GZA GeoEnvironmental of New York

Engineers and Scientists

November 12, 2012 File No.: 21.0056642.10

Jaspal Walia, P.E, New York State Dept. of Environmental Conservation (NYSDEC) Division of Environmental Remediation – Region 9 270 Michigan Avenue Buffalo, New York 14203-2999

535 Washington Street 11th Floor Buffalo, New York 14203 716-685-2300 FAX 716-685-3629 http://www.gza.com

REVISION #2 Imported Soil Source for 129 Holden Street Site (C915261) Sampling Plan for Kaleida Health Medical Office Building Site (C915260) 1001 Main Street Buffalo, NY 14094

Dear Jaspal:

Re:

On behalf of Strickler Development Group, LLC (Strickler), GZA GeoEnvironmental of New York (GZA) has prepared this revised sampling plan to assess a soil source for reuse at the 129 Holden Street Brownfield Cleanup Program (BCP) Site. Strickler's construction manager, LPCiminelli, is involved with the development of a medical office building (MOB) at 1001 Main Street (BCP Site C915260). There is approximately 74,000 cubic yards of soil that will be required to be removed from the 1001 Main Street Site in order to facilitate the remediation and development plan. There is approximately 50,000 cubic yards (cyd) of soil located at the 1001 Main Street Site that has not been impacted by previous use as a gasoline station and could be reused as backfill at 129 Holden Street. Approximately 30,000 cyd of soil is present from ground surface to 10 to 14 feet bgs and is identified as the shallow soil. There is approximately 20,000 cyd of soil present from 14 to 26 feet bgs in the northwestern and southeastern portions of the property and is identified as the deep soil.

The reuse of this soil would provide a significant benefit to both the 1001 Main Street Site and the 129 Holden Street Site, as 129 Holden Street will need soil to backfill remedial excavations and building basements after building demolition. Reuse of the soil from the 1001 Main Street project would significantly reduce disposal costs and consumed landfill airspace.

This sampling plan outlines Strickler's proposed plan to assess the shallow soils from a depth of ground surface to 10 to 14 feet bgs and the deep soil from 14 to 24 feet for reuse at the 129 Holden Street BCP Site.

1001 Main Street Sampling Plan – Revision #2	November 12, 2012
File No. 21.0056642.10	Page 2

The proposed redevelopment plan for 129 Holden Street is for residential use. Therefore, the soil to be brought to the 129 Holden Street Site for reuse will need to meet the requirements of 6 NYCRR 375-6.7 (d) Residential Soil Cleanup Objectives (RSCOs).

1001 MAIN STREET BACKGROUND

The following information was taken from the "Commercial Use Assessment Report" dated May 2012 and prepared by C&S Companies. A copy of the report is included in Attachment 1.

A gas station occupied the southwest corner of the 1001 Main Street property from approximately 1950 to the 1982. Leaking underground storage tanks (USTs) were removed from 1001 Main Street in 1981 (NYSDEC Spill #9500234). The petroleum release occurred in the area of the former USTs in the southwestern portion of the property. Contaminated soils have been identified from 10 to 20 feet bgs. Contaminated soils in the central and northern portions of the property also have been identified at a depth of approximately 32 to 35 feet bgs and consist of coarse sand and gravel lenses.

Over thirty-six (36) groundwater monitoring wells and multiple soil borings have been installed from 1981 to present in order delineate the extent and depth of soil and groundwater contamination. Based on the investigations, contaminates of concern are benzene, toluene, ethylbenzene and xylene (BTEX) compounds associated with leaking underground storage tanks.

The primary area of contamination is within the center to western boundary of the Site. Free product exists in this area and the shallowest depth of contamination is located at 10 feet bgs. Generally, the depth of contamination is from 20 feet bgs to 40 feet bgs in the central to northern portion of the property. The contamination has migrated from the center of the Site northeast following a five-foot thick coarse sand/gravel layer generally 30 to 35 feet bgs. The contamination within the coarse sand/gravel zone has migrated as the result of preferential groundwater flow.

Groundwater depth and contamination has been defined through quarterly monitoring well sampling. Groundwater investigations indicate the potentiometric depth to water between 25 to 27 feet bgs. Groundwater contamination, consisting mainly of BTEX compounds, extends from the southwest corner to the northeast corner of the property. The groundwater plume also extends off the property onto Main Street and the northern boundary onto Goodrich Street.

PURPOSE

Soil (fill, native and petroleum impacted) from 1001 Main Street will be removed from the property to 1) address petroleum impacted soil at depths of 10 to 35 feet bgs and 2) allow for the construction of a parking ramp structure on the property. Therefore, Strickler

would like to assess if the shallow soils from ground surface to approximately 10 to 14 feet bgs and deep soil from 14 to 26 feet bgs are suitable for reuse at the 129 Holden Street Site.

SHALLOW SOILS

Strickler provided GZA with a report "Test Pit Investigation Report of the Medical Office Building Site, Buffalo, New York" (TPI Report) dated October 30, 2012 completed by C&S Companies. This report has been included as Attachment 2 to this sampling plan. Twelve (12) test pits were completed in September 2012 to assess the shallow soils at 1001 Main Street. Based on the information in the TPI Report, it appears that fill material is present from ground surface to about 2 feet bgs and native soils are present below the fill material in the areas shown in yellow on Figure 1.

The areas shown in white and identified as Areas 2 contain deeper fill materials identified as refuse and urban waste and are <u>NOT</u> being considered for reuse as part of this plan. Strickler would like to assess the fill and native soils present in the areas outlined in red and blue, as shown on Figure 2, for reuse at the 129 Holden Street Site.

Analytical data included in the TPI Report and shown in Table 1, indicate that soil samples collected from TP-1, 2, 3, 4, 6, 7, 8, 9, and 12 (within the yellow shaded area) do not exceed the RSCOs. However, fill soil sampled from TP-5, 0 to 3 feet (see Figure 2 and Table 1) exceeded the RSCOs for three (3) semi-volatile organic compounds and mercury. Therefore, GZA is proposing a scope of work for the shallow soils to supplement the data generated as part of the TPI Report to provide data that will satisfy New York State Department of Environmental Conservation (NYSDEC) Division of Remediation (DER) guidelines outlined in DER-10¹ Table 5.4(e)10 and asses the 1001 Main Street soil for reuse.

DEEP SOILS

Strickler provided GZA with a report "Remedial Investigation/Interim Remedial Measures Work Plan for 1001 Main Street (Former Mobil Service Station 99-MST Site #C915260), City of Buffalo, Erie County, New York" (RI/IRM WP) dated August 2012 completed by C&S Companies. This report has been included as Attachment 3 to this sampling plan. The RI/IRM provides a summary of the previous investigation finding. The following information was taken from RI/IRM WP.

The main area of contaminated soil is located in the middle of the Site (see Figure 3). The shallowest depth to the top of the contamination is about 10 feet bgs, and ranges in depth from 20 to 40 feet bgs. A thin layer (0.5 to 5 feet thick) of contamination extends north from the middle of the Site, to the northern property

¹ NYSDEC, Division of Remediation, DER-10/Technical Guidance for Site Investigation and Remediation, dated March 3, 2010.

boundary. The contaminated layer is associated with groundwater flow in the thin zone comprised of coarse sand and gravel lenses at a depth of 32 to 35 feet bgs.

The potentiometric top of groundwater has been measured at 25 feet bgs, the groundwater bearing layer (e.g., coarse sand and gravel lenses) are present at a depth of 32 to 35 feet bgs.

It appears previous investigations have not identified impacted soils in the area identified on Figure 3 from 14 to 26 feet bgs. Therefore, GZA is proposing a scope of work for evaluating the deep soils to satisfy New York State Department of Environmental Conservation (NYSDEC) Division of Remediation (DER) guidelines outlined in DER-10 Table 5.4(e)10.

SCOPE OF WORK

SHALLOW SOILS

GZA is proposing to complete 17 additional test pits to collect soil samples and verify the soil conditions observed during the previous investigation (see Figure 2). Of the 17 proposed test pits to be completed, three (3) will be used to further delineate the extents of SVOCs and mercury detected in the fill material at TP-5, as shown on Figure 2.

According to DER-10 Table 5.4(e)10, the sampling frequencies for approximately 31,000 cubic yards of soil would require 67 discrete volatile organic compounds (VOCs) samples and 32 composite samples for semi-volatile organic compounds (SVOCs), inorganics, polychlorinated biphenyls (PCBs) and pesticides, or consult with NYSDEC to establish a sampling plan.

We propose to collect 52 additional discrete VOC samples and 24 composite samples from the additional 17 test pits to supplement the data already collected. The composite sample analysis will include SVOCs, inorganics, PCBs and pesticides.

Two discrete VOC samples will be collected from each test pit completed. One sample will be collected from the sample interval with the highest organic vapor meter reading noted during field screening of the samples and the second sample will be collected from the last sample interval of each test pit. This will be 10 feet bgs in the areas shown in blue and 14 feet in the areas shown in red on Figure 2, to verify the depth of the soil material for reuse is acceptable.

Composite samples will be collected from each test pit completed. The depth of the composite samples will be from the proposed depths shown on Figure 2. Ten (10)of the 24 proposed composite samples will be collected directly from the fill material present at their respective locations in addition to the native soil sample depth interval shown on Figure 2. Fill samples will also be collected from the three (3) test pits to delineate the extents of SVOCs and mercury detected at TP-5. These samples will be placed on hold at the

laboratory pending the outcome of the other fill material samples. GZA offers the following scenarios based on the results of the fill sampling.

- If the results of the ten (10) proposed fill samples indicate that the fill material meets the RSCOs and is suitable for use at a residential site, the three (3) delineation samples will be analyzed for SVOCs, inorganics, PCBs and pesticides to delineate the fill material around TP-5 allowable for residential use.
- If the results of the ten (10) proposed fill samples indicate the fill material does not meet the RSCOs, the delineation samples will not be analyzed and the fill material will not be used at the 129 Holden Street Site.
- If the results of the ten (10) proposed fill samples show concentrations above and below the RSCOs, a determination will be made as to the value the additional sample results could provide in assessing the fill material at the Site. GZA/Strickler will consult with NYSDEC in assessing additional sampling.

The data to be generated for this work plan will supplement data previously collected as part of the TPI. In the soils considered for reuse, we note that SVOCs, PCBs, inorganics and pesticides were detected at one location, TP-5, in the fill material from 0 to 3 feet bgs. and are not considered contaminants of concern on the 1001 Main Street property. This property has been extensively investigated over the years and found to be impacted by BTEX compounds, as TPI sampling of the shallow soils did identify BTEX contaminants above the RSCOs.

DEEP SOILS

The deep soils assessment will occur after soils from ground surface to 14 feet bgs have been removed from the 1001 Main Street property. GZA is proposing to complete 14 test pits to collect soil samples and verify the soil conditions from 14 to 26 feet bgs (see Figure 3). According to DER-10 Table 5.4(e)10, the sampling frequencies for approximately 23,000 cubic yards of soil would require 46 discrete volatile organic compounds (VOCs) samples and 32 composite samples for semi-volatile organic compounds (SVOCs), inorganics, polychlorinated biphenyls (PCBs) and pesticides, or as determined in consultation with NYSDEC to establish a sampling plan. We propose to collect 46 discrete VOC samples and 14 composite samples from the 14 test pits.

Discrete VOC samples will be collected from each test pit completed. One sample will be collected from the sample interval with the highest organic vapor meter reading noted during field screening of the samples and another sample will be collected from the last sample interval of each test pit. This will be approximately 26 feet bgs in the areas shown in red on Figure 3, to verify the proposed excavation depth of the soil material designated for reuse is acceptable. Additional samples will be collected to achieve spacial distribution of VOCs samples at various depths between 14 and 26 feet bgs.

One composite sample will be collected from each test pit completed. The depth of the composite samples will from the depths shown on Figure 3.

REPORTING

The sampling to assess the shallow and deep soils will be completed in two phases. First phase will assess the shallow soils from ground surface to 10 to 14 feet bgs as shown on Figure 2. The second phase will assess the deep soils from 14 to 26 feet bgs as shown on Figure 3. The second phase of sampling will not occur until site remediation and development activities have removed the soil from ground surface to 14 feet bgs. Therefore, GZA will prepare two separate reports for submittal to NYSDEC.

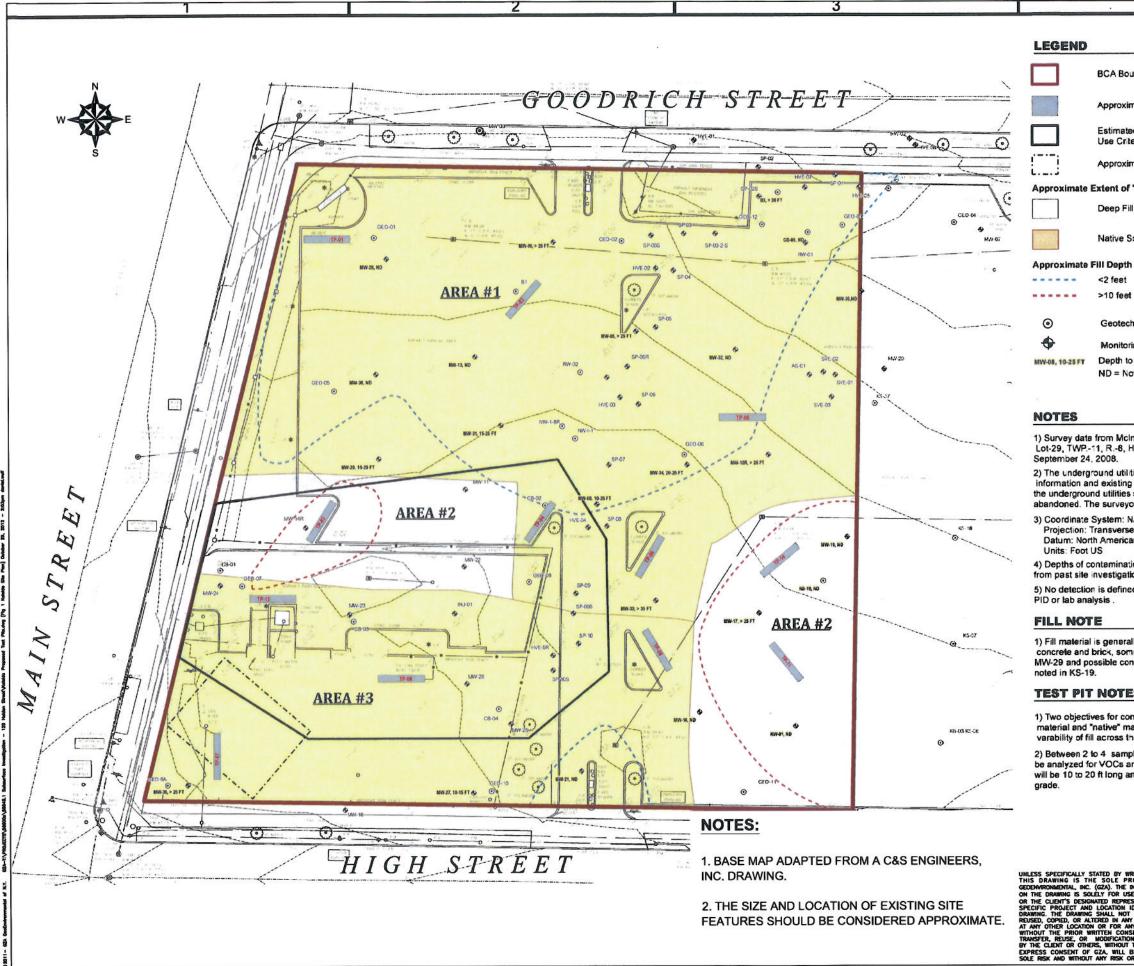
The reports will contain a summary of the work completed, observations, analytical data, figures and conclusions relating to the reuse of the Site soil at the 129 Holden Street Site.

We would appreciate an expedited turn-around on the review of this work plan, as Site development and remedial activities at the 1001 Main Street property will begin soon and we would like to conduct our first phase of sampling in advance of this work. If you need additional information or would like to discuss the project, please contact Chris Boron (GZA Project Manager) at (716) 844-7046.

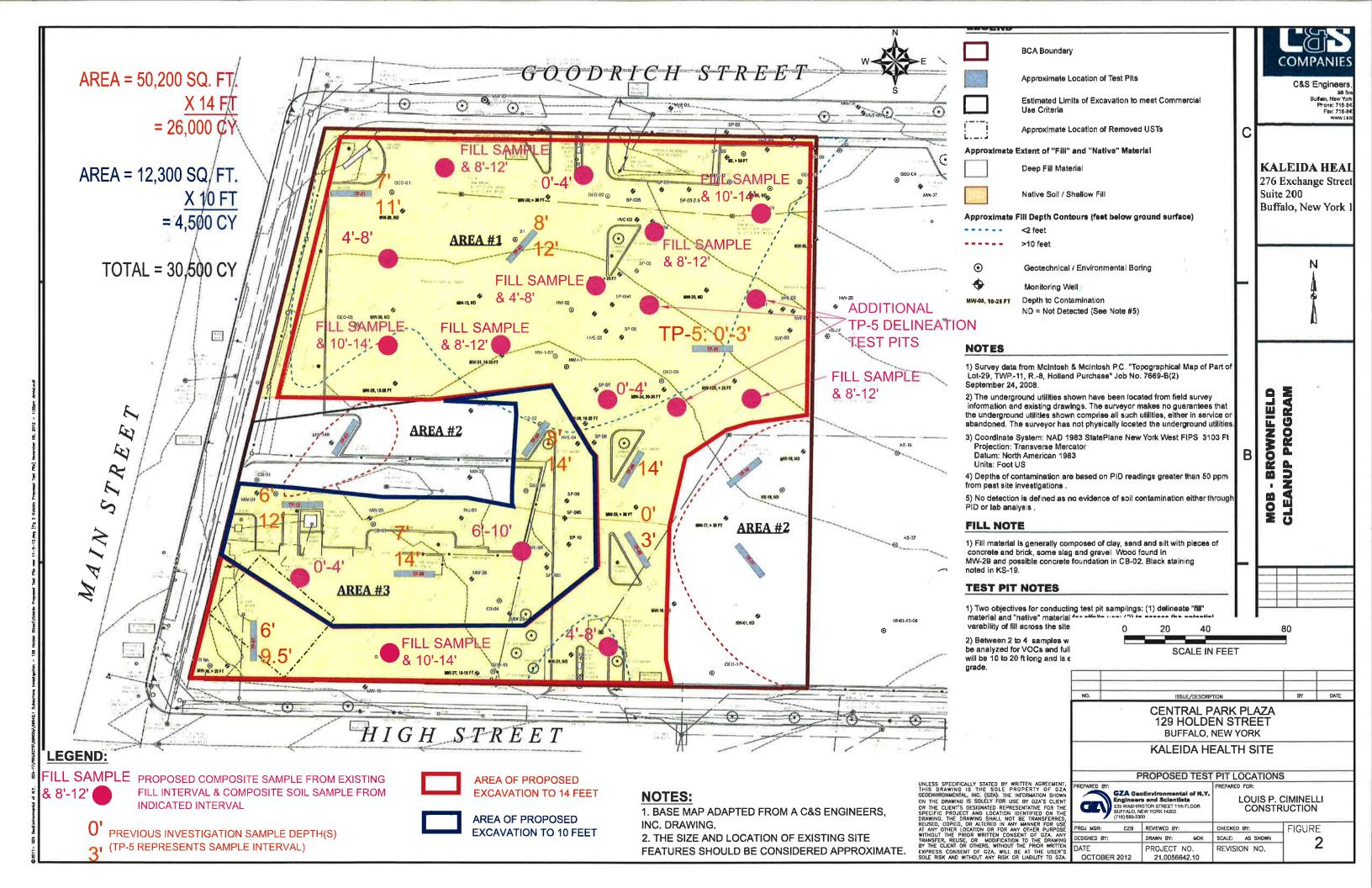
Respectfully,

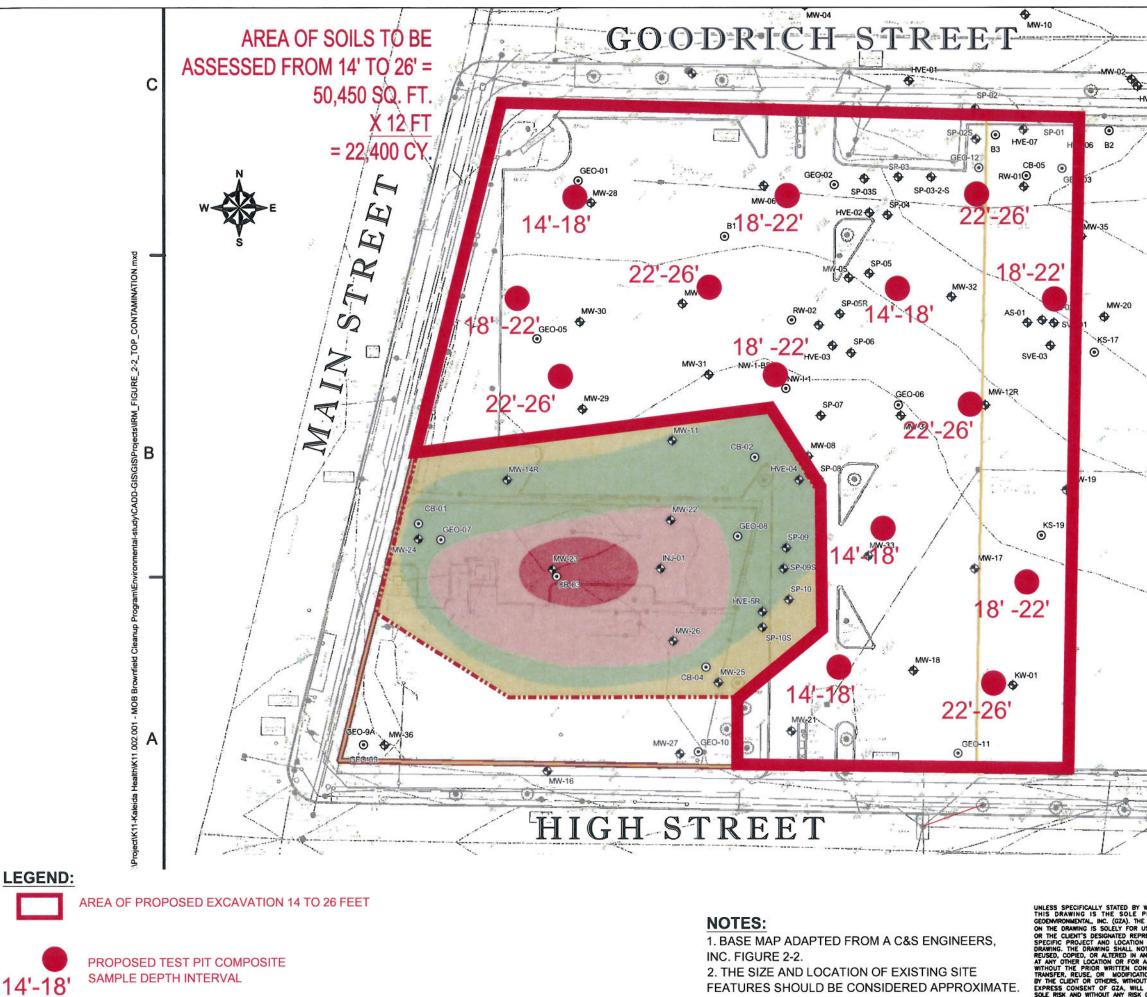
GZA GeoEnvironmental of New York

Christopher Boron Senior Project Manager


Attachments

Bart A. Klettke, P. E. Associate Principal


Figure 1 Figure 2 Figure 3 Table 1 Commercial Use Assessment Report Test Pit Investigation Report of the Medical Office Building Site Remedial Investigation/Interim Remedial Work Plan


cc:

John Ciminelli (Strickler Development, electronic copy only) Vince Kirsch (LPCiminelli, electronic copy only) Danielle Zientek (LPCiminelli, electronic copy only)

4								
undary mate Location of ad Limits of Exca reria mate Location of "Fill" and "Nat Il Material Soil / Shallow Fill n Contours (fee	avation to f Remove ive" Mat	o meet Com ed USTs cerial		c		C&S E	Raio, New York Phone: 716-84 Fax: 718-84 www.csc HEAI	, Inc. 54203 7-1630 7-1630 00 com LTH
hnical / Environr ring Well o Contamination ot Detected (See				_		Ň		
Holland Purchas ties shown have g drawings. The shown compris or has not physie VAD 1983 State an 1983 tion are based or ions .	e" Job N been lo surveyor e all suc cally loca Plane Ne n PID rea to a soil cally sail clay, sail	lo: 7669-B(2 cated from fi r makes no g r makes no g h utilities, eil ated the und ew York Wes adings great contaminati nd and silt w d found in	eld survey juarantees that her in service or erground utilities t FIPS 3103 Ft er than 50 ppm on either through	в		MOB - BROWNFIELD CLEANUP PROGRAM		CITY OF BUFFALO, NY
				Г				
nducting test pit aterial for offsite		0	20 SCALE	40 : IN I	FE		BO	
ples will be colle					_			
ind full paramete ind is estimated	NO.		ISSUE/DES	a second			BY	DATE
			129 HOL	DEI 0, N	N	RK PLAZA STREET W YORK LTH SITE		
RITTEN AGREEMENT,	PREPARED	BY:	SIT	E P		AN PARED FOR:		
ROPERTY OF GZA INFORMATION SHOWN BE BY GZA'S CLIENT SENTATIVE FOR THE IDENTIFIED ON THE BE TRANSFERRED, Y MANNER FOR USE	a	GZA Geo Engineen 535 WASHIN BUFFALO, NI (716) 685-230	Environmental of P a and Scientists GTON STREET 11th FLOOR W YORK 14203	LY.		LOUIS P. C CONSTR		
NY OTHER PURPOSE SENT OF GZA. ANY IN TO THE DRAWING	PROJ MGR DESIGNED		REVIEWED BY: DRAWN BY: MD		-	ECKED BY: ALE: AS SHOWN	FIGUR	E.
IN TO THE DRAWING THE PRIOR WRITTEN BE AT THE USER'S OR LIABILITY TO GZA.	DATE		PROJECT NO.		-	EVISION NO.	1	1
R LIABILITY TO GZA.	OCTO	BER 2012	21.0056642.10					

Le	egen	d										
•	Þ	Monitoring	g Well								С	
0	0	Soil Borin	g									
		Proposed	Medica	al Offic	e Bu	uilding	Site					
C		Proposed	BCA B	ounda	iry					x .		
C,		Proposed	Limits	ofExc	avat	ion						
		taminated Ground		e ("ftb	gs")						H	
		10 ftbgs										
		15 ftbgs										
63		20 ftbgs										
		30 ftbgs										
N	otes										в	
of F	Part of L	lata from M ot-29, TWF mber 24, 2	P11, R									
sun gua utili phy	vey info rantees ties, eith sically l	erground u rmation an that the un ner in servi ocated the ind utilities.	d existi ndergro ce or al	ng dra und u	wing tilitie:	s. The s show	surveyor n compri	r m ise	akes no all such			
		vater samp Report.	ling res	ults fr	om N	Aarch 2	3, 2012	GE	S			
Pro Dat	jection:	ate System Transverse th America US	e Merca	tor	State	Plane I	NY West	FI	PS 3103	3		
		0	20		40			8	0	ļ	I	ŀ
				SCAL	E IN	FEET	and the second se					
								_				
	NO.			ISSUE/D	recpipt			4	BY		ATE	
	10.		CEN				PLAZA					-
			129	HO	LDE	N ST	REET					
				-	2.8		H SITE					-
REEMENT.	PREPARED	BY:		0.021-2	- marine	DEEP	FOR:	λTI	ONS			-
OF GZA		GZA Geo	Environm	ental of	N.Y.	8		~		12		

Y WRITTEN AGREEMENT, PROPERTY OF GZA HE INFORMATION SHOWN I USE BY GZA'S CLIENT USE BY GZA'S CLIENT PRESENTATIVE FOR THE ON IDENTIFIED ON THE NOT BE TRANSFERRED, ANY MANNER FOR USE R ANY OTHER PURPOSE JONSENT OF GZA. ANY ATION TO THE DRAWING OUT THE PROR WRITTEN LL BE AT THE USER'S IX OR UMBILITY TO GZA

PREPARED BY:		PREPARED FOR:	
Enginee 535 WASHI	CENVIRONMENTAL OF N.Y. rs and Scientists NGTON STREET 11th FLOOR NEW YORK 14203 100		
PROJ MGR: CZB	REVIEWED BY:	CHECKED BY:	FIGURE
DESIGNED BY:	DRAWN BY: MDK	SCALE: AS SHOWN	2 2
DATE	PROJECT NO.	REVISION NO.	ງ ວ

TABLE 1 SUMMARY OF TEST PIT INVESTIGATION SOIL DATA SEPTEMBER 2012

ſ

			Protection of F	Public Health										
Contominant	Unrestricted	Residential	Restricted-	Commercial	Industrial									
Contaminant Semivolatile organic co	Use	nnm-	Residential mg/kg			TP-01 7 ft	TP-01 11 ft	TP-02 8 ft	TP-02 12 ft	TP-03 6 ft	TP-04 14 ft	TP-05 0-3 ft	TP-06 14 ft	TP-07 6 ft
Acenaphthene	20	100 ^a	100 ^ª	500°	1,000	<0.295		<0.305		<0.330		.194 J		<0.310
Acenapthylene '	100 ^a	100 ^a	100 ^a	500 [°]	1,000	<0.295		<0.305		<0.330		<0.376		<0.310
Anthracene ' Benz(a)anthracene '	100 °	100°	100°	500° 5.6	1,000	<0.295		<0.305 <0.305		<0.330 <0.330		<0.376 1.09		<0.310 <0.310
Benzo(a)pyrene	1°	1"	1'		1.1	<0.295		<0.305		<0.330		1.09		<0.310
Benzo(b)fluoranthene'	1 ^c	1'	1'	5.6	11	<0.295		<0.305		<0.330		0.942		<0.310
Benzo(g,h,i)perylene '	100	100 ^a	100 ^ª	500°	1,000	<0.295		< 0.305		< 0.330		0.608		< 0.310
Benzo(k)fluoranthene' Chrysene '	0.8	1'	3.9 3.9	56 56	110	<0.295 <0.295		<0.305 <0.305		<0.330 <0.330		0.702		<0.310 <0.310
Dibenz(a,h)anthracene'	0.33 °	0.33*	0.33 ^e	0.56	1.1	<0.295		<0.305		<0.330		<0.376		<0.310
Fluoranthene '	100 ^a	100 ^a	100 ^a	500°	1,000	<0.295		< 0.305		0.233 J		2.3		<0.310
Fluorene Indeno(1,2,3-cd)pyrene '	30 0.5	100 ^a 0.5'	100 ^ª 0.5'	500° 5.6	1,000	<0.295		<0.305 <0.305		<0.330		0.202		<0.310 <0.310
m-Cresol '	0.33	100*	100ª	500°	1,000	<0.295		<0.305		<0.330		<0.376		<0.310
Naphthalene '	12	100 ^a	100 ^a	500°	1,000	<0.295		<0.305		<0.330		<0.376		<0.310
o-Cresol ¹ p-Cresol ¹	0.33	100 ^a 34	100 ^ª 100 ^ª	500 ⁶ 500 ⁶	1,000	<0.295		<0.305 <0.305		<0.330 <0.330		<0.376		<0.310 <0.310
Pentachlorophenol	0.8	2.4	6.7	6.7	55	<0.295		<0.305		<0.330		<0.376		<0.310
Phenanthrene '	100	100°	100°	500°	1,000	<0.295		< 0.305		< 0.330		1.81		<0.310
Phenol	0.33	100 ^a	100 ^a	500°	1,000	<0.295		<0.305		<0.330		<0.376		<0.310
Pyrene' # of Detections of Analytes with No	100 Standards:	100 ^a	100 ^a	500°	1,000	<0.295	0	<0.295	0	0.194 J	0	1.94 1	0	<0.310
Volatile organic com			ppm=mg/kg			-	-	-	-				-	-
1,1,1-Trichloroethane	0.68	100°	100°	500°	1,000	<0.00344	<.00429	<.00354	<.00315	<.00453	<.00394	<.00416	<.00350	<.00336
1,1-Dichloroethane ' 1,1-Dichloroethene'	0.27	19 100 ⁸	26 100 ^a	240 500°	480	<0.00344 <0.00344	<.00429 <.00429	<.00354 <.00354	<.00315 <.00315	<.00453 <.00453	<.00394 <.00394	<.00416 <.00416	<.00350 <.00350	<.00336 <.00336
1,2-Dichlorobenzene ¹	0.33	100 ^a	100 ^a	500°	1,000	<0.00344	<.00429	<.00354 <.00354	<.00315	<.00453 <.00453	<.00394 <.00394	<.00416	<.00350	<.00336
1,2-Dichloroethane	0.02	2.3	3.1	30	60	<0.00344	<.00429	<.00354	<.00315	<.00453	<.00394	<.00416	<.00350	<.00336
cis -1,2-Dichloroethene ' trans-1,2-Dichloroethene '	0.25	59 100 ⁸	100°	500°	1,000	< 0.00344	<.00429	<.00354	<.00315	<.00453	<.00394	<.00416	<.00350	<.00336
trans-1,2-Dichloroethene ' 1,3-Dichlorobenzene'	0.19	100 ^a 17	100 ^a 49	500° 280	1,000	<0.00344 <0.00344	<.00429 <.00429	<.00354 <.00354	<.00315 <.00315	<.00453 <.00453	<.00394 <.00394	<.00416 <.00416	<.00350 <.00350	<.00336 <.00336
1,4-Dichlorobenzene	1.8	9.8	13	130	250	<0.00344	<.00429	<.00354	<.00315	<.00453	<.00394	<.00416	<.00350	<.00336
1,4-Dioxane	0.1 °	9.8	13	130	250	<0.00344	<.00429	<.00354	<.00315	<.00453	<.00394	<.00416	<.00350	<.00336
Acetone Benzene	0.05	100° 2.9	100° 4.8	500° 44	1,000	<0.0172 <0.00344	<.0214 <.00429	<.0170 <.00354	<.0157 <.00315	<.0227 <.00453	0.0243 <.00394	<.0208 <.00416	<.0175	<.0168 <.00336
n-Butylbenzene '	12	100 ^a	100 ^a	500°	1,000	<0.00344	<.00429	<.00354 <.00354	<.00315	<.00453	<.00394 <.00394	<.00416 <.00416	1.79 <.00350	<.00336
Carbon tetrachloride	0.76	1.4	2.4	22	44	<0.00344	<.00429	<.00354	<.00315	<.00453	<.00394	<.00416	<.00350	<.00336
Chlorobenzene	1.1	100°	100° 49	500"	1,000	<0.00344	<.00429	<.00354	<.00315	<.00453	<.00394	<.00416	<.00350	<.00336
Chloroform Ethylbenzene'	0.37	10	49	350 390	700	<0.00344 <0.00344	<.00429 <.00429	<.00354 <.00354	<.00315 <.00315	<.00453 <.00453	<.00394 <.00394	<.00416 <.00416	<.00350 .0026 J	<.00336 <.00336
Hexachlorobenzene '	0.33	0.33*	1.2	6	12	<0.00344	<.00429	<.00354	<.00315	<.00453	<.00394	<.00416	<.00350	<.00336
Methyl ethyl ketone	0.12	100ª	100ª	500°	1,000	<0.00344	<.00429	<.00354	<.00315	<.00453	<.00394	<.00416	<.00350	<.00336
Methyl tert-butyl ether ' Methylene chloride	0.93	62 51	100ª 100 ^ª	500° 500°	1,000	<0.00344 <0.00859	<.00429 <.0107	<.00354 <.00885	<.00315 <.00787	<.00453 <.0113	<.00394 <.00985	<.00416 <.0104	<.00350 <.00876	<.00336 <.00841
n - Propylbenzene '	3.9		100 ^a	500°	1,000	< 0.00839	<.0107	<.00885	<.00787	<.00113	<.00394	<.0104	<.00876	<.00841
sec-Butylbenzene '	11		100 ^ª	500°	1,000 [°]	<0.00344	<.00429	<.00354	<.00315	<.00453	<.00394	<.00416	<.00350	<.00336
tert-Butylbenzene' Tetrachloroethene	5.9	100° 5.5	100°	500	1,000	< 0.00344	<.00429	<.00354	<.00315	<.00453	<.00394	<.00416	<.00350	<.00336
Toluene	0.7	100 ^a	19 100 ^a	150 500°	1,000	<0.00344 <0.00344	<.00429 <.00429	<.00354 <.00354	<.00315 <.00315	<.00453 <.00453	<.00394 <.00394	<.00416 <.00416	<.00350 0.0081	<.00336 <.00336
Trichloroethene	0.47	10	21	200	400	< 0.00344	<.00429	<.00354	<.00315	<.00453	<.00394	<.00416	<.00350	<.00336
1,2,4-Trimethylbenzene	3.6	47	52	190	380	<0.00859	<.0107	<.00706	.00217 J	<.0113	0.00345 J	<.0104	0.0181	<.00841
1,3,5-Trimethylbenzene' Vinyl chloride'	8.4	47	52	190	380	<0.00859 <0.00344	<.0107 <.00429	<.00885 <.00354	<.00787 <.00315	<.0113 <.00453	<.00394	<.0104 <.00416	0.00719 <.00350	<.00841 <.00336
Xylene (mixed)	0.26	100 ^a	100 ^a	500°	1,000	<0.00344	<.00429	<.00354	<.00315	<.00453	0.00507 J	<.00416	0.0208	<.00336
Naphthalene '	12	100 ^a	100 ^a	500°	1,000	<0.00859	<.0107	<.00706	<.00787	<.0113		<.0104	.00693 J	<.00841
# of Detections of Analytes with No	Standards:		nnm-ma/ka			0	0	0	0	0 0	0	0	0	0
Arsenic	13	16'	26' ppin=ing/kg	16'	16	1.57		2.04		3.41		3.91		1.35
Barium	350 °	350'	400	400	10,000 °	<9.20		18.3		62.4		105		<10.4
Beryllium Cadmium	7.2 2.5 °	14 2.5'	72	590 9.3	2,700	<0.460		<0.527		0.421		<0.332 J		<0.520
Caomium Chromium, hexavalent ^e	2.5 1 ^b	2.5	4.3	9.3 400	800	<0.460 <1.0		<0.527 <1.1		0.285 <1.1		0.332 <1.1		<0.520 <0.12
Chromium, trivalent e	30 ^c	36	180	1,500	6,800	3.11		5.13		14.4		9.53		4.61
Copper	50		270	270	10,000 '	5.89		7.2		13		12.9		6.54
Total Cyanide ". ' Lead	27 63 °	27 400	27 400	27 1,000	10,000 '	<0.50		< 0.53		< 0.54		< 0.54		.0067 J
Manganese	1600 °	2,000	2,000	1,000	10,000	5.22 205		8.27 266		27 577		290 304		7.29 223
Total Mercury	0.18 °	0.81 ^j	0.81	2.8	5.7	<0.0082		<0.0085		<0.0081		4.41		<0.00085
Nickel	30	140	310	310	10,000	<3.68		4.11		8.47		6.66		2.95
Selenium Silver	3.9	36 36	180 180	1,500 1,500	6,800 6,800	<0.920 <0.920		<1.05 <1.05		1.21 <1.14		1.33 0.959		0.624 <1.04
Zinc	109 °	2200	10,000 °	10,000 °	10,000	55.5		78.1		75		150		64.4
PCBs/Pesticide			ppm=mg/kg											
2,4,5-TP Acid (Silvex)' 4,4'-DDE	3.8 0.0033 ^o	58 1.8	100° 8.9	500° 62	1,000	NA <.00294		NA <.00304		NA <.00377		NA <.00334		NA
4,4'-DDE 4,4'-DDT	0.0033	1.8	7.9	47	94	<.00294		<.00304		<.00377		<.00334		<.00312 <.00312
4,4'-DDD	0.0033	2.6	13	92	180	<.00294		<.00304		<.00377		<.00334		<.00312
Aldrin	0.005	0.019	0.097	0.68	1.4	<.00294		<.00304		<.00377		<.00334		<.00312
alpha-BHC beta-BHC	0.02	0.097	0.48	3.4	6.8	<.00294 <.00294		<.00304 <.00304		<.00377 <.00377		<.00334		<.00312 <.00312
Chlordane (alpha)	0.030	0.072	4.2	24	47	<.00294		<.00304		<.00377		<.00334		<.00312 <.00312
delta-BHC 9	0.04	100°	100ª	500°	1,000	<.00294		<.00304		<.00377		<.00334		<.00312
Dibenzofuran ' Dieldrin	7 0.005°	14	59 0.2	350	1,000	<.00294 <.00294		<.00304 <.00304		<.00377 <.00377		<.00334 <.00334		<.00312
Endosulfan I ^{a, 1}	0.005	0.039	24	1.4	920	<.00294		<.00304		<.00377		<.00334		<.00312 <.00312
Endosulfan II ^{d, f}	2.4	4.8 ⁱ	24 ⁱ	200 ⁱ	920	<.00294		<.00304		<.00377		<.00334		<.00312
Endosulfan sulfate ^{a, r}	2.4	4.8'	24'	200'	920	<.00294		<.00304		<.00377		<.00334		<.00312
Endrin	0.014	2.2	11	89	410	<.00294		<.00304		<.00377		<.00334		<.00312
Heptachlor Lindane	0.042	0.42	2.1	15 9.2	29	<.00294 NA		<.00304 NA		<.00377 NA		<.00334 NA		<.00312 NA
Polychlorinated biphenyls	0.1	0.20	1.3	5.2	23	<.0294		<.0304		<.00377		<.00334		<.00312
r olychiofinateu biphenvis								1		1				

