Alternatives Analysis Report/ Remedial Action Work Plan

295 Maryland Street Site BCP Site No. C915242 Buffalo, New York

December 2015

0222-001-100

Prepared For:

295 Maryland, LLC

Prepared By:

2558 Hamburg Turnpike, Suite 300, Buffalo, New York 14218 | phone: (716) 856-0635 | fax: (716) 856-0583

BROWNFIELD CLEANUP PROGRAM

ALTERNATIVES ANALYSIS REPORT/ REMEDIAL ACTION WORK PLAN

295 MARYLAND STREET SITE, BCP SITE NO. C915242 BUFFALO, NEW YORK

December 2015

0222-001-100

Prepared for:

295 MARYLAND, LLC

Prepared by:

Benchmark Environmental Engineering & Science, PLLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716)856-0599

AAR/RAWP

295 Maryland Street Site

Table of Contents

1.0 INTRODUCTION	.1
1.1 Background	1
1.2 Purpose and Scope	
1.3 Project Organization and Responsibilities	
1.5 Troject organization and responsibilities	
2.0 SITE CHARACTERIZATION	.4
2.1 2001 Investigation Approach	4
2.1.1 EM-61 Survey	
2.1.2 EM Anomaly Test Pits	
2.1.3 Soil Characterization Test Pits	
2.2 2010-2011 Supplemental Investigation Approach	6
2.2.1 Soil Borings	
2.2.2 Monitoring Well Construction and Sampling	
2.3 Soil BUD-Evaluation.	
2.4 Investigation Findings	
2.4.1 Physical Soil Description	
2.4.2 Groundwater Contours	
2.4.3 Soil Sample Results	
2.4.4 Groundwater Sample Analytical Results	
2.4.5 Chemicals of Potential Concern	
2.5 Conceptual Model	12
2.6 Fate and Transport of COPCs	
2.6.1 Airborne Pathmays	
2.6.2 Fugitive Dust.	
2.6.3 Waterborne Pathways	
2.6.4 Groundwater Pathway	
2.6.5 Surface Water Runoff	
2.6.6 Exposure Pathways	
	.,
3.0 REMEDY SELECTION	14
3.1 Remedial Action Objectives	14
3.2 Alternative Evaluation Criteria	
3.3 Technology Evaluation	16
3.4 Alternative Evaluation	
3.4.1 Alternative 1: Remediate to Unrestricted-Use Conditions (Track 1)	
3.4.2 Alternative 2: Remediate Site to Restricted-Residential SCOs with ICs (Track 2)	
3.4.3 Alternative 3: Remediate Site to SSALs and Place Cover (Track 4).	
3.4.4 Alternative 3A: Remediate Site to SSALs (Additional Soil/Fill Removal) and Place Cover (Track 4)	
3.4.5 Comparison of Remedial Alternatives	
3.4.6 Recommended Remedial Alternative	
	• -
4.0 REMEDIAL ACTION WORK PLAN	
4.1 Purpose and Scope	
4.2 Pre-Mobilization Tasks	33

AAR/RAWP

295 Maryland Street Site

Table of Contents

40
41
41
41
41
44

AAR/RAWP 295 Maryland Street Site

Table of Contents

LIST OF TABLES

Table 1	2013 Pre-Remedial Investigation Field Observations
Table 2	2013 Pre-Remedial Investigation Analytical Summary Program
Table 3	Summary of September 2010 Groundwater Elevations
Table 4	Summary of Soil/Fill Analytical Results
Table 5	Summary of Groundwater Analytical Results
Table 6	Summary of Site-Specific Standards, Criteria, and Guidance
Table 7	Cost Estimate for Unrestricted Use (Track 1) Alternative 1
Table 8	Cost Estimate for Restricted-Residential Use (Track 2) Alternative 2
Table 9	Cost Estimate for Restricted-Residential Use (Track 4) Alternative 3
Table 10	Cost Estimate for Restricted-Residential Use (Track 4) Alternative 3A

LIST OF FIGURES

Figure 1	Site Location and Vicinity Map	
Figure 2	Site Plan (Aerial)	
Figure 3	Redevelopment Plan	
Figure 4	Exploration Location Plan	
Figure 5	Groundwater Contour and Concentration Map	
Figure 6	Conceptual Excavation Extents; Track 1 Alternative 1	
Figure 7	Conceptual Excavation Extents; Track 2 Alternative 2	
Figure 8	Conceptual Excavation Extents; Track 4 Alternative 3	
Figure 9	Conceptual Excavation Extents; Track 4 Alternative 3A	

AAR/RAWP

295 Maryland Street Site

Table of Contents

APPENDICES

Appendix A	Geophysical Survey Results	
Appendix B	Test Pit Logs	
Appendix C	Field Borehole Logs/Well Installation Details	
Appendix D	Groundwater Sampling Logs	
Appendix E	Laboratory Analytical Data	
Appendix F	Land Use Evaluation	
Appendix G	Site Health and Safety Plan and Community Air Monitoring Plan	
Appendix H	Project Documentation Forms	

AAR/RAWP 295 Maryland Street Site

Certification

I, Thomas H. Forbes, certify that I am currently a NYS registered Professional Engineer as defined in 6 NYCRR Part 375 and that this Alternatives Analysis Report/Remedial Action Work Plan for the 295 Maryland Street Site (BCP Site No. C915242) was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10) and that all activities were performed in full accordance with the DER-approved work plan and any DER-approved modifications.

070950-1	4-13-15	STE OF NEW 1.
NYS Professional Engineer #	Date	€0 12 0000000000000000000000000000000000

1.0 INTRODUCTION

This document presents an Alternatives Analysis Report (AAR) and Remedial Action Work Plan (RAWP) prepared under the New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) for the 295 Maryland Street Site in Buffalo, New York (see Figures 1 and 2). The BCP Site consists of 1.557 acres of contiguous property at 295 and 305 Maryland, and 129 West Avenue. The AAR/RAWP and the BCP are being performed on behalf of 295 Maryland, LLC for the purpose of redeveloping former manufacturing property into residential apartments for approximately 54 living units in a three-story building (see Figure 3).

In August 2010, Benchmark Environmental Engineering & Science, PLLC (Benchmark) met with the NYSDEC to discuss the potential eligibility of the Site for inclusion in the BCP. Based on extensive prior investigation work completed on the property by Benchmark and others (discussed below), it was determined that the Site would be a candidate for entry into the BCP at the remedial implementation stage, predicated on completion of a groundwater quality assessment. Accordingly, 295 Maryland, LLC completed preliminary groundwater characterization in September 2010 and subsequently submitted a BCP application to the NYSDEC in March 2011. The BCP application was deemed complete by the NYSDEC, and the public notice was published in the Buffalo News on April 13, 2011. The review and comment period concluded on May 13, 2011 and the Site, designated as BCP Site No. C915242, was accepted into the BCP effective July 14, 2011.

1.1 Background

The Site was historically used in a residential and commercial capacity, with the property at 295 Maryland Street most recently occupied by Lamar Advertising, Inc. (Lamar), a firm specializing in the sale of billboard advertising space and erection of billboard signs. Lamar relocated to another location within the City in December 2000; the associated commercial buildings and facilities on 295 Maryland Street as well as the residences at 121-129 West Avenue have been demolished. Currently, the Site is vacant and undeveloped.

A Phase I Environmental Site Assessment (ESA) was performed for the former Lamar Advertising property in January 2000, prior to facility demolition (Ref. 1). A separate Phase I ESA was prepared in 2001 for 121-129 West Avenue on behalf of the Buffalo

Niagara Renaissance Corporation (BNRC) (Ref. 2). The ESA reports indicate that 121-129 West Avenue was historically used for residential purposes, with 295 Maryland Street historically improved with an office, commercial building, and two multiple bay garages. Potential recognized environmental conditions (RECs) at 295 Maryland Street included:

- Vehicle maintenance
- Use and storage of paints, adhesives, and other flammables
- Underground storage tanks (USTs): 550-gallon and 4,000-gallon gasoline USTs were reportedly removed from the Site in 1974 and 1997, respectively. In addition, a small UST containing benzene was reportedly discovered and removed during facility decommissioning.

A Phase II Environmental Site Investigation was completed at 295 Maryland Street by Benchmark on behalf of the BNRC in November 2001 (Ref. 3) based on Phase I ESA findings. The Phase II identified surface and subsurface soil/fill materials exceeding NY State soil cleanup guidance values (i.e., as compared to TAGM 4046, the applicable NYSDEC guidance in place at that time) for certain parameters, including arsenic, lead, mercury, and several polyaromatic hydrocarbons (PAHs). These same parameters are elevated with respect to more recent Soil Cleanup Objectives (SCOs) for restrictedresidential use as published in 6NYCRR Part 375. Section 3.0 discusses the findings of the historic investigations in more detail, as well as supplemental investigations completed under the BCP to assess groundwater quality and refine areas of soil/fill requiring remediation.

1.2 **Purpose and Scope**

This AAR and RAWP has been prepared in general accordance with Section 5.3.b of NYSDEC's May 2010 DER-10 Technical Guidance for Site Investigation and Remediation. Accordingly, it addresses the following items:

- A Site characterization, including a description of the data from prior reports and the results of supplemental groundwater and soil/fill assessments in 2010, 2011, and 2013 (Section 2.0).
- Alternatives analysis relative to the NYSDEC Site Screening Criteria (Section 3.0).
- Remedial Action Work Plan for the implementation of the selected remedy (Section 4.0) along with schedule for implementation.
- References cited in the report (Section 5.0).

1.3 **Project Organization and Responsibilities**

Benchmark, a NY State professional engineering firm, will serve as BCP consultant to 295 Maryland, LLC. An experienced and qualified contractor will be retained by 295 Maryland, LLC to implement the remediation, with Benchmark providing confirmatory sampling as well as Qualified Environmental Professional (QEP) observation and documentation of the remedial activities. The NYSDEC Division of Environmental Remediation (DER) will monitor the remedial actions to verify that the work is performed in accordance with the approved RAWP.

2.0 SITE CHARACTERIZATION

2.1 2001 Investigation Approach

Investigation activities undertaken on 295 Maryland Street on behalf of the BNRC in 2001 included an electromagnetic (EM) survey to check for the presence of buried metallic objects across the property, and a test pit investigation to further investigate the source of EM anomalies and allow for surface and subsurface soil/fill characterization. A summary of the 2001 investigation activities is presented below.

2.1.1 EM-61 Survey

On September 13-14, 2001, Benchmark's designated subcontractor, Geomatrix Consultants, Inc., performed an electromagnetic geophysical (EM-61) survey across 295 Maryland Street. The purpose of the EM-61 survey was to identify and define areas within the Site boundary that may be indicative of buried metal or other highly conductive material. A Geonics EM-61 high-resolution time domain electromagnetic (TDEM) metal detector capable of detecting both ferrous and nonferrous metallic objects was used to collect the subsurface data. The EM-61 has an approximate effective depth of up to 10 feet below ground surface (fbgs).

Results of the geophysical survey indicated a number of suspect buried metallic anomalies across the property (see Appendix A). Based on discussions with the former owner (Lamar), several of the anomalies were suspected to be structural (reinforced) concrete. In addition, Lamar provided documentation substantiating removal of two USTs historically used for gasoline storage and a small UST historically containing benzene; these three USTs were identified in the January 2000 Phase I ESA Report. Nevertheless, Benchmark and the BNRC agreed that additional intrusive investigation would be required to positively identify the source of the anomalies.

2.1.2 EM Anomaly Test Pits

On October 22, 2001, a total of 10 test pits (EM-1 through EM-10) were excavated at suspect anomaly locations identified during the EM survey (see Figure 4). The test pits were excavated with a track-mounted excavator until the geophysical anomaly was positively identified, which occurred at depths ranging from 6 inches to 4 fbgs. During test pit

excavation, a Benchmark engineer logged the test pit lithology and anomaly findings, and characterized excavated soil/fill for visual and/or olfactory evidence of contamination. Soil/fill materials were also screened for volatile organic vapors with a photoionization detector (PID) as a further indicator of potential contamination.

Fill was generally present at each location to a depth of 3-4 fbgs. A thin layer of native topsoil overlying native clayey soils with silt was typically encountered below the fill materials. Groundwater was not encountered, excluding some instances of perched water over clayey soils. The fill material consisted of generally fine grained and very loose soil with mixtures of brick, concrete, ash, slag, and various metallic debris. All EM test pits positively identified each geophysical anomaly as metallic debris (e.g., steel channeling, plates, angles, etc.) and/or reinforced concrete; no vessels or containers were discovered. None of the test pits exhibited field evidence of impact with the exception of test pit EM-6, where a slight petroleum odor and staining were noted in the excavated fill soils. Based on these observations, test pit EM-6 was extended approximately 6 feet in the northern direction to provide an indication of the extent of impact. As the test pit was continued to the north, visual and olfactory evidence of petroleum became less evident to the point where no impacts were observed. In addition, perched water was encountered at the apparent native soil interface (approximately 3 fbgs), with a slight sheen observed on the perched water surface at this location.

In order to characterize the impacted soil/fill, a composite sample was collected from the side wall of test pit EM-6 for laboratory analysis of: "full list" volatile organic compounds (i.e., NYSDEC STARS List and Target Compound List volatiles); Target Compound List (TCL) semi-volatile organic compounds (SVOCs); Target Analyte List (TAL) inorganic compounds; and polychlorinated biphenyls (PCBs).

2.1.3 Soil Characterization Test Pits

On October 23, 2001, Benchmark completed 10 soil characterization test pits (TP-1 through TP-10) across the 295 Maryland Street parcel (see Figure 4). Each test pit was completed to a depth of 8 fbgs or refusal, whichever occurred first.

At each location, Benchmark recorded pertinent field observations including fill types; depth to native soil (if encountered); visual or olfactory evidence of contamination; and photoionization detector (PID) readings. The investigation test pit lithology was similar

to the EM test pits, with the upper 6 inches to 1 foot of soil at each test pit location generally comprised of topsoil and clayey soils mixed with fragments of brick and stone. Approximately 2-3 feet of reworked clay fill generally underlies this upper fill layer followed by a thin (2 to 4-inch) historic topsoil layer. Deeper native soils are characterized by brown clayey soils containing some silt. Appendix B includes the test pit logs summarizing these field observations.

Benchmark collected separate composite samples of the surficial (0-6" below grade) and subsurface (1' below grade to completion) soils from each test pit. Samples were either retrieved using a stainless steel trowel or the backhoe bucket, depending on sample depth. All shallow (0-6") samples were collected for analysis of TCL SVOCs, PCBs, and TAL inorganic compounds. Deeper samples (6" to completion) were collected for these same parameters as well as TCL VOCs. All environmental samples were cooled to 4°C and transferred under chain-of-custody to Friend Laboratory for analysis in accordance with USEPA Method SW-846 protocols.

2.2 2010-2011 Supplemental Investigation Approach

In September 2010, Benchmark performed a preliminary groundwater investigation in support of the BCP application. Four groundwater monitoring wells (MW-1 to MW-4) were installed to allow for collection of representative groundwater samples across the Site and determine groundwater elevation and flow direction. The wells were initially sampled in September 2010 and resampled for select parameters in March 2011. In addition, the drill rig advanced one soil boring (deemed SB-5) on the 129 West Avenue parcel to establish soil lithology and allow for sample collection on that property, which was not assessed during the 2001 Phase II investigation.

2.2.1 Soil Borings

On September 13-14, 2010, Earth Dimensions, Inc. (retained by Benchmark) drilled four well borings and soil boring SB-5 using 4¹/₄-inch hollow stem augers. As shown on the field borehole logs in Appendix C, 2-inch diameter split-spoon samples were collected at 2foot intervals continuously through the fill and into the native soil. Stratigraphic field borehole logs were prepared by a qualified geologist from ground surface to the bottom of the borehole. Borings MW-1 through MW-4 were drilled to a nominal depth of 22 fbgs, and

SB-5 to 6 fbgs. Each 2-foot split-spoon soil sample was scanned for total organic vapors with a MiniRae 2000 Photoionization Detector (PID) equipped with a 10.6 eV lamp. Soil descriptions, PID scan results, and visual/olfactory observations during boring advancement are recorded on the Field Borehole Logs in Appendix C. As indicated, there were no organic vapors detected above background levels or any visual observations of impact identified in any of the overburden soil samples with the exception of a trace PID reading (1.6 ppm) from 20 to 22 fbgs at MW-2.

Two soil samples were collected during soil boring advancement. Sample MW-3 (4-6') was collected to discretely characterize the native soil layer, as the 2001 program involved collection of a composite of subsurface soil/fill sample that straddled both the fill and native soil intervals. Sample SB-5 (0-2') was collected to characterize fill materials on the 129 West Avenue Parcel. Soil samples were collected using dedicated stainless steel sampling tools. Representative soil samples were placed in pre-cleaned sample bottles and submitted under chain-of-custody to TestAmerica Laboratories Inc., for analysis of TCL VOCs, TCL SVOCs, PCBs, pesticides, and TAL inorganic compounds.

2.2.2 Monitoring Well Construction and Sampling

Following borehole advancement, monitoring wells were installed within soil borings MW-1 to MW-4 at the locations shown on Figure 4. Appendix C includes the monitoring well installation logs. The well screens were installed between approximately 12 and 22 fbgs and extended into the sandy silt layer underlying the native clay soils. The wells were constructed with 2-inch diameter, flush-joint Schedule 40 PVC, and completed in flush mount protective locking curb boxes. Benchmark developed the newly installed monitoring wells on September 18, 2010.

Benchmark surveyed the wells on October 12, 2010; elevations were made relative to an arbitrary vertical datum designated at 500.00 feet. Groundwater was sampled on September 23, 2010 and March 1, 2011. Prior to and immediately following collection of groundwater samples, field measurements for pH, specific conductance, temperature, turbidity, dissolved oxygen, water level, and visual and olfactory field observations were recorded on the forms provided in Appendix D.

Groundwater grab samples were collected from each monitoring well using dedicated disposable polyethylene bailers. The September 2010 samples were transferred into

laboratory provided pre-preserved sample vials for analysis of TCL VOCs, TCL SVOCs, Pesticides/PCBs, and TAL inorganic compounds as well as total cyanide. Samples collected on March 1, 2011 were analyzed for a subset of parameters based on detections during the first event. The samples were cooled to 4°C in the field, and transported under chain-of-custody to TestAmerica Laboratories, Inc. The soil and groundwater samples were analyzed using United States Environmental Protection Agency (USEPA) SW-846 methods, and a Category B deliverable package was prepared (see Appendix E). Appendix D contains the groundwater sampling summary logs.

2.3 Soil BUD-Evaluation

A soil BUD-investigation was performed on September 18-20, 2013 to better assist in defining the volume of soil/fill materials potentially requiring remediation under a restrictedresidential use scenario and evaluate the possibility of reuse of some of the soil at another BCP Site. The work included the completion of 25 test pits designated as TP-1-13 through TP-25-13 (see Figure 4). Several of the test pits were directed toward areas of former dwellings on the property to characterize backfill of the basement areas. The test pits were advanced by Benchmark with a Komatsu PC150LC excavator to a maximum depth of approximately 14 fbgs. Soil/fill samples were generally characterized within each test pit in 2-foot intervals continuously from the ground surface through the test pit terminus. Table 1 summarizes the soil descriptions, PID scan results, and visual/olfactory observations for the pre-remedial test pit investigation. No evidence of gross impact was observed with the exception of elevated PID readings in two areas. As indicated on Figure 4 and Table 1, soil/fill PID screening during the test pit activities indicated field evidence of impact in two areas of concern (AOCs): AOC 1 as represented by test pit TP-6-13 (5.5 to 11 fbgs); and AOC 2 as represented by test pits TP-9-13 (4 to 14 fbgs) and TP-13-13 (0 to 7 fbgs). At these locations, PID readings greater than 100 ppm were reported along with moderate odor.

To further assess potential impacts across the Site and determine potential alternatives for beneficial reuse of excavated soil/fill, 10 composite soil/fill samples were selected for laboratory analysis from 10 test pits at varying depths. Composite subsurface soil/fill samples were transferred to laboratory supplied, pre-cleaned sample containers, stored on ice in a cooler, and transported to Alpha Analytical following chain of custody

procedures. Alpha Analytical is an independent, New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP)-certified laboratory. Table 2 summarizes the analytical program that was implemented. Appendix E contains the laboratory analytical data report.

2.4 Investigation Findings

2.4.1 Physical Soil Description

As represented by 45 test pits and 5 borings, the soil at the 295 Maryland Street Site consists of fill generally present at each location to a nominal depth between 3 and 4 fbgs, with deeper areas of fill identified in certain areas where former dwellings with basements were located. Reworked and native clay soils underlying a thin layer of native topsoil were typically encountered below the fill materials. No fill materials were encountered during advancement of well boring MW-1, suggesting that fill thickness thins toward West Avenue consistent with Site topography (see Figure 4). Groundwater was not encountered within the fill, excluding some instances of perched water over clayey soils. The fill material generally consists of fine-grained soil (silt and clay) with mixtures of brick, concrete, ash, slag, and varying types of metallic debris. Underlying the fill material was a layer of brown clayey soils containing some silt typically extending to approximately 15 fbgs (20 fbgs in MW-4). A sandy silt layer beneath the clay layer was saturated and represents the uppermost water bearing unit at the Site.

2.4.2 Groundwater Contours

Table 3 summarizes the groundwater elevations measured on September 23, 2010. As shown on Figure 5, overburden groundwater flows toward the southwest. MW-2 is a downgradient well and MW-4 is an upgradient well for the Site.

2.4.3 Soil Sample Results

Table 4 summarizes the analytical results of soil samples collected during the 2001 Phase II investigation, 2010 soil boring program, and 2013 pre-remedial investigation. Figure 4 shows the soil sample locations.

As indicated on Table 4, surficial (0-0.5') and subsurface (>0.5') soil testing identified several PAHs and five inorganic compounds at levels in excess of the NYSDEC SCOs for restricted-residential use (see Figure 7). The compounds detected above restricted-residential SCOs in at least one samples include: benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3)pyrene, dibenz(a,h)anthracene, arsenic, barium, cadmium, lead, and mercury.

Samples from AOC 1 (TP-6-13; 7-9') and AOC 2 (TP-9-13; 9-12') were tested using the toxic characteristic leaching procedure (TCLP) with the extract analyzed for VOCs via USEPA Method 1311. As indicated on Table 4, no VOCs were detected in the extract from either sample. The negligible total VOCs and absence of leachable VOCs in these AOCs suggest that the elevated PID readings and moderate odors are indicative of weathered petroleum from a historic release.

2.4.4 Groundwater Sample Analytical Results

Table 5 summarizes the analytical results of the groundwater sampling. As indicated, select VOCs and SVOCs were detected in the sample from well MW-2 at concentrations above NYSDEC groundwater quality standards and guidance values (GWQS/GVs). The VOCs and SVOCs detected above these standards include: benzene, ethylbenzene, toluene, and xylenes (BTEX); 1,2,4-trimethylbenzene; isopropylbenzene; benzo(a)anthracene; and naphthalene, all of which are constituents of petroleum products (e.g., gasoline or diesel). No other VOCs or SVOCs exceeded GWQS/GVs. Individual VOC and SVOC concentrations at well MW-2 were less than 100 micrograms per liter (ug/L). The total VOC concentrations from each of the two sampling rounds were 196 and 263 ug/L, well below the 1,000 ug/L threshold typically employed for inactivation of petroleum spill sites. Benzo(a)anthracene and naphthalene are relatively immobile in groundwater (i.e., high octanol-water partition coefficient and low water solubility). Results of groundwater testing are presented on Figure 5 for the sampling done on March 1, 2011.

Pesticides were also detected in the groundwater from all four wells. Pesticide exceedances of the GWQS/GVs were reported in wells MW-2, MW-3, and MW-4 for one or more of the following: alpha-BHC, beta-BHC, dieldrin, gamma-chlordane, and heptachlor. Concentrations were all less than 1 ug/L. Higher levels of pesticides were identified in wells MW-4 (upgradient) and MW-3, suggesting groundwater transport onto the

Site from an upgradient source. Downgradient well MW-2 had one exceedance (beta-BHC) of the GWQS/GVs at a concentration of 0.06 ug/L during the September 23, 2010 sampling event. Well MW-1 did not contain any pesticide concentration above the GWQS/GVs.

Groundwater from all four wells contained levels of sodium greater than the GWQS. Groundwater from well MW-4 contained a slight exceedance of manganese (0.315 mg/L) as compared to the GWQS (0.3 mg/L). Sodium and manganese are naturally-occurring minerals. Their presence in the upgradient wells indicates ambient conditions.

2.4.5 Chemicals of Potential Concern

Based on the foregoing, chemicals of potential concern (COPCs) in soil as defined by exceedances of restricted-residential SCOs include the following PAHs: benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3)pyrene, and dibenz(a,h)anthracene. In addition, the following inorganic compounds were detected in at least one sample in excess of the restricted-residential SCOs and are considered COPCs: arsenic, barium, cadmium, lead, and mercury.

Groundwater constituents that were identified above GWQS/GVs but were not otherwise identified in upgradient wells include VOC and SVOC compounds commonly associated with petroleum products (e.g., gasoline or diesel). Results of testing from the most recent groundwater sampling round (March 1, 2011) are presented on Figure 5. While groundwater samples from well MW-2 exceeded GWQS/GVs for certain petroleum VOCs and SVOCs, the concentrations present are not indicative of a large release; rather, these results are indicative of residual contamination in *de minimis* quantities. Further, the contaminants are subject to natural degradation due to sorption and biodegradation, and the likely source of VOCs has been removed (i.e., historic USTs). Consequently, the levels of VOCs will continue to naturally degrade over time. In addition, residents in Buffalo are serviced by municipal-supplied public water obtained from Lake Erie; therefore, exposure to contaminants is unlikely as there are no drinking water receptors and the environmental easement will prohibit the use of groundwater.

2.5 Conceptual Model

Historical usage of this Site as a manufacturing facility from the 1920s through 2000 included the use of solvents; petroleum products including gasoline (USTs) and hydraulic oil (maintenance lift); paints; and other hazardous materials. Import of non-virgin fill material as well as apparent releases from these manufacturing products/processes resulted in surface and subsurface soil impacts for SVOCs and inorganic compounds to a depth of approximately 1 to 4 fbgs across the Site, with deeper impacts identified in areas where basements were historically present. The SVOCs and inorganic compounds detected in the soil/fill are isolated to that medium as they are not mobile in groundwater nor are they subject to significant volatilization.

2.6 Fate and Transport of COPCs

The soil and groundwater sample analytical results were incorporated with the physical characterization of the Site to evaluate the fate and transport of COPCs in Site media. The mechanisms by which the COPCs can migrate to other areas or media are outlined below.

2.6.1 Airborne Pathways

Potential migration pathways involving airborne transport of non-volatile COPCs include erosion and transport of soil particles and sorbed chemical constituents in fugitive dust emissions.

2.6.2 Fugitive Dust

The chemicals present in soil/fill at elevated concentrations are considered nonvolatile substances that can be released to ambient air as a result of fugitive dust generation caused by wind erosion or physical disturbance of surface soil particles.

2.6.3 Waterborne Pathways

Chemicals in surface soils could be potentially transported via storm water runoff. Due to the relatively insoluble nature of the soil COPCs and presence of clayey soils above

the water table, chemical migration via leaching to groundwater from surface soil/fill is not considered a migration pathway.

2.6.4 Groundwater Pathway

Concentrations of VOCs (primarily BTEX) and two SVOC compounds in groundwater do not represent a significant threat to on-site or off-site receptors. Public water is available and the environmental easement will prohibit the use of groundwater. The concentrations of the compounds detected are relatively low. The chemical properties (low water solubility and high octanol-water partition coefficient) coupled with the attenuation processes such as sorption and biodegradation makes the groundwater pathway insignificant. Other compounds detected in groundwater (low level pesticides and inorganic compounds) appear to be a result of upgradient off-site conditions or are otherwise ubiquitous.

2.6.5 Surface Water Runoff

Erosion and transport of surface soils and associated sorbed chemicals in surface water runoff is a potential migration pathway as the Site is sloped with sparse vegetation. The Site is surrounded by a combined sanitary/storm water sewer collection system (i.e., Buffalo Sewer Authority [BSA] collection and conveyance system), which provides a mechanism for controlled surface water transport, but will ultimately result in sediment capture in the BSA's grit chambers followed by disposal at a permitted sanitary landfill.

2.6.6 Exposure Pathways

Based on the conceptual model described in the previous section, the potentially complete exposure pathways through which Site contaminants could reach receptors at significant point concentrations include:

• On-site contact with surface and subsurface soil/fill and vapor intrusion into buildings.

3.0 **Remedy Selection**

3.1 Remedial Action Objectives

The remedial actions for the 295 Maryland Street Site must satisfy Remedial Action Objectives (RAOs). RAOs are site-specific statements that convey the goals for minimizing substantial risks to public health and the environment and/or addressing specific environmental regulatory requirements. For the Site, appropriate RAOs have been defined as follows:

Groundwater

RAOs for Public Health Protection

- Prevent ingestion of groundwater with contaminant levels exceeding drinking water standards.
- Prevent contact with, or inhalation of volatiles, from contaminated groundwater.

RAOs for Environmental Protection

Remove the source of ground or surface water contamination.

<u>Soil</u>

RAOs for Public Health Protection

Prevent ingestion/direct contact with contaminated soil.

RAOs for Environmental Protection

• Prevent migration of contaminants that would result in groundwater or surface water contamination.

Soil Vapor

RAOs for Public Health Protection

• Mitigate impacts to public health resulting from existing, or the potential for, soil vapor intrusion into buildings at the site.

3.2 Alternative Evaluation Criteria

NYSDEC's Environmental Remediation Program calls for remedy evaluation in accordance with DER-10 Technical Guidance for Site Investigation and Remediation (Ref. 4) and set forth in 6NYCRR 375-1.8(f). The guidance provides for remedy evaluation for the nine criteria described below:

1. Overall protectiveness of public health and the environment. This criterion is an evaluation of the remedy's ability to protect public health and the environment, assessing how risks posed through each existing or potential pathway of exposure are eliminated, reduced, or controlled through removal, treatment, engineering controls, or institutional controls.

- **2. Standards, criteria, and guidance.** Compliance with SCGs addresses whether a remedy will meet applicable environmental laws, regulations, standards, and guidance. Table 6 summarizes the SCGs for the Site.
- **3.** Long-term effectiveness and permanence. A program or project that achieves a complete and permanent cleanup of the site is preferred over a program or project that does not do so. This criterion evaluates the long-term effectiveness of the remedy after implementation. If wastes or treated residuals remain on-site after the selected remedy has been implemented, the following items are evaluated: (i) the magnitude of the remaining risks (i.e., will there be any significant threats, exposure pathways, or risks to the community and environment from the remaining wastes or treated residuals), (ii) the adequacy of the engineering and institutional controls intended to limit the risk, (iii) the reliability of these controls, and (iv) the ability of the remedy to continue to meet RAOs in the future.
- 4. Reduction in toxicity, mobility, or volume of contamination through treatment. A program or project that permanently and significantly reduces the toxicity, mobility, or volume of contamination is to be preferred over a program or project that does not do so. This criterion evaluates the remedy's ability to reduce the toxicity, mobility, or volume of site contamination. Preference is given to remedies that permanently and significantly reduce the toxicity, mobility, or volume of the wastes at the site.
- 5. Short-term impacts and effectiveness. Short-term effectiveness is an evaluation of the potential short-term adverse impacts and risks of the remedy upon the community, the workers, and the environment during construction and/or implementation. This includes a discussion of how the identified adverse impacts and health risks to the community or workers at the site will be controlled, and the effectiveness of the controls. This criterion also includes a discussion of engineering controls that will be used to mitigate short term impacts (i.e., dust control measures), and an estimate of the length of time needed to achieve the remedial objectives.
- 6. Implementability. The implementability criterion evaluates the technical and administrative feasibility of implementing the remedy. Technical feasibility includes the difficulties associated with the construction and the ability to monitor the effectiveness of the remedy. For administrative feasibility, the availability of the necessary personnel and material is evaluated along with potential difficulties in obtaining specific operating approvals, access for construction, etc.
- 7. Cost-effectiveness, including capital costs and annual site maintenance plan costs. Capital, operation, maintenance, and monitoring costs are estimated for the remedy and presented on a present worth basis.
- 8. Land Use. This is an evaluation of the current, intended, and reasonably intended future use of the site. In developing and screening remedial alternatives, NYSDEC's Part 375 regulations require that the reasonableness of the anticipated future land be

factored into the evaluation. The regulations identify 15 criteria that must be considered. Appendix F presents these criteria and the resultant outcome for the 295 Maryland Site. As indicated, this evaluation supports residential use as the reasonably anticipated future use of the Site, which is consistent with historic use of the neighborhood. Accordingly, remedial alternatives to clean up the Site to restricted-residential end use are identified and evaluated herein.

9. Community acceptance. This criterion evaluates the public's comments, concerns, and overall perception of the remedy, and is generally gauged through public comment of the NYSDEC's Decision Document.

3.3 Technology Evaluation

The types of technologies that could be implemented at the Site are limited based on the exposure scenarios and the recalcitrant nature of the inorganic compounds and PAHs to treatment technologies such as soil washing and chemical oxidation. Accordingly, technologies that can be used under these conditions and to address the COCs identified herein are generally limited to excavation and off-site disposal or capping.

3.4 Alternative Evaluation

The Site is intended to be used for residential (apartment) purposes. As such, the alternatives include options to achieve a restricted-residential end use. In addition, the least restricted-use (i.e., unrestricted) scenario is evaluated consistent with the requirements of NYSDEC DER-10. The following alternatives are evaluated relative to the criteria outlined in Section 3.2:

- Unrestricted use SCOs (Track 1)
- Restricted-residential use SCOs (Track 2) with institutional controls (ICs)
- Restricted-residential use using site-specific action levels (Track 4) with IC/ECs

3.4.1 Alternative 1: Remediate to Unrestricted-Use Conditions (Track 1)

Alternative 1 consists of excavation and off-site disposal of all soil/fill that contains chemical constituents at concentrations greater than the 6NYCRR Part 375 unrestricted-use SCOs and/or is considered grossly contaminated media. Achieving Track 1 remediation goals generally obviates the need for IC/ECs; however, under this scenario a groundwater restriction may be required to preclude groundwater use without treatment unless data can

be generated to show that groundwater meets Class GA GWQS/GVs following completion of the removal work.

Exceedances of the Part 375 unrestricted-use SCOs were noted in the majority of soil/fill samples collected at the Site, primarily for PAHs and select metals. Due to the highly ubiquitous nature of the constituents observed in Site soil/fill and the extent to which they exceeded the unrestricted-use SCO values, it is likely that this alternative would require removal of soil/fill materials across the entire Site footprint as well as deeper areas in the AOCs (i.e., in the vicinity of test pits TP-6-13 and TP-9-/TP-13-13) where PID impacts extend into the underlying native soils. Based on these assumptions, Figure 6 illustrates the areas and approximate depths of soil/fill removal that would be expected under this alternative. The volume of impacted soils/fill across the Site that would be excavated, loaded, transported and landfilled is estimated at 10,900 cubic yards (i.e., approximately 17,500 tons).

The excavated soil/fill is assumed be non-hazardous and would therefore be transported to a commercial solid waste disposal facility. Excavated materials would require handling and preparation prior to off-site transportation and disposal. Excavated areas would be backfilled with material meeting the BCP criteria presented in DER-10 and 6NYCRR Part 375 to the design (i.e., redevelopment) subgrade elevations and grades, and all disturbed areas would be restored with topsoil and grass seeding or hardscape.

Overall Protectiveness of Public Health and the Environment – Excavation and off-site disposal to unrestricted-use SCOs would be protective of public health under the intended reuse scenario (i.e., apartments with municipal water service). However, this alternative would permanently use and displace approximately 11,000 cubic yards (CY) of valuable landfill airspace, and would require excavating, transporting, and placing a similar number of CY of clean soil from an off-site borrow source to backfill the excavation, also contributing to significant detrimental off-site environmental issues.

Compliance with SCGs – Excavation and off-site disposal work under this alternative would need to be performed in accordance with applicable, relevant, and appropriate SCGs. Soil excavation activities would necessitate preparation of and adherence to a community air monitoring plan (CAMP) in accordance with Appendices 1A and 1B of DER-10.

Long-Term Effectiveness and Permanence – This alternative would remove all impacted soil/fill and therefore provides long-term effectiveness and permanence.

Reduction of Toxicity, Mobility, or Volume of Contamination through Treatment – Through removal of all impacted soil/fill, this alternative would permanently and significantly reduce the toxicity, mobility, and volume of contamination on the Site. However, since this alternative transfers Site soil/fill from one environment to another, an overall reduction of toxicity and volume would not occur, although mobility of soluble constituents would be reduced in the commercial landfill with a liner, leachate collection, and cover system.

Short-Term Impacts and Effectiveness – The principal advantage of a large-scale excavation to achieve unrestricted-use SCOs is reliability of the remedy in the long-term. However, the short-term adverse impacts and risks to the community, workers, and environment during implementation of this alternative are significant. Potential accidents from heavy truck traffic would be expected as the excavation work would require removal of approximately 800 truckloads of soil/fill through narrow residential streets servicing the property and import of a similar number of clean loads from the borrow source. Dust control methods would be required to limit the release of particulates during placement of the backfill soils; however, substantial disruption of the neighboring community would occur due to material transport and deliveries and noise from heavy equipment used to construct the remedy. This action would result in storm water impacts at the borrow source(s) and onsite, and diesel fuel consumption on the order of 6,500 gallons (assuming 65 miles round trip to a local landfill; 8 miles per gallon), with an equal number of gallons likely consumed by excavation and grading equipment and backfill delivery trucks. The USEPA's estimated CO₂ generation rate for diesel engines is approximately 22.2 pounds per gallon of diesel consumed. Accordingly, this alternative would produce over 288,000 pounds of greenhouse gas. The RAOs would be achieved once the soil/fill is removed from the Site (est. 3 months).

Implementability – Certain technical implementability issues would be encountered in construction of this unrestricted-use alternative. These issues may include, but are not limited to: shoring/stabilizing excavation sidewalls to prevent sloughing during excavation;

groundwater and/or storm water handling; and traffic coordination for trucks entering and exiting the Site.

Cost-Effectiveness – The remedial costs for implementation of Alternative 1 are estimated at \$1.37 million and detailed on Table 7.

Land Use – This alternative is consistent with the reasonably anticipated future use of the Site.

Community Acceptance – Community acceptance will be evaluated based on comments received from the public on the draft Decision Document. However, significant short-term disruption may result in complaints by neighbors during construction.

3.4.2 Alternative 2: Remediate Site to Restricted-Residential SCOs with ICs (Track 2)

This remedial scenario is aimed at removal of soil/fill across the Site such that no materials remain within the upper 15 feet in excess of the restricted-residential use SCOs. Exceedances of the restricted-residential SCOs were commonly found in the surface and near surface (0-4 fbgs) soil/fill materials across much of the Site, excluding the northeastern area of the property (fill materials were encountered in this area of the Site but not sampled and, as such, this area may also contain fill in excess of restricted-residential SCOs). Similar to Alternative 1 deeper soil contamination (grossly contaminated soils from apparent weathered petroleum products) exists to a limited extent in the natural soils proximate to test pits TP-6-13 and TP-9-13/TP-13-13.

Based on the assumption that this alternative would address only the known areas of restricted-residential SCO exceedances and/or grossly impacted soil/fill, Figure 7 illustrates the areas and approximate depths of soil/fill removal that would be expected. The estimated volume of impacted soil/fill across the Site that would be excavated, loaded, transported and landfilled under this alternative is estimated at 7,400 CY (i.e., approximately 11,800 tons). Post-excavation confirmatory sampling would be performed to verify achievement of the restricted-residential SCOs, the absence of nuisance conditions, and low PID readings.

The excavated soil/fill is assumed to be non-hazardous and would therefore be transported to a commercial solid waste disposal facility. Excavated materials would require

handling and preparation prior to off-site transportation and disposal. Excavated areas would be backfilled with material meeting the BCP criteria presented in DER-10 and 6NYCRR Part 375 to the design (i.e., redevelopment) subgrade elevations and grades, and all disturbed areas would be restored with topsoil and grass seeding or hardscape.

Because the alternative would not achieve unrestricted use conditions, ICs would be required. Specifically, an Environmental Easement would be prepared and filed limiting Site use to restricted-residential or a more restrictive end use and precluding the use of on-site groundwater without treatment. A Site Management Plan (SMP) would also be prepared to ensure that the ICs are followed, with annual certifications provided via a Periodic Review Report (PRR). An SMP describes the ICs/ECs, if any, and includes the following components: an IC/EC Plan; Operations and Maintenance (O&M) Plan; and Excavation Work Plan; a Site Monitoring Plan; and a copy of the Environmental Easement.

Overall Protection of Public Health and the Environment – Alternative 2 will achieve removal of soil/fill within the areas exhibiting soil contaminant concentrations in excess of restricted-residential SCOs to a nominal depth of 15 feet. As such Alternative 2 is protective of public health and the environment under the intended reuse scenario, and will successfully achieve the RAOs for the Site.

Compliance with SCGs – Excavation and off-site disposal under this alternative would need to be performed in accordance with applicable, relevant, and appropriate SCGs. Soil excavation activities would necessitate preparation of and adherence to a CAMP in accordance with Appendices 1A and 1B of DER-10.

Long-Term Effectiveness and Permanence – Excavation of the impacted soil/fill will achieve removal of effectively all soil/fill with exceedances of restricted-residential SCOs within the work limits. As such, this alternative provides long-term effectiveness and permanence.

Reduction of Toxicity, Mobility, or Volume of Contamination through Treatment – Through removal of all soil/fill exceeding the restricted-residential SCOs, this alternative would permanently and significantly reduce the toxicity, mobility, and volume of contamination on the Site. However, since this alternative transfers Site soil/fill from one

environment to another, an overall reduction of toxicity and volume would not occur, although mobility of soluble constituents would be reduced in the commercial landfill with a liner, leachate collection, and cover system.

Short-Term Effectiveness – The short-term adverse impacts and risks to the community, workers, and environment during implementation of this alternative are similar to those discussed for Alternative 1. Alternative 2 is expected to achieve the RAOs for the Site within approximately 2-3 months after initiation of the work.

Implementability – Technical implementability issues expected with this alternative are similar to those under Alternative 1.

Cost – The capital cost of Alternative 2 is estimated at \$1.0 million. Annual OM&M costs for annual certifications are estimated to be \$2,500. Therefore, the 30-year present worth of the remedial cost to implement Alternative 2 is estimated at \$1.05 million. Table 8 provides a breakdown of these remedial costs.

Land Use – This alternative is consistent with the reasonably anticipated future use of the Site.

Community Acceptance – Community acceptance will be evaluated based on comments received from the public on the draft Decision Document. However, significant short-term disruption may result in complaints by neighbors during construction.

3.4.3 Alternative 3: Remediate Site to SSALs and Place Cover (Track 4)

Per 6NYCRR Part 375-3.8(e)(4), Track 4 soil cleanups use site-specific information to identify site-specific SCOs (or site-specific action levels; SSALs) that are protective of public health and the environment under a restricted-use scenario. For Track 4 remedies, restrictions can be placed on the use of the property in the form of IC/ECs if they can be realistically implemented and maintained in a reliable and enforceable manner. For restricted-residential use, the top two feet of all exposed soils that are not otherwise covered by the components of the development of the site (e.g. buildings, pavement) cannot exceed the restricted-residential SCOs. Areas that exceed the restricted-residential SCOs must be

covered by material meeting the requirements of the generic soil cleanup table contained in 6NYCRR Part 375-6.7(d) for restricted-residential future Site use.

In determining the SSALs that will be employed under the Track 4 cleanup approach, it is necessary to consider: 1) the need to remediate grossly impacted soil/fill (such as those in the AOCs exhibiting weathered petroleum impact) where feasible per NYSDEC cleanup policy; and 2) the exposure scenario of the construction or maintenance worker who may need to perform periodic grounds keeping or other subsurface work (e.g., utility repairs) involving work beneath the cover system. Toward that end, Alternative 3 would include:

- Removal and off-site disposal of soil/fill that is characterized by weathered petroleum products (i.e., the AOCs associated with TP-6-13 and TP-9-/TP-13-13 and any other areas of grossly impacted soil/fill that might be encountered during construction).
- Removal and off-site disposal of soil/fill where total PAHs exceed 500 mg/kg (i.e., NYSDEC CP-51 total PAH guidance for non-residential sites; Ref. 5), and removal and off-site disposal of soil/fill where other parameter concentrations exceed Industrial SCOs¹ (see Figure 8).
- Placement of a site-wide soil cover system, including a demarcation layer (e.g., orange plastic netting) and at least two feet of approved cover material in areas not covered by impervious/hardscape materials such as asphalt driveways and parking lots, and concrete slabs or walkways. Hardscape cover outside the building footprint would be a minimum of 6 inches thick.
- Filing of an Environmental Easement limiting site use to restricted residential or more restrictive end uses, precluding the use of on-site groundwater without treatment, and requiring adherence to a Site Management Plan (SMP). The SMP would be prepared to ensure that the ICs are followed and that the ECs (cover system) are maintained, with annual certifications provided via a Periodic Review Report (PRR).

The volume of soil/fill to be excavated, loaded, transported, and landfilled under Alternative 3 is estimated at 2,065 CY (i.e., approximately 3,300 tons).

¹ The Industrial SCOs are deemed protective of human health for outdoor workers who contact soils on a routine basis (twice per week), and are therefore conservative when considered as an initial screening criterion for establishing SSALs under a Track 4 scenario. For PAHs, the alternative Soil Cleanup Level of 500 mg/kg total PAHs for non-residential sites was employed in lieu of individual Industrial SCOs per NYSDEC CP-51 Soil Cleanup Guidance on the premise that the Track 4 cleanup will include institutional controls (Environmental Easement and Site Management Plan).

Overall Protectiveness of Public Health and the Environment – This alternative meets NYSDEC requirements for a Track 4 cleanup under the BCP regulations and is protective of public health and the environment. The RAOs for the Site would be satisfied through the completed and planned remedial activities, including: removal and off-site disposal of soil/fill AOCs; removal and off-site disposal of soil/fill exceeding SSALs; installation of cover systems (soil and imperious) across the Site; and the enforced use of IC/ECs to prevent potential future exposure and limit the future Site use to restricted-residential applications.

Compliance with SCGs – The remedial activities will need to be performed in accordance with applicable, relevant, and appropriate SCGs. Imported cover material would need to meet backfill quality criteria per DER-10 and 6NYCRR Part 375. Subgrade preparation activities will need to adhere to a CAMP in accordance with Appendices 1A and 1B of DER-10.

Long-Term Effectiveness and Permanence – Removal of soil/fill AOCs and impacted soil/fill exceeding the SSALs as well as construction of a cover system will mitigate direct contact with soil/fill exceeding applicable SCOs. Periodic inspection and maintenance of the soil cover as well as the hardscape cover (e.g., asphalt roads, concrete walkways, and parking areas, etc.) will be required to assure long-term cover integrity. The SMP will include: an O&M Plan to confirm that ECs, including the cover systems, are operating and being maintained in accordance with the SMP; an Excavation Work Plan to address any impacted soil/fill encountered during post-development maintenance activities; and a Site-wide inspection program to assure that the IC/ECs placed on the Site have not been altered and remain effective. Furthermore, an Environmental Easement for the Site will be filed with Erie County, which will limit the future use of the Site to restricted-residential use, restrict groundwater use, and reference the NYSDEC-approved SMP. As such, this alternative will provide long-term effectiveness and permanence.

Reduction of Toxicity, Mobility, or Volume of Contamination through Treatment – Removal of soil/fill AOCs and soil/fill exceeding SSALs followed by placement of cover systems will permanently and significantly reduce the toxicity, mobility, and volume of the soil/fill that could potentially be contacted or produce localized areas of environmental impact at the Site. Accordingly, this alternative satisfies this criterion.

Short-Term Effectiveness and Impacts – During intrusive remedial activities, air monitoring will be performed to assure conformance with the CAMP action levels. The potential for chemical exposures and physical injuries will be addressed through safe work practices; proper personal protection equipment (PPE); environmental monitoring; establishment of work zones and Site control; and appropriate decontamination procedures. Excavation of the soil/fill AOCs is expected to be completed within a 2-week period, thereby limiting short-term adverse effects. This alternative will achieve the RAOs for the Site once the cover system is in place and the Environmental Easement is filed.

Implementability – No significant technical or administrative implementability issues are associated with this alternative.

Cost-Effectiveness – The estimated capital cost for Alternative 3 is \$370,000 including: soil/fill removal; construction of a 2-foot soil cover system in landscaped areas; development and filing of an Environmental Easement; and preparation of an FER and SMP. Annual OM&M costs for cover maintenance and annual certifications are estimated to be \$3,000. Therefore, the 30-year present worth of the remedial cost to implement Alternative 3 is estimated at \$432,000. Table 9 provides a breakdown of these remedial costs.

Land Use – Based on the land use evaluation presented in Appendix F, reuse of the Site in a restricted-residential capacity is consistent with past and current development and zoning on-site and within the vicinity of the Site, and does not pose additional environmental or public health risks.

Community Acceptance – Community acceptance will be evaluated based on comments received from the public on the draft Decision Document.

3.4.4 Alternative 3A: Remediate Site to SSALs (Additional Soil/Fill Removal) and Place Cover (Track 4)

Alternative 3A is similar to Alternative 3; however, under this alternative the volume of soil/fill to be excavated prior to cover placement would be expanded to improve the quality of the remaining soil/fill and further reduce the risk from exposure to residual concentrations in the event of cover system failure or breach. Specifically this alternative would involve:

• Removal and off-site disposal of an estimated 2,065 CY (same area and criteria as Alternative 3) with the addition of the following areas (see Figure 9):

- Soil/fill surrounding TP-25-13, where elevated mercury concentrations were identified in the composite sample from 0.5-4 fbgs. It is suspected that the elevated concentration is associated with shallow fill materials. Excavation in this area will proceed with a goal of achieving commercial SCOs² or better for mercury.

- Soil/fill surrounding TP-7, where elevated lead and barium levels were identified in the composite sample from 0.5-4 fbgs. It is suspected that the elevated concentrations are associated with shallow fill materials. Excavation in this area will proceed with a goal of achieving commercial SCOs or better for lead and barium.

- Soil/fill surrounding TP-10, where elevated PAH levels were identified primarily in the composite sample from 0-0.5 fbgs. Although total PAHs were reported below the CP-51 level of 500 mg/kg, this area represents an outlier with respect to other soil/fill that will remain under the Track 4 approach. Accordingly, excavation in this area will proceed with a goal of achieving total PAHs less than 100 mg/kg consistent with other ubiquitous soil/fill on-site.

• Placement of a site-wide soil cover system, including a demarcation layer (e.g., orange plastic netting) and at least two feet of approved cover material in areas not covered by impervious/hardscape materials such as asphalt driveways and parking lots, and concrete slabs or walkways. Hardscape cover outside the building footprint will be a minimum of 6 inches thick.

• Filing of an Environmental Easement: limiting Site use to restricted-residential or a more restrictive end use; precluding the use of on-site groundwater without treatment; and requiring adherence to an SMP. The SMP would be prepared to ensure that the ICs are followed and that the ECs (cover system) are maintained, with annual certifications provided via a PRR.

² Per the September 2006 NYSDEC/NYSDOH Technical Support Document, Commercial SCOs are protective of dermal, inhalation and ingestion exposures, including those by child receptors, on a routine basis but at a reduced frequency and duration than those under a restricted residential scenario.

The volume of soil/fill to be excavated, loaded, transported, and landfilled under this Alternative is estimated at 2,200 CY (3,520 tons).

Overall Protectiveness of Public Health and the Environment – This alternative meets NYSDEC requirements for a Track 4 cleanup under the BCP regulations and is protective of public health and the environment. The RAOs for the Site would be satisfied through the completed and planned remedial activities, including: removal and off-site disposal of soil/fill AOCs; removal and off-site disposal of soil/fill exceeding the SSALs; installation of cover systems (soil and imperious) across the Site; and the enforced use of IC/ECs to prevent potential future exposure and limit the future Site use to restricted-residential applications.

Compliance with SCGs – The remedial activities will need to be performed in accordance with applicable, relevant, and appropriate SCGs. Imported cover material would need to meet backfill quality criteria per DER-10 and 6NYCRR Part 375. Subgrade preparation activities will need to adhere to a CAMP in accordance with Appendices 1A and 1B of DER-10. The remedial actions are expected to be fully protective of public health and the environment once the cover is placed and the easement is filed.

Long-Term Effectiveness and Permanence – Removal of soil/fill AOCs and impacted soils exceeding the SSALs as well as construction of a cover system will mitigate direct contact with soil/fill exceeding applicable SCOs. Periodic inspection and maintenance of the soil cover as well as the hardscape cover (e.g., asphalt roads, concrete walkways, and parking areas, etc.) will be required to assure long-term cover integrity. The SMP will include: an O&M Plan to confirm that ECs, including the cover systems, are operated and maintained in accordance with the SMP; an Excavation Work Plan to address any impacted soil/fill encountered during post-development maintenance activities; and a Site-wide inspection program to assure that the IC/ECs placed on the Site have not been altered and remain effective. Furthermore, an Environmental Easement for the Site will be filed with Erie County, which will limit the future use of the Site to restricted-residential use, restrict groundwater use, and reference the NYSDEC-approved SMP. As such, this alternative will provide long-term effectiveness and permanence.

Reduction of Toxicity, Mobility, or Volume of Contamination through Treatment – Removal of soil/fill AOCs and soil/fill exceeding SSALs followed by placement of cover systems will permanently and significantly reduce the toxicity, mobility, and volume of the soil/fill that could potentially be contacted or produce localized areas of environmental impact at the Site. Accordingly, this alternative satisfies this criterion.

Short-Term Effectiveness and Impacts – During intrusive remedial activities air monitoring will be performed to assure conformance with CAMP action levels. The potential for chemical exposures and physical injuries will be addressed through safe work practices; proper PPE; environmental monitoring; establishment of work zones and Site control; and appropriate decontamination procedures. Excavation of the soil/fill AOCs and other areas is expected to be completed within a 2-week period, thereby limiting short-term adverse effects. This alternative will achieve the RAOs for the Site once the cover system is in place and the Environmental Easement is filed.

Implementability – No significant technical or administrative implementability issues are associated with this alternative.

Cost-Effectiveness – The estimated capital cost for Alternative 3A is \$393,000 including: soil/fill removal; construction of a 2-foot soil cover system in landscaped areas; development and filing of an Environmental Easement; and preparation of an FER and SMP. Annual OM&M costs for cover maintenance and annual certifications are estimated to be \$3,000. Therefore, the 30-year present worth of the remedial cost to implement Alternative 3A is estimated at \$455,000. Table 10 provides a breakdown of these remedial costs.

Land Use – Based on the land use evaluation presented in Appendix F, reuse of the Site in a restricted-residential capacity is consistent with past and current development and zoning on-site and within the vicinity of the Site, and does not pose additional environmental or public health risks.

Community Acceptance – Community acceptance will be evaluated based on comments received from the public on the draft Decision Document.

3.4.5 Comparison of Remedial Alternatives

The remedial alternatives evaluated above are compared below using the same screening criteria.

Overall Protectiveness of Public Health and the Environment – Each of the alternatives is protective of public health and the environment. Alternatives 2, 3, and 3A require ICs (environmental easements) to assure protection of site users; Alternatives 3 and 3A also require ECs (cover systems) to prevent exposures to soil/fill above the restricted-residential SSALs. Alternative 3A would yield lower residual concentrations beneath the cover than Alternative 3, which would reduce short-term risks due to cover system failure.

Compliance with SCGs – Each of the alternatives will need to be performed in accordance with applicable, relevant, and appropriate SCGs. Imported subgrade backfill under each alternative as well as imported cover material under Alternatives 3 and 3A would need to meet import quality criteria per DER-10 and 6NYCRR Part 375. Subgrade preparation activities under all of the alternatives will need to adhere to a CAMP in accordance with Appendices 1A and 1B of DER-10.

Long-Term Effectiveness and Permanence – Each of the alternatives provides long-term remedy effectiveness and permanence. Alternatives 2, 3, and 3A require development and continued enforcement of ICs (environmental easements) to assure continuing effectiveness and permanence, and Alternatives 3 and 3A also require continued maintenance of the cover systems.

Reduction of Toxicity, Mobility, or Volume of Contamination through Treatment – Removal of soil/fill exceeding SCOs will permanently and significantly reduce the toxicity, mobility, and volume of the soil/fill that could potentially be contacted or produce localized areas of environmental impact at the Site; however, each of the alternatives relies on off-site disposal resulting in no overall reduction of toxicity or volume.

Short-Term Effectiveness and Impacts – Short-term impacts attributable to dust and organic vapor migration will need to be addressed under each of the alternatives via air monitoring and mitigation in conformance with the CAMP. The potential for chemical exposures and physical injuries under each alternative will be addressed through safe work

practices; proper PPE; environmental monitoring; establishment of work zones and Site control; and appropriate decontamination procedures. Potential significant short-term disruption of the neighborhood due to noise and traffic issues is associated with Alternatives 1 and 2. Alternatives 3 and 3A would be less disruptive as they will be completed over a shorter time period.

Implementability – No significant technical or administrative implementability issues are associated with Alternatives 3 or 3A. Technical implementability issues associated with Alternatives 1 and 2 may include, but are not limited to: additional work to shore/stabilize excavation sidewalls to prevent sloughing during excavation; groundwater and/or storm water handling; and traffic coordination for trucks entering and exiting the Site.

Cost-Effectiveness – The estimated 30-year present worth cost for Alternatives 1, 2, 3, and 3A are \$1.37 million; \$1.05 million; \$432,000, and \$455,000.

Land Use – Each of the alternatives proposes Site use in a restricted-residential capacity consistent with past and current development and zoning on-site and within the vicinity of the Site.

Community Acceptance – Community acceptance of the selected alternative will be evaluated based on comments received from the public on the draft Decision Document.

3.4.6 Recommended Remedial Alternative

The recommended remedial approach for the Site is *Alternative 3A:* Restricted-Use (*Track 4*) Cleanup because it is: protective of public health and the environment; significantly less disruptive to the community than Alternatives 1 and 2; consistent with current and future land use; and a more cost-effective approach than Alternatives 1 or 2 while fully satisfying the RAOs for the Site. Although Alternative 3A requires a higher capital investment than Alternative 3, it provides greater protection of public health because residual concentrations would be lower, resulting in reduced short-term risk if the cover system fails or is breached. In summary, Alternative 3A involves:

• Excavation and off-site disposal of soil/fill in the areas identified on Figure 9. Post-excavation confirmatory samples would be collected to assure absence of gross impact (elevated PID, visual and/or olfactory evidence of impact), and that residual concentrations of metal COCs fall below commercial SCOs with total PAHs falling below 100 mg/kg consistent with ubiquitous conditions across the site. Excavation would continue as reasonable and warranted to achieve these goals.

• Placement of a vapor barrier (greater than 10-mil) beneath the reinforced concrete floor slab of the apartment building and future buildings to prevent against potential vapor intrusion. Although not required based on current vapor intrusion guidance, this is considered a preventative measure based on elevated PID readings measured in soil/fill and low petroleum VOC levels in one of the monitoring wells. Alternatively, the building may be constructed with a vented crawl space to allow for utility access only (i.e., not for storage or occupancy), in which case vapor barrier would not be necessary. The effectiveness of the vapor barrier needs to be evaluated during the heating season after completion of the construction. Whether a vapor barrier is installed or is not installed, as per the approved Decision Document for the site, either an active SSDS should be installed on any newly constructed buildings on-site or the potential for VI should be evaluated after construction and prior to occupancy and possibly again during the heating season to characterize worst case conditions.

• Placement of a cover system across the entire BCP Site. This will be comprised of a demarcation layer and at least two feet of approved soil cover material in landscaped areas, or impervious materials such as asphalt driveways and parking lots, and concrete building foundations, slabs, or walkways in non-vegetated areas. Approved soil cover material will meet NYSDEC DER-10 standards for restricted-residential sites (i.e., lower of Part 375 public health or groundwater protection values for restricted-residential use sites). Hardscape material outside of the building footprint will be at least 6 inches thick.

• Implementation of an SMP that will include:

o IC/EC Plan describing ECs that: include any physical barrier or method employed to actively or passively contain, stabilize, or monitor contaminants; restrict the movement of contaminants; or eliminate potential exposure pathways to contaminants; and

ICs that include restrictions on groundwater use and Site use for restricted-residential purposes.

• Excavation Work Plan to assure that future intrusive activities and soil/fill handling at the Site are completed in a safe and environmentally responsible manner.

• Site Monitoring Plan that includes provisions for a Site-wide inspection program to assure that the IC/ECs have not been altered and remain effective.

• Environmental Easement filed with Erie County.

Section 4.0 is the Remedial Action Work Plan (RAWP) that summarizes the components and details of the proposed remedial action.

4.0 REMEDIAL ACTION WORK PLAN

4.1 **Purpose and Scope**

This section of the Remedial Action Work Plan (RAWP) describes the excavation and off-site disposal of impacted soil/fill and cover system placement. The primary tasks of the planned remedial work are:

- Testing of the soil/fill to develop a waste profile.
- Excavation of impacted soil/fill across the Site to achieve SSALs.

• Verification sampling on a grid basis to determine residual concentrations and assess the need for additional excavation.

• Off-site transportation and disposal of impacted soil/fill at a permitted solid waste disposal facility. Any additional soil/fill requiring removal to enable a minimum two feet of cover in the "green" areas and allow for hardscape, utilities, or building areas will be subject to off-site transportation and disposal as well.

The RAWP also addresses the following tasks:

- Pre-mobilization
- Health, safety, and community air monitoring procedures

• Dust, storm water, and erosion control measures required for minimizing potential release of soils outside the work zone during construction

- Equipment decontamination requirements
- Remedial action documentation
- Implementation scheduling
- Post-remedial Site Management Plan

4.2 **Pre-Mobilization Tasks**

4.2.1 Public Information and Outreach

It is expected that the NYSDEC will issue a draft Decision Document for NYSDOH review and public comment. A fact sheet announcing the draft Decision Document will be transmitted to those individuals on the Brownfield Site Contact List, including property owners and residents adjacent to the Site; environmental groups; local political representatives; and interested regulatory agencies. Furthermore, a copy of the RAWP will be made available for public review at the NYSDEC Region 9 office and the Niagara Branch of the Buffalo and Erie County Public Library, the designated document repository.

4.2.2 Underground Utilities Location

The remediation contractor will contact underground facilities protection organization (Dig Safely New York, UFPO) to locate utility lines within the work area.

4.2.3 Health and Safety Plan Development

A Health and Safety Plan (HASP) will be prepared and enforced by the remediation contractor in accordance with the requirements of 29 CFR 1910.120. The HASP will cover all on-site remedial activities. Benchmark will be responsible for Site control and for the health and safety of its authorized Site workers. For informational purposes, Benchmark's HASP is provided in Appendix G. The remediation contractor will be required to develop a HASP as or more stringent than Benchmark's HASP.

4.2.4 Waste Disposal Characterization

Benchmark and the remediation contractor will coordinate with the Solid Waste Disposal Facility (SWDF) for disposition of the soil/fill to be removed from the Site. Although 295 Maryland, LLC has no knowledge of any hazardous waste disposal on the Site, the soil/fill must be tested to verify that it does not exceed characteristic hazardous waste thresholds. A composite sample(s) will be prepared from representative areas of soil/fill planned for removal by compositing discrete samples of soil/fill at a frequency agreeable to the SWDF. The composite sample(s) will be tested by the Toxic

Characteristic Leaching Procedure (TCLP) for the full list of regulated toxicity indicator parameters, as well as ignitability, corrosivity, and total PCBs. For the purposes of the discussion below, the assumption has been made that the impacted soil/fill is nonhazardous. If the soil/fill is determined to be characteristically hazardous, the RAWP will be modified.

4.3 Remedial Activities

4.3.1 Mobilization and Site Preparation

The remediation contractor's field operations at the Site will commence with mobilizing equipment and materials to the Site, and erecting safety fencing and other temporary controls as described below.

4.3.2 Temporary Facilities and Controls

Temporary facilities for use during the remedial work may include a construction field trailer and portable toilets. Temporary controls will be employed for protection against off-site migration of soil and safety hazards during construction, including safety fencing, dust suppression, and erosion control as further described below.

4.3.2.1 Access Controls

Temporary safety construction fencing (i.e.,6-foot chain link) will be placed around the perimeter of the work area(s) to distinguish the work zone and discourage trespassing. The fencing will not be removed until the excavation/ backfilling work is complete.

As a requirement of the BCP, a sign will be placed along Maryland Street to identify the property as a BCP Site.

4.3.2.2 Dust Monitoring and Controls

A CAMP will be implemented during Site excavation work. If community air monitoring indicates the need for dust suppression or if dust is visually observed leaving the Site, the remediation contractor will apply a water spray across the excavation and surrounding areas, and on haul roads as necessary to mitigate airborne dust formation and migration. Potable water will be obtained from either a public hydrant or the on-site water

service, if available. Other dust suppression techniques that may be used to supplement the water spray include:

- Hauling materials in properly tarped containers or vehicles
- Restricting vehicle speeds on-site

4.3.2.3 Erosion and Sedimentation Control

Provisions will be made for erosion and sedimentation control at the work perimeter during remediation activities. Erosion and sedimentation controls to be followed during remedial activities include silt fencing, hay baling, mulching, and other measures, as warranted and deemed necessary to mitigate erosion and sedimentation.

4.3.3 Soil/Fill Excavation

Excavation of impacted subsurface soil/fill will proceed methodically across the Site digging progressively from one side of the Site to the other. A track-mounted crawler excavator with a mechanically operated bucket will be used to unearth the soil/fill. Verification samples will be collected to confirm that SSALs have been attained. If active utilities (e.g., electric service) are encountered or anticipated, hand digging will be performed to expose the utility line within the planned excavation horizon (2 feet or deeper if needed) and limit the potential for damage to the utility(s).

Excavated materials will be direct-loaded into dump trucks for off-site disposal at a SWDF. All excavation work will be observed by an experienced Benchmark environmental scientist. If disposal truck scheduling necessitates stockpiling of excavated soil/fill, the stockpiles will be placed on and covered with plastic sheeting during nonworking hours.

4.3.4 Post-Excavation Verification Sampling

Post-excavation verification composite samples will be collected from the side walls and bottom of the excavations. Consistent with the requirements of DER-10 (Ref. 4), the following discrete samples are proposed:

- One sample from the sidewall of each excavation at a frequency of one per every 30 feet along the perimeter.
- One sample for each 900 square feet of excavation bottom.

All samples will be analyzed by a NYSDOH ELAP certified analytical laboratory for TCL SVOCs (i.e., to quantify PAHs) by USEPA Method 8270 and inorganic compounds by Method 6010/7471 for arsenic, barium, cadmium, copper, lead, mercury, silver, and zinc.

Samples will be reported with an equivalent Category B deliverables package to facilitate data evaluation by a third-party validation expert.

Quality assurance (QA) samples will be collected to support the verification sample data evaluation. The QA samples will include a minimum of one matrix spike (MS), one matrix spike duplicate (MSD), and one blind duplicate per 20 verification samples. Dedicated equipment will be used to avoid the need for equipment blanks.

4.3.5 Off-Site Disposal

All sample shipments will be accompanied by a solid waste disposal manifest. Scale receipts will be required to confirm offload at the SWDF and quantify the amount of material removed from the Site.

4.4 Construction of Cover System

4.4.1 Subgrade Preparation

Site grading to design subgrade elevations, and as necessary for underground utility construction, will occur after confirmatory soil samples are received and SSALs are verified. Any excess materials will be disposed off-site at a permitted SWDF. Following sub-grade preparation work, all equipment will be cleaned free of any soil clods, mud, or clinging debris prior to removal from the Site or use in cover placement activities.

4.4.2 Demarcation Layer

A demarcation layer will be placed in designated green space areas following grading of the Site and prior to import of the soil cover system material. Demarcation will be constructed and placed so as to easily identify the existing Site sub-grade from the cover system material, and prevent the potential for inadvertent removal of sub-grade material during potential future Site work. The demarcation material will be comprised of

an orange ³/₄-inch plastic industrial netting material that will be rolled across the sub-grade and overlapped by approximately one foot at the seams.

4.4.3 Cover System Placement

Construction of the cover system will follow re-grading activities and placement of the demarcation layer. The apartment building and other hardscape construction (parking, sidewalk, driveway, etc., minimum 6" thickness) in addition to the 2-foot soil layer across the remainder of the Site will encompass the Track 4 cover system. As indicated in Section 3.0, the apartment building will be furnished with passive vapor intrusion controls in the form of either a poly vapor barrier or a vented crawl space.

In areas that will not be covered with buildings or hardscape, the cover system will consist of a minimum 2-foot layer of imported clean cover soil followed by seeding or mulching around plantings. Cover material shall be compacted to mitigate potential for settlement. Cover material depth will be verified by Benchmark through survey or grade stake level measurements. Depth verification measurements will be included in the Final Engineering Report.

4.5 Import Criteria

4.5.1 General

All materials proposed for import onto the Site must be approved by the NYSDEC. The criteria under which off-site material may be used as cover or backfill are presented below.

• Off-Site Soil: Off-Site soil may be used as backfill provided that it originates from: 1) an NYSDEC-approved borrow site; or 2) a known source having no evidence of disposal or releases of hazardous substances, hazardous, toxic, radioactive wastes, or petroleum. In both instances the imported soil must be tested and demonstrated to meet the criteria identified in Section 3.4.2 in accordance with Appendix 5 of DER-10. In addition, no off-site materials meeting the definition of a solid waste as defined in 6NYCRR, Part 360-1.2 (a) shall be used as backfill.

• Other Off-Site Material: Certain material may be imported as backfill or cover, without chemical testing, provided it contains less than 10% (by weight) material

that would pass through a size 80 sieve: 1) Rock or stone, consisting of virgin material from a permitted mine or quarry; 2) steel slag under BUD#555-9-152; 3) Recycled concrete, brick, or asphalt from a NYSDEC-registered or permitted construction and demolition (C&D) debris processing facility (as specified in Section 360-16.1 of 6NYCRR Part 360) that conforms to Section 304 of the New York State Department of Transportation Standard Specifications Construction and Materials Volume 1 (2002). As stated in Section 360-16.4(b)(2), the facility may only accept recognizable, uncontaminated, non-pulverized C&D debris or C&D debris from other authorized C&D processing facilities. According to Section 360-16.2(c), "uncontaminated" means C&D debris that is not mixed or commingled with other solid waste at the point of generation, processing, or disposal, and that is not contaminated with spills of a petroleum product, hazardous waste, or industrial waste.

4.5.2 Quality Assurance Requirements

All imported soil sources, including general backfill soil and topsoil, will be subject to third-party testing to verify that they meet the QA requirements specified below. The contractor will be required to collect the specified number of samples and submit the samples to an independent, NYSDOH ELAP-certified laboratory for analysis. The NYSDEC will be notified of the sampling and provided an opportunity to observe the sample collection work.

All analyses will be in accordance with USEPA SW-846 methodology. The laboratory data package will be a Category A deliverable; however, the NYSDEC may request, at any time, to upgrade the deliverable to Category B. Each import soil source shall be analyzed for the following parameters as more specifically listed in 6NYCRR Part 375-6:

- VOCs Method 8260
- SVOCs Method 8270
- Organochlorine Pesticides and PCBs Method 8081/8082
- Metals, excluding mercury Method 6010
- Mercury Method 7471
- Cyanide Method 9013

Each import soil source shall be subject to testing in accordance with the following schedule per NYSDEC DER-10 Table 5.4(e)10:

Contaminant:	VOCs	SVOCs, Inorgan	ics & PCBs/Pesticides
Soil Quantity (cubic yards)	Discrete Samples	Composite	Discrete Samples/Composite
0-50	1	1	
50-100	2	1	
100-200	3	1	3-5 discrete samples from
200-300	4	1	different locations in the fill
300-400	4	2	being provided willcomprise a composite
400-500	5	2	sample for analysis
500-800	6	2	sample for analysis
800-1,000	7	2	
1,000	Add an additional 2 VOC a consult with DER	nd 1 composite for each a	dditional 1,000 cubic yards or

Grab samples collected via En-Core[®] sampling technique will be required for VOC analysis. For all other required analyses, a minimum of four grab samples will be collected to form a single composite sample. Approximately equal aliquots of the grab samples will be composited in the field using a stainless steel trowel and bowl. The trowel and bowl shall be decontaminated with a non-phosphate detergent (e.g., Alconox®) and potable water wash solution followed by a distilled water rinse between sampling locations).

Import criteria are restricted-residential SCOs and protection of groundwater quality SCOs or lesser as published in 6NYCRR Part 375-6.8(b).

4.6 Remedial Activities Support Documents

4.6.1 Community Air Monitoring

Real-time community air monitoring will be performed during remedial activities at the Site in accordance with the CAMP (see Appendix G). Particulate monitoring will be performed along the downwind perimeter of the work area during subgrade excavation, backfilling, grading, and soil/fill handling activities in accordance with the CAMP. The CAMP is consistent with the requirements for community air monitoring at remediation sites as established by the NYSDOH and NYSDEC. Accordingly, it follows procedures

and practices outlined under NYSDOH's Generic CAMP (Appendix 1A of DER-10) and Fugitive Dust and Particulate Monitoring (Appendix 1B of DER-10).

4.7 Health and Safety Protocols

Benchmark has prepared a HASP for use by its employees in accordance with 40 CFR 300.150 of the NCP and 29 CFR 1910.120. The HASP, provided as Appendix G, includes the following site-specific information:

- Hazard assessment
- Training requirements
- Definition of exclusion, contaminant reduction, and other work zones
- Monitoring procedures for Site operations
- Safety procedures
- Personal protective clothing and equipment requirements for various field operations
- Disposal and decontamination procedures

The HASP also includes a contingency plan that addresses potential site-specific emergencies and a CAMP that describes required particulate monitoring to protect the neighboring community during intrusive site remediation activities.

Health and safety activities will be monitored throughout the remedial field activities. A member of the field team will be designated to serve as the Site Safety and Health Officer (SSHO) throughout the field program. This person will report directly to the Project Manager and the Corporate Health and Safety Coordinator. The HASP will be subject to revision as necessary, based on new information that is discovered during the remedial activities.

4.8 Citizen Participation Activities

NYSDEC will coordinate and lead community relations throughout the course of the project with support from Benchmark as requested. A Citizen Participation (CP) Plan will be prepared by Benchmark and approved by NYSDEC. A copy of the CP Plan will be placed in the Niagara Branch of the Buffalo and Erie County Public Library, the designated project document repository. The NYSDEC, with input from Benchmark, will issue project fact sheets to keep the public informed of remedial activities.

4.9 Reporting

4.9.1 Remedial Activities Reporting

Benchmark will provide full-time on-site inspection to document all remedial action activities. Monitoring and documentation of the remedial action activities will include: daily reports of activities; community air monitoring results; pre- and post-excavation sampling and analysis; and progress photographs and sketches.

4.9.2 Construction Monitoring

Standard daily reporting procedures will include preparation of an Inspector's Daily Report and, when appropriate, problem identification and corrective measures reports. Appendix H contains sample project documentation forms. Information that may be included on the daily report form includes:

- Processes and locations of construction under way
- Equipment and personnel working in the area, including subcontractors
- Number and type of truckloads of soil/fill removed from the Site
- Approximate sampling locations (sketches) or GPS (Trimble) coordinates and sample designations for pre-excavation characterization and post-excavation verification
- Grid locations and depths being excavated

The completed reports will be available on-site and submitted to the NYSDEC as part of the Final Engineering Report. The NYSDEC will be promptly notified of problems requiring modifications to this RAWP prior to proceeding or completion of the construction item.

Photo documentation of the remedial activities will be prepared by a field representative throughout the duration of the project as necessary to convey typical work activities, changed conditions, and/or special circumstances.

4.10 Final Engineering Report

A Final Engineering Report (FER) will be prepared at the conclusion of remedial activities. The FER will include the following information and documentation, consistent with the NYSDEC's DER-10 Technical Guidance for Site Remediation (Ref. 4):

- Introduction and background
- A Site or area planimetric map showing the parcel(s) remediated, including significant site features
- A Site map showing the lateral limits of any excavations
- Tabular summaries of unit quantities including: volume of soil excavated and disposition of excavated soil
- Planimetric map showing location of all verification and other sampling locations with sample identification labels/codes
- Tabular comparison of verification and other sample analytical results to SCOs. An explanation shall be provided for any results exceeding acceptance criteria
- Documentation on the disposition of impacted soil removed from the Site
- Copies of daily inspection reports and, if applicable, problem identification and corrective measure reports
- Photo documentation of remedial activities
- Text describing the remedial activities performed; a description of any deviations from the RAWP and associated corrective measures taken; and other pertinent information necessary to document that the Site activities were carried out in accordance with this RAWP

In addition, Benchmark will subcontract for third-party data review of postexcavation verification data by a qualified, independent data validation expert. Specifically, a DUSR will be prepared, with appropriate data qualifiers added to the results. The DUSR format will follow the NYSDEC's September 1997 DUSR guidelines and DER-10 guidance (Ref. 4). The DUSR and any necessary qualifications to the data will be appended to the FER.

4.11 Site Management Plan

For any BCP site not cleaned up to NYSDEC Part 375 unrestricted SCOs, preparation of a Site Management Plan (SMP) that describes site-specific IC/ECs is a required component of the final remedy. Therefore, an SMP will be prepared as part of the final remedy for the Site. Consistent with NYSDEC BCP requirements, components of the SMP will include:

• **Engineering and Institutional Controls Plan.** Engineering controls include any physical barrier or method employed to actively or passively contain, stabilize, or monitor contaminants; restrict the movement of contaminants; or

eliminate potential exposure pathways to contaminants. Institutional controls at the Site will include groundwater use restrictions and restrictions for use of the Site (i.e., residential or commercial purposes).

- **Operation and Maintenance Plan** will not be a requirement of the SMP as there are no systems containing mechanical components that will be operated, monitored, and maintained.
- *Excavation Work Plan* to assure that future intrusive activities and soil/fill handling at the Site are completed in a safe and environmentally responsible manner unless the Site has been remediated to unrestricted SCOs.
- *Site Monitoring Plan* that includes: provisions for a groundwater monitoring plan and a Site-wide inspection program to assure that the IC/ECs have not been altered and remain effective.
- *Environmental Easement* filed with Erie County.

4.12 **Project Schedule**

The anticipated project schedule for the major tasks to be performed during implementation of the RAWP is as follows:

- December 2014 Conduct pre-excavation waste profile sampling
- *Late January 2015* Initiate remedial excavation fieldwork
- March-August 2015 Construct building and place cover systems
- May 2015 Submit SMP
- *September 15, 2015* Submit FER

5.0 **REFERENCES**

- 1. Clayton Group Services, Inc. Excerpts of the January 2000 Phase I Environmental Site Assessment and Trench Sampling Report of the Lamar Outdoor Advertising Facility, 295 Maryland Street, Buffalo, New York.
- 2. Benchmark Environmental Engineering & Science, PLLC. Phase I Environmental Site Assessment at 295 Maryland Street & 121-129 West Avenue. 2001.
- 3. Benchmark Environmental Engineering & Science, PLLC. Phase II Environmental Site Investigation Report, 295 Maryland Street, Buffalo, NY. November 2001.
- 4. New York State Department of Environmental Conservation. DER-10/Technical Guidance for Site Investigation and Remediation. May 3, 2010.
- 5. New York State Department of Environmental Conservation. *CP-51/Soil Cleanup Guidance*. October 21, 2010.

TABLES

TABLE 1 2013 PRE-REMEDIAL INVESTIGATION - TEST PIT FIELD OBSERVATIONS

Test Pit	Basement Present	Basement Depth	Concrete Slab Present		Fill		Native Soil	Sample	PID Readings
Number	(Y/N)	(ft)	(Y/N)	Depth	Description	Depth	Description	Depth	PID Readings
TP-1-13	Y	4.5'	N	0-4.5'	Brown, moist, lean clay (low plasticity fines) with some cinders and ash, few metal and wood, stiff	4.5-9'	Reddish brown, moist, lean clay (medium plasticity fines) with few sub-rounded fine gravel, very stiff, gray mottles		0
TP-2-13	Y	5.0'	Y	0-4.0'	Brown and gray, moist, sandy silt (non-plastic fines with some fine to coarse sand) with some fill (brick, concrete, metal pieces, cinders and ash)	4-7.5'	Reddish brown, moist, lean clay (medium plasticity fines) with few sub-rounded fine gravel, very stiff, gray mottles		0
TP-3-13	N	Ν	Ν	0-4'	Brown, moist, lean clay (low plasticity fines) with little fill (cinders, ash, and brick), stiff		Reddish brown, moist, lean clay (medium plasticity fines) with few sub-rounded fine gravel, very stiff, gray mottles		0
TP-4-13	N	Ν	Ν	0-3.5'	Brown, moist, lean clay (low plasticity fines) with few fill (brick, rocks, and metal pieces) 3.		Reddish brown, moist, lean clay (medium plasticity fines) with few sub-rounded fine gravel, very stiff, gray mottles	0-3'	0
TP-5-13	Ν	Ν	Ν	0-3'	Brown, moist, lean clay (low plasticity fines) with few fill (bricks and ash), stiff	3-4'	Reddish brown, moist, lean clay (medium plasticity fines) with few sub-rounded fine gravel, very stiff, gray mottles	0-3'	0
TP-6-13	Ν	N	N	0-5.5'	Brown, moist, lean clay (low plasticity fines) with few fill (brick, concrete and trace ash), stiff	5.5-11'	Reddish brown, moist, lean clay (medium plasticity fines) with few sub-rounded fine gravel, very stiff, gray mottles, moderate odor	7-9'	0-5.5' = 0 5.5-7' = 400 7-9' = 1000 9-11' = 1300
TP-7-13	Ν	N	N	0-4'	Brown, moist, lean clay (low plasticity fines) with few fill (brick and concrete), stiff	3-7'	Reddish brown, moist, lean clay (medium plasticity fines) with few sub-rounded fine gravel, very stiff, gray mottles	0-3'	0
TP-8-13	Ν	Ν	Ν	0-4'	Brown, moist, lean clay (low plasticity fines) with some fill (basement rocks, bricks, and ash), stiff	4-5'	Reddish brown, moist, lean clay (medium plasticity fines) with few sub-rounded fine gravel, very stiff, gray mottles		0
TP-9-13	Ν	N	N	0-4'	Brown, moist, lean clay (low plasticity fines) with few fill (bricks, concrete and trace metal pieces), stiff	4-14'	Reddish brown, moist, lean clay (medium plasticity fines) with few sub-rounded fine gravel, very stiff, gray mottles, moderate odor	9-12'	0-4' = 0 4-6' = 300 6-11' = 400 11-14' = 500
TP-10-13	Ν	Ν	Ν	0-3.5'	Brown, moist, lean clay (low plasticity fines) with some fill (bricks, concrete, metal pieces, wood pieces, and ash), stiff	3.5-5.5'	Reddish brown, moist, lean clay (medium plasticity fines) with few sub-rounded fine gravel, very stiff, gray mottles		0
TP-11-13	N	Ν	Ν	0-4'	Brown, moist, lean clay (low plasticity fines) with some fill (bricks, concrete, metal pieces, wood pieces, cinders and ash), stiff	4-6'	Reddish brown, moist, lean clay (medium plasticity fines) with few sub-rounded fine gravel, very stiff, gray mottles		0
TP-12-13	Ν	Ν	Ν	0-4'	Brown, moist, lean clay (low plasticity fines) with some fill (cinders,ash, bricks, and metal pieces), stiff		Reddish brown, moist, lean clay (medium plasticity fines) with few sub-rounded fine gravel, very stiff, gray mottles		0

TABLE 1 2013 PRE-REMEDIAL INVESTIGATION - TEST PIT FIELD OBSERVATIONS

Test Pit	Basement Present	Basement Depth	Concrete Slab Present		Fill		Native Soil	Sample	PID Readings
Number	(Y/N)	(ft)	(Y/N)	Depth	Description	Depth	Description	Depth	FID Readings
TP-13-13	N	N	N	0-3'	Black and gray, moist, sandy gravel with little cinders and ash, moderate odor, loose	3-9'	Reddish brown, moist, lean clay (medium plasticity fines) with few sub-rounded fine gravel, very stiff, gray mottles, moderate odor from 3 to 7', faint odor from 7 to 9'	8-9'	0-3' = 300 3-7' = 500 7-9' = 25
TP-14-13	Ν	Ν	Ν	0-3'	Brown, moist, lean clay (low plasticity fines) with some fill (bricks, basement rocks, wood pieces, metal pieces), stiff	3-5.5'	Reddish brown, moist, lean clay (medium plasticity fines) with few sub-rounded fine gravel, very stiff, gray mottles		0
TP-15-13	Ν	Ν	Ν	0-4'	Brown, moist, lean clay (low plasticity fines) with some fill (bricks, wood pieces, metal pieces, trace cinders and ash), stiff	4-5'	Reddish brown, moist, lean clay (medium plasticity fines) with few sub-rounded fine gravel, very stiff, gray mottles		0
TP-16-13	Ν	Ν	Ν	0-4'	Brown, moist, lean clay (low plasticity fines) with some fill (bricks, wood pieces, metal pieces, trace cinders and ash), stiff	4-5.5'	Reddish brown, moist, lean clay (medium plasticity fines) with few sub-rounded fine gravel, very stiff, gray mottles		0
TP-17-13	Y	6'	Y	0-6'	Bricks and concrete with some lean clay and trace metal, stiff	6-8'	Reddish brown, moist, lean clay (medium plasticity fines) with few sub-rounded fine gravel, very stiff, gray mottles		0
TP-18-13	Y	6'	Y	0-6'	Brown and black, moist, lean clay (low plasticity fines) with some fill (concrete, bricks, shingles, cinders and ash), stiff	6-8'	Reddish brown, moist, lean clay (medium plasticity fines) with few sub-rounded fine gravel, very stiff, gray mottles		0
TP-19-13	Y	7'	Ν	0-7'	Concrete with some cinders, ash, brick and trace metal pieces	7-8.5'	Reddish brown, moist, lean clay (medium plasticity fines) with few sub-rounded fine gravel, very stiff, gray mottles		0
TP-20-13	Ν	Ν	Ν	0-9+'	Pea stone with little concrete, few lean clay, and trace metal pieces, loose		Not encountered		0
TP-21-13	Y	5.5'	Y	0-5.5'	Brown, moist, lean clay (low plasticity fines) with some fill (concrete, bricks, and trace wood pieces, cinders and ash), stiff	5.5-7'	Reddish brown, moist, lean clay (medium plasticity fines) with few sub-rounded fine gravel, very stiff, gray mottles		0
TP-22-13	Y	5.5'	Y	0-5.5'	Brown, moist, lean clay (low plasticity fines) with some fill (concrete, bricks, and trace metal pieces), stiff	5.5-8'	Reddish brown, moist, lean clay (medium plasticity fines) with few sub-rounded fine gravel, very stiff, gray mottles	6-8'	0
TP-23-13	Ν	N	N	0-1'	Dark brown, moist, lean clay (low plasticity fines) with few fill (bricks and concrete), stiff	1-8'	Reddish brown, moist, lean clay (medium plasticity fines) with few sub-rounded fine gravel, very stiff, gray mottles	0.5-3'	0-1' = 0 1-5' = 1.7 5-8' = 0
TP-24-13	N	Ν	N	0-4'	Brown, moist, lean clay (low plasticity fines) with few fill (bricks, concrete and trace ash), stiff	4-8'	Reddish brown, moist, lean clay (medium plasticity fines) with few sub-rounded fine gravel, very stiff, gray mottles	0.5-4'	0
TP-25-13	Ν	Ν	Ν	0-4'	Brown, moist, lean clay (low plasticity fines) with some fill (bricks, concrete, few cinders and ash), stiff			0.5-4'	0

TABLE 2 2013 PRE-REMEDIAL INVESTIGATION - ANALYTICAL PROGRAM SUMMARY

Alternatives Analysis Report/Remedial Action Work Plan 295 Maryland Street Site

						Analysis	8			
Test Pit Number	Depth Sampled/ Screened (fbgs)	TCL VOCs	TCL BN SVOCs	Select PAHs ¹	PCBs	TAL Metals	Select Metals ²	Pesticides	Herbicides	TCLP VOCs
TP-4-13	0-3'	Х	Х		Х	Х		Х	Х	
TP-5-13	0-3'	Х	Х		Х	Х		Х	Х	
TP-6-13	7-9'	Х	Х							Х
TP-7-13	0-3'			Х	Х		Х			
TP-9-13	9-12'	Х	Х							Х
TP-13-13	8-9'	Х	Х							
TP-22-13	6-8'	Х	Х		Х	Х		Х	Х	
TP-23-13	0.5-3'			Х	Х		Х			
TP-24-13	0.5-4'			Х	Х		Х			
TP-25-13	0.5-4'			Х	Х		Х			

Notes:

1. Includes benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene,

dibenz(a,h)anthracene, and indeno(1,2,3)pyrene.

2. Includes arsenic, barium, cadmium, copper, lead, mercury, silver, and zinc.

TABLE 3

SUMMARY OF SEPTEMBER 2010 GROUNDWATER ELEVATIONS

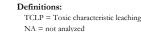
Alternatives Analysis Report/Remedial Action Work Plan 295 Maryland Street Site

			18-Se	ep-10	23-Se	ep-10
Monitoring Location	Grade	Top of PVC Riser Elev.	Water Level from Top of Riser	Groundwater Elevation	Water Level from Top of Riser	Groundwater Elevation
MW-1	492.4	491.78	7.94	483.84	8.09	483.69
MW-2	493.4	495.85	14.78	481.07	15.00	480.85
MW-3	497.2	499.49	15.08	484.41	15.25	484.24
MW-4	497.5	499.83	14.07	485.76	14.46	485.37

Notes:

1. All wells were surveyed on 10/12/10 with site specific datum of 500 feet.

TABLE 4 SUMMARY OF SOIL/FILL ANALYTICAL RESULTS


Alternatives Analysis Report/Remedial Action Work Plan

295 Maryland Street Site

		I	art 375 SC	Os										2001	Test Pit	Investigat	ion									2010 B Prog	0				2013	B Pre-Reme	medial Investigation				
Parameter	USCO	RSCO	RRSCO	csco	ISCO	TP-1 0-0.5'			TP-2 TP-3 0.5-8' 0-0.5		TP-4 0-0.5'	TP-4 0.5-8'	TP-5 0-0.5'	TP-5 0.5-8'	TP-6 0-0.5		TP-7 0-0.5'	TP-7 0.5-5.5'	TP-8 0-0.5'	TP-8 0.5-8'	TP-9 0-0.5'	TP-9 0.5-8'		TP-10 0.5-8'	EM-6 Composite	MW-3 4-6'	SB-5 0-2'	TP-4-13 0-3'					TP-25-13 0.5-4'				
Volatile Organic Compounds (µ,	o/ko)																																		L		<u> </u>
Benzene	60	2900	4800	44,000	89,000	NA		NA	NA		NA		NA		NA		NA		NA	0.8	NA		NA		3						NA				NA	NA	NA
Acetone	50	100,000	100,000	500,000	1,000,000) NA		NA	NA		NA		NA		NA		NA		NA		NA		NA								NA		32		NA	NA	NA
2-butanone	None	None	None 41.000	None 200.000	None 780.000	NA		NA	NA		NA		NA		NA		NA		NA		NA		NA								NA		3 J		NA	NA	NA
Ethylbenzene Bromomethane	1,000 None	30,000 None	41,000 None	390,000 None	780,000 None	NA NA		NA	NA NA		NA NA		NA NA		NA NA		NA NA		NA NA		NA NA		NA NA								NA NA	62 97 J			NA NA	NA NA	NA NA
p/m-xylene	260	100,000	100,000	500,000				NA	NA		NA		NA		NA		NA		NA		NA		NA								NA	92 J			NA	NA	NA
Isopropylbenzene	None	None	None	None	None	NA		NA	NA		NA		NA		NA		NA		NA		NA		NA								NA	46 J	1.3		NA	NA	NA
Methylene chloride	50	5,100	100,000	500,000	1,000,000) NA		NA	NA		NA		NA		NA		NA		NA		NA		NA			7.9	3.5				NA				NA	NA	NA
TCLP Volatile Organic Compounds No Compounds Detected	None	None	None	None	None	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA		NA	NA	NA	NA	NA
Semi-Volatile Organic Compour			rtone	rtone	rtone		1					1					1													1							
2-Methylnaphthalene	None	None	None	None	None																			69								18,000			NA	NA	NA
Acenaphthene	20,000	100,000	100,000	500,000)																		250								3,000	240		NA	NA	NA
Anthracene	100,000	100,000	100,000	500,000 5,600	1,000,000	150		85	220		2,100	110	330		280	98 290	200	290	440 2 000	200 900	2,500	280 760	4,700 17,000	930 2 000	2.700		20 73	80 J 320	58 J 240		62 J 220	960 100 J		 64 J	 52 J		4,000 4,800
Benzo(a)anthracene Benzo(a)pyrene	1,000	1,000	1,000	1,000	1,100	130			750		3,600		1,200		2,100		3,000	290 370	2,000	900	7,100	670	17,000	1,600			59	320	240		220			53 J	52 J 57 J		4,800 3,400
Benzo(b)fluoranthene	1,000	1,000	1,000	5,600	11,000				1,100		5,100		1,800		3,000	360	3,900	350	3,000	1,300	9,900	1,000	19,000	2,600			84	350	270		250	54 J		65 J	77 J		4,300
Benzo(g,h,i)perylene	100,000	100,000	100,000	500,000	, ,) (330		1,400		770		1,800		2,700	720	1,300	470	3,300	260	5,700	680			47	180	170						NA	NA	NA
Benzo(k)fluoranthene Biohoayl	800 None	1,000	3,900	56,000	110,000				410		1,900		540		900	140	1,200		1,100	540	3,800	330	8,100	980			31	180	130		120	2,600		66 J	40 J NA	 NA	2,000 NA
Biphenyl Bis-2-ethylhexyl phthalate	None None	None None	None None	None None	None												250	 970									120					2,000			NA	NA	NA
Butyl benzyl phthalate	None	None	None	None	None												500																		NA	NA	NA
Carbazole	None	None	None	None	None								150									160		400				43 J				120 J			NA	NA	NA
Chrysene	1,000	1,000	3,900	56,000	110,000	120		75	710		4,100	98	1,100		1,600	240	1,700	420	1,700	830	7,400	660	14,000	1,700	2,800		77	330	210		240	110			60 J		4,200 560
Dibenzo (a,h) anthracene Dibenzofuran	330 7,000	330 14,000	330 59,000	560 None	1,100 None										420		610							230				50 J	55 J			1,400			 NA	 NA	560 NA
Di-n-octyl phthalate	None	None	None	None	None				73															130											NA	NA	NA
Fluoranthene	100,000	100,000	100,000	500,000	1,000,000) 230			1,700		13,000	240	2,500		2,200	570	1,400	320	3,600	2,400	19,000	1,600	38,000	4,800			150	640	280	37 J		700		120	NA	NA	NA
Fluorene	30,000	100,000	100,000	500,000	1,000,000	(610		72		61					61		86	1,200	250								2,400	130 J		NA	NA	NA
Indeno(1,2,3-cd)pyrene Naphthalene	500 12,000	500 100,000	500 100,000	5,600 500,000	11,000				390		1,700		830		1,800		3,000	410	1,300	550	4,300	290	7,000	150			43	190	180		130 J				42 J NA	 NA	1,900 NA
Phenanthrene	100,000	100,000	100,000	500,000	, ,) 190		79	980	63	10,000	160	1,500		1,200	510	740	250	2,200	1,300	13,000	1,200	25,000	4,000			100	310	220			4,800		78]	NA	NA	NA
Pyrene	100,000	100,000	100,000	500,000	,,	230		130	1,600	110	10,000	190	3,600		6,400	530	5,500	1,900	4,800	2,200	18,000	1,500	35,000	4,100			120	530	260			580		100 J	NA	NA	NA
DCD ((1))				TO	TAL PAHs	s 800		369	0 7,330	173	45,410	558	12,942		21,361	2,517	24,250	4,710	19,840	9,251	78,000	7,036	149,700	19,830	5,500		654	2,820	2,053		1,222	12,004	370	426	328		25,160
PCBs (µg/kg) Total PCBs	100	1,000	1,000	1,000	25,000	1	1 T	1		42	12	1	48	1	61		57		91		211		765		- 1		l 1	- I	-	NA	I	NA	NA	l			
PCB 1254	None	None	None	None	None					42	12		48		61		57		91		211		765							NA		NA	NA				
Pesticides (ug/kg)								•		-							•																				
4,4'-DDE	3.3	1800	8900	62,000	120,000				NA NA		NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA		4.1	4.66		NA	NA	NA	NA		NA	NA	NA
4,4'-DDT	3.3	1700	7900	47,000	94,000	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		4			NA	NA	NA	NA		NA	NA	NA
Inorganic Compounds (mg/kg) Aluminum	None	None	None	None	None	6,820	9,980	7 760	8,260 7,980	11.000	8,930	7,710	8,450	8,870	5,690	11,100	4,470	4,410	4,490	5,710	6,720	8,240	10,800	7,270	NA	11,600	13,800	8,700	10,000	NA	NA	NA	NA	8,000	NA	NA	NA
Antimony	None	None	None	None	None							8.11					7.18		7.83			8.45			NA					NA	NA	NA	NA		NA	NA	NA
Arsenic	13	16	16	16	16	2.9	3.5		2.8 7.2		16	2.4	23		4.2		3.1		4.7		4.1		1.1	3.2	NA	4.5	6.4	7	3.9	5	NA	NA	NA	3.5	2.8	4.4	3.4
Barium	350	350	400	400	10,000	97			67.4 218		327	80	516	78.2	213		61.8		98.8	192	143	150	140	73.5	NA	136	133	140	100	110	NA	NA	NA	72	78	72	69 NIA
Beryllium Cadmium	2.5	14 2.5	72 4	590 9	2,700	0.486	0.539 0.608		0.477 0.530		0.596		0.601	0.506	0.603		0.543 0.872		0.493 0.651	0.478	0.778 2.91	0.508		0.467 0.697	NA NA	0.562	0.649 0.621	0.44	0.5	NA 0.83	NA NA	NA NA	NA NA	0.36 J 0.72 J	NA 0.63	NA 0.6	NA 1.1
Calcium	None	None	None	None	None	43,100		35,900 (179,000					65,400	NA	55,100		40,000	9,000	NA	NA	NA	NA	67,000	NA	NA	NA
Chromium	30	36	180	1,500	6,800	-	11.5	9.08	10.5 65.4			11.3	71.6	11.8	17.2		11	10.7	13.6	13.8	30	18.9	18	11	NA	14.3	19.2	20	15	NA	NA	NA	NA	13	NA	NA	NA
Cobalt	None	None	None	None	None	-		5.61					6.91				1.9		2.9	5.4		6.45		6.09	NA	13	11.8	6	6.7	NA	NA	NA	NA	6.3	NA	NA	NA
Copper Iron	50 None	270 None	270 None	270 None	1,000 None	-		25.7 8.830	18.5 141 14,600 14,50				52.3 15,700	18 15,200			19.9 6,390		23.2 7,620	49.3 14 500	35 17,300	28 19.700	30.7 11,700	22.5 13.000	NA NA	19.4	22.7 23,600	32 16,000	45 17,000	20 NA	NA NA	NA NA	NA NA	19 16,000	12 NA	18 NA	37 NA
Lead	63	400	400	1,000	3,900		55.2		34.3 3,610	126	3,270	15,000	8,160	36.3	632	17,200	71.4	9,990 1,420	176	14,500 503	602	344	328	97.6	NA	18,000	85.3	920	130	270	NA	NA	NA	48	17	110	120
Magnesium	None	None	None	None	None			9,630 2		22,900	9,830	20,100	12,000		15,800				13,600	9,960	23,500	16,000	28,500	21,600	NA	20,600	9,340	13,000	4,800	NA	NA	NA	NA	21,000	NA	NA	NA
Manganese	1,600	2,000	2,000	10,000	10,000		510		451 540		413		394	498	655		376	291	375	365	533	474	1,120	386	NA	648	904	340	520	NA	NA	NA	NA	390	NA	NA	NA
Mercury Nickel	0.18	0.81 140	0.81 310	3 310	6	0.31		0.3	1 17.6 17.8	0.3 20.3	0.94 16.2		1 15.5		14.8	0.062	 9.55	10.6	0.11 9.59	0.92 20	0.35	0.25 17.2		15.1	NA NA	0.0218	0.167 21.6	1.3 12	1.1 14	0.7 NA	NA NA	NA NA	NA NA	0.08	 NA	3.7 NA	4 NA
Potassium	None	None	None	None	None	-			1250 1250		1410		1370	1690			9.55 579		726	20 996		17.2		1310	NA	1820		950	960	NA	NA	NA	NA	14	NA	NA	NA
Selenium	3.9	36	180	1,500	6,800																				NA					NA	NA	NA	NA		NA	NA	NA
Silver	2	36	180	1,500	6,800								1.19		31.8		9.39		6.91	1.26	1.4		3.85		NA						NA	NA	NA				
Sodium	None	None	None	None	None	149	159	1080	258 299	172	255	155	224	218	379	210	233	339	315	306	208	170	446	228	NA	260		88 J	140 J	NA	NA	NA	NA	120 J	NA	NA	NA
Thallium Vanadium	None None	None None	None	None None	None	 14.9	19.9	20.7	17.7 19.9	26.2	20.1	17.2	19.1	19.5	12.2	22.6	10.2		8.37	17.1	11.9	18.8	10.3	15.3	NA NA	21.6	28.5	19	21	NA NA	NA NA	NA NA	NA NA	18	NA NA	NA NA	NA NA
Zinc	109	2,200	10,000	10,000	10,000				63.9 342	102	683	75.8	784	66.7	141	103	80	546	131	885	850	265	661	170	NA	66.5	135	210	140	99	NA	NA	NA	94	71	84	87
			<u> </u>				_																							•		•	•	•			

= Exceeds the Unrestricted SCO (USCO) = Exceeds the Residential SCO (RSCO) = Exceeds the Restricted Residential SCO (RRSCO)

= Exceeds the Commercial SCO (CSCO) = Exceeds the Industrial SCO (ISCO)

Semi-volatile Organic Compounds highlighted in blue are also categorized as Polyaromatic Hydrocarbons (PAHs). A total PAH concentration of 500 ppm was used to delineate the Track 4 cleanup extents in lieu of individual Industrial Restricted SCOs as specified in the CP-51 policy.

TCLP = Toxic characteristic leaching procedure NA = not analyzed -- = Not Detected

TABLE 5 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

Alternatives Analysis Report/Remedial Action Work Plan 295 Maryland Street Site

MX (9/23/10) (L) 	(3/1/11)	MV (9/23/10)		MV	V-3	MV	W-4	Blind Dup ³	GWQS/GV ²
(L) ND 		(9/23/10)							
ND 			$(3/1/11)^4$	(9/23/10)	(3/1/11)	(9/23/10)	$(3/1/11)^4$	(3/1/11)	
ND 			(-, ,)	<u> </u>	(,	(,		(,	
	ND	ND	19	ND	ND	ND	ND	ND	5
-	ND		1.2		ND		ND	ND	5
5	ND	ND	ND	ND	ND	ND	ND	ND	50
ND	ND	38	20	ND	ND	ND	ND	ND	1
2	ND	4.2	ND	5.4	ND	2.8	ND	ND	7
ND	ND	39	46	ND	ND	ND	ND	ND	5
ND	ND	ND	4.6	ND	ND	ND	ND	ND	5
	ND	ND	43	ND	ND	ND	ND	ND	5
ND	ND	ND	2.3	ND	ND	ND	ND	ND	10
	ND		35	ND	ND	ND	ND	ND	5
ND	ND	18	14	ND	ND	ND	ND	ND	5
ND	ND	97	78	ND	ND	ND	ND	ND	5
s (ug/L)									
ND		1.3		ND		ND			5
						-			
									0.002
									50
									50
									50
									10
									50
									50
ND		ND		0.23	0.04 I	0.25	0.036 I	0.022 I	0.3
								J	0.2
						-			0.01
									0.01
									0.004
							J	J	
							3		
									5
							5		0.05
					j				0.03
									0.04
									35
0.007		0.070		v.2	1,15	0.10	0.0215	1,15	55
0.0542		0.332		0.0985		0.0687			1
									0.3
									0.3
									20
	2 ND ND ND	2 ND ND ND	2 ND 4.2 ND ND ND 39 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 2.8 ND 0.35 0.51 0.71 0.51 0.71 0.551 0.71 0.51 0.71 0.65 ND 2.8 ND 0.47 ND 2.1 ND 0.42 0.42 ND ND 0.42 ND ND ND ND ND ND ND ND <td>2 ND 4.2 ND ND ND ND ND 46 ND ND ND ND 46 ND ND ND 43 ND ND ND 2.3 ND 35 ND ND 18 14 ND ND 97 78 s (ug/L) 1.3 ND 2.8 ND 0.35 ND 0.51 0.65 ND 0.47 ND ND 0.58 ND ND 0.58 ND ND ND ND ND ND ND ND ND ND</td> <td>2 ND 4.2 ND 5.4 ND ND ND ND ND ND ND ND ND ND 4.6 ND ND ND A3 ND ND ND ND 2.3 ND ND 35 ND ND ND 18 14 ND ND ND 97 78 ND S (ug/L) 1.3 ND ND 2.8 1.1 ND 0.35 ND ND 0.51 0.65 0.58 0.51 0.47 ND ND ND 0.42 ND ND ND 0.42 ND ND ND ND ND ND </td> <td>2 ND 4.2 ND 5.4 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 2.3 ND ND ND ND 18 14 ND ND ND ND 18 14 ND ND ND ND 97 78 ND ND ND 1.3 ND ND 2.8 1.1 ND 0.35 ND ND 0.51 0.65 0.58 ND 0.47 ND ND ND 0.42 ND ND ND ND</td> <td>2 ND 4.2 ND 5.4 ND 2.8 ND ND ND 39 46 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 2.3 ND ND ND ND ND ND 18 14 ND ND ND ND ND ND 13 ND ND ND ND ND 2.8 1.1 ND ND ND 0.35 ND ND ND ND ND ND 0.47 ND ND ND ND ND ND 0.42 ND ND ND ND</td> <td>2 ND 4.2 ND 5.4 ND 2.8 ND ND ND ND ND ND ND ND ND ND ND ND ND A6 ND ND ND ND - ND ND H4 ND ND ND ND ND 35 ND ND ND ND ND 35 ND ND ND ND ND ND 35 ND ND ND ND ND ND 35 ND ND ND ND ND 1.3 ND ND ND ND ND ND 0.35 ND ND ND 0.017 0.58 0.72 0.058 ND <t< td=""><td>2 ND 4.2 ND 5.4 ND 2.8 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND - ND ND A43 ND ND ND ND ND ND ND ND A43 ND ND ND ND ND ND ND ND A43 ND ND ND ND ND ND ND ND A43 ND ND ND ND ND ND ND ND A43 ND - - - - - - - ND -</td></t<></td>	2 ND 4.2 ND ND ND ND ND 46 ND ND ND ND 46 ND ND ND 43 ND ND ND 2.3 ND 35 ND ND 18 14 ND ND 97 78 s (ug/L) 1.3 ND 2.8 ND 0.35 ND 0.51 0.65 ND 0.47 ND ND 0.58 ND ND 0.58 ND ND ND ND ND ND ND ND ND ND	2 ND 4.2 ND 5.4 ND ND ND ND ND ND ND ND ND ND 4.6 ND ND ND A3 ND ND ND ND 2.3 ND ND 35 ND ND ND 18 14 ND ND ND 97 78 ND S (ug/L) 1.3 ND ND 2.8 1.1 ND 0.35 ND ND 0.51 0.65 0.58 0.51 0.47 ND ND ND 0.42 ND ND ND 0.42 ND ND ND ND ND ND	2 ND 4.2 ND 5.4 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 2.3 ND ND ND ND 18 14 ND ND ND ND 18 14 ND ND ND ND 97 78 ND ND ND 1.3 ND ND 2.8 1.1 ND 0.35 ND ND 0.51 0.65 0.58 ND 0.47 ND ND ND 0.42 ND ND ND ND	2 ND 4.2 ND 5.4 ND 2.8 ND ND ND 39 46 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 2.3 ND ND ND ND ND ND 18 14 ND ND ND ND ND ND 13 ND ND ND ND ND 2.8 1.1 ND ND ND 0.35 ND ND ND ND ND ND 0.47 ND ND ND ND ND ND 0.42 ND ND ND ND	2 ND 4.2 ND 5.4 ND 2.8 ND ND ND ND ND ND ND ND ND ND ND ND ND A6 ND ND ND ND - ND ND H4 ND ND ND ND ND 35 ND ND ND ND ND 35 ND ND ND ND ND ND 35 ND ND ND ND ND ND 35 ND ND ND ND ND 1.3 ND ND ND ND ND ND 0.35 ND ND ND 0.017 0.58 0.72 0.058 ND <t< td=""><td>2 ND 4.2 ND 5.4 ND 2.8 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND - ND ND A43 ND ND ND ND ND ND ND ND A43 ND ND ND ND ND ND ND ND A43 ND ND ND ND ND ND ND ND A43 ND ND ND ND ND ND ND ND A43 ND - - - - - - - ND -</td></t<>	2 ND 4.2 ND 5.4 ND 2.8 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND - ND ND A43 ND ND ND ND ND ND ND ND A43 ND ND ND ND ND ND ND ND A43 ND ND ND ND ND ND ND ND A43 ND ND ND ND ND ND ND ND A43 ND - - - - - - - ND -

Notes:

1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.

2. NYSDEC Class "GA" Groundwater Quality Standards/Guidance Values (GWQS/GV), 6 NYCRR Part 703.

3. Blind Duplicate collected at monitoring well MW-3.

4. MS/MSD collected at monitoring wells MW-2 and MW-4.

Bold

Exceeds the NYSDEC TOGS 1.1.1 Groundwater Quality Standard or Guidance Value

Definitions:

N/A = Not Available

ND = Not Detected

J = Result estimated below the quantitation limit. "--" = Not analyzed or no GWQS/GV

TABLE 6 SUMMARY OF SITE SPECIFIC STANDARDS, CRITERIA AND GUIDANCE (SCGs)

SCGs	Applicability to Site
6 NYCRR Part 371 - Identification and Listing of Hazardous Wastes	YES
DER 10/Technical Guidance for Site Investigation and Remediation (May 3, 2010)	YES
CP-51/Soil Cleanup Guidance (October 21, 2010) NYSDEC Policy	YES
DER 2/Making Changes to Selected Remedies April 1, 2008	Potentially applicable
6 NYCRR Part 375 - Environmental Remediation Programs (December 2006)	YES
6 NYCRR Parts 700-706 - Water Quality Standards	YES
6 NYCRR Part 182 - Endangered & Threatened Species of Fish & Wildlife	Not Applicable as no endangered or threatened species of fish or wildlife
6 NYCRR Part 608 - Use and Protection of Waters	YES
6 NYCRR Part 661 - Tidal Wetlands - Land Use Regulations	Not Applicable, not in tidal zone.
6 NYCRR Part 663 - Freshwater Wetlands Maps and Classification	Not Applicable, wetlands are not within 1/2 mile of site.
6 NYCRR Part 257 - Air Quality Standards	Potentially applicable
10 NYCRR Part 5 of the State Sanitary Code - Drinking Water Supplies (May 1998)	Not applicable
29 CFR Part 1910.120 - Hazardous Waste Operations and Emergency Response	Potentially applicable
6 NYCRR Part 175 - Special Licenses and PermitsDefinitions and Uniform Procedures	Potentially applicable
SPOTS #14 - Site Assessments at Bulk Storage Facilities (August 1994)	YES
TOGS 1.1.1 - Ambient Water Quality Standards & Guidance Values and Groundwater Effluent	YES
Limitations Fish and Wildlife Impact Analysis for Inactive Hazardous Waste Sites (October 1994)	Not applicable, no receptors or nearby fish or wildlife.
Technical Guidance for Screening Contaminated Sediments (January 1999)	Not applicable, no sediment receptors.
Niagara River Biota Contamination Project: Fish Flesh Criteria for Piscivorus Wildlife (July 1987)	Not applicable, no receptors or nearby fish or wildlife.
Wildlife Toxicity Assessment for Cadmium in Soils (May 1999)	Not applicable, no receptors or nearby wildlife.
Air Guide 1 - Guidelines for the Control of Toxic Ambient Air Contaminants	Potentially applicable
The 10 ppt Health Advisory Guideline for 2,3,7,8-TCDD in Sportfish Flesh	Not applicable, no receptors or nearby fishing zones.
The 1 ppm Health Advisory Guideline for Cadmium in Sportfish Flesh	Not applicable, no receptors or nearby fishing zones.
Criteria for the Development of Health Advisories for Sportfish Consumption	Not applicable, no receptors or nearby fishing zones.
NYSDOH Indoor Air Sampling & Analysis Guidance (August 8, 2001 or subsequent update)	Not applicable
NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York (Final October 2006)	Not applicable
6 NYCRR Part 376 - Land Disposal Restrictions	YES
19 NYCRR Part 600 - Waterfront Revitalization and Coastal Resources	Not applicable, not on waterfront or coast.
TAGM 4051 - Early Design Strategy (August 1993)	Not applicable
CP-43 - Groundwater Monitoring Well Decommissioning Policy (November 2009)	YES
Freshwater Wetlands Regulations - Guidelines on Compensatory Mitigation (October 1993)	Not Applicable, wetlands are not within 1/2 mile of site.
USEPA Office of Solid Waste and Emergency Response Directive 9355.047FS Presumptive Remedies: Policy and Procedures (September 1993)	Not applicable
USEPA Office of Solid Waste and Emergency Response Directive 9355.048FS Presumptive Remedies: Site Characterization and Technology Selection for CERCLA sites with Volatile Organic Compounds in Soils (September 1993)	Not applicable
USEPA Office of Solid Waste and Emergency Response Directive 9355.049FS Presumptive Remedy for CERCLA Municipal Landfills (September 1993)	Not applicable, not a municipal landill.

