2020

PERIODIC REVIEW REPORT

FOR FORMER MOBIL SERVICE STATION 99-MST 979 MAIN STREET (1001 MAIN STREET) NYSDEC SITE #C915260 CITY OF BUFFALO, ERIE COUNTY, NEW YORK

Prepared by:

C&S Engineers, Inc.

141 ELM STREET BUFFALO, NEW YORK 14203

Prepared on Behalf of:

CONVENTUS PARTNERS, LLC

KALEIDA HEALTH

KALEIDA PROPERTIES, INC.

F.L.C 50 HIGH STREET CORPORATION

APRIL 2020

TABLE OF CONTENTS

EXE(CUTIVE SUMMARY	1
<u>1</u>	SITE OVERVIEW	2
1.1	SITE DESCRIPTION	2
1.2	GEOLOGY AND HYDROGEOLOGY	2
1.3	NATURE AND EXTENT OF CONTAMINATION	3
1.4		3
1.4.1	I In-situ Injections	6
<u>2</u>	REMEDY PERFORMANCE, EFFECTIVENESS AND PROTECTIVENE	ESS 7
<u>3</u>	IC/EC PLAN COMPLIANCE REPORT	8
	IC/EC REQUIREMENTS AND COMPLIANCE	8
	I Institutional Controls	9
	2 Engineering Controls	9
3.2	IC/EC CERTIFICATION	9
<u>4</u>	MONITORING PLAN COMPLIANCE REPORT	9
<u>5</u>	OPERATION AND MAINTENANCE PLAN COMPLIANCE	10
<u>6</u>	CONCLUSIONS	10
<u>7</u>	RECOMMENDATIONS	11
FIGU	URES	
Figu	IRE 1 SITE LOCATION	
Figu	IRE 2 PROJECT BOUNDARIES	
Figu	IRE 3 HISTORIC BTEX CONCENTRATIONS	
FIGU	IRE 4 INJECTION BORINGS	

TABLES

Periodic Review Report Former Mobil Service Station 99-MST 979 Main Street (1001 Main Street), BCP No. C915260

TABLE 1 GROUNDWATER ANALYTICAL RESULTS

GRAPHS

GRAPH 1 GROUNDWATER TREATMENT MONITORING - TOTAL BTEX

APPENDICES

ACRONYM LIST

C&S ENGINEERS, INC.

BGS BELOW GROUND SURFACE

BCP BROWNFIELD CLEANUP PROGRAM

BCA BROWNFIELD CLEANUP AGREEMENT

BTEX BENZENE, TOLUENE, ETHYLBENZENE AND XYLENE

DUSR DATA USABILITY AND SUMMARY REPORT

LNAPL LIGHT NON-AQUEOUS PHASE LIQUID

IRM INTERIM REMEDIAL MEASURES

NYSDEC New York State Department of Environmental Conservation

PCOC PRIMARY CONTAMINATE OF CONCERN

PID PHOTO-IONIZATION DETECTOR

PPM PARTS PER MILLION

RI REMEDIAL INVESTIGATION
SCO SOIL CLEANUP OBJECTIVES

SMP SITE MANAGEMENT PLAN

SVOC SEMI-VOLATILE ORGANIC COMPOUNDS

VOC VOLATILE ORGANIC COMPOUNDS

EXECUTIVE SUMMARY

C&S Engineers, Inc. (C&S) has prepared this 2020 Periodic Review Report for the former Mobil Service Station 99-MST - 979 Main Street (1001 Main Street) (hereinafter referred to as the Site) located at 1001 Main Street in Buffalo, New York.

The Site was remediated in accordance with Brownfield Cleanup Agreement (BCA) Index #C915260-03-12, Site #C915260, which was executed on June 15, 2012 and last amended on August 7, 2012. BCA Volunteers included Kaleida Properties Inc., Kaleida Health and F.L.C 50 High Street Corporation. The BCA was amended for a change in ownership from F.L.C 50 High Street Corporation to Conventus Partners, LLC in August 2013. A figure showing the Site location and boundaries is provided in **Figure 1** and **Figure 2**.

Remedial activities consisted of installing steel shoring around the property and removing contaminated soil and groundwater to 26 – 40 feet below ground surface. After completion of the remedial work, some contamination remained in the subsurface at this Site. A Site Management Plan (SMP) was prepared on November 28, 2014 to manage remaining groundwater contamination at the Site until the Environmental Easement is extinguished in accordance with ECL Article 71, Title 36.

Petroleum contaminated groundwater is present within a discontinuous layer of coarse sand and gravel located between 32 and 35 feet below ground surface. This layer generally ranges from 6 inches to three feet thick, provides a preferential pathway for groundwater flow, and is confined within dense silt and fine sand present above and below the groundwater bearing zone.

During the remedial efforts, seven groundwater monitoring wells were installed prior to the installation of the two floors of underground parking. These monitoring wells were used to conduct in-situ injections by gravity feeding chemical oxidants into the groundwater bearing zone. A total of 2,480 pounds of chemical oxidant was used over three treatment events. Treatments occurred from December 2013 to June 2015. Groundwater samples following the in-situ injections show minor reductions in petroleum compounds.

In 2016, C&S conducted a limited groundwater extraction on the wells with the highest contaminant levels. Contaminated groundwater was pumped from the wells and treated with 200 pounds of activated carbon before discharging into the sanitary sewer. A total of 4,762.2 gallons of contaminated groundwater was removed. Groundwater samples collected in December 2015, January 2016 and March 2016 showed a slight reduction in petroleum compound concentrations.

The current ISCO treatment method is smaller pressurized injections around each target location on a quarterly schedule. A total of six temporary PVC injection points were installed around BCP-MW-6 and BCP-MW-5. Each quarterly treatment injects a total of 800 pounds (130 pounds per injection point) of chemical oxidant. Groundwater monitoring is conducted biannually.

All institutional and engineering controls are in compliance with the SMP. To address the continued elevated concentrations of petroleum compounds in the groundwater, C&S recommends the completion of additional treatment methods, including the implementation of a slow release chemical oxidation method.

The Institutional and Engineering Controls Certification form is provided in **Appendix B**.

1 SITE OVERVIEW

1.1 Site Description

The Site is located in the City of Buffalo County of Erie County, New York and is identified below on the Erie County Tax Map.

SBL: 100.79 - 1- 1.1

Street Number: 1001 Main Street, Buffalo

(formerly 979 Main Street)

Owner: Kaleida Properties, Inc.

SBL: 100.79-1-2.11

Street Number: 818 Ellicott Street, Buffalo

Owner: Kaleida Health

The Site is an approximately 1.72-acre area bounded by Goodrich Street to the north, High Street to the south, parking lot to the east, and Main Street to the west (see **Figure 1 and 2**).

1.2 Geology and Hydrogeology

The Conventus Medical Office Building currently occupies the Site. During remedial activities, steel shoring was installed to a depth of 40 to 50 feet below grade around the Site. Across the majority of the Site, soils were excavated to 26 feet below

ground surface (bgs). Two floors of underground parking were constructed underneath the Conventus building.

The Site geology begins at 26 feet bgs. Subsurface soils consist of dry to moist fine sand and silt formation extends to nearly 70 feet bgs. Below this massive sand and silt formation is a discontinuous coarse sand and gravel layer that grades to a sand, gravel; and clay till formation. Underlying the overburden is a grey cherty limestone formation at approximately 90 feet bgs.

The principal groundwater bearing zone beneath the Site is located within the coarse sand and gravel layer between 32 and 35 feet bgs. This layer is of variable thickness (generally 6 inches to three feet) but is horizontally discontinuous. The layer is located within the central and northeastern portions of the Site, but does not extend completely to the southern, northwestern or southeastern areas of the Site and is confined by the dense fine sands and silt above and below the groundwater bearing zone.

1.3 Nature and Extent of Contamination

During the Interim Remedial Measure (IRM), grossly contaminated soil and groundwater were removed from the Site. In total, 67,458 tons of soils were sent for disposal or treatment due to gasoline contamination. The remaining contamination left on-site consists of petroleum impacted groundwater. Groundwater sampling that occurred prior to the IRM confirmed that the Primary Contaminants of Concern (PCOCs) are limited to petroleum hydrocarbons.

Groundwater flows within the coarse sand/gravel groundwater bearing zone to the northeast. Groundwater recharge from the surface has been eliminated due to the concrete floor of the parking garage, which effectively covers 100% of the Site recharge area. Additionally, below grade migration has been effectively stopped by the presence of deep sheet piling that cuts off the groundwater bearing zone from the remaining off-site formation around the majority of the Site. The lack of a vertical recharge from the surface and the horizontal containment in the groundwater bearing zone was designed to contain the remaining groundwater onsite and reduces the future contaminant loading into the surrounding off-site formation. However, a small gap in the sheet piling along the southwestern corner may provide a route for off-site contamination to impact the Site's groundwater.

1.4 Site History

Contamination is related to the historic use of the property as a gas station and originally was sourced from leaking underground storage tanks located above the "Deep Excavation Area" (see **Figure 3**).

For over 40 years, the light non-aqueous phase liquid (LNAPL) filtered downward from the base of the tank to a depth of approximately 40 feet bgs. LNAPL intercepted

the groundwater at approximately 32 feet bgs. The water table is present within a semi-confined coarse sand and gravel lens. This lens varies in thickness (1/2 to 3 feet) and extends to the northeast, confined laterally to the east and west. Because of low carbon in the fine sand silt and gravel formations, breakdown of benzene, toluene, ethylbenzene and xylene (BTEX) compounds was slow. This resulted in high volatile organic compounds (VOC) soil gas in the unsaturated zone below the release area and the continual loading of BTEX into the groundwater from the LNAPL. Soil Contamination (exceeding Residential Use SCOs), below the LNAPL layer was noted to extend to a depth of 35 to 40 feet bgs. This area has been identified as the Source Area for groundwater contamination.

Dissolved BTEX, once entering the groundwater bearing zone was transported via localized, preferential groundwater flow to the northeast corner of the Site (Following the location of the coarse sand/gravel lens).

To redevelop the property into a medical office building, the Applicants (BCP F..L.C. 50 High Street, Corporation, Kaleida Health, Kaleida Properties, Inc. and Conventus Partners, LLC) acting as Brownfield Cleanup Program (BCP) Volunteers, submitted a BCP Application for the Site on November 28, 2011. The Applicants and the New York State Department of Environmental Conservation (NYSDEC) signed the Brownfield Cleanup Agreement (BCA) on June 15, 2012.

The NYSDEC approved IRM was implemented on January 2013. The following is a summary of the IRM performed at the Site:

- Excavation of soil/fill exceeding restricted residential SCOs to 26 feet bgs;
- 2. Excavation of soil from the Source Area to 40 feet bgs;
- 3. Removal of LNAPL and contaminated groundwater;
- 4. Backfilling with clean fill and construction of concrete floor;
- 5. Backfilling the Source Area with flowable fill; and
- 6. Execution and recording of an Environmental Easement to restrict land use and prevent future exposure to any contamination remaining at the Site.

The removal of soils in the Source Area ("Area of Deep Excavation" in **Figure 3**) also included the removal of the groundwater bearing zone. During soil removal, 1,997 tons of groundwater and LNAPL was removed from the excavation and properly

disposed off-site. The groundwater bearing zone within the Source Area was replaced with flowable fill, sealing this area off from the adjacent groundwater bearing zone beneath the Site.

Remedial activities were completed at the Site in October 2013. Implementation of the IRM, including source removal, was effective in removing any remaining free product grossly contaminated soils and the groundwater containing the highest dissolved BTEX. However, residual groundwater contamination remains on-site.

Following mass excavation activities, seven new wells were installed on-site.

Table 1-1: Post-Remediation Wells

Table 1 1.1 Ost N	cinculation wens
Well ID	Diameter
BCP-MW-1	2"
BCP-MW-2	8"
BCP-MW-3	8"
BCP-MW-4	2"
BCP-MW-5	2"
BCP-MW-6	8"
BCP-MW-7	2"

Note that one well (BCP-MW-2) was installed adjacent to the flowable fill within the Source Area. This well did not produce water. A second well, BCP-MW-6, was installed along the western side of the deep excavation, along the tiered excavation area and did intercept the portion of the groundwater bearing zone remaining along the shoring. This well did produce water for sampling. All other wells were installed through native materials and the gravel water bearing layer. All wells were installed to an approximate depth of 43 feet below surrounding grade (approximately 16 feet below basement floor elevation).

The monitoring well locations were located in areas of previously identified groundwater contamination and to the south of the plume to confirm that contamination had not moved off-site to the south.

BCP-MW-2 was installed adjacent to the Source Area that was backfilled with flowable fill. Since its installation, this well has been dry. NYSDEC requested the well be modified to evaluate if groundwater underneath the flowable fill mass contains residual contamination. On October 7, 2015 Nature's Way Environmental installed a 1-inch PVC well through the existing BCP-MW-2 to a final depth of 50 feet bgs. The modified well has remained dry. This provides additional evidence that groundwater and petroleum contamination are limited to the coarse sand and gravel layer 32 to 35 feet bgs.

1.4.1 In-situ Injections

The remedial method selected for the Site was in-situ chemical oxidation (ISCO) using RegenOX manufactured by Regenesis. RegenOX is sodium percarbonate formulated to degrade petroleum hydrocarbons through direct oxidation and through the generation of free radical compounds which will also oxidize contaminants. RegenOx produces minimal heat and pressure and is non-corrosive, making it a relatively safe chemical oxidant that is compatible for use in direct contact with underground infrastructure such as utilities, tanks, piping, and communication lines. This was an important characteristic when selecting the ISCO product due to the close proximity of the monitoring wells to the earth retention sheeting for the Conventus Building.

The amount of RegenOX used was calculated based on Site specific data and professional experience of C&S and Regenesis. RegenOX was mixed with tap water in 55 gallon drums at a concentration of 100 pounds of RegenOX with 110 gallons of water for each location.

In-situ treatment consisted of gravity-feeding a chemical oxidizer mixed with water directly into monitoring wells, BCP-MW-3, BCP-MW-4, BCP-MW-5, and BCP-MW-6,. Groundwater samples were collected approximately three months after treatment. The first ISCO treatment was conducted on December 12, 2013.

Evaluation of the gravity fed treatments determined this method was not effective at reducing groundwater contaminants. A work plan for increasing the amount of treatment solution using pressure injections was developed. Borings were advanced in the lower floor of underground parking to apply in-situ treatments under pressure directly into the contaminated sand and gravel lens.

The ISCO solution was directly injected into the soil in 12 borings in the subbasement. Three borings were advanced adjacent to each monitoring wells listed below:

- BCP-MW-3
- BCP-MW-5
- BCP-MW-4
- BCP-MW-6

Each injection boring had to be carefully located to avoid hitting utilities located underneath the floor, with the intent of being within 10 to 15 feet of each monitoring well. Each injection boring was advanced into the coarse sand and gravel layer, approximately 15 feet below the concrete floor.

The ISCO solution was pumped from the mixing station to a truck mounted geoprobe and into the subsurface. The mix of RegenOX and water was injected under pressure in each boring, and the 12 injection borings received approximately 100 pounds of RegenOx. Additionally, 100 pounds of ISCO material was gravity fed directly into each monitoring well. A total of 1,600 pounds of RegenOx was used for each treatment event. For two treatments, a total of 3,200 pounds of RegenOX was used. These large treatment events resulted in mixed results; some locations showed an increase in contaminant concentrations, likely due to additional petroleum desorption, other locations indicated a significant decrease of petroleum contaminants.

The current ISCO treatment method is smaller pressurized injections around each target location on a quarterly schedule. A total of six temporary PVC injection points were installed around BCP-MW-6 and BCP-MW-5. Each quarterly treatment injects a total of 800 pounds (130 pounds per injection point) of chemical oxidant. Groundwater monitoring is conducted biannually. ISCO injections occurred on the following dates:

January 8, 2019 to January 11, 2019
June 11, 2019 to June 12, 2019
October 16, 2019 to October 17, 2019
November 12, 2019 to November 13, 2019

The current ISCO treatment method has injected a total of 2,400 pounds of oxidant into the subsurface.

2 REMEDY PERFORMANCE, EFFECTIVENESS AND PROTECTIVENESS

The table below presents a comparison of total VOC and BTEX concentrations from each monitoring well and the percent change from pre-treatment and post-treatment groundwater monitoring.

Table 2-1: VOC Concentration Change

) -
Monitoring Well	Percent Change	Percent Change	Percent Change
	Post Injections	Post Injections	Post Remediation
	November 2018 to	July 2019 to	Maximum to
	July 2019	December 2019	December 2019
BCP MW-1	-63.5	-33.3	-99.2
BCP MW-3	-91.3	+23.8	-99.9
BCP MW-4	-97.2	+780	-82.0
BCP MW-5	-57.1	+126.6	-65.9
BCP MW-6	-96.5	+731	-99.1
BCP MW-7	+377.8	-96.6	-99.8

Note: Negative value indicates decrease in concentration and positives value indicates increase in concentration

BCP-MW-2 was dry. No samples were collected.

Table 2-2: BTEX Concentration Change

Monitoring Well	Percent Change	Percent Change	Percent Change
	Post Injections	Post Injections	Post Remediation
	November 2018 to	July 2019 to	Maximum to
	July 2019	December 2019	December 2019
BCP MW-1	-100	-100	-100
BCP MW-3	-100	+100	-100
BCP MW-4	-97.1	+720	-84.7
BCP MW-5	-50.6	+89.5	-73.8
BCP MW-6	-100	+200	-99.6
BCP MW-7	+327.7	-77.9	-99.8

Note:

Negative value indicates decrease in concentration and positives value indicates increase in concentration BCP-MW-2 was dry. No samples were collected.

Post-treatment samples collected on December 2019 show a significant decrease in petroleum contamination in all monitoring wells. Groundwater samples indicate a 73.8% to 100% decrease in BTEX compounds and a 82% to 99.9% decrease in overall VOC concentrations. ISCO treatments have been effective in keeping contaminants of concern to a practical minimum.

Table 2-1 and **Table 2-2** shows several spikes in contaminant concentrations from July 2019 to December 2019. The tables indicate the percent change increased significantly, BCP-MW-3, BCP-MW-4, BCP-MW-5 and BCP-MW-6 actual concentrations (ug/l) change slightly to moderately.

- BCP-MW-3: Total BTEX increased from 0 ug/l to 2.6 ug/l.
- BCP-MW-4: Total VOCs increased from 10.4 ug/l to 821.70 ug/l and total BTEX increased from 8.7ug/l to 634.70 ug/l.
- BCP-MW-5: Total VOCs increased from 2,718.72 ug/l to 6,160.90 and total BTEX increased from 2,440.30 ug/l to 4,623.90 ug/l.
- BCP-MW-6: Total VOCs increased from 0.6 ug/l to 44.5 ug/l and total BTEX increased from 0 ug/l to 21.1 ug/l.

Graph 1 shows total BTEX concentrations over time. **Figure 3** shows the historic BTEX concentrations from each well.

3 IC/EC PLAN COMPLIANCE REPORT

3.1 IC/EC Requirements and Compliance

As stated in the 2014 Decision Document, the remedial action objectives (RAO) selected for this Site are:

RAOs for Public Health Protection

- Prevent ingestion of groundwater with contaminant levels exceeding drinking water standards.
- Prevent contact with, or inhalation of volatiles, from contaminated groundwater.

RAOs for Environmental Protection

- Restore ground water aquifer to pre-disposal/pre-release conditions, to the extent practicable.
- Prevent the discharge of contaminants to surface water.

3.1.1 Institutional Controls

The institutional controls for this Site are:

- The Site may only be used for restricted residential use provided that the longterm Engineering and Institutional Controls included in this SMP are employed;
- The Site may not be used for a higher level of use, unrestricted or residential use, without additional remediation and amendment of the Environmental Easement, as approved by the NYSDEC;
- All future activities on the Site that will disturb remaining contaminated material must be conducted in accordance with this SMP;
- The use of the groundwater underlying the Site is prohibited by the City of Buffalo; and
- Vegetable gardens and farming on the Site are prohibited.

The Site has not changed owners and the land use of the Site has not change. All intuitional controls for this Site are in accordance with requirements of the Environmental Easement.

3.1.2 Engineering Controls

The engineering controls for this Site are:

• Groundwater treatment and monitoring using the seven wells installed in the sub-basement of the building

All engineering controls for this Site are in accordance with requirements of the Environmental Easement.

3.2 IC/EC Certification

As required, the Site Management Periodic Review Report Notice – Institutional and Engineering Controls Certificate Form has been completed and a copy is provided in **Appendix B**.

4 MONITORING PLAN COMPLIANCE REPORT

The SMP identified the need for continued monitoring of groundwater conditions at the Site, including the periodic measuring of water levels and collecting groundwater samples for VOC analysis.

The following monitoring wells are included in the groundwater monitoring plan:

- BCP-MW-1
- BCP-MW-2
- BCP-MW-3
- BCP-MW-4
- BCP-MW-5
- BCP-MW-6

All monitoring wells were sampled with the exception of BCP-MW-2, which has remained dry since its installation.

The groundwater monitoring activities included the collection of depth-to-water measurements at each monitoring well and the collection of groundwater samples for laboratory analysis. Groundwater sampling was conducted in accordance with the U.S. Environmental Protection Agency Low flow sample procedure. Groundwater sample occurred on the dates below:

September 20, 2013	December 14, 2015	May 17, 2017
March 19, 2014	January 27, 2016	July 5, 2017
May 22, 2014	March 22, 2016	November 2, 2017
March 11, 2015	June 3, 2016	August 18, 2018
June 17, 2015	October 25, 2016	November 30, 2018
August 3, 2015	December 8, 2016	July 30, 2019
October 7, 2015	January 20, 2017	December 4, 2019

Figure 3 shows the location of the groundwater wells in the sub-basement of the Conventus building.

Table 1 presents detected compounds over all monitoring events.

5 OPERATION AND MAINTENANCE PLAN COMPLIANCE

The only maintenance items are those associated with the monitoring wells. Minor maintenance to the well caps, PVC risers and road boxes is recommended for some of the monitoring wells. These issues do not interfere will groundwater monitoring or the integrity of the samples.