TABLE 1 SUMMARY OF TEST PIT INVESTIGATION SOIL DATA SEPTEMBER 2012

			Protection of F Restricted-	ublic Health										
Contaminant	Unrestricted	Residential	Residential	Commercial	Industrial	TP-07	TP-08	TP-08	TP-09	TP-10	TP-10	TP-10	TP-11	TP-12
Semivolatile organic co	Use ompounds	=maa	mg/kg			9.5 ft	7 ft	1P-06 14 ft	0-3 ft	0-2.5 ft	9 ft	10 ft	9.5 ft	6 ft
Acenaphthene	20	100 ^a	100 ^a	500°	1,000°		<0.325		<0.301	0.445	19.5	<0.362	<0.325	
Acenapthylene ' Anthracene '	100 ^a 100 ^a	100 ^a 100 ^a	100 ^a 100 ^a	500° 500°	1,000°		<0.325		<0.301	<0.338 0.597	<7.93 25.6	<0.362	<0.325	
Benz(a)anthracene '	14	1'	1'	5.6	11		<0.325		<0.301	1.48	48.6	<0.362	<0.325	
Benzo(a)pyrene	10	1'	1'	1'	1.1		< 0.325		< 0.301	1.28	39.3	< 0.362	< 0.325	
Benzo(b)fluoranthene ¹ Benzo(g,h,i)perylene ¹	1° 100	1 ⁻ 100 ^a	1' 100 ^a	5.6 500°	11 1.000 [°]		<0.325		<0.301 <0.301	1.32 0.745	38.1 20.3	<0.362	<0.325 <0.325	
Benzo(k)fluoranthene'	0.8	1	3.9	56	110		<0.325		<0.301	0.94	31.7	<0.362	<0.325	
Chrysene ' Dibenz(a,h)anthracene'	0.33	1' 0.33 ^e	3.9 0.33 ^e	56 0.56	110		<0.325		<0.301	1.55 0.217 J	48.6 5.8 J	<0.362	<0.325 <0.325	
Fluoranthene '	100 *	100 ^a	100 ^a	500°	1,000°		<0.325		<0.301	3.18	100	<0.362	0.196 J	
Fluorene	30	100 ^a	100 ^a	500 [°]	1,000°		< 0.325		< 0.301	.276 J	14.8	< 0.362	< 0.325	
Indeno(1,2,3-cd)pyrene ' m-Cresol '	0.5	0.5' 100°	0.5' 100°	5.6 500°	11 1,000°		<0.325 <0.325		<0.301 <0.301	1.05 <0.338	27.4 <7.93	<0.362	<0.325 <0.325	
Naphthalene '	12	100 ^a	100 ^a	500°	1,000°		<0.325		<0.301	<0.338	8.32	<0.362	<0.325	
o-Cresol ¹ p-Cresol ¹	0.33	100 ^a 34	100 ^a 100 ^a	500° 500°	1,000 [°] 1,000 [°]		<0.325		<0.301 <0.301	<0.338 <0.338	<7.93 <7.93	<0.362 <0.362	<0.325 <0.325	
Pentachlorophenol	0.33	2.4	6.7	6.7	55		<0.325		<0.301	<0.338	<7.93	<0.362	<0.325	
Phenanthrene '	100	100°	100ª	500°	1,000°		<0.325		<0.301	2.03	96	<0.362	<0.325	
Phenol Pyrene'	0.33	100 ^a 100 ^a	100 ^a 100 ^a	500°	1,000°		<0.325		<0.301 <0.301	<0.338 2.61	<7.93 80.6	<0.362	<0.325 <0.325	
# of Detections of Analytes with No		100	100	000	1,000	0	0.020	0	0	3	3	0	0.020	0
Volatile organic com			ppm=mg/kg				. 0577		. 0577					
1,1,1-Trichloroethane ' 1,1-Dichloroethane '	0.68	100° 19	100ª 26	500° 240	480	<.00395 <.00395	<.00301 <.00301	<.00462 <.00462	<.00371 <.00371	<.00397 <.00397	<.00543 <.00543	<.00419 <.00419	<.00496 <.00496	<.00364 <.00364
1,1-Dichloroethene'	0.33	100 ^a	100 ^a	500°	1,000°	<.00395	<.00301	<.00462	<.00371	<.00397	<.00543	<.00419	<.00496	<.00364
1,2-Dichlorobenzene' 1,2-Dichloroethane	1.1	100 ^a 2.3	100 ^a 3.1	500° 30	1,000 [°] 60	<.00395 <.00395	<.00301 <.00301	<.00462 <.00462	<.00371 <.00371	<.00397 <.00397	<.00543 <.00543	<.00419 <.00419	<.00496 <.00496	<.00364 <.00364
cis -1,2-Dichloroethene '	0.02	59	3.1 100°	500	1,000	<.00395 <.00395	<.00301 <.00301	<.00462	<.00371 <.00371	<.00397 <.00397	<.00543 <.00543	<.00419 <.00419	<.00496	<.00364 <.00364
trans-1,2-Dichloroethene	0.19	100 ^a	100ª	500°	1,000°	<.00395	<.00301	<.00462	<.00371	<.00397	<.00543	<.00419	<.00496	<.00364
1,3-Dichlorobenzene' 1,4-Dichlorobenzene	2.4	17 9.8	49	280 130	560 250	<.00395 <.00395	<.00301 <.00301	<.00462 <.00462	<.00371 <.00371	<.00397 <.00397	<.00543 <.00543	<.00419 <.00419	<.00496 <.00496	<.00364 <.00364
1,4-Dioxane	0.1	9.8	13	130	250	<.00395	<.00301	<.00462	<.00371	<.00397	<.00543	<.00419	<.00496	<.00364
Acetone Benzene	0.05	100° 2.9	100° 4.8	500° 44	1,000	<.0197	<.0150	<.0231	<.0186	0.105 B	0.128 B	<.0210	0.0161 J B	<.0182
n-Butylbenzene	12	2.5 100 ⁸	4.0 100 ^a	44 500 [°]	1,000°	.00281 J <.00395	<.00301 <.00301	0.0142 <.00462	<.00371 <.00371	<.00397 <.00397	<.00543 <.00543	<.00419 <.00419	<.00496 <.00496	<.00364 <.00364
Carbon tetrachloride	0.76	1.4	2.4	22	44	<.00395	<.00301	<.00462	<.00371	<.00397	<.00543	<.00419	<.00496	<.00364
Chlorobenzene Chloroform	1.1	100° 10	100° 49	500° 350	1,000°	<.00395 <.00395	<.00301 <.00301	<.00462 <.00462	<.00371 <.00371	<.00397 <.00397	<.00543 <.00543	<.00419 <.00419	<.00496 <.00496	<.00364 <.00364
Ethylbenzene'	1	30	41	390	780	0.0538	<.00301	0.00322 J	<.00371	<.00397	0.0103	<.00419	<.00496	<.00364
Hexachlorobenzene '	0.33	0.33 ^e	1.2	6	12	<.00395	<.00301	<.00462	<.00371	<.00397	<.00543	<.00419	<.00496	<.00364
Methyl ethyl ketone Methyl tert-butyl ether '	0.12	100° 62	100° 100°	500° 500°	1,000*	<.00395 <.00395	<.00301 <.00301	<.00462 <.00462	<.00371 <.00371	.0152 J <.00397	.0243 J <.00543	<.00419 <.00419	<.00496 <.00496	<.00364 <.00364
Methylene chloride	0.05	51	100 ^a	500°	1,000°	<.00987	<.00752	<.0115	<.00928	<.00992	<.0136	<0.0105	<.0124	<.0091
n - Propylbenzene ' sec-Butylbenzene '	3.9	100 ^ª 100 ^ª	100 ^ª 100 ^ª	500 [°] 500 [°]	1,000°	<.00395	<.00301	<.00462	<.00371	<.00397	<.00543	<.00419	<.00496	<.00364
tert-Butylbenzene'	5.9	100°	100°	500°	1,000° 1,000°	<.00395 <.00395	<.00301 <.00301	<.00462 <.00462	<.00371 <.00371	<.00397 <.00397	<.00543 <.00543	<.00419 <.00419	<.00496 <.00496	<.00364 <.00364
Tetrachloroethene	1.3	5.5	19	150	300	<.00395	<.00301	<.00462	<.00371	<.00397	<.00543	<.00419	<.00496	<.00364
Toluene Trichloroethene	0.7	100 ^a 10	100 ^a 21	500° 200	1,000° 400	<.00395 <.00395	<.00301 <.00301	0.0149 <.00462	<.00371 <.00371	<.00397 <.00397	0.00797 <.00543	<.00419 <.00419	<.00496 <.00496	<.00364 <.00364
1,2,4-Trimethylbenzene	3.6	47	52	190	380	<.00987	<.00752	<.0115	<.00928	.0033 J	0.0196	<.00419	<.0124	<.0091
1,3,5-Trimethylbenzene' Vinvl chloride'	8.4	47 0.21	52 0.9	190	380	<.00987	<.00752	<.0115	<.00928	<.00397	0.0067	<.00419	<.0124	<.0091
Xylene (mixed)	0.02	0.21 100 ^a	0.9 100 ^a	500°	1,000°	<.00395 0.3778	<.00301 <.00301	<.00462 0.0212	<.00371 <.00371	<.00397 <.00397	<.00543 0.01992	<.00419 <.00419	<.00496 <.00496	<.00364 <.00364
Naphthalene '	12	100 ^a	100 ^a	500°	1,000		<.00752	0.0113 J		.00636 J	0.533			<.0091
# of Detections of Analytes with No Metals	Standards:					<.00987							<.0124	
Arsenic			ppm=ma/ka			<.00987 0				1	3			0
Barium	13 '	16'	ppm=mg/kg 16'	16'	16'					5.81	3 3.11			
Rondlium	350 °	350'	16' 400	400	16' 10,000 °	0 	0 <1.03 <10.3	0 	1.31 D 13.4	5.81 86.2	3.11 113	0 4.29 83.6	0 4.54 140	
Beryllium Cadmium			16'		16 10,000 ° 2,700 60	0	0 <1.03	0	1.31 D	5.81	3.11	0 4.29	0 4.54	
Cadmium Chromium, hexavalent ^e	350 ° 7.2 2.5 °	350' 14 2.5' 22	16' 400 72	400 590 9.3 400	16' 10,000 ° 2,700 60 800		0 <1.03 <10.3 <0.516		1.31 D 13.4 <0.485	5.81 86.2 0.384 J	3.11 113 0.59	0 4.29 83.6 0.478 J	0 4.54 140 0.887	
Cadmium Chromium, hexavalent ^e Chromium, trivalent ^e	350 ° 7.2 2.5 ° 1 ⁶ 30 °	350' 14 2.5' 22 36	16" 400 72 4.3 110 180	400 590 9.3 400 1,500	2,700 60	0	0 <1.03 <10.3 <0.516 <0.516 <1.2 4.42	0	1.31 D 13.4 <0.485 <0.485 <1.3 3.56	5.81 86.2 0.384 J 647 <1.2 15.8	3.11 113 0.59 <0.660 <1.4 88.4	0 4.29 83.6 0.478 J <0.621 <1.3 15.2	0 4.54 140 0.887 <0.635 <1.2 27.7	
Cadmium Chromium, hexavalent ^e	350 ° 7.2 2.5 °	350' 14 2.5' 22	16" 400 72 4.3 110	400 590 9.3 400	2,700 60 800	0 	0 <1.03 <10.3 <0.516 <0.516 <1.2 4.42 6.73	0 	1.31 D 13.4 <0.485 <0.485 <1.3 3.56 8.36	5.81 86.2 0.384 J 647 <1.2 15.8 34.1	3.11 113 0.59 <0.660 <1.4 88.4 43.6	0 4.29 83.6 0.478 J <0.621 <1.3 15.2 15	0 4.54 140 0.887 <0.635 <1.2 27.7 21	
Cadmium Chromium, hexavalent ^e Chromium, trivalent ^e Copper	350 ° 7.2 2.5 ° 1 ° 30 ° 50 27 63 °	350' 14 2.5' 22 36 270	16" 400 72 4.3 110 180 270 277 400	400 590 9.3 400 1,500 270	2,700 60 800 6,800 10,000	0 	0 <1.03 <10.3 <0.516 <0.516 <1.2 4.42	0	1.31 D 13.4 <0.485 <0.485 <1.3 3.56	5.81 86.2 0.384 J 647 <1.2 15.8	3.11 113 0.59 <0.660 <1.4 88.4	0 4.29 83.6 0.478 J <0.621 <1.3 15.2	0 4.54 140 0.887 <0.635 <1.2 27.7	
Cadmium Chromium, hexavalent ^e Chromium, trivalent ^e Copper Total Cyanide ^{e, ,} Lead Manganese	350 ° 7.2 2.5 ° 1 ° 30 ° 50 27 63 ° 1600 °	350 ⁰ 14 2.5 ⁵ 22 36 270 27 400 2,000 ⁰	16" 400 72 4.3 110 180 270 277 400 2,000"	400 590 9.3 400 1,500 270 27 1,000 10,000	2,700 60 800 6,800 10,000	0 	0 <1.03 <10.3 <0.516 <1.2 4.42 6.73 .0072 J 6.73 6.57	0 	1.31 D 13.4 <0.485 <0.485 <1.3 3.56 8.36 <0.061 8.81 D 233	5.81 86.2 0.384 J 647 <1.2 15.8 34.1 .0069 J 158 309	3.11 113 0.59 <0.660 <1.4 88.4 43.6 .0081 J 34 366	0 4.29 83.6 0.478 J <0.621 <1.3 15.2 15 .0074 J 12.7 459	0 4.54 140 0.887 <0.635 <1.2 27.7 21 <0.62 12.8 542	
Cadmium Chromium, hexavalent ^e Chromium, trivalent ^e Copper Total Cyanide ^{e.,} Lead	350 ° 7.2 2.5 ° 1 ° 30 ° 50 27 63 °	350 ⁰ 14 2.5 22 36 270 27 400	16" 400 72 4.3 110 180 270 277 400	400 590 9.3 400 1,500 270 27 1,000	2,700 60 800 6,800 10,000 ^o 10,000 ^o 3,900	0	0 <1.03 <10.3 <0.516 <1.2 4.42 6.73 .0072 J 6.73	0 	1.31 D 13.4 <0.485 <1.3 3.56 8.36 <0.061 8.81 D	5.81 86.2 0.384 J 647 <1.2 15.8 34.1 .0069 J 158	3.11 113 0.59 <0.660 <1.4 88.4 43.6 .0081 J 34	0 4.29 83.6 0.478 J <0.621 <1.3 15.2 15 .0074 J 12.7	0 4.54 140 0.887 <0.635 <1.2 27.7 21 <0.62 12.8	
Cadmium Chromium, hexavalent ^e Chromium, trivalent ^e Copper Total Cyanide ^{e.,} Lead Manganese Total Mercury Nickel Selenium	350 ° 7.2 2.5 ° 1 ° 30 ° 50 27 63 ° 1600 °	350' 14 22 36 270 277 400 2,000' 0,081' 140 36	16' 400 72 4.3 110 180 270 27 400 2.000' 0.81' 310 310	400 590 9,3 4000 1,500 270 270 1,000 10,000 2,8 ⁰ 310 1,500	2,700 60 800 6,800 10,000 ^o 10,000 ^o 3,900		0 <1.03 <0.516 <1.2 4.42 6.73 .0072 J 6.73 6.57 242 2.95 <1.03		1.31 D 13.4 <0.485 <1.3 3.56 8.36 <0.061 8.81 D 233 0.0401 2.67 <0.970	5.81 86.2 0.384 J 647 <1.2 15.8 34.1 .0069 J 158 309 0.242 11.5 0.933	3.11 113 0.59 <0.660 <1.4 88.4 43.6 .0081J 34 366 2.11 18.1 1.51	0 4.29 83.6 0.478 J <0.621 <1.3 15.2 15 .0074 J 12.7 459 0.018 16.4 1.7	0 4.54 140 0.887 <0.635 <1.2 27.7 21 <0.62 12.8 542 0.103 29.2 2.16	
Cadmium Chromium, hexavalent ^e Chromium, trivalent ^e Copper Total Cyanide ^{s, 1} Lead Manganese Total Mercury Nickel Selenium Silver	350 ^c 7.2 2.5 ^c 1 ^c 30 ^c 50 27 63 ^c 1600 ^c 0.08 ^c 300 3.3 ^g 2	350' 14 22 36 270 277 400 2,000' 0,81' 1400 36 36	16' 400 72 4.3 110 180 270 277 400 2,000' 0.81' 310 180 180	400 590 9.3 400 1,500 270 277 1,000 10,000 " 2.8 310 1,500 1,500	2,700 60 8,000 10,000 ¹⁰ 3,900 10,000 ¹⁰ 5,77 10,000 ¹⁰ 6,800	0	0 <1.03 <0.516 <1.2 4.42 6.73 .0072 J 6.73 6.57 242 2.95 <1.03 <1.03	0 -	1.31 D 13.4 <0.485 <0.485 <1.3 3.56 8.36 <0.061 8.81 D 233 0.0401 2.67 <0.970 <0.970	5.81 86.2 0.384 J 647 <1.2 15.8 34.1 .0069 J 158 309 0.242 11.5 0.933 <1.17	3.11 113 0.59 <0.660 <1.4 88.4 43.6 .0081 J 34 366 2.11 1.8.1 1.51	0 4.29 83.6 0.478 J <0.621 15.2 15 .0074 J 12.7 459 0.018 16.4 1.7 <1.24	0 4.54 140 0.887 <0.635 <1.2 27.7 21 0.62 12.8 542 0.103 29.2 2.16 <1.26	
Cadmium Chromium, hexavalent ^e Copper Total Cyaride ^{w.1} Lead Manganese Total Mercury Nickel Selenium	350 ^c 7.2 2.5 ^c 1 ^t 30 ^c 50 27 63 ^c 1600 ^c 0.18 ^c 30 3.9 ^c 22 109 ^c	350' 14 22 36 270 277 400 2,000' 0,081' 140 36	16' 400 72 4.3 110 180 270 27 400 2.000' 0.81' 310 310	400 590 9,3 4000 1,500 270 270 1,000 10,000 2,8 ⁰ 310 1,500	2,700 60 800 10,000 10,000 3,900 10,000 5,7' 10,000	0	0 <1.03 <0.516 <1.2 4.42 6.73 .0072 J 6.73 6.57 242 2.95 <1.03	0 -	1.31 D 13.4 <0.485 <1.3 3.56 8.36 <0.061 8.81 D 233 0.0401 2.67 <0.970	5.81 86.2 0.384 J 647 <1.2 15.8 34.1 .0069 J 158 309 0.242 11.5 0.933	3.11 113 0.59 <0.660 <1.4 88.4 43.6 .0081J 34 366 2.11 18.1 1.51	0 4.29 83.6 0.478 J <0.621 <1.3 15.2 15 .0074 J 12.7 459 0.018 16.4 1.7	0 4.54 140 0.887 <0.635 <1.2 27.7 21 <0.62 12.8 542 0.103 29.2 2.16	
Cadmium Chromium, hexavalent ^e Chormium, trivalent ^e Copper Total Cyanide ^{s, 1} Lead Manganese Total Mercury Nickel Selenium Silver Zinc PCBs/Pesticide 2,4,5-TP Acid (Silvex)	350 ¹ 7.2 2.5 ¹ 30 ⁰ 50 27 63 ³ 1600 ¹ 0.18 ⁰ 330 3.9 2 2 109 ¹ 25	350 14 2.5 22 36 270 277 400 2,000 0.81 140 36 36 2200 58	16' 400 72 4.3 110 180 270 2.70 0.81' 0.81' 310 180 180 180 10,000° ppm=g/kg 100'	400 590 9.3 400 1,500 277 1,000 10,000 2,8 310 1,500 1,500 1,500	2,700 60 8,000 10,000 ¹⁰ 3,900 10,000 ¹⁰ 5,77 10,000 ¹⁰ 6,800	0 -	0 <1.03 <0.516 <0.516 <1.2 4.42 6.73 6.57 242 2.95 <1.03 <1.03 66.7	0 	1.31 D 13.4 <0.485 <0.485 <1.3 3.56 8.36 <0.061 8.81 D 233 0.0401 2.67 <0.970 <0.970 47.6	5.81 86.2 0.384 J 647 <1.2 15.8 34.1 0.0069 J 158 309 0.242 11.5 0.933 <1.17 197 <.0058	3.11 113 0.59 <0.660 <1.4 88.4 43.6 .0081 J 34 366 2.11 18.1 1.51 1.04 168 <0058	0 4.29 83.6 0.478 J <0.621 <1.3 15.2 .0074 J 12.7 459 0.018 16.4 1.7 <1.24 68.5	0 4.54 140 0.887 <0.635 <1.2 27.7 21 <0.62 12.8 542 0.103 29.2 2.16 <1.26 69.7	
Cadmium Chromium, hexavalent ^e Chromium, trivalent ^e Copper Total Cyanide ^{e, +} Lead Manganese Total Mercury Nickel Selenium Silver Zinc PCBs/Pesticide	350 t 7.2.2 2.5 t 1 4 t 30 t 50 27 63 t 1600 t 30 3.9 3.9 2 109 t	350 14 2,5 22 36 277 400 2,000 0,81 140 36 36 2200	16' 400 72 4.3 110 180 270 0.27 400 2,000 2,000 0.81' 310 180 180 10,000 9pm=mg/kg	400 590 9.3 400 1,500 270 10,000 ⁶ 2,8 ⁰ 310 1,500 1,500 10,000 ⁶	2,700 60 8,000 10,000 ¹⁰ 3,900 10,000 ¹⁰ 5,77 10,000 ¹⁰ 6,800	0	0 <1.03 <10.3 <0.516 <1.2 4.42 6.73 .0072 J 6.73 6.57 242 2.95 <1.03 <1.03 66.7	0 -	1.31 D 13.4 <0.485 <0.485 <1.3 3.56 8.36 <0.061 8.81 D 233 0.0401 2.67 <0.970 <0.970 47.6	5.81 86.2 0.384J 647 <1.2 15.8 34.1 .0069J 158 309 0.242 11.5 0.933 <1.17 197	3.11 113 0.59 <0.660 <1.4 88.4 43.6 .0081 J 34 366 2.11 18.1 1.51 1.04 168	0 4.29 83.6 0.478] <0.621 <1.3 15.2 0.074] 12.7 459 0.018 16.4 1.7 <1.24 68.5	0 4.54 140 0.887 <0.635 <1.2 21 <0.62 12.8 542 0.103 29.2 2.16 <1.26 69.7	
Cadmium Chromium, hexavalent ^e Chromium, trivalent ^e Copper Total Cyanide ^{e,+} Lead Manganese Total Mercury Nickel Selenium Silver Zinc PCBs/Pesticide 2,4,5-TP Acid (Silvex) [*] 4,4*DDE 4,4*DDT 4,4*DDD	350 ° 7.2. 2.5 ° 1 ° 1 ° 3 ° ° 5 ° 0 ° 1	350 14 25 22 36 270 277 400 2,000 0,811 140 36 36 2200 58 1.8 1.7 2.6	16' 400 72 4.3 110 180 270 0.81' 310 0.81' 180 10.000" ppm=mg/kg 100" 8.99 7.9 7.9	400 590 9.3 400 1,500 270 27 1,000 10,000 * 2.8 310 1,500 1,500 10,000 * 500* 62	2,700 60 8,000 10,000 ¹⁰ 3,900 10,000 ¹⁰ 5,77 10,000 ¹⁰ 6,800	0 	0 <1.03 <0.516 <0.516 <1.2 4.42 6.73 .0072 J 6.73 6.57 242 2.95 <1.03 <1.03 66.7 XA <.00323	0 -	1.31 D 13.4 <0.485 <1.3 3.56 8.36 <0.061 8.81 D 233 0.0401 2.67 <0.970 <0.970 <0.970 47.6 NA <.00305 <.00305	5.81 86.2 0.384 J 647 <1.2 15.8 34.1 0.0069 J 158 309 0.242 11.5 0.933 <1.17 197 <0058 0.0058 0.0058 0.0058	3.11 113 0.59 <0.660 <1.4 88.4 43.66 2.11 18.1 1.51 1.04 168 <0058 <0058 <0058 <0058	0 4.29 83.6 0.478 J <0.621 <1.3 15.2 15 .0074 J 12.7 459 0.018 16.4 1.7 <1.24 68.5 <0064 <.00360 <.00360	0 4.54 140 0.887 <0.635 <1.2 27.7 21 <0.62 12.8 542 0.103 29.2 2.16 59.7 (1.26 69.7	
Cadmium Chromium, hexavalent ^e Chromium, trivalent ^e Copper Total Cyanide ^{s, 1} Lead Manganese Total Mercury Nickel Selenium Silver Zinc PCBs/Pesticide 2.4,5-TP Acid (Silvex)' 4.4'-DDT 4.4'-DDT Aldrin	350 ° 7.2 2.5 ° 1 ° 3 ° 5 ° 6 ° 7 ° 6 ° 7 ° 6 ° 7 ° 6 ° 7 ° 7 ° 6 ° 7	350 14 2.5 22 366 270 277 400 2,000 0.81 140 366 366 2200 588 1.8 1.8 1.7 2.6 0.019	16' 400 72 4.3 110 180 270 277 400 2.000' 0.81' 310 180 180 10,000 '' ppm=mg/kg 100'' 8.9 7.9 7.9 13 30,097	400 590 9.3 400 1,500 277 1,000 10,000 " 2.8" 3100 1,500 1,500 10,000 " 500" 62 477 92 0,68	2,700 60 800 10,000 ^w 10,000 ^w 3,900 10,000 ^w 6,800 6,800 10,000 ^w 1,000 ^w 11,000 ^w	0 	0 <1.03 <10.3 <0.516 <1.2 (0.516) <1.2 (0.73) (0.73) <1.03 <1.03 <1.03 <1.03 <1.03 <1.03 <1.03 <1.03 <1.03 <0.0323 <0.0323 <0.0323	0 -	1.31 D 1.3.4 <0.485 <1.3 .56 8.36 <0.061 8.81 D 233 0.0401 2.67 <0.970 <0.970 <0.970 <0.970 <0.970 ×0.0305 <0.0305 <0.0305	5.81 86.2 0.384 J 647 <1.2 15.8 34.1 .0069 J 158 309 0.242 11.5 0.933 <1.17 197 <0058 .00338 C 0.0113 0.0433 C 0.0138	3.11 113 0.59 <0.660 <1.4 88.4 43.6 .00811 34 366 2.11 18.1 1.04 168 <.0058 <.00411 .0226 0.0226	0 4.29 83.6 0.478 J <0.621 <1.3 15.2 15 .0074 J 12.7 459 0.018 16.4 1.7 <1.24 68.5 <0064 <.00360 <.00360	0 4.54 140 0.887 <0.635 <1.2 27.7 21 <0.62 12.8 542 0.103 29.2 2.16 <1.26 69.7 NA 0.00938 0.00938 <.00361	
Cadmium Chromium, hexavalent ^e Chromium, trivalent ^e Copper Total Cyanide ^{e,+} Lead Manganese Total Mercury Nickel Selenium Silver Zinc PCBs/Pesticide 2,4,5-TP Acid (Silvex) [*] 4,4*DDE 4,4*DDT 4,4*DDD	350 ° 7.2. 2.5 ° 1 ° 1 ° 3 ° ° 5 ° 0 ° 1	350 14 25 22 36 270 277 400 2,000 0,811 140 36 36 2200 58 1.8 1.7 2.6	16' 400 72 4.3 110 180 270 0.81' 310 0.81' 180 10.000" ppm=mg/kg 100" 8.99 7.9 7.9	400 590 9.3 400 1,500 270 77 1,000 10,000 2,8 ³ 310 1,500 10,000 500 ^o 500 ^o 47 92	2,700 60 800 10,000 ^w 10,000 ^w 3,900 10,000 ^w 6,800 6,800 10,000 ^w 1,000 ^w 11,000 ^w	0 -	0 <1.03 <10.3 <0.516 <1.2 4.42 6.73 .0072 J 6.57 242 2.95 <1.03 <1.03 66.7 ×1.03 66.7 ×1.03 <0.0323 <.00323 <.00323	0 -	1.31 D 13.4 <0.485 <1.3 3.56 8.36 <0.061 8.81 D 233 0.0401 2.67 <0.970 <0.970 <0.970 47.6 NA <.00305 <.00305	5.81 86.2 0.384 J 647 <1.2 15.8 34.1 0.0069 J 158 309 0.242 11.5 0.933 <1.17 197 <0058 0.0058 0.0058 0.0058	3.11 113 0.59 <0.660 <1.4 88.4 43.66 2.11 18.1 1.51 1.04 168 <0058 <0058 <0058 <0058	0 4.29 83.6 0.478 J <0.621 <1.3 15.2 15 .0074 J 12.7 459 0.018 16.4 1.7 <1.24 68.5 <0064 <.00360 <.00360	0 4.54 140 0.887 <0.635 <1.2 27.7 21 <0.62 12.8 542 0.103 29.2 2.16 <1.26 69.7 NA 0.00342 0.00342 <.00361	
Cadmium Chromium, hexavalent ^e Chromium, trivalent ^e Copper Total Cyanide ^{s, 1} Lead Manganese Total Mercury Nickel Setenium Silver Zinc PCBs/Pesticide 2,4,5-TP Acid (Silvex)' 4,4-DDT 4,4-DDT 4,4-DDT Aldrin alpha-BHC Deta-BHC Chlordane (alpha)	350 ° 7.2. 2.5 ° 3 ° 5 ° 5 ° 5 ° 6 ° 5 ° 6 ° 6 ° 7	350 14 2.5 22 36 270 277 400 2,000 0.81 140 36 36 2200 58 1.8 1.8 1.7 2.6 0.019 0.097 0.972 0.91	16' 400 72 4.3 110 180 270 277 277 400 2.000' 0.81' 310 10,000' ppm=mg/kg 10,000' 9,89 7.9 9 7.9 9 100'' 8.9 7.9 9 13 0.097 0.48 0.36 6 4.2	400 590 9.3 400 1,500 277 1,000 10,000 2,8 310 1,500 1,500 1,500 1,500 1,500 2,800 2,800 1,500 1,500 3,0000 3,0000	2,700 600 800 6,800 10,000" 10,000" 5,7" 10,000" 6,800 10,000" 1,000" 1,000 120 1400 1400 1440 144 6,88 144 47	0 	0 <1.03 <10.3 <0.516 <1.2 4.42 6.73 0.072 J 6.73 6.57 242 2.95 <1.03 <1.03 <1.03 66.7 ×1.03 <1.03 <6.7 ×1.03 <0.0323 <.00323 <.00323 <.00323	0 -	1.31 D 1.3.4 <0.485 <1.3 .56 8.36 <0.061 8.81 D 233 0.0401 2.67 <0.970 <0.970 <0.970 <0.970 <0.970 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.0	5.81 86.2 0.384 J 647 (1.2 15.8 34.1 .0069 J 158 309 0.242 11.5 0.933 <1.17 197 <0058 .00338 C 0.0113 0.0432 C <00338 0.00338 0.00338	3.11 113 0.59 <0.660 <1.4 88.4 43.6 .0081 J 34 366 2.11 18.1 1.51 1.04 168 <00411 <.00411 <.00411 <.00411 .004411 .00448 C	0 4.29 83.6 0.478 J <0.621 <1.3 15.2 15 0.074 J 12.7 459 0.018 16.4 1.7 <1.24 68.5 <0064 <.00360 <.00360 <.00360 <.00360	0 4.54 140 0.887 <0.635 <1.2 27.7 21 2.77 21 2.8 542 0.103 29.2 2.16 <1.26 69.7 NA 0.00342 J <.00361 <.00361 <.00361 <.00361	
Cadmium Chromium, hexavalent ^e Chromium, trivalent ^e Copper Total Cyanide ^{%,1} Lead Manganese Total Mercury Nickel Selenium Silver Zinc PCBs/Pesticide 2,4,5-TP Acid (Silvex)' 4,4'-DDT 4,4'-DDT 4,4'-DDT 4,4'-DDT 4,4'-DDT 4,4'-DDT Chiordane (alpha) delta-BHC Chiordane (alpha)	350 ° 7.2. ° 2.5 ° 1 ° 3 ° 5 ° 0 ° 5 ° 5 ° 5 ° 5 ° 5 ° 0 ° 5 ° 0 ° 5 ° 6 ° 7	350 14 2,5 22 36 270 400 2,000 0,81 140 36 36 2200 58 1.8 1.7 2.6 0,019 0,097 0,072 0,91 100 ⁴	16' 400 722 4.3 110 180 270 2,000' 0.81' 310 180 10,000 th ppm=mg/kg 100'' 8.9 7.9 1.00'' 8.9 7.9 1.00'' 8.9 7.9 1.00'' 8.9 7.9 1.00'' 8.9 7.9 1.00'' 8.9 7.9 1.00'' 8.9 7.9 1.00'' 8.9 7.9 1.00'' 8.9 7.9 1.00'' 8.9 7.9 1.00'' 8.9 7.9 1.00'' 8.9 7.9 1.00'' 8.9 7.9 1.00'' 8.9 7.9 1.00'' 8.9 7.9 1.00'' 1.00''' 7.9 1.00''' 1.00''' 7.9 1.00''' 1.00''' 1.00''' 1.00''' 1.00''' 1.00''' 1.00'''' 1.00'''' 1.00'''''''''''''''''''''''''''''''''''	400 590 9.3 400 1,500 270 10,000 10,000 2.8 310 1,500 1,500 1,500 1,500 1,500 22 47 92 0.68 3.4 3.4 3.4 3.4 3.4 500	2,700 60 800 10,000 ^w 10,000 ^w 3,900 10,000 ^w 6,800 6,800 10,000 ^w 1,000 ^w 11,000 ^w	0 -	0 <1.03 <10.3 <0.516 <1.2 4.42 6.73 .0072 J 6.73 6.57 242 2.95 <1.03 <1.03 <1.03 <6.7 <4.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.0032 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323	0 -	1.31 D 13.4 <0.485 <1.3 3.56 8.36 <0.061 8.81 D 233 0.0401 2.67 <0.970 <0.970 <0.970 <0.970 <0.970 <0.970 <0.90305 <.00305 <.00305 <.00305	5.81 86.2 0.384 J 647 <1.2 15.8 34.1 .0069 J 158 309 0.242 11.5 0.933 (1.17 197 <0058 .00338 C 0.00138 <00588 <00338 <00338 0.00338	3.11 113 0.59 <0.660 <1.4 88.4 43.6 .0081 J 34 36 2.11 18.1 1.51 .04 168 <00411 <00481 <00411 <00411 <00411 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <0	0 4.29 83.6 0.478 J <0.621 15.2 15 .0074 J 12.7 459 0.018 16.4 1.7 <1.24 68.5 .0084 <.00360 <.00360 <.00360 <.00360 <.00360	0 4.54 140 0.887 <0.635 <1.2 27.7 21 2.16 <1.28 542 0.103 29.2 2.16 <1.26 69.7 ×0.0361 <.00361 <.00361 <.00361 <.00361	
Cadmium Chromium, hexavalent ^e Chromium, trivalent ^e Copper Total Cyanide ^{s, 1} Lead Manganese Total Mercury Nickel Setenium Silver Zinc PCBs/Pesticide 2,4,5-TP Acid (Silvex)' 4,4-DDT 4,4-DDT 4,4-DDT Aldrin alpha-BHC Deta-BHC Chlordane (alpha)	350 ° 7.2. 2.5 ° 3 ° 5 ° 5 ° 5 ° 6 ° 5 ° 6 ° 6 ° 7	350 14 2.5 22 36 270 277 400 2,000 0.81 140 36 36 2200 58 1.8 1.8 1.7 2.6 0.019 0.097 0.972 0.91	16' 400 72 4.3 110 180 270 277 277 400 2.000' 0.81' 310 10,000' ppm=mg/kg 10,000' 9,89 7.9 9 7.9 9 100'' 8.9 7.9 9 13 0.097 0.48 0.36 6 4.2	400 590 9.3 400 1,500 277 1,000 10,000 2,8 310 1,500 1,500 1,500 1,500 1,500 2,800 2,800 1,500 1,500 3,0000 3,0000	2,700 600 800 6,800 10,000" 10,000" 5,7" 10,000" 6,800 10,000" 1,000" 1,000 120 140 140 144 144 47	0 -	0 <1.03 <10.3 <0.516 <1.2 4.42 6.73 0.072 J 6.73 6.57 242 2.95 <1.03 <1.03 <1.03 66.7 ×1.03 <1.03 <6.7 ×1.03 <0.0323 <.00323 <.00323 <.00323	0 -	1.31 D 1.3.4 <0.485 <1.3 .56 8.36 <0.061 8.81 D 233 0.0401 2.67 <0.970 <0.970 <0.970 <0.970 <0.970 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.0305 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.035 <0.0	5.81 86.2 0.384 J 647 (1.2 15.8 34.1 .0069 J 158 309 0.242 11.5 0.933 <1.17 197 <0058 .00338 C 0.0113 0.0432 C <00338 0.00338 0.00338	3.11 113 0.59 <0.660 <1.4 88.4 43.6 .0081 J 34 366 2.11 18.1 1.51 1.04 168 <00411 <.00411 <.00411 .004411 .00448 C	0 4.29 83.6 0.478 J <0.621 <1.3 15.2 15 0.074 J 12.7 459 0.018 16.4 1.7 <1.24 68.5 <0064 <.00360 <.00360 <.00360 <.00360	0 4.54 140 0.887 <0.635 <1.2 27.7 21 2.77 21 2.8 542 0.103 29.2 2.16 <1.26 69.7 NA 0.00342 J <.00361 <.00361 <.00361 <.00361	
Cadmium Chromium, hexavalent ^e Chromium, trivalent ^e Copper Total Cyanide ^{s, 1} Lead Manganese Total Mercury Nickel Selenium Silver Zinc PCBs/Pesticide 2.4,5-TP Acid (Silvex)' 4,4-DDT 4,4-DDT 4,4-DDT 4,4-DDT Aldrin alpha-BHC Deta-BHC Chlordane (alpha) delta-BHC ⁹ Dibenzofuran 'D Dieldrin Endosulfan 1 ^{a, 1}	350 ° 7.2. 2.5 ° 30 ° 500 277 63 ° 1600 ° 300 3.9° 2 109 ° 38 3.8° 0.0033 ° 0.0035 ° 0.0035 ° 0.0036 ° 0.0036 ° 0.0036 ° 0.0037 ° 0.0037 ° 0.0037 ° 0.0037 ° 0.0037 ° 0.0037 ° 0.0055 °	350 14 2,5 22 36 270 277 400 2,000 0,81 140 36 36 36 2200 58 1.8 1.7 2.6 0,019 0,097 0,072 0,91 100 100 4.8 100 100 100 100 100 100 100 10	16' 400 72 4.3 110 180 270 277 27 400 2.000' 0.81' 310 180 10.000 ' ppm=mg/kg 9 m=mg/kg 100'' 8.9 7.9 9 13 0.097 0.48 0.36 6 4.2 100'' 59 9 0.2 24''	400 590 9.3 400 1,500 277 1,000 10,000 2.8 310 10,000 1,500 10,000 500 62 47 92 0.68 3.34 3.3 24 500 0.50 1,4 20 1,4 20 1,4 200	2,700 600 800 6,800 10,000" 10,000" 5,7' 10,000" 6,800 10,000" 1,000" 1,000 120 140 140 144 180 144 47 1,000" 2,8 820'	0 -	0 <1.03 <10.3 <0.516 <1.2 4.42 6.73 .0072 J 6.73 6.57 242 2.95 <1.03 <1.03 <6.7 2.95 <1.03 <1.03 66.7 XA <.00323 <.00323 <.00323 <.00323 <.00323 <.00323	0 -	1.31 D 1.3.4 <0.485 <1.3 <0.485 <1.3 .56 8.36 <0.061 8.81 D 233 0.0401 2.67 <0.970 <0.970 <0.970 <0.970 <0.970 <0.970 <0.970 <0.970 <0.9305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.0035 <0.0035 <0.0035 <0.0035 <0.0035 <0.0035 <0.0035 <0.0035 <0.0035 <0.0035 <0.0	5.81 86.2 0.384 J 647 (1.2 15.8 34.1 .0069 J 158 309 0.242 11.5 0.933 <1.17 197 <0038 C 0.0338 (.00338 0.0133 0.0133 (.00338 0.00338 (.00338 0.00337 C 0.00338 (.00338 0.00397 C <.00338	3.11 113 0.59 <0.660 <1.4 88.4 43.6 .0081 J 34 366 2.11 18.1 1.51 1.04 168 <00411 <00486 <00411 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <00441 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041 <0041	0 4.29 83.6 0.478 J <0.621 <1.3 15.2 15 0.074 J 12.7 459 0.018 16.4 1.7 <1.24 68.5 <00540 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360	0 4.54 140 0.887 <0.635 <1.2 27.7 21 2.8 542 0.103 29.2 2.16 <1.26 69.7 80.0038 0.00342 4.00361 <.00361 <.00361 <.00361	
Cadmium Chromium, hexavalent ^e Chromium, trivalent ^e Copper Total Cyanide ^{%,1} Lead Manganese Total Mercury Nickel Selenium Silver Zinc PCBs/Pesticide 2.4.5-TP Acid (Silvex)' 4.4'-DDT 4.4'-DDT 4.4'-DDT 4.4'-DDT 4.4'-DDT Chiordane (alpha) delta-BHC Chiordane (alpha) delta-BHC ⁹ Dibenzofuran ¹ Dieldrin Endosulfan 1 ^{0,1} Endosulfan 1 ^{0,1}	350 t 7.2.2 5 2.5 5 3.0 c 500 27 63 t 1600 c 0.18 c 3.0 3.3 9 2 2 109 c 3.3 0.0033 t 0.0033 t 0.0033 t 0.0035 c 0.0035 c 0.005 c 0.005 c 0.004 c 0.005	350 14 2,5 222 36 270 400 2,000 0,81 140 36 36 2200 588 1.8 1.7 2.6 0.019 0.097 0.072 0.91 100'' 140 1.8 1.7 2.6 0.019 0.07 0.017 0.07 0.017 1.0 0.8 1.8 1.8 0.019 0.07 0.017 0.07 0.017 0.007 0	16' 400 72 4.3 110 180 270 2,000' 0.81' 310 180 180 180 180 180 10,000' ppm=mg/kg 100'' 8.9 7.9 100'' 8.9 7.9 100'' 8.9 7.9 100'' 8.9 7.9 100'' 8.9 7.9 100'' 8.9 7.9 100'' 8.9 7.9 100'' 8.9 7.9 100'' 8.9 7.9 100'' 8.9 7.9 100'' 8.9 7.9 100'' 8.9 7.9 100'' 8.9 7.9 100'' 8.9 7.9 100'' 8.9 7.9 100'' 8.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7	400 590 933 400 1,500 270 71,000 10,000 " 2.8" 310 1,500 1,500 10,000 " 62 47 92 0.68 3.4 3.2 47 92 0.68 3.4 3.2 47 92 0.68 3.4 3.4 500 3.50 1.4 500 1.50	2,700 60 800 6,800 10,000 " 10,000 " 6,800 6,800 6,800 10,000 " 1,000 " 1,000 " 1,000 " 1,000 " 1,000 " 1,000 " 1,000 " 2,8 9,20 " 9,20 " 9,20 "	0 -	0 <1.03 <10.3 <0.516 <1.2 4.42 6.73 .0072 J 6.73 .0072 J 6.73 .0072 J .0072 J 6.73 .0072 J .0072 J .0072 J .0072 J .0072 J .0072 J .0072 J .0072 J .0072 J .00323 <.00323 .00	0 -	1.31 D 13.4 <0.485 <1.3 3.56 8.36 <0.061 8.81 D 233 0.0401 2.67 <0.970 <0.970 <1.970 <0.970 <1.970 <0.970 <1.970 <0.0305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.0035 <.0035 <.0035 <.0035 <.0035 <.0	5.81 86.2 0.384 J 647 <1.2 15.8 34.1 .0069 J 158 309 0.242 11.5 0.933 (1.17 197 <0.058 .00338 C 0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038	3.11 113 0.59 <0.660 <1.4 88.4 43.6 .0081 J 34 36 2.11 18.1 1.04 168 <00411 <.00481 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.	0 4.29 83.6 0.478 J <0.621 <1.3 15.2 15 .0074 J 12.7 459 0.018 16.4 1.7 <1.24 .0078 J 16.4 1.7 <1.24 68.5 <0064 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.003	0 4.54 140 0.887 <0.635 <1.2 27.7 21 (0.635 12.8 542 29.2 2.16 <1.26 69.7 (0.0361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361	
Cadmium Chromium, hexavalent ^e Chromium, trivalent ^e Copper Total Cyanide ^{s, 1} Lead Manganese Total Mercury Nickel Selenium Silver Zinc PCBs/Pesticide 2.4,5-TP Acid (Silvex)' 4,4-DDT 4,4-DDT 4,4-DDT 4,4-DDT Aldrin alpha-BHC Deta-BHC Chlordane (alpha) delta-BHC ⁹ Dibenzofuran 'D Dieldrin Endosulfan 1 ^{a, 1}	350 ° 7.2. 2.5 ° 30 ° 500 277 63 ° 1600 ° 300 3.9° 2 109 ° 38 3.8° 0.0033 ° 0.0035 ° 0.0035 ° 0.0036 ° 0.0036 ° 0.0036 ° 0.0037 ° 0.0037 ° 0.0037 ° 0.0037 ° 0.0037 ° 0.0037 ° 0.0055 °	350 14 2,5 22 36 270 277 400 2,000 0,81 140 36 36 36 2200 58 1.8 1.7 2.6 0,019 0,097 0,072 0,91 100 100 4.8 100 100 100 100 100 100 100 10	16' 400 72 4.3 110 180 270 277 27 400 2.000' 0.81' 310 180 10.000 ' ppm=mg/kg 9 m=mg/kg 100'' 8.9 7.9 9 13 0.097 0.48 0.36 6 4.2 100'' 59 9 0.2 24''	400 590 9.3 400 1,500 277 1,000 10,000 2.8 310 10,000 1,500 10,000 500 62 47 92 0.68 3.34 3.3 24 500 0.50 1,4 20 1,4 20 1,4 200	2,700 600 800 6,800 10,000" 10,000" 5,7' 10,000" 6,800 10,000" 1,000" 1,000 120 140 140 144 180 144 47 1,000" 2,8 820'	0 -	0 <1.03 <10.3 <0.516 <1.2 4.42 6.73 0.072 J 6.57 242 2.95 <1.03 <1.03 <1.03 <6.7 ×1.2 2.95 <1.03 <1.03 <1.03 <6.7 ×1.2 ×1.	0 	1.31 D 1.3.4 <0.485 <1.3 <0.485 <1.3 .56 8.36 <0.061 8.81 D 233 0.0401 2.67 <0.970 <0.970 <0.970 <0.970 <0.970 <0.970 <0.970 <0.970 <0.9305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.0035 <0.0035 <0.0035 <0.0035 <0.0035 <0.0035 <0.0035 <0.0035 <0.0035 <0.0035 <0.0	5.81 86.2 0.384 J 647 (1.2 15.8 34.1 .0069 J 158 309 0.242 11.5 0.933 <1.17 197 <0038 C 0.0338 (.00338 0.0133 0.0133 (.00338 0.00338 (.00338 0.00337 C 0.00338 (.00338 0.00397 C <.00338	3.11 113 0.59 <0.660 <1.4 88.4 43.6 .0081 J 34 366 2.11 18.1 1.51 1.04 168 <00411 <.00411 <.00411 <.00411 .00448 C <.00411 .00448 C <.00411 .00448 C <.00411 .00448 C <.00411 .00448 C .00441 .00448 C .00441 .00448 C .00441 .00448 C .00441 .00448 C .00441 .00448 C .00448 C .00486 C .0048	0 4.29 83.6 0.478 J <0.621 <1.3 15.2 15 0.074 J 12.7 459 0.018 16.4 1.7 <1.24 68.5 <00540 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360	0 4.54 140 0.887 <1.2 27.7 21 <0.62 12.8 542 0.103 29.2 2.16 <1.26 69.7 NA 0.00381 <.00361 <.00361 <.00361 <.00361 <.00361	
Cadmium Chromium, hexavalent ^e Chromium, trivalent ^e Copper Total Cyanide ^{s. +} Lead Manganese Total Mercury Nickel Selenium Silver Zinc PCBs/Pesticide 2.4,5-TP Acid (Silvex)' 4.4*DDE 4.4*DDT 4.4*DDT 4.4*DDT 4.4*DDT Addrin alpha-BHC Chlordane (alpha) delta-BHC ^s Diberzofuran ^t Diberzofuran ^t Endosulfan II ^{4, f} Endosulfan II ^{4, f} Endosulfan sulfate ^{s, +} Endosulfan sulfate ^{s, +}	350 t 7.2.2 5 2.5 5 3.0 c 500 0.18 c 3.3 0 3.3 9 2 109 c 3.3 0 3.3 0 3.3 0 3.3 0 3.3 0 3.3 0 3.3 0 3.3 0 3.3 0 3.3 0 2 109 c 3.3 0 3.3 0 2 109 c 3.3 0 3.3 0 3.3 0 2 109 c 3.3 0 3.0 003 c 3.3 0 3.3 0 2 109 c 3.3 0 3.3 0 2 109 c 3.3 0 3.3 0 2 109 c 3.3 0 3.0 0 0.0 0 3.0 0 0.0 0 3.0 0 0.0 0 3.0 0 0.0 0 3.0 0 0.0 0 3.0 0 0.0 0 3.0 0.0 0 5.0 0.0 0.0 0 5.0 0.0 0 5.0 0.0 0.0 0 5.0 0.0 0.0 0.0 0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	350 14 2,5 22 36 270 27 400 2,000 0,81 140 36 36 2200 58 1.8 1.7 2.6 0,019 0,097 0,072 0,019 100 ⁹ 144 0,039 0,039 4.8 ⁴ 4.8 ⁴ 4.8 ⁴ 4.8 ⁴ 2.2 0,44 0,44 0	16' 400 72 4.3 110 180 270 277 400 2.000' 0.81' 310 180 180 180 180 180 180 180 180 180 1	400 590 93 400 1,500 270 10,000 2,8' 310 1,500 1,500 1,500 1,500 1,500 1,500 1,500 310 0,000 82 47 92 0,68 3.4 3.4 3.4 3.0 1.4 200' 200' 200' 200' 200' 200' 200' 89 15	2,700 60 800 6,800 10,000 3,900 10,000 5,77 10,000 6,800 10,000 11,000 11,000 944 180 14,4 68 144 47 1,000 2,8 920 920 920	0 	0 <1.03 <10.3 <0.516 <1.2 4.42 6.73 .0072 J 6.73 6.57 242 2.95 <1.03 <1.03 <4.03 242 2.95 <1.03 <6.7 ×0.52 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.0323 <0.00323 <0.0323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00323 <0.00324 <0	0 -	1.31 D 1.3.4 <0.485 <1.3 3.56 8.36 <0.061 8.81 D 233 0.0401 2.67 <0.970 <0.970 <0.970 <0.970 <0.970 <0.970 <0.970 <0.0305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.0035 <0.0035 <0.0035 <0.0035 <0.0035 <0.0035 <0.0035 <0.0035 <0.0035 <0.0035 <0.00	5.81 86.2 0.384 J 647 <1.2 15.8 34.1 .0069 J 158 309 0.242 11.5 0.933 (1.17 197 <0.0338 <0.0338 <0.0338 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.0038 <0.003	3.11 113 0.59 <0.660 <1.4 88.4 43.6 .00811 34 366 2.11 18.1 1.04 168 <00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.	0 4.29 83.6 0.478 J <0.621 <1.3 15.2 15 .0074 J 12.7 459 0.018 16.4 1.7 <1.24 459 0.018 16.4 1.7 <1.24 (.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360	0 4.54 140 0.887 <0.635 <1.2 27.7 21 3.27.7 21 2.16 (.0.103 29.2 2.16 (.0.103 29.2 2.16 (.0.103 69.7 (.0.0361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361	
Cadmium Chromium, hexavalent ^e Chromium, trivalent ^e Copper Total Cyanide ^{s, 1} Lead Manganese Total Mercury Nickel Selenium Silver Zinc PCBs/Pesticide 2.4.5-TP Acid (Silvex)' 4.4"-DDT 4.4"-DDT 4.4"-DDT Aldrin alpha-BHC Deta-BHC Chlordane (alpha) delta-BHC Chlordane (alpha) delta-BHC Dibenzofuran ' Dieldrin Endosulfan 1 ^{id, 1} Endosulfan sulfate ^{id, 1} Endosulfan sulfate ^{id, 1} Endosulfan sulfate ^{id, 1}	350 ° 7.2. 2.5 ° 7.2. 2.5 ° 7.2. 3.0 ° 5.0 ° 7.0	350 144 2.5 222 36 270 277 400 2,000 0.81 140 36 36 2200 2200 58 1.8 1.7 2.6 0.039 0.097 0.097 0.097 140 0.039 4.8 4.8 4.8 4.8 2.2	16' 400 72 4.3 110 180 270 2.77 400 2.000' 0.81' 310 180 10,000 ' ppm=mg/kg 90 90 100'' 8.9 7.9 9 13 0.097 0.48 0.36 4.2 100'' 59 9 0.2 2.24' 2.4' 2.4'	400 590 93 400 1,500 270 277 1,000 10,000 ⁶ 310 1,500 1,500 1,500 62 477 92 0,68 334 47 92 0,68 3,34 324 500° 3,50 1,4 200°	2,700 60 800 6,800 10,000 3,900 10,000 5,77 10,000 6,800 10,000 11,000 11,000 944 180 14,4 68 144 47 1,000 2,8 920 920 920	0 	0 <1.03 <1.03 <0.516 <1.2 4.42 6.73 0.072 J 6.57 242 2.95 <1.03 <1.03 <1.03 <6.57 242 2.95 <1.03 <1.03 <1.03 <6.7 XA <0.0323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323	0 	1.31 D 1.3.4 <0.485 <1.3 .56 8.36 <0.061 8.81 D 233 0.0401 2.67 <0.970 <0.970 <0.970 <0.970 <0.970 <0.970 <0.970 <0.970 <0.970 <0.970 <0.970 <0.970 <0.970 <0.970 <0.970 <0.970 <0.970 <0.970 <0.970 <0.970 <0.970 <0.970 <0.970 <0.970 <0.9305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.00305 <0.0035 <0.0035 <0.0035 <0.0035 <0.0035 <0.00	5.81 86.2 0.384 J 647 (1.2 15.8 34,1 .0069 J 158 309 0.242 11.5 0.933 <1.17 197 <0.058 .09338 <1.17 197 <0.058 .00338 <0.0038 0.0038 0.0038 0.0038 0.0038 0.00397 <0.0038 0.0038	3.11 113 0.59 <0.660 <1.4 88.4 43.6 .0081 J 34 366 2.11 18.1 1.51 1.04 168 <00411 <0.0058 <.00411 <.00411 <.00411 .00448 C <.00411 .0044	0 4.29 83.6 0.478 J <0.621 <1.3 15.2 15 .0074 J 12.7 459 0.018 16.4 1.7 <1.24 68.5 <0064 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360	0 4.54 140 0.887 <0.635 <1.2 27.7 21 <0.62 12.8 542 0.103 29.2 2.16 <1.26 69.7 NA 0.00381 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.00361 <.0	

ATTACHMENT 1

COMMERCIAL USE ASSESSMENT REPORT

PROPOSED MEDICAL OFFICE BUILDING 1001 MAIN STREET BUFFALO, NEW YORK 14203

Prepared by:

C&S ENGINEERS, INC. 90 BROADWAY BUFFALO, NEW YORK 14203

Prepared for:

KALEIDA HEALTH

LARKIN BUILDING 726 Exchange Street, Suite 200 Buffalo, NY 14203

MAY 2012

TABLE OF CONTENTS

1.0 IN	FRODUCTION	3
2.0 SIT	TE DESCRIPTION	3
2.1	Location and Description	3
2.2	Site Characteristics	3
3.0 EN	VIRONMENTAL SITE ASSESSMENT OBJECTIVES AND	
METH	IODOLOGIES	4
3.1	Objective	4
3.2	Methods	4
Fi At Da	Ibsurface Investigation 4 eld Screening and Sampling 5 nalytical Testing 5 ata Usability Summary Report (DUSR) 5 NDINGS 5	5
4.1	Subsurface Investigation Findings	5
4.2	Lab Analytical Findings	6
4.3	Geologic Conditions and Contaminants	7
G	eneral Site Geology	9
5.0 SU	MMARY	10

FIGURES

FIGURE 1.....SITE MAP FIGURE 2.....SAMPLE LOCATIONS FIGURE 3.....ESTIMATED COMMERCIAL USE EXCAVATION AREA

APPENDICIES

APPENDIX ASOIL BORING LOGS APPENDIX B......SUMMARY OF DETECTED VOLATILE ORGANIC COMPOUNDS APPENDIX C......SOIL ANALYTICAL RESULTS APPENDIX D.....SUMMARY OF COMMERCIAL USE SOIL CLEANUP OBJECTIVES

1.0 INTRODUCTION

C&S Engineers, Inc. has completed a Commercial Use Assessment on 1001 Main Street located in the City of Buffalo, Erie County, New York. This property is the proposed location of a Medical Office Building (MOB) and will be referenced as the "Site" in this report. This assessment included the advancement of five soil borings across the Site from April 24 to 26, 2012. The subsurface investigation and the lab analytical results are described in this report. The data collected from this investigation supplemented the data collected in the 2008 Groundwater Environmental Services, Inc. ("GES") study conducted for Exxon-Mobil.

