				-					-		
E				-			0.0 ppm				
E 8				-							
E	8.0 FT. END OF BORE	HOLE		-							
E				-					-	-	
F				-							
E				_					-		
E				-							
F				-					-		
E				-							
F				-					-		
E				-							
E				-	1				-	1	
E				-							
E				-	1				_		
E				-	1				_		
E				-	1						
E				-					_		
E				-	1						
⊧ ∣				_	1				_	-	
E				-							
E				-	-				–		
Ê				-							
E				-	1				-	-	
E				-	1						
F				-					-		
E				-	1						
F				-					-		
E				-							
F				-	1				-		
E				-	1						
F				-					-		
E				-	1						
L			1		I					1	

TIME WL. N/A HRS. DELAYED_N/A WT. CASING SAMPLE TYPES ABBREVIATIONS A.S. AUGER SAMPLE BR BROWN Mic MCCOUS D.S. CHUNK SAMPLE CA CASING MP MCCOUS D.S. DEVISION SAMPLE CA CASING MP MCCOUS P.S. PITCHES SAMPLE CA CASING MP MCCOUS P.S. DETOCHE SAMPLE CA CASING MP MCCOUS P.S. DETOCHE SAMPLE CA CASING MP MCCOUS P.S. SLOTTED TUBE OPEN FL CL CASING MP T.G. THIN-WALLED, OPEN FRAGE RX RESSURE-MANUA W.S. WASH SAMPLE LTO LATEED RESSURE-MANUA W.S. WASH SAMPLE LTO LATEED RESSURE-MANUA LTO LATEED RESSURE-MANUA RESSURE-MANUA W.S. WASH SAMPLE LTO LATEED RESSURE-MANUA LTO LATEED RESSURE-MANUA RESSURE-MANUA LTO LATEED RES RESSURE-MANUA LTO LATEED RES RESURE-MANUA		SOIL DESCRIPTION - RANGE OF PROPORTION "TRACE" - 0-5% "UTTLE" - 5-12% "SOME - 12-30% "AND" - 30-50% CONSISTENCY
ELEV. DESCRIPTION BLOWS/ FT. SAMPL NO. FILL FILL 0.0 m	Y YELLOW	LEVEL LS LOOSE S SOFT OF HAMMER CP COMPACT FW FIRM OF RODS DN DENSE ST STIFF V VERY H HARD
FILL		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	pm	SA-1 0.0-1.2 ft. Loose, gray-brown SILT and fine SAND, some gravel, trace plant roots, moist. (ML-SM) - 1.2-4.0 ft. Compact, brown CLAYEY fine SAND, some silt, very moist. (SM-CL)
4 6 N/A 2 D0	pm pm <u>48</u> " 48"	SA-2 4.0-8.0 ft. Compact, brown fine SAND, little silt, saturated. (SM)
8 8.0 FT. END OF BOREHOLE		

DEPT	H HOLE16'	JOB NO	093-8	39144	<u>4</u> PF	ROJE	ECT_N	IIAGA	RA TE		RMER/BCP S	ERVICES/NY	BORING NO. B-5
	H SOIL DRILL <u>16'</u>	GA INSF	р. <u>А</u>	JN	_ DF	RILLI	NG ME	ETHO	D4	-1/4"	ID Hollow St	em Augers	SHEET1 of 1
	h rock core <u>N/A</u> DIST. <u>10</u> US. <u>N/A</u>						NG CC RIG		ME-5			A MORRIS	SURFACE_EL DATUM <u>SITE</u> _
		HRS. PF										30"	
TIME		HRS. DE								N/A		N/A	COMPLETED <u>1030/9–18–09</u>
	MPLE TYPES			ABBI									ANGE OF PROPORTION
A.S. C.S. D.O. D.S. P.S. R.C. S.T. T.O. T.P.	AUGER SAMPLE OHUNK SAMPLE DENISON SAMPLE PTICHER SAMPLE ROCK CORE SLOTTED TUBE THIN-WALLED, OPEN THIN-WALLED, OPEN THIN-WALLED, DISTON WASH SAMPLE	BL BLA BR BRO C COA CA CAS CL CLA CLY CLA FRAG FRA CL CRA	UK WN RSE ING	M MIC MOT NP	MO	DIUM CACEOI TTLED N-PLA	CTIC .		SA SD SI SM TR WH WH WR	SAMPLE SATURAT SAND SILT	ED	"TRACE" - "LITTLE" - "SOME" - "AND" -	- 5-12% - 12-30% - 30-50%
P.S. R.C. S.T.	PITCHER SAMPLE ROCK CORE SLOTTED TUBE	CL CLA CLY CLA F FINE	Y YEY GMENTS	MOT NP OG ORG PH PM	OR OR PR	ANGE GANIC ESSUR	E-HYDRAU E-MANUAI	ULIC	SIY SM TR	SILT SILTY SOME TRACE		CONSIS	
T.O. T.P. W.S.	THIN-WALLED, OPEN THIN-WALLED, PISTON WASH SAMPLE	FRAG FRA GL GRA LYD LAYI LI LITT		PM R RES RX		ESSUR D SIDUAL CK		L.	WL WH WR	WATER LI WEIGHT C WEIGHT C	evel DF Hammer DF Rods	LS LOOSE CP COMPACT DN DENSE V VERY	S SOFT FM FIRM ST STIFF H HARD
ELEV.			BLOWS/	KX	RU	CK	SAMPL		Y	TELLOW			
DEPTH	DESCRIPTION		FT.		NO.	TYPE	VOC COI (P.I.I (UPPER/I	NTENT .D.) 'LOWER)	REC/ATT	DEPTH			AND BORING NOTES
E				-			0.0 p	nnm				· · · · ·	brown SILT and fine sand, ace clay, some plant roots,
E	FILL		N/A	-	1	DO	0.0 p		1 <u>1"</u> 24"	_	moist.	(ML-SM)	
E,	0'-2.4'			-			0.0 F	ppin	27				
Ē ²	0-2.4						23.6					4 ft. Loose, black cinders, slightly r	<pre>SAND and fine GRAVEL, moist (GP)</pre>
E			N/A	-	2	DO	5.9 p	• •	1 <u>4"</u> 24"	-	2.4-4.	0 ft. Firm, dark b	rown to brown CLAYEY SILT to
E	CLAY TILL LAY	YER		-			0.5 p	pm			SILTY	CLAY, trace fine	e sand, moist. (ML-CL)
E 4	2.4'-8.0'			-									SILTY CLAY, little fine sand,
E			N/A	-	3	DO	0.0 p		2 <u>4</u> " 24"	_	trace	fine gravel, slight	ly plastic, moist. (ML-CL)
E				-			0.0 p	ppm					
F 6				-							SA-4 6.0-8.	0 ft. As above. tr	ace coarse gravel, moist.
E				-			0.0 p	ppm	<u>21"</u>		(ML-C		
F			N/A		4	DO	0.0 p	ppm	24"	_	-		
E ₈				-	-						9.0.16) WITH NO SAMPLING
E				-							0.0-10	DUIL AUGEREL	WITH NO SAMPLING
Ē				-						-			
È10				-						_			
E'				-									
E				-						_			
E ₁₀				-									
E12 F				-						_			
E				-						-			
E				-									
E ¹⁴										_			
E				-						_			
F					1								
F16	16.0 FT. END OF BORE	HOLE		-	-								
E				-									
E										_			
E18										_			
E													
È										-			
E ₂₀				-						_			
Ɲ¯				-									
F					1					_			
F				-	1								
F				-						_			
E				-						_			
E				-									
				-	1								

DEPT	H HOLE <u>16'</u> H SOIL DRILL <u>16'</u>	JOB NO	. <u>093–8</u> AJ	39144 IN	<u>1</u> PF	ROJE		ARA TE	RANSFO	RMER/BCP SERVICE	S/NY gers	BORING NO. <u>B-6</u> SHEET <u>1 of 1</u>
DEPT	H ROCK CORE <u>N/A</u>	WEATHE	R_CLO	UDY	_ DF	RILLI	NG CO.	EART	h dime	NSIONS		SURFACE EL
	DIST. <u>10</u> US. <u>N/A</u> H WI N/A							ME-5		DRILLER A MOR		DATUM SITE
							AMPLER ⊢ ASING HA		N/A			_STARTED_ <u>1200/9-18-09</u> _COMPLETED <u>1230/9-18-09</u>
	ML	.111(3. DI			_ **	1. 0						
A.S. C.S. D.S. P.S. S.T. T.P. W.S.	MPLE TYPES AUGER SAMPLE CHUNK SAMPLE DRIVE OPEN DENISON SAMPLE PITCHER SAMPLE STOTER SAMPLE STOTER PROVIDE THORE AUGUSTON THIN-WALLED, PISTON WASH SAMPLE	CLY CLA F FINI FRAG FRA	ICK SWN ARSE SING Y YEY GMENTS ISPEI	ABBI MIC MOT NP OG ORG PH PM R RES RX	MEI MO NO OR PR	DIUM CACEOL TTLED N-PLA ANGE GANIC ESSUR ESSUR	JS STIC E-HYDRAULIC E-MANUAL	SAT SD SIY SM WHW WHW W	SAMPLE SATURAT SILT SILT SOME TRACE WATER LI WEIGHT C YELLOW	ED	ON - RA "TRACE" - 1 "LITLE" - 2 "SOME" - 1 "AND" - 3 CONSISTE COMPACT DENSE VERY	
ELEV. DEPTH	DESCRIPTION		BLOWS/ FT.		NO.	TYPE	SAMPLES VOC CONTENT (P.I.D.) (UPPER/LOWER)	REC/ATT	DEPTH			and boring notes
E				-								rown SILT and fine sand, plant roots, moist.
E			N/A	-	1	DO	0.0 ppm	<u>24</u> "		(ML-SM)		plant roote, materi
E	FILL			-			0.0 ppm	24"				
E 2	0'-3.2'									SA-2 2.0-3.2 ft. As	above.	
F				-			1.2 ppm	<u>18"</u>				rown CLAYEY SILT, little
F		— —	N/A	-	2	DO	0.6 ppm	24"	_	coarse sand, t	trace line g	ravel, slightly moist. (ML-CL)
E ₄	SILT TILL LAY	EK								CA 7 4000 (1) 1		
E	3.2'-8.0'			-			0.1 ppm	24"		SA-3 4.0-6.0 ft. Ver SILT, trace fin	-	wn, mottled yellow, CLAYEY noist. (ML-CL)
F			N/A	-	3	DO	0.0 ppm	24"	-	-	-	
E				-								
E 6				-						SA-4 6.0-8.0 ft. Ver	ry stiff, brov	wn, CLAYEY SILT, trace fine
E				-			0.0 ppm	2 <u>4</u> " 24"	_	sand, trace fin	ne gravel, r	noist. (ML-CL)
F			N/A	-	4	DO	0.0 ppm	24				
F8				_						0.0.40.0.4		
Ē				-						8.0-16.0 ft. Al	UGERED	WITH NO SAMPLING
F				-					-			
E.				-								
E ¹⁰				-					_			
E				_					_			
E				-								
F12				_					_			
F				-								
F				-					-			
E.				-								
- 14				-					_			
E				_					_			
E				=								
F16	16.0 FT. END OF BORE											
E				=								
E				-					-			
E - 18				_								
E''				-								
É				_					_			
E				-								
F20				-					-			
F				-								
E				-					-			
E				_					_			
E				-								
E				-					_			
F				-								
F				_								

DEPT	H SOIL DRILL 8'	_GA INS	SP. <u>A</u>	JN	4_ PF DF	ROJE	NG METH	ARA TI OD	RANSFO	RMER/BCP SERVICES/NY PUSH	BORING_NO SHEET1_of_1
	H ROCK CORE <u>N/A</u> NST. <u>10</u> US. <u>N/A</u>							GEOPR		NSIONS DRILLER A. MORRIS	SURFACE_EL DATUM <u>SITE</u> _
							AMPLER I				
TIME	N1 / A						ASING HA		N/A		COMPLETED
SAI	MPLE TYPES			ABB	REVI	ATIO	ONS			SOIL DESCRIPTION - R	
A.S. C.S. D.S. P.S. R.C. S.T. T.O. T.P.	AUGER SAMPLE CHUNK SAMPLE DRIVE OPEN DENDERS SAMPLE ROCK OPEN ROCK OPEN FOR OPEN THIN-WALLED, OPEN THIN-WALLED, PISTON WASH SAMPLE	C CA C CA C CL CI CLY CI FRAG FI G CI	DARSE ASING _AY _AYEY NE RAGMENTS	M MIC NP ORG PH PM R	MO NO OR PRI PRI		ISTIC E-HYDRAULIC E-MANUAL	SA SD SI SIY SM TR WL WH	SAMPLE SATURAT SILT SILTY SOME TRACE WATER LI WEIGHT C WEIGHT C	0-5% 5-12% 12-30% 30-50% TENCY S SOFT FM FIRM	
w.s.	WASH SAMPLE	GL G LYD L/ LI LI		R RES RX	RES	SIDUAL CK	SAMPLES	WR Y	WEIGHT C YELLOW	EVEL LS LOOSE IF HAMMER CP COMPACT FRODS DN DENSE V VERY	S SOFT FM FIRM ST STIFF H HARD
ELEV. DEPTH	DESCRIPTION		BLOWS/ FT.		NO.	TYPE	VOC CONTENT (P.I.D.) (UPPER/LOWER)	REC/ATT	DEPTH	SAMPLE DESCRIPTION	
E	FILL	_		-			0.0 ppm			1 70	ay-brown to dark brown SILT some fine to coarse gravel,
Ē	0'1.3'			-			0.0 ppm		-	trace plant roots, moist.	(ML-SM) n SILT, some fine sand, trace
F	SILT TILL LA	YER		-			0.0 ppn	28"		coarse gravel, moist. (M	
E ²	1.3'-8.0'	-	N/A	-	1	DO	0.0 ppm	48"	_		
E				-					_		
				-			0.0 ppm				
F ⁴				-			0.0 ppm	n			own to brown CLAYEY SILT to
E				-					_	moist. (CL-ML)	rse gravel, trace plant roots,
F				-			0.0 ppm	<u>33</u> "			
E 6			N/A		2	DO	0.0 ppm	48"	-		
E							0.0 ppn				
E							0.0 ppm				
E 8											
E	8.0 FT. END OF BORE	HOLE		-							
Ē				-					-		
ΕI				-					_		
E				-							
È				-					-		
Ē				-							
F				-					_		
E				-					-	-	
E											
E									-		
E				-					_	-	
E											
F				-					-		
F				-							
F				-	1				_	1	
E				-	1				_		
E				-							
E				-					-		
E											
E				-							
₽				-					-		
E				-							
E				-					_		
E				-					_		
E											
E				-	1						

DEPTI DEPTI NO. [DEPTI	H HOLE <u>8'</u> H SOIL DRILL <u>8'</u> H ROCK CORE <u>N/A</u> DIST. <u>10</u> US. <u>N/A</u> H WL. <u>N/A</u> WL. <u>N/A</u>	_GA INS _WEATHI _TEMP _HRS.P	P. <u>AJ</u> ER <u>SUN</u> 60° F PROD. <u></u>	IN NY N/A	4 Pf _ Df _ Df _ Df _ Df	ROJE RILLI RILLI RILL RILL	NG METHO NG CO	ARA TE DD <u>D</u> EART GEOPRO	IRECT H DIME DBE R N/A	NSIONS DRILLER <u>A. MORRIS</u> DROP <u>N/A</u>	BORING NO. <u>B-8</u> SHEET <u>1 of 1</u> SURFACE EL. DATUM <u>SITE</u> STARTED <u>1015/9-21-09</u> COMPLETED <u>1035/9-21-09</u>
SAI	MPLE TYPES AUGER SAMPLE CHUNK SAMPLE DRIVE OPEN			ABB	REV	ATI	ONS		SAMPLE SATURAT SAND	SOIL DESCRIPTION - R	ANGE OF PROPORTION
A.S. C.O. D.S. P.S. R.C. S.T. T.P. W.S.	DRIVE OPEN DENISON SAMPLE PITCHER SAMPLE ROCK CORE SLOTTED TUBE THIN-WALLED, PEN THIN-WALLED, PISTON WASH SAMPLE	CA CA CL CL CLY CL F FIN FRAG FR	AGMENTS	M MOT NP OG ORH PM R RES RX	MO NOR OR PRE RE RO	TTLED N-PLA ANGE GANIC ESSUR ESSUR D SIDUAL CK	JS ASTIC E-HYDRAULIC E-MANUAL	SA SAT SD SIY SM TR WL WH WR Y	SILT	TAND" - CONSIS EVEL LS LOOSE OF HAMMER CP COMPACT OF RODS DN DENSE V VERY	
ELEV. DEPTH	DESCRIPTION		BLOWS/ FT.		NO.	TYPE	SAMPLES VOC CONTENT (P.I.D.) (UPPER/LOWER)	REC/ATT	DEPTH	SAMPLE DESCRIPTION	AND BORING NOTES
2	FILL 0'-1.5' SILT_TILL_LA` 1.5'-8.0'	 YER	N/A		1	DO	0.0 ppm 0.0 ppm 0.0 ppm 0.0 ppm		-	to coarse SAND, some trace plant material, mo	own SILT and fine SAND,
				-			0.0 ppm			SA-2 4.0-8.0 ft. Dense, brow gravel, moist. (CL-ML)	n CLAYEY SILT, trace fine
				-			0.0 ppm	<u>42</u> "	_		
			N/A	-	2	DO	0.0 ppm	48"	_		
				-			0.0 ppm				
	8.0 FT. END OF BORE	HOLE									

	H HOLE14'		n 093–8	39144						ORMER/BCP SER	VICES/NY	BORING NO. B-9
DEPT	H SOIL DRILL 14'	.GA INS	P. <u>AJN</u>	/AL	_ DF	RILLI	NG MET		4–1/4"	ID Hollow Stem	Augers	_SHEET_1 of 1
	H ROCK CORE N/A											_SURFACE_EL
	DIST. <u>10</u> US. <u>N/A</u> H WI N/A		70 F					CME-			<u>MORRIS</u> 30"	DATUM <u>SITE</u> STARTED_ <u>1115/9-17-09</u>
			ELAYED								N/A	COMPLETED <u>1200/9-17-09</u>
								/				
SA	MPLE TYPES			ABBF								ANGE OF PROPORTION
A.S. C.S. D.O.	AUGER SAMPLE CHUNK SAMPLE DENISON SAMPLE PTOHER SAMPLE PTOHER SAMPLE ROCK CORE SLOTTED TUBE THIN-WALLED, PJSTON WASH SAMPLE	BL BL BR BR C CC	ACK ROWN DARSE ASING	M MIC MOT NP OG ORG PH PM	ME MIC MO		JS	SA SAT SD	SAMPLE SATURAT SAND	ΈD	"TRACE" – "LITTLE" – "SOME" – "AND" –	5–12% 12–30% 30–50%
A.S. C.S. D.O. D.S. P.S. R.C. S.T. T.O. T.P. W.S.	DENISON SAMPLE PITCHER SAMPLE ROCK CORE	BL BL BR BR C CC CA CA CL CL CLY CL F	ASING AY AYEY NE AGMENTS	NP OG ORG	NÖ OR OR	N-PLA ANGE GANIC	ISTIC E-HYDRAULIC E-MANUAL	SA SAT SD SIY SM TR WH WH			CONSIS	
S.T. T.O. T.P.	SLOTTED TUBE THIN-WALLED, OPEN THIN-WALLED, PISTON	FRAG FR	NE RAGMENTS RAVEL	ĸ				TR WL WH	TRACE WATER L WEIGHT	EVEL DF HAMMER DF RODS	LS LOOSE CP COMPACT DN DENSE	S SOFT FM FIRM ST STIFF H HARD
W.S.	WASH SAMPLE			RES RX	RO	SIDUAL CK		WR Y	YELLOW	OF RODS	DN DENSE V VERY	ST STIFF H HARD
ELEV. DEPTH	DESCRIPTION		BLOWS/ FT.		NO.	TYPE	SAMPLES VOC CONTER (P.I.D.) (UPPER/LOW	T REC/A	т DEPTH	SAMPLE	DESCRIPTION	AND BORING NOTES
F				-								n-gray to gray GRAVEL and
E			N/A	_	1	DO	0.1 pp	n 12"	_		arse SAND, sl . Concrete ob	ightly moist. (GP-SM) struction.
E	FILL			-			0.3 pp			1.0-2.0 ft	. Compact, da	rk brown SILT and fine
E 2	0'-2.6'										tle fine to coar As above	se gravel, moist. (SM-ML)
E			-	=			0.2 pp			2.6-4.0 ft	Very stiff, bro	own, CLAYEY SILT to SILT,
E			N/A	-	2	DO	0.8 ррі		-	- trace to li (ML-CL)	ttle fine sand,	trace plant roots, moist.
E ₄	SILT TILL LAY	/ER										
E	2.6'-8.0'			-			0.0			SA-3 4 0-4.8 ft moist. (M		own, SILT, some fine sand,
E			N/A	_	3	DO	0.0 pp	24"	-		,	n fine to medium SAND, moist.
F				-			0.0 pp	n		(SM)		
F 6										SA-4 6.0-8.0 ft	. As above. (N	IL)
E				-			0.9 рр	n <u>24</u> "				,
E			N/A	Ξ	4	DO	1.2 pp	n ²⁴ "	-	-		
E 8				-								
ΕŬΙ				-						8.0-14.0	ft. AUGERED	WITH NO SAMPLING
E				-					-			
E				-								
E ¹⁰				-					-			
ΕI				_								
E				-								
E12				_								
E				-								
F				-								
F.				-								
-14 F	14.0 FT. END OF BORE	HOLE		-								
E				_					-			
F				-								
₽16				-					-			
E				-								
E				-					-	-		
E 18				_					_			
E''				_								
₽				-								
É I				-								
E ²⁰				_					-			
É				-								
F				-					-			
E				_					_			
E				-								
F				-						-		
E				-								
				_	I	1				1		

FIELD BORING LOG

	H HOLE14'		093-8	39144							RMER/BCP SER	VICES/NY	BORING NO. B-10
DEPTI	H SOIL DRILL 14'	GA INSF	. <u>AJN</u>	/AL	_ DF	RILLI	NG ME	тно	D4	-1/4"	ID Hollow Stem	Augers	_SHEET1 of 1
DEPTI	H ROCK CORE <u>N/A</u>	WEATHE	R P.CL	<u>.OUD`</u>	Ľ DF	RILLI	NG CC)	EART	h dime	NSIONS		_SURFACE_EL
	DIST. <u>10</u> US. <u>N/A</u> H WI N/A								ME-5			MORRIS 30"	DATUM SITE
		HRS. PI HRS. DI								<u>140</u> N/A		<u> </u>	STARTED_ <u>1400/9-17-09</u> COMPLETED_ <u>1450/9-17-09</u>
	ML					. 0		117.0				•	
SAI	MPLE TYPES			ABBF							SOIL DESCR		ANGE OF PROPORTION
A.S. C.S. D.O.	AUGER SAMPLE CHUNK SAMPLE DRIVE OPEN	BL BLA BR BRC C COA	CK DWN RSE ING	M MIC MOT	MEI MIC MO		JS		SA SAT SD	SAMPLE SATURAT SAND	ED	"TRACE" "LITTLE" "SOME" "AND"	5-12% 12-30% 30-50%
A.S. C.S. D.O. P.S. R.C. S.T. T.O. T.P. W.S.	AUGER SAMPLE OHUNK SAMPLE DENISON SAMPLE PENISON SAMPLE PITCHER SAMPLE ROCK CORE SLOTTED TUBE THIN-WALLED, OPEN THIN-WALLED, OPEN THIN-WALLED, DISTON WASH SAMPLE	BL BLA BR BRC C COA CA CAS CL CLA CLY CLA F FINI	ING Y YEY GMENTS	M MOT NP OG ORG PH PM	NO OR OR	N-PLA ANGE GANIC	ISTIC E-HYDRAU E-MANUAL		SA SD SI SM TR WH WH WH WR			CONSIST	
S.T. T.O. T.P.	SLOTTED TUBE THIN-WALLED, OPEN THIN-WALLED, PISTON	FRAG FRA	VEL	ĸ					TR WL WH	WATER LI WEIGHT C	EVEL IF HAMMER IF RODS	LS LOOSE CP COMPACT DN DENSE	S SOFT FM FIRM ST STIFF H HARD
W.S.	WASH SAMPLE		LE	RES RX	RO	SIDUAL CK			Y	YELLOW	F RODS	DN DENSE V VERY	ST STIFF H HARD
ELEV. DEPTH	DESCRIPTION		BLOWS/ FT.		NO.	TYPE	SAMPLI VOC CON (P.I.E (UPPER/L		REC/ATT	DEPTH	SAMPLE	DESCRIPTION	AND BORING NOTES
E				_			UPPER/L	_OWER)					ay GRAVEL and fine SAND,
E			N/A	_	1	DO	0.2 p	opm	18"	_			s, moist. (GP-SM) rk brown to black SILT and
E	FILL			-	•		1.1 p	pm	24"				coarse gravel, little organics
E 2	0'-3.2'					-					moist. (S SA-2 2.0-3.2 ft	,	rk brown to black CLAYEY
E				=			0.5 p	pm	<u>22</u> "		SILT, littl	e fine sand, tra	ce fine to coarse gravel, trace
E			N/A	-	2	DO	0.1 p	pm	24"	-		ts, moist. (ML-0	CL) w-brown SILT, some fine sand,
E ₄	SILT TILL LAY	ΈR									trace fine	to coarse grav	vel, trace clay, moist. (ML)
E	3.2'-8.0'			_			0.0		o"				low-brown to brown CLAYEY ace fine sand, trace plant roots,
E I			N/A	_	3	DO	0.0 p	•	2 <u>4"</u> 24"	_	moist. (M		ace fine sand, trace plant roots,
F				-			0.0 p	pm					
F6											SA-4 6.0-8.0 ff	. Stiff, yellow-b	rown to brown, CLAYEY SILT
F				-			0.2 p	opm	<u>24</u> "			CLAY, slightly	plastic, trace fine sand, moist.
E			N/A	-	4	DO	0.0 p	opm	24"	_	(ML-CL)		
E 8							-						
Ē				-							8.0-14.0	ft. AUGERED	WITH NO SAMPLING
E				-						_			
È I				-									
E ¹⁰				-						-			
ΕI				_						_			
E				=									
È12 ∣				_						-			
E				-									
E										-			
E E14													
' <u></u> [14.0 FT. END OF BORE	HOLE		-									
È ∣				-						_			
É				-									
E ¹⁶				_						_			
É I				-									
E				-						_			
E18				_						_			
E				-									
F				-						-			
E _				-									
E ²⁰				-						_			
E				_						_			
E				-									
₽				_						_			
E				-									
E				-						-			
F													

		TRANSFORMER ROD SERVICES (NY	
		TRANSFORMER BCP SERVICES / NY WELL NO.	
		4 1/4" I.D. HOLLOW STEM AUGERS GROUND ELEV.	
WEATHER	DRILLING COMPANY	EARTH DIMENSIONS RISER ELEV.	
TEMP	P DRILL RIG	0DRILLER _A. MORRISSTARTED0	930 / 9-1/-09 COMPLETED 1100 / 9-1/-09 TIME DATE TIME DATE
LOCATION /	COORDINATES		
	0.0 17.0	MATERIALS INVENTORY	
		I.f. WELL SCREEN in. diaI.f. BEN	
		SCREEN TYPE CONTINUOUS WRAP PVC INST	
		SLOT SIZE	
		CENTRALIZERS NOT USED FILT	
GROUT TYPE	ECEMENT/BENTONITE	DRILLING MUD TYPE NOT USED INST	ALLATION METHOD IREMIL
ELEV./DEPTH	SOIL/ROCK DESCRIPTION	WELL SKETCH	INSTALLATION NOTES
-		- J-PLUG	AUGERED WITH 4 1/4 I.D. HOLLOW
_		- 2.50	STEM AUGER TO 20.0 FT. BELOW
-			GROUND SURFACE (BGS). SAMPLED
- 1456.40	GROUND SURFACE		0.0-20.5 FT BGS. SAND POURED
- 0.0	UNCOND SONTACE		THROUGH AUGERS 20.5-20.0 FT
-			BGS. WELL MATERIALS PLACED IN
-	FILL		BOREHOLE USING 10 FT. OF WELL
-	0'-2.8'		SCREEN, END CAP, 13.0 FT. OF
-		CEMENT/ BENTONITE	WELL RISER AND SLIP TOP CAP FOR
		GROUT	OVERALL LENGTH OF 23.0 FT. WELL
-	CLAY TILL UNIT		MATERIALS PLACED TO 20.0 FT. BGS
-	2.8'-8.0'		WITH 2.5 FT. STICKUP. SAND
-			POURED THROUGH AUGERS 20.0 -
-			8.0 FT. BGS WHILE REMOVING
5.0		5.3 – 2"ø SCH. 40 PVC RISER	AUGERS AT 0.5-1.0 FT.
-			INCREMENTS. BENTONITE CHIP SEAL
-			PLACED 8.0-5.3 FT. BGS. CEMENT/
_			BENTONITE GROUT ADDED 5.3-0.0
-		CHIP SEAL	FT. BGS. REMAINING AUGERS
			REMOVED.
-	AUGERED WITH NO	- 8.0 - XXX XX - XXX XX	-
	SAMPLING 8.0'-20.0'		-
-		8"Ø BOREHOLE	-
			-
- 10.0			
-		1 「「「「「「「」」「「」「「」」「「」「「」「」「「」「」「」「」「」「」「	-
-			
_			
-			
-			-
-		김 [최二][湖二][[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[-
			-
-		WRAP PVC	
			-
- 15.0			-
-			-
-			WELL DEVELOPMENT NOTES
-		:	DATE DEVELOPED: 10/8/09
-			
		FILTER SAND	DEVELOPMENT METHOD:
-			STAINLESS STEEL BAILER
-		: [約二]約	
-			VOLUME PURGED: 8.75 GALS.
-			
20.0			
-	END OF BORING	20.5	
-	20.5' BGS	-	
-		-	
		<u> </u>	1

GA INSP	3–89144.02 project NIAGARA T AJN drilling method 4 CLOUDY drilling company	ARTH DIMENSIONS	ES / NY AUGERS	WELL NO GROUND ELEN RISER ELEV.	MW-2 Sheet 1 of 1 V.
темр. <u>64*</u>	F DRILL RIG CME-550)DRILLERA	MORRIS	STARTED	1030 / 9-18-09 COMPLETED 1145 / 9-18-09 TIME / DATE TIME / DATE
LOCATION /	COORDINATES	MATERIALS I	NVENTO	RY	
CASING TYPI JOINT TYPE GROUT QUAI	E SCH. 40 PVC Flush Threaded	SCREEN TYPE CON SLOT SIZE 0.01 CENTRALIZERS NOT US	ITINUOUS W 0" SED	/RAP_PVCINS FIL FIL	TER PACK TYPE #00N QUARTZ SAND
ELEV. /DEPTH	SOIL/ROCK DESCRIPTION	WELL	SKETCH		INSTALLATION NOTES
- 1456.40	GROUND SURFACE		- 2.50	J-PLUG	AUGERED WITH 4 1/4 I.D. HOLLOW STEM AUGER TO 16.0 FT. BELOW GROUND SURFACE (BGS). SAMPLED 0.0-16.5 FT BGS. SAND POURED
0.0	FILL 0'-2.4'	1.5 -		CEMENT/ BENTONITE GROUT	THROUGH AUGERS 16.5-16.0 FT BGS. WELL MATERIALS PLACED IN BOREHOLE USING 10 FT. OF WELL SCREEN, END CAP, 8.5 FT. OF WELL RISER AND J-PLUG CAP FOR
- - - - - - - -	CLAY TILL UNIT 2.4'-8.0'	- 4.0 -		BENTONITE CHIP SEAL	OVERALL LENGTH OF 18.5 FT. WELL MATERIALS PLACED TO 16.0 FT. BGS WITH 2.5 FT. STICKUP. SAND POURED THROUGH AUGERS 16.0 -
5.0		6.0 - 6.0 -		Ø SCH. 40 /C RISER	4.0 FT. BGS WHILE REMOVING AUGERS AT 0.5-1.0 FT. INCREMENTS. BENTONITE CHIP SEAL PLACED 4.0-1.5 FT. BGS. CEMENT/ BENTONITE GROUT ADDED 1.5-0.0 FT. BGS. REMAINING AUGERS REMOVED.
10.0	AUGERED WITH NO SAMPLING 8.0'-20.0'			– 8"ø BOREHOLE	
				2"ø CONTINUOUS WRAP PVC 0.010" SLOT SCREEN	
15.0				-FILTER SAND	
	END OF BORING 16.5' BGS	16.5 - <u>16.5</u>			WELL DEVELOPMENT NOTES DATE DEVELOPED: 10/8/09 DEVELOPMENT METHOD: STAINLESS STEEL BAILER VOLUME PURGED: 18.5 GALS.
- - - - - - - -					

		RANSFORMER BCP SERVICES / NY	ELL NO
			ROUND ELEV
		EARTH DIMENSIONS RI	
	COORDINATES	DNILLIN3	TARTED
Loonnon y		MATERIALS INVENTORY	
WELL CASIN	G <u>2.0</u> in. dia. <u>8.5</u>		
			PVC INSTALLATION METHOD POUR THROUGH AUGERS
JOINT TYPE		SLOT_SIZE0.010"	
GROUT QUA	NTITY	CENTRALIZERS NOT USED	FILTER PACK TYPE #00N QUARTZ SAND
GROUT TYPE	CEMENT/BENTONITE	DRILLING MUD TYPE NOT USED	INSTALLATION METHOD TREMIE
ELEV./DEPTH	SOIL/ROCK DESCRIPTION	WELL SKETCH	INSTALLATION NOTES
-			
Ē		- 2.50	STEM AUGER TO 16.0 FT. BELOW
F		-	GROUND SURFACE (BGS). SAMPLED
- 1456.40	GROUND SURFACE		- 0.0-16.5 FT BGS. SAND POURED
- 0.0	GROUND SURFACE		THROUGH AUGERS 16.5-16.0 FT
		СЕМЕ	ENT/ ERCS WELL MATERIALS PLACED IN
F		GROU	
	FILL	1.5 -	SCREEN, END CAP, 8.5 FT. OF WELL
-	0'-3.2'		RISER AND J-PLUG CAP FOR
-			TONITE OVERALL LENGTH OF 18.5 FT. WELL
			SEAL MATERIALS PLACED TO 16.0 FT. BGS
	SILT TILL UNIT		WITH 2.5 FT. STICKUP. SAND
	3.2'-8.0'		E POURED THROUGH AUGERS 16.0 -
		2"ø SCH.	40 FT. BGS WHILE REMOVING
- 5.0		PVC RISE	AUGERS AT 0.5-1.0 FT.
-		- 6.0	INCREMENTS. BENTONITE CHIP SEAL
-			PLACED 4.0-1.5 FT. BGS. CEMENT/
-			BENTONITE GROUT ADDED 1.5-0.0
-			FT. BGS. REMAINING AUGERS
_			REMOVED.
-	AUGERED WITH NO		-
	SAMPLING 8.0'-20.0'		-
-		8"# 8	BOREHOLE
- 10.0	-		-
_			
_	-		-
-			
_			
-	-	0.01	O" SLOT [
-			
			Ę
-			<u>-</u>
-			
15.0	-		R SAND
-			WELL DEVELOPMENT NOTES
	END OF BORING	16.5 - <u>China Ann.</u>	DATE DEVELOPED: 10/8/09
	16.5' BGS		
			DEVELOPMENT METHOD:
			STAINLESS STEEL BAILER
-			[] []
			VOLUME PURGED: NO RECOVERY
20.0		-	
-			
		-	
-			

		RANSFORMER BCP SERVICE		NO. <u>MW-4</u> SHEET <u>1 of 1</u>
				ID ELEVWATER DEPTH
	SUNNY DRILLING COMPANY			ELEV DATE/TIME $\frac{N/A}{A}$
				ED <u>1200 / 9–17–09</u> COMPLETED <u>1330 / 9–17–09</u> TIME / DATE TIME / DATE
LOCATION /	COORDINATES			TIME / DATE TIME / DATE
		MATERIALS I	NVENTORY	
				I.F. BENTONITE SEAL
				INSTALLATION METHOD POUR THROUGH AUGERS
				FILTER PACK QTY1.5 BAGS
				FILTER PACK TYPE #00N_QUARTZ_SAND
GROUT TYPE	E CEMENT/BENTONITE	DRILLING MUD TYPE NO	T USED	INSTALLATION METHOD IREMIE
ELEV./DEPTH	SOIL/ROCK DESCRIPTION	WELL	SKETCH	INSTALLATION NOTES
-			J-PLUG	AUGERED WITH 4 1/4 I.D. HOLLOW
-	-		- 2.50	STEM AUGER TO 14.0 FT. BELOW
_	-			GROUND SURFACE (BGS). SAMPLED
1456.40	GROUND SURFACE			0.0-14.5 FT BGS. SAND POURED
- 0.0				THROUGH AUGERS 14.5-14.0 FT
	FILL		CEMENT/ BENTONIT	
Ē	0'-2.6'		GROUT	BOREHOLE USING 7 FT. OF WELL
-	5 2.0			SCREEN, END CAP, 9.5 FT. OF WELL
-		2.5 -		RISER AND J-PLUG CAP FOR
-	SILT TILL UNIT		\bigotimes	OVERALL LENGTH OF 16.5 FT. WELL
-			BENTONIT CHIP SEA	
-	2.6'-8.0'			WITH 2.5 FT. STICKUP. SAND
_	-		\otimes	POURED THROUGH AUGERS 14.0 -
5.0		5.0 -		5.0 FT. BGS WHILE REMOVING
-	-		2"ø SCH. 40 PVC RISER	AUGERS AT 0.5-1.0 FT. INCREMENTS. BENTONITE CHIP SEAL
-		7.0 -		PLACED 5.0-2.5 FT. BGS. CEMENT/
-			王操者	BENTONITE GROUT ADDED 2.5-0.0
-			=131	FT. BGS. REMAINING AUGERS
-	-		8"ø BOREI	HOLE FREMOVED.
-				-
-	AUGERED WITH NO SAMPLING 8.0'-20.0'			
-	SAMIFLING 0.0 -20.0		= <u> </u>	
	-			
- 10.0	-		2"ø CONTI WRAP PV	
-	-		0.010" SI SCREEN	
-		9.43 - 9.47 - 8.47 -		- -
-				
-	-			-
_			=	
-	-		FILTER SA	
_	-	16.0 -		-
-		16.5 -	n an tha an t Tha an tha an t	E
15.0	END OF BORING	-		- -
-	16.5' BGS			<u></u>
		-		- WELL DEVELOPMENT NOTES
				E to the second s
-		-		- DATE DEVELOPED: 10/8/09
				- Development method:
-		•		STAINLESS STEEL BAILER
-		-		
-				
20.0		-		E
				1
		-		E E
-				-
				••

JOB NO. 09	3-89144.02 PROJECT NIAGARA 1	RANSFORMER BCP SERVICES / NY	WELL NOM	W-5
GA INSP/	AJN DRILLING METHOD4	1/4" I.D. HOLLOW STEM AUGERS		
	CLOUDY DRILLING COMPANY			DATE/TIME N/A
TEMP. <u>70°</u> LOCATION /	F DRILL RIG CME-550	D DRILLERA. MORRIS	STARTED145	50 / 9-17-09 TIME / DATE COMPLETED 1600 / 9-17-09 TIME / DATE TIME / DATE
,		MATERIALS INVENTOR		
		I.f. WELL SCREEN2.0in. dia		
				LLATION METHOD POUR THROUGH AUGERS
		SLOT SIZE0.010"		
		CENTRALIZERS NOT USED		
GROUT TYPE		DRILLING MUD TYPE NOT USED	INSTA	LLATION METHOD I KEIMIE
ELEV./DEPTH	SOIL/ROCK DESCRIPTION	WELL SKETCH		INSTALLATION NOTES
-	,	-L	-PLUG	AUGERED WITH 4 1/4 I.D. HOLLOW
-	-	- 2.50		STEM AUGER TO 14.0 FT. BELOW
-	-		Ē	GROUND SURFACE (BGS). SAMPLED
1456.40	GROUND SURFACE		-	0.0-14.5 FT BGS. SAND POURED
- 0.0			7,117	THROUGH AUGERS 14.5-14.0 FT
			CEMENT/ BENTONITE	BGS. WELL MATERIALS PLACED IN
	FILL		GROUT	BOREHOLE USING 7 FT. OF WELL
-	0'-3.2'		Ē	SCREEN, END CAP, 9.5 FT. OF WELL
	0-3.2	2.5 -		RISER AND J-PLUG CAP FOR
				OVERALL LENGTH OF 16.5 FT. WELL
-	SILT TILL UNIT		BENTONITE CHIP SEAL	MATERIALS PLACED TO 14.0 FT. BGS WITH 2.5 FT. STICKUP. SAND
-	3.2'-8.0'		-	POURED THROUGH AUGERS 14.0 -
-	5.2 - 6.0			5.0 FT. BGS WHILE REMOVING
- 5.0	-	- 5.0 - XX X 2"ø	SCH. 40	AUGERS AT 0.5–1.0 FT.
-	-	PVC	RISER	INCREMENTS. BENTONITE CHIP SEAL
-		- 7.0 - 1920	-	PLACED 5.0-2.5 FT. BGS. CEMENT/
-	-	- 約三次	-	BENTONITE GROUT ADDED 2.5-0.0
-	-	:	8"Ø BOREHOLE	FT. BGS. REMAINING AUGERS
-	-		E F	REMOVED.
-	-		-	
-	AUGERED WITH NO		-	
-	SAMPLING 8.0'-20.0'	「「「「「「「」」「「」「」「「」」「「」」「「」」「「」」「「」」「」「」」「」」「」」「」」「」」「」」「」」「」」「」」「」」」		
10.0	-		2"¢ CONTINUOUS	
-	-		-0.010" SLOT	
-			SCREEN	
-		: 2011년 2010	Ē	
-	Ē		Ē	
-	-		E	
-	-		FILTER SAND	
-	-	- 16.0 -	-	
-		16.5 -	-	
15.0	END OF BORING 16.5' BGS	-	-	
-	10.0 000		F	
-	- -	-	F	WELL DEVELOPMENT NOTES
	ļ		Ē	DATE DEVELOPED: 10/8/09
-			-	
-	Ē		ĘÌ	DEVELOPMENT METHOD:
-		-	E	STAINLESS STEEL BAILER
-			Ē	
-	- -		F.	VOLUME PURGED: NO RECOVERY
- 20.0	F	-	Ē	
-	ł	-	- -	
-		:	Ē	
-		•	-	

Golder Associates WELL DEVELOPMENT FIELD RECORD

JOB NAME <u>NTC, 1755 Dale RJ., BCP</u> DEVELOPED BY <u>Anthony</u> Notaro	ï	JOB NO. O93_87/94-02WELL NO. Mki 1 DATE OF INSTALL. 9-17-09 SHEET OF COMPLETED DEVEL 10-8-29 1330
STARTED DEVEL. <u>40-35-04 / 42:00</u> DATE TIME		DATE TIME
W.L. BEFORE DEVEL. <u>10.0+ /10.500 /10:37</u> DEPTH DATE TIME		AFTER DEVEL.
WELL DEPTH: BEFORE DEVEL. 22.24 STANDING WATER COLUMN (FT.) 12.20		STANDING WELL VOLUME <u>199 (297)</u> gal. DRILLING WATER LOSS gal.
SCREEN LENGTH		V. 8

		FIEL	D PARAME	TERS		
DATE/TIME	VOLUME REMOVED (GALS)	SPEC. COND. (umhos/cm)	TEMP. (°F)	pH (s.u.)	OTHER	REMARKS
		[<u></u>	7:60		cieas
8 09 12:09	0.257	801	17.4			st turbid it prown tolor
8 09 12:12	2.25	731	17 7	7.73	2011	
0-8-09 12.16	29	801	15.4	7.76		turbid de blowg clot
0-8-09 12:00	29	743	1-1-6	7.86		as above
			149	1. 2.4		
10 8 04 1:17	1.27	769		┼─────		
		<u> </u>		+	+	
				+	+	
				┢─────	+	
				+	+	
				+		
						7
						11 J
	<u>_</u>	_ <u>_</u>				
						l l
					(oal.)	
	8.75		VOLUME R	ENOVED	(90)./	

DEVELOPMENT METHOD:

NOTES: 12:30 wait for recovery

•

Golder Associates

Golder ssociates WELL DEVELOPMENT FIELD RECORD

JOB NAME <u>NTC 1755 Dake Rd. BCP</u> DEVELOPED BY <u>An Romy Notaro</u> STARTED DEVEL. <u>10/8/09</u> 1 9:20	JOB NO. 093-89/94-62 WELL NO. MW.2 DATE OF INSTALL. 9-18-09 SHEET 1 OF 1 COMPLETED DEVEL. 10/8/09 1 1430 1430 DATE TIME
DATE TIME W.L. BEFORE DEVEL. <u>4.16 / 10/8/09 / 9:20</u> DEPTH DATE TIME	AFTER DEVEL. / / DEPTH DATE TIME AFTER DEVEL. <u>18.87</u> WELL DIA. (In)
WELL DEPTH: BEFORE DEVEL. _18.87 STANDING WATER COLUMN (FT.)	STANDING WELL VOLUME <u>3.40 (7.44)</u> gal. DRILLING WATER LOSSgal.

		FIEL	D PARAME			
DATE/TIME	VOLUME REMOVED (GALS)	SPEC. COND. (umhos/cm)	TEMP. (°F)	рН (s.u.)	OTHER	REMARKS
		1830	11.7	718		leat
04 9:29			10.9	7-27		turbid brown Aray color
.09 9 37	2.5	1 Lolaty	41-1	7.18		turbid brown Ara 1000
04 4:40	2.57	1625	41=2	7 27		turbid, brown-gray color
5-09 A 59	5.0	+	11.2	7 37		turbid brown it aray color
5-09 10 13	2.0	170		1		
	<u> </u>	1.00	13 0	7.32		turbid brown - It Aray on or
8 09 11 10	2 54	15,63		+		
			13 3	7 43	<u>├───</u>	as above
8-09 1:03	3.5	172.00	13 5			
			13.4	7.48		l
8.09 2:25	2.5	1463	+			
			-+			
			-+	-		<u> </u>
		-+		-		
						<i>i</i>
			(nal.)			
	18.5			REMOVED	<u></u>	

DEVELOPMENT METHOD:

17.26 HE @ 230

NOTES: 10:17 wait 1 hour for recovery

-

Golder ssociates WELL DEVELOPMENT FIELD RECORD

JOB NAME <u>NTC</u> , 1755 Dale Rd., BCP DEVELOPED BY <u>Anthony Notero</u> STARTED DEVEL. <u>10 B 09</u> / 11 30	JOB NO. 093-89/49-02 WELL NO. MW-4 DATE OF INSTALL. 9-1>-09 SHEET OF COMPLETED DEVEL. 10.8.09 /OF DATE TIME
W.L. BEFORE DEVEL. <u>11.07 / 10 8:04 / 10 27</u>	AFTER DEVEL. / / /
DEPTH DATE TIME	DEPTH DATE TIME
WELL DEPTH: BEFORE DEVEL. <u>パルップアー</u>	AFTER DEVEL. <u>16 جنب</u> WELL DIA. (In) <u>2</u>
STANDING WATER COLUMN (FT.) <u>- ケヤロ</u>	STANDING WELL VOLUME <u>0.40 (2.69)</u> gal.
SCREEN LENGTH	DRILLING WATER LOSSgal.

		FIEL	D PARAME				
DATE/TIME	VOLUME REMOVED (GALS)	SPEC. COND. (umhos/cm)	TEMP. (°F)	pH (s.u.)	OTHER	REMARKS	
			13.4	7.39		turbid it provid-gravi color	
0.8.09 11:37		1187	12.9	726		buchs dk brown Arad color	
0 8-09 11-40	30	1103	13-8	7.31		as above	
		1165	1-1	7.35	<u> </u>	lureid, dk brown brown color	
10 8.09 12.47	2.7	1107					
0 8-09 2:09	2 7	1160	13.7	7.51	┼───	as about	
			-+		_ <u></u>		
	+						
						*	
		<u> </u>					
	9.5	= TOTA	L VOLUME F	REMOVED	(gal.)		

DEVELOPMENT METHOD:

WL 14.67 10 8 @ 210

1

NOTES: 11:50 wait for recovery

•

APPENDIX C RI / IRM ANALYTICAL LABORATORY REPORTS PROVIDED IN ELECTRONIC FORMAT ON CD-ROM

APPENDIX D DATA USABILITY SUMMARY REPORT (DUSR) **Data Validation Services**

120 Cobble Creek Road P.O. Box 208 North Creek, NY 12853

> Phone 518-251-4429 Facsimile 518-251-4428

January 08, 2010

Patrick Martin Golder Associates Inc. 2221 Niagara Falls Blvd Niagara Falls, NY 14304

RE: Validation Review of the Niagara Transformer Site Analytical Data Packages TAL-Buffalo SDG Nos. RSI0643 and RSJ0665

Dear Mr. Martin:

Review has been completed for the data packages generated by TestAmerica Laboratories that pertain to samples collected between September 17, 2009 and October 9, 2009 at the Niagara Transformer site. Three aqueous samples, an aqueous field duplicate, and three soil samples were processed for TCL volatiles, TCL semivolatiles, TCL pesticides, TCL PCBs, and TAL metals/CN. The aqueous samples were also processed for turbidity. Seven soil samples were processed for TCL volatiles, TCL pesticides, and TAL metals/CN. Nineteen soil samples were processed for TCL PCBs. A trip blank was processed with the aqueous samples. The analytical methodologies utilized are those of the USEPA SW846.

The data packages submitted contained full deliverables for validation, but this report is generated from review of the QC summary form information, with review of sample raw data, and review of selected associated QC raw data. Full validation has not been performed. However, the reported summary forms have been reviewed for application of validation qualifiers, per the project QAPP, including guidance from the USEPA National Functional Guidelines for CLP Data Review, as affects the usability of the sample data. The following items were reviewed:

- * Laboratory Narrative Discussion
- * Custody Documentation
- * Holding Times (per NYSDEC 1995 ASP)
- * Surrogate and Internal Standard Recoveries
- * Matrix Spike Recoveries/Duplicate Correlations
- * Aqueous Field Duplicate Correlations
- * Preparation/Calibration Blanks
- * Control Spike/Laboratory Control Samples (LCSs)
- * Instrumental Tunes and IDLs
- * Calibration/CRI/CRA Standards
- * ICP Interference Check Standards
- * ICP Serial Dilution Correlations
- * Sample Result Verification

Those items listed above which show deficiencies are discussed within the text of this narrative. All of the other items were determined to be acceptable for this level of review.

In summary, most of the sample results are usable either as reported, or usable with qualification as estimated or edit to non-detection. However, the following issues are noted:

- o Results for one volatile analyte are rejected in two soil samples.
- Reporting limits are significantly elevated in most of the semivolatile soil samples due to excessive dilution.
- Many of the pesticide reported detections have been qualified, and are suspect as being a result of interferences from the Aroclor constituents.

Copies of the sample summaries and laboratory "case narratives" are attached to this text, and should be reviewed in conjunction with this report. Included with this report are sample results forms with the recommended validation qualifiers applied in red.

The following text discusses quality issues of concern.

General

The laboratory case narrative is not project-specific, does not discuss the issues noted in the data package, does not contain the required "verbatim" statement, and is not signed.

Field Duplicate

The aqueous blind field duplicate of MW-1 shows good correlations for all analytes except turbidity (89%RPD). The results for that analyte in the parent sample and its duplicate have been qualified as estimated in value. No soil field duplicate evaluation was performed.

Chain-of-Custody

The required analyses for three samples were not annotated on the custody form. There is no discussion provided in the data package as to how that issue was resolved. One of those samples was processed for all analytes except the PCBs, and two were processed only for PCBs.

The down-arrow was omitted from the collection date entries for 09/17/09.

TCL Volatiles by EPA8260B

The trip blank was collected about seven weeks prior to sample collection, and therefore the results of that blank are not usable. In that there are no detections of target analytes in the associated samples, sample reported results are unaffected.

Detected results for methylene chloride and chlorobenzene that are flagged as "B" in the samples are considered external contamination, as evidenced by presence in associated method blanks. Those results are edited to nondetection ("U").

Samples B-9 and B-10 produced slightly low responses for internal standard d5-chlorobenzene (both at 49%, below the 50% limit). The samples should have been reanalyzed, especially since the chromatograms show no matrix interferences, and since those samples and the matrix spikes of B-10 (and no other project samples) were all processed at the end of an analytical sequence. The matrix spikes of B-10 show recoveries of 53% for that compound, within the acceptance range. Instrument performance contribution to the low responses should have been ruled out by the reanalyses. Based upon the instrument sensitivity, the minimal deviation is not likely to have affected the ability to detect concentrations at the reported limits. There are no detected analytes associated with that internal standard. No qualification is made.

The sample matrix spikes of MW-2 show acceptable accuracy and precision for the five compounds that were evaluated.

Soil matrix spikes were performed on B-6 and B-10. Both sets of these spikes show consistently low recoveries of most of the target analytes, typically between 50% and 60% for B-10, and 60% to 70% for B-6. Because the recoveries of the deuterated analog surrogate standards for 1,2-dichloroethane and toluene (which should perform identically to their undeuterated counterparts) show excellent recoveries (94% to 116%, versus 49% to 60% for the undeuterated targets), erroneous laboratory spike process/ solution is suspected. No qualifications to the data are made based on those recoveries. Vinyl acetate failed to recover above 6% in those spikes, and therefore the results for that compound are rejected in those parent samples, and should be considered suspect in all project soil samples.

All calibrations standards show responses within validation guidelines, with the exception of that for 1,1,2-trichloroethane (22%D) in the continuing calibration standard associated with B-8. The result for that compound in B-8 is qualified estimated, with a possible low bias.

Holding times were met and instrument tunes were within required ranges.

The laboratory case narrative for the soil sample data package should have discussed the outlying issues noted above.

TCL Semivolatile Analyses by EPA8270C

Most of the soil samples were processed at dilutions ranging from five-fold to twenty-fold, although the chromatograms of the samples seemed to indicate lesser or no dilutions would have been sufficient. This is in direct opposition to the project QAPP, which specifies that no dilutions are to be performed unless for the purpose of bring target analytes responses into range. As a result of the dilutions, reporting limits for undetected compounds are elevated proportionally to the dilution factors in those samples. The client should have been notified, and the reason for dilutions should have been discussed in the laboratory case narrative.

Results for benzaldehyde are qualified as estimated in B-1(0-4), B-5, B-6, B-9, and B-10 due to low recovery (32%) in the associated LCS. Results for atrazine are qualified as estimated in B-2, B-3, B-4, B-7, and B-8 due to low recovery (19%) in the associated LCS. Detected results of benzo(a)pyrene in those five samples are qualified as estimated due to elevated recovery (129%) in that LCS.

Matrix spikes of MW-2 show acceptable recoveries for all target analytes. There are numerous elevated duplicate correlation values for analytes not detected in the parent sample; reported results are unaffected.

The matrix spikes of B-10 were processed, like the sample, at twenty-fold dilution. They show generally acceptable recoveries, except for two spike compounds whose responses were diluted beyond detection.

Results for 4-nitroaniline in the aqueous samples have been qualified as estimated due to low recovery (52%) in the associated LCS.

Holding times were met and instrument tunes were within required ranges. Surrogate and internal standard responses were acceptable. Calibrations standards showed responses within validation guidelines.

TCL Pesticides and TCL PCBs by EPA8081A and EPA8082

Some of the soil samples were diluted significantly due to the concentrations of Aroclors in the samples. This resulted in elevated reporting limits for compounds not detected. Those PCBs also produced interferences in the pesticide analyses. Many of the pesticide reported detections show elevated dual column quantitative correlations. These may be falsely elevated concentrations or potential false positives. The affected analyte results have therefore been qualified as either estimated in value, tentative in identification and estimated in value, or edit to non-detection (sometimes at elevated reporting limits), depending on the level of variance. Some of the summary Forms 10 which report the dual column variances show incorrect values (including 0%D).

The detection of Aroclor 1260 in B-10(0-2) is qualified as estimated due to elevated dual column quantitative correlation (64%D).

Detected results for pesticides in B-9 and B-10 are qualified as estimated due to elevated recoveries of surrogate standard DCB.

Surrogate standard DCB was diluted beyond detection/evaluation in some of the extracts, due to the elevated concentration of Aroclors in those samples.

The reporting limit for the non-detection result for Aroclor 1260 in MW-2 has been qualified as estimated due to the presence of that mixture just below that limit on one analytical column and just above it on the other.

The recoveries of Aroclor 1260 in the matrix spikes of MW-2 are elevated, but would have been more acceptable if the low level detection had been taken into the calculation. No additional qualification is indicated.

Matrix spikes of Aroclors 1016 and 1260 in B-10 show acceptable accuracy and precision. A second set of soil matrix spikes should have been processed.

Matrix spikes of pesticides in B-10 show acceptable accuracy and precision, with the exception of the recoveries of d-BHC (40% to 42%). The result for that compound in the parent sample is therefore qualified as estimated.

The matrix spikes of pesticides in MW-2 show acceptable accuracy and precision, with the exception of the recoveries of 4,4'-DDE (42% to 47%). The result for that compound in the parent sample is therefore qualified as estimated.

Aroclor detections in B1(0-4), B10(0-2), B-9, and B-10 have been qualified as estimated due to low outlying responses in the associated calibration standards.

Holding times were met and blanks show no contamination.

There were no summaries for pesticide breakdown, resolution, or retention time windows present in the data packages. These items were reviewed from the raw data.

TAL Metals by EPA6010B and EPA7470/EPA7471

B-10 shows outlying recoveries in both matrix spikes for antimony (38% and 36%) and magnesium (12% and 11%), and an outlying recovery (57%) in the matrix spike for cyanide. Mercury produced one elevated recovery (209%), and an elevated duplicate correlation (54%RPD) in those spikes. Results for those four analytes are qualified as estimated in the soil samples.

The matrix spike and duplicate of MW-2 shows recoveries and correlations within validation guidelines.

The following elements produced outlying ICP serial dilution correlations (11%D to 16%D) in the evaluation of B-10, and the detected results for those elements are qualified as estimated in the soil samples: barium, calcium, chromium, copper, iron, lead, magnesium, manganese, nickel, vanadium, and zinc

The ICP serial dilution evaluation of MW-2 is acceptable.

Due to low recoveries (60% to 63%) in the associated CRI standards, results for arsenic and selenium in the soil samples and mercury in the aqueous samples are qualified as estimated.

Please do not hesitate to contact me if you have comments or questions regarding this report.

Very truly yours,

Judy Harry

VALIDATION DATA QUALIFIER DEFINITIONS

- **U** The analyte was analyzed for, but was not detected above the level of the associated reported quantitation limit.
- J The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected. The associated reported quantitation limit is an estimate and may be inaccurate or imprecise.
- **NJ** The detection is tentative in identification and estimated in value. Although there is presumptive evidence of the analyte, the result should be used with caution as a potential false positive and/or elevated quantitative value.
- **R** The data are unusable. The analyte may or may not be present.
- **EMPC** The results do not meet all criteria for a confirmed identification. The quantitative value represents the Estimated Maximum Possible Concentration of the analyte in the sample.

