129 Holden Street Redevelopment ERIE COUNTY BUFFALO, NEW YORK

SITE MANAGEMENT PLAN

NYSDEC Site Number: C915261

Prepared for:

Highland Park Village, LLC 2421 Main Street Buffalo, New York 14214

Prepared by:

GZA GeoEnvironmental of New York
Buffalo, New York
(716) 685-2300

Revisions to Final Approved Site Management Plan:

Revision No.	Date Submitted	Summary of Revision	NYSDEC Approval Date	
1	April 26, 2016	Additional approved hardscape structure (Figure 9, Section 3.3.1, Section 6.1)	May 2, 2016	

CERTIFICATION STATEMENT

I, BART A. KLETTKE, P.E. certify that I am currently a NYS registered professional engineer as defined in 6 NYCRR Part 375 and that this Site Management Plan was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10).

BART A. KLETTKE P.E.

9-Z-15 DATE

TABLE OF CONTENTS

129 Holden Street Site ERIE COUNTY BUFFALO, NEW YORK

SITE MANAGEMENT PLAN

Table of Contents

Section		<u>Description</u>		
LIST OF	ACRO	ONYMS		
ES	EXE	CUTIVE SUMMARY	1	
1.0	INTR	ODUCTION	3	
	1.1	General	3	
	1.2	Revisions	4	
	1.3	Notifications	4	
2.0	SUM	MARY OF PREVIOUS INVESTIGATIONS AND R	REMEDIAL	
	ACTI	ONS	7	
	2.1	Site Location and Description	7	
	2.2	Physical Setting		
		2.2.1 Land Use		
		2.2.2 Geology	7	
		2.2.3 Hydrogeology		
	2.3	Investigation and Remedial History		
	2.4	Remedial Action Objectives		
	2.5	Remaining Contamination	13	
		2.5.1 Soil		
3.0	INST	ITUTIONAL AND ENGINEERING CONTROL PLAN	15	
	3.1	General	15	
	3.2	Institutional Controls		
	3.3	Engineering Controls		
		3.3.1 Cover		
		3.3.2 Criteria for Completion of Remediation/Termination	of Remedial	
		Systems		
		3.3.2.1 Cover	18	

TABLE OF CONTENTS (Continued)

Section		Description	<u>Page</u>
4.0	MON	NITORING AND SAMPLING PLAN	19
	4.1	General	19
	4.2	Site-wide Inspection	
		4.2.1 Monitoring and Sampling Protocol	21
5.0	OPE	RATION AND MAINTENANCE PLAN	22
	5.1	General	22
6.0	PER	IODIC ASSESSMENTS/EVALUATIONS	23
	6.1	Climate Change Vulnerability Assessment	23
	6.2	Green Remediation Evaluation	23
		6.2.1 Frequency of Sampling and Other Periodic Activities	24
		6.2.2 Metrics and Reporting	24
	6.3	Remedial System Optimization	24
7.0	REP	ORTING REQUIREMENTS	25
	7.1	Site Management Reports	25
	7.2	Periodic Review Report	
		7.2.1 Certification of Institutional and Engineering Controls	28
	7.3	Corrective Measures Work Plan	
	7.4	Remedial Site Optimization Report	30
8.0	REF	ERENCES	31

TABLE OF CONTENTS (Continued)

List of Tables (page numbers	listed if	embedded	in the	text)
------------------	--------------	-----------	----------	--------	-------

1: Notifications6
2: Summary of Soil Sample Analytical Results
3: Soil/Fill Exceedances of ISCOs and PELT
4: Schedule of Interim Monitoring/Inspection Reports

List of Figures

- 1: Locus Plan
- 2: Site Plan
- 3: Tax Map
- 4: Groundwater Contour Map
- 5: Hot Spot Excavations
- 6: Areas Without Demarcation Layer
- 7: Typical Hardscape Structures
- 8: Typical Slab on Grade
- 9: Typical Paved Crawlspace Over Vapor Barrier

List of Appendices

- A: List of Site Contacts
- **B**: Environmental Easement
- C: Subsurface Logs
- D: Excavation Work Plan
- E: Health and Safety Plan
- F: Quality Assurance Project Plan
- G: Site Management Forms
- H: Field Sampling Plan
- I: Erosion and Sediment Control Plan
- J: Responsibilities of Owner and Remedial Party

List of Acronyms

AS Air Sparging

ASP Analytical Services Protocol BCA Brownfield Cleanup Agreement BCP Brownfield Cleanup Program

CERCLA Comprehensive Environmental Response, Compensation and Liability Act

CAMP Community Air Monitoring Plan
C/D Construction and Demolition
CFR Code of Federal Regulation
CLP Contract Laboratory Program
COC Certificate of Completion

CO2 Carbon Dioxide CP Commissioner Policy

DER Division of Environmental Remediation

EC Engineering Control

ECL Environmental Conservation Law

ELAP Environmental Laboratory Approval Program

ERP Environmental Restoration Program

GHG Green House Gas

GWE&T Groundwater Extraction and Treatment

HASP Health and Safety Plan IC Institutional Control

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health NYCRR New York Codes, Rules and Regulations

O&M Operations and Maintenance

OM&M Operation, Maintenance and Monitoring

OSHA Occupational Safety and Health Administration

OU Operable Unit

PELT Proposed Excavation Limit Threshold

PID Photoionization Detector
PRP Potentially Responsible Party
PRR Periodic Review Report

QA/QC Quality Assurance/Quality Control
QAPP Quality Assurance Project Plan
RAO Remedial Action Objective
RAWP Remedial Action Work Plan

RCRA Resource Conservation and Recovery Act RI/FS Remedial Investigation/Feasibility Study

ROD Record of Decision RP Remedial Party

RSO Remedial System Optimization SAC State Assistance Contract

SCG Standards, Criteria and Guidelines

SCO Soil Cleanup Objective

SMP Soil Management Plan

SOP Standard Operating Procedures

SOW Statement of Work

SPDES State Pollutant Discharge Elimination System

SSD Sub-slab Depressurization SVE Soil Vapor Extraction SVI Soil Vapor Intrusion

SVMS Soil Vapor Mitigation System

TAL Target Analyte List
TCL Target Compound List

TCLP Toxicity Characteristic Leachate Procedure USEPA United States Environmental Protection Agency

UST Underground Storage Tank
VCA Voluntary Cleanup Agreement
VCP Voluntary Cleanup Program

ES EXECUTIVE SUMMARY

The following provides a brief summary of the controls implemented for the Site, as well as the inspections, monitoring, maintenance and reporting activities required by this Site Management Plan:

Site Identification:

Site No. C915261 129 Holden Street, Buffalo, NY

Institutional Controls:

- 1. The controlled property may be used for: restricted residential; commercial; and industrial use.
- 2. All ECs must be maintained as specified in this SMP;
- 3. All ECs must be inspected at a frequency and in a manner defined in the SMP;
- 4. The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Erie County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department;
- 5. Groundwater and other environmental Health monitoring must be performed as defined in the SMP
- 6. Data and information pertinent to site management must be reported at the frequency and in a manner as defined in this SMP;
- 7. All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with this SMP:
- 8. Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in this SMP;
- 9. Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical component of the remedy shall be performed as defined in this SMP;
- 10. Access to the site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by the Environmental Easement;
- 11. Buildings will be built on slabs only.

Site Identification:	Site No.	C915261	129 Holden	Street,	Buffalo,	NY
----------------------	----------	---------	------------	---------	----------	----

Engineering Controls:	1. Cover system	
Inspections:	Frequency	
Cover system inspe	Annually	
Reporting:		
1. Periodic Review Report Annually		

Further descriptions of the above requirements are provided in detail in the latter sections of this Site Management Plan.

1.0 INTRODUCTION

1.1 General

This Site Management Plan (SMP) is a required element of the remedial program for the 129 Holden Street Site located in Buffalo, New York (hereinafter referred to as the "Site"). See Figure 1. The Site is currently in the New York State (NYS) Brownfield Cleanup Program (BCP) (Site No. C915261) which is administered by New York State Department of Environmental Conservation (NYSDEC).

Highland Park Village, LLC (Highland), formerly Strickler Development Group, entered into a Brownfield Cleanup Agreement (BCA) on February 9, 2012 (amended October 31, 2013) with the NYSDEC to remediate the site. A figure showing the site location and boundaries of this site is provided in Figure 2. The boundaries of the site are more fully described in the metes and bounds site description that is part of the Environmental Easement provided in Appendix B.

After completion of the remedial work, some contamination was left at this site, which is hereafter referred to as "remaining contamination". Institutional and Engineering Controls (ICs and ECs) have been incorporated into the site remedy to control exposure to remaining contamination to ensure protection of public health and the environment. An Environmental Easement granted to the NYSDEC, and recorded with the Erie County Clerk, requires compliance with this SMP and all ECs and ICs placed on the site.

This SMP was prepared to manage remaining contamination at the site until the Environmental Easement is extinguished in accordance with ECL Article 71, Title 36. This plan has been approved by the NYSDEC, and compliance with this plan is required by the grantor of the Environmental Easement and the grantor's successors and assigns. This SMP may only be revised with the approval of the NYSDEC.

It is important to note that:

- This SMP details the site-specific implementation procedures that are required by the Environmental Easement. Failure to properly implement the SMP is a violation of the Environmental Easement, which is grounds for revocation of the Certificate of Completion (COC);
- Failure to comply with this SMP is also a violation of Environmental Conservation Law, 6NYCRR Part 375 and the BCA (Index #C915261-01-12; Site #C915261) for the site, and thereby subject to applicable penalties.

All reports associated with the site can be viewed by contacting the NYSDEC or its successor agency managing environmental issues in New York State. A list of contacts for persons involved with the site is provided in Appendix A of this SMP.

This SMP was prepared by GZA GeoEnvironmental of New York, on behalf of Highland Park Village, LLC (Highland), in accordance with the requirements of the NYSDEC's DER-10 ("Technical Guidance for Site Investigation and Remediation"), dated May 2010, and the guidelines provided by the NYSDEC. This SMP addresses the means for implementing the ICs and/or ECs that are required by the Environmental Easement for the site.

1.2 Revisions

Revisions to this plan will be proposed in writing to the NYSDEC's project manager. Revisions will be necessary upon, but not limited to, the following occurring: a change in media monitoring requirements, upgrades to or shut-down of a remedial system, post-remedial removal of contaminated sediment or soil, or other significant change to the site conditions. In accordance with the Environmental Easement for the site, the NYSDEC will provide a notice of any approved changes to the SMP, and append these notices to the SMP that is retained in its files.

1.3 Notifications

Notifications will be submitted by the property owner to the NYSDEC, as needed, in accordance with NYSDEC's DER – 10 for the following reasons:

- 60-day advance notice of any proposed changes in site use that are required under the terms of the BCA, 6NYCRR Part 375 and/or Environmental Conservation Law.
- 7-day advance notice of any field activity associated with the remedial program.
- 15-day advance notice of any proposed ground-intrusive activity pursuant to the Excavation Work Plan.
- Notice within 48-hours of any damage or defect to the foundation, structures or EC that reduces or has the potential to reduce the effectiveness of an EC, and likewise, any action to be taken to mitigate the damage or defect.
- Verbal notice by noon of the following day of any emergency, such as a fire; flood; or earthquake that reduces or has the potential to reduce the effectiveness of ECs in place at the site, with written confirmation within 7 days that includes a summary of actions taken, or to be taken, and the potential impact to the environment and the public.
- Follow-up status reports on actions taken to respond to any emergency event requiring ongoing responsive action submitted to the NYSDEC within 45 days describing and documenting actions taken to restore the effectiveness of the ECs.

Any change in the ownership of the site or the responsibility for implementing this SMP will include the following notifications:

- At least 60 days prior to the change, the NYSDEC will be notified in writing of the proposed change. This will include a certification that the prospective purchaser/Remedial Party has been provided with a copy of the Brownfield Cleanup Agreement (BCA), and all approved work plans and reports, including this SMP.
- Within 15 days after the transfer of all or part of the site, the new owner's name, contact representative, and contact information will be confirmed in writing to the NYSDEC.

Table 1 on the following page includes contact information for the above notification. The information on this table will be updated as necessary to provide accurate contact information. A full listing of site-related contact information is provided in Appendix A.

Table 1: Notifications*

Name	Contact Information
NYSDEC Site Control	(518) 402-9567
NYSDEC Regional Contact	(716) 851-7220

^{*} Note: Notifications are subject to change and will be updated as necessary.

2.0 SUMMARY OF PREVIOUS INVESTIGATIONS AND REMEDIAL ACTIONS

2.1 Site Location and Description

The site is located in the City of Buffalo, Erie County, New York and is identified as Section 90.29 Block 2 and Lot 43.1 on the City of Buffalo Tax Map (see Figure 3). The site is an approximately 27.09-acre area and is bounded by residential properties to the north, Central Park Avenue to the south, Manhattan Avenue and residential, commercial, and community service properties to the east, and Holden Avenue to the west (see Figure 2 – Site Plan). The boundaries of the site are more fully described in Appendix B –Environmental Easement. The owner of the site parcel at the time of issuance of this SMP is Highland Park Village, LLC.

2.2 Physical Setting

2.2.1 Land Use

Prior to the redevelopment upon completion of the BCP, the Site consisted of the following: a soil-covered, vacant parcel graded for redevelopment with no structures. The Site is zoned commercial.

The properties adjoining the Site and in the neighborhood surrounding the Site primarily include commercial, residential, and public use properties. The properties immediately south of the Site include residential properties; the properties immediately north of the Site include residential properties; the properties immediately east of the Site include commercial, residential, and public use properties; and the properties to the west of the Site include commercial and residential properties.

2.2.2 Geology

The overburden soils encountered at the Site consist primarily of various fill materials used to backfill a former quarry at the Site. The thickness of the overburden soils (native and fill materials)

ranged from approximately 5 feet to greater than 19 feet bgs. Bedrock was encountered beneath the overburden soils at some of the investigation locations. Site specific boring logs are provided in Appendix C.

Seven main fill types were generally encountered at various locations and depths throughout the site during the RI investigation activities, as described below:

- 1. <u>Slag</u> This fill layer mainly consists of material that is a byproduct of the steel production process mixed with lesser and varying amounts of silt, sand, and gravel. It was generally encountered in the eastern and central portion of the Site and the layer ranged in thickness from around 6 inches to 3 feet.
- 2. <u>Non-Native Silty Clay</u> This fill layer is a non-native brown silty clay unit with varying amounts of sand, gravel and other materials (brick, metals, wood, etc.). At some locations it was encountered multiple times in the stratigraphic horizon. It ranged in thickness from 1 foot to 12 feet.
- 3. <u>Black Sands</u> This fill unit consists of various types of black sand or black stained soils encountered throughout the Site. This unit was encountered in the northeastern, north-central and western portions of the Site. The thickness of the layers encountered ranged from around 6 inches to 7 feet.
- 4. Potential Ash This fill unit consists of various types of light weight fine sands and silts of various mixed colors (black, orange, white, brown or black). This material may be the result of some sort of process or incineration. This unit was primarily encountered in the central and southeastern portions of the Site. The thickness of the layers encountered ranged from around 6 inches to greater than 14 feet.
- 5. <u>Gravels & Sands</u> This fill layer consists mainly of brown and dark brown gravels with lesser and varying amounts of sands, silts, clays and other debris. This unit was encountered throughout the site, but was most commonly encountered in the central and eastern portions of the Site. The thickness of the layers encountered ranged from around 1 foot to 13 feet.
- 6. <u>Sands & Gravels</u> This fill layer consists mainly of brown and dark brown sands with lesser and varying amounts of gravels, silts, clays and other debris. This unit was encountered in the central and eastern portions of the Site. The thickness of the layers encountered ranged from around 1 foot to 8 feet

7. <u>Fractured Limestone</u>- This fill layer appears to consist of limestone pieces, ranging in size from 4 inches to 4 feet, mixed with lesser and varying amounts of sand, silt and clay. The unit may represent limestone that was excavated from the quarry, but was not processed for reuse. This fill layer was encountered throughout the Site and ranged in thickness from 1 foot to 14 feet.

Bedrock underlying the Site is the Bertie Limestone Formation of the Salina Group. This group is from the Silurian Period (438 to 408 million years ago). Depth to bedrock at the Site varied due to historic quarry operations, ranging from 5 to 19 feet. The Bertie Limestone is a gray, aphanitic limestone, which is fine-grained, thinly bedded with close spaced horizontal to sub-horizontal fractures.

2.2.3 <u>Hydrogeology</u>

Depth to groundwater in the six monitoring wells installed on-site prior to remedial activities ranged from 13.2 feet bgs to 25.9 feet bgs. Groundwater flow direction on-site was determined to be in a northerly direction. Regional groundwater flow is expected to be to the southwest towards Lake Erie. Hydraulic conductivity in the overburden at the Site is expected to be variable due to the variable types and configurations of fill materials present. Regional hydraulic conductivity in the overburden soils, consisting primarily of lacustrine silts and clays, is expected to be relatively low. No private or public water supply wells are located proximate to the Site.

A groundwater contour map is provided as Figure 4. Wells utilized to create the groundwater contour map were screened over the lower fill materials and upper bedrock. Groundwater elevation data is provided on Figure 4. Groundwater monitoring well construction logs are provided in Appendix C. All of the monitoring wells have been abandoned in general conformance of NYSDEC guidance.

2.3 Investigation and Remedial History

The following narrative provides a remedial history timeline and a brief summary of the available project records to document key investigative and remedial milestones for the Site. Full titles for each of the reports referenced below are provided in Section 8.0 - References.

According to "Phase I Environmental Site Assessment, Central Park Plaza, 129 Holden Street, Buffalo, New York," prepared by GZA for LP Ciminelli Construction, dated August 2011, the Site was originally developed for industrial use as early as 1874 for the mining industry and the production of limestone and natural rock cement. The property was owned and operated by the Buffalo Cement Co. Ltd. from 1877 to 1948. Approximately five to six feet of Bertie Limestone was quarried during this time for the production of natural cement. Historical aerial photographs indicate that these mining operations extended beyond the Site boundaries to the north and east.

The Site was first developed as the Central Park Plaza in 1958 with the construction of three Site buildings for commercial purposes. Two additional commercial buildings were constructed in 1967 and 1989. The Site operated as a shopping plaza from 1958 until the last of the tenants vacated the Site in July 2011, and has been vacant since that time. Various businesses occupied the Site throughout its history as a shopping center. Historic Site tenants of concern identified during GZA's Phase I ESA included a photo mart, laundromats, an automatic car wash, a dry cleaner, a chop shop, and an automotive service shop. In addition, the Site was listed twice on the NY Spills database. Based on the information obtained as part of the Phase I ESA, historic site usage represented recognized environmental concerns and additional investigation was warranted.

In October 2011, GZA completed a Phase II Environmental Site Assessment (Phase II ESA) at the Site, the results of which are summarized in GZA's report titled "Phase II Environmental Site Assessment, Central Park Plaza, 129 Holden Street, Buffalo, New York," dated November 2011. The results of the Phase II ESA identified volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), polychlorinated biphenyls (PCBs), and metals at concentrations in shallow fill soils (~0-4 ft. bgs) at the Site exceeding the NYSDEC Part

375 Soil Cleanup Objectives (SCOs) for unrestricted site use (USCOs); concentrations of several SVOCs and metals also exceeded the Part 375 SCOs for residential site use (RSCOs) In addition, petroleum-related VOCs detected underneath a building on the northwestern portion of the Site were characteristic of a petroleum release; as such, a petroleum release was reported to NYSDEC on October 28, 2011 and Spill No. 1109473 was assigned to the Site. This Spill was closed by the NYSDEC on December 27, 2011.

GZA conducted a Remedial Investigation (RI) at the Site between July 2012 and March 2013 to characterize the nature and extent of contamination at the Site. Generally, the RI identified that a significant amount of fill material had been placed at the Site after the quarry operations ceased in the 1950s, prior to construction of the Central Park Plaza. Fill was identified from the ground surface to depths ranging from 5 to 19 feet bgs. Fill materials consisted of granular soils (gravel and sand with lesser amounts of silt and clay) overlying cohesive fill soils (silt and clay) with various amounts of brick, glass, slag, wood, and limestone fragments. It was evident from the subsurface investigation that extensive excavation of bedrock had been previously conducted at the Site.

According to the analytical results generated during the RI, SVOCs and metals were detected in shallow soil/fill samples at concentrations above the Part 375 SCOs for restricted residential site use (RRSCOs) (Table 2); however, specific sources of the SVOCs and metals contamination were not identified. No VOCs, PCBs, herbicides, or pesticides were detected at concentrations above the RRSCOs in the fill/soil samples submitted for analysis (Table 2). Five SVOCs (benzo (a) anthracene, benzo (a) pyrene, benzo (b) fluoranthene, dibenz (a,h) anthracene, and indeno (1,2,3-cd) pyrene) and five metals (arsenic, chromium, copper, nickel, and zinc) had at least one exceedance of the Part 375 SCOs for industrial site use (ISCOs) in the shallow soil/fill samples and were considered the Significant Contaminants of Concern (SCOC). No specific contaminants of concern were identified in the groundwater samples submitted for analysis; therefore, no groundwater remediation was required as part of the remedial action.

Based on the results of the RI and previous Phase II ESA, it was determined that remedial measures would be required to address SVOC- and metal- impacted shallow soil/fill at the Site prior to the anticipated redevelopment. Specifically, 13 areas of concern (AOCs) were identified

during the RI where SVOC- and metal- contaminated soil/fill was identified in exceedance of the RRSCOs. Within four of the AOCs (Areas 3, 4, 5, and 11), five "hotspots" (TP-10, TP-70, TP-74, TP-75, and TP-77; Figure 5) were identified with contamination above the site-specific Proposed Excavation Limit Threshold (PELT) (Table 3), derived by a statistical analysis of the concentrations of the 10 above-listed SCOC. A Remedial Action (RA) consisting of excavation and proper off-site disposal of shallow soil/fill at the five hotspots followed by installation of a 2-foot thick cover system over the entire Site that met the RRSCOs was recommended in order to achieve the RRSCOs via a Track 4 (site-specific) cleanup. Figure 5 indicates the limits of the excavations of the materials within the hot spots.

Based on an analysis of chemical fate and transport conducted as part of the RI, the potential exposure pathways by which Site contaminants could have reached off-site receptors were fugitive dust migration and surface water migration. However, the remedial activities (removal of contaminated material from the Site, installation of a cover system, and design of a Site storm water collection and management system) and adherence to this site management plan have and will continue to eliminate or significantly minimize the potential that contaminated soil/fill particles could migrate from the Site in the form of fugitive dust and/or surface runoff.

Prior to the start of the RA, the Site had limited distinguishable features other than a small one-story building located along Holden Street on the western portion of the Site. The remainder of the Site was covered by asphalt and exposed soil/fill. The ground surface at the Site sloped downward towards the northern end of the Site, dropping off approximately 19 feet. The elevation at the southern end of the Site was approximately 670 feet above sea level, and the elevation at the northwestern end of the Site was approximately 650 feet above sea level.

2.4 Remedial Action Objectives

The Remedial Action Objectives (RAOs) for the Site as listed in the Decision Document for the Site dated December 19, 2014 are as follows:

Soil

RAOs for Public Health and Environmental Protection

- Address soils with contaminants above the RRSCOs in the upper 2 feet, as required by a restricted residential Track 4 cleanup, to protect public health and the environment.
- Prevent ingestion or direct contact with soil contaminants exceeding the RRSCOs by developing a soil cover system.
- Implement and maintain engineering and institutional controls so that the Site is used in a manner consistent with the future anticipated use (restricted residential).

2.5 Remaining Contamination

2.5.1 Soil

Soil/fill in the five "hotspots" (TP-10, TP-70, TP-74, TP-75, and TP-77) (Figure 5) was excavated to a depth of approximately 4 ft. bgs; if the bottom sample did not contain concentrations of SVOCs and/or metals above the PELT, excavation was deemed complete. If a bottom sample contained concentrations of SVOCs and/or metals above the PELT, or if a fill unit typically associated with elevated concentrations of SVOCs and/or metals was identified (i.e., foundry sand), at the request of the NYSDEC, excavation continued until the NYSDEC was satisfied. Confirmatory samples were also collected from the sidewalls of the hot spot excavations. The bottoms of the final hot spot excavations ranged in depth from approximately 4 to 6 ft. bgs. All final confirmatory sidewall and bottom samples were below the PELT. Figure 5 illustrates the location and extent of the five hot spot excavations.

Following removal of approximately one foot of asphalt and sub-base from the entire Site, approximately two feet of soil/fill was excavated from the southern portion of the Site and relocated to the northern portion of the Site to backfill a former basement and to increase grades in select locations in anticipation of the planned redevelopment. A clean soil cover system of at least two feet in thickness was then placed over the entire Site.

As the site-specific derived PELT utilized to define the five "hotspots" in which excavation was required was higher than the ISCOs for seven of the 10 SCOC (Table 3), soil/fill remains on-site, beneath the cover system (which includes hardscape in areas as part of the redevelopment), in which contaminants exceed RRSCOs through ISCOs. Concentrations of SVOCs and metals for soil/fill samples collected during the RI (Table 2), which are below the PELT, are representative of concentrations of SVOCs and metals remaining on-site underneath the cover system. It should be assumed that these concentrations may present in shallow soil/fill under the cover system anywhere on Site. A high visibility orange mesh demarcation layer was placed over the entire Site at the interface between the remaining soil/fill and the overlying cover system, with the exception of three areas depicted on Figure 6. These three areas do not include a demarcation layer. This demarcation layer is present at a depth of approximately 2 ft. bgs over the majority of the Site and at depths ranging between approximately 4 and 8 ft. bgs in the remediated hotspot areas and utility corridors which parallel the major roadways on Site.

3.0 INSTITUTIONAL AND ENGINEERING CONTROL PLAN

3.1 General

Since remaining contamination exists at the site, Institutional Controls (ICs) and Engineering Controls (ECs) are required to protect human health and the environment. This IC/EC Plan describes the procedures for the implementation and management of all IC/ECs at the site. The IC/EC Plan is one component of the SMP and is subject to revision by the NYSDEC.

This plan provides:

- A description of all IC/ECs on the site;
- The basic implementation and intended role of each IC/EC;
- A description of the key components of the ICs set forth in the Environmental Easement;
- A description of the controls to be evaluated during each required inspection and periodic review;
- A description of plans and procedures to be followed for implementation of IC/ECs, such as the implementation of the Excavation Work Plan (EWP) (as provided in Appendix D) for the proper handling of remaining contamination that may be disturbed during maintenance or redevelopment work on the site; and
- Any other provisions necessary to identify or establish methods for implementing the IC/ECs required by the site remedy, as determined by the NYSDEC.

3.2 Institutional Controls

A series of ICs is required by the Decision Document (dated December 19, 2014) to: (1) implement, maintain and monitor Engineering Control systems; (2) prevent future exposure to remaining contamination; and, (3) limit the use and development of the site to restricted residential (or more restricted, i.e. commercial) uses only. Adherence to these ICs on the site is required by the Environmental Easement and will be implemented under this SMP. ICs identified in the Environmental Easement may not be discontinued without an amendment to or extinguishment of

the Environmental Easement. The IC boundaries are the same as the parcel boundaries as shown on Figures 2 and 3. These ICs are:

- The property may be used for : restricted residential; commercial; and industrial use;
- All ECs must be operated and maintained as specified in this SMP;
- All ECs must be inspected at a frequency and in a manner defined in the SMP.
- The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Erie County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department.
- Groundwater and other environmental Health monitoring must be performed as defined in the SMP.

Data and information pertinent to site management must be reported at the frequency and in a manner as defined in this SMP;

- All future activities that will disturb remaining contaminated material must be conducted in accordance with this SMP;
- Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in this SMP;
- Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical component of the remedy shall be performed as defined in this SMP;
- Access to the site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by the Environmental Easement;
- Buildings will be built on slabs only.

3.3 Engineering Controls

3.3.1 <u>Cover</u>

Exposure to remaining contamination at the site is prevented by a cover system placed over the site. During the Remedial Action, a minimum of 24 inches of clean soil was placed over the entire Site. The clean soil, consisting primarily of sand, was imported from sources chemically characterized by GZA and approved by the NYSDEC for use as clean soil cover at the Site. The imported soil met the Part 375 SCOs for Restricted Residential site use. The imported clean soil is separated from the underlying potentially contaminated soil/fill by a high visibility orange mesh demarcation layer with the exception of three areas depicted on Figure 6. These three areas do not include a demarcation layer. This demarcation layer is present at a depth of approximately 2 ft. bgs over the majority of the Site and at depths ranging between approximately 4 and 8 ft. bgs in the remediated hotspot areas and utility corridors which parallel the major roadways on Site.

Upon redevelopment of the Site, the cover system will include asphalt pavement, concretecovered sidewalks, concrete building slabs, etc. Appendix D outlines the procedures required to be implemented during development of the Site and thereafter. Thickness of the imported clean soil may be less than 24 inches in areas with such hardscape structures; however, exposure to underlying potentially contaminated soil/fill will be prevented by the presence of such hard surfaces. Typical hardscape structures which are anticipated to be incorporated in the cover system as part of the redevelopment are shown in Figures 7, 8, and 9. Components of the hardscape features may include concrete, asphalt, brick pavers, and aggregate sub-base materials. Material type and thicknesses used vary depending on the site feature. Figure 7 provides details for several site features including asphalt pavement (detail 1) and concrete sidewalks (detail 4). Figure 8 provides details of a typical slab on grade building foundation as Detail #1. Figure 9 provides details of a crawlspace that will be paved with a 2-inch thick concrete "mud slab" over a vapor barrier. As illustrated on the design drawing, a soil stabilization fabric will be placed above the graded on-site soil/fill below the slab-on-grade foundations prior to construction. Structural fill, minimum 8 inches thick, will be placed onto the soil stabilization fabric. A 10 mil polyethylene vapor retarder will be placed on top of the structural fill prior to concrete placement. A minimum 4-inch concrete slab foundation will be placed on top of the vapor retarder.

Asphalt-covered areas will generally include roadways and turnarounds. These standard duty asphalt areas may include graded and compacted sub-grade, geotextile fabric/demarcation fabric, 10 inches of sub-base course material (Type 1), a 2.5-inch asphalt binder course, and a 1-inch asphalt top course. Concrete sidewalks and driveways may include graded and compacted subgrade, demarcation fabric, minimum 4-inch thick (sidewalk)/5-inch thick (driveway) sub-base course material, and minimum 4-inch thick (sidewalk)/5-inch thick (driveway) concrete (4,000 minimum 4-inch thick (driveway) concrete (4,000 mi

psi). Brick-paver walkways may consist of graded and compacted subgrade, demarcation fabric, 6 inches of crushed stone sub-base course material, a 2-inch thick layer of homogeneous fine sand, and brick pavers.

The Excavation Work Plan (EWP) provided in Appendix D outlines the procedures required to be implemented in the event the cover system is breached, penetrated or temporarily removed, and any underlying remaining contamination is disturbed. When and where the cover is removed and the demarcation penetrated, it will be replaced per the requirements of this SMP. Procedures for the inspection of this cover are provided in the Monitoring and Sampling Plan included in Section 4.0 of this SMP. Any work conducted pursuant to the EWP must also be conducted in accordance with the procedures defined in a Health and Safety Plan (HASP) and associated Community Air Monitoring Plan (CAMP) prepared for the site and provided in Appendix E.

3.3.2 <u>Criteria for Completion of Remediation/Termination of Remedial Systems</u>

Generally, remedial processes are considered completed when monitoring indicates that the remedy has achieved the remedial action objectives identified by the decision document. The framework for determining when remedial processes are complete is provided in Section 6.4 of NYSDEC DER-10.

3.3.2.1 Cover

The cover system is a permanent control and the quality and integrity of this system will be inspected at defined, regular intervals in accordance with this SMP in perpetuity.

4.0 MONITORING AND SAMPLING PLAN

4.1 General

This Monitoring and Sampling Plan describes the measures for evaluating the overall performance and effectiveness of the remedy. This Monitoring and Sampling Plan may only be revised with the approval of the NYSDEC. Details regarding the sampling procedures, data quality usability objectives, analytical methods, etc. for all samples collected as part of site management for the site are included in the Quality Assurance Project Plan provided in Appendix F.

This Monitoring and Sampling Plan describes the methods to be used for:

- Sampling and analysis of all appropriate media (e.g., soils);
- Assessing compliance with applicable NYSDEC standards, criteria and guidance (SCGs), particularly Part 375 SCOs for soil; and
- Evaluating site information periodically to confirm that the remedy continues to be effective in protecting public health and the environment;

To adequately address these issues, this Monitoring and Sampling Plan provides information on:

- Sampling locations, protocol and frequency;
- Analytical sampling program requirements; and
- Annual inspection and periodic certification.

Reporting requirements are provided in Section 7.0 of this SMP.

4.2 Site – wide Inspection

Site-wide inspections will be performed at a minimum of once per year. Modification to the frequency or duration of the inspections will require approval from the NYSDEC. Site-wide inspections will also be performed after all severe weather conditions that may affect ECs or monitoring devices. During these inspections, an inspection form will be completed as provided in Appendix G – Site Management Forms. The form will compile sufficient information to assess the following:

- Compliance with all ICs, including site usage;
- An evaluation of the condition and continued effectiveness of ECs:
- General site conditions at the time of the inspection;
- The site management activities being conducted including, where appropriate, confirmation sampling and a health and safety inspection; and
- Confirm that site records are up to date.

Inspections of all remedial components installed at the site will be conducted. A comprehensive site-wide inspection will be conducted and documented according to the SMP schedule, regardless of the frequency of the Periodic Review Report. The inspections will determine and document the following:

- Whether ECs continue to perform as designed;
- If these controls continue to be protective of human health and the environment;
- Compliance with requirements of this SMP and the Environmental Easement;
- Achievement of remedial performance criteria; and
- If site records are complete and up to date; and

Reporting requirements are outlined in Section 7.0 of this plan.

Inspections will also be performed in the event of an emergency. If an emergency, such as a natural disaster or an unforeseen failure of any of the ECs occurs that reduces or has the potential to reduce the effectiveness of ECs in place at the site, verbal notice to the NYSDEC must be given by noon of the following day. In addition, an inspection of the site will be conducted within 5 days of the event to verify the effectiveness of the IC/ECs implemented at the site by a qualified

environmental professional, as determined by the NYSDEC. Written confirmation must be provided to the NYSDEC within 7 days of the event that includes a summary of actions taken, or to be taken, and the potential impact to the environment and the public.

4.2.1 <u>Monitoring and Sampling Protocol</u>

All sampling activities will be recorded in a field book and associated sampling log as provided in Appendix G - Site Management Forms. Other observations will be noted on the sampling log. The sampling log will serve as the inspection form for the monitoring network. Additional detail regarding monitoring and sampling protocols are provided in the site-specific Field Activities Plan provided as Appendix H of this document.

5.0 OPERATION AND MAINTENANCE PLAN

5.1 General

The site remedy does not rely on any mechanical systems, such as groundwater treatment systems, sub-slab depressurization systems or air sparge/soil vapor extraction systems to protect public health and the environment. Therefore, the operation and maintenance of such components is not included in this SMP.

6.0 PERIODIC ASSESSMENTS/EVALUATIONS

6.1 Climate Change Vulnerability Assessment

Increases in both the severity and frequency of storms/weather events, an increase in sea level elevations along with accompanying flooding impacts, shifting precipitation patterns and wide temperature fluctuation, resulting from global climactic change and instability, have the potential to significantly impact the performance, effectiveness and protectiveness of a given site and associated remedial systems. Vulnerability assessments provide information so that the site and associated remedial systems are prepared for the impacts of the increasing frequency and intensity of severe storms/weather events and associated flooding.

The Site includes a site-wide cover system, consisting of either at least two feet of clean soil cover or hardscape (i.e. concrete sidewalks, concrete building foundations, paved crawlspace over vapor barrier). The majority of the Site will be paved and/or covered by buildings as part of the redevelopment. Areas of the cover system that will not include hardscape will be vulnerable to erosion. Although expected to be minimal, specific features of the Site which would increase the vulnerability of the cover system to erosion have not been identified. The cover system will be evaluated for evidence of erosion during annual inspections and on an as-needed basis (i.e., after severe storm events).

6.2 Green Remediation Evaluation

NYSDEC's DER-31 Green Remediation requires that green remediation concepts and techniques be considered during all stages of the remedial program including site management, with the goal of improving the sustainability of the cleanup and summarizing the net environmental benefit of any implemented green technology. This section of the SMP provides a summary of any green remediation evaluations to be completed for the Site during site management, and as required in the Periodic Review Report (PRR). The primary green remediation element that will be implemented during maintenance of the remedy is re-use of soil/fill encountered during Site redevelopment (and therefore decreasing waste generation).

To reduce the need for off-site disposal of potentially contaminated soil/fill materials encountered during Site redevelopment, soil/fill materials will be evaluated by a qualified environmental professional for re-use on-site in accordance with Appendix D. Contaminated on-site material, including historic fill and contaminated soil, that is acceptable for reuse on-site will be placed below the demarcation layer and site cover system. An elevation management area (EMA) will be created during continued redevelopment to manage soil/fill excavated for building foundation footers, utility poles, conduits, etc. As soil/fill is generated from each phase of the construction build-out, the EMA consisting of an area of relatively lower elevation will be temporarily uncovered in accordance with this SMP, the acceptable soil/fill material placed into the EMA, and the EMA re-covered in accordance with the SMP. Refer to Section D-9, "Cover System Restoration."

6.2.1 Frequency of Sampling and Other Periodic Activities

Transportation to and from the Site and use of consumables in relation to visiting the Site in order to perform inspections and/or collect samples and shipping samples to a laboratory for analyses have direct and/or inherent energy costs. The schedule and/or means of these periodic activities will be prepared so that these tasks can be accomplished in a manner that reduces expenditure of energy or resources. If feasible and appropriate, such periodic activities will be performed simultaneously to minimize the frequency of site visits.

6.2.2 Metrics and Reporting

As discussed in Section 7.0, information on green remediation elements (i.e. waste generation, transportation and shipping) will be recorded on the Site Management Form (Appendix G) to facilitate and document consistent implementation of green remediation during site management and to identify corresponding benefits.

6.3 Remedial System Optimization

The Site remedy is limited to removal of soil/fill hot spots and a site cover system to prevent and manage direct contact with remaining soil/fill. Because of the remedial actions completed at

the site, the cover system engineering control, no Remedial Site Optimization (RSO) study is anticipated.

7.0. REPORTING REQUIREMENTS

7.1 Site Management Reports

All site management inspection, maintenance and monitoring events will be recorded on the appropriate site management forms provided in Appendix G. These forms are subject to NYSDEC revision.

All applicable inspection forms and other records, including media sampling data, generated for the site during the reporting period will be provided in electronic format to the NYSDEC in accordance with the requirements of Table 4 and summarized in the Periodic Review Report.

Table 4: Schedule of Interim Monitoring/Inspection Reports

Task/Report	Reporting Frequency*		
Inspection Report	As-Needed		
Monthly Report**	As-Needed		
Periodic Review Report	Annually, or as otherwise determined by the Department		

^{*} The frequency of events will be conducted as specified until otherwise approved by the NYSDEC.

All interim monitoring/inspections reports will include, at a minimum:

• Date of event or reporting period;

^{**} It is anticipated that during Site redevelopment, there will be excavations below the cover system. During such activities, the Department may require monthly reports pertaining to the handling of the excavated fill.

- Name, company, and position of person(s) conducting monitoring/inspection activities;
- Description of the activities performed;
- Where appropriate, color photographs or sketches showing the approximate location of any problems or incidents noted (included either on the checklist/form or on an attached sheet);
- Type of samples collected (e.g., soil);
- Copies of all field forms completed (e.g., chain-of-custody documentation, etc.);
- Sampling results in comparison to appropriate standards/criteria;
- A figure illustrating sample type and sampling locations;
- Copies of all laboratory data sheets and the required laboratory data deliverables required for all points sampled (to be submitted electronically in the NYSDECidentified format);
- Any observations, conclusions, or recommendations; and
- A determination as to whether contaminant conditions have changed since the last reporting event.

Routine maintenance event reporting forms will include, at a minimum:

- Date of event;
- Name, company, and position of person(s) conducting maintenance activities;
- Description of maintenance activities performed;
- Any modifications to the system;
- Where appropriate, color photographs or sketches showing the approximate location of any problems or incidents noted (included either on the checklist/form or on an attached sheet); and,
- Other documentation such as copies of invoices for maintenance work, receipts for replacement equipment, etc., (attached to the checklist/form).

Non-routine maintenance event reporting forms will include, at a minimum:

• Date of event;

- Name, company, and position of person(s) conducting non-routine maintenance/repair activities:
- Description of non-routine activities performed;
- Where appropriate, color photographs or sketches showing the approximate location of any problems or incidents (included either on the form or on an attached sheet); and
- Other documentation such as copies of invoices for repair work, receipts for replacement equipment, etc. (attached to the checklist/form).

Data will be reported in digital format as determined by the NYSDEC. Currently, data is to be supplied electronically and submitted to the NYSDEC EQuISTM database in accordance with the requirements found at this link http://www.dec.ny.gov/chemical/62440.html.

7.2 Periodic Review Report

A Periodic Review Report (PRR) will be submitted to the Department beginning sixteen (16) months after the Certificate of Completion is issued. After submittal of the initial Periodic Review Report, the next PRR shall be submitted annually to the Department or at another frequency as may be required by the Department. In the event that the site is subdivided into separate parcels with different ownership, a single Periodic Review Report will be prepared that addresses the site described in Appendix C -Environmental Easement. The report will be prepared in accordance with NYSDEC's DER-10 and submitted within 30 days of the end of each certification period. Media sampling results will also be incorporated into the Periodic Review Report. The report will include:

- Identification, assessment and certification of all ECs/ICs required by the remedy for the site.
- Results of the required annual site inspections and severe condition inspections, if applicable.
- All applicable site management forms and other records generated for the site during the reporting period in the NYSDEC-approved electronic format, if not previously submitted.
- A summary of any information generated during the reporting period, with comments and conclusions.

- Data summary tables and graphical representations of contaminants of concern by media (soil, etc.), which include a listing of all compounds analyzed, along with the applicable standards, with all exceedances highlighted. These will include a presentation of past data as part of an evaluation of contaminant concentration trends.
- Results of all analyses, copies of all laboratory data sheets, and the required laboratory data deliverables for all samples collected during the reporting period will be submitted in digital format as determined by the NYSDEC. Currently, data is supplied electronically and submitted to the NYSDEC EQuISTM database in accordance with the requirements found at this link: http://www.dec.ny.gov/chemical/62440.html.
- A site evaluation, which includes the following:
 - The compliance of the remedy with the requirements of the site-specific RAWP or Decision Document;
 - The operation and the effectiveness of all treatment units, etc., including identification of any needed repairs or modifications;
 - Any new conclusions or observations regarding site contamination based on inspections or data generated by the Monitoring and Sampling Plan for the media being monitored;
 - Recommendations regarding any necessary changes to the remedy and/or Monitoring and Sampling Plan; and
 - The overall performance and effectiveness of the remedy.

7.2.1 <u>Certification of Institutional and Engineering Controls</u>

Following the last inspection of the reporting period, a qualified environmental professional or Professional Engineer licensed to practice in New York State will prepare, and include in the Periodic Review Report, the following certification as per the requirements of NYSDEC DER-10:

"For each institutional or engineering control identified for the site, I certify that all of the following statements are true:

• The inspection of the site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under my direction;

- The institutional control and/or engineering control employed at this site is unchanged from the date the control was put in place, or last approved by the Department;
- Nothing has occurred that would impair the ability of the control to protect the public health and environment;
- Nothing has occurred that would constitute a violation or failure to comply with any site management plan for this control;
- Access to the site will continue to be provided to the Department to evaluate the remedy, including access to evaluate the continued maintenance of this control;
- If a financial assurance mechanism is required under the oversight document for the site, the mechanism remains valid and sufficient for the intended purpose under the document;
- *Use of the site is compliant with the environmental easement;*
- The engineering control systems are performing as designed and are effective;
- To the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program and generally accepted engineering practices; and
- *The information presented in this report is accurate and complete.*

Every five years the following certification will be added:

• The assumptions made in the qualitative exposure assessment remain valid.

For BCP projects which the Department has determined do not represent a significant threat to public health or the environment, but where contaminants in groundwater exceed drinking water standards, the following should also be included:

• No new information has come to my attention, including groundwater monitoring data from wells located at the site boundary, if any, to indicate that the assumptions made in the qualitative exposure assessment of off-site contamination are no longer valid.

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section

210.45 of the Penal Law. I, name, of business address, am certifying as Owner/Remedial Party or Owner's/Remedial Party's Designated Site Representative;

and, if the Site consists of multiple properties:

I have been authorized and designated by all site owners/remedial parties to sign this certification] for the site."

The signed certification will be included in the Periodic Review Report.

The Periodic Review Report will be submitted, in electronic format, to the NYSDEC Central Office, Regional Office in which the site is located and the NYSDOH Bureau of Environmental Exposure Investigation. The Periodic Review Report may need to be submitted in hard-copy format, as requested by the NYSDEC project manager.

7.3 Corrective Measures Work Plan

If any component of the remedy is found to have failed, or if the periodic certification cannot be provided due to the failure of an institutional or engineering control, a Corrective Measures Work Plan will be submitted to the NYSDEC for approval. This plan will explain the failure and provide the details and schedule for performing work necessary to correct the failure. Unless an emergency condition exists, no work will be performed pursuant to the Corrective Measures Work Plan until it has been approved by the NYSDEC.

7.4 Remedial Site Optimization Report

In the event that an RSO is to be performed (see Section 6.3, upon completion of an RSO, an RSO report must be submitted to the Department for approval. A general outline for the RSO report is provided in Appendix I. The RSO report will document the research/investigation and data gathering that was conducted, evaluate the results and facts obtained, present a revised conceptual site model and present recommendations. RSO recommendations are to be implemented upon approval from the NYSDEC. Additional work plans, design documents,

HASPs etc., may still be required to implement the recommendations, based upon the actions that need to be taken. A final engineering report and update to the SMP may also be required.

The RSO report will be submitted, in electronic format, to the NYSDEC Central Office, Regional Office in which the site is located, Site Control and the NYSDOH Bureau of Environmental Exposure Investigation.

8.0 REFERENCES

6NYCRR Part 375, Environmental Remediation Programs. December 14, 2006.

NYSDEC DER-10 – "Technical Guidance for Site Investigation and Remediation".

NYSDEC, 1998. Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1. June 1998 (April 2000 addendum).

"Phase I Environmental Site Assessment, Central Park Plaza, 129 Holden Street, Buffalo, New York," prepared by GZA GeoEnvironmental of New York for LP Ciminelli Construction, dated August 2011.

"Phase II Environmental Site Assessment, Central Park Plaza, 129 Holden Street, Buffalo, New York," prepared by GZA GeoEnvironmental of New York for Harter Secrest & Emery LLP, dated November 2011.

"Final Remedial Investigation Alternatives Analysis Report, 129 Holden Street, Buffalo, New York, Brownfield Cleanup Program Site No. C915261," prepared by GZA GeoEnvironmental of New York for NYSDEC, dated August 2014.

"Final Remedial Action Work Plan, 129 Holden Street, Buffalo, New York, Brownfield Cleanup Program Site No. C915261," prepared by GZA GeoEnvironmental of New York for NYSDEC, dated November 2014.

TABLES

				1								bullato, Ne	,,, , o.,,													
Sample Location Sample Depth (ft bgs) Sample Date	Part 375 Unrestricted SCO	Part 375 Restricted Residential SCO	TP-1 2-4 7/10/2012	TP-2 Slag @ 2 ft 7/10/2012	7/10/2012		TP-3 8-10.5 7/10/2012 Q	TP-4 6-8 7/10/2012		TP-6 6-8 7/11/2012 Q						TP-10 14-17 2 7/11/201 Q	4-6			TP-13 6-8 7/12/2012	_		TP-15 6-8 7/12/2012		-	_
Volatile Organics (ug/kg	g)				·							<u> </u>			<u> </u>					<u>. </u>						
Acetone	50	100,000	21.4 J	NT	23.9 J	J 12.6 J	12.6 J	20.2 J	27.3 J	124 J	NT	39.9 J	28.8	J 35.2	J 108	J 22.9	J 160 .	J 19.8 J	136	J 214 B	181 B	191 B	242 B	221 B	198 B	398 J
Benzene	60	4,800		NT							NT															
2-Butanone	120	100,000		NT						27.9	NT				25		37.2		27.6							
Carbon disulfide	NV	NV		NT							NT						2.68	J								
Cyclohexane	NV	NV		NT							NT															
cis-1,2-Dichloroethene	250	100,000		NT							NT															
Ethylbenzene	1,000	41,000		NT							NT			3.88	J											
Isopropylbenzene	NV	NV		NT							NT															
Methylcyclohexane	NV	NV		NT							NT															
Methylene Chloride	50	100,000		NT							NT									8.33 J	10 J	9.1 J	11.6	9.71 J	12.1	10.4 J
Tetrachloroethene	1,300	19,000		NT							NT					5.61										
Toluene	700	100,000	2.28 J	NT		2.33 J	2.49 J				NT	3.56 J		6.83	J 1.55	J	2.14	J				2.3 J			2.39 J	,
Trichloroethene	470	21,000		NT							NT															
m,p-Xylene	260 **	100,000 **	3.54 J	NT		5.16	4.13 J	2.46 J			NT	6.12		16.8	J 2.82	J	3.52	J		3.1 J	2.82 J	4.18	25.2		4.55	
o-Xylene	260 **	100,000 **		NT							NT			5.41	J								27			
Semi-Volatile Organics	(ug/kg)				·							<u> </u>			<u> </u>					<u>. </u>						
Acenaphthene	20,000	100,000		NT							NT			265	J 7,440	289	J 205 .	J					13,100 J			209 J
Acenaphthylene	100,000	100,000		NT			737				NT					589			344							
Anthracene	100,000	100,000		NT			759				NT			1,040	23,400	874	466		242	J			35,300		1,600 J	401
Benzo (a) anthracene	1,000	1,000		NT		362	2,420		375		NT	231 J		1,070	30,600	2,390	916	219 J	J 801				47,800		3,220	614
Benzo (a) pyrene	1,000	1,000		NT		305 J	2,190		305 J		NT	309 J		686	26,500	2,340	761	213 J	892				41,400		2,680 J	518
Benzo (b) fluoranthene	1,000	1,000		NT		338 J	2,350		407		NT	334 J		761	25,900	2,420	761	249 J	917				42,300		2,860 J	549
Benzo (g,h,i) perylene	100,000	100,000		NT		201 J	1,420		211 J		NT				13,300	785			180 、	J			25,100			325 J
Benzo (k) fluoranthene	800	3,900		NT		219 J	1,450		264 J		NT	189 J		516	17,300	1,560	480		661				27,300		2,360 J	361
Bis (2-ethylhexyl) phthalate	NV	NV		NT							NT															
Carbazole	NV	NV		NT							NT			433	7,230	366	192	J								
Chrysene	1,000	3,900		NT		370	2,430		417		NT	226 J		961	27,600	2,430	876	249 J	J 878				46,300		3,080	670
Dibenz (a,h) anthracene	330	330		NT			330 J				NT				4,870	J 519										
Dibenzofuran	7,000	14,000		NT							NT			452	5,250	J							10,300 J			
Di-n-butyl phthalate	NV	NV		NT							NT															
Fluoranthene	100,000	100,000		NT		736	4,290		736		NT	335 J		2,480	74,300	3,990	1,870	402	1,480			218 J	130,000		6,960	1,360
Fluorene	30,000	100,000		NT							NT			445	7,760	185	J 199 .	J					15,800 J			216 J
Indeno (1,2,3-cd) pyrene	500	500		NT		225 J	1,970		255 J		NT	283 J		549	19,300	2,500	658	208 J	808				34,900		2,430 J	388
2-Methylnaphthalene	NV	NV		NT							NT			187	J											
Naphthalene	12,000	100,000		NT							NT			244	J											
Phenanthrene	100,000	100,000		NT		513	2,170		348		NT			3,270	56,900	2,250	1,460	292 J	J 514				112,000		4,600	1,470
Pyrene	100,000	100,000		NT		665	3,880		622		NT	260 J		1,800	58,100	3,460	1,620	340 J	1,280			196 J	99,600		5,310	1,130
			NOTES: 1									1 - 1		,			, ,							•		

- 2. Blank Table cell indicates compound was not detected above reporting limit.
- 3. NT indicates compound was not tested.
- 4. Analytical testing completed by Paradigm Environmental Services.
- 5. Results presented for TP-17, 2-4 ft; TP-23, 8-10 ft; TP-65 6 to 8 ft; TP-67, 0 to 2 ft; TP-71, 8 to 10 ft; TP-76, 13 to 15 ft; and TP-80, 2 to 4 ft are the higher of these sample and their respective duplicates.
- 6. Q = laboratory qualifier; J = analyte was detected but at an estimated concentration; UJ = analyte was not detected; NJ = analyte detection is tentative; R = data are unusable.
- 7. ug/kg = parts per billion, mg/kg = parts per million.
- 8. Part 375 Residential Soil Cleanup Objectives (SCOs) are from NYCRR Subpart 375-6, Remedial Program Soil Cleanup Objectives, dated December 14, 2006.
- 9. NV = no value; NS = not specified; NT = not tested; ND = non detect.
- 10. Concentrations that are bolded exceed the Part 375 Unrestricted SCOs and the & shaded exceed their respective Part 375 Residential SCOs.
- 11. ** = Cleanup criteria applies to the sum of total xylene compounds.
- 12. The reporting limit for these SVOCs, <3,300 ug/kg were elevated likely due to a matrix interference in the material analyzed. Reporting limit exceeds some of the SVOCs RRSCOs.

		1			1							Bullaio,	New TOIK		1	1										
		D 275																								
Sample Location	Part 375	Part 375 Restricted	TP-19	TP-19	TP-20	TP-20		TP-22	TP-23	TP-24	TP-25	TP-26	TP-27	TP-27	TP-28	TP-29		TP-30	TP-31	TP-31	TP-32	TP-33	TP-33	TP-34	TP-35	TP-36
Sample Depth (ft bgs)	Unrestricted SCO	Residential	8-10	15	4-6	14-16		8-10	8-10	2-4	4-6	12-14	0-2	10-12	4-6	6-8	0-2	10-12	4-6	8-10	10-12	2-4	10-12	13-15	10-12	4-6
Sample Date	500	SCO	7/12/2012	7/12/2012	_			_		2 7/13/2012	_		_	_	_			_	10/22/2012		_	_	-	10/23/2012	10/23/2012	_
			Q	Q		Q	Q C	Σ (Q	Q C) (ַ	Q	Q Q	Q)	Q Q	Q Q		Q Q	Q	Q	Q	Q	Q	Q
Volatile Organics (ug/kg																	T T	T T								1
Acetone	50	100,000	312 B	262 B											NT				NT		NT			NT	NT	NT
Benzene	60	4,800													NT				NT		NT			NT	NT	NT
2-Butanone	120	100,000	23.9	10.6 J			13.4	J							NT			26.2 J	NT	28.2 J	NT	65.2 J	9.81 J	NT	NT	NT
Carbon disulfide	NV	NV													NT			2.9 J	NT	38.8 J	NT			NT	NT	NT
Cyclohexane	NV	NV													NT				NT	17 J	NT			NT	NT	NT
cis-1,2-Dichloroethene	250	100,000													NT				NT	3.27 J	NT			NT	NT	NT
Ethylbenzene	1,000	41,000	3.15 J						2.49	J					NT				NT	33.2 J	NT	5.92 J		NT	NT	NT
Isopropylbenzene	NV	NV	2.52 J												NT				NT	26.9 J	NT	3.43 J		NT	NT	NT
Methylcyclohexane	NV	NV				1									NT				NT	11.5 J	NT	95.8 J		NT	NT	NT
Methylene Chloride	50	100,000	7.82 J	7.21 J	81.2	124	30.4	119	235	379 J	81.1	J 74.4	90.4	91.7	NT				NT		NT			NT	NT	NT
Tetrachloroethene	1,300	19,000										3.08	J		NT				NT		NT	6.46 J		NT	NT	NT
Toluene	700	100,000			2.67 J	J			4.52	J	2.86	J			NT				NT	5.88 J	NT			NT	NT	NT
Trichloroethene	470	21,000													NT				NT	3.53 J	NT			NT	NT	NT
m,p-Xylene	260 **	100,000 **	12.4		5.83	3.78	J	4.31	J 10.5		5.99	J	2.06	J	NT				NT	33.9 J	NT	16.5 J		NT	NT	NT
o-Xylene	260 **	100,000 **	2.08 J		1.82	J			3.03	J					NT				NT	27.5 J	NT	12.1 J		NT	NT	NT
Semi-Volatile Organics	(ug/kg)																									
Acenaphthene	20,000	100,000															NT		7,680	33,200			NT			231 J
Acenaphthylene	100,000	100,000							253	J			4,570				NT						NT			
Anthracene	100,000	100,000				240	J 262 J	J	602		161 、	J	7,530				NT		16,700	42,700			NT			924
Benzo (a) anthracene	1,000	1,000		295 J	168 J	J 547	J 977		2,170		508	450	10,900	252 J	180 J		NT		20,100	59,400	325 J		NT			4,020
Benzo (a) pyrene	1,000	1,000		260 J	244 J	J 520	J 937		1,680		497	490	8,690		189 J		NT		15,700	45,800	329 J		NT			3,390
Benzo (b) fluoranthene	1,000	1,000		265 J	281 J	J 475	J 1,030		1,740		585	510	8,640		228 J		NT		13,700	45,500	357		NT			3,570
Benzo (g,h,i) perylene	100,000	100,000			237 J	J 360	J 616		946		330	358	8,340				NT		6,920	20,400	505		NT			1,770
Benzo (k) fluoranthene	800	3,900				444	J 638		1,460		323	352	5,930				NT		11,200	35,400	179 J		NT			2,440
Bis (2-ethylhexyl) phthalate	NV	NV									226 .	J			NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Carbazole	NV	NV											2,900	J	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Chrysene	1,000	3,900		274 J	195 J	J 553	J 1,230		2,000		536	463	8,210	272 J	233 J		NT		18,200	60,300	344		NT			3,810
Dibenz (a,h) anthracene	330	330							301	J							NT			6,280 J			NT			486
Dibenzofuran	7,000	14,000											2,050	J	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Di-n-butyl phthalate	NV	NV				267	J		571						NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Fluoranthene	100,000	100,000	194 J	760	191 J	J 994	J 1,700		3,850		1,140	828	30,400	296 J	389	206	J NT		46,900	139,000	658	946 J	NT		271 J	6,270
Fluorene	30,000	100,000											4,310				NT		8,620	44,100			NT			
Indeno (1,2,3-cd) pyrene	500	500		211 J	283 J	J 454	J 767		1,260		428	506	7,120		177 J		NT		9,740	25,800	380		NT			2,340
2-Methylnaphthalene	NV	NV													NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Naphthalene	12,000	100,000															NT			7,840 J			NT			
Phenanthrene	100,000	100,000		570		830	J 941		1,570		706	558	30,200		227 J		NT		56,500	117,000	364		NT		245 J	3,180
Pyrene	100,000	100,000	161 J	599	178 J	J 804	J 1,480 J	J	2,950	J	934	719	22,000	496	329 J	181	J NT		35,700	116,000	586	945 J	NT		229 J	5,630

- 2. Blank Table cell indicates compound was not detected above reporting limit.
- 3. NT indicates compound was not tested.
- Analytical testing completed by Paradigm Environmental Services.
- 5. Results presented for TP-17, 2-4 ft; TP-23, 8-10 ft; TP-65 6 to 8 ft; TP-67, 0 to 2 ft; TP-71, 8 to 10 ft; TP-76, 13 to 15 ft; and TP-80, 2 to 4 ft are the higher of these sample and their respective duplicates.
- 6. Q = laboratory qualifier; J = analyte was detected but at an estimated concentration; UJ = analyte was not detected; NJ = analyte detection is tentative; R = data are unusable.
- 7. ug/kg = parts per billion, mg/kg = parts per million.
- 8. Part 375 Residential Soil Cleanup Objectives (SCOs) are from NYCRR Subpart 375-6, Remedial Program Soil Cleanup Objectives, dated December 14, 2006.
- 9. NV = no value; NS = not specified; NT = not tested; ND = non detect.
- 10. Concentrations that are bolded exceed the Part 375 Unrestricted SCOs and the & shaded exceed their respective Part 375 Residential SCOs.
- 11. ** = Cleanup criteria applies to the sum of total xylene compounds.
- 12. The reporting limit for these SVOCs, <3,300 ug/kg were elevated likely due to a matrix interference in the material analyzed. Reporting limit exceeds some of the SVOCs RRSCOs.