As part of the ongoing remedial investigation of the Site, C&S Engineers, Inc. was contracted by Kaleida Health to determine the limits of excavation required to meet the Remedial Soil Cleanup Objectives for "Commercial Use" (per 6 NYCRRR 375-6.) The excavation limits will support Kaleida Health in assessing the viability of reaching Commercial Use soil standards as an option for remedial cleanup. The commercial use category, as defined in New York State Department of Environmental Conservation ("NYSDEC") DER-10, "restricts the use to commercial activities including the buying and/or selling of goods or services, or other uses identified in subparagraph iii below." Subparagraph iii defines additional appropriate site uses as, "(1) health care facilities, including hospitals, clinics etc.; or (2) college academic and administrative facilities..." The Commercial Use Soil Cleanup Objectives (SCOs) are presented in *6 NYCRR 375-6: Remedial Program Soil Cleanup Objectives*.

2.0 SITE DESCRIPTION

2.1 LOCATION AND DESCRIPTION

The Site is located in City of Buffalo, New York between High, Main and Goodrich Streets, and is within the Buffalo Niagara Medical Campus ("BNMC"). Currently, the Site is portion of an asphalt parking lot, approximately 1.9 acres, operated by Allpro Parking for visitors and staff coming to the BNMC. In addition, the Site includes the former Physician's Imaging building (now demolished) located at the southwestern corner, along Main and High Streets.

Figure 1 – Site Map is provided after the text with this report.

2.2 <u>SITE CHARACTERISTICS</u>

The southwestern corner of the Site was operated from 1950 to 1982 as an Exxon-Mobil gas station. In 1981, within the area of the former gas station one 4,000 gallon and one 3,000 gallon underground petroleum storage tanks were removed (NYSDEC Spill #9500234).

Over thirty-six groundwater monitoring wells and multiple soil borings were installed from 1981 to present in order delineate the extent and depth of soil and groundwater contamination. Based on these investigations, contaminates of concern are benzene, toluene, ethylbenzene and xylene ("BTEX") compounds associated with the operations of the Exxon-Mobil gas station.

The main area of contamination exists within the center to western boundary of the Site. Free product still exists within this area and the depth of contamination is located at the shallowest 10 feet below ground surface ("ftbgs"). Generally, the depth of contamination exists within this area from 20 ftbgs to 40 ftbgs.

The contamination has migrated from the center of the Site northeast following a five foot coarse sand/gravel layer generally 30 to 35 ftbgs. The contamination within the coarse sand/gravel zone has migrated as the result of preferential groundwater flow.

Groundwater depth and contamination has been defined through quarterly monitoring well sampling. Groundwater investigations indicate the potentiometric depth to water between 25 to 27 ftbgs. Groundwater contamination consists primarily of BTEX compounds and the groundwater plume extends from the southwest corner to the northeast corner of the Site. In addition, the groundwater plume extends off-site past the western boundary onto Main Street and the northern boundary onto Goodrich Street.

Figure 2- Sample Locations shows the extent of soil and groundwater contamination.

3.0 ENVIRONMENTAL SITE ASSESSMENT OBJECTIVES AND METHODOLOGIES

3.1 **Objective**

The objective of this Commercial Use Assessment is to determine the limits of excavation for reaching the Commercial Use SCOs as the remedial goal for the Site's participation in the NYSDEC Brownfield Cleanup Program ("BCP"). Previous BCP remedial scenarios analyzed the viability of meeting Unrestricted or Restricted Residential Use SCOs. Based on this study, the applicants will present the final SCO goal in the Alternatives Analysis Report, which is filed as part of the BCP process.

The sections below describe the methods used to determine the Commercial Use excavation limits.

3.2 <u>Methods</u>

Subsurface Investigation

SJB, Inc was contracted to drill five soil borings from a depth of approximately 5 ftbgs to approximately 40 ftbgs using a truck mounted CME - 85 drilling unit. Boring locations were selected to delineate the vertical and horizontal limits of soils that exceeded Commercial Use SCOs. Each boring location was continuously sampled in accordance

with guidelines provided by ASTM D-1586 Standard Penetration Test using 140 lb. autohammer; driving a 24 inch long 2 inch wide split spoon. All sampling equipment was decontaminated between runs and between drill locations to avoid potential cross contamination of samples.

Figure 2- Sampling Locations shows the locations (CB-01 through CB-05) that were drilled for this assessment.

Blow counts, material description and physical evidence of petroleum contamination (staining or sheen) of each split spoon sample was recorded and organized into soil boring logs provided in Appendix A.

Field Screening and Sampling

A portion of each split spoon sample was collected and placed in a plastic zip lock bag. Head space readings for each sample were conducted using a Mini-Rae 2000 photo-ionization detector (PID) with an 11.7 volt lamp.

At each boring location 2 - 4 samples were selected for lab analysis based on staining, odor or PID readings. The PID head space readings for all samples and the depths of the selected lab analysis samples are recorded on the soil boring logs provided in Appendix A.

Analytical Testing

Soil samples were analyzed for volatile organic compounds ("VOC"). Paradigm Environmental Services, Inc was contracted to analyze soil samples for VOCs using Method 8260B Target Compound List ("TCL").

Data Usability Summary Report ("DUSR")

The DUSR was not conducted for this assessment. However, sample analysis was conducted as a "Category B" deliverable to allow for a DUSR review in the future.

4.0 FINDINGS

4.1 <u>Subsurface Investigation Findings</u>

Drilling started April 24, 2012 and continued through April 26, 2012. Five borings were advanced to approximately 40 ftbgs and total of 14 samples were taken for lab analysis. The table below summarizes the depth and number of samples taken for lab analysis for each boring.

	Table 1: Bornig Results										
BORING ID	BEGINNING DEPTH	END DEPTH	TOTAL SAMPLES								
DOMING ID	(ftbgs)	(ftbgs)	COLLECTED								
CB-01	4	42	3								
CB-02	8	44	2								
CB-03	4	42	4								
CB-04	4	44	3								
CB-05	5	39	2								

Table 1: Boring Results

CB-01 is located along the western boundary of the Site parallel with Main Street. MW-24 is located approximately 7 ft south of CB-01. CB-01 was located in this area in order to determine the excavation limit within the western boundary of the free product zone. Strong petroleum and black stained sand / silty sand was encountered from 35 to 41 ftbgs. Samples were taken at three locations: 26-28 ftbgs; 36-38 ftbgs and 38-40 ftbgs.

CB-02 is located within the center of the Site adjacent to the former Physician's Imaging Center and north of the free product zone. Black stained sand was observed from 38 to 40 ftbgs. A buried concrete foundation was encountered from approximately 4 to 8 ftbgs, split spoon sampling began at 8 ftbgs. Strong petroleum odor and high PID readings were observed 26 to 42 ftbgs. Samples were taken at two locations 30-32 ftbgs and 40-42 ftbgs.

CB-03 is located within the former Physician's Imaging Center and within the center of the free product zone. MW-23 is located approximately 6 ft east of CB-03. Strong odor and high PID readings were observed from 6 to 38 ftbgs. Black stained sand was encountered from 37 to 41 ftbgs and sheen was observed 36-38 ftbgs. Samples were taken at four locations: 22-24 ftbgs; 36-38 ftbgs; 38-40 ftbgs and 40-42 ftbgs.

CB-04 is located at the southeastern property corner of the former Physician's Imaging Center. CB-04 was located in this area in order to determine the excavation limit for the southern boundary of the free product zone. Black stained sand was observed only within the top 8 inches of the 38-40 ftbgs split spoon sample. Strong odor and high PID readings were found from 22 to 42 ftbgs. Samples were taken at three locations: 24-26 ftbgs; 30-32 ftbgs and 42-44 ftbgs.

CB-05 is located at the northeastern corner of the Site adjacent to Goodrich Street. CB-05 was located to determine whether the deep contamination soil layer is above Commercial Use SCOs. Black stained sand and high PID readings were observed from 31 to 35 ftbgs. Samples were collected at two locations 31-33 ftbgs and 37-39 ftbgs.

4.2 <u>LAB ANALYTICAL FINDINGS</u>

Soil samples were analyzed for VOC using Method 8260B TCL. Analytical results were compared with NYSDEC 6 NYCRR Part 375-6: Soil Cleanup Objective for Commercial Use.

Only one sample, CB-03 (22-24 ftbgs), exceeded a Commercial Use SCO (for total xylenes.) All other samples collected were below Commercial and Restricted Residential Use SCOs; except for CB-02 (30-32 ftbgs), which exceeded residential SCOs for ethyl benzene and total xylenes. Table 2 briefly details the analytical results.

A summary table of the detected VOCs is provided in Appendix B and soil analytical results are provided in Appendix C.

BORING ID	SAMPLE DEPTH	COMMENTS
	(ftbgs)	
	26-28	A total of four VOCs were detected. None exceeded Commercial or Restricted Residential Use SCOs.
CB-01	38-40	A total of three VOCs were detected. None exceeded Commercial or Restricted Residential Use SCOs.
	40-42	A total of four VOCs were detected. None exceeded Commercial or Restricted Residential Use SCOs.
CB-02	30-32	A total of five VOCs were detected. Commercial Use SCOs were not exceeded. Ethyl benzene and total xylenes exceed Restricted Residential Use SCOs.
	40-42	A total of five VOCs were detected. None exceeded commercial or restricted residential SCOs.
	22-24	Four VOCs were detected. Total xylenes exceeded Commercial Use SCO.
CB-03	36-38	A total of five VOCs were detected. None exceeded Commercial or Restricted Residential Use SCOs.
CB-03	38-40	A total of five VOCs were detected. None exceeded Commercial or Restricted Residential Use SCOs.
	40-42	A total of five VOCs were detected. None exceeded Commercial or Restricted Residential Use SCOs.
	24-26	Four VOCs were detected. None exceeded Commercial or Restricted Residential Use SCOs.
CB-04	30-32	Four VOCs were detected. None exceeded Commercial or Restricted Residential Use SCOs.
	42-44	Four VOCs were detected. None exceeded Commercial or Restricted Residential Use SCOs.
CB-05	31-33	Two VOCs were detected. None exceeded commercial or restricted residential SCOs.
CB-05	37-39	Five VOCs were detected. None exceeded Commercial or Restricted Residential Use SCOs.

Table 2: Analytical Results

4.3 <u>GEOLOGIC CONDITIONS AND CONTAMINANTS</u>

The subsurface geological environment of the Site is complex and variable. Glacial depositions have resulted in an environment that contains a mixed matrix of soil types and lenses across the Site. Petroleum contamination entered into the soil from leaking underground tanks; the present location of the contamination and its migration path has resulted from the geological conditions on the Site.

<u>General Site Geology</u>

Based on numerous subsurface studies conducted on the Site, the geologic conditions have been well defined. The most important data has been collected in four studies collected in the last 4 years:

- 2008 subsurface environmental investigation conducted by GES, on behalf of Exxon-Mobil;
- 2010 subsurface geotechnical investigation conducted by McMahon & Mann for Ciminelli development;
- 2012 subsurface geotechnical and hydro-geological investigation conducted by American Consulting Professionals of NY and McMahon & Mann on behalf of Kaleida Health and Ciminelli Development; and
- this 2012 subsurface environmental investigation conducted by C&S Engineers, Inc. on behalf of Kaleida Health and Ciminelli Development.

The soils beneath the site extend to approximately 95 ftbgs, and are underlain by limestone bedrock. Near surface soils that would be impacted by remediation or construction (50 ftbgs or less in depth) are generally more consistent in type. Till deposits consisting of a dense fine sand and silt with alternating concentrations clay is generally present. A large portion of the site contains a saturated layer of medium to coarse sand and gravel of varying thickness, generally found between 32 to 38 ftbgs. This layer is discontinuous (i.e. not uniformly present across the site) in deposition. Underlying this layer is dense fine sand-silt/clayey silt till.

Soil variability is most common at depth (greater than 50 ftbgs) with alternating deposits of silty-clays, clayey-silts and saturated sand and gravel deposits across the site. Large boulders are also present at depth (60 to 80 ftbgs).

<u>Groundwater</u>

Groundwater on-site is semi-confined. Layers of bedrock and soil at varying depths retard the upward movement of groundwater. As a result, groundwater is found at different depths across the Site. Generally, groundwater is found at the following depths:

- Top of bedrock (approximately 100 ftbgs)
- discontinuous lenses of sand and gravel encountered, with some areas of "running sands"; and
 (45 to 90 ftbgs)

• shallow sand and gravel layer (32 to 38 ftbgs)

Contaminant transport is influenced by the shallow sand and gravel layer which provides a preferential pathway for groundwater and contaminant flow to the west and northeast. This groundwater formation is semi-confined by dense silt and clay below and fine sand and silt above. While the formation is present 32 ftbgs or greater in depth, monitoring wells that are screened across the formation exhibit a groundwater elevation of approximately 25 ftbgs, a difference of at least 7-feet or more in formation depth compared to the potentiometric head.

Contamination

Contamination is sourced from the center of the site and is related to the former Mobil station operations. MW-22 and MW-23 are located within the area of the contamination source; shallow soils are impacted within this area between 10 to 12 ftbgs. Overtime underground tanks released gasoline into the shallow soils within the area of MW-22 and MW-23. Contamination further filtered through the subsurface and into the saturated sand and gravel formation at approximately 38 ftbgs. After entering into the sand and gravel layer the contamination migrated to the northeast; influenced by the groundwater flow direction and formational area of the sand and gravel deposits.

The depth to top of soil contamination increases with distance from this MW-22/MW-23 until it is limited to the sand and gravel formation at 32 ftbgs or greater. Contamination appears to be vertically limited in depth by the underlying clayey-silt till which limits the contamination to moving horizontally in the saturated sand and gravel layer above.

Separate phase product is present in the wells in and around the release area (MW22 and MW-23). Product moved vertically downward from the release area until it encountered the sand and gravel formation below 32 ftbgs. Product is present in this area and has spread laterally to the west and east/northeast (MW-24, MW-11, MW026 and HVE-04) within this semi-confined formation.

4.4 EXCAVATION AREA

The excavation area required to meet Commercial Use SCOs was based on the soil analytical results from the 2008 subsurface investigation, ongoing quarterly groundwater gauge and sample events and observations made during this investigation.

Soil sample analytical results from this study and the 2008 GES study were used to develop the vertical and horizontal extent of the soils that would exceed Commercial Use cleanup standards. The quarterly gauging events were used to assess the horizontal limit of the separate phase product contained within the sand

and gravel formation. The quarterly groundwater sampling results were used to help define soil excavation limits by relating groundwater VOC concentration contours to wells with both known soil and groundwater VOC concentrations.

While soil analysis indicated that some contaminated soils did not exceed Commercial Use SCOs, the soils were underlain by the sand and gravel formation that was preferentially transporting product east and west of the release area. Therefore, an excavation depth of 40-42 feet was assumed to remove this layer.

Based on VOC analysis in the soils, horizontal limits of the excavation are:

- North: between MW-14R/MW-11 and MW-29/MW-31;
- East: between MW-25/SP-10/HVE-04 and MW-27/MW-33/MW-34;
- South: between MW-25/MW-24 and MW-27/MW-36; and
- West: BCP boundary line (concurrent with western parcel line.)

The horizontal excavation limits are shown in *Figure 3- Estimated Commercial Use Excavation Area*

The total volume of excavation materials was estimated using the assumptions above and calculations presented in Table 4.

					Vertical Moved ²		Volume posed ³
Contamination Thickness ⁴ (ft)	Median Range	Contaminated Area ¹	Median Total Depth	Volume (cu. ft.)	Volume (cu. yds.)	Volume (cu. ft.)	Volume (cu. yds.)
20-25	22.5	12,542	40	501,680	18,581	282,195	10,452
25-30	27.5	5,534	42	232,448	8,609	152,198	5,637
			Total →	734,128	27,190	434,393	16,089

Table 4: Estimated Soil Volumes for Commercial Use SCO

Notes: 1: Contaminated Area – as measured on map with GIS spatial analysis

2: Total Vertical Volume Moved -total volume of soil to be removed, including clean

overburden (does not included benching or sloped sides)

3: Total Volume Disposed – volume of soil to be disposed off-site

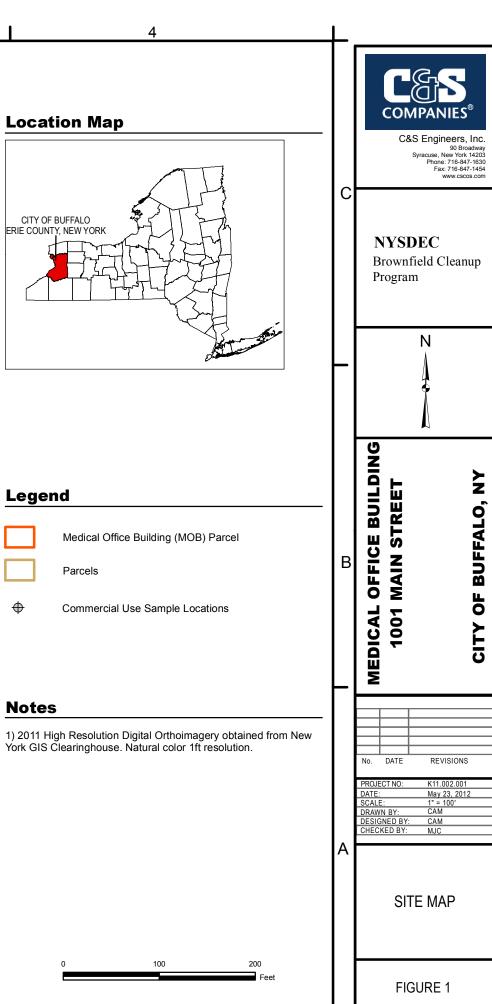
4: *Contamination Thickness* – based on top of contamination depth and maximum depth of bottom of sand-gravel formation

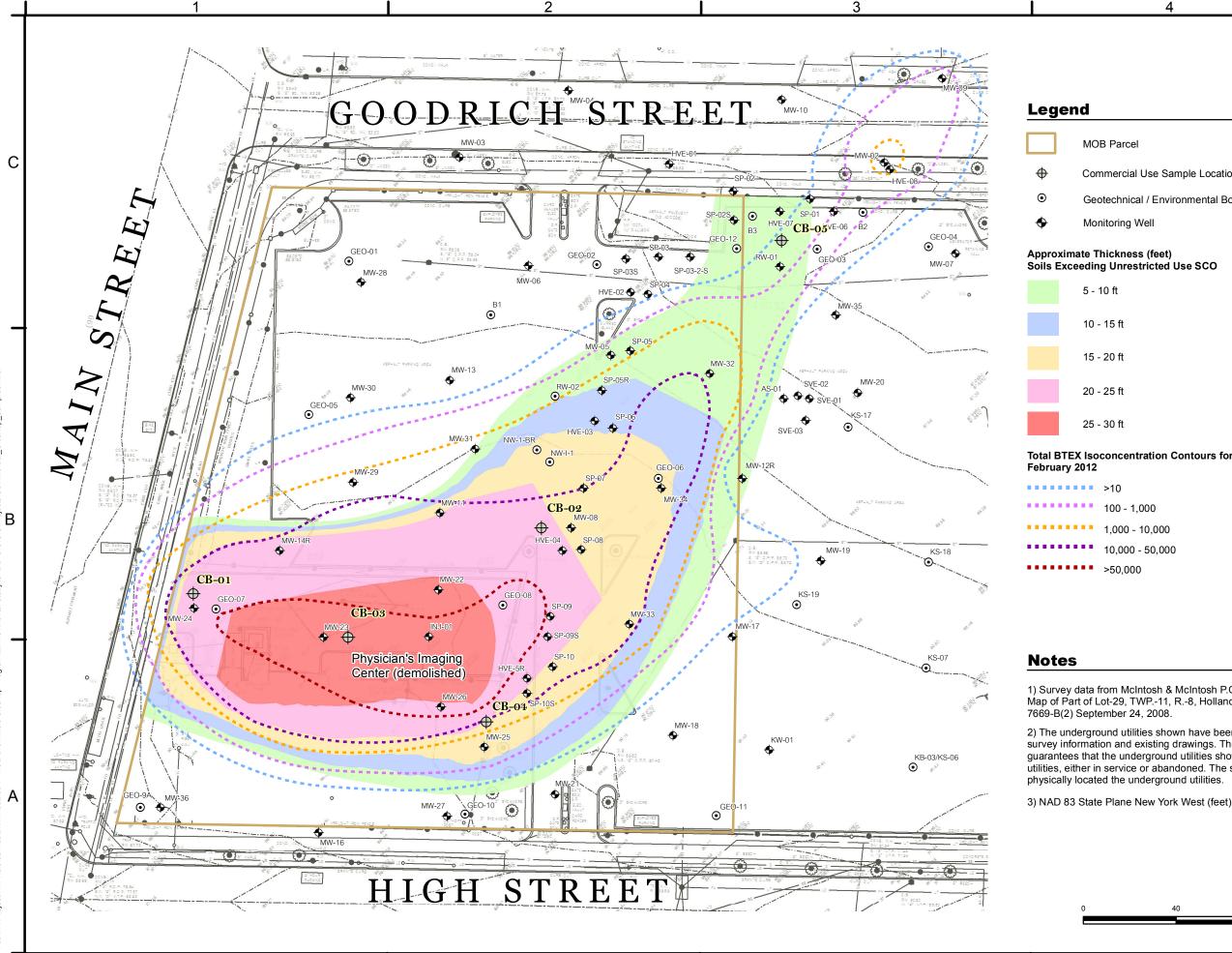
5.0 SUMMARY

C&S Engineers, Inc completed a Commercial Use SCO Assessment for the proposed Medical Office Building located on 1001 Main Street Buffalo, New York. The primary objective of this assessment was to determine the limits of excavation to meet the Remedial Soil Cleanup Objectives for Commercial Use; based on the standards in 6 NYCRRR 375-6.

Petroleum contamination from a former Exxon-Mobil gas station has migrated into the soil and groundwater. Contamination has spread downward and laterally from the center

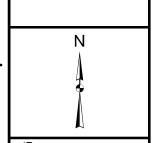
of the Site to the west and northeast following coarse sand/gravel formation present 30 to 35 ftbgs. The contamination within the coarse sand/gravel zone has migrated as the result of preferential groundwater flow.


Soil samples were collected and analyzed for VOCs within the area of the former Exxon-Mobil gas station. The results of the lab analysis revealed only one sample location, CB-03 (24-26 ftbgs), located within the center of the free product zone, exceeded its Commercial Use SCO for total xylenes. All other samples were under Residential Use SCOs, except for CB-02 (30-32 ftbgs), which exceeded Residential Use SCOs for ethylbenzene and xylenes.

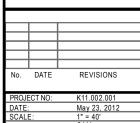

Revised excavation limits were determined based the current and past lab analytical data. The horizontal excavation limits are shown in *Figure 3- Estimated Commercial Use Excavation Area*. However, due to the complex geology of the Site and the confined conditions of the contamination, the limits of excavation illustrated in Figure 3 should not be considered absolute.

F:\Project\K11-Kaleida Health\K11.002.001 - MOB Brownfield Cleanup Program\Environmental-study\Reports\Final report\Commercial Use Assessment - May 23 2012\Commercial_Use_Assessment.doc

FIGURES


1

3


C&S Engineers, Inc. 90 Broadway Syracuse, New York 14203 Phone: 716-847-1630 Fax: 716-847-1454 www.cscos.com

NYSDEC Brownfield Cleanup Program

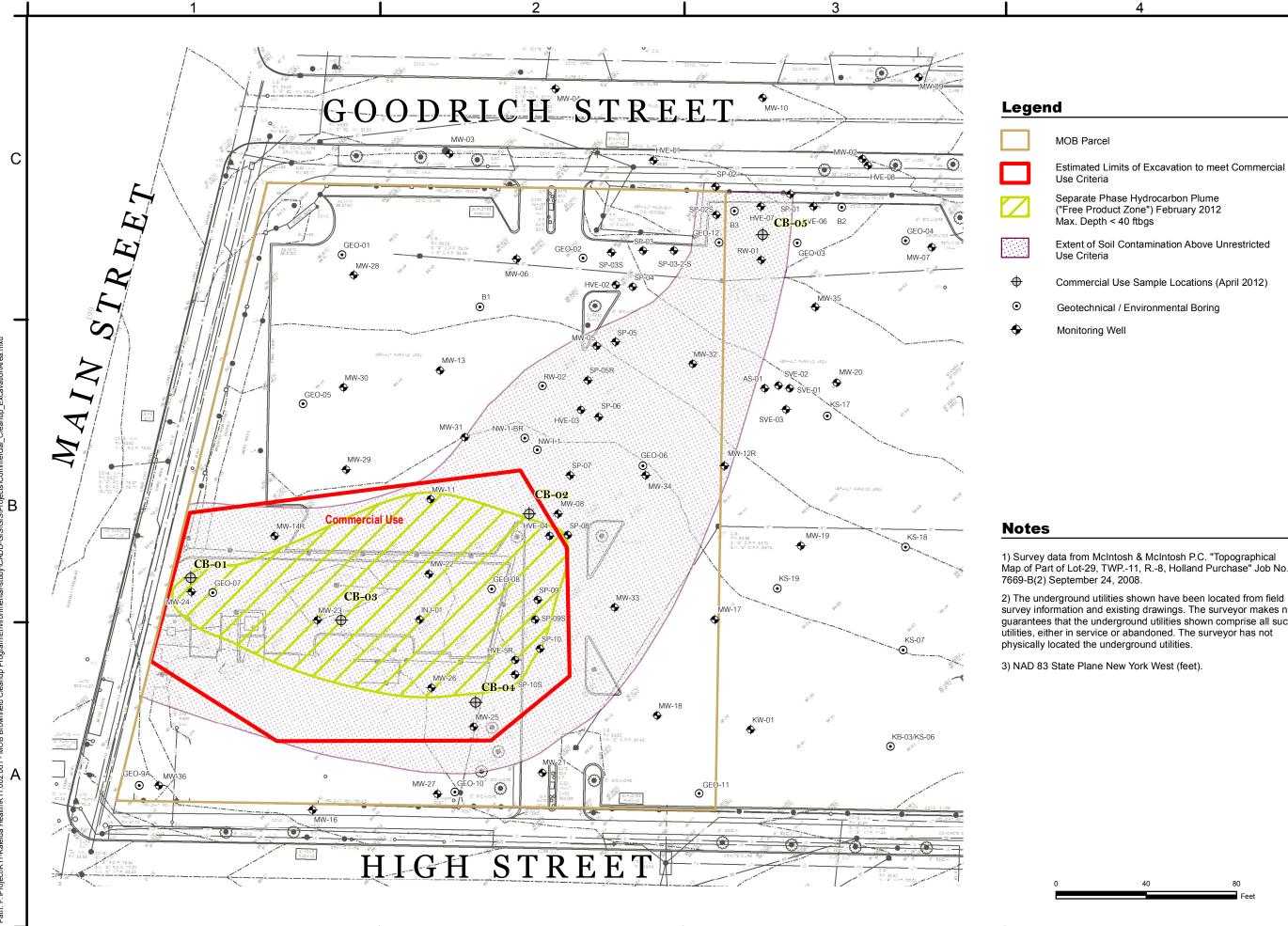
BUILDING Z MEDICAL OFFICE BUILD 1001 MAIN STREET **BUFFALO**, ЦO CITY

В

1" = 40' CAM RAWN BY: CAM ESIGNED BY: CAM HECKED BY: MJC

> SAMPLE LOCATIONS

> > FIGURE 2


Commercial Use Sample Locations (April 2012)

Geotechnical / Environmental Boring

Total BTEX Isoconcentration Contours for Groundwater (ug/L)

1) Survey data from McIntosh & McIntosh P.C. "Topographical Map of Part of Lot-29, TWP.-11, R.-8, Holland Purchase" Job No.

2) The underground utilities shown have been located from field survey information and existing drawings. The surveyor makes no guarantees that the underground utilities shown comprise all such utilities, either in service or abandoned. The surveyor has not

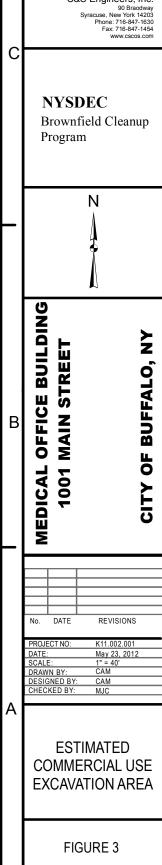
1

3

C&S Engineers, Inc.

Separate Phase Hydrocarbon Plume ("Free Product Zone") February 2012

Max. Depth < 40 ftbgs


Extent of Soil Contamination Above Unrestricted

Commercial Use Sample Locations (April 2012)

Geotechnical / Environmental Boring

1) Survey data from McIntosh & McIntosh P.C. "Topographical Map of Part of Lot-29, TWP.-11, R.-8, Holland Purchase" Job No.

2) The underground utilities shown have been located from field survey information and existing drawings. The surveyor makes no guarantees that the underground utilities shown comprise all such utilities, either in service or abandoned. The surveyor has not

APPENDICIES

APPENDIX A

SOIL BORING LOGS

ſ	_ [90 Bu	Broadway ffalo, New	n eers, Inc. York 14203	F		G		oring No.	CB-01
c	OMP			one: 716-84 x: 716-847-		-		5	-	heet 1 of:	2
			ww	w.cscos.com						oject No.:	K11.002.001
Projec	ct Nam				e Assessment				Surf	ace Elev.:	
L	ocatio		MOB Site - I		Y					Datum:	Ground Surface
			Kaleida Hea	llth		r				tart Date:	4/25/12
Drilli	ng Fir					Driller:	Steven G	orski		nish Date:	4/25/12
	Grou			Depth	Date & Time		CME-85		1	nspector:	E. Daniel
			ile Drilling:	30	04/25/12	Casing:		Rock Core:		Undist:	
			g Removal:			Sampler:	2" Split Spoon	Other:			
Af	ter Ca	sıng	g Removal:	la af blau	in the division experiment	Hammer:	Auto	M.D. 4500, Stand		tration Test	
		1 1		IO. OT DIOW	is to drive sampler	12" W/140 Ib. na	mmer falling 30" AST	W D-1586, Stand	ard Pene		
(ft)	ole .	loo	Blows on	c - coarse				a - and - s - some -			COMMENTS Ilue, recovery, relative
Depth (ft)	Sample No.	ym	Sampler	m - medium f - fine	n	MATERIAL	DESCRIPTION	I - little -	10-20%		e, core run, RQD, %
De	S	S	per 6"	-	S - San	d, \$-Silt, G-Grav	vel, C - Clay, cly - clayey	t - trace	- 0-10%		recovered)
1											
					Augered to 4 ftb	g					
2											
3											
			5		CLAY (red brown	<u>n)</u>				13" rec	
4			4	4"-	<u>SAND (tan - fine)</u>) with little Silt				3.4 ppm	
			6	3"-	CLAY (red)						
5			7								
			7	16"-	CLAY (red brown	<u>n)</u>				16" rec	
6			7							4.1 ppm	
			5								
7			6								
				4"-	fine Sandy SILT					17" rec	
8				13"-	Silty SAND (Brow	<u>wn - fine)</u>				4.8 ppm	
			17								
9			14	1.0"	0.11/ 0.4.1/D /D	<i></i>				0.41	
10			15	16"-	Silty SAND (Brow	• ·				24" rec	
10			19 27	12"-	Silty SAND (Tan	<u>- fine - ary)</u>				4.7 ppm	
11			31								
11			31	8"-	Silty SAND (Tan))				22" rec	
12				0 - 14"-	Sandy SILT (Bro					3.1 ppm	
12				1	Canay SILT (BIO	<u></u>					
13											
14			32	I						1	
			13	24"-	Silty SAND (Brow	wn - fi <u>ne)</u>				24" rec	
15			29							3.8 ppm	
			39								
16			37								
			27	24"-	Silty SAND (Brow	wn - fine)				24" rec	
17			26							3.8 ppm	
			26								
18			21								
				6"-	Silty SAND (Brow					22" rec	
19					Silty SAND (Brow					3.5 ppm	
				12"-	Sandy SILT (Bro	<u>wn - fine - wet)</u>					
20			10								
			3	19"-	Sandy SILT (Bro	<u>wn - fine - wet)</u>				19" rec	
21			4							2.6 ppm	
			5								
22			6								
			5	23"-	Sandy SILT (Bro	<u>wn - fine - wet)</u>				23" rec	
23			7							4.6 ppm	

ſ	ا ر	-,	90	&S Engineers, Inc. Broadway		B	oring No.	CB-01
				uffalo, New York 14203 none: 716-847-1630	BORING LOG	S	heet 2 of:	2
cc	OMP/	AN		ax: 716-847-1454 vw.cscos.com	-	-	oject No.:	K11.002.001
Projec	t Nam	e٠		nercial Use Assessment			tart Date:	4/25/12
-	ocatio	_		Buffalo, NY		-	ish Date:	4/25/12
		_	Kaleida Hea				isn bate: ispector:	E. Daniel
								OMMENTS
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - medium f - fine S - San	MATERIAL DESCRIPTION a - and - 3 s - some - 2 l - little - 1 d, \$ - Silt, G - Gravel, C - Clay, cly - clayey t - trace -	0-35% 0-20%	(e.g., N moisture,	-value, recovery, core run, RQD, % ecovered)
24			6				H	
07			WH		<u>wwn - moist - fine)</u>		24" rec	
25			WH	22"- <u>Silty CLAY (Bro</u> v	<u>wn - moist to wet)</u>		7.1 ppm	
20			<u>WH</u> 2				15" rec	
26			_					
~-		ŀ	2				7.5 ppm	
27	6.4	╞	3					
	S-1	╞		9"- <u>Silty CLAY (Brou</u>	<u>wn - wetj</u>			
28		╞	3				14"	
20		╞	8	10"- <u>Silty CLAY (Brow</u>			14" rec	
29		╞	5	2"- <u>Sandy SILT(Brow</u>	*		7.2 ppm	
30	▼	╞	6 5	2"- <u>Silty CLAY (Brou</u>	<u>nn - wetj</u>			
00	•		3	10"- Silty SAND (stat	urated)		10" rec	
31		-	4				19.8 ppm	
•.		-	5				odor	
32		-	5				000.	
02			3	15"- Silty SAND (Bro	wn - saturated)		20" rec	
33		ŀ	5	2"- CLAY (Brown)	<u></u>		47 ppm	
			5	3"- <u>Silty SAND (Gra</u>	v - saturated)		strong odor	
34			7				ouong ouon	
		Ī	5	4"- Silty SAND (Blac	<u>ck - saturated)</u>		24" rec	
35			11	18"- SAND (Black - m	ned to coarse - little Silt - saturated)		53 ppm	
			3	2"- Silty SAND (Blac	<u>ck - fine - saturated)</u>		strong odor;	septic
36			24	•	· · · · · · · · · · · · · · · · · · ·			
			20	6"- SAND (Black - m	<u>ed to coarse - little Silt - saturated)</u>		22" rec	
37			19	2"- Silty SAND (Gra	<u>y - saturated)</u>		strong odor	
			23	6"- SAND (Gray - m	ed - little Silt - saturated)			
38			27	8"- SAND (Black - m	ned - little Silt - saturated) w/ 2" Sand (Gray -			
			15	little Silt)			24" rec	
39			25	19"- <u>SAND (Black - s</u> a	aturated) w/ little Silt trace Gravel		35 ppm	
40	S-2		16 14	5"- <u>SAND (Black - fi</u>	<u>ne - saturated) w/ little Silt</u>		strong odor	
U		ŀ	WH	14"- <u>SAND (Black fin</u>	e - saturated) w/ little Silt		24" rec	
41			2		with some imbedded gravel (fine to coarse)		42 ppm	
	S-3		4				strong odor	
42		ļ	8					
43		ŀ		SOIL SAMPLES	COLLECTED FOR VOC ANALYSIS (METHOD 8260)			
-10				S-1 = CB-01: 26-				
44				S-2 = CB-01: 38-				
				S-3 = CB-01: 40-				
45								
46								
47		╞						
47		╞						
48		ŀ						
49								

ſ	-	<u>.</u>	90) Broadway	neers, Inc. York 14203				В	oring No.	CB-02
		븼	PI	hone: 716-84	47-1630			3	S	heet 1 of:	2
C	OMF	AN		ax: 716-847- ww.cscos.com					Pr	oject No.:	K11.002.003
Proje	ct Nar	ne:	MOB Comr	mercial Us	e Assessment		Su			ace Elev.:	
			MOB Site -							Datum:	Ground Surface
	Client: Kaleida Health									tart Date:	4/24/12
Drilli	ing Fil	rm:	SJB			Driller:	Steven Go	orski	Fin	ish Date:	4/24/12
	-		vater	Depth	Date & Time	Drill Rig:			l.	nspector:	C. Martin
		Wh	ile Drilling:		04/24/12	Casing:		Rock Core:		Undist:	
				38.2	04/24/12	Sampler:	2" Spilt Spoon	Other:			
Af	ter Ca	sin	g Removal:			Hammer:	Auto				
			(N I	No. of blow	s to drive sampler	[.] 12" w/140 lb. ha	ammer falling 30" ASTI	V D-1586, Stand	ard Pene	ration Test	
Depth (ft)				c - coarse m - mediun f - fine	e a - and - 35-50%					COMMENTS (e.g., N-value, recovery, relative moisture, core run, RQD, % recovered)	
1				-	Weather: cool; to	emperature ~40	F: windy: rain				
2							<u> </u>				
3											
4					Hit buried found		<u>through to 8 ftbg. Sa</u>	mpling to			
5											
6											
7											
8											
9			3	24"-	•	d - med dense)	w/thin beds of SAND	<u>(Brown -fine</u>		24" rec	
			4		<u>to med)</u>					3.3 ppm	
10			13 17	12"-	SAND (Brown - 1	mod_{-}) w/1" boo	l of Clay (Brown)			20" rec	
11			16	8"-	Sandy SILT (Bro					2.5 ppm	
			29	0 -		whited - med - t	<u>densej</u>			2.0 ppm	
12			34								
	1		29	9 19"-	SAND (Brown - 1	ine to med - loc	se - dry to moist) w/	1" beds of		19" rec	
13			33	3	CLAY (Brown re	d) trace 0-5% pe	ea size Gravel (Grey -	round)		4.3 ppm	
			31	-							
14			28								
			19	24"		<u>ïne to med - dry</u>	<u>() w/ trace 0-5% Grave</u>	el(Grey -		24" rec	
15	-		27	-	<u>angular)</u>					2.5 ppm	
16			37 45								
10	1		45 32	24"-	SAND (Brown- fi	ne to coarse) w	/ little 10-20% Gravel	(Dark grev -		24" rec	
17			28		angular- 0.5" to			<u>, _ un groy -</u>		4.3 ppm	
10			45 43								
18	1		43 14	10"-	Sandy SILT (Bro	wn rod - fino to	med)			19" rec	
19			26	10 - 9"-	2 1		<u>med)</u> race 0-1% Gravel (Gre	ev-rounded)		7.4 ppm	
	1		33		<u></u>			<u>,</u>			
20	4		30	10"	0 AND (2) -					0.0"	
21			18	3 13"- 3	<u>SAND (Fine, Bro</u> rounded)	<u>wn - moist - dei</u>	<u>nse) w/ trace 0-1% Gr</u>	avel (Grey-		22" rec 8.1 ppm	
	1			3 9"-	,	<u>ïne to</u> med - mo	oist) w/ trace 0-1% Gra	avel (Grev -			
22			35	-			<u>s SILT (Red brown)</u>	· · · · · ·			
	1		29	4"-			<u>y) w/ 2" bed of CLAY</u>	(Red brown)		21" rec	
23			27	5"-	SAND (Brown - I			, <u> </u>		27.3 ppm	
	I	1		1-			· ····································				

			C	Section 2017 Section 2017 Contract Section 2			oring No.	
	B	ł	В	ffalo, New York 14203 BORING LOG				CB-02
cc	OMPA	N	IES F	hone: 716-847-1630 ax: 716-847-1454	heet 2 of:	2		
a i	<. NI			ww.cscos.com			oject No.:	K11.002.001
		_		mercial Use Assessment			start Date:	4/24/12
				Buffalo, NY			nish Date:	4/24/12
	Clier	t:	Kaleida He	alth		/	nspector:	C. Martin
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	m - medium f - fine	MATERIAL DESCRIPTION nd, \$ - Silt, G - Gravel, C - Clay, cly - clayey	a - and - 35-50% s - some - 20-35% l - little - 10-20% t - trace - 0-10%	(e.g., N moisture,	<u>OMMENTS</u> -value, recovery, core run, RQD, % ecovered)
			31	5"- Clayey SILT (Re	ed brown) w/ Gravel (1" pieces to pea size)		24" rec	
24		Ī	29		n - fine to med -dry - loose)		10.7 ppm	
			25	4"- Sandy Clay SIL	<u> T (Brown - moist) w/Gravel (Dark grey-subrou</u>	nd-		
25			34	<u>pea size)</u>				
			41	20"- <u>SAND (Brown -</u>	<u>med - dry to moist - dense)</u>			
26			58					
			35	4"- SAND (Lt Brown	<u>n - med -dry)</u>		22" rec	
27		ļ	36		<u>moist) w/ Clayey SILT</u>		714 ppm	
		ļ	38	8"- <u>SAND (Lt Brown</u>	<u>n - med -dry)</u>			
28			39					
	_	ļ		8 2"- <u>SAND (Brown -</u>			19" rec	
29					<u>n - med - moist to wet - odor)</u>		>1200 ppm	
			29				strong odor	
30	_		43					
			18	18"- <u>SAND (Lt Brown</u>	<u>n - fine to med - loose - wet)</u>		18" rec	
31			22				1634 ppm	
	S-1		29	-				
32			38					
			27		<u>n - fine - dense - moist) grades into SAND (Bro</u>	<u>wn</u>	24" rec	
33			31	<u>med - moist - de</u>	<u>ense)</u>		1780 ppm	
			55					
34		ŀ	51	24"- SAND (Brown -	mod maint damas)		24" rec	
35		ŀ	15 33	24 - <u>SAND (Brown -</u>	<u>med - moist - dense)</u>			
35		ŀ	45				1630 ppm	
36		ŀ	50					
- 50				B 24"- SAND (Brown w	v/ slight stain - med) w/ Clayey SILT		24" rec	
37			34		<u> Signt stam - meaj w olayey ole r</u>		1700 ppm	
07		ŀ	4					
38	_		3.					
00		ŀ	29		v/ slight stain - med) w/ Clayey SAND		24" rec	
39			30	19"- <u>SAND (Black st</u>			1700 ppm	
		ŀ	40					
40		ŀ	32					
		ľ	8	16"- Clavev SILT (Re	ed brown - dense)		24" rec	
41			10		ed brown - dense)		560 ppm	
	S-2		17				odor	
42		ľ	26					
		ľ	33	24"- Clayey SILT (Re	ed brown - dense)		24" rec	
43		[53				215 ppm	
		[55					
44		[52					
		[SAMPLES COL	LECTED FOR VOC ANALYSIS (METHOD 8260)	·		
45				<u>S-1 = CB-02: 30</u>	<u>-32'</u>			
]				<u>S-2 = CB-02: 40</u>	<u>)-41'</u>			
46								
		ļ		-				
47		ļ		4				
		ļ						
48		ļ		_				
		ļ		-				
49								

ſ	Ŗ		90	Broadway	neers, Inc. York 14203	F		2	В	oring No.	CB-03
	OMP			one: 716-84 x: 716-847-		•		5	S	heet 1 of:	2
C	JIVIP	AN		X: 716-847- w.cscos.com					Pre	oject No.:	K11.002.001
Projec	ct Nam	ie:	MOB Comm	nercial Use	e Assessment				Surfa	ace Elev.:	
L	Location: MOB Site - Buffalo, NY									Datum: Ground Surface	
	Client: Kaleida Health St										4/26/12
Drilli	ng Firi	m:	SJB			Driller:	Steven G	orski	Fin	nish Date:	4/26/12
	Grou	ndv	vater	Depth	Date & Time	Drill Rig:	CME -85; Method-HA	S	l.	nspector:	C. Martin
		Wh	ile Drilling:	33.5	04/26/12	Casing:		Rock Core:		Undist:	
Befo	ore Cas	sing	g Removal:			Sampler:	2" Split Spoon	Other:			
Af	ter Cas	sing	g Removal:			Hammer:	Auto				
	1		(N N	lo. of blow	s to drive sampler	⁻ 12" w/140 lb. ha	mmer falling 30" ASTI	VI D-1586, Stand	ard Pene	tration Test)
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - medium f - fine			a - and - 35-50% S - Gravel, C - Clay, cly - clayey			<u>COMMENTS</u> (e.g., N-value, recovery, relative moisture, core run, RQD, % recovered)	
1					Weather: suppy	with incrossing	clouds; calm winds;	tomp ~50 E			
					weather. Sumly	mannicreasing	Ciouus, caini winds;	<u>temp ~50 F</u>			
2					Augered to 4 ftb	a					
						•					
3											
			11	11"-	SAND (Brown - I	moist - fine to m	ed) some Silt			15" rec	
4			8	4"-	Silty CLAY (Red	brown - med de	ense)			1.4 ppm	
			7								
5			9								
			9	4"-			ark grey - pea to 0.5"	<u>size)</u>		24" rec	
6			7	4"- 18"	SAND (Brown - I					1685 ppm	
7			9 10	18	Silty CLAY (Red	brown - son to	<u>mea aensej</u>			odor	
/			-	5"-	SAND (Brown - I	noist - fine to m	ed - loose)			24" rec	
8				2.5"-	CLAY (Red brow	232 ppm					
				5"-	SAND (Brown - V					- 11	
9			10	11"-	Clayey SILT (Re	d brown - soft to	o med dense) w/ som	e grey layers			
			WH	6"-	<u>SILT (Grey - moi</u>	<u>st) odor</u>				19" rec	
10			4	7"-	Clayey SILT (Re					1702 ppm	
			20	3"-	Silty SAND (Lt B						
11			30	5"-	Silty SAND (Red	<u>- fine Sand - dr</u>	<u>y)</u>				
10			25	24"-		fine Cond du	- 4			24" rec	
12			43 38	24 -	Silty SAND (Red	<u>- IIIle Salid - dr</u>	<u>¥</u> 2			1915 ppm	
13			30 47							1919 ppm	
- 10			21	21"-	Sandy SILT (Lt E	Brown - drv - fin	e Sand) w/ 1-2" layers	s of Sandv		21" rec	
14			50		SILT (med dense					1901 ppm	
			52								
15			59								
			55	21"-	SAND (Brown - o	dry to moist - fin	<u>ne) some Silt</u>			21" rec	
16			56							1586 ppm	
47			50/3								
17			12	17"-	SAND (Brown	noist donce)	// one 2" thick Sand (Black stain)		17" rec	
18			32	17 -	<u>SAND (DIOWII - I</u>	noist - defise) N		<u>uaun Stailij</u>		17 rec 1666 ppm	
- 10			32 48							1000 ppm	
19			50/3								
-			24	16"-	SAND (Brown - I	noist - loose - fi	ne to med)			16" rec	
20			51		•					2170 ppm	
			50/4								
21											
				13"-	Same as perviou					18" rec	
22				5"-	<u>SILT (Brown rec</u>	<u>d - loose) odor</u>				2219 ppm	
	S-1		45								
23			50/2								

r g		H	90	&S Engineers, Inc. Broadway uffalo, New York 14203		В	Boring No.	CB-03
			Pł	none: 716-847-1630	BORING LOG	s	Sheet 2 of:	2
c	DMP	AN		ax: 716-847-1454 w.cscos.com			oject No.:	 K11.002.001
Proiec	rt Nam	e.		nercial Use Assessment			Start Date:	4/26/12
-	ocatio		MOB Site -				nish Date:	4/25/12
			Kaleida Hea				Inspector:	C. Martin
-		1						
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - medium f - fine S - San	MATERIAL DESCRIPTION a - and - 3 s - some - 2 l - little - 1 Ind, \$ - Silt, G - Gravel, C - Clay, cly - clayey t - trace -	0-35% 0-20%	(e.g., N moisture, r	DMMENTS -value, recovery, core run, RQD, % ecovered)
			12	20.5"- SILT (Red brown	<u>n- loose - moist) trace Sand</u>		20.5" rec	
24			34				601 ppm	
			22					
25			20					
			18	20.5"- Same as previou	<u>us</u>		20.5" rec	
26			15				327 ppm	
			14					
27			15					
			27	24"- SILT (Red brown	n- loose - moist) trace imbedded Gravel (Dark		24" rec	
28		1	15		0-1% - subrounded)		1020 ppm	
		1	15		<i>r</i>			
29		1	15				1	
-		1	-	21"- SILT (Red brown	n - loose - moist) w/ 6" bed Clay (Brown red -		21" rec	
30			4		<u>ivel (0-1% - round - smooth - 0.5-1" size)</u>		839 ppm	
00			9				ooo ppiii	
31			5					
51			11	24"- Same as previou				
22			9					
32			-	<u>One 1 layer SA</u>	<u>ND (Brown - moist - loose)</u>			
00			8					
33			9					
					<u>wn - dense) w/ trace 0-1% Gravel (pea size - grey)</u>		17" rec	
34			5				1000 ppm	
			8					
35	_		8					
			24	9"- <u>SILT (Brown)</u>			24" rec	
36			28	15"- SAND (Black sta	<u>ain - sheen - fine to med - saturated)</u>		1186 ppm	
	S-2		25					
37			26					
			3		<u>ain - fine to med)</u>		23" rec	
38			5	2"- GRAVEL/SAND/	<u>/SILT/CLAY (Brown - med Sand - moist) w/ Gravel</u>		284 ppm	
	S-3		20	<u>(mult. Colors - p</u>	<u>pea to coarse Sand size - subround)</u>		strong odor	
39			20					
			4	9"- <u>SAND (Black sta</u>	ain -med to coarse) layer of Gravel (0.5 to 1" size			
40			13	round to angula	r - multi color)			
	S-4		16	4"- <u>SAND/SILT/GRA</u>	VEL (Brown - med to coarse Sand)			
41			18		assive -Brown) w/ trace of Gravel (pea size - dark			
		1		<u>grey)</u>				
42		1						
		1		Split Spoon stud	ck in augers. All efforts to release SS fail;augers			
43		1	l		d from hole. (41 feet depth)		1	
-		1					1	
44		1		SOIL SAMPI FS	FOR VOC ANALYSIS (METHOD 8260)			
		1		<u>S-1 = CB-03: 22-</u>	· · · · · · · · · · · · · · · · · · ·			
45		1	L	$\frac{S-7 = CB-03.22}{S-2 = CB-03.35}$				
чJ		1		<u>S-3 = CB-03: 37-</u>				
16		1						
46		1		<u>S-4 = CB-03: 39-</u>	<u>-91</u>			
47		1						
47		1						
40		1						
48		1						
		1						
49								