CLIENT and LABORATORY SAMPLE IDs and CASE NARRATIVES

(i). • • •

IestAmeric

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

SDG Number: RSI0643

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

Received: Reported:

09/17/09-09/21/09 11/30/09 18:14

Sample Summary

Sample Identification	Lab Number	Client Matrix	Date/Time Sampled	Date/Time Received	Sample Qualifiers
B-1(0-4)	RSI0643-01	Solid	09/17/09 09:15	09/17/09 16:47	
B-10 (0-2)	RSI0643-06	Solid	09/17/09 14:49	09/17/09 16:47	
B-10	RSI0643-03	Solid	09/17/09 15:05	09/17/09 16:47	
B-2 (0-2)	RSI0741-01	Solid	09/21/09 08:50	09/21/09 14:26	
B-2 (2-4)	RSI0741-02	Solid	09/21/09 09:00	09/21/09 14:26	
B-2	RSI0741-03	Solid	09/21/09 09:05	09/21/09 14:26	
B-3 (0-2)	RSI0741-07	Solid	09/21/09 09:35	09/21/09 14:26	
B-3 (2-4)	RSI0741-08	Solid	09/21/09 09:35	09/21/09 14:26	
B-3	RSI0741-09	Solid	09/21/09 09:40	09/21/09 14:26	
B-4 (0-2)	RSI0741-04	Solid	09/21/09 09:10	09/21/09 14:26	
B-4 (2-4)	RSI0741-05	Solid	09/21/09 09:10	09/21/09 14:26	
B-4	RSI0741-06	Solid	09/21/09 09:15	09/21/09 14:26	
B-5 (0-2)	RSI0695-05	Solid	09/18/09 09:57	09/18/09 18:43	
B-5 (2-4)	RSI0695-06	Solid	09/18/09 10:05	09/18/09 18:43	
B-5	RSI0695-07	Solid	09/18/09 10:10	09/18/09 18:43	
B-6 (0-2)	RSI0695-08	Solid	09/18/09 12:20	09/18/09 18:43	
B-6 (2-4)	RSI0695-09	Solid	09/18/09 12:25	09/18/09 18:43	
B-6	RSI0695-10	Solid	09/18/09 12:30	09/18/09 18:43	
B-7 (0-2)	RSI0741-13	Solid	09/21/09 10:50	09/21/09 14:26	
B-7 (2-4)	RSI0741-14	Solid	09/21/09 10:50	09/21/09 14:26	
B-7	RSI0741-15	Solid	09/21/09 10:55	09/21/09 14:26	
B-8 (0-2)	RSI0741-10	Solid	09/21/09 10:20	09/21/09 14:26	
B-8 (2-4)	RSI0741-11	Solid	09/21/09 10:20	09/21/09 14:26	
B-8	RSI0741-12	Solid	09/21/09 10:30	09/21/09 14:26	
B-9	RSI0643-02	Solid	09/17/09 11:50	09/17/09 16:47	
SS-1	RSI0695-01	Solid	09/18/09 12:50	09/18/09 18:43	

20/2497

THE	LEADER	IN	ENVIRONMENTAL	TESTING	
THE	LEADER	ine	ENVIRONMENTAL	LESUNG	

2221 Niagara Falls Blvd., Ste 9 Reported: 10/05/09 1 Niagara Falls, NY 14304 Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]	Falls Blvd., Ste 9
Project Number [none]	NY 14304

Sample Identification	Lab Number	Client Matrix	Sampled	Received	Qualifiers
SS-2	RSI0695-02	Solid	09/18/09 10:15	09/18/09 18:43	
SS-3	RSI0695-03	Solid	09/18/09 12:15	09/18/09 18:43	
SS-4	RSI0695-04	Solid	09/18/09 12:00	09/18/09 18:43	

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc Niagara Falls, NY	Work Ord
2221 Niagara Falls Blvd., Ste 9	
Niagara Falls, NY 14304	Project: 0

Work Order: RSJ0665

Received: 10/09/09 Reported: 10/29/09 10:48

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

Sample Summary

Sample Identification	Lab Number	Client Matrix	Date/Time Sampled	Date/Time Received	Sample Qualifiers
MW-1	RSJ0665-01	Water	10/09/09 12:15	10/09/09 13:40	
MW-2	RSJ0665-02	Water	10/09/09 10:00	10/09/09 13:40	
DUP	RSJ0665-05	Water	10/09/09	10/09/09 13:40	
MW-4	RSJ0665-06	Water	10/09/09 11:00	10/09/09 13:40	
TRIP BLANK	RSJ0665-07	Water	10/09/09	10/09/09 13:40	

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304 SDG Number: RSI0643

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

Case Narrative

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. field-pH), they were not analyzed immediately, but as soon as possible after laboratory receipt.

For method 8081, the ending calibration verification is below the quality control limits for Methoxychlor due to the matrices of the proceeding samples. The sample results should be considered biased low.

For method 8270, the analyte Atrazine in the Matrix Spiked Blank and Duplicate have recoveries below the laboratory quality control limits. It has been investigated and it was found that the spike mix that is being used is suspect. This data has been accepted.

There are pertinent documents appended to this report, 4 pages, are included and are an integral part of this report. Reproduction of this analytical report is permitted only in its entirety. This report shall not be reproduced except in full without the written approval of the laboratory.

TestAmerica Laboratories, Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our Laboratory.

Received: 09/17/09-09/21/09 Reported: 10/05/09 15:28

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304 Work Order: RSJ0665

Received: 10/09/09 Reported: 10/29/09 10:48

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

CASE NARRATIVE

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. field-pH), they were not analyzed immediately, but as soon as possible after laboratory receipt.

A pertinent document is appended to this report, 1 page, is included and is an integral part of this report.

Reproduction of this analytical report is permitted only in its entirety. This report shall not be reproduced except in full without the written approval of the laboratory.

TestAmerica Laboratories, Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our Laboratory.

QUALIFIED SAMPLE RESULTS FORMS

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304 Work Order: RSJ0665

Received: 10/09/09 Reported: 10/29/09 10:48

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

			A	nalytical I	Report					
Analida	Sample	Data		MDI		Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ0665-01 (N	/W-1 - Wate	r)			Sam	oled: 10/	09/09 12:15	Recy	/d: 10/09/09	13:40
Volatile Organic Compou	nds by EPA	8260B								
1,1,1-Trichloroethane	ND		1.0	0.26	ug/L	1.00	10/14/09 01:51	CDC	9J13110	8260B
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L	1.00	10/14/09 01:51		9J13110	8260B
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L	1.00	10/14/09 01:51		9J13110	8260B
1,1,2-Trichlorotrifluoroeth	ND		1.0	0.31	ug/L	1.00	10/14/09 01:51	CDC	9J13110	8260B
ane 1 1 Dichloroothono	NID			1.00						
1,1-Dichloroethane 1,1-Dichloroethene	ND ND		1.0	0.38	ug/L	1.00	10/14/09 01:51		9J13110	8260B
1,2,4-Trichlorobenzene	ND		1.0	0.29	ug/L	1.00	10/14/09 01:51		9J13110	8260B
1,2-Dibromo-3-chloroprop	ND		1.0 1.0	0.41	ug/L	1.00	10/14/09 01:51		9J13110	8260B
ane			1.0	0.39	ug/L	1.00	10/14/09 01:51	CDC	9J13110	8260B
1,2-Dibromoethane	ND		1.0	0.17	ug/L	1.00	10/14/09 01:51	CDC	9J13110	8260B
EDB)				21.14	-3/-			000	COTOTIO	02008
1,2-Dichlorobenzene	ND		1.0	0.20	ug/L	1.00	10/14/09 01:51	CDC	9J13110	8260B
1,2-Dichloroethane	ND		1.0	0.21	ug/L	1.00	10/14/09 01:51		9J13110	8260B
1,2-Dichloroethene, Total	ND		2.0	0.70	ug/L	1.00	10/14/09 01:51		9J13110	8260B
1,2-Dichloropropane	ND		1.0	0.32	ug/L	1.00	10/14/09 01:51	CDC	9J13110	8260B
1,3-Dichlorobenzene	ND		1.0	0.36	ug/L	1.00	10/14/09 01:51		9J13110	8260B
1,4-Dichlorobenzene	ND		1.0	0.39	ug/L	1.00	10/14/09 01:51	CDC	9J13110	8260B
2-Butanone (MEK)	ND		5.0	1.3	ug/L	1.00	10/14/09 01:51	CDC	9J13110	8260B
2-Hexanone	ND		5.0	1.2	ug/L	1.00	10/14/09 01:51	CDC	9J13110	8260B
4-Methyl-2-pentanone	ND		5.0	0.91	ug/L	1.00	10/14/09 01:51	CDC	9J13110	8260B
(MIBK)	NIE				100		a in a sin a set			
Acetone	ND		5.0	1.3	ug/L	1.00	10/14/09 01:51		9J13110	8260B
Benzene	ND		1.0	0.41	ug/L	1.00	10/14/09 01:51		9J13110	8260B
Bromodichloromethane	ND		1.0	0.39	ug/L	1.00	10/14/09 01:51		9J13110	8260B
Bromoform	ND		1.0	0.26	ug/L	1.00	10/14/09 01:51		9J13110	8260B
Bromomethane Carbon disulfide	ND		1.0	0.28	ug/L	1.00	10/14/09 01:51		9J13110	8260B
Carbon Tetrachloride	ND ND		1.0	0.19	ug/L	1.00	10/14/09 01:51		9J13110	8260B
Chlorobenzene	ND		1.0	0.27	ug/L	1.00	10/14/09 01:51		9J13110	8260B
Chlorodibromomethane	ND		1.0 1.0	0.32	ug/L	1.00	10/14/09 01:51		9J13110	8260B
Chloroethane	ND		1.0	0.32 0.32	ug/L	1.00 1.00	10/14/09 01:51		9J13110	8260B
Chloroform	ND		1.0		ug/L	1.00	10/14/09 01:51 10/14/09 01:51		9J13110	8260B
Chloromethane	ND		1.0	0.34 0.35	ug/L	1.00	10/14/09 01:51		9J13110 9J13110	8260B
cis-1,2-Dichloroethene	ND		1.0	0.35	ug/L ug/L	1.00	10/14/09 01:51	12.5.5	9J13110 9J13110	8260B 8260B
sis-1,3-Dichloropropene	ND		1.0	0.36	ug/L ug/L	1.00	10/14/09 01:51		9J13110 9J13110	8260B 8260B
Cyclohexane	ND		1.0	0.58	ug/L ug/L	1.00	10/14/09 01:51		9J13110 9J13110	8260B
Dichlorodifluoromethane	ND		1.0	0.33	ug/L	1.00	10/14/09 01:51		9J13110 9J13110	8260B
Ethylbenzene	ND		1.0	0.29	ug/L	1.00	10/14/09 01:51		9J13110	8260B
sopropylbenzene	ND		1.0	0.19	ug/L	1.00	10/14/09 01:51		9J13110	8260B
Methyl Acetate	ND		1.0	0.50	ug/L	1.00	10/14/09 01:51		9J13110	8260B
Methyl tert-Butyl Ether	ND		1.0	0.16	ug/L	1.00	10/14/09 01:51		9J13110	8260B
Methylcyclohexane	ND		1.0	0.50	ug/L	1.00	10/14/09 01:51		9J13110	8260B
Methylene Chloride	ND		1.0	0.44	ug/L	1.00	10/14/09 01:51		9J13110	8260B
Styrene	ND		1.0	0.18	ug/L	1.00	10/14/09 01:51		9J13110	8260B
etrachloroethene	ND		1.0	0.36	ug/L	1.00	10/14/09 01:51		9J13110	8260B
oluene	ND		1.0	0.51	ug/L	1.00	10/14/09 01:51		9J13110	8260B
rans-1,2-Dichloroethene	ND		1.0	0.42	ug/L	1.00	10/14/09 01:51	CDC	9J13110	8260B
rans-1,3-Dichloropropen	ND		1.0	0.37	ug/L	1.00	10/14/09 01:51	CDC	9J13110	8260B
richloroethene	ND		1.0	0.46	ug/L	1.00	10/14/09 01:51		9J13110	8260B
richlorofluoromethane	ND		1.0	0.15	ug/L	1.00	10/14/09 01:51	CDC	9J13110	8260B

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

9/1092

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

Work Order: RSJ0665

Received: 10/09/09 Reported: 10/29/09 10:48

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

			А	nalytical F	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RSJ0665-01	MW-1 - Wate	er) - cont.			Sam	pled: 10	/09/09 12:15	Rec	vd: 10/09/0	9 13:40
Volatile Organic Compo	unds by EPA	A 8260B - co	nt.							
Vinyl acetate	ND		5.0	0.85	ug/L	1.00	10/14/09 01:51	CDC	9J13110	8260B
Vinyl chloride	ND		1.0	0.24	ug/L	1.00	10/14/09 01:51	CDC	9J13110	8260B
Xylenes, total	ND		2.0	0.66	ug/L	1.00	10/14/09 01:51	CDC	9J13110	8260B
1,2-Dichloroethane-d4	103 %		Surr Limits:	(66-137%)			10/14/09 01:51	CDC	9J13110	8260B
4-Bromofluorobenzene	89 %		Surr Limits:				10/14/09 01:51		9J13110	8260B
Toluene-d8	99 %		Surr Limits:	(71-126%)			10/14/09 01:51	CDC	9J13110	8260B
Semivolatile Organics b	y GC/MS									
2,4,5-Trichlorophenol	ND		5.0	0.98	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
2,4,6-Trichlorophenol	ND		5.0	0.98	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
2,4-Dichlorophenol	ND		5.0	0.78	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
2,4-Dimethylphenol	ND		5.0	0.95	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
2,4-Dinitrophenol	ND		9.9	2.2	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
2,4-Dinitrotoluene	ND		5.0	0.44	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
2,6-Dinitrotoluene	ND		5.0	0.50	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
2-Chloronaphthalene	ND		5.0	0.083	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
2-Chlorophenol	ND		5.0	0.50	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
2-Methylnaphthalene	ND		5.0	0.081	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
2-Methylphenol	ND		5.0	0.23	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
2-Nitroaniline	ND		9.9	0.49	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
2-Nitrophenol	ND		5.0	0.60	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
3 & 4 Methylphenol	ND		9.9	0.57	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
3,3'-Dichlorobenzidine	ND		5.0	0.37	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
3-Nitroaniline	ND		9.9	1.5	ug/L	1.00	10/16/09 03:01	JLG	9J12081 9J12081	8270C
4,6-Dinitro-2-methylphen	ND		9.9	2.2	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
ol	ND		5.5	2.2	ugri	1.00	10/10/03 03.01	JLG	9312001	02700
4-Bromophenyl phenyl	ND		5.0	0.89	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
ether	ND		5.0	0.50		1.00	10/10/00 00.01		0.140004	00700
4-Chloro-3-methylphenol	ND		5.0	0.59	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
4-Chloroaniline	ND		5.0	0.33	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
4-Chlorophenyl phenyl ether	ND		5.0	0.17	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
4-Nitroaniline	ND	L2 U	9.9	0.45	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
4-Nitrophenol	ND		9.9	1.5	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
Acenaphthene	ND		5.0	0.11	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
Acenaphthylene	ND		5.0	0.047	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
Acetophenone	ND		5.0	1.0	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
Anthracene	ND		5.0	0.055	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
Atrazine	ND		5.0	1.1	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
Benzaldehyde	ND		5.0	0.26	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
Benzo[a]anthracene	ND		5.0	0.063	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
Benzo[a]pyrene	ND		5.0	0.090	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
Benzo[b]fluoranthene	ND		5.0	0.062	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
Benzo[g,h,i]pervlene	ND		5.0	0.077	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
Benzo[k]fluoranthene	ND		5.0	0.065	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
Biphenyl	ND		5.0	0.65	ug/L	1.00	10/16/09 03:01	JLG	9J12081 9J12081	8270C
Bis(2-chloroethoxy)metha	ND		5.0	0.37	ug/L	1.00	10/16/09 03:01		9J12081 9J12081	8270C
ie										
Bis(2-chloroethyl)ether	ND		5.0	0.18	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
Bis(2-chloroisopropyl)	ND		4.0	4.0	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
ether										

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

10/1092

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

Work Order: RSJ0665

Received: 10/09/09 Reported: 10/29/09 10:48

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

			1	Analytical F	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RSJ0665-01 (Sam	1.00 8.0	09/09 12:15	100	/d: 10/09/0	Constant and
Semivolatile Organics b	v GC/MS - c	ont.								
Bis(2-ethylhexyl)	ND		5.0	4.7	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
phthalate										tranks.
Butyl benzyl phthalate	ND		5.0	1.7	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
Caprolactam	ND		5.0	4.5	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
Carbazole	ND		5.0	0.088	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
Chrysene	ND		5.0	0.27	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
Dibenz[a,h]anthracene	ND		5.0	0.20	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
Dibenzofuran	ND		9.9	1.6	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
Diethyl phthalate	ND		5.0	0.11	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
Dimethyl phthalate	ND		5.0	0.30	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
Di-n-butyl phthalate	0.51	J	5.0	0.30	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
Di-n-octyl phthalate	ND		5.0	0.24	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
Fluoranthene	ND		5.0	0.097	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
Fluorene	ND		5.0	0.073	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
Hexachlorobenzene	ND		5.0	0.44	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
Hexachlorobutadiene	ND		5.0	2.6	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
Hexachlorocyclopentadie ne	ND		5.0	2.5	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
Hexachloroethane	ND		5.0	2.8	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
Indeno[1,2,3-cd]pyrene	ND		5.0	0.15	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
Isophorone	ND		5.0	0.32	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
Naphthalene	ND		5.0	0.11	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
Nitrobenzene	ND		5.0	0.53	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
N-Nitrosodi-n-propylamin e	ND		5.0	0.45	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
e N-Nitrosodiphenylamine	ND		5.0	0.26	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
Pentachlorophenol	ND		9.9	5.1	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
Phenanthrene	ND		5.0	0.11	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
Phenol	ND		5.0	0.44	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
Pyrene	ND		5.0	0.067	ug/L	1.00	10/16/09 03:01	JLG	9J12081	8270C
				Creater -	ugit	1.00			9J12081	
2,4,6-Tribromophenol	129 %		Surr Limits:				10/16/09 03:01	JLG		8270C
2-Fluorobiphenyl	95 %		Surr Limits:	and the second			10/16/09 03:01	JLG	9J12081	8270C
2-Fluorophenol	58 %		Surr Limits:				10/16/09 03:01	JLG	9J12081	8270C
Nitrobenzene-d5 Rhanal d5	100 %		Surr Limits:	and the second se			10/16/09 03:01	JLG	9J12081	8270C
Phenol-d5	43 %		Surr Limits:				10/16/09 03:01	JLG	9J12081	8270C 8270C
p-Terphenyl-d14	63 %		Surr Limits:	(24-130%)			10/16/09 03:01	JLG	9J12081	82700
Organochlorine Pesticid			Contraction of the second					222	anning	272.63
4,4'-DDD [2C]	ND	D02	0.25	0.083	ug/L	5.00	10/13/09 18:39		9J10012	8081A
4,4'-DDE [2C]	ND	D02	0.25	0.057	ug/L	5.00	10/13/09 18:39		9J10012	8081A
4,4'-DDT [2C]	ND	D02	0.25	0.054	ug/L	5.00	10/13/09 18:39		9J10012	8081A
Aldrin [2C]	ND	D02	0.25	0.033	ug/L	5.00	10/13/09 18:39		9J10012	8081A
alpha-BHC [2C]	ND	D02	0.25	0.033	ug/L	5.00	10/13/09 18:39		9J10012	8081A
alpha-Chlordane [2C]	ND	D02	0.25	0.073	ug/L	5.00	10/13/09 18:39		9J10012	8081A
beta-BHC [2C]		11 D02,J	0.25	0.12	ug/L	5.00	10/13/09 18:39		9J10012	8081A
Chlordane [2C]	ND	D02	2.5	0.14	ug/L	5.00	10/13/09 18:39	DGB	9J10012	8081A
delta-BHC [2C]	ND	D02	0.25	0.050	ug/L	5.00	10/13/09 18:39	DGB	9J10012	8081A
Dieldrin [2C]	ND	D02	0.25	0.097	ug/L	5.00	10/13/09 18:39	DGB	9J10012	8081A
Endosulfan I [2C]	ND	D02	0.25	0.054	ug/L	5.00	10/13/09 18:39	DGB	9J10012	8081A
Linubsulian [20]										
Endosulfan II [2C]	ND	D02	0.25	0.059	ug/L	5.00	10/13/09 18:39	DGB	9J10012	8081A

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

Work Order: RSJ0665

Received: 10/09/09 Reported: 10/29/09 10:48

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

			A	nalytical F	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date	Lab	Datab	
en i le company and anne an	CONTRACTOR OF CARDS			WIDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ0665-0	1 (MW-1 - Wat	er) - cont.			Sam	pled: 10	09/09 12:15	Recy	/d: 10/09/0	9 13:40
Organochlorine Pesti	cides by EPA	Method 8081	A - cont.							
Endrin [2C]	ND	D02	0.25	0.068	ug/L	5.00	10/13/09 18:39	DGB	9J10012	8081A
Endrin aldehyde [2C]	ND	D02	0.25	0.081	ug/L	5.00	10/13/09 18:39	DGB	9J10012	8081A
Endrin ketone [2C]	0.24	D02,J	0.25	0.059	ug/L	5.00	10/13/09 18:39	DGB	9J10012	8081A
gamma-BHC (Lindane) [2C]	ND	D02	0.25	0.030	ug/L	5.00	10/13/09 18:39	DGB	9J10012	8081A
gamma-Chlordane [2C]	ND	D02	0.25	0.054	ug/L	5.00	10/13/09 18:39	DGB	9J10012	8081A
Heptachlor [2C]	ND	D02	0.25	0.042	ug/L	5.00	10/13/09 18:39	DGB	9J10012	8081A
Heptachlor epoxide [2C]	ND	D02	0.25	0.026	ug/L	5.00	10/13/09 18:39	DGB	9J10012	8081A
Methoxychlor [2C]	ND 0.14	U D02,J	0.25	0.070	ug/L	5.00	10/13/09 18:39	DGB	9J10012	8081A
Toxaphene [2C]	ND	D02	2.5	0.59	ug/L	5.00	10/13/09 18:39	DGB	9J10012	8081A
Decachlorobiphenyl [2C]		D02,C, Z5	Surr Limits:				10/13/09 18:39	DGB	9J10012	8081A
Tetrachloro-m-xylene [2C]	69 %	D02	Surr Limits:	(30-139%)			10/13/09 18:39	DGB	9J10012	8081A
Polychlorinated Biphe	enyls by EPA I	Method 8082								
Aroclor 1016	ND	QSU	0.50	0.17	ug/L	1.00	10/13/09 09:48	SCH	9J10013	8082
Aroclor 1221	ND	QSU	0.50	0.17	ug/L	1.00	10/13/09 09:48		9J10013	8082
Aroclor 1232	ND	QSU	0.50	0.17	ug/L	1.00	10/13/09 09:48		9J10013	8082
Aroclor 1242	ND	QSU	0.50	0.17	ug/L	1.00	10/13/09 09:48	SCH	9J10013	8082
Aroclor 1248	ND	QSU	0.50	0.17	ug/L	1.00	10/13/09 09:48	SCH	9J10013	8082
Aroclor 1254	ND	QSU	0.50	0.25	ug/L	1.00	10/13/09 09:48	SCH	9J10013	8082
Aroclor 1260	ND	QSU	0.50	0.25	ug/L	1.00	10/13/09 09:48	SCH	9J10013	8082
Decachlorobiphenyl	28 %	QSU	Surr Limits:	(12-137%)			10/13/09 09:48	SCH	9J10013	8082
Tetrachloro-m-xylene	65 %	QSU	Surr Limits:	(35-121%)			10/13/09 09:48	SCH	9J10013	8082
Total Metals by SW 84	6 Series Meth	ods								
Aluminum	6.61		0.200	NR	mg/L	1.00	10/15/09 00:18	LMH	9J13072	6010B
Antimony	ND		0.0200	NR	mg/L	1.00	10/15/09 00:18	LMH	9J13072	6010B
Arsenic	ND		0.0100	NR	mg/L	1.00	10/15/09 00:18	LMH	9J13072	6010B
Barium	0.120		0.0020	NR	mg/L	1.00	10/15/09 00:18	LMH	9J13072	6010B
Beryllium	ND		0.0020	NR	mg/L	1.00	10/15/09 00:18	LMH	9J13072	6010B
Cadmium	ND		0.0010	NR	mg/L	1.00	10/15/09 00:18	LMH	9J13072	6010B
• • • •									0 140070	6010B
Calcium	71.0		0.5	NR		1.00	10/15/09 00:18	LMH	9J13072	OUTUD
Calcium Chromium	71.0 0.0079		0.5 0.0040	NR NR	mg/L	1.00 1.00	10/15/09 00:18 10/15/09 00:18		9J13072 9J13072	6010B
Chromium			0.0040	NR	mg/L mg/L	1.00	10/15/09 00:18	LMH	9J13072	6010B
	0.0079		0.0040 0.0040	NR NR	mg/L mg/L mg/L	1.00 1.00	10/15/09 00:18 10/15/09 00:18	LMH LMH	9J13072 9J13072	6010B 6010B
Chromium Cobalt	0.0079 ND ND		0.0040 0.0040 0.0100	NR NR NR	mg/L mg/L mg/L mg/L	1.00 1.00 1.00	10/15/09 00:18 10/15/09 00:18 10/15/09 00:18	LMH LMH LMH	9J13072 9J13072 9J13072	6010B 6010B 6010B
Chromium Cobalt Copper	0.0079 ND ND 6.27		0.0040 0.0040	NR NR NR NR	mg/L mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00	10/15/09 00:18 10/15/09 00:18 10/15/09 00:18 10/15/09 00:18	LMH LMH LMH LMH	9J13072 9J13072 9J13072 9J13072 9J13072	6010B 6010B 6010B 6010B
Chromium Cobalt Copper ron Lead	0.0079 ND ND		0.0040 0.0040 0.0100 0.050 0.0050	NR NR NR NR	mg/L mg/L mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00 1.00	10/15/09 00:18 10/15/09 00:18 10/15/09 00:18 10/15/09 00:18 10/15/09 00:18	LMH LMH LMH LMH LMH	9J13072 9J13072 9J13072 9J13072 9J13072 9J13072	6010B 6010B 6010B 6010B 6010B
Chromium Cobalt Copper ron _ead Magnesium	0.0079 ND ND 6.27 ND 57.7		0.0040 0.0040 0.0100 0.050 0.0050 0.200	NR NR NR NR NR	mg/L mg/L mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00 1.00 1.00	10/15/09 00:18 10/15/09 00:18 10/15/09 00:18 10/15/09 00:18 10/15/09 00:18 10/15/09 00:18	LMH LMH LMH LMH LMH LMH	9J13072 9J13072 9J13072 9J13072 9J13072 9J13072	6010B 6010B 6010B 6010B 6010B 6010B
Chromium Cobalt Copper ron Lead Magnesium Manganese	0.0079 ND ND 6.27 ND 57.7 0.113		0.0040 0.0040 0.0100 0.050 0.0050 0.200 0.0030	NR NR NR NR NR NR	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00 1.00 1.00 1.00	10/15/09 00:18 10/15/09 00:18 10/15/09 00:18 10/15/09 00:18 10/15/09 00:18 10/15/09 00:18 10/15/09 00:18	LMH LMH LMH LMH LMH LMH	9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072	6010B 6010B 6010B 6010B 6010B 6010B 6010B
Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel	0.0079 ND 6.27 ND 57.7 0.113 ND		0.0040 0.0040 0.0100 0.050 0.0050 0.200 0.0030 0.0030	NR NR NR NR NR NR NR	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	10/15/09 00:18 10/15/09 00:18 10/15/09 00:18 10/15/09 00:18 10/15/09 00:18 10/15/09 00:18 10/15/09 00:18 10/15/09 00:18	LMH LMH LMH LMH LMH LMH LMH	9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B
Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium	0.0079 ND 6.27 ND 57.7 0.113 ND 3.36		0.0040 0.0040 0.0100 0.050 0.0050 0.200 0.0030 0.0100 0.500	NR NR NR NR NR NR NR NR NR	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	10/15/09 00:18 10/15/09 00:18 10/15/09 00:18 10/15/09 00:18 10/15/09 00:18 10/15/09 00:18 10/15/09 00:18 10/15/09 00:18 10/15/09 00:18	LMH LMH LMH LMH LMH LMH LMH LMH	9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B
Chromium Cobalt Copper ron Lead Magnesium Manganese Nickel Potassium Selenium	0.0079 ND 6.27 ND 57.7 0.113 ND 3.36 ND		0.0040 0.0040 0.050 0.0050 0.200 0.0030 0.0100 0.500 0.0150	NR NR NR NR NR NR NR NR NR NR	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	10/15/09 00:18 10/15/09 00:18 10/15/09 00:18 10/15/09 00:18 10/15/09 00:18 10/15/09 00:18 10/15/09 00:18 10/15/09 00:18 10/15/09 00:18 10/15/09 00:18	LMH LMH LMH LMH LMH LMH LMH LMH LMH	9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B
Chromium Cobalt Copper ron Lead Magnesium Manganese Nickel Potassium Selenium Silver	0.0079 ND ND 6.27 ND 57.7 0.113 ND 3.36 ND ND		0.0040 0.0040 0.050 0.0050 0.200 0.0030 0.0100 0.500 0.0150 0.0030	NR NR NR NR NR NR NR NR NR NR NR	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	10/15/09 00:18 10/15/09 00:18 10/15/09 00:18 10/15/09 00:18 10/15/09 00:18 10/15/09 00:18 10/15/09 00:18 10/15/09 00:18 10/15/09 00:18 10/15/09 00:18	LMH LMH LMH LMH LMH LMH LMH LMH LMH LMH	9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B
Chromium Cobalt Copper ron Lead Magnesium Manganese Nickel Potassium Selenium Silver Sodium	0.0079 ND ND 6.27 ND 57.7 0.113 ND 3.36 ND ND 26.6		0.0040 0.0040 0.0100 0.050 0.0050 0.200 0.0030 0.0100 0.500 0.0150 0.0030 1.0	NR NR NR NR NR NR NR NR NR NR NR NR NR	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	10/15/09 00:18 10/15/09 00:18	LMH LMH LMH LMH LMH LMH LMH LMH LMH LMH	9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B
Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel	0.0079 ND ND 6.27 ND 57.7 0.113 ND 3.36 ND ND		0.0040 0.0040 0.050 0.0050 0.200 0.0030 0.0100 0.500 0.0150 0.0030	NR NR NR NR NR NR NR NR NR NR NR	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	10/15/09 00:18 10/15/09 00:18 10/15/09 00:18 10/15/09 00:18 10/15/09 00:18 10/15/09 00:18 10/15/09 00:18 10/15/09 00:18 10/15/09 00:18 10/15/09 00:18	LMH LMH LMH LMH LMH LMH LMH LMH LMH LMH	9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

THE LEADER IN ENVIRONMENTAL TESTING

2221 Niagara Falls Blvd., Ste 9

Niagara Falls, NY 14304

Golder Associates, Inc. - Niagara Falls, NY

Work Order: RSJ0665

10/09/09 Received: 10/29/09 10:48 Reported:

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

			A	nalytical R	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RSJ0665	5-01 (MW-1 - Wate	r) - cont.			Samp	oled: 10/	09/09 12:15	Recv	rd: 10/09/09	9 13:40
Total Metals by SW	846 Series Metho	ods - cont.								
Mercury	ND	uJ	0.0002	NR	mg/L	1.00	10/13/09 14:43	MXM	9J13033	7470A
		uj	0.0002	NR	mg/L	1.00	10/13/09 14:43	МХМ	9J13033	7470A
Mercury General Chemistry I Cyanide		uJ	0.0002	NR 0.0050	mg/L mg/L	1.00	10/13/09 14:43 10/16/09 10:07	MXM LRM	9J13033 9J15058	7470A 9012A

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

Work Order: RSJ0665

Received: 10/09/09 Reported: 10/29/09 10:48

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

	Analytical Report										
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method	
Sample ID: RSJ0665-02 (N	1W-2 - Wate	er)			Sam	pled: 10/	09/09 10:00	Recy	/d: 10/09/0	10 / T	
Volatile Organic Compou	nds by EPA	8260B									
1,1,1-Trichloroethane	ND ·		1.0	0.26	ug/L	1.00	10/14/09 02:19	CDC	9J13110	8260B	
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L	1.00	10/14/09 02:19		9J13110	8260B	
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L	1.00	10/14/09 02:19		9J13110	8260B	
1.1.2-Trichlorotrifluoroeth	ND		1.0	0.31	ug/L	1.00	10/14/09 02:19		9J13110	8260B	
ane	110		1.0	0.01	ugit	1.00	10/14/05 02.15	CDC	3010110	02000	
1,1-Dichloroethane	ND		1.0	0.38	ug/L	1.00	10/14/09 02:19	CDC	9J13110	8260B	
1,1-Dichloroethene	ND		1.0	0.29	ug/L	1.00	10/14/09 02:19	CDC	9J13110	8260B	
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L	1.00	10/14/09 02:19	CDC	9J13110	8260B	
1,2-Dibromo-3-chloroprop	ND		1.0	0.39	ug/L	1.00	10/14/09 02:19		9J13110	8260B	
ane					U.						
1,2-Dibromoethane	ND		1.0	0.17	ug/L	1.00	10/14/09 02:19	CDC	9J13110	8260B	
(EDB)											
1,2-Dichlorobenzene	ND		1.0	0.20	ug/L	1.00	10/14/09 02:19	CDC	9J13110	8260B	
1,2-Dichloroethane	ND		1.0	0.21	ug/L	1.00	10/14/09 02:19	CDC	9J13110	8260B	
1,2-Dichloroethene, Total	ND		2.0	0.70	ug/L	1.00	10/14/09 02:19	CDC	9J13110	8260B	
,2-Dichloropropane	ND		1.0	0.32	ug/L	1.00	10/14/09 02:19	CDC	9J13110	8260B	
1,3-Dichlorobenzene	ND		1.0	0.36	ug/L	1.00	10/14/09 02:19		9J13110	8260B	
1,4-Dichlorobenzene	ND		1.0	0.39	ug/L	1.00	10/14/09 02:19	CDC	9J13110	8260B	
2-Butanone (MEK)	ND		5.0	1.3	ug/L	1.00	10/14/09 02:19		9J13110	8260B	
2-Hexanone	ND		5.0	1.2	ug/L	1.00	10/14/09 02:19		9J13110	8260B	
4-Methyl-2-pentanone	ND		5.0	0.91	ug/L	1.00	10/14/09 02:19		9J13110	8260B	
MIBK)	10-51				-9	1.00	10/1 100 02.10	000	0010110	OLOOD	
Acetone	ND		5.0	1.3	ug/L	1.00	10/14/09 02:19	CDC	9J13110	8260B	
Benzene	ND		1.0	0.41	ug/L	1.00	10/14/09 02:19		9J13110	8260B	
Bromodichloromethane	ND		1.0	0.39	ug/L	1.00	10/14/09 02:19		9J13110	8260B	
Bromoform	ND		1.0	0.26	ug/L	1.00	10/14/09 02:19		9J13110	8260B	
Bromomethane	ND		1.0	0.28	ug/L	1.00	10/14/09 02:19		9J13110	8260B	
Carbon disulfide	ND		1.0	0.19	ug/L	1.00	10/14/09 02:19		9J13110	8260B	
Carbon Tetrachloride	ND		1.0	0.27	ug/L	1.00	10/14/09 02:19		9J13110	8260B	
Chlorobenzene	ND		1.0	0.32	ug/L	1.00	10/14/09 02:19		9J13110	8260B	
Chlorodibromomethane	ND		1.0	0.32	ug/L	1.00	10/14/09 02:19		9J13110	8260B	
Chloroethane	ND		1.0	0.32		1.00	10/14/09 02:19				
Chloroform	ND		1.0	0.32	ug/L				9J13110	8260B 8260B	
	ND				ug/L	1.00	10/14/09 02:19		9J13110		
Chloromethane			1.0	0.35	ug/L	1.00	10/14/09 02:19		9J13110	8260B	
is-1,2-Dichloroethene	ND		1.0	0.38	ug/L	1.00	10/14/09 02:19		9J13110	8260B	
sis-1,3-Dichloropropene	ND		1.0	0.36	ug/L	1.00	10/14/09 02:19		9J13110	8260B	
Cyclohexane	ND		1.0	0.53	ug/L	1.00	10/14/09 02:19		9J13110	8260B	
Dichlorodifluoromethane	ND		1.0	0.29	ug/L	1.00	10/14/09 02:19		9J13110	8260B	
Ethylbenzene	ND		1.0	0.18	ug/L	1.00	10/14/09 02:19		9J13110	8260B	
sopropylbenzene	ND		1.0	0.19	ug/L	1.00	10/14/09 02:19		9J13110	8260B	
lethyl Acetate	ND		1.0	0.50	ug/L	1.00	10/14/09 02:19		9J13110	8260B	
Nethyl tert-Butyl Ether	ND		1.0	0.16	ug/L	1.00	10/14/09 02:19	CDC	9J13110	8260B	
lethylcyclohexane	ND		1.0	0.50	ug/L	1.00	10/14/09 02:19		9J13110	8260B	
lethylene Chloride	ND		1.0	0.44	ug/L	1.00	10/14/09 02:19		9J13110	8260B	
Styrene	ND		1.0	0.18	ug/L	1.00	10/14/09 02:19	CDC	9J13110	8260B	
etrachloroethene	ND		1.0	0.36	ug/L	1.00	10/14/09 02:19	CDC	9J13110	8260B	
oluene	ND		1.0	0.51	ug/L	1.00	10/14/09 02:19	CDC	9J13110	8260B	
rans-1,2-Dichloroethene	ND		1.0	0.42	ug/L	1.00	10/14/09 02:19	CDC	9J13110	8260B	
rans-1,3-Dichloropropen	ND		1.0	0.37	ug/L	1.00	10/14/09 02:19	CDC	9J13110	8260B	
richloroethene	ND		1.0	0.46	ug/L	1.00	10/14/09 02:19	CDC	9J13110	8260B	
richlorofluoromethane	ND		1.0	0.15	ug/L	1.00	10/14/09 02:19		9J13110	8260B	
	100				-9			550	5010110	OLOOD	

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

Work Order: RSJ0665

Received: 10/09/09 Reported: 10/29/09 10:48

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

			A	Report						
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RSJ0665-02 (MW-2 - Wate	er) - cont.			Sam	oled: 10/	10/09/09 10:00 Recvd: 10/09		/d: 10/09/0	9 13:40
Volatile Organic Compo	unds by EPA	A 8260B - cor	nt.							
Vinyl acetate	ND		5.0	0.85	ug/L	1.00	10/14/09 02:19	CDC	9J13110	8260B
Vinyl chloride	ND		1.0	0.24	ug/L	1.00	10/14/09 02:19	CDC	9J13110	8260B
Xylenes, total	ND		2.0	0.66	ug/L	1.00	10/14/09 02:19	CDC	9J13110	8260B
1,2-Dichloroethane-d4	101 %	-	Surr Limits:	(66-137%)			10/14/09 02:19	CDC	9J13110	8260B
4-Bromofluorobenzene	87 %		Surr Limits:	(73-120%)			10/14/09 02:19	CDC	9J13110	8260B
Foluene-d8	99 %		Surr Limits:	(71-126%)			10/14/09 02:19	CDC	9J13110	8260B
Semivolatile Organics by	GC/MS									
2,4,5-Trichlorophenol	ND		5.2	1.0	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
2,4,6-Trichlorophenol	ND		5.2	1.0	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
2,4-Dichlorophenol	ND		5.2	0.81	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
2,4-Dimethylphenol	ND		5.2	0.99	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
2,4-Dinitrophenol	ND		10	2.3	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
2,4-Dinitrotoluene	ND		5.2	0.46	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
2,6-Dinitrotoluene	ND		5.2	0.53	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
2-Chloronaphthalene	ND		5.2	0.087	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
2-Chlorophenol	ND		5.2	0.52	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
2-Methylnaphthalene	ND		5.2	0.085	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
-Methylphenol	ND		5.2	0.24	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
2-Nitroaniline	ND		10	0.51	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
P-Nitrophenol	ND		5.2	0.62	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
& 4 Methylphenol	ND		10	0.60	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
3,3'-Dichlorobenzidine	ND		5.2	0.39	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
-Nitroaniline	ND		10	1.6	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
,6-Dinitro-2-methylphen	ND		10	2.3	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
l	ND		10	2.5	ug/L	1.00	10/10/09 03.24	JLG	9312001	02700
-Bromophenyl phenyl	ND		5.2	0.93	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
ether I-Chloro-3-methylphenol	ND		5.2	0.61	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
l-Chloroaniline	ND		5.2	0.34	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
I-Chlorophenyl phenyl	ND		5.2	0.17	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
ther			0.2	0.17	ug/L	1.00	10/10/09 03.24	JLG	9312001	02700
I-Nitroaniline	ND	UJ	10	0.47	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
-Nitrophenol	ND		10	1.6	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
Acenaphthene	ND		5.2	0.12	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
Acenaphthylene	ND		5.2	0.048	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
Acetophenone	ND		5.2	1.1	ug/L	1.00	10/16/09 03:24		9J12081	8270C
Anthracene	ND		5.2	0.058	ug/L	1.00	10/16/09 03:24		9J12081	8270C
Atrazine	ND		5.2	1.1	ug/L	1.00	10/16/09 03:24		9J12081	8270C
Benzaldehyde	ND		5.2	0.28	ug/L	1.00	10/16/09 03:24		9J12081	8270C
Senzo[a]anthracene	ND		5.2	0.066	ug/L	1.00	10/16/09 03:24		9J12081	8270C
Senzo[a]pyrene	ND		5.2	0.094	ug/L	1.00	10/16/09 03:24		9J12081	8270C
enzo[b]fluoranthene	ND		5.2	0.065	ug/L	1.00	10/16/09 03:24		9J12081	8270C
enzo[g,h,i]perylene	ND		5.2	0.080	ug/L	1.00	10/16/09 03:24		9J12081	8270C
enzo[k]fluoranthene	ND		5.2	0.068	ug/L	1.00	10/16/09 03:24		9J12081	8270C
Biphenyl	ND		5.2	0.000	ug/L ug/L	1.00	10/16/09 03:24		9J12081 9J12081	8270C
is(2-chloroethoxy)metha	ND		5.2	0.39	ug/L ug/L	1.00	10/16/09 03:24		9J12081 9J12081	8270C 8270C
16 Dic(2 oblocostbul)other	ND		5.0	0.40		4.00	40/40/00 00.01	11.0	0.140004	00700
Bis(2-chloroethyl)ether	ND		5.2	0.19	ug/L	1.00	10/16/09 03:24		9J12081	8270C
Bis(2-chloroisopropyl)	ND		4.1	4.1	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304 Work Order: RSJ0665

Received: 10/09/09 Reported: 10/29/09 10:48

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

				Analytical F	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RSJ0665-02 (MW-2 - Wate				- 3. ku u	1.1.1.1.1.1.1	/09/09 10:00	T	/d: 10/09/0	100 A 100
Semivolatile Organics b	GC/MS - c	ont.								
Bis(2-ethylhexyl)	ND		5.2	4.9	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
phthalate										
Butyl benzyl phthalate	ND		5.2	1.8	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
Caprolactam	ND		5.2	4.7	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
Carbazole	ND		5.2	0.092	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
Chrysene	ND		5.2	0.28	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
Dibenz[a,h]anthracene	ND		5.2	0.21	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
Dibenzofuran	ND		10	1.6	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
Diethyl phthalate	0.82	J	5.2	0.11	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
Dimethyl phthalate	ND		5.2	0.31	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
Di-n-butyl phthalate	0.57	L	5.2	0.31	ug/L	1.00	10/16/09 03:24		9J12081	8270C
Di-n-octyl phthalate	ND		5.2	0.25	ug/L	1.00	10/16/09 03:24		9J12081	8270C
Fluoranthene	ND		5.2	0.10	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
Fluorene	ND		5.2	0.076	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
Hexachlorobenzene	ND		5.2	0.46	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
Hexachlorobutadiene	ND		5.2	2.7	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
Hexachlorocyclopentadie	ND		5.2	2.6	ug/L	1.00	10/16/09 03:24		9J12081	8270C
ne	ND		5.2	2.0	ug/L	1.00	10/10/09 03.24	JLG	9312001	02700
Hexachloroethane	ND		5.2	2.9	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
Indeno[1,2,3-cd]pyrene	ND		5.2	0.16		1.00	10/16/09 03:24			
Isophorone	ND		5.2	0.10	ug/L			JLG	9J12081	8270C
Naphthalene	ND				ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
			5.2	0.12	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
Nitrobenzene	ND		5.2	0.55	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
N-Nitrosodi-n-propylamin e	ND		5.2	0.47	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
N-Nitrosodiphenylamine	ND		5.2	0.27	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
Pentachlorophenol	ND		10	5.3	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
Phenanthrene	0.88	J	5.2	0.12	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
Phenol	ND		5.2	0.46	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
Pyrene	ND		5.2	0.070	ug/L	1.00	10/16/09 03:24	JLG	9J12081	8270C
2,4,6-Tribromophenol	130 %		Surr Limits:	(52-132%)			10/16/09 03:24	JLG	9J12081	8270C
2-Fluorobiphenyl	96 %		Surr Limits:	(48-120%)			10/16/09 03:24	JLG	9J12081	8270C
2-Fluorophenol	57 %		Surr Limits:	(20-120%)			10/16/09 03:24	JLG	9J12081	8270C
Nitrobenzene-d5	97 %		Surr Limits:	(46-120%)			10/16/09 03:24	JLG	9J12081	8270C
Phenol-d5	41 %		Surr Limits:	(16-120%)			10/16/09 03:24	JLG	9J12081	8270C
p-Terphenyl-d14	79 %		Surr Limits:	(24-136%)			10/16/09 03:24	JLG	9J12081	8270C
Organochlorine Pesticid	es by EPA N	Aethod 8081	A				m.			
4,4'-DDD [2C]	ND	D02	0.25	0.083	ug/L	5.00	10/13/09 19:15	DGB	9J10012	8081A
4,4'-DDE [2C]		1 J D02	0.25	0.057	ug/L	5.00	10/13/09 19:15		9J10012	8081A
4,4'-DDT [2C]	ND	D02	0.25	0.054	ug/L	5.00	10/13/09 19:15		9J10012	8081A
Aldrin [2C]	ND	D02	0.25	0.034	ug/L	5.00	10/13/09 19:15		9J10012	8081A
alpha-BHC [2C]	ND	D02	0.25	0.033	ug/L	5.00	10/13/09 19:15		9J10012 9J10012	8081A
alpha-Chlordane [2C]	ND	D02	0.25	0.033	-					
					ug/L	5.00	10/13/09 19:15		9J10012	8081A
peta-BHC [2C]	ND	D02	0.25	0.12	ug/L	5.00	10/13/09 19:15		9J10012	8081A
Chlordane [2C]	ND	D02	2.5	0.14	ug/L	5.00	10/13/09 19:15		9J10012	8081A
delta-BHC [2C]	ND	D02	0.25	0.050	ug/L	5.00	10/13/09 19:15		9J10012	8081A
Dieldrin [2C]	ND	D02	0.25	0.097	ug/L	5.00	10/13/09 19:15		9J10012	8081A
Endosulfan I [2C]	ND	D02	0.25	0.054	ug/L	5.00	10/13/09 19:15		9J10012	8081A
Endosulfan II [2C]	ND	D02	0.25	0.059	ug/L	5.00	10/13/09 19:15		9J10012	8081A
Endosulfan sulfate [2C]	ND	D02	0.25	0.078	ug/L	5.00	10/13/09 19:15	DGB	9J10012	8081A

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

Work Order: RSJ0665

Received: 10/09/09 Reported: 10/29/09 10:48

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

Analytical Report										
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RSJ0665-02 (I	MW-2 - Wate	er) - cont.			Sam	pled: 10	09/09 10:00	Recy	/d: 10/09/09	9 13:40
Organochlorine Pesticid	es by EPA N	lethod 8081	A - cont.							
Endrin [2C]	ND	D02	0.25	0.068	ug/L	5.00	10/13/09 19:15	DGB	9J10012	8081A
Endrin aldehyde [2C]	ND	D02	0.25	0.081	ug/L	5.00	10/13/09 19:15		9J10012	8081A
Endrin ketone [2C]	ND	D02	0.25	0.059	ug/L	5.00			9J10012	8081A
gamma-BHC (Lindane)	ND	D02	0.25	0.030	ug/L	5.00	10/13/09 19:15	DGB	9J10012	8081A
2C]										
gamma-Chlordane [2C]	ND	D02	0.25	0.054	ug/L	5.00	10/13/09 19:15	DGB	9J10012	8081A
Heptachlor [2C]	ND	D02	0.25	0.042	ug/L	5.00	10/13/09 19:15		9J10012	8081A
Heptachlor epoxide [2C]	ND	D02	0.25	0.026	ug/L	5.00	10/13/09 19:15		9J10012	8081A
Methoxychlor [2C]	0.26	D02	0.25	0.070	ug/L	5.00	10/13/09 19:15		9J10012	8081A
oxaphene [2C]	ND	D02	2.5	0.59	ug/L	5.00	10/13/09 19:15	DGB	9J10012	8081A
Decachlorobiphenyl [2C]	*	D02,C	Surr Limits:				10/13/09 19:15		9J10012	8081A
Tetrachloro-m-xylene	63 %	D02	Surr Limits:	(30-139%)			10/13/09 19:15	DGB	9J10012	8081A
2CJ										
olychlorinated Bipheny	Is by EPA N	lethod 8082								
Aroclor 1016	ND .	QSU	0.50	0.17	ug/L	1.00	10/13/09 10:06	SCH	9J10013	8082
Aroclor 1221	ND	QSU	0.50	0.17	ug/L	1.00	10/13/09 10:06	SCH	9J10013	8082
vroclor 1232	ND	QSU	0.50	0.17	ug/L	1.00	10/13/09 10:06	SCH	9J10013	8082
Aroclor 1242	ND	QSU	0.50	0.17	ug/L	1.00	10/13/09 10:06	SCH	9J10013	8082
Aroclor 1248	ND	QSU	0.50	0.17	ug/L	1.00	10/13/09 10:06	SCH	9J10013	8082
Aroclor 1254	ND	QSU	0.50	0.25	ug/L	1.00	10/13/09 10:06		9J10013	8082
vroclor 1260	ND U	🛃 QSU	0.50	0.25	ug/L	1.00	10/13/09 10:06	SCH	9J10013	8082
Decachlorobiphenyl	33 %	QSU	Surr Limits:	(12-137%)			10/13/09 10:06	SCH	9J10013	8082
etrachloro-m-xylene	60 %	QSU	Surr Limits:	(35-121%)			10/13/09 10:06	SCH	9J10013	8082
				1						
Fotal Metals by SW 846 S	Series Metho	ods		(
	Series Metho 9.62	ods	0.200	NR	mg/L	1.00	10/15/09 00:23	LMH	9J13072	6010B
Numinum		ods			mg/L mg/L	1.00 1.00	10/15/09 00:23 10/15/09 00:23		9J13072 9J13072	
luminum ntimony	9.62	ods	0.200	NR	mg/L			LMH		6010B
Aluminum Antimony Arsenic	9.62 ND	ods	0.200 0.0200	NR NR	mg/L mg/L	1.00	10/15/09 00:23	LMH LMH	9J13072	6010B 6010B
Aluminum Antimony Arsenic Barium	9.62 ND ND	ods	0.200 0.0200 0.0100	NR NR NR	mg/L mg/L mg/L	1.00 1.00 1.00	10/15/09 00:23 10/15/09 00:23	LMH LMH LMH	9J13072 9J13072 9J13072	6010B 6010B 6010B 6010B
Numinum Antimony Arsenic Barium Beryllium	9.62 ND ND 0.108	ods	0.200 0.0200 0.0100 0.0020	NR NR NR NR NR	mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00	10/15/09 00:23 10/15/09 00:23 10/15/09 00:23 10/15/09 00:23	LMH LMH LMH LMH	9J13072 9J13072 9J13072 9J13072 9J13072	6010B 6010B 6010B 6010B 6010B
Numinum Antimony Arsenic Barium Beryllium Cadmium	9.62 ND ND 0.108 ND	ods	0.200 0.0200 0.0100 0.0020 0.0020 0.0010	NR NR NR NR NR NR	mg/L mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00 1.00	10/15/09 00:23 10/15/09 00:23 10/15/09 00:23 10/15/09 00:23 10/15/09 00:23	LMH LMH LMH LMH LMH	9J13072 9J13072 9J13072 9J13072 9J13072 9J13072	6010B 6010B 6010B 6010B 6010B 6010B
Numinum Antimony Arsenic Barium Beryllium Cadmium Calcium	9.62 ND ND 0.108 ND ND	ods	0.200 0.0200 0.0100 0.0020 0.0020 0.0010 0.5	NR NR NR NR NR NR	mg/L mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00 1.00 1.00	10/15/09 00:23 10/15/09 00:23 10/15/09 00:23 10/15/09 00:23 10/15/09 00:23 10/15/09 00:23	LMH LMH LMH LMH LMH LMH	9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072	6010B 6010B 6010B 6010B 6010B 6010B 6010B
Numinum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium	9.62 ND 0.108 ND ND 203 0.0148	ods	0.200 0.0200 0.0100 0.0020 0.0020 0.0010 0.5 0.0040	NR NR NR NR NR NR NR NR	mg/L mg/L mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00 1.00 1.00 1.00	10/15/09 00:23 10/15/09 00:23 10/15/09 00:23 10/15/09 00:23 10/15/09 00:23 10/15/09 00:23 10/15/09 00:23	LMH LMH LMH LMH LMH LMH	9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B
Numinum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt	9.62 ND 0.108 ND 203 0.0148 ND	ods	0.200 0.0200 0.0100 0.0020 0.0020 0.0010 0.5 0.0040 0.0040	NR NR NR NR NR NR NR NR NR	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	10/15/09 00:23 10/15/09 00:23 10/15/09 00:23 10/15/09 00:23 10/15/09 00:23 10/15/09 00:23 10/15/09 00:23 10/15/09 00:23	LMH LMH LMH LMH LMH LMH LMH	9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B
Suminum Intimony Irsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper	9.62 ND 0.108 ND 203 0.0148 ND 0.0179	ods.	0.200 0.0200 0.0100 0.0020 0.0010 0.5 0.0040 0.0040 0.0100	NR NR NR NR NR NR NR NR NR NR	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	10/15/09 00:23 10/15/09 00:23 10/15/09 00:23 10/15/09 00:23 10/15/09 00:23 10/15/09 00:23 10/15/09 00:23 10/15/09 00:23 10/15/09 00:23	LMH LMH LMH LMH LMH LMH LMH LMH	9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B
Suminum Intimony Irsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Ion	9.62 ND 0.108 ND 203 0.0148 ND 0.0179 9.73	ods	0.200 0.0200 0.0100 0.0020 0.0010 0.5 0.0040 0.0040 0.0100 0.050	NR NR NR NR NR NR NR NR NR NR	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	10/15/09 00:23 10/15/09 00:23 10/15/09 00:23 10/15/09 00:23 10/15/09 00:23 10/15/09 00:23 10/15/09 00:23 10/15/09 00:23 10/15/09 00:23	LMH LMH LMH LMH LMH LMH LMH LMH LMH	9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B
luminum ntimony rsenic arium eryllium admium admium alcium hromium obalt opper on ead	9.62 ND 0.108 ND 203 0.0148 ND 0.0179	ods.	0.200 0.0200 0.0100 0.0020 0.0010 0.5 0.0040 0.0040 0.0100 0.050 0.0050	NR NR NR NR NR NR NR NR NR NR NR	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	10/15/09 00:23 10/15/09 00:23 10/15/09 00:23 10/15/09 00:23 10/15/09 00:23 10/15/09 00:23 10/15/09 00:23 10/15/09 00:23 10/15/09 00:23 10/15/09 00:23	LMH LMH LMH LMH LMH LMH LMH LMH LMH LMH	9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B
Juminum Intimony Insenic Iarium Ieryllium Iadmium Iadmium Ishromium Ishromium Ishopher Ion Iagnesium	9.62 ND ND 0.108 ND 203 0.0148 ND 0.0179 9.73 0.0165 121	ods.	0.200 0.0200 0.0100 0.0020 0.0010 0.5 0.0040 0.0040 0.0100 0.050 0.0050 0.200	NR NR NR NR NR NR NR NR NR NR NR NR	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	10/15/09 00:23 10/15/09 00:23	LMH LMH LMH LMH LMH LMH LMH LMH LMH LMH	9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B
Juminum Intimony Irsenic Parium Parlium Parlium Parlium Parlium Parlium Parlium Parlium Parlium Parlium Parlium Parlium Parlium	9.62 ND ND 0.108 ND 203 0.0148 ND 0.0179 9.73 0.0165 121 0.307	ods.	0.200 0.0200 0.0100 0.0020 0.0010 0.5 0.0040 0.0040 0.0100 0.050 0.0050 0.200 0.0030	NR NR NR NR NR NR NR NR NR NR NR NR NR	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	10/15/09 00:23 10/15/09 00:23	LMH LMH LMH LMH LMH LMH LMH LMH LMH LMH	9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B
Juminum Intimony Intimony Intervention Barium Beryllium Calcium Calcium Chromium Cobalt Copper Con ead Magnesium Manganese Jickel	9.62 ND ND 0.108 ND 203 0.0148 ND 0.0179 9.73 0.0165 121 0.307 ND	ods.	0.200 0.0200 0.0100 0.0020 0.0010 0.5 0.0040 0.0040 0.0100 0.050 0.0050 0.200 0.0030 0.0100	NR NR NR NR NR NR NR NR NR NR NR NR NR	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	10/15/09 00:23 10/15/09 00:23	LMH LMH LMH LMH LMH LMH LMH LMH LMH LMH	9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B
Juminum Intimony Insenic Farium Farium Fadmium Fadmium Foolaft Foopper Foon ead Magnesium Manganese lickel otassium	9.62 ND ND 0.108 ND 203 0.0148 ND 0.0179 9.73 0.0165 121 0.307 ND 7.48	ods.	0.200 0.0200 0.0100 0.0020 0.0010 0.5 0.0040 0.0040 0.0100 0.050 0.0050 0.200 0.0030 0.0100 0.0100 0.500	NR NR NR NR NR NR NR NR NR NR NR NR NR N	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	10/15/09 00:23 10/15/09 00:23	LMH LMH LMH LMH LMH LMH LMH LMH LMH LMH	9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B
Juminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Cobalt Copper Con ead Magnesium Manganese Jickel Votassium Jelenium	9.62 ND ND 0.108 ND 203 0.0148 ND 0.0179 9.73 0.0165 121 0.307 ND 7.48 ND	ods.	0.200 0.0200 0.0100 0.0020 0.0010 0.5 0.0040 0.0040 0.0100 0.050 0.0050 0.200 0.0030 0.0030 0.0100 0.500 0.0150	NR NR NR NR NR NR NR NR NR NR NR NR NR N	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	10/15/09 00:23 10/15/09 00:23	LMH LMH LMH LMH LMH LMH LMH LMH LMH LMH	9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B
Juminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Cadmium Cadmium Cobalt Copper con ead Magnesium Manganese Jickel Votassium Jelenium	9.62 ND ND 0.108 ND 203 0.0148 ND 0.0179 9.73 0.0165 121 0.307 ND 7.48 ND 7.48 ND	ods.	0.200 0.0200 0.0020 0.0020 0.0010 0.5 0.0040 0.0040 0.0100 0.050 0.0050 0.200 0.0030 0.0100 0.500 0.0150 0.0150 0.0030	NR NR NR NR NR NR NR NR NR NR NR NR NR N	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	10/15/09 00:23 10/15/09 00:23	LMH LMH LMH LMH LMH LMH LMH LMH LMH LMH	9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B
Juminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Cadmium Cadmium Cobalt Copper Con ead Magnese Magnese Magnese Jickel Potassium Selenium Jilver	9.62 ND ND 0.108 ND 203 0.0148 ND 0.0179 9.73 0.0165 121 0.307 ND 7.48 ND 7.48 ND ND 52.2	ods.	0.200 0.0200 0.0020 0.0020 0.0010 0.5 0.0040 0.0040 0.0100 0.050 0.0050 0.0050 0.200 0.0030 0.0100 0.500 0.0150 0.0030 1.0	NR NR NR NR NR NR NR NR NR NR NR NR NR N	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	10/15/09 00:23 10/15/09 00:23	LMH LMH LMH LMH LMH LMH LMH LMH LMH LMH	9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B
Total Metals by SW 846 S Auminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Calcium Chromium Calcium Chromium Cobalt Coba	9.62 ND ND 0.108 ND 203 0.0148 ND 0.0179 9.73 0.0165 121 0.307 ND 7.48 ND 7.48 ND	ods.	0.200 0.0200 0.0020 0.0020 0.0010 0.5 0.0040 0.0040 0.0100 0.050 0.0050 0.200 0.0030 0.0100 0.500 0.0150 0.0150 0.0030	NR NR NR NR NR NR NR NR NR NR NR NR NR N	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	10/15/09 00:23 10/15/09 00:23	LMH LMH LMH LMH LMH LMH LMH LMH LMH LMH	9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304 Work Order: RSJ0665

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none] Received: 10/09/09 Reported: 10/29/09 10:48

Analytical Report										
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RSJ06	65-02 (MW-2 - Wate	r) - cont.			Sam	pled: 10/	09/09 10:00	Recv	vd: 10/09/0	9 13:40
Total Metals by S	W 846 Series Metho	ods - cont.								
Mercury	ND	LJ	0.0002	NR	mg/L	1.00	10/13/09 14:44	МХМ	9J13033	7470A
General Chemist	ry Parameters									
Cyanide	ND		0.0200	0.0050	mg/L	1.00	10/16/09 10:07	LRM	9J15058	9012A
Turbidity	391	В	1.0	0.0	NTU	1.00	10/13/09 14:08	RMB	9J13007	180.1

