# **REMEDIATION SUMMARY REPORT**

# For

# MAIN AND GOODRICH STREET RIGHT-OF-WAY NYSDEC SPILL #9500234 CITY OF BUFFALO, ERIE COUNTY, NEW YORK

Prepared by:



C&S ENGINEERS, INC. 141 ELM STREET BUFFALO, NEW YORK 14203

Prepared on Behalf of:

KALEIDA HEALTH LARKIN BUILDING, SUITE 200 726 EXCHANGE STREET BUFFALO, NEW YORK 14210

# NOVEMBER 2016

# TABLE OF CONTENTS

| <u>1.</u> | INTRODUCTION                                         | 1  |
|-----------|------------------------------------------------------|----|
| <u>2.</u> | SUBSURFACE CONDITIONS                                | 2  |
| 2.1.      | GEOLOGY                                              | 2  |
| 2.2.      | HYDROGEOLOGY                                         | 2  |
| 2.3.      | CONTAMINANT TRANSPORT                                | 2  |
| <u>3.</u> | REMEDIAL INVESTIGATION                               | 3  |
| 3.1.      | SUBSURFACE INVESTIGATION                             | 4  |
| 3.1.1     | . SUBSURFACE SOIL                                    | 4  |
| 3.1.2     | . SOIL ORGANIC VAPOR SCREENING (HEADSPACE SCREENING) | 5  |
| 3.2.      | <b>GROUNDWATER MONITORING WELL INSTALLATION</b>      | 7  |
| <u>4.</u> | REMEDIAL ACTIVITIES                                  | 7  |
| <u>5.</u> | GROUNDWATER MONITORING                               | 8  |
| 5.1.      | GROUNDWATER SAMPLING METHODS                         | 8  |
| 5.2.      | GROUNDWATER SAMPLING EVENTS                          | 8  |
| 5.3.      | GROUNDWATER LEVELS                                   | 8  |
| 5.4.      | BTEX MONITORING                                      | 9  |
| <u>6.</u> | CONCLUSION AND RECOMMENDATIONS                       | 10 |
| FIG       | URES                                                 |    |
| FIGU      | RE I – SITE LOCATION                                 |    |
| Figu      | RE 2 – BTEX CONCENTRATIONS                           |    |
| TAB       | BLES                                                 |    |
| Таві      | LE 3-4 – SOIL SAMPLE RESULTS                         |    |
| Tabi      | LE $5-2 - G$ ROUNDWATER ANALYTICAL RESULTS           |    |
| APP       | ENDICES                                              |    |
| Appe      | ENDIX A – PHOTOGRAPHIC LOG                           |    |
| APPE      | ENDIX B – LABORATORY ANALYTICAL RESULTS              |    |
| Appi      | ENDIX C – SOIL BORING LOGS                           |    |
| Appi      | ENDIX D – GROUNDWATER MONITORING CONSTRUCTION LOGS   |    |

### ACRONYM LIST

| C&S    | C&S Engineers, Inc.                                     |
|--------|---------------------------------------------------------|
| NYSDEC | NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION |
| LUST   | LEAKING UNDERGROUND STORAGE TANK                        |
| BCP    | BROWNFIELD CLEANUP PROGRAM                              |
| SPH    | SEPARATE PHASE HYDROCARBONS                             |
| RI/IRM | REMEDIAL INVESTIGATION / INTERIM REMEDIAL MEASURES      |
| BTEX   | BENZENE, TOLUENE, ETHYLBENZENE AND TOLUENE              |
| LNAPL  | LIGHT NON AQUEOUS PHASE LIQUID                          |
| VOC    | VOLATILE ORGANIC COMPOUNDS                              |
| SCO    | SOIL CLEANUP OBJECTIVES                                 |
| PID    | PHOTO-IONIZATION DETECTOR                               |

As part of the 2013 Stipulation Agreement between the New York State Department of Environmental Conservation (NYSDEC) and the Kaleida Health, C&S Engineers, Inc. (C&S) is providing this report detailing ongoing remedial work that addresses the presence of residual petroleum contamination within the Main Street and Goodrich Street Right-of-Way (ROW).

### 1. INTRODUCTION

For over 30 years, leaking underground storage tanks (LUSTs) formerly located at a Mobil Service Station at the corner of Main and High Streets released petroleum products into the subsurface soils and groundwater. The source area surrounds the former LUSTs, where contaminated soils were observed from 10 feet below ground surface (bgs), with the bulk of the contamination in the range of 20 feet bgs to approximately to 40 feet bgs. From the main release area, historic migration of petroleum product entered into a semi-confined coarse sand and gravel lens observed approximately 32 to 35 feet bgs. Petroleum product within this lens generally moved horizontally with groundwater flow.

While much of the contamination was located on the Conventus Site (Brownfield Site No. C915260), an off-site investigation was conducted as part of the Brownfield Cleanup Program (BCP) remedial activities in December 2012. The intent of the off-site investigation was to assess the presence of petroleum contamination that may have migrated from the Conventus Site to the adjacent Main Street Right-of-Way (ROW). That work indicated that the groundwater contaminant plume had indeed migrated to the Main Street ROW and the results were provided to the NYSDEC in August 2013.

While the BCP program does not require the remediate of off-site contamination, Kaleida Health voluntarily entered into the Stipulation with the NYSDEC to address off-site contamination concerns. The Stipulation requires Kaleida Health to remediate off-site contamination resulting from the former Mobil Service Station release. Because of the depth of contamination and documented low soil contamination levels (Restricted Residential Use SCOs or below), off-site concerns are limited to the presence of dissolved phase petroleum hydrocarbons above NYSDEC groundwater standards. The concentration and extent of the off-site contaminant plume has been well documented to extend off-site to west under the Main Street ROW and to the north along and under Goodrich Street.

Throughout this report the term "Conventus Site" will refer to the BCP Site No. C915260 located at 1001 Main Street. The term "ROW Site(s)" will refer to the areas outside of the BCP area along Main Street and Goodrich Street.

Known contaminants include petroleum compounds, primarily gasoline and associated BTEX compounds<sup>1</sup>. Separate Phase Hydrocarbons (SPH) have been observed in several wells on-site, including former MW-24, which is located less than 30 feet from the Main Street ROW. Based on the presence of SPH in former MW-24, contaminated soil and groundwater may extend to the west under the Main Street ROW.

This report presents results of ongoing remediation work for the contamination within the Main Street and Goodrich Street ROWs.

<sup>&</sup>lt;sup>1</sup> Benzene, Toluene, Ethylbenzene and total Xylene ("BTEX")

### 2. <u>SUBSURFACE CONDITIONS</u>

### 2.1. Geology

Geologic information is based on observations made during site excavations for the Conventus Site remedial efforts, as well as numerous previous studies such as the <u>Supplemental Subsurface</u> <u>Investigation and Quarterly Groundwater Monitoring Report</u>, (December 9, 2008, Groundwater & Environmental Service, Inc.) and the <u>Geotechnical Engineering Report</u>, 1001 <u>Main Street</u> <u>Medical Office Building, Buffalo New York</u>; (November 2010; McMahon and Mann Consulting Engineers).

The Conventus Site contains urban fill of varying depths. Fill depths ranged from 3 feet of parking lot subgrade and mixed stone to more urban fill ranging from 6 -12 feet of bricks concrete and miscellaneous building rubble, which at times was contained within old building basements.

Underlying the fill were native deposits of fine dense sand with silt with discrete clay lenses. Within this formation is a discrete, discontinuous water bearing zone comprised of coarse sand and fine to medium gravel. This zone is generally found between 32 and 35 feet bgs and ranging in thickness between 6-inches to several feet (GES, 2008).

Below this zone is the dry to moist fine sand and silt formation extends to nearly 70 feet bgs. Below this massive sand and silt formation is a coarse sand and gravel layer that grades to a sand, gravel; and clay till formation. Underlying the overburden is a grey cherty limestone formation at approximately 90 feet bgs (M&M, 2010).

### 2.2. Hydrogeology

The principal groundwater bearing zone beneath the Conventus Site is located within the coarse sand and gravel layer that is generally present between 32 and 35 feet bgs. This layer is of variable thickness (generally six inches to three feet) but is horizontally discontinuous. The layer is located within the central and northeastern portions of the Conventus Site, but does not extend completely to the southern, northwestern or southeastern areas of the Conventus Site (GES, 2008) and is confined by the dense fine sands and silt above and below the groundwater bearing zone.

Groundwater beneath the Conventus Site flows from the west to the northeast, following the depositional area of the confined groundwater bearing zone. The preferential flow of groundwater within this confined zone serves as the transport media for the petroleum release that occurred on the ROWs.

### **2.3.** Contaminant Transport

For over 40 years, light non-aqueous phase liquid (LNAPL) has filtered downward from the base of the former underground storage tanks to a depth of approximately 40 feet bgs. LNAPL intercepted the groundwater at approximately 32 feet bgs. The water table is present within a semi-confined coarse sand and gravel lens. This lens varies in thickness (1/2 to 3 feet) and extends to the northeast, confined laterally to the east and west. Because of low carbon in the fine sand silt and gravel formations, the breakdown of the BTEX compounds was slow. This resulted in high concentrations of volatile organic compound (VOC) soil gas in the unsaturated zone below the release area and the continual loading of BTEX into the groundwater from the LNAPL. Soil contamination (at concentrations exceeding the Residential Use SCOs), below the LNAPL layer was noted to extend to a depth of 35 to 40 feet bgs. This area has been identified as the Source Area for groundwater contamination.

The Source Area was removed during field activities conducted under the NYSDEC's BCP. Groundwater flows to the northeast, and has extended slightly west on the Main Street sidewalk from the former source (1001 Main Street) to the north Side of Goodrich Street.

In addition, recent investigations confirmed that the contaminated groundwater plume extends under the Main Street sidewalk (generally opposite of the documented groundwater flow direction in the area). The majority of Main Street is underlain by the NFTA Light Rail Tunnel. The presence of contamination beneath the Main Street sidewalk may be due to its close proximity to the original source within 1001 Main Street property, or it may be a result of local influence from rail tunnel present under Main Street. The underground rail tunnel and associated drain system acts as a sink for groundwater along the Main Street ROW. Over time contaminated groundwater on the western BCP boundary has slowly migrated underneath the Main Street sidewalk. The presence of contamination further west of the rail tunnel has not been determined.

The NFTA rail system has three sections:

- ) The surface tracks that run from the Inner Harbor to West Tupper Street;
- ) The shallow tunnels (constructed by digging through the overburden) which run from West Tupper Street to W/E Ferry Streets; and
- ) The deep bored tunnels (bored through the bedrock) which runs from Ferry Street to the end of the line at the University at Buffalo Station.

The project area along Main Street is located in the shallow tunnel section. Per the NFTA, the groundwater seepage into the rail tunnel is directed along the bottom of the tunnel between and along the track base. The water drains into sumps located at the transition to the deep bored tunnels near Ferry Street. These sumps pump the water into the nearby city sanitary sewer system. Therefore, the water collected in the tunnel drainage system in the area of 1001 Main Street runs along the base of the tunnel until it discharges into a sump near Ferry Street, providing no discrete access to the water collection along that length.

### 3. <u>Remedial Investigation</u>

The field investigation consisted of the installation of four soil borings / monitoring wells along the Main Street ROW. The presence of deep subsurface structures beneath the Main Street ROW greatly restricted the placement of wells. Monitoring well placement was accessible along a 5 to 6 –foot strip along the property line. Further west of this area a dense utility corridor containing fiber-optic, natural gas, city water, cable, telephone and sewer infrastructure. West of that, the metro rail tunnel lies beneath the paved portion of Main Street. Because of this significant infrastructure, four off-site wells were placed within the available strip adjacent to the Conventus building property line.

In addition to the monitoring wells installed on Main Street, a replacement groundwater monitoring well was installed in the area of the former MW-02 along Goodrich Street. During construction activities related to the preparation for the installation of the earth retention system at the Conventus Site, MW-02 was accidentally removed. This well was replaced on March 6, 2014 and named MW-2R. During a field inspection on August 20, 2015, C&S discovered that the replaced monitoring well (MW-2R) was filled in with cement from the construction of the John R. Oishei Children's Hospital. The well was replaced on January 29, 2015 and named MW-2R-2.

### **3.1. Subsurface Investigation**

Drilling activities were conducted by SJB Drilling Services, Inc. on March 12, 2014 through March 15, 2014. A track-mounted CME 45C geotechnical drill rig was used to advance the borings using 2.25-inch inside diameter hollow stem augers (HSAs) to 35 feet bgs.

Borings were sampled every 5 feet from ground surface to 25 feet bgs then continuously sampled to the end depth at each boring location. Soil samples were collected using a two inch split spoon sampler in two foot intervals. Soil from each split spoon was visually inspected, described, and screened for VOCs using a MiniRAE 3000 Photo-Ionization Detector (PID). This information was then recorded on soil boring logs which are provided in Attachment A - Boring Logs.

Drilling activities to replace MW-2R were conducted by Nature's Way Environmental on January 29, 2016. This boring was augered from ground surface to 24 feet bgs, then continuously sampled every two feet from 24 feet to 44 feet bgs.

### 3.1.1.Subsurface Soil

During geotechnical drilling, C&S observed three different soil types across the ROW Sites. ROW Site soils were generally defined as follows:

<u>Silty Clay</u>: soft moist reddish brown clay with variable silt content, some organic content with medium to high plasticity;

<u>Silt</u>: brown moist silt with trace of fine Sand; and

<u>Silty Sand</u>: brown to light brown fine Sand with 10 - 20% silt content.

| Boring  | Summarized Observations                                                                                                                                                                                                                                                                                                                                                    |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MSMW-01 | Silt was observed from 5 to 21 feet bgs. Underlying the Silt was a 6-foot thick water bearing Silty Sand layer (21-27 feet). Following the Silty Sand layer is a 7-foot thick Silt layer grading into clay Silt.                                                                                                                                                           |
|         | The water level after drilling was measured at approximately 23.9 feet bgs.<br>No staining or petroleum odor was observed. No PID readings were recorded.                                                                                                                                                                                                                  |
| MSMW-02 | The soil profile for this boring begins with Silty Clay from 5-7 feet bgs. The underlying stratum consists of Silty Sand 11 to 29 feet bgs, grading into alternating consists of Silty Clay and sandy Silt beds 29 to 31 feet bgs. Underlying the sandy Silt is a coarse Sand and gravel layer from 31 to 39 feet bgs. Black staining was observed from 33 to 39 feet bgs. |
|         | The water level after drilling was measured at approximately 27.7 feet bgs. The highest PID reading during the March 2014 drilling was 400 ppm in the 37-39 foot split spoon sample.                                                                                                                                                                                       |
| MSMW-03 | The soil profile for this boring begins with silty Clay (7-15 feet bgs) grading into clay Silt (15-17 feet bgs). Underlying the clay Silt is silty Sand from 21 to 27 feet bgs, followed by sandy Silt 29-31 feet bgs. Coarse Sand and gravel layer from 31 to 35 feet bgs.                                                                                                |

Table 3-1 – March 2014 Subsurface Soil Observations

|         | The water level after drilling was measured at approximately 27.6 feet bgs.<br>The highest PID reading during the March 2014 drilling was 470 ppm in the<br>29-31 feet split spoon.                                                                                                                   |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MSMW-04 | Soil samples were observed starting with (5-7 feet bgs), then layer of silty Sand (11-22 feet bgs). The underlying strata consist of Silt 25-28 feet bgs, followed by coarse Sand and Gravel layer from 29-35 feet bgs.                                                                               |
|         | Water level after drilling was completed was measured at approximately 27.5 feet bgs. Strong petroleum odor and/or staining were noted in soil samples from 29 feet through 35 feet. High PID readings were recorded 522 ppm in the 27-29 feet split spoon and 685 ppm in the 33-35 feet split spoon. |
| MW-02R  | The soil profile for this boring begins with silty Sand (5-21 feet bgs). The underlying stratum consists of Silt from 21 to 32 feet bgs. Coarse Sand and Gravel layer was observed 33 to 35 feet bgs.                                                                                                 |
|         | Water level after drilling was completed was measured at approximately 27.3 feet bgs. High PID readings were recorded during the March 2014 drilling was 120 ppm in the 31-33 feet split spoon.                                                                                                       |
| MW-2R-2 | This location was augered to 24 feet bgs. Drill cuttings consisted of brown silty Sand from ground surface to 24 feet bgs. Silty Sand was observed to continue from 24 feet to 36 feet bgs. Silty Clay was observed from 26 to the end of the boring at 44 feet bgs.                                  |
|         | Water level after drilling was completed was measured at approximately 28.45 feet bgs. High PID readings during the March 2014 drilling were recorded 10 ppm in the 32-34 foot split spoon.                                                                                                           |

3.1.2. Soil Organic Vapor Screening (Headspace Screening)

Recovered soil samples from each boring were headspace screened in the field to determine the presence/absence of VOCs. The PID used for screening was a MiniRae 3000 with a 10.6 eV lamp reporting in ppm. Table 2-2: Field VOC Screening summarizes the results of the headspace screening obtained during the subsurface activities. Headspace reading results are in ppm.

| Table 3-2: Field VOC Screening |         |         |         |         |        |         |  |  |  |
|--------------------------------|---------|---------|---------|---------|--------|---------|--|--|--|
| Depth                          | MSMW-01 | MSMW-02 | MSMW-03 | MSMW-04 | MW-02R | MW-2R-2 |  |  |  |
| 0-5                            |         |         |         |         |        |         |  |  |  |
| 5-7                            | 0       | 0       | 0       | 0       | 0      |         |  |  |  |
| 10-12                          | 0       | 0       | 0       | 0       | 0      |         |  |  |  |
| 15-17                          | 0       | 0       | 0       | 2.7     | 0      |         |  |  |  |

|       | Remediation Summary Repo<br>Main and Goodrich Streets Right-of-Wa<br>City of Buffalo, Erie County, New Yo |     |     |     |     |    |  |
|-------|-----------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|----|--|
|       | Γ                                                                                                         |     |     |     |     |    |  |
| 20-22 | 0                                                                                                         | 117 | 0   | 1.7 | 0   |    |  |
| 25-27 | 0                                                                                                         | 132 | 1.7 | 1.7 | 0   | 0  |  |
| 27-29 | 0                                                                                                         | 242 | 18  | 522 | 0   | 0  |  |
| 29-31 | 0                                                                                                         | 0   | 470 | 122 | 0   | 0  |  |
| 31-33 | 0                                                                                                         | 300 | 130 | 90  | 14  | 10 |  |
| 33-35 | 0                                                                                                         | 150 | 370 | 685 | 120 | 0  |  |
| 35-37 |                                                                                                           | 80  |     |     |     | 0  |  |
| 37-39 |                                                                                                           | 400 |     |     |     | 0  |  |
| 39-41 |                                                                                                           |     |     |     |     | 0  |  |
| 41-44 |                                                                                                           |     |     |     |     | 0  |  |

1: Units in parts per million (ppm)

|         | ole 3-3: Sample Col | lection |
|---------|---------------------|---------|
| Boring  | Sample Depth        | Matrix  |
| MCD 01  | 26-28 ft            | Soil    |
| MSD-01  | 32-34 ft            | Soil    |
|         |                     | Water   |
| MSP 02  | 28-30 ft            | Soil    |
| WISD-02 | 32-34 ft            | Soil    |
|         | 20-22 ft            | Soil    |
| MSB-03  | 29-31 ft            | Soil    |
|         |                     | Water   |
|         | 20-22 ft            | Soil    |
| MCD 04  | 26-28 ft            | Soil    |
| M3D-04  | 32-34 ft            | Soil    |
|         |                     | Water   |
| Soil    | 9                   |         |
| Gro     | 3                   |         |
| Tote    | al Sompling         | 10      |
| 100     | ai Samping          | 14      |

#### le Collecti Table 2 2. Sc

Table 3-4: Soil Sample Results, provided at the end of this report, summarizes detected analytical results.

### 3.2. Groundwater Monitoring Well Installation

Four wells along Main Street (MSMW-1 – 4) were installed from March 12 - 14, 2014 to intercept the contamination plume that had previously migrated from the Conventus Site and to define the northern and southern boundaries of the plume.

The monitoring wells were located adjacent to the western Conventus Site boundary line within the area of the former Physician Imaging parking access. Monitoring wells were placed in a 4-5 feet deep trench between the edge of the sidewalk (at the time part of the sidewalk along Main Street was removed) and the western façade of the building.

Goodrich Street ROW monitoring wells, MW-2R and MW-2R-2, were located approximately 288 feet east of the Main Street and Goodrich Street intersection and 60 feet south of the Ellicott Goodrich Parking Garage. Monitoring well MW-2R-2 was placed 4 feet west of MW-2R.

The monitoring wells were constructed to intersect the semi-confined sand and gravel lens. Each well was completed 10 feet of 2-inch Schedule 40 0.010-slot well screen connected to an appropriate length of schedule 40 PVC well riser to complete the well. The annulus will be sand packed with quartz sand to approximately one to two feet above the screened section, and one to two feet of bentonite chips or pellets above the sand. The remaining annulus will be grouted to ground surface. Each well was completed with a stick-up protective casing.

Following installation, the monitoring wells were developed through the removal of up to three to five well volumes using dedicated bailers or a peristaltic or submersible pump. Groundwater sampling following well development was conducted using low-flow purging and sampling techniques.

| Well ID | Ground<br>Elevation | Water<br>Depth | Groundwater<br>Elevation | Well<br>Diameter | Northing     | Easting      |  |  |  |
|---------|---------------------|----------------|--------------------------|------------------|--------------|--------------|--|--|--|
| MSMW-01 | 664.41              | 23.9           | 640.51                   | 2                | 1057037.3316 | 1071676.6493 |  |  |  |
| MSMW-02 | 663.47              | 27.7           | 635.77                   | 2                | 1056980.7803 | 1071664.9159 |  |  |  |
| MSMW-03 | 663.28              | 27.6           | 635.68                   | 2                | 1056962.4565 | 1071661.1667 |  |  |  |
| MSMW-04 | 662.97              | 27.5           | 635.47                   | 2                | 1056937.1400 | 1071656.0139 |  |  |  |
| MW-02R  | 661.38              | 27.3           | 634.08                   | 2                | 1057205.9295 | 1071995.7958 |  |  |  |
| MW-2R-2 | 662.8               | 28.45          | 634.35                   | 2                | 1057205.271  | 1071991.417  |  |  |  |

### Table 3-5: Monitoring Well Locations

### 4. <u>REMEDIAL ACTIVITIES</u>

The remedial method selected for ROW Sites was chemical oxidation using sodium percarbonate. Sodium percarbonate is a common oxidant and has demonstrated significant effectiveness in oxidizing VOCs. By-products from the reaction include carbon dioxide, sodium chloride, water and carbonic acid; these by-products are non-toxic at the levels produced.

Regenesis provided, RegenOX, sodium percarbonate in a white powder form containing a mixture of sodium percarbonate, silicic acid and silica gel. The amount of RegenOX used was

calculated based on ROW Site specific data and professional experience of C&S and Regenesis. RegenOX was mixed with tap water in 55 gallon drums at a concentration of 100 pounds of RegenOX with 110 gallons of water for each location.

Nature's Way Environmental Consultants & Contractors, Inc. (Nature's Way) was contracted to perform the in situ injections. Injections were conducted on July 28 – 31, 2014. Initially chemical treatment was applied into the subsurface with a direct push drill rig prior to the installation of the concrete sidewalk. Injections were applied at depths of approximately 30 feet bgs to contact the contaminated groundwater zone. Injection borings were conducted adjacent to MSMW-1 and MSMW-2.

During the application of chemical treatment of MSMW-2, C&S became aware that the injection solution saturated the subsurface soils. Water levels had risen to just below the ground surface. Groundwater, soil and injection solution poured out of a hole in the shoring and onto the sub-basement floor. Injections were stopped until the water and soil was cleaned and placed into 55 gallon steel drums. The remaining chemical treatment was gravity fed into the monitoring wells.

### 5. GROUNDWATER MONITORING

### **5.1. Groundwater Sampling Methods**

Before purging the well, water levels were measured using an electric water level sounder capable of measuring to the 0.01 foot accuracy. Peristaltic or bladder pumps using manufacturer-specified tubing was used for purging and sampling groundwater. Calibration, purging and sampling procedures was performed as specified by the USEPA<sup>2</sup> for low-flow sampling. Decontamination was conducted after each well is sampled to reduce the likelihood of cross contamination. Groundwater sampling equipment including the in-well pump, flow cell and water level meter was cleaned with Alconox, a phosphate free cleaner.

Samples were collected for VOCs in three 40 ml glass vials. Groundwater filled each vial until it formed a meniscus and no air bubbles were inside the vial. The cap was placed on the vial and turned over to check if any air bubbles were in the sample. Groundwater samples were kept at X C until the laboratory took custody of the samples.

### **5.2. Groundwater Sampling Events**

Groundwater samples were collected from the wells on following dates:

December 21, 2012 July 23, 2014 August 21, 2015 December 16, 2015

### **5.3. Groundwater Levels**

On March 12, 2015, a round of low-flow groundwater sampling was initiated for the wells along the Main Street ROW. Due to several inches of ice on the Main Street ROW, MS-MW-01 and MS-MW-02 were not accessible. MS-MW-03 and MS-MW-04 were discovered to be dry, with the depth to well bottom at 32.25 feet and 36.10 feet, respectively. C&S also discovered that

<sup>&</sup>lt;sup>2</sup> U.S. EPA Region 1 Low Stress (low-flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells, January 19, 2010.

groundwater levels inside the Conventus Building were low. Some of the monitoring wells inside the building and along Main Street, BCP-MW-1 and BCP-MW-6, were dry. C&S has conducted monthly groundwater level monitoring. The table below shows the water levels for each of the wells. It appears that the low water levels were a temporary condition.

| Table 5-1: Groundwater Level Monitoring |         |         |         |         |       |         |  |  |  |
|-----------------------------------------|---------|---------|---------|---------|-------|---------|--|--|--|
| DATE                                    | MSMW-01 | MSMW-02 | MSMW-03 | MSMW-04 | MW-2R | MW-2R-2 |  |  |  |
| 3/15/2014                               | 23.9    | 27.7    | 27.6    | 27.5    | 27.3  | X       |  |  |  |
| 7/23/2014                               | 17      | 27.3    | 27.3    | 27      | 26    | X       |  |  |  |
| 3/12/2015                               |         |         | 32.25   | 36.1    | X     | X       |  |  |  |
| 4/13/2015                               | 25      |         |         |         | X     | X       |  |  |  |
| 5/4/2015                                | 24.9    | 35.1    |         | 35.15   | X     | X       |  |  |  |
| 6/10/2015                               | 24.35   | 33.75   |         | 33      | X     | X       |  |  |  |
| 7/15/2015                               | 23.07   | 32.7    | 33      | 32.1    | X     | X       |  |  |  |
| 8/20/2015                               | 23.28   | 32.45   | 32      | 31.5    | X     | X       |  |  |  |
| 9/30/2015                               | 23.35   | 30.6    | 31.3    | 31.8    | X     | X       |  |  |  |
| 12/17/2015                              | 24.08   | 31.7    | 31.4    | 30.97   | X     | X       |  |  |  |
| 4/28/2016                               | 23.2    | 31      | 30.7    | 30.25   | X     | 28.45   |  |  |  |

--: Well was dry

X: Water level was not measured

### 5.4. BTEX Monitoring

Table 5-2 attached to the end of this report presents detected VOC concentrations from December 2012 to April 2016.

MSMW-1 has remain clean since its installation.

MSMW-2 initially showed no detections then in July 2014 results indicate a significant increase in VOCs. Significant changes in VOC concentrations maybe due to multiple factors, including the disturbance of natural groundwater flow by the shoring of the Conventus Building, the excavation and removal of contaminated soil and groundwater from the Conventus Site, and the low water table anomaly that was observed during the spring of 2015.

Initial analytical results from MSMW-3 and MSMW-4showed BTEX concentrations at 19,863 ug/L and 27,169.9 ug/L, respectively. Groundwater results indicate these wells have shown a significant decrease in BTEX concentrations from the initial December 2012 sampling event.

During sampling conducted on August 2015, C&S discovered that approximately 2 inches of LNAPL was sitting on top of the groundwater in MSMW-2. C&S has placed oil absorbent socks in this well and periodically changes out the absorbent socks. LNAPL has not been observed in any of the other wells on Main Street.

Historic groundwater monitoring from the former MW-2 monitoring well shows some petroleum contamination existed underneath Goodrich Street. The table below presents historic BTEX concentrations for MW-2 prior to the implementation of the IRM for the Conventus Site (mass excavation).

| Monitoring Event | Total BTEX (ug/L) |
|------------------|-------------------|
| October 2008     | 12,282.1          |
| January 2010     | 3,552.97          |
| October 2011     | 2,007             |
| February 2012    | 2,029             |

Table 5-3: Historic BTEX Concentrations for MW-2

The replaced wells (MW-2R and MW-2R-2) were located in the same location as the original well. No BTEX or VOCs were detected in groundwater samples collected from MW-2R and MW-2R-2. The contaminant plume underneath the Goodrich Street right-of-way may have been reduced via the mass excavation at the Conventus Site in addition to natural attenuation of petroleum contaminates.

### 6. <u>CONCLUSION AND RECOMMENDATIONS</u>

To address the presence of residual petroleum contamination within the Main Street and Goodrich Street ROWs, C&S has conducted periodic groundwater monitoring and one chemical oxidant treatment. Groundwater sampling results indicate that groundwater contamination in the Main Street ROW is limited to the southwest corner of the Conventus Building. After the chemical oxidant treatment, petroleum contamination and LNAPL still exist around MSMW-2. Monitoring wells downgradient of this well, MSMW-3 and MSMW-4, have shown moderate decreases in petroleum contaminates since the initial December 2012 sampling event.

No petroleum contamination was encountered in both the replaced wells around MW-2 in the Goodrich Street ROW. The contaminant plume along Goodrich Street may have been reduced via prior remedial activities on the Conventus Site and/or from natural attenuation.

C&S recommends continuing groundwater monitoring on the Main Street wells. A second application of chemical injections will be scheduled for the Main Street wells in the fall of 2016.

 $\label{eq:stability} F:\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F}}\ensuremath{\mathsf{F$ 

# TABLES

#### TABLE 3-4: SOIL ANALYTICAL RESULTS

|                          |              |                 |                           | S                | Field Sample ID<br>ample Depth (feet) | MSB-01<br>26'-28'           | MSB-01<br>32'-34'           | MSB-02<br>28'-30' | MSB-02<br>32'-34'           | MSB-03<br>20'-22'           | MSB-03<br>29'-31'           | MSB-04<br>20'-22' | MSB-04<br>26'-28'           |
|--------------------------|--------------|-----------------|---------------------------|------------------|---------------------------------------|-----------------------------|-----------------------------|-------------------|-----------------------------|-----------------------------|-----------------------------|-------------------|-----------------------------|
|                          |              |                 |                           |                  | Sample Matrix<br>Units                | 12/27/2012<br>Soil<br>mg/kg | 12/27/2012<br>Soil<br>mg/kg | Soil<br>mg/kg     | 12/27/2012<br>Soil<br>mg/kg | 12/21/2012<br>Soil<br>mg/kg | 12/21/2012<br>Soil<br>mg/kg | Soil<br>mg/kg     | 12/28/2012<br>Soil<br>mg/kg |
|                          |              | NYSDE           | C Soil Cleanup (          | Objective        |                                       |                             |                             |                   |                             |                             |                             |                   |                             |
| Parameter                | Unrestricted | Residential     | Restricted<br>Residential | Commercial       | Industrial                            |                             |                             |                   |                             |                             |                             |                   |                             |
|                          | Volati       | le Organic Comj | pounds                    |                  |                                       |                             |                             |                   |                             |                             |                             |                   |                             |
| 1,2,4-Trimethylbenzene   | NS           | NS              | NS                        | NS               | NS                                    | 0.01470                     | 0.02420                     | 0.01100           | 0.01340                     | 29.2000                     | 52.1000                     | 3.2100            | 126.0000                    |
| 1,3,5-Trimethylbenzene   | NS           | NS              | NS                        | NS               | NS                                    | 0.00576                     | 0.00966                     | 0.00411           | 0.00507                     | 11.8000                     | 18.3000                     | 1.4000            | 44.2000                     |
| 2-Butanone               | NS           | NS              | NS                        | NS               | NS                                    | < 0.00939                   | < 0.00891                   | J 0.0047          | J 0.00550                   | < 2.040                     | < 3.920                     | < 1.010           | < 17.200                    |
| 2-Hexanone               | NS           | NS              | NS                        | NS               | NS                                    | < 0.00470                   | < 0.00446                   | < 0.00440         | < 0.00527                   | < 1.020                     | < 1.960                     | < 0.506           | < 8.610                     |
| 4-Methyl-2-pentanone     | NS           | NS              | NS                        | NS               | NS                                    | < 0.00470                   | < 0.00446                   | < 0.00440         | < 0.00527                   | < 1.020                     | < 1.960                     | < 0.506           | < 8.610                     |
| Acetone                  | 0.05         | 100             | 100                       | 500              | 1000                                  | < 0.00939                   | < 0.00891                   | B 0.0197          | B 0.0225                    | J B 1.130                   | < 3.920                     | J B 0.662         | < 17.200                    |
| Benzene                  | 0.06         | 2.9             | 4.8                       | 44               | 89                                    | 0.01300                     | 0.00879                     | 0.00947           | 0.01080                     | < 0.409                     | < 0.784                     | < 0.203           | < 3.440                     |
| n-Butylbenzene           | NS           | NS              | NS                        | NS               | NS                                    | < 0.00188                   | < 0.00400                   | < 0.00176         | < 0.00211                   | 5.4900                      | 4.4100                      | 1.5100            | 10.60000                    |
| sec-Butylbenzene         | NS           | NS              | NS                        | NS               | NS                                    | < 0.00188                   | < 0.00400                   | < 0.00176         | < 0.00211                   | 0.5500                      | J 476                       | J 0.118           | < 3.440                     |
| Cyclohexane              | NS           | NS              | NS                        | NS               | NS                                    | < 0.0259                    | 0.01550                     | 0.01500           | 0.01690                     | < 2.040                     | < 3.920                     | < 1.010           | < 17.200                    |
| Dibromochloromethane     | NS           | NS              | NS                        | NS               | NS                                    | < 0.00188                   | < 0.00178                   | < 0.00176         | < 0.00211                   | < 0.409                     | < 0.784                     | < 0.203           | < 3.440                     |
| Dichlorodifluoromethane  | NS           | NS              | NS                        | NS               | NS                                    | < 0.00188                   | < 0.00178                   | < 0.00176         | < 0.00211                   | < 0.409                     | < 0.784                     | < 0.203           | < 3.440                     |
| cis-1,2-Dichloroethene   | 0.25         | 59              | 100                       | 500              | 1000                                  | < 0.00188                   | < 0.00178                   | < 0.00176         | < 0.00211                   | < 0.409                     | < 0.784                     | < 0.203           | < 3.440                     |
| Ethylbenzene             | 1            | 30              | 41                        | 390              | 780                                   | 0.00437                     | 0.00295                     | 0.00373           | 0.00419                     | 3.41                        | 11.7                        | J 0.127           | 46.2                        |
| Freon 113                | NS           | NS              | NS                        | NS               | NS                                    | < 0.00188                   | < 0.00178                   | < 0.00176         | < 0.00211                   | < 0.409                     | < 0.784                     | < 0.203           | < 3.440                     |
| Isopropylbenzene         | NS           | NS              | NS                        | NS               | NS                                    | < 0.00188                   | < 0.00178                   | < 0.00176         | < 0.00211                   | 0.6000                      | 1.0600                      | < 0.203           | J 2.280                     |
| p-Isopropyltoluene       | NS           | NS              | NS                        | NS               | NS                                    | < 0.00188                   | < 0.00400                   | < 0.00176         | < 0.00211                   | J 0.376                     | < 0.784                     | < 0.203           | < 3.440                     |
| Methyl acetate           | NS           | NS              | NS                        | NS               | NS                                    | 0.04000                     | 0.00581                     | < 0.00176         | < 0.00211                   | < 0.409                     | < 0.784                     | < 0.203           | < 3.440                     |
| Methyl tert-butyl Ether  | NS           | NS              | NS                        | NS               | NS                                    | < 0.00188                   | < 0.00178                   | < 0.00176         | < 0.00211                   | < 0.409                     | < 0.784                     | < 0.203           | < 3.440                     |
| Methylcyclohexane        | NS           | NS              | NS                        | NS               | NS                                    | 0.04490                     | 0.02740                     | 0.02570           | 0.02950                     | 3.0900                      | 12.8000                     | 0.3080            | 36.3000                     |
| Methylene Chloride       | 0.05         | 51              | 100                       | 500              | 1000                                  | < 0.00470                   | < 0.00446                   | < 0.00440         | < 0.00527                   | J 0.738                     | < 1.960                     | < 0.506           | < 8.610                     |
| Naphthalene              | NS           | NS              | NS                        | NS               | NS                                    | < 0.00470                   | < 0.0100                    | < 0.00440         | < 0.00527                   | 2.2100                      | 7.1000                      | < 0.506           | 19.40000                    |
| n-Propylbenzene          | NS           | NS              | NS                        | NS               | NS                                    | J 0.00107                   | < 0.00400                   | J 0.000943        | < 0.00211                   | 4.1300                      | 6.3100                      | 0.4480            | 14.90000                    |
| Styrene                  | NS           | NS              | NS                        | NS               | NS                                    | < 0.00470                   | < 0.00446                   | < 0.00440         | < 0.00527                   | < 1.020                     | < 1.960                     | < 0.506           | < 8.610                     |
| Tetrachloroethene        | 1.3          | 5.5             | 19                        | 150              | 300                                   | < 0.00188                   | < 0.00178                   | < 0.00176         | < 0.00211                   | < 0.409                     | < 0.784                     | < 0.203           | < 3.440                     |
| Toluene                  | 0.7          | 100             | 100                       | 500              | 1000                                  | 0.03040                     | 0.01990                     | 0.02330           | 0.02590                     | 1.72                        | 6.89                        | < 0.203           | 34.1                        |
| trans-1,2-Dichloroethene | 0.19         | 100             | 100                       | 500              | 1000                                  | < 0.00188                   | < 0.00178                   | < 0.00176         | < 0.00211                   | < 0.409                     | < 0.784                     | < 0.203           | < 3.440                     |
| Trichlorofluoromethane   | NS           | NS              | NS                        | NS               | NS                                    | < 0.00188                   | < 0.00178                   | < 0.00176         | < 0.00211                   | < 0.409                     | < 0.784                     | < 0.203           | < 3.440                     |
| Trichloroethene          | 0.47         | 10              | 21                        | 200              | 400                                   | < 0.00188                   | < 0.00178                   | < 0.00176         | < 0.00211                   | < 0.409                     | < 0.784                     | < 0.203           | < 3.440                     |
| Vinyl chloride           | 0.02         | 0.21            | 0.9                       | 13               | 27                                    | < 0.00188                   | < 0.00178                   | < 0.00176         | < 0.00211                   | < 0.409                     | < 0.784                     | < 0.203           | < 3.440                     |
| m,p-Xylene               | NS           | NS              | NS                        | NS               | NS                                    | 0.02600                     | 0.01820                     | 0.01940           | 0.02260                     | 17.2000                     | 59.6000                     | 0.5340            | 215.0000                    |
| o-Xylene                 | 0.26         | 100             | 100                       | 500              | 1000                                  | 0.00860                     | 0.00613                     | 0.00680           | 0.00795                     | 6.05                        | 14.7                        | J 0.142           | 67.9                        |
| Naphthalene              | 12           | $100^{a}$       | 100 <sup>a</sup>          | 500 <sup>b</sup> | 1,000 <sup>c</sup>                    | < 0.00188                   | < 0.00178                   | < 0.00176         | < 0.00211                   | 0.40700                     | 1.59000                     | < 0.203           | 26                          |

Qualifers

| В  | Indicates the analyte is detected in the associated blank as well as in the sample                                                                     |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Н  | Sample result is estimated and biased high                                                                                                             |
| J  | The reported value is estimated                                                                                                                        |
| R  | Indicates the reported result is unusable note: the analyte may or may not be present                                                                  |
| U  | Compound was analyzed for but not detected above pql-crql. specific quantitation limit reported has been corrected for dilution and percent moisture   |
| E  | Identifies compounds whose concentration exceed the calibration range of the instrument for that specific analysis                                     |
| L  | Sample result is estimated and biased low                                                                                                              |
| Κ  | Reported concentration value is proportional to dilution factor and may be exagerated                                                                  |
| JL | Estimated biased low based on use of analytical method 5035 or 5035a                                                                                   |
| Ν  | Indicates presumptive evidence of a compound this flag is usually used for a tentatively identified compound where the identification is based on a ma |
| Р  | Indicates a pesticide/aroclor target analyte had a percent difference greater than 25% between the two gc columns the lower of the two results is repo |
| J+ | Estimated on the high side                                                                                                                             |

Estimated biased low J-

| MSB-04     |
|------------|
| 32'-34'    |
| 12/28/2012 |
| Soil       |
| mg/kg      |

| 29.3000 |  |  |  |
|---------|--|--|--|
| 10.6000 |  |  |  |
| < 1.650 |  |  |  |
| < 0.825 |  |  |  |
| < 0.825 |  |  |  |
| < 1.650 |  |  |  |
| < 0.330 |  |  |  |
| 2.4600  |  |  |  |
| J 0.256 |  |  |  |
| 11.0000 |  |  |  |
| < 0.330 |  |  |  |
| < 0.330 |  |  |  |
| < 0.330 |  |  |  |
| 11.9    |  |  |  |
| < 0.330 |  |  |  |
| 0.60300 |  |  |  |
| J 192   |  |  |  |
| < 0.330 |  |  |  |
| < 0.330 |  |  |  |
| 8.7900  |  |  |  |
| < 0.825 |  |  |  |
| 4.8100  |  |  |  |
| 3.7500  |  |  |  |
| < 0.825 |  |  |  |
| < 0.330 |  |  |  |
| 14.8    |  |  |  |
| < 0.330 |  |  |  |
| < 0.330 |  |  |  |
| < 0.330 |  |  |  |
| < 0.330 |  |  |  |
| 52.6000 |  |  |  |
| 19.7    |  |  |  |
| 21      |  |  |  |
|         |  |  |  |

### TABLE 5-2: GROUNDWATER ANALYTICAL RESULTS

|                           |                 | MCN MXX 01 | MENALV 01 | MCM ANY OI | MCNAUX 01 | MCNANY OI  | MCMMW 01  | MCMMW 02   | MOMMY 02  | MOMIN       |            |           | MOM     | V 02             |
|---------------------------|-----------------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|-------------|------------|-----------|---------|------------------|
| Location ID               |                 | MSNIW-01   | MSMW-01   | MSMW-01    | MSNIW-01  | MSMW-01    | MSMW-01   | MSM W-02   | MSNIW-02  | MSMW-02     | MSMW-02    | 2 MSMW-02 | MSNIV   | V-03             |
| Sample Matrix             | NYSDEC T.O.G.S. | WG         | WG        | WG         | WG        | WG         | WG        | WG         | WG        | WG          | WG         | WG        | WG      | r -              |
| Date Sampled              | GROUNDWATER     | 12/21/2012 | 7/23/2014 | 5/4/2015   | 8/21/2015 | 12/16/2015 | 4/28/2016 | 12/21/2012 | 7/23/2014 | 8/21/2015   | 12/16/2015 | 4/28/2016 | 12/21/2 | .012             |
| Units                     | STANDARDS       | ug/L       | ug/L      | ug/L       | ug/L      | ug/L       | ug/L      | ug/L       | ug/L      | ug/L        | ug/L       | ug/L      | ug/I    |                  |
| Volatile Organic Compound |                 |            |           |            |           |            |           |            |           |             |            |           |         |                  |
| Acetone                   | 50              |            |           |            |           |            |           |            |           |             |            |           | 3,000   | .0 B             |
| Benzene                   | 1               |            |           |            |           |            |           |            | 400.0     | 350.0       | 310.0      | 160.0     | 123.    | 0                |
| 2-Butanone (MEK)          | N/S             |            |           |            |           |            |           |            |           |             |            |           |         |                  |
| Chloroform                | N/S             |            | 0.4       | J          |           |            |           |            |           |             |            |           |         |                  |
| Cyclohexane               | N/S             |            | 0.4       | J          |           |            |           |            | 660.0     | 450.0       |            | 440.0     | 1,130   | .0               |
| Ethylbenzene              | 5               |            | 1.1       |            |           |            |           |            | 2,900.0   | 1,200.0     | 1,500.0    | 1,400.0   | 2,370   | . <mark>0</mark> |
| 2-Hexanone                | 50              |            |           |            |           |            |           |            | 92.0      | J           |            | 130.0     | J 447.  | <mark>0 </mark>  |
| Isopropylbenzene          | N/S             |            |           |            |           |            |           |            | 58.0      |             |            |           |         |                  |
| Methylcyclohexane         | N/S             |            | 0.2       | J          |           |            |           |            | 250.0     | 170.0       | J 150.0    | J 220.0   | 678.    | 0                |
| Methylene Chloride        | N/S             |            |           |            |           |            |           |            | 160.0     | 240.0       | B 210.0    |           |         |                  |
| Toluene                   | 5               |            |           |            |           |            |           |            | 2,400.0   | 1,500.0     | 1,900.0    | 2,700.0   | 2,920   | . <mark>0</mark> |
| Xylene, Total             | 5               |            | 7.2       |            |           |            |           |            | 13,000.0  | DL 13,000.0 | 10,000.0   | 15,000.0  | 14,450  | <mark>).0</mark> |
| Naphthalene               | 10              |            |           |            |           |            |           |            |           |             |            |           | 1,180   | . <mark>0</mark> |
| n-Propylbenzene           | N/S             |            |           |            |           |            |           |            |           |             |            |           | 467.    | 0                |
| 1,2,4-Trimethylbenzene    | N/S             |            |           |            |           |            |           |            |           |             |            |           | 4,710   | .0               |
| 1,3,5-Trimethylbenzene    | N/S             |            |           |            |           |            |           |            |           |             |            |           | 1,430   | .0               |
| Total VOC                 |                 |            | 9.3       | 0.0        | 0.0       | 0.0        | 0.0       | 0.0        | 19,920.0  | 16,910.0    | 14,070.0   | 20,050.0  | 32,90   | 5.0              |
| Total BTEX                |                 |            | 8.3       | 0.0        | 0.0       | 0.0        | 0.0       | 0.0        | 18,700.0  | 16,050.0    | 13,710.0   | 19,260.0  | 19,86.  | 3.0              |

Notes:

Only analytes detected in one or more samples shown.

Blank space indicates compound not detected.

U - Not Detected. This compound was analyzed-for but not detected.

J - Estimated value due to either the compound was detected below the reporting limit or estimated concentration for Tentatively Identified Compound.

B - Compound was also detected in associated Method Blank.

P- Indicates a pesticide/aroclor target analyte had a percent difference greater than 25% between the two gc columns the lower of the two results is repo

WG-groundwater N/S - no standard

### **TABLE 5-2: GROUNDWATER ANALYTICAL RESULTS**

| Location ID               |                 | MSMW-03      | MSMW-03         | MSMW-04    | М | ISMW-04         | M  | SMW-04         | MSMW-04          | MSMW-04         | MW-2R           | MW-2R-2         |
|---------------------------|-----------------|--------------|-----------------|------------|---|-----------------|----|----------------|------------------|-----------------|-----------------|-----------------|
| Sample Matrix             | NYSDEC I.U.G.S. | WG           | WG<br>4/28/2017 | WG         | - | WG<br>1/22/2014 | 0/ | WG<br>/21/2015 | WG<br>12/17/2015 | WG<br>4/29/2017 | WG<br>7/22/2014 | WG<br>4/28/2017 |
| Date Sampled              | GROUNDWATER     | //25/2014    | 4/28/2010       | 12/28/2012 | / | /23/2014        | 8/ | /21/2015       | 12/10/2015       | 4/28/2016       | //25/2014       | 4/28/2010       |
| Units                     | STANDARDS       | ug/L         | ug/L            | ug/L       |   | ug/L            |    | ug/L           | ug/L             | ug/L            | ug/L            | ug/L            |
| Volatile Organic Compound |                 |              |                 |            |   |                 |    |                |                  |                 |                 |                 |
| Acetone                   | 50              | 22.0         | J               | < 1000     |   | 22.0            |    | 26.0           |                  |                 |                 |                 |
| Benzene                   | 1               | 80.0         | 78.0            | 59.9       | J | 150.0           |    | 140.0          | 180.0            | 71.0            |                 |                 |
| 2-Butanone (MEK)          | N/S             | 12.0         | J 11.0          |            |   | 7.2             | J  |                |                  |                 |                 |                 |
| Chloroform                | N/S             |              |                 |            |   |                 |    |                |                  |                 |                 |                 |
| Cyclohexane               | N/S             | 52.0         | 260.0           | < 1000     |   | 52.0            |    | 100.0          | 170.0            | 190.0           | 1.1             |                 |
| Ethylbenzene              | 5               | <b>190.0</b> | 990.0           | 2,370.0    |   | 180.0           |    | 140.0          | 420.0            | 510.0           |                 |                 |
| 2-Hexanone                | 50              |              | 8.3             | < 500      |   |                 |    |                |                  |                 |                 |                 |
| Isopropylbenzene          | N/S             | 6.6          | 27.0            |            |   | 8.1             |    | 5.9            | 14.0             | 13.0            |                 |                 |
| Methylcyclohexane         | N/S             | 25.0         | 78.0            | 165.0      | J | 33.0            |    | 43.0           | 70.0             | 58.0            | 0.9             | J               |
| Methylene Chloride        | N/S             | 9.8          |                 |            |   | 6.6             |    | 23.0           | В                |                 |                 |                 |
| Toluene                   | 5               | 34.0         | 60.0            | 9,890.0    |   | 39.0            |    | 5.8            | 48.0             | 46.0            |                 |                 |
| Xylene, Total             | 5               | 360.0        | 570.0           | 14,850.0   |   | 160.0           |    | 64.0           | 190.0            | 210.0           | 2.4             |                 |
| Naphthalene               | 10              |              |                 | 686.0      |   |                 |    |                |                  |                 |                 |                 |
| n-Propylbenzene           | N/S             |              |                 | 205.0      |   |                 |    |                |                  |                 |                 |                 |
| 1,2,4-Trimethylbenzene    | N/S             |              |                 | 2,300.0    |   |                 |    |                |                  |                 |                 |                 |
| 1,3,5-Trimethylbenzene    | N/S             |              |                 | 668.0      |   |                 |    |                |                  |                 |                 |                 |
| Total VOC                 |                 | 791.4        | 2,082.3         | 31,193.9   |   | 657.9           |    | 547.7          | 1,092.0          | 1,098.0         | 4.4             | 0.0             |
| Total BTEX                |                 | 664.0        | 1,698.0         | 27,169.9   |   | 529.0           |    | 349.8          | 838.0            | 837.0           | 2.4             | 0.0             |

Notes:

Only analytes detected in one or more samples shown.

Blank space indicates compound not detected.

U - Not Detected. This compound was analyzed-for but not detected.

J - Estimated value due to either the compound was detected below the reporting limit or estimated concentration for Tentatively Identified Compound.

B - Compound was also detected in associated Method Blank.

P- Indicates a pesticide/aroclor target analyte had a percent difference greater than 25% between the two gc columns the lower of the two results is repo

WG-groundwater N/S - no standard 

# FIGURES



2

2

С

1





σ

CONCENTRATIONS.

BTEX

2

б

ADD-GIS/GIS/P

MC/Er

BNI

.001 -

005.

£

# APPENDICES

## APPENDIX A PHOTOGRAPHIC LOG

## **APPENDIX A**

| Exhibit: | Date:     |
|----------|-----------|
| 1        | 3/12/2014 |

### **Description:**

Trench between building and sidewalk where monitoring wells were installed.

### MAIN STREET WELL INSTALLATION



| Exhibit: | Date:     |
|----------|-----------|
| 2        | 3/12/2014 |

### **Description:**

Well installation of MSMW-02.

### MAIN STREET WELL INSTALLATION



### **APPENDIX A**

| Exhibit: | Date:  |
|----------|--------|
| 3        | 3/14/2 |

3/14/2014

### **Description:**

Well installation of MW-02R.

### MAIN STREET WELL INSTALLATION



| Exhibit: | Date:     |
|----------|-----------|
| 4        | 3/14/2014 |

Т

### **Description:**

View of MSMW-01.

### MAIN STREET WELL INSTALLATION



### **APPENDIX** A

| Exhibit: | Date:     |
|----------|-----------|
| 5        | 3/14/2014 |

### **Description:**

View of groundwater monitoring wells MSMW-02, 03 and 04.



MAIN STREET WELL INSTALLATION

| Exhibit: | Date:     |
|----------|-----------|
| 6        | 3/14/2014 |

Τ

### MAIN STREET WELL INSTALLATION



### **Description:**

View north of groundwater monitoring wells.

| Exhibit: | Date:     |
|----------|-----------|
| 7        | 3/14/2014 |

### **GOODRICH STREET WELL INSTALLATION**

### **Description:**

View north at MW-02R.



| Exhibit: | Date:     |
|----------|-----------|
| 8        | 1/29/2016 |

#### **GOODRICH STREET WELL INSTALLATION**



**Description:** 

Former MW-2R along Goodrich Street.

## **APPENDIX A**

| Exhibit: | Date:     |
|----------|-----------|
| 9        | 1/29/2016 |

## GOODRICH STREET WELL INSTALLATION

### **Description:**

Installation of MW-2R-2.



## APPENDIX B LABORATORY ANALYTICAL RESULTS



THE LEADER IN ENVIRONMENTAL TESTING

# **ANALYTICAL REPORT**

### TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

### TestAmerica Job ID: 480-99322-1 Client Project/Site: Water & Soil Analysis

For:

C&S Engineers, Inc. 499 Col. Eileen Collins Blvd Syracuse, New York 13212

Attn: Mr. Wayne N Randall

Joeph V. Gisconaya

Authorized for release by: 5/11/2016 10:16:23 AM Joe Giacomazza, Project Management Assistant II joe.giacomazza@testamericainc.com

Designee for

Judy Stone, Senior Project Manager (484)685-0868 judy.stone@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.



# **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 2  |
| Definitions/Glossary   | 3  |
| Case Narrative         | 4  |
| Detection Summary      | 5  |
| Client Sample Results  | 6  |
| Surrogate Summary      | 16 |
| QC Sample Results      | 17 |
| QC Association Summary | 25 |
| Lab Chronicle          | 26 |
| Certification Summary  | 27 |
| Method Summary         | 28 |
| Sample Summary         | 29 |
| Chain of Custody       | 30 |
| Receipt Checklists     | 31 |
|                        |    |

3

5

### Qualifiers

#### **GC/MS VOA**

| Qualifier | Qualifier Description                                                                                          |
|-----------|----------------------------------------------------------------------------------------------------------------|
| *         | LCS or LCSD is outside acceptance limits.                                                                      |
| J         | Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. |

## Glossary

| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 |  |
|----------------|-------------------------------------------------------------------------------------------------------------|--|
| ¤              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |  |
| %R             | Percent Recovery                                                                                            |  |
| CFL            | Contains Free Liquid                                                                                        |  |
| CNF            | Contains no Free Liquid                                                                                     |  |
| DER            | Duplicate error ratio (normalized absolute difference)                                                      |  |
| Dil Fac        | Dilution Factor                                                                                             |  |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |  |
| DLC            | Decision level concentration                                                                                |  |
| MDA            | Minimum detectable activity                                                                                 |  |
| EDL            | Estimated Detection Limit                                                                                   |  |
| MDC            | Minimum detectable concentration                                                                            |  |
| MDL            | Method Detection Limit                                                                                      |  |
| ML             | Minimum Level (Dioxin)                                                                                      |  |
| NC             | Not Calculated                                                                                              |  |
| ND             | Not detected at the reporting limit (or MDL or EDL if shown)                                                |  |
| PQL            | Practical Quantitation Limit                                                                                |  |
| QC             | Quality Control                                                                                             |  |
| RER            | Relative error ratio                                                                                        |  |
| RL             | Reporting Limit or Requested Limit (Radiochemistry)                                                         |  |
| RPD            | Relative Percent Difference, a measure of the relative difference between two points                        |  |
| TEF            | Toxicity Equivalent Factor (Dioxin)                                                                         |  |

TEQ Toxicity Equivalent Quotient (Dioxin)

### Job ID: 480-99322-1

#### Laboratory: TestAmerica Buffalo

#### Narrative

Job Narrative 480-99322-1

#### Receipt

The samples were received on 4/29/2016 11:50 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.7° C.

#### GC/MS VOA

Method(s) 8260C: The sample was collected in a properly preserved vial for analysis of volatile organic compounds (VOCs). However,when verified by the laboratory,the pH was greater than 2 and the following samples were analyzed after 7 days from sampling : MSMW-3-042816 (480-99322-3).

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-300570 recovered above the upper control limit for 2-Butanone (MEK), Acetone, Bromomethane and Trichlorofluoromethane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: MW-2R-2-042816 (480-99322-1), MSMW-1-042816 (480-99322-2), MSMW-3-042816 (480-99322-3) and MSMW-4-042816 (480-99322-4).

Method(s) 8260C: The laboratory control sample (LCS) for analytical batch 480-300570 recovered outside control limits for the following analyte: Acetone. This analyte was biased high in the LCS and was not detected in the associated samples; therefore, the data have been reported. The following samples are affected: MW-2R-2-042816 (480-99322-1), MSMW-1-042816 (480-99322-2), MSMW-3-042816 (480-99322-3) and MSMW-4-042816 (480-99322-4).

Method(s) 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: MSMW-3-042816 (480-99322-3), MSMW-4-042816 (480-99322-4) and MSMW-2-042816 (480-99322-5). Elevated reporting limits (RLs) are provided.

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-300656 recovered above the upper control limit for Carbon disulfide, 2-Butanone (MEK) and 1,1,2-Trichloro-1,2,2-trifluoroethane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following sample is impacted: MSMW-2-042816 (480-99322-5).

Method(s) 8260C: The sample was collected in properly preserved vials for analysis of volatile organic compounds (VOCs). However, when verified by the laboratory, the pH was greater than 2 and the following samples were analyzed after 7 days from sampling: MSMW-3-042816 (480-99322-3)

Method(s) 8260C: The following sample was diluted to bring the concentration of target analytes within the calibration range: MSMW-2-042816 (480-99322-5). Elevated reporting limits (RLs) are provided.

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-300810 recovered above the upper control limit for 2-Butanone and Acetone. The samples associated with this CCV had no detections above the reporting limit for the affected analytes; therefore, the data have been reported. The following sample is impacted: MSMW-2-042816 (480-99322-5).

Method(s) 8260C: The laboratory control sample (LCS) for analytical batch 480-300810 recovered outside control limits for the following analytes: Acetone. This analyte was biased high in the LCS and was not detected above the reporting limit in the associated samples; therefore, the data have been reported. The following sample is affected: MSMW-2-042816 (480-99322-5).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

### Client Sample ID: MW-2R-2-042816

No Detections.

### Client Sample ID: MSMW-1-042816

No Detections.

### Client Sample ID: MSMW-3-042816

| Analyte                     | Result Qualifi | ier RL | MDL  | Unit | Dil Fac | D | Method | Prep Type |
|-----------------------------|----------------|--------|------|------|---------|---|--------|-----------|
| 2-Hexanone                  | 8.3            | 5.0    | 1.2  | ug/L | 1       | _ | 8260C  | Total/NA  |
| 4-Methyl-2-pentanone (MIBK) | 11             | 5.0    | 2.1  | ug/L | 1       |   | 8260C  | Total/NA  |
| Benzene                     | 78             | 1.0    | 0.41 | ug/L | 1       |   | 8260C  | Total/NA  |
| Isopropylbenzene            | 27             | 1.0    | 0.79 | ug/L | 1       |   | 8260C  | Total/NA  |
| Methylcyclohexane           | 78             | 1.0    | 0.16 | ug/L | 1       |   | 8260C  | Total/NA  |
| Toluene                     | 60             | 1.0    | 0.51 | ug/L | 1       |   | 8260C  | Total/NA  |
| Cyclohexane - DL            | 260            | 10     | 1.8  | ug/L | 10      |   | 8260C  | Total/NA  |
| Ethylbenzene - DL           | 990            | 10     | 7.4  | ug/L | 10      |   | 8260C  | Total/NA  |
| Xylenes, Total - DL         | 570            | 20     | 6.6  | ug/L | 10      |   | 8260C  | Total/NA  |

### Client Sample ID: MSMW-4-042816

| Analyte             | Result | Qualifier | RL  | MDL  | Unit | Dil Fac | D | Method | Prep Type |
|---------------------|--------|-----------|-----|------|------|---------|---|--------|-----------|
| Benzene             | 71     |           | 1.0 | 0.41 | ug/L | 1       | _ | 8260C  | Total/NA  |
| Isopropylbenzene    | 13     |           | 1.0 | 0.79 | ug/L | 1       |   | 8260C  | Total/NA  |
| Methylcyclohexane   | 58     |           | 1.0 | 0.16 | ug/L | 1       |   | 8260C  | Total/NA  |
| Toluene             | 46     |           | 1.0 | 0.51 | ug/L | 1       |   | 8260C  | Total/NA  |
| Cyclohexane - DL    | 190    |           | 10  | 1.8  | ug/L | 10      |   | 8260C  | Total/NA  |
| Ethylbenzene - DL   | 510    |           | 10  | 7.4  | ug/L | 10      |   | 8260C  | Total/NA  |
| Xylenes, Total - DL | 210    |           | 20  | 6.6  | ug/L | 10      |   | 8260C  | Total/NA  |

### Client Sample ID: MSMW-2-042816

| Analyte             | Result | Qualifier | RL  | MDL | Unit | Dil Fac | D | Method | Prep Type |
|---------------------|--------|-----------|-----|-----|------|---------|---|--------|-----------|
| 2-Hexanone          | 130    | J         | 400 | 99  | ug/L | 80      | _ | 8260C  | Total/NA  |
| Benzene             | 160    |           | 80  | 33  | ug/L | 80      |   | 8260C  | Total/NA  |
| Cyclohexane         | 440    |           | 80  | 14  | ug/L | 80      |   | 8260C  | Total/NA  |
| Ethylbenzene        | 1400   |           | 80  | 59  | ug/L | 80      |   | 8260C  | Total/NA  |
| Methylcyclohexane   | 220    |           | 80  | 13  | ug/L | 80      |   | 8260C  | Total/NA  |
| Toluene             | 2700   |           | 80  | 41  | ug/L | 80      |   | 8260C  | Total/NA  |
| Xylenes, Total - DL | 15000  |           | 400 | 130 | ug/L | 200     |   | 8260C  | Total/NA  |

This Detection Summary does not include radiochemical test results.