ſ	P		90	Broadway	n eers, Inc. York 14203			c	В	Boring No.	CB-04	
		븼	Ph	one: 716-84	47-1630			9	S	Sheet 1 of:	2	
C	OMP	AN		x: 716-847- w.cscos.com					Pr	oject No.:	K11.002.001	
Projec	ct Nan	1e:			e Assessment					ace Elev.:		
L	.ocatic	on:	MOB Site -	Buffalo, N	Y					Datum:	Ground Surface	
	Clie	nt:	Kaleida Hea	alth					S	Start Date:	4/25/12	
Drilli	ing Fir	m:	SJB			Driller:	Steven G	orski	Fii	nish Date:	4/25/12	
	Grou	ndv	vater	Depth	Date & Time	Drill Rig:	CME -85; Method HA	S	1	inspector:	E. Daniel	
		Wh	ile Drilling:	33.1	04/25/12	Casing:		Rock Core:		Undist:		
Befo	ore Ca	sing	Removal:			Sampler:	2" Split Spoon	Other:				
Af	ter Ca	sing	g Removal:			Hammer:	Auto					
			(N N	lo. of blow	s to drive sampler	[.] 12" w/140 lb. ha	ammer falling 30" ASTI	M D-1586, Stand	ard Pene	tration Test)	
Depth (ft)	Sample No.	Blows on Sampler per 6" c - coarse m - medium f - fine S - Sand, \$ - Silt, G - Gravel, C - Clay, cly -						a - and - s - some - l - little - t - trace	20-35% 10-20%	(e.g., N-va	COMMENTS alue, recovery, relative e, core run, RQD, % recovered)	
1												
	1											
2				4"-	GRAVEL							
	1									1		
3		1										
		[12	4"-	GRAVEL (moist)	grades down ii	nto Sandy SILT (mois	<u>st)</u>		6.5 rec		
4			15		Bottom 2.5" San	<u>d</u>				1.3 ppm		
			16									
5			19							19" rec		
			17	7"-	SAND (Lt brown	,				3.4 ppm		
6			14	2.5"-	SAND (Dark brow							
7			10 9	7.5"- 2"-	Sandy SILT (Lt b							
7			-	2 - 7"-	Silty CLAY (Red Silty SAND (Lt b					13.5" rec		
8				2"-	Sandy SILT (Bro	,				0.7 ppm		
	1			2"-	Sandy SILT (Lt b							
9		11		2.5"-	Silty CLAY (Gray							
	1		4	2"-	Silty SAND (Lt b	rown - moist)				23.5" rec		
10			6	2"-	Silty SAND (Lt b	rown - saturated	<u>d)</u>			10.4 ppm		
			12	8.5"-	SILT (Redish bro							
11			20	5"-			<u> 6"- Sandy Silt (Lt Bro</u>	<u>own - moist)</u>				
10			21	4"-	Sandy SILT (Lt b	,				24" rec		
12			42	3"-	Sandy SILT (Red					13.1 ppm		
13			37 35	17"-	Silty SAND (Brow	<u>wii - iii0ist)</u>						
13	1		<u>35</u> 10	24"-	Silty SAND (Bron	wn - fine)				24" rec		
14			23			<u></u>				7.2 ppm		
	1		30							odor		
15		ļİ	49									
				20"-	Silty SAND (Brow	wn - fine <u>)</u>				20" rec		
16			47							11.4 ppm		
			50/4							odor		
17			40	10"						13" rec		
10			18 13"- <u>Silty SAND (Lt brown - fine)</u>									
18	1		44 50/4							17.3 ppm odor		
19			50/4							5401		
	1		28	24"-	Silty SAND (Brow	<u>wn - fine)</u>				24" rec		
20		32								16 ppm		
	1		52							odor		
21	l		56						_			
			58	15"-	Silty SAND (Brow	wn - fine <u>)</u>				15" rec		
22	l		50/4							348 ppm		
										odor		
23												

ſ	Ŗ	5	90	&S Engineers, Inc. Broadway ffalo, New York 14203	POPING LOC	E	Boring No.	CB-04
Pt		Ph	one: 716-847-1630	BORING LOG	s	Sheet 2 of:	2	
cc	JIVIPA	INI		x: 716-847-1454 w.cscos.com		Pr	oject No.:	K11.002.001
Projec	t Nam	e: M	IOB Comm	nercial Use Assessment		S	Start Date:	4/25/12
L	ocatio): M	IOB Site - I	Buffalo, NY		Fii	nish Date:	4/25/12
	Clien	<i>t:</i> K	aleida Hea	lth		l	Inspector:	E. Daniel
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"		MATERIAL DESCRIPTION	and - 35-50% ome - 20-35% little - 10-20% trace - 0-10%	(e.g., N moisture, r	OMMENTS -value, recovery, core run, RQD, % ecovered)
				24"- Sandy SILT (Lt I	brown)		24" rec	
24	S-1		30 54				1780 ppm strong odor	
25			50/3					
a a				8"- <u>Sandy SILT (Lt I</u>			19" rec	
26			35	7"- <u>Silty SAND (Tan</u>			1461 ppm	
27		\vdash	42 54	4"- <u>Sandy SILT (Lt I</u>	<u> Jown - IIIej</u>		strong odor	
<u> </u>		48	-	24"- Sandy SILT (Bro	own - fine - moist to wet)		24" rec	
28		40 50		<u> 27 - Sailuy SILI (BIC</u>	<u></u>		1276 ppm	
20		30 49					strong odor	
29		4						
25		54	6	16"- Silty SAND (Bro	wn - saturated)		16" rec	
30		\vdash	10		dor. Bottom 8" little to no odor.		1320 ppm	
	S-2		10	<u>rop o strong o</u>	don bollom o male to no odon.		strong odor	
31	02		10				strong odor	
			-	8"- Silty SAND (Bro	wn)		24" rec	
32				12"- <u>Silty SAND (fine</u>			730 ppm	
					wnish gray - med to coarse)		strong odor	
33			13				<u> </u>	
			WH	17"- Siltv SAND (Bro	wn - fine - saturated) water running out of		17" rec	
34			3	sample	, ,		1340 ppm	
			8				strong odor	
35			15					
		5		9"- Silty SAND (Bro	<u>wn - fine - saturated)</u>		24" rec	
36		12	2	15"- SAND (Black sta	<u>ained - little Silt - med to coarse)</u>		1390 ppm	
		14					strong odor;	septic
37		32	2					
			17	8"- SAND (Black sta	<u>ained, med to coarse - little Silt)</u>		23" rec	
38			24	15"- SAND (Tan - fine	<u>e - little Silt - saturated)</u>		389 ppm	
			29				strong odor;	septic
39			32					
			WOH	24"- <u>SAND (Tan - fine</u>	<u>e - little Silt - saturated) trace Gravel</u>		24" rec	
40			9				1120 ppm	
			19				no odor	
41		\vdash	37				0.4"	
		\vdash			e - little Silt - saturated) trace Gravel		24" rec	
42	6.0	\vdash		2"- SILT and CLAY	little imbedded Gravel		1415 ppm	
10	S-3	\vdash	50 53				little odor	
43		\vdash	55					
44		\vdash			COLLECTED FOR VOC ANALYSIS			
74		\vdash		<u>SOIL SAMPLES</u> <u>S-1 = CB-04: 23-</u>				
45		\vdash		<u>S-2 = CB-04: 23-</u> <u>S-2 = CB-04: 29-</u>				
10		\vdash		<u>S-3 = CB-04: 41-</u>				
46					<u></u>			
47								
48							1	
-								
49							1	

ſ			90 Bu	Broadway ffalo, New	neers, Inc. York 14203	BORING LOG		В	oring No.	CB-05	
c	COMPANIES Phone: 716-847-1630 Fax: 716-847-1454				-	heet 1 of:	2				
			ww	w.cscos.com						oject No.:	K11.002.001
					e Assessment				Surf	ace Elev.:	
L	ocatio.		MOB Site -		Y					Datum:	Ground Surface
		-	Kaleida Hea	alth		1				start Date:	4/24/12
Drilli	ing Fir					Driller:	Steven G			nish Date:	4/24/12
	Grou			Depth	Date & Time	J	CME -85; method - H		1	nspector:	C. Martin
D -6			ile Drilling:	27	04/24/12	Casing:		Rock Core:		Undist:	
			g Removal: g Removal:			Sampler: Hammer:	2" Split Spoon Auto	Other:			
AI	ler Ca	sing		lo of blow	is to drive sampler		ammer falling 30" AST	M D ₋ 1586 Stand	ard Dono	tration Test	
÷						12 W/14010.110					COMMENTS
Depth (ft)	Sample No.	Symbo	Blows on Sampler per 6"	c - coarse m - mediun f - fine			DESCRIPTION vel, C - Clay, cly - clayey	a - and - s - some - l - little - t - trace	20-35% 10-20%	(e.g., N-va	llue, recovery, relative e, core run, RQD, % recovered)
1	-				Weather: cool; to	<u>emp ~40 F; wind</u>	<u>ly; rain and snow</u>				
2					Auger to 5 ftbg						
<u> </u>	1				Auger to 3 itug						
3				<u> </u>							
Ī	1										
4											
			4		<u>No Recovery</u>						
5	-		3								
6			2								
6			3	7"-	SAND (Brown -	fine to med - dry	y) w/ ashpalt and Gra	vel niceces		14" rec	
7			2	2"-				<u>ver piceces</u>		0.1 ppm	
-			6	4"-							
8			10	1"-	SAND (Tan - fine	į					
			10								
9				15"-	SAND (Tan to Lt	<u>brown - med - c</u>	<u>dry)</u>			15" rec	
			23							0.5 ppm	
10			22 18	17"-	SAND (Top to 1 t	brown mod	dry) laminated w/ Silt	v Sand /Pr		17" rec	
11			22	17 -	<u>med - dense)</u>	<u>brown - mea - a</u>	<u>ary) laminated w/ Silt</u>	<u>y Sanu (Br -</u>		0.2 ppm	
			21		<u>illeu - uelisej</u>					0.2 ppm	
12			22								
İ 👘]		11	18"-	SAND (Tan to Lt	brown - med - i	noist) laminated w/ S	Silt Sand		18" rec	
13	1		6							0.1 ppm	
1			6								
14	-		6	4.0"	0					4.0"	
15			6 5	13"-	Same as previou	<u>IS</u>				13" rec	
15	1		5 5							0.4 ppm	
16			6								
	1		-	11.5"-	Same as previou	<u>IS</u>				16.5" rec	
17]		2	5"-			trace Clay and Silt			0.4 ppm	
1			2								
18			1								
1			2	7"-			trace Clay and Silt	0		13" rec	
19	1		1	6"-	SAND (Brown -lo	<u>oose - med - dry</u>	<u>to moist) w/ trace of</u>	<u>Clay & Silt</u>		0.2 ppm	
20			1								
20	1		1	8"-	SAND (Brown - I	med - moist) w/	trace Clay and Silt			17.5" rec	
21			4	-	grades into					0.1 ppm	
⊢ ́	1		7	9"-	SAND (Tan - fine	e to med - dry to	<u>moist)</u>				
22]		9		<u>_</u> _						
1			8	15"-	<u>SAND (Tan - mo</u>	ist - med - dens	<u>e) w/ brown Silt Iamii</u>	nates		15" rec	
23			22							0.6 ppm	

ſ	Cass Engineers, Inc. 90 Broadway Buffalo, New York 14203 Phone: 716-847-1630 Fax: 716-847-1454 BORING LOG		В	oring No.	CB-05			
			Ph	one: 716-847-1630	BORING LOG	S	heet 2 of:	2
cu	JIVIPA			N.CSCOS.COM	Γ	Pr	oject No.:	K11.002.001
Projec	t Nam	e: N	MOB Comm	ercial Use Assessment		S	tart Date:	4/24/12
Lo	ocatio	n: N	MOB Site - I	Buffalo, NY		Fin	nish Date:	4/24/12
	Clier	t: k	Kaleida Hea	lth		I	nspector:	C. Martin
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - medium f - fine S - Sand, \$	MATERIAL DESCRIPTION - Silt, G - Gravel, C - Clay, cly - clayey - a - and - 3 s - some - 2 - l - little - 1 t - trace - 0)-35%)-20%	(e.g., N moisture,	DMMENTS value, recovery, core run, RQD, % ecovered)
24			26 33					
25		_	21 22	10"- <u>SAND (Tan to Lt bro</u> 7"- <u>SAND (Brown - fine</u>	<u>own - med -moist)</u> hto med) w/ little 10-20% Silt dense		17" rec 0.6 ppm	
26		-	20 13	11"- <u>SAND (Brown - fine</u>	to med - moist)		19" rec	
27			9 5	8"- Sandy SILT (Brown	red - wet - dense)		0.2 ppm	
28		ļ	6	10" Dometric Off T /Dom	red wet dense)		10"	
29		3		10"- <u>Sandy SILT (Brown</u> 9"- <u>SAND (Brown - fine</u>	<u>red - wet - dense)</u> to med - dense) trace Silt		19" rec 0.3 ppm	
		2	24	<u> - SAND (BIOWII - IIIle</u>	to meu - uensej trace sill		0.0 ppm	
30		2	29 23	15"- SAND (Tan - fine to	<u>med - wet - loose to med dense)</u>		24" rec	
31	S-1	F	20 28	9"- <u>SAND (Black stain -</u>			1025 ppm strong odor	
32		F	25 25 13		mod wat			
33			28	15"- SAND (Black stain -	med to coarse -wet) w/ Gravel (pea size -		20" rec 418 ppm	
34			18 17	rounded some angu	<u>ular piceces)</u>		strong odor	
			8	12"- Same as previous			24" rec	
35			12 13	12"- <u>CLAY (Red brown -</u>	<u>dense - some Silt)</u>		301 ppm	
36		2	22 22	12"- CLAY (Red brown -	dense - some Silt)		12" rec	
37	S-2	4	41 39	· ·			21.7 ppm	
38	02		43	0011 0 11121 50 00				
39		┢		<u>SOIL SAMPLES COI</u> <u>S-1 = CB-05: 31-33'</u>	LLECTED FOR VOC ANALYSIS			
29		┢		<u>S-2 = CB-05: 37-39</u>				
40		F		<u> </u>				
41		F						
42		F						
43		F						
44		╞						
45		F						
		þ						
46		F						
47		F						
48		F						
49								

APPENDIX B

SUMMARY OF DETECTED VOLATILE ORGANIC COMPOUNDS

APPENDIX B

SUMMARY OF DETECTED VOLATILE ORGANIC COMPOUNDS

BORING NAME AND DEPTH	BENZENE	ETHYLBENZENE	TOLUENE	XYLENES	ACETONE
unit	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Restricted Residential Use SCO	4.8	41	100	100	100
Commercial Use SCO	44.0	390	500	500	500
CB-01					
26-28	0.0162	ND<.0035	0.0219	0.00285	.0173 JB
38-40	ND<.51	ND<.51	.379 J	0.0963	0.136 JB
40-42	ND<.0042	0.0106	0.0264	0.0622	.0145 JB
CB-02					
30-32	ND<3.18	25.2	60.0	254.3	39
40-42	0.0384	0.0564	0.104	0.426	ND<0.0407
CB-03					
22-24	ND<19.1	46.0	145	516	ND<95.3
36-38	0.984	0.35	2.08	2.232	ND<0.724
38-40	.0319 J	0.183	0.322	1.399	ND<0.274
40-42	0.00345	0.00624	0.0205	0.0512	0.197 J
CB-04					
24-26	ND<0.119	1.3	0.799	20.86	0.516 JB
30-32	ND<0.255	7.7	16.6	53.2	ND<1.270
42-44	ND<0.0751	0.845	1.73	6.46	0.47 B
CB-05					
31-33	ND<.0818	0.21	ND<.0818	0.32	ND<0.409
37-39	0.00727	0.0484	0.0149	1.289	ND<0.0224

MOB - BUFFALO NY APRIL 2012 BORINGS

Notes:

1) Analytical results in mg/kg = milligrams per Kilogram

2) EPA Data Qualifiers: J = Estimated value; B = Possible cross contamination of the blank

APPENDIX C

SOIL ANALYTICAL RESULTS

Client: C&S Engineers

Client Job Site:	MOB - Kaleida	Lab Project Number: Lab Sample Number:	
Client Job Number:	N/A		
Field Location:	CB-01 26-28'	Date Sampled:	04/25/2012
Field ID Number:	N/A	Date Received:	04/26/2012
Sample Type:	Soil	Date Analyzed:	04/26/2012

Halocarbons	Results in ug / Kg	Aromatics	Results in ug / Kg
Bromodichloromethane	< 3.54	Benzene	16.2
Bromomethane	< 3.54	Chlorobenzene	< 3.54
Bromoform	< 8.84	Ethylbenzene	< 3.54
Carbon Tetrachloride	< 3.54	Toluene	21.9
Chloroethane	< 3.54	m,p-Xylene	J 2.85
Chloromethane	< 3.54	o-Xylene	< 3.54
2-Chloroethyl vinyl Ether	< 17.7	Styrene	< 8.84
Chloroform	< 3.54	1,2-Dichlorobenzene	< 3.54
Dibromochloromethane	< 3.54	1,3-Dichlorobenzene	< 3.54
1,1-Dichloroethane	< 3.54	1,4-Dichlorobenzene	< 3.54
1,2-Dichloroethane	< 3.54		
1,1-Dichloroethene	< 3.54	Ketones	Results in ug / Kg
cis-1,2-Dichloroethene	< 3.54	Acetone	JB 17.3
trans-1,2-Dichloroethene	< 3.54	2-Butanone	< 17.7
1,2-Dichloropropane	< 3.54	2-Hexanone	< 8.84
cis-1,3-Dichloropropene	< 3.54	4-Methyl-2-pentanone	< 8.84
trans-1,3-Dichloropropene	< 3.54		
Methylene chloride	< 8.84	Miscellaneous	Results in ug / Kg
1,1,2,2-Tetrachloroethane	< 3.54	Carbon disulfide	< 3.54
Tetrachloroethene	< 3.54	Vinyl acetate	< 8.84
1,1,1-Trichloroethane	< 3.54		
1,1,2-Trichloroethane	< 3.54		
Trichloroethene	< 3.54		
Trichlorofluoromethane	< 3.54		
Vinyl chloride	< 3,54		
ELAP Number 10958	Method:	EPA 8260B	Data File: V96484.D

Comments: ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. 121779V4.XLS

Client: C&S Engineers

Client Job Site:	MOB - Kaleida	Lab Project Number: Lab Sample Number:	
Client Job Number:	N/A		
Field Location:	CB-01 38-40'	Date Sampled:	04/25/2012
Field ID Number:	N/A	Date Received:	04/26/2012
Sample Type:	Soil	Date Analyzed:	04/26/2012

Halocarbons	Results in ug / Kg	Aromatics	Results in ug / Kg
Bromodichloromethane	< 51.0	Benzene	< 51.0
Bromomethane	< 51.0	Chlorobenzene	< 51.0
Bromoform	< 128	Ethylbenzene	< 51.0
Carbon Tetrachloride	< 51.0	Toluene	J 37.9
Chloroethane	< 51.0	m,p-Xylene	65.5
Chloromethane	< 51.0	o-Xylene	J 30.8
2-Chloroethyl vinyl Ether	< 255	Styrene	< 128
Chloroform	< 51.0	1,2-Dichlorobenzene	< 51.0
Dibromochloromethane	< 51.0	1,3-Dichlorobenzene	< 51.0
1,1-Dichloroethane	< 51.0	1,4-Dichlorobenzene	< 51.0
1,2-Dichloroethane	< 51.0	· · · · · · · · · · · · · · · · · · ·	
1,1-Dichloroethene	< 51.0	Ketones	Results in ug / Kg
cis-1,2-Dichloroethene	< 51.0	Acetone	JB 136
trans-1,2-Dichloroethene	< 51.0	2-Butanone	< 255
1,2-Dichloropropane	< 51.0	2-Hexanone	< 128
cis-1,3-Dichloropropene	< 51.0	4-Methyl-2-pentanone	< 128
trans-1,3-Dichloropropene	< 51.0		
Methylene chloride	< 128	Miscellaneous	Results in ug / Kg
1,1,2,2-Tetrachloroethane	< 51.0	Carbon disulfide	< 51.0
Tetrachloroethene	< 51.0	Vinyl acetate	< 128
1,1,1-Trichloroethane	< 51.0		
1,1,2-Trichloroethane	< 51.0		
Trichloroethene	< 51.0		
Trichlorofluoromethane	< 51.0		
Vinyl chloride	< 51.0		
ELAP Number 10958	Method	EPA 8260B	Data File: V96486.D

Comments: ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

Client: <u>C&S Engineers</u>

Client Job Site:	MOB - Kaleida	Lab Project Number: Lab Sample Number:	
Client Job Number:	N/A		
Field Location:	CB-01 40-42'	Date Sampled:	04/25/2012
Field ID Number:	N/A	Date Received:	04/26/2012
Sample Type:	Soil	Date Analyzed:	04/26/2012

Halocarbons	Results in ug / Kg	Aromatics	Results in ug / Kg
Bromodichloromethane	< 4.22	Benzene	< 4.22
Bromomethane	< 4.22	Chlorobenzene	< 4.22
Bromoform	< 10.5	Ethylbenzene	10.6
Carbon Tetrachloride	< 4.22	Toluene	26.4
Chloroethane	< 4.22	m,p-Xylene	45.5
Chloromethane	< 4.22	o-Xylene	16.7
2-Chloroethyl vinyl Ether	< 21.1	Styrene	< 10.5
Chloroform	< 4.22	1,2-Dichlorobenzene	< 4.22
Dibromochloromethane	< 4.22	1,3-Dichlorobenzene	< 4.22
1,1-Dichloroethane	< 4.22	1,4-Dichlorobenzene	< 4.22
1,2-Dichloroethane	< 4.22		CTANAMAL CLEAR CONTRACTOR CONTRACTOR
1,1-Dichloroethene	< 4.22	Ketones	Results in ug / Kg
cis-1,2-Dichloroethene	< 4.22	Acetone	JB 14.5
trans-1,2-Dichloroethene	< 4.22	2-Butanone	< 21.1
1,2-Dichloropropane	< 4.22	2-Hexanone	< 10.5
cis-1,3-Dichloropropene	< 4.22	4-Methyl-2-pentanone	< 10.5
trans-1,3-Dichloropropene	< 4.22	Res	
Methylene chloride	< 10.5	Miscellaneous	Results in ug / Kg
1,1,2,2-Tetrachloroethane	< 4.22	Carbon disulfide	< 4.22
Tetrachloroethene	< 4.22	Vinyl acetate	< 10.5
1,1,1-Trichloroethane	< 4.22		
1,1,2-Trichloroethane	< 4.22		
Trichloroethene	< 4.22		
Trichlorofluoromethane	< 4.22		
Vinyl chloride	< 4.22		
ELAP Number 10958	Mathad	EDA 8260B	Data Eilo: \/06485 D

ELAP Number 10958

Method: EPA 8260B

Data File: V96485.D

Comments: ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director
This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition
requirements upon receipt.
121779V6.XLS

Client: C&S Engineers

Client Job Site:	MOB Project Buffalo General Hospital	Lab Project Number: Lab Sample Number:	
Client Job Number:	N/A		
Field Location:	CB-02 / 30-32	Date Sampled:	04/24/2012
Field ID Number:	N/A	Date Received:	04/25/2012
Sample Type:	Soil	Date Analyzed:	04/25/2012

Halocarbons	Results in ug / Kg	Aromatics
Bromodichloromethane	< 3,180	Benzene
Bromomethane	< 3,180	Chlorobenze
Bromoform	< 7,960	Ethylbenzen
Carbon Tetrachloride	< 3,180	Toluene
Chloroethane	< 3,180	m,p-Xylene
Chloromethane	< 3,180	o-Xylene
2-Chloroethyl vinyl Ether	< 15,900	Styrene
Chloroform	< 3,180	1,2-Dichloro
Dibromochloromethane	< 3,180	1,3-Dichloro
1,1-Dichloroethane	< 3,180	1,4-Dichloro
1,2-Dichloroethane	< 3,180	
1,1-Dichloroethene	< 3,180	Ketones
cis-1,2-Dichloroethene	< 3,180	Acetone
trans-1,2-Dichloroethene	< 3,180	2-Butanone
1,2-Dichloropropane	< 3,180	2-Hexanone
cis-1,3-Dichloropropene	< 3,180	4-Methyl-2-p
trans-1,3-Dichloropropene	< 3,180	
Methylene chloride	< 7,960	Miscellaneo
1,1,2,2-Tetrachloroethane	< 3,180	Carbon disu
Tetrachloroethene	< 3,180	Vinyl acetate
1,1,1-Trichloroethane	< 3,180	
1,1,2-Trichloroethane	< 3,180	
Trichloroethene	< 3,180	
Trichlorofluoromethane	< 3,180	
Vinyl chloride	< 3,180	
ELAP Number 10958	Method	: EPA 8260B

Aromatics	Results in ug / Kg
Benzene	< 3,180
Chlorobenzene	< 3,180
Ethylbenzene	25,200
Toluene	60,000
m,p-Xylene	189,000
o-Xylene	65,300
Styrene	< 7,960
1,2-Dichlorobenzene	< 3,180
1,3-Dichlorobenzene	< 3,180
1,4-Dichlorobenzene	< 3,180
Ketones	Results in ug / Kg
Acotopo	20.000

Retories	Nesults III ug / Ng
Acetone	39,000
2-Butanone	< 15,900
2-Hexanone	< 7,960
4-Methyl-2-pentanone	< 7,960

Miscellaneous	Results in ug / Kg
Carbon disulfide	< 3,180
Vinyl acetate	< 7,960

ELAP Number 10958

Method: EPA 8260B

Data File: V96476.D

Comments: ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 121749V3.XLS requirements upon receipt.

Client: C&S Engineers

Client Job Site:	MOB Project Buffalo General Hospital	Lab Project Number: Lab Sample Number:	
Client Job Number:	N/A		
Field Location:	CB-02 / 40-42	Date Sampled:	04/24/2012
Field ID Number:	N/A	Date Received:	04/25/2012
Sample Type:	Soil	Date Analyzed:	04/25/2012

Halocarbons	Results in ug / Kg
Bromodichloromethane	< 8.13
Bromomethane	< 8.13
Bromoform	< 20.3
Carbon Tetrachloride	< 8.13
Chloroethane	< 8.13
Chloromethane	< 8.13
2-Chloroethyl vinyl Ether	< 40.7
Chloroform	< 8.13
Dibromochloromethane	< 8.13
1,1-Dichloroethane	< 8.13
1,2-Dichloroethane	< 8.13
1,1-Dichloroethene	< 8.13
cis-1,2-Dichloroethene	< 8.13
trans-1,2-Dichloroethene	< 8.13
1,2-Dichloropropane	< 8.13
cis-1,3-Dichloropropene	< 8.13
trans-1,3-Dichloropropene	< 8.13
Methylene chloride	< 20.3
1,1,2,2-Tetrachloroethane	< 8.13
Tetrachloroethene	< 8.13
1,1,1-Trichloroethane	< 8.13
1,1,2-Trichloroethane	< 8.13
Trichloroethene	< 8.13
Trichlorofluoromethane	< 8.13
Vinyl chloride	< 8.13
ELAP Number 10958	Method:

Aromatics	Results in ug / Kg
Benzene	38.4
Chlorobenzene	< 8.13
Ethylbenzene	56.4
Toluene	104
m,p-Xylene	320
o-Xylene	106
Styrene	< 20.3
1,2-Dichlorobenzene	< 8.13
1,3-Dichlorobenzene	< 8.13
1,4-Dichlorobenzene	< 8.13

Ketones	Results in ug / Kg
Acetone	< 40.7
2-Butanone	< 40.7
2-Hexanone	< 20.3
4-Methyl-2-pentanone	< 20.3

Miscellaneous	Results in ug / Kg
Carbon disulfide	< 8.13
Vinyl acetate	< 20.3

EPA 8260B Metho

Data File: V96455.D

Comments: ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt.

Client: C&S Engineers

Client Job Site:	MOB	Lab Project Number: Lab Sample Number:	
Client Job Number:	N/A		
Field Location:	CB-03/40-42	Date Sampled:	04/26/2012
Field ID Number:	N/A	Date Received:	04/27/2012
Sample Type:	Soil	Date Analyzed:	04/27/2012

Halocarbons	Results in ug / Kg	Aromatics	Results in ug / Kg
Bromodichloromethane	< 4.17	Benzene	J 3.45
Bromomethane	< 4.17	Chlorobenzene	< 4.17
Bromoform	< 10.4	Ethylbenzene	6.24
Carbon Tetrachloride	< 4.17	Toluene	20.5
Chloroethane	< 4.17	m,p-Xylene	36.6
Chloromethane	< 4.17	o-Xylene	14.6
2-Chloroethyl vinyl Ether	< 20.9	Styrene	< 10.4
Chloroform	< 4.17	1,2-Dichlorobenzene	< 4.17
Dibromochloromethane	< 4.17	1,3-Dichlorobenzene	< 4.17
1,1-Dichloroethane	< 4.17	1,4-Dichlorobenzene	< 4.17
1,2-Dichloroethane	< 4.17		
1,1-Dichloroethene	< 4.17	Ketones	Results in ug / Kg
cis-1,2-Dichloroethene	< 4.17	Acetone	J 19.7
trans-1,2-Dichloroethene	< 4.17	2-Butanone	< 20.9
1,2-Dichloropropane	< 4.17	2-Hexanone	< 10.4
cis-1,3-Dichloropropene	< 4.17	4-Methyl-2-pentanone	< 10.4
trans-1,3-Dichloropropene	< 4.17		
Methylene chloride	< 10.4	Miscellaneous	Results in ug / Kg
1,1,2,2-Tetrachloroethane	< 4.17	Carbon disulfide	< 4.17
Tetrachloroethene	< 4.17	Vinyl acetate	< 10.4
1,1,1-Trichloroethane	< 4.17		
1,1,2-Trichloroethane	< 4.17		
Trichloroethene	< 4.17		
Trichlorofluoromethane	< 4.17		
Vinyl chloride	< 4.17		
ELAP Number 10958	Method	EPA 8260B	Data File: V96523.D

Comments: ug / Kg = microgram per Kilogram

Surrogate outliers indicate probable matrix interference

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. 121804V1

Client: C&S Engineers

Client Job Site:	МОВ	Lab Project Number: Lab Sample Number:	
Client Job Number:	N/A		
Field Location:	CB-03/38-40	Date Sampled:	04/26/2012
Field ID Number:	N/A	Date Received:	04/27/2012
Sample Type:	Soil	Date Analyzed:	04/27/2012

Halocarbons	Results in ug / Kg	Aromatics	Results in ug / Kg
Bromodichloromethane	< 54.8	Benzene	J 31.9
Bromomethane	< 54.8	Chlorobenzene	< 54.8
Bromoform	< 137	Ethylbenzene	183
Carbon Tetrachloride	< 54.8	Toluene	322
Chloroethane	< 54.8	m,p-Xylene	1,050
Chloromethane	< 54.8	o-Xylene	349
2-Chloroethyl vinyl Ether	< 274	Styrene	< 137
Chloroform	< 54.8	1,2-Dichlorobenzene	< 54.8
Dibromochloromethane	< 54.8	1,3-Dichlorobenzene	< 54.8
1,1-Dichloroethane	< 54.8	1,4-Dichlorobenzene	< 54.8
1,2-Dichloroethane	< 54.8		
1,1-Dichloroethene	< 54.8	Ketones	Results in ug / Kg
cis-1,2-Dichloroethene	< 54.8	Acetone	< 274
trans-1,2-Dichloroethene	< 54.8	2-Butanone	< 274
1,2-Dichloropropane	< 54.8	2-Hexanone	< 137
cis-1,3-Dichloropropene	< 54.8	4-Methyl-2-pentanone	< 137
trans-1,3-Dichloropropene	< 54.8	· · · · · · · · · · · · · · · · · · ·	
Methylene chloride	< 137	Miscellaneous	Results in ug / Kg
1,1,2,2-Tetrachloroethane	< 54.8	Carbon disulfide	< 54.8
Tetrachloroethene	< 54.8	Vinyl acetate	< 137
1,1,1-Trichloroethane	< 54.8		
1,1,2-Trichloroethane	< 54.8		
Trichloroethene	< 54.8		
Trichlorofluoromethane	< 54.8		
Vinyl chloride	< 54.8		
ELAP Number 10958	Method:	EPA 8260B	Data File: V96524.D

Comments: ug / Kg = microgram per Kilogram

Signature:

TC? Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. 121804V2

Client: C&S Engineers

Client Job Site:	МОВ	Lab Project Number: Lab Sample Number:	
Client Job Number:	N/A		
Field Location:	CB-03/36-38	Date Sampled:	04/26/2012
Field ID Number:	N/A	Date Received:	04/27/2012
Sample Type:	Soil	Date Analyzed:	04/27/2012

Halocarbons	Results in ug / Kg	Aromatics	Results in ug / Kg
Bromodichloromethane	< 145	Benzene	984
Bromomethane	< 145	Chlorobenzene	< 145
Bromoform	< 362	Ethylbenzene	350
Carbon Tetrachloride	< 145	Toluene	2,080
Chloroethane	< 145	m,p-Xylene	1,660
Chloromethane	< 145	o-Xylene	572
2-Chloroethyl vinyl Ether	< 724	Styrene	< 362
Chloroform	< 145	1,2-Dichlorobenzene	< 145
Dibromochloromethane	< 145	1,3-Dichlorobenzene	< 145
1,1-Dichloroethane	< 145	1,4-Dichlorobenzene	< 145
1,2-Dichloroethane	< 145		
1,1-Dichloroethene	< 145	Ketones	Results in ug / Kg
cis-1,2-Dichloroethene	< 145	Acetone	< 724
trans-1,2-Dichloroethene	< 145	2-Butanone	< 724
1,2-Dichloropropane	< 145	2-Hexanone	< 362
cis-1,3-Dichloropropene	< 145	4-Methyl-2-pentanone	< 362
trans-1,3-Dichloropropene	< 145		
Methylene chloride	< 362	Miscellaneous	Results in ug / Kg
1,1,2,2-Tetrachloroethane	< 145	Carbon disulfide	< 145
Tetrachloroethene	< 145	Vinyl acetate	< 362
1,1,1-Trichloroethane	< 145		
1,1,2-Trichloroethane	< 145		
Trichloroethene	< 145		
Trichlorofluoromethane	< 145		
Vinyl chloride	< 145		
ELAP Number 10958	Method	: EPA 8260B	Data File: V9652

Data File: V96525.D

Comments: ug / Kg = microgram per Kilogram

Signature:

',1

Bruce Hoogesteger: Technical Director) This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 121804V3.XLS requirements upon receipt.

Client: C&S Engineers

Client Job Site:	MOB	Lab Project Number: Lab Sample Number:	
Client Job Number:	N/A		
Field Location:	CB-03/22-24	Date Sampled:	04/26/2012
Field ID Number:	N/A	Date Received:	04/27/2012
Sample Type:	Soil	Date Analyzed:	04/28/2012

Halocarbons	Results in ug / Kg	Aromatics	Results in ug / Kg
Bromodichloromethane	< 19,100	Benzene	< 19,100
Bromomethane	< 19,100	Chlorobenzene	< 19,100
Bromoform	< 47,600	Ethylbenzene	46,000
Carbon Tetrachloride	< 19,100	Toluene	145,000
Chloroethane	< 19,100	m,p-Xylene	377,000
Chloromethane	< 19,100	o-Xylene	139,000
2-Chloroethyl vinyl Ether	< 95,300	Styrene	< 47,600
Chloroform	< 19,100	1,2-Dichlorobenzene	< 19,100
Dibromochloromethane	< 19,100	1,3-Dichlorobenzene	< 19,100
1,1-Dichloroethane	< 19,100	1,4-Dichlorobenzene	< 19,100
1,2-Dichloroethane	< 19,100		
1,1-Dichloroethene	< 19,100	Ketones	Results in ug / Kg
cis-1,2-Dichloroethene	< 19,100	Acetone	< 95,300
trans-1,2-Dichloroethene	< 19,100	2-Butanone	< 95,300
1,2-Dichloropropane	< 19,100	2-Hexanone	< 47,600
cis-1,3-Dichloropropene	< 19,100	4-Methyl-2-pentanone	< 47,600
trans-1,3-Dichloropropene	< 19,100		
Methylene chloride	< 47,600	Miscellaneous	Results in ug / Kg
1,1,2,2-Tetrachloroethane	< 19,100	Carbon disulfide	< 19,100
Tetrachloroethene	< 19,100	Vinyl acetate	< 47,600
1,1,1-Trichloroethane	< 19,100		
1,1,2-Trichloroethane	< 19,100		
Trichloroethene	< 19,100		
Trichlorofluoromethane	< 19,100		
Vinyl chloride	< 19,100		
ELAP Number 10958	Method	EPA 8260B	Data File: V96557.D

ELAP Number 10958

Method: EPA 8260B

Data File: V96557.D

Comments: ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 121804V4.XLS requirements upon receipt.

Client: C&S Engineers

Client Job Site:	MOB - Kaleida	Lab Project Number: Lab Sample Number:	
Client Job Number:	N/A		
Field Location:	CB-04 24-26'	Date Sampled:	04/25/2012
Field ID Number:	N/A	Date Received:	04/26/2012
Sample Type:	Soil	Date Analyzed:	04/26/2012

Halocarbons	Results in ug / Kg
Bromodichloromethane	< 119
Bromomethane	< 119
Bromoform	< 297
Carbon Tetrachloride	< 119
Chloroethane	< 119
Chloromethane	< 119
2-Chloroethyl vinyl Ether	< 594
Chloroform	< 119
Dibromochloromethane	< 119
1,1-Dichloroethane	< 119
1,2-Dichloroethane	< 119
1,1-Dichloroethene	< 119
cis-1,2-Dichloroethene	< 119
trans-1,2-Dichloroethene	< 119
1,2-Dichloropropane	< 119
cis-1,3-Dichloropropene	< 119
trans-1,3-Dichloropropene	< 119
Methylene chloride	< 297
1,1,2,2-Tetrachloroethane	< 119
Tetrachloroethene	< 119
1,1,1-Trichloroethane	< 119
1,1,2-Trichloroethane	< 119
Trichloroethene	< 119
Trichlorofluoromethane	< 119
Vinyl chloride	< 119
ELAP Number 10958	Method

Aromatics	Results in ug / Kg
Benzene	< 119
Chlorobenzene	< 119
Ethylbenzene	1,340
Toluene	799
m,p-Xylene	14,800
o-Xylene	6,060
Styrene	< 297
1,2-Dichlorobenzene	< 119
1,3-Dichlorobenzene	< 119
1,4-Dichlorobenzene	< 119

Ketones	Results in ug / Kg
Acetone	JB 516
2-Butanone	< 594
2-Hexanone	< 297
4-Methyl-2-pentanone	< 297

Miscellaneous	Results in ug / Kg
Carbon disulfide	< 119
Vinyl acetate	< 297

Method: EPA 8260B

Data File: V96488.D

Comments: ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Teghnical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. 121779V1.XLS

Client: <u>C&S Engineers</u>

Client Job Site:	MOB - Kaleida	Lab Project Number: Lab Sample Number:	
Client Job Number:	N/A		
Field Location:	CB-04 30-32'	Date Sampled:	04/25/2012
Field ID Number:	N/A	Date Received:	04/26/2012
Sample Type:	Soil	Date Analyzed:	04/26/2012

Halocarbons	Results in ug / Kg
Bromodichloromethane	< 255
Bromomethane	< 255
Bromoform	< 637
Carbon Tetrachloride	< 255
Chloroethane	< 255
Chloromethane	< 255
2-Chloroethyl vinyl Ether	< 1,270
Chloroform	< 255
Dibromochloromethane	< 255
1,1-Dichloroethane	< 255
1,2-Dichloroethane	< 255
1,1-Dichloroethene	< 255
cis-1,2-Dichloroethene	< 255
trans-1,2-Dichloroethene	< 255
1,2-Dichloropropane	< 255
cis-1,3-Dichloropropene	< 255
trans-1,3-Dichloropropene	< 255
Methylene chloride	< 637
1,1,2,2-Tetrachloroethane	< 255
Tetrachloroethene	< 255
1,1,1-Trichloroethane	< 255
1,1,2-Trichloroethane	< 255
Trichloroethene	< 255
Trichlorofluoromethane	< 255
Vinyl chloride	< 255
ELAP Number 10958	Method

Aromatics	Results in ug / Kg
Benzene	< 255
Chlorobenzene	< 255
Ethylbenzene	7,690
Toluene	16,600
m,p-Xylene	38,700
o-Xylene	14,500
Styrene	< 637
1,2-Dichlorobenzene	< 255
1,3-Dichlorobenzene	< 255
1,4-Dichlorobenzene	< 255

Ketones	Results in ug / Kg
Acetone	< 1,270
2-Butanone	< 1,270
2-Hexanone	< 637
4-Methyl-2-pentanone	< 637

Miscellaneous	Results in ug / Kg
Carbon disulfide	< 255
Vinyl acetate	< 637

Method: EPA 8260B

Data File: V96489.D

Comments: ug / Kg = microgram per Kilogram

Signature:

1/// 80

Bruce Hoogesteger: Technical Director This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. 121779V2.XLS

Client: C&S Engineers

Client Job Site:	MOB - Kaleida	Lab Project Number: Lab Sample Number:	
Client Job Number:	N/A		
Field Location:	CB-04 42-44'	Date Sampled:	04/25/2012
Field ID Number:	N/A	Date Received:	04/26/2012
Sample Type:	Soil	Date Analyzed:	04/26/2012

Halocarbons	Results in ug / Kg	Aromatics	Results in ug / Kg
Bromodichloromethane	< 75.1	Benzene	< 75.1
Bromomethane	< 75.1	Chlorobenzene	< 75.1
Bromoform	< 188	Ethylbenzene	845
Carbon Tetrachloride	< 75.1	Toluene	1,730
Chloroethane	< 75.1	m,p-Xylene	4,610
Chloromethane	< 75.1	o-Xylene	1,850
2-Chloroethyl vinyl Ether	< 376	Styrene	< 188
Chloroform	< 75.1	1,2-Dichlorobenzene	< 75.1
Dibromochloromethane	< 75.1	1,3-Dichlorobenzene	< 75.1
1,1-Dichloroethane	< 75.1	1,4-Dichlorobenzene	< 75.1
1,2-Dichloroethane	< 75.1		
1,1-Dichloroethene	< 75.1	Ketones	Results in ug / Kg
cis-1,2-Dichloroethene	< 75.1	Acetone	B 470
trans-1,2-Dichloroethene	< 75.1	2-Butanone	< 376
1,2-Dichloropropane	< 75.1	2-Hexanone	< 188
cis-1,3-Dichloropropene	< 75.1	4-Methyl-2-pentanone	< 188
trans-1,3-Dichloropropene	< 75.1		
Methylene chloride	< 188	Miscellaneous	Results in ug / Kg
1,1,2,2-Tetrachloroethane	< 75.1	Carbon disulfide	< 75.1
Tetrachloroethene	< 75.1	Vinyl acetate	< 188
1,1,1-Trichloroethane	< 75.1		
1,1,2-Trichloroethane	< 75.1		
Trichloroethene	< 75.1		
Trichlorofluoromethane	< 75.1		
Vinyl chloride	< 75.1		
ELAP Number 10958	Method:	EPA 8260B	Data File: V9648

Data File: V96487.D

Comments: ug / Kg = microgram per Kilogram

Signature:

11// Bruce Hoogesteger: Technical Director

This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 121779V3.XLS requirements upon receipt.

Client: C&S Engineers

Client Job Site:	MOB Project Buffalo General Hospital	Lab Project Number: Lab Sample Number:	
Client Job Number:	N/A		
Field Location:	CB-05 / 31-33	Date Sampled:	04/24/2012
Field ID Number:	N/A	Date Received:	04/25/2012
Sample Type:	Soil	Date Analyzed:	04/25/2012

Halocarbons	Results in ug / Kg
Bromodichloromethane	< 81.8
Bromomethane	< 81.8
Bromoform	< 204
Carbon Tetrachloride	< 81.8
Chloroethane	< 81.8
Chloromethane	< 81.8
2-Chloroethyl vinyl Ether	< 409
Chloroform	< 81.8
Dibromochloromethane	< 81.8
1,1-Dichloroethane	< 81.8
1,2-Dichloroethane	< 81.8
1,1-Dichloroethene	< 81.8
cis-1,2-Dichloroethene	< 81.8
trans-1,2-Dichloroethene	< 81.8
1,2-Dichloropropane	< 81.8
cis-1,3-Dichloropropene	< 81.8
trans-1,3-Dichloropropene	< 81.8
Methylene chloride	< 204
1,1,2,2-Tetrachloroethane	< 81.8
Tetrachloroethene	< 81.8
1,1,1-Trichloroethane	< 81.8
1,1,2-Trichloroethane	< 81.8
Trichloroethene	< 81.8
Trichlorofluoromethane	< 81.8
Vinyl chloride	< 81.8
ELAP Number 10958	Method:

Aromatics	Results in ug / Kg
Benzene	< 81.8
Chlorobenzene	< 81.8
Ethylbenzene	210
Toluene	< 81.8
m,p-Xylene	320
o-Xylene	< 81.8
Styrene	< 204
1,2-Dichlorobenzene	< 81.8
1,3-Dichlorobenzene	< 81.8
1,4-Dichlorobenzene	< 81.8

Ketones	Results in ug / Kg
Acetone	< 409
2-Butanone	< 409
2-Hexanone	< 204
4-Methyl-2-pentanone	< 204

Miscellaneous	Results in ug / Kg
Carbon disulfide	< 81.8
Vinyl acetate	< 204

ELAP Number 10958

Method: EPA 8260B

Data File: V96452.D

Comments: ug / Kg = microgram per Kilogram

Signature:

111 7-

Bruce Hoogesteger: Technical Director This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition 121749V1.XLS requirements upon receipt.