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

Work Order: RSJ0665

10/09/09 Received: Reported: 10/29/09 10:48

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

Analytical Report										
Analyte	Sample Result	Data	RL	MDL	Units	Dil Fac	Date	Lab	Patak	Marth
100 million 100 000 000 000 000 000 000 000 000 00	1	Qualifiers	RL.	MIDE			Analyzed	Tech	Batch	Method
ample ID: RSJ0665-05 (D	OUP - Water	' - Water)				oled: 10/	/09/09	Recy	/d: 10/09/09	9 13:40
/olatile Organic Compou	nds by EPA	8260B								
,1,1-Trichloroethane	ND		1.0	0.26	ug/L	1.00	10/14/09 03:44	CDC	9J13110	8260B
,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L	1.00	10/14/09 03:44	CDC	9J13110	8260B
,1,2-Trichloroethane	ND		1.0	0.23	ug/L	1.00	10/14/09 03:44	CDC	9J13110	8260B
,1,2-Trichlorotrifluoroeth	ND		1.0	0.31	ug/L	1.00	10/14/09 03:44	CDC	9J13110	8260B
ne										
,1-Dichloroethane	ND		1.0	0.38	ug/L	1.00	10/14/09 03:44	CDC	9J13110	8260B
,1-Dichloroethene	ND		1.0	0.29	ug/L	1.00	10/14/09 03:44	CDC	9J13110	8260B
,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L	1.00	10/14/09 03:44	CDC	9J13110	8260B
,2-Dibromo-3-chloroprop	ND		1.0	0.39	ug/L	1.00	10/14/09 03:44	CDC	9J13110	8260B
ne										
,2-Dibromoethane EDB)	ND		1.0	0.17	ug/L	1.00	10/14/09 03:44	CDC	9J13110	8260B
2-Dichlorobenzene	ND		1.0	0.20	ug/L	1.00	10/14/09 03:44	CDC	9J13110	8260B
,2-Dichloroethane	ND		1.0	0.21	ug/L	1.00	10/14/09 03:44	CDC	9J13110	8260B
,2-Dichloroethene, Total	ND		2.0	0.70	ug/L	1.00	10/14/09 03:44	CDC	9J13110	8260B
,2-Dichloropropane	ND		1.0	0.32	ug/L	1.00	10/14/09 03:44	CDC	9J13110	8260B
,3-Dichlorobenzene	ND		1.0	0.36	ug/L	1.00	10/14/09 03:44	CDC	9J13110	8260B
,4-Dichlorobenzene	ND		1.0	0.39	ug/L	1.00	10/14/09 03:44	CDC	9J13110	8260B
-Butanone (MEK)	ND		5.0	1.3	ug/L	1.00	10/14/09 03:44	CDC	9J13110	8260B
Hexanone	ND		5.0	1.2	ug/L	1.00	10/14/09 03:44	CDC	9J13110	8260B
Methyl-2-pentanone	ND		5.0	0.91	ug/L	1.00	10/14/09 03:44	CDC	9J13110	8260B
AIBK)			.5.0	6.0						
cetone	ND		5.0	1.3	ug/L	1.00	10/14/09 03:44		9J13110	8260B
enzene	ND		1.0	0.41	ug/L	1.00	10/14/09 03:44		9J13110	8260B
romodichloromethane	ND		1.0	0.39	ug/L	1.00	10/14/09 03:44		9J13110	8260B
romoform	ND		1.0	0.26	ug/L	1.00	10/14/09 03:44		9J13110	8260B
romomethane	ND		1.0	0.28	ug/L	1.00	10/14/09 03:44		9J13110	8260B
arbon disulfide	ND		1.0	0.19	ug/L	1.00	10/14/09 03:44		9J13110	8260B
arbon Tetrachloride	ND		1.0	0.27	ug/L	1.00	10/14/09 03:44		9J13110	8260B
hlorobenzene	ND		1.0	0.32	ug/L	1.00	10/14/09 03:44		9J13110	8260B
hlorodibromomethane	ND		1.0	0.32	ug/L	1.00	10/14/09 03:44		9J13110	8260B
hloroethane	ND		1.0	0.32	ug/L	1.00	10/14/09 03:44		9J13110	8260B
hloroform	ND		1.0	0.34	ug/L	1.00	10/14/09 03:44		9J13110	8260B
hloromethane	ND		1.0	0.35	ug/L	1.00	10/14/09 03:44		9J13110	8260B
s-1,2-Dichloroethene	ND		1.0	0.38	ug/L	1.00	10/14/09 03:44		9J13110	8260B
s-1,3-Dichloropropene	ND		1.0	0.36	ug/L	1.00	10/14/09 03:44		9J13110	8260B
yclohexane	ND		1.0	0.53	ug/L	1.00	10/14/09 03:44		9J13110	8260B
ichlorodifluoromethane	ND		1.0	0.29	ug/L	1.00	10/14/09 03:44		9J13110	8260B
thylbenzene	ND		1.0	0.18	ug/L	1.00	10/14/09 03:44		9J13110	8260B
opropylbenzene	ND		1.0	0.19	ug/L	1.00	10/14/09 03:44		9J13110	8260B
lethyl Acetate	ND		1.0	0.50	ug/L	1.00	10/14/09 03:44		9J13110	8260B
ethyl tert-Butyl Ether	ND		1.0	0.16	ug/L	1.00	10/14/09 03:44		9J13110	8260B
ethylcyclohexane	ND		1.0	0.50	ug/L	1.00	10/14/09 03:44		9J13110	8260B
ethylene Chloride	ND	2	1.0	0.44	ug/L	1.00	10/14/09 03:44		9J13110	8260B
tyrene	ND		1.0	0.18	ug/L	1.00	10/14/09 03:44		9J13110	8260B
etrachloroethene	ND		1.0	0.36	ug/L	1.00	10/14/09 03:44		9J13110	8260B
oluene	ND		1.0	0.51	ug/L	1.00	10/14/09 03:44		9J13110	8260B
ans-1,2-Dichloroethene	ND		1.0	0.42	ug/L	1.00	10/14/09 03:44		9J13110	8260B
ans-1,3-Dichloropropen	ND		1.0	0.37	ug/L	1.00	10/14/09 03:44	CDC	9J13110	8260B
ichloroethene	ND		1.0	0.46	ug/L	1.00	10/14/09 03:44	CDC	9J13110	8260B
ichlorofluoromethane	ND		1.0	0.15	ug/L	1.00	10/14/09 03:44		9J13110	8260B
TestAmerica Buffalo			1.0	0.10	ug/L	1.00		000	5010110	02000

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

Work Order: RSJ0665

Received: 10/09/09 Reported: 10/29/09 10:48

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

			A	nalytical F	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RSJ0665-05 (I	1					oled: 10		1.1.1	/d: 10/09/0	1.00
Volatile Organic Compo	unds by EPA	8260B - con	t.							
Vinyl acetate	ND		5.0	0.85	ug/L	1.00	10/14/09 03:44	CDC	9J13110	8260B
Vinyl chloride	ND		1.0	0.24	ug/L	1.00	10/14/09 03:44		9J13110	8260B
Xylenes, total	ND		2.0	0.66	ug/L	1.00	10/14/09 03:44		9J13110	8260B
1,2-Dichloroethane-d4	104 %		Surr Limits:	(66-137%)			10/14/09 03:44	CDC	9J13110	8260B
4-Bromofluorobenzene	89 %		Surr Limits:				10/14/09 03:44		9J13110	8260B
Toluene-d8	99 %		Surr Limits:				10/14/09 03:44		9J13110	8260B
Semivolatile Organics by	GC/MS									
2,4,5-Trichlorophenol	ND		5.2	1.0	ug/L	1.00	10/16/09 03:47	JLG	9J12081	8270C
2,4,6-Trichlorophenol	ND		5.2	1.0	ug/L	1.00	10/16/09 03:47	JLG	9J12081	8270C
2,4-Dichlorophenol	ND		5.2	0.82	ug/L	1.00	10/16/09 03:47	1000	9J12081 9J12081	8270C
2,4-Dimethylphenol	ND		5.2	1.0	ug/L	1.00	10/16/09 03:47	JLG	9J12081 9J12081	8270C
2,4-Dinitrophenol	ND		10	2.3	ug/L	1.00	10/16/09 03:47	JLG	9J12081 9J12081	
2,4-Dinitrotoluene	ND		5.2	0.47						8270C
2,4-Dinitrotoluene	ND		5.2	0.47	ug/L	1.00	10/16/09 03:47		9J12081	8270C
2,0-Dinitiololuene 2-Chloronaphthalene	ND				ug/L	1.00	10/16/09 03:47	JLG	9J12081	8270C
2-Chlorophenol	ND		5.2	0.088	ug/L	1.00	10/16/09 03:47		9J12081	8270C
			5.2	0.53	ug/L	1.00	10/16/09 03:47		9J12081	8270C
2-Methylnaphthalene	ND		5.2	0.085	ug/L	1.00	10/16/09 03:47	JLG	9J12081	8270C
2-Methylphenol	ND		5.2	0.24	ug/L	1.00	10/16/09 03:47	JLG	9J12081	8270C
2-Nitroaniline	ND		10	0.52	ug/L	1.00	10/16/09 03:47	JLG	9J12081	8270C
2-Nitrophenol	ND		5.2	0.63	ug/L	1.00	10/16/09 03:47	JLG	9J12081	8270C
3 & 4 Methylphenol	ND		10	0.60	ug/L	1.00	10/16/09 03:47	JLG	9J12081	8270C
3,3'-Dichlorobenzidine	ND		5.2	0.39	ug/L	1.00	10/16/09 03:47	JLG	9J12081	8270C
3-Nitroaniline	ND		10	1.6	ug/L	1.00	10/16/09 03:47	JLG	9J12081	8270C
l,6-Dinitro-2-methylphen	ND		10	2.4	ug/L	1.00	10/16/09 03:47	JLG	9J12081	8270C
I-Bromophenyl phenyl ether	ND		5.2	0.94	ug/L	1.00	10/16/09 03:47	JLG	9J12081	8270C
1-Chloro-3-methylphenol	ND		5.2	0.62	ug/L	1.00	10/16/09 03:47	JLG	9J12081	8270C
I-Chloroaniline	ND		5.2	0.34	ug/L	1.00	10/16/09 03:47	JLG	9J12081	8270C
-Chlorophenyl phenyl ther	ND		5.2	0.17	ug/L	1.00	10/16/09 03:47	JLG	9J12081	8270C
I-Nitroaniline	ND	L2 UJ	10	0.47	ug/L	1.00	10/16/09 03:47	JLG	9J12081	8270C
-Nitrophenol	ND	- 00	10	1.6	ug/L	1.00	10/16/09 03:47	JLG	9J12081 9J12081	8270C
Acenaphthene	ND		5.2	0.12	ug/L	1.00	10/16/09 03:47		9J12081 9J12081	8270C
cenaphthylene	ND		5.2	0.049	ug/L	1.00	10/16/09 03:47	JLG	9J12081 9J12081	8270C
cetophenone	ND		5.2	1.1						
Inthracene	ND		5.2	0.058	ug/L	1.00	10/16/09 03:47		9J12081	8270C
trazine	ND		5.2		ug/L	1.00	10/16/09 03:47	JLG	9J12081	8270C
Benzaldehyde				1.1	ug/L	1.00	10/16/09 03:47		9J12081	8270C
	ND		5.2	0.28	ug/L	1.00	10/16/09 03:47		9J12081	8270C
enzo[a]anthracene	ND		5.2	0.067	ug/L	1.00	10/16/09 03:47		9J12081	8270C
enzo[a]pyrene	ND		5.2	0.095	ug/L	1.00	10/16/09 03:47		9J12081	8270C
enzo[b]fluoranthene	ND		5.2	0.066	ug/L	1.00	10/16/09 03:47		9J12081	8270C
enzo[g,h,i]perylene	ND		5.2	0.081	ug/L	1.00	10/16/09 03:47		9J12081	8270C
enzo[k]fluoranthene	ND		5.2	0.069	ug/L	1.00	10/16/09 03:47	JLG	9J12081	8270C
iphenyl	ND		5.2	0.68	ug/L	1.00	10/16/09 03:47	JLG	9J12081	8270C
iis(2-chloroethoxy)metha e	ND		5.2	0.39	ug/L	1.00	10/16/09 03:47	JLG	9J12081	8270C
is(2-chloroethyl)ether	ND		5.2	0.19	ug/L	1.00	10/16/09 03:47	JLG	9J12081	8270C
is(2-chloroisopropyl)	ND		4.2	4.2	ug/L	1.00	10/16/09 03:47		9J12081	8270C

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

Work Order: RSJ0665

Received: 10/09/09 Reported: 10/29/09 10:48

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

	Analytical Report									
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RSJ0665-05 (DUP - Water) - cont.	2012000		Sam	pled: 10	/09/09	Recy	/d: 10/09/0	9 13:40
Semivolatile Organics b	y GC/MS - co	ont.								
Bis(2-ethylhexyl)	ND		5.2	5.0	ug/L	1.00	10/16/09 03:47	JLG	9J12081	8270C
phthalate	ND		5.2	1.8		1 00	10/16/09 03:47		9J12081	8270C
Butyl benzyl phthalate					ug/L	1.00			9J12081 9J12081	
Caprolactam	ND		5.2	4.8	ug/L	1.00	10/16/09 03:47			8270C
Carbazole	ND		5.2	0.093	ug/L	1.00	10/16/09 03:47	JLG	9J12081	8270C
Chrysene	ND		5.2	0.28	ug/L	1.00	10/16/09 03:47	JLG	9J12081	8270C
Dibenz[a,h]anthracene	ND		5.2	0.21	ug/L	1.00	10/16/09 03:47		9J12081	8270C
Dibenzofuran	ND		10	1.7	ug/L	1.00	10/16/09 03:47	JLG	9J12081	8270C
Diethyl phthalate	ND		5.2	0.11	ug/L	1.00	10/16/09 03:47	JLG	9J12081	8270C
Dimethyl phthalate	ND	1.1	5.2	0.31	ug/L	1.00	10/16/09 03:47		9J12081	8270C
Di-n-butyl phthalate	0.46	J	5.2	0.31	ug/L	1.00	10/16/09 03:47	JLG	9J12081	8270C
Di-n-octyl phthalate	ND		5.2	0.25	ug/L	1.00	10/16/09 03:47	JLG	9J12081	8270C
Fluoranthene	ND		5.2	0.10	ug/L	1.00	10/16/09 03:47	JLG	9J12081	8270C
Fluorene	ND		5.2	0.077	ug/L	1.00	10/16/09 03:47	JLG	9J12081	8270C
Hexachlorobenzene	ND		5.2	0.46	ug/L	1.00	10/16/09 03:47	JLG	9J12081	8270C
Hexachlorobutadiene	ND		5.2	2.7	ug/L	1.00	10/16/09 03:47	JLG	9J12081	8270C
Hexachlorocyclopentadie ne	ND		5.2	2.6	ug/L	1.00	10/16/09 03:47	JLG	9J12081	8270C
Hexachloroethane	ND		5.2	2.9	ug/L	1.00	10/16/09 03:47	JLG	9J12081	8270C
Indeno[1,2,3-cd]pyrene	ND		5.2	0.16	ug/L	1.00	10/16/09 03:47	JLG	9J12081	8270C
Isophorone	ND		5.2	0.33	ug/L	1.00	10/16/09 03:47	JLG	9J12081	8270C
Naphthalene	ND		5.2	0.12	ug/L	1.00	10/16/09 03:47	JLG	9J12081	8270C
Nitrobenzene	ND		5.2	0.56	ug/L	1.00	10/16/09 03:47		9J12081	8270C
N-Nitrosodi-n-propylamin	ND		5.2	0.47	ug/L	1.00	10/16/09 03:47	JLG	9J12081	8270C
e N-Nitrosodiphenylamine	ND		5.2	0.27	ug/L	1.00	10/16/09 03:47	JLG	9J12081	8270C
Pentachlorophenol	ND		10	5.4	ug/L	1.00	10/16/09 03:47	JLG	9J12081	8270C
Phenanthrene	ND		5.2	0.12	ug/L	1.00	10/16/09 03:47	JLG	9J12081	8270C
Phenol	ND		5.2	0.46	ug/L	1.00	10/16/09 03:47		9J12081	8270C
Pyrene	ND		5.2	0.071	ug/L	1.00	10/16/09 03:47	JLG	9J12081	8270C
2,4,6-Tribromophenol	121 %		Surr Limits:	(52-132%)			10/16/09 03:47	JLG	9J12081	8270C
2-Fluorobiphenyl	90 %		Surr Limits:	(48-120%)			10/16/09 03:47	JLG	9J12081	8270C
2-Fluorophenol	56 %		Surr Limits:	(20-120%)			10/16/09 03:47	JLG	9J12081	8270C
Nitrobenzene-d5	89 %		Surr Limits:	(46-120%)			10/16/09 03:47	JLG	9J12081	8270C
Phenol-d5	42 %		Surr Limits:	(16-120%)			10/16/09 03:47	JLG	9J12081	8270C
p-Terphenyl-d14	68 %		Surr Limits:	(24-136%)			10/16/09 03:47	JLG	9J12081	8270C
Organochlorine Pesticid	es by EPA N	lethod 8081	A							
4,4'-DDD [2C]	ND	D02	0.25	0.083	ug/L	5.00	10/13/09 21:03	DGB	9J10012	8081A
4,4'-DDE [2C]	ND	D02	0.25	0.057	ug/L	5.00	10/13/09 21:03		9J10012	8081A
4,4'-DDT [2C]	ND	D02	0.25	0.054	ug/L	5.00	10/13/09 21:03		9J10012	8081A
Aldrin [2C]	ND	D02	0.25	0.033	ug/L	5.00	10/13/09 21:03		9J10012	8081A
alpha-BHC [2C]	ND	D02	0.25	0.033	ug/L	5.00	10/13/09 21:03		9J10012	8081A
alpha-Chlordane [2C]	ND	D02	0.25	0.073	ug/L	5.00	10/13/09 21:03		9J10012	8081A
peta-BHC [2C]	ND	D02	0.25	0.12	ug/L	5.00	10/13/09 21:03		9J10012	8081A
Chlordane [2C]	ND	D02	2.5	0.12	ug/L	5.00	10/13/09 21:03		9J10012	8081A
delta-BHC [2C]	ND	D02 D02	0.25	0.14		5.00	10/13/09 21:03		9J10012 9J10012	8081A
					ug/L					
Dieldrin [2C]	ND	D02	0.25	0.097	ug/L	5.00	10/13/09 21:03		9J10012	8081A
Endosulfan I [2C]	ND	D02	0.25	0.054	ug/L	5.00	10/13/09 21:03		9J10012	8081A
Endosulfan II [2C]	ND	D02	0.25	0.059	ug/L	5.00	10/13/09 21:03		9J10012	8081A
Endosulfan sulfate [2C]	ND	D02	0.25	0.078	ug/L	5.00	10/13/09 21:03	DGB	9J10012	8081A

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

Work Order: RSJ0665

Received: 10/09/09 Reported: 10/29/09 10:48

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

			A	nalytical F	Report					
Analyte	Sample Result	Data	RL	MDL	11-16-	Dil	Date	Lab	Datab	
CARD AND CONCERNING STORES	C. R. C.	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ0665-05 (DUP - Water) - cont.			Sam	pled: 10	/09/09	Recy	/d: 10/09/0	9 13:40
Organochlorine Pesticid	les by EPA M	lethod 8081	A - cont.							
Endrin [2C]	ND	D02	0.25	0.068	ug/L	5.00	10/13/09 21:03	DGB	9J10012	8081A
Endrin aldehyde [2C]	ND	D02	0.25	0.081	ug/L	5.00	10/13/09 21:03	DGB	9J10012	8081A
Endrin ketone [2C]	ND	D02	0.25	0.059	ug/L	5.00	10/13/09 21:03		9J10012	8081A
gamma-BHC (Lindane) [2C]	ND	D02	0.25	0.030	ug/L	5.00	10/13/09 21:03	DGB	9J10012	8081A
gamma-Chlordane [2C]	ND	D02	0.25	0.054	ug/L	5.00	10/13/09 21:03		9J10012	8081A
Heptachlor [2C]	ND	D02	0.25	0.042	ug/L	5.00	10/13/09 21:03	DGB	9J10012	8081A
Heptachlor epoxide [2C]	ND	D02	0.25	0.026	ug/L	5.00	10/13/09 21:03	DGB	9J10012	8081A
Methoxychlor [2C]	ND	D02	0.25	0.070	ug/L	5.00	10/13/09 21:03		9J10012	8081A
Toxaphene [2C]	ND	D02	2.5	0.59	ug/L	5.00	10/13/09 21:03	DGB	9J10012	8081A
Decachlorobiphenyl [2C]	31 %	D02,C	Surr Limits:	(15-139%)			10/13/09 21:03	DGB	9J10012	8081A
Tetrachloro-m-xylene [2C]	113 %	D02	Surr Limits:	(30-139%)			10/13/09 21:03	DGB	9J10012	8081A
Polychlorinated Bipheny	Is by EPA N	lethod 8082								
Aroclor 1016	ND	QSU	0.50	0.17	ug/L	1.00	10/13/09 10:25	SCH	9J10013	8082
Aroclor 1221	ND	QSU	0.50	0.17	ug/L	1.00	10/13/09 10:25	SCH	9J10013	8082
Aroclor 1232	ND	QSU	0.50	0.17	ug/L	1.00	10/13/09 10:25	SCH	9J10013	8082
Aroclor 1242	ND	QSU	0.50	0.17	ug/L	1.00	10/13/09 10:25	SCH	9J10013	8082
Aroclor 1248	ND	QSU	0.50	0.17	ug/L	1.00	10/13/09 10:25	SCH	9J10013	8082
Aroclor 1254	ND	QSU	0.50	0.25	ug/L	1.00	10/13/09 10:25	SCH	9J10013	8082
Aroclor 1260	ND	QSU	0.50	0.25	ug/L	1.00	10/13/09 10:25	SCH	9J10013	8082
Decachlorobiphenyl	73 %	QSU	Surr Limits:	(12-137%)			10/13/09 10:25	SCH	9J10013	8082
Tetrachloro-m-xylene	120 %	QSU	Surr Limits:	(35-121%)			10/13/09 10:25	SCH	9J10013	8082
Total Metals by SW 846 S		ods								
Aluminum	5.75		0.200	NR	mg/L	1.00	10/15/09 01:00	LMH	9J13072	6010B
Antimony	ND		0.0200	NR	mg/L	1.00	10/15/09 01:00	LMH	9J13072	6010B
Arsenic	ND		0.0100	NR	mg/L	1.00	10/15/09 01:00	LMH	9J13072	6010B
Barium	0.130		0.0020	NR	mg/L	1.00	10/15/09 01:00	LMH	9J13072	6010B
Beryllium	ND		0.0020	NR	mg/L	1.00	10/15/09 01:00	LMH	9J13072	6010B
Cadmium	ND		0.0010	NR	mg/L	1.00	10/15/09 01:00	LMH	9J13072	6010B
Calcium	67.9		0.5	NR	mg/L	1.00	10/15/09 01:00	LMH	9J13072	6010B
Chromium	0.0072		0.0040	NR	mg/L	1.00	10/15/09 01:00	LMH	9J13072	6010B
Cobalt	ND		0.0040	NR	mg/L	1.00	10/15/09 01:00	LMH	9J13072	6010B
Copper	ND		0.0100	NR	mg/L	1.00	10/15/09 01:00	LMH	9J13072	6010B
Iron	5.42		0.050	NR	mg/L	1.00	10/15/09 01:00		9J13072	6010B
Lead	ND		0.0050	NR	mg/L	1.00	10/15/09 01:00		9J13072	6010B
Magnesium	54.8		0.200	NR	mg/L	1.00	10/15/09 01:00		9J13072	6010B
Manganese	0.103		0.0030	NR	mg/L	1.00	10/15/09 01:00		9J13072	6010B
Nickel	ND		0.0100	NR	mg/L	1.00	10/15/09 01:00		9J13072	6010B
	3.28		0.500	NR	mg/L	1.00	10/15/09 01:00		9J13072	6010B
Potassium				NR	mg/L	1.00	10/15/09 01:00		9J13072	6010B
			0.0150	IN IN						00100
Selenium	ND		0.0150 0.0030					IMH	9,113072	6010B
Selenium Silver	ND ND		0.0030	NR	mg/L	1.00	10/15/09 01:00		9J13072 9J13072	6010B
Selenium Silver Sodium	ND ND 27.2		0.0030 1.0	NR NR	mg/L mg/L	1.00 1.00	10/15/09 01:00 10/15/09 01:00	LMH	9J13072	6010B
Potassium Selenium Silver Sodium Thallium Vanadium	ND ND		0.0030	NR	mg/L	1.00	10/15/09 01:00	LMH LMH		

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

22/1092

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304 Work Order: RSJ0665

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

Analytical Report Dil Sample Date Data Lab MDL RL Analyte Units Result Qualifiers Fac Analyzed Tech Batch Method Sample ID: RSJ0665-05 (DUP - Water) - cont. Sampled: 10/09/09 Recvd: 10/09/09 13:40 Total Metals by SW 846 Series Methods - cont. Mercury ND 43 0.0002 NR 1.00 10/13/09 14:51 MXM 9J13033 7470A mg/L **General Chemistry Parameters** Cyanide ND 0.0200 0.0050 mg/L 1.00 10/16/09 10:07 LRM 9012A 9J15058 Turbidity 137 В 1 1.0 0.0 NTU 1.00 10/13/09 14:08 RMB 9J13007 180.1

Received: 10/09/09 Reported: 10/29/09 10:48

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

Work Order: RSJ0665

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

Analytical Report

Sample Data Dil Date Lab MDL Analyte Result RL Qualifiers Units Fac Analyzed Tech Batch Method Sample ID: RSJ0665-06 (MW-4 - Water) Sampled: 10/09/09 11:00 Recvd: 10/09/09 13:40 Volatile Organic Compounds by EPA 8260B 1,1,1-Trichloroethane ND 1.0 0.26 ug/L 1.00 10/14/09 04:12 CDC 9J13110 8260B 1,1,2,2-Tetrachloroethane ND 1.0 0.21 ug/L 1.00 10/14/09 04:12 CDC 9,113110 8260B 1,1,2-Trichloroethane ND 10/14/09 04:12 CDC 1.0 0.23 ug/L 1.00 9.113110 8260B 1,1,2-Trichlorotrifluoroeth ND 1.0 0.31 ug/L 1.00 10/14/09 04:12 CDC 9J13110 8260B ane 1,1-Dichloroethane ND 1.0 0.38 ug/L 1.00 10/14/09 04:12 CDC 9J13110 8260B 1,1-Dichloroethene ND 1.0 0.29 ug/L 1.00 10/14/09 04:12 CDC 9J13110 8260B 1,2,4-Trichlorobenzene ND 1.0 0.41 ug/L 1.00 10/14/09 04:12 CDC 9J13110 8260B 1,2-Dibromo-3-chloroprop ND 1.0 0.39 1.00 10/14/09 04:12 CDC ug/L 9J13110 8260B ane 1,2-Dibromoethane ND 1.0 0.17 1.00 ug/L 10/14/09 04:12 CDC 9J13110 8260B (EDB) 1 2-Dichlorobenzene ND 1.0 0.20 ug/L 1.00 10/14/09 04:12 CDC 9J13110 8260B 1,2-Dichloroethane ND 1.0 0.21 ug/L 1.00 10/14/09 04:12 CDC 9J13110 8260B 1,2-Dichloroethene, Total ND 2.0 0.70 10/14/09 04:12 ug/L 1.00 CDC 9J13110 8260B 1,2-Dichloropropane ND 1.0 0.32 ug/L 1.00 10/14/09 04:12 CDC 9,113110 8260B 1,3-Dichlorobenzene ND 1.0 0.36 ug/L 1.00 10/14/09 04:12 CDC 9J13110 8260B 1,4-Dichlorobenzene ND 1.0 0.39 ug/L 1.00 10/14/09 04:12 CDC 9J13110 8260B 2-Butanone (MEK) ND 5.0 1.3 ug/L 1.00 10/14/09 04:12 CDC 9J13110 8260B 2-Hexanone ND 5.0 1.2 1.00 ug/L 10/14/09 04:12 CDC 9J13110 8260B 4-Methyl-2-pentanone ND 5.0 0.91 ug/L 1.00 10/14/09 04:12 CDC 9J13110 8260B (MIBK) ND Acetone 5.0 1.3 ug/L 1.00 10/14/09 04:12 CDC 9J13110 8260B Benzene ND 1.0 0.41 ug/L 1.00 10/14/09 04:12 CDC 9J13110 8260B Bromodichloromethane ND 1.0 0.39 ug/L 1.00 10/14/09 04:12 CDC 8260B 9J13110 Bromoform ND 1.0 0.26 ug/L 1.00 10/14/09 04:12 CDC 8260B 9.113110 Bromomethane ND 1.0 0.28 ug/L 1.00 10/14/09 04:12 CDC 9J13110 8260B Carbon disulfide ND 1.0 0.19 1.00 10/14/09 04:12 ug/L CDC 9J13110 8260B Carbon Tetrachloride ND 0.27 1.0 ug/L 1.00 10/14/09 04:12 CDC 9J13110 8260B Chlorobenzene ND 1.0 0.32 ug/L 1.00 10/14/09 04:12 CDC 9J13110 8260B Chlorodibromomethane ND 1.0 0.32 1.00 ug/L 10/14/09 04:12 CDC 9J13110 8260B Chloroethane ND 1.0 0.32 1.00 ug/L 10/14/09 04.12 CDC 9J13110 8260B Chloroform ND 0.34 1.0 ug/L 1.00 10/14/09 04:12 CDC 9J13110 8260B Chloromethane ND ug/L 1.0 0.35 1.00 10/14/09 04:12 CDC 9J13110 8260B cis-1,2-Dichloroethene ND 1.0 0.38 ug/L 1.00 10/14/09 04:12 CDC 9J13110 8260B cis-1,3-Dichloropropene ND 10 0.36 ug/L 1.00 10/14/09 04:12 CDC 9J13110 8260B Cyclohexane ND 1.0 0.53 ug/L 1.00 10/14/09 04:12 CDC 9.113110 8260B Dichlorodifluoromethane ND 1.0 0.29 ug/L 1.00 10/14/09 04:12 CDC 9J13110 8260B Ethylbenzene ND 1.0 0.18 ug/L 1.00 10/14/09 04:12 CDC 9J13110 8260B Isopropylbenzene ND 1.0 0.19 ug/L 1.00 10/14/09 04:12 CDC 9J13110 8260B Methyl Acetate ND 1.0 0.50 ug/L 1.00 10/14/09 04:12 CDC 8260B 9J13110 Methyl tert-Butyl Ether ND 0.16 10 ug/L 1.00 10/14/09 04:12 CDC 9J13110 8260B Methylcyclohexane ND 0.50 1.0 ug/L 1.00 10/14/09 04:12 CDC 9J13110 8260B Methylene Chloride ND 1.0 0.44 1.00 ug/L 10/14/09 04:12 CDC 9,113110 8260B Styrene ND 1.0 0.18 ug/L 1.00 10/14/09 04:12 CDC 9J13110 8260B Tetrachloroethene ND 1.0 0.36 ug/L 1.00 10/14/09 04:12 CDC 9J13110 8260B Toluene ND 1.0 0.51 ug/L 1.00 10/14/09 04:12 CDC 9J13110 8260B trans-1,2-Dichloroethene ND 1.0 0.42 ug/L 1.00 10/14/09 04:12 CDC 9J13110 8260B trans-1,3-Dichloropropen ND 10 0.37 ug/L 1.00 10/14/09 04:12 CDC 9J13110 8260B Trichloroethene ND 1.0 0.46 ug/L 1.00 10/14/09 04:12 CDC 9.113110 8260B Trichlorofluoromethane ND 1.0 0.15 ug/L 1.00 10/14/09 04:12 CDC 9J13110 8260B TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

24/1092

10/09/09 Received: Reported:

10/29/09 10:48

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

Work Order: RSJ0665

Received: 10/09/09 Reported: 10/29/09 10:48

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

			ŀ	Analytical F	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RSJ0665-06 (I	MW-4 - Wate				Sam	pled: 10	/09/09 11:00		vd: 10/09/0	
Volatile Organic Compo	unds by EP/	A 8260B - cor	nt.							
Vinyl acetate	ND		5.0	0.85	ug/L	1.00	10/14/09 04:12	CDC	9J13110	8260B
Vinyl chloride	ND		1.0	0.24	ug/L	1.00	10/14/09 04:12	CDC	9J13110	8260B
Xylenes, total	ND		2.0	0.66	ug/L	1.00	10/14/09 04:12		9J13110	8260B
1,2-Dichloroethane-d4	104 %		Surr Limits:	(66-137%)			10/14/09 04:12	CDC	9J13110	8260B
4-Bromofluorobenzene	88 %		Surr Limits:				10/14/09 04:12		9J13110	8260B
Toluene-d8	98 %			(71-126%)			10/14/09 04:12		9J13110	8260B
Semivolatile Organics by	GC/MS									
2,4,5-Trichlorophenol	ND		5.0	0.98	ug/L	1.00	10/16/09 04:10	JLG	9J12081	8270C
2,4,5-Trichlorophenol	ND		5.0	0.98	ug/L	1.00	10/16/09 04:10	JLG	9J12081 9J12081	8270C
2,4,0-michlorophenol	ND		5.0	0.98	-	1.00	10/16/09 04:10	JLG	9J12081 9J12081	8270C
2,4-Dimethylphenol	ND		5.0 5.0	0.78	ug/L	1.00	10/16/09 04:10	JLG	9J12081 9J12081	8270C 8270C
2,4-Dinitrophenol	ND		5.0 9.9	2.2	ug/L	1.00	10/16/09 04:10	JLG	9J12081 9J12081	8270C 8270C
2,4-Dinitrotoluene	ND		9.9 5.0	0.44	ug/L	1.00	10/16/09 04:10	JLG	9J12081 9J12081	8270C 8270C
2,4-Dinitrotoluene	ND		5.0	0.44	ug/L ug/L	1.00	10/16/09 04:10	JLG	9J12081 9J12081	8270C 8270C
2-Chloronaphthalene	ND		5.0	0.083		1.00	10/16/09 04:10	JLG	9J12081 9J12081	8270C
2-Chlorophenol	ND		5.0	0.083	ug/L	1.00	10/16/09 04:10	JLG	9J12081 9J12081	8270C
	ND		5.0	0.081	ug/L			JLG	9J12081 9J12081	8270C
2-Methylnaphthalene					ug/L	1.00	10/16/09 04:10			
2-Methylphenol	ND		5.0	0.23	ug/L	1.00	10/16/09 04:10		9J12081	8270C
2-Nitroaniline	ND		9.9	0.49	ug/L	1.00	10/16/09 04:10	JLG	9J12081	8270C
2-Nitrophenol	ND		5.0	0.60	ug/L	1.00	10/16/09 04:10	JLG	9J12081	8270C
3 & 4 Methylphenol	ND		9.9	0.57	ug/L	1.00	10/16/09 04:10		9J12081	8270C
3,3'-Dichlorobenzidine	ND		5.0	0.37	ug/L	1.00	10/16/09 04:10	JLG	9J12081	8270C
3-Nitroaniline	ND		9.9	1.5	ug/L	1.00	10/16/09 04:10	JLG	9J12081	8270C
I,6-Dinitro-2-methylphen bl	ND		9.9	2.2	ug/L	1.00	10/16/09 04:10	JLG	9J12081	8270C
I-Bromophenyl phenyl	ND		5.0	0.89	ug/L	1.00	10/16/09 04:10	JLG	9J12081	8270C
ether 1-Chloro-3-methylphenol	ND		5.0	0.59	110/1	1.00	10/16/09 04:10	JLG	9J12081	8270C
4-Chloroaniline	ND		5.0	0.33	ug/L	1.00	10/16/09 04:10	JLG	9J12081 9J12081	8270C
	ND		5.0	0.33	ug/L	1.00			9J12081 9J12081	8270C 8270C
I-Chlorophenyl phenyl ather			5.0	0.17	ug/L	1.00	10/16/09 04:10	JLG	9112001	02700
4-Nitroaniline	ND	L2 45	9.9	0.45	ug/L	1.00	10/16/09 04:10	JLG	9J12081	8270C
I-Nitrophenol	ND		9.9	1.5	ug/L	1.00	10/16/09 04:10	JLG	9J12081	8270C
Acenaphthene	ND		5.0	0.11	ug/L	1.00	10/16/09 04:10	JLG	9J12081	8270C
Acenaphthylene	ND		5.0	0.047	ug/L	1.00	10/16/09 04:10	JLG	9J12081	8270C
Acetophenone	ND		5.0	1.0	ug/L	1.00	10/16/09 04:10	JLG	9J12081	8270C
Anthracene	ND		5.0	0.055	ug/L	1.00	10/16/09 04:10		9J12081	8270C
Atrazine	ND		5.0	1.1	ug/L	1.00	10/16/09 04:10		9J12081	8270C
Benzaldehyde	ND		5.0	0.26	ug/L	1.00	10/16/09 04:10		9J12081	8270C
Benzo[a]anthracene	ND		5.0	0.063	ug/L	1.00	10/16/09 04:10		9J12081	8270C
Benzo[a]pyrene	ND		5.0	0.090	ug/L	1.00	10/16/09 04:10	JLG	9J12081	8270C
Benzo[b]fluoranthene	ND		5.0	0.062	ug/L	1.00	10/16/09 04:10		9J12081	8270C
Benzo[g,h,i]perylene	ND		5.0	0.077	ug/L	1.00	10/16/09 04:10		9J12081	8270C
Benzo[k]fluoranthene	ND		5.0	0.065	ug/L	1.00	10/16/09 04:10	JLG	9J12081	8270C
Biphenyl	ND		5.0	0.65	ug/L	1.00	10/16/09 04:10	JLG	9J12081	8270C
Bis(2-chloroethoxy)metha	ND		5.0	0.37	ug/L	1.00	10/16/09 04:10		9J12081	8270C
Bis(2-chloroethyl)ether	ND		5.0	0.18	ug/L	1.00	10/16/09 04:10	JLG	9J12081	8270C
Bis(2-chloroisopropyl)	ND		4.0	4.0	ug/L	1.00	10/16/09 04:10		9J12081	8270C
ether	0.2				-3-2					

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304 Work Order: RSJ0665

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

Analytical Report Sample Data Dil Date Lab MDL Analyte RL Result Qualifiers Units Fac Analyzed Batch Tech Method Sample ID: RSJ0665-06 (MW-4 - Water) - cont. Sampled: 10/09/09 11:00 Recvd: 10/09/09 13:40 Semivolatile Organics by GC/MS - cont. Bis(2-ethylhexyl) ND 5.0 4.7 ug/L 1.00 10/16/09 04:10 JLG 9J12081 8270C phthalate Butyl benzyl phthalate ND 5.0 8270C 1.7 ug/L 1.00 10/16/09 04:10 JLG 9J12081 Caprolactam ND 5.0 4.5 ug/L 1.00 10/16/09 04:10 JLG 9J12081 8270C Carbazole ND 0.088 5.0 ug/L 1.00 10/16/09 04:10 JLG 9J12081 8270C Chrysene ND 5.0 1.00 0.27 ug/L 10/16/09 04:10 JLG 9J12081 8270C Dibenz[a,h]anthracene ND 5.0 0.20 ug/L 1.00 10/16/09 04:10 JLG 9J12081 8270C Dibenzofuran ND 9.9 1.00 1.6 ug/L 10/16/09 04:10 JI G 9J12081 8270C **Diethyl phthalate** ND 5.0 0.11 ug/L 1.00 10/16/09 04:10 JLG 9J12081 8270C **Dimethyl phthalate** ND 5.0 0.30 1.00 10/16/09 04:10 ug/L JI G 9J12081 8270C J 0.40 Di-n-butyl phthalate 5.0 0.30 ug/L 1.00 10/16/09 04:10 JLG 9J12081 8270C Di-n-octyl phthalate ND 5.0 0.24 ug/L 1.00 10/16/09 04:10 JLG 9J12081 8270C Fluoranthene ND 5.0 0.097 ug/L 1.00 10/16/09 04:10 JLG 9J12081 8270C Fluorene ug/L ND 5.0 0.073 1.00 10/16/09 04:10 JI G 9J12081 8270C Hexachlorobenzene ND 5.0 0.44 ug/L 1.00 10/16/09 04:10 JLG 9J12081 8270C Hexachlorobutadiene ND 5.0 2.6 1.00 ug/L 10/16/09 04:10 JLG 9J12081 8270C Hexachlorocyclopentadie ND 5.0 2.5 ug/L 1.00 10/16/09 04:10 JLG 9J12081 8270C ne Hexachloroethane ND 5.0 2.8 ug/L 1.00 10/16/09 04:10 9J12081 JIG 8270C Indeno[1,2,3-cd]pyrene ND 5.0 0.15 ug/L 1.00 10/16/09 04:10 JLG 9J12081 8270C Isophorone ND 5.0 0.32 ug/L 1.00 10/16/09 04:10 JLG 9J12081 8270C Naphthalene ND 5.0 0.11 ug/L 1.00 10/16/09 04:10 JLG 9J12081 8270C Nitrobenzene ND 5.0 0.53 ug/L 1.00 10/16/09 04:10 JLG 9J12081 8270C N-Nitrosodi-n-propylamin ND 5.0 0.45 ug/L 1.00 10/16/09 04:10 JLG 9J12081 8270C N-Nitrosodiphenylamine ND 5.0 0.26 ug/L 1.00 10/16/09 04:10 JLG 9J12081 8270C Pentachlorophenol ND 9.9 5.1 ug/L 1.00 10/16/09 04:10 JLG 9J12081 8270C Phenanthrene 0.86 5.0 .1 0.11 ug/L 1.00 10/16/09 04:10 JLG 9J12081 8270C Phenol ND 5.0 0.44 1.00 ug/L 10/16/09 04:10 JLG 9J12081 8270C Pyrene ND 5.0 0.067 ug/L 1.00 10/16/09 04:10 JLG 9J12081 8270C 2,4,6-Tribromophenol 123 % Surr Limits: (52-132%) 10/16/09 04:10 JLG 9J12081 8270C 2-Fluorobiphenyl 85 % Surr Limits: (48-120%) 10/16/09 04:10 JLG 9J12081 8270C 2-Fluorophenol 50 % Surr Limits: (20-120%) 10/16/09 04:10 JLG 9J12081 8270C Surr Limits: (46-120%) Nitrobenzene-d5 81 % JLG 10/16/09 04:10 9J12081 8270C Phenol-d5 37 % Surr Limits: (16-120%) 10/16/09 04:10 JLG 9J12081 8270C p-Terphenyl-d14 67 % Surr Limits: (24-136%) 10/16/09 04:10 JLG 9J12081 8270C Organochlorine Pesticides by EPA Method 8081A 4.4'-DDD [2C] ND D02 0.25 0.083 5.00 10/13/09 21:39 DGB 9J10012 ug/L 8081A 4,4'-DDE [2C] ND D02 0.25 0.057 5.00 ug/L 10/13/09 21:39 DGB 9J10012 8081A 4,4'-DDT [2C] ND D02 0.25 0.054 ug/L 5.00 10/13/09 21:39 DGB 9J10012 8081A Aldrin [2C] ND D02 0.25 0.033 ug/L 5.00 10/13/09 21:39 DGB 9J10012 8081A alpha-BHC [2C] 5.00 ND D02 0.25 0.033 ug/L 10/13/09 21:39 DGB 9J10012 8081A alpha-Chlordane [2C] ND D02 0.25 0.073 ug/L 5.00 10/13/09 21:39 DGB 9J10012 8081A beta-BHC [2C] ND D02 0.25 5.00 0.12 ug/L 10/13/09 21:39 DGB 9J10012 8081A Chlordane [2C] ND D02 2.5 0.14 5.00 ug/L 10/13/09 21:39 DGB 9J10012 8081A delta-BHC [2C] ND D02 0.25 0.050 5.00 DGB ug/L 10/13/09 21:39 9J10012 8081A Dieldrin [2C] ND D02 10/13/09 21:39 9J10012 0.25 0.097 ug/L 5.00 DGB 8081A Endosulfan I [2C] ND D02 0.25 0.054 5.00 ug/L 10/13/09 21:39 DGB 9J10012 8081A Endosulfan II [2C] ND D02 0.25 0.059 5.00 ug/L 10/13/09 21:39 DGB 9J10012 8081A Endosulfan sulfate [2C] D02 0.25 ND 0.078 ug/L 5.00 10/13/09 21:39 DGB 9J10012 8081A

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

Received: 10/09/09 Reported: 10/29/09 10:48

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

Work Order: RSJ0665

Received: 10/09/09 Reported: 10/29/09 10:48

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

			А	nalytical R	Report					
	Sample	Data				Dil	Date	Lab	2.2	
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
ample ID: RSJ0665-06 (N	WW-4 - Wate	r) - cont.			Sam	pled: 10/	09/09 11:00	Recv	/d: 10/09/09	9 13:40
Organochlorine Pesticide	es by EPA N	lethod 8081	<u>A - cont.</u>							
Endrin [2C]	ND	D02	0.25	0.068	ug/L	5.00	10/13/09 21:39	DGB	9J10012	8081A
Endrin aldehyde [2C]	ND	D02	0.25	0.081	ug/L	5.00	10/13/09 21:39	DGB	9J10012	8081A
Endrin ketone [2C]	ND	D02	0.25	0.059	ug/L	5.00	10/13/09 21:39	DGB	9J10012	8081A
gamma-BHC (Lindane) 2C]	ND	D02	0.25	0.030	ug/L	5.00	10/13/09 21:39	DGB	9J10012	8081A
amma-Chlordane [2C]	ND	D02	0.25	0.054	ug/L	5.00	10/13/09 21:39	DGB	9J10012	8081A
Heptachlor [2C]	ND	D02	0.25	0.042	ug/L	5.00	10/13/09 21:39		9J10012	8081A
Heptachlor epoxide [2C]	ND	D02	0.25	0.026	ug/L	5.00	10/13/09 21:39		9J10012	8081A
Methoxychlor [2C]		1 D02,J	0.25	0.070	ug/L	5.00	10/13/09 21:39		9J10012	8081A
oxaphene [2C]	ND	D02	2.5	0.59	ug/L	5.00	10/13/09 21:39		9J10012	8081A
Decachlorobiphenyl [2C]	*	D02,C	Surr Limits:				10/13/09 21:39		9J10012	8081A
Tetrachloro-m-xylene [2C]	69 %	D02	Surr Limits:	(30-139%)			10/13/09 21:39	DGB	9J10012	8081A
Polychlorinated Bipheny	ls by EPA M	lethod 8082								
Aroclor 1016	ND	QSU	0.55	0.19	ug/L	1.00	10/13/09 10:43	SCH	9J10013	8082
Aroclor 1221	ND	QSU	0.55	0.19	ug/L	1.00	10/13/09 10:43	SCH	9J10013	8082
Aroclor 1232	ND	QSU	0.55	0.19	ug/L	1.00	10/13/09 10:43		9J10013	8082
vroclor 1242	ND	QSU	0.55	0.19	ug/L	1.00	10/13/09 10:43		9J10013	8082
Aroclor 1248	ND	QSU	0.55	0.19	ug/L	1.00	10/13/09 10:43		9J10013	8082
Aroclor 1254	ND	QSU	0.55	0.27	ug/L	1.00	10/13/09 10:43		9J10013	8082
Aroclor 1260	ND	QSU	0.55	0.27	ug/L	1.00	10/13/09 10:43	SCH	9J10013	8082
Decachlorobiphenyl	36 %	QSU	Surr Limits:				10/13/09 10:43		9J10013	8082
Tetrachloro-m-xylene	63 %	QSU	Surr Limits:	(35-121%)			10/13/09 10:43	SCH	9J10013	8082
Fotal Metals by SW 846 S		ods								
Aluminum	9.04		0.200	NR	mg/L	1.00	10/15/09 01:05	LMH	9J13072	6010B
Antimony	ND		0.0200	NR	mg/L	1.00	10/15/09 01:05	LMH	9J13072	6010B
Arsenic	ND		0.0100	NR						
Barium			0.0100	INF	mg/L	1.00	10/15/09 01:05	LMH	9J13072	6010B
7 S. STO 17 MILL	0.0990		0.0020	NR	mg/L mg/L	1.00 1.00	10/15/09 01:05 10/15/09 01:05		9J13072	6010B 6010B
	0.0990 ND							LMH		
Beryllium			0.0020	NR	mg/L	1.00	10/15/09 01:05	LMH LMH	9J13072 9J13072 9J13072	6010B 6010B 6010B
Beryllium Cadmíum	ND		0.0020 0.0020	NR NR	mg/L mg/L	1.00 1.00	10/15/09 01:05 10/15/09 01:05	LMH LMH LMH	9J13072 9J13072 9J13072 9J13072	6010B 6010B 6010B 6010B
Beryllium Cadmium Calcium	ND ND		0.0020 0.0020 0.0010	NR NR NR	mg/L mg/L mg/L	1.00 1.00 1.00	10/15/09 01:05 10/15/09 01:05 10/15/09 01:05	LMH LMH LMH LMH	9J13072 9J13072 9J13072	6010B 6010B 6010B
Beryllium Cadmium Calcium Chromium	ND ND 192		0.0020 0.0020 0.0010 0.5	NR NR NR NR	mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00	10/15/09 01:05 10/15/09 01:05 10/15/09 01:05 10/15/09 01:05	LMH LMH LMH LMH LMH	9J13072 9J13072 9J13072 9J13072	6010B 6010B 6010B 6010B
Beryllium Cadmium Calcium Chromium Cobalt	ND ND 192 0.0143		0.0020 0.0020 0.0010 0.5 0.0040	NR NR NR NR	mg/L mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00 1.00	10/15/09 01:05 10/15/09 01:05 10/15/09 01:05 10/15/09 01:05 10/15/09 01:05	LMH LMH LMH LMH LMH LMH	9J13072 9J13072 9J13072 9J13072 9J13072 9J13072	6010B 6010B 6010B 6010B 6010B
eryllium Cadmium Calcium Chromium Cobalt Copper	ND ND 192 0.0143 0.0046		0.0020 0.0020 0.0010 0.5 0.0040 0.0040	NR NR NR NR NR NR	mg/L mg/L mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00 1.00 1.00	10/15/09 01:05 10/15/09 01:05 10/15/09 01:05 10/15/09 01:05 10/15/09 01:05 10/15/09 01:05	LMH LMH LMH LMH LMH LMH	9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072	6010B 6010B 6010B 6010B 6010B 6010B
Beryllium Cadmium Calcium Chromium Cobalt Copper ron	ND ND 192 0.0143 0.0046 0.0113		0.0020 0.0020 0.0010 0.5 0.0040 0.0040 0.0100	NR NR NR NR NR NR	mg/L mg/L mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00 1.00 1.00 1.00	10/15/09 01:05 10/15/09 01:05 10/15/09 01:05 10/15/09 01:05 10/15/09 01:05 10/15/09 01:05 10/15/09 01:05	LMH LMH LMH LMH LMH LMH LMH	9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072	6010B 6010B 6010B 6010B 6010B 6010B 6010B
eryllium cadmium calcium chromium cobalt copper con ead	ND ND 192 0.0143 0.0046 0.0113 12.6		0.0020 0.0010 0.5 0.0040 0.0040 0.0100 0.050	NR NR NR NR NR NR NR	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	10/15/09 01:05 10/15/09 01:05 10/15/09 01:05 10/15/09 01:05 10/15/09 01:05 10/15/09 01:05 10/15/09 01:05 10/15/09 01:05	LMH LMH LMH LMH LMH LMH LMH LMH	9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B
Beryllium Cadmium Calcium Chromium Cobalt Copper ron Lead Magnesium	ND ND 192 0.0143 0.0046 0.0113 12.6 0.0137		0.0020 0.0010 0.5 0.0040 0.0040 0.0100 0.050 0.0050	NR NR NR NR NR NR NR NR	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	10/15/09 01:05 10/15/09 01:05 10/15/09 01:05 10/15/09 01:05 10/15/09 01:05 10/15/09 01:05 10/15/09 01:05 10/15/09 01:05 10/15/09 01:05	LMH LMH LMH LMH LMH LMH LMH LMH LMH	9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B
Beryllium Cadmium Calcium Chromium Cobalt Copper Fon ead Magnesium Manganese	ND 192 0.0143 0.0046 0.0113 12.6 0.0137 96.8		0.0020 0.0010 0.5 0.0040 0.0040 0.0100 0.050 0.0050 0.200	NR NR NR NR NR NR NR NR	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	$ \begin{array}{r} 1.00\\ 1.00$	10/15/09 01:05 10/15/09 01:05 10/15/09 01:05 10/15/09 01:05 10/15/09 01:05 10/15/09 01:05 10/15/09 01:05 10/15/09 01:05 10/15/09 01:05	LMH LMH LMH LMH LMH LMH LMH LMH LMH	9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B
Beryllium Cadmium Calcium Chromium Cobalt Copper ron Lead Magnesium Manganese Jickel	ND 192 0.0143 0.0046 0.0113 12.6 0.0137 96.8 0.527		0.0020 0.0010 0.5 0.0040 0.0040 0.0100 0.050 0.0050 0.200 0.0030	NR NR NR NR NR NR NR NR NR NR	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	$ \begin{array}{c} 1.00\\ 1.00$	10/15/09 01:05 10/15/09 01:05 10/15/09 01:05 10/15/09 01:05 10/15/09 01:05 10/15/09 01:05 10/15/09 01:05 10/15/09 01:05 10/15/09 01:05 10/15/09 01:05	LMH LMH LMH LMH LMH LMH LMH LMH LMH LMH	9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B
Beryllium Cadmium Calcium Chromium Cobalt Copper ron ead Magnesium Manganese Jickel Potassium	ND ND 192 0.0143 0.0046 0.0113 12.6 0.0137 96.8 0.527 0.0107		0.0020 0.0010 0.5 0.0040 0.0040 0.0100 0.050 0.0050 0.200 0.0030 0.0100 0.500	NR NR NR NR NR NR NR NR NR NR NR	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	$ \begin{array}{c} 1.00\\ 1.00$	10/15/09 01:05 10/15/09 01:05	LMH LMH LMH LMH LMH LMH LMH LMH LMH LMH	9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B
Beryllium Cadmium Calcium Chromium Cobalt Copper ron Lead Magnesium Manganese Vickel Potassium Selenium	ND ND 192 0.0143 0.0046 0.0113 12.6 0.0137 96.8 0.527 0.0107 6.60 ND		0.0020 0.0010 0.5 0.0040 0.0040 0.0100 0.050 0.0050 0.200 0.0030 0.0100 0.500 0.0150	NR NR NR NR NR NR NR NR NR NR NR NR	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	10/15/09 01:05 10/15/09 01:05	LMH LMH LMH LMH LMH LMH LMH LMH LMH LMH	9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B
Beryllium Cadmium Calcium Chromium Cobalt Copper ron Lead Magnesium Manganese Jickel Potassium Selenium Silver	ND ND 192 0.0143 0.0046 0.0113 12.6 0.0137 96.8 0.527 0.0107 6.60 ND ND		0.0020 0.0010 0.5 0.0040 0.0040 0.0100 0.050 0.0050 0.200 0.0030 0.0100 0.500 0.0150 0.0030	NR NR NR NR NR NR NR NR NR NR NR NR NR	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	10/15/09 01:05 10/15/09 01:05	LMH LMH LMH LMH LMH LMH LMH LMH LMH LMH	9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B
Beryllium Cadmium Calcium Chromium Cobalt Copper ron Lead Magnesium Manganese Nickel Potassium Selenium Silver Sodium	ND ND 192 0.0143 0.0046 0.0113 12.6 0.0137 96.8 0.527 0.0107 6.60 ND ND 24.5		0.0020 0.0010 0.5 0.0040 0.0040 0.0100 0.050 0.0050 0.0030 0.0100 0.500 0.0150 0.0030 1.0	NR NR NR NR NR NR NR NR NR NR NR NR NR N	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	10/15/09 01:05 10/15/09 01:05	LMH LMH LMH LMH LMH LMH LMH LMH LMH LMH	9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072	60108 60108 60108 60108 60108 60108 60108 60108 60108 60108 60108 60108 60108 60108 60108 60108
Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Nickel Potassium Selenium Silver Sodium Thallium	ND ND 192 0.0143 0.0046 0.0113 12.6 0.0137 96.8 0.527 0.0107 6.60 ND ND		0.0020 0.0010 0.5 0.0040 0.0040 0.0100 0.050 0.0050 0.200 0.0030 0.0100 0.500 0.0150 0.0030	NR NR NR NR NR NR NR NR NR NR NR NR NR	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	10/15/09 01:05 10/15/09 01:05	LMH LMH LMH LMH LMH LMH LMH LMH LMH LMH	9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072 9J13072	60108 60108 60108 60108 60108 60108 60108 60108 60108 60108 60108 60108 60108 60108 60108

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304 Work Order: RSJ0665

Received: 10/09/09 Reported: 10/29/09 10:48

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RSJ06	65-06 (MW-4 - Wate	r) - cont.			Sam	pled: 10/	09/09 11:00	Recv	rd: 10/09/0	9 13:40
Total Metals by S	W 846 Series Metho	ods - cont.								
Mercury	ND	UJ	0.0002	NR	mg/L	1.00	10/13/09 14:56	MXM	9J13033	7470A
General Chemist	ry Parameters									
Cyanide	ND		0.0200	0.0050	mg/L	1.00	10/16/09 10:07	LRM	9J15058	9012A
Turbidity	467	В	1.0	0.0	NTU	1.00	10/13/09 14:08	RMB	9J13007	180.1

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

Work Order: RSJ0665

Received: 10/09/09 Reported: 10/29/09 10:48

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

			А	nalytical F	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RSJ0665-07 (T	RIP BLANK					pled: 10/	Transa and the second	1.600	d: 10/09/09	10.000
Volatile Organic Compou	inds by EPA	8260B								
1,1,1-Trichloroethane	-ND-	P	1.0	0.26	110/1	1.00	10/12/09 19:39	LH	0 140000	8260B
1,1,2,2-Tetrachloroethane	ND		1.0	0.20	ug/L ug/L	1.00 1.00	10/12/09 19:39	LH	9J12023 9J12023	8260B
1,1,2-Trichloroethane	ND		1.0	0.21	ug/L	1.00	10/12/09 19:39	LH	9J12023	8260B
1,1,2-Trichlorotrifluoroeth	ND		1.0	0.23	ug/L	1.00	10/12/09 19:39	LH	9J12023	8260B
ane	INC		1.0	0.31	ug/L	1.00	10/12/09 19.39	LH	9512025	02006
1,1-Dichloroethane	ND		1.0	0.38	ug/L	1.00	10/12/09 19:39	LH	9J12023	8260B
1,1-Dichloroethene	ND		1.0	0.29	ug/L	1.00	10/12/09 19:39	LH	9J12023	8260B
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L	1.00	10/12/09 19:39	LH	9J12023	8260B
1,2-Dibromo-3-chloroprop	ND		1.0	0.39	ug/L	1.00	10/12/09 19:39	LH	9J12023	8260B
ane				0.00	ugit	1.00	10/12/00 10:00		0012020	02000
1,2-Dibromoethane	ND		1.0	0.17	ug/L	1.00	10/12/09 19:39	LH	9J12023	8260B
EDB)				1242 116		- 59/91		1000	1000 000	
1,2-Dichlorobenzene	ND		1.0	0.20	ug/L	1.00	10/12/09 19:39	LH	9J12023	8260B
1,2-Dichloroethane	ND		1.0	0.21	ug/L	1.00	10/12/09 19:39	LH	9J12023	8260B
1,2-Dichloroethene, Total	ND		2.0	0.70	ug/L	1.00	10/12/09 19:39	LH	9J12023	8260B
,2-Dichloropropane	ND		1.0	0.32	ug/L	1.00	10/12/09 19:39	LH	9J12023	8260B
1,3-Dichlorobenzene	ND		1.0	0.36	ug/L	1.00	10/12/09 19:39	LH	9J12023	8260B
1,4-Dichlorobenzene	ND		1.0	0.39	ug/L	1.00	10/12/09 19:39	LH	9J12023	8260B
2-Butanone (MEK)	ND		5.0	1.3	ug/L	1.00	10/12/09 19:39	LH	9J12023	8260B
2-Hexanone	ND		5.0	1.2	ug/L	1.00	10/12/09 19:39	LH	9J12023	8260B
I-Methyl-2-pentanone	ND		5.0	0.91	ug/L	1.00	10/12/09 19:39	LH	9J12023	8260B
MIBK)	in p		0.0	0.01	ug/L	1.00	10/12/03 13:55	LU1	3312023	02000
Acetone	ND		5.0	1.3	ug/L	1.00	10/12/09 19:39	LH	9J12023	8260B
Benzene	ND		1.0	0.41	ug/L	1.00	10/12/09 19:39	LH	9J12023	8260B
Bromodichloromethane	ND		1.0	0.39	ug/L	1.00	10/12/09 19:39	LH	9J12023	8260B
Bromoform	ND		1.0	0.26	ug/L	1.00	10/12/09 19:39	LH	9J12023	8260B
Bromomethane	ND		1.0	0.28	ug/L	1.00	10/12/09 19:39	LH	9J12023	8260B
Carbon disulfide	ND		1.0	0.19	ug/L	1.00	10/12/09 19:39	LH	9J12023	8260B
Carbon Tetrachloride	ND		1.0	0.13		1.00	10/12/09 19:39			8260B
Chlorobenzene	ND		1.0	0.32	ug/L	1.00	10/12/09 19:39	LH	9J12023	
Chlorodibromomethane	ND		1.0		ug/L			LH	9J12023	8260B
				0.32	ug/L	1.00	10/12/09 19:39	LH	9J12023	8260B
Chloroethane	ND		1.0	0.32	ug/L	1.00	10/12/09 19:39	LH	9J12023	8260B
Chloroform	ND		1.0	0.34	ug/L	1.00	10/12/09 19:39	LH	9J12023	8260B
Chloromethane	ND		1.0	0.35	ug/L	1.00	10/12/09 19:39	LH	9J12023	8260B
cis-1,2-Dichloroethene	ND		1.0	0.38	ug/L	1.00	10/12/09 19:39	LH	9J12023	8260B
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L	1.00	10/12/09 19:39	LH	9J12023	8260B
Cyclohexane	ND		1.0	0.53	ug/L	1.00	10/12/09 19:39	LH	9J12023	8260B
Dichlorodifluoromethane	ND		1.0	0.29	ug/L	1.00	10/12/09 19:39	LH	9J12023	8260B
Ethylbenzene	ND		1.0	0.18	ug/L	1.00	10/12/09 19:39	LH	9J12023	8260B
sopropylbenzene	ND		1.0	0.19	ug/L	1.00	10/12/09 19:39	LH	9J12023	8260B
Nethyl Acetate	ND		1.0	0.50	ug/L	1.00	10/12/09 19:39	LH	9J12023	8260B
lethyl tert-Butyl Ether	ND		1.0	0.16	ug/L	1.00	10/12/09 19:39	LH	9J12023	8260B
lethylcyclohexane	ND		1.0	0.50	ug/L	1.00	10/12/09 19:39	LH	9J12023	8260B
1ethylene Chloride	ND		1.0	0.44	ug/L	1.00	10/12/09 19:39	LH	9J12023	8260B
ityrene	ND		1.0	0.18	ug/L	1.00	10/12/09 19:39	LH	9J12023	8260B
etrachloroethene	ND		1.0	0.36	ug/L	1.00	10/12/09 19:39	LH	9J12023	8260B
oluene	ND		1.0	0.51	ug/L	1.00	10/12/09 19:39	LH	9J12023	8260B
ans-1,2-Dichloroethene	ND		1.0	0.42	ug/L	1.00	10/12/09 19:39	LH	9J12023	8260B
rans-1,3-Dichloropropen	ND		1.0	0.37	ug/L	1.00	10/12/09 19:39	LH	9J12023	8260B
		1	2.00	10.00			5 2 4 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		# 5.5 cm.mm	
richloroethene richlorofluoromethane	ND		1.0 1.0	0.46 0.15	ug/L	1.00	10/12/09 19:39	LH.	9J12023	8260B
					ug/L	1.00	10/12/09 19:39	LH	9J12023	8260B