Volatile Grganias (grlgs)	
Semple Depth (Hyp) Camenday Semple Depth (Hyp) Camenda	TP-55
Sample Daie Sign 10-280012 10-2800	
Votable Organics (up/hg)	10-12
Acetone	0/26/2012
Acetance 50 100,000 NT NT NT NT NT NT NT	Q
Benzene 60	NT
2-Butanone 120 100,000 17.4 J NT	NT
Carbon disulfide	NT
Cyclobrosene	NT
Est-2-Dichloroethene 250 100,000 NT NT NT NT NT NT NT	NT
Ethylbenzene	NT
Methylcyclohexane	NT
Methylene Chloride 50 100,000	NT
Tetrachloroethene 1,300 19,000	NT
Toluene 700 100,000	NT
Trichloroethene 470 21,000 NT NT NT NT NT NT NT	NT
Miles Mile	NT
Semi-Volatile Organics (ug/kg)	NT
Semi-Volatile Organics (ug/kg)	NT
Acenaphthene 20,000 100,000 NT 1,000 J NT 1,000 J NT 1,000 NT 1,00	NT
Acenaphthylene 100,000 100,000 NT N	
Anthracene	
Benzo (a) anthracene 1,000 1,000 NT 7,170 463 5,200 NT 344 J 1,110 468 218 J 3,240 659 NT 394 NT 273 J NT NT 224 J Benzo (a) pyrene 1,000 1,000 NT 5,660 673 4,110 NT 282 J 1,590 436 201 J 6,670 736 NT 317 J NT NT 263 J Benzo (b) fluoranthene 1,000 1,000 NT 5,330 699 4,170 NT 311 J 1,970 452 181 J 5,880 717 NT 512 NT NT NT 258 J Benzo (g,h,i) perylene 100,000 NT 2,590 744 2,030 NT 1,440 351 179 J 5,750 479 NT 833 NT 257 J NT NT	
Benzo (a) pyrene 1,000 1,000 NT 5,660 673 4,110 NT 282 J 1,590 436 201 J 6,670 736 NT 593 NT 317 J NT NT 263 J Benzo (b) fluoranthene 1,000 1,000 NT 5,330 699 4,170 NT 311 J 1,970 452 181 J 5,880 717 NT 512 NT NT NT 258 J Benzo (g, h, i) perylene 100,000 NT 2,590 744 2,030 NT 1,440 351 179 J 5,750 479 NT 833 NT 257 J NT NT 185 J	
Benzo (b) fluoranthene 1,000 1,000 NT 5,330 699 4,170 NT 311 J 1,970 452 181 J 5,880 717 NT 512 NT 342 NT NT 258 J Benzo (g,h,i) perylene 100,000 NT 2,590 744 2,030 NT 1,440 351 179 J 5,750 479 NT 833 NT 257 J NT NT 185 J	'
Benzo (g,h,i) perylene 100,000 100,000 NT 2,590 744 2,030 NT 1,440 351 179 J 5,750 479 NT 833 NT 257 J NT NT 185 J	
Benzo (k) fluoranthene 800 3,900 NT 3,950 430 3,190 NT 210 J 1,140 236 J NT 256 J NT 164 J NT NT 182 J	
	NT
	NT
Chrysene 1,000 3,900 NT 6,810 585 4,850 NT 344 J 1,320 509 251 J 3,560 730 NT 453 NT 287 J NT NT 236 J	
Dibenz (a,h) anthracene 330 330 NT	
	NT
	NT
Fluoranthene 100,000 100,000 NT 14,200 722 12,200 NT 640 1,570 1,020 484 238 J 2,600 1,360 NT 875 NT 388 NT NT 345 345 J	
Fluorene 30,000 100,000 NT 2,100 NT	
Indeno (1,2,3-cd) pyrene 500 500 NT 3,360 841 2,880 NT 1,570 347 160 J 7,790 644 NT 781 NT 250 J NT NT 229 J	
	NT
Naphthalene 12,000 100,000 NT NT <td>'</td>	'
Phenanthrene 100,000 100,000 NT 11,800 446 6,230 NT 329 J 837 694 484 703 970 NT 840 NT	
Pyrene 100,000 100,000 NT 10,800 714 9,990 NT 517 1,280 892 481 220 J 2,370 1,110 NT 740 NT 350 NT NT 358 272 J	

- 2. Blank Table cell indicates compound was not detected above reporting limit.
- 3. NT indicates compound was not tested.
- 4. Analytical testing completed by Paradigm Environmental Services.
- 5. Results presented for TP-17, 2-4 ft; TP-23, 8-10 ft; TP-65 6 to 8 ft; TP-67, 0 to 2 ft; TP-71, 8 to 10 ft; TP-76, 13 to 15 ft; and TP-80, 2 to 4 ft are the higher of these sample and their respective duplicates.
- 6. Q = laboratory qualifier; J = analyte was detected but at an estimated concentration; UJ = analyte was not detected; NJ = analyte detection is tentative; R = data are unusable.
- 7. ug/kg = parts per billion, mg/kg = parts per million.
- 8. Part 375 Residential Soil Cleanup Objectives (SCOs) are from NYCRR Subpart 375-6, Remedial Program Soil Cleanup Objectives, dated December 14, 2006.
- 9. NV = no value; NS = not specified; NT = not tested; ND = non detect.
- 10. Concentrations that are bolded exceed the Part 375 Unrestricted SCOs and the & shaded exceed their respective Part 375 Residential SCOs.
- 11. ** = Cleanup criteria applies to the sum of total xylene compounds.
- 12. The reporting limit for these SVOCs, <3,300 ug/kg were elevated likely due to a matrix interference in the material analyzed. Reporting limit exceeds some of the SVOCs RRSCOs.

	_				_	_	1				_	,										_		1		
Sample Location	Part 375	Part 375	TP-56	TP-57	TP-57	TP-58	TP-59	TP-60	TP-61	TP-62	TP-63	TP-64	TP-65	TP-66	TP-67	TP-68	TP-69	TP-70	TP-70	TP-71	TP-71	TP-72	TP-73	TP-74	TP-75	TP-76
Sample Depth (ft bgs)	Unrestricted	Restricted	8-10	4-6	12-14	13-15		4-6	9-11	9-10	10-12	4-6	6-8	12-14	0-2	4-6	0-2	0-2	7-9	0-2	8-10	10-12	6-8	13-15	2-4	13-15
Sample Date	SCO	Residential SCO	10/26/2012	10/26/2012								_			12/18/2012	12/18/201		12/18/2012		12/18/2012	12/18/2012	12/19/2012	12/19/2012	12/19/2012	12/19/2012	12/19/2012
Campic Bate		500	10/20/2012	10/20/2012	_	_	0		0		12/10/2012	12/10/201	12/10/20	2 12/10/2012	12/10/2012	12/10/201	2 12/10/2012	12/10/2012	12/10/2012	12/10/2012	12/10/2012	12/13/2012	12/13/2012	12/13/2012	12/13/2012	12/13/2012
Volatile Organics (ug/kg	(g)		Q			×	, and the second	· ·	Q I	× \																
Acetone	50	100,000	NT		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Benzene	60	4,800	NT	3.06 J	NT NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
2-Butanone	120	100,000	NT	5.88 J	NT NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Carbon disulfide	NV	NV	NT	46.1 J	NT NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Cyclohexane	NV	NV	NT	21.4 J	NT NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
cis-1,2-Dichloroethene	250	100,000	NT		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Ethylbenzene	1,000	41,000	NT	1.09 J	NT NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Isopropylbenzene	NV	NV	NT		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Methylcyclohexane	NV	NV	NT	20.9 J	NT NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Methylene Chloride	50	100,000	NT		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Tetrachloroethene	1,300	19,000	NT	2.72 J	NT NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Toluene	700	100,000	NT	8.49 J	NT NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Trichloroethene	470	21,000	NT		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
m,p-Xylene	260 **	100,000 **	NT	8.43 J	NT NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
o-Xylene	260 **	100,000 **	NT	2.55 J	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Semi-Volatile Organics	(ug/kg)																									
Acenaphthene	20,000	100,000		NT						667 .	J						263 J		868 J	1			927			7,170 J
Acenaphthylene	100,000	100,000		NT					394												181 J	223 J			255 J	j J
Anthracene	100,000	100,000		NT			298 .	J	735	2,070							646		2,020	281 J	522	242 J	1410			15,200 J
Benzo (a) anthracene	1,000	1,000	249 J	NT			985		2,080	3,210			303	J	237 J	339	1,040	7,370	8,270	687	1,320 J	851	4,050		533	34,100 J
Benzo (a) pyrene	1,000	1,000	290 J	NT			1,080		2,110	2,850			277	J	205 J	324	J 806	12,200	8,020	686	1,150 J	859	3,700		572	28,000 J
Benzo (b) fluoranthene	1,000	1,000	334 J	NT			1,000		1,990	2,860		174	J 253	J	216 J	471	874	17,100	9,280	803	1,050 J	856	4,590		597	30,700 J
Benzo (g,h,i) perylene	100,000	100,000	262 J	NT			812		1,320	1,600			210	J		320	J 437	13700	5,770	558	603	608	3,580		454	18,300 J
Benzo (k) fluoranthene	800	3,900		NT			640		1,470	1,760			187	J		308	J 524	9,200	5,910	461	794 J	675	2,520		466	19,500 J
Bis (2-ethylhexyl) phthalate	e NV	NV	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Carbazole	NV	NV	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Chrysene	1,000	3,900	276 J	NT			1,040		2,070	3,240		172	J 316	J	234 J	386	1,000	11,100	9,890	761	1,310 J	913	4,590		525	34,500 J
Dibenz (a,h) anthracene	330	330		NT					306	J							177 J	3,890	1,990	190 J	264 J	207 J	1,030			4,650 J
Dibenzofuran	7,000	14,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Di-n-butyl phthalate	NV	NV	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Fluoranthene	100,000	100,000	454	NT		201	J 1,270		3,570	8,160		268	J 603	J	454	622	2,270	8,920	16,900	1,260	2,620 J	1370	10,700	266 J	870	81,600 J
Fluorene	30,000	100,000		NT					177 .	J							326 J						755			8,450 J
Indeno (1,2,3-cd) pyrene	500	500	248 J	NT			931		1,420	2,200			251	J	215 J	399	587	14,400	6,750	653	809 J	891	3,710		562	22,800 J
2-Methylnaphthalene	NV	NV	NT	NT	NT	NT	NT	NT	NT	NT		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Naphthalene	12,000	100,000		NT																		313 J				6,540 J
Phenanthrene	100,000	100,000	204 J	NT			744		1,810	7,330			550	J	287 J	460	2,320	2,090	8,710	808 NJ	1,780 J	830	7,630		373	81,500 J
Pyrene	100,000	100,000	419	NT		176	J 1,100		3,260	6,410		246	J 572	J	404	557	1,880	9,290	14,200	1,110	2,260 J	1,230	8,150	231 J	784 J	J 65,300 J

- 2. Blank Table cell indicates compound was not detected above reporting limit.
- 3. NT indicates compound was not tested.
- 4. Analytical testing completed by Paradigm Environmental Services.
- 5. Results presented for TP-17, 2-4 ft; TP-23, 8-10 ft; TP-65 6 to 8 ft; TP-67, 0 to 2 ft; TP-71, 8 to 10 ft; TP-76, 13 to 15 ft; and TP-80, 2 to 4 ft are the higher of these sample and their respective duplicates.
- 6. Q = laboratory qualifier; J = analyte was detected but at an estimated concentration; UJ = analyte was not detected; NJ = analyte detection is tentative; R = data are unusable.
- 7. ug/kg = parts per billion, mg/kg = parts per million.
- 8. Part 375 Residential Soil Cleanup Objectives (SCOs) are from NYCRR Subpart 375-6, Remedial Program Soil Cleanup Objectives, dated December 14, 2006.
- 9. NV = no value; NS = not specified; NT = not tested; ND = non detect.
- 10. Concentrations that are bolded exceed the Part 375 Unrestricted SCOs and the & shaded exceed their respective Part 375 Residential SCOs.
- 11. ** = Cleanup criteria applies to the sum of total xylene compounds.
- 12. The reporting limit for these SVOCs, <3,300 ug/kg were elevated likely due to a matrix interference in the material analyzed. Reporting limit exceeds some of the SVOCs RRSCOs.

										Buffalo, Ne	W	YORK				
Sample Location Sample Depth (ft bgs) Sample Date	Part 375 Unrestricted SCO	Part 375 Restricted Residential SCO	TP-77 4-6 12/19/2012	TP-78 6-8 12/19/201	TP-79 0-2 12/19/201	12	TP-80 2-4 12/20/2012	TP-81 2-4 12/20/2012	MW-1 2-4 2/6/2013	MW-2 2-4 2/6/2013		MW-3 2-4 2/7/2013	MW-3 12-14 2/7/201	2 - 4	MW-5 13 - 15 2/15/2013	MW-6 10 - 12 2/18/2013
Volatile Organics (ug/kg	1)															
Acetone	50	100,000	NT	NT	NT		NT	NT	NT	NT		NT	NT	NT	NT	NT
Benzene	60	4,800	NT	NT	NT		NT	NT	NT	NT		NT	NT	NT	NT	NT
2-Butanone	120	100,000	NT	NT	NT		NT	NT	NT	NT		NT	NT	NT	NT	NT
Carbon disulfide	NV	NV	NT	NT	NT		NT	NT	NT	NT		NT	NT	NT	NT	NT
Cyclohexane	NV	NV	NT	NT	NT		NT	NT	NT	NT		NT	NT	NT	NT	NT
cis-1,2-Dichloroethene	250	100,000	NT	NT	NT		NT	NT	NT	NT		NT	NT	NT	NT	NT
Ethylbenzene	1,000	41,000	NT	NT	NT		NT	NT	NT	NT		NT	NT	NT	NT	NT
Isopropylbenzene	NV	NV	NT	NT	NT		NT	NT	NT	NT		NT	NT	NT	NT	NT
Methylcyclohexane	NV	NV	NT	NT	NT		NT	NT	NT	NT		NT	NT	NT	NT	NT
Methylene Chloride	50	100,000	NT	NT	NT		NT	NT	NT	NT		NT	NT	NT	NT	NT
Tetrachloroethene	1,300	19,000	NT	NT	NT		NT	NT	NT	NT		NT	NT	NT	NT	NT
Toluene	700	100,000	NT	NT	NT		NT	NT	NT	NT		NT	NT	NT	NT	NT
Trichloroethene	470	21,000	NT	NT	NT		NT	NT	NT	NT		NT	NT	NT	NT	NT
m,p-Xylene	260 **	100,000 **	NT	NT	NT		NT	NT	NT	NT		NT	NT	NT	NT	NT
o-Xylene	260 **	100,000 **	NT	NT	NT		NT	NT	NT	NT		NT	NT	NT	NT	NT
Semi-Volatile Organics ((ug/kg)															
Acenaphthene	20,000	100,000	1,010									220 J				
Acenaphthylene	100,000	100,000			417	J										
Anthracene	100,000	100,000	2,130		1,260	J	177 、	ı		280	J	310 J	270	J 510		2,700
Benzo (a) anthracene	1,000	1,000	3,950		3,710	J	354			380		990 J	550	910		6,400
Benzo (a) pyrene	1,000	1,000	3,310		3,390	J	279	ı		290	J	970 J	510	730		5,900
Benzo (b) fluoranthene	1,000	1,000	3,350	162	J 3,730	J	352			230	J	910 J	570	690		5,800
Benzo (g,h,i) perylene	100,000	100,000	2,140	161	J 2,740	J						660 J	340	J 420		3,800
Benzo (k) fluoranthene	800	3,900	2,180		2,840	J	199 、	ı		280		900 J	370	590		4,500
Bis (2-ethylhexyl) phthalate	NV	NV	NT	NT	NT		NT	NT	NT	NT		NT	NT	NT		NT
Carbazole	NV	NV	NT	NT	NT		NT	NT	NT	NT		NT	NT	NT	See Note	NT
Chrysene	1,000	3,900	4,040	170	J 3,810	J	421			360		1,200 J	610	900	See Note	6,800
Dibenz (a,h) anthracene	330	330	481 J		691	J										1,200
Dibenzofuran	7,000	14,000	NT	NT	NT		NT	NT	NT	NT		NT	NT	NT		NT
Di-n-butyl phthalate	NV	NV	NT	NT	NT		NT	NT	NT	NT		NT	NT	NT		NT
Fluoranthene	100,000	100,000	9,570	229	J 7,140	J	811 、			980		2,400 J	1,200	2,200		12,000
Fluorene	30,000	100,000	953		466	J								190 J		1,700
Indeno (1,2,3-cd) pyrene	500	500	2,660		3,240	J	247	ı		210	J	880 J	380	620		5,000
2-Methylnaphthalene	NV	NV	NT	NT	NT		NT	NT	NT	NT		NT	NT	NT		NT
Naphthalene	12,000	100,000	1,050													
Phenanthrene	100,000	100,000	,9970		4,170	J	813	1		990		1,700 J	1,100	2,000		7,100
Pyrene	100,000	100,000	8,040	213	J 5,630	J	668			790		2,200 J	1,000	1,900		9,800

- 2. Blank Table cell indicates compound was not detected above reporting limit.
- 3. NT indicates compound was not tested.
- 4. Analytical testing completed by Paradigm Environmental Services.
- 5. Results presented for TP-17, 2-4 ft; TP-23, 8-10 ft; TP-65 6 to 8 ft; TP-67, 0 to 2 ft; TP-71, 8 to 10 ft; TP-76, 13 to 15 ft; and TP-80, 2 to 4 ft are the higher of these sample and their respective duplicates.
- 6. Q = laboratory qualifier; J = analyte was detected but at an estimated concentration; UJ = analyte was not detected; NJ = analyte detection is tentative; R = data are unusable.
- 7. ug/kg = parts per billion, mg/kg = parts per million.
- 8. Part 375 Residential Soil Cleanup Objectives (SCOs) are from NYCRR Subpart 375-6, Remedial Program Soil Cleanup Objectives, dated December 14, 2006.
- 9. NV = no value; NS = not specified; NT = not tested; ND = non detect.
- 10. Concentrations that are bolded exceed the Part 375 Unrestricted SCOs and the & shaded exceed their respective Part 375 Residential SCOs.
- 11. ** = Cleanup criteria applies to the sum of total xylene compounds.
- 12. The reporting limit for these SVOCs, <3,300 ug/kg were elevated likely due to a matrix interference in the material analyzed. Reporting limit exceeds some of the SVOCs RRSCOs.

												Bullaio, i	NEW TOIK													
		D 275																							'	
Sample Location	Part 375	Part 375 Restricted	TP-1	TP-2	TP-2	TP-3		TP-4	TP-5	TP-6	TP-7	TP-7	TP-8	TP-9	TP-10	TP-10	TP-11	TP-11	TP-12	TP-13	TP-14	TP-15	TP-15	TP-16	TP-17	TP-18
Sample Depth (ft bgs)	Unrestricted SCO	Residential	2-4	Slag @ 2 ft		6-8	8-10.5	6-8	12-15	6-8	Slag @ 2		10-12	6-8	0-2	14-17	4-6	14-16	3-5	6-8	0-2	0-2	6-8	10-12	2-4	14-16
Sample Date	500	SCO	7/10/2012	-	7/10/2012			_		_	2 7/11/2012				_	7/11/2012		7/11/2012	7/11/2012		7/12/2012		_	7/12/2012		7/12/2012
/ " >			Q	Q Q	!	Q	Q	ג	Q	Q	Q I	Q C	Σ	Q Q	Q		Q Q	Q	Q	Q	Q	() Q	! Q	Q	Q	I Q
PCB (ug/kg)			<u> </u>	T						 																
Aroclor-1260				NT							NT															
Total PCBs	100	1,000																								
Herbicides (ug/kg)	1		T T		T 1		T								T T								T T	T T		
2,4-D	NV	NV		NT							NT				_										\vdash	-
2,4,5-T	NV	NV		NT							NT				R		R								\vdash	
2,4,5-TP (silvex)	3,800	100,000		NT							NT															
Pesticides (ug/kg)		400		NIT	T 1		T			<u> </u>	NIT											1	45.7		4.40	
alpha-BHC	20	480		NT							NT	0.07											15.7 J		4.49 J	
delta-BHC	40	100,000		NT						+	NT	3.07	J													
gamma-BHC	NV	NV		NT	0.70						NT														\vdash	
gamma-Chlordane	NV 04	NV		NT	2.73	J	24.0				NT	+			+ +		+ +								\vdash	+
alpha-Chlordane	94	4,200		NT NT	6.45	NI I	24.6 N	IJ			NT NT	+				+									46 111	+
4,4'-DDD	3.3	13,000			6.15	NJ															2.05				16 NJ	+
4,4'-DDE	3.3	8,900		NT NT	1						NT NT	+ +									3.65 J				5.16 J	+
4,4'-DDT	5	7,900			4.04	1					-														6.79 J	
Dieldrin Endodulfan I	2.400	200 24.000		NT NT	4.04 3.2	J					NT NT															-
	,	,		NT	3.2						NT															-
Endodulfan II Endosulfan Sulfate	2,400	24,000		NT						+	NT				4.96 J											+
Endosulian Suliate Endrin	2,400 14	24,000 11,000		NT							NT				4.96 J											
Endrin Aldehyde	NV	NV		NT	17	1				+	NT					5 74 N	NJ 2.95 J									+
Endrin Ketone	NV	NV		NT		NJ	6.19	1	3.12	1	NT					3.74	NJ 2.95 J									
	42	2,100		NT	3.11	INJ	0.19	,	3.12	J	NT														2.82 J	
Heptachlor Heptachlor Epoxide	NV	NV		NT	2.19	NJ					NT														2.02	
Inorganics (mg/kg)	INV	144		INI	2.13	140					IVI															
Cyanide	27	27		NT	0.45						NT					0.71		1.4			0.68	0.85				
Aluminum	NV	NV	12,900	21,900	5,700	10,100	5,920	14,200	9,010	18,100	32,000	17,500	15,700	6,130	8,150	13,000	8,000	17,700	11,600	16,100	15,600	31,900	8,800	12,300	5,010	12,600
Antimony	NV	NV	12,000	21,000	0,700	10,100	0,020	11,200	0,010	10,100	02,000	17,000	10,100	0,100	0,100	5.89	.1	11,100	11,000	10,100	10,000	01,000	0,000	12,000	0,010	12,000
Arsenic	13	16	5.16	2.25	10.9	7.03	19.2	6.36	9.4	3.54	5.62	4.42	5.71	2.89	5.01	10.8	10.2	11.6	7.03	4.31	5.09	2.18	6.92	3.4	7.21 J	9.3
Barium	350	400	96.4	211	64.1	136	89.6	57.4	52.1	107	286	99	82	49.6	147	732	151	229	101	89.4	157	336	68.8	89.8	59	89.5
Beryllium	7.2	72	0.733	4.14	0	0.641	0.542	J 1.65	0.586	0.853	6.28	1	0.771	0.432 J	0.526	0.876	0.482 J	1.7	0.724	0.837	2.28	6.26	0.677	0.786	0.477 J	0.718
Cadmium	2.5	4.3	0.282 J		9.28	0.484	J 0.654		0.317	J	0.508			01.02	0.461 J	1.37	0.903	0.557 J	0.339 J	0.359 J	0.301 J		0.306 J	01100	0.26 J	0.594
Calcium	NV	NV	38,900 J	205,000 J	25,900	J 77,800		J 117,000		J 27,600	J 190,000	J 76,600 .	J 20,900	J 91,200 J		44,000		50,200 J	72,900 J			197.000	63,600	56,000	67,600	9,860
Chromium	30	180	16.2 J	7.69 J	9.95	J 14.5	J 10.2	J 20.6	J 16.2	J 21.4	J 45.7	J 22.1	J 19.3	J 7.82 J	14.8 J	35.6	J 12.4 J	21.8 J	14.7 J	19.5 J	10.3 J	19	15.5	17.5	43.5 J	17.8
Cobalt	NV	NV	5.89		4.46	J 4.79	J 4.5	9.53	6.99	8.34	4.87	10.3	7.85	2.87 J	4.26 J	10.9	5.68 J	6.48	6.8	10.8	2.89 J		5.06	7.65	4.39 J	8.99
Copper	50	270	15.6 J	3.29 J	2,720	J 34.3	J 76.4	J 15.3	J 26	J 15.8	J 8.36	J 21.5	J 16.6	J 31.2 J	28.3 J	177	J 28.2 J	119 J	51.3 J	14.9 J	13 J	8.09	27.9	18.7	31.6	65.9
Iron	NV	NV	18,100	5,300	30,800	16,100	19,000	13,300	18,300	21,900	87,400	25,200	21,200	10,200	15,000	38,400	15,900	27,900	20,100	24,700	34,500	7,880	16,500	22,800	16,500 J	25,000
Lead	63	400		,	,		J 379 .	,		,							J 295 J			14.9 J			63.5	14.3	-	147
Magnesium	NV	NV									J 22,800	J 16,200 .	J 8,550	J 17,000 J	14,200 J	13,700	J 7,210 J	6,840 J	8,390 J				23,100	15,600	12,600 J	
Manganese	1,600	2,000	570 J	4,890 J		J 375			J 469		J 5,370		J 502		326 J			2,200 J	314 J		1,600 J		400	441	295	150
Mercury	0.18	0.81	0.0396 J				J 0.282 .		J 0.0058					J 0.039 J						0.0348 J			0.0675	0.0094		0.234
Nickel	30	310	17.2	3.39 J		17.1	14.4	23.2	18.4	20.3	7.36	24.5	19.9	9.49	33.7	87	14.6	34.5	16.6	19.7	9.54	6.31	15.8	20.3	112 J	18.3
Potassium	NV	NV	2140	1240	825	1,750		4770	1,820	2,700	1,880	4,200	2,170	1,150	1,430	2,610		1,830	1,850	1,810	1,370	2,340	1950	3,120	841	1,780
Selenium	3.9	180	1.92		0.628	J	0.586				2.87						J 1.33		0.838 J		2.8	1.13				2.02
Silver	2	180			0.837	J												0.694 J								
Sodium	NV	NV		796				250	J 184	J	1,810	209	J 265	J 299	400	160	J 362	648			471	1,500	180 J			
Thallium	NV	NV																								
Vanadium	NV	NV	26.7	6.37	23	21.5	18.8	18.8	28	33.2	15	34.2	30.5	17.8	21.4	30.4	19	23.5	24.1	31.3	15.4	10.2	93.3	27.9	13.8	29.1
Zinc	109	10,000	78.4	15.4	12,600			24.9	97.5	69.2		J 64.4	72.3	45.8	141	743	217	166	146	71.7	42.9	109	93.3	73	122	111
-			-			•												-								

- 2. Blank Table cell indicates compound was not detected above reporting limit.
- 3. NT indicates compound was not tested.
- 4. Analytical testing completed by Paradigm Environmental Services.
- 5. Results presented for TP-17, 2-4 ft; TP-23, 8-10 ft; TP-65 6 to 8 ft; TP-67, 0 to 2 ft; TP-71, 8 to 10 ft; TP-76, 13 to 15 ft; and TP-80, 2 to 4 ft are the higher of these sample and their respective duplicates.
- 6. Q = laboratory qualifier; J = analyte was detected but at an estimated concentration; UJ = analyte was not detected; NJ = analyte detection is tentative; R = data are unusable.
- 7. ug/kg = parts per billion, mg/kg = parts per million.
- 8. Part 375 Residential Soil Cleanup Objectives (SCOs) are from NYCRR Subpart 375-6, Remedial Program Soil Cleanup Objectives, dated December 14, 2006.
- 9. NV = no value; NS = not specified; NT = not tested; ND = non detect.
- 10. Concentrations that are bolded exceed the Part 375 Unrestricted SCOs and the & shaded exceed their respective Part 375 Residential SCOs.
- 11. ** = Cleanup criteria applies to the sum of total xylene compounds.
- 12. The reporting limit for these SVOCs, <3,300 ug/kg were elevated likely due to a matrix interference in the material analyzed. Reporting limit exceeds some of the SVOCs RRSCOs.

											Bullalo,	INEW IOIK													
		D : 275																							
Sample Location	Part 375	Part 375 Restricted	TP-19	TP-19	TP-20	TP-20				TP-25	TP-26	TP-27		TP-28	TP-29	TP-30	TP-30	TP-31	TP-31	TP-32	TP-33	TP-33	TP-34	TP-35	TP-36
Sample Depth (ft bgs)	Unrestricted SCO	Residential	8-10	15	4-6	14-16			2-4	4-6	12-14	0-2	10-12	4-6	6-8	0-2	10-12	4-6	8-10	10-12	2-4	10-12	13-15	10-12	4-6
Sample Date		SCO	7/12/2012	_	7/13/2012	_	_		_	2 7/13/201			_	10/22/2012	10/22/2012	_	10/22/2012	10/22/201		_	10/22/2012	_	_	10/23/2012	10/23/2012
DOD (#)			Q) Q	! (ב	Q Q	Q	Q	Q	Q (Q	Q Q	Q	C	<u> </u>	Q		Q Q) C) Q	Q	Q	Q
PCB (ug/kg)	1	1		1	1 1	1		T	<u> </u>	0.0444	1			L NET			N.T	N.T	N.T.				N=	N.T	
Aroclor-1260	100	4 000								0.0414				NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Total PCBs	100	1,000								0.0414															
Herbicides (ug/kg)	A.D.			1	1 1	1		T	<u> </u>		1			L NET			N.T	N.T	N.T.				N=	N.T	
2,4-D	NV	NV												NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
2,4,5-T	NV	NV					R							NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
2,4,5-TP (silvex)	3,800	100,000												NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Pesticides (ug/kg)		100		T	T T	0.00		<u> </u>	0.00		1		<u> </u>	L NET	N.T				N.T.	N.T.				N.T.	
alpha-BHC	20	480				6.88	J		3.26	UJ				NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
delta-BHC	40	100,000				4.33	J							NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
gamma-BHC	NV	NV						0.05	1 0 10	N				NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
gamma-Chlordane	NV 04	NV						2.95	J 2.49	INJ				NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
alpha-Chlordane	94	4,200												NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
4,4'-DDD	3.3	13,000										0.4	N. I	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
4,4'-DDE	3.3	8,900							2.7	1		3.4	NJ	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
4,4'-DDT	3.3	7,900							2.7	J				NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Dieldrin Endadulfan I	5	200								5.68	J			NT	NT	NT	NT	NT	NT	NT	NT	NT	NT NT	NT	NT
Endodulfan I	2,400	24,000							2.04	1				NT	NT	NT	NT	NT	NT	NT	NT	NT		NT	NT
Endodulfan II	2,400	24,000							2.94	J				NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Endosulfan Sulfate	2,400	24,000												NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Endrin	14	11,000							4.00	J 2.2				NT NT	NT	NT NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Endrin Aldehyde	NV NV	NV NV						7.10	1.68		J			 	NT NT	NT	NT	NT	NT	NT	NT	NT	NT NT	NT	NT
Endrin Ketone	42					6.71	1	7.12	J	2.99	NJ			NT NT	NT	NT	NT	NT	NT NT	NT NT	NT	NT NT	NT	NT NT	NT
Heptachlor Heptachlor Epoxide	NV	2,100 NV				2.14	J							NT	NT	NT	NT NT	NT NT	NT	NT	NT NT	NT	NT	NT	NT NT
Inorganics (mg/kg)	INV	INV				2.14	J							INI	INI	INI	INI	INI	INI	INI	INI	INI	INI	INI	INI
Cyanide	27	27				1								NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Aluminum	NV	NV	7,420	15.300	4,810	7,830	11,200 D 12,000	13,500	3,080	8.580	8,470	10,300	17.400	9,210 J	8,920 J	I NT	18,600 J	5,190	J 17,400 J	8,990 J	J 10,700 J	NT	16,800 J	2,530 J	3,660 J
Antimony	NV	NV	7,420	13,300	4,010	7,000	11,200 D 12,000	13,300	3,000	0,000	0,470	10,500	17,400	3,210 3	0,320 0	NT	10,000 3	3,130	12.7	0,330	10,700 3	NT	10,000 3	2,000 0	3,000 3
Arsenic	13	16	4.01	5.27	3.87	18.5	9.88 D 14.6	20.5	1.55	3.72	14.8	8.55	9.52	10.7	18.9	NT	5.06	3.73	9.71	4.93	5.5	NT	6.11	1.42	5.69
Barium	350	400	98	99.5	35.1	314	139 565	541	22.4	49	70.6	85.6	103	164 J	606 J	NT	121 J	61.5	J 190 J	91.7	J 105 J	NT	112 J	9.86 J	34.4 J
Beryllium	7.2	72	0.421 J	0.783	0.383	J 0.993	0.919 D 1.24	1.33	22.7	0.604	0.671	0.723	0.843	1.04	0.593	NT	0.814	01.0	0.751	0.633	0.493 J	NT	0.76	3.00 0	0.308 J
Cadmium	2.5	4.3	0.296 J	0.311 J	0.000	2.65	0.594 0.497	J 12.1		0.322	.1	0.418	J 0.281 J	0.549 J	2.87	NT	0.011		0.448	0.000	0.100	NT	0.70		0.000
Calcium	NV	NV	22,500	25,600	73,000	11,100	47,400 J 4,440		2,240	DN 59,700	51,000	44,000	22,600	30,000 J	46,300 J	NT	23,100 J	10,500	J 42,900 J	60.000 J	J 22,900 J	NT	28,000 J	7,440 J	188,000 J
Chromium	30	180	10.8	21.6	10.5	23.4	35.7 J 14.9	21.4	4.49	12.8	16.4	16	21.1	16.6 J	57 J	NT	24.9 J	7.72	J 44.8 J	19.2	J 16.7 J	NT	22.2 J	3.79 J	4.05 J
Cobalt	NV	NV	4.85 J	8	2.81	J 9.88	6.88 8.57	7.69		5.45	5.85	6.96	8.32	7.46	7.1	NT	10.5	_	9.73	3.9	J 5.5	NT	9.22	5 5	
Copper	50	270	15.3	23.9	12.8	285	186 DM 76	1,130	J 10.9	15.7	38.8	26.7	19.8	56.7	308	NT	23.3	16	163	22.6	33.2	NT	17.7	12.3	15.8
Iron	NV	NV	12,300	23,400	12,900	120,000	31,200 D 13,000		5,450	34,900	17,300	20,000	22,200	21,900	52,200	NT	25,700	10,500	36,600	14,100	16,200	NT	23,600	4,050	7,930
Lead	63	400	152	108	28.5	881	314 J 503		J 17.2	21	98.9	72.1	65.4		2,390		40.4	33.3	,	116		NT		,	41.1
Magnesium	NV	NV	10,200	8,280	2,310	1,400	15,600 J 1,160			7,450	11,000	14,900	10,500	5,110 J			8,870 J				J 9,110 J		10,900 J		47,500 J
Manganese	1,600	2,000	220	395	241	512	563 J 158	253	92.8	334	286	351	447	353 J		NT	525 J	176	J 599 J		J 252 J	NT J	368 J		254 J
Mercury	0.18	0.81	0.147	0.2455 J		4.47	0.116 J 2.18			0.101	0.185	0.0656	0.0355		3.03	NT	0.0196	0.0334	0.0263		0.139	NT	0.0161		0.531
Nickel	30	310	10.1	21.3	8.04	32.3	36.1 D 21.1	53.2	3.95	J 14.1	22.7	20	20.5	21.7 J		NT NT	23.3 J	10.4	J 32.8 J	10.9	J 15.5 J	NT	22 J	2.51 J	6.79 J
Potassium	NV	NV	1,160	2,600	726	1,320	1,870 D 1,110		600	1,320	1,830	1,990	2,520	974	1,540	NT	2,780	654	3,770	1,470	1,630	NT	2,560	349	925
Selenium	3.9	180	,	,		,===	0.831			,,	,,,,,,,	,,,,,,	,	1.91	1.37	NT	2.07	0.612	2.37	' -	,	NT	1.17 J		
Silver	2	180					1.551									NT						NT			
Sodium	NV	NV					233	J 244	J					294	310	NT	146		208	178	J	NT	220 J		465
Thallium	NV	NV														NT						NT			
Vanadium	NV	NV	19.6	27.7	12.2	27.9	25.9 39.1	29.4	4.63	19.9	23.3	25.1	31.2	25.2	33.3	NT	34.4	12.3	31.7	16.1	24.5	NT	35	5.7	11.5
Zinc	109	10,000	148	118	36.8	981	201 342	824	16.2	53	92.8	114	106	321	3,620	NT	87.3	49.9	299	111	146	NT	62.6	12.8	49.6
		,				, J .									-,	· · · · · ·						<u> </u>			

- 2. Blank Table cell indicates compound was not detected above reporting limit.
- 3. NT indicates compound was not tested.
- 4. Analytical testing completed by Paradigm Environmental Services.
- 5. Results presented for TP-17, 2-4 ft; TP-23, 8-10 ft; TP-65 6 to 8 ft; TP-67, 0 to 2 ft; TP-71, 8 to 10 ft; TP-76, 13 to 15 ft; and TP-80, 2 to 4 ft are the higher of these sample and their respective duplicates.
- 6. Q = laboratory qualifier; J = analyte was detected but at an estimated concentration; UJ = analyte was not detected; NJ = analyte detection is tentative; R = data are unusable.
- 7. ug/kg = parts per billion, mg/kg = parts per million.
- 8. Part 375 Residential Soil Cleanup Objectives (SCOs) are from NYCRR Subpart 375-6, Remedial Program Soil Cleanup Objectives, dated December 14, 2006.
- 9. NV = no value; NS = not specified; NT = not tested; ND = non detect.
- 10. Concentrations that are bolded exceed the Part 375 Unrestricted SCOs and the & shaded exceed their respective Part 375 Residential SCOs.
- 11. ** = Cleanup criteria applies to the sum of total xylene compounds.
- 12. The reporting limit for these SVOCs, <3,300 ug/kg were elevated likely due to a matrix interference in the material analyzed. Reporting limit exceeds some of the SVOCs RRSCOs.

		1	1									Buttalo, N	1011													
		Dont 275																								
Sample Location	Part 375	Part 375 Restricted	TP-37	TP-37	TP-38		TP-40	TP-40	TP-41	TP-42	TP-43	TP-44	TP-45		TP-47	TP-48	_	TP-50	TP-50	TP-51	TP-51	TP-52	TP-53	TP-53	TP-54	TP-55
Sample Depth (ft bgs)	Unrestricted SCO	Residential	2-4	4-6	10-12	_	6-8	10-12	13-15	6-8	4-6	8-10	6-8	8-10	2-4	8-8.5	2-4	4-6	13-15	8-10	13-15	2-4	4-6	8-10	2-4	10-12
Sample Date	500	SCO	10/23/201	_			_	-		10/24/201	_	10/24/2012		_			12 10/25/2012		_	10/25/2012	10/25/2012		10/25/2012	10/25/2012	10/26/2012	10/26/2012
				Q (<u>ე</u>	Q C	Q Q		Q Q		Q Q	C)	Q	Q (Q	Q (Q Q	! Q	Q	Q	Q	Q	Q	Q	Q
PCB (ug/kg)		I	1					<u> </u>	1 1			1														
Aroclor-1260			NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Total PCBs	100	1,000																								\perp
Herbicides (ug/kg)	T		1			T	1	T	1 1			1				1					1			1 1		
2,4-D	NV	NV	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
2,4,5-T	NV	NV	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
2,4,5-TP (silvex)	3,800	100,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Pesticides (ug/kg)		1						<u> </u>	1 1			1														
alpha-BHC	20	480	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
delta-BHC	40	100,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
gamma-BHC	NV	NV	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
gamma-Chlordane	NV	NV	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
alpha-Chlordane	94	4,200	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
4,4'-DDD	3.3	13,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
4,4'-DDE	3.3	8,900	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
4,4'-DDT	3.3	7,900	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Dieldrin	5	200	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Endodulfan I	2,400	24,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Endodulfan II	2,400	24,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Endosulfan Sulfate	2,400	24,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Endrin	14	11,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Endrin Aldehyde	NV	NV	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Endrin Ketone	NV	NV	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Heptachlor	42	2,100	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Heptachlor Epoxide	NV	NV	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Inorganics (mg/kg)		1																								
Cyanide	27	27	NT	NT	NT	NT	NT	6.59	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Aluminum	NV	NV	NT	5,980	5,920	5,480	4,640	279,000	6,270	7,040	8,450	7,910	11,300	7,930	8,890	3,760	7,920	NT	6,880	NT	7,030	NT	NT	3,860	13,800	12,600
Antimony	NV	NV	NT	23.4				14.9										NT		NT		NT	NT			,
Arsenic	13	16	NT	17	10.5	65.3	3.01	22.8	9.08 J	4.4	J 14.4 J	9.14 J	4.86	J 4.27	J 13.1	J 4.51	J 6.12	J NT	5.99 J	NT	2.89 J	NT	NT	3.63 J	11.6 J	4.49 J
Barium	350	400	NT	153	J 95.6	J 149 J	J 21.9 J	1,070	J 244	36.9	148	32.5	125	53.4	121	31.3	68.9	NT	48.3	NT	37	NT	NT	21.8	140	51.1
Beryllium	7.2	72	NT	0.412	J 0.447	J 0.985				0.349	J 0.7	0.413 J	1.65	0.335	J 1.14	0.533	0.417	J NT	0.324 J	NT	0.307 J	NT	NT	0.264 J	0.676	0.452 J
Cadmium	2.5	4.3	NT	0.573		0.619		3.94	0.614		0.493 J							NT		NT		NT	NT		0.862	0.349 J
Calcium	NV	NV	NT	19,500	J 21,100	J 10,000 J	42,600 J	19,900	J 87,700 J	100,000	J 37,300 J	57,000 J	205,000	J 101,000	J 25,100	J 9,190	J 106,000 .	J NT	69,100 J	NT	87,600 J	NT	NT	163,000 J	29,900 J	8,680 J
Chromium	30	180	NT	31.9	J 26.9	J 17 J	l 6.93 J	20.2	J 9.55	9.52	71.5	13.9	18.8	10.6	12.9	219	13.1	NT	9.01	NT	8.12	NT	NT	4.98	22.2	14.3
Cobalt	NV	NV	NT	5.91	4.42	J 4.23	2.77 J		3.3 J		6.35	4.96 J	1	3.27	J 7.1	4.01	J 4.88 .	J NT	3.01 J	NT	2.89 J	NT	NT		6.64	4.43 J
Copper	50	270	NT	783	384	33.9 J	J 11.1	19,900	13 J	9.15	J 41 J	20.1 J	18.2	J 19.9	J 92.3	J 30.7	J 29.7	J NT	14.9 J	NT	29 J	NT	NT	5.39 J	46.8 J	8.91 J
Iron	NV	NV	NT	27,700	31,500	17,400	9,460	52,900	10,200	11,800	18,200	17,300	14,400	11,700	23,600	32,100	14,000	NT	10,400	NT	11,000	NT	NT	7,700	22,600	14,100
Lead	63	400	NT	270	282	145	39.4	2,940	244	40.9	232	31.2	27.8	20.7	249	21.5	246	NT	38.8	NT	26.9	NT	NT	16.9	409	16.6
Magnesium	NV	NV	NT	2,950		J 3,040 J	1 19,500 J	1,220	J 20,200 J	46,700	J 6,320 J	27,200 J	12,500	J 11,400	J 3,750	J 3,470	J 15,600 .	J NT	11,600 J	NT	29,000 J	NT	NT	84,600 J	11,000 J	2,370 J
Manganese	1,600	2,000	NT	518	J 585	J 121 J	J 260 J	409	J 380	373	321	483	1,900	267	563	358	354	NT	218	NT	257	NT	NT	281	504	459
Mercury	0.18	0.81	NT	0.61		0.112	0.158	0.0782	0.102	0.151	0.0926	0.124		0.169		0.0315	0.214	NT	0.0687	NT	0.0994	NT	NT	0.385	0.147 J	
Nickel	30	310	NT	54.9	J 57.4	J 10.4 J	7.29 J	286	J 7.75	8.55	18.9	13.7	7.66	9.28	17.6	20.8	14.3	NT	9.32	NT	8.01	NT	NT	5.85	26.2	10.7
Potassium	NV	NV	NT	1,090	731	611	1,160	923	1,020	1,590	1,090	1,460	1,230	1,560	908	599	1,870	NT	1,160	NT	1,490	NT	NT	1,290	2,190	747
Selenium	3.9	180	NT	2.28	1.4	1.31		13.1	0.983 J		1.81		1	J	0.618	J		NT	0.893 J	NT		NT	NT			0.897 J
Silver	2	180	NT						R		R R	R	0.711	J 0.496	J	R	R	R NT	R R	NT	R	NT	NT	0.494 J	R	R
Sodium	NV	NV	NT	333	266	J 171 J	J 224 J	1,100	647 J	382	J 356 J	479 J	753	J 615	J 548	J 134	J 374 .	J NT	225 J	NT	313 J	NT	NT	457 J	435 J	
Thallium	NV	NV	NT			2.21 J	J											NT		NT		NT	NT			
Vanadium	NV	NV	NT	17.5	14.4	18.9	17.3	13.2	21.1	17.6	22.4	22.4	16.6	18.4	26.6	8.75	20.1	NT	14.9	NT	17.1	NT	NT	11.8	29.7	22.7
Zinc	109	10,000	NT	281	144	113	61.2	5,010	295	64.8	331	71.6	56	58.4	133	23.9	153	NT	43.8	NT	60	NT	NT	26.4	217	58.7
<u> </u>		,		1 Only comp	-															·						

- 2. Blank Table cell indicates compound was not detected above reporting limit.
- 3. NT indicates compound was not tested.
- 4. Analytical testing completed by Paradigm Environmental Services.
- 5. Results presented for TP-17, 2-4 ft; TP-23, 8-10 ft; TP-65 6 to 8 ft; TP-67, 0 to 2 ft; TP-71, 8 to 10 ft; TP-76, 13 to 15 ft; and TP-80, 2 to 4 ft are the higher of these sample and their respective duplicates.
- 6. Q = laboratory qualifier; J = analyte was detected but at an estimated concentration; UJ = analyte was not detected; NJ = analyte detection is tentative; R = data are unusable.
- 7. ug/kg = parts per billion, mg/kg = parts per million.
- 8. Part 375 Residential Soil Cleanup Objectives (SCOs) are from NYCRR Subpart 375-6, Remedial Program Soil Cleanup Objectives, dated December 14, 2006.
- 9. NV = no value; NS = not specified; NT = not tested; ND = non detect.
- 10. Concentrations that are bolded exceed the Part 375 Unrestricted SCOs and the & shaded exceed their respective Part 375 Residential SCOs.
- 11. ** = Cleanup criteria applies to the sum of total xylene compounds.
- 12. The reporting limit for these SVOCs, <3,300 ug/kg were elevated likely due to a matrix interference in the material analyzed. Reporting limit exceeds some of the SVOCs RRSCOs.

		Part 375	TD 50	TD 57	TD 57	TD 50	TD 50	TD 00	TD 04	TD 00	TD 00	TD 04	TD 05	TD 00	TD 07	TD 00	TD 00	TD 70	TD 70	TD 74	TD 74	TD 70	TD 70	TD 74	TD 75	TD 70
Sample Location	Part 375	Restricted	TP-56	TP-57	TP-57	TP-58		TP-60	TP-61	TP-62	TP-63	TP-64	TP-65		TP-67	TP-68		TP-70	TP-70	TP-71	TP-71	TP-72	TP-73	TP-74	TP-75	TP-76
Sample Depth (ft bgs)	Unrestricted SCO	Residential	8-10	4-6	12-14	13-15		4-6	9-11	9-10	10-12	4-6	6-8	12-14	0-2	4-6	0-2	0-2	7-9	0-2	8-10	10-12	6-8	13-15	2-4	13-15
Sample Date		SCO	10/26/2012	10/26/2012		10/26/20	12 10/26/2012 O	- 1		2 12/4/201: O	2 12/18/201	2 12/18/201	2 12/18/20	12 12/18/2012	12/18/2012	12/18/201	12/18/2012	12/18/2012	12/18/2012	12/18/2012	12/18/2012	12/19/2012	12/19/2012	12/19/2012	12/19/2012	12/19/2012
PCB (ug/kg)				! (<u> </u>	۱,	iQ IC	ا ا	Q	Q	Q															
Aroclor-1260			NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Total PCBs	100	1.000	INI	INT	INI	INI	INT	INI	INI	INI	INI	INI	INI	INI	INI	INI	INI	INI	INI	INI	INI	INI	INI	INI	INI	INI
Herbicides (ug/kg)	100	1,000																								
2,4-D	NV	NV	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
2,4,5-T	NV	NV	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
2.4.5-TP (silvex)	3.800	100.000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Pesticides (ug/kg)	0,000	100,000		141			1,171					100	111	1 1 1 1 1			1 111	1,1,1	141	1111	141		141	10.	141	14.
alpha-BHC	20	480	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
delta-BHC	40	100,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
gamma-BHC	NV	NV	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
gamma-Chlordane	NV	NV	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
alpha-Chlordane	94	4,200	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
4,4'-DDD	3.3	13,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
4,4'-DDE	3.3	8,900	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
4,4'-DDT	3.3	7,900	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Dieldrin	5	200	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Endodulfan I	2,400	24,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Endodulfan II	2,400	24,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Endosulfan Sulfate	2,400	24,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Endrin	14	11,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Endrin Aldehyde	NV	NV	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Endrin Ketone	NV	NV	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Heptachlor	42	2,100	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Heptachlor Epoxide	NV	NV	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Inorganics (mg/kg)		1						1														T T				
Cyanide	27	27	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Aluminum	NV	NV	7,160	NT	12,000	12,800	5,640	9,860	6,250	9,000	198,000	J 22,200	J 6,870	J 15,800 .	J 10,700 J	J 15,400	J 7,580 J	6,730 J	27,900	J 10,500 J	12,000 J	4,630	10,000	5,920	7,280	7,000
Antimony	NV	NV		NT														5.59 J	4.26	J	6.37		8.02		130	
Arsenic	13	16	8.84 J	NT	5.39	J 5.26	J 7.64 .	3.16	J 7.68	J 8.12	J 5.41		M 4.3	5.45	10.9	7.22	5.38	11.3	9.42	7.01	6.5	11.3	13.2	25.5	36.3	14.4
Barium	350	400	88.5	NT	52.3	110	86.3	78.3	43.8	76.2	117	J 125	J 41.5	J 94.7	J 115 J	J 85	J 59.4 J	48.7 J	267	J 81.3 J	88.4 J	36.6	171	79.7	113	68.3 J
Beryllium	7.2	72	0.59	NT	0.445	J 0.922	0.391	0.422	J 0.342	J 0.463	J 0.779	0.824	D 0.301	J 0.611 .	J 0.456 J	J 0.561			1.08	0.471 J	0.476 J	0.323 J	0.643 J	0.445 J		0.532 J
Cadmium	2.5	4.3		NT	0.442	J 0.364	J					0.325						1.87	0.538	J	0.531		0.504 J		2.03	0.806
Calcium	NV	NV	78,200 J	NT	9,600	J 47,900	J 10,300 J	90,900	J 79,300	J 80,800	J 16,500	J 5,280	J 152,000	J 39,400 .	J 38,100 J	J 12,200	J 46,200 J	10,800 J	59,300	J 69,500 J	144,000 J	89,900 J	60,200 J	7,350 J	30,700 J	13,100 J
Chromium	30	180	10.5	NT	16	15.9	11.4	14.1	10.3	16.6	21.3	J 23.2	J 8.3	J 20 ,	J 12.6 J	J 20.8	J 11.4 J	31.1 J	31.4	J 19.7 J	17.5 J	8.82	19.8	11.5	43,700	26 J
Cobalt	NV 50	NV 270	5.13 J	NT	3.9	J 5.48	J 7.31	6.31	3.77	J 5.86	J 7.25	7.46	15.0	6.75	4.96 J	J 7.83	4.87 J	3.84 J	6.38	5.59	6.07 J	4.02 J	8.16	5.47 J	102 95 J	6.42 7 9.8 J
Copper	NV	NV	30.4 J 12,200	NT NT	10.6	J 18.8 17,200	J 31.3	16.4 16,700	J 18.6 11,400	J 31.3 17,700	J 22.2 20,100	23.2	15.9 D 10,700	17.9 20,500	14,100	22,800	23.3 14,200	121	19 44,800	33.6 17,800	26.6 19,700	26.3 J	24.1 J 20,600	45 J 7,870	95 J 164,000	
Iron Lead	63	400	12,200 58.7	NT	13.6	17,200	10,600 88 1	13.1	56.2	68.8	20,100 D 18		D 55.1	14.3	93.9	22,800 1 50.8	28.4	42,100 76.7	39.4	91.4	19,700 89.5	40.6 D		195	137	46,100 93.9
2000	NV	NV	13,200 J	NT		J 11,200	00.1		J 28,100		J 4,910		00.1	J 12,000 s	J 12,200 J	00.0	J 11,300 J	1970 J	20,200		23,500 J	.0.0 2	19,800 J	1,430 J	9,400 J	4,700 J
Magnesium Manganese	1,600	2,000	329	NT	4	963	J 2,500 C	420	324	J 22,800 J 438	J 4,910 J 142	J 4,860 J 136	J 293	J 460 .	J 280 J	J 394	J 11,300 J	325 J	5,079	J 425 J	402 J	180	530	114	2,075	1070
Mercury	0.18	0.81	0.13 J	NT	0.0583 J	0.339	J 0.477 J	0.0144	J 0.133	0.0264	0.0263			J 0.0496	0.0771	0.0396	0.0387	0.027	3,013	0.0225	0.12	0.0938 J	0.156 J	0.198 J	2,073	1070
Nickel	30	310	14.3	NT	14.1	12.6	17.8	14.3	11.6	16	18.1		J 7.86	J 17.9	J 11.6 J		J 15.8 J	48.5 J	15.3	J 17.1 J		12.5	21.5	13.8	20,000	16 J
Potassium	NV	NV	1,430	NT	877	2,180	460	2,630	1,360		J 1,830	J 2,350	J 2,160	J 2,420 .		J 2,110	J 2,180 J	805 J	4,970	J 2,860 J		1,240 J	2,020 J	740 J	1,090 J	706 J
Selenium	3.9	180	1,730	NT	011	۷,100	400	2,000	1,300	2,000	1,030	2,330	2,100	0 2,42U	1,700 3	۷, ۱۱۷	1.5	1.55	4.06	2,000 J	1.06	1,2+U J	2,020 J	3.53	1,030 J	1.78
Silver	2	180	D	NT	1	2	R	2	R	R	R						1.0	1.00	0.727	1	1.06			5.55		1.70
Sodium	NV	NV	783 J	NT	461	J 499	J 211	359	J 232	J 235	J 187	J 189	J 518	271 ,	J 325	853	253 J	454	1,020	765	753	213 J	262 J	513 J	695 J	336
Thallium	NV	NV	700 0	NT	701	700	211	. 555	202	200	5 101	100	5 510	211	020	000	200 0	707	1,020	7 00	2.66	210 0	202 0	010 0	6.1	000
Vanadium	NV	NV	20.7	NT	22.3	23.2	19.4	22.3	17.6	24.6	31.1	34.8	D 17.8	30	23.7	28.3	16.2	22.2	45.5	26.1	27.7	15.7	40.3	21.2	63.3	25.1
Zinc	109	10,000	80.1	NT	63.6	103	101	66.9	112	99.1	79.2		D 53.9	71.8	89.1	174	55.5	102	106	120	125	66.2	266	80.4	84.9	167
	103	10,000		Only some				plac are pr			13.2	JJ. I	50.0	71.0	UU. I		55.5	102	100	120	.23	00.2	200	JU. T	U-T.0	101

- 2. Blank Table cell indicates compound was not detected above reporting limit.
- 3. NT indicates compound was not tested.
- 4. Analytical testing completed by Paradigm Environmental Services.
- 5. Results presented for TP-17, 2-4 ft; TP-23, 8-10 ft; TP-65 6 to 8 ft; TP-67, 0 to 2 ft; TP-71, 8 to 10 ft; TP-76, 13 to 15 ft; and TP-80, 2 to 4 ft are the higher of these sample and their respective duplicates.
- 6. Q = laboratory qualifier; J = analyte was detected but at an estimated concentration; UJ = analyte was not detected; NJ = analyte detection is tentative; R = data are unusable.
- 7. ug/kg = parts per billion, mg/kg = parts per million.
- 8. Part 375 Residential Soil Cleanup Objectives (SCOs) are from NYCRR Subpart 375-6, Remedial Program Soil Cleanup Objectives, dated December 14, 2006.
- 9. NV = no value; NS = not specified; NT = not tested; ND = non detect.
- 10. Concentrations that are bolded exceed the Part 375 Unrestricted SCOs and the & shaded exceed their respective Part 375 Residential SCOs.
- 11. ** = Cleanup criteria applies to the sum of total xylene compounds.
- 12. The reporting limit for these SVOCs, <3,300 ug/kg were elevated likely due to a matrix interference in the material analyzed. Reporting limit exceeds some of the SVOCs RRSCOs.