Lab Sample ID: 480-99322-1

Lab Sample ID: 480-99322-2

Lab Sample ID: 480-99322-3

### Lab Sample ID: 480-99322-4

Lab Sample ID: 480-99322-5

### Lab Sample ID: 480-99322-1 Matrix: Water

| Analyte                               | Result | Qualifier | RL  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------------------|--------|-----------|-----|------|------|---|----------|----------------|---------|
| 1,1,1-Trichloroethane                 | ND     |           | 1.0 | 0.82 | ug/L |   |          | 05/08/16 14:46 | 1       |
| 1,1,2,2-Tetrachloroethane             | ND     |           | 1.0 | 0.21 | ug/L |   |          | 05/08/16 14:46 | 1       |
| 1,1,2-Trichloroethane                 | ND     |           | 1.0 | 0.23 | ug/L |   |          | 05/08/16 14:46 | 1       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND     |           | 1.0 | 0.31 | ug/L |   |          | 05/08/16 14:46 | 1       |
| 1,1-Dichloroethane                    | ND     |           | 1.0 | 0.38 | ug/L |   |          | 05/08/16 14:46 | 1       |
| 1,1-Dichloroethene                    | ND     |           | 1.0 | 0.29 | ug/L |   |          | 05/08/16 14:46 | 1       |
| 1,2,4-Trichlorobenzene                | ND     |           | 1.0 | 0.41 | ug/L |   |          | 05/08/16 14:46 | 1       |
| 1,2-Dibromo-3-Chloropropane           | ND     |           | 1.0 | 0.39 | ug/L |   |          | 05/08/16 14:46 | 1       |
| 1,2-Dichlorobenzene                   | ND     |           | 1.0 | 0.79 | ug/L |   |          | 05/08/16 14:46 | 1       |
| 1,2-Dichloroethane                    | ND     |           | 1.0 | 0.21 | ug/L |   |          | 05/08/16 14:46 | 1       |
| 1,2-Dichloropropane                   | ND     |           | 1.0 | 0.72 | ug/L |   |          | 05/08/16 14:46 | 1       |
| 1,3-Dichlorobenzene                   | ND     |           | 1.0 | 0.78 | ug/L |   |          | 05/08/16 14:46 | 1       |
| 1,4-Dichlorobenzene                   | ND     |           | 1.0 | 0.84 | ug/L |   |          | 05/08/16 14:46 | 1       |
| 2-Butanone (MEK)                      | ND     |           | 10  | 1.3  | ug/L |   |          | 05/08/16 14:46 | 1       |
| 2-Hexanone                            | ND     |           | 5.0 | 1.2  | ug/L |   |          | 05/08/16 14:46 | 1       |
| 4-Methyl-2-pentanone (MIBK)           | ND     |           | 5.0 | 2.1  | ug/L |   |          | 05/08/16 14:46 | 1       |
| Acetone                               | ND     | *         | 10  | 3.0  | ug/L |   |          | 05/08/16 14:46 | 1       |
| Benzene                               | ND     |           | 1.0 | 0.41 | ug/L |   |          | 05/08/16 14:46 | 1       |
| Bromodichloromethane                  | ND     |           | 1.0 | 0.39 | ug/L |   |          | 05/08/16 14:46 | 1       |
| Bromoform                             | ND     |           | 1.0 | 0.26 | ug/L |   |          | 05/08/16 14:46 | 1       |
| Bromomethane                          | ND     |           | 1.0 | 0.69 | ug/L |   |          | 05/08/16 14:46 | 1       |
| Carbon disulfide                      | ND     |           | 1.0 | 0.19 | ug/L |   |          | 05/08/16 14:46 | 1       |
| Carbon tetrachloride                  | ND     |           | 1.0 | 0.27 | ug/L |   |          | 05/08/16 14:46 | 1       |
| Chlorobenzene                         | ND     |           | 1.0 | 0.75 | ug/L |   |          | 05/08/16 14:46 | 1       |
| Dibromochloromethane                  | ND     |           | 1.0 | 0.32 | ug/L |   |          | 05/08/16 14:46 | 1       |
| Chloroethane                          | ND     |           | 1.0 | 0.32 | ug/L |   |          | 05/08/16 14:46 | 1       |
| Chloroform                            | ND     |           | 1.0 | 0.34 | ug/L |   |          | 05/08/16 14:46 | 1       |
| Chloromethane                         | ND     |           | 1.0 | 0.35 | ug/L |   |          | 05/08/16 14:46 | 1       |
| cis-1,2-Dichloroethene                | ND     |           | 1.0 | 0.81 | ug/L |   |          | 05/08/16 14:46 | 1       |
| cis-1,3-Dichloropropene               | ND     |           | 1.0 | 0.36 | ug/L |   |          | 05/08/16 14:46 | 1       |
| Cyclohexane                           | ND     |           | 1.0 | 0.18 | ug/L |   |          | 05/08/16 14:46 | 1       |
| Dichlorodifluoromethane               | ND     |           | 1.0 | 0.68 | ug/L |   |          | 05/08/16 14:46 | 1       |
| Ethylbenzene                          | ND     |           | 1.0 | 0.74 | ug/L |   |          | 05/08/16 14:46 | 1       |
| 1,2-Dibromoethane                     | ND     |           | 1.0 | 0.73 | ug/L |   |          | 05/08/16 14:46 | 1       |
| Isopropylbenzene                      | ND     |           | 1.0 | 0.79 | ug/L |   |          | 05/08/16 14:46 | 1       |
| Methyl acetate                        | ND     |           | 2.5 | 1.3  | ug/L |   |          | 05/08/16 14:46 | 1       |
| Methyl tert-butyl ether               | ND     |           | 1.0 | 0.16 | ug/L |   |          | 05/08/16 14:46 | 1       |
| Methylcyclohexane                     | ND     |           | 1.0 | 0.16 | ug/L |   |          | 05/08/16 14:46 | 1       |
| Methylene Chloride                    | ND     |           | 1.0 | 0.44 | ug/L |   |          | 05/08/16 14:46 | 1       |
| Styrene                               | ND     |           | 1.0 | 0.73 | ug/L |   |          | 05/08/16 14:46 | 1       |
| Tetrachloroethene                     | ND     |           | 1.0 | 0.36 | ug/L |   |          | 05/08/16 14:46 | 1       |
| Toluene                               | ND     |           | 1.0 | 0.51 | ug/L |   |          | 05/08/16 14:46 | 1       |
| trans-1,2-Dichloroethene              | ND     |           | 1.0 | 0.90 | ug/L |   |          | 05/08/16 14:46 | 1       |
| trans-1,3-Dichloropropene             | ND     |           | 1.0 | 0.37 | ug/L |   |          | 05/08/16 14:46 | 1       |
| Trichloroethene                       | ND     |           | 1.0 | 0.46 | ug/L |   |          | 05/08/16 14:46 | 1       |
| Trichlorofluoromethane                | ND     |           | 1.0 | 0.88 | ug/L |   |          | 05/08/16 14:46 | 1       |
| Vinyl chloride                        | ND     |           | 1.0 | 0.90 | ug/L |   |          | 05/08/16 14:46 | 1       |
| Xvlenes. Total                        | ND     |           | 2.0 | 0.66 | ua/L |   |          | 05/08/16 14:46 | 1       |

TestAmerica Buffalo

Limits

71 - 126

66 - 137

73 - 120

60 - 140

%Recovery Qualifier

98

94

111

116

Surrogate

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

### Lab Sample ID: 480-99322-1 Matrix: Water

Analyzed

05/08/16 14:46

05/08/16 14:46

05/08/16 14:46

05/08/16 14:46

Prepared

| 5  |
|----|
| 6  |
|    |
| 8  |
| 9  |
|    |
|    |
|    |
| 13 |
|    |
|    |

TestAmerica Buffalo

### Client Sample ID: MSMW-1-042816 Date Collected: 04/28/16 10:30

Date Received: 04/29/16 11:50

| Method: 8260C - Volatile Organi       | ic Compour | n <mark>ds by GC</mark> /<br>Qualifier | MS<br>RI | мы   | Unit | р | Prenared | Analyzed       | Dil Fac |
|---------------------------------------|------------|----------------------------------------|----------|------|------|---|----------|----------------|---------|
| 1 1 1-Trichloroethane                 |            |                                        | 1.0      | 0.82 |      |   | Toparoa  | 05/08/16 15:13 | 1       |
| 1 1 2 2-Tetrachloroethane             | ND         |                                        | 1.0      | 0.02 | ug/L |   |          | 05/08/16 15:13 | 1       |
| 1 1 2-Trichloroethane                 | ND         |                                        | 1.0      | 0.23 | ug/L |   |          | 05/08/16 15:13 | 1       |
| 1 1 2-Trichloro-1 2 2-trifluoroethane | ND         |                                        | 1.0      | 0.31 | ug/L |   |          | 05/08/16 15:13 | 1       |
| 1 1-Dichloroethane                    | ND         |                                        | 1.0      | 0.38 | ug/L |   |          | 05/08/16 15:13 | 1       |
| 1 1-Dichloroethene                    | ND         |                                        | 1.0      | 0.00 | ug/L |   |          | 05/08/16 15:13 | 1       |
| 1 2 4-Trichlorobenzene                | ND         |                                        | 1.0      | 0.20 | ug/L |   |          | 05/08/16 15:13 | 1       |
| 1 2-Dibromo-3-Chloropropane           |            |                                        | 1.0      | 0.39 | ug/L |   |          | 05/08/16 15:13 | 1       |
| 1.2-Dichlorobenzene                   |            |                                        | 1.0      | 0.00 | ug/L |   |          | 05/08/16 15:13 | 1       |
| 1.2-Dichloroethane                    | ND         |                                        | 1.0      | 0.75 | ug/L |   |          | 05/08/16 15:13 | 1       |
| 1.2-Dichloropropage                   |            |                                        | 1.0      | 0.21 | ug/L |   |          | 05/08/16 15:13 | 1       |
| 1 3-Dichlorobenzene                   |            |                                        | 1.0      | 0.72 | ug/L |   |          | 05/08/16 15:13 | 1       |
| 1.4-Dichlorobenzene                   |            |                                        | 1.0      | 0.70 | ug/L |   |          | 05/08/16 15:13 | 1       |
| 2. Butanone (MEK)                     |            |                                        | 1.0      | 13   | ug/L |   |          | 05/08/16 15:13 | 1       |
|                                       |            |                                        | 50       | 1.5  | ug/L |   |          | 05/08/16 15:13 | 1       |
| 4 Methyl 2 pontanono (MIPK)           |            |                                        | 5.0      | 1.2  | ug/L |   |          | 05/08/16 15:13 |         |
|                                       | ND *       |                                        | 10       | 2.1  | ug/L |   |          | 05/08/16 15:13 | 1       |
| Renzono                               |            |                                        | 10       | 0.41 | ug/L |   |          | 05/08/16 15:13 | 1       |
| Bromodichloromothana                  |            |                                        | 1.0      | 0.41 | ug/L |   |          | 05/08/10 15:13 |         |
| Bromotorm                             |            |                                        | 1.0      | 0.39 | ug/L |   |          | 05/06/10 15.13 | 1       |
| Bromomothene                          |            |                                        | 1.0      | 0.20 | ug/L |   |          | 05/08/10 15.13 | 1       |
| Bromomethane                          | ND         |                                        | 1.0      | 0.09 | ug/L |   |          | 05/08/10 15.13 | 1       |
|                                       | ND         |                                        | 1.0      | 0.19 | ug/L |   |          | 05/08/10 15.13 | 1       |
|                                       | ND         |                                        | 1.0      | 0.27 | ug/L |   |          | 05/08/16 15:13 | 1       |
| Chlorobenzene                         | ND         |                                        | 1.0      | 0.75 | ug/L |   |          | 05/08/16 15:13 | 1       |
| Oblass at has a                       | ND         |                                        | 1.0      | 0.32 | ug/L |   |          | 05/08/16 15:13 | 1       |
| Chloroethane                          | ND         |                                        | 1.0      | 0.32 | ug/L |   |          | 05/08/16 15:13 | 1       |
| Chlorotorm                            | ND         |                                        | 1.0      | 0.34 | ug/L |   |          | 05/08/16 15:13 | ····· 1 |
|                                       | ND         |                                        | 1.0      | 0.35 | ug/L |   |          | 05/08/16 15:13 | 1       |
|                                       | ND         |                                        | 1.0      | 0.81 | ug/L |   |          | 05/08/16 15:13 | 1       |
| cis-1,3-Dicnioropropene               | ND         |                                        | 1.0      | 0.36 | ug/L |   |          | 05/08/16 15:13 | ····· 1 |
|                                       | ND         |                                        | 1.0      | 0.18 | ug/L |   |          | 05/08/16 15:13 | 1       |
|                                       | ND         |                                        | 1.0      | 0.68 | ug/L |   |          | 05/08/16 15:13 | 1       |
| Etnylbenzene                          | ND         |                                        | 1.0      | 0.74 | ug/L |   |          | 05/08/16 15:13 | 1       |
| 1,2-Dibromoetnane                     | ND         |                                        | 1.0      | 0.73 | ug/L |   |          | 05/08/16 15:13 | 1       |
| Isopropyidenzene                      | ND         |                                        | 1.0      | 0.79 | ug/L |   |          | 05/08/16 15:13 | 1       |
| Methyl acetate                        | ND         |                                        | 2.5      | 1.3  | ug/L |   |          | 05/08/16 15:13 | 1       |
| Methyl tert-butyl ether               | ND         |                                        | 1.0      | 0.16 | ug/L |   |          | 05/08/16 15:13 | 1       |
| Methylcyclohexane                     | ND         |                                        | 1.0      | 0.16 | ug/L |   |          | 05/08/16 15:13 | 1       |
| Methylene Chloride                    | ND         |                                        | 1.0      | 0.44 | ug/L |   |          | 05/08/16 15:13 | 1       |
| Styrene                               | ND         |                                        | 1.0      | 0.73 | ug/L |   |          | 05/08/16 15:13 | 1       |
|                                       | ND         |                                        | 1.0      | 0.36 | ug/L |   |          | 05/08/16 15:13 | 1       |
| loluene                               | ND         |                                        | 1.0      | 0.51 | ug/L |   |          | 05/08/16 15:13 | 1       |
| trans-1,2-Dichloroethene              | ND         |                                        | 1.0      | 0.90 | ug/L |   |          | 05/08/16 15:13 | 1       |
| trans-1,3-Dichloropropene             | ND         |                                        | 1.0      | 0.37 | ug/L |   |          | 05/08/16 15:13 | 1       |
|                                       | ND         |                                        | 1.0      | 0.46 | ug/L |   |          | 05/08/16 15:13 | 1       |
| Trichlorofluoromethane                | ND         |                                        | 1.0      | 0.88 | ug/L |   |          | 05/08/16 15:13 | 1       |
| Vinyl chloride                        | ND         |                                        | 1.0      | 0.90 | ug/L |   |          | 05/08/16 15:13 | 1       |
| Xylenes, Total                        | ND         |                                        | 2.0      | 0.66 | ug/L |   |          | 05/08/16 15:13 | 1       |

Lab Sample ID: 480-99322-2

Matrix: Water

# 2 3 4 5 7 8 9 10 11 12 13

TestAmerica Buffalo
## Lab Sample ID: 480-99322-2 Matrix: Water

| Surrogate                    | %Recovery ( | Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
|------------------------------|-------------|-----------|----------|----------|----------------|---------|
| Toluene-d8 (Surr)            |             |           | 71 - 126 |          | 05/08/16 15:13 | 1       |
| 1,2-Dichloroethane-d4 (Surr) | 117         |           | 66 - 137 |          | 05/08/16 15:13 | 1       |
| 4-Bromofluorobenzene (Surr)  | 96          |           | 73 - 120 |          | 05/08/16 15:13 | 1       |
| Dibromofluoromethane (Surr)  | 113         |           | 60 - 140 |          | 05/08/16 15:13 | 1       |

# Client Sample ID: MSMW-3-042816 Date Collected: 04/28/16 11:00

Date Received: 04/29/16 11:50

| Method: 8260C - Volatile Orga         | nic Compo | unds by G | C/MS     |      |              |   |          |                |                                       |
|---------------------------------------|-----------|-----------|----------|------|--------------|---|----------|----------------|---------------------------------------|
| Analyte                               | Result    | Qualifier | RL       | MDL  | Unit         | D | Prepared | Analyzed       | Dil Fac                               |
| 1,1,1-Trichloroethane                 | ND        |           | 1.0      | 0.82 | ug/L         |   |          | 05/08/16 15:40 | 1                                     |
| 1,1,2,2-Tetrachloroethane             | ND        |           | 1.0      | 0.21 | ug/L         |   |          | 05/08/16 15:40 | 1                                     |
| 1,1,2-Trichloroethane                 | ND        |           | 1.0      | 0.23 | ug/L         |   |          | 05/08/16 15:40 | 1                                     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND        |           | 1.0      | 0.31 | ug/L         |   |          | 05/08/16 15:40 | 1                                     |
| 1,1-Dichloroethane                    | ND        |           | 1.0      | 0.38 | ug/L         |   |          | 05/08/16 15:40 | 1                                     |
| 1,1-Dichloroethene                    | ND        |           | 1.0      | 0.29 | ug/L         |   |          | 05/08/16 15:40 | 1                                     |
| 1,2,4-Trichlorobenzene                | ND        |           | 1.0      | 0.41 | ug/L         |   |          | 05/08/16 15:40 | 1                                     |
| 1,2-Dibromo-3-Chloropropane           | ND        |           | 1.0      | 0.39 | ug/L         |   |          | 05/08/16 15:40 | 1                                     |
| 1,2-Dichlorobenzene                   | ND        |           | 1.0      | 0.79 | ug/L         |   |          | 05/08/16 15:40 | 1                                     |
| 1,2-Dichloroethane                    | ND        |           | 1.0      | 0.21 | ug/L         |   |          | 05/08/16 15:40 | 1                                     |
| 1,2-Dichloropropane                   | ND        |           | 1.0      | 0.72 | ug/L         |   |          | 05/08/16 15:40 | 1                                     |
| 1,3-Dichlorobenzene                   | ND        |           | 1.0      | 0.78 | ug/L         |   |          | 05/08/16 15:40 | 1                                     |
| 1,4-Dichlorobenzene                   | ND        |           | 1.0      | 0.84 | ug/L         |   |          | 05/08/16 15:40 | 1                                     |
| 2-Butanone (MEK)                      | ND        |           | 10       | 1.3  | ug/L         |   |          | 05/08/16 15:40 | 1                                     |
| 2-Hexanone                            | 8.3       |           | 5.0      | 1.2  | ug/L         |   |          | 05/08/16 15:40 | 1                                     |
| 4-Methyl-2-pentanone (MIBK)           | 11        |           | 5.0      | 2.1  | ug/L         |   |          | 05/08/16 15:40 | 1                                     |
| Acetone                               | ND        | *         | 10       | 3.0  | ug/L         |   |          | 05/08/16 15:40 | 1                                     |
| Benzene                               | 78        |           | 1.0      | 0.41 | ug/L         |   |          | 05/08/16 15:40 | 1                                     |
| Bromodichloromethane                  | ND        |           | 1.0      | 0.39 | ua/L         |   |          | 05/08/16 15:40 | 1                                     |
| Bromoform                             | ND        |           | 1.0      | 0.26 | ua/L         |   |          | 05/08/16 15:40 | 1                                     |
| Bromomethane                          | ND        |           | 10       | 0.69 | ua/l         |   |          | 05/08/16 15:40 | 1                                     |
| Carbon disulfide                      | ND        |           | 10       | 0.19 | ua/l         |   |          | 05/08/16 15:40 |                                       |
| Carbon tetrachloride                  | ND        |           | 1.0      | 0.27 | ua/l         |   |          | 05/08/16 15:40 | 1                                     |
| Chlorobenzene                         | ND        |           | 1.0      | 0.75 | ug/L         |   |          | 05/08/16 15:40 | 1                                     |
| Dibromochloromethane                  | ND        |           | 10       | 0.32 | ua/l         |   |          | 05/08/16 15:40 |                                       |
| Chloroethane                          | ND        |           | 1.0      | 0.32 | ua/l         |   |          | 05/08/16 15:40 | 1                                     |
| Chloroform                            | ND        |           | 1.0      | 0.34 | ug/L         |   |          | 05/08/16 15:40 | 1                                     |
| Chloromethane                         | ND        |           | 1.0      | 0.35 | ug/L         |   |          | 05/08/16 15:40 | · · · · · · · · · · · · · · · · · · · |
| cis-1 2-Dichloroethene                | ND        |           | 1.0      | 0.81 | ug/L         |   |          | 05/08/16 15:40 | 1                                     |
| cis-1 3-Dichloropropene               | ND        |           | 1.0      | 0.36 | ug/L         |   |          | 05/08/16 15:40 | 1                                     |
| Dichlorodifluoromethane               | ND        |           | 1.0      | 0.68 | ug/L         |   |          | 05/08/16 15:40 | · · · · · · · · · 1                   |
| 1 2-Dibromoethane                     | ND        |           | 1.0      | 0.00 | ug/L         |   |          | 05/08/16 15:40 | 1                                     |
| Isopropylbenzene                      | 27        |           | 1.0      | 0.70 | ug/L         |   |          | 05/08/16 15:40 | 1                                     |
| Methyl acetate                        |           |           | 2.5      | 13   | ug/L         |   |          | 05/08/16 15:40 |                                       |
| Methyl tert-butyl ether               |           |           | 1.0      | 0.16 | ug/L         |   |          | 05/08/16 15:40 | 1                                     |
| Methylevelebexane                     | 79        |           | 1.0      | 0.10 | ug/L         |   |          | 05/08/16 15:40 | 1                                     |
| Methylono Chlorido                    |           |           | 1.0      | 0.10 | ug/L         |   |          | 05/08/16 15:40 | · · · · · · · · · · · · · · · · · · · |
| Styropo                               |           |           | 1.0      | 0.73 | ug/L         |   |          | 05/08/16 15:40 | 1                                     |
| Totrachloroothono                     |           |           | 1.0      | 0.75 | ug/L         |   |          | 05/08/16 15:40 | 1                                     |
|                                       |           |           | 1.0      | 0.50 | ug/L         |   |          | 05/08/16 15:40 | · · · · · · · · · · · · · · · · · · · |
| trans 1.2 Disblarasthans              |           |           | 1.0      | 0.01 | ug/∟<br>ug/l |   |          | 05/08/10 15:40 | 1                                     |
| trans-1,2-Dichloropenene              | ND        |           | 1.0      | 0.90 | ug/L         |   |          | 05/08/16 15:40 | 1                                     |
|                                       | ND        |           | 1.0      | 0.37 | ug/∟         |   |          | 05/06/10 15:40 | ۲<br>۲                                |
|                                       | ND        |           | 1.0      | 0.46 | ug/L         |   |          | 05/08/16 15:40 | 1                                     |
|                                       | ND        |           | 1.0      | 0.88 | ug/L         |   |          | 05/08/16 15:40 | 1                                     |
| vinyi chioriae                        | ND        |           | 1.0      | 0.90 | ug/L         |   |          | 05/08/16 15:40 | 1                                     |
| Surrogate                             | %Recovery | Qualifier | Limits   |      |              | - | Prepared | Analyzed       | Dil Fac                               |
| I Oluene-d& (Surr)                    | 98        |           | /1 - 126 |      |              |   |          | 05/08/16 15:40 | 1                                     |
| 1,2-Dichloroethane-d4 (Surr)          | 97        |           | 66 - 137 |      |              |   |          | 05/08/16 15:40 | 1                                     |

# Lab Sample ID: 480-99322-3 Matrix: Water

5

6

Limits

Surrogate

## Client Sample ID: MSMW-3-042816 Date Collected: 04/28/16 11:00 Date Received: 04/29/16 11:50

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

%Recovery Qualifier

## Lab Sample ID: 480-99322-3 Matrix: Water

Analyzed

Prepared

6

Dil Fac

| 4-Bromofluorobenzene (Surr)  | 100                 | 73 - 120   |     |      |   |          | 05/08/16 15:40 | 1       |
|------------------------------|---------------------|------------|-----|------|---|----------|----------------|---------|
| Dibromofluoromethane (Surr)  | 64                  | 60 - 140   |     |      |   |          | 05/08/16 15:40 | 1       |
| Method: 8260C - Volatile Org | anic Compounds by C | GC/MS - DL |     |      |   |          |                |         |
| Analyte                      | Result Qualifier    | RL         | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| Cyclohexane                  | 260                 | 10         | 1.8 | ug/L |   |          | 05/09/16 15:47 | 10      |
| Ethylbenzene                 | 990                 | 10         | 7.4 | ug/L |   |          | 05/09/16 15:47 | 10      |
| Xylenes, Total               | 570                 | 20         | 6.6 | ug/L |   |          | 05/09/16 15:47 | 10      |
|                              |                     |            |     |      |   |          |                |         |

| Surrogate                    | %Recovery | Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|----------|----------------|---------|
| Toluene-d8 (Surr)            | 100       |           | 71 - 126 |          | 05/09/16 15:47 | 10      |
| 1,2-Dichloroethane-d4 (Surr) | 109       |           | 66 - 137 |          | 05/09/16 15:47 | 10      |
| 4-Bromofluorobenzene (Surr)  | 99        |           | 73 - 120 |          | 05/09/16 15:47 | 10      |
| Dibromofluoromethane (Surr)  | 100       |           | 60 - 140 |          | 05/09/16 15:47 | 10      |

# Client Sample ID: MSMW-4-042816 Date Collected: 04/28/16 11:30

Date Received: 04/29/16 11:50

| Method: 8260C - Volatile Orga         | anic Compo | unds by G | C/MS     |      |      |   |          |                |         |
|---------------------------------------|------------|-----------|----------|------|------|---|----------|----------------|---------|
| Analyte                               | Result     | Qualifier | RL       | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| 1,1,1-Trichloroethane                 | ND         |           | 1.0      | 0.82 | ug/L |   |          | 05/08/16 16:07 | 1       |
| 1,1,2,2-Tetrachloroethane             | ND         |           | 1.0      | 0.21 | ug/L |   |          | 05/08/16 16:07 | 1       |
| 1,1,2-Trichloroethane                 | ND         |           | 1.0      | 0.23 | ug/L |   |          | 05/08/16 16:07 | 1       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND         |           | 1.0      | 0.31 | ug/L |   |          | 05/08/16 16:07 | 1       |
| 1,1-Dichloroethane                    | ND         |           | 1.0      | 0.38 | ug/L |   |          | 05/08/16 16:07 | 1       |
| 1,1-Dichloroethene                    | ND         |           | 1.0      | 0.29 | ug/L |   |          | 05/08/16 16:07 | 1       |
| 1,2,4-Trichlorobenzene                | ND         |           | 1.0      | 0.41 | ug/L |   |          | 05/08/16 16:07 | 1       |
| 1,2-Dibromo-3-Chloropropane           | ND         |           | 1.0      | 0.39 | ug/L |   |          | 05/08/16 16:07 | 1       |
| 1,2-Dichlorobenzene                   | ND         |           | 1.0      | 0.79 | ug/L |   |          | 05/08/16 16:07 | 1       |
| 1,2-Dichloroethane                    | ND         |           | 1.0      | 0.21 | ug/L |   |          | 05/08/16 16:07 | 1       |
| 1,2-Dichloropropane                   | ND         |           | 1.0      | 0.72 | ug/L |   |          | 05/08/16 16:07 | 1       |
| 1,3-Dichlorobenzene                   | ND         |           | 1.0      | 0.78 | ug/L |   |          | 05/08/16 16:07 | 1       |
| 1,4-Dichlorobenzene                   | ND         |           | 1.0      | 0.84 | ug/L |   |          | 05/08/16 16:07 | 1       |
| 2-Butanone (MEK)                      | ND         |           | 10       | 1.3  | ug/L |   |          | 05/08/16 16:07 | 1       |
| 2-Hexanone                            | ND         |           | 5.0      | 1.2  | ug/L |   |          | 05/08/16 16:07 | 1       |
| 4-Methyl-2-pentanone (MIBK)           | ND         |           | 5.0      | 2.1  | ug/L |   |          | 05/08/16 16:07 | 1       |
| Acetone                               | ND         | *         | 10       | 3.0  | ug/L |   |          | 05/08/16 16:07 | 1       |
| Benzene                               | 71         |           | 1.0      | 0.41 | ug/L |   |          | 05/08/16 16:07 | 1       |
| Bromodichloromethane                  | ND         |           | 1.0      | 0.39 | ug/L |   |          | 05/08/16 16:07 | 1       |
| Bromoform                             | ND         |           | 1.0      | 0.26 | ug/L |   |          | 05/08/16 16:07 | 1       |
| Bromomethane                          | ND         |           | 1.0      | 0.69 | ug/L |   |          | 05/08/16 16:07 | 1       |
| Carbon disulfide                      | ND         |           | 1.0      | 0.19 | ug/L |   |          | 05/08/16 16:07 | 1       |
| Carbon tetrachloride                  | ND         |           | 1.0      | 0.27 | ug/L |   |          | 05/08/16 16:07 | 1       |
| Chlorobenzene                         | ND         |           | 1.0      | 0.75 | ug/L |   |          | 05/08/16 16:07 | 1       |
| Dibromochloromethane                  | ND         |           | 1.0      | 0.32 | ug/L |   |          | 05/08/16 16:07 | 1       |
| Chloroethane                          | ND         |           | 1.0      | 0.32 | ug/L |   |          | 05/08/16 16:07 | 1       |
| Chloroform                            | ND         |           | 1.0      | 0.34 | ug/L |   |          | 05/08/16 16:07 | 1       |
| Chloromethane                         | ND         |           | 1.0      | 0.35 | ug/L |   |          | 05/08/16 16:07 | 1       |
| cis-1,2-Dichloroethene                | ND         |           | 1.0      | 0.81 | ug/L |   |          | 05/08/16 16:07 | 1       |
| cis-1,3-Dichloropropene               | ND         |           | 1.0      | 0.36 | ug/L |   |          | 05/08/16 16:07 | 1       |
| Dichlorodifluoromethane               | ND         |           | 1.0      | 0.68 | ug/L |   |          | 05/08/16 16:07 | 1       |
| 1,2-Dibromoethane                     | ND         |           | 1.0      | 0.73 | ug/L |   |          | 05/08/16 16:07 | 1       |
| Isopropylbenzene                      | 13         |           | 1.0      | 0.79 | ug/L |   |          | 05/08/16 16:07 | 1       |
| Methyl acetate                        | ND         |           | 2.5      | 1.3  | ug/L |   |          | 05/08/16 16:07 | 1       |
| Methyl tert-butyl ether               | ND         |           | 1.0      | 0.16 | ug/L |   |          | 05/08/16 16:07 | 1       |
| Methylcyclohexane                     | 58         |           | 1.0      | 0.16 | ug/L |   |          | 05/08/16 16:07 | 1       |
| Methylene Chloride                    | ND         |           | 1.0      | 0.44 | ug/L |   |          | 05/08/16 16:07 | 1       |
| Styrene                               | ND         |           | 1.0      | 0.73 | ug/L |   |          | 05/08/16 16:07 | 1       |
| Tetrachloroethene                     | ND         |           | 1.0      | 0.36 | ug/L |   |          | 05/08/16 16:07 | 1       |
| Toluene                               | 46         |           | 1.0      | 0.51 | ug/L |   |          | 05/08/16 16:07 | 1       |
| trans-1,2-Dichloroethene              | ND         |           | 1.0      | 0.90 | ug/L |   |          | 05/08/16 16:07 | 1       |
| trans-1,3-Dichloropropene             | ND         |           | 1.0      | 0.37 | ug/L |   |          | 05/08/16 16:07 | 1       |
| Trichloroethene                       | ND         |           | 1.0      | 0.46 | ug/L |   |          | 05/08/16 16:07 | 1       |
| Trichlorofluoromethane                | ND         |           | 1.0      | 0.88 | ug/L |   |          | 05/08/16 16:07 | 1       |
| Vinyl chloride                        | ND         |           | 1.0      | 0.90 | ug/L |   |          | 05/08/16 16:07 | 1       |
| Surrogate                             | %Recovery  | Qualifier | Limits   |      |      |   | Prepared | Analyzed       | Dil Fac |
| Toluene-d8 (Surr)                     | 99         |           | 71 - 126 |      |      | - |          | 05/08/16 16:07 | 1       |
| 1,2-Dichloroethane-d4 (Surr)          | 102        |           | 66 - 137 |      |      |   |          | 05/08/16 16:07 | 1       |

Lab Sample ID: 480-99322-4

TestAmerica Job ID: 480-99322-1

## Matrix: Water

5

6

## Client Sample ID: MSMW-4-042816 Date Collected: 04/28/16 11:30 Date Received: 04/29/16 11:50

# Lab Sample ID: 480-99322-4 Matrix: Water

| Method: 8260C - Volatile O   | rganic Compo | unds by G | C/MS (Contir | nued) |      |   |          |                |         |
|------------------------------|--------------|-----------|--------------|-------|------|---|----------|----------------|---------|
| Surrogate                    | %Recovery    | Qualifier | Limits       |       |      |   | Prepared | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr)  | 99           |           | 73 - 120     |       |      | - |          | 05/08/16 16:07 | 1       |
| Dibromofluoromethane (Surr)  | 83           |           | 60 - 140     |       |      |   |          | 05/08/16 16:07 | 1       |
| Method: 8260C - Volatile O   | rganic Compo | unds by G | C/MS - DL    |       |      |   |          |                |         |
| Analyte                      | Result       | Qualifier | RL           | MDL   | Unit | D | Prepared | Analyzed       | Dil Fac |
| Cyclohexane                  | 190          |           | 10           | 1.8   | ug/L |   |          | 05/09/16 16:14 | 10      |
| Ethylbenzene                 | 510          |           | 10           | 7.4   | ug/L |   |          | 05/09/16 16:14 | 10      |
| Xylenes, Total               | 210          |           | 20           | 6.6   | ug/L |   |          | 05/09/16 16:14 | 10      |
| Surrogate                    | %Recovery    | Qualifier | Limits       |       |      |   | Prepared | Analyzed       | Dil Fac |
| Toluene-d8 (Surr)            | 101          |           | 71 - 126     |       |      | - |          | 05/09/16 16:14 | 10      |
| 1,2-Dichloroethane-d4 (Surr) | 111          |           | 66 - 137     |       |      |   |          | 05/09/16 16:14 | 10      |
| 4-Bromofluorobenzene (Surr)  | 99           |           | 73 - 120     |       |      |   |          | 05/09/16 16:14 | 10      |
| Dibromofluoromethane (Surr)  | 104          |           | 60 - 140     |       |      |   |          | 05/09/16 16:14 | 10      |

# Client Sample ID: MSMW-2-042816 Date Collected: 04/28/16 12:00

Date Received: 04/29/16 11:50

| Analyco         Result         Qualifier         RL         MDL         Unit         D         Propard         Analyzed         DII           1.1.2.7.trichtoroethane         ND         60         10         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00                                                                                                                                                                                                         | Method: 8260C - Volatile Organ        | nic Compoι | unds by GC | /MS |     |      |   |          |                |         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------|------------|-----|-----|------|---|----------|----------------|---------|
| 1,1-1:Tichkorethane         ND         80         66         ug/L         0509/16 16-40         80           1,1.2:Trichkorosthane         ND         80         11         ug/L         0509/16 16-40         80           1,1.2:Trichkorosthane         ND         80         25         ug/L         0509/16 16-40         80           1,1.2:Trichkorosthane         ND         80         23         ug/L         0509/16 16-40         80           1,1.2:Trichkorosthane         ND         80         33         ug/L         0509/16 16-40         80           1,2:Dichkoroberzene         ND         80         31         ug/L         0509/16 16-40         80           1,2:Dichkoroberzene         ND         80         31         ug/L         0509/16 16-40         80           1,2:Dichkoroberzene         ND         80         17         ug/L         0509/16 16-40         80           1,2:Dichkoroberzene         ND         80         17         ug/L         0509/16 16-40         80           1,2:Dichkoroberzene         ND         80         10         ug/L         0509/16 16-40         80           1,2:Dichkoroberzene         ND         80         10         ug/L         0509/1                                                                                                                                                 | Analyte                               | Result     | Qualifier  | RL  | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| ND         80         17         ug/L         05/09/16         16.40         80           1.1.2-Trichtorosehane         ND         80         25         ug/L         05/09/16         80         80           1.1.2-Trichtorosehane         ND         80         30         ug/L         05/09/16         80         80           1.1.2-Trichtorosehane         ND         80         33         ug/L         05/09/16         80         80           1.2.4-Trichtorosehane         ND         80         33         ug/L         05/09/16         80         80           1.2.4-Trichtorosehane         ND         80         63         ug/L         05/09/16         80         80           1.2-Dichtorosehane         ND         80         65         ug/L         05/09/16         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80 <td< td=""><td>1,1,1-Trichloroethane</td><td>ND</td><td></td><td>80</td><td>66</td><td>ug/L</td><td></td><td></td><td>05/09/16 16:40</td><td>80</td></td<>                                      | 1,1,1-Trichloroethane                 | ND         |            | 80  | 66  | ug/L |   |          | 05/09/16 16:40 | 80      |
| 1,1,2:Trichorostana         ND         80         18         upL         6500/16         16.00           1,1-Dichlorosthane         ND         80         32         upL         6500/16         80           1,1-Dichlorosthane         ND         80         23         upL         6500/16         80           1,1-Dichlorosthane         ND         80         23         upL         6500/16         80           1,2-Dichlorobenzene         ND         80         31         upL         6500/16         80           1,2-Dichlorobenzene         ND         80         71         upL         6500/16         80           1,2-Dichlorobenzene         ND         80         67         upL         6500/16         80           1,2-Dichlorobenzene         ND         80         67         upL         6500/16         80           1,4-Dichlorobenzene         ND         800         101         upL         6500/16         80           1,4-Dichlorobenzene         ND         800         240         0500/16         80           2-Butanone         130         J         400         90         upL         6500/16         80           2-Butanone <t< td=""><td>1,1,2,2-Tetrachloroethane</td><td>ND</td><td></td><td>80</td><td>17</td><td>ug/L</td><td></td><td></td><td>05/09/16 16:40</td><td>80</td></t<>                                       | 1,1,2,2-Tetrachloroethane             | ND         |            | 80  | 17  | ug/L |   |          | 05/09/16 16:40 | 80      |
| 1,1,2:Tholhoro-12,2:httl/uccethane         ND         80         25         ug/L         05/09/16 16:40         80           1,1-Dichloro-blane         ND         80         30         ug/L         05/09/16 16:40         80           1,1-Dichloro-blane         ND         80         33         ug/L         05/09/16 16:40         80           1,2-Dichloro-brizene         ND         80         33         ug/L         05/09/16 16:40         80           1,2-Dichloro-brizene         ND         80         63         ug/L         05/09/16 16:40         80           1,2-Dichloro-brizene         ND         80         67         ug/L         05/09/16 16:40         80           1,2-Dichloro-brizene         ND         80         67         ug/L         05/09/16 16:40         80           1,2-Dichloro-brizene         ND         800         110         ug/L         05/09/16 16:40         80           2-Butanone (MEK)         ND         800         110         ug/L         05/09/16 16:40         80           2-Hexanone         160         80         33         ug/L         05/09/16 16:40         80           Bromodichloro-brizene         ND         80         25         ug/L                                                                                                                                                 | 1,1,2-Trichloroethane                 | ND         |            | 80  | 18  | ug/L |   |          | 05/09/16 16:40 | 80      |
| 1.1-Dickhorechane         ND         80         30         ug/L         C5609/16 16.40         80           1.2-Dickhorechane         ND         80         33         ug/L         C5609/16 16.40         80           1.2-Dickhorechane         ND         80         33         ug/L         C5609/16 16.40         80           1.2-Dickhorechane         ND         80         63         ug/L         C5609/16 16.40         80           1.2-Dickhorechane         ND         80         67         ug/L         C5609/16 16.40         80           1.2-Dickhorechane         ND         80         67         ug/L         C5609/16 16.40         80           1.2-Dickhorechane         ND         80         67         ug/L         C5609/16 16.40         80           1.2-Dickhorechane         ND         800         110         ug/L         C5609/16 16.40         80           2-Butanone (MEK)         ND         800         170         ug/L         C5609/16 16.40         80           Acetone         ND         800         31         ug/L         C5609/16 16.40         80           Bromodichhoromethane         ND         80         31         ug/L         C5609/16 16.40         <                                                                                                                                                      | 1,1,2-Trichloro-1,2,2-trifluoroethane | ND         |            | 80  | 25  | ug/L |   |          | 05/09/16 16:40 | 80      |
| ND         80         23         ug/L         0509/16         80           1.2-Dichloroberzene         ND         80         31         ug/L         0509/15         80         80           1.2-Dichloroberzene         ND         80         63         ug/L         0509/15         80         80           1.2-Dichloroberzene         ND         80         63         ug/L         0509/16         80         80           1.2-Dichloroberzene         ND         80         63         ug/L         0509/16         80         80           1.2-Dichloroberzene         ND         80         67         ug/L         0509/16         80         80           1.2-Dichloroberzene         ND         80         67         ug/L         0509/16         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80         80 <t< td=""><td>1,1-Dichloroethane</td><td>ND</td><td></td><td>80</td><td>30</td><td>ug/L</td><td></td><td></td><td>05/09/16 16:40</td><td>80</td></t<>                                                   | 1,1-Dichloroethane                    | ND         |            | 80  | 30  | ug/L |   |          | 05/09/16 16:40 | 80      |
| 12,4-Trachtorobenzene         ND         80         33         upL         05/09/16 16:40         80           1,2-Dichono-Chioropopane         ND         80         63         upL         05/09/16 16:40         80           1,2-Dichloropopane         ND         80         63         upL         05/09/16 16:40         80           1,2-Dichloropopane         ND         80         67         upL         05/09/16 16:40         80           1,3-Dichloropone         ND         80         67         upL         05/09/16 16:40         80           1,4-Dichlorobenzene         ND         80         67         upL         05/09/16 16:40         80           2-Huanone (MEK)         ND         400         99         upL         05/09/16 16:40         80           2-Hotanone         ND         80         31         upL         05/09/16 16:40         80           Bernande         ND         80         31         upL         05/09/16 16:40         80           Bernande         ND         80         31         upL         05/09/16 16:40         80           Bernande/Informethane         ND         80         21         upL         05/09/16 16:40         80     <                                                                                                                                                               | 1,1-Dichloroethene                    | ND         |            | 80  | 23  | ug/L |   |          | 05/09/16 16:40 | 80      |
| 1.2-Distoncementane         ND         80         31         ug/L         05/09/16 16:40         80           1.2-Distoncemene         ND         80         63         ug/L         05/09/16 16:40         80           1.2-Distoncemene         ND         80         67         ug/L         05/09/16 16:40         80           1.2-Distoncemene         ND         80         67         ug/L         05/09/16 16:40         80           1.4-Distoncemene         ND         80         67         ug/L         05/09/16 16:40         80           2-Hexanone         ND         800         91         ug/L         05/09/16 16:40         80           2-Hexanone         ND         800         31         ug/L         05/09/16 16:40         80           2-Hexanone         ND         80         31         ug/L         05/09/16 16:40         80           Bornadichoromethane         ND         80         21         ug/L         05/09/16 16:40         80           Bromodichoromethane         ND         80         22         ug/L         05/09/16 16:40         80           Carbon disulfde         ND         80         25         ug/L         05/09/16 16:40         80     <                                                                                                                                                               | 1,2,4-Trichlorobenzene                | ND         |            | 80  | 33  | ug/L |   |          | 05/09/16 16:40 | 80      |
| 1.2.Dichlorobenzene         ND         80         63         upt.         05/03/16 16.40         80           1.2.Dichlorobenzene         ND         80         71         upt.         05/03/16 16.40         80           1.3.Dichlorobenzene         ND         80         67         upt.         05/03/16 16.40         80           1.4.Dichlorobenzene         ND         80         67         upt.         05/03/16 16.40         80           2.4buanone (MEK)         ND         800         110         ugt.         05/03/16 16.40         80           2.4buanone (MEK)         ND         400         99         ugt.         05/03/16 16.40         80           2.4bustone         ND         400         170         ugt.         05/03/16 16.40         80           2.4bustone         ND         800         240         ugt.         05/03/16 16.40         80           Acetone         ND         80         31         ugt.         05/03/16 16.40         80           Bromodichloromethane         ND         80         21         ugt.         05/03/16 16.40         80           Carbon teizachloride         ND         80         22         ugt.         05/03/16 16.40 <td< td=""><td>1,2-Dibromo-3-Chloropropane</td><td>ND</td><td></td><td>80</td><td>31</td><td>ug/L</td><td></td><td></td><td>05/09/16 16:40</td><td>80</td></td<> | 1,2-Dibromo-3-Chloropropane           | ND         |            | 80  | 31  | ug/L |   |          | 05/09/16 16:40 | 80      |
| 1.2-Dichlorophrane         ND         80         17         ugr.L         05/03/16 16:40         80           1.2-Dichlorophropane         ND         80         62         ugr.L         05/03/16 16:40         80           1.4-Dichlorobenzene         ND         80         67         ugr.L         05/03/16 16:40         80           2-Hexanore         130         J         400         99         ugr.L         05/03/16 16:40         80           2-Hexanore         130         J         400         99         ugr.L         05/03/16 16:40         80           2-Hexanore         130         J         400         99         ugr.L         05/03/16 16:40         80           2-Hexanore         ND         800         231         ugr.L         05/03/16 16:40         80           Benzone         ND         80         31         ugr.L         05/03/16 16:40         80           Bromodichloromethane         ND         80         25         ugr.L         05/03/16 16:40         80           Carbon terachloride         ND         80         25         ugr.L         05/03/16 16:40         80           Chiorophane         ND         80         26         ugr.L<                                                                                                                                                                   | 1,2-Dichlorobenzene                   | ND         |            | 80  | 63  | ug/L |   |          | 05/09/16 16:40 | 80      |
| ND         80         58         ugf.         0509/16 16:40         80           1.3-Dichlorobenzene         ND         80         67         ugf.         0509/16 16:40         80           2-Butanoe (MEK)         ND         800         110         ugf.         0509/16 16:40         80           2-Butanoe (MEK)         ND         800         110         ugf.         0509/16 16:40         80           2-Hexanoe         130         J         400         99         ugf.         0509/16 16:40         80           2-Hexanoe         130         J         400         99         ugf.         0509/16 16:40         80           2-Hexanoe         160         80         33         ugf.         0509/16 16:40         80           Borneone         160         80         33         ugf.         0509/16 16:40         80           Bromorthane         ND         80         51         ugf.         0509/16 16:40         80           Carbon tetrachloride         ND         80         22         ugf.         0509/16 16:40         80           Chorobenzene         ND         80         28         ugf.         0509/16 16:40         80                                                                                                                                                                                                    | 1,2-Dichloroethane                    | ND         |            | 80  | 17  | ug/L |   |          | 05/09/16 16:40 | 80      |
| 1.3-Dichlorobenzene         ND         80         62         ug/L         05/09/16 16:40         80           1.4-Dichlorobenzene         ND         80         67         ug/L         05/09/16 16:40         80           2-Hexanone (MEK)         ND         400         99         ug/L         05/09/16 16:40         80           2-Hexanone (MEK)         ND         400         99         ug/L         05/09/16 16:40         80           Adetone         ND         800         240         ug/L         05/09/16 16:40         80           Brancene         160         80         33         ug/L         05/09/16 16:40         80           Bromodichloromethane         ND         80         21         ug/L         05/09/16 16:40         80           Bromotichloromethane         ND         80         55         ug/L         05/09/16 16:40         80           Carbon disulfide         ND         80         26         ug/L         05/09/16 16:40         80           Chorobenzene         ND         80         28         ug/L         05/09/16 16:40         80           Chorobenzene         ND         80         29         ug/L         05/09/16 16:40         80                                                                                                                                                                   | 1,2-Dichloropropane                   | ND         |            | 80  | 58  | ug/L |   |          | 05/09/16 16:40 | 80      |
| ND         80         67         ugL         05009/16 16:40         80           2-Butanone (MEK)         ND         800         110         ugL         05709/16 16:40         80           2-Hexanone         130         J         400         99         ugL         05709/16 16:40         80           Acetone         ND         400         170         ugL         05709/16 16:40         80           Barcane         160         80         33         ugL         05709/16 16:40         80           Bromodichloromethane         ND         80         31         ugL         05709/16 16:40         80           Bromodichloromethane         ND         80         55         ugL         05709/16 16:40         80           Bromorthane         ND         80         55         ugL         05709/16 16:40         80           Carbon tetrachtoride         ND         80         60         ugL         05709/16 16:40         80           Carbon tetrachtoride         ND         80         22         ugL         05709/16 16:40         80           Chioroberzane         ND         80         29         ugL         05709/16 16:40         80           C                                                                                                                                                                                    | 1,3-Dichlorobenzene                   | ND         |            | 80  | 62  | ug/L |   |          | 05/09/16 16:40 | 80      |
| 2-Butanone (MEK)         ND         800         110         ug/L         05/09/16 16:40         80           2-Hexanone         130         400         99         ug/L         05/09/16 16:40         80           4-Methyl-2-pentanone (MIBK)         ND         800         240         ug/L         05/09/16 16:40         80           Benzene         160         80         33         ug/L         05/09/16 16:40         80           Bencondichloromethane         ND         80         31         ug/L         05/09/16 16:40         80           Bromodichloromethane         ND         80         51         ug/L         05/09/16 16:40         80           Bromodichloromethane         ND         80         55         ug/L         05/09/16 16:40         80           Carbon disulfide         ND         80         65         ug/L         05/09/16 16:40         80           Chiorobersene         ND         80         62         ug/L         05/09/16 16:40         80           Dibromochloromethane         ND         80         27         ug/L         05/09/16 16:40         80           Chiorobersene         ND         80         28         ug/L         05/09/16 16:40                                                                                                                                                          | 1,4-Dichlorobenzene                   | ND         |            | 80  | 67  | ug/L |   |          | 05/09/16 16:40 | 80      |
| 2+Hexanone         130         400         99         ug/L         05/09/16 16:40         80           4-Methyl-2-pentanone (MIBK)         ND         400         170         ug/L         05/09/16 16:40         80           Acetone         ND         80         240         ug/L         05/09/16 16:40         80           Benzone         160         80         31         ug/L         05/09/16 16:40         80           Bromodin-brane         ND         80         21         ug/L         05/09/16 16:40         80           Bromodin-brane         ND         80         55         ug/L         05/09/16 16:40         80           Carbon disulfide         ND         80         22         ug/L         05/09/16 16:40         80           Carbon tetrachloride         ND         80         22         ug/L         05/09/16 16:40         80           Dibromochloromethane         ND         80         26         ug/L         05/09/16 16:40         80           Chiorothane         ND         80         28         ug/L         05/09/16 16:40         80           Chiorothane         ND         80         29         ug/L         05/09/16 16:40         80                                                                                                                                                                          | 2-Butanone (MEK)                      | ND         |            | 800 | 110 | ug/L |   |          | 05/09/16 16:40 | 80      |
| 4-Methyl-2-pentanone (MIBK)         ND         400         170         ug/L         05/09/16 16:40         80           Acetone         ND         800         240         ug/L         05/09/16 16:40         80           Bernzene         160         80         33         ug/L         05/09/16 16:40         80           Bromodichloromethane         ND         80         31         ug/L         05/09/16 16:40         80           Bromodichloromethane         ND         80         25         ug/L         05/09/16 16:40         80           Carbon disulfide         ND         80         15         ug/L         05/09/16 16:40         80           Carbon disulfide         ND         80         22         ug/L         05/09/16 16:40         80           Carbon disulfide         ND         80         26         ug/L         05/09/16 16:40         80           Dibromochioromethane         ND         80         26         ug/L         05/09/16 16:40         80           Chioroethane         ND         80         28         ug/L         05/09/16 16:40         80           Chioroethane         ND         80         29         ug/L         05/09/16 16:40         80                                                                                                                                                          | 2-Hexanone                            | 130        | J          | 400 | 99  | ug/L |   |          | 05/09/16 16:40 | 80      |
| Acetone         ND         800         240         ug/L         05/09/16 16:40         80           Banzene         160         80         33         ug/L         05/09/16 16:40         80           Bromodichiormethane         ND         80         21         ug/L         05/09/16 16:40         80           Bromodichiormethane         ND         80         21         ug/L         05/09/16 16:40         80           Carbon disulfide         ND         80         22         ug/L         05/09/16 16:40         80           Carbon disulfide         ND         80         22         ug/L         05/09/16 16:40         80           Chiorobenzene         ND         80         26         ug/L         05/09/16 16:40         80           Dibromochioromethane         ND         80         26         ug/L         05/09/16 16:40         80           Chioroethane         ND         80         26         ug/L         05/09/16 16:40         80           Chioroethane         ND         80         27         ug/L         05/09/16 16:40         80           Chioroethane         ND         80         29         ug/L         05/09/16 16:40         80 <tr< td=""><td>4-Methyl-2-pentanone (MIBK)</td><td>ND</td><td></td><td>400</td><td>170</td><td>ug/L</td><td></td><td></td><td>05/09/16 16:40</td><td>80</td></tr<>              | 4-Methyl-2-pentanone (MIBK)           | ND         |            | 400 | 170 | ug/L |   |          | 05/09/16 16:40 | 80      |
| Benzene         160         80         33         ug/L         05/09/16 16:40         80           Bromodichloromethane         ND         80         31         ug/L         05/09/16 16:40         80           Bromoform         ND         80         55         ug/L         05/09/16 16:40         80           Carbon disulfide         ND         80         15         ug/L         05/09/16 16:40         80           Carbon tetrachloride         ND         80         22         ug/L         05/09/16 16:40         80           Chlorobenzene         ND         80         26         ug/L         05/09/16 16:40         80           Chlorobenzene         ND         80         26         ug/L         05/09/16 16:40         80           Chloroform         ND         80         26         ug/L         05/09/16 16:40         80           Chloroform         ND         80         28         ug/L         05/09/16 16:40         80           Chloroform         ND         80         29         ug/L         05/09/16 16:40         80           Chloroform         ND         80         29         ug/L         05/09/16 16:40         80           Cyc                                                                                                                                                                                    | Acetone                               | ND         |            | 800 | 240 | ug/L |   |          | 05/09/16 16:40 | 80      |
| Bromodichloromethane         ND         80         31         ug/L         05/09/16 16:40         80           Bromodrm         ND         80         21         ug/L         05/09/16 16:40         80           Bromomethane         ND         80         55         ug/L         05/09/16 16:40         80           Carbon disulfide         ND         80         22         ug/L         05/09/16 16:40         80           Carbon tetrachloride         ND         80         60         ug/L         05/09/16 16:40         80           Chlorobenzene         ND         80         26         ug/L         05/09/16 16:40         80           Dibromochloromethane         ND         80         26         ug/L         05/09/16 16:40         80           Chloroothrane         ND         80         26         ug/L         05/09/16 16:40         80           Chloromethane         ND         80         28         ug/L         05/09/16 16:40         80           Chloroothrane         ND         80         29         ug/L         05/09/16 16:40         80           Cichloroethene         ND         80         14         ug/L         05/09/16 16:40         80                                                                                                                                                                           | Benzene                               | 160        |            | 80  | 33  | ug/L |   |          | 05/09/16 16:40 | 80      |
| Bromoform         ND         80         21         ug/L         05/09/16         16:40         80           Bromomethane         ND         80         55         ug/L         05/09/16         16:40         80           Carbon disulide         ND         80         21         ug/L         05/09/16         16:40         80           Carbon disulide         ND         80         22         ug/L         05/09/16         16:40         80           Chiorobenzene         ND         80         26         ug/L         05/09/16         16:40         80           Chiorobenzene         ND         80         26         ug/L         05/09/16         16:40         80           Chiorobenzene         ND         80         27         ug/L         05/09/16         16:40         80           Chiorobenzene         ND         80         29         ug/L         05/09/16         16:40         80           Chiorobenzene         ND         80         65         ug/L         05/09/16         16:40         80           cis-1.2-Dichioropropene         ND         80         59         ug/L         05/09/16         16:40         80           12-D                                                                                                                                                                                              | Bromodichloromethane                  | ND         |            | 80  | 31  | ug/L |   |          | 05/09/16 16:40 | 80      |
| Bromomethane         ND         80         55         ug/L         05/09/16         16:40         80           Carbon disulfide         ND         80         15         ug/L         05/09/16         16:40         80           Carbon tetrachloride         ND         80         62         ug/L         05/09/16         16:40         80           Chiorobenzene         ND         80         62         ug/L         05/09/16         16:40         80           Dibromochloromethane         ND         80         26         ug/L         05/09/16         16:40         80           Chioroberhane         ND         80         27         ug/L         05/09/16         16:40         80           Chioromethane         ND         80         29         ug/L         05/09/16         16:40         80           Cis-1,2-Dichloropthene         ND         80         29         ug/L         05/09/16         16:40         80           Cyclohexane         ND         80         55         ug/L         05/09/16         16:40         80           Cyclohexane         ND         80         59         ug/L         05/09/16         16:40         80                                                                                                                                                                                                 | Bromoform                             | ND         |            | 80  | 21  | ug/L |   |          | 05/09/16 16:40 | 80      |
| Carbon disulfide         ND         80         15         ug/L         05/09/16         16:40         80           Carbon tetrachloride         ND         80         22         ug/L         05/09/16         16:40         80           Chlorobenzene         ND         80         60         ug/L         05/09/16         16:40         80           Dibromochlormethane         ND         80         26         ug/L         05/09/16         16:40         80           Chloroethane         ND         80         26         ug/L         05/09/16         16:40         80           Chloroethane         ND         80         27         ug/L         05/09/16         16:40         80           Chloroethane         ND         80         29         ug/L         05/09/16         16:40         80           cis-1,2-Dichloropropene         ND         80         54         ug/L         05/09/16         16:40         80           Cyclohexane         ND         80         54         ug/L         05/09/16         16:40         80           Loiroromothane         ND         80         58         ug/L         05/09/16         16:40         80                                                                                                                                                                                                | Bromomethane                          | ND         |            | 80  | 55  | ug/L |   |          | 05/09/16 16:40 | 80      |
| Carbon tetrachloride         ND         80         22         ug/L         05/09/16 16:40         80           Chlorobenzene         ND         80         26         ug/L         05/09/16 16:40         80           Dibromochloromethane         ND         80         26         ug/L         05/09/16 16:40         80           Chloroethane         ND         80         27         ug/L         05/09/16 16:40         80           Chloromethane         ND         80         28         ug/L         05/09/16 16:40         80           Chloroethane         ND         80         28         ug/L         05/09/16 16:40         80           cis-1,2-Dichloroptopene         ND         80         29         ug/L         05/09/16 16:40         80           Cyclohexane         ND         80         29         ug/L         05/09/16 16:40         80           Cyclohexane         ND         80         54         ug/L         05/09/16 16:40         80           L2-Dibromoethane         ND         80         59         ug/L         05/09/16 16:40         80           I2-Dibromoethane         ND         80         53         ug/L         05/09/16 16:40         80 </td <td>Carbon disulfide</td> <td>ND</td> <td></td> <td>80</td> <td>15</td> <td>ug/L</td> <td></td> <td></td> <td>05/09/16 16:40</td> <td>80</td>                   | Carbon disulfide                      | ND         |            | 80  | 15  | ug/L |   |          | 05/09/16 16:40 | 80      |
| ND         80         60         ug/L         05/09/16         16:40         80           Dibromochloromethane         ND         80         26         ug/L         05/09/16         16:40         80           Chlorothane         ND         80         27         ug/L         05/09/16         16:40         80           Chloroform         ND         80         27         ug/L         05/09/16         16:40         80           Chlorotethane         ND         80         28         ug/L         05/09/16         16:40         80           Chlorotethane         ND         80         29         ug/L         05/09/16         16:40         80           Cyclohexane         ND         80         59         ug/L         05/09/16         16:40         80           Dichlorodiflucoromethane         ND         80         59         ug/L         05/09/16         16:40         80           1,2-Dibromoethane         ND         80         58         ug/L         05/09/16         16:40         80           1,2-Dibromoethane         ND         80         58         ug/L         05/09/16         16:40         80           1,2-Dibromoethane                                                                                                                                                                                             | Carbon tetrachloride                  | ND         |            | 80  | 22  | ug/L |   |          | 05/09/16 16:40 | 80      |
| Dibromochloromethane         ND         80         26         ug/L         05/09/16         16:40         80           Chloroethane         ND         80         26         ug/L         05/09/16         16:40         80           Chloroethane         ND         80         27         ug/L         05/09/16         16:40         80           Chloromethane         ND         80         28         ug/L         05/09/16         16:40         80           cis-1,2-Dichloroethene         ND         80         29         ug/L         05/09/16         16:40         80           cis-1,3-Dichloropropene         ND         80         29         ug/L         05/09/16         16:40         80           Cyclohexane         ND         80         54         ug/L         05/09/16         16:40         80           Ethylbenzene         1400         80         58         ug/L         05/09/16         16:40         80           lsopropylenzene         ND         80         63         ug/L         05/09/16         16:40         80           Methyl acetate         ND         80         13         ug/L         05/09/16         16:40         80                                                                                                                                                                                            | Chlorobenzene                         | ND         |            | 80  | 60  | ug/L |   |          | 05/09/16 16:40 | 80      |
| ND         80         26         ug/L         05/09/16         80           Chloroform         ND         80         27         ug/L         05/09/16         64.0         80           Chloromethane         ND         80         28         ug/L         05/09/16         64.0         80           cis-1,2-Dichloroethene         ND         80         65         ug/L         05/09/16         64.0         80           Cyclohexane         ND         80         29         ug/L         05/09/16         64.0         80           Cyclohexane         ND         80         29         ug/L         05/09/16         64.0         80           Cyclohexane         ND         80         54         ug/L         05/09/16         64.0         80           Ethylbenzene         1400         80         58         ug/L         05/09/16         64.0         80           Isopropylbenzene         ND         80         63         ug/L         05/09/16         64.0         80           Methyl acetate         ND         80         13         ug/L         05/09/16         64.0         80           Styrene         ND         80         35 <td>Dibromochloromethane</td> <td>ND</td> <td></td> <td>80</td> <td>26</td> <td>ug/L</td> <td></td> <td></td> <td>05/09/16 16:40</td> <td>80</td>                                                         | Dibromochloromethane                  | ND         |            | 80  | 26  | ug/L |   |          | 05/09/16 16:40 | 80      |
| ND         80         27         ug/L         05/09/16 16:40         80           Chloromethane         ND         80         28         ug/L         05/09/16 16:40         80           Chloromethane         ND         80         65         ug/L         05/09/16 16:40         80           cis-1,2-Dichloroethene         ND         80         29         ug/L         05/09/16 16:40         80           Cyclohexane         440         80         14         ug/L         05/09/16 16:40         80           Dichlorodifluoromethane         ND         80         54         ug/L         05/09/16 16:40         80           Lichlorodifluoromethane         ND         80         59         ug/L         05/09/16 16:40         80           1,2-Dibromoethane         ND         80         58         ug/L         05/09/16 16:40         80           1,2-Dibromoethane         ND         80         63         ug/L         05/09/16 16:40         80           1,2-Dibromoethane         ND         80         13         ug/L         05/09/16 16:40         80           Methyl acetate         ND         80         13         ug/L         05/09/16 16:40         80                                                                                                                                                                           | Chloroethane                          | ND         |            | 80  | 26  | ug/L |   |          | 05/09/16 16:40 | 80      |
| ND         80         28         ug/L         05/09/16 16:40         80           cis-1,2-Dichloroethene         ND         80         65         ug/L         05/09/16 16:40         80           cis-1,3-Dichloropropene         ND         80         29         ug/L         05/09/16 16:40         80           Cyclohexane         440         80         14         ug/L         05/09/16 16:40         80           Dichlorodifluoromethane         ND         80         54         ug/L         05/09/16 16:40         80           1,2-Dibromoethane         ND         80         59         ug/L         05/09/16 16:40         80           1,2-Dibromoethane         ND         80         58         ug/L         05/09/16 16:40         80           1,2-Dibromoethane         ND         80         63         ug/L         05/09/16 16:40         80           1,2-Dibromoethane         ND         80         63         ug/L         05/09/16 16:40         80           Methyl acetate         ND         80         13         ug/L         05/09/16 16:40         80           Methyl ert-butyl ether         ND         80         35         ug/L         05/09/16 16:40         80 <td>Chloroform</td> <td>ND</td> <td></td> <td>80</td> <td>27</td> <td>ug/L</td> <td></td> <td></td> <td>05/09/16 16:40</td> <td>80</td>                      | Chloroform                            | ND         |            | 80  | 27  | ug/L |   |          | 05/09/16 16:40 | 80      |
| ND         80         65         ug/L         05/09/16         16:40         80           cis-1,3-Dichloropropene         ND         80         29         ug/L         05/09/16         16:40         80           Cyclohexane         440         80         14         ug/L         05/09/16         16:40         80           Dichlorodifluoromethane         ND         80         54         ug/L         05/09/16         16:40         80           Ethylbenzene         1400         80         59         ug/L         05/09/16         16:40         80           Isopropylbenzene         ND         80         58         ug/L         05/09/16         16:40         80           Methyl acetate         ND         80         63         ug/L         05/09/16         16:40         80           Methyl acetate         ND         200         100         ug/L         05/09/16         16:40         80           Methyl cyclohexane         220         80         13         ug/L         05/09/16         16:40         80           Methylene Chloride         ND         80         35         ug/L         05/09/16         16:40         80           Styren                                                                                                                                                                                     | Chloromethane                         | ND         |            | 80  | 28  | ug/L |   |          | 05/09/16 16:40 | 80      |
| ND         80         29         ug/L         05/09/16         16:40         80           Cyclohexane         440         80         14         ug/L         05/09/16         16:40         80           Dichlorodifluoromethane         ND         80         54         ug/L         05/09/16         16:40         80           Ethylbenzene         1400         80         59         ug/L         05/09/16         16:40         80           1,2-Dibromoethane         ND         80         58         ug/L         05/09/16         16:40         80           Isopropylbenzene         ND         80         63         ug/L         05/09/16         16:40         80           Methyl acetate         ND         80         63         ug/L         05/09/16         16:40         80           Methyl acetate         ND         80         13         ug/L         05/09/16         16:40         80           Methyl cyclohexane         220         80         13         ug/L         05/09/16         16:40         80           Styrene         ND         80         35         ug/L         05/09/16         16:40         80           Tetrachloroethene                                                                                                                                                                                             | cis-1,2-Dichloroethene                | ND         |            | 80  | 65  | ug/L |   |          | 05/09/16 16:40 | 80      |
| Cyclohexane         440         80         14         ug/L         05/09/16         16:40         80           Dichlorodifluoromethane         ND         80         54         ug/L         05/09/16         16:40         80           Ethylbenzene         1400         80         59         ug/L         05/09/16         16:40         80           1,2-Dibromoethane         ND         80         58         ug/L         05/09/16         16:40         80           Isopropylbenzene         ND         80         63         ug/L         05/09/16         16:40         80           Methyl acetate         ND         200         100         ug/L         05/09/16         16:40         80           Methyl cyclohexane         220         80         13         ug/L         05/09/16         16:40         80           Methylene Chloride         ND         80         35         ug/L         05/09/16         16:40         80           Styrene         ND         80         35         ug/L         05/09/16         16:40         80           Tetrachloroethene         ND         80         29         ug/L         05/09/16         16:40         80      <                                                                                                                                                                                  | cis-1,3-Dichloropropene               | ND         |            | 80  | 29  | ug/L |   |          | 05/09/16 16:40 | 80      |
| Dichlorodifluoromethane         ND         80         54         ug/L         05/09/16 16:40         80           Ethylbenzene         1400         80         59         ug/L         05/09/16 16:40         80           1,2-Dibromoethane         ND         80         58         ug/L         05/09/16 16:40         80           Isopropylbenzene         ND         80         63         ug/L         05/09/16 16:40         80           Methyl acetate         ND         200         100         ug/L         05/09/16 16:40         80           Methyl cert-butyl ether         ND         80         13         ug/L         05/09/16 16:40         80           Methylcyclohexane         220         80         13         ug/L         05/09/16 16:40         80           Methylene Chloride         ND         80         35         ug/L         05/09/16 16:40         80           Styrene         ND         80         58         ug/L         05/09/16 16:40         80           Toluene         2700         80         41         ug/L         05/09/16 16:40         80           trans-1,2-Dichloroethene         ND         80         72         ug/L         05/09/16 16:40                                                                                                                                                               | Cyclohexane                           | 440        |            | 80  | 14  | ug/L |   |          | 05/09/16 16:40 | 80      |
| Ethylbenzene         1400         80         59         ug/L         05/09/16 16:40         80           1,2-Dibromoethane         ND         80         58         ug/L         05/09/16 16:40         80           Isopropylbenzene         ND         80         63         ug/L         05/09/16 16:40         80           Methyl acetate         ND         200         100         ug/L         05/09/16 16:40         80           Methyl tert-butyl ether         ND         80         13         ug/L         05/09/16 16:40         80           Methyl cyclohexane         220         80         13         ug/L         05/09/16 16:40         80           Methylene Chloride         ND         80         35         ug/L         05/09/16 16:40         80           Styrene         ND         80         58         ug/L         05/09/16 16:40         80           Toluene         2700         80         41         ug/L         05/09/16 16:40         80           trans-1,2-Dichloroethene         ND         80         72         ug/L         05/09/16 16:40         80           trans-1,3-Dichloropropene         ND         80         37         ug/L         05/09/16 16:40                                                                                                                                                            | Dichlorodifluoromethane               | ND         |            | 80  | 54  | ug/L |   |          | 05/09/16 16:40 | 80      |
| 1,2-Dibromoethane         ND         80         58         ug/L         05/09/16         16:40         80           Isopropylbenzene         ND         80         63         ug/L         05/09/16         16:40         80           Methyl acetate         ND         200         100         ug/L         05/09/16         16:40         80           Methyl tert-butyl ether         ND         80         13         ug/L         05/09/16         16:40         80           Methyl cyclohexane         220         80         13         ug/L         05/09/16         16:40         80           Methylene Chloride         ND         80         35         ug/L         05/09/16         16:40         80           Styrene         ND         80         35         ug/L         05/09/16         16:40         80           Tetrachloroethene         ND         80         29         ug/L         05/09/16         16:40         80           Toluene         2700         80         41         ug/L         05/09/16         16:40         80           trans-1,2-Dichloroethene         ND         80         72         ug/L         05/09/16         16:40         80 <td>Ethylbenzene</td> <td>1400</td> <td></td> <td>80</td> <td>59</td> <td>ug/L</td> <td></td> <td></td> <td>05/09/16 16:40</td> <td>80</td>                                      | Ethylbenzene                          | 1400       |            | 80  | 59  | ug/L |   |          | 05/09/16 16:40 | 80      |
| Isopropylbenzene         ND         80         63         ug/L         05/09/16 16:40         80           Methyl acetate         ND         200         100         ug/L         05/09/16 16:40         80           Methyl tert-butyl ether         ND         80         13         ug/L         05/09/16 16:40         80           Methyl cyclohexane         220         80         13         ug/L         05/09/16 16:40         80           Methylene Chloride         ND         80         35         ug/L         05/09/16 16:40         80           Styrene         ND         80         58         ug/L         05/09/16 16:40         80           Tetrachloroethene         ND         80         29         ug/L         05/09/16 16:40         80           Toluene         2700         80         41         ug/L         05/09/16 16:40         80           trans-1,2-Dichloroethene         ND         80         72         ug/L         05/09/16 16:40         80           trans-1,3-Dichloropropene         ND         80         30         ug/L         05/09/16 16:40         80           Trichloroethene         ND         80         37         ug/L         05/09/16 16:40                                                                                                                                                           | 1,2-Dibromoethane                     | ND         |            | 80  | 58  | ug/L |   |          | 05/09/16 16:40 | 80      |
| Methyl acetate         ND         200         100         ug/L         05/09/16 16:40         80           Methyl tert-butyl ether         ND         80         13         ug/L         05/09/16 16:40         80           Methyl cyclohexane         220         80         13         ug/L         05/09/16 16:40         80           Methylene Chloride         ND         80         35         ug/L         05/09/16 16:40         80           Styrene         ND         80         35         ug/L         05/09/16 16:40         80           Tetrachloroethene         ND         80         58         ug/L         05/09/16 16:40         80           Toluene         2700         80         41         ug/L         05/09/16 16:40         80           trans-1,2-Dichloroethene         ND         80         72         ug/L         05/09/16 16:40         80           trans-1,3-Dichloropropene         ND         80         30         ug/L         05/09/16 16:40         80           Trichloroethene         ND         80         37         ug/L         05/09/16 16:40         80           Trichloroethene         ND         80         37         ug/L         05/09/16 16:40                                                                                                                                                            | Isopropylbenzene                      | ND         |            | 80  | 63  | ug/L |   |          | 05/09/16 16:40 | 80      |
| Methyl tert-butyl ether         ND         80         13         ug/L         05/09/16         16:40         80           Methylcyclohexane         220         80         13         ug/L         05/09/16         16:40         80           Methylene Chloride         ND         80         35         ug/L         05/09/16         16:40         80           Styrene         ND         80         35         ug/L         05/09/16         16:40         80           Tetrachloroethene         ND         80         58         ug/L         05/09/16         16:40         80           Toluene         2700         80         41         ug/L         05/09/16         16:40         80           trans-1,2-Dichloroethene         ND         80         72         ug/L         05/09/16         16:40         80           trans-1,3-Dichloroptopene         ND         80         30         ug/L         05/09/16         16:40         80           Trichloroethene         ND         80         37         ug/L         05/09/16         16:40         80           Trichloroethene         ND         80         37         ug/L         05/09/16         16:40         80                                                                                                                                                                             | Methyl acetate                        | ND         |            | 200 | 100 | ug/L |   |          | 05/09/16 16:40 | 80      |
| Methylcyclohexane         220         80         13         ug/L         05/09/16         16:40         80           Methylene Chloride         ND         80         35         ug/L         05/09/16         16:40         80           Styrene         ND         80         58         ug/L         05/09/16         16:40         80           Tetrachloroethene         ND         80         29         ug/L         05/09/16         16:40         80           Toluene         2700         80         41         ug/L         05/09/16         16:40         80           trans-1,2-Dichloroethene         ND         80         72         ug/L         05/09/16         16:40         80           trans-1,3-Dichloropropene         ND         80         72         ug/L         05/09/16         16:40         80           Trichloroethene         ND         80         37         ug/L         05/09/16         16:40         80           Trichlorofluoromethane         ND         80         70         ug/L         05/09/16         16:40         80           Vinyl chloride         ND         80         70         ug/L         05/09/16         16:40         80     <                                                                                                                                                                         | Methyl tert-butyl ether               | ND         |            | 80  | 13  | ug/L |   |          | 05/09/16 16:40 | 80      |
| Methylene Chloride         ND         80         35         ug/L         05/09/16         16:40         80           Styrene         ND         80         58         ug/L         05/09/16         16:40         80           Tetrachloroethene         ND         80         29         ug/L         05/09/16         16:40         80           Toluene         2700         80         41         ug/L         05/09/16         16:40         80           trans-1,2-Dichloroethene         ND         80         72         ug/L         05/09/16         16:40         80           trans-1,3-Dichloropropene         ND         80         30         ug/L         05/09/16         16:40         80           Trichloroethene         ND         80         37         ug/L         05/09/16         16:40         80           Trichlorofluoromethane         ND         80         70         ug/L         05/09/16         16:40         80           Vinyl chloride         ND         80         72         ug/L         05/09/16         16:40         80                                                                                                                                                                                                                                                                                                    | Methylcyclohexane                     | 220        |            | 80  | 13  | ug/L |   |          | 05/09/16 16:40 | 80      |
| Styrene         ND         80         58         ug/L         05/09/16 16:40         80           Tetrachloroethene         ND         80         29         ug/L         05/09/16 16:40         80           Toluene         2700         80         41         ug/L         05/09/16 16:40         80           trans-1,2-Dichloroethene         ND         80         72         ug/L         05/09/16 16:40         80           trans-1,3-Dichloropropene         ND         80         30         ug/L         05/09/16 16:40         80           Trichloroethene         ND         80         37         ug/L         05/09/16 16:40         80           Trichloroethene         ND         80         37         ug/L         05/09/16 16:40         80           Trichloroethene         ND         80         37         ug/L         05/09/16 16:40         80           Vinyl chloride         ND         80         70         ug/L         05/09/16 16:40         80                                                                                                                                                                                                                                                                                                                                                                                      | Methylene Chloride                    | ND         |            | 80  | 35  | ug/L |   |          | 05/09/16 16:40 | 80      |
| Tetrachloroethene         ND         80         29         ug/L         05/09/16 16:40         80           Toluene         2700         80         41         ug/L         05/09/16 16:40         80           trans-1,2-Dichloroethene         ND         80         72         ug/L         05/09/16 16:40         80           trans-1,3-Dichloroptopene         ND         80         30         ug/L         05/09/16 16:40         80           Trichloroethene         ND         80         37         ug/L         05/09/16 16:40         80           Trichloroethene         ND         80         37         ug/L         05/09/16 16:40         80           Trichlorofluoromethane         ND         80         37         ug/L         05/09/16 16:40         80           Vinyl chloride         ND         80         72         ug/L         05/09/16 16:40         80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Styrene                               | ND         |            | 80  | 58  | ug/L |   |          | 05/09/16 16:40 | 80      |
| Toluene         2700         80         41         ug/L         05/09/16 16:40         80           trans-1,2-Dichloroethene         ND         80         72         ug/L         05/09/16 16:40         80           trans-1,3-Dichloropropene         ND         80         30         ug/L         05/09/16 16:40         80           Trichloroethene         ND         80         37         ug/L         05/09/16 16:40         80           Trichlorofluoromethane         ND         80         70         ug/L         05/09/16 16:40         80           Vinyl chloride         ND         80         70         ug/L         05/09/16 16:40         80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Tetrachloroethene                     | ND         |            | 80  | 29  | ug/L |   |          | 05/09/16 16:40 | 80      |
| trans-1,2-DichloroetheneND8072ug/L05/09/16 16:4080trans-1,3-DichloropropeneND8030ug/L05/09/16 16:4080TrichloroetheneND8037ug/L05/09/16 16:4080TrichlorofluoromethaneND8070ug/L05/09/16 16:4080Vinyl chlorideND8072ug/L05/09/16 16:4080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Toluene                               | 2700       |            | 80  | 41  | ug/L |   |          | 05/09/16 16:40 | 80      |
| trans-1,3-DichloropropeneND8030ug/L05/09/16 16:4080TrichloroetheneND8037ug/L05/09/16 16:4080TrichlorofluoromethaneND8070ug/L05/09/16 16:4080Vinyl chlorideND8072ug/L05/09/16 16:4080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | trans-1,2-Dichloroethene              | ND         |            | 80  | 72  | ug/L |   |          | 05/09/16 16:40 | 80      |
| Trichloroethene         ND         80         37         ug/L         05/09/16 16:40         80           Trichlorofluoromethane         ND         80         70         ug/L         05/09/16 16:40         80           Vinyl chloride         ND         80         72         ug/L         05/09/16 16:40         80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | trans-1,3-Dichloropropene             | ND         |            | 80  | 30  | ug/L |   |          | 05/09/16 16:40 | 80      |
| Trichlorofluoromethane         ND         80         70         ug/L         05/09/16 16:40         80           Vinyl chloride         ND         80         72         ug/L         05/09/16 16:40         80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Trichloroethene                       | ND         |            | 80  | 37  | ug/L |   |          | 05/09/16 16:40 | 80      |
| Vinyl chloride         ND         80         72         ug/L         05/09/16         16:40         80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Trichlorofluoromethane                | ND         |            | 80  | 70  | ug/L |   |          | 05/09/16 16:40 | 80      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Vinyl chloride                        | ND         |            | 80  | 72  | ug/L |   |          | 05/09/16 16:40 | 80      |