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

Work Order: RSJ0665

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

Analytical Report Sample Data Dil Date Lab Analyte MDL Result Qualifiers RL Units Fac Analyzed Tech Batch Method Sample ID: RSJ0665-07 (TRIP BLANK - Water) - cont. Sampled: 10/09/09 Recvd: 10/09/09 13:40 Volatile Organic Compounds by EPA 8260B - cont. Vinyl acetate ND 5.0 0.85 ug/L 1.00 10/12/09 19:39 LH 9J12023 8260B Vinyl chloride ND 1.0 0.24 ug/L 1.00 10/12/09 19:39 LH 9J12023 8260B ND Xylenes, total 2.0 0.66 ug/L 1.00 10/12/09 19:39 9J12023 8260B LH 1,2-Dichloroethane-d4 114 % Surr Limits: (66-137%) 10/12/09 19:39 LH 9J12023 8260B 4-Bromofluorobenzene Surr Limits: (73-120%) 92 % 10/12/09 19:39 LH 9J12023 8260B Toluene-d8 100 % Surr Limits: (71-126%) 10/12/09 19:39 LH 9J12023 8260B

Received: 10/09/09 Reported: 10/29/09 10:48

TestAmeri

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

Work Order: RSJ0665

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

10/09/09 Received: 10/29/09 10:48 Reported:

SAMPLE	EXTRACTION	DATA

			Wt/Vol		Extract			1.44	
Parameter	Batch	Lab Number	Extracte	Units	Volume	Units	Date Prepared	Lab Tech	Extraction Method
General Chemistry Parameters			-						
180.1	9J13007	RSJ0665-01	1.00	mL	1.00	mL	10/12/09 22:00	JME	No prep Turbidity
180.1	9J13007	RSJ0665-02	1.00	mL	1.00	mL	10/12/09 22:00	JME	No prep Turbidity
180.1	9J13007	RSJ0665-05	1.00	mL	1.00	mL	10/12/09 22:00	JME	No prep Turbidity
180.1	9J13007	RSJ0665-06	1.00	mL	1.00	mL	10/12/09 22:00	JME	No prep Turbidity
9012A	9J15058	RSJ0665-01	50.00	mL	50.00	mL	10/15/09 13:16	RJP	Cn Digestion
9012A	9J15058	RSJ0665-02	50.00	mL	50.00	mL	10/15/09 13:16	RJP	Cn Digestion
9012A	9J15058	RSJ0665-05	50.00	mL	50.00	mL	10/15/09 13:16	RJP	Cn Digestion
9012A	9J15058	RSJ0665-06	50.00	mL	50.00	mL	10/15/09 13:16	RJP	Cn Digestion
Organochlorine Pesticides by E	PA Method 8	081A							
8081A	9J10012	RSJ0665-01	1,010.00	mL	10.00	mL	10/12/09 08:00	EKD	3510C GC
8081A	9J10012	RSJ0665-02	1,010.00	mL	10.00	mL	10/12/09 08:00	EKD	3510C GC
8081A	9J10012	RSJ0665-05	1,010.00	mL	10.00	mL	10/12/09 08:00	EKD	3510C GC
8081A	9J10012	RSJ0665-06	1,010.00	mL	10.00	mL	10/12/09 08:00	EKD	3510C GC
Polychlorinated Biphenyls by EF	PA Method 80	182							
8082	9J10013	RSJ0665-06	910.00	mL	10.00	mL	10/12/09 08:00	BML	3510C GC
8082	9J10013	RSJ0665-01	1,010.00	mL	10.00	mL	10/12/09 08:00	BML	3510C GC
8082	9J10013	RSJ0665-02	1,010.00	mL	10.00	mL	10/12/09 08:00	BML	3510C GC
8082	9J10013	RSJ0665-05	1,010.00	mL	10.00	mL	10/12/09 08:00	BML	3510C GC
Semivolatile Organics by GC/M	S								
8270C	9J12081	RSJ0665-05	960.00	mL	1.00	mL	10/13/09 08:00	BML	3510C MB
8270C	9J12081	RSJ0665-02	970.00	mL	1.00	mL	10/13/09 08:00	BML	3510C MB
8270C	9J12081	RSJ0665-01	1,010.00	mL	1.00	mL	10/13/09 08:00	BML	3510C MB
8270C	9J12081	RSJ0665-06	1,010.00	mL	1.00	mL	10/13/09 08:00	BML	3510C MB
otal Metals by SW 846 Series	Methods								
6010B	9J13072	RSJ0665-01	50.00	mL	50.00	mL	10/14/09 10:00	KCW	3005A
6010B	9J13072	RSJ0665-02	50.00	mL	50.00	mL	10/14/09 10:00	KCW	3005A
6010B	9J13072	RSJ0665-05	50.00	mL	50.00	mL	10/14/09 10:00	KCW	3005A
6010B	9J13072	RSJ0665-06	50.00	mL	50.00	mL	10/14/09 10:00	KCW	3005A
7470A	9J13033	RSJ0665-01	30.00	mL	50.00	mL	10/13/09 11:30	MXM	7470A
7470A	9J13033	RSJ0665-02	30.00	mL	50.00	mL	10/13/09 11:30	МХМ	7470A
7470A	9J13033	RSJ0665-05	30.00	mL	50.00	mL	10/13/09 11:30	МХМ	7470A
7470A	9J13033	RSJ0665-06	30.00	mL	50.00	mL	10/13/09 11:30	МХМ	7470A
olatile Organic Compounds by	EPA 8260B								
8260B	9J13110	RSJ0665-01	5.00	mL	5.00	mL	10/14/09 00:20	CDC	5030B MS
8260B	9J13110	RSJ0665-02	5.00	mL	5.00	mL	10/14/09 00:20	CDC	5030B MS
8260B	9J13110	RSJ0665-05	5.00	mL	5.00	mL	10/14/09 00:20	CDC	5030B MS

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

SDG Number: RSI0643

Received: 09/17/09-09/21/09 Reported: 10/05/09 15:28

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

			A	nalytical	Report					
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Client ID: B-1(0-4) (RSI	0643-01 - Solid	1)			Sam	oled: 09	/17/09 09:15	Recv	/d: 09/17/0	
Volatile Organic Comp	ounds by EPA	8260B								
1,1,1-Trichloroethane	ND		5.4	0.39	ug/kg dry	1.00	09/23/09 20:20	PQ	0100000	00000
1,1,2,2-Tetrachloroethane			5.4	0.87	ug/kg dry	1.00	09/23/09 20:20	PQ	9123060 9123060	8260B
1,1,2-Trichloroethane	ND		5.4	0.27	ug/kg dry	1.00	09/23/09 20:20	PQ	9123060	8260B
1,1,2-Trichlorotrifluoroeth	ND		5.4	0.57	ug/kg dry	1.00	09/23/09 20:20	PQ	9123060	8260B 8260B
ane				0.01	uging ury	1.00	03/23/03 20.20	FQ	9123000	8260B
1,1-Dichloroethane	ND		5.4	0.27	ug/kg dry	1.00	09/23/09 20:20	PQ	9123060	8260B
1,1-Dichloroethene	ND		5.4	0.66	ug/kg dry	1.00	09/23/09 20:20	PQ	9123060	8260B
1,2,4-Trichlorobenzene	ND		5.4	0.33	ug/kg dry	1.00	09/23/09 20:20	PQ	9123060	8260B
1,2-Dibromo-3-chloroprop	ND		5.4	1.1	ug/kg dry	1.00	09/23/09 20:20	PQ	9123060	8260B
ane					-grig all	1.00	00/20/00 20.20	1 Ge	3123000	0200B
1,2-Dibromoethane EDB)	ND		5.4	0.20	ug/kg dry	1.00	09/23/09 20:20	PQ	9123060	8260B
1,2-Dichlorobenzene	ND		5.4	0.81	ug/kg dry	1.00	09/23/09 20:20	PQ	9123060	8260B
1,2-Dichloroethane	ND		5.4	0.27	ug/kg dry	1.00	09/23/09 20:20	PQ	9123060	8260B
1,2-Dichloroethene, Total	ND		11	2.8	ug/kg dry	1.00	09/23/09 20:20	PQ	9123060	8260B
1,2-Dichloropropane	ND		5.4	0.28	ug/kg dry	1.00	09/23/09 20:20	PQ	9123060	8260B
1,3-Dichlorobenzene	ND		5.4	0.76	ug/kg dry	1.00	09/23/09 20:20	PQ	9123060	8260B
1,4-Dichlorobenzene	ND		5.4	0.76	ug/kg dry	1.00	09/23/09 20:20	PQ	9123060	8260B
2-Butanone (MEK)	ND		27	7.3	ug/kg dry	1.00	09/23/09 20:20	PQ	9123060	8260B
2-Hexanone	ND		27	1.9	ug/kg dry	1.00	09/23/09 20:20	PQ	9123060	8260B
-Methyl-2-pentanone	ND		27	1.8	ug/kg dry	1.00	09/23/09 20:20	PQ	9123060	8260B
MIBK)				1.0	uging ury	1.00	03/23/03 20.20	r uz	9123000	0200B
Acetone	ND		27	1.2	ug/kg dry	1.00	09/23/09 20:20	PQ	9123060	8260B
Benzene	ND		5.4	0.26	ug/kg dry	1.00	09/23/09 20:20	PQ	9123060	8260B
Bromodichloromethane	ND		5.4	0.28	ug/kg dry	1.00	09/23/09 20:20	PQ	9123060	8260B
Bromoform	ND		5.4	0.50	ug/kg dry	1.00	09/23/09 20:20	PQ	9123060	8260B
Bromomethane	ND		5.4	0.50	ug/kg dry	1.00	09/23/09 20:20	PQ	9123060	8260B
Carbon disulfide	ND		5.4	0.46	ug/kg dry	1.00	09/23/09 20:20	PQ	9123060	8260B
Carbon Tetrachloride	ND		5.4	0.20	ug/kg dry	1.00	09/23/09 20:20	PQ	9123060	8260B
Chlorobenzene	ND		5.4	0.24	ug/kg dry	1.00	09/23/09 20:20	PQ	9123060	8260B
Chlorodibromomethane	ND		5.4	0.30	ug/kg dry	1.00	09/23/09 20:20	PQ	9123060	
Chloroethane	ND	L	5.4	0.87	ug/kg dry	1.00	09/23/09 20:20	PQ		8260B
Chloroform	ND	-	5.4	0.33	ug/kg dry	1.00	09/23/09 20:20	PQ	9123060	8260B
hloromethane	ND		5.4	0.33	ug/kg dry	1.00	09/23/09 20:20		9123060	8260B
is-1,2-Dichloroethene	ND		5.4	0.33	ug/kg dry ug/kg dry	1.00	09/23/09 20:20	PQ PQ	9123060 9123060	8260B
is-1,3-Dichloropropene	ND		5.4	0.27	ug/kg dry ug/kg dry	1.00	09/23/09 20:20	PQ	9123060	8260B
Cyclohexane	ND		5.4	0.31	ug/kg dry ug/kg dry	1.00	09/23/09 20:20	PQ	9123060	8260B
ichlorodifluoromethane	ND		5.4	0.45	ug/kg dry	1.00	09/23/09 20:20		9123060	8260B
thylbenzene	ND		5.4	0.43	ug/kg dry	1.00	09/23/09 20:20			8260B
sopropylbenzene	ND		5.4	0.37	ug/kg dry	1.00	09/23/09 20:20		9123060 9123060	8260B
lethyl Acetate	ND		5.4	0.35	ug/kg dry	1.00	09/23/09 20:20			8260B
lethyl tert-Butyl Ether	ND		5.4	0.29	ug/kg dry	1.00	09/23/09 20:20	PQ	9123060	8260B
lethylcyclohexane	ND		5.4	0.35			09/23/09 20:20		9123060	8260B
lethylene Chloride	ND AT	B, JU	5.4		ug/kg dry	1.00			9123060	8260B
tyrene	ND	0,0 00	5.4 5.4	0.38	ug/kg dry	1.00	09/23/09 20:20		9123060	8260B
etrachloroethene	ND			0.27	ug/kg dry	1.00	09/23/09 20:20	PQ	9123060	8260B
oluene	ND		5.4	0.72	ug/kg dry	1.00	09/23/09 20:20		9123060	8260B
ans-1,2-Dichloroethene			5.4	0.91	ug/kg dry	1.00	09/23/09 20:20		9123060	8260B
	ND		5.4	0.56	ug/kg dry	1.00	09/23/09 20:20		9123060	8260B
ans-1,3-Dichloropropen	ND		5.4	0.26	ug/kg dry	1.00	09/23/09 20:20	PQ	9123060	8260B
richloroethene	ND		5.4	0.37	ug/kg dry	1.00	09/23/09 20:20	PQ	9123060	8260B

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

SDG Number: RSI0643

Received: 09/17/09-09/21/09 Reported: 10/05/09 15:28

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

			ŀ	Analytical	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Client ID: B-1(0-4) (RSI06	43-01 - Soli	d) - cont.			Samp	oled: 09	/17/09 09:15	Recv	rd: 09/17/0	9 16:47
Volatile Organic Compou	unds by EP	A 8260B - co	nt.							
Trichlorofluoromethane	ND		5.4	1.7	ug/kg dry	1.00	09/23/09 20:20	PQ	9123060	8260B
Vinyl acetate	ND		27	1.1	ug/kg dry	1.00	09/23/09 20:20	PQ	9123060	8260B
Vinyl chloride	ND		11	0.22	ug/kg dry	1.00	09/23/09 20:20	PQ	9123060	8260B
Xylenes, total	ND		11	0.91	ug/kg dry	1.00	09/23/09 20:20	PQ	9123060	8260B
1,2-Dichloroethane-d4	101 %		Surr Limits:	(64-126%)			09/23/09 20:20	PQ	9123060	8260B
4-Bromofluorobenzene	107 %		Surr Limits:	(72-126%)			09/23/09 20:20	PQ	9123060	8260B
Toluene-d8	115 %		Surr Limits:	(71-125%)			09/23/09 20:20	PQ	9123060	8260B
Semivolatile Organics by	GC/MS									
2,4,5-Trichlorophenol	ND		190	41	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
2,4,6-Trichlorophenol	ND		190	13	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
2,4-Dichlorophenol	ND		190	9.9	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
2,4-Dimethylphenol	ND		190	51	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
2,4-Dinitrophenol	ND		370	66	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
2,4-Dinitrotoluene	ND		190	29	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
2,6-Dinitrotoluene	ND		190	46	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
2-Chloronaphthalene	ND		190	13	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
2-Chlorophenol	ND		190	9.7	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
2-Methylnaphthalene	ND		190	2.3	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
2-Methylphenol	ND		190	5.8	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
2-Nitroaniline	ND		370	61		1.00	09/23/09 20:02	JLG	9118138	8270C
2-Nitrophenol	ND		190	8.7	ug/kg dry	1.00	09/23/09 20:02	JLG		
3 & 4 Methylphenol	ND		370	11	ug/kg dry				9118138	8270C
3,3'-Dichlorobenzidine	ND		190	170	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
3-Nitroaniline	ND				ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
			370	44	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
4,6-Dinitro-2-methylphen ol	ND		370	65	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
4-Bromophenyl phenyl ether	ND		190	60	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
4-Chloro-3-methylphenol	ND		190	7.8	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
4-Chloroaniline	ND		190	56	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
4-Chlorophenyl phenyl	ND		190	4.0	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
ether					-333					
4-Nitroaniline	ND		370	21	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
4-Nitrophenol	ND		370	46	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
Acenaphthene	ND		190	2.2	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
Acenaphthylene	ND		190	1.6	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
Acetophenone	ND		190	9.7	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
Anthracene	ND		190	4.9	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
Atrazine	ND	N1	190	8.4	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
Benzaldehyde	ND	us	190	21	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
Benzo[a]anthracene	ND		190	3.3	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
Benzo[a]pyrene	ND		190	4.6	ug/kg dry	1.00	09/23/09 20:02		9118138	8270C
Benzo[b]fluoranthene	ND		190	3.7	ug/kg dry	1.00	09/23/09 20:02		9118138	8270C
Benzo[g,h,i]perylene	ND		190	2.3	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
Benzo[k]fluoranthene	ND		190	2.1	ug/kg dry	1.00	09/23/09 20:02		9118138	8270C
Biphenyl	ND		190	12	ug/kg dry	1.00	09/23/09 20:02		9118138	8270C
Bis(2-chloroethoxy)metha	ND		190	10	ug/kg dry	1.00	09/23/09 20:02		9118138	8270C
ne Bis(2-chloroethyl)ether	ND		190	16	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

22/2497

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

SDG Number: RSI0643

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

				Analytical	Report					
Angluta	Sample	Data	RL	MDL	11	Dil	Date	Lab		
Analyte	Result	Qualifiers	KL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Client ID: B-1(0-4) (RSI06	43-01 - Solid	l) - cont.			Samp	oled: 09	/17/09 09:15	Recy	/d: 09/17/0	9 16:47
Semivolatile Organics by	GC/MS - co	ont.								
Bis(2-chloroisopropyl)	ND		190	20	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
ether	ND		100	64	traffice days	1.00	00/00/00 00.00		0140400	00700
Bis(2-ethylhexyl) phthalate	ND		190	61	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
Butyl benzyl phthalate	ND		190	51	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
Caprolactam	ND		190	82	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
Carbazole	ND		190	2.2	ug/kg dry	1.00	09/23/09 20:02		9118138	8270C
Chrysene	ND		190	1.9	ug/kg dry	1.00	09/23/09 20:02		9118138	8270C
Dibenz[a,h]anthracene	ND		190	2.2						
Dibenzofuran	ND				ug/kg dry	1.00	09/23/09 20:02		9118138	8270C
			190	2.0	ug/kg dry	1.00	09/23/09 20:02		9118138	8270C
Diethyl phthalate	ND		190	5.7	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
Dimethyl phthalate	ND		190	4.9	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
Di-n-butyl phthalate	ND		190	66	ug/kg dry	1.00	09/23/09 20:02		9118138	8270C
Di-n-octyl phthalate	ND		190	4.4	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
Fluoranthene	ND		190	2.7	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
Fluorene	ND		190	4.4	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
Hexachlorobenzene	ND		190	9.4	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
Hexachlorobutadiene	ND		190	9.7	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
Hexachlorocyclopentadie ne	ND		190	57	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
Hexachloroethane	ND		190	15	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
Indeno[1,2,3-cd]pyrene	ND		190	5.2	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
Isophorone	ND		190	9.5	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
Naphthalene	ND		190	3.2	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
Nitrobenzene	ND		190	8.4		1.00	09/23/09 20:02	JLG	9118138	
	ND				ug/kg dry					8270C
N-Nitrosodi-n-propylamin e	ND		190	15	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
N-Nitrosodiphenylamine	ND	L	190	10	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
Phenanthrene	ND		190	4.0	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
Phenol	ND		190	20	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
Pyrene	ND		190	1.2	ug/kg dry	1.00	09/23/09 20:02	JLG	9118138	8270C
2,4,6-Tribromophenol	78 %		Surr Limits:	(39-146%)			09/23/09 20:02	JLG	9/18138	8270C
2-Fluorobiphenyl	77 %			(37-120%)			09/23/09 20:02	JLG	9/18138	8270C
2-Fluorophenol	73 %			(18-120%)			09/23/09 20:02	JLG	9/18138	8270C
Nitrobenzene-d5	74 %			(34-132%)			09/23/09 20:02	JLG	9/18138	8270C
Phenol-d5	80 %			(11-120%)			09/23/09 20:02	JLG	9/18/38	8270C
p-Terphenyl-d14	82 %			(58-147%)			09/23/09 20:02		9/18/38	8270C
				(00-14170)			03/23/03 20.02	520	9110130	02700
Organochlorine Pesticide				0.70	and the state	0.00	00/00/00 01 11		0100007	00011
4,4'-DDD	ND	QFL	3.7	0.73	ug/kg dry	2.00	09/28/09 21:44		9120007	8081A
4,4'-DDE	ND	QFL	3.7	1.1	ug/kg dry	2.00	09/28/09 21:44		9120007	8081A
4,4'-DDT	ND	QFL	3.7	0.85	ug/kg dry	2.00	09/28/09 21:44		9120007	8081A
Aldrin	ND	QFL	3.7	0.38	ug/kg dry	2.00	09/28/09 21:44		9120007	8081A
alpha-BHC	ND	QFL	3.7	0.67	ug/kg dry	2.00	09/28/09 21:44		9120007	8081A
alpha-Chlordane	ND	QFL	3.7	1.9	ug/kg dry	2.00	09/28/09 21:44	MAN	9120007	8081A
oeta-BHC	ND	QFL	3.7	2.7	ug/kg dry	2.00	09/28/09 21:44	MAN	9120007	8081A
Chlordane	ND	QFL	37	8.3	ug/kg dry	2.00	09/28/09 21:44	MAN	9120007	8081A
delta-BHC	ND	QFL	3.7	0.49	ug/kg dry	2.00	09/28/09 21:44		9120007	8081A
Dieldrin	14 N	3 QFL	3.7	0.90	ug/kg dry	2.00	09/28/09 21:44		9120007	8081A
Endosulfan I	ND	QFL	3.7	0.79	ug/kg dry	2.00	09/28/09 21:44		9120007	8081A
Endosulfan II	ND	QFL	3.7	0.67	ug/kg dry	2.00	09/28/09 21:44		9120007	8081A
			9.1	5.67	aging ury	2.00	50/20/00 21.44		5120001	0001A

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

Received: 09/17/09-09/21/09

Reported: 10/05/09 15:28

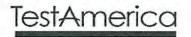
THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

SDG Number: RSI0643

24/2497

09/17/09-09/21/09 Received: 10/05/09 15:28


Reported:

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

AnalyteRClient ID: B-1(0-4) (RSI0643-04)Organochlorine Pesticides byEndosulfan sulfateEndrinEndrin aldehydeEndrin ketonegamma-BHC (Lindane)gamma-ChlordaneHeptachlorHeptachlor epoxideMethoxychlorToxapheneDecachlorobiphenylAroclor 1016Aroclor 1221Aroclor 1242Aroclor 1254Aroclor 1254Aroclor 1254Aroclor 1260DecachlorobiphenylArimonyArsenicBariumBerylliumCadmiumCadmiumCadmium	EPA ND 4.7 ND ND 2.1 ND ND ND ND 81 % 36 % EPA ND ND	Qualifiers id) - cont. Method 8081. QFL QFL QFL QFL QFL QFL QFL QFL	RL 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7	MDL 0.70 1.2 0.95 0.92 0.65 0.51 0.58 0.96 1.0 22 (42-146%)	Units Samp ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry	Dil Fac Jed: 09/ 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	Date Analyzed (17/09 09:15) (17/09 09:15) (17/09 09:15) (17/09 09:15) (144) (142) (144) (144) (1	MAN MAN MAN MAN MAN	Batch 9120007 9120007 9120007 9120007 9120007 9120007 9120007 9120007 9120007 9120007	8081A 8081A 8081A 8081A 8081A 8081A 8081A 8081A
Client ID: B-1(0-4) (RSI0643-07 Organochlorine Pesticides by Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane) gamma-Chlordane Heptachlor epoxide Methoxychlor Toxaphene Decachlorobiphenyl Tetrachloro-m-xylene Polychlorinated Biphenyls by Aroclor 1016 Aroclor 1221 Aroclor 1242 Aroclor 1254 Aroclor 1254 Aroclor 1254 Aroclor 1254 Aroclor 1254 Aroclor 1260 Decachlorobiphenyl Tetrachloro-m-xylene Column Serview	EPA ND 4.7 ND ND ND ND ND ND ND 81 % 36 % EPA ND ND ND ND ND ND ND ND ND ND ND ND ND	id) - cont. Method 8081. QFL QFL QFL QFL,J QFL,J QFL QFL QFL QFL QFL QFL QFL QFL	A - cont. 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.	0.70 1.2 0.95 0.92 0.65 0.51 0.58 0.96 1.0 22	Samp ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	09/28/09 21:44 09/28/09 21:44 09/28/09 21:44 09/28/09 21:44 09/28/09 21:44 09/28/09 21:44 09/28/09 21:44 09/28/09 21:44 09/28/09 21:44	Recv MAN MAN MAN MAN MAN MAN MAN	9120007 9120007 9120007 9120007 9120007 9120007 9120007 9120007 9120007 9120007	8081A 8081A 8081A 8081A 8081A 8081A 8081A 8081A 8081A
Organochlorine Pesticides by Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane) gamma-Chlordane Heptachlor Heptachlor epoxide Methoxychlor Toxaphene Decachlorobiphenyl Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260 Decachlorobiphenyl 1 Tetrachloro-m-xylene Aroclor 121 Aroclor 1242 Aroclor 1254 Aroclor 1260 Decachlorobiphenyl 1 Tetrachloro-m-xylene Aroclor 1260 Decachlorobiphenyl 1 Aroclor 1260 Decachlorobiphenyl 1 Total Metals by SW 846 Series Aluminum Arsenic Barium Beryllium G Gadmium G	EPA ND 4.7 ND ND 2.1 ND ND ND ND 81 % 36 % EPA ND ND	Method 8081. QFL QFL QFL QFL QFL QFL QFL QFL	3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7	1.2 0.95 0.92 0.65 0.51 0.58 0.96 1.0 22	ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	09/28/09 21:44 09/28/09 21:44 09/28/09 21:44 09/28/09 21:44 09/28/09 21:44 09/28/09 21:44 09/28/09 21:44 09/28/09 21:44	MAN MAN MAN MAN MAN MAN MAN	9120007 9120007 9120007 9120007 9120007 9120007 9120007 9120007	8081A 8081A 8081A 8081A 8081A 8081A 8081A 8081A
Endosulfan sulfate Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane) gamma-Chlordane Heptachlor Heptachlor epoxide Methoxychlor Toxaphene Decachlorobiphenyl 1 Tetrachloro-m-xylene 2 Polychlorinated Biphenyls by Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1254 Aroclor 1254 Aroclor 1260 Decachlorobiphenyl 1 Tetrachloro-m-xylene 2 Total Metals by SW 846 Series Aluminum 4 Antimony Arsenic Barium Beryllium 0	ND 4.7 ND ND 2.1 ND ND 81 % 36 % EPA ND ND ND ND ND ND ND	QFL QFL QFL QFL QFL QFL QFL QFL QFL QFL	3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7	1.2 0.95 0.92 0.65 0.51 0.58 0.96 1.0 22	ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	09/28/09 21:44 09/28/09 21:44 09/28/09 21:44 09/28/09 21:44 09/28/09 21:44 09/28/09 21:44 09/28/09 21:44 09/28/09 21:44	MAN MAN MAN MAN MAN MAN	9120007 9120007 9120007 9120007 9120007 9120007 9120007	8081A 8081A 8081A 8081A 8081A 8081A 8081A
Endrin Endrin aldehyde Endrin ketone gamma-BHC (Lindane) gamma-Chlordane Heptachlor Heptachlor epoxide Methoxychlor Toxaphene Decachlorobiphenyl 1 Tetrachloro-m-xylene 3 Polychlorinated Biphenyls by Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1232 Aroclor 1248 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260 Decachlorobiphenyl 1 Tetrachloro-m-xylene 3 Serium 4 Antimony Arsenic Barium 6 Beryllium 0	4.7 ND ND 2.1 ND ND ND 81 % 36 % EPA ND ND ND ND ND ND	AFL QFL QFL,J QFL,J QFL QFL QFL QFL QFL QFL QFL QFL QFL QFL	3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7	1.2 0.95 0.92 0.65 0.51 0.58 0.96 1.0 22	ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	09/28/09 21:44 09/28/09 21:44 09/28/09 21:44 09/28/09 21:44 09/28/09 21:44 09/28/09 21:44 09/28/09 21:44 09/28/09 21:44	MAN MAN MAN MAN MAN MAN	9120007 9120007 9120007 9120007 9120007 9120007 9120007	8081A 8081A 8081A 8081A 8081A 8081A 8081A
Endrin aldehyde Endrin ketone gamma-BHC (Lindane) gamma-Chlordane Heptachlor Heptachlor epoxide Methoxychlor Toxaphene Decachlorobiphenyl 1 Tetrachloro-m-xylene Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260 Decachlorobiphenyl 1 Tetrachloro-m-xylene Eotal Metals by SW 846 Series Aluminum Arsenic Barium Beryllium 0	ND ND 2.1 ND ND ND 81 % 36 % EPA ND ND ND ND ND ND	QFL QFL,J QFL,J QFL QFL QFL QFL QFL QFL QFL QFL QFL QFL	3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 37 Surr Limits:	0.95 0.92 0.65 0.51 0.58 0.96 1.0 22	ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry	2.00 2.00 2.00 2.00 2.00 2.00 2.00	09/28/09 21:44 09/28/09 21:44 09/28/09 21:44 09/28/09 21:44 09/28/09 21:44 09/28/09 21:44 09/28/09 21:44	MAN MAN MAN MAN MAN	9120007 9120007 9120007 9120007 9120007 9120007	8081A 8081A 8081A 8081A 8081A 8081A
Endrin ketone gamma-BHC (Lindane) gamma-Chlordane Heptachlor Heptachlor epoxide Methoxychlor Toxaphene Decachlorobiphenyl 1 Tetrachloro-m-xylene Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1254 Aroclor 1254 Aroclor 1260 Decachlorobiphenyl 1 Tetrachloro-m-xylene 2 Total Metals by SW 846 Series Aluminum 4 Antimony Arsenic Barium Beryllium 0	ND ND ND ND ND 81 % 36 % EPA ND ND ND ND ND ND ND ND ND ND	QFL QFL,J QFL,J QFL QFL QFL QFL QFL QFL QFL QFL	3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 37 Surr Limits:	0.92 0.65 0.51 0.58 0.96 1.0 22	ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry	2.00 2.00 2.00 2.00 2.00 2.00	09/28/09 21:44 09/28/09 21:44 09/28/09 21:44 09/28/09 21:44 09/28/09 21:44 09/28/09 21:44	MAN MAN MAN MAN MAN	9120007 9120007 9120007 9120007 9120007	8081A 8081A 8081A 8081A 8081A
gamma-BHC (Lindane) gamma-Chlordane Heptachlor Heptachlor epoxide Methoxychlor Toxaphene Decachlorobiphenyl 1 Tetrachloro-m-xylene 2 Polychlorinated Biphenyls by Aroclor 1016 Aroclor 1221 Aroclor 1222 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260 Decachlorobiphenyl 1 Tetrachloro-m-xylene 2 Total Metals by SW 846 Series Aluminum 2 Antimony Arsenic Barium Beryllium 0	ND 2.1 ND ND ND 81 % 36 % EPA ND ND ND ND ND ND ND	QFL QFL,J QFL QFL QFL QFL QFL QFL QFL QFL QFL	3.7 3.7 3.7 3.7 3.7 3.7 37 Surr Limits:	0.65 0.51 0.58 0.96 1.0 22	ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry	2.00 2.00 2.00 2.00 2.00	09/28/09 21:44 09/28/09 21:44 09/28/09 21:44 09/28/09 21:44 09/28/09 21:44	MAN MAN MAN MAN	9120007 9120007 9120007 9120007	8081A 8081A 8081A 8081A
gamma-Chlordane Heptachlor Heptachlor epoxide Methoxychlor Toxaphene Decachlorobiphenyl 1 Tetrachloro-m-xylene 2 Polychlorinated Biphenyls by Aroclor 1016 Aroclor 1221 Aroclor 1222 Aroclor 1242 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260 Decachlorobiphenyl 1 Tetrachloro-m-xylene 2 Social Metals by SW 846 Series Aluminum 2 Antimony Arsenic Barium 2 Gadmium 0	2.1 ND ND ND 81 % 36 % EPA ND ND ND ND ND	QFL,J QFL QFL QFL QFL QFL QFL,Z1 QFL QFL	3.7 3.7 3.7 3.7 3.7 37 Surr Limits:	0.51 0.58 0.96 1.0 22	ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry	2.00 2.00 2.00 2.00	09/28/09 21:44 09/28/09 21:44 09/28/09 21:44 09/28/09 21:44	MAN MAN MAN	9120007 9120007 9120007	8081A 8081A 8081A
Heptachlor Heptachlor epoxide Methoxychlor Toxaphene Decachlorobiphenyl 1 Fetrachloro-m-xylene 1 Polychlorinated Biphenyls by Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1254 Aroclor 1260 Decachlorobiphenyl Tetrachloro-m-xylene Aroclor 1260 Decachlorobiphenyl Strachoro-m-xylene Aroclor 1260 Decachlorobiphenyl Strachloro-m-xylene Strach	ND ND ND 81 % 36 % EPA ND ND ND ND ND	QFL QFL QFL QFL QFL <i>QFL,Z1</i> <i>QFL</i> Method 8082	3.7 3.7 3.7 37 Surr Limits:	0.58 0.96 1.0 22	ug/kg dry ug/kg dry ug/kg dry	2.00 2.00 2.00	09/28/09 21:44 09/28/09 21:44 09/28/09 21:44	MAN MAN	9120007 9120007	8081A 8081A
Heptachlor epoxide Methoxychlor Toxaphene Decachlorobiphenyl 1 Fetrachloro-m-xylene 1 Polychlorinated Biphenyls by Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1254 Aroclor 1260 Decachlorobiphenyl 1 Fetrachloro-m-xylene 2 Aroclor 1260 2 Aroclor 1260 2 Aroclor 1260 3 Decachlorobiphenyl 1 Fetrachloro-m-xylene 4 Aroclor 1260 4 Aroclor 1260 4 Aroclor 1260 5 Sarium 4 Aroclor 1260 5 Aroclor 1260	ND ND 81 % 36 % EPA ND ND ND ND	QFL QFL QFL <i>QFL,Z1</i> <i>QFL</i> Method 8082	3.7 3.7 37 Surr Limits:	0.96 1.0 22	ug/kg dry ug/kg dry	2.00 2.00	09/28/09 21:44 09/28/09 21:44	MAN	9120007	8081A
Methoxychlor Toxaphene Decachlorobiphenyl 1 Fetrachloro-m-xylene 2 Polychlorinated Biphenyls by Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Decachlorobiphenyl 1 Fetrachloro-m-xylene 2 Total Metals by SW 846 Series Numinum 2 Arothoro Barium 2 Barium 2 Barium 2 Cadmium 2 Cadmium 2 Cadmium 2 Cotal Metals 0 Cotal M	ND ND 81 % 36 % EPA ND ND ND ND ND	QFL QFL QFL,Z1 QFL Method 8082	3.7 37 Surr Limits:	1.0 22	ug/kg dry	2.00	09/28/09 21:44			
Toxaphene Decachlorobiphenyl 1 Fetrachloro-m-xylene 1 Polychlorinated Biphenyls by Aroclor 1016 Aroclor 1221 Aroclor 1221 Aroclor 1222 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Decachlorobiphenyl 1 Fetrachloro-m-xylene 2 Aroclor 1260 2 Decachlorobiphenyl 1 Fotal Metals by SW 846 Series 3 Numinum 2 Arimony 3 Arosenic 3 Barium 2 Arono 0	ND 81 % 36 % EPA ND ND ND ND	QFL QFL,Z1 QFL Method 8082	37 Surr Limits:	22				MAN		
Decachlorobiphenyl 1 Fetrachloro-m-xylene 2 Polychlorinated Biphenyls by Aroclor 1016 Aroclor 1221 Aroclor 1222 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260 Decachlorobiphenyl 1 Fetrachloro-m-xylene 2 Total Metals by SW 846 Series Numinum 2 Arothoro Barium 2 Arothoro Barium 2 Arothoro Barium 2 Arothoro Barium 2 Arothoro Barium 2 Barium 2 Cadmium 2	81 % 36 % EPA ND ND ND ND ND	QFL,Z1 QFL Method 8082	Surr Limits:		ug/kg dry	2.00	00/00/00 04.44		9120007	8081A
Tetrachloro-m-xylene A Polychlorinated Biphenyls by Aroclor 1016 Aroclor 1221 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1254 Aroclor 1260 Decachlorobiphenyl Tetrachloro-m-xylene Juminum Aroclor Isolo	B6 % EPA ND ND ND ND ND	QFL Method 8082		(42-146%)			09/28/09 21:44	MAN	9120007	8081A
Polychlorinated Biphenyls by Proclor 1016 Iroclor 1221 Iroclor 1232 Iroclor 1242 Iroclor 1254 Iroclor 1260 Pecachlorobiphenyl Iterachloro-m-xylene Iuminum Ituminum	EPA ND ND ND ND	QFL Method 8082	Surr Limits:				09/28/09 21:44	MAN	9/20007	8081A
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1254 Aroclor 1260 Decachlorobiphenyl 1 Tetrachloro-m-xylene 2 Total Metals by SW 846 Series Juminum 2 Autimony Arsenic Arium Arguntation 1 Cotal Metals by SW 846 Series Addition 2 Aroclor 1260 Decachlorobiphenyl 1 Cotal Metals by SW 846 Series Aroclor 1260 Cotal Metals Aroclor 1260 Cotal 1260 Cotal Metals Aroclor 1260 Cotal 1260 Cotal Metals Arocl	ND ND ND ND			(37-136%)			09/28/09 21:44	MAN	9120007	8081A
Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Decachlorobiphenyl 1 Tetrachloro-m-xylene 2 Total Metals by SW 846 Series Auminum 5 Auminum 5 Arotan Metals by SW 846 Series Auminum 5 Arotan Metals by SW 846 Series Arotan Metals by SW 846 Series	ND ND ND	OSU DOR								
Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Decachlorobiphenyl 1 Tetrachloro-m-xylene 2 Total Metals by SW 846 Series Aluminum 4 Antimony Arsenic Barium Beryllium 0 Cadmium 0	ND ND	GOU, DU0	37	7.3	ug/kg dry	2.00	09/22/09 10:16	SCH	9120006	8082
Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Decachlorobiphenyl 1 Fetrachloro-m-xylene 2 Cotal Metals by SW 846 Series Numinum 4 Antimony Arsenic Barium Beryllium 0 Cadmium 0	ND	QSU, D08	37	7.3	ug/kg dry	2.00	09/22/09 10:16	SCH	9120006	8082
Aroclor 1248 Aroclor 1254 Aroclor 1260 Decachlorobiphenyl 1 Fetrachloro-m-xylene 2 Cotal Metals by SW 846 Series Aluminum 4 Antimony Arsenic Barium Beryllium 0 Cadmium 0		QSU, D08	37	7.3	ug/kg dry	2.00	09/22/09 10:16	SCH	9120006	8082
Aroclor 1254 Aroclor 1260 Decachlorobiphenyl 1 Fetrachloro-m-xylene 2 Total Metals by SW 846 Series Numinum 5 Antimony Arsenic Barium Beryllium 0 Cadmium 0	110	QSU, D08	37	8.1	ug/kg dry	2.00	09/22/09 10:16	SCH	9120006	8082
Aroclor 1260 Decachlorobiphenyl 1 Fetrachloro-m-xylene 2 Cotal Metals by SW 846 Series Numinum 3 Antimony Arsenic Barium Beryllium 0 Cadmium 0	ND	QSU, D08	37	7.3	ug/kg dry	2.00	09/22/09 10:16	SCH	9120006	8082
Decachlorobiphenyl 1 Fetrachloro-m-xylene 2 Fotal Metals by SW 846 Series Numinum 3 Antimony Arsenic Barium Beryllium 0 Cadmium 0	ND	QSU, D08	37	7.9	ug/kg dry	2.00	09/22/09 10:16	SCH	9120006	8082
Fetrachloro-m-xylene	490	JQSU, DO8	37	7.9	ug/kg dry	2.00	09/22/09 10:16	SCH	9120006	8082
otal Metals by SW 846 Series Juminum s Intimony rsenic arium eryllium G admium G	14 %	QSU, D08	Surr Limits:				09/22/09 10:16	SCH	9/20006	8082
Aluminum S Antimony Arsenic Barium Beryllium C Cadmium C	38 %	QSU, D08	Surr Limits:	(35-134%)			09/22/09 10:16	SCH	9/20006	8082
Antimony Arsenic Barium Beryllium C Cadmium C	s Met	hods								
Arsenic Barium Beryllium C Cadmium C	5930		11.6	NR	mg/kg dry	1.00	09/25/09 02:28	LMH	9123026	6010B
Barium Beryllium C Cadmium C	ND	Ut	17.3	NR	mg/kg dry	1.00	09/24/09 01:10	AMH	9123026	6010B
Beryllium C Cadmium C	6.2	J	2.3	NR	mg/kg dry	1.00	09/24/09 01:10	AMH	9123026	6010B
Cadmium C	50.6	T	0.578	NR	mg/kg dry	1.00	09/24/09 01:10	AMH	9123026	6010B
	.359		0.231	NR	mg/kg dry	1.00	09/24/09 01:10	AMH	9123026	6010B
	.373		0.231	NR	mg/kg dry	1.00	09/24/09 01:10		9123026	6010B
	3800	3 D08	289	NR	mg/kg dry	5.00	09/26/09 10:26		9123026	6010B
		J	0.578	NR	mg/kg dry	1.00	09/24/09 01:10		9123026	6010B
	3.83		0.578	NR	mg/kg dry	1.00	09/24/09 01:10		9123026	6010B
	18.3	J								
			1.2	NR	mg/kg dry	1.00	09/24/09 01:10		9123026	6010B
		J B3, B1, B	11.6	NR	mg/kg dry	1.00	09/24/09 01:10		9123026	6010B
	291	5	1.2	NR	mg/kg dry	1.00	09/24/09 01:10		9123026	6010B
	0800	5	23.1	NR	mg/kg dry	1.00	09/24/09 01:10		9123026	6010B
	385	∫ B1, B	0.2	NR	mg/kg dry	1.00	09/24/09 01:10		9123026	6010B
	3.07	J	5.78	NR	mg/kg dry	1.00	09/24/09 01:10	AMH	9123026	6010B
otassium	993		34.7	NR	mg/kg dry	1.00	09/24/09 01:10	AMH	9123026	6010B
elenium	ND	UJ	4.6	NR	mg/kg dry	1.00	09/24/09 01:10	AMH	9123026	6010B
ilver	ND		0.578	NR	mg/kg dry	1.00	09/24/09 01:10		9123026	6010B
	363		162	NR	mg/kg dry	1.00	09/24/09 01:10		9123026	6010B
	ND		6.9	NR	mg/kg dry	1.00	09/24/09 01:10		9123026	6010B
	13.2	J	0.578	NR	mg/kg dry	1.00	09/24/09 01:10		9123026	6010B
		F	2.3	NR			09/24/09 01:10		9123026	6010B
Aercury 0	154	2	0.0219	NR	mg/kg dry mg/kg dry	1.00 1.00	09/24/09 01:10		9123026	7471A

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

88

ND

45

Percent Solids

Cyanide

25/2497

Dry Weight

9012A

Client ID: B-1(0-4) (RS	10643-01 - Solid	l) - cont.			Sam	oled: 09/1	17/09 09:15	Recv	d: 09/1	7/09 16:47
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
			А	nalytical F	Report					
Niagara Falls, NY 1430	+		Project: Golde Project Numb			ite (Level I	V)			
2221 Niagara Falls Blvc			Desirate Cald				0	Repo	orted:	10/05/09 15:28
Golder Associates, Inc.	- Niagara Falls, N	IY	SDG Number	: RSI0643				Rece	ived:	09/17/09-09/21/0

NR

1.0

%

mg/kg dry

1.00

1.00

09/20/09 14:38 KMB 9/19015

09/23/09 09:45 jmm 9l23015

0.010

1.1

lest

Americ

Golder Associates, Inc. - Niagara Falls, NY

THE LEADER IN ENVIRONMENTAL TESTING

Received: 09/17/09-09/21/09

Reported: 10/05/09 15:28

2221 Niagara Falls Blvd., Ste 9

a

Niagara Falls, NY 14304

SDG Number: RSI0643

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

			ŀ	nalytical	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Client ID: B-10 (0-2) (RS	10643-06 - Sol	lid)			Samp	led: 09	17/09 14:49	Recv	d: 09/17/0	9 16:47
Polychlorinated Bipher	nyls by EPA N	lethod 8082								
Aroclor 1016	ND	QSU	18	3.5	ug/kg dry	1.00	09/22/09 11:00	SCH	9120006	8082
Aroclor 1221	ND	QSU	18	3.5	ug/kg dry	1.00	09/22/09 11:00	SCH	9120006	8082
Aroclor 1232	ND	QSU	18	3.5	ug/kg dry	1.00	09/22/09 11:00	SCH	9120006	8082
Aroclor 1242	ND	QSU	18	3.9	ug/kg dry	1.00	09/22/09 11:00	SCH	9120006	8082
Aroclor 1248	ND	QSU	18	3.5	ug/kg dry	1.00	09/22/09 11:00	SCH	9120006	8082
Aroclor 1254	ND	QSU	18	3.7	ug/kg dry	1.00	09/22/09 11:00	SCH	9120006	8082
Aroclor 1260	180	JQSU	18	3.7	ug/kg dry	1.00	09/22/09 11:00	SCH	9120006	8082
Decachlorobiphenyl	144 %	QSU	Surr Limits:	(34-148%)			09/22/09 11:00	SCH	9120006	8082
Tetrachloro-m-xylene	92 %	QSU	Surr Limits:	(35-134%)			09/22/09 11:00	SCH	9120006	8082
General Chemistry Par	ameters									
Percent Solids	93		0.010	NR	%	1.00	09/20/09 14:44	KMB	9119015	Dry Weigh

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

SDG Number: RSI0643

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

			A	nalytical	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Client ID: B-10 (RSI0643-03	- Solid)				Samp	led: 09	/17/09 15:05	Recv	d: 09/17/0	9 16:47
Volatile Organic Compour	ds by EPA	A 8260B								
1,1,1-Trichloroethane	ND	M8	5.6	0.40	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
1,1,2,2-Tetrachloroethane	ND	M8	5.6	0.90	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
1,1,2-Trichloroethane	ND	M8	5.6	0.28	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
1,1,2-Trichlorotrifluoroeth	ND	M8	5.6	0.59	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
ane					-3-3-7					
1,1-Dichloroethane	ND	M8	5.6	0.27	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
1,1-Dichloroethene	ND	M8	5.6	0.68	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
1,2,4-Trichlorobenzene	ND	M8	5.6	0.34	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
1,2-Dibromo-3-chloroprop	ND	M8	5.6	1.1	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
ane										
1,2-Dibromoethane (EDB)	ND	M8	5.6	0.21	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
1,2-Dichlorobenzene	ND	M8	5.6	0.84	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
1,2-Dichloroethane	ND	M8	5.6	0.28	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
1,2-Dichloroethene, Total	ND	M8	11	2.9	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
1,2-Dichloropropane	ND	M8	5.6	0.28	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
1,3-Dichlorobenzene	ND	M8	5.6	0.79	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
1,4-Dichlorobenzene	ND	M8	5.6	0.78	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
2-Butanone (MEK)	ND	M8	28	7.6	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
2-Hexanone	ND	M8	28	1.9	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
4-Methyl-2-pentanone (MIBK)	ND	M8	28	1.8	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
Acetone	ND	M8	28	1.2	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
Benzene	ND	M8	5.6	0.27	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
Bromodichloromethane	ND	M8	5.6	0.29	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
Bromoform	ND	M8	5.6	0.51	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
Bromomethane	ND	M8	5.6	0.51	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
Carbon disulfide	ND	M8	5.6	0.48	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
Carbon Tetrachloride	ND	M8	5.6	0.20	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
Chlorobenzene	ND	M8	5.6	0.24	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
Chlorodibromomethane	ND	M8	5.6	0.31	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
Chloroethane	ND	L	5.6	0.90	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
Chloroform	ND	M8	5.6	0.34	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
Chloromethane	ND		5.6	0.34	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
cis-1,2-Dichloroethene	ND	M8	5.6	0.27	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
cis-1,3-Dichloropropene	ND	M8	5.6	0.32	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
Cyclohexane	ND	M8	5.6	0.26	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
Dichlorodifluoromethane	ND	M8	5.6	0.46	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
Ethylbenzene	ND	M8	5.6	0.38	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
sopropylbenzene	ND	M8	5.6	0.36	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
Vethyl Acetate	ND		5.6	0.30	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
Methyl tert-Butyl Ether	ND		5.6	0.55	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
Vethylcyclohexane	ND	M8	5.6	0.36	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
Methylene Chloride M		B, J U	5.6	0.39	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
Styrene	ND	M8	5.6	0.28	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
Tetrachloroethene	ND	M8	5.6	0.75	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
Foluene	ND	M8	5.6	0.94	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
rans-1,2-Dichloroethene	ND	M8	5.6	0.57	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
trans-1,3-Dichloropropen	ND	M8	5.6	0.27	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
e Trichloroethene	ND	M8	5.6	0.38	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

27/2497

Received: 09/17/09-09/21/09 Reported: 10/05/09 15:28

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

SDG Number: RSI0643

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

			F	Analytical	Report					
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Client ID: B-10 (RSI0643-	03 - Solid) - (cont.			Sampled: 09/17/09 15:05 Recvd: 09/17/09 16:					9 16:47
Volatile Organic Compo	unds by EPA	8260B - co	nt.							
Trichlorofluoromethane	ND	M8	5.6	1.7	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
Vinyl acetate	-ND-	2 M8	28	1.2	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
Vinyl chloride	ND	M8	11	0.23	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
Xylenes, total	ND		11	0.93	ug/kg dry	1.00	09/23/09 21:10	PQ	9123060	8260B
1,2-Dichloroethane-d4	102 %		Surr Limits:	(64-126%)			09/23/09 21:10	PQ	9123060	8260B
4-Bromofluorobenzene	106 %		Surr Limits:				09/23/09 21:10	PQ	9123060	8260B
Toluene-d8	117 %		Surr Limits:				09/23/09 21:10	PQ	9123060	8260B
Semivolatile Organics by	GC/MS									
2,4,5-Trichlorophenol	ND	D12	3800	830	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
2,4,6-Trichlorophenol	ND	D12	3800	250	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
2,4-Dichlorophenol	ND	D12	3800	200	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
2,4-Dimethylphenol	ND	D12	3800	1000	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
2,4-Dinitrophenol	ND	D12,M8	7400	1300	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
2,4-Dinitrotoluene	ND	D12,100	3800	590	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
2,6-Dinitrotoluene	ND	D12	3800	930	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
2-Chloronaphthalene	ND	D12	3800	250	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
2-Chlorophenol	ND	D12	3800	190	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
2-Methylnaphthalene	ND	D12	3800	46	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
2-Methylphenol	ND	D12	3800	120	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
2-Nitroaniline	ND	D12	7400	1200	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
2-Nitrophenol	ND	D12	3800	170	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
3 & 4 Methylphenol	ND	D12	7400	210	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
3,3'-Dichlorobenzidine	ND	D12,M8	3800	3300	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
3-Nitroaniline	ND	D12	7400	870	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
4,6-Dinitro-2-methylphen	ND	D12	7400	1300	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
ol	and a	1000							and the second	
4-Bromophenyl phenyl	ND	D12	3800	1200	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
ether										
4-Chloro-3-methylphenol	ND	D12	3800	160	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
4-Chloroaniline	ND	D12	3800	1100	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
4-Chlorophenyl phenyl	ND	D12	3800	81	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
ether										
4-Nitroaniline	ND	D12	7400	420	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
4-Nitrophenol	ND	D12	7400	920	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
Acenaphthene	ND	D12	3800	45	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
Acenaphthylene	ND	D12	3800	31	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
Acetophenone	ND	D12	3800	190	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
Anthracene	ND	D12	3800	97	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
Atrazine	ND	D12,N1	3800	170	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
Benzaldehyde	NDU		3800	420	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
Benzo[a]anthracene	340	D12,J	3800	65	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
Benzo[a]pyrene	290	D12,J	3800	91	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
Benzo[b]fluoranthene	400	D12,J	3800	74	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
Benzo[g,h,i]perylene	ND	D12	3800	46	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
Benzo[k]fluoranthene	220	D12,J	3800	40	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
Biphenyl	ND	D12,3	3800	240	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
Bis(2-chloroethoxy)metha	ND	D12,M8	3800	240	ug/kg dry ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
ne				210	~gg orj	20.0	50,20,00 20.10		5	52,00
Bis(2-chloroethyl)ether	ND	D12	3800	330	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

28/2497

Received: 09/17/09-09/21/09

Reported: 10/05/09 15:28

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

SDG Number: RSI0643

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

			ŀ	Analytical	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Client ID: B-10 (RSI0643-0	3 - Solid) -	cont.			Samp	oled: 09	/17/09 15:05	Recv	/d: 09/17/0	9 16:47
Semivolatile Organics by	GC/MS - c	ont.								
Bis(2-chloroisopropyl)	ND	D12	3800	400	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
ether									and to be	
Bis(2-ethylhexyl)	ND	D12	3800	1200	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
phthalate Butyl benzyl phthalate	ND	D12	3800	1000	ug/ka day	20.0	09/23/09 20:48	JLG	9118138	00700
Caprolactam	ND	D12,M7	3800	1600	ug/kg dry ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C 8270C
Carbazole	ND	D12,1017	3800	44	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
Chrysene	250	D12,J	3800	38	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
Dibenz[a,h]anthracene	ND	D12,3	3800	45	ug/kg dry	20.0	09/23/09 20:48		9118138	8270C
Dibenzofuran	ND	D12	3800	45 39				JLG		
Diethyl phthalate	ND	D12	3800	110	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
					ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
Dimethyl phthalate	ND	D12	3800	99	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
Di-n-butyl phthalate	ND	D12	3800	1300	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
Di-n-octyl phthalate	ND	D12	3800	89	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
Fluoranthene	410	D12,J	3800	55	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
Fluorene	ND	D12	3800	87	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
Hexachlorobenzene	ND	D12	3800	190	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
Hexachlorobutadiene	ND	D12	3800	190	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
Hexachlorocyclopentadie ne	ND	D12	3800	1100	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
Hexachloroethane	ND	D12	3800	290	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
Indeno[1,2,3-cd]pyrene	220	D12,J	3800	100	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
Isophorone	ND	D12	3800	190	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
Naphthalene	ND	D12	3800	63	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
Nitrobenzene	ND	D12	3800	170	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
N-Nitrosodi-n-propylamin	ND	D12	3800	300	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
9										
N-Nitrosodiphenylamine	ND	D12,L	3800	210	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
Phenanthrene	310	D12,J	3800	80	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
Phenol	ND	D12	3800	400	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
Pyrene	370	D12,J	3800	25	ug/kg dry	20.0	09/23/09 20:48	JLG	9118138	8270C
2,4,6-Tribromophenol	84 %	D12	Surr Limits:	(39-146%)			09/23/09 20:48	JLG	9/18138	8270C
2-Fluorobiphenyl	81 %	D12	Surr Limits:				09/23/09 20:48	JLG	9/18138	8270C
2-Fluorophenol	59 %	D12	Surr Limits:	(18-120%)			09/23/09 20:48	JLG	9118138	8270C
Nitrobenzene-d5	65 %	D12	Surr Limits:	(34-132%)			09/23/09 20:48	JLG	9/18138	8270C
Phenol-d5	73 %	D12	Surr Limits:	(11-120%)			09/23/09 20:48	JLG	9/18138	8270C
p-Terphenyl-d14	81 %	D12	Surr Limits:	(58-147%)			09/23/09 20:48	JLG	9/18138	8270C
Organochlorine Pesticide	s by EPA N	Method 8081	4							
4,4'-DDD	ND	QFL	3.8	0.75	ug/kg dry	2.00	09/28/09 22:56	tch	9120007	8081A
4,4'-DDE	ND	QFL	3.8	1.1	ug/kg dry	2.00	09/28/09 22:56	tch	9120007	8081A
4,4'-DDT		L QFL	3.8 4		ug/kg dry	2.00	09/28/09 22:56	tch	9120007	8081A
Aldrin	ND	QFL	3.8	0.39	ug/kg dry	2.00	09/28/09 22:56	tch	9120007	8081A
alpha-BHC	ND	QFL	3.8	0.69	ug/kg dry	2.00	09/28/09 22:56	tch	9120007	8081A
alpha-Chlordane	ND	QFL	3.8	1.9	ug/kg dry	2.00	09/28/09 22:56	tch	9120007	8081A
beta-BHC	ND	QFL	3.8	2.8						
Chlordane	ND	QFL			ug/kg dry	2.00	09/28/09 22:56	tch	9120007	8081A
delta-BHC	1.6		38	8.5	ug/kg dry	2.00	09/28/09 22:56	tch	9120007	8081A
			3.8	0.51	ug/kg dry	2.00	09/28/09 22:56	tch	9120007	8081A
Dieldrin		J QFL,J	3.8	0.92	ug/kg dry	2.00	09/28/09 22:56	tch	9120007	8081A
						2 00	100/00/00 00 EC	to be	0100007	00044
Endosulfan I Endosulfan II	ND ND	QFL QFL	3.8 3.8	0.81 0.69	ug/kg dry ug/kg dry	2.00 2.00	09/28/09 22:56 09/28/09 22:56	tch tch	9120007 9120007	8081A 8081A

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

29/2497

Received: 09/17/09-09/21/09

Reported:

10/05/09 15:28

The second se

les

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

America

SDG Number: RSI0643

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

			ŀ	Analytical	Report					
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Client ID: B-10 (RSI064	3-03 - Solid) -	cont.			Samp	led: 09	/17/09 15:05	Recy	rd: 09/17/0	9 16:47
Organochlorine Pestic	ides by EPA N	Method 8081	A - cont.							
Endosulfan sulfate	ND	QFL	3.8	0.72	ug/kg dry	2.00	09/28/09 22:56	tch	9120007	8081A
Endrin	2.7	J QFL,J	3.8	1.2	ug/kg dry	2.00	09/28/09 22:56	tch	9120007	8081A
Endrin aldehyde	ND	QFL	3.8	0.98	ug/kg dry	2.00	09/28/09 22:56	tch	9120007	8081A
Endrin ketone	ND	QFL	3.8	0.94	ug/kg dry	2.00	09/28/09 22:56	tch	9120007	8081A
gamma-BHC (Lindane)	ND	QFL	3.8	0.67	ug/kg dry	2.00	09/28/09 22:56	tch	9120007	8081A
gamma-Chlordane	ND 24 U	QFL,J	3.8	0.53	ug/kg dry	2.00	09/28/09 22:56	tch	9120007	8081A
Heptachlor	ND	QFL	3.8	0.60	ug/kg dry	2.00	09/28/09 22:56	tch	9120007	8081A
Heptachlor epoxide	ND	QFL	3.8	0.99	ug/kg dry	2.00	09/28/09 22:56	tch	9120007	8081A
Methoxychlor	ND	QFL	3.8	1.0	ug/kg dry	2.00	09/28/09 22:56	tch	9120007	8081A
Toxaphene	ND	QFL	38	22	ug/kg dry	2.00	09/28/09 22:56	tch	9120007	8081A
Decachlorobiphenyl	183 %	QFL,Z1	Surr Limits:				09/28/09 22:56	tch	9120007	8081A
Tetrachloro-m-xylene	83 %	QFL	Surr Limits:	(37-136%)			09/28/09 22:56	tch	9120007	8081A
Polychlorinated Biphe	nyls by EPA N	ethod 8082								
Aroclor 1016	ND	QSU	19	3.8	ug/kg dry	1.00	09/22/09 10:45	SCH	9120006	8082
Aroclor 1221	ND	QSU	19	3.8	ug/kg dry	1.00	09/22/09 10:45	SCH	9120006	8082
Aroclor 1232	ND	QSU	19	3.8	ug/kg dry	1.00	09/22/09 10:45	SCH	9120006	8082
Aroclor 1242	ND	QSU	19	4.2	ug/kg dry	1.00	09/22/09 10:45	SCH	9120006	8082
Aroclor 1248	ND	QSU	19	3.8	ug/kg dry	1.00	09/22/09 10:45	SCH	9120006	8082
Aroclor 1254	ND	QSU	19	4.1	ug/kg dry	1.00	09/22/09 10:45		9120006	8082
Aroclor 1260	75 🕽	QSU	19	4.1	ug/kg dry	1.00	09/22/09 10:45	SCH	9120006	8082
Decachlorobiphenyl	111 %	QSU	Surr Limits:				09/22/09 10:45		9120006	8082
Tetrachloro-m-xylene	93 %	QSU	Surr Limits:	(35-134%)			09/22/09 10:45	SCH	9120006	8082
Total Metals by SW 84	6 Series Metho	ods								
Aluminum	8570	1	12.2	NR	mg/kg dry	1.00	09/25/09 02:38	LMH	9123026	6010B
Antimony	ND	45	18.3	NR	mg/kg dry	1.00	09/24/09 01:20	AMH	9123026	6010B
Arsenic	10.5	J	2.4	NR	mg/kg dry	1.00	09/24/09 01:20	AMH	9123026	6010B
Barium	273	F	0.611	NR	mg/kg dry	1.00	09/24/09 01:20	AMH	9123026	6010B
Beryllium	0.501	-	0.244	NR	mg/kg dry	1.00	09/24/09 01:20		9123026	6010B
Cadmium	1.27		0.244	NR	mg/kg dry	1.00	09/24/09 01:20		9123026	6010B
Calcium	27000	t	61.1	NR	mg/kg dry	1.00	09/24/09 01:20		9123026	6010B
Chromium	21.0	7	0.611	NR	mg/kg dry	1.00	09/24/09 01:20		9123026	6010B
Cobalt	9.05	2	0.611	NR	mg/kg dry	1.00	09/24/09 01:20		9123026	6010B
Copper	89.1	T	1.2	NR	mg/kg dry		09/24/09 01:20		9123026	6010B
ron		B1, B3, B	12.2			1.00				
	1940	ј БТ, БЗ, Б ј		NR	mg/kg dry	1.00	09/24/09 01:20		9123026	6010B
Lead	1840	-	1.2	NR	mg/kg dry	1.00	09/24/09 01:20		9123026	6010B
Magnesium	6600		24.4	NR	mg/kg dry	1.00	09/24/09 01:20		9123026	6010B
Manganese	725	J B1, B	0.2	NR	mg/kg dry	1.00	09/24/09 01:20		9123026	6010B
Nickel	26.2	1	6.11	NR	mg/kg dry	1.00	09/24/09 01:20		9123026	6010B
Potassium	1300	-	36.6	NR	mg/kg dry	1.00	09/24/09 01:20		9123026	6010B
Selenium	ND	US	4.9	NR	mg/kg dry	1.00	09/24/09 01:20		9123026	6010B
Silver	ND		0.611	NR	mg/kg dry	1.00	09/24/09 01:20	AMH	9123026	6010B
Sodium	ND		171	NR	mg/kg dry	1.00	09/24/09 01:20	AMH	9123026	6010B
Thallium	ND	T	7.3	NR	mg/kg dry	1.00	09/24/09 01:20	AMH	9123026	6010B
/anadium	21.3	2	0.611	NR	mg/kg dry	1.00	09/24/09 01:20	AMH	9123026	6010B
and the second		1	2.4		mg/kg dry	1.00			9123026	6010B
Zinc	894	1	2.4	NR	mg/kg arv	1.00	09/24/09 01:20	AIVILL	9123020	OUTUB

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

Received:

Reported:

09/17/09-09/21/09

10/05/09 15:28

31/2497

ytical Report					
MDI U.V.	Dil	Date	Lab	in de	Method
1	MDL Units				Euro Euro

General Chemistry P	arameters							
Percent Solids	87	0.010	NR	%	1.00	09/20/09 14:42 KMB	9119015	Dry Weight
Cyanide	2.0	1.0	0.9	mg/kg dry	1.00	09/23/09 09:47 jmm	9123015	9012A

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY

32/2497

Received: 09/17/09-09/21/09 Reported: 10/05/09 15:28

Reported: 10/0

2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

SDG Number: RSI0643

			A	nalytical	Report					
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Client ID: B-2 (0-2) (RSI07	41-01 - Solid	d)			Samp	oled: 09	21/09 08:50	Recv	d: 09/21/0	9 14:26
Polychlorinated Bipheny	Is by EPA M	lethod 8082								
Aroclor 1016 [2C]	ND		17	3.4	ug/kg dry	1.00	09/23/09 12:41	SCH	9122042	8082
Aroclor 1221 [2C]	ND		17	3.4	ug/kg dry	1.00	09/23/09 12:41	SCH	9122042	8082
Aroclor 1232 [2C]	ND		17	3.4	ug/kg dry	1.00	09/23/09 12:41	SCH	9122042	8082
Aroclor 1242 [2C]	ND		17	3.7	ug/kg dry	1.00	09/23/09 12:41	SCH	9122042	8082
Aroclor 1248 [2C]	ND		17	3.4	ug/kg dry	1.00	09/23/09 12:41	SCH	9122042	8082
Aroclor 1254 [2C]	ND		17	3.6	ug/kg dry	1.00	09/23/09 12:41	SCH	9122042	8082
Aroclor 1260 [2C]	140		17	3.6	ug/kg dry	1.00	09/23/09 12:41	SCH	9122042	8082
Decachlorobiphenyl [2C]	77 %		Surr Limits: ((34-148%)			09/23/09 12:41	SCH	9122042	8082
Tetrachloro-m-xylene [2C]	87 %		Surr Limits: ((35-134%)			09/23/09 12:41	SCH	9122042	8082
General Chemistry Para	neters									
Percent Solids	96		0.010	NR	%	1.00	09/22/09 14:41	CJM	9122026	Dry Weigh

· · · · ·	A		
Oct	Am	Oric	N
1001	7	neric	11
1001	/ 11 /	1 VIIV	~~

THE	LEADER	15	ENVIRONMENTAL	TESTING

33/2497

Received:	09/17/09-09/21/09
Reported:	10/05/09 15:28

2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

Golder Associates, Inc. - Niagara Falls, NY

SDG Number: RSI0643

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

			ŀ	Analytical	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Client ID: B-2 (2-4) (RSI07	741-02 - Solie	d)			Samp	led: 09	21/09 09:00	Recv	d: 09/21/0	9 14:26
Polychlorinated Bipheny	Is by EPA M	lethod 8082								
Aroclor 1016 [2C]	ND		20	4.0	ug/kg dry	1.00	09/23/09 13:00	SCH	9122042	8082
Aroclor 1221 [2C]	ND		20	4.0	ug/kg dry	1.00	09/23/09 13:00	SCH	9122042	8082
Aroclor 1232 [2C]	ND		20	4.0	ug/kg dry	1.00	09/23/09 13:00	SCH	9122042	8082
Aroclor 1242 [2C]	ND		20	4.4	ug/kg dry	1.00	09/23/09 13:00	SCH	9122042	8082
Aroclor 1248 [2C]	ND		20	4.0	ug/kg dry	1.00	09/23/09 13:00	SCH	9122042	8082
Aroclor 1254 [2C]	ND		20	4.3	ug/kg dry	1.00	09/23/09 13:00	SCH	9122042	8082
Aroclor 1260 [2C]	ND		20	4.3	ug/kg dry	1.00	09/23/09 13:00	SCH	9122042	8082
Decachlorobiphenyl [2C]	93 %		Surr Limits:	(34-148%)			09/23/09 13:00	SCH	9122042	8082
Tetrachloro-m-xylene [2C]	88 %		Surr Limits:	(35-134%)			09/23/09 13:00	SCH	9/22042	8082
General Chemistry Para	neters									
Percent Solids	.81		0.010	NR	%	1.00	09/22/09 14:43	CJM	9122026	Dry Weigh

THE LEADER IN ENVIRONMENTAL TESTING

lest

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

merica

SDG Number: RSI0643

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

					A	Analytical	Report					
	Sample		Data					Dil	Date	Lab		
Analyte	Result	Q	ualifiers	1	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
lient ID: B-2 (RSI0741-	03 - Solid)						Samp	led: 09	21/09 09:05	Recv	rd: 09/21/0	9 14:26
Volatile Organic Comp	ounds by EP	A 82	60B									
1,1,1-Trichloroethane	ND				5.4	0.39	ug/kg dry	1.00	09/25/09 01:58	CDC	9124113	8260B
1,1,2,2-Tetrachloroethane	ND				5.4	0.88	ug/kg dry	1.00	09/25/09 01:58	CDC	9124113	8260B
1,1,2-Trichloroethane	ND				5.4	0.27	ug/kg dry	1.00	09/25/09 01:58	CDC	9124113	8260B
1,1,2-Trichlorotrifluoroeth	ND				5.4	0.57	ug/kg dry	1.00	09/25/09 01:58	CDC	9124113	8260B
ane												
1,1-Dichloroethane	ND				5.4	0.27	ug/kg dry	1.00	09/25/09 01:58	CDC	9124113	8260B
1,1-Dichloroethene	ND				5.4	0.66	ug/kg dry	1.00	09/25/09 01:58	CDC	9124113	8260B
1,2,4-Trichlorobenzene	ND				5.4	0.33	ug/kg dry	1.00	09/25/09 01:58	CDC	9124113	8260B
1,2-Dibromo-3-chloroprop	ND				5.4	1.1	ug/kg dry	1.00	09/25/09 01:58	CDC	9124113	8260B
ane												
1,2-Dibromoethane (EDB)	ND				5.4	0.21	ug/kg dry	1.00	09/25/09 01:58	CDC	9124113	8260B
1,2-Dichlorobenzene	ND				5.4	0.82	ug/kg dry	1.00	09/25/09 01:58	CDC	9124113	8260B
1,2-Dichloroethane	ND				5.4	0.27	ug/kg dry	1.00	09/25/09 01:58	CDC	9124113	8260B
1,2-Dichloroethene, Total	ND				11	2.8	ug/kg dry	1.00	09/25/09 01:58	CDC	9124113	8260B
1,2-Dichloropropane	ND				5.4	0.28	ug/kg dry	1.00	09/25/09 01:58	CDC	9124113	8260B
1,3-Dichlorobenzene	ND				5.4	0.77	ug/kg dry	1.00	09/25/09 01:58	CDC	9124113	8260B
1,4-Dichlorobenzene	ND				5.4	0.76	ug/kg dry	1.00	09/25/09 01:58	CDC	9124113	8260B
2-Butanone (MEK)	ND				27	7.4	ug/kg dry	1.00	09/25/09 01:58	CDC	9124113	8260B
2-Hexanone	ND				27	1.9	ug/kg dry	1.00	09/25/09 01:58	CDC	9124113	8260B
I-Methyl-2-pentanone MIBK)	ND				27	1.8	ug/kg dry	1.00	09/25/09 01:58	CDC	9124113	8260B
Acetone	17		J		27	1.2	ug/kg dry	1.00	09/25/09 01:58	CDC	9124113	8260B
Benzene	ND				5.4	0.27	ug/kg dry	1.00	09/25/09 01:58	CDC	9124113	8260B
Bromodichloromethane	ND				5.4	0.28	ug/kg dry	1.00	09/25/09 01:58	CDC	9124113	8260B
Bromoform	ND				5.4	0.50	ug/kg dry	1.00	09/25/09 01:58	CDC	9124113	8260B
Bromomethane	ND				5.4	0.50	ug/kg dry	1.00	09/25/09 01:58	CDC	9124113	8260B
Carbon disulfide	ND			1	5.4	0.47	ug/kg dry	1.00	09/25/09 01:58	CDC	9124113	8260B
Carbon Tetrachloride	ND			1	5.4	0.20	ug/kg dry	1.00	09/25/09 01:58	CDC	9124113	8260B
Chlorobenzene	NO 1.9	U	B, J		5.4	0.24	ug/kg dry	1.00	09/25/09 01:58	CDC	9124113	8260B
Chlorodibromomethane	ND				5.4	0.30	ug/kg dry	1.00	09/25/09 01:58	CDC	9124113	8260B
Chloroethane	ND				5.4	0.88	ug/kg dry	1.00	09/25/09 01:58	CDC	9124113	8260B
Chloroform	ND				5.4	0.34	ug/kg dry	1.00	09/25/09 01:58	CDC	9124113	8260B
Chloromethane	ND				5.4	0.33	ug/kg dry	1.00	09/25/09 01:58	CDC	9124113	8260B
cis-1,2-Dichloroethene	ND				5.4	0.27	ug/kg dry	1.00	09/25/09 01:58	CDC	9124113	8260B
cis-1,3-Dichloropropene	ND				5.4	0.31	ug/kg dry	1.00	09/25/09 01:58		9124113	8260B
Cyclohexane	ND				5.4	0.25	ug/kg dry	1.00	09/25/09 01:58	CDC	9124113	8260B
Dichlorodifluoromethane	ND				5.4	0.45	ug/kg dry	1.00	09/25/09 01:58		9124113	8260B
Ethylbenzene	ND				5.4	0.37	ug/kg dry	1.00	09/25/09 01:58		9124113	8260B
sopropylbenzene	ND				5.4	0.36	ug/kg dry	1.00	09/25/09 01:58		9124113	8260B
Methyl Acetate	ND				5.4	0.29	ug/kg dry	1.00	09/25/09 01:58		9124113	8260B
Nethyl tert-Butyl Ether	ND				5.4	0.53	ug/kg dry	1.00	09/25/09 01:58		9124113	8260B
Methylcyclohexane	ND				5.4	0.35	ug/kg dry	1.00	09/25/09 01:58		9124113	8260B
Methylene Chloride	12				5.4	0.38	ug/kg dry	1.00	09/25/09 01:58		9124113	8260B
Styrene	ND				5.4	0.27	ug/kg dry	1.00	09/25/09 01:58		9124113	8260B
Tetrachloroethene	ND				5.4	0.73	ug/kg dry	1.00	09/25/09 01:58		9124113	8260B
Foluene	ND		В		5.4	0.92	ug/kg dry	1.00	09/25/09 01:58		9124113	8260B
trans-1,2-Dichloroethene	ND				5.4	0.56	ug/kg dry	1.00	09/25/09 01:58		9124113	8260B
trans-1,3-Dichloropropen e	ND				5.4	0.27	ug/kg dry	1.00	09/25/09 01:58	CDC	9124113	8260B
Trichloroethene	ND				5.4	0.37	ug/kg dry	1.00	09/25/09 01:58	CDC	9124113	8260B

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

34/2497

Received: 09/17/09-09/21/09

Reported: 10/05/09 15:28

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9

Niagara Falls, NY 14304

SDG Number: RSI0643

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

			F	Analytical	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab	Potob	
Client ID: B-2 (RSI0741-0		A STATE OF A	NL.	mbe			Table The Second	Tech	Batch	Method
Shent ID. D-2 (1000741-0.	5 - 3011a) - Ci	on.			Samp	olea: 09	/21/09 09:05	Recv	rd: 09/21/0	9 14:26
Volatile Organic Compou	unds by EPA	8260B - co	<u>nt.</u>							
Trichlorofluoromethane	ND		5.4	1.7	ug/kg dry	1.00	09/25/09 01:58	CDC	9124113	8260B
Vinyl acetate	ND		27	1.1	ug/kg dry	1.00	09/25/09 01:58		9124113	8260B
Vinyl chloride	ND		11	0.22	ug/kg dry	1.00	09/25/09 01:58	CDC	9124113	8260B
Xylenes, total	ND		11	0.91	ug/kg dry	1.00	09/25/09 01:58	CDC	9124113	8260B
1,2-Dichloroethane-d4	103 %		Surr Limits:	(64-126%)			09/25/09 01:58	CDC	9/24113	8260B
4-Bromofluorobenzene	108 %		Surr Limits:	(72-126%)			09/25/09 01:58	CDC	9124113	8260B
Toluene-d8	115 %		Surr Limits:	(71-125%)			09/25/09 01:58	CDC	9124113	8260B
Semivolatile Organics by	GC/MS									
2,4,5-Trichlorophenol	ND	D10	1900	400	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
2,4,6-Trichlorophenol	ND	D10	1900	120	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
2,4-Dichlorophenol	ND	D10	1900	97	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
2,4-Dimethylphenol	ND	D10	1900	500	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
2,4-Dinitrophenol	ND	D10	3600	650	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
2,4-Dinitrotoluene	ND	D10	1900	290	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
2,6-Dinitrotoluene	ND	D10	1900	450	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
2-Chloronaphthalene	ND	D10	1900	120	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
2-Chlorophenol	ND	D10	1900	94	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
2-Methylnaphthalene	ND	D10	1900	22	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
2-Methylphenol	ND	D10	1900	57	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
2-Nitroaniline	ND	D10	3600	600	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
2-Nitrophenol	ND	D10	1900	85	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
3 & 4 Methylphenol	ND	D10	3600	100	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
3,3'-Dichlorobenzidine	ND	D10	1900	1600	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
3-Nitroaniline	ND	D10	3600	430	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
4,6-Dinitro-2-methylphen	ND	D10	3600	640	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
ol	110	510	0000	040	ug/ng ury	10.0	00/20/00 10.40	LINK	5122000	02700
4-Bromophenyl phenyl	ND	D10	1900	590	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
ether 4-Chloro-3-methylphenol	ND	D10	1900	76	the first start	10.0	00/00/00 45.40	FRI	0100000	8270C
4-Chloroaniline	ND	D10	1900	540	ug/kg dry	10.0 10.0	09/26/09 15:48 09/26/09 15:48	ERK	9122039 9122039	
4-Chlorophenyl phenyl	ND	D10	1900	40	ug/kg dry	10.0		ERK		8270C
ether	ND	DIU	1900	40	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
4-Nitroaniline	ND	D10	3600	210	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
4-Nitrophenol	ND	D10	3600	450	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
Acenaphthene	ND	D10	1900	22	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
Acenaphthylene	ND	D10	1900	15	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
Acetophenone	ND	D10	1900	95	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
Anthracene	ND	D10	1900	48	ug/kg dry	10.0	09/26/09 15:48		9122039	8270C
Atrazine	NDUT		1900	83	ug/kg dry	10.0	09/26/09 15:48		9122039	8270C
Benzaldehyde	ND	D10	1900	200	ug/kg dry	10.0	09/26/09 15:48		9122039	8270C
Benzo[a]anthracene	770	D10,J	1900	32	ug/kg dry	10.0	09/26/09 15:48		9122039	8270C
Benzo[a]pyrene	1400 1		1900	45	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
Benzo[b]fluoranthene	1700	D10,J	1900	36	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
Benzo[g,h,i]perylene	950	D10,J	1900	22	ug/kg dry	10.0		ERK	9122039	8270C
Benzo[k]fluoranthene	610	D10,J	1900	20	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
Biphenyl	ND	D10,3	1900	120	ug/kg dry ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
Bis(2-chloroethoxy)metha	ND	D10	1900	100	ug/kg dry ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C 8270C
ne									The second second	
Bis(2-chloroethyl)ether	ND	D10	1900	160	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

SDG Number: RSI0643

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

			A	Analytical	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Client ID: B-2 (RSI0741-03	- Solid) - c	ont.			Samp	oled: 09/	21/09 09:05	Recv	/d: 09/21/09	9 14:26
Semivolatile Organics by	GC/MS - co	ont.								
Bis(2-chloroisopropyl) ether	ND	D10	1900	190	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
Bis(2-ethylhexyl) phthalate	1000	D10,J	1900	600	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
Butyl benzyl phthalate	ND	D10	1900	500	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
Caprolactam	ND	D10	1900	800	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
Carbazole	ND	D10	1900	21	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
Chrysene	1000	D10,J	1900	19	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
Dibenz[a,h]anthracene	250	D10,J	1900	22	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
Dibenzofuran	ND	D10	1900	19	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
Diethyl phthalate	ND	D10	1900	56	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
Dimethyl phthalate	ND	D10	1900	48	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
Di-n-butyl phthalate	ND	D10	1900	640	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
Di-n-octyl phthalate	ND	D10	1900	43	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
Fluoranthene	830	D10,J	1900	27	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
Fluorene	ND	D10	1900	43	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
Hexachlorobenzene	ND	D10	1900	92	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
Hexachlorobutadiene	ND	D10	1900	95	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
Hexachlorocyclopentadie ne	ND	D10	1900	560	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
Hexachloroethane	ND	D10	1900	140	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
Indeno[1,2,3-cd]pyrene	790	D10,J	1900	51	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
Isophorone	ND	D10	1900	93	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
Naphthalene	ND	D10	1900	31	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
Nitrobenzene	ND	D10	1900	82	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
N-Nitrosodi-n-propylamin e	ND	D10	1900	150	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
N-Nitrosodiphenylamine	ND	D10,L	1900	100	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
Phenanthrene	220	D10,J	1900	39	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
Phenol	ND	D10	1900	200	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
Pyrene	740	D10,J	1900	12	ug/kg dry	10.0	09/26/09 15:48	ERK	9122039	8270C
2,4,6-Tribromophenol	49 %	D10	Surr Limits:				09/26/09 15:48	ERK	9122039	8270C
2-Fluorobiphenyl	73 %	D10		(37-120%)			09/26/09 15:48	ERK	9/22039	8270C
2-Fluorophenol	52 %	D10	Surr Limits:				09/26/09 15:48		9/22039	8270C
Nitrobenzene-d5	60 %	D10		(34-132%)			09/26/09 15:48		9/22039	8270C
Phenol-d5	63 %	D10	Surr Limits:				09/26/09 15:48		9/22039	8270C
p-Terphenyl-d14	73 %	D10	Surr Limits:	(58-147%)			09/26/09 15:48	ERK	9/22039	8270C
Organochlorine Pesticide		the second se	_							
4,4'-DDD [2C]	ND	QFL	1.8	0.36	ug/kg dry	1.00	09/30/09 02:19		9122040	8081A
4,4'-DDE [2C]	ND	QFL	1.8	0.53	ug/kg dry	1.00	09/30/09 02:19		9122040	8081A
4,4'-DDT [2C]	ND	QFL	1.8	0.42	ug/kg dry	1.00	09/30/09 02:19		9122040	8081A
Aldrin [2C]	ND	QFL	1.8	0.19	ug/kg dry	1.00	09/30/09 02:19		9122040	8081A
alpha-BHC [2C]	ND	QFL	1.8	0.33	ug/kg dry	1.00	09/30/09 02:19		9122040	8081A
alpha-Chlordane [2C]	ND	QFL	1.8	0.92	ug/kg dry	1.00	09/30/09 02:19		9122040	8081A
beta-BHC [2C]	ND	QFL	1.8	1.3	ug/kg dry	1.00	09/30/09 02:19		9122040	8081A
Chlordane [2C]	ND	QFL	18	4.1	ug/kg dry	1.00	09/30/09 02:19		9122040	8081A
delta-BHC [2C]	ND	QFL	1.8	0.24	ug/kg dry	1.00	09/30/09 02:19		9122040	8081A
Dieldrin [2C]	ND	QFL	1.8	0.44	ug/kg dry	1.00	09/30/09 02:19		9122040	8081A
Endosulfan I [2C]	ND	QFL	1.8	0.39	ug/kg dry	1.00	09/30/09 02:19		9122040	8081A
Endosulfan II [2C]	ND	QFL	1.8	0.33	ug/kg dry	1.00	09/30/09 02:19	MAN	9122040	8081A

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

Received: 09/17/09-09/21/09

Reported: 10/05/09 15:28

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

SDG Number: RSI0643

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

			A	Analytical	Report					
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Client ID: B-2 (RSI0741-0	3 - Solid) - c	cont.			Samp	led: 09	/21/09 09:05	Recy	/d: 09/21/0	9 14:26
Organochlorine Pesticid	les by EPA I	Method 8081	A - cont.							
Endosulfan sulfate [2C]	ND	QFL	1.8	0.34	ug/kg dry	1.00	09/30/09 02:19	MAN	9122040	8081A
Endrin [2C]	ND	QFL	1.8	0.60	ug/kg dry	1.00	09/30/09 02:19	MAN	9122040	8081A
Endrin aldehyde [2C]	ND	QFL	1.8	0.47	ug/kg dry	1.00	09/30/09 02:19	MAN	9122040	8081A
Endrin ketone [2C]	ND	QFL	1.8	0.45	ug/kg dry	1.00	09/30/09 02:19	MAN	9122040	8081A
gamma-BHC (Lindane) [2C]	ND	QFL	1.8	0.32	ug/kg dry	1.00	09/30/09 02:19	MAN	9122040	8081A
gamma-Chlordane [2C]	ND	QFL	1.8	0.25	ug/kg dry	1.00	09/30/09 02:19	MAN	9122040	8081A
Heptachlor [2C]	ND	QFL	1.8	0.29	ug/kg dry	1.00	09/30/09 02:19	MAN	9122040	8081A
Heptachlor epoxide [2C]	ND	QFL	1.8	0.47	ug/kg dry	1.00	09/30/09 02:19	MAN	9122040	8081A
Methoxychlor [2C]	ND	QFL	1.8	0.49	ug/kg dry	1.00	09/30/09 02:19	MAN	9122040	8081A
Toxaphene [2C]	ND	QFL	18	11	ug/kg dry	1.00	09/30/09 02:19	MAN	9122040	8081A
Decachlorobiphenyl [2C]	95 %	QFL	Surr Limits:	(42-146%)			09/30/09 02:19	MAN	9/22040	8081A
Tetrachloro-m-xylene [2C]	72 %	QFL	Surr Limits:	(37-136%)			09/30/09 02:19	MAN	9/22040	8081A
Total Metals by SW 846	Series Meth	ods								
Aluminum	13100		10.9	NR	mg/kg dry	1.00	09/25/09 03:46	LMH	9123026	6010B
Antimony	ND	UJ	16.3	NR	mg/kg dry	1.00	09/24/09 02:07		9123026	6010B
Arsenic	5.4	T	2.2	NR	mg/kg dry	1.00	09/24/09 02:07		9123026	6010B
Barium	118	J	0.545	NR	mg/kg dry	1.00	09/24/09 02:07		9123026	6010B
Beryllium	0.643		0.218	NR	mg/kg dry	1.00	09/24/09 02:07		9123026	6010B
Cadmium	ND		0.218	NR	mg/kg dry	1.00	09/24/09 02:07		9123026	6010B
Calcium	73100	J D08	272	NR	mg/kg dry	5.00	09/26/09 10:36		9123026	6010B
Chromium	20.9	J	0.545	NR	mg/kg dry	1.00	09/24/09 02:07		9123026	6010B
Cobalt	8.45	2	0.545	NR	mg/kg dry	1.00	09/24/09 02:07		9123026	6010B
Copper	19.8	-	1.1	NR	mg/kg dry	1.00	09/24/09 02:07		9123026	6010B
ron		TB1, B3, B	10.9	NR	mg/kg dry	1.00	09/24/09 02:07		9123026	6010B
Lead	11.7	7	1.1	NR	mg/kg dry	1.00	09/24/09 02:07		9123026	6010B
Magnesium	12700	J	21.8	NR	mg/kg dry	1.00	09/24/09 02:07		9123026	6010B
Manganese	312	J B1, B	0.2	NR	mg/kg dry	1.00	09/24/09 02:07		9123026	6010B
Nickel	23.5	5	5.45	NR	mg/kg dry	1.00	09/24/09 02:07		9123026	6010B
Potassium	1760		32.7	NR	mg/kg dry	1.00	09/24/09 02:07		9123026	6010B
Selenium	1.027	45	4.4	NR	mg/kg dry	1.00	09/24/09 02:07		9123026	6010B
Silver	ND	v	0.545	NR	mg/kg dry	1.00	09/24/09 02:07		9123026	6010B
Sodium	ND		153	NR	mg/kg dry	1.00	09/24/09 02:07		9123026	6010B
Thallium	ND		6.5	NR	mg/kg dry	1.00	09/24/09 02:07		9123026	6010B
/anadium	23.7	J	0.545	NR	mg/kg dry	1.00	09/24/09 02:07		9123026	6010B
Zinc	59.2	3	2.2	NR	mg/kg dry	1.00	09/24/09 02:07		9123026	6010B
Mercury	0.0264		0.0217	NR	mg/kg dry	1.00	09/29/09 17:09		9125041	7471A
General Chemistry Parar	neters									
Percent Solids	90		0.010	NR	%	1.00	09/22/09 14:45	CJM	9122026	Dry Weight
Cyanide	ND	LI	1,1	0.9	mg/kg dry	1.00	09/24/09 08:06		9123064	9012A

37/2497

Received: 09/17/09-09/21/09 Reported: 10/05/09 15:28

TestAmerie

THE LEADER IN ENVIRONMENTAL TESTING

38/2497

2221 Niagara Falls Blvd., Ste 9

Niagara Falls, NY 14304

SDG Number: RSI0643 Golder Associates, Inc. - Niagara Falls, NY

09/17/09-09/21/09 Received: 10/05/09 15:28 Reported:

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

			ŀ	Analytical	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Client ID: B-3 (0-2) (RSI07	41-07 - Solie	d)			Samp	led: 09	/21/09 09:35	Recv	rd: 09/21/0	9 14:26
Polychlorinated Bipheny	Is by EPA N	lethod 8082								
Aroclor 1016 [2C]	ND	D08	190	37	ug/kg dry	10.0	09/24/09 06:41	SCH	9122042	8082
Aroclor 1221 [2C]	ND	D08	190	37	ug/kg dry	10.0	09/24/09 06:41	SCH	9122042	8082
Aroclor 1232 [2C]	ND	D08	190	37	ug/kg dry	10.0	09/24/09 06:41	SCH	9122042	8082
Aroclor 1242 [2C]	ND	D08	190	41	ug/kg dry	10.0	09/24/09 06:41	SCH	9122042	8082
Aroclor 1248 [2C]	ND	D08	190	37	ug/kg dry	10.0	09/24/09 06:41	SCH	9122042	8082
Aroclor 1254 [2C]	ND	D08	190	40	ug/kg dry	10.0	09/24/09 06:41	SCH	9122042	8082
Aroclor 1260 [2C]	1700	D08	190	40	ug/kg dry	10.0	09/24/09 06:41	SCH	9122042	8082
Decachlorobiphenyl [2C]	105 %	D08	Surr Limits:	(34-148%)			09/24/09 06:41	SCH	9/22042	8082
Tetrachloro-m-xylene [2C]	89 %	D08	Surr Limits:	(35-134%)			09/24/09 06:41	SCH	9122042	8082
General Chemistry Parar	neters									
Percent Solids	87		0.010	NR	%	1.00	09/22/09 14:53	CJM	9122026	Dry Weigh

THE LEADER IN ENVIRONMENTAL TESTING

39/2497

Received: 09/17/09-09/21/09

Reported: 10/05/09 15:28

2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

Golder Associates, Inc. - Niagara Falls, NY

SDG Number: RSI0643

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

			A	nalytical	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Client ID: B-3 (2-4) (RSI07	741-08 - Solie	d)			Samp	led: 09	21/09 09:35	Recv	d: 09/21/0	9 14:26
Polychlorinated Bipheny	Is by EPA M	ethod 8082								
Aroclor 1016 [2C]	ND		20	3.8	ug/kg dry	1.00	09/23/09 14:14	SCH	9122042	8082
Aroclor 1221 [2C]	ND		20	3.8	ug/kg dry	1.00	09/23/09 14:14	SCH	9122042	8082
Aroclor 1232 [2C]	ND		20	3.8	ug/kg dry	1.00	09/23/09 14:14	SCH	9122042	8082
Aroclor 1242 [2C]	ND		20	4.2	ug/kg dry	1.00	09/23/09 14:14	SCH	9122042	8082
Aroclor 1248 [2C]	ND		20	3.8	ug/kg dry	1.00	09/23/09 14:14	SCH	9122042	8082
Aroclor 1254 [2C]	ND		20	4.1	ug/kg dry	1.00	09/23/09 14:14	SCH	9122042	8082
Aroclor 1260 [2C]	29		20	4.1	ug/kg dry	1.00	09/23/09 14:14	SCH	9122042	8082
Decachlorobiphenyl [2C]	85 %		Surr Limits:	(34-148%)			09/23/09 14:14	SCH	9122042	8082
Tetrachloro-m-xylene [2C]	90 %		Surr Limits:	(35-134%)			09/23/09 14:14	SCH	9122042	8082
General Chemistry Parar	neters									
Percent Solids	85		0.010	NR	%	1.00	09/22/09 14:55	CJM	9122026	Dry Weigh

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

SDG Number: RSI0643

Received:

Reported:

09/17/09-09/21/09 10/05/09 15:28

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

				А	nalytical	Report					
	Sample		Data		1000		Dil	Date	Lab		
Analyte	Result	Q	ualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Client ID: B-3 (RSI0741-	09 - Solid)					Samp	oled: 09	/21/09 09:40	Recy	/d: 09/21/0	9 14:26
Volatile Organic Comp	ounds by EPA	A 82	<u>60B</u>								
1,1,1-Trichloroethane	ND			5.8	0.42	ug/kg dry	1.00	09/25/09 02:49	CDC	9124113	8260B
1,1,2,2-Tetrachloroethane	ND			5.8	0.93	ug/kg dry	1.00	09/25/09 02:49	CDC	9124113	8260B
1,1,2-Trichloroethane	ND			5.8	0.29	ug/kg dry	1.00	09/25/09 02:49		9124113	8260B
1,1,2-Trichlorotrifluoroeth	ND			5.8	0.61	ug/kg dry	1.00	09/25/09 02:49	CDC	9124113	8260B
ane						5 5 5					
1,1-Dichloroethane	ND			5.8	0.28	ug/kg dry	1.00	09/25/09 02:49	CDC	9124113	8260B
1,1-Dichloroethene	ND			5.8	0.70	ug/kg dry	1.00	09/25/09 02:49	CDC	9124113	8260B
1,2,4-Trichlorobenzene	ND			5.8	0.35	ug/kg dry	1.00	09/25/09 02:49	CDC	9124113	8260B
1,2-Dibromo-3-chloroprop	ND			5.8	1.1	ug/kg dry	1.00	09/25/09 02:49	CDC	9124113	8260B
ane											
1,2-Dibromoethane (EDB)	ND			5.8	0.22	ug/kg dry	1.00	09/25/09 02:49	CDC	9124113	8260B
1,2-Dichlorobenzene	ND			5.8	0.87	ug/kg dry	1.00	09/25/09 02:49	CDC	9124113	8260B
1,2-Dichloroethane	ND			5.8	0.29	ug/kg dry	1.00	09/25/09 02:49	CDC	9124113	8260B
1,2-Dichloroethene, Total	ND			12	3.0	ug/kg dry	1.00	09/25/09 02:49	CDC	9124113	8260B
1,2-Dichloropropane	ND			5.8	0.29	ug/kg dry	1.00	09/25/09 02:49	CDC	9124113	8260B
1,3-Dichlorobenzene	ND			5.8	0.81	ug/kg dry	1.00	09/25/09 02:49	CDC	9124113	8260B
1,4-Dichlorobenzene	ND			5.8	0.81	ug/kg dry	1.00	09/25/09 02:49	CDC	9124113	8260B
2-Butanone (MEK)	ND			29	7.8	ug/kg dry	1.00	09/25/09 02:49	CDC	9124113	8260B
2-Hexanone	ND			29	2.0	ug/kg dry	1.00	09/25/09 02:49	CDC	9124113	8260B
4-Methyl-2-pentanone (MIBK)	ND			29	1.9	ug/kg dry	1.00	09/25/09 02:49	CDC	9124113	8260B
Acetone	ND			29	1.3	ug/kg dry	1.00	09/25/09 02:49	CDC	9124113	8260B
Benzene	ND			5.8	0.28	ug/kg dry	1.00	09/25/09 02:49	CDC	9124113	8260B
Bromodichloromethane	ND			5.8	0.30	ug/kg dry	1.00	09/25/09 02:49	CDC	9124113	8260B
Bromoform	ND			5.8	0.53	ug/kg dry	1.00	09/25/09 02:49	CDC	9124113	8260B
Bromomethane	ND			5.8	0.53	ug/kg dry	1.00	09/25/09 02:49		9124113	8260B
Carbon disulfide	ND			5.8	0.49	ug/kg dry	1.00	09/25/09 02:49	CDC	9124113	8260B
Carbon Tetrachloride	ND			5.8	0.21	ug/kg dry	1.00	09/25/09 02:49	CDC	9124113	8260B
Chlorobenzene	a (11)	U	B, J	5.8	0.25	ug/kg dry	1.00	09/25/09 02:49		9124113	8260B
Chlorodibromomethane	ND	Vi		5.8	0.32	ug/kg dry	1.00	09/25/09 02:49		9124113	8260B
Chloroethane	ND			5.8	0.93	ug/kg dry	1.00	09/25/09 02:49	CDC	9124113	8260B
Chloroform	ND			5.8	0.36	ug/kg dry	1.00	09/25/09 02:49		9124113	8260B
Chloromethane	ND			5.8	0.35	ug/kg dry	1.00	09/25/09 02:49		9124113	8260B
cis-1,2-Dichloroethene	ND			5.8	0.28	ug/kg dry	1.00	09/25/09 02:49	CDC	9124113	8260B
cis-1,3-Dichloropropene	ND			5.8	0.33	ug/kg dry	1.00	09/25/09 02:49		9124113	8260B
Cyclohexane	ND			5.8	0.26	ug/kg dry	1.00	09/25/09 02:49	CDC	9124113	8260B
Dichlorodifluoromethane	ND			5.8	0.48	ug/kg dry	1.00	09/25/09 02:49		9124113	8260B
Ethylbenzene	ND			5.8	0.40	ug/kg dry	1.00	09/25/09 02:49		9124113	8260B
sopropylbenzene	ND			5.8	0.38	ug/kg dry	1.00	09/25/09 02:49		9124113	8260B
Methyl Acetate	ND			5.8	0.31	ug/kg dry	1.00	09/25/09 02:49		9124113	8260B
Methyl tert-Butyl Ether	ND			5.8	0.57	ug/kg dry	1.00	09/25/09 02:49		9124113	8260B
Viethylcyclohexane	ND			5.8	0.37	ug/kg dry	1.00	09/25/09 02:49		9124113	8260B
Methylene Chloride	18			5.8	0.40	ug/kg dry	1.00	09/25/09 02:49		9124113	8260B
Styrene	ND			5.8	0.29	ug/kg dry	1.00	09/25/09 02:49		9124113	8260B
Tetrachloroethene	ND			5.8	0.29	ug/kg dry	1.00	09/25/09 02:49		9124113	8260B
Foluene	ND		в	5.8	0.98	ug/kg dry	1.00	09/25/09 02:49		9124113	8260B
roidene trans-1,2-Dichloroethene	ND		D	5.8	0.98	ug/kg dry ug/kg dry	1.00	09/25/09 02:49		9124113	8260B
trans-1,3-Dichloropropen	ND			5.8	0.59	ug/kg dry ug/kg dry	1.00	09/25/09 02:49		9124113	8260B
e Trichloroethene	ND			5.8	0.40	ug/kg dry	1.00	09/25/09 02:49	CDC	9124113	8260B

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

SDG Number: RSI0643

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

			A	Analytical	Report					
	Sample	Data		2111.5		Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Client ID: B-3 (RSI0741-09	9 - Solid) - d	cont.			Samp	led: 09	/21/09 09:40	Recy	/d: 09/21/0	9 14:26
Volatile Organic Compou	unds by EP	A 8260B - co	nt.							
Trichlorofluoromethane	ND		5.8	1.8	ug/kg dry	1.00	09/25/09 02:49	CDC	9124113	8260B
Vinyl acetate	ND		29	1.2	ug/kg dry	1.00	09/25/09 02:49	CDC	9124113	8260B
Vinyl chloride	ND		12	0.23	ug/kg dry	1.00	09/25/09 02:49	CDC	9124113	8260B
Xylenes, total	ND		12	0.97	ug/kg dry	1.00	09/25/09 02:49	CDC	9124113	8260B
1,2-Dichloroethane-d4	102 %	and the second sec	Surr Limits:	(64-126%)			09/25/09 02:49	CDC	9/24113	8260B
4-Bromofluorobenzene	104 %		Surr Limits:				09/25/09 02:49	CDC	9/24113	8260B
Toluene-d8	112 %		Surr Limits:	the second se			09/25/09 02:49	CDC	9/24113	8260B
Semivolatile Organics by	GC/MS									
2,4,5-Trichlorophenol	ND	D10	990	210	ug/kg dry	5.00	09/26/09 16:37	ERK	9122039	8270C
2,4,6-Trichlorophenol	ND	D10	990	65	ug/kg dry	5.00	09/26/09 16:37	ERK	9122039	8270C
2,4-Dichlorophenol	ND	D10	990	51	ug/kg dry	5.00	09/26/09 16:37		9122039	8270C
2,4-Dimethylphenol	ND	D10	990	260	ug/kg dry	5.00	09/26/09 16:37	ERK	9122039	8270C
2,4-Dinitrophenol	ND	D10	1900	340	ug/kg dry	5.00	09/26/09 16:37	ERK	9122039	8270C
2,4-Dinitrotoluene	ND	D10	990	150	ug/kg dry	5.00	09/26/09 16:37	100 - 10 Mar 1	9122039	8270C
2,6-Dinitrotoluene	ND	D10	990	240	ug/kg dry	5.00	09/26/09 16:37		9122039	8270C
2-Chloronaphthalene	ND	D10	990	66	ug/kg dry	5.00	09/26/09 16:37	ERK	9122039	8270C
2-Chlorophenol	ND	D10	990	50	ug/kg dry	5.00	09/26/09 16:37		9122039	8270C
2-Methylnaphthalene	ND	D10	990	12	ug/kg dry	5.00	09/26/09 16:37		9122039	8270C
2-Methylphenol	ND	D10	990	30	ug/kg dry	5.00	09/26/09 16:37	ERK	9122039	8270C
2-Nitroaniline	ND	D10	1900	310		5.00	09/26/09 16:37		9122039	8270C
2-Nitrophenol	ND	D10	990	45	ug/kg dry	5.00	09/26/09 16:37	ERK	9122039	8270C
3 & 4 Methylphenol	ND	D10		45	ug/kg dry			ERK	9122039	8270C
3,3'-Dichlorobenzidine	ND		1900 990		ug/kg dry	5.00	09/26/09 16:37	ERK	9122039	
		D10		860	ug/kg dry	5.00	09/26/09 16:37			8270C
3-Nitroaniline	ND	D10	1900	230	ug/kg dry	5.00	09/26/09 16:37	ERK	9122039	8270C
4,6-Dinitro-2-methylphen ol	ND	D10	1900	340	ug/kg dry	5.00	09/26/09 16:37	ERK	9122039	8270C
4-Bromophenyl phenyl	ND	D10	990	310	ug/kg dry	5.00	09/26/09 16:37	ERK	9122039	8270C
ether					5.5.5		20000000, 4000		(\$1000 S.F.D.	
4-Chloro-3-methylphenol	ND	D10	990	40	ug/kg dry	5.00	09/26/09 16:37	ERK	9122039	8270C
4-Chloroaniline	ND	D10	990	290	ug/kg dry	5.00	09/26/09 16:37	ERK	9122039	8270C
4-Chlorophenyl phenyl	ND	D10	990	21	ug/kg dry	5.00	09/26/09 16:37	ERK	9122039	8270C
ether										
4-Nitroaniline	ND	D10	1900	110	ug/kg dry	5.00	09/26/09 16:37	ERK	9122039	8270C
4-Nitrophenol	ND	D10	1900	240	ug/kg dry	5.00	09/26/09 16:37	ERK	9122039	8270C
Acenaphthene	ND	D10	990	12	ug/kg dry	5.00	09/26/09 16:37	ERK	9122039	8270C
Acenaphthylene	ND	D10	990	8.0	ug/kg dry	5.00	09/26/09 16:37	ERK	9122039	8270C
Acetophenone	ND	D10	990	50	ug/kg dry	5.00	09/26/09 16:37	ERK	9122039	8270C
Anthracene	ND	D10	990	25	ug/kg dry	5.00	09/26/09 16:37		9122039	8270C
Atrazine	ND 4	J D10	990	44	ug/kg dry	5.00	09/26/09 16:37	ERK	9122039	8270C
Benzaldehyde	ND	D10	990	110	ug/kg dry	5.00	09/26/09 16:37		9122039	8270C
Benzo[a]anthracene	100	D10,J	990	17	ug/kg dry	5.00	09/26/09 16:37		9122039	8270C
Benzo[a]pyrene		J D10,L, J	990	24	ug/kg dry	5.00	09/26/09 16:37	ERK	9122039	8270C
Benzo[b]fluoranthene	110	D10,J	990	19	ug/kg dry	5.00	09/26/09 16:37		9122039	8270C
Benzo[g,h,i]perylene	ND	D10	990	12	ug/kg dry	5.00	09/26/09 16:37		9122039	8270C
Benzo[k]fluoranthene	ND	D10	990	11	ug/kg dry	5.00	09/26/09 16:37		9122039	8270C
Biphenyl	ND	D10	990	61	ug/kg dry	5.00	09/26/09 16:37		9122039	8270C
Bis(2-chloroethoxy)metha	ND	D10	990	53	ug/kg dry	5.00	09/26/09 16:37		9122039	8270C
ne Bis(2-chloroethyl)ether	ND	D10	990	85	ug/kg dry	5.00	09/26/09 16:37	ERK	9122039	8270C

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

41/2497

Received: 09/17/09-09/21/09 Reported: 10/05/09 15:28

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

SDG Number: RSI0643

Received: 09/17/09-09/21/09 Reported: 10/05/09 15:28

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

			ł	Analytical	Report					
20.000	Sample	Data			11-12-1	Dil	Date	Lab	2004	
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Client ID: B-3 (RSI0741	-09 - Solid) - c	ont.			Samp	oled: 09	/21/09 09:40	Recv	/d: 09/21/0	9 14:26
Semivolatile Organics	by GC/MS - c	ont.								
Bis(2-chloroisopropyl) ether	ND	D10	990	100	ug/kg dry	5.00	09/26/09 16:37	ERK	9122039	8270C
Bis(2-ethylhexyl) phthalate	ND	D10	990	320	ug/kg dry	5.00	09/26/09 16:37	ERK	9122039	8270C
Butyl benzyl phthalate	ND	D10	990	260	ug/kg dry	5.00	09/26/09 16:37	ERK	9122039	8270C
Caprolactam	ND	D10	990	420	ug/kg dry	5.00	09/26/09 16:37	ERK	9122039	8270C
Carbazole	ND	D10	990	11	ug/kg dry	5.00	09/26/09 16:37	ERK	9122039	8270C
Chrysene	89	D10,J	990	9.8	ug/kg dry	5.00	09/26/09 16:37	ERK	9122039	8270C
Dibenz[a,h]anthracene	ND	D10	990	12	ug/kg dry	5.00	09/26/09 16:37		9122039	8270C
Dibenzofuran	ND	D10	990	10	ug/kg dry	5.00	09/26/09 16:37		9122039	8270C
Diethyl phthalate	ND	D10	990	30	ug/kg dry	5.00	09/26/09 16:37		9122039	8270C
Dimethyl phthalate	ND	D10	990	26	ug/kg dry	5.00	09/26/09 16:37		9122039	8270C
Di-n-butyl phthalate	ND	D10	990	340	ug/kg dry	5.00	09/26/09 16:37		9122039	8270C
Di-n-octyl phthalate	ND	D10	990	23		5.00	09/26/09 16:37		9122039	8270C
Fluoranthene	160	D10,J	990	14	ug/kg dry	5.00	09/26/09 16:37		9122039	8270C
					ug/kg dry					
Fluorene	ND	D10	990	23	ug/kg dry	5.00	09/26/09 16:37		9122039	8270C
Hexachlorobenzene	ND	D10	990	49	ug/kg dry	5.00	09/26/09 16:37		9122039	8270C
Hexachlorobutadiene	ND	D10	990	50	ug/kg dry	5.00	09/26/09 16:37		9122039	8270C
Hexachlorocyclopentadie ne	ND	D10	990	300	ug/kg dry	5.00	09/26/09 16:37	ERK	9122039	8270C
Hexachloroethane	ND	D10	990	76	ug/kg dry	5.00	09/26/09 16:37	ERK	9122039	8270C
Indeno[1,2,3-cd]pyrene	ND	D10	990	27	ug/kg dry	5.00	09/26/09 16:37		9122039	8270C
Isophorone	ND	D10	990	49	ug/kg dry	5.00	09/26/09 16:37		9122039	8270C
Naphthalene	ND	D10	990	16			09/26/09 16:37		9122039	8270C
	ND				ug/kg dry	5.00			9122039	
Nitrobenzene		D10	990	43	ug/kg dry	5.00	09/26/09 16:37			8270C
N-Nitrosodi-n-propylamin e	ND	D10	990	78	ug/kg dry	5.00	09/26/09 16:37	ERK	9122039	8270C
N-Nitrosodiphenylamine	ND	D10,L	990	54	ug/kg dry	5.00	09/26/09 16:37	ERK	9122039	8270C
Phenanthrene	120	D10,J	990	21	ug/kg dry	5.00	09/26/09 16:37		9122039	8270C
Phenol	ND	D10	990	100	ug/kg dry	5.00	09/26/09 16:37		9122039	8270C
Pyrene	140	D10,J	990	6.3	ug/kg dry	5.00	09/26/09 16:37		9122039	8270C
2,4,6-Tribromophenol	68 %	D10	Surr Limits:	(39-146%)			09/26/09 16:37	ERK	9/22039	8270C
2-Fluorobiphenyl	79 %	D10	Surr Limits:				09/26/09 16:37	ERK	9/22039	8270C
2-Fluorophenol	64 %	D10	Surr Limits:				09/26/09 16:37		9/22039	8270C
Nitrobenzene-d5	73 %	D10	Surr Limits:	CONTRACTOR OF STREET			09/26/09 16:37		9/22039	8270C
Phenol-d5	74 %	D10	Surr Limits:				09/26/09 16:37		9122039	8270C
p-Terphenyl-d14	80 %	D10	Surr Limits:				09/26/09 16:37		9/22039	8270C
Organochlorine Pestic	ides by EPA M	lethod 8081	A							
4,4'-DDD [2C]	ND	QFL, D04	9.6	1.9	ug/kg dry	5.00	09/30/09 03:31	MAN	9122040	8081A
4,4'-DDE [2C]	ND	QFL, D04	9.6	2.8	ug/kg dry	5.00	09/30/09 03:31		9122040	8081A
4,4'-DDT [2C]	ND	QFL, D04	9.6	2.2	ug/kg dry	5.00	09/30/09 03:31		9122040	8081A
Aldrin [2C]	ND	QFL, D04	9.6	0.98	ug/kg dry	5.00	09/30/09 03:31		9122040	8081A
alpha-BHC [2C]	ND	QFL, D04	9.6	1.7	ug/kg dry	5.00	09/30/09 03:31		9122040	8081A
alpha-Chlordane [2C]										8081A
	ND	QFL, D04	9.6	4.8	ug/kg dry	5.00	09/30/09 03:31	MAN	9122040	
beta-BHC [2C]	ND	QFL, D04	9.6	6.9	ug/kg dry	5.00	09/30/09 03:31		9122040	8081A
Chlordane [2C]	ND	QFL, D04	96	21	ug/kg dry	5.00	09/30/09 03:31		9122040	8081A
delta-BHC [2C]	ND	QFL, D04	9.6	1.3	ug/kg dry	5.00	09/30/09 03:31	MAN	9122040	8081A
Dieldrin [2C]	ND 29 UL		9.629		ug/kg dry	5.00	09/30/09 03:31	MAN	9122040	8081A
Endosulfan I [2C]	ND	QFL, D04	9.6	2.0	ug/kg dry	5.00	09/30/09 03:31	MAN	9122040	8081A
Endosulfan II [2C]	NO 92 11	QFL, D04	9.6	1.7	ug/kg dry	5.00	09/30/09 03:31	MAN	9122040	8081A

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

42/2497

+meric est

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

SDG Number: RSI0643

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

			A	nalytical	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Client ID: B-3 (RSI0741-0						1.1.1.1	/21/09 09:40		/d: 09/21/0	
	1000		and the second			nour co				.0 14.20
Organochlorine Pesticio	des by EPA N	lethod 8081	A - cont.							
Endosulfan sulfate [2C]	ND	QFL, D04	9.6	1.8	ug/kg dry	5.00	09/30/09 03:31	MAN	9122040	8081A
Endrin [2C]	21	QFL, D04	9.6	3.1	ug/kg dry	5.00	09/30/09 03:31	MAN	9122040	8081A
Endrin aldehyde [2C]	ND	QFL, D04	9.6	2.4	ug/kg dry	5.00	09/30/09 03:31	MAN	9122040	8081A
Endrin ketone [2C]	ND	QFL, D04	9.6	2.4	ug/kg dry	5.00	09/30/09 03:31		9122040	8081A
gamma-BHC (Lindane) [2C]	ND	QFL, D04	9.6	1.7	ug/kg dry	5.00	09/30/09 03:31	MAN	9122040	8081A
gamma-Chlordane [2C]	NO 24 U	QFL, D04	9.6	1.3	ug/kg dry	5.00	09/30/09 03:31	MAN	9122040	8081A
Heptachlor [2C]	ND	QFL, D04	9.6	1.5	ug/kg dry	5.00	09/30/09 03:31	MAN	9122040	8081A
Heptachlor epoxide [2C]	ND	QFL, D04	9.6	2.5	ug/kg dry	5.00	09/30/09 03:31	MAN	9122040	8081A
Methoxychlor [2C]	ND	QFL, D04	9.6	2.6	ug/kg dry	5.00	09/30/09 03:31	MAN	9122040	8081A
Toxaphene [2C]	ND	QFL, D04	96	56	ug/kg dry	5.00	09/30/09 03:31	MAN	9122040	8081A
Decachlorobiphenyl [2C]	91 %	QFL, D04	Surr Limits:	(42-146%)			09/30/09 03:31	MAN	9/22040	8081A
Tetrachloro-m-xylene [2C]	87 %	QFL, D04	Surr Limits:				09/30/09 03:31		9/22040	8081A
Total Metals by SW 846	Series Metho	ods								
Aluminum	11200		11.5	NR	mg/kg dry	1.00	09/25/09 03:56	LMH	9123026	6010B
Antimony	ND U	15	17.3	NR	mg/kg dry	1.00	09/24/09 02:16		9123026	6010B
Arsenic		J	2.3	NR	mg/kg dry	1.00	09/24/09 02:16		9123026	6010B
Barium		5	0.576	NR	mg/kg dry	1.00	09/24/09 02:16		9123026	6010B
Beryllium	0.561		0.231	NR	mg/kg dry	1.00	09/24/09 02:16		9123026	6010B
Cadmium	0.511		0.231	NR	mg/kg dry	1.00	09/24/09 02:16		9123026	6010B
Calcium		T	57.6	NR	mg/kg dry	1.00	09/24/09 02:16		9123026	6010B
Chromium		5	0.576	NR	mg/kg dry	1.00	09/24/09 02:16		9123026	6010B
Cobalt	5.25	5	0.576	NR	mg/kg dry	1.00	09/24/09 02:16		9123026	6010B
Copper		t	1.2	NR	mg/kg dry	1.00	09/24/09 02:16		9123026	6010B
ron	17400	JB1, B3, B	11.5	NR	mg/kg dry	1.00	09/24/09 02:16		9123026	6010B
_ead	208	J	1.2	NR	mg/kg dry	1.00	09/24/09 02:16		9123026	6010B
Vagnesium		F	23.1	NR	mg/kg dry	1.00	09/24/09 02:16		9123026	6010B
Vanganese	1450	ј В1, В	0.2	NR	mg/kg dry	1.00	09/24/09 02:16		9123026	6010B
Vickel	4 12.3	T BI, B	5.76	NR	mg/kg dry	1.00	09/24/09 02:16		9123026	6010B
Potassium	1420		34.6	NR	mg/kg dry	1.00	09/24/09 02:16		9123026	6010B
Selenium	ND L	15	4.6	NR	mg/kg dry	1.00	09/24/09 02:16		9123026	6010B
Silver	ND		0.576	NR	mg/kg dry	1.00	09/24/09 02:16		9123026	6010B
Sodium	184		161	NR	mg/kg dry	1.00	09/24/09 02:16		9123026	6010B
Thallium	ND		6.9	NR	mg/kg dry	1.00	09/24/09 02:16		9123026	6010B
/anadium	22.0	5	0.576	NR	mg/kg dry	1.00	09/24/09 02:16		9123026	6010B
Zinc	147	J	2.3	NR	mg/kg dry	1.00	09/24/09 02:16		9123026	6010B
Mercury	0.259		0.0243	NR	mg/kg dry	1.00	09/29/09 17:12		9123026	7471A
General Chemistry Para	meters									
Percent Solids	86	6	0.010	NR	%	1.00	09/22/09 14:57	CJM	9122026	Dry Weight
Cyanide	ND	uJ	1.1	0.9	mg/kg dry	1.00	09/24/09 08:09		9123064	9012A

43/2497

Received: 09/17/09-09/21/09

10/05/09 15:28 Reported:

THE LEADER IN ENVIRONMENTAL TESTING

Received: 09/17/09-09/21/09 Reported: 10/05/09 15:28

 Golder Associates, Inc. - Niagara Falls, NY
 SDG Number: RSI0643
 Received:

 2221 Niagara Falls Blvd., Ste 9
 Reported:

 Niagara Falls, NY 14304
 Project: Golder - Niagara Transformer site (Level IV)

 Project Number:
 [none]

1.10.11.1				
	Analy	vtica	Rep	ort

Analytical Report											
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method	
Client ID: B-4 (0-2) (RSI0741-04 - Solid)				Sampled: 09/21/09 09:10			Recvd: 09/21/09 14:26				
Polychlorinated Bipheny	Is by EPA N	lethod 8082									
Aroclor 1016 [2C]	ND		19	3.7	ug/kg dry	1.00	09/23/09 13:18	SCH	9122042	8082	
Aroclor 1221 [2C]	ND		19	3.7	ug/kg dry	1.00	09/23/09 13:18	SCH	9122042	8082	
Aroclor 1232 [2C]	ND		19	3.7	ug/kg dry	1.00	09/23/09 13:18	SCH	9122042	8082	
Aroclor 1242 [2C]	ND		19	4.1	ug/kg dry	1.00	09/23/09 13:18	SCH	9122042	8082	
Aroclor 1248 [2C]	ND		19	3.7	ug/kg dry	1.00	09/23/09 13:18	SCH	9122042	8082	
Aroclor 1254 [2C]	ND		19	4.0	ug/kg dry	1.00	09/23/09 13:18	SCH	9122042	8082	
Aroclor 1260 [2C]	84		19	4.0	ug/kg dry	1.00	09/23/09 13:18	SCH	9122042	8082	
Decachlorobiphenyl [2C]	83 %		Surr Limits:	(34-148%)			09/23/09 13:18	SCH	9/22042	8082	
Tetrachloro-m-xylene [2C]	88 %		Surr Limits:	(35-134%)			09/23/09 13:18	SCH	9122042	8082	
General Chemistry Parar	neters										
Percent Solids	86		0.010	NR	%	1.00	09/22/09 14:47	CJM	9122026	Dry Weight	

THE	LEADER	IN	ENVIRONMENTAL	TESTING
	No. 100-1		ment of the state of the state of the state of the	the bor 1 and 1 and

Golder Associates, Inc. - Niagara Falls, NY

Received: 09/17/09-09/21/09

Reported: 10/05/09 15:28

2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

SDG Number: RSI0643

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

			ŀ	Analytical	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Client ID: B-4 (2-4) (RSI07	741-05 - Solie	d)			Samp	led: 09	/21/09 09:10	Recv	d: 09/21/0	9 14:26
Polychlorinated Bipheny	Is by EPA N	lethod 8082								
Aroclor 1016 [2C]	ND		20	3.8	ug/kg dry	1.00	09/23/09 13:37	SCH	9122042	8082
Aroclor 1221 [2C]	ND		20	3.8	ug/kg dry	1.00	09/23/09 13:37	SCH	9122042	8082
Aroclor 1232 [2C]	ND		20	3.8	ug/kg dry	1.00	09/23/09 13:37	SCH	9122042	8082
Aroclor 1242 [2C]	ND		20	4.2	ug/kg dry	1.00	09/23/09 13:37	SCH	9122042	8082
Aroclor 1248 [2C]	ND		20	3.8	ug/kg dry	1.00	09/23/09 13:37	SCH	9122042	8082
Aroclor 1254 [2C]	ND		20	4.1	ug/kg dry	1.00	09/23/09 13:37	SCH	9122042	8082
Aroclor 1260 [2C]	ND		20	4.1	ug/kg dry	1.00	09/23/09 13:37	SCH	9122042	8082
Decachlorobiphenyl [2C]	82 %		Surr Limits:	(34-148%)			09/23/09 13:37	SCH	9122042	8082
Tetrachloro-m-xylene [2C]	88 %		Surr Limits:	(35-134%)			09/23/09 13:37	SCH	9122042	8082
General Chemistry Parar	neters									
Percent Solids	85		0.010	NR	%	1.00	09/22/09 14:49	CJM	9122026	Dry Weigh