								1	Buffalo, Ne	w fork				1
Sample Location Sample Depth (ft bgs) Sample Date	Part 375 Unrestricted SCO	Part 375 Restricted Residential SCO	TP-77 4-6 12/19/2012	TP-78 6-8 12/19/201	TP-79 0-2 2 12/19/2012	TP-80 2-4 12/20/2012	TP-81 2-4 12/20/2012	MW-1 2-4 2/6/2013	MW-2 2-4 2/6/2013	MW-3 2-4 2/7/2013	MW-3 12-14 2/7/201	MW-4 2 - 4 3 2/12/2013	MW-5 13 - 15 2/15/2013	MW-6 10 - 12 2/18/2013
PCB (ug/kg)	1													
Aroclor-1260			NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Total PCBs	100	1,000												
Herbicides (ug/kg)														
2,4-D	NV	NV	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
2,4,5-T	NV	NV	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
2,4,5-TP (silvex)	3,800	100,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Pesticides (ug/kg)														
alpha-BHC	20	480	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
delta-BHC	40	100,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
gamma-BHC	NV	NV	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
gamma-Chlordane	NV	NV	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
alpha-Chlordane	94	4,200	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
4,4'-DDD	3.3	13,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
4,4'-DDE	3.3	8,900	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
4,4'-DDT	3.3	7,900	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Dieldrin	5	200	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Endodulfan I	2,400	24,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Endodulfan II	2,400	24,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Endosulfan Sulfate	2,400	24,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Endrin	14	11,000	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Endrin Aldehyde	NV	NV	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Endrin Ketone	NV	NV	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Heptachlor	42	2,100	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Heptachlor Epoxide	NV	NV	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Inorganics (mg/kg)														
Cyanide	27	27	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Aluminum	NV	NV	10,300 D	5,660	9,390	4,740	13,300 D	20,000	11,000	15,000	26,000	D 6,700	11,000	8,100
Antimony	NV	NV		6.12									8.2	
Arsenic	13	16	72.2	11.9	8.36	7.6	5.4 D		5.9	3.4	6.9	D 9.8	4.7	10
Barium	350	400	2,890 DM	49.8	100	52	61.8 D	120 J	79 .	J 140 J	420	рм, 47 J	2,100	460 J
Beryllium	7.2	72	0.473 J	0.45	J 0.468 J		0.435 J	0.92 J	0.74	J 2 J	2.2	DJ 0.49 J	0.44	0.41 J
Cadmium	2.5	4.3	15.1		0.429 J	0.723 J		0.29 J	0.41	J	0.36	J 0.38 J	4.9	1.5
Calcium	NV	NV	29,800 J	152,000	J 91,300 J	27,800	4,420 DI		56,000	J 130,000 J	92,000	DJ 140,000 J	80,000 J	- 1, 0
Chromium	30	180	27.2	23.2	17.3	16.9 J			35	15	23	20	17	13
Cobalt	NV	NV	3.82 J	6.81	4.58 J	3.96 J	6.91 D		7	4.8 J	8.1	7.6	6.7	4.7 J
Copper	50	270	242 J	25	J 63.1 J	34.3	13.9 D		27	15	170	D 49	88	150
Iron	NV	NV	19,900	14,100	17,200	17,000	17,800 D	26,000	18,000	12,000	27,000	19,000	24,000	16,000
Lead	63	400	2,010 M		168	255 J			73	45	210	68	1,500	330
Magnesium	NV	NV	7,190 J	29,000	J 15,600 J	9,540 J			22,000	20,000	10,000	D 21,000	13,000	11,000
Manganese	1,600	2,000	295 D	244	489	254	411 D	340 J	140 .	J 2,900 J		DJ 320 J	340	660 J
Mercury	0.18	0.81	0.106 J	0.0442	J 0.0343 J	0.0737	0.0555	0.063 J	0.075	J R		R 0.27	0.014	0.12
Nickel	30	310	19.8	24.1	24.3	15.2 J			35	8.9	26	D 22	25	12
Potassium	NV	NV	1,220 J	2,360	J 1,840 J	815 J	1,190 DI	2,700	2,300	2,100	2,400	2600	2,500	1,300
Selenium	3.9	180	D		0.627 J	1.04		0.54 J		1.1 J		D 1.6	4.5	0.69 J
Silver	2	180								0.83 J	0.66	J 1 J		0.88 J
Sodium	NV	NV	556 J	317	J 354 J	334		440 J	230 .	J 740 J		DJ U.		530 J
Thallium	NV	NV								2 J		4.4	1.7	l l
Vanadium	NV	NV	24.9	47.8	21.6	12.8	24.7 D		21	18	27	28	25	20
Zinc	109	10,000	15,800	69	176	88.2	51.2 D	100 J	130	J 77 J	310	рм. 88 J	13,000	720 J

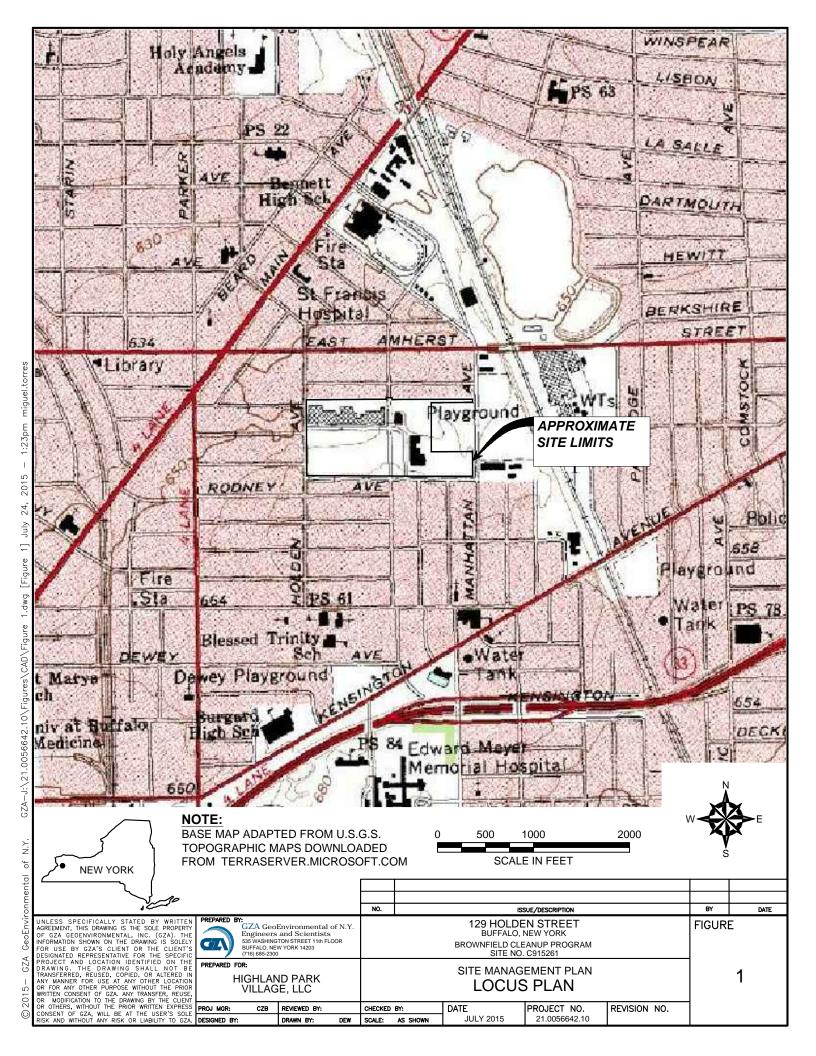
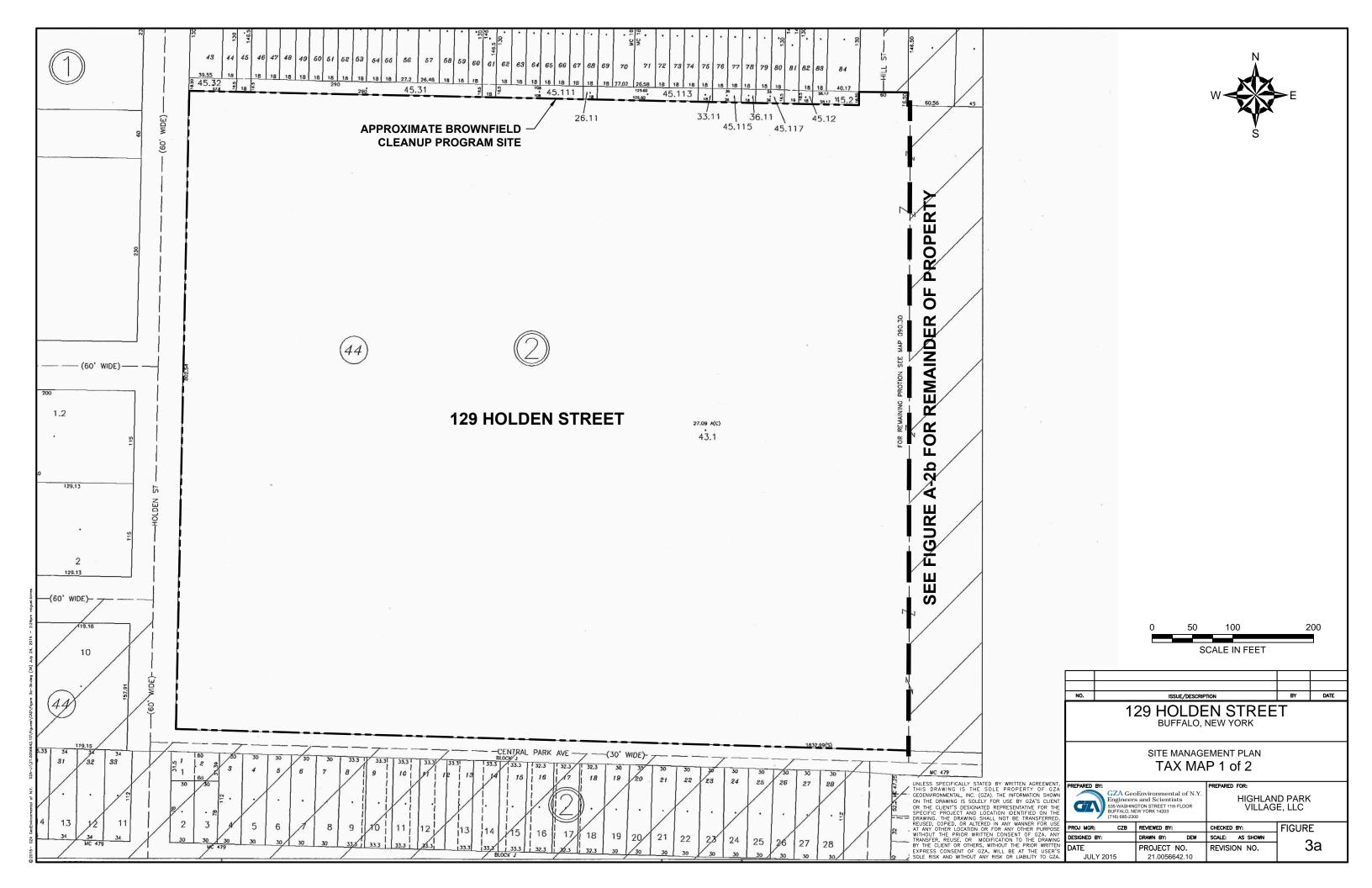
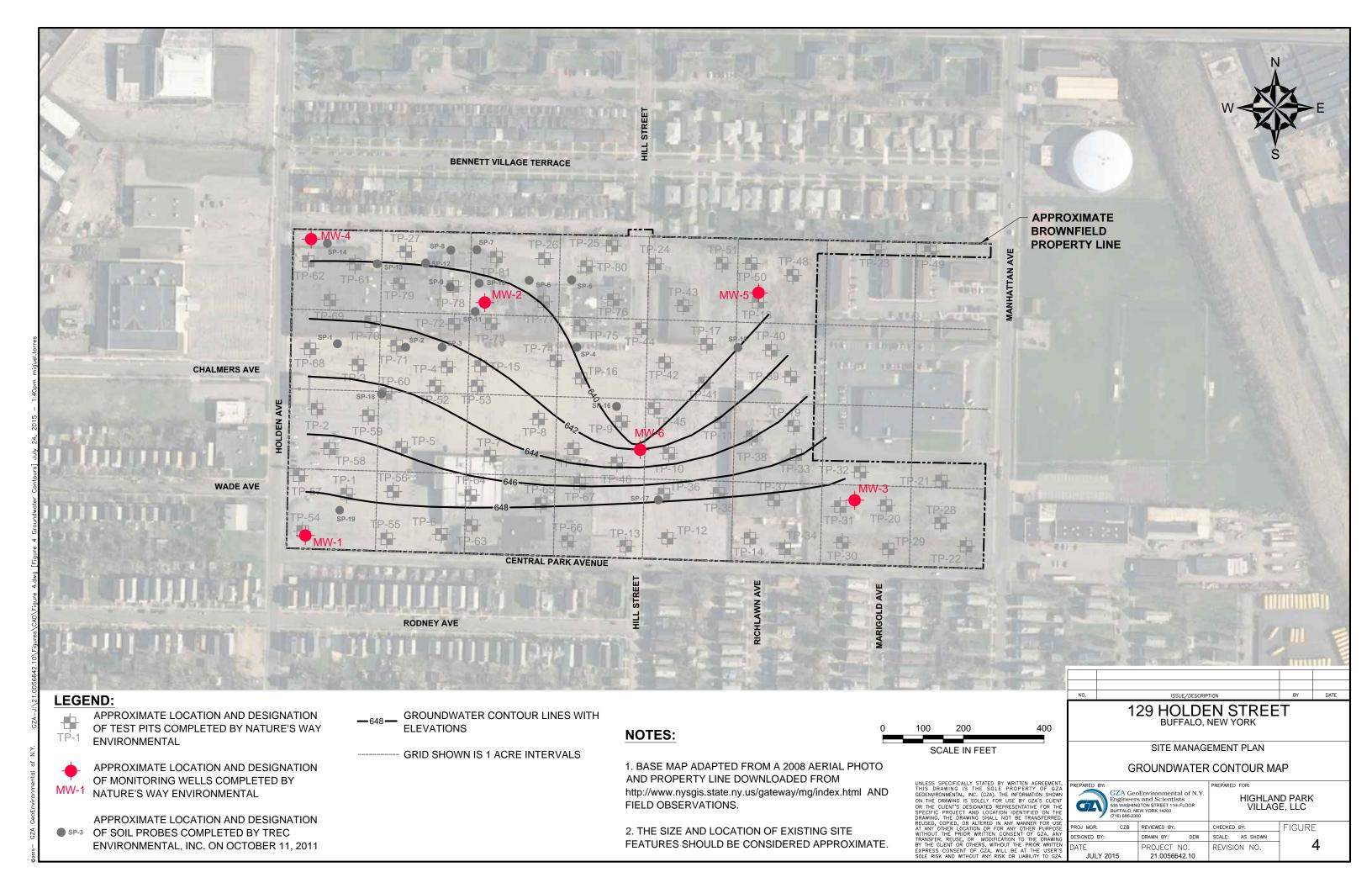
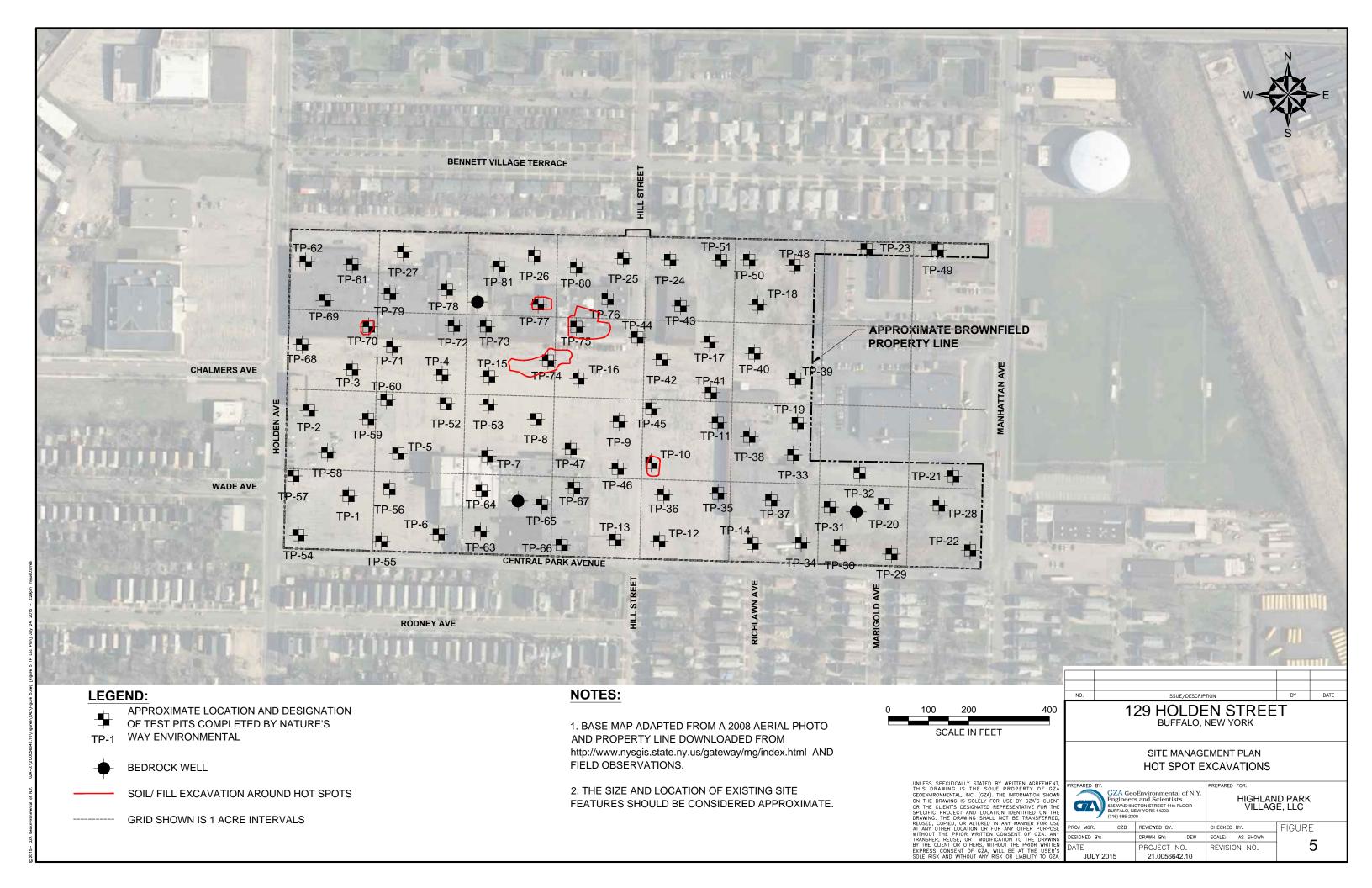

- NOTES: 1. Only compounds detected in one or more soil samples are presented in this table.
 - 2. Blank Microsoft Excel spreadsheet cell indicates compound was not detected.
 - 3. NT indicates compound was not tested.
 - 4. Analytical testing completed by Paradigm Environmental Services.
 - 5. Results presented for TP-17, 2-4 ft; TP-23, 8-10 ft; TP-65 6 to 8 ft; TP-67, 0 to 2 ft; TP-71, 8 to 10 ft; TP-76, 13 to 15 ft; and TP-80, 2 to 4 ft are the higher of these sample and their respective duplicates.
 - 6. Q = laboratory qualifier; J = analyte was detected but at an estimated concentration; UJ = analyte was not detected; NJ = analyte detection is tentative; R = data are unusable.
 - 7. ug/kg = parts per billion, mg/kg = parts per million.
 - 8. Part 375 Residential Soil Cleanup Objectives (SCOs) are from NYCRR Subpart 375-6, Remedial Program Soil Cleanup Objectives, dated December 14, 2006.
 - 9. NV = no value; NS = not specified; NT = not tested; ND = non detect.
 - 10. Concentrations that are bolded exceed the Part 375 Unrestricted SCOs and the & shaded exceed their respective Part 375 Residential SCOs.
 - 11. ** = Cleanup criteria applies to the sum of total xylene compounds.
 - 12. The reporting limit for these SVOCs, <3,300 ug/kg were elevated likely due to a matrix interference in the material analyzed. Reporting limit exceeds some of the SVOCs RRSCOs.

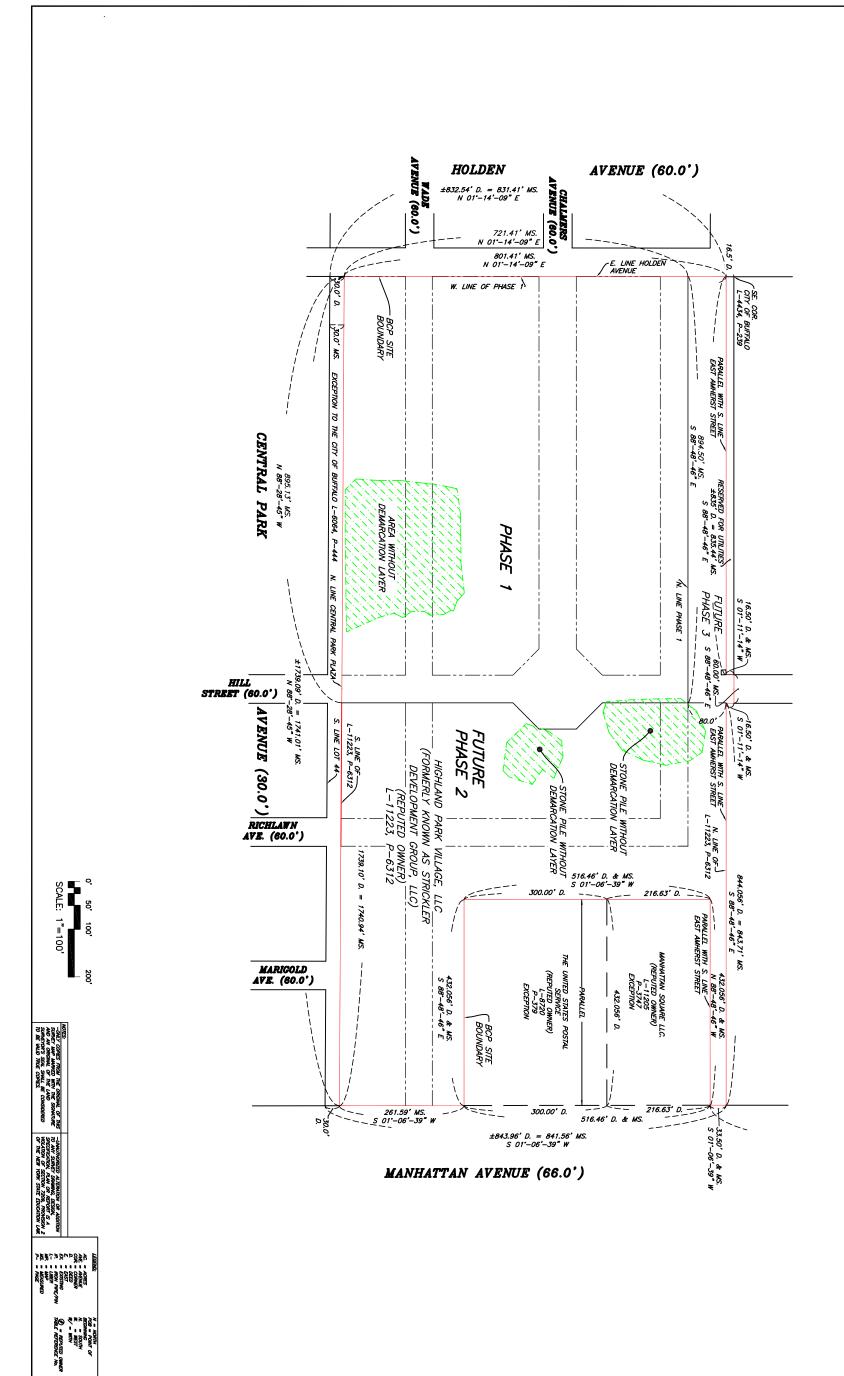

TABLE 3 Soil/Fill Exceedances of ISCOs and PELT (Remedial Investigation) Brownfield Cleanup Site 129 Holden Street


Buffalo, New York

Parameter	Part 375 ISCO (ppm)	Number of Exceedances above ISCO	Proposed Excavation Limit Thresholds (ppm)	Number of Exceedances of PELT
Arsenic	16	10	29.6	4
Chromium	6,800	1	9,145	1
Copper	10,000	1	10,000	1
Nickel	10,000	1	10,000	1
Zinc	10,000	3	10,000	3
Benzo (a) anthracene	11.0	5	21.173	4
Benzo (a) pyrene	1.1	26	17.615	4
Benzo (b) fluoranthene	11.0	6	18.022	4
Dibenz (a,h) anthracene	1.1	12	3.24	6
Indeno (1,2,3-cd) pyrene	11.0	5	13.149	5


FIGURES

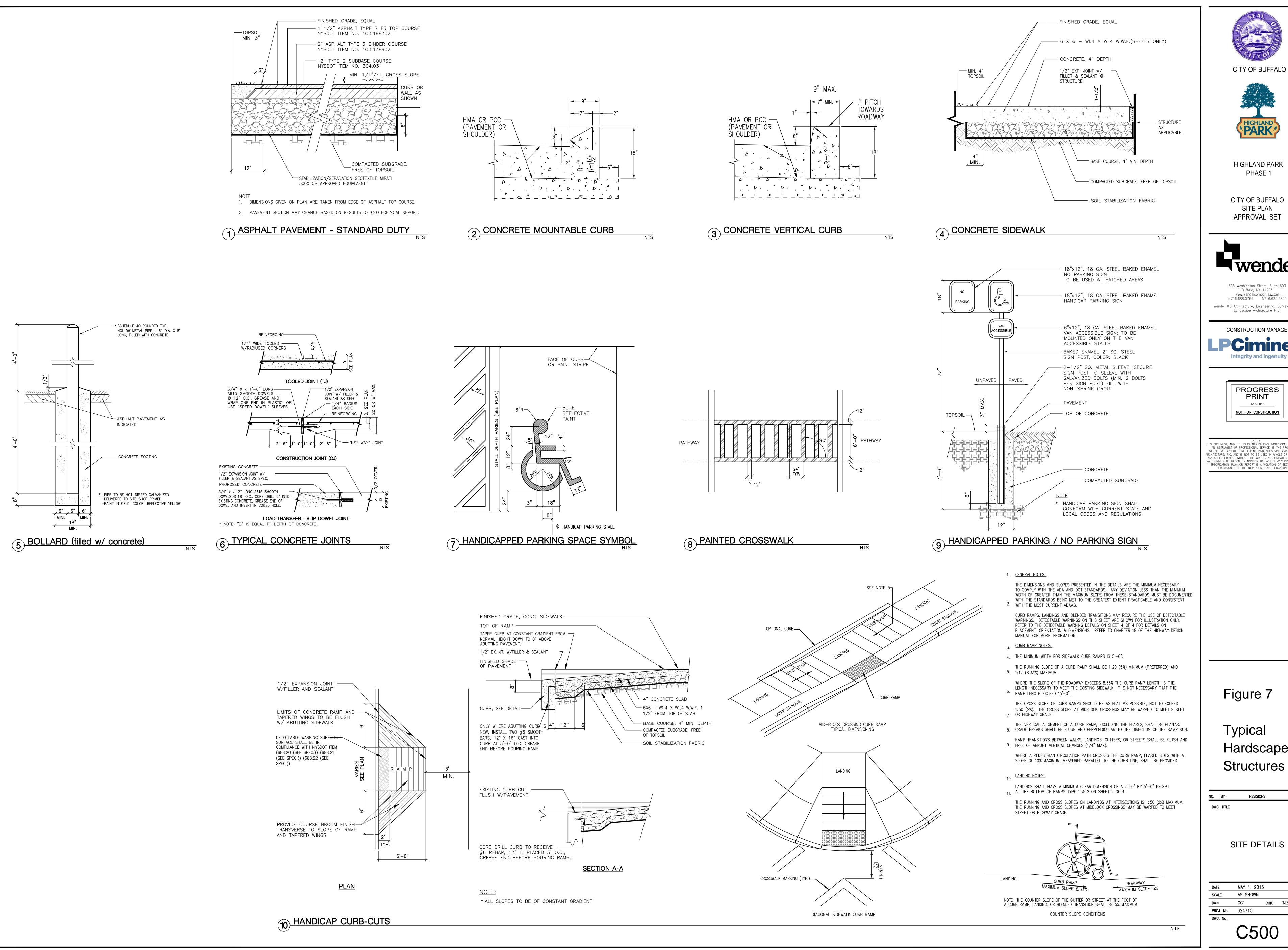




DATE
SCALE
DWN.
PROJ. No.
DWG. No.

FIG

တ


AREAS WITHOUT DEMARCATION LAYER

DWG. TITLE REVISIONS DATE

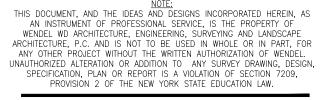
BEING PART OF LOT 44
TOWNSHIP 11
RANGE 8
OF THE HOLLAND LAND COMPANY'S SURVEY
TAX MAP NUMBER
90.29-2-43.1

SUBDIVISION
PLAT MAP OF
"HIGHLAND PARK"
PHASE 1
129 HOLDEN STREET

PCiminell 2421 MAIN ST. BUFFALO, NY 14214 ERIE COUNTY

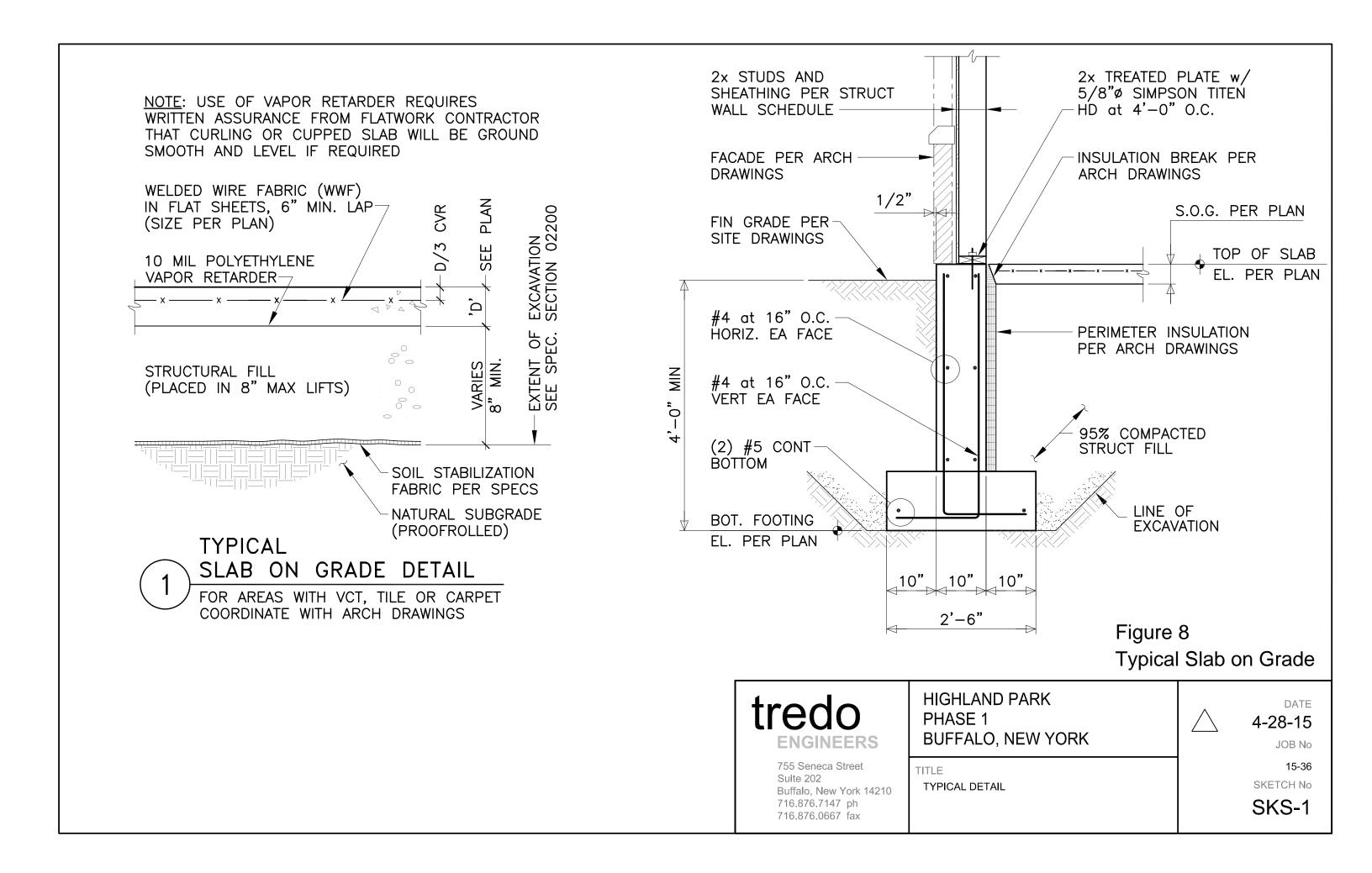
CITY OF BUFFALO

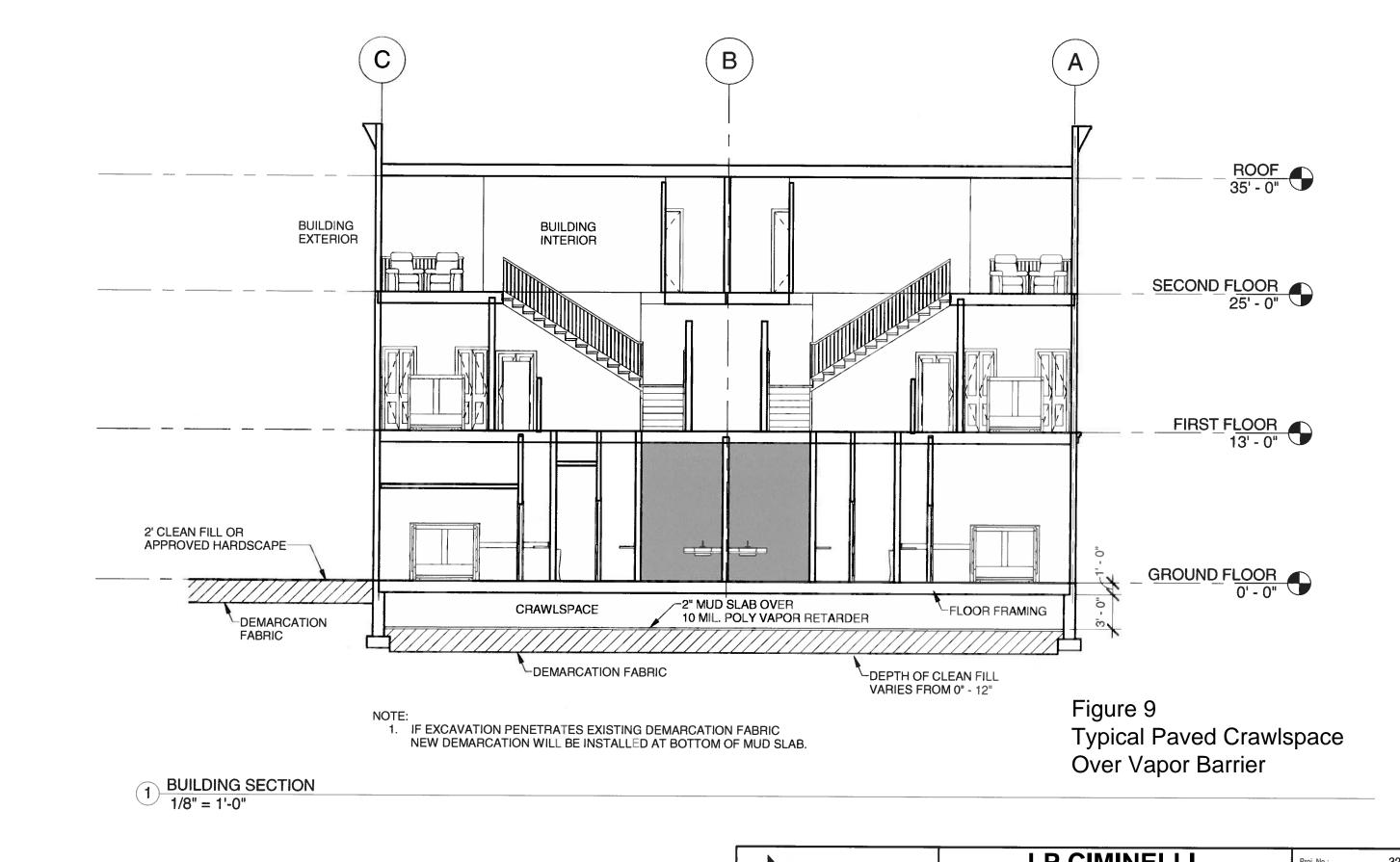
HIGHLAND PARK PHASE 1


CITY OF BUFFALO SITE PLAN

535 Washington Street, Suite 603 Buffalo, NY 14203 www.wendelcompanies.com p:716.688.0766 f:716.625.6825 Wendel WD Architecture, Engineering, Surveying and Landscape Architecture P.C.

PROGRESS 4/15/2015 NOT FOR CONSTRUCTION




Hardscape

SITE DETAILS

MAY 1, 2015 AS SHOWN CC1 CHK. TJZ

C500

- wendel

www.wendelcompanies.com

LP CIMINELLI LOFTS at HIGHLAND PARK BUILDING SECTION Proj. No.: 324720

Date: 04-20-2016

Ref. DWG.:

Sheet No.: 100

APPENDIX A – LIST OF SITE CONTACTS

Name	Phone/Email Address
Highland Park Village LLC	(716) 855-1200 jciminelli@lpciminelli.com
Mr. Bart A. Klettke	(716) 844-7035 <u>bart.klettke@gza.com</u>
Mr. Jaspal Walia	(716) 851-7220 jaspal.walia@dec.ny.gov (716)851-7220
Mr. Chad Staniszewski	(716) 851-7220 Chad.Staniszewski@dec.ny.gov
NYSDEC Site Control	(518) 402-9567 <u>derweb@dec.ny.gov</u>
Mr. Craig Slater	(716) 845-6760 <u>cslater@cslaterlaw.com</u>

APPENDIX B – ENVIRONMENTAL EASEMENT

CHRISTOPHER L. JACOBS, ERIE COUNTY CLERK REF:

DATE:10/5/2015 TIME:11:00:50 AM RECEIPT: 15161190

PARALEGAL SERVICES OF BUFFALO ACCOUNT #: 9273

ITEM - 01 785
RECD: 10/5/2015 11:05:18 AM
FILE: 2015203065 BK/PG D 11286/1863
Deed Sequence: TT2015004964
HIGHLAND PARK VILLAGE LLC

Recording Fees

95.50

TP584

10.00

Subtotal

105.50

TOTAL DUE PAID TOTAL PAID ESCROW

\$105.50 \$105.50 \$105.50

REC BY: Faith COUNTY RECORDER

Site No: C915261 Brownfield Cleanup Agreement Index: C915261-01-12 as amended October 31, 2013

OCT - 5 2015

ERIE COUNTY CLERK'S OFFICE

ENVIRONMENTAL EASEMENT GRANTED PURSUANT TO ARTICLE 71, TITLE 36

OF THE NEW YORK STATE ENVIRONMENTAL CONSERVATION LAW

THIS INDENTURE made this day of September, 20/5 between Owner(s) Highland Park Village, LLC, having an office at 2421 Main Street, Buffalo, NY 14214, County of Erie, State of New York (the "Grantor"), and The People of the State of New York (the "Grantee."), acting through their Commissioner of the Department of Environmental Conservation (the "Commissioner", or "NYSDEC" or "Department" as the context requires) with its headquarters located at 625 Broadway, Albany, New York 12233,

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to encourage the remediation of abandoned and likely contaminated properties ("sites") that threaten the health and vitality of the communities they burden while at the same time ensuring the protection of public health and the environment; and

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to establish within the Department a statutory environmental remediation program that includes the use of Environmental Easements as an enforceable means of ensuring the performance of operation, maintenance, and/or monitoring requirements and the restriction of future uses of the land, when an environmental remediation project leaves residual contamination at levels that have been determined to be safe for a specific use, but not all uses, or which includes engineered structures that must be maintained or protected against damage to perform properly and be effective, or which requires groundwater use or soil management restrictions; and

WHEREAS, the Legislature of the State of New York has declared that Environmental Easement shall mean an interest in real property, created under and subject to the provisions of Article 71, Title 36 of the New York State Environmental Conservation Law ("ECL") which contains a use restriction and/or a prohibition on the use of land in a manner inconsistent with engineering controls which are intended to ensure the long term effectiveness of a site remedial program or eliminate potential exposure pathways to hazardous waste or petroleum; and

WHEREAS, Grantor, is the owner of real property located at the address of 129 Holden Street in the City of Buffalo, County of Erie and State of New York, known and designated on the tax map of the County Clerk of Erie as tax map parcel numbers: Section 90.29 Block 2 Lot 43.1, being the same as that property conveyed to Grantor by deed dated May 22, 2012 and recorded in the Erie County Clerk's Office in Liber and Page 11223/6302. The property subject to this Environmental Easement (the "Controlled Property") comprises approximately 27.1 +/- acres, and is hereinafter more fully described in the Land Title Survey dated July 17, 2015 prepared by Christopher J. Scott, Land Surveyor of Wendel WD Architecture, Engineering, Surveying and Landscape Architecture, P.C., which will be attached to the Site Management Plan. The Controlled Property description is set forth in and attached hereto as Schedule A; and

WHEREAS, the Department accepts this Environmental Easement in order to ensure the protection of public health and the environment and to achieve the requirements for remediation

established for the Controlled Property until such time as this Environmental Easement is extinguished pursuant to ECL Article 71, Title 36; and

NOW THEREFORE, in consideration of the mutual covenants contained herein and the terms and conditions of Brownfield Cleanup Agreement Index Number: C915261-01-12 as amended October 31, 2013, Grantor conveys to Grantee a permanent Environmental Easement pursuant to ECL Article 71, Title 36 in, on, over, under, and upon the Controlled Property as more fully described herein ("Environmental Easement")

- 1. <u>Purposes</u>. Grantor and Grantee acknowledge that the Purposes of this Environmental Easement are: to convey to Grantee real property rights and interests that will run with the land in perpetuity in order to provide an effective and enforceable means of encouraging the reuse and redevelopment of this Controlled Property at a level that has been determined to be safe for a specific use while ensuring the performance of operation, maintenance, and/or monitoring requirements; and to ensure the restriction of future uses of the land that are inconsistent with the above-stated purpose.
- 2. <u>Institutional and Engineering Controls</u>. The controls and requirements listed in the Department approved Site Management Plan ("SMP") including any and all Department approved amendments to the SMP are incorporated into and made part of this Environmental Easement. These controls and requirements apply to the use of the Controlled Property, run with the land, are binding on the Grantor and the Grantor's successors and assigns, and are enforceable in law or equity against any owner of the Controlled Property, any lessees and any person using the Controlled Property.
 - A. (1) The Controlled Property may be used for:

Restricted Residential as described in 6 NYCRR Part 375-1.8(g)(2)(ii), Commercial as described in 6 NYCRR Part 375-1.8(g)(2)(iii) and Industrial as described in 6 NYCRR Part 375-1.8(g)(2)(iv)

- (2) All Engineering Controls must be operated and maintained as specified in the Site Management Plan (SMP);
- (3) All Engineering Controls must be inspected at a frequency and in a manner defined in the SMP;
- (4) The use of groundwater underlying the property is prohibited without necessary water quality treatment_as determined by the NYSDOH or the Erie County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department;
- (5) Groundwater and other environmental or public health monitoring must be performed as defined in the SMP;
- (6) Data and information pertinent to Site Management of the Controlled Property must be reported at the frequency and in a manner defined in the SMP;

- (7) All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP;
- (8) Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP;
- (9) Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical components of the remedy shall be performed as defined in the SMP;
- (10) Access to the site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by this Environmental Easement.
- B. The Controlled Property shall not be used for Residential purposes as defined in 6NYCRR 375-1.8(g)(2)(i), and the above-stated engineering controls may not be discontinued without an amendment or extinguishment of this Environmental Easement.
- C. The SMP describes obligations that the Grantor assumes on behalf of Grantor, its successors and assigns. The Grantor's assumption of the obligations contained in the SMP which may include sampling, monitoring, and/or operating a treatment system, and providing certified reports to the NYSDEC, is and remains a fundamental element of the Department's determination that the Controlled Property is safe for a specific use, but not all uses. The SMP may be modified in accordance with the Department's statutory and regulatory authority. The Grantor and all successors and assigns, assume the burden of complying with the SMP and obtaining an up-to-date version of the SMP from:

Site Control Section
Division of Environmental Remediation
NYSDEC
625 Broadway
Albany, New York 12233
Phone: (518) 402-9553

- D. Grantor must provide all persons who acquire any interest in the Controlled Property a true and complete copy of the SMP that the Department approves for the Controlled Property and all Department-approved amendments to that SMP.
- E. Grantor covenants and agrees that until such time as the Environmental Easement is extinguished in accordance with the requirements of ECL Article 71, Title 36 of the ECL, the property deed and all subsequent instruments of conveyance relating to the Controlled Property shall state in at least fifteen-point bold-faced type:

This property is subject to an Environmental Easement held

by the New York State Department of Environmental Conservation pursuant to Title 36 of Article 71 of the Environmental Conservation Law.

- F. Grantor covenants and agrees that this Environmental Easement shall be incorporated in full or by reference in any leases, licenses, or other instruments granting a right to use the Controlled Property.
- G. Grantor covenants and agrees that it shall, at such time as NYSDEC may require, submit to NYSDEC a written statement by an expert the NYSDEC may find acceptable certifying under penalty of perjury, in such form and manner as the Department may require, that:
- (1) the inspection of the site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under the direction of the individual set forth at 6 NYCRR Part 375-1.8(h)(3).
 - (2) the institutional controls and/or engineering controls employed at such site:
 - (i) are in-place;
- (ii) are unchanged from the previous certification, or that any identified changes to the controls employed were approved by the NYSDEC and that all controls are in the Department-approved format; and
- (iii) that nothing has occurred that would impair the ability of such control to protect the public health and environment;
- (3) the owner will continue to allow access to such real property to evaluate the continued maintenance of such controls;
- (4) nothing has occurred that would constitute a violation or failure to comply with any site management plan for such controls;
- (5) the report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;
- (6) to the best of his/her knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and
 - (7) the information presented is accurate and complete.
- 3. <u>Right to Enter and Inspect</u>. Grantee, its agents, employees, or other representatives of the State may enter and inspect the Controlled Property in a reasonable manner and at reasonable times to assure compliance with the above-stated restrictions.
- 4. <u>Reserved Grantor's Rights</u>. Grantor reserves for itself, its assigns, representatives, and successors in interest with respect to the Property, all rights as fee owner of the Property, including:
- A. Use of the Controlled Property for all purposes not inconsistent with, or limited by the terms of this Environmental Easement;
- B. The right to give, sell, assign, or otherwise transfer part or all of the underlying fee interest to the Controlled Property, subject and subordinate to this Environmental Easement;

5. Enforcement

A. This Environmental Easement is enforceable in law or equity in perpetuity by Grantor, Grantee, or any affected local government, as defined in ECL Section 71-3603, against the owner of the Property, any lessees, and any person using the land. Enforcement shall not be defeated because of any subsequent adverse possession, laches, estoppel, or waiver. It is not a defense in any action to enforce this Environmental Easement that: it is not appurtenant to an interest in real property; it is not of a character that has been recognized traditionally at common law; it imposes a negative burden; it imposes affirmative obligations upon the owner of any interest in the burdened property; the benefit does not touch or concern real property; there is no privity of estate or of contract; or it imposes an unreasonable restraint on alienation.

- B. If any person violates this Environmental Easement, the Grantee may revoke the Certificate of Completion with respect to the Controlled Property.
- C. Grantee shall notify Grantor of a breach or suspected breach of any of the terms of this Environmental Easement. Such notice shall set forth how Grantor can cure such breach or suspected breach and give Grantor a reasonable amount of time from the date of receipt of notice in which to cure. At the expiration of such period of time to cure, or any extensions granted by Grantee, the Grantee shall notify Grantor of any failure to adequately cure the breach or suspected breach, and Grantee may take any other appropriate action reasonably necessary to remedy any breach of this Environmental Easement, including the commencement of any proceedings in accordance with applicable law.
- D. The failure of Grantee to enforce any of the terms contained herein shall not be deemed a waiver of any such term nor bar any enforcement rights.
- 6. <u>Notice</u>. Whenever notice to the Grantee (other than the annual certification) or approval from the Grantee is required, the Party providing such notice or seeking such approval shall identify the Controlled Property by referencing the following information:

County, NYSDEC Site Number, NYSDEC Brownfield Cleanup Agreement, State Assistance Contract or Order Number, and the County tax map number or the Liber and Page or computerized system identification number.

Parties shall address correspondence to:

Site Number: C915261 Office of General Counsel

NYSDEC

625 Broadway

Albany New York 12233-5500

With a copy to:

Site Control Section

Division of Environmental Remediation

NYSDEC 625 Broadway Albany, NY 12233 All notices and correspondence shall be delivered by hand, by registered mail or by Certified mail and return receipt requested. The Parties may provide for other means of receiving and communicating notices and responses to requests for approval.

- 7. <u>Recordation</u>. Grantor shall record this instrument, within thirty (30) days of execution of this instrument by the Commissioner or her/his authorized representative in the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.
- 8. <u>Amendment</u>. Any amendment to this Environmental Easement may only be executed by the Commissioner of the New York State Department of Environmental Conservation or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.
- 9. <u>Extinguishment.</u> This Environmental Easement may be extinguished only by a release by the Commissioner of the New York State Department of Environmental Conservation, or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.
- 10. <u>Joint Obligation</u>. If there are two or more parties identified as Grantor herein, the obligations imposed by this instrument upon them shall be joint and several.

Remainder of Page Intentionally Left Blank

County: Erie Site No: C915261 Brownfield Cleanup Agreement Index: C915261-01-12 as amended October 31, 2013

IN WITNESS WHEREOF, Grantor has caused this instrument to be signed in its name.

Highland Park Village, LLC:
Ву:
Print Name: Louis Ciminelli
Title: Authorized Member Date: 9/9/15

Grantor's Acknowledgment

STATE OF NEW YORK)

COUNTY OF FILE)

On the 9th day of Sept, in the year 20 15, before me, the undersigned, personally appeared Louis Cimine III, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their capacity(ies), and that by his/her/their signature(s) on the instrument, the individual(s), or the person upon behalf of which the individual(s) acted, executed the instrument.

Notary Public - State of New York

CAROL E. BRAUER
Notary Public, State of New York
Qualified in Erie County
My Commission Expires July 25, 2018

County: Erie Site No: C915261 Brownfield Cleanup Agreement Index: C915261-01-12 as amended October 31, 2013

THIS ENVIRONMENTAL EASEMENT IS HEREBY ACCEPTED BY THE PEOPLE OF THE STATE OF NEW YORK, Acting By and Through the Department of Environmental Conservation as Designee of the Commissioner,

By:

Robert W Schick, Director

Division of Environmental Remediation

Grantee's Acknowledgment

STATE OF NEW YORK) ss: COUNTY OF ALBANY)

On the 23 day of 24m, in the year 2015, before me, the undersigned, personally appeared Robert W. Schick, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/ executed the same in his/her/ capacity as Designee of the Commissioner of the State of New York Department of Environmental Conservation, and that by his/her/ signature on the instrument, the individual, or the person upon behalf of which the individual acced, executed the instrument.

Notary Public - State of New York

David J. Chiusano Notary Public, State of New York No. 01CH5032146

Qualified in Schenectady County Commission Expires August 22, 2018 County: Erie Site No: C915261 Brownfield Cleanup Agreement Index: C915261-01-12 as amended October 31, 2013

SCHEDULE "A" PROPERTY DESCRIPTION

Environmental Easement Description For 129 Holden Street Redevelopment Site BCP Site No. C915261

ALL THAT TRACT OR PARCEL OF LAND, situate in the City of Buffalo, County of Erie and State of New York, being part of Lot 44, Township 11, Range 8 of the Holland Land Company's Survey, and more particularly bounded and described as follows:

Beginning at a point on the westerly line of Manhattan Avenue, being 66.0 feet wide, 504.50 feet south of the southerly line of East Amherst Street, being 60.0 feet wide;

Thence southerly along the westerly line of said Manhattan Avenue, a distance of 33.50 feet to northeast corner of lands conveyed to Manhattan Square LLC., by deed recorded in Erie County Clerk's Office in Liber 11205 of Deeds at Page 3747;

Thence westerly along the northerly line of said lands conveyed to Manhattan Square LLC., a distance of 432.056 feet to the northwest corner of said lands;

Thence southerly along the westerly line of said lands conveyed to Manhattan Square LLC., and lands conveyed to The United States Postal Service by deed recorded in Erie County Clerk's Office in Liber 8720 of Deeds at Page 379, a distance of 516.46 feet, to the southwest corner of said lands conveyed to The United States Postal Service;

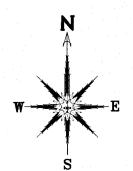
Thence easterly along the south line of said lands conveyed to The United States Postal Service, a distance of 432.056 feet, to a point in the westerly line of said Manhattan Avenue:

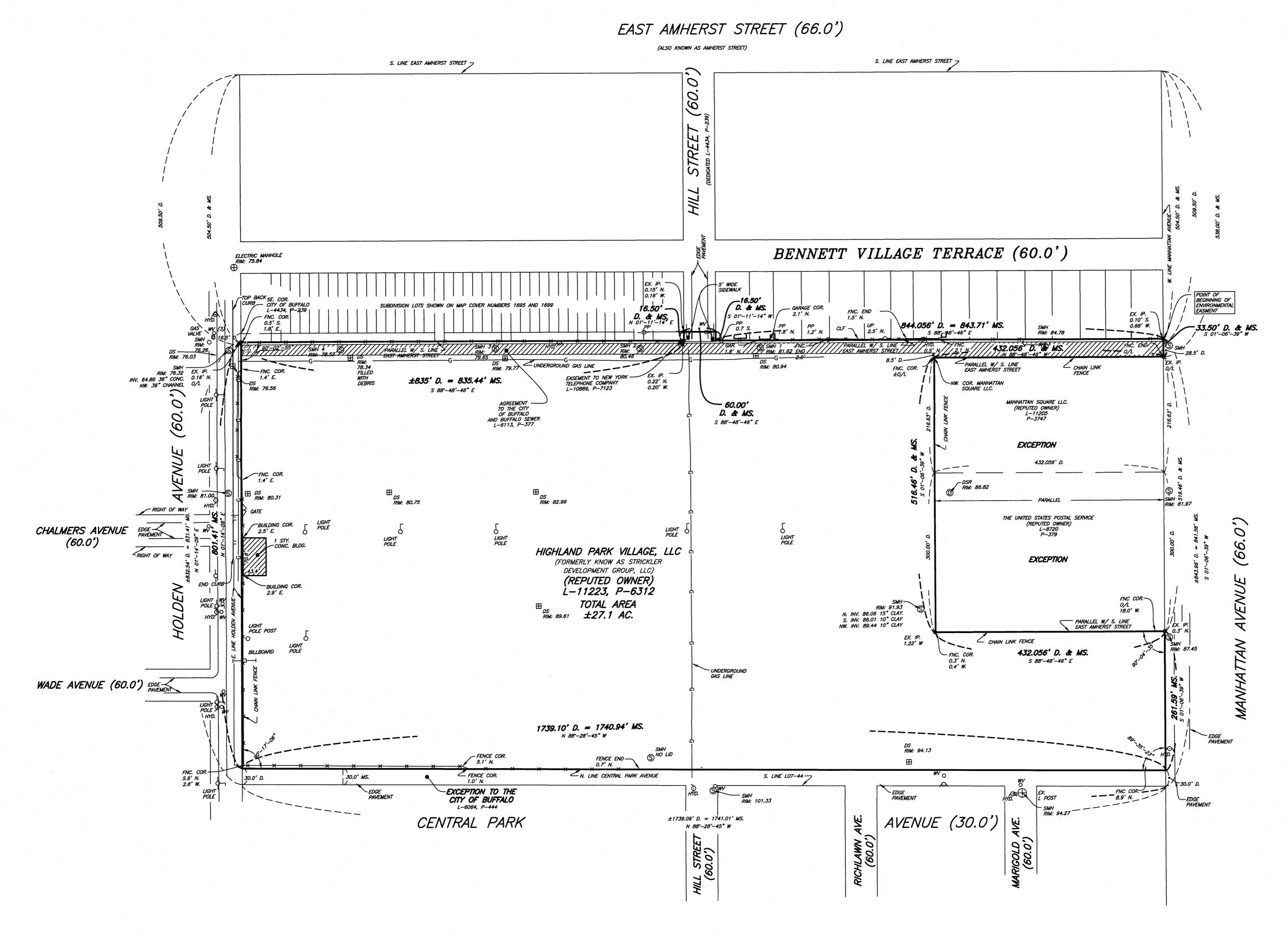
Thence southerly along the westerly line of said Manhattan Avenue, a distance of 261.59 feet, to a point on the northerly line of lands conveyed to the City of Buffalo by a deed recorded in Erie County Clerk's Office in Liber 6064 of deeds at Page 444, (also known as Central Park Avenue, being 30.0 feet wide);

Thence westerly along the northerly line of said lands conveyed to the City of Buffalo by Liber 6064 of deeds at Page 444, a distance of 1740.94 feet, to a point on the easterly line of Holden Avenue, being 66.0 feet wide;

Thence northerly along the easterly line of said Holden Avenue, a distance of 801.41 feet, to a point that is 504.50 feet south of the southerly line of said East Amherst Street;

Thence easterly parallel with the southerly line of said East Amherst Street, a distance of 835.44 feet, to the southwest corner of Hill Street, being 60.0 feet wide;


County: Erie Site No: C915261 Brownfield Cleanup Agreement Index: C915261-01-12 as amended October 31, 2013


Thence northerly along the west line of said Hill Street, a distance of 16.5 feet to a point;

Thence westerly at right angles to the last described line, a distance of 60.00 feet to a point on the easterly line of said Hill Street;

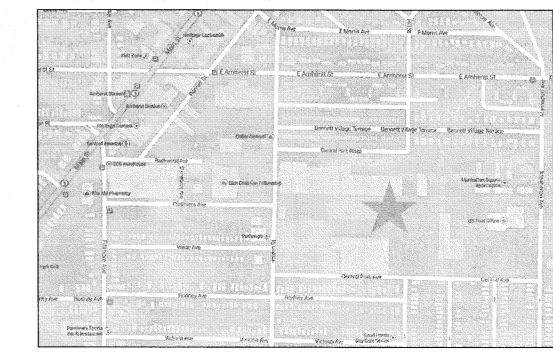
Thence southerly along the easterly line of said Hill Street, a distance of 16.50 feet, to the southeast corner of said Hill Street;

Thence easterly parallel with the southerly line of said East Amherst Street, a distance of 843.71 feet to the Point of beginning. Containing 27.1 acres of land, more or less.



GENERAL NOTES:

- 1. HORIZONTAL DATUM IS REFERENCED TO NORTH AMERICAN DATUM OF 1983 (NAD 83), NEW YORK STATE PLANE, WESTERN ZONE COORDINATE SYSTEM, U.S. SURVEY FEET, ESTABLISHED WITH GPS USING THE NYSDOT REAL TIME NETWORK (NYSNET RTN).
- 2. UNDERGROUND UTILITIES ARE SHOWN IN THERE APPROXIMATE LOCATION FROM PLANS PROVIDED BY OTHERS.
- 3. THE SURVEY HAS BEEN UPDATED WITH THE BENEFIT OF THE TITLE REPORT NO. 1213-4044, AS PREPARED BY CHICAGO TITLE INSURANCE COMPANY DATED FEBRUARY 16, 2012.


THIS PROPERTY IS SUBJECT TO AN ENVIRONMENTAL EASEMENT HELD BY THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION PURSUANT TO TITLE 36 OF ARTICLE 71 OF THE NEW YORK ENVIRONMENTAL CONSERVATION LAW.

THE ENGINEERING AND INSTITUTIONAL CONTROLS FOR THIS EASEMENT ARE SET FORTH IN THE SITE MANAGEMENT PLAN (SMP). A COPY OF THE SMP MUST BE OBTAINED BY ANY PARTY WITH AN INTEREST IN THE PROPERTY. THE SMP CAN BE OBTAINED FROM THE NYS DEPARTMENT OF ENVIRONMENTAL CONSERVATION, DIVISION OF ENVIRONMENTAL REMEDIATION, SITE CONTROL SECTION, 625 BROADWAY, ALBANY, NY 12233 OR AT DERWEB@GW.DEC.STATE.NY.US.

-ONLY COPIES FROM THE ORIGINAL OF THIS SURVEY MAP MARKED WITH THE SIGNATURE TO ANY SURVEY DRAWING, DESIGN, SPECIFICATION, PLAN OR REPORT IS A SURVEYOR'S SEAL SHALL BE CONSIDERED TO BE VALID TRUE COPIES.

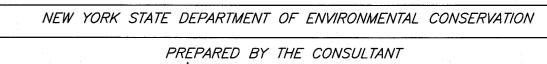
-UNAUTHORIZED ALTERATION OR ADDITION TO ANY SURVEY DRAWING, DESIGN, SPECIFICATION, PLAN OR REPORT IS A VIOLATION OF SECTION 7209, PROVISION 2 OF THE NEW YORK STATE EDUCATION LAW.

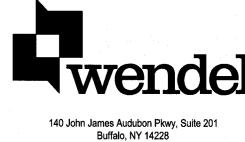
<u>PROJECT LOCATION SKETO</u> NOT TO SCALE

ENVIRONMENTAL EASEMENT AREA DESCRPTION FOR 129 HOLDEN STREET DEVELOPMENT. CENTRAL PARK PLAZA TITLE No.1213-40443

ALL THAT TRACT OR PARCEL OF LAND SITUATED IN THE CITY OF BUFFALO, COUNTY OF ERIE AND STATE OF NEW YORK, BEING PART OF LOT FORTY—FOUR (44), TOWNSHIP ELEVEN (11), RANGE EIGHT (8) OF THE HOLLAND LAND COMPANY'S SURVEY AND BEING MORE PARTICULARLY DESCRIBED AS FOLLOWS:

BEGINNING AT A POINT IN THE WESTERLY LINE OF MANHATTAN AVENUE FIVE HUNDRED FOUR AND FIVE TENTHS (504.5) FEET SOUTH OF THE SOUTHERLY LINE OF EAST AMHERST STREET; THENCE SOUTHERLY ALONG THE WESTERLY LINE OF MANHATTAN AVENUE ABOUT EIGHT HUNDRED FORTY-THREE AND NINETY-SIX HUNDREDTHS (843.96) FEET TO THE SOUTHERLY LINE OF SAID LOT NUMBER FORTY-FOUR (44); THENCE WESTERLY ALONG SAID SOUTHERLY LINE OF LOT NUMBER FORTY-FOUR (44) ABOUT ONE THOUSAND SEVEN HUNDRED THIRTY-NINE AND SEVEN HUNDREDTHS (1739.07) FEET TO THE EASTERLY LINE OF HOLDEN AVENUE AS EXTENDED SOUTHERLY; THENCE NORTHERLY ON SAID EASTERLY LINE OF HOLDEN AVENUE, AS EXTENDED SOUTHERLY, EIGHT HUNDRED THIRTY-TWO AND FIFTY-FOUR HUNDREDTHS (832.54) FEET MORE OR LESS TO A POINT IN SAID EASTERLY LINE OF HOLDEN AVENUE FIVE HUNDRED FOUR AND FIVE TENTHS (504.5) FEET SOUTH OF THE INTERSECTION OF SAID EASTERLY LINE OF HOLDEN AVENUE WITH THE SOUTH LINE EAST AMHERST STREET, SAID POINT BEING SIXTEEN AND FIVE TENTHS (16.5) FEET SOUTH OF THE SOUTHEAST CORNER OF LANDS CONVEYED FOR THE EXTENSION OF HOLDEN AVENUE SOUTHERLY AS CONVEYED TO BUFFALO CEMENT COMPANY LTD. TO THE CITY OF BUFFALO BY DEED RECORDED IN ERIE COUNTY CLERKS OFFICE IN LIBER 4434 OF DEED AT PAGE 239; THENCE EASTERLY ALONG A LINE WESTERLY LINE OF HILL STREET AS EXTENDED SOUTHERLY; THENCE NORTHERLY ALONG THE WESTERLY LINE OF HILL STREET, AS EXTENDED SOUTHERLY, SIXTEEN AND FIVE TENTHS (16.5) FEET TO THE SOUTHWESTERLY CORNER OF LAND CONVEYED TO THE CITY OF BUFFALO FOR HILL STREET, AS DESCRIBED IN DEED DATED SEPTEMBER 27, 1948 AND RECORDED NOVEMBER 18, 1948 IN ERIE COUNTY CLERKS OFFICE IN LIBER 4434 OF DEEDS AT PAGE 239; THENCE EASTERLY ALONG THE SOUTHERLY LINE OF LANDS SO CONVEYED TO THE CITY OF BUFFALO FOR HILL STREET, AS AFORESAID SIXTY (60) FEET TO THE SOUTHWESTERLY CORNER THEREOF; THENCE SOUTHERLY ALONG THE EASTERLY LINE OF HILL STREET, AS EXTENDED SOUTHERLY SIXTEEN AND FIVE TENTHS (16.5) FEET TO A LINE PARALLEL WITH THE SOUTH LINE OF EAST AMHERST STREET AND DISTANT SOUTHERLY THEREFROM FIVE HUNDRED FOUR AND FIVE TENTHS (504.5) FEET; THENCE EASTERLY ALONG SAID LAST MENTIONED PARALLEL LINE ABOUT EIGHT HUNDRED FORTY-FOUR AND FIFTY-SIX THOUSANDTHS (844.056) FEET TO THE WESTERLY LINE OF MANHATTAN AVENUE AT THE POINT OR PLACE OF BEGINNING.