Lab Sample ID: 480-99322-5 Matrix: Water 5 6

## Client Sample ID: MSMW-2-042816 Date Collected: 04/28/16 12:00 Date Received: 04/29/16 11:50

| Surrogate                    | %Recovery | Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|----------|----------------|---------|
| Toluene-d8 (Surr)            | 101       |           | 71 - 126 |          | 05/09/16 16:40 | 80      |
| 1,2-Dichloroethane-d4 (Surr) | 111       |           | 66 - 137 |          | 05/09/16 16:40 | 80      |
| 4-Bromofluorobenzene (Surr)  | 100       |           | 73 - 120 |          | 05/09/16 16:40 | 80      |
| Dibromofluoromethane (Surr)  | 107       |           | 60 - 140 |          | 05/09/16 16:40 | 80      |

#### Method: 8260C - Volatile Organic Compounds by GC/MS - DL Analvte Result Qualifier RL

| Analyte                      | Result    | Qualifier | RL       | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|-----|------|---|----------|----------------|---------|
| Xylenes, Total               | 15000     |           | 400      | 130 | ug/L |   |          | 05/10/16 00:26 | 200     |
| Surrogate                    | %Recovery | Qualifier | Limits   |     |      |   | Prepared | Analyzed       | Dil Fac |
| Toluene-d8 (Surr)            | 99        |           | 71 - 126 |     |      |   |          | 05/10/16 00:26 | 200     |
| 1,2-Dichloroethane-d4 (Surr) | 109       |           | 66 - 137 |     |      |   |          | 05/10/16 00:26 | 200     |
| 4-Bromofluorobenzene (Surr)  | 98        |           | 73 - 120 |     |      |   |          | 05/10/16 00:26 | 200     |
| Dibromofluoromethane (Surr)  | 108       |           | 60 - 140 |     |      |   |          | 05/10/16 00:26 | 200     |

# Method: 8260C - Volatile Organic Compounds by GC/MS

| Aatrix: Water    |                    |          |          |              |                   | Prep Type: Total/NA |
|------------------|--------------------|----------|----------|--------------|-------------------|---------------------|
| -                |                    |          | Pe       | ercent Surre | ogate Recovery (A | Acceptance Limits)  |
|                  |                    | TOL      | 12DCE    | BFB          | DBFM              |                     |
| Lab Sample ID    | Client Sample ID   | (71-126) | (66-137) | (73-120)     | (60-140)          |                     |
| 480-99322-1      | MW-2R-2-042816     | 98       | 116      | 94           | 111               |                     |
| 480-99322-2      | MSMW-1-042816      | 100      | 117      | 96           | 113               |                     |
| 480-99322-3      | MSMW-3-042816      | 98       | 97       | 100          | 64                |                     |
| 480-99322-3 - DL | MSMW-3-042816      | 100      | 109      | 99           | 100               |                     |
| 480-99322-4      | MSMW-4-042816      | 99       | 102      | 99           | 83                |                     |
| 480-99322-4 - DL | MSMW-4-042816      | 101      | 111      | 99           | 104               |                     |
| 480-99322-5      | MSMW-2-042816      | 101      | 111      | 100          | 107               |                     |
| 480-99322-5 - DL | MSMW-2-042816      | 99       | 109      | 98           | 108               |                     |
| LCS 480-300570/5 | Lab Control Sample | 100      | 114      | 98           | 111               |                     |
| LCS 480-300656/5 | Lab Control Sample | 102      | 113      | 103          | 111               |                     |
| LCS 480-300810/5 | Lab Control Sample | 101      | 107      | 100          | 105               |                     |
| MB 480-300570/7  | Method Blank       | 98       | 111      | 96           | 111               |                     |
| MB 480-300656/7  | Method Blank       | 100      | 111      | 101          | 108               |                     |
| MB 480-300810/7  | Method Blank       | 100      | 111      | 101          | 110               |                     |
| Surrogate Legend |                    |          |          |              |                   |                     |

TOL = Toluene-d8 (Surr)

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

Client Sample ID: Method Blank

Prep Type: Total/NA

Method: 8260C - Volatile Organic Compounds by GC/MS

| Lab Sam   | ple ID: | MB | 480-300570/7 |
|-----------|---------|----|--------------|
| Matrix: W | ater    |    |              |

| Analysis Batch: 300570                |        |           |     |      |      |   |          |                |                                       |
|---------------------------------------|--------|-----------|-----|------|------|---|----------|----------------|---------------------------------------|
|                                       | MB     | МВ        |     |      |      |   |          |                |                                       |
| Analyte                               | Result | Qualifier | RL  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac                               |
| 1,1,1-Trichloroethane                 | ND     |           | 1.0 | 0.82 | ug/L |   |          | 05/08/16 13:09 | 1                                     |
| 1,1,2,2-Tetrachloroethane             | ND     |           | 1.0 | 0.21 | ug/L |   |          | 05/08/16 13:09 | 1                                     |
| 1,1,2-Trichloroethane                 | ND     |           | 1.0 | 0.23 | ug/L |   |          | 05/08/16 13:09 | 1                                     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND     |           | 1.0 | 0.31 | ug/L |   |          | 05/08/16 13:09 | 1                                     |
| 1,1-Dichloroethane                    | ND     |           | 1.0 | 0.38 | ug/L |   |          | 05/08/16 13:09 | 1                                     |
| 1,1-Dichloroethene                    | ND     |           | 1.0 | 0.29 | ug/L |   |          | 05/08/16 13:09 | 1                                     |
| 1,2,4-Trichlorobenzene                | ND     |           | 1.0 | 0.41 | ug/L |   |          | 05/08/16 13:09 | 1                                     |
| 1,2-Dibromo-3-Chloropropane           | ND     |           | 1.0 | 0.39 | ug/L |   |          | 05/08/16 13:09 | 1                                     |
| 1,2-Dichlorobenzene                   | ND     |           | 1.0 | 0.79 | ug/L |   |          | 05/08/16 13:09 | 1                                     |
| 1,2-Dichloroethane                    | ND     |           | 1.0 | 0.21 | ug/L |   |          | 05/08/16 13:09 | 1                                     |
| 1,2-Dichloropropane                   | ND     |           | 1.0 | 0.72 | ug/L |   |          | 05/08/16 13:09 | 1                                     |
| 1,3-Dichlorobenzene                   | ND     |           | 1.0 | 0.78 | ug/L |   |          | 05/08/16 13:09 | 1                                     |
| 1,4-Dichlorobenzene                   | ND     |           | 1.0 | 0.84 | ug/L |   |          | 05/08/16 13:09 | 1                                     |
| 2-Butanone (MEK)                      | ND     |           | 10  | 1.3  | ug/L |   |          | 05/08/16 13:09 | 1                                     |
| 2-Hexanone                            | ND     |           | 5.0 | 1.2  | ug/L |   |          | 05/08/16 13:09 | 1                                     |
| 4-Methyl-2-pentanone (MIBK)           | ND     |           | 5.0 | 2.1  | ug/L |   |          | 05/08/16 13:09 | 1                                     |
| Acetone                               | ND     |           | 10  | 3.0  | ug/L |   |          | 05/08/16 13:09 | 1                                     |
| Benzene                               | ND     |           | 1.0 | 0.41 | ug/L |   |          | 05/08/16 13:09 | 1                                     |
| Bromodichloromethane                  | ND     |           | 1.0 | 0.39 | ug/L |   |          | 05/08/16 13:09 | 1                                     |
| Bromoform                             | ND     |           | 1.0 | 0.26 | ug/L |   |          | 05/08/16 13:09 | 1                                     |
| Bromomethane                          | ND     |           | 1.0 | 0.69 | ug/L |   |          | 05/08/16 13:09 | 1                                     |
| Carbon disulfide                      | ND     |           | 1.0 | 0.19 | ug/L |   |          | 05/08/16 13:09 | 1                                     |
| Carbon tetrachloride                  | ND     |           | 1.0 | 0.27 | ug/L |   |          | 05/08/16 13:09 | 1                                     |
| Chlorobenzene                         | ND     |           | 1.0 | 0.75 | ug/L |   |          | 05/08/16 13:09 | 1                                     |
| Dibromochloromethane                  | ND     |           | 1.0 | 0.32 | ug/L |   |          | 05/08/16 13:09 | 1                                     |
| Chloroethane                          | ND     |           | 1.0 | 0.32 | ug/L |   |          | 05/08/16 13:09 | 1                                     |
| Chloroform                            | ND     |           | 1.0 | 0.34 | ug/L |   |          | 05/08/16 13:09 | 1                                     |
| Chloromethane                         | ND     |           | 1.0 | 0.35 | ug/L |   |          | 05/08/16 13:09 | 1                                     |
| cis-1,2-Dichloroethene                | ND     |           | 1.0 | 0.81 | ug/L |   |          | 05/08/16 13:09 | 1                                     |
| cis-1,3-Dichloropropene               | ND     |           | 1.0 | 0.36 | ug/L |   |          | 05/08/16 13:09 | 1                                     |
| Cyclohexane                           | ND     |           | 1.0 | 0.18 | ug/L |   |          | 05/08/16 13:09 | 1                                     |
| Dichlorodifluoromethane               | ND     |           | 1.0 | 0.68 | ug/L |   |          | 05/08/16 13:09 | 1                                     |
| Ethylbenzene                          | ND     |           | 1.0 | 0.74 | ug/L |   |          | 05/08/16 13:09 | 1                                     |
| 1,2-Dibromoethane                     | ND     |           | 1.0 | 0.73 | ug/L |   |          | 05/08/16 13:09 | 1                                     |
| Isopropylbenzene                      | ND     |           | 1.0 | 0.79 | ug/L |   |          | 05/08/16 13:09 | 1                                     |
| Methyl acetate                        | ND     |           | 2.5 | 1.3  | ug/L |   |          | 05/08/16 13:09 | 1                                     |
| Methyl tert-butyl ether               | ND     |           | 1.0 | 0.16 | ug/L |   |          | 05/08/16 13:09 | 1                                     |
| Methylcyclohexane                     | ND     |           | 1.0 | 0.16 | ug/L |   |          | 05/08/16 13:09 | 1                                     |
| Methylene Chloride                    | ND     |           | 1.0 | 0.44 | ug/L |   |          | 05/08/16 13:09 | 1                                     |
| Styrene                               | ND     |           | 1.0 | 0.73 | ua/L |   |          | 05/08/16 13:09 | 1                                     |
| Tetrachloroethene                     | ND     |           | 1.0 | 0.36 | ug/L |   |          | 05/08/16 13:09 | 1                                     |
| Toluene                               | ND     |           | 1.0 | 0.51 | ug/L |   |          | 05/08/16 13:09 | 1                                     |
| trans-1 2-Dichloroethene              | ND     |           | 1.0 | 0.90 | ua/l |   |          | 05/08/16 13:09 |                                       |
| trans-1.3-Dichloropropene             | ND     |           | 1.0 | 0.37 | ug/L |   |          | 05/08/16 13:09 | 1                                     |
| Trichloroethene                       | ND     |           | 1.0 | 0.46 | ua/l |   |          | 05/08/16 13:09 | 1                                     |
| Trichlorofluoromethane                | ND     |           | 1.0 | 0.40 | ua/l |   |          | 05/08/16 13:09 | · · · · · · · · · · · · · · · · · · · |
| Vinvl chloride                        | ND     |           | 1.0 | 0.00 | ua/l |   |          | 05/08/16 13:09 | 1                                     |
| Xvlenes. Total                        | ND     |           | 2.0 | 0.66 | ug/L |   |          | 05/08/16 13:09 | 1                                     |

# **QC Sample Results**

Limits

71 - 126

66 - 137

73 - 120

60 - 140

MB MB

%Recovery Qualifier

98

111

111

96

## Client: C&S Engineers, Inc. Project/Site: Water & Soil Analysis

 Prepared
 Analyzed
 Dil Fac

 05/08/16 13:09
 1

 05/08/16 13:09
 1

 05/08/16 13:09
 1

 05/08/16 13:09
 1

 05/08/16 13:09
 1

Prep Type: Total/NA

**Client Sample ID: Lab Control Sample** 

# Lab Sample ID: LCS 480-300570/5 Matrix: Water

## Analysis Batch: 300570

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Surrogate

Toluene-d8 (Surr)

| -                                   | Spike | LCS    | LCS       |      |   |      | %Rec.               |   |
|-------------------------------------|-------|--------|-----------|------|---|------|---------------------|---|
| Analyte                             | Added | Result | Qualifier | Unit | D | %Rec | Limits              |   |
| 1,1,1-Trichloroethane               | 25.0  | 27.2   |           | ug/L |   | 109  | 73 - 126            | ð |
| 1,1,2,2-Tetrachloroethane           | 25.0  | 26.9   |           | ug/L |   | 108  | 70 <sub>-</sub> 126 |   |
| 1,1,2-Trichloroethane               | 25.0  | 24.5   |           | ug/L |   | 98   | 76 - 122            | 9 |
| 1,1,2-Trichloro-1,2,2-trifluoroetha | 25.0  | 26.8   |           | ug/L |   | 107  | 52 - 148            |   |
| ne                                  |       |        |           |      |   |      |                     |   |
| 1,1-Dichloroethane                  | 25.0  | 23.9   |           | ug/L |   | 96   | 71 - 129            |   |
| 1,1-Dichloroethene                  | 25.0  | 24.2   |           | ug/L |   | 97   | 58 - 121            |   |
| 1,2,4-Trichlorobenzene              | 25.0  | 23.8   |           | ug/L |   | 95   | 70 - 122            |   |
| 1,2-Dibromo-3-Chloropropane         | 25.0  | 29.1   |           | ug/L |   | 116  | 56 - 134            |   |
| 1,2-Dichlorobenzene                 | 25.0  | 24.5   |           | ug/L |   | 98   | 80 - 124            |   |
| 1,2-Dichloroethane                  | 25.0  | 26.1   |           | ug/L |   | 104  | 75 - 127            |   |
| 1,2-Dichloropropane                 | 25.0  | 23.7   |           | ug/L |   | 95   | 76 - 120            |   |
| 1,3-Dichlorobenzene                 | 25.0  | 24.2   |           | ug/L |   | 97   | 77 - 120            |   |
| 1,4-Dichlorobenzene                 | 25.0  | 23.9   |           | ug/L |   | 96   | 75 - 120            |   |
| 2-Butanone (MEK)                    | 125   | 152    |           | ug/L |   | 121  | 57 - 140            |   |
| 2-Hexanone                          | 125   | 139    |           | ug/L |   | 111  | 65 - 127            |   |
| 4-Methyl-2-pentanone (MIBK)         | 125   | 136    |           | ug/L |   | 109  | 71 - 125            |   |
| Acetone                             | 125   | 197    | *         | ug/L |   | 158  | 56 - 142            |   |
| Benzene                             | 25.0  | 23.7   |           | ug/L |   | 95   | 71 <sub>-</sub> 124 |   |
| Bromodichloromethane                | 25.0  | 26.4   |           | ug/L |   | 106  | 80 - 122            |   |
| Bromoform                           | 25.0  | 27.2   |           | ug/L |   | 109  | 52 - 132            |   |
| Bromomethane                        | 25.0  | 33.9   |           | ug/L |   | 136  | 55 <sub>-</sub> 144 |   |
| Carbon disulfide                    | 25.0  | 23.0   |           | ug/L |   | 92   | 59 <sub>-</sub> 134 |   |
| Carbon tetrachloride                | 25.0  | 27.5   |           | ug/L |   | 110  | 72 - 134            |   |
| Chlorobenzene                       | 25.0  | 23.2   |           | ug/L |   | 93   | 72 - 120            |   |
| Dibromochloromethane                | 25.0  | 26.1   |           | ug/L |   | 105  | 75 - 125            |   |
| Chloroethane                        | 25.0  | 27.0   |           | ug/L |   | 108  | 69 - 136            |   |
| Chloroform                          | 25.0  | 26.1   |           | ug/L |   | 104  | 73 - 127            |   |
| Chloromethane                       | 25.0  | 26.2   |           | ug/L |   | 105  | 68 - 124            |   |
| cis-1,2-Dichloroethene              | 25.0  | 24.4   |           | ug/L |   | 98   | 74 - 124            |   |
| cis-1,3-Dichloropropene             | 25.0  | 24.1   |           | ug/L |   | 97   | 74 <sub>-</sub> 124 |   |
| Cyclohexane                         | 25.0  | 23.3   |           | ug/L |   | 93   | 59 - 135            |   |
| Dichlorodifluoromethane             | 25.0  | 31.0   |           | ug/L |   | 124  | 59 <sub>-</sub> 135 |   |
| Ethylbenzene                        | 25.0  | 23.6   |           | ug/L |   | 95   | 77 - 123            |   |
| 1,2-Dibromoethane                   | 25.0  | 25.2   |           | ug/L |   | 101  | 77 - 120            |   |
| Isopropylbenzene                    | 25.0  | 24.4   |           | ug/L |   | 98   | 77 - 122            |   |
| Methyl acetate                      | 125   | 142    |           | ug/L |   | 114  | 74 - 133            |   |
| Methyl tert-butyl ether             | 25.0  | 25.1   |           | ug/L |   | 100  | 64 - 127            |   |
| Methylcyclohexane                   | 25.0  | 23.1   |           | ug/L |   | 92   | 61 - 138            |   |
| Methylene Chloride                  | 25.0  | 23.3   |           | ug/L |   | 93   | 57 - 132            |   |
| Styrene                             | 25.0  | 22.8   |           | ug/L |   | 91   | 70 - 130            |   |
| Tetrachloroethene                   | 25.0  | 23.5   |           | ug/L |   | 94   | 74 - 122            |   |
| Toluene                             | 25.0  | 22.8   |           | ug/L |   | 91   | 80 - 122            |   |
| trans-1.2-Dichloroethene            | 25.0  | 24.5   |           | ug/L |   | 98   | 73 - 127            |   |

**Client Sample ID: Method Blank** 

Prep Type: Total/NA

# Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

| Lab Sample ID: LCS 480<br>Matrix: Water | 0-300570/5 |           |          |        |           | Clie | nt Sa | mple ID | : Lab Contro<br>Prep Type: | I Sample<br>Total/NA |
|-----------------------------------------|------------|-----------|----------|--------|-----------|------|-------|---------|----------------------------|----------------------|
| Analysis Batch: 300570                  |            |           |          |        |           |      |       |         |                            |                      |
| -                                       |            |           | Spike    | LCS    | LCS       |      |       |         | %Rec.                      |                      |
| Analyte                                 |            |           | Added    | Result | Qualifier | Unit | D     | %Rec    | Limits                     |                      |
| trans-1,3-Dichloropropene               |            |           | 25.0     | 24.7   |           | ug/L |       | 99      | 72 - 123                   |                      |
| Trichloroethene                         |            |           | 25.0     | 24.8   |           | ug/L |       | 99      | 74 <sub>-</sub> 123        |                      |
| Trichlorofluoromethane                  |            |           | 25.0     | 28.4   |           | ug/L |       | 114     | 62 - 152                   |                      |
| Vinyl chloride                          |            |           | 25.0     | 24.7   |           | ug/L |       | 99      | 65 - 133                   |                      |
|                                         | LCS        | LCS       |          |        |           |      |       |         |                            |                      |
| Surrogate                               | %Recovery  | Qualifier | Limits   |        |           |      |       |         |                            |                      |
| Toluene-d8 (Surr)                       | 100        |           | 71 - 126 |        |           |      |       |         |                            |                      |

| Surrogate                    | %Recovery | Qualifier | Limits   |
|------------------------------|-----------|-----------|----------|
| Toluene-d8 (Surr)            | 100       |           | 71 - 126 |
| 1,2-Dichloroethane-d4 (Surr) | 114       |           | 66 - 137 |
| 4-Bromofluorobenzene (Surr)  | 98        |           | 73 - 120 |
| Dibromofluoromethane (Surr)  | 111       |           | 60 - 140 |

## Lab Sample ID: MB 480-300656/7 Matrix: Water Analysis Batch: 300656

| -                                     | MB     | MB        |     |      |      |   |          |                |         |
|---------------------------------------|--------|-----------|-----|------|------|---|----------|----------------|---------|
| Analyte                               | Result | Qualifier | RL  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| 1,1,1-Trichloroethane                 | ND     |           | 1.0 | 0.82 | ug/L |   |          | 05/09/16 11:54 | 1       |
| 1,1,2,2-Tetrachloroethane             | ND     |           | 1.0 | 0.21 | ug/L |   |          | 05/09/16 11:54 | 1       |
| 1,1,2-Trichloroethane                 | ND     |           | 1.0 | 0.23 | ug/L |   |          | 05/09/16 11:54 | 1       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND     |           | 1.0 | 0.31 | ug/L |   |          | 05/09/16 11:54 | 1       |
| 1,1-Dichloroethane                    | ND     |           | 1.0 | 0.38 | ug/L |   |          | 05/09/16 11:54 | 1       |
| 1,1-Dichloroethene                    | ND     |           | 1.0 | 0.29 | ug/L |   |          | 05/09/16 11:54 | 1       |
| 1,2,4-Trichlorobenzene                | ND     |           | 1.0 | 0.41 | ug/L |   |          | 05/09/16 11:54 | 1       |
| 1,2-Dibromo-3-Chloropropane           | ND     |           | 1.0 | 0.39 | ug/L |   |          | 05/09/16 11:54 | 1       |
| 1,2-Dichlorobenzene                   | ND     |           | 1.0 | 0.79 | ug/L |   |          | 05/09/16 11:54 | 1       |
| 1,2-Dichloroethane                    | ND     |           | 1.0 | 0.21 | ug/L |   |          | 05/09/16 11:54 | 1       |
| 1,2-Dichloropropane                   | ND     |           | 1.0 | 0.72 | ug/L |   |          | 05/09/16 11:54 | 1       |
| 1,3-Dichlorobenzene                   | ND     |           | 1.0 | 0.78 | ug/L |   |          | 05/09/16 11:54 | 1       |
| 1,4-Dichlorobenzene                   | ND     |           | 1.0 | 0.84 | ug/L |   |          | 05/09/16 11:54 | 1       |
| 2-Butanone (MEK)                      | ND     |           | 10  | 1.3  | ug/L |   |          | 05/09/16 11:54 | 1       |
| 2-Hexanone                            | ND     |           | 5.0 | 1.2  | ug/L |   |          | 05/09/16 11:54 | 1       |
| 4-Methyl-2-pentanone (MIBK)           | ND     |           | 5.0 | 2.1  | ug/L |   |          | 05/09/16 11:54 | 1       |
| Acetone                               | ND     |           | 10  | 3.0  | ug/L |   |          | 05/09/16 11:54 | 1       |
| Benzene                               | ND     |           | 1.0 | 0.41 | ug/L |   |          | 05/09/16 11:54 | 1       |
| Bromodichloromethane                  | ND     |           | 1.0 | 0.39 | ug/L |   |          | 05/09/16 11:54 | 1       |
| Bromoform                             | ND     |           | 1.0 | 0.26 | ug/L |   |          | 05/09/16 11:54 | 1       |
| Bromomethane                          | ND     |           | 1.0 | 0.69 | ug/L |   |          | 05/09/16 11:54 | 1       |
| Carbon disulfide                      | ND     |           | 1.0 | 0.19 | ug/L |   |          | 05/09/16 11:54 | 1       |
| Carbon tetrachloride                  | ND     |           | 1.0 | 0.27 | ug/L |   |          | 05/09/16 11:54 | 1       |
| Chlorobenzene                         | ND     |           | 1.0 | 0.75 | ug/L |   |          | 05/09/16 11:54 | 1       |
| Dibromochloromethane                  | ND     |           | 1.0 | 0.32 | ug/L |   |          | 05/09/16 11:54 | 1       |
| Chloroethane                          | ND     |           | 1.0 | 0.32 | ug/L |   |          | 05/09/16 11:54 | 1       |
| Chloroform                            | ND     |           | 1.0 | 0.34 | ug/L |   |          | 05/09/16 11:54 | 1       |
| Chloromethane                         | ND     |           | 1.0 | 0.35 | ug/L |   |          | 05/09/16 11:54 | 1       |
| cis-1,2-Dichloroethene                | ND     |           | 1.0 | 0.81 | ug/L |   |          | 05/09/16 11:54 | 1       |
| cis-1,3-Dichloropropene               | ND     |           | 1.0 | 0.36 | ug/L |   |          | 05/09/16 11:54 | 1       |
| Cyclohexane                           | ND     |           | 1.0 | 0.18 | ug/L |   |          | 05/09/16 11:54 | 1       |
| Dichlorodifluoromethane               | ND     |           | 1.0 | 0.68 | ug/L |   |          | 05/09/16 11:54 | 1       |

RL

1.0

1.0

1.0

2.5

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

MDL Unit

0.74 ug/L

0.73 ug/L

0.79 ug/L

1.3 ug/L

0.16 ug/L

0.16 ug/L

0.44 ug/L

0.73 ug/L

0.36 ug/L

0.51 ug/L

0.90 ug/L

0.37 ug/L

0.46 ug/L

0.88 ug/L

0.90 ug/L

D

Prepared

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

MB MB Result Qualifier

ND

108

Lab Sample ID: MB 480-300656/7

**Matrix: Water** 

Analyte

Styrene

Toluene

Ethylbenzene

1,2-Dibromoethane

Isopropylbenzene

Methyl tert-butyl ether

Methylcyclohexane

Methylene Chloride

Tetrachloroethene

Trichloroethene

Vinyl chloride

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Dibromofluoromethane (Surr)

Trichlorofluoromethane

Methyl acetate

Analysis Batch: 300656

**Client Sample ID: Method Blank** 

Analyzed

05/09/16 11:54

05/09/16 11:54

05/09/16 11:54

05/09/16 11:54

05/09/16 11:54

05/09/16 11:54

05/09/16 11:54

05/09/16 11:54

05/09/16 11:54

05/09/16 11:54

05/09/16 11:54

05/09/16 11:54

05/09/16 11:54

05/09/16 11:54

05/09/16 11:54

05/09/16 11:54

Prep Type: Total/NA

Dil Fac

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

# 8

| 9 |
|---|
|   |
|   |
|   |
| 3 |

| Xylenes, Total               | ND        |           | 2.0      | 0.66 ug/L |          | 05/09/16 11:54 | 1       |  |
|------------------------------|-----------|-----------|----------|-----------|----------|----------------|---------|--|
|                              | МВ        | МВ        |          |           |          |                |         |  |
| Surrogate                    | %Recovery | Qualifier | Limits   |           | Prepared | Analyzed       | Dil Fac |  |
| Toluene-d8 (Surr)            | 100       |           | 71 - 126 |           |          | 05/09/16 11:54 | 1       |  |
| 1,2-Dichloroethane-d4 (Surr) | 111       |           | 66 - 137 |           |          | 05/09/16 11:54 | 1       |  |
| 4-Bromofluorobenzene (Surr)  | 101       |           | 73 - 120 |           |          | 05/09/16 11:54 | 1       |  |

60 - 140

## Lab Sample ID: LCS 480-300656/5 **Matrix: Water** Analysis Batch: 300656

## Client Sample ID: Lab Control Sample Prep Type: Total/NA

| -                                   | Spike | LCS    | LCS       |      |   |      | %Rec.               |  |
|-------------------------------------|-------|--------|-----------|------|---|------|---------------------|--|
| Analyte                             | Added | Result | Qualifier | Unit | D | %Rec | Limits              |  |
| 1,1,1-Trichloroethane               | 25.0  | 28.7   |           | ug/L |   | 115  | 73 - 126            |  |
| 1,1,2,2-Tetrachloroethane           | 25.0  | 26.1   |           | ug/L |   | 104  | 70 - 126            |  |
| 1,1,2-Trichloroethane               | 25.0  | 25.0   |           | ug/L |   | 100  | 76 - 122            |  |
| 1,1,2-Trichloro-1,2,2-trifluoroetha | 25.0  | 30.8   |           | ug/L |   | 123  | 52 - 148            |  |
| ne                                  |       |        |           |      |   |      |                     |  |
| 1,1-Dichloroethane                  | 25.0  | 24.8   |           | ug/L |   | 99   | 71 - 129            |  |
| 1,1-Dichloroethene                  | 25.0  | 27.3   |           | ug/L |   | 109  | 58 - 121            |  |
| 1,2,4-Trichlorobenzene              | 25.0  | 25.3   |           | ug/L |   | 101  | 70 - 122            |  |
| 1,2-Dibromo-3-Chloropropane         | 25.0  | 28.8   |           | ug/L |   | 115  | 56 <sub>-</sub> 134 |  |
| 1,2-Dichlorobenzene                 | 25.0  | 24.5   |           | ug/L |   | 98   | 80 - 124            |  |
| 1,2-Dichloroethane                  | 25.0  | 26.4   |           | ug/L |   | 106  | 75 - 127            |  |
| 1,2-Dichloropropane                 | 25.0  | 24.2   |           | ug/L |   | 97   | 76 - 120            |  |
| 1,3-Dichlorobenzene                 | 25.0  | 24.1   |           | ug/L |   | 97   | 77 - 120            |  |
| 1,4-Dichlorobenzene                 | 25.0  | 23.8   |           | ug/L |   | 95   | 75 - 120            |  |
| 2-Butanone (MEK)                    | 125   | 147    |           | ug/L |   | 118  | 57 <sub>-</sub> 140 |  |
| 2-Hexanone                          | 125   | 134    |           | ug/L |   | 107  | 65 <sub>-</sub> 127 |  |
| 4-Methyl-2-pentanone (MIBK)         | 125   | 133    |           | ug/L |   | 106  | 71 - 125            |  |
| Acetone                             | 125   | 165    |           | ug/L |   | 132  | 56 - 142            |  |
| Benzene                             | 25.0  | 24.6   |           | ug/L |   | 98   | 71 <sub>-</sub> 124 |  |
| Bromodichloromethane                | 25.0  | 26.8   |           | ug/L |   | 107  | 80 - 122            |  |

# Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

#### Lab Sample ID: LCS 480-300656/5 Matrix: Water

## Client Sample ID: Lab Control Sample Prep Type: Total/NA

| Analysis Batch: 300656    |       |        |           |      |        |                     | <b>F</b> |
|---------------------------|-------|--------|-----------|------|--------|---------------------|----------|
| -                         | Spike | LCS    | LCS       |      |        | %Rec.               | 5        |
| Analyte                   | Added | Result | Qualifier | Unit | D %Rec | Limits              |          |
| Bromoform                 | 25.0  | 29.0   |           | ug/L |        | 52 - 132            | — —      |
| Bromomethane              | 25.0  | 35.2   |           | ug/L | 141    | 55 <sub>-</sub> 144 |          |
| Carbon disulfide          | 25.0  | 25.6   |           | ug/L | 102    | 59 <sub>-</sub> 134 |          |
| Carbon tetrachloride      | 25.0  | 30.0   |           | ug/L | 120    | 72 - 134            |          |
| Chlorobenzene             | 25.0  | 24.1   |           | ug/L | 97     | 72 - 120            | 8        |
| Dibromochloromethane      | 25.0  | 27.2   |           | ug/L | 109    | 75 - 125            |          |
| Chloroethane              | 25.0  | 25.9   |           | ug/L | 104    | 69 <sub>-</sub> 136 | 9        |
| Chloroform                | 25.0  | 26.0   |           | ug/L | 104    | 73 - 127            |          |
| Chloromethane             | 25.0  | 24.4   |           | ug/L | 97     | 68 - 124            |          |
| cis-1,2-Dichloroethene    | 25.0  | 25.0   |           | ug/L | 100    | 74 - 124            |          |
| cis-1,3-Dichloropropene   | 25.0  | 24.7   |           | ug/L | 99     | 74 <sub>-</sub> 124 |          |
| Cyclohexane               | 25.0  | 27.3   |           | ug/L | 109    | 59 <sub>-</sub> 135 |          |
| Dichlorodifluoromethane   | 25.0  | 30.9   |           | ug/L | 124    | 59 <sub>-</sub> 135 |          |
| Ethylbenzene              | 25.0  | 24.8   |           | ug/L | 99     | 77 - 123            |          |
| 1,2-Dibromoethane         | 25.0  | 25.4   |           | ug/L | 102    | 77 _ 120            | 1.0      |
| Isopropylbenzene          | 25.0  | 25.0   |           | ug/L | 100    | 77 - 122            | 13       |
| Methyl acetate            | 125   | 139    |           | ug/L | 112    | 74 - 133            |          |
| Methyl tert-butyl ether   | 25.0  | 26.0   |           | ug/L | 104    | 64 - 127            |          |
| Methylcyclohexane         | 25.0  | 27.1   |           | ug/L | 108    | 61 - 138            |          |
| Methylene Chloride        | 25.0  | 24.2   |           | ug/L | 97     | 57 - 132            |          |
| Styrene                   | 25.0  | 24.1   |           | ug/L | 96     | 70 - 130            |          |
| Tetrachloroethene         | 25.0  | 26.0   |           | ug/L | 104    | 74 - 122            |          |
| Toluene                   | 25.0  | 24.2   |           | ug/L | 97     | 80 - 122            |          |
| trans-1,2-Dichloroethene  | 25.0  | 25.5   |           | ug/L | 102    | 73 - 127            |          |
| trans-1,3-Dichloropropene | 25.0  | 25.2   |           | ug/L | 101    | 72 - 123            |          |
| Trichloroethene           | 25.0  | 26.3   |           | ug/L | 105    | 74 - 123            |          |
| Trichlorofluoromethane    | 25.0  | 30.0   |           | ug/L | 120    | 62 - 152            |          |
| Vinyl chloride            | 25.0  | 25.3   |           | ug/L | 101    | 65 <sub>-</sub> 133 |          |

|                              | LCS       | LCS       |          |
|------------------------------|-----------|-----------|----------|
| Surrogate                    | %Recovery | Qualifier | Limits   |
| Toluene-d8 (Surr)            | 102       |           | 71 - 126 |
| 1,2-Dichloroethane-d4 (Surr) | 113       |           | 66 - 137 |
| 4-Bromofluorobenzene (Surr)  | 103       |           | 73 - 120 |
| Dibromofluoromethane (Surr)  | 111       |           | 60 - 140 |

## Lab Sample ID: MB 480-300810/7 Matrix: Water Analysis Batch: 300810

## Client Sample ID: Method Blank Prep Type: Total/NA

| •                                     | MB     | МВ        |     |      |      |   |          |                |         |
|---------------------------------------|--------|-----------|-----|------|------|---|----------|----------------|---------|
| Analyte                               | Result | Qualifier | RL  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| 1,1,1-Trichloroethane                 | ND     |           | 1.0 | 0.82 | ug/L |   |          | 05/09/16 23:42 | 1       |
| 1,1,2,2-Tetrachloroethane             | ND     |           | 1.0 | 0.21 | ug/L |   |          | 05/09/16 23:42 | 1       |
| 1,1,2-Trichloroethane                 | ND     |           | 1.0 | 0.23 | ug/L |   |          | 05/09/16 23:42 | 1       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND     |           | 1.0 | 0.31 | ug/L |   |          | 05/09/16 23:42 | 1       |
| 1,1-Dichloroethane                    | ND     |           | 1.0 | 0.38 | ug/L |   |          | 05/09/16 23:42 | 1       |
| 1,1-Dichloroethene                    | ND     |           | 1.0 | 0.29 | ug/L |   |          | 05/09/16 23:42 | 1       |
| 1,2,4-Trichlorobenzene                | ND     |           | 1.0 | 0.41 | ug/L |   |          | 05/09/16 23:42 | 1       |
| 1,2-Dibromo-3-Chloropropane           | ND     |           | 1.0 | 0.39 | ug/L |   |          | 05/09/16 23:42 | 1       |

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

....

Lab Sample ID: MB 480-300810/7

**Matrix: Water** 

Analysis Batch: 300810

**Client Sample ID: Method Blank** 

Prep Type: Total/NA

# 2 3 4 5

# 5 6 7 8 9 10 11

12 13

|                                | MB                | MB              |          |      |      |   |          |                |         |
|--------------------------------|-------------------|-----------------|----------|------|------|---|----------|----------------|---------|
| Analyte                        | Result            | Qualifier       | RL       | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichlorobenzene            | ND                |                 | 1.0      | 0.79 | ug/L |   |          | 05/09/16 23:42 | 1       |
| 1,2-Dichloroethane             | ND                |                 | 1.0      | 0.21 | ug/L |   |          | 05/09/16 23:42 | 1       |
| 1,2-Dichloropropane            | ND                |                 | 1.0      | 0.72 | ug/L |   |          | 05/09/16 23:42 | 1       |
| 1,3-Dichlorobenzene            | ND                |                 | 1.0      | 0.78 | ug/L |   |          | 05/09/16 23:42 | 1       |
| 1,4-Dichlorobenzene            | ND                |                 | 1.0      | 0.84 | ug/L |   |          | 05/09/16 23:42 | 1       |
| 2-Butanone (MEK)               | ND                |                 | 10       | 1.3  | ug/L |   |          | 05/09/16 23:42 | 1       |
| 2-Hexanone                     | ND                |                 | 5.0      | 1.2  | ug/L |   |          | 05/09/16 23:42 | 1       |
| 4-Methyl-2-pentanone (MIBK)    | ND                |                 | 5.0      | 2.1  | ug/L |   |          | 05/09/16 23:42 | 1       |
| Acetone                        | ND                |                 | 10       | 3.0  | ug/L |   |          | 05/09/16 23:42 | 1       |
| Benzene                        | ND                |                 | 1.0      | 0.41 | ug/L |   |          | 05/09/16 23:42 | 1       |
| Bromodichloromethane           | ND                |                 | 1.0      | 0.39 | ug/L |   |          | 05/09/16 23:42 | 1       |
| Bromoform                      | ND                |                 | 1.0      | 0.26 | ug/L |   |          | 05/09/16 23:42 | 1       |
| Bromomethane                   | ND                |                 | 1.0      | 0.69 | ug/L |   |          | 05/09/16 23:42 | 1       |
| Carbon disulfide               | ND                |                 | 1.0      | 0.19 | ug/L |   |          | 05/09/16 23:42 | 1       |
| Carbon tetrachloride           | ND                |                 | 1.0      | 0.27 | ug/L |   |          | 05/09/16 23:42 | 1       |
| Chlorobenzene                  | ND                |                 | 1.0      | 0.75 | ug/L |   |          | 05/09/16 23:42 | 1       |
| Dibromochloromethane           | ND                |                 | 1.0      | 0.32 | ug/L |   |          | 05/09/16 23:42 | 1       |
| Chloroethane                   | ND                |                 | 1.0      | 0.32 | ug/L |   |          | 05/09/16 23:42 | 1       |
| Chloroform                     | ND                |                 | 1.0      | 0.34 | ug/L |   |          | 05/09/16 23:42 | 1       |
| Chloromethane                  | ND                |                 | 1.0      | 0.35 | ug/L |   |          | 05/09/16 23:42 | 1       |
| cis-1,2-Dichloroethene         | ND                |                 | 1.0      | 0.81 | ug/L |   |          | 05/09/16 23:42 | 1       |
| cis-1,3-Dichloropropene        | ND                |                 | 1.0      | 0.36 | ug/L |   |          | 05/09/16 23:42 | 1       |
| Cyclohexane                    | ND                |                 | 1.0      | 0.18 | ug/L |   |          | 05/09/16 23:42 | 1       |
| Dichlorodifluoromethane        | ND                |                 | 1.0      | 0.68 | ug/L |   |          | 05/09/16 23:42 | 1       |
| Ethylbenzene                   | ND                |                 | 1.0      | 0.74 | ug/L |   |          | 05/09/16 23:42 | 1       |
| 1,2-Dibromoethane              | ND                |                 | 1.0      | 0.73 | ug/L |   |          | 05/09/16 23:42 | 1       |
| Isopropylbenzene               | ND                |                 | 1.0      | 0.79 | ug/L |   |          | 05/09/16 23:42 | 1       |
| Methyl acetate                 | ND                |                 | 2.5      | 1.3  | ug/L |   |          | 05/09/16 23:42 | 1       |
| Methyl tert-butyl ether        | ND                |                 | 1.0      | 0.16 | ug/L |   |          | 05/09/16 23:42 | 1       |
| Methylcyclohexane              | ND                |                 | 1.0      | 0.16 | ug/L |   |          | 05/09/16 23:42 | 1       |
| Methylene Chloride             | ND                |                 | 1.0      | 0.44 | ug/L |   |          | 05/09/16 23:42 | 1       |
| Styrene                        | ND                |                 | 1.0      | 0.73 | ug/L |   |          | 05/09/16 23:42 | 1       |
| Tetrachloroethene              | ND                |                 | 1.0      | 0.36 | ug/L |   |          | 05/09/16 23:42 | 1       |
| Toluene                        | ND                |                 | 1.0      | 0.51 | ug/L |   |          | 05/09/16 23:42 | 1       |
| trans-1,2-Dichloroethene       | ND                |                 | 1.0      | 0.90 | ug/L |   |          | 05/09/16 23:42 | 1       |
| trans-1,3-Dichloropropene      | ND                |                 | 1.0      | 0.37 | ug/L |   |          | 05/09/16 23:42 | 1       |
| Trichloroethene                | ND                |                 | 1.0      | 0.46 | ug/L |   |          | 05/09/16 23:42 | 1       |
| Trichlorofluoromethane         | ND                |                 | 1.0      | 0.88 | ug/L |   |          | 05/09/16 23:42 | 1       |
| Vinyl chloride                 | ND                |                 | 1.0      | 0.90 | ug/L |   |          | 05/09/16 23:42 | 1       |
| Xylenes, Total                 | ND                |                 | 2.0      | 0.66 | ug/L |   |          | 05/09/16 23:42 | 1       |
|                                |                   |                 |          |      | -    |   |          |                |         |
| Surragata                      | MB<br>% Bassivier | MB<br>Qualifiar | l imit-  |      |      |   | Dronovod | Anolized       |         |
|                                |                   | Quaimer         |          |      |      | - | Prepared | Analyzea       |         |
| 1 2 Diablaraathara d. (Surr)   | 100               |                 | 11-120   |      |      |   |          | 05/09/10 23:42 | 1       |
| 1,2-Dicilioroecharle-04 (Sull) | 111               |                 | 72 100   |      |      |   |          | 05/09/10 23.42 | 1       |
| 4-bromotiuorobenzene (Surr)    | 101               |                 | 73 - 120 |      |      |   |          | 05/09/16 23:42 | 1       |
| Dipromotiuoromethane (Surr)    | 110               |                 | 60 - 140 |      |      |   |          | 05/09/16 23:42 | 1       |

5

8

**Client Sample ID: Lab Control Sample** 

# Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

## Lab Sample ID: LCS 480-300810/5 Matrix: Water

| Matrix: Water                             |       |              |           |              |   |      | Prep Type: Total/NA |
|-------------------------------------------|-------|--------------|-----------|--------------|---|------|---------------------|
| Analysis Batch: 300810                    |       |              |           |              |   |      |                     |
| -                                         | Spike | LCS          | LCS       |              |   |      | %Rec.               |
| Analyte                                   | Added | Result       | Qualifier | Unit         | D | %Rec | Limits              |
| 1,1,1-Trichloroethane                     | 25.0  | 26.3         |           | ug/L         |   | 105  | 73 - 126            |
| 1,1,2,2-Tetrachloroethane                 | 25.0  | 26.5         |           | ug/L         |   | 106  | 70 - 126            |
| 1,1,2-Trichloroethane                     | 25.0  | 24.9         |           | ug/L         |   | 100  | 76 - 122            |
| 1,1,2-Trichloro-1,2,2-trifluoroetha<br>ne | 25.0  | 27.5         |           | ug/L         |   | 110  | 52 - 148            |
| 1,1-Dichloroethane                        | 25.0  | 23.5         |           | ug/L         |   | 94   | 71 - 129            |
| 1,1-Dichloroethene                        | 25.0  | 24.3         |           | ug/L         |   | 97   | 58 - 121            |
| 1,2,4-Trichlorobenzene                    | 25.0  | 25.2         |           | ug/L         |   | 101  | 70 - 122            |
| 1,2-Dibromo-3-Chloropropane               | 25.0  | 28.1         |           | ug/L         |   | 112  | 56 - 134            |
| 1,2-Dichlorobenzene                       | 25.0  | 24.6         |           | ug/L         |   | 98   | 80 - 124            |
| 1,2-Dichloroethane                        | 25.0  | 25.0         |           | ug/L         |   | 100  | 75 <sub>-</sub> 127 |
| 1,2-Dichloropropane                       | 25.0  | 23.3         |           | ug/L         |   | 93   | 76 - 120            |
| 1,3-Dichlorobenzene                       | 25.0  | 24.0         |           | ug/L         |   | 96   | 77 - 120            |
| 1,4-Dichlorobenzene                       | 25.0  | 23.8         |           | ug/L         |   | 95   | 75 - 120            |
| 2-Butanone (MEK)                          | 125   | 154          |           | ug/L         |   | 123  | 57 - 140            |
| 2-Hexanone                                | 125   | 137          |           | ug/L         |   | 110  | 65 - 127            |
| 4-Methyl-2-pentanone (MIBK)               | 125   | 132          |           | ug/L         |   | 106  | 71 - 125            |
| Acetone                                   | 125   | 202          | *         | ug/L         |   | 161  | 56 - 142            |
| Benzene                                   | 25.0  | 23.1         |           | ug/L         |   | 93   | 71 - 124            |
| Bromodichloromethane                      | 25.0  | 25.7         |           | ug/L         |   | 103  | 80 - 122            |
| Bromoform                                 | 25.0  | 27.9         |           | ug/L         |   | 112  | 52 - 132            |
| Bromomethane                              | 25.0  | 30.8         |           | ug/L         |   | 123  | 55 - 144            |
| Carbon disulfide                          | 25.0  | 23.1         |           | ug/L         |   | 92   | 59 <sub>-</sub> 134 |
| Carbon tetrachloride                      | 25.0  | 26.7         |           | ug/L         |   | 107  | 72 - 134            |
| Chlorobenzene                             | 25.0  | 23.4         |           | ug/L         |   | 94   | 72 - 120            |
| Dibromochloromethane                      | 25.0  | 26.4         |           | ug/L         |   | 105  | 75 - 125            |
| Chloroethane                              | 25.0  | 24.7         |           | ug/L         |   | 99   | 69 - 136            |
| Chloroform                                | 25.0  | 24.9         |           | ug/L         |   | 99   | 73 - 127            |
| Chloromethane                             | 25.0  | 23.8         |           | ug/L         |   | 95   | 68 - 124            |
| cis-1,2-Dichloroethene                    | 25.0  | 24.3         |           | ug/L         |   | 97   | 74 - 124            |
| cis-1,3-Dichloropropene                   | 25.0  | 24.0         |           | ug/L         |   | 96   | 74 - 124            |
| Cyclohexane                               | 25.0  | 24.5         |           | ug/L         |   | 98   | 59 - 135            |
| Dichlorodifluoromethane                   | 25.0  | 29.6         |           | ug/L         |   | 118  | 59 - 135            |
| Ethylbenzene                              | 25.0  | 24.1         |           | ug/L         |   | 96   | 77 - 123            |
| 1.2-Dibromoethane                         | 25.0  | 24.9         |           | ug/L         |   | 100  | 77 - 120            |
| Isopropylbenzene                          | 25.0  | 25.0         |           | ug/L         |   | 100  | 77 - 122            |
| Methyl acetate                            | 125   | 136          |           | ua/L         |   | 109  | 74 - 133            |
| Methyl tert-butyl ether                   | 25.0  | 24.8         |           | ug/L         |   | 99   | 64 - 127            |
| Methylcvclohexane                         | 25.0  | 24.9         |           | ug/L         |   | 100  | 61 - 138            |
| Methylene Chloride                        | 25.0  | 24.1         |           | ua/L         |   | 96   | 57 - 132            |
| Styrene                                   | 25.0  | 23.3         |           | ua/L         |   | 93   | 70 - 130            |
| Tetrachloroethene                         | 25.0  | 24.4         |           | ua/l         |   | 98   | 74 - 122            |
| Toluene                                   | 25.0  | 23.4         |           | ua/l         |   | 94   | 80 - 122            |
| trans-1 2-Dichloroethene                  | 25.0  | 23.7         |           | ua/l         |   | 95   | 73 - 127            |
| trans-1 3-Dichloropropene                 | 25.0  | 20.7<br>24 R |           | ~g,⊏<br>ua/l |   | 90   | 72 - 123            |
| Trichloroethene                           | 25.0  | 24.6         |           | ua/l         |   | 98   | 74 - 123            |
| Trichlorofluoromethane                    | 25.0  | 26.7         |           | ua/l         |   | 107  | 62 - 152            |
| Vinvl chloride                            | 25.0  | 20.7         |           | ug/l         |   | 96   | 65 - 133            |
|                                           | 20.0  | 24.0         |           | ~9, <b>-</b> |   | 00   |                     |

# Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

#### Lab Sample ID: LCS 480-300810/5 **Client Sample ID: Lab Control Sample** Matrix: Water Prep Type: Total/NA Analysis Batch: 300810 LCS LCS Surrogate %Recovery Qualifier Limits Toluene-d8 (Surr) 71 - 126 101 1,2-Dichloroethane-d4 (Surr) 107 66 - 137 4-Bromofluorobenzene (Surr) 73 - 120 100 Dibromofluoromethane (Surr) 105 60 - 140

# **GC/MS VOA**

## Analysis Batch: 300570

| Lab Sample ID                          | Client Sample ID   | Prep Type            | Matrix         | Method         | Prep Batch |
|----------------------------------------|--------------------|----------------------|----------------|----------------|------------|
| 480-99322-1                            | MW-2R-2-042816     | Total/NA             | Water          | 8260C          |            |
| 480-99322-2                            | MSMW-1-042816      | Total/NA             | Water          | 8260C          |            |
| 480-99322-3                            | MSMW-3-042816      | Total/NA             | Water          | 8260C          |            |
| 480-99322-4                            | MSMW-4-042816      | Total/NA             | Water          | 8260C          |            |
| LCS 480-300570/5                       | Lab Control Sample | Total/NA             | Water          | 8260C          |            |
| MB 480-300570/7                        | Method Blank       | Total/NA             | Water          | 8260C          |            |
| Analysis Batch: 30                     | 0656               |                      |                |                |            |
| Lab Sample ID                          | Client Sample ID   | Prep Type            | Matrix         | Method         | Prep Batch |
| 480-99322-3 - DL                       | MSMW-3-042816      | Total/NA             | Water          | 8260C          |            |
| 480-99322-4 - DL                       | MSMW-4-042816      | Total/NA             | Water          | 8260C          |            |
| 480-99322-5                            | MSMW-2-042816      | Total/NA             | Water          | 8260C          |            |
| LCS 480-300656/5                       | Lab Control Sample | Total/NA             | Water          | 8260C          |            |
| MB 480-300656/7                        | Method Blank       | Total/NA             | Water          | 8260C          |            |
| MB 480-300656/7<br>Analysis Batch: 300 | Method Blank       | Total/NA<br>Total/NA | water<br>Water | 8260C<br>8260C |            |

| Lab Sample ID    | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|------------------|--------------------|-----------|--------|--------|------------|
| 480-99322-5 - DL | MSMW-2-042816      | Total/NA  | Water  | 8260C  |            |
| LCS 480-300810/5 | Lab Control Sample | Total/NA  | Water  | 8260C  |            |
| MB 480-300810/7  | Method Blank       | Total/NA  | Water  | 8260C  |            |

Date Collected: 04/28/16 09:30

Date Received: 04/29/16 11:50

Prep Type

Total/NA

# Lab Sample ID: 480-99322-1 Matrix: Water Lab Sample ID: 480-99322-2

## Client Sample ID: MSMW-1-042816 Date Collected: 04/28/16 10:30 Date Received: 04/29/16 11:50

Client Sample ID: MW-2R-2-042816

Batch

Туре

Analysis

Batch Method

8260C

| ſ | _         | Batch    | Batch  |     | Dilution | Batch  | Prepared       |         |         |
|---|-----------|----------|--------|-----|----------|--------|----------------|---------|---------|
| l | Prep Type | Туре     | Method | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
|   | Total/NA  | Analysis | 8260C  |     | 1        | 300570 | 05/08/16 15:13 | CDC     | TAL BUF |

Lab Chronicle

Dilution

Factor

Run

Batch

Number

Prepared

or Analyzed

300570 05/08/16 14:46 CDC

Analyst

Lab TAL BUF

## Client Sample ID: MSMW-3-042816 Date Collected: 04/28/16 11:00 Date Received: 04/29/16 11:50

| _         | Batch    | Batch  |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|--------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8260C  |     | 1        | 300570 | 05/08/16 15:40 | CDC     | TAL BUF |
| Total/NA  | Analysis | 8260C  | DL  | 10       | 300656 | 05/09/16 15:47 | JWG     | TAL BUF |

## Client Sample ID: MSMW-4-042816 Date Collected: 04/28/16 11:30 Date Received: 04/29/16 11:50

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260C 1 300570 05/08/16 16:07 CDC TAL BUF Total/NA 8260C DL 10 300656 05/09/16 16:14 JWG TAL BUF Analysis

| Client Sample ID: MSMW-2-042816 | Lab Sample ID: 480-99322-5 |
|---------------------------------|----------------------------|
| Date Collected: 04/28/16 12:00  | Matrix: Water              |
| Date Received: 04/29/16 11:50   |                            |
| <br>_                           |                            |

|           | Batch    | Batch  |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|--------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8260C  |     | 80       | 300656 | 05/09/16 16:40 | JWG     | TAL BUF |
| Total/NA  | Analysis | 8260C  | DL  | 200      | 300810 | 05/10/16 00:26 | CDC     | TAL BUF |

#### Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

# Lab Sample ID: 480-99322-3 Matrix: Water

# Lab Sample ID: 480-99322-4

Matrix: Water

# **Certification Summary**

# Laboratory: TestAmerica Buffalo

The certifications listed below are applicable to this report.

| Authority | Program | EPA Region | Certification ID | Expiration Date |
|-----------|---------|------------|------------------|-----------------|
| New York  | NELAP   | 2          | 10026            | 03-31-17        |

| 1  |
|----|
|    |
|    |
|    |
| 5  |
|    |
|    |
| 8  |
| 9  |
|    |
|    |
| 12 |
| 13 |

| Method | Method Description                  | Protocol | Laboratory |
|--------|-------------------------------------|----------|------------|
| 8260C  | Volatile Organic Compounds by GC/MS | SW846    | TAL BUF    |

#### **Protocol References:**

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

# Sample Summary

Client: C&S Engineers, Inc. Project/Site: Water & Soil Analysis

| Lab Sample ID | Client Sample ID | Matrix | Collected      | Received       |
|---------------|------------------|--------|----------------|----------------|
| 480-99322-1   | MW-2R-2-042816   | Water  | 04/28/16 09:30 | 04/29/16 11:50 |
| 480-99322-2   | MSMW-1-042816    | Water  | 04/28/16 10:30 | 04/29/16 11:50 |
| 480-99322-3   | MSMW-3-042816    | Water  | 04/28/16 11:00 | 04/29/16 11:50 |
| 480-99322-4   | MSMW-4-042816    | Water  | 04/28/16 11:30 | 04/29/16 11:50 |
| 480-99322-5   | MSMW-2-042816    | Water  | 04/28/16 12:00 | 04/29/16 11:50 |

|                        |                                  | Chain of Custody Number<br>297370 | Page / of /                           |                                                   | Snorial Inctn withond             | Conditions of Receipt                            |                                                                                             |                        |                      |                                       |                     |                | ustody               |  | ssessed if samples are retained | onth)                                                                            | Date Time                                   | Clarke 1100            | 04/129/16/150                |          |          |                                                                           |
|------------------------|----------------------------------|-----------------------------------|---------------------------------------|---------------------------------------------------|-----------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------|----------------------|---------------------------------------|---------------------|----------------|----------------------|--|---------------------------------|----------------------------------------------------------------------------------|---------------------------------------------|------------------------|------------------------------|----------|----------|---------------------------------------------------------------------------|
| tAmerica               | IER IN ENVIRONMENTAL TESTING     | 24/29/16                          | Latt.Number                           | Analysis (Attach list if<br>more space is needed) |                                   |                                                  |                                                                                             |                        |                      |                                       |                     |                | 480-99322 Chain of C |  |                                 | ive For Months longer than 1 m                                                   |                                             |                        | Kow TA                       |          | P Hit #1 |                                                                           |
| Temperature on Receipt | Drinking Water? Yes Not THE LEAD | Project Margager & Martin         | Telephone Number Area Code/Fax Number | Site Contact Lab Contact                          | Carrier/Waybill Number            | Matrix Containers &                              | HOBN<br>/>YAUZ<br>HOBN<br>IDH<br>EONH<br>EONH<br>SBJDU<br>IIOS<br>IPPS<br>Smoenby<br>IIV    | XXXX                   | X X A                | S S S S S S S S S S S S S S S S S S S | 30 X   X   X   X    | zia X X X      |                      |  | Sample Disposal                 | Unknown U Heturn To Client 🗙 Disposal By Lab 🛛 Arch<br>OC Requirements (Specify) | Differ 1 Time 1 Berraired Bu                | 4/29/10 11:00 20 20 10 | 1946 1150 3. Received By WIN |          | Tem      | the Sample; PINK - Field Copy                                             |
| Chain of               | Custody Hecord                   | Cleri CFS Engineers, Inc          | 14 Elm Stret                          | Oth Rite Za 2000                                  | Project Name and Location (State) | Contract Purchase Order/Quote No.<br>K11.005.001 | Sample I.D. No. and Description<br>(Containers for each sample may be combined on one line) | MW-2R-2-042816 4/28/69 | MSMW-1-04-2816 1, 10 | MSMW-3-042816                         | MSMW-4-0428110   11 | MSMW-2-542-816 |                      |  | Possible Hazard Identification  | Turn Around Time Required                                                        | 24 Hours 48 Hours 7 Days, X 14 Pays 21 Days | Cost AMAN              | c. reimquismed by            | Cumments | comments | DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with |

5/11/2016

14

## Client: C&S Engineers, Inc.

## Login Number: 99322 List Number: 1 Creator: Kolb, Chris M

| Question                                                                         | Answer | Comment |
|----------------------------------------------------------------------------------|--------|---------|
| Radioactivity either was not measured or, if measured, is at or below background | True   |         |
| The cooler's custody seal, if present, is intact.                                | True   |         |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |         |
| Samples were received on ice.                                                    | True   |         |
| Cooler Temperature is acceptable.                                                | True   |         |
| Cooler Temperature is recorded.                                                  | True   |         |
| COC is present.                                                                  | True   |         |
| COC is filled out in ink and legible.                                            | True   |         |
| COC is filled out with all pertinent information.                                | True   |         |
| Is the Field Sampler's name present on COC?                                      | True   |         |
| There are no discrepancies between the sample IDs on the containers and the COC. | True   |         |
| Samples are received within Holding Time (Excluding tests with immediate HTs)    | True   |         |
| Sample containers have legible labels.                                           | True   |         |
| Containers are not broken or leaking.                                            | True   |         |
| Sample collection date/times are provided.                                       | True   |         |
| Appropriate sample containers are used.                                          | True   |         |
| Sample bottles are completely filled.                                            | True   |         |
| Sample Preservation Verified                                                     | True   |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |         |
| VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.     | True   |         |
| If necessary, staff have been informed of any short hold time or quick TAT needs | True   |         |
| Multiphasic samples are not present.                                             | True   |         |
| Samples do not require splitting or compositing.                                 | True   |         |
| Sampling Company provided.                                                       | True   | C&S ENG |
| Samples received within 48 hours of sampling.                                    | True   |         |
| Samples requiring field filtration have been filtered in the field.              | True   |         |
| Chlorine Residual checked.                                                       | N/A    |         |

## Job Number: 480-99322-1

List Source: TestAmerica Buffalo



THE LEADER IN ENVIRONMENTAL TESTING

# **ANALYTICAL REPORT**

# TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

# TestAmerica Job ID: 480-86050-1 Client Project/Site: Well Sampling - MOB

For: C&S Engineers, Inc. 499 Col. Eileen Collins Blvd Syracuse, New York 13212

Attn: Mr. Mark Colmerauer

Hete & Johnson

Authorized for release by: 8/25/2015 1:16:32 PM Orlette Johnson, Senior Project Manager (484)685-0864 orlette.johnson@testamericainc.com

Designee for

Judy Stone, Senior Project Manager (484)685-0868 judy.stone@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS Review your project results through TOTOLACCESS Have a Question? Ask The Expert

Visit us at: www.testamericainc.com

# **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 2  |
| Definitions/Glossary   | 3  |
| Case Narrative         | 4  |
| Detection Summary      | 5  |
| Client Sample Results  | 6  |
| Surrogate Summary      | 12 |
| QC Sample Results      | 13 |
| QC Association Summary | 15 |
| Lab Chronicle          | 16 |
| Certification Summary  | 17 |
| Method Summary         | 18 |
| Sample Summary         | 19 |
| Chain of Custody       | 20 |
| Receipt Checklists     | 21 |
|                        |    |

3

5

# Qualifiers

## **GC/MS VOA**

| Qualifier | Qualifier Description                                                                                          |
|-----------|----------------------------------------------------------------------------------------------------------------|
| J         | Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. |
| В         | Compound was found in the blank and sample.                                                                    |
| ^         | ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC is outside acceptance limits. |

# Glossary

| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 |  |
|----------------|-------------------------------------------------------------------------------------------------------------|--|
| ¤              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |  |
| %R             | Percent Recovery                                                                                            |  |
| CFL            | Contains Free Liquid                                                                                        |  |
| CNF            | Contains no Free Liquid                                                                                     |  |
| DER            | Duplicate error ratio (normalized absolute difference)                                                      |  |
| Dil Fac        | Dilution Factor                                                                                             |  |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |  |
| DLC            | Decision level concentration                                                                                |  |
| MDA            | Minimum detectable activity                                                                                 |  |
| EDL            | Estimated Detection Limit                                                                                   |  |
| MDC            | Minimum detectable concentration                                                                            |  |
| MDL            | Method Detection Limit                                                                                      |  |
| ML             | Minimum Level (Dioxin)                                                                                      |  |
| NC             | Not Calculated                                                                                              |  |
| ND             | Not detected at the reporting limit (or MDL or EDL if shown)                                                |  |
| PQL            | Practical Quantitation Limit                                                                                |  |
| QC             | Quality Control                                                                                             |  |
| RER            | Relative error ratio                                                                                        |  |
| RL             | Reporting Limit or Requested Limit (Radiochemistry)                                                         |  |
| RPD            | Relative Percent Difference, a measure of the relative difference between two points                        |  |
| TEF            | Toxicity Equivalent Factor (Dioxin)                                                                         |  |
| TEQ            | Toxicity Equivalent Quotient (Dioxin)                                                                       |  |

## Job ID: 480-86050-1

## Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-86050-1

#### Receipt

The samples were received on 8/21/2015 3:41 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.3° C.

#### GC/MS VOA

Method(s) 8260C: The following sample(s) were collected in properly preserved vials for analysis of volatile organic compounds (VOCs). However, the pH was outside the required criteria when verified by the laboratory, and corrective action was not possible: MSMW-2 082115 (480-86050-2).

Method(s) 8260C: The method blank for analytical batch 480-259932 contained Methylene Chloride above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-analysis of samples was not performed.

Method(s) 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: MSMW-2 082115 (480-86050-2) and MSMW-4-082115 (480-86050-3). Elevated reporting limits (RLs) are provided.

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-259932 recovered above the upper control limit for 2-Butanone (MEK), 2-Hexanone, and 4-Methyl-2-pentanone (MIBK). The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: MSMW-1 082115 (480-86050-1) and MSMW-2 082115 (480-86050-2).

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-259932 recovered above the upper control limit for 2-Butanone (MEK) and 2-Hexanone. The sample associated with this CCV was non-detect for the affected analytes; therefore, the data have been reported. The following sample is impacted: MSMW-4-082115 (480-86050-3).

Method(s) 8260C: The continuing calibration verification (CCV) analyzed in batch 480-259932 was outside the method criteria for the following analyte: 4-Methyl-2-pentanone (MIBK). As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte is considered estimated.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

# Client Sample ID: MSMW-1 082115

No Detections.