TestAmerica

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304 SDG Number: RSI0643

46/2497

Received: 09/17/09-09/21/09 Reported: 10/05/09 15:28

poneu. 10/00/08 10.20

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

			A	nalytical	Report					
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Client ID: B-4 (RSI0741-	06 - Solid)				Samp	led: 09	/21/09 09:15	Recv	rd: 09/21/0	9 14:26
Volatile Organic Comp	ounds by EPA	A 8260B								
1,1,1-Trichloroethane	ND		5.7	0.41	ug/kg dry	1.00	09/25/09 02:24	CDC	9124113	8260B
1,1,2,2-Tetrachloroethane	ND		5.7	0.92	ug/kg dry	1.00	09/25/09 02:24	CDC	9124113	8260B
1,1,2-Trichloroethane	ND		5.7	0.28	ug/kg dry	1.00	09/25/09 02:24	CDC	9124113	8260B
1,1,2-Trichlorotrifluoroeth	ND		5.7	0.60	ug/kg dry	1.00	09/25/09 02:24	CDC	9124113	8260B
ane										
,1-Dichloroethane	ND		5.7	0.28	ug/kg dry	1.00	09/25/09 02:24	CDC	9124113	8260B
,1-Dichloroethene	ND		5.7	0.69	ug/kg dry	1.00	09/25/09 02:24	CDC	9124113	8260B
,2,4-Trichlorobenzene	ND		5.7	0.34	ug/kg dry	1.00	09/25/09 02:24	CDC	9124113	8260B
,2-Dibromo-3-chloroprop	ND		5.7	1.1	ug/kg dry	1.00	09/25/09 02:24	CDC	9124113	8260B
ane										
,2-Dibromoethane EDB)	ND		5.7	0.21	ug/kg dry	1.00	09/25/09 02:24	CDC	9124113	8260B
,2-Dichlorobenzene	ND		5.7	0.85	ug/kg dry	1.00	09/25/09 02:24	CDC	9124113	8260B
,2-Dichloroethane	ND		5.7	0.28	ug/kg dry	1.00	09/25/09 02:24	CDC	9124113	8260B
,2-Dichloroethene, Total	ND		11	3.0	ug/kg dry	1.00	09/25/09 02:24	CDC	9124113	8260B
,2-Dichloropropane	ND		5.7	0.29	ug/kg dry	1.00	09/25/09 02:24	CDC	9124113	8260B
,3-Dichlorobenzene	ND		5.7	0.80	ug/kg dry	1.00	09/25/09 02:24	CDC	9124113	8260B
,4-Dichlorobenzene	ND		5.7	0.79	ug/kg dry	1.00	09/25/09 02:24	CDC	9124113	8260B
-Butanone (MEK)	ND		28	7.7	ug/kg dry	1.00	09/25/09 02:24	CDC	9124113	8260B
-Hexanone	ND		28	2.0	ug/kg dry	1.00	09/25/09 02:24	CDC	9124113	8260B
-Methyl-2-pentanone MIBK)	ND		28	1.9	ug/kg dry	1.00	09/25/09 02:24	CDC	9124113	8260B
cetone	ND		28	1.2	ug/kg dry	1.00	09/25/09 02:24	CDC	9124113	8260B
lenzene	ND		5.7	0.28	ug/kg dry	1.00	09/25/09 02:24		9124113	8260B
romodichloromethane	ND		5.7	0.29	ug/kg dry	1.00	09/25/09 02:24		9124113	8260B
fromoform	ND		5.7	0.52	ug/kg dry	1.00	09/25/09 02:24	CDC	9124113	8260B
romomethane	ND		5.7	0.52	ug/kg dry	1.00	09/25/09 02:24	CDC	9124113	8260B
arbon disulfide	ND		5.7	0.49	ug/kg dry	1.00	09/25/09 02:24	CDC	9124113	8260B
Carbon Tetrachloride	ND		5.7	0.20	ug/kg dry	1.00	09/25/09 02:24	CDC	9124113	8260B
chlorobenzene	NO1.9	UB, J	5.7	0.25	ug/kg dry	1.00	09/25/09 02:24		9124113	8260B
hlorodibromomethane	ND		5.7	0.31	ug/kg dry	1.00	09/25/09 02:24		9124113	8260B
hloroethane	ND		5.7	0.92	ug/kg dry	1.00	09/25/09 02:24		9124113	8260B
Chloroform	ND		5.7	0.35	ug/kg dry	1.00	09/25/09 02:24	CDC	9124113	8260B
Chloromethane	ND		5.7	0.34	ug/kg dry	1.00	09/25/09 02:24		9124113	8260B
is-1,2-Dichloroethene	ND		5.7	0.28	ug/kg dry	1.00	09/25/09 02:24	CDC	9124113	8260B
is-1,3-Dichloropropene	ND		5.7	0.32	ug/kg dry	1.00	09/25/09 02:24	CDC	9124113	8260B
Cyclohexane	ND		5.7	0.26	ug/kg dry	1.00	09/25/09 02:24	CDC	9124113	8260B
Dichlorodifluoromethane	ND		5.7	0.47	ug/kg dry	1.00	09/25/09 02:24		9124113	8260B
thylbenzene	ND		5.7	0.39	ug/kg dry	1.00	09/25/09 02:24		9124113	8260B
sopropylbenzene	ND		5.7	0.37	ug/kg dry	1.00	09/25/09 02:24		9124113	8260B
lethyl Acetate	ND		5.7	0.31	ug/kg dry	1.00	09/25/09 02:24		9124113	8260B
lethyl tert-Butyl Ether	ND		5.7	0.56	ug/kg dry	1.00	09/25/09 02:24		9124113	8260B
fethylcyclohexane	ND		5.7	0.37	ug/kg dry	1.00	09/25/09 02:24		9124113	8260B
lethylene Chloride	13		5.7	0.39	ug/kg dry	1.00	09/25/09 02:24		9124113	8260B
ityrene	ND		5.7	0.28	ug/kg dry	1.00	09/25/09 02:24		9124113	8260B
etrachloroethene	ND		5.7	0.76	ug/kg dry	1.00	09/25/09 02:24		9124113	8260B
oluene	ND	в	5.7	0.96	ug/kg dry	1.00	09/25/09 02:24		9124113	8260B
ans-1,2-Dichloroethene	ND	-	5.7	0.58	ug/kg dry	1.00	09/25/09 02:24		9124113	8260B
rans-1,3-Dichloropropen	ND		5.7	0.28	ug/kg dry	1.00	09/25/09 02:24		9124113	8260B
richloroethene	ND		5.7	0.39	ug/kg dry	1.00	09/25/09 02:24	CDC	9124113	8260B

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

meric lest

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

SDG Number: RSI0643

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

			A	Analytical	Report					
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Client ID: B-4 (RSI0741-0	6 - Solid) - (cont.			Samp	led: 09	/21/09 09:15	Recy	/d: 09/21/0	9 14:26
Volatile Organic Compo	unds by EP	A 8260B - co	nt.							
Trichlorofluoromethane	ND		5.7	1.8	ug/kg dry	1.00	09/25/09 02:24	CDC	9124113	8260B
Vinyl acetate	ND		28	1.2	ug/kg dry	1.00	09/25/09 02:24	CDC	9124113	8260B
Vinyl chloride	ND		11	0.23	ug/kg dry	1.00	09/25/09 02:24	CDC	9124113	8260B
Xylenes, total	ND		11	0.95	ug/kg dry	1.00	09/25/09 02:24	CDC	9124113	8260B
1,2-Dichloroethane-d4	100 %		Surr Limits:	(64-126%)			09/25/09 02:24	CDC	9/24113	8260B
4-Bromofluorobenzene	107 %		Surr Limits:				09/25/09 02:24	CDC	9/24113	8260B
Toluene-d8	114 %		Surr Limits:	(71-125%)			09/25/09 02:24	CDC	9124113	8260B
Semivolatile Organics b	GC/MS									
2,4,5-Trichlorophenol	ND		190	41	ug/kg dry	1.00	09/26/09 16:13	ERK	9122039	8270C
2,4,6-Trichlorophenol	ND		190	13	ug/kg dry	1.00	09/26/09 16:13	ERK	9122039	8270C
2,4-Dichlorophenol	ND		190	9.9	ug/kg dry	1.00	09/26/09 16:13		9122039	8270C
2,4-Dimethylphenol	ND		190	51	ug/kg dry	1.00	09/26/09 16:13		9122039	8270C
2,4-Dinitrophenol	ND		370	66	ug/kg dry	1.00	09/26/09 16:13	ERK	9122039	8270C
2,4-Dinitrotoluene	ND		190	29	ug/kg dry	1.00	09/26/09 16:13	ERK	9122039	8270C
2,6-Dinitrotoluene	ND		190	46	ug/kg dry	1.00	09/26/09 16:13		9122039	8270C
2-Chloronaphthalene	ND		190	13	ug/kg dry	1.00	09/26/09 16:13	ERK	9122039	8270C
2-Chlorophenol	ND		190	9.6	ug/kg dry	1.00	09/26/09 16:13		9122039	8270C
2-Methylnaphthalene	7.5	J	190	2.3	ug/kg dry	1.00	09/26/09 16:13		9122039	8270C
2-Methylphenol	ND		190	5.8	ug/kg dry	1.00	09/26/09 16:13	ERK	9122039	8270C
2-Nitroaniline	ND		370	61	ug/kg dry	1.00	09/26/09 16:13		9122039	8270C
2-Nitrophenol	ND		190	8.7	ug/kg dry	1.00	09/26/09 16:13		9122039	8270C
3 & 4 Methylphenol	ND		370	11	ug/kg dry	1.00	09/26/09 16:13	ERK	9122039	8270C
3.3'-Dichlorobenzidine	ND		190	170	ug/kg dry	1.00	09/26/09 16:13	ERK	9122039	8270C
3-Nitroaniline	ND		370	44	ug/kg dry	1.00	09/26/09 16:13		9122039	8270C
	ND		370	65		1.00	09/26/09 16:13	ERK	9122039	8270C
4,6-Dinitro-2-methylphen ol	ND		570	05	ug/kg dry	1.00	09/20/09 10.13	ERN	9122039	02/00
	ND		190	60	ug/kg dry	1 00	09/26/09 16:13	EDV	9122039	8270C
4-Bromophenyl phenyl ether	ND		190	60	ug/kg ary	1.00	09/20/09 10.13	ERK	9122039	02/00
4-Chloro-3-methylphenol	ND		190	7.8	ug/kg dry	1.00	09/26/09 16:13	ERK	9122039	8270C
4-Chloroaniline	ND		190	56	ug/kg dry	1.00	09/26/09 16:13	ERK	9122039	8270C
4-Chlorophenyl phenyl	ND		190	4.0	ug/kg dry	1.00	09/26/09 16:13	ERK	9122039	8270C
ether	ND		150	4.0	ug/kg ury	1.00	03/20/03 10.13	LINK	5122005	02100
4-Nitroaniline	ND		370	21	ug/kg dry	1.00	09/26/09 16:13	ERK	9122039	8270C
4-Nitrophenol	ND		370	46	ug/kg dry	1.00	09/26/09 16:13	ERK	9122039	8270C
Acenaphthene	ND		190	2.2	ug/kg dry	1.00	09/26/09 16:13		9122039	8270C
Acenaphthylene	ND		190	1.5	ug/kg dry	1.00	09/26/09 16:13		9122039	8270C
Acetophenone	ND		190	9.7	ug/kg dry	1.00	09/26/09 16:13		9122039	8270C
Anthracene	ND		190	4.9	ug/kg dry	1.00	09/26/09 16:13		9122039	8270C
Atrazine	ND	UJ	190	8.4	ug/kg dry	1.00	09/26/09 16:13		9122039	8270C
Benzaldehyde	ND	45	190	21	ug/kg dry	1.00	09/26/09 16:13		9122039	8270C
Benzo[a]anthracene	92	J	190	3.3	ug/kg dry ug/kg dry	1.00	09/26/09 16:13		9122039	8270C
Benzo[a]pyrene	110		190				09/26/09 16:13			
		J L, J		4.6	ug/kg dry	1.00			9122039	8270C
Benzo[b]fluoranthene	120	J	190	3.7	ug/kg dry	1.00	09/26/09 16:13		9122039	8270C
Benzo[g,h,i]perylene	81	J	190	2.3	ug/kg dry	1.00	09/26/09 16:13		9122039	8270C
Benzo[k]fluoranthene	46	J	190	2.1	ug/kg dry	1.00	09/26/09 16:13		9122039	8270C
Biphenyl	ND		190	12	ug/kg dry	1.00	09/26/09 16:13		9122039	8270C
Bis(2-chloroethoxy)metha ne	ND		190	10	ug/kg dry	1.00	09/26/09 16:13	ERK	9122039	8270C
Bis(2-chloroethyl)ether	ND		190	16	ug/kg dry	1.00	09/26/09 16:13	EDIA	9122039	8270C

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

09/17/09-09/21/09 Received: Reported:

10/05/09 15:28

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

SDG Number: RSI0643

Received: 09/17/09-09/21/09

Reported: 10/05/09 15:28

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

			1	Analytical	Report					
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Client ID: B-4 (RSI0741-0	6 - Solid) - co	ont.			Samp	oled: 09	/21/09 09:15	Recy	/d: 09/21/0	9 14:26
Semivolatile Organics by	GC/MS - co	nt.								
Bis(2-chloroisopropyl) ether	ND		190	20	ug/kg dry	1.00	09/26/09 16:13	ERK	9122039	8270C
Bis(2-ethylhexyl)	320		190	61	ug/kg dry	1.00	09/26/09 16:13	ERK	9122039	8270C
Butyl benzyl phthalate	ND		190	51	ug/kg dry	1.00	09/26/09 16:13	ERK	9122039	8270C
Caprolactam	ND		190	82	ug/kg dry	1.00	09/26/09 16:13	ERK	9122039	8270C
Carbazole	ND		190	2.2	ug/kg dry	1.00	09/26/09 16:13	ERK	9122039	8270C
Chrysene	97	J	190	1.9	ug/kg dry	1.00	09/26/09 16:13	ERK	9122039	8270C
Dibenz[a,h]anthracene	22	J	190	2.2	ug/kg dry	1.00	09/26/09 16:13	ERK	9122039	8270C
Dibenzofuran	ND		190	2.0	ug/kg dry	1.00	09/26/09 16:13		9122039	8270C
Diethyl phthalate	ND		190	5.7	ug/kg dry	1.00	09/26/09 16:13		9122039	8270C
Dimethyl phthalate	ND		190	4.9	ug/kg dry	1.00	09/26/09 16:13		9122039	8270C
Di-n-butyl phthalate	ND		190	66	ug/kg dry	1.00	09/26/09 16:13		9122039	8270C
Di-n-octyl phthalate	ND		190	4.4	ug/kg dry	1.00	09/26/09 16:13		9122039	8270C
Fluoranthene	140	J	190	2.7		1.00	09/26/09 16:13		9122039	8270C
		2			ug/kg dry				9122039	
Fluorene	ND		190	4.4	ug/kg dry	1.00	09/26/09 16:13			8270C
Hexachlorobenzene	ND		190	9.4	ug/kg dry	1.00	09/26/09 16:13		9122039	8270C
Hexachlorobutadiene	ND		190	9.7	ug/kg dry	1.00	09/26/09 16:13	ERK	9122039	8270C
Hexachlorocyclopentadie ne	ND		190	57	ug/kg dry	1.00	09/26/09 16:13	ERK	9122039	8270C
Hexachloroethane	ND		190	15	ug/kg dry	1.00	09/26/09 16:13	ERK	9122039	8270C
Indeno[1,2,3-cd]pyrene	69	L	190	5.2	ug/kg dry	1.00	09/26/09 16:13	ERK	9122039	8270C
sophorone	ND		190	9.5	ug/kg dry	1.00	09/26/09 16:13		9122039	8270C
Naphthalene	ND		190	3.2	ug/kg dry	1.00	09/26/09 16:13	ERK	9122039	8270C
Nitrobenzene	ND		190	8.4	ug/kg dry	1.00	09/26/09 16:13	ERK	9122039	8270C
N-Nítrosodi-n-propylamin	ND		190	15	ug/kg dry	1.00	09/26/09 16:13		9122039	8270C
9				15		1.00				
N-Nitrosodiphenylamine	ND	L	190	10	ug/kg dry	1.00	09/26/09 16:13	ERK	9122039	8270C
Phenanthrene	58	J	190	4.0	ug/kg dry	1.00	09/26/09 16:13	ERK	9122039	8270C
Phenol	ND		190	20	ug/kg dry	1.00	09/26/09 16:13	ERK	9122039	8270C
Pyrene	130	Ĵ	190	1.2	ug/kg dry	1.00	09/26/09 16:13	ERK	9122039	8270C
2,4,6-Tribromophenol	78 %			(39-146%)			09/26/09 16:13		9/22039	8270C
2-Fluorobiphenyl	74 %			(37-120%)			09/26/09 16:13		9122039	8270C
2-Fluorophenol	62 %			(18-120%)			09/26/09 16:13		9/22039	8270C
Nitrobenzene-d5	68 %		Surr Limits:				09/26/09 16:13		9/22039	8270C
Phenol-d5	69 %		Surr Limits:				09/26/09 16:13		9/22039	8270C
p-Terphenyl-d14	76 %		Surr Limits:	(58-147%)			09/26/09 16:13	ERK	9122039	8270C
Organochlorine Pesticid	and the second se									
4,4'-DDD [2C]	ND	QFL	1.9	0.37	ug/kg dry	1.00	09/30/09 02:55		9122040	8081A
4,4'-DDE [2C]	ND	QFL	1.9	0.54	ug/kg dry	1.00	09/30/09 02:55		9122040	8081A
4,4'-DDT [2C]	ND	QFL	1.9	0.43	ug/kg dry	1.00	09/30/09 02:55	MAN	9122040	8081A
Aldrin [2C]	ND	QFL	1.9	0.19	ug/kg dry	1.00	09/30/09 02:55	MAN	9122040	8081A
alpha-BHC [2C]	ND	QFL	1.9	0.34	ug/kg dry	1.00	09/30/09 02:55	MAN	9122040	8081A
alpha-Chlordane [2C]	ND	QFL	1.9	0.94	ug/kg dry	1.00	09/30/09 02:55	MAN	9122040	8081A
beta-BHC [2C]	ND	QFL	1.9	1.4	ug/kg dry	1.00	09/30/09 02:55		9122040	8081A
Chlordane [2C]	ND	QFL	19	4.2	ug/kg dry	1.00	09/30/09 02:55		9122040	8081A
delta-BHC [2C]	0.85	QFL,J	1.9	0.25	ug/kg dry	1.00	09/30/09 02:55		9122040	8081A
Dieldrin [2C]	1.2 N		1.9	0.45	ug/kg dry	1.00	09/30/09 02:55		9122040	8081A
Endosulfan I [2C]	ND	QFL	1.9	0.40	ug/kg dry	1.00	09/30/09 02:55		9122040	8081A
Endosulfan II [2C]	ND	QFL	1.9	0.40	ug/kg dry	1.00	09/30/09 02:55		9122040	8081A
	ND	SCI L	1.5	0.04	uging ury	1.00	00100100 02.00	INITAL A	0122040	OUDIA

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

48/2497

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

SDG Number: RSI0643

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

			ŀ	Analytical	Report					
	Sample	Data		A		Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Client ID: B-4 (RSI0741	-06 - Solid) - c	ont.			Samp	led: 09	21/09 09:15	Recv	d: 09/21/0	9 14:26
Organochlorine Pestic	ides by EPA N	Aethod 8081	A - cont.							
Endosulfan sulfate [2C]	ND	QFL	1.9	0.35	ug/kg dry	1.00	09/30/09 02:55	MAN	9122040	8081A
Endrin [2C]	1.1	QFL,J	1.9	0.61	ug/kg dry	1.00	09/30/09 02:55	MAN	9122040	8081A
Endrin aldehyde [2C]	ND	QFL	1.9	0.48	ug/kg dry	1.00	09/30/09 02:55	MAN	9122040	8081A
Endrin ketone [2C]	ND	QFL	1.9	0.46	ug/kg dry	1.00	09/30/09 02:55	MAN	9122040	8081A
gamma-BHC (Lindane) [2C]	ND	QFL	1.9	0.33	ug/kg dry	1.00	09/30/09 02:55	MAN	9122040	8081A
gamma-Chlordane [2C]	NB 0.53 U	QFL,J	1.9	0.26	ug/kg dry	1.00	09/30/09 02:55	MAN	9122040	8081A
Heptachlor [2C]	ND	QFL	1.9	0.29	ug/kg dry	1.00	09/30/09 02:55	MAN	9122040	8081A
Heptachlor epoxide [2C]	ND	QFL	1.9	0.49	ug/kg dry	1.00	09/30/09 02:55	MAN	9122040	8081A
Methoxychlor [2C]	ND	QFL	1.9	0.50	ug/kg dry	1.00	09/30/09 02:55	MAN	9122040	8081A
Toxaphene [2C]	ND	QFL	19	11	ug/kg dry	1.00	09/30/09 02:55	MAN	9122040	8081A
Decachlorobiphenyl [2C]	102 %	QFL	Surr Limits:	(42-146%)			09/30/09 02:55	MAN	9/22040	8081A
Tetrachloro-m-xylene [2C]	73 %	QFL	Surr Limits:	(37-136%)			09/30/09 02:55	MAN	9122040	8081A
Total Metals by SW 84	6 Series Metho	ods								
Aluminum	6160		11.1	NR	mg/kg dry	1.00	09/25/09 03:51	LMH	9123026	6010B
Antimony	ND 6	UT	16.6	NR	mg/kg dry	1.00	09/24/09 02:11	AMH	9123026	6010B
Arsenic	2.4	t	2.2	NR	mg/kg dry	1.00	09/24/09 02:11	AMH	9123026	6010B
Barium	39.8	F	0.555	NR	mg/kg dry	1.00	09/24/09 02:11	AMH	9123026	6010B
Beryllium	0.293	-	0.222	NR	mg/kg dry	1.00	09/24/09 02:11	AMH	9123026	6010B
Cadmium	0.243		0.222	NR	mg/kg dry	1.00	09/24/09 02:11	AMH	9123026	6010B
Calcium	41500	J	55.5	NR	mg/kg dry	1.00	09/24/09 02:11	AMH	9123026	6010B
Chromium	9.88	J .	0.555	NR	mg/kg dry	1.00	09/24/09 02:11	AMH	9123026	6010B
Cobalt	4.70	- 91	0.555	NR	mg/kg dry	1.00	09/24/09 02:11	AMH	9123026	6010B
Copper	11.1	J	1.1	NR	mg/kg dry	1.00	09/24/09 02:11	AMH	9123026	6010B
Iron	11700	B1, B3, B	11.1	NR	mg/kg dry	1.00	09/24/09 02:11	AMH	9123026	6010B
Lead	13.8	I	1.1	NR	mg/kg dry	1.00	09/24/09 02:11	AMH	9123026	6010B
Magnesium	3390	5	22.2	NR	mg/kg dry	1.00	09/24/09 02:11	AMH	9123026	6010B
Manganese	337	B1, B	0.2	NR	mg/kg dry	1.00	09/24/09 02:11	AMH	9123026	6010B
Nickel	10.3		5.55	NR	mg/kg dry	1.00	09/24/09 02:11	AMH	9123026	6010B
Potassium	1170		33.3	NR	mg/kg dry	1.00	09/24/09 02:11	AMH	9123026	6010B
Selenium	ND	45	4.4	NR	mg/kg dry	1.00	09/24/09 02:11	AMH	9123026	6010B
Silver	ND		0.555	NR	mg/kg dry	1.00	09/24/09 02:11	AMH	9123026	6010B
Sodium	ND		155	NR	mg/kg dry	1.00	09/24/09 02:11	AMH	9123026	6010B
Thallium	ND		6.7	NR	mg/kg dry	1.00	09/24/09 02:11		9123026	6010B
/anadium	14.6	す	0.555	NR	mg/kg dry	1.00	09/24/09 02:11	AMH	9123026	6010B
Zinc	62.8	T	2.2	NR	mg/kg dry	1.00	09/24/09 02:11		9123026	6010B
Mercury	ND		0.0225	NR	mg/kg dry	1.00	09/29/09 17:10		9125041	7471A
General Chemistry Pa	rameters									
Percent Solids	88		0.010	NR	%	1.00	09/22/09 14:51		9122026	Dry Weigh
Cyanide	ND	UJ	1.1	1.0	mg/kg dry	1.00	09/24/09 08:13	imm	9123064	9012A

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

Received: 09/17/09-09/21/09 Reported: 10/05/09 15:28 Ameri

THE LEADER IN ENVIRONMENTAL TESTING

2221 Niagara Falls Blvd., Ste 9

Niagara Falls, NY 14304

Golder Associates, Inc. - Niagara Falls, NY

50/2497

09/17/09-09/21/09 Received:

SDG Number: RSI0643

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

10/05/09 15:28 Reported:

Analytical Report Dil Sample Data Date Lab MDL RL Analyte Result Qualifiers Units Fac Analyzed Tech Batch Method Client ID: B-5 (0-2) (RSI0695-05 - Solid) Sampled: 09/18/09 09:57 Recvd: 09/18/09 18:43 Polychlorinated Biphenyls by EPA Method 8082 Aroclor 1016 [2C] ND D08 930 180 ug/kg dry 50.0 09/23/09 10:51 SCH 9122042 8082 ND 9122042 D08 8082 Aroclor 1221 [2C] 930 180 ug/kg dry 50.0 09/23/09 10:51 SCH Aroclor 1232 [2C] D08 ug/kg dry 9122042 8082 ND 930 180 50.0 09/23/09 10:51 SCH Aroclor 1242 [2C] ND D08 930 200 50.0 09/23/09 10:51 SCH 9122042 8082 ug/kg dry Aroclor 1248 [2C] ND D08 930 180 ug/kg dry 50.0 09/23/09 10:51 SCH 9122042 8082 Aroclor 1254 [2C] ND D08 930 200 SCH 9122042 8082 ug/kg dry 50.0 09/23/09 10:51 Aroclor 1260 [2C] 10000 D08 930 200 09/23/09 10:51 SCH 9122042 8082 ug/kg dry 50.0 Decachlorobiphenyl [2C] * 8082 D08,Z3 Surr Limits: (34-148%) 09/23/09 10:51 SCH 9122042 D08,Z3 Surr Limits: (35-134%) 09/23/09 10:51 SCH 9/22042 8082 Tetrachloro-m-xylene [2C] **General Chemistry Parameters** Percent Solids 89 0.010 NR % 1.00 09/20/09 16:20 KMB 9119015 Dry Weight

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

lestAmeric	
	N
IC317THOIL	

Niagara Falls, NY 14304

Golder Associates, Inc. - Niagara Falls, NY

51/2497

Received:	09/17/09-09/21/09

10/05/09 15:28 Reported:

2221 Niagara Falls Blvd., Ste 9 Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

Analytical Report

SDG Number: RSI0643

				indig cloui	report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Client ID: B-5 (2-4) (RSI06	95-06 - Soli	d)			Samp	oled: 09	/18/09 10:05	Recv	vd: 09/18/0	9 18:43
Polychlorinated Bipheny	Is by EPA N	lethod 8082								
Aroclor 1016 [2C]	ND	D08	1000	200	ug/kg dry	50.0	09/23/09 11:09	SCH	9122042	8082
Aroclor 1221 [2C]	ND	D08	1000	200	ug/kg dry	50.0	09/23/09 11:09	SCH	9122042	8082
Aroclor 1232 [2C]	ND	D08	1000	200	ug/kg dry	50.0	09/23/09 11:09	SCH	9122042	8082
Aroclor 1242 [2C]	ND	D08	1000	220	ug/kg dry	50.0	09/23/09 11:09	SCH	9122042	8082
Aroclor 1248 [2C]	ND	D08	1000	200	ug/kg dry	50.0	09/23/09 11:09	SCH	9122042	8082
Aroclor 1254 [2C]	ND	D08	1000	210	ug/kg dry	50.0	09/23/09 11:09	SCH	9122042	8082
Aroclor 1260 [2C]	3500	D08	1000	210	ug/kg dry	50.0	09/23/09 11:09	SCH	9122042	8082
Decachlorobiphenyl [2C]	*	D08,Z3	Surr Limits:	(34-148%)			09/23/09 11:09	SCH	9/22042	8082
Tetrachloro-m-xylene [2C]	*	D08,Z3	Surr Limits:	(35-134%)			09/23/09 11:09	SCH	9122042	8082
General Chemistry Parar	neters									
Percent Solids	82		0.010	NR	%	1.00	09/20/09 16:22	КМВ	9119015	Dry Weight

lest

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

+merica

SDG Number: RSI0643

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

		Analytical Report										
5		ampl		Data		1.0.0		Dil	Date	Lab		
Analyte	F	Resul	lt (Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
lient ID: B-5 (RSI0695-0	07 - Se	olid)					Samp	led: 09	18/09 10:10	Recv	rd: 09/18/0	9 18:43
/olatile Organic Compo	ounds	by E	PA 8	260B								
1,1,1-Trichloroethane		ND			5.9	0.43	ug/kg dry	1.00	09/25/09 01:08	CDC	9124113	8260B
1,1,2,2-Tetrachloroethane		ND			5.9	0.96	ug/kg dry	1.00	09/25/09 01:08	CDC	9124113	8260B
1,1,2-Trichloroethane		ND			5.9	0.30	ug/kg dry	1.00	09/25/09 01:08	CDC	9124113	8260B
,1,2-Trichlorotrifluoroeth		ND			5.9	0.62	ug/kg dry	1.00	09/25/09 01:08	CDC	9124113	8260B
ine												
,1-Dichloroethane		ND			5.9	0.29	ug/kg dry	1.00	09/25/09 01:08		9124113	8260B
,1-Dichloroethene		ND			5.9	0.72	ug/kg dry	1.00	09/25/09 01:08	CDC	9124113	8260B
,2,4-Trichlorobenzene		ND			5.9	0.36	ug/kg dry	1.00	09/25/09 01:08		9124113	8260B
,2-Dibromo-3-chloroprop		ND			5.9	1.2	ug/kg dry	1.00	09/25/09 01:08	CDC	9124113	8260B
ane		1.1.2			1.25	1.1.1		. 14-				11272
,2-Dibromoethane EDB)		ND			5.9	0.22	ug/kg dry	1.00	09/25/09 01:08	CDC	9124113	8260B
,2-Dichlorobenzene		ND			5.9	0.89	ug/kg dry	1.00	09/25/09 01:08	CDC	9124113	8260B
,2-Dichloroethane		ND			5.9	0.30	ug/kg dry	1.00	09/25/09 01:08		9124113	8260B
,2-Dichloroethene, Total		ND			12	3.1	ug/kg dry	1.00	09/25/09 01:08		9124113	8260B
,2-Dichloropropane		ND			5.9	0.30	ug/kg dry	1.00	09/25/09 01:08	CDC	9124113	8260B
,3-Dichlorobenzene		ND			5.9	0.83	ug/kg dry	1.00	09/25/09 01:08		9124113	8260B
,4-Dichlorobenzene		ND			5.9	0.82	ug/kg dry	1.00	09/25/09 01:08		9124113	8260B
-Butanone (MEK)		ND			29	8.0	ug/kg dry	1.00	09/25/09 01:08	CDC	9124113	8260B
-Hexanone		ND			29	2.0	ug/kg dry	1.00	09/25/09 01:08		9124113	8260B
-Methyl-2-pentanone MIBK)		ND			29	1.9	ug/kg dry	1.00	09/25/09 01:08	CDC	9124113	8260B
cetone		ND			29	1.3	ug/kg dry	1.00	09/25/09 01:08	CDC	9124113	8260B
lenzene		ND			5.9	0.29	ug/kg dry	1.00	09/25/09 01:08	CDC	9124113	8260B
romodichloromethane		ND			5.9	0.30	ug/kg dry	1.00	09/25/09 01:08	CDC	9124113	8260B
romoform		ND			5.9	0.54	ug/kg dry	1.00	09/25/09 01:08	CDC	9124113	8260B
romomethane		ND			5.9	0.54	ug/kg dry	1.00	09/25/09 01:08	CDC	9124113	8260B
arbon disulfide		ND			5.9	0.51	ug/kg dry	1.00	09/25/09 01:08	CDC	9124113	8260B
arbon Tetrachloride	-	ND			5.9	0.21	ug/kg dry	1.00	09/25/09 01:08	CDC	9124113	8260B
Chlorobenzene	ND	2.2	u	B, J	5.9	0.26	ug/kg dry	1.00	09/25/09 01:08	CDC	9124113	8260B
hlorodibromomethane	- C. /	ND			5.9	0.33	ug/kg dry	1.00	09/25/09 01:08	CDC	9124113	8260B
hloroethane		ND			5.9	0.95	ug/kg dry	1.00	09/25/09 01:08		9124113	8260B
Chloroform		ND			5.9	0.36	ug/kg dry	1.00	09/25/09 01:08	CDC	9124113	8260B
hloromethane		ND			5.9	0.36	ug/kg dry	1.00	09/25/09 01:08	CDC	9124113	8260B
is-1,2-Dichloroethene		ND			5.9	0.29	ug/kg dry	1.00	09/25/09 01:08	CDC	9124113	8260B
is-1,3-Dichloropropene		ND			5.9	0.34	ug/kg dry	1.00	09/25/09 01:08		9124113	8260B
Cyclohexane		ND			5.9	0.27	ug/kg dry	1.00	09/25/09 01:08		9124113	8260B
Dichlorodifluoromethane		ND			5.9	0.49	ug/kg dry	1.00	09/25/09 01:08		9124113	8260B
thylbenzene		ND			5.9	0.41	ug/kg dry	1.00	09/25/09 01:08		9124113	8260B
sopropylbenzene		ND			5.9	0.39	ug/kg dry	1.00	09/25/09 01:08		9124113	8260B
lethyl Acetate		ND			5.9	0.32	ug/kg dry	1.00	09/25/09 01:08		9124113	8260B
lethyl tert-Butyl Ether		ND			5.9	0.58	ug/kg dry	1.00	09/25/09 01:08		9124113	8260B
lethylcyclohexane		ND			5.9	0.38	ug/kg dry	1.00	09/25/09 01:08		9124113	8260B
lethylene Chloride		26			5.9	0.41	ug/kg dry	1.00	09/25/09 01:08		9124113	8260B
Styrene		ND			5.9	0.29	ug/kg dry	1.00	09/25/09 01:08		9124113	8260B
etrachloroethene		ND			5.9	0.79	ug/kg dry	1.00	09/25/09 01:08		9124113	8260B
oluene		ND		В	5.9	1.0	ug/kg dry	1.00	09/25/09 01:08		9124113	8260B
rans-1,2-Dichloroethene		ND			5.9	0.61	ug/kg dry	1.00	09/25/09 01:08		9124113	8260B
rans-1,3-Dichloropropen		ND			5.9	0.29	ug/kg dry	1.00	09/25/09 01:08		9124113	8260B
richloroethene		ND			5.9	0.41	ug/kg dry	1.00	09/25/09 01:08	CDC	9124113	8260B

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

Received: 09/17/09-09/21/09

TestAmeric

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

SDG Number: RSI0643

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

	Analytical Report									
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Mathaa
Client ID: B-5 (RSI0695-07			ite	ind L		1.15	ACT AND A DECK			Method
Silent ID. D-3 (K310033-0)	r - 30iiu) - ci	лн .			Samp	led: 09	/18/09 10:10	Recv	/d: 09/18/0	9 18:43
Volatile Organic Compou	unds by EPA	8260B - co	<u>nt.</u>							
Trichlorofluoromethane	ND		5.9	1.8	ug/kg dry	1.00	09/25/09 01:08	CDC	9124113	8260B
Vinyl acetate	ND		29	1.2	ug/kg dry	1.00	09/25/09 01:08	CDC	9124113	8260B
Vinyl chloride	ND		12	0.24	ug/kg dry	1.00	09/25/09 01:08	CDC	9124113	8260B
Xylenes, total	1.3	J	12	0.99	ug/kg dry	1.00	09/25/09 01:08	CDC	9124113	8260B
1,2-Dichloroethane-d4	104 %		Surr Limits:	(64-126%)			09/25/09 01:08	CDC	9/24113	8260B
4-Bromofluorobenzene	107 %		Surr Limits:	(72-126%)			09/25/09 01:08	CDC	9124113	8260B
Toluene-d8	115 %		Surr Limits:	(71-125%)			09/25/09 01:08	CDC	9124113	8260B
Semivolatile Organics by	GC/MS									
2,4,5-Trichlorophenol	ND	D12	3900	850	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
2,4,6-Trichlorophenol	ND	D12	3900	260	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
2,4-Dichlorophenol	ND	D12	3900	200	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
2,4-Dimethylphenol	ND	D12	3900	1100	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
2,4-Dinitrophenol	ND	D12	7600	1400	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
2,4-Dinitrotoluene	ND	D12	3900	600	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
2,6-Dinitrotoluene	ND	D12	3900	950	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
2-Chloronaphthalene	ND	D12	3900	260	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
2-Chlorophenol	ND	D12	3900	200	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
2-Methylnaphthalene	ND	D12	3900	47	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
2-Methylphenol	ND	D12	3900	120	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
2-Nitroaniline	ND	D12	7600	1200	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
2-Nitrophenol	ND	D12	3900	180	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
3 & 4 Methylphenol	ND	D12	7600	220	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
3,3'-Dichlorobenzidine	ND	D12	3900	3400	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
3-Nitroaniline	ND	D12	7600	890	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
4,6-Dinitro-2-methylphen	ND	D12	7600	1300	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
ol				1000	uging ury	20.0	0012 1100 01.00	010	0110100	02100
4-Bromophenyl phenyl	ND	D12	3900	1200	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
ether 4-Chloro-3-methylphenol	ND	D12	3900	160	uallia dai	20.0	09/24/09 01:05	JLG	9118138	00700
4-Chloroaniline	ND	D12			ug/kg dry			- CO 22	9118138	8270C
	ND	D12 D12	3900 3900	1100	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
4-Chlorophenyl phenyl ether	ND	DIZ	3900	83	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
4-Nitroaniline	ND	D12	7600	430	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
4-Nitrophenol	ND	D12	7600	940	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
Acenaphthene	ND	D12	3900	46	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
Acenaphthylene	ND	D12	3900	32		20.0	09/24/09 01:05	JLG	9118138	8270C
Acetophenone	ND	D12	3900	200	ug/kg dry			JLG		
Anthracene	ND	D12	3900	100	ug/kg dry	20.0 20.0	09/24/09 01:05 09/24/09 01:05	JLG	9118138 9118138	8270C 8270C
Atrazine	ND	D12,N1	3900	170	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C 8270C
Benzaldehyde	ND UJ		3900	430	ug/kg dry ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
Benzo[a]anthracene	680	D12,J	3900	67		20.0	09/24/09 01:05	JLG		8270C
Benzo[a]pyrene	790	D12,J	3900	94	ug/kg dry				9118138	
Benzo[b]fluoranthene	810	D12,J			ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
The second se			3900	75	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
Benzo[g,h,i]perylene	620	D12,J	3900	47	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
Benzo[k]fluoranthene	420	D12,J	3900	43	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
Biphenyl	ND	D12	3900	240	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
Bis(2-chloroethoxy)metha	ND	D12	3900	210	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
ne	ND	D12	3900	340	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

53/2497

09/17/09-09/21/09 Received: Reported:

10/05/09 15:28

America lest

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

SDG Number: RSI0643

Project: Golder - Niagara Transformer site (Level IV)

09/17/09-09/21/09 Received: 10/05/09 15:28

Reported:

Project Number: [none]

			1	Analytical	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Client ID: B-5 (RSI0695-0)	7 - Solid) -	cont.			Samp	oled: 09	/18/09 10:10	Recv	/d: 09/18/0	
Semivolatile Organics by	GC/MS - G	cont.								
Bis(2-chloroisopropyl) ether	ND	D12	3900	410	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
Bis(2-ethylhexyl) phthalate	ND	D12	3900	1300	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
Butyl benzyl phthalate	ND	D12	3900	1000	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
Caprolactam	ND	D12	3900	1700	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
Carbazole	ND	D12	3900	45	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
Chrysene	630	D12,J	3900	39	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
Dibenz[a,h]anthracene	ND	D12	3900	46	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
Dibenzofuran	ND	D12	3900	40	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
Diethyl phthalate	ND	D12 D12	3900	120		20.0	09/24/09 01:05	JLG	9118138	8270C 8270C
					ug/kg dry					
Dimethyl phthalate	ND	D12	3900	100	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
Di-n-butyl phthalate	ND	D12	3900	1300	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
Di-n-octyl phthalate	ND	D12	3900	91	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
Fluoranthene	1200	D12,J	3900	56	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
Fluorene	ND	D12	3900	90	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
Hexachlorobenzene	ND	D12	3900	190	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
Hexachlorobutadiene	ND	D12	3900	200	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
Hexachlorocyclopentadie ne	ND	D12	3900	1200	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
Hexachloroethane	ND	D12	3900	300	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
Indeno[1,2,3-cd]pyrene	530	D12,J	3900	110	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
Isophorone	ND	D12	3900	190	ug/kg dry	20.0	09/24/09 01:05		9118138	8270C
Naphthalene	ND	D12	3900	65	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
Nitrobenzene	ND	D12	3900	170	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
N-Nitrosodi-n-propylamin	ND	D12	3900	310	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
e								JLG		
N-Nitrosodiphenylamine	ND	D12,L	3900	210	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
Phenanthrene	660	D12,J	3900	82	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
Phenol	ND	D12	3900	410	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
Pyrene	980	D12,J	3900	25	ug/kg dry	20.0	09/24/09 01:05	JLG	9118138	8270C
2,4,6-Tribromophenol	84 %	D12		(39-146%)			09/24/09 01:05	JLG	9118138	8270C
2-Fluorobiphenyl	76 %	D12		(37-120%)			09/24/09 01:05	JLG	9/18138	8270C
2-Fluorophenol	47 %	D12		(18-120%)			09/24/09 01:05	JLG	9/18138	8270C
Nitrobenzene-d5	52 %	D12		(34-132%)			09/24/09 01:05	JLG	9/18138	8270C
Phenol-d5	61 %	D12		(11-120%)			09/24/09 01:05		9/18138	8270C
p-Terphenyl-d14	79 %	D12	Surr Limits:	(58-147%)			09/24/09 01:05	JLG	9/18138	8270C
Organochlorine Pesticide			Contraction of the second						Section 1	
4,4'-DDD [2C]	ND	QFL, D04	380	74	ug/kg dry	200	09/29/09 23:55		9122040	8081A
4,4'-DDE [2C]	ND	QFL, D04	380	110	ug/kg dry	200	09/29/09 23:55	MAN	9122040	8081A
4,4'-DDT [2C]	1500	QFL, D04	380	87	ug/kg dry	200	09/29/09 23:55	MAN	9122040	8081A
Aldrin [2C]	ND	QFL, D04	380	39	ug/kg dry	200	09/29/09 23:55	MAN	9122040	8081A
alpha-BHC [2C]	ND	QFL, D04	380	69	ug/kg dry	200	09/29/09 23:55		9122040	8081A
alpha-Chlordane [2C]	ND	QFL, D04	380	190	ug/kg dry	200	09/29/09 23:55		9122040	8081A
beta-BHC [2C]	ND	QFL, D04	380	280	ug/kg dry	200	09/29/09 23:55		9122040	8081A
Chlordane [2C]	ND	QFL, D04	3800	850	ug/kg dry	200	09/29/09 23:55		9122040	8081A
delta-BHC [2C]	ND	QFL, D04	380	50	ug/kg dry	200	09/29/09 23:55		9122040	8081A
Dieldrin [2C]		QFL, D04,J	380	92	ug/kg dry	200	09/29/09 23:55		9122040	8081A
Endosulfan I [2C]	ND	QFL, D04,J QFL, D04							9122040	8081A
			380	81	ug/kg dry	200	09/29/09 23:55			
Endosulfan II [2C]	ND	QFL, D04	380	69	ug/kg dry	200	09/29/09 23:55	MAIN	9122040	8081A

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

54/2497

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9

Niagara Falls, NY 14304

SDG Number: RSI0643

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

			A	Analytical	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Client ID: B-5 (RSI0695		and the second second					/18/09 10:10		/d: 09/18/0	175 N. 1.
					Samp	ieu. 05	18/09 10.10	Reci	u. 09/10/0	19 10.43
Organochlorine Pestic	ides by EPA	Method 8081	A - cont.							
Endosulfan sulfate [2C]	ND	QFL, D04	380	71	ug/kg dry	200	09/29/09 23:55	MAN	9122040	8081A
Endrin [2C]	260	QFL, D04,J	380	120	ug/kg dry	200	09/29/09 23:55	MAN	9122040	8081A
Endrin aldehyde [2C]	ND	QFL, D04	380	98	ug/kg dry	200	09/29/09 23:55	MAN	9122040	8081A
Endrin ketone [2C]	NO 110 1	\lambda QFL, D04,J	380	94	ug/kg dry	200	09/29/09 23:55	MAN	9122040	8081A
gamma-BHC (Lindane) 2C]	ND	QFL, D04	380	66	ug/kg dry	200	09/29/09 23:55	MAN	9122040	8081A
gamma-Chlordane [2C]	ND	QFL, D04	380	52	ug/kg dry	200	09/29/09 23:55	MAN	9122040	8081A
Heptachlor [2C]	ND	QFL , D04	380	60	ug/kg dry	200	09/29/09 23:55	MAN	9122040	8081A
Heptachlor epoxide [2C]	ND	QFL, D04	380	99	ug/kg dry	200	09/29/09 23:55	MAN	9122040	8081A
Vethoxychlor [2C]	ND	QFL, D04	380	100	ug/kg dry	200	09/29/09 23:55	MAN	9122040	8081A
Toxaphene [2C]	ND	QFL, D04	3800	2200	ug/kg dry	200	09/29/09 23:55	MAN	9122040	8081A
Decachlorobiphenyl [2C]	*	QFL, D04,Z3	Surr Limits:	(42-146%)			09/29/09 23:55	MAN	9122040	8081A
Tetrachloro-m-xylene 2C]	*	QFL, D04,Z3	Surr Limits:	(37-136%)			09/29/09 23:55	MAN	9122040	8081A
Total Metals by SW 840	6 Series Met	hods								
Aluminum	14800		11.2	NR	mg/kg dry	1.00	09/25/09 03:36	IMH	9123026	6010B
Antimony	ND	UJ	16.8	NR	mg/kg dry	1.00	09/24/09 01:57		9123026	6010B
Arsenic	5.9	Ť	2.2	NR	mg/kg dry	1.00	09/24/09 01:57		9123026	6010B
Barium	118	T	0.561	NR	mg/kg dry	1.00	09/24/09 01:57		9123026	6010B
Beryllium	0.657		0.225	NR	mg/kg dry	1.00	09/24/09 01:57		9123026	6010B
Cadmium	0.285		0.225	NR	mg/kg dry	1.00	09/24/09 01:57		9123026	6010B
Calcium	4490	H	56.1	NR	mg/kg dry	1.00	09/24/09 01:57		9123026	6010B
Chromium	18.6	T	0.561	NR	mg/kg dry	1.00	09/24/09 01:57		9123026	6010B
Cobalt	10.6	-	0.561	NR	mg/kg dry	1.00	09/24/09 01:57		9123026	6010B
Copper	27.1	T	1.1	NR	mg/kg dry	1.00	09/24/09 01:57		9123026	6010B
ron	24500	JB1, B3, B	11.2	NR					9123026	
.ead	24300	J B1, B3, B	1.1	NR	mg/kg dry	1.00	09/24/09 01:57			6010B
lagnesium	5040	F	22.5	NR	mg/kg dry	1.00	09/24/09 01:57		9123026	6010B
/anganese	614	5 B1, B	0.2	NR	mg/kg dry	1.00	09/24/09 01:57		9123026	6010B
lickel	22.2	5 01,0			mg/kg dry	1.00	09/24/09 01:57		9123026	6010B
	1900	5	5.61	NR	mg/kg dry	1.00	09/24/09 01:57		9123026	6010B
Potassium		11-	33.7	NR	mg/kg dry	1.00	09/24/09 01:57		9123026	6010B
Selenium	ND	UJ	4.5	NR	mg/kg dry	1.00	09/24/09 01:57		9123026	6010B
Silver	ND		0.561	NR	mg/kg dry	1.00	09/24/09 01:57		9123026	6010B
Sodium	ND		157	NR	mg/kg dry	1.00	09/24/09 01:57		9123026	6010B
hallium	ND	T	6.7	NR	mg/kg dry	1.00	09/24/09 01:57		9123026	6010B
'anadium	28.1	X	0.561	NR	mg/kg dry	1.00	09/24/09 01:57		9123026	6010B
Zinc	86.9	2	2.2	NR	mg/kg dry	1.00	09/24/09 01:57		9123026	6010B
Mercury	0.168		0.0253	NR	mg/kg dry	1.00	09/25/09 14:43	MXM	9124107	7471A
General Chemistry Par	ameters									
Percent Solids	85	1	0.010	NR	%	1.00	09/20/09 16:24	KMB	9119015	Dry Weigh
Cyanide	1.0	JJ	1.1	1.0	mg/kg dry	1.00	09/23/09 09:50		9123015	9012A

55/2497

Received: 09/17/09-09/21/09 10/05/09 15:28 Reported:

me

THE LEADER IN ENVIRONMENTAL TESTING

Aroclor 1221 [2C]

Aroclor 1232 [2C]

Aroclor 1242 [2C]

Aroclor 1248 [2C]

Aroclor 1254 [2C]

Aroclor 1260 [2C]

Percent Solids

[2C]

Decachlorobiphenyl [2C]

General Chemistry Parameters

Tetrachloro-m-xylene

ND

ND

ND

ND

ND

2200

*

*

94

D08

D08

D08

D08

D08

D08

D08,Z3

D08,Z3

56/2497

9122042

9122042

9122042

9122042

9122042

9122042

9122042

9/22042

9119015

8082

8082

8082

8082

8082

8082

8082

8082

Dry Weight

Golder Associates, Inc. 2221 Niagara Falls Blvc	and the State of the second of	IY	SDG Number	:: RSI0643				Rece Repo		09/17/09-09/21/0 10/05/09 15:28
Niagara Falls, NY 1430	4		Project: Gold	er - Niagara	Transformer si	te (Level	IV)			
			Project Numb	er: [non	e]		-			
			A	nalytical	Report					
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batc	h Method
Client ID: B-6 (0-2) (RS	610695-08 - Soli	d)			Samp	oled: 09	18/09 12:20	Recv	d: 09/1	18/09 18:43
Polychlorinated Biph	enyls by EPA N	lethod 8082								
Aroclor 1016 [2C]	ND	D08	870	170	ug/kg dry	50.0	09/23/09 11:28	SCH	912204	12 8082

170

170

190

170

180

180

NR

ug/kg dry

ug/kg dry

ug/kg dry

ug/kg dry

ug/kg dry

ug/kg dry

%

50.0

50.0

50.0

50.0

50.0

50.0

1.00

09/23/09 11:28 SCH

09/20/09 16:26 KMB

870

870

870

870

870

870

0.010

Surr Limits: (34-148%)

Surr Limits: (35-134%)

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Golder Associates, Inc N 2221 Niagara Falls Blvd., S	-	IY	SDG Number:	RSI0643				Rece)9/17/09-09/21/0 10/05/09 15:28
Niagara Falls, NY 14304			Project: Golde Project Numbe		Transformer si e]	te (Level	IV)	Керс	nieu.	10/03/03 13.20
			A	nalytical	Report					
	Sample	Data	- 20			Dil	Date	Lab	Detab	
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Analyte Client ID: B-6 (2-4) (RSI06 Polychlorinated Bipheny	695-09 - Solid	d)	RL	MDL			Analyzed 18/09 12:25			Method 8/09 18:43
Client ID: B-6 (2-4) (RSI06	695-09 - Solid	d)	RL 19	3.7			V31 6 4 6 5 5 5 7			8/09 18:43
Client ID: B-6 (2-4) (RSI06 Polychlorinated Bipheny	695-09 - Solio /Is by EPA M	d)			Samp	oled: 09/	18/09 12:25	Recv	/d: 09/18	8 /09 18:43 8 8082
Client ID: B-6 (2-4) (RSI06 Polychlorinated Bipheny Aroclor 1016 [2C]	595-09 - Solio <u>/Is by EPA M</u> ND	d)	19	3.7	Samp ug/kg dry	oled: 09,	18/09 12:25 09/23/09 11:46	Recv	vd: 09/1 8 9122042	8/09 18:43 2 8082 2 8082
Client ID: B-6 (2-4) (RSI06 Polychlorinated Bipheny Aroclor 1016 [2C] Aroclor 1221 [2C]	695-09 - Solid /Is by EPA M ND ND	d)	19 19	3.7 3.7	Samp ug/kg dry ug/kg dry	1.00 1.00	18/09 12:25 09/23/09 11:46 09/23/09 11:46	Recv SCH SCH	vd: 09/18 9122042 9122042	8/ 09 18:43 2 8082 2 8082 2 8082
Client ID: B-6 (2-4) (RSI06 Polychlorinated Bipheny Aroclor 1016 [2C] Aroclor 1221 [2C] Aroclor 1232 [2C]	695-09 - Solia / <u>Is by EPA M</u> ND ND ND	d)	19 19 19	3.7 3.7 3.7	Samp ug/kg dry ug/kg dry ug/kg dry	1.00 1.00 1.00 1.00	09/23/09 11:46 09/23/09 11:46 09/23/09 11:46 09/23/09 11:46	Recv SCH SCH SCH	yd: 09/18 9 22042 9 22042 9 22042	8/09 18:43 2 8082 2 8082 2 8082 2 8082 2 8082
Client ID: B-6 (2-4) (RSI06 Polychlorinated Bipheny Aroclor 1016 [2C] Aroclor 1221 [2C] Aroclor 1232 [2C] Aroclor 1232 [2C] Aroclor 1242 [2C] Aroclor 1248 [2C] Aroclor 1254 [2C]	695-09 - Solid /Is by EPA M ND ND ND ND	d)	19 19 19 19	3.7 3.7 3.7 4.1	Samp ug/kg dry ug/kg dry ug/kg dry ug/kg dry	1.00 1.00 1.00 1.00 1.00	09/23/09 11:46 09/23/09 11:46 09/23/09 11:46 09/23/09 11:46 09/23/09 11:46	Recv SCH SCH SCH SCH	9122042 9122042 9122042 9122042 9122042 9122042	8/09 18:43 2 8082 2 8082 2 8082 2 8082 2 8082 2 8082
Client ID: B-6 (2-4) (RSI06 Polychlorinated Bipheny Aroclor 1016 [2C] Aroclor 1221 [2C] Aroclor 1232 [2C] Aroclor 1232 [2C] Aroclor 1242 [2C] Aroclor 1248 [2C]	595-09 - Solid /Is by EPA M ND ND ND ND ND ND	d)	19 19 19 19 19 19	3.7 3.7 3.7 4.1 3.7	Samp ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry	1.00 1.00 1.00 1.00 1.00 1.00	09/23/09 11:46 09/23/09 11:46 09/23/09 11:46 09/23/09 11:46 09/23/09 11:46 09/23/09 11:46	Recv SCH SCH SCH SCH SCH	yd: 09/18 9 22042 9 22042 9 22042 9 22042 9 22042 9 22042	8/09 18:43 2 8082 2 8082 2 8082 2 8082 2 8082 2 8082 2 8082
Client ID: B-6 (2-4) (RSI06 Polychlorinated Bipheny Aroclor 1016 [2C] Aroclor 1221 [2C] Aroclor 1232 [2C] Aroclor 1232 [2C] Aroclor 1242 [2C] Aroclor 1248 [2C] Aroclor 1254 [2C]	595-09 - Solid ND ND ND ND ND ND ND ND ND	d)	19 19 19 19 19 19 19	3.7 3.7 4.1 3.7 4.0 4.0	Samp ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry	1.00 1.00 1.00 1.00 1.00 1.00 1.00	09/23/09 11:46 09/23/09 11:46 09/23/09 11:46 09/23/09 11:46 09/23/09 11:46 09/23/09 11:46 09/23/09 11:46	Recv SCH SCH SCH SCH SCH SCH SCH	vd: 09/18 9l22042 9l22042 9l22042 9l22042 9l22042 9l22042 9l22042	8/09 18:43 2 8082 2 8082 2 8082 2 8082 2 8082 2 8082 2 8082 2 8082

 Percent Solids
 88
 0.010
 NR
 %
 1.00
 09/20/09 16:28
 KMB
 9/19015
 Dry Weight

Iest/

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

merica

SDG Number: RSI0643

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

			A	nalytical	Report					
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
lient ID: B-6 (RSI0695-	10 - Solid)				Samp	led: 09/	18/09 12:30	Recv	d: 09/18/09	9 18:43
/olatile Organic Comp	ounds by EPA	8260B								
,1,1-Trichloroethane	ND		5.4	0.39	ug/kg dry	1.00	09/25/09 01:33	CDC	9124113	8260B
,1,2,2-Tetrachloroethane	ND	M8	5.4	0.87	ug/kg dry	1.00	09/25/09 01:33	CDC	9124113	8260B
,1,2-Trichloroethane	ND	M8	5.4	0.27	ug/kg dry	1.00	09/25/09 01:33	CDC	9124113	8260B
,1,2-Trichlorotrifluoroeth	ND		5.4	0.57	ug/kg dry	1.00	09/25/09 01:33	CDC	9124113	8260B
ne										
,1-Dichloroethane	ND	M8	5.4	0.27	ug/kg dry	1.00	09/25/09 01:33	CDC	9124113	8260B
,1-Dichloroethene	ND	M8	5.4	0.66	ug/kg dry	1.00	09/25/09 01:33	CDC	9124113	8260B
,2,4-Trichlorobenzene	ND	M8	5.4	0.33	ug/kg dry	1.00	09/25/09 01:33	CDC	9124113	8260B
,2-Dibromo-3-chloroprop	ND	M8	5.4	1.1	ug/kg dry	1.00	09/25/09 01:33	CDC	9124113	8260B
ne										
,2-Dibromoethane EDB)	ND	M8	5.4	0.20	ug/kg dry	1.00	09/25/09 01:33	CDC	9124113	8260B
2-Dichlorobenzene	ND	M8	5.4	0.81	ug/kg dry	1.00	09/25/09 01:33	CDC	9124113	8260B
,2-Dichloroethane	ND	M8	5.4	0.27	ug/kg dry	1.00	09/25/09 01:33	CDC	9124113	8260B
,2-Dichloroethene, Total	ND	M8	11	2.8	ug/kg dry	1.00	09/25/09 01:33	CDC	9124113	8260B
,2-Dichloropropane	ND	M8	5.4	0.27	ug/kg dry	1.00	09/25/09 01:33	CDC	9124113	8260B
,3-Dichlorobenzene	ND	M8	5.4	0.76	ug/kg dry	1.00	09/25/09 01:33	CDC	9124113	8260B
,4-Dichlorobenzene	ND	M8	5.4	0.75	ug/kg dry	1.00	09/25/09 01:33	CDC	9124113	8260B
-Butanone (MEK)	ND	M8	27	7.3	ug/kg dry	1.00	09/25/09 01:33	CDC	9124113	8260B
-Hexanone	ND	M8	27	1.9	ug/kg dry	1.00	09/25/09 01:33	CDC	9124113	8260B
-Methyl-2-pentanone MIBK)	ND	M8	27	1.8	ug/kg dry	1.00	09/25/09 01:33	CDC	9124113	8260B
cetone	ND		27	1.2	ug/kg dry	1.00	09/25/09 01:33	CDC	9124113	8260B
enzene	ND	M8	5.4	0.26	ug/kg dry	1.00	09/25/09 01:33	CDC	9124113	8260B
romodichloromethane	ND	M8	5.4	0.28	ug/kg dry	1.00	09/25/09 01:33	CDC	9124113	8260B
romoform	ND	M8	5.4	0.49	ug/kg dry	1.00	09/25/09 01:33	CDC	9124113	8260B
romomethane	ND		5.4	0.49	ug/kg dry	1.00	09/25/09 01:33	CDC	9124113	8260B
arbon disulfide	ND	M8	5.4	0.46	ug/kg dry	1.00	09/25/09 01:33	CDC	9124113	8260B
arbon Tetrachloride	ND	M8	5.4	0.19	ug/kg dry	1.00	09/25/09 01:33	CDC	9124113	8260B
Chlorobenzene	N) 2.0	M8, B, J 💪	4 5.4	0.23	ug/kg dry	1.00	09/25/09 01:33	CDC	9124113	8260B
hlorodibromomethane	ND	M8	5.4	0.30	ug/kg dry	1.00	09/25/09 01:33	CDC	9124113	8260B
hloroethane	ND		5.4	0.87	ug/kg dry	1.00	09/25/09 01:33	CDC	9124113	8260B
hloroform	ND	M8	5.4	0.33	ug/kg dry	1.00	09/25/09 01:33	CDC	9124113	8260B
Chloromethane	ND		5.4	0.32	ug/kg dry	1.00	09/25/09 01:33	CDC	9124113	8260B
is-1,2-Dichloroethene	ND	M8	5.4	0.26	ug/kg dry	1.00	09/25/09 01:33	CDC	9124113	8260B
is-1,3-Dichloropropene	ND	M8	5.4	0.31	ug/kg dry	1.00	09/25/09 01:33		9124113	8260B
yclohexane	ND	M8	5.4	0.25	ug/kg dry	1.00	09/25/09 01:33	CDC	9124113	8260B
ichlorodifluoromethane	ND		5.4	0.44	ug/kg dry	1.00	09/25/09 01:33	CDC	9124113	8260B
thylbenzene	ND	M8	5.4	0.37	ug/kg dry	1.00	09/25/09 01:33	CDC	9124113	8260B
sopropylbenzene	ND	M8	5.4	0.35	ug/kg dry	1.00	09/25/09 01:33	CDC	9124113	8260B
lethyl Acetate	ND		5.4	0.29	ug/kg dry	1.00	09/25/09 01:33	CDC	9124113	8260B
lethyl tert-Butyl Ether	ND		5.4	0.53	ug/kg dry	1.00	09/25/09 01:33		9124113	8260B
lethylcyclohexane	ND	M8	5.4	0.35	ug/kg dry	1.00	09/25/09 01:33		9124113	8260B
lethylene Chloride	19		5.4	0.37	ug/kg dry	1.00	09/25/09 01:33	CDC	9124113	8260B
tyrene	ND	M8	5.4	0.27	ug/kg dry	1.00	09/25/09 01:33		9124113	8260B
etrachloroethene	ND	M8	5.4	0.72	ug/kg dry	1.00	09/25/09 01:33		9124113	8260B
oluene	ND	M8, B	5.4	0.91	ug/kg dry	1.00	09/25/09 01:33		9124113	8260B
rans-1,2-Dichloroethene	ND	M8	5.4	0.55	ug/kg dry	1.00	09/25/09 01:33		9124113	8260B
rans-1,3-Dichloropropen	ND	M8	5.4	0.26	ug/kg dry	1.00	09/25/09 01:33	CDC	9124113	8260B
		M8								