Client: C&S Engineers

Client Job Site:	MOB Project Buffalo General Hospital	Lab Project Number: Lab Sample Number:	
Client Job Number:	N/A		
Field Location:	CB-05 / 37-39	Date Sampled:	04/24/2012
Field ID Number:	N/A	Date Received:	04/25/2012
Sample Type:	Soil	Date Analyzed:	04/25/2012

Halocarbons	Results in ug / Kg	Aromatics	Results in ug / Kg
Bromodichloromethane	< 4.48	Benzene	7.27
Bromomethane	< 4.48	Chlorobenzene	< 4.48
Bromoform	< 11.2	Ethylbenzene	48.4
Carbon Tetrachloride	< 4.48	Toluene	14.9
Chloroethane	< 4.48	m,p-Xylene	99.9
Chloromethane	< 4.48	o-Xylene	29.0
2-Chloroethyl vinyl Ether	< 22.4	Styrene	< 11.2
Chloroform	< 4.48	1,2-Dichlorobenzene	< 4.48
Dibromochloromethane	< 4.48	1,3-Dichlorobenzene	< 4.48
1,1-Dichloroethane	< 4,48	1,4-Dichlorobenzene	< 4.48
1,2-Dichloroethane	< 4.48	-	
1,1-Dichloroethene	< 4.48	Ketones	Results in ug / Kg
cis-1,2-Dichloroethene	< 4,48	Acetone	< 22.4
trans-1,2-Dichloroethene	< 4.48	2-Butanone	< 22.4
1,2-Dichloropropane	< 4,48	2-Hexanone	< 11.2
cis-1,3-Dichloropropene	< 4.48	4-Methyl-2-pentanone	< 11.2
trans-1,3-Dichloropropene	< 4.48		
Methylene chloride	< 11.2	Miscellaneous	Results in ug / Kg
1,1,2,2-Tetrachloroethane	< 4.48	Carbon disulfide	< 4.48
Tetrachloroethene	< 4.48	Vinyl acetate	< 11.2
1,1,1-Trichloroethane	< 4.48		
1,1,2-Trichloroethane	< 4.48		
Trichloroethene	< 4.48		
Trichlorofluoromethane	< 4.48		
Vinyl chloride	< 4.48		
ELAP Number 10958	Method	FPA 8260B	Data File: V9645

ELAP Number 10958

Method: EPA 8260B

Data File: V96453.D

Comments: ug / Kg = microgram per Kilogram

Signature:

Bruce Hoogesteger: Technical Director This report is part of a multipage document and should only be evaluated in its entirety. Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. 121749V2.XLS

APPENDIX D

SUMMARY OF COMMERCIAL USE SOIL CLEANUP OBJECTIVES

SUMMARY OF COMMERCIAL USE SOIL CLEANUP OBJECTIVES

CONTAMINANT	CAS NUMBER	COMMERCIAL USE SCO
Arsenic	7440-38-2	16
Barium	7440-39-3	400
Beryllium	7440-41-7	590
Cadmium	7440-43-9	9.3
Chromium, hexavalent	18540-29-9	400
Chromium, trivalent	16065-83-1	1,500
Copper	7440-50-8	270
Total Cyanide		27
Lead	7439-92-1	1,000
Manganese	7439-96-5	10,000
Total Mercury		2.8
Nickel	7440-02-0	310
Selenium	7782-49-2	1,500
Silver	7440-22-4	1,500
Zinc	7440-66-6	10,000
2,4,5-TP Acid (Silvex)	93-72-1	500
4,4'-DDE	72-55-9	62
4,4'-DDT	50-29-3	47
4,4'-DDD	72-54-8	92
Aldrin	309-00-2	0.68
alpha-BHC	319-84-6	3.4
beta-BHC	319-85-7	3
Chlordane (alpha)	5103-71-9	24
delta-BHC	319-86-8	500
Dibenzofuran	132-64-9	350
Dieldrin	60-57-1	1.4
Endosulfan I	959-98-8	200
Endosulfan II	33213-65-9	200
Endosulfan sulfate	1031-07-8	200
Endrin	72-20-8	89
Heptachlor	76-44-8	15
Lindane	58-89-9	9.2
Polychlorinated biphenyls	1336-36-3	1
Acenaphthene	83-32-9	500
Acenapthylene	208-96-8	500
Anthracene	120-12-7	500
Benz(a)anthracene	56-55-3	5.6
Benzo(a)pyrene	50-32-8	1
Benzo(b)fluoranthene	205-99-2	5.6
Benzo(g,h,i)perylene	191-24-2	500
Benzo(k)fluoranthene	207-08-9	56
Chrysene	218-01-9	56

Dibenz(a,h)anthracene	53-70-3	0.56
Fluoranthene	206-44-0	500
Fluorene	86-73-7	500
Indeno(1,2,3-cd)pyrene	193-39-5	5.6
m-Cresol	108-39-4	500
Naphthalene	91-20-3	500
o-Cresol	95-48-7	500
p-Cresol	106-44-5	500
Pentachlorophenol	87-86-5	6.7
Phenanthrene	85-01-8	500
Phenol	108-95-2	500
Pyrene	129-00-0	500
1,1,1-Trichloroethane	71-55-6	500
1,1-Dichloroethane	75-34-3	240
1,1-Dichloroethene	75-35-4	500
1,2-Dichlorobenzene	95-50-1	500
1,2-Dichloroethane	107-06-2	30
cis-1,2-Dichloroethene	156-59-2	500
trans-1,2-Dichloroethene	156-60-5	500
1,3-Dichlorobenzene	541-73-1	280
1,4-Dichlorobenzene	106-46-7	130
1,4-Dioxane	123-91-1	130
Acetone	67-64-1	500
Benzene	71-43-2	44
Butylbenzene	104-51-8	500
Carbon tetrachloride	56-23-5	22
Chlorobenzene	108-90-7	500
Chloroform	67-66-3	350
Ethylbenzene	100-41-4	390
Hexachlorobenzene	118-74-1	6
Methyl ethyl ketone	78-93-3	500
Methyl tert-butyl ether	1634-04-4	500
Methylene chloride	75-09-2	500
n-Propylbenzene	103-65-1	500
sec-Butylbenzene	135-98-8	500
tert-Butylbenzene	98-06-6	500
Tetrachloroethene	127-18-4	150
Toluene	108-88-3	500
Trichloroethene	79-01-6	200
1,2,4-Trimethylbenzene	95-63-6	190
1,3,5- Trimethylbenzene	108-67-8	190
Vinyl chloride	75-01-4	13
Xylene (mixed)	1330-20-7	500

Notes:

1) Adapted from 6 NYCRR Part 375: Remedial Program Soil Cleanup Objectives

2) Units in ppm = parts per million

ATTACHMENT 2

C&S Companies 90 Broadway Buffalo, NY 14203 p: (716) 847-1630 f: (716) 847-1454 www.cscos.com

October 17, 2012

Mr. Robert Bragg Vice President, Project Management Services Kaleida Properties Larkin Building, Suite 200 726 Exchange Street Buffalo, New York 14210

Re: <u>Revised October 30, 2012</u> Test Pit Investigation Report of the Medical Office Building Site Buffalo, New York

Dear Mr.Bragg:

In preparation for the remediation and construction on the Medical Office Building ("MOB"), Kaleida Properties requested C&S Engineers, Inc ("C&S") to assess the composition of the native soil and fill material that will be removed from the MOB during construction. The following letter report provides a summary of test pit investigations conducted from September 24 through 26, 2012 at the MOB Brownfield Cleanup ("BCP") site located at 1001 Main Street and 818 Ellicott Street in the City of Buffalo, New York ("Site").

I. <u>INTRODUCTION</u>

The southwest corner of the Site was operated as a gasoline station for over 30 years. Leaking underground tanks spilled petroleum into the subsurface soils and groundwater. The Main Release Area is located in the approximate area of the former leaking underground tanks on the western portion of the Site; contaminated soils were observed from 10 feet below grade and extend to 20 feet below grade. Contaminated soils were observed throughout the rest of the Site from approximately 32 to 35 feet below grade and generally confined within a coarse sand and gravel lens.

Historic soil boring information from multiple site investigations has described the major soil material that underlies the Site. The following is a list of the major soil types and their approximate depths below grade:

10 117

Table 1-1: Generalized Soil Types		
Soil Material	Depth (feet)	
Fill	2 - 11	
Sandy Silt	11 - 35 32 - 35	
Coarse Sand and Gravel	32 - 35	
Silt and Inter-bedded Sand	35 - 42	

For the purposes of this letter report the generic term "fill" is defined as anthropogeneric sources of any one, or mixture, of the material re-worked to build a site to a defined grade. This material can include:

Rock

Sand	Ash/Cinders
Silt	Ceramics
Clay	Bricks
Plastics	Metal
Construction Debris	

In order to better characterize fill deposits above the main areas of contamination, test pits were excavated at various locations. Test pits provide much more detail than soil borings. Test pits provide the observer a view of the in situ material within an excavation that is several feet wide, deep and long. Test pits also provide a view of materials that would not normally be recovered in a soil boring sample.

Test pits for this investigation are intended to collect sufficient information of native soil and fill deposits to allow LP Ciminelli to determine the potential off-site re-use options of the spoils prior to construction. The number of test pits and sampling frequency was developed generally following guidelines outlined in DER-10 Table 5.4(e) 10. Soil sampling was preformed to provide sufficient data to reach a reasonable and defensible understanding of the nature of the subsurface materials to be removed from the Site.

For construction spoils to be used for unrestricted purposes off-site, exported soils must achieve the most restrictive guidelines as outlined in NYSDEC's DER-10 – Appendix 5. Soil samples were compared to the guidelines provided in DER-10 – Appendix 5 and the results are provided in this letter report.

The objectives of this test pit investigation and sampling are as follows:

- Collect data to assist in identifying the nature, and delineating the extent of, various types of fill deposits; and
- Collect data to assess the potential off-site re-use options for native soil and fill deposits.

II. <u>METHODS</u>

Test pit locations were selected based on boring logs from previous geotechnical and environmental investigations. Boring logs indicated three areas of fill and native material. The Site was divided into three "Areas" based on previous site borings.

Area #1 occupies the northern section of the Site; this area is composed generally of native soil with less than 2 feet of "fill."

Area #2 is composed of a variety of "fill" types across the center of the Site ranging in depth from 5 feet to over 10 feet. Area #2 contains a large portion of the contaminated soils that will be excavated and removed.

Area #3 consists of native soil with less than 2 feet of "fill" within the southern to southwestern portion of the Site.

Test pits were excavated in each of the three areas to further evaluate soil conditions. C&S designed a test pit layout and sampling plan based on available historic geotechnical and

environmental investigations. However, note that since fill material was limited to the top 10 ft from grade, excavation depths did not exceed 14 ft below grade. In addition, the test pits also assessed the volatile organic compound ("VOC") concentrations in areas near the known contaminated soil horizons (approximately 12 - 14 ft below grade).

Figure 1 shows the test pit locations and Areas.

A. <u>Test Pits</u>

Test pits were excavated using a track mounted John Deere Excavator operated by LP Ciminelli staff. Test pit excavation typically was 10 feet long, 2 to 4 feet wide and 11 to 14 feet below grade. Test pits were excavated in approximately 3 to 4 foot increments to aid in accurately determining the depth of discrete layers of fill and native material. The soil type and depth of "fill and native" material was visually identified and recorded and provided in a Test Pit Log attached with this letter report. Each test pit was backfilled with excavated material, restored to best match the pre-existing grade and asphalt patch placed on top of the excavation.

B. <u>Sampling</u>

Samples were collected as grab samples from the excavator bucket, placed in plastic zip lock bags and screened with a MiniRAE 3000 Photo-ionization Detector ("PID"). Results of the PID headspace readings are provided in the Test Pit Logs. Samples selected for laboratory analysis was based on visual appearance of the material, petroleum odor or staining and PID readings. Sampling frequency was determined for each test pit based on the guidelines in DER-10 Table 5.4(e) 10. Samples were analyzed for the following parameters:

Table 2-2: VOC Only Analysis		
Parameter(s)	EPA Method	
Volatiles (TCL List)	8260B	

Table 2-3: Full Analysis (DER-10 List)

Parameter(s)	EPA Method	
Volatiles (TCL List)	8260B	
Semi-volatiles	8270	
Metals Analysis	7470/7471 & 6010	
Pesticides	8082	
Herbicides (Silvex)	8151	
Cyanide	9012A	
Hex Chrome	7196	
PCB	8082	

Representative samples from two test pits were collected for waste characterization using the Toxicity Characterization Leaching Procedure ("TCLP").

Table 2-4: TCLP Analysis		
Parameter(s)	EPA Method	
Volatiles	8260	
Semi-volatiles	8270	
Metals Analysis	7470/7471 & 6010	
Pesticides	8082	
Ignitability	1010	
pН	9040	
Reactivity	SW-846, 7.3	
PCB	8082	

A total of 22 samples were collected and analyzed. The following table summarizes the samples collected from each test pit.

Table 2-5: Sample Collection			
Test Pit	Sample Depth	Analysis	Material Type
TP-01	7 ft	Full	Native
19-01	11 ft	VOC Only	Native
ΤD 0 2	8 ft	Full	Native
TP-02	12 ft	VOC Only	Native
TP-03	6 ft	Full	Fill
TD 04	8 ft	Full	Native
TP-04	14 ft	VOC Only	Native
TP-05	0-3 ft	Full	Fill
TP-06	14 ft	VOC Only	Native
TD 07	6 ft	Full	Native
TP-07	9.5 ft	VOC Only	Native
TP-08	7 ft	Full	Native
17-08	14 ft	VOC Only	Native
TP-09	0-3 ft	Full	Fill
	0-2.5 ft	Full	Fill
TP-10	9 ft	Full	Fill
	10 ft	Full	Native

	4-9 ft	TCLP	Fill
TP-11	9.5 ft	Full	Fill
11-11	0-13 ft	TCLP	Fill/Native
TP-12	6 ft	VOC Only	Native
11-12	12 ft	VOC Only	Native
		10	
	Full Analysis	12	
	VOC Only Analysis	s 8	
	TCLP Analysis	2	
	Total Sampling	22	

III. FIELD INVESTIGATION

Excavation was conducted by LP Ciminelli on September 24 through 26, 2012. During test pit excavations, C&S observed three different fill types across the Site. Site fill materials were generally defined as follows:

- <u>Earthen Fill</u>: including topsoil that may contain some waste (e.g. plastics and metal) but generally contain a mixture of sand, silt, clay, root matter and gravel.
- <u>Refuse Fill</u>: soil intermixed with some construction and demolition debris such as metal, broken glass, concrete and bricks.
- <u>Urban Waste Fill</u>: black silt and sand intermixed with ash/cinders and large amounts of debris. This fill contains significant amounts of construction and demolition debris including: wood fragments; plastics; tile; insulation; concrete and bricks.

Test Pit	Summarized Observations	
TP-01	Subsurface material predominately consists of sand. Fill material consists of three to six inches of sand and gravel beneath the asphalt. No elevated PID readings. Sampled at 7 ft and 11ft.	
TP-02	Predominately native material. Fill material consists of three to six inches of sand and gravel beneath the asphalt. No elevated PID readings. Sampled at 8 ft and 12 ft.	
TP-04	Predominately native material. Fill material consists of three to six inches of sand and gravel beneath the asphalt. PID reading of 403 parts per million ("ppm") at 14 ft. Sampled at 8 ft and 14 ft.	
TP-05	Predominately native material. Fill material consists of three to six inches of sand and gravel beneath the asphalt. The top three feet were primarily sand and silt with occasional bricks. Below three feet was apparently undisturbed native soil. No elevated PID readings. Sampled at 0-3 ft.	
TP-06	Predominately native material. Fill material consists of three to six inches of sand and gravel beneath the asphalt. No elevated PID readings. Sampled at 14 ft.	

Table 3-1: Area 1 – Summarized Observations

Test Pit	Summarized Observations		
TP-03	Earthen fill overlaying silty clay intermixed with refuse fill from 3 ft to 10 ft below grade. Concrete basement was encountered at 10 ft. After breaking through basement material consists of silty sand with a trace of petroleum odor. Sampled at 6 ft.		
TP-10	Urban Waste fill from ground surface to 10 ft below grade. Possible asbestos containing material was collected for testing. TCLP sample from 4-9 ft collected for waste characterization. Concrete basement at 10 ft below grade; after breaking basement native material was observed. Sampled at 0-2.5 ft, 9 ft, 10 ft and TCLP sample 4-9 ft.		
TP-11	Urban Waste fill from ground surface to 10 ft below grade. TCLP sample from 0- 13 ft collected for waste characterization. Concrete basement at 10 ft below grade; after breaking basement native material was observed. Sampled at 9.5 ft and TCLP sample 0-13 ft.		

Table 3-2: Area 2 – Summarized Observations

Test Pit	Summarized Observations	
TP-07	Earthen fill overlaying native material. PID reading of 200 ppm at 9.5 ft. Sampled at 6 ft and 9.5 ft.	
TP-08	Earthen fill to 3 ft below grade. Subsurface predominately native material consisting of sandy silt and silty clay. Strong fresh petroleum odor was observed after 9 ft. PID reading of 15,000 ppm at 14 ft. Sampled at 7 ft and 14 ft.	
TP-09	Refuse fill from ground surface to 3 ft below grade. Subsurface predominately native material consisting of sandy silt and silty clay. Sampled at 0-3 ft.	
TP-12	Earthen fill to 4 ft below grade. Subsurface predominately native material consisting of sandy silt. Strong petroleum odor and black stained sand was observed after 12 ft. PID reading of 160 ppm at 12 ft. Sampled at 6 ft and 12 ft.	

Table 3-3: Area 3 – Summarized Observations

IV. <u>RESULTS</u>

A. <u>Test Pit Observations</u>

<u> Area 1:</u>

Soils within this Area are comprised of 1 foot layer of fill related to the asphalt parking lot overlaying primarily native materials. The one exception includes TP-05 were a refuse fill layer was observed from 0-3 ft below grade.

Area 2:

As suspected by previous subsurface investigations deep fill is present within this Area. TP-03, on the western end of Area 2, contained a mixture of sand (native material), silt, brick and concrete. A concrete foundation floor was encountered at 10 ft below grade.

On the eastern end of Area 2, a mixture of silty clay, large C&D material, black ash/cinders and waste was encountered in TP-10 and TP-11. During excavation concrete basement floors were encountered at 10 ft below grade.

Both the western and eastern ends of Area 2 are likely old building foundations and it is presumed these foundations extend to the street edge. Native materials were encountered below each foundation slab.

<u>Area 3:</u>

Similar to Area 1, Area 3 is composed of predominately native materials. TP-07 was excavated in the area of a former tank pit. Elevated PID readings were encountered from 8 - 10 ft below grade.

Note that soils in the area of the main release source show signs of elevated PID readings generally starting at 14 ft.

B. <u>Analytical Results</u>

A total of 22 samples were collected for analysis. From the 22 samples 14 samples had no detections or had detections below unrestricted residential criteria. These samples include:

Test Pit	Sample Depth	Analysis
	7 ft	Full
TP-01	11 ft	VOC Only
TP-02	8 ft	Full
11-02	12 ft	VOC Only
TP-03	6 ft	Full
TP-04	8 ft	Full
119-04	14 ft	VOC Only
TP-07	6 ft	Full
TP-08	7 ft	Full
11-08	14 ft	VOC Only
TP-09	0-3 ft	Full
TP-10	10 ft	Full
TP-12	6 ft	VOC Only
18-12	12 ft	VOC Only

Table 4-1: Detections be	elow Unrestricted	Residential Criteria

Analytical results are presented in Tables 4-2 and 4-3.

Area 1:

With the exception of the top 3 ft in TP-05, analytical results of the material found in this Area were shown to qualify for unrestricted use. This included samples from TP-01, TP-02, TP-04, TP-05 and TP-06. Material observed in TP-05 below a depth of 3 ft appeared similar to the native material in TP-01 and TP-02; therefore material below 3 ft was not sampled.

Due to its proximity to the main release source, TP-06 was sampled for VOCs at 14 ft below grade. Analytical results indicate the material at that depth slightly exceeded unrestricted criteria for benzene; however concentrations were below residential criteria.

<u>Area 2:</u>

The Urban Waste fill in TP-10 and TP-11, located on the eastern portion of Area 2, exceeded industrial and commercial use standards for SVOCs and unrestricted and residential standards for metals, PCBs and pesticides.

Refuse fill found in TP-03, located on the western portion of Area 2, contained constituents in concentrations below unrestricted use standards.

<u>Area 3:</u>

Area 3 contains predominately native material or re-worked native material. Material sampled in TP-08, TP-07 and TP-12 contained constituents below unrestricted use standards.

Note that a deeper sample 9.5 ft from TP-07 was collected for VOCs due to elevated PID readings from 9-10 ft. This sample exceeded unrestricted use standards for xylenes.

Waste Characterization

Samples from Urban Waste fill in TP-10 and TP-11 were collected for waste characterization analysis. The results confirm the fill material is a non-hazardous waste.

V. <u>SUMMARY</u>

The proposed construction depth (excluding Brownfield remediation) is 25 ft below grade. This assessment was conducted to assess the quality of spoils that will be removed for construction.

Native material in Area 1 and Area 3 is below unrestricted use standards. However, in Area 3 and in the eastern portion of Area 1 material at depth (generally 14 ft and below) may be impacted by the presence of the petroleum plume. While concentrations at these depths (between 14 - 25 ft) may be below Site remedial goals of "Commercial Use" soil cleanup objectives, some of these soils at depth may exceed Unrestricted Use standards (therefore limiting off-site use). This situation was encountered in TP-06 at 14 ft below grade. Therefore, native soils removed at depth need to be closely monitored for VOC concentrations.

Area 2 contains two distinct fill types (Refuse and Urban Waste fill) deposited in old foundations. Material in TP-03 was found to be below unrestricted use standards. The material is generally silty sand matrix with a 10-20% mixture of brick and concrete.

Material found in TP-10 and TP-11 was found to be more of a C&D deposit. Analytical results show that the material should be disposed as a regulated non-hazardous waste.

Native material was present below all of the foundations and chemical analysis demonstrated this material is below unrestricted use standards.

Sincerely,

C&S ENGINEERS, INC.

Colu

Mark Colmerauer Regional Environmental Service Manager

cc: D. Elia, LP Ciminelli

		TEST PIT INVESTIGATION SUMMARY - MOB SITE TEST PIT ASSESSMENT SEPTEMBER 2012										
Location	Test Pit	Fill Type	Pit Depth	Sample Depth	Exceeded Unrestricted Use	Contaminant						
Area 1	TD 01	Native	0-11 ft	7 ft	Ν							
Area 1	ea 1 TP-02 ea 2 TP-03 —	Native	0-11 It	11 ft	Ν							
Amon 1	TD 02	Nativo	0.12 ft	8 ft	Ν							
Area 1	1P-02	Native	0-12 ft	12 ft	Ν							
Amag 2	TD 02 -	Earthen Fill	0-3 ft	- 6 ft	N							
Alea 2	11-05	Refuse Fill	3-11 ft	0 II	Ν							
A	TD 04	Netion	0146	8 ft	Ν							
Area I	11-04	Native	0-14 ft	14 ft	Ν							
A	TD 05	Fill	0-3 ft	0.2.6	V	SWOC AND Matala						
Area I		Native	3-14 ft	- 0-3 ft	Y	SVOC AND Metals						
Area 1	TP-06	Native	0-14 ft	14 ft	Y	VOC						
	TD 07 -	Earthen Fill	0-3 ft	6 ft	Ν							
Area 3	TP-07 -	Native	3-14 ft	9.5 ft	Y	VOC						
	TD 00 -	Earthen Fill	0-3 ft	7 ft	Ν							
Area 3	TP-08 -	Native	3-14 ft	14 ft	Ν							
	TD 00	Refuse Fill	0-10 ft	0.0.0	N							
Area 2	TP-09 -	Native	10-11 ft	- 0-3 ft	Ν							
		Urban Waste Fill	0-9 ft	0-2.5 ft	Y	SVOC, Metals and Pesticides						
Area 2	TP-10 -				Y	SVOC, Metals, Pesticides and PC						
	Native 9-10		10 ft	Ν								
			0.10.0									

R

Pesticides

Table 4-3

Notes:

Area 3

Area 2

1. Site fill materials were generally defined as follows:

TP-11

TP-12

Urban Waste Fill

Native Earthen Fill

Native

Earthen Fill: including topsoil that may contain some waste (e.g. plastics and metal) but generally contain a mixture of sand, silt, clay, root matter and gravel.

0-10 ft

10-13 ft

0-4 ft

4-12 ft

9.5 ft

6 ft

12 ft

Y

Ν

Ν

Refuse Fill: soil intermixed with some construction and demolition debris such as metal, broken glass, concrete and bricks.

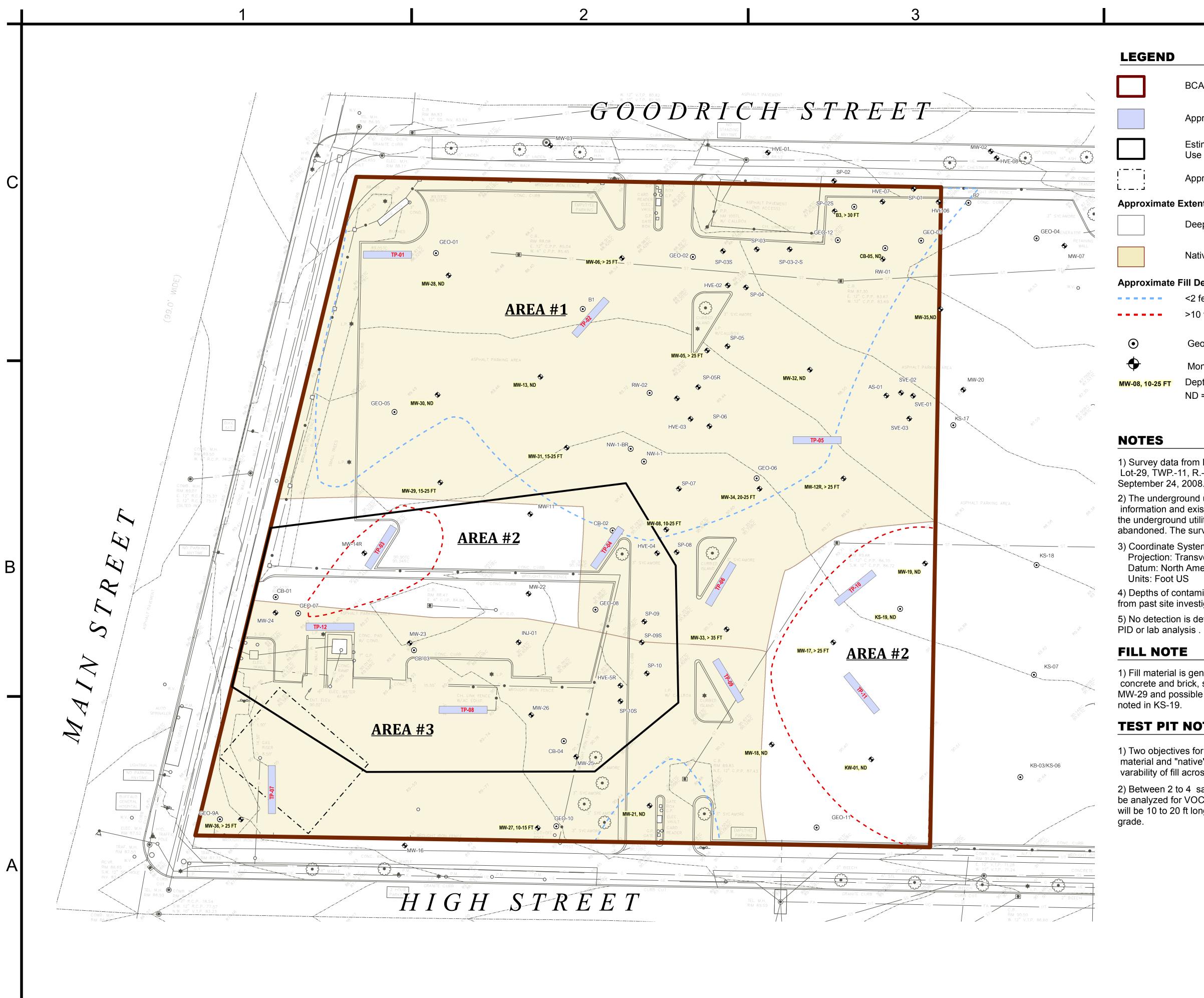

Urban Waste Fill: black silt and sand intermixed with ash/cinders. This fill contains significant amounts of construction and demolition debris including: wood fragments; plastics; tile; insulation; concrete and bricks.

TABLE 4-2 SUMMARY LABORATORY DATA - MOB SITE TEST PIT ASSESSMENT SEPTEMBER 2012

				Public Health											
Contaminant	Unrestricted	Residential	Restricted- Residential	Commercial	Industrial			TP-02							
Semivolatile organic co	Use mpounds	ppm=	ng/kg			TP-01 7 ft	TP-01 11 ft	8 ft	TP-02 12 ft	TP-03 6 ft	TP-04 8 ft	TP-04 14 ft	TP-05 0-3 ft	TP-06 14 ft	TP-07 6 ft
Acenaphthene Acenapthylene ^t	20 100 ^a	100 ^a 100 ^a	100 ^a 100 ^a	500 [□] 500 [□]	1,000 ^c 1,000 ^c	<0.295 <0.295		<0.305 <0.305		<0.330 <0.330	<0.376 <0.376		.194 J <0.376		<0.310 <0.310
Anthracene [†]	100 ^a	100 ^a	100 ^a	500°	1,000 ^c	<0.295		<0.305		<0.330	<0.376		<0.376		<0.310
Benz(a)anthracene [†] Benzo(a)pyrene	1 ^c	1 [†]	1 [†]	5.6	11	<0.295 <0.295		<0.305 <0.305		<0.330 <0.330	<0.376 <0.376		1.09		<0.310 <0.310
Benzo(b)fluoranthene ^r	1 ^c	1 ¹	1 1 ¹	5.6	11	<0.295		<0.305		<0.330	<0.376		0.942		<0.310
Benzo(g,h,i)perylene ^r	100	100 ^a	100 ^a 3.9	500 [°]	1,000 ^c 110	<0.295		<0.305		<0.330	<0.376		0.608		<0.310
Benzo(k)fluoranthene ^r Chrysene ^r	0.8 ^c	1 ^r	3.9	56 56		<0.295 <0.295		<0.305 <0.305		<0.330 <0.330	<0.376 <0.376		0.702		<0.310 <0.310
Dibenz(a,h)anthracene ^r	0.33 0	0.33 ^e	0.33 ^e	0.56	1.1	<0.295		<0.305		<0.330	< 0.376		<0.376		<0.310
Fluoranthene [†] Fluorene	100 ^a 30	100 ^a 100 ^a	100 ^a 100 ^a	500⁵ 500⁵	1,000 ^c 1,000 ^c	<0.295 <0.295		<0.305 <0.305		0.233 J <0.330	<0.376 <0.376		2.3 0.202		<0.310 <0.310
Indeno(1,2,3-cd)pyrene	0.5 ^c	0.5 ^r	0.5 ^r	5.6	11	<0.295		<0.305		<0.330	<0.376		0.67		<0.310
m-Cresol [†] Naphthalene [†]	0.33 ^b 12	100 ^a 100 ^a	100 ^a 100 ^a	500° 500°	1,000 ^c 1,000 ^c	<0.295 <0.295		<0.305 <0.305		<0.330 <0.330	<0.376 <0.376		<0.376 <0.376		<0.310 <0.310
o-Cresol	0.33 °	100 ^a	100 ^a	500°	1,000 ^c	<0.295		<0.305		<0.330	<0.376		<0.376		<0.310
p-Cresol [†] Pentachlorophenol	0.33 ^D 0.8 ^D	34 2.4	100 ^a 6.7	500 [⊳] 6.7	1,000 ^c 55	<0.295 <0.295		<0.305 <0.305		<0.330 <0.330	<0.376 <0.376		<0.376 <0.376		<0.310 <0.310
	100	100 ^a	100 ^a	500 [□]	1,000 ^c	<0.295		<0.305		<0.330	<0.376		1.81		<0.310
Phenol Pyrene ^r	0.33° 100	100 ^a 100 ^a	100 ^a 100 ^a	500° 500°	1,000 ^c 1,000 ^c	<0.295 <0.295		<0.305 <0.295		<0.330 0.194 J	<0.376 <0.376		<0.376 1.94		<0.310 <0.310
# of Detections of Analytes with No S		100	100	500	1,000	0.295	0	<0.295 0	 0	0.194 J	<0.376 0	 0	1.94	 0	<0.310
Volatile organic comp	oounds		ppm=mg/kg												-
1,1,1-Trichloroethane [†] 1,1-Dichloroethane [†]	0.68	100 ^a 19	100 ^a 26	500° 240	1,000 ^c 480	<0.00344 <0.00344	<.00429 <.00429	<.00354 <.00354	<.00315 <.00315	<.00453 <.00453	<.00453 <.00453	<.00394 <.00394	<.00416 <.00416	<.00350 <.00350	<.00336 <.00336
1,1-Dichloroethene ^r	0.33	100 ^a	100 ^a	500 ^₀	1,000 ^c	<0.00344	<.00429	<.00354	<.00315	<.00453	<.00453	<.00394	<.00416	<.00350	<.00336
1,2-Dichlorobenzene ^r 1,2-Dichloroethane	1.1 0.02 ^c	100 ^a 2.3	100 ^a 3.1	500° 30	1,000 ^c 60	<0.00344 <0.00344	<.00429 <.00429	<.00354 <.00354	<.00315 <.00315	<.00453 <.00453	<.00453 <.00453	<.00394 <.00394	<.00416 <.00416	<.00350 <.00350	<.00336 <.00336
cis -1,2-Dichloroethene	0.02	59	100 ^a	500°	1,000 ^c	<0.00344	<.00429 <.00429	<.00354 <.00354	<.00315 <.00315	<.00453 <.00453	<.00453 <.00453	<.00394 <.00394	<.00416 <.00416	<.00350	<.00336
trans-1,2-Dichloroethene	0.19		100 ^a	500 [°] 280	1,000 ^c	< 0.00344	<.00429	<.00354	<.00315	<.00453	<.00453	<.00394	<.00416	<.00350	<.00336
1,3-Dichlorobenzene ^r 1,4-Dichlorobenzene	2.4	17 9.8	49 13	280 130	560 250	<0.00344	<.00429 <.00429	<.00354 <.00354	<.00315 <.00315	<.00453 <.00453	<.00453 <.00453	<.00394 <.00394	<.00416 <.00416	<.00350 <.00350	<.00336 <.00336
1,4-Dioxane	0.1 °	9.8	13	130		<0.00344	<.00429	<.00354	<.00315	<.00453	<.00453	<.00394	<.00416	<.00350	<.00336
Acetone Benzene	0.05	100 ^a 2.9	100 ^b 4.8	500° 44	1,000 ^c 89	<0.0172 <0.00344	<.0214 <.00429	<.0170 <.00354	<.0157 <.00315	<.0227 <.00453	<.0227 <.00453	0.0243 <.00394	<.0208 <.00416	<.0175 1.79	<.0168 <.00336
n-Butylbenzene ¹	12	100 ^a	100 ^a	500°	1,000 ^c	<0.00344 <0.00344	<.00429 <.00429	<.00354 <.00354	<.00315 <.00315	<.00453 <.00453	<.00453 <.00453	<.00394 <.00394	<.00416 <.00416	<.00350	<.00336
Carbon tetrachloride ^r	0.76	1.4	2.4	22		< 0.00344	<.00429	<.00354	<.00315	<.00453	<.00453	<.00394	<.00416	<.00350	<.00336
Chlorobenzene Chloroform	1.1 0.37	100 ^a 10	100 ^a 49	500⁰ 350	1,000 ^c 700	<0.00344 <0.00344	<.00429 <.00429	<.00354 <.00354	<.00315 <.00315	<.00453 <.00453	<.00453 <.00453	<.00394 <.00394	<.00416 <.00416	<.00350 <.00350	<.00336 <.00336
Ethylbenzene ^r	1	30	41	390	780	<0.00344	<.00429	<.00354	<.00315	<.00453	<.00453	<.00394	<.00416	.0026 J	<.00336
Hexachlorobenzene ⁺ Methyl ethyl ketone	0.33 ^b 0.12	0.33 ^e 100 ^a	1.2 100 ^a	6 500°	12 1,000 ^c	<0.00344	<.00429 <.00429	<.00354 <.00354	<.00315 <.00315	<.00453 <.00453	<0.376 <.00453	<.00394 <.00394	<.00416 <.00416	<.00350 <.00350	<.00336 <.00336
Methyl tert-butyl ether	0.93	62	100 ^a	500°	1,000°	<0.00344	<.00429	<.00354	<.00315	<.00453	<.00453	<.00394	<.00410	<.00350	<.00336
Methylene chloride n - Propylbenzene	0.05	51 100 ^a	100 ^a	500°	1,000 ^c 1,000 ^c	< 0.00859	<.0107	<.00885	<.00787	<.0113	<.00453	<.00985	<.0104	<.00876	<.00841
sec-Butylbenzene		100 ^a		500°	1,000 [°]	<0.00344	<.00429 <.00429	<.00354 <.00354	<.00315 <.00315	<.00453 <.00453	<.00453 <.00453	<.00394 <.00394	<.00416 <.00416	<.00350 <.00350	<.00336 <.00336
tert-Butylbenzene ^r	5.9	100 ^a	100 ^a	500°	1,000 ^c	<0.00344	<.00429	<.00354	<.00315	<.00453	<.00453	<.00394	<.00416	<.00350	<.00336
Tetrachloroethene Toluene	1.3 0.7	5.5 100 ^a	19 100 ^a	150 500⁵	300 1,000 ^c	<0.00344	<.00429 <.00429	<.00354 <.00354	<.00315 <.00315	<.00453 <.00453	<.00453 <.00453	<.00394 <.00394	<.00416 <.00416	<.00350 0.0081	<.00336 <.00336
Trichloroethene	0.47	10	21	200	400	<0.00344	<.00429	<.00354	<.00315	<.00453	<.00453	<.00394	<.00416	<.00350	<.00336
1,2,4-Trimethylbenzene ⁺ 1,3,5-Trimethylbenzene ^r	3.6 8.4	47	52 52	190 190	380 380	<0.00859 <0.00859	<.0107 <.0107	<.00706 <.00885	.00217 J <.00787	<.0113 <.0113	<.0113 <.0113	0.00345 J 0.00257 J	<.0104 <.0104	0.0181	<.00841 <.00841
Vinyl chloride ^r	0.02	0.21	0.9	13	27	<0.00839	<.00107	<.00885	<.00787	<.0113	<.0113	<.00394	<.0104 <.00416	<.00350	<.00336
Xylene (mixed)	0.26	100 ^a	100 ^a	500°	1,000 ^c	< 0.00344	<.00429	<.00354	<.00315	<.00453	<.00453	0.00507 J	<.00416	0.0208	
Naphthalene [†] # of Detections of Analytes with No S	12 Standards:	100 ^a	100 ^a	500⁵	1,000 ^c	<0.00859 0	<.0107 0	<.00706 0	<.00787 0	<.0113 0	<0.376 0	0.01	<.0104 0	.00693 J 0	<.00841 0
Metals			ppm=mg/kg			-	-	_	_	-	-	_	-	_	
Arsenic Barium	13 ° 350 °	16 ^r 350 ^r	16 ^r 400	16 ^r 400	16 ^r 10,000 °	1.57 <9.20		2.04 18.3		3.41 62.4	6.87 91.6		3.91 105		1.35 <10.4
Beryllium	7.2	14	72	590	2700	<0.460		<0.527		0.421	0.677		<0.332 J		<0.520
Cadmium	2.5 °	2.5	4.3	9.3	60	<0.460		<0.527		0.285	0.36 J		0.332		<0.520
Chromium, hexavalent ^e Chromium, trivalent ^e	1 ^b										< 1.3				
	30 ^c	22 36	110 180	400 1,500	800 6,800	<1.0 3.11		<1.1 5.13		<1.1 14.4			<1.1 9.53		<0.12 4.61
Copper	30 ° 50	36 270	180 270	1,500 270	6,800 10,000 ª	3.11 5.89		5.13 7.2		<1.1 14.4 13	21.1 19.3		<1.1 9.53 12.9		<0.12 4.61 6.54
Total Cyanide ^{e, r}	30 ° 50 27	36 270 27	180 270 27	1,500 270 27	6,800 10,000 ª 10,000 ª	3.11 5.89 <0.50		5.13 7.2 <0.53		14.4 13 <0.54	21.1 19.3 < 0.61		9.53 12.9 <0.54		4.61 6.54 .0067 J
	30 ° 50	36 270	180 270	1,500 270	6,800 10,000 ª	3.11 5.89		5.13 7.2		14.4 13	21.1 19.3		9.53 12.9		4.61 6.54
Total Cyanide ^{e, r} Lead Manganese Total Mercury	30 ° 50 27 63 ° 1600 ° 0.18 °	36 270 27 400 2,000 0.81 ¹	180 270 27 400 2,000 ^r 0.81 ^j	1,500 270 27 1,000 10,000 ° 2.8	6,800 10,000 ° 10,000 ° 3,900 10,000 ° 5.7 ¹	3.11 5.89 <0.50 5.22 205 <0.0082		5.13 7.2 <0.53 8.27 266 <0.0085	 	14.4 13 <0.54	21.1 19.3 < 0.61 10.4 460 0.0087 J	 	9.53 12.9 <0.54 290 304 4.41	 	4.61 6.54 .0067 J 7.29 223 <0.00085
Total Cyanide ^{e, r} Lead Manganese	30 ° 50 27 63 ° 1600 °	36 270 27 400 2,000	180 270 27 400 2,000	1,500 270 27 1,000 10,000 °	6,800 10,000 ° 10,000 ° 3,900 10,000 °	3.11 5.89 <0.50 5.22 205 <0.0082 <3.68		5.13 7.2 <0.53 8.27 266 <0.0085 4.11	 	14.4 13 <0.54	21.1 19.3 < 0.61 10.4 460 0.0087 J 23.7	 	9.53 12.9 <0.54 290 304 4.41 6.66		4.61 6.54 .0067 J 7.29 223 <0.00085 2.95
Total Cyanide ^{e, r} Lead Manganese Total Mercury Nickel Selenium Silver	30° 50 27 63° 1600° 0.18° 30 3.9° 2	36 270 27 400 2,000' 0.81' 140 36 36	180 270 27 400 2,000' 0.81 ¹ 310 180 180	1,500 270 1,000 10,000 ° 2.8 ⁱ 310 1500 1500	6,800 10,000 ° 10,000 ° 3,900 10,000 ° 5.7 ⁱ 10,000 ° 6800 6800	3.11 5.89 <0.50 5.22 205 <0.0082 <3.68 <0.920 <0.920		5.13 7.2 <0.53	 	14.4 13 <0.54	21.1 19.3 < 0.61 10.4 460 0.0087 J 23.7 1.42 < 1.33		9.53 12.9 <0.54 290 304 4.41 6.66 1.33 0.959		4.61 6.54 .0067 J 7.29 223 <0.00085 2.95 0.624 <1.04
Total Cyanide ^{e, r} Lead Manganese Total Mercury Nickel Selenium Silver Zinc	30° 50 27 63° 1600° 0.18° 30 3.9° 2 109°	36 270 400 2,000' 0.81 ¹ 140 36	180 270 27 0.81 ¹ 310 180 10,000 °	1,500 270 1,000 10,000 ° 2.8 ³ 310 1500 1500 10,000 °	6,800 10,000 ° 10,000 ° 3,900 10,000 ° 5.7 ¹ 10,000 ° 6800	3.11 5.89 <0.50 5.22 205 <0.0082 <3.68 <0.920	 	5.13 7.2 <0.53 8.27 266 <0.0085 4.11 <1.05	 	14.4 13 <0.54	21.1 19.3 < 0.61 10.4 460 0.0087 J 23.7 1.42	 	9.53 12.9 <0.54 290 304 4.41 6.66 1.33		4.61 6.54 .0067 J 7.29 223 <0.00085 2.95 0.624
Total Cyanide ^{e, r} Lead Manganese Total Mercury Nickel Selenium Silver	30° 50 27 63° 1600° 0.18° 30 3.9° 2 109°	36 270 27 400 2,000' 0.81' 140 36 36	180 270 27 400 2,000' 0.81 ¹ 310 180 180	1,500 270 1,000 10,000 ° 2.8 ³ 310 1500 1500 10,000 °	6,800 10,000 ° 10,000 ° 3,900 10,000 ° 5.7 ⁱ 10,000 ° 6800 6800	3.11 5.89 <0.50 5.22 205 <0.0082 <3.68 <0.920 <0.920	 	5.13 7.2 <0.53	 	14.4 13 <0.54	21.1 19.3 < 0.61 10.4 460 0.0087 J 23.7 1.42 < 1.33 76.3		9.53 12.9 <0.54 290 304 4.41 6.66 1.33 0.959		4.61 6.54 .0067 J 7.29 223 <0.00085 2.95 0.624 <1.04
Total Cyanide ^{e, r} Lead Manganese Total Mercury Nickel Selenium Silver Zinc PCBs/Pesticide 2,4,5-TP Acid (Silvex)' 4,4'-DDE	30° 50 27 63° 1600° 0.18° 30 3.9° 2 109° S 3.8° 3.8° 3.8° 3.8° 3.8°	36 270 400 2,000 ¹ 0.81 ¹ 140 36 36 2200 58 58	180 270 27 0.81 ¹ 310 180 10,000 ⁸ ppm=mg/kg 100 ⁴ 8.9	1,500 270 1,000 10,000 ° 2.8 ⁷ 310 1500 1500 10,000 ° 500° 62	6,800 10,000 ° 10,000 ° 3,900 10,000 ° 5,7' 10,000 ° 6800 6800 10,000 ° 1,000° 1,000°	3.11 5.89 <0.50 5.22 205 <0.0082 <3.68 <0.920 <0.920 55.5 5.5		5.13 7.2 <0.53 8.27 266 <0.0085 4.11 <1.05 <1.05 78.1 <5.4 <.00304		14.4 13 <0.54	21.1 19.3 < 0.61 10.4 460 0.0087 J 23.7 1.42 < 1.33 76.3 <6.3 <.00377		9.53 12.9 <0.54 290 304 4.41 6.66 1.33 0.959 150 < 5.5 <.00334		4.61 6.54 .0067 J 7.29 223 <0.00085 2.95 0.624 <1.04 64.4 NA <.00312
Total Cyanide ^{e, r} Lead Manganese Total Mercury Nickel Selenium Silver Zinc PCBs/Pesticide 2,4,5-TP Acid (Silvex)'	30° 50 27 63° 1600° 0.18° 30 3.9° 2 109° S 3.8°	36 270 400 2,000 ^r 0.81 ¹ 140 36 36 2200 58	180 270 27 4000 2,000 [*] 0.81 ¹ 310 180 180 10,000 ^{°a} ppm=mg/kg 100 ^{°a}	1,500 270 1,000 10,000 ° 2.8 ³ 310 1500 1500 10,000 °	6,800 10,000 ° 10,000 ° 3,900 10,000 ° 5,7' 10,000 ° 6800 6800 10,000 ° 1,000° 120 94	3.11 5.89 <0.50 5.22 205 <0.0082 <3.68 <0.920 <0.920 55.5 5.5		5.13 7.2 <0.53 8.27 266 <0.0085 4.11 <1.05 <1.05 78.1		14.4 13 <0.54	21.1 19.3 < 0.61 10.4 460 0.0087 J 23.7 1.42 < 1.33 76.3		9.53 12.9 <0.54		4.61 6.54 .0067 J 7.29 223 <0.00085 2.95 0.624 <1.04 64.4 NA
Total Cyanide ^{e, r} Lead Manganese Total Mercury Nickel Selenium Silver Zinc PCBs/Pesticide 2,4,5-TP Acid (Silvex)' 4,4'-DDE 4,4'-DDT 4,4'-DDD Aldrin	30° 50 27 63° 0.18° 30 3.9° 2 109° S 3.8 0.0033° 0.0033° 0.0033°	36 270 27 400 2,000 ¹ 140 36 36 2200 58 1.8 1.8 1.7 2.6 0.019	180 270 27 0.81 ¹ 310 180 10,000 ⁶ ppm=mg/kg 100 ⁴ 8.9 7.9 7.9 13 0.097	1,500 270 1,000 10,000 2.8' 310 1500 1500 10,000 500° 62 47 92 0.68	6,800 10,000 ° 10,000 ° 3,900 10,000 ° 5,7' 10,000 ° 6800 6800 10,000 ° 1,000° 120 94 180 1.4	3.11 5.89 <0.50		5.13 7.2 <0.53		14.4 13 <0.54	21.1 19.3 < 0.61 10.4 460 0.0087 J 23.7 1.42 < 1.33 76.3 <6.3 <.00377 <.00377 <.00377		9.53 12.9 <0.54 290 304 4.41 6.66 1.33 0.959 150 <5.5 <.00334 <.00334 <.00334		4.61 6.54 .0067 J 7.29 223 <0.00085 2.95 0.624 <1.04 64.4 8 8 .00312 <.00312 <.00312 <.00312
Total Cyanide ^{e, r} Lead Manganese Total Mercury Nickel Selenium Silver Zinc PCBs/Pesticide 2,4,5-TP Acid (Silvex)' 4,4'-DDE 4,4'-DDT 4,4'-DDT Aldrin alpha-BHC	30° 50 27 63° 0.18° 30 3.3° 2 109° S 3.8 0.0033° 0.0033° 0.0033° 0.0033°	36 270 27 400 2,000 ¹ 140 36 36 2200 58 1.8 1.8 1.7 2.6 0.019 0.097	180 270 27 0.81 ¹ 310 180 10,000 ⁹ ppm=mg/kg 100 ⁴ 8.9 7.9 7.9 13 0.097 0.48	1,500 270 1,000 10,000 2.8 ⁷ 310 1500 1500 10,000 500 ⁹ 62 47 92	6,800 10,000 ° 3,900 10,000 ° 5,7' 10,000 ° 6800 6800 10,000 ° 1,000°	3.11 5.89 <0.50		5.13 7.2 <0.53		14.4 13 <0.54	21.1 19.3 < 0.61 10.4 460 0.0087 J 23.7 1.42 < 1.33 76.3 < .00377 <.00377 <.00377 <.00377		9.53 12.9 <0.54 290 304 4.41 6.66 1.33 0.959 150 <5.5 <.00334 <.00334 <.00334 <.00334		4.61 6.54 .0067 J 7.29 223 <0.00085 2.95 0.624 <1.04 64.4 NA <.00312 <.00312 <.00312 <.00312 <.00312
Total Cyanide ^{e, r} Lead Manganese Total Mercury Nickel Selenium Silver Zinc PCBs/Pesticide 2,4,5-TP Acid (Silvex)' 4,4'-DDE 4,4'-DDT 4,4'-DDD Aldrin	30° 50 27 63° 0.18° 30 3.9° 2 109° S 3.8 0.0033° 0.0033° 0.0033°	36 270 27 400 2,000 ¹ 140 36 36 2200 58 1.8 1.8 1.7 2.6 0.019 0.097	180 270 27 0.81 ¹ 310 180 10,000 ⁶ ppm=mg/kg 100 ⁴ 8.9 7.9 7.9 13 0.097	1,500 270 1,000 10,000 2.8' 310 1500 1500 10,000 500° 62 47 92 0.68	6,800 10,000 ° 10,000 ° 3,900 10,000 ° 5,7' 10,000 ° 6800 6800 10,000 ° 1,000° 120 94 180 1.4	3.11 5.89 <0.50		5.13 7.2 <0.53		14.4 13 <0.54	21.1 19.3 < 0.61 10.4 460 0.0087 J 23.7 1.42 < 1.33 76.3 <6.3 <.00377 <.00377 <.00377		9.53 12.9 <0.54 290 304 4.41 6.66 1.33 0.959 150 <5.5 <.00334 <.00334 <.00334		4.61 6.54 .0067 J 7.29 223 <0.00085 2.95 0.624 <1.04 64.4 8 8 .00312 <.00312 <.00312 <.00312
Total Cyanide ^{e, r} Lead Manganese Total Mercury Nickel Selenium Silver Zinc PCBs/Pesticide 2,4,5-TP Acid (Silvex)' 4,4'-DDE 4,4'-DDT 4,4'-DDT 4,4'-DDD Aldrin alpha-BHC beta-BHC Chlordane (alpha) delta-BHC ^g	30° 50 27 63° 0.18° 30 3.3° 2 109° S 3.8 0.0033° 0.0033° 0.0033° 0.0033°	36 270 27 400 2,000 ¹ 140 36 36 2200 58 1.8 1.8 1.7 2.6 0.019 0.097 0.072 0.91 100 ⁸	180 270 27 400 2,000 2,000 180 180 10,000 ppm=mg/kg 100 ³ 8.9 7.9 7.9 7.9 13 0.097 0.48 0.36 4.2 100 ³	1,500 270 1,000 10,000 2.8 ⁹ 310 1500 1500 10,000 500 ⁹ 62 47 92 0.68 3.4 3 4 3 24 500 ⁶	6,800 10,000 ° 10,000 ° 3,900 10,000 ° 68000 68000 10,000 ° 1,000° 1,000° 1,000° 1,000° 1,000° 1,000° 1,000° 1,000°	3.11 5.89 <0.50		5.13 7.2 <0.53		14.4 13 <0.54	21.1 19.3 < 0.61 10.4 460 0.0087 J 23.7 1.42 < 1.33 76.3 < .00377 < .00377		9.53 12.9 <0.54		4.61 6.54 .0067 J 7.29 223 <0.00085 2.95 0.624 <1.04 64.4 64.4 00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312
Total Cyanide ^{e, r} Lead Manganese Total Mercury Nickel Selenium Silver Zinc PCBs/Pesticide 2,4,5-TP Acid (Silvex)' 4,4'-DDE 4,4'-DDE 4,4'-DDT 4,4'-DDD Aldrin alpha-BHC beta-BHC Chlordane (alpha)	30° 50 27 63° 1600° 0.18° 30 3.3° 2 109° S 3.8 0.0033° 0.0033° 0.0033° 0.0033° 0.005° 0.02 0.036	36 270 27 400 2,000 ⁷ 0.81 ⁷ 140 36 2200 58 1.8 1.8 1.7 2.6 0.019 0.097 0.072 0.91	180 270 27 400 2,000 2,000 180 180 10,000 ppm=mg/kg 100 ³ 8.9 7.9 7.9 13 0.097 0.48 0.36 4.2	1,500 270 1,000 10,000 2.8 ⁰ 310 1500 1500 10,000 500 ⁰ 62 47 62 47 92 0.68 3.4 3.4	6,800 10,000 ° 10,000 ° 3,900 10,000 ° 68000 68000 10,000 ° 1,000° 1,000° 120 94 180 1.4 6.8 14 47 1,000° 1,000°	3.11 5.89 <0.50		5.13 7.2 <0.53		14.4 13 <0.54	21.1 19.3 < 0.61 10.4 460 0.0087 J 23.7 1.42 < 1.33 76.3 < .00377 < .00377		9.53 12.9 <0.54		4.61 6.54 .0067 J 7.29 223 <0.00085 2.95 0.624 <1.04 64.4 64.4 NA <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312
Total Cyanide ^{e, r} Lead Manganese Total Mercury Nickel Selenium Silver Zinc PCBs/Pesticide 2,4,5-TP Acid (Silvex)' 4,4'-DDE 4,4'-DDT 4,4'-DDT 4,4'-DDD Aldrin alpha-BHC beta-BHC Chlordane (alpha) delta-BHC ^g Dibenzofuran ^r	30° 50 27 63° 1600° 0.18° 30 3.3° 2 109° S 3.8 0.0033° 0.0033° 0.0033° 0.0033° 0.0033° 0.005° 0.02 0.036 0.094 0.04	36 270 27 400 2,000 ^r 0.81 ^r 140 36 2200 58 1.8 1.8 1.7 2.6 0.019 0.097 0.072 0.91 100 ^s	180 270 27 400 2,000 2,000 180 180 10,000 ppm=mg/kg 100 [°] 8.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7	1,500 270 1,000 10,000 2.8 ⁹ 310 1500 1500 10,000 62 47 62 47 92 0.68 3.4 3.4 3.4 3 24 500° 350	6,800 10,000 ° 10,000 ° 5,7' 10,000 ° 68000 68000 10,000 ° 1,000° 1,000° 1200 944 1800 1.4 6.88 144 477 1,000° 1,000° 2.8	3.11 5.89 <0.50		5.13 7.2 <0.53		14.4 13 <0.54	21.1 19.3 < 0.61 10.4 460 0.0087 J 23.7 1.42 < 1.33 76.3 < .00377 < .00377		9.53 12.9 <0.54		4.61 6.54 .0067 J 7.29 223 <0.00085 2.95 0.624 <1.04 64.4 64.4 00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312
Total Cyanide ^{e, r} Lead Manganese Total Mercury Nickel Selenium Silver Zinc PCBs/Pesticide 2,4,5-TP Acid (Silvex)' 4,4'-DDT 4,4'-DDT 4,4'-DDT 4,4'-DDD Aldrin alpha-BHC beta-BHC Chlordane (alpha) delta-BHC ^g Dibenzofuran ' Dieldrin Endosulfan I ^{a, r}	30° 50 27 63° 1600° 0.18° 30 3.9° 2 109° 5 3 3.8° 0.0033° 0.0033° 0.0033° 0.0033° 0.0033° 0.0033° 0.0033° 0.0033° 0.0033° 0.0033° 0.0033° 0.0033° 0.0033° 0.0033° 0.0033° 0.0033° 0.005° 0.004 0.004 0.004 2.4	36 270 27 400 2,000' 140 36 36 2200 58 1.8 1.8 1.7 2.6 0.019 0.097 0.072 0.91 100 ³ 14 0.039 4.8''	180 270 27 400 2,000 310 310 180 180 10,000 89 7.9 7.9 7.9 133 0.097 0.48 0.36 4.2 100 ³ 59 0.2 24 ⁴	1,500 270 1,000 ° 2.8' 310 1500 1500 10,000 ° 500° 62 47 92 0.68 3.4 3.4 3.4 3.4 3.24 500° 3500 1.4 200°	6,800 10,000 ° 10,000 ° 3,900 10,000 ° 5,7' 10,000 ° 6800 6800 10,000 ° 1,000 ° 1,000 ° 1,000 ° 1,000 ° 1,000 ° 2,8 920 ° 920 °	3.11 5.89 <0.50		5.13 7.2 <0.53		14.4 13 <0.54	21.1 19.3 < 0.61 10.4 460 0.0087 J 23.7 1.42 < 1.33 76.3 < (0.0377 < (.00377 < (.00377		9.53 12.9 <0.54		4.61 6.54 .0067 J 7.29 223 <0.00085 2.95 0.624 <1.04 64.4 NA <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <
Total Cyanide ^{e, r} Lead Manganese Total Mercury Nickel Selenium Silver Zinc PCBs/Pesticide 2,4,5-TP Acid (Silvex)' 4,4'-DDE 4,4'-DDT 4,4'-DDT 4,4'-DDT 4,4'-DDD Aldrin alpha-BHC beta-BHC Chlordane (alpha) delta-BHC ^g Dibenzofuran ¹ Dieldrin Endosulfan I ^{d, f} Endosulfan sulfate ^{e, r}	30° 50 27 63° 1600° 0.18° 30 3.9° 2 109° 5 3.8° 0.0033°	36 270 27 400 2,000' 140 36 36 2200 58 1.8 1.8 1.7 2.6 0.019 0.097 0.072 0.072 0.91 100 ³ 14 0.039 4.8''	180 270 27 400 2,000 310 180 180 10,000 8 9 7,99 7,99 133 0,097 0,48 0,36 4,22 100 ^a 59 0,22 24 ^a 24 ^a	1,500 270 1,000 ° 2.8' 310 1500 1500 10,000 ° 500° 62 47 92 0.68 3.4 33 24 500° 350 1.4 200°	6,800 10,000 ° 10,000 ° 3,900 10,000 ° 5,7' 10,000 ° 6800 6800 10,000 ° 1,000 ° 1,000 ° 1,000 ° 1,000 ° 2,8 920 ° 920 ° 920 °	3.11 5.89 <0.50		5.13 7.2 <0.53		14.4 13 <0.54	21.1 19.3 < 0.61 10.4 460 0.0087 J 23.7 1.42 < 1.33 76.3 < (0.0377 < (.00377 < (.00377		9.53 12.9 <0.54		4.61 6.54 .0067 J 7.29 223 <0.00085
Total Cyanide ^{e, r} Lead Manganese Total Mercury Nickel Selenium Silver Zinc PCBs/Pesticide 2,4,5-TP Acid (Silvex)' 4,4'-DDE 4,4'-DDT 4,4'-DDT 4,4'-DDT 4,4'-DDD Aldrin alpha-BHC beta-BHC Chlordane (alpha) delta-BHC ^g Dibenzofuran ^r Dieldrin Endosulfan I ^{d, f}	30° 50 27 63° 1600° 0.18° 30 3.9° 2 109° 5 3 3.8° 0.0033° 0.0033° 0.0033° 0.0033° 0.0033° 0.0033° 0.0033° 0.0033° 0.0033° 0.0033° 0.0033° 0.0033° 0.0033° 0.0033° 0.0033° 0.0033° 0.005° 0.004 0.004 0.004 2.4	36 270 27 400 2,000' 140 36 36 2200 58 1.8 1.8 1.7 2.6 0.019 0.097 0.072 0.91 100 ³ 14 0.039 4.8''	180 270 27 400 2,000 310 310 180 180 10,000 89 7.9 7.9 7.9 133 0.097 0.48 0.36 4.2 100 ³ 59 0.2 24 ⁴	1,500 270 1,000 ° 2.8' 310 1500 1500 10,000 ° 500° 62 47 92 0.68 3.4 3.4 3.4 3.4 3.24 500° 3500 1.4 200°	6,800 10,000 ° 10,000 ° 3,900 10,000 ° 5,7' 10,000 ° 6800 6800 10,000 ° 1,000 ° 1,000 ° 1,000 ° 1,000 ° 2,8 920 ° 920 ° 920 ° 920 °	3.11 5.89 <0.50		5.13 7.2 <0.53		14.4 13 <0.54	21.1 19.3 < 0.61 10.4 460 0.0087 J 23.7 1.42 < 1.33 76.3 < (0.0377 < (.00377 < (.00377		9.53 12.9 <0.54		4.61 6.54 .0067 J 7.29 223 <0.00085 2.95 0.624 <1.04 64.4 NA <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <.00312 <
Total Cyanide ^{e, r} Lead Manganese Total Mercury Nickel Selenium Silver Zinc PCBs/Pesticide 2,4,5-TP Acid (Silvex)' 4,4'-DDE 4,4'-DDT 4,4'-DDT 4,4'-DDT 4,4'-DDD Aldrin alpha-BHC beta-BHC Chlordane (alpha) delta-BHC ^g Dibenzofuran ¹ Dieldrin Endosulfan I ^{d, f} Endosulfan sulfate ^{a, r} Endrin	30° 50 27 63° 1600° 0.18° 30 3.9° 2 109° 5 3.8° 0.0033°	36 270 27 400 2,000' 140 36 36 2200 58 1.8 1.8 1.7 2.6 0.019 0.097 0.072 0.019 0.097 0.072 0.91 100 ³⁹ 14 4.8' 4.8' 4.8'	180 270 27 400 2,000 310 180 180 10,000 89 7.9 7.9 103 0.097 0.48 0.36 4.2 100 ³ 59 0.2 24 ⁴ 24 ⁴	1,500 270 1,000 10,000 ° 2.8' 310 1500 1500 10,000 ° 500° 62 47 92 0.68 3.4 3 24 500° 350 1.4 200° 200' 200' 89	6,800 10,000 ° 10,000 ° 3,900 10,000 ° 5,7' 10,000 ° 6800 6800 10,000 ° 1,000 ° 1,000 ° 1,000 ° 1,000 ° 2,8 920 ° 920 ° 920 ° 920 ° 920 ° 920 °	3.11 5.89 <0.50		5.13 7.2 <0.53		14.4 13 <0.54	21.1 19.3 < 0.61 10.4 460 0.0087 J 23.7 1.42 < 1.33 76.3 < (0.0377 < (.00377 < (.00377		9.53 12.9 <0.54		4.61 6.54 .0067 J 7.29 223 <0.00085