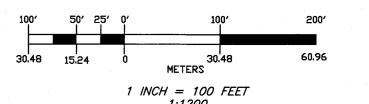

BEGINNING AT A POINT IN THE WESTERLY LINE OF MANHATTAN AVENUE FIVE HUNDRED THIRTY EIGHT (538) FEET SOUTH OF AMHERST STREET; THENCE SOUTHERLY ALONG THE WESTERLY LINE OF MANHATTAN AVENUE FIVE HUNDRED SIXTEEN AND FORTY—SIX HUNDREDTHS (516.46) FEET; THENCE WESTERLY PARALLEL WITH THE AMHERST STREET FOUR HUNDRED THIRTY—TWO AND FIFTY—SIX THOUSANDTHS (432.056) FEET; THENCE NORTHERLY PARALLEL WITH MANHATTAN AVENUE FIVE HUNDRED SIXTEEN AND FORTY—SIX HUNDREDTHS (516.46) FEET; THENCE EASTERLY PARALLEL WITH AMHERST STREET FOUR HUNDRED THIRTY—TWO AND FIFTY—SIX THOUSANDTHS (432.056) FEET TO THE WESTERLY LINE OF MANHATTAN AVENUE AT THE POINT OF PLACE OF BEGINNING.


SHOPPING CENTER, INC. TO THE CITY IF BUFFALO BY DEED DATED AUGUST 3, 1956 AND RECORDED OCTOBER 1, 1956 IN ERIE COUNTY CLERK'S OFFICE IN LIBER 6064 OF DEEDS AT PAGE 444; BOUNDED AND DESCRIBED AS FOLLOWS:

ALSO EXCEPTING AND RESERVING THEREFROM THE FOLLOWING DESCRIBED LANDS CONVEYED BY CENTRAL PARK

CITY OF BUFFALO, COUNTY OF ERIE AND STATE OF NEW YORK, BEING PART OF LOT NUMBER FORTY—FOUR (44)
TOWNSHIP ELEVEN (11), RANGE EIGHT (8) OF THE HOLLAND LAND COMPANY'S SURVEY BOUNDED AND DESCRIBED AS
FOLLOWS:

BEGINNING AT THE POINT OF INTERSECTION OF THE EASTERLY LINE OF HOLDEN AVENUE (AS A SIXTY (60) FOOT STREET) WITH THE SOUTHERLY LINE OF LOT NUMBER FOTY—FOUR (44), AS AFORESAID; RUNNING THENCE NORTHERLY ALONG THE EASTERLY LINE OF HOLDEN AVENUE FOR A DISTANCE OF THIRTY (30) FEET TO POINT; THENCE EASTERLY ALONG A LINE PARALLEL WITH THE SOUTHERLY LINE OF LOT NUMBER FORTY—FOUR (44), AS AFORESAID AND THIRTY (30) FEET NORTHERLY MEASURED AT RIGHT ANGLES THEREFROM FOR A DISTANCE OF ONE THOUSAND SEVEN HUNDRED THIRTY—NINE AND TEN HUNDREDTHS (1739.10) FEET TO THE WESTERLY LINE OF MANHATTAN AVENUE (AS A SIXTY—SIX (66) FOOT STREET); THENCE SOUTHERLY ALONG THE WESTERLY LINE OF MANHATTAN AVENUE FOR A DISTANCE OF THIRTY (30) FEET TO THE SOUTHERLY LINE OF LOT NUMBER FORTY—FOUR (44) AS AFORESAID; THENCE WESTERLY ALONG THE SOUTHERLY LINE OF LOT NUMBER FORTY FOUR (44) AS AFORESAID FOR A DISTANCE OF ONE THOUSAND SEVEN HUNDRED THIRTY—NINE AND TEN HUNDREDTHS (1739.10) FEET TO THE POINT OR PLACE OF BEGINNING. CONTAINING 27.1 ACRES OF LAND, MORE OR LESS.

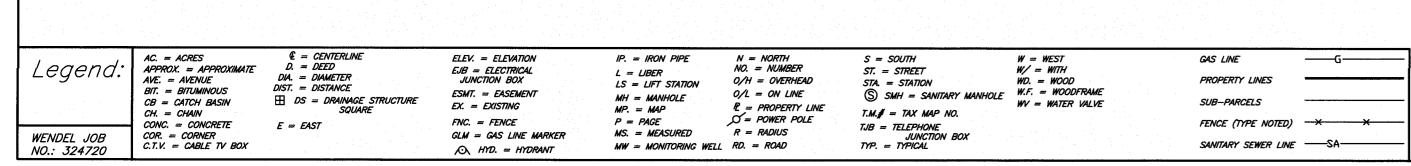

www.wendelcompanies.com p:716.688.0766 f:716.625.6825

Wendel WD Architecture, Engineering, Surveying and Landscape Architecture P.C.

MAP OF 129 HOLDEN STREET BUFFALO, NEW YORK SITE NAME: 129 HOLDEN STREET REDEVELOPMENT

TO
THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION
SITUATE IN PARTS OF

LOT 44, TOWNSHIP 11, RANGE 8
OF THE THE HOLLAND LAND COMPANY'S SURVEY
CITY OF BUFFALO, COUNTY OF ERIE
STATE OF NEW YORK
T.M.# PART OF 90.29-2-43.1



I HEREBY CERTIFY TO (1) THE PEOPLE OF THE STATE OF NEW YORK ACTING THROUGH THEIR COMMISSIONER OF THE DEPARTMENT OF ENVIRONMENTAL CONSERVATION, (2) CHICAGO TITLE INSURANCE COMPANY, THAT THIS IS AN ACCURATE SURVEY MAP UNDER MY DIRECTION, OF AN ACTUAL SURVEY, AND THAT THE SURVEY WAS PERFORMED IN ACCORDANCE TO THE STANDARDS AND PROCEDURES ADOPTED BY THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION, NOVEMBER 2014. FIELD SURVEY COMPLETED FEBRUARY 26, 2015

CHRISTOPHER D SCOTT, LAND SURVEYOR #050708

BRIAN S. SMITH, CST 3, SURVEY DRAFTER

SHEET 1 of 1

APPENDIX C – SUBSURFACE LOGS

Note, the locations of the monitoring wells and soil probes are shown on Figure 4.

The locations of the test pits are shown on Figure 5.

TEST PIT FIELD LOG Project Description: BCP Site C915261 Test Pit No: TP-1 Project location: 129 Holden Street Location: GZA Representative: File No: Thomas Bohlen 21.0056642.10 Contractor: Nature's Way Date: 7/10/2012 Weather: Sunny, humid, 90°F (~maximum) Tony Kaminski Ground elev .: Operator: Make: CAT Model: 315 CL DEPTH SAMPLE SAMPLE DESCRIPTION PID DEPTH (feet) NO. Asphalt and subbase (~10-inches). 0.5 1 Dark Brown GRAVEL and Sand, some Silt, some Slag, little Clay, trace Brick, 1.5 moist (Fill). 2 Brown Large Fractured Limestone and various soils (Sand, Silt, Clay), trace 0 2.5 Brick, moist (Fill). 3 3.5 4 0 4.5 5 5.5 6 0 6.5 7 7.5 8 0 8.5 9 Grades to: slight increase in moisture. 9.5 10 REMARKS:

			TEST	PIT FIELD LOG		
Project D Project lo GZA Rep Contracto Operator: Make:	cation: resentativ or:	129		Test Pit No: Location: File No: Date: Weather: Ground elev.	21.0056642.10 7/10/2012 Sunny, humid, 90°F (~maximum	n)
DEPTH	SAMPLE	SAMPLE		DESCRIPTION		PID
10.5 11 11.5 12 12.5 13 13.5 14 14.5 15 16 16.5	NO.	DEPTH	Brick, moist (Fill).	imestone and various soils		0
17.5						
18 18.5						
19						
19.5 20						
REMARKS:	<u> </u>	<u> </u>	<u> </u>			

				JECT NAME		
			TEST	PIT FIELD LOG		
Project D Project lo			P Site C915261 Holden Street	Test Pit No: Location:	TP-2	
GZA Rep			mas Bohlen	File No:	21.0056642.10	
Contracto		Nature's V		Date:	7/10/2012	
				Weather:	Sunny, humid, 90°F (~maximum)
Operator:		Tony Kam	inski	Ground elev.		
Make:	CAT	Model:	315 CL			
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
0.5			Asphalt and Subbase (~8	-inches to 1-foot)		0
1						
1.5	•		Dark Brown GRAVEL and	d Sand, some Slag, little bri	ck, moist (Fill).	
2			Drown Lorgo Frontistad Li	maatana and various soils	(Cond Cilt Clay) trace	0
2.5	•		Brick, moist (Fill).	mestone and various soils	(Sand, Siil, Clay), trace	0
3	•					
3.5						
4	•					0
4.5						O
5						
5.5					***/// ***	
6	•		***	多形式		0
6.5	•		First Wall			Ç
7						
7.5					A. John	
8						0
8.5						Č
9						
9.5						
10						
REMARKS:						

TEST PIT FIELD LOG Project Description: BCP Site C915261 Test Pit No: TP-2 Project location: Location: 129 Holden Street GZA Representative: File No: Thomas Bohlen 21.0056642.10 Contractor: Date: Nature's Way 7/10/2012 Weather: Sunny, humid, 90°F (~maximum) Operator: Tony Kaminski Ground elev.: Make: CAT Model: 315 CL DEPTH SAMPLE SAMPLE DESCRIPTION PID DEPTH (feet) NO. Brown Large Fractured Limestone and various soils (Sand, Silt, Clay), trace 10.5 Brick, moist (Fill). 11 11.5 12 0 12.5 Grades to: wet. 13 13.5 Black SAND and Silt, some Gravel, trace Clay, trace tile, trace glass, trace 14 metal, trace wire, wet (Fill). 0.4 ppm Excavator refusal at 14.2' below ground surface (presumed top of 14.5 bedrock). 15 15.5 16 16.5 17 17.5 18 18.5 19 19.5 20 REMARKS:

				PIT FIELD LOG		
			12011			
	escription		Site C915261	Test Pit No:	TP-3	
Project Ic			Holden Street	Location:	04.0050040.40	
Contracto	resentativ		mas Bohlen	File No: Date:	21.0056642.10 7/10/2012	
Contracto	Л.	Nature's V	vay	Weather:	Sunny, humid, 90°F (~maximum	.)
Operator		Tony Kam	inski	Ground elev.)
Make:	CAT	Model:	315 CL	Cround olovi	· <u>·</u>	
DEPTH	SAMPLE	SAMPLE		DESCRIPTION		PID
(feet)	NO.	DEPTH				. 15
0.5			Asphalt and Subbase (~1	0-inches).		0
1						
1.5			Coarse to Fine SLAG, sul	fur odor observed, difficult	excavation, moist (Fill).	
2						
2.5			Dark Brown GRAVEL and moist, (Fill).	Sand, some Silt, little Clay	y, little Brick, trace Glass,	0
3						
3.5						
4						
4.5			Brown Large Fractured Li Brick, moist (Fill).	mestone and various soils	(Sand, Silt, Clay), trace	0
5						
5.5				T/ULM	State -	
6						
6.5						0
7						
7.5						
8						
8.5						
9						
9.5						
10						
REMARKS:						

TEST PIT FIELD LOG Project Description: BCP Site C915261 Test Pit No: TP-3 Project location: Location: 129 Holden Street GZA Representative: File No: Thomas Bohlen 21.0056642.10 Contractor: Nature's Way Date: 7/10/2012 Weather: Sunny, humid, 90°F (~maximum) Operator: Tony Kaminski Ground elev .: Make: CAT Model: 315 CL SAMPLE DEPTH DEPTH SAMPLE DESCRIPTION PID NO. (feet) Black SAND and Silt, some Gravel, trace Clay, trace Brick, moist (Fill). 10.5 Excavator refusal at 10.5' below ground surface (presumed top of bedrock). 11 11.5 12 12.5 13 13.5 14 14.5 15 15.5 16 16.5 17 17.5 18 18.5 19 19.5 20 REMARKS:

PROJECT NAME

TEST PIT FIELD LOG Project Description: BCP Site C915261 Test Pit No: TP-4 Project location: Location: 129 Holden Street GZA Representative: Thomas Bohlen File No: 21.0056642.10 Contractor: Date: Nature's Way 7/10/2012 Weather: Sunny, humid, 90°F (~maximum) Operator: Tony Kaminski Ground elev.: Make: CAT Model: 315 CL DEPTH SAMPLE SAMPLE DESCRIPTION PID DEPTH (feet) NO. Asphalt and Subbase (~10-inches). 0.5 1 Coarse to Fine SLAG, sulfur odor observed, difficult excavation, moist (~10-1.5 inches, Fill). 2 0 2.5 3 3.5 4 Brown Large Fractured Limestone and various soils (Sand, Silt, Clay), trace 0 4.5 Brick, moist (Fill). 5 5.5 6 0 6.5 7 7.5 8 0 8.5 9 9.5

REMARKS: Three orangeburg-type pipes observed in southern portion of excavation from ~2-3 bgs.

TEST PIT FIELD LOG Project Description: BCP Site C915261 Test Pit No: TP-4 Project location: Location: 129 Holden Street GZA Representative: File No: Thomas Bohlen 21.0056642.10 Contractor: Nature's Way Date: 7/10/2012 Weather: Sunny, humid, 90°F (~maximum) Operator: Tony Kaminski Ground elev .: Make: CAT Model: 315 CL SAMPLE DEPTH DEPTH SAMPLE DESCRIPTION PID NO. (feet) Brown Large Fractured Limestone and various soils (Sand, Silt, Clay), trace 10.5 Brick, moist (Fill). 11 11.5 12 0 12.5 13 Excavator refusal at 13.0' below ground surface (presumed top of 13.5 bedrock). 14 14.5 15 15.5 16 16.5 17 17.5 18 18.5 19 19.5 20 REMARKS:

				PIT FIELD LOG		
			ILUII	II FIELD LOG		
Proiect D	escription	ı: BCF	^o Site C915261	Test Pit No:	TP-5	
Project lo			Holden Street	Location:	0	
	resentativ	/e: Thor	mas Bohlen	File No:	21.0056642.10	
Contracto	or:	Nature's V	Vay	Date:	7/10/2012	
_				Weather:	Sunny, humid, 90°F (~maximum	1)
Operator:		Tony Kam		Ground elev.	<u>:</u>	
Make:	CAT	Model:	315 CL			
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
0.5			Asphalt and Subbase (~10	O-inches).		0
1				fur odor observed, difficult	excavation, moist (~10-	
1.5			inches, Fill).			
2				Sand, some Silt, some Br	rick, trace Clay,	0
2.5			Glass, moist, (Fill).			
3						
3.5						
4						0
4.5			- Sed			0
5						
5.5			17			
6					A TOP	
6.5			3			0
7						
7.5						
8			12			
8.5						0
9						
9.5						
10						
REMARKS:						

			TEST	PIT FIELD LOG		
Project Do Project lo GZA Rep Contracto Operator:	cation: resentativ r:	129		Test Pit No: Location: File No: Date: Weather: Ground elev.	21.0056642.10 7/10/2012 Sunny, humid, 90°F (~maximum)
-	CAT	Model:	315 CL			
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
10.5			Dark Brown GRAVEL and Glass, moist, (Fill).	d Sand, some Silt, some Br	ick, trace Clay,	0
11.5						
12			9 - 4	Post Name of the Control of the Cont		0
12.5						
13						
13.5			16 , 9			
14						
14.5						0
15						
15.5			Excavator refusal at 15.0 bedrock).	below ground surface (pre	sumed top of	
16						
16.5						
17						
17.5						
18						
18.5						
19						
19.5						
20						
REMARKS:						

				DJECT NAME PIT FIELD LOG		
Project Ic	resentativ	129	P Site C915261 Holden Street mas Bohlen Vay	Test Pit No: Location: File No: Date: Weather:	TP-6 21.0056642.10 7/11/2012 Sunny, humid, 90°F (~maximum	
Operator		Tony Kam	inski	Ground elev.)
Make:	CAT		315 CL			
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
0.5			Asphalt and Subbase (~1	0-inches).		0
1						l
1.5	† 			and, trace Gravel, moist, (n		
2						İ
2.5	<u> </u>					0
3	<u> </u>)T-1		
3.5	<u> </u>			1944		l
4	<u> </u>					
4.5	<u> </u>					0
5	<u> </u>					
5.5				The state of		l
6						Ì
6.5						0
7	<u> </u>					l
7.5	<u> </u>					Ì
8	<u> </u>					l
8.5						0
9						ì
9.5						Ì
10						
REMARKS:						

			TEST F	PIT FIELD LOG		
Project Do Project lo GZA Rep Contractor:	cation: resentativ or:	129 Ye: Thor Nature's W	inski	Test Pit No: Location: File No: Date: Weather: Ground elev.	21.0056642.10 7/11/2012 Sunny, humid, 90°F (~maximum)
Make:	CAT SAMPLE	Model:	315 CL	DESCRIPTION		PID
(feet)	NO.	DEPTH	Daniel O'lle OL AV Pulls On		- (' - c)	
10.5			Brown Silty CLAY, little Sa	and, trace Gravel, moist, (na	ative).	0
11.5						
12						
12.5				The state of the s		0
13						
13.5						
14				4-16-16		
14.5					کہے۔	0
15						
15.5				The state of the s		
16			Excavator refusal at 15.5' bedrock).	below ground surface (pre-	sumed top of	
16.5						
17						
17.5						
18						
18.5						
19						
19.5						
20						
REMARKS:						

PROJECT NAME

				PIT FIELD LOG		
Project Id	resentativ	129	P Site C915261 Holden Street mas Bohlen Way	Test Pit No: Location: File No: Date:	TP-7 21.0056642.10 7/11/2012	
Operator Make:	: CAT	Tony Kam Model:	ninski 315 CL	Weather: Ground elev.	Sunny, humid, 90°F (~maximum	1)
DEPTH	SAMPLE	SAMPLE		DESCRIPTION		PID
(feet)	NO.	DEPTH				1 10
0.5	<u> </u>		Asphalt and Subbase (~1	0-inches).		0
1 1.5			Coarse to Fine SLAG, su	lfur odor observed, difficult (excavation, moist (Fill).	
2	 					
2.5	<u> </u>		Brown Silty CLAY, little Sa	and, trace Gravel, moist (Fil	II).	0
3	<u> </u> 		Brown Lorgo Eractured I	imestone and various soils	(Cand Silt Clay) trace	
3.5	 		Brick, trace Tile, trace Gla		(Sand, Siil, Clay), IIace	
4	 					0
4.5	 			A Line		U
5	 					
5.5	 					
6	<u> </u> 					0
6.5	 			THE		J
7	 		1 1 2	THE		
7.5	 			The Man		
8	 		11/10/19	A B		0
8.5	<u> </u> 					0
9	<u> </u> 			W. Walling S. F.		
9.5	<u> </u>					
10						
REMARKS:						

TEST PIT FIELD LOG Project Description: BCP Site C915261 Test Pit No: TP-7 Project location: Location: 129 Holden Street File No: GZA Representative: Thomas Bohlen 21.0056642.10 Contractor: Date: Nature's Way 7/11/2012 Weather: Sunny, humid, 90°F (~maximum) Operator: Tony Kaminski Ground elev.: Make: CAT Model: 315 CL DEPTH SAMPLE SAMPLE DESCRIPTION PID DEPTH (feet) NO. Brown Large Fractured Limestone and various soils (Sand, Silt, Clay), trace 10.5 Brick, trace Tile, trace Glass, moist (Fill). 11 11.5 12 0 12.5 13 13.5 14 0 14.5 15 Dark Brown and White SAND, trace Silt, trace Clay, trace Brick, moist 15.5 (potential incinerator ash, Fill). 16 0 16.5 17 17.5 End of Excavation at 17.5' below ground surface. 18 18.5 19 19.5 20 REMARKS:

				DJECT NAME PIT FIELD LOG					
Drainet D	esseriation	· DCF			TD 0				
Project lo	escription cation:		P Site C915261 Holden Street	Test Pit No: Location:	<u>1P-8</u>				
-	resentativ		mas Bohlen	File No:	21.0056642.10				
Contracto		Nature's W		Date:	7/11/2012				
			<u> </u>	Weather:	Sunny, humid, 90°F (~maximu	m)			
Operator:	:	Tony Kami	inski	Ground elev					
Make:	CAT	Model:	315 CL		·	_			
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID			
0.5			Asphalt and Subbase (~1	0-inches).		0			
1									
1.5			North: Gray Large Fra	avation Vertically Split Between Two Fill Units: North: Gray Large Fractured Limestone and various soils (Sand, Silt,					
2			Clay), trace Brick, trac						
2.5			South: Dark Brown G trace Glass, moist (Fil	RAVEL and Sand, some Sill).	ilt, little Clay, trace Brick,	0			
3									
3.5									
4	<u> </u> 								
4.5						0			
5	 		Crades to: North: 31 61	Limestone Boulders observ					
5.5	<u> </u> 		Grades to. North. ~3 - 0	Lifflestorie Doulders observ	vea.				
6				1					
6.5	<u> </u> 					0			
7	<u> </u> 			A STATE OF THE STA					
7.5	<u> </u> 								
8	 					0			
8.5	 					Ĭ			
9									
9.5									
10									
REMARKS:									

TEST PIT FIELD LOG Project Description: BCP Site C915261 Test Pit No: TP-8 Project location: Location: 129 Holden Street GZA Representative: Thomas Bohlen File No: 21.0056642.10 Contractor: Date: Nature's Way 7/11/2012 Weather: Sunny, humid, 90°F (~maximum) Operator: Tony Kaminski Ground elev.: Make: CAT Model: 315 CL DEPTH SAMPLE SAMPLE DESCRIPTION PID DEPTH (feet) NO. Excavation Vertically Split Between Two Fill Units: 10.5 North: Gray Large Fractured Limestone and various soils (Sand, Silt, Clay), trace Brick, trace Glass, moist (Fill). 11 South: Dark Brown GRAVEL and Sand, some Silt, little Clay, trace Brick, 11.5 trace Glass, moist (Fill). 12 0 12.5 13 13.5 14 0 14.5 15 15.5 Excavator refusal at 15.5' below ground surface (presumed top of 16 bedrock). 16.5 17 17.5 18 18.5 19 19.5 20 REMARKS:

PROJECT NAME

				PIT FIELD LOG		
Project Ic GZA Rep	resentativ	129 /e: Thoi	P Site C915261 Holden Street mas Bohlen	Test Pit No: Location: File No: Date:	TP-9 21.0056642.10	
Contracto	И.	Nature's V	vay	Weather:	7/11/2012 Sunny, humid, 90°F (~maximum	2)
Operator:		Tony Kam	ninski	Ground elev.		1)
Make:	CAT	Model:	315 CL			
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
			Asphalt and Subbase (~1	0-inches).		0
0.5						
1						
1.5			Brown GRAVEL and San Concrete, trace Slag, mo	d, some Silt, little Clay, little ist (Fill).	Brick, little Asphalt, trace	
2						
2.5						0
3						
3.5						
4	•					0
4.5						
5	•		Grades to: ~4' Limestone	Boulders observed.		
5.5						
6	•					11 ppm
6.5						ТТРРШ
7						
7.5						
8						0
8.5						
9						
9.5						
10						
REMARKS:						

TEST PIT FIELD LOG Project Description: BCP Site C915261 Test Pit No: TP-9 Project location: Location: 129 Holden Street GZA Representative: File No: Thomas Bohlen 21.0056642.10 Contractor: Date: Nature's Way 7/11/2012 Weather: Sunny, humid, 90°F (~maximum) Operator: Tony Kaminski Ground elev .: Make: CAT Model: 315 CL SAMPLE DEPTH DEPTH SAMPLE DESCRIPTION PID NO. (feet) Brown GRAVEL and Sand, some Silt, little Clay, little Brick, little Asphalt, trace 10.5 Concrete, trace Slag, moist (Fill). 11 11.5 12 0 12.5 13 13.5 14 0 14.5 15 15.5 16 0 16.5 17 End of Excavation at 17.0' below ground surface. 17.5 18 18.5 19 19.5 20 REMARKS:

PROJECT NAME **TEST PIT FIELD LOG** Project Description: BCP Site C915261 Test Pit No: TP-10 Project location: Location: 129 Holden Street GZA Representative: File No: Thomas Bohlen 21.0056642.10 Contractor: Nature's Way Date: 7/11/2012 Weather: Sunny, humid, 90°F (~maximum) Operator: Tony Kaminski Ground elev .: Make: CAT Model: 315 CL SAMPLE DEPTH DEPTH SAMPLE DESCRIPTION PID NO. (feet) Asphalt and Subbase (~10-inches). 0.5 1 Dark Brown SAND, some Gravel, little Silt, little Brick, trace Clay, trace Steel, 1.5 trace Concrete, trace Tile, moist (Fill). 2 0 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 0 8.5 9 9.5 10 REMARKS:

			TEST I	PIT FIELD LOG		
Dunia at D		. 505			TD 10	
Project Id	escription		Site C915261 Holden Street	Test Pit No: Location:	TP-10	
	resentativ		mas Bohlen	File No:	21.0056642.10	
Contracto		Nature's V		Date:	7/11/2012	
00111101011		- 10.10.00	,	Weather:	Sunny, humid, 90°F (~maximur	n)
Operator	• •	Tony Kam	inski	Ground elev.		,
Make:	CAT	Model:	315 CL			
DEPTH	SAMPLE	SAMPLE	1	DESCRIPTION		PID
(feet)	NO.	DEPTH		DEGORII TION		110
10.5			Dark Brown SAND, some trace Concrete, trace Tile	e Gravel, little Silt, little Brick , moist (Fill).	r, trace Clay, trace Steel,	0
11						
11.5						
12						
12.5						0
13						
13.5						
14						0
14.5						
15						
15.5						
16						0
16.5						
17			End of Excavation at 17.0)' below ground surface.		1
17.5						
18						
18.5						
19						
19.5						
20						
REMARKS:						

TEST PIT FIELD LOG Project Description: Former Central Park Plaza Test Pit No: TP-10A Project location: 129 Holden Street Location: Buffalo, NY GZA Representative: Thomas Bohlen File No: 21.0056642.10 Task 20 Contractor: **LPCiminelli** Date: 4/10/2014 Weather: Sunny, windy, 40-60 degrees F Operator: Matt Hillman Ground elev .: Make: Model: 135D DEPTH SAMPLE SAMPLE DESCRIPTION PID DEPTH NO. (feet) Asphat (4-inches) and Subbase (6-inches). FILL: Brown SAND and GRAVEL, trace Silt, trace Clay, trace Brick, 2 trace Metal, moist. Brown Silty CLAY, little Gravel, trace Sand, trace Glass, trace 0 3 Brick, moist. Grades to:....some Brick. 4 Brown/Orange/White/Black SAND, some Brick, trace Metal, trace 0 Glass, trace Tile, moist. 5 Dark Brown SAND and GRAVEL, trace Silt, trace Clay, trace Tile, moist. 6 7 8 0 9 10 0 11 12 Grades to:...little Gravel. 0 13 14

End of test pit at 15 feet below ground surface.

REMARKS: 15 feet west of TP-10.

15

16

17

18

19

20

TEST PIT FIELD LOG Project Description: Former Central Park Plaza Test Pit No: TP-10B Project location: Location: 129 Holden Street Buffalo, NY GZA Representative: Thomas Bohlen File No: 21.0056642.10 Task 20 Contractor: **LPCiminelli** Date: 4/10/2014 Sunny, windy, 40-60 degrees F Weather: Operator: Matt Hillman Ground elev .: Make: Deere Model: 135D DEPTH SAMPLE SAMPLE DESCRIPTION PID DEPTH (feet) NO. Asphalt (4-inches) and Subbase (6-inches). FILL: Brown SAND and GRAVEL, trace Silt, trace Clay, trace Brick, trace 2 Metal, moist. Brown Silty CLAY, little Gravel, trace Sand, trace Glass, trace Brick, trace 0 3 Metal, trace Tile, trace Concrete, moist. 4 0 5 Brown fine to coarse SAND, little Gravel, little Silt, little Clay, trace Brick, 6 trace Metal, moist. 0 7 Dark Brown SAND and GRAVEL, trace Silt, trace Clay, trace Metal, trace Brick, trace Tile, moist. 8 0 9 10 Brown Fractured Limestone and Various Soils (Sand, Silt, Clay) moist. 0 11 12 0 13 14 15 End of test pit at 15 feet below ground surface. 16

REMARKS: 15 feet south of TP-10.

17

18

19

20

				ROJECT NAME F PIT FIELD LOG		
	escription		P Site C915261	Test Pit No:	TP-11	
Project lo	cation: resentativ		Holden Street mas Bohlen	 Location: File No:	21 0056642 10	
Contracto		Nature's V		Pile No. Date:	21.0056642.10 7/11/2012	
Oomiacic	/··	I Value 3 V	vay	Weather:	Sunny, humid, 90°F (~maximum)
Operator:		Tony Kam	ninski	Ground elev		,
	CAT	Model:	315 CL	<u> </u>		
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
0.5			Asphalt and Subbase (~8-inches).		0
1						
1.5			Brown SAND and Grav Concrete, moist (Fill).	vel, little Silt, little Clay, trace A	sphalt, trace Brick, trace	
2						
2.5						0
3						
3.5			Brown and Black SANE	D and Gravel, trace Silt, trace	Clay, moist (Fill).	
4						
4.5						0
5			Grades to: wet.		THE WAY	
5.5						
6						
6.5						0
7				- 2 E/		
7.5						
8			Grades to moist.			
8.5					THE PARTY	0
9			1			
9.5						
10				A 2-70 to 100 to		
REMARKS:						

TEST PIT FIELD LOG Project Description: BCP Site C915261 Test Pit No: TP-11 Project location: Location: 129 Holden Street GZA Representative: File No: Thomas Bohlen 21.0056642.10 Contractor: Date: Nature's Way 7/11/2012 Weather: Sunny, humid, 90°F (~maximum) Operator: Tony Kaminski Ground elev.: Make: CAT Model: 315 CL DEPTH SAMPLE SAMPLE DESCRIPTION PID DEPTH (feet) NO. Brown and Black SAND and Gravel, trace Silt, trace Clay, moist (Fill). 10.5 Grades to: ~3'-6' reinforced concrete fragments 11 11.5 12 0 12.5 13 13.5 14 0 14.5 15 Grades to: trace Slag. 15.5 16 End of Excavation at 16.0' below ground surface. 16.5 17 17.5 18 18.5 19 19.5 20 REMARKS:

				PIT FIELD LOG		
			IE31 r	711 FIELD LOG		
Project D		: BCF	P Site C915261	Test Pit No:	TP-12	
Project lo			Holden Street	Location:		
GZA Rep			mas Bohlen	File No:	21.0056642.10 7/11/2012	
Contracto	or:	Nature's V	vay	Date: Weather:	2)	
Operator:		Tony Kam	inski	Ground elev.	Sunny, humid, 90°F (~maximum)	
	CAT	Model:	315 CL			
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
			Asphalt and Subbase (~1	0-inches).		0
0.5						
1						
1.5			Brown Silty CLAY, some Smoist (Fill).	Sand, some Gravel, trace I	Brick, trace Concrete,	
2						
2.5						0
3			Dad Branco CAND and O	Oliverial Constant	Anna Clara Anna Dáid	
3.5			trace Concrete, moist (Fill	ravel, some Silt, little Clay, l).	trace Slag, trace Brick,	
4					SALOR EX	
4.5						0
5			A A			
5.5					The latest	
6					1	
6.5						0
7			250			
7.5						
8				P. Contraction		
8.5						0
9						
9.5	•		Brown Silty CLAY, little Sa	and, trace Gravel, moist (na	ative).	
10						
REMARKS:						

TEST PIT FIELD LOG Project Description: BCP Site C915261 Test Pit No: TP-12 Project location: Location: 129 Holden Street GZA Representative: File No: Thomas Bohlen 21.0056642.10 Contractor: Nature's Way Date: 7/11/2012 Weather: Sunny, humid, 90°F (~maximum) Operator: Tony Kaminski Ground elev .: Make: CAT Model: 315 CL SAMPLE DEPTH DEPTH SAMPLE DESCRIPTION PID NO. (feet) Brown Silty CLAY, little Sand, trace Gravel, moist (native). 10.5 11 11.5 12 0 12.5 13 13.5 14 0 14.5 15 15.5 16 0 16.5 17 End of Excavation at 17.0' below ground surface. 17.5 18 18.5 19 19.5 20 REMARKS:

PROJECT NAME **TEST PIT FIELD LOG** Project Description: BCP Site C915261 Test Pit No: TP-13 Project location: Location: 129 Holden Street GZA Representative: File No: Thomas Bohlen 21.0056642.10 Contractor: Nature's Way Date: 7/12/2012 Weather: Sunny, humid, 90°F (~maximum) Operator: Tony Kaminski Ground elev .: Make: CAT Model: 315 CL DEPTH SAMPLE SAMPLE DESCRIPTION PID NO. DEPTH (feet) Asphalt and Subbase (~10-inches). 0.5 1 Brown SAND and Gravel, little Silt, little Clay, trace Slag, trace Brick, moist 1.5 2 0 2.5 3 Brown Silty CLAY, little Gravel, little Sand, moist (native). 3.5 4 0 4.5 5 5.5 6 0 6.5 7 7.5 8 0 8.5 9 9.5 10 REMARKS:

TEST PIT FIELD LOG Project Description: BCP Site C915261 Test Pit No: TP-13 Project location: Location: 129 Holden Street GZA Representative: File No: Thomas Bohlen 21.0056642.10 Contractor: Nature's Way Date: 7/12/2012 Weather: Sunny, humid, 90°F (~maximum) Operator: Tony Kaminski Ground elev .: Make: CAT Model: 315 CL DEPTH SAMPLE SAMPLE DESCRIPTION PID NO. DEPTH (feet) Brown Silty CLAY, little Gravel, little Sand, moist (native). 10.5 11 11.5 12 0 12.5 13 13.5 14 14.5 15 15.5 16 End of Excavation at 16.0' below ground surface. 16.5 17 17.5 18 18.5 19 19.5 20 REMARKS:

				<u>DJECT NA</u> PIT FIEL			
Project Dong Project Io GZA Rep Contracto Operator:	cation: resentativ or:	129			Test Pit No: Location: File No: Date: Weather: Ground elev	21.0056642.10 7/12/2012 Sunny, humid, 90°F (~maximum	1)
DEPTH	SAMPLE	SAMPLE			DESCRIPTION		PID
(feet)	NO.	DEPTH	Asphalt and Subbase (~8-				2 ppm
0.5			Asphall and Subbase (~0	-Miches).			∠ ррш
1.5			Coarse to Fine SLAG, mo	oist (Fill).			
2			Brown SAND and Gravel, (Fill).		_	-	
2.5			Brown Silty CLAY, little Gr	ravel, little \$	Sand, moist (nat	ive).	0
3							
3.5							
4					-		_
4.5				5'			0
5			San San			Com.	
5.5				ME	7		
6						A STATE OF S	
6.5			die			May November 1	0
7				1	THE W	Sant of Maria	
7.5				AU.	- Table 19	A Comment	
8				affectives the	Chanal to		
8.5							0
9							
9.5							
10							
REMARKS:							

			TEST I	PIT FIELD LOG		
Project Description: BCP Site C915261 Project location: 129 Holden Street GZA Representative: Thomas Bohlen Contractor: Nature's Way				Test Pit No: Location: File No: Date:	21.0056642.10	
					Date: 7/12/2012 Weather: Sunny, humid, 90°F (~maximu	
Operator: Tony Kaminski			inski	Ground elev.		·/
Make:	CAT	Model:	315 CL			
DEPTH	SAMPLE	SAMPLE		DESCRIPTION	1	PID
(feet)	NO.	DEPTH		DESCRIPTION		PID
10.5			Brown Silty CLAY, little G	ravel, little Sand, moist (nat	ive).	0
11	1					
11.5	1					
12	<u> </u>					0
12.5						Ü
13	<u> </u> 					
13.5						
14						0
14.5						
15						
15.5			End of Excavation at 15.5	5' helow around surface		
16	1		End of Excavation at 10.0	below ground dunded.		
16.5						
17						
17.5	<u> </u> 					
18	<u> </u> 					
18.5						
19						
19.5						
20	<u> </u>					
REMARKS:						

				OJECT NAME PIT FIELD LOG			
Project Description: Project location: BCP Site C915261 129 Holden Street GZA Representative: Thomas Bohlen				Test Pit No: Location: File No:	TP-15 21.0056642.10	6642.10	
Contractor: Nature's Way				Date:			
			inald	Weather: Ground elev.	Sunny, humid, 90°F (~maximum	ı <u>)</u>	
Operator: Make:	CAT	Tony Kam Model:	315 CL	- Ground elev.	••		
		•	3.5 52	-			
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID	
0.5			Asphalt and Subbase (~8	3-inches).		0	
1.5			Brown SAND and Grave	l, some Slag, little Silt, little (Clay, moist (Fill).		
0							
2.5			Brown Large Fractured L (Fill).	imestone and various soils	(Sand, Silt, Clay), moist	0	
				Black SAND and Gravel - k			
3				east corner of excavation fr	rom 2'-5' - chemical odor		
3.5	•			observed.	70		
4				* * *		0	
4.5							
5							
5.5							
6						0	
6.5				分 人为一个			
7				THE WAY			
7.5					1		
8					A CONTRACTOR OF THE PARTY OF TH		
8.5			PID Stockpile = 2.7 ppm			15 ppm	
9							
9.5							
10							
REMARKS:							

TEST PIT FIELD LOG Project Description: BCP Site C915261 Test Pit No: TP-15 Project location: Location: 129 Holden Street GZA Representative: File No: Thomas Bohlen 21.0056642.10 Contractor: Nature's Way Date: 7/12/2012 Weather: Sunny, humid, 90°F (~maximum) Operator: Tony Kaminski Ground elev .: Make: CAT Model: 315 CL DEPTH SAMPLE SAMPLE DESCRIPTION PID DEPTH (feet) NO. Brown Large Fractured Limestone and various soils (Sand, Silt, Clay), moist 10.5 (Fill). 11 11.5 12 0 12.5 13 13.5 14 0 14.5 15 End of Excavation at 15.0' below ground surface (difficult to keep excavating 15.5 due to extensive hole collapse). 16 16.5 17 17.5 18 18.5 19 19.5 20 REMARKS:

				PIT FIELD LOG		
Droinet D	intior	DOE			TD 10	
Project Id	escription		P Site C915261 Holden Street	Test Pit No: Location:	IP-16	
	resentativ		mas Bohlen	File No:	21.0056642.10	
Contracto		Nature's V			7/12/2012	
				Weather:	Sunny, humid, 90°F (~maximum	1)
Operator		Tony Kam		Ground elev.		
Make:	CAT	_Model:	315 CL			
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
0.5			Asphalt and Subbase (~10	O-inches).		0
1						
1.5	<u> </u>		Brown SAND and Gravel,	little Silt, little Clay, moist (Fill).	
2			Coarse and Fine SLAG, m	noist (Fill).		
2.5						0
3			Brown Large Fractured Lin Brick, trace Asphalt, moist	mestone and various soils t (Fill).	(Sand, Silt, Clay), trace	
3.5				. (/.		
4						
4.5						0
5						
5.5						
6						
6.5			Brown Silty CLAY, little Gr	avel, little Sand, trace Bricl	k, moist (Fill).	0
7						
7.5						
8						
8.5	<u> </u>		J-75			0
9	<u> </u>					
9.5						
10						
REMARKS:						

			TEST I	PIT FIELD LOG		
Project D	escription	ı· RCE	P Site C915261	Test Pit No:	TP-16	
Project Ic			Holden Street	Location:	11-10	
	resentativ		mas Bohlen	File No:	21.0056642.10	
Contracto		Nature's V		Date:	7/12/2012	
			<u>-</u>	Weather:	Sunny, humid, 90°F (~maximum	1)
Operator: Tony Kamir			ninski	Ground elev.		,
Make:	CAT	Model:	315 CL			
			1	DE0001071011		
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
10.5			Brown Silty CLAY, little G	ravel, little Sand, trace Brick	c, moist (Fill).	0
11						
11.5						
12	<u> </u>		Overlands of the seconds ((40) 40)		
12.5	<u> </u>		Grades to: ~2' concrete for	ragements (12-13).		0
13	1					
13.5	_					
14						0
14.5	<u> </u> 					Ü
15						
15.5			End of Excavation at 15.5	feet below ground surface.		
16				J		
16.5	<u> </u> 					
17						
17.5						
18						
18.5						
19						
19.5						
20						
REMARKS:						

				PIT FIELD LOG		
Project D			Site C915261	Test Pit No:	TP-17	
Project location: 129 Holden Street				Location:		
GZA Representative: Thomas Bohlen				File No:	21.0056642.10	
Contracto	or:	Nature's V	Vay	Date:	7/12/2012	,
On a rata r		T		Weather:	Sunny, humid, 90°F (~maximum	1)
Operator:		Tony Kam		Ground elev.	· <u>·</u>	
Make:	CAT	Model:	315 CL			
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
0.5			Asphalt and Subbase (~6-	inches).		0
1			Brown SAND and Gravel, (Fill).	little Silt, little Clay, trace B	rick, trace Glass, moist,	
1.5						
2						
2.5						0
3						
3.5			Grades to: Dark Brown.			
4	•					
4.5						0
5	•					
5.5	•			1		
6			Brown Large Fractured Lin	mestone and various soils	(Sand Silt Clav) little	0
6.5			Brick, little Concrete, trace		(Carra, Cita, Citay), italic	
7	•					
7.5						
8	•					0
8.5						
9	•		Grades to: some Brick, so	ome Concrete, trace Metal.		
9.5			,			
10						
REMARKS:						

			TEST	PIT FIELD LOG		
Project D Project Io GZA Rep Contracto Operator: Make:	ocation: oresentativ or:	129		Test Pit No: Location: File No: Date: Weather: Ground elev.	21.0056642.10 7/12/2012 Sunny, humid, 90°F (~maximum	n)
DEPTH	SAMPLE	SAMPLE		DESCRIPTION		PID
(feet)	NO.	DEPTH		imestone and various soils		0
10.5 11 11.5			Brick, some Concrete, tra	ace Asphalt, trace Metal, mo	oist (Fill).	
12				OF THE		
12.5			Oza .			0
13						
13.5						
14						
14.5						0
15						
15.5						
16						
16.5			End of Excavation at 16.0) feet below ground surface		
17						
17.5						
18						
18.5						
19						
19.5						
20						
REMARKS:						

				DJECT NAME PIT FIELD LOG		
			1231	II II ILLO LOO		
Project D			Site C915261	Test Pit No:	TP-18	
Project lo			Holden Street	Location:		
GZA Rep			mas Bohlen	File No:	21.0056642.10	
Contracto	or:	Nature's W	Vay	Date: Weather:	7/12/2012 Sunny, humid, 90°F (~maximum	.\
Operator:		Tony Kami	inski	Ground elev.		1)
	CAT	Model:	315 CL	Ground Grov.	<u>:</u>	
DEDTIL	0414515	0.41451.5		DECODIDETION		DID
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
0.5			Brown SAND and Gravel moist (Fill).	trace Silt, trace Clay, trace	Brick, trace Slag,	0
1						
1.5						
2	•		Grades to: Dark Brown.			0
2.5						
3				it pipe observed between liq or, PID = 17 ppm at top of p		
3.5						
4						0
4.5						O
5				et with a		
5.5			Brown Silty CLAY, little G	ravel, little Sand, trace Cond	crete, moist (Fill).	
6						0
6.5	•		Provin Large Freetured L	imestone and various soils ((Sand Silt Clay) maint	0
7			(Fill).	imestone and vanous sons ((Sanu, Siit, Clay), moist	
7.5						
8						0
8.5						O
9						
9.5						
10						
REMARKS:						

			TEST	PIT FIELD LOG		
Project D Project Io GZA Rep Contracto Operator: Make:	ocation: oresentativ or:	129		Test Pit No: Location: File No: Date: Weather: Ground elev	21.0056642.10 7/12/2012 Sunny, humid, 90°F (~maximum)
DEPTH	SAMPLE	SAMPLE		DESCRIPTION		PID
(feet) 10.5	NO.	DEPTH	Brown Silty CLAY, little G	ravel, little Sand, moist (Fill).	0
11 11.5 12 12.5						0
13					N. System	
13.5						
14				Black SAND and Gravel - Icorner of excavation from 1		0
14.5						
15						
15.5	Ī					
16						
16.5	•		End of Excavation at 16.0) feet below ground surface).	
17						
17.5						
18						
18.5						
19						
19.5						
20						
REMARKS:						

PROJECT NAME **TEST PIT FIELD LOG** Test Pit No: TP-19 Project Description: BCP Site C915261 Project location: 129 Holden Street Location: GZA Representative: Thomas Bohlen File No: 21.0056642.10 Contractor: Date: Nature's Way 7/12/2012 Weather: Sunny, humid, 90°F (~maximum) Operator: Tony Kaminski Ground elev .: Make: CAT Model: 315 CL DEPTH SAMPLE SAMPLE DESCRIPTION PID DEPTH (feet) NO. Brown SAND and Gravel, trace Silt, trace Clay, trace Brick, moist, (Fill). 0.8 ppm 0.5 1 1.5 Dark Brown Silty CLAY, little Gravel, little Sand, little Brick, trace Concrete, 2 moist (Fill). 0 2.5 3 3.5 4 0 4.5 5 5.5 6 6.5 7 7.5 8 17.1 ppm 8.5 Excavation Vertically Split Between Two Fill Units: 9 East: Dark Brown Silty CLAY, little Gravel, little Sand, little Brick, trace Concrete, moist (Fill). West (9'-11'): Brown fine to coarse SAND, trace Silt, trace Clay, moist 9.5 (Fill). PID Excavator Bucket = 0.6 ppm. 10 REMARKS:

TEST PIT FIELD LOG Project Description: BCP Site C915261 Test Pit No: TP-19 Project location: 129 Holden Street Location: GZA Representative: Thomas Bohlen File No: 21.0056642.10 Contractor: Nature's Way Date: 7/12/2012 Weather: Sunny, humid, 90°F (~maximum) Operator: Tony Kaminski Ground elev.: Make: CAT Model: 315 CL DEPTH SAMPLE SAMPLE DESCRIPTION PID DEPTH (feet) NO. Excavation Vertically Split Between Two Fill Units: 1.3 ppm 10.5 East: Dark Brown Silty CLAY, little Gravel, little Sand, little Brick, trace Concrete, moist (Fill). 11 West (9'-11'): Brown fine to coarse SAND, trace Silt, trace Clay, moist (Fill). PID Excavator Bucket = 0.6 ppm. 11.5 12 Grades to: some Gravel with ~2' fragments of Concrete. 1.7 ppm 12.5 13 13.5 14 0 14.5 15 End of Excavation at 15.0 feet below ground surface. 15.5 16 16.5 17 17.5 18 18.5 19 19.5 20 REMARKS:

PROJECT NAME **TEST PIT FIELD LOG** Test Pit No: TP-20 Project Description: BCP Site C915261 Project location: Location: 129 Holden Street GZA Representative: Thomas Bohlen File No: 21.0056642.10 Contractor: Nature's Way Date: 7/13/2012 Weather: Sunny, humid, 90°F (~maximum) Operator: Tony Kaminski Ground elev.: Make: CAT Model: 315 CL DEPTH SAMPLE SAMPLE DESCRIPTION PID (feet) NO. **DEPTH** Degraded Asphalt and Subbase (~10-inches). 0.5 1 Brown SAND and Gravel, some Brick, some Concrete, little Silt, little Clay, 1.5 trace Glass, trace Asphalt, trace Slag, moist, (Fill). 2 0 2.5 3 3.5 4 0 4.5 Brown Silty CLAY, little Gravel, little Sand, trace Brick, trace Concrete, moist 5 (Fill). 5.5 Brown SAND and Gravel, little Silt, little Clay, trace Brick, trace Concrete, 6 trace Glass, moist, (Fill). 0 6.5 Brown Silty CLAY, little Gravel, little Sand, trace Brick, trace Concrete, moist (Fill). 7 7.5 Brown SAND and Gravel, little Silt, little Clay, trace Brick, trace Concrete, 8 trace Glass, moist, (Fill). Brown Silty CLAY, little Gravel, little Sand, trace Brick, trace Concrete, moist 0 8.5 Brown SAND and Gravel, little Silt, little Clay, trace Brick, trace Concrete, 9 trace Glass, moist, (Fill). 9.5 Brown Silty CLAY, little Gravel, little Sand, trace Brick, trace Asphalt, moist, 10 REMARKS:

			TEST	PIT FIELD LOG		
Project D Project Io GZA Rep Contracto Operator:	cation: resentativ or:	129		Test Pit No: Location: File No: Date: Weather: Ground elev.	21.0056642.10 7/13/2012 Sunny, humid, 90°F (~maximum))
Make:	CAT	Model:	315 CL			
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
10.5			Brown Silty CLAY, little G (Fill).	ravel, little Sand, trace Brick	k, trace Asphalt, moist,	0
11						
11.5						
12						
12.5						0
13	•			nge, White, Black SAND, litt		
13.5			trace Clay, trace Slag, tra (Fill).	ace Glass, trace Brick, trace	Metal, trace Tile, moist	
14			no i			
14.5			N make			0
15						
15.5						
16						
16.5			End of Excavation at 16.0) feet below ground surface.		
17						
17.5						
18						
18.5						
19						
19.5						
20						
REMARKS:						

PROJECT NAME **TEST PIT FIELD LOG** Test Pit No: TP-21 Project Description: BCP Site C915261 Project location: 129 Holden Street Location: GZA Representative: Thomas Bohlen File No: 21.0056642.10 Contractor: Nature's Way Date: 7/13/2012 Weather: Sunny, humid, 90°F (~maximum) Operator: Tony Kaminski Ground elev.: Make: CAT Model: 315 CL DEPTH SAMPLE SAMPLE DESCRIPTION PID DEPTH (feet) NO. Black SAND and Gravel, little Silt, little Clay, trace Brick, trace Slag, trace 0.5 Concrete, (Fill). 1 1.5 2 0 2.5 3 3.5 4 Brown Silty CLAY, little Gravel, little Sand, moist (Fill). 0 4.5 5 Brown SAND, little Gravel, little Silt, little Clay, trace Brick, trace Asphalt, 5.5 moist (Fill). 6 Brown Large Fractured Limestone and various soils (Sand, Silt, Clay), trace 0 6.5 Brick, trace Asphalt, trace Glass, moist (Fill). 7 7.5 8 0 8.5 ~2'-4' fragments of limestone 9 9.5 10 REMARKS:

TEST PIT FIELD LOG Test Pit No: TP-21 Project Description: BCP Site C915261 Project location: 129 Holden Street Location: GZA Representative: Thomas Bohlen File No: 21.0056642.10 Contractor: Date: Nature's Way 7/13/2012 Weather: Sunny, humid, 90°F (~maximum) Operator: Tony Kaminski Ground elev.: Make: CAT Model: 315 CL DEPTH SAMPLE SAMPLE DESCRIPTION PID DEPTH (feet) NO. Brown Large Fractured Limestone and various soils (Sand, Silt, Clay), trace 10.5 Brick, trace Asphalt, trace Glass, moist (Fill). 11 ~4'-5' fragments of limestone 11.5 12 0 12.5 13 Brown, Dark Brown, Orange, White, Black SAND, little Gravel, trace Silt, 13.5 trace Clay, trace Slag, trace Glass, trace Brick, trace Metal, trace Tile, moist (Fill). 14 0 14.5 15 15.5 16 End of Excavation at 16.0 feet below ground surface. 16.5 17 17.5 18 18.5 19 19.5 20 REMARKS:

				DIECT NAME		
			IESI F	PIT FIELD LOG		
Project D Project lo			Site C915261 Holden Street	Test Pit No: Location:	TP-22	
GZA Rep			mas Bohlen	File No:	21.0056642.10	
Contracto		Nature's V		Date:	7/13/2012	
				Weather:	Sunny, humid, 90°F (~maximui	n)
Operator:		Tony Kam	inski	Ground elev.		
	CAT	Model:	315 CL			
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
			Degraded Asphalt and Su	bbase (~6-inches).		0
0.5			Brown SAND and Gravel, (~8-inches) observed.	little Silt, little Clay, moist (Fill). Coarse Gravel	
1.5						
2						
2.5			Grades to light Brown, Ve	ry Coarse Gravel (~4' max	imum) observed.	0
3						
3.5						
4						
4.5	•					0
5			a feet and	Sad Sad		
5.5						
6			7 7 34	多		
6.5						0
7			Brown Dark Brown Oran	ge, White, Black SAND, lit	tlo Gravol, traco Silt	
7.5				ce Glass, trace Brick, trace		
8			(1 11).			0
8.5						
9						
9.5						
10						
REMARKS:						

TEST PIT FIELD LOG Project Description: BCP Site C915261 Test Pit No: TP-22 Project location: Location: 129 Holden Street GZA Representative: File No: Thomas Bohlen 21.0056642.10 Contractor: Date: Nature's Way 7/13/2012 Weather: Sunny, humid, 90°F (~maximum) Operator: Tony Kaminski Ground elev.: Make: CAT Model: 315 CL DEPTH SAMPLE SAMPLE DESCRIPTION PID DEPTH (feet) NO. Brown, Dark Brown, Orange, White, Black SAND, little Gravel, trace Silt, 10.5 trace Clay, trace Slag, trace Glass, trace Brick, trace Metal, trace Tile, moist (Fill). 11 11.5 12 0 12.5 13 13.5 14 0 14.5 15 15.5 16 0 16.5 17 17.5 18 0 18.5 19 End of Excavation at 19.0 feet below ground surface. 19.5 20 REMARKS:

PROJECT NAME **TEST PIT FIELD LOG** Test Pit No: TP-23 Project Description: BCP Site C915261 Project location: 129 Holden Street Location: GZA Representative: Thomas Bohlen File No: 21.0056642.10 Contractor: Nature's Way Date: 7/12/2012 Weather: Sunny, humid, 90°F (~maximum) Operator: Tony Kaminski Ground elev.: Make: CAT Model: 315 CL DEPTH SAMPLE SAMPLE DESCRIPTION PID DEPTH (feet) NO. Topsoil (~8-inches). 0.5 1 Brown SAND and Gravel, trace Silt, trace Clay, trace Metal, trace Slag, 1.5 moist, (Fill). 2 0 2.5 3 3.5 4 Grades to: coarse Gravel (~3' maximum) observed. 0 4.5 5 5.5 6 Brown, Dark Brown, Orange, White, Black SAND, little Gravel, trace Silt, 0 6.5 trace Clay, trace Slag, trace Glass, trace Brick, trace Metal, trace Tile, moist (Fill). 7 7.5 8 0 8.5 9 Brown Large Fractured Limestone and various soils (Sand, Silt, Clay), moist 9.5 (Fill). 10 REMARKS:

			TECT	PIT FIELD LOG		
			IEOII	FII FIELD LOG		
Project D	escription	n: BCF	P Site C915261	Test Pit No:	TP-23	
Project Ic	cation:	129	Holden Street	Location:		
	resentativ		mas Bohlen	File No:	21.0056642.10	
Contracto	or:	Nature's V	Vay	Date:	7/13/2012	`
Operator		Tony Kam	ineki	Weather: Ground elev.	Sunny, humid, 90°F (~maximu	um)
Make:	CAT	Model:	315 CL	Orodria cicv.	•	
		_		DESCRIPTION		DID
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
10.5			Brown Large Fractured L (Fill).	imestone and various soils	(Sand, Silt, Clay), moist	0
11						
11.5						
12						
12.5						0
13						
13.5					and the of	
14			bedrock).	below ground surface (pre	sumed top or	
14.5	<u> </u>		. 3			
15	<u> </u>			A TOP IN		
15.5	<u> </u>		Was a second			
16						
16.5	 					
17						
17.5				1/2		
18			16		Level and the second	
18.5						
19					46	
19.5				1000	No.	
20						
REMARKS:						

				PIT FIELD LOG		
			ILUII	II I ILLD LOO		
	escription		P Site C915261	Test Pit No:	TP-24	
Project lo			Holden Street	Location:		
	resentativ		mas Bohlen	File No:	21.0056642.10	
Contracto	or:	Nature's V	Vay	Date:	7/13/2012	`
Operator:		Tony Kam		Weather: Ground elev.	Sunny, humid, 90°F (~maximum)
	CAT	Model:	315 CL	Orodria elev.	•	
	•					
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
(IEEL)	NO.	DEI III	Asphalt and Subbase (~1	0-inches).		0
0.5						
	,					
1						
1.5			Dark Brown SAND and G	ravel, trace Silt, trace Clay,	, trace Slag, moist (Fill).	
1.0						
2						
						0
2.5	•					
3						
3			Brown Silty CLAY, some	Brick, little Sand, little Grave	el. moist (Fill).	
3.5			, , , , , , , , , , , , , , , , , , , ,	,	, , , ,	
4						
4.5						0
1.0						
5						
				mestone and various soils	(Sand, Silt, Clay), moist	
5.5			(Fill).			
6						
-	•					0
6.5						
7						
7	,		Brown SAND and Gravel	trace Silt, trace Clay, trace	Brick trace Tile moist	
7.5			(Fill).	trade ont, trade only, trade	bliok, trace the, molec	
	•					
8						
0.5						0
8.5					A 144	
9				\$1.50 m		
9.5					THE PARTY OF	
10			Grades to: little Silt, little C	Clay.		
	<u> </u>	<u> </u>	<u>.1</u>			
REMARKS:						

			TEST	PIT FIELD LOG		
Project D Project Ic			Site C915261 Holden Street	Test Pit No: Location:	TP-24	
	resentativ		mas Bohlen	File No:	21.0056642.10	
Contracto				Date:	7/13/2012	
Contracto	Л.	Nature's V	vay	Weather:	Sunny, humid, 90°F (~maximu	m)
Operator:	•	Tony Kam	ineki	Ground elev.		111)
Make:	CAT	Model:	315 CL	Ground Clev.	•	
	0711		010 02			
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
10.5			Brown SAND and Gravel (Fill).	, little Silt, little Clay, trace B	rick, trace Tile, moist	0
11						
11.5						
12						
12.5						0
13	<u> </u>					
13.5			Brown Silty CLAY, little G	ravel, little Sand, moist (Fill)		
14						
14.5						0
15						
15.5						
16			Excavator refusal at 15.5 bedrock).	below ground surface (pre	sumed top of	
16.5						
17						
17.5					***	
18						
18.5					P. C.	
19					1	
19.5				NUMBER		
20						
REMARKS:						

				PIT FIELD LOG		
Project D	escription	ı· BCF	P Site C915261	Test Pit No:	TP-25	
Project lo			Holden Street	Location:	11 20	
GZA Rep			mas Bohlen	File No:	21.0056642.10	
Contracto	or:	Nature's V	Vay	Date:	7/13/2012	
				Weather:	Sunny, humid, 90°F (~maximum)
Operator:		Tony Kam		Ground elev.	<u> </u>	
Make:	CAT	Model:	315 CL			
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
0.5			Brown SAND and Gravel,	trace Silt, trace Clay, mois	t (Fill).	0
1						
1.5						
2			Brown Silty CLAY, little G	ravel, little Sand, moist (Fill)).	
2.5						0
3						
3.5				mestone and various soils one fragments observed. V		
4						
4.5			Al Esperator of fragments of	haamad Mamadifficult		0
5			~4 ilmestone fragments t	observed. Very difficult exc	avalion.	
5.5						
6				TOTAL PROPERTY.		
6.5			7			0
7					1 A.U.	
7.5			~1'-6' limestone fragment	s observed, few fines. Very	difficult excavation	
8			a 1-0 limestone nagment	3 observed, rew lines. Very	difficult excavation.	0
8.5						O
9						
9.5						
10						
REMARKS:						

TEST PIT FIELD LOG Project Description: BCP Site C915261 Test Pit No: TP-25 Project location: 129 Holden Street Location: GZA Representative: File No: Thomas Bohlen 21.0056642.10 Contractor: Nature's Way Date: 7/13/2012 Weather: Sunny, humid, 90°F (~maximum) Operator: Tony Kaminski Ground elev .: 315 CL Make: CAT Model: DEPTH SAMPLE SAMPLE DESCRIPTION PID DEPTH (feet) NO. Brown Large Fractured Limestone and various soils (Sand, Silt, Clay), moist 10.5 (Fill). Very difficult excavation. 11 End of excavation at 11.0 feet below ground surface. Excavation stopped 11.5 due to difficulty and extensive collapse. 12 12.5 13 13.5 14 14.5 15 15.5 16 16.5 17 17.5 18 18.5 19 19.5 20 REMARKS:

				PIT FIELD LOG					
				II IILLD LOG					
Proiect D	escription	n: BCF	P Site C915261	Test Pit No:	TP-26				
	Project location: 129 Holden Street Location:								
	resentativ		mas Bohlen	File No:	21.0056642.10				
Contracto		Nature's V	Vay	Date:	7/13/2012				
				Weather:	Sunny, humid, 90°F (~maximum	1)			
Operator:		Tony Kam		Ground elev.	<u>:</u>				
Make:	CAT	_Model:	315 CL						
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID			
0.5			Brown SAND and Gravel, (Fill).	trace Silt, trace Clay, trace	Brick, trace Slag, moist	0			
1									
1.5	1 1		Brown Large Fractured Lin Brick, moist (Fill).	mestone and various soils	(Sand, Silt, Clay), trace				
2	<u> </u>					0			
2.5	 								
3	 								
3.5	 								
4	+		THE WORLD	******		0			
4.5	 								
5	 		T. Tropic		The same				
5.5	+								
6	 		Grades to:3' maximum	limestone fragments obser	and				
6.5	 		Glades to. ~5 maximum	limestone fragments obser	veu.	0			
7	1								
7.5									
8	<u> </u>					0			
8.5	<u> </u>					0			
9	<u> </u> 								
9.5	 								
10									
REMARKS:									