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

Received: 09/17/09-09/21/09

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

SDG Number: RSI0643 09/17/09-09/21/09 Golder Associates, Inc. - Niagara Falls, NY Received: 2221 Niagara Falls Blvd., Ste 9 Reported: 10/05/09 15:28 Niagara Falls, NY 14304 Project: Golder - Niagara Transformer site (Level IV) [none] Project Number: Analytical Report Sample Dil Data Date Lab MDL RL Analyte Result Qualifiers Units Batch Fac Analyzed Tech Method Client ID: B-6 (RSI0695-10 - Solid) - cont. Sampled: 09/18/09 12:30 Recvd: 09/18/09 18:43 Volatile Organic Compounds by EPA 8260B - cont. 5.4 Trichlorofluoromethane ND 1.7 ug/kg dry 1.00 09/25/09 01:33 CDC 9124113 8260B R -VinyLacetate ND M8 27 1.1 ug/kg dry 1.00 09/25/09 01:33 CDC 9124113 8260B Vinyl chloride ND 0.22 11 1.00 09/25/09 01:33 CDC 9124113 8260B ug/kg dry Xylenes, total ND M8 11 0.90 ug/kg dry 1.00 09/25/09 01:33 CDC 9124113 8260B 1.2-Dichloroethane-d4 104 % Surr Limits: (64-126%) 09/25/09 01:33 CDC 9124113 8260B 4-Bromofluorobenzene 107 % Surr Limits: (72-126%) 09/25/09 01:33 CDC 9124113 8260B Toluene-d8 114 % Surr Limits: (71-125%) 09/25/09 01:33 CDC 9124113 8260B Semivolatile Organics by GC/MS 2,4,5-Trichlorophenol ND D10 1800 400 ug/kg dry 10.0 09/24/09 01:28 JLG 9118138 8270C 2,4,6-Trichlorophenol ND D10 1800 120 ug/kg dry 10.0 09/24/09 01:28 JLG 9118138 8270C 2,4-Dichlorophenol ND D10 1800 96 ug/kg dry 10.0 09/24/09 01:28 JLG 9118138 8270C 2,4-Dimethylphenol ND D10 1800 500 ug/kg dry 09/24/09 01:28 JLG 9118138 8270C 10.0 2,4-Dinitrophenol ND D10 3600 640 ug/kg dry 10.0 09/24/09 01:28 JI G 9118138 8270C 2,4-Dinitrotoluene ug/kg dry ND D10 1800 280 10.0 09/24/09 01:28 JLG 9118138 8270C 2,6-Dinitrotoluene ND D10 1800 09/24/09 01:28 450 ug/kg dry 10.0 JIG 9118138 8270C 2-Chloronaphthalene ND D10 1800 120 ug/kg dry 10.0 09/24/09 01:28 JLG 9118138 8270C 2-Chlorophenol ND D10 1800 93 ug/kg dry 10.0 09/24/09 01:28 JLG 9118138 8270C 2-Methylnaphthalene 110 D10,J 1800 22 09/24/09 01:28 JLG 9118138 ug/kg dry 10.0 8270C 2-Methylphenol ND D10 1800 ug/kg dry 56 10.0 09/24/09 01:28 JLG 9118138 8270C 2-Nitroaniline ND D10 3600 590 ug/kg dry 10.0 09/24/09 01:28 JLG 9118138 8270C 2-Nitrophenol ND D10 1800 84 ug/kg dry 10.0 09/24/09 01:28 JLG 9118138 8270C 3 & 4 Methylphenol 9118138 ND D10 3600 100 ug/kg dry 10.0 09/24/09 01:28 JLG 8270C 1800 3,3'-Dichlorobenzidine ND D10 1600 ug/kg dry 10.0 09/24/09 01:28 JLG 9118138 8270C 3-Nitroaniline ND D10 3600 420 ug/kg dry 10.0 09/24/09 01:28 JLG 9118138 8270C ND D10 3600 ug/kg dry JLG 630 10.0 09/24/09 01:28 9118138 8270C 4,6-Dinitro-2-methylphen o 9118138 4-Bromophenyl phenyl ND D10 1800 580 ug/kg dry 10.0 09/24/09 01:28 JLG 8270C ether 4-Chloro-3-methylphenol ND D10 1800 75 10.0 09/24/09 01:28 JLG 9118138 8270C ug/kg dry 4-Chloroaniline ND D10 1800 540 09/24/09 01:28 ug/kg dry 10.0 JLG 9118138 8270C 4-Chlorophenyl phenyl ND D10 1800 39 ug/kg dry 10.0 09/24/09 01:28 JLG 9118138 8270C ether ND 4-Nitroaniline D10 3600 200 10.0 09/24/09 01:28 JLG 9118138 8270C ug/kg dry 4-Nitrophenol ND D10 3600 440 ug/kg dry 10.0 09/24/09 01:28 JLG 9118138 8270C Acenaphthene ND D10 1800 22 ug/kg dry 09/24/09 01:28 JLG 9118138 8270C 10.0 Acenaphthylene ND D10 1800 15 ug/kg dry 10.0 09/24/09 01:28 JLG 9118138 8270C Acetophenone ND D10 1800 94 09/24/09 01:28 JLG 9118138 ug/kg dry 10.0 8270C Anthracene ND D10 1800 47 09/24/09 01:28 JLG 9118138 ug/kg dry 10.0 8270C Atrazine ND D10.N1 1800 82 ug/kg dry 10.0 09/24/09 01:28 JLG 9118138 8270C Benzaldehyde ND uJ D10 1800 200 ug/kg dry 10.0 09/24/09 01:28 JLG 9118138 8270C Benzo[a]anthracene 390 D10,J 1800 09/24/09 01:28 32 ug/kg dry 10.0 JLG 9118138 8270C Benzo[a]pyrene 410 D10,J 1800 44 ug/kg dry 10.0 09/24/09 01:28 JLG 9118138 8270C Benzo[b]fluoranthene 510 D10,J 1800 36 ug/kg dry 10.0 09/24/09 01:28 JLG 9118138 8270C Benzo[g,h,i]perylene 310 D10,J 1800 22 ug/kg dry 10.0 09/24/09 01:28 JLG 9118138 8270C 240 Benzo[k]fluoranthene D10,J 1800 20 ug/kg dry 10.0 09/24/09 01:28 JLG 9118138 8270C ND D10 1800 **Biphenyl** 110 ug/kg dry 10.0 09/24/09 01:28 JLG 9118138 8270C Bis(2-chloroethoxy)metha ND D10 1800 100 ug/kg dry 10.0 09/24/09 01:28 JLG 9118138 8270C ne

59/2497

TestAmerica Buffalo

Bis(2-chloroethyl)ether

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

D10

1800

160

10.0

ug/kg dry

09/24/09 01:28

JLG

9118138

8270C

ND

www.testamericainc.com

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

SDG Number: RSI0643

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

			ŀ	Analytical	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
lient ID: B-6 (RSI0695	-10 - Solid) - co	ont.			Samp	led: 09/	/18/09 12:30	Recv	rd: 09/18/0	9 18:43
Semivolatile Organics	by GC/MS - co	ont.								
Bis(2-chloroisopropyl) ether	ND	D10	1800	190	ug/kg dry	10.0	09/24/09 01:28	JLG	9118138	8270C
Bis(2-ethylhexyl) phthalate	ND	D10	1800	590	ug/kg dry	10.0	09/24/09 01:28	JLG	9118138	8270C
Butyl benzyl phthalate	ND	D10	1800	490	ug/kg dry	10.0	09/24/09 01:28	JLG	9118138	8270C
Caprolactam	ND	D10	1800	790	ug/kg dry	10.0	09/24/09 01:28	JLG	9118138	8270C
Carbazole	ND	D10	1800	21	ug/kg dry	10.0	09/24/09 01:28	JLG	9118138	8270C
Chrysene	430	D10,J	1800	18	ug/kg dry	10.0	09/24/09 01:28	JLG	9118138	8270C
Dibenz[a,h]anthracene	ND	D10	1800	22	ug/kg dry	10.0	09/24/09 01:28	JLG	9118138	8270C
Dibenzofuran	ND	D10	1800	19	ug/kg dry	10.0	09/24/09 01:28	JLG	9118138	8270C
Diethyl phthalate	ND	D10	1800	55	ug/kg dry	10.0	09/24/09 01:28	JLG	9118138	8270C
Dimethyl phthalate	ND	D10	1800	48	ug/kg dry	10.0	09/24/09 01:28	JLG	9118138	8270C
Di-n-butyl phthalate	ND	D10	1800	630	ug/kg dry	10.0	09/24/09 01:28	JLG	9118138	8270C
Di-n-octyl phthalate	ND	D10	1800	43	ug/kg dry	10.0	09/24/09 01:28	JLG	9118138	8270C
Fluoranthene	690	D10,J	1800	27	ug/kg dry	10.0	09/24/09 01:28	JLG	9118138	8270C
Fluorene	ND	D10	1800	42	ug/kg dry	10.0	09/24/09 01:28	JLG	9118138	8270C
Hexachlorobenzene	ND	D10	1800	91	ug/kg dry	10.0	09/24/09 01:28	JLG	9118138	8270C
-lexachlorobutadiene	ND	D10	1800	94	ug/kg dry	10.0	09/24/09 01:28	JLG	9118138	8270C
Hexachlorocyclopentadie	ND	D10	1800	550	ug/kg dry	10.0	09/24/09 01:28	JLG	9118138	8270C
ne Hexachloroethane	ND	D10	1800	140	ug/kg dry	10.0	09/24/09 01:28	JLG	9118138	8270C
ndeno[1,2,3-cd]pyrene	240	D10,J	1800	51	ug/kg dry	10.0	09/24/09 01:28	JLG	9118138	8270C
sophorone	ND	D10,5	1800	92	ug/kg dry	10.0	09/24/09 01:28	JLG	9118138	8270C
Naphthalene	ND	D10	1800	31	ug/kg dry	10.0	09/24/09 01:28	JLG	9118138	8270C
Nitrobenzene	ND	D10	1800	81		10.0	09/24/09 01:28	JLG	9118138	8270C
	ND	D10	1800	150	ug/kg dry ug/kg dry	10.0	09/24/09 01:28	JLG	9118138	8270C
N-Nitrosodi-n-propylamin e										
N-Nitrosodiphenylamine	ND	D10,L	1800	100	ug/kg dry	10.0	09/24/09 01:28	JLG	9118138	8270C
Phenanthrene	420	D10,J	1800	38	ug/kg dry	10.0	09/24/09 01:28	JLG	9118138	8270C
Phenol	ND	D10	1800	190	ug/kg dry	10.0	09/24/09 01:28	JLG	9118138	8270C
Pyrene	590	D10,J	1800	12	ug/kg dry	10.0	09/24/09 01:28	JLG	9118138	8270C
2,4,6-Tribromophenol	81 %	D10	Surr Limits:				09/24/09 01:28	JLG	9/18138	8270C
2-Fluorobiphenyl	93 %	D10	Surr Limits:	(37-120%)			09/24/09 01:28	JLG	9118138	8270C
2-Fluorophenol	79 %	D10	Surr Limits:	(18-120%)			09/24/09 01:28	JLG	9118138	8270C
Nitrobenzene-d5	81 %	D10	Surr Limits:	(34-132%)			09/24/09 01:28	JLG	9/18138	8270C
Phenol-d5	86 %	D10	Surr Limits:	(11-120%)			09/24/09 01:28	JLG	9/18138	8270C
p-Terphenyl-d14	91 %	D10	Surr Limits:	(58-147%)			09/24/09 01:28	JLG	9/18138	8270C
Organochlorine Pestic			-	13						
4,4'-DDD [2C]	ND 85 1	QFL, D04	9:0 \$	1.8	ug/kg dry	5.00	09/30/09 00:31	MAN	9122040	8081A
4,4'-DDE [2C]	ND	QFL, D04	9.0	2.6	ug/kg dry	5.00	09/30/09 00:31	MAN	9122040	8081A
4,4'-DDT [2C]	ND	QFL, D04	9.0	2.1	ug/kg dry	5.00	09/30/09 00:31	MAN	9122040	8081A
Aldrin [2C]	ND	QFL, D04	9.0	0.92	ug/kg dry	5.00	09/30/09 00:31	MAN	9122040	8081A
alpha-BHC [2C]	ND	QFL, D04	9.0	1.6	ug/kg dry	5.00	09/30/09 00:31	MAN	9122040	8081A
alpha-Chlordane [2C]	ND	QFL , D04	9.0	4.5	ug/kg dry	5.00	09/30/09 00:31	MAN	9122040	8081A
peta-BHC [2C]	ND	QFL, D04	9.0	6.5	ug/kg dry	5.00	09/30/09 00:31	MAN	9122040	8081A
Chlordane [2C]	ND	QFL, D04	90	20	ug/kg dry	5.00	09/30/09 00:31	MAN	9122040	8081A
delta-BHC [2C]	ND	QFL, D04	9.0	1.2	ug/kg dry	5.00	09/30/09 00:31		9122040	8081A
Dieldrin [2C]	23 N		9.0	2.2	ug/kg dry	5.00	09/30/09 00:31	MAN	9122040	8081A
Endosulfan I [2C]	ND	QFL, D04	9.0	1.9	ug/kg dry	5.00	09/30/09 00:31		9122040	8081A
Endosulfan II [2C]	ND	QFL, D04 QFL, D04	9.0	1.6	ug/kg dry ug/kg dry	5.00	09/30/09 00:31	MAN	9122040	8081A
	NU	GIL, D04	9.0	1.0	uging ury	5.00	03/30/03 00.31	IVI/AIN	5122040	0001A

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

60/2497

Received: 09/17/09-09/21/09

meri lest

THE LEADER IN ENVIRONMENTAL TESTING

2221 Niagara Falls Blvd., Ste 9

Niagara Falls, NY 14304

61/2497

Received:

Reported:

09/17/09-09/21/09

10/05/09 15:28

SDG Number: RSI0643 Golder Associates, Inc. - Niagara Falls, NY

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

			F	nalytical	Report					
e.u. 21.	Sample	Data		MDI		Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Client ID: B-6 (RSI0695-	-10 - Solid) - cc	ont.			Samp	led: 09	/18/09 12:30	Recv	d: 09/18/0	9 18:43
Organochlorine Pestici	ides by EPA M	ethod 8081	A - cont.							
Endosulfan sulfate [2C]	ND	QFL, D04	9.0	1.7	ug/kg dry	5.00	09/30/09 00:31	MAN	9122040	8081A
Endrin [2C]	16 J	QFL, D04	9.0	2.9	ug/kg dry	5.00	09/30/09 00:31	MAN	9122040	8081A
Endrin aldehyde [2C]	ND	QFL, D04	9.0	2.3	ug/kg dry	5.00	09/30/09 00:31	MAN	9122040	8081A
Endrin ketone [2C]	ND	QFL, D04	9.0	2.2	ug/kg dry	5.00	09/30/09 00:31		9122040	8081A
gamma-BHC (Lindane) [2C]	ND	QFL, D04	9.0	1.6	ug/kg dry	5.00	09/30/09 00:31	MAN	9122040	8081A
gamma-Chlordane [2C]	ND 15 UL	QFL, D04	9.0-16	1.2	ug/kg dry	5.00	09/30/09 00:31	MAN	9122040	8081A
Heptachlor [2C]	ND	QFL, D04	9.0	1.4	ug/kg dry	5.00	09/30/09 00:31	MAN	9122040	8081A
Heptachlor epoxide [2C]	ND	QFL, D04	9.0	2.3	ug/kg dry	5.00	09/30/09 00:31	MAN	9122040	8081A
Methoxychlor	ND 15 V	QFL, D04,N1	9.0-1	5 2.4	ug/kg dry	5.00	09/30/09 00:31	MAN	9122040	8081A
Toxaphene [2C]	ND	QFL, D04	90	52	ug/kg dry	5.00	09/30/09 00:31	MAN	9122040	8081A
Decachlorobiphenyl [2C]	116 %	QFL, D04	Surr Limits:	(42-146%)			09/30/09 00:31	MAN	9122040	8081A
Tetrachloro-m-xylene [2C]	97 %	QFL, D04	Surr Limits:				09/30/09 00:31	MAN	9122040	8081A
Total Metals by SW 846	Series Metho	ds								
Aluminum	7670	-	10.1	NR	mg/kg dry	1.00	09/25/09 03:41	LMH	9123026	6010B
Antimony		ut	15.1	NR	mg/kg dry	1.00	09/24/09 02:02		9123026	6010B
Arsenic	5.4	T	2.0	NR	mg/kg dry	1.00	09/24/09 02:02		9123026	6010B
Barium	108	J	0.503	NR	mg/kg dry	1.00	09/24/09 02:02		9123026	6010B
Beryllium	0.404		0.201	NR	mg/kg dry	1.00	09/24/09 02:02		9123026	6010B
Cadmium	0.462		0.201	NR	mg/kg dry	1.00	09/24/09 02:02		9123026	6010B
Calcium	10900	3	50.3	NR	mg/kg dry	1.00	09/24/09 02:02		9123026	6010B
Chromium		T	0.503	NR	mg/kg dry	1.00	09/24/09 02:02		9123026	6010B
Cobalt	4.89		0.503	NR	mg/kg dry	1.00	09/24/09 02:02		9123026	6010B
Copper	33.2	I	1.0	NR	mg/kg dry	1.00	09/24/09 02:02		9123026	6010B
ron	the second se	B1, B3, B	10.1	NR	mg/kg dry	1.00	09/24/09 02:02		9123026	6010B
_ead	104	5	1.0	NR	mg/kg dry	1.00	09/24/09 02:02		9123026	6010B
Magnesium	5580 🔇	T	20.1	NR	mg/kg dry	1.00	09/24/09 02:02		9123026	6010B
Manganese	473 🗂	B1. B	0.2	NR	mg/kg dry	1.00	09/24/09 02:02		9123026	6010B
Nickel	11.7 🕤		5.03	NR	mg/kg dry	1.00	09/24/09 02:02		9123026	6010B
Potassium	1130		30.2	NR	mg/kg dry	1.00	09/24/09 02:02		9123026	6010B
Selenium		t	4.0	NR	mg/kg dry	1.00	09/24/09 02:02		9123026	6010B
Silver	ND		0.503	NR	mg/kg dry	1.00	09/24/09 02:02		9123026	6010B
Sodium	ND		141	NR	mg/kg dry	1.00	09/24/09 02:02		9123026	6010B
Thallium	ND		6.0	NR	mg/kg dry	1.00	09/24/09 02:02		9123026	6010B
/anadium	17.0	T	0.503	NR	mg/kg dry	1.00	09/24/09 02:02		9123026	6010B
Zinc	113 🧃	1	2.0	NR	mg/kg dry	1.00	09/24/09 02:02		9123026	6010B
Mercury	0.167		0.0223	NR	mg/kg dry	1.00	09/25/09 14:45		9124107	7471A
General Chemistry Para	ameters									
Percent Solids	91		0.010	NR	%	1.00	09/20/09 16:30	KMB	9119015	Dry Weigh
Cyanide		et	1.0	0.9	mg/kg dry	1.00	09/23/09 09:51	jmm	9123015	9012A

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

THE LEADER IN ENVIRONMENTAL TESTING

Received: 09/17/09-09/21/09

Reported: 10/05/09 15:28

2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

Golder Associates, Inc. - Niagara Falls, NY

SDG Number: RSI0643

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

			A	Analytical	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Client ID: B-8 (0-2) (RSI07	741-10 - Solie	d)			Samp	led: 09	/21/09 10:20	Recv	d: 09/21/0	9 14:26
Polychlorinated Bipheny	Is by EPA N	lethod 8082								
Aroclor 1016 [2C]	ND	D08	36	7.1	ug/kg dry	2.00	09/23/09 14:32	SCH	9122042	8082
Aroclor 1221 [2C]	ND	D08	36	7.1	ug/kg dry	2.00	09/23/09 14:32	SCH	9122042	8082
Aroclor 1232 [2C]	ND	D08	36	7.1	ug/kg dry	2.00	09/23/09 14:32	SCH	9122042	8082
Aroclor 1242 [2C]	ND	D08	36	7.9	ug/kg dry	2.00	09/23/09 14:32	SCH	9122042	8082
Aroclor 1248 [2C]	ND	D08	36	7.1	ug/kg dry	2.00	09/23/09 14:32	SCH	9122042	8082
Aroclor 1254 [2C]	ND	D08	36	7.6	ug/kg dry	2.00	09/23/09 14:32	SCH	9122042	8082
Aroclor 1260 [2C]	250	D08	36	7.6	ug/kg dry	2.00	09/23/09 14:32	SCH	9122042	8082
Decachlorobiphenyl [2C]	88 %	D08	Surr Limits:	(34-148%)	1-1-1-0		09/23/09 14:32	SCH	9/22042	8082
Tetrachloro-m-xylene [2C]	78 %	D08	Surr Limits:	(35-134%)			09/23/09 14:32	SCH	9122042	8082
General Chemistry Parar	neters									
Percent Solids	91		0.010	NR	%	1.00	09/22/09 14:59	CJM	9122026	Dry Weight

THE LEADER IN ENVIRONMENTA	L TESTING							2.2		
Golder Associates, Inc N 2221 Niagara Falls Blvd., S		1Y	SDG Numbe	r: RSI0643				Rece		09/17/09-09/21/09 10/05/09 15:28
Niagara Falls, NY 14304			Project: Gold Project Num		Transformer si e]	te (Level	IV)	Керс	oned.	10/03/03 13:20
			A	nalytical	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Client ID: B-8 (2-4) (RSI07	741-11 - Soli	d)			Samo	led: 09/	21/09 10:20	Recy	d. 09/21	/09 14:26
		E. and								100 14.20
Polychlorinated Bipheny	vis by EPA N	E. and	18	3.5						
Polychlorinated Bipheny Aroclor 1016 [2C]		E. and	18 18	3.5 3.5	ug/kg dry	1.00	09/23/09 14:50	SCH	9122042	2 8082
Polychlorinated Bipheny Aroclor 1016 [2C] Aroclor 1221 [2C]	yis by EPA N ND	E. and	18 18 18	3.5	ug/kg dry ug/kg dry			SCH SCH		2 8082 2 8082
Polychlorinated Bipheny Aroclor 1016 [2C] Aroclor 1221 [2C] Aroclor 1232 [2C]	yls by EPA N ND ND	E. and	18		ug/kg dry	1.00 1.00	09/23/09 14:50 09/23/09 14:50	SCH SCH SCH	9122042 9122042	2 8082 2 8082 2 8082
Polychlorinated Bipheny Aroclor 1016 [2C] Aroclor 1221 [2C] Aroclor 1232 [2C] Aroclor 1232 [2C]	yls by EPA N ND ND ND ND	E. and	18 18	3.5 3.5	ug/kg dry ug/kg dry ug/kg dry	1.00 1.00 1.00	09/23/09 14:50 09/23/09 14:50 09/23/09 14:50	SCH SCH SCH SCH	9122042 9122042 9122042	2 8082 2 8082 2 8082 2 8082 2 8082
	yls by EPA N ND ND ND ND ND	E. and	18 18 18	3.5 3.5 3.9	ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry	1.00 1.00 1.00 1.00	09/23/09 14:50 09/23/09 14:50 09/23/09 14:50 09/23/09 14:50	SCH SCH SCH SCH	9122042 9122042 9122042 9122042 9122042	2 8082 2 8082 2 8082 2 8082 2 8082 2 8082
Polychlorinated Bipheny Aroclor 1016 [2C] Aroclor 1221 [2C] Aroclor 1232 [2C] Aroclor 1232 [2C] Aroclor 1242 [2C] Aroclor 1248 [2C]	VIS by EPA M ND ND ND ND ND ND	E. and	18 18 18 18	3.5 3.5 3.9 3.5	ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry	1.00 1.00 1.00 1.00 1.00	09/23/09 14:50 09/23/09 14:50 09/23/09 14:50 09/23/09 14:50 09/23/09 14:50	SCH SCH SCH SCH SCH SCH	9122042 9122042 9122042 9122042 9122042 9122042	2 8082 2 8082 2 8082 2 8082 2 8082 2 8082 2 8082
Polychlorinated Bipheny Aroclor 1016 [2C] Aroclor 1221 [2C] Aroclor 1232 [2C] Aroclor 1232 [2C] Aroclor 1242 [2C] Aroclor 1248 [2C] Aroclor 1254 [2C]	VIS by EPA M ND ND ND ND ND ND ND	E. and	18 18 18 18 18	3.5 3.5 3.9 3.5 3.8 3.8 3.8	ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry	1.00 1.00 1.00 1.00 1.00 1.00	09/23/09 14:50 09/23/09 14:50 09/23/09 14:50 09/23/09 14:50 09/23/09 14:50 09/23/09 14:50	SCH SCH SCH SCH SCH SCH SCH	9122042 9122042 9122042 9122042 9122042 9122042 9122042	2 8082 8082 8082 8082 8082 8082 8082 808

 Percent Solids
 91
 0.010
 NR
 %
 1.00
 09/22/09
 15:01
 CJM
 9I22026
 Dry Weight

E

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

meric

SDG Number: RSI0643

Project Number:

Project: Golder - Niagara Transformer site (Level IV)

[none]

09/17/09-09/21/09 Received: Reported:

10/05/09 15:28

			A	nalytical	Report					
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Client ID: B-8 (RSI0741-12	2 - Solid)				Samp	oled: 09	/21/09 10:30	Recy	vd: 09/21/0	9 14:26
Volatile Organic Compou	unds by EP	A 8260B								
1,1,1-Trichloroethane	ND		5.5	0.40	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
1,1,2,2-Tetrachloroethane	ND	1.1.1	5.5	0.89	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
1,1,2-Trichloroethane	ND (45	5.5	0.27	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
1,1,2-Trichlorotrifluoroeth	ND		5.5	0.58	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
ane										
1,1-Dichloroethane	ND		5.5	0.27	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
1,1-Dichloroethene	ND		5.5	0.67	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
1,2,4-Trichlorobenzene	ND		5.5	0.33	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
1,2-Dibromo-3-chloroprop	ND		5.5	1.1	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
ane										
1,2-Dibromoethane	ND		5.5	0.21	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
(EDB)										
1,2-Dichlorobenzene	ND		5.5	0.82	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
1,2-Dichloroethane	ND		5.5	0.27	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
1,2-Dichloroethene, Total	ND		11	2.9	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
1,2-Dichloropropane	ND		5.5	0.28	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
1,3-Dichlorobenzene	ND		5.5	0.77	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
1,4-Dichlorobenzene	ND		5.5	0.77	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
2-Butanone (MEK)	ND		27	7.4	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
2-Hexanone	ND		27	1.9	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
4-Methyl-2-pentanone (MIBK)	ND		27	1.8	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
Acetone	ND		27	1.2	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
Benzene	ND		5.5	0.27	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
Bromodichloromethane	ND		5.5	0.28	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
Bromoform	ND		5.5	0.50	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
Bromomethane	ND		5.5	0.50	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
Carbon disulfide	ND		5.5	0.47	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
Carbon Tetrachloride	ND		5.5	0.20	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
Chlorobenzene	ND		5.5	0.24	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
Chlorodibromomethane	ND		5.5	0.30	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
Chloroethane	ND		5.5	0.89	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
Chloroform	ND		5.5	0.34	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
Chloromethane	ND		5.5	0.33	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
cis-1,2-Dichloroethene	ND		5.5	0.27	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
cis-1,3-Dichloropropene	ND		5.5	0.31	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
Cyclohexane	ND		5.5	0.25	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
Dichlorodifluoromethane	ND		5.5	0.45	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
Ethylbenzene	ND		5.5	0.38	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
Isopropylbenzene	ND		5.5	0.36	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
Methyl Acetate	ND		5.5	0.30	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
Methyl tert-Butyl Ether	ND		5.5	0.54	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
Methylcyclohexane	ND		5.5	0.35	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
Methylene Chloride	28		5.5	0.38	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
Styrene	ND		5.5	0.27	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
Tetrachloroethene	ND		5.5	0.73	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
Toluene	ND	В	5.5	0.93	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
trans-1,2-Dichloroethene	ND		5.5	0.57	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
trans-1,3-Dichloropropen e	ND		5.5	0.27	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
Distance in the second	12.5.8		21.2	12.53	1.	1. 2.	1.1.2.2.2.2.2.2.2.2.2.2.2.2.		1.	100000000

TestAmerica Buffalo

Trichloroethene

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

5.5

0.38

ug/kg dry

1.00

09/26/09 17:05 PQ

9126039

8260B

ND

www.testamericainc.com

64/2497

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

SDG Number: RSI0643

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

			ŀ	nalytical	Report					
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Client ID: B-8 (RSI0741-1	2 - Solid) - co	nt.			Samp	led: 09	21/09 10:30	Recv	d: 09/21/0	9 14:26
Volatile Organic Compo	unds by EPA	8260B - co	nt.							
Trichlorofluoromethane	ND		5.5	1.7	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
Vinyl acetate	ND		27	1.1	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
Vinyl chloride	ND		11	0.22	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
Xylenes, total	ND		11	0.92	ug/kg dry	1.00	09/26/09 17:05	PQ	9126039	8260B
1,2-Dichloroethane-d4	106 %		Surr Limits:	(64-126%)			09/26/09 17:05	PQ	9/26039	8260B
4-Bromofluorobenzene	107 %		Surr Limits:				09/26/09 17:05	PQ	9/26039	8260B
Toluene-d8	113 %		Surr Limits:				09/26/09 17:05	PQ	9126039	8260B
Semivolatile Organics b	V GC/MS									
2,4,5-Trichlorophenol	ND	D10	930	200	ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C
2,4,6-Trichlorophenol	ND	D10	930	61	ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C
2,4-Dichlorophenol	ND	D10	930	48	ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C
2,4-Dimethylphenol	ND	D10	930	250	ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C
2,4-Dinitrophenol	ND	D10	1800	320	ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C
2,4-Dinitrotoluene	ND	D10	930	140	ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C
2,6-Dinitrotoluene	ND	D10	930	230	ug/kg dry	5.00	09/26/09 17:01		9122039	8270C
2-Chloronaphthalene	ND	D10	930	62	ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C
2-Chlorophenol	ND	D10	930	47	ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C
2-Methylnaphthalene	170	D10,J	930	11	ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C
2-Methylphenol	ND	D10,0	930	28	ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C
2-Nitroaniline	ND	D10	1800	300	ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C
2-Nitrophenol	ND	D10	930	42	ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C
3 & 4 Methylphenol	ND	D10	1800	51		5.00	09/26/09 17:01	ERK	9122039	8270C
3,3'-Dichlorobenzidine	ND	D10	930	810	ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C
3-Nitroaniline	ND	D10	1800	210	ug/kg dry ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C
	ND	D10	1800	320		5.00		ERK	9122039	8270C
4,6-Dinitro-2-methylphen ol	ND	DIO	1000	320	ug/kg dry	5.00	09/26/09 17:01	ERN	9122039	02700
4-Bromophenyl phenyl	ND	D10	930	290	ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C
ether		and a co	3.4.4		-3-33			and the second		
4-Chloro-3-methylphenol	ND	D10	930	38	ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C
4-Chloroaniline	ND	D10	930	270	ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C
4-Chlorophenyl phenyl	ND	D10	930	20	ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C
ether					-5-5-5					
4-Nitroaniline	ND	D10	1800	100	ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C
4-Nitrophenol	ND	D10	1800	220	ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C
Acenaphthene	ND	D10	930	11	ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C
Acenaphthylene	100	D10,J	930	7.5	ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C
Acetophenone	ND	D10	930	47	ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C
Anthracene	87	D10,J	930	24	ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C
Atrazine	ND UT		930	41	ug/kg dry	5.00	09/26/09 17:01		9122039	8270C
Benzaldehyde	ND	D10	930	100	ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C
Benzo[a]anthracene	570	D10,J	930	16	ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C
Benzo[a]pyrene	680 🥤	D10,L, J	930	22	ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C
Benzo[b]fluoranthene	890	D10,J	930	18	ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C
Benzo[g,h,i]perylene	620	D10,J	930	11	ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C
Benzo[k]fluoranthene	310	D10,J	930	10	ug/kg dry ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C
	ND	D10,3					09/26/09 17:01	ERK		
Biphenyl Bis/2 chloroothow/motho	ND	D10	930 930	57 50	ug/kg dry	5.00		ERK	9122039 9122039	8270C 8270C
Bis(2-chloroethoxy)metha ne	ND	010	930	50	ug/kg dry	5.00	09/26/09 17:01	ERN	9122039	02700
Bis(2-chloroethyl)ether	ND	D10	930	79	ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

65/2497

Received: 09/17/09-09/21/09

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

SDG Number: RSI0643

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

			ŀ	Analytical	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Client ID: B-8 (RSI0741-1	12 - Solid) - c	ont.			Samp	led: 09/	/21/09 10:30	Recv	d: 09/21/0	9 14:26
Semivolatile Organics b	oy GC/MS - c	ont.								
Bis(2-chloroisopropyl) ether	ND	D10	930	96	ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C
Bis(2-ethylhexyl) phthalate	420	D10,J	930	300	ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C
Butyl benzyl phthalate	ND	D10	930	250	ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C
Caprolactam	ND	D10	930	400	ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C
Carbazole	ND	D10	930	11	ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C
Chrysene	670	D10,J	930	9.2	ug/kg dry	5.00	09/26/09 17:01		9122039	8270C
Dibenz[a,h]anthracene	150	D10,J	930	11	ug/kg dry	5.00	09/26/09 17:01		9122039	8270C
Dibenzofuran	55	D10,J	930	9.6	ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C
Diethyl phthalate	ND	D10,3	930	28	ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C
	ND	D10	930	20	ug/kg dry ug/kg dry	5.00	09/26/09 17:01		9122039	8270C
Dimethyl phthalate										
Di-n-butyl phthalate	ND	D10	930	320	ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C
Di-n-octyl phthalate	ND	D10	930	22	ug/kg dry	5.00	09/26/09 17:01		9122039	8270C
Fluoranthene	1200	D10	930	13	ug/kg dry	5.00	09/26/09 17:01		9122039	8270C
Fluorene	ND	D10	930	21	ug/kg dry	5.00	09/26/09 17:01		9122039	8270C
Hexachlorobenzene	ND	D10	930	46	ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C
Hexachlorobutadiene	ND	D10	930	47	ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C
Hexachlorocyclopentadie	ND	D10	930	280	ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C
ne Hexachloroethane	ND	D10	930	71	ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C
	490	D10,J	930	25	ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C
Indeno[1,2,3-cd]pyrene									9122039	8270C
Isophorone	ND	D10	930	46	ug/kg dry	5.00	09/26/09 17:01			
Naphthalene	120	D10,J	930	15	ug/kg dry	5.00	09/26/09 17:01		9122039	8270C
Nitrobenzene	ND	D10	930	41	ug/kg dry	5.00	09/26/09 17:01		9122039	8270C
N-Nitrosodi-n-propylamin e	ND	D10	930	73	ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C
- N-Nitrosodiphenylamine	ND	D10,L	930	50	ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C
Phenanthrene	630	D10,J	930	19	ug/kg dry	5.00	09/26/09 17:01		9122039	8270C
Phenol	ND	D10	930	97	ug/kg dry	5.00	09/26/09 17:01	ERK	9122039	8270C
Pyrene	960	D10	930	6.0	ug/kg dry	5.00	09/26/09 17:01		9122039	8270C
2,4,6-Tribromophenol	57 %	D10	Surr Limits:	(39-146%)			09/26/09 17:01	ERK	9/22039	8270C
2-Fluorobiphenyl	70 %	D10	Surr Limits:	(37-120%)			09/26/09 17:01	ERK	9122039	8270C
2-Fluorophenol	54 %	D10		(18-120%)			09/26/09 17:01		9122039	8270C
Nitrobenzene-d5	62 %	D10	Surr Limits:				09/26/09 17:01		9/22039	8270C
Phenol-d5	63 %	D10	Surr Limits:				09/26/09 17:01		9/22039	8270C
p-Terphenyl-d14	68 %	D10	Surr Limits:				09/26/09 17:01			8270C
Organochlorine Pesticio	des by EPA M	Aethod 8081	A							
4,4'-DDD [2C]	2.8	QFL, D04,J	9.0	1.8	ug/kg dry	5.00	09/30/09 04:07	MAN	9122040	8081A
4,4'-DDE [2C]	ND	QFL, D04,0	9.0	2.6	ug/kg dry	5.00	09/30/09 04:07		9122040	8081A
4,4'-DDT [2C]	ND	QFL, D04	9.0	2.0	ug/kg dry	5.00	09/30/09 04:07		9122040	8081A
Aldrin [2C]	ND	QFL, D04 QFL, D04	9.0	0.92	ug/kg dry ug/kg dry	5.00	09/30/09 04:07		9122040	8081A
alpha-BHC [2C]	1.5	LQFL, D04,J	9.0			5.00	09/30/09 04:07		9122040	8081A
A REAL PROPERTY OF A REAL PROPER				1.6	ug/kg dry					
alpha-Chlordane [2C]	ND	QFL, D04	9.0	4.5	ug/kg dry	5.00	09/30/09 04:07		9122040	8081A
beta-BHC [2C]	ND	QFL, D04	9.0	6.5	ug/kg dry	5.00	09/30/09 04:07		9122040	8081A
Chlordane [2C]	ND	QFL, D04	90	20	ug/kg dry	5.00	09/30/09 04:07		9122040	8081A
delta-BHC [2C]	ND	QFL, D04	9.0	1.2	ug/kg dry	5.00	09/30/09 04:07		9122040	8081A
Dieldrin [2C]	3.2 💙	QFL, D04,J	9.0	2.2	ug/kg dry	5.00	09/30/09 04:07		9122040	8081A
		OFI DOL		1.0	0.0	F 00	00/00/00 04.07	MAANI	0100040	8081A
Endosulfan I [2C]	ND ND	QFL, D04 QFL, D04	9.0 9.0	1.9 1.6	ug/kg dry ug/kg dry	5.00	09/30/09 04:07	MAIN	9122040 9122040	8081A

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

66/2497

Received: 09/17/09-09/21/09

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY SDG Number: RSI0643 09/17/09-09/21/09 Received: 2221 Niagara Falls Blvd., Ste 9 Reported: 10/05/09 15:28 Niagara Falls, NY 14304 Project: Golder - Niagara Transformer site (Level IV) Project Number: [none] Analytical Report Sample Dil Data Date Lab MDL RL Analyte Result Qualifiers Units Fac Analyzed Batch Tech Method Client ID: B-8 (RSI0741-12 - Solid) - cont. Sampled: 09/21/09 10:30 Recvd: 09/21/09 14:26 Organochlorine Pesticides by EPA Method 8081A - cont. Endosulfan sulfate [2C] ND **QFL, D04** 9.0 1.7 ug/kg dry 5.00 09/30/09 04:07 MAN 9122040 8081A 2.9 Endrin [2C] 3.4 QFL, D04.J 9.0 ug/kg dry 5.00 09/30/09 04:07 MAN 9122040 8081A Endrin aldehyde [2C] ND **QFL, D04** 9.0 2.3 ug/kg dry 5.00 09/30/09 04:07 MAN 9122040 8081A Endrin ketone [2C] ND **QFL**, D04 9.0 2.2 ug/kg dry 5.00 09/30/09 04:07 MAN 9122040 8081A gamma-BHC (Lindane) ND **QFL**, D04 9.0 1.6 ug/kg dry 5.00 09/30/09 04:07 MAN 9122040 8081A [2C] 1.3 U gamma-Chlordane [2C] ND QFL, D04,J 9.0 1.2 ug/kg dry 5.00 09/30/09 04:07 MAN 9122040 8081A Heptachlor [2C] 1.6 QFL, D04,J 9.0 5.00 09/30/09 04:07 MAN 1.4 ug/kg dry 9122040 8081A Heptachlor epoxide [2C] QFL, D04 8081A ND 9.0 2.3 5.00 09/30/09 04:07 9122040 ug/kg dry MAN Methoxychlor [2C] ND **QFL**, D04 9.0 24 ug/kg dry 5.00 09/30/09 04:07 MAN 9122040 8081A **QFL**, D04 09/30/09 04:07 Toxaphene [2C] ND 90 52 ug/kg dry 5.00 MAN 9122040 8081A Decachlorobiphenyl [2C] 163 % Surr Limits: (42-146%) QFL, 09/30/09 04:07 MAN 9122040 8081A D04,Z5 Tetrachloro-m-xylene 89 % QFL, D04 Surr Limits: (37-136%) 09/30/09 04:07 MAN 9122040 8081A [2C] Total Metals by SW 846 Series Methods 5950 Aluminum 11.5 NR mg/kg dry 1.00 09/25/09 04:01 LMH 9123026 6010B ND a Antimony 17.2 NR mg/kg dry 1.00 09/24/09 02:21 AMH 9123026 6010B 9.7 Arsenic 2.3 NR mg/kg dry 1.00 09/24/09 02:21 AMH 9123026 6010B 102 Barium 0.574 NR mg/kg dry 1.00 09/24/09 02:21 AMH 9123026 6010B . 0.369 Beryllium 0.229 NR mg/kg dry 1.00 09/24/09 02:21 AMH 9123026 6010B Cadmium 1.63 0.229 NR mg/kg dry 1.00 09/24/09 02:21 AMH 9123026 6010B Calcium 4630 57.4 NR 09/24/09 02:21 AMH mg/kg dry 1.00 9123026 6010B Chromium 18.6 1 0.574 NR mg/kg dry 1.00 09/24/09 02:21 AMH 9123026 6010B Cobalt 7.76 0.574 NR mg/kg dry 1.00 09/24/09 02:21 AMH 9123026 6010B 5 Copper 124 1.1 NR mg/kg dry 1.00 09/24/09 02:21 AMH 9123026 6010B T 66600 Iron D08, B 57.4 NR mg/kg dry 5.00 09/26/09 10:41 LMH 9123026 6010B 322 Lead C J 1.1 NR mg/kg dry 1.00 09/24/09 02:21 AMH 9123026 6010B 2280 Magnesium 22.9 NR mg/kg dry 1.00 09/24/09 02:21 AMH 9123026 6010B Manganese 521 B1, B 0.2 NR AMH mg/kg dry 1.00 09/24/09 02:21 9123026 6010B Nickel 25.0 5.74 AMH NR mg/kg dry 1.00 09/24/09 02:21 9123026 6010B 783 Potassium 34.4 NR mg/kg dry 1.00 09/24/09 02:21 AMH 9123026 6010B Selenium ND 4.6 NR mg/kg dry 1.00 09/24/09 02:21 AMH 9123026 6010B ND Silver 0.574 NR mg/kg dry 1.00 09/24/09 02:21 AMH 9123026 6010B Sodium ND 161 NR mg/kg dry 1.00 09/24/09 02:21 AMH 9123026 6010B ND Thallium 6.9 NR mg/kg dry 1.00 09/24/09 02:21 AMH 9123026 6010B Vanadium 16.0 1 0.574 NR 1.00 09/24/09 02:21 AMH 9123026 mg/kg dry 6010B Zinc 635 5 2.3 NR mg/kg dry 1.00 09/24/09 02:21 AMH 9123026 6010B 1.02 D08 Mercury 0.102 NR mg/kg dry 5.00 09/29/09 17:58 MXM 9125041 7471A **General Chemistry Parameters** Percent Solids 91 0.010 NR 1.00 % 09/22/09 15:03 CJM 9122026 Dry Weight NJ

0.9

mg/kg dry

1.00

09/24/09 08:10

9123064

imm

9012A

1.1

67/2497

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

ND

Cyanide

Foot	An	nor	inc
1021	An	IIEI	ICC
-			

Golder Associates, Inc Niagara Falls, NY	SDG Number: RSI0643	
2221 Niagara Falls Blvd., Ste 9		
Niagara Falls, NY 14304	Project: Golder - Niagara Transformer site (Level IV)	

09/17/09-09/21/09 Received: Reported:

10/05/09 15:28

Project Number: [none]

			A	Analytical	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Client ID: B-9 (0-2) (RSI07	741-13 - Solie	d)			Samp	led: 09/	21/09 10:50	Recv	rd: 09/21/0	9 14:26
Polychlorinated Bipheny	ls by EPA N	lethod 8082								
Aroclor 1016 [2C]	ND	D08	950	180	ug/kg dry	50.0	09/23/09 15:09	SCH	9122042	8082
Aroclor 1221 [2C]	ND	D08	950	180	ug/kg dry	50.0	09/23/09 15:09	SCH	9122042	8082
Aroclor 1232 [2C]	ND	D08	950	180	ug/kg dry	50.0	09/23/09 15:09	SCH	9122042	8082
Aroclor 1242 [2C]	ND	D08	950	210	ug/kg dry	50.0	09/23/09 15:09	SCH	9122042	8082
Aroclor 1248 [2C]	ND	D08	950	190	ug/kg dry	50.0	09/23/09 15:09	SCH	9122042	8082
Aroclor 1254 [2C]	ND	D08	950	200	ug/kg dry	50.0	09/23/09 15:09	SCH	9122042	8082
Aroclor 1260 [2C]	22000	D08	950	200	ug/kg dry	50.0	09/23/09 15:09	SCH	9122042	8082
Decachlorobiphenyl [2C]	*	D08,Z3	Surr Limits:	(34-148%)			09/23/09 15:09	SCH	9/22042	8082
Tetrachloro-m-xylene [2C]	*	D08,Z3	Surr Limits:	(35-134%)			09/23/09 15:09	SCH	9122042	8082
General Chemistry Para	neters									
Percent Solids	88		0.010	NR	%	1.00	09/22/09 15:05	CJM	9122026	Dry Weight

TT IA	A
loct Ar	norica
COLT	nerica
1001/ 1	incree

Golder Associates, Inc. - Niagara Falls, NY

69/2497	
---------	--

Received:	09/17/09-09/21/09
Reported:	10/05/09 15:28

2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

SDG Number: RSI0643

			1	Analytical	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Client ID: B-9 (2-4) (RSI07	741-14 - Soli	d)			Samp	oled: 09	/21/09 10:50	Recy	/d: 09/21/0	9 14:26
Polychlorinated Bipheny	Is by EPA N	lethod 8082								
Aroclor 1016 [2C]	ND		18	3.6	ug/kg dry	1.00	09/23/09 15:27	SCH	9122042	8082
Aroclor 1221 [2C]	ND		18	3.6	ug/kg dry	1.00	09/23/09 15:27	SCH	9122042	8082
Aroclor 1232 [2C]	ND		18	3.6	ug/kg dry	1.00	09/23/09 15:27	SCH	9122042	8082
Aroclor 1242 [2C]	ND		18	4.0	ug/kg dry	1.00	09/23/09 15:27	SCH	9122042	8082
Aroclor 1248 [2C]	ND		18	3.6	ug/kg dry	1.00	09/23/09 15:27	SCH	9122042	8082
Aroclor 1254 [2C]	ND		18	3.9	ug/kg dry	1.00	09/23/09 15:27	SCH	9122042	8082
Aroclor 1260 [2C]	220		18	3.9	ug/kg dry	1.00	09/23/09 15:27	SCH	9122042	8082
Decachlorobiphenyl [2C]	87 %		Surr Limits:	(34-148%)			09/23/09 15:27	SCH	9/22042	8082
Tetrachloro-m-xylene [2C]	89 %		Surr Limits:	(35-134%)			09/23/09 15:27	SCH	9122042	8082
General Chemistry Para	meters									
Percent Solids	90		0.010	NR	%	1.00	09/22/09 15:07	CJM	9122026	Dry Weigh

lest

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

merica

SDG Number: RSI0643

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

					Ana	alytical	Report					
	S	Sample	1	Data				Dil	Date	Lab		
Analyte	- 1	Result	Qu	alifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Client ID: B-9 (RSI0643	-02 - S	olid)					Samp	led: 09	17/09 11:50	Recv	d: 09/17/0	9 16:47
Volatile Organic Comp	ounds	by EPA	A 826	<u>0B</u>								
1,1,1-Trichloroethane		ND			5.1	0.37	ug/kg dry	1.00	09/23/09 20:45	PQ	9123060	8260B
1,1,2,2-Tetrachloroethane	E .	ND			5.1	0.83	ug/kg dry	1.00	09/23/09 20:45	PQ	9123060	8260B
1,1,2-Trichloroethane		ND			5.1	0.26	ug/kg dry	1.00	09/23/09 20:45	PQ	9123060	8260B
1,1,2-Trichlorotrifluoroeth		ND			5.1	0.54	ug/kg dry	1.00	09/23/09 20:45	PQ	9123060	8260B
ane												
1,1-Dichloroethane		ND			5.1	0.25	ug/kg dry	1.00	09/23/09 20:45	PQ	9123060	8260B
1,1-Dichloroethene		ND			5.1	0.62	ug/kg dry	1.00	09/23/09 20:45	PQ	9123060	8260B
1,2,4-Trichlorobenzene		ND			5.1	0.31	ug/kg dry	1.00	09/23/09 20:45	PQ	9123060	8260B
1,2-Dibromo-3-chloroprop	ē	ND			5.1	1.0	ug/kg dry	1.00	09/23/09 20:45	PQ	9123060	8260B
ane												
1,2-Dibromoethane (EDB)		ND			5.1	0.19	ug/kg dry	1.00	09/23/09 20:45	PQ	9123060	8260B
1,2-Dichlorobenzene		ND			5.1	0.77	ug/kg dry	1.00	09/23/09 20:45	PQ	9123060	8260B
1,2-Dichloroethane		ND			5.1	0.26	ug/kg dry	1.00	09/23/09 20:45	PQ	9123060	8260B
1,2-Dichloroethene, Total		ND			10	2.7	ug/kg dry	1.00	09/23/09 20:45	PQ	9123060	8260B
1,2-Dichloropropane		ND			5.1	0.26	ug/kg dry	1.00	09/23/09 20:45	PQ	9123060	8260B
1,3-Dichlorobenzene		ND			5.1	0.72	ug/kg dry	1.00	09/23/09 20:45	PQ	9123060	8260B
1,4-Dichlorobenzene		ND			5.1	0.71	ug/kg dry	1.00	09/23/09 20:45	PQ	9123060	8260B
2-Butanone (MEK)		ND			25	6.9	ug/kg dry	1.00	09/23/09 20:45	PQ	9123060	8260B
2-Hexanone		ND			25	1.8	ug/kg dry	1.00	09/23/09 20:45	PQ	9123060	8260B
4-Methyl-2-pentanone (MIBK)		ND			25	1.7	ug/kg dry	1.00	09/23/09 20:45	PQ	9123060	8260B
Acetone		5.4		J	25	1.1	ug/kg dry	1.00	09/23/09 20:45	PQ	9123060	8260B
Benzene		ND			5.1	0.25	ug/kg dry	1.00	09/23/09 20:45	PQ	9123060	8260B
Bromodichloromethane		ND			5.1	0.26	ug/kg dry	1.00	09/23/09 20:45	PQ	9123060	8260B
Bromoform		ND			5.1	0.47	ug/kg dry	1.00	09/23/09 20:45	PQ	9123060	8260B
Bromomethane		ND			5.1	0.47	ug/kg dry	1.00	09/23/09 20:45	PQ	9123060	8260B
Carbon disulfide		ND			5.1	0.44	ug/kg dry	1.00	09/23/09 20:45	PQ	9123060	8260B
Carbon Tetrachloride		ND			5.1	0.44	ug/kg dry	1.00	09/23/09 20:45	PQ	9123060	8260B
Chlorobenzene		ND			5.1	0.18		1.00	09/23/09 20:45	PQ	9123060	8260B
Chlorodibromomethane		ND			5.1	0.22	ug/kg dry	1.00	09/23/09 20:45	PQ	9123060	8260B
		ND		¥	5.1		ug/kg dry		09/23/09 20:45	PQ	9123060	8260B
Chloroethane		ND		L	5.1 5.1	0.83	ug/kg dry	1.00 1.00		PQ	9123060	8260B
Chloroform						0.32	ug/kg dry		09/23/09 20:45			
Chloromethane		ND ND			5.1 5.1	0.31	ug/kg dry	1.00	09/23/09 20:45 09/23/09 20:45	PQ PQ	9123060 9123060	8260B 8260B
cis-1,2-Dichloroethene		ND			5.1 5.1	0.25 0.29	ug/kg dry	1.00	09/23/09 20:45	PQ	9123060	8260B 8260B
cis-1,3-Dichloropropene							ug/kg dry	1.00	2	-	242632	
Cyclohexane		ND			5.1	0.23	ug/kg dry	1.00	09/23/09 20:45	PQ	9123060	8260B
Dichlorodifluoromethane		ND			5.1	0.42	ug/kg dry	1.00	09/23/09 20:45	PQ	9123060	8260B
Ethylbenzene		ND			5.1	0.35	ug/kg dry	1.00	09/23/09 20:45	PQ	9123060	8260B
Isopropylbenzene		ND			5.1	0.33	ug/kg dry	1.00	09/23/09 20:45	PQ	9123060	8260B
Methyl Acetate		ND			5.1	0.28	ug/kg dry	1.00	09/23/09 20:45	PQ	9123060	8260B 8260B
Methyl tert-Butyl Ether		ND			5.1	0.50	ug/kg dry	1.00	09/23/09 20:45	PQ	9123060	
Methylcyclohexane	a 10	ND	10		5.1	0.33	ug/kg dry	1.00	09/23/09 20:45	PQ	9123060	8260B
Methylene Chloride	NO	5.6	U	В	5.75.6	0.36	ug/kg dry	1.00	09/23/09 20:45	PQ	9123060	8260B
Styrene		ND			5.1	0.25	ug/kg dry	1.00	09/23/09 20:45	PQ	9123060	8260B
Tetrachloroethene		ND			5.1	0.68	ug/kg dry	1.00	09/23/09 20:45	PQ	9123060	8260B
Toluene		ND			5.1	0.86	ug/kg dry	1.00	09/23/09 20:45	PQ	9123060	8260B
trans-1,2-Dichloroethene		ND			5.1	0.53	ug/kg dry	1.00	09/23/09 20:45	PQ	9123060	8260B
trans-1,3-Dichloropropen e		ND			5.1	0.25	ug/kg dry	1.00	09/23/09 20:45	PQ	9123060	8260B
Trichloroethene		ND			5.1	0.35	ug/kg dry	1.00	09/23/09 20:45	PQ	9123060	8260B

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

70/2497

Received: 09/17/09-09/21/09

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY SDG 2221 Niagara Falls Blvd., Ste 9

Niagara Falls, NY 14304

SDG Number: RSI0643

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

			A	nalytical	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Client ID: B-9 (RSI0643-0)							/17/09 11:50		vd: 09/17/0	
Volatile Organic Compo	unds by FP4	A 8260B - co	nt							
Trichlorofluoromethane	ND	102000-00	5.1	10	un fice das	1 00	09/23/09 20:45	PQ	9123060	8260B
Vinyl acetate	ND		25	1.6 1.1	ug/kg dry	1.00		PQ	9123060	8260B
Vinyl chloride	ND		10	0.21	ug/kg dry	1.00 1.00	09/23/09 20:45 09/23/09 20:45	PQ	9123060	8260B
Xylenes, total	ND		10	0.21	ug/kg dry ug/kg dry	1.00	09/23/09 20:45	PQ	9123060	8260B
1.2-Dichloroethane-d4	105 %		Surr Limits:	(64-126%)			09/23/09 20:45	PQ	9/23060	8260B
4-Bromofluorobenzene	107 %		Surr Limits:				09/23/09 20:45	PQ	9123060	8260B
Toluene-d8	117 %		Surr Limits:				09/23/09 20:45	PQ	9/23060	8260B
Semivolatile Organics by	GC/MS									
2,4,5-Trichlorophenol	ND	D10	1800	390	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
2,4,6-Trichlorophenol	ND	D10	1800	120	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
2,4-Dichlorophenol	ND	D10	1800	94	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
2,4-Dimethylphenol	ND	D10	1800	480	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
2,4-Dinitrophenol	ND	D10	3500	630	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
2,4-Dinitrotoluene	ND	D10	1800	280	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
2,6-Dinitrotoluene	ND	D10	1800	440	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
2-Chloronaphthalene	ND	D10	1800	120	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
2-Chlorophenol	ND	D10	1800	91	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
2-Methylnaphthalene	ND	D10	1800	22		10.0	09/23/09 20:25	JLG	9118138	8270C
2-Methylphenol	ND	D10	1800		ug/kg dry					8270C
2-Nitroaniline				55	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	
	ND	D10	3500	580	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
2-Nitrophenol	ND	D10	1800	82	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
3 & 4 Methylphenol	ND	D10	3500	100	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
3,3'-Dichlorobenzidine	ND	D10	1800	1600	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
3-Nitroaniline	ND	D10	3500	410	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
4,6-Dinitro-2-methylphen ol	ND	D10	3500	620	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
4-Bromophenyl phenyl ether	ND	D10	1800	570	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
4-Chloro-3-methylphenol	ND	D10	1800	74	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
4-Chloroaniline	ND	D10	1800	530	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
4-Chlorophenyl phenyl	ND	D10	1800	38	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
ether	4150				aging ary	10.0	00/20/00 20.20		Sheree	02.00
4-Nitroaniline	ND	D10	3500	200	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
4-Nitrophenol	ND	D10	3500	430	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
Acenaphthene	ND	D10	1800	21	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
Acenaphthylene	ND	D10	1800	15	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
Acetophenone	ND	D10	1800	92	ug/kg dry	10.0	09/23/09 20:25	JLG	9/18138	8270C
Anthracene	120	D10,J	1800	46	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
Atrazine	ND	D10,N1	1800	80	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
Benzaldehyde	ND 4		1800	200	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
Benzo[a]anthracene	530	D10,J	1800	31	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
Benzo[a]pyrene	620	D10,J	1800	43	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
Benzo[b]fluoranthene	800	D10,J								
			1800	35	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
Benzo[g,h,i]perylene	510	D10,J	1800	22	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
Benzo[k]fluoranthene	400	D10,J	1800	20	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
Biphenyl	ND	D10	1800	110	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
Bis(2-chloroethoxy)metha ne	ND	D10	1800	98	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
Bis(2-chloroethyl)ether	ND	D10	1800	150	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

71/2497

Received: 09/17/09-09/21/09 Reported: 10/05/09 15:28

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

SDG Number: RSI0643

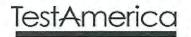
Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