# Client Sample ID: MSMW-2 082115

| Client Sample ID: MSMW-2 082115 |        |           |     |     |      | Lab Sample ID: 480-86050-2 |        |           |   |
|---------------------------------|--------|-----------|-----|-----|------|----------------------------|--------|-----------|---|
| Analyte                         | Result | Qualifier | RL  | MDL | Unit | Dil Fac                    | Method | Prep Type |   |
| Benzene                         | 350    |           | 200 | 82  | ug/L | 200                        | 8260C  | Total/NA  |   |
| Cyclohexane                     | 450    |           | 200 | 36  | ug/L | 200                        | 8260C  | Total/NA  |   |
| Ethylbenzene                    | 1200   |           | 200 | 150 | ug/L | 200                        | 8260C  | Total/NA  |   |
| Methylcyclohexane               | 170    | J         | 200 | 32  | ug/L | 200                        | 8260C  | Total/NA  |   |
| Methylene Chloride              | 240    | В         | 200 | 88  | ug/L | 200                        | 8260C  | Total/NA  | 8 |
| Toluene                         | 1500   |           | 200 | 100 | ug/L | 200                        | 8260C  | Total/NA  |   |
| Xylenes, Total                  | 13000  |           | 400 | 130 | ug/L | 200                        | 8260C  | Total/NA  | 9 |

# Client Sample ID: MSMW-4-082115

# Lab Sample ID: 480-86050-3

| Analyte                     | Result | Qualifier | RL  | MDL  | Unit | Dil Fac D | Method | Prep Type |  |
|-----------------------------|--------|-----------|-----|------|------|-----------|--------|-----------|--|
| 4-Methyl-2-pentanone (MIBK) | 27     | <u>^</u>  | 25  | 11   | ug/L | 5         | 8260C  | Total/NA  |  |
| Acetone                     | 26     | J         | 50  | 15   | ug/L | 5         | 8260C  | Total/NA  |  |
| Benzene                     | 140    |           | 5.0 | 2.1  | ug/L | 5         | 8260C  | Total/NA  |  |
| Chloromethane               | 2.1    | J         | 5.0 | 1.8  | ug/L | 5         | 8260C  | Total/NA  |  |
| Cyclohexane                 | 100    |           | 5.0 | 0.90 | ug/L | 5         | 8260C  | Total/NA  |  |
| Ethylbenzene                | 140    |           | 5.0 | 3.7  | ug/L | 5         | 8260C  | Total/NA  |  |
| Isopropylbenzene            | 5.9    |           | 5.0 | 4.0  | ug/L | 5         | 8260C  | Total/NA  |  |
| Methylcyclohexane           | 43     |           | 5.0 | 0.80 | ug/L | 5         | 8260C  | Total/NA  |  |
| Methylene Chloride          | 23     | В         | 5.0 | 2.2  | ug/L | 5         | 8260C  | Total/NA  |  |
| Toluene                     | 5.8    |           | 5.0 | 2.6  | ug/L | 5         | 8260C  | Total/NA  |  |
| Xylenes, Total              | 64     |           | 10  | 3.3  | ug/L | 5         | 8260C  | Total/NA  |  |

# Lab Sample ID: 480-86050-1

Lab Sample ID: 480-86050-2

## Client Sample ID: MSMW-1 082115 Date Collected: 08/21/15 10:45 Date Received: 08/21/15 15:41

| TestAmerica Job ID: 480-86050- | 1 |
|--------------------------------|---|
|                                | • |

# Lab Sample ID: 480-86050-1 Matrix: Water

| Method: 8260C - Volatile Organic      | : Compou | inds by GC/M | S   |      |      |   |          |                |         |
|---------------------------------------|----------|--------------|-----|------|------|---|----------|----------------|---------|
| Analyte                               | Result   | Qualifier    | RL  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| 1,1,1-Trichloroethane                 | ND       |              | 1.0 | 0.82 | ug/L |   |          | 08/22/15 03:55 | 1       |
| 1,1,2,2-Tetrachloroethane             | ND       |              | 1.0 | 0.21 | ug/L |   |          | 08/22/15 03:55 | 1       |
| 1,1,2-Trichloroethane                 | ND       |              | 1.0 | 0.23 | ug/L |   |          | 08/22/15 03:55 | 1       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND       |              | 1.0 | 0.31 | ug/L |   |          | 08/22/15 03:55 | 1       |
| 1,1-Dichloroethane                    | ND       |              | 1.0 | 0.38 | ug/L |   |          | 08/22/15 03:55 | 1       |
| 1,1-Dichloroethene                    | ND       |              | 1.0 | 0.29 | ug/L |   |          | 08/22/15 03:55 | 1       |
| 1,2,4-Trichlorobenzene                | ND       |              | 1.0 | 0.41 | ug/L |   |          | 08/22/15 03:55 | 1       |
| 1,2-Dibromo-3-Chloropropane           | ND       |              | 1.0 | 0.39 | ug/L |   |          | 08/22/15 03:55 | 1       |
| 1,2-Dibromoethane                     | ND       |              | 1.0 | 0.73 | ug/L |   |          | 08/22/15 03:55 | 1       |
| 1,2-Dichlorobenzene                   | ND       |              | 1.0 | 0.79 | ug/L |   |          | 08/22/15 03:55 | 1       |
| 1,2-Dichloroethane                    | ND       |              | 1.0 | 0.21 | ug/L |   |          | 08/22/15 03:55 | 1       |
| 1,2-Dichloropropane                   | ND       |              | 1.0 | 0.72 | ug/L |   |          | 08/22/15 03:55 | 1       |
| 1,3-Dichlorobenzene                   | ND       |              | 1.0 | 0.78 | ug/L |   |          | 08/22/15 03:55 | 1       |
| 1,4-Dichlorobenzene                   | ND       |              | 1.0 | 0.84 | ug/L |   |          | 08/22/15 03:55 | 1       |
| 2-Hexanone                            | ND       |              | 5.0 | 1.2  | ug/L |   |          | 08/22/15 03:55 | 1       |
| 2-Butanone (MEK)                      | ND       |              | 10  | 1.3  | ug/L |   |          | 08/22/15 03:55 | 1       |
| 4-Methyl-2-pentanone (MIBK)           | ND       |              | 5.0 | 2.1  | ug/L |   |          | 08/22/15 03:55 | 1       |
| Acetone                               | ND       |              | 10  | 3.0  | ug/L |   |          | 08/22/15 03:55 | 1       |
| Benzene                               | ND       |              | 1.0 | 0.41 | ug/L |   |          | 08/22/15 03:55 | 1       |
| Bromodichloromethane                  | ND       |              | 1.0 | 0.39 | ug/L |   |          | 08/22/15 03:55 | 1       |
| Bromoform                             | ND       |              | 1.0 | 0.26 | ug/L |   |          | 08/22/15 03:55 | 1       |
| Bromomethane                          | ND       |              | 1.0 | 0.69 | ug/L |   |          | 08/22/15 03:55 | 1       |
| Carbon disulfide                      | ND       |              | 1.0 | 0.19 | ug/L |   |          | 08/22/15 03:55 | 1       |
| Carbon tetrachloride                  | ND       |              | 1.0 | 0.27 | ug/L |   |          | 08/22/15 03:55 | 1       |
| Chlorobenzene                         | ND       |              | 1.0 | 0.75 | ug/L |   |          | 08/22/15 03:55 | 1       |
| Dibromochloromethane                  | ND       |              | 1.0 | 0.32 | ug/L |   |          | 08/22/15 03:55 | 1       |
| Chloroethane                          | ND       |              | 1.0 | 0.32 | ug/L |   |          | 08/22/15 03:55 | 1       |
| Chloroform                            | ND       |              | 1.0 | 0.34 | ug/L |   |          | 08/22/15 03:55 | 1       |
| Chloromethane                         | ND       |              | 1.0 | 0.35 | ug/L |   |          | 08/22/15 03:55 | 1       |
| cis-1,2-Dichloroethene                | ND       |              | 1.0 | 0.81 | ug/L |   |          | 08/22/15 03:55 | 1       |
| cis-1,3-Dichloropropene               | ND       |              | 1.0 | 0.36 | ug/L |   |          | 08/22/15 03:55 | 1       |
| Cyclohexane                           | ND       |              | 1.0 | 0.18 | ug/L |   |          | 08/22/15 03:55 | 1       |
| Dichlorodifluoromethane               | ND       |              | 1.0 | 0.68 | ug/L |   |          | 08/22/15 03:55 | 1       |
| Ethylbenzene                          | ND       |              | 1.0 | 0.74 | ug/L |   |          | 08/22/15 03:55 | 1       |
| Isopropylbenzene                      | ND       |              | 1.0 | 0.79 | ug/L |   |          | 08/22/15 03:55 | 1       |
| Methyl acetate                        | ND       |              | 2.5 | 1.3  | ug/L |   |          | 08/22/15 03:55 | 1       |
| Methyl tert-butyl ether               | ND       |              | 1.0 | 0.16 | ug/L |   |          | 08/22/15 03:55 | 1       |
| Methylcyclohexane                     | ND       |              | 1.0 | 0.16 | ug/L |   |          | 08/22/15 03:55 | 1       |
| Methylene Chloride                    | ND       |              | 1.0 | 0.44 | ug/L |   |          | 08/22/15 03:55 | 1       |
| Styrene                               | ND       |              | 1.0 | 0.73 | ug/L |   |          | 08/22/15 03:55 | 1       |
| Tetrachloroethene                     | ND       |              | 1.0 | 0.36 | ug/L |   |          | 08/22/15 03:55 | 1       |
| Toluene                               | ND       |              | 1.0 | 0.51 | ug/L |   |          | 08/22/15 03:55 | 1       |
| trans-1,2-Dichloroethene              | ND       |              | 1.0 | 0.90 | ug/L |   |          | 08/22/15 03:55 | 1       |
| trans-1,3-Dichloropropene             | ND       |              | 1.0 | 0.37 | ug/L |   |          | 08/22/15 03:55 | 1       |
| Trichloroethene                       | ND       |              | 1.0 | 0.46 | ug/L |   |          | 08/22/15 03:55 | 1       |
| Trichlorofluoromethane                | ND       |              | 1.0 | 0.88 | ug/L |   |          | 08/22/15 03:55 | 1       |
| Vinyl chloride                        | ND       |              | 1.0 | 0.90 | ug/L |   |          | 08/22/15 03:55 | 1       |
| Xylenes, Total                        | ND       |              | 2.0 | 0.66 | ug/L |   |          | 08/22/15 03:55 | 1       |

## Lab Sample ID: 480-86050-1 Matrix: Water

5

6

| Surrogate                    | %Recovery | Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|----------|----------------|---------|
| 1,2-Dichloroethane-d4 (Surr) | 97        |           | 66 - 137 |          | 08/22/15 03:55 | 1       |
| Toluene-d8 (Surr)            | 98        |           | 71 - 126 |          | 08/22/15 03:55 | 1       |
| 4-Bromofluorobenzene (Surr)  | 101       |           | 73 - 120 |          | 08/22/15 03:55 | 1       |
| Dibromofluoromethane (Surr)  | 94        |           | 60 - 140 |          | 08/22/15 03:55 | 1       |

## Client Sample ID: MSMW-2 082115 Date Collected: 08/21/15 13:00 Date Received: 08/21/15 15:41

| TestAmerica | Job ID: 4 | 480-86050-1 |
|-------------|-----------|-------------|

# 1 2 3 4 5 6 7 8 9 10

Lab Sample ID: 480-86050-2 Matrix: Water

| Method: 8260C - Volatile Orga         | nic Compo | unds by G | C/MS |     |      |   |          |                |         |
|---------------------------------------|-----------|-----------|------|-----|------|---|----------|----------------|---------|
| Analyte                               | Result    | Qualifier | RL   | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| 1,1,1-Trichloroethane                 | ND        |           | 200  | 160 | ug/L |   |          | 08/22/15 04:19 | 200     |
| 1,1,2,2-Tetrachloroethane             | ND        |           | 200  | 42  | ug/L |   |          | 08/22/15 04:19 | 200     |
| 1,1,2-Trichloroethane                 | ND        |           | 200  | 46  | ug/L |   |          | 08/22/15 04:19 | 200     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND        |           | 200  | 62  | ug/L |   |          | 08/22/15 04:19 | 200     |
| 1,1-Dichloroethane                    | ND        |           | 200  | 76  | ug/L |   |          | 08/22/15 04:19 | 200     |
| 1,1-Dichloroethene                    | ND        |           | 200  | 58  | ug/L |   |          | 08/22/15 04:19 | 200     |
| 1,2,4-Trichlorobenzene                | ND        |           | 200  | 82  | ug/L |   |          | 08/22/15 04:19 | 200     |
| 1,2-Dibromo-3-Chloropropane           | ND        |           | 200  | 78  | ug/L |   |          | 08/22/15 04:19 | 200     |
| 1,2-Dibromoethane                     | ND        |           | 200  | 150 | ug/L |   |          | 08/22/15 04:19 | 200     |
| 1,2-Dichlorobenzene                   | ND        |           | 200  | 160 | ug/L |   |          | 08/22/15 04:19 | 200     |
| 1,2-Dichloroethane                    | ND        |           | 200  | 42  | ug/L |   |          | 08/22/15 04:19 | 200     |
| 1,2-Dichloropropane                   | ND        |           | 200  | 140 | ug/L |   |          | 08/22/15 04:19 | 200     |
| 1,3-Dichlorobenzene                   | ND        |           | 200  | 160 | ug/L |   |          | 08/22/15 04:19 | 200     |
| 1,4-Dichlorobenzene                   | ND        |           | 200  | 170 | ug/L |   |          | 08/22/15 04:19 | 200     |
| 2-Hexanone                            | ND        |           | 1000 | 250 | ug/L |   |          | 08/22/15 04:19 | 200     |
| 2-Butanone (MEK)                      | ND        |           | 2000 | 260 | ug/L |   |          | 08/22/15 04:19 | 200     |
| 4-Methyl-2-pentanone (MIBK)           | ND        |           | 1000 | 420 | ug/L |   |          | 08/22/15 04:19 | 200     |
| Acetone                               | ND        |           | 2000 | 600 | ug/L |   |          | 08/22/15 04:19 | 200     |
| Benzene                               | 350       |           | 200  | 82  | ug/L |   |          | 08/22/15 04:19 | 200     |
| Bromodichloromethane                  | ND        |           | 200  | 78  | ug/L |   |          | 08/22/15 04:19 | 200     |
| Bromoform                             | ND        |           | 200  | 52  | ug/L |   |          | 08/22/15 04:19 | 200     |
| Bromomethane                          | ND        |           | 200  | 140 | ug/L |   |          | 08/22/15 04:19 | 200     |
| Carbon disulfide                      | ND        |           | 200  | 38  | ug/L |   |          | 08/22/15 04:19 | 200     |
| Carbon tetrachloride                  | ND        |           | 200  | 54  | ug/L |   |          | 08/22/15 04:19 | 200     |
| Chlorobenzene                         | ND        |           | 200  | 150 | ug/L |   |          | 08/22/15 04:19 | 200     |
| Dibromochloromethane                  | ND        |           | 200  | 64  | ug/L |   |          | 08/22/15 04:19 | 200     |
| Chloroethane                          | ND        |           | 200  | 64  | ug/L |   |          | 08/22/15 04:19 | 200     |
| Chloroform                            | ND        |           | 200  | 68  | ug/L |   |          | 08/22/15 04:19 | 200     |
| Chloromethane                         | ND        |           | 200  | 70  | ug/L |   |          | 08/22/15 04:19 | 200     |
| cis-1,2-Dichloroethene                | ND        |           | 200  | 160 | ug/L |   |          | 08/22/15 04:19 | 200     |
| cis-1,3-Dichloropropene               | ND        |           | 200  | 72  | ug/L |   |          | 08/22/15 04:19 | 200     |
| Cyclohexane                           | 450       |           | 200  | 36  | ug/L |   |          | 08/22/15 04:19 | 200     |
| Dichlorodifluoromethane               | ND        |           | 200  | 140 | ug/L |   |          | 08/22/15 04:19 | 200     |
| Ethylbenzene                          | 1200      |           | 200  | 150 | ug/L |   |          | 08/22/15 04:19 | 200     |
| Isopropylbenzene                      | ND        |           | 200  | 160 | ug/L |   |          | 08/22/15 04:19 | 200     |
| Methyl acetate                        | ND        |           | 500  | 260 | ug/L |   |          | 08/22/15 04:19 | 200     |
| Methyl tert-butyl ether               | ND        |           | 200  | 32  | ug/L |   |          | 08/22/15 04:19 | 200     |
| Methylcyclohexane                     | 170       | J         | 200  | 32  | ug/L |   |          | 08/22/15 04:19 | 200     |
| Methylene Chloride                    | 240       | В         | 200  | 88  | ug/L |   |          | 08/22/15 04:19 | 200     |
| Styrene                               | ND        |           | 200  | 150 | ug/L |   |          | 08/22/15 04:19 | 200     |
| Tetrachloroethene                     | ND        |           | 200  | 72  | ug/L |   |          | 08/22/15 04:19 | 200     |
| Toluene                               | 1500      |           | 200  | 100 | ug/L |   |          | 08/22/15 04:19 | 200     |
| trans-1,2-Dichloroethene              | ND        |           | 200  | 180 | ug/L |   |          | 08/22/15 04:19 | 200     |
| trans-1,3-Dichloropropene             | ND        |           | 200  | 74  | ug/L |   |          | 08/22/15 04:19 | 200     |
| Trichloroethene                       | ND        |           | 200  | 92  | ug/L |   |          | 08/22/15 04:19 | 200     |
| Trichlorofluoromethane                | ND        |           | 200  | 180 | ug/L |   |          | 08/22/15 04:19 | 200     |
| Vinyl chloride                        | ND        |           | 200  | 180 | ug/L |   |          | 08/22/15 04:19 | 200     |
| Xylenes, Total                        | 13000     |           | 400  | 130 | ug/L |   |          | 08/22/15 04:19 | 200     |

## Lab Sample ID: 480-86050-2 Matrix: Water

5

6

Date Collected: 08/21/15 13:00 Date Received: 08/21/15 15:41

| Surrogate                    | %Recovery | Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|----------|----------------|---------|
| 1,2-Dichloroethane-d4 (Surr) | 97        |           | 66 - 137 |          | 08/22/15 04:19 | 200     |
| Toluene-d8 (Surr)            | 95        |           | 71 - 126 |          | 08/22/15 04:19 | 200     |
| 4-Bromofluorobenzene (Surr)  | 101       |           | 73 - 120 |          | 08/22/15 04:19 | 200     |
| Dibromofluoromethane (Surr)  | 94        |           | 60 - 140 |          | 08/22/15 04:19 | 200     |

## Client Sample ID: MSMW-4-082115 Date Collected: 08/21/15 13:30 Date Received: 08/21/15 15:41

# Lab Sample ID: 480-86050-3 Matrix: Water

| Method: 8260C - Volatile Organi       | c Compounds by GC/ | MS  |      |      |   |          |                |         |
|---------------------------------------|--------------------|-----|------|------|---|----------|----------------|---------|
| Analyte                               | Result Qualifier   | RL  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| 1,1,1-Trichloroethane                 | ND                 | 5.0 | 4.1  | ug/L |   |          | 08/22/15 04:43 | 5       |
| 1,1,2,2-Tetrachloroethane             | ND                 | 5.0 | 1.1  | ug/L |   |          | 08/22/15 04:43 | 5       |
| 1,1,2-Trichloroethane                 | ND                 | 5.0 | 1.2  | ug/L |   |          | 08/22/15 04:43 | 5       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND                 | 5.0 | 1.6  | ug/L |   |          | 08/22/15 04:43 | 5       |
| 1,1-Dichloroethane                    | ND                 | 5.0 | 1.9  | ug/L |   |          | 08/22/15 04:43 | 5       |
| 1,1-Dichloroethene                    | ND                 | 5.0 | 1.5  | ug/L |   |          | 08/22/15 04:43 | 5       |
| 1,2,4-Trichlorobenzene                | ND                 | 5.0 | 2.1  | ug/L |   |          | 08/22/15 04:43 | 5       |
| 1,2-Dibromo-3-Chloropropane           | ND                 | 5.0 | 2.0  | ug/L |   |          | 08/22/15 04:43 | 5       |
| 1,2-Dibromoethane                     | ND                 | 5.0 | 3.7  | ug/L |   |          | 08/22/15 04:43 | 5       |
| 1,2-Dichlorobenzene                   | ND                 | 5.0 | 4.0  | ug/L |   |          | 08/22/15 04:43 | 5       |
| 1,2-Dichloroethane                    | ND                 | 5.0 | 1.1  | ug/L |   |          | 08/22/15 04:43 | 5       |
| 1,2-Dichloropropane                   | ND                 | 5.0 | 3.6  | ug/L |   |          | 08/22/15 04:43 | 5       |
| 1,3-Dichlorobenzene                   | ND                 | 5.0 | 3.9  | ug/L |   |          | 08/22/15 04:43 | 5       |
| 1,4-Dichlorobenzene                   | ND                 | 5.0 | 4.2  | ug/L |   |          | 08/22/15 04:43 | 5       |
| 2-Hexanone                            | ND                 | 25  | 6.2  | ug/L |   |          | 08/22/15 04:43 | 5       |
| 2-Butanone (MEK)                      | ND                 | 50  | 6.6  | ug/L |   |          | 08/22/15 04:43 | 5       |
| 4-Methyl-2-pentanone (MIBK)           | 27 ^               | 25  | 11   | ug/L |   |          | 08/22/15 04:43 | 5       |
| Acetone                               | 26 J               | 50  | 15   | ug/L |   |          | 08/22/15 04:43 | 5       |
| Benzene                               | 140                | 5.0 | 2.1  | ug/L |   |          | 08/22/15 04:43 | 5       |
| Bromodichloromethane                  | ND                 | 5.0 | 2.0  | ug/L |   |          | 08/22/15 04:43 | 5       |
| Bromoform                             | ND                 | 5.0 | 1.3  | ug/L |   |          | 08/22/15 04:43 | 5       |
| Bromomethane                          | ND                 | 5.0 | 3.5  | ug/L |   |          | 08/22/15 04:43 | 5       |
| Carbon disulfide                      | ND                 | 5.0 | 0.95 | ug/L |   |          | 08/22/15 04:43 | 5       |
| Carbon tetrachloride                  | ND                 | 5.0 | 1.4  | ug/L |   |          | 08/22/15 04:43 | 5       |
| Chlorobenzene                         | ND                 | 5.0 | 3.8  | ug/L |   |          | 08/22/15 04:43 | 5       |
| Dibromochloromethane                  | ND                 | 5.0 | 1.6  | ug/L |   |          | 08/22/15 04:43 | 5       |
| Chloroethane                          | ND                 | 5.0 | 1.6  | ug/L |   |          | 08/22/15 04:43 | 5       |
| Chloroform                            | ND                 | 5.0 | 1.7  | ug/L |   |          | 08/22/15 04:43 | 5       |
| Chloromethane                         | 2.1 J              | 5.0 | 1.8  | ug/L |   |          | 08/22/15 04:43 | 5       |
| cis-1,2-Dichloroethene                | ND                 | 5.0 | 4.1  | ug/L |   |          | 08/22/15 04:43 | 5       |
| cis-1,3-Dichloropropene               | ND                 | 5.0 | 1.8  | ug/L |   |          | 08/22/15 04:43 | 5       |
| Cyclohexane                           | 100                | 5.0 | 0.90 | ug/L |   |          | 08/22/15 04:43 | 5       |
| Dichlorodifluoromethane               | ND                 | 5.0 | 3.4  | ug/L |   |          | 08/22/15 04:43 | 5       |
| Ethylbenzene                          | 140                | 5.0 | 3.7  | ug/L |   |          | 08/22/15 04:43 | 5       |
| lsopropylbenzene                      | 5.9                | 5.0 | 4.0  | ug/L |   |          | 08/22/15 04:43 | 5       |
| Methyl acetate                        | ND                 | 13  | 6.5  | ug/L |   |          | 08/22/15 04:43 | 5       |
| Methyl tert-butyl ether               | ND                 | 5.0 | 0.80 | ug/L |   |          | 08/22/15 04:43 | 5       |
| Methylcyclohexane                     | 43                 | 5.0 | 0.80 | ug/L |   |          | 08/22/15 04:43 | 5       |
| Methylene Chloride                    | 23 B               | 5.0 | 2.2  | ug/L |   |          | 08/22/15 04:43 | 5       |
| Styrene                               | ND                 | 5.0 | 3.7  | ug/L |   |          | 08/22/15 04:43 | 5       |
| Tetrachloroethene                     | ND                 | 5.0 | 1.8  | ug/L |   |          | 08/22/15 04:43 | 5       |
| Toluene                               | 5.8                | 5.0 | 2.6  | ug/L |   |          | 08/22/15 04:43 | 5       |
| trans-1,2-Dichloroethene              | ND                 | 5.0 | 4.5  | ug/L |   |          | 08/22/15 04:43 | 5       |
| trans-1,3-Dichloropropene             | ND                 | 5.0 | 1.9  | ug/L |   |          | 08/22/15 04:43 | 5       |
| Trichloroethene                       | ND                 | 5.0 | 2.3  | ug/L |   |          | 08/22/15 04:43 | 5       |
| Trichlorofluoromethane                | ND                 | 5.0 | 4.4  | ug/L |   |          | 08/22/15 04:43 | 5       |
| Vinyl chloride                        | ND                 | 5.0 | 4.5  | ug/L |   |          | 08/22/15 04:43 | 5       |
| Xylenes, Total                        | 64                 | 10  | 3.3  | ug/L |   |          | 08/22/15 04:43 | 5       |

## Client Sample ID: MSMW-4-082115 Date Collected: 08/21/15 13:30 Date Received: 08/21/15 15:41

Lab Sample ID: 480-86050-3 Matrix: Water

5

6

| Surrogate                    | %Recovery | Qualifier | Limits   |   | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|---|----------|----------------|---------|
| 1,2-Dichloroethane-d4 (Surr) | 99        |           | 66 - 137 | - |          | 08/22/15 04:43 | 5       |
| Toluene-d8 (Surr)            | 98        |           | 71 - 126 |   |          | 08/22/15 04:43 | 5       |
| 4-Bromofluorobenzene (Surr)  | 103       |           | 73 - 120 |   |          | 08/22/15 04:43 | 5       |
| Dibromofluoromethane (Surr)  | 94        |           | 60 - 140 |   |          | 08/22/15 04:43 | 5       |

# Method: 8260C - Volatile Organic Compounds by GC/MS

| Matrix: Water    |                    |                                                |          |          |          | Prep Type: Total/NA |
|------------------|--------------------|------------------------------------------------|----------|----------|----------|---------------------|
| _                |                    | Percent Surrogate Recovery (Acceptance Limits) |          |          |          |                     |
|                  |                    | 12DCE                                          | TOL      | BFB      | DBFM     |                     |
| Lab Sample ID    | Client Sample ID   | (66-137)                                       | (71-126) | (73-120) | (60-140) |                     |
| 480-86050-1      | MSMW-1 082115      | 97                                             | 98       | 101      | 94       |                     |
| 480-86050-2      | MSMW-2 082115      | 97                                             | 95       | 101      | 94       |                     |
| 480-86050-3      | MSMW-4-082115      | 99                                             | 98       | 103      | 94       |                     |
| LCS 480-259932/5 | Lab Control Sample | 97                                             | 97       | 101      | 96       |                     |
| MB 480-259932/8  | Method Blank       | 100                                            | 98       | 101      | 98       |                     |
| Surrogate Legend |                    |                                                |          |          |          |                     |

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

Client Sample ID: Method Blank

Prep Type: Total/NA

# 2 3 4

9 10 11

## Lab Sample ID: MB 480-259932/8 Matrix: Water

| Analysis Batch: 259932                | MB     | MB        |     |      |      |   |          |                |         |
|---------------------------------------|--------|-----------|-----|------|------|---|----------|----------------|---------|
| Analyte                               | Result | Qualifier | RL  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| 1.1.1-Trichloroethane                 |        |           | 1.0 | 0.82 | ua/L |   |          | 08/21/15 21:26 | 1       |
| 1.1.2.2-Tetrachloroethane             | ND     |           | 1.0 | 0.21 | ua/L |   |          | 08/21/15 21:26 | 1       |
| 1 1 2-Trichloroethane                 | ND     |           | 1.0 | 0.23 | ua/l |   |          | 08/21/15 21:26 | 1       |
| 1 1 2-Trichloro-1 2 2-trifluoroethane | ND     |           | 1.0 | 0.31 | ug/L |   |          | 08/21/15 21:26 |         |
| 1 1-Dichloroethane                    | ND     |           | 1.0 | 0.38 | ug/L |   |          | 08/21/15 21:26 | 1       |
| 1 1-Dichloroethene                    | ND     |           | 1.0 | 0.00 | ug/L |   |          | 08/21/15 21:26 | 1       |
| 1.2.4-Trichlorobenzene                |        |           | 1.0 | 0.20 | ug/L |   |          | 08/21/15 21:26 |         |
| 1 2-Dibromo-3-Chloropropage           |        |           | 1.0 | 0.41 | ug/L |   |          | 08/21/15 21:20 | 1       |
| 1.2-Dibromoethane                     |        |           | 1.0 | 0.00 | ug/L |   |          | 08/21/15 21:20 | 1       |
| 1.2-Dichlorobenzene                   |        |           | 1.0 | 0.75 | ug/L |   |          | 08/21/15 21:20 |         |
| 1,2-Dichloroethane                    |        |           | 1.0 | 0.73 | ug/L |   |          | 08/21/15 21:20 | 1       |
| 1.2 Dichloropropago                   |        |           | 1.0 | 0.21 | ug/L |   |          | 08/21/15 21:20 | 1       |
|                                       |        |           | 1.0 | 0.72 | ug/L |   |          | 09/21/15 21:20 |         |
|                                       |        |           | 1.0 | 0.70 | ug/L |   |          | 00/21/15 21.20 | 1       |
|                                       | ND     |           | 1.0 | 0.04 | ug/L |   |          | 00/21/15 21.20 | 1       |
|                                       | ND     |           | 5.0 | 1.2  | ug/L |   |          | 08/21/15 21:26 | 1<br>   |
| 2-Butanone (MEK)                      | ND     |           | 10  | 1.3  | ug/L |   |          | 08/21/15 21:26 | 1       |
| 4-Metnyl-2-pentanone (MIBK)           | ND     |           | 5.0 | 2.1  | ug/L |   |          | 08/21/15 21:26 | 1       |
| Acetone                               | ND     |           | 10  | 3.0  | ug/L |   |          | 08/21/15 21:26 | 1       |
| Benzene                               | ND     |           | 1.0 | 0.41 | ug/L |   |          | 08/21/15 21:26 | 1       |
| Bromodichloromethane                  | ND     |           | 1.0 | 0.39 | ug/L |   |          | 08/21/15 21:26 | 1       |
| Bromoform                             | ND     |           | 1.0 | 0.26 | ug/L |   |          | 08/21/15 21:26 | 1       |
| Bromomethane                          | ND     |           | 1.0 | 0.69 | ug/L |   |          | 08/21/15 21:26 | 1       |
| Carbon disulfide                      | ND     |           | 1.0 | 0.19 | ug/L |   |          | 08/21/15 21:26 | 1       |
| Carbon tetrachloride                  | ND     |           | 1.0 | 0.27 | ug/L |   |          | 08/21/15 21:26 | 1       |
| Chlorobenzene                         | ND     |           | 1.0 | 0.75 | ug/L |   |          | 08/21/15 21:26 | 1       |
| Dibromochloromethane                  | ND     |           | 1.0 | 0.32 | ug/L |   |          | 08/21/15 21:26 | 1       |
| Chloroethane                          | ND     |           | 1.0 | 0.32 | ug/L |   |          | 08/21/15 21:26 | 1       |
| Chloroform                            | ND     |           | 1.0 | 0.34 | ug/L |   |          | 08/21/15 21:26 | 1       |
| Chloromethane                         | ND     |           | 1.0 | 0.35 | ug/L |   |          | 08/21/15 21:26 | 1       |
| cis-1,2-Dichloroethene                | ND     |           | 1.0 | 0.81 | ug/L |   |          | 08/21/15 21:26 | 1       |
| cis-1,3-Dichloropropene               | ND     |           | 1.0 | 0.36 | ug/L |   |          | 08/21/15 21:26 | 1       |
| Cyclohexane                           | ND     |           | 1.0 | 0.18 | ug/L |   |          | 08/21/15 21:26 | 1       |
| Dichlorodifluoromethane               | ND     |           | 1.0 | 0.68 | ug/L |   |          | 08/21/15 21:26 | 1       |
| Ethylbenzene                          | ND     |           | 1.0 | 0.74 | ug/L |   |          | 08/21/15 21:26 | 1       |
| Isopropylbenzene                      | ND     |           | 1.0 | 0.79 | ug/L |   |          | 08/21/15 21:26 | 1       |
| Methyl acetate                        | ND     |           | 2.5 | 1.3  | ug/L |   |          | 08/21/15 21:26 | 1       |
| Methyl tert-butyl ether               | ND     |           | 1.0 | 0.16 | ug/L |   |          | 08/21/15 21:26 | 1       |
| Methylcyclohexane                     | ND     |           | 1.0 | 0.16 | ug/L |   |          | 08/21/15 21:26 | 1       |
| Methylene Chloride                    | 0.570  | J         | 1.0 | 0.44 | ug/L |   |          | 08/21/15 21:26 | 1       |
| Styrene                               | ND     |           | 1.0 | 0.73 | ug/L |   |          | 08/21/15 21:26 | 1       |
| Tetrachloroethene                     | ND     |           | 1.0 | 0.36 | ug/L |   |          | 08/21/15 21:26 | 1       |
| Toluene                               | ND     |           | 1.0 | 0.51 | ug/L |   |          | 08/21/15 21:26 | 1       |
| trans-1,2-Dichloroethene              | ND     |           | 1.0 | 0.90 | ug/L |   |          | 08/21/15 21:26 | 1       |
| trans-1,3-Dichloropropene             | ND     |           | 1.0 | 0.37 | ug/L |   |          | 08/21/15 21:26 | 1       |
| Trichloroethene                       | ND     |           | 1.0 | 0.46 | ug/L |   |          | 08/21/15 21:26 | 1       |
| Trichlorofluoromethane                | ND     |           | 1.0 | 0.88 | ug/L |   |          | 08/21/15 21:26 | 1       |
| Vinyl chloride                        | ND     |           | 1.0 | 0.90 | ug/L |   |          | 08/21/15 21:26 | 1       |
| Xylenes, Total                        | ND     |           | 2.0 | 0.66 | ug/L |   |          | 08/21/15 21:26 | 1       |
|                                       |        |           |     |      | -    |   |          |                |         |
Limits

66 - 137

71 - 126

73 - 120

60 - 140

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

MB MB

%Recovery Qualifier

100

98

101

98

Lab Sample ID: MB 480-259932/8

Analysis Batch: 259932

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

**Client Sample ID: Method Blank** 

Prepared

## 2 3 4 5 6 7

8

1

1

#### Analyzed Dil Fac 08/21/15 21:26 1 08/21/15 21:26 1

08/21/15 21:26

08/21/15 21:26

Prep Type: Total/NA

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA

#### Lab Sample ID: LCS 480-259932/5

#### Matrix: Water Analysis Batch: 259932

**Matrix: Water** 

Toluene-d8 (Surr)

Surrogate

| Analysis Dalch. 200022   |       |        |           |      |   |      |                     |  |
|--------------------------|-------|--------|-----------|------|---|------|---------------------|--|
|                          | Spike | LCS    | LCS       |      |   |      | %Rec.               |  |
| Analyte                  | Added | Result | Qualifier | Unit | D | %Rec | Limits              |  |
| 1,1-Dichloroethane       | 25.0  | 27.8   |           | ug/L |   | 111  | 71 - 129            |  |
| 1,1-Dichloroethene       | 25.0  | 25.6   |           | ug/L |   | 102  | 58 - 121            |  |
| 1,2-Dichlorobenzene      | 25.0  | 27.3   |           | ug/L |   | 109  | 80 - 124            |  |
| 1,2-Dichloroethane       | 25.0  | 27.4   |           | ug/L |   | 109  | 75 <sub>-</sub> 127 |  |
| Benzene                  | 25.0  | 26.9   |           | ug/L |   | 108  | 71 - 124            |  |
| Chlorobenzene            | 25.0  | 27.8   |           | ug/L |   | 111  | 72 - 120            |  |
| cis-1,2-Dichloroethene   | 25.0  | 26.9   |           | ug/L |   | 107  | 74 <sub>-</sub> 124 |  |
| Ethylbenzene             | 25.0  | 27.8   |           | ug/L |   | 111  | 77 - 123            |  |
| Methyl tert-butyl ether  | 25.0  | 26.5   |           | ug/L |   | 106  | 64 - 127            |  |
| Tetrachloroethene        | 25.0  | 27.8   |           | ug/L |   | 111  | 74 - 122            |  |
| Toluene                  | 25.0  | 27.3   |           | ug/L |   | 109  | 80 - 122            |  |
| trans-1,2-Dichloroethene | 25.0  | 27.2   |           | ug/L |   | 109  | 73 - 127            |  |
| Trichloroethene          | 25.0  | 26.8   |           | ug/L |   | 107  | 74 - 123            |  |

|                              | LCS       | LCS       |          |
|------------------------------|-----------|-----------|----------|
| Surrogate                    | %Recovery | Qualifier | Limits   |
| 1,2-Dichloroethane-d4 (Surr) | 97        |           | 66 - 137 |
| Toluene-d8 (Surr)            | 97        |           | 71 - 126 |
| 4-Bromofluorobenzene (Surr)  | 101       |           | 73 - 120 |
| Dibromofluoromethane (Surr)  | 96        |           | 60 - 140 |

#### GC/MS VOA

#### Analysis Batch: 259932

| Lab Sample ID    | Client Sample ID   | Prep Type | Matrix | Method Prep Batch |
|------------------|--------------------|-----------|--------|-------------------|
| 480-86050-1      | MSMW-1 082115      | Total/NA  | Water  | 8260C             |
| 480-86050-2      | MSMW-2 082115      | Total/NA  | Water  | 8260C             |
| 480-86050-3      | MSMW-4-082115      | Total/NA  | Water  | 8260C             |
| LCS 480-259932/5 | Lab Control Sample | Total/NA  | Water  | 8260C             |
| MB 480-259932/8  | Method Blank       | Total/NA  | Water  | 8260C             |

| Client Sam                                                                                          | ple ID: MS                                                                                                | MW-1 0821                                                                     | 15              |                           |                           |                                           | Lab                          | Sample I                   | D: 480-86050-1                                                     |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------|---------------------------|---------------------------|-------------------------------------------|------------------------------|----------------------------|--------------------------------------------------------------------|
| Date Collecte                                                                                       | d: 08/21/15                                                                                               | 10:45                                                                         |                 |                           |                           |                                           |                              | -                          | Matrix: Water                                                      |
| Date Receive                                                                                        | d: 08/21/15 1                                                                                             | 5:41                                                                          |                 |                           |                           |                                           |                              |                            |                                                                    |
|                                                                                                     | Batch                                                                                                     | Batch                                                                         |                 | Dilution                  | Batch                     | Prepared                                  |                              |                            |                                                                    |
| Prep Type                                                                                           | Туре                                                                                                      | Method                                                                        | Run             | Factor                    | Number                    | or Analyzed                               | Analyst                      | Lab                        |                                                                    |
| Total/NA                                                                                            | Analysis                                                                                                  | 8260C                                                                         |                 | 1 _                       | 259932                    | 08/22/15 03:55                            | GTG                          | TAL BUF                    |                                                                    |
|                                                                                                     |                                                                                                           |                                                                               |                 |                           |                           |                                           |                              |                            |                                                                    |
| Client Sam<br>Date Collecte<br>Date Receive                                                         | ple ID: MS<br>ed: 08/21/15<br>d: 08/21/15 1                                                               | MW-2 0821<br>13:00<br>15:41                                                   | 15              | Dilation                  | Patrik                    | <b>D</b>                                  | Lab                          | Sample I                   | D: 480-86050-2<br>Matrix: Wate                                     |
| Client Sam<br>Date Collecte<br>Date Receive                                                         | ple ID: MS<br>d: 08/21/15 1<br>d: 08/21/15 1<br>Batch                                                     | MW-2 0821<br>13:00<br>15:41<br>Batch                                          | 15              | Dilution                  | Batch                     | Prepared                                  | Lab                          | Sample I                   | D: 480-86050-2<br>Matrix: Wate                                     |
| Client Sam<br>Date Collecte<br>Date Receive                                                         | ple ID: MS<br>d: 08/21/15 1<br>d: 08/21/15 1<br>Batch<br>Type                                             | MW-2 0821<br>13:00<br>15:41<br>Batch<br>Method                                | 15<br>          | Dilution<br>Factor        | Batch<br>Number           | Prepared<br>or Analyzed                   | Lab<br>Analyst               | Lab                        | D: 480-86050-2<br>Matrix: Wate                                     |
| Client Sam<br>Date Collecte<br>Date Receive<br>Prep Type<br>Total/NA                                | ple ID: MS<br>d: 08/21/15 1<br>d: 08/21/15 1<br>Batch<br><u>Type</u><br>Analysis                          | MW-2 0821<br>13:00<br>15:41<br>Batch<br>Method<br>8260C                       | 15<br>Run       | Dilution<br>Factor<br>200 | Batch<br>Number<br>259932 | Prepared<br>or Analyzed<br>08/22/15 04:19 | Lab<br>Analyst<br>GTG        | Lab<br>TAL BUF             | D: 480-86050-2<br>Matrix: Wate                                     |
| Client Sam<br>Date Collecte<br>Date Receive<br>Prep Type<br>Total/NA<br>Client Sam                  | ple ID: MS<br>d: 08/21/15 1<br>d: 08/21/15 1<br>Batch<br>Type<br>Analysis<br>ple ID: MS                   | MW-2 0821<br>13:00<br>15:41<br>Batch<br>Method<br>8260C<br>MW-4-0821          | 15<br>Run<br>   | Dilution<br>Factor<br>200 | Batch<br>Number<br>259932 | Prepared<br>or Analyzed<br>08/22/15 04:19 | Lab<br>Analyst<br>GTG<br>Lab | Sample I                   | D: 480-86050-2<br>Matrix: Water<br>D: 480-86050-3                  |
| Client Sam<br>Date Collecte<br>Date Receive<br>Prep Type<br>Total/NA<br>Client Sam<br>Date Collecte | ple ID: MS<br>d: 08/21/15 1<br>d: 08/21/15 1<br>Batch<br>Type<br>Analysis<br>ple ID: MS<br>ed: 08/21/15 1 | MW-2 0821<br>13:00<br>15:41<br>Batch<br>Method<br>8260C<br>MW-4-0821<br>13:30 | 15<br>Run<br>15 | Dilution<br>Factor<br>200 | Batch<br>Number<br>259932 | Prepared<br>or Analyzed<br>08/22/15 04:19 | Lab<br>Analyst<br>GTG<br>Lab | Sample I<br>Lab<br>TAL BUF | D: 480-86050-2<br>Matrix: Water<br>D: 480-86050-3<br>Matrix: Water |

Lab Chronicle

|           | Batch    | Batch  |     | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|--------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8260C  |     | 5        | 259932 | 08/22/15 04:43 | GTG     | TAL BUF |

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

#### Laboratory: TestAmerica Buffalo

The certifications listed below are applicable to this report.

| Authority | Program | EPA Region | Certification ID | Expiration Date |
|-----------|---------|------------|------------------|-----------------|
| New York  | NELAP   | 2          | 10026            | 03-31-16        |

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

**Protocol References:** 

Laboratory References:

Method Description

Volatile Organic Compounds by GC/MS

Method

8260C

Laboratory

TAL BUF

Protocol

SW846

| 1  |
|----|
|    |
|    |
|    |
| 5  |
|    |
|    |
| 8  |
| 9  |
|    |
|    |
| 12 |
| 13 |

#### **Sample Summary**

Client: C&S Engineers, Inc. Project/Site: Well Sampling - MOB

| Lab Sample ID | Client Sample ID | Matrix | Collected Received            |
|---------------|------------------|--------|-------------------------------|
| 480-86050-1   | MSMW-1 082115    | Water  | 08/21/15 10:45 08/21/15 15:41 |
| 480-86050-2   | MSMW-2 082115    | Water  | 08/21/15 13:00 08/21/15 15:41 |
| 480-86050-3   | MSMW-4-082115    | Water  | 08/21/15 13:30 08/21/15 15:41 |

| Chain of<br>Custody Record                                                                | Temperature on Receipt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                               |
|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| -4124 (1007)                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EINVIRON 480-86050 Chain of Custody                                           |
| ient of Engineers                                                                         | Project Manager Colvercuer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Obte Date Chain of Custody Number                                             |
| 14/ Elm Street                                                                            | Telephone Number (Area Code)/Fax Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lab Number ' of /                                                             |
| ity But Britter (C) State Zip Code                                                        | Site Contact Lab Contact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Analysis (Attach list if<br>more space is needed)                             |
| roject Name and Location (State)                                                          | Carrier/Waybill Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Special Instructions/                                                         |
| ontractPupchase Order/Duote No.<br>NHL, OOI, OOI                                          | Matrix Containers &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Conditions of Receipt                                                         |
| Sample I.D. No. and Description<br>ontainers for each sample may be combined on one line) | HOEN<br>/OV<br>HOEN<br>IDH<br>EONH<br>FOSZH<br>SeJdUN<br>IIOS<br>IPOS<br>Snoonby<br>JIV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                               |
| MSMW-1-082115 8/21                                                                        | NO DIAS X NO DI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |
| 45MW-Z-082115 8/211                                                                       | 1/5/3:00 K K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                               |
| NSMW-4-082115 8/21                                                                        | VISIS: 30 X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |
| sssible Hazard Identification Non-Hazard                                                  | B Dhknown Aetum To Client Disposal By Lab Archive For                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (A fee may be assessed if samples are retained<br>Months longer than 1 month) |
| im Around Time Required                                                                   | 21 Days  Other  Other |                                                                               |
| Refinations of the Mark                                                                   | B/21/15/16:41 1. Received By<br>Date 1. Time 2. Received By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\sum_{\text{Date}} \frac{Date}{1/M(r+1/r)}$                                  |
| e (<br>Relinquished By                                                                    | Date Time 3. Received By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date                                                                          |
| omments                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |
| STRIBUTION: WHITE - Returned to Client with Report, CANARY - S                            | Stays with the Sample; PINK - Field Copy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | # 3.3                                                                         |

5

 $\frac{1}{2}$ 

~

 $f_{i}^{s}$ 

9

1 Ĵ. B

14

#### Login Sample Receipt Checklist

#### Client: C&S Engineers, Inc.

#### Login Number: 86050 List Number: 1 Creator: Wallace, Cameron

| Question                                                                         | Answer | Comment |
|----------------------------------------------------------------------------------|--------|---------|
| Radioactivity either was not measured or, if measured, is at or below background | True   |         |
| The cooler's custody seal, if present, is intact.                                | True   |         |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |         |
| Samples were received on ice.                                                    | True   |         |
| Cooler Temperature is acceptable.                                                | True   |         |
| Cooler Temperature is recorded.                                                  | True   |         |
| COC is present.                                                                  | True   |         |
| COC is filled out in ink and legible.                                            | True   |         |
| COC is filled out with all pertinent information.                                | True   |         |
| Is the Field Sampler's name present on COC?                                      | True   |         |
| There are no discrepancies between the sample IDs on the containers and the COC. | True   |         |
| Samples are received within Holding Time.                                        | True   |         |
| Sample containers have legible labels.                                           | True   |         |
| Containers are not broken or leaking.                                            | True   |         |
| Sample collection date/times are provided.                                       | True   |         |
| Appropriate sample containers are used.                                          | True   |         |
| Sample bottles are completely filled.                                            | True   |         |
| Sample Preservation Verified                                                     | True   |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |         |
| VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.     | True   |         |
| If necessary, staff have been informed of any short hold time or quick TAT needs | True   |         |
| Multiphasic samples are not present.                                             | True   |         |
| Samples do not require splitting or compositing.                                 | True   |         |
| Sampling Company provided.                                                       | True   |         |
| Samples received within 48 hours of sampling.                                    | True   |         |
| Samples requiring field filtration have been filtered in the field.              | True   |         |
| Chlorine Residual checked.                                                       | N/A    |         |

List Source: TestAmerica Buffalo

Job Number: 480-86050-1



THE LEADER IN ENVIRONMENTAL TESTING

# **ANALYTICAL REPORT**

#### TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

#### TestAmerica Job ID: 480-64332-1

Client Project/Site: Well Sampling - MOB

#### For:

C&S Engineers, Inc. 141 Elm Street Suite 100 Buffalo, New York 14203

Attn: Zubair Trabzada

Joeph V. Gisconage

Authorized for release by: 7/29/2014 5:36:05 PM Joe Giacomazza, Project Management Assistant II joe.giacomazza@testamericainc.com

Designee for

Judy Stone, Senior Project Manager (484)685-0868 judy.stone@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.



# **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 2  |
| Definitions/Glossary   | 3  |
| Case Narrative         | 4  |
| Detection Summary      | 5  |
| Client Sample Results  | 7  |
| Surrogate Summary      | 15 |
| QC Sample Results      | 16 |
| QC Association Summary | 20 |
| Lab Chronicle          | 21 |
| Certification Summary  | 22 |
| Method Summary         | 23 |
| Sample Summary         | 24 |
| Chain of Custody       | 25 |
| Receipt Checklists     | 26 |
|                        |    |

3

#### Qualifiers

#### **GC/MS VOA**

| Qualifier | Qualifier Description                                                                                          |
|-----------|----------------------------------------------------------------------------------------------------------------|
| J         | Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. |

#### Glossary

| J              | Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. | 5  |
|----------------|----------------------------------------------------------------------------------------------------------------|----|
| Glossary       |                                                                                                                | 6  |
| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                    |    |
| ¤              | Listed under the "D" column to designate that the result is reported on a dry weight basis                     |    |
| %R             | Percent Recovery                                                                                               |    |
| CFL            | Contains Free Liquid                                                                                           | 8  |
| CNF            | Contains no Free Liquid                                                                                        |    |
| DER            | Duplicate error ratio (normalized absolute difference)                                                         | 9  |
| Dil Fac        | Dilution Factor                                                                                                |    |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample    |    |
| DLC            | Decision level concentration                                                                                   |    |
| MDA            | Minimum detectable activity                                                                                    |    |
| EDL            | Estimated Detection Limit                                                                                      |    |
| MDC            | Minimum detectable concentration                                                                               |    |
| MDL            | Method Detection Limit                                                                                         |    |
| ML             | Minimum Level (Dioxin)                                                                                         |    |
| NC             | Not Calculated                                                                                                 | 13 |
| ND             | Not detected at the reporting limit (or MDL or EDL if shown)                                                   |    |
| PQL            | Practical Quantitation Limit                                                                                   |    |
| QC             | Quality Control                                                                                                |    |
| RER            | Relative error ratio                                                                                           |    |
| RL             | Reporting Limit or Requested Limit (Radiochemistry)                                                            |    |
| RPD            | Relative Percent Difference, a measure of the relative difference between two points                           |    |
| TEF            | Toxicity Equivalent Factor (Dioxin)                                                                            |    |

Toxicity Equivalent Quotient (Dioxin) TEQ

#### Job ID: 480-64332-1

#### Laboratory: TestAmerica Buffalo

#### Narrative

Job Narrative 480-64332-1

#### Receipt

The samples were received on 7/24/2014 12:50 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.3° C.

#### GC/MS VOA

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 194782 recovered outside acceptance criteria, low biased, for N-propylbenzene, Cis1,3Dichloropropane, and a,2Dibromo-3-chloropropane. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were non-detect for this analyte, the data have been reported.

Method(s) 8260C: The following sample(s) were collected in properly preserved vials for analysis of volatile organic compounds (VOCs). However, the pH was outside the required criteria when verified by the laboratory, and corrective action was not possible: MS-MW-02 (480-64332-2).

Method(s) 8260C: The following sample(s) was diluted to bring the concentration of target analytes within the calibration range: MS-MW-02 (480-64332-2), MS-MW-04 (480-64332-4). Elevated reporting limits (RLs) are provided.

Method(s) 8260C: The following sample(s) was diluted to bring the concentration of target analytes within the calibration range: MS-MW-02 (480-64332-2), MS-MW-03 (480-64332-3), MS-MW-04 (480-64332-4). Elevated reporting limits (RLs) are provided.

Method(s) 8260C: The following sample(s) were collected in properly preserved vials for analysis of volatile organic compounds (VOCs). However, the pH was outside the required criteria when verified by the laboratory, and corrective action was not possible: MS-MW-02 (480-64332-2), MS-MW-03 (480-64332-3).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### Client Sample ID: MS-MW-01

#### Lab Sample ID: 480-64332-1

Lab Sample ID: 480-64332-2

Lab Sample ID: 480-64332-3

Lab Sample ID: 480-64332-4

| Analyte           | Result | Qualifier | RL  | MDL  | Unit | Dil Fac | D Method | Prep Type |
|-------------------|--------|-----------|-----|------|------|---------|----------|-----------|
| Chloroform        | 0.35   | J         | 1.0 | 0.34 | ug/L | 1       | 8260C    | Total/NA  |
| Cyclohexane       | 0.40   | J         | 1.0 | 0.18 | ug/L | 1       | 8260C    | Total/NA  |
| Ethylbenzene      | 1.1    |           | 1.0 | 0.74 | ug/L | 1       | 8260C    | Total/NA  |
| Methylcyclohexane | 0.21   | J         | 1.0 | 0.16 | ug/L | 1       | 8260C    | Total/NA  |
| Xylenes, Total    | 7.2    |           | 2.0 | 0.66 | ug/L | 1       | 8260C    | Total/NA  |

#### Client Sample ID: MS-MW-02

| Analyte             | Result | Qualifier | RL  | MDL | Unit | Dil Fac | D | Method | Prep Type |
|---------------------|--------|-----------|-----|-----|------|---------|---|--------|-----------|
| 2-Hexanone          | 92     | J         | 200 | 50  | ug/L | 40      | _ | 8260C  | Total/NA  |
| Benzene             | 400    |           | 40  | 16  | ug/L | 40      |   | 8260C  | Total/NA  |
| Cyclohexane         | 660    |           | 40  | 7.2 | ug/L | 40      |   | 8260C  | Total/NA  |
| Ethylbenzene        | 2900   |           | 40  | 30  | ug/L | 40      |   | 8260C  | Total/NA  |
| Isopropylbenzene    | 58     |           | 40  | 32  | ug/L | 40      |   | 8260C  | Total/NA  |
| Methylcyclohexane   | 250    |           | 40  | 6.4 | ug/L | 40      |   | 8260C  | Total/NA  |
| Methylene Chloride  | 160    |           | 40  | 18  | ug/L | 40      |   | 8260C  | Total/NA  |
| Toluene             | 2400   |           | 40  | 20  | ug/L | 40      |   | 8260C  | Total/NA  |
| Xylenes, Total - DL | 13000  |           | 400 | 130 | ug/L | 200     |   | 8260C  | Total/NA  |

#### Client Sample ID: MS-MW-03

| Analyte            | Result | Qualifier | RL  | MDL  | Unit | Dil Fac | D | Method | Prep Type |
|--------------------|--------|-----------|-----|------|------|---------|---|--------|-----------|
| 2-Butanone (MEK)   | 12     | J         | 50  | 6.6  | ug/L | 5       | _ | 8260C  | Total/NA  |
| Acetone            | 22     | J         | 50  | 15   | ug/L | 5       |   | 8260C  | Total/NA  |
| Benzene            | 80     |           | 5.0 | 2.1  | ug/L | 5       |   | 8260C  | Total/NA  |
| Cyclohexane        | 52     |           | 5.0 | 0.90 | ug/L | 5       |   | 8260C  | Total/NA  |
| Ethylbenzene       | 190    |           | 5.0 | 3.7  | ug/L | 5       |   | 8260C  | Total/NA  |
| Isopropylbenzene   | 6.6    |           | 5.0 | 4.0  | ug/L | 5       |   | 8260C  | Total/NA  |
| Methylcyclohexane  | 25     |           | 5.0 | 0.80 | ug/L | 5       |   | 8260C  | Total/NA  |
| Methylene Chloride | 9.8    |           | 5.0 | 2.2  | ug/L | 5       |   | 8260C  | Total/NA  |
| Toluene            | 34     |           | 5.0 | 2.6  | ug/L | 5       |   | 8260C  | Total/NA  |
| Xylenes, Total     | 360    |           | 10  | 3.3  | ug/L | 5       |   | 8260C  | Total/NA  |

#### Client Sample ID: MS-MW-04

| Analyte            | Result | Qualifier | RL  | MDL  | Unit | Dil Fac | D | Method | Prep Type |
|--------------------|--------|-----------|-----|------|------|---------|---|--------|-----------|
| 2-Butanone (MEK)   | 7.2    |           | 20  | 2.6  | ug/L | 2       | _ | 8260C  | Total/NA  |
| Acetone            | 22     |           | 20  | 6.0  | ug/L | 2       |   | 8260C  | Total/NA  |
| Benzene            | 150    |           | 2.0 | 0.82 | ug/L | 2       |   | 8260C  | Total/NA  |
| Cyclohexane        | 52     |           | 2.0 | 0.36 | ug/L | 2       |   | 8260C  | Total/NA  |
| Ethylbenzene       | 180    |           | 2.0 | 1.5  | ug/L | 2       |   | 8260C  | Total/NA  |
| Isopropylbenzene   | 8.1    |           | 2.0 | 1.6  | ug/L | 2       |   | 8260C  | Total/NA  |
| Methylcyclohexane  | 33     |           | 2.0 | 0.32 | ug/L | 2       |   | 8260C  | Total/NA  |
| Methylene Chloride | 6.6    |           | 2.0 | 0.88 | ug/L | 2       |   | 8260C  | Total/NA  |
| Toluene            | 39     |           | 2.0 | 1.0  | ug/L | 2       |   | 8260C  | Total/NA  |
| Xylenes, Total     | 160    |           | 4.0 | 1.3  | ug/L | 2       |   | 8260C  | Total/NA  |

#### Client Sample ID: MW-02R

Lab Sample ID: 480-64332-5

This Detection Summary does not include radiochemical test results.

#### Client Sample ID: MW-02R (Continued)

| Analyte           | Result | Qualifier | RL  | MDL  | Unit | Dil Fac | D Method | Prep Type |
|-------------------|--------|-----------|-----|------|------|---------|----------|-----------|
| Cyclohexane       | 1.1    |           | 1.0 | 0.18 | ug/L | 1       | 8260C    | Total/NA  |
| Methylcyclohexane | 0.86   | J         | 1.0 | 0.16 | ug/L | 1       | 8260C    | Total/NA  |
| Xylenes, Total    | 2.4    |           | 2.0 | 0.66 | ug/L | 1       | 8260C    | Total/NA  |

#### **Client Sample ID: TB**

No Detections.

Lab Sample ID: 480-64332-5 5 Lab Sample ID: 480-64332-6

This Detection Summary does not include radiochemical test results.

#### Client Sample ID: MS-MW-01

Date Collected: 07/23/14 11:55 Date Received: 07/24/14 12:50

| Method: 8260C - Volatile Organic      | Compounds | by GC/MS  |     |      |      |   |          |                |         |
|---------------------------------------|-----------|-----------|-----|------|------|---|----------|----------------|---------|
| Analyte                               | Result    | Qualifier | RL  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| 1,1,1-Trichloroethane                 | ND        |           | 1.0 | 0.82 | ug/L |   |          | 07/25/14 16:34 | 1       |
| 1,1,2,2-Tetrachloroethane             | ND        |           | 1.0 | 0.21 | ug/L |   |          | 07/25/14 16:34 | 1       |
| 1,1,2-Trichloroethane                 | ND        |           | 1.0 | 0.23 | ug/L |   |          | 07/25/14 16:34 | 1       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND        |           | 1.0 | 0.31 | ug/L |   |          | 07/25/14 16:34 | 1       |
| 1,1-Dichloroethane                    | ND        |           | 1.0 | 0.38 | ug/L |   |          | 07/25/14 16:34 | 1       |
| 1,1-Dichloroethene                    | ND        |           | 1.0 | 0.29 | ug/L |   |          | 07/25/14 16:34 | 1       |
| 1,2,4-Trichlorobenzene                | ND        |           | 1.0 | 0.41 | ug/L |   |          | 07/25/14 16:34 | 1       |
| 1,2-Dibromo-3-Chloropropane           | ND        |           | 1.0 | 0.39 | ug/L |   |          | 07/25/14 16:34 | 1       |
| 1,2-Dibromoethane                     | ND        |           | 1.0 | 0.73 | ug/L |   |          | 07/25/14 16:34 | 1       |
| 1,2-Dichlorobenzene                   | ND        |           | 1.0 | 0.79 | ug/L |   |          | 07/25/14 16:34 | 1       |
| 1,2-Dichloroethane                    | ND        |           | 1.0 | 0.21 | ug/L |   |          | 07/25/14 16:34 | 1       |
| 1,2-Dichloropropane                   | ND        |           | 1.0 | 0.72 | ug/L |   |          | 07/25/14 16:34 | 1       |
| 1,3-Dichlorobenzene                   | ND        |           | 1.0 | 0.78 | ug/L |   |          | 07/25/14 16:34 | 1       |
| 1,4-Dichlorobenzene                   | ND        |           | 1.0 | 0.84 | ug/L |   |          | 07/25/14 16:34 | 1       |
| 2-Hexanone                            | ND        |           | 5.0 | 1.2  | ug/L |   |          | 07/25/14 16:34 | 1       |
| 2-Butanone (MEK)                      | ND        |           | 10  | 1.3  | ug/L |   |          | 07/25/14 16:34 | 1       |
| 4-Methyl-2-pentanone (MIBK)           | ND        |           | 5.0 | 2.1  | ug/L |   |          | 07/25/14 16:34 | 1       |
| Acetone                               | ND        |           | 10  | 3.0  | ug/L |   |          | 07/25/14 16:34 | 1       |
| Benzene                               | ND        |           | 1.0 | 0.41 | ug/L |   |          | 07/25/14 16:34 | 1       |
| Bromodichloromethane                  | ND        |           | 1.0 | 0.39 | ug/L |   |          | 07/25/14 16:34 | 1       |
| Bromoform                             | ND        |           | 1.0 | 0.26 | ug/L |   |          | 07/25/14 16:34 | 1       |
| Bromomethane                          | ND        |           | 1.0 | 0.69 | ug/L |   |          | 07/25/14 16:34 | 1       |
| Carbon disulfide                      | ND        |           | 1.0 | 0.19 | ug/L |   |          | 07/25/14 16:34 | 1       |
| Carbon tetrachloride                  | ND        |           | 1.0 | 0.27 | ug/L |   |          | 07/25/14 16:34 | 1       |
| Chlorobenzene                         | ND        |           | 1.0 | 0.75 | ug/L |   |          | 07/25/14 16:34 | 1       |
| Dibromochloromethane                  | ND        |           | 1.0 | 0.32 | ug/L |   |          | 07/25/14 16:34 | 1       |
| Chloroethane                          | ND        |           | 1.0 | 0.32 | ug/L |   |          | 07/25/14 16:34 | 1       |
| Chloroform                            | 0.35      | J         | 1.0 | 0.34 | ug/L |   |          | 07/25/14 16:34 | 1       |
| Chloromethane                         | ND        |           | 1.0 | 0.35 | ug/L |   |          | 07/25/14 16:34 | 1       |
| cis-1,2-Dichloroethene                | ND        |           | 1.0 | 0.81 | ug/L |   |          | 07/25/14 16:34 | 1       |
| cis-1,3-Dichloropropene               | ND        |           | 1.0 | 0.36 | ug/L |   |          | 07/25/14 16:34 | 1       |
| Cyclohexane                           | 0.40      | J         | 1.0 | 0.18 | ug/L |   |          | 07/25/14 16:34 | 1       |
| Dichlorodifluoromethane               | ND        |           | 1.0 | 0.68 | ug/L |   |          | 07/25/14 16:34 | 1       |
| Ethylbenzene                          | 1.1       |           | 1.0 | 0.74 | ug/L |   |          | 07/25/14 16:34 | 1       |
| Isopropylbenzene                      | ND        |           | 1.0 | 0.79 | ug/L |   |          | 07/25/14 16:34 | 1       |
| Methyl acetate                        | ND        |           | 2.5 | 0.50 | ug/L |   |          | 07/25/14 16:34 | 1       |
| Methyl tert-butyl ether               | ND        |           | 1.0 | 0.16 | ug/L |   |          | 07/25/14 16:34 | 1       |
| Methylcyclohexane                     | 0.21      | J         | 1.0 | 0.16 | ug/L |   |          | 07/25/14 16:34 | 1       |
| Methylene Chloride                    | ND        |           | 1.0 | 0.44 | ug/L |   |          | 07/25/14 16:34 | 1       |
| Styrene                               | ND        |           | 1.0 | 0.73 | ug/L |   |          | 07/25/14 16:34 | 1       |
| Tetrachloroethene                     | ND        |           | 1.0 | 0.36 | ug/L |   |          | 07/25/14 16:34 | 1       |
| Toluene                               | ND        |           | 1.0 | 0.51 | ug/L |   |          | 07/25/14 16:34 | 1       |
| trans-1,2-Dichloroethene              | ND        |           | 1.0 | 0.90 | ug/L |   |          | 07/25/14 16:34 | 1       |
| trans-1,3-Dichloropropene             | ND        |           | 1.0 | 0.37 | ug/L |   |          | 07/25/14 16:34 | 1       |
| Trichloroethene                       | ND        |           | 1.0 | 0.46 | ug/L |   |          | 07/25/14 16:34 | 1       |
| Trichlorofluoromethane                | ND        |           | 1.0 | 0.88 | ug/L |   |          | 07/25/14 16:34 | 1       |
| Vinyl chloride                        | ND        |           | 1.0 | 0.90 | ug/L |   |          | 07/25/14 16:34 | 1       |
| Xylenes, Total                        | 7.2       |           | 2.0 | 0.66 | ug/L |   |          | 07/25/14 16:34 | 1       |

#### Lab Sample ID: 480-64332-1

Matrix: Water

5

6

#### Client Sample ID: MS-MW-01 Date Collected: 07/23/14 11:55

Date Received: 07/24/14 12:50

| Surrogate                    | %Recovery Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
|------------------------------|---------------------|----------|----------|----------------|---------|
| 1,2-Dichloroethane-d4 (Surr) | 97                  | 66 - 137 |          | 07/25/14 16:34 | 1       |
| Toluene-d8 (Surr)            | 97                  | 71 - 126 |          | 07/25/14 16:34 | 1       |
| 4-Bromofluorobenzene (Surr)  | 104                 | 73 - 120 |          | 07/25/14 16:34 | 1       |
| Dibromofluoromethane (Surr)  | 102                 | 60 - 140 |          | 07/25/14 16:34 | 1       |

#### Client Sample ID: MS-MW-02

Date Collected: 07/23/14 11:12

Date Received: 07/24/14 12:50

| Method: 8260C - Volatile Organ<br>Analyte | ic Compounds by<br>Result | y GC/MS<br>Qualifier | RL  | MDL | Unit | D | Prepared | Analyzed       | Dil Fa |
|-------------------------------------------|---------------------------|----------------------|-----|-----|------|---|----------|----------------|--------|
| 1,1,1-Trichloroethane                     | ND                        |                      | 40  | 33  | ug/L |   |          | 07/25/14 16:58 | 4(     |
| 1,1,2,2-Tetrachloroethane                 | ND                        |                      | 40  | 8.4 | ug/L |   |          | 07/25/14 16:58 | 40     |
| 1,1,2-Trichloroethane                     | ND                        |                      | 40  | 9.2 | ug/L |   |          | 07/25/14 16:58 | 40     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane     | ND                        |                      | 40  | 12  | ug/L |   |          | 07/25/14 16:58 | 4(     |
| 1,1-Dichloroethane                        | ND                        |                      | 40  | 15  | ug/L |   |          | 07/25/14 16:58 | 40     |
| 1,1-Dichloroethene                        | ND                        |                      | 40  | 12  | ug/L |   |          | 07/25/14 16:58 | 40     |
| 1,2,4-Trichlorobenzene                    | ND                        |                      | 40  | 16  | ug/L |   |          | 07/25/14 16:58 | 4(     |
| 1,2-Dibromo-3-Chloropropane               | ND                        |                      | 40  | 16  | ug/L |   |          | 07/25/14 16:58 | 40     |
| 1,2-Dibromoethane                         | ND                        |                      | 40  | 29  | ug/L |   |          | 07/25/14 16:58 | 40     |
| 1,2-Dichlorobenzene                       | ND                        |                      | 40  | 32  | ug/L |   |          | 07/25/14 16:58 | 4(     |
| 1,2-Dichloroethane                        | ND                        |                      | 40  | 8.4 | ug/L |   |          | 07/25/14 16:58 | 40     |
| 1,2-Dichloropropane                       | ND                        |                      | 40  | 29  | ug/L |   |          | 07/25/14 16:58 | 40     |
| 1,3-Dichlorobenzene                       | ND                        |                      | 40  | 31  | ug/L |   |          | 07/25/14 16:58 | 4(     |
| 1,4-Dichlorobenzene                       | ND                        |                      | 40  | 34  | ug/L |   |          | 07/25/14 16:58 | 40     |
| 2-Hexanone                                | 92 、                      | J                    | 200 | 50  | ug/L |   |          | 07/25/14 16:58 | 40     |
| 2-Butanone (MEK)                          | ND                        |                      | 400 | 53  | ug/L |   |          | 07/25/14 16:58 | 4(     |
| 4-Methyl-2-pentanone (MIBK)               | ND                        |                      | 200 | 84  | ug/L |   |          | 07/25/14 16:58 | 40     |
| Acetone                                   | ND                        |                      | 400 | 120 | ug/L |   |          | 07/25/14 16:58 | 40     |
| Benzene                                   | 400                       |                      | 40  | 16  | ug/L |   |          | 07/25/14 16:58 | 4(     |
| Bromodichloromethane                      | ND                        |                      | 40  | 16  | ug/L |   |          | 07/25/14 16:58 | 40     |
| Bromoform                                 | ND                        |                      | 40  | 10  | ug/L |   |          | 07/25/14 16:58 | 40     |
| Bromomethane                              | ND                        |                      | 40  | 28  | ug/L |   |          | 07/25/14 16:58 | 4(     |
| Carbon disulfide                          | ND                        |                      | 40  | 7.6 | ug/L |   |          | 07/25/14 16:58 | 40     |
| Carbon tetrachloride                      | ND                        |                      | 40  | 11  | ug/L |   |          | 07/25/14 16:58 | 40     |
| Chlorobenzene                             | ND                        |                      | 40  | 30  | ug/L |   |          | 07/25/14 16:58 | 4(     |
| Dibromochloromethane                      | ND                        |                      | 40  | 13  | ug/L |   |          | 07/25/14 16:58 | 40     |
| Chloroethane                              | ND                        |                      | 40  | 13  | ug/L |   |          | 07/25/14 16:58 | 40     |
| Chloroform                                | ND                        |                      | 40  | 14  | ug/L |   |          | 07/25/14 16:58 | 4(     |
| Chloromethane                             | ND                        |                      | 40  | 14  | ug/L |   |          | 07/25/14 16:58 | 40     |
| cis-1,2-Dichloroethene                    | ND                        |                      | 40  | 32  | ug/L |   |          | 07/25/14 16:58 | 40     |
| cis-1,3-Dichloropropene                   | ND                        |                      | 40  | 14  | ug/L |   |          | 07/25/14 16:58 | 4(     |
| Cyclohexane                               | 660                       |                      | 40  | 7.2 | ug/L |   |          | 07/25/14 16:58 | 40     |
| Dichlorodifluoromethane                   | ND                        |                      | 40  | 27  | ug/L |   |          | 07/25/14 16:58 | 40     |
| Ethylbenzene                              | 2900                      |                      | 40  | 30  | ug/L |   |          | 07/25/14 16:58 | 4(     |
| Isopropylbenzene                          | 58                        |                      | 40  | 32  | ug/L |   |          | 07/25/14 16:58 | 40     |
| Methyl acetate                            | ND                        |                      | 100 | 20  | ug/L |   |          | 07/25/14 16:58 | 40     |
| Methyl tert-butyl ether                   | ND                        |                      | 40  | 6.4 | ug/L |   |          | 07/25/14 16:58 | 4(     |
| Methylcyclohexane                         | 250                       |                      | 40  | 6.4 | ug/L |   |          | 07/25/14 16:58 | 40     |
| Methylene Chloride                        | 160                       |                      | 40  | 18  | ug/L |   |          | 07/25/14 16:58 | 4(     |

#### Lab Sample ID: 480-64332-1 Matrix: Water

#### Lab Sample ID: 480-64332-2 Matrix: Water

Water

5

6

RL

40

40

40

40

40

40

40

40

Limits

66 - 137

71 - 126

73 - 120

60 - 140

Limits

66 - 137

71 - 126

73 - 120

60 - 140

RL

400

MDL Unit

ug/L

29 ug/L

14

20 ug/L

36 ug/L

18

35 ug/L

15 ug/L

36 ug/L

MDL Unit

130 ug/L

ug/L

D

D

Prepared

Prepared

#### Client Sample ID: MS-MW-02

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Method: 8260C - Volatile Organic Compounds by GC/MS - DL

Result Qualifier

ND

ND

2400

ND

ND

ND

ND

ND

98

100

111

98

13000

93

98

108

96

%Recovery

Result Qualifier

Qualifier

%Recovery

Qualifier

Date Collected: 07/23/14 11:12 Date Received: 07/24/14 12:50

Analyte

Styrene

Toluene

Tetrachloroethene

Trichloroethene

Vinyl chloride

Toluene-d8 (Surr)

Surrogate

Analyte

Surrogate

**Xylenes**, Total

Toluene-d8 (Surr)