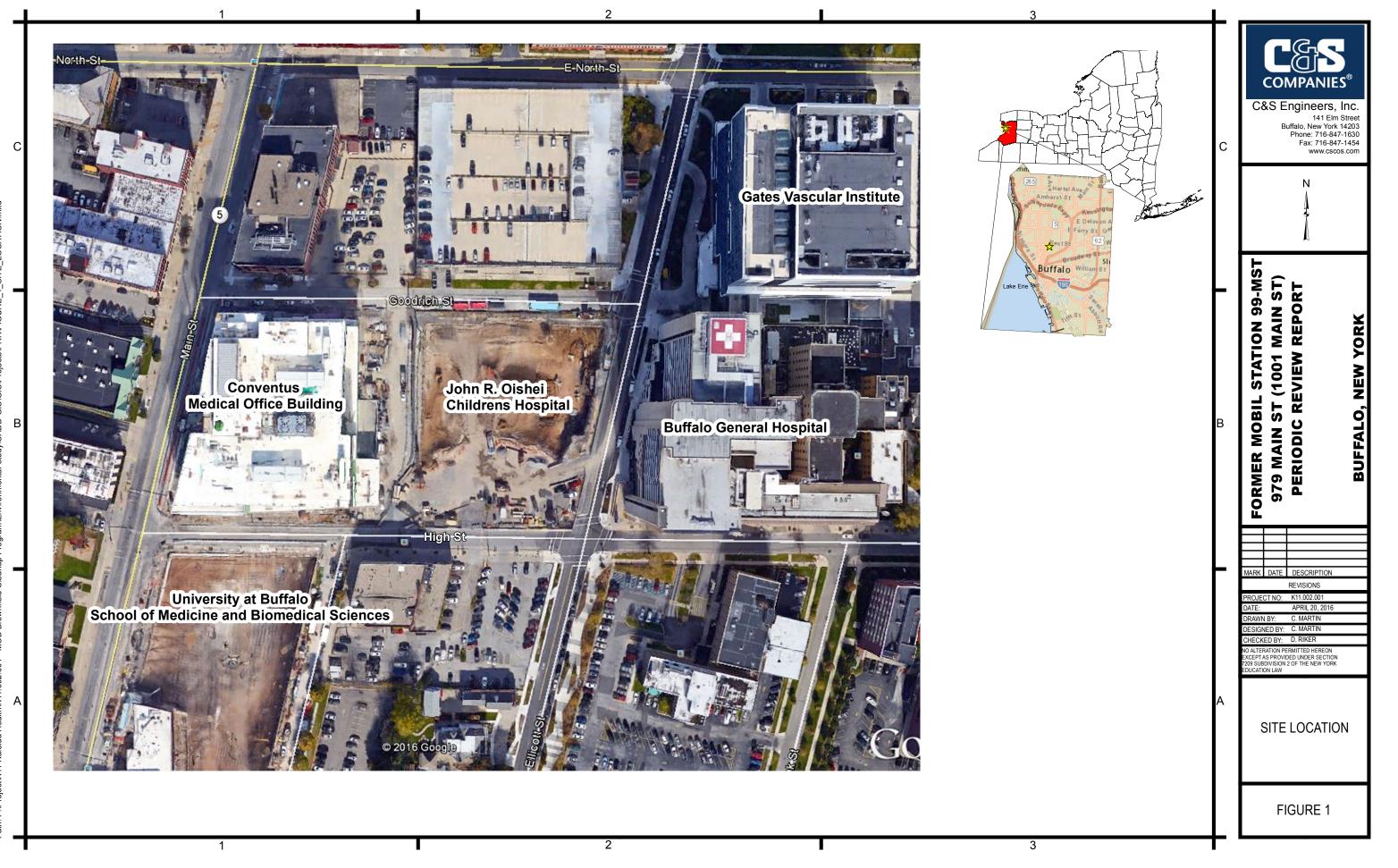
6 **Conclusions**

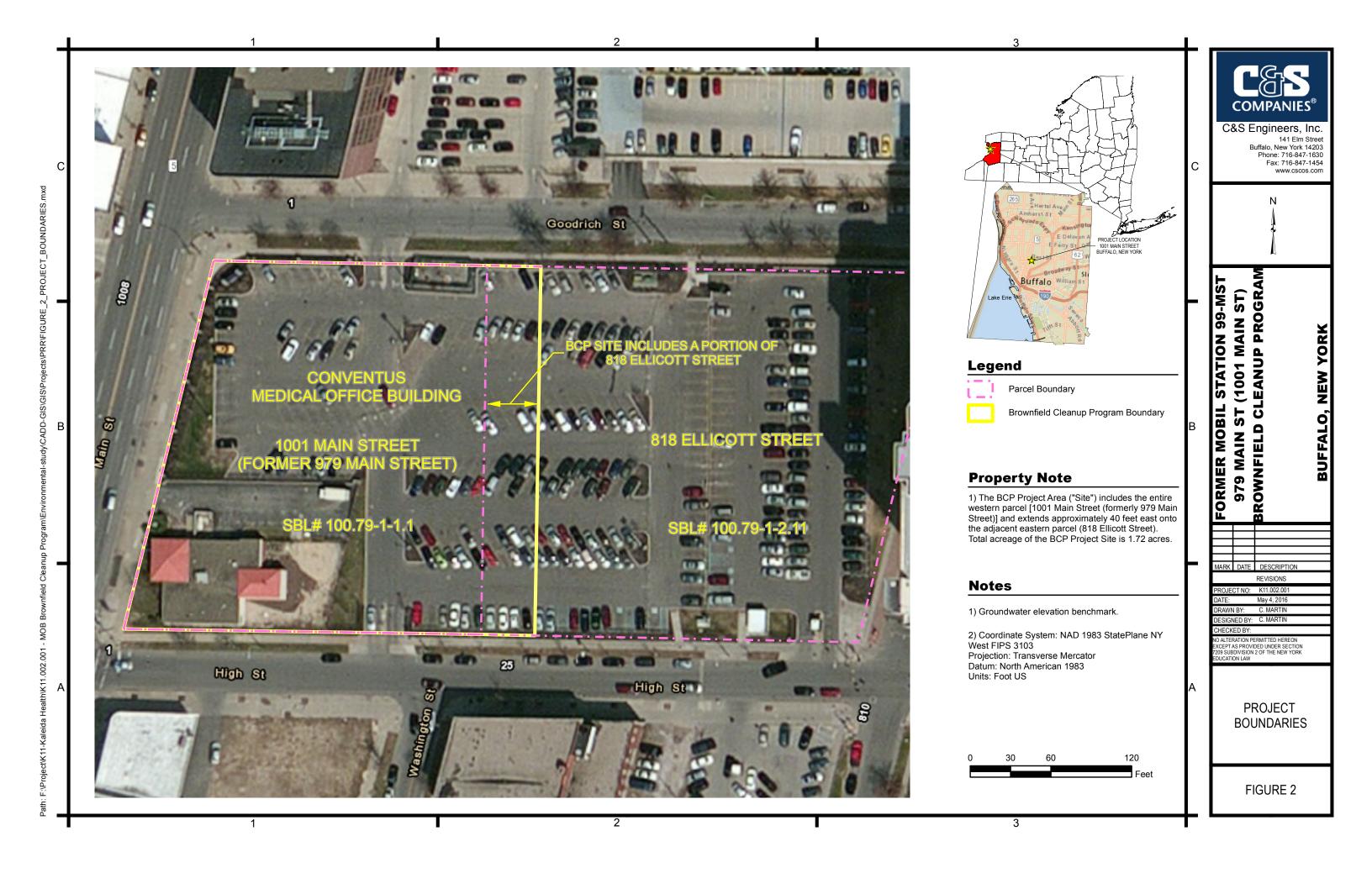
Based upon the remedial activities performed, the following conclusions have been formulated:

- All of the required work was completed and is reported herein.
- The remedial activities performed at the Site have prevented any adverse risk to human health and the environment.

7 RECOMMENDATIONS

At this time, pressurized in-situ injections are the most efficient method to apply chemical oxidants into the subsurface. Additional treatment events are planned for the Site.


Based on the results described above, it appears that significant onsite groundwater remediation has reduced BTEX concentrations 70% to 100% in five monitoring wells. Results for one monitoring well, BCP-MW-5, lag behind the other wells.


The additional in-situ treatment will consist of the following:

- C&S will subcontract to perform the drilling and injections.
- Utilize three existing injection wells around BCP-MW-4, BCP-MW-5, and BCP-MW-6.
- The ISCO product will be mixed with water onsite using 55-gallon steel drums.
- The ISCO solution will be injected into the sand / gravel layer under pressure.
- BCP-MW-4, BCP-MW-5, and BCP-MW-6 will each receive 400 pounds of ISCO product; a total of 800 pounds of ISCO product will be injected per event. A total of 3,200 pounds in four events throughout the year.
- Groundwater sampling will be conducted semi-annually on the all monitoring wells in the sub-basement of the Site. All groundwater samples will be collected for VOCs and analyzed using EPA Method 8260.

F:\Project\N46 - Conventus\N46001003 - Conventus PRR\Planning-Study\Reports\2019 PERIODIC REVIEW REPORT.docx

FIGURES

Legend

Property Lines

Brownfield Cleanup Program Boundary

Area of Deep Excavation to -40 ft (below former ground surface)

Groundwater Monitoring Well Location (Ground Floor of Underground Parking Garage)

Property Note

1) The BCP Project Area ("Site") includes the entire western parcel [1001 Main Street (formerly 979 Main Street)] and extends approximately 40 feet east onto the adjacent eastern parcel (818 Ellicott Street).

Total acreage of the BCP Project Site is 1.72 acres.

Label Note

Total concentrations (ug/L) of benzene, toluene, ethlybenzene and xylenes ("BTEX") for each groundwater monitoring event.

CP-MW-4	
76.8	September 2013
433	March 2014
317	May 2014
1,439	March 2015
2,281	June 2015
4,162	August 2015
3,080	December 2015
4,191	January 2016
3,650	March 2016
3,318	June 2016
2,232	October 2016
3,205	December 2016
3,387	January 2017
2,613	May 2017
64	July 2017
99	November 2017
45	August 2018

Notes

305

8.7

- 1) Elevations from New York State Erie County LiDAR Dataset, 2005, NAD 88.
- 2) Coordinate System: NAD 1983 StatePlane NY West FIPS 3103 Projection: Transverse Mercator

Datum: North American 1983

Units: Foot US

3) Survey data from McIntosh & McIntosh P.C. "Topographical Map of Part of Lot-29, TWP-11, R.-8, Holland Purchase" Job No. 7669-B(2) September 24, 2008.

November 2018

July 2019

634.7 December 2019

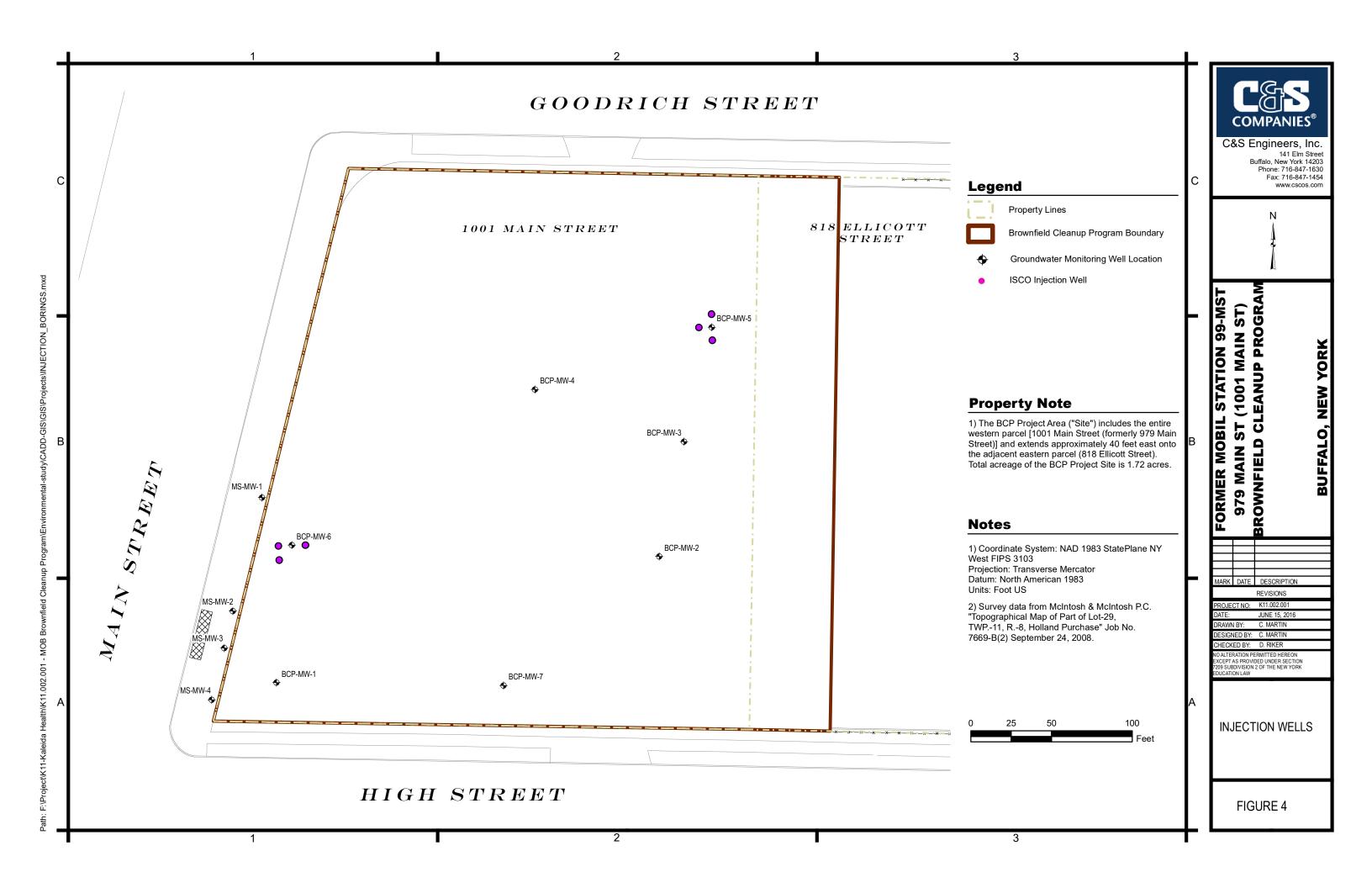
C&S Engineers, Inc.

141 Elm Street Buffalo, New York 14203 Phone: 716-847-1630 Fax: 716-847-1454 www.cscos.com

ST) 979 MAIN ST (1001 MAIN

BUFFALO, NEW YORK

99-MST


STATION

ORMER MOBIL

K11.002.001 December 2019 R. BACKERT C. MARTIN D. RIKER

HISTORIC BTEX **CONCENTRATIONS**

FIGURE 3

TABLES

			2000																		2001
		Sample Name	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1
		Date Collected	9/20/2013	3/19/2014	5/22/2014	3/11/2015	6/17/2015	8/3/2014	12/15/2015	3/22/2016	6/3/2016	10/25/2016	12/8/2016	1/20/2017	5/17/2017	7/5/2017	11/2/2017	8/16/2018	11/29/2018	7/30/2019	12/12/2019
		Matrix	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG
		Unit	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
NYSDEC Ambient Water Quality	Standards & G	uidance Values																			
Volatile Organic Compound	Surface Water	Groundwater																			
1,2-DICHLOROBENZENE	3	3	ND	ND	ND			ND		ND										ND	
1,2-DICHLOROETHANE	0.6	0.6	ND	ND	ND			ND		ND										.15 J	
1,2-DICHLOROPROPANE	1	1	ND	ND	ND			ND		ND											
1,3-DICHLOROBENZENE	3	3	ND	ND	ND			ND		ND										ND	
2-HEXANONE	50	50	ND	ND	ND		ND	ND	3.5	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND
ACETONE	50	50	ND	ND	ND		ND	ND	ND	ND	ND	ND			ND	5.1	ND	ND	1.8J	2.4 J	63417
BENZENE	1	1	ND	ND	ND		35	39	5.7	1.4	0.72	ND			ND	ND	0.33	ND	ND	ND	ND
DIBROMOCHLOROMETHANE	50	50	ND	ND	ND			ND		ND		ND				ND	ND	ND	ND	ND	ND
DICHLORODIFLUOROMETHANE	5	5	ND	ND	ND			ND		ND		ND				ND	ND	ND	ND	ND	ND
ETHYLBENZENE	5	5	ND	ND	ND		2	1.5	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND
ISOPROPYLBENZENE (CUMENE)	5	5	ND	ND	ND		1.3	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND
METHYL ETHYL KETONE (2-BUTANONE)	50	50	ND	ND	ND		ND	45	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND
METHYLENE CHLORIDE	5	5	ND	ND	ND		ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND
TOLUENE	5	5	ND	ND	ND		19	38	0.55	ND	ND	ND			ND	ND	1.1	ND	ND	ND	ND
TRICHLOROETHYLENE (TCE)	5	5	ND	ND	ND		ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND
1,1,2-TRICHLOROETHANE	1	1	ND	ND	ND		ND	ND	ND	0.33 J	ND	ND			ND	ND	ND	ND	ND	ND	ND
XYLENES, TOTAL	5	5	ND	ND	ND		6.4	4.2	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND
NAPHTHALENE	10	10	ND	ND	ND		ND	ND	ND	0.33 J	ND	ND			ND	ND	ND	ND	4.3	ND	ND
No Standard																					
CARBON DISULFIDE			ND	ND	0.94		ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND
CYCLOHEXANE			ND	ND	ND		35	59	61	51	72	ND			ND	ND	ND	ND	ND	ND	ND
METHYL ISOBUTYL KETONE			ND	ND	ND		ND	13	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND
METHYLCYCLOHEXANE			ND	ND	0.47		3.2	17	15	11	ND	ND			ND	ND	ND	1.5	.88J	ND	ND
Total VOCs			0	0	1.41	-	101.90	216.70	85.75	63.40	72.72	0			-	5.1	1.4	1.5	6.98	2.55	1.7
Total BTEX			0	0	0		62	83	6	1.4	0.7	0			0.0	0	0	0	0	0	0
Non-Standard VOC List																					
1,3,5-TRIMETHYLBENZENE	5	5														ND	ND		ND		ND
1,2,4,5-TETRAMETHYLBENZENE	5	5														ND	ND		ND		ND
1,2,4-TRIMETHYLBENZENE	5	5														ND	ND		ND		ND
SEC-BUTYLBENZENE	5	5														ND	ND		ND		ND
N-PROPYLBENZENE	5	5														ND	ND		ND		ND
N-BUTYLBENZENE	5	5														ND	ND		ND		ND
P-ISOPROPYLTOLUENE																ND	ND		ND		ND
1,4-DIETHYLBENZENE																ND	ND		ND		ND
· · · · · · · · · · · · · · · · · · ·																					

Notes:

Not Sampled

1) Blank space = analyte concentration not reported

2) BCP MW-2 was dry and not sampled

3) For the March 11, 2015 monitoring event well MW-1, MW-5, MW-6 and MW-7

were dry or not enough water was inside the well for a representative sample.

Table 1 - Groundwater Analytical Results Summary of Detected Compounds Former Mobil Station 99-MST 979 Main Street (1001 Main Street) Brownfield Cleanup

		Sample Name	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3
		Date Collected	9/20/2013	3/19/2014	5/22/2014	3/11/2015	6/17/2015	8/3/2015	12/15/2015	1/27/2015	3/22/2016	6/3/2016	10/25/2016	12/8/2016	1/20/2017	5/17/2017	7/5/2017	11/2/2017	8/16/2018	11/29/2018	7/30/2019	12/12/2019
		Matrix	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG
		Unit	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
NYSDEC Ambient Water Quality	y Standards & G	uidance Values																				
Volatile Organic Compound	Surface Water	Groundwater																				
1,2-DICHLOROBENZENE	3	3	ND	ND	ND																	
1,2-DICHLOROETHANE	0.6	0.6	ND	ND	ND																	
1,2-DICHLOROPROPANE	1	1	ND	ND	ND																	
1,3-DICHLOROBENZENE	3	3	ND	ND	ND																	
2-HEXANONE	50	50	ND	ND	ND	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	8	ND	ND	ND	ND	ND
ACETONE	50	50	ND	98	ND	17	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	166	ND	2.3	24.0	2.1 J	ND
BENZENE	1	1	6,600	4,500	4,700	3,700	4,300	4,100	2,100	2,200	1,900	3,100	1,390	635	363	451	3	364	ND	ND	ND	0.2J
DIBROMOCHLOROMETHANE	50	50	ND	ND	ND		ND		ND		ND		ND		ND		ND		ND	ND	ND	ND
DICHLORODIFLUOROMETHANE	5	5	ND	ND	ND		ND		ND		ND		ND		ND		ND		ND	ND	ND	ND
ETHYLBENZENE	5	5	1,200	1,600	1,500	1,600	1,500	1,700	1,400	1,600	1,600	610	194	899	517	197	2.4	384	ND	ND	ND	1.1 J
ISOPROPYLBENZENE (CUMENE)	5	5	ND	37	ND	32	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	8.7	ND	ND	ND	ND
METHYL ETHYL KETONE (2-BUTANONE)	50	50	ND	71	ND	6.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	201	51.4	51.4	ND	ND	ND	ND
METHYLENE CHLORIDE	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	35	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOLUENE	5	5	110	150	150	110	110	130	100	110	110	67	39.4	74.5	38.4	22.6	1.6	34.8	ND	ND	ND	ND
TRICHLOROETHYLENE (TCE)	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND
1,1,2-TRICHLOROETHANE	1	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
XYLENES, TOTAL	5	5	3,700	3,600	3,200	4200	4000	3900	2200	2600	2200	2100	806.3	1430	949	639	7.1	930.0	ND	ND	ND	1.3 J
NAPHTHALENE	10	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	14	357	ND	ND	ND	ND
No Standard																						
CARBON DISULFIDE			ND	ND	ND	0.31	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CYCLOHEXANE			120	320	270	390	330	210	100	93	110	170	ND	ND	ND	ND	ND	60.5	ND	ND	ND	ND
METHYL ISOBUTYL KETONE			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
METHYLCYCLOHEXANE			ND	130	150	120	160	96	34	33	36 J	170	47.7	ND	ND	29.5	ND	33.4	ND	ND	ND	ND
Total VOCs			11,730	10,506	9,970	10,179	10,400	10,136	5,934	6,636	5,920	6,252	2,477	3,038	1,867	1,540	254	2,224	2.3	24.0	2.1	2.0
Total BTEX			11,610	9,850	9,550	9,610	9,910	9,830	5,800	6,510	5,810	5,877	2,430	3,038	1,867	1,310	14	1,713	-	-	-	2
Non-Standard VOC List																						
1,3,5-TRIMETHYLBENZENE	5	5															ND	133	133	ND	ND	ND
1,2,4,5-TETRAMETHYLBENZENE	5	5															ND	ND	ND	ND	ND	ND
1,2,4-TRIMETHYLBENZENE	5	5															4.9	737	737	ND	ND	1.2 J
SEC-BUTYLBENZENE	5	5															ND	ND	ND	ND	ND	ND
N-PROPYLBENZENE	5	5															ND	ND	ND	ND	ND	ND
N-BUTYLBENZENE	5	5															ND	ND	ND	ND	ND	ND
P-ISOPROPYLTOLUENE																	ND	ND	ND	ND	ND	ND
1.4-DIETHYLBENZENE																	ND	ND	ND	ND	ND	ND

Notes:

Not Sampled

1) Blank space = analyte concentration not reported

2) BCP MW-2 was dry and not sampled

3) For the March 11, 2015 monitoring event well MW-1, MW-5, MW-6 and MW-7

were dry or not enough water was inside the well for a representative sample.