TABLE 6 SUMMARY OF SITE SPECIFIC STANDARDS, CRITERIA AND GUIDANCE (SCGs)

SCGs	Applicability to Site
DER-15 - Presumptive/Proven Remedial Technologies (February 2007)	YES
6 NYCRR Part 612 - Registration of Petroleum Storage Facilities (February 1992)	Not applicable
6 NYCRR Part 613 - Handling and Storage of Petroleum (February 1992)	Not applicable
6 NYCRR Part 614 - Standards for New and Substantially Modified Petroleum Storage Tanks (February 1992)	Not applicable
6 NYCRR Subpart 374-2 - Standards for the Management of Used Oil (November 1998)	Not applicable
40 CFR Part 280 - Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks	Not applicable
Spill Response Guidance Manual	Not applicable
Permanent Closure of Petroleum Storage Tanks (July 1988)	Not applicable
NYSDOH Environmental Health Manual CSFP-530 - "Individual Water Supplies - Activated Carbon Treatment Systems"	Not applicable
40 CFR Part 144 - Underground Injection Control Program	Not applicable
10 NYCRR Part 67 - Lead	Not applicable
12 NYCRR Part 56 - Industrial Code Rule 56 (Asbestos)	Not applicable
6 NYCRR Part 372 - Hazardous Waste Manifest System and Related Standards for Generators, Transporters and Facilities (November 1998)	Potentially applicable
6 NYCRR Subpart 373-4 - Facility Standards for the Collection of Household Hazardous Waste and Hazardous Waste from Conditionally Exempt Small Quantity Generators	Potentially applicable
6 NYCRR Subpart 374-1 - Standards for the Management of Specific Hazardous Wastes and Specific Types of Hazardous Waste Management Facilities (November 1998)	Potentially applicable
6 NYCRR Subpart 374-3 - Standards for Universal Waste (November 1998)	Potentially applicable
6 NYCRR Part 376 - Land Disposal Restrictions	Potentially applicable
19 NYCRR Part 600 - Waterfront Revitalization and Coastal Resources	Not applicable
6 NYCRR Part 750 through 758 - Implementation of NPDES Program in NYS	Not applicable
TAGM 4013 - Emergency Hazardous Waste Drum Removal/ Surficial Cleanup Procedures (March 1996)	Not applicable
TAGM 4059 - Making Changes To Selected Remedies (May 1998)	Potentially applicable
Citizen Participation in New York's Hazardous Waste Site Remediation Program: A Guidebook (June 1998)	YES
TOGS 1.3.8 - New Discharges to Publicly Owned Treatment Works	Not applicable
TOGS 2.1.2 - Underground Injection/Recirculation (UIR) at Groundwater Remediation Sites	Not applicable
State Coastal Management Policies	Not applicable
OSWER Directive 9200.4-17 - Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites (November 1997)	Potentially applicable
NYSDOH Environmental Health Manual CSFP-530 - "Individual Water Supplies - Activated Carbon Treatment Systems"	Not applicable

TABLE 7 COST ESTIMATE FOR UNRESTRICTED USE (TRACK 1) ALTERNATIVE 1

Item	Quantity	Units		Unit Cost		Total Cost
Impacted Soil/Fill Removal						
Soil/Fill Excavation & Hauling	10900	CY	\$	22.00	\$	239,800
Disposal at TSDF (1.6 tons per CY)	17440	TON	\$	30.00	ջ Տ	523,200
Waste Characterization Analytical	10	EA	\$	800.00	\$ \$	8,000
Post-Excavation Confirmatory Sampling	100	EA	\$	400.00	\$ \$	40,000
Subtotal:	100		Ŷ	100.00	\$	811,000
Packfill Eugenetics with Assessed Import Material						
Backfill Excavation with Approved Import Material Haul, Place & Compact	8175	CY	\$	15.00	\$	122,625
Backfill Characterization and Sampling	10	EA	\$	750.00	ې \$	7,500
Subtotal:	10	15/1	Ŷ	750.00		130,125
Excavation Water Handling and Treatment						
Frac tanks, Filtration and GAC System, GAC Changeout	1	LS	\$	20,000.00	\$	20,000
Temporary Discharge Application Permit, Addt. Fee	1	LS	\$	4,000.00	\$	4,000
Excavation Water Analytical Sampling	3	EA	\$	600.00	\$	1,800
Subtotal:					\$	25,800
Subtotal Capital Cost					\$	966,925
Contractor Mobilization/Demobilization (5%)					\$	48,346
Health and Safety (2%)					\$	19,339
Engineering/Contingency (35%)					\$	338,424
Total Cost					\$	1,373,034

TABLE 8 COST ESTIMATE FOR RESTRICTED-RESIDENTIAL USE (TRACK 2) ALTERNATIVE 2

Item	Quantity	Units		Unit Cost		Total Cost
Impacted Soil/Fill Removal						
Soil/Fill Excavation & Hauling	7400	CY	\$	22.00	\$	162,800
Disposal at TSDF (1.6 tons per CY)	11840	TON	\$	30.00	۹ \$	355,200
Waste Characterization Analytical	8	EA	\$ \$	800.00	։ Տ	555,200 6,400
Post-Excavation Confirmatory Sampling	0 100	EA	ء ۲	400.00	۹ \$	40,000
Subtotal:	100	ĽA	ې	400.00	Գ	564,400
Backfill Excavation with Approved Import Material						
Haul, Place & Compact	5550	CY	\$	15.00	\$	83,25
Backfill Characterization and Sampling	8	EA	\$	750.00	\$	6,000
Subtotal:	0		4	750.00	\$	89,250
Excavation Water Handling and Treatment						
Frac tanks, Filtration and GAC System, GAC Changeout	1	LS	\$	20,000.00	\$	20,000
Temporary Discharge Application Permit, Addt. Fee	1	LS	\$	4,000.00	\$	4,000
Excavation Water Analytical Sampling	3	EA	\$	600.00	\$	1,800
Subtotal:					\$	25,800
Subtotal Capital Cost					\$	679,450
Contractor Mobilization/Demobilization (5%)					\$	33,97
Health and Safety (2%)					\$	13,58
Engineering/Contingency (35%)					\$	237,808
Total Capital Cost			_		\$	964,819
Institutional Controls						
Environmental Easement	1	LS	\$	15,000.00	\$	15,000
Site Management Plan	1	LS	\$	20,000.00	\$	20,000
Subtotal:					\$	35,000
Annual Operation Maintenance & Monitoring (OM&M):						
Annual Certification	1	Yr	\$	2,500.00	\$	2,50
Fotal Annual OM&M Cost					\$	2,500
Annual Certification OM&M Present Worth (PW):						
Number of Years (n):						
Interest Rate (I):						39
p/A value:						19
Annual Certification OM&M Present Worth (PW):					\$	49,00
Total OM&M Present Worth (PW):					\$	51,50
Fotal Cost					\$	1,052,000

TABLE 9 COST ESTIMATE FOR RESTRICTED-RESIDENTIAL USE (TRACK 4) ALTERNATIVE 3

Alternatives Analysis Report/Remedial Action Work Plan 295 Maryland Street Site

				Cost		Total Cost
Impacted Soil/Fill Removal						
Soil/Fill Excavation & Hauling	2060	CY	\$	22.00	\$	45,320
0	3296	TON	\$	30.00	ې \$	43,320 98,880
Disposal at TSDF (1.6 tons per CY)	8		ء ج	800.00	۹ \$	
Waste Characterization Analytical		EA	5 5	400.00	ې \$	6,400
Post-Excavation Confirmatory Sampling Subtotal:	30	EA	\$	400.00	৯ \$	12,000
Subtotal:					Þ	162,600
Backfill Excavation with Approved Import Material ¹						
Haul, Place & Compact	0	CY	\$	15.00	\$	
Backfill Characterization and Sampling	0	EA	\$ \$	750.00	۹ \$	-
Subtotal:	0	EA	ð	750.00	ه \$	-
Subtotal.					φ	-
Excavation Water Handling and Treatment						
Frac tanks, Filtration and GAC System, GAC Changeout	1	LS	\$	20,000.00	\$	20,000
Temporary Discharge Application Permit, Addt. Fee	1	LS	\$	4,000.00	\$	4,000
Excavation Water Analytical Sampling	3	EA	\$	600.00	\$	1,800
Subtotal:		1	Ŷ	000.00	\$	25,800
					*	
Soil Cover System						
Import and Place 2-ft cover in Greenspace areas	2200	CY	\$	20.00	\$	44,000
Cover Soil Characterization and Sampling	4	EA	\$	750.00	\$	3,000
Subtotal:					\$	47,000
Subtotal Capital Cost					\$	235,400
Contractor Mobilization/Demobilization (5%)					\$	11,770
					\$ \$	4,708
Health and Safety (2%) Engineering/Contingency (35%)					۹ \$	4,708
Engineering/Contingency (3576)					å	82,390
Total Capital Cost		-			\$	334,268
Institutional Controls						
Environmental Easement	1	LS	¢	15,000.00	\$	15,000
Site Management Plan	1	LS	\$ \$	20,000.00	۹ \$	20,000
Subtotal:	1	Lo	ş	20,000.00	پ \$	35,000
Subiotal.					Ψ	55,000
Annual Operation Maintenance & Monitoring (OM&M):						
Annual Certification	1	Yr	\$	2,500.00	\$	2,500
Non-Routine Cover Maintenance	1	Yr	\$	500.00	\$	500
Total Annual OM&M Cost					\$	3,000
Annual Certification OM&M Present Worth (PW):						
Number of Years (n):						30
Interest Rate (I):						3%
p/A value:					Ι.	19.6
Annual Certification OM&M Present Worth (PW):					\$	58,800
Total OM & M Brocont Worth (DWA)					¢	61 000
Total OM&M Present Worth (PW):					\$	61,800
Total Cost					\$	432,000

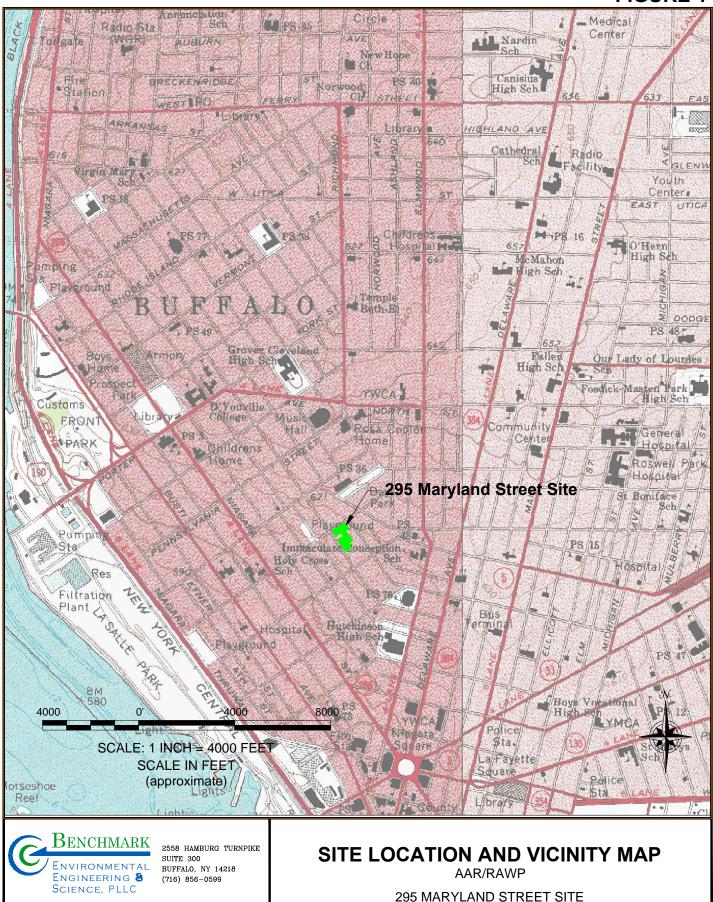
Notes:

1. Backfill not expected to be required based on cut/fill balance for building foundation and utilities

TABLE 10 COST ESTIMATE FOR RESTRICTED-RESIDENTIAL USE (TRACK 4) ALTERNATIVE 3A

Alternatives Analysis Report/Remedial Action Work Plan 295 Maryland Street Site

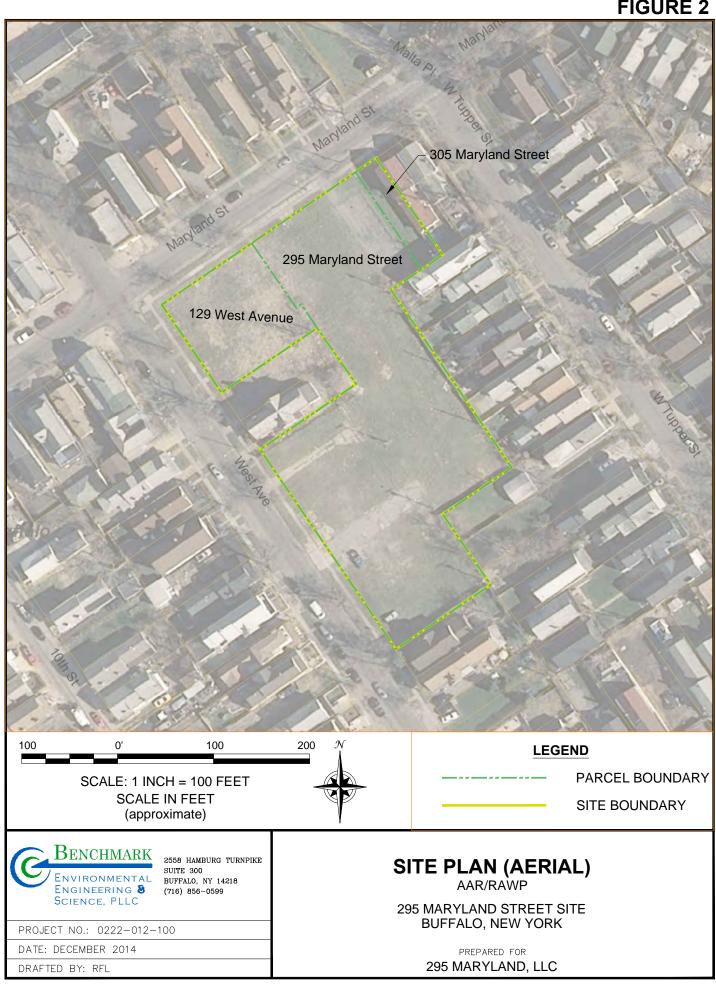
Item	Quantity	Units	Unit Cost		Total Cost	
Impacted Soil/Fill Removal						
Soil/Fill Excavation & Hauling	2200	CY	\$	22.00	\$	48,400
Disposal at TSDF (1.6 tons per CY)	3520	TON	\$	30.00	ې \$	105,600
		EA	ء \$		ء \$,
Waste Characterization Analytical	8		-	800.00		6,400
Post-Excavation Confirmatory Sampling Subtotal:	46	EA	\$	400.00	\$ \$	18,400
Subtotal:					φ	178,800
Backfill Excavation with Approved Import Material ¹	0	CV	¢	20.00	¢	
Haul, Place & Compact	0	CY	\$	20.00	\$	-
Backfill Characterization and Sampling	0	EA	\$	750.00	\$	-
Subtotal:					\$	-
Excavation Water Handling and Treatment						
~	1	LS	¢	20,000.00	¢	20.000
Frac tanks, Filtration and GAC System, GAC Changeout			\$,	\$	20,000
Temporary Discharge Application Permit, Addt. Fee	1	LS	\$	4,000.00	\$	4,000
Excavation Water Analytical Sampling	3	EA	\$	600.00	\$	1,800
Subtotal:					\$	25,800
Soil Cover System						
Import and Place 2-ft cover in Greenspace areas	2200	CY	\$	20.00	\$	44,000
Cover Soil Characterization and Sampling	4	EA	\$ \$	750.00	ې \$	3,000
Subtotal:	4	ĽA	å	750.00	۹ \$	47,000
Subtotal:					φ	47,000
Subtotal Capital Cost					\$	251,600
Contractor Mobilization/Demobilization (5%)					\$	12,580
Health and Safety (2%)					\$	5,032
Engineering/Contingency (35%)					\$	88,060
Englicening/ contingency (5576)					φ	00,000
Total Capital Cost					\$	357,272
Institutional Controls		т.	¢	45,000,02	¢	45.000
Environmental Easement	1	LS	\$	15,000.00	\$	15,000
Site Management Plan	1	LS	\$	20,000.00	\$	20,000
Subtotal:					\$	35,000
Annual Operation Maintenance & Monitoring (OM&M):						
Annual Certification	1	Yr	\$	2,500.00	\$	2,500
Non-Routine Cover Maintenance	1	Yr	\$	500.00	\$	500
Total Annual OM&M Cost	1	11	å	500.00	ջ \$	3,000
Total Allitua Owe W Cost			I		φ	5,000
Annual Certification OM&M Present Worth (PW):						
Number of Years (n):						30
Interest Rate (I):						3%
p/A value:						19.6
Annual Certification OM&M Present Worth (PW):					\$	58,800
Annual Octometation Official Fresche wolth (Fw).					φ	50,000
Total OM&M Present Worth (PW):					\$	61,800
Total Cost					\$	455,000

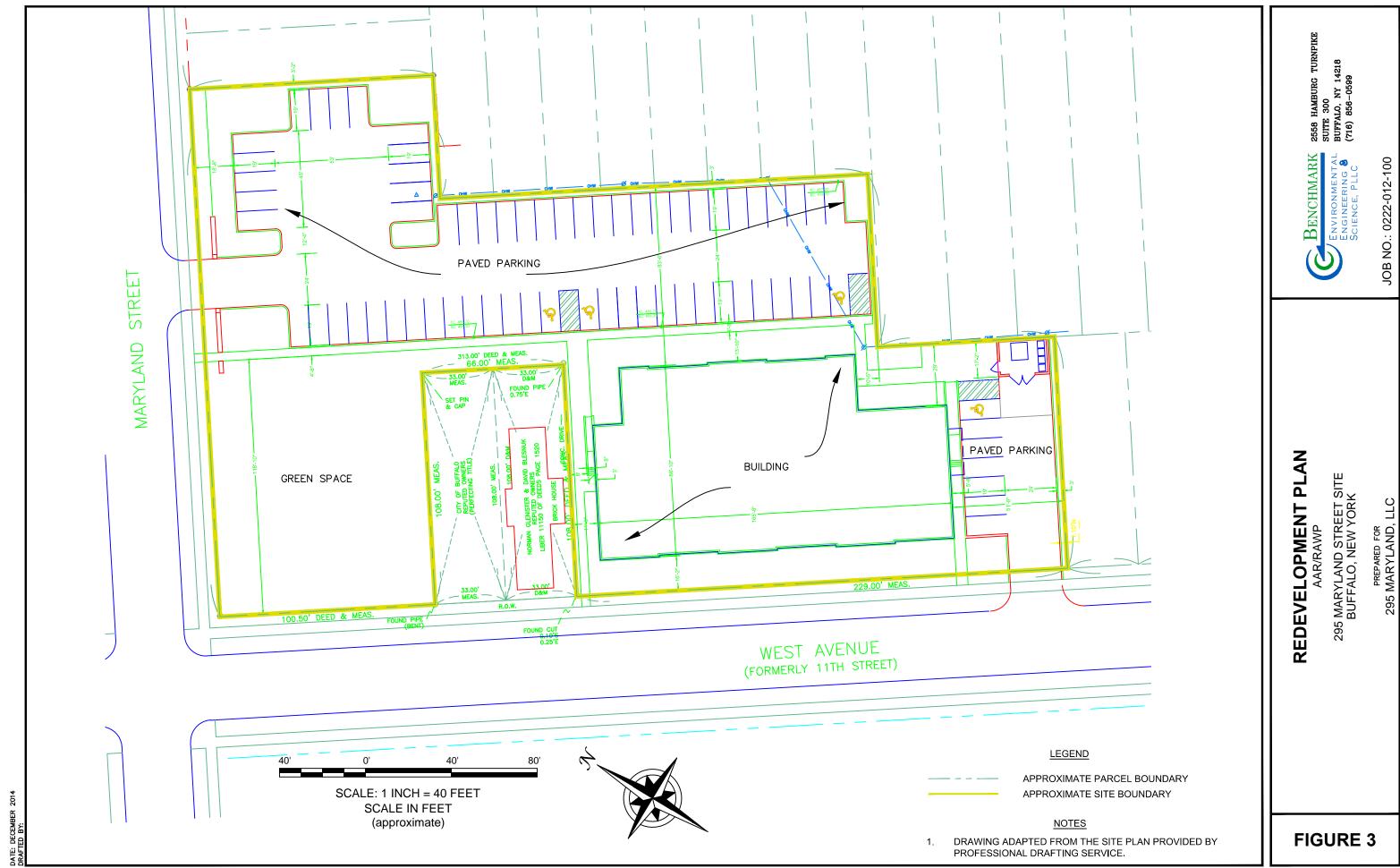

Notes:

1. Backfill not expected to be required based upon cut/fill balance for building foundation and utilities

FIGURES

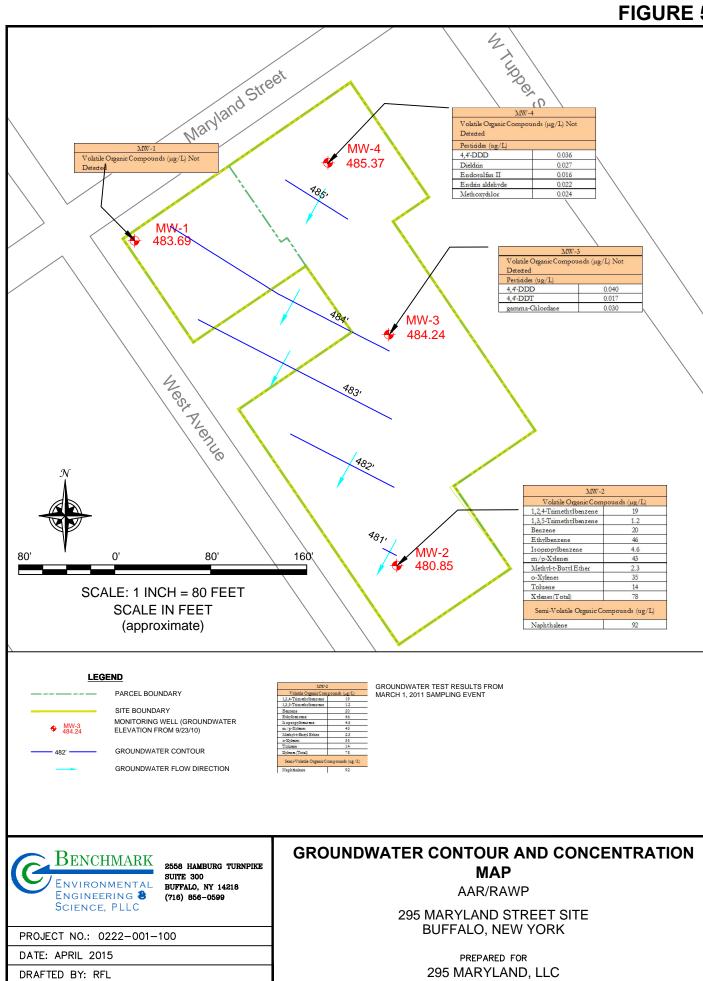
FIGURE 1

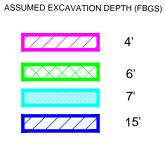


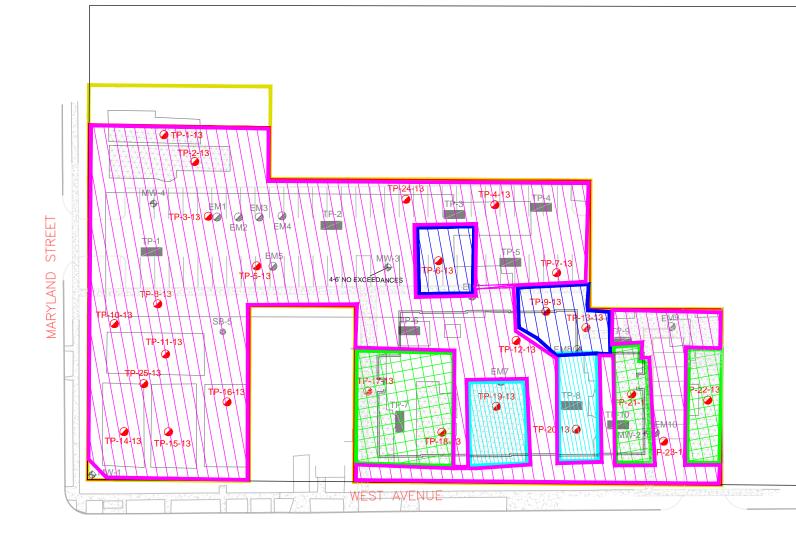

DATE: DECEMBER 2014

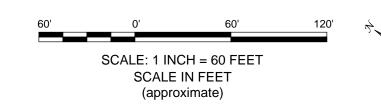
DRAFTED BY: RFL

BUFFALO, NEW YORK

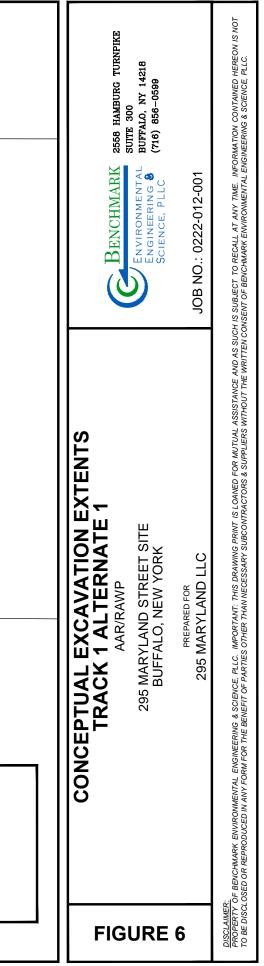

FIGURE 2

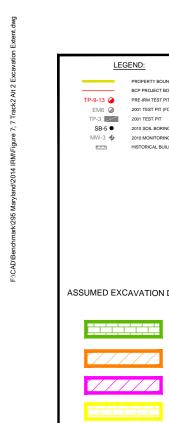


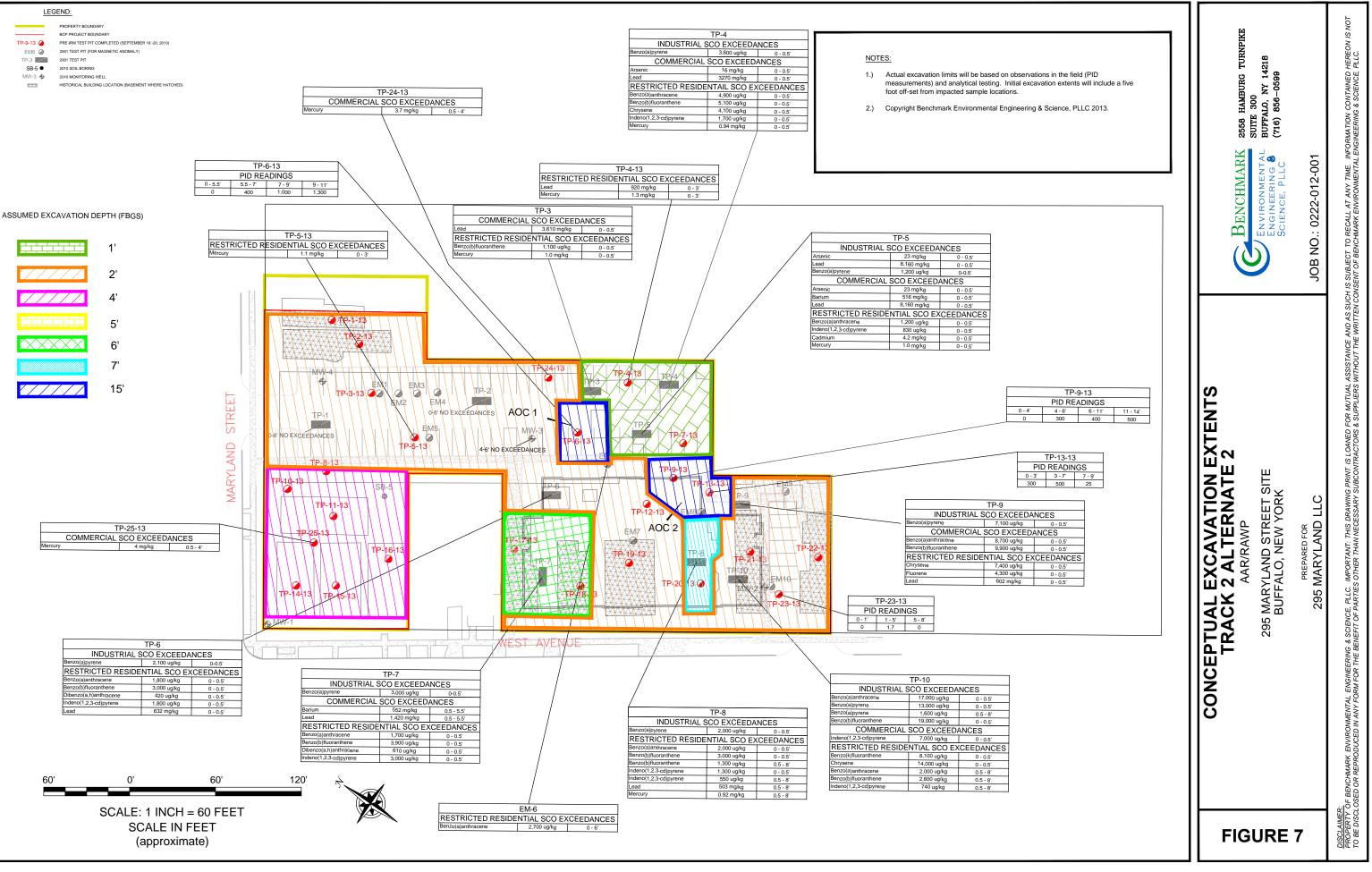


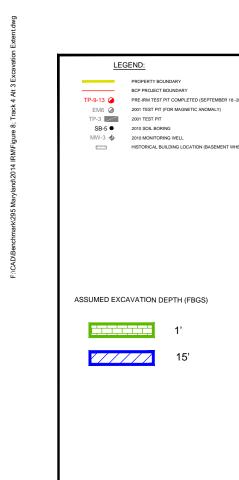


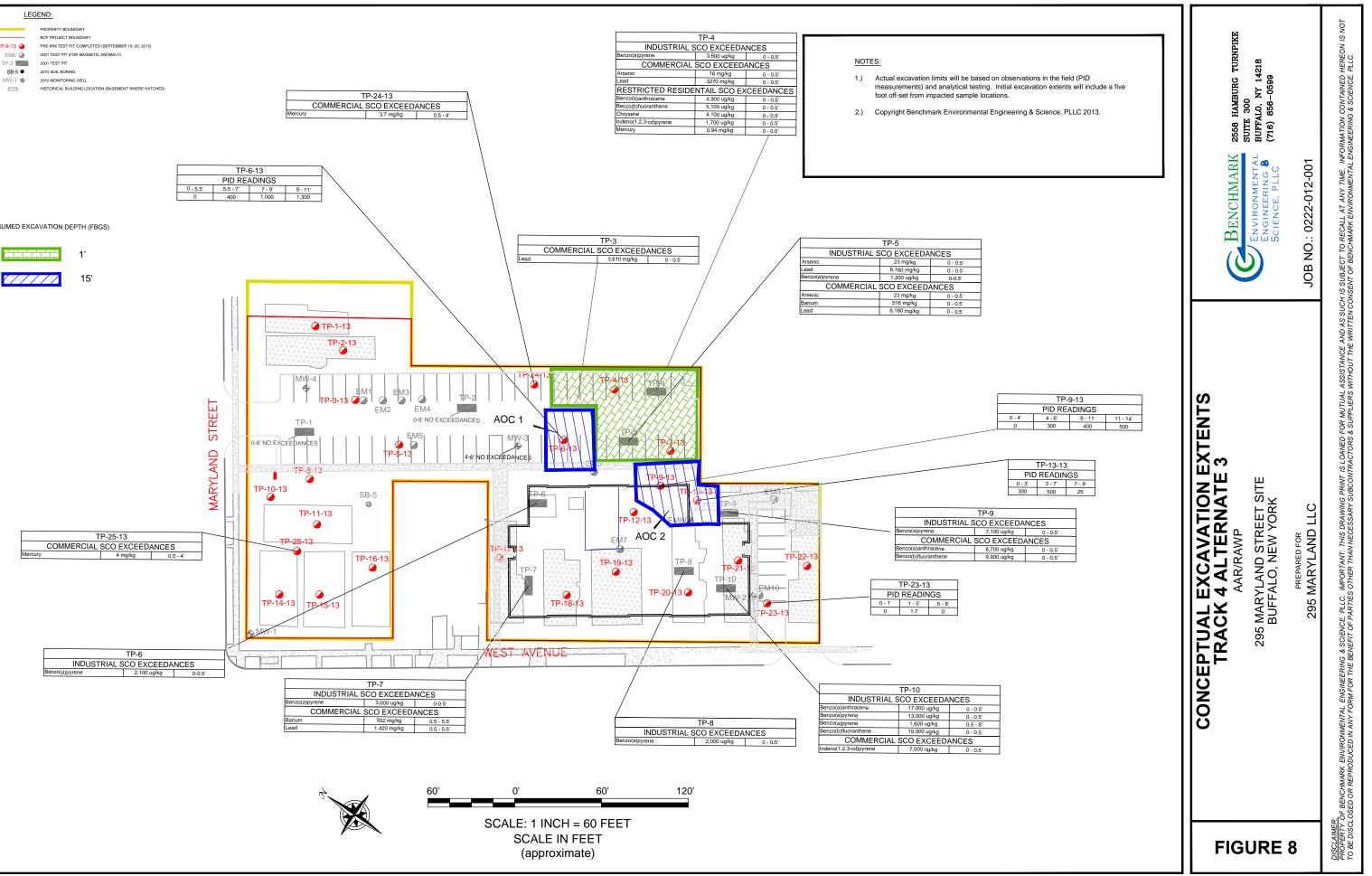
LEGEND: PROPERTY BOUNDARY BCP PROJECT BOUNDARY TP-9-13 🥥 PRE-IRM TEST PIT COMPLETED (SEPTEMBER 18 -20, 2013) EM6 🥥 2001 TEST PIT (FOR MAGNETIC ANOMALY) TP-3 2001 TEST PIT SB-5 ● 2010 SOIL BORING MW-3 🔶 2010 MONITORING WELL 5.5.2 HISTORICAL BUILDING LOCATION (BASEMENT WHERE HATCHED)

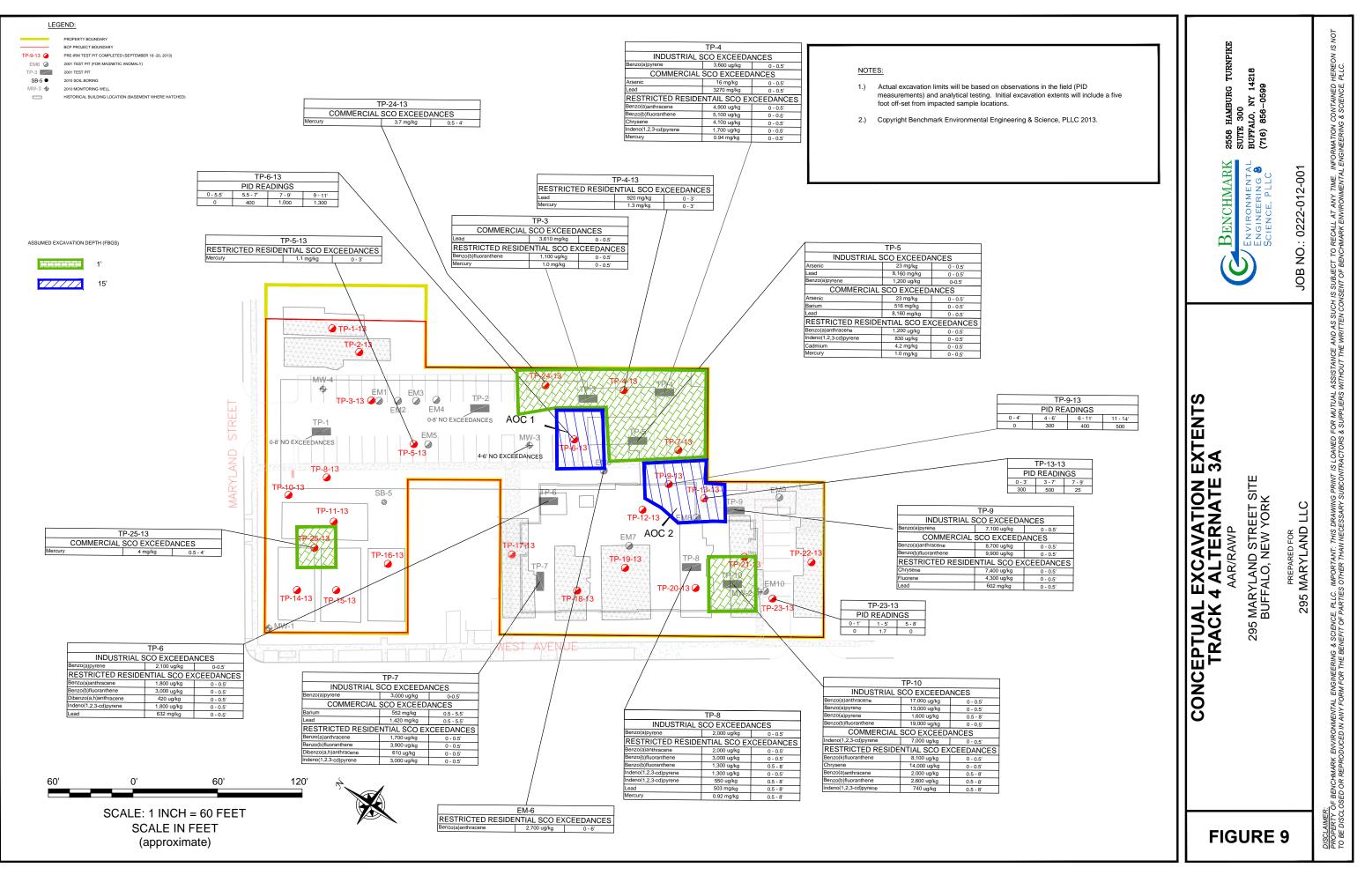


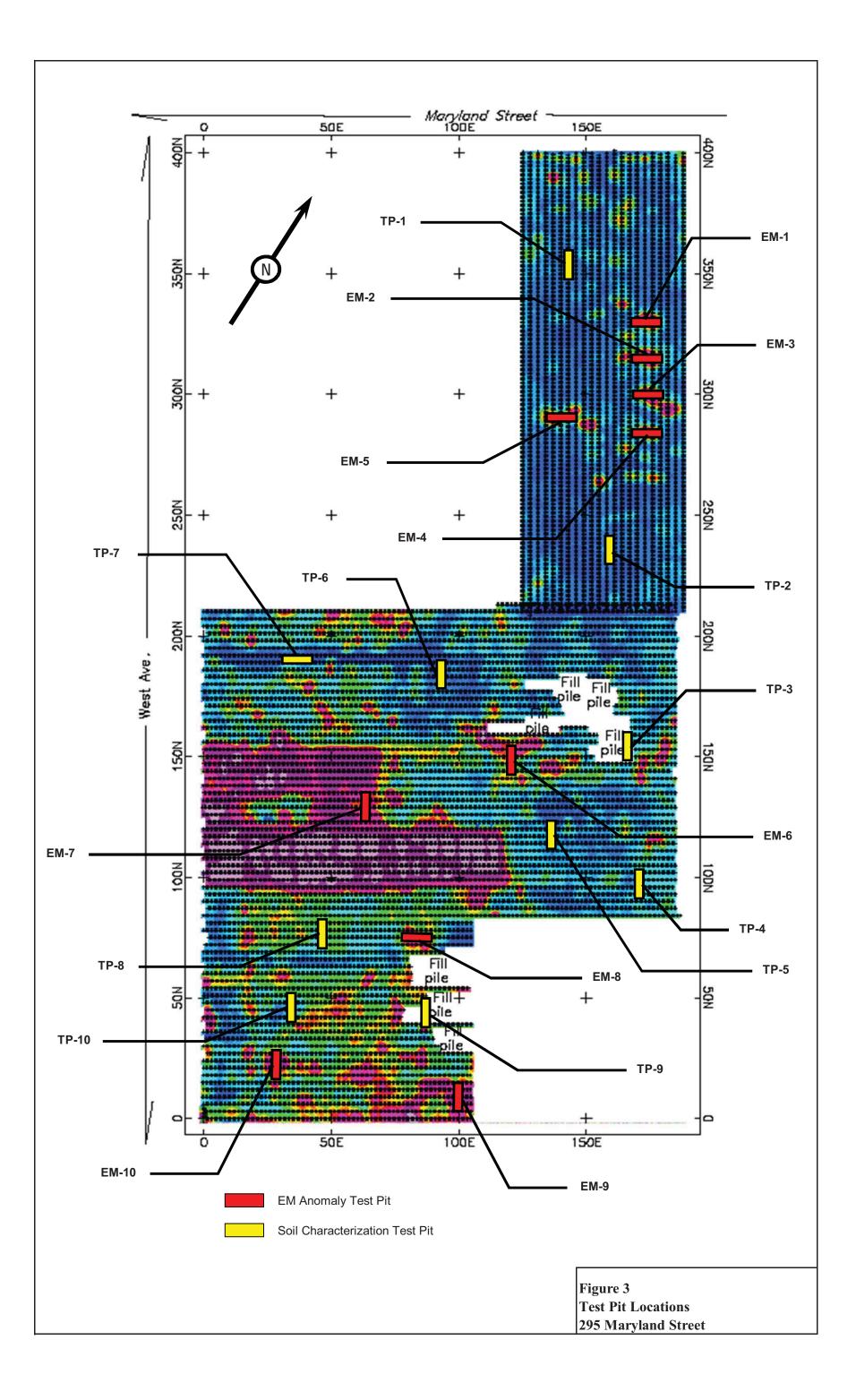





NOTES:


- 1.) Actual excavation limits will be based on observations in the field (PID measurements) and analytical testing. Initial excavation extents will include a five foot off-set from impacted sample locations.
- 2.) Copyright Benchmark Environmental Engineering & Science, PLLC 2013.





APPENDIX A

GEOPHYSICAL SURVEY RESULTS

APPENDIX B

TEST PITS LOGS

ELECTROMAGNETIC ANOMALY TEST PIT LOGS

(EM-1 to EM-10)

PROJECT.	295 Maryland ST
JOB NO.	0009-005-100
CONTRAC	TOR <u>Zoladz</u>
SUBJECT	EM Test Bit Envestigation

DATE	0-22-01	
WEATHER:		
Temp:	55°F	
Wind:	5-10 MPH	
Precip:	NIA	

EM-1 185 X 340 N

Brown/Bray soil, day some brick, to concrete Located approx 2'x2'x 3' & concrete Faster @ 1'Bos No PED measurement > backgound (0.0 prom) No 020-5, No visual contam

Signature: ____

12

5C

Title: Priet My-

PROJECT 245 Mary and ST	DATE 10-22-01
JOB NO. 0009-005-100	WEATHER: Sun
CONTRACTOR Zoladz	Temp: <u>58°</u> F
SUBJECT Em Fest p.ts	Wind:
	Precip:/_4

TP EM-2 Same as EM-1: conc. Forte approx 28" Stameter, 3'S 1'B6-5. 8"x 8" steel plate on top at footer Approx l'Fill w/ stone, brick over native br. chy No odo- No visul contan, 0.0 ppm on PED Signature: Jom Fart Title: Project My

PROJECT 295 Maryland	DATE_
JOB NO. 009-205-100	WEAT
CONTRACTOR Zuladz	Temp:
SUBJECT Em Test Pits	Wind:

DATE	10-22-01	
WEATHER:		
Temp:	53'F	
Wind: _	5-10 MPI+	
Precip:	NA	

Benchmar

Test Pit EM-3 6" Fill w/ stone, brick gray-brown over mostly rative br cluy Some Fill leases @ 2-3' bgs Located approx 30" Dimeter x 3' D concrete Poter 6" B6-5 No odor, No PED No visul contan Signature: _______ Title: ______

PROJECT Mary/ma ST.	DATE 10-22-01
JOB NO	WEATHER: <u>Sunn</u>
CONTRACTOR Zoladz	Temp:58 °F
SUBJECT EM Test Pits	Wind: 570 Molt
	Precip:/

Test P. F EM-4. clay w Fill lense @ 2'BGS 06" Fill w/ brick, store smill anot perched water @ 2.5' Concrete Foster 30" D x 3'D present 6" B65 No odors, No visual indication of cartamination, 00 pm on PED Signature: ______ Title: _____ Project Mar

PROJECT 295 Mary/and ST	
JOB NO	
CONTRACTOR Zoladz	
SUBJECT EM Test Pits	

DATE 10-22-0/	
WEATHER:	
Temp:	
Wind: 5-10 mpt	
Precip:	

TP EM-5: Excavited 3' × 8' Test pt to 2' PGS Fill soil - Br / Ste Brown wy brick, stone Located concrete-encased I bean (possible Former Forter) @ 1'BGS No odors, No visual contan evident, Oc Mm on PED

PROJECT 295 Maryland ST	DATE 10-22-01
JOB NO	WEATHER: <u>Sun</u>
CONTRACTOR 20/22	Temp: <u>60°</u> F
SUBJECT Em FEST Pits	Wind: 570 mp/4
	Precip:///

Brick, concrete & stone Fill @ surface; encountered small stubier 212) of 4' CE pipe which may have been the source of the Em Anamoly in add to concrete Fragments Encountered blackish staned sand @ approx 3' BGS al slight - maderate Kerosene. like obor . Mr. sheen on perhed ruter a stas crell 0.0 ppm on PID. Appears to be localized chased to south For noto softer soil / clay who odor. Collected says (e) The For VOCS, SVOCS, PCBS, THE metals. Atso retained aliquit For ptf TOC . Jarte soil Sond 3' Pors , Cost wal 6 Fit Bles This Signature: Title: Project May

PROJECT 295 May/a) ST
JOB NO. 0009-005-100
CONTRACTOR Zolad Z
SUBJECT EM FEST fits

DATE	10-22-01	
WEATHER: Sun		
Temp: _	55-0/-	
Wind:	5-10 mpt	
Precip:	$\sim/14$	

Test fit Em-7

Approx l'of soil fill w/ large amounts of brack over competent concrete paid No visual folketory evidence or contamination 0.0 ppm on PED

Signature: ______ For for ____

Title: _ Project Mg-

PROJECT	295 Murylan) ST
JOB NO.	0009-005-100
CONTRAC	TOR _ Zulad Z
SUBJECT	Em Test Pits

DATE	10-22-01	
WEATH	ER: <u>50 n</u>	
Temp: _	50F	
Wind: _	5-10 MP1-	
Precip:	N].4	

Test Pit Em-8 2-3" of gravel over concrete Rd, also uncouvered 2 small steel burs (6" x 2" x 2") No adors, No Moul contan, O. Open on Puis Signature: _____ Fach_____ Title: Project Mage

PROJECT 295 Maryland ST

JOB NO. 0009-005-100

CONTRACTOR Zoladz

SUBJECT Em Fest Pits

DATE	10-22-01	
WEATH	ER: <u>Sun</u>	<u> </u>
Temp:	52 %-	
Wind: _	5-10 mp14	

Precip: N/A

Test PitEm-89 MAR Uncovered 5' length of steel c channel, l' piece angle iron 0-6" BGS, excavated & x 6' x 4' D Test pit. 1' 51, mixed w TOPSoil over native br. clay. inter perhad (3' B6-5 No visual contra , No adors, O.O FED Also encarated shallow sail cast of TPEM-\$ " verity aroundly Uncovered addal stell banding and channel

,

Signature: ________

Title: <u>Fry</u>. my -

PROJECT	295 Maryland ST	
JOB NO.	009-005-103	
CONTRAC	TOR Zolad Z	
SUBJECT	Em Fest Pits	

DATE_	10-22-01	
WEATH	ER:	
Temp:	48°F	
Wind: _	540 MPH	
Precip:	~/4	

Test PitEm-10: Located seven (suchous of steel angle @ 0-1'Bas sails consist of 1'repeal intermingled of Fill over move be clay No visual jot Factory ev. Junce of contamination, OD ppm on PED Signature: John Fork Title: 10-22-01 Primy

2001 TEST PIT LOGS

(TP-1 to TP-10)

PROJECT 295 Mayland ST	DATE 10/23/01
JOB NO. 0009-005-700	WEATHER: Overast
CONTRACTOR ZOLAZ	Temp: <u>557</u>
SUBJECT Investigation Fest Pits	Wind:5 MPH
	Precip:

Inve	estigation Test Pit 1 (TPI):
	Excavated to a depth of 8' BGS, 3Wx6'L
	3" Fill over clay 13, soil mix appears to have been
(pright afre layer 3' bass - based on presence of
	awriter 10/1501 layer at Mis den B.
	Native brown soil below (elay)
	No adors visual indictions of contain . U. is promon PED
	samples collected surface (0.6") and subsurface
(6"-g')@ 8'5 am

Title: Fras My-

Benchmark

Signature: _ Thun Forly

PROJECT	295 Maryland Street
JOB NO.	0009-005-100
CONTRAC	TOR <u>Zoladz</u>
SUBJECT	Investigation Test Pits

DATE 10-23-0/	
WEATHER: OVERST	
Temp:	
Wind: 20 MPH	
Precin: N/A	

Investigation Test Ritz (TPZ) 3'W x 10'L x 8'D Greyish ash/Cinders 0.8" over brown clay 8"-2" Sand layer w/ some perched mater at 2' Native brown clay 2' - B' No odors or visual contamination evident 00 ppm on PED collected samples @ 840 an allected MS/MSD From (0-6")(6"8") 6" - 8' interval

Title: _____

Signature: _____

PROJECT	295 Maryland ST	
	0009-005-100	
CONTRAC	TORZolad z	
SUBJECT	Investigation test Pits	

DATE /0-23-0/
WEATHER: Overcast
Temp:55°F
Wind: 20 mp4

Investigation test Pit TP-3 $\frac{1}{6} = \frac{36}{10} = \frac{25}{10} = \frac{1}{10} = \frac{1}{10}$ Fill and brown wisone rock & brich Fill extends to aprox 2' BGS Q somer ad of Pit Porched water to 2' on southern and Native bricky 2' - 8' No overs or indications of contamination. Us ppm on PED Signature: ______ Falm Title: freet Munage

PROJECT 245 Mary knd ST
JOB NO 7005-100
CONTRACTOR
SUBJECT Test fit Investigation

DATE10/23/01
WEATHER: Clouds/Sun
Temp:53°F
Wind: 20 m/2/7
Precip:/A

Envestigation Test Pit 4 (TP-4): Excavited TP-4@ 3'x 10' x aprox 9'D I'fill w/brick, stone, cky over approx 2' cky 0" Topsoil / durter soil lens (3' bys brown native clay 31-91 bass No water No visual or d'factory evidence of contamination 0.0 pm on PED collected samples @ 940 an Fron 0-6" 26"- 3" interals

Signature: _____ Forthes

Title: <u><u>froj</u> Majo</u>

PROJECT	295 Maryland ST	_
JOB NO.	0009-005-100	_
CONTRAC	TOR _ Zolad 2	
SUBJECT	Test lit Investigation	

DATE	10-23-01
WEATH	ER: OVErcast
Temp:	60°F
Wind: _	20 MP1+
Precip:	NIA

Test Pit 5 (TP-5) Excapted 3'W × 10'L × g'IS FM-6 Similar to TP-4 1' Fill of some store & brick over ziclay sandy repsoil lers @ 3'BGS, native br. clay below No odurs or visual contamination evident 00 ppm on pED TP-5 Collected samples From 0.6" & 6"-3" @ 10 man Signature: The Fork Title: Project my

PROJECT	295 Maryland ST	-
JOB NO.	0009-005-100	-
CONTRAC	TOR <u>Zuladz</u>	_
SUBJECT	Investigation Fest Pits	_

DATE 10-23-01	
WEATHER: clouds/sun	
Temp:	<u> </u>
Wind: 20 mpil	
Precip:	

Investigation Test Pit 6 (TP-6) Excavited TP-6 3'WX 10'L × 8'J Fill soils wi some mine Delans, plastic & price to approx 2' by s (3:5 bas & on s. side) Vtriked chy pipe (8) anter notes atory on Cast & Wist sides of pit near so. Side No odors, No visual contam indicated. Orogen in Pid Samples of 0.6" & 6" - 9' intervals collected @ 1030ay mo Fal Title: Pro my Signature: ____

PROJECT	295 Maryland ST
JOB NO.	0009-005-100
CONTRAC	TOR Zoladz
SUBJECT	Test Pit Investigation

DATE	10/23/01
WEATH	ER: <a>
Temp:	60°F
Wind: _	20 mpt
Precip:	NA

Test Pit TP-D Excavited 3'W x 10 'L x 55'S Encountered refusal (old concrete Floor)@55'D Appears to have been a former wooden structure demolished in place. Fill materials consistor wood, store, concrete, shingles plastic & cloth. No visual contan, odors appear to be related to cotting wood & shingles (slight asphalt odor) Scriptes collected at 11" an 0.6" & 6"-5.5' BG-S Signature: The Forles

Title: <u><u><u>Proj</u> My-</u></u>

	SATION REPORT
PROJECT 295 Maryland St	DATE 10-23-01
JOB NO. 000 9-205-100	WEATHER: Sun /clouds
CONTRACTOR Zoladz	Temp: <u>65°</u> F
SUBJECT Test Pit Investigation	Wind: 20 MPH
	Precip:/A
Test Pit TP-8.	
Excavited approx 3'WX 10	$O'L \times S'D$
Significant amounts of fill mattes en	confront (1)
Mi comprised at Sul Sriek, Cork	
Buried 1" elect. Conduit running E	IN encontered approx 251015
Native Blay soil @ 6- 8-36-5	
Some perched canter on 5 side of	F.F. Q. K' Mrs
Samples collected @ 1140 an	\sim

Signature: Jhun Faile

Title: Pro May

FIELD INVESTIGATION REPORT							
PROJECT 295 Marylaw ST	DATE 10/23/01						
JOB NO009-005-700	WEATHER: Sun (clouds						
CONTRACTOR	Temp:60 °.F						
SUBJECT Test Pit Envestigation	Wind: 20 MpH						
	Precip:/A						
Test pit TP-9							
Excanted 3'WX 10'L × 9'0	to T PIT						
2' Soil Gill W/ some brick, wwo							
Encountered Former cinder block 1	Foundation on east side of Test pit						
clay on W side begins (0 2' BG							
No perches mater							
No odors or Visual indiantias or	contamination						
0.0 from on PES							

Collected sample from 0-6 + 6 - 8 @ 120 pm

Title: Roject Marage

Ben

Signature: Thom Forks

gnature: _ The Fork	Title: Project Marage
Collected samples of 0°6" & 6	"-8' (2) 12 ³⁰ pm
O.C. PP. on PEB	
NI oders or visual follow trong evid	ace of confamination
Notive Grand red ching 4'-B' BGS	
OLD store Floor @ 3.5'BGS.	
Fill w/ some brize stone & rock	
Excavated 3'WXQ'LX8'S	
Test Pit TP-10:	
	Precip://A
SUBJECT Test Pit Envestigation	Wind: 20 -25 MPH
CONTRACTOR Zoladz	Temp:60 ℃
JOB NO. 0009-005-100	WEATHER: Clauds/sun
PROJECT 295 Mayland Street	DATE 10-23-01

APPENDIX C

FIELD BOREHOLE LOGS/WELL INSTALLATION DETAILS

Pr Cl	Project No: 0222-001-100 Borehole Number: MW-1 Project: Phase II Investigation A.K.A.: Client: 295 Maryland LLC. Logged By: TAB Site Location: 295 Maryland, Buffalo, NY Checked By: BCH						ENVIRO ENGINI SCIENC		
		SUBSURFACE PROFILE	_	SAN	_	_			
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Sample No.	SPT N-Value	Recovery (ft)	nbol	PID VOCs 0 12.5 25	Lab Sample	Well Completion Details or Remarks
0.0 -	0.0 0.0	Ground Surface Top soil Brown, moist, mostly nonplastic fines, trace	/ S1	52	2.0		0.0		4 Concrete
	-2.0 2.0	subrounded coarse sand, trace fine gravel medium dense rootlets.	S2	27	1.5		0.0		♀ <mark>`</mark>
- 5.0 —	-4.0 4.0	Reddish brown, moist, non plastic fines, trace fine sand, very dense, medium to high dry strength. As above, medium dense.	, S3	55	2.0		0.0		PVC Riser
	-6.0 6.0	Lean Clay Reddish Brown, moist, low plasticty fines, hard, high toughness.	S4	37	2.0		0.0		2" PVC Riser 2" PVC Riser September 19, 20 Bentonite chips
	-8.0 8.0	As above, trace coarse sand. As above, mostly low to medium plastic fines, little coarse sand, slight laminations.	S5	41	2.0		0.0		
10.0	-13.0 13.0 -14.5 14.5 -18.0 18.0	Reddish brown, moist, medium to high plasticity fines, stiff. Silt with Sand Reddish brown, wet, mostly non plastic fines with some fine sand, medium dense. As above.	S6	13	1.0		0.0		2" PVC Screen, 0.010" slot
20.0 -	-19.5 19.5 -20.5 20.5	Lean Clay Reddish brown, wet, high plasticity fines, with few fine sand, hard, high toughness	- S7 ,' S8	57	1.9 1.4		0.0		2" PVC Scree
25.0	-22.0 22.0	As Above Silt with Sand Reddish brown, wet, mostly non plastic fines with some fine sand, medium dense. End of Borehole							¥ LO

Drilled By: Earth Dimensions, Inc. Drill Rig Type: CME 550 Drill Method: 4.25-inch Continous SS w/HSA Comments: Drill Date(s): 9 13 10

Hole Size: 8 1/2 - inch Stick-up: Flush Mount Datum: NA

Project No: 0222-001-100 Borehole Number: MW-2 Project: Phase II Investigation A.K.A.: Client: 295 Maryland LLC. Logged By: TAB Site Location: 295 Maryland, Buffalo, NY Checked By: BCH SUBSURFACE PROFILE SAMPLE								ENVIRO ENGIN SCIENC			
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)		Sample No.	SPT N-Value	Recovery (ft)	Symbol	0	PID VOCs 12.5 25	Lab Sample	Well Completion Details or Remarks
-3.0	<u>0.0</u> 0.0	Ground Surface Lean Clay w/Fill Reddish brown with black, moist, non to low plastic		S1	16	2.0		0.0			A ConcreteM
2.0	-2.0 2.0 -4.0 4.0	 fines, few fine sand, trace fine gravel, very stiff, with concrete and cinders, wood fragments, medium toughness. As above no black, no wood fragments, cinders or concrete, moist, orange brick fragments, rootlets, trace 	⊢	S2	12	1.4		0.0			
- 7.0-	-6.0 6.0	 coarse sand and fine gravel. Lean Clay Reddish Brown, moist, low plasticty fines, very stiff, medium toughness. As above, trace coarse sand. 		S3 S4	29 37	2.0		0.0			2" PVC Riser
	-10.0 10.0	As above, mostly medium plastic fines, trace fine sand, trace fine gravel, orange fine sand areas, medium toughness		S5	20	2.0					L 18 2010
-	-15.0 15.0	Silt with Sand Brown, wet, mostly non plastic fines with some fine sand, dense, rapid dilatancy.		S6	37	1.4		0.0			Screen, 0.010" slot
17.0	-20.0 20.0	As above, slight odor						 1.6			2" PVC Screen, 0.010" slot
 22.0 — 	-22.0 22.0	End of Borehole		S7	24	1.3					¥

Drilled By: Earth Dimensions, Inc. Drill Rig Type: CME 550 Drill Method: 4 1/4-inch HSA w/Continous SS Comments: Drill Date(s): 9 13 10

Hole Size: 8 1/2-inch Stick-up: 2.5-foot Datum: NA

Project No: 0222-001-100 Borehole Number: MW-3 Project: Phase II Investigation A.K.A.: Client: 295 Maryland LLC. Logged By: TAB Site Location: 295 Maryland, Buffalo NY Checked By: BCH SUBSURFACE PROFILE SAMPLE					Benchmark Envi 2558 l	ENGIN	ONMEN EERING CE, PLL ngineerin rnpike, Su IY 14218	ITAL 8 & .C g & Science, PLLC			
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Sample No.	SPT N-Value	Recovery (ft)	Symbol	0	PID VOCs ppm 12.5 25	Lab Sample		l Completion Details or Remarks
-3.0	0.0 0.0 2.0 2.0 4.0 4.0 -10.0 10.0 10.0 12.0 12.0 12.0 14.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15	Ground Surface Top Soil Brown, moist, mostly low plastic fines, trace subrounded coarse sand, trace fine gravel medium dense rootlets. Lean Clay w/ Fill Reddish brown, moist, dense mostly low plasticity fines, trace fine sand, trace fine to coarse gravel, orange brick. As above, ash layer .5-inch thick at (3.0) fbgs. Lean Clay Reddish brown, moist, low to medium plastic fines, trace fine sand, stiff, rootlets, high toughness. As above, trace coarse sand. As above, grey fine sand filled fractures. As above, trace, fine and coarse gravel. As above, iron stained fine sand lenses. As above. Sandy Silt Brown, wet, mostly, non-plastic fines, with some fine sand, medium dense. As above. End of Borehole	S1 S2 S3 S4 S5 S6 S7 S7 S8 S9 S10 S11		1.5 1.5 1.4 1.9 2.0 2.0 2.0 1.8 1.5 1.4 1.5				See analytical table	Concrete Con	Currier Internation Internation Internation September 18, 2010 Entronit Currier Internation Internation Entronite chips Protective Casing

Drilled By: Earth Dimensions, Inc Drill Rig Type: CME 550 Drill Method: 4 1/4-inch HSA w/Continous SS Comments: Drill Date(s): 9 14 10

Hole Size: 8 1/2-inch Stick-up: 2.5-fbgs Datum: NA

Cli	ent: 295	ase II Investigation Maryland LLC. on: 295 Maryland, Buffalo, NY	2558 Ham B	Restoration, LLC TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0635					
		SUBSURFACE PROFILE	Ś	SAM	PLE				
epth ogs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Sample No.	SPT N-Value	Recovery (ft)	Symbol	PID VOCs 0 12.5 25	Lab Sample	Well Completion Details or Remarks
3.0 —									P
-	0.0 0.0	Ground Surface Lean Clay W/Fill Brown, moist, mostly non to low platicty fines with some fine sand, few coarse sand and fine gravel	S1	18	1.3				Concrete Aconcrete Aconcret
2.0 — - - -	-5.0 5.0	asphalt and brick. Lean Clay Reddish brown, moist, mostly medium plastic fines with trace fine sand, very stiff, trace coarse sand, grey fine		23	2.0	- 7			2" PVC Riser
 - -	<u>-10.0</u> 10.0	sand partings, medium toughness. As above, with brown fine sand lenses 0.05 to 0.1-inch							· · · · · · · · · · · · · · · · · · ·
- -	-15.0	thick.	S3	36	2.0				ptember 17, 200
- 7.0 -	15.0	As above, no brown fine sand lenses.	S4	12	2.0				2" PVC Screen, 0.010" slot
	-20.0 20.0 -22.0 22.0	Sandy Silt Brown, wet, mostly non plastic fines with some fine sand, very dense, trace fine gravel. End of Borehole	S5	61	1.6				

Drilled By: Earth Dimensions, Inc. Drill Rig Type: CME 550 Drill Method: 41/4-inch HSA w/Continous SS Comments: Drill Date(s): 9 14 10 Hole Size: 8 1/2-inch Stick-up: 2.5-feet Datum: NA

Pi Ci	Project No: 0222-001-100Borehole Number: SB-5Project: Phase II investigationA.K.A.:Client: 295 Maryland LLC.Logged By: TABSite Location: 295 Maryland, Buffalo, NYChecked By: BCH									Benchmark Environmental Engineering & Science, PLLC Benchmark Environmental Engineering & Science, PLLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0599		
		SUBSURFACE PROFILE		SAN	1PLE							
Depth (fbgs)	Elev. /Depth	Description (ASTM D2488: Visual-Manual Procedure)	Sample No.	SPT N-Value	Recovery (ft)	Symbol	0	PID VOCs 12.5 25	Lab Sample	Well Completion Details or Remarks		
0.0-	<u>0.0</u> 0.0 -2.0 2.0	Ground Surface Lean Clay w/Fill Reddish brown, moist, low to non plastic fines, trace fine sand, very stiff, asphalt and glass piecies, cinders. As above.	S1	20	2.0		0.0					
-	<u>-4.0</u> 4.0		S2	20	1.4		0.0					
5.0-		<i>Lean Clay</i> Reddish brown, moist, low plasticity fines, trace fine sand, very stiff, medium toughness.	\$3	27	2.0		0.0		See analytical tables			
-	-6.0 6.0	End of Borehole										

Drilled By: Earth Dimensions, Inc. Drill Rig Type: CME 550 Drill Method: 4 1/4-inch HSA w/ Continous SS Comments: Drill Date(s): 9 13 10

Hole Size: 8 1/2-inch Stick-up: NA Datum: Mean Sea Level

APPENDIX D

GROUNDWATER SAMPLING LOGS

Project Nar	me: 29	5 Mar	VIA à	St			Date:	341	//	
ocation:	295	5 Mari Maryi	4000 400	Project	No.:		Field Te	<u>31,1</u> eam: pt.		
Well No	o. m	N-1	Diameter (in	iches):	>	Sample Dat	e / Time: 🛛 🖇	Hili		
	pth (fbTOR):	<u>~~ }</u>	Water Colur	· · · · · · · · · · · · · · · · · · ·	and the second	DTW when		(1.40)		
DTW (statio		5.95	One Well Vo	<u>`````</u>				t 🗌 Sample	ole 🛛 🔟 Purge & Sample	
Total Depth (fbTOR): 21.52			Total Volum	e Purged (gal):		Purge Meth	od: $L\alpha$	V Flor		
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
	o Initial		23	ž., (11 - 25	54	1 51	Im	Clear	
	1 / 35	125	8.02	96	1158	38	1.91	T/I	0.111	
	2 <u>9.60</u> 3 5 40	.50	7.24	1. 1.	1/60	61	1.69 2.27	197	1. CC	
	<u> </u>	. 75	1-2-21-	9.3 9.7	1100	/	a martine	tior tior	(1 //	
	4 <u>70.</u>	1.0	1.09	7.)	1100	-62	1-28	$\left[\begin{array}{c} H0 \end{array} \right]$		
	6									
	7									
	8									
	9									
	10									
Sample	Information									
	S1 71.40	T	2.55	9.3	1071	152	2.08	7103	Clean	
1045		1	11-3-3	1.	1000	1 US		1105	t the state and the second s	
/030	\$2		2/33	7>	7071		2.08	1105		
7030	1111-		1 - 3 - 4 				<u> </u>	1105		
	\$2	<u></u>					0	2/1/1		
Well No	52 0. Mu	1-2	Diameter (ir	nches):		Sample Dat	le / Time:	3/1/11		
Well No Product De	\$2	13.30	Diameter (ir Water Colu	nches):		Sample Dat	le / Time:	3/1/11		
Well No Product De	o. <i>f</i> _h (<i>b</i>) ppth (fbTOR): (c) (fbTOR):		Diameter (ir Water Colu One Well V	nches): mn (ft):		Sample Dat	te / Time: sampled:	3/1/1/ t	e Purge & Sample	
Well Ne Product De DTW (stati	o. <i>f</i> _h (<i>b</i>) ppth (fbTOR): (c) (fbTOR):	[3.30	Diameter (ir Water Colu One Well V	nches): mn (fl): clume (gal):		Sample Dai DTW when Purpose:	te / Time: sampled:	3/1/1/ t	e Purge & Sample	
Well No Product De DTW (stati Total Depti	o. M.G. sz o. M.G. spth (foTOR): c) (fbTOR): h (fbTOR): Water Level	/3.30 24.77 Acc. Volume	Diameter (ir Water Colui One Well V Total Volum pH	nches): mn (fl): olume (gal): ne Purged (gal): Temp.	SC	Sample Dai DTW when Purpose: [Purge Meth Turbidity	te / Time: sampled: Developmen od:	3/1/1/ t	e Purge & Sample	
Well No Product De DTW (stati Total Depti	o. <u>M</u> (epth (fbTOR): c) (fbTOR): h (fbTOR): Water Level (fbTOR)	/3.30 24.77 Acc. Volume	Diameter (ir Water Colui One Well V Total Volum pH	nches): mn (fl): olume (gal): ne Purged (gal): Temp.	SC	Sample Dai DTW when Purpose: [Purge Meth Turbidity	te / Time: sampled: Developmen od:	3/1/11 t Sample v F100 ORP (mV)	Appearance & Odor	
Well No Product De DTW (stati Total Dept Time	o. <u>M</u> (ppth (fbTOR): c) (fbTOR): h (fbTOR): Water Level (fbTOR) o Initial	13.30 24.77 Acc. Volume (gallons)	Diameter (ir Water Coluu One Well V Total Volum pH (units)	nches): mn (fl): olume (gal): ne Purged (gal): Temp. (deg. C)	SC (uS) (882- 185(Sample Dai DTW when Purpose: [Purge Meth Turbidity (NTU)	te / Time: sampled: Developmen od:	3/1/1/ t Sample v F100 ORP (mV)	Appearance & Odor	
Well No Product De DTW (stati Total Dept Time	No. Model sz 0. Model opth (fbTOR): (fbTOR): (fbTOR): c) (fbTOR): Water Level	[3.30 24.77 Acc, Volume (gallons)	Diameter (ir Water Colur One Well V Total Volum pH (units) 7. 37 7. 27. 7. 07	nches): mn (ft): olume (gal): ne Purged (gal): Temp. (deg. C)	sc (us) 1882 1851 1846	Sample Dai DTW when Purpose: [Purge Meth Turbidity (NTU)	te / Time: sampled: Developmen od: 2 cc DO (mg/L)	3/1/11 t Sample v F700 ORP (mV) +96 +97, +69	Appearance & Odor	
Well No Product De DTW (stati Total Dept Time	0. M (c) ppth (fbTOR): ic) (fbTOR): ic) (fbTOR): Water Level (fbTOR) 0 Initial 1 / 4 3 2 / 5 6 3 / 6 4 4 / 6 4	[3.30 24.77 Acc. Volume (gallons) 	Diameter (ir Water Coluu One Well V Total Volum pH (units)	nches): mn (fi): olume (gal): ne Purged (gal): Temp. (deg. C) 9.5 / 0.3	SC (uS) (882- 185(Sample Dai DTW when Purpose: [Purge Meth Turbidity (NTU)	te / Time: sampled: Developmen od: / cc. DO (mg/L) 3.4/8 3.4/8	3/1/11 t Sample v F700 ORP (mV) t96 t97	Appearance & Odor	
Well No Product De DTW (stati Total Dept Time	o. <u>M</u> (correction) o. <u>M</u> (correction) o. <u>M</u> (correction) o. <u>M</u> (correction) o. <u>M</u> (correction) o. <u>M</u> (correction) o. <u>M</u> (correction) water Level (fbTOR) o. <u>M</u> (correction) o. <u>M</u> ([3.30 24.77 Acc. Volume (gallons) 	Diameter (ir Water Colur One Well V Total Volum pH (units) 7. 37 7. 27. 7. 07	nches): mn (ft): olume (gal): ne Purged (gal): Temp. (deg. C) 	sc (us) 1882 1851 1846	Sample Dai DTW when Purpose: [Purge Meth Turbidity (NTU)	te / Time: sampled: Developmen od: /. cc. DO (mg/L) 3. 4 8 3. 4 1 3. 0 3	3/1/11 t Sample v F700 ORP (mV) +96 +97, +69	Appearance & Odor	
Well No Product De DTW (stati Total Dept Time	o. M (b) ppth (fbTOR): (c) (fbTOR): (c) (fbTOR): (fbTOR): Water Level (fbTOR) I 1/4/3 I 2/5.6 I 5.6 G	[3.30 24.77 Acc. Volume (gallons) 	Diameter (ir Water Colur One Well V Total Volum pH (units) 7. 37 7. 27. 7. 07	nches): mn (ft): olume (gal): ne Purged (gal): Temp. (deg. C) 	sc (us) 1882 1851 1846	Sample Dai DTW when Purpose: [Purge Meth Turbidity (NTU)	te / Time: sampled: Developmen od: /. cc. DO (mg/L) 3. 4 8 3. 4 1 3. 0 3	3/1/11 t Sample v F700 ORP (mV) +96 +97, +69	Appearance & Odor	
Well No Product De DTW (stati Total Dept Time	No. M. (.) sz Sz O. M. (.) opth (fbTOR): (fbTOR): tribustorial Mater Level (fbTOR): Ø. Initial 1 1.4.7 2 1.5.6 3 1.6.4 4 1.6.4 5 6 7 7	[3.30 24.77 Acc. Volume (gallons) 	Diameter (ir Water Colur One Well V Total Volum pH (units) 7. 37 7. 27. 7. 07	nches): mn (ft): olume (gal): ne Purged (gal): Temp. (deg. C) 	sc (us) 1882 1851 1846	Sample Dai DTW when Purpose: [Purge Meth Turbidity (NTU)	te / Time: sampled: Developmen od: /. cc. DO (mg/L) 3. 4 8 3. 4 1 3. 0 3	3/1/11 t Sample v F700 ORP (mV) +96 +97, +69	Appearance & Odor	
Well No Product De DTW (stati Total Dept Time	O. M (<i>b</i> ppth (fbTOR): ic) (fbTOR):	[3.30 24.77 Acc. Volume (gallons) 	Diameter (ir Water Colur One Well V Total Volum pH (units) 7. 37 7. 27. 7. 07	nches): mn (ft): olume (gal): ne Purged (gal): Temp. (deg. C) 	sc (us) 1882 1851 1846	Sample Dai DTW when Purpose: [Purge Meth Turbidity (NTU)	te / Time: sampled: Developmen od: /. cc. DO (mg/L) 3. 4 8 3. 4 1 3. 0 3	3/1/11 t Sample v F700 ORP (mV) +96 +97, +69	Appearance & Odor	
Well No Product De DTW (stati Total Dept Time	o. M_{10} sz o. M_{10} sz o. M_{10} sz o. M_{10} sz o. M_{10} sz o. M_{10} water Level (fbTOR): o. M_{10} o.	[3.30 24.77 Acc. Volume (gallons) 	Diameter (ir Water Colur One Well V Total Volum pH (units) 7. 37 7. 27. 7. 07	nches): mn (ft): olume (gal): ne Purged (gal): Temp. (deg. C) 	sc (us) 1882 1851 1846	Sample Dai DTW when Purpose: [Purge Meth Turbidity (NTU)	te / Time: sampled: Developmen od: /. cc. DO (mg/L) 3. 4 8 3. 4 1 3. 0 3	3/1/11 t Sample v F700 ORP (mV) +96 +97, +69	Appearance & Odor	
Well No Product De DTW (statil Total Deptit Time	o. M (b) ppth (fbTOR): c) (fbTOR): c) (fbTOR): h (fbTOR): w ater Level (fbTOR) o Initial 1 J J J J 2 J S G 3 J G Y 4 J G Y 5 6 7 8 9 10	[3.30 24.77 Acc. Volume (gallons) 	Diameter (ir Water Colur One Well V Total Volum pH (units) 7. 37 7. 27. 7. 07	nches): mn (ft): olume (gal): ne Purged (gal): Temp. (deg. C) 	sc (us) 1882 1851 1846	Sample Dai DTW when Purpose: [Purge Meth Turbidity (NTU)	te / Time: sampled: Developmen od: /. cc. DO (mg/L) 3. 4 8 3. 4 1 3. 0 3	3/1/11 t Sample v F700 ORP (mV) +96 +97, +69	Appearance & Odor	
Well No Product De DTW (statil Total Deptil Time	o. f_{h} (<i>b</i>) spth (<i>f</i>)(b) (<i>f</i>)(f	[3.30 24.77 Acc. Volume (gallons) 	Diameter (ir Water Coluu One Well V Total Volum pH (units) 7.37 7.37 7.37 7.07	nches): min (fi): clume (gal): ne Purged (gal): Temp. (deg. C) 9.5 / 0-3 / ()-7 / 0-7	с с с с с с с с с с с с с с	Sample Dai DTW when Purpose: [Purge Meth Turbidity (NTU)	te / Time: sampled: Developmen od: 2 cc. DO (mg/L) 3.48 3.4	3/1/11 t Sample v F700 ORP (mV) t 96 t 97, t 69 t 56	Appearance & Sample V Appearance & Odor TUIBIO TUIBIO TUIBIO TUIBIO TUIBIO TUIBIO TUIBIO TUIBIO TUIBIO TUIBIO	
Well No Product De DTW (statil Total Deptil Time	12.7 sz O. M_{10} opth (fbTOR): 12.7 ic) (fbTOR): 12.7 water 12.7 Level $(fbTOR)$: 0 Initial 1 14.7 22.7 2 15.6 $3.76.7$ $4.76.7$ $3.76.7$ $4.76.7$ 5.76 6.77 8.99 9.910 $10.96.57$ Information $$1.19.65$ $5.19.65$ $5.119.65$ $5.119.65$	[3.30 24.77 Acc. Volume (gallons) 	Diameter (ir Water Colur One Well V Total Volum pH (units) 7. 37 7. 27. 7. 07	nches): mn (ft): olume (gal): ne Purged (gal): Temp. (deg. C) (deg. C) 9.5 / 0.3 / 0.3	sc (us) 1882 1851 1846	Sample Dai DTW when Purpose: [Purge Meth Turbidity (NTU)	te / Time: sampled: Developmen od: /. cc. DO (mg/L) 3. 4 8 3. 4 1 3. 0 3	3/1/11 t Sample v F700 ORP (mV) t 96 t 97, t 69 t 56	Appearance & Odor	
Well No Product De DTW (statil Total Deptil Time	o. f_{h} (<i>b</i>) spth (<i>f</i>)(b) (<i>f</i>)(f	[3.30 24.77 Acc. Volume (gallons) 	Diameter (ir Water Coluu One Well V Total Volum pH (units) 7.37 7.37 7.37 7.07	nches): min (fi): clume (gal): ne Purged (gal): Temp. (deg. C) 9.5 / 0-3 / ()-7 / 0-7	с с с с с с с с с с с с с с	Sample Dai DTW when Purpose: [Purge Meth Turbidity (NTU)	te / Time: sampled: Developmen od: 2 cc. DO (mg/L) 3.48 3.4	$3/1/11$ t \Box Sample $V = F1 \circ v$ ORP (mV) +G6 +G2 +G2 +G56 +G2 +G56 +G2 +	Appearance & Odor V Appearance & Odor TUIBID TUIBI	
Well No Product De DTW (statil Total Deptil Time	o. M (b) C spth (fbTOR): c) (fbTOR): h (fbTOR): h (fbTOR): Vater Level (fbTOR) o Initial 1 / U / 2 2 / 5 / 6 3 / 6 / 7 4 / 6 / 7 5 6 7 8 9 10 Information S1 / G / 6 / 7	3.30 24.77 Acc. Volume (gallons) 	Diameter (ir Water Coluu One Well V Total Volum pH (units) 7.27. 7.07 7.07 7.07	nches): min (fi): olume (gal): ne Purged (gal): Temp. (deg. C) 9.5 /0.3 /().7 /0.7 /0.7 /0.7 /0.7	с с с с с с с с с с с с с с	Sample Dat DTW when Purpose: [Purge Meth Turbidity (NTU)	te / Time: sampled: Developmen od: 1 ca DO (mg/L) 3.48 3.91 3.03 2.99 2.99	$\frac{3/1/11}{1}$ t \Box Sample ~ 1700 ORP (mV) ± 96 ± 97 ± 96 ± 97 ± 69 ± 56 \Box = 1 Stat		
Well No Product De DTW (statil Total Deptil Time	12.7 sz O. M_{10} opth (fbTOR): 12.7 ic) (fbTOR): 12.7 water 12.7 Level $(fbTOR)$: 0 Initial 1 14.7 22.7 2 15.6 $3.76.7$ $4.76.7$ $3.76.7$ $4.76.7$ 5.76 6.77 8.99 9.910 $10.96.57$ Information $$1.19.65$ $5.19.65$ $5.119.65$ $5.119.65$	3.30 24.77 Acc. Volume (gallons) 	Diameter (ir Water Coluu One Well V Total Volum pH (units) 7.27. 7.07 7.07 7.07	nches): min (fi): olume (gal): ne Purged (gal): Temp. (deg. C) 9.5 /0.3 /().7 /0.7 /0.7 /0.7 /0.7	с с с с с с с с с с с с с с	Sample Dai DTW when Purpose: [Purge Meth Turbidity (NTU) >/00 & t } 00 & t } 00 & t } 00 & t } 00 & t } 00 & t] 00 & t] 00 & t] 00 & t] 00 & t] 00 & t] 00 & t] 00 & 0 00 & 0 00 & 0 0 0 0 0 0 0 0 0 0	te / Time: sampled: Developmen od: 2 cc. DO (mg/L) 3.48 3.4	$\frac{3}{1}$ t Sample $\frac{700}{0RP}$ (mV) $\frac{1466}{492}$ t 66 t 67 t 56 $\frac{1456}{1}$ T 76 $\frac{1456}{1}$ T 76 $\frac{1466}{1}$ T 76 T 76 $\frac{1466}{$	Appearance & Odor 1013D 1013D 1013D 10130 1010	

Note: All water level measurements are in feet, distance from top of riser.

PREPARED BY: RLD

4[#]

6"

0.653

1.469

DO

ORP

± 0.3 mg/L ± 10 mV

G	BENCHMARK
G	ENVIRONMENTAL Engineering & Science, PLLC

GROUNDWATER FIELD FORM

Project Name:	295 Mai	w Mud	Date:	3/1/11
Location:	295 Mary	Project No.:	Field Team:	PUD
				*
Well No.	mw-3	Diameter (inches):	Sample Date / Time: 2/1	h i

Product De	pth (fbTOR):		Water Colur	ກກ (ft)·		DTW when sampled:						
	·	12.35	One Well Vo	2			Purpose: Development Sample Purge & Sample					
DTW (static) (fbTOR): (2.35 Total Depth (fbTOR): 24.8)			e Purged (gal):	:	Purge Method: Low Flow							
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor			
	o Initial											
1137	1 /3.7	. 25	7.28	9.1	2843	>100	414	1196	turki d			
	2 14.8	,75	6-97	10.2	2846	90	LIGT_	1209	(¹ (
	3 5.8		6.93	10.1	2831	95	407	1219				
	4 16.4	1.25	6.66	9.8	2834	99	3.98	1220	.ξ. Č.ξ			
	6		0.10	,	1							
	6											
	7											
	18											
	9											
	10											
Sample	Information	•										
149	SI 199		6.47	/6.1	2832	88	293	+172	TUBI()			
	S2					0.0						

Well No	. Mw	1-4	Diameter (ir	nches): 2		Sample	Sample Date / Time: 3/1/1/					
Product De		/	Water Colu	nn (ft):		DTW wi	en sam	pled:	- · ¢			
DTW (static) (fbTOR): /	0.19	One Well V	olume (gal):						Purge & Sample		
Total Depth (fbTOR): 242			Total Volum	e Purged (gal):		Purge Method: 204 How						
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)		DO (mg/L)	ORP (mV)	Appearance & Odor		
	o Initial											
	1/1.9	,50	7.21	8.4	1850	78	4	1.85	+114	Cloudy		
	2 13.7	, 75	20	9.0	1836	Sloc	$\rightarrow l$	1.88	+115	TIMBIN		
	3 153	1	7.18	Ś.y	1852	710) l	1.84	+126	((()		
	4			0 /		3-		~ <i>,</i>				
	5											
	6											
	7											
	8											
	9											
	10											
Sample I	nformation:											
1118	S1 2 [.4]	S	2.16	10	1781	>100		.72	1121	10/30		
Ъ.	S2											
	~									lization Criteria		
REMARK	S: BLW	aplication	(Jaken	at m	UB FO	12.		Calculation	Parame			
Vocs	¢ pes	heder					Diam.	Vol. (g/ft)	рH	± 0.1 unit		
*	r					1	1"	0.041	SC	± 3%		

molmoo collectio at mury voco & pestudies

 Diam.
 Vol. (g/it)
 pH

 1ⁿ
 0.041
 SC

 2ⁿ
 0.163
 Turbidity

 4ⁿ
 0.653
 DO

 6ⁿ
 1.469
 ORP

± 10%

± 0.3 mg/L

± 10 mV

Note: All water level measurements are in feet, distance from top of riser.

PREPARED BY: Red

APPENDIX E

LABORATORY ANALYTICAL DATA

Analytical Report

SDG Number: RTI0959

Project Description(s) Work Order RTI0959 - Benchmark - 295 Maryland St. site Work Order RTI1016 - Benchmark - 295 Maryland St. site

For:

Tom Forbes

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

S.

Brian Fischer Project Manager Brian.Fischer@testamericainc.com Thursday, September 30, 2010

The test results in this report meet all NELAP requirements for analytes for which accreditation is required or available. Any exception to NELAP requirements are noted in this report. Persuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this test report should be directed to the TestAmerica Project manager who has signed this report.

Ameri

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218 SDG Number: RTI0959

Received: 09/14/10-09/15/10 Reported: 09/30/10 11:33

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

TestAmerica Buffalo Current Certifications

As of 08/16/2010

STATE	Program	Cert # / Lab ID
Arkansas	CWA, RCRA, SOIL	88-0686
California*	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida*	NELAP CWA, RCRA	E87672
Georgia*	SDWA,NELAP CWA, RCRA	956
Illinois*	NELAP SDWA, CWA, RCRA	200003
Iowa	SW/CS	374
Kansas*	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana*	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY0044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-N Y044
Michigan	SDWA	9937
Minnesota	SDWA, CWA, RCRA	036-999-337
New Hampshire*	NELAP SDWA, CWA	233701
New Jersey*	NELAP,SDWA, CWA, RCRA,	NY455
New York*	NELAP, AIR, SDWA, CWA, RCRA	10026
North Dakota	CWA, RCRA	R-176
Oklahoma	CWA, RCRA	9421
Oregon*	CWA, RCRA	NY200003
Pennsylvania*	NELAP CWA,RCRA	68-00281
Tennessee	SDWA	02970
Texas*	NELAP CWA, RCRA	T104704412-08-TX
USDA	FOREIGN SOIL PERMIT	S-41579
Virginia	SDWA	278
Washington*	NELAP CWA,RCRA	C1677
Wisconsin	CWA, RCRA	998310390
West Virginia	CWA, RCRA	252

*As required under the indicated accreditation, the test results in this report meet all NELAP requirements for parame ters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report.

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218 SDG Number: RTI0959

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066 Received: 09/14/10-09/15/10 Reported: 09/30/10 11:33

CASE NARRATIVE

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. field-pH), they were not analyzed immediately, but as soon as possible after laboratory receipt.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

S

Brian Fischer Project Manager

Thursday, September 30, 2010

There are pertinent documents appended to this report, 2 pages, are included and are an integral part of this report.

Reproduction of this analytical report is permitted only in its entirety. This report shall not be reproduced except in full without the written approval of the laboratory.

TestAmerica Laboratories, Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our Laboratory.

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218 SDG Number: RTI0959 Project: Benchmark - 295 Maryland St. site Received: 09/14/10-09/15/10 Reported: 09/30/10 11:33

Project Number: TURN-0066

The requested project specific reporting limits listed below were less than lab standard quantitation limits but greater than or equal to the lab MDL. It must be noted that results reported below lab standard quantitation limits (PQL) may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

SpecificMethod	Analyte	<u>Units</u>	Client RL	Lab PQL
8270C	4-Methylphenol	ug/kg dry	170	330

<u>lestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

Benchmark Environmental & Engineering Science	S
2558 Hamburg Turnpike, Suite 300	
Lackawanna, NY 14218	Ρ
	F

SDG Number: RTI0959

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066 Received: 09/14/10-09/15/10 Reported: 09/30/10 11:33

DATA QUALIFIERS AND DEFINITIONS

- B Analyte was detected in the associated Method Blank.
- **B1** Analyte was detected in the associated method / calibration blank. Analyte concentration in the sample is greater than 10x the concentration found in the method blank.
- C Calibration Verification recovery was above the method control limit for this analyte. Analyte not detected above the laboratory PQL, data not impacted.
- C8 Calibration Verification recovery was above the method control limit for this analyte. A high bias may be indicated.D02 Dilution required due to sample matrix effects
- J Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). Concentrations within this range are estimated.
- L Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above the acceptance limits. Analyte not detected, data not impacted.
- M7 The MS and/or MSD were above the acceptance limits. See Blank Spike (LCS).
- M8 The MS and/or MSD were below the acceptance limits. See Blank Spike (LCS).
- QFL Florisil clean-up (EPA 3620) performed on extract.
- **QSU** Sulfur (EPA 3660) clean-up performed on extract.
- NR Any inclusion of NR indicates that the project specific requirements do not require reporting estimated values below the laboratory reporting limit.

ADDITIONAL COMMENTS

Results are reported on a wet weight basis unless otherwise noted.

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218 SDG Number: RTI0959

Received: 09/14/10-09/15/10 Reported: 09/30/10 11:33

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

		I	Executive	Summa	ry - Detecti	ons				
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Client ID: MW-3 (4-6) (F	RTI1016-01 - So	olid)			Sampled: 09/14/10 10:40 Recvd: 09/15/10 14:					
Volatile Organic Comp	ounds by EPA	8260B								
Methylene Chloride	7.9		5.4	2.5	ug/kg dry	1.00	09/21/10 22:14	CDC	10 1494	8260B
Total Metals by SW 84	6 Series Metho	ods								
Aluminum	11600		10.2	NR	mg/kg dry	1.00	09/22/10 18:47	DAN	10 1415	6010B
Arsenic	4.5		2.0	NR	mg/kg dry	1.00	09/22/10 18:47	DAN	10 1415	6010B
Barium	136		0.511	NR	mg/kg dry	1.00	09/22/10 18:47	DAN	10 1415	6010B
Beryllium	0.562		0.204	NR	mg/kg dry	1.00	09/22/10 18:47	DAN	10 1415	6010B
Calcium	55100		51.1	NR	mg/kg dry	1.00	09/22/10 18:47	DAN	10 1415	6010B
Chromium	14.3		0.511	NR	mg/kg dry	1.00	09/22/10 18:47	DAN	10 1415	6010B
Cobalt	13.0		0.511	NR	mg/kg dry	1.00	09/22/10 18:47	DAN	10 1415	6010B
	19.4		1.0	NR		1.00	09/22/10 18:47		1011415	6010B
Copper					mg/kg dry			DAN		
Iron	18000		10.2	NR	mg/kg dry	1.00	09/22/10 18:47	DAN	10 1415	6010B
Lead	14.7		1.0	NR	mg/kg dry	1.00	09/22/10 18:47	DAN	10 1415	6010B
Magnesium	20600		20.4	NR	mg/kg dry	1.00	09/22/10 18:47	DAN	10 1415	6010B
Manganese	648	B1, B	0.2	NR	mg/kg dry	1.00	09/22/10 18:47	DAN	10 1415	6010B
Nickel	22.0		5.11	NR	mg/kg dry	1.00	09/22/10 18:47	DAN	10 1415	6010B
Potassium	1820		30.7	NR	mg/kg dry	1.00	09/22/10 18:47	DAN	10 1415	6010B
Sodium	260		143	NR	mg/kg dry	1.00	09/22/10 18:47	DAN	10 1415	6010B
Vanadium	21.6		0.511	NR	mg/kg dry	1.00	09/22/10 18:47	DAN	10 1415	6010B
Zinc	68.6		2.0	NR	mg/kg dry	1.00	09/22/10 18:47	DAN	10 1415	6010B
Mercury	0.0218		0.0213	NR	mg/kg dry	1.00	09/20/10 15:32	JRK	10 1343	7471A
General Chemistry Pa	rameters									
Percent Solids	90		0.010	NR	%	1.00	09/16/10 16:43	JRR	1011002	Dry Weight
Client ID: SB-5 (0-2) (R	TI0959-01 - Sol	lid)			Samp	led: 09/	/13/10 10:50	Recv	/d: 09/14/1	0 12:10
Volatile Organic Comp	ounds by EPA	8260B								
Methylene Chloride	3.5	J	6.3	2.9	ug/kg dry	1.00	09/18/10 16:20	PJQ	10 1220	8260B
-	by CC/MS				00,					
Semivolatile Organics										
Anthracene	20	J	210	5.4	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
Benzo(a)anthracene	73	J	210	3.6	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
Benzo(a)pyrene	59	J	210	5.1	ug/kg dry	1.00	09/22/10 23:09	JLG	1011091	8270C
Benzo(b)fluoranthene	84	J	210	4.1	ug/kg dry	1.00	09/22/10 23:09	JLG	1011091	8270C
Benzo(ghi)perylene	47	J	210	2.5	ug/kg dry	1.00	09/22/10 23:09	JLG	1011091	8270C
Benzo(k)fluoranthene	31	J	210	2.3	ug/kg dry	1.00	09/22/10 23:09	JLG	1011091	8270C
Bis(2-ethylhexyl) phthalate	120	J	210	68	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
Chrysene	77	J	210	2.1	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
Fluoranthene	150	J	210	3.1	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
Indeno(1,2,3-cd)pyrene	43	J	210	5.8	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
Phenanthrene	100	J	210	4.4	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
Pyrene	120	J	210	1.4	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
-										
		<u>lethod 8081A</u>								
Organochlorine Pestic 4,4'-DDE [2C] 4,4'-DDT [2C]	<u>ides by EPA N</u> 4.1 4.0	<u>1ethod 8081A</u>	2.1 2.1	0.31 0.21	ug/kg dry ug/kg dry	1.00 1.00	09/18/10 14:46 09/18/10 14:46		10 1075 10 1075	8081A 8081A

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218 SDG Number: RTI0959

Received: 09/14/10-09/15/10 Reported: 09/30/10 11:33

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

		I	Executive	Summa	ry - Detecti	ons				
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Client ID: SB-5 (0-2) (I	RTI0959-01 - Sol	id) - cont.			Samp	led: 09/	/13/10 10:50	Recv	vd: 09/14/1	0 12:10
Total Metals by SW 8	46 Series Metho	<u>ods</u>								
Aluminum	13800		12.3	NR	mg/kg dry	1.00	09/22/10 18:41	DAN	10 1415	6010B
Arsenic	6.4		2.5	NR	mg/kg dry	1.00	09/22/10 18:41	DAN	10 1415	6010B
Barium	133		0.613	NR	mg/kg dry	1.00	09/22/10 18:41	DAN	10 1415	6010B
Beryllium	0.649		0.245	NR	mg/kg dry	1.00	09/22/10 18:41	DAN	10 1415	6010B
Cadmium	0.621		0.245	NR	mg/kg dry	1.00	09/22/10 18:41	DAN	10 1415	6010B
Calcium	13200		61.3	NR	mg/kg dry	1.00	09/22/10 18:41	DAN	10 1415	6010B
Chromium	19.2		0.613	NR	mg/kg dry	1.00	09/22/10 18:41	DAN	10 1415	6010B
Cobalt	11.8		0.613	NR	mg/kg dry	1.00	09/22/10 18:41	DAN	10 1415	6010B
Copper	22.7		1.2	NR	mg/kg dry	1.00	09/22/10 18:41	DAN	10 1415	6010B
Iron	23600		12.3	NR	mg/kg dry	1.00	09/22/10 18:41	DAN	10 1415	6010B
Lead	85.3		1.2	NR	mg/kg dry	1.00	09/22/10 18:41	DAN	10 1415	6010B
Magnesium	9340		24.5	NR	mg/kg dry	1.00	09/22/10 18:41	DAN	10 1415	6010B
Manganese	904	B1, B	0.2	NR	mg/kg dry	1.00	09/22/10 18:41	DAN	10 1415	6010B
Nickel	21.6		6.13	NR	mg/kg dry	1.00	09/22/10 18:41	DAN	10 1415	6010B
Potassium	1910		36.8	NR	mg/kg dry	1.00	09/22/10 18:41	DAN	10 1415	6010B
Vanadium	28.5		0.613	NR	mg/kg dry	1.00	09/22/10 18:41	DAN	10 1415	6010B
Zinc	135		2.5	NR	mg/kg dry	1.00	09/22/10 18:41	DAN	10 1415	6010B
Mercury	0.167		0.0249	NR	mg/kg dry	1.00	09/20/10 15:30	JRK	10 1343	7471A
General Chemistry P	arameters									
Percent Solids	79		0.010	NR	%	1.00	09/16/10 10:26	JRR	1010914	Dry Weight

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300	SDG Number: RTI0959	Received: Reported:	09/14/10-09/15/10 09/30/10 11:33
Lackawanna, NY 14218	Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066		

Sample Summary

Sample Identification	Lab Number	Client Matrix	Date/Time Sampled	Date/Time Received	Sample Qualifiers
MW-3 (4-6)	RTI1016-01	Solid	09/14/10 10:40	09/15/10 14:45	
SB-5 (0-2)	RTI0959-01	Solid	09/13/10 10:50	09/14/10 12:10	

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

SDG Number: RTI0959

G Number: K110959

Received: 09/14/10-09/15/10 Reported: 09/30/10 11:33

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

Client ID: MW-3 (4-6) (RT11016-01 - Solid) Sampled: 09/14/10 10:40 Recvd: 09/15/10 14:44 Volatile Organic Compounds by EPA 8260E 1.1.1-Trichlorocethane ND 5.4 0.39 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 82 1.1.2.2-Trichlorocethane ND 5.4 0.71 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 82 1.1.2-Trichlorocethane ND 5.4 0.71 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 82 1.1-Dichlorocethane ND 5.4 0.67 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 82 1.1-Dichlorocethane ND 5.4 0.67 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 82 1.2-Dichloroberane ND 5.4 0.70 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 82 1.2-Dichloroberane ND 5.4 0.73 ug/kg dry 1.00 09/21/10 22:14 CDC				А	nalytical	Report					
Client D: Unit O: Sampled: By dy dy 100 Object: By dy dy 10.00 Recvd: Object: Object: Display Recvd: Object: Display		-									
Volatile Organic Compounds by EPA 8260B 1.1.1.2-Trichoroethane ND 5.4 0.39 ug/k gfy 1.00 0921/10.22:14 CDC 101494 828 1.1.2.2-Trichoroethane ND 5.4 0.88 ug/k gfy 1.00 0921/10.22:14 CDC 101494 828 1.1.2-Trichoroethane ND 5.4 0.86 ug/k gfy 1.00 0921/10.22:14 CDC 101494 828 1.1.2-Trichoroethane ND 5.4 0.86 ug/k gfy 1.00 0921/10.22:14 CDC 101494 828 1.2-Dichoroethane ND 5.4 0.87 ug/k gfy 1.00 0921/10.22:14 CDC 101494 828 1.2-Dichoroethane ND 5.4 0.43 ug/k gfy 1.00 0921/10.22:14 CDC 101494 828 1.2-Dichoroethane ND 5.4 0.70 ug/k gfy 1.00 0921/10.22:14 CDC 101494 828 1.2-Dichoroethane ND 5.4 0.77 <tu< th=""><th>Analyte</th><th>Result</th><th>Qualifiers</th><th>RL</th><th>MDL</th><th>Units</th><th>Fac</th><th>Analyzed</th><th>Tech</th><th>Batch</th><th>Method</th></tu<>	Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
1,1-Enclosocethane ND 5.4 0.39 ug/kg dry 1.00 092/110 22:14 CDC 101/144 82 1,1,2-Trichloroethane ND 5.4 0.71 ug/kg dry 1.00 092/110 22:14 CDC 101/144 82 1,1,2-Trichloroethane ND 5.4 0.71 ug/kg dry 1.00 092/110 22:14 CDC 101/144 82 1,1-Dichloroethane ND 5.4 0.66 ug/kg dry 1.00 092/110 22:14 CDC 101/144 82 1,2-Dichloroethane ND 5.4 0.67 ug/kg dry 1.00 092/110 22:14 CDC 101/144 82 1,2-Dichloroethane ND 5.4 0.70 ug/kg dry 1.00 092/110 22:14 CDC 101/144 82 1,2-Dichloroethane ND 5.4 0.70 ug/kg dry 1.00 092/110 22:14 CDC 101/144 82 1,2-Dichloroethane ND 5.4 0.76 ug/kg dry 1.00 092/110 22:14	Client ID: MW-3 (4-6) (RTI	1016-01 - So	olid)			Samp	oled: 09	/14/10 10:40	Recv	/d: 09/15/1	0 14:45
1,12,2-Tertachoncethane ND 5.4 0.88 ug/kg dry 1.00 092/110 22:14 CDC 101444 828 1,12-Trichlooc-1,2,2-triflu ND 5.4 0.71 ug/kg dry 1.00 092/110 22:14 CDC 101444 828 1,10-britoroethane ND 5.4 0.66 ug/kg dry 1.00 092/110 22:14 CDC 101444 828 1,12-britoroethane ND 5.4 0.66 ug/kg dry 1.00 092/110 22:14 CDC 101494 828 1,2-britoroethane ND 5.4 0.70 ug/kg dry 1.00 092/110 22:14 CDC 101494 828 1,2-britoroethane ND 5.4 0.73 ug/kg dry 1.00 092/110 22:14 CDC 101494 828 1,2-britoroethane ND 5.4 0.43 ug/kg dry 1.00 092/110 22:14 CDC 101444 828 1,2-britoroethane ND 5.4 0.76 ug/kg dry 1.00 092/110 22:14 <td>Volatile Organic Compou</td> <td>unds by EPA</td> <td>A 8260B</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Volatile Organic Compou	unds by EPA	A 8260B								
1,1,2,2-Tertachoncethane ND 5.4 0.88 ug/kg dry 1.00 09/21/10 22:14 CDC 10/14/4 828 1,1,2-Trichtono-1,2,2-triflu ND 5.4 0.12 ug/kg dry 1.00 09/21/10 22:14 CDC 10/14/4 828 1,1-Dichtorothane ND 5.4 0.66 ug/kg dry 1.00 09/21/10 22:14 CDC 10/14/4 828 1,2-Dichtorothane ND 5.4 0.67 ug/kg dry 1.00 09/21/10 22:14 CDC 10/14/4 828 1,2-Dichtorothane ND 5.4 0.33 ug/kg dry 1.00 09/21/10 22:14 CDC 10/14/4 828 1,2-Dichtorothane ND 5.4 0.43 ug/kg dry 1.00 09/21/10 22:14 CDC 10/14/4 828 1,2-Dichtorothane ND 5.4 0.27 ug/kg dry 1.00 09/21/10 22:14 CDC 10/14/4 828 1,2-Dichtorothane ND 5.4 0.76 ug/kg dry 1.00 09/21/10 22:14 CDC 10/14/4 828 1,2-Dichtorothane ND </td <td>1,1,1-Trichloroethane</td> <td>ND</td> <td></td> <td>5.4</td> <td>0.39</td> <td>ug/kg dry</td> <td>1.00</td> <td>09/21/10 22:14</td> <td>CDC</td> <td>10 1494</td> <td>8260B</td>	1,1,1-Trichloroethane	ND		5.4	0.39	ug/kg dry	1.00	09/21/10 22:14	CDC	10 1494	8260B
1,1,2-Trichioro-1,2-ztrifu ND 5.4 0.71 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 822 oroethane ND 5.4 0.66 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 822 1.1-Dichloroethane ND 5.4 0.67 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 822 1.2-Dichrone-3-chioroparpa ND 5.4 0.67 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 822 1.2-Dichronethane ND 5.4 0.73 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 822 1.2-Dichronethane ND 5.4 0.74 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 822 1.2-Dichronethane ND 5.4 0.73 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 822 1.2-Dichronethane ND 5.4 0.77 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 822 1.2-Dichronethane ND	1,1,2,2-Tetrachloroethane	ND		5.4	0.88		1.00	09/21/10 22:14	CDC	10 1494	8260B
1,1,2-Trichioro-1,2,2-triflu ND 5.4 1,2 ug/kg dry 1,00 09/21/10.22:14 CDC 10/1494 823 1,1-Dichloroethane ND 5.4 0.66 ug/kg dry 1.00 09/21/10.22:14 CDC 10/1494 823 1,2-Dichloroethane ND 5.4 0.33 ug/kg dry 1.00 09/21/10.22:14 CDC 10/1494 823 1,2-Dichloroethane ND 5.4 0.70 ug/kg dry 1.00 09/21/10.22:14 CDC 10/1494 824 1,2-Dichloroethane ND 5.4 0.43 ug/kg dry 1.00 09/21/10.22:14 CDC 10/1494 824 1,2-Dichloroethane ND 5.4 0.74 ug/kg dry 1.00 09/21/10.22:14 CDC 10/1494 824 1,2-Dichlorophane ND 5.4 0.76 ug/kg dry 1.00 09/21/10.22:14 CDC 10/1494 824 1,3-Dichlorophane ND 5.4 0.76 ug/kg dry 1.00 09/21/10.22:14 CDC 10/1494 824 1,3-Dichlorophane ND	1,1,2-Trichloroethane	ND		5.4	0.71		1.00	09/21/10 22:14	CDC	10 1494	8260B
ordentane SA 0.66 ug/kg dry 1.00 09/21/10 22:14 CDC 101494 822 1.1.Dichloroethane ND 5.4 0.67 ug/kg dry 1.00 09/21/10 22:14 CDC 101494 823 1.2.Dibromo-3-chioroprop ND 5.4 0.73 ug/kg dry 1.00 09/21/10 22:14 CDC 101494 823 1.2.Dibromo-3-chioroptop ND 5.4 0.70 ug/kg dry 1.00 09/21/10 22:14 CDC 101494 824 1.2.Dichloroberzene ND 5.4 0.73 ug/kg dry 1.00 09/21/10 22:14 CDC 101494 824 1.2.Dichloroberzene ND 5.4 0.78 ug/kg dry 1.00 09/21/10 22:14 CDC 101494 824 1.3.Dichloroberzene ND 5.4 0.76 ug/kg dry 1.00 09/21/10 22:14 CDC 101494 824 2-Butanone ND 27 2.7 ug/kg dry 1.00 09/21/10 22:14 CDC	1,1,2-Trichloro-1,2,2-triflu	ND					1.00	09/21/10 22:14	CDC	10 1494	8260B
1-Dichlorosethene ND 5.4 0.67 ug/kg dry 1.00 09/21/10 22:14 CCC 101444 822 1.2-Ditromo-3-chioroprop ND 5.4 0.33 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 822 are						007					
12.4-Tichlorobenzene ND 5.4 0.33 uğkg dry 1.00 09/21/10 22:14 CDC 101/1494 822 1.2-Dibromos-3-chloroprop ND 5.4 0.70 ug/kg dry 1.00 09/21/10 22:14 CDC 101/1494 822 1.2-Dibriorobenzene ND 5.4 0.70 ug/kg dry 1.00 09/21/10 22:14 CDC 101/1494 822 1.2-Dibriorobenzene ND 5.4 0.27 ug/kg dry 1.00 09/21/10 22:14 CDC 101/1494 822 1.2-Dibriorobenzene ND 5.4 0.27 ug/kg dry 1.00 09/21/10 22:14 CDC 101/1494 822 1.3-Dibriorobenzene ND 2.7 ug/kg dry 1.00 09/21/10 22:14 CDC 101/1494 822 2-Haxanne ND 2.7 2.0 ug/kg dry 1.00 09/21/10 22:14 CDC 101/1494 822 2-Hexanne ND 2.7 1.3 ug/kg dry 1.00 09/21/10 22:14 CDC 101/1494 822 2-Hexanne ND 5.4 0.73<	1,1-Dichloroethane	ND		5.4	0.66	ug/kg dry	1.00	09/21/10 22:14	CDC	10 1494	8260B
1,2,4-Trichlorobenzene ND 5.4 0.33 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 823 1,2-Dibromos-3-chloroprop ND 5.4 2.7 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 823 1,2-Dichlorobenzene ND 5.4 0.70 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 823 1,2-Dichlorobenzene ND 5.4 0.27 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 823 1,2-Dichlorobenzene ND 5.4 0.27 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 823 2-Butanone ND 2.7 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 824 2-Hexanone ND 2.7 2.0 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 824 2-Hexanone ND 2.7 2.7 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 824 2-Hexanone ND 5.4 0.73 <	1,1-Dichloroethene	ND		5.4	0.67	ug/kg dry	1.00	09/21/10 22:14	CDC	10 1494	8260B
1.2-Dibromo-3-chloroprop ND 5.4 2.7 ug/kg dry 1.00 09/21/10 22:14 CDC 101/1494 82 1.2-Dibromoethane ND 5.4 0.70 ug/kg dry 1.00 09/21/10 22:14 CDC 101/1494 824 1.2-Dibromoethane ND 5.4 0.43 ug/kg dry 1.00 09/21/10 22:14 CDC 101/1494 824 1.2-Dibromoethane ND 5.4 0.27 ug/kg dry 1.00 09/21/10 22:14 CDC 101/1494 822 1.3-Dibromoeznene ND 5.4 0.26 ug/kg dry 1.00 09/21/10 22:14 CDC 101/1494 822 2-Butanone ND 2.7 ug/kg dry 1.00 09/21/10 22:14 CDC 101/1494 822 2-Hexanoe ND 2.7 ug/kg dry 1.00 09/21/10 22:14 CDC 101/1494 824 2-Hexanoe ND 2.7 ug/kg dry 1.00 09/21/10 22:14 CDC 101/1494 824 Bromodichloromethane ND 5.4 0.27 ug/kg dry 1.00 <td>1,2,4-Trichlorobenzene</td> <td>ND</td> <td></td> <td>5.4</td> <td>0.33</td> <td></td> <td>1.00</td> <td>09/21/10 22:14</td> <td>CDC</td> <td>10 1494</td> <td>8260B</td>	1,2,4-Trichlorobenzene	ND		5.4	0.33		1.00	09/21/10 22:14	CDC	10 1494	8260B
ane 1.2-Dibromethane ND 1.2-Dibromethane ND 1.2-Dibromethane ND 5.4	1,2-Dibromo-3-chloroprop	ND		5.4	2.7		1.00	09/21/10 22:14	CDC	10 1494	8260B
1,2-Dichlorobenzene ND 5.4 0.43 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 822 1,2-Dichloropropane ND 5.4 0.27 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 822 1,3-Dichlorobenzene ND 5.4 0.28 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 822 2-Butanone ND 5.4 0.76 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 822 2-Hexanone ND 2.7 2.0 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 822 2-Hexanone ND 2.7 1.8 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 822 Benzene ND 5.4 0.27 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 822 Bromodichloromethane ND 5.4 0.27 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 822 Bromodichloromethane ND 5.4 0.73 </td <td></td>											
12-Dichloroethane ND 5.4 0.27 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 822 1.3-Dichlorobenzene ND 5.4 0.27 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 822 1.4-Dichlorobenzene ND 5.4 0.76 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 822 2-Butanone ND 2.7 2.0 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 822 2-Hexanone ND 2.7 1.8 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 822 2-Hexanone ND 2.7 1.8 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 822 Bromodichloromethane ND 5.4 0.77 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 822 Bromodichloromethane ND 5.4 0.77 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 822 Bromodichloromethane ND 5.4	1,2-Dibromoethane	ND		5.4	0.70	ug/kg dry	1.00	09/21/10 22:14	CDC	10 1494	8260B
12-Dichloroethane ND 5.4 0.27 ug/kg dry 1.00 09/21/10/22:14 CDC 101/1494 822 1,2-Dichloropopane ND 5.4 0.28 ug/kg dry 1.00 09/21/10/22:14 CDC 101/1494 822 1,4-Dichlorobenzene ND 5.4 0.28 ug/kg dry 1.00 09/21/10/22:14 CDC 101/1494 822 2-Butanone ND 2.7 2.0 ug/kg dry 1.00 09/21/10/22:14 CDC 101/1494 822 2-Hexanone ND 2.7 2.7 ug/kg dry 1.00 09/21/10/22:14 CDC 101/1494 822 2-Hexanone ND 2.7 4.6 ug/kg dry 1.00 09/21/10/22:14 CDC 101/1494 822 Beromodichloromethane ND 5.4 0.77 ug/kg dry 1.00 09/21/10/22:14 CDC 101/1494 822 Bromodichloromethane ND 5.4 0.77 ug/kg dry 1.00 09/21/10/22:14 CDC 101/1494 822 Bromodichloromethane ND 5.4 <td>1,2-Dichlorobenzene</td> <td>ND</td> <td></td> <td>5.4</td> <td>0.43</td> <td></td> <td>1.00</td> <td>09/21/10 22:14</td> <td>CDC</td> <td>10 1494</td> <td>8260B</td>	1,2-Dichlorobenzene	ND		5.4	0.43		1.00	09/21/10 22:14	CDC	10 1494	8260B
12-Dichloropropane ND 5.4 2.7 ug/k g/ry 1.00 09/21/10 22:14 CDC 101494 822 1.3-Dichlorobenzene ND 5.4 0.28 ug/kg dry 1.00 09/21/10 22:14 CDC 101494 822 2-Butanone ND 27 2.0 ug/kg dry 1.00 09/21/10 22:14 CDC 101494 822 2-Hexanone ND 27 2.0 ug/kg dry 1.00 09/21/10 22:14 CDC 101494 822 2-Hexanone ND 27 1.8 ug/kg dry 1.00 09/21/10 22:14 CDC 101494 822 2-Hexanone ND 5.4 0.27 ug/kg dry 1.00 09/21/10 22:14 CDC 101494 822 Bromodichloromethane ND 5.4 0.73 ug/kg dry 1.00 09/21/10 22:14 CDC 101494 822 Bromodichloromethane ND 5.4 0.72 ug/kg dry 1.00 09/21/10 22:14 CDC 101494 822 Bromodichloromethane ND 5.4 0.72	1,2-Dichloroethane	ND					1.00			10 1494	8260B
1.3-Dichlorobenzene ND 5.4 0.28 ug/kg dry 1.00 09/21/10 22:14 CDC 10/114/4 822 1.4-Dichlorobenzene ND 27 2.0 ug/kg dry 1.00 09/21/10 22:14 CDC 10/114/4 822 2-Hexanone ND 27 2.7 ug/kg dry 1.00 09/21/10 22:14 CDC 10/114/4 822 2-Hexanone ND 27 4.6 ug/kg dry 1.00 09/21/10 22:14 CDC 10/114/4 822 Acetone ND 5.4 0.27 ug/kg dry 1.00 09/21/10 22:14 CDC 10/114/4 822 Bromodichloromethane ND 5.4 0.27 ug/kg dry 1.00 09/21/10 22:14 CDC 10/114/4 822 Bromodichloromethane ND 5.4 0.73 ug/kg dry 1.00 09/21/10 22:14 CDC 10/114/4 822 Carbon disulfide ND 5.4 0.73 ug/kg dry 1.00 09/21/10 22:14 CDC 10/114/4 822 Chloroberzene ND 5.4 0.	1,2-Dichloropropane	ND					1.00	09/21/10 22:14	CDC	10 1494	8260B
1,4-Dichlorobenzene ND 5,4 0,76 ug/kg dry 1.00 09/21/10 22:14 CDC 10/14/4 822 2-Butanone ND 27 2.0 ug/kg dry 1.00 09/21/10 22:14 CDC 10/14/4 822 2-Hexanone ND 27 2.7 ug/kg dry 1.00 09/21/10 22:14 CDC 10/14/4 822 4-Methyl-2-pentanone ND 27 1.8 ug/kg dry 1.00 09/21/10 22:14 CDC 10/14/4 822 Benzene ND 5.4 0.27 ug/kg dry 1.00 09/21/10 22:14 CDC 10/14/4 822 Bromodichloromethane ND 5.4 0.73 ug/kg dry 1.00 09/21/10 22:14 CDC 10/14/4 822 Carbon disulfide ND 5.4 0.49 ug/kg dry 1.00 09/21/10 22:14 CDC 10/14/4 822 Carbon disulfide ND 5.4 0.73 ug/kg dry 1.00 09/21/10 22:14 CDC 10/14/4 822 Chrobenzene ND 5.4 0.72										10 1494	8260B
2-Butanone ND 27 2.0 ug/kg dry 1.00 09/21/10 22:14 CDC 10/1494 82/2 2-Hexanone ND 27 2.7 ug/kg dry 1.00 09/21/10 22:14 CDC 10/1494 82/2 4-Methyl-2-pentanone ND 27 1.8 ug/kg dry 1.00 09/21/10 22:14 CDC 10/1494 82/2 Benzene ND 5.4 0.73 ug/kg dry 1.00 09/21/10 22:14 CDC 10/1494 82/2 Bromodichloromethane ND 5.4 0.73 ug/kg dry 1.00 09/21/10 22:14 CDC 10/1494 82/2 Bromodichloromethane ND 5.4 0.73 ug/kg dry 1.00 09/21/10 22:14 CDC 10/1494 82/2 Carbon disulfide ND 5.4 0.70 ug/kg dry 1.00 09/21/10 22:14 CDC 10/1494 82/2 Carbon disulfide ND 5.4 0.70 ug/kg dry 1.00 09/21/10 22:14 CDC </td <td></td> <td>8260B</td>											8260B
2-Hexanone ND 27 2.7 ug/kg dry 1.00 09/21/10 22:14 CDC 101/1494 82/2 4-Methyl-2-pentanone ND 27 1.8 ug/kg dry 1.00 09/21/10 22:14 CDC 101/1494 82/2 Benzene ND 5.4 0.27 ug/kg dry 1.00 09/21/10 22:14 CDC 101/1494 82/2 Bromodichloromethane ND 5.4 0.27 ug/kg dry 1.00 09/21/10 22:14 CDC 101/1494 82/2 Bromomethane ND 5.4 0.49 ug/kg dry 1.00 09/21/10 22:14 CDC 101/1494 82/2 Carbon Tetrachloride ND 5.4 0.49 ug/kg dry 1.00 09/21/10 22:14 CDC 101/1494 82/2 Carbon Tetrachloride ND 5.4 0.72 ug/kg dry 1.00 09/21/10 22:14 CDC 101/1494 82/2 Chiorophanzene ND 5.4 0.70 ug/kg dry 1.00 09/21/10 22:14											8260B
4-Methyl-2-pentanone ND 27 1.8 ug/kg dry 1.00 99/21/10 22:14 CDC 1011494 822 Acetone ND 5.4 0.27 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 822 Benzene ND 5.4 0.73 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 822 Bromodichloromethane ND 5.4 0.73 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 822 Bromodichloromethane ND 5.4 0.7 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 822 Carbon disulfide ND 5.4 0.7 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 822 Chloroberzene ND 5.4 0.7 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 822 Chloroform ND 5.4 0.70 ug/kg dry 1.00 09/21/10 22:14 CDC											8260B
Acetone ND 27 4.6 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 822 Bernzene ND 5.4 0.27 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 822 Bromodichloromethane ND 5.4 0.73 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 822 Bromodichloromethane ND 5.4 2.7 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 822 Carbon disulfide ND 5.4 0.73 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 822 Carbon disulfide ND 5.4 0.72 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 822 Chloromethane ND 5.4 0.72 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 822 Chloromethane ND 5.4 0.70 ug/kg dry 1.00 09/21/10 22:14 CDC											8260B
Benzene ND 5.4 0.27 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 824 Bromodichloromethane ND 5.4 0.73 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 824 Bromoform ND 5.4 0.73 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 824 Bromomethane ND 5.4 0.49 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 824 Carbon Tetrachloride ND 5.4 0.72 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 824 Chlorobenzene ND 5.4 0.70 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 824 Chloroform ND 5.4 0.70 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 824 Chloroform ND 5.4 0.33 <td></td> <td>8260B</td>											8260B
Bromodichloromethane ND 5.4 0.73 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 822 Bromodrm ND 5.4 2.7 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 822 Bromorethane ND 5.4 2.7 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 822 Carbon disulfide ND 5.4 0.53 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 822 Carbon disulfide ND 5.4 0.53 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 822 Chloromethane ND 5.4 0.72 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 822 Chloromethane ND 5.4 0.73 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 822 Chloromethane ND 5.4											8260B
Bromoform ND 5.4 2.7 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 824 Bromomethane ND 5.4 0.49 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 824 Carbon disulfide ND 5.4 2.7 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 824 Carbon Tetrachloride ND 5.4 0.72 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 824 Chlorobenzene ND 5.4 0.72 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 824 Chlorobtanzen ND 5.4 0.74 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 824 Chlorobtanzen ND 5.4 0.70 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 824 Chlorobtanzene ND 5.4 0.76 ug/kg dry 1.00 09/21/10 22:14 CDC											8260B
Bromomethane ND 5.4 0.49 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 82/2 Carbon disulfide ND 5.4 2.7 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 82/2 Carbon Tetrachloride ND 5.4 0.73 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 82/2 Dibromochloromethane ND 5.4 0.72 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 82/2 Chlorobenzene ND 5.4 0.70 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 82/2 Chloroform ND 5.4 0.70 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 82/2 Chloroform ND 5.4 0.70 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 82/2 Cyclohexane ND 5.4											8260B
Carbon disulfide ND 5.4 2.7 ug/kg dry 1.00 09/21/10 22:14 CDC 10/1494 82/2 Carbon Tetrachloride ND 5.4 0.53 ug/kg dry 1.00 09/21/10 22:14 CDC 10/1494 82/2 Chlorobenzene ND 5.4 0.72 ug/kg dry 1.00 09/21/10 22:14 CDC 10/1494 82/2 Chlorobenzene ND 5.4 0.70 ug/kg dry 1.00 09/21/10 22:14 CDC 10/1494 82/2 Chloroethane ND 5.4 0.34 ug/kg dry 1.00 09/21/10 22:14 CDC 10/1494 82/2 Chloroethane ND 5.4 0.33 ug/kg dry 1.00 09/21/10 22:14 CDC 10/1494 82/2 Cisi-1.2-Dichloroethene ND 5.4 0.76 ug/kg dry 1.00 09/21/10 22:14 CDC 10/1494 82/2 Cisi-1.2-Dichloroethene ND											
Carbon Tetrachloride ND 5.4 0.53 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 820 Chlorobenzene ND 5.4 0.72 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 820 Dibromochloromethane ND 5.4 0.70 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 820 Chloroethane ND 5.4 0.70 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 820 Chloroethane ND 5.4 0.34 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 820 Chloroethane ND 5.4 0.70 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 820 Cish-1.2-Dichloroptene ND 5.4 0.76 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 820 Cyclohexane ND 5.4 0.76 ug/kg dry 1.00 09/21/10 22:14 CDC											8260B
Chlorobenzene ND 5.4 0.72 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 820 Dibromochloromethane ND 5.4 0.70 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 820 Chloroothane ND 5.4 1.2 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 820 Chloroothane ND 5.4 0.34 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 820 Chloroothane ND 5.4 0.33 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 820 Cis-1,3-Dichloroothene ND 5.4 0.70 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 820 Cyclohexane ND 5.4 0.76 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 820 Dicholorodifluoromethane ND 5.4 </td <td></td> <td>8260B</td>											8260B
Dibromochloromethane ND 5.4 0.70 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 824 Chloroethane ND 5.4 1.2 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 824 Chloroethane ND 5.4 0.34 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 824 Chloroethane ND 5.4 0.33 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 824 cis-1,2-Dichloroethene ND 5.4 0.70 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 824 cis-1,3-Dichloropropene ND 5.4 0.78 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 824 Cyclohexane ND 5.4 0.76 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 824 Isopropylbenzene ND 5.4 0.82 ug/kg dry 1.00 09/21/10 22:14 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>8260B</td></t<>											8260B
Chloroethane ND 5.4 1.2 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Chloroform ND 5.4 0.34 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Chloroform ND 5.4 0.33 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Cis-1,2-Dichloroethene ND 5.4 0.70 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Cyclohexane ND 5.4 0.78 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Cyclohexane ND 5.4 0.76 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Dichlorodifluoromethane ND 5.4 0.76 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Isopropylbenzene ND 5.4											8260B
Chloroform ND 5.4 0.34 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Chloromethane ND 5.4 0.33 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 cis-1,2-Dichloroethene ND 5.4 0.70 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 cis-1,3-Dichloropropene ND 5.4 0.70 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Cyclohexane ND 5.4 0.76 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Cyclohexane ND 5.4 0.45 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Dichlorodifluoromethane ND 5.4 0.45 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Ethylenzene ND L 5.4 0.82 ug/kg dry 1.00 09/21/10 22:14											8260B
Chloromethane ND 5.4 0.33 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 cis-1,2-Dichloroethene ND 5.4 0.70 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 cis-1,3-Dichloropropene ND 5.4 0.78 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Cyclohexane ND 5.4 0.76 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Dichlorodifluoromethane ND 5.4 0.76 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Ethylbenzene ND 5.4 0.38 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Isopropylbenzene ND L 5.4 0.82 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Methyl-Ebury <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>8260B</td></td<>											8260B
cis-1,2-Dichloroethene ND 5.4 0.70 ug/kg dry 1.00 09/21/10 22:14 CDC 101/1494 826 cis-1,3-Dichloropropene ND 5.4 0.78 ug/kg dry 1.00 09/21/10 22:14 CDC 101/1494 826 Cyclohexane ND 5.4 0.76 ug/kg dry 1.00 09/21/10 22:14 CDC 101/1494 826 Dichlorodifluoromethane ND 5.4 0.45 ug/kg dry 1.00 09/21/10 22:14 CDC 101/1494 826 Ethylbenzene ND 5.4 0.45 ug/kg dry 1.00 09/21/10 22:14 CDC 101/1494 826 Isopropylbenzene ND L 5.4 0.82 ug/kg dry 1.00 09/21/10 22:14 CDC 101/1494 826 Methyl-Butyl Ether ND L 5.4 0.53 ug/kg dry 1.00 09/21/10 22:14 CDC 101/1494 826 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>8260B</td></t<>											8260B
cis-1,3-Dichloropropene ND 5.4 0.78 ug/kg dry 1.00 09/21/10 22:14 CDC 10/1494 826 Cyclohexane ND 5.4 0.76 ug/kg dry 1.00 09/21/10 22:14 CDC 10/1494 826 Dichlorodifluoromethane ND 5.4 0.45 ug/kg dry 1.00 09/21/10 22:14 CDC 10/1494 826 Ethylbenzene ND 5.4 0.45 ug/kg dry 1.00 09/21/10 22:14 CDC 10/1494 826 Isopropylbenzene ND 5.4 0.38 ug/kg dry 1.00 09/21/10 22:14 CDC 10/1494 826 Methyl Acetate ND L 5.4 0.82 ug/kg dry 1.00 09/21/10 22:14 CDC 10/1494 826 Methyl Acetate ND L 5.4 0.53 ug/kg dry 1.00 09/21/10 22:14 CDC 10/1494 826 Methyl Acetate ND 5.4 0.83 ug/kg dry 1.00											8260B
Cyclohexane ND 5.4 0.76 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Dichlorodifiluoromethane ND 5.4 0.45 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Ethylbenzene ND 5.4 0.38 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Isopropylbenzene ND 5.4 0.38 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Methyl Acetate ND L 5.4 0.82 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Methyl-t-Butyl Ether ND L 5.4 0.53 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 (MTBE)											8260B
Dichlorodifluoromethane ND 5.4 0.45 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Ethylbenzene ND 5.4 0.38 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Isopropylbenzene ND 5.4 0.82 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Methyl Acetate ND L 5.4 1.0 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Methyl Acetate ND L 5.4 1.0 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Methyl-t-Butyl Ether ND 5.4 0.53 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 (MTBE) ND 5.4 0.83 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Styrene ND						ug/kg dry	1.00				8260B
Ethylbenzene ND 5.4 0.38 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Isopropylbenzene ND 5.4 0.82 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Methyl Acetate ND L 5.4 0.82 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Methyl Acetate ND L 5.4 1.0 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Methyl Acetate ND L 5.4 0.53 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 (MTBE)	Cyclohexane			5.4	0.76	ug/kg dry	1.00			10 1494	8260B
Isopropylbenzene ND 5.4 0.82 ug/kg dry 1.00 09/21/10 22:14 CDC 10/1494 826 Methyl Acetate ND L 5.4 1.0 ug/kg dry 1.00 09/21/10 22:14 CDC 10/1494 826 Methyl-t-Butyl Ether ND L 5.4 0.53 ug/kg dry 1.00 09/21/10 22:14 CDC 10/1494 826 (MTBE)	Dichlorodifluoromethane	ND		5.4		ug/kg dry	1.00			10 1494	8260B
Methyl Acetate ND L 5.4 1.0 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Methyl-t-Butyl Ether ND 5.4 0.53 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 (MTBE) ND 5.4 0.53 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Methylcyclohexane ND 5.4 0.83 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Methylene Chloride 7.9 5.4 2.5 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Styrene ND 5.4 0.27 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Tetrachloroethene ND 5.4 0.27 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Toluene ND 5.4 0.73 ug/kg dry 1.00 09/21/10 22:14 C	Ethylbenzene	ND		5.4	0.38	ug/kg dry	1.00			10 1494	8260B
Methyl-t-Butyl Ether ND 5.4 0.53 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 (MTBE) Methylcyclohexane ND 5.4 0.83 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Methylcyclohexane ND 5.4 0.83 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Methylene Chloride 7.9 5.4 2.5 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Styrene ND 5.4 0.27 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Tetrachloroethene ND 5.4 0.27 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Toluene ND 5.4 0.41 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 trans-1,2-Dichloroethene ND 5.4 0.56 ug/kg dry 1.00 09/2	Isopropylbenzene	ND		5.4	0.82	ug/kg dry	1.00	09/21/10 22:14	CDC	10 1494	8260B
(MTBE) ND 5.4 0.83 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Methylene Chloride 7.9 5.4 2.5 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Styrene ND 5.4 2.5 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Tetrachloroethene ND 5.4 0.27 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Tetrachloroethene ND 5.4 0.73 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Toluene ND 5.4 0.41 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 trans-1,2-Dichloroethene ND 5.4 0.56 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 e Trinshoroethene ND 5	Methyl Acetate	ND	L	5.4	1.0	ug/kg dry	1.00	09/21/10 22:14	CDC	10 1494	8260B
Methylcyclohexane ND 5.4 0.83 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Methylene Chloride 7.9 5.4 2.5 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Styrene ND 5.4 0.27 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Tetrachloroethene ND 5.4 0.27 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Toluene ND 5.4 0.73 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Toluene ND 5.4 0.41 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 trans-1,2-Dichloroethene ND 5.4 0.56 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 e Trichloroethene ND <td< td=""><td>, ,</td><td>ND</td><td></td><td>5.4</td><td>0.53</td><td>ug/kg dry</td><td>1.00</td><td>09/21/10 22:14</td><td>CDC</td><td>10 1494</td><td>8260B</td></td<>	, ,	ND		5.4	0.53	ug/kg dry	1.00	09/21/10 22:14	CDC	10 1494	8260B
Methylene Chloride 7.9 5.4 2.5 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Styrene ND 5.4 0.27 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Tetrachloroethene ND 5.4 0.27 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Toluene ND 5.4 0.73 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Toluene ND 5.4 0.41 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 trans-1,2-Dichloroethene ND 5.4 0.56 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 trans-1,3-Dichloropropen ND 5.4 2.4 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 e Trichloroethene ND		ND		5.4	0.83	ua/ka drv	1.00	09/21/10 22:14	CDC	10 1494	8260B
Styrene ND 5.4 0.27 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Tetrachloroethene ND 5.4 0.73 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Toluene ND 5.4 0.73 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 trans-1,2-Dichloroethene ND 5.4 0.41 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 trans-1,2-Dichloroethene ND 5.4 0.56 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 trans-1,3-Dichloropropen ND 5.4 2.4 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 e Trichloroethene ND 5.4 2.4 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 e Trichloroethene ND 5.4 1.2 ug/kg dry 1.00											8260B
Tetrachloroethene ND 5.4 0.73 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 Toluene ND 5.4 0.41 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 trans-1,2-Dichloroethene ND 5.4 0.56 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 trans-1,3-Dichloroethene ND 5.4 0.56 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 e	-										8260B
Toluene ND 5.4 0.41 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 trans-1,2-Dichloroethene ND 5.4 0.56 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 trans-1,2-Dichloroethene ND 5.4 2.4 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 e Trichloroethene ND 5.4 2.4 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 e Trichloroethene ND 5.4 1.2 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826	•										8260B
trans-1,2-Dichloroethene ND 5.4 0.56 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 trans-1,3-Dichloropropen ND 5.4 2.4 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 e Trichloroethene ND 5.4 1.2 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826											8260B
trans-1,3-Dichloropropen ND 5.4 2.4 ug/kg dry 1.00 09/21/10 22:14 CDC 1011494 826 e											8260B
e Trichloroethene ND 5.4 1.2 ug/kg dry 1.00 09/21/10 22:14 CDC 10I1494 826											8260B 8260B
	e										
Trichlorofluoromethane ND 5.4 0.51 ug/kg drv 1.00 09/21/10 22:14 CDC 10/1494 826	Trichloroethene						1.00	09/21/10 22:14	CDC	10 1494	8260B
	Trichlorofluoromethane	ND		5.4	0.51	ug/kg dry	1.00	09/21/10 22:14	CDC	10 1494	8260B
	Vinyl chloride	ND		5.4			1.00	09/21/10 22:14	CDC	10 1494	8260B