TABLE 4-2 SUMMARY LABORATORY DATA - MOB SITE TEST PIT ASSESSMENT SEPTEMBER 2012

			Protection of Restricted-	Public Health											
Contaminant	Unrestricted Use	Residential	Residential	Commercial	Industrial	TP-07	TP-08	TP-08	TP-09	TP-10	TP-10	TP-10	TP-11	TP-12	TP-12
Semivolatile organic co	mpounds	ppm=		500	1 0005	9.5 ft	7 ft	14 ft	0-3 ft	0-2.5 ft	9 ft	10 ft	9.5 ft	6 ft	12 ft
Acenaphthene Acenapthylene	20 100 ^a	100 ^a 100 ^a	100 ^a 100 ^a	500 ^D 500 ^D	1,000 ^c		<0.325 <0.325		<0.301 <0.301	0.445 <0.338	19.5 <7.93	<0.362 <0.362	<0.325 <0.325		
Anthracene [*]	100 ^a	100 ^a	100 ^a	500 [°]	1,000 ^c		<0.325		<0.301	0.597	25.6	<0.362	<0.325		
Benz(a)anthracene [†]	1°	1 ¹	1 [†]	5.6	11		<0.325 <0.325		<0.301 <0.301	1.48	48.6 39.3	<0.362 <0.362	<0.325 <0.325		
Benzo(a)pyrene Benzo(b)fluoranthene ^r	1°	1 ¹	ו 1 ^י	5.6	1.1		<0.325		<0.301	1.28	39.3	<0.362	<0.325		
Benzo(g,h,i)perylene	100	100 ^a	100 ^a	500⁵	1,000 ^c		<0.325		<0.301	0.745	20.3	<0.362	<0.325		
Benzo(k)fluoranthene ^r Chrysene ^r	0.8 ^c	1 1'	3.9 3.9	56 56			<0.325 <0.325		<0.301 <0.301	0.94	31.7 48.6	<0.362 <0.362	<0.325 <0.325		
Dibenz(a,h)anthracene ^r	0.33 °	0.33 ^e	0.33°	0.56	1.1		<0.325		<0.301	0.217 J	5.8 J	<0.362	<0.325		
Fluoranthene ^T	100 ^a	100 ^a	100 ^a	500 [□]	1,000 ^c		<0.325		<0.301	3.18	100	<0.362	0.196 J		
Fluorene Indeno(1,2,3-cd)pyrene	30 0.5 °	100 ^a 0.5 ^r	100 ^a 0.5 ^r	500° 5.6	1,000 ^c 11		<0.325 <0.325		<0.301 <0.301	.276 J 1.05	14.8 27.4	<0.362 <0.362	<0.325 <0.325		
m-Cresol ⁺	0.33 °	100 ^a	100 ^a	500°	1,000 ^c		<0.325		<0.301	<0.338	<7.93	<0.362	<0.325		
Naphthalene ¹	12	100 ^a 100 ^a	100 ^a 100 ^a	500° 500°	1,000 ^c		<0.325		< 0.301	<0.338	8.32	<0.362	<0.325		
o-Cresol [†]	0.33 ° 0.33 °	34	100 ⁻	500° 500°	1,000 ^c		<0.325 <0.325		<0.301 <0.301	<0.338 <0.338	<7.93 <7.93	<0.362 <0.362	<0.325 <0.325		
Pentachlorophenol	0.8°	2.4	6.7	6.7	55		<0.325		<0.301	<0.338	<7.93	<0.362	<0.325		
Phenanthrene ¹	100	100 ^a	100 ^a	500° 500°	1,000 ^c		<0.325		< 0.301	2.03	96	<0.362	<0.325		
Phenol Pyrene ^r	0.33 ^b 100	100 ^a 100 ^a	100 ^a 100 ^a	500°	1,000 ^c		<0.325 <0.325		<0.301 <0.301	<0.338 2.61	<7.93 80.6	<0.362 <0.362	<0.325 <0.325		
# of Detections of Analytes with No S	itandards:				,	0	0	0	0	3	3	0	0	0	0
Volatile organic comp	ounds 0.68	100 ^a	ppm=mg/kg 100 ^a	l 500⁵	1 0000	< 00205	< 00201	< 00462	< 00271	< 00207	< 005 12	< 00442	200405	× 00264	< 00422
1,1,1-I richloroethane [†]	0.68	100-	100 ⁻ 26	240	1,000 ^c 480	<.00395 <.00395	<.00301 <.00301	<.00462 <.00462	<.00371 <.00371	<.00397 <.00397	<.00543 <.00543	<.00419 <.00419	<.00496 <.00496	<.00364 <.00364	<.00423 <.00423
1,1-Dichloroethene	0.33	100 ^a	100 ^a	500 [¤]	1,000 ^c	<.00395	<.00301	<.00462	<.00371	<.00397	<.00543	<.00419	<.00496	<.00364	<.00423
1,2-Dichlorobenzene ^r 1,2-Dichloroethane	1.1 0.02 ^c	100 ^a 2.3	100 ^a 3.1	500° 30	1,000 ^c 60	<.00395	<.00301	<.00462 <.00462	<.00371 <.00371	<.00397 <.00397	<.00543 <.00543	<.00419 <.00419	<.00496 <.00496	<.00364	<.00423 <.00423
cis -1,2-Dichloroethene ^r	0.02	2.3	3.1 100 ^a	30 500°	1,000 ^c	<.00395 <.00395	<.00301 <.00301	<.00462 <.00462	<.00371 <.00371	<.00397 <.00397	<.00543 <.00543	<.00419 <.00419	<.00496 <.00496	<.00364 <.00364	<.00423 <.00423
trans-1,2-Dichloroethene	0.19	100 ^a	100 ^a	500 [¤]	1,000 ^c	<.00395	<.00301	<.00462	<.00371	<.00397	<.00543	<.00419	<.00496	<.00364	<.00423
1,3-Dichlorobenzene ^r 1,4-Dichlorobenzene	2.4 1.8	17 9.8	49 13	280 130	560 250	<.00395 <.00395	<.00301	<.00462	<.00371 <.00371	<.00397 <.00397	<.00543 <.00543	<.00419 <.00419	<.00496 <.00496	<.00364 <.00364	<.00423 <.00423
1,4-Dioxane	0.1 °	9.8 9.8	13	130		<.00395 <.00395	<.00301 <.00301	<.00462 <.00462	<.00371 <.00371	<.00397 <.00397	<.00543 <.00543	<.00419 <.00419	<.00496 <.00496	<.00364 <.00364	<.00423 <.00423
Acetone	0.05	100 ^a	100 [⊳]	500⁵	1,000 ^c	<.0197	<.0150	<.0231	<.0186	0.105 B	0.128 B	<.0210	0.0161 J B	<.0182	<.0260
Benzene n-Butylbenzene [*]	0.06	2.9 100 ^a	4.8 100 ^a	44 500°	89 1,000 ^c	.00281 J	<.00301	0.0142	<.00371	<.00397	<.00543	<.00419	<.00496	<.00364	<.00423
Carbon tetrachloride ^r	0.76	1.4	2.4	22		<.00395 <.00395	<.00301 <.00301	<.00462 <.00462	<.00371 <.00371	<.00397 <.00397	<.00543 <.00543	<.00419 <.00419	<.00496 <.00496	<.00364 <.00364	0.0138 <.00423
Chlorobenzene	1.1	100 ^a	100 ^a	500 [¤]	1,000 ^c	<.00395	<.00301	<.00462	<.00371	<.00397	<.00543	<.00419	<.00496	<.00364	<.00423
Chloroform Ethylbenzene ^r	0.37	10	49 41	350 390	700 780	<.00395	<.00301	<.00462	<.00371	<.00397	<.00543	<.00419	<.00496	<.00364	<.00423
Hexachlorobenzene	0.33 [°]	0.33 ^e	1.2	6		0.0538 <.00395	<.00301 <.00301	0.00322 J <.00462	<.00371 <.00371	<.00397 <.00397	0.0103 <.00543	<.00419 <.00419	<.00496 <.00496	<.00364 <.00364	<.00423 <.00423
Methyl ethyl ketone	0.12	100 ^a	100 ^a	500 [¤]	1,000 ^c	<.00395	<.00301	<.00462	<.00371	.0152 J	.0243 J	<.00419	<.00496	<.00364	<.00423
Methyl tert-butyl ether ^r Methylene chloride	0.93	62 51	100 ^a 100 ^a	500 [□] 500 [□]	1,000 ^c 1,000 ^c	<.00395	<.00301	<.00462	<.00371	<.00397	<.00543	<.00419	<.00496	<.00364	<.00423
n - Propylbenzene		100 ^a	100 ^a	500°	1,000 ^c	<.00987 <.00395	<.00752 <.00301	<.0115 <.00462	<.00928 <.00371	<.00992 <.00397	<.0136 <.00543	<0.0105 <.00419	<.0124 <.00496	<.0091 <.00364	<.0106
sec-Butylbenzene	11	100 ^a	100 ^a	500°	1,000 ^c	<.00395	<.00301	<.00462	<.00371	<.00397	<.00543	<.00419	<.00496	<.00364	0.0394
tert-Butylbenzene ^r Tetrachloroethene	5.9 1.3	100 ^a 5.5	100 ^a 19	500 [⊳] 150	1,000 ^c 300	<.00395	<.00301	<.00462	<.00371	<.00397	<.00543	<.00419	<.00496	<.00364	<.00423
Toluene	0.7	5.5 100 ^a	100 ^a	500 [°]	1,000 ^c	<.00395 <.00395	<.00301 <.00301	<.00462 0.0149	<.00371 <.00371	<.00397 <.00397	<.00543 0.00797	<.00419 <.00419	<.00496 <.00496	<.00364 <.00364	<.00423 <.00423
Trichloroethene	0.47	10	21	200	400	<.00395	<.00301	<.00462	<.00371	<.00397	<.00543	<.00419	<.00496	<.00364	<.00423
1,2,4-Trimethylbenzene ⁺ 1,3,5-Trimethylbenzene ⁺	3.6 8.4	47	52 52	190 190	380 380	<.00987	<.00752	<.0115	<.00928	.0033 J	0.0196	<.00419	<.0124	<.0091	0.0173
Vinyl chloride ^r	0.02	0.21	0.9	130	27	<.00987 <.00395	<.00752 <.00301	<.0115 <.00462	<.00928 <.00371	<.00397 <.00397	0.0067 <.00543	<.00419 <.00419	<.0124 <.00496	<.0091 <.00364	0.00431 <.00423
Xylene (mixed)	0.26	100 ^a	100 ^a	500 [¤]	1,000 ^c	0.3778	<.00301	0.0212	<.00371	<.00397	0.01992	<.00419	<.00496	<.00364	<.00423
Naphthalene [†] # of Detections of Analytes with No S	12 Standards:	100 ^a	100 ^a	500 [¤]	1,000 ^c	<.00987 0	<.00752 0	0.0113 J	<.00371	.00636 J 1	0.533 3	<0.0105 0	<.0124 0	<.0091 0	<.0106 0
# of Detections of Analytes with No e	nandarus.		ppm=mg/kg	l		0	0	0		1	3	0	0	0	0
Arsenic	13 °	16 ^r	16 ^r	16 ^r			<1.03		1.31 D	5.81	3.11	4.29	4.54		
Barium Beryllium	350 ° 7.2	350 ^r 14	400 72	400 590	10,000 ° 2700		<10.3 <0.516		13.4 <0.485	86.2 0.384 J	113 0.59	83.6 0.478 J	140 0.887		
Cadmium	2.5 °	2.5'	4.3	9.3	60		<0.516		<0.485	0.384 3	<0.660	<0.621	<0.635		
Chromium, hexavalent ^e	1 ^b	22	110	400	800		<1.2		<1.3	<1.2	<1.4	<1.3	<1.2		
Chromium, trivalent ^e	30 ° 50	36 270	180 270	1,500 270	6,800 10,000 °		4.42		3.56	15.8	88.4 43.6	15.2 15	27.7		
Copper Total Cyanide ^{e, r}	27	270	270	270	10,000 °		6.73 .0072 J		8.36 <0.061	34.1 .0069 J	43.6 .0081 J	15 .0074 J	21 <0.62		
Lead									8.81 D	158	34	12.7	12.8		
	63 ^c	400	400	1,000	3,900		6.73								1
Manganese Total Mercury	1600 ^c	2,000 ^r	2,000 ^r	10,000 ª	10,000 °		6.57		233	309	366	459	542		
Manganese Total Mercury Nickel											366 2.11 18.1	459 0.018 16.4			
Total Mercury Nickel Selenium	1600 ° 0.18 °	2,000 ^r 0.81 ^j 140 36	2,000 ^r 0.81 ^j 310 180	10,000 ° 2.8' 310 1500	10,000 ° 5.7 ¹ 10,000 ° 6800		6.57 242 2.95 <1.03	 	233 0.0401 2.67 <0.970	309 0.242 11.5 0.933	2.11 18.1 1.51	0.018 16.4 1.7	542 0.103 29.2 2.16	 	
Total Mercury Nickel Selenium Silver	1600 ° 0.18 ° 30 3.9° 2	2,000 ^r 0.81 ^j 140 36 36	2,000 ^r 0.81 ¹ 310 180 180	10,000 ° 2.8' 310 1500 1500	10,000 ° 5.7 ¹ 10,000 ° 6800 6800		6.57 242 2.95 <1.03 <1.03	 	233 0.0401 2.67 <0.970 <0.970	309 0.242 11.5 0.933 <1.17	2.11 18.1 1.51 1.04	0.018 16.4 1.7 <1.24	542 0.103 29.2 2.16 <1.26	 	
Total Mercury Nickel Selenium	1600 ° 0.18 ° 30 3.9° 2 109 °	2,000 ^r 0.81 ^j 140 36	2,000 ^r 0.81 ^j 310 180	10,000 ° 2.8 ¹ 310 1500 1500 10,000 °	10,000 ° 5.7 ¹ 10,000 ° 6800		6.57 242 2.95 <1.03	 	233 0.0401 2.67 <0.970	309 0.242 11.5 0.933	2.11 18.1 1.51	0.018 16.4 1.7	542 0.103 29.2 2.16	 	
Total Mercury Nickel Selenium Silver Zinc PCBs/Pesticide 2,4,5-TP Acid (Silvex)'	1600 ° 0.18 ° 30 3.9 ° 2 109 ° S 3.8	2,000 ^r 0.81 ^j 140 36 36 2200 58	2,000 ^r 0.81 ^j 310 180 10,000 ^o ppm=mg/kg 100 ^a	10,000 ° 2.8' 310 1500 1500 10,000 °	10,000 ° 5.7 ¹ 10,000 ° 6800 6800 10,000 °		6.57 242 2.95 <1.03 <1.03 66.7 NA		233 0.0401 2.67 <0.970 <0.970 47.6 < 6.2	309 0.242 11.5 0.933 <1.17 197 <.0058	2.11 18.1 1.51 1.04 168 <.0058	0.018 16.4 1.7 <1.24 68.5 <.0064	542 0.103 29.2 2.16 <1.26 69.7		
Total Mercury Nickel Selenium Silver Zinc PCBs/Pesticide 2,4,5-TP Acid (Silvex)' 4,4'-DDE	1600 ° 0.18 ° 30 3.9° 2 109 ° S 3.8 0.0033 °	2,000' 0.81' 140 36 2200 58 58 1.8	2,000 ^r 0.81 ¹ 310 180 10,000 [°] ppm=mg/kg 100 [°] 8.9	10,000 ° 2.8' 310 1500 1500 10,000 ° 500° 62	10,000 ° 5.7' 10,000 ° 6800 6800 10,000 ° 1,000° 1,000°		6.57 242 2.95 <1.03 <1.03 66.7 NA <.00323		233 0.0401 2.67 <0.970 <0.970 47.6 <6.2 <.00305	309 0.242 11.5 0.933 <1.17 197 <.0058 .00338 C	2.11 18.1 1.51 1.04 168 <.0058 <.00411	0.018 16.4 1.7 <1.24 68.5 <.0064 <.00360	542 0.103 29.2 2.16 <1.26	 	
Total Mercury Nickel Selenium Silver Zinc PCBs/Pesticide 2,4,5-TP Acid (Silvex)'	1600 ° 0.18 ° 30 3.9 ° 2 109 ° S 3.8	2,000 ^r 0.81 ^j 140 36 36 2200 58	2,000 ^r 0.81 ^j 310 180 10,000 ^o ppm=mg/kg 100 ^a	10,000 ° 2.8' 310 1500 1500 10,000 °	10,000 ° 5.7 ¹ 10,000 ° 6800 6800 10,000 °		6.57 242 2.95 <1.03 <1.03 66.7 NA		233 0.0401 2.67 <0.970 <0.970 47.6 < 6.2	309 0.242 11.5 0.933 <1.17 197 <.0058	2.11 18.1 1.51 1.04 168 <.0058	0.018 16.4 1.7 <1.24 68.5 <.0064	542 0.103 29.2 2.16 <1.26 69.7		
Total Mercury Nickel Selenium Silver Zinc PCBs/Pesticide 2,4,5-TP Acid (Silvex)' 4,4'-DDE 4,4'-DDT 4,4'-DDT Aldrin	1600 ° 0.18 ° 30 3.9° 2 109 ° S 0.0033 ° 0.0033 ° 0.0033 °	2,000' 0.81' 140 36 2200 58 1.8 1.8 1.7 2.6 0.019	2,000 [°] 0.81 ¹ 180 180 10,000 ° ppm=mg/kg 100° 8.9 7.9 7.9 13 0.097	10,000 ° 2.8' 310 1500 1500 10,000 ° 500° 62 47 92 0.68	10,000 ° 5.7' 10,000 ° 6800 10,000 ° 1,000° 1,000° 120 94 180 1.4		6.57 242 2.95 <1.03 <1.03 66.7 NA <.00323 <.00323 <.00323 <.00323		233 0.0401 2.67 <0.970 47.6 47.6 <0.0305 <.00305 <.00305 <.00305	309 0.242 11.5 0.933 <1.17 197 <.0058 .00338 C 0.0113 .0143 C <.00338	2.11 18.1 1.51 1.04 168 <.0058 <.00411 0.0286 <.00411 <.00411	0.018 16.4 1.7 <1.24 68.5 <.0064 <.00360 <.00360 <.00360 <.00360	542 0.103 29.2 2.16 <1.26		
Total Mercury Nickel Selenium Silver Zinc PCBs/Pesticide 2,4,5-TP Acid (Silvex) 4,4'-DDE 4,4'-DDT 4,4'-DDT Aldrin alpha-BHC	1600 ° 0.18 ° 30 2 109 ° S 0.0033 ° 0.0033 ° 0.0033 ° 0.003 °	2,000' 0.81' 140 36 2200 58 1.8 1.8 1.7 2.6 0.019 0.097	2,000 [°] 0.81 ¹ 310 180 10,000 [°] ppm=mg/kg 100 [°] 8.9 7.9 7.9 13 0.097 0.48	10,000 ° 2.8' 310 1500 1500 10,000 ° 500° 62 47 92	10,000 ° 5.7' 10,000 ° 6800 10,000 ° 1,000° 1,000° 120 94 180 1.4		6.57 242 2.95 <1.03 <1.03 66.7 NA <.00323 <.00323 <.00323 <.00323 <.00323		233 0.0401 2.67 <0.970 47.6 47.6 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305	309 0.242 11.5 0.933 <1.17 197 <.0058 .00338 C 0.0113 .0143 C <.00338 <.00338	2.11 18.1 1.51 1.04 168 <.0058 <.00411 0.0286 <.00411 <.00411 <.00411	0.018 16.4 1.7 <1.24 68.5 <.0064 <.00360 <.00360 <.00360 <.00360 <.00360 <.00360	542 0.103 29.2 2.16 <1.26		
Total Mercury Nickel Selenium Silver Zinc PCBs/Pesticide 2,4,5-TP Acid (Silvex)' 4,4'-DDE 4,4'-DDT 4,4'-DDT Aldrin	1600 ° 0.18 ° 30 3.9° 2 109 ° S 0.0033 ° 0.0033 ° 0.0033 °	2,000' 0.81' 140 36 2200 58 1.8 1.8 1.7 2.6 0.019 0.097	2,000 [°] 0.81 ¹ 180 180 10,000 ° ppm=mg/kg 100° 8.9 7.9 7.9 13 0.097	10,000 ° 2.8' 310 1500 1500 10,000 ° 500° 62 47 92 0.68	10,000 ° 5.7' 10,000 ° 6800 10,000 ° 1,000° 1,000° 120 94 180 1.4 6.8		6.57 242 2.95 <1.03 <1.03 66.7 NA <.00323 <.00323 <.00323 <.00323		233 0.0401 2.67 <0.970 47.6 47.6 <0.0305 <.00305 <.00305 <.00305	309 0.242 11.5 0.933 <1.17 197 <.0058 .00338 C 0.0113 .0143 C <.00338	2.11 18.1 1.51 1.04 168 <.0058 <.00411 0.0286 <.00411 <.00411	0.018 16.4 1.7 <1.24 68.5 <.0064 <.00360 <.00360 <.00360 <.00360	542 0.103 29.2 2.16 <1.26		
Total Mercury Nickel Selenium Silver Zinc 2,4,5-TP Acid (Silvex)' 4,4'-DDE 4,4'-DDT 4,4'-DDD Aldrin alpha-BHC beta-BHC Chlordane (alpha) delta-BHC ^g	1600 ° 0.18 ° 30 2 109 ° S 0.0033 ° 0.0033 ° 0.0033 ° 0.005 ° 0.02 0.02	2,000' 0.81' 140 36 2200 58 1.8 1.7 2.6 0.019 0.097 0.072 0.91 100 ^a	2,000 [°] 0.81 [°] 180 180 10,000 ^{°®} ppm=mg/kg 100 ^{°®} 8.9 7.9 7.9 7.9 13 0.097 0.48 0.36 4.2 100 [®]	10,000 ° 2.8' 310 1500 10,000 ° 500° 62 47 92 0.68 3.4 3 4 3 24 500°	10,000 ° 5.7' 10,000 ° 6800 10,000 ° 1,000 ° 1,000 ° 1,000 ° 1,000 ° 1,000 °		6.57 242 2.95 <1.03 <1.03 66.7 NA <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323		233 0.0401 2.67 <0.970 47.6 < < 6.2 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305	309 0.242 11.5 0.933 <1.17 197 <.0058 .00338 C 0.0113 .0143 C <.00338 <.00338 <.00338 .00154 C <.00338	2.11 18.1 1.51 1.04 168 <.0058 <.00411 0.0286 <.00411 <.00411 <.00411 <.00411 <.00418 C <.00411	0.018 16.4 1.7 <1.24	542 0.103 29.2 2.16 <1.26		
Total Mercury Nickel Selenium Silver Zinc PCBs/Pesticide 2,4,5-TP Acid (Silvex)' 4,4'-DDE 4,4'-DDT 4,4'-DDT 4,4'-DDD Aldrin alpha-BHC beta-BHC Chlordane (alpha) delta-BHC ⁹ Dibenzofuran ¹	1600 ° 0.18 ° 2 2 109 ° S 0.0033 ° 0.0033 ° 0.0033 ° 0.0033 ° 0.005 ° 0.02 0.036 0.094 0.04	2,000' 0.81' 140 36 2200 58 1.8 1.7 2.6 0.019 0.097 0.072 0.91 100 ^a	2,000 [°] 0.81 [°] 180 180 10,000 ^{°®} ppm=mg/kg 100 ^{°®} 8.9 7.9 7.9 7.9 13 0.097 0.48 0.36 4.2 100 ^{°8}	10,000 ° 2.8' 310 1500 10,000 ° 500° 62 47 62 47 92 0.68 3.4 3.4 3 24 500° 350	10,000 ° 5.7' 10,000 ° 6800 10,000 ° 1,000 ° 1,000 ° 1,000 ° 1,000 ° 1,000 °		6.57 242 2.95 <1.03 <1.03 66.7 NA <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323		233 0.0401 2.67 <0.970 47.6 < <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305	309 0.242 11.5 0.933 <1.17 197 <.0058 .00338 C 0.0113 .0143 C <.00338 <.00338 <.00338 .00154 C <.00338 <.00338	2.11 18.1 1.51 1.04 168 <.0058 <.00411 <.00411 <.00411 <.00411 .00448 C <.00411 <.00411 <.00411	0.018 16.4 1.7 <1.24	542 0.103 29.2 2.16 <1.26		
Total Mercury Nickel Selenium Silver Zinc PCBs/Pesticide 2,4,5-TP Acid (Silvex)' 4,4'-DDE 4,4'-DDE 4,4'-DDD Aldrin alpha-BHC beta-BHC Chlordane (alpha) delta-BHC ^g	1600 ° 0.18 ° 30 2 109 ° S 0.0033 ° 0.0033 ° 0.0033 ° 0.005 ° 0.02 0.036 0.094	2,000' 0.81' 140 36 2200 58 1.8 1.7 2.6 0.019 0.097 0.072 0.91 100 ^a	2,000 [°] 0.81 [°] 180 180 10,000 ^{°®} ppm=mg/kg 100 ^{°®} 8.9 7.9 7.9 7.9 13 0.097 0.48 0.36 4.2 100 [®]	10,000 ° 2.8' 310 1500 10,000 ° 500° 62 47 92 0.68 3.4 3 4 3 24 500°	10,000 ° 5.7' 10,000 ° 6800 10,000 ° 1,000 ° 1,000 ° 1,000 ° 1,000 ° 1,000 ° 1,000 ° 1,000 ° 2.8		6.57 242 2.95 <1.03 <1.03 66.7 NA <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323 <.00323		233 0.0401 2.67 <0.970 47.6 < < 6.2 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305	309 0.242 11.5 0.933 <1.17 197 <.0058 .00338 C 0.0113 .0143 C <.00338 <.00338 <.00338 .00154 C <.00338	2.11 18.1 1.51 1.04 168 <.0058 <.00411 0.0286 <.00411 <.00411 <.00411 <.00411 <.00418 C <.00411	0.018 16.4 1.7 <1.24	542 0.103 29.2 2.16 <1.26		
Total Mercury Nickel Selenium Silver Zinc PCBs/Pesticide 2,4,5-TP Acid (Silvex)' 4,4'-DDE 4,4'-DDT 4,4'-DDT 4,4'-DDD Aldrin alpha-BHC beta-BHC Chlordane (alpha) delta-BHC ⁹ Dibenzofuran ¹ Dieldrin	1600 ° 0.18 ° 30 2 109 ° S 0.0033 ° 0.0033 ° 0.0033 ° 0.005 ° 0.02 0.036 0.094 0.044 7 0.005 °	2,000' 0.81' 140 36 2200 58 1.8 1.7 2.6 0.019 0.097 0.072 0.91 100 ³ 14	2,000 [°] 0.81 ¹ 310 180 10,000 ° ppm=mg/kg 100° 8.9 7.9 7.9 133 0.097 0.48 0.36 4.2 100° 59 0.2	10,000 ° 2.8' 310 1500 10,000 ° 500° 62 47 62 47 92 0.68 3.4 3.4 3.4 500° 350 1.4	10,000 ° 5.7' 10,000 ° 6800 10,000 ° 1,000 ° 1,000 ° 1,000 ° 1,000 ° 1,000 ° 1,000 ° 2.8 920 °		6.57 242 2.95 <1.03		233 0.0401 2.67 <0.970 47.6 <6.2 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305	309 0.242 11.5 0.933 <1.17 197 <.0058 .00338 C 0.0113 .0143 C <.00338 <.00338 <.00338 <.00338 .00154 C <.00338 .00338	2.11 18.1 1.51 1.04 168 <.0058 <.00411 0.0286 <.00411 <.00411 <.00411 .00448 C <.00411 .00441 .00411 .00441 .00411 .00441 .00441 .00441 .00445 .0045 .004	0.018 16.4 1.7 <1.24	542 0.103 29.2 2.16 <1.26		
Total Mercury Nickel Selenium Silver Zinc PCBs/Pesticide 2,4,5-TP Acid (Silvex)' 4,4'-DDE 4,4'-DDT 4,4'-DDT 4,4'-DDD Aldrin alpha-BHC beta-BHC Chlordane (alpha) delta-BHC ⁹ Dibenzofuran ' Dieldrin Endosulfan II ^{d, f} Endosulfan II ^{d, f}	1600 ° 0.18 ° 30 2 2 109 ° S 0.003 ° 0.003 ° 0.003 ° 0.005 ° 0.02 0.036 0.094 0.04 7 7 0.005° 2.4	2,000 ¹ 0.81 ¹ 140 36 36 2200 58 1.8 1.7 2.6 0.019 0.072 0.072 0.072 0.072 0.072 0.072 0.039 4.8 ¹	2,000 [°] 0.81 ¹ 310 180 180 10,000 ° ppm=mg/kg 100° 8.9 7.9 7.9 133 0.097 0.48 0.36 4.22 100° 59 0.2 24 ⁴ 24 ⁴	10,000 ° 2.8 310 1500 10,000 ° 500° 62 47 92 0.68 3.4 500° 350 1.4 200° 200°	10,000 ° 5.7' 10,000 ° 6800 10,000 ° 1,000 ° 1,000 ° 1,000 ° 1,000 ° 1,000 ° 1,000 ° 2.8 920 ° 920 °		6.57 242 2.95 <1.03		233 0.0401 2.67 <0.970 47.6 < 6.2 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305	309 0.242 11.5 0.933 <1.17	2.11 18.1 1.51 1.04 168 <.0058 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411	0.018 16.4 1.7 <1.24	542 0.103 29.2 2.16 <1.26		
Total Mercury Nickel Selenium Silver Zinc PCBs/Pesticide 2,4,5-TP Acid (Silvex)' 4,4'-DDE 4,4'-DDT 4,4'-DDT 4,4'-DDD Aldrin alpha-BHC beta-BHC Chlordane (alpha) delta-BHC 9 Dibenzofuran ' Dieldrin Endosulfan 1 ^{d, f} Endosulfan sulfate ^{a, f} Endrin	1600 ° 0.18 ° 30 3.9 ° 2 109 ° S 0.003 ° 0.003 ° 0.003 ° 0.005 ° 0.02 0.036 0.094 0.04 7 7 0.005° 2.4 2.4 2.4 2.4	2,000' 0.81' 140 36 2200 58 1.8 1.7 2.6 0.019 0.072 0.072 0.072 0.072 0.072 0.039 100 ^a 4.8' 4.8' 4.8'	2,000 [°] 0.81 ¹ 310 180 10,000 ° ppm=mg/kg 100° 8.9 7.9 7.9 0.097 0.48 0.36 4.2 100° 59 0.2 24 [°] 24 [°] 24 [°]	10,000 ° 2.8 310 1500 10,000 ° 500° 62 47 92 0.68 3.4 500° 350 350 1.4 200° 200° 200°	10,000 ° 5.7' 10,000 ° 6800 10,000 ° 1,000 °		6.57 242 2.95 <1.03		233 0.0401 2.67 <0.970 47.6 < 6.2 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305	309 0.242 11.5 0.933 <1.17 197 <.0058 .00338 C 0.0113 .0143 C <.00338 <.00338 <.00338 <.00338 <.00338 <.00338 <.00338 <.00338 <.00338 <.00338 <.00338 <.00338 <.00338 <.00338	2.11 18.1 1.51 1.04 168 <.0058 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.	0.018 16.4 1.7 <1.24	542 0.103 29.2 2.16 <1.26		
Total Mercury Nickel Selenium Silver Zinc PCBs/Pesticide 2,4,5-TP Acid (Silvex)' 4,4'-DDE 4,4'-DDT 4,4'-DDT 4,4'-DDD Aldrin alpha-BHC beta-BHC Chlordane (alpha) delta-BHC ⁹ Dibenzofuran ' Dieldrin Endosulfan II ^{d, f} Endosulfan II ^{d, f}	1600 ° 0.18 ° 30 2 2 109 ° S 0.003 ° 0.003 ° 0.003 ° 0.005 ° 0.02 0.036 0.094 0.04 7 7 0.005° 2.4	2,000 ¹ 0.81 ¹ 140 36 36 2200 58 1.8 1.7 2.6 0.019 0.072 0.072 0.072 0.072 0.072 0.072 0.039 4.8 ¹	2,000 [°] 0.81 ¹ 310 180 180 10,000 ° ppm=mg/kg 100° 8.9 7.9 7.9 133 0.097 0.48 0.36 4.22 100° 59 0.2 24 ⁴ 24 ⁴	10,000 ° 2.8 310 1500 10,000 ° 500° 62 47 92 0.68 3.4 500° 350 1.4 200° 200°	10,000 ° 5.7' 10,000 ° 6800 10,000 ° 1,000 ° 1,000 ° 1,000 ° 1,000 ° 1,000 ° 1,000 ° 2.8 920 ° 920 ° 920 ° 920 °		6.57 242 2.95 <1.03		233 0.0401 2.67 <0.970 47.6 < 6.2 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305 <.00305	309 0.242 11.5 0.933 <1.17	2.11 18.1 1.51 1.04 168 <.0058 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411 <.00411	0.018 16.4 1.7 <1.24	542 0.103 29.2 2.16 <1.26		

A Boundary proximate Location of Test Pits imated Limits of Excavation to meet Commercial e Criteria proximate Location of Removed USTs nt of "Fill" and "Native" Material ep Fill Material tive Soil / Shallow Fill Depth Contours (feet below ground surface) feet	С	<image/> <text><text><text><text><text></text></text></text></text></text>
eotechnical / Environmental Boring onitoring Well pth to Contamination = Not Detected (See Note #5) McIntosh & McIntosh P.C. "Topographical Map of Part of 8, Holland Purchase" Job No. 7669-B(2) 8. d utilities shown have been located from field survey isting drawings. The surveyor makes no guarantees that lities shown comprise all such utilities, either in service or rveyor has not physically located the underground utilities. em: NAD 1983 StatePlane New York West FIPS 3103 Ft verse Mercator herican 1983 nination are based on PID readings greater than 50 ppm tigations . efined as no evidence of soil contamination either through	В	MOB - BROWNFIELD CLEANUP PROGRAM CITY OF BUFFALO, NY
A for the state of	A	PROJECT NO: K11.002.001 DATE: OCTOBER 15, 2012 SCALE: 1 IN = 20 FT DRAWN BY: CAM DESIGNED BY: CAM CHECKED BY: MJC TEST PIT LAYOUT AND APPROX. DEPTH OF FILL FIGURE 1

ſ	Ŗ		C&S Engineers, Inc. 90 Broadway Buffalo, New York 14203	TEST PIT	Test	: Pit No.	TP-01
~			Phone: 716-847-1630 Fax: 716-847-1454	ILSI FII	S	heet 1 of:	1
cu	JIVIPA		www.cscos.com		Pre	oject No.:	K11.002.001
Projec	ct Nam	e: Test Pit	Investigation - MOB Site		S	tart Date:	9/24/12
L	ocatio		001 Main Street	Operator: LP Ciminelli	Fin	nish Date:	9/24/12
	Clier	t: Kaleida I	Properties	Equipment: Track mounted Exc.	l	nspector:	C. Martin
(tt	e	-			a - and - 35-50%		OMMENTS
Depth (ft)	Sample No.	ຊີ Exc. Exc. Depth	c - coarse m - medium f - fine S - San	MATERIAL DESCRIPTION	- some - 20-35% I - little - 10-20% t - trace - 0-10%		aving of sidewalls, ion difficulties, PID readings)
			Asphalt and B	inder Surface		Start- 8:39	9 AM
1		0-3.0		<u>- med - dry to moist - no Silt)</u>		0 ppm	
2		0.0		NATIVE			
3							
5			<u>SAND (brown</u>	- med - dry to moist - no Silt)		0 ppm	
6				NATIVE			
7	S-1	7.0					
8			SAND /brown	- med - dry to moist - no Silt)		0.000	
9 10				NATIVE		0 ppm	
11	S-2	11.0					
12				the following analysis: Method 8260)		Backfill - 8	3:52 AM
13				PA Method 8270) Is (EPA Method 6010, 7470, 7471)			
14			4. PCB (EPA	Method 8082) s (EPA Method 8082)			
15			6. Herbicide	s (EPA Method 8151)			
16				EPA Method 9012A) ne (EPA Method 7196)			
17			Samples collected for	TP-01 include:			
18			S-1: 7.0 ft S-1: 11.0 ft (VC	DC Only)			
19							
20							
21							
22							
23							
24							
25							