			TECT	PIT FIELD LOG		
			IESI	FII FIELD LOG		
Project D	escription	n: BCF	P Site C915261	Test Pit No:	TP-26	
Project lo			Holden Street	Location:		
GZA Rep			mas Bohlen	File No:	21.0056642.10	
Contracto	or:	Nature's V	Vay	Date:	7/13/2012	,
Operator:		Tony Kam	vincki	Weather: Ground elev.	Sunny, humid, 90°F (~maximum)
Make:	CAT	Model:	315 CL	Ground elev.	•	
		•				
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
			Brown Large Fractured L	imestone and various soils	(Sand, Silt, Clay), trace	0
10.5	<u> </u>		Brick, moist (Fill). ~3' ma	aximum limestone fragments	s observed.	
11						
11	†					
11.5						
40						
12	<u> </u> 					0
12.5						ŭ
13						
13.5						
14	<u> </u> 		Executator refusal at 14.0	below ground surface (pre	sumed top of	
14.5			bedrock).	below ground surface (pre-	sumed top of	
			,			
15	<u> </u>					
15.5					7	
	†					
16	<u> </u>			CAL		
16.5						
10.0						
17			The state of the s			
17.5				1.7 7 3	人	
17.5	1		一天人 人为是	WALL TO A STATE OF THE STATE OF		
18				人		
				了的。	到是多种的	
18.5	1			學情報。然為	"在这里的 "	
19						
			Hip My		CAY STORY	
19.5	-		公本 总统		《公司》	
20						
REMARKS:						

				PIT FIELD LOG		
			I E O I	II TIEED EGG		
Project D	escription	: BCF	^o Site C915261	Test Pit No:	TP-27	
Project lo			Holden Street	Location:		
GZA Rep	resentativ	e: Thor	mas Bohlen	File No:	21.0056642.10	
Contracto	or:	Nature's V	Vay	Date:	7/13/2012	
_				Weather:	Sunny, humid, 90°F (~maximum)
Operator:		Tony Kam		Ground elev.	:	
Make:	CAT	Model:	315 CL			
DEPTH (fact)	SAMPLE	SAMPLE		DESCRIPTION		PID
(feet)	NO.	DEPTH	Asphalt and Subbase (~1	0-inches).		0
0.5			, toprical and education (o monooy.		Ü
1						
1.5			Dark Brown Silty CLAY li	ttle Sand, little Gravel, little	Brick moist (Fill)	
1.0			Dank Brown only OB (1, 1	tilo Caria, ittio Cravoi, ittio	Briok, moiot (1 iii).	
2						
0.5						0
2.5						
3						
			Grades to: Brown, trace I	Brick.		
3.5						
4						
						0
4.5						
5			Prown SAND and Gravel	some Concrete, little Silt, I	ittle Clay trace Prick	
3			trace Glass, trace Tile, m		ittle Clay, trace brick,	
5.5			,			
6			Brown Silty CLAV some	Gravel, some Concrete, tra	ca Glass traca Tila	0
6.5			moist (Fill).	Graver, some concrete, tra	oc Olass, trace Tile,	0
			The same of the sa			
7						
7.5				And the second second		
				at the same of the		
8						
0.5				THE REAL PROPERTY.		0
8.5						
9			F 18 1			
9.5			4			
10			20.7	A STORE OF		
REMARKS:						

			TEST	PIT FIELD LOG		
Project D			Site C915261	Test Pit No:	TP-27	
Project lo			Holden Street	Location:		
GZA Rep			mas Bohlen	File No:	21.0056642.10	
Contracto	or:	Nature's W	Vay	Date:	7/13/2012	`
Operator:		Tony Kam	inald	Weather: Ground elev.	Sunny, humid, 90°F (~maximum	1)
Operator: Make:	CAT	Model:	315 CL	Ground elev.	· <u>·</u>	
iviano.	OAT	Woder.	313 OL			
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
10.5			Brown Silty CLAY, some moist (Fill).	Gravel, some Concrete, tra	ce Glass, trace Tile,	0
11						
11.5			Grades to: little Concrete			
12						
12.5						0
13						
13.5	•					
14			5 / / / / / / / / / / / / / / / / / / /			
14.5	•		bedrock).	below ground surface (pre	sumea top of	
15						
15.5						
16						
16.5				Asset Marie Control		
17						
17.5						
18			2000年			
18.5						
19						
19.5						
20						
REMARKS:						

			TEST	PIT FIELD LOG		
Project location: 129 FGZA Representative: Thom Contractor: Nature's W			Test Pit No: Location: File No: Date: Weather:	21.0056642.10 10/22/2012 Partly Cloudy, 60°F (~maximum)		
Operator Make:	: CAT	Corey Haa	at 315 CL	Ground elev.	. <u>:</u>	
DEPTH	SAMPLE	SAMPLE		DESCRIPTION		PID
0.5	NO.	DEPTH	(8-inches).	ND, trace Silt, trace Clay, trace Cray, trace Silt, moist (Fil		0
1.5						
2	_					
2.5	-					0
3						
3.5						
4						
4.5	_		Brown GRAVEL and SAI	ND, trace Silt, trace Clay, tr	ace Brick, moist (Fill).	0
5						
5.5						
6						
6.5			Excavator refusal at 6.0' bedrock).	below ground surface (pres	sumed top of	
7	_					
7.5						
8						
8.5						
9						
9.5						
10						
REMARKS:						

			TEST	PIT FIELD LOG		
Project location: 129 Hold			/ay Date:		TP-29 21.0056642.10 10/22/2012 Partly Cloudy, 60°F (~maximum)	
Operator				Ground elev.		
Make:	CAT	Model:	315 CL			
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
0.5	-	DEI III		ND, little Silt, little Clay, trac cone fragments (~3' maximu		1.0
1	_					
1.5	-					
2	_					
2.5	-					0.0
3	-					
3.5	-					
4						
4.5	-			nge, White, Black SAND, tr Metal, trace Tile, moist (Fill		1.2
5	-					
5.5	-					
6	_					5.4
6.5	-					5.4
7	-					
7.5	_					
8	-					
8.5	-					1.4
9	-					
9.5	<u> </u> -					
10						
REMARKS:						

			TEST	PIT FIELD LOG		
	escription		P Site C915261	Test Pit No:	TP-29	
Project lo			Holden Street	Location:		
	resentativ		mas Bohlen	File No:	21.0056642.10	
Contracto	or:	Nature's V	Vay	Date:	10/22/2012	
_				Weather:	Partly Cloudy, 60°F (~maximum	1)
Operator:		Corey Haa		Ground elev.	<u>:</u>	
Make:	CAT	Model:	315 CL			
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
10.5				nge, White, Black SAND, tra Metal, trace Tile, moist (Fill)		1.2
11						
11.5						
12						
12.5						1.2
13						
13.5						
14						
14.5						
15			End of Excavation at 15'	below ground surface.		
15.5						
16						
16.5						
17						
17.5						
18						
18.5 19						
19.5	†					
20						
REMARKS:						

			TEST I	PIT FIELD LOG		
		/ay	Iden StreetLocation:s BohlenFile No:2yDate:1		m)	
Make:	CAT	Model:	315 CL			
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
0.5				d SAND, trace Silt, trace Clel (~2' maximum) observed.		5.2
1						
1.5						
2						
2.5						1.2
3						
3.5						
4			Brown Silty CLAY, little G Shingle, trace Brick, mois	Gravel, trace Sand, trace Gl st (Fill).	ass, trace Roofing	
4.5						1.7
5						
5.5						
6						
6.5						1.6
7						
7.5						
8						
8.5						1.8
9						
9.5						
10						
REMARKS:	<u> </u>	1	1			1

			TEST	PIT FIELD LOG		
			12011	TI TILLED LOO		
Project D		: BCP	Site C915261	Test Pit No:	TP-30	
Project lo			Holden Street	Location:		
GZA Representative: Thomas Bohlen				File No:	21.0056642.10	
Contractor: Nature's Wa			Vay	Date: Weather:	10/22/2012	`
Operator:		Corey Haa		Ground elev.	Partly Cloudy, 60°F (~maximum)
	CAT	Model:	315 CL	Orodria olovi	· <u>·</u>	
		•		DESCRIPTION		DID
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
				ravel, trace Sand, trace Gla	ass, trace Roofing	4.3
10.5			Shingle, trace Brick, mois	t (Fill).		
11						
11.5						
12						
12						1.4
12.5						
40						
13						
13.5						
14						
14.5						
15			End of Excavation at 15' b	aday, arayad ayrfa aa		
15.5			End of Excavation at 15 t	below ground surface.		
16						
16.5						
10.0						
17						
17.5						
17.5						
18						
40.5						
18.5						
19						
19.5						
20						
REMARKS:						

			TEST	PIT FIELD LOG		
Project D	escription	ı· R∩D	Site C915261	Test Pit No:	· TP-31	
Project lo			Holden Street	Location:	11-51	
GZA Rep			nas Bohlen	File No:	21.0056642.10	
Contracto		Nature's W		Date:	10/22/2012	
Contracto	<i>7</i> 1.	Nature 3 V	vay	Weather:	Partly Cloudy, 60°F (~maximui	m)
Operator:	•	Corey Haa	nf	Ground elev		111)
	CAT	Model:	315 CL	0.00	· ·· <u> </u>	
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
(leet)	NO.	DEFIII	Brown GRAVEL and SA	ND, trace Silt, trace Clay,	trace Glass trace Brick	1.7
0.5			trace Clay Tile, moist (Fi	=	trace Glass, trace Brick,	1.7
1						
1.5			Brown Silty CLAY, trace (Fill).	Gravel, trace Sand, trace	Brick, trace Glass, moist	
2						
2.5						1.3
3						
3.5						
4			Grados to: somo Brick S	Some Concrete, some Blad	ck Sand, majet (Fill)	1.8
4.5			Large Concrete (~2' max		ck Sand, moist (Fill).	1.0
5						
5.5			Brown Silty CLAY, trace	Gravel, trace Sand, moist	(Fill).	
6						
						4.0
6.5						
7						
7.5						
8						
8.5				black stained, sneen - ob l0'. Petroleum odor obser	served in southern portion ved.	6.1
9						
9.5						
10						
REMARKS:	I	<u> </u>	<u> </u>			

			TEST I	PIT FIELD LOG		
Project Ic		129	Site C915261 Holden Street	Test Pit No: Location:	TP-31	
	resentativ	e: Thor	mas Bohlen	File No:	21.0056642.10	
Contracto	or:	Nature's W	Vay	Date:	10/22/2012	
_				Weather:	Partly Cloudy, 60°F (~maximum)
Operator		Corey Haa		Ground elev.	<u>:</u>	
Make:	CAT	Model:	315 CL			
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
10.5			Brown Silty CLAY, trace C	Gravel, trace Sand, moist (F	Fill).	0.9
11						
11.5						
12						
12.5						1.5
13						
13.5						
14						
14.5	 					
15	 		End of Excavation at 15' k			
15.5			End of excavation at 15 t	below ground surface.		
16						
16.5						
17						
17.5						
18						
18.5						
19						
19.5						
20						
REMARKS:						

			TEST	PIT FIELD LOG		
Project Ic GZA Rep Contractor Operator	resentativ or: :	129 /e: Thor Nature's W	af	Test Pit No: Location: File No: Date: Weather: Ground elev	21.0056642.10 10/22/2012 Partly Cloudy, 60°F (~maximum	m)
Make:	SAMPLE	Model: SAMPLE	315 CL	DESCRIPTION		PID
(feet)	NO.	DEPTH				
0.5			Weathered Asphalt (3") a Brown GRAVEL and SA	and Subbase to ~8". ND, some Slag, trace Brick	, trace Silt, trace Clay,	1.7
1	-			I (~2' maximum) observed.	•	
1.5						
2			Brown Silty CLAY, trace	Gravel, trace Sand, wet (Fi	ill).	1.8
2.5			Grades to: moist.	•	,	
3			Grades to. Moist.			
3.5	-					
4						
4.5						0.8
5						
5.5			~4' fragment of Concrete	e fell out of sidewall during	excavation.	
6						
6.5			Brown GRAVEL and SA Gravel (~3' maximum) of	ND, trace Silt, trace Clay, noserved.	noist (Fill). Frequent large	0.5
7						
7.5						
8	_					
8.5			Brown Silty CLAY, trace	Gravel, trace Sand, moist ((Fill).	0.5
9						
9.5						
10						
REMARKS:						

			TEST I	PIT FIELD LOG		
Project Description: BCP Site C915261 Project location: 129 Holden Street GZA Representative: Thomas Bohlen Contractor: Nature's Way				Test Pit No: Location: File No: Date:	21.0056642.10 10/22/2012	
Operator: Make:	CAT	Corey Haa	af 315 CL	Weather: Ground elev.	Partly Cloudy, 60°F (~maximum)
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
	NO.	DEFIII	Brown Silty CLAY, trace (Gravel, trace Sand, moist (F	Fill).	0.4
10.5						
11.5						
12						
12.5			Large Concrete (~7' maxi	imum) observed. Very diffic	cult excavation.	1.1
13						
13.5						
14						
14.5						
15				s observed. Very difficult ex	cavation.	
15.5			End of Excavation at 15' b	below ground surface.		
16						
16.5						
17						
17.5	<u> </u>					
18						
18.5						
19						
19.5						
20						
REMARKS:						

			TEST	PIT FIELD LOG		
Project lo	oresentativ or:	129		Test Pit No: Location: File No: Date: Weather: Ground elev.	21.0056642.10 10/22/2012 Partly Cloudy, 60°F (~maximur	n)
(feet)	NO.	DEPTH				1 10
0.5	_		Brown GRAVEL and SA moist (Fill).	ND, trace Silt, trace Clay, tr	ace Brick, trace Concrete,	45.0
1.5	-		Brown Silty CLAY, trace	Gravel, trace Sand, moist (Fill).	
2						
2.5						341.0
3						
3.5						
4						
4.5	-					8.1
5	-					
5.5	-					
6						
6.5	-		Large Concrete (~2' max	imum) observed.		26.0
7	-					
7.5	<u> </u> -					
8	_					
8.5	-					18.2
9	-					
9.5	-					
10						
REMARKS:						

			TEST	PIT FIELD LOG				
Project Description: BCP Site C915261 Project location: 129 Holden Street GZA Representative: Thomas Bohlen Contractor: Nature's Way				Test Pit No: Location: File No:	21.0056642.10			
				Date:	10/22/2012	`		
Operator: Corey Haaf				Weather: Ground elev.	Partly Cloudy, 60°F (~maximum)		
Make:	CAT	Model:	315 CL	Ground cicv.	•			
DEPTH	CAMPLE	SAMPLE		DESCRIPTION		PID		
(feet)	SAMPLE NO.	DEPTH		DESCRIPTION		PID		
10.5			Brown Silty CLAY, trace 0	Gravel, trace Sand, moist (F	Fill).	6.1		
11								
11.5	 							
12			Brown Dark Brown Oran	ngo White Black SAND tr	aco Silt traco Clay traco	2.5		
12.5			Glass, trace Brick, trace I	Brown, Dark Brown, Orange, White, Black SAND, trace Silt, trace Clay, trace Glass, trace Brick, trace Metal, trace Tile, moist (4" - Fill). Brown Silty CLAY, trace Gravel, trace Sand, moist (Fill).				
13			Diewir Ginty GEATT, trade t	Stavol, trade Garia, molet (i				
13.5								
14								
14.5								
15			End of Excavation at 15' I	pelow				
15.5								
16								
16.5								
17	 							
17.5								
18								
18.5								
19								
19.5								
20								
REMARKS:								

			TEST	PIT FIELD LOG		
Project location: 129 Hold GZA Representative: Thomas Contractor: Nature's Way Operator: Corey Haaf			mas Bohlen Vay af	Test Pit No: Location:	21.0056642.10 10/23/2012 Cloudy, Rain, 65°F (~maximum)	
Make:	CAT SAMPLE	Model: SAMPLE	315 CL	DESCRIPTION		PID
(feet)	NO.	DEPTH				FID
0.5	_		Asphalt (3") and Subbas Brown GRAVEL and SA	e to 8". ND, trace Silt, trace Clay, tr	ace Brick, moist (Fill).	0.8
1						
1.5						
2						
2.5			Brown Silty CLAY, trace	Gravel, trace Sand, moist (Native).	1.4
3	-					
3.5						
4	_					
4.5	-					1.0
5	_					
5.5						
6						
6.5	_					0.8
7						
7.5	_					
8						
8.5	_					1.2
9						
9.5						
10						
REMARKS:						

			TEST I	PIT FIELD LOG		
Project D Project Ic	escription		Site C915261 Holden Street	Test Pit No: Location:	TP-34	
	resentativ	e: Thor	mas Bohlen	File No:	21.0056642.10	
Contracto		Nature's W	Vay	Date:	10/23/2012	
				Weather:	Cloudy, Rain, 65°F (~maximum)	
Operator		Corey Haa		Ground elev.	<u>:</u>	
Make:	CAT	Model:	315 CL			
DEPTH	SAMPLE			DESCRIPTION		PID
(feet)	NO.	DEPTH	Brown Silty CLAV trace (Gravel, trace Sand, moist (N	Jativo)	0.7
10.5			Blown Silly CLAT, trace C	oravei, trace Sand, moist (r	valive).	0.7
11	<u> </u>					
11.5						
12	•					
12.5	•					0.9
13						
13.5						
14						
14.5						
15	•		5 1 (5) (45)			
15.5	•		End of Excavation at 15' b	below ground surface.		
16	 					
16.5						
17						
17.5						
18						
18.5						
19						
19.5						
20						
REMARKS:						

			TEST	PIT FIELD LOG		
Project lo	oresentativ or:	129		Test Pit No: Location: File No: Date: Weather: Ground elev	21.0056642.10 10/23/2012 Cloudy, Rain, 65°F (~maximum	n)
DEPTH	SAMPLE	SAMPLE	313 01	DESCRIPTION		PID
(feet)	NO.	DEPTH	Asphalt (3") and Subbas			
0.5	-			e to 6 . ND, trace Silt, trace Clay, n	noist (Fill).	1.7
1	-			,,		
1.5	-					
2						
2.5	-		Brown Silty CLAY, trace	Gravel, trace Sand, moist ((Fill).	1.4
3	-					
3.5	-					
4						
4.5	-		Large Gravel (~4' maxim	num) observed.		1.8
5						
5.5			Grades to: some Sand, t	race Brick, trace Concrete.		
6	-					
6.5	-					1.3
7	-					
7.5	-		Brown fine SAND, trace	Croval maint (Fill)		
8	-		Brown line SAND, trace	Gravei, moist (Fili).		4.0
8.5	-					1.0
9	-					
9.5	-					
10						
REMARKS:						

			TEST	PIT FIELD LOG		
			1_01			
Project D			P Site C915261	Test Pit No:	TP-35	
Project lo			Holden Street	Location:		
GZA Rep			mas Bohlen	File No:	21.0056642.10	
Contracto	or:	Nature's V	Vay	Date: Weather:	10/23/2012	
Operator:		Corey Haa		Ground elev.	Cloudy, Rain, 65°F (~maximum)	<u> </u>
	CAT	Model:	315 CL	Crodina ciov.	•	
		•		250001251011		
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
			Brown fine SAND, trace C	Gravel, moist (Fill).		0.9
10.5	<u> </u>					
11			Grades to: Black.			
11.5						
12						
			Brown Silty CLAY, trace C	Gravel, trace Sand, moist (N	Native).	1.3
12.5						
13						
13.5	 					
14						
14.5						
15						
			End of Excavation at 15' b	pelow ground surface.		
15.5	 					
16						
16.5						
17						
17.5						
18						
18.5	 					
19						
19.5						
20						
REMARKS:						

			TEST	PIT FIELD LOG		
Project D Project Io GZA Rep Contracto	cation: resentativ	129	Site C915261 Holden Street mas Bohlen Vay	Test Pit No: Location: File No: Date:	TP-36 21.0056642.10 10/23/2012	
				Weather:	Cloudy, Rain, 65°F (~maximum	1)
Operator: Make:	: CAT	Corey Haa Model:	af 315 CL	Ground elev.	. <u>:</u>	
		•	313 CL	•		
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
0.5			Asphalt (3") and Subbas	e to ~6".		0.8
1			Brown GRAVEL and SA	ND, trace Silt, trace Clay, tr	ace Brick, moist (Fill).	
1.5			Danier I ama Frankisa di	:	(Cond Cilt Clay) maint	
2			(Fill).	imestone and various soils	(Sand, Slit, Clay), moist	1.3
2.5						1.5
3						
3.5						
4						1.7
4.5						
5						
5.5						
6.5						1.8
7						
7.5						
8						
8.5						0.9
9						
9.5						
10						
REMARKS:			End of Excavation at 10' below	w ground surface - stopped due t	o extensive collapse.	•

			TEST	PIT FIELD LOG		
Project location: 129 Ho GZA Representative: Thoma Contractor: Nature's Wa Operator: Corey Haaf			Test Pit No: Location: File No: Date: Weather: Ground elev.	21.0056642.10 10/23/2012 Cloudy, Rain, 65°F (~maximum)		
DEPTH (fact)	SAMPLE	SAMPLE		DESCRIPTION		PID
(feet) 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 6 6.5 7 7.5 8 8.5 9 9.5	NO.	DEPTH	Brown Silty CLAY, trace Black fine to coarse SAN Brick, trace Wood, trace	Gravel, trace Silt, moist (Fill), some Gravel, little Conc Glass, moist (Fill).	l). erete, trace Metal, trace	1.7 5.3 0.8
10						
REMARKS:						

			TEST I	PIT FIELD LOG		
Project Ic		129	Site C915261 Holden Street	Test Pit No: Location:		
	resentativ		mas Bohlen	File No:	21.0056642.10	
Contracto	or:	Nature's W	Vay	Date:	10/23/2012	
0		0	.,	Weather:	Cloudy, Rain, 65°F (~maximum)	
Operator: Make:	CAT	Corey Haa Model:	315 CL	Ground elev.	<u>:</u>	
iviane.	CAT	Model.	313 CL			
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
10.5			Brown Silty CLAY, trace C	Gravel, trace Sand, moist (N	Native).	1.3
11						
11.5						
12						
12.5						1.7
13						
13.5						
14						
14.5						
15			5 1 (5) (45)			
15.5			End of Excavation at 15' b	below ground surface.		
16	 					
16.5						
17						
17.5						
18						
18.5						
19						
19.5						
20						
REMARKS:						

			TEST	PIT FIELD LOG		
Project Description: BCP Site C915261 Project location: 129 Holden Street GZA Representative: Thomas Bohlen Contractor: Nature's Way Operator: Corey Haaf				Test Pit No: Location: File No: Date: Weather:	TP-38 21.0056642.10 10/23/2012 Cloudy, Rain, 65°F (~maximum)	
Operator:	: CAT	Model:	at 315 CL	Ground elev.	. <u>.</u>	
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
(leet)	INO.	DEPIN	Asphalt (3") and Subbase	e to 1'.		0.7
0.5						
11	<u> </u>		Provin Silty CLAV trace	Gravel, trace Sand, trace B	Prick trace Motal moist	
1.5			(Fill).	Graver, trace Sand, trace B	nick, trace Metal, moist	
2						
2.5						1.8
3						
3.5						
4						
4.5						1.0
5						
5.5						
6						
6.5						1.3
7						
7.5						
8						
8.5			Black fine to coarse SAN	D, some Gravel, trace Silt,	trace Clay, moist (Fill).	1.2
9						
9.5						
10						
REMARKS:						

			TEST I	PIT FIELD LOG		
Project Ic	resentativ	129	P Site C915261 Holden Street mas Bohlen Vay		TP-38 21.0056642.10 10/23/2012	
Operator: Make:	: CAT	Corey Haa	af 315 CL	Weather: Ground elev.	Cloudy, Rain, 65°F (~maximum))
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
10.5	110.	DEFITT	Black fine to coarse SAN	D, some Gravel, trace Silt,	trace Clay, moist (Fill).	1.6
11	 					
11.5	<u> </u>					
12						
12.5			Grades to: some Slag.			1.8
13						
13.5						
14						
14.5	<u> </u>					
15						
15.5			End of Excavation at 15' l	oelow ground surface.		
16						
16.5						
17						
17.5						
18						
18.5						
19						
19.5						
20						
REMARKS:						

			TEST	PIT FIELD LOG		
Project location: 129 Holder			Site C915261 Holden Street mas Bohlen Vay	_ Test Pit No: _ Location: _ File No: _ Date: Weather:	TP-39 21.0056642.10 10/23/2012 Cloudy, Rain, 65°F (~maximum)	
Operator	:	Corey Haa	af	Ground elev		14111)
Make:	CAT	Model:	315 CL	•		
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
0.5			Asphalt (3") and Subbas	e to 6".		1.3
1			Brown GRAVEL and SA moist (Fill).	ND, trace Silt, trace Clay, t	race Brick, trace Slag,	
1.5	-					
2						
2.5			Brown Silty CLAY, some Brick, moist (Fill).	large Gravel (~1'-2' maxin	num), trace Sand, trace	1.7
3						
3.5			Brown Silty CLAY, trace	Gravel, trace Sand, moist	(Fill).	
4						
4.5						1.5
5						
5.5						
6	_					
6.5	_					1.3
7	_					
7.5	_					
8	_					
8.5	-					2.1
9	_					
9.5	_					
10						
REMARKS:						

			TEST	PIT FIELD LOG		
Project D			Site C915261	Test Pit No:	TP-39	
Project lo	cation: presentativ		Holden Street	Location: File No:	24 0056642 40	
Contracto		Nature's V	mas Bohlen	Date:	21.0056642.10 10/23/2012	
Contracto	л.	ivaluie 5 v	vay	Weather:	Cloudy, Rain, 65°F (~maximum)
Operator:	:	Corey Haa	af	Ground elev.		,
Make:	CAT	Model:	315 CL			
DEPTH	SAMPLE	SAMPLE	1	DESCRIPTION		PID
(feet)	NO.	DEPTH	1/4 11 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Ollin I Ol	
10.5	<u> </u>		Yellowish Brown fine to comoist (Fill).	parse SAND, little Gravel, tr	ace Silt, trace Clay,	3.0
11						
11.5						
12			Grades to: Black.			1.8
12.5						1.5
13	<u> </u> 		Brown GRAVEL and SAN	ID, trace Silt, trace Clay, m	oiet (Fill) Large Gravel	
13.5			(~1 to 2' maximum) obse		oist (i iii). Laige Glavei	
14						
14.5						
15	<u> </u>		End of Excavation at 15' I	polow ground surface		
15.5			End of Excavation at 13 i	selow ground surface.		
16						
16.5						
17						
17.5						
18						
18.5						
19						
19.5						
20						
REMARKS:						

			TEST	PIT FIELD LOG		
Project location: 129 Hold			P Site C915261 Holden Street mas Bohlen Vay	olden Street Location: as Bohlen File No: ay Date:		1
Operator	:	Corey Haa	af	Ground elev.	Cloudy, Rain, 65°F (~maximum :	/
Make:	CAT	Model:	315 CL	•		
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
0.5	NO.	DEI III	Brown GRAVEL and SA	ND, trace Silt, trace Clay, m	noist (Fill).	1.7
1	-					
1.5	-					
2	-					
2.5						0.8
3						
3.5						
4						
4.5			Brown Silty CLAY, trace	Gravel, trace Sand, moist,	(Fill).	1.5
5						
5.5						
6						
6.5			Brown GRAVEL and SA (~4' maximum) observed	ND, trace Silt, trace Clay, m I.	noist (Fill). Large Gravel	1.6
7						
7.5						
8						
8.5			Large Concrete (~5' max	kimum) observed.		1.6
9						
9.5						
10						
REMARKS:	•	•	•			

			TEST	PIT FIELD LOG		
			1201			
Project D	escription	: BCF	Site C915261	Test Pit No:	TP-40	
Project lo			Holden Street	Location:		
	resentativ		mas Bohlen	File No:	21.0056642.10	
Contracto	or:	Nature's V	Vay	Date: Weather:	10/23/2012	`
Operator:	•	Corey Haa	af	Ground elev.	Cloudy, Rain, 65°F (~maximum)
Make:	CAT	Model:	315 CL	Ground Grov.	••	
DEPTH	CAMPLE	CAMPLE		DESCRIPTION		DID
(feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
				D, some Gravel, trace Silt,		1.4
10.5				EL and SAND observed spa		
11				into a zip lock bag, then trar Metals, and Cyanide.	nsierred to sample jars.	
			, , , , , , , , , , , , , , , , , , , ,			
11.5						
12						
12						1.8
12.5						
13						
13						
13.5						
14						
14						
14.5						
15						
15			End of Excavation at 15'	below ground surface.		
15.5				S		
40						
16						
16.5						
47						
17						
17.5						
40						
18						
18.5						
4.5						
19	}					
19.5						
20	<u> </u>		<u> </u>			<u> </u>
REMARKS:						

			TEST	PIT FIELD LOG		
Project Ic GZA Rep Contracto Operator	oresentativ or: :	129 /e: Thor Nature's W	af	Test Pit No Location: File No: Date: Weather: Ground ele	21.0056642.10 10/24/2012 Cloudy, Rain, 60°F (~maximul	m)
Make:	CAT	Model:	315 CL			
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
0.5	_		Asphalt (3") and Subbas		0.51	0.7
1			1'.	G observed in eastern po	ortion of excavation - 0.5' to	
1.5	-		Brown Silty CLAY, little C	Gravel, trace Sand, moist	(Fill).	
2						
2.5	-					0.5
3						
3.5	_		Dark Brown SAND and (Fill).	SRAVEL, some Brick, trac	ce Silt, trace Clay, moist	
4						
4.5	1		Brown Silty CLAY, little C	Gravel, little Sand, moist,	(Fill).	0.6
5	_					
5.5	-					
6						
6.5	-					1.1
7						
7.5	- -		Brown Fractured Limesto	one and various soils (Sai	nd, Silt, Clay), moist, (Fill).	
8						
8.5			Brown Silty CLAY, trace	Gravel, trace Sand, mois	t (Fill).	1.3
9	-					
9.5	-					
10						
REMARKS:						

			TEST	PIT FIELD LOG		
Project Ic GZA Rep	Project Description: Project location: GZA Representative: Contractor: Mature's Way BCP Site C91520 129 Holden Stree Thomas Bohlen Nature's Way			Date:	21.0056642.10 10/24/2012	
Operator: Make:	CAT	Corey Haa Model:	af 315 CL	Weather: Ground elev.	Cloudy, Rain, 60°F (~maximum)
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
10.5	140.	DEFITT	Brown Silty CLAY, trace 0	Gravel, trace Sand, moist (F	Fill).	1.5
11						
11.5						
12						
12.5			Brown GRAVEL and SAN	ND, some Brick, trace Silt, tr	race Clay, moist (Fill).	1.7
13						
13.5	<u> </u>					
14	1					
14.5	<u> </u>					
15						
15.5			End of Excavation at 15' I	below ground surface.		
16						
16.5						
17						
17.5						
18						
18.5						
19						
19.5						
20						
REMARKS:						

			TEST	PIT FIELD LOG		
Project D			Site C915261 Holden Street	Test Pit No: Location:	TP-42	
	resentati		mas Bohlen	File No:	21.0056642.10	
Contracto		Nature's V		Date:	10/24/2012	
			•	Weather:	Cloudy, Rain, 60°F (~maximum)
Operator	:	Corey Haa		Ground elev.	<u>:</u>	
Make:	CAT	Model:	315 CL			
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
0.5			Asphalt (3") and Subbas	e to 1'.		1.5
1						
1.5			Brown GRAVEL and SA	ND, some Brick, trace Silt, t	race Clay, moist (Fill).	
2						
2.5						0.5
3						
3.5						
4			Grades to: trace Brick.			
4.5						0.0
5			D		011 01-01 (511)	
5.5			Brown Fractured Limesto	one and various soils (Sand	, Silt, Clay), moist, (Fill).	
6						
6.5						1.6
7						
7.5						
8			Large Limestone fragem	ents (~4' maximum) observ	od	4.7
8.5			Large Limestone tragem	ents (~4 maximum) observ	ed.	1.7
9						
9.5						
10						
REMARKS:						

			TEST	PIT FIELD LOG		
Project Id GZA Rep	Project Description: Project location: GZA Representative: Contractor: BCP Site C915261 129 Holden Street Thomas Bohlen Nature's Way			Test Pit No: Location: File No: Date:	TP-42 21.0056642.10 10/24/2012	
Operator Make:	: CAT	Corey Haa	af _315 CL	Weather: Ground elev	Cloudy, Rain, 60°F (~maximum	ı)
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
10.5	NO.	DEFIN	Brown Fractured Limesto	one and various soils (Sand,	Silt, Clay), moist, (Fill).	1.2
11	1					
11.5						
12						
12.5	 		End of Excavation at 12'	below ground surface due to	o extensive collapse.	
13	<u> </u>					
13.5	<u> </u>					
14	<u> </u>					
14.5	<u> </u>					
15	<u> </u>					
15.5	<u> </u>					
16	<u> </u>					
16.5	<u> </u>					
17	<u> </u>					
17.5	<u> </u>					
18	<u> </u>					
18.5	<u> </u>					
19	<u> </u>					
19.5	<u> </u>					
20			<u> </u>			
REMARKS:						

			TEST	PIT FIELD LOG		
Project Description: Project location: GZA Representative: Contractor: BCP Site C915261 129 Holden Street Thomas Bohlen Nature's Way			Holden Street mas Bohlen	Test Pit No: Location: File No: Date: Weather:	TP-43 21.0056642.10 10/24/2012 Cloudy, Rain, 60°F (~maximum)	
Operator	:	Corey Haa	af	Ground elev.		,
Make:	CAT	Model:	315 CL			
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
0.5	110.	DEI III	Concrete (4") and Subba	se to 8".		0.0
1			Brown GRAVEL and SAI	ND, trace Brick, trace Silt, tr	race Clay, moist (Fill).	
1.5	-					
2						
2.5	-					0.0
3						
3.5				nge, White, Black SAND, tr Metal, trace Tile, moist (Fill		
4	-					
4.5	-					0.0
5	-					
5.5	-					
6	-					
6.5	-		Brown GRAVEL and SAI	ND, little Asphalt, trace Silt,	trace Clay, moist (Fill).	0.0
7	-					
7.5	-					
8	-					
8.5	-					0.0
9	-					
9.5	-					
10						
REMARKS:						

			TEST	PIT FIELD LOG		
Project Id GZA Rep	Project Description: BCP Site C915261 Project location: 129 Holden Street GZA Representative: Thomas Bohlen Contractor: Nature's Way			Test Pit No: Location: File No: Date: Weather:	21.0056642.10 10/24/2012	
Operator	:	Corey Haa		Ground elev.	Cloudy, Rain, 60°F (~maximun	
Make:	CAT	Model:	315 CL			
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
10.5			Brown GRAVEL and SAN	ND, little Asphalt, trace Silt,	trace Clay, moist (Fill).	0.0
11	- -					
11.5	<u> </u>					
12	_					
12.5						0.0
13	 					
13.5	<u> </u>					
14	<u> </u>					
14.5	_					
15						
15.5			End of Excavation at 15'	below ground surface.		
16						
16.5						
17						
17.5						
18						
18.5						
19						
19.5						
20						
REMARKS:						

			TEST	PIT FIELD LOG		
Project lo GZA Rep	Project Description: Project location: BCP Site C915261 129 Holden Street GZA Representative: Thomas Bohlen Contractor: Nature's Way			Date: 10/24/2012	21.0056642.10 10/24/2012	F (~maximum)
Operator	:	Corey Haa	af	Ground e		
Make:	CAT	Model:	315 CL	•		
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTIO	N	PID
0.5			Asphalt (3") and Subbas	e to 1'.		0.0
1	-					
1.5	-		Dark Brown SAND, little	Gravel, little Asphalt, tra	ace Silt, trace Clay, mo	ist (Fill).
2	-					
2.5	-					0.0
3	-					
3.5	-		Brown GRAVEL and SA moist (Fill).	ND, little Brick, little Asp	bhalt, trace Silt, trace C	lay,
4	-					
4.5	-		Grades to: no Asphalt.			0.0
5	-					
5.5	-					
6	-					
6.5	-					0.0
7	-					
7.5	-					
8	-		Grades to: some Brick.			0.0
8.5	 -		Grades to, some Brick.			0.0
9	-		Oradaa tay ya Driali			
9.5	-		Grades to: no Brick.			
10						
REMARKS:						

			TEST I	PIT FIELD LOG		
Project lo	resentativ	129	Site C915261 Holden Street mas Bohlen Vay	Date:	21.0056642.10 10/24/2012	
Operator: Make:	: CAT	Corey Haa	af 315 CL	Weather: Ground elev.	Cloudy, Rain, 60°F (~maximum)
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
	NO.	DEFIN	Brown GRAVEL and SAN	ID, little Brick, trace Silt, tra	ce Clay, moist (Fill).	0.0
10.5 11						
11.5						
12						
12.5						0.0
13						
13.5						
14						
14.5						
15						
15.5			End of Excavation at 15' b	oelow ground surface.		
16						
16.5						
17	<u> </u>					
17.5						
18						
18.5						
19						
19.5						
20						
REMARKS:						

			TEST	PIT FIELD LOG		
Project Ic GZA Rep Contracto	oresentativ or:	129 /e: Thor Nature's V		Test Pit N Location: File No: Date: Weather:	maximum)	
Operator		Corey Haa		Ground el	lev.:	
Make:	CAT	Model:	315 CL	-		
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION	N	PID
0.5			Asphalt (2") and Subbas	e to 1'.		0.0
1						
1.5	-		Brown Silty CLAY, trace	Gravel, trace Sand, mo	ist (Fill).	
2						
2.5	-		Brown GRAVEL and SA	ND, little Silt, little Clay,	moist (Fill).	0.0
3	-					
3.5	-					
4	-					
4.5	_					0.0
5						
5.5			Grades to: trace Silt, trace	ce Clay. Large Gravel (~2' maximum) observed.	
6						
6.5						0.0
7						
7.5	-		Grades to: some Brick, li	ittle Asphalt.		
8	_					
8.5						0.0
9			Grades to: trace Brick, tr	ace Asphalt.		
9.5						
10						
REMARKS:						

			TEST I	PIT FIELD LOG		
Project D	escription		Site C915261 Holden Street	Test Pit No: Location:	TP-45	
	resentativ		nas Bohlen	File No:	21.0056642.10	
Contracto		Nature's V	Vay	Date:	10/24/2012	
				Weather:	Cloudy, Rain, 60°F (~maximum)
Operator: Corey Haaf				Ground elev.	<u>:</u>	
Make:	CAT	Model:	315 CL			
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
10.5			Brown GRAVEL and SAN moist, (Fill).	ID, trace Brick, trace Aspha	alt, trace Silt, trace Clay,	0.0
11						
11.5						
12						
12.5						0.0
13						
13.5						
14						
14.5						
15			End of Excavation at 15' l	pelow ground surface.		1
15.5						
16						
16.5						
17						
17.5						
18 18.5						
19						
19.5						
20						
REMARKS:						

			TEST	PIT FIELD LOG		
Project Ic GZA Rep Contracto Operator	oresentativ or: :	129 /e: Thor Nature's W	af	Test Pit No: Location: File No: Date: Weather: Ground elev	21.0056642.10 10/24/2012 Cloudy, Rain, 60°F (~maximum	n)
Make: DEPTH	CAT SAMPLE	Model:	315 CL	DESCRIPTION		PID
(feet)	NO.	DEPTH				
0.5			Asphalt (3") and Subbas White fine to coarse SLA			0.0
1			Write line to coarse SLA	AG, MOIST (FIII).		
1.5	-		Brown GRAVEL and SA	ND, trace Silt, trace Clay, n	noist (Fill).	
2						
2.5						0.0
3	-		Brown Silty CLAY, trace	Gravel, trace Black Sand,	moist (Fill).	
3.5	-					
4						
4.5	-		Brown GRAVEL and SA	ND, trace Silt, trace Clay, n	noist (Fill).	0.0
5	_					
5.5						
6	-					
6.5	-					0.0
7	-					
7.5	-					
8	-					0.0
8.5	-					0.0
9	-					
9.5	<u> </u>					
10						
REMARKS:						

			TEST I	PIT FIELD LOG		
Project D	escription	i: BCP	Site C915261	Test Pit No:	TP-46	
Project lo			Holden Street	Location:		
	resentativ	e: Thor	mas Bohlen	File No:	21.0056642.10	
Contracto		Nature's V	Vay	Date:	10/24/2012	
				Weather:	Cloudy, Rain, 60°F (~maximum))
Operator:	•	Corey Haa	af	Ground elev.	:	
Make:	CAT	Model:	315 CL			
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
10.5			Brown GRAVEL and SAN (~3' maximum) observed.	ID, trace Silt, trace Clay, m	oist (Fill). Large Gravel	0.0
11						
11.5						
12						
12.5						0.0
13						
13.5						
14						
14.5						
15			End of Excavation at 15' k	pelow ground surface.		
15.5						
16						
16.5						
17						
17.5						
18 18.5						
19						
19.5						
20						
REMARKS:						

			TEST	PIT FIELD LOG		
Project D			Site C915261 Holden Street	Test Pit No: Location:	TP-47	
GZA Rep			mas Bohlen	File No:	21.0056642.10	
Contracto		Nature's V		Date:	10/24/2012	
				Weather:	Cloudy, Rain, 60°F (~maximum	1)
Operator:	:	Corey Haa	af	Ground elev	· <u>·</u>	
Make:	CAT	Model:	315 CL			
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
0.5			Asphalt (5") and Subbas	e to 1'.		0.0
1						
1.5				ND, trace Silt, trace Clay, n		
2				nge, White, Black SAND, to trace Brick, trace Metal, mo		
2.5						0.0
3						
3.5						
4						0.0
4.5						0.0
5			Brown Silty CLAY, trace	Sand, trace Gravel, moist ((Fill).	
5.5					()·	
6			8" diameter green PVC s	storm sewer line hit in north	ern portion of excavation. Wate	r 0.0
6.5					·	
7						
7.5						
8						0.0
8.5						
9						
9.5						
10 REMARKS:						

			TEST	PIT FIELD LOG		
Project D	escription		^o Site C915261 Holden Street	Test Pit No: Location:	TP-47	
	resentativ		mas Bohlen	File No:	21.0056642.10	
Contracto		Nature's V		Date:	10/24/2012	
				Weather:	Cloudy, Rain, 60°F (~maximum)
Operator		Corey Haa	af	Ground elev.		•
Make:	CAT	Model:	315 CL			
DEPTH	SAMPLE	SAMPLE	<u> </u>	DESCRIPTION		PID
(feet)	NO.	DEPTH				5
10.5				nge, White, Black SAND, so ss, trace Brick, trace Metal,		0.0
11						
11.5						
12						0.0
12.5						0.0
13						
13.5						
14						
14.5						
15			End of Excavation at 15'	below ground surface.		<u> </u>
15.5				g carre carretor		
16						
16.5						
17						
17.5						
18						
18.5						
19						
19.5						
20						
REMARKS:						

			TEST	PIT FIELD LOG		
Project lo	oresentativ or:	129	•	Test Pit No: Location: File No: Date: Weather: Ground elev.	21.0056642.10 10/25/2012 Sunny, 75°F (~maximum)	
DEPTH	SAMPLE	SAMPLE	313 62	DESCRIPTION		PID
(feet)	NO.	DEPTH	Brown GRAVEL and SAL	ND, trace Silt, trace Clay, tr	ace Brick moist (Fill)	0.0
0.5	-		Large Gravel (~2' maxim		ace blick, filolist (Fill).	0.0
1	-					
1.5	_					
2						
2.5	-					0.0
3						
3.5			Dark Brown Silty CLAY,	little Gravel, little Sand, trac	ce Brick, moist (Fill).	
4						
4.5			Grades to: no Brick.			0.0
5						
5.5						
6						
6.5			Grades to: Brown			0.0
7	-					
7.5	-					
8	-					
8.5			Black fine to coarse SAN	ID, little Gravel, moist (Fill).		0.0
9			Brown Silty CLAY, trace	Gravel, trace Sand, moist (Fill).	
9.5	-					
10						
REMARKS:						

			TEST I	PIT FIELD LOG		
Project Ic GZA Rep	Project Description: BCP Site C915261 Project location: 129 Holden Street GZA Representative: Thomas Bohlen Contractor: Nature's Way			Test Pit No: Location: File No: Date: Weather:	21.0056642.10 10/25/2012	
Operator: Make:	: CAT	Corey Haa	af 315 CL	Ground elev	Sunny, 75°F (~maximum)	
DEPTH (feet)	SAMPLE NO.	-		DESCRIPTION		PID
10.5	110.	DEI III	Brown Silty CLAY, trace C	Gravel, trace Sand, moist (F	=iII).	0.0
11						
11.5	<u> </u>					
12						0.0
12.5						0.0
13						
13.5						
14.5						
15						
15.5			End of Excavation at 15' b	pelow ground surface.		
16						
16.5	<u> </u>					
17						
17.5						
18						
18.5						
19 19.5						
20						
REMARKS:						

			TEST I	PIT FIELD LOG		
Project Description: BCP Site C915261 Project location: 129 Holden Street GZA Representative: Thomas Bohlen Contractor: Nature's Way Operator: Corey Haaf			Holden Street mas Bohlen Vay	Test Pit No: Location: File No: Date: Weather: _ Ground elev	21.0056642.10 10/25/2012 Sunny, 75°F (~maximum)	
Make:	CAT	Model:	315 CL			
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
0.5			Topsoil (6").			0.0
1			Brown GRAVEL and SAI Gravel (~ 2' maximum) o	ND, little Silt, little Clay, trac bserved.	e Brick, moist. Large	
1.5						
2						0.0
2.5						
3						
3.5						
4						
4.5						0.0
5						
5.5						
6						
6.5						0.0
7			Brown Fractured Limesto	one and various soils (Sand	I, Silt, Clay) moist (Fill).	
7.5			Western Portion of Excar	vation: Bedrock at 7' below	ground surface (shelf).	
8						
8.5			Large limestone fragmen	its (~ 5' maximum) observe	d.	0.0
9						
9.5						
10			Eastern Portion of Excav	ration: Bedrock at 10' below	ground surface.	
REMARKS:						

			TEST	PIT FIELD LOG		
Project Ic GZA Rep Contractor Operator	oresentativ or: :	129 Ve: Thor Nature's V	af	Test Pit No: Location: File No: Date: Weather: Ground elev.	21.0056642.10 10/25/2012 Sunny, 75°F (~maximum)	
Make:	CAT	Model:	315 CL	•		
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
0.5	-		Weathered Asphalt (3")	and Subbase to 1'.		0.7
1.5	-		Brown GRAVEL and SA	ND, little Silt, little Clay, trac	ee Brick, moist (Fill).	
2						
2.5	-					3.9
3	-					
3.5	-					
4						
4.5	-		Brown Silty CLAY, some	Gravel, little Sand, moist (F	Fill).	6.7
5	-		Large Gravel (~ 2' maxin	num) observed.		
5.5	-					
6	_					
6.5	-					6.0
7	-					
7.5	-					
8						
8.5						3.3
9						
9.5	_					
10						
REMARKS:						

			TEST	PIT FIELD LOG		
Project lo GZA Rep	Project Description: Project Iocation: GZA Representative: Contractor: BCP Site C915261 129 Holden Street Thomas Bohlen Nature's Way			Test Pit No: Location: File No: Date: Weather:	21.0056642.10 10/25/2012	
Operator Make:	: CAT	Corey Haa	af 315 CL	Ground elev	Sunny, 75°F (~maximum)	
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
10.5			Brown Silty CLAY, some	Gravel, little Sand, moist (F	ill).	1.8
11						
11.5	<u> </u>					
12	1		Brown GRAVEL and SAM	ND, little Silt, little Clay, mois	et (Fill) I arge Gravel	3.2
12.5	<u> </u>		(~ 1' maximum) observed		st (i iii). Large Gravei	5.2
13						
13.5						
14						
14.5						
15			End of Excavation at 15'	below ground surface.		
15.5	<u> </u> 					
16						
16.5						
17						
17.5 18	1					
18.5	 					
19	†					
19.5	1					
20						
REMARKS:						

			TEST	PIT FIELD LOG		
Project Description: Project location: GZA Representative: Contractor: Nature's Way Operator: Corey Haaf			Holden Street mas Bohlen Vay	Test Pit No: Location: File No: Date: Weather: Ground elev	21.0056642.10 10/25/2012 Sunny, 75°F (~maximum)	
Make:	CAT	Model:	315 CL	•		
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
0.5			Weathered Asphalt (3")	and Subbase to 8".		1.6
1			Brown GRAVEL and SA	ND, little Silt, little Clay, trad	ce Brick, moist (Fill).	
1.5						
2			Brown Silty CLAY, some	Gravel, little Sand, trace B	rick, moist (Fill).	1.8
2.5						
3			Large Gravel (~1' maxim	num) observed.		
3.5						
4						3.9
4.5						
5						
5.5						
6			Brown GRAVEL and SA	ND, little Silt, little Clay, mo	ist (Fill).	6.2
6.5						
7			Large Concrete (~3' max	kimum) observed.		
7.5						
8						6.9
8.5						
9						
9.5						
REMARKS:	<u> </u>	<u> </u>	l			

			TEST	PIT FIELD LOG		
Project Ic GZA Rep	Project Description: BCP Site C915261 Project location: 129 Holden Street GZA Representative: Thomas Bohlen Contractor: Nature's Way			Test Pit No: Location: File No: Date: Weather:	TP-51 21.0056642.10 10/25/2012 Sunny, 75°F (~maximum)	
Operator	:	Corey Haa	 af	Ground elev.		
Make:	CAT	Model:	315 CL			
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
			Brown GRAVEL and SAN	ND, little Silt, little Clay, mois	st (Fill).	3.2
10.5			Grades to: trace Silt, trac	e Clay.		
11.5						
12						
12.5						3.2
13						
13.5						
14	<u> </u>					
14.5	<u> </u>					
15			End of English and 45U			
15.5			End of Excavation at 15'	below ground surface.		
16						
16.5						
17	<u> </u>					
17.5	<u> </u>					
18	•					
18.5	<u> </u>					
19						
19.5						
20						
REMARKS:						

			TEST	PIT FIELD LO	G		
Project D	escription	ı: BCP	Site C915261		Pit No:	TP-52	
Project lo			Holden Street	Locat		11 02	
GZA Rep			mas Bohlen	File N		21.0056642.10	
Contracto		Nature's W		 Date:		10/25/2012	
				 Weat	her:	Sunny, 75°F (~maximum)	
Operator:	:	Corey Haa		Groui	nd elev.	:	
Make:	CAT	Model:	315 CL	<u> </u>			
DEPTH	SAMPLE	SAMPLE		DESCRI	PTION		PID
(feet)	NO.	DEPTH	A ((411) Q - - -	(- 4)			1
0.5			Asphalt (4") and Subba	ase to 1'.			1.8
1							
1.5			White fine to coarse S				
2			Brown Fractured Limes	stone and various so	ils (Sand	I, Silt, Clay) moist, (Fill).	
2.5							4.1
3							
3.5							
4							
4.5							3.2
5							
5.5							
6							
6.5							1.6
7							
7.5							
8							
8.5							1.7
9							
9.5							
9.5							
REMARKS:	<u> </u>	<u>I</u>	End of Excavation at 10' be	elow ground surface due t	o extensiv	e collapse.	

			TEST PI	T FIELD LOG		
Project D)escriptio	n. BC	Site C915261	Test Pit No:	TD-52	
Project Id			Holden Street	Location:	117-03	
GZA Rep			mas Bohlen	File No:	21.0056642.10	
Contract		Nature's V		Date:	10/25/2012	
Contract	J1.	14ature 3 V	vay	Weather:	Sunny, 75°F (~maximum)	
Operator		Corey Haa	af	Ground elev		
Make:	CAT	Model:	315 CL	Ordana ordi		
DEPTH	SAMPLE			DESCRIPTION		PID
(feet)	NO.	DEPTH	Applet (4") and Cubbase t	o 4!		4.7
0.5			Asphalt (4") and Subbase t	01.		1.7
0.5	1					
1						
			White fine to coarse SLAG	(8") moist (Fill).		
1.5						
2						
			Brown Fractured Limestone	e and various soils (Sand	d, Silt, Clay) moist, (Fill).	1.0
2.5	_					
3						
3	_					
3.5						
0.0						
4						
						3.0
4.5						
5	_					
<i></i>						
5.5	-					
6						
						1.8
6.5						
7						
7.5	_					
8						0.8
8.5						0.8
0.0						
9						
]					
9.5	1					
10						

End of Excavation at 10' below ground surface due to extensive collapse.

REMARKS:

			TEST	PIT FIELD LOG		
Project D Project lo GZA Rep Contracto	cation: resentativ	129 /e: Thor	Site C915261 Holden Street mas Bohlen	Test Pit No Location: File No: Date:	21.0056642.10	
Operator		Nature's V		Weather: Ground ele	10/26/2012 Sunny, 70°F (~maximum) V.:	
Make:	CAT	Model:	315 CL		·	
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
0.5	-		Asphalt (4") and Subbas	e to 9".		0.0
1			White fine to coarse SLA	AC moist (Fill)		
1.5			Writte line to coalse our	o, moist (Fill).		
2			Brown Silty CLAY, little (Gravel, little Sand, moist.		1.3
2.5						
3.5						
4			Grades to: some Brick, t	race Glass.		
4.5						0.0
5			Brown Fractured Limesto	one and various soils (Sar	nd, Silt, Clay) moist (Fill).	
5.5						
6.5						0.0
7						
7.5			Excavator refusal at 7' b bedrock).	elow ground surface (pres	sumed top of	
8						
8.5						
9						
9.5						
10 REMARKS:	<u> </u>					

			TEST	PIT FIELD LOG		
Project lo GZA Rep Contracto Operator	resentativ or:	129 /e: Thor Nature's W	af	Test Pit No: Location: File No: Date: Weather: Ground elev.	21.0056642.10 10/26/2012 Sunny, 70°F (~maximum)	
Make: DEPTH	SAMPLE	Model:	315 CL	DESCRIPTION		PID
(feet)	NO.	DEPTH				1
0.5			Asphalt (5") and Subbase	e to 1'.		0.0
1.5			White fine to coarse SLA	G, moist (Fill).		
2						
2.5			Brown Silty CLAY, some	Sand, little Gravel, moist (N	Native).	0.0
3						
3.5						
4						
4.5			Grades to: trace Gravel,	trace Sand.		0.0
5						
5.5						
6						
6.5						0.0
7						
7.5						
8						
8.5						0.0
9						
9.5						
10						
REMARKS:						

			TEST	PIT FIELD LOG		
Project Id GZA Rep	Project Description: BCP Site C915261 Project location: 129 Holden Street GZA Representative: Thomas Bohlen Contractor: Nature's Way			Test Pit No: Location: File No: Date: Weather:	21.0056642.10 10/26/2012	
Operator Make:	: CAT	Corey Haa	af 315 CL	Ground elev	Sunny, 70°F (~maximum)	
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
10.5			Brown Silty CLAY, trace S	Sand, trace Gravel, moist (N	Native).	0.0
11	<u> </u>					
11.5	†					
12	_		Excavator refusal at 12' h	elow ground surface (presu	imed top of	
12.5	<u> </u> 		bedrock).	clow ground surface (prese	arried top of	
13						
13.5						
14						
14.5						
15						
15.5	<u> </u> 					
16						
16.5	<u> </u> 					
17						
17.5						
18 18.5	1					
19	1					
19.5	†					
20						
REMARKS:						

			TEST	PIT FIELD LOG		
			IESII	-II FIELD LOG		
Project D	escription	i: BCF	Site C915261	Test Pit No:	TP-56	
Project lo			Holden Street	Location:		
GZA Representative: Thomas Bohlen		File No:	21.0056642.10			
Contracto	or:	Nature's V	Vay	Date:	10/26/2012	
Operator:	ı	Corey Haa		Weather: Ground elev.	Sunny, 70°F (~maximum)	
Make:	CAT	Model:	315 CL	Ground clev.	•	
		•				
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
(100)			Asphalt (3") and Subbase	e to 8".		1.7
0.5						
			White fine to coarse SLA	G (4") moist (Fill).		
1			Brown Silty CLAV little G	Gravel, little Sand, trace Brid	ck moiet (Fill)	
1.5			Drown Silly CLAT, little C	navel, little Oalid, trace Dift	ok, moist (i iii).	
2						
2.5						0.8
2.0						
3						
			Brown GRAVEL and SAN	ND, trace Silt, trace Clay, m	noist (Fill).	
3.5						
4						
<u> </u>						0.7
4.5						
5						
5						
5.5						
6						0.5
6.5						0.5
0.0						
7						
7.5						
7.5						
8						
						1.2
8.5						
9						
<u> </u>						
9.5						
40						
10	<u> </u>		1			
REMARKS:						

			TEST	PIT FIELD LOG		
			1201	11 11222 200		
Project D			Site C915261	Test Pit No:	TP-56	
Project lo			Holden Street	Location:		
	resentativ		mas Bohlen	File No: Date:	21.0056642.10	
Contracto	JI.	Nature's V	vay	Weather:	10/26/2012 Sunny, 70°F (~maximum)	
Operator:	•	Corey Haa	 af	Ground elev.		
Make:	CAT	Model:	315 CL			
DEPTH	SAMPLE	SAMPLE	<u> </u>	DESCRIPTION		PID
(feet)	NO.	DEPTH				
10.5			Brown GRAVEL and SAN	ND, trace Silt, trace Clay, mo	oist (Fill).	0.3
11						
11.5			Brown Silty CLAY, little G	ravel, trace Sand, moist (Fil	II).	
12						0.9
12.5						0.9
13						
13.5						
14	<u> </u> 					
14.5						
15	<u> </u>					
15.5			End of Excavation at 15' I	oelow ground surface.		
16						
16.5						
17						
17.5	 					
18						
18.5						
19						
19.5						
20						
REMARKS:						

			TEST	PIT FIELD LOG		
			IESI I	FIT FIELD LOG		
Project D			Site C915261	Test Pit No:	TP-57	
Project lo			Holden Street	Location:		
GZA Rep			mas Bohlen	File No:	21.0056642.10	
Contracto	or:	Nature's V	Vay	Date:	10/26/2012	
Operator:		Corey Haa		Weather: Ground elev.	Sunny, 70°F (~maximum)	
	CAT	Model:	315 CL	Ground ciev.	·	
		•		· 		
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
(1001)	110.	JEI III	Asphalt (4") and Subbase	e to 1'.		0.7
0.5			. , ,			
1			Barrer Frank and Historia		0.00	
1.5			moist (Fill).	one and various soils (Sand	i, Siit, Clay) trace Slag,	
1.0			molec (i iii).			
2						
						1.2
2.5						
3						
3.5						
4			Brown Silty CLAV some	Gravel, little Sand, moist (F	=:II\	2.9
4.5			Brown Silty CLAT, Some	Graver, little Sand, moist (F	-III).	2.9
-						
5						
F F						
5.5						
6						
						2.6
6.5						
7						
7.5						
8						0.5
8.5						0.5
0.0						
9						
<u> </u>						
9.5						
10						
REMARKS:						•

			TEST	PIT FIELD LOG		
	escription		Site C915261	Test Pit No:	TP-57	
Project lo			Holden Street	Location:	04.0050040.40	
Contracto	resentativ		mas Bohlen	File No: Date:	21.0056642.10 10/26/2012	
Contracto	וע.	Nature's V	vay	Weather:	Sunny, 70°F (~maximum)	
Operator:	•	Corey Haa	 af	Ground elev.		
Make:	CAT	Model:	315 CL			
DEPTH	SAMPLE	SAMPLE	1	DESCRIPTION		PID
(feet)	NO.	DEPTH				110
10.5			Brown Silty CLAY, some	Gravel, little Sand, moist (F	ill).	0.0
10.5	1		Brown GRAVEL and SAN	ID, little Silt, little Clay, mois	st (Fill).	
11	<u> </u>			·		
11.5						
11.5	†					
12	<u> </u>					
12.5						0.0
	†					
13	1					
13.5	•					
14						
14.5						
15	<u> </u>					
15.5	<u> </u>		End of Excavation at 15' b	pelow ground surface.		
16						
16.5						
17	 					
17.5						
18	<u> </u>					
18.5						
19						
19.5						
20						
REMARKS:						

			TEST	PIT FIELD LOG		
Project lo	oresentativ or:	129		Test Pit No: Location: File No: Date: Weather: Ground elev	21.0056642.10 10/26/2012 Sunny, 70°F (~maximum)	
Make:	CAT	Model:	315 CL			
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
0.5			Asphalt (4") and Subbas	e to 1'.		0.0
1						
1.5			White fine to coarse SLA	AG, moist (Fill).		
2	-		Brown GRAVEL and SA	ND, trace Silt, trace Clay, tr	race Slag, moist (Fill).	
2.5	-					0.0
3	_			Gravel, little Sand, trace Brid		
3.5	-		Brown Silty CLAY and C (Fill).	ONCRETE, little Gravel, litt	tle Sand, trace Brick, moist	
4	-					
4.5	-		Large Occupate (Olympia			0.0
5	-		Large Concrete (~ 2' ma	ximum) observed.		
5.5	-					
6	-					0.0
6.5	-					0.0
7	-					
7.5	-					
8	-					0.0
8.5	-					0.0
9	-					
9.5	-					
10						
REMARKS:						

			TEST	PIT FIELD LOG		
Project D	escription	ı: BCF	Site C915261	Test Pit No:	TP-58	
Project lo			Holden Street	Location:	11 30	
GZA Rep			mas Bohlen	File No:	21.0056642.10	
Contracto		Nature's V		Date:	10/26/2012	
				Weather:	Sunny, 70°F (~maximum)	
Operator:		Corey Haa	af	Ground elev.		
Make:	CAT	Model:	315 CL			
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
				ONCRETE, little Gravel, little	e Sand, trace Brick, moist	0.0
10.5			(Fill).			
11						
11.5						
12			Brown Fractured Limesto	ne and Silty CLAY, moist (F	FiID.	0.0
12.5				a C, C, (.	,-	
13	1					
13.5	<u> </u>					
14	•					
14.5	<u> </u>					
15	<u> </u>					
15.5			End of Excavation at 15' b	oelow ground surface.		
16						
16.5						
17	<u> </u>					
17.5	<u> </u>					
18						
18.5	_					
19						
19.5						
20						
REMARKS:						

			TEST	PIT FIELD LOG		
Project lo GZA Rep Contracto Operator	oresentativ or: :	129 /e: Thor Nature's W	af	Test Pit No Location: File No: Date: Weather: Ground ele	21.0056642.10 10/26/2012 Sunny, 70°F (~maximum)	
Make:	CAT SAMPLE	Model: SAMPLE	315 CL	DESCRIPTION		PID
(feet)	NO.	DEPTH				
0.5	_		Asphalt (4") and Subbas	e to 1'.		0.0
1						
1.5	-		Brown Silty CLAY, some Silt, trace Brick, moist (F	Large Concrete (~4' max ill).	kimum), little Gravel, little	
2						
2.5						0.0
3	-					
3.5	<u> </u> -					
4	-					
4.5	-					0.0
5	-					
5.5	-		Brown Silty CLAY and B limestone (~6' maximum	rown Fractured Limeston (e, moist (Fill). Large	
6	-					
6.5	_					0.0
7	_					
7.5	-					
8	_					
8.5						0.0
9						
9.5	-					
10						
REMARKS:						

			TEST	PIT FIELD LOG		
Project location: 129				21.0056642.10 10/26/2012		
Operator Make:	: _CAT	Corey Haa	af 315 CL	Weather: Ground elev	Sunny, 70°F (~maximum)	
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
10.5			Brown Silty CLAY and Br limestone (~6' maximum	own Fractured Limestone, i) observed.	moist (Fill). Large	0.0
11.5						
12	<u> </u> 					0.0
12.5						
13	<u> </u> 					
13.5						
14 14.5			Black fine to coarse SAN	D, little Gravel, moist (Fill).		
14.5			Brown, White, Black, Ora	ange SAND, trace Brick, tra	ce Glass, moist (Fill).	
15.5			End of Excavation at 15'	below ground surface due t	o extensive collapse.	
16	<u> </u>					
16.5	<u> </u>					
17	_					
17.5	1					
18						
18.5						
19						
19.5						
20						
REMARKS:						

			TEST	PIT FIELD LOG		
			ILSII	FII FIELD LOG		
Project D			Site C915261	Test Pit No:	TP-60	
Project lo			Holden Street	Location:		
GZA Rep			mas Bohlen	File No:	21.0056642.10	
Contracto	or:	Nature's V	Vay	Date: Weather:	10/26/2012	
Operator:		Corey Haa	af	Ground elev.	Sunny, 70°F (~maximum)	
	CAT	Model:	315 CL	Cround Gov.	•	
		•				
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
(.001)		<u> </u>	Asphalt (6") and Subbase	e to 1'.		0.0
0.5						
1			D 0''' 0' A)	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
1.5			(Fill).	Gravel, little Sand, trace Br	rick, trace Glass, moist	
1.0			(1 111).			
2						
			Large Concrete (~2' max	imum) observed 2' to 4'.		0.0
2.5						
3						
3.5						
4						0.0
4.5						0.0
-						
5						
- -						
5.5			Brown Fractured Limesto	one and various soils (Sand	Silt Clay) moist (Fill)	
6			Brown Fractaroa Emicoto	one and vaneue cone (cana	, one, oray) motor (r m).	
						0.0
6.5						
7						
· ·						
7.5						
8						0.0
8.5						0.0
9						
0.5						
9.5						
10						
REMARKS:						

			TEST	PIT FIELD LOG		
Project Id GZA Rep	Project Description: Project location: GZA Representative: Contractor: BCP Site C915261 129 Holden Street Thomas Bohlen Nature's Way			Test Pit No: Location: File No: Date: Weather:	21.0056642.10 10/26/2012	
Operator Make:	: _CAT	Corey Haa	af315 CL	Ground elev.	Sunny, 70°F (~maximum)	
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
10.5			Brown Fractured Limesto	one and various soils (Sand,	Silt, Clay) moist (Fill).	0.0
11						
11.5	<u> </u>					
12	<u> </u>					
12.5	<u> </u>		bedrock).	pelow ground surface (presu	imed top of	
13	-					
13.5	<u> </u>					
14	<u> </u>					
14.5	†					
15	†					
15.5	†					
16	†					
16.5	†					
17	1					
17.5	1					
18	<u> </u>					
18.5	<u> </u>					
19	<u> </u>					
19.5	<u> </u>					
20						
REMARKS:						

			TEST	DIT FIELD LOC		
			IEST	PIT FIELD LOG		
	escription		Site C915261	Test Pit No:	TP-61	
Project lo			Holden Street	Location:		
	resentativ		mas Bohlen	File No:	21.0056642.10	
Contracto	or:	Mark Cerro	one	Date:	12/4/2012	
Operator		Dieb		Weather: Ground elev.	Overcast, Rain, 50°F	
Operator: Make:		Rich Model:	PC400 LC	Ground elev.	•	
Make.	Nomatsu	iviouei.	F 0400 LC			
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
0.5				western portion of Site, in bedeendition. Excavation was		
			approximately 9' below g		o opon bacomento	
1						
1.5	-					
2						
2.5						
3						
3.5						
4						
4.5						
5						
5.5						
6						
6.5						
7						
7.5						
8	-					
8.5						
9						
9.5			Brown Silty CLAY, some	Gravel, trace Sand, moist.		0.0
10						
REMARKS:		Test pit locat	ted approximately 38'S, 25' W	of northwest building corner (see	Figure).	