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

SDG Number: RTI0959

Received: 09/14/10-09/15/10 Reported: 09/30/10 11:33

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			F	Analytical	Report						
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method	
•											
Client ID: MW-3 (4-6) (RTI	1016-01 - 50	olia) - cont.			Samp	/14/10 10:40	Recv	Recvd: 09/15/10 14:45			
Volatile Organic Compou		8260B - co									
Xylenes, total	ND		11	0.91	ug/kg dry	1.00	09/21/10 22:14	CDC	10 1494	8260B	
1,2-Dichloroethane-d4	101 %		Surr Limits:	. ,			09/21/10 22:14		10 1494	8260B	
4-Bromofluorobenzene	100 %		Surr Limits:	. ,			09/21/10 22:14		10/1494	8260B	
Toluene-d8	107 %		Surr Limits:	(71-125%)			09/21/10 22:14	CDC	10 1494	8260B	
Semivolatile Organics by	/ GC/MS										
2,4,5-Trichlorophenol	ND		190	41	ug/kg dry	1.00	09/22/10 23:32	JLG	10 1091	8270C	
2,4,6-Trichlorophenol	ND		190	12	ug/kg dry	1.00	09/22/10 23:32	JLG	10 1091	8270C	
2,4-Dichlorophenol	ND		190	9.8	ug/kg dry	1.00	09/22/10 23:32	JLG	10 1091	8270C	
2,4-Dimethylphenol	ND		190	50	ug/kg dry	1.00	09/22/10 23:32	JLG	10 1091	8270C	
2,4-Dinitrophenol	ND		360	65	ug/kg dry	1.00	09/22/10 23:32	JLG	10 1091	8270C	
2,4-Dinitrotoluene	ND		190	29	ug/kg dry	1.00	09/22/10 23:32	JLG	10 1091	8270C	
2,6-Dinitrotoluene	ND		190	46	ug/kg dry	1.00	09/22/10 23:32	JLG	10 1091	8270C	
2-Chloronaphthalene	ND		190	13	ug/kg dry	1.00	09/22/10 23:32	JLG	10 1091	8270C	
2-Chlorophenol	ND		190	9.5	ug/kg dry	1.00	09/22/10 23:32	JLG	10 1091	8270C	
2-Methylnaphthalene	ND		190	2.3	ug/kg dry	1.00	09/22/10 23:32	JLG	1011091	8270C	
2-Methylphenol	ND		190	5.7	ug/kg dry	1.00	09/22/10 23:32	JLG	1011091	8270C	
2-Nitroaniline	ND		360	60	ug/kg dry	1.00	09/22/10 23:32	JLG	1011091	8270C	
2-Nitrophenol	ND		190	8.5	ug/kg dry	1.00	09/22/10 23:32	JLG	1011091	8270C	
3.3'-Dichlorobenzidine	ND		190	160	ug/kg dry	1.00	09/22/10 23:32	JLG	1011091	8270C	
3-Nitroaniline	ND		360				09/22/10 23:32	JLG	1011091	8270C	
				43	ug/kg dry	1.00					
4,6-Dinitro-2-methylphen	ND		360	64	ug/kg dry	1.00	09/22/10 23:32	JLG	10 1091	8270C	
ol 4-Bromophenyl phenyl	ND		190	59	ug/kg dry	1.00	09/22/10 23:32	JLG	10 1091	8270C	
ether	ND		100	00	ug/ng ury	1.00	05/22/10 25:52	ULO	1011001	02100	
4-Chloro-3-methylphenol	ND		190	7.7	ug/kg dry	1.00	09/22/10 23:32	JLG	10 1091	8270C	
4-Chloroaniline	ND		190	55	ug/kg dry	1.00	09/22/10 23:32	JLG	1011091	8270C	
	ND		190	4.0		1.00	09/22/10 23:32	JLG	1011091	8270C	
4-Chlorophenyl phenyl	ND		190	4.0	ug/kg dry	1.00	09/22/10 23.32	JLG	1011091	02/00	
ether 4 Mathylphopol	ND		190	10	ua/ka day	1.00	09/22/10 23:32	JLG	10 1091	8270C	
4-Methylphenol 4-Nitroaniline	ND				ug/kg dry			JLG	1011091		
			360	21	ug/kg dry	1.00	09/22/10 23:32			8270C	
4-Nitrophenol	ND		360	45	ug/kg dry	1.00	09/22/10 23:32	JLG	1011091	8270C	
Acenaphthene	ND		190	2.2	ug/kg dry	1.00	09/22/10 23:32	JLG	1011091	8270C	
Acenaphthylene	ND		190	1.5	ug/kg dry	1.00	09/22/10 23:32		10 1091	8270C	
Acetophenone	ND		190	9.6	ug/kg dry	1.00	09/22/10 23:32		10 1091	8270C	
Anthracene	ND		190	4.8	ug/kg dry	1.00	09/22/10 23:32		10 1091	8270C	
Atrazine	ND		190	8.3	ug/kg dry	1.00	09/22/10 23:32		10 1091	8270C	
Benzaldehyde	ND		190	20	ug/kg dry	1.00	09/22/10 23:32		10 1091	8270C	
Benzo(a)anthracene	ND		190	3.2	ug/kg dry	1.00	09/22/10 23:32		10 1091	8270C	
Benzo(a)pyrene	ND		190	4.5	ug/kg dry	1.00	09/22/10 23:32	JLG	10 1091	8270C	
Benzo(b)fluoranthene	ND		190	3.6	ug/kg dry	1.00	09/22/10 23:32	JLG	10 1091	8270C	
Benzo(ghi)perylene	ND		190	2.2	ug/kg dry	1.00	09/22/10 23:32	JLG	10 1091	8270C	
Benzo(k)fluoranthene	ND		190	2.1	ug/kg dry	1.00	09/22/10 23:32	JLG	10 1091	8270C	
Biphenyl	ND		190	12	ug/kg dry	1.00	09/22/10 23:32		10 1091	8270C	
Bis(2-chloroethoxy)metha	ND		190	10	ug/kg dry	1.00	09/22/10 23:32		10 1091	8270C	
ne											
Bis(2-chloroethyl)ether	ND		190	16	ug/kg dry	1.00	09/22/10 23:32	JLG	10 1091	8270C	
2,2'-Oxybis(1-Chloroprop	ND		190	19	ug/kg dry	1.00	09/22/10 23:32		1011091	8270C	
ane)			100	10	aging ary	1.00	50,22,10 20.02	010		02/00	
Bis(2-ethylhexyl)	ND		190	60	ug/kg dry	1.00	09/22/10 23:32	JI G	10 1091	8270C	
phthalate			100	00	uging ury	1.00	JUILLI 10 20.02	010	1011001	02100	

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

SDG Number: RTI0959

Received: 09/14/10-09/15/10 Reported: 09/30/10 11:33

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

Client ID: MW-3 (4-6) (RTI1016-01 - Solid) - cont. Sampled: 09/14/10 10:40 Recvd: 09/11 Semivolatile Organics by GC/MS - cont. Butyl benzyl phthalate ND 190 50 ug/kg dry 1.00 09/22/10 23:32 JLG 10109' Caprolactam ND 190 51 ug/kg dry 1.00 09/22/10 23:32 JLG 10109' Carbazole ND 190 1.2 ug/kg dry 1.00 09/22/10 23:32 JLG 10109' Chrysene ND 190 1.9 ug/kg dry 1.00 09/22/10 23:32 JLG 10109' Dibenzotiran ND 190 1.9 ug/kg dry 1.00 09/22/10 23:32 JLG 10109' Di-n-otyl phthalate ND 190 4.9 ug/kg dry 1.00 09/22/10 23:32 JLG 10109' Di-n-otyl phthalate ND 190 4.4 ug/kg dry 1.00 09/22/10 23:32 JLG 10109' Fluorene ND 190 2.7 ug/kg dry 1.00 <td< th=""><th></th><th></th><th></th><th></th><th></th><th>Report</th><th>nalytical</th><th>A</th><th></th><th></th><th></th></td<>						Report	nalytical	A			
Client ID: NW-3 (4-6) (RTI1016-01 - Solid) - cont. Sampled: 09/14/10 Other Recvd: 09/11 Semivolatile Organics by GC/MS - cont. Butyl benzyl pithalate ND 190 50 ug/kg dry 1.00 09/22/10 23.32 JLG 10109' Carbazole ND 190 50 ug/kg dry 1.00 09/22/10 23.32 JLG 10109' Carbazole ND 190 2.2 ug/kg dry 1.00 09/22/10 23.32 JLG 10109' Chrysene ND 190 1.9 ug/kg dry 1.00 09/22/10 23.32 JLG 10109' Dientory inthibalte ND 190 1.9 ug/kg dry 1.00 09/22/10 23.32 JLG 10109' Din-buty inthibalte ND 190 4.4 ug/kg dry 1.00 09/22/10 23.32 JLG 10109' Fluoranthene ND 190 4.3 ug/kg dry 1.00 09/22/10 23.32 JLG			Lab	Date	Dil				Data	Sample	
Semivolatile Organics by GC/MS - cont. Butyl benzyl phthalate ND 190 50 ug/kg dry 1.00 09/22/10 23:32 JLG 101097 Carbazole ND 190 2.2 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Chrysene ND 190 2.2 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Dibenzo(tan) ND 190 2.2 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Dibenzo(tan) ND 190 5.6 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Dimethyl phthalate ND 190 6.4 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Din-butyl phthalate ND 190 4.4 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Fluoranthene ND 190 4.3 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Hexachlorobenzene<	Method	Batch	Tech	Analyzed	Fac	Units	MDL	RL	Qualifiers	Result	Analyte
Buly benzyl phthalate ND 190 50 ug/kg dry 1.00 09/22/10 23:32 JLG 101097 Caprolactarm ND 190 81 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Carbazole ND 190 1.9 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Chrysene ND 190 1.9 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Dibenzofuran ND 190 1.6 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Dirh-buly phthalate ND 190 4.9 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Dirh-buly phthalate ND 190 4.4 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Fluoranthene ND 190 2.7 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Fluoranthene ND 190 3.4 ug/kg dry <td>5/10 14:45</td> <td>/d: 09/15/1</td> <td>Recv</td> <td colspan="3">Sampled: 09/14/10 10:40</td> <td></td> <td></td> <td>olid) - cont.</td> <td>11016-01 - Sc</td> <td>Client ID: MW-3 (4-6) (RT</td>	5/10 14:45	/d: 09/15/1	Recv	Sampled: 09/14/10 10:40					olid) - cont.	11016-01 - Sc	Client ID: MW-3 (4-6) (RT
Caprolactam ND 190 81 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Carbazole ND 190 2.2 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Chrysene ND 190 2.2 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Diberzo(a,h)anthracene ND 190 1.9 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Diberzo(a,h)anthracene ND 190 5.6 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Dientotyl phthalate ND 190 4.4 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Fluorene ND 190 4.4 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Fluorene ND 190 9.3 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Hexachlorobenzene ND 190 9.3 ug/kg dry <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ont.</td> <td>y GC/MS - co</td> <td>Semivolatile Organics b</td>									ont.	y GC/MS - co	Semivolatile Organics b
Carbazole ND 190 2.2 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Chrysene ND 190 1.9 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Dibenzo(a,h)anthracene ND 190 1.9 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Dibenzo(a,h)anthracene ND 190 5.6 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Dierhyl phthalate ND 190 4.9 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Din-octyl phthalate ND 190 4.4 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Fluoranthene ND 190 4.3 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Fluoranthene ND 190 9.5 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Hexachlorobetrane ND 190 9.5 <	1 8270C	10 1091	JLG	09/22/10 23:32	1.00	ug/kg dry	50	190		ND	Butyl benzyl phthalate
Chrysene ND 190 1.9 ug/kg dry 1.00 09/22/10 23:32 JLG 101093 Dibenzo(a,h)anthracene ND 190 2.2 ug/kg dry 1.00 09/22/10 23:32 JLG 101093 Dibenzo(ruran ND 190 5.6 ug/kg dry 1.00 09/22/10 23:32 JLG 1011093 Dimethyl phthalate ND 190 4.9 ug/kg dry 1.00 09/22/10 23:32 JLG 1011093 Din-butyl phthalate ND 190 4.4 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Din-butyl phthalate ND 190 4.4 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Fluoranthene ND 190 9.3 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Hexachlorobutadiene ND 190 9.3 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Hexachlorobutadiene ND 190 14	1 8270C	10 1091	JLG	09/22/10 23:32	1.00	ug/kg dry	81	190		ND	Caprolactam
Dibenzo(a,h)anthracene ND 190 2.2 ug/kg dry 1.00 09/22/10 23:32 JLG 101097 Dibenzofuran ND 190 1.9 ug/kg dry 1.00 09/22/10 23:32 JLG 101097 Dibentyl phthalate ND 190 4.9 ug/kg dry 1.00 09/22/10 23:32 JLG 101097 Din-butyl phthalate ND 190 4.4 ug/kg dry 1.00 09/22/10 23:32 JLG 101097 Din-butyl phthalate ND 190 4.4 ug/kg dry 1.00 09/22/10 23:32 JLG 101097 Fluoranthene ND 190 4.3 ug/kg dry 1.00 09/22/10 23:32 JLG 101097 Hexachlorobutadiene ND 190 5.6 ug/kg dry 1.00 09/22/10 23:32 JLG 101097 Hexachlorobutadiene ND 190 5.2 ug/kg dry 1.00 09/22/10 23:32 JLG 101097 Indeno(1,2,3-cd)prene ND 190 5.2	1 8270C	10 1091	JLG	09/22/10 23:32	1.00	ug/kg dry	2.2	190		ND	Carbazole
Dibenzoturan ND 190 1.9 ug/kg dry 1.00 09/22/10 23:32 JLG 101097 Diethyl phthalate ND 190 5.6 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Din-hotyl phthalate ND 190 4.9 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Din-butyl phthalate ND 190 64 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Din-butyl phthalate ND 190 4.3 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Fluoranthene ND 190 9.3 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Hexachlorobenzene ND 190 9.5 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Hexachlorobenzene ND 190 14 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Ibeachlorobethane ND 190 190	1 8270C	10 1091	JLG	09/22/10 23:32	1.00	ug/kg dry	1.9	190		ND	Chrysene
Diethyl phthalate ND 190 5.6 ug/kg dry 1.00 09/22/10 23:32 JLG 101097 Dimethyl phthalate ND 190 64 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Din-butyl phthalate ND 190 64 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Fluorene ND 190 4.4 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Fluorene ND 190 4.3 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Hexachlorobutadiene ND 190 9.3 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Hexachlorocyclopentadie ND 190 56 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Ibdean(1,2,3-cd)pyrene ND 190 5.2 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Ibrdean(2,2-dipyrene ND 190 5.1 <td>1 8270C</td> <td>10 1091</td> <td>JLG</td> <td>09/22/10 23:32</td> <td>1.00</td> <td>ug/kg dry</td> <td>2.2</td> <td>190</td> <td></td> <td>ND</td> <td>Dibenzo(a,h)anthracene</td>	1 8270C	10 1091	JLG	09/22/10 23:32	1.00	ug/kg dry	2.2	190		ND	Dibenzo(a,h)anthracene
Dimethyl phthalate ND 190 4.9 ug/kg dry 1.00 09/22/10 23:32 JLG 101097 Din-butyl phthalate ND 190 64 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Din-butyl phthalate ND 190 2.7 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Fluoranthene ND 190 2.7 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Fluorene ND 190 9.3 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Hexachlorobutadiene ND 190 9.5 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Hexachlorobutadiene ND 190 14 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Idexachlorobethane ND 190 14 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Idexachlorobenane ND 190 13	1 8270C	10 1091	JLG	09/22/10 23:32	1.00	ug/kg dry	1.9	190		ND	Dibenzofuran
Di-n-butyl phthalate ND 190 64 ug/kg dry 1.00 09/22/10 23:32 JLG 101097 Di-n-otyl phthalate ND 190 4.4 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Fluoranthene ND 190 2.7 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Fluorene ND 190 4.3 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Hexachlorobenzene ND 190 9.5 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Hexachlorocyclopentadie ND 190 56 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Indeno(1,2,3-cd)pyrene ND 190 52 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Indeno(1,2,3-cd)pyrene ND 190 52 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Naphthalene ND 190 3.1 <td>1 8270C</td> <td>1011091</td> <td>JLG</td> <td>09/22/10 23:32</td> <td>1.00</td> <td>ug/kg dry</td> <td>5.6</td> <td>190</td> <td></td> <td>ND</td> <td>Diethyl phthalate</td>	1 8270C	1011091	JLG	09/22/10 23:32	1.00	ug/kg dry	5.6	190		ND	Diethyl phthalate
Di-n-octyl phthalate ND 190 4.4 ug/kg dry 1.00 09/22/10 23:32 JLG 101097 Fluoranthene ND 190 2.7 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Fluoranthene ND 190 4.3 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Hexachlorobutadiene ND 190 9.3 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Hexachlorobutadiene ND 190 9.5 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Hexachlorocethane ND 190 56 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Isophorone ND 190 5.2 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Napthalene ND 190 3.1 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 N-Nitrosodi-n-propylamin ND 190 15	1 8270C	1011091	JLG	09/22/10 23:32	1.00	ug/kg dry	4.9	190		ND	Dimethyl phthalate
Fluoranthene ND 190 2.7 ug/kg dry 1.00 09/22/10 23:32 JLG 101097 Fluorene ND 190 4.3 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Hexachlorobenzene ND 190 9.3 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Hexachlorobutadiene ND 190 9.5 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Hexachlorobutadiene ND 190 56 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Hexachloroethane ND 190 14 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Isophorone ND 190 5.2 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Naphtalene ND 190 3.1 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Nettrosodi-n-propylamin ND 190 10 ug/kg	1 8270C	1011091	JLG	09/22/10 23:32	1.00	ug/kg dry	64	190		ND	Di-n-butyl phthalate
Fluorene ND 190 4.3 ug/kg dry 1.00 09/22/10 23:32 JLG 101097 Hexachlorobenzene ND 190 9.3 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Hexachlorobutadiene ND 190 9.5 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Hexachlorobutadiene ND 190 56 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Indeno(1,2,3-cd)pyrene ND 190 5.2 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Isophorone ND 190 5.2 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Naphthalene ND 190 3.1 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 N-Nitrosodi-n-propylamin ND 190 10 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Pentachlorophenol ND 190 10	1 8270C	1011091	JLG	09/22/10 23:32	1.00	ug/kg dry	4.4	190		ND	Di-n-octyl phthalate
Hexachlorobenzene ND 190 9.3 ug/kg dry 1.00 09/22/10 23:32 JLG 101097 Hexachlorobutadiene ND 190 9.5 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Hexachlorobutadiene ND 190 56 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Hexachlorobutadiene ND 190 14 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Indeno(1,2,3-cd)pyrene ND 190 5.2 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Isophorone ND 190 5.2 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Naphthalene ND 190 3.1 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 NN 190 15 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 NN 190 190 ug/kg dry 1.00 09/22/10	1 8270C	1011091	JLG	09/22/10 23:32	1.00	ug/kg dry	2.7	190		ND	Fluoranthene
Hexachlorobutadiene ND 190 9.5 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Hexachlorocyclopentadie ND 190 56 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 ne 190 52 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Indeno(1,2,3-cd)pyrene ND 190 5.2 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Isophorone ND 190 5.3 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Naphthalene ND 190 3.1 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Nitrobenzene ND 190 15 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Pentachlorophenol ND 190 10 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Phenol ND 190 3.9 u	1 8270C	1011091	JLG	09/22/10 23:32	1.00	ug/kg dry	4.3	190		ND	Fluorene
Hexachlorocyclopentadie ND 190 56 ug/kg dry 1.00 09/22/10 23:32 JLG 101091 ne Hexachloroethane ND 190 14 ug/kg dry 1.00 09/22/10 23:32 JLG 1011091 Indeno(1,2,3-cd)pyrene ND 190 5.2 ug/kg dry 1.00 09/22/10 23:32 JLG 1011091 Isophorone ND 190 9.3 ug/kg dry 1.00 09/22/10 23:32 JLG 1011091 Naphthalene ND 190 3.1 ug/kg dry 1.00 09/22/10 23:32 JLG 1011091 Nitrobenzene ND 190 15 ug/kg dry 1.00 09/22/10 23:32 JLG 1011091 NN 190 10 ug/kg dry 1.00 09/22/10 23:32 JLG 1011091 NN 190 10 ug/kg dry 1.00 09/22/10 23:32 JLG 1011091 NN 190 190 ug/kg dry 1.00 09/22/10 23:32	1 8270C	1011091	JLG	09/22/10 23:32	1.00	ug/kg dry	9.3	190		ND	Hexachlorobenzene
ne Hexachloroethane ND 190 14 ug/kg dry 1.00 09/22/10 23:32 JLG 1011091 Indeno(1,2,3-cd)pyrene ND 190 5.2 ug/kg dry 1.00 09/22/10 23:32 JLG 1011091 Isophorone ND 190 5.2 ug/kg dry 1.00 09/22/10 23:32 JLG 1011091 Isophorone ND 190 3.1 ug/kg dry 1.00 09/22/10 23:32 JLG 1011091 Naphthalene ND 190 3.1 ug/kg dry 1.00 09/22/10 23:32 JLG 1011091 N-Nitrosodi-n-propylamin ND 190 15 ug/kg dry 1.00 09/22/10 23:32 JLG 1011091 P N-Nitrosodiphenylamine ND 190 10 ug/kg dry 1.00 09/22/10 23:32 JLG 1011091 Pentachlorophenol ND 190 10 ug/kg dry 1.00 09/22/10 23:32 JLG 1011091 Phenol ND 190<	1 8270C	1011091	JLG	09/22/10 23:32	1.00	ug/kg dry	9.5	190		ND	Hexachlorobutadiene
Hexachloroethane ND 190 14 ug/kg dry 1.00 09/22/10 23:32 JLG 101097 Indeno(1,2,3-cd)pyrene ND 190 5.2 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Isophorone ND 190 9.3 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Naphthalene ND 190 3.1 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Nethosodi-n-propylamin ND 190 8.3 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 P ND 190 15 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 P ND 190 10 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Pentachlorophenol ND 190 10 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Phenol ND 190 20 ug/kg dry 1.00 <td>1 8270C</td> <td>10 1091</td> <td>JLG</td> <td>09/22/10 23:32</td> <td>1.00</td> <td>ug/kg dry</td> <td>56</td> <td>190</td> <td></td> <td>ND</td> <td>Hexachlorocyclopentadie</td>	1 8270C	10 1091	JLG	09/22/10 23:32	1.00	ug/kg dry	56	190		ND	Hexachlorocyclopentadie
Indeno(1,2,3-cd)pyrene ND 190 5.2 ug/kg dry 1.00 09/22/10 23:32 JLG 1011091 Isophorone ND 190 9.3 ug/kg dry 1.00 09/22/10 23:32 JLG 1011091 Naphthalene ND 190 3.1 ug/kg dry 1.00 09/22/10 23:32 JLG 1011091 Nitrobenzene ND 190 8.3 ug/kg dry 1.00 09/22/10 23:32 JLG 1011091 N-Nitrosodin-n-propylamin ND 190 15 ug/kg dry 1.00 09/22/10 23:32 JLG 1011091 e 100 09/22/10 23:32 JLG 1011091 Pentachlorophenol ND 190 10 ug/kg dry 1.00 09/22/10 23:32 JLG 1011091 Phenol ND 190 3.9 ug/kg dry 1.00 09/22/10 23:32 JLG 1011091 <td></td>											
Isophorone ND 190 9.3 ug/kg dry 1.00 09/22/10 23:32 JLG 101097 Naphthalene ND 190 3.1 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Nitrobenzene ND 190 8.3 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 N-Nitrosodin-propylamin ND 190 15 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 e 0 09/22/10 23:32 JLG 1011097 Pentachlorophenol ND 190 10 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Phenanthrene ND 190 3.9 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Pyrene ND 190 2.0 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 2.4,6-Tribromophenol 109 % Surr Limits: (39-146%) 09/22/10 23:32 JLG											
Naphthalene ND 190 3.1 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Nitrobenzene ND 190 8.3 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 N-Nitrosodi-n-propylamin ND 190 15 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 e N-Nitrosodiphenylamine ND 190 10 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Pentachlorophenol ND 360 64 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Phenanthrene ND 190 3.9 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 Phenol ND 190 2.0 ug/kg dry 1.00 09/22/10 23:32 JLG 1011097 2.4,6-Tribromophenol 109 % Surr Limits: (39-146%) 09/22/10 23:32 JLG 1011097 2.4,6-Tribromophenol 109 % Surr Limits: (37-120%)											
Nitrobenzene ND 190 8.3 ug/kg dry 1.00 09/22/10 23:32 JLG 1011091 N-Nitrosodi-n-propylamin ND 190 15 ug/kg dry 1.00 09/22/10 23:32 JLG 1011091 e					1.00			190			•
N-Nitrosodi-n-propylamin ND 190 15 ug/kg dry 1.00 09/22/10 23:32 JLG 101091 e N-Nitrosodiphenylamine ND 190 10 ug/kg dry 1.00 09/22/10 23:32 JLG 101091 Pentachlorophenol ND 360 64 ug/kg dry 1.00 09/22/10 23:32 JLG 101091 Phenanthrene ND 190 3.9 ug/kg dry 1.00 09/22/10 23:32 JLG 101091 Phenol ND 190 3.9 ug/kg dry 1.00 09/22/10 23:32 JLG 101091 Pyrene ND 190 2.0 ug/kg dry 1.00 09/22/10 23:32 JLG 101091 2.4,6-Tribromophenol 109 % Surr Limits: (39-146%) 09/22/10 23:32 JLG 101091 2Fluorobiphenyl 90 % Surr Limits: (37-120%) 09/22/10 23:32 JLG 101092 2Fluorophenol 76 % Surr Limits: (18-120%) 09/22/10 23:32 JLG 101092		10 1091			1.00						Naphthalene
e ND 190 10 ug/kg dry 1.00 09/22/10 23:32 JLG 101109 Pentachlorophenol ND 360 64 ug/kg dry 1.00 09/22/10 23:32 JLG 101109 Phenanthrene ND 190 3.9 ug/kg dry 1.00 09/22/10 23:32 JLG 101109 Phenol ND 190 3.9 ug/kg dry 1.00 09/22/10 23:32 JLG 101109 Pyrene ND 190 2.0 ug/kg dry 1.00 09/22/10 23:32 JLG 101109 2.4,6-Tribromophenol 109 % Surr Limits: (39-146%) 09/22/10 23:32 JLG 101109 2.4,6-Tribromophenol 109 % Surr Limits: (37-120%) 09/22/10 23:32 JLG 101109 2.Fluorophenol 76 % Surr Limits: (18-120%) 09/22/10 23:32 JLG 101109 Nitrobenzene-d5 89 % Surr Limits: (34-132%) 09/22/10 23:32 JLG 101109 Phenol-d5 83 % Surr Limits: (58-147%)						ug/kg dry		190			Nitrobenzene
N-Nitrosodiphenylamine ND 190 10 ug/kg dry 1.00 09/22/10 23:32 JLG 101109 Pentachlorophenol ND 360 64 ug/kg dry 1.00 09/22/10 23:32 JLG 101109 Phenanthrene ND 190 3.9 ug/kg dry 1.00 09/22/10 23:32 JLG 101109 Phenol ND 190 20 ug/kg dry 1.00 09/22/10 23:32 JLG 101109 Pyrene ND 190 1.2 ug/kg dry 1.00 09/22/10 23:32 JLG 101109 2,4,6-Tribromophenol 109 % Surr Limits: (37-120%) 09/22/10 23:32 JLG 101109 2-Fluorobiphenyl 90 % Surr Limits: (18-120%) 09/22/10 23:32 JLG 101109 2-Fluorophenol 76 % Surr Limits: (18-120%) 09/22/10 23:32 JLG 101109 Nitrobenzene-d5 89 % Surr Limits: (11-120%) 09/22/10 23:32 JLG 101109	1 8270C	10 1091	JLG	09/22/10 23:32	1.00	ug/kg dry	15	190		ND	
Phenanthrene ND 190 3.9 ug/kg dry 1.00 09/22/10 23:32 JLG 1011091 Phenol ND 190 20 ug/kg dry 1.00 09/22/10 23:32 JLG 1011091 Pyrene ND 190 1.2 ug/kg dry 1.00 09/22/10 23:32 JLG 1011091 2,4,6-Tribromophenol 109 % Surr Limits: (39-146%) 09/22/10 23:32 JLG 1011091 2,4,6-Tribromophenol 109 % Surr Limits: (37-120%) 09/22/10 23:32 JLG 1011091 2-Fluorobiphenyl 90 % Surr Limits: (18-120%) 09/22/10 23:32 JLG 1011091 2-Fluorophenol 76 % Surr Limits: (18-120%) 09/22/10 23:32 JLG 1011091 Nitrobenzene-d5 89 % Surr Limits: (11-120%) 09/22/10 23:32 JLG 1011091 p-Terphenyl-d14 79 % Surr Limits: (58-147%) 09/22/10 23:32 JLG 1011091 Organochlorine Pesticides by EPA Method 8081A	1 8270C	10 1091	JLG	09/22/10 23:32	1.00	ug/kg dry	10	190		ND	
Phenol ND 190 20 ug/kg dry 1.00 09/22/10 23:32 JLG 1011091 Pyrene ND 190 1.2 ug/kg dry 1.00 09/22/10 23:32 JLG 1011091 2,4,6-Tribromophenol 109 % Surr Limits: (39-146%) 09/22/10 23:32 JLG 1011091 2,4,6-Tribromophenol 109 % Surr Limits: (37-120%) 09/22/10 23:32 JLG 1011091 2-Fluorophenol 76 % Surr Limits: (18-120%) 09/22/10 23:32 JLG 1011091 2-Fluorophenol 76 % Surr Limits: (18-120%) 09/22/10 23:32 JLG 1011091 Nitrobenzene-d5 89 % Surr Limits: (11-120%) 09/22/10 23:32 JLG 1011091 Phenol-d5 83 % Surr Limits: (11-120%) 09/22/10 23:32 JLG 1011091 p-Terphenyl-d14 79 % Surr Limits: (58-147%) 09/22/10 23:32 JLG 1011091 Qrganochlorine Pesticides by EPA Method 8081A 1.8 0.35	1 8270C	1011091	JLG	09/22/10 23:32	1.00	ug/kg dry	64	360		ND	Pentachlorophenol
Phenol ND 190 20 ug/kg dry 1.00 09/22/10 23:32 JLG 101109 Pyrene ND 190 1.2 ug/kg dry 1.00 09/22/10 23:32 JLG 101109 2,4,6-Tribromophenol 109 % Surr Limits: (39-146%) 09/22/10 23:32 JLG 101109 2,4,6-Tribromophenol 109 % Surr Limits: (37-120%) 09/22/10 23:32 JLG 101109 2-Fluorophenol 76 % Surr Limits: (18-120%) 09/22/10 23:32 JLG 101109 2-Fluorophenol 76 % Surr Limits: (18-120%) 09/22/10 23:32 JLG 101109 Nitrobenzene-d5 89 % Surr Limits: (11-120%) 09/22/10 23:32 JLG 101109 Phenol-d5 83 % Surr Limits: (58-147%) 09/22/10 23:32 JLG 101109 p-Terphenyl-d14 79 % Surr Limits: (58-147%) 09/22/10 23:32 JLG 101109 4,4'-DDD [2C] ND 1.8 0.35 ug/kg dr	1 8270C	1011091	JLG	09/22/10 23:32	1.00		3.9	190		ND	Phenanthrene
2,4,6-Tribromophenol 109 % Surr Limits: (39-146%) 09/22/10 23:32 JLG 10/109 2-Fluorobiphenyl 90 % Surr Limits: (37-120%) 09/22/10 23:32 JLG 10/109 2-Fluorobiphenyl 90 % Surr Limits: (37-120%) 09/22/10 23:32 JLG 10/109 2-Fluorophenol 76 % Surr Limits: (18-120%) 09/22/10 23:32 JLG 10/109 Nitrobenzene-d5 89 % Surr Limits: (34-132%) 09/22/10 23:32 JLG 10/109 Phenol-d5 83 % Surr Limits: (11-120%) 09/22/10 23:32 JLG 10/109 p-Terphenyl-d14 79 % Surr Limits: (58-147%) 09/22/10 23:32 JLG 10/109 Organochlorine Pesticides by EPA Method 8081A 09/22/10 23:32 JLG 10/109 4,4'-DDD [2C] ND 1.8 0.35 ug/kg dry 1.00 09/18/10 15:22 tchro 10/107	1 8270C	1011091	JLG	09/22/10 23:32	1.00	ug/kg dry	20	190		ND	Phenol
2-Fluorobiphenyl 90 % Surr Limits: (37-120%) 09/22/10 23:32 JLG 10/1097 2-Fluorophenol 76 % Surr Limits: (18-120%) 09/22/10 23:32 JLG 10/1097 Nitrobenzene-d5 89 % Surr Limits: (34-132%) 09/22/10 23:32 JLG 10/1097 Phenol-d5 83 % Surr Limits: (11-120%) 09/22/10 23:32 JLG 10/1097 p-Terphenyl-d14 79 % Surr Limits: (58-147%) 09/22/10 23:32 JLG 10/1097 Organochlorine Pesticides by EPA Method 8081A 4,4'-DDD [2C] ND 1.8 0.35 ug/kg dry 1.00 09/18/10 15:22 tchro 10/1075	1 8270C	10 1091	JLG	09/22/10 23:32	1.00		1.2	190		ND	Pyrene
2-Fluorophenol 76 % Surr Limits: (18-120%) 09/22/10 23:32 JLG 10/109 Nitrobenzene-d5 89 % Surr Limits: (34-132%) 09/22/10 23:32 JLG 10/109 Phenol-d5 83 % Surr Limits: (11-120%) 09/22/10 23:32 JLG 10/109 p-Terphenyl-d14 79 % Surr Limits: (58-147%) 09/22/10 23:32 JLG 10/109 Organochlorine Pesticides by EPA Method 8081A 4,4'-DDD [2C] ND 1.8 0.35 ug/kg dry 1.00 09/18/10 15:22 tchro 10/1075		10 1091					. ,				
Nitrober zene-d5 89 % Surr Limits: (34-132%) 09/22/10 23:32 JLG 10/109 Phenol-d5 83 % Surr Limits: (11-120%) 09/22/10 23:32 JLG 10/109 09/22/10 23:32 JLG							, ,				· ·
Phenol-d5 83 % Surr Limits: (11-120%) 09/22/10 23:32 JLG 10/109 p-Terphenyl-d14 79 % Surr Limits: (58-147%) 09/22/10 23:32 JLG 10/109 Organochlorine Pesticides by EPA Method 8081A </td <td></td> <td>10/1091</td> <td></td> <td></td> <td></td> <td></td> <td>, ,</td> <td></td> <td></td> <td></td> <td>2-Fluorophenol</td>		10/1091					, ,				2-Fluorophenol
p-Terphenyl-d14 79 % Surr Limits: (58-147%) 09/22/10 23:32 JLG 10/109 10 Organochlorine Pesticides by EPA Method 8081A 4,4'-DDD [2C] ND 1.8 0.35 ug/kg dry 1.00 09/18/10 15:22 tchro 10/1075		10/1091					(34-132%)	Surr Limits:			Nitrobenzene-d5
Organochlorine Pesticides by EPA Method 8081A 4,4'-DDD [2C] ND 1.8 0.35 ug/kg dry 1.00 09/18/10 15:22 tchro 1011075		10/1091					. ,				Phenol-d5
4,4'-DDD [2C] ND 1.8 0.35 ug/kg dry 1.00 09/18/10 15:22 tchro 1011075	1 8270C	10 1091	JLG	09/22/10 23:32			(58-147%)	Surr Limits:		79 %	p-Terphenyl-d14
								<u>A</u>	lethod 8081	es by EPA N	Organochlorine Pesticid
	5 8081A	10 1075	tchro	09/18/10 15:22	1.00	ug/kg dry	0.35	1.8		ND	4,4'-DDD [2C]
		10 1075	tchro	09/18/10 15:22	1.00	ug/kg dry	0.27	1.8		ND	4,4'-DDE [2C]
		10 1075	tchro	09/18/10 15:22	1.00						
		10 1075	tchro	09/18/10 15:22	1.00		0.44				
		10 1075	tchro	09/18/10 15:22			0.32	1.8		ND	alpha-BHC [2C]
		10 1075									
		10 1075									
		10 1075									• •
		10 1075									• •
		10 1075									
		10 1075									
		10 1075									• •
		10 1075									
		10 1075									

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

SDG Number: RTI0959

Received: 09/14/10-09/15/10 Reported: 09/30/10 11:33

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			A	nalytical	Report					
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Client ID: MW-3 (4-6) (RT	11016-01 - So	olid) - cont.			Samp	led: 09/	/14/10 10:40	Recv	vd: 09/15/1	0 14:45
Organochlorine Pesticid	les by EPA N	lethod 8081	A - cont.							
gamma-BHC (Lindane) [2C]	ND		1.8	0.31	ug/kg dry	1.00	09/18/10 15:22	tchro	10 1075	8081A
Heptachlor [2C]	ND		1.8	0.28	ug/kg dry	1.00	09/18/10 15:22	tchro	1011075	8081A
Heptachlor epoxide [2C]	ND		1.8	0.46	ug/kg dry	1.00	09/18/10 15:22	tchro	10 1075	8081A
Methoxychlor [2C]	ND		1.8	0.25	ug/kg dry	1.00	09/18/10 15:22	tchro	10 1075	8081A
Toxaphene [2C]	ND		18	10	ug/kg dry	1.00	09/18/10 15:22	tchro	10 1075	8081A
Decachlorobiphenyl [2C]	91 %		Surr Limits:	(42-146%)			09/18/10 15:22	tchro	10/1075	8081A
Tetrachloro-m-xylene [2C]	82 %		Surr Limits:	(37-136%)			09/18/10 15:22	tchro	10 1075	8081A
Polychlorinated Bipheny	ls by EPA N	lethod 8082								
Aroclor 1016	ND		18	3.5	ug/kg dry	1.00	09/19/10 00:58	JxM	10 1073	8082
Aroclor 1221	ND		18	3.5	ug/kg dry	1.00	09/19/10 00:58	JxM	10 1073	8082
Aroclor 1232	ND		18	3.5	ug/kg dry	1.00	09/19/10 00:58	JxM	10 1073	8082
Aroclor 1242	ND		18	3.9	ug/kg dry	1.00	09/19/10 00:58	JxM	10 1073	8082
Aroclor 1248	ND		18	3.5	ug/kg dry	1.00	09/19/10 00:58	JxM	1011073	8082
Aroclor 1254	ND		18	3.8	ug/kg dry	1.00	09/19/10 00:58	JxM	10 1073	8082
Aroclor 1260	ND		18	8.4	ug/kg dry	1.00	09/19/10 00:58	JxM	10 1073	8082
Decachlorobiphenyl	95 %		Surr Limits:	(34-148%)			09/19/10 00:58	JxM	10 1073	8082
Tetrachloro-m-xylene	82 %		Surr Limits:	(35-134%)			09/19/10 00:58	JxM	10 1073	8082
Total Metals by SW 846	Series Metho	ods								
Aluminum	11600		10.2	NR	mg/kg dry	1.00	09/22/10 18:47	DAN	10 1415	6010B
Antimony	ND		15.3	NR	mg/kg dry	1.00	09/22/10 18:47	DAN	10 1415	6010B
Arsenic	4.5		2.0	NR	mg/kg dry	1.00	09/22/10 18:47	DAN	10 1415	6010B
Barium	136		0.511	NR	mg/kg dry	1.00	09/22/10 18:47	DAN	10 1415	6010B
Beryllium	0.562		0.204	NR	mg/kg dry	1.00	09/22/10 18:47	DAN	10 1415	6010B
Cadmium	ND		0.204	NR	mg/kg dry	1.00	09/22/10 18:47	DAN	10 1415	6010B
Calcium	55100		51.1	NR	mg/kg dry	1.00	09/22/10 18:47	DAN	10 1415	6010B
Chromium	14.3		0.511	NR	mg/kg dry	1.00	09/22/10 18:47	DAN	10 1415	6010B
Cobalt	13.0		0.511	NR	mg/kg dry	1.00	09/22/10 18:47	DAN	10 1415	6010B
Copper	19.4		1.0	NR	mg/kg dry	1.00	09/22/10 18:47	DAN	10 1415	6010B
ron	18000		10.2	NR	mg/kg dry	1.00	09/22/10 18:47	DAN	10 1415	6010B
₋ead	14.7		1.0	NR	mg/kg dry	1.00	09/22/10 18:47		10 1415	6010B
Magnesium	20600		20.4	NR	mg/kg dry	1.00	09/22/10 18:47	DAN	10 1415	6010B
Manganese	648	B1, B	0.2	NR	mg/kg dry	1.00	09/22/10 18:47	DAN	10 1415	6010B
Nickel	22.0		5.11	NR	mg/kg dry	1.00	09/22/10 18:47	DAN	10 1415	6010B
Potassium	1820		30.7	NR	mg/kg dry	1.00	09/22/10 18:47		10 1415	6010B
Selenium	ND		4.1	NR	mg/kg dry	1.00	09/22/10 18:47		10 1415	6010B
Silver	ND		0.511	NR	mg/kg dry	1.00	09/22/10 18:47		10 1415	6010B
Sodium	260		143	NR	mg/kg dry	1.00	09/22/10 18:47		10 1415	6010B
Thallium	ND		6.1	NR	mg/kg dry	1.00	09/22/10 18:47		10 1415	6010B
/anadium	21.6		0.511	NR	mg/kg dry	1.00	09/22/10 18:47		10 1415	6010B
Zinc	68.6		2.0	NR	mg/kg dry	1.00	09/22/10 18:47		10 1415	6010B
Mercury	0.0218		0.0213	NR	mg/kg dry	1.00	09/20/10 15:32		10 1343	7471A
General Chemistry Para	meters									
Percent Solids	90		0.010	NR	%	1.00	09/16/10 16:43	JRR	10 1002	Dry Weig
			0.010		70		00,10,10,10,10,40	0.01	1011002	2.9 1000

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

SDG Number: RTI0959

Received: 09/14/10-09/15/10 Reported: 09/30/10 11:33

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			Α	nalytical	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Client ID: MW-3 (4-6)	(RTI1016-01 - So	olid) - cont.			Samp	led: 09/	14/10 10:40	Recv	d: 09/15/1	0 14:45
General Chemistry Parameters - cont.										
Total Cyanide	ND		1.0	0.5	mg/kg dry	1.00	09/21/10 09:21	jmm	10 1387	9012A

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

SDG Number: RTI0959

Received: 09/14/10-09/15/10 Reported: 09/30/10 11:33

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			А	nalytical	Report					
	Sample	Data		MDI		Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Client ID: SB-5 (0-2) (RTI0	959-01 - Sol	lid)			Samp	led: 09/	13/10 10:50	Recv	d: 09/14/1	0 12:10
Volatile Organic Compou	nds by EPA	8260B								
1,1,1-Trichloroethane	ND		6.3	0.46	ug/kg dry	1.00	09/18/10 16:20	PJQ	10 1220	8260B
1,1,2,2-Tetrachloroethane	ND		6.3	1.0	ug/kg dry	1.00	09/18/10 16:20	PJQ	10 1220	8260B
1,1,2-Trichloroethane	ND		6.3	0.82	ug/kg dry	1.00	09/18/10 16:20	PJQ	10 1220	8260B
1,1,2-Trichloro-1,2,2-triflu	ND		6.3	1.4	ug/kg dry	1.00	09/18/10 16:20	PJQ	10 1220	8260B
oroethane					00,					
1,1-Dichloroethane	ND		6.3	0.77	ug/kg dry	1.00	09/18/10 16:20	PJQ	10 1220	8260B
1,1-Dichloroethene	ND		6.3	0.77	ug/kg dry	1.00	09/18/10 16:20	PJQ	10 1220	8260B
1,2,4-Trichlorobenzene	ND		6.3	0.38	ug/kg dry	1.00	09/18/10 16:20	PJQ	10 1220	8260B
1,2-Dibromo-3-chloroprop	ND		6.3	3.1	ug/kg dry	1.00	09/18/10 16:20	PJQ	10 1220	8260B
ane					00,					
1,2-Dibromoethane	ND		6.3	0.81	ug/kg dry	1.00	09/18/10 16:20	PJQ	10 1220	8260B
1,2-Dichlorobenzene	ND		6.3	0.49	ug/kg dry	1.00	09/18/10 16:20	PJQ	10 1220	8260B
1,2-Dichloroethane	ND		6.3	0.32	ug/kg dry	1.00	09/18/10 16:20	PJQ	10 1220	8260B
1,2-Dichloropropane	ND		6.3	3.1	ug/kg dry	1.00	09/18/10 16:20	PJQ	10 1220	8260B
1,3-Dichlorobenzene	ND		6.3	0.32	ug/kg dry	1.00	09/18/10 16:20	PJQ	10 1220	8260B
1,4-Dichlorobenzene	ND		6.3	0.88	ug/kg dry	1.00	09/18/10 16:20	PJQ	10 1220	8260B
2-Butanone	ND		31	2.3	ug/kg dry	1.00	09/18/10 16:20		10 1220	8260B
2-Hexanone	ND		31	3.1	ug/kg dry	1.00	09/18/10 16:20		10 1220	8260B
4-Methyl-2-pentanone	ND		31	2.1	ug/kg dry	1.00	09/18/10 16:20		10 1220	8260B
Acetone	ND		31	5.3	ug/kg dry	1.00	09/18/10 16:20		10 1220	8260B
Benzene	ND		6.3	0.31	ug/kg dry	1.00	09/18/10 16:20		10 1220	8260B
Bromodichloromethane	ND		6.3	0.84	ug/kg dry	1.00	09/18/10 16:20		1011220	8260B
Bromoform	ND		6.3	3.1	ug/kg dry	1.00	09/18/10 16:20		1011220	8260B
Bromomethane	ND		6.3	0.57	ug/kg dry	1.00	09/18/10 16:20		1011220	8260B
Carbon disulfide	ND		6.3	3.1	ug/kg dry	1.00	09/18/10 16:20		1011220	8260B
Carbon Tetrachloride	ND		6.3	0.61	ug/kg dry ug/kg dry	1.00	09/18/10 16:20		1011220	8260B
Chlorobenzene	ND		6.3	0.83	ug/kg dry ug/kg dry	1.00	09/18/10 16:20		1011220	8260B
Dibromochloromethane	ND		6.3	0.83		1.00	09/18/10 16:20		1011220	8260B
	ND				ug/kg dry				1011220	
Chloroethane			6.3	1.4	ug/kg dry	1.00	09/18/10 16:20			8260B
Chloroform	ND		6.3	0.39	ug/kg dry	1.00	09/18/10 16:20		1011220	8260B
Chloromethane	ND		6.3	0.38	ug/kg dry	1.00	09/18/10 16:20		1011220	8260B
cis-1,2-Dichloroethene	ND		6.3	0.81	ug/kg dry	1.00	09/18/10 16:20		1011220	8260B
cis-1,3-Dichloropropene	ND		6.3	0.91	ug/kg dry	1.00	09/18/10 16:20		1011220	8260B
Cyclohexane	ND		6.3	0.88	ug/kg dry	1.00	09/18/10 16:20		1011220	8260B
Dichlorodifluoromethane	ND		6.3	0.52	ug/kg dry	1.00	09/18/10 16:20		1011220	8260B
Ethylbenzene	ND		6.3	0.43	ug/kg dry	1.00	09/18/10 16:20		1011220	8260B
Isopropylbenzene	ND		6.3	0.95	ug/kg dry	1.00	09/18/10 16:20		10 1220	8260B
Methyl Acetate	ND		6.3	1.2	ug/kg dry	1.00	09/18/10 16:20		10 1220	8260B
Methyl-t-Butyl Ether (MTBE)	ND		6.3	0.62	ug/kg dry	1.00	09/18/10 16:20	PJQ	10 1220	8260B
Methylcyclohexane	ND		6.3	0.96	ug/kg dry	1.00	09/18/10 16:20	PJQ	10 1220	8260B
Methylene Chloride	3.5	J	6.3	2.9	ug/kg dry	1.00	09/18/10 16:20	PJQ	10 1220	8260B
Styrene	ND		6.3	0.31	ug/kg dry	1.00	09/18/10 16:20	PJQ	10 1220	8260B
Tetrachloroethene	ND		6.3	0.84	ug/kg dry	1.00	09/18/10 16:20		10 1220	8260B
Toluene	ND		6.3	0.48	ug/kg dry	1.00	09/18/10 16:20		10 1220	8260B
trans-1,2-Dichloroethene	ND		6.3	0.65	ug/kg dry	1.00	09/18/10 16:20		10 1220	8260B
trans-1,3-Dichloropropen	ND		6.3	2.8	ug/kg dry	1.00	09/18/10 16:20		1011220	8260B
e Trichloroethene	ND		6.3	1.4	ua/ka day	1.00	09/18/10 16:20	PJQ	10 1220	8260B
	INL		0.5	1.4	ug/kg dry	1.00	09/10/10 10.20	L J M	1011220	02000
			6.2	0 60	ualka dar	1 00	00/10/10 16:00		1011000	0060D
Trichlorofluoromethane Vinyl chloride	ND ND		6.3 6.3	0.60 0.77	ug/kg dry ug/kg dry	1.00 1.00	09/18/10 16:20 09/18/10 16:20		10I1220 10I1220	8260B 8260B

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

SDG Number: RTI0959

Received: 09/14/10-09/15/10 Reported: 09/30/10 11:33

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			A	Analytical	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Client ID: SB-5 (0-2) (RTI0	J959-01 - So	lid) - cont.			Samp	oled: 09/	/13/10 10:50	Recv	/d: 09/14/1	0 12:10
Volatile Organic Compou	unds by EPA	A 8260B - co	<u>nt.</u>							
Xylenes, total	ND		13	1.1	ug/kg dry	1.00	09/18/10 16:20	PJQ	1011220	8260B
1,2-Dichloroethane-d4	106 %		Surr Limits:	. ,			09/18/10 16:20	PJQ	10/1220	8260B
4-Bromofluorobenzene	103 %			(72-126%)			09/18/10 16:20	•	10/1220	8260B
Toluene-d8	111 %		Surr Limits:	(71-125%)			09/18/10 16:20	PJQ	10 1220	8260B
Semivolatile Organics by	GC/MS									
2,4,5-Trichlorophenol	ND		210	46	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
2,4,6-Trichlorophenol	ND		210	14	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
2,4-Dichlorophenol	ND		210	11	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
2,4-Dimethylphenol	ND		210	57	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
2,4-Dinitrophenol	ND		410	74	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
2,4-Dinitrotoluene	ND		210	33	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
2,6-Dinitrotoluene	ND		210	52	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
2-Chloronaphthalene	ND		210	14	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
2-Chlorophenol	ND		210	11	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
2-Methylnaphthalene	ND		210	2.6	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
2-Methylphenol	ND		210	6.5	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
2-Nitroaniline	ND		410	68	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
2-Nitrophenol	ND		210	9.7	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
3,3'-Dichlorobenzidine	ND		210	190	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
3-Nitroaniline	ND		410	49	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
4,6-Dinitro-2-methylphen	ND		410	73	ug/kg dry	1.00	09/22/10 23:09	JLG	1011091	8270C
ol 4-Bromophenyl phenyl	ND		210	67	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
ether 4-Chloro-3-methylphenol	ND		210	8.7	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
4-Chloroaniline	ND		210	62	ug/kg dry	1.00	09/22/10 23:09	JLG	1011091	8270C
4-Chlorophenyl phenyl	ND		210	4.5	ug/kg dry	1.00	09/22/10 23:09	JLG	1011091	8270C
ether			210	4.0	ug/ng ury	1.00	00/22/10 20:00	ULO	1011001	02700
4-Methylphenol	ND		210	12	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
4-Nitroaniline	ND		410	24	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
4-Nitrophenol	ND		410	51	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
Acenaphthene	ND		210	2.5	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
Acenaphthylene	ND		210	1.7	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
Acetophenone	ND		210	11	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
Anthracene	20	J	210	5.4	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
Atrazine	ND		210	9.4	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
Benzaldehyde	ND		210	23	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
Benzo(a)anthracene	73	J	210	3.6	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
Benzo(a)pyrene	59	J	210	5.1	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
Benzo(b)fluoranthene	84	J	210	4.1	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
Benzo(ghi)perylene	47	J	210	2.5	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
Benzo(k)fluoranthene	31	J	210	2.3	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
Biphenyl	ND		210	13	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
Bis(2-chloroethoxy)metha	ND		210	11	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
Bis(2-chloroethyl)ether	ND		210	18	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
2,2'-Oxybis(1-Chloroprop ane)	ND		210	22	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
Bis(2-ethylhexyl) phthalate	120	J	210	68	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

SDG Number: RTI0959

Received: 09/14/10-09/15/10 Reported: 09/30/10 11:33

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			A	Analytical	Report					
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Client ID: SB-5 (0-2) (RTI	0959-01 - So	lid) - cont.			Samp	oled: 09	/13/10 10:50	Recv	/d: 09/14/1	0 12:10
Semivolatile Organics b	y GC/MS - co	ont.								
Butyl benzyl phthalate	ND		210	57	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
Caprolactam	ND		210	91	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
Carbazole	ND		210	2.4	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
Chrysene	77	J	210	2.1	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
Dibenzo(a,h)anthracene	ND		210	2.5	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
Dibenzofuran	ND		210	2.2	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
Diethyl phthalate	ND		210	6.4	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
Dimethyl phthalate	ND		210	5.5	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
Di-n-butyl phthalate	ND		210	73	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
Di-n-octyl phthalate	ND		210	4.9	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
Fluoranthene	150	J	210	3.1	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
Fluorene	ND		210	4.9	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
Hexachlorobenzene	ND		210	11	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
Hexachlorobutadiene	ND		210	11	ug/kg dry	1.00	09/22/10 23:09	JLG	1011091	8270C
Hexachlorocyclopentadie ne	ND		210	64	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
Hexachloroethane	ND		210	16	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
Indeno(1,2,3-cd)pyrene	43	J	210	5.8	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
Isophorone	ND		210	11	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
Naphthalene	ND		210	3.5	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
Nitrobenzene	ND		210	9.4	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
N-Nitrosodi-n-propylamin	ND		210	17	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
e N-Nitrosodiphenylamine	ND		210	12	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
Pentachlorophenol	ND		410	72	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
Phenanthrene	100	J	210	4.4	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
Phenol	ND		210	22	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
Pyrene	120	J	210	1.4	ug/kg dry	1.00	09/22/10 23:09	JLG	10 1091	8270C
2,4,6-Tribromophenol	106 %		Surr Limits:	(39-146%)			09/22/10 23:09	JLG	10/1091	8270C
2-Fluorobiphenyl	86 %		Surr Limits:	(37-120%)			09/22/10 23:09	JLG	10 1091	8270C
2-Fluorophenol	71 %		Surr Limits:	(18-120%)			09/22/10 23:09	JLG	10 1091	8270C
Nitrobenzene-d5	84 %		Surr Limits:	, ,			09/22/10 23:09	JLG	10 1091	8270C
Phenol-d5	77 %		Surr Limits:	, ,			09/22/10 23:09	JLG	10/1091	8270C
p-Terphenyl-d14	76 %		Surr Limits:	(58-147%)			09/22/10 23:09	JLG	10 1091	8270C
Organochlorine Pesticio	les by EPA N	lethod 8081								
4,4'-DDD [2C]	ND		2.1	0.41	ug/kg dry	1.00	09/18/10 14:46		10 1075	8081A
4,4'-DDE [2C]	4.1		2.1	0.31	ug/kg dry	1.00	09/18/10 14:46		10 1075	8081A
4,4'-DDT [2C]	4.0		2.1	0.21	ug/kg dry	1.00	09/18/10 14:46		10 1075	8081A
Aldrin [2C]	ND		2.1	0.51	ug/kg dry	1.00	09/18/10 14:46		10 1075	8081A
alpha-BHC [2C]	ND		2.1	0.38	ug/kg dry	1.00	09/18/10 14:46		10 1075	8081A
beta-BHC [2C]	ND		2.1	0.23	ug/kg dry	1.00	09/18/10 14:46		1011075	8081A
Chlordane [2C]	ND		21	4.6	ug/kg dry	1.00	09/18/10 14:46		1011075	8081A
delta-BHC [2C]	ND		2.1	0.28	ug/kg dry	1.00	09/18/10 14:46		1011075	8081A
Dieldrin [2C]	ND		2.1	0.50	ug/kg dry	1.00	09/18/10 14:46		1011075	8081A
Endosulfan I [2C]	ND		2.1	0.26	ug/kg dry	1.00	09/18/10 14:46		1011075	8081A
Endosulfan II [2C]	ND		2.1	0.38	ug/kg dry	1.00	09/18/10 14:46		1011075	8081A
Endosulfan sulfate [2C]	ND		2.1	0.39	ug/kg dry	1.00	09/18/10 14:46		1011075	8081A
Endrin [2C]	ND		2.1	0.29	ug/kg dry	1.00	09/18/10 14:46		1011075	8081A
Endrin aldehyde [2C]	ND		2.1	0.53	ug/kg dry	1.00	09/18/10 14:46	MAN	10 1075	8081A

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

SDG Number: RTI0959

Received: 09/14/10-09/15/10 Reported: 09/30/10 11:33

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			A	nalytical	Report					
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Client ID: SB-5 (0-2) (RTI	0959-01 - So	lid) - cont.			Samp	led: 09	/13/10 10:50	Recv	vd: 09/14/1	0 12:10
Organochlorine Pesticid	es by EPA I	Method 8081	A - cont.							
gamma-BHC (Lindane) [2C]	ND		2.1	0.36	ug/kg dry	1.00	09/18/10 14:46	MAN	10 1075	8081A
Heptachlor [2C]	ND		2.1	0.33	ug/kg dry	1.00	09/18/10 14:46	MAN	10 1075	8081A
Heptachlor epoxide [2C]	ND		2.1	0.54	ug/kg dry	1.00	09/18/10 14:46		10 1075	8081A
Methoxychlor [2C]	ND		2.1	0.29	ug/kg dry	1.00	09/18/10 14:46		10 1075	8081A
Toxaphene [2C]	ND		21	12	ug/kg dry	1.00	09/18/10 14:46	MAN	1011075	8081A
Decachlorobiphenyl [2C]	98 %		Surr Limits:	(42-146%)			09/18/10 14:46	MAN	10 1075	8081A
Tetrachloro-m-xylene [2C]	83 %		Surr Limits:	(37-136%)			09/18/10 14:46	MAN	10 1075	8081A
Polychlorinated Bipheny	ls by EPA N	<u>/lethod 8082</u>								
Aroclor 1016 [2C]	ND	QSU, D02	210	40	ug/kg dry	10.0	09/16/10 17:45	JxM	1010937	8082
Aroclor 1221 [2C]	ND	QSU , D02	210	40	ug/kg dry	10.0	09/16/10 17:45	JxM	1010937	8082
Aroclor 1232 [2C]	ND	QSU, D02	210	40	ug/kg dry	10.0	09/16/10 17:45	JxM	1010937	8082
Aroclor 1242 [2C]	ND	QSU, D02	210	45	ug/kg dry	10.0	09/16/10 17:45	JxM	1010937	8082
Aroclor 1248 [2C]	ND	QSU, D02	210	40	ug/kg dry	10.0	09/16/10 17:45	JxM	1010937	8082
Aroclor 1254 [2C]	ND	QSU, D02	210	43	ug/kg dry	10.0	09/16/10 17:45	JxM	1010937	8082
Aroclor 1260 [2C]	ND	QSU, D02	210	96	ug/kg dry	10.0	09/16/10 17:45	JxM	1010937	8082
Decachlorobiphenyl [2C]	89 %	QSU, D02	Surr Limits:	(34-148%)			09/16/10 17:45	JxM	1010937	8082
Tetrachloro-m-xylene [2C]	134 %	QSU, D02	Surr Limits:	(35-134%)			09/16/10 17:45	JxM	1010937	8082
Total Metals by SW 846	Series Meth	<u>ods</u>								
Aluminum	13800		12.3	NR	mg/kg dry	1.00	09/22/10 18:41	DAN	10 1415	6010B
Antimony	ND		18.4	NR	mg/kg dry	1.00	09/22/10 18:41	DAN	10 1415	6010B
Arsenic	6.4		2.5	NR	mg/kg dry	1.00	09/22/10 18:41	DAN	10 1415	6010B
Barium	133		0.613	NR	mg/kg dry	1.00	09/22/10 18:41	DAN	10 1415	6010B
Beryllium	0.649		0.245	NR	mg/kg dry	1.00	09/22/10 18:41	DAN	10 1415	6010B
Cadmium	0.621		0.245	NR	mg/kg dry	1.00	09/22/10 18:41		10 1415	6010B
Calcium	13200		61.3	NR	mg/kg dry	1.00	09/22/10 18:41		10 1415	6010B
Chromium	19.2		0.613	NR	mg/kg dry	1.00	09/22/10 18:41		10 1415	6010B
Cobalt	11.8		0.613	NR	mg/kg dry	1.00	09/22/10 18:41		10 1415	6010B
Copper	22.7		1.2	NR	mg/kg dry	1.00	09/22/10 18:41		10 1415	6010B
Iron	23600		12.3	NR	mg/kg dry	1.00	09/22/10 18:41		10 1415	6010B
Lead	85.3		1.2	NR	mg/kg dry	1.00	09/22/10 18:41		1011415	6010B
Magnesium	9340		24.5	NR	mg/kg dry	1.00	09/22/10 18:41		1011415	6010B
Manganese	904	B1, B	0.2	NR	mg/kg dry	1.00	09/22/10 18:41		1011415	6010B
Nickel	21.6	ס, וס	6.13	NR	mg/kg dry	1.00	09/22/10 18:41		1011415	6010B
Potassium	1910		36.8	NR	mg/kg dry	1.00	09/22/10 18:41		1011415	6010B
Selenium	ND		4.9			1.00	09/22/10 18:41		1011415	6010B
					mg/kg dry					
Silver			0.613	NR	mg/kg dry	1.00	09/22/10 18:41		1011415	6010B
Sodium	ND		172	NR	mg/kg dry	1.00	09/22/10 18:41		1011415	6010B
Thallium	ND		7.4	NR	mg/kg dry	1.00	09/22/10 18:41		1011415	6010B
Vanadium	28.5		0.613	NR	mg/kg dry	1.00	09/22/10 18:41		1011415	6010B
Zinc	135		2.5	NR	mg/kg dry	1.00	09/22/10 18:41		10 1415	6010B
Mercury	0.167		0.0249	NR	mg/kg dry	1.00	09/20/10 15:30	JRK	10 1343	7471A

General Chemistry Parameters

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

SDG Number: RTI0959

Received: 09/14/10-09/15/10 Reported: 09/30/10 11:33

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

Analytical Report												
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method		
Client ID: SB-5 (0-2) (RTI0959-01 - So	lid) - cont.			Samp	led: 09/	/13/10 10:50	Recv	vd: 09/14/1	0 12:10		
General Chemistry F	Parameters - con	<u>t.</u>										
Percent Solids	79		0.010	NR	%	1.00	09/16/10 10:26	JRR	1010914	Dry Weight		
Total Cyanide	ND		1.2	0.6	mg/kg dry	1.00	09/18/10 11:52	RJF	10 1023	9012A		

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

SDG Number: RTI0959

Received: 09/14/10-09/15/10 Reported: 09/30/10 11:33

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			SAMPLE	EXTR	ACTION	DATA			
Parameter	Batch	Lab Number	Wt/Vol Extracte	Units	Extract Volume	Units	Date Prepared	Lab Tech	Extraction Method
General Chemistry Parameters									
9012A	10 1023	RTI0959-01	0.51	g	50.00	mL	09/16/10 12:27	AMP	Cn Digestion
Dry Weight	1010914	RTI0959-01	10.00	g	10.00	g	09/15/10 09:15	JRR	Dry Weight
Organochlorine Pesticides by EPA	Method 80	081A							
8081A	10 1075	RTI0959-01	30.08	g	10.00	mL	09/17/10 07:30	EKD	3550B GC
Polychlorinated Biphenyls by EPA	Method 80	82							
8082	1010937	RTI0959-01	30.66	g	10.00	mL	09/15/10 17:00	LTT	3550B GC
Semivolatile Organics by GC/MS									
8270C	10 1091	RTI0959-01	30.16	g	1.00	mL	09/17/10 07:00	EKD	3550B MB
Total Metals by SW 846 Series Me	ethods								
6010B	10 1415	RTI0959-01	0.51	g	50.00	mL	09/21/10 17:50	MDM	3050B
7471A	10 1343	RTI0959-01	0.61	g	50.00	mL	09/20/10 13:25	JRK	7471A_
Volatile Organic Compounds by E	PA 8260B								
8260B	10 1220	RTI0959-01	5.00	g	5.00	mL	09/18/10 10:16	PJQ	5030B MS

SAMPLE EXTRACTION DATA

Parameter	Batch	Lab Number	Wt/Vol Extracte	Units	Extract Volume	Units	Date Prepared	Lab Tech	Extraction Method
General Chemistry Parameters	Daton	200 11011001		0		01110			
9012A	10 1387	RTI1016-01	0.54	g	50.00	mL	09/20/10 19:39	RMB	Cn Digestion
Dry Weight	10 1002	RTI1016-01	10.00	g	10.00	g	09/16/10 09:15	JRR	Dry Weight
Organochlorine Pesticides by EP	A Method 8	081A							
8081A	10 1075	RTI1016-01	30.88	g	10.00	mL	09/17/10 07:30	EKD	3550B GC
Polychlorinated Biphenyls by EPA	A Method 80	082							
8082	10 1073	RTI1016-01	30.88	g	10.00	mL	09/17/10 07:00	EKD	3550B GC
Semivolatile Organics by GC/MS									
8270C	10 1091	RTI1016-01	30.06	g	1.00	mL	09/17/10 07:00	EKD	3550B MB
Total Metals by SW 846 Series M	ethods								
6010B	10 1415	RTI1016-01	0.54	g	50.00	mL	09/21/10 17:50	MDM	3050B
7471A	10 1343	RTI1016-01	0.62	g	50.00	mL	09/20/10 13:25	JRK	7471A_
Volatile Organic Compounds by E	EPA 8260B								
8260B	10 1494	RTI1016-01	5.09	g	5.00	mL	09/21/10 18:03	CDC	5035A MS

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

SDG Number: RTI0959

Received: 09/14/10-09/15/10 Reported: 09/30/10 11:33

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			L	ABORATORY	QC DATA						
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Volatile Organic Compour	nds by EP	<u>A 8260B</u>									
Blank Analyzed: 09/18/10	(Lab Num	ber:10 122	20-BLK1,	Batch: 10I1220)							
1,1,1-Trichloroethane			5.0	0.36	ug/kg wet	ND					
1,1,2,2-Tetrachloroethane			5.0	0.81	ug/kg wet	ND					
1,1,2-Trichloroethane			5.0	0.65	ug/kg wet	ND					
1,1,2-Trichloro-1,2,2-triflu oroethane			5.0	1.1	ug/kg wet	ND					
1,1-Dichloroethane			5.0	0.61	ug/kg wet	ND					
1,1-Dichloroethene			5.0	0.61	ug/kg wet	ND					
1,2,4-Trichlorobenzene			5.0	0.30	ug/kg wet	ND					
1,2-Dibromo-3-chloroprop ane			5.0	2.5	ug/kg wet	ND					
1,2-Dibromoethane			5.0	0.64	ug/kg wet	ND					
1,2-Dichlorobenzene			5.0	0.39	ug/kg wet	ND					
1,2-Dichloroethane			5.0	0.25	ug/kg wet	ND					
1,2-Dichloropropane			5.0	2.5	ug/kg wet	ND					
1,3-Dichlorobenzene			5.0	0.26	ug/kg wet	ND					
1,4-Dichlorobenzene			5.0	0.70	ug/kg wet	ND					
2-Butanone			25	1.8	ug/kg wet	ND					
2-Hexanone			25	2.5	ug/kg wet	ND					
4-Methyl-2-pentanone			25	1.6	ug/kg wet	ND					
Acetone			25	4.2	ug/kg wet	ND					
Benzene			5.0	0.24	ug/kg wet	ND					
Bromodichloromethane			5.0	0.67	ug/kg wet	ND					
Bromoform			5.0	2.5	ug/kg wet	ND					
Bromomethane			5.0	0.45	ug/kg wet	ND					
Carbon disulfide			5.0	2.5	ug/kg wet	ND					
Carbon Tetrachloride			5.0	0.48	ug/kg wet	ND					
Chlorobenzene			5.0	0.66	ug/kg wet	ND					
Dibromochloromethane			5.0	0.64	ug/kg wet	ND					
Chloroethane			5.0	1.1	ug/kg wet	ND					
Chloroform			5.0	0.31	ug/kg wet	ND					
Chloromethane			5.0	0.30	ug/kg wet	ND					
cis-1,2-Dichloroethene			5.0	0.64	ug/kg wet	ND					
cis-1,3-Dichloropropene			5.0	0.72	ug/kg wet	ND					
Cyclohexane			5.0	0.70	ug/kg wet	ND					
Dichlorodifluoromethane			5.0	0.41	ug/kg wet	ND					
Ethylbenzene			5.0	0.34	ug/kg wet	ND					
Isopropylbenzene			5.0	0.75	ug/kg wet	ND					
Methyl Acetate			5.0	0.93	ug/kg wet	ND					

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

SDG Number: RTI0959

Received: 09/14/10-09/15/10 Reported: 09/30/10 11:33

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			L	ABORATORY	QC DATA						
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Volatile Organic Compou	inds by EP	<u>A 8260B</u>									
Blank Analyzed: 09/18/10) (Lab Num	nber:10 12;	20-BLK1. E	Batch: 10 1220)							
Methyl-t-Butyl Ether (MTBE)	(5.0	0.49	ug/kg wet	ND					
Methylcyclohexane			5.0	0.76	ug/kg wet	ND					
Methylene Chloride			5.0	2.3	ug/kg wet	ND					
Styrene			5.0	0.25	ug/kg wet	ND					
Tetrachloroethene			5.0	0.67	ug/kg wet	ND					
Toluene			5.0	0.38	ug/kg wet	ND					
trans-1,2-Dichloroethene			5.0	0.52	ug/kg wet	ND					
trans-1,3-Dichloropropen			5.0	2.2	ug/kg wet	ND					
e Trichloroethene			5.0	1 1	ua/ka wat						
			5.0	1.1	ug/kg wet	ND					
Trichlorofluoromethane			5.0	0.47	ug/kg wet	ND					
Vinyl chloride			5.0	0.61	ug/kg wet	ND					
Xylenes, total			10	0.84	ug/kg wet	ND					
Surrogate: 1,2-Dichloroethane-d4					ug/kg wet		100	64-126			
Surrogate: 4-Bromofluorobenzene Surrogate: Toluene-d8					ug/kg wet ug/kg wet		102 111	72-126 71-125			
·											
LCS Analyzed: 09/18/10	(Lab Numb	er:1011220	-					77 404			
1,1,1-Trichloroethane			5.0	0.36	ug/kg wet	ND		77-121			
1,1,2,2-Tetrachloroethane			5.0	0.81	ug/kg wet	ND		80-120			
1,1,2-Trichloroethane			5.0	0.65	ug/kg wet	ND		78-122			
1,1,2-Trichloro-1,2,2-triflu oroethane			5.0	1.1	ug/kg wet	ND		60-140			
1,1-Dichloroethane		50.0	5.0	0.61	ug/kg wet	45.0	90	79-126			
1,1-Dichloroethene		50.0	5.0	0.61	ug/kg wet	45.8	92	65-153			
1,2,4-Trichlorobenzene			5.0	0.30	ug/kg wet	ND		64-120			
1,2-Dibromo-3-chloroprop			5.0	2.5	ug/kg wet	ND		63-124			
ane 1,2-Dibromoethane			5.0	0.64	ug/kg wet	ND		78-120			
1,2-Dichlorobenzene		50.0	5.0	0.39	ug/kg wet	47.9	96	75-120			
1,2-Dichloroethane		50.0 50.0	5.0	0.25	ug/kg wet	46.5	93	77-122			
1,2-Dichloropropane		50.0	5.0	2.5	ug/kg wet	40.5 ND	00	75-124			
1,3-Dichlorobenzene			5.0	0.26	ug/kg wet	ND		74-120			
			5.0 5.0	0.26		ND		73-120			
1,4-Dichlorobenzene					ug/kg wet						
2-Butanone			25 25	1.8	ug/kg wet			70-134			
2-Hexanone			25 25	2.5	ug/kg wet	ND		59-130			
4-Methyl-2-pentanone			25	1.6	ug/kg wet	ND		65-133			
Acetone			25	4.2	ug/kg wet	ND		61-137			

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

SDG Number: RTI0959

Received: 09/14/10-09/15/10 Reported: 09/30/10 11:33

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			LA	BORATORY	QC DATA					
	Source	Spike					%	% REC	% RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD Limit	Qualifiers
Volatile Organic Compo	unds by EP	A 8260B								
LCS Analyzed: 09/18/10	(Lab Numb	er:10 1220	-BS1. Bato	:h: 10 1220)						
Benzene	(50.0	5.0	0.24	ug/kg wet	45.6	91	79-127		
Bromodichloromethane			5.0	0.67	ug/kg wet	ND		80-122		
Bromoform			5.0	2.5	ug/kg wet	ND		68-126		
Bromomethane			5.0	0.45	ug/kg wet	ND		37-149		
Carbon disulfide			5.0	2.5	ug/kg wet	ND		64-131		
Carbon Tetrachloride			5.0	0.48	ug/kg wet	ND		75-135		
Chlorobenzene		50.0	5.0	0.66	ug/kg wet	50.7	101	76-124		
Dibromochloromethane			5.0	0.64	ug/kg wet	ND		76-125		
Chloroethane			5.0	1.1	ug/kg wet	ND		69-135		
Chloroform			5.0	0.31	ug/kg wet	ND		80-118		
Chloromethane			5.0	0.30	ug/kg wet	ND		63-127		
cis-1,2-Dichloroethene		50.0	5.0	0.64	ug/kg wet	44.9	90	81-117		
cis-1,3-Dichloropropene			5.0	0.72	ug/kg wet	ND		82-120		
Cyclohexane			5.0	0.70	ug/kg wet	ND		70-130		
Dichlorodifluoromethane			5.0	0.41	ug/kg wet	ND		57-142		
Ethylbenzene		50.0	5.0	0.34	ug/kg wet	50.4	101	80-120		
Isopropylbenzene			5.0	0.75	ug/kg wet	ND		72-120		
Methyl Acetate			5.0	0.93	ug/kg wet	ND		60-140		
Methyl-t-Butyl Ether (MTBE)		50.0	5.0	0.49	ug/kg wet	42.1	84	63-125		
Methylcyclohexane			5.0	0.76	ug/kg wet	ND		60-140		
Methylene Chloride			5.0	2.3	ug/kg wet	4.15		61-127		J
Styrene			5.0	0.25	ug/kg wet	ND		80-120		
Tetrachloroethene		50.0	5.0	0.67	ug/kg wet	50.7	101	74-122		
Toluene		50.0	5.0	0.38	ug/kg wet	50.3	101	74-128		
trans-1,2-Dichloroethene		50.0	5.0	0.52	ug/kg wet	46.7	93	78-126		
trans-1,3-Dichloropropen e			5.0	2.2	ug/kg wet	ND		73-123		
Trichloroethene		50.0	5.0	1.1	ug/kg wet	46.7	93	77-129		
Trichlorofluoromethane			5.0	0.47	ug/kg wet	ND		65-146		
Vinyl chloride			5.0	0.61	ug/kg wet	ND		61-133		
Xylenes, total		150	10	0.84	ug/kg wet	156	104	80-120		
Surrogate:					ug/kg wet		100	64-126		
1,2-Dichloroethane-d4 Surrogate: 4-Bromofluorobenzene					ug/kg wet		106	72-126		
4-Bromonuorobenzene Surrogate: Toluene-d8					ug/kg wet		110	71-125		

Volatile Organic Compounds by EPA 8260B

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

SDG Number: RTI0959

Received: 09/14/10-09/15/10 Reported: 09/30/10 11:33

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			L	ABORATORY	QC DATA						
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Volatile Organic Compour	nds by EP	<u>A 8260B</u>									
Blank Analyzed: 09/21/10	(Lab Num	nber:10 149	94-BLK1,	Batch: 10I1494)							
1,1,1-Trichloroethane			5.0	0.36	ug/kg wet	ND					
1,1,2,2-Tetrachloroethane			5.0	0.81	ug/kg wet	ND					
1,1,2-Trichloroethane			5.0	0.65	ug/kg wet	ND					
1,1,2-Trichloro-1,2,2-triflu oroethane			5.0	1.1	ug/kg wet	ND					
1,1-Dichloroethane			5.0	0.61	ug/kg wet	ND					
1,1-Dichloroethene			5.0	0.61	ug/kg wet	ND					
1,2,4-Trichlorobenzene			5.0	0.30	ug/kg wet	ND					
1,2-Dibromo-3-chloroprop ane			5.0	2.5	ug/kg wet	ND					
1,2-Dibromoethane			5.0	0.64	ug/kg wet	ND					
1,2-Dichlorobenzene			5.0	0.39	ug/kg wet	ND					
1,2-Dichloroethane			5.0	0.25	ug/kg wet	ND					
1,2-Dichloropropane			5.0	2.5	ug/kg wet	ND					
1,3-Dichlorobenzene			5.0	0.26	ug/kg wet	ND					
1,4-Dichlorobenzene			5.0	0.70	ug/kg wet	ND					
2-Butanone			25	1.8	ug/kg wet	ND					
2-Hexanone			25	2.5	ug/kg wet	ND					
4-Methyl-2-pentanone			25	1.6	ug/kg wet	ND					
Acetone			25	4.2	ug/kg wet	ND					
Benzene			5.0	0.24	ug/kg wet	ND					
Bromodichloromethane			5.0	0.67	ug/kg wet	ND					
Bromoform			5.0	2.5	ug/kg wet	ND					
Bromomethane			5.0	0.45	ug/kg wet	ND					
Carbon disulfide			5.0	2.5	ug/kg wet	ND					
Carbon Tetrachloride			5.0	0.48	ug/kg wet	ND					
Chlorobenzene			5.0	0.66	ug/kg wet	ND					
Dibromochloromethane			5.0	0.64	ug/kg wet	ND					
Chloroethane			5.0	1.1	ug/kg wet	ND					
Chloroform			5.0	0.31	ug/kg wet	ND					
Chloromethane			5.0	0.30	ug/kg wet	ND					
cis-1,2-Dichloroethene			5.0	0.64	ug/kg wet	ND					
cis-1,3-Dichloropropene			5.0	0.72	ug/kg wet	ND					
Cyclohexane			5.0	0.70	ug/kg wet	ND					
Dichlorodifluoromethane			5.0	0.41	ug/kg wet	ND					
Ethylbenzene			5.0	0.34	ug/kg wet	ND					
Isopropylbenzene			5.0	0.75	ug/kg wet	ND					
Methyl Acetate			5.0	0.93	ug/kg wet	ND					

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

SDG Number: RTI0959

Received: 09/14/10-09/15/10 Reported: 09/30/10 11:33

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			L	ABORATORY	QC DATA						
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Volatile Organic Compou	unds by EP	A 8260B									
Blank Analyzed: 09/21/10) (Lab Num	ber 10114	94-RI K1 I	Batch: 10 1494)							
Methyl-t-Butyl Ether			5.0	0.49	ug/kg wet	ND					
(MTBE)					0 0						
Methylcyclohexane			5.0	0.76	ug/kg wet	ND					
Methylene Chloride			5.0	2.3	ug/kg wet	ND					
Styrene			5.0	0.25	ug/kg wet	ND					
Tetrachloroethene			5.0	0.67	ug/kg wet	ND					
Toluene			5.0	0.38	ug/kg wet	ND					
trans-1,2-Dichloroethene			5.0	0.52	ug/kg wet	ND					
trans-1,3-Dichloropropen			5.0	2.2	ug/kg wet	ND					
e Trichloroethene			5.0	1.1	ug/kg wet	ND					
Trichlorofluoromethane			5.0	0.47	ug/kg wet	ND					
			5.0 5.0	0.61							
Vinyl chloride					ug/kg wet	ND					
Xylenes, total			10	0.84	ug/kg wet	ND					
Surrogate:					ug/kg wet		92	64-126			
1,2-Dichloroethane-d4 Surrogate:					ug/kg wet		97	72-126			
4-Bromofluorobenzene											
Surrogate: Toluene-d8					ug/kg wet		104	71-125			
LCS Analyzed: 09/21/10	(Lab Numb	oer:10 1494	-BS1, Bat	ch: 10l1494)							
1,1,1-Trichloroethane		50.0	5.0	0.36	ug/kg wet	48.3	97	77-121			
1,1,2,2-Tetrachloroethane		50.0	5.0	0.81	ug/kg wet	42.6	85	80-120			
1,1,2-Trichloroethane		50.0	5.0	0.65	ug/kg wet	47.0	94	78-122			
1,1,2-Trichloro-1,2,2-triflu		50.0	5.0	1.1	ug/kg wet	55.2	110	60-140			
oroethane			5.0	0.01		54.0	101	70 400			
1,1-Dichloroethane		50.0	5.0	0.61	ug/kg wet	51.9	104	79-126			
1,1-Dichloroethene		50.0	5.0	0.61	ug/kg wet	46.5	93	65-153			
1,2,4-Trichlorobenzene		50.0	5.0	0.30	ug/kg wet	43.4	87	64-120			
1,2-Dibromo-3-chloroprop ane		50.0	5.0	2.5	ug/kg wet	36.5	73	63-124			
1,2-Dibromoethane		50.0	5.0	0.64	ug/kg wet	47.1	94	78-120			
1,2-Dichlorobenzene		50.0	5.0	0.39	ug/kg wet	48.3	97	75-120			
1,2-Dichloroethane		50.0	5.0	0.25	ug/kg wet	46.9	94	77-122			
1,2-Dichloropropane		50.0	5.0	2.5	ug/kg wet	47.6	95	75-124			
1,3-Dichlorobenzene		50.0	5.0	0.26	ug/kg wet	50.4	101	74-120			
1,4-Dichlorobenzene		50.0 50.0	5.0	0.70	ug/kg wet	49.1	98	73-120			
2-Butanone		250	25	1.8	ug/kg wet	244	98	70-134			
2-Hexanone		250 250	25	2.5	ug/kg wet	248	99	59-130			
4-Methyl-2-pentanone		250 250	25	1.6	ug/kg wet	250	100	65-133			
Acetone			25	4.2	ug/kg wet	230 244	98	61-137			
		250	20	Τ. Δ	uging wet	<u> </u>	50	01-107			

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

SDG Number: RTI0959

Received: 09/14/10-09/15/10 Reported: 09/30/10 11:33

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			LA	BORATORY	QC DATA					
	Source	Spike	-				%	% REC	% RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD Limit	Qualifiers
Volatile Organic Compo	unds by EP	A 8260B								
LCS Analyzed: 09/21/10	(Lab Numb	per:10 1494	-BS1, Bato	ch: 10l1494)						
Benzene		50.0	5.0	0.24	ug/kg wet	48.9	98	79-127		
Bromodichloromethane		50.0	5.0	0.67	ug/kg wet	45.6	91	80-122		
Bromoform		50.0	5.0	2.5	ug/kg wet	40.1	80	68-126		
Bromomethane		50.0	5.0	0.45	ug/kg wet	53.8	108	37-149		
Carbon disulfide		50.0	5.0	2.5	ug/kg wet	50.0	100	64-131		
Carbon Tetrachloride		50.0	5.0	0.48	ug/kg wet	46.1	92	75-135		
Chlorobenzene		50.0	5.0	0.66	ug/kg wet	51.0	102	76-124		
Dibromochloromethane		50.0	5.0	0.64	ug/kg wet	44.6	89	76-125		
Chloroethane		50.0	5.0	1.1	ug/kg wet	51.6	103	69-135		
Chloroform		50.0	5.0	0.31	ug/kg wet	49.2	98	80-118		
Chloromethane		50.0	5.0	0.30	ug/kg wet	55.1	110	63-127		
cis-1,2-Dichloroethene		50.0	5.0	0.64	ug/kg wet	51.2	102	81-117		
cis-1,3-Dichloropropene		50.0	5.0	0.72	ug/kg wet	44.2	88	82-120		
Cyclohexane		50.0	5.0	0.70	ug/kg wet	53.1	106	70-130		
Dichlorodifluoromethane		50.0	5.0	0.41	ug/kg wet	44.2	88	57-142		
Ethylbenzene		50.0	5.0	0.34	ug/kg wet	50.5	101	80-120		
Isopropylbenzene		50.0	5.0	0.75	ug/kg wet	45.0	90	72-120		
Methyl Acetate		50.0	5.0	0.93	ug/kg wet	95.9	192	60-140		L
Methyl-t-Butyl Ether (MTBE)		50.0	5.0	0.49	ug/kg wet	44.2	88	63-125		
Methylcyclohexane		50.0	5.0	0.76	ug/kg wet	53.3	107	60-140		
Methylene Chloride		50.0	5.0	2.3	ug/kg wet	51.6	103	61-127		
Styrene		50.0	5.0	0.25	ug/kg wet	46.5	93	80-120		
Tetrachloroethene		50.0	5.0	0.67	ug/kg wet	52.6	105	74-122		
Toluene		50.0	5.0	0.38	ug/kg wet	51.3	103	74-128		
trans-1,2-Dichloroethene		50.0	5.0	0.52	ug/kg wet	50.2	100	78-126		
trans-1,3-Dichloropropen e		50.0	5.0	2.2	ug/kg wet	44.9	90	73-123		
Trichloroethene		50.0	5.0	1.1	ug/kg wet	48.6	97	77-129		
Trichlorofluoromethane		50.0	5.0	0.47	ug/kg wet	58.5	117	65-146		
Vinyl chloride		50.0	5.0	0.61	ug/kg wet	49.0	98	61-133		
Xylenes, total		150	10	0.84	ug/kg wet	156	104	80-120		
Surrogate: 1.2-Dichloroethane-d4					ug/kg wet		99	64-126		
Surrogate: 4-Bromofluorobenzene					ug/kg wet		110	72-126		
Surrogate: Toluene-d8					ug/kg wet		111	71-125		

Matrix Spike Analyzed: 09/22/10 (Lab Number:10I1494-MS1, Batch: 10I1494)

QC Source Sample: RTI1016-01

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

SDG Number: RTI0959

Received: 09/14/10-09/15/10 Reported: 09/30/10 11:33

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			LÆ	BORATOR	Y QC DATA					
	Source	Spike	RL				%	% REC	% RPD	Data
Analyte Volatile Organic Compou	Result			MDL	Units	Result	REC	Limits	RPD Limit	Qualifiers
		<u>A 0200B</u>								
Matrix Spike Analyzed: 0 QC Source Sample: RTI1016-0	•	ab Numbe	r:10 1494-N	IS1, Batch: 10	1494)					
1,1,1-Trichloroethane	ND	54.6	5.5	0.40	ug/kg dry	45.5	83	77-121		
1,1,2,2-Tetrachloroethane	ND	54.6	5.5	0.89	ug/kg dry	29.2	54	80-120		M8
1,1,2-Trichloroethane	ND	54.6	5.5	0.71	ug/kg dry	38.5	70	78-122		M8
1,1,2-Trichloro-1,2,2-triflu oroethane	ND	54.6	5.5	1.2	ug/kg dry	52.8	97	60-140		
1,1-Dichloroethane	ND	54.6	5.5	0.67	ug/kg dry	48.8	89	79-126		
1,1-Dichloroethene	ND	54.6	5.5	0.67	ug/kg dry	42.8	78	65-153		
1,2,4-Trichlorobenzene	ND	54.6	5.5	0.33	ug/kg dry	26.7	49	64-120		M8
1,2-Dibromo-3-chloroprop	ND	54.6	5.5	2.7	ug/kg dry	20.2	37	63-124		M8
ane 1,2-Dibromoethane	ND	54.6	5.5	0.70	ug/kg dry	35.6	65	78-120		M8
1,2-Dichlorobenzene	ND	54.6	5.5	0.43	ug/kg dry	37.8	69	75-120		M8
1,2-Dichloroethane	ND	54.6	5.5	0.27	ug/kg dry	40.6	74	77-122		M8
1,2-Dichloropropane	ND	54.6	5.5	2.7	ug/kg dry	43.9	80	75-124		
1,3-Dichlorobenzene	ND	54.6	5.5	0.28	ug/kg dry	40.0	73	74-120		M8
1,4-Dichlorobenzene	ND	54.6	5.5	0.76	ug/kg dry	39.1	72	73-120		M8
2-Butanone	ND	273	27	2.0	ug/kg dry	136	50	70-134		M8
2-Hexanone	ND	273	27	2.7	ug/kg dry	144	53	59-130		M8
4-Methyl-2-pentanone	ND	273	27	1.8	ug/kg dry	155	57	65-133		M8
Acetone	ND	273	27	4.6	ug/kg dry	143	52	61-137		M8
Benzene	ND	54.6	5.5	0.27	ug/kg dry	46.7	86	79-127		
Bromodichloromethane	ND	54.6	5.5	0.73	ug/kg dry	40.4	74	80-122		M8
Bromoform	ND	54.6	5.5	2.7	ug/kg dry	28.0	51	68-126		M8
Bromomethane	ND	54.6	5.5	0.49	ug/kg dry	85.4	156	37-149		M7
Carbon disulfide	ND	54.6	5.5	2.7	ug/kg dry	47.3	87	64-131		
Carbon Tetrachloride	ND	54.6	5.5	0.53	ug/kg dry	43.5	80	75-135		
Chlorobenzene	ND	54.6	5.5	0.72	ug/kg dry	46.6	85	76-124		
Dibromochloromethane	ND	54.6	5.5	0.70	ug/kg dry	36.4	67	76-125		M8
Chloroethane	ND	54.6	5.5	1.2	ug/kg dry	67.3	123	69-135		
Chloroform	ND	54.6	5.5	0.34	ug/kg dry	46.8	86	80-118		
Chloromethane	ND	54.6	5.5	0.33	ug/kg dry	56.6	104	63-127		
cis-1,2-Dichloroethene	ND	54.6	5.5	0.70	ug/kg dry	47.2	87	81-117		
cis-1,3-Dichloropropene	ND	54.6	5.5	0.79	ug/kg dry	36.0	66	82-120		M8
Cyclohexane	ND	54.6	5.5	0.76	ug/kg dry	47.4	87	70-130		
Dichlorodifluoromethane	ND	54.6	5.5	0.45	ug/kg dry	44.0	81	57-142		
Ethylbenzene	ND	54.6	5.5	0.38	ug/kg dry	46.8	86	80-120		
Isopropylbenzene	ND	54.6	5.5	0.82	ug/kg dry	39.8	73	72-120		
Methyl Acetate	ND	54.6	5.5	1.0	ug/kg dry	61.4	112	60-140		

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

SDG Number: RTI0959

Received: 09/14/10-09/15/10 Reported: 09/30/10 11:33

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			LA	ABORATOR	Y QC DATA						
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Volatile Organic Compou	unds by EP	<u>A 8260B</u>									
Matrix Spike Analyzed: 0 QC Source Sample: RTI1016-0	-	ab Numbei	r:10 1494-N	/IS1, Batch: 10	1494)						
Methyl-t-Butyl Ether (MTBE)	ND	54.6	5.5	0.54	ug/kg dry	33.1	61	63-125			M8
Methylcyclohexane	ND	54.6	5.5	0.83	ug/kg dry	45.2	83	60-140			
Methylene Chloride	7.86	54.6	5.5	2.5	ug/kg dry	52.3	81	61-127			
Styrene	ND	54.6	5.5	0.27	ug/kg dry	40.6	74	80-120			M8
Tetrachloroethene	ND	54.6	5.5	0.73	ug/kg dry	46.8	86	74-122			
Toluene	ND	54.6	5.5	0.41	ug/kg dry	48.7	89	74-128			
trans-1,2-Dichloroethene	ND	54.6	5.5	0.56	ug/kg dry	47.2	87	78-126			
trans-1,3-Dichloropropen	ND	54.6	5.5	2.4	ug/kg dry	35.5	65	73-123			M8
e Trichloroethene	ND	54.6	5.5	1.2	ug/kg dry	44.7	82	77-129			
Trichlorofluoromethane	ND	54.6	5.5	0.52	ug/kg dry	62.0	114	65-146			
Vinyl chloride	ND	54.6	5.5	0.67	ug/kg dry	51.1	94	61-133			
Xylenes, total	ND	54.0 164	11	0.92	ug/kg dry	142	87	80-120			
• • •	ND	104	11	0.02		172					
Surrogate: 1,2-Dichloroethane-d4 Surrogate:					ug/kg dry ug/kg dry		86 107	64-126 72-126			
4-Bromofluorobenzene Surrogate: Toluene-d8					ug/kg dry		115	71-125			
Matrix Spike Dup Analyz		0 (Lab Nu	mber:10l14	494-MSD1, Bat	ch: 10l1494)						
QC Source Sample: RTI1016-0									-		
1,1,1-Trichloroethane	ND	53.6	5.4	0.39	ug/kg dry	44.8	83	77-121		20	
1,1,2,2-Tetrachloroethane	ND	53.6	5.4	0.87	ug/kg dry	29.9	56	80-120	2	20	M8
1,1,2-Trichloroethane	ND	53.6	5.4	0.70	ug/kg dry	38.5	72	78-122	0.1	20	M8
1,1,2-Trichloro-1,2,2-triflu oroethane	ND	53.6	5.4	1.2	ug/kg dry	50.9	95	60-140	4	20	
1,1-Dichloroethane	ND	53.6	5.4	0.65	ug/kg dry	47.8	89	79-126	2	20	
1,1-Dichloroethene	ND	53.6	5.4	0.66	ug/kg dry	42.2	79	65-153	1	22	
1,2,4-Trichlorobenzene	ND	53.6	5.4	0.33	ug/kg dry	25.6	48	64-120	4	20	M8
1,2-Dibromo-3-chloroprop ane	ND	53.6	5.4	2.7	ug/kg dry	20.6	38	63-124	2	20	M8
1,2-Dibromoethane	ND	53.6	5.4	0.69	ug/kg dry	36.2	67	78-120	1	20	M8
1,2-Dichlorobenzene	ND	53.6	5.4	0.42	ug/kg dry	36.4	68	75-120	4	20	M8
1,2-Dichloroethane	ND	53.6	5.4	0.27	ug/kg dry	39.6	74	77-122	3	20	M8
1,2-Dichloropropane	ND	53.6	5.4	2.7	ug/kg dry	43.7	81	75-124	0.6	20	
1,3-Dichlorobenzene	ND	53.6	5.4	0.28	ug/kg dry	38.1	71	74-120	5	20	M8
1,4-Dichlorobenzene	ND	53.6	5.4	0.75	ug/kg dry	37.4	70	73-120	5	20	M8
2-Butanone	ND	268	27	2.0	ug/kg dry	141	53	70-134	3	20	M8
2-Hexanone	ND	268	27	2.7	ug/kg dry	151	56	59-130	5	20	M8

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

SDG Number: RTI0959

Received: 09/14/10-09/15/10 Reported: 09/30/10 11:33

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			LÆ	BORATOR	Y QC DATA						
	Source	Spike	RL	MDI			%	% REC	%	RPD	Data
Analyte	Result			MDL	Units	Result	REC	Limits	RPD	Limit	Qualifier
Volatile Organic Compo	unas by EP	A 0200D									
Matrix Spike Dup Analy: QC Source Sample: RTI1016-		0 (Lab Nu	mber:10l14	194-MSD1, Bat	ch: 10l1494)						
4-Methyl-2-pentanone	ND	268	27	1.8	ug/kg dry	162	61	65-133	5	20	M8
Acetone	ND	268	27	4.5	ug/kg dry	146	55	61-137	2	15	M8
Benzene	ND	53.6	5.4	0.26	ug/kg dry	45.8	85	79-127	2	20	
Bromodichloromethane	ND	53.6	5.4	0.72	ug/kg dry	40.0	75	80-122	1	20	M8
Bromoform	ND	53.6	5.4	2.7	ug/kg dry	28.5	53	68-126	2	20	M8
Bromomethane	ND	53.6	5.4	0.48	ug/kg dry	80.2	150	37-149	6	20	M7
Carbon disulfide	ND	53.6	5.4	2.7	ug/kg dry	46.3	86	64-131	2	20	
Carbon Tetrachloride	ND	53.6	5.4	0.52	ug/kg dry	43.1	80	75-135	0.9	20	
Chlorobenzene	ND	53.6	5.4	0.71	ug/kg dry	45.0	84	76-124	3	25	
Dibromochloromethane	ND	53.6	5.4	0.69	ug/kg dry	36.6	68	76-125	0.6	20	M8
Chloroethane	ND	53.6	5.4	1.2	ug/kg dry	64.6	120	69-135	4	20	
Chloroform	ND	53.6	5.4	0.33	ug/kg dry	46.1	86	80-118	1	20	
Chloromethane	ND	53.6	5.4	0.32	ug/kg dry	55.1	103	63-127	3	20	
cis-1,2-Dichloroethene	ND	53.6	5.4	0.69	ug/kg dry	46.5	87	81-117	2	20	
cis-1,3-Dichloropropene	ND	53.6	5.4	0.77	ug/kg dry	36.2	68	82-120	0.5	20	M8
Cyclohexane	ND	53.6	5.4	0.75	ug/kg dry	46.4	86	70-130	2	20	
Dichlorodifluoromethane	ND	53.6	5.4	0.44	ug/kg dry	43.6	81	57-142	1	20	
Ethylbenzene	ND	53.6	5.4	0.37	ug/kg dry	45.1	84	80-120	4	20	
lsopropylbenzene	ND	53.6	5.4	0.81	ug/kg dry	38.6	72	72-120	3	20	
Methyl Acetate	ND	53.6	5.4	1.0	ug/kg dry	69.6	130	60-140	13	20	
Methyl-t-Butyl Ether (MTBE)	ND	53.6	5.4	0.53	ug/kg dry	34.2	64	63-125	3	20	
Methylcyclohexane	ND	53.6	5.4	0.82	ug/kg dry	44.0	82	60-140	3	20	
Methylene Chloride	7.86	53.6	5.4	2.5	ug/kg dry	52.8	84	61-127	0.8	15	
Styrene	ND	53.6	5.4	0.27	ug/kg dry	38.9	73	80-120	4	20	M8
Tetrachloroethene	ND	53.6	5.4	0.72	ug/kg dry	45.9	86	74-122	2	20	
Toluene	ND	53.6	5.4	0.41	ug/kg dry	47.7	89	74-128	2	20	
trans-1,2-Dichloroethene	ND	53.6	5.4	0.55	ug/kg dry	46.5	87	78-126	2	20	
rans-1,3-Dichloropropen	ND	53.6	5.4	2.4	ug/kg dry	35.3	66	73-123	0.5	20	M8
Trichloroethene	ND	53.6	5.4	1.2	ug/kg dry	43.9	82	77-129	2	24	
Trichlorofluoromethane	ND	53.6	5.4	0.51	ug/kg dry	58.7	109	65-146	6	20	
Vinyl chloride	ND	53.6	5.4	0.65	ug/kg dry	49.1	91	61-133	4	20	
Xylenes, total	ND	161	11	0.90	ug/kg dry	137	85	80-120	3	20	
Surrogate: 1.2-Dichloroethane-d4					ug/kg dry		86	64-126			
Surrogate: 4-Bromofluorobenzene					ug/kg dry		109	72-126			
Surrogate: Toluene-d8					ug/kg dry		114	71-125			

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218 SDG Number: RTI0959

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066 Received: 09/14/10-09/15/10 Reported: 09/30/10 11:33

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

SDG Number: RTI0959

Received: 09/14/10-09/15/10 Reported: 09/30/10 11:33

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			L	ABORATORY	QC DATA						
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Semivolatile Organics by	GC/MS										
Blank Analyzed: 09/22/10	(Lab Num	nber:10 10	91-BLK1,	Batch: 10I1091)							
2,4,5-Trichlorophenol			170	36	ug/kg wet	ND					
2,4,6-Trichlorophenol			170	11	ug/kg wet	ND					
2,4-Dichlorophenol			170	8.7	ug/kg wet	ND					
2,4-Dimethylphenol			170	45	ug/kg wet	ND					
2,4-Dinitrophenol			320	58	ug/kg wet	ND					
2,4-Dinitrotoluene			170	26	ug/kg wet	ND					
2,6-Dinitrotoluene			170	41	ug/kg wet	ND					
2-Chloronaphthalene			170	11	ug/kg wet	ND					
2-Chlorophenol			170	8.5	ug/kg wet	ND					
2-Methylnaphthalene			170	2.0	ug/kg wet	ND					
2-Methylphenol			170	5.1	ug/kg wet	ND					
2-Nitroaniline			320	53	ug/kg wet	ND					
2-Nitrophenol			170	7.6	ug/kg wet	ND					
3,3'-Dichlorobenzidine			170	150	ug/kg wet	ND					
3-Nitroaniline			320	38	ug/kg wet	ND					
4,6-Dinitro-2-methylphen ol			320	57	ug/kg wet	ND					
4-Bromophenyl phenyl ether			170	53	ug/kg wet	ND					
4-Chloro-3-methylphenol			170	6.8	ug/kg wet	ND					
4-Chloroaniline			170	49	ug/kg wet	ND					
4-Chlorophenyl phenyl ether			170	3.5	ug/kg wet	ND					
4-Methylphenol			170	9.2	ug/kg wet	ND					
4-Nitroaniline			320	19	ug/kg wet	ND					
4-Nitrophenol			320	40	ug/kg wet	ND					
Acenaphthene			170	2.0	ug/kg wet	ND					
Acenaphthylene			170	1.4	ug/kg wet	ND					
Acetophenone			170	8.5	ug/kg wet	ND					
Anthracene			170	4.3	ug/kg wet	ND					
Atrazine			170	7.4	ug/kg wet	ND					
Benzaldehyde			170	18	ug/kg wet	ND					
Benzo(a)anthracene			170	2.9	ug/kg wet	ND					
Benzo(a)pyrene			170	4.0	ug/kg wet	ND					
Benzo(b)fluoranthene			170	3.2	ug/kg wet	ND					
Benzo(ghi)perylene			170	2.0	ug/kg wet	ND					
Benzo(k)fluoranthene			170	1.8	ug/kg wet	ND					
Biphenyl			170	10	ug/kg wet	ND					

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

SDG Number: RTI0959

Received: 09/14/10-09/15/10 Reported: 09/30/10 11:33

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

LABORATORY QC DATA												
	Source	Spike					%	% REC	%	RPD	Data	
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers	
Semivolatile Organics by	<u>/ GC/MS</u>											
Blank Analyzed: 09/22/10) (Lab Nun	nber:10 10	91-BLK1, B	atch: 10I1091)								
Bis(2-chloroethoxy)metha	-		170	9.0	ug/kg wet	ND						
Bis(2-chloroethyl)ether			170	14	ug/kg wet	ND						
2,2'-Oxybis(1-Chloroprop ane)			170	17	ug/kg wet	ND						
Bis(2-ethylhexyl) phthalate			170	54	ug/kg wet	ND						
Butyl benzyl phthalate			170	45	ug/kg wet	ND						
Caprolactam			170	72	ug/kg wet	ND						
Carbazole			170	1.9	ug/kg wet	ND						
Chrysene			170	1.7	ug/kg wet	ND						
Dibenzo(a,h)anthracene			170	2.0	ug/kg wet	ND						
Dibenzofuran			170	1.7	ug/kg wet	ND						
Diethyl phthalate			170	5.0	ug/kg wet	ND						
Dimethyl phthalate			170	4.3	ug/kg wet	ND						
Di-n-butyl phthalate			170	57	ug/kg wet	ND						
Di-n-octyl phthalate			170	3.9	ug/kg wet	ND						
Fluoranthene			170	2.4	ug/kg wet	ND						
Fluorene			170	3.8	ug/kg wet	ND						
Hexachlorobenzene			170	8.3	ug/kg wet	ND						
Hexachlorobutadiene			170	8.5	ug/kg wet	ND						
Hexachlorocyclopentadie ne			170	50	ug/kg wet	ND						
Hexachloroethane			170	13	ug/kg wet	ND						
Indeno(1,2,3-cd)pyrene			170	4.6	ug/kg wet	ND						
Isophorone			170	8.3	ug/kg wet	ND						
Naphthalene			170	2.8	ug/kg wet	ND						
Nitrobenzene			170	7.4	ug/kg wet	ND						
N-Nitrosodi-n-propylamin e			170	13	ug/kg wet	ND						
N-Nitrosodiphenylamine			170	9.1	ug/kg wet	ND						
Pentachlorophenol			320	57	ug/kg wet	ND						
Phenanthrene			170	3.5	ug/kg wet	ND						
Phenol			170	17	ug/kg wet	ND						
Pyrene			170	1.1	ug/kg wet	ND						
Surrogate: 2,4,6-Tribromophenol					ug/kg wet		110	39-146				
2,4,0- mbromophenol Surrogate: 2-Fluorobiphenyl					ug/kg wet		89	37-120				
Surrogate: 2-Fluorophenol					ug/kg wet		78	18-120				

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

SDG Number: RTI0959

Received: 09/14/10-09/15/10 Reported: 09/30/10 11:33

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

Analyte Result Level RL MDL Units Result REC Limits RPD Limit Quality Semivolatile Organics by GC/MS Blank Analyzed: 09/22/10 (Lab Number:1011091-BLK1, Batch: 1011091) Surrogate: ug/kg wet 89 34-132 -					LABORAT		DATA						
Semivolatile Organics by GC/MS Bink Analyzed: 09/22/10 (Lab Number:1011091-BLK1, Batch: 1011091) Surrogate: ug/kg wet 89 34-132 Nitrobenzene-d5 ug/kg wet 82 11-120 Surrogate: ug/kg wet 82 11-120 Surrogate: ug/kg wet 82 11-120 Surrogate: ug/kg wet 82 11-120 P-Terpheryl-d14 UCS Analyzed: 09/22/10 (Lab Number:1011091-BS1, Batch: 1011091) 2.4,5-Trichlorophenol 170 37 ug/kg wet ND 59-126 2.4,5-Trichlorophenol 170 11 ug/kg wet ND 59-123 2.4-Dichlorophenol 170 45 ug/kg wet ND 36-120 2.4-Dinitrophenol 170 26 ug/kg wet ND 55-125 2.6-Dinitrobluene 3310 170 8.5 ug/kg wet ND 56-128 2-Chloronaphthalene 170 11 ug/kg wet ND 56-128 2-Chlorophenol 3310 170 8.5 ug/kg wet ND 48-120 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>%</th> <th>% REC</th> <th></th> <th></th> <th>Data</th>									%	% REC			Data
Blank Analyzed: 09/22/10 (Lab Number:10/1091-BLK1, Batch: 10/1091) Surrogate: Nitrobenzene-d5 Surrogate: Phenol-d5 Surrogate: Phenol-d5 ug/kg wet 89 34-132 Surrogate: Phenol-d5 Surrogate: Phenol-d5 ug/kg wet 82 11-120 Surrogate: Phenol-d5 ug/kg wet 82 11-120 Surrogate: Phenol-d5 ug/kg wet 82 11-120 Surrogate: Phenol-d5 ug/kg wet ND 59-126 2.4,5-Trichlorophenol 170 37 ug/kg wet ND 59-123 2.4,6-Trichlorophenol 170 45 ug/kg wet ND 52-120 2.4-Dichlorophenol 170 26 ug/kg wet ND 35-146 2.4-Dinitrophenol 330 59 ug/kg wet ND 66-128 2.4-Dinitroblene 170 26 ug/kg wet ND 67-120 2.4-Dinitroblene 330 170 8.5 ug/kg wet ND 66-128 2.6-Dinitroblene 170 11 ug/kg wet ND 66-128 2.Chlorop			Leve	I RL	MDL	-	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Surrogate: ug/kg wet 89 34-132 Nitrobenzene-d5 Surrogate: ug/kg wet 82 11-120 Surrogate: ug/kg wet 82 11-120 p-Terphenyl-d14 ug/kg wet 82 11-120 LCS Analyzed: 09/22/10 (Lab Number:1011091-IBS1, Batch: 101091) 170 37 ug/kg wet ND 59-126 2,4,5-Trichlorophenol 170 37 ug/kg wet ND 59-126 2,4,6-Trichlorophenol 170 11 ug/kg wet ND 59-126 2,4-Dinitorophenol 170 8.8 ug/kg wet ND 52-120 2,4-Dinitorophenol 170 45 ug/kg wet ND 36-120 2,4-Dinitorobluene 3310 170 26 ug/kg wet ND 57-120 2,6-Dinitorobluene 170 11 ug/kg wet ND 57-120 2,6-Dinitorobluene 170 2.0 ug/kg wet ND 48-120 2,6-Dinitorobluene 170 2.0 ug/kg wet <	Semivolatile Organics by	<u>/ GC/MS</u>											
Surrogate: ug/kg wet 89 34-132 Nitrobenzene-d5 Surrogate: Phenol-d5 Surrogate: Phenol-d5 ug/kg wet 82 11-120 Surrogate: Phenol-d5 ug/kg wet 82 11-120 Surrogate: Phenol-d5 ug/kg wet 82 11-120 Surrogate: Phenol-d14 ug/kg wet ND 59-126 2.4,5-Trichlorophenol 170 37 ug/kg wet ND 59-126 2.4,6-Trichlorophenol 170 11 ug/kg wet ND 59-123 2.4-Dichlorophenol 170 8.8 ug/kg wet ND 52-120 2.4-Dinitrobluene 330 59 ug/kg wet ND 36-120 2.4-Dinitrobluene 3310 170 26 ug/kg wet ND 57-120 2.6-Dinitrobluene 170 41 ug/kg wet ND 57-120 2.6-Dinitrobluene 170 8.5 ug/kg wet ND 57-120 2.6-Dinitrobluene 170 2.0 ug/kg wet ND 48-120	Blank Analvzed: 09/22/10) (Lab Num	nber:10	11091-BLK	(1. Batch: 101 [,]	1091)							
Surrogate: p-Terphenyl-d14 ug/kg wet ug/kg wet 82 77 11-10 58-147 LCS Analyzed: 09/22/10 (Lab Number:1011091-BS1, Batch: 1011091) ug/kg wet ND 59-126 2,4,5-Trichlorophenol 170 37 ug/kg wet ND 59-126 2,4,6-Trichlorophenol 170 11 ug/kg wet ND 59-126 2,4-Dichlorophenol 170 8.8 ug/kg wet ND 52-120 2,4-Dichlorophenol 170 45 ug/kg wet ND 36-120 2,4-Dinitrophenol 330 59 ug/kg wet ND 35-146 2,4-Dinitrophenol 3310 170 26 ug/kg wet ND 55-125 2,6-Dinitrotoluene 3310 170 26 ug/kg wet ND 57-120 2-Chloronphthalene 170 11 ug/kg wet ND 57-120 2-Chloronphthalene 170 2.0 ug/kg wet ND 48-120 2-Methylnaphthalene 170 5.2 ug/kg wet ND 61-130 <td>-</td> <td>(</td> <td></td> <td></td> <td></td> <td>-</td> <td>ug/kg wet</td> <td></td> <td>89</td> <td>34-132</td> <td></td> <td></td> <td></td>	-	(-	ug/kg wet		89	34-132			
Surrogate: p-Terphenyl-d14 yg/kg wet 77 58-147 LCS Analyzed: 09/22/10 (Lab Number::1011091-BS1, Batch: 101091) Ug/kg wet ND 59-126 2,4,5-Trichlorophenol 170 37 ug/kg wet ND 59-126 2,4,6-Trichlorophenol 170 11 ug/kg wet ND 59-123 2,4-Dichlorophenol 170 8.8 ug/kg wet ND 52-120 2,4-Dinitrophenol 330 59 ug/kg wet ND 36-120 2,4-Dinitrophenol 330 59 ug/kg wet ND 35-146 2,4-Dinitrotoluene 3310 170 26 ug/kg wet ND 66-128 2,6-Dinitrotoluene 170 41 ug/kg wet ND 57-120 2,Chloronaphthalene 170 8.5 ug/kg wet ND 57-120 2,-Methylphenol 3310 170 8.5 ug/kg wet ND 48-120 2,-Methylphenol 170 5.2 ug/kg wet ND 48-120 2									00	11 100			
p-Terghenyl-d14 LCS Analyzed: 09/22/10 (Lab Number:1011091-BS1, Batch: 1011091) 2,4,5-Trichlorophenol 170 37 ug/kg wet ND 59-126 2,4,6-Trichlorophenol 170 11 ug/kg wet ND 59-123 2,4-Dichlorophenol 170 8.8 ug/kg wet ND 52-120 2,4-Dichlorophenol 170 45 ug/kg wet ND 36-120 2,4-Dinitrophenol 330 59 ug/kg wet ND 35-146 2,4-Dinitrophenol 3310 170 26 ug/kg wet ND 56-125 2,6-Dinitrotoluene 3310 170 26 ug/kg wet ND 66-128 2-Chloronaphthalene 170 11 ug/kg wet ND 57-120 2-Chlorophenol 3310 170 8.5 ug/kg wet ND 45-120 2-Methylphenol 170 5.2 ug/kg wet ND 48-120 2-Methylphenol 170 5.2 ug/kg wet ND 48-120 2-Methylphenol 170 7.7 ug/kg wet ND	•												
2,4,5-Trichlorophenol 170 37 ug/kg wet ND 59-126 2,4,6-Trichlorophenol 170 11 ug/kg wet ND 59-123 2,4-Dichlorophenol 170 8.8 ug/kg wet ND 52-120 2,4-Dindthylphenol 170 45 ug/kg wet ND 36-120 2,4-Dinitrophenol 330 59 ug/kg wet ND 35-146 2,4-Dinitrotoluene 3310 170 26 ug/kg wet ND 66-128 2,4-Dinitrotoluene 170 41 ug/kg wet ND 57-120 2,6-Dinitrotoluene 170 11 ug/kg wet ND 57-120 2,Chloronaphthalene 170 8.5 ug/kg wet ND 47-120 2,Methylnaphthalene 170 2.0 ug/kg wet ND 48-120 2,Mitroaniline 330 54 ug/kg wet ND 61-130 2,Nitroaniline 170 7.7 ug/kg wet ND 48-120 3,3'-Dichlorobenzidine 170 7.7 ug/kg wet ND 50-120	•						aging wet			00 111			
2,4,5-Trichlorophenol 170 37 ug/kg wet ND 59-126 2,4,6-Trichlorophenol 170 11 ug/kg wet ND 59-123 2,4-Dichlorophenol 170 8.8 ug/kg wet ND 52-120 2,4-Dindthylphenol 170 45 ug/kg wet ND 36-120 2,4-Dinitrophenol 330 59 ug/kg wet ND 35-146 2,4-Dinitrotoluene 3310 170 26 ug/kg wet ND 66-128 2,4-Dinitrotoluene 170 41 ug/kg wet ND 57-120 2,6-Dinitrotoluene 170 11 ug/kg wet ND 57-120 2,Chloronaphthalene 170 8.5 ug/kg wet ND 47-120 2,Methylnaphthalene 170 2.0 ug/kg wet ND 48-120 2,Mitroaniline 330 54 ug/kg wet ND 61-130 2,Nitroaniline 170 7.7 ug/kg wet ND 48-120 3,3'-Dichlorobenzidine 170 7.7 ug/kg wet ND 50-120	LCS Analyzed: 09/22/10	(Lab Numb	oer:10l1	091-BS1.	Batch: 10 109	91)							
2,4,6-Trichlorophenol 170 11 ug/kg wet ND 59-123 2,4-Dichlorophenol 170 8.8 ug/kg wet ND 52-120 2,4-Dimethylphenol 170 45 ug/kg wet ND 36-120 2,4-Dinitrophenol 330 59 ug/kg wet ND 35-146 2,4-Dinitrophenol 330 170 26 ug/kg wet ND 66-128 2,4-Dinitrotoluene 170 41 ug/kg wet ND 66-128 2,6-Dinitrotoluene 170 11 ug/kg wet ND 57-120 2,Chloronaphthalene 170 11 ug/kg wet ND 57-120 2-Chlorophenol 3310 170 8.5 ug/kg wet ND 47.120 2-Methylphenol 170 5.2 ug/kg wet ND 48-120 2-Nitroaniline 330 54 ug/kg wet ND 50-120 3,3'-Dichlorobenzidine 170 7.7 ug/kg wet ND 48-126 3.Nitroaniline 330 39 ug/kg wet ND 48-126 </td <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>ug/kg wet</td> <td>ND</td> <td></td> <td>59-126</td> <td></td> <td></td> <td></td>	-					-	ug/kg wet	ND		59-126			
2,4-Dimethylphenol17045ug/kg wetND36-1202,4-Dinitrophenol33059ug/kg wetND35-1462,4-Dinitrotoluene331017026ug/kg wet32909955-1252,6-Dinitrotoluene17041ug/kg wetND66-1282-Chloronaphthalene17011ug/kg wetND57-1202-Chlorophenol33101708.5ug/kg wet26207938-1202-Methylphenol1702.0ug/kg wetND47-1202-Methylphenol1705.2ug/kg wetND48-1202-Nitroaniline33054ug/kg wetND61-1303.3'-Dichlorobenzidine1707.7ug/kg wetND48-1263-Nitroaniline33039ug/kg wetND48-1263-Nitroaniline33058ug/kg wetND49-155				170	11			ND		59-123			
2,4-Dimethylphenol17045ug/kg wetND36-1202,4-Dinitrophenol33059ug/kg wetND35-1462,4-Dinitrotoluene331017026ug/kg wet32909955-1252,6-Dinitrotoluene17041ug/kg wetND66-1282-Chloronaphthalene17011ug/kg wetND57-1202-Chlorophenol33101708.5ug/kg wet26207938-1202-Methylphenol1702.0ug/kg wetND47-1202-Methylphenol1705.2ug/kg wetND48-1202-Nitroaniline33054ug/kg wetND61-1303.3'-Dichlorobenzidine170150ug/kg wetND48-1263-Nitroaniline33039ug/kg wetND48-1263-Nitroaniline33058ug/kg wetND49-155	2,4-Dichlorophenol			170	8.8	I	ug/kg wet	ND		52-120			
2,4-Dinitrophenol33059ug/kg wetND35-1462,4-Dinitrotoluene331017026ug/kg wet32909955-1252,6-Dinitrotoluene17041ug/kg wetND66-1282-Chloronaphthalene17011ug/kg wetND57-1202-Chlorophenol33101708.5ug/kg wet26207938-1202-Methylnaphthalene1702.0ug/kg wetND47-1202-Methylphenol1705.2ug/kg wetND48-1202-Nitroaniline33054ug/kg wetND61-1303,3'-Dichlorobenzidine1707.7ug/kg wetND48-1263-Nitroaniline33039ug/kg wetND48-1264,6-Dinitro-2-methylphen33058ug/kg wetND49-155	2,4-Dimethylphenol			170	45	,	ug/kg wet	ND		36-120			
2,6-Dinitrotoluene17041ug/kg wetND66-1282-Chloronaphthalene17011ug/kg wetND57-1202-Chlorophenol33101708.5ug/kg wet26207938-1202-Methylnaphthalene1702.0ug/kg wetND47-1202-Methylphenol1705.2ug/kg wetND48-1202-Nitroaniline33054ug/kg wetND61-1302-Nitrophenol1707.7ug/kg wetND50-1203,3'-Dichlorobenzidine170150ug/kg wetND48-1263-Nitroaniline33039ug/kg wetND48-1264,6-Dinitro-2-methylphen33058ug/kg wetND49-155				330	59	ı	ug/kg wet	ND		35-146			
2-Chloronaphthalene 170 11 ug/kg wet ND 57-120 2-Chlorophenol 3310 170 8.5 ug/kg wet 2620 79 38-120 2-Methylnaphthalene 170 2.0 ug/kg wet ND 47-120 2-Methylphenol 170 5.2 ug/kg wet ND 48-120 2-Nitroaniline 330 54 ug/kg wet ND 61-130 2-Nitrophenol 170 7.7 ug/kg wet ND 50-120 3,3'-Dichlorobenzidine 170 150 ug/kg wet ND 48-126 3-Nitroaniline 330 39 ug/kg wet ND 48-126 4,6-Dinitro-2-methylphen 330 58 ug/kg wet ND 49-155	2,4-Dinitrotoluene		3310	170	26	ı	ug/kg wet	3290	99	55-125			
2-Chlorophenol33101708.5ug/kg wet26207938-1202-Methylnaphthalene1702.0ug/kg wetND47-1202-Methylphenol1705.2ug/kg wetND48-1202-Nitroaniline33054ug/kg wetND61-1302-Nitrophenol1707.7ug/kg wetND50-1203,3'-Dichlorobenzidine170150ug/kg wetND48-1263-Nitroaniline33039ug/kg wetND61-1274,6-Dinitro-2-methylphen33058ug/kg wetND49-155	2,6-Dinitrotoluene			170	41	ı	ug/kg wet	ND		66-128			
2-Methylnaphthalene 170 2.0 ug/kg wet ND 47-120 2-Methylphenol 170 5.2 ug/kg wet ND 48-120 2-Nitroaniline 330 54 ug/kg wet ND 61-130 2-Nitrophenol 170 7.7 ug/kg wet ND 50-120 3,3'-Dichlorobenzidine 170 150 ug/kg wet ND 48-126 3-Nitroaniline 330 39 ug/kg wet ND 61-137 4,6-Dinitro-2-methylphen 330 58 ug/kg wet ND 49-155	2-Chloronaphthalene			170	11	I	ug/kg wet	ND		57-120			
2-Methylphenol 170 5.2 ug/kg wet ND 48-120 2-Nitroaniline 330 54 ug/kg wet ND 61-130 2-Nitrophenol 170 7.7 ug/kg wet ND 50-120 3,3'-Dichlorobenzidine 170 150 ug/kg wet ND 48-126 3-Nitroaniline 330 39 ug/kg wet ND 61-127 4,6-Dinitro-2-methylphen 330 58 ug/kg wet ND 49-155	2-Chlorophenol		3310	170	8.5	ı	ug/kg wet	2620	79	38-120			
2-Nitroaniline 330 54 ug/kg wet ND 61-130 2-Nitrophenol 170 7.7 ug/kg wet ND 50-120 3,3'-Dichlorobenzidine 170 150 ug/kg wet ND 48-126 3-Nitroaniline 330 39 ug/kg wet ND 61-127 4,6-Dinitro-2-methylphen 330 58 ug/kg wet ND 49-155	2-Methylnaphthalene			170	2.0	ı	ug/kg wet	ND		47-120			
2-Nitrophenol 170 7.7 ug/kg wet ND 50-120 3,3'-Dichlorobenzidine 170 150 ug/kg wet ND 48-126 3-Nitroaniline 330 39 ug/kg wet ND 61-127 4,6-Dinitro-2-methylphen 330 58 ug/kg wet ND 49-155	2-Methylphenol			170	5.2	I	ug/kg wet	ND		48-120			
3,3'-Dichlorobenzidine 170 150 ug/kg wet ND 48-126 3-Nitroaniline 330 39 ug/kg wet ND 61-127 4,6-Dinitro-2-methylphen 330 58 ug/kg wet ND 49-155	2-Nitroaniline			330	54	ı	ug/kg wet	ND		61-130			
3-Nitroaniline 330 39 ug/kg wet ND 61-127 4,6-Dinitro-2-methylphen 330 58 ug/kg wet ND 49-155	2-Nitrophenol			170	7.7	ı	ug/kg wet	ND		50-120			
4,6-Dinitro-2-methylphen 330 58 ug/kg wet ND 49-155	3,3'-Dichlorobenzidine			170	150		ug/kg wet	ND		48-126			
·,····································	3-Nitroaniline			330	39	ı	ug/kg wet	ND		61-127			
ol	• •			330	58	I	ug/kg wet	ND		49-155			
4-Bromophenyl phenyl 170 53 ug/kg wet ND 58-131				170	53	ı	ug/kg wet	ND		58-131			
ether 4-Chloro-3-methylphenol 3310 170 6.9 ug/kg wet 2980 90 49-125			3310	170	6.9		ıa/ka wet	2980	90	49-125			
4-Chloroaniline 170 49 ug/kg wet ND 49-120			5510						00				
4-Chlorophenyl phenyl 170 3.6 ug/kg wet ND 63-124													
ether	1 21 2						5 5						
4-Methylphenol 170 9.3 ug/kg wet ND 50-119	4-Methylphenol			170	9.3					50-119			
4-Nitroaniline 330 19 ug/kg wet ND 63-128	4-Nitroaniline			330	19			ND		63-128			
4-Nitrophenol 3310 330 41 ug/kg wet 2710 82 43-137	4-Nitrophenol		3310	330	41			2710	82	43-137			
Acenaphthene 3310 170 2.0 ug/kg wet 2920 88 53-120	Acenaphthene		3310	170	2.0	I	ug/kg wet	2920	88	53-120			
Acenaphthylene 170 1.4 ug/kg wet ND 58-121	Acenaphthylene												
Acetophenone 170 8.6 ug/kg wet ND 66-120	Acetophenone						ug/kg wet						
Anthracene 170 4.3 ug/kg wet ND 62-129													
Atrazine 170 7.5 ug/kg wet ND 73-133													
Benzaldehyde 170 18 ug/kg wet ND 21-120	-												
Benzo(a)anthracene 170 2.9 ug/kg wet ND 65-133													
Benzo(a)pyrene 170 4.0 ug/kg wet ND 64-127 TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 64-127										64-127			