		Sample Name	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4
		Date Collected	9/20/2013	3/19/2014	5/22/2014	3/11/2015	6/17/2015	8/3/2015	12/15/2015	1/27/2016	3/22/2016	6/3/2016	10/25/2016	12/8/2016	1/20/2017	5/17/2017	7/5/2017	11/17/2017	8/16/2018	11/29/2018	7/30/2019	12/12/2019
		Matrix	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG
		Unit	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
NYSDEC Ambient Water Quality	Standards & G	Guidance Values																				
Volatile Organic Compound	Surface Water	Groundwater																				
1,2-DICHLOROBENZENE	3	3	ND	ND	ND																	
1,2-DICHLOROETHANE	0.6	0.6	ND	ND	ND																	
1,2-DICHLOROPROPANE	1	1	ND	ND	ND																	1.0 J
1,3-DICHLOROBENZENE	3	3	ND	ND	ND																	
2-HEXANONE	50	50	ND	ND	ND	1.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ACETONE	50	50	10	250	170	67	ND	210	ND	ND	ND	ND	ND	ND	ND	ND	38.2	10	1.6	ND	ND	ND
BENZENE	1	1	42	29	15	26	24	242	ND	21	ND	21	9.57	12.8	10.2	10.8	1.3	97.0	45.0	36.0	6.7	6.4
DIBROMOCHLOROMETHANE	50	50	ND	ND	ND			_														ND
DICHLORODIFLUOROMETHANE	5	5	ND	ND	ND																	ND
ETHYLBENZENE	5	5	4.7	34	32	560	1,000	680	1,100	1300	1,400	1400	1,000	1170	1,300	1220	28	1.8	ND	170	2.0 J	460
ISOPROPYLBENZENE (CUMENE)	5	5	ND	ND	ND	9.8	15.0	26	ND	ND	ND	ND	19	30.3	28.7	ND	2.3	ND	ND	8.3	1.3 J	19
METHYL ETHYL KETONE (2-BUTANONE)	50	50	ND	ND	ND	ND	8.50	ND	ND	ND	ND	ND	ND	ND	ND	ND	6.9	ND	ND	ND	ND	ND
METHYLENE CHLORIDE	5	5	ND	ND	1 J	ND	ND	ND	ND	52	ND	42	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOLUENE	5	5	1.1	190	110	53	57	140	180	270	150	97	62.4	130	133	92.2	9.8	ND	ND	15	ND	11
TRICHLOROETHYLENE (TCE)	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND				ND
1,1,2-TRICHLOROETHANE	1	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
XYLENES, TOTAL	5	5	29	180	160	800	1,200	3100	1,800	2600	2,100	1800	1,160	1892	1,944	1289.7	24.5	ND	ND	83.6	ND	157.3
NAPHTHALENE	10	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.9	ND	ND	36	ND	99
No Standard																						
CARBON DISULFIDE			ND	ND	1.9 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CYCLOHEXANE			8.2	11	7	170	170	110	160	220	250	340	189	259	276	235	276	5.5	ND	24	.41 J	60
METHYL ISOBUTYL KETONE			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
METHYLCYCLOHEXANE			7.5	3.7	3.1	87	92	69	86	100	110	140	85.1	110	123	99.7	123	2.4	0.47	8.9	ND	8
Total VOCs			102.5	697.7	497.1	1,774.5	2,566.5	4,577.0	3,326.0	4,563.0	4,010.0	3,840.0	2,525.5	3,604.1	3,814.9	2,947.4	511.9	116.7	47.1	381.8	10.4	821.7
Total BTEX			76.8	433	317	1,439	2,281	4,162	3,080	4,191	3,650	3,318	2,232	3,205	3,387	2,613	64	99	45	304.6	8.7	634.
Non-Standard VOC List																						
1,3,5-TRIMETHYLBENZENE	5	5															2	ND	ND	1.4 J	ND	ND
1,2,4,5-TETRAMETHYLBENZENE	5	5															1.1	ND	ND	ND	ND	ND
1,2,4-TRIMETHYLBENZENE	5	5															1.1	ND	ND	150	ND	470
SEC-BUTYLBENZENE	5	5															ND	ND	ND	1.5 J	ND	2.9 J
N-PROPYLBENZENE	5	5															2.3	ND	ND	37	ND	86
N-BUTYLBENZENE	5	5															1.7	ND	ND	2.2 J	ND	4.1 J
P-ISOPROPYLTOLUENE																	ND	ND	ND	ND	ND	ND
1,4-DIETHYLBENZENE																	ND	ND	ND	ND	ND	ND

Notes

Not Sampled

1) Blank space = analyte concentration not reported

2) BCP MW-2 was dry and not sampled

3) For the March 11, 2015 monitoring event well MW-1, MW-5, MW-6 and MW-7 $\,$

were dry or not enough water was inside the well for a representative sample.

Table 1 - Groundwater Analytical Results Summary of Detected Compounds Former Mobil Station 99-MST 979 Main Street (1001 Main Street) Brownfield Cleanup

		Sample Name	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5	MW-5
		Date Collected	9/20/2013	3/19/2014	5/22/2014	3/11/2015	6/17/2015	8/3/2015	12/15/2015	1/27/2016	3/22/2016	6/3/2016	10/25/2016	12/8/2016	1/20/2017	5/17/2017	7/5/2017	11/2/2017	8/16/2018	11/29/2018	7/30/2019	12/12/2019
		Matrix	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG
		Unit	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
NYSDEC Ambient Water Quality	Standards & Gu	uidance Values																				
Volatile Organic Compound	Surface Water	Groundwater																				
1,2-DICHLOROBENZENE	3	3	ND	ND	ND																	ND
1,2-DICHLOROETHANE	0.6	0.6	ND	ND	ND																	ND
1,2-DICHLOROPROPANE	1	1	ND	ND	ND																	ND
1,3-DICHLOROBENZENE	3	3	ND	ND	ND																	ND
2-HEXANONE	50	50	11	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		2.7 J	ND
ACETONE	50	50	ND	520	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	15.3	ND	41	69 J	44	97 J
BENZENE	1	1	5,600	4,800	4,900		3,700	4,100	1,800	1,800	1,700	1,600	899	949	682	428	574	283	86	26	3.3	8.9 J
DIBROMOCHLOROMETHANE	50	50	ND	ND	ND		ND		ND		ND		ND		ND		ND		ND		ND	ND
DICHLORODIFLUOROMETHANE	5	5	ND	ND	ND		ND		ND		ND		ND		ND		ND		ND		ND	ND
ETHYLBENZENE	5	5	1,900	1,600	1,600		2,800	2,600	1,600	1,900	2,200	2,200	1,490	1,450	2,070	584	534	1,660	1,500	810	520 E	1200
ISOPROPYLBENZENE (CUMENE)	5	5	28	29	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	13.6	ND	20	16 J	23	24 J
METHYL ETHYL KETONE (2-BUTANONE)	50	50	10	350	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.1	ND	ND		ND	ND
METHYLENE CHLORIDE	5	5	ND	ND	ND		ND	ND	ND	ND	77	96	ND	ND	ND	ND	ND	ND	ND		ND	ND
TOLUENE	5	5	170	220	310		290	290	70	80	88	77	68.5	84.9	86.6	ND	36.2	82.0	66.0	39 J	38.0	42 J
TRICHLOROETHYLENE (TCE)	5	5	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		.22 J	ND
1,1,2-TRICHLOROETHANE	1	1	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND
XYLENES, TOTAL	5	5	10,000	6,800	8,300		9,100	10,000	2,600	3,100	3,300	2,800	2,271.3	2,152.2	3,394.7	3,000.7	4,520.0	5,610.0	5,461.0	4,066.0	1879 E	3373
NAPHTHALENE	10	10	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	730	1,030	620	1,100		1100
No Standard																						
CARBON DISULFIDE			ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.1	ND	ND		1.2 J	ND
CYCLOHEXANE			230	340	240		430	260	230	250	280	430	198	148	257	ND	257	238	150	130 J	140	220
METHYL ISOBUTYL KETONE			23	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		3.0 J	ND
METHYLCYCLOHEXANE			100	170	150		190	130	92	100	100	140	67.5	58.4	92.8	49	92.8	106	70	82 J	65	96
Total VOCs			18,072	14,829	15,500	-	16,510	17,380	6,392	7,230	7,745	7,343	4,994	4,843	6,583	4,062	6,780	9,009	8,014	6,338	2,718.72	6,160.9
Total BTEX			17,670	13,420	15,110	-	15,890	16,990	6,070	6,880	7,288	6,677	4,729	4,636	6,233	4,013	5,664	7,635	7,113	4,941	2,440.30	4,623.9
Non-Standard VOC List																						
1,3,5-TRIMETHYLBENZENE	5	5															823	ND	ND	630	ND	480
1,2,4,5-TETRAMETHYLBENZENE	5	5															135	ND	ND		ND	ND
1,2,4-TRIMETHYLBENZENE	5	5															2,280	2,490	2,400	2,300	ND	2200
SEC-BUTYLBENZENE	5	5															3.2	ND	ND		ND	ND
N-PROPYLBENZENE	5	5															34.8	ND	110	69	ND	110
N-BUTYLBENZENE	5	5															43.3	ND	ND		ND	4.1 J
P-ISOPROPYLTOLUENE																	5.7	ND	ND		ND	ND
1,4-DIETHYLBENZENE																	347	ND	ND		ND	ND

Notes:

Not Sampled

1) Blank space = analyte concentration not reported

2) BCP MW-2 was dry and not sampled

3) For the March 11, 2015 monitoring event well MW-1, MW-5, MW-6 and MW-7

were dry or not enough water was inside the well for a representative sample. \\

) MV 6) MY 6) MY 6) my c) My c) my c) my c) my c	NAME OF	Varia e) my s) MY 6) my c) my c) MY 6) MY c) my c) my c) MY 6) MY 6
		Sample Name	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6	MW-6
		Date Collected	9/20/2013	3/19/2014	5/22/2014	3/11/2015	6/17/2015	8/3/2015	12/14/2015	1/27/2016	3/22/2016	6/3/2016	10/25/2016	12/8/2016	1/20/2017	5/17/2017	7/5/2017	11/2/2017	8/16/2018	11/29/2018	7/30/2019	12/12/2019
		Matrix	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG
		Unit	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
NYSDEC Ambient Water Quality S	Standards & G	uidance Values																				
Volatile Organic Compound	Surface Water	Groundwater																				
1,2-DICHLOROBENZENE	3	3	ND	ND	ND																ND	ND
1,2-DICHLOROETHANE	0.6	0.6	ND	ND	ND																ND	ND
1,2-DICHLOROPROPANE	1	1	ND	ND	ND																ND	.20 J
1,3-DICHLOROBENZENE	3	3	ND	ND	ND																ND	ND
2-HEXANONE	50	50	ND	ND	ND		190	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ACETONE	50	50	ND	ND	ND		480	340	ND	ND	ND	ND	ND	ND	ND	ND	102	ND	17	4.5 J	ND	6.4
BENZENE	1	1	190	33	16		470	890	250	230	200	120	302	168	200	113	131	774	ND	0.82	ND	4
DIBROMOCHLOROMETHANE	50	50	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DICHLORODIFLUOROMETHANE	5	5	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ETHYLBENZENE	5	5	130	20	31		36	210	22	44	67	50	163	169	173	175	85.5	154.0	3.3	1.7 J	ND	2.4 J
ISOPROPYLBENZENE (CUMENE)	5	5	4.4	ND	1.9 J			ND	ND	ND	ND	ND	ND	ND	ND	ND	2.5	ND	1.3	ND	ND	.90 J
METHYL ETHYL KETONE (2-BUTANONE)	50	50	ND	ND	ND		110	ND	ND	ND	ND	ND	ND	ND	ND	ND	19.6	ND	ND	ND	ND	ND
METHYLENE CHLORIDE	5	5	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOLUENE	5	5	810	42	79		1,000	1,900	85	120	78	120	130	255	351	147	22.5	2,970.0	ND	ND	ND	6.7
TRICHLOROETHYLENE (TCE)	5	5	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND
1,1,2-TRICHLOROETHANE	1	1	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
XYLENES, TOTAL	5	5	750	85	150		740	1,100	140	190	130	210	393	360	451	190.7	438	1,500	ND	2 J	ND	8
NAPHTHALENE	10	10	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	86.6	ND	1	.8 Ј	ND	4.8
No Standard																						
CARBON DISULFIDE			ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CYCLOHEXANE			68	ND	130		270	41	62	110	110	91	81.5	ND	ND	ND	ND	84	7.4	3.7 J	.60 J	6.6 J
METHYL ISOBUTYL KETONE			ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
METHYLCYCLOHEXANE			46	16	18		170	27	24	21	10	24	32.2	30.2	36.9	35.3	36.9	44	4.3	3.8 J	ND	4.5 J
Total VOCs			1,998.4	196	424	-	3,466	4,508	583	715	595	615	1,101	983	1,212	661	925	5,526	35	17.32	0.6	44.5
Total BTEX			1,880	180	276	-	2,246	4,100	497	584	475	500	988	952	1,175	626	677	5,398	3	4.52	-	21.10
Non-Standard VOC List																						
1,3,5-TRIMETHYLBENZENE	5	5															74.3	ND	ND	5.1	ND	1.4 J
1,2,4,5-TETRAMETHYLBENZENE	5	5															14.3	ND	ND	ND	ND	ND
1,2,4-TRIMETHYLBENZENE	5	5															134	ND	ND	ND	ND	2.2 J
SEC-BUTYLBENZENE	5	5																		ND	ND	0.88 J
N-PROPYLBENZENE	5	5															11.3	ND	4.7	1.7 J	ND	1.3 J
N-BUTYLBENZENE	5	5															4.6	ND	0.72	ND	ND	4.1 J
P-ISOPROPYLTOLUENE																	1.6	1.6	1.6	ND	ND	ND
1,4-DIETHYLBENZENE																	32.9	32.9	32.9	ND	ND	ND

Notes

Not Sampled

1) Blank space = analyte concentration not reported

2) BCP MW-2 was dry and not sampled

3) For the March 11, 2015 monitoring event well MW-1, MW-5, MW-6 and MW-7

were dry or not enough water was inside the well for a representative sample. \\

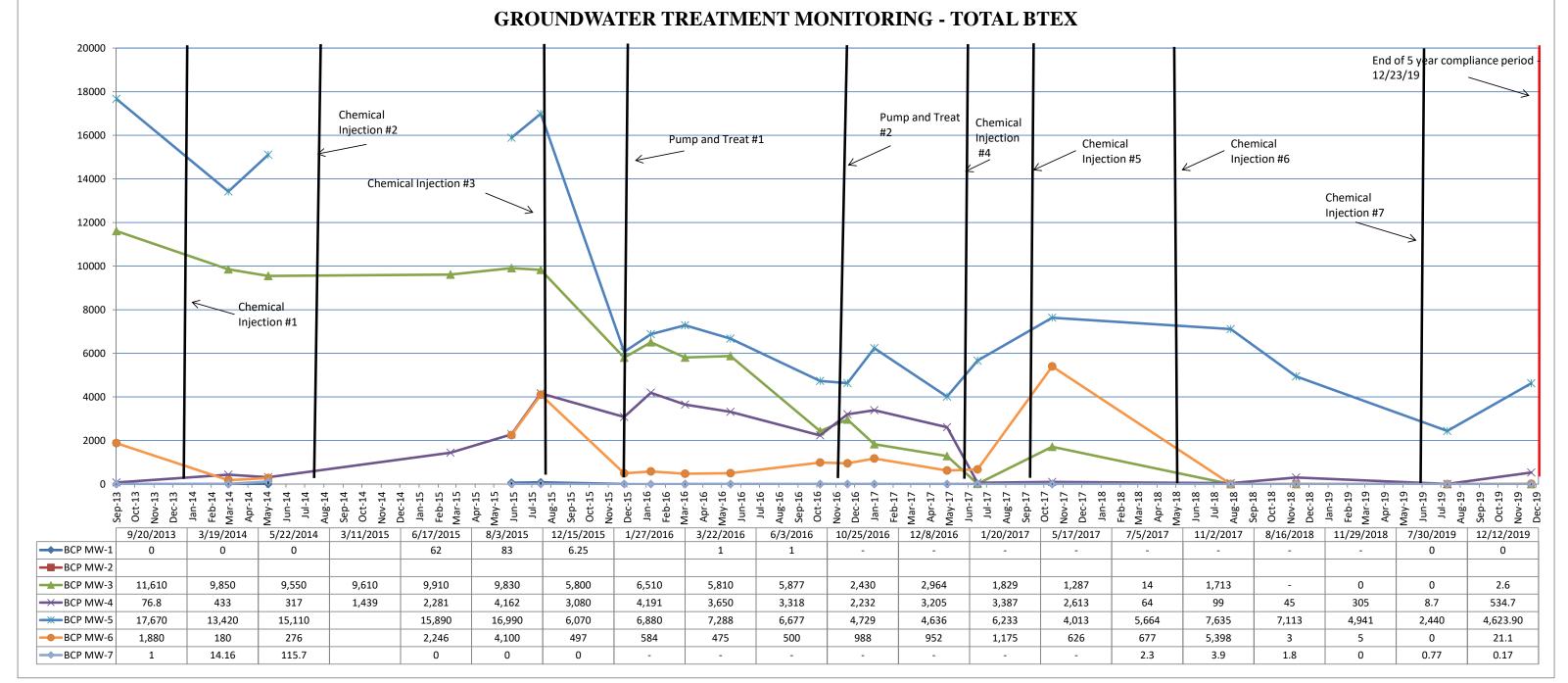
		Sample Name	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7
		Date Collected	9/20/2013	3/19/2014	5/22/2014	3/11/2015	6/17/2015	8/3/2015	12/15/2015	3/22/2016	6/3/2016	10/25/2016	12/8/2016	1/20/2017	5/17/2017	7/5/2017	11/2/2017	8/16/2018	11/29/2018	7/30/2019	12/12/2019
		Matrix	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG
		Unit	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
NYSDEC Ambient Water Quality	Standards & G	uidance Values																			
Volatile Organic Compound	Surface Water	Groundwater																			
1,2-DICHLOROBENZENE	3	3	ND	ND	ND															ND	ND
1,2-DICHLOROETHANE	0.6	0.6	ND	ND	ND															ND	ND
1,2-DICHLOROPROPANE	1	1	ND	ND	ND															ND	ND
1,3-DICHLOROBENZENE	3	3	ND	ND	ND															ND	ND
2-HEXANONE	50	50	ND	ND	4.8		ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND
ACETONE	50	50	ND	3	ND		ND	ND	ND	ND	ND	ND			ND	ND	ND	1.5	ND	4.2 J	ND
BENZENE	1	1	0.51	8.8	14		ND	ND	ND	ND	ND	ND			ND	2.3	2.81	1.8	.18 J	.77	.17 J
DIBROMOCHLOROMETHANE	50	50	ND	ND	ND		ND		ND		ND				ND		ND			ND	ND
DICHLORODIFLUOROMETHANE	5	5	ND	ND	ND		ND		ND		ND				ND		ND			ND	ND
ETHYLBENZENE	5	5	ND	ND	3		ND	ND	ND	ND	ND	ND			ND	ND	0	ND	ND	ND	ND
ISOPROPYLBENZENE (CUMENE)	5	5	ND	ND	ND		ND	ND	ND	ND	ND	ND			ND	ND	0.45	ND	ND	ND	ND
METHYL ETHYL KETONE (2-BUTANONE)	50	50	ND	ND	ND		ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND
METHYLENE CHLORIDE	5	5	ND	ND	ND		ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND
TOLUENE	5	5	ND	0.56	4.7		ND	ND	ND	ND	ND	ND			ND	ND	1.1	ND	ND	ND	ND
TRICHLOROETHYLENE (TCE)	5	5	ND	ND	ND		ND		ND		ND				ND		ND			ND	ND
1,1,2-TRICHLOROETHANE	1	1																		ND	ND
XYLENES, TOTAL	5	5	0.96	4.8	94		ND	ND	ND	0.99 J	ND	ND			ND	ND	ND	ND	ND	ND	ND
NAPHTHALENE	10	10																1.50	.86 J	ND	ND
No Standard																					
CARBON DISULFIDE			ND	ND	0.97		ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND
CYCLOHEXANE			ND	4.3	9.6		ND	ND	0.71	ND	ND	ND			ND	ND	0.99	0.66	ND	ND	ND
METHYL ISOBUTYL KETONE			ND	ND	ND		ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND
METHYLCYCLOHEXANE			ND	1.7	5.1		0.18	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND	ND
Total VOCs			1.47	23.16	136.17	-	0.18	-	0.71	-	-	-	-	-	-	2.30	5.35	3.66	1.04	4.97	0.17
Total BTEX			0.51	14.16	115.7	-	-	-	-	-	-	-	-	-	-	2.3	3.9	1.8	0.18	0.77	0.17
Non-Standard VOC List																					
1,3,5-TRIMETHYLBENZENE	5	5														ND	ND	3.2		3.2	ND
1,2,4,5-TETRAMETHYLBENZENE	5	5														ND	ND	ND	ND	ND	ND
1,2,4-TRIMETHYLBENZENE	5	5														ND	ND	ND	ND	ND	ND
SEC-BUTYLBENZENE	5	5																			ND
N-PROPYLBENZENE	5	5																			ND
N-BUTYLBENZENE	5	5																			ND
P-ISOPROPYLTOLUENE																					ND
1,4-DIETHYLBENZENE																					ND

Notes:

Not Sampled

1) Blank space = analyte concentration not reported

2) BCP MW-2 was dry and not sampled


3) For the March 11, 2015 monitoring event well MW-1, MW-5, MW-6 and MW-7 $\,$

were dry or not enough water was inside the well for a representative sample. \\

GRAPHS

Former Mobil Station 99-MST 979 Main Street (1001 Main Street) Conventus Groundwater Remediation

APPENDICES

APPENDIX A

LABORATORY ANALYTICAL RESULTS

C&S Engineers, Inc. 141 Elm Street Suite 100 Buffalo, New York 14203 Phone: 716-847-1630 www.cscos.com

Well Casing Unit Volume

(gal/l.f.)

11/4" = 0.08 2" = 0.17 3" = 0.38 4" = 0.66

6" = 1.5 8" = 2.6

Well Sampling Field **Data Sheet**

Client Name:	KALKEDA	HEALTH		
Site Name:	CONVENT	L8"	,	
Project No.:	N46			
Field Staff:	RICH BA	CHEUT		

WELL DATA

					•			
Date :		7/30/9	7/30/19					
Well Number		BUPMUOL	BCAMWOS	f				
Diameter (inches)		811	211					
Total Sounded Depth (feet)		15Ft	1557.					
Static Water, Level (feet)		loSFt.	7.8 FT.					
H ₂ O Column (feet)			,					
Pump Intake (feet)				,				
Well Volume (galions)							ľ	
Amount to Evacuate (gallons)	100000000000000000000000000000000000000	2 cal	Zzel					
Amount Evacuated (gallons)		2 Eul	2 zul					

FIELD READINGS

				D INEADII					
Date	Stabilization	7/30/19	7/30/2						
Time	Criteria	1:00	2.80						
pH (Std. Units)	+/-0.1	1052	9.86						
Conductivity (mS/cm)	3%	149	28.2						
Turbidity (NTU)	10%	حينه	estates.						
D.O. (mg/L)	10%	5.53	2.60		,				
Temperature (°C) (°F)	3%	14.000	15.58°C						
ORP ³ (mV)	+/-10 mv	08	46						
Appearance	The second second	CLEAR	CLEAR						
Free Product (Yes/No)		465	MEASI SON	country	Ţ				
Odor		NOWE.	Sollin Ohora	PASOV					
Comments	* Horibo	e backe	pk. riuwl	re Low	Vnedo,	le fo	lorinec	t this	bdety.

C = Clear T = Turbid ST = Semi Turbid VT = Very Turbid

C&S Engineers, Inc. ^h
141 Elm Street Suite 100
Buffalo, New York 14203
Phone: 716-847-1630
www.cscos.com

Well Casing Unit Volume

(gal/l.f.)