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Trichlorofluoromethane

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

TestAmerica Job ID: 480-64332-1

#### Lab Sample ID: 480-64332-2 Matrix: Water

Analyzed

07/25/14 16:58

07/25/14 16:58

07/25/14 16:58

07/25/14 16:58

07/25/14 16:58

07/25/14 16:58

07/25/14 16:58

07/25/14 16:58

Analyzed

07/25/14 16:58

07/25/14 16:58

07/25/14 16:58

07/25/14 16:58

Dil Fac

40

40

40

40

40

40

40

40

40

40

40

40

200

Matrix: Water

Dil Fac

|  | 3 |
|--|---|
|  |   |
|  |   |

| Prepared | Analyzed       | Dil Fac |  |  |
|----------|----------------|---------|--|--|
|          | 07/26/14 03:46 | 200     |  |  |
| Prepared | Analyzed       | Dil Fac |  |  |
|          | 07/26/14 03:46 | 200     |  |  |
|          | 07/26/14 03:46 | 200     |  |  |
|          | 07/26/14 03:46 | 200     |  |  |

07/26/14 03:46

Lab Sample ID: 480-64332-3

#### \_\_\_\_\_

#### Client Sample ID: MS-MW-03

#### Date Collected: 07/23/14 10:40 Date Received: 07/24/14 12:50

| Method: 8260C - Volatile Organic      | Compounds by G | C/MS      |     |      |   |          |                |         |
|---------------------------------------|----------------|-----------|-----|------|---|----------|----------------|---------|
| Analyte                               | Result Qua     | lifier RL | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
| 1,1,1-Trichloroethane                 | ND             | 5.0       | 4.1 | ug/L |   |          | 07/26/14 04:10 | 5       |
| 1,1,2,2-Tetrachloroethane             | ND             | 5.0       | 1.1 | ug/L |   |          | 07/26/14 04:10 | 5       |
| 1,1,2-Trichloroethane                 | ND             | 5.0       | 1.2 | ug/L |   |          | 07/26/14 04:10 | 5       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND             | 5.0       | 1.6 | ug/L |   |          | 07/26/14 04:10 | 5       |
| 1,1-Dichloroethane                    | ND             | 5.0       | 1.9 | ug/L |   |          | 07/26/14 04:10 | 5       |
| 1,1-Dichloroethene                    | ND             | 5.0       | 1.5 | ug/L |   |          | 07/26/14 04:10 | 5       |
| 1,2,4-Trichlorobenzene                | ND             | 5.0       | 2.1 | ug/L |   |          | 07/26/14 04:10 | 5       |
| 1,2-Dibromo-3-Chloropropane           | ND             | 5.0       | 2.0 | ug/L |   |          | 07/26/14 04:10 | 5       |
| 1,2-Dibromoethane                     | ND             | 5.0       | 3.7 | ug/L |   |          | 07/26/14 04:10 | 5       |
| 1,2-Dichlorobenzene                   | ND             | 5.0       | 4.0 | ug/L |   |          | 07/26/14 04:10 | 5       |
| 1,2-Dichloroethane                    | ND             | 5.0       | 1.1 | ug/L |   |          | 07/26/14 04:10 | 5       |
| 1,2-Dichloropropane                   | ND             | 5.0       | 3.6 | ug/L |   |          | 07/26/14 04:10 | 5       |
| 1,3-Dichlorobenzene                   | ND             | 5.0       | 3.9 | ug/L |   |          | 07/26/14 04:10 | 5       |
| 1,4-Dichlorobenzene                   | ND             | 5.0       | 4.2 | ug/L |   |          | 07/26/14 04:10 | 5       |
| 2-Hexanone                            | ND             | 25        | 6.2 | ug/L |   |          | 07/26/14 04:10 | 5       |
| 2-Butanone (MEK)                      | 12 J           | 50        | 6.6 | ug/L |   |          | 07/26/14 04:10 | 5       |
| 4-Methyl-2-pentanone (MIBK)           | ND             | 25        | 11  | ug/L |   |          | 07/26/14 04:10 | 5       |
| Acetone                               | 22 J           | 50        | 15  | ug/L |   |          | 07/26/14 04:10 | 5       |
| Benzene                               | 80             | 5.0       | 2.1 | ug/L |   |          | 07/26/14 04:10 | 5       |

#### Client Sample ID: MS-MW-03 Date Collected: 07/23/14 10:40

Date Received: 07/24/14 12:50

| Method: 8260C - Volatile Orga | inic Compounds I | by GC/MS ( | Continued) |      |      |   |          |                |         |
|-------------------------------|------------------|------------|------------|------|------|---|----------|----------------|---------|
| Analyte                       | Result           | Qualifier  | RL         | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| Bromodichloromethane          | ND               |            | 5.0        | 2.0  | ug/L |   |          | 07/26/14 04:10 | 5       |
| Bromoform                     | ND               |            | 5.0        | 1.3  | ug/L |   |          | 07/26/14 04:10 | 5       |
| Bromomethane                  | ND               |            | 5.0        | 3.5  | ug/L |   |          | 07/26/14 04:10 | 5       |
| Carbon disulfide              | ND               |            | 5.0        | 0.95 | ug/L |   |          | 07/26/14 04:10 | 5       |
| Carbon tetrachloride          | ND               |            | 5.0        | 1.4  | ug/L |   |          | 07/26/14 04:10 | 5       |
| Chlorobenzene                 | ND               |            | 5.0        | 3.8  | ug/L |   |          | 07/26/14 04:10 | 5       |
| Dibromochloromethane          | ND               |            | 5.0        | 1.6  | ug/L |   |          | 07/26/14 04:10 | 5       |
| Chloroethane                  | ND               |            | 5.0        | 1.6  | ug/L |   |          | 07/26/14 04:10 | 5       |
| Chloroform                    | ND               |            | 5.0        | 1.7  | ug/L |   |          | 07/26/14 04:10 | 5       |
| Chloromethane                 | ND               |            | 5.0        | 1.8  | ug/L |   |          | 07/26/14 04:10 | 5       |
| cis-1,2-Dichloroethene        | ND               |            | 5.0        | 4.1  | ug/L |   |          | 07/26/14 04:10 | 5       |
| cis-1,3-Dichloropropene       | ND               |            | 5.0        | 1.8  | ug/L |   |          | 07/26/14 04:10 | 5       |
| Cyclohexane                   | 52               |            | 5.0        | 0.90 | ug/L |   |          | 07/26/14 04:10 | 5       |
| Dichlorodifluoromethane       | ND               |            | 5.0        | 3.4  | ug/L |   |          | 07/26/14 04:10 | 5       |
| Ethylbenzene                  | 190              |            | 5.0        | 3.7  | ug/L |   |          | 07/26/14 04:10 | 5       |
| Isopropylbenzene              | 6.6              |            | 5.0        | 4.0  | ug/L |   |          | 07/26/14 04:10 | 5       |
| Methyl acetate                | ND               |            | 13         | 2.5  | ug/L |   |          | 07/26/14 04:10 | 5       |
| Methyl tert-butyl ether       | ND               |            | 5.0        | 0.80 | ug/L |   |          | 07/26/14 04:10 | 5       |
| Methylcyclohexane             | 25               |            | 5.0        | 0.80 | ug/L |   |          | 07/26/14 04:10 | 5       |
| Methylene Chloride            | 9.8              |            | 5.0        | 2.2  | ug/L |   |          | 07/26/14 04:10 | 5       |
| Styrene                       | ND               |            | 5.0        | 3.7  | ug/L |   |          | 07/26/14 04:10 | 5       |
| Tetrachloroethene             | ND               |            | 5.0        | 1.8  | ug/L |   |          | 07/26/14 04:10 | 5       |
| Toluene                       | 34               |            | 5.0        | 2.6  | ug/L |   |          | 07/26/14 04:10 | 5       |
| trans-1,2-Dichloroethene      | ND               |            | 5.0        | 4.5  | ug/L |   |          | 07/26/14 04:10 | 5       |
| trans-1,3-Dichloropropene     | ND               |            | 5.0        | 1.9  | ug/L |   |          | 07/26/14 04:10 | 5       |
| Trichloroethene               | ND               |            | 5.0        | 2.3  | ug/L |   |          | 07/26/14 04:10 | 5       |
| Trichlorofluoromethane        | ND               |            | 5.0        | 4.4  | ug/L |   |          | 07/26/14 04:10 | 5       |
| Vinyl chloride                | ND               |            | 5.0        | 4.5  | ug/L |   |          | 07/26/14 04:10 | 5       |
| Xylenes, Total                | 360              |            | 10         | 3.3  | ug/L |   |          | 07/26/14 04:10 | 5       |
| Surrogate                     | %Recovery        | Qualifier  | Limits     |      |      |   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr)  | 98               |            | 66 - 137   |      |      | - |          | 07/26/14 04:10 | 5       |
| Toluene-d8 (Surr)             | 100              |            | 71 - 126   |      |      |   |          | 07/26/14 04:10 | 5       |
| 4-Bromofluorobenzene (Surr)   | 109              |            | 73 - 120   |      |      |   |          | 07/26/14 04:10 | 5       |
| Dibromofluoromethane (Surr)   | 99               |            | 60 - 140   |      |      |   |          | 07/26/14 04:10 | 5       |

#### Client Sample ID: MS-MW-04

Date Collected: 07/23/14 09:40 Date Received: 07/24/14 12:50

| Method: 8260C - Volatile Organic Con  | npounds l | oy GC/MS  |     |      |      |   |          |                |         |
|---------------------------------------|-----------|-----------|-----|------|------|---|----------|----------------|---------|
| Analyte                               | Result    | Qualifier | RL  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| 1,1,1-Trichloroethane                 | ND        |           | 2.0 | 1.6  | ug/L |   |          | 07/26/14 04:34 | 2       |
| 1,1,2,2-Tetrachloroethane             | ND        |           | 2.0 | 0.42 | ug/L |   |          | 07/26/14 04:34 | 2       |
| 1,1,2-Trichloroethane                 | ND        |           | 2.0 | 0.46 | ug/L |   |          | 07/26/14 04:34 | 2       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND        |           | 2.0 | 0.62 | ug/L |   |          | 07/26/14 04:34 | 2       |
| 1,1-Dichloroethane                    | ND        |           | 2.0 | 0.76 | ug/L |   |          | 07/26/14 04:34 | 2       |
| 1,1-Dichloroethene                    | ND        |           | 2.0 | 0.58 | ug/L |   |          | 07/26/14 04:34 | 2       |
| 1,2,4-Trichlorobenzene                | ND        |           | 2.0 | 0.82 | ug/L |   |          | 07/26/14 04:34 | 2       |
| 1,2-Dibromo-3-Chloropropane           | ND        |           | 2.0 | 0.78 | ug/L |   |          | 07/26/14 04:34 | 2       |

TestAmerica Buffalo

Lab Sample ID: 480-64332-4

Matrix: Water

TestAmerica Job ID: 480-64332-1

#### Lab Sample ID: 480-64332-3 Matrix: Water

#### Client Sample ID: MS-MW-04 Date Collected: 07/23/14 09:40 Date Received: 07/24/14 12:50

| TestAmerica | Job | ID: | 480- | 64332 | -1 |
|-------------|-----|-----|------|-------|----|

#### Lab Sample ID: 480-64332-4 Matrix: Water

| Method: 8260C - Volatile Orga | nic Compounds b | y GC/MS ( | Continued) |      |      |   |          |                |         |
|-------------------------------|-----------------|-----------|------------|------|------|---|----------|----------------|---------|
| Analyte                       | Result          | Qualifier | RL         | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| 1,2-Dibromoethane             | ND              |           | 2.0        | 1.5  | ug/L |   |          | 07/26/14 04:34 | 2       |
| 1,2-Dichlorobenzene           | ND              |           | 2.0        | 1.6  | ug/L |   |          | 07/26/14 04:34 | 2       |
| 1,2-Dichloroethane            | ND              |           | 2.0        | 0.42 | ug/L |   |          | 07/26/14 04:34 | 2       |
| 1,2-Dichloropropane           | ND              |           | 2.0        | 1.4  | ug/L |   |          | 07/26/14 04:34 | 2       |
| 1,3-Dichlorobenzene           | ND              |           | 2.0        | 1.6  | ug/L |   |          | 07/26/14 04:34 | 2       |
| 1,4-Dichlorobenzene           | ND              |           | 2.0        | 1.7  | ug/L |   |          | 07/26/14 04:34 | 2       |
| 2-Hexanone                    | ND              |           | 10         | 2.5  | ug/L |   |          | 07/26/14 04:34 | 2       |
| 2-Butanone (MEK)              | 7.2             | J         | 20         | 2.6  | ug/L |   |          | 07/26/14 04:34 | 2       |
| 4-Methyl-2-pentanone (MIBK)   | ND              |           | 10         | 4.2  | ug/L |   |          | 07/26/14 04:34 | 2       |
| Acetone                       | 22              |           | 20         | 6.0  | ug/L |   |          | 07/26/14 04:34 | 2       |
| Benzene                       | 150             |           | 2.0        | 0.82 | ug/L |   |          | 07/26/14 04:34 | 2       |
| Bromodichloromethane          | ND              |           | 2.0        | 0.78 | ug/L |   |          | 07/26/14 04:34 | 2       |
| Bromoform                     | ND              |           | 2.0        | 0.52 | ug/L |   |          | 07/26/14 04:34 | 2       |
| Bromomethane                  | ND              |           | 2.0        | 1.4  | ug/L |   |          | 07/26/14 04:34 | 2       |
| Carbon disulfide              | ND              |           | 2.0        | 0.38 | ug/L |   |          | 07/26/14 04:34 | 2       |
| Carbon tetrachloride          | ND              |           | 2.0        | 0.54 | ug/L |   |          | 07/26/14 04:34 | 2       |
| Chlorobenzene                 | ND              |           | 2.0        | 1.5  | ug/L |   |          | 07/26/14 04:34 | 2       |
| Dibromochloromethane          | ND              |           | 2.0        | 0.64 | ug/L |   |          | 07/26/14 04:34 | 2       |
| Chloroethane                  | ND              |           | 2.0        | 0.64 | ug/L |   |          | 07/26/14 04:34 | 2       |
| Chloroform                    | ND              |           | 2.0        | 0.68 | ug/L |   |          | 07/26/14 04:34 | 2       |
| Chloromethane                 | ND              |           | 2.0        | 0.70 | ug/L |   |          | 07/26/14 04:34 | 2       |
| cis-1,2-Dichloroethene        | ND              |           | 2.0        | 1.6  | ug/L |   |          | 07/26/14 04:34 | 2       |
| cis-1,3-Dichloropropene       | ND              |           | 2.0        | 0.72 | ug/L |   |          | 07/26/14 04:34 | 2       |
| Cyclohexane                   | 52              |           | 2.0        | 0.36 | ug/L |   |          | 07/26/14 04:34 | 2       |
| Dichlorodifluoromethane       | ND              |           | 2.0        | 1.4  | ug/L |   |          | 07/26/14 04:34 | 2       |
| Ethylbenzene                  | 180             |           | 2.0        | 1.5  | ug/L |   |          | 07/26/14 04:34 | 2       |
| Isopropylbenzene              | 8.1             |           | 2.0        | 1.6  | ug/L |   |          | 07/26/14 04:34 | 2       |
| Methyl acetate                | ND              |           | 5.0        | 1.0  | ug/L |   |          | 07/26/14 04:34 | 2       |
| Methyl tert-butyl ether       | ND              |           | 2.0        | 0.32 | ug/L |   |          | 07/26/14 04:34 | 2       |
| Methylcyclohexane             | 33              |           | 2.0        | 0.32 | ug/L |   |          | 07/26/14 04:34 | 2       |
| Methylene Chloride            | 6.6             |           | 2.0        | 0.88 | ug/L |   |          | 07/26/14 04:34 | 2       |
| Styrene                       | ND              |           | 2.0        | 1.5  | ug/L |   |          | 07/26/14 04:34 | 2       |
| Tetrachloroethene             | ND              |           | 2.0        | 0.72 | ug/L |   |          | 07/26/14 04:34 | 2       |
| Toluene                       | 39              |           | 2.0        | 1.0  | ug/L |   |          | 07/26/14 04:34 | 2       |
| trans-1,2-Dichloroethene      | ND              |           | 2.0        | 1.8  | ug/L |   |          | 07/26/14 04:34 | 2       |
| trans-1,3-Dichloropropene     | ND              |           | 2.0        | 0.74 | ug/L |   |          | 07/26/14 04:34 | 2       |
| Trichloroethene               | ND              |           | 2.0        | 0.92 | ug/L |   |          | 07/26/14 04:34 | 2       |
| Trichlorofluoromethane        | ND              |           | 2.0        | 1.8  | ug/L |   |          | 07/26/14 04:34 | 2       |
| Vinyl chloride                | ND              |           | 2.0        | 1.8  | ug/L |   |          | 07/26/14 04:34 | 2       |
| Xylenes, Total                | 160             |           | 4.0        | 1.3  | ug/L |   |          | 07/26/14 04:34 | 2       |
| Surrogate                     | %Recovery       | Qualifier | Limits     |      |      |   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr)  | 102             |           | 66 - 137   |      |      |   |          | 07/26/14 04:34 | 2       |
| Toluene-d8 (Surr)             | 101             |           | 71 - 126   |      |      |   |          | 07/26/14 04:34 | 2       |
| 4-Bromofluorobenzene (Surr)   | 107             |           | 73 - 120   |      |      |   |          | 07/26/14 04:34 | 2       |
| Dibromofluoromethane (Surr)   | 101             |           | 60 - 140   |      |      |   |          | 07/26/14 04:34 | 2       |

#### Client Sample ID: MW-02R Date Collected: 07/23/14 12:35 Date Received: 07/24/14 12:50

#### Lab Sample ID: 480-64332-5 Matrix: Water

| 1.1.1-Trichlocothane       ND       1.0       0.82       upL       072214 18:00         1.1.2-Trichloroshane       ND       1.0       0.21       upL       072214 18:00         1.1.2-Trichloroshane       ND       1.0       0.21       upL       072214 18:00         1.1.2-Trichloroshane       ND       1.0       0.31       upL       072214 18:00         1.1.2-Trichloroshane       ND       1.0       0.31       upL       072214 18:00         1.1-Dehtosothene       ND       1.0       0.39       upL       072214 18:00         1.2-Dehtosothene       ND       1.0       0.41       0.72       upL       072214 18:00         1.2-Dehtosothene       ND       1.0       0.41       0.72       upL       072214 18:00         1.2-Dehtosothene       ND       1.0       0.41       0.72       upL       072214 18:00         1.2-Dehtosothene       ND       1.0       0.41 </th <th>Analyte</th> <th>Result</th> <th>Qualifier</th> <th>RL</th> <th>MDL</th> <th>Unit</th> <th>D</th> <th>Prepared</th> <th>Analyzed</th> <th>Dil Fac</th>                                                                       | Analyte                               | Result | Qualifier | RL  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------|-----------|-----|------|------|---|----------|----------------|---------------------------------------|
| 1.2.2.Prinktonethane       ND       1.0       0.21       upL       0725/1418.09         1.2.2.Trikhtonethane       ND       1.0       0.31       upL       0725/1418.09         1.1.2.Trikhtonethane       ND       1.0       0.31       upL       0725/1418.09         1.1.2.Trikhtonethane       ND       1.0       0.31       upL       0725/1418.09         1.2.4.Trikhtonethane       ND       1.0       0.24       upL       0725/1418.09         1.2.4.Trikhtonethane       ND       1.0       0.24       upL       0725/1418.09         1.2.4.Trikhtonethane       ND       1.0       0.73       upL       0725/1418.09         1.2.Dehronethane       ND       1.0       0.73       upL       0725/1418.09         1.2.Dehronethane       ND       1.0       0.72       upL       0725/1418.09                                                                                                                                                                                                                                   | 1,1,1-Trichloroethane                 | ND     |           | 1.0 | 0.82 | ug/L |   |          | 07/25/14 18:09 | 1                                     |
| 1.2.Princio-2.Primate       ND       1.0       0.23       upL       0725/14 18:09         1.1.Princio-2.Primate       ND       1.0       0.34       upL       0725/14 18:09         1.1.Princion-2.Primate       ND       1.0       0.34       upL       0725/14 18:09         1.1.Princion-2.Primate       ND       1.0       0.34       upL       0725/14 18:09         1.2.Primate       ND       1.0       0.34       upL       0725/14 18:09         1.2.Disconstructure       ND       1.0       0.73       upL       0725/14 18:09         1.2.Disconstructure       ND       1.0       0.73       upL       0725/14 18:09         1.2.Disconstructure       ND       1.0       0.73       upL       0725/14 18:09         1.2.Disconstructure       ND       1.0       0.74       upL       0725/14 18:09         1.2.Disconstructure       ND       1.0       0.72       0725/14 18:09       0725/14 18:09         1.2.Disconstructure       ND       1.0       0.72       0725/14 18:09       0725/14 18:09         1.2.Disconstructure       ND       1.0       0.30       upL       0725/14 18:09         2.4.Lancer, Micki       ND       1.0       0.30                                                                                                                                                                                                                     | 1,1,2,2-Tetrachloroethane             | ND     |           | 1.0 | 0.21 | ug/L |   |          | 07/25/14 18:09 | 1                                     |
| 1, 2-Trichoton-1.2.2-Millicorethane       ND       1.0       0.34       ugl.       07254'14.09         1, 1-Dichlorochane       ND       1.0       0.34       ugl.       07254'14.199         1, 1-Dichlorochane       ND       1.0       0.41       ugl.       07254'14.199         1, 2-A Trinitotoberzene       ND       1.0       0.41       ugl.       07254'14.199         1, 2-Dichroof-Schloropopane       ND       1.0       0.73       ugl.       07254'14.189         1, 2-Dichroof-Schloropopane       ND       1.0       0.73       ugl.       07254'14.189         1, 2-Dichroof-Schloropopane       ND       1.0       0.72       ugl.       07254'14.189         1, 2-Dichroof-Schloropopane       ND       1.0       0.72       ugl.       07254'14.189         1, 2-Dichroof-Schloropopane       ND       1.0       0.74       ugl.       07254'14.189         2-Dichroof-Schloropopane       ND       1.0       0.74       ugl.       07254'14.189         2-Dichroof-Schloropopane       ND       1.0       0.74       ugl.       07254'14.189         2-Evalono       ND       1.0       0.74       ugl.       07254'14.189         2-Evalonone (MEK)       ND <td< td=""><td>1,1,2-Trichloroethane</td><td>ND</td><td></td><td>1.0</td><td>0.23</td><td>ug/L</td><td></td><td></td><td>07/25/14 18:09</td><td>1</td></td<>                                          | 1,1,2-Trichloroethane                 | ND     |           | 1.0 | 0.23 | ug/L |   |          | 07/25/14 18:09 | 1                                     |
| 1,1-Dektorechnane         ND         1.0         0.38         upL         072514 18.09           12,4-Trichlorobenzane         ND         1.0         0.29         upL         072514 18.09           12,4-Trichlorobenzane         ND         1.0         0.39         upL         072514 18.09           12,2-Dictronobrane         ND         1.0         0.73         upL         072514 18.09           12,2-Dictronobrane         ND         1.0         0.73         upL         072514 18.09           12,2-Dictronobrane         ND         1.0         0.73         upL         072514 18.09           12,2-Dictronobrane         ND         1.0         0.74         upL         072514 18.09           12,2-Dictronobrane         ND         1.0         0.74         upL         072514 18.09           1,3-Dictronobrane         ND         1.0         0.74         upL         072514 18.09           2-Huanone (MIK)         ND         1.0         0.74         upL         072514 18.09           2-Huanone (MIK)         ND         1.0         0.30         upL         072514 18.09           2-Huanone (MIK)         ND         1.0         0.41         upL         072514 18.09                                                                                                                                                                                  | 1,1,2-Trichloro-1,2,2-trifluoroethane | ND     |           | 1.0 | 0.31 | ug/L |   |          | 07/25/14 18:09 | 1                                     |
| 1,4-Dichlorosethene         ND         1,0         0,2         upl,         0772514 18:09           1,2-Dichlorosethane         ND         10         0.41         upl,         072514 18:09           1,2-Dichlorosethane         ND         1.0         0.73         upl,         072514 18:09           1,2-Dichlorosethane         ND         1.0         0.73         upl,         072514 18:09           1,2-Dichlorosethane         ND         1.0         0.73         upl,         072514 18:09           1,2-Dichlorosethane         ND         1.0         0.74         upl,         072514 18:09           1,2-Dichlorosethane         ND         1.0         0.74         upl,         072514 18:09           1,4-Dichlorobenzane         ND         1.0         0.74         upl,         072514 18:09           2-Butanone (MEK)         ND         1.0         1.3         upl,         072514 18:09           2-Butanone (MEK)         ND         1.0         0.3         upl,         072514 18:09           Bromodichloromethane         ND         1.0         0.3         upl,         072514 18:09           Bromodichloromethane         ND         1.0         0.4         upl,         072514 18:09                                                                                                                                                              | 1,1-Dichloroethane                    | ND     |           | 1.0 | 0.38 | ug/L |   |          | 07/25/14 18:09 | 1                                     |
| 12.4-Trichkorberzene       ND       1.0       0.4       upt.       0725/14 18.09         12.2-Daromo-Schoropropane       ND       1.0       0.73       upt.       0725/14 18.09         12.2-Daromo-Schoropropane       ND       1.0       0.73       upt.       0725/14 18.09         12.2-Darboromo-Schoropropane       ND       1.0       0.72       upt.       0725/14 18.09         12.2-Darboromo-Schoropropane       ND       1.0       0.72       upt.       0725/14 18.09         12.2-Darboromo-Schoropropane       ND       1.0       0.73       upt.       0725/14 18.09         12.2-Darboromo-Schoropropane       ND       1.0       0.74       upt.       0725/14 18.09         2-Hoarone (MEK)       ND       10       0.74       upt.       0725/14 18.09         2-Hoarone (MEK)       ND       1.0       0.3       upt.       0725/14 18.09         Bromoderm       ND       1.0       0.3       upt.       0725/14 18.09         Bromoderm       ND       1.0       0.41       upt.       0725/14 18.09         Bromoderm       ND       1.0       0.41       upt.       0725/14 18.09         Bromoderm       ND       1.0       0.22       upt. </td <td>1,1-Dichloroethene</td> <td>ND</td> <td></td> <td>1.0</td> <td>0.29</td> <td>ug/L</td> <td></td> <td></td> <td>07/25/14 18:09</td> <td>1</td>                                                              | 1,1-Dichloroethene                    | ND     |           | 1.0 | 0.29 | ug/L |   |          | 07/25/14 18:09 | 1                                     |
| 1.2-Dbromos-Achivopropane       ND       1.0       0.73       ugL       0725/14/18.09         1.2-Dbromosthane       ND       1.0       0.73       ugL       0725/14/18.09         1.2-Dbrihoroberzene       ND       1.0       0.74       ugL       0725/14/18.09         1.2-Dbrihoroberzene       ND       1.0       0.72       ugL       0725/14/18.09         1.2-Dbrihoroberzene       ND       1.0       0.74       ugL       0725/14/18.09         1.3-Dbrihoroberzene       ND       1.0       0.74       ugL       0725/14/18.09         2-Aveanone (MEK)       ND       1.0       0.71       ugL       0725/14/18.09         2-Aveanone (MEK)       ND       1.0       0.30       ugL       0725/14/18.09         2-Aveanone (MEK)       ND       1.0       0.31       ugL       0725/14/18.09         Bernordenone (MEK)       ND       1.0       0.33       ugL       0725/14/18.09         Bernordenone (MEK)       ND       1.0       0.33       ugL       0725/14/18.09         Bernordenone (MEK)       ND       1.0       0.34       ugL       0725/14/18.09         Bernordenone ND       1.0       0.39       ugL       0725/14/18.09 <t< td=""><td>1,2,4-Trichlorobenzene</td><td>ND</td><td></td><td>1.0</td><td>0.41</td><td>ug/L</td><td></td><td></td><td>07/25/14 18:09</td><td>1</td></t<>                                                                     | 1,2,4-Trichlorobenzene                | ND     |           | 1.0 | 0.41 | ug/L |   |          | 07/25/14 18:09 | 1                                     |
| 1.2-Dichloromethane       ND       1.0       0.73       ugL       0725/14 18.09         1.2-Dichlorobenzene       ND       1.0       0.73       ugL       0725/14 18.09         1.2-Dichlorobenzene       ND       1.0       0.72       ugL       0725/14 18.09         1.2-Dichlorobenzene       ND       1.0       0.72       ugL       0725/14 18.09         1.3-Dichlorobenzene       ND       1.0       0.74       ugL       0725/14 18.09         2-Hexanone       ND       1.0       0.74       ugL       0725/14 18.09         2-Hexanone       ND       1.0       0.84       ugL       0725/14 18.09         2-Hexanone       ND       1.0       0.41       ugL       0725/14 18.09         2-Atexino       ND       1.0       0.41       ugL       0725/14 18.09         Bernodichloromethane       ND       1.0       0.41       ugL       0725/14 18.09         Bromodichloromethane       ND       1.0       0.41       ugL       0725/14 18.09         Bromodichloromethane       ND       1.0       0.42       ugL       0725/14 18.09         Bromodichloromethane       ND       1.0       0.22       ugL       0725/14 18.09                                                                                                                                                                                                                                            | 1,2-Dibromo-3-Chloropropane           | ND     |           | 1.0 | 0.39 | ug/L |   |          | 07/25/14 18:09 | 1                                     |
| 1.2-Dichloropenne         ND         1.0         0.79         upL         07/25/14 18:09           1.2-Dichloropenne         ND         1.0         0.72         upL         07/25/14 18:09           1.3-Dichloropenne         ND         1.0         0.72         upL         07/25/14 18:09           1.3-Dichloropenne         ND         1.0         0.74         upL         07/25/14 18:09           1.4-Dichlorobenzene         ND         0.0         1.2         upL         07/25/14 18:09           2-Hexanone         ND         1.0         0.74         upL         07/25/14 18:09           2-Husanone (MEK)         ND         1.0         1.3         upL         07/25/14 18:09           2-Austanone (MEK)         ND         1.0         0.30         upL         07/25/14 18:09           Benzene         ND         1.0         0.30         upL         07/25/14 18:09           Bromodichromethane         ND         1.0         0.30         upL         07/25/14 18:09           Bromodichromethane         ND         1.0         0.25         upL         07/25/14 18:09           Carbon disulfide         ND         1.0         0.25         upL         07/25/14 18:09                                                                                                                                                                                  | 1,2-Dibromoethane                     | ND     |           | 1.0 | 0.73 | ug/L |   |          | 07/25/14 18:09 | 1                                     |
| 1.2-Dichloroperipane       ND       1.0       0.21       ug/L       0725/1418:09         1.2-Dichloroperizane       ND       1.0       0.72       ug/L       0725/1418:09         1.4-Dichloroberizane       ND       1.0       0.74       ug/L       0725/1418:09         1.4-Dichloroberizane       ND       1.0       0.84       ug/L       0725/1418:09         2-Hexanone       ND       1.0       0.84       ug/L       0725/1418:09         2-Butanone (MEK)       ND       1.0       0.30       ug/L       0725/1418:09         2-Butanone (MEK)       ND       1.0       0.30       ug/L       0725/1418:09         2-Butanone (MIBK)       ND       1.0       0.34       ug/L       0725/1418:09         Bernzene       ND       1.0       0.26       ug/L       0725/1418:09         Bromoform       ND       1.0       0.26       ug/L       0725/1418:09         Carbon distalfide       ND       1.0       0.27       ug/L       0725/1418:09         Carbon distalfide       ND       1.0       0.27       ug/L       0725/1418:09         Choroberane       ND       1.0       0.27       ug/L       0725/1418:09                                                                                                                                                                                                                                                         | 1,2-Dichlorobenzene                   | ND     |           | 1.0 | 0.79 | ug/L |   |          | 07/25/14 18:09 | 1                                     |
| 1.2-Dichloropopane       ND       1.0       0.72       ugl.       0725/14/18:0.9         1.3-Dichloropopane       ND       1.0       0.78       ugl.       0725/14/18:0.9         1.4-Dichlorobenzane       ND       5.0       1.2       ugl.       0725/14/18:0.9         2-Hexanone       ND       1.0       0.84       ugl.       0725/14/18:0.9         2-Hexanone       ND       1.0       0.4       ugl.       0725/14/18:0.9         4-Methyl-2-pentanone (MIEK)       ND       1.0       0.4       ugl.       0725/14/18:0.9         Acetone       ND       1.0       0.41       ugl.       0725/14/18:0.9         Bornadichloromethane       ND       1.0       0.39       ugl.       0725/14/18:0.9         Bromadichloromethane       ND       1.0       0.26       ugl.       0725/14/18:0.9         Bromadichloromethane       ND       1.0       0.19       ugl.       0725/14/18:0.9         Bromadichloromethane       ND       1.0       0.10       0.27       ugl.       0725/14/18:0.9         Carbon disulfie       ND       1.0       0.21       ugl.       0725/14/18:0.9       0.10         Chlorobertane       ND       1.0       0.32                                                                                                                                                                                                                            | 1,2-Dichloroethane                    | ND     |           | 1.0 | 0.21 | ug/L |   |          | 07/25/14 18:09 | 1                                     |
| 1.3-Dicklorobenzene         ND         1.0         0.78         ug/L         0725/14 18.09           1.4-Dicklorobenzene         ND         1.0         0.84         ug/L         0725/14 18.09           2-Buranone (MEK)         ND         10         1.3         ug/L         0725/14 18.09           2-Buranone (MEK)         ND         10         1.3         ug/L         0725/14 18.09           2-Buranone (MEK)         ND         10         3.0         ug/L         0725/14 18.09           Benzene         ND         1.0         0.41         ug/L         0725/14 18.09           Benzene         ND         1.0         0.41         ug/L         0725/14 18.09           Bromodichtromethane         ND         1.0         0.41         ug/L         0725/14 18.09           Bromodichtromethane         ND         1.0         0.26         ug/L         0725/14 18.09           Bromodichtromethane         ND         1.0         0.27         ug/L         0725/14 18.09           Carbon Istrickiching         ND         1.0         0.27         ug/L         0725/14 18.09           Dichorobinzene         ND         1.0         0.35         ug/L         0725/14 18.09           Di                                                                                                                                                                       | 1,2-Dichloropropane                   | ND     |           | 1.0 | 0.72 | ug/L |   |          | 07/25/14 18:09 | 1                                     |
| 1.4-DichlorobenzeneND1.00.84ugL0725/14 18.092-HexanoneND5.01.2ugL0725/14 18.092-Manone (MEK)ND5.02.1ugL0725/14 18.094-Methyl-2-pentanone (MBK)ND1.00.30ugL0725/14 18.09AcetoneND1.00.30ugL0725/14 18.09Benzene'ND1.00.39ugL0725/14 18.09BromodichloromethaneND1.00.39ugL0725/14 18.09BromodichloromethaneND1.00.26ugL0725/14 18.09BromodichloromethaneND1.00.26ugL0725/14 18.09Carbon taisufideND1.00.27ugL0725/14 18.09Carbon taisufideND1.00.27ugL0725/14 18.09ChrobenzeneND1.00.27ugL0725/14 18.09ChrobenzeneND1.00.32ugL0725/14 18.09ChrobenzeneND1.00.32ugL0725/14 18.09ChrobenzeneND1.00.32ugL0725/14 18.09ChrobenzeneND1.00.32ugL0725/14 18.09ChrobenzeneND1.00.32ugL0725/14 18.09ChrobenzeneND1.00.35ugL0725/14 18.09ChrobenzeneND1.00.35ugL0725/14 18.09ChrobenzeneND1.00.74ugL0725/14 18.09<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,3-Dichlorobenzene                   | ND     |           | 1.0 | 0.78 | ug/L |   |          | 07/25/14 18:09 | 1                                     |
| 2-Hexanone         ND         5.0         1.2         ugL         0725/14         18:00           2-Butanone (MEK)         ND         10         1.3         ugL         0725/14         18:09           Avetone         ND         10         3.0         ugL         0725/14         18:09           Benzene         ND         10         0.41         ugL         0725/14         18:09           Bromodichomethane         ND         1.0         0.41         ugL         0725/14         18:09           Bromodichomethane         ND         1.0         0.29         ugL         0725/14         18:09           Bromodichomethane         ND         1.0         0.29         ugL         0725/14         18:09           Cathon feurachoride         ND         1.0         0.27         ugL         0725/14         18:09           Cathon feurachoride         ND         1.0         0.32         ugL         0725/14         18:09           Chorobenzene         ND         1.0         0.32         ugL         0725/14         18:09           Chorobenzene         ND         1.0         0.32         ugL         0725/14         18:09           Chorobenzene                                                                                                                                                                                                        | 1,4-Dichlorobenzene                   | ND     |           | 1.0 | 0.84 | ug/L |   |          | 07/25/14 18:09 | 1                                     |
| 2-Bulanone (MEK)         ND         10         1.3         ug/L         0725/14 18:09           4-Methyl-zpentanone (MIBK)         ND         5.0         2.1         ug/L         0725/14 18:09           Acetone         ND         1.0         0.41         ug/L         0725/14 18:09           Benzene         ND         1.0         0.41         ug/L         0725/14 18:09           Bromodichioromethane         ND         1.0         0.26         ug/L         0725/14 18:09           Bromodichioromethane         ND         1.0         0.69         ug/L         0725/14 18:09           Carbon disulfide         ND         1.0         0.69         ug/L         0725/14 18:09           Chlorobenzene         ND         1.0         0.75         ug/L         0725/14 18:09           Chlorobenzene         ND         1.0         0.75         ug/L         0725/14 18:09           Chlorobenzene         ND         1.0         0.32         ug/L         0725/14 18:09           Chlorobenzene         ND         1.0         0.34         ug/L         0725/14 18:09           Chlorobenzene         ND         1.0         0.34         ug/L         0725/14 18:09           Chlorobenzene                                                                                                                                                                       | 2-Hexanone                            | ND     |           | 5.0 | 1.2  | ug/L |   |          | 07/25/14 18:09 | 1                                     |
| 4-Methyl-2-pentanone (MIBK)         ND         5.0         2.1         ug/L         07/25/14         18:09           Acetone         ND         1.0         0.40         ug/L         07/25/14         18:09           Benzene         ND         1.0         0.41         ug/L         07/25/14         18:09           Bromodichloromethane         ND         1.0         0.28         ug/L         07/25/14         18:09           Bromodichloromethane         ND         1.0         0.26         ug/L         07/25/14         18:09           Bromodichloromethane         ND         1.0         0.27         ug/L         07/25/14         18:09           Dibromochloromethane         ND         1.0         0.72         ug/L         07/25/14         18:09           Dibromochloromethane         ND         1.0         0.32         ug/L         07/25/14         18:09           Chloromethane         ND         1.0         0.34         ug/L         07/25/14         18:09           Chloromethane         ND         1.0         0.34         ug/L         07/25/14         18:09           Chloromethane         ND         1.0         0.34         ug/L         07/25/14         18:09                                                                                                                                                                         | 2-Butanone (MEK)                      | ND     |           | 10  | 1.3  | ug/L |   |          | 07/25/14 18:09 | 1                                     |
| Acetone         ND         10         3.0         ug/L         07/25/14         18:09           Benzene         ND         1.0         0.41         ug/L         07/25/14         18:09           Bromodichloromethane         ND         1.0         0.39         ug/L         07/25/14         18:09           Bromotorn         ND         1.0         0.26         ug/L         07/25/14         18:09           Bromoternane         ND         1.0         0.69         ug/L         07/25/14         18:09           Carbon tetrachloride         ND         1.0         0.19         ug/L         07/25/14         18:09           Chiorobenzene         ND         1.0         0.27         ug/L         07/25/14         18:09           Chiorobenzene         ND         1.0         0.32         ug/L         07/25/14         18:09           Chiorobenzene         ND         1.0         0.32         ug/L         07/25/14         18:09           Chiorobenzene         ND         1.0         0.34         ug/L         07/25/14         18:09           Chiorobenzene         ND         1.0         0.34         ug/L         07/25/14         18:09           Chio                                                                                                                                                                                                   | 4-Methyl-2-pentanone (MIBK)           | ND     |           | 5.0 | 2.1  | ug/L |   |          | 07/25/14 18:09 | 1                                     |
| Benzene         ND         1.0         0.41         ug/L         07/25/14         18:09           Bromodichloromethane         ND         1.0         0.39         ug/L         07/25/14         18:09           Bromodrom         ND         1.0         0.26         ug/L         07/25/14         18:09           Bromorthane         ND         1.0         0.69         ug/L         07/25/14         18:09           Carbon tetrachloride         ND         1.0         0.19         ug/L         07/25/14         18:09           Choroberzene         ND         1.0         0.77         ug/L         07/25/14         18:09           Chioroberzene         ND         1.0         0.72         ug/L         07/25/14         18:09           Chiorobertane         ND         1.0         0.32         ug/L         07/25/14         18:09           Chioroferm         ND         1.0         0.32         ug/L         07/25/14         18:09           Chioromethane         ND         1.0         0.33         ug/L         07/25/14         18:09           Chioromethane         ND         1.0         0.34         ug/L         07/25/14         18:09           C                                                                                                                                                                                                   | Acetone                               | ND     |           | 10  | 3.0  | ug/L |   |          | 07/25/14 18:09 | 1                                     |
| Bromodichloromethane         ND         1.0         0.39         ug/L         07/25/14 18:09           Bromoform         ND         1.0         0.26         ug/L         07/25/14 18:09           Bromomethane         ND         1.0         0.19         ug/L         07/25/14 18:09           Carbon disulfide         ND         1.0         0.19         ug/L         07/25/14 18:09           Carbon disulfide         ND         1.0         0.27         ug/L         07/25/14 18:09           Chiorobenzene         ND         1.0         0.75         ug/L         07/25/14 18:09           Dibromochioromethane         ND         1.0         0.32         ug/L         07/25/14 18:09           Chiorobenzene         ND         1.0         0.32         ug/L         07/25/14 18:09           Chioromethane         ND         1.0         0.34         ug/L         07/25/14 18:09           Chioromethane         ND         1.0         0.34         ug/L         07/25/14 18:09           Chioromethane         ND         1.0         0.84         ug/L         07/25/14 18:09           Chioromethane         ND         1.0         0.74         ug/L         07/25/14 18:09           Chio                                                                                                                                                                       | Benzene                               | ND     |           | 1.0 | 0.41 | ug/L |   |          | 07/25/14 18:09 | 1                                     |
| Bromoform         ND         1.0         0.26         ug/L         07/25/14 18:09           Bromomethane         ND         1.0         0.69         ug/L         07/25/14 18:09           Carbon disulfide         ND         1.0         0.27         ug/L         07/25/14 18:09           Carbon tetrachloride         ND         1.0         0.27         ug/L         07/25/14 18:09           Chlorobenzene         ND         1.0         0.32         ug/L         07/25/14 18:09           Dibromochloromethane         ND         1.0         0.32         ug/L         07/25/14 18:09           Chlorobr         ND         1.0         0.32         ug/L         07/25/14 18:09           Chlorobr         ND         1.0         0.34         ug/L         07/25/14 18:09           Chlorobr         ND         1.0         0.81         ug/L         07/25/14 18:09           Cisi-13-Dichloropropene         ND         1.0         0.81         ug/L         07/25/14 18:09           Ethylbenzene         ND         1.0         0.74         ug/L         07/25/14 18:09           Isopropiberzene         ND         1.0         0.74         ug/L         07/25/14 18:09           Stybener <td>Bromodichloromethane</td> <td>ND</td> <td></td> <td>1.0</td> <td>0.39</td> <td>ug/L</td> <td></td> <td></td> <td>07/25/14 18:09</td> <td>1</td>                      | Bromodichloromethane                  | ND     |           | 1.0 | 0.39 | ug/L |   |          | 07/25/14 18:09 | 1                                     |
| Bromomethane         ND         1.0         0.69         ug/L         07/25/14         18.09           Carbon disulfide         ND         1.0         0.19         ug/L         07/25/14         18.09           Carbon tetrachloride         ND         1.0         0.27         ug/L         07/25/14         18.09           Choroberzene         ND         1.0         0.75         ug/L         07/25/14         18.09           Dibromochloromethane         ND         1.0         0.32         ug/L         07/25/14         18.09           Chioroberzene         ND         1.0         0.32         ug/L         07/25/14         18.09           Chioromethane         ND         1.0         0.35         ug/L         07/25/14         18.09           Cis-12-Dichloroethene         ND         1.0         0.81         ug/L         07/25/14         18.09           Cis-13-Dichloroptopene         ND         1.0         0.35         ug/L         07/25/14         18.09           Dichlorodifluoromethane         ND         1.0         0.36         ug/L         07/25/14         18.09           Dichlorodifluoromethane         ND         1.0         0.74         ug/L         07/25/14                                                                                                                                                                       | Bromoform                             | ND     |           | 1.0 | 0.26 | ug/L |   |          | 07/25/14 18:09 | 1                                     |
| Carbon disulfide         ND         1.0         0.19         ug/L         07/25/14 18:09           Carbon tetrachloride         ND         1.0         0.27         ug/L         07/25/14 18:09           Chiorobenzene         ND         1.0         0.32         ug/L         07/25/14 18:09           Dibromochloromethane         ND         1.0         0.32         ug/L         07/25/14 18:09           Chiorobenane         ND         1.0         0.32         ug/L         07/25/14 18:09           Chiorobenane         ND         1.0         0.35         ug/L         07/25/14 18:09           Chiorobenane         ND         1.0         0.35         ug/L         07/25/14 18:09           Cis-1.2-Dichloroptopene         ND         1.0         0.36         ug/L         07/25/14 18:09           Cis-1.3-Dichloroptopene         ND         1.0         0.36         ug/L         07/25/14 18:09           Cipclohexane         ND         1.0         0.48         ug/L         07/25/14 18:09           Sopropylbenzene         ND         1.0         0.74         ug/L         07/25/14 18:09           Isopropylbenzene         ND         1.0         0.74         ug/L         07/25/14 18:09                                                                                                                                                               | Bromomethane                          | ND     |           | 1.0 | 0.69 | ug/L |   |          | 07/25/14 18:09 | 1                                     |
| Carbon tetrachloride         ND         1.0         0.27         ug/L         07/25/14 18:09           Chlorobenzene         ND         1.0         0.75         ug/L         07/25/14 18:09           Dibromochloromethane         ND         1.0         0.32         ug/L         07/25/14 18:09           Chlorothane         ND         1.0         0.32         ug/L         07/25/14 18:09           Chlorothane         ND         1.0         0.34         ug/L         07/25/14 18:09           Chlorothane         ND         1.0         0.35         ug/L         07/25/14 18:09           Chlorothorethane         ND         1.0         0.35         ug/L         07/25/14 18:09           Cis-13-Dichloroptopene         ND         1.0         0.81         ug/L         07/25/14 18:09           Dichlorodifluoromethane         ND         1.0         0.81         ug/L         07/25/14 18:09           Dichlorodifluoromethane         ND         1.0         0.81         ug/L         07/25/14 18:09           Dichlorodifluoromethane         ND         1.0         0.74         ug/L         07/25/14 18:09           Sopropylbenzene         ND         1.0         0.74         ug/L         07/25/14 18:09 <td>Carbon disulfide</td> <td>ND</td> <td></td> <td>1.0</td> <td>0.19</td> <td>ug/L</td> <td></td> <td></td> <td>07/25/14 18:09</td> <td>1</td> | Carbon disulfide                      | ND     |           | 1.0 | 0.19 | ug/L |   |          | 07/25/14 18:09 | 1                                     |
| Chlorobenzene         ND         1.0         0.75         ug/L         07/25/14 18:09           Dibromochloromethane         ND         1.0         0.32         ug/L         07/25/14 18:09           Chlorobethane         ND         1.0         0.32         ug/L         07/25/14 18:09           Chlorotoftane         ND         1.0         0.34         ug/L         07/25/14 18:09           Chlorotethane         ND         1.0         0.35         ug/L         07/25/14 18:09           cis-1,2-Dichlorotethene         ND         1.0         0.35         ug/L         07/25/14 18:09           cis-1,3-Dichloroppene         ND         1.0         0.36         ug/L         07/25/14 18:09           Cyclohexane         1.1         1.0         0.36         ug/L         07/25/14 18:09           Dichlorodiflucromethane         ND         1.0         0.36         ug/L         07/25/14 18:09           Ethylenzene         ND         1.0         0.74         ug/L         07/25/14 18:09           Isopropylbenzene         ND         1.0         0.74         ug/L         07/25/14 18:09           Methyl acetate         ND         1.0         0.16         ug/L         07/25/14 18:09                                                                                                                                                                 | Carbon tetrachloride                  | ND     |           | 1.0 | 0.27 | ug/L |   |          | 07/25/14 18:09 | 1                                     |
| Dibromochloromethane         ND         1.0         0.32         ug/L         07/25/14 18:09           Chloroethane         ND         1.0         0.32         ug/L         07/25/14 18:09           Chloroform         ND         1.0         0.34         ug/L         07/25/14 18:09           Chloromethane         ND         1.0         0.35         ug/L         07/25/14 18:09           cis-1,2-Dichloroptene         ND         1.0         0.36         ug/L         07/25/14 18:09           Cyclohexane         ND         1.0         0.36         ug/L         07/25/14 18:09           Dichloroptipene         ND         1.0         0.81         ug/L         07/25/14 18:09           Cyclohexane         ND         1.0         0.48         ug/L         07/25/14 18:09           Dichlorodifluoromethane         ND         1.0         0.74         ug/L         07/25/14 18:09           Isopropylbenzene         ND         1.0         0.74         ug/L         07/25/14 18:09           Methyl acetate         ND         1.0         0.74         ug/L         07/25/14 18:09           Methyl acetate         ND         1.0         0.74         ug/L         07/25/14 18:09                                                                                                                                                                             | Chlorobenzene                         | ND     |           | 1.0 | 0.75 | ug/L |   |          | 07/25/14 18:09 | 1                                     |
| Chloroethane         ND         1.0         0.32         ug/L         07/25/14 18:09           Chloroethane         ND         1.0         0.34         ug/L         07/25/14 18:09           Chloroethane         ND         1.0         0.35         ug/L         07/25/14 18:09           cis-1,2-Dichloroethene         ND         1.0         0.81         ug/L         07/25/14 18:09           cis-1,3-Dichloropropene         ND         1.0         0.81         ug/L         07/25/14 18:09           Cyclohexane         1.1         1.0         0.18         ug/L         07/25/14 18:09           Dichlorodifluoromethane         ND         1.0         0.68         ug/L         07/25/14 18:09           Stopropylbenzene         ND         1.0         0.74         ug/L         07/25/14 18:09           Methyl acetate         ND         1.0         0.74         ug/L         07/25/14 18:09                                                                                                                                                                     | Dibromochloromethane                  | ND     |           | 1.0 | 0.32 | ug/L |   |          | 07/25/14 18:09 | 1                                     |
| Chloroform         ND         1.0         0.34         ug/L         07/25/14 18:09           Chloromethane         ND         1.0         0.35         ug/L         07/25/14 18:09           cis-1,2-Dichloroethene         ND         1.0         0.81         ug/L         07/25/14 18:09           cis-1,3-Dichloropropene         ND         1.0         0.81         ug/L         07/25/14 18:09           Cyclohexane         1.1         1.0         0.16         ug/L         07/25/14 18:09           Dichlorodifluoromethane         ND         1.0         0.68         ug/L         07/25/14 18:09           Ethylbenzene         ND         1.0         0.74         ug/L         07/25/14 18:09           Isopropylbenzene         ND         1.0         0.74         ug/L         07/25/14 18:09           Methyl acetate         ND         1.0         0.74         ug/L         07/25/14 18:09           Methyl cyclohexane         0.86         J         1.0         0.16         ug/L         07/25/14 18:09           Styrene         ND         1.0         0.16         ug/L         07/25/14 18:09         118:09           Tetrachloroethene         ND         1.0         0.44         ug/L                                                                                                                                                                  | Chloroethane                          | ND     |           | 1.0 | 0.32 | ug/L |   |          | 07/25/14 18:09 | 1                                     |
| Chloromethane         ND         1.0         0.35         u/L         07/25/14 18:09           cis-1,2-Dichloroethene         ND         1.0         0.81         ug/L         07/25/14 18:09           cis-1,3-Dichloropropene         ND         1.0         0.36         ug/L         07/25/14 18:09           Cyclobexane         1.1         1.0         0.18         ug/L         07/25/14 18:09           Dichlorodifluoromethane         ND         1.0         0.68         ug/L         07/25/14 18:09           Ethylbenzene         ND         1.0         0.74         ug/L         07/25/14 18:09           Stopropylbenzene         ND         1.0         0.74         ug/L         07/25/14 18:09           Methyl acctate         ND         1.0         0.74         ug/L         07/25/14 18:09           Methylacctate         ND         1.0         0.79         ug/L         07/25/14 18:09           Methylacctate         ND         1.0         0.16         ug/L         07/25/14 18:09           Methylacctohexane         0.86         J         1.0         0.16         ug/L         07/25/14 18:09           Styrene         ND         1.0         0.74         ug/L         07/25/14 18:09                                                                                                                                                             | Chloroform                            | ND     |           | 1.0 | 0.34 | ug/L |   |          | 07/25/14 18:09 | 1                                     |
| cis-1,2-Dichloroethene       ND       1.0       0.81       ug/L       07/25/14 18:09         cis-1,3-Dichloropropene       ND       1.0       0.36       ug/L       07/25/14 18:09         Cyclohexane       1.1       1.0       0.18       ug/L       07/25/14 18:09         Dichlorodifluoromethane       ND       1.0       0.68       ug/L       07/25/14 18:09         Ethylbenzene       ND       1.0       0.74       ug/L       07/25/14 18:09         Isopropylbenzene       ND       1.0       0.74       ug/L       07/25/14 18:09         Methyl acetate       ND       2.5       0.50       ug/L       07/25/14 18:09         Methyl acetate       ND       1.0       0.16       ug/L       07/25/14 18:09         Methylen Chlorde       0.86       J       1.0       0.16       ug/L       07/25/14 18:09         Styrene       ND       1.0       0.44       ug/L       07/25/14 18:09       07/25/14 18:09         Toluene       ND       1.0       0.44       ug/L       07/25/14 18:09       07/25/14 18:09         Toluene       ND       1.0       0.36       ug/L       07/25/14 18:09       07/25/14 18:09         Toluene       ND <td>Chloromethane</td> <td>ND</td> <td></td> <td>1.0</td> <td>0.35</td> <td>ug/L</td> <td></td> <td></td> <td>07/25/14 18:09</td> <td>1</td>                                                                                   | Chloromethane                         | ND     |           | 1.0 | 0.35 | ug/L |   |          | 07/25/14 18:09 | 1                                     |
| cis-1,3-Dichloropropene         ND         1.0         0.36         ug/L         07/25/14 18:09           Cyclohexane         1.1         1.0         0.18         ug/L         07/25/14 18:09           Dichlorodifluoromethane         ND         1.0         0.68         ug/L         07/25/14 18:09           Ethylbenzene         ND         1.0         0.74         ug/L         07/25/14 18:09           Isopropylbenzene         ND         1.0         0.79         ug/L         07/25/14 18:09           Methyl acetate         ND         2.5         0.50         ug/L         07/25/14 18:09           Methyl cyclohexane         0.86         J         1.0         0.16         ug/L         07/25/14 18:09           Methylcyclohexane         0.86         J         1.0         0.16         ug/L         07/25/14 18:09           Methylene Chloride         ND         1.0         0.16         ug/L         07/25/14 18:09           Styrene         ND         1.0         0.73         ug/L         07/25/14 18:09           Toluene         ND         1.0         0.73         ug/L         07/25/14 18:09           trans-1,2-Dichloropthene         ND         1.0         0.37         ug/L                                                                                                                                                                 | cis-1,2-Dichloroethene                | ND     |           | 1.0 | 0.81 | ug/L |   |          | 07/25/14 18:09 | 1                                     |
| Cyclohexane         1.1         1.0         0.18         ug/L         07/25/14 18:09           Dichlorodifiuoromethane         ND         1.0         0.68         ug/L         07/25/14 18:09           Ethylbenzene         ND         1.0         0.74         ug/L         07/25/14 18:09           Isopropylbenzene         ND         1.0         0.79         ug/L         07/25/14 18:09           Methyl acetate         ND         2.5         0.50         ug/L         07/25/14 18:09           Methyl acetate         ND         1.0         0.16         ug/L         07/25/14 18:09           Methyl cyclohexane         0.86         J         1.0         0.16         ug/L         07/25/14 18:09           Methylcyclohexane         0.86         J         1.0         0.16         ug/L         07/25/14 18:09           Styrene         ND         1.0         0.44         ug/L         07/25/14 18:09           Toluene         ND         1.0         0.36         ug/L         07/25/14 18:09           trans-1,2-Dichloroethene         ND         1.0         0.37         ug/L         07/25/14 18:09           trans-1,3-Dichloropropene         ND         1.0         0.37         ug/L                                                                                                                                                                   | cis-1,3-Dichloropropene               | ND     |           | 1.0 | 0.36 | ug/L |   |          | 07/25/14 18:09 | 1                                     |
| Dichlorodifluoromethane         ND         1.0         0.68         ug/L         07/25/14         18:09           Ethylbenzene         ND         1.0         0.74         ug/L         07/25/14         18:09           Isopropylbenzene         ND         1.0         0.79         ug/L         07/25/14         18:09           Methyl acetate         ND         2.5         0.50         ug/L         07/25/14         18:09           Methyl acetate         ND         1.0         0.16         ug/L         07/25/14         18:09           Methyl acetate         ND         1.0         0.16         ug/L         07/25/14         18:09           Methyl acetate         ND         1.0         0.16         ug/L         07/25/14         18:09           Methyl erc Chloride         ND         1.0         0.44         ug/L         07/25/14         18:09           Styrene         ND         1.0         0.73         ug/L         07/25/14         18:09           Toluene         ND         1.0         0.36         ug/L         07/25/14         18:09           trans-1,2-Dichloroethene         ND         1.0         0.90         ug/L         07/25/14         18:09                                                                                                                                                                                        | Cvclohexane                           | 1.1    |           | 1.0 | 0.18 | ug/L |   |          | 07/25/14 18:09 | 1                                     |
| Ethylbenzene         ND         1.0         0.74         ug/L         07/25/14 18:09           Isopropylbenzene         ND         1.0         0.79         ug/L         07/25/14 18:09           Methyl acetate         ND         2.5         0.50         ug/L         07/25/14 18:09           Methyl acetate         ND         1.0         0.16         ug/L         07/25/14 18:09           Methyl tert-butyl ether         ND         1.0         0.16         ug/L         07/25/14 18:09           Methyl colohexane         0.86         J         1.0         0.16         ug/L         07/25/14 18:09           Methylene Chloride         ND         1.0         0.44         ug/L         07/25/14 18:09           Styrene         ND         1.0         0.73         ug/L         07/25/14 18:09           Tetrachloroethene         ND         1.0         0.36         ug/L         07/25/14 18:09           Toluene         ND         1.0         0.31         ug/L         07/25/14 18:09         07/25/14 18:09           Trichloroethene         ND         1.0         0.37         ug/L         07/25/14 18:09         07/25/14 18:09           Trichloroethene         ND         1.0         0.88                                                                                                                                                            | Dichlorodifluoromethane               | ND     |           | 1.0 | 0.68 | ug/L |   |          | 07/25/14 18:09 | 1                                     |
| Joorpopylbenzene         ND         1.0         0.79         ug/L         07/25/14 18:09           Methyl acetate         ND         2.5         0.50         ug/L         07/25/14 18:09           Methyl tert-butyl ether         ND         1.0         0.16         ug/L         07/25/14 18:09           Methyl tert-butyl ether         ND         1.0         0.16         ug/L         07/25/14 18:09           Methyl cyclohexane         0.86         J         1.0         0.16         ug/L         07/25/14 18:09           Methyl ethoride         ND         1.0         0.44         ug/L         07/25/14 18:09           Styrene         ND         1.0         0.44         ug/L         07/25/14 18:09           Tetrachloroethene         ND         1.0         0.36         ug/L         07/25/14 18:09           Toluene         ND         1.0         0.36         ug/L         07/25/14 18:09           trans-1,2-Dichloroethene         ND         1.0         0.90         ug/L         07/25/14 18:09           trans-1,3-Dichloropropene         ND         1.0         0.37         ug/L         07/25/14 18:09           Trichlorofluoromethane         ND         1.0         0.46         ug/L                                                                                                                                                         | Ethylbenzene                          | ND     |           | 1.0 | 0.74 | ug/L |   |          | 07/25/14 18:09 | 1                                     |
| Methyl acetate       ND       2.5       0.50       ug/L       07/25/14       18:09         Methyl tert-butyl ether       ND       1.0       0.16       ug/L       07/25/14       18:09         Methyl cyclohexane       0.86       J       1.0       0.16       ug/L       07/25/14       18:09         Methyl cyclohexane       0.86       J       1.0       0.16       ug/L       07/25/14       18:09         Methyl ene Chloride       ND       1.0       0.44       ug/L       07/25/14       18:09         Styrene       ND       1.0       0.73       ug/L       07/25/14       18:09         Tetrachloroethene       ND       1.0       0.73       ug/L       07/25/14       18:09         Toluene       ND       1.0       0.73       ug/L       07/25/14       18:09         trans-1,2-Dichloroethene       ND       1.0       0.51       ug/L       07/25/14       18:09         trans-1,3-Dichloropropene       ND       1.0       0.90       ug/L       07/25/14       18:09         Trichloroethene       ND       1.0       0.46       ug/L       07/25/14       18:09         Vingl chloride       ND       1.0                                                                                                                                                                                                                                                           | Isopropylbenzene                      | ND     |           | 1.0 | 0.79 | ug/L |   |          | 07/25/14 18:09 | 1                                     |
| Methyl tert-butyl ether         ND         1.0         0.16         ug/L         07/25/14 18:09           Methylcyclohexane         0.86         J         1.0         0.16         ug/L         07/25/14 18:09           Methylene Chloride         ND         1.0         0.44         ug/L         07/25/14 18:09           Styrene         ND         1.0         0.44         ug/L         07/25/14 18:09           Tetrachloroethene         ND         1.0         0.73         ug/L         07/25/14 18:09           Toluene         ND         1.0         0.36         ug/L         07/25/14 18:09           Toluene         ND         1.0         0.51         ug/L         07/25/14 18:09           trans-1,2-Dichloroethene         ND         1.0         0.51         ug/L         07/25/14 18:09           trans-1,3-Dichloropropene         ND         1.0         0.90         ug/L         07/25/14 18:09           Trichloroethene         ND         1.0         0.37         ug/L         07/25/14 18:09           Trichlorofluoromethane         ND         1.0         0.46         ug/L         07/25/14 18:09           Vingl chloride         ND         1.0         0.88         ug/L         07/25/14                                                                                                                                                       | Methyl acetate                        | ND     |           | 2.5 | 0.50 | ug/L |   |          | 07/25/14 18:09 | 1                                     |
| Methylcyclohexane         0.86         J         1.0         0.16         ug/L         07/25/14         18:09           Methylene Chloride         ND         1.0         0.44         ug/L         07/25/14         18:09           Styrene         ND         1.0         0.73         ug/L         07/25/14         18:09           Tetrachloroethene         ND         1.0         0.73         ug/L         07/25/14         18:09           Toluene         ND         1.0         0.36         ug/L         07/25/14         18:09           Toluene         ND         1.0         0.36         ug/L         07/25/14         18:09           trans-1,2-Dichloroethene         ND         1.0         0.90         ug/L         07/25/14         18:09           trans-1,3-Dichloropropene         ND         1.0         0.90         ug/L         07/25/14         18:09           Trichloroethene         ND         1.0         0.37         ug/L         07/25/14         18:09           Trichlorofluoromethane         ND         1.0         0.46         ug/L         07/25/14         18:09           Vinyl chloride         ND         1.0         0.88         ug/L         07/25/14                                                                                                                                                                                 | Methyl tert-butyl ether               | ND     |           | 1.0 | 0.16 | ug/L |   |          | 07/25/14 18:09 | 1                                     |
| Methylene Chloride         ND         1.0         0.44         ug/L         07/25/14         18:09           Styrene         ND         1.0         0.73         ug/L         07/25/14         18:09           Tetrachloroethene         ND         1.0         0.36         ug/L         07/25/14         18:09           Toluene         ND         1.0         0.36         ug/L         07/25/14         18:09           trans-1,2-Dichloroethene         ND         1.0         0.51         ug/L         07/25/14         18:09           trans-1,2-Dichloroethene         ND         1.0         0.90         ug/L         07/25/14         18:09           trans-1,3-Dichloropropene         ND         1.0         0.90         ug/L         07/25/14         18:09           Trichloroethene         ND         1.0         0.37         ug/L         07/25/14         18:09           Trichloroethene         ND         1.0         0.46         ug/L         07/25/14         18:09           Vingl chloride         ND         1.0         0.88         ug/L         07/25/14         18:09           Vingl chloride         ND         1.0         0.90         ug/L         07/25/14         18:0                                                                                                                                                                         | Methylcyclohexane                     | 0.86   | J         | 1.0 | 0.16 | ug/L |   |          | 07/25/14 18:09 | 1                                     |
| Styrene         ND         1.0         0.73         ug/L         07/25/14         18:09           Tetrachloroethene         ND         1.0         0.36         ug/L         07/25/14         18:09           Toluene         ND         1.0         0.51         ug/L         07/25/14         18:09           Toluene         ND         1.0         0.51         ug/L         07/25/14         18:09           trans-1,2-Dichloroethene         ND         1.0         0.90         ug/L         07/25/14         18:09           trans-1,3-Dichloroptopene         ND         1.0         0.37         ug/L         07/25/14         18:09           Trichloroethene         ND         1.0         0.37         ug/L         07/25/14         18:09           Trichlorofluoromethane         ND         1.0         0.46         ug/L         07/25/14         18:09           Vinyl chloride         ND         1.0         0.88         ug/L         07/25/14         18:09           Vingle chloride         ND         1.0         0.88         ug/L         07/25/14         18:09                                                                                                                                                                                                                                                                                              | Methylene Chloride                    | ND     | -         | 1.0 | 0.44 | ug/L |   |          | 07/25/14 18:09 | 1                                     |
| Tetrachloroethene       ND       1.0       0.36       ug/L       07/25/14       18:09         Toluene       ND       1.0       0.51       ug/L       07/25/14       18:09         trans-1,2-Dichloroethene       ND       1.0       0.90       ug/L       07/25/14       18:09         trans-1,3-Dichloroptopene       ND       1.0       0.37       ug/L       07/25/14       18:09         Trichloroethene       ND       1.0       0.37       ug/L       07/25/14       18:09         Trichloroethene       ND       1.0       0.46       ug/L       07/25/14       18:09         Trichlorofluoromethane       ND       1.0       0.46       ug/L       07/25/14       18:09         Vinyl chloride       ND       1.0       0.88       ug/L       07/25/14       18:09         Vingle choride       ND       1.0       0.90       ug/L       07/25/14       18:09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Styrene                               | ND     |           | 1.0 | 0.73 | ua/L |   |          | 07/25/14 18:09 |                                       |
| Toluene         ND         1.0         0.51         ug/L         07/25/14         18:09           trans-1,2-Dichloroethene         ND         1.0         0.90         ug/L         07/25/14         18:09           trans-1,3-Dichloroptopene         ND         1.0         0.37         ug/L         07/25/14         18:09           Trichloroethene         ND         1.0         0.37         ug/L         07/25/14         18:09           Trichloroethene         ND         1.0         0.46         ug/L         07/25/14         18:09           Trichlorofluoromethane         ND         1.0         0.88         ug/L         07/25/14         18:09           Vinyl chloride         ND         1.0         0.88         ug/L         07/25/14         18:09           Vingle chloride         ND         1.0         0.90         ug/L         07/25/14         18:09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Tetrachloroethene                     | ND     |           | 1.0 | 0.36 | ug/L |   |          | 07/25/14 18:09 | 1                                     |
| trans-1,2-Dichloroethene       ND       1.0       0.90       ug/L       07/25/14 18:09         trans-1,3-Dichloropropene       ND       1.0       0.37       ug/L       07/25/14 18:09         Trichloroethene       ND       1.0       0.46       ug/L       07/25/14 18:09         Trichloroethene       ND       1.0       0.46       ug/L       07/25/14 18:09         Vinyl chloride       ND       1.0       0.88       ug/L       07/25/14 18:09         Vinyl chloride       ND       1.0       0.90       ug/L       07/25/14 18:09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Toluene                               | ND     |           | 1.0 | 0.51 | ug/L |   |          | 07/25/14 18:09 | 1                                     |
| Instruction     Instruction     Instruction       trans-1,3-Dichloropropene     ND     1.0     0.37     ug/L     07/25/14     18:09       Trichloroethene     ND     1.0     0.46     ug/L     07/25/14     18:09       Trichlorofluoromethane     ND     1.0     0.88     ug/L     07/25/14     18:09       Vinyl chloride     ND     1.0     0.90     ug/L     07/25/14     18:09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | trans-1.2-Dichloroethene              | ND     |           | 1.0 | 0.90 | ug/L |   |          | 07/25/14 18:09 |                                       |
| Trichloroethene         ND         1.0         0.46         ug/L         07/25/14         18:09           Trichlorofluoromethane         ND         1.0         0.88         ug/L         07/25/14         18:09           Vinyl chloride         ND         1.0         0.90         ug/L         07/25/14         18:09           Vinyl chloride         ND         1.0         0.90         ug/L         07/25/14         18:09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | trans-1.3-Dichloropropene             | ND     |           | 1.0 | 0.37 | ua/L |   |          | 07/25/14 18:09 | 1                                     |
| Trichlorofluoromethane         ND         1.0         0.88         ug/L         07/25/14         18:09           Vinyl chloride         ND         1.0         0.90         ug/L         07/25/14         18:09           Vinyl chloride         ND         1.0         0.90         ug/L         07/25/14         18:09           Vinyl chloride         2.4         2.0         0.66         ug/L         07/25/14         18:09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Trichloroethene                       | ND     |           | 1.0 | 0.46 | ua/L |   |          | 07/25/14 18:09 | 1                                     |
| Vinyl chloride         ND         1.0         0.90         ug/L         07/25/14         18:09           Xylenes Total         2.4         2.0         0.66         ug/L         07/25/14         18:09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Trichlorofluoromethane                | ND     |           | 1.0 | 0.88 | ua/L |   |          | 07/25/14 18:09 | · · · · · · · · · · · · · · · · · · · |
| Yulanas Total         2.4         2.0         0.66         ug/l         07/25/14 19:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Vinvl chloride                        | ND     |           | 1.0 | 0.90 | ua/L |   |          | 07/25/14 18:09 | 1                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Xvienes Total                         | 2 4    |           | 2.0 | 0.66 | ug/l |   |          | 07/25/14 18:09 | 1                                     |