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

SDG Number: RTI0959

Received: 09/14/10-09/15/10 Reported: 09/30/10 11:33

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			L	BORATORY	QC DATA			
	Source	Spike					%	% REC % RPD Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits RPD Limit Qualifiers
Semivolatile Organics by	GC/MS							
LCS Analyzed: 09/22/10	(Lab Numb	er:10 109 [,]	1-BS1, Bate	ch: 10 1091)				
Benzo(b)fluoranthene			170	3.3	ug/kg wet	ND		64-135
Benzo(ghi)perylene			170	2.0	ug/kg wet	ND		50-152
Benzo(k)fluoranthene			170	1.8	ug/kg wet	ND		58-138
Biphenyl			170	10	ug/kg wet	ND		71-120
Bis(2-chloroethoxy)metha ne			170	9.1	ug/kg wet	ND		61-133
Bis(2-chloroethyl)ether			170	14	ug/kg wet	ND		45-120
2,2'-Oxybis(1-Chloroprop ane)			170	18	ug/kg wet	ND		44-120
Bis(2-ethylhexyl) phthalate		3310	170	54	ug/kg wet	3650	110	61-133
Butyl benzyl phthalate			170	45	ug/kg wet	ND		61-129
Caprolactam			170	73	ug/kg wet	ND		54-133
Carbazole			170	1.9	ug/kg wet	ND		59-129
Chrysene			170	1.7	ug/kg wet	ND		64-131
Dibenzo(a,h)anthracene			170	2.0	ug/kg wet	ND		54-148
Dibenzofuran			170	1.7	ug/kg wet	ND		56-120
Diethyl phthalate			170	5.1	ug/kg wet	ND		66-126
Dimethyl phthalate			170	4.4	ug/kg wet	ND		65-124
Di-n-butyl phthalate			170	58	ug/kg wet	ND		58-130
Di-n-octyl phthalate			170	3.9	ug/kg wet	ND		62-133
Fluoranthene			170	2.4	ug/kg wet	ND		62-131
Fluorene		3310	170	3.9	ug/kg wet	3170	96	63-126
Hexachlorobenzene			170	8.3	ug/kg wet	ND		60-132
Hexachlorobutadiene			170	8.6	ug/kg wet	ND		45-120
Hexachlorocyclopentadie ne			170	51	ug/kg wet	ND		31-120
Hexachloroethane		3310	170	13	ug/kg wet	2320	70	41-120
Indeno(1,2,3-cd)pyrene			170	4.6	ug/kg wet	ND		56-149
Isophorone			170	8.4	ug/kg wet	ND		56-120
Naphthalene			170	2.8	ug/kg wet	ND		46-120
Nitrobenzene			170	7.4	ug/kg wet	ND		49-120
N-Nitrosodi-n-propylamin e		3310	170	13	ug/kg wet	2960	89	46-120
N-Nitrosodiphenylamine			170	9.2	ug/kg wet	ND		20-119
Pentachlorophenol		3310	330	57	ug/kg wet	3360	102	33-136
Phenanthrene			170	3.5	ug/kg wet	ND		60-130
Phenol		3310	170	18	ug/kg wet	2390	72	36-120
Pyrene		3310	170	1.1	ug/kg wet	3220	97	51-133

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

SDG Number: RTI0959

Project: Benchmark - 295 Maryland St. site

Project Number: TURN-0066

			LA	BORATORY	QC DATA					
	Source	Spike					%	% REC	% RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD Limit	Qualifiers
Semivolatile Organics b	<u>y GC/MS</u>									
LCS Analyzed: 09/22/10	(Lab Numb	per:10 109 [,]	1-BS1. Batc	:h: 10 1091)						
Surrogate:	(,	,	ug/kg wet		107	39-146		
2,4,6-Tribromophenol Surrogate:					ug/kg wet		86	37-120		
2-Fluorobiphenyl Surrogate:					ug/kg wet		71	18-120		
2-Fluorophenol Surrogate:					ug/kg wet		84	34-132		
Nitrobenzene-d5 Surrogate: Phenol-d5					ug/kg wet		76	11-120		
Surrogate:					ug/kg wet		85	58-147		
p-Terphenyl-d14										
Matrix Spike Analyzed: (QC Source Sample: RTI1016-	•	ab Numbe	r:10 1091-M	IS1, Batch: 10I1	091)					
2,4,5-Trichlorophenol	ND		180	40	ug/kg dry	ND		59-126		
2,4,6-Trichlorophenol	ND		180	12	ug/kg dry	ND		59-123		
2,4-Dichlorophenol	ND		180	9.5	ug/kg dry	ND		52-120		
2,4-Dimethylphenol	ND		180	49	ug/kg dry	ND		36-120		
2,4-Dinitrophenol	ND		360	64	ug/kg dry	ND		35-146		
2,4-Dinitrotoluene	ND	3590	180	28	ug/kg dry	3780	105	55-125		
2,6-Dinitrotoluene	ND		180	44	ug/kg dry	ND		66-128		
2-Chloronaphthalene	ND		180	12	ug/kg dry	ND		57-120		
2-Chlorophenol	ND	3590	180	9.2	ug/kg dry	3110	87	38-120		
2-Methylnaphthalene	ND		180	2.2	ug/kg dry	ND		47-120		
2-Methylphenol	ND		180	5.6	ug/kg dry	ND		48-120		
2-Nitroaniline	ND		360	58	ug/kg dry	ND		61-130		
2-Nitrophenol	ND		180	8.3	ug/kg dry	ND		50-120		
3,3'-Dichlorobenzidine	ND		180	160	ug/kg dry	ND		48-126		
3-Nitroaniline	ND		360	42	ug/kg dry	ND		61-127		
4,6-Dinitro-2-methylphen ol	ND		360	63	ug/kg dry	ND		49-155		
4-Bromophenyl phenyl ether	ND		180	58	ug/kg dry	ND		58-131		
4-Chloro-3-methylphenol	ND	3590	180	7.5	ug/kg dry	3490	97	49-125		
4-Chloroaniline	ND		180	53	ug/kg dry	ND		49-120		
4-Chlorophenyl phenyl ether	ND		180	3.9	ug/kg dry	ND		63-124		
4-Methylphenol	ND		180	10	ug/kg dry	ND		50-119		
4-Nitroaniline	ND		360	20	ug/kg dry	ND		63-128		
4-Nitrophenol	ND	3590	360	44	ug/kg dry	3210	89	43-137		
Acenaphthene	ND	3590	180	2.1	ug/kg dry	3300	92	53-120		
Acenaphthylene	ND		180	1.5	ug/kg dry	ND		58-121		

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Received: 09/30/10 11:33 Reported:

09/14/10-09/15/10

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

SDG Number: RTI0959

Received: 09/14/10-09/15/10 Reported: 09/30/10 11:33

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			LA	BORATOR	Y QC DATA						
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Semivolatile Organics by	<u>/ GC/MS</u>										
Matrix Spike Analyzed: 0 QC Source Sample: RTI1016-0	-	ab Numbe	r:10l1091-M	IS1, Batch: 10	1091)						
Acetophenone	ND		180	9.3	ug/kg dry	ND		66-120			
Anthracene	ND		180	4.7	ug/kg dry	ND		62-129			
Atrazine	ND		180	8.1	ug/kg dry	ND		73-133			
Benzaldehyde	ND		180	20	ug/kg dry	ND		21-120			
Benzo(a)anthracene	ND		180	3.1	ug/kg dry	ND		65-133			
Benzo(a)pyrene	ND		180	4.4	ug/kg dry	ND		64-127			
Benzo(b)fluoranthene	ND		180	3.5	ug/kg dry	ND		64-135			
Benzo(ghi)perylene	ND		180	2.2	ug/kg dry	ND		50-152			
Benzo(k)fluoranthene	ND		180	2.0	ug/kg dry	ND		58-138			
Biphenyl	ND		180	11	ug/kg dry	ND		71-120			
Bis(2-chloroethoxy)metha ne	ND		180	9.9	ug/kg dry	ND		61-133			
Bis(2-chloroethyl)ether	ND		180	16	ug/kg dry	ND		45-120			
2,2'-Oxybis(1-Chloroprop ane)	ND		180	19	ug/kg dry	ND		44-120			
Bis(2-ethylhexyl) phthalate	ND	3590	180	59	ug/kg dry	4250	118	61-133			
Butyl benzyl phthalate	ND		180	49	ug/kg dry	ND		61-129			
Caprolactam	ND		180	79	ug/kg dry	ND		54-133			
Carbazole	ND		180	2.1	ug/kg dry	ND		59-129			
Chrysene	ND		180	1.8	ug/kg dry	ND		64-131			
Dibenzo(a,h)anthracene	ND		180	2.1	ug/kg dry	ND		54-148			
Dibenzofuran	ND		180	1.9	ug/kg dry	ND		56-120			
Diethyl phthalate	ND		180	5.5	ug/kg dry	ND		66-126			
Dimethyl phthalate	ND		180	4.7	ug/kg dry	ND		65-124			
Di-n-butyl phthalate	ND		180	63	ug/kg dry	ND		58-130			
Di-n-octyl phthalate	ND		180	4.2	ug/kg dry	ND		62-133			
Fluoranthene	ND		180	2.6	ug/kg dry	53.1		62-131			J
Fluorene	ND	3590	180	4.2	ug/kg dry	3560	99	63-126			
Hexachlorobenzene	ND		180	9.0	ug/kg dry	ND		60-132			
Hexachlorobutadiene	ND		180	9.3	ug/kg dry	ND		45-120			
Hexachlorocyclopentadie ne	ND		180	55	ug/kg dry	ND		31-120			
Hexachloroethane	ND	3590	180	14	ug/kg dry	2830	79	41-120			
Indeno(1,2,3-cd)pyrene	ND		180	5.0	ug/kg dry	ND		56-149			
Isophorone	ND		180	9.1	ug/kg dry	ND		56-120			
Naphthalene	ND		180	3.0	ug/kg dry	ND		46-120			
Nitrobenzene	ND		180	8.1	ug/kg dry	ND		49-120			

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

SDG Number: RTI0959

Received: 09/14/10-09/15/10 Reported: 09/30/10 11:33

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			LA	BORATOR	Y QC DATA						
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Semivolatile Organics by	GC/MS										
Matrix Spike Analyzed: 0 QC Source Sample: RTI1016-0	-	ab Numbe	r:10 1091-N	IS1, Batch: 10	11091)						
N-Nitrosodi-n-propylamin e	ND	3590	180	14	ug/kg dry	3500	98	46-120			
N-Nitrosodiphenylamine	ND		180	9.9	ug/kg dry	ND		20-119			
Pentachlorophenol	ND	3590	360	62	ug/kg dry	3760	105	33-136			
Phenanthrene	ND		180	3.8	ug/kg dry	ND		60-130			
Phenol	ND	3590	180	19	ug/kg dry	2770	77	36-120			
Pyrene	ND	3590	180	1.2	ug/kg dry	3660	102	51-133			
Surrogate:					ug/kg dry		117	39-146			
2,4,6-Tribromophenol Surrogate: 2-Fluorobiphenyl					ug/kg dry		91	37-120			
Surrogate: 2-Fluorophenol					ug/kg dry		79	18-120			
Surrogate: Nitrobenzene-d5					ug/kg dry		93	34-132			
Surrogate: Phenol-d5					ug/kg dry		82	11-120			
Surrogate: p-Terphenyl-d14					ug/kg dry		91	58-147			
Matrix Spike Dup Analyze QC Source Sample: RTI1016-0		0 (Lab Nu	mber:10I10	91-MSD1, Bat	ch: 10l1091)						
2,4,5-Trichlorophenol	ND		190	41	ug/kg dry	ND		59-126		18	
2,4,6-Trichlorophenol	ND		190	12	ug/kg dry	ND		59-123		19	
2,4-Dichlorophenol	ND		190	9.7	ug/kg dry	ND		52-120		19	
2,4-Dimethylphenol	ND		190	50	ug/kg dry	ND		36-120		42	
2,4-Dinitrophenol	ND		360	65	ug/kg dry	ND		35-146		22	
2,4-Dinitrotoluene	ND	3670	190	29	ug/kg dry	3390	92	55-125	11	20	
2,6-Dinitrotoluene	ND		190	46	ug/kg dry	ND		66-128		15	
2-Chloronaphthalene	ND		190	12	ug/kg dry	ND		57-120		21	
2-Chlorophenol	ND	3670	190	9.5	ug/kg dry	2470	67	38-120	23	25	
2-Methylnaphthalene	ND		190	2.3	ug/kg dry	ND		47-120		21	
2-Methylphenol	ND		190	5.7	ug/kg dry	ND		48-120		27	
2-Nitroaniline	ND		360	60	ug/kg dry	ND		61-130		15	
2-Nitrophenol	ND		190	8.5	ug/kg dry	ND		50-120		18	
3,3'-Dichlorobenzidine	ND		190	160	ug/kg dry	ND		48-126		25	
3-Nitroaniline	ND		360	43	ug/kg dry	ND		61-127		19	
4,6-Dinitro-2-methylphen ol	ND		360	64	ug/kg dry	ND		49-155		15	
4-Bromophenyl phenyl ether	ND		190	59	ug/kg dry	ND		58-131		15	
4-Chloro-3-methylphenol	ND	3670	190	7.7	ug/kg dry	3120	85	49-125	11	27	

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

SDG Number: RTI0959

Received: 09/14/10-09/15/10 Reported: 09/30/10 11:33

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			LÆ	BORATOR	Y QC DATA						
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Semivolatile Organics by	<u>y GC/MS</u>										
Matrix Spike Dup Analyz QC Source Sample: RTI1016-0) (Lab I	Number:10l1()91-MSD1, Bat	ch: 10l1091)						
4-Chloroaniline	ND		190	55	ug/kg dry	ND		49-120		22	
4-Chlorophenyl phenyl ether	ND		190	4.0	ug/kg dry	ND		63-124		16	
4-Methylphenol	ND		190	10	ug/kg dry	ND		50-119		24	
4-Nitroaniline	ND		360	21	ug/kg dry	ND		63-128		24	
4-Nitrophenol	ND	3670	360	45	ug/kg dry	2900	79	43-137	10	25	
Acenaphthene	ND	3670	190	2.2	ug/kg dry	3060	83	53-120	7	35	
Acenaphthylene	ND		190	1.5	ug/kg dry	ND		58-121		18	
Acetophenone	ND		190	9.5	ug/kg dry	ND		66-120		20	
Anthracene	ND		190	4.8	ug/kg dry	ND		62-129		15	
Atrazine	ND		190	8.3	ug/kg dry	ND		73-133		20	
Benzaldehyde	ND		190	20	ug/kg dry	ND		21-120		20	
Benzo(a)anthracene	ND		190	3.2	ug/kg dry	ND		65-133		15	
Benzo(a)pyrene	ND		190	4.5	ug/kg dry	ND		64-127		15	
Benzo(b)fluoranthene	ND		190	3.6	ug/kg dry	ND		64-135		15	
Benzo(ghi)perylene	ND		190	2.2	ug/kg dry	ND		50-152		15	
Benzo(k)fluoranthene	ND		190	2.0	ug/kg dry	ND		58-138		22	
Biphenyl	ND		190	12	ug/kg dry	ND		71-120		20	
Bis(2-chloroethoxy)metha ne	ND		190	10	ug/kg dry	ND		61-133		17	
Bis(2-chloroethyl)ether	ND		190	16	ug/kg dry	ND		45-120		21	
2,2'-Oxybis(1-Chloroprop ane)	ND		190	19	ug/kg dry	ND		44-120		24	
Bis(2-ethylhexyl) phthalate	ND	3670	190	60	ug/kg dry	3890	106	61-133	9	15	
Butyl benzyl phthalate	ND		190	50	ug/kg dry	ND		61-129		16	
Caprolactam	ND		190	80	ug/kg dry	ND		54-133		20	
Carbazole	ND		190	2.2	ug/kg dry	ND		59-129		20	
Chrysene	ND		190	1.9	ug/kg dry	ND		64-131		15	
Dibenzo(a,h)anthracene	ND		190	2.2	ug/kg dry	ND		54-148		15	
Dibenzofuran	ND		190	1.9	ug/kg dry	ND		56-120		15	
Diethyl phthalate	ND		190	5.6	ug/kg dry	ND		66-126		15	
Dimethyl phthalate	ND		190	4.9	ug/kg dry	ND		65-124		15	
Di-n-butyl phthalate	ND		190	64	ug/kg dry	ND		58-130		15	
Di-n-octyl phthalate	ND		190	4.3	ug/kg dry	ND		62-133		16	
Fluoranthene	ND		190	2.7	ug/kg dry	49.2		62-131	8	15	J
Fluorene	ND	3670	190	4.3	ug/kg dry	3290	90	63-126	8	15	
Hexachlorobenzene	ND		190	9.2	ug/kg dry	ND		60-132		15	
Hexachlorobutadiene	ND		190	9.5	ug/kg dry	ND		45-120		44	
TestAmerica Buffalo - 10	0 Hazelwood	d Drive	Amherst. NY	14228 tel 716		16-691-799	91				

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

SDG Number: RTI0959

Received: 09/14/10-09/15/10 Reported: 09/30/10 11:33

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			LA	BORATORY	Y QC DATA						
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Semivolatile Organics by	<u>/ GC/MS</u>										
Matrix Spike Dup Analyz QC Source Sample: RTI1016-0)(Lab Nı	umber:10l10	91-MSD1, Bate	ch: 10l1091)						
Hexachlorocyclopentadie ne	ND		190	56	ug/kg dry	ND		31-120		49	
Hexachloroethane	ND	3670	190	14	ug/kg dry	2300	63	41-120	21	46	
Indeno(1,2,3-cd)pyrene	ND		190	5.1	ug/kg dry	ND		56-149		15	
Isophorone	ND		190	9.3	ug/kg dry	ND		56-120		17	
Naphthalene	ND		190	3.1	ug/kg dry	ND		46-120		29	
Nitrobenzene	ND		190	8.2	ug/kg dry	ND		49-120		24	
N-Nitrosodi-n-propylamin e	ND	3670	190	15	ug/kg dry	3020	82	46-120	15	31	
N-Nitrosodiphenylamine	ND		190	10	ug/kg dry	ND		20-119		15	
Pentachlorophenol	ND	3670	360	64	ug/kg dry	3400	93	33-136	10	35	
Phenanthrene	ND		190	3.9	ug/kg dry	ND		60-130		15	
Phenol	ND	3670	190	20	ug/kg dry	2340	64	36-120	17	35	
Pyrene	ND	3670	190	1.2	ug/kg dry	3400	93	51-133	7	35	
Surrogate: 2,4,6-Tribromophenol					ug/kg dry		99	39-146			
Surrogate: 2-Fluorobiphenyl					ug/kg dry		78	37-120			
Surrogate: 2-Fluorophenol					ug/kg dry		60	18-120			
Surrogate: Nitrobenzene-d5					ug/kg dry		71	34-132			
Surrogate: Phenol-d5					ug/kg dry		66	11-120			
Surrogate: p-Terphenyl-d14					ug/kg dry		81	58-147			

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

SDG Number: RTI0959

Received: 09/14/10-09/15/10 Reported: 09/30/10 11:33

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			LA	BORATORY	QC DATA						
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Organochlorine Pesticide	es by EPA	Method 80	<u>81A</u>								
Blank Analyzed: 09/18/10	(Lab Num	nber:10 107	'5-BLK1, B	atch: 1011075)							
4,4'-DDD			1.6	0.32	ug/kg wet	ND					QSU
4,4'-DDD [2C]			1.6	0.32	ug/kg wet	ND					QSU
4,4'-DDE			1.6	0.25	ug/kg wet	ND					QSU
4,4'-DDE [2C]			1.6	0.25	ug/kg wet	ND					QSU
4,4'-DDT			1.6	0.17	ug/kg wet	ND					QSU
4,4'-DDT [2C]			1.6	0.17	ug/kg wet	ND					QSU
Aldrin			1.6	0.40	ug/kg wet	ND					QSU
Aldrin [2C]			1.6	0.40	ug/kg wet	ND					QSU
alpha-BHC			1.6	0.30	ug/kg wet	ND					QSU
alpha-BHC [2C]			1.6	0.30	ug/kg wet	ND					QSU
beta-BHC			1.6	0.18	ug/kg wet	ND					QSU
beta-BHC [2C]			1.6	0.18	ug/kg wet	ND					QSU
Chlordane			16	3.6	ug/kg wet	ND					QSU
Chlordane [2C]			16	3.6	ug/kg wet	ND					QSU
delta-BHC			1.6	0.22	ug/kg wet	ND					QSU
delta-BHC [2C]			1.6	0.22	ug/kg wet	ND					QSU
Dieldrin			1.6	0.39	ug/kg wet	ND					QSU
Dieldrin [2C]			1.6	0.39	ug/kg wet	ND					QSU
Endosulfan I			1.6	0.21	ug/kg wet	ND					QSU
Endosulfan I [2C]			1.6	0.21	ug/kg wet	ND					QSU
Endosulfan II			1.6	0.30	ug/kg wet	ND					QSU
Endosulfan II [2C]			1.6	0.30	ug/kg wet	ND					QSU
Endosulfan sulfate			1.6	0.31	ug/kg wet	ND					QSU
Endosulfan sulfate [2C]			1.6	0.31	ug/kg wet	ND					QSU
Endrin			1.6	0.23	ug/kg wet	ND					QSU
Endrin [2C]			1.6	0.23	ug/kg wet	ND					QSU
Endrin aldehyde			1.6	0.42	ug/kg wet	ND					QSU
Endrin aldehyde [2C]			1.6	0.42	ug/kg wet	ND					QSU
gamma-BHC (Lindane)			1.6	0.29	ug/kg wet	ND					QSU
gamma-BHC (Lindane) [2C]			1.6	0.29	ug/kg wet	ND					QSU
Heptachlor			1.6	0.26	ug/kg wet	ND					QSU
Heptachlor [2C]			1.6	0.26	ug/kg wet	ND					QSU
Heptachlor epoxide			1.6	0.42	ug/kg wet	ND					QSU
Heptachlor epoxide [2C]			1.6	0.42	ug/kg wet	ND					QSU
Methoxychlor			1.6	0.23	ug/kg wet	ND					QSU
Methoxychlor [2C]			1.6	0.23	ug/kg wet	ND					QSU
Toxaphene			16	9.6	ug/kg wet	ND					QSU

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

SDG Number: RTI0959

Received: 09/14/10-09/15/10 Reported: 09/30/10 11:33

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			L	ABORATORY	QC DATA					
	Source	Spike					%	% REC	% RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD Limit	Qualifiers
Organochlorine Pesticid	es by EPA	Method 80	<u>81A</u>							
Blank Analyzed: 09/18/10) (Lab Num	nber:10 107	75-BLK1. E	Batch: 10 1075)						
Toxaphene [2C]	- (16	9.6	ug/kg wet	ND				QSU
Surrogate:					ug/kg wet		116	42-146		QSU,C8
Decachlorobiphenyl					ug/ng wet		110	12 1 10		Q00,00
Surrogate:					ug/kg wet		90	42-146		QSU
Decachlorobiphenyl [2C] Surrogate:					ug/kg wet		70	37-136		QSU
Tetrachloro-m-xylene										
Surrogate: Tetrachloro-m-xylene					ug/kg wet		79	37-136		QSU
-	<i></i>									
LCS Analyzed: 09/20/10	(Lab Numb			,		10.0		FF 400		0011
4,4'-DDD		16.6	1.7	0.32	ug/kg wet	13.9	84	55-129		QSU
4,4'-DDD [2C]		16.6	1.7	0.32	ug/kg wet	14.5	87	55-129		QSU
4,4'-DDE		16.6	1.7	0.25	ug/kg wet	13.6	82	59-120		QSU
4,4'-DDE [2C]		16.6	1.7	0.25	ug/kg wet	14.4	87	59-120		QSU
4,4'-DDT		16.6	1.7	0.17	ug/kg wet	14.0	84	47-145		QSU
4,4'-DDT [2C]		16.6	1.7	0.17	ug/kg wet	13.6	82	47-145		QSU
Aldrin		16.6	1.7	0.41	ug/kg wet	10.7	64	35-120		QSU
Aldrin [2C]		16.6	1.7	0.41	ug/kg wet	11.7	70	35-120		QSU
alpha-BHC		16.6	1.7	0.30	ug/kg wet	10.9	66	49-120		QSU
alpha-BHC [2C]		16.6	1.7	0.30	ug/kg wet	12.2	73	49-120		QSU
beta-BHC		16.6	1.7	0.18	ug/kg wet	12.7	76	56-120		QSU
beta-BHC [2C]		16.6	1.7	0.18	ug/kg wet	13.5	81	56-120		QSU
delta-BHC		16.6	1.7	0.22	ug/kg wet	12.4	74	45-123		QSU
delta-BHC [2C]		16.6	1.7	0.22	ug/kg wet	13.2	79	45-123		QSU
Dieldrin		16.6	1.7	0.40	ug/kg wet	13.4	80	57-120		QSU
Dieldrin [2C]		16.6	1.7	0.40	ug/kg wet	14.0	84	57-120		QSU
Endosulfan I		16.6	1.7	0.21	ug/kg wet	11.6	69	29-125		QSU
Endosulfan I [2C]		16.6	1.7	0.21	ug/kg wet	12.2	73	29-125		QSU
Endosulfan II		16.6	1.7	0.30	ug/kg wet	12.7	76	39-121		QSU
Endosulfan II [2C]		16.6	1.7	0.30	ug/kg wet	12.5	75	39-121		QSU
Endosulfan sulfate		16.6	1.7	0.31	ug/kg wet	12.8	77	43-120		QSU
Endosulfan sulfate [2C]		16.6	1.7	0.31	ug/kg wet	12.6	76	43-120		QSU
Endrin		16.6	1.7	0.23	ug/kg wet	13.1	79	54-127		QSU
Endrin [2C]		16.6	1.7	0.23	ug/kg wet	13.4	81	54-127		QSU
Endrin aldehyde		16.6	1.7	0.43	ug/kg wet	11.1	67	33-120		QSU
Endrin aldehyde [2C]		16.6	1.7	0.43	ug/kg wet	11.2	67	33-120		QSU
gamma-BHC (Lindane)		16.6	1.7	0.29	ug/kg wet	12.2	73	50-120		QSU
gamma-BHC (Lindane) [2C]		16.6	1.7	0.29	ug/kg wet	13.0	78	50-120		QSU

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

SDG Number: RTI0959

Received: 09/14/10-09/15/10 Reported: 09/30/10 11:33

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			L	ABORATORY	QC DATA					
	Source	Spike					%	% REC	% RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD Limit	Qualifiers
Organochlorine Pesticio	les by EPA	Method 80	<u>81A</u>							
LCS Analyzed: 09/20/10	(Lab Numb	er:10 1075	5-BS1, Bate	ch: 10l1075)						
Heptachlor		16.6	1.7	0.26	ug/kg wet	11.6	70	47-120		QSU
Heptachlor [2C]		16.6	1.7	0.26	ug/kg wet	12.6	76	47-120		QSU
Heptachlor epoxide		16.6	1.7	0.43	ug/kg wet	13.0	78	44-122		QSU
Heptachlor epoxide [2C]		16.6	1.7	0.43	ug/kg wet	13.4	80	44-122		QSU
Methoxychlor		16.6	1.7	0.23	ug/kg wet	14.0	84	46-152		QSU
Methoxychlor [2C]		16.6	1.7	0.23	ug/kg wet	14.2	85	46-152		QSU
Surrogate:					ug/kg wet		94	42-146		QSU,C8
Decachlorobiphenyl Surrogate:					ug/kg wet		91	42-146		QSU
Decachlorobiphenyl [2C] Surrogate: Tetrachloro-m-xylene					ug/kg wet		70	37-136		QSU
Surrogate: Tetrachloro-m-xylene					ug/kg wet		83	37-136		QSU
Matrix Spike Analyzed: QC Source Sample: RTI0959-	-	ab Number	r:10 1075-N	MS1, Batch: 10I1	1075)					
4,4'-DDD	ND	20.8	2.1	0.40	ug/kg dry	18.6	90	55-129		
4,4'-DDD [2C]	ND	20.8	2.1	0.40	ug/kg dry	18.7	90	55-129		
4,4'-DDE	3.79	20.8	2.1	0.31	ug/kg dry	18.6	71	59-120		
4,4'-DDE [2C]	4.09	20.8	2.1	0.31	ug/kg dry	19.1	72	59-120		
4,4'-DDT	3.82	20.8	2.1	0.21	ug/kg dry	19.0	73	47-145		
4,4'-DDT [2C]	4.00	20.8	2.1	0.21	ug/kg dry	18.3	69	47-145		
Aldrin	ND	20.8	2.1	0.51	ug/kg dry	15.5	75	35-120		
Aldrin [2C]	ND	20.8	2.1	0.51	ug/kg dry	16.1	78	35-120		
alpha-BHC	ND	20.8	2.1	0.37	ug/kg dry	16.5	80	49-120		
alpha-BHC [2C]	ND	20.8	2.1	0.37	ug/kg dry	16.9	82	49-120		
beta-BHC	ND	20.8	2.1	0.22	ug/kg dry	17.7	85	56-120		
beta-BHC [2C]	ND	20.8	2.1	0.22	ug/kg dry	18.0	87	56-120		
delta-BHC	ND	20.8	2.1	0.27	ug/kg dry	17.4	84	45-123		
delta-BHC [2C]	ND	20.8	2.1	0.27	ug/kg dry	17.7	85	45-123		
Dieldrin	ND	20.8	2.1	0.50	ug/kg dry	18.1	87	57-120		
Dieldrin [2C]	ND	20.8	2.1	0.50	ug/kg dry	18.1	87	57-120		
Endosulfan I	ND	20.8	2.1	0.26	ug/kg dry	15.7	76	29-125		
Endosulfan I [2C]	ND	20.8	2.1	0.26	ug/kg dry	15.8	76	29-125		
Endosulfan II	ND	20.8	2.1	0.37	ug/kg dry	17.2	83	39-121		
Endosulfan II [2C]	ND	20.8	2.1	0.37	ug/kg dry	16.8	81	39-121		
Endosulfan sulfate	ND	20.8	2.1	0.39	ug/kg dry	20.2	97	43-120		
Endosulfan sulfate [2C]	ND	20.8	2.1	0.39	ug/kg dry	18.7	90	43-120		
Endrin	ND	20.8	2.1	0.29	ug/kg dry	18.0	87	54-127		

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

SDG Number: RTI0959

Received: 09/14/10-09/15/10 Reported: 09/30/10 11:33

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			L	BORATOR	Y QC DATA						
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Organochlorine Pesticid	es by EPA	Method 80	<u>)81A</u>								
Matrix Spike Analyzed: 0 QC Source Sample: RTI0959-0	-	ab Numbe	r:10 1075-N	/IS1, Batch: 10	1075)						
Endrin [2C]	ND	20.8	2.1	0.29	ug/kg dry	17.9	86	54-127			
Endrin aldehyde	ND	20.8	2.1	0.53	ug/kg dry	19.1	92	33-120			
Endrin aldehyde [2C]	ND	20.8	2.1	0.53	ug/kg dry	18.9	91	33-120			
gamma-BHC (Lindane)	ND	20.8	2.1	0.36	ug/kg dry	17.5	85	50-120			
gamma-BHC (Lindane) [2C]	ND	20.8	2.1	0.36	ug/kg dry	18.0	87	50-120			
Heptachlor	ND	20.8	2.1	0.32	ug/kg dry	16.9	81	47-120			
Heptachlor [2C]	ND	20.8	2.1	0.32	ug/kg dry	17.0	82	47-120			
Heptachlor epoxide	ND	20.8	2.1	0.54	ug/kg dry	18.0	87	44-122			
Heptachlor epoxide [2C]	ND	20.8	2.1	0.54	ug/kg dry	17.7	85	44-122			
Methoxychlor	ND	20.8	2.1	0.29	ug/kg dry	19.3	93	46-152			
Methoxychlor [2C]	ND	20.8	2.1	0.29	ug/kg dry	19.5	94	46-152			
Surrogate: Decachlorobiphenyl					ug/kg dry		97	42-146			
Surrogate: Decachlorobiphenyl [2C]					ug/kg dry		93	42-146			
Surrogate: Tetrachloro-m-xylene					ug/kg dry		73	37-136			
Surrogate: Tetrachloro-m-xylene					ug/kg dry		75	37-136			
Matrix Spike Dup Analyz		0 (Lab Nu	mber:1011	075-MSD1, Bat	ch: 10l1075)						
QC Source Sample: RTI0959-0											
4,4'-DDD	ND	20.4	2.0	0.40	ug/kg dry	19.0	93	55-129	2	21	
4,4'-DDD [2C]	ND	20.4	2.0	0.40	ug/kg dry	18.7	92	55-129	0.2	21	
4,4'-DDE	3.79	20.4	2.0	0.31	ug/kg dry	18.6	73	59-120	0.06	18	
4,4'-DDE [2C]	4.09	20.4	2.0	0.31	ug/kg dry	19.4	75	59-120		18	
4,4'-DDT	3.82	20.4	2.0	0.21	ug/kg dry	19.5	77	47-145		25	
4,4'-DDT [2C]	4.00	20.4	2.0	0.21	ug/kg dry	18.7	72	47-145		25	
Aldrin	ND	20.4	2.0	0.50	ug/kg dry	15.4	76	35-120	0.3	12	
Aldrin [2C]	ND	20.4	2.0	0.50	ug/kg dry	16.2	80	35-120	0.5	12	
alpha-BHC	ND	20.4	2.0	0.37	ug/kg dry	16.0	79	49-120	3	15	
alpha-BHC [2C]	ND	20.4	2.0	0.37	ug/kg dry	16.1	79	49-120	5	15	
beta-BHC	ND	20.4	2.0	0.22	ug/kg dry	16.6	81	56-120	7	19	
beta-BHC [2C]	ND	20.4	2.0	0.22	ug/kg dry	16.9	83	56-120	7	19	
delta-BHC	ND	20.4	2.0	0.27	ug/kg dry	16.8	83	45-123	3	14	
delta-BHC [2C]	ND	20.4	2.0	0.27	ug/kg dry	17.3	85	45-123	2	14	
Dieldrin	ND	20.4	2.0	0.49	ug/kg dry	17.8	87	57-120	2	12	
Dieldrin [2C]	ND	20.4	2.0	0.49	ug/kg dry	18.0	88	57-120	0.8	12	
Endosulfan I	ND	20.4	2.0	0.26	ug/kg dry	15.3	75	29-125	3	18	

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

SDG Number: RTI0959

Received: 09/14/10-09/15/10 Reported: 09/30/10 11:33

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			LA	BORATOR	Y QC DATA						
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Organochlorine Pesticio	les by EPA	Method 80	<u>)81A</u>								
Matrix Spike Dup Analyz QC Source Sample: RTI0959-		0 (Lab Nu	mber:10I10	975-MSD1, Bat	ch: 10l1075)						
Endosulfan I [2C]	ND	20.4	2.0	0.26	ug/kg dry	15.6	77	29-125	1	18	
Endosulfan II	ND	20.4	2.0	0.37	ug/kg dry	17.3	85	39-121	0.6	26	
Endosulfan II [2C]	ND	20.4	2.0	0.37	ug/kg dry	16.9	83	39-121	0.6	26	
Endosulfan sulfate	ND	20.4	2.0	0.38	ug/kg dry	20.2	99	43-120	0.3	35	
Endosulfan sulfate [2C]	ND	20.4	2.0	0.38	ug/kg dry	18.4	90	43-120	2	35	
Endrin	ND	20.4	2.0	0.28	ug/kg dry	18.0	88	54-127	0.1	20	
Endrin [2C]	ND	20.4	2.0	0.28	ug/kg dry	17.9	88	54-127	0.2	20	
Endrin aldehyde	ND	20.4	2.0	0.52	ug/kg dry	18.2	89	33-120	5	47	
Endrin aldehyde [2C]	ND	20.4	2.0	0.52	ug/kg dry	17.9	88	33-120	5	47	
gamma-BHC (Lindane)	ND	20.4	2.0	0.35	ug/kg dry	16.7	82	50-120	5	12	
gamma-BHC (Lindane) [2C]	ND	20.4	2.0	0.35	ug/kg dry	17.3	85	50-120	4	12	
Heptachlor	ND	20.4	2.0	0.32	ug/kg dry	17.9	88	47-120	6	22	
Heptachlor [2C]	ND	20.4	2.0	0.32	ug/kg dry	16.5	81	47-120	3	22	
Heptachlor epoxide	ND	20.4	2.0	0.53	ug/kg dry	17.5	86	44-122	3	15	
Heptachlor epoxide [2C]	ND	20.4	2.0	0.53	ug/kg dry	17.4	85	44-122	2	15	
Methoxychlor	ND	20.4	2.0	0.28	ug/kg dry	19.5	96	46-152	0.8	24	
Methoxychlor [2C]	ND	20.4	2.0	0.28	ug/kg dry	21.1	104	46-152	8	24	
Surrogate: Decachlorobiphenyl					ug/kg dry		93	42-146			
Surrogate: Decachlorobiphenyl [2C]					ug/kg dry		86	42-146			
Surrogate: Tetrachloro-m-xylene					ug/kg dry		72	37-136			
Surrogate:					ug/kg dry		75	37-136			

Tetrachloro-m-xylene

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

SDG Number: RTI0959

Received: 09/14/10-09/15/10 Reported: 09/30/10 11:33

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			LÆ	BORATOR	Y QC DATA						
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Polychlorinated Bipheny	yls by EPA I	Method 80	<u>82</u>								
Blank Analyzed: 09/16/1	0 (Lab Num	nber:101093	37-BLK1, E	Batch: 1010937)							
Aroclor 1016			16	3.2	ug/kg wet	ND					QSU
Aroclor 1016 [2C]			16	3.2	ug/kg wet	ND					QSU
Aroclor 1221			16	3.2	ug/kg wet	ND					QSU
Aroclor 1221 [2C]			16	3.2	ug/kg wet	ND					QSU
Aroclor 1232			16	3.2	ug/kg wet	ND					QSU
Aroclor 1232 [2C]			16	3.2	ug/kg wet	ND					QSU
Aroclor 1242			16	3.5	ug/kg wet	ND					QSU
Aroclor 1242 [2C]			16	3.5	ug/kg wet	ND					QSU
Aroclor 1248			16	3.2	ug/kg wet	ND					QSU
Aroclor 1248 [2C]			16	3.2	ug/kg wet	ND					QSU
Aroclor 1254			16	3.4	ug/kg wet	ND					QSU
Aroclor 1254 [2C]			16	3.4	ug/kg wet	ND					QSU
Aroclor 1260			16	7.6	ug/kg wet	ND					QSU
Aroclor 1260 [2C]			16	7.6	ug/kg wet	ND					QSU,C
Surrogate:					ug/kg wet		112	34-148			QSU
Decachlorobiphenyl Surrogate:					ug/kg wet		106	34-148			QSU
Decachlorobiphenyl [2C] Surrogate: Tetrachloro-m-xylene					ug/kg wet		89	35-134			QSU
Surrogate: Tetrachloro-m-xylene					ug/kg wet		92	35-134			QSU
LCS Analyzed: 09/16/10	(Lab Numb	per:1010937	7-BS1, Bate	ch: 1010937)							
Aroclor 1016		163	16	3.2	ug/kg wet	160	98	59-154			QSU
Aroclor 1016 [2C]		163	16	3.2	ug/kg wet	149	92	59-154			QSU
Aroclor 1221			16	3.2	ug/kg wet	ND					QSU
Aroclor 1221 [2C]			16	3.2	ug/kg wet	ND					QSU
Aroclor 1232			16	3.2	ug/kg wet	ND					QSU
Aroclor 1232 [2C]			16	3.2	ug/kg wet	ND					QSU
Aroclor 1242			16	3.5	ug/kg wet	ND					QSU
Aroclor 1242 [2C]			16	3.5	ug/kg wet	ND					QSU
Aroclor 1248			16	3.2	ug/kg wet	ND					QSU
Aroclor 1248 [2C]			16	3.2	ug/kg wet	ND					QSU
Aroclor 1254			16	3.4	ug/kg wet	ND					QSU
Aroclor 1254 [2C]			16	3.4	ug/kg wet	ND					QSU
Aroclor 1260		163	16	7.6	ug/kg wet	170	104	51-179			QSU
Aroclor 1260 [2C]		163	16	7.6	ug/kg wet	162	99	51-179			QSU,C
Surrogate:		-			ug/kg wet		108	34-148			QSU

Decachlorobiphenyl

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

SDG Number: RTI0959

			LÆ	BORATORY	QC DATA					
Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC Limits	% RPD RPD Limit	Data Data
Polychlorinated Biphen	yls by EPA	Method 808	2							
LCS Analyzed: 09/16/10	/Lab Numb	or:1010937_	BS1 Bat	-h. 1010937)						
Surrogate:		Jei. 1010337-	DOT, Date		ug/kg wet		104	34-148		QSU
Decachlorobiphenyl [2C] Surrogate:					ug/kg wet		88	35-134		QSU
Tetrachloro-m-xylene Surrogate:					ug/kg wet		88	35-134		QSU
Tetrachloro-m-xylene										
Polychlorinated Biphen	yls by EPA	Method 808	2							
Blank Analyzed: 09/18/1	0 (Lab Num	1ber:1011073	-							0011
Aroclor 1016			16	3.2	ug/kg wet	ND				QSU
Aroclor 1016 [2C]			16	3.2	ug/kg wet	ND				QSU
Aroclor 1221			16	3.2	ug/kg wet	ND				QSU
Aroclor 1221 [2C]			16	3.2	ug/kg wet	ND				QSU
Aroclor 1232			16	3.2	ug/kg wet	ND				QSU
Aroclor 1232 [2C]			16	3.2	ug/kg wet	ND				QSU
Aroclor 1242			16	3.6	ug/kg wet	ND				QSU
Aroclor 1242 [2C]			16	3.6	ug/kg wet	ND				QSU
Aroclor 1248			16	3.2	ug/kg wet	ND				QSU
Aroclor 1248 [2C]			16	3.2	ug/kg wet	ND				QSU
Aroclor 1254			16	3.5	ug/kg wet	ND				QSU
Aroclor 1254 [2C]			16	3.5	ug/kg wet	ND				QSU
Aroclor 1260			16	7.7	ug/kg wet	ND				QSU
Aroclor 1260 [2C]			16	7.7	ug/kg wet	ND				QSU
Surrogate:					ug/kg wet		96	34-148		QSU
Decachlorobiphenyl Surrogate:					ug/kg wet		96	34-148		QSU
Decachlorobiphenyl [2C] Surrogate:					ug/kg wet		83	35-134		QSU
Tetrachloro-m-xylene Surrogate: Tetrachloro					ug/kg wet		84	35-134		QSU
Tetrachloro-m-xylene										
LCS Analyzed: 09/18/10	(Lab Numb	er:10l1073-	-							
Aroclor 1016		162	16	3.2	ug/kg wet	160	99	59-154		QSU
Aroclor 1016 [2C]		162	16	3.2	ug/kg wet	150	92	59-154		QSU
Aroclor 1221			16	3.2	ug/kg wet	ND				QSU
Aroclor 1221 [2C]			16	3.2	ug/kg wet	ND				QSU
Aroclor 1232			16	3.2	ug/kg wet	ND				QSU
Aroclor 1232 [2C]			16	3.2	ug/kg wet	ND				QSU
Aroclor 1242			16	3.5	ug/kg wet	ND				QSU
Aroclor 1242 [2C]			16	3.5	ug/kg wet	ND				QSU

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

SDG Number: RTI0959

Received: 09/14/10-09/15/10 Reported: 09/30/10 11:33

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			LÆ	BORATORY	QC DATA						
Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC Limits	% RPD	RPD Limit	Data Qualifiers
Polychlorinated Biphen	yls by EPA I	Method 80	<u>82</u>								
LCS Analyzed: 09/18/10	(Lab Numb	er:10 1073	B-BS1, Bato	ch: 10 1073)							
Aroclor 1248			16	3.2	ug/kg wet	ND					QSU
Aroclor 1248 [2C]			16	3.2	ug/kg wet	ND					QSU
Aroclor 1254			16	3.4	ug/kg wet	ND					QSU
Aroclor 1254 [2C]			16	3.4	ug/kg wet	ND					QSU
Aroclor 1260		162	16	7.6	ug/kg wet	158	98	51-179			QSU
Aroclor 1260 [2C]		162	16	7.6	ug/kg wet	161	99	51-179			QSU
Surrogate:					ug/kg wet		99	34-148			QSU
Decachlorobiphenyl Surrogate: Decachlorobiphenyl [2C]					ug/kg wet		99	34-148			QSU
Surrogate: Tetrachloro-m-xylene					ug/kg wet		85	35-134			QSU
Surrogate: Tetrachloro-m-xylene					ug/kg wet		84	35-134			QSU

. estAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300		SDG Number: RTI0959				Rece Repo					
Lackawanna, NY 142	218		Project: B Project Ni		Maryland St. site RN-0066						
			LA	BORATOR	Y QC DATA						
	Source	Spike	RL	MDI			%	% REC	%	RPD	Data
Analyte	Result	Level		MDL	Units	Result	REC	Limits	RPD	Limit	Qualifier
Total Metals by SW	V 646 Series Metri	1005									
Blank Analyzed: 09	9/20/10 (Lab Num	nber:10 134	43-BLK1, Ba	atch: 10I1343)							
Mercury			0.0205	NR	mg/kg wet	ND					
Reference Analyze	d: 09/20/10 (Lab	Number:1	0I1343-SRN	11, Batch: 101 [,]	1343)						
Mercury	,	2.97	0.178	, NR	, mg/kg wet	2.63	88	67.6-132.			
2					0.0			8			
Total Metals by SW	/ 846 Series Meth	ods									
Blank Analyzed: 09	9/22/10 (Lab Num	nber:10 14 ⁻	15-BLK1, Ba	atch: 10I1415)							
Aluminum			10.4	NR	mg/kg wet	ND					
Antimony			15.6	NR	mg/kg wet	ND					
Arsenic			2.1	NR	mg/kg wet	ND					
Barium			0.521	NR	mg/kg wet	ND					
Beryllium			0.208	NR	mg/kg wet	ND					
Cadmium			0.208	NR	mg/kg wet	ND					
Calcium			52.1	NR	mg/kg wet	ND					
Chromium			0.521	NR	mg/kg wet	ND					
Cobalt			0.521	NR	mg/kg wet	ND					
Copper			1.0	NR	mg/kg wet	ND					
Iron			10.4	NR	mg/kg wet						
Lead Magnesium			1.0 20.8	NR NR	mg/kg wet mg/kg wet	ND ND					
Manganese			0.2	NR	mg/kg wet	0.2					В
Nickel			5.21	NR	mg/kg wet	ND					D
Potassium			31.3	NR	mg/kg wet	ND					
Selenium			4.2	NR	mg/kg wet	ND					
Silver			0.521	NR	mg/kg wet	ND					
Sodium			146	NR	mg/kg wet	ND					
Thallium			6.3	NR	mg/kg wet	ND					
Vanadium			0.521	NR	mg/kg wet	ND					
Zinc			2.1	NR	mg/kg wet	ND					
D-f	-1. 00/00/40 // -1-	N									
Reference Analyze	eu: 09/22/10 (Lab				-	0070	0.4	40.0.150			
Aluminum		10700	10.0	NR	mg/kg wet	8970	84	46.3-153. 3			
Antimony		117	15.0	NR	mg/kg wet	49.3	42	22.6-253			
Arsenic		138	2.0	NR	mg/kg wet	135	98	70.4-129.			
Designe			0.400				404	7			
Barium		269	0.499	NR	mg/kg wet	272	101	74-126.4			
Beryllium		157	0.200	NR	mg/kg wet	150	96	75.2-124. 8			

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

SDG Number: RTI0959

Received: 09/14/10-09/15/10 Reported: 09/30/10 11:33

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			LA	BORATOR	Y QC DATA						
	Source	Spike	RL	MDI			%	% REC	%	RPD	Data
	Result	Level		MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Total Metals by SW 846 Seri	es meth	ioas									
Reference Analyzed: 09/22/1	IO (Lab	Number:	10I1415-SRI	M1, Batch: 10I1	1415)						
Cadmium		70.9	0.200	NR	mg/kg wet	67.1	95	73.2-126. 8			
Calcium		9650	49.9	NR	mg/kg wet	8850	92	75.4-124. 2			
Chromium		105	0.499	NR	mg/kg wet	97.3	93	69.3-130. 5			
Cobalt		142	0.499	NR	mg/kg wet	137	97	73.9-125. 4			
Copper		110	1.0	NR	mg/kg wet	105	95	74.4-125. 5			
Iron		19100	10.0	NR	mg/kg wet	14700	77	43-156			
Lead		144	1.0	NR	mg/kg wet	143	99	72.9-126. 4			
Magnesium		4400	20.0	NR	mg/kg wet	3960	90	70.3-129. 7			
Manganese		538	0.2	NR	mg/kg wet	513	95	77.2-122. 6			B1,B
Nickel		130	4.99	NR	mg/kg wet	128	99	72.8-126. 9			
Potassium		4990	30.0	NR	mg/kg wet	4640	93	66.4-133. 8			
Selenium		200	4.0	NR	mg/kg wet	201	101	68.5-131. 5			
Silver		45.0	0.499	NR	mg/kg wet	43.5	97	66.3-133. 7			
Sodium		652	140	NR	mg/kg wet	566	87	55.1-144. 9			
Thallium		161	6.0	NR	mg/kg wet	165	103	68.3-131. 7			
Vanadium		66.9	0.499	NR	mg/kg wet	58.7	88	57.8-142. 1			
Zinc		223	2.0	NR	mg/kg wet	230	103	70.4-129. 6			

estAmerica

Benchmark Environi 2558 Hamburg Turn	SDG Nu	SDG Number: RTI0959 Received: Reported:						09/14/10-09/15/10 09/30/10 11:33			
Lackawanna, NY 14	218		Project: I Project N	Benchmark - 295 Jumber: TUR							
			LA	BORATORY	QC DATA						
Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC Limits	% RPD	RPD Limit	Data Qualifiers
General Chemistr	y Parameters										
Blank Analyzed: 0	9/18/10 (Lab Nun	nber:10 102	23-BLK1, E	Batch: 10I1023)							

mg/kg wet

28.5

90

40-160

Total Cyanide	31.5	0.9	
General Chemistry Parameters			

LCS Analyzed: 09/18/10 (Lab Number:10I1023-BS1, Batch: 10I1023)

Blank Analyzed: 09/21/10 (Lab Number:10I1387-BLK1, Batch: 10I1387)											
Total Cyanide		1.0	0.5	mg/kg wet	ND						
LCS Analyzed: 09/21/10 (Lab Numbe	er:10l1387-	BS1, Batch: 1	0 1387)								
Total Cyanide	31.5	1.0	0.5	mg/kg wet	21.2	67	40-160				

0.5

Chain of Custody Record		Tempe Drinkij				-		,		•	Te														
Client Benchmurk Environmul Eng Address 2588 Humberg Turnpile City Larken warm Project Name and Location (State)			Project Atlanager For For Star Telephone Number (Area Code)/Fax Number (716) ¥56-0635 Site Contact T. TS-Lince B. Fisch Camar/Waybull Number					- 	0 0 0 0 0 0 0 0 0 0 0 0 0 0				La La nalysi na sp	no Nuli is (Ati vace l				Chain Page		<u>896</u>	5°2 ☞ ∠				
235 Mary Jane LLC Contract/Purchase Order/Oucle No Sample I.D. No, and Description (Containers for each sample may be combined on one time)	Dale	Time		<i>M</i> .	atrix	i .	Chickes.			ative			š	1	ן קון		!	 	 			Spec Condi	lai ins itions i		
	13/10	1 <u>35</u> 0		-	X	₹_ 	X	 	· • •		[**] ;	+		+-	 		-+ i	+						···· .	
														†				-+ -		÷					
		 		_ _ _							╏ ╏ ┇ ╴╸			+					 						
Possible Hazerd klanefication	· ·			- +	Úispa	 \$al									↓ .↓ 										
Non-Hauland Flammable Skin knikent Poisson B Conknown Chent Desposel By bab Anchow For Months Konger then 1 (nonth) Conger then																									
2 Reingwender St		9/1) auto 09-1 (2000)	8711 √~7	_ם פ 	TLTNO	3	<u>1</u> 2	2 Aed 1 Red	cener		J	2		T&	7.	~	Ţ	_ /				<u>-14-</u> 14	<u>070</u> 0 0 1	12	10
Continuents	NARY - Sinys int	h the Sam,	ela; f	Бінк	- Flevid	Capy	- ·								<i>†</i> -		f_{τ}	7			 				_

Chain of		Tempera	ttire d	n Reci	۔ tot	_		Te	est	A	m	ne	ric	CC	Ľ		
Custody Record		Drinking	Wate	r? Ye	s 🖸 🗸	мд	-	тне	LEADE	R IN E	NVIRG	ONMEN	TAL T	ESTIN	G		
Address II I D	— <u> </u>	Project Ma 10M Telephone	Mumbe	oches er 12/00	Code)/F		ber					Date 9/	14/1 voer	 >			9920
Proyect Name and Location (Stale)	aa . UV	Site Conte Site Conte T. Be Carrier W.	ri Cu	UTTOOR	Ĺa	b Conta	a 	1		+ <u>+ 7</u> う <u>+ 7</u> う 	Anal) more	rsis (Atta space is	neede			<u>896</u>	of <u>/</u> _
295 Maryland St.				 Ia _{litur}		P	ontainei reservai	tives		METALS. PCB. PL	8428						ial Instructions/ tions of Receipt
Sample I.D. No, and Description (Containers for each sample may be combined on one line) $\overline{WW - 3} (4 - 6)$	Dare 9/14/10 1	Time 3	Aquado	28 28 X	Curean X	1680	HC HC	ARON	- 764	- 12	- 1.41	_ 					
				 _ + _													
		İ		 		┝╸╿	┼╉		-+-i			. <mark> . </mark>					
·	·		-+ - +		, ,		 					<u></u> ;−					
·		į				╞	╡ ╡	┥				1 1			-		_
	<u> </u>		- 	╺╴┧╶			, 	 	- ∔ <u>-</u>					┥ぺ	_ _		_ <u>_</u>
Possible Hazard Identification [`] Non Hazard [`] Flammable []; Skin Imlant [L			le Dispos stum To L		י_ 1 הרו	50068/ B	v Lab			_ _		(A fee	may be than 1		d al seumplies a	are relamed
Tum Around Time Required Image: State of the state				517			lequinem	nents (Spe AT B					~~,y+		noring		
1 Relinquished By		Date Date	1	Time			caived t	Į	Ţ	4	; Ħ				_ 0	14/0 9-15-1 140	14(00
3. Rollinguigfud by		09-15 Date	Ð	14! Time	15		conot t	-la	+4	_	<u> </u>	-plan	Ļ		_ <u> </u> ź	- <u> {-</u> - We	1445
Commenter	CAMARY - Stays m		e, 25 0	K · Freid	Capy -	- I - —		·		$\overline{\zeta}$.8	~			_L_		
										-							

ţ,

•

Analytical Report

Work Order: RTI1555

Project Description Benchmark - 295 Maryland St. site

For:

Tom Forbes

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

S.

Brian Fischer Project Manager Brian.Fischer@testamericainc.com Friday, October 15, 2010

The test results in this report meet all NELAP requirements for analytes for which accreditation is required or available. Any exception to NELAP requirements are noted in this report. Persuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this test report should be directed to the TestAmerica Project manager who has signed this report.

Ameri

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218 Work Order: RTI1555

Received: 09/24/10 Reported: 10/15/10 09:06

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

TestAmerica Buffalo Current Certifications

As of 08/16/2010

STATE	Program	Cert # / Lab ID
Arkansas	CWA, RCRA, SOIL	88-0686
California*	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida*	NELAP CWA, RCRA	E87672
Georgia*	SDWA,NELAP CWA, RCRA	956
Illinois*	NELAP SDWA, CWA, RCRA	200003
Iowa	SW/CS	374
Kansas*	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana*	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY0044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-N Y044
Michigan	SDWA	9937
Minnesota	SDWA, CWA, RCRA	036-999-337
New Hampshire*	NELAP SDWA, CWA	233701
New Jersey*	NELAP,SDWA, CWA, RCRA,	NY455
New York*	NELAP, AIR, SDWA, CWA, RCRA	10026
North Dakota	CWA, RCRA	R-176
Oklahoma	CWA, RCRA	9421
Oregon*	CWA, RCRA	NY200003
Pennsylvania*	NELAP CWA,RCRA	68-00281
Tennessee	SDWA	02970
Texas*	NELAP CWA, RCRA	T104704412-08-TX
USDA	FOREIGN SOIL PERMIT	S-41579
Virginia	SDWA	278
Washington*	NELAP CWA,RCRA	C1677
Wisconsin	CWA, RCRA	998310390
West Virginia	CWA, RCRA	252

*As required under the indicated accreditation, the test results in this report meet all NELAP requirements for parame ters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report.

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218 Work Order: RTI1555

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066 Received: 09/24/10 Reported: 10/15/10 09:06

CASE NARRATIVE

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. field-pH), they were not analyzed immediately, but as soon as possible after laboratory receipt.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

S.

Brian Fischer Project Manager

Friday, October 15, 2010

A pertinent document is appended to this report, 1 page, is included and is an integral part of this report.

Reproduction of this analytical report is permitted only in its entirety. This report shall not be reproduced except in full without the written approval of the laboratory.

TestAmerica Laboratories, Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our Laboratory.

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066 Received: 09/24/10 Reported: 10/15/10 09:06

The requested project specific reporting limits listed below were less than lab standard quantitation limits but greater than or equal to the lab MDL. It must be noted that results reported below lab standard quantitation limits (PQL) may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

Work Order: RTI1555

SpecificMethod	Analyte	<u>Units</u>	Client RL	Lab PQL
8270C	4-Methylphenol	ug/L	5.0	10

TestAmerica

THE LEADER	IN	ENVIRONMENTAL	TESTING	

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300	Work Order: RTI1555	Received: Reported:	09/24/10 10/15/10 09:06
Lackawanna, NY 14218	Project: Benchmark - 295 Maryland St. site		
	Project Number: TURN-0066		

DATA QUALIFIERS AND DEFINITIONS

- **D03** Dilution required due to excessive foaming
- J Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). Concentrations within this range are estimated.
- Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above the acceptance limits. Analyte not detected, data not impacted.
- L1 Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above acceptance limits.
- QSU Sulfur (EPA 3660) clean-up performed on extract.
- Z Due to sample matrix effects, the surrogate recovery was below the acceptance limits.
- Z1 Surrogate recovery was above acceptance limits.
- **NR** Any inclusion of NR indicates that the project specific requirements do not require reporting estimated values below the laboratory reporting limit.

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

Work Order: RTI1555

Received: 09/24/10 Reported: 10/15/10 09:06

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

Executive Summary - Detections										
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTI1555-01 (MW-1 - Wate	r)			Sam	pled: 09	/23/10 10:20	Recy	/d: 09/24/1	0 09:00
Volatile Organic Compo	ounds by EPA	A 8260B								
Acetone	5.0	J	10	3.0	ug/L	1.00	09/29/10 23:40	NMD	1012169	8260B
Chloroform	2.0		1.0	0.34	ug/L	1.00	09/29/10 23:40	NMD	10 2169	8260B
Semivolatile Organics b	oy GC/MS									
Butyl benzyl phthalate	0.51	J	9.6	0.40	ug/L	1.00	10/09/10 17:00	MKP	10 1861	8270C
Di-n-butyl phthalate	0.51	J	9.6	0.30	ug/L	1.00	10/09/10 17:00	MKP	10 1861	8270C
Organochlorine Pesticio	des by EPA N	lethod 8081A								
4,4'-DDT	0.082		0.047	0.010	ug/L	1.00	09/28/10 20:45	LMW	10 1862	8081A
Endosulfan II	0.069		0.047	0.011	ug/L	1.00	09/28/10 20:45	LMW	1011862	8081A
gamma-Chlordane	0.036	J	0.047	0.010	ug/L	1.00	09/28/10 20:45	LMW	1011862	8081A
Heptachlor epoxide	0.018	J	0.047	0.0050	ug/L	1.00	09/28/10 20:45		1011862	8081A
Methoxychlor	0.059		0.047	0.013	ug/L	1.00	09/28/10 20:45	LMW	10 1862	8081A
Total Metals by SW 846	Series Metho	ods								
Barium	0.0542		0.0020	NR	mg/L	1.00	09/28/10 23:15	MxM	1011960	6010B
Calcium	75.6		0.5	NR	mg/L	1.00	09/28/10 23:15	MxM	1011960	6010B
Magnesium	45.3		0.200	NR	mg/L	1.00	09/28/10 23:15	MxM	1011960	6010B
Manganese	0.0739		0.0030	NR	mg/L	1.00	09/28/10 23:15	MxM	10 1960	6010B
Potassium	4.50		0.500	NR	mg/L	1.00	09/29/10 12:30	DAN	1011960	6010B
Sodium	25.1		1.0	NR	mg/L	1.00	09/29/10 12:30	DAN	10 1960	6010B
Sample ID: RTI1555-02 (MW-2 - Wate	r)			Sam	pled: 09	/23/10 13:35	Recy	/d: 09/24/1	0 09:00
Volatile Organic Compo	ounds by EPA	A 8260B								
Benzene	38	D03	5.0	2.0	ug/L	5.00	09/30/10 00:03	NMD	1012169	8260B
Chloroform	4.2	D03,J	5.0	1.7	ug/L	5.00	09/30/10 00:03	NMD	1012169	8260B
Ethylbenzene	39	D03	5.0	3.7	ug/L	5.00	09/30/10 00:03	NMD	1012169	8260B
Toluene	18	D03	5.0	2.6	ug/L	5.00	09/30/10 00:03		1012169	8260B
Xylenes, total	97	D03	10	3.3	ug/L	5.00	09/30/10 00:03	NMD	10 2169	8260B
Semivolatile Organics b	oy GC/MS									
2-Methylphenol	1.3	J	9.4	0.38	ug/L	1.00	10/09/10 17:24	MKP	10 1861	8270C
Acetophenone	2.8	J	9.4	0.51	ug/L	1.00	10/09/10 17:24	MKP	10 1861	8270C
Benzo(a)anthracene	0.35	J	9.4	0.34	ug/L	1.00	10/09/10 17:24	MKP	10 1861	8270C
Butyl benzyl phthalate	0.71	J	9.4	0.40	ug/L	1.00	10/09/10 17:24		10 1861	8270C
Di-n-butyl phthalate	0.65	J	9.4	0.29	ug/L	1.00	10/09/10 17:24		1011861	8270C
Fluoranthene	0.47	J	9.4	0.38	ug/L	1.00	10/09/10 17:24		10 1861	8270C
Naphthalene	21		9.4	0.72	ug/L	1.00	10/09/10 17:24		10 1861	8270C
Phenanthrene	0.58	J	9.4	0.42	ug/L	1.00	10/09/10 17:24		10 1861	8270C
Pyrene	0.42	J	9.4	0.32	ug/L	1.00	10/09/10 17:24	MKP	10 1861	8270C
Organochlorine Pesticio		lethod 8081A	_							
beta-BHC	0.060		0.047	0.023	ug/L	1.00	09/28/10 21:21		1011862	8081A
Endosulfan II	0.11		0.047	0.011	ug/L	1.00	09/28/10 21:21		1011862	8081A
gamma-Chlordane	0.041	J	0.047	0.010	ug/L	1.00	09/28/10 21:21		10 1862	8081A
Methoxychlor	0.098		0.047	0.013	ug/L	1.00	09/28/10 21:21	LMW	10 1862	8081A

Total Metals by SW 846 Series Methods

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

Work Order: RTI1555

Received: 09/24/10 Reported: 10/15/10 09:06

Project: Benchmark	- 295 Maryland St. site
Project Number:	TURN-0066

			Executive	Summar	y - Detect	tions				
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTI1555-02 (MW-2 - Water	r) - cont.			Sam	pled: 09/	23/10 13:35	Recv	/d: 09/24/1	0 09:00
Total Metals by SW 846	Series Metho	ods - cont.								
Barium	0.332		0.0020	NR	mg/L	1.00	09/28/10 23:17	MxM	10 1960	6010B
Calcium	119		0.5	NR	mg/L	1.00	09/28/10 23:17	MxM	10 1960	6010B
Magnesium	107		0.200	NR	mg/L	1.00	09/28/10 23:17	MxM	10 1960	6010B
Manganese	0.204		0.0030	NR	mg/L	1.00	09/28/10 23:17	MxM	10 1960	6010B
Potassium	6.41		0.500	NR	mg/L	1.00	09/29/10 12:36	DAN	10 1960	6010B
Sodium	59.2		1.0	NR	mg/L	1.00	09/29/10 12:36	DAN	1011960	6010B
Sample ID: RTI1555-03 (MW-3 - Water	r)			Sam	pled: 09/	23/10 12:25	Recv	/d: 09/24/1	0 09:00
Volatile Organic Compo	ounds by EPA	8260B								
Chloroform	5.4	D03	4.0	1.3	ug/L	4.00	09/30/10 14:02	DHC	10 2207	8260B
Semivolatile Organics b	oy GC/MS									
Acetophenone	1.1	J	9.4	0.51	ug/L	1.00	10/09/10 17:47	MKP	10 1861	8270C
Butyl benzyl phthalate	0.58	J	9.4	0.40	ug/L	1.00	10/09/10 17:47	MKP	10 1861	8270C
Di-n-butyl phthalate	0.55	J	9.4	0.29	ug/L	1.00	10/09/10 17:47	MKP	10 1861	8270C
Phenanthrene	0.46	J	9.4	0.42	ug/L	1.00	10/09/10 17:47	MKP	1011861	8270C
Organochlorine Pestici	des by EPA N	lethod 8081A								
4,4'-DDD	0.23	J	0.24	0.043	ug/L	5.00	09/28/10 22:33	LMW	10 1862	8081A
alpha-BHC	0.18	J	0.24	0.031	ug/L	5.00	09/28/10 22:33	LMW	10 1862	8081A
beta-BHC	0.13	J	0.24	0.12	ug/L	5.00	09/28/10 22:33	LMW	10 1862	8081A
Endosulfan II	0.14	J	0.24	0.057	ug/L	5.00	09/28/10 22:33	LMW	10 1862	8081A
gamma-Chlordane	0.13	J	0.24	0.052	ug/L	5.00	09/28/10 22:33	LMW	10 1862	8081A
Heptachlor	0.11	J	0.24	0.040	ug/L	5.00	09/28/10 22:33	LMW	10 1862	8081A
Methoxychlor	0.20	J	0.24	0.067	ug/L	5.00	09/28/10 22:33	LMW	1011862	8081A
Total Metals by SW 846	Series Metho	ods								
Barium	0.0985		0.0020	NR	mg/L	1.00	09/28/10 23:19	MxM	10 1960	6010B
Calcium	123		0.5	NR	mg/L	1.00	09/28/10 23:19	MxM	10 1960	6010B
Magnesium	98.3		0.200	NR	mg/L	1.00	09/28/10 23:19	MxM	10 1960	6010B
Manganese	0.195		0.0030	NR	mg/L	1.00	09/28/10 23:19	MxM	10 1960	6010B
Nickel	0.0159		0.0100	NR	mg/L	1.00	09/28/10 23:19	MxM	10 1960	6010B
Potassium	10.0		0.500	NR	mg/L	1.00	09/29/10 12:41	DAN	10 1960	6010B
Sodium	88.8		1.0	NR	mg/L	1.00	09/29/10 12:41	DAN	1011960	6010B
Coddin	0010		1.0		mg/L	1.00	00/20/10 12.41	DAN	1011000	00100

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

Work Order: RTI1555

Received: 09/24/10 Reported: 10/15/10 09:06

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

		I	Executive	Summar	y - Detect	ions				
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTI1555-04 (MW-4 - Wate	r)			Samj	pled: 09/	/23/10 11:20	Recv	/d: 09/24/1	0 09:00
Volatile Organic Compo	ounds by EPA	A 8260B								
Chloroform	2.8	D03,J	4.0	1.3	ug/L	4.00	09/30/10 14:25	DHC	1012207	8260B
Semivolatile Organics b	oy GC/MS									
Butyl benzyl phthalate	0.72	J	9.5	0.40	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C
Diethyl phthalate	1.5	J	9.5	0.21	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C
Di-n-butyl phthalate	1.1	J	9.5	0.30	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C
Organochlorine Pesticio	des by EPA N	lethod 8081A								
4,4'-DDD	0.25		0.24	0.043	ug/L	5.00	09/28/10 23:09	LMW	1011862	8081A
4,4'-DDT	0.20	J	0.24	0.052	ug/L	5.00	09/28/10 23:09	LMW	1011862	8081A
beta-BHC	0.21	J	0.24	0.12	ug/L	5.00	09/28/10 23:09	LMW	1011862	8081A
Dieldrin	0.14	J	0.24	0.046	ug/L	5.00	09/28/10 23:09	LMW	1011862	8081A
Endosulfan I	0.070	J	0.24	0.052	ug/L	5.00	09/28/10 23:09	LMW	1011862	8081A
Endosulfan II	0.14	J	0.24	0.057	ug/L	5.00	09/28/10 23:09	LMW	1011862	8081A
Endosulfan sulfate	0.092	J	0.24	0.074	ug/L	5.00	09/28/10 23:09	LMW	1011862	8081A
gamma-Chlordane	0.15	J	0.24	0.052	ug/L	5.00	09/28/10 23:09	LMW	1011862	8081A
Heptachlor	0.14	J	0.24	0.040	ug/L	5.00	09/28/10 23:09	LMW	1011862	8081A
Methoxychlor	0.16	J	0.24	0.067	ug/L	5.00	09/28/10 23:09	LMW	10 1862	8081A
Total Metals by SW 846	Series Metho	ods								
Barium	0.0687		0.0020	NR	mg/L	1.00	09/28/10 23:21	MxM	1011960	6010B
Calcium	150		0.5	NR	mg/L	1.00	09/28/10 23:21	MxM	1011960	6010B
Magnesium	151		0.200	NR	mg/L	1.00	09/28/10 23:21	MxM	1011960	6010B
Manganese	0.315		0.0030	NR	mg/L	1.00	09/28/10 23:21	MxM	10 1960	6010B
Potassium	12.2		0.500	NR	mg/L	1.00	09/29/10 12:47	DAN	10 1960	6010B
Sodium	34.4		1.0	NR	mg/L	1.00	09/29/10 12:47	DAN	10 1960	6010B

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Benchmark Environmental & Engineering Science	Work Order: RTI1555	Received:	09/24/10
2558 Hamburg Turnpike, Suite 300		Reported:	10/15/10 09:06
Lackawanna, NY 14218	Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066		

Sample Summary

Sample Identification	Lab Number	Client Matrix	Date/Time Sampled	Date/Time Received	Sample Qualifiers
MW-1	RTI1555-01	Water	09/23/10 10:20	09/24/10 15:10	
MW-2	RTI1555-02	Water	09/23/10 13:35	09/24/10 15:10	
MW-3	RTI1555-03	Water	09/23/10 12:25	09/24/10 15:10	
MW-4	RTI1555-04	Water	09/23/10 11:20	09/24/10 15:10	
TRIP BLANK	RTI1555-05	Water	09/24/10	09/24/10 15:10	

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

Work Order: RTI1555

Received: 09/24/10 Reported: 10/15/10 09:06

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			Α	nalytical F	Report					
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTI1555-01 (M	IW-1 - Wate	r)			Sam	pled: 09	/23/10 10:20	Recv	rd: 09/24/1	0 09:00
Volatile Organic Compou	inds by EPA	A 8260B								
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L	1.00	09/29/10 23:40	NMD	1012169	8260B
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L	1.00	09/29/10 23:40	NMD	1012169	8260B
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L	1.00	09/29/10 23:40	NMD	1012169	8260B
1,1,2-Trichloro-1,2,2-triflu	ND		1.0	0.31	ug/L	1.00	09/29/10 23:40	NMD	1012169	8260B
oroethane										
1,1-Dichloroethane	ND		1.0	0.38	ug/L	1.00	09/29/10 23:40		1012169	8260B
1,1-Dichloroethene	ND		1.0	0.29	ug/L	1.00	09/29/10 23:40		1012169	8260B
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L	1.00	09/29/10 23:40		1012169	8260B
1,2-Dibromo-3-chloroprop	ND		1.0	0.39	ug/L	1.00	09/29/10 23:40	NIVID	1012169	8260B
ane 1,2-Dibromoethane	ND		1.0	0.73	ug/L	1.00	09/29/10 23:40		10 2169	8260B
1.2-Dichlorobenzene	ND		1.0	0.79	ug/L	1.00	09/29/10 23:40		1012169	8260B
1,2-Dichloroethane	ND		1.0	0.21	ug/L	1.00	09/29/10 23:40		1012169	8260B
1,2-Dichloropropane	ND		1.0	0.72	ug/L	1.00	09/29/10 23:40		1012169	8260B
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L	1.00	09/29/10 23:40		1012169	8260B
1.4-Dichlorobenzene	ND		1.0	0.84	ug/L	1.00	09/29/10 23:40		1012169	8260B
2-Butanone	ND		10	1.3	ug/L	1.00	09/29/10 23:40		1012169	8260B
2-Hexanone	ND		5.0	1.2	ug/L	1.00	09/29/10 23:40		1012169	8260B
4-Methyl-2-pentanone	ND		5.0	2.1	ug/L	1.00	09/29/10 23:40		1012169	8260B
Acetone	5.0	J	10	3.0	ug/L	1.00	09/29/10 23:40		1012169	8260B
Benzene	ND		1.0	0.41	ug/L	1.00	09/29/10 23:40		1012169	8260B
Bromodichloromethane	ND		1.0	0.39	ug/L	1.00	09/29/10 23:40		1012169	8260B
Bromoform	ND		1.0	0.26	ug/L	1.00	09/29/10 23:40	NMD	1012169	8260B
Bromomethane	ND		1.0	0.69	ug/L	1.00	09/29/10 23:40	NMD	1012169	8260B
Carbon disulfide	ND		1.0	0.19	ug/L	1.00	09/29/10 23:40	NMD	1012169	8260B
Carbon Tetrachloride	ND		1.0	0.27	ug/L	1.00	09/29/10 23:40		1012169	8260B
Chlorobenzene	ND		1.0	0.75	ug/L	1.00	09/29/10 23:40	NMD	1012169	8260B
Dibromochloromethane	ND		1.0	0.32	ug/L	1.00	09/29/10 23:40	NMD	1012169	8260B
Chloroethane	ND		1.0	0.32	ug/L	1.00	09/29/10 23:40	NMD	1012169	8260B
Chloroform	2.0		1.0	0.34	ug/L	1.00	09/29/10 23:40	NMD	1012169	8260B
Chloromethane	ND		1.0	0.35	ug/L	1.00	09/29/10 23:40	NMD	1012169	8260B
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L	1.00	09/29/10 23:40	NMD	1012169	8260B
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L	1.00	09/29/10 23:40	NMD	1012169	8260B
Cyclohexane	ND		1.0	0.18	ug/L	1.00	09/29/10 23:40	NMD	1012169	8260B
Dichlorodifluoromethane	ND		1.0	0.68	ug/L	1.00	09/29/10 23:40	NMD	1012169	8260B
Ethylbenzene	ND		1.0	0.74	ug/L	1.00	09/29/10 23:40		1012169	8260B
lsopropylbenzene	ND		1.0	0.79	ug/L	1.00	09/29/10 23:40		1012169	8260B
Methyl Acetate	ND		1.0	0.50	ug/L	1.00	09/29/10 23:40		1012169	8260B
Methyl-t-Butyl Ether	ND		1.0	0.16	ug/L	1.00	09/29/10 23:40	NMD	1012169	8260B
(MTBE)										
Methylcyclohexane	ND		1.0	0.16	ug/L	1.00	09/29/10 23:40		1012169	8260B
Methylene Chloride	ND		1.0	0.44	ug/L	1.00	09/29/10 23:40		1012169	8260B
Styrene	ND		1.0	0.73	ug/L	1.00	09/29/10 23:40		1012169	8260B
Tetrachloroethene	ND		1.0	0.36	ug/L	1.00	09/29/10 23:40		1012169	8260B
	ND		1.0	0.51	ug/L	1.00	09/29/10 23:40		1012169	8260B
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L	1.00	09/29/10 23:40		1012169	8260B
trans-1,3-Dichloropropen	ND		1.0	0.37	ug/L	1.00	09/29/10 23:40	NMD	10 2169	8260B
e Trichloroethene	ND		1.0	0.46	ug/L	1.00	09/29/10 23:40		10 2169	8260B
Trichlorofluoromethane	ND		1.0	0.40	ug/L ug/L	1.00	09/29/10 23:40		1012169	8260B
Vinyl chloride	ND		1.0	0.88	ug/L ug/L	1.00	09/29/10 23:40		1012169	8260B
			1.0	0.90	ug/L	1.00	03/23/10/23.40		1012103	02000

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

Work Order: RTI1555

Received: 09/24/10 Reported: 10/15/10 09:06

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			A	Analytical F	Report					
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTI1555-01 (N	IW-1 - Wateı	r) - cont.			Sam	pled: 09/	23/10 10:20	Recv	vd: 09/24/1	0 09:00
Volatile Organic Compo	unds by EPA	A 8260B - cor	<u>nt.</u>							
Xylenes, total	ND		2.0	0.66	ug/L	1.00	09/29/10 23:40	NMD	1012169	8260B
1,2-Dichloroethane-d4	96 %		Surr Limits:	(66-137%)			09/29/10 23:40		10/2169	8260B
4-Bromofluorobenzene	106 %		Surr Limits:	. ,			09/29/10 23:40		10/2169	8260B
Toluene-d8	104 %		Surr Limits:	(71-126%)			09/29/10 23:40	NMD	10/2169	8260B
Semivolatile Organics by	<u>/ GC/MS</u>									
2,4,5-Trichlorophenol	ND		24	0.46	ug/L	1.00	10/09/10 17:00	MKP	10 1861	8270C
2,4,6-Trichlorophenol	ND		9.6	0.59	ug/L	1.00	10/09/10 17:00	MKP	10 1861	8270C
2,4-Dichlorophenol	ND		9.6	0.49	ug/L	1.00	10/09/10 17:00	MKP	10 1861	8270C
2,4-Dimethylphenol	ND		9.6	0.48	ug/L	1.00	10/09/10 17:00	MKP	10 1861	8270C
2,4-Dinitrophenol	ND		48	2.1	ug/L	1.00	10/09/10 17:00	MKP	10 1861	8270C
2,4-Dinitrotoluene	ND		9.6	0.43	ug/L	1.00	10/09/10 17:00		10 1861	8270C
2,6-Dinitrotoluene	ND		9.6	0.38	ug/L	1.00	10/09/10 17:00		10 1861	8270C
2-Chloronaphthalene	ND		9.6	0.44	ug/L	1.00	10/09/10 17:00		10 1861	8270C
2-Chlorophenol	ND		9.6	0.51	ug/L	1.00	10/09/10 17:00		10 1861	8270C
2-Methylnaphthalene	ND		9.6	0.58	ug/L	1.00	10/09/10 17:00		1011861	8270C
	ND		9.6	0.38	-	1.00			1011861	8270C
2-Methylphenol					ug/L		10/09/10 17:00			
2-Nitroaniline	ND		48	0.40	ug/L	1.00	10/09/10 17:00		1011861	8270C
2-Nitrophenol	ND		9.6	0.46	ug/L	1.00	10/09/10 17:00		10 1861	8270C
3,3'-Dichlorobenzidine	ND		19	0.38	ug/L	1.00	10/09/10 17:00		10 1861	8270C
3-Nitroaniline	ND		48	0.46	ug/L	1.00	10/09/10 17:00	MKP	10 1861	8270C
4,6-Dinitro-2-methylphen	ND		48	2.1	ug/L	1.00	10/09/10 17:00	MKP	10 1861	8270C
ol 4-Bromophenyl phenyl	ND		9.6	0.43	ug/L	1.00	10/09/10 17:00	MKP	10 1861	8270C
ether					0					
4-Chloro-3-methylphenol	ND		9.6	0.43	ug/L	1.00	10/09/10 17:00	MKP	10 1861	8270C
4-Chloroaniline	ND		9.6	0.57	ug/L	1.00	10/09/10 17:00	MKP	10 1861	8270C
4-Chlorophenyl phenyl	ND		9.6	0.34	ug/L	1.00	10/09/10 17:00		10 1861	8270C
ether	ne -		0.0	0.01	ug/L	1.00			1011001	02100
4-Methylphenol	ND		4.8	0.35	ug/L	1.00	10/09/10 17:00	MKP	10 1861	8270C
4-Nitroaniline	ND		48	0.24	ug/L	1.00	10/09/10 17:00		1011861	8270C
4-Nitrophenol	ND		48	1.5	ug/L	1.00	10/09/10 17:00	MKP	1011861	8270C
•	ND		40 9.6	0.39	-	1.00	10/09/10 17:00	MKP	1011861	8270C
					ug/L					
Acenaphthylene	ND		9.6	0.37	ug/L	1.00	10/09/10 17:00		1011861	8270C
Acetophenone	ND		9.6	0.52	ug/L	1.00	10/09/10 17:00		1011861	8270C
Anthracene	ND		9.6	0.27	ug/L	1.00	10/09/10 17:00		10 1861	8270C
Atrazine	ND		9.6	0.44	ug/L	1.00	10/09/10 17:00		10 1861	8270C
Benzaldehyde	ND		48	0.26	ug/L	1.00	10/09/10 17:00		10 1861	8270C
Benzo(a)anthracene	ND		9.6	0.35	ug/L	1.00	10/09/10 17:00		10 1861	8270C
Benzo(a)pyrene	ND		9.6	0.45	ug/L	1.00	10/09/10 17:00	MKP	10 1861	8270C
Benzo(b)fluoranthene	ND		9.6	0.33	ug/L	1.00	10/09/10 17:00	MKP	10 1861	8270C
Benzo(ghi)perylene	ND		9.6	0.34	ug/L	1.00	10/09/10 17:00	MKP	10 1861	8270C
Benzo(k)fluoranthene	ND		9.6	0.70	ug/L	1.00	10/09/10 17:00	MKP	10 1861	8270C
Biphenyl	ND		9.6	0.63	ug/L	1.00	10/09/10 17:00		10 1861	8270C
Bis(2-chloroethoxy)metha	ND		9.6	0.34	ug/L	1.00	10/09/10 17:00		10 1861	8270C
ne										
Bis(2-chloroethyl)ether	ND		9.6	0.38	ug/L	1.00	10/09/10 17:00		10 1861	8270C
2,2'-Oxybis(1-Chloroprop	ND		9.6	0.50	ug/L	1.00	10/09/10 17:00	MKP	10 1861	8270C
ane) Bis(2-ethylhexyl)	ND		9.6	1.7	ug/L	1.00	10/09/10 17:00	MKP	10 1861	8270C
ohthalate					5					

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

Work Order: RTI1555

Received: 09/24/10 Reported: 10/15/10 09:06

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			A	Analytical F	Report					
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTI1555-01 (N	IW-1 - Water	r) - cont.			Sam	pled: 09/	/23/10 10:20	Recv	/d: 09/24/1	0 09:00
Semivolatile Organics by	y GC/MS - co	ont.								
Butyl benzyl phthalate	0.51	J	9.6	0.40	ug/L	1.00	10/09/10 17:00	MKP	10 1861	8270C
Caprolactam	ND		9.6	2.1	ug/L	1.00	10/09/10 17:00	MKP	10 1861	8270C
Carbazole	ND		4.8	0.29	ug/L	1.00	10/09/10 17:00	MKP	10 1861	8270C
Chrysene	ND		9.6	0.32	ug/L	1.00	10/09/10 17:00	MKP	10 1861	8270C
Dibenzo(a,h)anthracene	ND		9.6	0.40	ug/L	1.00	10/09/10 17:00	MKP	10 1861	8270C
Dibenzofuran	ND		9.6	0.49	ug/L	1.00	10/09/10 17:00	MKP	10 1861	8270C
Diethyl phthalate	ND		9.6	0.21	ug/L	1.00	10/09/10 17:00		10 1861	8270C
Dimethyl phthalate	ND		9.6	0.35	ug/L	1.00	10/09/10 17:00		10 1861	8270C
Di-n-butyl phthalate	0.51	J	9.6	0.30	ug/L	1.00	10/09/10 17:00	MKP	10 1861	8270C
Di-n-octyl phthalate	ND		9.6	0.45	ug/L	1.00	10/09/10 17:00	MKP	10 1861	8270C
Fluoranthene	ND		9.6	0.38	ug/L	1.00	10/09/10 17:00		10 1861	8270C
Fluorene	ND		9.6	0.35	ug/L	1.00	10/09/10 17:00		10 1861	8270C
Hexachlorobenzene	ND		9.6	0.49	ug/L	1.00	10/09/10 17:00	MKP	10 1861	8270C
Hexachlorobutadiene	ND		9.6	0.65	ug/L	1.00	10/09/10 17:00		10 1861	8270C
lexachlorocyclopentadie	ND		9.6	0.57	ug/L	1.00	10/09/10 17:00	MKP	10 1861	8270C
ie Iexachloroethane	ND		9.6	0.57	ug/L	1.00	10/09/10 17:00	MKP	10 1861	8270C
ndeno(1,2,3-cd)pyrene	ND		9.6	0.45	ug/L	1.00	10/09/10 17:00	MKP	10 1861	8270C
sophorone	ND		9.6	0.41	ug/L	1.00	10/09/10 17:00	MKP	10 1861	8270C
Japhthalene	ND		9.6	0.73	ug/L	1.00	10/09/10 17:00		10 1861	8270C
Vitrobenzene	ND		9.6	0.28	ug/L	1.00	10/09/10 17:00	MKP	10 1861	8270C
I-Nitrosodi-n-propylamin	ND		9.6	0.52	ug/L	1.00	10/09/10 17:00	MKP	10 1861	8270C
:										
N-Nitrosodiphenylamine	ND		9.6	0.49	ug/L	1.00	10/09/10 17:00	MKP	10 1861	8270C
Pentachlorophenol	ND		48	2.1	ug/L	1.00	10/09/10 17:00		10 1861	8270C
Phenanthrene	ND		9.6	0.42	ug/L	1.00	10/09/10 17:00		10 1861	8270C
Phenol	ND		9.6	0.38	ug/L	1.00	10/09/10 17:00		10 1861	8270C
Pyrene	ND		9.6	0.33	ug/L	1.00	10/09/10 17:00	MKP	10 1861	8270C
2,4,6-Tribromophenol	121 %		Surr Limits:	(52-132%)			10/09/10 17:00		10 1861	8270C
2-Fluorobiphenyl	89 %		Surr Limits:	(48-120%)			10/09/10 17:00	MKP	10 1861	8270C
2-Fluorophenol	46 %		Surr Limits:	(20-120%)			10/09/10 17:00		10 1861	8270C
Nitrobenzene-d5	88 %		Surr Limits:	(46-120%)			10/09/10 17:00		10 1861	8270C
Phenol-d5	33 %		Surr Limits:	(16-120%)			10/09/10 17:00	MKP	10 1861	8270C
o-Terphenyl-d14	63 %		Surr Limits:	(24-136%)			10/09/10 17:00	MKP	10 1861	8270C
Organochlorine Pesticid	es by EPA N	lethod 8081	<u>A</u>							
1,4'-DDD	ND		0.047	0.0087	ug/L	1.00	09/28/10 20:45		10 1862	8081A
1,4'-DDE	ND		0.047	0.011	ug/L	1.00	09/28/10 20:45		10 1862	8081A
1,4'-DDT	0.082		0.047	0.010	ug/L	1.00	09/28/10 20:45		10 1862	8081A
Aldrin	ND		0.047	0.0062	ug/L	1.00	09/28/10 20:45		10 1862	8081A
alpha-BHC	ND		0.047	0.0062	ug/L	1.00	09/28/10 20:45		10 1862	8081A
Ipha-Chlordane	ND		0.047	0.014	ug/L	1.00	09/28/10 20:45		10 1862	8081A
eta-BHC	ND		0.047	0.023	ug/L	1.00	09/28/10 20:45		10 1862	8081A
Chlordane	ND		0.47	0.027	ug/L	1.00	09/28/10 20:45		10 1862	8081A
lelta-BHC	ND		0.047	0.0095	ug/L	1.00	09/28/10 20:45		10 1862	8081A
Dieldrin	ND		0.047	0.0092	ug/L	1.00	09/28/10 20:45		10 1862	8081A
Endosulfan I	ND		0.047	0.010	ug/L	1.00	09/28/10 20:45		10 1862	8081A
Endosulfan II	0.069		0.047	0.011	ug/L	1.00	09/28/10 20:45	LMW	10 1862	8081A
ndosulfan sulfate	ND		0.047	0.015	ug/L	1.00	09/28/10 20:45	LMW	10 1862	8081A
Endrin	ND		0.047	0.013	ug/L	1.00	09/28/10 20:45	LMW	10 1862	8081A
Endrin aldehyde	ND		0.047	0.015	ug/L	1.00	09/28/10 20:45	LMW	10 1862	8081A

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

Work Order: RTI1555

Received: 09/24/10 Reported: 10/15/10 09:06

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			A	Analytical F	Report					
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTI1555-01(MW-1 - Wate	r) - cont.			Sam	pled: 09/	/23/10 10:20	Recv	d: 09/24/1	0 09:00
Organochlorine Pestici	des by EPA N	lethod 8081	<u> - cont.</u>							
Endrin ketone	ND		0.047	0.011	ug/L	1.00	09/28/10 20:45	LMW	10 1862	8081A
gamma-BHC (Lindane)	ND		0.047	0.0057	ug/L	1.00	09/28/10 20:45	LMW	10 1862	8081A
gamma-Chlordane	0.036	J	0.047	0.010	ug/L	1.00	09/28/10 20:45		10 1862	8081A
Heptachlor	ND		0.047	0.0080	ug/L	1.00	09/28/10 20:45		10 1862	8081A
leptachlor epoxide	0.018	J	0.047	0.0050	ug/L	1.00	09/28/10 20:45		10 1862	8081A
/lethoxychlor	0.059		0.047	0.013	ug/L	1.00	09/28/10 20:45		10 1862	8081A
oxaphene	ND		0.47	0.11	ug/L	1.00	09/28/10 20:45	LMW	10 1862	8081A
Decachlorobiphenyl	52 %		Surr Limits:	(15-139%)			09/28/10 20:45	LMW	10 1862	8081A
etrachloro-m-xylene	97 %		Surr Limits:	(30-139%)			09/28/10 20:45	LMW	10 1862	8081A
olychlorinated Biphen	yls by EPA N	lethod 8082								
vroclor 1016	ND	QSU	0.47	0.17	ug/L	1.00	09/28/10 23:19	JxM	10 1863	8082
Aroclor 1221	ND	QSU	0.47	0.17	ug/L	1.00	09/28/10 23:19	JxM	10 1863	8082
vroclor 1232	ND	QSU	0.47	0.17	ug/L	1.00	09/28/10 23:19	JxM	10 1863	8082
vroclor 1242	ND	QSU	0.47	0.17	ug/L	1.00	09/28/10 23:19	JxM	10 1863	8082
Aroclor 1248	ND	QSU	0.47	0.17	ug/L	1.00	09/28/10 23:19	JxM	1011863	8082
vroclor 1254 vroclor 1260	ND ND	QSU QSU	0.47 0.47	0.24 0.24	ug/L	1.00 1.00	09/28/10 23:19 09/28/10 23:19	JxM JxM	10 1863 10 1863	8082 8082
					ug/L	1.00		JXIVI		
Decachlorobiphenyl	45 %	QSU	Surr Limits:	• •			09/28/10 23:19	JxM	10 1863	8082
etrachloro-m-xylene	72 %	QSU	Surr Limits:	(35-121%)			09/28/10 23:19	JxM	10 1863	8082
otal Metals by SW 846		ods								
luminum	ND		0.200	NR	mg/L	1.00	09/28/10 23:15		10 1960	6010B
ntimony	ND		0.0200	NR	mg/L	1.00	09/28/10 23:15		10 1960	6010B
rsenic	ND		0.0100	NR	mg/L	1.00	09/28/10 23:15		10 1960	6010B
arium	0.0542		0.0020	NR	mg/L	1.00	09/28/10 23:15		10 1960	6010B
Beryllium	ND		0.0020	NR	mg/L	1.00	09/28/10 23:15		10 1960	6010B
Cadmium	ND		0.0010	NR	mg/L	1.00	09/28/10 23:15		10 1960	6010B
Calcium	75.6		0.5	NR	mg/L	1.00	09/28/10 23:15		10 1960	6010B
Chromium	ND		0.0040	NR	mg/L	1.00	09/28/10 23:15		10 1960	6010B
Cobalt	ND		0.0040	NR	mg/L	1.00	09/28/10 23:15		10 1960	6010B
Copper	ND		0.0100	NR	mg/L	1.00	09/28/10 23:15		10 1960	6010B
on	ND		0.050	NR	mg/L	1.00	09/29/10 12:30		10 1960	6010B
ead	ND		0.0050	NR	mg/L	1.00	09/28/10 23:15		10 1960	6010B
lagnesium	45.3		0.200	NR	mg/L	1.00	09/28/10 23:15		1011960	6010B
langanese	0.0739		0.0030	NR	mg/L	1.00	09/28/10 23:15		10 1960	6010B
lickel	ND		0.0100	NR	mg/L	1.00	09/28/10 23:15		1011960	6010B
Potassium	4.50		0.500	NR	mg/L	1.00	09/29/10 12:30		1011960	6010B
elenium	ND		0.0150	NR	mg/L	1.00	09/28/10 23:15		10 1960	6010B
ilver	ND		0.0030	NR	mg/L	1.00	09/28/10 23:15		1011960	6010B
odium	25.1		1.0	NR	mg/L	1.00	09/29/10 12:30		1011960	6010B
hallium	ND		0.0200	NR	mg/L	1.00	09/28/10 23:15		1011960	6010B
'anadium 	ND		0.0050	NR	mg/L	1.00	09/28/10 23:15		1011960	6010B
linc	ND		0.0100	NR	mg/L	1.00	09/28/10 23:15		10 1960	6010B
lercury	ND		0.0002	NR	mg/L	1.00	09/30/10 12:25	JKK	10 2202	7470A
eneral Chemistry Para	ameters									
otal Cyanide	ND	L	0.0100	NR	mg/L	1.00	10/01/10 15:04	RJF	10 2226	9012A

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

Work Order: RTI1555

Received: 09/24/10 Reported: 10/15/10 09:06

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			Α	nalytical F	Report					
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTI1555-02 (M	IW-2 - Water	r)			Sam	pled: 09/	23/10 13:35	Recv	vd: 09/24/1	0 09:00
Volatile Organic Compou	inds by EPA	A 8260B								
1,1,1-Trichloroethane	ND	 D03	5.0	4.1	ug/L	5.00	09/30/10 00:03		10 2169	8260B
1,1,2,2-Tetrachloroethane	ND	D03	5.0	1.1	ug/L	5.00	09/30/10 00:03		1012169	8260B
1,1,2-Trichloroethane	ND	D03	5.0	1.2	ug/L	5.00	09/30/10 00:03		1012169	8260B
1,1,2-Trichloro-1,2,2-triflu	ND	D03	5.0	1.5	ug/L	5.00	09/30/10 00:03		1012169	8260B
oroethane					- 5					
1,1-Dichloroethane	ND	D03	5.0	1.9	ug/L	5.00	09/30/10 00:03	NMD	1012169	8260B
1,1-Dichloroethene	ND	D03	5.0	1.5	ug/L	5.00	09/30/10 00:03	NMD	1012169	8260B
1,2,4-Trichlorobenzene	ND	D03	5.0	2.0	ug/L	5.00	09/30/10 00:03	NMD	1012169	8260B
1,2-Dibromo-3-chloroprop	ND	D03	5.0	2.0	ug/L	5.00	09/30/10 00:03	NMD	1012169	8260B
ane										
1,2-Dibromoethane	ND	D03	5.0	3.6	ug/L	5.00	09/30/10 00:03	NMD	1012169	8260B
1,2-Dichlorobenzene	ND	D03	5.0	4.0	ug/L	5.00	09/30/10 00:03	NMD	1012169	8260B
1,2-Dichloroethane	ND	D03	5.0	1.1	ug/L	5.00	09/30/10 00:03	NMD	10 2169	8260B
1,2-Dichloropropane	ND	D03	5.0	3.6	ug/L	5.00	09/30/10 00:03	NMD	10 2169	8260B
1,3-Dichlorobenzene	ND	D03	5.0	3.9	ug/L	5.00	09/30/10 00:03	NMD	10 2169	8260B
1,4-Dichlorobenzene	ND	D03	5.0	4.2	ug/L	5.00	09/30/10 00:03	NMD	10 2169	8260B
2-Butanone	ND	D03	50	6.6	ug/L	5.00	09/30/10 00:03	NMD	10 2169	8260B
2-Hexanone	ND	D03	25	6.2	ug/L	5.00	09/30/10 00:03	NMD	10 2169	8260B
4-Methyl-2-pentanone	ND	D03	25	10	ug/L	5.00	09/30/10 00:03	NMD	10 2169	8260B
Acetone	ND	D03	50	15	ug/L	5.00	09/30/10 00:03	NMD	10 2169	8260B
Benzene	38	D03	5.0	2.0	ug/L	5.00	09/30/10 00:03	NMD	10 2169	8260B
Bromodichloromethane	ND	D03	5.0	1.9	ug/L	5.00	09/30/10 00:03	NMD	1012169	8260B
Bromoform	ND	D03	5.0	1.3	ug/L	5.00	09/30/10 00:03	NMD	1012169	8260B
Bromomethane	ND	D03	5.0	3.4	ug/L	5.00	09/30/10 00:03	NMD	10 2169	8260B
Carbon disulfide	ND	D03	5.0	0.97	ug/L	5.00	09/30/10 00:03	NMD	10 2169	8260B
Carbon Tetrachloride	ND	D03	5.0	1.3	ug/L	5.00	09/30/10 00:03	NMD	10 2169	8260B
Chlorobenzene	ND	D03	5.0	3.8	ug/L	5.00	09/30/10 00:03	NMD	10 2169	8260B
Dibromochloromethane	ND	D03	5.0	1.6	ug/L	5.00	09/30/10 00:03	NMD	10 2169	8260B
Chloroethane	ND	D03	5.0	1.6	ug/L	5.00	09/30/10 00:03	NMD	10 2169	8260B
Chloroform	4.2	D03,J	5.0	1.7	ug/L	5.00	09/30/10 00:03	NMD	10 2169	8260B
Chloromethane	ND	D03	5.0	1.7	ug/L	5.00	09/30/10 00:03	NMD	10 2169	8260B
cis-1,2-Dichloroethene	ND	D03	5.0	4.0	ug/L	5.00	09/30/10 00:03	NMD	10 2169	8260B
cis-1,3-Dichloropropene	ND	D03	5.0	1.8	ug/L	5.00	09/30/10 00:03	NMD	1012169	8260B
Cyclohexane	ND	D03	5.0	0.90	ug/L	5.00	09/30/10 00:03	NMD	10 2169	8260B
Dichlorodifluoromethane	ND	D03	5.0	3.4	ug/L	5.00	09/30/10 00:03	NMD	10 2169	8260B
Ethylbenzene	39	D03	5.0	3.7	ug/L	5.00	09/30/10 00:03	NMD	10 2169	8260B
Isopropylbenzene	ND	D03	5.0	4.0	ug/L	5.00	09/30/10 00:03	NMD	10 2169	8260B
Methyl Acetate	ND	D03	5.0	2.5	ug/L	5.00	09/30/10 00:03	NMD	10 2169	8260B
Methyl-t-Butyl Ether	ND	D03	5.0	0.80	ug/L	5.00	09/30/10 00:03	NMD	10 2169	8260B
(MTBE)										
Methylcyclohexane	ND	D03	5.0	0.80	ug/L	5.00	09/30/10 00:03	NMD	1012169	8260B
Methylene Chloride	ND	D03	5.0	2.2	ug/L	5.00	09/30/10 00:03	NMD	10 2169	8260B
Styrene	ND	D03	5.0	3.6	ug/L	5.00	09/30/10 00:03	NMD	10 2169	8260B
Tetrachloroethene	ND	D03	5.0	1.8	ug/L	5.00	09/30/10 00:03	NMD	1012169	8260B
Toluene	18	D03	5.0	2.6	ug/L	5.00	09/30/10 00:03	NMD	1012169	8260B
trans-1,2-Dichloroethene	ND	D03	5.0	4.5	ug/L	5.00	09/30/10 00:03	NMD	1012169	8260B
trans-1,3-Dichloropropen	ND	D03	5.0	1.8	ug/L	5.00	09/30/10 00:03	NMD	10 2169	8260B
e Trichloroothono		D03	5 0	2.2	uc/l	E 00	00/20/40 00:02		1012160	00600
Trichloroethene	ND	D03	5.0	2.3	ug/L	5.00	09/30/10 00:03		1012169	8260B
Trichlorofluoromethane		D03	5.0 5.0	4.4	ug/L	5.00	09/30/10 00:03		1012169	8260B
Vinyl chloride	ND	D03	5.0	4.5	ug/L	5.00	09/30/10 00:03	UNN	10 2169	8260B

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

Work Order: RTI1555

Received: 09/24/10 Reported: 10/15/10 09:06

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			A	Analytical F	Report					
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTI1555-02 (N	IW-2 - Wateı	r) - cont.			Sam	pled: 09/	23/10 13:35	Recv	/d: 09/24/1	0 09:00
Volatile Organic Compou	unds by EPA	A 8260B - co	<u>nt.</u>							
Xylenes, total	97	D03	10	3.3	ug/L	5.00	09/30/10 00:03	NMD	10 2169	8260B
1,2-Dichloroethane-d4	96 %	D03	Surr Limits:	(66-137%)			09/30/10 00:03		10/2169	8260B
4-Bromofluorobenzene	106 %	D03	Surr Limits:	` /			09/30/10 00:03		10/2169	8260B
Toluene-d8	104 %	D03	Surr Limits:	(71-126%)			09/30/10 00:03	NMD	10/2169	8260B
Semivolatile Organics by	<u>GC/MS</u>									
2,4,5-Trichlorophenol	ND		24	0.45	ug/L	1.00	10/09/10 17:24	MKP	10 1861	8270C
2,4,6-Trichlorophenol	ND		9.4	0.58	ug/L	1.00	10/09/10 17:24	MKP	10 1861	8270C
2,4-Dichlorophenol	ND		9.4	0.48	ug/L	1.00	10/09/10 17:24	MKP	10 1861	8270C
2,4-Dimethylphenol	ND		9.4	0.47	ug/L	1.00	10/09/10 17:24	MKP	10 1861	8270C
2,4-Dinitrophenol	ND		47	2.1	ug/L	1.00	10/09/10 17:24	MKP	10 1861	8270C
2,4-Dinitrotoluene	ND		9.4	0.42	ug/L	1.00	10/09/10 17:24		10 1861	8270C
2.6-Dinitrotoluene	ND		9.4	0.38	ug/L	1.00	10/09/10 17:24		1011861	8270C
2-Chloronaphthalene	ND		9.4	0.43	ug/L	1.00	10/09/10 17:24	MKP	1011861	8270C
2-Chlorophenol	ND		9.4	0.50	ug/L	1.00	10/09/10 17:24		1011861	8270C
2-Methylnaphthalene	ND		9.4	0.57	ug/L	1.00	10/09/10 17:24		1011861	8270C
2-Methylphenol	1.3	J	9.4	0.38	ug/L	1.00	10/09/10 17:24		1011861	8270C
2-Nitroaniline	ND	5	9. 4 47	0.40		1.00	10/09/10 17:24		1011861	8270C
	ND		9.4	0.40	ug/L	1.00			1011861	8270C 8270C
2-Nitrophenol					ug/L		10/09/10 17:24			
3,3'-Dichlorobenzidine	ND		19	0.38	ug/L	1.00	10/09/10 17:24		1011861	8270C
3-Nitroaniline	ND		47	0.45	ug/L	1.00	10/09/10 17:24		1011861	8270C
4,6-Dinitro-2-methylphen	ND		47	2.1	ug/L	1.00	10/09/10 17:24	MKP	10 1861	8270C
ol 4-Bromophenyl phenyl	ND		9.4	0.42	ug/L	1.00	10/09/10 17:24	MKP	10 1861	8270C
ether					0					
4-Chloro-3-methylphenol	ND		9.4	0.42	ug/L	1.00	10/09/10 17:24	MKP	10 1861	8270C
4-Chloroaniline	ND		9.4	0.56	ug/L	1.00	10/09/10 17:24	MKP	10 1861	8270C
4-Chlorophenyl phenyl ether	ND		9.4	0.33	ug/L	1.00	10/09/10 17:24	MKP	10 1861	8270C
4-Methylphenol	ND		4.7	0.34	ug/L	1.00	10/09/10 17:24	MKP	10 1861	8270C
4-Nitroaniline	ND		47	0.24	ug/L	1.00	10/09/10 17:24		10 1861	8270C
4-Nitrophenol	ND		47	1.4	ug/L	1.00	10/09/10 17:24		1011861	8270C
Acenaphthene	ND		9.4	0.39	ug/L	1.00	10/09/10 17:24	MKP	1011861	8270C
Acenaphthylene	ND		9.4	0.36	ug/L	1.00	10/09/10 17:24		1011861	8270C
					-					
Acetophenone	2.8	J	9.4	0.51	ug/L	1.00	10/09/10 17:24		1011861	8270C
Anthracene	ND		9.4	0.26	ug/L	1.00	10/09/10 17:24		1011861	8270C
Atrazine	ND		9.4	0.43	ug/L	1.00	10/09/10 17:24		1011861	8270C
Benzaldehyde	ND		47	0.25	ug/L	1.00	10/09/10 17:24		1011861	8270C
Benzo(a)anthracene	0.35	J	9.4	0.34	ug/L	1.00	10/09/10 17:24		10 1861	8270C
Benzo(a)pyrene	ND		9.4	0.44	ug/L	1.00	10/09/10 17:24		10 1861	8270C
Benzo(b)fluoranthene	ND		9.4	0.32	ug/L	1.00	10/09/10 17:24		10 1861	8270C
Benzo(ghi)perylene	ND		9.4	0.33	ug/L	1.00	10/09/10 17:24		10 1861	8270C
Benzo(k)fluoranthene	ND		9.4	0.69	ug/L	1.00	10/09/10 17:24		10 1861	8270C
Biphenyl	ND		9.4	0.62	ug/L	1.00	10/09/10 17:24	MKP	10 1861	8270C
Bis(2-chloroethoxy)metha	ND		9.4	0.33	ug/L	1.00	10/09/10 17:24	MKP	10 1861	8270C
ne Bis(2-chloroethyl)ether	ND		9.4	0.38	uc/l	1 00	10/09/10 17:24	MKD	10 1861	8270C
2,2'-Oxybis(1-Chloroprop	ND ND		9.4 9.4	0.38	ug/L ug/L	1.00 1.00	10/09/10 17:24		1011861	8270C 8270C
ane)					-					
Bis(2-ethylhexyl) phthalate	ND		9.4	1.7	ug/L	1.00	10/09/10 17:24	MKP	10 1861	8270C

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

Work Order: RTI1555

Received: 09/24/10 Reported: 10/15/10 09:06

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

Analyte Sample ID: RTI1555-02 (I Semivolatile Organics b	Sample Result	Data								
Sample ID: RTI1555-02 (I	Result					Dil	Date	Lab		
		Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
<u>Semivolatile Organics b</u>	MW-2 - Wate	r) - cont.			Sam	pled: 09/	23/10 13:35	Recv	d: 09/24/1	0 09:00
	y GC/MS - co	ont.								
Butyl benzyl phthalate	0.71	J	9.4	0.40	ug/L	1.00	10/09/10 17:24	MKP	10 1861	8270C
Caprolactam	ND		9.4	2.1	ug/L	1.00	10/09/10 17:24	MKP	10 1861	8270C
Carbazole	ND		4.7	0.28	ug/L	1.00	10/09/10 17:24	MKP	10 1861	8270C
Chrysene	ND		9.4	0.31	ug/L	1.00	10/09/10 17:24	MKP	10 1861	8270C
Dibenzo(a,h)anthracene	ND		9.4	0.40	ug/L	1.00	10/09/10 17:24	MKP	10 1861	8270C
Dibenzofuran	ND		9.4	0.48	ug/L	1.00	10/09/10 17:24	MKP	10 1861	8270C
Diethyl phthalate	ND		9.4	0.21	ug/L	1.00	10/09/10 17:24	MKP	10 1861	8270C
Dimethyl phthalate	ND		9.4	0.34	ug/L	1.00	10/09/10 17:24	MKP	10 1861	8270C
Di-n-butyl phthalate	0.65	J	9.4	0.29	ug/L	1.00	10/09/10 17:24	MKP	10 1861	8270C
Di-n-octyl phthalate	ND		9.4	0.44	ug/L	1.00	10/09/10 17:24	MKP	10 1861	8270C
Fluoranthene	0.47	J	9.4	0.38	ug/L	1.00	10/09/10 17:24	MKP	10 1861	8270C
luorene	ND		9.4	0.34	ug/L	1.00	10/09/10 17:24	MKP	10 1861	8270C
Hexachlorobenzene	ND		9.4	0.48	ug/L	1.00	10/09/10 17:24	MKP	10 1861	8270C
Hexachlorobutadiene	ND		9.4	0.64	ug/L	1.00	10/09/10 17:24	MKP	10 1861	8270C
Hexachlorocyclopentadie ne	ND		9.4	0.56	ug/L	1.00	10/09/10 17:24	MKP	10 1861	8270C
Hexachloroethane	ND		9.4	0.56	ug/L	1.00	10/09/10 17:24	MKP	10 1861	8270C
Indeno(1,2,3-cd)pyrene	ND		9.4	0.44	ug/L	1.00	10/09/10 17:24		10 1861	8270C
Isophorone	ND		9.4	0.41	ug/L	1.00	10/09/10 17:24		10 1861	8270C
Naphthalene	21		9.4	0.72	ug/L	1.00	10/09/10 17:24		10 1861	8270C
Nitrobenzene	ND		9.4	0.27	ug/L	1.00	10/09/10 17:24	MKP	10 1861	8270C
N-Nitrosodi-n-propylamin	ND		9.4	0.51	ug/L	1.00	10/09/10 17:24		10 1861	8270C
e N-Nitrosodiphenylamine	ND		9.4	0.48	ug/L	1.00	10/09/10 17:24	MKP	10 1861	8270C
Pentachlorophenol	ND		47	2.1	ug/L	1.00	10/09/10 17:24	MKP	1011861	8270C
Phenanthrene	0.58	J	9.4	0.42	ug/L	1.00	10/09/10 17:24		1011861	8270C
Phenol	ND	5	9.4	0.42	ug/L	1.00	10/09/10 17:24		1011861	8270C
Pyrene	0.42	J	9.4 9.4	0.32	ug/L	1.00	10/09/10 17:24		1011861	8270C
2,4,6-Tribromophenol	121 %		Surr Limits:	(52-132%)	-		10/09/10 17:24	MKP	10/1861	8270C
2-Fluorobiphenyl	82 %		Surr Limits:				10/09/10 17:24		10/1861	8270C
2-Fluorophenol	42 %		Surr Limits:	. ,			10/09/10 17:24		10/1861	8270C
Nitrobenzene-d5	82 %		Surr Limits:	, ,			10/09/10 17:24		10/1861	8270C
Phenol-d5	30 %		Surr Limits:	, ,			10/09/10 17:24		10/1861	8270C
p-Terphenyl-d14	50 %		Surr Limits:	. ,			10/09/10 17:24		10/1861	8270C
Organochlorine Pesticid	les by EPA N	lethod 8081	<u>A</u>							
4,4'-DDD	ND		0.047	0.0087	ug/L	1.00	09/28/10 21:21	LMW	10 1862	8081A
4,4'-DDE	ND		0.047	0.011	ug/L	1.00	09/28/10 21:21	LMW	10 1862	8081A
4,4'-DDT	ND		0.047	0.010	ug/L	1.00	09/28/10 21:21	LMW	10 1862	8081A
Aldrin	ND		0.047	0.0062	ug/L	1.00	09/28/10 21:21	LMW	10 1862	8081A
alpha-BHC	ND		0.047	0.0062	ug/L	1.00	09/28/10 21:21	LMW	10 1862	8081A
alpha-Chlordane	ND		0.047	0.014	ug/L	1.00	09/28/10 21:21	LMW	10 1862	8081A
peta-BHC	0.060		0.047	0.023	ug/L	1.00	09/28/10 21:21	LMW	10 1862	8081A
Chlordane	ND		0.47	0.027	ug/L	1.00	09/28/10 21:21	LMW	10 1862	8081A
delta-BHC	ND		0.047	0.0095	ug/L	1.00	09/28/10 21:21	LMW	10 1862	8081A
Dieldrin	ND		0.047	0.0092	ug/L	1.00	09/28/10 21:21	LMW	10 1862	8081A
Endosulfan I	ND		0.047	0.010	ug/L	1.00	09/28/10 21:21	LMW	10 1862	8081A
Endosulfan II	0.11		0.047	0.011	ug/L	1.00	09/28/10 21:21		10 1862	8081A
Endosulfan sulfate	ND		0.047	0.015	ug/L	1.00	09/28/10 21:21	LMW	10 1862	8081A
	ND		0.047	0.013	ug/L	1.00	09/28/10 21:21		10 1862	8081A
Endrin			0.047	0.015	ug/L	1.00	09/28/10 21:21		10 1862	8081A

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

Work Order: RTI1555

Received: 09/24/10 Reported: 10/15/10 09:06

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			A	nalytical F	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
ample ID: RTI1555-02 (I	MW-2 - Wate				Sam	pled: 09/	/23/10 13:35		vd: 09/24/1	0 09:00
Organochlorine Pesticic	les by EPA N	lethod 8081	A - cont.							
Endrin ketone	ND		0.047	0.011	ug/L	1.00	09/28/10 21:21	LMW	10 1862	8081A
gamma-BHC (Lindane)	ND		0.047	0.0057	ug/L	1.00	09/28/10 21:21	LMW	10 1862	8081A
gamma-Chlordane	0.041	J	0.047	0.010	ug/L	1.00	09/28/10 21:21	LMW	1011862	8081A
Heptachlor	ND		0.047	0.0080	ug/L	1.00	09/28/10 21:21	LMW	1011862	8081A
Heptachlor epoxide	ND		0.047	0.0050	ug/L	1.00	09/28/10 21:21	LMW	1011862	8081A
Methoxychlor	0.098		0.047	0.013	ug/L	1.00	09/28/10 21:21	LMW	1011862	8081A
Toxaphene	ND		0.47	0.11	ug/L	1.00	09/28/10 21:21	LMW	10 1862	8081A
Decachlorobiphenyl	30 %		Surr Limits:	(15-139%)			09/28/10 21:21	LMW	10/1862	8081A
Tetrachloro-m-xylene	134 %		Surr Limits:	(30-139%)			09/28/10 21:21	LMW	10 1862	8081A
Polychlorinated Bipheny	yls by EPA N	lethod 8082								
Aroclor 1016	ND	QSU	0.47	0.17	ug/L	1.00	09/28/10 23:37	JxM	10 1863	8082
Aroclor 1221	ND	QSU	0.47	0.17	ug/L	1.00	09/28/10 23:37	JxM	1011863	8082
Aroclor 1232	ND	QSU	0.47	0.17	ug/L	1.00	09/28/10 23:37	JxM	1011863	8082
Aroclor 1242	ND	QSU	0.47	0.17	ug/L	1.00	09/28/10 23:37	JxM	1011863	8082
Aroclor 1248	ND	QSU	0.47	0.17	ug/L	1.00	09/28/10 23:37	JxM	1011863	8082
Aroclor 1254	ND	QSU	0.47	0.24	ug/L	1.00	09/28/10 23:37	JxM	10 1863	8082
Aroclor 1260	ND	QSU	0.47	0.24	ug/L	1.00	09/28/10 23:37	JxM	10 1863	8082
Decachlorobiphenyl	31 %	QSU	Surr Limits:	, ,			09/28/10 23:37	JxM	10 1863	8082
Tetrachloro-m-xylene	62 %	QSU	Surr Limits:	(35-121%)			09/28/10 23:37	JxM	10 1863	8082
Total Metals by SW 846	Series Methe	ods								
Aluminum	ND		0.200	NR	mg/L	1.00	09/28/10 23:17	MxM	1011960	6010B
Antimony	ND		0.0200	NR	mg/L	1.00	09/28/10 23:17	MxM	10 1960	6010B
Arsenic	ND		0.0100	NR	mg/L	1.00	09/28/10 23:17	MxM	1011960	6010B
Barium	0.332		0.0020	NR	mg/L	1.00	09/28/10 23:17	MxM	1011960	6010B
Beryllium	ND		0.0020	NR	mg/L	1.00	09/28/10 23:17	MxM	10 1960	6010B
Cadmium	ND		0.0010	NR	mg/L	1.00	09/28/10 23:17	MxM	10 1960	6010B
Calcium	119		0.5	NR	mg/L	1.00	09/28/10 23:17		10 1960	6010B
Chromium	ND		0.0040	NR	mg/L	1.00	09/28/10 23:17		10 1960	6010B
Cobalt	ND		0.0040	NR	mg/L	1.00	09/28/10 23:17		10 1960	6010B
Copper	ND		0.0100	NR	mg/L	1.00	09/28/10 23:17		1011960	6010B
Iron	ND		0.050	NR	mg/L	1.00	09/29/10 12:36		1011960	6010B
Lead	ND		0.0050	NR	0		09/28/10 23:17		1011960	6010B
	107				mg/L	1.00				
Magnesium			0.200	NR	mg/L	1.00	09/28/10 23:17		1011960	6010B
Manganese	0.204		0.0030	NR	mg/L	1.00	09/28/10 23:17		10 1960	6010B
Nickel	ND		0.0100	NR	mg/L	1.00	09/28/10 23:17		10 1960	6010B
Potassium	6.41		0.500	NR	mg/L	1.00	09/29/10 12:36		1011960	6010B
Selenium	ND		0.0150	NR	mg/L	1.00	09/28/10 23:17		1011960	6010B
Silver	ND		0.0030	NR	mg/L	1.00	09/28/10 23:17		1011960	6010B
Sodium	59.2		1.0	NR	mg/L	1.00	09/29/10 12:36		1011960	6010B
Thallium	ND		0.0200	NR	mg/L	1.00	09/28/10 23:17	MxM	1011960	6010B
Vanadium	ND		0.0050	NR	mg/L	1.00	09/28/10 23:17	MxM	1011960	6010B
Zinc	ND		0.0100	NR	mg/L	1.00	09/28/10 23:17	MxM	10 1960	6010B
Mercury	ND		0.0002	NR	mg/L	1.00	09/30/10 12:26	JRK	10 2202	7470A
General Chemistry Para	meters									
Total Cyanide	ND	L	0.0100	NR	mg/L	1.00	10/01/10 15:05	R.IF	10 2226	9012A
. etc. oyunido	110	L	0.0100				10,01,10,10.00		1012220	001270