Well Sampling Field Data Sheet

Client Name	KACETSA HEACTH	
	WHE CONVENEUS	
Project No.:		
Field Staff:		

WELL DATA

			• • • • • • • • • • • • • • • • • • • •	,, _,,,,	•				
Date		7/29/19	7/29/1	7/28/19	7/24/5	7/30/19	7/30/19	7/30/19	7/30/19
Well Number .		MK-NUOL	MS-NWOZ	MS. HWO	ns-Awot	BCPHWUL	BEPROG	Bernock	BUMWOS
Diameter (inches)		2"	24	501	211	20	25	211	811
Total Sounded Depth (feet)		3681.	36 PT.	40 Pt.	40 Ft.	15 Pt.	15 F4 v	15 82	15F4
Static Water Level (feet)		10.98t.	28,5P4.	19.284.	29.4841	6.48r.	9.5 Ft.	6.8Ft.	7.274;
H ₂ O Column (feet)							,		
Pump Intake (feet)								'	
Well Volume (gallons)							, a		
Amount to Evacuate (gallons)		200	200	1 cal	Zel	259al	2 cal	20al	19al
Amount Evacuated (gallons)	- Copp. Selfac.	Zcol	Zrul	Flal	28ils	Bul.	2 gul	29al	Kul
		1	0	S. Carrier	,		0	U	0

FIELD READINGS

Date	Stabilization	7/29/1	57/24R	7/14/19	7/24/9	7/30/19	7/30/19	7/30/19	7/20/19
Time	Criteria	10:30	11:36	12:30	145	10:00	10:48	11:20	12:05
pH (Std. Units)	+/-0.1	7.17	10.50	11.50	10.80	8.09	7.62	7.103	8103
Conductivity (mS/cm)	3%	5.63	1705	30.3	14.8	8,02	4.30	7.02	10.9
Turbidity (NTU)	10%	aggreen.	, man) James o			CALCULAR.	reason .	e>
D.O. (mg/L)	10%	9.10	27.52	24.61	50.00	1.85	2.23	2.14	835
Temperature (°C) (°F)	3%	14.07%	1449°C	20.3106	15 8100	12.8000	13.8200	14.2900	
ORP ³ (mV)	+/-10 mv	130	8/	48	69	-104	96	-1/5	74
Appearance		CLEAR	ST	57	CLICAN	CUCAR	CLEAR	CLEAR	CLEAR
Free Product (Yes/No)		46	YES	YELS.	YES	YES	465	YES	JES.
Odor .		NONE	NINE	NONE	JONE.	NUNE		work:	WHE
Comments	* BATTE			S3 TV	ubidi	ty was		oliect	

C = Clear T = Turbid ST = Semi Turbid VT = Very Turbid

ANALYTICAL REPORT

Lab Number: L1933935

Client: C&S Companies

141 Elm Street, Suite 100

Buffalo, NY 14203

K11.002.001

ATTN: Cody Martin
Phone: (716) 847-1630

Project Name: CONVENTUS

Report Date: 08/12/19

Project Number:

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: CONVENTUS **Project Number:** K11.002.001

Lab Number: L1933935 **Report Date:** 08/12/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1933935-01	MS-MW01072919	WATER	1001 MAIN ST.	07/29/19 10:30	07/31/19
L1933935-02	MS-MW02072919	WATER	1001 MAIN ST.	07/29/19 11:30	07/31/19
L1933935-03	MS-MW03072919	WATER	1001 MAIN ST.	07/29/19 12:30	07/31/19
L1933935-04	MS-MW04072919	WATER	1001 MAIN ST.	07/29/19 13:45	07/31/19
L1933935-05	BCP-MW01073019	WATER	1001 MAIN ST.	07/30/19 10:00	07/31/19
L1933935-06	BCP-MW07073019	WATER	1001 MAIN ST.	07/30/19 10:45	07/31/19
L1933935-07	BCP-MW04073019	WATER	1001 MAIN ST.	07/30/19 11:20	07/31/19
L1933935-08	BCP-MW03073019	WATER	1001 MAIN ST.	07/30/19 12:05	07/31/19
L1933935-09	BCP-MW06073019	WATER	1001 MAIN ST.	07/30/19 13:00	07/31/19
L1933935-10	BCP-MW05073019	WATER	1001 MAIN ST.	07/30/19 14:00	07/31/19
L1933935-11	TRIP BLANKS	WATER	1001 MAIN ST.	07/30/19 15:00	07/31/19

Project Name:CONVENTUSLab Number:L1933935Project Number:K11.002.001Report Date:08/12/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.								

Serial_No:08121919:22

Project Name:CONVENTUSLab Number:L1933935Project Number:K11.002.001Report Date:08/12/19

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L1933935-04, -08, -09, and -10 were received in the proper acid-preserved containers; however, upon analysis, the pH was determined to be greater than 2, and thus the method required holding time was exceeded.

L1933935-10: Differences were noted between the results of the analyses which have been attributed to vial discrepancies. Further re-analysis could not be performed due to the existing vials being compromised.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 08/12/19

(600, Skulow Kelly Stenstrom

ORGANICS

VOLATILES

Project Name: CONVENTUS

Project Number: K11.002.001

Lab Number: L1933935

Report Date: 08/12/19

SAMPLE RESULTS

Lab ID: L1933935-01 Date Collected: 07/29/19 10:30

Client ID: Date Received: 07/31/19 MS-MW01072919 Sample Location: Field Prep: Not Specified 1001 MAIN ST.

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 08/09/19 17:30

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	oorough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	0.24	J	ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

Project Name: CONVENTUS Lab Number: L1933935

Project Number: K11.002.001 **Report Date:** 08/12/19

SAMPLE RESULTS

Lab ID: L1933935-01 Date Collected: 07/29/19 10:30

Client ID: MS-MW01072919 Date Received: 07/31/19
Sample Location: 1001 MAIN ST. Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	jh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	3.6	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	130	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	107	70-130	

L1933935

Project Name: Lab Number: CONVENTUS

Report Date:

Project Number: K11.002.001 08/12/19

SAMPLE RESULTS

Lab ID: D Date Collected: 07/29/19 11:30 L1933935-02

Client ID: Date Received: 07/31/19 MS-MW02072919 Sample Location: Field Prep: Not Specified 1001 MAIN ST.

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 08/09/19 18:14

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	oorough Lab						
Methylene chloride	ND		ug/l	25	7.0	10	
1,1-Dichloroethane	ND		ug/l	25	7.0	10	
Chloroform	ND		ug/l	25	7.0	10	
Carbon tetrachloride	ND		ug/l	5.0	1.3	10	
1,2-Dichloropropane	ND		ug/l	10	1.4	10	
Dibromochloromethane	ND		ug/l	5.0	1.5	10	
1,1,2-Trichloroethane	ND		ug/l	15	5.0	10	
Tetrachloroethene	ND		ug/l	5.0	1.8	10	
Chlorobenzene	ND		ug/l	25	7.0	10	
Trichlorofluoromethane	ND		ug/l	25	7.0	10	
1,2-Dichloroethane	ND		ug/l	5.0	1.3	10	
1,1,1-Trichloroethane	ND		ug/l	25	7.0	10	
Bromodichloromethane	ND		ug/l	5.0	1.9	10	
trans-1,3-Dichloropropene	ND		ug/l	5.0	1.6	10	
cis-1,3-Dichloropropene	ND		ug/l	5.0	1.4	10	
Bromoform	ND		ug/l	20	6.5	10	
1,1,2,2-Tetrachloroethane	ND		ug/l	5.0	1.7	10	
Benzene	230		ug/l	5.0	1.6	10	
Toluene	550		ug/l	25	7.0	10	
Ethylbenzene	94		ug/l	25	7.0	10	
Chloromethane	ND		ug/l	25	7.0	10	
Bromomethane	ND		ug/l	25	7.0	10	
Vinyl chloride	ND		ug/l	10	0.71	10	
Chloroethane	ND		ug/l	25	7.0	10	
1,1-Dichloroethene	ND		ug/l	5.0	1.7	10	
trans-1,2-Dichloroethene	ND		ug/l	25	7.0	10	
Trichloroethene	ND		ug/l	5.0	1.8	10	
1,2-Dichlorobenzene	ND		ug/l	25	7.0	10	

Project Name: Lab Number: **CONVENTUS** L1933935

Project Number: Report Date: K11.002.001 08/12/19

SAMPLE RESULTS

Lab ID: D Date Collected: 07/29/19 11:30 L1933935-02

Client ID: Date Received: 07/31/19 MS-MW02072919 Sample Location: Field Prep: 1001 MAIN ST. Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	25	7.0	10
1,4-Dichlorobenzene	ND		ug/l	25	7.0	10
Methyl tert butyl ether	ND		ug/l	25	7.0	10
p/m-Xylene	2000		ug/l	25	7.0	10
o-Xylene	2800		ug/l	25	7.0	10
cis-1,2-Dichloroethene	ND		ug/l	25	7.0	10
Styrene	ND		ug/l	25	7.0	10
Dichlorodifluoromethane	ND		ug/l	50	10.	10
Acetone	170		ug/l	50	15.	10
Carbon disulfide	ND		ug/l	50	10.	10
2-Butanone	ND		ug/l	50	19.	10
4-Methyl-2-pentanone	26	J	ug/l	50	10.	10
2-Hexanone	10	J	ug/l	50	10.	10
Bromochloromethane	ND		ug/l	25	7.0	10
1,2-Dibromoethane	ND		ug/l	20	6.5	10
1,2-Dibromo-3-chloropropane	ND		ug/l	25	7.0	10
Isopropylbenzene	ND		ug/l	25	7.0	10
1,2,3-Trichlorobenzene	ND		ug/l	25	7.0	10
1,2,4-Trichlorobenzene	ND		ug/l	25	7.0	10
Methyl Acetate	ND		ug/l	20	2.3	10
Cyclohexane	150		ug/l	100	2.7	10
1,4-Dioxane	ND		ug/l	2500	610	10
Freon-113	ND		ug/l	25	7.0	10
Methyl cyclohexane	ND		ug/l	100	4.0	10

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	121	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	104	70-130	

Project Name: CONVENTUS Lab Number: L1933935

Project Number: K11.002.001 **Report Date:** 08/12/19

SAMPLE RESULTS

Lab ID: L1933935-03 Date Collected: 07/29/19 12:30

Client ID: MS-MW03072919 Date Received: 07/31/19
Sample Location: 1001 MAIN ST. Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 08/12/19 15:11

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westl	oorough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	2.1	J	ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	0.76		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	1.1		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.18	J	ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	6.8		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	0.28	J	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: CONVENTUS Lab Number: L1933935

Project Number: K11.002.001 **Report Date:** 08/12/19

SAMPLE RESULTS

Lab ID: L1933935-03 Date Collected: 07/29/19 12:30

Client ID: MS-MW03072919 Date Received: 07/31/19
Sample Location: 1001 MAIN ST. Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	gh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	0.73	J	ug/l	2.5	0.70	1
o-Xylene	6.3		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	120		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	3.6	J	ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	8.3	J	ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	1.3	J	ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	111	70-130
Toluene-d8	97	70-130
4-Bromofluorobenzene	97	70-130
Dibromofluoromethane	98	70-130

L1933935

Project Name: CONVENTUS

L1933935-04

MS-MW04072919

1001 MAIN ST.

Project Number: K11.002.001

SAMPLE RESULTS

Report Date: 08/12/19

Lab Number:

Date Collected: 07/29/19 13:45 Date Received: 07/31/19 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 08/09/19 22:33

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	ıgh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	0.96	J	ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	0.48	J	ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	0.66		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	2.5		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	2.5		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	0.45	J	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

MDL

Dilution Factor

Project Name: CONVENTUS Lab Number: L1933935

Project Number: K11.002.001 **Report Date:** 08/12/19

SAMPLE RESULTS

Lab ID: L1933935-04 Date Collected: 07/29/19 13:45

Client ID: MS-MW04072919 Date Received: 07/31/19
Sample Location: 1001 MAIN ST. Field Prep: Not Specified

Qualifier

Units

RL

Result

Sample Depth:

Parameter

i alaliletei	Nosuit	Qualifici	Onito			Dilation Lactor	
Volatile Organics by GC/MS - Westbo	orough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	1.1	J	ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	ND		ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	1.6	J	ug/l	10	0.27	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	117	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	103	70-130	

Project Name: CONVENTUS Lab Number: L1933935

Project Number: K11.002.001 **Report Date:** 08/12/19

SAMPLE RESULTS

Lab ID: L1933935-05 Date Collected: 07/30/19 10:00

Client ID: BCP-MW01073019 Date Received: 07/31/19
Sample Location: 1001 MAIN ST. Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 08/09/19 22:55

1,1-Dichloroethane	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane	Volatile Organics by GC/MS - Westbo	orough Lab					
Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloromethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 trans-1,2-Dichloropropene ND ug/l 0.50	Methylene chloride	ND		ug/l	2.5	0.70	1
Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 0.50 0.18 1 Tetrachloroethane ND ug/l 2.5 0.70 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50	1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
1,2-Dichloropropane ND Ug/l 1.0 0.14 1 1 1 1 1 1 1 1 1	Chloroform	ND		ug/l	2.5	0.70	1
Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 1,1,2-Trichloroethane ND ug/l 0.50 0.18 1 1,1,2-Trichloroethane ND ug/l 0.50 0.18 1 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1	Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,1,2-Trichloroethane	1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Tetrachloroethene ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane 0.15 J ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 Bromodichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.16 1 Bromoform ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1	Dibromochloromethane	ND		ug/l	0.50	0.15	1
Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane 0.15 J ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.19 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.17 1 Benzene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloroethane ND ug/l 2.5 0.70 1	1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Trichlorofluoromethane ND	Tetrachloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichloroethane 0.15 J ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 Bromoform ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 2.5 0.70 1 </td <td>Chlorobenzene</td> <td>ND</td> <td></td> <td>ug/l</td> <td>2.5</td> <td>0.70</td> <td>1</td>	Chlorobenzene	ND		ug/l	2.5	0.70	1
1,1,1-Trichloroethane ND	Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane ND ug/l 0.50 0.19 1 ttrans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 2.5 0.70 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 2.5 0.70 1	1,2-Dichloroethane	0.15	J	ug/l	0.50	0.13	1
trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 2.5 0.70 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 0.50 0.18 1	1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 1,richloroethene ND ug/l 0.50 0.18 1	Bromodichloromethane	ND		ug/l	0.50	0.19	1
Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 0.50 0.18 1	trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 0.50 0.18 1	cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 0.50 0.18 1	Bromoform	ND		ug/l	2.0	0.65	1
Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Winyl chloride ND ug/l 2.5 0.70 1 Chloroethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 Tichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 0.50 0.17 1 Trichloroethene ND ug/l 2.5 0.70 1	1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 0.50 0.18 1	Benzene	ND		ug/l	0.50	0.16	1
Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 0.50 0.18 1	Toluene	ND		ug/l	2.5	0.70	1
Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 0.50 0.18 1	Ethylbenzene	ND		ug/l	2.5	0.70	1
Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 0.50 0.18 1	Chloromethane	ND		ug/l	2.5	0.70	1
Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 0.50 0.18 1	Bromomethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 0.50 0.18 1	Vinyl chloride	ND		ug/l	1.0	0.07	1
trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 0.50 0.18 1	Chloroethane	ND		ug/l	2.5	0.70	1
Trichloroethene ND ug/l 0.50 0.18 1	1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
Ţ.	trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichlorobenzene ND ug/l 2.5 0.70 1	Trichloroethene	ND		ug/l	0.50	0.18	1
	1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: **CONVENTUS** L1933935

Project Number: Report Date: K11.002.001 08/12/19

SAMPLE RESULTS

Lab ID: L1933935-05 Date Collected: 07/30/19 10:00

Client ID: Date Received: 07/31/19 BCP-MW01073019 Field Prep: Sample Location: 1001 MAIN ST. Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	2.4	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	120		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	103		70-130	
Dibromofluoromethane	104		70-130	

07/30/19 10:45

Project Name: CONVENTUS

Project Number: K11.002.001

SAMPLE RESULTS

Lab Number: L1933935

Report Date: 08/12/19

Date Collected:

Lab ID: L1933935-06

Client ID: BCP-MW07073019
Sample Location: 1001 MAIN ST.

Date Received: 07/31/19
Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C

Analytical Date: 08/09/19 23:17

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.77		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: **CONVENTUS** L1933935

Project Number: Report Date: K11.002.001 08/12/19

SAMPLE RESULTS

Lab ID: Date Collected: 07/30/19 10:45 L1933935-06

Client ID: Date Received: 07/31/19 BCP-MW07073019 Field Prep: Sample Location: 1001 MAIN ST. Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	4.2	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	125	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	101	70-130	

Project Name: CONVENTUS Lab Number: L1933935

Project Number: K11.002.001 **Report Date:** 08/12/19

SAMPLE RESULTS

Lab ID: L1933935-07 Date Collected: 07/30/19 11:20

Client ID: BCP-MW04073019 Date Received: 07/31/19
Sample Location: 1001 MAIN ST. Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 08/09/19 23:39

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westl	oorough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	6.7		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	2.0	J	ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: CONVENTUS Lab Number: L1933935

Project Number: K11.002.001 **Report Date:** 08/12/19

SAMPLE RESULTS

Lab ID: L1933935-07 Date Collected: 07/30/19 11:20

Client ID: BCP-MW04073019 Date Received: 07/31/19
Sample Location: 1001 MAIN ST. Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	1.3	J	ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	0.41	J	ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	128	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	108	70-130	

Project Name: CONVENTUS

Project Number: K11.002.001

SAMPLE RESULTS

Lab Number: L1933935

Report Date: 08/12/19

Lab ID: L1933935-08 Date Collected: 07/30/19 12:05

Date Received: 07/31/19 BCP-MW03073019 Sample Location: Field Prep: Not Specified 1001 MAIN ST.

Sample Depth:

Client ID:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 08/10/19 00:01

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	tborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

MDL

Dilution Factor

Project Name: CONVENTUS Lab Number: L1933935

Project Number: K11.002.001 **Report Date:** 08/12/19

SAMPLE RESULTS

Lab ID: L1933935-08 Date Collected: 07/30/19 12:05

Client ID: BCP-MW03073019 Date Received: 07/31/19
Sample Location: 1001 MAIN ST. Field Prep: Not Specified

Qualifier

Units

RL

Result

Sample Depth:

Parameter

i alaliletei	resuit	Qualifici	Onito			Dilation Lactor	
Volatile Organics by GC/MS - Westbo	orough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	2.1	J	ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	122	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	104	70-130	

Project Name: CONVENTUS

Project Number: K11.002.001

SAMPLE RESULTS

Lab Number: L1933935

Report Date: 08/12/19

Lab ID: L1933935-09

Client ID: BCP-MW06073019 Sample Location:

Field Prep:

Date Collected:

07/30/19 13:00 07/31/19

1001 MAIN ST.

Date Received: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 08/10/19 00:23

Analyst: PD

		Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: **CONVENTUS** L1933935

Project Number: Report Date: K11.002.001 08/12/19

SAMPLE RESULTS

Lab ID: Date Collected: 07/30/19 13:00 L1933935-09

Client ID: Date Received: 07/31/19 BCP-MW06073019 Sample Location: Field Prep: 1001 MAIN ST. Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Volatile Organics by GC/MS - Westborough Lab										
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1				
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1				
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1				
p/m-Xylene	ND		ug/l	2.5	0.70	1				
o-Xylene	ND		ug/l	2.5	0.70	1				
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1				
Styrene	ND		ug/l	2.5	0.70	1				
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1				
Acetone	ND		ug/l	5.0	1.5	1				
Carbon disulfide	ND		ug/l	5.0	1.0	1				
2-Butanone	ND		ug/l	5.0	1.9	1				
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1				
2-Hexanone	ND		ug/l	5.0	1.0	1				
Bromochloromethane	ND		ug/l	2.5	0.70	1				
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1				
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1				
Isopropylbenzene	ND		ug/l	2.5	0.70	1				
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1				
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1				
Methyl Acetate	ND		ug/l	2.0	0.23	1				
Cyclohexane	0.60	J	ug/l	10	0.27	1				
1,4-Dioxane	ND		ug/l	250	61.	1				
Freon-113	ND		ug/l	2.5	0.70	1				
Methyl cyclohexane	ND		ug/l	10	0.40	1				

Surrogate	% Recovery		eptance iteria
1,2-Dichloroethane-d4	127	7	70-130
Toluene-d8	97	7	70-130
4-Bromofluorobenzene	101	7	70-130
Dibromofluoromethane	105	7	70-130

Project Name: CONVENTUS

Project Number: K11.002.001

SAMPLE RESULTS

Lab Number: L1933935

Report Date: 08/12/19

Lab ID: L1933935-10

Client ID: BCP-MW05073019

Sample Location: 1001 MAIN ST.

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 08/10/19 00:45

Analyst: PD Date Collected: 07/30/19 14:00

Date Received: 07/31/19

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Volatile Organics by GC/MS - Westborough Lab										
Methylene chloride	ND		ug/l	2.5	0.70	1				
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1				
Chloroform	ND		ug/l	2.5	0.70	1				
Carbon tetrachloride	ND		ug/l	0.50	0.13	1				
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1				
Dibromochloromethane	ND		ug/l	0.50	0.15	1				
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1				
Tetrachloroethene	ND		ug/l	0.50	0.18	1				
Chlorobenzene	ND		ug/l	2.5	0.70	1				
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1				
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1				
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1				
Bromodichloromethane	ND		ug/l	0.50	0.19	1				
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1				
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1				
Bromoform	ND		ug/l	2.0	0.65	1				
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1				
Benzene	3.3		ug/l	0.50	0.16	1				
Toluene	38		ug/l	2.5	0.70	1				
Ethylbenzene	520	E	ug/l	2.5	0.70	1				
Chloromethane	ND		ug/l	2.5	0.70	1				
Bromomethane	ND		ug/l	2.5	0.70	1				
Vinyl chloride	ND		ug/l	1.0	0.07	1				
Chloroethane	ND		ug/l	2.5	0.70	1				
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1				
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1				
Trichloroethene	0.22	J	ug/l	0.50	0.18	1				
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1				

Project Name: CONVENTUS Lab Number: L1933935

Project Number: K11.002.001 **Report Date:** 08/12/19

SAMPLE RESULTS

Lab ID: L1933935-10 Date Collected: 07/30/19 14:00

Client ID: BCP-MW05073019 Date Received: 07/31/19
Sample Location: 1001 MAIN ST. Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Volatile Organics by GC/MS - Westborough Lab										
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1				
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1				
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1				
p/m-Xylene	1800	E	ug/l	2.5	0.70	1				
o-Xylene	79		ug/l	2.5	0.70	1				
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1				
Styrene	ND		ug/l	2.5	0.70	1				
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1				
Acetone	44		ug/l	5.0	1.5	1				
Carbon disulfide	1.2	J	ug/l	5.0	1.0	1				
2-Butanone	ND		ug/l	5.0	1.9	1				
4-Methyl-2-pentanone	3.0	J	ug/l	5.0	1.0	1				
2-Hexanone	2.7	J	ug/l	5.0	1.0	1				
Bromochloromethane	ND		ug/l	2.5	0.70	1				
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1				
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1				
Isopropylbenzene	23		ug/l	2.5	0.70	1				
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1				
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1				
Methyl Acetate	ND		ug/l	2.0	0.23	1				
Cyclohexane	140		ug/l	10	0.27	1				
1,4-Dioxane	ND		ug/l	250	61.	1				
Freon-113	ND		ug/l	2.5	0.70	1				
Methyl cyclohexane	65		ug/l	10	0.40	1				

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	92	70-130	
Dibromofluoromethane	70	70-130	

Project Name: CONVENTUS Lab Number: L1933935

Project Number: K11.002.001 **Report Date:** 08/12/19

SAMPLE RESULTS

Lab ID: L1933935-10 D2 Date Collected: 07/30/19 14:00

Client ID: BCP-MW05073019 Date Received: 07/31/19
Sample Location: 1001 MAIN ST. Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 08/12/19 17:33

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborough Lab							
p/m-Xylene	4000		ug/l	100	28.	40	

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	99		70-130
Toluene-d8	97		70-130
4-Bromofluorobenzene	99		70-130
Dibromofluoromethane	98		70-130

Project Name: CONVENTUS Lab Number: L1933935

Project Number: K11.002.001 **Report Date:** 08/12/19

SAMPLE RESULTS

Lab ID: L1933935-10 D Date Collected: 07/30/19 14:00

Client ID: BCP-MW05073019 Date Received: 07/31/19
Sample Location: 1001 MAIN ST. Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 08/12/19 15:39

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Ethylbenzene	1200		ug/l	25	7.0	10		
p/m-Xylene	4500	Е	ug/l	25	7.0	10		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	93	70-130	

07/30/19 15:00

Not Specified

07/31/19

Project Name: CONVENTUS

Project Number: K11.002.001

SAMPLE RESULTS

Lab Number: L1933935

Date Collected:

Date Received:

Report Date: 08/12/19

Lab ID: L1933935-11

Client ID: TRIP BLANKS
Sample Location: 1001 MAIN ST.