	-22		- 1 90	&S Engineers, Inc. Broadway iffalo, New York 14203		Test	t Pit No.	TP-02
00			Ph Ph	one: 716-847-1630	TEST PIT	s	heet 1 of:	1
cc	OMPA			x: 716-847-1454 w.cscos.com		Pr	oject No.:	K11.002.001
Projec	t Nam	e: 1	Test Pit Inv	estigation - MOB Site		S	tart Date:	9/24/12
-		_		1 Main Street	Operator: LP Ciminelli	Fir	nish Date:	9/24/12
	Clier	nt: k	Kaleida Pro	operties	Equipment: Track mounted Exc.	l. l.	nspector:	C. Martin
Depth (ft)	Sample No.	Symbol	Sample Depth	c - coarse m - medium f - fine S - Sand	MATERIAL DESCRIPTION a - and - s - some - some - little - little - tittle - trace , \$ - Silt, G - Gravel, C - Clay, cly - clayey t - trace	20-35% 10-20%	(e.g., ca excavatio	DMMENTS ving of sidewalls, on difficulties, PID readings)
		_		Asphalt and Bi	nder Surface		Start- 8:00	AM
1				Silty SAND (sol	me 20-35% Silt - brown - dry)		0 ppm	
		_	0-3.0		NATIVE			
2 3 4					<u></u>			
5		_		<u>Clay SILT (little</u> <u>med plasticity</u>	<u> 10-20% Clay - reddish brown - moist - low to</u>		0 ppm	
			7.5		NATIVE			
7 8	S-1		8.0	<u>Sandy SILT wit</u> <u>Clay - moist)</u>	<u>h chunks of Silt (brown to reddish - trace 0-10 NATIVE</u>	<u>%</u>	0 ppm	
9					<u>h chunks of Silt (brown to reddish - trace 0-10</u>	%	0 ppm	
10		_	10.0		and (brown - fine - dry) <u>NATIVE</u>			
11				<u>SAND (It brown</u>	<u>1 - dry - med)</u>		0 ppm	
12	S-2		12.0		<u>NATIVE</u>			
13							Backfill - 8	:22 AM
14		_		Samples collected for t 1. VOC (EPA	he following analysis: Method 8260)			
15				3. TAL Metals	A Method 8270) s (EPA Method 6010, 7470, 7471)			
16		╞		5. Pesticides	Method 8082) (EPA Method 8082)			
					(EPA Method 8151)			
17		╞			EPA Method 9012A) e (EPA Method 7196)			
18		F		Samples collected for 1				
19		F		S-1: 8.0 ft				
20		╞		S-2: 12.0 ft (VO	c omy)			
21		╞						
22		╞						
23		╞						
24		$\left \right $						
25								

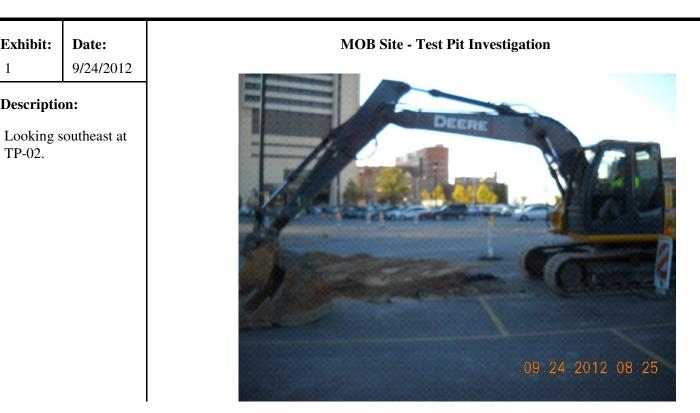
ſ	R		90 E Buf	S Engineers, Inc. Broadway falo, New York 14203	TEST P	т		: Pit No.	TP-03
co	OMP/			one: 716-847-1630 :: 716-847-1454		•	Sheet 1 of:		1
c				v.cscos.com			Pr	oject No.:	K11.002.001
Projec	ct Nam	e: 🏾	Test Pit Inve	estigation - MOB Site			S	tart Date:	9/24/12
L	ocatio	_		Main Street	Operator: LP Ci		Fir	nish Date:	9/24/12
	Clier	nt:	Kaleida Pro	perties	Equipment: Track	mounted Exc.	I.	nspector:	C. Martin
ft)	е	Ы				a - and -	35-50%	<u>c</u>	OMMENTS
Depth (ft)	Sample No.	Symbo	Sample Depth	f - fine	MATERIAL DESCRIPTION Silt, G - Gravel, C - Clay, cly - d	s - some - I - little -	20-35% 10-20%	excavat	aving of sidewalls, ion difficulties, PID readings)
		_						Start- 9:00) AM
1				<u>Top Soil</u>				0 ppm	
			0-3.0	<u>Asphalt pavement (</u>	<u>a</u> 2 ft. Disconnected pipeling	<u>pes and hoses.</u>			
2 3					20% Clay - brown - mois Gravel (black - subround				
4				"EAF	RTHEN FILL"				
5				<u>Same as previous w</u>	v/ crushed C&D 0.125" a	and smaller - wet		0 ppm	
6	S-1		6.0	<u>w/larger red bricks a</u>	and concrete piceces <u>FILL</u>				
7								unstable s	idewalls
8		-							
			9.0	Silty CLAY (brown -	0.125" to 0.25" C&D - v	vet - med plasticity	<u>'</u>	0 ppm	
9				10:00 AM broke thro	<u>FILL</u> ough 4" concrete basen	nent floor @ 10 ft			
10			11.0	Silty SAND (fine Sa	<u>NATIVE</u> nd - brown - moist - son	no 20 25% Clav)		0.0	
11			11.0		hiah plasticity - red bro			8.0 ppm petroleum	odor
12		-		<u></u>		<u></u>			
13				Samples collected for the fo				Backfill - 9):45 AM
14				1. VOC (EPA Meth 2. SVOC (EPA Meth	ethod 8270)				
15		╞		3. TAL Metals (EF 4. PCB (EPA Meth	PA Method 6010, 7470, 7 hod 8082)	(471)			
16				5. Pesticides (EP)					
17				•	A Method 8151)				
18				8. Hex Chome (EF	PA Method 7196)				
19				Samples collected for TP-03 S-1: 6.0 ft	3 include:				
20									
21									
22									
23									
24									
25									

ſ	R	S	90 Bu	&S Engineers, Inc. Broadway Ifalo, New York 14203		TEST PIT	Tes	t Pit No.	TP-04
co	MADA	NIES		one: 716-847-1630 x: 716-847-1454		ILOI III	S	Sheet 1 of:	1
ce	JIVIPP	AINIES		W.CSCOS.COM			Pr	oject No.:	K11.002.001
Projec	ct Nam	e: Tes	t Pit Inv	estigation - MOB Site			S	Start Date:	9/24/12
L	ocatio	n: MOI	3 - 100 ⁻	1 Main Street		Operator: LP Ciminelli	Fii	nish Date:	9/24/12
	Clier	t: Kale	eida Pro	perties		Equipment: Track mounted Exc.		nspector:	C. Martin
Depth (ft)	Sample No.	Symbol S Sg	ample epth	c - coarse m - medium f - fine S - Sand,		TERIAL DESCRIPTION S - some I - little	- 35-50% - 20-35% - 10-20% e - 0-10%	(e.g., ca excavati	OMMENTS aving of sidewalls, ion difficulties, PID readings)
1				<u>Asphalt and Bin</u>	nder S	<u>urface</u>		Start- 10:3	
2 3 4		0	-5.0	<u>Sandy SILT (trac</u>		e Sand 0-1% - moist - brown <u>)</u> NATIVE		0.7 ppm	
5			<u>NATIVE</u>						
7						MANNE			
8	S-1		8.0	<u>Silty CLAY (redo</u>	dish b	<u>rown - soft - moist - high plasicity)</u>		5.7 ppm	
9						NATIVE			
10 11		,	11.0	Same as previou	<u>us w/</u> :	trace black coarse Sand and Gravel		5.8 ppm	
12 13						NATIVE			
13	S-2		14.0	<u>Silty CLAY (brow</u> <u>coarse Sand and</u>		noist - some Clay mixed with black vel)		403 ppm	
15								Backfill - 1	0:50 AM
16				Samples collected for th 1. VOC (EPA I	Metho	d 8260)			
17				2. SVOC (EPA 3. TAL Metals		nod 8270) Method 6010, 7470, 7471)			
18				4. PCB (EPA I 5. Pesticides	Metho	d 8082)			
19				7. Cyanide (El	PA Me	Method 8151) ethod 9012A)			
<u>20</u> 21				8. Hex Chome	e (EPA	Method 7196)			
22				Samples collected for Th S-1: 8.0 ft					
23				S-2: 14.0 ft (VOC	C Only	<i>'</i>)			
24									
25									

ſ	ا رد	2	90	&S Engineers, Inc. Broadway Ifalo, New York 14203		Test	t Pit No.	TP-05
			Phe	one: 716-847-1630	TEST PIT	S	heet 1 of:	1
cc	DMP/	N		x: 716-847-1454 w.cscos.com		Pr	oject No.:	K11.002.001
Proied	ct Nam	e: l		estigation - MOB Site			Start Date:	9/24/12
-	ocatio	_		1 Main Street	Operator: LP Ciminelli		nish Date:	9/24/12
	Clier	_	Kaleida Pro		Equipment: Track mounted Exc.	1	nspector:	C. Martin
÷								OMMENTS
Depth (ft)	Sample No.	Symbo	Sample Depth	c - coarse m - medium f - fine S - Sand, S	MATERIAL DESCRIPTION a - and - s - some - I - little - I - litt	20-35%	(e.g., c	aving of sidewalls, ion difficulties, PID readings)
				Asphalt and Bind	der Surface		Start- 1:10) PM
4		-		Sandy SILT (trac	o 0-1% Sand - dk brown - maist) w/ Clay			
1	S-1		0-3.0		<u>e 0-1% Sand - dk brown - moist) w/ Clay</u> soft - high plasticity <u>)</u>			
3				E	ILL			
4 5					ATIVE			
5			6.0		e 0-1% fine Sand - brown - moist) w/ Clay			
6					<u>soft - high plasticity)</u> ATIVE			
7								
8			8.0		<u>e 0-1% fine Sand - brown - moist) w/ Clay</u> soft - high plasticity)			
9		-						
10		-						
11		-		N	ATIVE			
12		-						
13			14.0	<u>Sandy SILT (trac</u>	<u>e fine Sand - brown - moist - no Clay)</u>			
14								
15							Backfill - 1	1:22 PM
16				Samples collected for the 1. VOC (EPA N	e following analysis: /lethod 8260)			
17				2. SVOC (EPA	Method 8270)			
18				4. PCB (EPA N				
19					EPA Method 8082) (EPA Method 8151)			
20				7. Cyanide (EF	PA Method 9012A) (EPA Method 7196)			
20								
				Samples collected for TF S-1: 0-3 ft	P-05 include:			
22				<u> </u>				
23								
24								
25								

ſ	R	5	90	&S Engineers, Inc. Broadway Ifalo, New York 14203	TEST PIT	Tes	t Pit No.	TP-06
~)MP/	NIIF	A Pho	one: 716-847-1630	IE3I FII	5	Sheet 1 of:	1
cu	JIVIPA	AINIE		<: 716-847-1454 w.cscos.com		P	roject No.:	K11.002.001
Projec	ct Nam	e: Te	st Pit Inv	estigation - MOB Site			Start Date:	9/24/12
L	ocatio	n: M0	OB - 1001	Main Street	Operator: LP Ciminelli	Fi	nish Date:	9/24/12
	Clier	nt: Ka	leida Pro	perties	Equipment: Track mounted Exc.		Inspector:	C. Martin
(ft)	e	0			a - and	- 35-50%		OMMENTS
Depth (ft)	Sample No.	Symbo	Sample Depth	f - fine	MATERIAL DESCRIPTION S - some	- 20-35% - 10-20% e - 0-10%	excavati	aving of sidewalls, on difficulties, PID readings)
				Asphalt and Binde	er Surface		Start- 12:3	O PM
1			0-3.0	<u>Silty SAND (fine - 1</u> (dk grey - angular	t <u>race Silt - moist) w/ trace Gravel</u> - <u>1")</u>		0 ppm	
3				<u>NA</u>	<u>TIVE</u>		•	
4				<u>NA</u>	TIVE			
6			7.0	<u>CLAY (reddish bro</u>	own - dry - soft - high plasticity)		0 ppm	
7 8								
9				<u>NA</u>	<u>TIVE</u>			
<u>10</u> 11			11.0	<u>CLAY (brown - mo</u>	<u>ist - soft - high plasticity)</u>		0 ppm	
<u>12</u> 13				<u>NA</u>	TIVE			
14	S-1		14.0	<u>Silty SAND (trace s</u>	<u>Silt - dry - brown)</u>		0 ppm	
15				Samples collected for the			Backfill - 1	:00 PM
16				1. VOC (EPA Me	·			
4-				2. SVOC (EPA M				
17					EPA Method 6010, 7470, 7471)			
10					thoa 8082) PA Method 8082)			
18					PA Method 8082) PA Method 8151)			
19					Method 9012A)			
13					EPA Method 7196)			
20					······································			
				Samples collected for TP-0	06 include:			
21				S-1: 14 ft (VOC On				
22								
23 24								
25								

ſ	R		90 I Buf	S Engineers, Inc. Broadway falo, New York 14203	TEST PIT	Tes	t Pit No.	TP-07
~	OMP		Pho	one: 716-847-1630 ;; 716-847-1454	ILSI FII	5	Sheet 1 of:	1
cu	JIVIP	AINI				Pi	oject No.:	K11.002.001
Projec	ct Nam	e:	Test Pit Inve	estigation - MOB Site		5	Start Date:	9/26/12
L	ocatio.	n:	MOB - 1001	Main Street	Operator: LP Ciminelli	Fi	nish Date:	9/26/12
	Clier	nt: I	Kaleida Pro	perties	Equipment: Track mounted Exc.		Inspector:	C. Martin
ft)	a.	-			a - and -	25 50%	<u>C</u>	OMMENTS
Depth (ft)	Sample No.	Symbo	Sample Depth	f - fine	MATERIAL DESCRIPTION s - some - I - little - I - little - I - little - I - little - t - trace Silt, G - Gravel, C - Clay, cly - clayey t - trace	20-35% 10-20%		aving of sidewalls, ion difficulties, PID readings)
1					- fine to coarse - moist - some Clay) w/		0 ppm	
•			0-3.0	<u>trace Gravel 1-4" - s</u>	subangular			
2				<u>"EA</u>	<u>RTHEN FILL"</u>			
				<u>NAT</u>				
4		╽┝			<u>- moist - med Sand)</u>		0 ppm	
_		╽┟		grades into Silty CLAX (25 50%	Clay aroy and high placticity to			
5	S-1		6.0	<u>Silty CLAY (35-50%</u> fine Sand - moist)	<u>Clay - grey - soft - high plasticity - trace</u>			
6							-	
7				NAT				
8								
9	S-2		9.5	Silty CLAY (reddish	brown - dry - crumbes with pressure -		200 ppm	
10				high plasticity when	n moistened		-	
11								
12				<u>NA7</u>	IVE			
13			14.0	Same as previous			34 ppm	
14							-	
15				Samples collected for the fo			Backfill - 1	0:30 AM
16		╽┟		1. VOC (EPA Met				
10	1	∣⊦		2. SVOC (EPA Met			1	
17		╽┠			PA Method 6010, 7470, 7471)			
. /				4. PCB (EPA Metal				
18					A Method 8082)			
	1				PA Method 8151)			
19				7. Cyanide (EPA				
		╽┟		8. Hex Chome (E	PA Method 7196)			
20		╽┝		Complete collected for TD A	7 in aluala.			
21				Samples collected for TP-0 S-1: 6 ft				
22				S-2: 9.5 ft (VOC Onl	y)			
23								
23								
25								


ſ	Ŗ	2	- 1 90 I	S Engineers, Inc. Broadway falo, New York 14203	TEST	л	Tes	t Pit No.	TP-08	
			Pho	one: 716-847-1630	IESI	FII	S	heet 1 of:	1	
CC)MP/	AN		:: 716-847-1454 v.cscos.com			Pr	oject No.:	K11.002.001	
Proied	ct Nam	e:		estigation - MOB Site				Start Date:	9/26/12	
-		_		Main Street	Operator:	P Ciminelli		nish Date:	9/26/12	
		_	Kaleida Pro			Track mounted Exc.		nspector:	C. Martin	
~					Equipment.			<u>, </u>	OMMENTS	
Depth (ft)	Sample No.	Symbol	Sample Depth	c - coarse m - medium f - fine S - Sand, \$ -	m - medium f - fine S - Sand, \$ - Silt, G - Gravel, C - Clay, cly - clayey MATERIAL DESCRIPTION I - litter - 10-20% t - trace - 0-10%			(e.g., c	aving of sidewalls, ion difficulties, PID readings)	
								Start- 8:18	5 AM	
1			0-3.0		<u>T and GRAVEL (satu</u> rey to dy grey - subro <u>"EARTHEN FILL</u>			0 ppm		
3				unstable sidewalls						
4 5			5.0	<u>Sandy SILT (fine S</u> <u>subangular - mois</u>	<u>Sand - It brown - trac</u> <u>st)</u> <u>NATIVE</u>	<u>e Gravel (2"</u>		0 ppm		
6 7	S-1		7.0	<u>Sandy SILT (little :</u>	<u>10-20% fine Sand - b</u> <u>NATIVE</u>	<u>rown - moist)</u>		0 ppm		
8			8.0-9.0	Silty CLAY (reddis	<u>sh brown - soft - dry -</u>	<u>- some Silt)</u>		8.9 ppm		
9 10				Strong fresh petro	<u>NATIVE</u> bluem odor					
11		-			<u>NATIVE</u>					
12 13 14	S-2		14.0		et	<u>rown - moist)</u> soft - dry - some Silt <u>)</u>		15,000 pp	m	
15					£-11			Backfill - 8	3:45 AM	
16				Samples collected for the 1. VOC (EPA Me 2. SVOC (EPA M	ethod 8260) //ethod 8270)					
17				4. PCB (EPA Me		70, 7471)				
<u>18</u> 19				6. Herbicides (E	PA Method 8082) PA Method 8151) A Method 9012A)					
20					EPA Method 7196)					
21				Samples collected for TP-(S-1: 7 ft S-2: 14 ft (VOC On						
22					•					
<u>23</u> 24										
25										

ſ	Ŗ	5	90	S Engineers, Inc. Broadway ffalo, New York 14203	TEQT	TIO	Tes	t Pit No.	TP-09
			Pho	one: 716-847-1630	TEST	PII	s	heet 1 of:	1
CC	DMP/			<: 716-847-1454 <i>N</i> .cscos.com			Pr	oject No.:	K11.002.001
Projec	t Nam	e: T		estigation - MOB Site				Start Date:	9/24/12
	ocatio	_		Main Street	Operator:	LP Ciminelli	Fil	nish Date:	9/24/12
	Clier	<i>t:</i> K	aleida Pro	perties	Equipment:	Track mounted Exc.		nspector:	C. Martin
ft)	е	2				a - and -	35-50%	<u>C</u>	OMMENTS
Depth (ft)	Sample No.	Symbo	Sample Depth	f - fine	MATERIAL DESCRIPT Silt, G - Gravel, C - Clay,	ION s - some - I - little -	20-35% 10-20%	excavati	aving of sidewalls, on difficulties, PID readings)
								Start- 11:0	00 AM
				Asphalt and Binder					
						rn sidewall. Pea gravel			
1				and red tape found	<u>l on east sidewall, e</u>	xcavation moved west	L		
	S-1		0-3.0						
2					<u>e - trace Silt) w/ 10-2</u>			0 ppm	
				<u>& smaller - angular</u>	<u>r - trace C&D - moist</u>	<u>)</u>			
3					<u>"REFUSE FILL"</u>			-	
4									
5									
			6.0	Sandy SILT (trace i	fine Sand - brown - I	<u>moist to wet)</u>		0 ppm	
6					<u>NATIVE</u>				
_		_							
7		_							
•					<u>NATIVE</u>				
8			0.0	0				_	
•			9.0		<u>w/ Slity CLAY (readi</u>	<u>ish brown - dry - easily</u>		0 ppm	
9		-		<u>molded - lavered)</u>					
10		_							
10			11.0	Little Clay as provi	<u>NATIVE</u>	andy SILT (brown - little	•	0	
44			11.0	fine Sand - moist)	ious described w/ Sa	<u>andy SILT (brown - nuc</u>	<u> </u>	0 ppm	
11		-		<u></u>					
12									
12									
13		_						Backfill - 1	1·30 AM
15				Samples collected for the f	following analysis:				1.30 AM
14				1. VOC (EPA Met					
17				2. SVOC (EPA M	/				
15					PA Method 6010, 74	70, 7471)			
10				4. PCB (EPA Met		,			
16				•	PA Method 8082)				
. 🍹					PA Method 8151)				
17					Method 9012A)				
				7	EPA Method 7196)				
18					· · · · ·				
19				Samples collected for TP-0)9 include:				
				S-1: 0-3 ft					
20									
21									
22									
23									
24									
25				l					

ſ	R		90	AS Engineers, Inc. Broadway falo, New York 14203	TEST PI	т	Test	t Pit No.	TP-10
~	OMPA			one: 716-847-1630			Sheet 1 of:		1
ce	JIVIPA			:: 716-847-1454 v.cscos.com			Pr	oject No.:	K11.002.001
Projec	t Nam	e: 1		estigation - MOB Site			S	start Date:	9/25/12
-	ocatio			Main Street	Operator: LP Cin	ninelli	Fir	nish Date:	9/25/12
	Clien	t: ŀ	Kaleida Pro	perties	Equipment: Track	mounted Exc.	I	nspector:	C. Martin
t)	4	_						L C	OMMENTS
Depth (ft)	Sample No.	Symbo	Sample Depth	f - fine	MATERIAL DESCRIPTION Silt, G - Gravel, C - Clay, cly - cl	a - and - s - some - l - little - t - trace	20-35% 10-20%	(e.g., ca excavati	aving of sidewalls, ion difficulties, PID readings)
				Asphalt and Binder	<u>Surface</u>			Start- 12:0	
1				Reworked SAND. S	ILT. CLAY (trace fine Sa	nd - trace Silt)		2.0 ppm	
	S-1		0-2.5		•			2.0 ppm	
2	0	0-2.5 35-50% Clay (reddish brown - med plasticity - moist) w/ organic matter - dk brown - 1" & smaller C&D							
					FILL				
3									
Ť		F			FILL				
4			4.5	Clav LOAM (dk brou	wn - reworked) w/ C&D 1	" & larger		41.1 ppm	
<u> </u>				4" concrete piceces					
5		ľ			*				
6					"URBAN WASTE" FIL	L			
						=			
7									
			8.0	Same as previous n	nostly concrete piceces.	fiberous		13.2 ppm	
8				material. tile and m		mooreue		10.2 ppm	
0	S-2		9.0		collected sample of bla	ck material from		14.2 ppm	
9	3-2	-	5.0	pile at depth record		FILL		14.2 ppm	
9	S-3		10.0	******* <u>4" thick concrete ba</u>		<u>/ //LL</u>			
10	3-3	-	10.0		ry mixed with Silty CLAY	/ /little Silt soft		0.4 ppm	
10		- P-		<u>high plasticity - mo</u>		(111110 3111 - 3011 -		0.4 ppm	
11		F		<u>mgn plasticity - mo</u>	<u>NATIVE</u>			Backfill - 1	·00 DM
		-							
12		-							
12		-							
13		-							
10		-		Samples collected for the fo	ollowing analysis				
14		-		1. VOC (EPA Meti					
14		┢		2. SVOC (EPA Med					
15		┢			PA Method 6010, 7470, 74	471)			
J		┢		4. PCB (EPA Metal	<u> </u>	,			
16		╞			A Method 8082)				
10		╞			A Method 8151)				
17		F		7. Cyanide (EPA					
		┢			PA Method 7196)				
18		F							
		F							
19		F		Samples collected for TP-10	0 include:				
		F		S-1: 0-2.5 ft					
20				S-2: 9 ft				1	
		F		S-3: 10 ft				1	
21		╞							
- 1		F		TCLP Sample Colle	cted from 4 - 9 ft				
22		┢							
~~		┢							
23		┢							
23		┢		<u> </u>					
24		┢							
24		⊢							
<u>0</u> -		┢							
25				1				Į	

ſ	Ŗ	<u>-</u>	90	S Engineers, Inc. Broadway ffalo, New York 14203	TEST	DIT	Tes	t Pit No.	TP-11
~		NUE	Ph	one: 716-847-1630	IESI	FII	Sheet 1 of:		1
cu	OMPA	INTE		x: 716-847-1454 w.cscos.com			Project No.: K		K11.002.001
Projec	t Nam	e: Tes	t Pit Inv	estigation - MOB Site			S	Start Date:	9/26/12
L	ocatio	n: MO	B - 1001	1 Main Street	Operator:	LP Ciminelli	Fii	nish Date:	9/26/12
	Clien	t: Kal	eida Pro	perties	Equipment:	Track mounted Exc.		nspector:	C. Martin
£	a	-				a - and - :	35-50%	<u>(</u>	OMMENTS
Depth (ft)	Sample No.	Symbo Symbo	ample Depth	c - coarse m - medium f - fine S - Sand, \$	MATERIAL DESCRIPT \$ - Silt, G - Gravel, C - Clay,	ION s - some - 2 I - little -	20-35% 10-20%	excavat	aving of sidewalls, ion difficulties, PID readings)
								Start- 7:00	
				Asphalt and Bind	<u>ler Surface</u>				Hit utility line
				Devery de la OAND		Olare (na dalla h. h. na rom			ency phone
			0-3.0			<u>Clay (reddish brown -</u> rumb structure [loam]		0.8 ppm	
2					F # 1				
					<u>EILL</u>				
3									
4									
5		\vdash		"[JRBAN WASTE" FILL				
Ť									
6			7.0	Somo oo naaview	s with trace of med Sa	and and CLAY		0	
7			7.0		<u>s with trace of med Sand dk grev) w/ C&S 1.</u>			0 ppm	
8		-			FILL				
0					<u>i i i i i i i i i i i i i i i i i i i </u>				
9	S-1		9.5			<u>Clay (reddish brown -</u> rumb structure [loam]		6.2 ppm	
10			10.0	Same as previou	s w/ 1.5" and larger C	<u>&D</u>		4.0 ppm	
11				****** <u>Broke through 4</u> "	<u>" concrete basement f</u>	<u>100r (@ 10 ft **********</u>			
					<u>NATIVE</u>				
12			13.0	Siltv SAND (tan/b	prown - fine - moist)			0 ppm	
13									
14								Backfill - 8	3:00 AM
				Samples collected for the	e following analysis:				
15				1. VOC (EPA M					
					Method 8270)				
16					(EPA Method 6010, 74	70, 7471)			
17		-		4. PCB (EPA M 5. Pesticides (L	EPA Method 8082)				
- 17		\vdash			EPA Method 8151)				
18					A Method 9012A)				
19					(EPA Method 7196)				
				Samples collected for TP	P-11 include:				
20				S-1: 9.5 ft					
21				TCLP Sample Co	llected from 0 - 13 ft				
22									
23									
24									
25									

ſ	R	2	90 But	&S Engineers, Inc. Broadway ffalo, New York 14203		TEST	. DIT	T	est Pit No.	TP-12	
COMPANIE		NILES	Phe	one: 716-847-1630 x: 716-847-1454		1231	ГП		Sheet 1 of:	1	
cu	JIVIPA	AINIE 3		W.CSCOS.COM					Project No.:	K11.002.001	
Project Name: Test Pit I		Pit Inv	estigation - MOB Site					Start Date:	9/26/12		
L	ocatio	n: MOB	- 1001	1 Main Street		Operator:	LP Ciminelli		Finish Date:	9/26/12	
	Clier	t: Kalei	da Pro	perties		Equipment:	Track mounted Exc.		Inspector:	C. Martin	
(f)	e	-						a - and - 35-50%		COMMENTS	
Depth (ft)	Sample No.	ອີຊິສາ ພັກ ອີອອີອອີອອີອອອອອອອອອອອອອອອອອອອອອອອອອອ	nple pth	c - coarse m - medium f - fine S - Sand		TERIAL DESCRIPT G - Gravel, C - Clay,	ION	s - some - 20-35% I - little - 10-20% t - trace - 0-10%	(e.g., c excavat	aving of sidewalls, ion difficulties, PID readings)	
1				<u>Asphalt and Bi</u>	nder Si	<u>urface</u>			Start- 10::		
2		0-	4.0	<u>Silty SAND (me</u> subangular - 2'				<u>k grey</u>	1.7 ppm		
4						<u>"EARTHEN FILL</u>	<u>"</u>				
5						<u>NATIVE</u>					
6	S-1	6	.0		<u>Silty SAND (fine Sand - some Silt - moist) w/ 0-1% Gravel</u> 0.5" & smaller - dk grey - subangular				4 ppm	4 ppm	
7											
8						NATIVE					
9		1).0	Sandv SILT (dk	(brown	n - moist - some (Clav - low to med	1	74 ppm		
10					<u>Sandy SILT (dk brown - moist - some Clay - low to med</u> plasticity) w/ little Gravel (0.125" - subangular) NATIVE						
11				Same as previo		ne Clay pieces (s	oft - high plastic	citv -	160 ppm		
	S-2	1:	2.0	moist - reddish	brown	n) Gravel (0-1% - 3	3" - subangular -			troluem odor	
12				<u>dk grey) Black</u>	<u>staine</u> d	<u>d Sand</u>					
<u>13</u> 14									Backfill -	10·48 AM	
1-7				Samples collected for t	the follo	owing analvsis:					
15				1. VOC (EPA							
16				2. SVOC (EP. 3. TAL Metal	A Meth s (EPA	od 8270) Method 6010, 74	70, 7471)				
17				4. PCB (EPA 5. Pesticides	s (EPA I	Method 8082)					
18				6. Herbicides 7. Cyanide (E 8. Hex Chom	EPA Me	,					
19											
20				Samples collected for T S-1: 6 ft (VOC C S-1: 12 ft (VOC	Only)						
21											
22											
23											
24											
25											

Exhibit: 2

Exhibit:

TP-02.

Description:

1

9/24/2012

Description:

View of excavation spoils from TP-01.

Date:

Exhibit: Date: 3 9/24/2012

7

Description:

View of TP-01. Note less than 2 feet of fill and subsurface soils consists of native material. **MOB Site - Test Pit Investigation**

Exhibit: 4

it: Date: 9/24/2012

Description:

View of excavation soils from TP-03 at approximately 3 ft deep.

Exhibit: 5

Description:

Excavation spoils from TP-03 at approximately 9 ft deep.

Date:

9/24/2012

MOB Site - Test Pit Investigation

Exhibit:

Description:

View of western side wall of TP-03.

Date:

9/24/2012

ATTACHMENT

Exhibit: 7

9/24/2012

Date:

Description:

Looking at TP-04. Excavation revealed less than 2 ft of fill, subsurface was predominately native material. **MOB Site - Test Pit Investigation**

Exhibit: 8

ibit: Date: 9/24/2012

Description:

Excavation spoils from TP-04.

ATTACHMENT

Exhibit: 9

9/24/2012

Date:

Description:

View of eastern sidewall of TP-09. Note - Grey limestone riprap.

MOB Site - Test Pit Investigation

Exhibit: 10

Date: 9/24/2012

Description:

Looking northeast at TP-09. Note - Less than 2 ft of fill, subsurface predominately native material.

ATTACHMENT

Exhibit: Date: 9/24/2012 11

Description:

Looking southwest at TP-06.

MOB Site - Test Pit Investigation

Exhibit: 12

Date: 9/24/2012

Description:

View of TP-05 and excavated spoils. Note - Less than 2 ft of fill with the subsurface consisting predominately of native material.

ATTACHMENT

Exhibit:	Date:
13	9/25/2012

Description:

View northeast of TP-10.

MOB Site - Test Pit Investigation

Exhibit:

14 9/25/2012

Description:

Excavated spoils from TP-10.

Date:

Description: TP-11 excavated to approximately 3 ft.

MOB Site - Test Pit Investigation

Exhibit: 16

Date: 9/26/2012

Description:

View of excavated spoils from TP-11.

Exhibit:	Date:
17	9/26/2012

Description:

View of southern sidewall from TP-11.

MOB Site - Test Pit Investigation

Exhibit: 18

Date: 9/26/2012

Description:

Hit utility line for emergency phones.

ATTACHMENT

Exhibit:	Date:
19	9/26/2012

, ,

Description:

Looking east at TP-08 and excavation spoils.

Exhibit: Date: 20 9/26/2012

Description:

View of TP-07.

Date:	MOB Site - Test Pit Investigation
9/26/2012	
on:	
t TP-07	
to 14 ft.	
	09.26.2012 09:50

Exhibit: 22

Exhibit:

Description:

Looking at TP-07 excavated to 14 ft.

21

Description:

View north at TP-12.

Date:

9/26/2012

ATTACHMENT

Exhibit:	Date:
23	9/26/2012

Description:

View of the northern sidewall at TP-12. Note - less than 2 ft of fill and subsurface consisting predominately of native material.

ATTACHMENT 3

REMEDIAL INVESTIGATION/

INTERIM REMEDIAL MEASURE WORK PLAN

FOR

1001 MAIN STREET (FORMER MOBIL SERVICE STATION 99-MST SITE # C915260) CITY OF BUFFALO, ERIE COUNTY, NEW YORK

Prepared by:

C&S ENGINEERS, INC. 90 BROADWAY BUFFALO, NEW YORK 14203

Prepared on Behalf of:

KALEIDA PROPERTIES

726 Exchange Street Larkin Building Buffalo, New York 14210

F.L.C 50 HIGH STREET PROPERTIES CENTERPOINTE CORPORATE PARK 350 Essjay Road, Williamsville, New York 14221

AUGUST 2012

TABLE OF CONTENTS

EXE	XECUTIVE SUMMARY		
<u>1</u>	INTRODUCTION	5	
1.1 1.2	SITE DESCRIPTION SITE HISTORY	6 6	
<u>2</u>	SUMMARY OF ENVIRONMENTAL CONDITIONS	7	
2.1.3 2.1.4	NATURE AND EXTENT OF CONTAMINATION GROUNDWATER SOILS AREA AND VOLUME OF CONTAMINATED SOIL AREA AND VOLUME OF LNAPL AREA AND VOLUME OF CONTAMINATED GROUNDWATER	7 7 8 8 9 10	
<u>3</u>	IRM WORK PLAN	11	
3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6	IRM CLEANUP OBJECTIVES PHASING OF REMEDIAL ACTIVITIES WASTE CHARACTERIZATION SITE PREPARATION SHORING SYSTEM GROUNDWATER COLLECTION AND TREATMENT SYSTEM EXCAVATION CLOSURE SAMPLING PLAN SUB-GRADE FACILITIES	11 12 13 13 13 14 15 16	
<u>4</u>	REMEDIAL INVESTIGATION	16	
4.2 4.2.1 4.2.2	Environmental Conditions Remedial Investigation Rationale Soils Groundwater Reporting	16 16 17 17 17	
<u>5</u>	QUALITY ASSURANCE AND QUALITY CONTROL PROTOCOLS	18	
	SAMPLING METHODS, ANALYTICAL PROCEDURES AND DOCUMENTATION SAMPLING METHODS ANALYTICAL PROCEDURES DOCUMENTATION	18 18 20 20	

<u>6</u>	HEALTH AND SAFETY	21
<u>7</u>	REPORTING	22
7.1	CONSTRUCTION MONITORING	22
<u>8</u>	SCHEDULE	22

FIGURES

Figure 1-1	Site Plan
Figure 2-1	February 2012 Groundwater Plume
Figure 2-2	Soil Excavation Limits Showing Top of Contamination
Figure 2-3	Soil Excavation Limits Showing Bottom of Contamination
Figure 3-1	General Construction Layout
Figure 3-2	Plan Layout Shoring Design
Figure 3-3	Typical Shoring Design Section
Figure 3-4	Schematic of Temporary Dewatering Treatment System

APPENDICIES

- Appendix A Summary of Fall 2011 Groundwater Sampling Event
- Appendix B 2012 Hydrology Study Letter Report
- Appendix C 2012 Commercial Use Cleanup Assessment
- Appendix D Citizen Participation Plan
- Appendix E Community Air Monitoring Plan
- Appendix F Health and Safety Plan

EXECUTIVE SUMMARY

This document presents the Remedial Investigations summary and Interim Remedial Measures work plan for the Brownfield Cleanup Program site located at 979-1001 Main Street, Buffalo, NY. The project details are summarized below:

Contaminant Source and Constituents

The contamination is sourced from a petroleum release from underground storage tanks associated with a former retail gasoline station. The station operated from approximately 1950 to 1982. The site is currently used for surface parking. Constituents requiring remediation are volatile organic compounds associated with gasoline; in particular benzene, toluene, ethylbenzene and xylenes.

Extent of Contamination

Soil and groundwater have been impacted by the release of gasoline. Soil contamination generally extends from 10 feet below grade to 40 feet below grade, increasing in depth, and decreasing in thickness with distance from the release area. The contamination extends across approximately $\frac{1}{2}$ of the site.

The shallowest site-wide formation for groundwater is generally found within a coarse sand and gravel layer that ranges from $\frac{1}{2}$ to 5-feet thick and is found from 32 to 35 feet below grade. This zone is the main transport layer for contamination beneath the site and is semi-confined by a fine – medium sand and silt above and silt and clay below. Light non-aqueous phase liquid (i.e. residual gasoline product) is also present in this formation in the central area of the site.

Interim Remedy

Numerous studies and remedial activities have occurred on the site over the past ten years. Soil vapor extraction and total fluids removal (high vacuum extraction) have had limited effect. To facilitate the development of the site for a large scale office building, <u>the project has set a goal of meeting Commercial Use Soil Cleanup Objectives</u> for the site. To achieve this, the project developers will complete the following interim remedial measures:

- 1. Installation of both permanent and temporary lag and pile steel sheeting shoring to achieve and excavation depth of up to 42 feet.
- 2. Removal of approximately 16,000 cu.yds. of contaminated soil for off-site disposal or treatment and a regulated facility. Removal of approximately 11,000 cu.yds. of uncontaminated urban fill/soil for offsite reuse.
- 3. Dewatering of the excavation area; removal of product for off-site disposal; and on-site treatment of contaminated groundwater for discharge into the sanitary sewer system (under permit from the Buffalo Sewer Authority).
- 4. Confirmatory soil sampling of the excavation walls (where exposed) and bottom to show compliance with the Commercial Use Soil Cleanup Objective.

1 INTRODUCTION

This Remedial Investigation/ Interim Remedial Measures ("IRM") Work Plan provides a summary of nature and extent of contamination and a description of the procedures that will be implemented for the remediation of contaminated soil and groundwater under the assigned New York State Department of Environmental Conservation ("NYSDEC") Site #C915260. This IRM has been prepared in accordance with Division of Environmental Remediation ("DER")-10 "Technical Guidance for Site Investigation and Remediation." The remedial activities described in the IRM are in accordance with accepted remedies outlined in DER-15 "Presumptive/Proven Remedial Technologies" that will protect both the environment and the health of the local community. To effectively describe the environmental conditions and remedial activities this IRM will cover the following:

- Solution Of the current and historic site conditions;
- Summary of contaminants of concern and the extent of the contamination;
- Solution and sequence of the remedial activities;
- Quality controls and protocols for analytical sampling;
- \diamondsuit Description of the health and safety procedures to protect site workers and the local community and
- Solution Description of community participation activities.

C&S Engineers, Inc ("C&S") has prepared this IRM on behalf of the co-applicants of the BCP Kaleida Health, Kaleida Properties and F.L.C 50 High Street Properties. This IRM presents the remedial activities on petroleum-impacted soil, light non-aqueous phase liquids ("LNAPL"), and groundwater covered under the NYS DEC Site #C915260.

This spill is located on four parcels and a portion of a fifth parcel. The BCP applicants have submitted a subdivision application to the City of Buffalo to combine the block bounded by Main, High, Goodrich and Ellicott Streets into two parcels (1001 Main Street and 818 Ellicott Street). The western parcel (addressed as 1001 Main Street) is planned to be re-developed by F.L.C 50 High Street Properties as a medical office building ("MOB") and totals 1.4 acres.

The Brownfield Cleanup Agreement signed by the co-applicants on June 15, 2012 outlines the extent of the remedial activities to be covered under the BCP. In order to effectively remediate the spill, the area covered under the BCP, the BCP Project Area ("Site") includes the entire western parcel (1001 Main Street) and extends approximately 40 feet east onto the adjacent eastern parcel (818 Ellicott Street). Total acreage of the BCP Project Area "Site" is 1.7-acres. The intent of this IRM is to remediate the subsurface soils to meet Commercial Use Soil Cleanup Objectives ("SCO") standards as defined in NYCRR Part 375-6 and petroleum-impacted groundwater greater than 10,000 micrograms per liter ("ug/L") through excavation of soils and dewatering.

1.1 Site Description

The Site is located at 979-1001 Main Street in the City of Buffalo, New York. The Site is primarily used as a parking lot for Buffalo General Medical Center ("BGMC"). The Site boundary is bordered by the following streets:

North-	Goodrich Street
East-	Approximately 315 ft from Ellicott Street (adjoining parking lot)
South-	High Street
West-	Main Street

The BCP boundary runs concurrently with the Site boundary to the north, south and west and totals 1.7 acres. The eastern border of the BCP boundary has been extended approximately 40 ft to the east. Figure 1-1 shows the boundaries of both the parcels and the Site.

1.2 Site History

Sanborn Maps of the area from 1889 to 1986 were reviewed for this project. From 1889 to 1986 the property has been used for numerous residential and commercial properties including:

- The University at Buffalo Medical and Dental School on the eastern portion of the property;
- A restaurant and hotel on the eastern portion of the property after the medical school left; and
- From 1950 to 1982 an Exxon-Mobil gas station was located at the southwestern corner of the property.

Petroleum releases from underground storage tanks associated with the former retail gasoline station were discovered on site in 1981. Significant site investigation, groundwater monitoring and remedial activities related to the gasoline release have been ongoing since 1996. Site remedial activities that have been implemented in the last 10 years include soil vapor extraction and total fluids removal (high vacuum extraction). These remedies have had limited effect in the overall reduction of contamination across the site.

The site is currently used for surface parking. Constituents that requiring remediation are volatile organic compounds associated with gasoline, in particular benzene, toluene, ethylbenzene and xylenes.

2 <u>SUMMARY OF ENVIRONMENTAL CONDITIONS</u>

2.1 Nature and Extent of Contamination

Site fill, subsurface soil and groundwater have been impacted by petroleum hydrocarbons from the former Exxon-Mobil Service Station at the corner Main and High Streets. The nature and extent of these contaminants have been clearly defined as a result of more than 30 years of investigative and remedial activities at the Site. The majority of the data collected in the site investigations was provided in the BCP Application. Additional data collected to support the IRM approach since the submission of the IRM is summarized and provided as an attachment to this document.

2.1.1 Groundwater

Groundwater sampling has occurred quarterly or semi-annually since 1997, although a majority of the wells were installed in 2008. The sampling has shown that the dissolved BTEX contaminant plume has generally remained on-site, with the exception of VOCs present along the Goodrich Street right of way in the area of MW-02. However, sampling has also shown that since the cessation of remedial actions in 2008, the LNAPL plume has moved from the eastern side of the Site, to the central and western side of the Site (Figure 2-1).

To confirm that S ite contaminants are limited to petroleum hydrocarbons, a groundwater sampling event was completed in the fall of 2011. Groundwater samples were collected from selected monitoring wells across the Site as well as off-site along Goodrich Street. The samples were subsequently analyzed for full target compound list and target analytic list set of parameters to evaluate the potential presence for COCs other than petroleum hydrocarbons at the Site. Analytical results indicated that the Site COCs are limited to petroleum hydrocarbons.

Appendix A provides a summary of the analytical results from the fall 2011 sampling event.

The shallowest site-wide formation for groundwater is generally found within a coarse sand and gravel layer that ranges from $\frac{1}{2}$ to 5-feet thick and is found from 32 to 35 feet below grade. This zone is the main transport layer for contamination beneath the site and is semi-confined by fine – medium sand and silt above and silt and clay below. LNAPL (i.e. residual gasoline product) is also present in this formation in the central area of the site.

In January – February of 2012, hydrology studies were completed for the Site to establish potential subsurface flow conditions that may affect dewatering to the site during remediation. These studies identified several conditions with the site hydrology:

- 1. While previous studies had established areas of saturated soil and had identified the contaminant transport zone to be in the coarse sand and gravel layer between 32 and 35 feet, deeper borings and wells established the this zone is semi confined, and that deeper zones of groundwater are present below 50 feet of depth and within the bedrock fracture system (approximately 100 feet depth). Wells screened within these discrete zones showed independent groundwater levels, indicating communication of groundwater between these zones is minimal.
- 2. Pumping rates within the formations both within the groundwater transport zone and below were very low. Maximum removal rates were approximately 1 quart per minute.

This indicates that while the dense sand and silt soils have porosity, its conductivity (ability to transmit water) is restricted.

Data from the 2012 hydrology studies is presented in Appendix B.

2.1.2 Soils

The extent of soil contamination has been studied over the last ten years in support of design for on-site remediation systems. The most significant data was collected during Exxon-Mobil's 2008 Supplemental Subsurface Investigation. The investigation consisted of the installation of 24 borings, 19 of which were converted to monitoring wells. This investigation provided significant data to delineate the vertical and horizontal limits of the contamination. This data was supplemented by PID screening data collected during the 2010 geotechnical investigation conducted in support of the current proposed Site development and a supplemental Commercial Cleanup Evaluation Investigation in April of 2012 (Appendix C). The data from these three investigations, along with previous studies, has resulted in the following determination of Site conditions:

- 1. The Site surface contains urban fill of variable thickness (two to 11 feet), which is in turn underlain by sand and a sand silt formation in the top 25 to 35 feet BGS. Below the sand and silt layers is a laterally discontinuous coarse sand and gravel lens one to five feet in thickness, which can act as a preferential pathway for groundwater flow. Beneath this coarse sand and gravel lens(s) are silt and inter-bedded sand beds to a depth of approximately 42 feet BGS.
- 2. An area of free product (LNAPL) is in the area of groundwater monitoring wells MW-11, MW-22, MW-26, MW-23 and MW-24.
- 3. The main zone of contaminated soil is in the middle of the Site. The shallowest depth of contamination is approximately 10 feet BGS, although in general the depth ranges from approximately 20 feet BGS (top of contaminated zone) to approximately 40 feet BGS (bottom of contaminated zone).
- 4. A thin zone of contamination extends northward across the northern property boundary, within the discontinuous coarse sand/gravel lens. This contaminant zone appears to be associated with preferential groundwater flow in that zone. The coarse sand/gravel lens ranges from ½ to five feet in thickness and ranges in depth between 32 to 35 feet BGS.

Based on the assumed remediation goal of Commercial Use, Figures 2-2 and 2-3 respectively show the horizontal limits of soil contamination, the depth of the top of excavation of contaminated soils and the depth of the bottom of excavation.

Based on the nature and extent of the soil and groundwater contamination, the following sections present the estimated volumes of contaminated soil, groundwater and free product that are likely present on-site.

2.1.3 Area and Volume of Contaminated Soil

Contaminated soil is expected to exist on-site from a depth of approximately 10 feet (15 feet above groundwater) to a depth of approximately 40 feet BGS. In the area of the Site where free product is present, contaminated soils may be present to a depth to 42 feet BGS.

Potential volume of contaminated soils that exceed Commercial Use SCOs is approximately 430,000 cubic feet; or approximately 16,000 cubic yards. The calculation is presented in the table below:

CONT. THICKNESS	MEDIAN RANGE	CONTAMINATED AREA (sq ft)	MEDIAN TOTAL DEPTH	TOTAL VO VOLUME (cu ft)	VOLUME (cu yds)
5-10	0	0		-	-
10-15	0	0		-	-
15-20	0	0		-	-
20-25	22.5	12,542	40	282,195	10,452
25-30	27.5	5,534	42	152,198	5,637
				434,393	16,089

2.1.4 Area and Volume of LNAPL

Data collected during the February 2012 groundwater sampling event indicates that there is an area of LNAPL free product located in the central portion of the Site. The area of the free product is approximately 0.15 acres. Assuming an overall average thickness of $\frac{1}{2}$ -inch of free product within the 0.15 acres and an average soil porosity of 30% ¹, approximately 586 gallons of free product is estimated to be on the Site (See Figure 2-1). The calculation is presented in the table below:

Table 2-2: Estimate of LNAPL to be Removed Particular

				TOTAL VOLUME		
LNAPL THICKNESS (ft) ¹	AREA (ft) ²	VOLUME (cu ft)	AVG POROSITY ³	VOLUME (cu ft)	VOLUME (gal) ⁴	
0.04	6,534	261	30%	78	586	

1: 1-inch = 0.08 feet

- 2: 0.15 acres = 6,534 sq ft
- 3: Based on average for a medium sand matrix
- 4: 1 cu ft LNAPL = 7.48 gal

2.1.5 Area and Volume of Contaminated Groundwater

Calculation of the volume of contaminated groundwater on-site is represented by the area onsite where BTEX contamination in groundwater exceeds 10.0 ug/L, as represented on Figure 2-1. This occurs in a total area of approximately 1.02 acres.