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

Work Order: RTI1555

Received: 09/24/10 Reported: 10/15/10 09:06

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

Analytical Report										
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTI1555-03 (M	W-3 - Wate	r)			Sampled: 09/23/10 12:25		/23/10 12:25	Recvd: 09/24/10 09:00		
Volatile Organic Compou	inds by EPA	A 8260B								
1,1,1-Trichloroethane	ND	D03	4.0	3.3	ug/L	4.00	09/30/10 14:02	DHC	1012207	8260B
1,1,2,2-Tetrachloroethane	ND	D03	4.0	0.85	ug/L	4.00	09/30/10 14:02	DHC	1012207	8260B
1,1,2-Trichloroethane	ND	D03	4.0	0.92	ug/L	4.00	09/30/10 14:02	DHC	1012207	8260B
1,1,2-Trichloro-1,2,2-triflu	ND	D03	4.0	1.2	ug/L	4.00	09/30/10 14:02	DHC	1012207	8260B
oroethane										
1,1-Dichloroethane	ND	D03	4.0	1.5	ug/L	4.00	09/30/10 14:02		1012207	8260B
1,1-Dichloroethene	ND	D03	4.0	1.2	ug/L	4.00	09/30/10 14:02		1012207	8260B
1,2,4-Trichlorobenzene	ND	D03	4.0	1.6	ug/L	4.00	09/30/10 14:02		1012207	8260B
1,2-Dibromo-3-chloroprop	ND	D03	4.0	1.6	ug/L	4.00	09/30/10 14:02	DHC	1012207	8260B
ane 1,2-Dibromoethane	ND	D03	4.0	2.9	ug/L	4.00	09/30/10 14:02	рнс	1012207	8260B
1,2-Dichlorobenzene	ND	D03	4.0 4.0	3.2	ug/L ug/L	4.00	09/30/10 14:02		1012207	8260B
1.2-Dichloroethane	ND	D03	4.0	0.86	ug/L	4.00	09/30/10 14:02		1012207	8260B
1,2-Dichloropropane	ND	D03	4.0	2.9	ug/L	4.00	09/30/10 14:02		1012207	8260B
1,3-Dichlorobenzene	ND	D03	4.0	3.1	ug/L	4.00	09/30/10 14:02		1012207	8260B
1,4-Dichlorobenzene	ND	D03	4.0	3.4	ug/L	4.00	09/30/10 14:02		1012207	8260B
2-Butanone	ND	D03	40	5.3	ug/L	4.00	09/30/10 14:02		1012207	8260B
2-Hexanone	ND	D03	20	5.0	ug/L	4.00	09/30/10 14:02		1012207	8260B
4-Methyl-2-pentanone	ND	D03	20	8.4	ug/L	4.00	09/30/10 14:02		1012207	8260B
Acetone	ND	D03	40	12	ug/L	4.00	09/30/10 14:02		1012207	8260B
Benzene	ND	D03	4.0	1.6	ug/L	4.00	09/30/10 14:02		1012207	8260B
Bromodichloromethane	ND	D03	4.0	1.5	ug/L	4.00	09/30/10 14:02		1012207	8260B
Bromoform	ND	D03	4.0	1.0	ug/L	4.00	09/30/10 14:02		1012207	8260B
Bromomethane	ND	D03	4.0	2.8	ug/L	4.00	09/30/10 14:02		1012207	8260B
Carbon disulfide	ND	D03	4.0	0.78	ug/L	4.00	09/30/10 14:02		1012207	8260B
Carbon Tetrachloride	ND	D03	4.0	1.1	ug/L	4.00	09/30/10 14:02	DHC	1012207	8260B
Chlorobenzene	ND	D03	4.0	3.0	ug/L	4.00	09/30/10 14:02	DHC	1012207	8260B
Dibromochloromethane	ND	D03	4.0	1.3	ug/L	4.00	09/30/10 14:02	DHC	1012207	8260B
Chloroethane	ND	D03	4.0	1.3	ug/L	4.00	09/30/10 14:02	DHC	1012207	8260B
Chloroform	5.4	D03	4.0	1.3	ug/L	4.00	09/30/10 14:02	DHC	1012207	8260B
Chloromethane	ND	D03	4.0	1.4	ug/L	4.00	09/30/10 14:02	DHC	1012207	8260B
cis-1,2-Dichloroethene	ND	D03	4.0	3.2	ug/L	4.00	09/30/10 14:02	DHC	1012207	8260B
cis-1,3-Dichloropropene	ND	D03	4.0	1.4	ug/L	4.00	09/30/10 14:02	DHC	1012207	8260B
Cyclohexane	ND	D03	4.0	0.72	ug/L	4.00	09/30/10 14:02		1012207	8260B
Dichlorodifluoromethane	ND	D03	4.0	2.7	ug/L	4.00	09/30/10 14:02	DHC	1012207	8260B
Ethylbenzene	ND	D03	4.0	3.0	ug/L	4.00	09/30/10 14:02	DHC	1012207	8260B
Isopropylbenzene	ND	D03	4.0	3.2	ug/L	4.00	09/30/10 14:02	DHC	1012207	8260B
Methyl Acetate	ND	D03	4.0	2.0	ug/L	4.00	09/30/10 14:02	DHC	1012207	8260B
Methyl-t-Butyl Ether	ND	D03	4.0	0.64	ug/L	4.00	09/30/10 14:02	DHC	1012207	8260B
(MTBE)										
Methylcyclohexane	ND	D03	4.0	0.64	ug/L	4.00	09/30/10 14:02		1012207	8260B
Methylene Chloride	ND	D03	4.0	1.8	ug/L	4.00	09/30/10 14:02		1012207	8260B
Styrene	ND	D03	4.0	2.9	ug/L	4.00	09/30/10 14:02		1012207	8260B
Tetrachloroethene	ND	D03	4.0	1.5	ug/L	4.00	09/30/10 14:02		1012207	8260B
Toluene	ND	D03	4.0	2.0	ug/L	4.00	09/30/10 14:02		1012207	8260B
trans-1,2-Dichloroethene	ND	D03	4.0	3.6	ug/L	4.00	09/30/10 14:02		1012207	8260B
trans-1,3-Dichloropropen e	ND	D03	4.0	1.5	ug/L	4.00	09/30/10 14:02	DHC	10 2207	8260B
e Trichloroethene	ND	D03	4.0	1.8	ug/L	4.00	09/30/10 14:02	DHC	1012207	8260B
Trichlorofluoromethane	ND	D03	4.0 4.0	3.5	ug/L ug/L	4.00	09/30/10 14:02		1012207	8260B
Vinyl chloride	ND	D03	4.0	3.6	ug/L	4.00	09/30/10 14:02		1012207	8260B
		200		0.0	~9, L		30,00,10 14.02	2.10	1012201	02000

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

Work Order: RTI1555

Received: 09/24/10 Reported: 10/15/10 09:06

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

Analytical Report										
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTI1555-03 (M	W-3 - Water) - cont.				Sampled: 09/23/10 12:25			Recvd: 09/24/10 09:00		
Volatile Organic Compou	unds by EPA	A 8260B - co	<u>nt.</u>							
Xylenes, total	ND	D03	8.0	2.6	ug/L	4.00	09/30/10 14:02	DHC	10 2207	8260B
1,2-Dichloroethane-d4	98 %	D03	Surr Limits:	(66-137%)			09/30/10 14:02	DHC	10/2207	8260B
4-Bromofluorobenzene	107 %	D03	Surr Limits:	(73-120%)			09/30/10 14:02	DHC	10/2207	8260B
Toluene-d8	107 %	D03	Surr Limits:	(71-126%)			09/30/10 14:02	DHC	10/2207	8260B
Semivolatile Organics by	GC/MS									
2,4,5-Trichlorophenol	ND		24	0.45	ug/L	1.00	10/09/10 17:47	MKP	10 1861	8270C
2,4,6-Trichlorophenol	ND		9.4	0.58	ug/L	1.00	10/09/10 17:47	MKP	10 1861	8270C
2,4-Dichlorophenol	ND		9.4	0.48	ug/L	1.00	10/09/10 17:47	MKP	10 1861	8270C
2,4-Dimethylphenol	ND		9.4	0.47	ug/L	1.00	10/09/10 17:47	MKP	10 1861	8270C
2,4-Dinitrophenol	ND		47	2.1	ug/L	1.00	10/09/10 17:47	MKP	10 1861	8270C
2,4-Dinitrotoluene	ND		9.4	0.42	ug/L	1.00	10/09/10 17:47	MKP	10 1861	8270C
2,6-Dinitrotoluene	ND		9.4	0.38	ug/L	1.00	10/09/10 17:47	MKP	10 1861	8270C
2-Chloronaphthalene	ND		9.4	0.43	ug/L	1.00	10/09/10 17:47	MKP	10 1861	8270C
2-Chlorophenol	ND		9.4	0.50	ug/L	1.00	10/09/10 17:47	MKP	10 1861	8270C
2-Methylnaphthalene	ND		9.4	0.57	ug/L	1.00	10/09/10 17:47	MKP	10 1861	8270C
2-Methylphenol	ND		9.4	0.38	ug/L	1.00	10/09/10 17:47	MKP	10 1861	8270C
2-Nitroaniline	ND		47	0.40	ug/L	1.00	10/09/10 17:47	MKP	10 1861	8270C
2-Nitrophenol	ND		9.4	0.45	ug/L	1.00	10/09/10 17:47		10 1861	8270C
3,3'-Dichlorobenzidine	ND		19	0.38	ug/L	1.00	10/09/10 17:47	MKP	10 1861	8270C
3-Nitroaniline	ND		47	0.45	ug/L	1.00	10/09/10 17:47		10 1861	8270C
4,6-Dinitro-2-methylphen	ND		47	2.1	ug/L	1.00	10/09/10 17:47		10 1861	8270C
ol 4-Bromophenyl phenyl	ND		9.4	0.42	ug/L	1.00	10/09/10 17:47	MKP	10 1861	8270C
ether										
4-Chloro-3-methylphenol	ND		9.4	0.42	ug/L	1.00	10/09/10 17:47		10 1861	8270C
4-Chloroaniline	ND		9.4	0.56	ug/L	1.00	10/09/10 17:47		10 1861	8270C
4-Chlorophenyl phenyl ether	ND		9.4	0.33	ug/L	1.00	10/09/10 17:47	MKP	10 1861	8270C
4-Methylphenol	ND		4.7	0.34	ug/L	1.00	10/09/10 17:47	MKP	10 1861	8270C
4-Nitroaniline	ND		47	0.24	ug/L	1.00	10/09/10 17:47	MKP	10 1861	8270C
4-Nitrophenol	ND		47	1.4	ug/L	1.00	10/09/10 17:47	MKP	10 1861	8270C
Acenaphthene	ND		9.4	0.39	ug/L	1.00	10/09/10 17:47	MKP	10 1861	8270C
Acenaphthylene	ND		9.4	0.36	ug/L	1.00	10/09/10 17:47	MKP	10 1861	8270C
Acetophenone	1.1	J	9.4	0.51	ug/L	1.00	10/09/10 17:47	MKP	10 1861	8270C
Anthracene	ND		9.4	0.26	ug/L	1.00	10/09/10 17:47	MKP	10 1861	8270C
Atrazine	ND		9.4	0.43	ug/L	1.00	10/09/10 17:47	MKP	10 1861	8270C
Benzaldehyde	ND		47	0.25	ug/L	1.00	10/09/10 17:47	MKP	10 1861	8270C
Benzo(a)anthracene	ND		9.4	0.34	ug/L	1.00	10/09/10 17:47	MKP	10 1861	8270C
Benzo(a)pyrene	ND		9.4	0.44	ug/L	1.00	10/09/10 17:47	MKP	10 1861	8270C
Benzo(b)fluoranthene	ND		9.4	0.32	ug/L	1.00	10/09/10 17:47		10 1861	8270C
Benzo(ghi)perylene	ND		9.4	0.33	ug/L	1.00	10/09/10 17:47		10 1861	8270C
Benzo(k)fluoranthene	ND		9.4	0.69	ug/L	1.00	10/09/10 17:47		10 1861	8270C
Biphenyl	ND		9.4	0.62	ug/L	1.00	10/09/10 17:47		1011861	8270C
Bis(2-chloroethoxy)metha	ND		9.4	0.33	ug/L	1.00	10/09/10 17:47		10 1861	8270C
ne Bis(2-chloroethyl)ether	ND		9.4	0.38	uc/l	1.00	10/09/10 17:47	MKD	10 1861	8270C
2,2'-Oxybis(1-Chloroprop	ND		9.4 9.4	0.38	ug/L ug/L	1.00	10/09/10 17:47		1011861	8270C 8270C
ane) Bis(2-ethylhexyl)	ND		9.4	1.7	ug/L	1.00	10/09/10 17:47	MKP	10 1861	8270C
phthalate			5.7	1.7	ч <u>9</u> / г	1.00	10,00,10 11.41	WIL VI	1011001	02/00

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

Work Order: RTI1555

Received: 09/24/10 Reported: 10/15/10 09:06

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

Analytical Report										
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTI1555-03 (MW-3 - Water) - cont.				Sampled: 09/23/10 12:25			Recvd: 09/24/10 09:00			
Semivolatile Organics by	y GC/MS - co	ont.								
Butyl benzyl phthalate	0.58	J	9.4	0.40	ug/L	1.00	10/09/10 17:47	MKP	10 1861	8270C
Caprolactam	ND		9.4	2.1	ug/L	1.00	10/09/10 17:47	MKP	10 1861	8270C
Carbazole	ND		4.7	0.28	ug/L	1.00	10/09/10 17:47	MKP	10 1861	8270C
Chrysene	ND		9.4	0.31	ug/L	1.00	10/09/10 17:47	MKP	10 1861	8270C
Dibenzo(a,h)anthracene	ND		9.4	0.40	ug/L	1.00	10/09/10 17:47	MKP	10 1861	8270C
Dibenzofuran	ND		9.4	0.48	ug/L	1.00	10/09/10 17:47	MKP	10 1861	8270C
Diethyl phthalate	ND		9.4	0.21	ug/L	1.00	10/09/10 17:47	MKP	10 1861	8270C
Dimethyl phthalate	ND		9.4	0.34	ug/L	1.00	10/09/10 17:47		10 1861	8270C
Di-n-butyl phthalate	0.55	J	9.4	0.29	ug/L	1.00	10/09/10 17:47	MKP	10 1861	8270C
Di-n-octyl phthalate	ND		9.4	0.44	ug/L	1.00	10/09/10 17:47		10 1861	8270C
Fluoranthene	ND		9.4	0.38	ug/L	1.00	10/09/10 17:47		10 1861	8270C
Fluorene	ND		9.4	0.34	ug/L	1.00	10/09/10 17:47		10 1861	8270C
Hexachlorobenzene	ND		9.4	0.48	ug/L	1.00	10/09/10 17:47		10 1861	8270C
Hexachlorobutadiene	ND		9.4	0.64	ug/L	1.00	10/09/10 17:47	MKP	10 1861	8270C
Hexachlorocyclopentadie	ND		9.4	0.56	ug/L	1.00	10/09/10 17:47	MKP	10 1861	8270C
ne Hexachloroethane	ND		9.4	0.56	ug/L	1.00	10/09/10 17:47	MKP	10 1861	8270C
ndeno(1,2,3-cd)pyrene	ND		9.4 9.4	0.30	ug/L	1.00	10/09/10 17:47		1011861	8270C
sophorone	ND		9.4 9.4	0.44	ug/L	1.00	10/09/10 17:47		1011861	8270C
Naphthalene	ND		9.4 9.4	0.41	ug/L ug/L	1.00	10/09/10 17:47		1011861	8270C
Nitrobenzene	ND		9.4 9.4	0.72	ug/L	1.00	10/09/10 17:47		1011861	8270C
N-Nitrosodi-n-propylamin	ND		9.4 9.4	0.51	ug/L	1.00	10/09/10 17:47		1011861	8270C
e N-Nitrosodiphenylamine	ND		9.4	0.48	ug/L	1.00	10/09/10 17:47	MKP	10 1861	8270C
Pentachlorophenol	ND		47	2.1	ug/L	1.00	10/09/10 17:47		1011861	8270C
Phenanthrene	0.46	J	9.4	0.42	ug/L	1.00	10/09/10 17:47		1011861	8270C
Phenol	ND	5	9.4 9.4	0.37	ug/L	1.00	10/09/10 17:47		1011861	8270C
Pyrene	ND		9.4	0.32	ug/L	1.00	10/09/10 17:47		10 1861	8270C
2,4,6-Tribromophenol	112 %		Surr Limits:	(52-132%)			10/09/10 17:47		10/1861	8270C
2-Fluorobiphenyl	74 %		Surr Limits:	. ,			10/09/10 17:47		10/1861	8270C
2-Fluorophenol	40 %		Surr Limits:	()			10/09/10 17:47		10/1861	8270C
Nitrobenzene-d5	73 %		Surr Limits:	, ,			10/09/10 17:47		10/1861	8270C
Phenol-d5	29 %		Surr Limits:	• • •			10/09/10 17:47		10/1861	8270C
p-Terphenyl-d14	49 %		Surr Limits:	()			10/09/10 17:47		10/1861	8270C
Organochlorine Pesticid	es by EPA N	lethod 8081								
,4'-DDD	0.23	J	0.24	0.043	ug/L	5.00	09/28/10 22:33	LMW	10 1862	8081A
4,4'-DDE	ND		0.24	0.055	ug/L	5.00	09/28/10 22:33		10 1862	8081A
4,4'-DDT	ND		0.24	0.052	ug/L	5.00	09/28/10 22:33		10 1862	8081A
Aldrin	ND		0.24	0.031	ug/L	5.00	09/28/10 22:33		10 1862	8081A
alpha-BHC	0.18	J	0.24	0.031	ug/L	5.00	09/28/10 22:33		10 1862	8081A
alpha-Chlordane	ND		0.24	0.070	ug/L	5.00	09/28/10 22:33		10 1862	8081A
	0.13	J	0.24	0.12	ug/L	5.00	09/28/10 22:33		10 1862	8081A
•		-	2.4	0.14	ug/L	5.00	09/28/10 22:33		10 1862	8081A
eta-BHC	ND			0.048	ug/L	5.00	09/28/10 22:33		10 1862	8081A
beta-BHC Chlordane	ND ND		0.24	0.040						
oeta-BHC Chlordane lelta-BHC	ND		0.24 0.24		-		09/28/10 22:33			8081A
oeta-BHC Chlordane delta-BHC Dieldrin	ND ND		0.24	0.046	ug/L	5.00		LMW	10 1862	8081A 8081A
veta-BHC Chlordane Ielta-BHC Dieldrin Endosulfan I	ND	J	0.24 0.24	0.046 0.052	ug/L ug/L	5.00 5.00	09/28/10 22:33	LMW LMW	10I1862 10I1862	8081A
oeta-BHC Chlordane delta-BHC Dieldrin Endosulfan I Endosulfan II	ND ND ND 0.14	J	0.24 0.24 0.24	0.046 0.052 0.057	ug/L ug/L ug/L	5.00 5.00 5.00	09/28/10 22:33 09/28/10 22:33	LMW LMW LMW	10 1862 10 1862 10 1862	8081A 8081A
beta-BHC Chlordane delta-BHC Dieldrin Endosulfan I Endosulfan II Endosulfan sulfate Endosulfan sulfate Endrin	ND ND ND	J	0.24 0.24	0.046 0.052	ug/L ug/L	5.00 5.00	09/28/10 22:33	LMW LMW LMW LMW	10I1862 10I1862	8081A

TestAmerica Buffalo - 10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

Work Order: RTI1555

Received: 09/24/10 Reported: 10/15/10 09:06

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			A	Analytical F	Report					
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
ample ID: RTI1555-03 (MW-3 - Wate	r) - cont.			Sam	oled: 09/	/23/10 12:25	Recv	vd: 09/24/1	0 09:00
Organochlorine Pesticio	des by EPA M	lethod 8081/	A - cont.							
Endrin ketone	ND		0.24	0.057	ug/L	5.00	09/28/10 22:33	LMW	10 1862	8081A
gamma-BHC (Lindane)	ND		0.24	0.028	ug/L	5.00	09/28/10 22:33	LMW	10 1862	8081A
gamma-Chlordane	0.13	J	0.24	0.052	ug/L	5.00	09/28/10 22:33	LMW	10 1862	8081A
leptachlor	0.11	J	0.24	0.040	ug/L	5.00	09/28/10 22:33	LMW	10 1862	8081A
leptachlor epoxide	ND		0.24	0.025	ug/L	5.00	09/28/10 22:33		10 1862	8081A
lethoxychlor	0.20	J	0.24	0.067	ug/L	5.00	09/28/10 22:33		10 1862	8081A
oxaphene	ND		2.4	0.57	ug/L	5.00	09/28/10 22:33	LMW	10 1862	8081A
Decachlorobiphenyl	*	Ζ	Surr Limits:	(15-139%)			09/28/10 22:33	LMW	10 1862	8081A
etrachloro-m-xylene	196 %	Z1	Surr Limits:	(30-139%)			09/28/10 22:33	LMW	10 1862	8081A
olychlorinated Biphen	yls by EPA N	lethod 8082								
vroclor 1016	ND	QSU	0.47	0.17	ug/L	1.00	09/28/10 23:56	JxM	10 1863	8082
vroclor 1221	ND	QSU	0.47	0.17	ug/L	1.00	09/28/10 23:56	JxM	10 1863	8082
roclor 1232	ND	QSU	0.47	0.17	ug/L	1.00	09/28/10 23:56	JxM	10 1863	8082
roclor 1242	ND	QSU	0.47	0.17	ug/L	1.00	09/28/10 23:56	JxM	1011863	8082
vroclor 1248	ND	QSU	0.47	0.17	ug/L	1.00	09/28/10 23:56	JxM	1011863	8082
roclor 1254 roclor 1260	ND ND	QSU QSU	0.47 0.47	0.24 0.24	ug/L	1.00 1.00	09/28/10 23:56 09/28/10 23:56	JxM JxM	10I1863 10I1863	8082 8082
					ug/L	1.00	09/20/10 23:50	JXIVI		
Decachlorobiphenyl	27 %	QSU	Surr Limits:	• •			09/28/10 23:56		10 1863	8082
etrachloro-m-xylene	61 %	QSU	Surr Limits:	(35-121%)			09/28/10 23:56	JxM	10 1863	8082
otal Metals by SW 846		<u>ods</u>								
luminum	ND		0.200	NR	mg/L	1.00	09/28/10 23:19		10 1960	6010B
ntimony	ND		0.0200	NR	mg/L	1.00	09/28/10 23:19		10 1960	6010B
rsenic	ND		0.0100	NR	mg/L	1.00	09/28/10 23:19		1011960	6010B
arium	0.0985		0.0020	NR	mg/L	1.00	09/28/10 23:19		10 1960	6010B
eryllium	ND		0.0020	NR	mg/L	1.00	09/28/10 23:19		1011960	6010B
admium	ND		0.0010	NR	mg/L	1.00	09/28/10 23:19		1011960	6010B
alcium	123		0.5	NR	mg/L	1.00	09/28/10 23:19		10 1960	6010B
hromium	ND		0.0040	NR	mg/L	1.00	09/28/10 23:19		10 1960	6010B
Cobalt	ND		0.0040	NR	mg/L	1.00	09/28/10 23:19		10 1960	6010B
opper	ND		0.0100	NR	mg/L	1.00	09/28/10 23:19		1011960	6010B
on	ND		0.050	NR	mg/L	1.00	09/29/10 12:41		1011960	6010B
ead	ND		0.0050	NR	mg/L	1.00	09/28/10 23:19		1011960	6010B
1agnesium	98.3		0.200	NR	mg/L	1.00	09/28/10 23:19		1011960	6010B
langanese	0.195		0.0030	NR	mg/L	1.00	09/28/10 23:19		1011960	6010B
lickel	0.0159		0.0100	NR	mg/L	1.00	09/28/10 23:19		1011960	6010B
otassium	10.0		0.500	NR	mg/L	1.00	09/29/10 12:41		1011960	6010B
elenium	ND		0.0150	NR	mg/L	1.00	09/28/10 23:19		1011960	6010B
ilver	ND		0.0030	NR	mg/L	1.00	09/28/10 23:19		1011960	6010B
odium	88.8		1.0	NR	mg/L	1.00	09/29/10 12:41		1011960	6010B
hallium	ND		0.0200	NR	mg/L	1.00	09/28/10 23:19		1011960	6010B
/anadium	ND		0.0050	NR	mg/L	1.00	09/28/10 23:19		1011960	6010B
linc	ND		0.0100	NR	mg/L	1.00	09/28/10 23:19		1011960	6010B
lercury	ND		0.0002	NR	mg/L	1.00	09/30/10 12:32	JKK	10 2202	7470A
eneral Chemistry Para										
otal Cyanide	ND	L	0.0100	NR	mg/L	1.00	10/01/10 15:06	RJF	1012226	9012A

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

Work Order: RTI1555

Received: 09/24/10 Reported: 10/15/10 09:06

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			Α	nalytical F	Report					
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTI1555-04 (N	IW-4 - Wate	r)			Sam	pled: 09	/23/10 11:20	Recv	d: 09/24/1	0 09:00
Volatile Organic Compou	inds by EPA	8260B								
1,1,1-Trichloroethane	ND	D03	4.0	3.3	ug/L	4.00	09/30/10 14:25	DHC	10 2207	8260B
1,1,2,2-Tetrachloroethane	ND	D03	4.0	0.85	ug/L	4.00	09/30/10 14:25	DHC	10 2207	8260B
1,1,2-Trichloroethane	ND	D03	4.0	0.92	ug/L	4.00	09/30/10 14:25	DHC	10 2207	8260B
1,1,2-Trichloro-1,2,2-triflu	ND	D03	4.0	1.2	ug/L	4.00	09/30/10 14:25	DHC	10 2207	8260B
oroethane										
1,1-Dichloroethane	ND	D03	4.0	1.5	ug/L	4.00	09/30/10 14:25	DHC	1012207	8260B
1,1-Dichloroethene	ND	D03	4.0	1.2	ug/L	4.00	09/30/10 14:25		1012207	8260B
1,2,4-Trichlorobenzene	ND	D03	4.0	1.6	ug/L	4.00	09/30/10 14:25		1012207	8260B
1,2-Dibromo-3-chloroprop	ND	D03	4.0	1.6	ug/L	4.00	09/30/10 14:25	DHC	1012207	8260B
ane 1.2 Dibromoothano		D03	4.0	2.0	uc/l	4 00	00/20/40 44.05		1012207	00600
1,2-Dibromoethane 1,2-Dichlorobenzene	ND ND	D03 D03	4.0	2.9 3.2	ug/L	4.00	09/30/10 14:25		10l2207 10l2207	8260B 8260B
1,2-Dichloroethane	ND ND	D03 D03	4.0 4.0	3.2 0.86	ug/L ug/L	4.00 4.00	09/30/10 14:25 09/30/10 14:25		1012207	8260B 8260B
1,2-Dichloropropane	ND	D03	4.0	2.9	ug/L	4.00	09/30/10 14:25		1012207	8260B
1,3-Dichlorobenzene	ND	D03	4.0	3.1	ug/L	4.00	09/30/10 14:25		1012207	8260B
1,4-Dichlorobenzene	ND	D03	4.0	3.4	ug/L	4.00	09/30/10 14:25		1012207	8260B
2-Butanone	ND	D03	40	5.3	ug/L	4.00	09/30/10 14:25		1012207	8260B
2-Hexanone	ND	D03	20	5.0	ug/L	4.00	09/30/10 14:25		1012207	8260B
4-Methyl-2-pentanone	ND	D03	20	8.4	ug/L	4.00	09/30/10 14:25		1012207	8260B
Acetone	ND	D03	40	12	ug/L	4.00	09/30/10 14:25		1012207	8260B
Benzene	ND	D03	4.0	1.6	ug/L	4.00	09/30/10 14:25		1012207	8260B
Bromodichloromethane	ND	D03	4.0	1.5	ug/L	4.00	09/30/10 14:25		1012207	8260B
Bromoform	ND	D03	4.0	1.0	ug/L	4.00	09/30/10 14:25	DHC	10 2207	8260B
Bromomethane	ND	D03	4.0	2.8	ug/L	4.00	09/30/10 14:25	DHC	10 2207	8260B
Carbon disulfide	ND	D03	4.0	0.78	ug/L	4.00	09/30/10 14:25	DHC	10 2207	8260B
Carbon Tetrachloride	ND	D03	4.0	1.1	ug/L	4.00	09/30/10 14:25	DHC	10 2207	8260B
Chlorobenzene	ND	D03	4.0	3.0	ug/L	4.00	09/30/10 14:25	DHC	10 2207	8260B
Dibromochloromethane	ND	D03	4.0	1.3	ug/L	4.00	09/30/10 14:25	DHC	1012207	8260B
Chloroethane	ND	D03	4.0	1.3	ug/L	4.00	09/30/10 14:25	DHC	1012207	8260B
Chloroform	2.8	D03,J	4.0	1.3	ug/L	4.00	09/30/10 14:25	DHC	1012207	8260B
Chloromethane	ND	D03	4.0	1.4	ug/L	4.00	09/30/10 14:25		1012207	8260B
cis-1,2-Dichloroethene	ND	D03	4.0	3.2	ug/L	4.00	09/30/10 14:25	DHC	1012207	8260B
cis-1,3-Dichloropropene	ND	D03	4.0	1.4	ug/L	4.00	09/30/10 14:25	DHC	1012207	8260B
Cyclohexane	ND	D03	4.0	0.72	ug/L	4.00	09/30/10 14:25		1012207	8260B
Dichlorodifluoromethane	ND	D03	4.0	2.7	ug/L	4.00	09/30/10 14:25		1012207	8260B
Ethylbenzene	ND	D03	4.0	3.0	ug/L	4.00	09/30/10 14:25		1012207	8260B
Isopropylbenzene	ND	D03	4.0	3.2	ug/L	4.00	09/30/10 14:25		1012207	8260B
Methyl Acetate	ND	D03	4.0	2.0	ug/L	4.00	09/30/10 14:25		1012207	8260B
Methyl-t-Butyl Ether	ND	D03	4.0	0.64	ug/L	4.00	09/30/10 14:25	DHC	1012207	8260B
(MTBE) Methylayolahayana		D02	4.0	0.64		4 00	00/20/10 14:25	DUC	1010007	9260D
Methylcyclohexane	ND	D03	4.0	0.64	ug/L	4.00	09/30/10 14:25		1012207	8260B 8260B
Methylene Chloride Styrene	ND ND	D03 D03	4.0 4.0	1.8	ug/L	4.00 4.00	09/30/10 14:25 09/30/10 14:25		10l2207 10l2207	8260B
Tetrachloroethene	ND	D03 D03	4.0 4.0	2.9 1.5	ug/L ug/L	4.00	09/30/10 14:25		1012207	8260B
Toluene	ND	D03	4.0 4.0	2.0	ug/L ug/L	4.00	09/30/10 14:25		1012207	8260B
trans-1,2-Dichloroethene	ND	D03	4.0 4.0	3.6	ug/L ug/L	4.00	09/30/10 14:25		1012207	8260B
trans-1,3-Dichloropropen	ND	D03	4.0 4.0	3.0 1.5	ug/L ug/L	4.00	09/30/10 14:25		1012207	8260B
e		200	ч. 0	1.5	ug/L	4.00	55,50,10 14.25	DIIO	1012201	02000
e Trichloroethene	ND	D03	4.0	1.8	ug/L	4.00	09/30/10 14:25	DHC	1012207	8260B
Trichlorofluoromethane	ND	D03	4.0	3.5	ug/L	4.00	09/30/10 14:25		1012207	8260B
Vinyl chloride	ND	D03	4.0	3.6	ug/L	4.00	09/30/10 14:25		1012207	8260B
,· -···					- 3, -					

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

Work Order: RTI1555

Received: 09/24/10 Reported: 10/15/10 09:06

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

	Analytical Report											
	Sample	Data		MD		Dil	Date	Lab				
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method		
Sample ID: RTI1555-04 (N	IW-4 - Water	r) - cont.			Sam	pled: 09/	23/10 11:20	Recv	/d: 09/24/1	0 09:00		
Volatile Organic Compo	unds by EPA	A 8260B - co	<u>nt.</u>									
Xylenes, total	ND	D03	8.0	2.6	ug/L	4.00	09/30/10 14:25	DHC	1012207	8260B		
1,2-Dichloroethane-d4	97 %	D03	Surr Limits:	. ,			09/30/10 14:25		10/2207	8260B		
4-Bromofluorobenzene	106 %	D03		(73-120%)			09/30/10 14:25		10/2207	8260B		
Toluene-d8	108 %	D03	Surr Limits:	(71-126%)			09/30/10 14:25	DHC	10/2207	8260B		
Semivolatile Organics by	<u>/ GC/MS</u>											
2,4,5-Trichlorophenol	ND		24	0.46	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C		
2,4,6-Trichlorophenol	ND		9.5	0.58	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C		
2,4-Dichlorophenol	ND		9.5	0.49	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C		
2,4-Dimethylphenol	ND		9.5	0.48	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C		
2,4-Dinitrophenol	ND		48	2.1	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C		
2,4-Dinitrotoluene	ND		9.5	0.43	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C		
2,6-Dinitrotoluene	ND		9.5	0.38	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C		
2-Chloronaphthalene	ND		9.5	0.44	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C		
2-Chlorophenol	ND		9.5	0.50	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C		
2-Methylnaphthalene	ND		9.5	0.57	ug/L	1.00	10/09/10 18:11	MKP	1011861	8270C		
2-Methylphenol	ND		9.5	0.38	ug/L	1.00	10/09/10 18:11	MKP	1011861	8270C		
2-Nitroaniline	ND		48	0.40	ug/L	1.00	10/09/10 18:11	MKP	1011861	8270C		
2-Nitrophenol	ND		9.5	0.46	ug/L	1.00	10/09/10 18:11	MKP	1011861	8270C		
3.3'-Dichlorobenzidine	ND		9.5 19	0.38	ug/L	1.00	10/09/10 18:11	MKP	1011861	8270C		
3-Nitroaniline	ND		48	0.38	-	1.00	10/09/10 18:11	MKP	1011861	8270C		
					ug/L							
4,6-Dinitro-2-methylphen	ND		48	2.1	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C		
ol 4-Bromophenyl phenyl ether	ND		9.5	0.43	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C		
4-Chloro-3-methylphenol	ND		9.5	0.43	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C		
4-Chloroaniline	ND		9.5	0.56	ug/L	1.00	10/09/10 18:11	MKP	1011861	8270C		
	ND		9.5	0.33	ug/L	1.00	10/09/10 18:11	MKP	1011861	8270C		
4-Chlorophenyl phenyl ether	ND		9.0	0.55	ug/L	1.00	10/03/10 10.11	WIIN	1011001	02700		
4-Methylphenol	ND		4.8	0.34	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C		
4-Nitroaniline	ND		48	0.24	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C		
4-Nitrophenol	ND		48	1.4	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C		
Acenaphthene	ND		9.5	0.39	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C		
Acenaphthylene	ND		9.5	0.36	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C		
Acetophenone	ND		9.5	0.51	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C		
Anthracene	ND		9.5	0.27	ug/L	1.00	10/09/10 18:11		10 1861	8270C		
Atrazine	ND		9.5	0.44	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C		
Benzaldehyde	ND		48	0.25	ug/L	1.00	10/09/10 18:11		1011861	8270C		
Benzo(a)anthracene	ND		9.5	0.34	ug/L	1.00	10/09/10 18:11		1011861	8270C		
Benzo(a)pyrene	ND		9.5	0.45	ug/L	1.00	10/09/10 18:11	MKP	1011861	8270C		
Benzo(b)fluoranthene	ND		9.5 9.5	0.32	ug/L	1.00	10/09/10 18:11	MKP	1011861	8270C		
Benzo(ghi)perylene	ND		9.5 9.5	0.32	ug/L	1.00	10/09/10 18:11		1011861	8270C		
	ND		9.5 9.5	0.33	-	1.00			1011861	8270C 8270C		
Benzo(k)fluoranthene					ug/L		10/09/10 18:11					
Biphenyl	ND		9.5 0.5	0.62	ug/L	1.00	10/09/10 18:11		1011861	8270C		
Bis(2-chloroethoxy)metha	ND		9.5	0.33	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C		
Bis(2-chloroethyl)ether	ND		9.5	0.38	ug/L	1.00	10/09/10 18:11		10 1861	8270C		
2,2'-Oxybis(1-Chloroprop ane)	ND		9.5	0.50	ug/L	1.00	10/09/10 18:11		10 1861	8270C		
Bis(2-ethylhexyl) phthalate	ND		9.5	1.7	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C		

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

Work Order: RTI1555

Received: 09/24/10 Reported: 10/15/10 09:06

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

	Analytical Report									
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTI1555-04 (N	IW-4 - Wate	r) - cont.			Sampled: 09/2		/23/10 11:20	Recv	d: 09/24/1	0 09:00
Semivolatile Organics by	/ GC/MS - co	ont.								
Butyl benzyl phthalate	0.72	J	9.5	0.40	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C
Caprolactam	ND		9.5	2.1	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C
Carbazole	ND		4.8	0.29	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C
Chrysene	ND		9.5	0.31	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C
Dibenzo(a,h)anthracene	ND		9.5	0.40	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C
Dibenzofuran	ND		9.5	0.49	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C
Diethyl phthalate	1.5	J	9.5	0.21	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C
Dimethyl phthalate	ND		9.5	0.34	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C
Di-n-butyl phthalate	1.1	J	9.5	0.30	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C
Di-n-octyl phthalate	ND		9.5	0.45	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C
luoranthene	ND		9.5	0.38	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C
luorene	ND		9.5	0.34	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C
lexachlorobenzene	ND		9.5	0.49	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C
lexachlorobutadiene	ND		9.5	0.65	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C
lexachlorocyclopentadie e	ND		9.5	0.56	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C
lexachloroethane	ND		9.5	0.56	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C
ndeno(1,2,3-cd)pyrene	ND		9.5	0.45	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C
sophorone	ND		9.5	0.41	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C
laphthalene	ND		9.5	0.72	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C
litrobenzene	ND		9.5	0.28	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C
-Nitrosodi-n-propylamin	ND		9.5	0.51	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C
I-Nitrosodiphenylamine	ND		9.5	0.49	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C
Pentachlorophenol	ND		48	2.1	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C
henanthrene	ND		9.5	0.42	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C
Phenol	ND		9.5	0.37	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C
yrene	ND		9.5	0.32	ug/L	1.00	10/09/10 18:11	MKP	10 1861	8270C
,4,6-Tribromophenol	115 %		Surr Limits:	(52-132%)			10/09/10 18:11	MKP	10 1861	8270C
-Fluorobiphenyl	84 %		Surr Limits:	(48-120%)			10/09/10 18:11	MKP	10 1861	8270C
-Fluorophenol	48 %		Surr Limits:	(20-120%)			10/09/10 18:11	MKP	10 1861	8270C
litrobenzene-d5	88 %		Surr Limits:	(46-120%)			10/09/10 18:11	MKP	10 1861	8270C
Phenol-d5	33 %		Surr Limits:	(16-120%)			10/09/10 18:11	MKP	10 1861	8270C
-Terphenyl-d14	54 %		Surr Limits:	(24-136%)			10/09/10 18:11	MKP	10 1861	8270C
Organochlorine Pesticid		lethod 8081								
,4'-DDD	0.25		0.24	0.043	ug/L	5.00	09/28/10 23:09		10 1862	8081A
,4'-DDE	ND		0.24	0.055	ug/L	5.00	09/28/10 23:09		10 1862	8081A
,4'-DDT	0.20	J	0.24	0.052	ug/L	5.00	09/28/10 23:09		10 1862	8081A
ldrin	ND		0.24	0.031	ug/L	5.00	09/28/10 23:09		10 1862	8081A
lpha-BHC	ND		0.24	0.031	ug/L	5.00	09/28/10 23:09	LMW	10 1862	8081A
lpha-Chlordane	ND		0.24	0.070	ug/L	5.00	09/28/10 23:09	LMW	10 1862	8081A
eta-BHC	0.21	J	0.24	0.12	ug/L	5.00	09/28/10 23:09	LMW	10 1862	8081A
Chlordane	ND		2.4	0.14	ug/L	5.00	09/28/10 23:09	LMW	10 1862	8081A
elta-BHC	ND		0.24	0.048	ug/L	5.00	09/28/10 23:09		10 1862	8081A
ieldrin	0.14	J	0.24	0.046	ug/L	5.00	09/28/10 23:09	LMW	10 1862	8081A
ndosulfan I	0.070	J	0.24	0.052	ug/L	5.00	09/28/10 23:09		10 1862	8081A
ndosulfan II	0.14	J	0.24	0.057	ug/L	5.00	09/28/10 23:09		10 1862	8081A
	0.092	J	0.24		-		09/28/10 23:09			
Endosulfan sulfate	0.032	J	0.24	0.074	ug/L	5.00	09/20/10 23.09		10 1862	8081A

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

Work Order: RTI1555

Received: 09/24/10 Reported: 10/15/10 09:06

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			A	Analytical F	Report					
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTI1555-04 (MW-4 - Water	r) - cont.			Sam	pled: 09/	/23/10 11:20	Recv	/d: 09/24/1	0 09:00
Organochlorine Pestici	des by EPA M	lethod 8081	A - cont.							
Endrin aldehyde	ND		0.24	0.077	ug/L	5.00	09/28/10 23:09	LMW	1011862	8081A
Endrin ketone	ND		0.24	0.057	ug/L	5.00	09/28/10 23:09	LMW	10 1862	8081A
gamma-BHC (Lindane)	ND		0.24	0.028	ug/L	5.00	09/28/10 23:09	LMW	10 1862	8081A
gamma-Chlordane	0.15	J	0.24	0.052	ug/L	5.00	09/28/10 23:09	LMW	10 1862	8081A
Heptachlor	0.14	J	0.24	0.040	ug/L	5.00	09/28/10 23:09	LMW	10 1862	8081A
Heptachlor epoxide	ND		0.24	0.025	ug/L	5.00	09/28/10 23:09	LMW	10 1862	8081A
Methoxychlor	0.16	J	0.24	0.067	ug/L	5.00	09/28/10 23:09	LMW	1011862	8081A
Toxaphene	ND		2.4	0.57	ug/L	5.00	09/28/10 23:09	LMW	1011862	8081A
Decachlorobiphenyl	14 %	Ζ	Surr Limits:	(15-139%)			09/28/10 23:09	LMW	10 1862	8081A
Tetrachloro-m-xylene	188 %	Z1	Surr Limits:	(30-139%)			09/28/10 23:09	LMW	10 1862	8081A
Polychlorinated Biphen	yls by EPA N	lethod 8082								
Aroclor 1016	ND	QSU	0.47	0.17	ug/L	1.00	09/29/10 00:14	JxM	10 1863	8082
Aroclor 1221	ND	QSU	0.47	0.17	ug/L	1.00	09/29/10 00:14	JxM	10 1863	8082
Aroclor 1232	ND	QSU	0.47	0.17	ug/L	1.00	09/29/10 00:14	JxM	10 1863	8082
Aroclor 1242	ND	QSU	0.47	0.17	ug/L	1.00	09/29/10 00:14	JxM	10 1863	8082
Aroclor 1248	ND	QSU	0.47	0.17	ug/L	1.00	09/29/10 00:14	JxM	10 1863	8082
Aroclor 1254	ND	QSU	0.47	0.24	ug/L	1.00	09/29/10 00:14	JxM	10 1863	8082
Aroclor 1260	ND	QSU	0.47	0.24	ug/L	1.00	09/29/10 00:14	JxM	10 1863	8082
Decachlorobiphenyl	46 %	QSU	Surr Limits:				09/29/10 00:14		10 1863	8082
Tetrachloro-m-xylene	73 %	QSU	Surr Limits:	(35-121%)			09/29/10 00:14	JxM	10 1863	8082
Total Metals by SW 846	Series Metho	ods								
Aluminum	ND		0.200	NR	mg/L	1.00	09/28/10 23:21	MxM	10 1960	6010B
Antimony	ND		0.0200	NR	mg/L	1.00	09/28/10 23:21	MxM	10 1960	6010B
Arsenic	ND		0.0100	NR	mg/L	1.00	09/28/10 23:21	MxM	10 1960	6010B
Barium	0.0687		0.0020	NR	mg/L	1.00	09/28/10 23:21	MxM	10 1960	6010B
Beryllium	ND		0.0020	NR	mg/L	1.00	09/28/10 23:21	MxM	10 1960	6010B
Cadmium	ND		0.0010	NR	mg/L	1.00	09/28/10 23:21	MxM	10 1960	6010B
Calcium	150		0.5	NR	mg/L	1.00	09/28/10 23:21	MxM	10 1960	6010B
Chromium	ND		0.0040	NR	mg/L	1.00	09/28/10 23:21		10 1960	6010B
Cobalt	ND		0.0040	NR	mg/L	1.00	09/28/10 23:21		10 1960	6010B
Copper	ND		0.0100	NR	mg/L	1.00	09/28/10 23:21		10 1960	6010B
Iron	ND		0.050	NR	mg/L	1.00	09/29/10 12:47		1011960	6010B
Lead	ND		0.0050	NR	mg/L	1.00	09/28/10 23:21		1011960	6010B
Magnesium	151		0.200	NR	mg/L	1.00	09/28/10 23:21		1011960	6010B
Manganese	0.315		0.200	NR	-	1.00	09/28/10 23:21		1011960	6010B
Nickel	0.315 ND		0.0030	NR	mg/L		09/28/10 23:21		1011960	6010B
Potassium	12.2		0.500	NR	mg/L	1.00	09/29/10 23.21			6010B
Selenium					mg/L	1.00			1011960	
	ND		0.0150	NR	mg/L	1.00	09/28/10 23:21		1011960	6010B
Silver	ND		0.0030	NR	mg/L	1.00	09/28/10 23:21		1011960	6010B
Sodium	34.4		1.0	NR	mg/L	1.00	09/29/10 12:47		1011960	6010B
Thallium	ND		0.0200	NR	mg/L	1.00	09/28/10 23:21		10 1960	6010B
Vanadium	ND		0.0050	NR	mg/L	1.00	09/28/10 23:21		10 1960	6010B
Zinc	ND		0.0100	NR	mg/L	1.00	09/28/10 23:21	MxM	10 1960	6010B
Mercury	ND		0.0002	NR	mg/L	1.00	09/30/10 12:33	JRK	1012202	7470A

General Chemistry Parameters

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

Work Order: RTI1555

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066 Received: 09/24/10 Reported: 10/15/10 09:06

Analytical Report													
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method			
Sample ID: RTI1555	-04 (MW-4 - Water	r) - cont.			Samı	oled: 09/	23/10 11:20	Recv	/d: 09/24/1	0 09:00			
General Chemistry	Parameters - con	<u>t.</u>											
Total Cyanide	ND	L	0.0100	NR	mg/L	1.00	10/01/10 15:07	RJF	1012226	9012A			

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

Work Order: RTI1555

Received: 09/24/10 Reported: 10/15/10 09:06

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			Α	nalytical F	Report					
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RTI1555-05 (T	RIP BLANK	- Water)			Sam	pled: 09	/24/10	Recv	rd: 09/24/1	0 15:10
Volatile Organic Compou	inds by EPA	A 8260B								
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L	1.00	09/30/10 01:13	NMD	10 2169	8260B
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L	1.00	09/30/10 01:13	NMD	10 2169	8260B
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L	1.00	09/30/10 01:13	NMD	1012169	8260B
1,1,2-Trichloro-1,2,2-triflu	ND		1.0	0.31	ug/L	1.00	09/30/10 01:13	NMD	1012169	8260B
oroethane										
1,1-Dichloroethane	ND		1.0	0.38	ug/L	1.00	09/30/10 01:13		1012169	8260B
1,1-Dichloroethene	ND		1.0	0.29	ug/L	1.00	09/30/10 01:13		1012169	8260B
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L	1.00	09/30/10 01:13		1012169	8260B
1,2-Dibromo-3-chloroprop	ND		1.0	0.39	ug/L	1.00	09/30/10 01:13	NMD	1012169	8260B
ane 1,2-Dibromoethane	ND		1.0	0.73	ug/L	1.00	09/30/10 01:13		10 2169	8260B
1,2-Dichlorobenzene	ND		1.0	0.73	ug/L	1.00	09/30/10 01:13		1012169	8260B
1,2-Dichloroethane	ND		1.0	0.79	ug/L	1.00	09/30/10 01:13		1012169	8260B
1,2-Dichloropropane	ND		1.0	0.21	ug/L	1.00	09/30/10 01:13		1012169	8260B
1,3-Dichlorobenzene	ND		1.0	0.72	ug/L	1.00	09/30/10 01:13		1012169	8260B
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L	1.00	09/30/10 01:13		1012169	8260B
2-Butanone	ND		10	1.3	ug/L	1.00	09/30/10 01:13		1012169	8260B
2-Hexanone	ND		5.0	1.2	ug/L	1.00	09/30/10 01:13		1012169	8260B
4-Methyl-2-pentanone	ND		5.0	2.1	ug/L	1.00	09/30/10 01:13		1012169	8260B
Acetone	ND		10	3.0	ug/L	1.00	09/30/10 01:13		1012169	8260B
Benzene	ND		1.0	0.41	ug/L	1.00	09/30/10 01:13		1012169	8260B
Bromodichloromethane	ND		1.0	0.39	ug/L	1.00	09/30/10 01:13		1012169	8260B
Bromoform	ND		1.0	0.26	ug/L	1.00	09/30/10 01:13		1012169	8260B
Bromomethane	ND		1.0	0.69	ug/L	1.00	09/30/10 01:13		1012169	8260B
Carbon disulfide	ND		1.0	0.19	ug/L	1.00	09/30/10 01:13		10 2169	8260B
Carbon Tetrachloride	ND		1.0	0.27	ug/L	1.00	09/30/10 01:13	NMD	10 2169	8260B
Chlorobenzene	ND		1.0	0.75	ug/L	1.00	09/30/10 01:13	NMD	10 2169	8260B
Dibromochloromethane	ND		1.0	0.32	ug/L	1.00	09/30/10 01:13	NMD	10 2169	8260B
Chloroethane	ND		1.0	0.32	ug/L	1.00	09/30/10 01:13	NMD	10 2169	8260B
Chloroform	ND		1.0	0.34	ug/L	1.00	09/30/10 01:13	NMD	10 2169	8260B
Chloromethane	ND		1.0	0.35	ug/L	1.00	09/30/10 01:13	NMD	10 2169	8260B
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L	1.00	09/30/10 01:13	NMD	10 2169	8260B
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L	1.00	09/30/10 01:13	NMD	10 2169	8260B
Cyclohexane	ND		1.0	0.18	ug/L	1.00	09/30/10 01:13	NMD	1012169	8260B
Dichlorodifluoromethane	ND		1.0	0.68	ug/L	1.00	09/30/10 01:13	NMD	1012169	8260B
Ethylbenzene	ND		1.0	0.74	ug/L	1.00	09/30/10 01:13	NMD	10 2169	8260B
Isopropylbenzene	ND		1.0	0.79	ug/L	1.00	09/30/10 01:13	NMD	1012169	8260B
Methyl Acetate	ND		1.0	0.50	ug/L	1.00	09/30/10 01:13	NMD	1012169	8260B
Methyl-t-Butyl Ether	ND		1.0	0.16	ug/L	1.00	09/30/10 01:13	NMD	1012169	8260B
(MTBE)										
Methylcyclohexane	ND		1.0	0.16	ug/L	1.00	09/30/10 01:13		1012169	8260B
Methylene Chloride	ND		1.0	0.44	ug/L	1.00	09/30/10 01:13		1012169	8260B
Styrene	ND		1.0	0.73	ug/L	1.00	09/30/10 01:13		1012169	8260B
Tetrachloroethene	ND		1.0	0.36	ug/L	1.00	09/30/10 01:13		1012169	8260B
Toluene	ND		1.0	0.51	ug/L	1.00	09/30/10 01:13		1012169	8260B
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L	1.00	09/30/10 01:13		1012169	8260B
trans-1,3-Dichloropropen	ND		1.0	0.37	ug/L	1.00	09/30/10 01:13	NMD	1012169	8260B
e Trichlereethene			1.0	0.40	110-11	1 00	00/20/40 04.40		1010400	00000
Trichloroethene	ND		1.0	0.46	ug/L	1.00	09/30/10 01:13		1012169	8260B
Trichlorofluoromethane	ND		1.0	0.88	ug/L	1.00	09/30/10 01:13		1012169	8260B
Vinyl chloride	ND		1.0	0.90	ug/L	1.00	09/30/10 01:13	INIVID	1012169	8260B

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Benchmark Environmental & Engineering Science	Work Order: RTI1555	Received:	09/24/10
2558 Hamburg Turnpike, Suite 300		Reported:	10/15/10 09:06
Lackawanna, NY 14218	Project: Benchmark - 295 Maryland St. site		

Project Number: TURN-0066

			ŀ	Analytical R	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RTI1555-05 (TRIP BLANK	- Water) - cont			Sam	pled: 09/	24/10	Recv	/d: 09/24/1	0 15:10
Volatile Organic Compo	unds by EPA	8260B - cont.								
Xylenes, total	ND		2.0	0.66	ug/L	1.00	09/30/10 01:13	NMD	1012169	8260B
1,2-Dichloroethane-d4	95 %	S	urr Limits:	(66-137%)			09/30/10 01:13	NMD	10/2169	8260B
4-Bromofluorobenzene	105 %	S	urr Limits:	(73-120%)			09/30/10 01:13	NMD	10/2169	8260B
Toluene-d8	104 %	S	urr Limits [.]	(71-126%)			09/30/10 01:13	NMD	10/2169	8260B

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

Work Order: RTI1555

Received: 09/24/10 Reported: 10/15/10 09:06

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			SAMPLE	EXTR	ACTION	DATA			
			Wt/Vol		Extract			Lab	
Parameter	Batch	Lab Number	Extracte	Units	Volume	Units	Date Prepared	Tech	Extraction Method
General Chemistry Parameters	1012226		50.00	ml	50.00	ml	00/20/10 14:00	JME	Cn Direction
9012A	1012226	RTI1555-01	50.00	mL	50.00	mL	09/30/10 14:09		Cn Digestion
9012A	10 2226	RTI1555-02	50.00	mL	50.00	mL	09/30/10 14:09	JME	Cn Digestion
9012A	10 2226	RTI1555-03	50.00	mL	50.00	mL	09/30/10 14:09	JME	Cn Digestion
9012A	1012226	RTI1555-04	50.00	mL	50.00	mL	09/30/10 14:09	JME	Cn Digestion
Organochlorine Pesticides by EPA 8081A	1011862	RTI1555-01	1,060.00	mL	10.00	mL	09/25/10 09:00	BWM	3510C GC
8081A 8081A	10 1862	RTI1555-02	1,060.00		10.00	mL	09/25/10 09:00	BWM	3510C GC
			,						
8081A	10 1862	RTI1555-03	1,060.00	mL	10.00	mL	09/25/10 09:00	BWM	3510C GC
8081A Polychlorinated Biphenyls by EPA	10I1862 Method 80	RTI1555-04	1,060.00	mL	10.00	mL	09/25/10 09:00	BWM	3510C GC
8082	1011863	RTI1555-01	1,060.00	mL	10.00	mL	09/25/10 09:00	BWM	3510C GC
8082	10 1863	RTI1555-02	1,060.00	mL	10.00	mL	09/25/10 09:00	BWM	3510C GC
8082	10 1863	RTI1555-03	1,060.00	mL	10.00	mL	09/25/10 09:00	BWM	3510C GC
8082	10 1863	RTI1555-04	1,060.00	mL	10.00	mL	09/25/10 09:00		3510C GC
Semivolatile Organics by GC/MS	1011000	1111000 04	1,000.00		10.00		00/20/10 00:00	Brin	
8270C	10 1861	RTI1555-01	1,040.00	mL	1.00	mL	09/25/10 09:00	BWM	3510C MB
8270C	10 1861	RTI1555-04	1,050.00	mL	1.00	mL	09/25/10 09:00	BWM	3510C MB
8270C	10 1861	RTI1555-02	1,060.00	mL	1.00	mL	09/25/10 09:00	BWM	3510C MB
8270C	10 1861	RTI1555-03	1,060.00	mL	1.00	mL	09/25/10 09:00	BWM	3510C MB
Total Metals by SW 846 Series Me	ethods								
6010B	10 1960	RTI1555-01	50.00	mL	50.00	mL	09/28/10 10:30	MDM	3005A
6010B	10 1960	RTI1555-02	50.00	mL	50.00	mL	09/28/10 10:30	MDM	3005A
6010B	10 1960	RTI1555-03	50.00	mL	50.00	mL	09/28/10 10:30	MDM	3005A
6010B	10 1960	RTI1555-04	50.00	mL	50.00	mL	09/28/10 10:30	MDM	3005A
7470A	1012202	RTI1555-01	30.00	mL	50.00	mL	09/30/10 11:15	JRK	7470A
7470A	1012202	RTI1555-02	30.00	mL	50.00	mL	09/30/10 11:15	JRK	7470A
7470A	10 2202	RTI1555-03	30.00	mL	50.00	mL	09/30/10 11:15	JRK	7470A
7470A	1012202	RTI1555-04	30.00	mL	50.00	mL	09/30/10 11:15	JRK	7470A
Volatile Organic Compounds by E	PA 8260B								
8260B	1012207	RTI1555-03	5.00	mL	5.00	mL	09/30/10 10:27	DHC	5030B MS
8260B	1012207	RTI1555-04	5.00	mL	5.00	mL	09/30/10 10:27	DHC	5030B MS
8260B	1012169	RTI1555-01	5.00	mL	5.00	mL	09/29/10 17:31	NMD	5030B MS
8260B	1012169	RTI1555-02	5.00	mL	5.00	mL	09/29/10 17:31	NMD	5030B MS
8260B	1012169	RTI1555-05	5.00	mL	5.00	mL	09/29/10 17:31	NMD	5030B MS

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

Work Order: RTI1555

Received: 09/24/10 Reported: 10/15/10 09:06

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			L	ABORATORY	QC DATA						
	Source	Spike					%	% REC	% R	PD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD Li	mit	Qualifiers
Volatile Organic Compou	nds by EP	A 8260B									
Blank Analyzed: 09/29/10	(Lab Num	nber:10 21	69-BLK1,∣	Batch: 10I2169)							
1,1,1-Trichloroethane			1.0	0.82	ug/L	ND					
1,1,2,2-Tetrachloroethane			1.0	0.21	ug/L	ND					
1,1,2-Trichloroethane			1.0	0.23	ug/L	ND					
1,1,2-Trichloro-1,2,2-triflu oroethane			1.0	0.31	ug/L	ND					
1,1-Dichloroethane			1.0	0.38	ug/L	ND					
1,1-Dichloroethene			1.0	0.29	ug/L	ND					
1,2,4-Trichlorobenzene			1.0	0.41	ug/L	ND					
1,2-Dibromo-3-chloroprop ane			1.0	0.39	ug/L	ND					
1,2-Dibromoethane			1.0	0.73	ug/L	ND					
1,2-Dichlorobenzene			1.0	0.79	ug/L	ND					
1,2-Dichloroethane			1.0	0.21	ug/L	ND					
1,2-Dichloropropane			1.0	0.72	ug/L	ND					
1,3-Dichlorobenzene			1.0	0.78	ug/L	ND					
1,4-Dichlorobenzene			1.0	0.84	ug/L	ND					
2-Butanone			10	1.3	ug/L	ND					
2-Hexanone			5.0	1.2	ug/L	ND					
4-Methyl-2-pentanone			5.0	2.1	ug/L	ND					
Acetone			10	3.0	ug/L	ND					
Benzene			1.0	0.41	ug/L	ND					
Bromodichloromethane			1.0	0.39	ug/L	ND					
Bromoform			1.0	0.26	ug/L	ND					
Bromomethane			1.0	0.69	ug/L	ND					
Carbon disulfide			1.0	0.19	ug/L	ND					
Carbon Tetrachloride			1.0	0.27	ug/L	ND					
Chlorobenzene			1.0	0.75	ug/L	ND					
Dibromochloromethane			1.0	0.32	ug/L	ND					
Chloroethane			1.0	0.32	ug/L	ND					
Chloroform			1.0	0.34	ug/L	ND					
Chloromethane			1.0	0.35	ug/L	ND					
cis-1,2-Dichloroethene			1.0	0.81	ug/L	ND					
cis-1,3-Dichloropropene			1.0	0.36	ug/L	ND					
Cyclohexane			1.0	0.18	ug/L	ND					
Dichlorodifluoromethane			1.0	0.68	ug/L	ND					
Ethylbenzene			1.0	0.74	ug/L	ND					
Isopropylbenzene			1.0	0.79	ug/L	ND					
Methyl Acetate			1.0	0.50	ug/L	ND					

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

Work Order: RTI1555

Received: 09/24/10 Reported: 10/15/10 09:06

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			LÆ	BORATORY	QC DATA						
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD L	.imit	Qualifiers
Volatile Organic Compou	unds by EP	<u>A 8260B</u>									
Blank Analyzed: 09/29/10) (Lab Num	nher:10 21	69-BIK1 F	Ratch: 1012169)							
Methyl-t-Butyl Ether			1.0	0.16	ug/L	ND					
(MTBE)					-						
Methylcyclohexane			1.0	0.16	ug/L	ND					
Methylene Chloride			1.0	0.44	ug/L	ND					
Styrene			1.0	0.73	ug/L	ND					
Tetrachloroethene			1.0	0.36	ug/L	ND					
Toluene			1.0	0.51	ug/L	ND					
trans-1,2-Dichloroethene			1.0	0.90	ug/L	ND					
trans-1,3-Dichloropropen e			1.0	0.37	ug/L	ND					
Trichloroethene			1.0	0.46	ug/L	ND					
Trichlorofluoromethane			1.0	0.88	ug/L	ND					
Vinyl chloride			1.0	0.90	ug/L	ND					
Xylenes, total			2.0	0.66	ug/L	ND					
Surrogate:					ug/L		95	66-137			
1,2-Dichloroethane-d4 Surrogate:					ug/L		106	73-120			
4-Bromofluorobenzene Surrogate: Toluene-d8					ug/L		105	71-126			
LCS Analyzed: 09/29/10	(Lab Numb	er:10 2169	-BS1, Bate	ch: 10l2169)							
1,1,1-Trichloroethane			1.0	0.82	ug/L	ND		73-126			
1,1,2,2-Tetrachloroethane			1.0	0.21	ug/L	ND		70-126			
1,1,2-Trichloroethane			1.0	0.23	ug/L	ND		76-122			
1,1,2-Trichloro-1,2,2-triflu oroethane			1.0	0.31	ug/L	ND		60-140			
1,1-Dichloroethane		25.0	1.0	0.38	ug/L	23.0	92	71-129			
1,1-Dichloroethene		25.0	1.0	0.29	ug/L	22.7	91	65-138			
1,2,4-Trichlorobenzene			1.0	0.41	ug/L	ND		70-122			
1,2-Dibromo-3-chloroprop ane			1.0	0.39	ug/L	ND		56-134			
1,2-Dibromoethane			1.0	0.73	ug/L	ND		77-120			
1,2-Dichlorobenzene		25.0	1.0	0.79	ug/L	24.5	98	77-120			
1,2-Dichloroethane		25.0	1.0	0.21	ug/L	22.3	89	75-127			
1,2-Dichloropropane			1.0	0.72	ug/L	ND		76-120			
1,3-Dichlorobenzene			1.0	0.78	ug/L	ND		77-120			
1,4-Dichlorobenzene			1.0	0.84	ug/L	ND		75-120			
2-Butanone			10	1.3	ug/L	ND		57-140			
2-Hexanone			5.0	1.2	ug/L	ND		65-127			
4-Methyl-2-pentanone			5.0	2.1	ug/L	ND		71-125			
Acetone			10	3.0	ug/L	ND		56-142			

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

Work Order: RTI1555

Received: 09/24/10 Reported: 10/15/10 09:06

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			LA	BORATORY	QC DATA					
	Source	Spike					%	% REC	% RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD Limit	Qualifiers
Volatile Organic Compo	unds by EP	A 8260B								
LCS Analyzed: 09/29/10	(Lab Numb	oer:10 2169	9-BS1, Bato	:h: 10l2169)						
Benzene		25.0	1.0	0.41	ug/L	23.3	93	71-124		
Bromodichloromethane			1.0	0.39	ug/L	ND		80-122		
Bromoform			1.0	0.26	ug/L	ND		66-128		
Bromomethane			1.0	0.69	ug/L	ND		36-150		
Carbon disulfide			1.0	0.19	ug/L	ND		59-134		
Carbon Tetrachloride			1.0	0.27	ug/L	ND		72-134		
Chlorobenzene		25.0	1.0	0.75	ug/L	24.7	99	72-120		
Dibromochloromethane			1.0	0.32	ug/L	ND		75-125		
Chloroethane			1.0	0.32	ug/L	ND		69-136		
Chloroform			1.0	0.34	ug/L	ND		73-127		
Chloromethane			1.0	0.35	ug/L	ND		49-142		
cis-1,2-Dichloroethene		25.0	1.0	0.81	ug/L	23.1	92	74-124		
cis-1,3-Dichloropropene			1.0	0.36	ug/L	ND		74-124		
Cyclohexane			1.0	0.18	ug/L	ND		70-130		
Dichlorodifluoromethane			1.0	0.68	ug/L	ND		33-157		
Ethylbenzene		25.0	1.0	0.74	ug/L	24.2	97	77-123		
Isopropylbenzene			1.0	0.79	ug/L	ND		77-122		
Methyl Acetate			1.0	0.50	ug/L	ND		60-140		
Methyl-t-Butyl Ether (MTBE)		25.0	1.0	0.16	ug/L	19.4	78	64-127		
Methylcyclohexane			1.0	0.16	ug/L	ND		60-140		
Methylene Chloride			1.0	0.44	ug/L	ND		57-132		
Styrene			1.0	0.73	ug/L	ND		70-130		
Tetrachloroethene		25.0	1.0	0.36	ug/L	25.6	102	74-122		
Toluene		25.0	1.0	0.51	ug/L	23.0	92	70-122		
trans-1,2-Dichloroethene		25.0	1.0	0.90	ug/L	23.7	95	73-127		
trans-1,3-Dichloropropen e			1.0	0.37	ug/L	ND		72-123		
Trichloroethene		25.0	1.0	0.46	ug/L	24.0	96	74-123		
Trichlorofluoromethane			1.0	0.88	ug/L	ND		62-152		
Vinyl chloride			1.0	0.90	ug/L	ND		65-133		
Xylenes, total		75.0	2.0	0.66	ug/L	72.7	97	76-122		
Surrogate: 1,2-Dichloroethane-d4					ug/L		96	66-137		
Surrogate: 4-Bromofluorobenzene					ug/L		108	73-120		
Surrogate: Toluene-d8					ug/L		104	71-126		

Matrix Spike Analyzed: 09/30/10 (Lab Number:10I2169-MS1, Batch: 10I2169)

QC Source Sample: RTI1555-02

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

e Work Order: RTI1555

Received: 09/24/10 Reported: 10/15/10 09:06

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			LA	BORATORY	QC DATA					
	Source	Spike	Ξ.				%	% REC	% RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD Limit	Qualifiers
Volatile Organic Compou	unds by EP	<u>A 8260B</u>								
Matrix Spike Analyzed: 0 QC Source Sample: RTI1555-0	-	ab Numbe	er:10 2169-N	IS1, Batch: 10I	2169)					
1,1,1-Trichloroethane	ND		5.0	4.1	ug/L	ND		73-126		D03
1,1,2,2-Tetrachloroethane	ND		5.0	1.1	ug/L	ND		70-126		D03
1,1,2-Trichloroethane	ND		5.0	1.2	ug/L	ND		76-122		D03
1,1,2-Trichloro-1,2,2-triflu oroethane	ND		5.0	1.5	ug/L	ND		60-140		D03
1,1-Dichloroethane	ND	125	5.0	1.9	ug/L	117	94	71-129		D03
1,1-Dichloroethene	ND	125	5.0	1.5	ug/L	118	94	65-138		D03
1,2,4-Trichlorobenzene	ND		5.0	2.0	ug/L	ND		70-122		D03
1,2-Dibromo-3-chloroprop	ND		5.0	2.0	ug/L	ND		56-134		D03
ane 1,2-Dibromoethane	ND		5.0	3.6	ug/L	ND		77-120		D03
1,2-Dichlorobenzene	ND	125	5.0	4.0	ug/L	123	98	77-120		D03
1,2-Dichloroethane	ND	125	5.0	1.1	ug/L	116	93	75-127		D03
1,2-Dichloropropane	ND		5.0	3.6	ug/L	ND		76-120		D03
1,3-Dichlorobenzene	ND		5.0	3.9	ug/L	ND		77-120		D03
1,4-Dichlorobenzene	ND		5.0	4.2	ug/L	ND		75-120		D03
2-Butanone	ND		50	6.6	ug/L	ND		57-140		D03
2-Hexanone	ND		25	6.2	ug/L	ND		65-127		D03
4-Methyl-2-pentanone	ND		25	10	ug/L	ND		71-125		D03
Acetone	ND		50	15	ug/L	ND		56-142		D03
Benzene	37.8	125	5.0	2.0	ug/L	153	92	71-124		D03
Bromodichloromethane	ND		5.0	1.9	ug/L	ND		80-122		D03
Bromoform	ND		5.0	1.3	ug/L	ND		66-128		D03
Bromomethane	ND		5.0	3.4	ug/L	ND		36-150		D03
Carbon disulfide	ND		5.0	0.97	ug/L	ND		59-134		D03
Carbon Tetrachloride	ND		5.0	1.3	ug/L	ND		72-134		D03
Chlorobenzene	ND	125	5.0	3.8	ug/L	125	100	72-120		D03
Dibromochloromethane	ND		5.0	1.6	ug/L	ND		75-125		D03
Chloroethane	ND		5.0	1.6	ug/L	ND		69-136		D03
Chloroform	4.20		5.0	1.7	ug/L	4.15		73-127		D03,J
Chloromethane	ND		5.0	1.7	ug/L	ND		49-142		D03
cis-1,2-Dichloroethene	ND	125	5.0	4.0	ug/L	116	93	74-124		D03
cis-1,3-Dichloropropene	ND		5.0	1.8	ug/L	ND		74-124		D03
Cyclohexane	ND		5.0	0.90	ug/L	ND		70-130		D03
Dichlorodifluoromethane	ND		5.0	3.4	ug/L	ND		33-157		D03
Ethylbenzene	39.2	125	5.0	3.7	ug/L	156	94	77-123		D03
Isopropylbenzene	ND		5.0	4.0	ug/L	ND		77-122		D03
Methyl Acetate	ND		5.0	2.5	ug/L	ND		60-140		D03

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

Work Order: RTI1555

Received: 09/24/10 Reported: 10/15/10 09:06

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

LABORATORY QC DATA											
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Volatile Organic Compou	nds by EP	A 8260B									
Matrix Spike Analyzed: 09 QC Source Sample: RTI1555-02	-	ab Numbe	r:10l2169-N	IS1, Batch: 1012	2169)						
Methyl-t-Butyl Ether (MTBE)	ND	125	5.0	0.80	ug/L	103	83	64-127			D03
Methylcyclohexane	ND		5.0	0.80	ug/L	ND		60-140			D03
Methylene Chloride	ND		5.0	2.2	ug/L	ND		57-132			D03
Styrene	ND		5.0	3.6	ug/L	ND		70-130			D03
Tetrachloroethene	ND	125	5.0	1.8	ug/L	124	99	74-122			D03
Toluene	18.0	125	5.0	2.6	ug/L	133	92	70-122			D03
trans-1,2-Dichloroethene	ND	125	5.0	4.5	ug/L	120	96	73-127			D03
trans-1,3-Dichloropropen e	ND		5.0	1.8	ug/L	ND		72-123			D03
Trichloroethene	ND	125	5.0	2.3	ug/L	120	96	74-123			D03
Trichlorofluoromethane	ND		5.0	4.4	ug/L	ND		62-152			D03
Vinyl chloride	ND		5.0	4.5	ug/L	ND		65-133			D03
Xylenes, total	96.6	375	10	3.3	ug/L	454	95	76-122			D03
Surrogate:					ug/L		96	66-137			D03
1,2-Dichloroethane-d4 Surrogate: 4-Bromofluorobenzene					ug/L		106	73-120			D03
Surrogate: Toluene-d8					ug/L		103	71-126			D03
Matrix Spike Dup Analyze QC Source Sample: RTI1555-02		0 (Lab Nu	mber:10121	69-MSD1, Batc	h: 10l2169)						
1,1,1-Trichloroethane	ND		5.0	4.1	ug/L	ND		73-126		15	D03
1,1,2,2-Tetrachloroethane	ND		5.0	1.1	ug/L	ND		70-126		15	D03
1,1,2-Trichloroethane	ND		5.0	1.2	ug/L	ND		76-122		15	D03
1,1,2-Trichloro-1,2,2-triflu oroethane	ND		5.0	1.5	ug/L	ND		60-140		20	D03
1,1-Dichloroethane	ND	125	5.0	1.9	ug/L	119	95	71-129	1	20	D03
1,1-Dichloroethene	ND	125	5.0	1.5	ug/L	121	97	65-138	3	16	D03
1,2,4-Trichlorobenzene	ND		5.0	2.0	ug/L	ND		70-122		20	D03
1,2-Dibromo-3-chloroprop ane	ND		5.0	2.0	ug/L	ND		56-134		15	D03
1,2-Dibromoethane	ND		5.0	3.6	ug/L	ND		77-120		15	D03
1,2-Dichlorobenzene	ND	125	5.0	4.0	ug/L	126	101	77-120	3	20	D03
1,2-Dichloroethane	ND	125	5.0	1.1	ug/L	118	94	75-127	2	20	D03
1,2-Dichloropropane	ND		5.0	3.6	ug/L	ND		76-120		20	D03
1,3-Dichlorobenzene	ND		5.0	3.9	ug/L	ND		77-120		20	D03
1,4-Dichlorobenzene	ND		5.0	4.2	ug/L	ND		75-120		20	D03
2-Butanone	ND		50	6.6	ug/L	ND		57-140		20	D03
2-Hexanone	ND		25	6.2	ug/L	ND		65-127		15	D03

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

Work Order: RTI1555

Received: 09/24/10 Reported: 10/15/10 09:06

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

	6	Om:1+ -	L/-	BORATORY	SO DAIA			•	•		
Analyta	Source Result	Spike Level	RL	MDL	Units	Booult	% REC	% REC Limits	% RPD	RPD	Data Qualifiers
Analyte Volatile Organic Compo					Units	Result	REC	Linits	INF D	Linnt	Quaimers
<u> </u>	-										
Matrix Spike Dup Analyz QC Source Sample: RTI1555-0		0 (Lab Nu	mber:10121	69-MSD1, Bato	:h: 10l2169)						
4-Methyl-2-pentanone	ND		25	10	ug/L	ND		71-125		35	D03
Acetone	ND		50	15	ug/L	ND		56-142		15	D03
Benzene	37.8	125	5.0	2.0	ug/L	155	94	71-124	1	13	D03
Bromodichloromethane	ND		5.0	1.9	ug/L	ND		80-122		15	D03
Bromoform	ND		5.0	1.3	ug/L	ND		66-128		15	D03
Bromomethane	ND		5.0	3.4	ug/L	ND		36-150		15	D03
Carbon disulfide	ND		5.0	0.97	ug/L	ND		59-134		15	D03
Carbon Tetrachloride	ND		5.0	1.3	ug/L	ND		72-134		15	D03
Chlorobenzene	ND	125	5.0	3.8	ug/L	127	102	72-120	1	25	D03
Dibromochloromethane	ND		5.0	1.6	ug/L	ND		75-125		15	D03
Chloroethane	ND		5.0	1.6	ug/L	ND		69-136		15	D03
Chloroform	4.20		5.0	1.7	ug/L	4.15		73-127	0	20	D03,J
Chloromethane	ND		5.0	1.7	ug/L	ND		49-142		15	D03
cis-1,2-Dichloroethene	ND	125	5.0	4.0	ug/L	121	97	74-124	4	15	D03
cis-1,3-Dichloropropene	ND		5.0	1.8	ug/L	ND		74-124		15	D03
Cyclohexane	ND		5.0	0.90	ug/L	ND		70-130		20	D03
Dichlorodifluoromethane	ND		5.0	3.4	ug/L	ND		33-157		20	D03
Ethylbenzene	39.2	125	5.0	3.7	ug/L	160	96	77-123	2	15	D03
lsopropylbenzene	ND		5.0	4.0	ug/L	ND		77-122		20	D03
Methyl Acetate	ND		5.0	2.5	ug/L	ND		60-140		20	D03
Methyl-t-Butyl Ether (MTBE)	ND	125	5.0	0.80	ug/L	103	82	64-127	0.4	37	D03
Methylcyclohexane	ND		5.0	0.80	ug/L	ND		60-140		20	D03
Methylene Chloride	ND		5.0	2.2	ug/L	ND		57-132		15	D03
Styrene	ND		5.0	3.6	ug/L	ND		70-130		20	D03
Tetrachloroethene	ND	125	5.0	1.8	ug/L	128	102	74-122	3	20	D03
Toluene	18.0	125	5.0	2.6	ug/L	137	95	70-122	2	15	D03
trans-1,2-Dichloroethene	ND	125	5.0	4.5	ug/L	122	98	73-127	1	20	D03
trans-1,3-Dichloropropen e	ND		5.0	1.8	ug/L	ND		72-123		15	D03
Trichloroethene	ND	125	5.0	2.3	ug/L	122	98	74-123	2	16	D03
Trichlorofluoromethane	ND		5.0	4.4	ug/L	ND		62-152		20	D03
√inyl chloride	ND		5.0	4.5	ug/L	ND		65-133		15	D03
Xylenes, total	96.6	375	10	3.3	ug/L	462	97	76-122	2	16	D03
Surrogate: 1,2-Dichloroethane-d4					ug/L		97	66-137			D03
Surrogate: 4-Bromofluorobenzene					ug/L		106	73-120			D03
Surrogate: Toluene-d8					ug/L		102	71-126			D03

www.testamericainc.com

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Benchmark Environmental & Engineering Science	Work Order: RTI1555
2558 Hamburg Turnpike, Suite 300	
Lackawanna, NY 14218	Project: Benchmark - 295 Maryland St. site
	Project Number: TURN-0066

Received: 09/24/10 Reported: 10/15/10 09:06

Volatile Organic Compounds by EPA 8260B

Blank Analyzed: 09/30/10 (Lab Number:10l2207-BLK1, Batch: 10l2207)

Blaint Analyzoa. 00/00/10	DEITI, DUIO			
1,1,1-Trichloroethane	1.0	0.82	ug/L	ND
1,1,2,2-Tetrachloroethane	1.0	0.21	ug/L	ND
1,1,2-Trichloroethane	1.0	0.23	ug/L	ND
1,1,2-Trichloro-1,2,2-triflu oroethane	1.0	0.31	ug/L	ND
1,1-Dichloroethane	1.0	0.38	ug/L	ND
1,1-Dichloroethene	1.0	0.29	ug/L	ND
1,2,4-Trichlorobenzene	1.0	0.41	ug/L	ND
1,2-Dibromo-3-chloroprop ane	1.0	0.39	ug/L	ND
1,2-Dibromoethane	1.0	0.73	ug/L	ND
1,2-Dichlorobenzene	1.0	0.79	ug/L	ND
1,2-Dichloroethane	1.0	0.21	ug/L	ND
1,2-Dichloropropane	1.0	0.72	ug/L	ND
1,3-Dichlorobenzene	1.0	0.78	ug/L	ND
1,4-Dichlorobenzene	1.0	0.84	ug/L	ND
2-Butanone	10	1.3	ug/L	ND
2-Hexanone	5.0	1.2	ug/L	ND
4-Methyl-2-pentanone	5.0	2.1	ug/L	ND
Acetone	10	3.0	ug/L	ND
Benzene	1.0	0.41	ug/L	ND
Bromodichloromethane	1.0	0.39	ug/L	ND
Bromoform	1.0	0.26	ug/L	ND
Bromomethane	1.0	0.69	ug/L	ND
Carbon disulfide	1.0	0.19	ug/L	ND
Carbon Tetrachloride	1.0	0.27	ug/L	ND
Chlorobenzene	1.0	0.75	ug/L	ND
Dibromochloromethane	1.0	0.32	ug/L	ND
Chloroethane	1.0	0.32	ug/L	ND
Chloroform	1.0	0.34	ug/L	ND
Chloromethane	1.0	0.35	ug/L	ND
cis-1,2-Dichloroethene	1.0	0.81	ug/L	ND
cis-1,3-Dichloropropene	1.0	0.36	ug/L	ND
Cyclohexane	1.0	0.18	ug/L	ND
Dichlorodifluoromethane	1.0	0.68	ug/L	ND
Ethylbenzene	1.0	0.74	ug/L	ND
Isopropylbenzene	1.0	0.79	ug/L	ND
Methyl Acetate	1.0	0.50	ug/L	ND
Methyl-t-Butyl Ether (MTBE)	1.0	0.16	ug/L	ND
Methylcyclohexane	1.0	0.16	ug/L	ND

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

Work Order: RTI1555

Received: 09/24/10 Reported: 10/15/10 09:06

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			LA	BORATORY	QC DATA					
	Source	Spike					%	% REC	% RPI	D Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD Limi	t Qualifiers
Volatile Organic Compou	inds by EP	<u>A 8260B</u>								
Blank Analyzed: 09/30/10	(I ah Num	10122	07-BIK1 B	latch: 10 2207)						
Methylene Chloride			1.0	0.44	ug/L	ND				
Styrene			1.0	0.73	ug/L	ND				
Tetrachloroethene			1.0	0.36	ug/L	ND				
Toluene			1.0	0.51	ug/L	ND				
trans-1,2-Dichloroethene			1.0	0.90	ug/L	ND				
trans-1,3-Dichloropropen			1.0	0.37	ug/L	ND				
e					•					
Trichloroethene			1.0	0.46	ug/L	ND				
Trichlorofluoromethane			1.0	0.88	ug/L	ND				
Vinyl chloride			1.0	0.90	ug/L	ND				
Xylenes, total			2.0	0.66	ug/L	ND				
Surrogate: 1,2-Dichloroethane-d4					ug/L		95	66-137		
Surrogate: 4-Bromofluorobenzene					ug/L		106	73-120		
Surrogate: Toluene-d8					ug/L		107	71-126		
LCS Analyzed: 09/30/10	(Lab Numb	er:10 220	7-BS1, Bate	ch: 10l2207)						
1,1,1-Trichloroethane			1.0	0.82	ug/L	ND		73-126		
1,1,2,2-Tetrachloroethane			1.0	0.21	ug/L	ND		70-126		
1,1,2-Trichloroethane			1.0	0.23	ug/L	ND		76-122		
1,1,2-Trichloro-1,2,2-triflu oroethane			1.0	0.31	ug/L	ND		60-140		
1,1-Dichloroethane		25.0	1.0	0.38	ug/L	22.1	88	71-129		
1,1-Dichloroethene		25.0	1.0	0.29	ug/L	22.6	90	65-138		
1,2,4-Trichlorobenzene			1.0	0.41	ug/L	ND		70-122		
1,2-Dibromo-3-chloroprop			1.0	0.39	ug/L	ND		56-134		
ane 1,2-Dibromoethane			1.0	0.73	ug/L	ND		77-120		
1,2-Dichlorobenzene		25.0	1.0	0.79	ug/L	24.1	96	77-120		
1,2-Dichloroethane		25.0	1.0	0.21	ug/L	22.1	88	75-127		
1,2-Dichloropropane		2010	1.0	0.72	ug/L	ND		76-120		
1,3-Dichlorobenzene			1.0	0.78	ug/L	ND		77-120		
1,4-Dichlorobenzene			1.0	0.84	ug/L	ND		75-120		
2-Butanone			10	1.3	ug/L	ND		57-140		
2-Hexanone			5.0	1.2	ug/L	ND		65-127		
4-Methyl-2-pentanone			5.0	2.1	ug/L	ND		71-125		
Acetone			10	3.0	ug/L	ND		56-142		
Benzene		25.0	1.0	0.41	ug/L	22.1	88	71-124		
Bromodichloromethane		20.0	1.0	0.39	ug/L	ND	-	80-122		
			-	-	- 3					

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

Work Order: RTI1555

Received: 09/24/10 Reported: 10/15/10 09:06

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			LA	BORATORY	QC DATA					
• • .	Source	Spike	RL	MDI			%	% REC	% RPD	Data
Analyte Volatile Organic Compo	Result			MDL	Units	Result	REC	Limits	RPD Limit	Qualifiers
	unus by Er	A 0200D								
LCS Analyzed: 09/30/10	(Lab Numb	er:10 2207	7-BS1, Bato	h: 10l2207)						
Bromoform			1.0	0.26	ug/L	ND		66-128		
Bromomethane			1.0	0.69	ug/L	ND		36-150		
Carbon disulfide			1.0	0.19	ug/L	ND		59-134		
Carbon Tetrachloride			1.0	0.27	ug/L	ND		72-134		
Chlorobenzene		25.0	1.0	0.75	ug/L	24.1	96	72-120		
Dibromochloromethane			1.0	0.32	ug/L	ND		75-125		
Chloroethane			1.0	0.32	ug/L	ND		69-136		
Chloroform			1.0	0.34	ug/L	ND		73-127		
Chloromethane			1.0	0.35	ug/L	ND		49-142		
cis-1,2-Dichloroethene		25.0	1.0	0.81	ug/L	22.2	89	74-124		
cis-1,3-Dichloropropene			1.0	0.36	ug/L	ND		74-124		
Cyclohexane			1.0	0.18	ug/L	ND		70-130		
Dichlorodifluoromethane			1.0	0.68	ug/L	ND		33-157		
Ethylbenzene		25.0	1.0	0.74	ug/L	23.2	93	77-123		
Isopropylbenzene			1.0	0.79	ug/L	ND		77-122		
Methyl Acetate			1.0	0.50	ug/L	ND		60-140		
Methyl-t-Butyl Ether (MTBE)		25.0	1.0	0.16	ug/L	19.0	76	64-127		
Methylcyclohexane			1.0	0.16	ug/L	ND		60-140		
Methylene Chloride			1.0	0.44	ug/L	ND		57-132		
Styrene			1.0	0.73	ug/L	ND		70-130		
Tetrachloroethene		25.0	1.0	0.36	ug/L	24.6	99	74-122		
Toluene		25.0	1.0	0.51	ug/L	22.2	89	70-122		
trans-1,2-Dichloroethene		25.0	1.0	0.90	ug/L	22.5	90	73-127		
trans-1,3-Dichloropropen e			1.0	0.37	ug/L	ND		72-123		
Trichloroethene		25.0	1.0	0.46	ug/L	22.5	90	74-123		
Trichlorofluoromethane			1.0	0.88	ug/L	ND		62-152		
Vinyl chloride			1.0	0.90	ug/L	ND		65-133		
Xylenes, total		75.0	2.0	0.66	ug/L	69.5	93	76-122		
Surrogate:					ug/L		97	66-137		
1,2-Dichloroethane-d4 Surrogate: 4-Bromofluorobenzene					ug/L		106	73-120		
Surrogate: Toluene-d8					ug/L		106	71-126		

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

Work Order: RTI1555

Received: 09/24/10 Reported: 10/15/10 09:06

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			L	ABORATORY	QC DATA					
	Source	Spike					%	% REC	% RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD Limit	Qualifiers
Semivolatile Organics by	GC/MS									
Blank Analyzed: 10/09/10	(Lab Num	nber:10 18	61-BLK1,	Batch: 10I1861)						
2,4,5-Trichlorophenol			25	0.48	ug/L	ND				
2,4,6-Trichlorophenol			10	0.61	ug/L	ND				
2,4-Dichlorophenol			10	0.51	ug/L	ND				
2,4-Dimethylphenol			10	0.50	ug/L	ND				
2,4-Dinitrophenol			50	2.2	ug/L	ND				
2,4-Dinitrotoluene			10	0.45	ug/L	ND				
2,6-Dinitrotoluene			10	0.40	ug/L	ND				
2-Chloronaphthalene			10	0.46	ug/L	ND				
2-Chlorophenol			10	0.53	ug/L	ND				
2-Methylnaphthalene			10	0.60	ug/L	ND				
2-Methylphenol			10	0.40	ug/L	ND				
2-Nitroaniline			50	0.42	ug/L	ND				
2-Nitrophenol			10	0.48	ug/L	ND				
3,3'-Dichlorobenzidine			20	0.40	ug/L	ND				
3-Nitroaniline			50	0.48	ug/L	ND				
4,6-Dinitro-2-methylphen ol			50	2.2	ug/L	ND				
4-Bromophenyl phenyl ether			10	0.45	ug/L	ND				
4-Chloro-3-methylphenol			10	0.45	ug/L	ND				
4-Chloroaniline			10	0.59	ug/L	ND				
4-Chlorophenyl phenyl ether			10	0.35	ug/L	ND				
4-Methylphenol			5.0	0.36	ug/L	ND				
4-Nitroaniline			50	0.25	ug/L	ND				
4-Nitrophenol			50	1.5	ug/L	ND				
Acenaphthene			10	0.41	ug/L	ND				
Acenaphthylene			10	0.38	ug/L	ND				
Acetophenone			10	0.54	ug/L	ND				
Anthracene			10	0.28	ug/L	ND				
Atrazine			10	0.46	ug/L	ND				
Benzaldehyde			50	0.27	ug/L	ND				
Benzo(a)anthracene			10	0.36	ug/L	ND				
Benzo(a)pyrene			10	0.47	ug/L	ND				
Benzo(b)fluoranthene			10	0.34	ug/L	ND				
Benzo(ghi)perylene			10	0.35	ug/L	ND				
Benzo(k)fluoranthene			10	0.73	ug/L	ND				
Biphenyl			10	0.65	ug/L	ND				

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

Work Order: RTI1555

Received: 09/24/10 Reported: 10/15/10 09:06

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			LA	BORATORY	QC DATA				
	Source	Spike					%	% REC	% RPD Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD Limit Qualifie
Semivolatile Organics by	<u>/ GC/MS</u>								
Blank Analyzed: 10/09/10) (Lab Nun	nber:10 18	61-BLK1, E	Batch: 10I1861)					
Bis(2-chloroethoxy)metha ne			10	0.35	ug/L	ND			
Bis(2-chloroethyl)ether			10	0.40	ug/L	ND			
2,2'-Oxybis(1-Chloroprop ane)			10	0.52	ug/L	ND			
Bis(2-ethylhexyl) phthalate			10	1.8	ug/L	ND			
Butyl benzyl phthalate			10	0.42	ug/L	ND			
Caprolactam			10	2.2	ug/L	ND			
Carbazole			5.0	0.30	ug/L	ND			
Chrysene			10	0.33	ug/L	ND			
Dibenzo(a,h)anthracene			10	0.42	ug/L	ND			
Dibenzofuran			10	0.51	ug/L	ND			
Diethyl phthalate			10	0.22	ug/L	ND			
Dimethyl phthalate			10	0.36	ug/L	ND			
Di-n-butyl phthalate			10	0.31	ug/L	ND			
Di-n-octyl phthalate			10	0.47	ug/L	ND			
Fluoranthene			10	0.40	ug/L	ND			
Fluorene			10	0.36	ug/L	ND			
Hexachlorobenzene			10	0.51	ug/L	ND			
Hexachlorobutadiene			10	0.68	ug/L	ND			
Hexachlorocyclopentadie ne			10	0.59	ug/L	ND			
Hexachloroethane			10	0.59	ug/L	ND			
Indeno(1,2,3-cd)pyrene			10	0.47	ug/L	ND			
Isophorone			10	0.43	ug/L	ND			
Naphthalene			10	0.76	ug/L	ND			
Nitrobenzene			10	0.29	ug/L	ND			
N-Nitrosodi-n-propylamin e			10	0.54	ug/L	ND			
N-Nitrosodiphenylamine			10	0.51	ug/L	ND			
Pentachlorophenol			50	2.2	ug/L	ND			
Phenanthrene			10	0.44	ug/L	ND			
Phenol			10	0.39	ug/L	ND			
Pyrene			10	0.34	ug/L	ND			
Surrogate:					ug/L		94	52-132	
2,4,6-Tribromophenol Surrogate: 2-Fluorobiphenyl					ug/L		69	48-120	
Surrogate: 2-Fluorophenol					ug/L		37	20-120	

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

e Work Order: RTI1555

Received: 09/24/10 Reported: 10/15/10 09:06

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			L	ABORATORY	QC DATA						
	Source	Spike					%	% REC	% I	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD L	imit	Qualifiers
Semivolatile Organics by	GC/MS										
Blank Analyzed: 10/09/10) (Lab Num	bor 1011	861-BIK1 I	Batch: 10 1861)							
Surrogate:			OUT-DERT, I		ug/L		67	46-120			
Nitrobenzene-d5					-						
Surrogate: Phenol-d5					ug/L		28	16-120			
Surrogate: p-Terphenyl-d14					ug/L		77	24-136			
LCS Analyzed: 10/09/10	(Lab Numb	er:10 18	61-BS1, Bat	ch: 10l1861)							
1,2,4-Trichlorobenzene		100	10	0.44	ug/L	65.6	66	40-120			
1,2-Dichlorobenzene			10	0.40	ug/L	ND		33-120			
1,3-Dichlorobenzene			10	0.48	ug/L	ND		28-120			
2,4,5-Trichlorophenol			50	0.48	ug/L	ND		65-126			
2,4,6-Trichlorophenol			10	0.61	ug/L	ND		64-120			
2,4-Dichlorophenol			10	0.51	ug/L	ND		64-120			
2,4-Dimethylphenol			10	0.50	ug/L	ND		57-120			
2,4-Dinitrophenol			50	2.2	ug/L	ND		42-153			
2,4-Dinitrotoluene		100	10	0.45	ug/L	93.7	94	59-125			
2,6-Dinitrotoluene			10	0.40	ug/L	ND		74-134			
2-Chloronaphthalene			10	0.46	ug/L	ND		52-120			
2-Chlorophenol		100	10	0.53	ug/L	62.9	63	48-120			
2-Methylnaphthalene			10	0.60	ug/L	ND		48-120			
2-Methylphenol			10	0.40	ug/L	ND		39-120			
2-Nitroaniline			50	0.42	ug/L	ND		67-136			
2-Nitrophenol			10	0.48	ug/L	ND		59-120			
3,3'-Dichlorobenzidine			20	0.40	ug/L	ND		33-140			
3-Nitroaniline			50	0.48	ug/L	ND		69-129			
4,6-Dinitro-2-methylphen ol			50	2.2	ug/L	ND		64-159			
4-Bromophenyl phenyl ether			10	0.45	ug/L	ND		71-126			
4-Chloro-3-methylphenol		100	10	0.45	ug/L	85.5	86	64-120			
4-Chloroaniline			10	0.59	ug/L	ND		60-124			
4-Chlorophenyl phenyl ether			10	0.35	ug/L	ND		71-122			
4-Methylphenol			5.0	0.36	ug/L	ND		36-120			
4-Nitroaniline			50	0.25	ug/L	ND		64-135			
4-Nitrophenol		100	50	1.5	ug/L	29.4	29	16-120			J
Acenaphthene		100	10	0.41	ug/L	81.4	81	60-120			
Acenaphthylene			10	0.38	ug/L	ND		63-120			
Acetophenone			10	0.54	ug/L	ND		45-120			
Anthracene			10	0.28	ug/L	ND		69-131			
Atrazine			10	0.46	ug/L	ND		70-129			
TestAmerica Buffalo - 10				(11220 tol 716 6	01 2600 fox 7	16 601 700	1				

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

Work Order: RTI1555

Received: 09/24/10 Reported: 10/15/10 09:06

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			L/	BORATORY	QC DATA					
	Source	Spike					%	% REC	% RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD Limit	Qualifiers
Semivolatile Organics by	GC/MS									
LCS Analyzed: 10/09/10	(Lab Numb	er:10 186	1-BS1. Bate	ch: 10 1861)						
Benzaldehyde	(50	0.27	ug/L	ND		30-140		
Benzo(a)anthracene			10	0.36	ug/L	ND		73-138		
Benzo(a)pyrene			10	0.47	ug/L	ND		74-126		
Benzo(b)fluoranthene			10	0.34	ug/L	ND		75-133		
Benzo(ghi)perylene			10	0.35	ug/L	ND		66-152		
Benzo(k)fluoranthene			10	0.73	ug/L	ND		75-133		
Biphenyl			10	0.65	ug/L	ND		30-140		
Bis(2-chloroethoxy)metha ne			10	0.35	ug/L	ND		62-120		
Bis(2-chloroethyl)ether			10	0.40	ug/L	ND		51-120		
2,2'-Oxybis(1-Chloroprop ane)			10	0.52	ug/L	ND		47-120		
Bis(2-ethylhexyl) phthalate		100	10	1.8	ug/L	88.3	88	69-136		
Butyl benzyl phthalate			10	0.42	ug/L	0.690		62-149		J
Caprolactam			10	2.2	ug/L	ND		30-140		
Carbazole			5.0	0.30	ug/L	ND		68-133		
Chrysene			10	0.33	ug/L	ND		69-140		
Dibenzo(a,h)anthracene			10	0.42	ug/L	ND		67-144		
Dibenzofuran			10	0.51	ug/L	ND		66-120		
Diethyl phthalate			10	0.22	ug/L	ND		78-128		
Dimethyl phthalate			10	0.36	ug/L	ND		73-127		
Di-n-butyl phthalate			10	0.31	ug/L	0.360		67-132		J
Di-n-octyl phthalate			10	0.47	ug/L	ND		72-145		
Fluoranthene			10	0.40	ug/L	1.13		67-133		J
Fluorene		100	10	0.36	ug/L	89.4	89	66-129		
Hexachlorobenzene			10	0.51	ug/L	ND		38-131		
Hexachlorobutadiene			10	0.68	ug/L	ND		30-120		
Hexachlorocyclopentadie ne			10	0.59	ug/L	ND		23-120		
Hexachloroethane		100	10	0.59	ug/L	56.4	56	25-120		
Indeno(1,2,3-cd)pyrene			10	0.47	ug/L	ND		69-146		
Isophorone			10	0.43	ug/L	ND		64-120		
Naphthalene			10	0.76	ug/L	ND		48-120		
Nitrobenzene			10	0.29	ug/L	ND		52-120		
N-Nitrosodi-n-propylamin e		100	10	0.54	ug/L	73.3	73	56-120		
N-Nitrosodiphenylamine			10	0.51	ug/L	ND		25-125		
Pentachlorophenol		100	50	2.2	ug/L	92.7	93	39-136		
Phenanthrene			10	0.44	ug/L	ND		67-130		

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

Work Order: RTI1555

Received: 09/24/10 Reported: 10/15/10 09:06

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			LA	BORATORY	QC DATA						
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Semivolatile Organics by	GC/MS										
LCS Analyzed: 10/09/10	(I ab Numh	er:10 186 [,]	1-BS1 Bate	b. 1011861)							
Phenol		100	10	0.39	ug/L	29.9	30	17-120			
Pyrene		100	10	0.34	ug/L	91.2	91	58-136			
Surrogate:					ug/L		109	52-132			
2,4,6-Tribromophenol					ug/L		100	02 702			
Surrogate:					ug/L		82	48-120			
2-Fluorobiphenyl Surrogate:					ug/L		40	20-120			
2-Fluorophenol					-						
Surrogate: Nitrobenzene-d5					ug/L		76	46-120			
Surrogate: Phenol-d5					ug/L		30	16-120			
Surrogate:					ug/L		86	24-136			
p-Terphenyl-d14											
LCS Dup Analyzed: 10/09	9/10 (Lab N	lumber:10	11861-BSD	1, Batch: 10I186	51)						
1,2,4-Trichlorobenzene		100	10	0.44	ug/L	68.3	68	40-120	4	30	
1,2-Dichlorobenzene			10	0.40	ug/L	ND		33-120		29	
1,3-Dichlorobenzene			10	0.48	ug/L	ND		28-120		37	
2,4,5-Trichlorophenol			50	0.48	ug/L	ND		65-126		18	
2,4,6-Trichlorophenol			10	0.61	ug/L	ND		64-120		19	
2,4-Dichlorophenol			10	0.51	ug/L	ND		64-120		19	
2,4-Dimethylphenol			10	0.50	ug/L	ND		57-120		42	
2,4-Dinitrophenol			50	2.2	ug/L	ND		42-153		22	
2,4-Dinitrotoluene		100	10	0.45	ug/L	97.8	98	59-125	4	20	
2,6-Dinitrotoluene			10	0.40	ug/L	ND		74-134		15	
2-Chloronaphthalene			10	0.46	ug/L	ND		52-120		21	
2-Chlorophenol		100	10	0.53	ug/L	65.1	65	48-120	3	25	
2-Methylnaphthalene			10	0.60	ug/L	ND		48-120		21	
2-Methylphenol			10	0.40	ug/L	ND		39-120		27	
2-Nitroaniline			50	0.42	ug/L	ND		67-136		15	
2-Nitrophenol			10	0.48	ug/L	ND		59-120		18	
3,3'-Dichlorobenzidine			20	0.40	ug/L	ND		33-140		25	
3-Nitroaniline			50	0.48	ug/L	ND		69-129		19	
4,6-Dinitro-2-methylphen ol			50	2.2	ug/L	ND		64-159		15	
4-Bromophenyl phenyl ether			10	0.45	ug/L	ND		71-126		15	
4-Chloro-3-methylphenol		100	10	0.45	ug/L	86.8	87	64-120	2	27	
4-Chloroaniline			10	0.59	ug/L	ND		60-124		22	
4-Chlorophenyl phenyl ether			10	0.35	ug/L	ND		71-122		16	
4-Methylphenol			5.0	0.36	ug/L	ND		36-120		24	

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218 Work Order: RTI1555

55

Received: 09/24/10 Reported: 10/15/10 09:06

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			LA	BORATORY	QC DATA						
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Semivolatile Organics by	<u>/ GC/MS</u>										
LCS Dup Analyzed: 10/09	9/10 (Lab N	Number:10	11861-BSD	1. Batch: 10 18	61)						
4-Nitroaniline	(50	0.25	ug/L	ND		64-135		24	
4-Nitrophenol		100	50	1.5	ug/L	32.4	32	16-120	9	48	J
Acenaphthene		100	10	0.41	ug/L	81.7	82	60-120	0.4	24	
Acenaphthylene			10	0.38	ug/L	ND		63-120		18	
Acetophenone			10	0.54	ug/L	ND		45-120		20	
Anthracene			10	0.28	ug/L	ND		69-131		15	
Atrazine			10	0.46	ug/L	ND		70-129		20	
Benzaldehyde			50	0.27	ug/L	ND		30-140		20	
Benzo(a)anthracene			10	0.36	ug/L	ND		73-138		15	
Benzo(a)pyrene			10	0.47	ug/L	ND		74-126		15	
Benzo(b)fluoranthene			10	0.34	ug/L	ND		75-133		15	
Benzo(ghi)perylene			10	0.35	ug/L	ND		66-152		15	
Benzo(k)fluoranthene			10	0.73	ug/L	ND		75-133		22	
Biphenyl			10	0.65	ug/L	ND		30-140		20	
Bis(2-chloroethoxy)metha ne			10	0.35	ug/L	ND		62-120		17	
Bis(2-chloroethyl)ether			10	0.40	ug/L	ND		51-120		21	
2,2'-Oxybis(1-Chloroprop ane)			10	0.52	ug/L	ND		47-120		24	
Bis(2-ethylhexyl) phthalate		100	10	1.8	ug/L	94.2	94	69-136	6	15	
Butyl benzyl phthalate			10	0.42	ug/L	0.730		62-149	6	16	J
Caprolactam			10	2.2	ug/L	ND		30-140		20	
Carbazole			5.0	0.30	ug/L	ND		68-133		20	
Chrysene			10	0.33	ug/L	ND		69-140		15	
Dibenzo(a,h)anthracene			10	0.42	ug/L	ND		67-144		15	
Dibenzofuran			10	0.51	ug/L	ND		66-120		15	
Diethyl phthalate			10	0.22	ug/L	ND		78-128		15	
Dimethyl phthalate			10	0.36	ug/L	ND		73-127		15	
Di-n-butyl phthalate			10	0.31	ug/L	0.540		67-132	40	15	J
Di-n-octyl phthalate			10	0.47	ug/L	ND		72-145		16	
Fluoranthene			10	0.40	ug/L	1.18		67-133	4	15	J
Fluorene		100	10	0.36	ug/L	90.9	91	66-129	2	15	
Hexachlorobenzene			10	0.51	ug/L	ND		38-131		15	
Hexachlorobutadiene			10	0.68	ug/L	ND		30-120		44	
Hexachlorocyclopentadie ne			10	0.59	ug/L	ND		23-120		49	
Hexachloroethane		100	10	0.59	ug/L	61.4	61	25-120	8	46	
Indeno(1,2,3-cd)pyrene			10	0.47	ug/L	ND		69-146		15	

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

Work Order: RTI1555

Received: 09/24/10 Reported: 10/15/10 09:06

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			LA	BORATORY	QC DATA						
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Semivolatile Organics by	GC/MS										
LCS Dup Analyzed: 10/09	/10 (Lab N	lumber:10	11861-BSD [,]	I, Batch: 10I180	61)						
Isophorone			10	0.43	ug/L	ND		64-120		17	
Naphthalene			10	0.76	ug/L	ND		48-120		29	
Nitrobenzene			10	0.29	ug/L	ND		52-120		24	
N-Nitrosodi-n-propylamin e		100	10	0.54	ug/L	74.8	75	56-120	2	31	
N-Nitrosodiphenylamine			10	0.51	ug/L	ND		25-125		15	
Pentachlorophenol		100	50	2.2	ug/L	98.7	99	39-136	6	37	
Phenanthrene			10	0.44	ug/L	ND		67-130		15	
Phenol		100	10	0.39	ug/L	30.0	30	17-120	0.3	34	
Pyrene		100	10	0.34	ug/L	94.5	95	58-136	4	19	
Surrogate:					ug/L		115	52-132			
2,4,6-Tribromophenol Surrogate: 2-Fluorobiphenyl					ug/L		82	48-120			
Surrogate:					ug/L		42	20-120			
2-Fluorophenol Surrogate: Nitrobenzene-d5					ug/L		79	46-120			
Surrogate: Phenol-d5					ug/L		30	16-120			
Surrogate: p-Terphenyl-d14					ug/L		92	24-136			

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218 Work Order: RTI1555

Received: 09/24/10 Reported: 10/15/10 09:06

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			L	ABORATORY C	C DATA						
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Organochlorine Pesticide	es by EPA	Method 80	<u>81A</u>								
Blank Analyzed: 09/28/10	(Lab Num	nber:10 186	62-BLK1,	Batch: 10I1862)							
4,4'-DDD			0.050	0.0092	ug/L	ND					
4,4'-DDD [2C]			0.050	0.0092	ug/L	ND					
4,4'-DDE			0.050	0.012	ug/L	ND					
4,4'-DDE [2C]			0.050	0.012	ug/L	ND					
4,4'-DDT			0.050	0.011	ug/L	ND					
4,4'-DDT [2C]			0.050	0.011	ug/L	ND					
Aldrin			0.050	0.0066	ug/L	ND					
Aldrin [2C]			0.050	0.0066	ug/L	ND					
alpha-BHC			0.050	0.0066	ug/L	ND					
alpha-BHC [2C]			0.050	0.0066	ug/L	ND					
alpha-Chlordane			0.050	0.015	ug/L	ND					
alpha-Chlordane [2C]			0.050	0.015	ug/L	ND					
beta-BHC			0.050	0.025	ug/L	ND					
beta-BHC [2C]			0.050	0.025	ug/L	ND					
Chlordane			0.50	0.029	ug/L	ND					
Chlordane [2C]			0.50	0.029	ug/L	ND					
delta-BHC			0.050	0.010	ug/L	ND					
delta-BHC [2C]			0.050	0.010	ug/L	ND					
Dieldrin			0.050	0.0098	ug/L	ND					
Dieldrin [2C]			0.050	0.0098	ug/L	ND					
Endosulfan I			0.050	0.011	ug/L	ND					
Endosulfan I [2C]			0.050	0.011	ug/L	ND					
Endosulfan II			0.050	0.012	ug/L	ND					
Endosulfan II [2C]			0.050	0.012	ug/L	ND					
Endosulfan sulfate			0.050	0.016	ug/L	ND					
Endosulfan sulfate [2C]			0.050	0.016	ug/L	ND					
Endrin			0.050	0.014	ug/L	ND					
Endrin [2C]			0.050	0.014	ug/L	ND					
Endrin aldehyde			0.050	0.016	ug/L	ND					
Endrin aldehyde [2C]			0.050	0.016	ug/L	ND					
Endrin ketone			0.050	0.012	ug/L	ND					
Endrin ketone [2C]			0.050	0.012	ug/L	ND					
gamma-BHC (Lindane)			0.050	0.0060	ug/L	ND					
gamma-BHC (Lindane) [2C]			0.050	0.0060	ug/L	ND					
gamma-Chlordane			0.050	0.011	ug/L	ND					
gamma-Chlordane [2C]			0.050	0.011	ug/L	ND					
Heptachlor			0.050	0.0085	ug/L	ND					

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

Work Order: RTI1555

Received: 09/24/10 Reported: 10/15/10 09:06

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			LA	BORATORY	QC DATA						
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD L	imit	Qualifiers
Organochlorine Pesticide	es by EPA	Method 80	<u>)81A</u>								
Blank Analyzed: 09/28/10) (Lab Num	nber:10 18	62-BLK1. B	atch: 10 1862)							
Heptachlor [2C]	(0.050	0.0085	ug/L	ND					
Heptachlor epoxide			0.050	0.0053	ug/L	ND					
Heptachlor epoxide [2C]			0.050	0.0053	ug/L	ND					
Methoxychlor			0.050	0.014	ug/L	ND					
Methoxychlor [2C]			0.050	0.014	ug/L	ND					
Toxaphene			0.50	0.12	ug/L	ND					
Toxaphene [2C]			0.50	0.12	ug/L	ND					
Surrogate:					ug/L		72	15-139			
Decachlorobiphenyl Surrogate:					ug/L		70	15-139			
Decachlorobiphenyl [2C] Surrogate:					ug/L		75	30-139			
Tetrachloro-m-xylene Surrogate:					ug/L		82	30-139			
Tetrachloro-m-xylene											
LCS Analyzed: 09/28/10	(Lab Numb	er:10 186	2-BS1, Bato	:h: 10l1862)							
4,4'-DDD		0.500	0.050	0.0092	ug/L	0.488	98	25-139			
4,4'-DDD [2C]		0.500	0.050	0.0092	ug/L	0.605	121	25-139			
4,4'-DDE		0.500	0.050	0.012	ug/L	0.439	88	49-127			
4,4'-DDE [2C]		0.500	0.050	0.012	ug/L	0.524	105	49-127			
4,4'-DDT		0.500	0.050	0.011	ug/L	0.501	100	47-130			
4,4'-DDT [2C]		0.500	0.050	0.011	ug/L	0.559	112	47-130			
Aldrin		0.500	0.050	0.0066	ug/L	0.366	73	35-120			
Aldrin [2C]		0.500	0.050	0.0066	ug/L	0.438	88	35-120			
alpha-BHC		0.500	0.050	0.0066	ug/L	0.514	103	39-121			
alpha-BHC [2C]		0.500	0.050	0.0066	ug/L	0.540	108	39-121			
alpha-Chlordane		0.500	0.050	0.015	ug/L	0.434	87	40-160			
alpha-Chlordane [2C]		0.500	0.050	0.015	ug/L	0.528	106	40-160			
beta-BHC		0.500	0.050	0.025	ug/L	0.527	105	39-138			
beta-BHC [2C]		0.500	0.050	0.025	ug/L	0.591	118	39-138			
delta-BHC		0.500	0.050	0.010	ug/L	0.518	104	40-121			
delta-BHC [2C]		0.500	0.050	0.010	ug/L	0.588	118	40-121			
Dieldrin		0.500	0.050	0.0098	ug/L	0.486	97	41-131			
Dieldrin [2C]		0.500	0.050	0.0098	ug/L	0.565	113	41-131			
Endosulfan I		0.500	0.050	0.011	ug/L	0.391	78	41-126			
Endosulfan I [2C]		0.500	0.050	0.011	ug/L	0.462	92	41-126			
Endosulfan II		0.500	0.050	0.012	ug/L	0.432	86	32-134			
Endosulfan II [2C]		0.500	0.050	0.012	ug/L	0.513	103	32-134			
Endosulfan sulfate		0.500	0.050	0.016	ug/L	0.623	125	46-131			
		0.000	0.000	0.010	~9, L	0.020	.20	10 101			

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

Work Order: RTI1555

Received: 09/24/10 Reported: 10/15/10 09:06

Project: Benchmark	- 295 Maryland St. site
Project Number:	TURN-0066

			LA	BORATORY	QC DATA						
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Organochlorine Pesticid	es by EPA	Method 8	<u>081A</u>								
LCS Analyzed: 09/28/10	(I ab Numb	or:10 186	2-BS1 Bate								
Endosulfan sulfate [2C]		0.500	0.050	0.016	ug/L	0.588	118	46-131			
Endrin		0.500	0.050	0.014	ug/L	0.498	100	43-134			
Endrin [2C]		0.500	0.050	0.014	ug/L	0.565	113	43-134			
Endrin aldehyde		0.500	0.050	0.016	ug/L	0.527	105	39-128			
Endrin aldehyde [2C]		0.500	0.050	0.016	ug/L	0.625	125	39-128			
Endrin ketone		0.500	0.050	0.012	ug/L	0.538	108	50-150			
Endrin ketone [2C]		0.500	0.050	0.012	ug/L	0.601	120	50-150			
gamma-BHC (Lindane)		0.500	0.050	0.0060	ug/L	0.521	104	68-120			
gamma-BHC (Lindane) [2C]		0.500	0.050	0.0060	ug/L	0.588	118	68-120			
gamma-Chlordane		0.500	0.050	0.011	ug/L	0.437	87	40-160			
gamma-Chlordane [2C]		0.500	0.050	0.011	ug/L	0.509	102	40-160			
Heptachlor		0.500	0.050	0.0085	ug/L	0.423	85	52-120			
Heptachlor [2C]		0.500	0.050	0.0085	ug/L	0.496	99	52-120			
Heptachlor epoxide		0.500	0.050	0.0053	ug/L	0.479	96	65-120			
Heptachlor epoxide [2C]		0.500	0.050	0.0053	ug/L	0.577	115	65-120			
Methoxychlor		0.500	0.050	0.014	ug/L	0.525	105	52-142			
Methoxychlor [2C]		0.500	0.050	0.014	ug/L	0.836	167	52-142			L1
Surrogate: Decachlorobiphenyl					ug/L		47	15-139			
Surrogate: Decachlorobiphenyl [2C]					ug/L		56	15-139			
Surrogate: Tetrachloro-m-xylene					ug/L		73	30-139			
Surrogate: Tetrachloro-m-xylene					ug/L		76	30-139			

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

Work Order: RTI1555

Received: 09/24/10 Reported: 10/15/10 09:06

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			LA	BORATORY	QC DATA					
	Source	Spike					%	% REC	% RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD Limit	Qualifiers
Polychlorinated Bipheny	is by EPA I	Method 80	82							
Blank Analyzed: 09/28/10) (Lab Num	nber:10 18	63-BLK1, B	atch: 10I1863)						
Aroclor 1016	·		0.50	0.18	ug/L	ND				QSU
Aroclor 1016 [2C]			0.50	0.18	ug/L	ND				QSU
Aroclor 1221			0.50	0.18	ug/L	ND				QSU
Aroclor 1221 [2C]			0.50	0.18	ug/L	ND				QSU
Aroclor 1232			0.50	0.18	ug/L	ND				QSU
Aroclor 1232 [2C]			0.50	0.18	ug/L	ND				QSU
Aroclor 1242			0.50	0.18	ug/L	ND				QSU
Aroclor 1242 [2C]			0.50	0.18	ug/L	ND				QSU
Aroclor 1248			0.50	0.18	ug/L	ND				QSU
Aroclor 1248 [2C]			0.50	0.18	ug/L	ND				QSU
Aroclor 1254			0.50	0.25	ug/L	ND				QSU
Aroclor 1254 [2C]			0.50	0.25	ug/L	ND				QSU
Aroclor 1260			0.50	0.25	ug/L	ND				QSU
Aroclor 1260 [2C]			0.50	0.25	ug/L	ND				QSU
Surrogate:					ug/L		60	12-137		QSU
Decachlorobiphenyl Surrogate:					ug/L		54	12-137		QSU
Decachlorobiphenyl [2C] Surrogate: Tetrachloro-m-xylene					ug/L		62	35-121		QSU
Surrogate: Tetrachloro-m-xylene					ug/L		62	35-121		QSU
LCS Analyzed: 09/28/10	(Lab Numb	er:10 1863	3-BS1, Bato	h: 10 1863)						
Aroclor 1016		5.00	0.50	0.18	ug/L	3.26	65	61-123		QSU
Aroclor 1016 [2C]		5.00	0.50	0.18	ug/L	3.00	60	61-123		QSU
Aroclor 1221			0.50	0.18	ug/L	ND				QSU
Aroclor 1221 [2C]			0.50	0.18	ug/L	ND				QSU
Aroclor 1232			0.50	0.18	ug/L	ND				QSU
Aroclor 1232 [2C]			0.50	0.18	ug/L	ND				QSU
Aroclor 1242			0.50	0.18	ug/L	ND				QSU
Aroclor 1242 [2C]			0.50	0.18	ug/L	ND				QSU
Aroclor 1248			0.50	0.18	ug/L	ND				QSU
Aroclor 1248 [2C]			0.50	0.18	ug/L	ND				QSU
Aroclor 1254			0.50	0.25	ug/L	ND				QSU
Aroclor 1254 [2C]			0.50	0.25	ug/L	ND				QSU
Aroclor 1260		5.00	0.50	0.25	ug/L	4.31	86	52-128		QSU
Aroclor 1260 [2C]		5.00	0.50	0.25	ug/L	4.03	81	52-128		QSU
Surrogate:					ug/L		64	12-137		QSU

Decachlorobiphenyl

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

 Benchmark Environmental & Engineering Science
 Work Order: RTI1555
 Received:
 09/24/10

 2558 Hamburg Turnpike, Suite 300
 Project: Benchmark - 295 Maryland St. site
 Reported:
 10/15/10 09:06

 Lackawanna, NY 14218
 Project: Benchmark - 295 Maryland St. site
 Project: Number:
 TURN-0066

	LABORATORY QC DATA										
	Source	Spike					%	% REC	% RPD	Data	
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD Limit	Qualifiers	
Polychlorinated Bipheny	is by EPA I	Method 80	8 <u>2</u>								
LCS Analyzed: 09/28/10	(Lab Numb	er:10 1863	B-BS1, Ba	tch: 10l1863)							
Surrogate:					ug/L		58	12-137		QSU	
Decachlorobiphenyl [2C]											
Surrogate:					ug/L		53	35-121		QSU	
Tetrachloro-m-xylene											
Surrogate:					ug/L		51	35-121		QSU	
Tetrachloro-m-xylene											

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

Work Order: RTI1555

Received: 09/24/10 Reported: 10/15/10 09:06

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

			LA	BORATORY	QC DATA						
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifiers
Total Metals by SW	846 Series Metr	iods									
Blank Analyzed: 09/	28/10 (Lab Nun	nber:10 19	960-BLK1, Ba	atch: 10 1960)							
Aluminum			0.200	NR	mg/L	ND					
Antimony			0.0200	NR	mg/L	ND					
Arsenic			0.0100	NR	mg/L	ND					
Barium			0.0020	NR	mg/L	ND					
Beryllium			0.0020	NR	mg/L	ND					
Cadmium			0.0010	NR	mg/L	ND					
Calcium			0.5	NR	mg/L	ND					
Chromium			0.0040	NR	mg/L	ND					
Cobalt			0.0040	NR	mg/L	ND					
Copper			0.0100	NR	mg/L	ND					
Lead			0.0050	NR	mg/L	ND					
Magnesium			0.200	NR	mg/L	ND					
Manganese			0.0030	NR	mg/L	ND					
Nickel			0.0100	NR	mg/L	ND					
Selenium			0.0150	NR	mg/L	ND					
Silver			0.0030	NR	mg/L	ND					
Thallium			0.0200	NR	mg/L	ND					
Vanadium			0.0050	NR	mg/L	ND					
Zinc			0.0100	NR	mg/L	ND					
Blank Analyzed: 09/	29/10 (Lab Nun	nber:10 19)60-BLK2, Ba	atch: 10 1960)							
Iron	·		0.050	NR	mg/L	ND					
Potassium			0.500	NR	mg/L	ND					
Sodium			1.0	NR	mg/L	ND					
	0/40 /Lab Numb				0						
LCS Analyzed: 09/28			•	,		0.04	00	00 400			
Aluminum		10.0	0.200	NR	mg/L	8.81	88	80-120			
Antimony		0.200	0.0200	NR	mg/L	0.210	105	80-120			
Arsenic		0.200	0.0100	NR	mg/L	0.204	102	80-120			
Barium		0.200	0.0020	NR	mg/L	0.198	99	80-120			
Beryllium		0.200	0.0020	NR	mg/L	0.185	93	80-120			
Cadmium		0.200	0.0010	NR	mg/L	0.199	99	80-120			
Calcium		10.0	0.5	NR	mg/L	9.48	95	80-120			
Chromium		0.200	0.0040	NR	mg/L	0.206	103	80-120			
Cobalt		0.200	0.0040	NR	mg/L	0.202	101	80-120			
Copper		0.200	0.0100	NR	mg/L	0.200	100	80-120			
Lead		0.200	0.0050	NR	mg/L	0.202	101	80-120			
Magnesium		10.0	0.200	NR	mg/L	10.4	104	80-120			
Manganese		0.200	0.0030	NR	mg/L	0.197	99	80-120			

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300 Lackawanna, NY 14218

Work Order: RTI1555

Received: 09/24/10 Reported: 10/15/10 09:06

Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066

LABORATORY QC DATA									
Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC Limits	% RPD Data RPD Limit Qualifiers
Total Metals by SW 846	Series Meth	nods							
LCS Analyzed: 09/28/10	(Lab Numb	per:10 196	0-BS1, Bato	ch: 10l1960)					
Nickel		0.200	0.0100	NR	mg/L	0.197	99	80-120	
Selenium		0.200	0.0150	NR	mg/L	0.205	103	80-120	
Silver		0.0500	0.0030	NR	mg/L	0.0515	103	80-120	
Thallium		0.200	0.0200	NR	mg/L	0.207	104	80-120	
Vanadium		0.200	0.0050	NR	mg/L	0.200	100	80-120	
Zinc		0.200	0.0100	NR	mg/L	0.200	100	80-120	
LCS Analyzed: 09/29/10	(Lab Numb	per:10 196	0-BS2, Bate	ch: 10 1960)					
Iron		10.0	0.050	NR	mg/L	9.97	100	80-120	
Potassium		10.0	0.500	NR	mg/L	10.1	101	80-120	
Sodium		10.0	1.0	NR	mg/L	10.1	101	80-120	
Total Metals by SW 846	Series Meth	<u>nods</u>							
Blank Analyzed: 09/30/1	0 (Lab Nun	nber:10 22	02-BLK1, E	Batch: 10I2202)					
Mercury			0.0002	NR	mg/L	ND			
LCS Analyzed: 09/30/10	(Lab Numb	per:10 220	2-BS1, Bate	ch: 10l2202)					
Mercury		0.00667	0.0004	NR	mg/L	0.00673	101	80-120	

TestAmerica

Benchmark Environmental & Engineering Science 2558 Hamburg Turnpike, Suite 300	Work Order: RTI1555	Received: 09/24/10 Reported: 10/15/10 09:06
Lackawanna, NY 14218	Project: Benchmark - 295 Maryland St. site Project Number: TURN-0066	
	LABORATORY QC DATA	

Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC Limits	% RPD RPD Limit	Data Qualifiers
General Chemistry Parameters										
Blank Analyzed: 10/01/10 (Lab Number:10I2226-BLK1, Batch: 10I2226)										
Total Cyanide			0.0100	NR	mg/L	ND				
LCS Analyzed: 10/01/10 (Lab Number:10l2226-BS1, Batch: 10l2226)										
Total Cyanide		0.250	0.0100	NR	mg/L	0.279	112	90-110		L

Chain of Custody Record			on Receip er? Yes 🗆					
Chine Benchmark Address 2558 Hanburg Turpike Suite 3. Chine Buffelo Buffelo NY 14218	00 (7/6) site Ci Buy (1	1 <u>11956 -</u> Wither Wither	<u>+ c</u> per (Area Coo 0599/1 thươn	2 be S levFax Number 716) 056 Leb Contact B. E. Sc. Ko		Analysis (/ more space	Z3-10 umber Attach list if e is needed)	Page or
Project Name and Location (State) 295 Mary Lowds St Sitc Contract/Purchase Orben/Quote No. 0222-001-100 Sample I.D. No. and Description (Containers for each sample may be combined on one line) Date		Waybill A	Aatrix		atives I a∃	TLL VOL BZLD TLL SUCE BZTD PLL Pert + PLBS Cymredd TLL Medde 6010		Special Instructions/ Conditions of Receipt
MW-2 MW-2 MW-3 MW-4	-10 10:20 13-35 12:25 11:20	X		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		X Y X		
Possible Hazard Kenthicasion		Samp	e Disposal					sesaed if semples are retained
Akon-Hazard Esammable Skin Imitant Design Turn Around Time Required 24 Hours 48 Hours 7 Days 8 14 Days	 21 Days [] Ow , Date		Time	CC Requirer	hents (Specify)	Archive For Mo	the longer than 1 mo	Date 09-24-70 //:30 Date Time
3. Resinguished By Congretents DISTRIBUTION: WHITE - Returned to Cherit with Report: CANARY -	09-2	<u>y-10</u>	<u>15'/(</u> Time	2		<u>A.V.L.</u> 	<u> </u>	Date Time

.