MAIN ST. Field Prep:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 08/12/19 14:43

		Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: CONVENTUS Lab Number: L1933935

Project Number: K11.002.001 **Report Date:** 08/12/19

SAMPLE RESULTS

Lab ID: L1933935-11 Date Collected: 07/30/19 15:00

Client ID: TRIP BLANKS Date Received: 07/31/19
Sample Location: 1001 MAIN ST. Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	4.1	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	103		70-130	
Toluene-d8	97		70-130	
4-Bromofluorobenzene	96		70-130	
Dibromofluoromethane	101		70-130	

Project Name: Lab Number: **CONVENTUS** L1933935 **Project Number:** K11.002.001

Report Date: 08/12/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/09/19 10:54

Analyst: PD

arameter	Result	Qualifier Units	s RL	MDL
olatile Organics by GC/MS - V	Vestborough La	o for sample(s):	01-02 Batch:	WG1271358-5
Methylene chloride	ND	ug/	2.5	0.70
1,1-Dichloroethane	ND	ug/	1 2.5	0.70
Chloroform	ND	ug/	1 2.5	0.70
Carbon tetrachloride	ND	ug/	0.50	0.13
1,2-Dichloropropane	ND	ug/	1.0	0.14
Dibromochloromethane	ND	ug/	0.50	0.15
1,1,2-Trichloroethane	ND	ug/	1.5	0.50
Tetrachloroethene	ND	ug/	0.50	0.18
Chlorobenzene	ND	ug/	2.5	0.70
Trichlorofluoromethane	ND	ug/	1 2.5	0.70
1,2-Dichloroethane	ND	ug/	0.50	0.13
1,1,1-Trichloroethane	ND	ug/	1 2.5	0.70
Bromodichloromethane	ND	ug/	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/	0.50	0.14
Bromoform	ND	ug/	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/	0.50	0.17
Benzene	ND	ug/	0.50	0.16
Toluene	ND	ug/	2.5	0.70
Ethylbenzene	ND	ug/	2.5	0.70
Chloromethane	ND	ug/	2.5	0.70
Bromomethane	ND	ug/	2.5	0.70
Vinyl chloride	ND	ug/	1.0	0.07
Chloroethane	ND	ug/	1 2.5	0.70
1,1-Dichloroethene	ND	ug/	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/	1 2.5	0.70
Trichloroethene	ND	ug/	0.50	0.18
1,2-Dichlorobenzene	ND	ug/	2.5	0.70
1,3-Dichlorobenzene	ND	ug/	2.5	0.70

Project Number: K11.002.001 **Report Date:** 08/12/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/09/19 10:54

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS - Wes	stborough Lab	for sample(s): 01-02	Batch:	WG1271358-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Number: K11.002.001 **Report Date:** 08/12/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/09/19 10:54

Analyst: PD

ParameterResultQualifierUnitsRLMDLVolatile Organics by GC/MS - Westborough Lab for sample(s):01-02Batch:WG1271358-5

		Acceptance			
Surrogate	%Recovery Qualifie	er Criteria			
1,2-Dichloroethane-d4	126	70-130			
Toluene-d8	98	70-130			
4-Bromofluorobenzene	101	70-130			
Dibromofluoromethane	104	70-130			

Project Number: K11.002.001 **Report Date:** 08/12/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/09/19 22:11

Analyst: PK

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough La	b for sample(s): 0	94-10 Batch:	WG1271370-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

L1933935

Project Name: CONVENTUS Lab Number:

Project Number: K11.002.001 **Report Date:** 08/12/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/09/19 22:11

Analyst: PK

Adaptive Organics by GC/MS - Westborough Lab for sample(s): 04-10 Batch: WG1271370-5	Parameter	Result	Qualifier Units	RL	MDL
Methyl tert butyl ether ND ug/l 2.5 0.70 p/m-Xylene ND ug/l 2.5 0.70 o-Xylene ND ug/l 2.5 0.70 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 Styrene ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1	/olatile Organics by GC/MS - W	estborough Lab	for sample(s): 04-10	Batch:	WG1271370-5
p/m-Xylene ND ug/l 2.5 0.70 o-Xylene ND ug/l 2.5 0.70 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 Styrene ND ug/l 5.0 0.70 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.5 0.70	1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
o-Xylene ND ug/l 2.5 0.70 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.5 0.70 </td <td>Methyl tert butyl ether</td> <td>ND</td> <td>ug/l</td> <td>2.5</td> <td>0.70</td>	Methyl tert butyl ether	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene ND ug/l 2.5 0.70 Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.5	p/m-Xylene	ND	ug/l	2.5	0.70
Styrene ND ug/l 2.5 0.70 Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.5 0.70 Cyclohexane ND ug/l 2.5 0.70 1,4-Dioxane ND ug/l 2.5 0.70 </td <td>o-Xylene</td> <td>ND</td> <td>ug/l</td> <td>2.5</td> <td>0.70</td>	o-Xylene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane ND ug/l 5.0 1.0 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 250 61 Freon-113 ND ug/l 2.5	cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 250 61 Freon-113 ND ug/l 2.5 0.70	Styrene	ND	ug/l	2.5	0.70
Carbon disulfide ND ug/l 5.0 1.0 2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 2.0 0.23 Cyclohexane ND ug/l 250 61 Freon-113 ND ug/l 2.5 0.70	Dichlorodifluoromethane	ND	ug/l	5.0	1.0
2-Butanone ND ug/l 5.0 1.9 4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.5 0.70 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 2.0 0.27 1,4-Dioxane ND ug/l 2.5 0.70	Acetone	ND	ug/l	5.0	1.5
4-Methyl-2-pentanone ND ug/l 5.0 1.0 2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.0 0.65 1,2-Dibromoe-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61 Freon-113 ND ug/l 2.5 0.70	Carbon disulfide	ND	ug/l	5.0	1.0
2-Hexanone ND ug/l 5.0 1.0 Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.0 0.65 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61 Freon-113 ND ug/l 2.5 0.70	2-Butanone	ND	ug/l	5.0	1.9
Bromochloromethane ND ug/l 2.5 0.70 1,2-Dibromoethane ND ug/l 2.0 0.65 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61 Freon-113 ND ug/l 2.5 0.70	4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
1,2-Dibromoethane ND ug/l 2.0 0.65 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61 Freon-113 ND ug/l 2.5 0.70	2-Hexanone	ND	ug/l	5.0	1.0
1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 Isopropylbenzene ND ug/l 2.5 0.70 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61 Freon-113 ND ug/l 2.5 0.70	Bromochloromethane	ND	ug/l	2.5	0.70
Sopropylbenzene ND ug/l 2.5 0.70	1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	Isopropylbenzene	ND	ug/l	2.5	0.70
Methyl Acetate ND ug/l 2.0 0.23 Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
Cyclohexane ND ug/l 10 0.27 1,4-Dioxane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dioxane ND ug/l 250 61. Freon-113 ND ug/l 2.5 0.70	Methyl Acetate	ND	ug/l	2.0	0.23
Freon-113 ND ug/l 2.5 0.70	Cyclohexane	ND	ug/l	10	0.27
	1,4-Dioxane	ND	ug/l	250	61.
Methyl cyclohexane ND ug/l 10 0.40	Freon-113	ND	ug/l	2.5	0.70
	Methyl cyclohexane	ND	ug/l	10	0.40

Project Number: K11.002.001 **Report Date:** 08/12/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/09/19 22:11

Analyst: PK

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 04-10 Batch: WG1271370-5

		Acceptance
Surrogate	%Recovery Qualifie	r Criteria
1,2-Dichloroethane-d4	122	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	99	70-130
Dibromofluoromethane	103	70-130

Project Number: K11.002.001 **Report Date:** 08/12/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/12/19 10:27

arameter	Result	Qualifier Units	RL	MDL	
olatile Organics by GC/MS	- Westborough La	b for sample(s):	03,10-11	Batch: WG127	1456-5
Methylene chloride	ND	ug/l	2.5	0.70	
1,1-Dichloroethane	ND	ug/l	2.5	0.70	
Chloroform	ND	ug/l	2.5	0.70	
Carbon tetrachloride	ND	ug/l	0.50	0.13	
1,2-Dichloropropane	ND	ug/l	1.0	0.14	
Dibromochloromethane	ND	ug/l	0.50	0.15	
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	
Tetrachloroethene	ND	ug/l	0.50	0.18	
Chlorobenzene	ND	ug/l	2.5	0.70	
Trichlorofluoromethane	ND	ug/l	2.5	0.70	
1,2-Dichloroethane	ND	ug/l	0.50	0.13	
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	
Bromodichloromethane	ND	ug/l	0.50	0.19	
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	
Bromoform	ND	ug/l	2.0	0.65	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	
Benzene	ND	ug/l	0.50	0.16	
Toluene	ND	ug/l	2.5	0.70	
Ethylbenzene	ND	ug/l	2.5	0.70	
Chloromethane	ND	ug/l	2.5	0.70	
Bromomethane	ND	ug/l	2.5	0.70	
Vinyl chloride	ND	ug/l	1.0	0.07	
Chloroethane	ND	ug/l	2.5	0.70	
1,1-Dichloroethene	ND	ug/l	0.50	0.17	
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	
Trichloroethene	ND	ug/l	0.50	0.18	
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70	
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70	

Project Number: K11.002.001 **Report Date:** 08/12/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/12/19 10:27

Parameter	Result	Qualifier Uni	s RI	MDL	
olatile Organics by GC/MS - West	borough Lat	o for sample(s):	03,10-11	Batch: WG12	71456-5
1,4-Dichlorobenzene	ND	ug	/l 2.5	5 0.70	
Methyl tert butyl ether	ND	ug	/l 2.5	0.70	
p/m-Xylene	ND	ug	/l 2.5	0.70	
o-Xylene	ND	ug	/l 2.5	0.70	
cis-1,2-Dichloroethene	ND	ug	/l 2.5	0.70	
Styrene	ND	ug	/l 2.5	0.70	
Dichlorodifluoromethane	ND	ug	/I 5.0	1.0	
Acetone	ND	ug	/I 5.0	1.5	
Carbon disulfide	ND	ug	/I 5.0	1.0	
2-Butanone	ND	ug	/I 5.0	1.9	
4-Methyl-2-pentanone	ND	ug	/I 5.0	1.0	
2-Hexanone	ND	ug	/I 5.0	1.0	
Bromochloromethane	ND	ug	/l 2.5	0.70	
1,2-Dibromoethane	ND	ug	/l 2.0	0.65	
1,2-Dibromo-3-chloropropane	ND	ug	/l 2.5	0.70	
Isopropylbenzene	ND	ug	/l 2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug	/l 2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug	/l 2.5	0.70	
Methyl Acetate	ND	ug	/l 2.0	0.23	
Cyclohexane	ND	ug	/I 10	0.27	
1,4-Dioxane	ND	ug	/I 250	0 61.	
Freon-113	ND	ug	/l 2.5	0.70	
Methyl cyclohexane	ND	ug	/I 10	0.40	

Project Number: K11.002.001 **Report Date:** 08/12/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 08/12/19 10:27

Analyst: PD

ParameterResultQualifierUnitsRLMDLVolatile Organics by GC/MS - Westborough Lab for sample(s):03,10-11Batch:WG1271456-5

		Acceptance
Surrogate	%Recovery Qualific	er Criteria
1,2-Dichloroethane-d4	102	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	99	70-130
Dibromofluoromethane	100	70-130

Lab Control Sample Analysis Batch Quality Control

Project Name: CONVENTUS

Project Number: K11.002.001

Lab Number: L1933935

Report Date: 08/12/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-02 Batch: W	/G1271358-3 WG1271358-4		
Methylene chloride	91		92	70-130	1	20
1,1-Dichloroethane	100		100	70-130	0	20
Chloroform	110		100	70-130	10	20
Carbon tetrachloride	120		110	63-132	9	20
1,2-Dichloropropane	93		92	70-130	1	20
Dibromochloromethane	100		110	63-130	10	20
1,1,2-Trichloroethane	93		97	70-130	4	20
Tetrachloroethene	90		95	70-130	5	20
Chlorobenzene	95		99	75-130	4	20
Trichlorofluoromethane	110		100	62-150	10	20
1,2-Dichloroethane	110		110	70-130	0	20
1,1,1-Trichloroethane	110		110	67-130	0	20
Bromodichloromethane	100		100	67-130	0	20
trans-1,3-Dichloropropene	98		100	70-130	2	20
cis-1,3-Dichloropropene	98		97	70-130	1	20
Bromoform	100		100	54-136	0	20
1,1,2,2-Tetrachloroethane	97		94	67-130	3	20
Benzene	96		97	70-130	1	20
Toluene	93		95	70-130	2	20
Ethylbenzene	99		100	70-130	1	20
Chloromethane	88		87	64-130	1	20
Bromomethane	87		83	39-139	5	20
Vinyl chloride	88		82	55-140	7	20

Project Name: CONVENTUS

Project Number: K11.002.001

Lab Number: L1933935

Report Date: 08/12/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westboroug	gh Lab Associated	sample(s):	01-02 Batch: W0	G1271358-3 WG1271358-4		
Chloroethane	100		100	55-138	0	20
1,1-Dichloroethene	88		90	61-145	2	20
trans-1,2-Dichloroethene	99		93	70-130	6	20
Trichloroethene	100		100	70-130	0	20
1,2-Dichlorobenzene	100		100	70-130	0	20
1,3-Dichlorobenzene	100		100	70-130	0	20
1,4-Dichlorobenzene	99		98	70-130	1	20
Methyl tert butyl ether	100		100	63-130	0	20
p/m-Xylene	100		100	70-130	0	20
o-Xylene	100		100	70-130	0	20
cis-1,2-Dichloroethene	99		94	70-130	5	20
Styrene	100		105	70-130	5	20
Dichlorodifluoromethane	88		87	36-147	1	20
Acetone	110		100	58-148	10	20
Carbon disulfide	91		84	51-130	8	20
2-Butanone	91		78	63-138	15	20
4-Methyl-2-pentanone	92		88	59-130	4	20
2-Hexanone	89		93	57-130	4	20
Bromochloromethane	100		99	70-130	1	20
1,2-Dibromoethane	98		100	70-130	2	20
1,2-Dibromo-3-chloropropane	85		96	41-144	12	20
Isopropylbenzene	99		100	70-130	1	20
1,2,3-Trichlorobenzene	98		100	70-130	2	20

Project Name: CONVENTUS

Project Number: K11.002.001 Lab Number: L1933935

Report Date: 08/12/19

Parameter		LCS %Recovery	Qual	LCSD %Recov		%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC	/MS - Westborough La	ab Associated	sample(s):	01-02 Bato	ch: WG1271358-	3 WG1271358-4				
1,2,4-Trichlorobenzene		98		100		70-130	2		20	
Methyl Acetate		92		87		70-130	6		20	
Cyclohexane		91		88		70-130	3		20	
1,4-Dioxane		96		94		56-162	2		20	
Freon-113		100		94		70-130	6		20	
Methyl cyclohexane		88		86		70-130	2		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	112	113	70-130
Toluene-d8	98	100	70-130
4-Bromofluorobenzene	99	100	70-130
Dibromofluoromethane	102	104	70-130

Project Name: CONVENTUS

Project Number: K11.002.001

Lab Number: L1933935

Report Date: 08/12/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	04-10 Batch: W	G1271370-3 WG1271370-4		
Methylene chloride	95		89	70-130	7	20
1,1-Dichloroethane	92		86	70-130	7	20
Chloroform	100		99	70-130	1	20
Carbon tetrachloride	120		100	63-132	18	20
1,2-Dichloropropane	93		89	70-130	4	20
Dibromochloromethane	100		100	63-130	0	20
1,1,2-Trichloroethane	99		95	70-130	4	20
Tetrachloroethene	96		93	70-130	3	20
Chlorobenzene	100		98	75-130	2	20
Trichlorofluoromethane	100		94	62-150	6	20
1,2-Dichloroethane	110		110	70-130	0	20
1,1,1-Trichloroethane	110		100	67-130	10	20
Bromodichloromethane	110		100	67-130	10	20
trans-1,3-Dichloropropene	100		99	70-130	1	20
cis-1,3-Dichloropropene	100		98	70-130	2	20
Bromoform	110		100	54-136	10	20
1,1,2,2-Tetrachloroethane	98		93	67-130	5	20
Benzene	98		96	70-130	2	20
Toluene	98		92	70-130	6	20
Ethylbenzene	100		97	70-130	3	20
Chloromethane	91		84	64-130	8	20
Bromomethane	81		80	39-139	1	20
Vinyl chloride	83		83	55-140	0	20

Project Name: CONVENTUS

Project Number: K11.002.001

Lab Number: L1933935

Report Date: 08/12/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
/olatile Organics by GC/MS - Westbor	rough Lab Associated	sample(s): 04	1-10 Batch: W	G1271370-3	WG1271370-4		
Chloroethane	100		100		55-138	0	20
1,1-Dichloroethene	88		83		61-145	6	20
trans-1,2-Dichloroethene	92		85		70-130	8	20
Trichloroethene	96		88		70-130	9	20
1,2-Dichlorobenzene	100		100		70-130	0	20
1,3-Dichlorobenzene	99		100		70-130	1	20
1,4-Dichlorobenzene	100		97		70-130	3	20
Methyl tert butyl ether	97		94		63-130	3	20
p/m-Xylene	100		95		70-130	5	20
o-Xylene	100		100		70-130	0	20
cis-1,2-Dichloroethene	93		88		70-130	6	20
Styrene	105		100		70-130	5	20
Dichlorodifluoromethane	88		86		36-147	2	20
Acetone	89		87		58-148	2	20
Carbon disulfide	90		82		51-130	9	20
2-Butanone	100		100		63-138	0	20
4-Methyl-2-pentanone	94		94		59-130	0	20
2-Hexanone	90		88		57-130	2	20
Bromochloromethane	100		97		70-130	3	20
1,2-Dibromoethane	100		100		70-130	0	20
1,2-Dibromo-3-chloropropane	93		93		41-144	0	20
Isopropylbenzene	100		98		70-130	2	20
1,2,3-Trichlorobenzene	100		100		70-130	0	20

Project Name: CONVENTUS

L1933935

Project Number: K11.002.001 Report Date: 08/12/19

Lab Number:

	LCS	0.1	LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	04-10 Batch:	WG1271370-3	WG1271370-4			
1,2,4-Trichlorobenzene	100		100		70-130	0		20
Methyl Acetate	87		85		70-130	2		20
Cyclohexane	90		80		70-130	12		20
1,4-Dioxane	104		94		56-162	10		20
Freon-113	93		84		70-130	10		20
Methyl cyclohexane	88		87		70-130	1		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	114	109	70-130
Toluene-d8	99	99	70-130
4-Bromofluorobenzene	99	99	70-130
Dibromofluoromethane	102	104	70-130

Project Name: CONVENTUS

Project Number: K11.002.001

Lab Number: L1933935

Report Date: 08/12/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - \	Westborough Lab Associated	sample(s):	03,10-11 Batch:	WG1271456-3 WG1271456	i-4	
Methylene chloride	100		100	70-130	0	20
1,1-Dichloroethane	110		100	70-130	10	20
Chloroform	100		100	70-130	0	20
Carbon tetrachloride	110		110	63-132	0	20
1,2-Dichloropropane	100		100	70-130	0	20
Dibromochloromethane	100		100	63-130	0	20
1,1,2-Trichloroethane	100		100	70-130	0	20
Tetrachloroethene	100		100	70-130	0	20
Chlorobenzene	100		100	75-130	0	20
Trichlorofluoromethane	110		110	62-150	0	20
1,2-Dichloroethane	100		100	70-130	0	20
1,1,1-Trichloroethane	110		110	67-130	0	20
Bromodichloromethane	100		100	67-130	0	20
trans-1,3-Dichloropropene	100		100	70-130	0	20
cis-1,3-Dichloropropene	100		100	70-130	0	20
Bromoform	94		97	54-136	3	20
1,1,2,2-Tetrachloroethane	100		100	67-130	0	20
Benzene	100		100	70-130	0	20
Toluene	100		100	70-130	0	20
Ethylbenzene	100		100	70-130	0	20
Chloromethane	97		95	64-130	2	20
Bromomethane	92		84	39-139	9	20
Vinyl chloride	100		100	55-140	0	20

Project Name: CONVENTUS

Project Number: K11.002.001

Lab Number: L1933935

Report Date: 08/12/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
/olatile Organics by GC/MS -	Westborough Lab Associated	sample(s): 03	10-11 Batch:	WG1271456-3 WG1271456	-4	
Chloroethane	110		100	55-138	10	20
1,1-Dichloroethene	110		100	61-145	10	20
trans-1,2-Dichloroethene	100		100	70-130	0	20
Trichloroethene	100		100	70-130	0	20
1,2-Dichlorobenzene	100		100	70-130	0	20
1,3-Dichlorobenzene	100		100	70-130	0	20
1,4-Dichlorobenzene	100		100	70-130	0	20
Methyl tert butyl ether	110		110	63-130	0	20
p/m-Xylene	105		100	70-130	5	20
o-Xylene	105		105	70-130	0	20
cis-1,2-Dichloroethene	100		100	70-130	0	20
Styrene	105		105	70-130	0	20
Dichlorodifluoromethane	90		85	36-147	6	20
Acetone	110		110	58-148	0	20
Carbon disulfide	100		100	51-130	0	20
2-Butanone	110		110	63-138	0	20
4-Methyl-2-pentanone	96		100	59-130	4	20
2-Hexanone	100		110	57-130	10	20
Bromochloromethane	110		110	70-130	0	20
1,2-Dibromoethane	100		100	70-130	0	20
1,2-Dibromo-3-chloropropane	96		110	41-144	14	20
Isopropylbenzene	100		100	70-130	0	20
1,2,3-Trichlorobenzene	100		110	70-130	10	20

Project Name: CONVENTUS

Lab Number:

L1933935

Project Number: K11.002.001

Report Date:

08/12/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	PD mits
Volatile Organics by GC/MS - Westboroug	h Lab Associated s	sample(s):	03,10-11 Batch:	WG12714	56-3 WG127145	6-4	
1,2,4-Trichlorobenzene	100		110		70-130	10	20
Methyl Acetate	110		120		70-130	9	20
Cyclohexane	100		100		70-130	0	20
1,4-Dioxane	174	Q	164	Q	56-162	6	20
Freon-113	110		100		70-130	10	20
Methyl cyclohexane	100		99		70-130	1	20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	97	100	70-130
Toluene-d8	99	98	70-130
4-Bromofluorobenzene	97	99	70-130
Dibromofluoromethane	101	101	70-130

Serial_No:08121919:22

Project Name: **Lab Number:** L1933935 **CONVENTUS** Project Number: K11.002.001

Report Date: 08/12/19

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Custody Seal Cooler

Α Absent

Container Info		Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler	рН	pН	•	Pres	Seal	Date/Time	Analysis(*)
L1933935-01A	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260-R2(14)
L1933935-01B	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260-R2(14)
L1933935-01C	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260-R2(14)
L1933935-02A	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260-R2(14)
L1933935-02B	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260-R2(14)
L1933935-02C	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260-R2(14)
L1933935-03A	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260-R2(14)
L1933935-03B	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260-R2(14)
L1933935-03C	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260-R2(14)
L1933935-04A	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260-R2(14)
L1933935-04B	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260-R2(14)
L1933935-04C	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260-R2(14)
L1933935-05A	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260-R2(14)
L1933935-05B	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260-R2(14)
L1933935-05C	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260-R2(14)
L1933935-06A	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260-R2(14)
L1933935-06B	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260-R2(14)
L1933935-06C	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260-R2(14)
L1933935-07A	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260-R2(14)
L1933935-07B	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260-R2(14)
L1933935-07C	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260-R2(14)
L1933935-08A	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260-R2(14)
L1933935-08B	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260-R2(14)

Serial_No:08121919:22

Lab Number: L1933935

Report Date: 08/12/19

Project Name:CONVENTUSProject Number:K11.002.001

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рH	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1933935-08C	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260-R2(14)
L1933935-09A	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260-R2(14)
L1933935-09B	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260-R2(14)
L1933935-09C	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260-R2(14)
L1933935-10A	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260-R2(14)
L1933935-10B	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260-R2(14)
L1933935-10C	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260-R2(14)
L1933935-11A	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260-R2(14)
L1933935-11B	Vial HCl preserved	Α	NA		4.0	Υ	Absent		NYTCL-8260-R2(14)

Project Name:CONVENTUSLab Number:L1933935Project Number:K11.002.001Report Date:08/12/19

GLOSSARY

Acronyms

EDL

LOD

LOQ

MS

RPD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

 Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: DU Report with 'J' Qualifiers

Project Name:CONVENTUSLab Number:L1933935Project Number:K11.002.001Report Date:08/12/19

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Serial_No:08121919:22

Project Name:CONVENTUSLab Number:L1933935Project Number:K11.002.001Report Date:08/12/19

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:08121919:22

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 14

Published Date: 8/9/2019 9:53:42 AM Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-

Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Westborough, MA 01581 8 Walkup Dr. TEL: 508-888-9220 FAX: 508-898-9193	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Coo Project Information Project Name: Cown	oper Ave, Suite 10		Page / of	V 7255	Deliverat	P-A	OI I		ALPHA Job # L 1933935 Billing Information Same as Client Info	10
#8400mm04-114000-000		Project Location: /oor		7.			-	ulS (1 File)	L EQu	IS (4 File)	PO #	
Client Information	AL INCOMES AND	Project # K/1. 002.					Oth				D' 10% 17	
	13; NERRE	(Use Project name as Pr					Name and Address of the Owner, where	ry Requireme		RELAX DE	Disposal Site Information	
Address: 14/ ELM		Project Manager: Cod	Y MARTIN					TOGS	L NY	P-51	Please identify below location of applicable disposal facilities.	of
Busenco, vy	14203	ALPHAQuote #:	-					Q Standards				
Phone: (File)-184	t- 1630	Turn-Around Time			METERSON OF	The Paris	☐ NY	Restricted Use	Othe	r:	Disposal Facility:	10010000
Fax:		Standard	The state of the s	Due Date:			☐ NY	Unrestricted Us	ie		□ NJ 🔀 NY	
Email: Rbackert 6	OCSCOS. COM	Rush (only if pre approved)	# of Days:	8		☐ NY	C Sewer Discha	irge		Other:	
These samples have b	een previously analyze	ed by Alpha					ANALYS	IS			Sample Filtration	T
Other project specific requirements/comments: Please specify Metals or TAL. Collect							Vocs 8760				□ Done □ Lab to do Preservation □ Lab to do (Please Specify below)	t a l B o t
ALPHA Lab ID	Sa	mple ID	E 77 D 77	ection	Sample	Sampler's	32					_ ;
(Lab Use Only)			Date	Time	Matrix	Initials	F				Sample Specific Comments	е.
33935 - H		72919	7/27/9	10:30	600	UB.	Y					3
-02	MS-MW020	+2919	7/29/19		60	RB	٦					3
-03	MS-11W0301	2919	7/29/19	12:30	6W	K?	ع ا					3
-04	MS-MW040.	72919	7/29/19	1:45	600	RB	¥					3
-05	BCD-MW01 07	3019	7/30/19	10:00	Gu	RB	×					3
-06	BCB-02070	73019	7130/19	10:45	600	reb	x					3
-07	BCP-MW040	73019	7/3419	11:20	GW	128	×					3
-OR	BCD- HW030	73019	7/30/19	12:05	GW	1285	7					3
-09	Bep- 10060		7/30/19	1:00	400	RB	D					3
- 10	Ber-12050	73019	7/34,9	2:00	600	RB	اط					2
Preservative Code: Container Code Westboro: Certification No: MA935 A = None P = Plastic Westboro: Certification No: MA935 B = HCI A = Amber Glass Mansfield: Certification No: MA015 C = HNO3 V = Vial D = H ₂ SO ₄ G = Glass					tainer Type					Please print clearly, legi and completely, Sample not be logged in and turnaround time clock w	es can	
E = NaOH F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH	B = Bacteria Cup C = Cube O = Other E = Encore D = BOD Bottle	Felipaquished	Buc-71	7/31/19	Time (6:20)	9.90	Received		1/3,119	10 20 0 0 0	start until any ambiguitie resolved. BY EXECUTIN THIS COC, THE CLIEN HAS READ AND AGRE TO BE BOUND BY ALP	NG IT EES
O = Other Form No: 01-25 HC (rev. 3)	0-Sept-2013)	J. Hoom	7080 /	silia 1	1-	1/1			5/114	Onto	TERMS & CONDITIONS (See reverse side.)	