#### Client Sample ID: MW-02R Date Collected: 07/23/14 12:35

Date Received: 07/24/14 12:50

| Surrogate                    | %Recovery | Qualifier Limits | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|------------------|----------|----------------|---------|
| 1,2-Dichloroethane-d4 (Surr) | 92        | 66 - 137         |          | 07/25/14 18:09 | 1       |
| Toluene-d8 (Surr)            | 98        | 71 - 126         |          | 07/25/14 18:09 | 1       |
| 4-Bromofluorobenzene (Surr)  | 105       | 73 - 120         |          | 07/25/14 18:09 | 1       |
| Dibromofluoromethane (Surr)  | 95        | 60 - 140         |          | 07/25/14 18:09 | 1       |

#### Client Sample ID: TB

#### Date Collected: 07/23/14 00:00 Date Received: 07/24/14 12:50

| Method: 8260C - Volatile Organic      | Compounds by | GC/MS    |     |      |      |   |          |                |             |
|---------------------------------------|--------------|----------|-----|------|------|---|----------|----------------|-------------|
| Analyte                               | Result Q     | ualifier | RL  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac     |
| 1,1,1-Trichloroethane                 | ND           |          | 1.0 | 0.82 | ug/L |   |          | 07/25/14 18:33 |             |
| 1,1,2,2-Tetrachloroethane             | ND           |          | 1.0 | 0.21 | ug/L |   |          | 07/25/14 18:33 |             |
| 1,1,2-Trichloroethane                 | ND           |          | 1.0 | 0.23 | ug/L |   |          | 07/25/14 18:33 |             |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND           |          | 1.0 | 0.31 | ug/L |   |          | 07/25/14 18:33 |             |
| 1,1-Dichloroethane                    | ND           |          | 1.0 | 0.38 | ug/L |   |          | 07/25/14 18:33 |             |
| 1,1-Dichloroethene                    | ND           |          | 1.0 | 0.29 | ug/L |   |          | 07/25/14 18:33 |             |
| 1,2,4-Trichlorobenzene                | ND           |          | 1.0 | 0.41 | ug/L |   |          | 07/25/14 18:33 |             |
| 1,2-Dibromo-3-Chloropropane           | ND           |          | 1.0 | 0.39 | ug/L |   |          | 07/25/14 18:33 |             |
| 1,2-Dibromoethane                     | ND           |          | 1.0 | 0.73 | ug/L |   |          | 07/25/14 18:33 |             |
| 1,2-Dichlorobenzene                   | ND           |          | 1.0 | 0.79 | ug/L |   |          | 07/25/14 18:33 | • • • • • • |
| 1,2-Dichloroethane                    | ND           |          | 1.0 | 0.21 | ug/L |   |          | 07/25/14 18:33 |             |
| 1,2-Dichloropropane                   | ND           |          | 1.0 | 0.72 | ug/L |   |          | 07/25/14 18:33 |             |
| 1,3-Dichlorobenzene                   | ND           |          | 1.0 | 0.78 | ug/L |   |          | 07/25/14 18:33 |             |
| 1,4-Dichlorobenzene                   | ND           |          | 1.0 | 0.84 | ug/L |   |          | 07/25/14 18:33 |             |
| 2-Hexanone                            | ND           |          | 5.0 | 1.2  | ug/L |   |          | 07/25/14 18:33 |             |
| 2-Butanone (MEK)                      | ND           |          | 10  | 1.3  | ug/L |   |          | 07/25/14 18:33 | • • • • •   |
| 4-Methyl-2-pentanone (MIBK)           | ND           |          | 5.0 | 2.1  | ug/L |   |          | 07/25/14 18:33 |             |
| Acetone                               | ND           |          | 10  | 3.0  | ug/L |   |          | 07/25/14 18:33 |             |
| Benzene                               | ND           |          | 1.0 | 0.41 | ug/L |   |          | 07/25/14 18:33 |             |
| Bromodichloromethane                  | ND           |          | 1.0 | 0.39 | ug/L |   |          | 07/25/14 18:33 |             |
| Bromoform                             | ND           |          | 1.0 | 0.26 | ug/L |   |          | 07/25/14 18:33 |             |
| Bromomethane                          | ND           |          | 1.0 | 0.69 | ug/L |   |          | 07/25/14 18:33 |             |
| Carbon disulfide                      | ND           |          | 1.0 | 0.19 | ug/L |   |          | 07/25/14 18:33 |             |
| Carbon tetrachloride                  | ND           |          | 1.0 | 0.27 | ug/L |   |          | 07/25/14 18:33 |             |
| Chlorobenzene                         | ND           |          | 1.0 | 0.75 | ug/L |   |          | 07/25/14 18:33 |             |
| Dibromochloromethane                  | ND           |          | 1.0 | 0.32 | ug/L |   |          | 07/25/14 18:33 |             |
| Chloroethane                          | ND           |          | 1.0 | 0.32 | ug/L |   |          | 07/25/14 18:33 |             |
| Chloroform                            | ND           |          | 1.0 | 0.34 | ug/L |   |          | 07/25/14 18:33 |             |
| Chloromethane                         | ND           |          | 1.0 | 0.35 | ug/L |   |          | 07/25/14 18:33 |             |
| cis-1,2-Dichloroethene                | ND           |          | 1.0 | 0.81 | ug/L |   |          | 07/25/14 18:33 |             |
| cis-1,3-Dichloropropene               | ND           |          | 1.0 | 0.36 | ug/L |   |          | 07/25/14 18:33 |             |
| Cyclohexane                           | ND           |          | 1.0 | 0.18 | ug/L |   |          | 07/25/14 18:33 |             |
| Dichlorodifluoromethane               | ND           |          | 1.0 | 0.68 | ug/L |   |          | 07/25/14 18:33 |             |
| Ethylbenzene                          | ND           |          | 1.0 | 0.74 | ug/L |   |          | 07/25/14 18:33 |             |
| Isopropylbenzene                      | ND           |          | 1.0 | 0.79 | ug/L |   |          | 07/25/14 18:33 |             |
| Methyl acetate                        | ND           |          | 2.5 | 0.50 | ug/L |   |          | 07/25/14 18:33 |             |
| Methyl tert-butyl ether               | ND           |          | 1.0 | 0.16 | ug/L |   |          | 07/25/14 18:33 |             |
| Methylcyclohexane                     | ND           |          | 1.0 | 0.16 | ug/L |   |          | 07/25/14 18:33 |             |
| Methylene Chloride                    | ND           |          | 1.0 | 0.44 | ug/L |   |          | 07/25/14 18:33 |             |

Lab Sample ID: 480-64332-5

Lab Sample ID: 480-64332-6

Matrix: Water

Matrix: Water

RL

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

2.0

Limits

66 - 137

71 - 126

73 - 120

60 - 140

MDL Unit

0.73 ug/L

0.36 ug/L

0.51 ug/L

0.90 ug/L

0.37 ug/L

0.46 ug/L

0.88 ug/L

0.90 ug/L

0.66 ug/L

D

Prepared

Prepared

#### Client Sample ID: TB Date Collected: 07/23/14 00:00

Analyte

Styrene

Toluene

Tetrachloroethene

Trichloroethene

Vinyl chloride

Xylenes, Total

Toluene-d8 (Surr)

Surrogate

trans-1,2-Dichloroethene

Trichlorofluoromethane

trans-1,3-Dichloropropene

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Date Received: 07/24/14 12:50

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Result Qualifier

ND

ND

ND

ND

ND

ND

ND

ND

ND

93

99

103

100

Qualifier

%Recovery

#### Lab Sample ID: 480-64332-6 Matrix: Water

Analyzed

07/25/14 18:33

07/25/14 18:33

07/25/14 18:33

07/25/14 18:33

07/25/14 18:33

07/25/14 18:33

07/25/14 18:33

07/25/14 18:33

07/25/14 18:33

Analyzed

07/25/14 18:33

07/25/14 18:33

07/25/14 18:33

07/25/14 18:33

Dil Fac

1

1

1

1

1

1

1

1

1

1

1

1

1

Dil Fac

#### Method: 8260C - Volatile Organic Compounds by GC/MS

#### Matrix: Water

|                   |                        |          |          | Percent Surrogate Recover |          |  |  |  |
|-------------------|------------------------|----------|----------|---------------------------|----------|--|--|--|
|                   |                        | 12DCE    | TOL      | BFB                       | DBFM     |  |  |  |
| Lab Sample ID     | Client Sample ID       | (66-137) | (71-126) | (73-120)                  | (60-140) |  |  |  |
| 480-64332-1       | MS-MW-01               | 97       | 97       | 104                       | 102      |  |  |  |
| 480-64332-2       | MS-MW-02               | 98       | 100      | 111                       | 98       |  |  |  |
| 480-64332-2 - DL  | MS-MW-02               | 93       | 98       | 108                       | 96       |  |  |  |
| 480-64332-3       | MS-MW-03               | 98       | 100      | 109                       | 99       |  |  |  |
| 480-64332-4       | MS-MW-04               | 102      | 101      | 107                       | 101      |  |  |  |
| 480-64332-5       | MW-02R                 | 92       | 98       | 105                       | 95       |  |  |  |
| 480-64332-6       | ТВ                     | 93       | 99       | 103                       | 100      |  |  |  |
| LCS 480-194782/4  | Lab Control Sample     | 98       | 97       | 107                       | 100      |  |  |  |
| LCS 480-194884/4  | Lab Control Sample     | 94       | 100      | 107                       | 100      |  |  |  |
| LCSD 480-194782/5 | Lab Control Sample Dup | 97       | 98       | 108                       | 101      |  |  |  |
| MB 480-194782/7   | Method Blank           | 96       | 98       | 105                       | 100      |  |  |  |
| MB 480-194884/6   | Method Blank           | 94       | 98       | 106                       | 101      |  |  |  |
| Surrogate Legend  |                        |          |          |                           |          |  |  |  |

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

Prep Type: Total/NA

RL

MDL Unit

D

Prepared

Lab Sample ID: MB 480-194782/7

Analysis Batch: 194782

Matrix: Water

Analyte

Method: 8260C - Volatile Organic Compounds by GC/MS

MB MB

Result Qualifier

**Client Sample ID: Method Blank** 

Analyzed

Prep Type: Total/NA

Dil Fac

| 6 | 3 | 3 |  |
|---|---|---|--|
|   | 9 |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |

| 1,1,1-Trichloroethane                 | ND | 1.0 | 0.82 | ug/L | 07/25/14 13:38 1 |
|---------------------------------------|----|-----|------|------|------------------|
| 1,1,2,2-Tetrachloroethane             | ND | 1.0 | 0.21 | ug/L | 07/25/14 13:38 1 |
| 1,1,2-Trichloroethane                 | ND | 1.0 | 0.23 | ug/L | 07/25/14 13:38 1 |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND | 1.0 | 0.31 | ug/L | 07/25/14 13:38 1 |
| 1,1-Dichloroethane                    | ND | 1.0 | 0.38 | ug/L | 07/25/14 13:38 1 |
| 1,1-Dichloroethene                    | ND | 1.0 | 0.29 | ug/L | 07/25/14 13:38 1 |
| 1,2,4-Trichlorobenzene                | ND | 1.0 | 0.41 | ug/L | 07/25/14 13:38 1 |
| 1,2-Dibromo-3-Chloropropane           | ND | 1.0 | 0.39 | ug/L | 07/25/14 13:38 1 |
| 1,2-Dibromoethane                     | ND | 1.0 | 0.73 | ug/L | 07/25/14 13:38 1 |
| 1,2-Dichlorobenzene                   | ND | 1.0 | 0.79 | ug/L | 07/25/14 13:38 1 |
| 1,2-Dichloroethane                    | ND | 1.0 | 0.21 | ug/L | 07/25/14 13:38 1 |
| 1,2-Dichloropropane                   | ND | 1.0 | 0.72 | ug/L | 07/25/14 13:38 1 |
| 1,3-Dichlorobenzene                   | ND | 1.0 | 0.78 | ug/L | 07/25/14 13:38 1 |
| 1,4-Dichlorobenzene                   | ND | 1.0 | 0.84 | ug/L | 07/25/14 13:38 1 |
| 2-Hexanone                            | ND | 5.0 | 1.2  | ug/L | 07/25/14 13:38 1 |
| 2-Butanone (MEK)                      | ND | 10  | 1.3  | ug/L | 07/25/14 13:38 1 |
| 4-Methyl-2-pentanone (MIBK)           | ND | 5.0 | 2.1  | ug/L | 07/25/14 13:38 1 |
| Acetone                               | ND | 10  | 3.0  | ug/L | 07/25/14 13:38 1 |
| Benzene                               | ND | 1.0 | 0.41 | ug/L | 07/25/14 13:38 1 |
| Bromodichloromethane                  | ND | 1.0 | 0.39 | ug/L | 07/25/14 13:38 1 |
| Bromoform                             | ND | 1.0 | 0.26 | ug/L | 07/25/14 13:38 1 |
| Bromomethane                          | ND | 1.0 | 0.69 | ug/L | 07/25/14 13:38 1 |
| Carbon disulfide                      | ND | 1.0 | 0.19 | ug/L | 07/25/14 13:38 1 |
| Carbon tetrachloride                  | ND | 1.0 | 0.27 | ug/L | 07/25/14 13:38 1 |
| Chlorobenzene                         | ND | 1.0 | 0.75 | ug/L | 07/25/14 13:38 1 |
| Dibromochloromethane                  | ND | 1.0 | 0.32 | ug/L | 07/25/14 13:38 1 |
| Chloroethane                          | ND | 1.0 | 0.32 | ug/L | 07/25/14 13:38 1 |
| Chloroform                            | ND | 1.0 | 0.34 | ug/L | 07/25/14 13:38 1 |
| Chloromethane                         | ND | 1.0 | 0.35 | ug/L | 07/25/14 13:38 1 |
| cis-1,2-Dichloroethene                | ND | 1.0 | 0.81 | ug/L | 07/25/14 13:38 1 |
| cis-1,3-Dichloropropene               | ND | 1.0 | 0.36 | ug/L | 07/25/14 13:38 1 |
| Cyclohexane                           | ND | 1.0 | 0.18 | ug/L | 07/25/14 13:38 1 |
| Dichlorodifluoromethane               | ND | 1.0 | 0.68 | ug/L | 07/25/14 13:38 1 |
| Ethylbenzene                          | ND | 1.0 | 0.74 | ug/L | 07/25/14 13:38 1 |
| Isopropylbenzene                      | ND | 1.0 | 0.79 | ug/L | 07/25/14 13:38 1 |
| Methyl acetate                        | ND | 2.5 | 0.50 | ug/L | 07/25/14 13:38 1 |
| Methyl tert-butyl ether               | ND | 1.0 | 0.16 | ug/L | 07/25/14 13:38 1 |
| Methylcyclohexane                     | ND | 1.0 | 0.16 | ug/L | 07/25/14 13:38 1 |
| Methylene Chloride                    | ND | 1.0 | 0.44 | ug/L | 07/25/14 13:38 1 |
| Styrene                               | ND | 1.0 | 0.73 | ug/L | 07/25/14 13:38 1 |
| Tetrachloroethene                     | ND | 1.0 | 0.36 | ug/L | 07/25/14 13:38 1 |
| Toluene                               | ND | 1.0 | 0.51 | ug/L | 07/25/14 13:38 1 |
| trans-1,2-Dichloroethene              | ND | 1.0 | 0.90 | ug/L | 07/25/14 13:38 1 |
| trans-1,3-Dichloropropene             | ND | 1.0 | 0.37 | ug/L | 07/25/14 13:38 1 |
| Trichloroethene                       | ND | 1.0 | 0.46 | ug/L | 07/25/14 13:38 1 |
| Trichlorofluoromethane                | ND | 1.0 | 0.88 | ug/L | 07/25/14 13:38 1 |
| Vinyl chloride                        | ND | 1.0 | 0.90 | ug/L | 07/25/14 13:38 1 |
| Xylenes, Total                        | ND | 2.0 | 0.66 | ug/L | 07/25/14 13:38 1 |

Limits

66 - 137

71 - 126

73 - 120

60 - 140

Lab Sample ID: MB 480-194782/7

Analysis Batch: 194782

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Matrix: Water

Toluene-d8 (Surr)

Surrogate

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

MB MB

%Recovery Qualifier

96

98

105

100

# 5

# 8

12 13

#### **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Analyzed

07/25/14 13:38

07/25/14 13:38

07/25/14 13:38

07/25/14 13:38

Prepared

#### Lab Sample ID: LCS 480-194782/4 Matrix: Water

#### Analysis Batch: 194782

| ,                        | Calke | 1.00   | 1.00      |      |   |      | % Dee               |  |
|--------------------------|-------|--------|-----------|------|---|------|---------------------|--|
|                          | Бріке | LUS    | LCS       |      |   |      | %Rec.               |  |
| Analyte                  | Added | Result | Qualifier | Unit | D | %Rec | Limits              |  |
| 1,1-Dichloroethane       |       | 26.0   |           | ug/L |   | 104  | 71 - 129            |  |
| 1,1-Dichloroethene       | 25.0  | 26.2   |           | ug/L |   | 105  | 58 <sub>-</sub> 121 |  |
| 1,2-Dichlorobenzene      | 25.0  | 26.4   |           | ug/L |   | 105  | 80 - 124            |  |
| 1,2-Dichloroethane       | 25.0  | 25.7   |           | ug/L |   | 103  | 75 <sub>-</sub> 127 |  |
| Benzene                  | 25.0  | 23.9   |           | ug/L |   | 96   | 71 - 124            |  |
| Chlorobenzene            | 25.0  | 26.3   |           | ug/L |   | 105  | 72 - 120            |  |
| cis-1,2-Dichloroethene   | 25.0  | 25.5   |           | ug/L |   | 102  | 74 <sub>-</sub> 124 |  |
| Ethylbenzene             | 25.0  | 24.6   |           | ug/L |   | 99   | 77 - 123            |  |
| Methyl tert-butyl ether  | 25.0  | 23.3   |           | ug/L |   | 93   | 64 - 127            |  |
| Tetrachloroethene        | 25.0  | 27.7   |           | ug/L |   | 111  | 74 - 122            |  |
| Toluene                  | 25.0  | 24.1   |           | ug/L |   | 96   | 80 - 122            |  |
| trans-1,2-Dichloroethene | 25.0  | 25.0   |           | ug/L |   | 100  | 73 <sub>-</sub> 127 |  |
| Trichloroethene          | 25.0  | 25.6   |           | ug/L |   | 103  | 74 - 123            |  |
|                          |       |        |           |      |   |      |                     |  |

|                              | LCS       | LCS       |          |
|------------------------------|-----------|-----------|----------|
| Surrogate                    | %Recovery | Qualifier | Limits   |
| 1,2-Dichloroethane-d4 (Surr) | 98        |           | 66 - 137 |
| Toluene-d8 (Surr)            | 97        |           | 71 - 126 |
| 4-Bromofluorobenzene (Surr)  | 107       |           | 73 - 120 |
| Dibromofluoromethane (Surr)  | 100       |           | 60 - 140 |

#### Lab Sample ID: LCSD 480-194782/5 Matrix: Water

#### Analysis Batch: 194782

| -                        | Spike | LCSD   | LCSD      |      |   |      | %Rec.    |     | RPD   |
|--------------------------|-------|--------|-----------|------|---|------|----------|-----|-------|
| Analyte                  | Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD | Limit |
| 1,1-Dichloroethane       | 25.0  | 24.6   |           | ug/L |   | 98   | 71 - 129 | 6   | 20    |
| 1,1-Dichloroethene       | 25.0  | 24.5   |           | ug/L |   | 98   | 58 - 121 | 7   | 16    |
| 1,2-Dichlorobenzene      | 25.0  | 24.4   |           | ug/L |   | 97   | 80 - 124 | 8   | 20    |
| 1,2-Dichloroethane       | 25.0  | 25.2   |           | ug/L |   | 101  | 75 - 127 | 2   | 20    |
| Benzene                  | 25.0  | 23.3   |           | ug/L |   | 93   | 71 - 124 | 3   | 13    |
| Chlorobenzene            | 25.0  | 25.4   |           | ug/L |   | 102  | 72 - 120 | 3   | 25    |
| cis-1,2-Dichloroethene   | 25.0  | 24.8   |           | ug/L |   | 99   | 74 _ 124 | 3   | 15    |
| Ethylbenzene             | 25.0  | 23.9   |           | ug/L |   | 95   | 77 _ 123 | 3   | 15    |
| Methyl tert-butyl ether  | 25.0  | 23.7   |           | ug/L |   | 95   | 64 - 127 | 2   | 37    |
| Tetrachloroethene        | 25.0  | 26.9   |           | ug/L |   | 108  | 74 _ 122 | 3   | 20    |
| Toluene                  | 25.0  | 23.1   |           | ug/L |   | 93   | 80 - 122 | 4   | 15    |
| trans-1,2-Dichloroethene | 25.0  | 23.8   |           | ug/L |   | 95   | 73 - 127 | 5   | 20    |
| Trichloroethene          | 25.0  | 24.9   |           | ug/L |   | 100  | 74 - 123 | 3   | 16    |

TestAmerica Buffalo

Prep Type: Total/NA

Limits

66 - 137

71 - 126

73 - 120

60 - 140

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

LCSD LCSD

%Recovery Qualifier

97

98

108

101

Lab Sample ID: LCSD 480-194782/5

Prep Type: Total/NA

Prep Type: Total/NA

**Client Sample ID: Lab Control Sample Dup** 

# 2 3 4 5 6 7 8 9

Client Sample ID: Method Blank

Lab Sample ID: MB 480-194884/6 Matrix: Water

#### Analysis Batch: 194884

Matrix: Water

Toluene-d8 (Surr)

Surrogate

Analysis Batch: 194782

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

| -                                     | MB     | МВ        |     |      |      |   |          |                |         |
|---------------------------------------|--------|-----------|-----|------|------|---|----------|----------------|---------|
| Analyte                               | Result | Qualifier | RL  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| 1,1,1-Trichloroethane                 | ND     |           | 1.0 | 0.82 | ug/L |   |          | 07/25/14 23:11 | 1       |
| 1,1,2,2-Tetrachloroethane             | ND     |           | 1.0 | 0.21 | ug/L |   |          | 07/25/14 23:11 | 1       |
| 1,1,2-Trichloroethane                 | ND     |           | 1.0 | 0.23 | ug/L |   |          | 07/25/14 23:11 | 1       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND     |           | 1.0 | 0.31 | ug/L |   |          | 07/25/14 23:11 | 1       |
| 1,1-Dichloroethane                    | ND     |           | 1.0 | 0.38 | ug/L |   |          | 07/25/14 23:11 | 1       |
| 1,1-Dichloroethene                    | ND     |           | 1.0 | 0.29 | ug/L |   |          | 07/25/14 23:11 | 1       |
| 1,2,4-Trichlorobenzene                | ND     |           | 1.0 | 0.41 | ug/L |   |          | 07/25/14 23:11 | 1       |
| 1,2-Dibromo-3-Chloropropane           | ND     |           | 1.0 | 0.39 | ug/L |   |          | 07/25/14 23:11 | 1       |
| 1,2-Dibromoethane                     | ND     |           | 1.0 | 0.73 | ug/L |   |          | 07/25/14 23:11 | 1       |
| 1,2-Dichlorobenzene                   | ND     |           | 1.0 | 0.79 | ug/L |   |          | 07/25/14 23:11 | 1       |
| 1,2-Dichloroethane                    | ND     |           | 1.0 | 0.21 | ug/L |   |          | 07/25/14 23:11 | 1       |
| 1,2-Dichloropropane                   | ND     |           | 1.0 | 0.72 | ug/L |   |          | 07/25/14 23:11 | 1       |
| 1,3-Dichlorobenzene                   | ND     |           | 1.0 | 0.78 | ug/L |   |          | 07/25/14 23:11 | 1       |
| 1,4-Dichlorobenzene                   | ND     |           | 1.0 | 0.84 | ug/L |   |          | 07/25/14 23:11 | 1       |
| 2-Hexanone                            | ND     |           | 5.0 | 1.2  | ug/L |   |          | 07/25/14 23:11 | 1       |
| 2-Butanone (MEK)                      | ND     |           | 10  | 1.3  | ug/L |   |          | 07/25/14 23:11 | 1       |
| 4-Methyl-2-pentanone (MIBK)           | ND     |           | 5.0 | 2.1  | ug/L |   |          | 07/25/14 23:11 | 1       |
| Acetone                               | ND     |           | 10  | 3.0  | ug/L |   |          | 07/25/14 23:11 | 1       |
| Benzene                               | ND     |           | 1.0 | 0.41 | ug/L |   |          | 07/25/14 23:11 | 1       |
| Bromodichloromethane                  | ND     |           | 1.0 | 0.39 | ug/L |   |          | 07/25/14 23:11 | 1       |
| Bromoform                             | ND     |           | 1.0 | 0.26 | ug/L |   |          | 07/25/14 23:11 | 1       |
| Bromomethane                          | ND     |           | 1.0 | 0.69 | ug/L |   |          | 07/25/14 23:11 | 1       |
| Carbon disulfide                      | ND     |           | 1.0 | 0.19 | ug/L |   |          | 07/25/14 23:11 | 1       |
| Carbon tetrachloride                  | ND     |           | 1.0 | 0.27 | ug/L |   |          | 07/25/14 23:11 | 1       |
| Chlorobenzene                         | ND     |           | 1.0 | 0.75 | ug/L |   |          | 07/25/14 23:11 | 1       |
| Dibromochloromethane                  | ND     |           | 1.0 | 0.32 | ug/L |   |          | 07/25/14 23:11 | 1       |
| Chloroethane                          | ND     |           | 1.0 | 0.32 | ug/L |   |          | 07/25/14 23:11 | 1       |
| Chloroform                            | ND     |           | 1.0 | 0.34 | ug/L |   |          | 07/25/14 23:11 | 1       |
| Chloromethane                         | ND     |           | 1.0 | 0.35 | ug/L |   |          | 07/25/14 23:11 | 1       |
| cis-1,2-Dichloroethene                | ND     |           | 1.0 | 0.81 | ug/L |   |          | 07/25/14 23:11 | 1       |
| cis-1,3-Dichloropropene               | ND     |           | 1.0 | 0.36 | ug/L |   |          | 07/25/14 23:11 | 1       |
| Cyclohexane                           | ND     |           | 1.0 | 0.18 | ug/L |   |          | 07/25/14 23:11 | 1       |
| Dichlorodifluoromethane               | ND     |           | 1.0 | 0.68 | ug/L |   |          | 07/25/14 23:11 | 1       |
| Ethylbenzene                          | ND     |           | 1.0 | 0.74 | ug/L |   |          | 07/25/14 23:11 | 1       |
| Isopropylbenzene                      | ND     |           | 1.0 | 0.79 | ug/L |   |          | 07/25/14 23:11 | 1       |
| Methyl acetate                        | ND     |           | 2.5 | 0.50 | ug/L |   |          | 07/25/14 23:11 | 1       |
| Methyl tert-butyl ether               | ND     |           | 1.0 | 0.16 | ug/L |   |          | 07/25/14 23:11 | 1       |
| Methylcyclohexane                     | ND     |           | 1.0 | 0.16 | ug/L |   |          | 07/25/14 23:11 | 1       |
|                                       |        |           |     |      |      |   |          |                |         |

RL

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

2.0

Limits

66 - 137

71 - 126

73 - 120

60 - 140

MDL Unit

0.44 ug/L

0.73 ug/L

0.36 ug/L

0.51 ug/L

0.90 ug/L

0.37 ug/L

0.46 ug/L

0.88 ug/L

0.90 ug/L

0.66 ug/L

D

Prepared

Prepared

Lab Sample ID: MB 480-194884/6

Matrix: Water

Methylene Chloride

Tetrachloroethene

Trichloroethene

Vinyl chloride

Xylenes, Total

Surrogate

Toluene-d8 (Surr)

trans-1,2-Dichloroethene

Trichlorofluoromethane

trans-1,3-Dichloropropene

Analyte

Styrene

Toluene

Analysis Batch: 194884

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

MB MB Result Qualifier

ND

94

98

106

101

%Recovery

MB MB

Qualifier

**Client Sample ID: Method Blank** 

Analyzed

07/25/14 23:11

07/25/14 23:11

07/25/14 23:11

07/25/14 23:11

07/25/14 23:11

07/25/14 23:11

07/25/14 23:11

07/25/14 23:11

07/25/14 23:11

07/25/14 23:11

Analyzed

07/25/14 23:11

07/25/14 23:11

07/25/14 23:11

07/25/14 23:11

Prep Type: Total/NA

Dil Fac

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Dil Fac

# 2 3 4 5

| 8  |
|----|
|    |
| 9  |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
| 12 |

Dibromofluoromethane (Surr) Lab Sample ID: LCS 480-194884/4

#### Lab Sample ID: LCS 480-194884/ Matrix: Water

#### Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 194884

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

|                          | Spike | LCS    | LCS       |      |   |      | %Rec.               |  |
|--------------------------|-------|--------|-----------|------|---|------|---------------------|--|
| Analyte                  | Added | Result | Qualifier | Unit | D | %Rec | Limits              |  |
| 1,1-Dichloroethane       |       | 22.1   |           | ug/L |   | 89   | 71 - 129            |  |
| 1,1-Dichloroethene       | 25.0  | 22.6   |           | ug/L |   | 90   | 58 <sub>-</sub> 121 |  |
| 1,2-Dichlorobenzene      | 25.0  | 23.2   |           | ug/L |   | 93   | 80 _ 124            |  |
| 1,2-Dichloroethane       | 25.0  | 23.4   |           | ug/L |   | 94   | 75 <sub>-</sub> 127 |  |
| Benzene                  | 25.0  | 20.8   |           | ug/L |   | 83   | 71 <sub>-</sub> 124 |  |
| Chlorobenzene            | 25.0  | 23.7   |           | ug/L |   | 95   | 72 - 120            |  |
| cis-1,2-Dichloroethene   | 25.0  | 22.7   |           | ug/L |   | 91   | 74 <sub>-</sub> 124 |  |
| Ethylbenzene             | 25.0  | 22.4   |           | ug/L |   | 90   | 77 _ 123            |  |
| Methyl tert-butyl ether  | 25.0  | 21.9   |           | ug/L |   | 88   | 64 - 127            |  |
| Tetrachloroethene        | 25.0  | 23.4   |           | ug/L |   | 93   | 74 <sub>-</sub> 122 |  |
| Toluene                  | 25.0  | 21.8   |           | ug/L |   | 87   | 80 - 122            |  |
| trans-1,2-Dichloroethene | 25.0  | 22.3   |           | ug/L |   | 89   | 73 <sub>-</sub> 127 |  |
| Trichloroethene          | 25.0  | 23.0   |           | ug/L |   | 92   | 74 <sub>-</sub> 123 |  |
|                          |       |        |           |      |   |      |                     |  |

|                              | LUS       | LUS       |          |  |
|------------------------------|-----------|-----------|----------|--|
| Surrogate                    | %Recovery | Qualifier | Limits   |  |
| 1,2-Dichloroethane-d4 (Surr) | 94        |           | 66 - 137 |  |
| Toluene-d8 (Surr)            | 100       |           | 71 - 126 |  |
| 4-Bromofluorobenzene (Surr)  | 107       |           | 73 - 120 |  |
| Dibromofluoromethane (Surr)  | 100       |           | 60 - 140 |  |
|                              |           |           |          |  |

#### GC/MS VOA

#### Analysis Batch: 194782

| Client Sample ID       | Prep Type                                                                                                                | Matrix                                                                                                                                                                                                                                                 | Method                                                                                                                                                                                                                                                                                                                                  | Prep Batch                                                                                                                                                                                                                                      |
|------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MS-MW-01               | Total/NA                                                                                                                 | Water                                                                                                                                                                                                                                                  | 8260C                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                 |
| MS-MW-02               | Total/NA                                                                                                                 | Water                                                                                                                                                                                                                                                  | 8260C                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                 |
| MW-02R                 | Total/NA                                                                                                                 | Water                                                                                                                                                                                                                                                  | 8260C                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                 |
| ТВ                     | Total/NA                                                                                                                 | Water                                                                                                                                                                                                                                                  | 8260C                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                 |
| Lab Control Sample     | Total/NA                                                                                                                 | Water                                                                                                                                                                                                                                                  | 8260C                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                 |
| Lab Control Sample Dup | Total/NA                                                                                                                 | Water                                                                                                                                                                                                                                                  | 8260C                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                 |
| Method Blank           | Total/NA                                                                                                                 | Water                                                                                                                                                                                                                                                  | 8260C                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                 |
|                        | Client Sample ID<br>MS-MW-01<br>MS-MW-02<br>MW-02R<br>TB<br>Lab Control Sample<br>Lab Control Sample Dup<br>Method Blank | Client Sample ID     Prep Type       MS-MW-01     Total/NA       MS-MW-02     Total/NA       MW-02R     Total/NA       TB     Total/NA       Lab Control Sample     Total/NA       Lab Control Sample Dup     Total/NA       Method Blank     Total/NA | Client Sample ID     Prep Type     Matrix       MS-MW-01     Total/NA     Water       MS-MW-02     Total/NA     Water       MW-02R     Total/NA     Water       TB     Total/NA     Water       Lab Control Sample     Total/NA     Water       Lab Control Sample Dup     Total/NA     Water       Method Blank     Total/NA     Water | Client Sample IDPrep TypeMatrixMethodMS-MW-01Total/NAWater8260CMS-MW-02Total/NAWater8260CMW-02RTotal/NAWater8260CTBTotal/NAWater8260CLab Control SampleTotal/NAWater8260CLab Control Sample DupTotal/NAWater8260CMethod BlankTotal/NAWater8260C |

#### Analysis Batch: 194884

| Lab Sample ID    | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|------------------|--------------------|-----------|--------|--------|------------|
| 480-64332-2 - DL | MS-MW-02           | Total/NA  | Water  | 8260C  |            |
| 480-64332-3      | MS-MW-03           | Total/NA  | Water  | 8260C  |            |
| 480-64332-4      | MS-MW-04           | Total/NA  | Water  | 8260C  |            |
| LCS 480-194884/4 | Lab Control Sample | Total/NA  | Water  | 8260C  |            |
| MB 480-194884/6  | Method Blank       | Total/NA  | Water  | 8260C  |            |

| Client Samp                                      | le ID: MS-M                                                      | W-01                        |     |                    |                 |                         |         | Lab Sample | D: 480-64332-1 |
|--------------------------------------------------|------------------------------------------------------------------|-----------------------------|-----|--------------------|-----------------|-------------------------|---------|------------|----------------|
| Date Collected                                   | : 07/23/14 11:                                                   | 55                          |     |                    |                 |                         |         | •          | Matrix: Water  |
| Date Received:                                   | : 07/24/14 12:5                                                  | 50                          |     |                    |                 |                         |         |            |                |
|                                                  | Batch                                                            | Batch                       |     | Dilution           | Batch           | Prepared                |         |            |                |
| Prep Type                                        | Туре                                                             | Method                      | Run | Factor             | Number          | or Analyzed             | Analyst | Lab        |                |
| Total/NA                                         | Analysis                                                         | 8260C                       |     |                    | 194782          | 07/25/14 16:34          | GTG     | TAL BUF    |                |
| _                                                |                                                                  |                             |     |                    |                 |                         |         |            |                |
| <b>Client Samp</b>                               | le ID: MS-M                                                      | W-02                        |     |                    |                 |                         |         | Lab Sample | D: 480-64332-2 |
| Date Collected                                   | : 07/23/14 11:1                                                  | 12                          |     |                    |                 |                         |         |            | Matrix: Water  |
| Date Received:                                   | : 07/24/14 12:5                                                  | 50                          |     |                    |                 |                         |         |            |                |
| Γ                                                | Batch                                                            | Batch                       |     | Dilution           | Batch           | Prepared                |         |            |                |
| Prep Type                                        | Type                                                             | Method                      | Run | Factor             | Number          | or Analyzed             | Analyst | Lab        |                |
| Total/NA                                         | Analysis                                                         | 8260C                       |     | 40                 | 194782          | 07/25/14 16:58          | GTG     | TAL BUF    |                |
| Total/NA                                         | Analysis                                                         | 8260C                       | DL  | 200                | 194884          | 07/26/14 03:46          | LCH     | TAL BUF    |                |
|                                                  | - )                                                              |                             |     |                    |                 |                         |         |            |                |
| Client Samp                                      | le ID: MS-M                                                      | W-03                        |     |                    |                 |                         |         | Lab Sample | D: 480-64332-3 |
| Date Collected                                   | : 07/23/14 10:4                                                  | 40                          |     |                    |                 |                         |         |            | Matrix: Water  |
| Date Received:                                   | : 07/24/14 12:5                                                  | 50                          |     |                    |                 |                         |         |            |                |
| Γ                                                | Batch                                                            | Batch                       |     | Dilution           | Batch           | Prepared                |         |            |                |
| Prep Type                                        | Type                                                             | Method                      | Run | Factor             | Number          | or Analyzed             | Analvst | Lab        |                |
| Total/NA                                         | Analysis                                                         | 8260C                       |     | 5                  | 194884          | 07/26/14 04:10          | LCH     | TAL BUF    |                |
|                                                  |                                                                  |                             |     |                    |                 |                         |         |            |                |
| <b>Client Samp</b>                               | le ID: MS-M                                                      | W-04                        |     |                    |                 |                         |         | Lab Sample | D: 480-64332-4 |
| Date Collected                                   | : 07/23/14 09:4                                                  | 40                          |     |                    |                 |                         |         |            | Matrix: Water  |
| Date Received:                                   | : 07/24/14 12:5                                                  | 50                          |     |                    |                 |                         |         |            |                |
| Γ                                                | Batch                                                            | Batch                       |     | Dilution           | Batch           | Prepared                |         |            |                |
| Prep Type                                        | Туре                                                             | Method                      | Run | Factor             | Number          | or Analyzed             | Analyst | Lab        |                |
| Total/NA                                         | Analysis                                                         | 8260C                       |     | 2                  | 194884          | 07/26/14 04:34          | LCH     | TAL BUF    |                |
|                                                  |                                                                  |                             |     |                    |                 |                         |         |            |                |
| Client Samp                                      | le ID: MW-0                                                      | 2R                          |     |                    |                 |                         |         | Lab Sample | D: 480-64332-5 |
| Date Collected                                   | : 07/23/14 12:3                                                  | 35                          |     |                    |                 |                         |         |            | Matrix: Water  |
| Date Received:                                   | : 07/24/14 12:5                                                  | 50                          |     |                    |                 |                         |         |            |                |
| Γ                                                | Batch                                                            | Batch                       |     | Dilution           | Batch           | Prepared                |         |            |                |
| Prep Type                                        | Туре                                                             | Method                      | Run | Factor             | Number          | or Analyzed             | Analyst | Lab        |                |
| Total/NA                                         | Analysis                                                         | 8260C                       |     | 1                  | 194782          | 07/25/14 18:09          | GTG     | TAL BUF    |                |
|                                                  |                                                                  |                             |     |                    |                 |                         |         |            |                |
|                                                  |                                                                  |                             |     |                    |                 |                         |         | Lab Sample | D: 480-64332-6 |
| Client Samp                                      |                                                                  |                             |     |                    |                 |                         |         |            |                |
| Client Samp                                      | : 07/23/14 00:0                                                  | 00                          |     |                    |                 |                         |         |            | Matrix: Water  |
| Client Samp<br>Date Collected<br>Date Received:  | : 07/23/14 00:0<br>: 07/24/14 12:5                               | 00<br>50                    |     |                    |                 |                         |         |            | Matrix: Water  |
| Client Samp<br>Date Collected<br>Date Received:  | e ID: TB<br>: 07/23/14 00:0<br>: 07/24/14 12:5<br>Batch          | 00<br>50<br>Batch           |     | Dilution           | Batch           | Prepared                |         |            | Matrix: Water  |
| Client Samp<br>Date Collected:<br>Date Received: | IE ID: TB<br>: 07/23/14 00:(<br>: 07/24/14 12:5<br>Batch<br>Type | 00<br>50<br>Batch<br>Method | Run | Dilution<br>Factor | Batch<br>Number | Prepared<br>or Analyzed | Analyst | Lab        | Matrix: Water  |

#### Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

#### Laboratory: TestAmerica Buffalo

The certifications listed below are applicable to this report.

| Authority | Program | EPA Region | Certification ID | Expiration Date |
|-----------|---------|------------|------------------|-----------------|
| New York  | NELAP   | 2          | 10026            | 03-31-15        |

#### Client: C&S Engineers, Inc. Project/Site: Well Sampling - MOB

| Method | Method Description                  | Protocol | Laboratory |
|--------|-------------------------------------|----------|------------|
| 8260C  | Volatile Organic Compounds by GC/MS | SW846    | TAL BUF    |

#### Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

#### Sample Summary

Client: C&S Engineers, Inc. Project/Site: Well Sampling - MOB TestAmerica Job ID: 480-64332-1

| Project/Site: Well S | ampling - MOB    |        | TestAmerica Job IL | 1: 480-64332-1 |    |
|----------------------|------------------|--------|--------------------|----------------|----|
| I ab Sample ID       | Client Sample ID | Matrix | Collected          | Received       |    |
| 480-64332-1          | MS-MW-01         | Water  | 07/23/14 11:55     | 07/24/14 12:50 |    |
| 480-64332-2          | MS-MW-02         | Water  | 07/23/14 11:12     | 07/24/14 12:50 |    |
| 480-64332-3          | MS-MW-03         | Water  | 07/23/14 10:40     | 07/24/14 12:50 | E  |
| 480-64332-4          | MS-MW-04         | Water  | 07/23/14 09:40     | 07/24/14 12:50 | Э  |
| 480-64332-5          | MW-02R           | Water  | 07/23/14 12:35     | 07/24/14 12:50 |    |
| 480-64332-6          | ТВ               | Water  | 07/23/14 00:00     | 07/24/14 12:50 |    |
|                      |                  |        |                    |                |    |
|                      |                  |        |                    |                | 8  |
|                      |                  |        |                    |                | 9  |
|                      |                  |        |                    |                |    |
|                      |                  |        |                    |                |    |
|                      |                  |        |                    |                |    |
|                      |                  |        |                    |                | 13 |
|                      |                  |        |                    |                | 14 |
|                      |                  |        |                    |                |    |

| THE LEADE                                          | Date Date Chain of Custody Number 07 (23) dy 249253 | Lab Number Page of of                                       | Analysis (Attach list if<br>more space is needed) | Special Instructi                 | Conditions of Real                   | NOC                                                                                         | X Earlie Subm             |          |           |              |          |  |  |  | b                                                                                      | (Specify)                 | 1 1 11 Ant 12:11 12:11 12:11        | Here I Taylor 1215               | 1 2 Contraction Date Time                                 | the us       |  |
|----------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------|-----------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------|---------------------------|----------|-----------|--------------|----------|--|--|--|----------------------------------------------------------------------------------------|---------------------------|-------------------------------------|----------------------------------|-----------------------------------------------------------|--------------|--|
| Temperature on Receipt<br>Drinking Water? Yes⊟ No□ | Project Manager<br>Plack Colmexaues                 | Telephone Number (Area Code)/Fax Number<br>716 - 947 - 1630 | Site Contact Lab Contact                          | Carrier/Waybill Number            | Matrix Containers &<br>Preservatives | HOEN<br>HOEN<br>IDH<br>EONH<br>EONH<br>SEJdUN<br>IIOS<br>IIOS<br>Snoenby<br>JIV             | 11:55 m X m S             | 1):12 AM | 10:40 94  | 9.40 April 1 | 12:35 PM |  |  |  | Sample Disposal<br>□ Unknown □ Return To Client □ Disposal By Lab                      | s  Other Other            | Date Date Time 1. Regred By Control | Date 7/24/14 Time 2. Received By | Date Time Streened By                                     | <b>x</b>     |  |
| Chain of<br>Custody Record                         | Tial-4124 (1007)<br>Client<br>C&S Engineer's Inc.   | Address<br>141 Elm St. suit # 100                           | City State Zp Code                                | Project Name and Location (State) | Contract/Purchase Order/Quote No.    | Sample I.D. No. and Description<br>(Containers for each sample may be combined on one line) | M5-M1)-0/ 2 hold 03/23/14 | MS-MW-02 | MS- HW-03 | MS-MW-04     | MW-02 R  |  |  |  | Possible Hazard Identification<br>🗙 Non-Hazard 🛛 Flammable 🗌 Skin Imitant 🗍 Poison B 🛛 | Tilm-Around Time Required | 1. Relinquished BY                  | 2. Reinquisition ( ) A MACH      | 3. Relinquished By 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | Comments J J |  |

7/29/2014

1

5

4

#### Client: C&S Engineers, Inc.

#### Login Number: 64332 List Number: 1

Creator: Stau, Brandon M

| Question                                                                         | Answer | Comment |
|----------------------------------------------------------------------------------|--------|---------|
| Radioactivity either was not measured or, if measured, is at or below background | True   |         |
| The cooler's custody seal, if present, is intact.                                | True   |         |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |         |
| Samples were received on ice.                                                    | True   |         |
| Cooler Temperature is acceptable.                                                | True   |         |
| Cooler Temperature is recorded.                                                  | True   |         |
| COC is present.                                                                  | True   |         |
| COC is filled out in ink and legible.                                            | True   |         |
| COC is filled out with all pertinent information.                                | True   |         |
| Is the Field Sampler's name present on COC?                                      | True   |         |
| There are no discrepancies between the sample IDs on the containers and the COC. | True   |         |
| Samples are received within Holding Time.                                        | True   |         |
| Sample containers have legible labels.                                           | True   |         |
| Containers are not broken or leaking.                                            | True   |         |
| Sample collection date/times are provided.                                       | True   |         |
| Appropriate sample containers are used.                                          | True   |         |
| Sample bottles are completely filled.                                            | True   |         |
| Sample Preservation Verified                                                     | True   |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |         |
| VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.     | True   |         |
| If necessary, staff have been informed of any short hold time or quick TAT needs | True   |         |
| Multiphasic samples are not present.                                             | True   |         |
| Samples do not require splitting or compositing.                                 | True   |         |
| Sampling Company provided.                                                       | True   | c&s     |
| Samples received within 48 hours of sampling.                                    | True   |         |
| Samples requiring field filtration have been filtered in the field.              | N/A    |         |
| Chlorine Residual checked.                                                       | N/A    |         |



THE LEADER IN ENVIRONMENTAL TESTING

# **ANALYTICAL REPORT**

#### TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

### TestAmerica Job ID: 480-79598-1

Client Project/Site: Well Sampling - MOB

#### For:

C&S Engineers, Inc. 141 Elm Street Suite 100 Buffalo, New York 14203

Attn: Zubair Trabzada

Joeph V. Gisconage

Authorized for release by: 5/7/2015 11:51:43 AM Joe Giacomazza, Project Management Assistant II joe.giacomazza@testamericainc.com

Designee for

Judy Stone, Senior Project Manager (484)685-0868 judy.stone@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.



# **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 2  |
| Definitions/Glossary   | 3  |
| Case Narrative         | 4  |
| Detection Summary      | 5  |
| Client Sample Results  | 6  |
| Surrogate Summary      | 8  |
| QC Sample Results      | 9  |
| QC Association Summary | 11 |
| Lab Chronicle          | 12 |
| Certification Summary  | 13 |
| Method Summary         | 14 |
| Sample Summary         | 15 |
| Chain of Custody       | 16 |
| Receipt Checklists     | 17 |
|                        |    |
3

#### Qualifiers

#### GC/MS VOA

| Qualifier | Qualifier Description                     |
|-----------|-------------------------------------------|
| *         | LCS or LCSD is outside acceptance limits. |

#### Glossary

| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 |
|----------------|-------------------------------------------------------------------------------------------------------------|
| ¤              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |
| %R             | Percent Recovery                                                                                            |
| CFL            | Contains Free Liquid                                                                                        |
| CNF            | Contains no Free Liquid                                                                                     |
| DER            | Duplicate error ratio (normalized absolute difference)                                                      |
| Dil Fac        | Dilution Factor                                                                                             |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |
| DLC            | Decision level concentration                                                                                |
| MDA            | Minimum detectable activity                                                                                 |
| EDL            | Estimated Detection Limit                                                                                   |
| MDC            | Minimum detectable concentration                                                                            |
| MDL            | Method Detection Limit                                                                                      |
| ML             | Minimum Level (Dioxin)                                                                                      |
| NC             | Not Calculated                                                                                              |
| ND             | Not detected at the reporting limit (or MDL or EDL if shown)                                                |
| PQL            | Practical Quantitation Limit                                                                                |
| QC             | Quality Control                                                                                             |
| RER            | Relative error ratio                                                                                        |
| RL             | Reporting Limit or Requested Limit (Radiochemistry)                                                         |
| RPD            | Relative Percent Difference, a measure of the relative difference between two points                        |
| TEF            | Toxicity Equivalent Factor (Dioxin)                                                                         |

TEQ Toxicity Equivalent Quotient (Dioxin)

#### Job ID: 480-79598-1

#### Laboratory: TestAmerica Buffalo

#### Narrative

Job Narrative 480-79598-1

#### Receipt

The sample was received on 5/4/2015 1:15 PM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.8° C.

#### GC/MS VOA

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 240462 recovered above the upper control limit for several analytes. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following sample is impacted: MSMW-1-050415 (480-79598-1).

Method(s) 8260C: The laboratory control sample (LCS) for batch 240462 recovered outside control limits for the following analytes: Carbon tetrachloride, Chloromethane, and Dichlorodifluoromethane. These were not requested spike compounds; therefore, the data have been qualified and reported for the following sample: MSMW-1-050415 (480-79598-1).

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 240462 recovered outside acceptance criteria, low biased, for Chloromethane and Dichlorodifluoromethane. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were non-detect for this analyte, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### Client Sample ID: MSMW-1-050415

No Detections.

Lab Sample ID: 480-79598-1

This Detection Summary does not include radiochemical test results.

## Client Sample ID: MSMW-1-050415

Date Collected: 05/04/15 11:00 Date Received: 05/04/15 13:15

| Analyte         Result         Qualifier         RL         MDL         Unit         D         Prepared         Analyzed         Dil           1,1,1-Trichloroethane         ND         1.0         0.82         ug/L         05/05/15 06:50         05/05/15 06:50           1,1,2-Trichloroethane         ND         1.0         0.21         ug/L         05/05/15 06:50         05/05/15 06:50           1,1,2-Trichloroethane         ND         1.0         0.23         ug/L         05/05/15 06:50         05/05/15 06:50           1,1,2-Trichloroethane         ND         1.0         0.31         ug/L         05/05/15 06:50         05/05/15 06:50           1,1-Dichloroethane         ND         1.0         0.38         ug/L         05/05/15 06:50         05/05/15 06:50           1,1-Dichloroethane         ND         1.0         0.38         ug/L         05/05/15 06:50         05/05/15 06:50           1,1-Dichloroethene         ND         1.0         0.29         ug/L         05/05/15 06:50         05/05/15 06:50 | <b>Fac</b> 1 1 1 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1,1,1-Trichloroethane         ND         1.0         0.82         ug/L         05/05/15 06:50           1,1,2,2-Tetrachloroethane         ND         1.0         0.21         ug/L         05/05/15 06:50           1,1,2-Trichloroethane         ND         1.0         0.23         ug/L         05/05/15 06:50           1,1,2-Trichloroethane         ND         1.0         0.23         ug/L         05/05/15 06:50           1,1,2-Trichloroethane         ND         1.0         0.31         ug/L         05/05/15 06:50           1,1-Dichloroethane         ND         1.0         0.38         ug/L         05/05/15 06:50           1,1-Dichloroethane         ND         1.0         0.38         ug/L         05/05/15 06:50           1,1-Dichloroethane         ND         1.0         0.29         ug/L         05/05/15 06:50                                                                                                                                                                                                     | 1<br>1<br>1      |
| 1,1,2,2-Tetrachloroethane         ND         1.0         0.21         ug/L         05/05/15 06:50           1,1,2-Trichloroethane         ND         1.0         0.23         ug/L         05/05/15 06:50           1,1,2-Trichloroethane         ND         1.0         0.31         ug/L         05/05/15 06:50           1,1-Dichloroethane         ND         1.0         0.38         ug/L         05/05/15 06:50           1,1-Dichloroethane         ND         1.0         0.38         ug/L         05/05/15 06:50           1,1-Dichloroethane         ND         1.0         0.29         ug/L         05/05/15 06:50                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                |
| 1,1,2-Trichloroethane         ND         1.0         0.23         ug/L         05/05/15 06:50           1,1,2-Trichloro-1,2,2-trifluoroethane         ND         1.0         0.31         ug/L         05/05/15 06:50           1,1-Dichloroethane         ND         1.0         0.38         ug/L         05/05/15 06:50           1,1-Dichloroethane         ND         1.0         0.38         ug/L         05/05/15 06:50           1,1-Dichloroethane         ND         1.0         0.29         ug/L         05/05/15 06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . 1              |
| 1,1,2-Trichloro-1,2,2-trifluoroethane         ND         1.0         0.31         ug/L         05/05/15 06:50           1,1-Dichloroethane         ND         1.0         0.38         ug/L         05/05/15 06:50           1,1-Dichloroethane         ND         1.0         0.29         ug/L         05/05/15 06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
| 1,1-Dichloroethane         ND         1.0         0.38         ug/L         05/05/15 06:50           1,1-Dichloroethene         ND         1.0         0.29         ug/L         05/05/15 06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                |
| 1,1-Dichloroethene ND 1.0 0.29 ug/L 05/05/15 06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                |
| 1,2,4-Trichlorobenzene ND 1.0 0.41 ug/L 05/05/15 06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                |
| 1,2-Dibromo-3-Chloropropane ND 1.0 0.39 ug/L 05/05/15 06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                |
| 1,2-Dibromoethane ND 1.0 0.73 ug/L 05/05/15 06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                |
| 1,2-Dichlorobenzene ND 1.0 0.79 ug/L 05/05/15 06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                |
| 1,2-Dichloroethane ND 1.0 0.21 ug/L 05/05/15 06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                |
| 1,2-Dichloropropane ND 1.0 0.72 ug/L 05/05/15 06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                |
| 1,3-Dichlorobenzene ND 1.0 0.78 ug/L 05/05/15 06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                |
| 1,4-Dichlorobenzene ND 1.0 0.84 ug/L 05/05/15 06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                |
| 2-Hexanone ND 5.0 1.2 ug/L 05/05/15 06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                |
| 2-Butanone (MEK) ND 10 1.3 ug/L 05/05/15 06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                |
| 4-Methyl-2-pentanone (MIBK) ND 5.0 2.1 ug/L 05/05/15 06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                |
| Acetone ND 10 3.0 ug/L 05/05/15 06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                |
| Benzene         ND         1.0         0.41         ug/L         05/05/15         06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                |
| Bromodichloromethane ND 1.0 0.39 ug/L 05/05/15 06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                |
| Bromoform ND 1.0 0.26 ug/L 05/05/15 06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                |
| Bromomethane ND 1.0 0.69 ug/L 05/05/15 06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                |
| Carbon disulfide ND 1.0 0.19 ug/L 05/05/15 06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                |
| Carbon tetrachloride         ND *         1.0         0.27 ug/L         05/05/15 06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                |
| Chlorobenzene         ND         1.0         0.75         ug/L         05/05/15         06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                |
| Dibromochloromethane         ND         1.0         0.32         ug/L         05/05/15         06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                |
| Chloroethane         ND         1.0         0.32         ug/L         05/05/15         06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                |
| Chloroform         ND         1.0         0.34         ug/L         05/05/15         06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                |
| Chloromethane         ND *         1.0         0.35         ug/L         05/05/15         06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                |
| cis-1,2-Dichloroethene ND 1.0 0.81 ug/L 05/05/15 06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                |
| cis-1,3-Dichloropropene ND 1.0 0.36 ug/L 05/05/15 06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                |
| Cyclohexane         ND         1.0         0.18         ug/L         05/05/15         06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                |
| Dichlorodifluoromethane         ND *         1.0         0.68         ug/L         05/05/15         06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                |
| Ethylbenzene         ND         1.0         0.74         ug/L         05/05/15         06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                |
| Isopropylbenzene ND 1.0 0.79 ug/L 05/05/15 06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                |
| Methyl acetate         ND         2.5         0.50         ug/L         05/05/15         06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                |
| Methyl tert-butyl ether         ND         1.0         0.16         ug/L         05/05/15         06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                |
| Methylcyclohexane         ND         1.0         0.16         ug/L         05/05/15         06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                |
| Methylene Chloride         ND         1.0         0.44         ug/L         05/05/15         06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                |
| Styrene         ND         1.0         0.73         ug/L         05/05/15         06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                |
| Tetrachloroethene         ND         1.0         0.36         ug/L         05/05/15         06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                |
| Toluene ND 1.0 0.51 ug/L 05/05/15 06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                |
| trans-1,2-Dichloroethene ND 1.0 0.90 ug/L 05/05/15 06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                |
| trans-1,3-Dichloropropene ND 1.0 0.37 ug/L 05/05/15 06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                |
| Trichloroethene         ND         1.0         0.46         ug/L         05/05/15         06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                |
| Trichlorofluoromethane         ND         1.0         0.88         ug/L         05/05/15         06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                |
| Vinyl chloride ND 1.0 0.90 ug/L 05/05/15 06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                |
| Xylenes, Total         ND         2.0         0.66         ug/L         05/05/15         06:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                |

# Lab Sample ID: 480-79598-1

Matrix: Water

5

6

TestAmerica Job ID: 480-79598-1

Lab Sample ID: 480-79598-1

Matrix: Water

#### Client Sample ID: MSMW-1-050415 Date Collected: 05/04/15 11:00 Date Received: 05/04/15 13:15

| Dil Fac |
|---------|
| 1       |
| 1       |
| 1       |
| 1       |
| -       |

5

## Method: 8260C - Volatile Organic Compounds by GC/MS

| M | at | rix | :: \ | W | at | er |  |
|---|----|-----|------|---|----|----|--|
|   |    |     |      |   |    |    |  |

| latrix: Water    |                    |          |          |            |                | Prep Type: Total/NA     |
|------------------|--------------------|----------|----------|------------|----------------|-------------------------|
| -                |                    |          |          | Percent Su | rrogate Recove | ery (Acceptance Limits) |
|                  |                    | 12DCE    | TOL      | BFB        | DBFM           |                         |
| Lab Sample ID    | Client Sample ID   | (66-137) | (71-126) | (73-120)   | (60-140)       |                         |
| 480-79598-1      | MSMW-1-050415      | 116      | 90       | 90         | 122            |                         |
| LCS 480-240462/4 | Lab Control Sample | 113      | 96       | 97         | 109            |                         |
| MB 480-240462/6  | Method Blank       | 111      | 89       | 89         | 115            |                         |
| Surrogate Legend |                    |          |          |            |                |                         |

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

Client Sample ID: Method Blank

Prep Type: Total/NA

# 2 3 4 5

12 13 14

| Mothod: 8  | 2600 - 1 |          | Organic | Compounds | e hv | GC/MS   |
|------------|----------|----------|---------|-----------|------|---------|
| welliou. o |          | volatile | Organic | Compounds | 5 DY | GC/1013 |

#### Lab Sample ID: MB 480-240462/6

Matrix: Water

| Analysis Batch: 240462                 |        |           |     |      |      |   |          |                |         |
|----------------------------------------|--------|-----------|-----|------|------|---|----------|----------------|---------|
|                                        | MB     | MB        |     |      |      | _ |          |                |         |
| Analyte                                | Result | Qualifier | RL  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| 1,1,1-I richloroethane                 | ND     |           | 1.0 | 0.82 | ug/L |   |          | 05/04/15 22:54 | 1       |
| 1,1,2,2-1 etrachioroethane             | ND     |           | 1.0 | 0.21 | ug/L |   |          | 05/04/15 22:54 | 1       |
|                                        | ND     |           | 1.0 | 0.23 | ug/L |   |          | 05/04/15 22:54 | 1       |
| 1,1,2-1 richloro-1,2,2-trifluoroethane | ND     |           | 1.0 | 0.31 | ug/L |   |          | 05/04/15 22:54 | 1       |
| 1,1-Dichloroethane                     | ND     |           | 1.0 | 0.38 | ug/L |   |          | 05/04/15 22:54 | 1       |
|                                        | ND     |           | 1.0 | 0.29 | ug/L |   |          | 05/04/15 22:54 |         |
| 1,2,4-I richlorobenzene                | ND     |           | 1.0 | 0.41 | ug/L |   |          | 05/04/15 22:54 | 1       |
| 1,2-Dibromo-3-Chloropropane            | ND     |           | 1.0 | 0.39 | ug/L |   |          | 05/04/15 22:54 | 1       |
| 1,2-Dibromoethane                      | ND     |           | 1.0 | 0.73 | ug/L |   |          | 05/04/15 22:54 | 1       |
| 1,2-Dichlorobenzene                    | ND     |           | 1.0 | 0.79 | ug/L |   |          | 05/04/15 22:54 | 1       |
| 1,2-Dichloroethane                     | ND     |           | 1.0 | 0.21 | ug/L |   |          | 05/04/15 22:54 | 1       |
| 1,2-Dichloropropane                    | ND     |           | 1.0 | 0.72 | ug/L |   |          | 05/04/15 22:54 | 1       |
| 1,3-Dichlorobenzene                    | ND     |           | 1.0 | 0.78 | ug/L |   |          | 05/04/15 22:54 | 1       |
| 1,4-Dichlorobenzene                    | ND     |           | 1.0 | 0.84 | ug/L |   |          | 05/04/15 22:54 | 1       |
| 2-Hexanone                             | ND     |           | 5.0 | 1.2  | ug/L |   |          | 05/04/15 22:54 | 1       |
| 2-Butanone (MEK)                       | ND     |           | 10  | 1.3  | ug/L |   |          | 05/04/15 22:54 | 1       |
| 4-Methyl-2-pentanone (MIBK)            | ND     |           | 5.0 | 2.1  | ug/L |   |          | 05/04/15 22:54 | 1       |
| Acetone                                | ND     |           | 10  | 3.0  | ug/L |   |          | 05/04/15 22:54 | 1       |
| Benzene                                | ND     |           | 1.0 | 0.41 | ug/L |   |          | 05/04/15 22:54 | 1       |
| Bromodichloromethane                   | ND     |           | 1.0 | 0.39 | ug/L |   |          | 05/04/15 22:54 | 1       |
| Bromoform                              | ND     |           | 1.0 | 0.26 | ug/L |   |          | 05/04/15 22:54 | 1       |
| Bromomethane                           | ND     |           | 1.0 | 0.69 | ug/L |   |          | 05/04/15 22:54 | 1       |
| Carbon disulfide                       | ND     |           | 1.0 | 0.19 | ug/L |   |          | 05/04/15 22:54 | 1       |
| Carbon tetrachloride                   | ND     |           | 1.0 | 0.27 | ug/L |   |          | 05/04/15 22:54 | 1       |
| Chlorobenzene                          | ND     |           | 1.0 | 0.75 | ug/L |   |          | 05/04/15 22:54 | 1       |
| Dibromochloromethane                   | ND     |           | 1.0 | 0.32 | ug/L |   |          | 05/04/15 22:54 | 1       |
| Chloroethane                           | ND     |           | 1.0 | 0.32 | ug/L |   |          | 05/04/15 22:54 | 1       |
| Chloroform                             | ND     |           | 1.0 | 0.34 | ug/L |   |          | 05/04/15 22:54 | 1       |
| Chloromethane                          | ND     |           | 1.0 | 0.35 | ug/L |   |          | 05/04/15 22:54 | 1       |
| cis-1,2-Dichloroethene                 | ND     |           | 1.0 | 0.81 | ug/L |   |          | 05/04/15 22:54 | 1       |
| cis-1,3-Dichloropropene                | ND     |           | 1.0 | 0.36 | ug/L |   |          | 05/04/15 22:54 | 1       |
| Cyclohexane                            | ND     |           | 1.0 | 0.18 | ug/L |   |          | 05/04/15 22:54 | 1       |
| Dichlorodifluoromethane                | ND     |           | 1.0 | 0.68 | ug/L |   |          | 05/04/15 22:54 | 1       |
| Ethylbenzene                           | ND     |           | 1.0 | 0.74 | ug/L |   |          | 05/04/15 22:54 | 1       |
| Isopropylbenzene                       | ND     |           | 1.0 | 0.79 | ug/L |   |          | 05/04/15 22:54 | 1       |
| Methyl acetate                         | ND     |           | 2.5 | 0.50 | ug/L |   |          | 05/04/15 22:54 | 1       |
| Methyl tert-butyl ether                | ND     |           | 1.0 | 0.16 | ug/L |   |          | 05/04/15 22:54 | 1       |
| Methylcyclohexane                      | ND     |           | 1.0 | 0.16 | ug/L |   |          | 05/04/15 22:54 | 1       |
| Methylene Chloride                     | ND     |           | 1.0 | 0.44 | ug/L |   |          | 05/04/15 22:54 | 1       |
| Styrene                                | ND     |           | 1.0 | 0.73 | ug/L |   |          | 05/04/15 22:54 | 1       |
| Tetrachloroethene                      | ND     |           | 1.0 | 0.36 | ug/L |   |          | 05/04/15 22:54 | 1       |
| Toluene                                | ND     |           | 1.0 | 0.51 | ug/L |   |          | 05/04/15 22:54 | 1       |
| trans-1,2-Dichloroethene               | ND     |           | 1.0 | 0.90 | ug/L |   |          | 05/04/15 22:54 | 1       |
| trans-1,3-Dichloropropene              | ND     |           | 1.0 | 0.37 | ug/L |   |          | 05/04/15 22:54 | 1       |
| Trichloroethene                        | ND     |           | 1.0 | 0.46 | ug/L |   |          | 05/04/15 22:54 | 1       |
| Trichlorofluoromethane                 | ND     |           | 1.0 | 0.88 | ug/L |   |          | 05/04/15 22:54 | 1       |
| Vinyl chloride                         | ND     |           | 1.0 | 0.90 | ug/L |   |          | 05/04/15 22:54 | 1       |
| Xylenes, Total                         | ND     |           | 2.0 | 0.66 | ug/L |   |          | 05/04/15 22:54 | 1       |

**Client Sample ID: Method Blank** 

Prep Type: Total/NA

# 2 3 4 5 6

# Distribution Distribution<

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

| Lab Sample ID: MB 480-240462/6 |
|--------------------------------|
| Matrix: Water                  |

# Analysis Batch: 240462

|                              | MB        | MB        |          |          |                |         |
|------------------------------|-----------|-----------|----------|----------|----------------|---------|
| Surrogate                    | %Recovery | Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 111       |           | 66 - 137 |          | 05/04/15 22:54 | 1       |
| Toluene-d8 (Surr)            | 89        |           | 71 - 126 |          | 05/04/15 22:54 | 1       |
| 4-Bromofluorobenzene (Surr)  | 89        |           | 73 - 120 |          | 05/04/15 22:54 | 1       |
| Dibromofluoromethane (Surr)  | 115       |           | 60 - 140 |          | 05/04/15 22:54 | 1       |

# Lab Sample ID: LCS 480-240462/4

#### Matrix: Water Analysis Batch: 240462

|                          | Spike | LCS    | LCS       |      |   |      | %Rec.               |  |
|--------------------------|-------|--------|-----------|------|---|------|---------------------|--|
| Analyte                  | Added | Result | Qualifier | Unit | D | %Rec | Limits              |  |
| 1,1-Dichloroethane       | 25.0  | 25.3   |           | ug/L |   | 101  | 71 - 129            |  |
| 1,1-Dichloroethene       | 25.0  | 24.7   |           | ug/L |   | 99   | 58 <sub>-</sub> 121 |  |
| 1,2-Dichlorobenzene      | 25.0  | 23.7   |           | ug/L |   | 95   | 80 - 124            |  |
| 1,2-Dichloroethane       | 25.0  | 27.0   |           | ug/L |   | 108  | 75 <sub>-</sub> 127 |  |
| Benzene                  | 25.0  | 24.1   |           | ug/L |   | 97   | 71 - 124            |  |
| Chlorobenzene            | 25.0  | 23.4   |           | ug/L |   | 94   | 72 <sub>-</sub> 120 |  |
| cis-1,2-Dichloroethene   | 25.0  | 24.7   |           | ug/L |   | 99   | 74 <sub>-</sub> 124 |  |
| Ethylbenzene             | 25.0  | 22.8   |           | ug/L |   | 91   | 77 - 123            |  |
| Methyl tert-butyl ether  | 25.0  | 24.3   |           | ug/L |   | 97   | 64 <sub>-</sub> 127 |  |
| Tetrachloroethene        | 25.0  | 23.5   |           | ug/L |   | 94   | 74 - 122            |  |
| Toluene                  | 25.0  | 22.3   |           | ug/L |   | 89   | 80 - 122            |  |
| trans-1,2-Dichloroethene | 25.0  | 24.7   |           | ug/L |   | 99   | 73 <sub>-</sub> 127 |  |
| Trichloroethene          | 25.0  | 25.0   |           | ug/L |   | 100  | 74 <sub>-</sub> 123 |  |

|                              | LCS       | LCS       |          |
|------------------------------|-----------|-----------|----------|
| Surrogate                    | %Recovery | Qualifier | Limits   |
| 1,2-Dichloroethane-d4 (Surr) | 113       |           | 66 - 137 |
| Toluene-d8 (Surr)            | 96        |           | 71 - 126 |
| 4-Bromofluorobenzene (Surr)  | 97        |           | 73 - 120 |
| Dibromofluoromethane (Surr)  | 109       |           | 60 - 140 |

9

### GC/MS VOA

#### Analysis Batch: 240462

| La | b Sample ID    | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|----|----------------|--------------------|-----------|--------|--------|------------|
| 48 | 0-79598-1      | MSMW-1-050415      | Total/NA  | Water  | 8260C  |            |
| LC | S 480-240462/4 | Lab Control Sample | Total/NA  | Water  | 8260C  |            |
| ME | 3 480-240462/6 | Method Blank       | Total/NA  | Water  | 8260C  |            |

#### Client Sample ID: MSMW-1-050415 Lab Sample ID: 480-79598-1 Date Collected: 05/04/15 11:00 Matrix: Water Date Received: 05/04/15 13:15 Dilution Batch Batch Batch Prepared Prep Type Method Run Factor Number or Analyzed Туре Analyst Lab Total/NA Analysis 8260C 240462 05/05/15 06:50 JWG TAL BUF 1

#### Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

#### Laboratory: TestAmerica Buffalo

The certifications listed below are applicable to this report.

| Authority | Program | EPA Region | Certification ID | Expiration Date |
|-----------|---------|------------|------------------|-----------------|
| New York  | NELAP   | 2          | 10026            | 03-31-16        |

#### Client: C&S Engineers, Inc. Project/Site: Well Sampling - MOB

| Method | Method Description                  | Protocol | Laboratory |
|--------|-------------------------------------|----------|------------|
| 8260C  | Volatile Organic Compounds by GC/MS | SW846    | TAL BUF    |

#### Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

# Sample Summary

Client: C&S Engineers, Inc. Project/Site: Well Sampling - MOB

| Lab Sample ID | Client Sample ID | Matrix | Collected      | Received       |
|---------------|------------------|--------|----------------|----------------|
| 480-79598-1   | MSMW-1-050415    | Water  | 05/04/15 11:00 | 05/04/15 13:15 |

|                            |                                   | Chain of Custody Number | Page / of /                               |                                                   | Snavial Inctra utione/                                     | Conditions of Receipt              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | n of Custody    |  | - | <br> | assessed if samples are retained<br>conth)                                             |                           | Sturling Time                  | SIAIN 198                        | Date                        | K H      |                                                                             |
|----------------------------|-----------------------------------|-------------------------|-------------------------------------------|---------------------------------------------------|------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------|--|---|------|----------------------------------------------------------------------------------------|---------------------------|--------------------------------|----------------------------------|-----------------------------|----------|-----------------------------------------------------------------------------|
| tAmerica                   | JER IN ENVIRONMENTAL TESTING      | Date /4/15              | Lab Number                                | Analysis (Attach list if<br>more space is needed) |                                                            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | 480-79598 Chait |  |   |      | hive For Months longer than 1 m                                                        |                           | 1. 10.                         | I T A                            | 2                           | 3.2      |                                                                             |
| Temperature on Receipt     | Drinking Water? Yes Note THE LEAD | Project Manager         | Telephone Number (Area Code)/Fax Number / | Site Contact Lab Contact                          | Carrier/Waybill Number                                     | Matrix Containers &                | Definition of the second secon | X X W                    |                 |  |   |      | nknown   Return To Client   Disposal By Lab   Arch                                     | DC Requirements (Specify) | Date // 17 Time 1. Received By | 5/4/15 13 '.1 5 2. Received By M | Date VI Time 3. Received By |          | he Sample; PilviK - Field Copy                                              |
| Chain of<br>Custody Becord | TAL-4124 (1007)                   | client CSS Engineers    | 2/4/ Elm Street                           | City Code State Zy Code                           | Project Narrye and ocation (State)<br>NEU/ Strupple State) | Contract Purchase OrderCourse No.) | Sample I.D. No. and Description<br>(Containers for each sample may be combined on one line)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MBMW-1-050415 5/4/12 11. |                 |  |   |      | Possible Hazard Identification Non-Hazard  Hazard  Hammable  Skin Intiant  Poison B  U | Tum Around Time Required  | 1. Perinquisting By AMARY      | Z. Reinquished By Var Krafen     | 3. Relinquished By () ()    | Comments | DISTRIBUTION: WHITE - Returned to Client with Report: CANARY - Stays with b |

-- -

5/7/2015

# Login Sample Receipt Checklist

#### Client: C&S Engineers, Inc.

#### Login Number: 79598 List Number: 1

Creator: Janish, Carl M

| Question                                                                         | Answer | Comment |
|----------------------------------------------------------------------------------|--------|---------|
| Radioactivity either was not measured or, if measured, is at or below background | True   |         |
| The cooler's custody seal, if present, is intact.                                | True   |         |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |         |
| Samples were received on ice.                                                    | True   |         |
| Cooler Temperature is acceptable.                                                | True   |         |
| Cooler Temperature is recorded.                                                  | True   |         |
| COC is present.                                                                  | True   |         |
| COC is filled out in ink and legible.                                            | True   |         |
| COC is filled out with all pertinent information.                                | True   |         |
| Is the Field Sampler's name present on COC?                                      | True   |         |
| There are no discrepancies between the sample IDs on the containers and the COC. | True   |         |
| Samples are received within Holding Time.                                        | True   |         |
| Sample containers have legible labels.                                           | True   |         |
| Containers are not broken or leaking.                                            | True   |         |
| Sample collection date/times are provided.                                       | True   |         |
| Appropriate sample containers are used.                                          | True   |         |
| Sample bottles are completely filled.                                            | True   |         |
| Sample Preservation Verified                                                     | True   |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |         |
| VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.     | True   |         |
| If necessary, staff have been informed of any short hold time or quick TAT needs | True   |         |
| Multiphasic samples are not present.                                             | True   |         |
| Samples do not require splitting or compositing.                                 | True   |         |
| Sampling Company provided.                                                       | True   | C+S     |
| Samples received within 48 hours of sampling.                                    | True   |         |
| Samples requiring field filtration have been filtered in the field.              | N/A    |         |
| Chlorine Residual checked.                                                       | N/A    |         |

List Source: TestAmerica Buffalo

# APPENDIX C SOIL BORING LOGS

|            |               | &S Engin<br>1 Elm Stree | neers, Inc.                   | -                                    |                         | Boring No.                         |                                            | MSMW-01                                              |                                       |                       |                                                                           |
|------------|---------------|-------------------------|-------------------------------|--------------------------------------|-------------------------|------------------------------------|--------------------------------------------|------------------------------------------------------|---------------------------------------|-----------------------|---------------------------------------------------------------------------|
|            | C             |                         | Ph                            | one: 716-8                           | 47-1630                 | E                                  | SORING LOO                                 | j                                                    | S                                     | heet 1 of:            | 2                                                                         |
| C          | OMP           | AN                      | IIES Fa                       | x: 716-847-<br>w.cscos.com           | -1454                   |                                    |                                            |                                                      | Pro                                   | oject No.:            | K11.002.001                                                               |
| Proje      | ct Nam        | e:                      | 1001 Main S                   | Street Bro                           | wnfield Cleanup - I     | Main Street Well                   | Installation                               |                                                      | Surfa                                 | ace Elev.:            | 664.14                                                                    |
| L          | ocatio        | n:                      | Main Street                   | Right-of-\                           | Way                     |                                    |                                            |                                                      |                                       | Datum:                | NAVD 88                                                                   |
|            | Clie          | nt:                     | Kalieda Hea                   | alth                                 |                         |                                    |                                            |                                                      | S                                     | tart Date:            | 3/6/14                                                                    |
| Drilli     | ng Firi       | m:                      | SJB, Inc                      |                                      |                         |                                    |                                            |                                                      | Fin                                   | ish Date:             | 3/6/14                                                                    |
|            | Grou          | ndv                     | vater                         | Depth                                | Date & Time             | Drill Rig:                         | Track Mounted CME                          |                                                      | l                                     | nspector:             | C. Martin                                                                 |
|            |               | Wh                      | ile Drilling:                 |                                      |                         | Casing:                            | 2.25"                                      | Rock Core:                                           |                                       | Undist:               |                                                                           |
| Befo       | ore Cas       | sing                    | g Removal:                    |                                      |                         | Sampler:                           | 2" Split Spoon                             | Other:                                               |                                       |                       |                                                                           |
| Af         | ter Cas       | sing                    | g Removal:                    |                                      |                         | Hammer:                            | Auto                                       |                                                      |                                       |                       |                                                                           |
|            | 1             | -                       | (N N                          | lo. of blow                          | vs to drive sampler     | 12" w/140 lb. ha                   | Immer falling 30" ASTI                     | M D-1586, Stand                                      | ard Pene                              | tration Test          | :)                                                                        |
| Depth (ft) | Sample<br>No. | Symbol                  | Blows on<br>Sampler<br>per 6" | c - coarse<br>m - mediun<br>f - fine | n<br>S - Sano           | MATERIAL<br>d, \$ - Silt, G - Grav | DESCRIPTION<br>/el, C - Clay, cly - clayey | a - and -<br>s - some -<br>l - little -<br>t - trace | 35-50%<br>20-35%<br>10-20%<br>- 0-10% | (e.g., N-v<br>moistur | COMMENTS<br>alue, recovery, relative<br>e, core run, RQD, %<br>recovered) |
| 1          |               |                         |                               |                                      |                         |                                    |                                            |                                                      |                                       |                       |                                                                           |
|            |               |                         |                               | BORING                               | INSTALLED APP           | ROXIMATELY 20                      | INCHES FROM THE                            | :                                                    |                                       |                       |                                                                           |
| 2          |               |                         |                               | CONSTR                               | RUCTION EDGE O          | F SIDEWALK. B                      | ORING WAS INSTAL                           | LED                                                  |                                       |                       |                                                                           |
|            |               |                         |                               | INSIDE 1                             | <b>TRENCH BETWEE</b>    | N EDGE OF SI                       | DEWALK AND BUILDI                          | NG. TRENCH                                           |                                       |                       |                                                                           |
| 3          |               |                         |                               | WAS BA                               | CKFILLED WITH           | CRUSHED STOP                       | NE TO PROVIDE A PL                         | ACE FOR                                              |                                       |                       |                                                                           |
|            |               |                         |                               | DRILLEF                              | RS TO STAND.            |                                    |                                            |                                                      |                                       |                       |                                                                           |
| 4          |               |                         |                               |                                      |                         |                                    |                                            |                                                      |                                       |                       |                                                                           |
| 5          |               |                         |                               | AUGERE                               | ED TO 5 FEET BEI        | LOW GROUND :                       | SURFACE.                                   |                                                      |                                       |                       |                                                                           |
|            |               |                         | 7                             |                                      |                         |                                    |                                            |                                                      |                                       |                       |                                                                           |
| 6          |               |                         | 8                             | 19 in-                               | Sandy SILT -brow        | wn - trace fine S                  | and - moist                                |                                                      |                                       | 0 ppm                 |                                                                           |
|            |               |                         | 7                             |                                      |                         |                                    |                                            |                                                      |                                       |                       |                                                                           |
| 7          |               |                         | 6                             |                                      |                         |                                    |                                            |                                                      |                                       |                       |                                                                           |
|            |               |                         |                               |                                      |                         |                                    |                                            |                                                      |                                       |                       |                                                                           |
| 8          |               |                         |                               |                                      |                         |                                    |                                            |                                                      |                                       |                       |                                                                           |
| ٩          |               |                         |                               | AUGERE                               | DSFEET                  |                                    |                                            |                                                      |                                       |                       |                                                                           |
|            |               |                         |                               |                                      |                         |                                    |                                            |                                                      |                                       |                       |                                                                           |
| 10         |               |                         |                               |                                      |                         |                                    |                                            |                                                      |                                       |                       |                                                                           |
|            |               |                         | 4                             | <u>18 in-</u>                        | SILT -brown - mo        | <u>pist</u>                        |                                            |                                                      |                                       | 0 ppm                 |                                                                           |
| 11         |               |                         | 12                            |                                      |                         |                                    |                                            |                                                      |                                       |                       |                                                                           |
|            |               |                         | 20                            |                                      |                         |                                    |                                            |                                                      |                                       |                       |                                                                           |
| 12         |               |                         | 25                            |                                      |                         |                                    |                                            |                                                      |                                       |                       |                                                                           |
| 13         |               |                         |                               |                                      |                         |                                    |                                            |                                                      |                                       |                       |                                                                           |
| 10         |               |                         |                               | AUGERE                               | ED 5 FEET               |                                    |                                            |                                                      |                                       |                       |                                                                           |
| 14         |               |                         |                               |                                      |                         |                                    |                                            |                                                      |                                       |                       |                                                                           |
|            |               |                         |                               |                                      |                         |                                    |                                            |                                                      |                                       |                       |                                                                           |
| 15         |               |                         |                               |                                      | <u></u>                 |                                    |                                            |                                                      |                                       |                       |                                                                           |
| 40         |               |                         | 13                            | <u>15 in-</u>                        | SILT -brown - mo        | DIST                               |                                            |                                                      |                                       | 0 ppm                 |                                                                           |
| 10         |               |                         | 17                            |                                      |                         |                                    |                                            |                                                      |                                       |                       |                                                                           |
| 17         |               |                         | 10                            |                                      |                         |                                    |                                            |                                                      |                                       |                       |                                                                           |
|            | 1             |                         |                               |                                      |                         |                                    |                                            |                                                      |                                       | 1                     |                                                                           |
| 18         |               |                         |                               |                                      |                         |                                    |                                            |                                                      |                                       |                       |                                                                           |
|            |               |                         |                               | AUGERE                               | ED 5 FEET               |                                    |                                            |                                                      |                                       |                       |                                                                           |
| 19         |               |                         |                               |                                      |                         |                                    |                                            |                                                      |                                       |                       |                                                                           |
| 20         |               |                         |                               |                                      |                         |                                    |                                            |                                                      |                                       |                       |                                                                           |
|            |               |                         | 15                            | <u>18 in</u> -                       | <u>SILT -brown</u> - mo | pist                               |                                            |                                                      |                                       | 0 ppm                 |                                                                           |
| 21         |               |                         | 22                            | <u>18 in-</u>                        | Sandy SILT -brow        | wn - trace fine S                  | and - saturated                            |                                                      |                                       |                       |                                                                           |
|            | ]             |                         | 26                            |                                      |                         |                                    |                                            |                                                      |                                       |                       |                                                                           |
| 22         |               |                         | 30                            |                                      |                         |                                    |                                            |                                                      |                                       |                       |                                                                           |
| 22         |               |                         |                               | AUGERE                               | D 5 FEET                |                                    |                                            |                                                      |                                       |                       |                                                                           |
| 23         |               | 1                       |                               |                                      |                         |                                    |                                            |                                                      |                                       | I                     |                                                                           |

|          | 8      |     | S I4<br>Bu       | <b>&amp;S Engi</b><br>1 Elm Stre<br>ffalo, New | neers, Inc.<br>et<br>York 14203 | BORING LOG                                       | В                | oring No.  | MSMW-01             |
|----------|--------|-----|------------------|------------------------------------------------|---------------------------------|--------------------------------------------------|------------------|------------|---------------------|
| C        | OMP    |     | IIES Fa          | one: 716-8<br>x: 716-847                       | 347-1630<br>7-1454              |                                                  | S                | heet 2 of: | 2                   |
|          |        |     | ww               | w.cscos.con                                    | n<br>(i i i oi                  |                                                  | Pro              | oject No.: | K11.002.001         |
| Projec   | t Nam  | e:  | 1001 Main Street | Street Bro                                     | whileId Cleanup - I             | Main Street Well Installation                    | S                | tart Date: | 3/6/14              |
| L        | Ocatio | n:  | Main Street      | Right-or-                                      | vvay                            |                                                  | Fin              | ISN Date:  | 3/6/14              |
|          | Cilei  | ιι. | Nalieua Liea     |                                                |                                 |                                                  |                  | ispector.  |                     |
| (ft)     | ple .  | bol | Blows on         | c - coarse                                     |                                 | a - and -                                        | 35-50%<br>20-35% | (e.g.      | N-value, recovery.  |
| pth      | No a   | ym  | Sampler          | m - mediu<br>f - fine                          | m                               | MATERIAL DESCRIPTION                             | 10-20%           | moistur    | e, core run, RQD, % |
| å        | S      | S   | per 6"           |                                                | S - Sano                        | d, \$ - Silt, G - Gravel, C - Clay, cly - clayey | - 0-10%          |            | recovered)          |
|          |        |     |                  |                                                |                                 |                                                  |                  |            |                     |
| 24       |        |     |                  |                                                |                                 |                                                  |                  |            |                     |
|          |        |     |                  |                                                |                                 |                                                  |                  |            |                     |
| 25       |        |     | 1.0              |                                                |                                 |                                                  |                  |            |                     |
| 26       |        |     | 10               |                                                |                                 |                                                  |                  |            |                     |
| 20       |        |     | 14               |                                                | NO Recovery                     |                                                  |                  |            |                     |
| 27       |        |     | 21               |                                                |                                 |                                                  |                  |            |                     |
|          |        |     | 12               | 10 in-                                         | Silty SAND-brow                 | n - fine Sand trace Silt - saturated             |                  | mag 0      |                     |
| 28       |        |     | 14               | 3 in-                                          | SILT -brown - sa                | turated                                          |                  |            |                     |
|          |        |     | 15               |                                                | -                               |                                                  |                  |            |                     |
| 29       |        |     | 21               |                                                |                                 |                                                  |                  |            |                     |
|          |        |     | 3                | <u>15 in-</u>                                  | <u>SILT -brown - sa</u>         | turated                                          |                  | 0 ppm      |                     |
| 30       |        |     | 11               |                                                |                                 |                                                  |                  |            |                     |
|          |        |     | 17               |                                                |                                 |                                                  |                  |            |                     |
| 31       |        |     | 23               | 45 10                                          |                                 | un transfins Osud astronotad                     |                  | 0          |                     |
| 22       |        |     | 25               | <u>15 In-</u>                                  | Sandy SILT -bro                 | wh - trace fine Sand - saturated                 |                  | 0 ppm      |                     |
| 32       |        |     | 50/3             |                                                |                                 |                                                  |                  |            |                     |
| 33       |        |     | 50/5             |                                                |                                 |                                                  |                  |            |                     |
|          |        |     | 17               | 19 in-                                         | Clay SILT -brown                | n - some Clay - wet                              |                  | 0 ppm      |                     |
| 34       |        |     | 13               |                                                | <u> </u>                        |                                                  |                  |            |                     |
|          |        |     | 12               |                                                |                                 |                                                  |                  |            |                     |
| 35       |        |     | 15               |                                                |                                 |                                                  |                  |            |                     |
|          |        |     |                  |                                                |                                 |                                                  |                  |            |                     |
| 36       |        |     |                  |                                                | END OF BORING                   | AT 35 FEET BELOW GROUND SURFACE                  |                  |            |                     |
| 07       |        |     |                  |                                                |                                 |                                                  |                  |            |                     |
| 37       |        |     |                  |                                                |                                 |                                                  |                  |            |                     |
| 38       |        |     |                  |                                                |                                 |                                                  |                  |            |                     |
| - 00     |        |     |                  |                                                |                                 |                                                  |                  |            |                     |
| 39       |        |     |                  |                                                |                                 |                                                  |                  |            |                     |
|          |        |     |                  |                                                |                                 |                                                  |                  |            |                     |
| 40       |        |     |                  |                                                |                                 |                                                  |                  |            |                     |
|          |        |     |                  |                                                |                                 |                                                  |                  |            |                     |
| 41       |        |     |                  |                                                |                                 |                                                  |                  |            |                     |
| 10       |        |     |                  |                                                |                                 |                                                  |                  |            |                     |
| 42       |        |     |                  |                                                |                                 |                                                  |                  |            |                     |
| 43       |        |     |                  |                                                |                                 |                                                  |                  |            |                     |
|          |        |     |                  |                                                |                                 |                                                  |                  |            |                     |
| 44       |        |     |                  |                                                |                                 |                                                  |                  |            |                     |
|          |        |     |                  |                                                |                                 |                                                  |                  |            |                     |
| 45       |        |     |                  |                                                |                                 |                                                  |                  |            |                     |
|          |        |     |                  |                                                |                                 |                                                  |                  |            |                     |
| 46       |        |     |                  |                                                |                                 |                                                  |                  |            |                     |
|          |        |     |                  |                                                |                                 |                                                  |                  |            |                     |
| 47       |        |     |                  |                                                |                                 |                                                  |                  |            |                     |
| 10       |        |     |                  |                                                |                                 |                                                  |                  |            |                     |
| 40       |        |     |                  |                                                |                                 |                                                  |                  |            |                     |
| 49       |        |     |                  |                                                |                                 |                                                  |                  |            |                     |
| <u> </u> |        | _   |                  |                                                |                                 |                                                  |                  |            |                     |

|            |               |          |                               | &S Engli<br>1 Elm Stree              | neers, Inc.<br>et   | -                                  |                                            | Boring No.                                           |                                       | MSMW-02               |                                                                           |  |  |  |
|------------|---------------|----------|-------------------------------|--------------------------------------|---------------------|------------------------------------|--------------------------------------------|------------------------------------------------------|---------------------------------------|-----------------------|---------------------------------------------------------------------------|--|--|--|
|            | C             |          | Ph                            | one: 716-8                           | 47-1630             | E                                  | SORING LOO                                 | j                                                    | S                                     | heet 1 of:            | 2                                                                         |  |  |  |
| C          | OMP           | Ar       |                               | x: 716-847-<br>w.cscos.com           | -1454<br>1          |                                    |                                            |                                                      | Pro                                   | oject No.:            | K11.002.001                                                               |  |  |  |
| Proje      | ct Nam        | e:       | 1001 Main \$                  | Street Bro                           | wnfield Cleanup - I | Main Street Well                   | Installation                               |                                                      | Surfa                                 | ace Elev.:            | 663.47                                                                    |  |  |  |
| L          | ocatio        | n:       | Main Street                   | Right-of-\                           | Way                 |                                    |                                            |                                                      |                                       | Datum: NAVI           |                                                                           |  |  |  |
|            | Clie          | nt:      | Kalieda Hea                   | alth                                 |                     |                                    |                                            |                                                      | S                                     | tart Date:            | 3/4/14                                                                    |  |  |  |
| Drilli     | ng Fir        | m:       | SJB, Inc                      |                                      |                     |                                    |                                            |                                                      | Fin                                   | nish Date:            | 3/4/14                                                                    |  |  |  |
|            | Grou          | nd١      | water                         | Depth                                | Date & Time         | Drill Rig:                         | Track Mounted CME                          |                                                      | -                                     | Inspector: C. Martin  |                                                                           |  |  |  |
|            |               | Wh       | ile Drilling:                 |                                      |                     | Casing:                            | 2.25"                                      | Rock Core:                                           |                                       | Undist:               |                                                                           |  |  |  |
| Befo       | ore Ca        | sin      | g Removal:                    |                                      |                     | Sampler:                           | 2" Split Spoon                             | Other:                                               |                                       |                       |                                                                           |  |  |  |
| Af         | ter Cas       | sin      | g Removal:                    |                                      |                     | Hammer:                            | Auto                                       |                                                      |                                       |                       |                                                                           |  |  |  |
|            | 1             | -        | (N N                          | lo. of blow                          | vs to drive sampler | 12" w/140 lb. ha                   | Immer falling 30" ASTI                     | M D-1586, Stand                                      | ard Pene                              | tration Test          | .)                                                                        |  |  |  |
| Depth (ft) | Sample<br>No. | Symbol   | Blows on<br>Sampler<br>per 6" | c - coarse<br>m - mediun<br>f - fine | n<br>S - Sano       | MATERIAL<br>d, \$ - Silt, G - Grav | DESCRIPTION<br>/el, C - Clay, cly - clayey | a - and -<br>s - some -<br>l - little -<br>t - trace | 35-50%<br>20-35%<br>10-20%<br>- 0-10% | (e.g., N-v<br>moistur | COMMENTS<br>alue, recovery, relative<br>e, core run, RQD, %<br>recovered) |  |  |  |
| 1          |               |          |                               |                                      |                     |                                    |                                            |                                                      |                                       |                       |                                                                           |  |  |  |
|            |               |          |                               | BORING                               | INSTALLED APP       | ROXIMATELY 20                      | ) INCHES FROM THE                          | :                                                    |                                       |                       |                                                                           |  |  |  |
| 2          |               |          |                               | CONSTR                               | RUCTION EDGE C      | F SIDEWALK. B                      | ORING WAS INSTAL                           | LED                                                  |                                       |                       |                                                                           |  |  |  |
|            |               |          |                               | INSIDE 1                             | TRENCH BETWEE       | N EDGE OF SI                       | DEWALK AND BUILDI                          | NG. TRENCH                                           |                                       |                       |                                                                           |  |  |  |
| 3          |               |          |                               | WAS BA                               | CKFILLED WITH       | CRUSHED STOP                       | NE TO PROVIDE A PL                         | ACE FOR                                              |                                       |                       |                                                                           |  |  |  |
|            |               |          |                               | DRILLEF                              | RS TO STAND.        |                                    |                                            |                                                      |                                       |                       |                                                                           |  |  |  |
| 4          |               |          |                               |                                      |                     |                                    |                                            |                                                      |                                       |                       |                                                                           |  |  |  |
| 5          |               |          |                               | AUGERE                               | ED TO 5 FEET BEI    | LOW GROUND :                       | SURFACE.                                   |                                                      |                                       |                       |                                                                           |  |  |  |
| 5          |               |          | 12                            |                                      |                     |                                    |                                            |                                                      |                                       |                       |                                                                           |  |  |  |
| 6          |               |          | 20                            | <u>6 in -</u>                        | Silty CLAY - red    | brown                              |                                            |                                                      |                                       | 0 ppm                 |                                                                           |  |  |  |
|            |               |          | 8                             |                                      |                     |                                    |                                            |                                                      |                                       |                       |                                                                           |  |  |  |
| 7          |               |          | 7                             |                                      |                     |                                    |                                            |                                                      |                                       |                       |                                                                           |  |  |  |
|            |               |          |                               |                                      |                     |                                    |                                            |                                                      |                                       |                       |                                                                           |  |  |  |
| 8          |               |          |                               |                                      |                     |                                    |                                            |                                                      |                                       |                       |                                                                           |  |  |  |
| 9          |               |          |                               | AUGLI                                |                     |                                    |                                            |                                                      |                                       |                       |                                                                           |  |  |  |
| -          |               |          |                               |                                      |                     |                                    |                                            |                                                      |                                       |                       |                                                                           |  |  |  |
| 10         |               |          |                               |                                      |                     |                                    |                                            |                                                      |                                       |                       |                                                                           |  |  |  |
|            |               |          | 5                             | <u>17 in-</u>                        | Silty SAND - bro    | wn - dry - fine S                  | and - trace Silt                           |                                                      |                                       | 0 ppm                 |                                                                           |  |  |  |
| 11         |               |          | 19                            |                                      |                     |                                    |                                            |                                                      |                                       |                       |                                                                           |  |  |  |
| 12         |               |          | 22                            |                                      |                     |                                    |                                            |                                                      |                                       |                       |                                                                           |  |  |  |
| 12         |               |          | 24                            |                                      |                     |                                    |                                            |                                                      |                                       |                       |                                                                           |  |  |  |
| 13         |               |          |                               |                                      |                     |                                    |                                            |                                                      |                                       |                       |                                                                           |  |  |  |
|            |               |          |                               | AUGERE                               | ED 5 FEET           |                                    |                                            |                                                      |                                       |                       |                                                                           |  |  |  |
| 14         |               |          |                               |                                      |                     |                                    |                                            |                                                      |                                       |                       |                                                                           |  |  |  |
|            |               |          |                               |                                      |                     |                                    |                                            |                                                      |                                       |                       |                                                                           |  |  |  |
| 15         |               |          |                               | 47                                   |                     | in the first O                     |                                            |                                                      |                                       | 0                     |                                                                           |  |  |  |
| 16         |               |          | 9                             | <u>17 in-</u>                        | SIITY SAND - Dro    | wn - ary - fine S                  | and - trace Slit                           |                                                      |                                       | 0 ppm                 |                                                                           |  |  |  |
| 10         |               |          | 10                            |                                      |                     |                                    |                                            |                                                      |                                       |                       |                                                                           |  |  |  |
| 17         |               |          | 17                            |                                      |                     |                                    |                                            |                                                      |                                       |                       |                                                                           |  |  |  |
|            | 1             | 1        |                               |                                      |                     |                                    |                                            |                                                      |                                       |                       |                                                                           |  |  |  |
| 18         |               | 1        |                               |                                      |                     |                                    |                                            |                                                      |                                       |                       |                                                                           |  |  |  |
| 40         |               | 1        |                               | AUGERE                               | ED 5 FEET           |                                    |                                            |                                                      |                                       |                       |                                                                           |  |  |  |
| 19         |               | 1        |                               |                                      |                     |                                    |                                            |                                                      |                                       |                       |                                                                           |  |  |  |
| 20         |               | 1        |                               |                                      |                     |                                    |                                            |                                                      |                                       |                       |                                                                           |  |  |  |
| Ē          | 1             | 1        | 8                             | 17 in-                               | Silty SAND - bro    | <u>wn - dry - fine</u> S           | and - trace Silt                           |                                                      |                                       | 117 ppm               |                                                                           |  |  |  |
| 21         |               | 1        | 11                            |                                      |                     |                                    |                                            |                                                      |                                       |                       |                                                                           |  |  |  |
|            |               | 1        | 11                            |                                      |                     |                                    |                                            |                                                      |                                       |                       |                                                                           |  |  |  |
| 22         |               | 1        | 10                            |                                      |                     |                                    |                                            |                                                      |                                       |                       |                                                                           |  |  |  |
| 23         |               | 1        |                               | AUGERE                               | DOFEEI              |                                    |                                            |                                                      |                                       |                       |                                                                           |  |  |  |
|            |               | <u> </u> | I                             |                                      |                     |                                    |                                            |                                                      |                                       |                       |                                                                           |  |  |  |

|          | -      |     | C 14<br>Bu   | <b>&amp;S Engineers, Inc.</b><br>1 Elm Street<br>iffalo, New York 14203 | BORINGLOG                                                                | В                | oring No.  | MSMW-02             |
|----------|--------|-----|--------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------|------------|---------------------|
| ~        |        |     | Ph<br>UES Fo | ione: 716-847-1630                                                      | BORINGLOG                                                                | S                | heet 2 of: | 2                   |
| C        | JIVIP  | -   |              | W.CSCOS.COM                                                             |                                                                          | Pro              | oject No.: | K11.002.001         |
| Proje    | ct Nam | e:  | 1001 Main S  | Street Brownfield Cleanup                                               | - Main Street Well Installation                                          | S                | tart Date: | 3/4/14              |
| L        | ocatio | n:  | Main Street  | Right-of-Way                                                            |                                                                          | Fin              | ish Date:  | 3/4/14              |
|          | Clier  | nt: | Kalieda Hea  | alth                                                                    |                                                                          | lı               | nspector:  | C.Martin            |
|          |        |     |              |                                                                         |                                                                          |                  |            | COMMENTS            |
| E C      | ple.   | po  | Blows on     | c - coarse                                                              | a - and - 3<br>s - some - 2                                              | 35-50%<br>20-35% | (e.g.,     | N-value, recovery,  |
| pt!      | N an   | ym  | Sampler      | m - medium<br>f - fine                                                  | MATERIAL DESCRIPTION                                                     | 0.10%            | moistur    | e, core run, RQD, % |
| ă        | S      | S   | per 6        | S - S                                                                   | and, \$ - Silt, G - Gravel, C - Clay, cly - clayey                       | 0-10%            |            | recovered)          |
|          |        |     |              |                                                                         |                                                                          |                  |            |                     |
| 24       |        |     |              |                                                                         |                                                                          |                  |            |                     |
|          | 1      |     |              |                                                                         |                                                                          |                  |            |                     |
| 25       |        |     |              |                                                                         |                                                                          |                  |            |                     |
|          |        |     | 5            | 17 in- Silty SAND - b                                                   | rown - moist - fine Sand - trace Silt                                    |                  | 132 ppm    |                     |
| 26       |        |     | 7            |                                                                         |                                                                          |                  |            |                     |
|          |        |     | 9            |                                                                         |                                                                          |                  |            |                     |
| 27       |        |     | 12           |                                                                         |                                                                          |                  |            |                     |
|          |        |     | 5            | 13 in- Silty SAND - h                                                   | rown - moist - fine Sand - trace Silt                                    |                  | 242 ppm    |                     |
| 28       |        |     | 7            | 6 in- Silty SAND - b                                                    | rown - moist - med Sand - trace Silt                                     |                  | - ·= pp    |                     |
| 20       |        |     | 9            | 2 in- SILT - brown -                                                    | moist                                                                    |                  |            |                     |
| 20       |        |     | 12           |                                                                         |                                                                          |                  |            |                     |
| 20       |        |     | 12           | 16 in- Silty CLAV - re                                                  | d brown - moist                                                          |                  | 0 nnm      |                     |
| 20       |        |     | 3            | 2 in- Sandy SILT- tr                                                    | aco fino Sand - moist                                                    |                  | o ppm      |                     |
| - 50     |        |     | 4            | <u>3 III-</u> <u>3 Januy 3121- II</u>                                   |                                                                          |                  |            |                     |
| 24       |        |     | 9            |                                                                         |                                                                          |                  |            |                     |
| 31       |        |     | 10           | 12 in Cand & Croyal                                                     | arely economic and 25 in relyaded arelyal arely                          |                  | 200 nnm    |                     |
|          |        |     | 12           | <u>13 In-</u> Sand & Grave                                              | - grey - coarse sand and .25 in rounded gravel grey -                    |                  | 300 ppm    |                     |
| 32       |        |     | 14           | saturated                                                               |                                                                          |                  |            |                     |
| 00       |        |     | 18           |                                                                         |                                                                          |                  |            |                     |
| 33       |        |     | 17           |                                                                         |                                                                          |                  | 450        |                     |
|          |        |     | 11           | 6 in- Sand & Gravel                                                     | - black - coarse sand and .25 in rounded gravel grey -                   |                  | 150 ppm    |                     |
| 34       |        |     | 4            | saturated                                                               |                                                                          |                  |            |                     |
|          |        |     | 8            |                                                                         |                                                                          |                  |            |                     |
| 35       |        |     | 12           |                                                                         |                                                                          |                  |            |                     |
|          |        |     | 1            | 8 in- Sand & Gravel                                                     | - black - coarse sand and .25 in rounded gravel grey -                   |                  | 80 ppm     |                     |
| 36       |        |     | 1            | saturated                                                               |                                                                          |                  |            |                     |
|          |        |     | 8            |                                                                         |                                                                          |                  |            |                     |
| 37       |        |     | 8            |                                                                         |                                                                          |                  |            |                     |
|          |        |     | 12           | 24 in- Sand & Gravel                                                    | <ul> <li>black - coarse sand and .25 in rounded gravel grey -</li> </ul> |                  | 400 ppm    |                     |
| 38       |        |     | 12           | saturated                                                               |                                                                          |                  |            |                     |
|          |        |     | 11           |                                                                         |                                                                          |                  |            |                     |
| 39       |        |     | 11           |                                                                         |                                                                          |                  |            |                     |
| 40       |        |     |              |                                                                         |                                                                          |                  |            |                     |
| 40       |        |     |              | END OF BORI                                                             | NG AT 39 FEET BELOW GROUND SURFACE                                       |                  |            |                     |
| <b>I</b> |        |     |              |                                                                         |                                                                          |                  |            |                     |
| 41       |        |     |              |                                                                         |                                                                          |                  |            |                     |
|          |        |     |              |                                                                         |                                                                          |                  |            |                     |
| 42       |        |     |              |                                                                         |                                                                          |                  |            |                     |
| 40       |        |     |              |                                                                         |                                                                          |                  |            |                     |
| 43       |        |     |              |                                                                         |                                                                          |                  |            |                     |
|          |        |     |              |                                                                         |                                                                          |                  |            |                     |
| 44       |        |     |              |                                                                         |                                                                          |                  |            |                     |
|          |        |     |              |                                                                         |                                                                          |                  |            |                     |
| 45       | ļ      |     |              |                                                                         |                                                                          |                  |            |                     |
|          |        |     |              |                                                                         |                                                                          |                  |            |                     |
| 46       | l      |     |              |                                                                         |                                                                          |                  |            |                     |
|          |        |     |              |                                                                         |                                                                          |                  |            |                     |
| 47       |        |     |              |                                                                         |                                                                          |                  |            |                     |
|          |        |     |              |                                                                         |                                                                          |                  |            |                     |
| 48       |        |     |              |                                                                         |                                                                          |                  |            |                     |
|          |        |     |              |                                                                         |                                                                          |                  |            |                     |
| 49       |        |     |              |                                                                         |                                                                          |                  |            |                     |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C&S Engineers, Inc. |      |                   |                            |                     |                   |                         |                 |                       | oring No.                                                                 | MSMW-03     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------|-------------------|----------------------------|---------------------|-------------------|-------------------------|-----------------|-----------------------|---------------------------------------------------------------------------|-------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                   | P    | Bu Bu             | ffalo, New                 | York 14203          | E                 | BORING LOO              | G               |                       |                                                                           |             |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OMP                 | AN   | IIES Fa           | one: 716-84<br>x: 716-847- | 47-1630<br>1454     | _                 |                         |                 | S                     | heet 1 of:                                                                | 2           |
| Ducie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t Nor               |      | ww<br>1001 Main ( | w.cscos.com                | unfield Cleanup     | Acin Streat Wall  | Installation            |                 | Pro                   | oject No.:                                                                | K11.002.001 |
| Projec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     | ie:  | 1001 Main 3       | Dight of V                 | whileid Cleanup - r | viain Street weil | Installation            |                 | Surfa                 | Dotum                                                                     | 003.20      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Clie                | nt.  | Kalieda Hea       | Alth                       | vay                 |                   |                         |                 | s                     | tart Date:                                                                | 3/5/14      |
| Drilli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | na Fir              | m:   | SJB. Inc          |                            |                     |                   |                         |                 | Fin                   | hish Date:                                                                | 3/5/14      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Grou                | ndv  | vater             | Depth                      | Date & Time         | Drill Rig:        | Track Mounted CME       | l               | nspector:             | C. Martin                                                                 |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     | Wh   | ile Drilling:     |                            |                     | Casing:           | 2.25"                   | Rock Core:      |                       | Undist:                                                                   |             |
| Befo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ore Ca              | sing | g Removal:        |                            |                     | Sampler:          | 2" Split Spoon          | Other:          |                       |                                                                           |             |
| Af                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ter Ca              | sing | g Removal:        |                            |                     | Hammer:           | Auto                    |                 |                       |                                                                           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     | -    | (N N              | lo. of blow                | s to drive sampler  | 12" w/140 lb. ha  | mmer falling 30" AST    | V D-1586, Stand | ard Pene              | tration Test                                                              | :)          |
| Image: Second |                     |      |                   |                            |                     |                   |                         |                 | (e.g., N-v<br>moistur | COMMENTS<br>alue, recovery, relative<br>e, core run, RQD, %<br>recovered) |             |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |      |                   |                            |                     |                   |                         |                 |                       |                                                                           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |      |                   | BORING                     | INSTALLED APPI      | ROXIMATELY 20     | ) INCHES FROM THE       |                 |                       |                                                                           |             |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |      |                   | CONSTR                     | UCTION EDGE O       | F SIDEWALK. B     | ORING WAS INSTAL        | LED             |                       |                                                                           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |      |                   | INSIDE T                   | RENCH BETWEE        | N EDGE OF SIE     | DEWALK AND BUILDI       | NG. TRENCH      |                       |                                                                           |             |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |      |                   | WAS BA                     | CKFILLED WITH (     | CRUSHED STOP      | NE TO PROVIDE A PL      | ACE FOR         |                       |                                                                           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |      |                   | DRILLER                    | S TO STAND.         |                   |                         |                 |                       |                                                                           |             |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |      |                   |                            |                     |                   |                         |                 |                       |                                                                           |             |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |      |                   | AUGERE                     | D TO 5 FEET BEI     | LOW GROUND        | SURFACE.                |                 |                       |                                                                           |             |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |      | 23                |                            |                     |                   |                         |                 |                       |                                                                           |             |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |      | 24                | 16 in-                     | Silty SAND -It bro  | own - fine sand   | some silt - moist       |                 |                       | 0 ppm                                                                     |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |      | 21                | <u>7 in-</u>               | Silty CLAY -dark    | grey - dense 40   | <u> % Silt - moist</u>  |                 |                       |                                                                           |             |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |      | 26                |                            |                     |                   |                         |                 |                       |                                                                           |             |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |      |                   |                            |                     |                   |                         |                 |                       |                                                                           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |      |                   | AUGERE                     | D 5 FEET            |                   |                         |                 |                       |                                                                           |             |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |      |                   |                            |                     |                   |                         |                 |                       |                                                                           |             |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |      |                   |                            |                     |                   |                         |                 |                       |                                                                           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |      | 6                 | 24 in-                     | Silty CLAY -red b   | prown - dense m   | nassive high pl - moi   | <u>st</u>       |                       | 0 ppm                                                                     |             |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |      | 12                |                            |                     |                   |                         |                 |                       |                                                                           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |      | 13                |                            |                     |                   |                         |                 |                       |                                                                           |             |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |      | 19                |                            |                     |                   |                         |                 |                       |                                                                           |             |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |      |                   |                            |                     |                   |                         |                 |                       |                                                                           |             |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |      |                   | AUGERE                     | D 5 FEET            |                   |                         |                 |                       |                                                                           |             |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |      |                   |                            |                     |                   |                         |                 |                       |                                                                           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |      |                   |                            |                     |                   |                         |                 |                       |                                                                           |             |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |      |                   |                            |                     |                   |                         |                 |                       |                                                                           |             |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |      | 4                 | <u>24 in-</u>              | Clay SILT -red br   | own - silt with s | some clay - low pl - tr | ace tine Sand - |                       | 0 ppm                                                                     |             |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |      | 4<br>8            |                            | moist               |                   |                         |                 |                       |                                                                           |             |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |      | 8                 |                            |                     |                   |                         |                 |                       |                                                                           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                   |      |                   |                            |                     |                   |                         |                 |                       | 1                                                                         |             |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |      |                   |                            |                     |                   |                         |                 |                       |                                                                           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |      |                   | AUGERE                     | D 5 FEET            |                   |                         |                 |                       |                                                                           |             |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |      |                   |                            |                     |                   |                         |                 |                       |                                                                           |             |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |      |                   |                            |                     |                   |                         |                 |                       |                                                                           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                   |      | 13                | 24 in-                     | Silty SAND -brov    | vn - fine Sand 2  | and 20-30% Silt - moist |                 |                       |                                                                           |             |
| 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |      | 22                |                            |                     |                   |                         |                 |                       |                                                                           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |      | 22                |                            |                     |                   |                         |                 |                       |                                                                           |             |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |      | 19                | AL/055                     |                     |                   |                         |                 |                       | -                                                                         |             |
| AUGERED 5 FEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |      |                   |                            |                     |                   |                         |                 |                       |                                                                           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     | 1    |                   |                            |                     |                   |                         |                 |                       | 1                                                                         |             |

| ſ      | E      |     | S 14<br>Bu    | <b>&amp;S Eng</b> i<br>1 Elm Stre<br>ffalo, New | n <b>eers, Inc.</b><br>et<br>7 York 14203 | BORING LOG                                    | В       | oring No.      | MSMW-03             |
|--------|--------|-----|---------------|-------------------------------------------------|-------------------------------------------|-----------------------------------------------|---------|----------------|---------------------|
| c      | OMP    |     | Ph<br>IIES Ea | one: 716-8                                      | 347-1630<br>7-1454                        |                                               | S       | heet 2 of:     | 2                   |
| 5      |        |     |               | w.cscos.cor                                     | n                                         |                                               | Pro     | oject No.:     | K11.002.001         |
| Projec | ct Nam | e:  | 1001 Main S   | Street Bro                                      | ownfield Cleanup - I                      | Main Street Well Installation                 | S       | tart Date:     | 3/5/14              |
| L      | ocatio | n:  | Main Street   | Right-of-                                       | Way                                       |                                               | Fin     | ish Date:      | 3/5/14              |
|        | Clier  | nt: | Kalieda Hea   | alth                                            |                                           |                                               | l       | nspector:      | C.Martin            |
| ŧ      | Ð      |     | Blows on      |                                                 |                                           | a - and -                                     | 35-50%  | <u> </u>       | COMMENTS            |
| th (   | lq .ol | nbe | Sampler       | c - coarse<br>m - mediu                         | m                                         | MATERIAL DESCRIPTION S - some -               | 20-35%  | (e.g.,         | N-value, recovery,  |
| Dep    | Sar    | Syı | per 6"        | f - fine                                        | S - San                                   | t - trace                                     | - 0-10% | moistur        | e, core run, RQD, % |
|        |        |     |               |                                                 | o ouri                                    |                                               |         |                | recovered)          |
|        |        |     |               |                                                 |                                           |                                               |         |                |                     |
| 24     |        |     |               |                                                 |                                           |                                               |         |                |                     |
| 05     |        |     |               |                                                 |                                           |                                               |         |                |                     |
| 25     |        |     | 0             | 0.4 in                                          | Ciltu CAND have                           | um fine Cand 20 20%/ Silt wat                 |         | 4.7            |                     |
| 26     |        |     | 0             | <u>24 m-</u>                                    | SILLY SAND -DIOV                          | vii - line Sand 20-30% Siit - wet             |         | 1.7 ppm        |                     |
| 20     |        |     | 10            |                                                 |                                           |                                               |         |                |                     |
| 27     |        |     | 10            |                                                 |                                           |                                               |         |                |                     |
| 21     |        |     | 10            | 7 in                                            | SAND It grov n                            | and Sand wat                                  |         | 18 ppm         |                     |
| 28     |        |     | 12            | <u>7 111-</u><br>14 in-                         | Sandy SII T-brow                          | vn - trace fine Sand - saturated              |         | то ррпп        |                     |
| 20     |        |     | 15            | 14 111-                                         | Sanuy SiLI-brow                           | ni - trace fille Sand - Saturated             |         |                |                     |
| 20     |        |     | 18            |                                                 |                                           |                                               |         |                |                     |
| 23     |        |     | 6             | 24 in-                                          | Sandy SII T -broy                         | wn - trace fine Sand some staining last 4" -  |         | 470 nnm        |                     |
| 30     |        |     | 14            | <u>24 III-</u>                                  | saturated                                 |                                               |         | 470 ppm        |                     |
| - 00   |        |     | 17            |                                                 | outurated                                 |                                               |         |                |                     |
| 31     |        |     | 22            |                                                 |                                           |                                               |         |                |                     |
| - 51   |        |     | 12            | 17 in-                                          | Coarse Sand & G                           | Gravel -dk grev to black - coarse rounded and |         | 130 ppm        |                     |
| 32     |        |     | 14            | <u></u>                                         | angular Sand wit                          | th 1" smiller gravek subrounded - saturated   |         |                |                     |
| - 02   |        |     | 18            |                                                 | angula ouna wa                            | an i shiner graver sabroanded saturated       |         |                |                     |
| 33     |        |     | 17            |                                                 |                                           |                                               |         |                |                     |
|        |        |     | 10            | 24 in-                                          | Coarse Sand & C                           | Fravel -dk grev to black - coarse rounded and |         | 370 ppm        |                     |
| 34     |        |     | 12            |                                                 | angular Sand wit                          | th 1" smiler gravek subrounded - saturated    |         | •••• • • • • • |                     |
| -      |        |     | 12            |                                                 |                                           |                                               |         |                |                     |
| 35     |        |     | 16            |                                                 |                                           |                                               |         |                |                     |
|        |        |     |               |                                                 |                                           |                                               |         |                |                     |
| 36     |        |     |               |                                                 | END OF BORING                             | AT 35 FEET BELOW GROUND SURFACE               |         |                |                     |
|        |        |     |               |                                                 |                                           |                                               |         |                |                     |
| 37     |        |     |               |                                                 |                                           |                                               |         |                |                     |
|        |        |     |               |                                                 |                                           |                                               |         |                |                     |
| 38     |        |     |               |                                                 |                                           |                                               |         |                |                     |
|        |        |     |               |                                                 |                                           |                                               |         |                |                     |
| 39     |        |     |               |                                                 |                                           |                                               |         |                |                     |
|        |        |     |               |                                                 |                                           |                                               |         |                |                     |
| 40     |        |     |               |                                                 |                                           |                                               |         |                |                     |
|        |        |     |               |                                                 |                                           |                                               |         |                |                     |
| 41     |        |     |               |                                                 |                                           |                                               |         |                |                     |
|        |        |     |               |                                                 |                                           |                                               |         |                |                     |
| 42     |        |     |               |                                                 |                                           |                                               |         |                |                     |
| 40     |        |     |               |                                                 |                                           |                                               |         |                |                     |
| 43     |        |     |               |                                                 |                                           |                                               |         |                |                     |
| 4.4    |        |     |               |                                                 |                                           |                                               |         |                |                     |
| 44     |        |     |               |                                                 |                                           |                                               |         |                |                     |
| 15     |        |     |               |                                                 |                                           |                                               |         |                |                     |
| 40     |        |     |               |                                                 |                                           |                                               |         |                |                     |
| 46     |        |     |               |                                                 |                                           |                                               |         |                |                     |
| 40     |        |     |               |                                                 |                                           |                                               |         |                |                     |
| 47     |        |     |               |                                                 |                                           |                                               |         |                |                     |
|        |        |     |               |                                                 |                                           |                                               |         |                |                     |
| 48     |        |     |               |                                                 |                                           |                                               |         |                |                     |
|        |        |     |               |                                                 |                                           |                                               |         |                |                     |
| 49     |        |     |               |                                                 |                                           |                                               |         |                |                     |
|        |        |     |               |                                                 |                                           |                                               |         |                |                     |

|                            | C&S Engineers, Inc.<br>141 Elm Street<br>Buffalo, New York, 14203                                                                                                                                                       |              |                        |                       |                  |                    |                | Boring No.                            |                       | MSMW-04                                                       |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------|-----------------------|------------------|--------------------|----------------|---------------------------------------|-----------------------|---------------------------------------------------------------|
|                            | ſ                                                                                                                                                                                                                       | Bu<br>Ph     | ffalo, New one: 716-84 | York 14203<br>47-1630 | E                | BORING LOO         | G              | S                                     | heet 1 of:            | 2                                                             |
| COMP                       | AN                                                                                                                                                                                                                      | IES Fai      | x: 716-847-            | -1454                 |                  |                    |                | Pro                                   | oiect No.:            | K11.002.001                                                   |
| Project Name               | e:                                                                                                                                                                                                                      | 1001 Main S  | Street Bro             | wnfield Cleanup -     | Main Street Well | Installation       |                | Surfa                                 | ,<br>ace Elev.:       | 662.97                                                        |
| Locatio                    | n:                                                                                                                                                                                                                      | Main Street  | Right-of-V             | Way                   |                  |                    |                |                                       | Datum:                | NAVD 88                                                       |
| Clien                      | t:                                                                                                                                                                                                                      | Kalieda Hea  | alth                   |                       |                  |                    |                | S                                     | tart Date:            | 3/5/14                                                        |
| Drilling Firm              | n:                                                                                                                                                                                                                      | SJB, Inc     |                        |                       |                  |                    |                | Fin                                   | nish Date:            | 3/5/14                                                        |
| Grour                      | ndw                                                                                                                                                                                                                     | vater        | Depth                  | Date & Time           | Drill Rig:       | Track Mounted CME  |                | lı                                    | nspector:             | C. Martin                                                     |
| V                          | Vhi                                                                                                                                                                                                                     | le Drilling: |                        |                       | Casing:          | 2.25"              | Rock Core:     |                                       | Undist:               |                                                               |
| Before Cas                 | ing                                                                                                                                                                                                                     | Removal:     |                        |                       | Sampler:         | 2" Split Spoon     | Other:         |                                       |                       |                                                               |
| After Cas                  | ing                                                                                                                                                                                                                     | Removal:     | lo of blow             | us to drive sample    | Hammer:          | Auto               | M D-1586 Stand | ard Pana                              | tration Test          | )                                                             |
|                            |                                                                                                                                                                                                                         |              |                        |                       |                  |                    |                |                                       |                       |                                                               |
| Depth (ff<br>Sample<br>No. | a. a. a. d. 35-50%     Sampler per 6"     c - coarse m - medium f - fine     MATERIAL DESCRIPTION     a - and - 35-50%       MATERIAL DESCRIPTION     S - some - 20-35%     I - little - 10-20%     I - little - 10-20% |              |                        |                       |                  |                    |                | 35-50%<br>20-35%<br>10-20%<br>- 0-10% | (e.g., N-v<br>moistur | alue, recovery, relative<br>e, core run, RQD, %<br>recovered) |
| 1                          | ŀ                                                                                                                                                                                                                       |              |                        |                       |                  |                    |                |                                       |                       |                                                               |
|                            | ŀ                                                                                                                                                                                                                       |              | BORING                 | INSTALLED APP         | ROXIMATELY 20    | ) INCHES FROM THE  |                |                                       |                       |                                                               |
| 2                          | ŀ                                                                                                                                                                                                                       |              | CONSTR                 | RUCTION EDGE C        | F SIDEWALK. B    | ORING WAS INSTAL   | LED            |                                       |                       |                                                               |
|                            | Ī                                                                                                                                                                                                                       |              | INSIDE T               | RENCH BETWEE          | EN EDGE OF SI    | DEWALK AND BUILDI  | NG. TRENCH     |                                       |                       |                                                               |
| 3                          |                                                                                                                                                                                                                         |              | WAS BA                 | CKFILLED WITH         | CRUSHED STOP     | NE TO PROVIDE A PL | ACE FOR        |                                       |                       |                                                               |
|                            | -                                                                                                                                                                                                                       |              | DRILLER                | RS TO STAND.          |                  |                    |                |                                       |                       |                                                               |
| 4                          | -                                                                                                                                                                                                                       |              |                        |                       |                  |                    |                |                                       |                       |                                                               |
| 5                          | ŀ                                                                                                                                                                                                                       |              | AUGERE                 | DIUSFEELBE            | LOW GROUND       | SURFACE.           |                |                                       |                       |                                                               |
|                            | ŀ                                                                                                                                                                                                                       | 11           |                        |                       |                  |                    |                |                                       |                       |                                                               |
| 6                          | ŀ                                                                                                                                                                                                                       | 10           | 14 in-                 | SILT -brown - we      | <u>et</u>        |                    |                |                                       | 0 ppm                 |                                                               |
|                            |                                                                                                                                                                                                                         | 10           |                        |                       |                  |                    |                |                                       |                       |                                                               |
| 7                          |                                                                                                                                                                                                                         | 9            |                        |                       |                  |                    |                |                                       |                       |                                                               |
| 0                          | -                                                                                                                                                                                                                       |              |                        |                       |                  |                    |                |                                       |                       |                                                               |
| 0                          | ŀ                                                                                                                                                                                                                       |              | AUGERE                 | D 5 FFFT              |                  |                    |                |                                       |                       |                                                               |
| 9                          | ŀ                                                                                                                                                                                                                       |              | NOOLINE                |                       |                  |                    |                |                                       |                       |                                                               |
|                            | ľ                                                                                                                                                                                                                       |              |                        |                       |                  |                    |                |                                       |                       |                                                               |
| 10                         |                                                                                                                                                                                                                         |              |                        |                       |                  |                    |                |                                       |                       |                                                               |
|                            |                                                                                                                                                                                                                         | 13           | <u>18 in-</u>          | Silty SAND -brow      | vn - fine Sand 3 | 0-40% Silt - moist |                |                                       | 0 ppm                 |                                                               |
| 11                         | -                                                                                                                                                                                                                       | 25           |                        |                       |                  |                    |                |                                       |                       |                                                               |
| 12                         | ŀ                                                                                                                                                                                                                       | 31           |                        |                       |                  |                    |                |                                       |                       |                                                               |
|                            | ŀ                                                                                                                                                                                                                       | 01           |                        |                       |                  |                    |                |                                       |                       |                                                               |
| 13                         | ľ                                                                                                                                                                                                                       |              |                        |                       |                  |                    |                |                                       |                       |                                                               |
|                            |                                                                                                                                                                                                                         |              | AUGERE                 | D 5 FEET              |                  |                    |                |                                       |                       |                                                               |
| 14                         |                                                                                                                                                                                                                         |              |                        |                       |                  |                    |                |                                       |                       |                                                               |
| 15                         | ┝                                                                                                                                                                                                                       |              |                        |                       |                  |                    |                |                                       |                       |                                                               |
| 15                         | ŀ                                                                                                                                                                                                                       | 29           | 10 in-                 | Silty SAND -brow      | vn - fine Sand 3 | 0-40% Silt - moist |                |                                       | 2 7 ppm               |                                                               |
| 16                         | ŀ                                                                                                                                                                                                                       | 50/4         | <u></u>                |                       |                  |                    |                |                                       | 2.1 ppm               |                                                               |
|                            |                                                                                                                                                                                                                         |              |                        |                       |                  |                    |                |                                       |                       |                                                               |
| 17                         |                                                                                                                                                                                                                         |              |                        |                       |                  |                    |                |                                       |                       |                                                               |
|                            |                                                                                                                                                                                                                         |              |                        |                       |                  |                    |                |                                       |                       |                                                               |
| 18                         |                                                                                                                                                                                                                         |              |                        |                       |                  |                    |                |                                       |                       |                                                               |
| 19                         | ŀ                                                                                                                                                                                                                       |              | AUGERE                 | DUTEET                |                  |                    |                |                                       |                       |                                                               |
|                            | ŀ                                                                                                                                                                                                                       |              |                        |                       |                  |                    |                |                                       |                       |                                                               |
| 20                         | ľ                                                                                                                                                                                                                       |              |                        |                       |                  |                    |                |                                       |                       |                                                               |
|                            | ſ                                                                                                                                                                                                                       | 24           | <u>16 in-</u>          | Silty SAND -brow      | vn - fine Sand 2 | 0-30% Silt - moist |                |                                       | 1.7 ppm               |                                                               |
| 21                         | ╞                                                                                                                                                                                                                       | 44           |                        |                       |                  |                    |                |                                       |                       |                                                               |
| 22                         | ┝                                                                                                                                                                                                                       | 50/4         |                        |                       |                  |                    |                |                                       |                       |                                                               |
|                            | ┢                                                                                                                                                                                                                       |              | AUGERE                 | D 5 FEET              |                  |                    |                |                                       |                       |                                                               |
| 23                         | 23 AUGERED 5 FEET                                                                                                                                                                                                       |              |                        |                       |                  |                    |                |                                       |                       |                                                               |

| ſ      | C&S Engineers, Inc.<br>141 Elm Street<br>Buffalo, New York 14203<br>Phone: 716-847-1630 |     |             |                         | neers, Inc.<br>et<br>v York 14203 | BORINGLOG                                           | В                | oring No.  | MSMW-04            |
|--------|-----------------------------------------------------------------------------------------|-----|-------------|-------------------------|-----------------------------------|-----------------------------------------------------|------------------|------------|--------------------|
| c      | OMP                                                                                     |     | JIES Ea     | ione: 716-8             | 347-1630<br>7-1454                | BORING LOG                                          | S                | heet 2 of: | 2                  |
| C.     |                                                                                         |     |             | w.cscos.con             | n                                 |                                                     | Pre              | oject No.: | K11.002.001        |
| Projec | ct Nam                                                                                  | e:  | 1001 Main S | Street Bro              | wnfield Cleanup - I               | Main Street Well Installation                       | S                | tart Date: | 3/5/14             |
| L      | ocatio                                                                                  | n:  | Main Street | Right-of-               | Way                               |                                                     | Fir              | nish Date: | 3/5/14             |
|        | Clie                                                                                    | nt: | Kalieda Hea | alth                    |                                   |                                                     | l                | nspector:  | C.Martin           |
| (£     | e                                                                                       | 0   | Blows on    |                         |                                   | a - and -                                           | 35-50%           | 9          | COMMENTS           |
| ţ      | d o                                                                                     | gm  | Sampler     | c - coarse<br>m - mediu | m                                 | MATERIAL DESCRIPTION s - some -                     | 20-35%<br>10-20% | (e.g.,     | N-value, recovery, |
| Dep    | Sa                                                                                      | s   | per 6"      | f - fine                | S - Sano                          | d, \$ - Silt, G - Gravel, C - Clay, cly - clayey    | 0-10%            | moistur    | recovered)         |
|        |                                                                                         |     |             |                         |                                   |                                                     |                  |            |                    |
| 24     |                                                                                         |     |             | -                       |                                   |                                                     |                  |            |                    |
| 27     |                                                                                         |     |             |                         |                                   |                                                     |                  |            |                    |
| 25     |                                                                                         |     |             |                         |                                   |                                                     |                  |            |                    |
|        |                                                                                         |     | 12          | 18 in-                  | SILT -brown - tra                 | ce fine Sand - moist                                |                  | 1.7 ppm    |                    |
| 26     |                                                                                         |     | 24          |                         |                                   |                                                     |                  |            |                    |
|        |                                                                                         |     | 24          |                         |                                   |                                                     |                  |            |                    |
| 27     |                                                                                         |     | 16          |                         |                                   |                                                     |                  |            |                    |
|        |                                                                                         |     | 12          | <u>18 in-</u>           | SILT -brown - Sil                 | t some Clay layers - moist                          |                  | 3.2 ppm    |                    |
| 28     |                                                                                         |     | 12          | <u>5 in-</u>            | Coarse Sand & C                   | Fravel -black - coarse rounded and angular Sand wit | <u>h_</u>        | 522 ppm    |                    |
|        |                                                                                         |     | 21          |                         | 1" smaller grave                  | subrounded - saturated                              |                  |            |                    |
| 29     |                                                                                         |     | 16          |                         |                                   |                                                     |                  |            |                    |
|        |                                                                                         |     | 8           | <u>16 in-</u>           | Coarse Sand & C                   | Fravel -dk grey - coarse rounded and angular Sand   |                  | 122 ppm    |                    |
| 30     |                                                                                         |     | 11          |                         | with 1" smaller g                 | ravel subrounded - saturated                        |                  |            |                    |
|        |                                                                                         |     | 12          |                         |                                   |                                                     |                  |            |                    |
| 31     |                                                                                         |     | 10          | 40.1                    | <u> </u>                          |                                                     |                  |            |                    |
| 22     |                                                                                         |     | 9           | <u>13 in-</u>           | Coarse Sand & C                   | Gravel - dk grey - coarse rounded and angular Sand  |                  | 90 ppm     |                    |
| 32     |                                                                                         |     | 10          |                         | with i smaller g                  | raver subrounded - saturated                        |                  |            |                    |
| 33     |                                                                                         |     | 13          |                         |                                   |                                                     |                  |            |                    |
| - 55   |                                                                                         |     | 6           | 11 in-                  | Coarse Sand & G                   | aravel -dk grey - coarse rounded and angular Sand   |                  | 685 nnm    |                    |
| 34     |                                                                                         |     | 10          | <u></u>                 | with 1" smaller of                | ravel subrounded - saturated                        |                  | ooo ppin   |                    |
|        |                                                                                         |     | 12          |                         |                                   |                                                     |                  |            |                    |
| 35     |                                                                                         |     | 6           |                         |                                   |                                                     |                  |            |                    |
|        |                                                                                         |     |             |                         |                                   |                                                     |                  |            |                    |
| 36     |                                                                                         |     |             |                         | END OF BORING                     | AT 35 FEET BELOW GROUND SURFACE                     |                  |            |                    |
|        |                                                                                         |     |             |                         |                                   |                                                     |                  |            |                    |
| 37     |                                                                                         |     |             |                         |                                   |                                                     |                  |            |                    |
| 38     |                                                                                         |     |             |                         |                                   |                                                     |                  |            |                    |
| - 50   |                                                                                         |     |             |                         |                                   |                                                     |                  |            |                    |
| 39     |                                                                                         |     |             |                         |                                   |                                                     |                  |            |                    |
|        |                                                                                         |     |             |                         |                                   |                                                     |                  |            |                    |
| 40     |                                                                                         | 1   |             |                         |                                   |                                                     |                  |            |                    |
|        |                                                                                         | 1   |             |                         |                                   |                                                     |                  |            |                    |
| 41     |                                                                                         | 1   |             |                         |                                   |                                                     |                  |            |                    |
| 40     |                                                                                         | 1   | ļ           |                         |                                   |                                                     |                  |            |                    |
| 42     |                                                                                         | 1   |             |                         |                                   |                                                     |                  |            |                    |
| 43     |                                                                                         |     |             |                         |                                   |                                                     |                  |            |                    |
| -10    |                                                                                         |     |             |                         |                                   |                                                     |                  |            |                    |
| 44     |                                                                                         |     |             |                         |                                   |                                                     |                  |            |                    |
|        | 1                                                                                       | 1   |             | ]                       |                                   |                                                     |                  |            |                    |
| 45     |                                                                                         | 1   |             |                         |                                   |                                                     |                  |            |                    |
|        |                                                                                         | 1   |             |                         |                                   |                                                     |                  |            |                    |
| 46     |                                                                                         | 1   |             |                         |                                   |                                                     |                  |            |                    |
| 47     |                                                                                         | 1   |             |                         |                                   |                                                     |                  |            |                    |
| 47     |                                                                                         | 1   |             |                         |                                   |                                                     |                  |            |                    |
| 48     |                                                                                         | 1   | ļ           |                         |                                   |                                                     |                  |            |                    |
|        | 1                                                                                       | 1   |             |                         |                                   |                                                     |                  |            |                    |
| 49     |                                                                                         |     |             |                         |                                   |                                                     |                  |            |                    |

| C&S Engineers, Inc.<br>141 Elm Street |                |           |               |                            | neers, Inc.                            |                     |                             |                 | В         | orina No.    | MW-02R                            |  |
|---------------------------------------|----------------|-----------|---------------|----------------------------|----------------------------------------|---------------------|-----------------------------|-----------------|-----------|--------------|-----------------------------------|--|
|                                       | 3              | T         | Bu            | ffalo, New                 | York 14203                             | E                   | BORING LOO                  | G               |           | - John State |                                   |  |
| C                                     | OMP            | AN        | IIES Fa       | one: 716-84<br>x: 716-847- | 47-1630<br>-1454                       | _                   |                             |                 | S         | heet 1 of:   | 2                                 |  |
| Deri                                  | 1. 1.          | -         | ww            | w.cscos.com                |                                        |                     | In stallation               |                 | Pro       | oject No.:   | K11.002.001                       |  |
| Projec                                | ct Nam         | ie:       | 1001 Main 3   | Dight of V                 | Whiteid Cleanup - r                    | viain Street weil   | Installation                |                 | Surfa     | Dotum        | 001.38                            |  |
| - L                                   | Ocatio         | n:<br>at: | Kalieda Hea   | Right-or-v                 | Ivay                                   |                     |                             |                 | 9         | Datum:       | NAVD 80                           |  |
| Drilli                                | na Fir         | n.<br>m·  | SIR Inc       | attri                      |                                        |                     |                             |                 | Fin       | ish Date:    | 3/6/14                            |  |
| Dim                                   | Grou           | ndv       | vater         | Depth                      | Date & Time                            | Drill Rig.          | Track Mounted CMF           |                 |           | spector:     | C. Martin                         |  |
|                                       | 0.04           | Wh        | ile Drilling: | Deptil                     | Dute & Time                            | Casing:             | 2.25"                       | Rock Core:      |           | Undist:      | 0                                 |  |
| Befo                                  | ore Ca         | sing      | Removal:      |                            |                                        | Sampler:            | 2" Split Spoon              | Other:          |           | ••••••       |                                   |  |
| Af                                    | ter Ca         | sing      | g Removal:    |                            |                                        | Hammer:             | Auto                        |                 |           |              |                                   |  |
|                                       |                |           | -<br>(N N     | lo. of blow                | vs to drive sampler                    | 12" w/140 lb. ha    | mmer falling 30" ASTI       | M D-1586, Stand | ard Penet | ration Test  | :)                                |  |
| (ft)                                  | е              | 이         | Blows on      |                            |                                        |                     |                             | a - and -       | 35-50%    |              | COMMENTS                          |  |
| ţh (                                  | du oj          | mbe       | Sampler       | c - coarse<br>m - mediun   | n                                      | MATERIAL            | DESCRIPTION                 | s - some -      | 20-35%    | (e.g., N-v   | alue, recovery, relative          |  |
| Dep                                   | Sal            | Syl       | per 6"        | f - fine                   | S - Sano                               | d, \$-Silt, G-Grav  | vel, C - Clay, cly - clayey | t - trace       | - 0-10%   | moistur      | e, core run, RQD, %<br>recovered) |  |
| -                                     |                |           |               |                            |                                        |                     |                             |                 |           |              | 100010104)                        |  |
| 1                                     |                |           |               |                            |                                        |                     |                             |                 |           |              |                                   |  |
|                                       |                |           |               | BORING                     | INSTALLED APPI                         | ROXIMATELY 20       | INCHES FROM THE             |                 |           |              |                                   |  |
| 2                                     |                |           |               | CONSTR                     | RUCTION EDGE O                         | F SIDEWALK. B       | ORING WAS INSTAL            | LED             |           |              |                                   |  |
|                                       |                |           |               | INSIDE 1                   | FRENCH BETWEE                          | EN EDGE OF SI       | DEWALK AND BUILDI           | NG. TRENCH      |           |              |                                   |  |
| 3                                     |                |           |               | WAS BA                     | CKFILLED WITH                          | CRUSHED STOP        | NE TO PROVIDE A PL          | LACE FOR        |           |              |                                   |  |
|                                       |                |           |               | DRILLER                    | RS TO STAND.                           |                     |                             |                 |           |              |                                   |  |
| 4                                     |                |           |               |                            |                                        |                     |                             |                 |           |              |                                   |  |
| _                                     |                |           |               | AUGERE                     | UGERED TO 5 FEET BELOW GROUND SURFACE. |                     |                             |                 |           |              |                                   |  |
| 5                                     |                |           | 7             |                            |                                        |                     |                             |                 |           |              |                                   |  |
| 6                                     |                |           | 7             | 12 in-                     | silty SAND - broy                      | wn - fine to med    | Sand trace Silt - mo        | ist             |           | 0 000        |                                   |  |
| 0                                     |                |           | 7<br>8        | 12 111-                    | SILY SAND - DIO                        | wii - iiie to iiieu |                             | 151             |           | o ppin       |                                   |  |
| 7                                     |                |           | 18            |                            |                                        |                     |                             |                 |           |              |                                   |  |
| · ·                                   |                |           |               |                            |                                        |                     |                             |                 |           |              |                                   |  |
| 8                                     |                |           |               |                            |                                        |                     |                             |                 |           |              |                                   |  |
|                                       |                |           |               | AUGERE                     | D 5 FEET                               |                     |                             |                 |           |              |                                   |  |
| 9                                     |                |           |               |                            |                                        |                     |                             |                 |           |              |                                   |  |
|                                       |                |           |               |                            |                                        |                     |                             |                 |           |              |                                   |  |
| 10                                    |                |           |               |                            |                                        |                     |                             |                 |           |              |                                   |  |
|                                       |                |           | 3             |                            | No Recovery                            |                     |                             |                 |           |              |                                   |  |
| 11                                    |                |           | 5             |                            |                                        |                     |                             |                 |           |              |                                   |  |
| 12                                    |                |           | 12            |                            |                                        |                     |                             |                 |           |              |                                   |  |
| 12                                    |                |           | 10            |                            |                                        |                     |                             |                 |           |              |                                   |  |
| 13                                    |                |           |               |                            |                                        |                     |                             |                 |           |              |                                   |  |
|                                       | 1              |           |               | AUGERE                     | D 5 FEET                               |                     |                             |                 |           |              |                                   |  |
| 14                                    |                |           |               |                            |                                        |                     |                             |                 |           |              |                                   |  |
|                                       |                |           |               |                            |                                        |                     |                             |                 |           |              |                                   |  |
| 15                                    |                |           |               |                            |                                        |                     |                             |                 |           |              |                                   |  |
| 40                                    |                |           | 12            | <u>16 in-</u>              | silty SAND - brow                      | wn - fine to med    | Sand trace Silt - mo        | ist             |           | 0 ppm        |                                   |  |
| 16                                    |                |           | 25            |                            |                                        |                     |                             |                 |           |              |                                   |  |
| 17                                    |                |           | 33            |                            |                                        |                     |                             |                 |           |              |                                   |  |
| - ''                                  | 1              |           | 30            |                            |                                        |                     |                             |                 |           |              |                                   |  |
| 18                                    |                |           |               |                            |                                        |                     |                             |                 |           |              |                                   |  |
| <del>-</del> -                        | 1              |           |               | AUGERE                     | D 5 FEET                               |                     |                             |                 |           |              |                                   |  |
| 19                                    |                |           |               |                            |                                        |                     |                             |                 |           |              |                                   |  |
|                                       | 1              |           |               |                            |                                        |                     |                             |                 |           |              |                                   |  |
| 20                                    |                |           |               |                            |                                        |                     |                             |                 |           |              |                                   |  |
|                                       |                |           | 8             | <u>9 in-</u>               | SAND - It brown                        | - med with trace    | e Silt - moist              |                 |           | 0 ppm        |                                   |  |
| 21                                    |                |           | 20            | <u>5 in-</u>               | SILT - red brown                       | - moist             |                             |                 |           |              |                                   |  |
|                                       |                |           | 23            |                            |                                        |                     |                             |                 |           |              |                                   |  |
| 22                                    |                |           | 20            | ALICEDE                    |                                        |                     |                             |                 |           |              |                                   |  |
| 22                                    | AUGERED 5 FEET |           |               |                            |                                        |                     |                             |                 |           |              |                                   |  |
| 20                                    | I              | 1         |               |                            |                                        |                     |                             |                 |           | I            |                                   |  |