ANALYTICAL REPORT

Lab Number:	L1318716
Client:	Benchmark & Turnkey Companies
	2558 Hamburg Turnpike
	Suite 300
	Buffalo, NY 14218
ATTN:	Ray Laport
Phone:	(716) 856-0599
Project Name:	295 MARYLAND ST
Project Number:	0222-001-101
Report Date:	10/03/13

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), USDA (Permit #P-330-11-00240), NC (666), TX (T104704476), DOD (L2217), US Army Corps of Engineers.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Lab Number:	L1318716
Report Date:	10/03/13

Project Name:	295 MARYLAND ST
Project Number:	0222-001-101

Alpha Sample ID	Client ID	Sample Location	Collection Date/Time
L1318716-01	TP-4-13 (0-3')	295 MARYLAND ST	09/18/13 16:30
L1318716-02	TP-5-13 (0-3')	295 MARYLAND ST	09/18/13 11:50
L1318716-03	TP-6-13 (7-9')	295 MARYLAND ST	09/18/13 15:30
L1318716-04	TP-7-13 (0-3')	295 MARYLAND ST	09/19/13 08:40
L1318716-05	TP-9-13 (9-12')	295 MARYLAND ST	09/19/13 09:30
L1318716-06	TP-13-13 (8-9')	295 MARYLAND ST	09/19/13 16:00
L1318716-07	TP-22-13 (6-8')	295 MARYLAND ST	09/19/13 14:15
L1318716-08	TP-23-13 (0.5-3')	295 MARYLAND ST	09/19/13 15:30
L1318716-09	TP-24-13 (0.5-4')	295 MARYLAND ST	09/19/13 17:00
L1318716-10	TP-25-13 (0.5-4')	295 MARYLAND ST	09/20/13 11:30

Project Name: 295 MARYLAND ST Project Number: 0222-001-101
 Lab Number:
 L1318716

 Report Date:
 10/03/13

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Performance criteria for CAM and RCP methods allow for some LCS compound failures to occur and still be within method compliance. In these instances, the specific failures are not narrated but are noted in the associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: 295 MARYLAND ST Project Number: 0222-001-101
 Lab Number:
 L1318716

 Report Date:
 10/03/13

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

Any reported concentrations that are below 200 ug/kg may be biased low due to the sample not being collected according to 5035-L/5035A-L low-level specifications.

L1318716-05 has elevated detection limits due to the dilution required by the elevated concentrations of nontarget compounds in the sample.

Semivolatile Organics

L1318716-10 has elevated detection limits due to the dilution required by the matrix interferences encountered during the concentration of the sample and the analytical dilution required by the sample matrix.

Chlorinated Herbicides

The WG638423-2 LCS recovery, associated with L1318716-02, is above the acceptance criteria for mcpa (178%); however, the associated sample is non-detect for this target compound. The results of the original analysis are reported.

The WG638423-2/-3 LCS/LCSD RPDs, associated with L1318716-02, are above the acceptance criteria for mcpa (66%) and dalapon (37%).

The WG639096-2/-3 LCS/LCSD recoveries, associated with L1318716-01 and -07, are above the acceptance criteria for mcpa (208%/250%); however, the associated samples are non-detect for this target compound. The results of the original analysis are reported.

Metals

L1318716-01, -02, and -07 have elevated detection limits for all elements, with the exception of mercury, due to the analytical dilutions required by matrix interferences encountered during analysis. The WG639248-4 MS recoveries for aluminum (221%), calcium (1330%), iron (0%), lead (0%), magnesium

Project Name: 295 MARYLAND ST Project Number: 0222-001-101
 Lab Number:
 L1318716

 Report Date:
 10/03/13

Case Narrative (continued)

(221%), and zinc (0%), performed on L1318716-01, do not apply because the sample concentrations are greater than four times the spike amount added.

The WG639248-4 MS recovery, performed on L1318716-01, is below the acceptance criteria for thallium (63%). A post digestion spike was performed with an unacceptable recovery of 70%. This has been attributed to sample matrix.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Cynthia Mi Chen Cynthia McQueen

Authorized Signature:

Title: Technical Director/Representative

Date: 10/03/13

ORGANICS

VOLATILES

			Serial_No:10031311:13		
Project Name:	295 MARYLAND ST		Lab Number:	L1318716	
Project Number:	0222-001-101		Report Date:	10/03/13	
		SAMPLE RESULTS			
Lab ID:	L1318716-01		Date Collected:	09/18/13 16:30	
Client ID:	TP-4-13 (0-3')		Date Received:	09/20/13	
Sample Location:	295 MARYLAND ST		Field Prep:	Not Specified	
Matrix:	Soil				
Analytical Method:	1,8260C				
Analytical Date:	09/30/13 15:25				
Analyst:	BN				
Percent Solids:	86%				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/kg	12	2.3	1
1,1-Dichloroethane	ND		ug/kg	1.7	0.21	1
Chloroform	ND		ug/kg	1.7	0.43	1
Carbon tetrachloride	ND		ug/kg	1.2	0.24	1
1,2-Dichloropropane	ND		ug/kg	4.1	0.26	1
Dibromochloromethane	ND		ug/kg	1.2	0.36	1
1,1,2-Trichloroethane	ND		ug/kg	1.7	0.35	1
Tetrachloroethene	ND		ug/kg	1.2	0.16	1
Chlorobenzene	ND		ug/kg	1.2	0.40	1
Trichlorofluoromethane	ND		ug/kg	5.8	0.14	1
1,2-Dichloroethane	ND		ug/kg	1.2	0.17	1
1,1,1-Trichloroethane	ND		ug/kg	1.2	0.13	1
Bromodichloromethane	ND		ug/kg	1.2	0.26	1
trans-1,3-Dichloropropene	ND		ug/kg	1.2	0.14	1
cis-1,3-Dichloropropene	ND		ug/kg	1.2	0.15	1
Bromoform	ND		ug/kg	4.6	0.48	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.2	0.20	1
Benzene	ND		ug/kg	1.2	0.14	1
Toluene	ND		ug/kg	1.7	0.13	1
Ethylbenzene	ND		ug/kg	1.2	0.17	1
Chloromethane	ND		ug/kg	5.8	0.91	1
Bromomethane	ND		ug/kg	2.3	0.39	1
Vinyl chloride	ND		ug/kg	2.3	0.16	1
Chloroethane	ND		ug/kg	2.3	0.37	1
1,1-Dichloroethene	ND		ug/kg	1.2	0.24	1
trans-1,2-Dichloroethene	ND		ug/kg	1.7	0.24	1
Trichloroethene	ND		ug/kg	1.2	0.18	1
1,2-Dichlorobenzene	ND		ug/kg	5.8	0.21	1
1,3-Dichlorobenzene	ND		ug/kg	5.8	0.21	1
1,4-Dichlorobenzene	ND		ug/kg	5.8	0.28	1
Methyl tert butyl ether	ND		ug/kg	2.3	0.12	1

		Serial_No:10031311:13					
Project Name:	295 MARYLAND ST				Lab Nu	mber:	L1318716
Project Number:	0222-001-101				Report	Date:	10/03/13
-		SAMP		5	-		
Lab ID: Client ID: Sample Location:	L1318716-01 TP-4-13 (0-3') 295 MARYLAND ST				Date Coll Date Rec Field Pre	eived:	09/18/13 16:30 09/20/13 Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	y GC/MS - Westborough I	_ab					
p/m-Xylene		ND		ug/kg	2.3	0.37	1
o-Xylene		ND		ug/kg	2.3	0.31	1
cis-1,2-Dichloroethene		ND		ug/kg	1.2	0.17	1
Styrene		ND		ug/kg	2.3	0.36	1
Dichlorodifluoromethane		ND		ug/kg	12	0.25	1
Acetone		ND		ug/kg	12	3.6	1
Carbon disulfide		ND		ug/kg	12	2.3	1
2-Butanone		ND		ug/kg	12	0.41	1
4-Methyl-2-pentanone		ND		ug/kg	12	0.28	1
2-Hexanone		ND		ug/kg	12	0.22	1
Bromochloromethane		ND		ug/kg	5.8	0.23	1
1,2-Dibromoethane		ND		ug/kg	4.6	0.21	1
1,2-Dibromo-3-chloropropa	ane	ND		ug/kg	5.8	0.92	1
Isopropylbenzene		ND		ug/kg	1.2	0.19	1
1,2,3-Trichlorobenzene		ND		ug/kg	5.8	0.20	1
1,2,4-Trichlorobenzene		ND		ug/kg	5.8	0.92	1
Methyl Acetate		ND		ug/kg	23	0.89	1
Cyclohexane		ND		ug/kg	23	1.2	1
1,4-Dioxane		ND		ug/kg	120	20.	1
Freon-113		ND		ug/kg	23	0.32	1
Methyl cyclohexane		ND		ug/kg	4.6	1.5	1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	102		70-130	
Toluene-d8	92		70-130	
4-Bromofluorobenzene	93		70-130	
Dibromofluoromethane	99		70-130	

			Serial_No:10031311:13		
Project Name:	295 MARYLAND ST		Lab Number:	L1318716	
Project Number:	0222-001-101		Report Date:	10/03/13	
		SAMPLE RESULTS			
Lab ID:	L1318716-02		Date Collected:	09/18/13 11:50	
Client ID:	TP-5-13 (0-3')		Date Received:	09/20/13	
Sample Location:	295 MARYLAND ST		Field Prep:	Not Specified	
Matrix:	Soil				
Analytical Method:	1,8260C				
Analytical Date:	09/30/13 15:53				
Analyst:	BN				
Percent Solids:	86%				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	oorough Lab					
Methylene chloride	ND		ug/kg	12	2.3	1
1,1-Dichloroethane	ND		ug/kg	1.7	0.21	1
Chloroform	ND		ug/kg	1.7	0.43	1
Carbon tetrachloride	ND		ug/kg	1.2	0.24	1
1,2-Dichloropropane	ND		ug/kg	4.1	0.27	1
Dibromochloromethane	ND		ug/kg	1.2	0.36	1
1,1,2-Trichloroethane	ND		ug/kg	1.7	0.35	1
Tetrachloroethene	ND		ug/kg	1.2	0.16	1
Chlorobenzene	ND		ug/kg	1.2	0.40	1
Trichlorofluoromethane	ND		ug/kg	5.8	0.14	1
1,2-Dichloroethane	ND		ug/kg	1.2	0.17	1
1,1,1-Trichloroethane	ND		ug/kg	1.2	0.13	1
Bromodichloromethane	ND		ug/kg	1.2	0.27	1
rans-1,3-Dichloropropene	ND		ug/kg	1.2	0.14	1
cis-1,3-Dichloropropene	ND		ug/kg	1.2	0.15	1
Bromoform	ND		ug/kg	4.7	0.48	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.2	0.20	1
Benzene	ND		ug/kg	1.2	0.14	1
Toluene	ND		ug/kg	1.7	0.13	1
Ethylbenzene	ND		ug/kg	1.2	0.17	1
Chloromethane	ND		ug/kg	5.8	0.91	1
Bromomethane	ND		ug/kg	2.3	0.39	1
Vinyl chloride	ND		ug/kg	2.3	0.16	1
Chloroethane	ND		ug/kg	2.3	0.37	1
1,1-Dichloroethene	ND		ug/kg	1.2	0.24	1
trans-1,2-Dichloroethene	ND		ug/kg	1.7	0.25	1
Trichloroethene	ND		ug/kg	1.2	0.18	1
1,2-Dichlorobenzene	ND		ug/kg	5.8	0.21	1
1,3-Dichlorobenzene	ND		ug/kg	5.8	0.21	1
1,4-Dichlorobenzene	ND		ug/kg	5.8	0.28	1
Methyl tert butyl ether	ND		ug/kg	2.3	0.12	1

		Serial_No:10031311:13					
Project Name:	295 MARYLAND ST				Lab Nu	mber:	L1318716
Project Number:	0222-001-101				Report	Date:	10/03/13
-		SAMP		S	-		
Lab ID: Client ID: Sample Location:	L1318716-02 TP-5-13 (0-3') 295 MARYLAND ST	-			Date Coll Date Rec Field Pre	eived:	09/18/13 11:50 09/20/13 Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborough	Lab					
p/m-Xylene		ND		ug/kg	2.3	0.38	1
o-Xylene		ND		ug/kg	2.3	0.32	1
cis-1,2-Dichloroethene		ND		ug/kg	1.2	0.17	1
Styrene		ND		ug/kg	2.3	0.36	1
Dichlorodifluoromethane		ND		ug/kg	12	0.25	1
Acetone		ND		ug/kg	12	3.6	1
Carbon disulfide		ND		ug/kg	12	2.3	1
2-Butanone		ND		ug/kg	12	0.41	1
4-Methyl-2-pentanone		ND		ug/kg	12	0.28	1
2-Hexanone		ND		ug/kg	12	0.22	1
Bromochloromethane		ND		ug/kg	5.8	0.23	1
1,2-Dibromoethane		ND		ug/kg	4.7	0.21	1
1,2-Dibromo-3-chloroprop	ane	ND		ug/kg	5.8	0.92	1
Isopropylbenzene		ND		ug/kg	1.2	0.20	1
1,2,3-Trichlorobenzene		ND		ug/kg	5.8	0.20	1
1,2,4-Trichlorobenzene		ND		ug/kg	5.8	0.92	1
Methyl Acetate		ND		ug/kg	23	0.89	1
Cyclohexane		ND		ug/kg	23	1.2	1
1,4-Dioxane		ND		ug/kg	120	20.	1
Freon-113		ND		ug/kg	23	0.32	1
Methyl cyclohexane		ND		ug/kg	4.7	1.5	1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	105		70-130	
Toluene-d8	92		70-130	
4-Bromofluorobenzene	94		70-130	
Dibromofluoromethane	100		70-130	

			Serial_No	:10031311:13
Project Name:	295 MARYLAND ST		Lab Number:	L1318716
Project Number:	0222-001-101		Report Date:	10/03/13
		SAMPLE RESULTS		
Lab ID:	L1318716-03		Date Collected:	09/18/13 15:30
Client ID:	TP-6-13 (7-9')		Date Received:	09/20/13
Sample Location:	295 MARYLAND ST		Field Prep:	Not Specified
Matrix:	Soil			
Analytical Method:	1,8260C			
Analytical Date:	10/02/13 10:48			
Analyst:	MM			
Percent Solids:	86%			
TCLP/SPLP Ext. Date:	10/01/13 13:55			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
TCLP Volatiles by EPA 1311 - Westborough Lab										
Chloroform	ND		ug/l	7.5	1.6	10				
Carbon tetrachloride	ND		ug/l	5.0	1.3	10				
Tetrachloroethene	ND		ug/l	5.0	1.8	10				
Chlorobenzene	ND		ug/l	5.0	1.8	10				
1,2-Dichloroethane	ND		ug/l	5.0	1.3	10				
Benzene	ND		ug/l	5.0	1.6	10				
Vinyl chloride	ND		ug/l	10	1.4	10				
1,1-Dichloroethene	ND		ug/l	5.0	1.4	10				
Trichloroethene	ND		ug/l	5.0	1.7	10				
1,4-Dichlorobenzene	ND		ug/l	25	1.9	10				
2-Butanone	ND		ug/l	50	19.	10				

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	92		70-130	
Toluene-d8	91		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	95		70-130	

			Serial_No:10031311:13		
Project Name:	295 MARYLAND ST		Lab Number:	L1318716	
Project Number:	0222-001-101		Report Date:	10/03/13	
		SAMPLE RESULTS			
Lab ID:	L1318716-03		Date Collected:	09/18/13 15:30	
Client ID:	TP-6-13 (7-9')		Date Received:	09/20/13	
Sample Location:	295 MARYLAND ST		Field Prep:	Not Specified	
Matrix:	Soil				
Analytical Method:	1,8260C				
Analytical Date:	09/30/13 16:21				
Analyst:	BN				
Percent Solids:	86%				

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor				
Volatile Organics by GC/MS - West	Volatile Organics by GC/MS - Westborough Lab								
Methylene chloride	ND	ug/kg	10	2.1	1				
1,1-Dichloroethane	ND	ug/kg	1.6	0.19	1				
Chloroform	ND	ug/kg	1.6	0.39	1				
Carbon tetrachloride	ND	ug/kg	1.0	0.22	1				
1,2-Dichloropropane	ND	ug/kg	3.7	0.24	1				
Dibromochloromethane	ND	ug/kg	1.0	0.32	1				
1,1,2-Trichloroethane	ND	ug/kg	1.6	0.32	1				
Tetrachloroethene	ND	ug/kg	1.0	0.15	1				
Chlorobenzene	ND	ug/kg	1.0	0.37	1				
Trichlorofluoromethane	ND	ug/kg	5.3	0.13	1				
1,2-Dichloroethane	ND	ug/kg	1.0	0.15	1				
1,1,1-Trichloroethane	ND	ug/kg	1.0	0.12	1				
Bromodichloromethane	ND	ug/kg	1.0	0.24	1				
trans-1,3-Dichloropropene	ND	ug/kg	1.0	0.13	1				
cis-1,3-Dichloropropene	ND	ug/kg	1.0	0.13	1				
Bromoform	ND	ug/kg	4.2	0.44	1				
1,1,2,2-Tetrachloroethane	ND	ug/kg	1.0	0.18	1				
Benzene	ND	ug/kg	1.0	0.12	1				
Toluene	ND	ug/kg	1.6	0.12	1				
Ethylbenzene	ND	ug/kg	1.0	0.16	1				
Chloromethane	ND	ug/kg	5.3	0.82	1				
Bromomethane	ND	ug/kg	2.1	0.36	1				
Vinyl chloride	ND	ug/kg	2.1	0.15	1				
Chloroethane	ND	ug/kg	2.1	0.33	1				
1,1-Dichloroethene	ND	ug/kg	1.0	0.22	1				
trans-1,2-Dichloroethene	ND	ug/kg	1.6	0.22	1				
Trichloroethene	ND	ug/kg	1.0	0.16	1				
1,2-Dichlorobenzene	ND	ug/kg	5.3	0.19	1				
1,3-Dichlorobenzene	ND	ug/kg	5.3	0.19	1				
1,4-Dichlorobenzene	ND	ug/kg	5.3	0.26	1				
Methyl tert butyl ether	ND	ug/kg	2.1	0.11	1				

				Serial_No:10031311:13			
Project Name:	295 MARYLAND ST				Lab Nu	mber:	L1318716
Project Number:	0222-001-101				Report	Date:	10/03/13
-		SAMP		5	-		
Lab ID: Client ID: Sample Location:	L1318716-03 TP-6-13 (7-9') 295 MARYLAND ST				Date Coll Date Rec Field Pre	eived:	09/18/13 15:30 09/20/13 Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	y GC/MS - Westborough	Lab					
p/m-Xylene		ND		ug/kg	2.1	0.34	1
o-Xylene		ND		ug/kg	2.1	0.28	1
cis-1,2-Dichloroethene		ND		ug/kg	1.0	0.16	1
Styrene		ND		ug/kg	2.1	0.33	1
Dichlorodifluoromethane		ND		ug/kg	10	0.23	1
Acetone		ND		ug/kg	10	3.3	1
Carbon disulfide		ND		ug/kg	10	2.1	1
2-Butanone		ND		ug/kg	10	0.37	1
4-Methyl-2-pentanone		ND		ug/kg	10	0.26	1
2-Hexanone		ND		ug/kg	10	0.20	1
Bromochloromethane		ND		ug/kg	5.3	0.21	1
1,2-Dibromoethane		ND		ug/kg	4.2	0.19	1
1,2-Dibromo-3-chloroprop	ane	ND		ug/kg	5.3	0.83	1
Isopropylbenzene		ND		ug/kg	1.0	0.18	1
1,2,3-Trichlorobenzene		ND		ug/kg	5.3	0.18	1
1,2,4-Trichlorobenzene		ND		ug/kg	5.3	0.83	1
Methyl Acetate		ND		ug/kg	21	0.80	1
Cyclohexane		ND		ug/kg	21	1.1	1
1,4-Dioxane		ND		ug/kg	100	18.	1
Freon-113		ND		ug/kg	21	0.29	1
Methyl cyclohexane		ND		ug/kg	4.2	1.3	1

	Acceptance						
Surrogate	% Recovery	Qualifier	Criteria				
1,2-Dichloroethane-d4	103		70-130				
Toluene-d8	90		70-130				
4-Bromofluorobenzene	98		70-130				
Dibromofluoromethane	99		70-130				

			Serial_No	:10031311:13
Project Name:	295 MARYLAND ST		Lab Number:	L1318716
Project Number:	0222-001-101		Report Date:	10/03/13
		SAMPLE RESULTS		
Lab ID:	L1318716-05		Date Collected:	09/19/13 09:30
Client ID:	TP-9-13 (9-12')		Date Received:	09/20/13
Sample Location:	295 MARYLAND ST		Field Prep:	Not Specified
Matrix:	Soil			
Analytical Method:	1,8260C			
Analytical Date:	10/02/13 21:57			
Analyst:	MM			
Percent Solids:	86%			
TCLP/SPLP Ext. Date:	10/01/13 13:55			

1.6 1.3 1.8	10 10 10
1.3 1.8	10
1.8	
	10
1.8	10
1.3	10
1.6	10
1.4	10
1.4	10
1.7	10
1.9	10
19.	10
	1.7 1.9

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	116		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	90		70-130	
Dibromofluoromethane	113		70-130	

			Serial_No	:10031311:13
Project Name:	295 MARYLAND ST		Lab Number:	L1318716
Project Number:	0222-001-101		Report Date:	10/03/13
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	L1318716-05 D TP-9-13 (9-12') 295 MARYLAND ST Soil 1,8260C 09/30/13 16:49 BN 86%		Date Collected: Date Received: Field Prep:	09/19/13 09:30 09/20/13 Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	oorough Lab					
Methylene chloride	ND		ug/kg	580	120	50
1,1-Dichloroethane	ND		ug/kg	87	10.	50
Chloroform	ND		ug/kg	87	21.	50
Carbon tetrachloride	ND		ug/kg	58	12.	50
1,2-Dichloropropane	ND		ug/kg	200	13.	50
Dibromochloromethane	ND		ug/kg	58	18.	50
1,1,2-Trichloroethane	ND		ug/kg	87	18.	50
Tetrachloroethene	ND		ug/kg	58	8.1	50
Chlorobenzene	ND		ug/kg	58	20.	50
Trichlorofluoromethane	ND		ug/kg	290	7.0	50
1,2-Dichloroethane	ND		ug/kg	58	8.5	50
1,1,1-Trichloroethane	ND		ug/kg	58	6.4	50
Bromodichloromethane	ND		ug/kg	58	13.	50
trans-1,3-Dichloropropene	ND		ug/kg	58	7.0	50
cis-1,3-Dichloropropene	ND		ug/kg	58	7.4	50
Bromoform	ND		ug/kg	230	24.	50
1,1,2,2-Tetrachloroethane	ND		ug/kg	58	9.9	50
Benzene	ND		ug/kg	58	6.8	50
Toluene	ND		ug/kg	87	6.5	50
Ethylbenzene	62		ug/kg	58	8.5	50
Chloromethane	ND		ug/kg	290	45.	50
Bromomethane	97	J	ug/kg	120	20.	50
Vinyl chloride	ND		ug/kg	120	8.2	50
Chloroethane	ND		ug/kg	120	18.	50
1,1-Dichloroethene	ND		ug/kg	58	12.	50
trans-1,2-Dichloroethene	ND		ug/kg	87	12.	50
Trichloroethene	ND		ug/kg	58	8.8	50
1,2-Dichlorobenzene	ND		ug/kg	290	11.	50
1,3-Dichlorobenzene	ND		ug/kg	290	11.	50
1,4-Dichlorobenzene	ND		ug/kg	290	14.	50
Methyl tert butyl ether	ND		ug/kg	120	6.0	50

				Serial_No:10031311:13			
Project Name:	295 MARYLAND ST				Lab Nu	mber:	L1318716
Project Number:	0222-001-101				Report	Date:	10/03/13
-		SAMP		S	-		
Lab ID: Client ID: Sample Location:	L1318716-05 TP-9-13 (9-12') 295 MARYLAND S	D ST			Date Coll Date Rec Field Prej	eived:	09/19/13 09:30 09/20/13 Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	y GC/MS - Westborough	n Lab					
p/m-Xylene		92	J	ug/kg	120	19.	50
o-Xylene		ND		ug/kg	120	16.	50
cis-1,2-Dichloroethene		ND		ug/kg	58	8.6	50
Styrene		ND		ug/kg	120	18.	50
Dichlorodifluoromethane		ND		ug/kg	580	13.	50
Acetone		ND		ug/kg	580	180	50
Carbon disulfide		ND		ug/kg	580	120	50
2-Butanone		ND		ug/kg	580	20.	50
4-Methyl-2-pentanone		ND		ug/kg	580	14.	50
2-Hexanone		ND		ug/kg	580	11.	50
Bromochloromethane		ND		ug/kg	290	11.	50
1,2-Dibromoethane		ND		ug/kg	230	10.	50
1,2-Dibromo-3-chloroprop	ane	ND		ug/kg	290	46.	50
Isopropylbenzene		46	J	ug/kg	58	9.7	50
1,2,3-Trichlorobenzene		ND		ug/kg	290	9.7	50
1,2,4-Trichlorobenzene		ND		ug/kg	290	46.	50
Methyl Acetate		ND		ug/kg	1200	44.	50
Cyclohexane		ND		ug/kg	1200	62.	50
1,4-Dioxane		ND		ug/kg	5800	1000	50
Freon-113		ND		ug/kg	1200	16.	50
Methyl cyclohexane		ND		ug/kg	230	73.	50

	Acceptance						
Surrogate	% Recovery	Qualifier	Criteria				
1,2-Dichloroethane-d4	102		70-130				
Toluene-d8	92		70-130				
4-Bromofluorobenzene	93		70-130				
Dibromofluoromethane	96		70-130				

			Serial_No	:10031311:13
Project Name:	295 MARYLAND ST		Lab Number:	L1318716
Project Number:	0222-001-101		Report Date:	10/03/13
		SAMPLE RESULTS		
Lab ID:	L1318716-06		Date Collected:	09/19/13 16:00
Client ID:	TP-13-13 (8-9')		Date Received:	09/20/13
Sample Location:	295 MARYLAND ST		Field Prep:	Not Specified
Matrix:	Soil			
Analytical Method:	1,8260C			
Analytical Date:	10/01/13 12:51			
Analyst:	PP			
Percent Solids:	86%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	tborough Lab					
Methylene chloride	ND		ug/kg	12	2.3	1
1,1-Dichloroethane	ND		ug/kg	1.8	0.21	1
Chloroform	ND		ug/kg	1.8	0.43	1
Carbon tetrachloride	ND		ug/kg	1.2	0.24	1
1,2-Dichloropropane	ND		ug/kg	4.1	0.27	1
Dibromochloromethane	ND		ug/kg	1.2	0.36	1
1,1,2-Trichloroethane	ND		ug/kg	1.8	0.36	1
Tetrachloroethene	ND		ug/kg	1.2	0.16	1
Chlorobenzene	ND		ug/kg	1.2	0.41	1
Trichlorofluoromethane	ND		ug/kg	5.8	0.14	1
1,2-Dichloroethane	ND		ug/kg	1.2	0.17	1
1,1,1-Trichloroethane	ND		ug/kg	1.2	0.13	1
Bromodichloromethane	ND		ug/kg	1.2	0.27	1
trans-1,3-Dichloropropene	ND		ug/kg	1.2	0.14	1
cis-1,3-Dichloropropene	ND		ug/kg	1.2	0.15	1
Bromoform	ND		ug/kg	4.7	0.48	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.2	0.20	1
Benzene	ND		ug/kg	1.2	0.14	1
Toluene	ND		ug/kg	1.8	0.13	1
Ethylbenzene	ND		ug/kg	1.2	0.17	1
Chloromethane	ND		ug/kg	5.8	0.91	1
Bromomethane	ND		ug/kg	2.3	0.39	1
Vinyl chloride	ND		ug/kg	2.3	0.16	1
Chloroethane	ND		ug/kg	2.3	0.37	1
1,1-Dichloroethene	ND		ug/kg	1.2	0.24	1
trans-1,2-Dichloroethene	ND		ug/kg	1.8	0.25	1
Trichloroethene	ND		ug/kg	1.2	0.18	1
1,2-Dichlorobenzene	ND		ug/kg	5.8	0.21	1
1,3-Dichlorobenzene	ND		ug/kg	5.8	0.21	1
1,4-Dichlorobenzene	ND		ug/kg	5.8	0.28	1
Methyl tert butyl ether	ND		ug/kg	2.3	0.12	1

		Serial_No:10031311:13					
Project Name:	295 MARYLAND ST				Lab Nu	mber:	L1318716
Project Number:	0222-001-101				Report	Date:	10/03/13
-		SAMP		5	-		
Lab ID: Client ID: Sample Location:	L1318716-06 TP-13-13 (8-9') 295 MARYLAND ST	-			Date Coll Date Rec Field Pre	eived:	09/19/13 16:00 09/20/13 Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	y GC/MS - Westborough	Lab					
p/m-Xylene		ND		ug/kg	2.3	0.38	1
o-Xylene		ND		ug/kg	2.3	0.32	1
cis-1,2-Dichloroethene		ND		ug/kg	1.2	0.17	1
Styrene		ND		ug/kg	2.3	0.36	1
Dichlorodifluoromethane		ND		ug/kg	12	0.25	1
Acetone		32		ug/kg	12	3.6	1
Carbon disulfide		ND		ug/kg	12	2.3	1
2-Butanone		3.0	J	ug/kg	12	0.41	1
4-Methyl-2-pentanone		ND		ug/kg	12	0.28	1
2-Hexanone		ND		ug/kg	12	0.22	1
Bromochloromethane		ND		ug/kg	5.8	0.23	1
1,2-Dibromoethane		ND		ug/kg	4.7	0.21	1
1,2-Dibromo-3-chloroprop	ane	ND		ug/kg	5.8	0.92	1
Isopropylbenzene		1.3		ug/kg	1.2	0.20	1
1,2,3-Trichlorobenzene		ND		ug/kg	5.8	0.20	1
1,2,4-Trichlorobenzene		ND		ug/kg	5.8	0.92	1
Methyl Acetate		ND		ug/kg	23	0.89	1
Cyclohexane		ND		ug/kg	23	1.2	1
1,4-Dioxane		ND		ug/kg	120	20.	1
Freon-113		ND		ug/kg	23	0.32	1
Methyl cyclohexane		ND		ug/kg	4.7	1.5	1

		Acceptance				
Surrogate	% Recovery	Qualifier	Criteria			
1,2-Dichloroethane-d4	99		70-130			
Toluene-d8	93		70-130			
4-Bromofluorobenzene	96		70-130			
Dibromofluoromethane	97		70-130			

			Serial_No	:10031311:13
Project Name:	295 MARYLAND ST		Lab Number:	L1318716
Project Number:	0222-001-101		Report Date:	10/03/13
		SAMPLE RESULTS		
Lab ID:	L1318716-07		Date Collected:	09/19/13 14:15
Client ID:	TP-22-13 (6-8')		Date Received:	09/20/13
Sample Location:	295 MARYLAND ST		Field Prep:	Not Specified
Matrix:	Soil			
Analytical Method:	1,8260C			
Analytical Date:	10/01/13 13:19			
Analyst:	PP			
Percent Solids:	86%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/kg	12	2.3	1
1,1-Dichloroethane	ND		ug/kg	1.8	0.21	1
Chloroform	ND		ug/kg	1.8	0.43	1
Carbon tetrachloride	ND		ug/kg	1.2	0.24	1
1,2-Dichloropropane	ND		ug/kg	4.1	0.27	1
Dibromochloromethane	ND		ug/kg	1.2	0.36	1
1,1,2-Trichloroethane	ND		ug/kg	1.8	0.36	1
Tetrachloroethene	ND		ug/kg	1.2	0.16	1
Chlorobenzene	ND		ug/kg	1.2	0.41	1
Trichlorofluoromethane	ND		ug/kg	5.8	0.14	1
1,2-Dichloroethane	ND		ug/kg	1.2	0.17	1
1,1,1-Trichloroethane	ND		ug/kg	1.2	0.13	1
Bromodichloromethane	ND		ug/kg	1.2	0.27	1
trans-1,3-Dichloropropene	ND		ug/kg	1.2	0.14	1
cis-1,3-Dichloropropene	ND		ug/kg	1.2	0.15	1
Bromoform	ND		ug/kg	4.7	0.48	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.2	0.20	1
Benzene	ND		ug/kg	1.2	0.14	1
Toluene	ND		ug/kg	1.8	0.13	1
Ethylbenzene	ND		ug/kg	1.2	0.17	1
Chloromethane	ND		ug/kg	5.8	0.92	1
Bromomethane	ND		ug/kg	2.3	0.40	1
Vinyl chloride	ND		ug/kg	2.3	0.16	1
Chloroethane	ND		ug/kg	2.3	0.37	1
1,1-Dichloroethene	ND		ug/kg	1.2	0.24	1
trans-1,2-Dichloroethene	ND		ug/kg	1.8	0.25	1
Trichloroethene	ND		ug/kg	1.2	0.18	1
1,2-Dichlorobenzene	ND		ug/kg	5.8	0.21	1
1,3-Dichlorobenzene	ND		ug/kg	5.8	0.21	1
1,4-Dichlorobenzene	ND		ug/kg	5.8	0.28	1
Methyl tert butyl ether	ND		ug/kg	2.3	0.12	1

					Ş	Serial_No:	10031311:13
Project Name:	295 MARYLAND ST				Lab Nu	mber:	L1318716
Project Number:	0222-001-101				Report	Date:	10/03/13
-		SAMP		5			
Lab ID: Client ID: Sample Location:	L1318716-07 Date Collected: TP-22-13 (6-8') Date Received: cation: 295 MARYLAND ST Field Prep:		eived:	09/19/13 14:15 09/20/13 Not Specified			
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborough	Lab					
p/m-Xylene		ND		ug/kg	2.3	0.38	1
o-Xylene		ND		ug/kg	2.3	0.32	1
cis-1,2-Dichloroethene		ND		ug/kg	1.2	0.17	1
Styrene		ND		ug/kg	2.3	0.36	1
Dichlorodifluoromethane		ND		ug/kg	12	0.26	1
Acetone		ND		ug/kg	12	3.6	1
Carbon disulfide		ND		ug/kg	12	2.3	1
2-Butanone		ND		ug/kg	12	0.42	1
4-Methyl-2-pentanone		ND		ug/kg	12	0.28	1
2-Hexanone		ND		ug/kg	12	0.22	1
Bromochloromethane		ND		ug/kg	5.8	0.23	1
1,2-Dibromoethane		ND		ug/kg	4.7	0.21	1
1,2-Dibromo-3-chloroprop	ane	ND		ug/kg	5.8	0.92	1
Isopropylbenzene		ND		ug/kg	1.2	0.20	1
1,2,3-Trichlorobenzene		ND		ug/kg	5.8	0.20	1
1,2,4-Trichlorobenzene		ND		ug/kg	5.8	0.92	1
Methyl Acetate		ND		ug/kg	23	0.89	1
Cyclohexane		ND		ug/kg	23	1.2	1
1,4-Dioxane		ND		ug/kg	120	20.	1
Freon-113		ND		ug/kg	23	0.32	1
Methyl cyclohexane		ND		ug/kg	4.7	1.5	1

		Acceptance					
Surrogate	% Recovery	Qualifier	Criteria				
1,2-Dichloroethane-d4	97		70-130				
Toluene-d8	93		70-130				
4-Bromofluorobenzene	95		70-130				
Dibromofluoromethane	97		70-130				

 Project Name:
 295 MARYLAND ST
 Lab Number:
 L1318716

 Project Number:
 0222-001-101
 Report Date:
 10/03/13

Analytical Method:	1,8260C
Analytical Date:	09/30/13 14:55
Analyst:	BN

arameter	Result	Qualifier	Units	RI	L	MDL	
olatile Organics by GC/MS - W	/estborough La	b for samp	le(s):	01-03,05	Batch:	WG640411-3	
Methylene chloride	ND		ug/kg	10)	2.0	
1,1-Dichloroethane	ND		ug/kg	1.	5	0.18	
Chloroform	ND		ug/kg	1.	5	0.37	
Carbon tetrachloride	ND		ug/kg	1.0	0	0.21	
1,2-Dichloropropane	ND		ug/kg	3.	5	0.23	
Dibromochloromethane	ND		ug/kg	1.0	0	0.31	
1,1,2-Trichloroethane	ND		ug/kg	1.	5	0.30	
Tetrachloroethene	ND		ug/kg	1.0	0	0.14	
Chlorobenzene	ND		ug/kg	1.0	0	0.35	
Trichlorofluoromethane	ND		ug/kg	5.	0	0.12	
1,2-Dichloroethane	ND		ug/kg	1.0	0	0.15	
1,1,1-Trichloroethane	ND		ug/kg	1.0	0	0.11	
Bromodichloromethane	ND		ug/kg	1.0	0	0.23	
trans-1,3-Dichloropropene	ND		ug/kg	1.0	0	0.12	
cis-1,3-Dichloropropene	ND		ug/kg	1.0	0	0.13	
Bromoform	ND		ug/kg	4.	0	0.41	
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.0	0	0.17	
Benzene	ND		ug/kg	1.0	D	0.12	
Toluene	0.28	J	ug/kg	1.	5	0.11	
Ethylbenzene	ND		ug/kg	1.0	0	0.15	
Chloromethane	ND		ug/kg	5.	D	0.78	
Bromomethane	ND		ug/kg	2.0	D	0.34	
Vinyl chloride	ND		ug/kg	2.0	D	0.14	
Chloroethane	ND		ug/kg	2.0	0	0.32	
1,1-Dichloroethene	ND		ug/kg	1.0	0	0.20	
trans-1,2-Dichloroethene	ND		ug/kg	1.	5	0.21	
Trichloroethene	ND		ug/kg	1.0	0	0.15	
1,2-Dichlorobenzene	ND		ug/kg	5.0	D	0.18	
1,3-Dichlorobenzene	ND		ug/kg	5.0	0	0.18	
1,4-Dichlorobenzene	ND		ug/kg	5.	0	0.24	
Methyl tert butyl ether	ND		ug/kg	2.	0	0.10	

Project Name:	295 MARYLAND ST	Lab Number:	L1318716
Project Number:	0222-001-101	Report Date:	10/03/13

Analytical Method:	1,8260C
Analytical Date:	09/30/13 14:55
Analyst:	BN

arameter	Result	Qualifier Units	s RL	. MDL
platile Organics by GC/MS	- Westborough La	b for sample(s):	01-03,05	Batch: WG640411-
p/m-Xylene	ND	ug/k	g 2.0	0.32
o-Xylene	ND	ug/kg	g 2.0	0.27
cis-1,2-Dichloroethene	ND	ug/kợ	g 1.0	0.15
Styrene	ND	ug/kợ	g 2.0	0.31
Dichlorodifluoromethane	ND	ug/kợ	g 10	0.22
Acetone	ND	ug/kợ	g 10	3.1
Carbon disulfide	ND	ug/kợ	g 10	2.0
2-Butanone	ND	ug/kợ	g 10	0.36
4-Methyl-2-pentanone	ND	ug/kợ	g 10	0.24
2-Hexanone	ND	ug/kợ	g 10	0.19
Bromochloromethane	ND	ug/kợ	g 5.0	0.20
1,2-Dibromoethane	ND	ug/kợ	g 4.0	0.18
1,2-Dibromo-3-chloropropane	ND	ug/kợ	g 5.0	0.79
Isopropylbenzene	ND	ug/kợ	g 1.0	0.17
1,2,3-Trichlorobenzene	ND	ug/kợ	g 5.0	0.17
1,2,4-Trichlorobenzene	ND	ug/kợ	g 5.0	0.79
Methyl Acetate	ND	ug/kợ	g 20	0.76
Cyclohexane	ND	ug/kợ	g 20	1.1
1,4-Dioxane	ND	ug/kợ	g 100) 17.
Freon-113	ND	ug/ko	g 20	0.27
Methyl cyclohexane	ND	ug/ko	g 4.0) 1.3

Surrogate	%Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	99	70-130
Toluene-d8	91	70-130
4-Bromofluorobenzene	92	70-130
Dibromofluoromethane	99	70-130

Project Name:	295 MARYLAND ST	Lab Number:	L1318716
Project Number:	0222-001-101	Report Date:	10/03/13

Analytical Method:	1,8260C
Analytical Date:	10/01/13 09:35
Analyst:	PP

arameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS - V	Vestborough La	b for samp	le(s): 06-07	7 Batch:	WG640457-3
Methylene chloride	ND		ug/kg	10	2.0
1,1-Dichloroethane	ND		ug/kg	1.5	0.18
Chloroform	ND		ug/kg	1.5	0.37
Carbon tetrachloride	ND		ug/kg	1.0	0.21
1,2-Dichloropropane	ND		ug/kg	3.5	0.23
Dibromochloromethane	ND		ug/kg	1.0	0.31
1,1,2-Trichloroethane	ND		ug/kg	1.5	0.30
Tetrachloroethene	ND		ug/kg	1.0	0.14
Chlorobenzene	ND		ug/kg	1.0	0.35
Trichlorofluoromethane	ND		ug/kg	5.0	0.12
1,2-Dichloroethane	ND		ug/kg	1.0	0.15
1,1,1-Trichloroethane	ND		ug/kg	1.0	0.11
Bromodichloromethane	ND		ug/kg	1.0	0.23
trans-1,3-Dichloropropene	ND		ug/kg	1.0	0.12
cis-1,3-Dichloropropene	ND		ug/kg	1.0	0.13
Bromoform	ND		ug/kg	4.0	0.41
1,1,2,2-Tetrachloroethane	ND		ug/kg	1.0	0.17
Benzene	ND		ug/kg	1.0	0.12
Toluene	0.31	J	ug/kg	1.5	0.11
Ethylbenzene	ND		ug/kg	1.0	0.15
Chloromethane	ND		ug/kg	5.0	0.78
Bromomethane	ND		ug/kg	2.0	0.34
Vinyl chloride	ND		ug/kg	2.0	0.14
Chloroethane	ND		ug/kg	2.0	0.32
1,1-Dichloroethene	ND		ug/kg	1.0	0.20
trans-1,2-Dichloroethene	ND		ug/kg	1.5	0.21
Trichloroethene	ND		ug/kg	1.0	0.15
1,2-Dichlorobenzene	ND		ug/kg	5.0	0.18
1,3-Dichlorobenzene	ND		ug/kg	5.0	0.18
1,4-Dichlorobenzene	ND		ug/kg	5.0	0.24
Methyl tert butyl ether	ND		ug/kg	2.0	0.10

Project Name:	295 MARYLAND ST	Lab Number:	L1318716
Project Number:	0222-001-101	Report Date:	10/03/13

Analytical Method:	1,8260C
Analytical Date:	10/01/13 09:35
Analyst:	PP

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - V	/estborough Lal	o for sample(s):	06-07 Batch:	WG640457-3
p/m-Xylene	ND	ug/kg	j 2.0	0.32
o-Xylene	ND	ug/kg	j 2.0	0.27
cis-1,2-Dichloroethene	ND	ug/kg	j 1.0	0.15
Styrene	ND	ug/kg	j 2.0	0.31
Dichlorodifluoromethane	ND	ug/kg	j 10	0.22
Acetone	ND	ug/kg	j 10	3.1
Carbon disulfide	ND	ug/kg	j 10	2.0
2-Butanone	ND	ug/kg	j 10	0.36
4-Methyl-2-pentanone	ND	ug/kg	j 10	0.24
2-Hexanone	ND	ug/kg	j 10	0.19
Bromochloromethane	ND	ug/kg	5 .0	0.20
1,2-Dibromoethane	ND	ug/kg	4.0	0.18
1,2-Dibromo-3-chloropropane	ND	ug/kg	5 .0	0.79
Isopropylbenzene	ND	ug/kg	j 1.0	0.17
1,2,3-Trichlorobenzene	ND	ug/kg	j 5.0	0.17
1,2,4-Trichlorobenzene	ND	ug/kg	j 5.0	0.79
Methyl Acetate	ND	ug/kg	j 20	0.76
Cyclohexane	ND	ug/kg	j 20	1.1
1,4-Dioxane	ND	ug/kg	j 100	17.
Freon-113	ND	ug/kg	j 20	0.27
Methyl cyclohexane	ND	ug/kg	4.0	1.3

Surrogate	%Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	99	70-130
Toluene-d8	92	70-130
4-Bromofluorobenzene	95	70-130
Dibromofluoromethane	97	70-130

Project Name:	295 MARYLAND ST			Lab Number:	L1318716
Project Number:	0222-001-101			Report Date:	10/03/13

Analytical Method:	1,8260C
Analytical Date:	10/02/13 09:42
Analyst:	MM
TCLP Extraction Date:	10/01/13 13:55

Extraction Date: 10/01/13 13:55

arameter	Result 0	Qualifier Units	RL	MDL	
CLP Volatiles by EPA 1311	- Westborough Lab	for sample(s): (03 Batch:	WG640659-3	
Chloroform	ND	ug/l	7.5	1.6	
Carbon tetrachloride	ND	ug/l	5.0	1.3	
Tetrachloroethene	ND	ug/l	5.0	1.8	
Chlorobenzene	ND	ug/l	5.0	1.8	
1,2-Dichloroethane	ND	ug/l	5.0	1.3	
Benzene	ND	ug/l	5.0	1.6	
Vinyl chloride	ND	ug/l	10	1.4	
1,1-Dichloroethene	ND	ug/l	5.0	1.4	
Trichloroethene	ND	ug/l	5.0	1.7	
1,4-Dichlorobenzene	ND	ug/l	25	1.9	
2-Butanone	ND	ug/l	50	19.	

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	97		70-130	
Toluene-d8	91		70-130	
4-Bromofluorobenzene	98		70-130	
Dibromofluoromethane	98		70-130	

Project Name:	295 MARYLAND ST	Lab Number:	L1318716
Project Number:	0222-001-101	Report Date:	10/03/13

Analytical Method:	1,8260C
Analytical Date:	10/02/13 17:10
Analyst:	MM
TCLP Extraction Date:	10/01/13 13:55

Extraction Date: 10/01/13 13:55

arameter	Result	Qualifier Units	RL	MDL	
CLP Volatiles by EPA 1311 - W	estborough La	b for sample(s):	05 Batch:	WG640867-3	
Chloroform	ND	ug/l	7.5	1.6	
Carbon tetrachloride	ND	ug/l	5.0	1.3	
Tetrachloroethene	ND	ug/l	5.0	1.8	
Chlorobenzene	ND	ug/l	5.0	1.8	
1,2-Dichloroethane	ND	ug/l	5.0	1.3	
Benzene	ND	ug/l	5.0	1.6	
Vinyl chloride	ND	ug/l	10	1.4	
1,1-Dichloroethene	ND	ug/l	5.0	1.4	
Trichloroethene	ND	ug/l	5.0	1.7	
1,4-Dichlorobenzene	ND	ug/l	25	1.9	
2-Butanone	ND	ug/l	50	19.	

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	115		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	94		70-130	
Dibromofluoromethane	109		70-130	

Project Name: 295 MARYLAND ST

Project Number: 0222-001-101

Parameter	LCS %Recovery	Qual	LCS %Reco		Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-03,05	Batch:	WG640411-	1 WG640411-2			
Methylene chloride	104		10)4		70-130	0		30
1,1-Dichloroethane	106		10)1		70-130	5		30
Chloroform	104		10)2		70-130	2		30
Carbon tetrachloride	105		10)2		70-130	3		30
1,2-Dichloropropane	101		9	9		70-130	2		30
Dibromochloromethane	91		9	3		70-130	2		30
1,1,2-Trichloroethane	96		9	3		70-130	3		30
Tetrachloroethene	98		9	5		70-130	3		30
Chlorobenzene	96		9	2		70-130	4		30
Trichlorofluoromethane	110		9	9		70-139	11		30
1,2-Dichloroethane	103		10)3		70-130	0		30
1,1,1-Trichloroethane	104		10)1		70-130	3		30
Bromodichloromethane	102		10	00		70-130	2		30
trans-1,3-Dichloropropene	89		9	2		70-130	3		30
cis-1,3-Dichloropropene	97		9	9		70-130	2		30
1,1-Dichloropropene	101		9	8		70-130	3		30
Bromoform	88		8	8		70-130	0		30
1,1,2,2-Tetrachloroethane	86		8	6		70-130	0		30
Benzene	102		9	8		70-130	4		30
Toluene	97		9	0		70-130	7		30
Ethylbenzene	96		9	2		70-130	4		30

Project Name: 295 MARYLAND ST

Project Number: 0222-001-101

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-03,05 Batch:	WG640411-1 WG640411-2		
Chloromethane	96		85	52-130	12	30
Bromomethane	103		88	57-147	16	30
Vinyl chloride	100		89	67-130	12	30
Chloroethane	128		109	50-151	16	30
1,1-Dichloroethene	101		96	65-135	5	30
trans-1,2-Dichloroethene	105		101	70-130	4	30
Trichloroethene	104		101	70-130	3	30
1,2-Dichlorobenzene	92		90	70-130	2	30
1,3-Dichlorobenzene	93		91	70-130	2	30
1,4-Dichlorobenzene	93		91	70-130	2	30
Methyl tert butyl ether	99		99	66-130	0	30
p/m-Xylene	98		94	70-130	4	30
o-Xylene	98		94	70-130	4	30
cis-1,2-Dichloroethene	104		101	70-130	3	30
Dibromomethane	100		98	70-130	2	30
Styrene	99		95	70-130	4	30
Dichlorodifluoromethane	85		69	30-146	21	30
Acetone	88		105	54-140	18	30
Carbon disulfide	99		95	59-130	4	30
2-Butanone	92		113	70-130	20	30
Vinyl acetate	93		98	70-130	5	30

Lab Control Sample Analysis

Batch Quality Control

Project Name: 295 MARYLAND ST

Project Number: 0222-001-101

Lab Number: L1318716 Report Date: 10/03/13

LCSD LCS %Recovery RPD %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-03,05 Batch: WG640411-1 WG640411-2 4-Methyl-2-pentanone 100 70-130 30 94 6 1,2,3-Trichloropropane 88 89 68-130 30 1 2-Hexanone 92 70-130 30 85 8 Bromochloromethane 30 107 104 70-130 3 2,2-Dichloropropane 104 104 70-130 0 30 1.2-Dibromoethane 70-130 30 91 93 2 1,3-Dichloropropane 93 90 69-130 3 30 1,1,1,2-Tetrachloroethane 95 93 70-130 2 30 Bromobenzene 70-130 30 94 91 3 n-Butylbenzene 90 70-130 30 92 2 sec-Butylbenzene 89 70-130 30 93 4 tert-Butylbenzene 94 90 70-130 4 30 o-Chlorotoluene 92 87 70-130 30 6 89 70-130 30 p-Chlorotoluene 93 4 1,2-Dibromo-3-chloropropane 68-130 30 76 78 3 Hexachlorobutadiene 94 67-130 30 96 2 Isopropylbenzene 94 89 70-130 5 30 p-Isopropyltoluene 94 91 70-130 3 30 Naphthalene 94 70-130 30 90 4 Acrylonitrile 70-130 30 104 104 0 Isopropyl Ether 106 102 66-130 30 4

Lab Control Sample Analysis

Batch Quality Control

Project Number: 0222-001-101

Lab Number: L1318716 Report Date: 10/03/13

LCSD LCS %Recovery RPD %Recovery Limits RPD Limits %Recovery Parameter Qual Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-03,05 Batch: WG640411-1 WG640411-2 tert-Butyl Alcohol 95 102 70-130 30 7 n-Propylbenzene 93 89 70-130 30 4 1.2.3-Trichlorobenzene 97 70-130 30 94 3 97 30 1,2,4-Trichlorobenzene 93 70-130 4 1,3,5-Trimethylbenzene 90 70-130 30 94 4 1,2,4-Trimethylbenzene 70-130 30 94 90 4 Methyl Acetate 103 105 51-146 2 30 Ethyl Acetate 100 102 70-130 2 30 Acrolein 88 70-130 30 82 7 Cyclohexane 103 59-142 30 91 12 1.4-Dioxane 114 104 65-136 9 30 Freon-113 104 90 50-139 14 30 1,4-Diethylbenzene 92 70-130 2 30 94 4-Ethyltoluene 90 70-130 30 94 4 1,2,4,5-Tetramethylbenzene 95 70-130 30 95 0 Tetrahydrofuran 108 66-130 30 94 14 Ethyl ether 99 99 67-130 0 30 trans-1,4-Dichloro-2-butene 85 90 70-130 6 30 Methyl cyclohexane 70-130 30 99 88 12 Ethyl-Tert-Butyl-Ether 103 70-130 30 101 2 Tertiary-Amyl Methyl Ether 99 98 70-130 30 1

Project Name: 295 MARYLAND ST

Project Number: 0222-001-101

	LCS		LCSD	c.	%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Volatile Organics by GC/MS - Westboroug	h Lab Associated	sample(s):	01-03.05 Batch:	WG640411-	1 WG640411-2				

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	96		102		70-130	
Toluene-d8	93		92		70-130	
4-Bromofluorobenzene	94		94		70-130	
Dibromofluoromethane	98		101		70-130	

Lab Control Sample Analysis

Batch Quality Control

Project Name: 295 MARYLAND ST

Project Number: 0222-001-101

Lab Number: L1318716 Report Date: 10/03/13

LCSD LCS %Recovery RPD %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 06-07 Batch: WG640457-1 WG640457-2 Methylene chloride 102 100 70-130 2 30 1,1-Dichloroethane 103 100 70-130 3 30 Chloroform 104 100 70-130 30 4 Carbon tetrachloride 30 103 99 70-130 4 1,2-Dichloropropane 98 70-130 3 30 101 Dibromochloromethane 70-130 30 92 91 1 2-Chloroethylvinyl ether 92 94 70-130 2 30 1,1,2-Trichloroethane 92 90 70-130 2 30 Tetrachloroethene 70-130 30 97 93 4 Chlorobenzene 92 70-130 30 94 2 108 103 70-139 30 Trichlorofluoromethane 5 1,2-Dichloroethane 103 101 70-130 2 30 1,1,1-Trichloroethane 70-130 30 105 101 4 Bromodichloromethane 70-130 30 102 100 2 trans-1,3-Dichloropropene 70-130 30 88 88 0 cis-1,3-Dichloropropene 96 70-130 30 97 1 1,1-Dichloropropene 100 98 70-130 2 30 Bromoform 88 89 70-130 1 30 1.1.2.2-Tetrachloroethane 70-130 30 84 85 1 70-130 30 Benzene 102 97 5 Toluene 93 89 70-130 30 4

Project Name: 295 MARYLAND ST

Project Number: 0222-001-101

Parameter	LCS %Recovery	Qual		.CSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	06-07	Batch:	WG640457-1	WG640457-2			
Ethylbenzene	94			92		70-130	2		30
Chloromethane	89			83		52-130	7		30
Bromomethane	113			103		57-147	9		30
Vinyl chloride	92			88		67-130	4		30
Chloroethane	129			127		50-151	2		30
1,1-Dichloroethene	99			96		65-135	3		30
trans-1,2-Dichloroethene	103			99		70-130	4		30
Trichloroethene	104			101		70-130	3		30
1,2-Dichlorobenzene	91			90		70-130	1		30
1,3-Dichlorobenzene	92			92		70-130	0		30
1,4-Dichlorobenzene	92			91		70-130	1		30
Methyl tert butyl ether	99			98		66-130	1		30
p/m-Xylene	96			93		70-130	3		30
o-Xylene	96			94		70-130	2		30
cis-1,2-Dichloroethene	104			99		70-130	5		30
Dibromomethane	100			98		70-130	2		30
Styrene	96			94		70-130	2		30
Dichlorodifluoromethane	70			68		30-146	3		30
Acetone	152	Q		165	Q	54-140	8		30
Carbon disulfide	98			93		59-130	5		30
2-Butanone	128			137	Q	70-130	7		30

Project Name: 295 MARYLAND ST

Project Number: 0222-001-101

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	PD nits
Volatile Organics by GC/MS - Westboroug	h Lab Associated	sample(s):	06-07 Batch:	WG640457-1	WG640457-2		
Vinyl acetate	90		91		70-130	1	30
4-Methyl-2-pentanone	96		96		70-130	0	30
1,2,3-Trichloropropane	84		84		68-130	0	30
2-Hexanone	107		111		70-130	4	30
Bromochloromethane	106		103		70-130	3	30
2,2-Dichloropropane	106		102		70-130	4	30
1,2-Dibromoethane	91		92		70-130	1	30
1,3-Dichloropropane	89		89		69-130	0	30
1,1,1,2-Tetrachloroethane	94		92		70-130	2	30
Bromobenzene	93		91		70-130	2	30
n-Butylbenzene	94		91		70-130	3	30
sec-Butylbenzene	92		90		70-130	2	30
tert-Butylbenzene	93		91		70-130	2	30
o-Chlorotoluene	89		90		70-130	1	30
p-Chlorotoluene	91		90		70-130	1	30
1,2-Dibromo-3-chloropropane	79		80		68-130	1	30
Hexachlorobutadiene	96		92		67-130	4	30
Isopropylbenzene	93		91		70-130	2	30
p-Isopropyltoluene	94		92		70-130	2	30
Naphthalene	89		89		70-130	0	30
Acrylonitrile	101		99		70-130	2	30

Project Name: 295 MARYLAND ST

Project Number: 0222-001-101

Parameter	LCS %Recovery	Qual	LCSD %Recovery	' Qual	%Recovery Limits	RPD	RF Qual Lin	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	06-07 Batch:	WG640457-1	WG640457-2			
Isopropyl Ether	103		100		66-130	3	з	0
tert-Butyl Alcohol	90		90		70-130	0	З	0
n-Propylbenzene	92		90		70-130	2	З	0
1,2,3-Trichlorobenzene	95		95		70-130	0	з	0
1,2,4-Trichlorobenzene	97		95		70-130	2	з	0
1,3,5-Trimethylbenzene	93		91		70-130	2	3	0
1,2,4-Trimethylbenzene	93		91		70-130	2	3	0
Methyl Acetate	96		96		51-146	0	з	0
Ethyl Acetate	96		96		70-130	0	3	0
Acrolein	88		86		70-130	2	3	0
Cyclohexane	97		92		59-142	5	3	0
1,4-Dioxane	96		99		65-136	3	З	0
Freon-113	95		92		50-139	3	З	0
1,4-Diethylbenzene	95		92		70-130	3	З	0
4-Ethyltoluene	93		91		70-130	2	З	0
1,2,4,5-Tetramethylbenzene	96		94		70-130	2	З	0
Tetrahydrofuran	99		89		66-130	11	3	0
Ethyl ether	99		96		67-130	3	3	0
trans-1,4-Dichloro-2-butene	82		85		70-130	4	3	0
Methyl cyclohexane	93		90		70-130	3	3	0
Ethyl-Tert-Butyl-Ether	102		99		70-130	3	3	0

Project Name: 295 MARYLAND ST

Lab Number: L1318716

Project Number: 0222-001-101

Report Date: 10/03/13

Parameter	LCS %Recovery	Qual		LCSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough I	ab Associated	sample(s):	06-07	Batch:	WG640457-1	WG640457-2				
Tertiary-Amyl Methyl Ether	98			99		70-130	1		30	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
	07		07		70.400	
1,2-Dichloroethane-d4	97		97		70-130	
Toluene-d8	92		92		70-130	
4-Bromofluorobenzene	97		97		70-130	
Dibromofluoromethane	101		100		70-130	

295 MARYLAND ST **Project Name:**

Project Number: 0222-001-101

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
TCLP Volatiles by EPA 1311 - Westborough I	Lab Associated	sample(s): 0	3 Batch: WG	640659-1	WG640659-2			
Chloroform	92		87		70-130	6	20	
Carbon tetrachloride	96		91		63-132	5	20	
Tetrachloroethene	93		87		70-130	7	20	
Chlorobenzene	97		92		75-130	5	25	
1,2-Dichloroethane	94		93		70-130	1	20	
Benzene	96		91		70-130	5	25	
Vinyl chloride	99		101		55-140	2	20	
1,1-Dichloroethene	92		88		61-145	4	25	
Trichloroethene	96		93		70-130	3	25	
1,4-Dichlorobenzene	96		93		70-130	3	20	
2-Butanone	71		82		63-138	14	20	

	LCS	LCSD		Acceptance		
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	96		98		70-130	
Toluene-d8	91		93		70-130	
4-Bromofluorobenzene	100		101		70-130	
Dibromofluoromethane	97		100		70-130	

Lab Control Sample Analysis Batch Quality Control

295 MARYLAND ST **Project Name:**

Project Number: 0222-001-101

Lab Number: L1318716 Report Date: 10/03/13

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
TCLP Volatiles by EPA 1311 - Westborough	Lab Associated	sample(s): 05	5 Batch: WG	640867-1	WG640867-2			
Chloroform	103		103		70-130	0	20	
Carbon tetrachloride	115		122		63-132	6	20	
Tetrachloroethene	103		102		70-130	1	20	
Chlorobenzene	93		92		75-130	1	25	
1,2-Dichloroethane	111		111		70-130	0	20	
Benzene	94		92		70-130	2	25	
Vinyl chloride	108		107		55-140	1	20	
1,1-Dichloroethene	100		99		61-145	1	25	
Trichloroethene	99		99		70-130	0	25	
1,4-Dichlorobenzene	89		90		70-130	1	20	
2-Butanone	88		94		63-138	7	20	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
	400		400		70.400	
1,2-Dichloroethane-d4	122		120		70-130	
Toluene-d8	99		97		70-130	
4-Bromofluorobenzene	93		93		70-130	
Dibromofluoromethane	111		110		70-130	

SEMIVOLATILES

			Serial_No:	10031311:13
Project Name:	295 MARYLAND ST		Lab Number:	L1318716
Project Number:	0222-001-101		Report Date:	10/03/13
		SAMPLE RESULTS		
Lab ID:	L1318716-01		Date Collected:	09/18/13 16:30
Client ID:	TP-4-13 (0-3')		Date Received:	09/20/13
Sample Location:	295 MARYLAND ST		Field Prep:	Not Specified
Matrix:	Soil		Extraction Method:	EPA 3546
Analytical Method:	1,8270D		Extraction Date:	09/24/13 18:30
Analytical Date:	09/30/13 21:08			
Analyst:	PS			
Percent Solids:	86%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - V	Vestborough Lab					
Acenaphthene	ND		ug/kg	150	39.	1
Hexachlorobenzene	ND		ug/kg	110	35.	1
Bis(2-chloroethyl)ether	ND		ug/kg	170	53.	1
2-Chloronaphthalene	ND		ug/kg	190	62.	1
3,3'-Dichlorobenzidine	ND		ug/kg	190	51.	1
2,4-Dinitrotoluene	ND		ug/kg	190	41.	1
2,6-Dinitrotoluene	ND		ug/kg	190	49.	1
Fluoranthene	640		ug/kg	110	35.	1
4-Chlorophenyl phenyl ether	ND		ug/kg	190	58.	1
4-Bromophenyl phenyl ether	ND		ug/kg	190	44.	1
Bis(2-chloroisopropyl)ether	ND		ug/kg	230	67.	1
Bis(2-chloroethoxy)methane	ND		ug/kg	200	58.	1
Hexachlorobutadiene	ND		ug/kg	190	54.	1
Hexachlorocyclopentadiene	ND		ug/kg	550	120	1
Hexachloroethane	ND		ug/kg	150	35.	1
Isophorone	ND		ug/kg	170	51.	1
Naphthalene	ND		ug/kg	190	63.	1
Nitrobenzene	ND		ug/kg	170	45.	1
NDPA/DPA	ND		ug/kg	150	40.	1
n-Nitrosodi-n-propylamine	ND		ug/kg	190	57.	1
Bis(2-ethylhexyl)phthalate	ND		ug/kg	190	50.	1
Butyl benzyl phthalate	ND		ug/kg	190	37.	1
Di-n-butylphthalate	ND		ug/kg	190	37.	1
Di-n-octylphthalate	ND		ug/kg	190	47.	1
Diethyl phthalate	ND		ug/kg	190	40.	1
Dimethyl phthalate	ND		ug/kg	190	48.	1
Benzo(a)anthracene	320		ug/kg	110	37.	1
Benzo(a)pyrene	300		ug/kg	150	46.	1
Benzo(b)fluoranthene	350		ug/kg	110	38.	1
Benzo(k)fluoranthene	180		ug/kg	110	36.	1
Chrysene	330		ug/kg	110	37.	1

				Serial_No:10031311:13				
Project Name:	295 MARYLAND ST				Lab Nu	mber:	L1318716	
Project Number:	0222-001-101				Report	Date:	10/03/13	
-		SAMF	PLE RESULTS	6	•			
Lab ID: Client ID: Sample Location:	L1318716-01 TP-4-13 (0-3') 295 MARYLAND ST				Date Collected: Date Received: Field Prep:		09/18/13 16:30 09/20/13 Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Westborough Lab								
Acenaphthylene		ND		ug/kg	150	36.	1	
Anthracene		80	J	ug/kg	110	32.	1	
Benzo(ghi)perylene		180		ug/kg	150	40.	1	
Fluorene		ND		ug/kg	190	54.	1	
Phenanthrene		310		ug/kg	110	37.	1	
Dibenzo(a,h)anthracene		50	J	ug/kg	110	37.	1	
Indeno(1,2,3-cd)pyrene		190		ug/kg	150	42.	1	
Pyrene		530		ug/kg	110	37.	1	
Biphenyl		ND		ug/kg	430	63.	1	
4-Chloroaniline		ND		ug/kg	190	50.	1	
2-Nitroaniline		ND		ug/kg	190	54.	1	
3-Nitroaniline		ND		ug/kg	190	52.	1	
4-Nitroaniline		ND		ug/kg	190	51.	1	
Dibenzofuran		ND		ug/kg	190	64.	1	
2-Methylnaphthalene		ND		ug/kg	230	61.	1	
1,2,4,5-Tetrachlorobenzer	ne	ND		ug/kg	190	59.	1	
Acetophenone		ND		ug/kg	190	59.	1	
Carbazole		43	J	ug/kg	190	41.	1	
Benzaldehyde		ND		ug/kg	250	77.	1	
Caprolactam		ND		ug/kg	190	52.	1	
Atrazine		ND		ug/kg	150	43.	1	

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
Nitrobenzene-d5	66		23-120	
2-Fluorobiphenyl	68		30-120	
4-Terphenyl-d14	88		18-120	

			Serial_No:	10031311:13
Project Name:	295 MARYLAND ST		Lab Number:	L1318716
Project Number:	0222-001-101		Report Date:	10/03/13
		SAMPLE RESULTS		
Lab ID:	L1318716-02		Date Collected:	09/18/13 11:50
Client ID:	TP-5-13 (0-3')		Date Received:	09/20/13
Sample Location:	295 MARYLAND ST		Field Prep:	Not Specified
Matrix:	Soil		Extraction Method:	EPA 3546
Analytical Method:	1,8270D		Extraction Date:	09/24/13 18:30
Analytical Date:	09/30/13 21:35			
Analyst:	PS			
Percent Solids:	86%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Westborough Lab							
Acenaphthene	ND		ug/kg	150	39.	1	
Hexachlorobenzene	ND		ug/kg	110	35.	1	
Bis(2-chloroethyl)ether	ND		ug/kg	170	53.	1	
2-Chloronaphthalene	ND		ug/kg	190	62.	1	
3,3'-Dichlorobenzidine	ND		ug/kg	190	51.	1	
2,4-Dinitrotoluene	ND		ug/kg	190	41.	1	
2,6-Dinitrotoluene	ND		ug/kg	190	49.	1	
Fluoranthene	280		ug/kg	110	35.	1	
4-Chlorophenyl phenyl ether	ND		ug/kg	190	58.	1	
4-Bromophenyl phenyl ether	ND		ug/kg	190	44.	1	
Bis(2-chloroisopropyl)ether	ND		ug/kg	230	67.	1	
Bis(2-chloroethoxy)methane	ND		ug/kg	200	58.	1	
Hexachlorobutadiene	ND		ug/kg	190	54.	1	
Hexachlorocyclopentadiene	ND		ug/kg	550	120	1	
Hexachloroethane	ND		ug/kg	150	35.	1	
Isophorone	ND		ug/kg	170	51.	1	
Naphthalene	ND		ug/kg	190	63.	1	
Nitrobenzene	ND		ug/kg	170	45.	1	
NDPA/DPA	ND		ug/kg	150	40.	1	
n-Nitrosodi-n-propylamine	ND		ug/kg	190	57.	1	
Bis(2-ethylhexyl)phthalate	ND		ug/kg	190	50.	1	
Butyl benzyl phthalate	ND		ug/kg	190	37.	1	
Di-n-butylphthalate	ND		ug/kg	190	37.	1	
Di-n-octylphthalate	ND		ug/kg	190	47.	1	
Diethyl phthalate	ND		ug/kg	190	40.	1	
Dimethyl phthalate	ND		ug/kg	190	48.	1	
Benzo(a)anthracene	240		ug/kg	110	37.	1	
Benzo(a)pyrene	260		ug/kg	150	46.	1	
Benzo(b)fluoranthene	270		ug/kg	110	38.	1	
Benzo(k)fluoranthene	130		ug/kg	110	36.	1	
Chrysene	210		ug/kg	110	37.	1	

					Ş	Serial_No:	:10031311:13
Project Name:	295 MARYLAND ST				Lab Nu	mber:	L1318716
Project Number:	0222-001-101				Report	Date:	10/03/13
-		SAMF		S			
Lab ID: Client ID: Sample Location:	L1318716-02 TP-5-13 (0-3') 295 MARYLAND ST				Date Collected: Date Received: Field Prep:		09/18/13 11:50 09/20/13 Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westborough Lab							
Acenaphthylene		ND		ug/kg	150	36.	1
Anthracene		58	J	ug/kg	110	32.	1
Benzo(ghi)perylene		170		ug/kg	150	40.	1
Fluorene		ND		ug/kg	190	54.	1
Phenanthrene		220		ug/kg	110	37.	1
Dibenzo(a,h)anthracene		55	J	ug/kg	110	37.	1
Indeno(1,2,3-cd)pyrene		180		ug/kg	150	42.	1
Pyrene		260		ug/kg	110	37.	1
Biphenyl		ND		ug/kg	430	63.	1
4-Chloroaniline		ND		ug/kg	190	50.	1
2-Nitroaniline		ND		ug/kg	190	54.	1
3-Nitroaniline		ND		ug/kg	190	52.	1
4-Nitroaniline		ND		ug/kg	190	51.	1
Dibenzofuran		ND		ug/kg	190	64.	1
2-Methylnaphthalene		ND		ug/kg	230	61.	1
1,2,4,5-Tetrachlorobenze	ne	ND		ug/kg	190	59.	1
Acetophenone		ND		ug/kg	190	59.	1
Carbazole		ND		ug/kg	190	41.	1
Benzaldehyde		ND		ug/kg	250	77.	1
Caprolactam		ND		ug/kg	190	52.	1
Atrazine		ND		ug/kg	150	43.	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	73		23-120	
2-Fluorobiphenyl	76		30-120	
4-Terphenyl-d14	87		18-120	

			Serial_No:	10031311:13
Project Name:	295 MARYLAND ST		Lab Number:	L1318716
Project Number:	0222-001-101		Report Date:	10/03/13
		SAMPLE RESULTS		
Lab ID:	L1318716-03		Date Collected:	09/18/13 15:30
Client ID:	TP-6-13 (7-9')		Date Received:	09/20/13
Sample Location:	295 MARYLAND ST		Field Prep:	Not Specified
Matrix:	Soil		Extraction Method:	EPA 3546
Analytical Method:	1,8270D		Extraction Date:	09/24/13 18:30
Analytical Date:	09/30/13 22:03			
Analyst:	PS			
Percent Solids:	86%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Acenaphthene	ND		ug/kg	150	39.	1		
Hexachlorobenzene	ND		ug/kg	110	35.	1		
Bis(2-chloroethyl)ether	ND		ug/kg	170	53.	1		
2-Chloronaphthalene	ND		ug/kg	190	62.	1		
3,3'-Dichlorobenzidine	ND		ug/kg	190	50.	1		
2,4-Dinitrotoluene	ND		ug/kg	190	41.	1		
2,6-Dinitrotoluene	ND		ug/kg	190	49.	1		
Fluoranthene	37	J	ug/kg	110	35.	1		
4-Chlorophenyl phenyl ether	ND		ug/kg	190	58.	1		
4-Bromophenyl phenyl ether	ND		ug/kg	190	44.	1		
Bis(2-chloroisopropyl)ether	ND		ug/kg	230	67.	1		
Bis(2-chloroethoxy)methane	ND		ug/kg	200	57.	1		
Hexachlorobutadiene	ND		ug/kg	190	54.	1		
Hexachlorocyclopentadiene	ND		ug/kg	540	120	1		
Hexachloroethane	ND		ug/kg	150	34.	1		
Isophorone	ND		ug/kg	170	50.	1		
Naphthalene	ND		ug/kg	190	63.	1		
Nitrobenzene	ND		ug/kg	170	45.	1		
NDPA/DPA	ND		ug/kg	150	40.	1		
n-Nitrosodi-n-propylamine	ND		ug/kg	190	56.	1		
Bis(2-ethylhexyl)phthalate	ND		ug/kg	190	50.	1		
Butyl benzyl phthalate	ND		ug/kg	190	37.	1		
Di-n-butylphthalate	ND		ug/kg	190	37.	1		
Di-n-octylphthalate	ND		ug/kg	190	47.	1		
Diethyl phthalate	ND		ug/kg	190	40.	1		
Dimethyl phthalate	ND		ug/kg	190	48.	1		
Benzo(a)anthracene	ND		ug/kg	110	37.	1		
Benzo(a)pyrene	ND		ug/kg	150	46.	1		
Benzo(b)fluoranthene	ND		ug/kg	110	38.	1		
Benzo(k)fluoranthene	ND		ug/kg	110	36.	1		
Chrysene	ND		ug/kg	110	37.	1		

Project Number:0222-001-101Report Date:10/03/13Lab ID:L1318716-03Date Collected:09/18/13 15:30Client ID:TP-6-13 (7-9')Date Received:09/20/13Sample Location:295 MARYLAND STField Prep:Not SpecifiedParameterResultQualifierUnitsRLMDLDilution FactorSemivolatile Organics by GC/MS - Westborough LabVug/kg15036.1AcenaphthyleneNDug/kg11032.1AnthraceneNDug/kg15039.1FluoreneNDug/kg10037.1PhenanthreneNDug/kg11037.1Diberzo(a,h)anthraceneNDug/kg11037.1			Serial_No:10031311:13					
SAMPLE RESULTS Date Collected: 09/18/13 15:30 Date Received: 09/20/13 Field Prep: Lab ID: TP-6-13 (7-9) Sample Location: 295 MARYLAND ST Date Received: 09/20/13 Field Prep: Not Specified Parameter Result Qualifier Units RL MD Ditutor Factor Parameter Result Qualifier Units RL MD Ditutor Factor Acenaphthylene ND ug/kg 150 36. 1 Anthracene ND ug/kg 150 36. 1 Pleoanthrene ND ug/kg 150 36. 1 Dibenzo(ah)perylene ND ug/kg 110 37. 1 Pleoanthrene ND ug/kg 110 37. 1 Dibenzo(ah)anthracene ND ug/kg 110 37. 1 Pyrene ND ug/kg 130 33. 1 Actoraniline ND ug/kg 130 31. 1 Pyrene ND ug/kg 190 54. 1 ND ug/kg	Project Name:	295 MARYLAND ST				Lab Nu	mber:	L1318716
SAMPLE RESULTS Date Collected: 09/18/13 15:30 Date Received: 09/20/13 Field Prep: Lab ID: TP-6-13 (7-9) Sample Location: 295 MARYLAND ST Date Received: 09/20/13 Field Prep: Not Specified Parameter Result Qualifier Units RL MD Ditutor Factor Parameter Result Qualifier Units RL MD Ditutor Factor Acenaphthylene ND ug/kg 150 36. 1 Anthracene ND ug/kg 150 36. 1 Pleoanthrene ND ug/kg 150 36. 1 Dibenzo(ah)perylene ND ug/kg 110 37. 1 Pleoanthrene ND ug/kg 110 37. 1 Dibenzo(ah)anthracene ND ug/kg 110 37. 1 Pyrene ND ug/kg 130 33. 1 Actoraniline ND ug/kg 130 31. 1 Pyrene ND ug/kg 190 54. 1 ND ug/kg	Project Number:	0222-001-101				Report	Date:	10/03/13
Client ID: Sample Location:TP-6-13 (7-9') 295 MARYLAND STDate Receiver: Field Prey:09/20/13 Not SpecifiedParameterResultQualifierUnitsRLMDLDilution FactorSemivolatile Organics by GC/MS - WestboroughNDug/kg15036.1AnthraceneNDug/kg15039.1Enco(phi)peryleneNDug/kg10037.1FluoreneNDug/kg11037.1Dibenzo(phi)peryleneNDug/kg11037.1Dibenzo(phi)peryleneNDug/kg11037.1PrenamthreneNDug/kg11037.1Dibenzo(phi)peryleneNDug/kg13042.1PreneNDug/kg13050.1Bipheny1NDug/kg13050.1ActhoreanilineNDug/kg19054.1AltroanilineNDug/kg19054.1AltroanilineNDug/kg19054.1AltroanilineNDug/kg19054.1AltroanilineNDug/kg19054.1AltroanilineNDug/kg19054.1AltroanilineNDug/kg19054.1AltroanilineNDug/kg19054.1AltroanilineNDug/kg19054.1Altroa	-		SAMP		S			
Semivolatile Organics by GC/MS - Westborough Lab Acenaphtylene ND ug/kg 150 36. 1 Anthracene ND ug/kg 110 32. 1 Benzoldhi)perylene ND ug/kg 150 39. 1 Fluorene ND ug/kg 190 54. 1 Dibenzolahjanthracene ND ug/kg 110 37. 1 Dibenzolahjanthracene ND ug/kg 150 42. 1 Pyrene ND ug/kg 110 37. 1 Biphenyl ND ug/kg 190 54. 1 -Yrene ND ug/kg 190 50. 1 -Nitroaniline ND ug/kg 190 51. 1 -Nitroaniline ND ug/kg 190 51. 1 -Nitroaniline ND ug/kg 190 51. 1 -ND ug/kg 190 53. 1		TP-6-13 (7-9')				Date Rec	eived:	09/20/13
Acenaphtylene ND ug/kg 150 36. 1 Anthracene ND ug/kg 110 32. 1 Benzolghi)perylene ND ug/kg 150 39. 1 Fluorene ND ug/kg 190 54. 1 Phenanthrene ND ug/kg 110 37. 1 Dibenzo(a,h)anthracene ND ug/kg 110 37. 1 Pyrene ND ug/kg 110 37. 1 Biphenyl ND ug/kg 110 37. 1 Siphenyl ND ug/kg 190 50. 1 4-Chlorcaniline ND ug/kg 190 50. 1 2-Nitroaniline ND ug/kg 190 51. 1 2-Methylnaphthalene ND ug/kg 190 53. 1 1.2.4.5-Tetrachlorobenzene ND ug/kg 190 59. 1 Actophenone	Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Anthracene ND ug/kg 110 32. 1 Benzo(ghi)perylene ND ug/kg 150 39. 1 Fluorene ND ug/kg 190 54. 1 Phenanthrene ND ug/kg 110 37. 1 Dibenzo(a,h)anthracene ND ug/kg 110 37. 1 Indeno(1,2,3-cd)pyrene ND ug/kg 110 37. 1 Pyrene ND ug/kg 110 37. 1 Biphenyl ND ug/kg 110 37. 1 4-Chioroaniline ND ug/kg 190 50. 1 2-Nitroaniline ND ug/kg 190 54. 1 3-Nitroaniline ND ug/kg 190 51. 1 1/2.4,5-Tetrachlorobenzene ND ug/kg 190 53. 1 1.2.4,5-Tetrachlorobenzene ND ug/kg 190 59. 1	Semivolatile Organ	ics by GC/MS - Westborou	ugh Lab					
Benzo(ghi)perylene ND ug/kg 150 39. 1 Fluorene ND ug/kg 190 54. 1 Phenanthrene ND ug/kg 110 37. 1 Dibenzo(a,h)anthracene ND ug/kg 110 37. 1 Indeno(1,2,3-od)pyrene ND ug/kg 150 42. 1 Pyrene ND ug/kg 110 37. 1 Biphenyl ND ug/kg 430 63. 1 4-Chioraniline ND ug/kg 190 50. 1 2-Nitroaniline ND ug/kg 190 51. 1 3-Nitroaniline ND ug/kg 190 51. 1 2-Methylnaphthalene ND ug/kg 190 63. 1 1.2,4,5-Tetrachlorobenzene ND ug/kg 190 59. 1 Acetophenone ND ug/kg 190 59. 1	Acenaphthylene		ND		ug/kg	150	36.	1
Fluorene ND ug/kg 190 54. 1 Phenanthrene ND ug/kg 110 37. 1 Dibenzo(a,h)anthracene ND ug/kg 110 37. 1 Indeno(1,2,3-cd)pyrene ND ug/kg 150 42. 1 Pyrene ND ug/kg 110 37. 1 Biphenyl ND ug/kg 430 63. 1 4-Choroaniline ND ug/kg 190 50. 1 2-Nitroaniline ND ug/kg 190 54. 1 3-Nitroaniline ND ug/kg 190 51. 1 2-Nitroaniline ND ug/kg 190 51. 1 3-Nitroaniline ND ug/kg 190 53. 1 2-Methylnaphthalene ND ug/kg 190 59. 1 1,2,4,5-Tetrachlorobenzene ND ug/kg 190 59. 1 <	Anthracene		ND		ug/kg	110	32.	1
Phenanthrene ND ug/kg 110 37. 1 Dibenzo(a,h)anthracene ND ug/kg 110 37. 1 Indeno(1,2,3-cd)pyrene ND ug/kg 150 42. 1 Pyrene ND ug/kg 110 37. 1 Biphenyl ND ug/kg 100 37. 1 4-Chloroaniline ND ug/kg 190 50. 1 2-Nitroaniline ND ug/kg 190 54. 1 3-Nitroaniline ND ug/kg 190 51. 1 4-Nitroaniline ND ug/kg 190 51. 1 2-Methylnaphthalene ND ug/kg 190 63. 1 2-Methylnaphthalene ND ug/kg 190 59. 1 1,2,4,5-Tetrachlorobenzene ND ug/kg 190 59. 1 Carbazole ND ug/kg 190 59. 1	Benzo(ghi)perylene		ND		ug/kg	150	39.	1
Dibenzo(a,h)anthracene ND ug/kg 110 37. 1 Indeno(1,2,3-cd)pyrene ND ug/kg 150 42. 1 Pyrene ND ug/kg 110 37. 1 Biphenyl ND ug/kg 430 63. 1 4-Chloroaniline ND ug/kg 190 50. 1 2-Nitroaniline ND ug/kg 190 54. 1 3-Nitroaniline ND ug/kg 190 52. 1 4-Nitroaniline ND ug/kg 190 51. 1 2-Nitroaniline ND ug/kg 190 53. 1 2-Methylnaphthalene ND ug/kg 190 63. 1 1,2,4,5-Tetrachlorobenzene ND ug/kg 190 59. 1 Acetophenone ND ug/kg 190 59. 1 Carbazole ND ug/kg 190 51. 1	Fluorene		ND		ug/kg	190	54.	1
Indeno(1,2,3-cd)pyrene ND ug/kg 150 42. 1 Pyrene ND ug/kg 110 37. 1 Biphenyl ND ug/kg 430 63. 1 4-Chloroaniline ND ug/kg 190 50. 1 2-Nitroaniline ND ug/kg 190 54. 1 3-Nitroaniline ND ug/kg 190 54. 1 3-Nitroaniline ND ug/kg 190 52. 1 4-Nitroaniline ND ug/kg 190 53. 1 2-Methylnaphthalene ND ug/kg 190 63. 1 1,2,4,5-Tetrachlorobenzene ND ug/kg 190 59. 1 Acetophenone ND ug/kg 190 59. 1 Garbazole ND ug/kg 190 59. 1 Garbazole ND ug/kg 190 59. 1 Garbazol	Phenanthrene		ND		ug/kg	110	37.	1
Pyrene ND ug/kg 110 37. 1 Biphenyl ND ug/kg 430 63. 1 4-Chloroaniline ND ug/kg 190 50. 1 2-Nitroaniline ND ug/kg 190 54. 1 3-Nitroaniline ND ug/kg 190 52. 1 4-Nitroaniline ND ug/kg 190 52. 1 4-Nitroaniline ND ug/kg 190 51. 1 2-Methylnaphthalene ND ug/kg 190 63. 1 1,2,4,5-Tetrachlorobenzene ND ug/kg 190 59. 1 1,2,4,5-Tetrachlorobenzene ND ug/kg 190 59. 1 Carbazole ND ug/kg 190 59. 1 Garbazole ND ug/kg 190 59. 1 Carbazole ND ug/kg 190 51. 1 Benzald	Dibenzo(a,h)anthracene		ND		ug/kg	110	37.	1
Biphenyl ND ug/kg 430 63. 1 4-Chloroaniline ND ug/kg 190 50. 1 2-Nitroaniline ND ug/kg 190 54. 1 3-Nitroaniline ND ug/kg 190 52. 1 4-Nitroaniline ND ug/kg 190 51. 1 4-Nitroaniline ND ug/kg 190 51. 1 1 Dibenzofuran ND ug/kg 190 63. 1 2-Methylnaphthalene ND ug/kg 190 59. 1 1,2,4,5-Tetrachlorobenzene ND ug/kg 190 59. 1 Acetophenone ND ug/kg 190 59. 1 Garbazole ND ug/kg 190 59. 1 Benzaldehyde ND ug/kg 190 41. 1 Carbazole ND ug/kg 190 52. 1	Indeno(1,2,3-cd)pyrene		ND		ug/kg	150	42.	1
4-Chloroaniline ND ug/kg 190 50. 1 2-Nitroaniline ND ug/kg 190 54. 1 3-Nitroaniline ND ug/kg 190 52. 1 4-Nitroaniline ND ug/kg 190 52. 1 4-Nitroaniline ND ug/kg 190 51. 1 Dibenzofuran ND ug/kg 190 63. 1 2-Methylnaphthalene ND ug/kg 190 63. 1 1,2,4,5-Tetrachlorobenzene ND ug/kg 190 59. 1 Acetophenone ND ug/kg 190 59. 1 Carbazole ND ug/kg 190 59. 1 Garbazole ND ug/kg 190 41. 1 Benzaldehyde ND ug/kg 190 52. 1	Pyrene		ND		ug/kg	110	37.	1
2-Nitroaniline ND ug/kg 190 54. 1 3-Nitroaniline ND ug/kg 190 52. 1 4-Nitroaniline ND ug/kg 190 51. 1 4-Nitroaniline ND ug/kg 190 51. 1 Dibenzofuran ND ug/kg 190 63. 1 2-Methylnaphthalene ND ug/kg 190 59. 1 1,2,4,5-Tetrachlorobenzene ND ug/kg 190 59. 1 Acetophenone ND ug/kg 190 59. 1 Carbazole ND ug/kg 190 41. 1 Benzaldehyde ND ug/kg 190 41. 1	Biphenyl		ND		ug/kg	430	63.	1
3-Nitroaniline ND ug/kg 190 52. 1 4-Nitroaniline ND ug/kg 190 51. 1 Dibenzofuran ND ug/kg 190 63. 1 2-Methylnaphthalene ND ug/kg 230 61. 1 1,2,4,5-Tetrachlorobenzene ND ug/kg 190 59. 1 Acetophenone ND ug/kg 190 59. 1 Carbazole ND ug/kg 190 59. 1 Benzaldehyde ND ug/kg 190 59. 1 Carpolactam ND ug/kg 190 59. 1	4-Chloroaniline		ND		ug/kg	190	50.	1
4-NitroanilineNDug/kg19051.1DibenzofuranNDug/kg19063.12-MethylnaphthaleneNDug/kg23061.11,2,4,5-TetrachlorobenzeneNDug/kg19059.1AcetophenoneNDug/kg19059.1CarbazoleNDug/kg19059.1BenzaldehydeNDug/kg19051.1CarolactamNDug/kg19052.1	2-Nitroaniline		ND		ug/kg	190	54.	1
Dibenzofuran ND ug/kg 190 63. 1 2-Methylnaphthalene ND ug/kg 230 61. 1 1,2,4,5-Tetrachlorobenzene ND ug/kg 190 59. 1 Acetophenone ND ug/kg 190 59. 1 Carbazole ND ug/kg 190 41. 1 Benzaldehyde ND ug/kg 190 52. 1	3-Nitroaniline		ND		ug/kg	190	52.	1
2-MethylnaphthaleneNDug/kg23061.11,2,4,5-TetrachlorobenzeneNDug/kg19059.1AcetophenoneNDug/kg19059.1CarbazoleNDug/kg19041.1BenzaldehydeNDug/kg25077.1CarpolactamNDug/kg19052.1	4-Nitroaniline		ND		ug/kg	190	51.	1
1,2,4,5-TetrachlorobenzeneNDug/kg19059.1AcetophenoneNDug/kg19059.1CarbazoleNDug/kg19041.1BenzaldehydeNDug/kg25077.1CarbolactamNDug/kg19052.1	Dibenzofuran		ND		ug/kg	190	63.	1
AcetophenoneNDug/kg19059.1CarbazoleNDug/kg19041.1BenzaldehydeNDug/kg25077.1CaprolactamNDug/kg19052.1	2-Methylnaphthalene		ND		ug/kg	230	61.	1
ND ug/kg 190 41. 1 Benzaldehyde ND ug/kg 250 77. 1 Caprolactam ND ug/kg 190 52. 1	1,2,4,5-Tetrachlorobenze	ne	ND		ug/kg	190	59.	1
BenzaldehydeNDug/kg25077.1CaprolactamNDug/kg19052.1	Acetophenone		ND		ug/kg	190	59.	1
Caprolactam ND ug/kg 190 52. 1	Carbazole		ND		ug/kg	190	41.	1
	Benzaldehyde		ND		ug/kg	250	77.	1
Atrazine ND ug/kg 150 43. 1	Caprolactam		ND		ug/kg	190	52.	1
	Atrazine		ND		ug/kg	150	43.	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	74		23-120	
2-Fluorobiphenyl	77		30-120	
4-Terphenyl-d14	85		18-120	

			Serial_No:	10031311:13
Project Name:	295 MARYLAND ST		Lab Number:	L1318716
Project Number:	0222-001-101		Report Date:	10/03/13
		SAMPLE RESULTS		
Lab ID:	L1318716-04		Date Collected:	09/19/13 08:40
Client ID:	TP-7-13 (0-3')		Date Received:	09/20/13
Sample Location:	295 MARYLAND ST		Field Prep:	Not Specified
Matrix:	Soil		Extraction Method:	EPA 3546
Analytical Method:	1,8270D		Extraction Date:	09/24/13 18:30
Analytical Date:	09/30/13 22:31			
Analyst:	PS			
Percent Solids:	87%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Westborough Lab							
Benzo(a)anthracene	220		ug/kg	110	37.	1	
Benzo(a)pyrene	200		ug/kg	150	46.	1	
Benzo(b)fluoranthene	250		ug/kg	110	38.	1	
Benzo(k)fluoranthene	120		ug/kg	110	36.	1	
Chrysene	240		ug/kg	110	37.	1	
Anthracene	62	J	ug/kg	110	31.	1	
Dibenzo(a,h)anthracene	ND		ug/kg	110	36.	1	
Indeno(1,2,3-cd)pyrene	130	J	ug/kg	150	42.	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	58		23-120	
2-Fluorobiphenyl	71		30-120	
4-Terphenyl-d14	81		18-120	

			Serial_No:	10031311:13
Project Name:	295 MARYLAND ST		Lab Number:	L1318716
Project Number:	0222-001-101		Report Date:	10/03/13
		SAMPLE RESULTS		
Lab ID:	L1318716-05		Date Collected:	09/19/13 09:30
Client ID:	TP-9-13 (9-12')		Date Received:	09/20/13
Sample Location:	295 MARYLAND ST		Field Prep:	Not Specified
Matrix:	Soil		Extraction Method:	EPA 3546
Analytical Method:	1,8270D		Extraction Date:	09/24/13 18:30
Analytical Date:	09/30/13 22:58			
Analyst:	PS			
Percent Solids:	86%			

Accessphithene 3000 ug/kg 150 33. 1 Hexablictoberzene ND ug/kg 110 35. 1 Bial2-chlorosthyljether ND ug/kg 190 62. 1 2-Chlorosthyljether ND ug/kg 190 62. 1 3.3-Dichlorobenzidine ND ug/kg 190 62. 1 2.4-Dinitrotoluene ND ug/kg 190 44. 1 2.4-Dinitrotoluene ND ug/kg 190 48. 1 1-Chlorophenyl phenyl ether ND ug/kg 190 68. 1 2.6-Dinitrotoluene ND ug/kg 190 63. 1 2.6-Dinitrotoluene ND ug/kg 190	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Heachlorobenzone ND ug/kg 110 35. 1 3is(2-chloroethyljether ND ug/kg 170 53. 1 2-chloroethyljether ND ug/kg 190 62. 1 3.3-Dichlorobenzidine ND ug/kg 190 62. 1 3.3-Dichlorobenzidine ND ug/kg 190 48. 1 6.Dinitrotoluane ND ug/kg 190 48. 1 Floorophenyl phenyl ether ND ug/kg 190 44. 1 4.Eromochynyl phenyl ether ND ug/kg 190 44. 1 4.Eromochynyl phenyl ether ND ug/kg 190 53. 1 4.Eromochynyl ether ND ug/kg 190 53. 1 4.Eromochyn bhenyl ether ND ug/kg 190 53. 1 4.Eromochyn bhenyl ether ND ug/kg 190 53. 1 4.exachlorobynethane ND ug/kg	Semivolatile Organics by GC/MS - Westborough Lab									
Heachlorobenzone ND ug/kg 110 35. 1 3is(2-chloroethyljether ND ug/kg 170 53. 1 2-chloroethyljether ND ug/kg 190 62. 1 3.3-Dichlorobenzidine ND ug/kg 190 62. 1 3.3-Dichlorobenzidine ND ug/kg 190 48. 1 6.Dinitrotoluane ND ug/kg 190 48. 1 Floorophenyl phenyl ether ND ug/kg 190 44. 1 4.Eromochynyl phenyl ether ND ug/kg 190 44. 1 4.Eromochynyl phenyl ether ND ug/kg 190 53. 1 4.Eromochynyl ether ND ug/kg 190 53. 1 4.Eromochyn bhenyl ether ND ug/kg 190 53. 1 4.Eromochyn bhenyl ether ND ug/kg 190 53. 1 4.exachlorobynethane ND ug/kg	Acenaphthene	3000		ua/ka	150	39.	1			
Bis D Ug v 170 5.3. 1 2-Choronaphthalene ND Ug/kg 190 62. 1 3.3-Dichlorobenzidine ND Ug/kg 190 62. 1 3.3-Dichlorobenzidine ND Ug/kg 190 63. 1 2.4-Dinitrobluene ND Ug/kg 190 48. 1 2.6-Dinitrobluene ND Ug/kg 190 48. 1 1-Coranthene ND Ug/kg 190 58. 1 4-Chorophenyl phenyl ether ND Ug/kg 230 67. 1 3is(2-chorospopyl)fether ND Ug/kg 190 44. 1 3is(2-chorospopyl)fether ND Ug/kg 190 53. 1 +exachlorocethane ND Ug/kg 190 53. 1 +exachlorocethane ND Ug/kg 190 53. 1 NDA Ug/kg 190 50. 1 1										
ND ug/kg 190 62. 1 3.3-Dichlorobenzidine ND ug/kg 190 50. 1 3.3-Dichlorobenzidine ND ug/kg 190 41. 1 2.4-Dinitrobulene ND ug/kg 190 41. 1 2.6-Dinitrobulene ND ug/kg 190 48. 1 2.6-Dinitrobulene ND ug/kg 190 48. 1 1000 ug/kg 190 48. 1 1 2.6-Dinitrobulene ND ug/kg 190 48. 1 1000 ug/kg 190 44. 1 1 2.6-Dinitrobulatione ND ug/kg 190 53. 1 1.4-Dinorobenyl phenyl phenyl ether ND ug/kg 190 53. 1 1.6-Dinorobenzyl phenyl ether ND ug/kg 190 53. 1 1.4-exachlorochrobusylmethane ND ug/kg 170 50. 1										
ND ug/kg 190 50. 1 2.4-Dinitrotoluene ND ug/kg 190 41. 1 2.4-Dinitrotoluene ND ug/kg 190 48. 1 2.6-Dinitrotoluene ND ug/kg 190 48. 1 1-Loronthene 700 ug/kg 190 58. 1 4-Chorophenyl phenyl ether ND ug/kg 190 58. 1 4-Bromophenyl phenyl ether ND ug/kg 200 57. 1 4-Bromophenyl phenyl ether ND ug/kg 190 53. 1 4-Exachlorocutadiene ND ug/kg 190 53. 1 4-exachlorocutadiene ND ug/kg 190 63.<										
ND ug/kg 190 41. 1 2.4-Dinitrotoluene ND ug/kg 190 48. 1 2.6-Dinitrotoluene ND ug/kg 190 48. 1 Pluranthene 700 ug/kg 190 58. 1 4-Chlorophenyl phenyl ether ND ug/kg 190 58. 1 4-Bromophenyl phenyl ether ND ug/kg 190 54. 1 3is(2-chloroisopropyl)ether ND ug/kg 190 53. 1 4-exachloroutadine ND ug/kg 190 50. 1 4-exachloroutadine ND ug/kg 190 63. 1 4-exachloroutadine ND ug/kg 190 63. 1 4-exachloroutadine ND ug/kg 190 50. 1	·									
A.B.Dinitrotoluene ND ug/kg 190 48. 1 Fluoranthene 700 ug/kg 110 35. 1 4-Chlorophenyl phenyl ether ND ug/kg 190 58. 1 4-Bromophenyl phenyl ether ND ug/kg 190 44. 1 3is(2-chloroisopropyl)ether ND ug/kg 200 57. 1 3is(2-chlorototxxy)methane ND ug/kg 190 53. 1 +exachlorocyclopentadiene ND ug/kg 540 120 1 +exachlorocyclopentadiene ND ug/kg 170 50. 1 +exachlorocyclopentadiene ND ug/kg 170 50. 1 vachthroethane ND ug/kg 170 50. 1 Vachthroethane ND ug/kg 190 56. 1 Vitroberszene ND ug/kg 190 56. 1 Sig-2-ethylhexyl/phthalate ND ug/kg 190 37. 1 Din-butylphthalate ND ug/kg </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
Tuoranthene 700 ug/kg 110 35. 1 4-Chlorophenyl phenyl ether ND ug/kg 190 58. 1 4-Bromophenyl phenyl ether ND ug/kg 190 44. 1 3is(2-chloroisopropyl)ether ND ug/kg 230 67. 1 3is(2-chloroithoxy)methane ND ug/kg 190 53. 1 4exachlorocyclopentadiene ND ug/kg 150 53. 1 4exachlorocyclopentadiene ND ug/kg 150 34. 1 4exachlorocethane 13000 E ug/kg 150 63. 1 Aphthalene 13000 E ug/kg 190 63. 1 ND ug/kg 190 63. 1 1 1 ND ug/kg 190 63. 1 1 1 ND ug/kg 190 50. 1 1 1 1 ND	2,6-Dinitrotoluene									
A-Chlorophenyl phenyl ether ND ug/kg 190 58. 1 4-Bromophenyl phenyl ether ND ug/kg 190 44. 1 Bis(2-chloroisopropyl)ether ND ug/kg 230 67. 1 Bis(2-chloroisborropyl)ether ND ug/kg 200 57. 1 Hexachlorobutadiene ND ug/kg 190 53. 1 Hexachlorocyclopentadiene ND ug/kg 540 120 1 Hexachlorocyclopentadiene ND ug/kg 170 50. 1 Vaphthalene 13000 E ug/kg 170 45. 1 Vaphthalene ND ug/kg 150 44. 1 Vaphthalene ND ug/kg 150 40. 1 Vitrosodi-n-propylamine ND ug/kg 190 56. 1 Sit2-cethylhexyl)phthalate ND ug/kg 190 37. 1 Di-n-bylphthalate ND	Fluoranthene	700			110	35.	1			
Harmonphenyl ether ND ug/kg 190 44. 1 Bis(2-chlorostiospropyl)ether ND ug/kg 230 67. 1 Bis(2-chlorostiospropyl)ether ND ug/kg 200 57. 1 Hexachlorobutadiene ND ug/kg 190 53. 1 Hexachlorocyclopentadiene ND ug/kg 150 34. 1 Hexachlorocyclopentadiene ND ug/kg 170 50. 1 Hexachlorocyclopentadiene ND ug/kg 170 50. 1 Naphthalene 13000 E ug/kg 170 45. 1 NDPA/DPA ND ug/kg 190 56. 1 1 NDPA/DPA ND ug/kg 190 50. 1 1 Sig(2-ethylnexyl)phthalate ND ug/kg 190 37. 1 1 Din-butylphthalate ND ug/kg 190 37. 1 1	4-Chlorophenyl phenyl ether	ND			190					
ND ug/kg 230 67. 1 Bis(2-chlorosthoxy)methane ND ug/kg 200 57. 1 Exachlorobutadiene ND ug/kg 190 53. 1 Exachlorocyclopentadiene ND ug/kg 540 120 1 Exachlorocyclopentadiene ND ug/kg 150 34. 1 Exachlorocyclopentadiene ND ug/kg 170 50. 1 Sophorone ND ug/kg 170 50. 1 Naphthalene 13000 E ug/kg 170 45. 1 ND ug/kg 170 45. 1 1 1 ND ug/kg 190 56. 1 1 1 ND ug/kg 190 37. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4-Bromophenyl phenyl ether	ND			190	44.	1			
NDug/kg20057.1HexachlorobutadieneNDug/kg19053.1HexachlorocyclopentadieneNDug/kg5401201HexachlorocyclopentadieneNDug/kg15034.1IsophoroneNDug/kg17050.1Naphthalene13000Eug/kg17063.1NDPA/DPANDug/kg15040.1NDPA/DPANDug/kg19056.1NDPA/DPANDug/kg19050.1Sig(2-ethylhexyl)phthalateNDug/kg19050.1Di-n-butylphthalateNDug/kg19037.1Di-n-butylphthalateNDug/kg19040.1Di-n-butylphthalateNDug/kg19040.1Di-n-butylphthalateNDug/kg19040.1Di-n-butylphthalateNDug/kg19040.1Di-n-butylphthalateNDug/kg19040.1Di-n-butylphthalateNDug/kg19048.1Di-n-butylphthalateNDug/kg19046.1Di-n-butylphthalateNDug/kg11037.1Di-n-butylphthalateNDug/kg19046.1Di-n-butylphthalateNDug/kg19046.1Di-n-butylphthalateNDug/kg100 <td>Bis(2-chloroisopropyl)ether</td> <td></td> <td></td> <td></td> <td>230</td> <td></td> <td></td>	Bis(2-chloroisopropyl)ether				230					
ND ug/kg 540 120 1 Hexachlorocyclopentadiene ND ug/kg 150 34. 1 sophorone ND ug/kg 170 50. 1 Naphthalene 13000 E ug/kg 170 63. 1 Naphthalene 13000 E ug/kg 170 45. 1 NDPA/DPA ND ug/kg 150 40. 1 n-Nitrosodin-propylamine ND ug/kg 190 56. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 190 37. 1 Di-n-butylphthalate ND ug/kg 190 37. 1 Di-n-butylphthalate ND ug/kg 190 37. 1 Di-n-octylphthalate ND ug/kg 190 47. 1 Di-n-octylphthalate ND ug/kg 190 48. 1 Di-n-octylphthalate ND ug/kg 190 48.	Bis(2-chloroethoxy)methane	ND			200	57.	1			
Hexachloroethane ND ug/kg 150 34. 1 sophorone ND ug/kg 170 50. 1 Naphthalene 13000 E ug/kg 190 63. 1 Nitrobenzene ND ug/kg 170 45. 1 NDPA/DPA ND ug/kg 150 40. 1 NItrosodi-n-propylamine ND ug/kg 190 56. 1 Sig(2-ethylhexyl)phthalate ND ug/kg 190 50. 1 Bityl benzyl phthalate ND ug/kg 190 37. 1 Di-n-butylphthalate ND ug/kg 190 37. 1 Di-n-butylphthalate ND ug/kg 190 48. 1 Di-n-otylphthalate ND ug/kg 190 48. 1 Di-n-otylphthalate ND ug/kg 190 48. 1 Dienzo(a)anthracene 100 J ug/kg 150	Hexachlorobutadiene	ND		ug/kg	190	53.	1			
Hexachloroethane ND ug/kg 150 34. 1 sophorone ND ug/kg 170 50. 1 Naphthalene 13000 E ug/kg 190 63. 1 Naphthalene ND ug/kg 170 45. 1 NDPA/DPA ND ug/kg 150 40. 1 NDPA/DPA ND ug/kg 190 56. 1 NDPA/DPA ND ug/kg 190 50. 1 Si8(2-ethylhexyl)phthalate ND ug/kg 190 37. 1 Sistyl benzyl phthalate ND ug/kg 190 37. 1 Di-n-butylphthalate ND ug/kg 190 47. 1 Di-n-butylphthalate ND ug/kg 190 48. 1 Di-n-butylphthalate ND ug/kg 190 48. 1 Di-n-butylphthalate ND ug/kg 150 46. 1	Hexachlorocyclopentadiene	ND		ug/kg	540	120	1			
Naphtalene 13000 E ug/kg 190 63. 1 Nitrobenzene ND ug/kg 170 45. 1 NDPA/DPA ND ug/kg 150 40. 1 n-Nitrosodi-n-propylamine ND ug/kg 190 56. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 190 50. 1 Bityl benzyl phthalate ND ug/kg 190 37. 1 Di-n-butylphthalate ND ug/kg 190 37. 1 Di-n-butylphthalate ND ug/kg 190 47. 1 Di-n-octylphthalate ND ug/kg 190 48. 1 Di-n-octylphthalate ND ug/kg 190 48. 1 Di-n-octylphthalate ND ug/kg 190 48. 1 Di-netyl phthalate ND ug/kg 110 37. 1 Benzo(a)anthracene 100 J ug/kg	Hexachloroethane	ND		ug/kg	150	34.	1			
ND ug/kg 170 45. 1 NDPA/DPA ND ug/kg 150 40. 1 n-Nitrosodi-n-propylamine ND ug/kg 190 56. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 190 50. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 190 37. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 190 37. 1 Di-n-butylphthalate ND ug/kg 190 37. 1 Di-n-butylphthalate ND ug/kg 190 37. 1 Di-n-butylphthalate ND ug/kg 190 47. 1 Di-n-butylphthalate ND ug/kg 190 48. 1 Di-n-butylphthalate ND ug/kg 190 48. 1 Di-nethyl phthalate ND ug/kg 110 37. 1 Banzo(a)pyrene ND ug/kg 150 46. 1	Isophorone	ND		ug/kg	170	50.	1			
NDPA/DPA ND ug/kg 150 40. 1 n-Nitrosodi-n-propylamine ND ug/kg 190 56. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 190 50. 1 Bityl benzyl phthalate ND ug/kg 190 37. 1 Di-n-butylphthalate ND ug/kg 190 37. 1 Di-n-butylphthalate ND ug/kg 190 37. 1 Di-n-butylphthalate ND ug/kg 190 47. 1 Di-n-butylphthalate ND ug/kg 190 48. 1 Di-n-butylphthalate ND ug/kg 190 48. 1 Di-n-butylphthalate ND ug/kg 190 48. 1 Di-nethyl phthalate ND ug/kg 190 46. 1 Banzo(a)pyrene ND ug/kg 150 46. 1 Banzo(b)fluoranthene 54 J ug/kg 110	Naphthalene	13000	E	ug/kg	190	63.	1			
ND ug/kg 190 56. 1 Bis(2-ethylhexyl)phthalate ND ug/kg 190 50. 1 Butyl benzyl phthalate ND ug/kg 190 37. 1 Di-n-butylphthalate ND ug/kg 190 37. 1 Di-n-butylphthalate ND ug/kg 190 37. 1 Di-n-butylphthalate ND ug/kg 190 47. 1 Di-n-octylphthalate ND ug/kg 190 48. 1 Diethyl phthalate ND ug/kg 190 48. 1 Diethyl phthalate ND ug/kg 190 48. 1 Diethyl phthalate ND ug/kg 110 37. 1 Benzo(a)anthracene 100 J ug/kg 110 37. 1 Benzo(k)fluoranthene 54 J ug/kg 110 38. 1 Benzo(k)fluoranthene ND ug/kg 110	Nitrobenzene	ND		ug/kg	170	45.	1			
Bis (2-ethylhexyl)phthalate ND ug/kg 190 50. 1 Bis (2-ethylhexyl)phthalate ND ug/kg 190 37. 1 Bit yl benzyl phthalate ND ug/kg 190 37. 1 Di-n-butylphthalate ND ug/kg 190 37. 1 Di-n-octylphthalate ND ug/kg 190 47. 1 Di-n-octylphthalate ND ug/kg 190 40. 1 Di-n-octylphthalate ND ug/kg 190 48. 1 Dientyl phthalate ND ug/kg 190 48. 1 Dientyl phthalate ND ug/kg 110 37. 1 Benzo(a)anthracene 100 J ug/kg 110 37. 1 Benzo(b)fluoranthene 54 J ug/kg 110 38. 1 Benzo(k)fluoranthene ND ug/kg 110 36. 1	NDPA/DPA	ND		ug/kg	150	40.	1			
Butyl benzyl phthalate ND ug/kg 190 37. 1 Di-n-butylphthalate ND ug/kg 190 37. 1 Di-n-butylphthalate ND ug/kg 190 47. 1 Di-n-octylphthalate ND ug/kg 190 47. 1 Diethyl phthalate ND ug/kg 190 40. 1 Diethyl phthalate ND ug/kg 190 48. 1 Dimethyl phthalate ND ug/kg 110 37. 1 Benzo(a)anthracene 100 J ug/kg 110 37. 1 Benzo(a)pyrene ND ug/kg 110 37. 1 1 Benzo(b)fluoranthene 54 J ug/kg 110 38. 1 Benzo(k)fluoranthene ND ug/kg 110 36. 1	n-Nitrosodi-n-propylamine	ND		ug/kg	190	56.	1			
Di-n-butylphthalate ND ug/kg 190 37. 1 Di-n-octylphthalate ND ug/kg 190 47. 1 Di-n-octylphthalate ND ug/kg 190 47. 1 Di-n-octylphthalate ND ug/kg 190 40. 1 Diethyl phthalate ND ug/kg 190 48. 1 Dimethyl phthalate ND ug/kg 110 37. 1 Benzo(a)anthracene 100 J ug/kg 110 37. 1 Benzo(a)pyrene ND ug/kg 150 46. 1 Benzo(b)fluoranthene 54 J ug/kg 110 38. 1 Benzo(k)fluoranthene ND ug/kg 110 36. 1	Bis(2-ethylhexyl)phthalate	ND		ug/kg	190	50.	1			
Di-n-octylphthalateNDug/kg19047.1Diethyl phthalateNDug/kg19040.1Dimethyl phthalateNDug/kg19048.1Benzo(a)anthracene100Jug/kg11037.1Benzo(a)pyreneNDug/kg15046.1Benzo(b)fluoranthene54Jug/kg11038.1Benzo(k)fluorantheneNDug/kg11036.1	Butyl benzyl phthalate	ND		ug/kg	190	37.	1			
Diethyl phthalateNDug/kg19040.1Dimethyl phthalateNDug/kg19048.1Benzo(a)anthracene100Jug/kg11037.1Benzo(a)pyreneNDug/kg15046.1Benzo(b)fluoranthene54Jug/kg11038.1Benzo(k)fluorantheneNDug/kg11036.1	Di-n-butylphthalate	ND		ug/kg	190	37.	1			
Dimethyl phthalateNDug/kg19048.1Benzo(a)anthracene100Jug/kg11037.1Benzo(a)pyreneNDug/kg15046.1Benzo(b)fluoranthene54Jug/kg11038.1Benzo(k)fluorantheneNDug/kg11036.1	Di-n-octylphthalate	ND		ug/kg	190	47.	1			
Benzo(a)anthracene100Jug/kg11037.1Benzo(a)pyreneNDug/kg15046.1Benzo(b)fluoranthene54Jug/kg11038.1Benzo(k)fluorantheneNDug/kg11036.1	Diethyl phthalate	ND		ug/kg	190	40.	1			
Benzo(a)pyreneNDug/kg15046.1Benzo(b)fluoranthene54Jug/kg11038.1Benzo(k)fluorantheneNDug/kg11036.1	Dimethyl phthalate	ND		ug/kg	190	48.	1			
Benzo(b)fluoranthene54Jug/kg11038.1Benzo(k)fluorantheneNDug/kg11036.1	Benzo(a)anthracene	100	J	ug/kg	110	37.	1			
Benzo(k)fluorantheneNDug/kg11036.1	Benzo(a)pyrene	ND		ug/kg	150	46.	1			
	Benzo(b)fluoranthene	54	J	ug/kg	110	38.	1			
Chrysene 110 ug/kg 110 37. 1	Benzo(k)fluoranthene	ND		ug/kg	110	36.	1			
	Chrysene	110		ug/kg	110	37.	1			

		Serial_No:10031311:13					
Project Name:	295 MARYLAND ST				Lab Nu	mber:	L1318716
Project Number:	0222-001-101				Report	Date:	10/03/13
-		SAMP		S	•		
Lab ID: Client ID: Sample Location:	L1318716-05 TP-9-13 (9-12') 295 MARYLAND ST				Date Coll Date Rec Field Prep	eived:	09/19/13 09:30 09/20/13 Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organ	ics by GC/MS - Westborou	ugh Lab					
Acenaphthylene		ND		ug/kg	150	35.	1
Anthracene		960		ug/kg	110	32.	1
Benzo(ghi)perylene		ND		ug/kg	150	39.	1
Fluorene		2400		ug/kg	190	54.	1
Phenanthrene		4800		ug/kg	110	37.	1
Dibenzo(a,h)anthracene		ND		ug/kg	110	37.	1
Indeno(1,2,3-cd)pyrene		ND		ug/kg	150	42.	1
Pyrene		580		ug/kg	110	37.	1
Biphenyl		2600		ug/kg	430	62.	1
4-Chloroaniline		ND		ug/kg	190	50.	1
2-Nitroaniline		ND		ug/kg	190	53.	1
3-Nitroaniline		ND		ug/kg	190	52.	1
4-Nitroaniline		ND		ug/kg	190	51.	1
Dibenzofuran		1400		ug/kg	190	63.	1
2-Methylnaphthalene		15000	E	ug/kg	230	60.	1
1,2,4,5-Tetrachlorobenzer	ne	ND		ug/kg	190	59.	1
Acetophenone		ND		ug/kg	190	59.	1
Carbazole		120	J	ug/kg	190	41.	1
Benzaldehyde		ND		ug/kg	250	77.	1
Caprolactam		ND		ug/kg	190	52.	1
Atrazine		ND		ug/kg	150	43.	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	81		23-120	
2-Fluorobiphenyl	76		30-120	
4-Terphenyl-d14	82		18-120	

			Serial_No:	10031311:13
Project Name:	295 MARYLAND ST		Lab Number:	L1318716
Project Number:	0222-001-101		Report Date:	10/03/13
		SAMPLE RESULTS		
Lab ID:	L1318716-05	D	Date Collected:	09/19/13 09:30
Client ID:	TP-9-13 (9-12')		Date Received:	09/20/13
Sample Location:	295 MARYLAND ST		Field Prep:	Not Specified
Matrix:	Soil		Extraction Method:	EPA 3546
Analytical Method:	1,8270D		Extraction Date:	09/24/13 18:30
Analytical Date:	10/01/13 09:40			
Analyst:	PS			
Percent Solids:	86%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westborough Lab						
Naphthalene	17000		ug/kg	950	310	5
2-Methylnaphthalene	18000		ug/kg	1100	300	5

			Serial_No:	0031311:13
Project Name:	295 MARYLAND ST		Lab Number:	L1318716
Project Number:	0222-001-101		Report Date:	10/03/13
		SAMPLE RESULTS		
Lab ID:	L1318716-06		Date Collected:	09/19/13 16:00
Client ID:	TP-13-13 (8-9')		Date Received:	09/20/13
Sample Location:	295 MARYLAND ST		Field Prep:	Not Specified
Matrix:	Soil		Extraction Method:	EPA 3546
Analytical Method:	1,8270D		Extraction Date:	09/24/13 18:30
Analytical Date:	09/30/13 23:26			
Analyst:	PS			
Percent Solids:	86%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Acenaphthene	240		ug/kg	150	39.	1		
Hexachlorobenzene	ND		ug/kg	110	35.	1		
Bis(2-chloroethyl)ether	ND		ug/kg	170	53.	1		
2-Chloronaphthalene	ND		ug/kg	190	62.	1		
3,3'-Dichlorobenzidine	ND		ug/kg	190	51.	1		
2,4-Dinitrotoluene	ND		ug/kg	190	41.	1		
2,6-Dinitrotoluene	ND		ug/kg	190	49.	1		
Fluoranthene	ND		ug/kg	110	35.	1		
4-Chlorophenyl phenyl ether	ND		ug/kg	190	58.	1		
4-Bromophenyl phenyl ether	ND		ug/kg	190	44.	1		
Bis(2-chloroisopropyl)ether	ND		ug/kg	230	67.	1		
Bis(2-chloroethoxy)methane	ND		ug/kg	200	58.	1		
Hexachlorobutadiene	ND		ug/kg	190	54.	1		
Hexachlorocyclopentadiene	ND		ug/kg	540	120	1		
Hexachloroethane	ND		ug/kg	150	35.	1		
Isophorone	ND		ug/kg	170	51.	1		
Naphthalene	ND		ug/kg	190	63.	1		
Nitrobenzene	ND		ug/kg	170	45.	1		
NDPA/DPA	ND		ug/kg	150	40.	1		
n-Nitrosodi-n-propylamine	ND		ug/kg	190	57.	1		
Bis(2-ethylhexyl)phthalate	ND		ug/kg	190	50.	1		
Butyl benzyl phthalate	ND		ug/kg	190	37.	1		
Di-n-butylphthalate	ND		ug/kg	190	37.	1		
Di-n-octylphthalate	ND		ug/kg	190	47.	1		
Diethyl phthalate	ND		ug/kg	190	40.	1		
Dimethyl phthalate	ND		ug/kg	190	48.	1		
Benzo(a)anthracene	ND		ug/kg	110	37.	1		
Benzo(a)pyrene	ND		ug/kg	150	46.	1		
Benzo(b)fluoranthene	ND		ug/kg	110	38.	1		
Benzo(k)fluoranthene	ND		ug/kg	110	36.	1		
Chrysene	ND		ug/kg	110	37.	1		

Due is at Names						Senal_INO.	:10031311:13		
Project Name: 2	95 MARYLAND ST				Lab Nu	mber:	L1318716		
Project Number: 0	222-001-101				Report	Date:	10/03/13		
-		SAMPL	E RESULTS	5	•				
Lab ID: Client ID: Sample Location:	L1318716-06 TP-13-13 (8-9') 295 MARYLAND ST				Date Collected: Date Received: Field Prep:		09/19/13 16:00 09/20/13 Not Specified		
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics	Semivolatile Organics by GC/MS - Westborough Lab								
Acenaphthylene		ND		ug/kg	150	36.	1		
Anthracene		ND		ug/kg	110	32.	1		
Benzo(ghi)perylene		ND		ug/kg	150	40.	1		
Fluorene		130	J	ug/kg	190	54.	1		
Phenanthrene		ND		ug/kg	110	37.	1		
Dibenzo(a,h)anthracene		ND		ug/kg	110	37.	1		
Indeno(1,2,3-cd)pyrene		ND		ug/kg	150	42.	1		
Pyrene		ND		ug/kg	110	37.	1		
Biphenyl		ND		ug/kg	430	63.	1		
4-Chloroaniline		ND		ug/kg	190	50.	1		
2-Nitroaniline		ND		ug/kg	190	54.	1		
3-Nitroaniline		ND		ug/kg	190	52.	1		
4-Nitroaniline		ND		ug/kg	190	51.	1		
Dibenzofuran		ND		ug/kg	190	64.	1		
2-Methylnaphthalene		ND		ug/kg	230	61.	1		
1,2,4,5-Tetrachlorobenzene		ND		ug/kg	190	59.	1		
Acetophenone		ND		ug/kg	190	59.	1		
Carbazole		ND		ug/kg	190	41.	1		
Benzaldehyde		ND		ug/kg	250	77.	1		
Caprolactam		ND		ug/kg	190	52.	1		
Atrazine		ND		ug/kg	150	43.	1		

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
Nitrobenzene-d5	73		23-120	
2-Fluorobiphenyl	76		30-120	
4-Terphenyl-d14	79		18-120	

			Serial_No:	10031311:13
Project Name:	295 MARYLAND ST		Lab Number:	L1318716
Project Number:	0222-001-101		Report Date:	10/03/13
		SAMPLE RESULTS		
Lab ID:	L1318716-07		Date Collected:	09/19/13 14:15
Client ID:	TP-22-13 (6-8')		Date Received:	09/20/13
Sample Location:	295 MARYLAND ST		Field Prep:	Not Specified
Matrix:	Soil		Extraction Method:	EPA 3546
Analytical Method:	1,8270D		Extraction Date:	09/24/13 18:30
Analytical Date:	09/30/13 23:54			
Analyst:	PS			
Percent Solids:	86%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Acenaphthene	ND		ug/kg	150	39.	1		
Hexachlorobenzene	ND		ug/kg	110	36.	1		
Bis(2-chloroethyl)ether	ND		ug/kg	170	54.	1		
2-Chloronaphthalene	ND		ug/kg	190	62.	1		
3,3'-Dichlorobenzidine	ND		ug/kg	190	51.	1		
2,4-Dinitrotoluene	ND		ug/kg	190	41.	1		
2,6-Dinitrotoluene	ND		ug/kg	190	49.	1		
Fluoranthene	120		ug/kg	110	35.	1		
4-Chlorophenyl phenyl ether	ND		ug/kg	190	58.	1		
4-Bromophenyl phenyl ether	ND		ug/kg	190	44.	1		
Bis(2-chloroisopropyl)ether	ND		ug/kg	230	67.	1		
Bis(2-chloroethoxy)methane	ND		ug/kg	210	58.	1		
Hexachlorobutadiene	ND		ug/kg	190	54.	1		
Hexachlorocyclopentadiene	ND		ug/kg	550	120	1		
Hexachloroethane	ND		ug/kg	150	35.	1		
Isophorone	ND		ug/kg	170	51.	1		
Naphthalene	ND		ug/kg	190	64.	1		
Nitrobenzene	ND		ug/kg	170	46.	1		
NDPA/DPA	ND		ug/kg	150	40.	1		
n-Nitrosodi-n-propylamine	ND		ug/kg	190	57.	1		
Bis(2-ethylhexyl)phthalate	ND		ug/kg	190	50.	1		
Butyl benzyl phthalate	ND		ug/kg	190	37.	1		
Di-n-butylphthalate	ND		ug/kg	190	37.	1		
Di-n-octylphthalate	ND		ug/kg	190	47.	1		
Diethyl phthalate	ND		ug/kg	190	40.	1		
Dimethyl phthalate	ND		ug/kg	190	48.	1		
Benzo(a)anthracene	64	J	ug/kg	110	37.	1		
Benzo(a)pyrene	53	J	ug/kg	150	47.	1		
Benzo(b)fluoranthene	65	J	ug/kg	110	39.	1		
Benzo(k)fluoranthene	ND		ug/kg	110	36.	1		
Chrysene	66	J	ug/kg	110	38.	1		

				Serial_No:10031311:13					
Project Name:	295 MARYLAND ST				Lab Nu	mber:	L1318716		
Project Number:	0222-001-101				Report	Date:	10/03/13		
-		SAMP	LE RESULTS	5					
Lab ID: Client ID: Sample Location:	L1318716-07 TP-22-13 (6-8') 295 MARYLAND ST				Date Collected: Date Received: Field Prep:		09/19/13 14:15 09/20/13 Not Specified		
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organi	Semivolatile Organics by GC/MS - Westborough Lab								
Acenaphthylene		ND		ug/kg	150	36.	1		
Anthracene		ND		ug/kg	110	32.	1		
Benzo(ghi)perylene		ND		ug/kg	150	40.	1		
Fluorene		ND		ug/kg	190	55.	1		
Phenanthrene		78	J	ug/kg	110	37.	1		
Dibenzo(a,h)anthracene		ND		ug/kg	110	37.	1		
Indeno(1,2,3-cd)pyrene		ND		ug/kg	150	42.	1		
Pyrene		100	J	ug/kg	110	37.	1		
Biphenyl		ND		ug/kg	440	63.	1		
4-Chloroaniline		ND		ug/kg	190	50.	1		
2-Nitroaniline		ND		ug/kg	190	54.	1		
3-Nitroaniline		ND		ug/kg	190	53.	1		
4-Nitroaniline		ND		ug/kg	190	52.	1		
Dibenzofuran		ND		ug/kg	190	64.	1		
2-Methylnaphthalene		ND		ug/kg	230	61.	1		
1,2,4,5-Tetrachlorobenzen	е	ND		ug/kg	190	59.	1		
Acetophenone		ND		ug/kg	190	59.	1		
Carbazole		ND		ug/kg	190	41.	1		
Benzaldehyde		ND		ug/kg	250	77.	1		
Caprolactam		ND		ug/kg	190	53.	1		
Atrazine		ND		ug/kg	150	43.	1		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	64		23-120	
2-Fluorobiphenyl	74		30-120	
4-Terphenyl-d14	91		18-120	

			Serial_No:	10031311:13
Project Name:	295 MARYLAND ST		Lab Number:	L1318716
Project Number:	0222-001-101		Report Date:	10/03/13
		SAMPLE RESULTS		
Lab ID:	L1318716-08		Date Collected:	09/19/13 15:30
Client ID:	TP-23-13 (0.5-3')		Date Received:	09/20/13
Sample Location:	295 MARYLAND ST		Field Prep:	Not Specified
Matrix:	Soil		Extraction Method:	EPA 3546
Analytical Method:	1,8270D		Extraction Date:	09/24/13 18:30
Analytical Date:	10/01/13 00:22			
Analyst:	PS			
Percent Solids:	87%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Semivolatile Organics by GC/MS - Westborough Lab										
Benzo(a)anthracene	52	J	ug/kg	110	36.	1				
Benzo(a)pyrene	57	J	ug/kg	150	46.	1				
Benzo(b)fluoranthene	77	J	ug/kg	110	38.	1				
Benzo(k)fluoranthene	40	J	ug/kg	110	36.	1				
Chrysene	60	J	ug/kg	110	36.	1				
Anthracene	ND		ug/kg	110	31.	1				
Dibenzo(a,h)anthracene	ND		ug/kg	110	36.	1				
Indeno(1,2,3-cd)pyrene	42	J	ug/kg	150	41.	1				

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	65		23-120	
2-Fluorobiphenyl	67		30-120	
4-Terphenyl-d14	80		18-120	

			Serial_No:	10031311:13
Project Name:	295 MARYLAND ST		Lab Number:	L1318716
Project Number:	0222-001-101		Report Date:	10/03/13
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	L1318716-09 TP-24-13 (0.5-4') 295 MARYLAND ST Soil 1,8270D 10/01/13 00:50 PS 88%		Date Collected: Date Received: Field Prep: Extraction Method: Extraction Date:	09/19/13 17:00 09/20/13 Not Specified EPA 3546 09/24/13 18:30

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS - Westborough Lab									
Benzo(a)anthracene	ND		ug/kg	110	36.	1			
Benzo(a)pyrene	ND		ug/kg	150	45.	1			
Benzo(b)fluoranthene	ND		ug/kg	110	38.	1			
Benzo(k)fluoranthene	ND		ug/kg	110	35.	1			
Chrysene	ND		ug/kg	110	36.	1			
Anthracene	ND		ug/kg	110	31.	1			
Dibenzo(a,h)anthracene	ND		ug/kg	110	36.	1			
Indeno(1,2,3-cd)pyrene	ND		ug/kg	150	41.	1			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	77		23-120	
2-Fluorobiphenyl	78		30-120	
4-Terphenyl-d14	83		18-120	

		Serial_No:10031311:13
Project Name:	295 MARYLAND ST	Lab Number: L1318716
Project Number:	0222-001-101	Report Date: 10/03/13
	SAMPLE RESULTS	
Lab ID:	L1318716-10 D	Date Collected: 09/20/13 11:30
Client ID:	TP-25-13 (0.5-4')	Date Received: 09/20/13
Sample Location:	295 MARYLAND ST	Field Prep: Not Specified
Matrix:	Soil	Extraction Method: EPA 3546
Analytical Method:	1,8270D	Extraction Date: 09/24/13 18:30
Analytical Date:	10/01/13 01:18	
Analyst:	PS	
Percent Solids:	86%	

Result	Qualifier	Units	RL	MDL	Dilution Factor
rough Lab					
4800		ug/kg	450	150	4
3400		ug/kg	600	180	4
4300		ug/kg	450	150	4
2000		ug/kg	450	140	4
4200		ug/kg	450	150	4
4000		ug/kg	450	120	4
560		ug/kg	450	150	4
1900		ug/kg	600	170	4
	Fough Lab 4800 3400 4300 4200 4200 560	rough Lab 4800 3400 4300 2000 4200 4000 560	4800 ug/kg 3400 ug/kg 4300 ug/kg 4300 ug/kg 4300 ug/kg 4300 ug/kg 4000 ug/kg 560 ug/kg	4800 ug/kg 450 3400 ug/kg 600 4300 ug/kg 450 2000 ug/kg 450 4200 ug/kg 450 4000 ug/kg 450 560 ug/kg 450	Yough Lab ug/kg 450 150 4800 ug/kg 600 180 3400 ug/kg 600 180 4300 ug/kg 450 150 2000 ug/kg 450 140 4200 ug/kg 450 150 4000 ug/kg 450 120 560 ug/kg 450 150

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	88		23-120	
2-Fluorobiphenyl	89		30-120	
4-Terphenyl-d14	75		18-120	

Project Name:	295 MARYLAND ST	Lab Number:	L1318716
Project Number:	0222-001-101	Report Date:	10/03/13

Method Blank Analysis Batch Quality Control

Analytical Method:	
Analytical Date:	
Analyst:	

1,8270D 09/25/13 20:17 PS Extraction Method: EPA 3546 Extraction Date: 09/24/13 18:30

arameter	Result	Qualifier	Units	RL		MDL
emivolatile Organics by GC/M	S - Westborough	h Lab for s	ample(s):	01-10	Batch:	WG638721-1
Acenaphthene	ND		ug/kg	130		34.
Hexachlorobenzene	ND		ug/kg	100		31.
Bis(2-chloroethyl)ether	ND		ug/kg	150		46.
2-Chloronaphthalene	ND		ug/kg	170		54.
3,3'-Dichlorobenzidine	ND		ug/kg	170		44.
2,4-Dinitrotoluene	ND		ug/kg	170		36.
2,6-Dinitrotoluene	ND		ug/kg	170		42.
Fluoranthene	ND		ug/kg	100		30.
4-Chlorophenyl phenyl ether	ND		ug/kg	170		50.
4-Bromophenyl phenyl ether	ND		ug/kg	170		38.
Bis(2-chloroisopropyl)ether	ND		ug/kg	200		58.
Bis(2-chloroethoxy)methane	ND		ug/kg	180		50.
Hexachlorobutadiene	ND		ug/kg	170		47.
Hexachlorocyclopentadiene	ND		ug/kg	480		110
Hexachloroethane	ND		ug/kg	130		30.
Isophorone	ND		ug/kg	150		44.
Naphthalene	ND		ug/kg	170		55.
Nitrobenzene	ND		ug/kg	150		40.
NDPA/DPA	ND		ug/kg	130		35.
n-Nitrosodi-n-propylamine	ND		ug/kg	170		50.
Bis(2-ethylhexyl)phthalate	ND		ug/kg	170		44.
Butyl benzyl phthalate	ND		ug/kg	170		32.
Di-n-butylphthalate	ND		ug/kg	170		32.
Di-n-octylphthalate	ND		ug/kg	170		41.
Diethyl phthalate	ND		ug/kg	170		35.
Dimethyl phthalate	ND		ug/kg	170		42.
Benzo(a)anthracene	ND		ug/kg	100		32.
Benzo(a)pyrene	ND		ug/kg	130		41.
Benzo(b)fluoranthene	ND		ug/kg	100		34.
Benzo(k)fluoranthene	ND		ug/kg	100		32.
Chrysene	ND		ug/kg	100		33.