While the potentiometric top of the water table (25 feet BGS), the groundwater bearing zoning is generally confined in from a depth of 32-35 feet BGS, with a maximum thickness of 5 feet. Assuming a saturated zone of 5 feet, this is a volumetric area of approximately 85,000cubic feet. Using an average interstitial total porosity of 39% (for coarse sands¹) and 7.48 gallons of water per cubic foot, approximately 635,000 gallons of contaminated groundwater exceeding 10 ug/L can be expected to be in place in this area of the Site. Using an effective porosity of 30%, approximately 147,000 gallons will remain entrained in the soil if full dewatering of the soil layer were to occur. The calculation is presented in the table below:

 Table 2-3: Estimate of Contaminated Groundwater Volume

				TOTAL VOLUMES		
Water bearing Zone Thickness (ft) ¹	AREA (ft) ²	VOLUME (cu ft)	AVG POROSITY ³	VOLUME (cu ft)	VOLUME (gal) ⁴	
5.0	43,560	217,800	39%	84,942	635,366	
5.0	43,560	217,800	30%	65,340	488,743	
				Gallons Entrained	146,623	

- 1: Based on coarse sand and gravel layer max. thickness
- 2: Area Rounded to 1 acre
- 3: Based on average porosity for a coarse sand matrix (39%) and effective porosity (30%)
- 4: 1 cu ft water = 7.48 gal

Of the remaining groundwater entrained in the soil, an area of approximately 18,076 sq. ft will be removed and disposed during remediation. With an assumed saturate thickness of 5 feet, a total of approximately 61,000 gallons of entrained contaminated water will be removed through excavation. The calculation is presented in the table below:

¹ Argonne National Laboratories (http://web.ead.anl.gov/resrad/datacoll/porosity.htm)

				TOTAL VOLUME	
Water bearing Zone Thickness (ft) ¹	AREA (ft) ²	VOLUME (cu ft)	AVG POROSITY ³	VOLUME (cu ft)	VOLUME (gal) ⁴
5.0	18,076	90,380	9%	8,134	60,844
Less total gal. of contaminated water entrained					146,623
Entrained Gallons Remaining					85,779

 Table 2-4: Estimate of Contaminated Groundwater Volume in Excavated Soils

- 1: Based on coarse sand and gravel layer max. thickness
- 2: Area Rounded to 1 acre
- 3: Based on 9% difference between porsity (39%) and effective porosity (30%) of onsite soils
- 4: 1 cu ft water = 7.48 gal

Of the estimated 635,000 gallons of contaminated water beneath the Site, approximately 86,000 gallons will remain after the IRM dewatering and excavation is completed.

3 IRM WORK PLAN

The remedial action will be comprised of three main tasks:

- \diamond The construction of the shoring system;
- \diamond Soil excavation and removal and
- Solution and treatment.

This remedial action has been determined to be appropriate for the cleanup of contaminated soil to achieve specific soil cleanup standards outlined in NYCRR Part 375-6.

3.1 IRM Cleanup Objectives

The remedial work planned for the Site is intended to remediate soil contamination to meet Commercial Use Soil Cleanup Objectives ("SCO") as specified in NYCRR Part 375-6. Soil contamination is variable throughout the Site. The highest concentration of contamination is located in the surrounding soils of the release source. The remedial action will target removing these soils, and associated groundwater and LNAPL, for attaining compliance with the Commercial Use SCO.

3.2 Phasing of Remedial Activities

To ensure efficient use of the resources required for the remediation of the Site, it is essential that the sequence of Site activities be well defined. The IRM work at the Site will be conducted in the following sequence:

- Waste Characterization
- Site Preparation
- Installation of shoring system
- Placement of groundwater collection and treatment system
- Excavation of petroleum contaminated soils
- Sampling and analysis of soil to confirm Commercial SCO has been completed
- Construction of sub-grade facilities

Work is proposed to begin in September of 2012. It is estimated that remedial activities will last approximately 4 months. All sampling activities will be conducted in accordance with NYSDEC quality assurance protocols outlined in **Section 5: Quality Assurance and Quality Control Protocols.** The Citizen Participation Plan ("CPP") that informs the public on the proposed remediation is included in Appendix D. The public health of the local community will be monitored during construction activities as outlined in the Community Air Monitoring Plan ("CAMP") provided in Appendix E. C&S will provide oversight, air monitoring, soil screening, GPS data and photographic and other documentation during the IRM activities. The following sections define the work required to complete each of the tasks comprising the remedial activities of the IRM.

3.2.1 Waste Characterization

Waste characterization of the soils was conducted in October, 2010. Waste characterization activities took place before construction; composite samples were collected at ten boring locations throughout the Site. Composite samples were sent to a laboratory and were analyzed for the following contaminates:

- TCLP VOCs
- TCLP SVOCs
- TCLP Metals
- PCBs
- Pesticides
- Ignitability

Flash Point

The results of the sampling determined the soil was not a hazardous waste. A letter summarizing the results was transmitted to the NYSDEC in December 2010.

3.2.2 Site Preparation

Public Exclusion Areas

A public exclusion area will be clearly marked out around the Site by the temporary construction fencing.

To the north, fencing will be extended across Goodrich Street, and extended eastward to provide Site security and to complete the "exclusion zone". Fencing will also be installed north-south along the eastern Site boundary, except where entry in and out of the excavation will take place. Additionally, to allow for dedicated pedestrian access through this area during construction, jersey barriers will be placed along Main Street, between High and Goodrich Streets. Figure 3-1 shows the general construction layout of the site.

3.2.3 Shoring System

<u>Site Shoring</u>

The perimeter of the Site will be permanently shored with lag and pile sheet metal wall system. This system creates a water tight seal using overlapping, interconnected steel plates. Shoring will be installed to a depth of 40 feet BGS, in certain areas along Main Street, where excavation may be deeper to reach contamination; shoring will be installed to a depth of 50 feet.

Shoring along the perimeter will utilize tie-backs into the surrounding soil to maintain structural integrity during excavation. Where excavation does not extend all the way to the Site perimeter, excavation walls will use a combination of temporary shoring and soil benching to maintain wall integrity. Figure 3-2 shows the plan view of the shoring system, Figure 3-3 shows a typical section design of the shoring system.

3.2.4 Groundwater Collection and Treatment System

An industrial discharge permit will be secured from the Buffalo Sewer Authority ("BSA") to discharge groundwater into the sanitary sewer system. The BSA permit allows treated water to be discharged into the BSA sanitary sewer system. The discharge is limited only to periods where no rain or snow melt are occurring.

Groundwater collected as part of Site de-watering activities will be pumped into on-site settling tanks. From the tanks, it will subsequently pass through an activated carbon treatment vessel for treatment of VOCs prior to discharge to the BSA sewer system. In addition to carbon treatment, the system will also contain an oil-water separation chamber to collect LNAPL that may enter the dewatering system. Figure 3-4 shows a schematic of the treatment system.

Once excavation begins, several sumps may be utilized to maintain the water level in the excavation. In addition, in several areas where free-phase petroleum is known to exist, sumps may be used to temporarily collect product. The product will be removed by periodically vacuuming the LNAPL.

Pre- and post-treatment samples of collected water will be periodically sampled per permit requirements to verify treatment system performance. Samples will be analyzed on a 48 hour turnaround time. The flow of water through the treatment system will be monitored with a flow meter to record total volume treated and discharged to the BSA.

Treatment system operational records including daily volumes, product recovered, influent and effluent analytical results, times of operation and permit discharge monitoring reports will be kept on-site and will also be included in the final engineering report.

3.2.5 Excavation

Soils within the shoring wall area will be excavated at various depths across the Site, Figures 2-2 and 2-3 show the estimated depths of excavation. Contaminated soil within the release source ranges from 10 ft BGS to 42 ft BGS; excavation will remove contaminated soils to the level required to met Commercial SCO. The following lists the type of equipment to be used during excavation (Note that this list is subject to change as needed by the contractor as excavation conditions and needs change.):

- Caterpillar 312BL Backhoe
- Komatsu PC200LC Backhoe
- John Deere 240 D LC Backhoe
- Komatsu D68 Dozer
- Komatsu WA180 Front Loader
- Dump Trucks

<u>Soil/Fill Management</u>

Excavation will remove both contaminated and non-contaminated soils. Excavated soils will be inspected for staining or discoloration and screened for the presence of VOCs on-site into "clean soil" and "contaminated soil" using a photo-ionization detector ("PID"). Impacted material will be directly loaded into trucks and shipped to a licensed disposal or treatment facility.

Contaminated soils removed from areas of known petroleum impacts, based on previous records of soil analytical results and PID readings, will be segregated for disposal/recycling at a NYSDEC approved facility. Excavated soils will be continuously screened with PID during remediation activities; soils that exceed 10 ppm or contain a petroleum odor will be segregated for additional testing. Sampling parameters of excavated soils will be generally based on guidance provided DER-10 Table 5.4(e)10; or in coordination with the NYSDEC field representative. Results of the excavated soil testing will be reported to the NYSDEC. Excavated soils that are below residential criteria in Appendix 5 will be sent for offsite reuse.

Once the excavation nears the target depths and horizontal limits, soil samples will be collected to assess whether the Commercial Use SCO has been met.

Soil Tracking Prevention

Trucks and equipment leaving the Site will be broom-cleaned to remove clumped soil and prevent soil tracking off-site. Standard construction protocols will be utilized, including stone aprons and periodic sweeping of the construction exit areas. Adjacent roads in the designated truck route will be inspected daily to ensure the prevention of soils migration. Roads that have any soils accumulation will be mechanically scraped rather than mechanically broom swept to reduce fugitive dust emissions. Excavation on-site will occur in a manner which minimizes the tracking of on-road haul trucks from moving through contaminated soils. On-site stone haul roads may be constructed as necessary to reduce the amount of soils tracked onto the stone apron areas. The use of water to clean truck tires will be avoided to prevent the generation of potentially impacted water.

3.2.6 Closure Sampling Plan

Soil sampling will be performed to assess whether cleanup standards have been achieved. As outlined in **Section 3.1: IRM Cleanup Objectives;** remediation will be deemed complete when soil analytical results from the excavation limits demonstrate that VOC concentration are below the Commercial Use. Samples will be taken after horizontal and vertical excavation limits have been completed. Since BTEX and related petroleum compounds have been verified as the only Site COCs, closure soil sample analysis will be limited to VOCs using EPA Method 8260B.

If requested by the NSYDEC, approximately 10% of the closure samples will be analyzed for TAL Metals, SVOC, PCB and Pesticides.

Prior to excavation, the Site will be divided into excavation sectors. These sectors will be used to systematically excavate the hole and provide sufficient entrance and egress. Once field monitoring indicates that remediation objectives have likely been met (based on estimated excavation limits, soil vapor readings, odor and visual concurrence), closure samples of the bottom and sidewalls of the excavation will be collected for VOC analysis on a 24-hour turnaround basis. If sampling indicates that targeted remedial goals have not been met, excavation in that area will resume and the process will be repeated. If analytical results indicate that the remedial goals have been met, the results will be transmitted to the NYSDEC and excavation will cease in that sector.

One sidewall sample will be collected for each 30 linear feet by 20 vertical feet of excavated sidewall and one sample will be collected from the bottom of each 225 square feet (15 by 15 feet) of excavated bottom. Category B deliverable package will be requested to validate analytical results by a third-party expert.

All sampling locations will be given a discrete identifying number, its depth will be recorded (based on construction surveying crew data) and its horizontal location will be recorded using a survey quality hand held GPS, with an approximate accuracy of 2 foot. Post excavation soil samples will be collected in concurrence with the NYSDEC field representative.

3.2.7 Sub-grade facilities

Once the sampling and analysis has confirmed the soil remedial objectives have been met, construction of the MOB will begin. The MOB will have two floors of sub-grade parking. The shoring system will be left in place and will become the walls for the sub-grade parking. Once the parking decks are in place, construction of the above-grade portion of the MOB will commence.

4 <u>**REMEDIAL INVESTIGATION**</u>

This section describes the activities to determine if the IRM was successful in achieving Commercial Cleanup standards.

4.1 Environmental Conditions

Site fill, subsurface soil and groundwater have been impacted by petroleum products that were released from USTs from the former Exxon-Mobil Service Station. Over thirty years of investigations on the Site has concluded that the COCs are primarily BTEX compounds. The following summarizes what is known about the extent of contamination across the Site:

- 1. The main contaminated zone exists in the middle of the Site where the former USTs were located. Soils within the main contaminated zone is impacted from 10 ft BGS to 40 ft BGS.
- 2. An area of free product (LNAPL) is in the area of groundwater monitoring wells MW-11, MW-22, MW-26, MW-23 and MW-24. These wells are within the estimated extent of the release area.
- 3. Groundwater exists as a semi-confined aquifer, with a coarse sand/gravel lens between 32 and 35 feet BGS and ranges between ½ to five feet in thickness. This coarse sand/gravel zone acts serves as the method contaminant transport to the north across the Site.
- 4. Contaminated soil has expanded from the release area northward across the northern property boundary, with preferential groundwater flow in the discontinuous coarse sand/gravel lens.

Further detail can be found in **Section 2.1 Nature and Extent of Contamination**.

4.2 **Remedial Investigation Rationale**

The IRM as described in the previous section (**3 IRM Work Plan**) allows for a comprehensive view of subsurface conditions. Implementing the IRM will enhance the understanding of fate and transport of contamination. The remedial investigation will follow the source removal and Site dewatering that was accomplished in the IRM. This investigation will assess the remaining conditions after the IRM has been employed.

4.2.1 Soils

Soil sampling will assess whether Commercial Cleanup SCOs have been achieved. Soil sampling will be preformed after horizontal and vertical limits have been completed. One sidewall sample will be collected for each 30 linear feet by 20 vertical feet of excavated sidewall and one sample will be collected from the bottom of each 225 square feet (15 by 15 feet) of excavated bottom. Based on these guidelines, approximately 80 bottom samples and 36 sidewall samples will be collected.

All sampling locations will be given a discrete identifying number, its depth will be recorded (based on construction surveying crew data) and its horizontal location will be recorded using a survey quality hand held GPS, with an approximate accuracy of 2 foot. Post excavation soil samples will be collected in concurrence with the NYSDEC field representative.

Closure sampling is further discussed in Section 3.2.6 Closure Sampling Plan.

Samples will be collected as grab samples from both the excavation floor and side walls. Samples will be collected as outlined in DER-10 for grab samples and discussed in **Section 5.1.1 Sampling Methods** in this IRM.

4.2.2 Groundwater

Post-remediation groundwater monitoring wells will be installed after the Site has been backfilled. The number and final location of the monitoring wells will be determined in concordance with the NYSDEC field representative, however it is anticipated that at least four wells will be placed on Site.

Monitoring wells will be advanced to approximately 35 ft BGS (as determined from curb elevation). Wells will be constructed using a 2-inch inside diameter flush-joint Schedule 40 PVC pipe and 0.010-inch slotted well screen. Subsequent to installation of the pipe and well screen, a sand pack will be constructed from the base of the well to one foot above the top of the well screen. A bentonite clay seal will then be installed on top of the sand pack. Installation will be completed after the wells have been grouted to ground surface or to the top of the lowest parking garage floor.

After installation, two to three rounds of sampling over six months will be conducted. Prior to sample collection, water levels will be measured and recorded from all monitoring wells. Following water level measurements, all monitoring wells will be purged using a polyethylene bailer. Samples will be taken subsequent to purging and after fresh groundwater has re-filled the wells; samples will be collected using polyethylene bailer and collected in the appropriate sample bottles provided by the analytical laboratory. Groundwater samples will be analyzed for VOCs in accordance with EPA SW-846/Method 8260 methodology. Category B deliverable package will be requested to validate analytical results by a third-party expert.

4.3 Reporting

Based on the results of the remedial investigation a Remedial Investigation / Alternative Analysis Report ("RI/AAR") will be submitted to the NYSDEC. The RI/AAR will assess the effectiveness of the IRM in comparison with other remedial options in achieving site cleanup levels.

5 **QUALITY ASSURANCE AND QUALITY CONTROL PROTOCOLS**

To ensure that suitable and verifiable data results are obtained from the information collected at the Site, quality assurance procedures are detailed in this section.

5.1 Sampling Methods, Analytical Procedures and Documentation

5.1.1 Sampling Methods

Sampling procedures will be conducted in accordance with the NYSDEC *Sampling Guidelines and Protocols Manual*. Collecting of representative samples will include the following procedures:

- Ensuring that the sample taken is representative of the material being sampled;
- Using proper sampling, handling and preservation techniques;
- Properly identifying the collected samples and documenting their collection in field records;
- Maintaining chain-of-custody; and
- Properly preserving samples after collection.

Soil Sampling

Soil sampling will be performed using two methods: (1) field screening using a PID and (2) grab samples.

Several discrete samples will be taken from each soil pile and placed into individual zip-lock bags. Soil samples will be allowed to sit in sealed zip-lock bag for a short period of time (minimum of five minutes). Head space measurements will then be taken from each zip-lock bag. To prevent cross contamination zip-lock bags will not be reused and will be properly disposed. Calibration of all electronic field screening equipment will be completed daily and will be done to manufacture's specifications.

Contaminates of concern during excavation are BTEX and petroleum related compounds; only analysis of VOCs will be sampled using the grab method. As detailed in the *Sampling Guidelines and Protocols Manual*, grab samples will be placed in 8oz wide mouth glass jars. Sample jars will immediately be placed on ice in a cooler.

Soil sample frequency will be based on the guidance with DER-10. Confirmatory bottom soil samples will be collected on a 15 by 15 foot square grid (225 sq ft). Based on the estimated excavation area of 18,000 sq. ft., approximately 80 confirmatory bottom samples will be collected. Confirmatory side wall samples will also be collected, because of the estimated depth of the excavation, sidewall samples will be collected on a 30 by 20 foot grid. Based on the estimated limits and depths of excavation (560 linear feet of wall to a maximum depth of 40 feet), approximately 36 side-wall samples will be collected. Note that this area does not include side-wall samples from the western property boundary that will consist of a permanent shoring

face. Final number of samples will be verified once field excavation limits are achieved. Sampling frequency will be established in concurrence with the NYSDEC field representative.

An estimated total of 120 confirmatory samples will be collected from both the walls and bottom. As stated in DER-10, if conditions warrant (discrete layers of staining, etc.), additional samples may also be collected. Table 4-1 presents a summary of the number of samples scheduled for collection.

Confirmatory samples will be collected in a timely manner, based on the following DER guidance:

- Within 24 hours of excavation, samples should be collected from the zero to six-inch depth interval;
- After 24 hours, samples should be collected at six to twelve inches depth interval at the excavation floor; and
- No water should be present in the excavation bottom where bottom samples are collected.

Water Sampling

Water sampling will be conducted on the de-watering treatment system to demonstrate compliance with the BSA temporary Industrial Discharge permit. Effluent samples will be collected as required to show that discharge limits are being met, as well as to track the effectiveness of the carbon filtration media and estimate the timing for carbon replacement. Additionally, influent samples will be collected in order to track the general VOC concentrations that are entering the treatment system, and to correlate the concentration of VOCs in groundwater remaining in the ground. It is estimated that 20 influent samples will be collected during site activities.

Samples will be collected in 40 ml glass jars and immediately placed on ice. The water will be analyzed for VOCs on a 24-hour turnaround time.

QA/QC Sampling

Duplicate samples will be collected from a minimum of 10% of the locations, selected randomly. Based on an estimate of 120 confirmatory soil samples and 20 water influent samples, 12 duplicate soil and 2 water samples will be collected.

Matrix Spike /Matrix Spike Duplicates ("MS/MSD") will also be collected on a 10% allocation. Therefore an additional 12 soil and 2 water samples will be collected for MS/MSD analysis.

Sample Type	Matrix	Est. #	Purpose
Excavation Bottom	Soil	80	Confirmatory
Excavation Wall	Soil	40	Confirmatory

Groundwater Influent	Water	20	Confirmatory
Duplicate Soil	Soil	12	QA/QC
Duplicate Influent	Water	2	QA/QC
MS/MSD –So.	Soil	12	QA/QC
MS/MSD –Aq.	Water	2	QA/QC
	Total	168	

5.1.2 Analytical Procedures

Laboratory Analysis

Laboratory analysis will be conducted by a third-party laboratory that is accredited by the NYSDOH Environmental Laboratory Accreditation Program ("ELAP"). Laboratory analytical methods will include the most current NYSDEC Analytical Services Protocol ("ASP").

Remedial investigations have concluded that the Site is impacted by petroleum compounds which are primarily BTEX. Soil samples sent to a certified laboratory will be tested for Total Compound List VOCs using the U.S. EPA Method 8260B. To fill in data gaps from previous investigations approximately 10% of post excavation soil samples, in addition to VOC, will be analyzed for the following contaminates:

- Target Analyte List for Metals and Cyanide (EPA Method 6010C);
- Target Compound List for Semi-volatile Compounds (EPA Method 8270);
- Target Compound List for Pesticides/Aroclors (EPA Method 8081A); and
- Polychlorinated biphenyls (EPA Method 8082)

Category B deliverable will be requested to be used in a third-party data validation.

<u>Data Usability</u>

Data Usability Summary Report ("DUSR") will be performed by a third-party data consultant using the most recent methods and criteria from the U.S. EPA. The DUSR will assess all sample analytical data, blanks, duplicates and laboratory control samples and evaluate the completeness of the data package.

5.1.3 Documentation

Custody Procedures

As outlined in NYSDEC *Sampling Guidelines and Protocols*, a sample is under the following conditions:

• It is in your actual possession;

- It is in your view after being in your physical possession;
- It was in your possession and then you locked or sealed it up to prevent tampering; or
- It is in a secure area

The environmental professional will maintain all chain-of-custody documents that will be completed for all samples that will leave the Site to be tested in the laboratory.

<u>Soil Manifests</u>

All soil being removed from the Site will be tracked by bills-of-lading forms.

Truckloads of contaminated soil will be tracked using bills-of-lading provided by the respective disposal or recycling facility.

Records of truck loads will be kept on-site during construction and recording sheets and copies of the bills of lading documenting the final total trucked tonnage will be provided in the Final Engineering Report.

Water Sampling Results

Treatment influent and effluent analytical results will be included in the Final Engineering Report. The final influent sampling results from each dewatering sump will provide documentation of the remaining groundwater conditions.

Air Monitoring Records

Air monitoring will be conducted for both community air protection and for in-hole construction activities. Air monitoring will be conducted continuously during active excavation periods. The monitoring will include particulate and VOC screening. All records will be kept on-site during construction and will be made available for regulatory inspection. A daily air monitoring log, including discrete and time-weighted average meter readings, will be maintained through the end of remedial field activities. The specifics of the air monitoring procedures and criteria are detailed in the CAMP (community perimeter monitoring) and HASP (in-hole activities).

6 HEALTH AND SAFETY

To assure the safety of the workers and the local community, monitoring practices of the work environment will be in place during all phases of IRM activities. A Health and Safety Plan ("HASP") was prepared that details procedures for maintaining safe working conditions and minimizing the potential for exposure to hazardous material. The HASP is provided in Appendix F.

Air monitoring during active construction will be conducted using PID and a aerosol particle meter. Details on air monitoring are provided in the Community Air Monitoring Plan ("CAMP"). The CAMP is provided in Appendix E.

7 <u>Reporting</u>

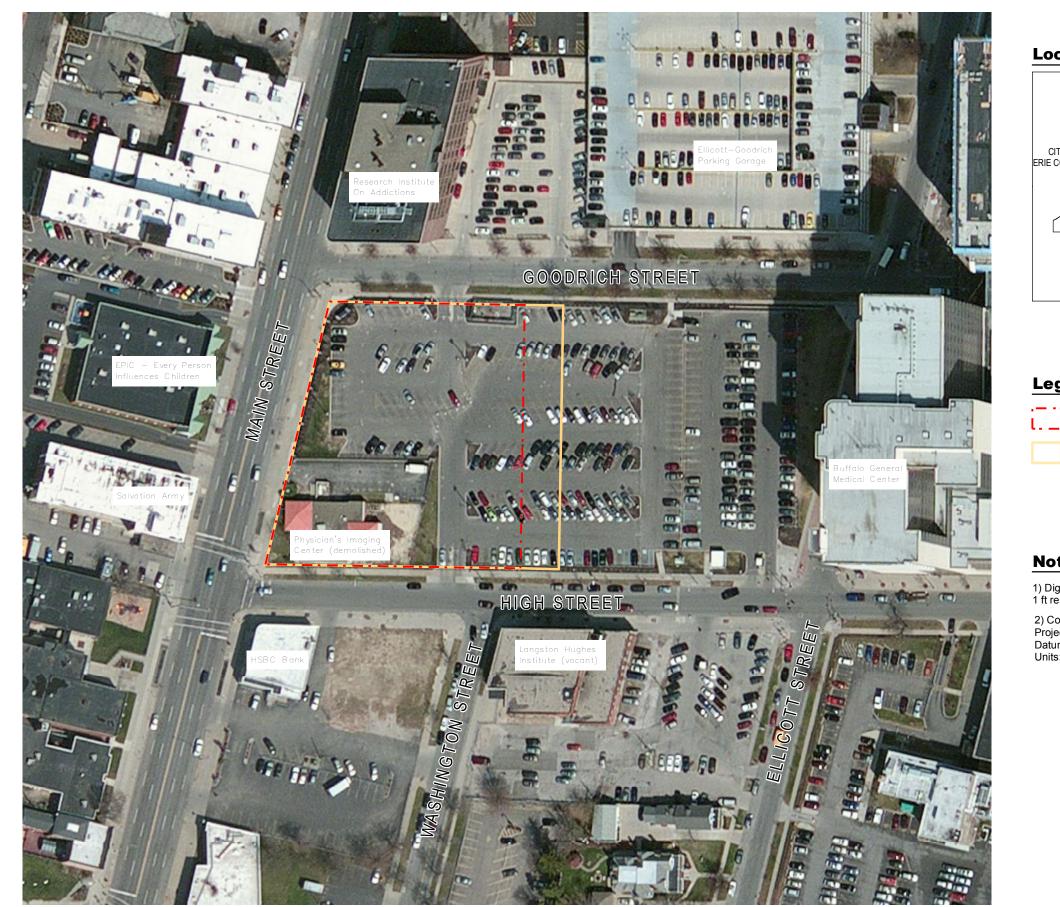
An environmental professional from C&S will be on-site on a full-time basis to document IRM activities. Documentation will include the following parts:

- ♦ Daily reports of remedial activities;
- CAMP results; and
- ♦ Photographs and fieldwork maps.

7.1 Construction Monitoring

Reporting procedures will include a daily report. Information that may be included on the daily report includes:

- Processes and location of construction under way;
- Equipment and personnel working in the area;
- Number and type of truckloads of soil/fill removed from the Site;
- A description of off-site materials received;
- Approximate verification sampling locations and sample designations; and
- Problem identification and corrective measures.


The NYSDEC will be notified of problems requiring modifications to this IRM prior to proceeding. Photographic documentation of the IRM activities will be prepared by C&S throughout the duration of the remediation as necessary.

A summary of the IRM activities will be submitted to the NYSDEC as monthly progress reports and will be included in the Final Engineering Report. All data submitted to the NYSDEC will be in approved electronic data deliverable ("EDD") format.

8 <u>SCHEDULE</u>

It is assumed that NYSDEC will promptly review this IRM followed by a 30 day comment period. An approved IRM by mid-September would start remedial activities by mid-October, 2012. Site preparation is planned to begin in September of 2012. IRM activities are anticipated to last 4 months.

FIGURES

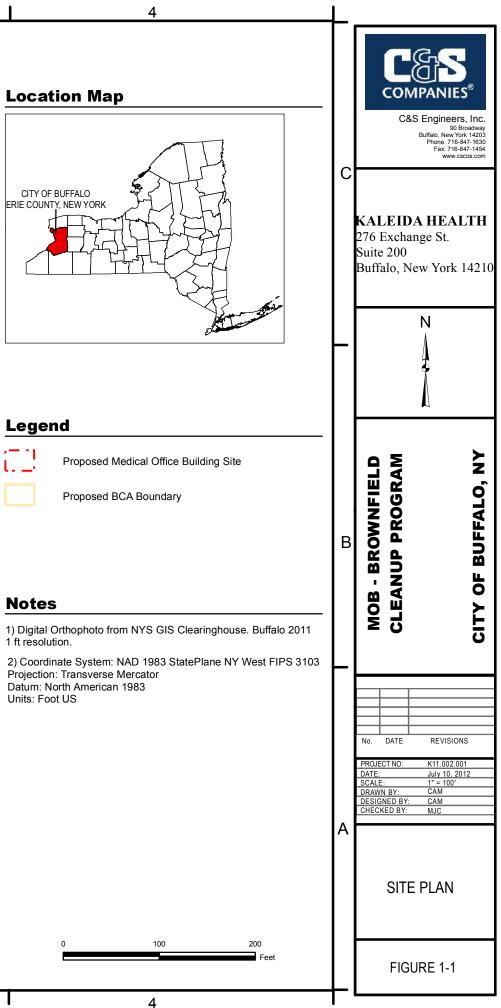
С

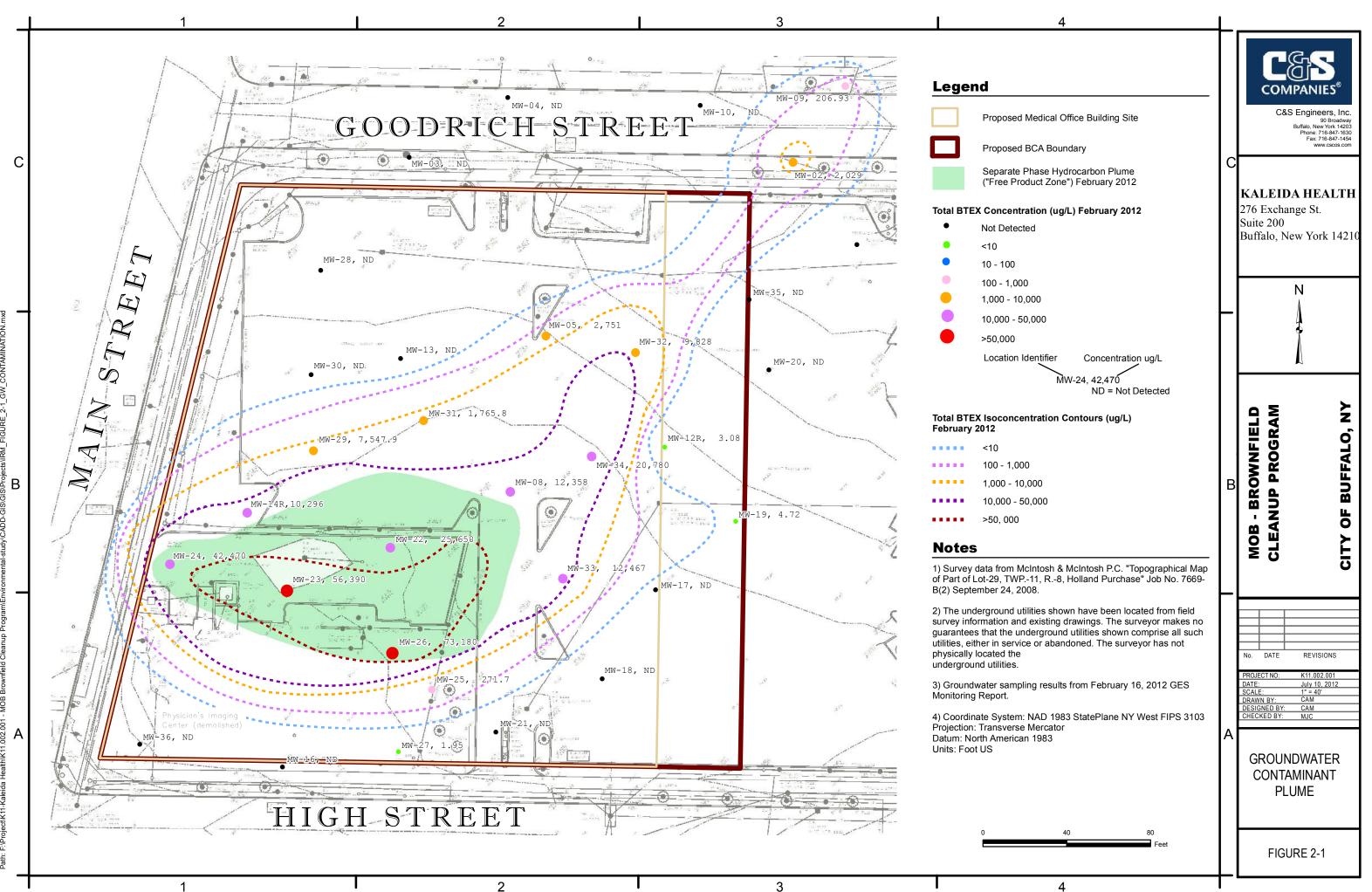
B 2.00 А

1

3

3

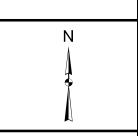

Location Map


CITY OF BUFFALO ERIE COUNTY, NEW YORK

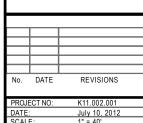
Legend

Notes

Datum: North American 1983 Units: Foot US


1

3


COMPANIES

C&S Engineers, Inc. 90 Broadway Buffalo, New York 14203 Phone: 716-847-1630 Fax: 716-847-1454 www.cscos.com

KALEIDA HEALTH 276 Exchange St. Suite 200 Buffalo, New York 14210

Z MOB - BROWNFIELD CLEANUP PROGRAM **BUFFALO**, ЧO CITY

1" = 40' CAM CALE RAWN BY ESIGNED BY: CAM HECKED BY: MJC

SOIL EXCAVATION LIMTS TOP OF CONTAMINATION

FIGURE 2-2

Proposed Medical Office Building Site

Proposed BCA Boundary

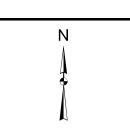
Proposed Limits of Excavation

1) Survey data from McIntosh & McIntosh P.C. "Topographical Map of Part of Lot-29, TWP.-11, R.-8, Holland Purchase" Job No. 7669-

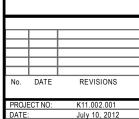
2) The underground utilities shown have been located from field survey information and existing drawings. The surveyor makes no guarantees that the underground utilities shown comprise all such utilities, either in service or abandoned. The surveyor has not

3) Groundwater sampling results from March 23, 2012 GES

4) Coordinate System: NAD 1983 StatePlane NY West FIPS 3103


1

3



C&S Engineers, Inc. 90 Broadway Buffalo, New York 14203 Phone: 716-847-1630 Fax: 716-847-1454 www.cscos.com

KALEIDA HEALTH 276 Exchange St. Suite 200 Buffalo, New York 14210

Z MOB - BROWNFIELD CLEANUP PROGRAM **BUFFALO**, ЧO CITY

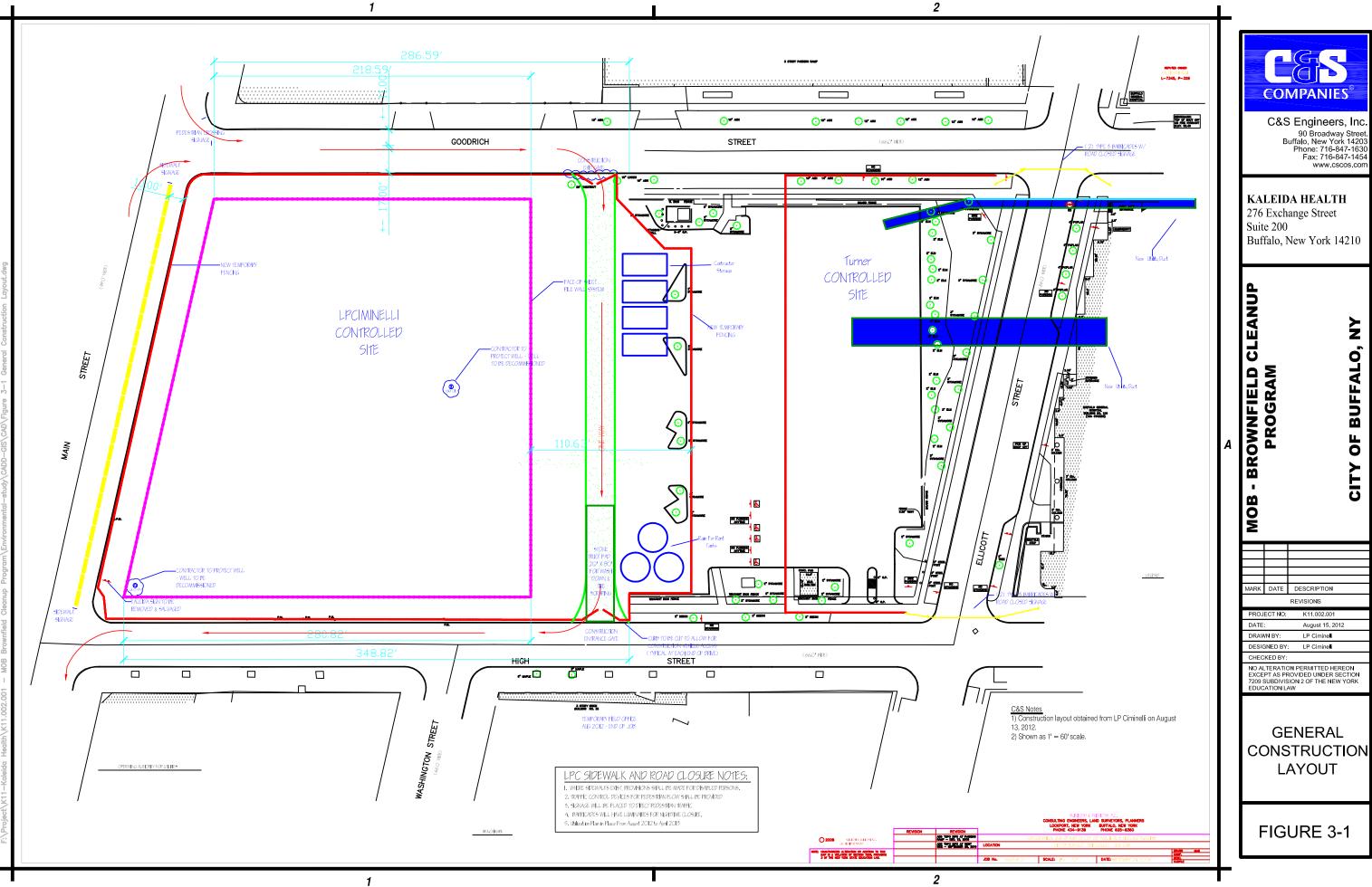
July 10, 2012 1" = 40' CAM CALE RAWN BY ESIGNED BY: CAM HECKED BY: MJC

SOIL EXCAVATION LIMTS BOTTOM OF CONTAMINATION

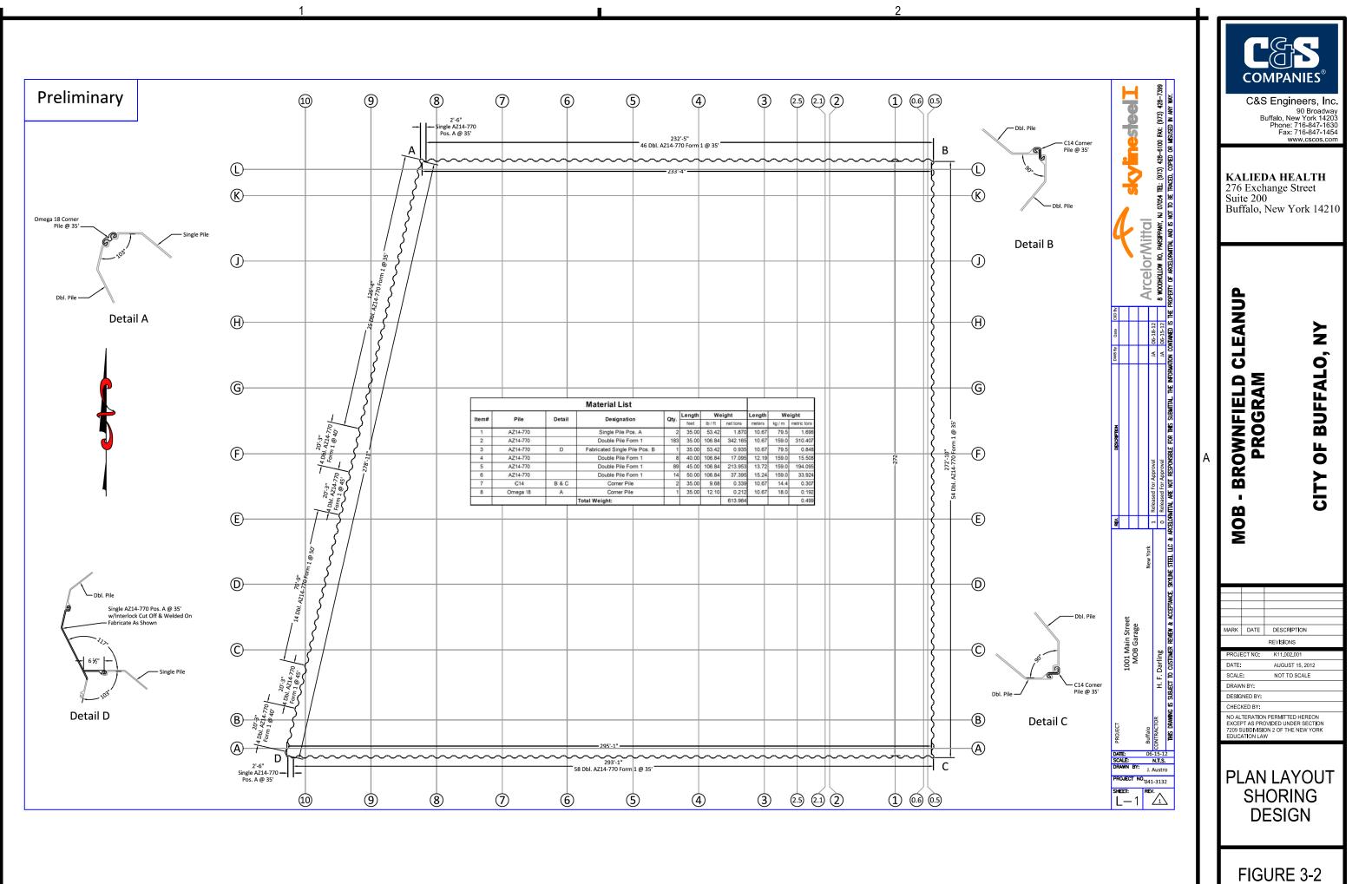
FIGURE 2-3

Proposed Medical Office Building Site

Proposed BCA Boundary

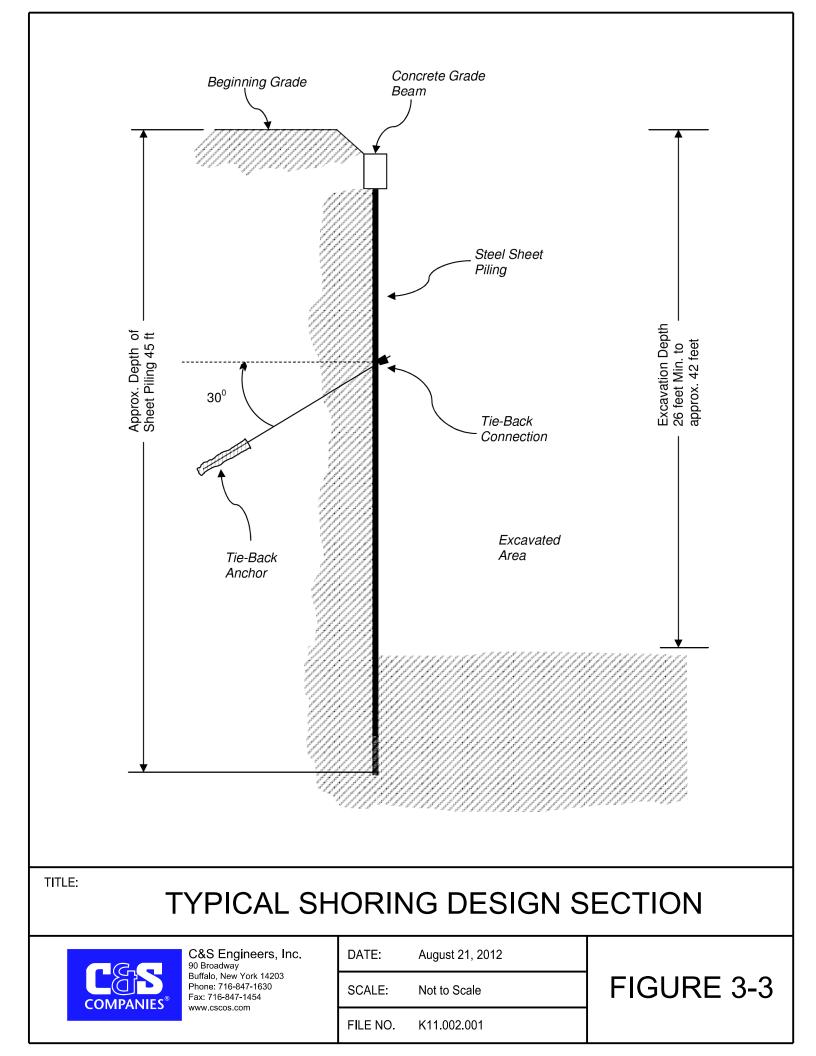

Proposed Limits of Excavation

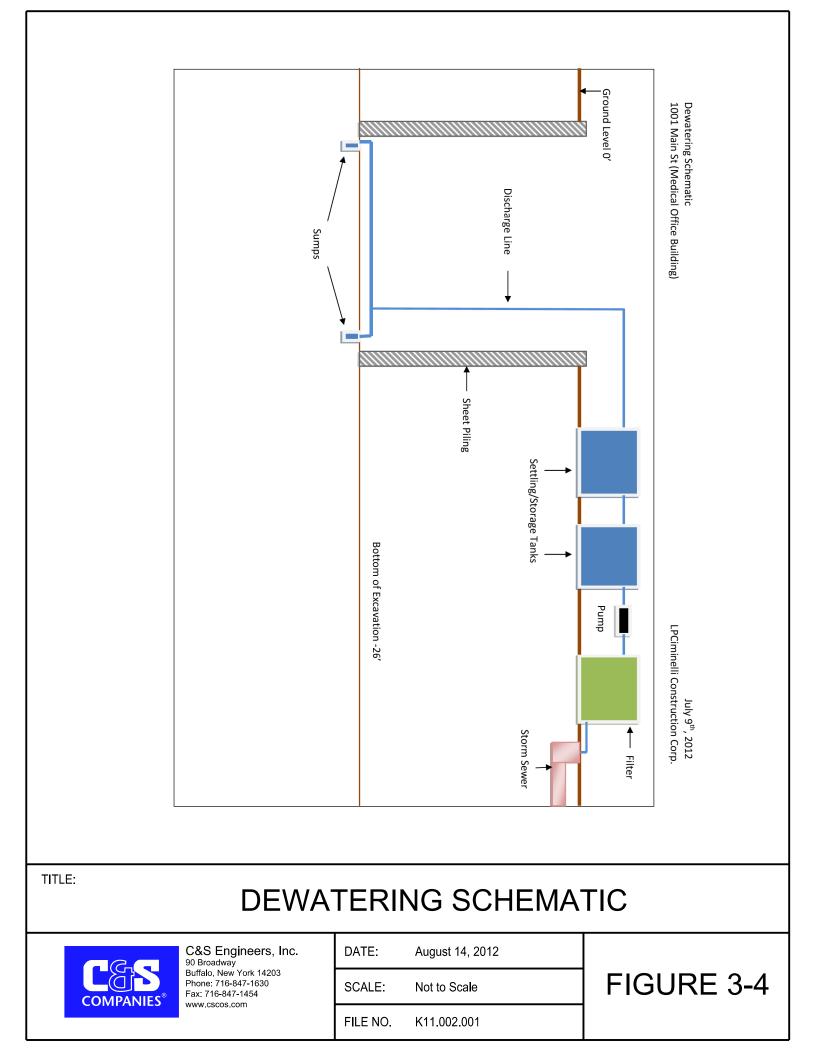
1) Survey data from McIntosh & McIntosh P.C. "Topographical Map of Part of Lot-29, TWP.-11, R.-8, Holland Purchase" Job No. 7669-


2) The underground utilities shown have been located from field survey information and existing drawings. The surveyor makes no guarantees that the underground utilities shown comprise all such utilities, either in service or abandoned. The surveyor has not

3) Groundwater sampling results from March 23, 2012 GES

4) Coordinate System: NAD 1983 StatePlane NY West FIPS 3103




A

A

Health\K11.002.001 - MOB Brownfield Cleanup Program\Environmental-study\CAD.