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Project Location: /00	Nay poper Ave, Suite		Pag 2		Delive	ASP-A EQuIS (1 F	8	₩ A\$	SP-B QuIS (4 File)	ALPHA Job# S G P Billing Information Same as Client Info	
Client Information		Project # 16.11.00						Other					
Client: CES ENG.	NERVES	(Use Project name as P		V-0.75			THE OWNER OF THE OWNER, OR WHEN	atory Requ	iremen		THE LA	Disposal Site Information	n.
Address: 141 ELH S	17. Site 100	Project Manager: Cob	y HART	<i>:</i> \(\)			1 =	NY TOGS		MA	Part 875 CP-51	Please identify below location applicable disposal facilities	
BUFFALO, NY Phone (716) - 8147	14205	ALPHAQuote #:			-			AWQ Standa	0.000			***************************************	
Fax: Email: Rhacker		Turn-Around Time Standar Rush (only if pre approved		Due Date			<u> </u>	NY Restricte NY Unrestric NYC Sewer I	ted Use		her	Disposal Facility: NJ NY Other:	
These samples have b	hese samples have been previously analyze Other project specific requirements/comm						ANAL	YSIS				Sample Filtration	
Other project specific		nents:					1005 87000					□ Done □ Lab to do Preservation □ Lab to do (Please Specify below)	t a l
ALPHA Lab ID		7.2	Col	lection	Sample	Sampler's	1 7.					The second control of the control of	t
(Lab Use Only)	Si	ample ID	Date	Time	Matrix	Initials	12					Sample Specific Commen	its e
33935 -11	TRIP BLANK	5	7/30/19	3:00	600	RB							2
						-				_	+		-
			1	-	-	1	\vdash	-		-	++		+
	-		-			+		_	\vdash	_			+
													-
	W				1		\vdash						
							\Box						
A = None P = Plastic		Mansfield: Certification I	Mansfield: Certification No: MA015 Pres Retinguished By) Date/Time				Received By:			13,1	Date/Time	Please print clearly, le and completely. Sam not be logged in and turnaround time clock start until any ambigu resolved. BY EXECU THIS COC, THE CLIE	ples can will not uities are TING ENT
$H = Na_2S_2O_3$ K/E = Zn Ac/NaOH O = Other Form No: 01-25 HC (rev. 3)	E = Encore D = BOD Bottle	J. How	- ANL	2 3 1/10	31/19/1020			LAS SALT			वाष नाम	HAS READ AND AGREES	

ANALYTICAL REPORT

Lab Number: L1958113

Client: C&S Companies

141 Elm Street, Suite 100

Buffalo, NY 14203

K11.002.001

ATTN: Cody Martin
Phone: (716) 847-1630

Project Name: CONVENTUS

Report Date: 12/12/19

Project Number:

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: CONVENTUS **Project Number:** K11.002.001

Lab Number: L1958113 **Report Date:** 12/12/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1958113-01	TRIP BLANK	WATER	1001 MAIN ST.	12/03/19 00:00	12/05/19
L1958113-02	MS-MW01120319	WATER	1001 MAIN ST.	12/03/19 11:18	12/05/19
L1958113-03	MS-MW02120319	WATER	1001 MAIN ST.	12/03/19 12:02	12/05/19
L1958113-04	MS-MW03120319	WATER	1001 MAIN ST.	12/03/19 12:42	12/05/19
L1958113-05	MS-MW04120319	WATER	1001 MAIN ST.	12/03/19 13:31	12/05/19
L1958113-06	BCP-MW01120419	WATER	1001 MAIN ST.	12/04/19 11:28	12/05/19
L1958113-07	BCP-MW07120419	WATER	1001 MAIN ST.	12/04/19 11:56	12/05/19
L1958113-08	BCP-MW04120419	WATER	1001 MAIN ST.	12/04/19 12:25	12/05/19
L1958113-09	BCP-MW03120419	WATER	1001 MAIN ST.	12/04/19 12:55	12/05/19
L1958113-10	BCP-MW06120419	WATER	1001 MAIN ST.	12/04/19 13:45	12/05/19
L1958113-11	BCP-MW05120419	WATER	1001 MAIN ST.	12/04/19 12:15	12/05/19

Project Name:CONVENTUSLab Number:L1958113Project Number:K11.002.001Report Date:12/12/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:CONVENTUSLab Number:L1958113Project Number:K11.002.001Report Date:12/12/19

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 12/12/19

Jufani Morrissey-Tiffani Morrissey

ORGANICS

VOLATILES

12/03/19 00:00

Not Specified

12/05/19

Project Name: CONVENTUS

Project Number: K11.002.001

SAMPLE RESULTS

Lab Number: L1958113

Report Date: 12/12/19

Date Collected:

Date Received:

Field Prep:

Lab ID: L1958113-01

Client ID: TRIP BLANK

Sample Location: 1001 MAIN ST.

Sample Depth:

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 12/11/19 13:39

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	oorough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

Project Name: CONVENTUS Lab Number: L1958113

Project Number: K11.002.001 **Report Date:** 12/12/19

SAMPLE RESULTS

Lab ID: L1958113-01 Date Collected: 12/03/19 00:00

Client ID: TRIP BLANK Date Received: 12/05/19
Sample Location: 1001 MAIN ST. Field Prep: Not Specified

Sample Depth:

No	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4-Dichlorobenzene ND ug/l 2,5 0,70 1	Volatile Organics by GC/MS - Westl	oorough Lab					
1.4-Dichlorobenzene ND ug/l 2.5 0.70 1 Methyl tert butyl ether ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 2.5 J ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 <tr< td=""><td>1,3-Dichlorobenzene</td><td>ND</td><td></td><td>ug/l</td><td>2.5</td><td>0.70</td><td>1</td></tr<>	1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 2.5 J ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 1-Le-Dibromoethane ND ug/l 2.5 0.70 1 1-Butylbenzene ND ug/l 2.5 0.70 1 1-E-Dibromoethane ND ug/l 2.5 0.70 1	1,4-Dichlorobenzene	ND			2.5	0.70	1
p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 2.5 J ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Hexanone ND ug/l 2.0 0.65 1 1,2-Distromoethane ND ug/l 2.5 0.70 1 1-Butylbenzene ND ug/l 2.5 0.70 1 1-Evitylbenzene ND ug/l 2.5 0.70 1	Methyl tert butyl ether	ND			2.5	0.70	1
cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 2.5 J ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 2.0 0.65 1 1-2-Distromo-3-choloropropane ND ug/l 2.5 0.70 1 1-2-Distromo-3-chloropropane ND ug/l 2.5 0.70 1 1-2-Distromo-3-chloropropane ND ug/l 2.5	p/m-Xylene	ND		ug/l	2.5	0.70	1
Styrene ND ug/l 2.5 0.70 1 Dichlorodiffluoromethane ND ug/l 5.0 1.0 1 Acetone 2.5 J ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1,2-Disromoethane ND ug/l 2.5 0.70 1 1,2-Distromoethane ND ug/l 2.5 0.70 1 1-Butylbenzene ND ug/l 2.5 0.70 1 1-Eer-Butylbenzene ND ug/l 2.5 0.70 1 1-2-Disromos-achloropropane ND ug/l 2.5 0.70 1 1-2-Dispropylbenzene ND ug/l 2.5 0.70 1	o-Xylene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane ND	cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Acetone 2.5 J ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1	Styrene	ND		ug/l	2.5	0.70	1
Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1	Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1	Acetone	2.5	J	ug/l	5.0	1.5	1
4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 lsopropylbenzene ND ug/l 2.5 0.70 1 lsopropylbenzene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 N-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1	Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 P-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 </td <td>2-Butanone</td> <td>ND</td> <td></td> <td>ug/l</td> <td>5.0</td> <td>1.9</td> <td>1</td>	2-Butanone	ND		ug/l	5.0	1.9	1
1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 P-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 Cyclohexane ND ug/l 2.5 0.70 1 Freon-113 ND ug/l 2.5 0.70 1	4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 lsopropylbenzene ND ug/l 2.5 0.70 1 lsopropylbenzene ND ug/l 2.5 0.70 1 lsopropylbenzene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 Freon-113 ND ug/l 2.5 0.70 1	2-Hexanone	ND		ug/l	5.0	1.0	1
sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 Cyclohexane ND ug/l 2.5 0.70 1 Freon-113 ND ug/l 2.5 0.70 1	1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Kethyl Acetate ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 2.0 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	n-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	sec-Butylbenzene	ND		ug/l	2.5	0.70	1
Sopropylbenzene ND ug/l 2.5 0.70 1	tert-Butylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	Isopropylbenzene	ND		ug/l	2.5	0.70	1
n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	Naphthalene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Freon-113 ND ug/l 2.5 0.70 1	Methyl Acetate	ND		ug/l	2.0	0.23	1
	Cyclohexane	ND		ug/l	10	0.27	1
Methyl cyclohexane ND ug/l 10 0.40 1	Freon-113	ND		ug/l	2.5	0.70	1
	Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	90	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	115	70-130	
Dibromofluoromethane	94	70-130	

Project Name: CONVENTUS Lab Number: L1958113

Project Number: K11.002.001 **Report Date:** 12/12/19

SAMPLE RESULTS

Lab ID: L1958113-02 Date Collected: 12/03/19 11:18

Client ID: MS-MW01120319 Date Received: 12/05/19
Sample Location: 1001 MAIN ST. Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/11/19 14:04

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: CONVENTUS Lab Number: L1958113

Project Number: K11.002.001 **Report Date:** 12/12/19

SAMPLE RESULTS

Lab ID: L1958113-02 Date Collected: 12/03/19 11:18

Client ID: MS-MW01120319 Date Received: 12/05/19
Sample Location: 1001 MAIN ST. Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westl	oorough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	1.5	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	93	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	115	70-130	
Dibromofluoromethane	96	70-130	

Project Name: CONVENTUS Lab Number: L1958113

Project Number: K11.002.001 **Report Date:** 12/12/19

SAMPLE RESULTS

Lab ID: L1958113-03 D Date Collected: 12/03/19 12:02

Client ID: MS-MW02120319 Date Received: 12/05/19
Sample Location: 1001 MAIN ST. Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/12/19 14:05

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westb	orough Lab						
Methylene chloride	ND		ug/l	12	3.5	5	
1,1-Dichloroethane	ND		ug/l	12	3.5	5	
Chloroform	ND		ug/l	12	3.5	5	
Carbon tetrachloride	ND		ug/l	2.5	0.67	5	
1,2-Dichloropropane	2.3	J	ug/l	5.0	0.68	5	
Dibromochloromethane	ND		ug/l	2.5	0.74	5	
1,1,2-Trichloroethane	ND		ug/l	7.5	2.5	5	
Tetrachloroethene	ND		ug/l	2.5	0.90	5	
Chlorobenzene	ND		ug/l	12	3.5	5	
Trichlorofluoromethane	ND		ug/l	12	3.5	5	
1,2-Dichloroethane	ND		ug/l	2.5	0.66	5	
1,1,1-Trichloroethane	ND		ug/l	12	3.5	5	
Bromodichloromethane	ND		ug/l	2.5	0.96	5	
trans-1,3-Dichloropropene	ND		ug/l	2.5	0.82	5	
cis-1,3-Dichloropropene	ND		ug/l	2.5	0.72	5	
Bromoform	ND		ug/l	10	3.2	5	
1,1,2,2-Tetrachloroethane	ND		ug/l	2.5	0.84	5	
Benzene	79		ug/l	2.5	0.80	5	
Toluene	390		ug/l	12	3.5	5	
Ethylbenzene	23		ug/l	12	3.5	5	
Chloromethane	ND		ug/l	12	3.5	5	
Bromomethane	ND		ug/l	12	3.5	5	
Vinyl chloride	ND		ug/l	5.0	0.36	5	
Chloroethane	ND		ug/l	12	3.5	5	
1,1-Dichloroethene	ND		ug/l	2.5	0.84	5	
trans-1,2-Dichloroethene	ND		ug/l	12	3.5	5	
Trichloroethene	ND		ug/l	2.5	0.88	5	
1,2-Dichlorobenzene	ND		ug/l	12	3.5	5	

Project Name: CONVENTUS Lab Number: L1958113

Project Number: K11.002.001 **Report Date:** 12/12/19

SAMPLE RESULTS

Lab ID: L1958113-03 D Date Collected: 12/03/19 12:02

Client ID: MS-MW02120319 Date Received: 12/05/19
Sample Location: 1001 MAIN ST. Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	12	3.5	5
1,4-Dichlorobenzene	ND		ug/l	12	3.5	5
Methyl tert butyl ether	ND		ug/l	12	3.5	5
p/m-Xylene	1400		ug/l	12	3.5	5
o-Xylene	1700		ug/l	12	3.5	5
cis-1,2-Dichloroethene	ND		ug/l	12	3.5	5
Styrene	ND		ug/l	12	3.5	5
Dichlorodifluoromethane	ND		ug/l	25	5.0	5
Acetone	53		ug/l	25	7.3	5
Carbon disulfide	ND		ug/l	25	5.0	5
2-Butanone	ND		ug/l	25	9.7	5
4-Methyl-2-pentanone	22	J	ug/l	25	5.0	5
2-Hexanone	ND		ug/l	25	5.0	5
1,2-Dibromoethane	ND		ug/l	10	3.2	5
n-Butylbenzene	ND		ug/l	12	3.5	5
sec-Butylbenzene	ND		ug/l	12	3.5	5
tert-Butylbenzene	ND		ug/l	12	3.5	5
1,2-Dibromo-3-chloropropane	ND		ug/l	12	3.5	5
Isopropylbenzene	9.8	J	ug/l	12	3.5	5
p-Isopropyltoluene	3.7	J	ug/l	12	3.5	5
Naphthalene	380		ug/l	12	3.5	5
n-Propylbenzene	11	J	ug/l	12	3.5	5
1,2,4-Trichlorobenzene	ND		ug/l	12	3.5	5
1,3,5-Trimethylbenzene	560		ug/l	12	3.5	5
1,2,4-Trimethylbenzene	620		ug/l	12	3.5	5
Methyl Acetate	ND		ug/l	10	1.2	5
Cyclohexane	120		ug/l	50	1.4	5
Freon-113	ND		ug/l	12	3.5	5
Methyl cyclohexane	83		ug/l	50	2.0	5

Surrogate	% Recovery	Acceptano Qualifier Criteria	e
1,2-Dichloroethane-d4	96	70-130	1
Toluene-d8	103	70-130	1
4-Bromofluorobenzene	113	70-130	1
Dibromofluoromethane	87	70-130	1

Project Name: CONVENTUS Lab Number: L1958113

Project Number: K11.002.001 **Report Date:** 12/12/19

SAMPLE RESULTS

Lab ID: L1958113-04 Date Collected: 12/03/19 12:42

Client ID: MS-MW03120319 Date Received: 12/05/19
Sample Location: 1001 MAIN ST. Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/11/19 16:11

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	n Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	1.1	J	ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	0.36	J	ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	0.32	J	ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	2.8		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: CONVENTUS Lab Number: L1958113

Project Number: K11.002.001 **Report Date:** 12/12/19

SAMPLE RESULTS

Lab ID: L1958113-04 Date Collected: 12/03/19 12:42

Client ID: MS-MW03120319 Date Received: 12/05/19
Sample Location: 1001 MAIN ST. Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	8.8		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	24		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	4.0		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	6.1		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	3.0	J	ug/l	10	0.27	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	0.76	J	ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	115		70-130	
Dibromofluoromethane	95		70-130	

Project Name: CONVENTUS Lab Number: L1958113

Project Number: K11.002.001 **Report Date:** 12/12/19

SAMPLE RESULTS

Lab ID: L1958113-05 Date Collected: 12/03/19 13:31

Client ID: MS-MW04120319 Date Received: 12/05/19
Sample Location: 1001 MAIN ST. Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 12/11/19 16:36

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	0.20	J	ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	0.29	J	ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.47	J	ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	1.2	J	ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

MDL

Dilution Factor

Project Name: CONVENTUS Lab Number: L1958113

Project Number: K11.002.001 **Report Date:** 12/12/19

SAMPLE RESULTS

Lab ID: L1958113-05 Date Collected: 12/03/19 13:31

Client ID: MS-MW04120319 Date Received: 12/05/19
Sample Location: 1001 MAIN ST. Field Prep: Not Specified

Qualifier

Units

RL

Result

Sample Depth:

Parameter

raiailletei	Nesuit	Qualifier	Ullita	IX.L	MIDL	Dilution i actor	
Volatile Organics by GC/MS - Wes	stborough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	0.93	J	ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	3.7	J	ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
n-Butylbenzene	ND		ug/l	2.5	0.70	1	
sec-Butylbenzene	ND		ug/l	2.5	0.70	1	
tert-Butylbenzene	ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1	
Naphthalene	1.4	J	ug/l	2.5	0.70	1	
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	3.6	J	ug/l	10	0.27	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	0.59	J	ug/l	10	0.40	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	94	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	114	70-130	
Dibromofluoromethane	94	70-130	

Project Name: CONVENTUS Lab Number: L1958113

Project Number: K11.002.001 **Report Date:** 12/12/19

SAMPLE RESULTS

Lab ID: L1958113-06 Date Collected: 12/04/19 11:28

Client ID: BCP-MW01120419 Date Received: 12/05/19
Sample Location: 1001 MAIN ST. Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/11/19 17:01

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: CONVENTUS Lab Number: L1958113

Project Number: K11.002.001 **Report Date:** 12/12/19

SAMPLE RESULTS

Lab ID: L1958113-06 Date Collected: 12/04/19 11:28

Client ID: BCP-MW01120419 Date Received: 12/05/19
Sample Location: 1001 MAIN ST. Field Prep: Not Specified

Sample Depth:

No	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4-Dichlorobenzene ND ug/l 2.5 0.70 1	Volatile Organics by GC/MS - West	borough Lab					
1.4-Dichlorobenzene ND ug/l 2.5 0.70 1 Methyl tert butyl ether ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 1.7 J ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 <tr< td=""><td>1,3-Dichlorobenzene</td><td>ND</td><td></td><td>ug/l</td><td>2.5</td><td>0.70</td><td>1</td></tr<>	1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether ND ug/l 2.5 0.70 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 1.7 J ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 1-2-Dibromoethane ND ug/l 2.0 0.65 1 1-2-Dibromoethane ND ug/l 2.5 0.70 1 1-2-Dibromoethane ND ug/l 2.5 0.70 1	1,4-Dichlorobenzene	ND			2.5	0.70	1
p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 1.7 J ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 2.0 0.65 1 1-2-Ditoromethane ND ug/l 2.0 0.65 1 1-2-Ditoromethane ND ug/l 2.5 0.70 1 1-2-Ditoromethane ND ug/l 2.5 0.70 1	Methyl tert butyl ether	ND			2.5	0.70	1
cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone 1.7 J ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 1-Pentanone ND ug/l 2.0 0.65 1 1-Pentanone ND ug/l 2.5 0.70 1 1-Pentanone ND ug/l 2.5 0.70 1 1-Pentanone ND ug/l 2.5 0.70 1	p/m-Xylene	ND		ug/l	2.5	0.70	1
Styrene ND ug/l 2.5 0.70 1 Dichlorodiffluoromethane ND ug/l 5.0 1.0 1 Acetone 1.7 J ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1,2-Disromoethane ND ug/l 2.5 0.70 1 1,2-Distromoethane ND ug/l 2.5 0.70 1 1-Butylbenzene ND ug/l 2.5 0.70 1 1-Eer-Butylbenzene ND ug/l 2.5 0.70 1 1-2-Disromos-achloropropane ND ug/l 2.5 0.70 1 1-2-Dispropylbenzene ND ug/l 2.5 0.70 1	o-Xylene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane ND	cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Acetone 1.7 J ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1	Styrene	ND		ug/l	2.5	0.70	1
Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1	Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1	Acetone	1.7	J	ug/l	5.0	1.5	1
4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 lsopropylbenzene ND ug/l 2.5 0.70 1 lsopropylbenzene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 N-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1	Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Hexanone ND ug/l 5.0 1.0 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 P-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 </td <td>2-Butanone</td> <td>ND</td> <td></td> <td>ug/l</td> <td>5.0</td> <td>1.9</td> <td>1</td>	2-Butanone	ND		ug/l	5.0	1.9	1
1,2-Dibromoethane ND ug/l 2.0 0.65 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 P-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 Cyclohexane ND ug/l 2.5 0.70 1 Freon-113 ND ug/l 2.5 0.70 1	4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 lsopropylbenzene ND ug/l 2.5 0.70 1 lsopropylbenzene ND ug/l 2.5 0.70 1 lsopropylbenzene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 Freon-113 ND ug/l 2.5 0.70 1	2-Hexanone	ND		ug/l	5.0	1.0	1
sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 Cyclohexane ND ug/l 2.5 0.70 1 Freon-113 ND ug/l 2.5 0.70 1	1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
tert-Butylbenzene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Kethyl Acetate ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 2.0 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	n-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.5 0.70 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	sec-Butylbenzene	ND		ug/l	2.5	0.70	1
Sopropylbenzene ND ug/l 2.5 0.70 1	tert-Butylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene ND ug/l 2.5 0.70 1 Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Naphthalene ND ug/l 2.5 0.70 1 n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	Isopropylbenzene	ND		ug/l	2.5	0.70	1
n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	Naphthalene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Cyclohexane ND ug/l 10 0.27 1 Freon-113 ND ug/l 2.5 0.70 1	1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Freon-113 ND ug/l 2.5 0.70 1	Methyl Acetate	ND		ug/l	2.0	0.23	1
	Cyclohexane	ND		ug/l	10	0.27	1
Methyl cyclohexane ND ug/l 10 0.40 1	Freon-113	ND		ug/l	2.5	0.70	1
	Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	91	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	118	70-130	
Dibromofluoromethane	93	70-130	

Project Name: CONVENTUS

Project Number: K11.002.001

SAMPLE RESULTS

Lab Number: L1958113

Report Date: 12/12/19

Lab ID: L1958113-07 Date Collected: 12/04/19 11:56

Client ID: Date Received: 12/05/19 BCP-MW07120419 Sample Location: Field Prep: Not Specified 1001 MAIN ST.