Project Name:	295 MARYLAND ST	Lab Number:	L1318716
Project Number:	0222-001-101	Report Date:	10/03/13

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8
Analytical Date:	09/
Analyst:	PS

1,8270D 09/25/13 20:17 PS Extraction Method: EPA 3546 Extraction Date: 09/24/13 18:30

arameter	Result	Qualifier	Units	RL		MDL
emivolatile Organics by GC/M	S - Westborough	Lab for s	ample(s):	01-10	Batch:	WG638721-1
Acenaphthylene	ND		ug/kg	130		31.
Anthracene	ND		ug/kg	100		28.
Benzo(ghi)perylene	ND		ug/kg	130		34.
Fluorene	ND		ug/kg	170		48.
Phenanthrene	ND		ug/kg	100		32.
Dibenzo(a,h)anthracene	ND		ug/kg	100		32.
Indeno(1,2,3-cd)pyrene	ND		ug/kg	130		37.
Pyrene	ND		ug/kg	100		32.
Biphenyl	ND		ug/kg	380		55.
4-Chloroaniline	ND		ug/kg	170		44.
2-Nitroaniline	ND		ug/kg	170		47.
3-Nitroaniline	ND		ug/kg	170		46.
4-Nitroaniline	ND		ug/kg	170		45.
Dibenzofuran	ND		ug/kg	170		55.
2-Methylnaphthalene	ND		ug/kg	200		53.
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	170		51.
Acetophenone	ND		ug/kg	170		51.
2,4,6-Trichlorophenol	ND		ug/kg	100		31.
p-Chloro-m-cresol	ND		ug/kg	170		48.
2-Chlorophenol	ND		ug/kg	170		50.
2,4-Dichlorophenol	ND		ug/kg	150		54.
2,4-Dimethylphenol	ND		ug/kg	170		50.
2-Nitrophenol	ND		ug/kg	360		52.
4-Nitrophenol	ND		ug/kg	230		54.
2,4-Dinitrophenol	ND		ug/kg	800		230
4,6-Dinitro-o-cresol	ND		ug/kg	430		61.
Pentachlorophenol	ND		ug/kg	130		36.
Phenol	ND		ug/kg	170		49.
2-Methylphenol	ND		ug/kg	170		53.
3-Methylphenol/4-Methylphenol	ND		ug/kg	240		54.
2,4,5-Trichlorophenol	ND		ug/kg	170		54.

09/24/13 18:30

Project Name:	295 MARYLAND ST		Lab Number:	L1318716
Project Number:	0222-001-101		Report Date:	10/03/13
		Mothod Blank Analysis		

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst:	1,8270D 09/25/13 20:17 PS	Extraction Method: Extraction Date:	EPA 3546 09/24/13 18
--	---------------------------------	--	-------------------------

arameter	Result Qualifier	r Units	RL	MDL
emivolatile Organics by GC/MS	- Westborough Lab for	sample(s):	01-10	Batch: WG638721-1
Carbazole	ND	ug/kg	170	36.
Benzaldehyde	ND	ug/kg	220	67.
Benzaldehyde Caprolactam	ND ND	ug/kg ug/kg	220 170	67. 46.

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	75	25-120
Phenol-d6	73	10-120
Nitrobenzene-d5	75	23-120
2-Fluorobiphenyl	72	30-120
2,4,6-Tribromophenol	70	0-136
4-Terphenyl-d14	80	18-120

Lab Control Sample Analysis

Batch Quality Control

Project Name: 295 MARYLAND ST

Project Number: 0222-001-101

Lab Number: L1318716 Report Date: 10/03/13

LCSD LCS %Recovery RPD %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-10 Batch: WG638721-2 WG638721-3 79 31-137 Acenaphthene 75 5 50 Benzidine 27 20 30 50 n-Nitrosodimethylamine 50 71 74 4 1,2,4-Trichlorobenzene 67 70 38-107 4 50 Hexachlorobenzene 82 40-140 2 50 80 Bis(2-chloroethyl)ether 50 70 73 40-140 4 2-Chloronaphthalene 77 80 40-140 4 50 1.2-Dichlorobenzene 71 40-140 50 68 4 40-140 50 1.3-Dichlorobenzene 68 71 4 28-104 50 1,4-Dichlorobenzene 68 70 3 3.3'-Dichlorobenzidine 40-140 50 62 59 5 2,4-Dinitrotoluene 87 88 28-89 1 50 2.6-Dinitrotoluene 40-140 50 88 91 3 40-140 50 Fluoranthene 86 86 0 4-Chlorophenyl phenyl ether 40-140 50 76 80 5 4-Bromophenyl phenyl ether 84 40-140 50 80 5 Azobenzene 86 89 40-140 3 50 Bis(2-chloroisopropyl)ether 72 75 40-140 4 50 Bis(2-chloroethoxy)methane 50 74 77 40-117 4 Hexachlorobutadiene 69 40-140 50 65 6 Hexachlorocyclopentadiene 73 40-140 50 71 3

Lab Control Sample Analysis

Batch Quality Control

Project Name: 295 MARYLAND ST

Project Number: 0222-001-101

Lab Number: L1318716 Report Date: 10/03/13

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Qual Limits Parameter Qual Qual Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-10 Batch: WG638721-2 WG638721-3 Hexachloroethane 66 71 40-140 50 7 Isophorone 76 79 40-140 50 4 Naphthalene 73 40-140 50 72 1 50 Nitrobenzene 70 71 40-140 1 NDPA/DPA 82 85 50 4 n-Nitrosodi-n-propylamine 32-121 50 74 77 4 Bis(2-ethylhexyl)phthalate 98 101 40-140 3 50 Butyl benzyl phthalate 93 93 40-140 0 50 Di-n-butylphthalate 92 40-140 50 90 2 Di-n-octylphthalate 40-140 50 101 103 2 Diethyl phthalate 87 40-140 50 85 2 Dimethyl phthalate 81 84 40-140 4 50 Benzo(a)anthracene 87 40-140 50 87 0 Benzo(a)pyrene 87 40-140 50 84 4 Benzo(b)fluoranthene 80 40-140 50 78 3 Benzo(k)fluoranthene 94 40-140 50 91 3 Chrysene 86 90 40-140 5 50 Acenaphthylene 80 84 40-140 5 50 Anthracene 40-140 50 85 88 3 Benzo(ghi)perylene 82 40-140 50 82 0 Fluorene 80 83 40-140 50 4

Lab Control Sample Analysis

Batch Quality Control

Project Name: 295 MARYLAND ST

Project Number: 0222-001-101

Lab Number: L1318716 Report Date: 10/03/13

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Qual Limits Parameter Qual Qual Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-10 Batch: WG638721-2 WG638721-3 Phenanthrene 83 85 40-140 2 50 Dibenzo(a,h)anthracene 84 85 40-140 50 1 Indeno(1,2,3-cd)pyrene 80 40-140 50 79 1 50 Pyrene 85 86 35-142 1 Biphenyl 86 50 83 4 Aniline 40-140 50 53 53 0 4-Chloroaniline 60 63 40-140 5 50 2-Nitroaniline 91 95 47-134 50 4 3-Nitroaniline 26-129 50 48 44 9 4-Nitroaniline 41-125 50 79 83 5 Dibenzofuran 82 40-140 50 78 5 2-Methylnaphthalene 72 75 40-140 4 50 1,2,4,5-Tetrachlorobenzene 81 40-117 50 79 3 14-144 50 Acetophenone 81 83 2 2,4,6-Trichlorophenol 30-130 50 83 89 7 p-Chloro-m-cresol 94 26-103 50 90 4 2-Chlorophenol 72 76 25-102 5 50 2,4-Dichlorophenol 76 81 30-130 6 50 2,4-Dimethylphenol 30-130 50 80 84 5 2-Nitrophenol 30-130 50 74 78 5 4-Nitrophenol 98 102 11-114 50 4

Lab Control Sample Analysis Batch Quality Control

Project Name: 295 MARYLAND ST

Project Number: 0222-001-101 Lab Number: L1318716 Report Date: 10/03/13

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
Semivolatile Organics by GC/MS - Westboro	ugh Lab Associ	ated sample(s)	: 01-10 Batch	: WG638721-2 WG6387	21-3		
2,4-Dinitrophenol	76		81	4-130	6	50	
4,6-Dinitro-o-cresol	82		85	10-130	4	50	
Pentachlorophenol	78		82	17-109	5	50	
Phenol	76		79	26-90	4	50	
2-Methylphenol	76		80	30-130.	5	50	
3-Methylphenol/4-Methylphenol	82		86	30-130	5	50	
2,4,5-Trichlorophenol	89		91	30-130	2	50	
Benzoic Acid	38		40		5	50	
Benzyl Alcohol	76		79	40-140	4	50	
Carbazole	86		88	54-128	2	50	
Benzaldehyde	82		86		5	50	
Caprolactam	97		101		4	50	
Atrazine	101		104		3	50	
2,3,4,6-Tetrachlorophenol	86		92		7	50	
Pyridine	58		57	10-93	2	50	
Parathion, ethyl	118		122	40-140	3	50	

Lab Control Sample Analysis Batch Quality Control

Project Name: 295 MARYLAND ST

Project Number: 0222-001-101 Lab Number: L1318716

Report Date: 10/03/13

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westbord	ugh Lab Associa	ted sample(s)	: 01-10 Batch	WG63872	21-2 WG638721-3	5			

LCS %Recovery	LCSD Qual %Recovery	y Qual	Acceptance Criteria	
76	78		25-120	
77	79		10-120	
75	77		23-120	
79	81		30-120	
87	90		0-136	
85	86		18-120	
	%Recovery 76 77 75 79 87	%Recovery Qual %Recovery 76 78 77 79 75 77 79 81 87 90	%Recovery Qual %Recovery Qual 76 78 78 77 79 79 75 77 79 79 81 87 87 90 1	%Recovery Qual %Recovery Qual Criteria 76 78 25-120 77 79 10-120 75 77 23-120 79 81 30-120 87 90 0-136

PCBS

			Serial_No:	10031311:13
Project Name:	295 MARYLAND ST		Lab Number:	L1318716
Project Number:	0222-001-101		Report Date:	10/03/13
		SAMPLE RESULTS		
Lab ID:	L1318716-01		Date Collected:	09/18/13 16:30
Client ID:	TP-4-13 (0-3')		Date Received:	09/20/13
Sample Location:	295 MARYLAND ST		Field Prep:	Not Specified
Matrix:	Soil		Extraction Method:	EPA 3546
Analytical Method:	1,8082A		Extraction Date:	09/23/13 16:55
Analytical Date:	09/25/13 21:29		Cleanup Method1:	EPA 3665A
Analyst:	JW		Cleanup Date1:	09/25/13
Percent Solids:	86%		Cleanup Method2:	EPA 3660B
			Cleanup Date2:	09/25/13

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column		
Polychlorinated Biphenyls by GC - Westborough Lab									
						_			
Aroclor 1016	ND		ug/kg	36.6	7.24	1	A		
Aroclor 1221	ND		ug/kg	36.6	11.0	1	А		
Aroclor 1232	ND		ug/kg	36.6	7.78	1	А		
Aroclor 1242	ND		ug/kg	36.6	6.95	1	А		
Aroclor 1248	ND		ug/kg	36.6	4.43	1	А		
Aroclor 1254	ND		ug/kg	36.6	5.78	1	А		
Aroclor 1260	ND		ug/kg	36.6	6.36	1	А		
Aroclor 1262	ND		ug/kg	36.6	2.71	1	А		
Aroclor 1268	ND		ug/kg	36.6	5.31	1	А		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	77		30-150	А
Decachlorobiphenyl	70		30-150	А
2,4,5,6-Tetrachloro-m-xylene	75		30-150	В
Decachlorobiphenyl	87		30-150	В

			Serial_No:	10031311:13
Project Name:	295 MARYLAND ST		Lab Number:	L1318716
Project Number:	0222-001-101		Report Date:	10/03/13
		SAMPLE RESULTS		
Lab ID:	L1318716-02		Date Collected:	09/18/13 11:50
Client ID:	TP-5-13 (0-3')		Date Received:	09/20/13
Sample Location:	295 MARYLAND ST		Field Prep:	Not Specified
Matrix:	Soil		Extraction Method:	EPA 3546
Analytical Method:	1,8082A		Extraction Date:	09/23/13 16:55
Analytical Date:	09/25/13 21:42		Cleanup Method1:	EPA 3665A
Analyst:	JW		Cleanup Date1:	09/25/13
Percent Solids:	86%		Cleanup Method2:	EPA 3660B
			Cleanup Date2:	09/25/13

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column			
Polychlorinated Biphenyls by GC - Westborough Lab										
Annual 10 4040				00.0	7.00	_				
Aroclor 1016	ND		ug/kg	36.6	7.23	1	A			
Aroclor 1221	ND		ug/kg	36.6	11.0	1	А			
Aroclor 1232	ND		ug/kg	36.6	7.78	1	А			
Aroclor 1242	ND		ug/kg	36.6	6.95	1	А			
Aroclor 1248	ND		ug/kg	36.6	4.43	1	А			
Aroclor 1254	ND		ug/kg	36.6	5.77	1	А			
Aroclor 1260	ND		ug/kg	36.6	6.36	1	А			
Aroclor 1262	ND		ug/kg	36.6	2.71	1	А			
Aroclor 1268	ND		ug/kg	36.6	5.31	1	А			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	74		30-150	A
Decachlorobiphenyl	67		30-150	А
2,4,5,6-Tetrachloro-m-xylene	74		30-150	В
Decachlorobiphenyl	75		30-150	В

			Serial_No:10031311:13		
Project Name:	295 MARYLAND ST		Lab Number:	L1318716	
Project Number:	0222-001-101		Report Date:	10/03/13	
		SAMPLE RESULTS			
Lab ID:	L1318716-04		Date Collected:	09/19/13 08:40	
Client ID:	TP-7-13 (0-3')		Date Received:	09/20/13	
Sample Location:	295 MARYLAND ST		Field Prep:	Not Specified	
Matrix:	Soil		Extraction Method:	EPA 3546	
Analytical Method:	1,8082A		Extraction Date:	09/23/13 16:55	
Analytical Date:	09/25/13 21:54		Cleanup Method1:	EPA 3665A	
Analyst:	JW		Cleanup Date1:	09/25/13	
Percent Solids:	87%		Cleanup Method2:	EPA 3660B	
			Cleanup Date2:	09/25/13	

Aroclor 1221 ND ug/kg 37.4 11.3 1 A Aroclor 1232 ND ug/kg 37.4 7.94 1 A Aroclor 1242 ND ug/kg 37.4 7.10 1 A Aroclor 1242 ND ug/kg 37.4 7.10 1 A Aroclor 1248 ND ug/kg 37.4 4.52 1 A Aroclor 1254 ND ug/kg 37.4 5.89 1 A Aroclor 1260 ND ug/kg 37.4 6.49 1 A	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column		
Aroclor 1221 ND ug/kg 37.4 11.3 1 A Aroclor 1232 ND ug/kg 37.4 7.94 1 A Aroclor 1242 ND ug/kg 37.4 7.10 1 A Aroclor 1242 ND ug/kg 37.4 7.10 1 A Aroclor 1248 ND ug/kg 37.4 4.52 1 A Aroclor 1254 ND ug/kg 37.4 5.89 1 A Aroclor 1260 ND ug/kg 37.4 6.49 1 A	Polychlorinated Biphenyls by GC - Westborough Lab									
Aroclor 1221 ND ug/kg 37.4 11.3 1 A Aroclor 1232 ND ug/kg 37.4 7.94 1 A Aroclor 1242 ND ug/kg 37.4 7.10 1 A Aroclor 1242 ND ug/kg 37.4 7.10 1 A Aroclor 1248 ND ug/kg 37.4 4.52 1 A Aroclor 1254 ND ug/kg 37.4 5.89 1 A Aroclor 1260 ND ug/kg 37.4 6.49 1 A							_			
Aroclor 1232 ND ug/kg 37.4 7.94 1 A Aroclor 1242 ND ug/kg 37.4 7.10 1 A Aroclor 1248 ND ug/kg 37.4 4.52 1 A Aroclor 1254 ND ug/kg 37.4 5.89 1 A Aroclor 1260 ND ug/kg 37.4 6.49 1 A	Aroclor 1016	ND		ug/kg	37.4	7.38	1	A		
Aroclor 1242 ND ug/kg 37.4 7.10 1 A Aroclor 1248 ND ug/kg 37.4 4.52 1 A Aroclor 1254 ND ug/kg 37.4 5.89 1 A Aroclor 1260 ND ug/kg 37.4 6.49 1 A	Aroclor 1221	ND		ug/kg	37.4	11.3	1	А		
Aroclor 1248 ND ug/kg 37.4 4.52 1 A Aroclor 1254 ND ug/kg 37.4 5.89 1 A Aroclor 1260 ND ug/kg 37.4 6.49 1 A	Aroclor 1232	ND		ug/kg	37.4	7.94	1	А		
Aroclor 1254 ND ug/kg 37.4 5.89 1 A Aroclor 1260 ND ug/kg 37.4 6.49 1 A	Aroclor 1242	ND		ug/kg	37.4	7.10	1	А		
Aroclor 1260 ND ug/kg 37.4 6.49 1 A	Aroclor 1248	ND		ug/kg	37.4	4.52	1	А		
	Aroclor 1254	ND		ug/kg	37.4	5.89	1	А		
Aroclor 1262 ND ug/kg 37.4 2.76 1 A	Aroclor 1260	ND		ug/kg	37.4	6.49	1	А		
	Aroclor 1262	ND		ug/kg	37.4	2.76	1	А		
Aroclor 1268 ND ug/kg 37.4 5.42 1 A	Aroclor 1268	ND		ug/kg	37.4	5.42	1	А		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	68		30-150	А
Decachlorobiphenyl	74		30-150	А
2,4,5,6-Tetrachloro-m-xylene	69		30-150	В
Decachlorobiphenyl	95		30-150	В

			Serial_No:10031311:13		
Project Name:	295 MARYLAND ST		Lab Number:	L1318716	
Project Number:	0222-001-101		Report Date:	10/03/13	
		SAMPLE RESULTS			
Lab ID:	L1318716-07		Date Collected:	09/19/13 14:15	
Client ID:	TP-22-13 (6-8')		Date Received:	09/20/13	
Sample Location:	295 MARYLAND ST		Field Prep:	Not Specified	
Matrix:	Soil		Extraction Method:	EPA 3546	
Analytical Method:	1,8082A		Extraction Date:	09/23/13 16:55	
Analytical Date:	09/25/13 22:06		Cleanup Method1:	EPA 3665A	
Analyst:	JW		Cleanup Date1:	09/25/13	
Percent Solids:	86%		Cleanup Method2:	EPA 3660B	
			Cleanup Date2:	09/25/13	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column			
Polychlorinated Biphenyls by GC - Westborough Lab										
Aroclor 1016	ND		ug/kg	37.3	7.36	1	А			
			ug/kg							
Aroclor 1221	ND		ug/kg	37.3	11.2	1	A			
Aroclor 1232	ND		ug/kg	37.3	7.92	1	A			
Aroclor 1242	ND		ug/kg	37.3	7.07	1	А			
Aroclor 1248	ND		ug/kg	37.3	4.51	1	А			
Aroclor 1254	ND		ug/kg	37.3	5.88	1	А			
Aroclor 1260	ND		ug/kg	37.3	6.47	1	А			
Aroclor 1262	ND		ug/kg	37.3	2.76	1	А			
Aroclor 1268	ND		ug/kg	37.3	5.41	1	А			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	75		30-150	А
Decachlorobiphenyl	73		30-150	А
2,4,5,6-Tetrachloro-m-xylene	75		30-150	В
Decachlorobiphenyl	77		30-150	В

			Serial_No:10031311:13		
Project Name:	295 MARYLAND ST		Lab Number:	L1318716	
Project Number:	0222-001-101		Report Date:	10/03/13	
		SAMPLE RESULTS			
Lab ID:	L1318716-08		Date Collected:	09/19/13 15:30	
Client ID:	TP-23-13 (0.5-3')		Date Received:	09/20/13	
Sample Location:	295 MARYLAND ST		Field Prep:	Not Specified	
Matrix:	Soil		Extraction Method:	EPA 3546	
Analytical Method:	1,8082A		Extraction Date:	09/23/13 16:55	
Analytical Date:	09/25/13 22:19		Cleanup Method1:	EPA 3665A	
Analyst:	JW		Cleanup Date1:	09/25/13	
Percent Solids:	87%		Cleanup Method2:	EPA 3660B	
			Cleanup Date2:	09/25/13	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column		
Polychlorinated Biphenyls by GC - Westborough Lab									
Aroclor 1016	ND		ug/kg	36.6	7.23	1	A		
Aroclor 1221	ND		ug/kg	36.6	11.0	1	А		
Aroclor 1232	ND		ug/kg	36.6	7.77	1	А		
Aroclor 1242	ND		ug/kg	36.6	6.94	1	А		
Aroclor 1248	ND		ug/kg	36.6	4.43	1	А		
Aroclor 1254	ND		ug/kg	36.6	5.77	1	А		
Aroclor 1260	ND		ug/kg	36.6	6.35	1	А		
Aroclor 1262	ND		ug/kg	36.6	2.71	1	А		
Aroclor 1268	ND		ug/kg	36.6	5.31	1	А		

% Recovery	Qualifier	Acceptance Criteria	Column
73		30-150	А
71		30-150	А
70		30-150	В
89		30-150	В
	73 71 70	73 71 70	% Recovery Qualifier Criteria 73 30-150 71 30-150 70 30-150

			Serial_No:10031311:13			
Project Name:	295 MARYLAND ST		Lab Number:	L1318716		
Project Number:	0222-001-101		Report Date:	10/03/13		
		SAMPLE RESULTS				
Lab ID:	L1318716-09		Date Collected:	09/19/13 17:00		
Client ID:	TP-24-13 (0.5-4')		Date Received:	09/20/13		
Sample Location:	295 MARYLAND ST		Field Prep:	Not Specified		
Matrix:	Soil		Extraction Method:	EPA 3546		
Analytical Method:	1,8082A		Extraction Date:	09/23/13 16:55		
Analytical Date:	09/25/13 22:31		Cleanup Method1:	EPA 3665A		
Analyst:	JW		Cleanup Date1:	09/25/13		
Percent Solids:	88%		Cleanup Method2:	EPA 3660B		
			Cleanup Date2:	09/25/13		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column		
Polychlorinated Biphenyls by GC - Westborough Lab									
Aroclor 1016	ND		ug/kg	36.4	7.19	1	A		
Aroclor 1221	ND		ug/kg	36.4	11.0	1	А		
Aroclor 1232	ND		ug/kg	36.4	7.74	1	А		
Aroclor 1242	ND		ug/kg	36.4	6.91	1	А		
Aroclor 1248	ND		ug/kg	36.4	4.41	1	А		
Aroclor 1254	ND		ug/kg	36.4	5.74	1	А		
Aroclor 1260	ND		ug/kg	36.4	6.32	1	А		
Aroclor 1262	ND		ug/kg	36.4	2.69	1	А		
Aroclor 1268	ND		ug/kg	36.4	5.28	1	А		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	74		30-150	А
Decachlorobiphenyl	76		30-150	А
2,4,5,6-Tetrachloro-m-xylene	75		30-150	В
Decachlorobiphenyl	87		30-150	В

			Serial_No:10031311:13		
Project Name:	295 MARYLAND ST		Lab Number:	L1318716	
Project Number:	0222-001-101		Report Date:	10/03/13	
		SAMPLE RESULTS			
Lab ID:	L1318716-10		Date Collected:	09/20/13 11:30	
Client ID:	TP-25-13 (0.5-4')		Date Received:	09/20/13	
Sample Location:	295 MARYLAND ST		Field Prep:	Not Specified	
Matrix:	Soil		Extraction Method:	EPA 3546	
Analytical Method:	1,8082A		Extraction Date:	09/23/13 16:55	
Analytical Date:	09/25/13 22:43		Cleanup Method1:	EPA 3665A	
Analyst:	JW		Cleanup Date1:	09/25/13	
Percent Solids:	86%		Cleanup Method2:	EPA 3660B	
			Cleanup Date2:	09/25/13	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column	
Polychlorinated Biphenyls by GC - Westborough Lab								
Aroclor 1016	ND		ug/kg	36.7	7.25	1	A	
Aroclor 1221	ND		ug/kg	36.7	11.1	1	А	
Aroclor 1232	ND		ug/kg	36.7	7.79	1	А	
Aroclor 1242	ND		ug/kg	36.7	6.96	1	А	
Aroclor 1248	ND		ug/kg	36.7	4.44	1	А	
Aroclor 1254	ND		ug/kg	36.7	5.78	1	А	
Aroclor 1260	ND		ug/kg	36.7	6.37	1	А	
Aroclor 1262	ND		ug/kg	36.7	2.71	1	А	
Aroclor 1268	ND		ug/kg	36.7	5.32	1	А	

Surrogate	% Recovery	Acceptance Criteria	e Column	
2,4,5,6-Tetrachloro-m-xylene	70		30-150	A
Decachlorobiphenyl	69		30-150	А
2,4,5,6-Tetrachloro-m-xylene	66		30-150	В
Decachlorobiphenyl	80		30-150	В

L1318716

10/03/13

Lab Number:

Report Date:

09/25/13

Project Name:295 MARYLAND STProject Number:0222-001-101

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8
Analytical Date:	09/2
Analyst:	JW

1,8082A)9/25/13 18:49 JW

Extraction Method:	EPA 3546
Extraction Date:	09/23/13 16:55
Cleanup Method1:	EPA 3665A
Cleanup Date1:	09/25/13
Cleanup Method2:	EPA 3660B
Cleanup Date2:	09/25/13

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC - WG638357-1	Westboroug	h Lab for s	ample(s):	01-02,04,07-10	Batch:	
Aroclor 1016	ND		ug/kg	32.5	6.42	А
Aroclor 1221	ND		ug/kg	32.5	9.81	А
Aroclor 1232	ND		ug/kg	32.5	6.91	А
Aroclor 1242	ND		ug/kg	32.5	6.17	А
Aroclor 1248	ND		ug/kg	32.5	3.94	А
Aroclor 1254	ND		ug/kg	32.5	5.13	А
Aroclor 1260	ND		ug/kg	32.5	5.65	А
Aroclor 1262	ND		ug/kg	32.5	2.40	А
Aroclor 1268	ND		ug/kg	32.5	4.72	А

			Acceptance	•
Surrogate	%Recovery	Qualifier	Criteria	Column
	70		00.450	
2,4,5,6-Tetrachloro-m-xylene	72		30-150	A
Decachlorobiphenyl	69		30-150	А
2,4,5,6-Tetrachloro-m-xylene	71		30-150	В
Decachlorobiphenyl	72		30-150	В

Project Name: 295 MARYLAND ST

Project Number: 0222-001-101

Parameter		LCS %Recoverv	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
	Biphenyls by GC - Westborou			01-02,04,07-10						
Aroclor 1016		70	,	73		40-140	4		50	A
Aroclor 1260		66		69		40-140	4		50	А

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	74		71		30-150	А
Decachlorobiphenyl	65		68		30-150	А
2,4,5,6-Tetrachloro-m-xylene	75		71		30-150	В
Decachlorobiphenyl	71		72		30-150	В

PESTICIDES

			Serial_No:	10031311:13
Project Name:	295 MARYLAND ST		Lab Number:	L1318716
Project Number:	0222-001-101		Report Date:	10/03/13
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L1318716-01 TP-4-13 (0-3') 295 MARYLAND ST		Date Collected: Date Received: Field Prep:	09/18/13 16:30 09/20/13 Not Specified
Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 1,8081B 09/26/13 16:43 SH 86%		Extraction Method: Extraction Date: Cleanup Method1: Cleanup Date1:	EPA 3546 09/25/13 11:22 EPA 3620B 09/26/13

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column		
Organochlorine Pesticides by GC - Westborough Lab									
Delta-BHC	ND		ug/kg	1.81	0.355	1	А		
Lindane	ND		ug/kg	0.756	0.338	1	А		
Alpha-BHC	ND		ug/kg	0.756	0.215	1	А		
Beta-BHC	ND		ug/kg	1.81	0.688	1	А		
Heptachlor	ND		ug/kg	0.907	0.406	1	А		
Aldrin	ND		ug/kg	1.81	0.638	1	А		
Heptachlor epoxide	ND		ug/kg	3.40	1.02	1	А		
Endrin	ND		ug/kg	0.756	0.310	1	А		
Endrin aldehyde	ND		ug/kg	2.27	0.793	1	А		
Endrin ketone	ND		ug/kg	1.81	0.467	1	А		
Dieldrin	ND		ug/kg	1.13	0.567	1	А		
4,4'-DDE	ND		ug/kg	1.81	0.419	1	А		
4,4'-DDD	4.66		ug/kg	1.81	0.647	1	В		
4,4'-DDT	ND		ug/kg	3.40	1.46	1	А		
Endosulfan I	ND		ug/kg	1.81	0.428	1	А		
Endosulfan II	ND		ug/kg	1.81	0.606	1	А		
Endosulfan sulfate	ND		ug/kg	0.756	0.345	1	А		
Methoxychlor	ND		ug/kg	3.40	1.06	1	А		
Toxaphene	ND		ug/kg	34.0	9.52	1	А		
cis-Chlordane	ND		ug/kg	2.27	0.632	1	А		
trans-Chlordane	ND		ug/kg	2.27	0.598	1	А		
Chlordane	ND		ug/kg	14.7	6.01	1	А		

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	86		30-150	А
Decachlorobiphenyl	78		30-150	А
2,4,5,6-Tetrachloro-m-xylene	64		30-150	В
Decachlorobiphenyl	81		30-150	В

			Serial_No:	10031311:13
Project Name:	295 MARYLAND ST		Lab Number:	L1318716
Project Number:	0222-001-101		Report Date:	10/03/13
		SAMPLE RESULTS		
Lab ID:	L1318716-01		Date Collected:	09/18/13 16:30
Client ID:	TP-4-13 (0-3')		Date Received:	09/20/13
Sample Location:	295 MARYLAND ST		Field Prep:	Not Specified
Matrix:	Soil		Extraction Method:	EPA 8151A
Analytical Method:	1,8151A(M)		Extraction Date:	09/26/13 06:32
Analytical Date:	09/27/13 16:59		Methylation Date:	09/26/13 23:12
Analyst:	SH			
Percent Solids:	86%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Chlorinated Herbicides by GC - V	Vestborough Lab						
2,4-D	ND		mg/kg	0.188	0.023	1	A
2,4,5-T	ND		mg/kg	0.188	0.012	1	А
2,4,5-TP (Silvex)	ND		mg/kg	0.188	0.010	1	А

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
DCAA	78		30-150	А
DCAA	73		30-150	В

			Serial_No:	10031311:13
Project Name:	295 MARYLAND ST		Lab Number:	L1318716
Project Number:	0222-001-101		Report Date:	10/03/13
		SAMPLE RESULTS		
Lab ID:	L1318716-02		Date Collected:	09/18/13 11:50
Client ID:	TP-5-13 (0-3')		Date Received:	09/20/13
Sample Location:	295 MARYLAND ST		Field Prep:	Not Specified
Matrix:	Soil		Extraction Method:	EPA 3546
Analytical Method:	1,8081B		Extraction Date:	09/25/13 11:22
Analytical Date:	09/26/13 16:56		Cleanup Method1:	EPA 3620B
Analyst:	SH		Cleanup Date1:	09/26/13
Percent Solids:	86%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column		
Organochlorine Pesticides by GC - Westborough Lab									
Delta-BHC	ND		ug/kg	1.84	0.359	1	А		
Lindane	ND		ug/kg	0.765	0.342	1	А		
Alpha-BHC	ND		ug/kg	0.765	0.217	1	А		
Beta-BHC	ND		ug/kg	1.84	0.696	1	А		
Heptachlor	ND		ug/kg	0.918	0.411	1	А		
Aldrin	ND		ug/kg	1.84	0.646	1	А		
Heptachlor epoxide	ND		ug/kg	3.44	1.03	1	А		
Endrin	ND		ug/kg	0.765	0.314	1	А		
Endrin aldehyde	ND		ug/kg	2.29	0.803	1	А		
Endrin ketone	ND		ug/kg	1.84	0.473	1	А		
Dieldrin	ND		ug/kg	1.15	0.574	1	А		
4,4'-DDE	ND		ug/kg	1.84	0.424	1	А		
4,4'-DDD	ND		ug/kg	1.84	0.655	1	А		
4,4'-DDT	ND		ug/kg	3.44	1.48	1	А		
Endosulfan I	ND		ug/kg	1.84	0.434	1	А		
Endosulfan II	ND		ug/kg	1.84	0.613	1	А		
Endosulfan sulfate	ND		ug/kg	0.765	0.349	1	А		
Methoxychlor	ND		ug/kg	3.44	1.07	1	А		
Toxaphene	ND		ug/kg	34.4	9.64	1	А		
cis-Chlordane	ND		ug/kg	2.29	0.639	1	А		
trans-Chlordane	ND		ug/kg	2.29	0.606	1	А		
Chlordane	ND		ug/kg	14.9	6.08	1	А		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	100		30-150	А
Decachlorobiphenyl	106		30-150	А
2,4,5,6-Tetrachloro-m-xylene	64		30-150	В
Decachlorobiphenyl	84		30-150	В

			Serial_No:	10031311:13
Project Name:	295 MARYLAND ST		Lab Number:	L1318716
Project Number:	0222-001-101		Report Date:	10/03/13
		SAMPLE RESULTS		
Lab ID:	L1318716-02		Date Collected:	09/18/13 11:50
Client ID:	TP-5-13 (0-3')		Date Received:	09/20/13
Sample Location:	295 MARYLAND ST		Field Prep:	Not Specified
Matrix:	Soil		Extraction Method:	EPA 8151A
Analytical Method:	1,8151A(M)		Extraction Date:	09/24/13 00:42
Analytical Date:	09/26/13 16:09		Methylation Date:	09/26/13 09:47
Analyst:	SH		·	
Percent Solids:	86%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column			
Chlorinated Herbicides by GC - Westborough Lab										
2,4-D	ND		mg/kg	0.193	0.024	1	A			
2,4,5-T	ND		mg/kg	0.193	0.012	1	А			
2,4,5-TP (Silvex)	ND		mg/kg	0.193	0.011	1	А			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
DCAA	78		30-150	А
DCAA	47		30-150	В

			Serial_No:	10031311:13
Project Name:	295 MARYLAND ST		Lab Number:	L1318716
Project Number:	0222-001-101		Report Date:	10/03/13
		SAMPLE RESULTS		
Lab ID:	L1318716-07		Date Collected:	09/19/13 14:15
Client ID:	TP-22-13 (6-8')		Date Received:	09/20/13
Sample Location:	295 MARYLAND ST		Field Prep:	Not Specified
Matrix:	Soil		Extraction Method:	EPA 3546
Analytical Method:	1,8081B		Extraction Date:	09/25/13 11:49
Analytical Date:	09/26/13 17:09		Cleanup Method1:	EPA 3620B
Analyst:	SH		Cleanup Date1:	09/26/13
Percent Solids:	86%		-	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Organochlorine Pesticides by GC - Wes	tborough Lab						
Delta-BHC	ND		ug/kg	1.79	0.351	1	А
Lindane	ND		ug/kg	0.747	0.334	1	А
Alpha-BHC	ND		ug/kg	0.747	0.212	1	А
Beta-BHC	ND		ug/kg	1.79	0.680	1	А
Heptachlor	ND		ug/kg	0.897	0.402	1	А
Aldrin	ND		ug/kg	1.79	0.632	1	А
Heptachlor epoxide	ND		ug/kg	3.36	1.01	1	А
Endrin	ND		ug/kg	0.747	0.306	1	А
Endrin aldehyde	ND		ug/kg	2.24	0.785	1	А
Endrin ketone	ND		ug/kg	1.79	0.462	1	А
Dieldrin	ND		ug/kg	1.12	0.560	1	А
4,4'-DDE	ND		ug/kg	1.79	0.415	1	А
4,4'-DDD	ND		ug/kg	1.79	0.640	1	А
4,4'-DDT	ND		ug/kg	3.36	1.44	1	А
Endosulfan I	ND		ug/kg	1.79	0.424	1	А
Endosulfan II	ND		ug/kg	1.79	0.599	1	А
Endosulfan sulfate	ND		ug/kg	0.747	0.342	1	А
Methoxychlor	ND		ug/kg	3.36	1.05	1	А
Toxaphene	ND		ug/kg	33.6	9.42	1	А
cis-Chlordane	ND		ug/kg	2.24	0.625	1	А
trans-Chlordane	ND		ug/kg	2.24	0.592	1	А
Chlordane	ND		ug/kg	14.6	5.94	1	А

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	96		30-150	А
Decachlorobiphenyl	88		30-150	А
2,4,5,6-Tetrachloro-m-xylene	66		30-150	В
Decachlorobiphenyl	83		30-150	В

			Serial_No:	10031311:13
Project Name:	295 MARYLAND ST		Lab Number:	L1318716
Project Number:	0222-001-101		Report Date:	10/03/13
		SAMPLE RESULTS		
Lab ID:	L1318716-07		Date Collected:	09/19/13 14:15
Client ID:	TP-22-13 (6-8')		Date Received:	09/20/13
Sample Location:	295 MARYLAND ST		Field Prep:	Not Specified
Matrix:	Soil		Extraction Method:	EPA 8151A
Analytical Method:	1,8151A(M)		Extraction Date:	09/26/13 06:32
Analytical Date:	09/27/13 16:39		Methylation Date:	09/26/13 23:12
Analyst:	SH		·	
Percent Solids:	86%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Chlorinated Herbicides by GC - V	Vestborough Lab						
2,4-D	ND		mg/kg	0.192	0.023	1	A
2,4,5-T	ND		mg/kg	0.192	0.012	1	А
2,4,5-TP (Silvex)	ND		mg/kg	0.192	0.011	1	А

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
DCAA	68		30-150	А
DCAA	66		30-150	В

Project Name:	295 MARYLAND ST		Lab Number:	L1318716
Project Number:	0222-001-101		Report Date:	10/03/13
		Method Blank Analysis Batch Quality Control		
		Batch Quality Control		

Analytical Method:	1,8151A(M)	Extraction Method:	EPA 8151A
Analytical Date:	09/26/13 14:47	Extraction Date:	09/24/13 00:4
Analyst:	SH		

09/26/13 09:47 Methylation Date:

09/24/13 00:42

arameter	Result	Qualifier	Units		RL	MDL	Column
hlorinated Herbicides by GC -	- Westborough I	Lab for sam	nple(s):	02	Batch:	WG638423-1	
MCPP	ND		mg/kg		3.33	0.955	А
MCPA	ND		mg/kg		3.33	1.04	А
Dalapon	ND		mg/kg		0.033	0.010	А
Dicamba	ND		mg/kg		0.033	0.010	А
Dichloroprop	ND		mg/kg		0.033	0.011	А
2,4-D	ND		mg/kg		0.166	0.020	А
2,4-DB	ND		mg/kg		0.166	0.012	А
2,4,5-T	ND		mg/kg		0.166	0.010	А
2,4,5-TP (Silvex)	ND		mg/kg		0.166	0.009	А
Dinoseb	ND		mg/kg		0.033	0.012	А

			Acceptance	•
Surrogate	%Recovery	Qualifier	Criteria	Column
DCAA	59		30-150	A
DCAA	31		30-150	В

Project Name:	295 MARYLAND ST	Lab Number:	L1318716
Project Number:	0222-001-101	Report Date:	10/03/13

Method Blank Analysis Batch Quality Control

Analytical Method:	
Analytical Date:	
Analyst:	

1,8081B 09/26/13 10:55 SH Extraction Method:EPA 3546Extraction Date:09/25/13 11:22Cleanup Method1:EPA 3620BCleanup Date1:09/26/13

						_	0
Parameter	Result	Qualifier	Units	RL	MD	L	Column
Organochlorine Pesticides b	y GC - Westboroug	h Lab for s	sample(s):	01-02,07	Batch:	WG6	38908-1
Delta-BHC	ND		ug/kg	1.59	0.3	12	А
Lindane	ND		ug/kg	0.664	0.2	97	А
Alpha-BHC	ND		ug/kg	0.664	0.1	88	А
Beta-BHC	ND		ug/kg	1.59	0.6	04	А
Heptachlor	ND		ug/kg	0.796	0.3	57	А
Aldrin	ND		ug/kg	1.59	0.5	61	А
Heptachlor epoxide	ND		ug/kg	2.99	0.8	96	А
Endrin	ND		ug/kg	0.664	0.2	72	А
Endrin aldehyde	ND		ug/kg	1.99	0.6	97	А
Endrin ketone	ND		ug/kg	1.59	0.4	10	А
Dieldrin	ND		ug/kg	0.995	0.4	98	А
4,4'-DDE	ND		ug/kg	1.59	0.3	68	А
4,4'-DDD	ND		ug/kg	1.59	0.5	68	А
4,4'-DDT	ND		ug/kg	2.99	1.2	28	А
Endosulfan I	ND		ug/kg	1.59	0.3	76	А
Endosulfan II	ND		ug/kg	1.59	0.5	32	А
Endosulfan sulfate	ND		ug/kg	0.664	0.3	03	А
Methoxychlor	ND		ug/kg	2.99	0.9	29	А
Toxaphene	ND		ug/kg	29.9	8.3	36	А
cis-Chlordane	ND		ug/kg	1.99	0.5	55	А
trans-Chlordane	ND		ug/kg	1.99	0.5	26	А
Chlordane	ND		ug/kg	12.9	5.2	28	А

			Acceptance	•
Surrogate	%Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	106		30-150	А
Decachlorobiphenyl	99		30-150	А
2,4,5,6-Tetrachloro-m-xylene	71		30-150	В
Decachlorobiphenyl	77		30-150	В

Project Name:	295 MARYLAND ST		Lab Number:	L1318716
Project Number:	0222-001-101		Report Date:	10/03/13
		Method Blank Analysis Batch Quality Control		

Analytical Method:	1,8151A(M)	Extra
Analytical Date:	09/27/13 07:17	Extra
Analyst:	SH	

Extraction Method: EPA 8151A Extraction Date: 09/26/13 06:32

Methylation Date: 09/26/13 14:39

arameter	Result	Qualifier	Units	RL	MDL	Column
hlorinated Herbicides by GC	- Westborough L	ab for sam	ple(s):	01,07 Batch:	WG639096-1	
МСРР	ND		mg/kg	3.33	0.956	А
MCPA	ND		mg/kg	3.33	1.04	А
Dalapon	ND		mg/kg	0.033	0.010	А
Dicamba	ND		mg/kg	0.033	0.010	А
Dichloroprop	ND		mg/kg	0.033	0.011	А
2,4-D	ND		mg/kg	0.166	0.020	А
2,4-DB	ND		mg/kg	0.166	0.012	А
2,4,5-T	ND		mg/kg	0.166	0.010	А
2,4,5-TP (Silvex)	ND		mg/kg	0.166	0.009	А
Dinoseb	ND		mg/kg	0.033	0.012	А

			Acceptance	;
Surrogate	%Recovery	Qualifier	Criteria	Column
DCAA	94		30-150	A
DCAA	60		30-150	В

Project Name: 295 MARYLAND ST

Project Number: 0222-001-101

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Chlorinated Herbicides by GC - Westborough	Lab Associate	ed sample(s):	02 Batch: V	VG638423-2	WG638423-3				
МСРР	105		104		30-150	1		30	А
MCPA	178	Q	90		30-150	66	Q	30	А
Dalapon	84		58		30-150	37	Q	30	А
Dicamba	70		71		30-150	1		30	А
Dichloroprop	88		87		30-150	1		30	А
2,4-D	89		83		30-150	7		30	А
2,4-DB	91		97		30-150	6		30	А
2,4,5-T	73		79		30-150	8		30	А
2,4,5-TP (Silvex)	71		75		30-150	5		30	А
Dinoseb	8	Q	9	Q	30-150	9		30	А

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	Column
DCAA	68		69		30-150	А
DCAA	43		51		30-150	В

Project Name: 295 MARYLAND ST

Project Number: 0222-001-101

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Organochlorine Pesticides by GC - Westborough Lab Associated sample(s): 01-02,07 Batch: WG638908-2 WG638908-3									
Delta-BHC	119		123		30-150	3		30	А
Lindane	103		109		30-150	6		30	А
Alpha-BHC	101		105		30-150	4		30	А
Beta-BHC	91		95		30-150	4		30	А
Heptachlor	102		109		30-150	7		30	А
Aldrin	104		111		30-150	7		30	А
Heptachlor epoxide	100		105		30-150	5		30	А
Endrin	112		121		30-150	8		30	А
Endrin aldehyde	90		91		30-150	1		30	А
Endrin ketone	108		114		30-150	5		30	А
Dieldrin	104		110		30-150	6		30	А
4,4'-DDE	104		112		30-150	7		30	А
4,4'-DDD	107		114		30-150	6		30	А
4,4'-DDT	110		115		30-150	4		30	А
Endosulfan I	104		111		30-150	7		30	А
Endosulfan II	115		120		30-150	4		30	А
Endosulfan sulfate	119		125		30-150	5		30	А
Methoxychlor	93		99		30-150	6		30	А
cis-Chlordane	102		107		30-150	5		30	А
trans-Chlordane	102		107		30-150	5		30	А

Project Name: 295 MARYLAND ST

Project Number: 0222-001-101 Lab Number: L1318716

Report Date: 10/03/13

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Organochlorine Pesticides by GC - We	stborough Lab Associa	ated sample	e(s): 01-02,07 B	Batch: WG6	38908-2 WG638	908-3			

	LCS	LCS LCSD Acceptance					
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	Column	
2,4,5,6-Tetrachloro-m-xylene	114		109		30-150	А	
Decachlorobiphenyl	114		99		30-150	А	
2,4,5,6-Tetrachloro-m-xylene	79		78		30-150	В	
Decachlorobiphenyl	98		104		30-150	В	

Project Name: 295 MARYLAND ST

Project Number: 0222-001-101

	LCS		LCS	D	c.	%Recovery			RPD	
Parameter	%Recovery	Qual	%Reco	very	Qual	Limits	RPD	Qual	Limits	Column
Chlorinated Herbicides by GC - Westborough	Lab Associate	ed sample(s):	01,07 B	atch:	WG639096-2	WG639096-3				
МСРР	113		121	I		30-150	7		30	А
MCPA	208	Q	250)	Q	30-150	18		30	А
Dalapon	83		115	5		30-150	32	Q	30	А
Dicamba	90		93			30-150	3		30	А
Dichloroprop	112		115	5		30-150	3		30	А
2,4-D	110		116	6		30-150	5		30	А
2,4-DB	120		128	3		30-150	6		30	А
2,4,5-T	91		92			30-150	1		30	А
2,4,5-TP (Silvex)	88		91			30-150	3		30	А
Dinoseb	3	Q	7		Q	30-150	83	Q	30	А

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	Column
DCAA	90		91		30-150	Α
DCAA	62		49		30-150	В

METALS

								Serial	_No:10031;	311:13	
Project Name:	295 N	IARYLAND	ST				Lab Nu	mber:	L13187	16	
Project Number:	0222-	001-101					Report	Date:	10/03/1	3	
				SAMPL	E RES	ULTS					
Lab ID:	L1318	716-01					Date Co	ollected:	09/18/1	3 16:30	
Client ID:	TP-4-	13 (0-3')					Date R	eceived:	09/20/1	3	
Sample Location:		ARYLAND	ST				Field P	rep:	Not Spe	cified	
Matrix:	Soil										
Percent Solids:	86%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Westb	orough l	Lab									
Aluminum, Total	8700		mg/kg	8.7	1.7	2	09/26/13 13:1	0 09/27/13 17:56	EPA 3050B	1,6010C	TT
Antimony, Total	ND		mg/kg	4.4	0.70	2	09/26/13 13:1	0 09/27/13 17:56	EPA 3050B	1,6010C	TT
Arsenic, Total	7.0		mg/kg	0.87	0.17	2	09/26/13 13:1	0 09/27/13 17:56	EPA 3050B	1,6010C	TT
Barium, Total	140		mg/kg	0.87	0.26	2	09/26/13 13:1	0 09/27/13 17:56	EPA 3050B	1,6010C	TT
Beryllium, Total	0.44		mg/kg	0.44	0.09	2	09/26/13 13:1	0 09/27/13 17:56	EPA 3050B	1,6010C	TT
Cadmium, Total	0.96		mg/kg	0.87	0.06	2	09/26/13 13:1	0 09/27/13 17:56	EPA 3050B	1,6010C	TT
Calcium, Total	40000		mg/kg	8.7	2.6	2	09/26/13 13:1	0 09/27/13 17:56	EPA 3050B	1,6010C	TT
Chromium, Total	20		mg/kg	0.87	0.17	2	09/26/13 13:1	0 09/27/13 17:56	EPA 3050B	1,6010C	ТТ
Cobalt, Total	6.0		mg/kg	1.7	0.44	2	09/26/13 13:1	0 09/27/13 17:56	EPA 3050B	1,6010C	TT
Copper, Total	32		mg/kg	0.87	0.17	2	09/26/13 13:1	0 09/27/13 17:56	EPA 3050B	1,6010C	ТТ
Iron, Total	16000		mg/kg	4.4	1.7	2	09/26/13 13:1	0 09/27/13 17:56	EPA 3050B	1,6010C	ТТ
Lead, Total	920		mg/kg	4.4	0.17	2	09/26/13 13:1	0 09/27/13 17:56	EPA 3050B	1,6010C	TT
Magnesium, Total	13000		mg/kg	8.7	0.87	2	09/26/13 13:1	0 09/27/13 17:56	EPA 3050B	1,6010C	ТТ
Manganese, Total	340		mg/kg	0.87	0.17	2	09/26/13 13:1	0 09/27/13 17:56	EPA 3050B	1,6010C	тт
Mercury, Total	1.3		mg/kg	0.09	0.02	1	09/27/13 09:1	0 09/27/13 14:23	EPA 7471B	1,7471B	MC
Nickel, Total	12		mg/kg	2.2	0.35	2	09/26/13 13:1	0 09/27/13 17:56	EPA 3050B	1,6010C	TT
Potassium, Total	950		mg/kg	220	35.	2	09/26/13 13:1	0 09/27/13 17:56	EPA 3050B	1,6010C	TT
Selenium, Total	ND		mg/kg	1.7	0.26	2		0 09/27/13 17:56		1,6010C	TT
Silver, Total	ND		mg/kg	0.87	0.17	2		0 09/27/13 17:56		1,6010C	TT
· .			5.5							_	

1,6010C

1,6010C

1,6010C

1,6010C

ΤT

ΤT

ΤT

ΤT

Sodium, Total

Thallium, Total

Vanadium, Total

Zinc, Total

88

ND

19

210

J

170

1.7

0.87

4.4

mg/kg

mg/kg

mg/kg

mg/kg

26.

0.35

0.09

0.61

2

2

2

2

09/26/13 13:10 09/27/13 17:56 EPA 3050B

09/26/13 13:10 09/27/13 18:12 EPA 3050B

								Gena	_110.10031	511.15	
Project Name:	295 M	ARYLAND	ST				Lab Nu	mber:	L13187	16	
Project Number:	0222-(001-101					Report	Date:	10/03/1	3	
				SAMPL	E RES	ULTS					
Lab ID:	L1318	716-02					Date Co	llected:	09/18/1	3 11:50	
Client ID:	TP-5-1	3 (0-3')					Date Re	eceived:	09/20/1	3	
Sample Location:	295 M	ARYLAND	ST				Field Pr	ep:	Not Spe	cified	
Matrix:	Soil										
Percent Solids:	86%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Westb	orough L	_ab									
Aluminum, Total	10000		mg/kg	8.9	1.8	2	09/26/13 13:10) 09/27/13 18:12	EPA 3050B	1,6010C	TT
Antimony, Total	ND		mg/kg	4.4	0.71	2	09/26/13 13:10) 09/27/13 18:12	EPA 3050B	1,6010C	TT
Arsenic, Total	3.9		mg/kg	0.89	0.18	2	09/26/13 13:10) 09/27/13 18:12	EPA 3050B	1,6010C	TT
Barium, Total	100		mg/kg	0.89	0.27	2	09/26/13 13:10) 09/27/13 18:12	EPA 3050B	1,6010C	TT
Beryllium, Total	0.50		mg/kg	0.44	0.09	2	09/26/13 13:10	09/27/13 18:12	EPA 3050B	1,6010C	TT
Cadmium, Total	0.90		mg/kg	0.89	0.06	2	09/26/13 13:10	09/27/13 18:12	EPA 3050B	1,6010C	TT
Calcium, Total	9000		mg/kg	8.9	2.7	2	09/26/13 13:10	09/27/13 18:12	EPA 3050B	1,6010C	TT
Chromium, Total	15		mg/kg	0.89	0.18	2	09/26/13 13:10) 09/27/13 18:12	EPA 3050B	1,6010C	TT
Cobalt, Total	6.7		mg/kg	1.8	0.44	2	09/26/13 13:10	09/27/13 18:12	EPA 3050B	1,6010C	TT
Copper, Total	45		mg/kg	0.89	0.18	2	09/26/13 13:10	09/27/13 18:12	EPA 3050B	1,6010C	TT
Iron, Total	17000		mg/kg	4.4	1.8	2	09/26/13 13:10	09/27/13 18:12	EPA 3050B	1,6010C	TT
Lead, Total	130		mg/kg	4.4	0.18	2	09/26/13 13:10) 09/27/13 18:12	EPA 3050B	1,6010C	TT
Magnesium, Total	4800		mg/kg	8.9	0.89	2	09/26/13 13:10) 09/27/13 18:12	EPA 3050B	1,6010C	TT
Manganese, Total	520		mg/kg	0.89	0.18	2	09/26/13 13:10) 09/27/13 18:12	EPA 3050B	1,6010C	TT
Mercury, Total	1.1		mg/kg	0.08	0.02	1	09/27/13 09:10) 09/27/13 14:25	EPA 7471B	1,7471B	MC
Nickel, Total	14		mg/kg	2.2	0.36	2	09/26/13 13:10) 09/27/13 18:12	EPA 3050B	1,6010C	TT

1,6010C

1,6010C

1,6010C

1,6010C

1,6010C

1,6010C

1,6010C

ΤT

ΤT

TΤ

TΤ

TΤ

ΤT

ΤT

Potassium, Total

Selenium, Total

Silver, Total

Sodium, Total

Thallium, Total

Vanadium, Total

Zinc, Total

960

ND

ND

140

ND

21

140

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

J

220

1.8

0.89

180

1.8

0.89

4.4

36.

0.27

0.18

27.

0.36

0.09

0.62

2

2

2

2

2

2

2

Project Name:	205 M	ARYLAND	ст				Lab Nur	nhor	L13187	16	
Froject Name.	295 101	ARTLAND	31					inner.	L1310/	10	
Project Number:	0222-0	001-101					Report I	Date:	10/03/13	3	
				SAMPL	E RES	ULTS					
Lab ID:	L1318 ⁻	716-04					Date Co	llected:	09/19/13	3 08:40	
Client ID:	TP-7-1	3 (0-3')					Date Re	ceived:	09/20/13	3	
Sample Location:	295 M	ARYLAND	ST				Field Pre	ep:	Not Spe	cified	
Matrix:	Soil										
Percent Solids:	87%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Westb	orough L	ab									
Arsenic, Total	5.0		mg/kg	0.43	0.09	1	09/26/13 13:10	09/27/13 19:31	EPA 3050B	1,6010C	TT
Barium, Total	110		mg/kg	0.43	0.13	1	09/26/13 13:10	09/27/13 19:31	EPA 3050B	1,6010C	TT
Cadmium, Total	0.83		mg/kg	0.43	0.03	1	09/26/13 13:10	09/27/13 19:31	EPA 3050B	1,6010C	ТТ
Copper, Total	20		mg/kg	0.43	0.09	1	09/26/13 13:10	09/27/13 19:31	EPA 3050B	1,6010C	ТТ
Lead, Total	270		mg/kg	2.2	0.09	1	09/26/13 13:10	09/27/13 19:31	EPA 3050B	1,6010C	тт
Mercury, Total	0.70		mg/kg	0.09	0.02	1	09/27/13 09:10	09/27/13 14:26	EPA 7471B	1,7471B	MC
Silver, Total	ND		mg/kg	0.43	0.09	1	09/26/13 13:10	09/27/13 19:31	EPA 3050B	1,6010C	тт
Zinc, Total	99		mg/kg	2.2	0.30	1	09/26/13 13:10	09/30/13 12:44	EPA 3050B	1,6010C	тт

Project Name:	295 M	IARYLAND	ST				Lab Nu	mber:	L13187	16	
Project Number:	0222-0	001-101					Report	Date:	10/03/1	3	
				SAMPL	E RES	ULTS					
Lab ID:	L1318	716-07					Date Co	ollected:	09/19/1	3 14:15	
Client ID:	TP-22	-13 (6-8')					Date Re	eceived:	09/20/1	3	
Sample Location:	295 M	ARYLAND	ST				Field Pr	ep:	Not Spe	ecified	
Matrix:	Soil										
Percent Solids:	86%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analy
Total Metals - Westb	orough L	_ab									
Aluminum, Total	8000		mg/kg	9.1	1.8	2	09/26/13 13:10) 09/27/13 18:16	EPA 3050B	1,6010C	TT
Antimony, Total	ND		mg/kg	4.6	0.73	2	09/26/13 13:10) 09/27/13 18:16	EPA 3050B	1,6010C	ТТ
Arsenic, Total	3.5		mg/kg	0.91	0.18	2	09/26/13 13:10) 09/27/13 18:16	EPA 3050B	1,6010C	ТТ
Barium, Total	72		mg/kg	0.91	0.27	2	09/26/13 13:10) 09/27/13 18:16	EPA 3050B	1,6010C	ТТ
Beryllium, Total	0.36	J	mg/kg	0.46	0.09	2	09/26/13 13:10	09/27/13 18:16	EPA 3050B	1,6010C	тт
Cadmium Total	0.72	1	ma/ka	0.01	0.06	2	00/26/13 13.10	09/27/13 18.16	EPA 3050B	1 6010C	тт

Beryllium, Total	0.36	J	mg/kg	0.46	0.09	2	09/26/13 13:10 09/27/13 18:16 EPA 3050B	1,6010C	TT
Cadmium, Total	0.72	J	mg/kg	0.91	0.06	2	09/26/13 13:10 09/27/13 18:16 EPA 3050B	1,6010C	TT
Calcium, Total	67000		mg/kg	9.1	2.7	2	09/26/13 13:10 09/27/13 18:16 EPA 3050B	1,6010C	TT
Chromium, Total	13		mg/kg	0.91	0.18	2	09/26/13 13:10 09/27/13 18:16 EPA 3050B	1,6010C	TT
Cobalt, Total	6.3		mg/kg	1.8	0.46	2	09/26/13 13:10 09/27/13 18:16 EPA 3050B	1,6010C	TT
Copper, Total	19		mg/kg	0.91	0.18	2	09/26/13 13:10 09/27/13 18:16 EPA 3050B	1,6010C	ТТ
Iron, Total	16000		mg/kg	4.6	1.8	2	09/26/13 13:10 09/27/13 18:16 EPA 3050B	1,6010C	TT
Lead, Total	48		mg/kg	4.6	0.18	2	09/26/13 13:10 09/27/13 18:16 EPA 3050B	1,6010C	тт
Magnesium, Total	21000		mg/kg	9.1	0.91	2	09/26/13 13:10 09/27/13 18:16 EPA 3050B	1,6010C	тт
Manganese, Total	390		mg/kg	0.91	0.18	2	09/26/13 13:10 09/27/13 18:16 EPA 3050B	1,6010C	TT
Mercury, Total	0.08		mg/kg	0.08	0.02	1	09/27/13 09:10 09/27/13 14:28 EPA 7471B	1,7471B	MC
Nickel, Total	14		mg/kg	2.3	0.36	2	09/26/13 13:10 09/27/13 18:16 EPA 3050B	1,6010C	тт
Potassium, Total	1100		mg/kg	230	36.	2	09/26/13 13:10 09/27/13 18:16 EPA 3050B	1,6010C	тт
Selenium, Total	ND		mg/kg	1.8	0.27	2	09/26/13 13:10 09/27/13 18:16 EPA 3050B	1,6010C	тт
Silver, Total	ND		mg/kg	0.91	0.18	2	09/26/13 13:10 09/27/13 18:16 EPA 3050B	1,6010C	тт
Sodium, Total	120	J	mg/kg	180	27.	2	09/26/13 13:10 09/27/13 18:16 EPA 3050B	1,6010C	тт
Thallium, Total	ND		mg/kg	1.8	0.36	2	09/26/13 13:10 09/27/13 18:16 EPA 3050B	1,6010C	тт
Vanadium, Total	18		mg/kg	0.91	0.09	2	09/26/13 13:10 09/27/13 18:16 EPA 3050B	1,6010C	тт
Zinc, Total	94		mg/kg	4.6	0.64	2	09/26/13 13:10 09/27/13 18:16 EPA 3050B	1,6010C	TT

Project Name:	295 M	IARYLAND	ST				Lab Nu	mber:	L13187	16	
Project Number:	0222-0	001-101					Report	Date:	10/03/1	3	
				SAMPL	E RES	ULTS					
Lab ID:	L1318	716-08					Date Co	ollected:	09/19/1	3 15:30	
Client ID:	TP-23	-13 (0.5-3')					Date Re	eceived:	09/20/1	3	
Sample Location:	295 M	ARYLAND	ST				Field Pr	ep:	Not Spe	ecified	
Matrix:	Soil										
Percent Solids:	87%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Westb	orough L	_ab									
Arsenic, Total	2.8		mg/kg	0.43	0.09	1	09/26/13 13:10) 09/27/13 19:36	EPA 3050B	1,6010C	TT
Barium, Total	78		mg/kg	0.43	0.13	1	09/26/13 13:10	0 09/27/13 19:36	EPA 3050B	1,6010C	TT
Cadmium, Total	0.63		mg/kg	0.43	0.03	1	09/26/13 13:10	0 09/27/13 19:36	EPA 3050B	1,6010C	TT
Copper, Total	12		mg/kg	0.43	0.09	1	09/26/13 13:10	0 09/27/13 19:36	EPA 3050B	1,6010C	TT
Lead, Total	17		mg/kg	2.2	0.09	1	09/26/13 13:10	0 09/27/13 19:36	EPA 3050B	1,6010C	TT
Mercury, Total	ND		mg/kg	0.09	0.02	1	10/01/13 08:33	3 10/01/13 11:28	EPA 7471B	1,7471B	MC
Silver, Total	ND		mg/kg	0.43	0.09	1	09/26/13 13:10	0 09/27/13 19:36	EPA 3050B	1,6010C	TT
Zinc, Total	71		mg/kg	2.2	0.30	1	09/26/13 13:10	0 09/30/13 12:48	EPA 3050B	1,6010C	TT

Project Name:	295 M	ARYLAND	ST				Lab Nu	mber:	L13187	16	
Project Number:	0222-0	001-101					Report	Date:	10/03/1	3	
				SAMPL	E RES	ULTS					
Lab ID:	L1318	716-09					Date Co	ollected:	09/19/1	3 17:00	
Client ID:	TP-24	-13 (0.5-4')					Date Re	ceived:	09/20/1	3	
Sample Location:	295 M	ARYLAND	ST				Field Pr	ep:	Not Spe	ecified	
Matrix:	Soil										
Percent Solids:	88%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Westb	orough L	_ab									
Arsenic, Total	4.4		mg/kg	0.43	0.09	1	09/26/13 13:10) 09/27/13 19:40	EPA 3050B	1,6010C	TT
Barium, Total	72		mg/kg	0.43	0.13	1	09/26/13 13:10) 09/27/13 19:40	EPA 3050B	1,6010C	TT
Cadmium, Total	0.60		mg/kg	0.43	0.03	1	09/26/13 13:10) 09/27/13 19:40	EPA 3050B	1,6010C	TT
Copper, Total	18		mg/kg	0.43	0.09	1	09/26/13 13:10) 09/27/13 19:40	EPA 3050B	1,6010C	TT
Lead, Total	110		mg/kg	2.2	0.09	1	09/26/13 13:10) 09/27/13 19:40	EPA 3050B	1,6010C	TT
Mercury, Total	3.7		mg/kg	0.09	0.02	1	10/01/13 08:33	3 10/01/13 11:39	EPA 7471B	1,7471B	MC
Silver, Total	ND		mg/kg	0.43	0.09	1	09/26/13 13:10) 09/27/13 19:40	EPA 3050B	1,6010C	TT
Zinc, Total	84		mg/kg	2.2	0.30	1	09/26/13 13:10) 09/30/13 12:52	EPA 3050B	1,6010C	TT

Project Name:	295 M	ARYLAND	ST				Lab Nu	mber:	L13187	16	
Project Number:	0222-0	001-101					Report	Date:	10/03/1	3	
				SAMPL	E RES	ULTS					
Lab ID:	L1318	716-10					Date Co	ollected:	09/20/1	3 11:30	
Client ID:	TP-25	-13 (0.5-4')					Date Re	eceived:	09/20/1	3	
Sample Location:	295 M	ARYLAND	ST				Field Pr	ep:	Not Spe	ecified	
Matrix:	Soil										
Percent Solids:	86%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Westb	orough L	_ab									
Arsenic, Total	3.4		mg/kg	0.44	0.09	1	09/26/13 13:10) 09/27/13 19:44	EPA 3050B	1,6010C	TT
Barium, Total	69		mg/kg	0.44	0.13	1	09/26/13 13:10) 09/27/13 19:44	EPA 3050B	1,6010C	TT
Cadmium, Total	1.1		mg/kg	0.44	0.03	1	09/26/13 13:10) 09/27/13 19:44	EPA 3050B	1,6010C	TT
Copper, Total	37		mg/kg	0.44	0.09	1	09/26/13 13:10) 09/27/13 19:44	EPA 3050B	1,6010C	TT
Lead, Total	120		mg/kg	2.2	0.09	1	09/26/13 13:10) 09/27/13 19:44	EPA 3050B	1,6010C	TT
Mercury, Total	4.0		mg/kg	0.17	0.04	2	10/01/13 08:33	3 10/01/13 12:25	EPA 7471B	1,7471B	MC
Silver, Total	ND		mg/kg	0.44	0.09	1	09/26/13 13:10) 09/27/13 19:44	EPA 3050B	1,6010C	TT
Zinc, Total	87		mg/kg	2.2	0.30	1	09/26/13 13:10) 09/30/13 12:56	EPA 3050B	1,6010C	TT

Project Name:295 MARYLAND STProject Number:0222-001-101

 Lab Number:
 L1318716

 Report Date:
 10/03/13

Method Blank Analysis Batch Quality Control

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Westboro	ugh Lab f	or sample(s): 01-02,0	04,07	Batch:	WG639236-	1			
Mercury, Total	ND		mg/kg	0.08	0.02	1	09/27/13 09:10	09/27/13 13:53	8 1,7471B	MC

Prep Information

Digestion Method: EPA 7471B

Parameter	Result Qua	lifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Westbor	ough Lab for s	ample(s): 01-02	2,04,07-10) Batcl	n: WG6392	248-1			
Aluminum, Total	ND	mg/kg	4.0	0.80	1	09/26/13 13:10	09/27/13 17:23	1,6010C	TT
Antimony, Total	ND	mg/kg	2.0	0.32	1	09/26/13 13:10	09/27/13 17:23	1,6010C	TT
Arsenic, Total	ND	mg/kg	0.40	0.08	1	09/26/13 13:10	09/27/13 17:23	1,6010C	TT
Barium, Total	ND	mg/kg	0.40	0.12	1	09/26/13 13:10	09/27/13 17:23	1,6010C	TT
Beryllium, Total	ND	mg/kg	0.20	0.04	1	09/26/13 13:10	09/27/13 17:23	1,6010C	ТТ
Cadmium, Total	ND	mg/kg	0.40	0.03	1	09/26/13 13:10	09/27/13 17:23	1,6010C	TT
Calcium, Total	ND	mg/kg	4.0	1.2	1	09/26/13 13:10	09/27/13 17:23	1,6010C	TT
Chromium, Total	ND	mg/kg	0.40	0.08	1	09/26/13 13:10	09/27/13 17:23	1,6010C	ТТ
Cobalt, Total	ND	mg/kg	0.80	0.20	1	09/26/13 13:10	09/27/13 17:23	1,6010C	тт
Copper, Total	ND	mg/kg	0.40	0.08	1	09/26/13 13:10	09/27/13 17:23	1,6010C	ТТ
Iron, Total	ND	mg/kg	2.0	0.80	1	09/26/13 13:10	09/27/13 17:23	1,6010C	TT
Lead, Total	ND	mg/kg	2.0	0.08	1	09/26/13 13:10	09/27/13 17:23	1,6010C	TT
Magnesium, Total	ND	mg/kg	4.0	0.40	1	09/26/13 13:10	09/27/13 17:23	1,6010C	TT
Manganese, Total	ND	mg/kg	0.40	0.08	1	09/26/13 13:10	09/27/13 17:23	1,6010C	ТТ
Nickel, Total	ND	mg/kg	1.0	0.16	1	09/26/13 13:10	09/27/13 17:23	1,6010C	ТТ
Potassium, Total	ND	mg/kg	100	16.	1	09/26/13 13:10	09/27/13 17:23	1,6010C	ТТ
Selenium, Total	ND	mg/kg	0.80	0.12	1	09/26/13 13:10	09/27/13 17:23	1,6010C	TT
Silver, Total	ND	mg/kg	0.40	0.08	1	09/26/13 13:10	09/27/13 17:23	1,6010C	тт
Sodium, Total	ND	mg/kg	80	12.	1	09/26/13 13:10	09/27/13 17:23	1,6010C	ТТ
Thallium, Total	ND	mg/kg	0.80	0.16	1	09/26/13 13:10	09/27/13 17:23	1,6010C	ТТ
Vanadium, Total	ND	mg/kg	0.40	0.04	1	09/26/13 13:10	09/27/13 17:23	1,6010C	ТТ
Zinc, Total	ND	mg/kg	2.0	0.28	1	09/26/13 13:10	09/27/13 17:23	1,6010C	ТТ

Project Name:295 MARYLAND STProject Number:0222-001-101

 Lab Number:
 L1318716

 Report Date:
 10/03/13

Method Blank Analysis Batch Quality Control

Prep	Information
------	-------------

Digestion Method: EPA 3050B

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Westb	orough Lab f	for sample(s): 08-10	Batch:	WG64	0061-1				
Mercury, Total	ND		mg/kg	0.08	0.02	1	10/01/13 08:33	10/01/13 11:17	7 1,7471B	MC

Prep Information

Digestion Method: EPA 7471B

Project Name: 295 MARYLAND ST **Project Number:** 0222-001-101

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Westborough Lab Associated sa	ample(s): 01-02,04	,07 Bate	ch: WG639236-2	SRM Lot	Number: 0518-10-02			
Mercury, Total	124		-		67-133	-		

Project Name: 295 MARYLAND ST

Project Number: 0222-001-101

	LCS	LCSD	%Recovery		
Parameter	%Recovery	%Recovery	Limits	RPD	RPD Limits
Total Metals - Westborough Lab	Associated sample(s): 01-02,04,07-10	Batch: WG639248-2	SRM Lot Number: 0518-10)-02	
Aluminum, Total	82	-	29-171	-	
Antimony, Total	122	-	4-196	-	
Arsenic, Total	104	-	81-119	-	
Barium, Total	96	-	83-118	-	
Beryllium, Total	104	-	83-117	-	
Cadmium, Total	94	-	82-117	-	
Calcium, Total	90	-	83-117	-	
Chromium, Total	97	-	80-119	-	
Cobalt, Total	99	-	83-117	-	
Copper, Total	101	-	83-117	-	
Iron, Total	94	-	51-150	-	
Lead, Total	94	-	80-120	-	
Magnesium, Total	83	-	74-126	-	
Manganese, Total	100	-	83-117	-	
Nickel, Total	99	-	82-117	-	
Potassium, Total	99	-	74-126	-	
Selenium, Total	106	-	80-120	-	
Silver, Total	104	-	66-134	-	
Sodium, Total	106	-	74-127	-	
Thallium, Total	96	-	79-120	-	
Vanadium, Total	98	-	79-121	-	

Project Name: 295 MARYLAND ST **Project Number:** 0222-001-101

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Westborough Lab Associated sa	ample(s): 01-02,04,07-10	Batch: WG639248-2	SRM Lot Number: 0518-10-	02	
Zinc, Total	97	-	82-119	-	
Total Metals - Westborough Lab Associated sa	ample(s): 08-10 Batch:	WG640061-2 SRM Lo	t Number: 0518-10-02		
Mercury, Total	121	-	67-133	-	

		Matrix Spike Analysis Batch Quality Control		
Project Name:	295 MARYLAND ST		Lab Number:	L1318716
Project Number:	0222-001-101		Report Date:	10/03/13

Parameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD ound	MSD %Recovery	Recove Qual Limit		RPD Qual Limits
Total Metals - Westborough La	b Associated	l sample(s):	01-02,04,07	QC Batch II	D: WG6392	236-4	QC Sample: L1	1317777-02 0	Client ID: N	VIS Sample
Mercury, Total	ND	0.159	0.24	151	Q	-	-	70-130	-	35

Matrix Spike Analysis Batch Quality Control

Lab Number: L1318716 **Report Date:** 10/03/13

Project Name: 295 MARYLAND ST **Project Number:** 0222-001-101

MS MSD RPD Native MS MS MSD Recovery Sample %Recovery Limits Added Found Found Limits %Recovery RPD Parameter Client ID: TP-4-13 (0-3') Total Metals - Westborough Lab Associated sample(s): 01-02,04,07-10 QC Batch ID: WG639248-4 QC Sample: L1318716-01 Aluminum, Total 8700 181 9100 Q 75-125 35 221 -ND 45.2 39 86 75-125 35 Antimony, Total ---Arsenic, Total 7.0 10.8 16 83 75-125 35 ---Barium, Total 140 181 280 78 75-125 35 -_ -Beryllium, Total 0.44 4.52 4.6 102 -75-125 35 --Cadmium, Total 0.96 4.61 4.9 86 75-125 35 ---Calcium, Total 40000 903 52000 Q 75-125 35 1330 ---Chromium, Total 20. 18.1 35 83 75-125 35 ---Cobalt, Total 6.0 45.2 44 84 75-125 35 -_ -Copper, Total 32. 22.6 51 84 -75-125 35 --Iron, Total 16000 90.3 16000 Q 75-125 35 0 ---Lead, Total 920 880 Q 46.1 0 --75-125 35 -Magnesium, Total Q 75-125 13000 903 15000 221 --_ 35 Manganese, Total 45.2 340 390 111 -75-125 35 --Nickel, Total 12. 45.2 50 84 -75-125 35 --903 2000 75-125 35 Potassium, Total 950 116 -_ _ 10.8 10 92 75-125 Selenium, Total ND -_ 35 -75-125 ND 27.1 26 96 35 Silver, Total ---88.J 903 1000 35 Sodium, Total 111 --75-125 _ Thallium, Total ND 10.8 6.8 63 Q --75-125 _ 35 Vanadium, Total 19. 45.2 60 91 75-125 35 _ --

					Spike Analy Quality Contr			
Project Name:	295 MARYLAND S	Т		Baton	Quality Conti		Lab Number:	L1318716
Project Number:	0222-001-101						Report Date:	10/03/13
	Native	MS Addod	MS Found	MS % Pacavary	MSD Found	MSD	Recovery	RPD

Parameter		Sample	Added	Found	%Recovery		und	%Recovery	Limits	RPD	Limits
Total Metals -	Westborough Lab A	Associated	sample(s): 0	1-02,04,07	-10 QC Batch	ID: WG63	9248-4	QC Sample: L1	318716-01	Client ID:	TP-4-13 (0-3'
Zinc, Total		210	45.2	200	0	Q	-	-	75-125	-	35
Total Metals -	Westborough Lab A	Associated	sample(s): 0	8-10 QC	Batch ID: WG6	40061-4	QC Sa	mple: L1318716-0	B Client ID:	TP-23-13	3 (0.5-3')
Mercury, Total		ND	0.185	0.22	119		-	-	70-130	-	35

Project Name: Project Number:	295 MARYLAND ST 0222-001-101	Li	ab Duplicate Analy Batch Quality Control			ab Number eport Date		
arameter		Native Sample	Dunlicate Sample	Units	RPD	Qual	RPD Limits	

Parameter	Native San	nple D	Duplicate Sampl	le Units	RPD	Qual	RPD Limits
Total Metals - Westborough Lab	Associated sample(s): 01-02,04,07	QC Batch ID:	WG639236-3	QC Sample: L13	17777-02	Client ID:	DUP Sample
Mercury, Total	ND		0.02J	mg/kg	NC		35

Lab Duplicate Analysis Batch Quality Control

Project Name: 295 MARYLAND ST Project Number:

0222-001-101

Lab Number: Report Date:

L1318716 10/03/13

Native Sample Duplicate Sample Units RPD **RPD** Limits Parameter Total Metals - Westborough Lab Associated sample(s): 01-02,04,07-10 QC Batch ID: WG639248-3 QC Sample: L1318716-01 Client ID: TP-4-13 (0-3') Aluminum. Total 8700 8400 mg/kg 4 35 Antimony, Total NC ND ND mg/kg 35 Arsenic, Total 7.0 7.8 mg/kg 11 35 Barium, Total 140 130 mg/kg 7 35 Beryllium, Total 0.44 0.43J mg/kg NC 35 Cadmium, Total 0.96 1.0 mg/kg 4 35 Calcium, Total 40000 40000 mg/kg 0 35 Chromium, Total 20. 22 mg/kg 10 35 Cobalt, Total 6.0 6.2 mg/kg 3 35 Copper, Total 32. 38 mg/kg 17 35 Iron, Total 16000 16000 mg/kg 0 35 Lead, Total 920 930 mg/kg 35 1 Magnesium, Total 13000 14000 7 35 mg/kg Manganese, Total 340 370 mg/kg 8 35 Nickel, Total 12. 13 8 35 mg/kg Potassium, Total 950 970 mg/kg 2 35 Selenium, Total ND ND mg/kg NC 35 Silver, Total ND ND mg/kg NC 35 35 Sodium, Total 88.J 91J mg/kg NC

Lab Duplicate Analysis Batch Quality Control

Project Name:295 MARYLAND STProject Number:0222-001-101

 Lab Number:
 L1318716

 Report Date:
 10/03/13

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
otal Metals - Westborough Lab Associated sample(s): 0	01-02,04,07-10	QC Batch ID: WG639248-3	QC Sample:	L1318716-01	Client ID: TP-4-13 (0-3')
Thallium, Total	ND	ND	mg/kg	NC	35
Vanadium, Total	19.	18	mg/kg	5	35
Zinc, Total	210	190	mg/kg	10	35
otal Metals - Westborough Lab Associated sample(s): 0	08-10 QC Batch	n ID: WG640061-3 QC Sam	nple: L131871	6-08 Client ID	: TP-23-13 (0.5-3')
Mercury, Total	ND	ND	mg/kg	NC	35

INORGANICS & MISCELLANEOUS

Serial No:10031311:13

Project Name: Project Number:	295 MARYLAND ST 0222-001-101	Lab Number: Report Date:	L1318716 10/03/13
	SA	MPLE RESULTS	
Lab ID: Client ID: Sample Location: Matrix:	L1318716-01 TP-4-13 (0-3') 295 MARYLAND ST Soil	Date Collected: Date Received: Field Prep:	09/18/13 16:30 09/20/13 Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lat)								
Solids, Total	86.1		%	0.100	NA	1	-	09/24/13 21:45	30,2540G	RT

	Serial	No:10031311:13
--	--------	----------------

Project Name: Project Number:	295 MARYLAND ST 0222-001-101	Lab Number: Report Date:	L1318716 10/03/13
	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Matrix:	L1318716-02 TP-5-13 (0-3') 295 MARYLAND ST Soil	Date Collected: Date Received: Field Prep:	09/18/13 11:50 09/20/13 Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	85.8		%	0.100	NA	1	-	09/24/13 21:45	30,2540G	RT

	Serial	No:10031311:13
--	--------	----------------

Project Name: Project Number:	295 MARYLAND ST 0222-001-101	Lab Number: Report Date:	L1318716 10/03/13
	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Matrix:	L1318716-03 TP-6-13 (7-9') 295 MARYLAND ST Soil	Date Collected: Date Received: Field Prep:	09/18/13 15:30 09/20/13 Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Westborough Lab)								
Solids, Total	86.2		%	0.100	NA	1	-	09/24/13 21:45	30,2540G	RT

	Serial	No:10031311:13
--	--------	----------------

Project Name:	295 MARYLAND ST		Lab Number:	L1318716
Project Number:	0222-001-101		Report Date:	10/03/13
		SAMPLE RESULTS		
Lab ID:	L1318716-04		Date Collected:	09/19/13 08:40
Client ID:	TP-7-13 (0-3')		Date Received:	09/20/13
Sample Location:	295 MARYLAND ST		Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab)								
Solids, Total	86.6		%	0.100	NA	1	-	09/24/13 21:45	30,2540G	RT

Matrix:

Soil

	Serial	No:10031311:13
--	--------	----------------

Project Name: Project Number:	295 MARYLAND ST 0222-001-101	Lab Number: Report Date:	L1318716 10/03/13
	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Matrix:	L1318716-05 TP-9-13 (9-12') 295 MARYLAND ST Soil	Date Collected: Date Received: Field Prep:	09/19/13 09:30 09/20/13 Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	/estborough Lab)								
Solids, Total	86.3		%	0.100	NA	1	-	09/24/13 21:45	30,2540G	RT

Project Name:	295 MARYLAND ST		Lab Number:	L1318716
Project Number:	0222-001-101		Report Date:	10/03/13
		SAMPLE RESULTS		
Lab ID:	L1318716-06		Date Collected:	09/19/13 16:00
Client ID:	TP-13-13 (8-9')		Date Received:	09/20/13
Sample Location:	295 MARYLAND ST		Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab									
Solids, Total	85.6		%	0.100	NA	1	-	09/24/13 21:45	30,2540G	RT

Matrix: Soil

	Serial	No:10031311:13
--	--------	----------------

Project Name: Project Number:	295 MARYLAND ST 0222-001-101	Lab Number: Report Date:	L1318716 10/03/13
	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Matrix:	L1318716-07 TP-22-13 (6-8') 295 MARYLAND ST Soil	Date Collected: Date Received: Field Prep:	09/19/13 14:15 09/20/13 Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab	•								
Solids, Total	85.5		%	0.100	NA	1	-	09/24/13 21:45	30,2540G	RT

	Serial	No:10031311:13
--	--------	----------------

Project Name:	295 MARYLAND ST	Lab Number:	L1318716
Project Number:	0222-001-101	Report Date:	10/03/13
	SAMPLE RES	ULTS	
Lab ID:	L1318716-08	Date Collected:	09/19/13 15:30
Client ID:	TP-23-13 (0.5-3')	Date Received:	09/20/13
Sample Location: Matrix:	295 MARYLAND ST Soil	Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	87.3		%	0.100	NA	1	-	09/24/13 21:45	30,2540G	RT

Project Name: Project Number:	295 MARYLAND ST 0222-001-101		Lab Number: Report Date:	L1318716 10/03/13
	:	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Matrix:	L1318716-09 TP-24-13 (0.5-4') 295 MARYLAND ST Soil		Date Collected: Date Received: Field Prep:	09/19/13 17:00 09/20/13 Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	87.6		%	0.100	NA	1	-	09/24/13 21:45	30,2540G	RT

	Serial	No:10031311:13
--	--------	----------------

Project Name: Project Number:	295 MARYLAND ST 0222-001-101		Lab Number: Report Date:	L1318716 10/03/13
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location: Matrix:	L1318716-10 TP-25-13 (0.5-4') 295 MARYLAND ST Soil		Date Collected: Date Received: Field Prep:	09/20/13 11:30 09/20/13 Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westborough Lab										
Solids, Total	86.3		%	0.100	NA	1	-	09/24/13 21:45	30,2540G	RT

Project Name:	295 MARYLAND ST	Lab Duplicate Analysis Batch Quality Control	Lab Number:	L1318716
Project Number:	0222-001-101		Report Date:	10/03/13

Parameter	Native Sam	ple Duplicate Sam	ple Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-10	QC Batch ID: WG638744-1	QC Sample: L1	318716-01	Client ID:	TP-4-13 (0-3')
Solids, Total	86.1	85.1	%	1		20

Lab Number: L1318716 Report Date: 10/03/13

Project Name:295 MARYLAND STProject Number:0222-001-101

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Absent

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal Cooler

A

Container Information Temp deg C **Container ID Container Type** Cooler pН Pres Seal Analysis(*) L1318716-01A Vial Large Septa unpreserved Υ NYTCL-8260(14) A N/A 4.3 Absent L1318716-01B Amber 250ml unpreserved А N/A 4.3 Y Absent BE-TI(180),NYTCL-8270(14), AS-TI(180), BA-TI(180),ÁG-TI(180),ÁL-TI(180),CR-TI(180),NI-TI(180),TL-TI(180),TS(7),CU-TI(180),PB-TI(180),SB-TI(180),SE-TI(180),ZN-TI(180),CO-TI(180),NYTCL-8081(14), V-TI(180), FE-TI(180),HERB-8151(14),HG-T(28),MG-TI(180),MN-TI(180),NYTCL-8082(14),CA-TI(180),CD-TI(180),K-TI(180),NA-TI(180) L1318716-01C Amber 250ml unpreserved N/A 4.3 Absent BE-TI(180),NYTCL-А Υ 8270(14),AS-TI(180),BA-TI(180),AG-TI(180),AL-TI(180),CR-TI(180),NI-TI(180),TL-TI(180),TS(7),CU-TI(180),PB-TI(180),SB-TI(180), SE-TI(180), ZN-TI(180),CO-TI(180),NYTCL-8081(14),V-TI(180),FE-TI(180),HERB-8151(14),HG-T(28),MG-TI(180),MN-TI(180),NYTCL-8082(14),CA-TI(180),CD-TI(180),K-TI(180),NA-TI(180) L1318716-02A Vial Large Septa unpreserved А N/A 4.3 Absent NYTCL-8260(14) Y L1318716-02B Amber 250ml unpreserved Α N/A 4.3 BE-TI(180),NYTCL-Y Absent 8270(14),AS-TI(180),BA-TI(180), AG-TI(180), AL-TI(180),CR-TI(180),NI-TI(180),TL-TI(180),TS(7),CU-TI(180),PB-TI(180),SB-TI(180),SE-TI(180),ZN-TI(180),CO-TI(180),NYTCL-8081(14),V-TI(180),FE-TI(180),HERB-8151(14),HG-T(28),MG-TI(180),MN-TI(180),NYTCL-8082(14),CA-TI(180),CD-TI(180).K-

TI(180),NA-TI(180)

Project Name:295 MARYLAND STProject Number:0222-001-101

Lab Number: L1318716 Report Date: 10/03/13

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1318716-02C	Amber 250ml unpreserved	A	N/A	4.3	Υ	Absent	BE-TI(180),NYTCL- 8270(14),AS-TI(180),BA- TI(180),AG-TI(180),AL- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),TS(7),CU- TI(180),PB-TI(180),SB- TI(180),CO-TI(180),NYTCL- 8081(14),V-TI(180),NYTCL- 8081(14),V-TI(180),MN- TI(180),HERB-8151(14),HG- T(28),MG-TI(180),MN- TI(180),NYTCL-8082(14),CA- TI(180),CD-TI(180),K- TI(180),NA-TI(180)
L1318716-03A	Vial Large Septa unpreserved	A	N/A	4.3	Y	Absent	TCLP-EXT-ZHE(14),NYTCL- 8260(14)
L1318716-03B	Amber 250ml unpreserved	А	N/A	4.3	Y	Absent	NYTCL-8270(14),TS(7)
L1318716-03C	Amber 250ml unpreserved	А	N/A	4.3	Y	Absent	NYTCL-8270(14),TS(7)
L1318716-03X	Vial unpreserved split	А	N/A	4.3	Y	Absent	TCLP-VOA(14)
L1318716-03Y	Vial unpreserved split	А	N/A	4.3	Y	Absent	TCLP-VOA(14)
L1318716-04A	Amber 250ml unpreserved	А	N/A	4.3	Y	Absent	TS(7)
L1318716-04B	Amber 250ml unpreserved	A	N/A	4.3	Y	Absent	NYTCL-8270(14),AS- TI(180),BA-TI(180),AG- TI(180),TS(7),CU-TI(180),PB- TI(180),ZN-TI(180),HG- T(28),NYTCL-8082(14),CD- TI(180)
L1318716-04C	Amber 250ml unpreserved	A	N/A	4.3	Y	Absent	NYTCL-8270(14),AS- TI(180),BA-TI(180),AG- TI(180),TS(7),CU-TI(180),PB- TI(180),ZN-TI(180),HG- T(28),NYTCL-8082(14),CD- TI(180)
L1318716-05A	Vial Large Septa unpreserved	A	N/A	4.3	Y	Absent	TCLP-EXT-ZHE(14),NYTCL- 8260(14)
L1318716-05B	Amber 250ml unpreserved	А	N/A	4.3	Y	Absent	NYTCL-8270(14),TS(7)
L1318716-05C	Amber 250ml unpreserved	А	N/A	4.3	Y	Absent	NYTCL-8270(14),TS(7)
L1318716-05X	Vial unpreserved split	А	N/A	4.3	Y	Absent	TCLP-VOA(14)
L1318716-05Y	Vial unpreserved split	А	N/A	4.3	Y	Absent	TCLP-VOA(14)
L1318716-06A	Vial Large Septa unpreserved	А	N/A	4.3	Y	Absent	NYTCL-8260(14)
L1318716-06B	Amber 250ml unpreserved	А	N/A	4.3	Υ	Absent	NYTCL-8270(14),TS(7)
L1318716-06C	Amber 250ml unpreserved	А	N/A	4.3	Y	Absent	NYTCL-8270(14),TS(7)
L1318716-07A	Vial Large Septa unpreserved	A	N/A	4.3	Y	Absent	NYTCL-8260(14)

Serial_No:10031311:13

Project Name:295 MARYLAND STProject Number:0222-001-101

Lab Number: L1318716 Report Date: 10/03/13

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1318716-07B	Amber 250ml unpreserved	A	N/A	4.3	Υ	Absent	BE-TI(180),NYTCL- 8270(14),AS-TI(180),BA- TI(180),AG-TI(180),AL- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),TS(7),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),ZN- TI(180),SE-TI(180),NYTCL- 8081(14),V-TI(180),FE- TI(180),HERB-8151(14),HG- T(28),MG-TI(180),MN- TI(180),NYTCL-8082(14),CA- TI(180),CD-TI(180),K- TI(180),NA-TI(180)
L1318716-07C	Amber 250ml unpreserved	A	N/A	4.3	Y	Absent	BE-TI(180),NYTCL- 8270(14),AS-TI(180),BA- TI(180),AG-TI(180),AL- TI(180),CR-TI(180),NI- TI(180),TL-TI(180),TS(7),CU- TI(180),PB-TI(180),SB- TI(180),SE-TI(180),XTCL- 8081(14),V-TI(180),NYTCL- 8081(14),V-TI(180),FE- TI(180),HERB-8151(14),HG- T(28),MG-TI(180),MN- TI(180),NYTCL-8082(14),CA- TI(180),CD-TI(180),K- TI(180),NA-TI(180)
L1318716-08A	Amber 250ml unpreserved	А	N/A	4.3	Y	Absent	TS(7)
L1318716-08B	Amber 250ml unpreserved	A	N/A	4.3	Y	Absent	NYTCL-8270(14),AS- TI(180),BA-TI(180),AG- TI(180),TS(7),CU-TI(180),PB- TI(180),ZN-TI(180),HG- T(28),NYTCL-8082(14),CD- TI(180)
L1318716-08C	Amber 250ml unpreserved	A	N/A	4.3	Y	Absent	NYTCL-8270(14),AS- TI(180),BA-TI(180),AG- TI(180),TS(7),CU-TI(180),PB- TI(180),ZN-TI(180),HG- T(28),NYTCL-8082(14),CD- TI(180)
L1318716-09A	Amber 250ml unpreserved	А	N/A	4.3	Y	Absent	TS(7)
L1318716-09B	Amber 250ml unpreserved	A	N/A	4.3	Y	Absent	NYTCL-8270(14),AS- TI(180),BA-TI(180),AG- TI(180),TS(7),CU-TI(180),PB- TI(180),ZN-TI(180),HG- T(28),NYTCL-8082(14),CD- TI(180)
L1318716-09C	Amber 250ml unpreserved	A	N/A	4.3	Y	Absent	NYTCL-8270(14),AS- TI(180),BA-TI(180),AG- TI(180),TS(7),CU-TI(180),PB- TI(180),ZN-TI(180),HG- T(28),NYTCL-8082(14),CD- TI(180)
L1318716-10A	Amber 250ml unpreserved	А	N/A	4.3	Y	Absent	TS(7)

Serial_No:10031311:13

Project Name:295 MARYLAND STProject Number:0222-001-101

Lab Number: L1318716 Report Date: 10/03/13

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg Ċ	Pres	Seal	Analysis(*)
L1318716-10B	Amber 250ml unpreserved	A	N/A	4.3	Y	Absent	NYTCL-8270(14),AS- TI(180),BA-TI(180),AG- TI(180),TS(7),CU-TI(180),PB- TI(180),ZN-TI(180),HG- T(28),NYTCL-8082(14),CD- TI(180)
L1318716-10C	Amber 250ml unpreserved	A	N/A	4.3	Y	Absent	NYTCL-8270(14),AS- TI(180),BA-TI(180),AG- TI(180),TS(7),CU-TI(180),PB- TI(180),ZN-TI(180),HG- T(28),NYTCL-8082(14),CD- TI(180)

Container Comments

L1318716-01B

L1318716-07B

L1318716-07C

Project Name: 295 MARYLAND ST

Project Number: 0222-001-101

Lab Number: L1318716

Report Date: 10/03/13

GLOSSARY

Acronyms

- EDL Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD Laboratory Control Sample Duplicate: Refer to LCS.
- LFB Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- MDL Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- NI Not Ignitable.
- RL Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
- SRM Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit for common lab contaminants) in the analyte above the reporting limit.
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.

Report Format: DU Report with "J" Qualifiers

Serial_No:10031311:13

Project Name: 295 MARYLAND ST

Project Number: 0222-001-101

Lab Number: L1318716

Report Date: 10/03/13

Data Qualifiers

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Project Name: 295 MARYLAND ST Project Number: 0222-001-101
 Lab Number:
 L1318716

 Report Date:
 10/03/13

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 30 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised October 1, 2013 - Westboro Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0574. NELAP Accredited Solid Waste/Soil.

Drinking Water (<u>Inorganic Parameters</u>: Color, pH, Turbidity, Conductivity, Alkalinity, Chloride, Free Residual Chlorine, Fluoride, Calcium Hardness, Sulfate, Nitrate, Nitrite, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Nickel, Selenium, Silver, Sodium, Thallium, Zinc, Total Dissolved Solids, Total Organic Carbon, Total Cyanide, Perchlorate. <u>Organic Parameters</u>: Volatile Organics 524.2, Total Trihalomethanes 524.2, 1,2-Dibromo-3-chloropropane (DBCP) 504.1, Ethylene Dibromide (EDB) 504.1, 1,4-Dioxane (Mod 8270). <u>Microbiology Parameters</u>: Total Coliform-MF mEndo (SM9222B), Total Coliform – Colilert (SM9223, Enumeration and P/A), E. Coli. – Colilert (SM9223, Enumeration and P/A), HPC – Pour Plate (SM9215B), Fecal Coliform – MF m-FC (SM9222D), Fecal Coliform-EC Medium (SM 9221E).

Wastewater/Non-Potable Water (Inorganic Parameters: Color, pH, Conductivity, Acidity, Alkalinity, Chloride, Total Residual Chlorine, Fluoride, Total Hardness, Silica, Sulfate, Sulfide, Ammonia, Kjeldahl Nitrogen, Nitrate, Nitrite, O-Phosphate, Total Phosphorus, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Titanium, Vanadium, Zinc, Total Residue (Solids), Total Dissolved Solids, Total Suspended Solids (non-filterable), BOD, CBOD, COD, TOC, Total Cyanide, Phenolics, Foaming Agents (MBAS), Bromide, Oil and Grease. <u>Organic Parameters</u>: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Acid Extractables (Phenols), Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, Polynuclear Aromatic Hydrocarbons, Haloethers, Chlorinated Hydrocarbons, Volatile Organics, TPH (HEM/SGT), CT-Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH. <u>Microbiology Parameters</u>: Total Coliform – MF mEndo (SM9222B), Total Coliform – MTF (SM9221B), E. Coli – Colilert (SM9223 Enumeration), HPC – Pour Plate (SM9215B), Fecal Coliform – MF m-FC (SM9222D), Fecal Coliform – A-1 Broth (SM9221E), Enterococcus - Enterolert.

Solid Waste/Soil (Inorganic Parameters: pH, Sulfide, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Tin, Vanadium, Zinc, Total Cyanide, Ignitability, Phenolics, Corrosivity, TCLP Leach (1311), SPLP Leach (1312 metals only), Reactivity. <u>Organic Parameters</u>: PCBs, PCBs in Oil, Organochlorine Pesticides, Technical Chlordane, Toxaphene, CT-Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH, Dicamba, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Dalapon, Volatile Organics (SW 8260), Acid Extractables (Phenols) (SW 8270), Benzidines (SW 8270), Phthalates (SW 8270), Nitrosamines (SW 8270), Nitroaromatics & Cyclic Ketones (SW 8270), PAHs (SW 8270), Haloethers (SW 8270), Chlorinated Hydrocarbons (SW 8270).)

State of Illinois Certificate/Lab ID: 003155. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM2120B, 2320B, 2510B, 2540C, SM4500CN-CE, 4500F-C, 4500H-B, 4500NO3-F, 5310C, EPA 200.7, 200.8, 245.1, 300.0. <u>Organic Parameters</u>: EPA 504.1, 524.2.)

Wastewater/Non-Potable Water (Inorganic Parameters: SM2120B, 2310B, 2320B, 2340B, 2510B, 2540B, 2540C, 2540D, SM4500CL-E, 4500CN-E, 4500F-C, 4500H-B, 4500NH3-H, 4500NO2-B, 4500NO3-F, 4500P-E, 4500S-D, 4500SO3-B, 5210B, 5220D, 5310C, 5540C, EPA 120.1, 1664A, 200.7, 200.8, 245.1, 300.0, 350.1, 351.1, 353.2, 410.4, 420.1. <u>Organic Parameters</u>: EPA 608, 624, 625.)

Hazardous and Solid Waste (Inorganic Parameters: EPA 1010A, 1030, 1311, 1312, 6010C, 6020A, 7196A, 7470A, 7471B, 9012B, 9014, 9038, 9040C, 9045D, 9050A, 9065, 9251. <u>Organic Parameters</u>: 8011 (NPW only), 8015C, 8081B, 8082A, 8151A, 8260C, 8270D, 8315A, 8330.)

Maine Department of Human Services Certificate/Lab ID: 2009024.

Drinking Water (Inorganic Parameters: SM9215B, 9222D, 9223B, EPA 180.1, 353.2, SM2120B, 2130B, 2320B, 2510C, 2540C, 4500CI-D, 4500CN-C, 4500CN-E, 4500F-C, 4500H+B, 4500NO3-F, 5310C, EPA 200.7, EPA 200.8, 245.1, EPA 300.0. <u>Organic Parameters</u>: 504.1, 524.2.)

Wastewater/Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664A, 300.0, 350.1, 351.1, 353.2, 410.4, 420.1, 8315A, 9010C, SM2120B, 2310B, 2320B, 2510B, 2540B, 2540C, 2540D, 426C, 4500CI-E, 4500CN-C, 4500CN-E, 4500F-B, 4500F-C, 4500H+B, 4500Norg-C, 4500NH3-B, 4500NH3-H, 4500NO2-B, 4500NO3-F, 4500P-B, 4500P-E, 4500S2-D, 4500SO3-B, 5540C, 5210B, 5220D, 5310C, 9010B, 9030B, 9040C, 7470A, 7196A, 2340B, EPA 200.7, 6010C, 200.8, 6020A, 245.1, 1311, 1312, 3005A, Enterolert, 9223B, 9222D. <u>Organic Parameters</u>: 608, 624, 625, 8011, 8081B, 8082A, 8330, 8151A, 8260C, 8270D, 3510C, 3630C, 5030B, ME-DRO, ME-GRO, MA-EPH, MA-VPH.)

Solid Waste/Soil (<u>Inorganic Parameters</u>: 9010B, 9012A, 9014, 9040B, 9045C, 6010C, 6020A, 7471B, 7196A, 9050A, 1010, 1030, 9065, 1311, 1312, 3005A, 3050B, 9038, 9251. <u>Organic Parameters</u>: ME-DRO, ME-GRO, MA-EPH, MA-VPH, 8260C, 8270D, 8330, 8151A, 8081B, 8082A, 3540C, 3546, 3580A, 3620C, 3630C, 5030B, 5035.)

Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA086.

Drinking Water (Inorganic Parameters: (EPA 200.8 for: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl) (EPA 200.7 for: Ba,Be,Ca,Cd,Cr,Cu,Na,Ni) 245.1, (300.0 for: Nitrate-N, Fluoride, Sulfate); (EPA 353.2 for: Nitrate-N, Nitrite-N); (SM4500NO3-F for: Nitrate-N and Nitrite-N); 4500F-C, 4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, 2320B, SM2540C, SM4500H-B. <u>Organic Parameters</u>: (EPA 524.2 for: Trihalomethanes, Volatile Organics); (504.1 for: 1,2-Dibromoethane, 1,2-Dibromo-3-Chloropropane), EPA 332. <u>Microbiology Parameters</u>: SM9215B; ENZ. SUB. SM9223; ColilertQT SM9223B; MF-SM9222D.)

Non-Potable Water (Inorganic Parameters:, (EPA 200.8 for: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn); (EPA 200.7 for: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn); 245.1, SM4500H,B, EPA 120.1, SM2510B, 2540C, 2340B, 2320B, 4500CL-E, 4500F-BC, 426C, SM4500NH3-BH, (EPA 350.1 for: Ammonia-N), LACHAT 10-107-06-1-B for Ammonia-N, SM4500NO3-F, 353.2 for Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, 4500P-B,E, 5220D, EPA 410.4, SM 5210B, 5310C, 4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

<u>Organic Parameters</u>: (EPA 624 for Volatile Halocarbons, Volatile Aromatics),(608 for: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs-Water), (EPA 625 for SVOC Acid Extractables and SVOC Base/Neutral Extractables), 600/4-81-045-PCB-Oil. <u>Microbiology Parameters</u>: (ColilertQT SM9223B; Enterolert-QT: SM9222D-MF.)

New Hampshire Department of Environmental Services <u>Certificate/Lab ID</u>: 200307. NELAP Accredited. Drinking Water (Inorganic Parameters: SM 9222B, 9223B, 9215B, EPA 200.7, 200.8, 300.0, SM4500CN-E, 4500H+B, 4500NO3-F, 2320B, 2510B, 2540C, 4500F-C, 5310C, 2120B, EPA 332.0. <u>Organic Parameters</u>: 504.1, 524.2.)

Non-Potable Water (Inorganic Parameters: SM9222D, 9221B, 9222B, 9221E-EC, EPA 3005A, 200.7, 200.8, 245.1, SW-846 6010C, 6020A, 7196A, 7470A, SM3500-CR-D, EPA 120.1, 300.0, 350.1, 350.2, 351.1, 353.2, 410.4, 420.1, 426C, 1664A, SW-846 9010B, 9010C, 9030, 9040B, 9040C, SM2120B, 2310B, 2320B, 2340B, 2540B, 2540D, 4500H+B, 4500CL-E, 4500CN-E, 4500NH3-H, 4500NO3-F, 4500NO2-B, 4500P-E, 4500-S2-D, 4500SO3-B, 5210B, 5220D, 2510B, 2540C, 4500F-C, 5310C, 5540C, LACHAT 10-204-00-1-A, LACHAT 10-107-06-2-D, 3060A. <u>Organic Parameters</u>: SW-846 3510C, 3630C, 5030B, 8260C, 8270D, 8330, EPA 624, 625, 608, SW-846 8082A, 8081B, 8015C, 8151A, 8330, 8270D-SIM.)

Solid & Chemical Materials (<u>Inorganic Parameters</u>: SW-846 6010C, 6020A, 7196A, 7471B, 1010, 1010A, 1030, 9010C, 9012B, 9014, 9030B, 9040C, 9045C, 9045D, 9050, 9065, 9251, 1311, 1312, 3005A, 3050B, 3060A. <u>Organic Parameters</u>: SW-846 3540C, 3546, 3050B, 3580A, 3620D, 3630C, 5030B, 5035, 8260C, 8270D, 8270D-SIM, 8330, 8151A, 8015B, 8015C, 8082A, 8081B.)

New Hampshire Department of Environmental Services <u>Certificate/Lab ID</u>: 2064. NELAP Accredited. Drinking Water (<u>Organic Parameters</u>: EPA 524.2: Di-isopropyl ether (DIPE), Ethyl-t-butyl ether (ETBE), Tert-amyl methyl ether (TAME)).

Non-Potable Water (Organic Parameters: EPA 8260C: 1,3,5-Trichlorobenzene. EPA 8015C(M): TPH.)

Solid & Chemical Materials (Organic Parameters: EPA 8260C: 1,3,5-Trichlorobenzene.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA935. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM9222B, 9221E, 9223B, 9215B, 4500CN-CE, 4500NO3-F, 4500F-C, EPA 300.0, 200.7, 200.8, 245.1, 2540C, SM2120B, 2320B, 2510B, 5310C, SM4500H-B. <u>Organic Parameters</u>: EPA 332, 504.1, 524.2.)