			A	nalytical	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Client ID: B-9 (RSI0643-	02 - Solid) - c	ont.			Samp	led: 09/	17/09 11:50	Recv	/d: 09/17/0	9 16:47
Semivolatile Organics	by GC/MS - co	ont.								
Bis(2-chloroisopropyl) ether	ND	D10	1800	190	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
Bis(2-ethylhexyl) phthalate	1100	D10,J	1800	580	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
Butyl benzyl phthalate	ND	D10	1800	480	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
Caprolactam	ND	D10	1800	780	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
Carbazole	ND	D10	1800	21	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
Chrysene	620	D10,J	1800	18	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
Dibenz[a,h]anthracene	150	D10,J	1800	21	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
Dibenzofuran	ND	D10	1800	19	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
Diethyl phthalate	ND	D10	1800	54	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
Dimethyl phthalate	ND	D10	1800	47	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
Di-n-butyl phthalate	ND	D10	1800	620	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
Di-n-octyl phthalate	ND	D10	1800	42	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
Fluoranthene	1100	D10,J	1800	26	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
Fluorene	ND	D10	1800	41	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
Hexachlorobenzene	ND	D10	1800	89	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
Hexachlorobutadiene	ND	D10	1800	92	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
Hexachlorocyclopentadie ne	ND	D10	1800	540	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
Hexachloroethane	ND	D10	1800	140	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
Indeno[1,2,3-cd]pyrene	380	D10,J	1800	50	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
Isophorone	ND	D10	1800	90	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
Naphthalene	ND	D10	1800	30	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
Nitrobenzene	ND	D10	1800	79	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
N-Nitrosodi-n-propylamin e	ND	D10	1800	140	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	82700
N-Nitrosodiphenylamine	ND	D10,L	1800	98	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
Phenanthrene	720	D10,J	1800	38	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
Phenol	ND	D10	1800	190	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
Pyrene	930	D10,J	1800	12	ug/kg dry	10.0	09/23/09 20:25	JLG	9118138	8270C
2,4,6-Tribromophenol	81 %	D10	Surr Limits:	(39-146%)			09/23/09 20:25	JLG	9/18138	82700
2-Fluorobiphenyl	90 %	D10	Surr Limits:				09/23/09 20:25	JLG	9/18138	8270C
2-Fluorophenol	72 %	D10	Surr Limits:				09/23/09 20:25	JLG	9118138	8270C
Nitrobenzene-d5	77 %	D10	Surr Limits:	1			09/23/09 20:25	JLG	9/18138	8270C
Phenol-d5	82 %	D10	Surr Limits:				09/23/09 20:25	JLG	9/18138	8270C
p-Terphenyl-d14	92 %	D10	Surr Limits:	(58-147%)			09/23/09 20:25	JLG	9118138	8270C
Organochlorine Pestici	Δ	the second se	/	-6						
4,4'-DDD	Nº 13 V		3.6	0.70	ug/kg dry	2.00	09/28/09 22:20		9120007	8081A
4,4'-DDE	N.D 8.8 U			8 1.0	ug/kg dry	2.00	09/28/09 22:20	MAN	9120007	8081A
4,4'-DDT	ND	QFL	3.6	0.82	ug/kg dry	2.00	09/28/09 22:20	MAN	9120007	8081A
Aldrin	ND	QFL	3.6	0.37	ug/kg dry	2.00	09/28/09 22:20	MAN	9120007	8081A
alpha-BHC	ND	QFL	3.6	0.65	ug/kg dry	2.00	09/28/09 22:20	MAN	9120007	8081A
alpha-Chlordane	ND	QFL	3.6	1.8	ug/kg dry	2.00	09/28/09 22:20	MAN	9120007	8081A
beta-BHC	ND	QFL	3.6	2.6	ug/kg dry	2.00	09/28/09 22:20	MAN	9120007	8081A
Chlordane	ND	QFL	36	8.0	ug/kg dry	2.00	09/28/09 22:20	MAN	9120007	8081A
delta-BHC	1.5	QFL,J	3.6	0.47	ug/kg dry	2.00	09/28/09 22:20	MAN	9120007	8081A
ueita-Dric									9120007	8081A
	8.6 J	QFL	3.6	0.86	ug/kg dry	2.00	09/28/09 22:20	IVI/AIN	9120007	00014
Dieldrin Endosulfan I	8.6 🔵 ND	QFL	3.6 3.6	0.86	ug/kg dry ug/kg dry	2.00			9120007	8081A

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com


72/2497

									73/24	97
Golder Associates, Inc 2221 Niagara Falls Blvd.,	집 같은 것이 같은 것이 같이 많이 없다.	IY	SDG Number	RSI0643				Rece Repo	1937 - ME	/17/09-09/21/0 /05/09 15:28
Niagara Falls, NY 14304			Project: Golde Project Numb			te (Level	IV)		(314) · · ·	
		17-	A	nalytical	Report	1.5	1.1.1			
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Client ID: B-9 (RSI0643-	-02 - Solid) - co	ont.			Samp	oled: 09	/17/09 11:50	Recv	d: 09/17/0	9 16:47
Organochlorine Pestic	ides by EPA N	lethod 8081	A - cont.							
Endosulfan sulfate	ND	QFL	3.6	0.67	ug/kg dry	2.00	09/28/09 22:20	MAN	9120007	8081A
Endrin	ND 4.4- U		3.6 4.		ug/kg dry	2.00	09/28/09 22:20	MAN	9120007	8081A
Endrin aldehyde	ND	QFL	3.6	0.92	ug/kg dry	2.00	09/28/09 22:20	MAN	9120007	8081A
Endrin ketone	ND	QFL	3.6	0.88	ug/kg dry	2.00	09/28/09 22:20	MAN	9120007	8081A
gamma-BHC (Lindane)	ND	QFL	3.6	0.62	ug/kg dry	2.00	09/28/09 22:20	MAN	9120007	8081A
gamma-Chlordane	2.3 🎵	QFL,J	3.6	0.49	ug/kg dry	2.00	09/28/09 22:20	MAN	9120007	8081A
Heptachlor	ND	QFL	3.6	0.56	ug/kg dry	2.00	09/28/09 22:20	MAN	9120007	8081A
Heptachlor epoxide	1.8 J	QFL,J	3.6	0.93	ug/kg dry	2.00	09/28/09 22:20	MAN	9120007	8081A
Methoxychlor	ND	QFL	3.6	0.96	ug/kg dry	2.00	09/28/09 22:20	MAN	9120007	8081A
Toxaphene	ND	QFL	36	21	ug/kg dry	2.00	09/28/09 22:20	MAN	9120007	8081A
Decachlorobiphenyl Tetrachloro-m-xylene	156 % 95 %	QFL,Z1 QFL	Surr Limits: (Surr Limits: (_	09/28/09 22:20 09/28/09 22:20	MAN MAN	9120007 9120007	8081A 8081A
Polychlorinated Bipher	nyls by EPA M	ethod 8082								
Aroclor 1016	ND	QSU	18	3.5	ug/kg dry	1.00	09/22/09 10:31	SCH	9120006	8082
Aroclor 1221	ND	QSU	18	3.5	ug/kg dry	1.00	09/22/09 10:31		9120006	8082
Aroclor 1232	ND	QSU	18	3.5	ug/kg dry	1.00	09/22/09 10:31		9120006	8082
Aroclor 1242	ND	QSU	18	3.9	ug/kg dry	1.00	09/22/09 10:31	SCH	9120006	8082
Aroclor 1248	ND	QSU	18	3.5	ug/kg dry	1.00	09/22/09 10:31	SCH	9120006	8082
Aroclor 1254	ND	QSU	18	3.8	ug/kg dry	1.00	09/22/09 10:31	SCH	9120006	8082
Aroclor 1260	330 🥑	QSU	18	3.8	ug/kg dry	1.00	09/22/09 10:31	SCH	9120006	8082
Decachlorobiphenyl Tetrachloro-m-xylene	122 % 87 %	QSU QSU	Surr Limits: (Surr Limits: (3		09/22/09 10:31 09/22/09 10:31	SCH SCH	9120006 9120006	8082 8082
Total Metals by SW 846	Series Metho	ods								
Aluminum	4960		11.0	NR	mg/kg dry	1.00	09/25/09 02:33	ТМН	9123026	6010B
Antimony		int	16.5	NR	mg/kg dry	1.00	09/24/09 01:15		9123026	6010B
Arsenic	8.2	UT	2.2	NR	mg/kg dry	1.00	09/24/09 01:15		9123026	6010B
Barium	108	T	0.549	NR	mg/kg dry	1.00	09/24/09 01:15		9123026	6010B
Beryllium	0.404	1	0.220	NR	mg/kg dry					
Cadmium	1.05		0.220	NR		1.00 1.00	09/24/09 01:15 09/24/09 01:15		9123026 9123026	6010B 6010B
Calcium	113000	J D08	275	NR	mg/kg dry mg/kg dry	5.00	09/26/09 10:31		9123026	6010B
Chromium	26.1	5 000	0.549	NR		1.00	09/24/09 01:15		9123026	6010B
Cobalt	4.72	~			mg/kg dry					
Copper	60.1	1	0.549 1.1	NR	mg/kg dry	1.00	09/24/09 01:15 09/24/09 01:15		9123026 9123026	6010B
Iron) B1, B3, B		NR	mg/kg dry	1.00	09/24/09 01:15			6010B
	192	J D1, D3, D	11.0	NR	mg/kg dry	1.00			9123026	6010B
Lead	5150	1 contractions of the second s	1.1	NR	mg/kg dry	1.00	09/24/09 01:15		9123026	6010B
Magnesium		DAD	22.0	NR	mg/kg dry	1.00	09/24/09 01:15		9123026	6010B
Manganese		B1, B	0.2	NR	mg/kg dry	1.00	09/24/09 01:15		9123026	6010B
Nickel	17.1		5.49	NR	mg/kg dry	1.00	09/24/09 01:15		9123026	6010B
Potassium	674	-	32.9	NR	mg/kg dry	1.00	09/24/09 01:15		9123026	6010B
Selenium	ND (LT	4.4	NR	mg/kg dry	1.00	09/24/09 01:15		9123026	6010B
Silver	ND		0.549	NR	mg/kg dry	1.00	09/24/09 01:15		9123026	6010B
Sodium	ND		154	NR	mg/kg dry	1.00	09/24/09 01:15		9123026	6010B
	ND	-	6.6	NR	mg/kg dry	1.00	09/24/09 01:15		9123026	6010B
								and the second second		
Vanadium	16.3	I	0.549	NR	mg/kg dry	1.00	09/24/09 01:15	AMH	9123026	6010B
Thallium Vanadium Zinc Mercury	16.3 475 0.976	J D08	0.549 2.2 0.115	NR NR	mg/kg dry mg/kg dry	1.00 1.00	09/24/09 01:15 09/24/09 01:15		9123026 9123026	6010B 6010B

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

Golder Associates, Inc Niagara Falls, NY	SDG Number: RSI0643	Received: 09/17/09-09/21/09
2221 Niagara Falls Blvd., Ste 9		Reported: 10/05/09 15:28
Niagara Falls, NY 14304	Project: Golder - Niagara Transformer site (Level IV	/)
	Project Number: [none]	

Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Client ID: B-9 (RSI064	43-02 - Solid) - co	ont.			Samp	led: 09/	17/09 11:50	Recv	d: 09/17/0	9 16:47
1										
General Chemistry F	Parameters									
General Chemistry F Percent Solids	Parameters 93	16	0.010	NR	%	1.00	09/20/09 14:40	КМВ	9119015	Dry Weight

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc Ni 2221 Niagara Falls Blvd., S	1Y :	SDG Numbe	r: RSI0643				Rece Repo		17/09-09/21/09 05/09 15:28		
Niagara Falls, NY 14304			Project: Gold Project Numt		Transformer si ne]	ite (Level I	V)		/		
			A	nalytical	Report	10	·				
	Sample	Data				Dil	Date	Lab	/		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method	
Client ID: B-9 (RSI0741-1	5 - Solid)				Samp	oled: 09/	21/09 10:55	Recv	d: 09/21/0	9 14:26	
Volatile Organic Compou	inds by EPA	A 8260B					/				
1,1,1-Trichloroethane	ND		5.5	0.40	ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260B	
1,1,2,2-Tetrachloroethane	ND		5.5	0.88	ug/kg dry	1.00	09/25/09 03:39		9124113	8260B	
1,1,2-Trichloroethane	ND		5.5	0.27	ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260B	
1,1,2-Trichlorotrifluoroeth	ND		5.5	0.58	ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260B	
ane							Lauran	1000	a Dudia 1.	00813	
1,1-Dichloroethane	ND		5.5	0.27	ug/kg dry	1.00	09/25/09 03:39		9124113	8260B	
1,1-Dichloroethene	ND		5.5	0.67	ug/kg dry	1.00	09/25/09 03:39		9124113	8260B	
1,2,4-Trichlorobenzene	ND		5.5	0.33	ug/kg dry	1.00	09/25/09 03:39	1.2.2.2	9124113	8260B	
1,2-Dibromo-3-chloroprop ane	ND		5.5	1.1	ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260B	
1,2-Dibromoethane (EDB)	ND		5.5	0.21	ug/kg dry	/ 1.00	09/25/09 03:39	CDC	9124113	8260B	
1,2-Dichlorobenzene	ND		5.5	0.82	ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260B	
1,2-Dichloroethane	ND		5.5	0.27	ug/kg/dry	1.00	09/25/09 03:39		9124113	8260B	
1,2-Dichloroethene, Total	ND		11	2.9	ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260B	
1,2-Dichloropropane	ND		5.5	0.28	ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260B	
1,3-Dichlorobenzene	ND		5.5	0.77	/ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260B	
1,4-Dichlorobenzene	ND		5.5	0.76	ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260B	
2-Butanone (MEK)	ND		27	7.4 /	ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260B	
2-Hexanone	ND		27	1.9	ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260B	
4-Methyl-2-pentanone (MIBK)	ND		27	1.8	ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260B	
Acetone	ND		27	/ 1.2	ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260B	
Benzene	ND		5.5	0.27	ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260B	
Bromodichloromethane	ND		5.5 /	0.28	ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260B	
Bromoform	ND		5.5	0.50	ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260B	
Bromomethane	ND		5/5	0.50	ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260B	
Carbon disulfide	ND		/5.5	0.47	ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260B	
Carbon Tetrachloride	ND		/ 5.5	0.20	ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260B	
Chlorobenzene	1.8	B, J /	5.5	0.24	ug/kg dry	1.00	09/25/09 03:39		9124113	8260B	
Chlorodibromomethane	ND	/	5.5	0.30	ug/kg dry	1.00	09/25/09 03:39		9124113	8260B	
Chloroethane	ND	/	5.5	0.88	ug/kg dry	1.00	09/25/09 03:39		9124113	8260B	
Chloroform	ND	/	5.5	0.34	ug/kg dry	1.00	09/25/09 03:39		9124113	8260B	
Chloromethane	ND	/	5.5	0.33	ug/kg dry	1.00	09/25/09 03:39		9124113	8260B	
cis-1,2-Dichloroethene	ND	/	5.5	0.27	ug/kg dry	1.00	09/25/09 03:39		9124113	8260B	
cis-1,3-Dichloropropene	ND	/	5.5	0.31	ug/kg dry	1.00	09/25/09 03:39		9124113	8260B	
Cyclohexane	ND		5.5	0.25	ug/kg dry	1.00	09/25/09 03:39		9124113	8260B	
Dichlorodifluoromethane	ND		5.5	0.45	ug/kg dry	1.00	09/25/09 03:39		9124113	8260B	
Ethylbenzene	ND		5.5	0.38	ug/kg dry	1.00	09/25/09 03:39		9124113	8260B	
Isopropylbenzene			5.5	0.36	ug/kg dry	1.00	09/25/09 03:39		9124113	8260B	
Methyl Acetate	ND ND		5.5	0.30	ug/kg dry	1.00	09/25/09 03:39		9124113	8260B	
Methyl tert-Butyl Ether Methylcyclohexane	ND		5.5 5.5	0.54	ug/kg dry	1.00	09/25/09 03:39 09/25/09 03:39		9124113	8260B	
Methylene Chloride	ND 15		5.5	0.35	ug/kg dry	1.00			9l24113 9l24113	8260B 8260B	
Styrene	ND		5.5		ug/kg dry	1.00	09/25/09 03:39				
Tetrachloroethene	ND		5.5	0.27 0.73	ug/kg dry	1.00 1.00	09/25/09 03:39 09/25/09 03:39		9l24113 9l24113	8260B 8260B	
Toluene	ND	в	5.5	0.73	ug/kg dry	1.00	09/25/09 03:39		9124113	8260B 8260B	
trans-1,2-Dichloroethene	ND	В	5.5 5.5	0.92	ug/kg dry	1.00	09/25/09 03:39		9124113	8260B 8260B	
	ND		5.5 5.5	0.56	ug/kg dry				9124113	8260B 8260B	
trans-1,3-Dichjóropropen e				0.21	ug/kg dry	1.00	09/25/09 03:39	CDC	5124113	02000	
Trichloroethene	ND		5.5	0.38	ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260B	

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

75/2497

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc Niagara Falls, NY
2221 Niagara Falls Blvd., Ste 9
Niagara Falls, NY 14304

SDG Number: RSI0643

Received: 09/17/09-09/21/09 Reported: 11/30/09 18:14

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

Analytical Report										
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Client ID: B-7 (0-2) (RSI0741-13 - Solid)						led: 09/	21/09 10:50	Recv	/d: 09/21/0	9 14:26
Polychlorinated Bipheny	Is by EPA N	lethod 8082								
Aroclor 1016 [2C]	ND	D08	950	180	ug/kg dry	50.0	09/23/09 15:09	SCH	9122042	8082
Aroclor 1221 [2C]	ND	D08	950	180	ug/kg dry	50.0	09/23/09 15:09	SCH	9122042	8082
Aroclor 1232 [2C]	ND	D08	950	180	ug/kg dry	50.0	09/23/09 15:09	SCH	9122042	8082
Aroclor 1242 [2C]	ND	D08	950	210	ug/kg dry	50.0	09/23/09 15:09	SCH	9122042	8082
Aroclor 1248 [2C]	ND	D08	950	190	ug/kg dry	50.0	09/23/09 15:09	SCH	9122042	8082
Aroclor 1254 [2C]	ND	D08	950	200	ug/kg dry	50.0	09/23/09 15:09	SCH	9122042	8082
Aroclor 1260 [2C]	22000	D08	950	200	ug/kg dry	50.0	09/23/09 15:09	SCH	9122042	8082
Decachlorobiphenyl [2C]	*	D08,Z3	Surr Limits:	(34-148%)			09/23/09 15:09	SCH	9/22042	8082
Tetrachloro-m-xylene [2C]	*	D08,Z3	Surr Limits:	(35-134%)			09/23/09 15:09	SCH	9122042	8082
General Chemistry Para	meters									
Percent Solids	88		0.010	NR	%	1.00	09/22/09 15:05	CJM	9122026	Dry Weigh

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc Niagara Falls, NY
2221 Niagara Falls Blvd., Ste 9
Niagara Falls, NY 14304

SDG Number: RSI0643

Received: 09/17/09-09/21/09 Reported: 11/30/09 18:14

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

Analytical Report										
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Client ID: B-7 (2-4) (RSI07	41-14 - Solie	d)			Samp	led: 09/	21/09 10:50	Recv	d: 09/21/0	9 14:26
Polychlorinated Bipheny	Is by EPA N	lethod 8082								
Aroclor 1016 [2C]	ND		18	3.6	ug/kg dry	1.00	09/23/09 15:27	SCH	9122042	8082
Aroclor 1221 [2C]	ND		18	3.6	ug/kg dry	1.00	09/23/09 15:27	SCH	9122042	8082
Aroclor 1232 [2C]	ND		18	3.6	ug/kg dry	1.00	09/23/09 15:27	SCH	9122042	8082
Aroclor 1242 [2C]	ND		18	4.0	ug/kg dry	1.00	09/23/09 15:27	SCH	9122042	8082
Aroclor 1248 [2C]	ND		18	3.6	ug/kg dry	1.00	09/23/09 15:27	SCH	9122042	8082
Aroclor 1254 [2C]	ND		18	3.9	ug/kg dry	1.00	09/23/09 15:27	SCH	9122042	8082
Aroclor 1260 [2C]	220		18	3.9	ug/kg dry	1.00	09/23/09 15:27	SCH	9122042	8082
Decachlorobiphenyl [2C]	87 %		Surr Limits:	(34-148%)			09/23/09 15:27	SCH	9/22042	8082
Tetrachloro-m-xylene [2C]	89 %		Surr Limits:				09/23/09 15:27	SCH	9122042	8082
General Chemistry Para	meters									
Percent Solids	90		0.010	NR	%	1.00	09/22/09 15:07	CJM	9122026	Dry Weigh

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304 SDG Number: RSI0643

Received: 09/17/09-09/21/09 Reported: 11/30/09 18:14

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

Analytical Report											
	Sample	Data		MDI		Dil	Date	Lab	Detab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method	
Client ID: B-7 (RSI0741-1	15 - Solid)				Samp	led: 09/	21/09 10:55	Recv	/d: 09/21/09	9 14:26	
Volatile Organic Compo	ounds by EPA	8260B									
1,1,1-Trichloroethane	ND		5.5	0.40	ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260B	
1,1,2,2-Tetrachloroethane	ND		5.5	0.88	ug/kg dry	1.00	09/25/09 03:39		9124113	8260B	
1,1,2-Trichloroethane	ND		5.5	0.27	ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260B	
1,1,2-Trichlorotrifluoroeth	ND		5.5	0.58	ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260B	
ane											
1,1-Dichloroethane	ND		5.5	0.27	ug/kg dry	1.00	09/25/09 03:39		9124113	8260B	
1,1-Dichloroethene	ND		5.5	0.67	ug/kg dry	1.00	09/25/09 03:39		9124113	8260B	
1,2,4-Trichlorobenzene	ND		5.5	0.33	ug/kg dry	1.00	09/25/09 03:39		9124113	8260B	
1,2-Dibromo-3-chloroprop	ND		5.5	1.1	ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260B	
ane										dist.	
1,2-Dibromoethane (EDB)	ND		5.5	0.21	ug/kg dry	1.00	09/25/09 03:39		9124113	8260B	
1,2-Dichlorobenzene	ND		5.5	0.82	ug/kg dry	1.00	09/25/09 03:39		9124113	8260B	
1,2-Dichloroethane	ND		5.5	0.27	ug/kg dry	1.00	09/25/09 03:39		9124113	8260B	
1,2-Dichloroethene, Total	ND		11.	2.9	ug/kg dry	1.00	09/25/09 03:39		9124113	8260B	
1,2-Dichloropropane	ND		5.5	0.28	ug/kg dry	1.00	09/25/09 03:39		9124113	8260B	
1,3-Dichlorobenzene	ND		5.5	0.77	ug/kg dry	1.00	09/25/09 03:39		9124113	8260B	
1,4-Dichlorobenzene	ND		5.5	0.76	ug/kg dry	1.00	09/25/09 03:39		9124113	8260B	
2-Butanone (MEK)	ND		27	7.4	ug/kg dry	1.00	09/25/09 03:39		9124113	8260B	
2-Hexanone	ND		27	1.9	ug/kg dry	1.00	09/25/09 03:39		9124113	8260B	
4-Methyl-2-pentanone (MIBK)	ND		27	1.8	ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260B	
Acetone	ND		27	1.2	ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260B	
Benzene	ND		5.5	0.27	ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260B	
Bromodichloromethane	ND		5.5	0.28	ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260B	
Bromoform	ND		5.5	0.50	ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260B	
Bromomethane	ND		5.5	0.50	ug/kg dry	1.00	09/25/09 03:39		9124113	8260B	
Carbon disulfide	ND		5.5	0.47	ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260B	
Carbon Tetrachloride	ND		5.5	0.20	ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260B	
Chlorobenzene	ND 1.8	U B, J	5.5	0.24	ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260B	
Chlorodibromomethane	ND		5.5	0.30	ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260B	
Chloroethane	ND		5.5	0.88	ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260B	
Chloroform	ND		5.5	0.34	ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260B	
Chloromethane	ND		5.5	0.33	ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260B	
cis-1.2-Dichloroethene	ND		5.5	0.27	ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260B	
cis-1,3-Dichloropropene	ND		5.5	0.31	ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260B	
Cyclohexane	ND		5.5	0.25	ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260B	
Dichlorodifluoromethane	ND		5.5	0.45	ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260B	
Ethylbenzene	ND		5.5	0.38	ug/kg dry	1.00	09/25/09 03:39		9124113	8260B	
Isopropylbenzene	ND		5.5	0.36	ug/kg dry	1.00	09/25/09 03:39		9124113	8260B	
Methyl Acetate	ND		5.5	0.30	ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260E	
Methyl tert-Butyl Ether	ND		5.5	0.54	ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260B	
Methylcyclohexane	ND		5.5	0.35	ug/kg dry	1.00	09/25/09 03:39		9124113	8260E	
Methylene Chloride	15		5.5	0.38	ug/kg dry	1.00	09/25/09 03:39		9124113	8260E	
Styrene	ND		5.5	0.27	ug/kg dry	1.00	09/25/09 03:39		9124113	8260E	
Tetrachloroethene	ND		5.5	0.73	ug/kg dry	1.00	09/25/09 03:39		9124113	8260E	
Toluene	ND	в	5.5	0.92	ug/kg dry	1.00	09/25/09 03:39		9124113	8260E	
trans-1,2-Dichloroethene	ND		5.5	0.56	ug/kg dry	1.00	09/25/09 03:39		9124113	8260E	
trans-1,3-Dichloropropen	ND		5.5	0.27	ug/kg dry	1.00	09/25/09 03:39		9124113	8260B	
e Trichloroethene	ND		5.5	0.38	ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260E	

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304 SDG Number: RSI0643

Received: 09/17/09-09/21/09 Reported: 11/30/09 18:14

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

Analytical Report										
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Client ID: B-7 (RSI0741-15 - Solid) - cont.						led: 09/	21/09 10:55	Recv	rd: 09/21/0	9 14:26
/olatile Organic Compou	inds by EPA	8260B - co	nt.							
Trichlorofluoromethane	ND		5.5	1.7	ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260B
Vinyl acetate	ND		27	1.1	ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260B
Vinyl chloride	ND		11	0.22	ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260B
Kylenes, total	ND		11	0.92	ug/kg dry	1.00	09/25/09 03:39	CDC	9124113	8260B
,2-Dichloroethane-d4	105 %		Surr Limits:	(64-126%)			09/25/09 03:39	CDC	9/24113	8260B
4-Bromofluorobenzene	106 %		Surr Limits:	(72-126%)			09/25/09 03:39	CDC	9/24113	8260B
Toluene-d8	113 %		Surr Limits:				09/25/09 03:39	CDC	9/24113	8260B
Semivolatile Organics by	GC/MS									
2,4,5-Trichlorophenol	ND	D10	940	200	ug/kg dry	5.00	09/26/09 17:26	ERK	9122039	8270C
2,4,6-Trichlorophenol	ND	D10	940	62	ug/kg dry	5.00	09/26/09 17:26		9122039	8270C
2,4,0- memorophenol	ND	D10	940	49	ug/kg dry	5.00	09/26/09 17:26		9122039	8270C
2,4-Dimethylphenol	ND	D10	940	250	ug/kg dry	5.00	09/26/09 17:26		9122039	8270C
2,4-Dinitrophenol	ND	D10	1800	330	ug/kg dry	5.00	09/26/09 17:26		9122039	8270C
2,4-Dinitrotoluene	ND	D10	940	140	ug/kg dry	5.00	09/26/09 17:26		9122039	8270C
2,6-Dinitrotoluene	ND	D10	940	230	ug/kg dry	5.00	09/26/09 17:26		9122039	8270C
2-Chloronaphthalene	ND	D10	940	63	ug/kg dry	5.00	09/26/09 17:26		9122039	8270C
2-Chlorophenol	ND	D10	940	48	ug/kg dry	5.00	09/26/09 17:26		9122039	8270C
	110	D10,J	940	11	ug/kg dry	5.00	09/26/09 17:26		9122039	8270C
-Methylnaphthalene	ND	D10,5	940	29	ug/kg dry	5.00	09/26/09 17:26		9122039	8270C
-Methylphenol	ND	D10	1800	300	ug/kg dry	5.00	09/26/09 17:26		9122039	8270C
-Nitroaniline	ND		940	43	ug/kg dry	5.00	09/26/09 17:26		9122039	8270C
-Nitrophenol		D10				5.00	09/26/09 17:26		9122039	8270C
& 4 Methylphenol	ND	D10	1800	52	ug/kg dry	5.00	09/26/09 17:26		9122039	8270C
3'-Dichlorobenzidine	ND	D10	940	820	ug/kg dry		09/26/09 17:26		9122039	8270C
-Nitroaniline	ND	D10	1800	220	ug/kg dry	5.00			9122039	8270C
-,6-Dinitro-2-methylphen I	ND	D10	1800	320	ug/kg dry	5.00	09/26/09 17:26			
I-Bromophenyl phenyl ether	ND	D10	940	300	ug/kg dry	5.00	09/26/09 17:26	ERK	9122039	8270C
I-Chloro-3-methylphenol	ND	D10	940	38	ug/kg dry	5.00	09/26/09 17:26	ERK	9122039	8270C
1-Chloroaniline	ND	D10	940	270	ug/kg dry	5.00	09/26/09 17:26	ERK	9122039	8270C
-Chlorophenyl phenyl	ND	D10	940	20	ug/kg dry	5.00	09/26/09 17:26	ERK	9122039	8270C
ether						2.20			0100000	00700
I-Nitroaniline	ND	D10	1800	100	ug/kg dry	5.00	09/26/09 17:26		9122039	8270C
I-Nitrophenol	ND	D10	1800	230	ug/kg dry	5.00	09/26/09 17:26		9122039	8270C
Acenaphthene	390	D10,J	940	11	ug/kg dry	5.00	09/26/09 17:26		9122039	8270C
Acenaphthylene	ND	D10	940	7.7	ug/kg dry	5.00	09/26/09 17:26		9122039	8270C
Acetophenone	ND	D10	940	48	ug/kg dry	5.00	09/26/09 17:26		9122039	8270C
Anthracene	1100	D10	940	24	ug/kg dry	5.00	09/26/09 17:26		9122039	8270C
Atrazine	ND UJ	D10	940	42	ug/kg dry	5.00	09/26/09 17:26		9122039	8270C
Benzaldehyde	ND	D10	940	100	ug/kg dry	5.00	09/26/09 17:26		9122039	8270C
enzo[a]anthracene	2100	D10	940	16	ug/kg dry	5.00	09/26/09 17:26		9122039	8270C
Benzo[a]pyrene	1900 J	D10,L1	940	23	ug/kg dry	5.00	09/26/09 17:26		9122039	8270C
Benzo[b]fluoranthene	2200	D10	940	18	ug/kg dry	5.00	09/26/09 17:26	ERK	9122039	8270C
Benzo[g,h,i]perylene	1300	D10	940	11	ug/kg dry	5.00	09/26/09 17:26	ERK	9122039	8270C
Benzo[k]fluoranthene	910	D10,J	940	10	ug/kg dry	5.00	09/26/09 17:26		9122039	8270C
Biphenyl	ND	D10	940	58	ug/kg dry	5.00	09/26/09 17:26		9122039	8270C
Bis(2-chloroethoxy)metha	ND	D10	940	51	ug/kg dry	5.00	09/26/09 17:26		9122039	8270C
ne Bis(2-chloroethyl)ether	ND	D10	940	81	ug/kg dry	5.00	09/26/09 17:26	ERK	9122039	8270C

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304 SDG Number: RSI0643

Received: 09/17/09-09/21/09 Reported: 11/30/09 18:14

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

Analytical Report											
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method	
Client ID: B-7 (RSI0741-15 - Solid) - cont.						oled: 09	21/09 10:55	Recv	/d: 09/21/09	9 14:26	
Semivolatile Organics	by GC/MS - c	ont.									
Bis(2-chloroisopropyl) ether	ND	D10	940	98	ug/kg dry	5.00	09/26/09 17:26	ERK	9122039	8270C	
Bis(2-ethylhexyl) phthalate	500	D10,J	940	300	ug/kg dry	5.00	09/26/09 17:26	ERK	9122039	8270C	
Butyl benzyl phthalate	ND	D10	940	250	ug/kg dry	5.00	09/26/09 17:26	ERK	9122039	8270C	
Caprolactam	ND	D10	940	400	ug/kg dry	5.00	09/26/09 17:26	ERK	9122039	8270C	
Carbazole	600	D10,J	940	11	ug/kg dry	5.00	09/26/09 17:26	ERK	9122039	8270C	
Chrysene	2000	D10	940	9.4	ug/kg dry	5.00	09/26/09 17:26	ERK	9122039	8270C	
Dibenz[a,h]anthracene	360	D10,J	940	11	ug/kg dry	5.00	09/26/09 17:26	ERK	9122039	8270C	
Dibenzofuran	330	D10,J	940	9.7	ug/kg dry	5.00	09/26/09 17:26		9122039	8270C	
Diethyl phthalate	ND	D10	940	28	ug/kg dry	5.00	09/26/09 17:26		9122039	8270C	
Dimethyl phthalate	ND	D10	940	24	ug/kg dry	5.00	09/26/09 17:26		9122039	8270C	
Di-n-butyl phthalate	ND	D10	940	320	ug/kg dry	5.00	09/26/09 17:26		9122039	8270C	
Di-n-octyl phthalate	ND	D10	940	22	ug/kg dry	5.00	09/26/09 17:26		9122039	8270C	
Fluoranthene	5000	D10	940	14	ug/kg dry	5.00	09/26/09 17:26		9122039	8270C	
Fluorene	510	D10,J	940	22	ug/kg dry	5.00	09/26/09 17:26		9122039	8270C	
Hexachlorobenzene	ND	D10	940	46	ug/kg dry	5.00	09/26/09 17:26		9122039	8270C	
Hexachlorobutadiene	ND	D10	940	48	ug/kg dry	5.00	09/26/09 17:26		9122039	8270C	
Hexachlorocyclopentadie ne		D10	940	280	ug/kg dry	5.00	09/26/09 17:26		9122039	8270C	
Hexachloroethane	ND	D10	940	72	ug/kg dry	5.00	09/26/09 17:26	ERK	9122039	8270C	
Indeno[1,2,3-cd]pyrene	1200	D10	940	26	ug/kg dry	5.00	09/26/09 17:26		9122039	8270C	
sophorone	ND	D10	940	47	ug/kg dry	5.00	09/26/09 17:26		9122039	8270C	
Naphthalene	ND	D10	940	16	ug/kg dry	5.00	09/26/09 17:26		9122039	8270C	
Nitrobenzene	ND	D10	940	41	ug/kg dry	5.00	09/26/09 17:26		9122039	8270C	
N-Nitrosodi-n-propylamin	ND	D10	940	74	ug/kg dry	5.00	09/26/09 17:26		9122039	8270C	
)											
N-Nitrosodiphenylamine	ND	D10,L	940	51	ug/kg dry	5.00	09/26/09 17:26		9122039	8270C	
Phenanthrene	4700	D10	940	20	ug/kg dry	5.00	09/26/09 17:26		9122039	8270C	
Phenol	ND	D10	940	98	ug/kg dry	5.00	09/26/09 17:26		9122039	8270C	
Pyrene	3900	D10	940	6.1	ug/kg dry	5.00	09/26/09 17:26		9122039	8270C	
2,4,6-Tribromophenol	67 %	D10		(39-146%)			09/26/09 17:26		9/22039	8270C	
2-Fluorobiphenyl	80 %	D10		(37-120%)			09/26/09 17:26		9/22039	8270C	
2-Fluorophenol	61 %	D10	Surr Limits:				09/26/09 17:26		9/22039	8270C	
Nitrobenzene-d5	67 %	D10	Surr Limits:				09/26/09 17:26		9/22039	8270C	
Phenol-d5 p. Tembonyl d14	72 % 76 %	D10 D10		(11-120%) (58-147%)			09/26/09 17:26 09/26/09 17:26		9/22039 9/22039	8270C 8270C	
p-Terphenyl-d14				(30-14176)			03/20/03 11.20	LINK	3122003	02100	
Organochlorine Pestic	THE R. LEWIS CO., NAMES								01000.10		
4,4'-DDD [2C]	ND	QFL, D04	93	18	ug/kg dry	50.0	09/30/09 12:55		9122040	8081A	
4,4'-DDE [2C]	ND	QFL, D04	93	27	ug/kg dry	50.0	09/30/09 12:55		9122040	8081A	
4,4'-DDT [2C]	ND	QFL, D04	93	21	ug/kg dry	50.0	09/30/09 12:55		9122040	8081A	
Aldrin [2C]	ND	QFL, D04	93	9.4	ug/kg dry	50.0	09/30/09 12:55		9122040	8081A	
alpha-BHC [2C]	ND	QFL, D04	93	17	ug/kg dry	50.0	09/30/09 12:55		9122040	8081A	
alpha-Chlordane [2C]	ND	QFL, D04	93	46	ug/kg dry	50.0	09/30/09 12:55		9122040	8081A	
beta-BHC [2C]	ND	QFL, D04	93	67	ug/kg dry	50.0	09/30/09 12:55		9122040	8081A	
Chlordane [2C]	ND	QFL, D04	930	210	ug/kg dry	50.0	09/30/09 12:55		9122040	8081A	
delta-BHC [2C]	ND	QFL, D04	93	12	ug/kg dry	50.0	09/30/09 12:55		9122040	8081A	
Dieldrin [2C]	ND ,290 U			90 22	ug/kg dry	50.0	09/30/09 12:55		9122040	8081A	
Endosulfan I [2C]	ND	QFL, D04	93	20	ug/kg dry	50.0	09/30/09 12:55		9122040	8081A	
Endosulfan II [2C]	ND-1000 L	QFL, D04	93	17	ug/kg dry	50.0	09/30/09 12:55	MAN	9122040	8081A	

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

IestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304 SDG Number: RSI0643

Received: 09/17/09-09/21/09 Reported: 11/30/09 18:14

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

			A	nalytical	Report					
	Sample	Data				Dil	Date	Lab	2773	
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Client ID: B-7 (RSI0741-15 - Solid) - cont.				Sampled: 09/21/09 10:55			Recvd: 09/21/09 14:26			
Organochlorine Pestic	ides by EPA M	Method 8081	A - cont.							
Endosulfan sulfate [2C]	ND	QFL, D04	93	17	ug/kg dry	50.0	09/30/09 12:55	MAN	9122040	8081A
Endrin [2C]	210 💋	QFL, D04	93	30	ug/kg dry	50.0	09/30/09 12:55	MAN	9122040	8081A
Endrin aldehyde [2C]	ND	QFL, D04	93	24	ug/kg dry	50.0	09/30/09 12:55		9122040	8081A
Endrin ketone [2C]	ND	QFL, D04	93	23	ug/kg dry	50.0	09/30/09 12:55		9122040	8081A
gamma-BHC (Lindane) [2C]	ND	QFL, D04	93	16	ug/kg dry	50.0	09/30/09 12:55	MAN	9122040	8081A
gamma-Chlordane [2C]	NO 240- U		93	13	ug/kg dry	50.0	09/30/09 12:55		9122040	8081A
Heptachlor [2C]	ND	QFL, D04	93	14	ug/kg dry	50.0	09/30/09 12:55		9122040	8081A
Heptachlor epoxide [2C]	NO 200 V		93	24	ug/kg dry	50.0	09/30/09 12:55		9122040	8081A
Methoxychlor [2C]	ND	QFL, D04	93	25	ug/kg dry	50.0	09/30/09 12:55		9122040	8081A
Toxaphene [2C]	ND	QFL, D04	930	540	ug/kg dry	50.0	09/30/09 12:55	MAN	9122040	8081A
Decachlorobiphenyl [2C]	*	QFL, D04,Z3	Surr Limits:	(42-146%)			09/30/09 12:55	MAN	9/22040	8081A
Tetrachloro-m-xylene [2C]	*	QFL, D04,Z3	Surr Limits:	(37-136%)			09/30/09 12:55	MAN	9/22040	8081A
Total Metals by SW 84	6 Series Meth	ods								
Aluminum	7680		11.3	NR	mg/kg dry	1.00	09/25/09 04:06	LMH	9123026	6010B
Antimony		UJ	16.9	NR	mg/kg dry	1.00	09/24/09 02:26		9123026	6010B
Arsenic		J	2.3	NR	mg/kg dry	1.00	09/24/09 02:26		9123026	6010B
Barium	107	T	0.563	NR	mg/kg dry	1.00	09/24/09 02:26		9123026	6010B
Beryllium	0.449	-	0.225	NR	mg/kg dry	1.00	09/24/09 02:26		9123026	6010B
Cadmium	1.02		0.225	NR	mg/kg dry	1.00	09/24/09 02:26		9123026	6010B
Calcium	47400	T	56.3	NR	mg/kg dry	1.00	09/24/09 02:26		9123026	6010B
Chromium	17.1	T	0.563	NR	mg/kg dry	1.00	09/24/09 02:26		9123026	6010B
Cobalt	6.40	-	0.563	NR	mg/kg dry	1.00	09/24/09 02:26		9123026	6010B
	58.1	T	1.1	NR	mg/kg dry	1.00	09/24/09 02:26		9123026	6010B
Copper Iron		B1, B3, B	11.3	NR	mg/kg dry	1.00	09/24/09 02:26		9123026	6010B
Lead	206 1		1.1	NR	mg/kg dry	1.00	09/24/09 02:26		9123026	6010B
Magnesium	6790		22.5	NR	mg/kg dry	1.00	09/24/09 02:26		9123026	6010B
Manganese	514	5 B1, B	0.2	NR	mg/kg dry	1.00	09/24/09 02:26		9123026	6010B
Nickel	22.9	01,0	5.63	NR	mg/kg dry	1.00	09/24/09 02:26		9123026	6010B
Potassium	1060	,	33.8	NR	mg/kg dry	1.00	09/24/09 02:26		9123026	6010B
		15	4.5	NR	mg/kg dry	1.00	09/24/09 02:26		9123026	6010B
Selenium Silver	ND		0.563	NR	mg/kg dry	1.00	09/24/09 02:26		9123026	6010B
	ND		158	NR	mg/kg dry	1.00	09/24/09 02:26		9123026	6010B
Sodium	ND		6.8	NR	mg/kg dry	1.00	09/24/09 02:20		9123026	6010B
Thallium		T			mg/kg dry	1.00	09/24/09 02:26		9123026	6010B
√anadium Zine	17.4	J	0.563	NR			09/24/09 02:26		9123026	6010B
Zinc Mercury	348 0.393	3	2.3 0.0226	NR NR	mg/kg dry mg/kg dry	1.00 1.00	09/29/09 17:16		9125041	7471A
General Chemistry Pa	rameters									
Percent Solids	90		0.010	NR	%	1.00	09/22/09 15:09	CJM	9122026	Dry Weigh
Cyanide		NS	1.1	0.9	mg/kg dry	1.00	09/24/09 08:11		9123064	9012A

TestAmeri

THE LEADER IN ENVIRONMENTAL TESTING

79/2497

SDG Number: RSI0643 Golder Associates, Inc. - Niagara Falls, NY

2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

Received: 09/17/09-09/21/09 Reported: 10/05/09 15:28

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

Analytical Report											
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method	
Client ID: SS-1 (RSI0695-	01 - Solid)				Samp	led: 09/	18/09 12:50	Recv	d: 09/18/0	9 18:43	
Polychlorinated Bipheny	is by EPA N	lethod 8082									
Aroclor 1016 [2C]	ND		17	3.3	ug/kg dry	1.00	09/23/09 09:00	SCH	9122042	8082	
Aroclor 1221 [2C]	ND		17	3.3	ug/kg dry	1.00	09/23/09 09:00	SCH	9122042	8082	
Aroclor 1232 [2C]	ND		17	3.3	ug/kg dry	1.00	09/23/09 09:00	SCH	9122042	8082	
Aroclor 1242 [2C]	ND		17	3.7	ug/kg dry	1.00	09/23/09 09:00	SCH	9122042	8082	
Aroclor 1248 [2C]	ND		17	3.3	ug/kg dry	1.00	09/23/09 09:00	SCH	9122042	8082	
Aroclor 1254 [2C]	ND		17	3.6	ug/kg dry	1.00	09/23/09 09:00	SCH	9122042	8082	
Aroclor 1260 [2C]	150		17	3.6	ug/kg dry	1.00	09/23/09 09:00	SCH	9122042	8082	
Decachlorobiphenyl [2C]	76 %		Surr Limits:	(34-148%)			09/23/09 09:00	SCH	9122042	8082	
Tetrachloro-m-xylene [2C]	82 %		Surr Limits:				09/23/09 09:00	SCH	9122042	8082	
General Chemistry Para	neters										
Percent Solids	97		0.010	NR	%	1.00	09/20/09 16:12	KMB	9119015	Dry Weigh	

TestAmerica THE LEADER IN ENVIRONMENTAL TESTING SDG Number: RSI0643 Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304 Project: Golder - Niagara Transformer site (Level IV)

09/17/09-09/21/09 Received:

78/2497

Reported: 10/05/09 15:28

Project Number: Analytical Report Sample Dil Date Data Lab MDL RL Analyte Result Qualifiers Units Fac Analyzed Tech Batch Method Client ID: B-9 (RSI0741-15 - Solid) - cont. Sampled: 09/21/09 10:55 Recvd: 09/21/09 14:26 Organochlorine Pesticides by EPA Method 8081A - cont. ND 09/30/09 12:55 MAN Endosulfan sulfate [2C] **QFL**, D04 93 17 ug/kg dry 50.0 9122040 8081A 8081A 210 **QFL**, D04 30 50.0 09/20/09 12:55 9122040 Endrin [2C] 93 MAN ug/kg dry ND QFL, D04 24 50.0 09/30/09 12:55 9122040 8081A Endrin aldehyde [2C] 93 MAN ug/kg dry Endrin ketone [2C] ND **QFL, D04** 93 23 ug/kg dry 50.0 09/30/09 12:55 MAN 9122040 8081A gamma-BHC (Lindane) ND **QFL, D04** 93 16 ug/kg dry 50.0 09/30/09 12:55 MAN 9122040 8081A [2C] 50.0 gamma-Chlordane [2C] 240 **QFL**, D04 93 13 ug/kg dry 09/30/09 12:55 MAN 9122040 8081A ND QFL, D04 50.0 9122040 Heptachlor [2C] 93 14 09/30/09 12:55 MAN 8081A ug/kg dry ug/kg dry Heptachlor epoxide [2C] 200 **QFL, D04** 93 24 50.0 09/30/09 12:55 MAN 9122040 8081A Methoxychlor [2C] ND **QFL**, D04 93 25 ug/kg dry 50.0 09/30/09 12:55 MAN 9122040 8081A ug/kg dry Toxaphene [2C] ND **QFL, D04** 930 540 50.0 09/30/09 12:55 MAN 9122040 8081A * Decachlorobiphenyl [2C] QFL, Surr Limits: (42-146%) 09/30/09 12:55 MAN 9122040 8081A D04,Z3 Surr Limits: (37-136%) 09/30/09 12:55 MAN 9/22040 8081A Tetrachloro-m-xylene QFL. [2C] D04,Z3 Total Metals by SW 846 Series Methods 7680 NR mg/kg dry 09/25/09 04:06 LMH 9123026 6010B Aluminum 11.3 1.00 6010B ND NR 9123026 Antimony 16.9 mg/kg dry 1.00 09/24/09 02:26 AMH 6.8 2.3 NR 9123026 Arsenic mg/kg dry 1.00 09/24/09 02:26 AMH 6010B Barium 107 0.563 NR mg/kg dry 1.00 09/24/09 02:26 AMH 9123026 6010B 0.449 0.225 09/24/09 02:26 AMH 9123026 Beryllium NR mg/kg dry 1.00 6010B 1.02 0.225 Cadmium NR mg/kg dry 1.00 09/24/09 02:26 AMH 9123026 6010B Calcium 47400 \$6.3 NR 1.00 09/24/09 02:26 AMH 9123026 6010B mg/kg dry 17.1 0.563 Chromium NR 09/24/09 02:26 AMH 9123026 mg/kg dry 1.00 6010B 6.40 0.563 Cobalt NR 1.00 09/24/09 02:26 9123026 mg/kg dry AMH 6010B 58.1 Copper 1.1 NR mg/kg dry 1.00 09/24/09 02:26 AMH 9123026 6010B 33500 B1, B3, B 11.3 NR 1.00 09/24/09 02:26 AMH 9123026 6010B Iron mg/kg dry Lead 206 1.1 NR mg/kg dry 1.00 09/24/09 02:26 AMH 9123026 6010B 6790 Magnesium 22.5 NR mg/kg dry 1.00 09/24/09 02:26 AMH 9123026 6010B B1. B 514 0.2 NR 9123026 6010B Manganese mg/kg dry 1.00 09/24/09 02:26 AMH 22.9 5.63 NR Nickel mg/kg dry 1.00 09/24/09 02:26 AMH 9123026 6010B 1060 33.8 9123026 Potassium NR mg/kg dry 1.00 09/24/09 02:26 AMH 6010B Selenium ND 4.5 NR mg/kg dry 1.00 09/24/09 02:26 AMH 9123026 6010B Silver ND 0.563 NR 09/24/09 02:26 AMH 9123026 mg/kg dry 1.00 6010B ND Sodium 158 NR mg/kg dry 1.00 09/24/09 02:26 AMH 9123026 6010B ND Thallium 6.8 NR 1.00 09/24/09 02:26 AMH 9123026 6010B mg/kg dry 17.4 1.00 Vanadium 0.563 NR AMH 9123026 6010B mg/kg dry 09/24/09 02:26 348 1.00 2.3 NR AMH 9123026 6010B Zinc mg/kg dry 09/24/09 02:26 0.393 Mercury 0.0226 NR mg/kg dry 1.00 09/29/09 17:16 MXM 9125041 7471A **General Chemistry Parameters** 90 0.010 1.00 Percent Solids NR % 09/22/09 15:09 CJM 9122026 Dry Weight Cyanide ND 1.1 0.9 mg/kg dry 1.00 09/24/09 08:11 jmm 9123064 9012A

[none]

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Niagara Falls, NY 14304

80/2497

Golder Associates, Inc Niagara Falls, NY	SDG Number: RSI0643
2221 Niagara Falls Blvd., Ste 9	

Received: 09/17/09-09/21/09 Reported: 10/05/09 15:28

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

			F	Analytical	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Client ID: SS-2 (RSI0695-	02 - Solid)				Samp	led: 09	18/09 10:15	Recv	rd: 09/18/0	9 18:43
Polychlorinated Bipheny	Is by EPA N	lethod 8082								
Aroclor 1016 [2C]	ND		19	3.7	ug/kg dry	1.00	09/23/09 09:19	SCH	9122042	8082
Aroclor 1221 [2C]	ND		19	3.7	ug/kg dry	1.00	09/23/09 09:19	SCH	9122042	8082
Aroclor 1232 [2C]	ND		19	3.7	ug/kg dry	1.00	09/23/09 09:19	SCH	9122042	8082
Aroclor 1242 [2C]	ND		19	4.1	ug/kg dry	1.00	09/23/09 09:19	SCH	9122042	8082
Aroclor 1248 [2C]	ND		19	3.7	ug/kg dry	1.00	09/23/09 09:19	SCH	9122042	8082
Aroclor 1254 [2C]	ND		19	4.0	ug/kg dry	1.00	09/23/09 09:19	SCH	9122042	8082
Aroclor 1260 [2C]	250		19	4.0	ug/kg dry	1.00	09/23/09 09:19	SCH	9122042	8082
Decachlorobiphenyl [2C]	74 %		Surr Limits:	(34-148%)	1.		09/23/09 09:19	SCH	9122042	8082
Tetrachloro-m-xylene [2C]	86 %		Surr Limits:	(35-134%)			09/23/09 09:19	SCH	9122042	8082
General Chemistry Para	meters									
Percent Solids	88		0.010	NR	%	1.00	09/20/09 16:14	KMB	9119015	Dry Weigh

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

81/2497

Received: 09/17/09-09/21/09

Reported: 10/05/09 15:28

Golder Associates, Inc. - Niagara Falls, NY SD 2221 Niagara Falls Blvd., Ste 9

Niagara Falls, NY 14304

SDG Number: RSI0643

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

Analytical Report											
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method	
Client ID: SS-3 (RSI0695-	03 - Solid)				Samp	led: 09	18/09 12:15	Recv	d: 09/18/0	9 18:43	
Polychlorinated Bipheny	is by EPA N	lethod 8082									
Aroclor 1016 [2C]	ND	D08	170	32	ug/kg dry	10.0	09/23/09 09:37	SCH	9122042	8082	
Aroclor 1221 [2C]	ND	D08	170	32	ug/kg dry	10.0	09/23/09 09:37	SCH	9122042	8082	
Aroclor 1232 [2C]	ND	D08	170	32	ug/kg dry	10.0	09/23/09 09:37	SCH	9122042	8082	
Aroclor 1242 [2C]	ND	D08	170	36	ug/kg dry	10.0	09/23/09 09:37	SCH	9122042	8082	
Aroclor 1248 [2C]	ND	D08	170	33	ug/kg dry	10.0	09/23/09 09:37	SCH	9122042	8082	
Aroclor 1254 [2C]	ND	D08	170	35	ug/kg dry	10.0	09/23/09 09:37	SCH	9122042	8082	
Aroclor 1260 [2C]	4500	D08	170	35	ug/kg dry	10.0	09/23/09 09:37	SCH	9122042	8082	
Decachlorobiphenyl [2C]	98 %	D08	Surr Limits:	(34-148%)			09/23/09 09:37	SCH	9/22042	8082	
Tetrachloro-m-xylene [2C]	87 %	D08	Surr Limits:	(35-134%)			09/23/09 09:37	SCH	9122042	8082	
General Chemistry Parar	neters										
Percent Solids	98		0.010	NR	%	1.00	09/20/09 16:16	KMB	9119015	Dry Weigh	

meric

82/2497

THE LEADER IN ENVIRONMENTAL TESTING

2221 Niagara Falls Blvd., Ste 9

Niagara Falls, NY 14304

le

Golder Associates, Inc. - Niagara Falls, NY

SDG Number: RSI0643

09/17/09-09/21/09 Received: 10/05/09 15:28 Reported:

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

			F	Analytical	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Client ID: SS-4 (RSI0695-	04 - Solid)				Samp	led: 09	18/09 12:00	Recv	rd: 09/18/0	9 18:43
Polychlorinated Bipheny	Is by EPA N	lethod 8082								
Aroclor 1016 [2C]	ND	D08	84	16	ug/kg dry	5.00	09/23/09 10:32	SCH	9122042	8082
Aroclor 1221 [2C]	ND	D08	84	16	ug/kg dry	5.00	09/23/09 10:32	SCH	9122042	8082
Aroclor 1232 [2C]	ND	D08	84	16	ug/kg dry	5.00	09/23/09 10:32	SCH	9122042	8082
Aroclor 1242 [2C]	ND	D08	84	18	ug/kg dry	5.00	09/23/09 10:32	SCH	9122042	8082
Aroclor 1248 [2C]	ND	D08	84	16	ug/kg dry	5.00	09/23/09 10:32	SCH	9122042	8082
Aroclor 1254 [2C]	ND	D08	84	18	ug/kg dry	5.00	09/23/09 10:32	SCH	9122042	8082
Aroclor 1260 [2C]	690	D08	84	18	ug/kg dry	5.00	09/23/09 10:32	SCH	9122042	8082
Decachlorobiphenyl [2C]	91 %	D08	Surr Limits:	(34-148%)			09/23/09 10:32	SCH	9/22042	8082
Tetrachloro-m-xylene [2C]	83 %	D08	Surr Limits:	(35-134%)			09/23/09 10:32	SCH	9122042	8082
General Chemistry Para	meters									
Percent Solids	99		0.010	NR	%	1.00	09/20/09 16:18	KMB	9119015	Dry Weigh

THE LEADER IN ENVIRONMENTAL TESTING

Golder Associates, Inc. - Niagara Falls, NY 2221 Niagara Falls Blvd., Ste 9 Niagara Falls, NY 14304

SDG Number: RSI0643

Project: Golder - Niagara Transformer site (Level IV) Project Number: [none]

SAMPLE EXTRACTION DATA

Parameter	Batch	Lab Number	Wt/Vol Extracte	Units	Extract Volume	Units	Date Prepared	Lab Tech	Extraction Method
General Chemistry Parameters									
9012A	9123015	RSI0643-01	0.51	g	50.00	mL	09/23/09 03:08	JFR	Cn Digestion
9012A	9123015	RSI0643-02	0.54	g	50.00	mL	09/23/09 03:08	JFR	Cn Digestion
9012A	9123015	RSI0643-03	0.58	g	50.00	mL	09/23/09 03:08	JFR	Cn Digestion
Dry Weight	9119015	RSI0643-01	10.00	g	10.00	g	09/19/09 10:30	CJM	Dry Weight
Dry Weight	9119015	RSI0643-02	10.00	g	10.00	g	09/19/09 10:30	CJM	Dry Weight
Dry Weight	9119015	RSI0643-03	10.00	g	10.00	g	09/19/09 10:30	CJM	Dry Weight
Dry Weight	9119015	RSI0643-06	10.00	g	10.00	g	09/19/09 10:30	CJM	Dry Weight
Organochlorine Pesticides by EP	A Method 8	081A		2					
8081A	9120007	RSI0643-02	30.02	g	10.00	mL	09/21/09 08:00	CXM	3550B GC
8081A	9120007	RSI0643-03	30.11	g	10.00	mL	09/21/09 08:00	CXM	3550B GC
8081A	9120007	RSI0643-01	30.48	g	10.00	mL	09/21/09 08:00	СХМ	3550B GC
Polychlorinated Biphenyls by EPA	Method 80	082							
8082	9120006	RSI0643-02	30.02	g	10.00	mL	09/21/09 08:00	CXM	3550B GC
8082	9120006	RSI0643-03	30.11	g	10.00	mL	09/21/09 08:00	CXM	3550B GC
8082	9120006	RSI0643-06	30.32	g	10.00	mL	09/21/09 08:00	CXM	3550B GC
8082	9120006	RSI0643-01	30.48	g	10.00	mL	09/21/09 08:00	СХМ	3550B GC
Semivolatile Organics by GC/MS									
8270C	9118138	RSI0643-01	30.37	g	1.00	mL	09/18/09 20:00	EKD	3550B MB
8270C	9118138	RSI0643-02	30.42	g	1.00	mL	09/18/09 20:00	EKD	3550B MB
8270C	9118138	RSI0643-03	30.85	g	1.00	mL	09/18/09 20:00	EKD	3550B MB
otal Metals by SW 846 Series M	ethods								
6010B	9123026	RS10643-03	0.47	g	50.00	mL	09/23/09 09:20	KCW	3050B
6010B	9123026	RSI0643-02	0.49	g	50.00	mL	09/23/09 09:20	KCW	3050B
6010B	9123026	RSI0643-01	0.49	g	50.00	mL	09/23/09 09:20	KCW	3050B
7471A 💦	9124107	RSI0643-03	0.56	g	50.00	mL	09/24/09 10:00	MLD	7471A_
7471A	9124107	RS10643-02	0.56	g	50.00	mL	09/24/09 10:00	MLD	7471A_
7471A	9124107	RSI0643-01	0.62	g	50.00	mL	09/24/09 10:00	MLD	7471A_
olatile Organic Compounds by E	PA 8260B								
8260B	9123060	RSI0643-03	5.20	g	5.00	mL	09/23/09 11:19	PJQ	5030B MS
8260B	9123060	RSI0643-01	5.27	g	5.00	mL	09/23/09 11:19	PJQ	5030B MS
8260B	9123060	RSI0643-02	5.28	g	5.00	mL	09/23/09 11:19	PJQ	5030B MS
			SAMPLE	EXTR	ACTION	DATA			

SAMPLE EXTRACTION DATA

Parameter	Batch	Lab Number	Wt/Vol Extracte	Units	Extract Volume	Units	Date Prepared	Lab Tech	Extraction Method
General Chemistry Parameters									
9012A	9123015	RSI0695-07	0.54	g	50.00	mL	09/23/09 03:08	JFR	Cn Digestion
9012A	9123015	RSI0695-10	0.54	g	50.00	mL	09/23/09 03:08	JFR	Cn Digestion

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

83/2497

Received: 09/17/09-09/21/09 Reported: 10/05/09 15:28 APPENDIX E IRM PHOTO LOG

Photograph 1: 2/4/10: Looking south, Installation of access road

Photograph 2: 2/4/10: Looking southwest, supplemental lead sampling in Grid 13

Photograph 3: 2/4/10: Looking east, drums found on southeastern portion of the site

Photograph 4: 2/8/10: Looking southwest, Grid 13 trees marked for removal

Photograph 5: 2/8/10: Looking southwest, Grid 13 hay bales/silt fence being placed

Photograph 6: 2/11/10: Looking southwest, Grid 13 excavation

Photograph 7: 2/11/10: Transfer of soil from Grid 13

Photograph 8: 2/12/10: Looking southeast, Grid 13 excavation progress

Photograph 9: 2/12/10: Downwind (east) particulate air monitoring station

Photograph 10: 2/12/10: Looking South, Western excavation boundary

Photograph 12: 2/15/10: Truck loading operations

Photograph 13: 2/15/10: Looking west, Grid 11 verification sampling

Photograph 14: 2/16/10: PCB field screening testing station

Photograph 15: 2/16/10: Contents of drums from Photograph 3

Photograph 16: 2/16/10: Looking southeast, Excavation progress (multiple grids)

Photograph 17: 2/17/10: Looking north, Grid 6 excavation

Photograph 18: 2/17/10: looking west, Grid 8 excavation

Photograph 19: 2/18/10: Looking southwest, additional excavation of Grid 13 south wall

Photograph 20: 2/18/10: Looking north, Grid 1 excavation

Golder Associates

Photograph 21: 2/19/10: Looking south, west wall, site excavation progress

Photograph 22: 2/19/10: Looking east, Grids 3, 4, 5, & 7 covered excavated soils

Photograph 23: 2/23/10: Looking east, Additional excavation in Grid 6

Photograph 24: 2/23/10: Looking southeast, Grid 6

Photograph 25: 3/1/10: Looking east, additional excavation of the south wall in Grid 13

Photograph 26: 3/2/10: Looking south, Excavated site

Photograph 27: 3/2/10: Loading of covered piles

Photograph 28: 3/3/10: Looking east, additional excavation in Grid 7

Photograph 29: 3/3/10: Looking west, saturated soils from Grid 7

Photograph 30: 3/4/10: Looking north, additional Grid 13 excavation

Photograph 31: 3/5/10: Looking north, West wall, site excavation progress

Photograph 32: 3/8/10: Looking east, South wall of Grid 13

Photograph 33: 3/8/10: Looking east, Loading piled soils from Grid 13

Photograph 34: 3/9/10: Looking south, Excavated site

Photograph 35: 3/11/10: Additional excavation in Grid 13

Photograph 36: 3/11/10: Looking southwest, Covered Grid 13 soils

Photograph 37: 3/12/10: Looking northeast, Final Grid 13 excavation level

Photograph 38: 3/12/10: Looking east, Grid 13 south wall

Photograph 39: 4/20/10: Looking southeast, Additional Grid 3 excavation

Photograph 40: 4/21/10: Looking southeast, Additional Grid 3 excavation