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 12/11/19 17:26

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.17	J	ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

MDL

Dilution Factor

Project Name: CONVENTUS Lab Number: L1958113

Project Number: K11.002.001 **Report Date:** 12/12/19

SAMPLE RESULTS

Lab ID: L1958113-07 Date Collected: 12/04/19 11:56

Client ID: BCP-MW07120419 Date Received: 12/05/19
Sample Location: 1001 MAIN ST. Field Prep: Not Specified

Qualifier

Units

RL

Result

Sample Depth:

Parameter

raiailletei	Nesuit	Qualifier	Ullita	NL.	WIDE	Dilution i actor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	92	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	114	70-130	
Dibromofluoromethane	94	70-130	

Project Name: CONVENTUS Lab Number: L1958113

Project Number: K11.002.001 **Report Date:** 12/12/19

SAMPLE RESULTS

Lab ID: L1958113-08 D Date Collected: 12/04/19 12:25

Client ID: BCP-MW04120419 Date Received: 12/05/19
Sample Location: 1001 MAIN ST. Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/11/19 14:54

Analyst: NLK

Volatile Organics by GC/MS - Westborough La Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane	ND N	J	ug/l ug/l ug/l ug/l ug/l ug/l ug/l	10 10 10 2.0 4.0 2.0 6.0	2.8 2.8 2.8 0.54 0.55 0.60	4 4 4 4 4
1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane	ND ND ND 1.0 ND ND ND ND ND	J	ug/l ug/l ug/l ug/l	10 10 2.0 4.0 2.0	2.8 2.8 0.54 0.55 0.60	4 4 4 4
Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane	ND ND 1.0 ND ND ND ND	J	ug/l ug/l ug/l ug/l	10 2.0 4.0 2.0	2.8 0.54 0.55 0.60	4 4 4
Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane	ND 1.0 ND ND ND	J	ug/l ug/l ug/l	2.0 4.0 2.0	0.54 0.55 0.60	4
1,2-Dichloropropane Dibromochloromethane	1.0 ND ND ND	J	ug/l ug/l	4.0 2.0	0.55 0.60	4
Dibromochloromethane	ND ND ND	J	ug/l	2.0	0.60	
	ND ND					4
4.4.0 Triable weather a	ND		ug/l	6.0	2.0	
1,1,2-Trichloroethane						4
Tetrachloroethene	ND		ug/l	2.0	0.72	4
Chlorobenzene			ug/l	10	2.8	4
Trichlorofluoromethane	ND		ug/l	10	2.8	4
1,2-Dichloroethane	ND		ug/l	2.0	0.53	4
1,1,1-Trichloroethane	ND		ug/l	10	2.8	4
Bromodichloromethane	ND		ug/l	2.0	0.77	4
trans-1,3-Dichloropropene	ND		ug/l	2.0	0.66	4
cis-1,3-Dichloropropene	ND		ug/l	2.0	0.58	4
Bromoform	ND		ug/l	8.0	2.6	4
1,1,2,2-Tetrachloroethane	ND		ug/l	2.0	0.67	4
Benzene	6.4		ug/l	2.0	0.64	4
Toluene	11		ug/l	10	2.8	4
Ethylbenzene	460		ug/l	10	2.8	4
Chloromethane	ND		ug/l	10	2.8	4
Bromomethane	ND		ug/l	10	2.8	4
Vinyl chloride	ND		ug/l	4.0	0.28	4
Chloroethane	ND		ug/l	10	2.8	4
1,1-Dichloroethene	ND		ug/l	2.0	0.68	4
trans-1,2-Dichloroethene	ND		ug/l	10	2.8	4
Trichloroethene	ND		ug/l	2.0	0.70	4
1,2-Dichlorobenzene	ND		ug/l	10	2.8	4

Project Name: CONVENTUS Lab Number: L1958113

Project Number: K11.002.001 **Report Date:** 12/12/19

SAMPLE RESULTS

Lab ID: L1958113-08 D Date Collected: 12/04/19 12:25

Client ID: BCP-MW04120419 Date Received: 12/05/19
Sample Location: 1001 MAIN ST. Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
1,3-Dichlorobenzene	ND		ug/l	10	2.8	4
1,4-Dichlorobenzene	ND		ug/l	10	2.8	4
Methyl tert butyl ether	ND		ug/l	10	2.8	4
p/m-Xylene	150		ug/l	10	2.8	4
o-Xylene	7.3	J	ug/l	10	2.8	4
cis-1,2-Dichloroethene	ND		ug/l	10	2.8	4
Styrene	ND		ug/l	10	2.8	4
Dichlorodifluoromethane	ND		ug/l	20	4.0	4
Acetone	ND		ug/l	20	5.8	4
Carbon disulfide	ND		ug/l	20	4.0	4
2-Butanone	ND		ug/l	20	7.8	4
4-Methyl-2-pentanone	ND		ug/l	20	4.0	4
2-Hexanone	ND		ug/l	20	4.0	4
1,2-Dibromoethane	ND		ug/l	8.0	2.6	4
n-Butylbenzene	4.1	J	ug/l	10	2.8	4
sec-Butylbenzene	2.9	J	ug/l	10	2.8	4
tert-Butylbenzene	ND		ug/l	10	2.8	4
1,2-Dibromo-3-chloropropane	ND		ug/l	10	2.8	4
Isopropylbenzene	19		ug/l	10	2.8	4
p-Isopropyltoluene	ND		ug/l	10	2.8	4
Naphthalene	99		ug/l	10	2.8	4
n-Propylbenzene	86		ug/l	10	2.8	4
1,2,4-Trichlorobenzene	ND		ug/l	10	2.8	4
1,3,5-Trimethylbenzene	ND		ug/l	10	2.8	4
1,2,4-Trimethylbenzene	470		ug/l	10	2.8	4
Methyl Acetate	ND		ug/l	8.0	0.94	4
Cyclohexane	60		ug/l	40	1.1	4
Freon-113	ND		ug/l	10	2.8	4
Methyl cyclohexane	8.0	J	ug/l	40	1.6	4

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	95	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	116	70-130	
Dibromofluoromethane	94	70-130	

Project Name: CONVENTUS Lab Number: L1958113

Project Number: K11.002.001 **Report Date:** 12/12/19

SAMPLE RESULTS

Lab ID: Date Collected: 12/04/19 12:55

Client ID: BCP-MW03120419 Date Received: 12/05/19
Sample Location: 1001 MAIN ST. Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/11/19 17:52

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.20	J	ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	1.1	J	ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

MDL

Dilution Factor

Project Name: CONVENTUS Lab Number: L1958113

Project Number: K11.002.001 **Report Date:** 12/12/19

SAMPLE RESULTS

Lab ID: L1958113-09 Date Collected: 12/04/19 12:55

Client ID: BCP-MW03120419 Date Received: 12/05/19
Sample Location: 1001 MAIN ST. Field Prep: Not Specified

Qualifier

Units

RL

Result

Sample Depth:

Parameter

raiailletei	Kesuit	Qualifier	Ullita	IX.L	MIDE	Dilution i actor	
Volatile Organics by GC/MS - Wes	tborough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	1.3	J	ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	ND		ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
n-Butylbenzene	ND		ug/l	2.5	0.70	1	
sec-Butylbenzene	ND		ug/l	2.5	0.70	1	
tert-Butylbenzene	ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1	
Naphthalene	ND		ug/l	2.5	0.70	1	
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	1.2	J	ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	91		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	112		70-130	
Dibromofluoromethane	94		70-130	

Project Name: CONVENTUS Lab Number: L1958113

Project Number: K11.002.001 **Report Date:** 12/12/19

SAMPLE RESULTS

Lab ID: Date Collected: 12/04/19 13:45

Client ID: BCP-MW06120419 Date Received: 12/05/19
Sample Location: 1001 MAIN ST. Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/11/19 15:20

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westl	oorough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	0.20	J	ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	4.0		ug/l	0.50	0.16	1
Toluene	6.7		ug/l	2.5	0.70	1
Ethylbenzene	2.4	J	ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

MDL

Dilution Factor

Project Name: CONVENTUS Lab Number: L1958113

Project Number: K11.002.001 **Report Date:** 12/12/19

SAMPLE RESULTS

Qualifier

Units

RL

Lab ID: Date Collected: 12/04/19 13:45

Client ID: BCP-MW06120419 Date Received: 12/05/19
Sample Location: 1001 MAIN ST. Field Prep: Not Specified

Result

Sample Depth:

Parameter

raiailletei	Nesuit	Qualifier	Ullita	IX.L	MIDE	Dilution i actor	
Volatile Organics by GC/MS - We	stborough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	5.1		ug/l	2.5	0.70	1	
o-Xylene	2.9		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	6.4		ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
n-Butylbenzene	ND		ug/l	2.5	0.70	1	
sec-Butylbenzene	0.88	J	ug/l	2.5	0.70	1	
tert-Butylbenzene	ND		ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	0.90	J	ug/l	2.5	0.70	1	
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1	
Naphthalene	4.8		ug/l	2.5	0.70	1	
n-Propylbenzene	1.3	J	ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	1.4	J	ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	2.2	J	ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	6.6	J	ug/l	10	0.27	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	4.5	J	ug/l	10	0.40	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	95	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	115	70-130	
Dibromofluoromethane	92	70-130	

Project Name: CONVENTUS Lab Number: L1958113

Project Number: K11.002.001 **Report Date:** 12/12/19

SAMPLE RESULTS

Lab ID: L1958113-11 D Date Collected: 12/04/19 12:15

Client ID: BCP-MW05120419 Date Received: 12/05/19
Sample Location: 1001 MAIN ST. Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 12/11/19 15:45

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	oorough Lab						
Methylene chloride	ND		ug/l	50	14.	20	
1,1-Dichloroethane	ND		ug/l	50	14.	20	
Chloroform	ND		ug/l	50	14.	20	
Carbon tetrachloride	ND		ug/l	10	2.7	20	
1,2-Dichloropropane	ND		ug/l	20	2.7	20	
Dibromochloromethane	ND		ug/l	10	3.0	20	
1,1,2-Trichloroethane	ND		ug/l	30	10.	20	
Tetrachloroethene	ND		ug/l	10	3.6	20	
Chlorobenzene	ND		ug/l	50	14.	20	
Trichlorofluoromethane	ND		ug/l	50	14.	20	
1,2-Dichloroethane	ND		ug/l	10	2.6	20	
1,1,1-Trichloroethane	ND		ug/l	50	14.	20	
Bromodichloromethane	ND		ug/l	10	3.8	20	
trans-1,3-Dichloropropene	ND		ug/l	10	3.3	20	
cis-1,3-Dichloropropene	ND		ug/l	10	2.9	20	
Bromoform	ND		ug/l	40	13.	20	
1,1,2,2-Tetrachloroethane	ND		ug/l	10	3.3	20	
Benzene	8.9	J	ug/l	10	3.2	20	
Toluene	42	J	ug/l	50	14.	20	
Ethylbenzene	1200		ug/l	50	14.	20	
Chloromethane	ND		ug/l	50	14.	20	
Bromomethane	ND		ug/l	50	14.	20	
Vinyl chloride	ND		ug/l	20	1.4	20	
Chloroethane	ND		ug/l	50	14.	20	
1,1-Dichloroethene	ND		ug/l	10	3.4	20	
trans-1,2-Dichloroethene	ND		ug/l	50	14.	20	
Trichloroethene	ND		ug/l	10	3.5	20	
1,2-Dichlorobenzene	ND		ug/l	50	14.	20	

Project Name: CONVENTUS Lab Number: L1958113

Project Number: K11.002.001 **Report Date:** 12/12/19

SAMPLE RESULTS

Lab ID: L1958113-11 D Date Collected: 12/04/19 12:15

Client ID: BCP-MW05120419 Date Received: 12/05/19
Sample Location: 1001 MAIN ST. Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	ıgh Lab					
1,3-Dichlorobenzene	ND		ug/l	50	14.	20
1,4-Dichlorobenzene	ND		ug/l	50	14.	20
Methyl tert butyl ether	ND		ug/l	50	14.	20
p/m-Xylene	3300		ug/l	50	14.	20
o-Xylene	73		ug/l	50	14.	20
cis-1,2-Dichloroethene	ND		ug/l	50	14.	20
Styrene	ND		ug/l	50	14.	20
Dichlorodifluoromethane	ND		ug/l	100	20.	20
Acetone	97	J	ug/l	100	29.	20
Carbon disulfide	ND		ug/l	100	20.	20
2-Butanone	ND		ug/l	100	39.	20
4-Methyl-2-pentanone	ND		ug/l	100	20.	20
2-Hexanone	ND		ug/l	100	20.	20
1,2-Dibromoethane	ND		ug/l	40	13.	20
n-Butylbenzene	ND		ug/l	50	14.	20
sec-Butylbenzene	ND		ug/l	50	14.	20
tert-Butylbenzene	ND		ug/l	50	14.	20
1,2-Dibromo-3-chloropropane	ND		ug/l	50	14.	20
Isopropylbenzene	24	J	ug/l	50	14.	20
p-Isopropyltoluene	ND		ug/l	50	14.	20
Naphthalene	1100		ug/l	50	14.	20
n-Propylbenzene	110		ug/l	50	14.	20
1,2,4-Trichlorobenzene	ND		ug/l	50	14.	20
1,3,5-Trimethylbenzene	480		ug/l	50	14.	20
1,2,4-Trimethylbenzene	2200		ug/l	50	14.	20
Methyl Acetate	ND		ug/l	40	4.7	20
Cyclohexane	220		ug/l	200	5.4	20
Freon-113	ND		ug/l	50	14.	20
Methyl cyclohexane	96	J	ug/l	200	7.9	20

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	95		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	111		70-130	
Dibromofluoromethane	92		70-130	

Project Name: CONVENTUS **Lab Number:** L1958113

Project Number: K11.002.001 **Report Date:** 12/12/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 12/11/19 09:25

Analyst: PD

arameter	Result	Qualifier Units	RL	MDL	
olatile Organics by GC/MS	- Westborough La	ab for sample(s):	01-02,04-11	Batch: WG1320012	2-5
Methylene chloride	ND	ug/l	2.5	0.70	
1,1-Dichloroethane	ND	ug/l	2.5	0.70	
Chloroform	ND	ug/l	2.5	0.70	
Carbon tetrachloride	ND	ug/l	0.50	0.13	
1,2-Dichloropropane	ND	ug/l	1.0	0.14	
Dibromochloromethane	ND	ug/l	0.50	0.15	
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	
Tetrachloroethene	ND	ug/l	0.50	0.18	
Chlorobenzene	ND	ug/l	2.5	0.70	
Trichlorofluoromethane	ND	ug/l	2.5	0.70	
1,2-Dichloroethane	ND	ug/l	0.50	0.13	
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	
Bromodichloromethane	ND	ug/l	0.50	0.19	
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	
Bromoform	ND	ug/l	2.0	0.65	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	
Benzene	ND	ug/l	0.50	0.16	
Toluene	ND	ug/l	2.5	0.70	
Ethylbenzene	ND	ug/l	2.5	0.70	
Chloromethane	ND	ug/l	2.5	0.70	
Bromomethane	ND	ug/l	2.5	0.70	
Vinyl chloride	ND	ug/l	1.0	0.07	
Chloroethane	ND	ug/l	2.5	0.70	
1,1-Dichloroethene	ND	ug/l	0.50	0.17	
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	
Trichloroethene	ND	ug/l	0.50	0.18	
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70	
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70	

Project Name: CONVENTUS **Lab Number:** L1958113

Project Number: K11.002.001 **Report Date:** 12/12/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 12/11/19 09:25

Analyst: PD

Parameter	Result	Qualifier	Units	RL	N	IDL
olatile Organics by GC/MS - Wes	borough La	b for sample	e(s):	01-02,04-11	Batch:	WG1320012-5
1,4-Dichlorobenzene	ND		ug/l	2.5		0.70
Methyl tert butyl ether	ND		ug/l	2.5		0.70
p/m-Xylene	ND		ug/l	2.5		0.70
o-Xylene	ND		ug/l	2.5		0.70
cis-1,2-Dichloroethene	ND		ug/l	2.5		0.70
Styrene	ND		ug/l	2.5		0.70
Dichlorodifluoromethane	ND		ug/l	5.0		1.0
Acetone	ND		ug/l	5.0		1.5
Carbon disulfide	ND		ug/l	5.0		1.0
2-Butanone	ND		ug/l	5.0		1.9
4-Methyl-2-pentanone	ND		ug/l	5.0		1.0
2-Hexanone	ND		ug/l	5.0		1.0
1,2-Dibromoethane	ND		ug/l	2.0		0.65
n-Butylbenzene	ND		ug/l	2.5		0.70
sec-Butylbenzene	ND		ug/l	2.5		0.70
tert-Butylbenzene	ND		ug/l	2.5		0.70
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5		0.70
Isopropylbenzene	ND		ug/l	2.5		0.70
p-Isopropyltoluene	ND		ug/l	2.5		0.70
Naphthalene	ND		ug/l	2.5		0.70
n-Propylbenzene	ND		ug/l	2.5		0.70
1,2,4-Trichlorobenzene	ND		ug/l	2.5		0.70
1,3,5-Trimethylbenzene	ND		ug/l	2.5		0.70
1,2,4-Trimethylbenzene	ND		ug/l	2.5		0.70
Methyl Acetate	ND		ug/l	2.0		0.23
Cyclohexane	ND		ug/l	10		0.27
Freon-113	ND		ug/l	2.5		0.70
Methyl cyclohexane	ND		ug/l	10		0.40

Project Name: CONVENTUS Lab Number: L1958113

Project Number: K11.002.001 **Report Date:** 12/12/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 12/11/19 09:25

Analyst: PD

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-02,04-11 Batch: WG1320012-5

		Acceptance
Surrogate	%Recovery Qualific	er Criteria
1,2-Dichloroethane-d4	90	70-130
Toluene-d8	103	70-130
4-Bromofluorobenzene	116	70-130
Dibromofluoromethane	94	70-130

Project Name: CONVENTUS **Lab Number:** L1958113

Project Number: K11.002.001 **Report Date:** 12/12/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 12/12/19 09:00

Analyst: PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - V	Vestborough La	b for sample(s): 0	3 Batch:	WG1320057-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: CONVENTUS Lab Number: L1958113

Project Number: K11.002.001 **Report Date:** 12/12/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 12/12/19 09:00

Analyst: PD

arameter	Result	Qualifier Units	s RL	MDL
olatile Organics by GC/MS	- Westborough L	ab for sample(s):	03 Batch:	WG1320057-5
1,4-Dichlorobenzene	ND	ug/	1 2.5	0.70
Methyl tert butyl ether	ND	ug/	2.5	0.70
p/m-Xylene	ND	ug/	2.5	0.70
o-Xylene	ND	ug/	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/	2.5	0.70
Styrene	ND	ug/	2.5	0.70
Dichlorodifluoromethane	ND	ug/	5.0	1.0
Acetone	ND	ug/	5.0	1.5
Carbon disulfide	ND	ug/	5.0	1.0
2-Butanone	ND	ug/	5.0	1.9
4-Methyl-2-pentanone	ND	ug/	5.0	1.0
2-Hexanone	ND	ug/	5.0	1.0
1,2-Dibromoethane	ND	ug/	2.0	0.65
n-Butylbenzene	ND	ug/	2.5	0.70
sec-Butylbenzene	ND	ug/	2.5	0.70
tert-Butylbenzene	ND	ug/	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/	2.5	0.70
Isopropylbenzene	ND	ug/	2.5	0.70
p-Isopropyltoluene	ND	ug/	2.5	0.70
Naphthalene	ND	ug/	2.5	0.70
n-Propylbenzene	ND	ug/	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/	2.5	0.70
Methyl Acetate	ND	ug/	2.0	0.23
Cyclohexane	ND	ug/	I 10	0.27
Freon-113	ND	ug/	2.5	0.70
Methyl cyclohexane	ND	ug/	10	0.40

Project Name: CONVENTUS Lab Number: L1958113

Project Number: K11.002.001 **Report Date:** 12/12/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 12/12/19 09:00

Analyst: PD

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 03 Batch: WG1320057-5

		Acceptance
Surrogate	%Recovery Qualifi	er Criteria
1,2-Dichloroethane-d4	95	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	113	70-130
Dibromofluoromethane	95	70-130

Project Name: CONVENTUS

Project Number: K11.002.001

Lab Number: L1958113

Report Date: 12/12/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-02,04-11 Bate	ch: WG1320012-3 WG13	20012-4		
Methylene chloride	89		88	70-130	1	20	
1,1-Dichloroethane	88		92	70-130	4	20	
Chloroform	82		87	70-130	6	20	
Carbon tetrachloride	82		84	63-132	2	20	
1,2-Dichloropropane	95		97	70-130	2	20	
Dibromochloromethane	90		89	63-130	1	20	
1,1,2-Trichloroethane	92		88	70-130	4	20	
Tetrachloroethene	86		87	70-130	1	20	
Chlorobenzene	87		89	75-130	2	20	
Trichlorofluoromethane	73		74	62-150	1	20	
1,2-Dichloroethane	85		83	70-130	2	20	
1,1,1-Trichloroethane	79		81	67-130	3	20	
Bromodichloromethane	84		84	67-130	0	20	
trans-1,3-Dichloropropene	95		91	70-130	4	20	
cis-1,3-Dichloropropene	89		88	70-130	1	20	
Bromoform	90		83	54-136	8	20	
1,1,2,2-Tetrachloroethane	95		90	67-130	5	20	
Benzene	91		92	70-130	1	20	
Toluene	92		93	70-130	1	20	
Ethylbenzene	88		90	70-130	2	20	
Chloromethane	82		86	64-130	5	20	
Bromomethane	43		68	39-139	45	Q 20	
Vinyl chloride	88		87	55-140	1	20	

Project Name: CONVENTUS

Project Number: K11.002.001

Lab Number: L1958113

Report Date: 12/12/19

rameter	LCS %Recovery Q	LCSD ual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
platile Organics by GC/MS - Westbord	ough Lab Associated samp	ole(s): 01-02,04-11 Bate	ch: WG1320012-3 WG132	0012-4	
Chloroethane	76	77	55-138	1	20
1,1-Dichloroethene	83	87	61-145	5	20
trans-1,2-Dichloroethene	95	96	70-130	1	20
Trichloroethene	84	87	70-130	4	20
1,2-Dichlorobenzene	93	95	70-130	2	20
1,3-Dichlorobenzene	94	97	70-130	3	20
1,4-Dichlorobenzene	92	93	70-130	1	20
Methyl tert butyl ether	95	90	63-130	5	20
p/m-Xylene	85	90	70-130	6	20
o-Xylene	85	90	70-130	6	20
cis-1,2-Dichloroethene	87	86	70-130	1	20
Styrene	85	90	70-130	6	20
Dichlorodifluoromethane	68	70	36-147	3	20
Acetone	120	100	58-148	18	20
Carbon disulfide	88	90	51-130	2	20
2-Butanone	120	110	63-138	9	20
4-Methyl-2-pentanone	120	110	59-130	9	20
2-Hexanone	110	96	57-130	14	20
1,2-Dibromoethane	94	89	70-130	5	20
n-Butylbenzene	92	96	53-136	4	20
sec-Butylbenzene	96	100	70-130	4	20
tert-Butylbenzene	93	96	70-130	3	20
1,2-Dibromo-3-chloropropane	100	94	41-144	6	20