Non-Potable Water (Inorganic Parameters: SM5210B, EPA 410.4, SM5220D, 4500CI-E, EPA 300.0, SM2120B, 2340B, SM4500F-BC, EPA 200.7, 200.8, 351.1, LACHAT 10-107-06-2-D, EPA 353.2, SM4500NO3-F, 4500NO2-B, EPA 1664A, SM5310C, 4500-PE, EPA 420.1, SM4500P-B5+E, 2540B, 2540C, 2540D, EPA 120.1, SM2510B, 9222D, 9221B, 9221C, 9221E, 9222B, 9215B, 2310B, 2320B, 4500NH3-H, 4500-S D, 4500SO4-E, EPA 350.1, 350.2, SW-846 1312, 7470A, 5540C, SM4500H-B, 4500SO3-B, SM3500Cr-D, 4500CN-CE, EPA 245.1, SW-846 9040B, 9040C, 3005A, 3015, EPA 6010B, 6010C, 6020, 6020A, 7196A, 3060A, SW-846 9010C, 9030B. <u>Organic Parameters</u>: SW-846 8260B, 8260C, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 3510C, EPA 608, 624, 625, SW-846 3630C, 5030B, 5030C, 8011, 8015C, 8081A, 8081B, 8082, 8082A, 8151A, 8330, 1,4-Dioxane by NJ Modified 8270, 8015B, NJ EPH.)

Page Solid & Chemical Materials (Inorganic Parameters: SW-846, 6010B, 6010C, 6020, 6020A, 7196A, 3060A, 9030B, 1010, 1010Å, 1030, 1311, 1312, 3005Å, 3050B, 7471Å, 7471B, 9010C, 9012B, 9014, 9038, 9040B, 9040C, 9045C, 9045D,

9050A, 9065, 9251. <u>Organic Parameters</u>: SW-846 8015B, 8015C, 8081A, 8081B, 8082, 8082A, 8151A, 8330, 8260B, 8260C, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 3540C, 3546, 3580A, 3620C, 3630C, 5030B, 5030C, 5035L, 5035H, NJ EPH.)

New York Department of Health Certificate/Lab ID: 11148. NELAP Accredited.

Drinking Water (<u>Inorganic Parameters</u>: SM9223B, 9222B, 9215B, EPA 200.8, 200.7, 245.1, SM5310C, EPA 332.0, SM2320B, EPA 300.0, SM2120B, 4500CN-E, 4500F-C, 4500NO3-F, 2540C, SM 2510B. <u>Organic Parameters</u>: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: SM9221E, 9222D, 9221B, 9222B, 9215B, 5210B, 5310C, EPA 410.4, SM5220D, 2310B, 2320B, EPA 200.7, 300.0, SM4500CL-E, 4500F-C, SM15 426C, EPA 350.1, SM4500NH3-BH, EPA 351.1, LACHAT 10-107-06-2, EPA 353.2, SM4500-NO3-F, 4500-NO2-B, 4500P-E, 2340B, 2540C, 2540B, 2540D, EPA 200.8, EPA 6010C, 6020A, EPA 7196A, SM3500Cr-D, EPA 245.1, 7470A, SM2120B, 4500CN-CE, EPA 1664A, EPA 420.1, SM14 510C, EPA 120.1, SM2510B, SM4500S-D, SM5540C, EPA 8315A, 3005A, 9010C, 9030B. <u>Organic Parameters</u>: EPA 624, 8260C, 8270D, 8270D-SIM, 625, 608, 8081B, 8151A, 8330A, 8082A, EPA 3510C, 5030B, 5030C, 8015C, 8011.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1010A, 1030, EPA 6010C, 6020A, 7196A, 7471B, 8315A, 9012B, 9014, 9065, 9050A, 9038, 9251, EPA 1311, 1312, 3005A, 3050B, 9010C, 9030B, 9040C, 9045D. <u>Organic Parameters:</u> EPA 8260C, 8270D, 8270D-SIM, 8015C, 8081B, 8151A, 8330A, 8082A, 3540C, 3546, 3580A, 5035A-H, 5035A-L.)

North Carolina Department of the Environment and Natural Resources <u>Certificate/Lab ID</u>: 666. (<u>Inorganic</u> <u>Parameters</u>: SM2310B, 2320B, 4500CI-E, 4500Cn-E, 9012B, 9014, Lachat 10-204-00-1-X, 1010A, 1030, 4500NO3-F, 353.2, 4500P-E, 4500SO4-E, 300.0, 4500S-D, 5310B, 5310C, 6010C, 6020A, 200.7, 200.8, 3500Cr-B, 7196A, 245.1, 7470A, 7471B, 1311,1312. <u>Organic Parameters</u>: 608, 8081B, 8082A, 624, 8260B, 625, 8270D, 8151A, 8015C, 504.1, MA-EPH, MA-VPH.)

Drinking Water Program <u>Certificate/Lab ID</u>: 25700. (Inorganic Parameters: Chloride EPA 300.0. <u>Organic Parameters</u>: 524.2)

Pennsylvania Department of Environmental Protection <u>Certificate/Lab ID</u>: 68-03671. *NELAP Accredited. Drinking Water* (Inorganic Parameters: 200.7, 200.8, 300.0, 332.0, 2120B, 2320B, 2510B, 2540C, 4500-CN-CE, 4500F-C, 4500H+-B, 4500NO3-F, 5310C. <u>Organic Parameters</u>: EPA 524.2, 504.1)

Non-Potable Water (Inorganic Parameters: EPA 120.1, 1312, 3005A,3015, 3060A, 200.7, 200.8, 410.4, 1664A, SM2540D, 5210B, 5220D, 4500-P,BE, 245.1, 300.0, 350.1, 350.2, 351.1, 353.2, 420.1, 6010C, 6020A, 7196A, 7470A, 9030B, 2120B, 2310B, 2320B, 2510B, 2540B, 2540C, 3500Cr-D, 426C, 4500CN-CE, 4500CI-E, 4500F-B, 4500F-C, 4500H+-B, 4500NH3-H, 4500NO2-B, 4500NO3-F, 4500S-D, 4500SO3-B, 5310BCD, 5540C, 9010C, 9040C. <u>Organic Parameters</u>: EPA 3510C, 3630C, 5030B, 625, 624, 608, 8081B, 8082A, 8151A, 8260C, 8270D, 8270D-SIM, 8330, 8015C, NJ-EPH.)

Solid & Hazardous Waste (<u>Inorganic Parameters</u>: EPA 350.1, 1010, 1030, 1311, 1312, 3005A, 3050B, 3060A, 6010C, 6020A, 7196A, 7471B, 9010C, 9012B, 9014, 9040B, 9045D, 9050A, 9065, SM 4500NH3-BH, 9030B, 9038, 9251. <u>Organic Parameters</u>: 3540C, 3546, 3580A, 3620C, 3630C, 5035, 8015C, 8081B, 8082A, 8151A, 8260C, 8270D, 8270D-SIM, 8330, NJ-EPH.)

Rhode Island Department of Health <u>Certificate/Lab ID</u>: LAO00065. *NELAP Accredited via NJ-DEP.* Refer to MA-DEP Certificate for Potable and Non-Potable Water. Refer to NJ-DEP Certificate for Potable and Non-Potable Water.

Texas Commisson on Environmental Quality Certificate/Lab ID: T104704476. NELAP Accredited.

Non-Potable Water (<u>Inorganic Parameters</u>: EPA 120.1, 1664, 200.7, 200.8, 245.1, 245.2, 300.0, 350.1, 351.1, 353.2, 410.4, 420.1, 6010, 6020, 7196, 7470, 9040, SM 2120B, 2310B, 2320B, 2510B, 2540B, 2540C, 2540D, 426C, 4500CL-E, 4500CN-E, 4500F-C, 4500H+B, 4500NH3-H, 4500NO2B, 4500P-E, 4500 S2⁻ D, 510C, 5210B, 5220D, 5310C, 5540C. <u>Organic Parameters</u>: EPA 608, 624, 625, 8081, 8082, 8151, 8260, 8270, 8330.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1311, 1312, 9012, 9014, 9040, 9045, 9050, 9065.)

Virginia Division of Consolidated Laboratory Services <u>Certificate/Lab ID</u>: 460195. *NELAP Accredited. Drinking Water* (Inorganic Parameters: EPA 200.7, 200.8, 300.0, 2510B, 2120B, 2540C, 4500CN-CE, 245.1, 2320B, 4500F-C, 4500NO3-F, 4500H+B, 5310C. <u>Organic Parameters</u>: EPA 504.1, 524.2.)

Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664A, 200.7, 200.8, 245.1, 300.0, 350.1, 351.1, 351.2, 3005A, 3015, 1312, 6010B, 6010C, 3060A, 353.2, 420.1, 2340B, 6020, 6020A, SM4500S-D, SM4500-CN-CE, Lachat 10-204-Page 00-1-X, 7196A, 7470A, 2310B, 2320B, 2510B, 2540B, 2540C, 2540D, 3500Cr-D, 426C, 4500Cl-E, 4500F-B, 4500F-C,

4500NH3-H, 4500NO2-B, 4500NO3-F, 4500 SO3-B, 4500H-B, 4500PE, 510AC, 5210B, 5310B 5310C, 5540C, 9010Cm 9030B, 9040C. <u>Organic Parameters</u>: EPA 3510C, 3630C, 5030B, 8260B, 608, 624, 625, 8011, 8015C, 8081A, 8081B, 8082, 8082A, 8151A, 8260C, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 8330,)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1010A, 1030, 3060A, 3050B, 1311, 1312, 6010B, 6010C, 6020, , 7196A, 7471A, 7471B, 6020A, 9010C, 9012B, 9030B, 9014, 9038, 9040C, 9045D, 9251, 9050A, 9065. <u>Organic Parameters</u>: EPA 5030B, 5035, 3540C, 3546, 3550B, 3580A, 3620C, 3630C, 6020A, 8260B, 8260C, 8015B, 8015C, 8081A, 8081B, 8082, 8082A, 8151A, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 8330.)

Department of Defense, L-A-B <u>Certificate/Lab ID</u>: L2217. *Drinking Water* (<u>Inorganic Parameters</u>: SM 4500H-B. <u>Organic Parameters</u>: EPA 524.2, 504.1.)

Non-Potable Water (<u>Inorganic Parameters</u>: EPA 200.7, 200.8, 6010C, 6020A, 245.1, 7470A, 9040B, 9010B, 180.1, 300.0, 332.0, 6860, 351.1, 353.2, 9060, 1664A, SM 4500CN-E, 4500H-B, 4500Norg-C, 4500NO3-F, 5310C, 2130B, 2320B, 2340B, 2540C, 5540C, 3005A, 3015, 9056, 7196A, 3500-Cr-D. <u>Organic Parameters</u>: EPA 8015C, 8151A, 8260C, 8270D, 8270D-SIM, 8330A, 8082A, 8081B, 3510C, 5030B, MassDEP EPH, MassDEP VPH.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 200.7, 6010C, 6020A, 7471A, 6860, 1311, 1312, 3050B, 7196A, 9040B, 9045C, 9010C, 9012B, 9251, SM3500-CR-D, 4500CN-CE, 2540G, <u>Organic Parameters</u>: EPA 8015C, 8151A, 8260C, 8270D, 8270D-SIM, 8330A/B-prep, 8082A, 8081B, 3540C, 3546, 3580A, 5035A, MassDEP EPH, MassDEP VPH.)

The following analytes are not included in our current NELAP/TNI Scope of Accreditation:

EPA 524.2: Acetone, 2-Butanone (Methyl ethyl ketone (MEK)), Tert-butyl alcohol, 2-Hexanone, Tetrahydrofuran, 1,3,5-Trichlorobenzene, 4-Methyl-2-pentanone (MIBK), Carbon disulfide, Diethyl ether. **EPA 8260B:** 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene. **EPA 8260 Non-potable water matrix:** Iodomethane (methyl iodide), Methyl methacrylate. **EPA 8260 Soil matrix:** Tert-amyl methyl ether (TAME), Diisopropyl ether (DIPE), Azobenzene. **EPA 8330A:** PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT. **EPA 8270C:** Methyl naphthalene, Dimethyl naphthalene, Total Methylnapthalenes, Total Dimethylnaphthalenes, 1,4-Diphenylhydrazine. **EPA 625:** 4-Chloroaniline, 4-Methylphenol. Total Phosphorus in a soil matrix, TKN in a soil matrix, NO2 in a soil matrix, NO3 in a soil matrix. **EPA 9071:** Total Petroleum Hydrocarbons, Oil & Grease.

СНА	IN OF CU	STODY	PAGE_	C	DF	Dat	e Rec'	d in L	.ab:	9	z1	13			AL	1 IN W	erial_No:10031311115 Job #:[]3]87	2421 343 OK &
WESTBORO, MA MANSFIELD, MA TEL: 508-898-9220 TEL: 508-822-9300 FAX: 508-898-9193 FAX: 508-822-3288 Client Information Fax: 508-822-3288 Fax:		Information lame: 295	Mary	<u>land</u> u	St		port i FAX ADEx	nforr	χ	Ú) EM				es			Information as Client info PO #:	
Client: Semilanuark Env Address: 2558 Hamburg Tu Bultale, NY 14218 Phone: 716-225-3314	Project #	tanager: Ray		ert			ulato /Fed	-		reme	nts/R		t Lim iteria	its				
Phone: $716 - 225 - 3314$ Fax:		Around Time							72									· · · · · · · · · · · · · · · · · · ·
Email: <u>by reace</u> turnkey/le These samples have been previously analyze Other Project Specific Requirement K COC PAHS = Benzo(a) anthe Benzo(4) flueron theme, Chryse	ents/Comments/De	10/1/13		ie:		ANALO		avec (52,0)	These and	des + Hand	TC/ D. (Forz) micules	KO.	TAHS #	Vernize AL			SAMPLE HANDI Filtration Done Not needed Lab to do Preservation	LING T A LING T A L B O
## COC Inorganics = As ALPHA Lab ID. (Lab Use Only)	ple ID	, Hg , Ag , Z Collection	n. Sa		Sampler's Initials	1.52	-/ .	10/15/			TC/ Ferl	ز کر	0/ 0/				Lab to do (Please specify below) Sample Specific Comm	T T E ents S
18716-1-TP-4-13 2 TP-5-13 ([0-3]	9-18-13 16	50	S	Bint	X X	× ×	~	× ×	× لا					-			3
3 TP-6-13 (4 TP-7-13 ((0-3')	9-18-13	40	2		X				ß		~ ;	×					3
5 TP-9-13 (6 TP-13-13 7 TP-22-13	(8-q')		00 15	S S S		× × ×	بر بر بر		X		× 							3 3 3
\$ TP-23-13	(o.5-3 ⁵)		30	ر 2 2				X	<u>^</u>	X X X		X) XX	0					3
9 TP-24-13 10 TP-25-13	(o.s'-4)	9-20-13 11	30	ے Contai	ner Type	A	A	A	A	X A		×	6				Please print clearly, legib	
FORM NO: 01-01 (rev. 14-0CT-07)	Relingu Brock Corcen Sumarz · Li	ished By: ckUs		Date 7-20-1	servative /Time 3/1530 /1800	A D	R Am		R ceive	A d By:		X F	প	Date -70 21 [13		\$70 :07	pletely. Samples can not in and turnaround time cl start until any ambiguities All samples submitted and Alpha's Terms and Condi See reverse side.	ock will not are resolved subject to

. .

Page 132 of 132-

APPENDIX F

LAND USE EVALUATION

NYSDEC's Part 375 regulations require that the reasonableness of the anticipated future land be factored into the evaluation of remedial alternatives. The regulations identify 16 criteria that must be considered. These criteria and the resultant outcome for the 295 Maryland Street Site are presented below.

- 1. Current use and historical and/or recent development patterns: The 295 Maryland Street Site was a former manufacturing facility, located in a historically residential area in the City of Buffalo, New York. The Site is currently undeveloped and vacant. Accordingly, residential site redevelopment would be consistent with the development patterns in the area.
- 2. Applicable zoning laws and maps: The Site is located in an area of the City zoned residential. Reuse of the Site in a residential capacity is therefore consistent with current zoning.
- 3. Brownfield opportunity areas as designated set forth in GML 970-r: The Brownfield Opportunity Area (BOA) Program provides municipalities and community based organizations with assistance to complete revitalization plans and implementation strategies for areas or communities affected by the presence of brownfield sites, and site assessments for strategic sites. The subject property does not lie within a BOA.
- 4. Applicable comprehensive community master plans, local waterfront revitalization plans as provided for in EL article 42, or any other applicable land use plan formally adopted by a municipality: The project site is not in a municipality or waterfront revitalization plan. However, it is important that affordable housing be provided, which is precisely what the project intends. Apartments on the west side of Buffalo will provide the requisite housing for approximately 70-living units. Site redevelopment is consistent with the general principles of revitalizing Buffalo for the future.
- 5. Proximity to real property currently used for residential use, and to urban, commercial, industrial, agricultural, and recreational areas: The surrounding land is residential. Nearby and adjacent property is residential. Reuse of the Site in a residential capacity is consistent with the surrounding property.

- 6. Any written and oral comments submitted by members of the public on the proposed use as part of the activities performed pursuant to the citizen participation plan: No comments have been received from the public relevant to Site use concerns.
- 7. Environmental justice concerns, which include the extent to which the proposed use may reasonably be expected to cause or increase a disproportionate burden on the community in which the site is located, including low-income minority communities, or to result in a disproportionate concentration of commercial or industrial uses in what has historically been a mixed use or residential community: Nearby and adjacent property is actively used in a residential capacity. Reuse of the site in a residential capacity does not pose environmental justice issues.
- 8. Federal or State land use designations: The property is designated Urban Land (U2) by the Soil Conservation Service. Urban land typically contains ubiquitous contaminants. Reuse in a restricted capacity (residential) is typical in areas where background conditions preclude achieving unrestricted use soil cleanup objectives.
- 9. *Population growth patterns and projections:* The City of Buffalo, NY, encompassing 40 square miles, has an estimated population of 261,310 (2010 U.S. Census Bureau), a decrease of 14,749 from the 2006 U.S. Census. A declining population indicates a surplus housing market. Reuse of the Site as apartments for multi-family opportunities will be entirely consistent with the anticipated needs for this community.
- 10. *Accessibility to existing infrastructure:* Access to the Site is from Maryland Street and West Avenue. Utilities (sewer, water, electric) are present along all of these neighboring streets. **Existing infrastructure supports reuse in a residential capacity**.
- 11. Proximity of the site to important cultural resources, including federal or State historic or heritage sites or Native American religious sites: The Site is in an archeological sensitive area, and there are several cultural resources within ¹/₂ mile of the Site including the:
 - Allentown Historic District
 - West Village Historic District
 - Delaware Avenue Methodist Episcopal Church
 - William Dorsheimer House
 - Birge-Horton House

- Theodore Roosevelt Inaugural National Historic Site (from NYSDEC Environmental Resource Mapper website).
- 12. Natural resources, including proximity of the site to important federal, State, or local natural resources, including waterways, wildlife refuges, wetlands, or critical habitats of endangered or threatened species: The Erie County Internet Mapping System shows that State or Federal wetlands do not exist on or within ¹/₂-mile of the subject property. The Niagara River is located approximately one mile west of the Site. The absence of significant ecological resources on or adjacent to the Site indicates that reuse of the site and cleanup to restricted use conditions will not pose an ecological threat.
- 13. Potential vulnerability of groundwater to contamination that might emanate from the site, including proximity to wellhead protection and groundwater recharge areas and other areas identified by the Department and the State's comprehensive groundwater remediation and protection program established set forth in ECL article 15 Title 31: Groundwater at the Site is assigned Class "GA" by 6NYCRR Part 701.15. Four groundwater monitoring wells exist on the Site. Groundwater data obtained during the site characterization indicates residual impacts from volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs). There are no groundwater supply wells present on the Site. Regionally, groundwater in the area has not been developed for industrial, agriculture, or public supply purposes. Potable water service is provided off-site and on-site by the local municipal water authority. The absence of potable wells, wellhead protection, and groundwater recharge areas indicates that cleanup to restricted use conditions will not pose a drinking water threat.
- 14. *Proximity to flood plains:* The Erie County Internet Mapping System indicates that the Niagara River, located approximately one mile west of the Site, is a FEMA-designated and 500-year flood zone. No flood zones are present on or within ½-mile of the property; there is no risk of significant soil erosion due to flooding. As such, cleanup to restricted use SCOs does not pose a threat to surface water.
- 15. Geography and geology: The Site is located within the Erie-Ontario lake plain physiographic province, which is typified by little topographic relief and gentle slope toward the Niagara River/Lake Erie, except in the immediate vicinity of major drainage ways. Surface soils within the City are characterized as urban land with level to gently sloping land in which 80 percent or more of the soil surface is covered by asphalt, concrete, buildings, or other impervious structures typical of an urban environment. Geography and geology are consistent with residential re-use.

16. *Current institutional controls applicable to the site:* No institutional controls are currently present that would affect redevelopment options.

Based on the above analysis, reuse of the Site in a residential capacity is consistent with past and current development and zoning on and around the Site, and does not pose additional environmental or human health risk.

APPENDIX G

SITE HEALTH AND SAFETY PLAN AND COMMUNITY AIR MONITORING PLAN

SITE HEALTH & SAFETY PLAN FOR BROWNFIELD CLEANUP PROGRAM

295 Maryland Street Site Buffalo, New York

July 2011

0222-001-100

Prepared for:

295 MARYLAND, LLC

Prepared By:

Benchmark Environmental Engineering & Science, PLLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716) 856-0599

TABLE OF CONTENTS

ACKNOWLEDGEMENT

Plan Reviewed by (initial):

Corporate Health and Safety Director:

Project Manager:

Designated Site Safety and Health Officer:

Acknowledgement:

I acknowledge that I have reviewed the information contained in this site-specific Health and Safety Plan, and understand the hazards associated with performance of the field activities described herein. I agree to comply with the requirements of this plan.

NAME (PRINT)	SIGNATURE	DATE

TABLE OF CONTENTS

1.0	INTI	RODUCTION	.1
	1.1	General	1
	1.2	Background	1
	1.3	Known and Suspected Environmental Conditions	
	1.4	Parameters of Interest	
	1.5	Overview of BCP Activities	
2.0		GANIZATIONAL STRUCTURE	
2.0	2.1	Roles and Responsibilities	
	2.1	2.1.1 Corporate Health and Safety Director	
		2.1.2 Project Manager	
		2.1.3 Site Safety and Health Officer	
		2.1.4 Site Workers	
		2.1.5 Other Site Personnel	. 6
3.0	HAZ	ARD EVALUATION	, 7
	3.1	Chemical Hazards	7
	3.2	Physical Hazards	9
4.0	TRA	INING	11
	4.1	Site Workers	11
		4.1.1 Initial and Refresher Training	11
		4.1.2 Site Training	12
	4.2	Supervisor Training	13
	4.3	Emergency Response Training	13
	4.4	Site Visitors	13
5.0	MEI	DICAL MONITORING	15
6.0	SAFE	E WORK PRACTICES	17
7.0	PER	SONAL PROTECTIVE EQUIPMENT	19
	7.1	Equipment Selection	
	7.2	Protection Ensembles	
		7.2.1 Level A/B Protection Ensemble	20
		7.2.2 Level C Protection Ensemble	20
		7.2.3 Level D Protection Ensemble	
		7.2.4 Recommended Level of Protection for Site Tasks	
8.0	EXP	OSURE MONITORING	23
	8.1		23
		8.1.1 On-Site Work Zone Monitoring	
		8.1.2 Off-Site Community Air Monitoring	
	8.2	Monitoring Action Levels	
		8.2.1 On-Site Work Zone Action Levels	
0.0	0	8.2.2 Community Air Monitoring Action Levels	
9.0	SPIL	L RELEASE/RESPONSE	29

TABLE OF CONTENTS

	9.1	Potential Spills and Available Controls	29
	9.2	Initial Spill Notification and Evaluation	30
	9.3	Spill Response	
	9.4	Post-Spill Evaluation	
10.0	HEA	T/Cold Stress Monitoring	
		Heat Stress Monitoring	
		Cold Stress Monitoring	
11.0		RK ZONES & SITE CONTROL	
12.0		ONTAMINATION	
	12.1	Decontamination for Benchmark Employees	39
		Decontamination for Medical Emergencies	
		Decontamination of Field Equipment	
13.0		IFINED SPACE ENTRY	
14.0		PREVENTION & PROTECTION	
	14.1	General Approach	42
		Equipment and Requirements	
		Flammable and Combustible Substances	
	14.4	Hot Work	43
15.0		RGENCY INFORMATION	
16.0		ERENCES	

TABLE OF CONTENTS

LIST OF TABLES

Table 1	Parameters of Interest
Table 2	Toxicity Data for Parameters of Interest
Table 3	Potential Routes of Exposure to Parameters of Interest
Table 4	Required Levels of Protection for Remedial Activities

APPENDICES

- Appendix A Emergency Response Plan
- Appendix B Hot Work Permit Form
- Appendix C NYSDOH Generic Community Air Monitoring Plan

1.0 INTRODUCTION

1.1 General

In accordance with OSHA requirements contained in 29 CFR 1910.120, this Health and Safety Plan (HASP) describes the specific health and safety practices and procedures to be employed by Benchmark Environmental Engineering & Science, PLLC (Benchmark) employees during Brownfield Cleanup Program (BCP) activities on the 295 Maryland Street Site (Site) located in the City of Buffalo, New York. This HASP presents procedures for Benchmark employees who will be involved with remedial field activities; it does not cover the activities of other contractors, subcontractors, or other individuals on the Site. Non-Benchmark site personnel will be required to develop and enforce their own HASPs as discussed in Section 2.0. Benchmark accepts no responsibility for the health and safety of contractor, subcontractor, or other personnel.

This HASP presents information on known Site health and safety hazards using available historical information, and identifies the equipment, materials and procedures that will be used to eliminate or control these hazards. Environmental monitoring will be performed during the course of field activities to provide real-time data for on-going assessment of potential hazards.

1.2 Background

The Site was historically used in a residential and commercial capacity, with the property at 295 Maryland Street most recently occupied by Lamar Advertising, Inc., a firm specializing in the sale of billboard advertising space and erection of billboard signs. Lamar relocated within the City of Buffalo in December 2000; the associated commercial buildings and facilities on 295 Maryland Street as well as the residences at 121-129 West Avenue have been demolished. Currently, the Site is vacant and undeveloped.

A Phase I Environmental Site Assessment (ESA) was performed for the former Lamar Advertising property in January 2000 prior to facility demolition. A separate Phase I ESA was prepared in 2001 for 121-129 West Avenue on behalf of the Buffalo Niagara Renaissance Corporation. The ESA reports indicated that 121-129 West Avenue was historically used for residential purposes, with 295 Maryland Street historically improved

with an office, commercial building, two multiple bay garages, and a parking area. Several identified prior use activities on 295 Maryland, including vehicle maintenance and the use and storage of paints, adhesives, and other flammables, were cited in the Phase I ESA's as indicators of potential environmental conditions on the property. The Phase I also identified a 550-gallon underground gasoline storage tank (UST) and a 4,000-gallon gasoline UST that were reportedly removed from the Site in 1974 and 1997, respectively. A small UST containing benzene was also reportedly discovered and removed during facility decommissioning.

A Phase II Site Investigation was completed at 295 Maryland Street by Benchmark in November 2001 based on Phase I ESA findings. The Phase II identified surface and subsurface soil/fill materials exceeding NY State soil cleanup guidance values (i.e., as compared to TAGM 4046, the applicable NYSDEC guidance in place at that time) for certain parameters, including arsenic, lead, mercury and several polyaromatic hydrocarbons (PAHs). These same parameters are elevated with respect to more recent Soil Cleanup Objectives (SCOs) for restricted residential use as published in 6NYCRR Part 375.

1.3 Known and Suspected Environmental Conditions

Portions of the 295 Maryland Street Site were formerly used to house automotive repair facilities containing USTs and hydraulic lifts. Surficial and subsurface soil testing identified seven polyaromatic hydrocarbons (PAHs) at levels in excess of the NYSDEC soil cleanup objectives (SCOs) for restricted residential use. The compounds detected in at least one of the samples include: benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k) fluoranthene, benzo(a)pyrene, indeno(1,2,3)pyrene, and dibenz(a,h)anthracene. In addition, the inorganic compounds detected in excess of the restricted residential SCOs include: arsenic, barium, cadmium, lead and mercury. While not exceeding restricted residential SCOs, low levels of volatile organic compounds (VOCs) and polychlorinated biphenyls (PCBs) were detected. In addition, groundwater results show that VOCs were detected in the sample from well MW-2 at concentrations exceeding NYSDEC groundwater quality standards (GWQSs). The VOCs detected include benzene, ethylbenzene, toluene, and xylenes (BTEX), which are characteristic of gasoline contamination.

1.4 Parameters of Interest

Potential parameters of interest at the Site include:

- Volatile Organic Compounds (VOCs) VOCs present in groundwater may include benzene, toluene, ethylbenzene, and xylene (i.e., BTEX). These VOCs are typically associated with storage and handling of petroleum products such as gasoline.
- Polyaromatic Hydrocarbons (PAHs) PAHs present at the Site include derivatives from oils, greases, and fuels associated with the operation of historic automotive repair operations; specifically, PAHs that are byproducts of incomplete combustion and impurities in petroleum products. Although PAHs are commonly found in urban soil environments, they may be present at the Site at concentrations that are elevated compared to typical "background" levels.
- **Inorganic Compounds** Inorganic compounds potentially present at elevated concentrations in soil/fill due to accidental spillage or misguided disposal may include arsenic, cadmium, chromium, lead, and mercury.

1.5 **Overview of BCP Activities**

Benchmark personnel will be on-site to observe BCP remedial activities. General field activities to be completed are described below. Detailed BCP activities are more fully described in the Interim Remedial Measures (IRM) Work Plan.

- **1. Soil/Fill Excavation:** Benchmark will monitor all soil/fill excavations and related activities to visually inspect soil/fill for evidence of contamination.
- 2. Soil/Fill Verification Sampling: Benchmark will collect subsurface verification samples following excavation and prior to backfilling operations.
- **3.** Surface Water Management: During excavation, surface water and/or perched groundwater infiltration may occur. Benchmark will direct the contractor to collect and characterize the surface water for proper disposal.
- **4. Subgrade Work:** Significant grading of the Site may be required before implementation of remedial measures.

2.0 ORGANIZATIONAL STRUCTURE

This chapter of the HASP describes the lines of authority, responsibility, and communication as they pertain to health and safety functions at the Site. The purpose of this chapter is to identify the personnel who impact the development and implementation of the HASP and to describe their roles and responsibilities. This chapter also identifies other contractors and subcontractors involved in work operations, and establishes the lines of communications among them for health and safety matters. The organizational structure described in this chapter is consistent with the requirements of 29 CFR 1910.120(b)(2). This section will be reviewed by the Project Manager and updated as necessary to reflect the current organizational structure at the Site.

2.1 Roles and Responsibilities

All Benchmark personnel on the Site must comply with the minimum requirements of this HASP. The specific responsibilities and authority of management, safety and health, and other personnel on this Site are detailed in the following paragraphs.

2.1.1 Corporate Health and Safety Director

The Benchmark Corporate Health and Safety Director is *Mr. Thomas H. Forbes, P.E.* The Corporate Health and Safety Director responsible for developing and implementing the Health and Safety program and policies for Benchmark Environmental Engineering & Science, PLLC and consulting with corporate management to ensure adequate resources are available to properly implement these programs and policies. The Corporate Health and Safety Director coordinates Benchmark's Health and Safety training and medical monitoring programs and assists project management and field staff in developing site-specific health and safety plans.

2.1.2 Project Manager

The Project Manager for this site is *Thomas H. Forbes, P.E.* The Project Manager has the responsibility and authority to direct all Benchmark work operations at the Site. The Project Manager coordinates safety and health functions with the Site Safety and Health Officer, and bears ultimate responsibility for proper implementation of this HASP. He may

delegate authority to expedite and facilitate any application of the program, including modifications to the overall project approach as necessary to circumvent unsafe work conditions. Specific duties of the Project Manager include:

- Preparing and coordinating the site work plan.
- Providing Benchmark workers with work assignments and overseeing their performance.
- Coordinating health and safety efforts with the Site Safety and Health Officer (SSHO).
- Reviewing the emergency response coordination plan to assure its effectiveness.
- Serving as the primary liaison with site contractors and the property owner.

2.1.3 Site Safety and Health Officer

The Site Safety and Health Officer (SSHO) for this site is *Mr. Richard L. Dubisz*. The qualified alternate SSHO is *Mr. Thomas Behrendt*. The SSHO reports to the Project Manager. The SSHO is on-site or readily accessible to the site during all work operations and has the authority to halt site work if unsafe conditions are detected. The specific responsibilities of the SSHO are:

- Managing the safety and health functions for Benchmark personnel on the Site.
- Serving as the point of contact for safety and health matters.
- Ensuring that Benchmark field personnel working on the Site have received proper training (per 29 CFR Part 1910.120(e)), that they have obtained medical clearance to wear respiratory protection (per 29 CFR Part 1910.134), and that they are properly trained in the selection, use and maintenance of personal protective equipment, including qualitative respirator fit testing.
- Performing or overseeing site monitoring as required by the HASP.
- Assisting in the preparation and review of the HASP
- Maintaining site-specific safety and health records as described in this HASP
- Coordinating with the Project Manager, Site Workers and Contractor's SSHO as necessary for safety and health efforts.

2.1.4 Site Workers

Site workers are responsible for: complying with this HASP or a more stringent

HASP, if appropriate (i.e., Contractor and Subcontractor's HASP); using proper PPE; reporting unsafe acts and conditions to the SSHO; and following the safety and health instructions of the Project Manager and SSHO.

2.1.5 Other Site Personnel

Other site personnel who will have health and safety responsibilities will include the Remedial Contractor, who will be responsible for developing, implementing, and enforcing a Health and Safety Plan equally stringent or more stringent than Benchmark's HASP. Benchmark assumes no responsibility for the health and safety of anyone outside its direct employ. Each Contractor's HASP shall cover all non-Benchmark site personnel. Each Contractor shall assign a SSHO who will coordinate with Benchmark's SSHO as necessary to ensure effective lines of communication and consistency between contingency plans.

In addition to Benchmark and Contractor personnel, other individuals who may have responsibilities in the work zone include subcontractors and governmental agencies performing site inspection work (i.e., the New York State Department of Environmental Conservation). The Contractor shall be responsible for ensuring that these individuals have received OSHA-required training (29 CFR 1910.120(e)), including initial, refresher, and site-specific training, and shall be responsible for the safety and health of these individuals while they are on-site.

3.0 HAZARD EVALUATION

Due to the presence of certain contaminants at the Site, the possibility exists that workers will be exposed to hazardous substances during field activities. The principal points of exposure would be through direct contact with and incidental ingestion of soil/fill, and through the inhalation of contaminated particles or vapors, during soil/fill excavation activities and monitoring well installation. In addition, the use of heavy construction equipment (e.g., excavator) will also present conditions for potential physical injury to workers. Further, since work will be performed outdoors, the potential exists for heat/cold stress to impact workers, especially those wearing protective equipment and clothing. Adherence to the medical evaluations, worker training relative to chemical hazards, safe work practices, proper personal protection, environmental monitoring, establishment work zones and site control, appropriate decontamination procedures and contingency planning outlined herein will reduce the potential for chemical exposures and physical injuries.

3.1 Chemical Hazards

As discussed in Section 1.3, historic activities related to the former steelmanufacturing operations and facilities have resulted in elevated concentrations of VOCs, SVOCs, PCBs, and inorganic compounds in Site soils and groundwater. Table 1 identifies maximum concentrations of COPCs detected throughout the Site. Table 2 lists exposure limits for airborne concentrations of the COPCs identified in Section 1.4 of this HASP. Brief descriptions of the toxicology of the prevalent constituents of potential concern and related health and safety guidance and criteria are provided below.

- Arsenic (CAS #7440-38-2) is a naturally occurring element and is usually found combined with one or more elements, such as oxygen or sulfur. Inhalation is a more important exposure route than ingestion. First phase exposure symptoms include nausea, vomiting, diarrhea and pain in the stomach. Prolonged contact is corrosive to the skin and mucus membranes. Arsenic is considered a Group A human carcinogen by the USEPA. Exposure via inhalation is associated with an increased risk of lung cancer. Exposure via the oral route is associated with an increased risk of skin cancer.
- Barium (CAS # 7440-39-3) is a silver white metal, produced by the reduction of barium oxide. Local effects and symptoms of exposure to barium compounds, such as the hydroxide or carbonate, may include irritation of the eyes, throat, nose and skin. Systemic effects from ingestion include increased muscle contractility,

reduction of heart rate/potential arrest, intestinal peristalsis, vascular constriction, and bladder contraction.

- Benzene (CAS #71-43-2) poisoning occurs most commonly through inhalation of the vapor; however, benzene can also penetrate the skin and poison in that way. Locally, benzene has a comparatively strong irritating effect, producing erythema and burning and, in more severe cases, edema and blistering. Exposure to high concentrations of the vapor (i.e., 3,000 ppm or higher) may result in acute poisoning characterized by the narcotic action of benzene on the central nervous system. In acute poisoning, symptoms include confusion, dizziness, tightening of the leg muscles, and pressure over the forehead. Chronic exposure to benzene (i.e., long-term exposure to concentrations of 100 ppm or less) may lead to damage of the blood-forming system. Benzene is very flammable when exposed to heat or flame and can react vigorously with oxidizing materials.
- **Cadmium** is a natural element and is usually combined with one or more elements, such as oxygen, chloride or sulfur. Breathing high levels of cadmium severely damages the lungs and can cause death. Ingestion of high levels of cadmium severely irritates the stomach, leading to vomiting and diarrhea. Long term exposure to lower levels of cadmium leads to a buildup of this substance in the kidneys and possible kidney disease. Other potential long term effects are lung damage and fragile bones. Cadmium is suspected to be a human carcinogen.
- Ethylbenzene (CAS #100-41-4) is a component of automobile gasoline. Overexposure may cause kidney, skin liver and/or respiratory disease. Signs of exposure may include dermatitis, irritation of the eyes and mucus membranes, headache. Narcosis and coma may result in more severe cases.
- Lead (CAS #7439-92-1) can affect almost every organ and system in our bodies. The most sensitive is the central nervous system, particularly in children. Lead also damages kidneys and the immune system. The effects are the same whether it is breathed or swallowed. Lead may decrease reaction time, cause weakness in fingers, wrists or ankles and possibly affect memory. Lead may cause anemia.
- Mercury (CAS #7439-97-6) is used in industrial applications for the production of caustic and chlorine, and in electrical control equipment and apparatus. Over-exposure to mercury may cause coughing, chest pains, bronchitis, pneumonia, indecision, headaches, fatigue and salivation. Mercury is a skin and eye irritant.
- **Polycyclic Aromatic Hydrocarbons (PAHs)** are formed as a result of the pyrolysis and incomplete combustion of organic matter such as fossil fuel. PAH aerosols formed during the combustion process disperse throughout the atmosphere, resulting in the deposition of PAH condensate in soil, water and on vegetation. In addition, several products formed from petroleum processing operations (e.g., roofing materials and asphalt) also contain elevated levels of

PAHs. Hence, these compounds are widely dispersed in the environment. PAHs are characterized by a molecular structure containing three or more fused, unsaturated carbon rings. Seven of the PAHs are classified by USEPA as probable human carcinogens (USEPA Class B2). These are: benzo(a)pyrene; benzo(a)anthracene; benzo(b)fluoranthene; benzo(k)fluoranthene; chrysene; dibenz(a,h)anthracene; and indeno(1,2,3-cd)pyrene. The primary route of exposure to PAHs is through incidental ingestion and inhalation of contaminated particulates. PAHs are characterized by an organic odor, and exist as oily liquids in pure form. Acute exposure symptoms may include acne-type blemishes in areas of the skin exposed to sunlight.

- Toluene (CAS #108-88-3) is a common component of paint thinners and automobile fuel. Acute exposure predominantly results in central nervous system depression. Symptoms include headache, dizziness, fatigue, muscular weakness, drowsiness, and coordination loss. Repeated exposures may cause removal of lipids from the skin, resulting in dry, fissured dermatitis.
- Xylenes (o, m, and p) (CAS #95-47-6, 108-38-3, and 106-42-3) are colorless, flammable liquids present in paint thinners and fuels. Acute exposure may cause central nervous system depression, resulting in headache, dizziness, fatigue, muscular weakness, drowsiness, and coordination loss. Repeated exposures may also cause removal of lipids from the skin, producing dry, fissured dermatitis. Exposure of high concentrations of vapor may cause eye irritation and damage, as well as irritation of the mucus membranes.

With respect to the anticipated BCP activities discussed in Section 1.5, possible routes of exposure to the above-mentioned contaminants are presented in Table 3. The use of proper respiratory equipment, as outlined in Section 7.0 of this HASP, will minimize the potential for exposure to airborne contamination. Exposure to contaminants through dermal and other routes will also be minimized through the use of protective clothing (Section 7.0), safe work practices (Section 6.0), and proper decontamination procedures (Section 12.0).

3.2 Physical Hazards

BCP remedial activities at the Site may present the following physical hazards:

- The potential for physical injury during heavy construction equipment use, such as grading equipment, excavators, and tandem trucks.
- The potential for heat/cold stress to employees during the summer/winter months (see Section 10.0).
- The potential for slip and fall injuries due to rough, uneven terrain and/or open

excavations.

These hazards represent only some of the possible means of injury that may be present during remedial activities at the Site. Since it is impossible to list all potential sources of injury, it shall be the responsibility of each individual to exercise proper care and caution during all phases of the work.

4.0 TRAINING

4.1 Site Workers

All personnel performing remedial activities at the Site (such as, but not limited to, equipment operators, general laborers, and supervisors) and who may be exposed to hazardous substances, health hazards, or safety hazards and their supervisors/ managers responsible for the Site shall receive training in accordance with 29 CFR 1910.120(e) before they are permitted to engage in operations in the exclusion zone or contaminant reduction zone. This training includes an initial 40-hour Hazardous Waste Site Worker Protection Course, an 8-hour Annual Refresher Course subsequent to the initial 40-hour training, and 3 days of actual field experience under the direct supervision of a trained, experienced supervisor. Additional site-specific training shall also be provided by the SSHO prior to the start of field activities. A description of topics to be covered by this training is provided below.

4.1.1 Initial and Refresher Training

Initial and refresher training is conducted by a qualified instructor as specified under OSHA 29 CFR 1910.120(e)(5), and is specifically designed to meet the requirements of OSHA 29 CFR 1910.120(e)(3) and 1910.120(e)(8). The training covers, as a minimum, the following topics:

- OSHA HAZWOPER regulations.
- Site safety and hazard recognition, including chemical and physical hazards.
- Medical monitoring requirements.
- Air monitoring, permissible exposure limits, and respiratory protection level classifications.
- Appropriate use of personal protective equipment (PPE), including chemical compatibility and respiratory equipment selection and use.
- Work practices to minimize risk.
- Work zones and site control.
- Safe use of engineering controls and equipment.
- Decontamination procedures.

- Emergency response and escape.
- Confined space entry procedures.
- Heat and cold stress monitoring.
- Elements of a Health and Safety Plan.
- Spill containment.

Initial training also incorporates workshops for PPE and respiratory equipment use (Levels A, B and C), and respirator fit testing. Records and certification received from the course instructor documenting each employee's successful completion of the training identified above are maintained on file at Benchmark's Buffalo, NY office. Contractors and Subcontractors are required to provide similar documentation of training for all their personnel who will be involved in on-site work activities.

Any employee who has not been certified as having received health and safety training in conformance with 29 CFR 1910.120(e) is prohibited from working in the exclusion and contamination reduction zones, or to engage in any on-site work activities that may involve exposure to hazardous substances or wastes.

4.1.2 Site Training

Site workers are given a copy of the HASP and provided a site-specific briefing prior to the commencement of work to ensure that employees are familiar with the HASP and the information and requirements it contains. The site briefing shall be provided by the SSHO prior to initiating field activities and shall include:

- Names of personnel and alternates responsible for site safety and health.
- Safety, health and other hazards present on the Site.
- The Site lay-out including work zones and places of refuge.
- The emergency communications system and emergency evacuation procedures.
- Use of PPE.
- Work practices by which the employee can minimize risks from hazards.
- Safe use of engineering controls and equipment on the site.
- Medical surveillance, including recognition of symptoms and signs of overexposure as described in Chapter 5 of this HASP.

- Decontamination procedures as detailed in Chapter 12 of this HASP.
- The emergency response plan as detailed in Chapter 15 of this HASP.
- Confined space entry procedures, if required, as detailed in Chapter 13 of this HASP.
- The spill containment program as detailed in Chapter 9 of this HASP.
- Site control as detailed in Chapter 11 of this HASP.

Supplemental health and safety briefings will also be conducted by the SSHO on an as-needed basis during the course of the work. Supplemental briefings are provided as necessary to notify employees of any changes to this HASP as a result of information gathered during ongoing site characterization and analysis. Conditions for which the SSHO may schedule additional briefings include, but are not limited to: a change in Site conditions (i.e., based on monitoring results); changes in the work schedule/plan; newly discovered hazards; and safety incidents occurring during Site work.

4.2 Supervisor Training

On-site safety and health personnel who are directly responsible for or who supervise the safety and health of workers engaged in hazardous waste operations (i.e., SSHO) shall receive, in addition to the appropriate level of worker training described in Section 4.1, above, 8 additional hours of specialized supervisory training, in compliance with 29 CFR 1910.120(e)(4).

4.3 Emergency Response Training

Emergency response training is addressed in Appendix A of this HASP, Emergency Response Plan.

4.4 Site Visitors

Each Contractor's SSHO will provide a site-specific briefing to all site visitors and other non-Benchmark personnel who enter the Site beyond the site entry point. The sitespecific briefing will provide information about site hazards, the site layout including work

zones and places of refuge, the emergency communications system and emergency evacuation procedures, and other pertinent safety and health requirements as appropriate.

Site visitors will not be permitted to enter the exclusion zone or contaminant reduction zones unless they have received the level of training required for site workers as described in Section 4.1.

5.0 MEDICAL MONITORING

Medical monitoring examinations are provided to Benchmark employees as stipulated under 29 CFR Part 1910.120(f). These exams include initial employment, annual, and employment termination physicals for all Benchmark employees involved in hazardous waste site field operations. Post-exposure examinations are also provided for employees who may have been injured, received a health impairment, or developed signs or symptoms of overexposure to hazardous substances or were accidentally exposed to substances at concentrations above the permissible exposure limits without necessary personal protective equipment. Such exams are performed as soon as possible following development of symptoms or the known exposure event.

Medical evaluations are performed by ADP Screening & Selection Services, an occupational health care provider under contract with Benchmark. ADP's local facility is Health Works WNY, Seneca Square Plaza, 1900 Ridge Road, West Seneca, New York 14224. The facility can be reached at (716) 823-5050 to schedule routine appointments or post-exposure examinations.

Medical evaluations are conducted according to the Benchmark Medical Monitoring Program and include an evaluation of the workers' ability to use respiratory protective equipment. The purpose of the medical evaluation is to determine an employee's fitness for duty on hazardous waste sites; and to establish baseline medical data. The examinations include:

- Occupational/medical history review.
- Physical exam, including vital sign measurement.
- Spirometry testing.
- Eyesight testing.
- Audio testing (minimum baseline and exit, annual for employees routinely exposed to greater than 85db).
- EKG (for employees >40 yrs age or as medical conditions dictate).
- Chest X-ray (baseline and exit, and every 5 years).
- Blood biochemistry (including blood count, white cell differential count, serum multiplastic screening).
- Medical certification of physical requirements (i.e., sight, musculoskeletal, cardiovascular) for safe job performance and to wear respiratory protection

equipment.

In conformance with OSHA regulations, Benchmark will maintain and preserve medical records for a period of 30 years following termination of employment. Employees are provided a copy of the physician's post-exam report, and have access to their medical records and analyses.

6.0 SAFE WORK PRACTICES

All Benchmark employees shall conform to the following safe work practices during all on-site work activities conducted within the exclusion and contamination reduction zones:

- Eating, drinking, chewing gum or tobacco, smoking, or any practice that increases the probability of hand-to-mouth contact is strictly prohibited.
- The hands and face must be thoroughly washed upon leaving the work area and prior to engaging in any activity indicated above.
- Respiratory protective equipment and clothing must be worn by all personnel entering the site as required by the HASP or as modified by the site safety officer. Excessive facial hair (i.e., beards, long mustaches or sideburns) that interferes with the satisfactory respirator-to-face seal is prohibited.
- Contact with surfaces/materials either suspected or known to be contaminated will be avoided to minimize the potential for transfer to personnel, cross contamination and need for decontamination.
- Medicine and alcohol can synergize the effects of exposure to toxic chemicals. Due to possible contraindications, use of prescribed drugs should be reviewed with the Benchmark occupational physician. Alcoholic beverage and illegal drug intake are strictly forbidden during the workday.
- All personnel shall be familiar with standard operating safety procedures and additional instructions contained in this Health and Safety Plan.
- On-site personnel shall use the "buddy" system. No one may work alone (i.e., out of earshot or visual contact with other workers) in the exclusion zone.
- Personnel and equipment in the contaminated area shall be minimized, consistent with effective site operations.
- All employees have the obligation to immediately report and if possible, correct unsafe work conditions.
- Use of contact lenses on-site will not be permitted. Spectacle kits for insertion into full-face respirators will be provided for Benchmark employees, as requested and required.

The recommended specific safety practices for working around the contractor's equipment (e.g., backhoes, bulldozers, excavators, etc.) are as follows:

• Although the Contractor and subcontractors are responsible for their equipment and safe operation of the site, Benchmark personnel are also responsible for their

own safety.

- Subsurface work will not be initiated without first clearing underground utility services.
- Heavy equipment should not be operated within 20 feet of overhead wires. This distance may be increased if windy conditions are anticipated or if lines carry high voltage. The site should also be sufficiently clear to ensure the project staff can move around the heavy machinery safely.
- Care should be taken to avoid overhead wires when moving heavy-equipment from location to location.
- Hard hats, safety boots and safety glasses should be worn at all times in the vicinity of heavy equipment. Hearing protection is also recommended.
- The work site should be kept neat. This will prevent personnel from tripping and will allow for fast emergency exit from the site.
- Proper lighting must be provided when working at night.
- Construction activities should be discontinued during an electrical storm or severe weather conditions.
- The presence of combustible gases should be checked before igniting any open flame.
- Personnel shall stand upwind of any construction operation when not immediately involved in sampling/logging/observing activities.
- Personnel will not approach the edge of an unsecured trench/excavation closer than 2 feet.

7.0 PERSONAL PROTECTIVE EQUIPMENT

7.1 Equipment Selection

Personal protective equipment (PPE) will be donned when work activities may result in exposure to physical or chemical hazards beyond acceptable limits, and when such exposure can be mitigated through appropriate PPE. The selection of PPE will be based on an evaluation of the performance characteristics of the PPE relative to the requirements and limitations of the Site, the task-specific conditions and duration, and the hazards and potential hazards identified at the site.

Equipment designed to protect the body against contact with known or suspect chemical hazards are grouped into four categories according to the degree of protection afforded. These categories designated A through D consistent with USEPA Level of Protection designation, are:

- Level A: Should be selected when the highest level of respiratory, skin and eye protection is needed.
- Level B: Should be selected when the highest level of respiratory protection is needed, but a lesser level of skin protection is required. Level B protection is the minimum level recommended on initial site entries until the hazards have been further defined by on-site studies. Level B (or Level A) is also necessary for oxygen-deficient atmospheres.
- Level C: Should be selected when the types of airborne substances are known, the concentrations have been measured and the criteria for using air-purifying respirators are met. In atmospheres where no airborne contaminants are present, Level C provides dermal protection only.
- Level D: Should not be worn on any site with elevated respiratory or skin hazards. This is generally a work uniform providing minimal protection.

OSHA requires the use of certain PPE under conditions where an immediate danger to life and health (IDLH) may be present. Specifically, OSHA 29 CFR 1910.120(g)(3)(iii) requires use of a positive pressure self-contained breathing apparatus, or positive pressure air-line respirator equipped with an escape air supply when chemical exposure levels present a substantial possibility of immediate serious injury, illness or death, or impair the ability to escape. Similarly, OSHA 29 CFR 1910.120(g)(3)(iv) requires donning totally encapsulating chemical protective suits (with a protection level equivalent to Level A protection) in

conditions where skin absorption of a hazardous substance may result in a substantial possibility of immediate serious illness, injury or death, or impair the ability to escape.

In situations where the types of chemicals, concentrations, and possibilities of contact are unknown, the appropriate level of protection must be selected based on professional experience and judgment until the hazards can be further characterized. The individual components of clothing and equipment must be assembled into a full protective ensemble to protect the worker from site-specific hazards, while at the same time minimizing hazards and drawbacks of the personal protective gear itself. Ensemble components are detailed below for levels A/B, C, and D protection.

7.2 **Protection Ensembles**

7.2.1 Level A/B Protection Ensemble

Level A/B ensembles include similar respiratory protection, however Level A provides a higher degree of dermal protection than Level B. Use of Level A over Level B is determined by: comparing the concentrations of identified substances in the air with skin toxicity data, and assessing the effect of the substance (by its measured air concentrations or splash potential) on the small area of the head and neck unprotected by Level B clothing. The recommended PPE for level A/B is:

- Pressure-demand, full-face piece self-contained breathing apparatus (MSHA/-NIOSH approved) or pressure-demand supplied-air respirator with escape selfcontained breathing apparatus (SCBA).
- Chemical-resistant clothing. For Level A, clothing consists of totallyencapsulating chemical resistant suit. Level B incorporates hooded one-or twopiece chemical splash suit.
- Inner and outer chemical resistant gloves.
- Chemical-resistant safety boots/shoes.
- Hardhat.

7.2.2 Level C Protection Ensemble

Level C protection is distinguished from Level B by the equipment used to protect the respiratory system, assuming the same type of chemical-resistant clothing is used. The

main selection criterion for Level C is that conditions permit wearing an air-purifying device. The device (when required) must be an air-purifying respirator (MSHA/NIOSH approved) equipped with filter cartridges. Cartridges must be able to remove the substances encountered. Respiratory protection will be used only with proper fitting, training and the approval of a qualified individual. In addition, an air-purifying respirator can be used only if: oxygen content of the atmosphere is at least 19.5% in volume; substances are identified and concentrations measured; substances have adequate warning properties; the individual passes a qualitative fit-test for the mask; and an appropriate cartridge/canister is used, and its service limit concentration is not exceeded. Recommended PPE for Level C conditions includes:

- Full-face piece, air-purifying respirator equipped with MSHA and NIOSH approved organic vapor/acid gas/dust/mist combination cartridges or as designated by the SSHO.
- Chemical-resistant clothing (hooded, one or two-piece chemical splash suit or disposable chemical-resistant one-piece suit).
- Inner and outer chemical-resistant gloves.
- Chemical-resistant safety boots/shoes.
- Hardhat.

An air-monitoring program is part of all response operations when atmospheric contamination is known or suspected. It is particularly important that the air be monitored thoroughly when personnel are wearing air-purifying respirators. Continual surveillance using direct-reading instruments is needed to detect any changes in air quality necessitating a higher level of respiratory protection.

7.2.3 Level D Protection Ensemble

As indicated above, Level D protection is primarily a work uniform. It can be worn in areas where only boots can be contaminated, where there are no inhalable toxic substances and where the atmospheric contains at least 19.5% oxygen. Recommended PPE for Level D includes:

- Coveralls.
- Safety boots/shoes.

- Safety glasses or chemical splash goggles.
- Hardhat.
- Optional gloves; escape mask; face shield.

7.2.4 Recommended Level of Protection for Site Tasks

Based on current information regarding both the contaminants suspected to be present at the Site and the various tasks that are included in the remedial activities, the minimum required Levels of Protection for these tasks shall be as identified in Table 4.

8.0 EXPOSURE MONITORING

8.1 General

Based on the results of historic sample analysis and the nature of the proposed work activities at the Site, the possibility exists that organic vapors and/or particulates may be released to the air during intrusive construction activities. Ambient breathing zone concentrations may at times, exceed the permissible exposure limits (PELs) established by OSHA for the individual compounds (see Table 2), in which case respiratory protection will be required. Respiratory and dermal protection may be modified (upgraded or downgraded) by the SSHO based upon real-time field monitoring data.

8.1.1 On-Site Work Zone Monitoring

Benchmark personnel will conduct routine, real-time air monitoring during all intrusive construction phases such as excavation, backfilling, drilling, etc. The work area will be monitored at regular intervals using a photo-ionization detector (PID), combustible gas meter and a particulate meter. Observed values will be recorded and maintained as part of the permanent field record.

Additional air monitoring measurements may be made by Benchmark personnel to verify field conditions during subcontractor oversight activities. Monitoring instruments will be protected from surface contamination during use. Additional monitoring instruments may be added if the situations or conditions change. Monitoring instruments will be calibrated in accordance with manufacturer's instructions before use.

8.1.2 Off-Site Community Air Monitoring

In addition to on-site monitoring within the work zone(s), monitoring at the downwind portion of the Site perimeter will be conducted. This will provide a real-time method for determination of substantial vapor and/or particulate releases to the surrounding community as a result of ground intrusive work.

Ground intrusive activities are defined by NYSDOH Generic Community Air Monitoring Plan (Ref. 1, Appendix 1A of DER-10) and attached as Appendix C. Ground intrusive activities include soil/waste excavation and handling, test pitting or trenching, and

the installation of soil borings or monitoring wells. Non-intrusive activities include the collection of soil and sediment samples or the collection of groundwater samples from existing wells. Continuous monitoring is required for ground intrusive activities and periodic monitoring is required for non-intrusive activities. Periodic monitoring consists of taking a reading upon arrival at a sample location, monitoring while opening a well cap or overturning soil, monitoring while bailing a well, and taking a reading prior to leaving a sampling location. This may be upgraded to continuous if the sampling location is in close proximity to individuals not involved in the site activity (i.e., on a curb of a busy street). The action levels below will be used during periodic monitoring. This will provide a real-time method for determination of substantial vapor and/or particulate releases to the surrounding community because of intrusive activities.

8.2 Monitoring Action Levels

8.2.1 On-Site Work Zone Action Levels

The PID, explosimeter, or other appropriate instrument(s), will be used by Benchmark personnel to monitor organic vapor concentrations as specified in this HASP. In addition, fugitive dust/particulate concentrations will be monitored during major soil intrusion using a real-time particulate monitor as specified in this plan. In the absence of such monitoring, appropriate respiratory protection for particulates shall be donned. Sustained readings obtained in the breathing zone may be interpreted (with regard to other site conditions) as follows for Benchmark personnel:

- Total atmospheric concentrations of unidentified vapors or gases ranging from 0 to 1 ppm above background on the PID) - Continue operations under Level D (see Appendix A).
- Total atmospheric concentrations of unidentified vapors or gases yielding sustained readings from >1 ppm to 5 ppm above background on the PID (vapors not suspected of containing high levels of chemicals toxic to the skin) - Continue operations under Level C (see Appendix A).
- Total atmospheric concentrations of unidentified vapors or gases yielding sustained readings of >5 ppm to 50 ppm above background on the PID -Continue operations under Level B (see Attachment 1), re-evaluate and alter (if possible) construction methods to achieve lower vapor concentrations.

• Total atmospheric concentrations of unidentified vapors or gases above 50 ppm on the PID - Discontinue operations and exit the work zone immediately.

The explosimeter will be used to monitor levels of both combustible gases and oxygen during RD activities involving deep excavation, if required. Action levels based on the instrument readings shall be as follows:

- Less than 10% LEL Continue engineering operations with caution.
- 10-25% LEL Continuous monitoring with extreme caution, determine source/cause of elevated reading.
- Greater than 25% LEL Explosion hazard, evaluate source and leave the Work Zone.
- 19.5-21% oxygen Proceed with extreme caution; attempt to determine potential source of oxygen displacement.
- Less than 19.5% oxygen Leave work zone immediately.
- 21-25% oxygen Continue engineering operations with caution.
- Greater than 25% oxygen Fire hazard potential, leave Work Zone immediately.

The particulate monitor will be used to monitor respirable dust concentrations during all intrusive activities and during handling of site soil/fill. Action levels based on the instrument readings shall be as follows:

- Less than 50 μg/m³ Continue field operations.
- 50-150 μg/m³ Don dust/particulate mask or equivalent
- Greater than 150 µg/m³ Don dust/particulate mask or equivalent. Initiate engineering controls to reduce respirable dust concentration (i.e., wetting of excavated soils or tools at discretion of SSHO).

Readings with the organic vapor analyzer, combustible gas meter, and particulate monitor will be recorded and documented on the appropriate Project Field Forms. All instruments will be calibrated before use on a daily basis and the procedure will be documented on the appropriate Project Field Forms.

8.2.2 Community Air Monitoring Action Levels

In addition to the action levels prescribed in Section 8.2.1 for Benchmark personnel on-site, the following criteria shall also be adhered to for the protection of downwind receptors consistent with NYSDOH requirements (Appendix C):

O ORGANIC VAPOR PERIMETER MONITORING:

- If the <u>sustained</u> ambient air concentration of organic vapors at the downwind perimeter of the exclusion zone <u>exceeds 5 ppm</u> above background, work activities will be halted and monitoring continued. If the <u>sustained</u> organic vapor decreases below 5 ppm over background, work activities can resume but more frequent intervals of monitoring, as directed by the SSHO, must be conducted.
- If the <u>sustained</u> ambient air concentration of organic vapors at the downwind perimeter of the exclusion zone are <u>greater than 5 ppm</u> over background <u>but</u> <u>less than 25 ppm</u>, activities can resume provided that: the organic vapor level 200 feet downwind of the working site or half the distance to the nearest off-site residential or commercial structure, whichever is less, is below 5 ppm over background; and more frequent intervals of monitoring, as directed by the SSHO, are conducted.
- If the <u>sustained</u> organic vapor level is <u>above 25 ppm</u> at the perimeter of the exclusion zone, the SSHO must be notified and work activities shut down. The SSHO will determine when re-entry of the exclusion zone is possible and will implement downwind air monitoring to ensure vapor emissions do not impact the nearest off-site residential or commercial structure at levels exceeding those specified in the *Organic Vapor Contingency Monitoring Plan* below. All readings will be recorded and will be available for New York State Department of Environmental Conservation (NYSDEC) and Department of Health (NYSDOH) personnel to review.

O ORGANIC VAPOR CONTINGENCY MONITORING PLAN:

- If the <u>sustained</u> organic vapor level is <u>greater than 5 ppm</u> over background 200 feet downwind from the work area or half the distance to the nearest offsite residential or commercial property, whichever is less, all work activities must be halted.
- If, following the cessation of the work activities or as the result of an emergency, <u>sustained</u> organic levels <u>persist above 5 ppm</u> above background 200 feet downwind or half the distance to the nearest off-site residential or commercial property from the work area, then the air quality must be

monitored within 20 feet of the perimeter of the nearest off-site residential or commercial structure (20-foot zone).

If efforts to abate the emission source are unsuccessful and if <u>sustained</u> organic vapor levels approach or exceed 5 ppm above background within the 20-foot zone for more than 30 minutes, or are sustained at levels greater than 10 ppm above background for longer than one minute, then the *Major Vapor Emission Response Plan* (see below) will automatically be placed into effect.

o <u>Major Vapor Emission Response Plan</u>:

Upon activation, the following activities will be undertaken:

- 1. All Emergency Response Contacts as listed in this Health and Safety Plan and the Emergency Response Plan (Appendix A) will be advised.
- 2. The local police authorities will immediately be contacted by the SSHO and advised of the situation.
- 3. Frequent air monitoring will be conducted at 30-minute intervals within the 20-foot zone. If two <u>sustained</u> successive readings below action levels are measured, air monitoring may be halted or modified by the SSHO.

The following personnel are to be notified in the listed sequence in the event that a Major Vapor Emission Plan is activated:

Responsible Person	Contact	Phone Number
SSHO	Police	911
SSHO	State Emergency Response Hotline	(800) 457-7362

Additional emergency numbers are listed in the Emergency Response Plan included as Appendix A.

• EXPLOSIVE VAPORS:

- <u>Sustained</u> atmospheric concentrations of greater than 10% LEL in the work area Initiate combustible gas monitoring at the downwind portion of the Site perimeter.
- <u>Sustained</u> atmospheric concentrations of greater than 10% LEL at the downwind Site perimeter Halt work and contact local Fire Department.

o Airborne Particulate Community Air Monitoring

Respirable (PM-10) particulate monitoring will be performed on a continuous basis at the upwind and downwind perimeter of the exclusion zone. The monitoring will be performed using real-time monitoring equipment capable of measuring PM-10 and integrating over a period of 15-minutes for comparison to the airborne particulate action levels. The equipment will be equipped with an audible alarm to indicate exceedance of the action level. In addition, fugitive dust migration will be visually assessed during all work activities. All readings will be recorded and will be available for NYSDEC and NYSDOH review. Readings will be interpreted as follows:

- If the downwind PM-10 particulate level is 100 micrograms per cubic meter (µg/m³) greater than the background (upwind perimeter) reading for the 15-minute period or if airborne dust is observed leaving the work area, then dust suppression techniques must be employed. Work may continue with dust suppression provided that the downwind PM-10 particulate levels do not exceed 150 µg/m³ above the upwind level and that visible dust is not migrating from the work area.
- If, after implementation of dust suppression techniques downwind PM-10 levels are greater than 150 µg/m³ above the upwind level, work activities must be stopped and dust suppression controls re-evaluated. Work can resume provided that supplemental dust suppression measures and/or other controls are successful in reducing the downwind PM-10 particulate concentration to within 150 µg/m³ of the upwind level and in preventing visible dust migration.

Pertinent emergency response information including the telephone number of the Fire Department is included in the Emergency Response Plan (Appendix A).

9.0 SPILL RELEASE/RESPONSE

This chapter of the HASP describes the potential for and procedures related to spills or releases of known or suspected petroleum and/or hazardous substances on the Site. The purpose of this Section of the HASP is to plan appropriate response, control, countermeasures and reporting, consistent with OSHA requirements in 29 CFR 1910.120(b)(4)(ii)(J) and (j)(1)(viii). The spill containment program addresses the following elements:

- Potential hazardous material spills and available controls.
- Initial notification and evaluation.
- Spill response.
- Post-spill evaluation.

9.1 Potential Spills and Available Controls

An evaluation was conducted to determine the potential for hazardous material and oil/petroleum spills at this site. For the purpose of this evaluation, hazardous materials posing a significant spill potential are considered to be:

- CERCLA Hazardous Substances as identified in 40 CFR Part 302, where such materials pose the potential for release in excess of their corresponding Reportable Quantity (RQ).
- Extremely Hazardous Substances as identified in 40 CFR Part 355, Appendix A, where such materials pose the potential for release in excess of their corresponding RQ.
- Hazardous Chemicals as defined under Section 311(e) of the Emergency Planning and Community Right-To-Know Act of 1986, where such chemicals are present or will be stored in excess of 10,000 lbs.
- Toxic Chemicals as defined in 40 CFR Part 372, where such chemicals are present or will be stored in excess of 10,000 lbs.
- Chemicals regulated under 6NYCRR Part 597, where such materials pose the potential for release in excess of their corresponding RQ.

Oil/petroleum products are considered to pose a significant spill potential whenever the following situations occur:

• The potential for a "harmful quantity" of oil (including petroleum and nonpetroleum-based fuels and lubricants) to reach navigable waters of the U.S. exists (40 CFR Part 112.4). Harmful quantities are considered by USEPA to be

volumes that could form a visible sheen on the water or violate applicable water quality standards.

- The potential for any amount of petroleum to reach any waters of NY State, including groundwater, exists. Petroleum, as defined by NY State in 6NYCRR Part 612, is a petroleum-based heat source, energy source, or engine lubricant/maintenance fluid.
- The potential for any release, to soil or water, of petroleum from a bulk storage facility regulated under 6NYCRR Part 612. A regulated petroleum storage facility is defined by NY State as a site having stationary tank(s) and intra-facility piping, fixtures and related equipment with an aggregate storage volume of 1,100 gallons or greater.

The evaluation indicates that, based on site history and decommissioning records, a hazardous material spill and/or a petroleum product spill is not likely to occur during Remedial efforts.

9.2 Initial Spill Notification and Evaluation

Any worker who discovers a hazardous substance or oil/petroleum spill will immediately notify the Project Manager and SSHO. The worker will, to the best of his/her ability, report the material involved, the location of the spill, the estimated quantity of material spilled, the direction/flow of the spill material, related fire/explosion incidents, if any, and any associated injuries. The Emergency Response Plan presented as Appendix A of this HASP will immediately be implemented if an emergency release has occurred.

Following initial report of a spill, the Project Manager will make an evaluation as to whether the release exceeds RQ levels. If an RQ level is exceeded, the Project Manager will notify the site owner and NYSDEC at 1-800-457-7362 within 2 hours of spill discovery. The Project Manager will also determine what additional agencies (e.g., USEPA) are to be contacted regarding the release, and will follow-up with written reports as required by the applicable regulations.

9.3 Spill Response

For all spill situations, the following general response guidelines will apply:

• Only those personnel involved in overseeing or performing containment operations will be allowed within the spill area. If necessary, the area will be

roped, ribboned, or otherwise blocked off to prevent unauthorized access.

- Appropriate PPE, as specified by the SSHO, will be donned before entering the spill area.
- Ignition points will be extinguished/removed if fire or explosion hazards exist.
- Surrounding reactive materials will be removed.
- Drains or drainage in the spill area will be blocked to prevent inflow of spilled materials or applied materials.

For minor spills, the Contractor will maintain a Spill Control and Containment Kit in the Field Office or other readily accessible storage location. The kit will consist of, at a minimum, a 50 lb. bag of "speedy dry" granular absorbent material, absorbent pads, shovels, empty 5-gallon pails and an empty open-top 55-gallon drum. Spilled materials will be absorbed, and shoveled into a 55-gallon drum for proper disposal (NYSDEC approval will be secured for on-site treatment of the impacted soils/absorbent materials, if applicable). Impacted soils will be hand-excavated to the point that no visible signs of contamination remains, and will be drummed with the absorbent.

In the event of a major release or a release that threatens surface water, a spill response contractor will be called to the site. The response contractor may use heavy equipment (i.e., excavator, backhoe, etc.) to berm the soils surrounding the spill site or create diversion trenching to mitigate overland migration or release to navigable waters. Where feasible, pumps will be used to transfer free liquid to storage containers. Spill control/ cleanup contractors in the Western New York area that may be contacted for assistance include:

- The Environmental Service Group of NY, Inc: (716) 695-6720
- Op-Tech: (716) 525-1962

9.4 Post-Spill Evaluation

If a reportable quantity of hazardous material or oil/petroleum is spilled as determined by the Project Manager, a written report will be prepared as indicated in Section 9.2. The report will identify the root cause of the spill, type and amount of material released, date/time of release, response actions, agencies notified and/or involved in cleanup, and procedures to be implemented to avoid repeat incidents. In addition, all re-useable spill

cleanup and containment materials will be decontaminated, and spill kit supplies/disposable items will be replenished.

10.0 HEAT/COLD STRESS MONITORING

Since some of the work activities at the Site may be scheduled for both summer and winter months, measures will be taken to minimize heat/cold stress to Benchmark employees. The SSHO and/or his or her designee will be responsible for monitoring Benchmark field personnel for symptoms of heat/cold stress.

10.1 Heat Stress Monitoring

Personal protective equipment may place an employee at risk of developing heat stress, a common and potentially serious illnesses often encountered at construction, landfill, waste disposal, industrial or other unsheltered sites. The potential for heat stress is dependent on a number of factors, including environmental conditions, clothing, workload, physical conditioning and age. Personal protective equipment may severely reduce the body's normal ability to maintain temperature equilibrium (via evaporation and convection), and require increased energy expenditure due to its bulk and weight.

Proper training and preventive measures will mitigate the potential for serious illness. Heat stress prevention is particularly important because once a person suffers from heat stroke or heat exhaustion, that person may be predisposed to additional heat related illness. To avoid heat stress, the following steps should be taken:

- Adjust work schedules.
- Modify work/rest schedules according to monitoring requirements.
- Mandate work slowdowns as needed.
- Perform work during cooler hours of the day if possible or at night if adequate lighting can be provided.
- Provide shelter (air-conditioned, if possible) or shaded areas to protect personnel during rest periods.
- Maintain worker's body fluids at normal levels. This is necessary to ensure that the cardiovascular system functions adequately. Daily fluid intake must approximately equal the amount of water lost in sweat (i.e., eight fluid ounces must be ingested for approximately every 1 lb of weight lost). The normal thirst mechanism is not sensitive enough to ensure that enough water will be consumed to replace lost perspiration. When heavy sweating occurs, workers should be encouraged to drink more.
- Train workers to recognize the symptoms of heat related illness.

Heat-Related Illness - Symptoms:

- Heat rash may result from continuous exposure to heat or humid air.
- Heat cramps are caused by heavy sweating with inadequate electrolyte replacement. Signs and symptoms include: muscle spasms; pain in the hands, feet and abdomen.
- Heat exhaustion occurs from increased stress on various body organs including inadequate blood circulation due to cardiovascular insufficiency or dehydration. Signs and symptoms include: pale, cool, moist skin; heavy sweating; dizziness; nausea; fainting.
- Heat stroke is the most serious form of heat stress. Temperature regulation fails and the body temperature rises to critical levels. Immediate action must be taken to cool the body before serious injury and death occur. Competent medical help must be obtained. Signs and symptoms are: red, hot, usually dry skin; lack of or reduced perspiration; nausea; dizziness and confusion; strong, rapid pulse; coma.

The monitoring of personnel wearing protective clothing should commence when the ambient temperature is 70 degrees Fahrenheit or above. For monitoring the body's recuperative ability to excess heat, one or more of the following techniques should be used as a screening mechanism.

- Heart rate may be measured by the radial pulse for 30 seconds as early as possible in the resting period. The rate at the beginning of the rest period should not exceed 100 beats per minute. If the rate is higher, the next work period should be shortened by 10 minutes (or 33%), while the length of the rest periods stay the same. If the pulse rate is 100 beats per minute at the beginning of the nest rest period, the following work cycle should be further shortened by 33%.
- Body temperature may be measured orally with a clinical thermometer as early as possible in the resting period. Oral temperature at the beginning of the rest period should not exceed 99.6 degrees Fahrenheit. If it does, the next work period should be shortened by 10 minutes (or 33%), while the length of the rest period remains the same. However, if the oral temperature exceeds 99.6 degrees Fahrenheit at the beginning of the next period, the work cycle may be further shortened by 33%. Oral temperature should be measured at the end of the rest period to make sure that it has dropped below 99.6 degrees Fahrenheit. No Benchmark employee will be permitted to continue wearing semi-permeable or impermeable garments when his/her oral temperature exceeds 100.6 degrees Fahrenheit.

10.2 Cold Stress Monitoring

Exposure to cold conditions may result in frostbite or hypothermia, each of which progresses in stages as shown below.

- **Frostbite** occurs when body tissue (usually on the extremities) begins to freeze. The three states of frostbite are:
 - 1) **Frost nip** This is the first stage of the freezing process. It is characterized by a whitened area of skin, along with a slight burning or painful sensation. Treatment consists of removing the victim from the cold conditions, removal of boots and gloves, soaking the injured part in warm water (102 to 108 degrees Fahrenheit) and drinking a warm beverage. Do not rub skin to generate friction/ heat.
 - 2) **Superficial Frostbite** This is the second stage of the freezing process. It is characterized by a whitish gray area of tissue, which will be firm to the touch but will yield little pain. The treatment is identical for Frost nip.
 - 3) **Deep Frostbite** In this final stage of the freezing process the affected tissue will be cold, numb and hard and will yield little to no pain. Treatment is identical to that for Frost nip.
- **Hypothermia** is a serious cold stress condition occurring when the body loses heat at a rate faster than it is produced. If untreated, hypothermia may be fatal. The stages of hypothermia may not be clearly defined or visible at first, but generally include:
 - 1) Shivering
 - 2) Apathy (i.e., a change to an indifferent or uncaring mood)
 - 3) Unconsciousness
 - 4) Bodily freezing

Employees exhibiting signs of hypothermia should be treated by medical professionals. Steps that can be taken while awaiting help include:

- 1) Remove the victim from the cold environment and remove wet or frozen clothing. (Do this carefully as frostbite may have started.)
- 2) Perform active re-warming with hot liquids for drinking (Note: do not give the victim any liquid containing alcohol or caffeine) and a warm water bath (102 to 108 degrees Fahrenheit).
- 3) Perform passive re-warming with a blanket or jacket wrapped around the victim.

In any potential cold stress situation, it is the responsibility of the Site Health and Safety Officer to encourage the following:

- Education of workers to recognize the symptoms of frostbite and hypothermia.
- Workers should dress warmly, with more layers of thin clothing as opposed to one thick layer.
- Personnel should remain active and keep moving.
- Personnel should be allowed to take shelter in a heated areas, as necessary.
- Personnel should drink warm liquids (no caffeine or alcohol if hypothermia has set in).
- For monitoring the body's recuperation from excess cold, oral temperature recordings should occur:
 - At the Site Safety Technicians discretion when suspicion is based on changes in a worker's performance or mental status.
 - At a workers request.
 - As a screening measure, two times per shift, under unusually hazardous conditions (e.g., wind chill less than 20 degrees Fahrenheit or wind chill less than 30 degrees Fahrenheit with precipitation).
 - As a screening measure whenever anyone worker on site develops hypothermia.

Any person developing moderate hypothermia (a core body temperature of 92 degrees Fahrenheit) will not be allowed to return to work for 48 hours without the recommendation of a qualified medical doctor.

11.0 WORK ZONES & SITE CONTROL

Work zones around the areas designated for construction activities will be established on a daily basis and communicated to all employees and other site users by the SSHO. It shall be each Contractor's SSHO's responsibility to ensure that all site workers are aware of the work zone boundaries and to enforce proper procedures in each area. The zones will include:

- Exclusion Zone ("Hot Zone"): The area where contaminated materials may be exposed, excavated or handled and all areas where contaminated equipment or personnel may travel. The zone will be delineated by flagging tape. All personnel entering the Exclusion Zone must wear the prescribed level of personal protective equipment identified in Section 7.
- Contamination Reduction Zone: The zone where decontamination of personnel and equipment takes place. Any potentially contaminated clothing, equipment and samples must remain in the Contamination Reduction Zone until decontaminated.
- Support Zone: The part of the site that is considered non-contaminated or "clean." Support equipment will be located in this zone, and personnel may wear normal work clothes within this zone.

In the absence of other task-specific work zone boundaries established by the SSHO, the following boundaries will apply to all construction activities involving disruption or handling of site soils or groundwater:

- Exclusion Zone: 50 foot radius from the outer limit of the sampling/construction activity.
- Contaminant Reduction Zone: 100 foot radius from the outer limit of the sampling/construction activity.
- Support Zone: Areas outside the Contaminant Reduction Zone.

Access of non-essential personnel to the Exclusion and Contamination Reduction Zones will be strictly controlled by the SSHO. Only personnel who are essential to the completion of the task will be allowed access to these areas and only if they are wearing the prescribed level of protection. Entrance of all personnel must be approved by the SSHO.

The SSHO will maintain a Health and Safety Logbook containing the names of Benchmark workers and their level of protection. The zone boundaries may be changed by the SSHO as environmental conditions warrant, and to respond to the necessary changes in work locations on-site.

12.0 DECONTAMINATION

12.1 Decontamination for Benchmark Employees

The degree of decontamination required is a function of a particular task and the environment within which it occurs. The following decontamination procedure will remain flexible, thereby allowing the decontamination crew to respond appropriately to the changing environmental conditions that may arise at the site. All Benchmark personnel onsite shall follow the procedure below, or the Contractor's procedure (if applicable), whichever is more stringent.

Station 1 - Equipment Drop: Deposit visibly contaminated (if any) re-useable equipment used in the contamination reduction and exclusion zones (tools, containers, monitoring instruments, radios, clipboards, etc.) on plastic sheeting.

Station 2 - Boots and Gloves Wash and Rinse: Scrub outer boots and outer gloves.

Station 3 - Tape, Outer Boot and Glove Removal: Remove tape, outer boots and gloves. Deposit tape and gloves in waste disposal container.

Station 4 - Canister or Mask Change: If worker leaves exclusive zone to change canister (or mask), this is the last step in the decontamination procedure. Worker's canister is exchanged, new outer gloves and boot cover donned, and worker returns to duty.

Station 5 - Outer Garment/Face Piece Removal: Protective suit removed and deposited in separate container provided by Contractor. Face piece or goggles are removed if used. Avoid touching face with fingers. Face piece and/or goggles deposited on plastic sheet. Hard hat removed and placed on plastic sheet.

Station 6 - Inner Glove Removal: Inner gloves are the last PPE to be removed. Avoid touching the outside of the gloves with bare fingers. Dispose of these gloves in waste disposal container.

Following PPE removal, personnel shall wash hands, face and forearms with absorbent wipes. If field activities proceed for a duration of 6 consecutive months or longer, shower facilities will be provided for worker use in accordance with OSHA 29 CFR 1910.120(n).

12.2 Decontamination for Medical Emergencies

In the event of a minor, non-life threatening injury, personnel should follow the decontamination procedures as defined, and then administer first-aid.

In the event of a major injury or other serious medical concern (e.g., heat stroke), immediate first-aid is to be administered and the victim transported to the hospital in lieu of further decontamination efforts unless exposure to a site contaminant would be considered "Immediately Dangerous to Life or Health."

12.3 Decontamination of Field Equipment

Decontamination of heavy equipment will be conducted by the Contractor in accordance with his approved Health and Safety Plan in the Contamination Reduction Zone. As a minimum, this will include manually removing heavy soil contamination, followed by steam cleaning on an impermeable pad.

Decontamination of all tools used for sample collection purposes will be conducted by Benchmark personnel. It is expected that all tools will be constructed of nonporous, nonabsorbent materials (i.e., metal), which will aid in the decontamination effort. Any tool or part of a tool made of porous, absorbent material (i.e., wood) will be placed into suitable containers and prepared for disposal.

Decontamination of bailers, split-spoons, spatula knives, and other tools used for environmental sampling and examination shall be as follows:

- Disassemble the equipment.
- Water wash to remove all visible foreign matter.
- Wash with detergent.
- Rinse all parts with distilled-deionized water.
- Allow to air dry.
- Wrap all parts in aluminum foil or polyethylene.

13.0 CONFINED SPACE ENTRY

OSHA 29 CFR 1910.146 identifies a confined space as a space that is large enough and so configured that an employee can physically enter and do assigned work, has limited or restricted means for entry and exit, and is not intended for continuous employee occupancy. Confined spaces include, but are not limited to, trenches, storage tanks, process vessels, pits, sewers, tunnels, underground utility vaults, pipelines, sumps, wells, and excavations.

Confined space entry by Benchmark employees is not anticipated to be necessary to complete the remedial activities identified in Section 2.0. In the event that the scope of work changes or confined space entry appears necessary, the Project Manager will be consulted to determine if feasible engineering alternatives to confined space entry can be implemented. If confined space entry by Benchmark employees cannot be avoided through reasonable engineering measures, task-specific confined space entry procedures will be developed and a confined-space entry permit will be issued through Benchmark's corporate Health and Safety Director. Benchmark employees shall not enter a confined space without these procedures and permits in place.

14.0 FIRE PREVENTION & PROTECTION

14.1 General Approach

Recommended practices and standards of the National Fire Protection Association (NFPA) and other applicable regulations will be followed in the development and application of Project Fire Protection Programs. When required by regulatory authorities, the project management will prepare and submit a Fire Protection Plan for the approval of the contracting officers, authorized representative or other designated official. Essential considerations for the Fire Protection Plan will include:

- Proper site preparation and safe storage of combustible and flammable materials.
- Availability of coordination with private and public fire authorities.
- Adequate job-site fire protection and inspections for fire prevention.
- Adequate indoctrination and training of employees.

14.2 Equipment and Requirements

Fire extinguishers will be provided by each Contractor and are required on all heavy equipment and in each field trailer. Fire extinguishers will be inspected, serviced, and maintained in accordance with the manufacturer's instructions. As a minimum, all extinguishers shall be checked monthly and weighed semi-annually, and recharged if necessary. Recharge or replacement shall be mandatory immediately after each use.

14.3 Flammable and Combustible Substances

All storage, handling or use of flammable and combustible substances will be under the supervision of qualified persons. All tanks, containers and pumping equipment, whether portable or stationary, used for the storage and handling of flammable and combustible liquids, will meet the recommendations of the NFPA.

14.4 Hot Work

If the scope of work necessitates welding or blowtorch operation, the hot work permit presented in Appendix B will be completed by the SSHO and reviewed/issued by the Project Manager.

15.0 Emergency Information

In accordance with OSHA 29 CFR Part 1910, an Emergency Response Plan is attached to this HASP as Appendix A. Figure A-1 is the hospital route map.

16.0 REFERENCES

1. New York State Department of Health. 2010. Generic Community Air Monitoring Plan, Appendix 1A, DER-10 Technical Guidance for Site Investigation and Remediation. May.

PARAMETERS OF INTEREST

Site Health & Safety Plan 295 Maryland Street Site **Buffalo, New York**

		Maximum	Detected Conce	ected Concentration ²			
Parameter ¹	CAS No.	Groundwater (µg/L)	Surface Soil/Fill (mg/kg)	Subsurface Soil/Fill (mg/kg)			
Volatile Organic Compounds	(VOCs):						
Benzene	71-43-2	38	ND	0.8			
Ethylbenzene	100-41-4	39	ND	ND			
Toluene	108-88-3	18	ND	ND			
Xylene, Total	1330-20-7	97	ND	ND			
Polycyclic Aromatic Hydroca	rbons (PAHs)):					
Benz(a)anthracene	56-55-3	0.35	17	2			
Benzo(a)pyrene	50-32-8	ND	13	1.6			
Benzo(b)fluoranthene	205-99-2	ND	19	2.6			
Benzo(k)fluoranthene	207-08-9	ND	8.1	0.98			
Chrysene	218-01-9	ND	14	1.7			
Dibenz(ah)anthracene	53-70-3	ND	0.61	ND			
Indeno(1,2,3-cd)pyrene	193-39-5	ND	7	0.74			
Inorganic Compounds:							
Arsenic	7440-38-2	ND	23	7.8			
Barium	7440-39-3	0.332	516	552			
Cadmium	7440-43-9	ND	4.2	2.26			
Lead	7439-92-1	ND	8,160	1,420			
Mercury	7439-97-6	ND	1	0.92			

Notes:

1. Constituents were identified as parameters of interest during the Phase II and RAWP investigation.

2. Maximum detected concentrations as presented in the RAWP.

Acronyms: NA = Not analyzed.

ND = Parameter not detected above method detection limits.

TOXICITY DATA FOR PARAMETERS OF INTEREST

Site Health & Safety Plan 295 Maryland Street Site Buffalo, New York

				Concentration Limits 1						
Parameter	Synonyms	CAS No.	Code	PEL	TLV	IDLH				
Volatile Organic Compoun		<u> </u>								
Benzene	Benzol, Phenyl hydride	71-43-2	Ca	1	0.5	500				
Ethylbenzene	Ethylbenzol, Phenylethane	100-41-4	none	100	100	800				
Toluene	Methyl benzene, Methyl benzol	108-88-3	C-300	200	50	500				
Xylene, Total	o-, m-, p-isomers	1330-20-7	none	100	100	900				
Polycyclic Aromatic Hydrocarbons (PAHs) ² : ppm										
Benz(a)anthracene	none	56-55-3	none							
Benzo(a)pyrene	none	50-32-8	none							
Benzo(b)fluoranthene	none	205-99-2	none							
Benzo(k)fluoranthene	none	207-08-9	none							
Chrysene	none	218-01-9	none							
Dibenz(ah)anthracene	none	53-70-3	none							
Indeno(1,2,3-cd)pyrene	none	193-39-5	none							
Inorganic Compounds: mg	/m ³									
Arsenic	none	7440-38-2	Ca	0.01	0.01	5				
Barium	none	7440-39-3	none	0.5	0.5	50				
Cadmium	none	7440-43-9	Ca	0.005	0.01	9				
Lead	none	7439-92-1	none	0.05	0.15	100				
Mercury	none	7439-97-6	C-0.1	0.1	0.1 0.05					

Notes:

1. Concentration limits as reported by NIOSH Pocket Guide to Chemical Hazards, February 2004 (NIOSH Publication No. 97-140, fourth printing with changes and updates).

Individual parameters listed are those most commonly detected at steel/coke manufacturing sites.
 " -- " = concentration limit not available; exposure should be minimized to the extent feasible through appropriate engineering controls & PPE.

Explanation:

Ca = NIOSH considers constituent to be a potential occupational carcinogen.

C-## = Ceiling Level equals the maximum exposure concentration allowable during the work day.

IDLH = Immediately Dangerous to Life or Health.

ND indicates that an IDLH has not as yet been determined. TLV = Threshold Limit Value, established by American Conference of Industrial Hygienists (ACGIH), equals the maximum exposure concentration allowable for 8 hours/day @ 40 hours/week.

TLVs are the amounts of chemicals in the air that almost all healthy adult workers are predicted to be able to tolerate without adverse effects. There are three types.

TLV-TWA (TLV-Time-Weighted Average) which is averaged over the normal eight-hour day/forty-hour work week. (Most TLVs.)

TLV-STEL or Short Term Exposure Limits are 15 minute exposures that should not be exceeded for even an instant. It is not a stand alone value but is accompanied by the TLV-TWA. It indicates a higher exposure that can be tolerated for a short time without adverse effect as long as the total time weighted average is not exceeded.

TLV-C or Ceiling limits are the concentration that should not be exceeded during any part of the working exposure.

Unless the initials "STEL" or "C" appear in the Code column, the TLV value should be considered to be the eight-hour TLV-TWA.

PEL = Permissible Exposure Limit, established by OSHA, equals the maximium exposure conconcentration allowable for 8 hours per day @ 40 hours per week

POTENTIAL ROUTES OF EXPOSURE TO PARAMETERS OF INTEREST

Site Health and Safety Plan 295 Maryland Street Site Buffalo, New York

Activity ¹	Direct Contact with Soil/Fill	Inhalation of Vapors or Dust	Direct Contact with Groundwater
1. Soil/Fill Excavation	x	х	
2. Soil/Fill Verification Sampling	x	x	
3. Surface Water Management			х
4. Subgrade Work	x	x	

Notes:

1. Activity as described in Section 1.5 of the Health and Safety Plan

REQUIRED LEVELS OF PROTECTION FOR REMEDIAL ACTIVITIES

Site Health and Safety Plan 295 Maryland Street Site Buffalo, New York

Activity	Respiratory Protection ¹	Clothing	Gloves ²	Boots ^{2,3}	Other Required PPE/Modifications ^{2,4}
1. Soil/Fill Excavation	Level D (upgrade to Level C if necessary)	Work Uniform or Tyvek	L	outer: L inner: STSS	HH SGSS
2. Soil/Fill Verification Sampling	Level D (upgrade to Level C if necessary)	Work Uniform or Tyvek	L	outer: L inner: STSS	HH SGSS
3. Surface Water Management	Level D (upgrade to Level C if necessary)	Work Uniform or Tyvek	L/N	outer: L inner: STSS	HH SGSS
4. Subgrade Work	Level D (upgrade to Level C if necessary)	Work Uniform or Tyvek	L	outer: L inner: STSS	HH SGSS

Notes:

1. Respiratory equipment shall conform to guidelines presented in Section 7.0 of this HASP. The Level C requirement is an air-purifying respirator equiped with organic compound/acid gas/dust

2. HH = hardhat; L= Latex; L/N = latex inner glove, nitrile outer glove; N = Nitrile; S = Saranex; SG = safety glasses; SGSS = safety glasses with sideshields; STSS = steel toe safety shoes.

3. Latex outer boot (or approved overboot) required whenever contact with contaminated materials may occur. SSHO may downgrade to STSS (steel-toed safety shoes) if contact will be limited to cover/replacement soils.

4. Dust masks shall be donned as directed by the SSHO (site safety and health officer) or site safety technician whenever potentially contaminated airborne particulates (i.e., dust) are present in significant

APPENDIX A

EMERGENCY RESPONSE PLAN

SITE HASP – APPENDIX A

EMERGENCY RESPONSE PLAN FOR BROWNFIELD CLEANUP PROGRAM

295 MARYLAND STREET SITE BUFFALO, NEW YORK

July 2011

0222-001-100

Prepared for:

295 MARYLAND, LLC

Prepared By:

Benchmark Environmental Engineering & Science, PLLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716)856-0599

SITE HEALTH AND SAFETY PLAN 295 Maryland Street Site Appendix A: Emergency Response Plan

TABLE OF CONTENTS

1.0	GENERAL
2.0	PRE-EMERGENCY PLANNING
3.0	ON-SITE EMERGENCY RESPONSE EQUIPMENT
4.0	EMERGENCY PLANNING MAPS 4
5.0	EMERGENCY CONTACTS
6.0	EMERGENCY ALERTING & EVACUATION
7.0	EXTREME WEATHER CONDITIONS
8.0	EMERGENCY MEDICAL TREATMENT & FIRST AID
9.0	EMERGENCY RESPONSE CRITIQUE & RECORD KEEPING10
10.0	EMERGENCY RESPONSE TRAINING

LIST OF FIGURES

Figure A-1 Hospital Route Map

1.0 GENERAL

This report presents the site-specific Emergency Response Plan (ERP) referenced in the Site Health and Safety Plan (HASP) prepared for remedial activities conducted at the 295 Maryland Street Site in Buffalo, New York. This appendix of the HASP describes potential emergencies that may occur at the Site; procedures for responding to those emergencies; roles and responsibilities during emergency response; and training all workers must receive in order to follow emergency procedures. This ERP also describes the provisions this Site has made to coordinate its emergency response planning with other contractors on-site and with off-site emergency response organizations. This ERP is consistent with the requirements of 29 CFR 1910.120(l) and provides the following site-specific information:

- Pre-emergency planning.
- Personnel roles, lines of authority, and communication.
- Emergency recognition and prevention.
- Safe distances and places of refuge.
- Evacuation routes and procedures.
- Decontamination procedures.
- Emergency medical treatment and first aid.
- Emergency alerting and response procedures.
- Critique of response and follow-up.
- Emergency personal protective equipment (PPE) and equipment.

2.0 PRE-EMERGENCY PLANNING

This Site has been evaluated for potential emergency occurrences, based on site hazards, the required work tasks, the site topography, and prevailing weather conditions. The results of that evaluation indicate the potential for the following site emergencies to occur at the locations indicated.

Type of Emergency:

- 1. Medical, due to physical injury
- 2. Fire

Source of Emergency:

- 1. Slip/trip/fall
- 2. Fire

Location of Source: Non-specific

3.0 ON-SITE EMERGENCY RESPONSE EQUIPMENT

Emergency procedures may require specialized equipment to facilitate worker rescue, contamination control and reduction, or post-emergency clean up. Emergency response equipment available on the Site is listed below. The equipment inventory and storage locations are based on the potential emergencies described above. This equipment inventory is designed to meet on-site emergency response needs and any specialized equipment needs that off-site responders might require because of the hazards at this Site but not ordinarily stocked.

Any additional personal protective equipment (PPE) required and stocked for emergency response is also listed in below. During an emergency, the Emergency Response Coordinator (ERC) is responsible for specifying the level of PPE required for emergency response. At a minimum, PPE used by emergency responders will comply with Section 7.0, Personal Protective Equipment, of this HASP. Emergency response equipment is inspected at regular intervals and maintained in good working order. The equipment inventory is replenished as necessary to maintain response capabilities.

Emergency Equipment	Quantity	Location
Spill Response Kit	1	Site Vehicle
First Aid Kit	1	Site Vehicle
Chemical Fire Extinguisher	2 (minimum)	All heavy equipment and Site Vehicle

Emergency PPE	Quantity	Location
Full-face respirator	1 for each worker	Site Vehicle
Chemical-resistant suits	4 (minimum)	Site Vehicle

4.0 EMERGENCY PLANNING MAPS

An area-specific map of the Site will be developed on a daily basis during performance of field activities. The map will be marked to identify critical on-site emergency planning information, including: emergency evacuation routes, a place of refuge, an assembly point, and the locations of key site emergency equipment. Site zone boundaries will be shown to alert responders to known areas of contamination. There are no major topographical features; however, the direction of prevailing winds/weather conditions that could affect emergency response planning are also marked on the map. The map will be posted at site-designated place of refuge and inside the Benchmark personnel field vehicle.

5.0 Emergency Contacts

The following identifies the emergency contacts for this ERP.

Emergency Telephone Numbers:

Project Manager: Thomas H. Forbes

Work: (716) 856-0599 Mobile: (716) 864-1730

Corporate Health and Safety Director: Thomas H. Forbes

Work: (716) 856-0599 Mobile: (716) 864-1730

Site Safety and Health Officer (SSHO): Richard L. Dubisz

Work: (716) 856-0599 Mobile: (716) 998-4334

Alternate SSHO: Thomas Behrendt

Work: (716) 856-0599 Mobile: (716) 818-8358

BUFFALO GENERAL HOSPITAL:	(716)859-5600
FIRE	911
AMBULANCE:	911
BUFFALO POLICE:	911
STATE EMERGENCY RESPONSE HOTLINE:	(800) 457-7362
NATIONAL RESPONSE HOTLINE:	(800) 424-8802
NYSDOH:	(716) 847-4385
NYSDEC:	(716) 851-7220
NYSDEC 24-HOUR SPILL HOTLINE:	(800) 457-7252

The Site location is:

295 Maryland Street Buffalo, New York 14201 Site Phone Number: (Insert Cell Phone or Field Trailer):

6.0 EMERGENCY ALERTING & EVACUATION

Internal emergency communication systems are used to alert workers to danger, convey safety information, and maintain site control. Any effective system can be employed. Two-way radio headsets or field telephones are often used when work teams are far from the command post. Hand signals and air-horn blasts are also commonly used. Every system <u>must</u> have a backup. It shall be the responsibility of each contractor's SSHO to ensure an adequate method of internal communication is understood by all personnel entering the site. Unless all personnel are otherwise informed, the following signals shall be used.

- 1) Emergency signals by portable air horn, siren, or whistle: two short blasts, personal injury; continuous blast, emergency requiring site evacuation.
- 2) Visual signals: hand gripping throat, out of air/cannot breathe; hands on top of head, need assistance; thumbs up, affirmative/ everything is OK; thumbs down, no/negative; grip partner's wrist or waist, leave area immediately.

If evacuation notice is given, site workers leave the worksite with their respective buddies, if possible, by way of the nearest exit. Emergency decontamination procedures detailed in Section 12.0 of the HASP are followed to the extent practical without compromising the safety and health of site personnel. The evacuation routes and assembly area will be determined by conditions at the time of the evacuation based on wind direction, the location of the hazard source, and other factors as determined by rehearsals and inputs from emergency response organizations. Wind direction indicators are located so that workers can determine a safe up wind or cross wind evacuation route and assembly area if not informed by the emergency response coordinator at the time the evacuation alarm sounds. Since work conditions and work zones within the site may be changing on daily basis, it shall be the responsibility of the construction Site Health and Safety Officer to review evacuation routes and procedures as necessary and to inform all Benchmark workers of any changes.

Personnel exiting the site will gather at a designated assembly point. To determine that everyone has successfully exited the site, personnel will be accounted for at the assembly site. If any worker cannot be accounted for, notification is given to the SSHO (*Thomas Behrendt* or *Richard Dubisz*) so that appropriate action can be initiated. Contractors and subcontractors on this site have coordinated their emergency response plans to ensure that

these plans are compatible and that source(s) of potential emergencies are recognized, alarm systems are clearly understood, and evacuation routes are accessible to all personnel relying upon them.

7.0 EXTREME WEATHER CONDITIONS

In the event of adverse weather conditions, the SSHO in conjunction with the Contractor's SSHO will determine if engineering operations can continue without sacrificing the health and safety of site personnel. Items to be considered prior to determining if work should continue include but are not limited to:

- Potential for heat/cold stress.
- Weather-related construction hazards (i.e., flooding or wet conditions producing undermining of structures or sheeting, high wind threats, etc).
- Limited visibility.
- Potential for electrical storms.
- Limited site access/egress (e.g., due to heavy snow)

8.0 EMERGENCY MEDICAL TREATMENT & FIRST AID

Personnel Exposure:

The following general guidelines will be employed in instances where health impacts threaten to occur acute exposure is realized:

- <u>Skin Contact</u>: Use copious amounts of soap and water. Wash/rinse affected area for at least 15 minutes. Decontaminate and provide medical attention. Eyewash stations will be provided on site. If necessary, transport to Mercy Hospital.
- <u>Inhalation</u>: Move to fresh air and, if necessary, transport to Mercy Hospital.
- <u>Ingestion</u>: Decontaminate and transport to Mercy Hospital.

Personal Injury:

Minor first-aid will be applied on-site as deemed necessary. In the event of a life threatening injury, the individual should be transported to Mercy Hospital via ambulance. The SSHO will supply available chemical specific information to appropriate medical personnel as requested.

First aid kits will conform to Red Cross and other applicable good health standards, and shall consist of a weatherproof container with individually sealed packages for each type of item. First aid kits will be fully equipped before being sent out on each job and will be checked weekly by the SSHO to ensure that the expended items are replaced.

Directions to Buffalo General Hospital (see Figure A-1):

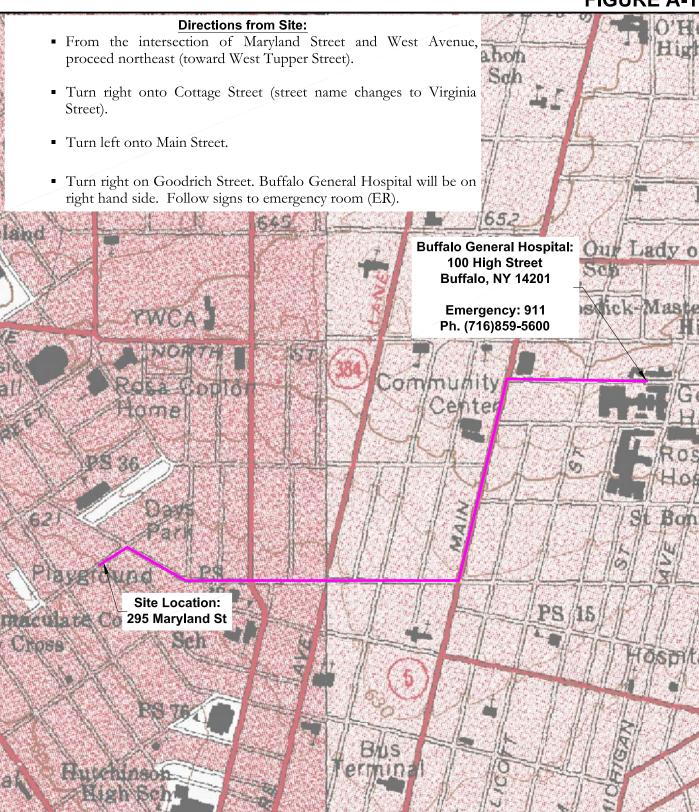
The following directions describe the best route to Buffalo General Hospital:

- From the intersection of Maryland Street and West Avenue, proceed northeast (toward West Tupper Street).
- Turn right onto Cottage Street (street name changes to Virginia Street).
- Turn left onto Main Street.
- Turn right on Goodrich Street. Buffalo General Hospital will be on right hand side. Follow signs to emergency room (ER).

9.0 EMERGENCY RESPONSE CRITIQUE & RECORD KEEPING

Following an emergency, the SSHO and Project Manager shall review the effectiveness of this Emergency Response Plan (ERP) in addressing notification, control and evacuation requirements. Updates and modifications to this ERP shall be made accordingly. It shall be the responsibility of each contractor to establish and assure adequate records of the following:

- Occupational injuries and illnesses.
- Accident investigations.
- Reports to insurance carrier or State compensation agencies.
- Reports required by the client.
- Records and reports required by local, state, federal and/or international agencies.
- Property or equipment damage.
- Third party injury or damage claims.
- Environmental testing logs.
- Explosive and hazardous substances inventories and records.
- Records of inspections and citations.
- Safety training.


10.0 Emergency Response Training

All persons who enter the worksite, including visitors, shall receive a site-specific briefing about anticipated emergency situations and the emergency procedures by the SSHO. Where this site relies on off-site organizations for emergency response, the training of personnel in those off-site organizations has been evaluated and is deemed adequate for response to this site.

FIGURES

DATE: JUNE 2011

DRAFTED BY: JCT

PROJECT NO .: 0222-001-100

2558 HAMBURG TURNPIKE SUITE 300 BUFFALO, NY 14218 (716) 856-0599

HOSPITAL ROUTE MAP

REMEDIAL ACTION WORK PLAN

295 MARYLAND STREET SITE 295 MARYLAND STREET BUFFALO, NEW YORK PREPARED FOR 295 MARYLAND, LLC

APPENDIX B

HOT WORK PERMIT FORM

Issue Date:	
Date Work to be Performed: Start:	Finish (permit terminated):
Performed By:	
Work Area:	
Object to be Worked On:	
ART 2 - APPROVAL	
(for 1, 2 or 3: mark Yes, No or NA)*	
Will working be on or in:	Finish (permit terminated):
1. Metal partition, wall, ceiling covered by combustible material?	yes no
2. Pipes, in contact with combustible material?	yes no
3. Explosive area?	yes no
ART 3 - REQUIRED CONDITIONS** (Check all conditions that must be met)	
PROTECTIVE ACTION	PROTECTIVE EQUIPMENT
Specific Risk Assessment Required	Goggles/visor/welding screen
Fire or spark barrier	Apron/fireproof clothing
Cover hot surfaces	Welding gloves/gauntlets/other:
Move movable fire hazards, specifically	Wellintons/Knee pads
Erect screen on barrier	Ear protection: Ear muffs/Ear plugs
Restrict Access	B.A.: SCBA/Long Breather
Wet the ground	Respirator: Type:
Ensure adequate ventilation	Cartridge:
Provide adequate supports	Local Exhaust Ventilation
Cover exposed drain/floor or wall cracks	Extinguisher/Fire blanket
Fire watch (must remain on duty during duration of permit)	Personal flammable gas monitor
Issue additional permit(s):	
Other precautions:	
** Permit will not be issued until these conditions are me	et.
GNATURES	
Orginating Employee:	Date:
	Date:
Project Manager:	Date:

Prepared By: _____

APPENDIX C

NYSDOH GENERIC COMMUNITY AIR MONITORING PLAN

Appendix 1A New York State Department of Health Generic Community Air Monitoring Plan

Overview

A Community Air Monitoring Plan (CAMP) requires real-time monitoring for volatile organic compounds (VOCs) and particulates (i.e., dust) at the downwind perimeter of each designated work area when certain activities are in progress at contaminated sites. The CAMP is not intended for use in establishing action levels for worker respiratory protection. Rather, its intent is to provide a measure of protection for the downwind community (i.e., off-site receptors including residences and businesses and on-site workers not directly involved with the subject work activities) from potential airborne contaminant releases as a direct result of investigative and remedial work activities. The action levels specified herein require increased monitoring, corrective actions to abate emissions, and/or work shutdown. Additionally, the CAMP helps to confirm that work activities did not spread contamination off-site through the air.

The generic CAMP presented below will be sufficient to cover many, if not most, sites. Specific requirements should be reviewed for each situation in consultation with NYSDOH to ensure proper applicability. In some cases, a separate site-specific CAMP or supplement may be required. Depending upon the nature of contamination, chemical- specific monitoring with appropriately-sensitive methods may be required. Depending upon the proximity of potentially exposed individuals, more stringent monitoring or response levels than those presented below may be required. Special requirements will be necessary for work within 20 feet of potentially exposed individuals or structures and for indoor work with co-located residences or facilities. These requirements should be determined in consultation with NYSDOH.

Reliance on the CAMP should not preclude simple, common-sense measures to keep VOCs, dust, and odors at a minimum around the work areas.

Community Air Monitoring Plan

Depending upon the nature of known or potential contaminants at each site, real-time air monitoring for VOCs and/or particulate levels at the perimeter of the exclusion zone or work area will be necessary. Most sites will involve VOC and particulate monitoring; sites known to be contaminated with heavy metals alone may only require particulate monitoring. If radiological contamination is a concern, additional monitoring requirements may be necessary per consultation with appropriate DEC/NYSDOH staff.

Continuous monitoring will be required for all <u>ground intrusive</u> activities and during the demolition of contaminated or potentially contaminated structures. Ground intrusive activities include, but are not limited to, soil/waste excavation and handling, test pitting or trenching, and the installation of soil borings or monitoring wells.

Periodic monitoring for VOCs will be required during <u>non-intrusive</u> activities such as the collection of soil and sediment samples or the collection of groundwater samples from existing monitoring wells. "Periodic" monitoring during sample collection might reasonably consist of taking a reading upon arrival at a sample location, monitoring while opening a well cap or

overturning soil, monitoring during well baling/purging, and taking a reading prior to leaving a sample location. In some instances, depending upon the proximity of potentially exposed individuals, continuous monitoring may be required during sampling activities. Examples of such situations include groundwater sampling at wells on the curb of a busy urban street, in the midst of a public park, or adjacent to a school or residence.

VOC Monitoring, Response Levels, and Actions

Volatile organic compounds (VOCs) must be monitored at the downwind perimeter of the immediate work area (i.e., the exclusion zone) on a continuous basis or as otherwise specified. Upwind concentrations should be measured at the start of each workday and periodically thereafter to establish background conditions, particularly if wind direction changes. The monitoring work should be performed using equipment appropriate to measure the types of contaminants known or suspected to be present. The equipment should be calibrated at least daily for the contaminant(s) of concern or for an appropriate surrogate. The equipment should be capable of calculating 15-minute running average concentrations, which will be compared to the levels specified below.

1. If the ambient air concentration of total organic vapors at the downwind perimeter of the work area or exclusion zone exceeds 5 parts per million (ppm) above background for the 15-minute average, work activities must be temporarily halted and monitoring continued. If the total organic vapor level readily decreases (per instantaneous readings) below 5 ppm over background, work activities can resume with continued monitoring.

2. If total organic vapor levels at the downwind perimeter of the work area or exclusion zone persist at levels in excess of 5 ppm over background but less than 25 ppm, work activities must be halted, the source of vapors identified, corrective actions taken to abate emissions, and monitoring continued. After these steps, work activities can resume provided that the total organic vapor level 200 feet downwind of the exclusion zone or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less - but in no case less than 20 feet, is below 5 ppm over background for the 15-minute average.

3. If the organic vapor level is above 25 ppm at the perimeter of the work area, activities must be shutdown.

4. All 15-minute readings must be recorded and be available for State (DEC and NYSDOH) personnel to review. Instantaneous readings, if any, used for decision purposes should also be recorded.

Particulate Monitoring, Response Levels, and Actions

Particulate concentrations should be monitored continuously at the upwind and downwind perimeters of the exclusion zone at temporary particulate monitoring stations. The particulate monitoring should be performed using real-time monitoring equipment capable of measuring particulate matter less than 10 micrometers in size (PM-10) and capable of integrating over a period of 15 minutes (or less) for comparison to the airborne particulate action level. The equipment must be equipped with an audible alarm to indicate exceedance of the action level. In addition, fugitive dust migration should be visually assessed during all work activities.

1. If the downwind PM-10 particulate level is 100 micrograms per cubic meter (mcg/m^3) greater than background (upwind perimeter) for the 15-minute period or if airborne dust is observed leaving the work area, then dust suppression techniques must be employed. Work may continue with dust suppression techniques provided that downwind PM-10 particulate levels do not exceed 150 mcg/m³ above the upwind level and provided that no visible dust is migrating from the work area.

2. If, after implementation of dust suppression techniques, downwind PM-10 particulate levels are greater than 150 mcg/m³ above the upwind level, work must be stopped and a re-evaluation of activities initiated. Work can resume provided that dust suppression measures and other controls are successful in reducing the downwind PM-10 particulate concentration to within 150 mcg/m³ of the upwind level and in preventing visible dust migration.

3. All readings must be recorded and be available for State (DEC and NYSDOH) and County Health personnel to review.

December 2009

Appendix 1B Fugitive Dust and Particulate Monitoring

A program for suppressing fugitive dust and particulate matter monitoring at hazardous waste sites is a responsibility on the remedial party performing the work. These procedures must be incorporated into appropriate intrusive work plans. The following fugitive dust suppression and particulate monitoring program should be employed at sites during construction and other intrusive activities which warrant its use:

1. Reasonable fugitive dust suppression techniques must be employed during all site activities which may generate fugitive dust.

2. Particulate monitoring must be employed during the handling of waste or contaminated soil or when activities on site may generate fugitive dust from exposed waste or contaminated soil. Remedial activities may also include the excavation, grading, or placement of clean fill. These control measures should not be considered necessary for these activities.

3. Particulate monitoring must be performed using real-time particulate monitors and shall monitor particulate matter less than ten microns (PM10) with the following minimum performance standards:

- (a) Objects to be measured: Dust, mists or aerosols;
- (b) Measurement Ranges: 0.001 to 400 mg/m3 (1 to 400,000 :ug/m3);

(c) Precision (2-sigma) at constant temperature: +/- 10 :g/m3 for one second averaging; and +/- 1.5 g/m3 for sixty second averaging;

(d) Accuracy: +/- 5% of reading +/- precision (Referred to gravimetric calibration with SAE fine test dust (mmd= 2 to 3 :m, g= 2.5, as aerosolized);

- (e) Resolution: 0.1% of reading or 1g/m3, whichever is larger;
- (f) Particle Size Range of Maximum Response: 0.1-10;
- (g) Total Number of Data Points in Memory: 10,000;

(h) Logged Data: Each data point with average concentration, time/date and data point number

(i) Run Summary: overall average, maximum concentrations, time/date of maximum, total number of logged points, start time/date, total elapsed time (run duration), STEL concentration and time/date occurrence, averaging (logging) period, calibration factor, and tag number;

(j) Alarm Averaging Time (user selectable): real-time (1-60 seconds) or STEL (15 minutes), alarms required;

(k) Operating Time: 48 hours (fully charged NiCd battery); continuously with charger;

(1) Operating Temperature: -10 to 50° C (14 to 122° F);

(m) Particulate levels will be monitored upwind and immediately downwind at the working site and integrated over a period not to exceed 15 minutes.

4. In order to ensure the validity of the fugitive dust measurements performed, there must be appropriate Quality Assurance/Quality Control (QA/QC). It is the responsibility of the remedial party to adequately supplement QA/QC Plans to include the following critical features: periodic instrument calibration, operator training, daily instrument performance (span) checks, and a record keeping plan.

5. The action level will be established at 150 ug/m3 (15 minutes average). While conservative,

this short-term interval will provide a real-time assessment of on-site air quality to assure both health and safety. If particulate levels are detected in excess of 150 ug/m3, the upwind background level must be confirmed immediately. If the working site particulate measurement is greater than 100 ug/m3 above the background level, additional dust suppression techniques must be implemented to reduce the generation of fugitive dust and corrective action taken to protect site personnel and reduce the potential for contaminant migration. Corrective measures may include increasing the level of personal protection for on-site personnel and implementing additional dust suppression techniques (see paragraph 7). Should the action level of 150 ug/m3 continue to be exceeded work must stop and DER must be notified as provided in the site design or remedial work plan. The notification shall include a description of the control measures implemented to prevent further exceedances.

6. It must be recognized that the generation of dust from waste or contaminated soil that migrates off-site, has the potential for transporting contaminants off-site. There may be situations when dust is being generated and leaving the site and the monitoring equipment does not measure PM10 at or above the action level. Since this situation has the potential to allow for the migration of contaminants off-site, it is unacceptable. While it is not practical to quantify total suspended particulates on a real-time basis, it is appropriate to rely on visual observation. If dust is observed leaving the working site, additional dust suppression techniques must be employed. Activities that have a high dusting potential-such as solidification and treatment involving materials like kiln dust and lime--will require the need for special measures to be considered.

7. The following techniques have been shown to be effective for the controlling of the generation and migration of dust during construction activities:

- (a) Applying water on haul roads;
- (b) Wetting equipment and excavation faces;
- (c) Spraying water on buckets during excavation and dumping;
- (d) Hauling materials in properly tarped or watertight containers;
- (e) Restricting vehicle speeds to 10 mph;
- (f) Covering excavated areas and material after excavation activity ceases; and
- (g) Reducing the excavation size and/or number of excavations.

Experience has shown that the chance of exceeding the 150ug/m3 action level is remote when the above-mentioned techniques are used. When techniques involving water application are used, care must be taken not to use excess water, which can result in unacceptably wet conditions. Using atomizing sprays will prevent overly wet conditions, conserve water, and provide an effective means of suppressing the fugitive dust.

8. The evaluation of weather conditions is necessary for proper fugitive dust control. When extreme wind conditions make dust control ineffective, as a last resort remedial actions may need to be suspended. There may be situations that require fugitive dust suppression and particulate monitoring requirements with action levels more stringent than those provided above. Under some circumstances, the contaminant concentration and/or toxicity may require additional monitoring to protect site personnel and the public. Additional integrated sampling and chemical analysis of the dust may also be in order. This must be evaluated when a health and safety plan is developed and when appropriate suppression and monitoring requirements are established for protection of health and the environment.

APPENDIX H

PROJECT DOCUMENTATION FORMS

Ю	DATE		
DAILY L	NO.		
DA	SHEET	OF	

FIELD ACTIVITY DAILY LOG

PROJECT NAME:						PROJECT NO.																		
PROJECT LOCATION:							CLIENT:																	
FIELD AC	TIVITY:																							
DESCRIP		F DAI	LY AC	ΤΙVΙΤΙ	ES /	AND) EVI	ENT	۲S:															
TIM	1E		DESCRIPTION																					
		_																						
		_																						
		_																						
		_																						
		_																						
		_																						
		_																						
									<u></u>					<u> </u>										
VISITORS ON SITE:												PLAN DRD									:			
WEATHER CONDITIONS: A.M.:						IMPORTANT TELEPHONE CALLS:																		
P.M.:																								
1 .1VI																								
PERSONN	IEL ON	SITE:	:																					
SIGNATUI	SIGNATURE DATE:																							

	DATE		
DAILY LO	NO.		
DA	SHEET	OF	

FIELD ACTIVITY DAILY LOG (CONTINUED)

PRC												PROJECT NO.													
DES	SCR	IPT	ION	OF	DAI	LY A	ACT	IVIT	IES	AN	DEV	'EN	TS:												
	TIME DESCRIPTION																								
SIG	IGNATURE DATE:																								

Ю	DATE		
DAILY LO	NO.		
DA	SHEET	OF	

FIELD ACTIVITY DAILY LOG _ . .

																									()	JOr	111	IUED	"
PF	ROJE	СТІ	NAM	1E:								PROJECT NO.																	
DE	SCR	IPT	ION	OF	DAI	ILY /	АСТ	IVIT	IES	AND) E'	/EN	TS:																
TIME										D	ESC	RIF	PTIC	N															
																											\vdash		
RE	FER	ENC	ED	PR	OJE	СТ	FIEL	D F		IS:						11									1	1			
	Aqu								-			Imp	acted	Soil	Exca	/ation	Log					Soil	Gas	Surve	y Lo	9			
	Cha	in-of-	Custo	dy F	orm								acted					Log				Step	-Drav	wdow	n Tes	st Dat	a She	et	
Construction Sample Summary Log							itorin											evatio											
Corrective Measures Report Daily Drilling Report							lear D			er Fie	ld Lo	og			H	-	-			ting F	orm								
			afety								⊢		togra Leał	-	-	ายได	a				⊣			xcava und/C		-	Jtility (Checklis	st
			nt Cal			og							t-Clos	-		-	-	Repo	ort				ance						
			ehole										ssure									Wate	er Le	vel M	onito	ring R	ecord	1	
						-	ll Inst	allatio	on Lo	g			olem I				•					Water Quality Field Collection Log							
11	Field Investigation Report							Pop	I_Tim	o Air	Monit	oring	100					\A/ata	or Sa	mnlo	Colle	otion	100						

Aquifer Test Data Sheet	Impacted Soil Excavation Log	Soil Gas Survey Log
Chain-of-Custody Form	Impacted Soil Transportation Log	Step-Drawdown Test Data Sheet
Construction Sample Summary Log	Monitoring Well Inspection Form	Survey Elevation Log
Corrective Measures Report	Nuclear Densitometer Field Log	Tailgate Safety Meeting Form
Daily Drilling Report	Photographic Log	Test Pit Excavation Log
Drilling Safety Checklist	Pipe Leakage Testing Log	Underground/Overhead Utility Checklist
Equipment Calibration Log	Post-Closure Field Inspection Report	Variance Log
Field Borehole Log	Pressure Packer Testing Log	Water Level Monitoring Record
Field Borehole/Monitoring Well Installation Log	Problem Identification Report	Water Quality Field Collection Log
Field Investigation Report	Real-Time Air Monitoring Log	Water Sample Collection Log
Field Slug Test Log	Record of Telecom Meeting	Well Abandonment/Decomm. Log
Groundwater Elevation Log	Sample Summary Collection Log	Well Completion Detail
GW Well Development and Purge Log	Sediment Sample Collection Log	
Hot Work Permit	Seep Sample Collection Log	
DW Container Log	Seepage Meter Sample Collection Log	
SIGNATURE		DATE:

Date: Project:

OG	DATE			
	REPORT			
DA	PAGE		OF	

PROBLEM IDENTIFICATION REPORT

Job No:	WEATHER CONDITIONS:
Location:	Ambient Air Temp A.M.:
CQA Monitor(s):	Ambient Air Temp P.M.:
Client:	Wind Direction:
Contractor:	Wind Speed:
Contractor's Supervisor:	Precipitation:
Decklars Decemetics	
Problem Description:	
Problem Location (reference test location, sketch on back of form as	s appropriate):
Problem Causes:	
Suggested Corrective Measures or Variances:	
	nce Log No.
Approvals (initial):	
CQA Engineer:	
Project Manager:	

Signed:

CQA Representative

90	DATE								
ΑΙΕΥ Ε	REPORT NO.								
DA	PAGE		OF						

CORRECTIVE MEASURES REPORT

Date:	CORRECTIVE MEASURES REPORT
Project:	
Job No:	WEATHER CONDITIONS:
Location:	Ambient Air Temp A.M.:
CQA Monitor(s):	Ambient Air Temp P.M.:
Client:	Wind Direction:
Contractor:	Wind Speed:
Contractor's Supervisor:	Precipitation:
Corrective Measures Undertaken (reference	e Problem Identification Report No.)
Retesing Location:	
Suggested Method of Minimizing Re-Occur	rrence:
Approvals (initial):	
CQA Engineer:	
Project Manager:	

Signed:

CQA Representative