			TEST	PIT FIELD LOG		
Project lo		129	Site C915261 Holden Street	Test Pit No: Location:		
-	resentativ		mas Bohlen	File No:	21.0056642.10	
Contracto	or:	Mark Cerr	one	Date: Weather:	12/4/2012	
Operator		Rich		Ground elev.	Overcast, Rain, 50°F	
Make:	Komatsu	Model:	PC400 LC	Ground clev.	•	
		-	. •			
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
(leet)	INO.	DEFIN	Test pit located on north	western portion of Site, in b	asement Test nit	
0.5				demolition. Excavation was		
	1		approximately 9' below g		'	
1						
4.5						
1.5						
2						
	1					
2.5						
3	1					
3.5						
4						
4.5	1					
5						
5.5						
6	-					
6.5						
	1					
7						
7.5						
7.5						
8						
	1					
8.5						
9	1		Brown Silty CLAV some	Gravel, trace Sand, moist.		0.0
9.5			Brown Only CLAT, SOME	Graver, trace Gariu, moist.		0.0
10			Excavator refusal at 10' lbedrock).	pelow ground surface (pres	umed top of	
REMARKS:		Test pit loca	ted approximately 34'S, 38' E o	f northeast building corner "jog" (see Figure).	

			TEST I	PIT FIELD LOG		
Project Description: Project location: GZA Representative: Contractor: Description: BCP Site C915261 129 Holden Street Thomas Bohlen Nature's Way			Holden Street mas Bohlen Vay	Test Pit No: Location: File No: Date: Weather:	21.0056642.10 12/18/2012 Overcast, Rain, 40°F	
Operator		Corey Haa		Ground elev	. <u>:</u>	
Make:	CAT	Model:	315 CL			
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
0.5			Brown Silty CLAY, trace	Sand, trace Gravel, moist (Native).	0.7
1						
1.5						
2						0.8
2.5						0.6
3						
3.5						
4						0.5
4.5						0.5
5	-					
5.5						
6						0.0
6.5						0.8
7						
7.5						
8						
8.5						0.7
9						
9.5						
10						
REMARKS:						

			TEST	PIT FIELD LOG		
Project Description: Project location: GZA Representative: Contractor: BCP Site C915261 129 Holden Street Thomas Bohlen Nature's Way			Holden Street mas Bohlen	Test Pit No: Location: File No: Date: Weather:	TP-63 21.0056642.10 12/18/2012 Overcast, Rain, 40°F	
Operator	:	Corey Haa	af	Ground elev		
Make:	CAT	Model:	315 CL			
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
10.5			Brown Silty CLAY, trace	Sand, trace Gravel, moist (Native).	0.5
11						
11.5	<u> </u>					
12	<u> </u>					
12.5	<u> </u>		bedrock).	pelow ground surface (presu	umed top of	
13	<u> </u>					
13.5						
14						
14.5						
15						
15.5						
16						
16.5						
17						
17.5						
18						
18.5						
19						
19.5						
20						
REMARKS:						

			TEST	PIT FIELD LOG		
Project Id GZA Rep Contracto	Project Description: Project location: GZA Representative: Contractor: Description: BCP Site C915261 129 Holden Street Thomas Bohlen Nature's Way			_ Test Pit No: _ Location: _ File No: _ Date: Weather:	TP-64 21.0056642.10 12/18/2012 Overcast, Rain, 40°F	
Operator		Corey Haa		Ground elev.		
Make:	CAT	Model:	315 CL			
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
0.5	-	DEI III	Brown GRAVEL and SA (Fill).	ND, little Silt, little Clay, trac	ee Brick, trace Slag, moist,	0.0
1	-					
1.5	_					
2						
2.5	-					0.4
3	-					
3.5	-					
4	-					
4.5	-		Brown Fractured Limesto	one and various soils (Sand	l, Silt, Clay) moist (Fill).	0.4
5	-					
5.5	-					
6	-					
6.5	-					0.5
7	-					
7.5	-					
8	-					
8.5	-					0.2
9	-					
9.5	-					
10						
REMARKS:						

			TEST	PIT FIELD LOG		
Project Id GZA Rep	Project Description: Project location: GZA Representative: Contractor: Nature's Way			Test Pit No: Location: File No: Date: Weather:	TP-64 21.0056642.10 12/18/2012 Overcast, Rain, 40°F	
Operator		Corey Haa		Ground elev.	<u>:</u>	
Make:	CAT	Model:	315 CL			
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
10.5			Brown Fractured Limesto	ne and various soils (Sand,	Silt, Clay) moist (Fill).	0.2
11	_					
11.5	<u> </u>					
12	1					
12.5	<u> </u>					0.2
13	†					
13.5	<u> </u>					
14	<u> </u>					
14.5	<u> </u>					
15			End of Excavation at 15' l	nelow ground surface		
15.5	<u> </u>		End of Excavation at 13 i	selow ground surface.		
16	<u> </u> 					
16.5						
17	<u> </u>					
17.5	<u> </u> 					
18	<u> </u> 					
18.5						
19						
19.5						
20						
REMARKS:						

			TEST	PIT FIELD LOG		
Project Description: BCP Site C915261 Project location: 129 Holden Street GZA Representative: Thomas Bohlen Contractor: Nature's Way Operator: Corey Haaf Make: Make: Model: 315 CL		Test Pit No: Location: File No: Date: Weather: Ground elev.	21.0056642.10 12/18/2012 Overcast, Rain, 40°F			
DEPTH	SAMPLE	SAMPLE	315 CL	DESCRIPTION		PID
(feet)	NO.	DEPTH				
0.5				ND, little Asphalt, little Conc _arge concrete and asphalt		0.0
1.5						
2						
2.5						0.3
3						
3.5						
4						
4.5						0.3
5						
5.5						
6						
6.5						0.3
7						
7.5						
8						
8.5						0.3
9						
9.5						
10						
REMARKS:						

			TEST	PIT FIELD LOG		
Project Description: BCP Site C915261 Project location: 129 Holden Street GZA Representative: Thomas Bohlen Contractor: Nature's Way				Date:	TP-65 21.0056642.10 12/18/2012 Overcast, Rain, 40°F	
Operator: Make:	: CAT	Corey Haa Model:	af 315 CL	Ground elev.	<u>:</u>	
DEPTH	SAMPLE	SAMPLE		DESCRIPTION		PID
(feet)	NO.	DEPTH				
10.5				ND, little Asphalt, little Concr Large concrete and asphalt		0.2
11	 					
11.5						
12	_					0.3
12.5	<u> </u>					0.0
13	1					
13.5	<u> </u>					
14						
14.5	<u> </u>					
15						
15.5			End of Excavation at 15'	below ground surface.		
16						
16.5						
17						
17.5	<u> </u>					
18						
18.5	_					
19						
19.5	<u> </u>					
20						
REMARKS:						

			TEST	PIT FIELD LOG		
Project lo	resentativ	129	Site C915261 Holden Street mas Bohlen Vay	Date:	TP-66 21.0056642.10 12/18/2012	
Operator		Corey Haa		Weather: Ground elev.	Overcast, Rain, 40°F	
Make:	CAT	Model:	315 CL	- Ordana elev.	·	
DEPTH	SAMPLE	SAMPLE	1	DESCRIPTION		PID
(feet)	NO.	DEPTH		DESCRIPTION		FID
0.5	-		Brown Silty CLAY, some	large Gravel (~1' maximum), trace Sand, moist (Fill).	0.4
1	_					
1.5						
2	-		Grades to: trace Gravel.			
2.5	_					0.6
3	-					
3.5	-					
4	-					
4.5	-					0.5
5						
5.5	_					
6						
6.5						0.5
7						
7.5	_		Brown GRAVEL and SA	ND, trace Silt, trace Clay, m	oist (Fill).	
8						
8.5						0.3
9						
9.5						
10						
REMARKS:						

			TEST	PIT FIELD LOG		
			ILGII	TITILLD LOG		
Project D	escription	: BCF	^o Site C915261	Test Pit No:	TP-66	
Project lo			Holden Street	Location:		
	resentativ		mas Bohlen	File No:	21.0056642.10	
Contracto	or:	Nature's V	Vay	Date: Weather:	12/18/2012 Overcast, Rain, 40°F	
Operator:		Corey Haa	af	Ground elev.		
Make:	CAT	Model:	315 CL	0.00	<u>-</u>	
DEPTH	SAMPLE	SAMPLE	1	DESCRIPTION		PID
(feet)	NO.	DEPTH		DESCRIPTION		FID
40.5			Brown GRAVEL and SAN	ND, trace Silt, trace Clay, mo	oist (Fill).	0.2
10.5	<u> </u> 					
11						
44.5			Large limestone (~2' max	kimum) observed.		
11.5	1					
12						
40.5						0.3
12.5	<u> </u> 					
13						
40.5						
13.5	<u> </u> 					
14						
445			Grades to: wet.			
14.5						
15						
15.5			End of Excavation at 15' I	below ground surface.		
15.5	1					
16	<u> </u>					
16.5						
10.0	†					
17	 					
17.5						
	1					
18	<u> </u>					
18.5						
	Ī					
19	1					
19.5						
20						
REMARKS:						
1						

			TEST	PIT FIELD LOG		
Project D	escription		Site C915261 Holden Street	Test Pit No: Location:	TP-67	
•	resentativ		mas Bohlen	File No:	21.0056642.10	
Contracto		Nature's V		Date:	12/18/2012	
			.,	Weather:	Overcast, Rain, 40°F	
Operator	:	Corey Haa	af	Ground elev		
Make:	CAT	Model:	315 CL	•		
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
0.5	110.	DEI III	Brown GRAVEL and SA moist (Fill).	ND, trace Silt, trace Clay, tr	race Concrete, trace Slag,	0.2
1				Sand, trace Gravel, moist (Fill).	
1.5				nge, White, Black SAND, tr Metal, trace Tile, moist (Fill		
2	-			stone and various soils (Sar t corner of excavation from		0.8
2.5	-		surface.	t comer or excavation from	T to o below ground	0.8
3	-					
3.5	-					
4	-					0.5
4.5	-					0.5
5	-					
5.5	-					
6	-					0.4
6.5	-					0.4
7	<u> </u> -					
7.5	<u> </u> -					
8	-					0.2
8.5	-					0.2
9	-					
9.5	-					
10						
REMARKS:						

			TEST	PIT FIELD LOG		
	escription		P Site C915261	Test Pit No:	TP-67	
Project lo			Holden Street	Location:		
	resentativ		mas Bohlen	File No:	21.0056642.10	
Contracto	or:	Nature's V	Vay	Date:	12/18/2012	
_				Weather:	Overcast, Rain, 40°F	
Operator:		Corey Haa		Ground elev.	<u>:</u>	
Make:	CAT	Model:	315 CL			
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
10.5				nge, White, Black SAND, tra Metal, trace Tile, moist (Fill)		0.1
11						
11.5						
12						0.4
12.5						0.4
13						
13.5						
14						
14.5						
15			End of Excavation at 15'	below ground surface.		-
15.5						
16						
16.5						
17						
17.5						
18 18.5						
19						
19.5						
20						
REMARKS:						

			TEST	PIT FIELD LOG		
Project Description: Project location: GZA Representative: Nature's Way BCP Site C915261 129 Holden Street Thomas Bohlen Nature's Way				Test Pit No: Location: File No: Date: Weather:	21.0056642.10 12/18/2012 Overcast, Rain, 40°F	
Operator: Make:	CAT	Corey Haa Model:	315 CL	Ground elev	·· <u>·</u>	
DEPTH	SAMPLE	SAMPLE	010 GE	DESCRIPTION		PID
(feet) 0.5	NO.	DEPTH	Asphalt (8-inches) and S	ubbase (4-inches)		0.0
1			Gray GRAVEL, some Sa	ınd, trace Slag, trace Silt, tı	race Clay, moist (Fill).	
1.5 2						
2.5			Brown Silty CLAY, trace	Sand, trace Gravel, moist.		0.3
3						
3.5						
4						0.4
4.5						0.4
5						
5.5						
6						
6.5						0.4
7						
7.5						
8						
8.5						
9			Excavator refusal at 8.5' bedrock).	below ground surface (pre	sumed top of	
9.5						
10						

REMARKS: Potentially perched water observed flowing down the north excavation wall at 2' bgs. on top of silty clay.

TEST PIT FIELD LOG								
Project Description	: BCP Site C915261	Test Pit No: TP-69						
Project location:	129 Holden Street	Location:						
GZA Representativ	/e: Thomas Bohlen	File No: 21.0056642.10						
Contractor:	Nature's Way	Date: 12/18/2012						
		Weather: Overcast, Rain, 40°F						
Operator:	Corey Haaf	Ground elev.:						
Make: <u>CAT</u>	Model: 315 CL							

DEPTH	SAMPLE	SAMPLE	DESCRIPTION	PID
(feet)	NO.	DEPTH	2233.11 11311	. ,5
			Black/Bluish Green fine to coarse SLAG, moist (Fill). Large Slag (~3'	0.4
0.5			maximum) observed.	
			Black Silty CLAY, some Gravel, little Sand, moist (Fill).	
1				
1.5				
2			Descript City CLAY pages Cravel little Cond. maist (Fill)	
2.5			Brown Silty CLAY, some Gravel, little Sand, moist (Fill).	0.0
2.5			An approximate 2-inch thick layer of Black fine to coarse SAND observed	
3			on east excavation wall at 2.5'.	
			on east excavation wan at 2.5.	
3.5				
0.0				
4				
				0.0
4.5				
5				
5.5				
6				
0.5				0.0
6.5				
7				
7				
7.5				
7.0				
8				
	1			
8.5				
			Excavator refusal at 8.5' below ground surface (presumed top of	
9			bedrock).	
9.5				
10				

REMARKS: Water observed flowing into bottom of excavation at 8.5' bgs. at the southern foot of excavation.

			TEST	PIT FIELD LOG		
-	escription		Site C915261	Test Pit No:	TP-70	
Project Id			Holden Street	Location:		
	oresentativ		mas Bohlen	File No:	21.0056642.10	
Contracto	or:	Nature's V	Vay	Date:	12/18/2012	
0	_		,	Weather:	Overcast, Rain, 40°F	
Operator		Corey Haa		Ground elev	/.: <u> </u>	
Make:	CAT	Model:	315 CL			
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
0.5			Brown GRAVEL and SA	ND, trace Silt, trace Clay,	moist (Fill).	0.4
1			-	Gravel, little Sand, moist		
1.5			~8-inches thick at 0.5	bgs.		
2						
2.5						0.2
3						
3.5						
4	_					0.0
4.5	1					
5	_		Large limestone (~4' ma	ximum) observed.		
5.5	1					
6	_					0.0
6.5	-					
7	_		Dark Brasser fine to account	- CAND limb City limb Cl	ov top of Convolution	
7.5			(Fill).	se SAND, little Silt, little Cla	ay, trace Gravei, moist	
8						
8.5						0.2
9						
9.5			Excavator refusal at 9' b bedrock).	elow ground surface (pres	umed top of	
10						
REMARKS:						

TEST PIT FIELD LOG Project Description: Test Pit No: TP-70A Former Central Park Plaza Project location: 129 Holden Street Location: Buffalo, NY GZA Representative: File No: Thomas Bohlen 21.0056642.10 Task 20 Contractor: Date: 4/10/2014 LPCiminelli Weather: Sunny, windy, 40-60 degrees F Ground elev .: Operator: Matt Hillman Make: Model: 135D DEPTH SAMPLE DESCRIPTION PID SAMPLE DEPTH (feet) NO. FILL: Brown Silty CLAY, some Gravel, little Sand, trace Brick, moist. 2 0 3 4 0 5 6 7 Grades to:.....Coarse Limestone (1-foot maximum) observed, no Brick. 8 0 9 End of test pit/top of bedrock at 9 feet below ground surface. 10 11 12 13 14 15 16 17 18 19 20 REMARKS: 15 feet southeast of TP-70.

TEST PIT FIELD LOG Project Description: Former Central Park Plaza Test Pit No: TP-70B Project location: 129 Holden Street Location: Buffalo, NY GZA Representative: File No: Thomas Bohlen 21.0056642.10 Task 20 Contractor: Date: **LPCiminelli** 4/10/2014 Weather: Sunny, windy, 40-60 degrees F Operator: Matt Hillman Ground elev.: Make: Model: 135D DEPTH SAMPLE SAMPLE DESCRIPTION PID DEPTH NO. (feet) FILL: Brown Silty CLAY, some Gravel, little Black Sand (mixed), trace Brick, trace Concrete, trace Metal, moist. 2 0 3 4 Grades to:....no Brick, no Concrete, no Metal, trace Black Sand (mixed). 0 5 6 0 7 Brown and Gray mottled Silty CLAY, little Gravel, trace Sand, moist. 8 0 9 10 End of test pit/top of bedrock at 9.5 feet below ground surface. 11 12 13 14 15 16 17 18 19 20

REMARKS: 15 feet north of TP-70.

			TEST	PIT FIELD LOG		
Project lo	escriptior ecation: eresentation	129	P Site C915261 Holden Street mas Bohlen	Test Pit No: Location: File No:	TP-71 21.0056642.10	
Contracto	or:	Nature's \	Nay	Date:	12/18/2012	
_				Weather:	Overcast, Rain, 40°F	
Operator		Corey Ha		Ground elev.	:	
Make:	CAT	Model:	315 CL			
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
(leet)	INO.	DEFIII	Asphalt (6-inches) and S	ubbase (5-inches).		0.0
0.5			r ioprian (o incress) and o			
1						
1.5			Black/Bluish Green fine t maximum) observed.	o coarse SLAG, moist (Fill)	. Large Slag (~2'	
2			Black fine to coarse SAN	ID, trace Gravel, moist (Fill)		
2.5						0.0
3			Brown Silty CLAY, little Gmoist (Fill).	Gravel, little Sand, trace Asp	halt, trace Concrete,	
3.5						
4						
4.5						0.0
5						
5.5						
6						
6.5						0.0
7						
7.5			Large Concrete (~3' max	imum) observed.		
8						
8.5						0.0
9						
9.5						
10			Excavator refusal at 10' bedrock).	pelow ground surface (presi	umed top of	
REMARKS:						

			TEST	PIT FIELD LOG		
Project Ic GZA Rep Contractor Operator	oresentativ or: :	129 Ve: Thor Nature's V	af	Test Pit No: Location: File No: Date: Weather: Ground elev.	21.0056642.10 12/19/2012 Overcast, 30°F	
Make:	CAT	Model:	315 CL			
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
0.5			Clay, moist (Fill).	d SAND, little Asphalt, trace Gravel ,trace Sand, trace Br		0.0
1.5						
2						
2.5	1					0.0
3	-					
3.5	-					
4						
4.5	-		Brown Fractured Limesto Large limestone (~3'	one and various soils (Sand maximum) observed.	l, Silt, Clay) moist (Fill).	0.0
5	-					
5.5						
6	-					
6.5	-					0.0
7	-					
7.5	-					
8	-					
8.5	_					0.0
9	-					
9.5	_					
10						
REMARKS:						

			TEST	PIT FIELD LOG		
			ILGIII	TI TILLD LOG		
Project D	escription	: BCP	Site C915261	Test Pit No:	TP-72	
Project lo	cation:	129	Holden Street	Location:		
	resentativ	e: Thor	mas Bohlen	File No:	21.0056642.10	
Contracto	or:	Nature's V	Vay	Date:	12/19/2012	
Operator		Caracillas	<u> </u>	Weather:	Overcast, 30°F	
Operator: Make:	CAT	Corey Haa Model:	315 CL	Ground elev.	<u>·</u>	
		•	010 OL			
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
			Grades to: Black Sand.			0.0
10.5	<u> </u>					
11						
			Grades to: Brown Sand.			
11.5	<u> </u>					
12						
12.5						0.0
12.5						
13						
13.5						
4.4						
14						
14.5						
15			Excavator refusal at 14.5 bedrock).	below ground surface (pre-	sumed top of	
10			bearock).			
15.5						
16						
10.5						
16.5						
17	<u> </u> 					
17.5						
18						
18.5	 					
19						
19.5						
20	<u> </u>					
REMARKS:						

			TEST I	PIT FIELD LOG		
Project lo	oresentativ or:	129	-	Test Pit No: Location: File No: Date: Weather: Ground elev.	21.0056642.10 12/19/2012 Overcast, 30°F	
DEPTH	SAMPLE	SAMPLE		DESCRIPTION		PID
(feet) 0.5	NO.	DEPTH	Brown Silty CLAY, some trace Slag, moist (Fill).	large Gravel (~1' maximum	n), little Sand, trace Brick,	0.0
1.5 2						
2.5						0.0
3						
3.5			Brown, Dark Brown, C	ND, little Gravel, trace Silt, to Drange, White, Black SAND), some Brick, trace Silt,	
4			trace Clay, moist (Fill) to 4' bgs.	observed in southeast cor	ner of excavation from 3'	0.0
4.5						0.0
5						
5.5						
6						0.0
6.5 7			Brown, Dark Brown, Orar trace Clay, moist (Fill).	nge, White, Black SAND, so	ome Brick, trace Silt,	
7.5			Grades to: some large Li	mestone (~1' maximum), lit	tle Brick.	
8.5						0.0
9			Brown Silty OLAV 1941- C	Prayol little Silt maint (E:III)		
9.5			DIOWIT SIRY OLAY, IILIE G	Gravel, little Silt, moist (Fill).		
10 REMARKS:						

			TEST I	PIT FIELD LOG		
Project location: 129 H			P Site C915261 Holden Street mas Bohlen Vay	Test Pit No: Location: File No: Date: Weather:	TP-73 21.0056642.10 12/19/2012 Overcast, 30°F	
Operator: Make:	: CAT	Corey Haa	af 315 CL	Ground elev.		
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
10.5	110.	DEFIN	Brown Silty CLAY, little G	ravel, little Silt, moist (Fill).		0.0
11						
11.5	<u> </u>					
12	<u> </u>					
12.5	<u> </u>					0.0
13	<u> </u>					
13.5	<u> </u>					
14	<u> </u>					
14.5	<u> </u>					
15	<u> </u>		Grades to: wet. Water of	ne and various soils (Sand, oserved at bottom of excava		
15.5			End of excavation at 15' b	pelow ground surface.		
16						
16.5						
17						
17.5						
18						
18.5						
19						
19.5						
20						
REMARKS:						

			TEST I	PIT FIELD LOG		
Project D	escription)· PCF		Test Pit No:	TD 74	
Project lo	-		P Site C915261 Holden Street	Location:	1P-74	
	resentativ		mas Bohlen	File No:	21.0056642.10	
Contracto		Nature's V		Date:	12/19/2012	
0010.01.			,	Weather:	Overcast, 30°F	
Operator	•	Corey Ha	af	Ground elev.		
Make:	CAT	Model:	315 CL			
DEPTH	SAMPLE	SAMPLE		DESCRIPTION		PID
(feet)	NO.	DEPTH		DESCRIPTION		PID
0.5			Asphalt (4-inches) and S	ubbase (6-inches).		0.1
1						
1.5			Bluish Green fine to cour	se SLAG, moist (Fill).		
2						
2.5			trace Clay, trace Metal m			0.0
3				d GRAVEL, little Sand, moistcavation from 2' to 4.5' bgs		
3.5						
4						
4.5						0.0
5						
5.5						
6						
6.5						0.0
7						
7.5						
8						0.0
8.5						0.0
9						
9.5						
10						
REMARKS:						

			TEST F	PIT FIELD LOG		
Project D Project lo GZA Rep Contracto	ocation: oresentativ	129	Site C915261 Holden Street mas Bohlen Vay	Test Pit No: Location: File No: Date:	21.0056642.10 12/19/2012	
Operator: Make:	: CAT	Corey Haa	af 315 CL	Weather: Ground elev.	Overcast, 30°F	
DEPTH	SAMPLE	SAMPLE		DESCRIPTION		PID
(feet)	NO.	DEPTH		nge, White, Black SAND, tra	ace Brick, trace Silt,	0.0
10.5			trace Clay, trace Metal mo	oist (Fill).		
11						
11.5						
12	<u> </u> 					0.0
12.5						
13						
13.5						
14	<u> </u>					
14.5	•					
15	<u> </u>					
15.5			End of excavation at 15' b	elow ground surface.		
16						
16.5						
17						
17.5						
18						
18.5						
19						
19.5						
20						
REMARKS:						

TEST PIT FIELD LOG Project Description: Former Central Park Plaza Test Pit No: TP-74A Project location: 129 Holden Street Location: Buffalo, NY GZA Representative: File No: Thomas Bohlen 21.0056642.10 Task 20 Contractor: Date: **LPCiminelli** 4/10/2014 Weather: Sunny, windy, 40-60 degrees F Operator: Matt Hillman Ground elev.: Make: Model: 135D DEPTH DESCRIPTION SAMPLE SAMPLE PID DEPTH NO. (feet) Asphalt (4-inches) and Subbase (6-inches). FILL: Bluish Green fine to coarse SLAG, moist. 2 0 3 Dark Brown/Orange/White/Black SAND, trace Brick, trace Silt, trace Clay, 4 trace Glass, trace Metal, moist. Brown coarse rounded GRAVEL, little Sand, moist, observed in the 0 5 southern portion of excavation from 3 to 5 feet below ground surface. 6 0 7 8 0 9 10 0 11 12 0 13 14 15 End of test pit at 15 feet below ground surface. 16 17 18 19 20 REMARKS: 15 feet west of TP-74

GZA GeoEnvironmental of New York

Engineers and Scientists

TEST PIT FIELD LOG Project Description: Former Central Park Plaza Test Pit No: TP-74B Project location: 129 Holden Street Location: Buffalo, NY GZA Representative: File No: Thomas Bohlen 21.0056642.10 Task 20 Contractor: Date: **LPCiminelli** 4/10/2014 Weather: Sunny, windy, 40-60 degrees F Operator: Matt Hillman Ground elev.: Make: Model: 135D DEPTH SAMPLE DESCRIPTION SAMPLE PID DEPTH NO. (feet) Asphalt (4-inches) and Subbase (6-inches). FILL: Bluish Green fine to coarse SLAG, moist. 2 Brown Silty CLAY, little Gravel, trace Sand, trace Brick, moist. 0 3 4 Dark Brown/Orange/White/Black SAND, trace Brick, trace Silt, trace Clay, 0 5 Metal, moist. 6 0 7 8 0 9 10 0 11 12 0 13 14 15 End of test pit at 15 feet below ground surface. 16 17 18 19

GZA GeoEnvironmental of New York

REMARKS: 15 feet northeast of TP-74.

			TEST	PIT FIELD LOG		
Project lo GZA Rep	resentativ	129	Site C915261 Holden Street mas Bohlen	Test Pit No: Location: File No:	TP-75 21.0056642.10	
Contracto	or:	Nature's V	Vay	Date:	12/19/2012	
Operator		Corey Haa	<u></u>	Weather: Ground elev.	Overcast, 30°F	
Make:	CAT	Model:	315 CL	Ground elev.	•	
			1			T 515
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
0.5			Brown Silty CLAY, little ((Fill).	Gravel, little Sand, trace Sla	g, trace Asphalt, moist	0.0
1						
1.5	-		Dark Brown GRAVEL an little Brick, trace Silt, trace	d Black SAND, some large ee Clay, moist (Fill).	Concrete (~3' maximum),	
2						
2.5	- -					0.0
3	-					
3.5	-					
4	-					
4.5	-					0.0
5						
5.5	-		Brown Silty CLAY, little C	Gravel, little Sand, moist (Fil	II).	
6						
6.5	- -					0.0
7	_					
7.5	-		Drawer CAND and CDAN	VEL 2002 Driely little Consu	anta turana Oilt turana Olavi	
8	-		moist (Fill).	EL, some Brick, little Concr	ete, trace Siit, trace Clay,	
8.5	-					0.0
9	-					
9.5	<u> </u> -					
10						
REMARKS:						

			TEST	PIT FIELD LOG		
			icon	III IILLU LOO		
	escription	n: BCP	Site C915261	Test Pit No:	TP-75	
Project lo			Holden Street	Location:		
	resentativ		mas Bohlen	File No:	21.0056642.10	
Contracto	or:	Nature's V	Vay	Date:	12/19/2012	
Operator:		Corovillos	<u>.</u>	Weather: Ground elev.	Overcast, 30°F	
Make:	CAT	Corey Haa	315 CL	Ground elev.	· <u>·</u>	
		•	010 02			
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
, ,			Brown SAND and GRAVI	EL, some Brick, little Concre	ete, trace Silt, trace Clay,	0.0
10.5	 		moist (Fill).			
11						
	Ī		Black fine to coarse SAN	D (~6-inches) observed in s	southern wall of	
11.5	<u> </u>		excavation.			
12						
40.5			Brown Fractured Limesto	one and various soils (Sand,	Silt, Clay) moist (Fill).	0.0
12.5	<u> </u> 					
13						
13.5	1					
14	1					
14.5						
15	•		End of a second second AEU			
15.5			End of excavation at 15' b	below ground surface.		
16						
16.5	 					
17						
17.5						
18						
18.5						
19						
19.5						
20						
REMARKS:						

TEST PIT FIELD LOG Project Description: Test Pit No: TP-75A Former Central Park Plaza Project location: 129 Holden Street Location: Buffalo, NY GZA Representative: File No: 21.0056642.10 Task 20 Thomas Bohlen Contractor: LPCiminelli Date: 4/10/2014 Sunny, windy, 40-60 degrees F Weather: Operator: Matt Hillman Ground elev.: Model: 135D Make: Deere

DEPTH	SAMPLE	SAMPLE	DESCRIPTION	PID
(feet)	NO.	DEPTH		
			FILL: Brown Silty CLAY, some coarse Gravel, little Sand, trace Brick, trace	0
1			Asphalt.	
2				
				0
3				
4				
4			Grades to:some Black Sand.	0
5			Stado territorilo Black Garla.	Ü
6				
7			Grades to:some little Black Sand.	0
7			Grades to:no Black Sand.	
8			Stade tellining Stade Gard.	
				0
9				
10				
10			Grades to:little Black Sand, trace Ash.	0
11			Craass to minimus Diagn. Carray, mass 7 to m	ŭ
12				
13			Grades to:no Black Sand, no Ash.	0
13			Grades to To Black Salid, No Ash.	
14			Brown Fractured Limestone and Various Soils (Sand, Silt, Clay) moist.	
				0
15			End of the total and the football and the second and	
16			End of test pit at 15 feet below ground surface.	
10				
17				
18				
19				
20				

REMARKS: 15 feet south of TP-75.

TEST PIT FIELD LOG Project Description: Former Central Park Plaza Test Pit No: TP-75B Project location: 129 Holden Street Location: Buffalo, NY GZA Representative: File No: Thomas Bohlen 21.0056642.10 Task 20 Contractor: **LPCiminelli** Date: 4/10/2014 Weather: Sunny, windy, 40-60 degrees F Operator: Matt Hillman Ground elev .: Make: Model: 135D DEPTH SAMPLE SAMPLE DESCRIPTION PID DEPTH NO. (feet) FILL: Brown Silty CLAY, little Gravel, little Sand, moist. 2 0 3 Brown fine to coarse SAND and Black SAND, some coarse Gravel, little Ash, 4 trace Silt, trace Clay, trace Brick, moist. 0 5 Black fine to coarse SAND, some coarse Gravel, little Ash, trace Clay, trace 6 Brick, trace Silt, moist. Brown Silty CLAY, little Gravel, trace Sand, moist. 7 8 0 9 10 0 11 12 0 13 Brown Silty CLAY, some Gravel, little Black Sand, moist. 14 15 End of test pit at 15 feet below ground surface. 16 17 18

REMARKS: 15 feet northeast of TP-75.

19

			TEST	PIT FIELD LOG		
Project lo GZA Rep Contracto	oresentativ or:	129 ve: <u>Thor</u> Nature's V		Test Pit No: Location: File No: Date: Weather:	TP-76 21.0056642.10 12/19/2012 Overcast, 30°F	
Operator Make:	: CAT	Corey Haa	af 315 CL	Ground elev.	<u>:</u>	
			313 CE			
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
0.5			Gray #1 Stone (Crusher	run limestone).		0.0
1	_		Brown SAND and GRAV	EL, trace Silt, trace Clay, tra	ace Brick, moist (Fill).	
1.5	-					
2						
2.5				Gravel, trace Sand, moist (0.0
3	-		Brown GRAVEL (~1' maincinerator ash) moist (F	ximum limestone) and SAN ill).	D (with suspect	
3.5	-					
4	-					
4.5	-					0.0
5	-					
5.5	-					
6	_					0.0
6.5	-					0.0
7	_		Brown fine to coarse SA	ND, some Gravel, trace Silt	trace Clay trace	
7.5	_		Asphalt, moist (Fill).	ND, 30Me Graver, trace diff	, trace ciay, trace	
8						0.0
8.5	-					0.0
9	<u> </u> -					
9.5	- -					
10						
REMARKS:						

			TEST	PIT FIELD LOG		
Project Ic	resentativ	129	P Site C915261 Holden Street mas Bohlen Vay	Test Pit No: Location: File No: Date:	TP-76 21.0056642.10 12/19/2012	
Operator: Make:		Corey Haa		Weather: Ground elev.	Overcast, 30°F	
DEPTH	SAMPLE	SAMPLE		DESCRIPTION		PID
(feet) 10.5	NO.	DEPTH	Brown fine to coarse SAN Asphalt, moist (Fill).	ND, some Gravel, trace Silt,	trace Clay, trace	0.0
11						
11.5 12	<u> </u> 					
12.5						0.0
13	†					
13.5	1					
14						
14.5			Grades to: Black and Bro	own SAND, some Brick		
15	<u> </u> 		End of excavation at 15' l			
15.5	<u> </u>		End of excavation at 10 1	sciow ground surface.		
16	<u> </u>					
16.5	<u> </u>					
17	<u> </u>					
17.5	<u> </u>					
18	<u> </u>					
18.5	1					
19	<u> </u>					
19.5						
20						
REMARKS:						

			TEST	PIT FIELD LOG		
Project Ic	resentativ	129	P Site C915261 Holden Street mas Bohlen Way	Test Pit No: Location: File No: Date:	TP-77 21.0056642.10 12/19/2012	
Operator: Corey Haa			af	Weather: Ground elev.	Overcast, 30°F	
Make:	CAT	Model:	315 CL	Ordana didvi	<u>:</u>	
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
(ICCI)	110.	DEI III	Brown Silty CLAY, little S	Sand, trace Gravel, trace Bri	ick, moist (Fill).	0.0
0.5						
<u> </u>						
2						
2.5			Brown GRAVEL (~2' max moist (Fill).	ximum) and SAND, trace Cl	lay, trace Silt, trace Brick,	0.0
3						
3.5			Brown, Dark Brown, Ora trace Clay, trace Glass, t	nge, White, Black SAND, trace Metal, moist (Fill).	ace Brick, trace Silt,	
4						
4.5						0.0
5						
5.5						
6			Brown GRAVEL and SAI	ND, little Silt, little Clay, trac	ea Brick moist (Fill)	0.0
6.5			BIOWIT OTTAVEE and OAI	vD, inthe Sint, inthe Glay, trace	e Brok, moist (Fill).	0.0
7						
7.5						
8						0.0
8.5						
9			Brown Fractured Limesto	one and various soils (Sand	Silt Clay) moist (Fill)	
9.5			large limestone (~3' max		, Ont, Olay) Moist (1 III).	
10						
REMARKS:						

			TEST	PIT FIELD LOG		
Project Ic GZA Rep	resentativ	129 /e: Tho	P Site C915261 Holden Street mas Bohlen	Test Pit No: Location: File No:	21.0056642.10	
Contracto	or:	Nature's V	Vay	Date:	12/19/2012	
				Weather:	Overcast, 30°F	
Operator: Make:	: CAT	Corey Haa	at 315 CL	Ground elev.	<u>:</u>	
iviake.	CAI	woder.	315 CL			
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
10.5	+		Brown Fractured Limesto large limestone (~3' maxi	ne and various soils (Sand, mum) observed.	Silt, Clay) moist (Fill).	0.0
11	<u> </u>					
11.5	<u> </u>					
12	<u> </u>					
12.5	<u> </u>					0.0
13	<u> </u>		Crades to Black Cond			
13.5	 		Grades to: Black Sand.			
14	†		Grades to: Brown Sand.			
14.5	<u> </u>		Grades to. Brown Sand.			
15						
15.5			End of excavation at 15.5	' helow ground surface		
16			End of excavation at 13.5	below ground surface.		
16.5	<u> </u> 					
17	1					
17.5	<u> </u>					
18	 					
18.5						
19						
19.5	<u> </u>					
20						
REMARKS:						

TEST PIT FIELD LOG Project Description: Former Central Park Plaza Test Pit No: TP-77A Project location: 129 Holden Street Location: Buffalo, NY GZA Representative: Thomas Bohlen File No: 21.0056642.10 Task 20 Contractor: **LPCiminelli** Date: 4/10/2014 Sunny, windy, 40-60 degrees F Weather: Operator: Matt Hillman Ground elev .: Make: Model: 135D DEPTH SAMPLE SAMPLE DESCRIPTION PID DEPTH NO. (feet) FILL: Brown Silty CLAY, little Sand, trace Gravel, trace Brick, moist. 2 0 3 4 Black fine to coarse SAND, moist. 0 5 Brown coarse GRAVEL (2-foot maximum) and Black SAND, trace Silt, trace Clay, trace Brick, moist. 6 7 8 Brown Silty CLAY, little Sand, trace Gravel, trace Brick. 0 9 Grades to:....and Black Sand (mixed, 8-inches). 10 Brown Fractured Limestone and Various Soils (Sand, Silt, Clay) and ASH 0 11 (mixed). 12 0 13 Grades to:....trace ASH. 14 15 End of test pit at 15 feet below ground surface. 16 17 18

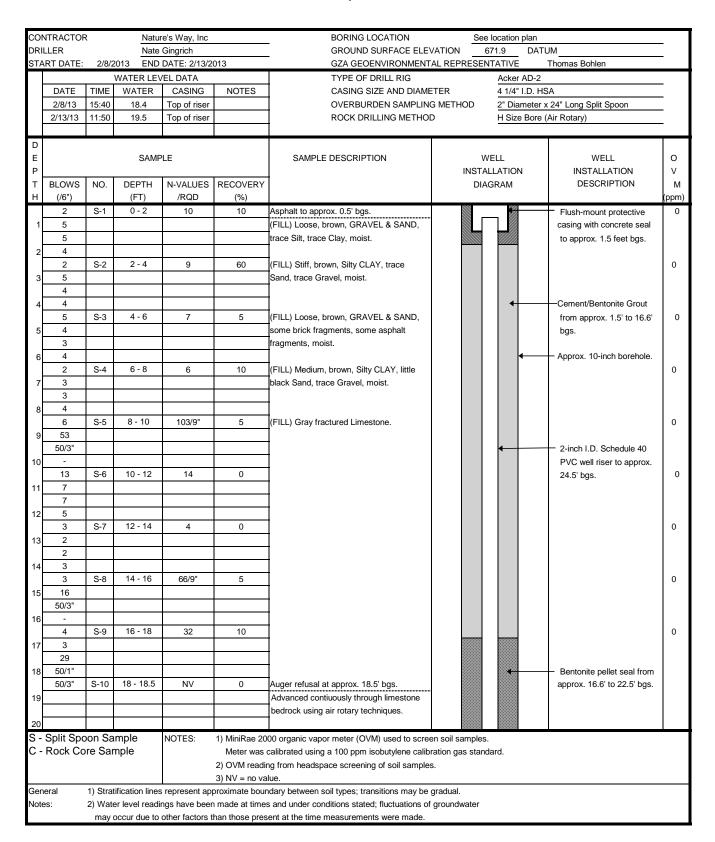
REMARKS: 15 feet south of TP-77

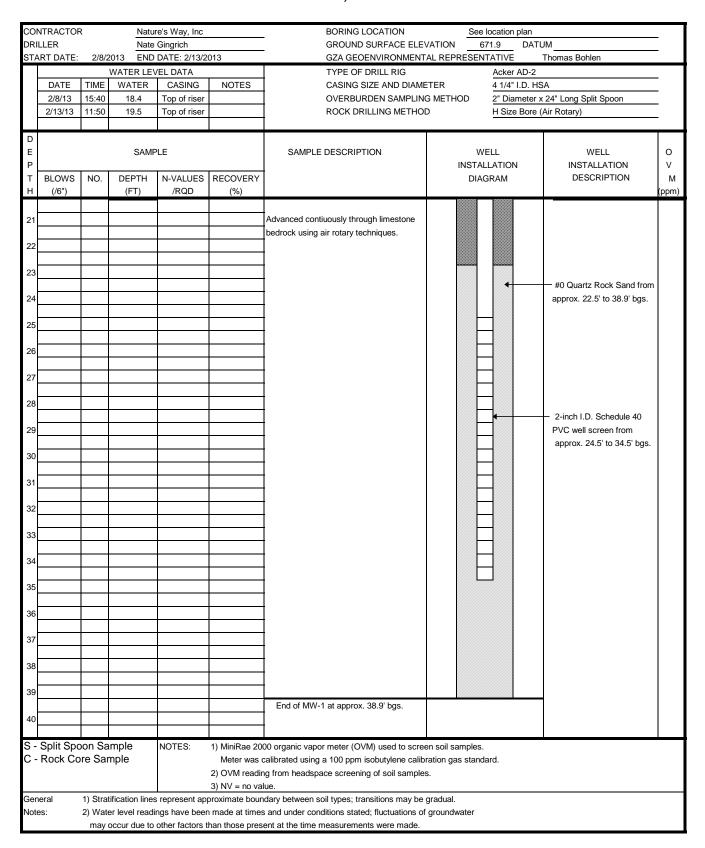
19

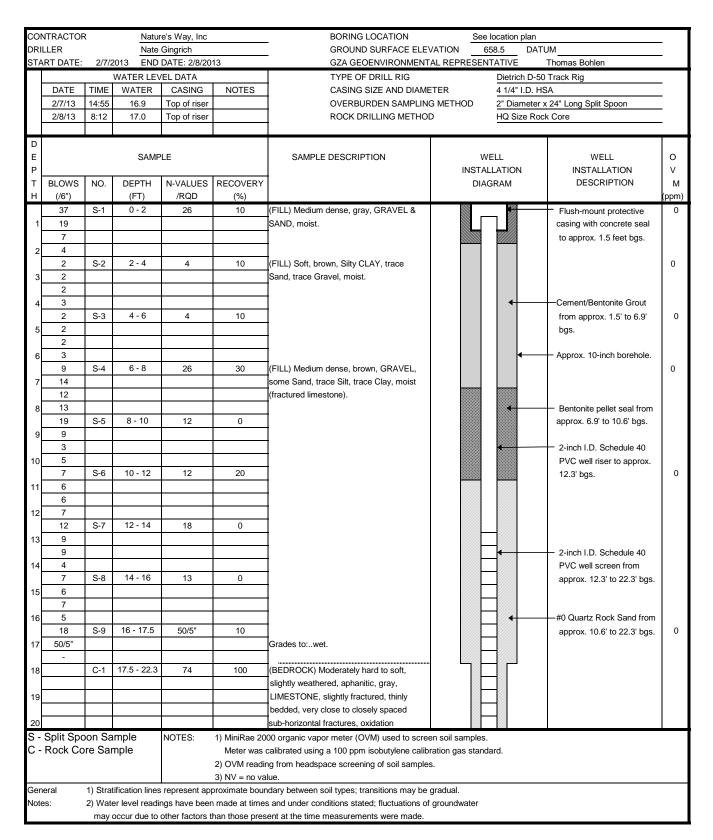
TEST PIT FIELD LOG Project Description: Former Central Park Plaza Test Pit No: TP-77B Project location: 129 Holden Street Location: Buffalo, NY GZA Representative: File No: Thomas Bohlen 21.0056642.10 Task 20 Contractor: **LPCiminelli** Date: 4/10/2014 Weather: Sunny, windy, 40-60 degrees F Operator: Matt Hillman Ground elev.: Make: Model: Deere 135D DEPTH SAMPLE SAMPLE DESCRIPTION PID DEPTH NO. (feet) FILL: Brown Silty CLAY, little Sand, trace Gravel, trace Brick, moist. 2 0 3 Large Limestone (3-foot maximum) observed. 4 Brown fine to coarse SAND, little Gravel, trace Silt, trace Clay, moist. 0 5 6 Grades to: some large Limestone (2-foot maximum). 0 7 8 0 9 10 0 11 Brown Fractured Limestone and Various Soils (Sand, Silt, Clay) moist. 12 0 13 14 15 End of test pit at 15 feet below ground surface. 16 17 18

REMARKS: 15 feet west of TP-77.

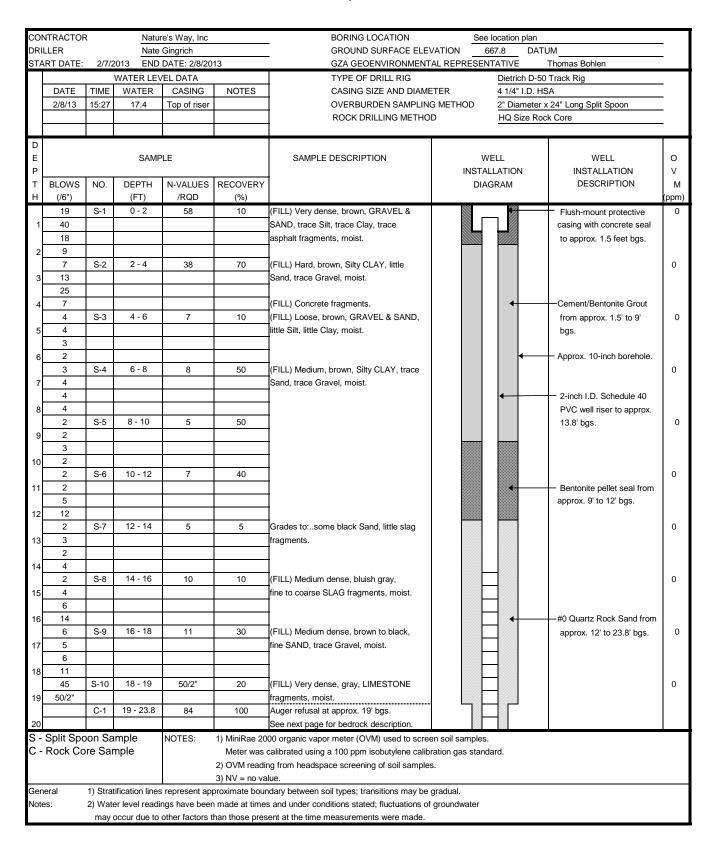
19

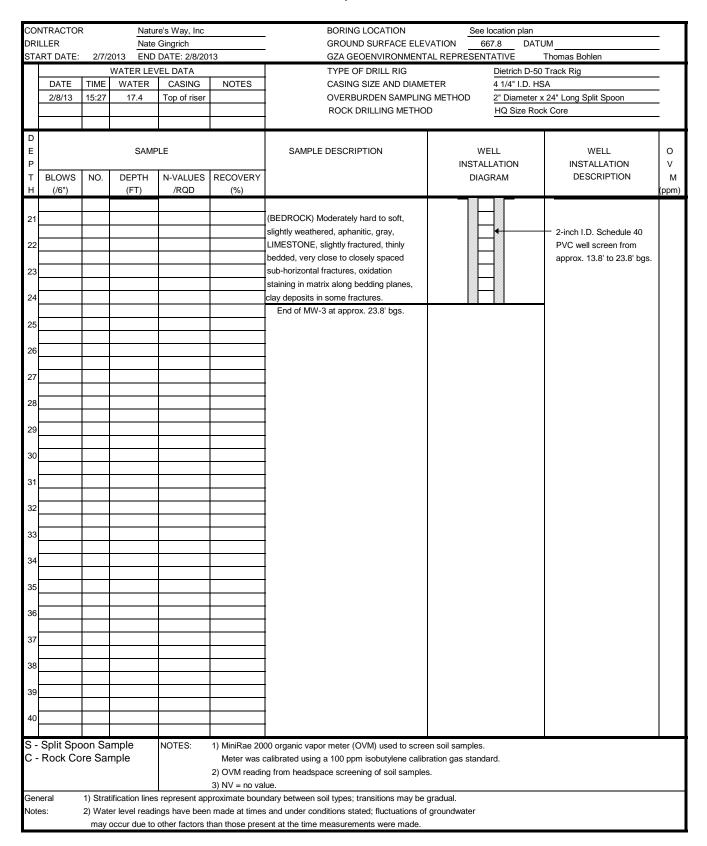

			TEST	PIT FIELD LOG		
Project lo GZA Rep	oresentati	129 ve: Tho	Site C915261 Test Pit No: Holden Street Location: has Bohlen File No:		21.0056642.10	
Contract	or:	Nature's V	way	_ Date: Weather:	12/19/2012 Overcast, 30°F	
Operator	•	Corey Ha	af	Ground elev		
Make:	CAT	Model:	315 CL	_	1 <u></u>	
DEDTU	CAMPLE	T CAMPLE	T	DECODIDION		DID
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
0.5			Brown Silty CLAY, little	Asphalt, little Gravel, trace S	Sand, moist (Fill).	0.0
1						
1.5						
2	1					0.0
2.5	1		Brown SAND and GRA\	/EL (~1' maximum), little Sil	t. little Clav. trace Brick.	5.5
3	_		moist, (Fill).	, , , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,	
3.5	_					
4						0.0
4.5	_					
5	<u> </u> -		Brown Silty CLAY, little (Gravel, trace Sand, moist (F	Fill).	
5.5	_			ximum) observed at norther		
6	_					0.0
6.5	_					
7	_					
7.5	<u> </u> -					
8	_		Excavator refusal at 8' b	elow ground surface (presu	imed top of	
8.5	_		bedrock).		•	
9	_					
9.5	1					
10						
REMARKS:						

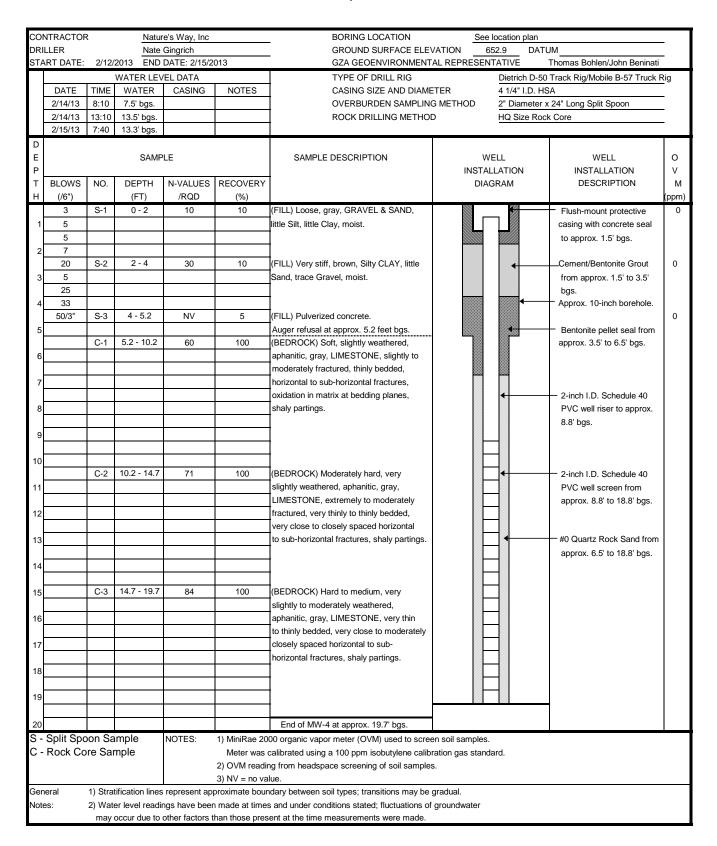

			TEST	PIT FIELD LOG		
Project lo		129	^o Site C915261 Holden Street	Test Pit No: TP-79 Location:		
	resentativ		mas Bohlen	File No:	21.0056642.10	
Contracto	or:	Nature's V	Vay	Date:	12/19/2012	
0	_	0	- (Weather: Ground elev.	Overcast, 30°F	
Operator: Make:	CAT	Corey Haa	ат 315 CL	Ground elev.	•	
iviane.	CAT	woder.	313 CL			
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
				Gravel, little Black Sand, tr	ace Brick, trace PVC,	0.0
0.5			trace Concrete, moist (Fi Grades to: Brown Sand,			
1						
1.5						
2						
2.5						0.0
3						
3.5						
4						
4.5						0.0
5						
5.5						
6						
6.5						0.0
7						
7.5			An approximate 3' x 3' co	oncrete block removed from	excavation.	
8						
8.5						0.0
9						
9.5						
10			Excavator refusal at 10' lbedrock).	pelow ground surface (pres	umed top of	
REMARKS:						

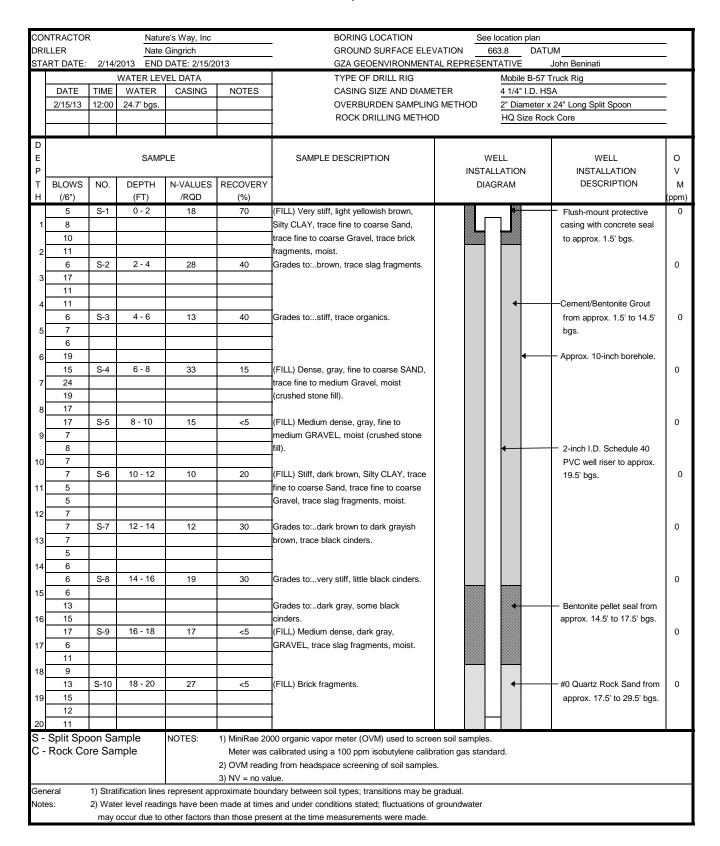

			TEST	PIT FIELD LOG		
Project Ic		129	Site C915261 Holden Street	Test Pit No: Location:		
-	resentativ		mas Bohlen	File No:	21.0056642.10	
Contracto	or:	Nature's V	Vay	Date: Weather:	12/20/2012 Partly Cloudy, windy, 30°F	
Operator	:	Corey Haa	af	Ground elev		
Make:	CAT	Model:	315 CL	•		
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
0.5			Gray GRAVEL (2" Crush	ner Run Limestone) moist (F	Fill, 8-inches).	0.0
1	_		David City Ol AV tone	O O	F:10	
1.5			Brown Silty CLAY, trace	Sand, trace Gravel, moist (FIII).	
2	-		Gray GRAVEL (2" Crush	ner Run Limestone) moist (F	Fill, 8-inches).	
2.5						0.0
3			Yellowish Brown/Black fi Clay,moist (Fill).	ne to coarse SAND, little G	ravel, trace Silt, trace	
3.5						
4			Brown, Dark Brown, Ora trace Silt, trace Clay, mo	nge, White, Black SAND, s ist (Fill).	ome Brick, little Concrete,	
4.5	-					0.0
5	-					
5.5	 - 					
6	-					0.0
6.5	-					0.0
7	-		Drawa Cilla Cl AV little	Proval little Cond majet /Fi	11)	
7.5	-		Brown Silly CLAY, IIIIle C	Gravel, little Sand, moist (Fi	u).	
8	 -					
8.5	-					0.0
9	-					
9.5	_					
10						
REMARKS:						