|       | C&S Engineers, Inc.<br>141 Elm Street<br>Buffalo, New York 14203<br>Buffalo, New York 14203 |     |              |                        |                     | BORINGLOG                                                  | В                | oring No.         | MW-02R             |
|-------|---------------------------------------------------------------------------------------------|-----|--------------|------------------------|---------------------|------------------------------------------------------------|------------------|-------------------|--------------------|
| C     | OMP                                                                                         |     | Ph<br>UES Ea | one: 716-8             | 847-1630<br>-1454   | BORING LOG                                                 | S                | heet 2 of:        | 2                  |
|       |                                                                                             |     |              | w.cscos.com            | 1-0-1<br>1          |                                                            | Pro              | oject No.:        | K11.002.001        |
| Proje | ct Nam                                                                                      | e:  | 1001 Main S  | Street Bro             | wnfield Cleanup - I | Main Street Well Installation                              | S                | tart Date:        | 3/6/14             |
| L     | ocatio.                                                                                     | n:  | Main Street  | Right-of-              | Way                 |                                                            | Fin              | ish Date:         | 3/6/14             |
|       | Clier                                                                                       | nt: | Kalieda Hea  | alth                   |                     |                                                            | l                | nspector:         | C.Martin           |
| (#    | e                                                                                           | 0   | Blows on     | c - coarse             |                     | a - and -                                                  | 35-50%           | (                 | COMMENTS           |
| oth   | d S                                                                                         | dm' | Sampler      | m - mediu              | m                   | MATERIAL DESCRIPTION s - some -<br>I - little -            | 20-35%<br>10-20% | (e.g.,<br>moistur | N-value, recovery, |
| Dep   | Sa                                                                                          | sy  | per 6"       | f - fine               | S - Sano            | d, \$ - Silt, G - Gravel, C - Clay, cly - clayey t - trace | - 0-10%          | moistui           | recovered)         |
|       |                                                                                             |     |              |                        |                     |                                                            |                  |                   | ,                  |
| 24    |                                                                                             |     |              |                        |                     |                                                            |                  |                   |                    |
|       |                                                                                             |     |              |                        |                     |                                                            |                  |                   |                    |
| 25    |                                                                                             |     |              |                        |                     |                                                            |                  |                   |                    |
|       | 1                                                                                           |     | 11           | 8 in-                  | SILT - red brown    | - wet                                                      |                  | 0 ppm             |                    |
| 26    |                                                                                             |     | 18           |                        |                     |                                                            |                  |                   |                    |
|       |                                                                                             |     | 37           |                        |                     |                                                            |                  |                   |                    |
| 27    |                                                                                             |     | 42           |                        |                     |                                                            |                  |                   |                    |
|       |                                                                                             |     | 38           | <u>20 in-</u>          | Silty SAND - bro    | wn - fine to med Sand 10-20% Silt - saturated              |                  | 0 ppm             |                    |
| 28    |                                                                                             |     | 21           |                        |                     |                                                            |                  |                   |                    |
|       |                                                                                             |     | 24           |                        |                     |                                                            |                  |                   |                    |
| 29    |                                                                                             |     | 33           |                        |                     |                                                            |                  |                   |                    |
|       |                                                                                             |     | 15           | <u>16 in-</u>          | sandy SILT - bro    | wn - trace fine Sand - saturated                           |                  | 0 ppm             |                    |
| 30    |                                                                                             |     | 1/           |                        |                     |                                                            |                  |                   |                    |
| 0.4   |                                                                                             |     | 17           |                        |                     |                                                            |                  |                   |                    |
| 31    |                                                                                             |     | 28           | 0 im                   |                     | we trace fine fond esturated                               |                  |                   |                    |
| 32    |                                                                                             |     | 21           | <u>0 III-</u><br>2 in- | sandy SILT - blo    | wii - trace fine Sand - saturated                          |                  | 14 ppm            |                    |
| 52    |                                                                                             |     | <br>         | <u>2 iii-</u><br>8 in- | Coarse Sand & G     | Gravel - black - coarse rounded and angular Sand wi        | th               | 120 ppm           |                    |
| 33    |                                                                                             |     | 40           | <u>o</u>               | 1" smaller grave    | subrounded - saturated                                     | <u></u>          | 120 ppin          |                    |
|       |                                                                                             |     | 7            | 18 in-                 | silty CLAY - red    | brown - some Silt med pL trace embedded gravel             |                  | 34 ppm            |                    |
| 34    |                                                                                             |     | 10           |                        | .35 " smaller sub   | rounded - wet                                              |                  |                   |                    |
|       |                                                                                             |     | 11           |                        |                     |                                                            |                  |                   |                    |
| 35    |                                                                                             |     | 14           |                        |                     |                                                            |                  |                   |                    |
|       |                                                                                             |     |              |                        |                     |                                                            |                  |                   |                    |
| 36    |                                                                                             |     |              |                        | END OF BORING       | AT 35 FEET BELOW GROUND SURFACE                            |                  |                   |                    |
|       |                                                                                             |     |              |                        |                     |                                                            |                  |                   |                    |
| 37    |                                                                                             |     |              |                        |                     |                                                            |                  |                   |                    |
| 20    |                                                                                             |     |              |                        |                     |                                                            |                  |                   |                    |
| 30    |                                                                                             |     |              |                        |                     |                                                            |                  |                   |                    |
| 30    |                                                                                             |     |              |                        |                     |                                                            |                  |                   |                    |
|       |                                                                                             |     |              |                        |                     |                                                            |                  |                   |                    |
| 40    |                                                                                             |     |              |                        |                     |                                                            |                  |                   |                    |
|       | 1                                                                                           |     |              |                        |                     |                                                            |                  |                   |                    |
| 41    |                                                                                             |     |              |                        |                     |                                                            |                  |                   |                    |
|       |                                                                                             |     |              |                        |                     |                                                            |                  |                   |                    |
| 42    |                                                                                             |     |              |                        |                     |                                                            |                  |                   |                    |
|       |                                                                                             |     |              |                        |                     |                                                            |                  |                   |                    |
| 43    |                                                                                             |     |              |                        |                     |                                                            |                  |                   |                    |
| 14    |                                                                                             |     |              |                        |                     |                                                            |                  |                   |                    |
| 44    |                                                                                             |     |              |                        |                     |                                                            |                  |                   |                    |
| 45    |                                                                                             |     |              |                        |                     |                                                            |                  |                   |                    |
|       |                                                                                             |     |              |                        |                     |                                                            |                  |                   |                    |
| 46    |                                                                                             |     |              |                        |                     |                                                            |                  |                   |                    |
|       | 1                                                                                           |     |              |                        |                     |                                                            |                  |                   |                    |
| 47    |                                                                                             |     |              |                        |                     |                                                            |                  |                   |                    |
|       |                                                                                             |     |              |                        |                     |                                                            |                  |                   |                    |
| 48    |                                                                                             |     |              |                        |                     |                                                            |                  |                   |                    |
|       |                                                                                             |     |              |                        |                     |                                                            |                  |                   |                    |
| 49    |                                                                                             |     |              |                        |                     |                                                            |                  |                   |                    |

| ~        | - 6     | C&S Engineers, Inc.<br>141 Elm Street                                                       |               |                          |                          |                        |                             |             | В         | oring No.   | MW-02R-1                 |
|----------|---------|---------------------------------------------------------------------------------------------|---------------|--------------------------|--------------------------|------------------------|-----------------------------|-------------|-----------|-------------|--------------------------|
|          | 3_      | 1                                                                                           | Bu Ph         | ffalo, New               | York 14203<br>47-1630    | E                      | BORING LOO                  | G           | s         | heet 1 of   | 2                        |
| C        | OMP     | AN                                                                                          | IIES Fa       | x: 716-847-              | -1454                    |                        |                             |             | Pro       | niect No :  | Z<br>K11 005 001         |
| Proje    | ct Nam  | 6.                                                                                          | Goodrich St   | w.cscos.com              | Replacement              |                        |                             |             | Surfa     | ace Flev :  | 665.54                   |
| 1 10,00  | ocatio  | n.<br>n                                                                                     | 818 Ellicott  | Street                   | rteplatement             |                        |                             |             | Ound      | Datum:      | NAVD 88                  |
|          | Clier   | nt.                                                                                         | Kalieda Hea   | alth                     |                          |                        |                             |             | S         | tart Date:  | 2/5/16                   |
| Drilli   | na Firi | n:                                                                                          | Nature's Wa   | av Environ               | mental                   |                        |                             |             | Fin       | ish Date:   | 2/5/16                   |
|          | Grou    | ndv                                                                                         | vater         | Depth                    | Date & Time              | Drill Ria:             | Mobile B-57                 |             |           | spector:    | C. Martin                |
|          |         | Whi                                                                                         | ile Drillina: | 200                      |                          | Casing:                | 2.25"                       | Rock Core:  |           | Undist:     |                          |
| Befo     | ore Cas | Casing Removal: Sampler: 2" Split Spoon Other:                                              |               |                          |                          |                        |                             |             |           |             |                          |
| Af       | ter Cas | Casing Removal: Hammer: Auto                                                                |               |                          |                          |                        |                             |             |           |             |                          |
|          |         | (N No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard Pen |               |                          |                          |                        |                             |             | ard Penet | ration Test | )                        |
| ft)      | ð       | -                                                                                           | Blows on      |                          |                          |                        |                             | a - and -   | 35-50%    |             | COMMENTS                 |
| th (j    | jo n    | nba                                                                                         | Sampler       | c - coarse<br>m - mediun | n                        | MATERIAL               | DESCRIPTION                 | s - some -  | 20-35%    | (e.g., N-v  | alue, recovery, relative |
| Geb      | Sar     | Syı                                                                                         | per 6"        | f - fine                 | S - San                  | d. \$ - Silt. G - Grav | vel. C - Clav. clv - clavev | , t - trace | - 0-10%   | moistur     | e, core run, RQD, %      |
|          |         |                                                                                             | -             |                          | Acabalt & Grava          |                        |                             |             |           |             | lecovered)               |
| 1        |         |                                                                                             |               |                          | Augered to 24 E          | et below group         | d surface                   |             |           |             |                          |
|          |         |                                                                                             |               |                          | Drill Cuttings: Si       | Ity SAND - brow        | <u>u sunace</u><br>/n drv   |             |           |             |                          |
| 2        |         |                                                                                             |               |                          | <u>Brin outdriger of</u> |                        | <u>in un j</u>              |             |           |             |                          |
|          |         |                                                                                             |               |                          |                          |                        |                             |             |           |             |                          |
| 3        |         |                                                                                             |               |                          |                          |                        |                             |             |           |             |                          |
|          |         |                                                                                             |               |                          |                          |                        |                             |             |           |             |                          |
| 4        |         |                                                                                             |               |                          |                          |                        |                             |             |           |             |                          |
|          |         |                                                                                             |               |                          |                          |                        |                             |             |           |             |                          |
| 5        |         |                                                                                             |               |                          |                          |                        |                             |             |           |             |                          |
| 6        |         |                                                                                             |               |                          | Drill Cuttinger Si       |                        | n moiot                     |             |           |             |                          |
| 0        |         |                                                                                             |               |                          | Drift Cuttings. Si       | ILY SAND - DIOW        | <u>m moist</u>              |             |           |             |                          |
| 7        |         |                                                                                             |               |                          |                          |                        |                             |             |           |             |                          |
| · ·      |         |                                                                                             |               |                          |                          |                        |                             |             |           |             |                          |
| 8        |         |                                                                                             |               |                          |                          |                        |                             |             |           |             |                          |
|          |         | [                                                                                           |               |                          |                          |                        |                             |             |           |             |                          |
| 9        |         |                                                                                             |               |                          |                          |                        |                             |             |           |             |                          |
|          |         |                                                                                             |               |                          |                          |                        |                             |             |           |             |                          |
| 10       |         |                                                                                             |               |                          |                          |                        |                             |             |           |             |                          |
| 11       |         |                                                                                             |               |                          | Drill Cuttings: Si       | HV SAND - brow         | n moist                     |             |           |             |                          |
|          |         |                                                                                             |               |                          | Drift Cuttings. Si       | ILY SAND - DIOW        | <u>m moist</u>              |             |           |             |                          |
| 12       |         |                                                                                             |               |                          |                          |                        |                             |             |           |             |                          |
|          |         |                                                                                             |               |                          |                          |                        |                             |             |           |             |                          |
| 13       |         |                                                                                             |               |                          |                          |                        |                             |             |           |             |                          |
|          |         | [                                                                                           |               |                          |                          |                        |                             |             |           |             |                          |
| 14       |         |                                                                                             |               |                          |                          |                        |                             |             |           |             |                          |
| 4-       |         |                                                                                             |               |                          |                          |                        |                             |             |           |             |                          |
| 15       | -       |                                                                                             |               |                          |                          |                        |                             |             |           |             |                          |
| 16       |         |                                                                                             |               |                          | Drill Cuttinger Si       |                        | n moist                     |             |           |             |                          |
| 10       | 1       |                                                                                             |               |                          | erin outilitys. of       |                        |                             |             |           |             |                          |
| 17       |         |                                                                                             |               |                          |                          |                        |                             |             |           |             |                          |
| <b> </b> | 1       |                                                                                             |               |                          |                          |                        |                             |             |           |             |                          |
| 18       |         |                                                                                             |               |                          |                          |                        |                             |             |           |             |                          |
|          |         | [                                                                                           |               |                          |                          |                        |                             |             |           |             |                          |
| 19       | 4       |                                                                                             |               |                          |                          |                        |                             |             |           |             |                          |
|          |         |                                                                                             |               |                          |                          |                        |                             |             |           |             |                          |
| 20       | -       |                                                                                             |               |                          |                          |                        |                             |             |           |             |                          |
| 21       |         |                                                                                             |               |                          | Drill Cuttinger Si       |                        | n moist                     |             |           |             |                          |
| 1        | 1       |                                                                                             |               |                          | Erm Guttings. SI         | ILY SAND - DIOW        |                             |             |           |             |                          |
| 22       |         |                                                                                             |               |                          |                          |                        |                             |             |           |             |                          |
|          | 1       |                                                                                             |               |                          |                          |                        |                             |             |           |             |                          |
| 23       |         |                                                                                             |               |                          |                          |                        |                             |             |           |             |                          |

|          | 8      |     | S 14<br>Bu   | <b>&amp;S Engineers, Inc.</b><br>1 Elm Street<br>ffalo, New York 14203 | BORING LOG                                        | B                | oring No.  | MW-02R-1            |
|----------|--------|-----|--------------|------------------------------------------------------------------------|---------------------------------------------------|------------------|------------|---------------------|
| C        | OMP    |     | JIES Fa      | one: 716-847-1630<br>x: 716-847-1454                                   |                                                   | S                | heet 2 of: | 2                   |
|          |        |     | ww           | w.cscos.com                                                            |                                                   | Pro              | oject No.: | K11.005.001         |
| Projec   | ct Nam | e:  | Goodrich St  | reet Well Replacement                                                  |                                                   | S                | tart Date: | 2/5/16              |
| L        | ocatio | n:  | 818 Ellicott | Street                                                                 |                                                   | Fin              | ish Date:  | 2/5/16              |
|          | Clie   | nt: | Kalieda Hea  | alth                                                                   |                                                   | lı               | nspector:  | C.Martin            |
| ÷        |        |     |              |                                                                        |                                                   |                  |            | COMMENTS            |
| Ę)       | ple.   | po  | Blows on     | c - coarse                                                             |                                                   | 35-50%<br>20-35% | (e.g.,     | N-value, recovery,  |
| ptl      | N am   | ym  | Sampler      | m - meaium<br>f - fine                                                 | MATERIAL DESCRIPTION I- little -                  | 10-20%           | moistur    | e, core run, RQD, % |
| ă        | S      | S   | per 6        | S - San                                                                | id, \$ - Silt, G - Gravel, C - Clay, cly - clayey | - 0-10%          |            | recovered)          |
|          |        |     |              |                                                                        |                                                   |                  |            |                     |
| 24       |        |     |              |                                                                        |                                                   |                  |            |                     |
|          |        |     | 21           | 12" Silty SAND - bro                                                   | wn: fine 10-20% Silt: moist                       |                  | mag 0      |                     |
| 25       |        |     | 43           |                                                                        |                                                   |                  |            |                     |
|          |        |     | 65           |                                                                        |                                                   |                  |            |                     |
| 26       |        |     | 60           |                                                                        |                                                   |                  |            |                     |
|          |        |     | 8            | 12" Silty SAND - bro                                                   | wn: fine 20-35% Silt: moist                       |                  | 0 ppm      |                     |
| 27       |        |     | 36           |                                                                        |                                                   |                  | o ppin     |                     |
| 21       |        |     | 100/5        |                                                                        |                                                   |                  |            |                     |
| 20       |        |     | 100/5        |                                                                        |                                                   |                  |            |                     |
| 20       |        |     | 6            |                                                                        | www.fine 20.25% Silts wet                         |                  | 0          |                     |
| 20       |        |     | 6            | 14 <u>Slity SAND - bro</u>                                             | own; fine 20-35% Slit; wet                        |                  | 0 ppm      |                     |
| 29       |        |     | 42           |                                                                        |                                                   |                  |            |                     |
|          |        |     | 60           |                                                                        |                                                   |                  |            |                     |
| 30       |        |     | 72           |                                                                        |                                                   |                  |            |                     |
|          |        |     | 10           | 18" Silty SAND - bro                                                   | own; fine 20-35% Silt; wet to saturated           |                  | 0 ppm      |                     |
| 31       |        |     | 25           |                                                                        |                                                   |                  |            |                     |
|          |        |     | 42           |                                                                        |                                                   |                  |            |                     |
| 32       |        |     | 37           |                                                                        |                                                   |                  |            |                     |
|          |        |     | 9            | 0-4" Silty SAND - bro                                                  | own; fine 20-35% Silt; loose; saturated           |                  |            |                     |
| 33       |        |     | 19           | 4-10" Black medium S                                                   | AND; no fines; some 0.5 inch round Gravel         |                  | 10 ppm     |                     |
|          |        |     | 24           | 10-19" CLAY - brown -                                                  | wet                                               |                  |            |                     |
| 34       |        |     | 23           |                                                                        |                                                   |                  |            |                     |
|          |        |     | 8            | 0-5" SAND - medium                                                     | : no fines: grev: saturated: loose                |                  | 0 ppm      |                     |
| 35       |        |     | 16           | 5-18" Clav SILT - low                                                  | plasticity: brown: wet                            |                  |            |                     |
|          |        |     | 33           | <u></u>                                                                |                                                   |                  |            |                     |
| 36       |        |     | 26           |                                                                        |                                                   |                  |            |                     |
|          |        |     | 15           | 18" Silty CLAY - bro                                                   | wn: soft                                          |                  | 0 ppm      |                     |
| 37       |        |     | 20           |                                                                        | <u>wii, 301</u>                                   |                  | o ppin     |                     |
| 57       |        |     | 23           |                                                                        |                                                   |                  |            |                     |
| 20       |        |     | 10           |                                                                        |                                                   |                  |            |                     |
| 30       |        |     | 20           |                                                                        |                                                   |                  |            |                     |
| 20       |        |     | <u>।</u>     |                                                                        |                                                   |                  |            |                     |
| 39       |        |     | 23           |                                                                        |                                                   |                  |            |                     |
| 1.0      |        |     | 42           |                                                                        |                                                   |                  |            |                     |
| 40       |        |     | 34           |                                                                        |                                                   |                  |            |                     |
| 1        |        |     | 24           | 10" Silty CLAY - bro                                                   | wn; wet; soft; trace embedded Gravel              |                  | 0 ppm      |                     |
| 41       |        |     | 33           |                                                                        |                                                   |                  |            |                     |
|          |        |     | 19           |                                                                        |                                                   |                  |            |                     |
| 42       |        |     | 21           |                                                                        |                                                   |                  |            |                     |
| 1        |        |     | 6            | 20" Silty CLAY - bro                                                   | wn; wet; soft; trace embedded Gravel              |                  | 0 ppm      |                     |
| 43       |        |     | 11           |                                                                        |                                                   |                  |            |                     |
| 1        |        |     | 16           |                                                                        |                                                   |                  |            |                     |
| 44       |        |     | 20           |                                                                        |                                                   |                  |            |                     |
| 1        |        |     |              |                                                                        |                                                   |                  |            |                     |
| 45       |        |     |              | END OF BORING                                                          | G AT 44 FEET                                      |                  |            |                     |
|          |        |     |              |                                                                        |                                                   |                  |            |                     |
| 46       |        |     |              | BOTTOM OF MC                                                           | DNITORING WELL SET AT 43 FEET                     |                  |            |                     |
|          |        |     |              |                                                                        |                                                   |                  |            |                     |
| 47       |        |     |              |                                                                        |                                                   |                  | 1          |                     |
|          |        |     |              |                                                                        |                                                   |                  |            |                     |
| 48       |        |     |              |                                                                        |                                                   |                  |            |                     |
| <u> </u> |        |     |              |                                                                        |                                                   |                  |            |                     |
| 49       |        |     |              |                                                                        |                                                   |                  |            |                     |

# APPENDIX D GROUNDWATER MONITORING CONSTRUCTION LOGS

|                     | C&S Engineers, Inc.                      | G         | ROUNE       | WATE           | २                |                | Well No      | MSMW-1                                     |
|---------------------|------------------------------------------|-----------|-------------|----------------|------------------|----------------|--------------|--------------------------------------------|
|                     | 90 Broadway<br>Buffalo, New York 14203   | OBS       | FRVAT       |                | =11              |                | Wen No.      |                                            |
| COMPANIES           | Phone: 716-847-1630<br>Fax: 716-847-1454 | CON       |             |                | ~~               | P              | roject No.:  | K11.002.001                                |
|                     | www.cscos.com                            |           | 121 KUU     |                | .06              | Sur            | face Elev.:  | 664.41                                     |
| Project Name: Main  | Street Right-of-Way Monitoring V         | Vells     |             |                |                  | <u> </u>       | Datum:       | NAVD 88                                    |
| Location: 1001      | Main Street, Buttalo, New York           |           |             |                |                  | ļ              | Start Date:  | 3/6/14                                     |
| Client: Kalled      | da Health                                |           | т           | <del></del>    |                  | F              | inish Date:  | 3/7/14                                     |
| Drilling Firm: SJB, | Inc                                      |           | Dell Dim    | <b> </b>       |                  | <u> </u>       | Inspector:   | C. Martin                                  |
|                     |                                          |           | Drill Rig:  | (arraylida dag | - diretion of ob |                | Casing:      | 2.25"                                      |
|                     | 0'-0" Top Protective Ca                  | sing      | Notes:      | development    | method and       | any other inf  | formation)   | Sthoa of construction,                     |
| _                   | Top of Riser                             |           | Monitoring  | well was inst  | alled appro      | ximately 20"   | from the co  | Instruction edge of                        |
|                     | 0'-0" Ground Surface                     |           | sidewalk; w | ithin a 4-5 to | ot deep trer     | ich between    | the sidewai  | k and Medical Office                       |
|                     |                                          |           | grade After | finish grade   | is complete      | e protective ( | -3 1001 Haer | above construction<br>installed flush with |
|                     | Surface Backfill Materia                 | <u>al</u> | around surf | lace.          | 15 complet.      | 5 proteouro .  | Jashiy min a | e installed hush man                       |
|                     | Soil Cuttings                            |           | 3           |                |                  |                |              |                                            |
|                     | Bentonite Slurry                         |           |             |                |                  |                |              |                                            |
|                     |                                          | Grout     |             |                |                  |                |              |                                            |
|                     | Concrete                                 |           |             |                |                  |                |              |                                            |
|                     | <ul> <li>8" Bore Hole Diamete</li> </ul> | )r        |             |                |                  |                |              |                                            |
|                     | < <u> </u>                               |           |             |                |                  |                |              |                                            |
|                     | <b>2</b> " Well Diameter                 |           |             |                |                  |                |              |                                            |
|                     | K Well Material                          |           |             |                |                  |                |              |                                            |
|                     | X PVC                                    |           |             |                |                  |                |              |                                            |
|                     | Stainless Steel                          |           |             |                |                  |                |              |                                            |
|                     |                                          |           | I           |                |                  |                |              | ı                                          |
|                     | Backfill Material                        |           |             | Groundwate     | er Measure       | ement Data     |              |                                            |
|                     | Soil Cuttings                            |           |             | l              | Depth to         | Water          | Tide         |                                            |
|                     | Bentonite Slurry                         |           | Date        | Time           | Water            | Elevation      | Status       |                                            |
|                     |                                          | Grout     | 3/7/2014    | 11:30 AIVI     | 23.9             | 640.51         |              |                                            |
|                     |                                          |           |             | <b> </b>       |                  | ┨────┤         |              | l                                          |
|                     |                                          |           |             | <b> </b>       |                  | ╂────┤         |              |                                            |
|                     | 1000000000000000000000000000000000000    |           |             | <b> </b>       |                  | ╂────┤         |              |                                            |
|                     | Seel Material                            |           |             |                |                  | ┼───┤          |              |                                            |
|                     | Bentonite Chips/Pe                       | llets     |             |                |                  | <u>├</u>       |              |                                            |
|                     | Bentonite Slurry                         | 1010      |             | <u> </u>       |                  | ╂────┤         |              | l                                          |
|                     | Cement/Bentonite C                       | Frout     |             |                |                  | <del>   </del> |              |                                            |
|                     |                                          |           |             |                |                  | 1 1            |              | l                                          |
|                     | 26'-0" Top of Filter Pa                  | ıck       |             |                |                  |                |              |                                            |
|                     |                                          |           |             | ļ              |                  | <b>↓</b>       |              |                                            |
|                     | 20'-U" Top or Screen                     |           |             |                |                  | ┨────┤         |              | l                                          |
|                     | Screen Slot Size                         |           |             |                |                  | <u> </u>       |              | l                                          |
|                     | 1010 in                                  |           |             | <b> </b>       |                  | ╂───┤          |              | l                                          |
|                     | 015 in                                   |           |             | <u> </u>       |                  | <del>   </del> |              | l                                          |
|                     | 020 in                                   |           |             |                |                  |                |              |                                            |
|                     | 025 in                                   |           |             |                |                  | ·•             |              |                                            |
|                     |                                          |           |             |                |                  |                |              |                                            |
|                     | Filter Material                          |           |             |                |                  |                |              |                                            |
|                     | 00 Sand Pack                             |           |             |                |                  |                |              |                                            |
|                     | x 0 Sand Pack                            |           |             |                |                  |                |              |                                            |
|                     | 1 Sand Pack                              |           |             |                |                  |                |              |                                            |
|                     | 2 Sand Pack                              |           |             |                |                  |                |              |                                            |
|                     | 3 Sand Pack                              |           |             |                |                  |                |              |                                            |
|                     | 4 Sand Pack                              |           |             |                |                  |                |              |                                            |
|                     | 36'-0" Bottom of Scre                    | en        |             |                |                  |                |              |                                            |
|                     | 36'-0" Bottom of Bore                    | Hole      |             |                |                  |                |              |                                            |
|                     |                                          |           |             |                |                  |                |              |                                            |

|                       | C&S Engineers, Inc.                    | G        | ROUND        | WATE                         | २                            |                                | Well No        | MSMW-2                  |
|-----------------------|----------------------------------------|----------|--------------|------------------------------|------------------------------|--------------------------------|----------------|-------------------------|
|                       | 90 Broadway<br>Buffalo, New York 14203 | ORS      | SERVAT       |                              | =1 1                         |                                |                | WISIWIW-2               |
| COMPANIES             | Phone: 716-847-1630                    |          |              |                              |                              | Р                              | roject No.:    | K11.002.001             |
| COMPANIES             | www.cscos.com                          | CON      | ISTRUC       | TION L                       | .0G                          | Sur                            | face Elev.:    | 663.47                  |
| Project Name: Main S  | Street Right-of-Way Monitoring V       | /ells    |              |                              |                              |                                | Datum:         | NAVD 88                 |
| Location: 1001 M      | Vain Street, Buffalo, New York         |          |              |                              |                              |                                | Start Date:    | 3/4/14                  |
| Client: Kalied        | a Health                               |          |              | 1                            |                              | F                              | inish Date:    | 3/4/14                  |
| Drilling Firm: SJB, I | nc                                     |          |              |                              |                              |                                | Inspector:     | C. Martin               |
|                       |                                        |          | Drill Rig:   |                              |                              |                                | Casing:        | 2.25"                   |
|                       | 0'-0" Top Protective Cas               | ing      | Notes:       | (provide deso<br>development | cription of ob<br>method and | servation wel<br>any other inf | I location, me | ethod of construction,  |
|                       | Top of Riser                           |          | Monitoring   | well was inst                | alled appro                  | ximately 20"                   | from the co    | Instruction edge of     |
|                       | 0'-0" Ground Surface                   |          | sidewalk; w  | ithin a 4-5 fo               | ot deep trer                 | nch between                    | the sidewal    | k and Medical Office    |
|                       |                                        |          | Building. M  | onitoring we                 | ells were ins                | stalled with 2                 | -3 foot riser  | above construction      |
|                       | Surface Backfill Materia               | <u> </u> | grade. After | tinish grade                 | is complete                  | e protective (                 | casing will b  | be installed flush with |
|                       | Soil Cuttings                          |          | ground sun   |                              |                              |                                |                |                         |
|                       | Bentonite Slurry                       |          |              |                              |                              |                                |                |                         |
|                       | Cement/Bentonite G                     | Grout    |              |                              |                              |                                |                |                         |
|                       |                                        |          |              |                              |                              |                                |                |                         |
|                       | 8" Bore Hole Diamete                   | r        |              |                              |                              |                                |                |                         |
|                       |                                        |          |              |                              |                              |                                |                |                         |
|                       | Well Diameter                          |          |              |                              |                              |                                |                |                         |
|                       |                                        |          |              |                              |                              |                                |                |                         |
|                       |                                        |          |              |                              |                              |                                |                |                         |
|                       | Stainless Steel                        |          |              |                              |                              |                                |                |                         |
|                       | Backfill Matorial                      |          | I            | Groundwat                    | or Moseure                   | mont Data                      | 1              |                         |
|                       |                                        |          |              | Siounawat                    | Donth to                     | Wator                          | Tido           |                         |
|                       | Bentonite Slurry                       |          | Date         | Time                         | Water                        | Flevation                      | Status         |                         |
|                       | Cement/Bentonite C                     | irout    | 3/5/2014     | 7:30 AM                      | 27.7                         | 635 77                         | Olalus         |                         |
|                       |                                        |          | 0,0,2011     |                              |                              |                                |                |                         |
|                       |                                        |          |              |                              |                              |                                |                |                         |
|                       | Depth To:                              |          |              |                              |                              |                                |                |                         |
|                       | 23'-6" Top of Seal                     |          |              |                              |                              | 1                              |                |                         |
|                       | Seal Material                          |          |              |                              |                              |                                |                |                         |
|                       | x Bentonite Chips/Pel                  | lets     |              |                              |                              |                                |                |                         |
|                       | Bentonite Slurry                       |          |              |                              |                              |                                |                |                         |
|                       | Cement/Bentonite G                     | Grout    |              |                              |                              |                                |                |                         |
|                       | 25'-6" Top of Filter Pa                | ck       |              |                              |                              |                                |                |                         |
|                       |                                        | UN       |              |                              |                              |                                |                |                         |
|                       | 25'-6" Top of Screen                   |          |              |                              |                              |                                |                |                         |
|                       | Soroon Slot Sizo                       |          |              |                              |                              |                                |                |                         |
|                       |                                        |          |              |                              |                              |                                |                |                         |
|                       | 015 in                                 |          |              |                              |                              |                                |                |                         |
|                       | 020 in                                 |          |              |                              |                              |                                |                |                         |
|                       | 025 in                                 |          |              |                              |                              |                                |                |                         |
|                       |                                        |          |              |                              |                              |                                |                |                         |
|                       | Filter Material                        |          |              |                              |                              |                                |                |                         |
|                       | 00 Sand Pack                           |          |              |                              |                              |                                |                |                         |
|                       | x 0 Sand Pack                          |          |              |                              |                              |                                |                |                         |
|                       | 1 Sand Pack                            |          |              |                              |                              |                                |                |                         |
|                       | 2 Sand Pack                            |          |              |                              |                              |                                |                |                         |
|                       | 3 Sand Pack                            |          |              |                              |                              |                                |                |                         |
|                       | 4 Sand Pack                            |          |              |                              |                              |                                |                |                         |
|                       | 35'-6" Bottom of Scre                  | en       |              |                              |                              |                                |                |                         |
|                       | 35'-6" Bottom of Bore                  | Hole     |              |                              |                              |                                |                |                         |

|                       | C&S Engineers, Inc.                      | G        | ROUND       | WATE           | २            |                | Well No                       | MSMW-3                 |
|-----------------------|------------------------------------------|----------|-------------|----------------|--------------|----------------|-------------------------------|------------------------|
|                       | 90 Broadway<br>Buffalo, New York 14203   | OBS      | FRVAT       |                | =1 1         |                | Wen No.                       |                        |
| COMPANIES             | Phone: 716-847-1630<br>Fax: 716-847-1454 |          |             |                | ~~           | Р              | roject No.:                   | K11.002.001            |
|                       | www.cscos.com                            | LUN      | 191 KUU     |                | UG           | Sur            | face Elev.:                   | 663.28                 |
| Project Name: Main S  | Street Right-of-Way Monitoring V         | /ells    |             |                |              |                | Datum:                        | NAVD 88                |
| Location: 1001        | Main Street, Buttalo, New York           |          |             |                |              |                | Start Date:                   | 3/5/14                 |
| Client: Kalled        | la Health                                |          | <del></del> | <del></del>    |              | FI             | inish Date:                   | 3/5/14                 |
| Drilling Firm: SJB, I | INC                                      |          | Duill Dieu  | ļ              |              |                | Inspector:                    | C. Martin              |
|                       |                                          | İ        | Drill Kig:  | (area ida dago |              | tion wol       | Casing:                       | 2.25°                  |
| _                     | 0'-0" Top Protective Cas                 | sing     | Notes:      | development    | method and   | any other inf  | formation)                    | ethod of construction, |
| _                     | Top of Riser                             | İ        | Monitoring  | well was inst  | alled appro  | ximately 20"   | from the co                   | nstruction edge of     |
|                       | 0'-0" Ground Surface                     | İ        | SIDEWAIK; W | ithin a 4-5 to | ot deep trer | talled with 2  | the sidewai                   | k and Medical Uttice   |
|                       |                                          | -        | grade After | finish grade   | is complete  | e protective ( | -3 1000 maei<br>nasing will b | above construction     |
|                       | Surface Backfill Materia                 | <u>1</u> | around surf | ace.           | 15 complet.  | e proteotire . | aony an .                     | linstaned nuon man     |
|                       | Soil Cuttings                            | I        | 3           |                |              |                |                               |                        |
|                       | Bentonite Slurry                         | 、 .<br>  |             |                |              |                |                               |                        |
|                       |                                          | irout    |             |                |              |                |                               |                        |
|                       |                                          | I        |             |                |              |                |                               |                        |
|                       | 8" Bore Hole Diamete                     | r        |             |                |              |                |                               |                        |
|                       |                                          |          |             |                |              |                |                               |                        |
|                       | 2" Well Diameter                         |          |             |                |              |                |                               |                        |
|                       | Well Material                            |          |             |                |              |                |                               |                        |
|                       | X PVC                                    |          |             |                |              |                |                               |                        |
|                       | Stainless Steel                          |          |             |                |              |                |                               |                        |
|                       |                                          |          | I           | - 1            |              |                |                               |                        |
|                       | Backfill Material                        |          |             | Groundwate     | er Measure   | ement Data     |                               |                        |
|                       | Soil Cuttings                            | İ        | Dete        |                | Depth to     | Water          | Tide                          |                        |
|                       | Bentonite Siurry                         | +        | Date        |                | Water        | Elevation      | Status                        |                        |
|                       |                                          | noul     | 3/3/2014    | 11.00 Alvi     | 27.0         | 033.00         |                               |                        |
|                       |                                          |          |             |                |              |                |                               |                        |
|                       | Denth To                                 | İ        |             |                |              |                |                               |                        |
|                       | 21'-6" Top of Seal                       | İ        |             |                |              |                |                               |                        |
|                       | Seal Material                            |          |             |                |              |                |                               |                        |
|                       | Bentonite Chips/Pel                      | lets     |             |                |              |                |                               |                        |
|                       | Bentonite Slurry                         | I        |             |                |              |                |                               |                        |
|                       | Cement/Bentonite G                       | Frout    |             |                |              |                |                               |                        |
|                       |                                          |          |             |                |              |                |                               |                        |
|                       | 23'-6" Top of Filter Pa                  | ck       |             |                |              |                |                               |                        |
|                       | 22'-6" Top of Screen                     | İ        |             |                |              |                |                               |                        |
|                       |                                          | Ì        |             |                |              |                |                               |                        |
|                       | Screen Slot Size                         |          |             |                |              |                |                               |                        |
|                       | × 010 in                                 | İ        |             |                |              |                |                               |                        |
|                       | 015 in                                   |          |             |                |              |                |                               |                        |
|                       | 020 in                                   | İ        |             |                |              |                |                               |                        |
|                       | 025 in                                   |          |             |                |              |                |                               |                        |
|                       |                                          |          |             |                |              |                |                               |                        |
|                       | Filter Material                          |          |             |                |              |                |                               |                        |
|                       | 00 Sand Pack                             |          |             |                |              |                |                               |                        |
|                       | x 0 Sand Pack                            |          |             |                |              |                |                               |                        |
|                       | 1 Sand Pack                              |          |             |                |              |                |                               |                        |
|                       | 2 Sand Pack                              |          |             |                |              |                |                               |                        |
|                       | 3 Sand Pack                              |          |             |                |              |                |                               |                        |
|                       | 4 Sand Pack                              |          |             |                |              |                |                               |                        |
|                       | 33'-6" Bottom of Scree                   | en       |             |                |              |                |                               |                        |
|                       | 53-0 Bottom of Bore                      | noie     |             |                |              |                |                               |                        |

|                    | C&S Engineers, Inc.                    | G         | ROUND        | WATE          | २              |                 | Wall No.       | MSMW_4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------|----------------------------------------|-----------|--------------|---------------|----------------|-----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | 90 Broadway<br>Buffalo, New York 14203 | ORS       |              |               | =1 1           |                 | wen no.        | 101310100-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| COMPANIE           | Phone: 716-847-1630                    |           |              |               |                | Р               | roject No.:    | K11.002.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| COMPANIE.          | Www.cscos.com                          | CON       | ISTRUC       | TION L        | OG             | Sur             | face Elev.:    | 662.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Project Name: Ma   | in Street Right-of-Way Monitoring W    | /ells     |              |               |                |                 | Datum:         | NAVD 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Location: 100      | 01 Main Street, Buffalo, New York      |           |              |               |                |                 | Start Date:    | 3/5/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Client: Kal        | ieda Health                            |           |              |               |                | Fi              | inish Date:    | 3/5/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Drilling Firm: SJE | 3, Inc                                 |           |              |               |                |                 | Inspector:     | C. Martin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                    |                                        |           | Drill Rig:   |               |                |                 | Casing:        | 2.25"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                    |                                        | <u>.</u>  | Notes:       | (provide desc | cription of ob | servation wel   | I location, me | ethod of construction,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    | <u> </u>                               | sing      |              | development   | method and     | any other inf   | formation)     | and the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of th |
|                    | Top of Riser                           |           | Monitoring v | well was inst | alled appro    | oximately 20"   | trom the co    | Instruction edge of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                    | 0°-0° Ground Surface                   |           | Building, M  | onitoring we  | lls were ins   | stalled with 2  | -3 foot riser  | above construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                    | Surface Dealifill Materia              | ı         | grade. After | finish grade  | is complete    | e protective of | casing will b  | be installed flush with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                    |                                        | <u>II</u> | ground surf  | ace.          |                | •               | Ŭ              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                        |           |              |               |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | Comont/Rontonite G                     | rout      |              |               |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                        | nout      |              |               |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                        |           |              |               |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | 8" Bore Hole Diamete                   | r         |              |               |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                        | •         |              |               |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | <b>2</b> " Well Diameter               |           |              |               |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | Well Material                          |           |              |               |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                        |           |              |               |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | Stainless Steel                        |           |              |               |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | $\boxtimes$ —                          |           | _            |               |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | Backfill Material                      |           |              | Groundwate    | er Measure     | ement Data      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | Soil Cuttings                          |           |              |               | Depth to       | Water           | Tide           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | Bentonite Slurry                       |           | Date         | Time          | Water          | Elevation       | Status         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | Cement/Bentonite G                     | Grout     | 3/6/2014     | 11:00 AM      | 27.5           | 635.47          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                        |           |              |               |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | $\geq$                                 |           |              |               |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | Depth To:                              |           |              |               |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | 25'-0" Top of Seal                     |           |              |               |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | Seal Material                          | 1-1-      |              |               |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | X Bentonite Chips/Per                  | lets      |              |               |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | Bentonite Sidify                       | rout      |              |               |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                        | nout      |              |               |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | 27'-0" Top of Filter Pa                | ck        |              |               |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | ••• ••• ••• •••                        | U.N.      |              |               |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | 27'-0" Top of Screen                   |           |              |               |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                        |           |              |               |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | Screen Slot Size                       |           |              |               |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | × 010 in                               |           |              |               |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | 015 in                                 |           |              |               |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | 020 in                                 |           |              |               |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | 025 in                                 |           |              |               |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | <b></b>                                |           |              |               |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                        |           |              |               |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | UU Sand Pack                           |           |              |               |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | X U Sand Pack                          |           |              |               |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                        |           |              |               |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | 2 Sand Pack                            |           |              |               |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | 4 Sand Pack                            |           |              |               |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | 37'-0" Bottom of Scree                 | en        |              |               |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | 35'-0" Bottom of Bore                  | Hole      |              |               |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                        |           |              |               |                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|                |            | C&S Engineers, Inc.                    | G         | ROUND                 | WATE          | 2              |               |                | MW_02P                 |
|----------------|------------|----------------------------------------|-----------|-----------------------|---------------|----------------|---------------|----------------|------------------------|
|                |            | 90 Broadway<br>Buffalo, New York 14203 |           |                       |               | = 1 1          |               | wen no.        |                        |
|                |            | Phone: 716-847-1630                    |           |                       |               |                | Р             | roject No.:    | K11.002.001            |
| COMPAN         | IE2        | Fax: 716-847-1454<br>www.cscos.com     | CON       | ISTRUC                | TION L        | .OG            | Sur           | face Elev.:    | 661.38                 |
| Project Name:  | Main S     | treet Right-of-Way Monitoring V        | Vells     |                       |               |                |               | Datum:         | NAVD 88                |
| Location:      | 1001 M     | lain Street, Buffalo, New York         |           |                       |               |                |               | Start Date:    | 3/6/14                 |
| Client:        | Kalieda    | a Health                               |           |                       |               |                | Fi            | inish Date:    | 3/6/14                 |
| Drilling Firm: | SJB, In    | C                                      |           |                       |               |                |               | Inspector:     | C. Martin              |
|                |            |                                        |           | Drill Rig:            |               |                |               | Casing:        | 2.25"                  |
|                |            |                                        |           | Notes:                | (provide des  | cription of ob | servation wel | l location, me | ethod of construction, |
|                |            | 0'-0" Top Protective Cas               | sing      |                       | development   | method and     | any other inf | ormation)      |                        |
|                |            | Top of Riser                           |           | Monitoring            | well was inst | alled appro    | ximately 288  | feet east of   | the Main Street and    |
|                |            | 0'-0" Ground Surface                   |           | Goodrich St<br>Garage | reet intersed | tion and 60    | reet south o  | t the Ellicoti | Goodrich Parking       |
|                |            |                                        |           | Garage.               |               |                |               |                |                        |
|                |            | Surface Backfill Materia               | <u>al</u> |                       |               |                |               |                |                        |
|                |            | Soli Cuttings                          |           |                       |               |                |               |                |                        |
| l Ö            | Ŏ          | Bentonite Siurry                       | rout      |                       |               |                |               |                |                        |
| $\sim$         | Ô          | X Cement/Bentonite C                   | FIOUL     |                       |               |                |               |                |                        |
| $\sim$         | $\sim$     | Concrete                               |           |                       |               |                |               |                |                        |
| $\sim$         | $\sim$     | 8" Boro Holo Diamoto                   | r         |                       |               |                |               |                |                        |
|                | $\bigcirc$ |                                        | 1         |                       |               |                |               |                |                        |
| $\sim$         |            | 2" Well Diameter                       |           |                       |               |                |               |                |                        |
| $\sim$         | $\sim$     | Well Material                          |           |                       |               |                |               |                |                        |
| $\sim$         |            |                                        |           |                       |               |                |               |                |                        |
| $\sim$         |            | Stainless Steel                        |           |                       |               |                |               |                |                        |
|                |            |                                        |           |                       |               |                |               |                |                        |
| $\sim$         |            | Backfill Material                      |           |                       | Groundwate    | er Measure     | ement Data    |                |                        |
| $\sim$         |            | X Soil Cuttings                        |           |                       |               | Depth to       | Water         | Tide           |                        |
| $\sim$         |            | Bentonite Slurry                       |           | Date                  | Time          | Water          | Elevation     | Status         |                        |
| $\sim$         |            | Cement/Bentonite C                     | Grout     | 3/7/2014              | 8:00 AM       | 27.3           | 634.08        |                |                        |
| $\sim$         |            | Concrete                               |           |                       |               |                |               |                |                        |
|                |            |                                        |           |                       |               |                |               |                |                        |
|                |            | Depth To:                              |           |                       |               |                |               |                |                        |
| $\times$       | $\times$   | 22'-10" Top of Seal                    |           |                       |               |                |               |                |                        |
|                |            | Seal Material                          |           |                       |               |                |               |                |                        |
|                |            | X Bentonite Chips/Pel                  | lets      |                       |               |                |               |                |                        |
|                |            | Bentonite Slurry                       |           |                       |               |                |               |                |                        |
|                |            | Cement/Bentonite G                     | Fout      |                       |               |                |               |                |                        |
|                |            | 241 40" Tan of Filter De               | ali       |                       |               |                |               |                |                        |
|                |            | 24-10 Top of Filter Pa                 | CK        |                       |               |                |               |                |                        |
|                |            | 24'-10" Top of Scroop                  |           |                       |               |                |               |                |                        |
|                |            |                                        |           |                       |               |                |               |                |                        |
|                |            | Screen Slot Size                       |           |                       |               |                |               |                |                        |
|                |            | x 010 in                               |           |                       |               |                |               |                |                        |
|                |            | 015 in                                 |           |                       |               |                |               |                |                        |
|                |            | 020 in                                 |           |                       |               |                |               |                |                        |
|                |            | 025 in                                 |           |                       |               | •              |               |                |                        |
|                |            |                                        |           |                       |               |                |               |                |                        |
|                |            | Filter Material                        |           |                       |               |                |               |                |                        |
|                |            | 00 Sand Pack                           |           |                       |               |                |               |                |                        |
|                |            | x 0 Sand Pack                          |           |                       |               |                |               |                |                        |
|                |            | 1 Sand Pack                            |           |                       |               |                |               |                |                        |
|                |            | 2 Sand Pack                            |           |                       |               |                |               |                |                        |
|                |            | 3 Sand Pack                            |           |                       |               |                |               |                |                        |
|                |            | 4 Sand Pack                            |           |                       |               |                |               |                |                        |
|                |            | 34'-10" Bottom of Scre                 | en        |                       |               |                |               |                |                        |
|                |            | 33 - U Bottom of Bore                  | HOIE      |                       |               |                |               |                |                        |

|                       | C&S Engineers, Inc.                       | G              | ROUND        | WATEF         | 2              |               |                | MW_02P_2               |
|-----------------------|-------------------------------------------|----------------|--------------|---------------|----------------|---------------|----------------|------------------------|
|                       | 141 Elm Street<br>Buffalo, New York 14203 | ORG            |              |               |                |               | wen no.        | WIW-U2R-2              |
| COMPANIES             | Phone: 716-847-1630                       |                |              |               |                | Р             | roject No.:    | K11.005.001            |
| COMPANIES             | Fax: 716-847-1454<br>www.cscos.com        | CON            | ISTRUC       | TION L        | OG             | Sur           | face Elev.:    | 662.38                 |
| Project Name: Goodri  | ch Street Right-of-Way Monitor            | ing Well Repla | acement      |               |                |               | Datum:         | NAVD 88                |
| Location: 818 Ell     | licott Street, Buffalo, New York          |                |              |               |                |               | Start Date:    | 2/5/16                 |
| Client: Kalieda       | a Health                                  |                |              |               |                | Fi            | inish Date:    | 2/5/16                 |
| Drilling Firm: Nature | 's Way Environmental                      |                |              |               |                |               | Inspector:     | C. Martin              |
|                       |                                           |                | Drill Rig:   | Mobile B-57   |                |               | Casing:        | 2.25"                  |
|                       |                                           |                | Notes:       | (provide desc | cription of ob | servation wel | I location, me | ethod of construction, |
|                       | 0'-0" Top Protective Ca                   | sing           |              | development   | method and     | any other inf | ormation)      |                        |
|                       | Top of Riser                              |                | Monitoring v | ell was insta | alled approx   | imately 284   | feet east of t | the Main Street and    |
|                       | 0'-0" Ground Surface                      |                | Goodrich Sti | eet intersect | ion and 60 f   | reet south of | the Ellicott   | Goodrich Parking       |
|                       |                                           |                | Garage. This | monitoring    | well was pla   | aceu 4 ieel w | est of WIW-2   | .r.                    |
|                       | Surface Backfill Materia                  | <u>al</u>      |              |               |                |               |                |                        |
|                       | Soil Cuttings                             |                |              |               |                |               |                |                        |
|                       | Bentonite Slurry                          | <b>_</b>       |              |               |                |               |                |                        |
| I Ö Ö                 |                                           | Fout           |              |               |                |               |                |                        |
|                       |                                           |                |              |               |                |               |                |                        |
|                       |                                           |                |              |               |                |               |                |                        |
|                       |                                           | er             |              |               |                |               |                |                        |
|                       | 2" Well Diamator                          |                |              |               |                |               |                |                        |
|                       |                                           |                |              |               |                |               |                |                        |
|                       |                                           |                |              |               |                |               |                |                        |
|                       | Stainlass Stool                           |                |              |               |                |               |                |                        |
|                       |                                           |                |              |               |                |               |                |                        |
|                       | Backfill Material                         |                | · · · · ·    | Froundwate    | r Measure      | ment Data     |                |                        |
|                       |                                           |                | `            | Siounawate    | Denth to       | Water         | Tide           |                        |
|                       | Bentonite Slurry                          |                | Date         | Time          | Water          | Flevation     | Status         |                        |
|                       | Cement/Bentonite (                        | Grout          | 4/28/2016    | 9:00 AM       | 28.45          | 634.35        | oluluo         |                        |
|                       |                                           |                |              | 0.007         | 20110          |               |                |                        |
|                       |                                           |                |              |               |                |               |                |                        |
|                       | Depth To:                                 |                |              |               |                |               |                |                        |
|                       | 23' Top of Seal                           |                |              |               |                |               |                |                        |
|                       | Seal Material                             |                |              |               |                |               |                |                        |
|                       | x Bentonite Chips/Pe                      | llets          |              |               |                |               |                |                        |
|                       | Bentonite Slurry                          |                |              |               |                |               |                |                        |
|                       | Cement/Bentonite C                        | Grout          |              |               |                |               |                |                        |
|                       |                                           |                |              |               |                |               |                |                        |
|                       | 25' Top of Filter Pa                      | ack            |              |               |                |               |                |                        |
|                       |                                           |                |              |               |                |               |                |                        |
|                       | 28' Top of Screen                         |                |              |               |                |               |                |                        |
|                       |                                           |                |              |               |                |               |                |                        |
|                       | Screen Slot Size                          |                |              |               |                |               |                |                        |
|                       |                                           |                |              |               |                |               |                |                        |
|                       |                                           |                |              |               |                |               |                |                        |
|                       |                                           |                |              |               |                |               |                |                        |
|                       |                                           |                |              |               |                |               |                |                        |
|                       | Filter Material                           |                |              |               |                |               |                |                        |
|                       | 00 Sand Pack                              |                |              |               |                |               |                |                        |
|                       | x () Sand Pack                            |                |              |               |                |               |                |                        |
|                       | 1 Sand Pack                               |                |              |               |                |               |                |                        |
|                       | 2 Sand Pack                               |                |              |               |                |               |                |                        |
|                       | 3 Sand Pack                               |                |              |               |                |               |                |                        |
|                       | 4 Sand Pack                               |                |              |               |                |               |                |                        |
|                       | 43' Bottom of Scre                        | en             |              |               |                |               |                |                        |
|                       | 44' Bottom of Bore                        | Hole           |              |               |                |               |                |                        |
|                       |                                           |                |              |               |                |               |                |                        |

# APPENDIX E IN SITU PRODUCT INFORMATION


# CHEMICAL OXIDATION REDEFINED...

RegenOx<sup>™</sup> is an advanced in situ chemical oxidation technology<sup>\*</sup> designed to treat organic contaminants including high concentration source areas in the saturated and vadose zones

## **PRODUCT FEATURES:**

- Rapid and sustained oxidation of target compounds
- Easily applied with readily available equipment
- Destroys a broad range of contaminants
- More efficient than other solid oxidants
- Enhances subsequent bioremediation
- Avoids detrimental impacts to groundwater aquifers



RegenOx product application

### HOW IT WORKS:

RegenOx maximizes in situ performance using a solid alkaline oxidant that employs a sodium percarbonate complex with a multi-part catalytic formula. The product is delivered as two parts that are combined and injected into the subsurface using common drilling or direct-push equipment. Once in the subsurface, the combined product produces an effective oxidation reaction comparable to that of Fenton's Reagent without a violent exothermic reaction. RegenOx safely, effectively and rapidly destroys a wide range of contaminants in both soil and groundwater (Table 1).

## ACHIEVES RAPID OXIDATION VIA A NUMBER OF MECHANISMS

RegenOx directly oxidizes contaminants while its unique catalytic complex generates a suite of highly charged, oxidative free radicals that are responsible for the rapid destruction of contaminants. The mechanisms by which RegenOx operates are:

- Surface- Mediated Oxidation: (see Figure 1 and description below)
- Direct Oxidation: C<sub>2</sub>Cl<sub>4</sub> + 2 Na<sub>2</sub>CO<sub>3</sub> 3 H<sub>2</sub>O<sub>2</sub> + 2 H<sub>2</sub>O ↔ 2CO<sub>2</sub> + 4 NaCl + 4 H<sub>2</sub>O + 2 H<sub>2</sub>CO<sub>3</sub>

### Free Radical Oxidation:

- Perhydroxyl Radical (HO<sub>2</sub>•)
- Hydroxyl Radical (OH•)
- Superoxide Radical (O<sub>2</sub>•)

Figure 1. Surface-Mediated Oxidation is responsible for the majority of RegenOx contaminant destruction. This process takes place in two stages. First, the RegenOx activator complex coats the subsurface. Second, the oxidizer complex and contaminant react with the activator complex surface destroying the contaminant.

### Figure 1. RegenOx<sup>™</sup> Surface-Mediated Oxidation





#### From Mass Reduction to Bioremediation:

RegenOx<sup>™</sup> is an effective and rapid contaminant mass reduction technology. A single injection will remove significant amounts of target contaminants from the subsurface. Strategies employing multiple Regenox injections coupled with follow-on accelerated bioremediation can be used to treat highly contaminated sites to regulatory closure. In fact, RegenOx was designed specifically to allow for a seamless transition to low-cost accelerated bioremediation using any of Regenesis controlled release compounds.

### Significant Longevity:

RegenOx has been shown to destroy contaminants for periods of up to one month.

#### Product Application Made Safe and Easy:

RegenOx produces minimal heat and as with all oxidants proper health and safety procedures must be followed. The necessary safety guidance accompanies all shipments of RegenOx and additional resources are available on request. Through the use of readily available, highly mobile, direct-push equipment and an array of pumps, RegenOx has been designed to be as easy to install as other Regenesis products like ORC<sup>®</sup> and HRC<sup>®</sup>.

#### Effective on a Wide Range of Contaminants:

RegenOx has been rigorously tested in both the laboratory and the field on petroleum hydrocarbons (aliphatics and aromatics), gasoline oxygenates (e.g., MTBE and TAME), polyaromatic hydrocarbons (e.g., naphthalene and phenanthrene) and chlorinated hydrocarbons (e.g., PCE, TCE, TCA).

### Oxidant Effectiveness vs. Contaminant Type:

| Table 1                                    |          |                     |              |            |                         |       |
|--------------------------------------------|----------|---------------------|--------------|------------|-------------------------|-------|
| Contaminant                                | RegenOx™ | Fenton's<br>Reagent | Permanganate | Persulfate | Activated<br>Persulfate | Ozone |
| Petroleum Hydrocarbons                     | А        | А                   | В            | В          | В                       | Α     |
| Benzene                                    | Α        | Α                   | D            | В          | В                       | Α     |
| МТВЕ                                       | Α        | В                   | В            | С          | В                       | В     |
| Phenols                                    | Α        | Α                   | В            | С          | В                       | Α     |
| Chlorinated Ethenes<br>(PCE, TCE, DCE, VC) | Α        | Α                   | A            | В          | Α                       | Α     |
| Chlorinated Ethanes<br>(TCA, DCA)          | Α        | В                   | С            | D          | С                       | В     |
| Polycyclic Aromatic<br>Hydrocarbons (PAHs) | Α        | Α                   | В            | В          | Α                       | Α     |
| Polychlorinated<br>Biphenyls (PCBs)        | В        | С                   | D            | D          | D                       | В     |
| Explosives (RDX, HMX)                      | Α        | Α                   | Α            | Α          | Α                       | Α     |

Based on laboratory kinetic data, thermodynamic calculations, and literature reports.

#### **Oxidant Effectiveness Key:**

A = Short half life, low free energy (most energetically favored), most complete

B = Intermediate half life, low free energy, intermediate degree of completion

C = Intermediate half life, intermediate free energy, low degree of completion

D = Long half life, high free energy (least favored), very low degree of completion



Advanced Technologies for Groundwater Resources

1011 Calle Sombra / San Clemente / California 92673-6244 Tel: 949/366-8000 / Fax: 949/366-8090 / www.regenesis.com



The original Oxygen Release Compound (ORC<sup>®</sup>) is a fine, powdery material comprised of a patented formulation of phosphate-intercalated magnesium peroxide. The intercalation or embedding of phosphates within the magnesium peroxide is Regenesis' patented, controlled-release mechanism. Upon hydration, ORC is designed to produce a controlled-release of oxygen (10% by weight) into the subsurface in accordance with the following reaction:

## $\mathrm{MgO}_{2} + \mathrm{H_{2}O} \rightarrow 1/2 \mathrm{O}_{2} + \mathrm{Mg(OH)}_{2}$

This process can proceed for periods of up to one year depending on site conditions. In the presence of this long-lasting oxygen source, aerobic microbes flourish - accelerating the naturally slow rates of aerobic biodegradation.

## **Product Benefits**

By enhancing bioremediation using ORC, in-situ treatment of contaminants can result in an efficient, simple and costeffective alternative to traditional technologies. With low capital costs, no operations and maintenance, minimal site disturbance and proven effectiveness, ORC can restore water quality and property values at a reasonable cost.

## Subsurface Emplacement

• Direct - Push Injection

• Trenches

• Hollow Stem Augers

- Ex Situ biophiles
- Replaceable Filter Socks (existing wells)
- Excavations

## Treatable Contaminants

ORC can treat a wide range of contaminants and most any aerobically degradable compound including: gasoline and fuel additives (BTEX and MTBE), diesel, kerosene, jet fuel, gas condensates, fuel oils, lubricants, bunker oil, PAHs, certain pesticides/herbicides and certain industrial solvents (alcohols and ketones).

## Material Application

Most contaminated sites are treated using ORC slurry which is a prescribed and easily injectable water and ORC mixture (Figure 2). The direct-push injection of ORC slurry maximizes ORC and oxygen distribution in the subsurface increasing the range of enhanced biodegradation. ORC is dosed in pounds per vertical foot of material treated. The amount of ORC recommended depends greatly on various factors such as contaminant concentrations, oxygen sinks, groundwater flow rates and subsurface geology. It is recommended that a Regenesis Technical Services Representative be contacted for detailed design information. ORC treatment approaches or designs may consist of one, or combinations of the following: Source Area Grids, Plume Area Grids or Barriers, Excavations and Biopiles.



# Remediation of PHCs and VOCs at a Former Dry Cleaner Site Using RegenOx<sup>®</sup>, ORC Advanced<sup>®</sup>, and ORC<sup>®</sup> Filter Socks

Former Dry Cleaning Site Redeveloped to Serve as New Home to Non-Profit Serving Homeless in Chilliwack B.C. Area

# Project Highlights

- Introduction of RegenOx<sup>®</sup> and ORC Advanced<sup>®</sup> following *in situ* treatment using PulseOx<sup>1</sup> resulted in the reduction in the initial concentrations of PHCs and dry cleaning chemicals in a sand and gravel aquifer, meeting site remediation goals
- Upon completion of remedial efforts, the project was awarded three British Columbia Ministry Environment instruments

# Project Summary

A building occupied by a former dry cleaning business (1960s) located in Chilliwack, British Columbia was acquired by Ruth & Naomi's Mission, (www.ranmission.ca) a non-profit organization serving Chilliwack. Environmental investigations to support the redevelopment of the former dry cleaner building revealed contamination of the soil and groundwater beneath the site and the offsite alley with petroleum hydrocarbons (PHCs) and dry cleaning related chemicals. Since the remedial excavation onto the offsite alley was not considered to be practical, RegenOx, along with ORC Advanced, was utilized for the *in situ* treatment of soil and groundwater within the excavation to reduce the remaining PHC and dry cleaning chemical concentrations.

Following treatment with RegenOx, reduction in the concentrations of PHC and dry cleaning related compounds were observed in soil and groundwater samples. RegenOx was additionally injected within the alley to treat the offsite plume. As a result, all post-remediation concentrations are below the applicable commercial land use standards. Additionally, ORC socks were applied to assist natural attenuation of any residual contaminants in groundwater. The successful investigation and remedial effort received three British Columbia Ministry of Environment instruments and now safely serves as a resource center and shelter.

#### Concentrations

- Volatile Petroleum Hydrocarbons VPH (up to 3,400mg/kg)
- EPH<sub>10-19</sub> (8,200 mg/kg)
- Ethylbenzene (33mg/kg)
- Total Xylenes (160 mg/kg)
- Perchloroethylene  $(7\mu g/g)$
- Trichloroethylene (2.8 mg/kg)
- VPHw (110mg/L)

- LEPH (5.6 mg/L)
- Ethylbenzene (2.14 mg/L)
- Toluene (2.7mg/L)
- Naphthalene (410µg/L)
- Perchloroethylene (2.76 mg/L)
- Xylenes (6.78mg/L)
- Vinyl Chloride (349 μg/L)



1011 Calle Sombra San Clemente, CA 92673 T: (949) 366-8000 | www.regenesis.com





# Site Details

**Site Type:** Former Dry Cleaning Business

Contaminant of Concern: PHCs and VOCs

**Remediation Approach:** Chemical Oxidation to remediate Petroleum Hydrocarbons, Dry Cleaning compounds and degradation products

Soil Type: Sand and Gravel

Treatment Area: 600m<sup>2</sup> (1968 ft<sup>2</sup>)

Technology Used:







# Technology Description

**RegenOx** is a percarbonate-based *in situ* chemical oxidation technology that rapidly destroys petroleum hydrocarbons and chlorinated contaminants through powerful chemical reactions. It directly oxidizes contaminants while a catalytic component generates oxidizing free radicals to destroy the target compounds.

**ORC Advanced** is a proprietary formulation of food-grade, calcium oxy-hydroxide that produces a controlled release of molecular oxygen to enhance aerobic biodegredation.

**ORC Filter Sock** is a permeable filter sock containing calcium oxy-hydroxide based chemical which produces a controlled release of molecular oxygen (17% by weight) when hydrated.

# Results

PHC and dry cleaning compounds were reduced in concentrations to groundwater standards following the application of RegenOx and ORC Advanced, facilitating the redevelopment of the former dry cleaning business to house the not-for-profit homeless shelter, Ruth and Naomi's Mission, serving the Chilliwack, B.C. community. Upon completion of investigation and remedial efforts, the project was awarded three British Columbia Ministry Environment instruments. Up to 200+ homeless are served dinner daily by this organization which provides both shelter and recovery programs to men and women, assisting them in their reintegration into the community and work place.

<sup>1</sup> PulseOx is a registered trademark of APT Water, Inc.



1011 Calle Sombra San Clemente, CA 92673 T: (949) 366-8000 | www.regenesis.com



# RegenOx<sup>®</sup> and ORC Advanced<sup>®</sup> Application Reduces BTEX, MTBE, and TBA Concentrations to Below MCL

Integrated AS/SVE, ISCO, and Enhanced Bioremediation Strategy Achieves Site Closure at a Former Gasoline Service Station

# Project Highlights

- Targeting of the residual soil and groundwater contamination by a combined ISCO and enhanced aerobic biodegradation approach resulted in > 98% reduction in BTEX, MTBE, and TBA concentrations
- MCLs reached and Site Closure granted two years after treatment

# Project Summary

The site of a former gas station in Garden Grove, California was contaminated with BTEX, MTBE, and tertiary butyl alcohol (TBA) following the removal of eight underground storage tanks (USTs). Under the jurisdiction of the Orange County Health Care Agency and the Santa Ana Regional Water Quality Control Board, remediation of the site was undertaken with a goal of reducing the contamination to below maximum contaminant levels (MCLs).

Site remediation was first performed mechanically by an air sparging/soil vapor extraction (AS/SVE) system, which operated effectively for approximately three years, removing >25,000 lbs of total petroleum hydrocarbons (TPH). However, soil vapor rebound testing revealed that the mechanical system had reached asymptotic conditions and was no longer effective.

To accelerate the treatment of the remaining groundwater contaminants, additional remediation efforts by a combined *in situ* chemical oxidation (ISCO) and enhanced aerobic bioremediation approach were initiated. The ISCO treatment included a regimen of five separate direct-injection events of RegenOx<sup>®</sup> over a nine-month period to effect a bulk reduction in the total contamination. Enhanced aerobic bioremediation was then used to polish off the remaining dissolved phase contaminants via injection of ORC Advanced<sup>®</sup>.

# Technology Description

RegenOx is a percarbonate-based *in situ* chemical oxidation technology that rapidly destroys petroleum hydrocarbons and chlorinated contaminants through powerful chemical reactions. It directly oxidizes contaminants while a catalytic component generates oxidizing free radicals to destroy the target compounds.

ORC Advanced is a proprietary formulation of food-grade, calcium oxy-hydroxide that produces a controlled release of molecular oxygen to enhance aerobic biodegredation.



# Site Details

Site Type: Former gas station

**Contaminant of Concern:** BTEX, MTBE, TBA

**Concentration:** TPH: 545,706 μg/L BTEX: 58,837 μg/L MTBE: 433,133 μg/L TBA: 83,004 μg/L

**Remediation Approach:** ISCO, Enhanced aerobic biodegradation

**Technology Used:** 



# Results

Following treatment with RegenOx and ORC Advanced, total groundwater contaminants were reduced by 98% for BTEX, 99% for MTBE, and to non-detect for TBA, thereby achieving the target MCLs. As a result of the integrated remedial strategy, the site was formally granted closure by the Orange County Health Care Agency. This combined remedies project illustrates the effectiveness of integrating multiple technologies to achieve site closure.



1011 Calle Sombra San Clemente, CA 92673 T: (949) 366-8000 | www.regenesis.com