Project Name: CONVENTUS

Lab Number:

L1958113

Project Number: K11.002.001

Report Date:

12/12/19

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough La	ab Associated	sample(s): (01-02,04-11 Bate	ch: WG13	20012-3 WG1320	0012-4		
Isopropylbenzene	91		94		70-130	3		20
p-Isopropyltoluene	93		98		70-130	5		20
Naphthalene	110		100		70-130	10		20
n-Propylbenzene	92		94		69-130	2		20
1,2,4-Trichlorobenzene	100		99		70-130	1		20
1,3,5-Trimethylbenzene	91		94		64-130	3		20
1,2,4-Trimethylbenzene	91		95		70-130	4		20
Methyl Acetate	98		91		70-130	7		20
Cyclohexane	97		99		70-130	2		20
Freon-113	80		84		70-130	5		20
Methyl cyclohexane	86		88		70-130	2		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	97	88	70-130
Toluene-d8	103	103	70-130
4-Bromofluorobenzene	111	111	70-130
Dibromofluoromethane	96	96	70-130

Project Name: CONVENTUS

Project Number: K11.002.001

Lab Number: L1958113

Report Date: 12/12/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	3 Batch: WG1	1320057-3 \	WG1320057-4			
Methylene chloride	84		85		70-130	1		20
1,1-Dichloroethane	88		87		70-130	1		20
Chloroform	83		82		70-130	1		20
Carbon tetrachloride	78		80		63-132	3		20
1,2-Dichloropropane	94		94		70-130	0		20
Dibromochloromethane	85		87		63-130	2		20
1,1,2-Trichloroethane	89		90		70-130	1		20
Tetrachloroethene	80		83		70-130	4		20
Chlorobenzene	85		86		75-130	1		20
Trichlorofluoromethane	70		72		62-150	3		20
1,2-Dichloroethane	83		83		70-130	0		20
1,1,1-Trichloroethane	75		76		67-130	1		20
Bromodichloromethane	81		83		67-130	2		20
trans-1,3-Dichloropropene	90		92		70-130	2		20
cis-1,3-Dichloropropene	85		86		70-130	1		20
Bromoform	83		86		54-136	4		20
1,1,2,2-Tetrachloroethane	91		96		67-130	5		20
Benzene	87		87		70-130	0		20
Toluene	88		88		70-130	0		20
Ethylbenzene	84		85		70-130	1		20
Chloromethane	81		85		64-130	5		20
Bromomethane	28	Q	47		39-139	51	Q	20
Vinyl chloride	85		86		55-140	1		20

Project Name: CONVENTUS

Project Number: K11.002.001

Lab Number: L1958113

Report Date: 12/12/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
olatile Organics by GC/MS - Westboro	ough Lab Associated	sample(s): 0	3 Batch: WG1	320057-3	WG1320057-4			
Chloroethane	73		75		55-138	3	20	
1,1-Dichloroethene	82		82		61-145	0	20	
trans-1,2-Dichloroethene	88		89		70-130	1	20	
Trichloroethene	80		81		70-130	1	20	
1,2-Dichlorobenzene	91		96		70-130	5	20	
1,3-Dichlorobenzene	94		96		70-130	2	20	
1,4-Dichlorobenzene	90		94		70-130	4	20	
Methyl tert butyl ether	88		90		63-130	2	20	
p/m-Xylene	80		85		70-130	6	20	
o-Xylene	85		85		70-130	0	20	
cis-1,2-Dichloroethene	90		83		70-130	8	20	
Styrene	85		85		70-130	0	20	
Dichlorodifluoromethane	65		65		36-147	0	20	
Acetone	97		100		58-148	3	20	
Carbon disulfide	82		83		51-130	1	20	
2-Butanone	100		110		63-138	10	20	
4-Methyl-2-pentanone	100		110		59-130	10	20	
2-Hexanone	95		100		57-130	5	20	
1,2-Dibromoethane	88		90		70-130	2	20	
n-Butylbenzene	88		91		53-136	3	20	
sec-Butylbenzene	90		94		70-130	4	20	
tert-Butylbenzene	88		92		70-130	4	20	
1,2-Dibromo-3-chloropropane	90		96		41-144	6	20	

Project Name: CONVENTUS

Project Number: K11.002.001 Lab Number: L1958113

Report Date: 12/12/19

Parameter	LCS %Recovery	Qual	%	LCSD 6Recover	ry Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	03	Batch: \	WG1320057-3	WG1320057-4			
Isopropylbenzene	87			91		70-130	4		20
p-Isopropyltoluene	87			92		70-130	6		20
Naphthalene	100			100		70-130	0		20
n-Propylbenzene	87			91		69-130	4		20
1,2,4-Trichlorobenzene	96			96		70-130	0		20
1,3,5-Trimethylbenzene	87			90		64-130	3		20
1,2,4-Trimethylbenzene	88			92		70-130	4		20
Methyl Acetate	97			99		70-130	2		20
Cyclohexane	93			92		70-130	1		20
Freon-113	78			76		70-130	3		20
Methyl cyclohexane	78			81		70-130	4		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	95	93	70-130
Toluene-d8	104	103	70-130
4-Bromofluorobenzene	112	114	70-130
Dibromofluoromethane	96	97	70-130

Lab Number: L1958113

Report Date: 12/12/19

Project Name: CONVENTUS
Project Number: K11.002.001

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1958113-01A	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260-R2(14)
L1958113-01B	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260-R2(14)
L1958113-02A	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260-R2(14)
L1958113-02B	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260-R2(14)
L1958113-02C	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260-R2(14)
L1958113-03A	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260-R2(14)
L1958113-03B	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260-R2(14)
L1958113-03C	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260-R2(14)
L1958113-04A	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260-R2(14)
L1958113-04B	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260-R2(14)
L1958113-04C	Vial HCI preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260-R2(14)
L1958113-05A	Vial HCI preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260-R2(14)
L1958113-05B	Vial HCI preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260-R2(14)
L1958113-05C	Vial HCI preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260-R2(14)
L1958113-06A	Vial HCI preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260-R2(14)
L1958113-06B	Vial HCI preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260-R2(14)
L1958113-06C	Vial HCI preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260-R2(14)
L1958113-07A	Vial HCI preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260-R2(14)
L1958113-07B	Vial HCI preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260-R2(14)
L1958113-07C	Vial HCI preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260-R2(14)
L1958113-08A	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260-R2(14)
L1958113-08B	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260-R2(14)
L1958113-08C	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260-R2(14)

Lab Number: L1958113

Report Date: 12/12/19

Project Name:CONVENTUSProject Number:K11.002.001

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1958113-09A	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260-R2(14)
L1958113-09B	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260-R2(14)
L1958113-09C	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260-R2(14)
L1958113-10A	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260-R2(14)
L1958113-10B	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260-R2(14)
L1958113-10C	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260-R2(14)
L1958113-11A	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260-R2(14)
L1958113-11B	Vial HCl preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260-R2(14)
L1958113-11C	Vial HCI preserved	Α	NA		5.6	Υ	Absent		NYTCL-8260-R2(14)

Project Name:CONVENTUSLab Number:L1958113Project Number:K11.002.001Report Date:12/12/19

GLOSSARY

Acronyms

EDL

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: DU Report with 'J' Qualifiers

Project Name:CONVENTUSLab Number:L1958113Project Number:K11.002.001Report Date:12/12/19

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:CONVENTUSLab Number:L1958113Project Number:K11.002.001Report Date:12/12/19

Data Qualifiers

 \boldsymbol{R} - Analytical results are from sample re-analysis.

 ${\bf RE} \quad \ \ \,$ - Analytical results are from sample re-extraction.

S - Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Project Name:CONVENTUSLab Number:L1958113Project Number:K11.002.001Report Date:12/12/19

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:12121915:57

ID No.:17873 Revision 15

Page 1 of 1

Published Date: 8/15/2019 9:53:42 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-

Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Διрна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	Way	105	Pag			Date Rec'		-/-	5-10	7	ALPHA Job#	213	
Westborough, MA 01581	Mansfield, MA 02048	Project Information	5 510 15	OR THE PARTY OF	CO C	15.61	Delive	erables	16	-			Billing Information	311	
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300	Project Name: CONV	FAMILE	The same of			STATE OF THE PERSON.	ASP-A	01112-0	A	ASP-	3	Same as Clier	nt Info	
FAX: 508-898-9193	FAX: 508-822-3288		OI MAIN	ST		- 165	_	EQuIS (1 F	File)			6 (4 File)	PO N		
Client Information	Factor Deciving	Project # K11. 002.		911			-	Other		-		,			
Client: C45 ENG.	AFFRE	(Use Project name as Pr	- Investigation of the control of th				-	latory Requ	iireme	nt	1	THE REAL PROPERTY.	Disposal Site Inform	mation	
Address: 14164157.		Project Manager: Co		÷ ,			DOM: NO	NY TOGS	estillation of		NY Par	1 375	Please identify below	and the second	
Buccaro M	14253	ALPHAQuote #:	24 1116CE	/N			1 =	AWQ Standa	ards		NY CP	1375 1-1712	applicable disposal fac		
Phone: / 7/4 - 84	7-1430	Turn-Around Time			C	A WOOD ST	=	NY Restricte		П			Disposal Facility:		******
Fax:		Standard	1 20	Due Date			=	NY Unrestric		e	- Career		200	NY	
Email: Rbackus(e	(SIDS 1007	Rush (only if pre approved		# of Days				NYC Sewer					Other:	100000	
These samples have be		ed by Alpha	Separat	n ar a aja	0.		ANAL	NI CONTROL DE CONTROL					Sample Filtration		T
Other project specific									T				Done	-	0
Please specify Metals	or TAL.						Telvixs Rues	6					Lab to do Preservation Lab to do (Please Specify be	elow)	a I B o t
ALPHA Lab ID	0	ample ID	Col	lection	Sample	Sampler's	17				ΙI		Carrieron Romana		t
(Lab Use Only)	5270	imple ID	Date	Time	Matrix	Initials	13						Sample Specific Con	nments	e
50113 2H-01	TRIP BLANK		12/4/19	3:00	6m	KB	2								2
W-12/611			7 '												
											П				
C = HNO ₃ D = H ₂ SO ₄	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification N Mansfield: Certification N				ntainer Type Preservative	V B						Please print clea and completely. not be logged in turnaround time	Samples of and clock will r	can not
F = MeOH	C = Cube	Relinquigned	Bv:	Date	/Time	1/1/	Receiv	ed By:	_		Date/	Time	start until any an resolved. BY EX		
H = Na ₂ S ₂ O ₃	O = Other E = Encore D = BOD Bottle	A AM		12/5/19	1250	10 /	21	M	2		19	01:50	THIS COC, THE	CLIENT AGREES BY ALPHA	6
Form No: 01-25 HC (rev. 30)-Sept-2013)					1							(See reverse sid		

Westborough, MA 01581	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048	Service Centers Mahwah, NJ 07430: 35 White Albany, NY 12205: 14 Walke Tonawanda, NY 14150: 275 of Project Information	r Way	05	Page / o		A.3430.040	THE RESERVE OF THE PERSON NAMED IN	2-6-	-19	ALPHA Job # — 1958 Billing Information	113
8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Project Name: CON		<u>e-</u>			ASP	-A IS (1 File)	ASI	P-B ulS (4 File)	Same as Client In	io
Client Information		Project # KII. CO		0/-			T Othe					
Client: CES ENGIN	CG. B	(Use Project name as					-	/ Requireme	ent	-	Disposal Site Information	on
Address: 14(ELG)	. Suite 100	Project Manager: C		N			NYT	And the state of t		Part 375	Please identify below locat	
BUPPALO MY		ALPHAQuote #:	7	100	1		T AWG	Standards	□ NY	Part 375 CP-91	applicable disposal facilitie	
Phone/ 7/6 - 847		Turn-Around Time			No section	Section.	□ NY R	estricted Use	Othe		Disposal Facility:	
Fax:	7450	Standa	ard X	Due Date	a.			nrestricted Us			□ NJ ⊠ N	r
Email: Rhadava	Drasing	Rush (only if pre approv		# of Days			100	Sewer Discha			Other:	6
These samples have be				ii oi bayo	,		ANALYSI				Sample Filtration	T
Other project specific		The state of the s					O		T T		Done	
Please specify Metals	or TAL.						VOCS 824				Lab to do Preservation Lab to do (Please Specify below	a l B o t
ALPHA Lab ID (Lab Use Only)	Sa	ample ID	Date	ection Time	Sample Matrix	Sampler's Initials	12				Sample Specific Comme	nts e
CO113-01-00	MS-1100112	63.9	12/3/19	11:18	6W	123	X			+		3
-01-02	MS. MWO2 12	nig	12/3/19	12:02	GW	23	اعرا			+		3
	173. MW0312		12/3/15	12:42	GW	123						3
	75 - DW0412		12/3/19	1:3/		RB	ط			1		7
	RCP- FILSO 1 12		12/4/19	11:28	Gw	VER	6			+ + -		3
	BCB-17W0712		12/4/2	11:56	6W	23	y					3
	BCP-TWOY		12/4/18	12;25	GW	no	1					3
	RUD-MW 63		12/4/19	12:55	GW	123	¥					3
709-10	BUD - TWOLE	12049	12/4/19	1:45	6.w	NB	4			+		2
SK19 -10	1340 - MW 05		12/4/19	7:15	GW	120	9		-	+		3
Preservative Code:	Container Code	Westboro: Certification		6.15					-		Tany - services	
A = None B = HCl C = HNO ₃ D = H ₂ SO ₄ E = NaOH	P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Mansfield: Certification			_	reservative	<u> </u>				Please print clearly, and completely. San not be logged in and turnaround time cloc start until any ambig	nples can k will not
F = MeOH	C = Cube	Retinguish	буву:	Date	/Time	10	Received B	v:	Dat	te/Time	resolved. BY EXECU	
G = NaHSO ₄				12/5/19	1250	12/5/19 12-SC THIS CHAS R 12/6/19 011-SC TO BE TERMS			THIS COC, THE CLI HAS READ AND AG TO BE BOUND BY TERMS & CONDITI (See reverse side.)	REES ALPHA'S		
Form No: 01-25 HC (rev. 3))-Sept-2013)	1									(Occ reverse side.)	

C&S Engineers, Inc. 141 Elm Street Suite 100 Buffalo, New York 14203 Phone: 716-847-1630 www.cscos.com

Well Casing Unit Volume

(gal/l.f.)

11/4" = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 6" = 1.5 8" = 2.6

Well Sampling Field **Data Sheet**

Client Name: Kakicka Health
Site Name: CONVENTUS

Project No.: N96

Field Staff: RICH BACKERT

WELL DATA

				•		,		
Date	12/3/19	12/3/19	12/3/18	12/3/18	12/4/19	12/4/19	12/4/19	12/4/19
Well Number	NS Alwest	nsnuz	75-11-5	115-11W Y	BEPHWI	BUNW7	BUPHW4	BOPMW3
Diameter (inches)	2"	2"	2"	2"	2"	211	211	Sn
Total Sounded Depth (feet)	36'	360'	40	40'	15 Pt.	15 FT -	15 Fr.	15 PT:
Static Water Level (feet)	21.9'	303'	29.8	29.4	FOFT	9.8F	6.9FT.	7.0A
H₂O Column (feet)	15,9	b485.7	MARCHE	MARY 10.6	8.0	5.2FT.	8.1FT.	8.0
Pump Intake (feet)			1/2/				,	
Well Volume (gallons)			41					0
Amount to Evacuate (gallons)	Zaal	2gal	Isal	390	292	2gal	3gul	280 .
Amount Evacuated (gallons)	Property and the second	2 fal	1 cul	3 ml	Zail	4 4	3 gul	2sul
	The same of the sa		•		J		9	0

FIELD READINGS

Date	Stabilization	12/3/19	12/3/19	12/3/19	12/8/18	12/4/19	12/4/19	12/4/19.	12/4/19	
Time	Criteria	M7:18	12:02	12:42	1:31	11:28	11.56	12:25	12.55	
pH (Std. Units)	+/-0.1	7.19	7.88	8.27	8.80	5.65	7.15	5.65	6.80	
Conductivity (mS/cm)	3%	4.71	38.4	37.7	6.28	7.99	4.33	5.38	10.8	
Turbidity (NTU)	10%	42.4	0,00	0.00	BB 148	_	~	-	-	
D.O. (mg/L)	10%	8.42	14.48	17.78	4692	2.95	1.67	1.24	13.17	
Temperature (°C) (°F)	3%	14.4/00	15,04°C	13392	137500	13.56 °C	14.3900	14.77°C	14.9702	
ORP ³ (mV)	+/-10 mv	188	24	503	166	9	51	-13	124	
Appearance		Claure	CLEAR	ST	were	CLEAR	CLAAn	CLEM	Cigron	
Free Product (Yes/No)	10 A	YK 5	455	YCS	YP	Yas.	yrs	yres	yrs	
Odor	2007 2008	NONE	rock	abre	NOWE	NONE.	Nova	NONE	NOME	
Comments 4 power Empoly Empore For LAMP - EMPOR Displayed on SUREN MAY EFFECT WIN Reality.										

C = Clear T = Turbid ST = Semi Turbid VT = Very Turbid

C&S Engineers, Inc. 141 Elm Street Suite 100 Buffalo, New York 14203 Phone: 716-847-1630 www.cscos.com

Well Sampling Field **Data Sheet**

Client Name: KAUCIDA IHRACIA

	Well	Casing	Unit	Volume
--	------	--------	------	--------

(gal/l.f.)

11/4" = 0.08 2" = 0.17 3" = 0.38 4" = 0.66 8" = 2.6 6" = 1.5

Site Name: CONVENTUS

Project No.: N44

Field Staff: RICH BACKENS

WELL DATA

Date	12/4/19	14/19		
Well Number	ROPHW	6 Banios		
Diameter (inches)	811	211		
Total Sounded Depth (feet)	18	180		
Static Water Level (feet)	7.1	7.9		
H₂O Column (feet)	7.9	7.2		
Pump Intake (feet)				
Well Volume (gallons)				
Amount to Evacuate (gallons)	280	2gul		
Amount Evacuated (gallons)	Zsul	. 29ul		

FIELD READINGS

Date	Stabilization	12/4/19	12/4/19				-
Time	Criteria	1:45	2:15				
pH (Std. Units)	+/-0.1	10:40	7.60				
Conductivity (mS/cm)	3%	153	10.4				
Turbidity (NTU)	10%	-					
D.O. (mg/L)	10%	4.21	2.00				
Temperature (°C) (°F)	3%	14.1200	14.9600	,			
ORP ³ (mV)	+/-10 mv	32	-29				
Appearance		CLERN	CLAR				
Free Product (Yes/No)		YKS	VES				
Odor		NONE	Mivon				
Comments	ar Must -	-4 H:Wore	- ретко	Cher			

C = Clear T = Turbid ST = Semi Turbid VT = Very Turbid

APPENDIX B

INSTITUTIONAL AND ENGINEERING CONTROLS CERTIFICATION FORM

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	e No.	C915260	Site Details		Box 1					
Sit	e Name Fo	ormer Mobil Servic	e Station 99-MST							
Cit _y Co	e Address: y/Town: Bu unty: Erie e Acreage:		Zip Code: 14203							
Re	porting Peri	od: March 24, 201	9 to March 24, 2020							
		3			YES	NO				
1.	Is the infor	mation above corre	ect?		X					
	If NO, inclu	ude handwritten abo	ove or on a separate sheet.							
2.			operty been sold, subdivided, nis Reporting Period?	merged, or undergone a		X				
3.		been any change o CRR 375-1.11(d))?	f use at the site during this Ro	eporting Period		\boxtimes				
4.			or local permits (e.g., building his Reporting Period?	, discharge) been issued		\boxtimes				
			stions 2 thru 4, include doc en previously submitted wit							
5.	Is the site	currently undergoin	g development?			X				
					Box 2					
					YES	NO				
6.			ent with the use(s) listed belo nercial, and Industrial	w?	X					
7.	Are all ICs	/ECs in place and f	unctioning as designed?		X					
	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.									
A	A Corrective Measures Work Plan must be submitted along with this form to address these issues.									
Sig	nature of Ov	vner Remedial Part	y or Designated Representative	e Date						

		Box 2A				
	to the Overlitation France and	YES	NO			
	any new information revealed that assumptions made in the Qualitative Exposure essment regarding offsite contamination are no longer valid?		\boxtimes			
	ou answered YES to question 8, include documentation or evidence documentation has been previously submitted with this certification form.					
	the assumptions in the Qualitative Exposure Assessment still valid? • Qualitative Exposure Assessment must be certified every five years)		X			
lf ye upd	ou answered NO to question 9, the Periodic Review Report must include an ated Qualitative Exposure Assessment based on the new assumptions.					
SITE NO	C915260	Вох	3			
Desc	ription of Institutional Controls					
Parcel 100.79-1-1	Owner Institutional Control					
100.73-1-1	Ground Water Use I Soil Management P Landuse Restriction Monitoring Plan Site Management P IC/EC Plan	lan	on			
 Prohibition of use of groundwater. Landuse Restriction for Restricted Residential, Commercial or Industrial use. Soil Management or Excavation Work Plan for any future intrusive work. Groundwater Monitoring Plan. 						
100.79-1-2	.11 Kaleida Health Ground Water Use I Soil Management P Landuse Restriction Monitoring Plan Site Management P IC/EC Plan	lan	on			
 Prohibition of use of groundwater. Landuse Restriction for Restricted Residential, Commercial or Industrial use. Soil Management or Excavation Work Plan for any future intrusive work. Groundwater Monitoring Plan. 						
		Box	4			
Desc	ription of Engineering Controls					
Parcel	Engineering Control					
100.79-1-1	.1 Groundwater Treatment System					
Groundwater will be treated in-situ by injections of oxygen release compounds (ORC) to degrade petroleum hydrocarbons to harmless compounds. 100.79-1-2.11						
Groundwater Treatment System						
Groundwater will be treated in-situ by injections of oxygen release compounds (ORC) to degrade petroleum hydrocarbons to harmless compounds						

Box	5

	Periodic Review Report (PRR) Certification Statements					
1.	I certify by checking "YES" below that:					
	 a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification; 					
	 b) to the best of my knowledge and belief, the work and conclusions described in this certifica are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete. 					
	YES NO					
2.	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true:					
	(a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;					
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;					
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;					
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and					
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.					
	YES NO					
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.					
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.					
	Signature of Owner, Remedial Party or Designated Representative Date					

IC CERTIFICATIONS SITE NO. C915260

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Timothy F. Hughes	at C&S Engineers, Inc.141 Elm Street, Buffalo, New York 142,03					
print name	, print business address					
Kaleida Properties, Inc.; Kaleida Health and Conventus						
am certifying as Partners, Inc.	(Owner or Remedial Party)					
for the Site named in the Site Details Section of this form. Signature of Owner, Remedial Party, or Designated Representative Rendering Certification Date						

IC/EC CERTIFICATIONS

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Timothy F. Hughes	at <u>C&S Engineers</u> , Inc.141 Elm Street, Buffalo, New York 14203,
print name	print business address
am certifying as a Professional Engineer	Kaleida Properties, Inc.; Kaleida Health and Conventus er for the Partners, Inc. Remedial Party)
1+1011	0.08482 THE
July & M. X	4/10/20
Signature of Professional Engineer, for t Remedial Party, Rendering Certification	AND