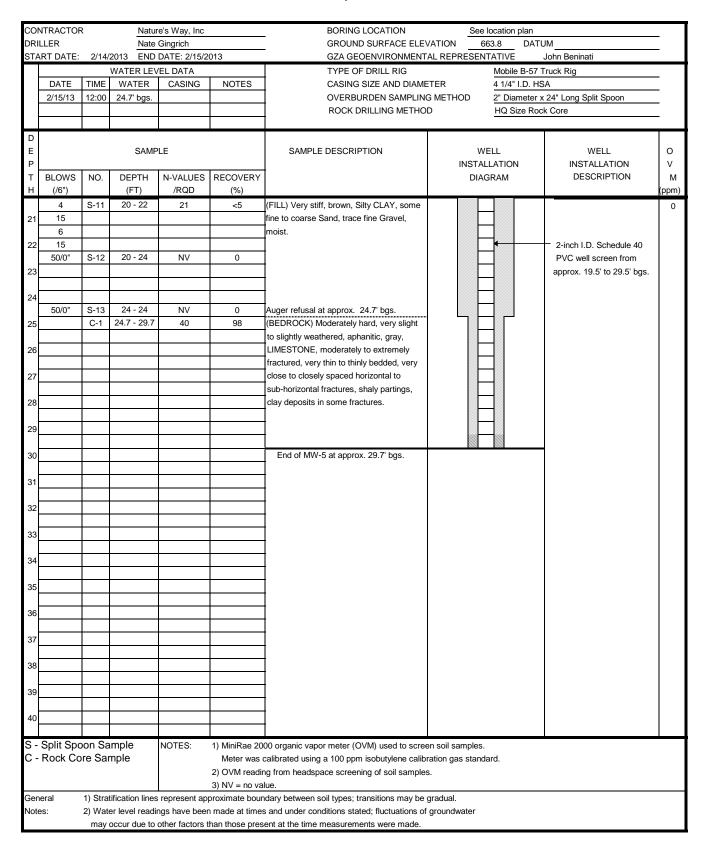
			TEST	PIT FIELD LOG		
			1_0.			
	escription		Site C915261	Test Pit No:	TP-80	
Project Ic			Holden Street	Location:		
	resentativ		mas Bohlen	File No: Date:	21.0056642.10	
Contracto	JI.	Nature's V	vay	Weather:	12/20/2012 Partly Cloudy, windy, 30°F	
Operator	•	Corey Haa	 af	Ground elev.		
Make:	CAT	Model:	315 CL			
DEPTH	SAMPLE	SAMPLE	1	DESCRIPTION		PID
(feet)	NO.	DEPTH				
10.5			Brown Silty CLAY, little G	ravel, little Sand, moist (Fill)		0.0
11						
11.5			Brown GRAVEL and SAN	ID, little Silt, trace Clay, mo	ist (Fill).	
12						0.0
12.5						0.0
13						
13.5						
14	<u> </u> 					
14.5						
15	<u> </u>					
15.5	<u> </u>		Excavator refusal at 15' b bedrock).	elow ground surface (presu	imed top of	
16						
16.5						
17						
17.5	 					
18						
18.5						
19						
19.5						
20						
REMARKS:						

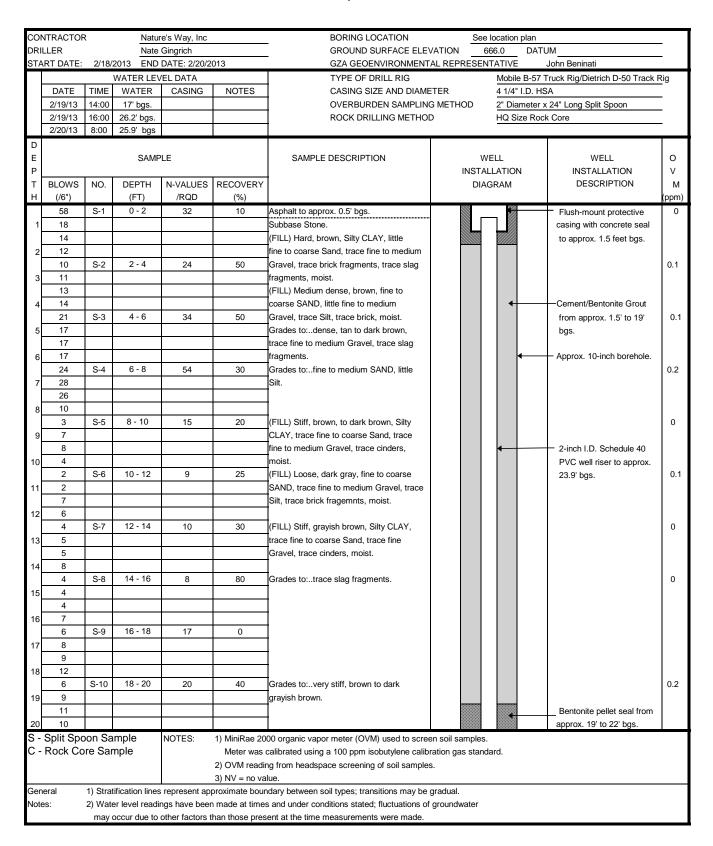

			TEST	PIT FIELD LOG		
Droicet D	ocorintic:	· DOS		Test Pit No:	TD 04	
Project D Project lo	-		Site C915261 Holden Street	Location:	IP-81	
GZA Rep			mas Bohlen	File No:	21.0056642.10	
Contracto		Nature's V		Date:	12/20/2012	
Contracto	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	TTAILUTE S V	vay	Weather:	Partly Cloudy, windy, 30°F	
Operator:	•	Corey Haa	af	Ground elev.		
Make:	CAT	Model:	315 CL			
			T	250001551011		T 5:5
DEPTH (feet)	SAMPLE NO.	SAMPLE DEPTH		DESCRIPTION		PID
(ICCI)	110.	DEI III	Grav GRAVEL (2" Crush	er Run Limestone) moist (F	ill).	0.0
0.5					,.	
1						
				ND, little Silt, trace Clay, tra	ce Asphalt, trace Brick,	
1.5			moist (Fill).			
0						
2			2-inch diameter susne	ect electrical conduit line ob	served on western wall	0.0
2.5			of excavation at 2' be		served on western wall	0.0
			0. 0.000 val.0 at 2 00	ground canacci		
3						
			Brown Silty CLAY, little E	Black Sand, trace Gravel, m	oist (Fill).	
3.5						
4			O Frankina d Lima a da s		Cilt Class) mariet (Fill)	
4.5				e and various soils (Sand, sect electrical conduit line ob		0.0
4.0			of excavation at 4' be		served on eastern wall	
5			or executation at 4 bot	iow ground dundoo.		
-						
5.5						
6						
0.5						0.0
6.5						
7						
•						
7.5						
8						
						0.0
8.5						
9						
J						
9.5						
10			End of excavation at 10'	below ground surface due t	o extensive collapse.	
REMARKS:						

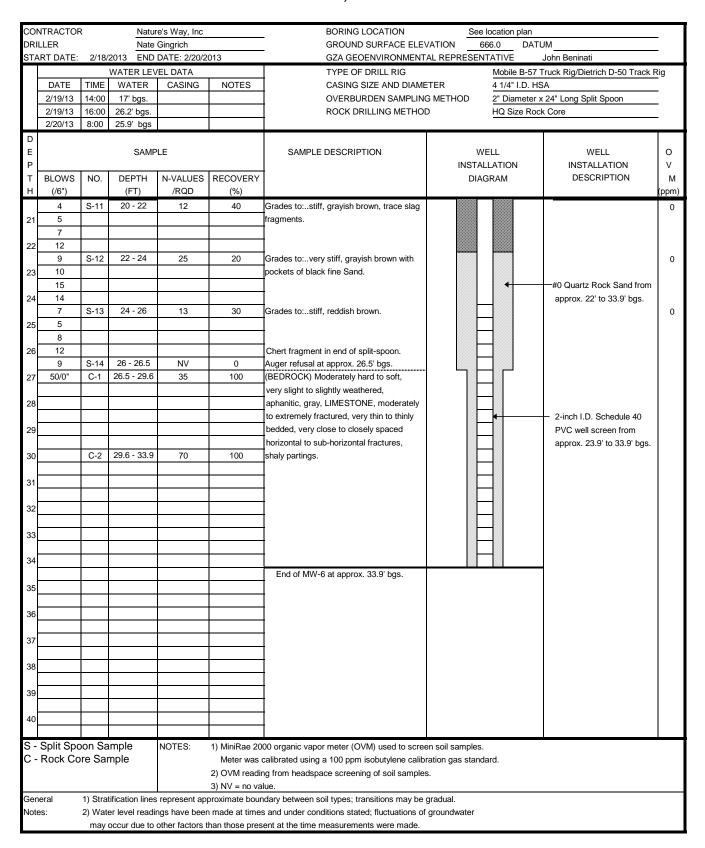







CONTRACTOR Nature's Way, Inc				BORING LOCATION	See location pla		_		
DRILLER Nate Gingrich START DATE: 2/7/2013 END DATE: 2/8/2013					13	GROUND SURFACE ELEVA GZA GEOENVIRONMENTA		ATUMThomas Bohlen	_
317	INI DAIL.		WATER LE		13	TYPE OF DRILL RIG		0-50 Track Rig	
	DATE	TIME	WATER	CASING	NOTES	CASING SIZE AND DIAMET		•	_
	2/7/13	14:55	16.9	Top of riser		OVERBURDEN SAMPLING		ter x 24" Long Split Spoon	_
	2/8/13	8:12	17.0	Top of riser		ROCK DRILLING METHOD	HQ Size I	Rock Core	
							-		_
D E			SAMF	PLE		SAMPLE DESCRIPTION	WELL	WELL	: 0
P T	BLOWS	NO.	DEPTH	N-VALUES	RECOVERY	1	INSTALLATION DIAGRAM	INSTALLATION DESCRIPTION	V
H	(/6")	NO.	(FT)	/RQD	(%)		DIAGRAM	DESCRIPTION	M (ppm)
H	(/0)		(1 1)	///QD	(70)	staining in matrix along bedding planes,		_	(ррііі)
21						clay deposits in some fractures.			
21						say aspesse in estine nastares.			
22						1			
23						End of MW-2 at approx. 22.3' bgs.	VIIII VIIII		
24									
25						<u> </u>			
00									
26						 			
27						†			
						1			
28									
29									
30									
٠.						 			
31						1			
32						1			
02						†			
33									
34									
35									
36				-		1			
30						 			
37						†			
					İ	†			
38]			
39						ļ			
				-					
40				-					
ς.	Split Spc	on So	mnle	NOTES:	1) MiniPag 20	00 organic vapor meter (OVM) used to server	e soil samples	1	1
	Rock Co			NOTES:		00 organic vapor meter (OVM) used to screer calibrated using a 100 ppm isobutylene calibra			
	. 10011 00	. o oui				ng from headspace screening of soil samples.	=		
					3) NV = no va	-			
Gen	eral	1) Strat	tification lines	represent ap		ndary between soil types; transitions may be gr	radual.		
Note	es:	2) Wate	er level readi	ngs have beer	n made at time:	s and under conditions stated; fluctuations of g	groundwater		
		may o	occur due to	other factors t	han those pres	ent at the time measurements were made.			





CENTRAL PARK PLAZA 129 HOLDEN ST BUFFALO, NY Phase II ESA

Soil Probe: SP-1 SHEET 1 OF 19 FILE No. 21.0056630.10 CHECKED BY: CZB

CONTRACTOR TREC Environmental					BORING LOCATION See Figure 2	_
DRIL	LER		Jim Agar		GROUND SURFACE ELEVATION NM DATUM NA	_
STA	RT DATE		10/11/11	END DATE 10/11/11	GZA GEOENVIRONMENTAL REPRESENTATIVE J. Davide	
W	ATER LEV	EL DA	TA		TYPE OF DRILL RIG Geoprobe 54 LT	_
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long Macro-core Sampler	_
			NA		OVERBURDEN SAMPLING METHOD Direct push	_
					ROCK DRILLING METHOD NA	_
D						
Е		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	0
Р			,	T		V
Т	Sample No	umber		RECOVERY (%)		М
Н			(FT)			(ppm)
	S-1		0 - 4	60	Asphalt	ND
1					FILL - Gray GRAVEL and Sand, some Silt, little Clay, moist	
					(subbase).	
2					FILL Draws CILT 9 CLAV trace Cond trace Creval maint	ND
					FILL - Brown SILT & CLAY, trace Sand, trace Gravel, moist.	ND
3						
4	S-2		4 - 8	40	Grades to: some Gravel.	ND
5				10	arados s somo arato.	115
6						
						ND
7					Grades to: Reddish Brown.	
8						
	S-3		8 - 10.1	20		ND
9						
10						
					Refusal at 10.1 feet bgs.	
11						
12						
13						
14						
15						
13						
16						
17						
18						
19						
20						
	Split Spo				000 organic vapor meter (OVM)was used to field screen and headspace soil samp	oles.
C -	Rock Co	re Sa	ımple		Detect; PPM = Parts Per Million; NA = Not Applicable	
Ger	neral	1) St	ratification li		oximate boundary between soil types, transitions may be gradual.	
Not	es:	2) W	ater level re	adings have been r	nade at times and under conditions stated, fluctuations of groundwater	

CENTRAL PARK PLAZA 129 HOLDNE ST BUFFALO, NY Phase II ESA Soil Probe: SP-2 SHEET 2 OF 19 FILE No. 21.0056630.10 CHECKED BY : CZB

CONTRACTOR TREC Environmental					BORING LOCATION See Figure 2	
DRIL					GROUND SURFACE ELEVATION NM DATUM NA	
STA	RT DATE		10/11/11	END DATE 10/11/11	GZA GEOENVIRONMENTAL REPRESENTATIVE J. Davide	
W	ATER LEV	EL DA		T	TYPE OF DRILL RIG Geoprobe 54 LT	
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long Macro-core Sampler	
			NA		OVERBURDEN SAMPLING METHOD Direct push	
					ROCK DRILLING METHOD NA	
D						
E		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	0
P		J	AWII EE IIVI OTT	WATION	OAWI LE DECOMM NOTES	V
Т	Sample N	umber	DEPTH	RECOVERY (%)		M
Н			(FT)	, ,		(ppm)
	S-1		0 - 4	70	Asphalt	ND
1					FILL - Gray GRAVEL and Sand, some Silt, little Clay, moist	
					(subbase).	
2					Grades to: Dark Gray, trace Brick, trace Wood.	
					FILL - Brown SILT & CLAY, little Gravel, trace Sand, moist.	ND
3						
,						
4	S-2		4 - 8	50	Grades to: little Gravel.	ND
5			. 0	35	Si dado tomi mao di ditori	2
6						
						ND
7						
8			0.00	00	FILL - Brown Silty CLAY, some Gravel, little Sand, moist.	ND
	S-3		8 - 9.8	20		ND
9						
10						
					Refusal at 9.8 feet bgs.	
11						
12						
13						
.,						
14						
15						
.0						
16						
17						
18						
19						
20						
	Split Spo	on S	amnle	Notes MiniRae 20	L L L L L L L L L L L L L L L L L L L	les
	Rock Co				Detect; PPM = Parts Per Million; NA = Not Applicable	,,,,,,,
	neral				oximate boundry between soil types, transitions may be gradual.	

Page 2 of 19

2) Water level readings have been made at times and under conditions stated, fluctuations of groundwater

CENTRAL PARK PLAZA 129 HOLDNE ST BUFFALO, NY Phase II ESA Soil Probe: SP-3 SHEET 3 OF 19 FILE No. 21.0056630.10 CHECKED BY : CZB

CONTRACTOR TREC Environmental				mental	BORING LOCATION See Figure 2	
	LER		Jim Agar		GROUND SURFACE ELEVATION NM DATUM NA	
	RT DATE		10/11/11	END DATE 10/11/11	GZA GEOENVIRONMENTAL REPRESENTATIVE J. Davide	
W	ATER LEV			T	TYPE OF DRILL RIG Geoprobe 54 LT	
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long Macro-core Sampler	
			NA		OVERBURDEN SAMPLING METHOD Direct push	
					ROCK DRILLING METHOD NA	
D						
E		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	0
Р		J	ANN EL NA OTA	William	OVANI EE DEGOTAI TION	V
	Sample No	umber	DEPTH	RECOVERY (%)		M
Н			(FT)	, ,		(ppm)
	S-1		0 - 4	70	Asphalt	ND
1					FILL - Gray GRAVEL and Sand, some Silt, little Clay, moist	
					(subbase).	
2					Grades to: Dark Gray, trace Brick, trace Wood.	
					FILL - Brown SILT & CLAY, little Gravel, trace Sand, trace Brick,	ND
3					trace Glass, moist.	
4	S-2		4 - 8	40		ND
5	3-2		4-0	40		ND
3						
6						
					FILL - Brown Silty CLAY, some Gravel, little Sand, moist.	ND
7						
8						
	S-3		8 - 9.7	20		ND
9						
10					Defined at 0.7 feet has	
11					Refusal at 9.7 feet bgs.	
11						
12						
13						
14						
15						
10						
16						
17						
17						
18						
19						
20						
	Split Spo				000 organic vapor meter (OVM)was used to field screen and headspace soil samp	les.
	Rock Co				Detect; PPM = Parts Per Million; NA = Not Applicable	
чer	neral	1) St	rauncation li	nes represent appr	oximate boundry between soil types, transitions may be gradual.	

2) Water level readings have been made at times and under conditions stated, fluctuations of groundwater

CENTRAL PARK PLAZA 129 HOLDNE ST BUFFALO, NY Phase II ESA Soil Probe: SP-4 SHEET 4 OF 19 FILE No. 21.0056630.10 CHECKED BY : CZB

CONTRACTOR TREC Environmental				mental	BORING LOCATION See Figure 2	
					GROUND SURFACE ELEVATIONNM DATUMNA	_
	T DATE		10/11/11	END DATE 10/11/11	GZA GEOENVIRONMENTAL REPRESENTATIVE J. Davide	
WA	TER LEVE			T	TYPE OF DRILL RIG Geoprobe 54 LT	_
1 -	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long Macro-core Sampler	_
-			NA		OVERBURDEN SAMPLING METHOD Direct push	_
1 -					ROCK DRILLING METHOD NA	_
						1
D		0	44 4DL E INEOD	MATION	OAMBLE DECORPORTION	
E		5	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	0
P T S	Sample Nu	mhor	DEPTH	RECOVERY (%)	-	V
H	ample No	IIIDEI	(FT)	TILOOVLITT (78)		М
	S-1		0 - 4	50	Asphalt	(ppm) ND
-	<u> </u>		0 - 4	30	FILL - Gray GRAVEL and Sand, some Silt, little Clay, moist	IND
l '⊢					(subbase).	
2					Grades to: Dark Gray, trace Brick, trace Wood.	
-					FILL - Brown SILT & CLAY, little Gravel, trace Sand, trace Brick,	ND
3					trace Glass, moist.	
					<u> </u>	
4						
	S-2		4 - 8	30		ND
5						
					FILL-Dark Gray Silty CLAY, some Gravel, little Sand, trace Wood,	
6					trace Coal, trace Brick, moist.	
						ND
7_						
1						
8						
1 -	S-3		8 - 12	30		ND
9_						
					-	
10_					-	ND
11					-	IND
''⊢						
12					1	
'-	S-4		12 - 16	20	-	ND
13						
14						
						ND
15						
16						
1	S-5		16 - 16.7	5		ND
17					Refusal at 16.7 feet bgs.	
18					-	
1					-	
19					-	
20					-	
	plit Spo	on Sa	amnle	Notes MiniRae 20	l 000 organic vapor meter (OVM)was used to field screen and headspace soil sa	nnles
	lock Cor				Detect; PPM = Parts Per Million; NA = Not Applicable	npies.
Gene					oximate boundry between soil types, transitions may be gradual.	

Page 4 of 19

2) Water level readings have been made at times and under conditions stated, fluctuations of groundwater

CENTRAL PARK PLAZA 129 HOLDNE ST BUFFALO, NY Phase II ESA Soil Probe: SP-5 SHEET 5 OF 19 FILE No. 21.0056630.10 CHECKED BY : CZB

CONTRACTOR TREC Environmental					BORING LOCATION See Figure 2					
DRIL					GROUND SURFACE ELEVATION NM DATUM NA					
STA	RT DATE		10/11/11	END DATE 10/11/11	GZA GEOENVIRONMENTAL REPRESENTATIVE J. Davide					
W.	ATER LEV			T	TYPE OF DRILL RIG Geoprobe 54 LT					
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long Macro-core Sampler					
			NA		OVERBURDEN SAMPLING METHOD Direct push	•				
					ROCK DRILLING METHOD NA					
_										
D		0		MATION	CAMPLE DECORIDATION NOTES	0				
E P		5	AMPLE INFOR	WATION	SAMPLE DESCRIPTION NOTES	0 V				
' T	Sample N	ımber	DEPTH	RECOVERY (%)		M				
Н			(FT)	(11)		(ppm)				
	S-1		0 - 4	60	Asphalt	ND				
1					FILL - Gray GRAVEL and Sand, some Silt, little Clay, moist					
					(subbase).					
2					FILL - Brown SILT & CLAY, little Gravel, trace Sand, trace Brick,					
					moist.	ND				
3										
4										
	S-2		4 - 8	20		ND				
5										
_										
6						ND				
7						IND				
8										
	S-3		8 - 12	50	FILL - Brown SAND, some Clay, some Gravel, little Silt, moist.	ND				
9										
10										
						ND				
11					Grades to: Dark Brown, some Clay.					
12					End of probe at 12 feet bgs.					
13					End of probe at 12 feet bys.					
13										
14										
15										
16										
17										
18										
19										
19										
20										
	Split Spo	on Sa	ample	Notes MiniRae 20	1000 organic vapor meter (OVM)was used to field screen and headspace soil samp	oles.				
	Rock Co				Detect; PPM = Parts Per Million; NA = Not Applicable					
	eneral 1) Stratification lines represent approximate boundry between soil types, transitions may be gradual.									

2) Water level readings have been made at times and under conditions stated, fluctuations of groundwater

CENTRAL PARK PLAZA 129 HOLDNE ST BUFFALO, NY Phase II ESA Soil Probe: SP-6 SHEET 6 OF 19 FILE No. 21.0056630.10 CHECKED BY: CZB

CONTRACTOR TREC Environmental					BORING LOCATION See Figure 2	=-
DRIL	LER		Jim Agar		GROUND SURFACE ELEVATION NM DATUM NA	_
STA	RT DATE		10/11/11	END DATE 10/11/11	GZA GEOENVIRONMENTAL REPRESENTATIVE J. Davide	
W	ATER LEV	EL DA	TA		TYPE OF DRILL RIG Geoprobe 54 LT	_
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long Macro-core Sampler	_
			NA		OVERBURDEN SAMPLING METHOD Direct push	_
					ROCK DRILLING METHOD NA	_
D						
Е		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	0
P	0 1 11			DE00/ED1/(4/)		V
Τ	Sample Nu	umber		RECOVERY (%)		М
Н	0.4		(FT)	00		(ppm)
	S-1		0 - 4	60	FILL - Gray GRAVEL and Sand, some Silt, little Clay, moist	ND
1					(subbase).	
_					FILL Drawer CII T 0 OLAY PHILA Consult to an Order to an Driet.	
2					FILL - Brown SILT & CLAY, little Gravel, trace Sand, trace Brick, trace Glass, moist.	ND
_					trace Glass, moist.	IND
3						
4						
-	S-2		4 - 8	50		ND
5						
Ĭ						
6						
					FILL - Brown SAND, some Gravle, little Silt, little Clay, moist.	ND
7						
8						
					End of probe at 8 feet bgs.	
9						
10						
11						
12						
13						
11						
14						
15						
10						
16						
17						
18						
19						
20						
	Split Spo				000 organic vapor meter (OVM)was used to field screen and headspace soil sam	oles.
C -	Rock Co	re Sa	mple	ND = Non	Detect; PPM = Parts Per Million; NA = Not Applicable	

General 1) Stratification lines represent approximate boundry between soil types, transitions may be gradual.

Notes:

Water level readings have been made at times and under conditions stated, fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

General

CENTRAL PARK PLAZA 129 HOLDNE ST BUFFALO, NY Phase II ESA Soil Probe: SP-7 SHEET 7 OF 19 FILE No. 21.0056630.10 CHECKED BY : CZB

CONTRACTOR TREC Environmental					BORING LOCATION See Figure 2	_
DRIL					GROUND SURFACE ELEVATION NM DATUM NA	_
	RT DATE		10/11/11	END DATE 10/11/11	GZA GEOENVIRONMENTAL REPRESENTATIVE J. Davide	
W	ATER LEV	EL DA	TA		TYPE OF DRILL RIG Geoprobe 54 LT	_
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long Macro-core Sampler	_
			NA		OVERBURDEN SAMPLING METHOD Direct push	_
					ROCK DRILLING METHOD NA	-
D						
E		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	0
P	Sample Nu	ımbor	DEDTU	RECOVERY (%)		V
T	Sample IN	umber		NECOVERY (%)		М
Н	S-1		(FT) 0 - 4	70	Asphalt	(ppm)
	3-1		0-4	70	FILL - Gray GRAVEL and Sand, some Silt, little Clay, moist	ND
'					(subbase).	
2					FILL - Brown SILT & CLAY, little Gravel, trace Sand, trace Brick,	
_					trace Glass, moist.	ND
3						
4						
	S-2		4 - 8	40	FILL-Gray GRAVEL, and Sand, some Clay, little Silt, moist.	ND
5						
6						
						ND
7						
_						
8					End of probe at 9 feet has	
9					End of probe at 8 feet bgs.	
9						
10						
11						
12						
13						
14						
4.5						
15						
16						
10						
17						
l ''					1	
18					1	
					1	
19						
20						
	Split Spo				000 organic vapor meter (OVM)was used to field screen and headspace soil sam	oles.
C -	Rock Co	re Sa	mple	ND = Non	Detect; PPM = Parts Per Million; NA = Not Applicable	

1) Stratification lines represent approximate boundry between soil types, transitions may be gradual.

Notes: 2) Water level readings have been made at times and under conditions stated, fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

CENTRAL PARK PLAZA 129 HOLDNE ST BUFFALO, NY Phase II ESA Soil Probe: SP-8 SHEET 8 OF 19 FILE No. 21.0056630.10 CHECKED BY: CZB

CONTRACTOR TREC Environmental					BORING LOCATION See Figure 2	_
DRII	LER		Jim Agar		GROUND SURFACE ELEVATION NM DATUM NA	_
STA	RT DATE		10/11/11	END DATE 10/11/11	GZA GEOENVIRONMENTAL REPRESENTATIVE J. Davide	
W	ATER LEV	EL DA	TA		TYPE OF DRILL RIG Geoprobe 54 LT	_
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long Macro-core Sampler	_
			NA		OVERBURDEN SAMPLING METHOD Direct push	_
					ROCK DRILLING METHOD <u>NA</u>	_
D						
Е		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	0
P	0 1 11			DE00\/ED\/ (0/)		V
Τ	Sample Nu	umber		RECOVERY (%)		М
Н	0.4		(FT)	70		(ppm)
	S-1		0 - 4	70	Asphalt	ND
1					FILL - Gray GRAVEL and Sand, some Silt, little Clay, moist	
_					(subbase).	
2					FILL - Brown SILT & CLAY, little Gravel, trace Sand, trace Brick, trace Glass, moist.	ND
_					trace Glass, moist.	ND
3						
4						
-	S-2		4 - 8	30		ND
5					FILL-Gray GRAVEL, and Sand, some Clay, little Silt, moist.	
6						
						ND
7						
8						
					End of probe at 8 feet bgs.	
9						
10						
11						
12						
40						
13						
14						
14						
15						
16						
17						
18						
19						
20						
	Split Spo				000 organic vapor meter (OVM)was used to field screen and headspace soil san	ıples.
C -	Rock Co	re Sa	.mple	ND = Non	Detect; PPM = Parts Per Million; NA = Not Applicable	

General 1) Stratification lines represent approximate boundry between soil types, transitions may be gradual.

Notes:

2) Water level readings have been made at times and under conditions stated, fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

General

Notes:

CENTRAL PARK PLAZA 129 HOLDNE ST BUFFALO, NY Phase II ESA Soil Probe: SP-9 SHEET 9 OF 19 FILE No. 21.0056630.10 CHECKED BY : CZB

CON	TRACTOF	}	TREC Environ	mental	BORING LOCATION See Figure 2	
DRIL	LER		Jim Agar		GROUND SURFACE ELEVATION NM DATUM NA	
	RT DATE		10/11/11	END DATE 10/11/11	GZA GEOENVIRONMENTAL REPRESENTATIVE J. Davide	
W	ATER LEV			T	TYPE OF DRILL RIG Geoprobe 54 LT	
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long Macro-core Sampler	
ŀ			NA		OVERBURDEN SAMPLING METHOD Direct push	
					ROCK DRILLING METHOD NA	
_						<u> </u>
D		c	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	
E P		5	AMPLE INFOR	IVIATION	SAMPLE DESCRIPTION NOTES	O V
	Sample Nu	ımber	DEPTH	RECOVERY (%)	-	M
H	oampio i to		(FT)	11200 12111 (70)		(ppm)
	S-1		0 - 4	40	FILL-Dark Gray Clayey SILT, little Sand, little Gravel, moist. Odors	ND
1						
2						
					FILL - Brown SAND and Gravel, trace Clay, trace Brick, moist.	ND
3						
4						
_	S-2		4 - 8	70		ND
5					Reddish Brown Silty CLAY, trace Sand, trace Gravel, moist.	
					-	
6					-	ND
7					-	IND
'					-	
8						
					End of probe at 8 feet bgs.	
9						
10						
11					-	
40					-	
12					-	
13					-	
10					-	
14					1	
15						
16						
17						
18					-	
10					-	
19					-	
20					1	
	Split Spo	on Sa	ample	Notes MiniRae 20	L 2000 organic vapor meter (OVM)was used to field screen and headspace soil sa	amples
	Rock Co				Detect; PPM = Parts Per Million; NA = Not Applicable	p.:00.
					, and the second	

1) Stratification lines represent approximate boundry between soil types, transitions may be gradual.

may occur due to other factors than those present at the time measurements were made.

2) Water level readings have been made at times and under conditions stated, fluctuations of groundwater

Notes:

CENTRAL PARK PLAZA 129 HOLDNE ST BUFFALO, NY Phase II ESA Soil Probe: SP-10 SHEET 10 OF 19 FILE No. 21.0056630.10 CHECKED BY: CZB

CON	NTRACTOR TREC Environmental			nmental	BORING LOCATION See Figure 2			
DRII	LLER	-	Jim Agar		GROUND SURFACE ELEVATION NM DATUM NA			
STA	RT DATE		10/11/11	END DATE 10/11/11	GZA GEOENVIRONMENTAL REPRESENTATIVE J. Davide			
W	ATER LEV			1	TYPE OF DRILL RIG Geoprobe 54 LT			
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long Macro-core Sampler			
			NA		OVERBURDEN SAMPLING METHOD Direct push			
					ROCK DRILLING METHOD NA			
_								
D		0	ANADI E INICOE	A AA TION I	OAMBLE DECORPORION	_		
E P		S	AMPLE INFOR	IMATION	SAMPLE DESCRIPTION NOTES	0		
T	Sample N	umher	DEPTH	RECOVERY (%)		V M		
Н	Campic 14	umber	(FT)	11200 12111 (70)				
- '	S-1		0 - 4	50	FILL-Brown Clayey SILT, little Sand, little Gravel, trace Brick,	(ppm)		
1			•		moist.	IND		
					most.			
2								
					FILL - Brown Silty CLAY, some Gravel little Sand, trace Brick,	ND		
3					moist.			
4								
	S-2		4 - 8	30		ND		
5								
6					-	ND		
_						ND		
,								
8					-			
					End of probe at 8 feet bgs.			
9								
10								
11								
12								
40					-			
13								
14								
l [']								
15					1			
16								
17								
18	<u> </u>				-			
٠, ١	<u> </u>				-			
19	-				-			
20	-							
_	Split Spo	on Sa	amnle	Notes MiniRae 20	I 000 organic vapor meter (OVM)was used to field screen and headspace soil sampl	les		
	Rock Co				Detect; PPM = Parts Per Million; NA = Not Applicable	.00.		
	neral							

2) Water level readings have been made at times and under conditions stated, fluctuations of groundwater

General

Notes:

CENTRAL PARK PLAZA 129 HOLDNE ST BUFFALO, NY Phase II ESA Soil Probe: SP-11 SHEET 11 OF 19 FILE No. 21.0056630.10 CHECKED BY: CZB

Soil Probe: SP-11

	ITRACTOF		TREC Environ Jim Agar	mental	BORING LOCATION See Figure 2 GROUND SURFACE ELEVATION NM DATUM NA	
	RT DATE	•	10/11/11	END DATE 10/11/11	GZA GEOENVIRONMENTAL REPRESENTATIVE J. Davide	
	ATER LEV	EL DA	TA		TYPE OF DRILL RIG Geoprobe 54 LT	
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long Macro-core Sampler	
			NA		OVERBURDEN SAMPLING METHOD Direct push	
					ROCK DRILLING METHOD NA	
_						
D E		0	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	0
P		3.	AIVIFLE INFON	IVIATION	SAVIFLE DESCRIFTION NOTES	V
	Sample N	umber	DEPTH	RECOVERY (%)		М
Н			(FT)	, ,		(ppm)
	S-1		0 - 4	40	CONCRETE	ND
1					FILL - Gray GRAVEL and Sand, some Silt, little Clay, moist	
					(subbase).	
2					FILL - Reddish Brown Silty CLAY, some Gravel little Sand, trace Brick, moist.	ND
3					Brick, moist.	ND
٥						
4						
	S-2		4 - 8	30		ND
5					FILL-Brown SAND, some Clay, some Silt, little Gravel, trace Brick,	
					moist.	
6						ND
7						ND
,						
8						
					End of probe at 8 feet bgs.	
9						
10						
11						
12						
13						
11						
14						
15					1	
16						
17						
18						
10						
19					1	
20						
	Split Spo				000 organic vapor meter (OVM)was used to field screen and headspace soil samp	les.
C -	Rock Co	re Sa	mple	ND = Non	Detect; PPM = Parts Per Million; NA = Not Applicable	

2) Water level readings have been made at times and under conditions stated, fluctuations of groundwater

1) Stratification lines represent approximate boundry between soil types, transitions may be gradual.

Notes:

CENTRAL PARK PLAZA 129 HOLDNE ST BUFFALO, NY Phase II ESA Soil Probe: SP-12 SHEET 12 OF 19 FILE No. 21.0056630.10 CHECKED BY: CZB

CON	NTRACTOR TREC Environmental		mental	BORING LOCATION See Figure 2		
DRIL	LER		Jim Agar		GROUND SURFACE ELEVATION NM DATUM NA	
	RT DATE		10/11/11	END DATE 10/11/11	GZA GEOENVIRONMENTAL REPRESENTATIVE J. Davide	
W	ATER LEV			T	TYPE OF DRILL RIG Geoprobe 54 LT	
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long Macro-core Sampler	
			NA		OVERBURDEN SAMPLING METHOD Direct push	
					ROCK DRILLING METHOD NA	
_						
D E		c	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	0
P		3	AIVIFLE IIVFON	IWATION	SAMFLE DESCRIPTION NOTES	V
Т	Sample N	umber	DEPTH	RECOVERY (%)		M
Н	·		(FT)	, ,		(ppm)
	S-1		0 - 4	60	FILL - Gray GRAVEL and Sand, some Silt, little Clay, moist	ND
1					(subbase).	
2					Grades to: Dark Gray.	
						ND
3					FILL-Brown Silty CLAY, some Gravel, little Sand, trace Brick,	
					moist.	
4					End of probe at 4 feet bgs.	
_					End of probe at 4 feet bgs.	
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						
16						
10						
17						
.,						
18						
19						
20						
	Split Spo				000 organic vapor meter (OVM)was used to field screen and headspace soil samp	les.
	Rock Co				Detect; PPM = Parts Per Million; NA = Not Applicable	
Ger	neral	1) St	ratification li	nes represent appr	oximate boundry between soil types, transitions may be gradual.	

2) Water level readings have been made at times and under conditions stated, fluctuations of groundwater

General

Notes:

CENTRAL PARK PLAZA 129 HOLDNE ST BUFFALO, NY Phase II ESA Soil Probe: SP-13 SHEET 13 OF 19 FILE No. 21.0056630.10 CHECKED BY: CZB

CON DRIL	ITRACTOF		TREC Environ Jim Agar	mental	BORING LOCATION See Figure 2 GROUND SURFACE ELEVATION NM DATUM NA	
	RT DATE	•	10/11/11	FND DATE 10/11/11	GZA GEOENVIRONMENTAL REPRESENTATIVE J. Davide	
	ATER LEV	EL DA			TYPE OF DRILL RIG Geoprobe 54 LT	
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long Macro-core Sampler	
			NA		OVERBURDEN SAMPLING METHOD Direct push	
					ROCK DRILLING METHOD NA	
D						
E		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	0
P T	Sample N	umbor	DEPTH	RECOVERY (%)		V M
H	Cample 14	umber	(FT)	TILOGVETTI (78)		
Ë	S-1		0 - 4	40	FILL - Gray GRAVEL and Sand, some Silt, little Clay, moist	(ppm)
1					(subbase).	
2					FILL - Brown SILT & CLAY, little Gravel, trace Sand, trace Brick,	
					trace Glass, moist.	ND
3						
4						
4	S-2		4 - 8	50	Reddish Brown Silty CLAY, little Gravel, trace Sand, moist.	ND
5						
6						
						ND
7						
8						
					End of probe at 8 feet bgs.	
9						
10						
11						
12						
12						
13						
14						
15						
16						
10						
17					1	
		_				
18						
19						
20						
	Split Spo	on Sa	ample	Notes MiniRae 20	I I 000 organic vapor meter (OVM)was used to field screen and headspace soil sampl	les
	Rock Co				Detect; PPM = Parts Per Million; NA = Not Applicable	.00.

Stratification lines represent approximate boundry between soil types, transitions may be gradual.
 Water level readings have been made at times and under conditions stated, fluctuations of groundwater

Notes:

CENTRAL PARK PLAZA 129 HOLDNE ST BUFFALO, NY Phase II ESA Soil Probe: SP-14 SHEET 14 OF 19 FILE No. 21.0056630.10 CHECKED BY: CZB

CON	NTRACTOR TREC Environmental			nmental	BORING LOCATION See Figure 2	
DRII	LLER		Jim Agar		GROUND SURFACE ELEVATION NM DATUM NA	
	RT DATE		10/11/11	END DATE 10/11/11	GZA GEOENVIRONMENTAL REPRESENTATIVE J. Davide	
W	ATER LEV			1	TYPE OF DRILL RIG Geoprobe 54 LT	
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long Macro-core Sampler	
			NA		OVERBURDEN SAMPLING METHOD Direct push ROCK DRILLING METHOD NA	
					NOOK DRILLING METHOD INA	
D						
Е		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	0
Р						V
Т	Sample N	umber	DEPTH	RECOVERY (%)		М
Н			(FT)			(ppm)
	S-1		0 - 4	20	- · · · · · · · · · · · · · · · · · · ·	ND
1					(subbase).	
2					-	
_					-	ND
3						
4						
	S-2		4 - 8	40		ND
5					trace Glass, moist.	
6						
٥					-	ND
7						
8						
					End of probe at 8 feet bgs.	
9						
10					-	
10					-	
11						
12						
13					-	
14					-	
14					1	
15						
16						
17					-	
18						
10					1	
19						
20						
	Split Spo				000 organic vapor meter (OVM)was used to field screen and headspace soil sample	es.
	Rock Co				Detect; PPM = Parts Per Million; NA = Not Applicable	
uei	neral	1) St	rauncation li	nes represent appr	oximate boundry between soil types, transitions may be gradual.	

2) Water level readings have been made at times and under conditions stated, fluctuations of groundwater

CENTRAL PARK PLAZA 129 HOLDNE ST BUFFALO, NY Phase II ESA Soil Probe: SP-15 SHEET 15 OF 19 FILE No. 21.0056630.10 CHECKED BY: CZB

CON	NTRACTOR TREC Environmental			nmental	BORING LOCATION See Figure 2	
DRIL	LER	•	Jim Agar		GROUND SURFACE ELEVATION NM DATUM NA	_
STA	RT DATE		10/11/11	END DATE 10/11/11	GZA GEOENVIRONMENTAL REPRESENTATIVE J. Davide	
W	ATER LEV	EL DA	TA		TYPE OF DRILL RIG Geoprobe 54 LT	
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long Macro-core Sampler	_
			NA		OVERBURDEN SAMPLING METHOD Direct push	
					ROCK DRILLING METHOD NA	_
						_
D						
Е		S	AMPLE INFOR	RMATION	SAMPLE DESCRIPTION NOTES	0
Р						V
Т	Sample No	umber	DEPTH	RECOVERY (%)		М
Н			(FT)			(ppm)
	S-1		0 - 4	30	Brown TOPSOIL	ND
1					FILL-Brown Clayey SILT, trace Sand, trace Gravel, trace Wood,	
					trace Organics, trace Plastic, trace Slag, moist.	
2						
					1	ND
3]	
4						
	S-2		4 - 6	30	FILL - Brown SILT & CLAY, little Gravel, trace Sand, trace Brick,	ND
5					trace Glass, moist.	
6						
					End of probe at 6 feet bgs.	
7						
8						
9						
10						
11						
12						
13						
					1	
14					1	
45						
15					1	
10						
16					-	
17						
17					1	
10					1	
18					1	
19					1	
19					1	
20					1	
	Split Spo	on Sa	amnle	Notes MiniRae 20	ו ססט organic vapor meter (OVM)was used to field screen and headspace soil sam	oles
	Rock Co				Detect; PPM = Parts Per Million; NA = Not Applicable	0.00.

General 1) Stratification lines represent approximate boundry between soil types, transitions may be gradual.

Notes: 2) Water level readings have been made at times and under conditions stated, fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

CENTRAL PARK PLAZA 129 HOLDNE ST BUFFALO, NY Phase II ESA Soil Probe: SP-16 SHEET 16 OF 19 FILE No. 21.0056630.10 CHECKED BY: CZB

	ITRACTOF LLER		TREC Environ Jim Agar	nmental	BORING LOCATION See Figure 2 GROUND SURFACE ELEVATION NM DATUM NA	-
STA	RT DATE		10/11/11	END DATE 10/11/11	GZA GEOENVIRONMENTAL REPRESENTATIVE J. Davide	
W	ATER LEV			ı	TYPE OF DRILL RIG Geoprobe 54 LT	-
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long Macro-core Sampler	-
			NA		OVERBURDEN SAMPLING METHOD Direct push	-
					ROCK DRILLING METHOD NA	-
D						
E		S	AMPLE INFOR	IMATIONI	SAMPLE DESCRIPTION NOTES	0
Р		J.	AWI LL IIVI OTI	IWATION	OAWI LE BESONII NON	v
т	Sample Nu	umber	DEPTH	RECOVERY (%)		M
Н	,		(FT)	, ,		(ppm)
	S-1		0 - 4	50	Asphalt	ND
1					FILL - Gray GRAVEL and Sand, some Silt, little Clay, moist	
					(subbase).	
2					FILL - Brown SILT & CLAY, little Gravel, trace Sand, trace Brick,	
_					trace Glass, moist.	ND
3					1	
4					FILL-Brown GRAVEL, and Sand, some Clay, little Silt, trace Brick,	
4	S-2		4 - 8	40	moist.	ND
5						
					FILL-Brown Clayey SILT, little Gravel, trace Sand, moist.	
6						
						ND
7						
_						
8					End of probe at 8 feet bgs.	
9					End of probe at 8 feet bys.	
٦						
10						
11						
12						
10						
13						
14						
15						
16						
17					1	
18					1	
19						
20						
	Split Spo				000 organic vapor meter (OVM)was used to field screen and headspace soil same	oles.
C -	Rock Co	re Sa	mple	ND = Non	Detect; PPM = Parts Per Million; NA = Not Applicable	

General 1) Stratification lines represent approximate boundry between soil types, transitions may be gradual.

Notes:

2) Water level readings have been made at times and under conditions stated, fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

Notes:

CENTRAL PARK PLAZA 129 HOLDNE ST BUFFALO, NY Phase II ESA Soil Probe: SP-17 SHEET 17 OF 19 FILE No. 21.0056630.10 CHECKED BY: CZB

CON DRIL	ITRACTOF LER		TREC Enviror Jim Agar	nmental	BORING LOCATION See Figure 2 GROUND SURFACE ELEVATION NM DATUM NA	
	RT DATE	•	10/11/11	END DATE 10/11/11	GZA GEOENVIRONMENTAL REPRESENTATIVE J. Davide	
W	ATER LEV	EL DA	TA	_	TYPE OF DRILL RIG Geoprobe 54 LT	
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long Macro-core Sampler	
			NA		OVERBURDEN SAMPLING METHOD Direct push	
					ROCK DRILLING METHOD NA	
D E		S	AMPLE INFOR	RMATION	SAMPLE DESCRIPTION NOTES	0
Р				1		V
	Sample No	umber	DEPTH	RECOVERY (%)		М
Н	S-1		(FT) 0 - 4	50	A - v b - b	(ppm)
4	3-1		0 - 4	50	Asphalt	ND
1					FILL - Gray GRAVEL and Sand, some Silt, little Clay, moist (subbase).	
2					FILL - Dark Brown SAND and Gravel, trace Sand, trace Brick,	
					trace Glass, moist.	ND
3						
4					Grades to: Brown.	
	S-2		4 - 8	40		ND
5						
_						
6						ND
7						IND
8						
					End of probe at 8 feet bgs.	
9						
10						
4.4						
11						
12						
13						
14						
4.5						
15						
16						
17						
18						
19					-	
20					1	
20	Split Spo	on S	amnla	Notes MiniRes 20	l 000 organic vapor meter (OVM)was used to field screen and headspace soil sam	alae
	Rock Co				Detect; PPM = Parts Per Million; NA = Not Applicable)ic3.
	neral				oximate boundry between soil types, transitions may be gradual.	

2) Water level readings have been made at times and under conditions stated, fluctuations of groundwater

Notes:

CENTRAL PARK PLAZA 129 HOLDNE ST BUFFALO, NY Phase II ESA Soil Probe: SP-18 SHEET 18 OF 19 FILE No. 21.0056630.10 CHECKED BY: CZB

CON DRIL	ITRACTOF		TREC Enviror Jim Agar	nmental	BORING LOCATION See Figure 2 GROUND SURFACE ELEVATION NM DATUM NA	
	RT DATE	•	10/11/11	END DATE 10/11/11	GZA GEOENVIRONMENTAL REPRESENTATIVE J. Davide	
W	ATER LEV	EL DA	TA	_	TYPE OF DRILL RIG Geoprobe 54 LT	
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long Macro-core Sampler	
			NA		OVERBURDEN SAMPLING METHOD Direct push	
					ROCK DRILLING METHOD NA	•
D E		c	AMPLE INFOR	NATION	SAMPLE DESCRIPTION NOTES	0
Р		3	AMPLE INFOR	IWATION	SAMPLE DESCRIPTION NOTES	0 V
	Sample No	umber	DEPTH	RECOVERY (%)		M
Н	,		(FT)			(ppm)
	S-1		0 - 4	50	Asphalt	ND
1					FILL - Gray GRAVEL and Sand, some Silt, little Clay, moist	
					(subbase).	
2						ND
_					Grades to: trace Slag, trace Brick.	ND
3					Grades to trace Stay, trace Brick.	
4						
	S-2		4 - 8	20		ND
5						
6						
_						ND
7						
8						
Ŭ					End of probe at 8 feet bgs.	
9						
10						
11						
12						
13						
14						
15						
16						
.0						
17						
18						
19						
20						
_	Split Spo	on S	ample	Notes MiniRae 20	I 000 organic vapor meter (OVM)was used to field screen and headspace soil samp	oles.
	Rock Co				Detect; PPM = Parts Per Million; NA = Not Applicable	
	neral			nes represent appr	oximate boundry between soil types, transitions may be gradual.	

2) Water level readings have been made at times and under conditions stated, fluctuations of groundwater

CENTRAL PARK PLAZA 129 HOLDNE ST BUFFALO, NY Phase II ESA Soil Probe: SP-19 SHEET 19 OF 19 FILE No. 21.0056630.10 CHECKED BY: CZB

CON	NTRACTOR TREC Environmental			nmental	BORING LOCATION See Figure 2	_
DRIL	LER		Jim Agar		GROUND SURFACE ELEVATION NM DATUM NA	_
	RT DATE		10/11/11	END DATE 10/11/11	GZA GEOENVIRONMENTAL REPRESENTATIVE J. Davide	
W	ATER LEV	EL DA	TA	1	TYPE OF DRILL RIG Geoprobe 54 LT	_
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long Macro-core Sampler	_
			NA		OVERBURDEN SAMPLING METHOD Direct push	_
					ROCK DRILLING METHOD NA	_
D						
Е		S	AMPLE INFOR	RMATION	SAMPLE DESCRIPTION NOTES	0
Р				T =========		V
Т	Sample Nu	umber		RECOVERY (%)		М
Н			(FT)			(ppm)
	S-1		0 - 4	70	Asphalt	ND
1					FILL - Gray GRAVEL and Sand, some Silt, little Clay, moist	
					(subbase).	
2					FILL - Brown SILT & CLAY, little Gravel, trace Sand, trace Brick,	ND
					trace Glass, trace Coal, moist.	ND
3					-	
l .					-	
4	S-2		4 - 8	40	FILL - Brown Silty CLAY, some Gravel little Sand, trace Brick,	ND
_			4 - 8	40		ND
5					moist.	
_					FILL-Brown SAND and Gravel, some Clay, little Silt, moist.	
6					FILE-DIOWIT SAND and Graver, Some Glay, little Silt, Moist.	ND
7					-	IND
<i>'</i>					-	
8					-	
					End of probe at 8 feet bgs.	
9						
10					1	
11						
12						
13						
14						
15						
16					-	
l						
17					-	
4.0					-	
18					-	
19					1	
19					1	
20					1	
	Split Spo	on S	emnle	Notes MiniRes 20	I 000 organic vapor meter (OVM)was used to field screen and headspace soil sam	ales
	Rock Co				Detect; PPM = Parts Per Million; NA = Not Applicable	Jioa.

General 1) Stratification lines represent approximate boundry between soil types, transitions may be gradual.

Notes: 2) Water level readings have been made at times and under conditions stated, fluctuations of groundwater may occur due to other factors than those present at the time measurements were made.

APPENDIX D – EXCAVATION WORK PLAN (EWP)

D-1 NOTIFICATION

At least 15 days prior to the start of any activity that is anticipated to encounter remaining contamination, the site owner or their representative will notify the NYSDEC. Table 1 includes contact information for the above notification. The information on this table will be updated as necessary to provide accurate contact information. A full listing of site-related contact information is provided in Appendix A.

Table 1: Notifications*

Mr. Robert Schick	(518) 402-9706 derweb@dec.ny.gov
Mr. Jaspal Walia	(716) 851-7220 jaspal.walia@dec.ny.gov

^{*} Note: Notifications are subject to change and will be updated as necessary.

This notification will include:

- A detailed description of the work to be performed, including the location and areal extent of excavation, plans/drawings for site re-grading, intrusive elements or utilities to be installed below the soil cover, estimated volumes of contaminated soil to be excavated and any work that may impact an engineering control;
- A summary of environmental conditions anticipated to be encountered in the work areas, including the nature and concentration levels of contaminants of concern, potential presence of grossly contaminated media, and plans for any pre-construction sampling;
- A schedule for the work, detailing the start and completion of all intrusive work;
- A summary of the applicable components of this EWP;

- A statement that the work will be performed in compliance with this EWP and 29 CFR 1910.120;
- A copy of the contractor's health and safety plan (HASP), in electronic format, if it differs from the HASP provided in Appendix E of this SMP;
- Identification of disposal facilities for potential waste streams; and
- Identification of sources of any anticipated backfill, along with all required chemical testing results.

In addition, it is anticipated that during Site redevelopment, there will be excavations below the cover system. During such activities, the Department may require monthly reports pertaining to the handling of the excavated fill.

D-2 SOIL SCREENING METHODS

Visual, olfactory and instrument-based (e.g. photoionization detector) soil screening will be performed by a qualified environmental professional during all excavations into known or potentially contaminated material (remaining contamination beneath the demarcation layer). Soil screening will be performed when invasive work is done and will include all excavation beneath the demarcation layer and invasive work performed during development, such as excavations for foundations and utility work, after issuance of the COC.

Soils will be segregated based on previous environmental data and screening results into material that requires off-site disposal and material that requires testing to determine if the material can be reused on-site as soil beneath a cover or if the material can be used as cover soil. Further discussion of off-site disposal of materials and on-site reuse is provided in Section D-6 of this Appendix. Refer to Section D-12 for a discussion of the methods to be followed in determining which materials can be re-used on-site beneath the demarcation layer and which materials must be properly disposed of off-site.

D-3 SOIL STAGING METHODS

Soil stockpiles will be continuously encircled with a berm and/or silt fence. Hay bales will be used as needed near catch basins, surface waters and other discharge points.

Stockpiles will be kept covered at all times with appropriately anchored tarps. Stockpiles will be routinely inspected and damaged tarp covers will be promptly replaced.

Stockpiles will be inspected at a minimum once each week and after every storm event. Results of inspections will be recorded in a logbook and maintained at the site and available for inspection by the NYSDEC.

D-4 MATERIALS EXCAVATION AND LOAD-OUT

A qualified environmental professional or person under their supervision will oversee all invasive work and the excavation and load-out of all excavated material.

The owner of the property and remedial party (if applicable) and its contractors are responsible for safe execution of all invasive and other work performed under this Plan.

The presence of utilities and easements on the site will be investigated by the qualified environmental professional. It will be determined whether a risk or impediment to the planned work under this SMP is posed by utilities or easements on the site.

Loaded vehicles leaving the site will be appropriately lined, tarped, securely covered, manifested, and placarded in accordance with appropriate Federal, State, local, and NYSDOT requirements (and all other applicable transportation requirements).

A truck wash will be operated on-site, as appropriate. The qualified environmental professional will be responsible for ensuring that all outbound trucks will be washed at the truck wash before leaving the site until the activities performed under this section are complete Truck wash waters will be collected and disposed of off-site in an appropriate manner.

Locations where vehicles enter or exit the site shall be inspected daily for evidence of offsite soil tracking.

The qualified environmental professional will be responsible for ensuring that all egress points for truck and equipment transport from the site are clean of dirt and other materials derived from the site during intrusive excavation activities. Cleaning of the adjacent streets will be performed as needed to maintain a clean condition with respect to site-derived materials.

D-5 MATERIALS TRANSPORT OFF-SITE

All transport of materials will be performed by licensed haulers in accordance with appropriate local, State, and Federal regulations, including 6 NYCRR Part 364. Haulers will be appropriately licensed and trucks properly placarded.

Material transported by trucks exiting the site will be secured with tight-fitting covers. Loose-fitting canvas-type truck covers will be prohibited. If loads contain wet material capable of producing free liquid, truck liners will be used.

Truck transport routes will be determined at the time of the Site activities, based upon the nature and duration of the activities, and must take into account the following: (a) limiting transport through residential areas and past sensitive sites; (b) use of city mapped truck routes; (c) prohibiting off-site queuing of trucks entering the facility; (d) limiting total distance to major highways; (e) promoting safety in access to highways; and (f) overall safety in transport.

Trucks will be prohibited from stopping and idling in the neighborhood outside the project site.

Egress points for truck and equipment transport from the site will be kept clean of dirt and other materials during site remediation and development.

Queuing of trucks will be performed on-site in order to minimize off-site disturbance. Off-site queuing will be prohibited.

D-6 MATERIALS DISPOSAL OFF-SITE

All material excavated and removed from the site will be treated as contaminated and regulated material and will be transported and disposed in accordance with all local, State (including 6NYCRR Part 360) and Federal regulations. If disposal of material from this site is proposed for unregulated off-site disposal (i.e. clean soil removed for development purposes), a formal request with an associated plan will be made to the NYSDEC. Unregulated off-site management of materials from this site will not occur without formal NYSDEC approval.

Off-site disposal locations for excavated soils will be identified in the pre-excavation notification. This will include estimated quantities and a breakdown by class of disposal facility if appropriate, i.e. hazardous waste disposal facility, solid waste landfill, petroleum treatment facility, C/D recycling facility, etc. Actual disposal quantities and associated documentation will be reported to the NYSDEC in the Periodic Review Report. This documentation will include: waste profiles, test results, facility acceptance letters, manifests, bills of lading and facility receipts.

Non-hazardous historic fill and contaminated soils taken off-site will be handled, at minimum, as a Municipal Solid Waste per 6NYCRR Part 360-1.2. Material that does not meet Unrestricted SCOs is prohibited from being taken to a New York State recycling facility (6NYCRR Part 360-16 Registration Facility).

D-7 MATERIALS REUSE ON-SITE

The qualified environmental professional will ensure that procedures defined for materials reuse in this SMP and as defined by the NYSDEC are followed and that unacceptable material does not remain on-site. Refer to Section D-12 for requirements in determining which excavated materials may be re-used on-site beneath the demarcation layer. Contaminated on-site material, including historic fill and contaminated soil, that is acceptable for reuse on-site will be placed below the demarcation layer and site cover system, and will not be reused within a cover soil layer, within landscaping berms, or as backfill for subsurface utility lines.

As excavated material deemed acceptable for re-use on-site beneath the demarcation layer will be stockpiled above the clean soil cover system, materials will be stockpiled on 6-mil plastic sheeting and covered with similar plastic sheeting to prevent migration/mixing of the soil/fill with the clean soil cover and to prevent dust releases. Materials may be stockpiled in any location on-site which is feasible and safely accessed given the construction activities. Prior to stockpiling activities, as an added precaution, a silt fence will be installed around the entire perimeter of the area where the stockpiling will occur. The silt fence will be installed as shown in the silt fence detail on Drawing C201 included at the end of this appendix. The silt fence will be maintained while the stockpiled soil is present in that area of the Site. Weekly inspections will be completed to insure the silt fence remains intact and operating as designed. Materials will be stockpiled to a maximum height of 7 feet above grade, as indicated in Drawing C201.

An elevation management area (EMA) will be created during continued redevelopment to manage soil/fill excavated for building foundation footers, utility poles, conduits, etc. As soil/fill is generated from each phase of the construction build-out, the EMA consisting of an area of relatively lower elevation will be temporarily uncovered in accordance with this SMP, the acceptable soil/fill material placed into the EMA, and the EMA re-covered in accordance with the SMP. Refer to Section D-9, "Cover System Restoration."

Drawing C003 included at the end of this appendix depicts a potential EMA located near the northern site boundary. The EMA will initially consist of clean soil cover that exceeds two feet in thickness, as verified by survey measurements of the top of clean soil cover and of the demarcation layer. The clean soil cover at the EMA will be removed in the presence of a surveyor, who will indicate when approximately six inches of clean soil cover remain above the demarcation layer. This will ensure that removed clean soil cover does not mix with the underlying potentially contaminated soil/fill. The removed clean soil cover will be stockpiled on-site. Soil/fill will then be added to the EMA above the existing demarcation layer and approximate six inches of remaining clean soil cover. A new demarcation layer will be placed above the placed soil/fill and its elevation surveyed. The stockpiled removed clean soil cover will then be placed over the demarcation layer to a thickness not less than two feet, and its final elevation surveyed. Any removed clean soil cover that is inadvertently mixed with potentially contaminated soil/fill will not be used as clean soil cover.

If during EMA activities installation of the new demarcation layer and replacement of the clean soil cover system will not be performed by then end of the work day (i.e., the EMA will be left open overnight), the EMA will be covered with 6-mil (minimum) plastic sheeting to prevent dust releases.

If the surveyed elevations of the demarcation layer and top of clean soil cover indicate that the clean soil cover is less than two feet in thickness, clean soil cover will either be added from other areas of the Site with excess clean soil cover, or DER-10 fill material will be imported to the Site and used as clean soil cover. The NYSDEC will be notified if fill material will need to be imported to the Site, such that testing requirements and subsequent approvals to use the imported fill can be obtained.

Presently, there are no buildings on-site to be demolished.

D-8 FLUIDS MANAGEMENT

All liquids to be removed from the site, including but not limited to, excavation dewatering, decontamination waters will be handled, transported and disposed in accordance with applicable local, State, and Federal regulations. Dewatering fluids will not be recharged back to the land surface or subsurface of the site, and will be managed off-site, unless prior approval is obtained from NYSDEC.

Discharge of water generated during large-scale construction activities to surface waters (i.e. a local pond, stream or river) will be performed under a SPDES permit.

D-9 COVER SYSTEM RESTORATION

During the Remedial Action, a minimum of 24 inches of clean soil was placed over the entire Site. The clean soil, consisting primarily of sand, was imported from sources chemically characterized by GZA and approved by the NYSDEC for use as clean soil cover at the Site. The imported soil met the Part 375 SCOs for Restricted Residential site use. The imported clean soil is separated from the underlying potentially contaminated soil/fill by a high visibility orange mesh

demarcation layer with the exception of three areas depicted on Figure 6 of the SMP. These three areas do not include a demarcation layer. This demarcation layer is present at a depth of approximately 2 ft. bgs over the majority of the Site and at depths ranging between approximately 4 and 8 ft. bgs in the remediated hotspot areas and utility corridors which parallel the major roadways on Site.

Upon redevelopment of the Site, the cover system will include asphalt pavement, concrete-covered sidewalks, concrete building slabs, etc. Thickness of the imported clean soil may be less than 24 inches in areas with such hardscape structures; however, exposure to underlying potentially contaminated soil/fill will be prevented by the presence of the hardscape surfaces. Refer to Section 3.3.1 of the SMP for additional details regarding the types of hardscape to be incorporated into the cover system.

After the completion of soil removal and any other invasive activities the cover system will be restored in a manner that complies with the RAWP dated November 2014 and this SMP.

The demarcation layer, consisting of orange mesh material, will be replaced to provide a visual reference to the top of the remaining contamination zone, the zone that requires adherence to special conditions for disturbance of remaining contaminated soils defined in this SMP. If the type of cover system changes from that which exists prior to the excavation (i.e., a soil cover is replaced by asphalt), this will constitute a modification of the cover element of the remedy and the upper surface of the remaining contamination. A figure showing the modified surface will be included in the subsequent Periodic Review Report.

D-10 BACKFILL FROM OFF-SITE SOURCES

All materials proposed for import onto the site, either for use as clean soil cover or for use beneath the demarcation layer, will be approved by the qualified environmental professional and will be in compliance with provisions in this SMP prior to receipt at the site. A Request to Import/Reuse Fill or Soil form, which can be found at http://www.dec.ny.gov/regulations/67386.html, will be prepared and submitted to the NYSDEC project manager allowing a minimum of 5 business days for review.

Material from industrial sites, spill sites, or other environmental remediation sites or potentially contaminated sites will not be imported to the site.

All imported soils will meet the backfill and cover soil quality standards established in 6NYCRR 375-6.7(d). Imported soils must be comprised of soil or other unregulated material as set forth in 6NYCRR Part 360, and must not exceed the applicable soil cleanup objectives / soil quality standards for the Site. Based on an evaluation of the land use, protection of groundwater and protection of ecological resources criteria, the resulting soil quality standards for the Site are defined as the Part 375 Soil Cleanup Objectives (SCOs) for Restricted Residential Site Use. The NYSDEC Part 375 SCOs are included at the end of this appendix. Soils that meet 'exempt' fill requirements under 6 NYCRR Part 360, but do not meet backfill or cover soil objectives for this site, will not be imported onto the site without prior approval by NYSDEC. Solid waste will not be imported onto the site. NYSDOT-approved aggregate sources may be imported to the Site, provided that they also meet the backfill and cover soil quality standards established in 6NYCRR 375-6.7(d). A current list of NYSDOT-approved aggregate sources can be found at https://www.dot.ny.gov/divisions/engineering/technical-services/materials-bureau/fine-coarse-aggregates.

Analytical data is required to demonstrate that the imported material complies with the Part 375 SCOs for Restricted Residential Site Use. The NYSDEC may issue a site specific exemption from the analytical testing requirements, based upon documentation of the origin and composition of the material. All of the testing data must be reported to the NYSDEC for approval to import soil to the Site. The table below lists the number of soil samples to be analyzed for soil imported to the Site, according to quantity of soil to be imported. Soil samples will be analyzed for the following:

- TCL and CP-51 list VOCs via USEPA SW-846 Test Method 8260
- TCL SVOCs via USEPA SW-846 Test Method 8270
- TAL Metals via USEPA SW-846 Test Methods 6010/7470
- PCBs via USEPA SW-846 Test Method 8082
- Pesticides via USEPA SW-846 Test Method 8081

Recommended Number of Soil Samples for Soil Imported To or Exported From a Site							
Contaminant	VOCs	VOCs SVOCs, Inorganics & PCBs/Pesticides					
Soil Quantity (cubic yards)	Discrete Samples	Composite	Discrete Samples/Composite				
0-50	1	1	3-5 discrete samples from				
50-100	2	1	different locations in the fill				
100-200	3	1	being provided will comprise a				
200-300	4	1	composite sample for analysis				
300-400	4	2					
400-500	5	2					
500-800	6	2					
800-1000	7	2					
> 1000	Add an additional 2 VOC and 1 composite for each additional 1000 Cubic yards or consult with DER						

Trucks entering the site with imported soils will be securely covered with tight fitting covers. Imported soils will be stockpiled separately from excavated materials, on 6-mil plastic sheeting, and will be covered with similar plastic sheeting to prevent dust releases. Materials may be stockpiled in any location on-site which is feasible and safely accessed given the construction activities. Prior to stockpiling activities, as an added precaution, a silt fence will be installed around the entire perimeter of the area where the stockpiling will occur. The silt fence will be installed as shown in the silt fence detail on Drawing C201 included at the end of this appendix. The silt fence will be maintained while the stockpiled soil is present in that area of the Site. Weekly inspections will be completed to insure the silt fence remains intact and operating as designed. Materials will be stockpiled to a maximum height of 7 feet above grade, as indicated in Drawing C201.

D-11 STORMWATER POLLUTION PREVENTION

Stormwater pollution prevention is to be accomplished during site redevelopment and future disturbance of the site cover system through the implementation of measures provided in the Erosion and Sedimentation Control Plan (E&SCP), GZA December 2014. The E&SCP was prepared prior to and used during site remediation and initial soil cover placement. The E&SCP includes provisions including:

- Construction Entrance;
- Silt Fencing;
- Seeding and mulching; and
- Inspections and Maintenance.

Erosion and sediment control measures identified in the SMP shall be observed to ensure that they are operating correctly. Where discharge locations or points are accessible, they shall be inspected to ascertain whether erosion control measures are effective in preventing significant impacts to receiving waters.

Silt fencing or hay bales will be installed around the entire perimeter of the construction area. A copy of the Erosion and Sediment Control Plan is provided in Appendix I.

D-12 EXCAVATION CONTINGENCY PLAN

If underground tanks or other previously unidentified contaminant sources are found during post-remedial subsurface excavations or development related construction, excavation activities will be suspended until sufficient equipment is mobilized to address the condition.

Soil/fill excavated beneath the demarcation layer during redevelopment will be field screened to determine if the soil/fill is potentially impacted. Non-impacted soil (those that do not appear to be visually impacted and registering 10 ppm or less on an OVM during field screening) will be excavated and stockpiled for eventual reuse on-site. As the materials will be stockpiled above the clean soil cover system, materials will be stockpiled on 6-mil plastic sheeting and covered with similar plastic sheeting to prevent migration/mixing of the soil/fill with the clean soil cover and to prevent dust releases. If any of the following materials are encountered during site work, they will be segregated and placed on and covered by 6-mil plastic sheeting for proper off-site disposal:

- Material exhibiting petroleum, solvent, and/or chemical-type odors
- Material that appears to include petroleum, solvent, and/or chemical free product

If any of the following materials are encountered during site work, they will be segregated and placed on and covered by 6-mil plastic sheeting for chemical characterization:

- Suspect SCOC material (black sands, dark brown sands, and ash)
- Material that appears to be visually impacted and/or registers more than 10 ppm on an OVM during field screening

Identification of unknown or unexpected contaminated media identified by screening during invasive site work will be promptly communicated by phone to NYSDEC's Project Manager. Reportable quantities of petroleum product will also be reported to the NYSDEC spills hotline. These findings will be also included in the Periodic Review Report.

Sampling will be performed on the stockpiled soil/fill designated for chemical analysis to determine the nature of the material, if the material can be re-used on-site, and proper disposal method (if the material will require off-site disposal). For suspect SCOC material, chemical analysis will consist of the following:

- PAHs via USEPA SW-846 Test Method 8270
- TAL Metals via USEPA SW-846 Test Methods 6010/7470

For any material that appears to be visually impacted and/or registers more than 10 ppm on an OVM during field screening, chemical analysis will be performed for the following analytes, unless approval is granted by the NYSDEC to reduce the analyte list:

- TCL and CP-51 list VOCs via USEPA SW-846 Test Method 8260
- TCL SVOCs via USEPA SW-846 Test Method 8270
- TAL Metals via USEPA SW-846 Test Methods 6010/7470
- PCBs via USEPA SW-846 Test Method 8082
- Pesticides via USEPA SW-846 Test Method 8081

For the suspect SCOC material, the derived PELT values will be the comparison criteria utilized to determine if the material can be re-used on-site beneath the demarcation layer. The PELT values are listed below.

• Arsenic: 29.6 ppm

• Chromium: 9,145 ppm

• Copper: 10,000 ppm

• Nickel: 10,000 ppm

• Zinc: 10,000 ppm

• Benzo(a)anthracene: 21,173 ppm

• Benzo(a)pyrene: 17,615 ppm

• Benzo(b)fluoranthene: 18,022 ppm

• Dibenz(a,h)anthracene: 3,240 ppm

• Indeno(1,2,3-cd)pyrene: 13,149 ppm

For any material that appears to be visually impacted and/or registers more than 10 ppm on an OVM during field screening, the NYSDEC Part 375 Soil Cleanup Objectives (SCOs) for Restricted Residential Site Use will be utilized to determine if the material can be re-used on-site beneath the demarcation layer, with the exception of the ten analytes listed above for which the PELT values will be utilized. The NYSDEC Part 375 SCOs are attached to the end of this appendix.

All of the testing data must be reported to the NYSDEC before any reuse of soil/fill at the Site. All soil/fill designated for off-site disposal will be subject to the waste characterization analysis required by the selected disposal facility.

375-6.8

Soil cleanup objective tables. Unrestricted use soil cleanup objectives. (a)

Table 375-6.8(a):Unrestricted Use Soil Cleanup Objectives

Contaminant	CAS Number	Unrestricted Use					
Metals							
Arsenic	7440-38-2	13 °					
Barium	7440-39-3	350 °					
Beryllium	7440-41-7	7.2					
Cadmium	7440-43-9	2.5 °					
Chromium, hexavalent e	18540-29-9	1 ^b					
Chromium, trivalent °	16065-83-1	30 °					
Copper	7440-50-8	50					
Total Cyanide e, f		27					
Lead	7439-92-1	63 °					
Manganese	7439-96-5	1600 °					
Total Mercury		0.18 °					
Nickel	7440-02-0	30					
Selenium	7782-49-2	3.9°					
Silver	7440-22-4	2					
Zinc	7440-66-6	109 °					
	PCBs/Pesticides						
2,4,5-TP Acid (Silvex) ^f	93-72-1	3.8					
4,4'-DDE	72-55-9	0.0033 ^b					
4,4'-DDT	50-29-3	0.0033 ^b					
4,4'-DDD	72-54-8	0.0033 ^b					
Aldrin	309-00-2	0.005 °					
alpha-BHC	319-84-6	0.02					
beta-BHC	319-85-7	0.036					
Chlordane (alpha)	5103-71-9	0.094					

Table 375-6.8(a):Unrestricted Use Soil Cleanup Objectives

Contaminant	CAS Number	Unrestricted Use
delta-BHC ^g	319-86-8	0.04
Dibenzofuran f	132-64-9	7
Dieldrin	60-57-1	0.005°
Endosulfan I d, f	959-98-8	2.4
Endosulfan II ^{d, f}	33213-65-9	2.4
Endosulfan sulfate d, f	1031-07-8	2.4
Endrin	72-20-8	0.014
Heptachlor	76-44-8	0.042
Lindane	58-89-9	0.1
Polychlorinated biphenyls	1336-36-3	0.1
Semivolat	tile organic compo	ounds
Acenaphthene	83-32-9	20
Acenapthylene f	208-96-8	100 ^a
Anthracene f	120-12-7	100 ^a
Benz(a)anthracene f	56-55-3	1°
Benzo(a)pyrene	50-32-8	1°
Benzo(b)fluoranthene f	205-99-2	1°
Benzo(g,h,i)perylene f	191-24-2	100
Benzo(k)fluoranthene f	207-08-9	0.8 °
Chrysene ^f	218-01-9	1°
Dibenz(a,h)anthracene f	53-70-3	0.33 ^b
Fluoranthene ^f	206-44-0	100 a
Fluorene	86-73-7	30
Indeno(1,2,3-cd)pyrene ^f	193-39-5	0.5 °
m-Cresol ^f	108-39-4	0.33 ^b
Naphthalene ^f	91-20-3	12
o-Cresol ^f	95-48-7	0.33 b

Table 375-6.8(a):Unrestricted Use Soil Cleanup Objectives

Contaminant	CAS Number	Unrestricted Use
p-Cresol ^f	106-44-5	0.33 b
Pentachlorophenol	87-86-5	0.8 b
Phenanthrene ^f	85-01-8	100
Phenol	108-95-2	0.33 ^b
Pyrene ^f	129-00-0	100
Volatile	e organic compour	nds
1,1,1-Trichloroethane ^f	71-55-6	0.68
1,1-Dichloroethane ^f	75-34-3	0.27
1,1-Dichloroethene ^f	75-35-4	0.33
1,2-Dichlorobenzene ^f	95-50-1	1.1
1,2-Dichloroethane	107-06-2	0.02°
cis -1,2-Dichloroethene ^f	156-59-2	0.25
trans-1,2-Dichloroethene ^f	156-60-5	0.19
1,3-Dichlorobenzene ^f	541-73-1	2.4
1,4-Dichlorobenzene	106-46-7	1.8
1,4-Dioxane	123-91-1	0.1 ^b
Acetone	67-64-1	0.05
Benzene	71-43-2	0.06
n-Butylbenzene ^f	104-51-8	12
Carbon tetrachloride f	56-23-5	0.76
Chlorobenzene	108-90-7	1.1
Chloroform	67-66-3	0.37
Ethylbenzene ^f	100-41-4	1
Hexachlorobenzene ^f	118-74-1	0.33 ^b
Methyl ethyl ketone	78-93-3	0.12
Methyl tert-butyl ether f	1634-04-4	0.93
Methylene chloride	75-09-2	0.05

Table 375-6.8(a): Unrestricted Use Soil Cleanup Objectives

Contaminant	CAS Number	Unrestricted Use
n - Propylbenzene ^f	103-65-1	3.9
sec-Butylbenzene f	135-98-8	11
tert-Butylbenzene f	98-06-6	5.9
Tetrachloroethene	127-18-4	1.3
Toluene	108-88-3	0.7
Trichloroethene	79-01-6	0.47
1,2,4-Trimethylbenzene ^f	95-63-6	3.6
1,3,5-Trimethylbenzene ^f	108-67-8	8.4
Vinyl chloride ^f	75-01-4	0.02
Xylene (mixed)	1330-20-7	0.26

All soil cleanup objectives (SCOs) are in parts per million (ppm).

Footnotes

^a The SCOs for unrestricted use were capped at a maximum value of 100 ppm. See Technical Support Document (TSD), section 9.3.

^b For constituents where the calculated SCO was lower than the contract required quantitation limit (CRQL), the CRQL is used as the Track 1 SCO value.

^c For constituents where the calculated SCO was lower than the rural soil background concentration, as determined by the Department and Department of Health rural soil survey, the rural soil background concentration is used as the Track 1 SCO value for this use of the site.

^d SCO is the sum of endosulfan I, endosulfan II and endosulfan sulfate.

^e The SCO for this specific compound (or family of compounds) is considered to be met if the analysis for the total species of this contaminant is below the specific SCO.

^f Protection of ecological resources SCOs were not developed for contaminants identified in Table 375-6.8(b) with "NS". Where such contaminants appear in Table 375-6.8(a), the applicant may be required by the Department to calculate a protection of ecological resources SCO according to the TSD.

(b) Restricted use soil cleanup objectives.

Table 375-6.8(b): Restricted Use Soil Cleanup Objectives

	CAS]	Protection of Public Health				Protection of
Contaminant Numb		Residential	Restricted- Residential	Commercial	Industrial	of Ecological Resources	Ground- water
Metals							
Arsenic	7440-38-2	16 ^f	16 ^f	16 ^f	16 ^f	13 ^f	16 ^f
Barium	7440-39-3	$350^{\rm f}$	400	400	10,000 ^d	433	820
Beryllium	7440-41-7	14	72	590	2,700	10	47
Cadmium	7440-43-9	2.5 ^f	4.3	9.3	60	4	7.5
Chromium, hexavalent h	18540-29-9	22	110	400	800	1 ^e	19
Chromium, trivalent h	16065-83-1	36	180	1,500	6,800	41	NS
Copper	7440-50-8	270	270	270	10,000 ^d	50	1,720
Total Cyanide h		27	27	27	10,000 ^d	NS	40
Lead	7439-92-1	400	400	1,000	3,900	63 ^f	450
Manganese	7439-96-5	2,000 ^f	2,000 ^f	10,000 ^d	10,000 ^d	1600 ^f	2,000 ^f
Total Mercury		0.81 ^j	0.81 ^j	2.8 ^j	5.7 ^j	0.18 ^f	0.73
Nickel	7440-02-0	140	310	310	10,000 ^d	30	130
Selenium	7782-49-2	36	180	1,500	6,800	3.9 ^f	4 ^f
Silver	7440-22-4	36	180	1,500	6,800	2	8.3
Zinc	7440-66-6	2200	10,000 ^d	10,000 ^d	10,000 ^d	109 ^f	2,480
PCBs/Pesticides							
2,4,5-TP Acid (Silvex)	93-72-1	58	100ª	500 ^b	1,000°	NS	3.8
4,4'-DDE	72-55-9	1.8	8.9	62	120	0.0033 ^e	17
4,4'-DDT	50-29-3	1.7	7.9	47	94	0.0033 ^e	136
4,4'- DDD	72-54-8	2.6	13	92	180	0.0033 ^e	14
Aldrin	309-00-2	0.019	0.097	0.68	1.4	0.14	0.19
alpha-BHC	319-84-6	0.097	0.48	3.4	6.8	0.04 ^g	0.02
beta-BHC	319-85-7	0.072	0.36	3	14	0.6	0.09
Chlordane (alpha)	5103-71-9	0.91	4.2	24	47	1.3	2.9

Table 375-6.8(b): Restricted Use Soil Cleanup Objectives

	CAS		Protection of 1	Public Health	Protection of	Protection of	
Contaminant	Number	Residential	Restricted- Residential	Commercial	Industrial	Ecological Resources	Ground- water
delta-BHC	319-86-8	100ª	100ª	500 ^b	1,000°	0.04 ^g	0.25
Dibenzofuran	132-64-9	14	59	350	1,000°	NS	210
Dieldrin	60-57-1	0.039	0.2	1.4	2.8	0.006	0.1
Endosulfan I	959-98-8	4.8 ⁱ	24 ⁱ	200 ⁱ	920 ⁱ	NS	102
Endosulfan II	33213-65-9	4.8 ⁱ	24 ⁱ	200 ⁱ	920 ⁱ	NS	102
Endosulfan sulfate	1031-07-8	4.8 ⁱ	24 ⁱ	200 ⁱ	920 ⁱ	NS	1,000°
Endrin	72-20-8	2.2	11	89	410	0.014	0.06
Heptachlor	76-44-8	0.42	2.1	15	29	0.14	0.38
Lindane	58-89-9	0.28	1.3	9.2	23	6	0.1
Polychlorinated biphenyls	1336-36-3	1	1	1	25	1	3.2
Semivolatiles	-						
Acenaphthene	83-32-9	100ª	100ª	500 ^b	1,000°	20	98
Acenapthylene	208-96-8	100ª	100ª	500 ^b	1,000°	NS	107
Anthracene	120-12-7	100ª	100 ^a	500 ^b	1,000°	NS	1,000°
Benz(a)anthracene	56-55-3	1 ^f	1 ^f	5.6	11	NS	1 ^f
Benzo(a)pyrene	50-32-8	1 ^f	1 ^f	1 ^f	1.1	2.6	22
Benzo(b)fluoranthene	205-99-2	1 ^f	1 ^f	5.6	11	NS	1.7
Benzo(g,h,i)perylene	191-24-2	100 ^a	100 ^a	500 ^b	1,000°	NS	1,000°
Benzo(k)fluoranthene	207-08-9	1	3.9	56	110	NS	1.7
Chrysene	218-01-9	1 ^f	3.9	56	110	NS	1 ^f
Dibenz(a,h)anthracene	53-70-3	0.33 ^e	0.33 ^e	0.56	1.1	NS	1,000°
Fluoranthene	206-44-0	100ª	100ª	500 ^b	1,000°	NS	1,000°
Fluorene	86-73-7	100ª	100ª	500 ^b	1,000°	30	386
Indeno(1,2,3-cd)pyrene	193-39-5	0.5 ^f	0.5 ^f	5.6	11	NS	8.2
m-Cresol	108-39-4	100ª	100ª	500 ^b	1,000°	NS	0.33 ^e
Naphthalene	91-20-3	100ª	100 ^a	500 ^b	1,000°	NS	12

Table 375-6.8(b): Restricted Use Soil Cleanup Objectives

	CAS]	Protection of 1	Protection of	Protection of		
Contaminant	Number	Residential	Restricted- Residential	Commercial	Industrial	Ecological Resources	Ground- water
o-Cresol	95-48-7	100ª	100ª	500 ^b	1,000°	NS	0.33 ^e
p-Cresol	106-44-5	34	100ª	500 ^b	1,000°	NS	0.33 ^e
Pentachlorophenol	87-86-5	2.4	6.7	6.7	55	0.8e	0.8e
Phenanthrene	85-01-8	100ª	100ª	500 ^b	1,000°	NS	1,000°
Phenol	108-95-2	100ª	100ª	500 ^b	1,000°	30	0.33 ^e
Pyrene	129-00-0	100ª	100ª	500 ^b	1,000°	NS	1,000°
Volatiles							
1,1,1-Trichloroethane	71-55-6	100ª	100ª	500 ^b	1,000°	NS	0.68
1,1-Dichloroethane	75-34-3	19	26	240	480	NS	0.27
1,1-Dichloroethene	75-35-4	100ª	100ª	500 ^b	1,000°	NS	0.33
1,2-Dichlorobenzene	95-50-1	100ª	100ª	500 ^b	1,000°	NS	1.1
1,2-Dichloroethane	107-06-2	2.3	3.1	30	60	10	$0.02^{\rm f}$
cis-1,2-Dichloroethene	156-59-2	59	100ª	500 ^b	1,000°	NS	0.25
trans-1,2-Dichloroethene	156-60-5	100ª	100ª	500 ^b	1,000°	NS	0.19
1,3-Dichlorobenzene	541-73-1	17	49	280	560	NS	2.4
1,4-Dichlorobenzene	106-46-7	9.8	13	130	250	20	1.8
1,4-Dioxane	123-91-1	9.8	13	130	250	0.1 ^e	0.1 ^e
Acetone	67-64-1	100 ^a	100 ^b	500 ^b	1,000°	2.2	0.05
Benzene	71-43-2	2.9	4.8	44	89	70	0.06
Butylbenzene	104-51-8	100ª	100ª	500 ^b	1,000°	NS	12
Carbon tetrachloride	56-23-5	1.4	2.4	22	44	NS	0.76
Chlorobenzene	108-90-7	100ª	100ª	500 ^b	1,000°	40	1.1
Chloroform	67-66-3	10	49	350	700	12	0.37
Ethylbenzene	100-41-4	30	41	390	780	NS	1
Hexachlorobenzene	118-74-1	0.33 ^e	1.2	6	12	NS	3.2
Methyl ethyl ketone	78-93-3	100ª	100ª	500 ^b	1,000°	100ª	0.12

Table 375-6.8(b): Restricted Use Soil Cleanup Objectives

CA		1	Protection of 1	Protection of	Protection of		
Contaminant	Number	Residential	Restricted- Residential	Commercial	Industrial	Ecological Resources	Ground- water
Methyl tert-butyl ether	1634-04-4	62	100ª	500 ^b	1,000°	NS	0.93
Methylene chloride	75-09-2	51	100ª	500 ^b	1,000°	12	0.05
n-Propylbenzene	103-65-1	100ª	100ª	500 ^b	1,000°	NS	3.9
sec-Butylbenzene	135-98-8	100ª	100ª	500 ^b	1,000°	NS	11
tert-Butylbenzene	98-06-6	100ª	100ª	500 ^b	1,000°	NS	5.9
Tetrachloroethene	127-18-4	5.5	19	150	300	2	1.3
Toluene	108-88-3	100ª	100ª	500 ^b	1,000°	36	0.7
Trichloroethene	79-01-6	10	21	200	400	2	0.47
1,2,4-Trimethylbenzene	95-63-6	47	52	190	380	NS	3.6
1,3,5- Trimethylbenzene	108-67-8	47	52	190	380	NS	8.4
Vinyl chloride	75-01-4	0.21	0.9	13	27	NS	0.02
Xylene (mixed)	1330-20-7	100ª	100ª	500 ^b	1,000°	0.26	1.6

All soil cleanup objectives (SCOs) are in parts per million (ppm). NS=Not specified. See Technical Support Document (TSD).

Footnotes

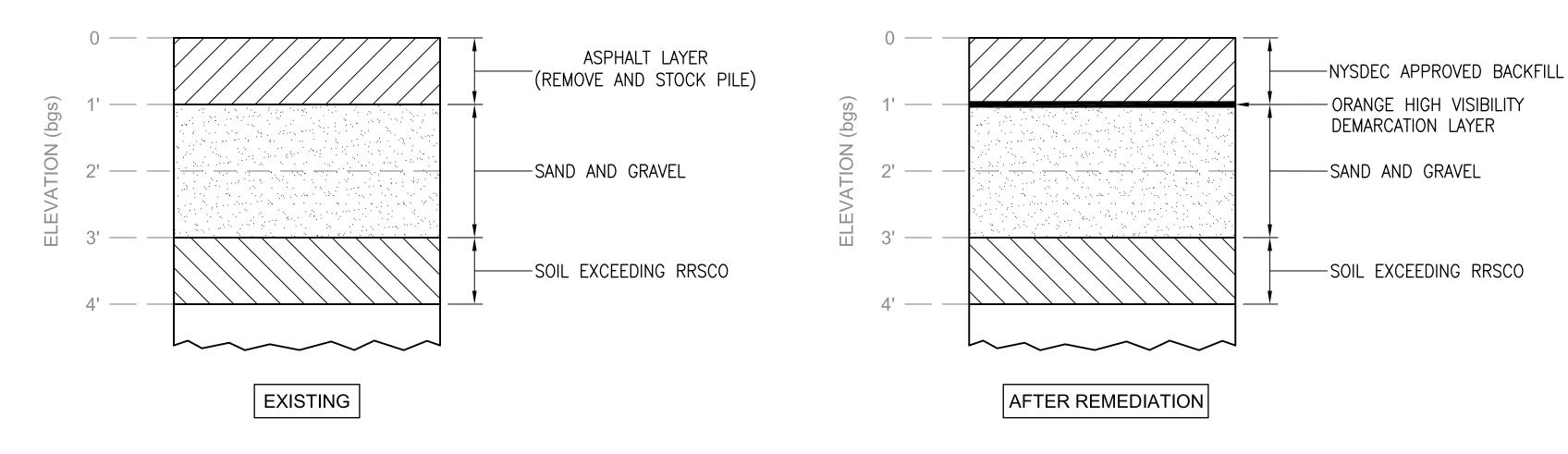
^a The SCOs for residential, restricted-residential and ecological resources use were capped at a maximum value of 100 ppm. See TSD section 9.3.

^b The SCOs for commercial use were capped at a maximum value of 500 ppm. See TSD section 9.3.

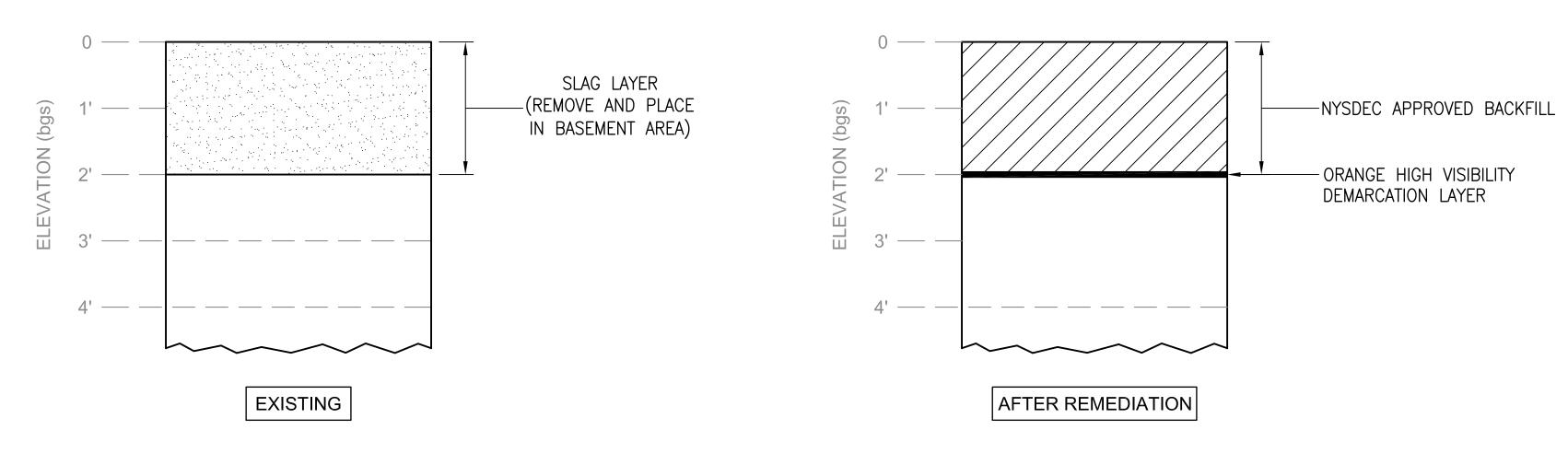
^c The SCOs for industrial use and the protection of groundwater were capped at a maximum value of 1000 ppm. See TSD section 9.3.

^d The SCOs for metals were capped at a maximum value of 10,000 ppm. See TSD section 9.3.

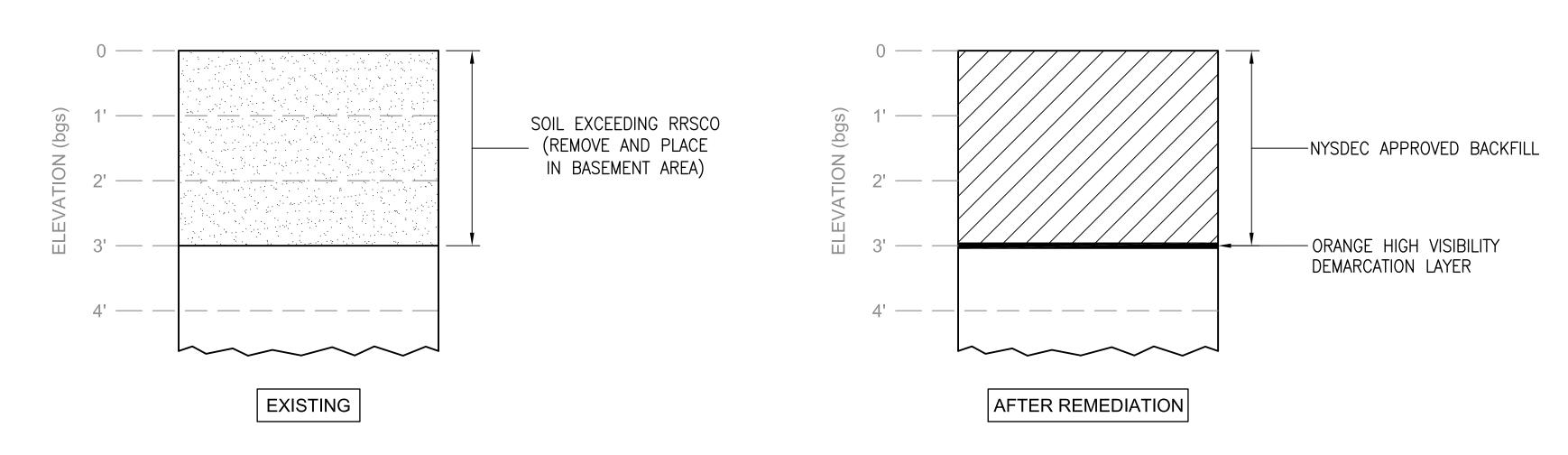
^e For constituents where the calculated SCO was lower than the contract required quantitation limit (CRQL), the CRQL is used as the SCO value.


^f For constituents where the calculated SCO was lower than the rural soil background concentration as determined by the Department and Department of Health rural soil survey, the rural soil background concentration is used as the Track 2 SCO value for this use of the site.

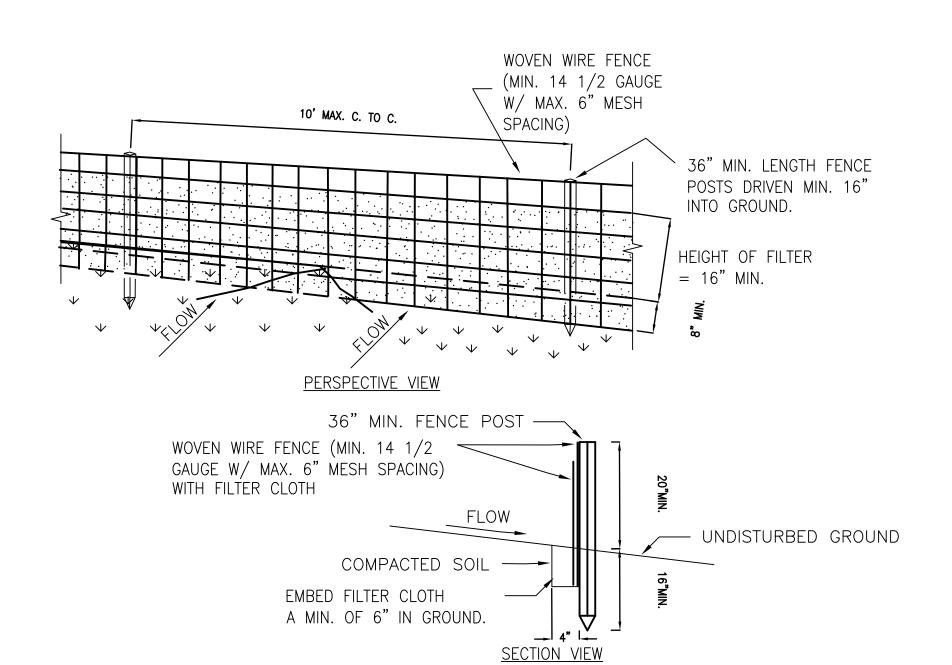
^g This SCO is derived from data on mixed isomers of BHC.


^h The SCO for this specific compound (or family of compounds) is considered to be met if the analysis for the total species of this contaminant is below the specific SCO.

ⁱ This SCO is for the sum of endosulfan I, endosulfan II, and endosulfan sulfate.

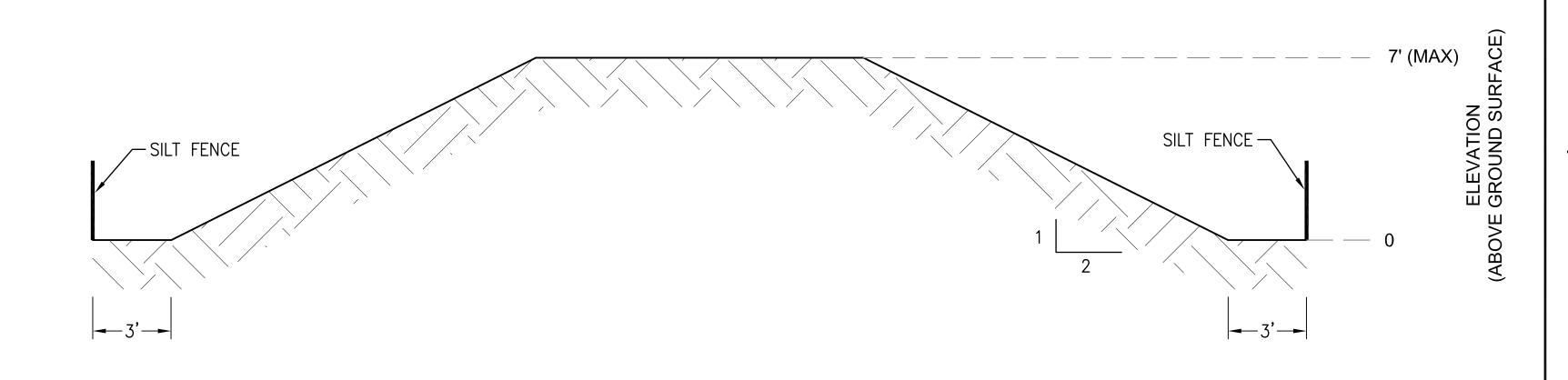

^j This SCO is the lower of the values for mercury (elemental) or mercury (inorganic salts). See TSD Table 5.6-1.

1 ASPHALT REMOVAL FROM AREA 9



2 SLAG REMOVAL FROM AREA 13 N.T.S.

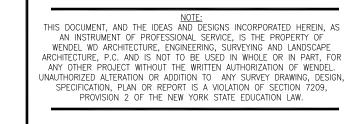
3 CONTAINMENT REMOVAL FROM AREA 2


RRSCO = PART 37S RESTRICTED RESIDENTIAL SOIL CLEANUP OBJECTIVES

CONSTRUCTION SPECIFICATIONS

- 1. WOVEN WIRE FENCE TO BE FASTENED SECURELY TO FENCE POSTS WITH WIRE TIES OR STAPLES. POSTS SHALL BE STEEL EITHER "T" OR "U" TYPE OR HARDWOOD.
- 2. FILTER CLOTH TO BE TO BE FASTENED SECURELY TO WOVEN WIRE FENCE WITH TIES SPACED EVERY 24" AT TOP AND MID SECTION. FENCE SHALL BE WOVEN WIRE, 12 1/2 GAUGE, 6" MAXIMUM MESH OPENING.
- 3. WHEN TWO SECTIONS OF FILTER CLOTH ADJOIN EACH OTHER THEY SHALL BE OVER—LAPPED BY SIX INCHES AND FOLDED. FILTER CLOTH SHALL BE EITHER FILTER X, MIRAFI 100X, STABILINKA T140N, OR APPROVED EQUIVALENT.
- 4. PREFABRICATED UNITS SHALL BE GEOFAB, ENVIROFENCE, OR APPROVED EQUIVALENT.
- 5. MAINTENANCE SHALL BE PERFORMED AS NEEDED AND MATERIAL REMOVED WHEN "BULGES" DEVELOP IN THE SILT FENCE.

5 SOIL STORAGE DETAIL

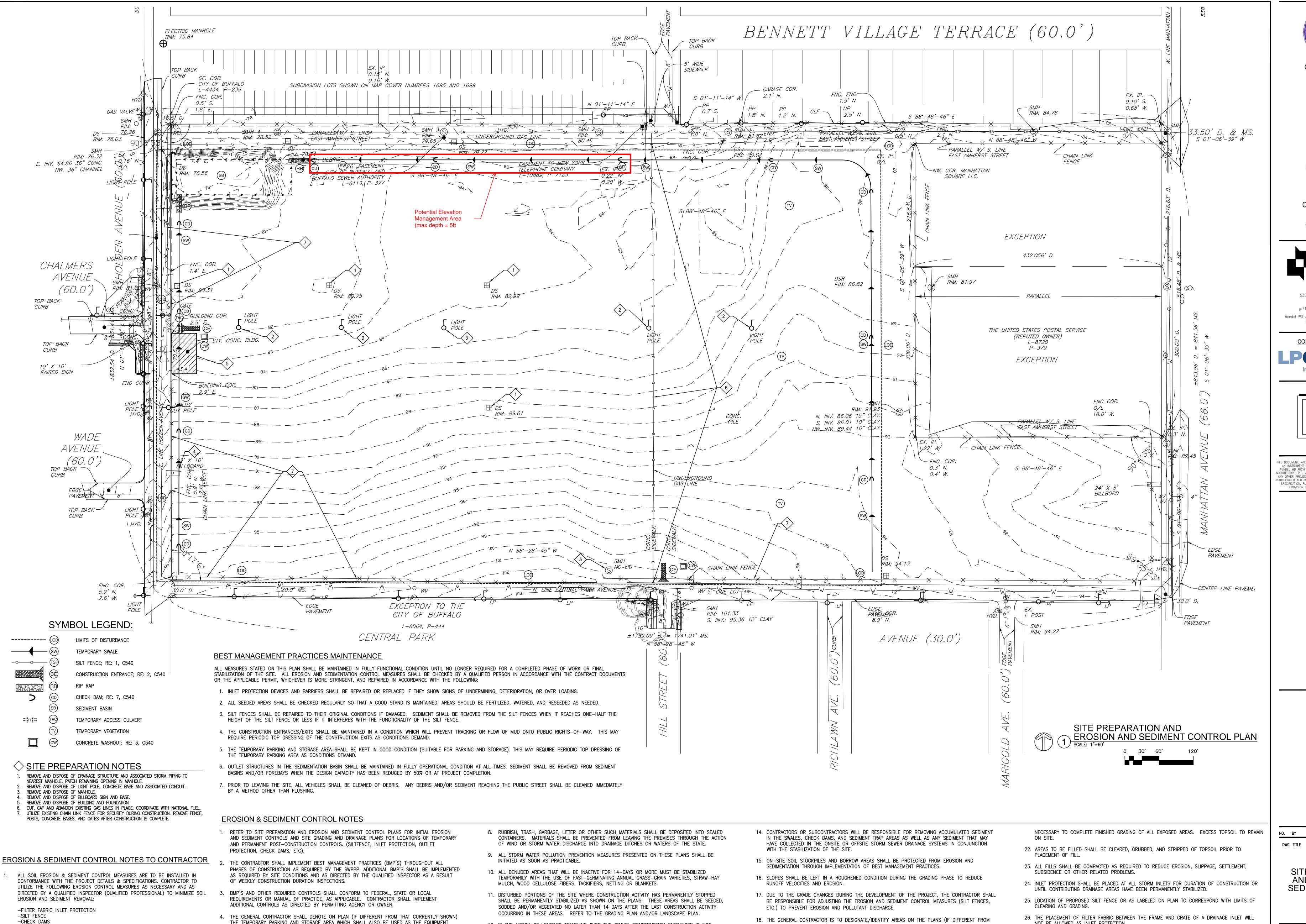

N.T.S.

535 Washington Street, Suite 603
Buffalo, NY 14203
www.wendelcompanies.com
p:716.688.0766 f:716.625.6825

Wendel WD Architecture, Engineering, Surveying and
Landscape Architecture P.C.

NO. BY REVISIONS DATE

DWG. TITLE


DETAILS

DATE MAY 2014

SCALE AS NOTED

DWN. STD CHK. SMR

C201

12. IF THE ACTION OF VEHICLES TRAVELING OVER THE GRAVEL CONSTRUCTION ENTRANCES IS NOT

USE INGRESS/EGRESS LOCATIONS AS PROVIDED.

STORM DRAINS MUST BE REMOVED IMMEDIATELY.

SUFFICIENT TO REMOVE THE MAJORITY OF DIRT OR MUD, THEN THE TIRES MUST BE WASHED BEFORE

INTERCEPT THE WASH WATER AND TRAP THE SEDIMENT BEFORE IT IS CARRIED OFF THE SITE. ONLY

THE VEHICLES ENTER A PUBLIC ROAD. IF WASHING IS USED, PROVISIONS MUST BE MADE TO

13. ALL MATERIALS SPILLED, DROPPED, WASHED OR TRACKED FROM VEHICLES ONTO ROADWAYS OR INTO

MAINTENANCE AND CLEANING AREA, EMPLOYEE PARKING AREA, AND AREA FOR LOCATING PORTABLE

ON SITE OR READILY AVAILABLE TO CONTAIN AND CLEAN-UP FUEL OR CHEMICAL SPILLS AND LEAKS.

5. ALL WASH WATER (CONCRETE TRUCKS, VEHICLE CLEANING, EQUIPMENT CLEANING, ETC.) SHALL BE

6. SUFFICIENT OIL AND GREASE ABSORBING MATERIALS AND FLOTATION BOOMS SHALL BE MAINTAINED

BASED OR TOXIC LIQUIDS FOR DUST SUPPRESSION OPERATIONS IS PROHIBITED.

FACILITIES, OFFICE TRAILERS, AND TOILET FACILITIES.

DETAINED AND PROPERLY TREATED OR DISPOSED.

DOWN AREAS, PORTA-POTTIES, WHEEL WASHES, CONCRETE WASHOUTS, MASON'S AREA, 7. DUST ON THE SITE SHALL BE CONTROLLED. THE USE OF MOTOR OILS AND OTHER PETROLEUM

-ROCK OUTLET PROTECTION

-CONSTRUCTION ENTRANCE

-DUST CONTROL (WATERING)

IMMEDIATELY DENOTE THE LOCATIONS OF THE FOLLOWING ITEMS ON THE SITE PLANS

AFTER THEY ARE IMPLEMENTED AND INSTALLED AND NOTE ANY CHANGES IN LOCATION

AS THEY OCCUR THROUGHOUT THE CONSTRUCTION PROCESS: TRAILERS, PARKING, LAY

FUEL AND MATERIAL STORAGE CONTAINERS, SOLID WASTE CONTAINERS, ETC.

-SEDIMENT BASINS

-TEMPORARY SWALE

HIGHLAND PARK PHASE 1

CITY OF BUFFALO SITE PLAN APPROVAL SET

535 Washington Street, Suite 603 Buffalo, NY 14203 www.wendelcompanies.com p:716.688.0766 f:716.625.6825 Wendel WD Architecture, Engineering, Surveying and

PROGRESS NOT FOR CONSTRUCTION

NAUTHORIZED ALTERATION OR ADDITION TO ANY SURVEY DRAWING, DESIGN SPECIFICATION, PLAN OR REPORT IS A VIOLATION OF SECTION 7209, PROVISION 2 OF THE NEW YORK STATE EDUCATION LAW.

NOT BE ALLOWED AS INLET PROTECTION. 27. ALL WATER PUMPED FORM EXCAVATIONS (DEWATERING) MUST PASS THROUGH A SEDIMENT TRAPPING

THOSE CURRENTLY SHOWN) INSIDE OF THE LIMITS OF DISTURBANCE FOR WASTE DISPOSAL AND

19. ALL GRADED OR DISTURBED AREAS INCLUDING SLOPES SHALL BE PROTECTED DURING CLEARING AND

20. ALL SEDIMENT CONTROL PRACTICES AND MEASURES SHALL BE CONSTRUCTED, APPLIED AND

MAINTAINED IN ACCORDANCE WITH THE APPROVED EROSION AND SEDIMENT CONTROL PLAN.

21. TOPSOIL REQUIRED FOR THE ESTABLISHMENT OF VEGETATION SHALL BE STOCKPILED IN AMOUNT

CONSTRUCTION IN ACCORDANCE WITH THE APPROVED EROSION AND SEDIMENT CONTROL PLAN UNTIL

DELIVERY AND MATERIAL STORAGE.

THEY ARE PERMANENTLY STABILIZED.

TO, SEDIMENT BAGS, PORTABLE SEDIMENT TANKS AND SEDIMENT TRAPS. 28. FOR STORMWATER INLETS IN GRASSED OR LANDSCAPED AREAS, USE FILTER FABRIC DROP INLET PROTECTION (SEE DETAILS ON SHEET C540). FOR INLETS IN AREAS TO BE PAVED, USE EXCAVATED DROP INLET PROTECTION UNTIL CONTRIBUTING AREA IS STABILIZED (SUBBASE OR PAVEMENT INSTALLATION). ADDITIONAL SILTFENCE MAY BE REQUIRED TO PREVENT SEDIMENT MIGRATION ONTO

STABILIZED AREAS.

DEVICE BEFORE BEING DISCHARGED FROM THE SITE. THESE DEVICES INCLUDE, BUT ARE NOT LIMITED

SITE PREPARATION AND EROSION AND SEDIMENT CONTROL PLAN

MAY 1, 2015 SCALE AS SHOWN CC1 CHK. TJZ PROJ. No. 324715

APPENDIX E – HEALTH AND SAFETY PLAN

1. CLIENT/SITE/PROJECT INFORMATION							
Client: Highland Park Village, LLC							
Site Address: 129 Holden Street, Buffalo, New York							
Site Description, Work Environment: Work and indoors in residential units	cenvironment is primarily outdoo	ors in utility, parking, and landscaped areas					
Job/Project #:	Estimated Start Date:	Estimated Finish Date:					
Site is Covered by the Following Regulations:	OSHA HAZWOPER Standard	Mine Safety and Health Administration					
	OSHA Construction Regulations	None of these					
2. EMERGENCY INFORMATION							
Hospital Name: Buffalo General Hospital		Hospital #: 716-859-5600					
Hospital Address: 100 High Street, Buffalo,	New York	Directions and Street Map Attached: Yes					
Local Fire #: 911	Local Ambulance #: 911	Local Police #: 911					
WorkCare Incident Intervention Services:1-888-449-7787	For non-emergencies, if an em	ployee becomes hurt or sick call 888-449-					
Other Emergency Contact(s):	Phone #'s:						
Site-Specific Emergency Preparedness/Res	oonse Procedures/Concerns:						
 All EHS Events (incidents, first aid, near misses, unsafe acts/conditions, fires, chemical spills, property damage, extraordinary safe behaviors) must be reported immediately to the Project Manager, and within 24hours to the EHS Event Reporting Portal at www.kelleronline.com/portal. Username gempl1; Password ge5607. In the event of a chemical release greater than 5 gallons, site personnel will evacuate the affected area and relocate to an upwind location. The Field Safety Officer and client site representative shall be contacted immediately. Site work shall not be conducted during non-day-light hours, severe weather, including high winds and lightning. In the event of severe weather, stop work, lower any equipment (drill rigs), and evacuate the affected area. 							
3. SUB-SURFACE WORK, UNDERGROUND	UTILITY LOCATION						
Will subsurface explorations be conducted	as part of this work? Yes	No					
Site property ownership where under conducted on:	•	Public Access Property Yes No					
Highland Park Village LLC		Private Property Yes No					
Have Necessary Underground Utility Notifications for Subsurface Work Been Made? Yes Yet to be conducted							
Specify Clearance Date & Time, Dig Safe Clearance I.D. #, And Other Relevant Information: Any sub-contractors performing sub-surface earthwork activities will the call in the NYS UFPO, prior to commencing any intrusive work.							

			-	n an manner that appears acceptable, based on nies, subcontractor, client, owner, etc.), for the		
Electric:	Yes	□ No [□ NA	П		
Fuel (gas, petroleum, steam):	☐ Yes			Other		
Communication:	Yes					
Water:	Yes	□ No [Other		
Sewer:	Yes					
Other:	Yes	□ No [□ NA	Other		
	res		INA			
				Other		
				Ul Other		
				Other		
Comments:						
comments.						
4. SCOPE OF WORK						
Any OSHA PERMIT-REQUIRED CONFI	NED SPA	ACE entry?	Any INE	OOOR fieldwork? YES NO		
YES NO			If yes, e	<u> </u>		
If yes, use <u>Site Specific H&S Plan/</u>	Confine	d Snace Entry	ii yes, e	хрівії.		
Permit for that portion of the work	Comme	и зрасе Еппу				
General project description, and phase work to which this H&S Plan applies.	se(s) or	Any ground-di	sturbing v	work that is completed on-site.		
Specific Tasks Performed by:						
Concurrent Tasks to be Perform Subcontractors (List Subcontracto Name):	,					
Concurrent Tasks to be Perform Others:	ed by					
5. SITE-SPECIFIC OVERVIEW OF H&S I	HAZARD	S/MITIGATIONS	(NOTE: B	ased on Hazard Assessment, Section 10)		
Describe the major hazards expected for worker protection. Use brief abst				describe the safety measures to be implemented narrative as may be appropriate.		
ON-SITE HAZARDS:		HAZARD MITIO	ITIGATIONS:			
Site Traffic		Use of Hi-Vis S lanes.	afety ves	ts and traffic cones. Avoiding work in main drive		
Underground Utilities		Review of site management,		gs, ground disturbance approval from facility earance.		
Slips, trips, and fall hazards		Pay special attention while walking on uneven surfaces; do not walk with hands in pockets, general overall awareness and housekeeping. Identify hazards within work area prior to commencement of work activities.				

IMPORTANT! For subsurface work, prior to the initiation of ground penetrating activities, personnel to assess whether

	Maintain a safe instability/cave	distance from excavations and monitor for conditions o -in.
Soil Vapor	Screen the breathing zone for presence of organic vapors	
Pore Water	Wear appropriate PPE when site porewater is encountered in an excavation work	
Soil	Wear appropri	iate PPE when Site soils are encountered during k.
5. HEALTH AND SAFETY EQUIPMENT AND CO	ONTROLS	
AIR MONITORING INSTRUMENTS		PERSONAL PROTECTIVE EQUIPMENT
PID Type: Lamp Energy: 10.6 eV FID Type: Carbon Monoxide Meter Hydrogen Sulfide Meter O ₂ /LEL Meter Particulate (Dust) Meter Calibration Gas Type: Isobutylene Others: Note: Ensure instruments have been properly OTHER H&S EQUIPMENT & GEAR Fire Extinguisher Caution Tape Traffic Cones or Stanchions (for open trend Warning Signs or Placards Decon Buckets, Brushes, etc.		Respirator Type: Resp-Cartridge Type: Hardhat Outer Gloves Type: Nitrile Inner Gloves Type: Steel-toed boots/shoes Coveralls Type: Outer Boots Type: Eye Protection with side shields Face Shield Traffic Vest Personal Flotation Device (PFD) Fire Retardant Clothing EH (Electrical Hazard) Rated Boots, Gloves, etc. Noise/Hearing Protection Others:
Portable Ground Fault Interrupter (GFI) Lockout/Tagout Equipment Ventilation Equipment		Discuss/Clarify, as Appropriate:

ACTION LEVELS FOR OXYGEN DEFICIENCY AND EXPLOSIVE ATMOSPHERIC HAZARDS (Action levels apply to occupied work space in general work area)					
Applicable, See Below. Not Applicable					
Parameter	Parameter Response Actions for Elevated Airborne Hazards				
Oxygen	discontinue act Verify presence meter.	At 19.5% or below – Exit area, provide adequate ventilation, or proceed to Level B, or discontinue activities Verify presence of adequate oxygen (approx. 12% or more) before taking readings with LEL meter.			
		n levels are below 12%, LEL meter readings are not valid.			
LEL	Greater than o	LEL – Continue working, continue to monitor LEL levels or Equal to 10% LEL – Discontinue work operations and immediately n area. Resume work activities ONLY after LEL readings have been reduced to through passive dissipation, or through active vapor control measures.			
ACTION LEVELS FOR INHALATI		pous Substances (Action levels are for sustained breathing zone concentrations) pplicable			
Air Quality Parameters (Check all that apply)	Remain in Level D or Modified D	Response Actions for Elevated Airborne Hazards			
VOCs	0 to 5 ppm	From 5 ppm to 10 ppm: Proceed to Level C, or Ventilate, or Discontinue Activities If greater than 10 ppm: Proceed to Level B, or, Ventilate, or Discontinue Activities			
Carbon Monoxide	0 to 35 ppm	At greater than 35 ppm, exit area, provide adequate ventilation, proceed to Level B, or discontinue activities.			
Hydrogen Sulfide	0 to 10 ppm	At greater than 10 ppm, exit area, provide adequate ventilation, proceed to Level B, or discontinue activities			
Dust	0 to 100 From 0 to 100 mg/m³, Continue working. If from 100 mg/m³ to 150 mg/m³; may continue work but employ dust suppression measures. If greater than 150 mg/m³; must stop work, employ dust suppression measures, and find a solution to dust migration.				
SPECIAL INSTRUCTIONS/COI	MMENTS REGARDING	AIR MONITORING (IF APPLICABLE)			
8. H&S TRAINING/QUA	ALIFICATIONS FOR	R FIELD PERSONNEL			
☑ Project-Specific H&S Orientation (Required for All Projects/Staff) ☐ Bloodborne Pathogen Training ☑ OSHA 40-Hour HAZWOPER/8 Hour Refreshers ☑ Trenching & Excavation ☑ Hazard Communication (for project-specific chemical products) ☐ Current Medical Clearance Letter ☑ First Aid/CPR (at least one individual on site) ☐					
General Construction					
Lockout/Tagout Tra Electrical Safety Tra	_				
Discuss/Clarify, as needed:					

9. PROJECT PERSONNEL: Name(s) Project Title/Assigned Role Telephone Numbers Site Supervisor Work: Cell: Field Safety Officer Work: Cell: First Aid Personnel Work: Cell:

Site Supervisors and Project Managers (SS/PM): Responsibility for compliance with Health and Safety programs, policies, procedures and applicable laws and regulations is shared by all management and supervisory personnel. This includes the need for effective oversight and supervision of project staff necessary to control the Health and Safety aspects of on-site activities.

Work: Cell:

Site Safety Officer (SSO): The SSO is responsible for implementation of the Site Specific Health and Safety Plan.

Project Team Members

First Aid Personnel: At least one individual who has current training and certification in basic first aid and cardiopulmonary resuscitation (CPR) must be present during on-site activities involving multiple personnel.

Project Team: Follow instructions relayed by the HASP and manager on-site.

OTHER PROJECT PERSONNEL:

Name	Project Title/Assigned Role	Telephone Numbers
	Associate/Principal-in-Charge	Work:
		Cell:
	Project Manager	Work:
		Cell:
	Health and Safety Coordinator (HSC)	Work:
		Cell:
	EHS Director	Work:
		Cell:

Principal-in-Charge: Responsible of overall project oversight, including responsibility for Health and Safety.

Project Manager: Responsible for day-to-day project management, including Health and Safety.

Health and Safety Coordinator: General Health and Safety guidance and assistance.

EHS Director: H &S technical and regulatory guidance, assistance regarding H&S policies and procedures.

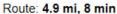
10. HAZARD ASSESSMENT (CHECK ALL THAT APPLY)

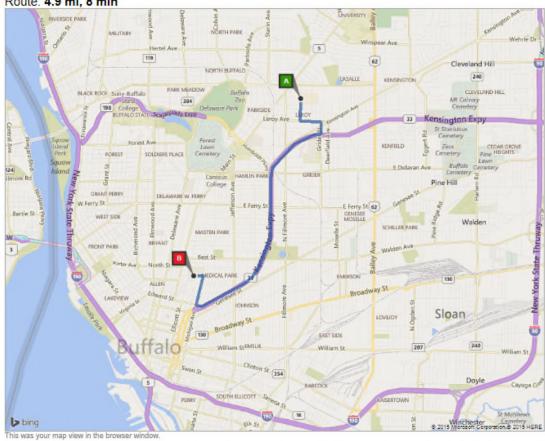
A. GENERAL FIELDWORK HAZARDS

Confined Space Entry (STOP – Use Confined Space Entry HASP)	Overhead Hazards (i.e. falling objects, overhead power lines)
Abandoned or vacant building/Enclosed Spaces	Portable Hand Tools or Power Tools
Significant Slip/Trip/Fall Hazards	Significant Lifting or Ergonomic Hazards
Unsanitary/Infectious Hazards	Electrical Hazards (i.e. Equipment 120 Volts or Greater,
Poisonous Plants	Work Inside Electrical Panels, or Maintenance of Electrical Equipment)
Biting/Stinging Insects	Other Stored energy Hazards (i.e. Equipment with High
Feral Animal Hazards	Pressure or Stored Chemicals)
Water/Wetlands Hazards	Fire and/or Explosion Hazard
Remote Locations/Navigation/Orientation hazards	Elevated Noise Levels
Heavy Traffic or Work Alongside a Roadway	Excavations/Test Pits
Weather-Related Hazards	Explosives or Unexploded Ordinance/MEC
Motor vehicle operation Hazards	Long Distance or Overnight Travel
Heavy Equipment Hazards	Personal Security or High Crime Area Hazards
Structural Hazards (i.e. unsafe floors/stairways/roof)	Working Alone
Demolition/Renovation	lonizing Radiation or Non-Ionizing Radiation
Presence of Pedestrians or the General Public	Chemical/Exposure Hazards (See Part B for Details)
Tresence of redestrians of the deficial rabile	
Tresence of redestrians of the deficial rushic	Other:
B. CHEMICAL/EXPOSURE HAZARDS	
B. CHEMICAL/EXPOSURE HAZARDS	Other: Methane Chemicals Subject to OSHA Hazard Communication
B. CHEMICAL/EXPOSURE HAZARDS No chemical hazards anticipated	Other: Methane Chemicals Subject to OSHA Hazard Communication (Note: For commercial chemical products, attach MSDSs if
B. CHEMICAL/EXPOSURE HAZARDS No chemical hazards anticipated Hydrogen Sulfide (H2S)	Other: Methane Chemicals Subject to OSHA Hazard Communication
B. CHEMICAL/EXPOSURE HAZARDS No chemical hazards anticipated Hydrogen Sulfide (H2S) Cyanides, Hydrogen Cyanide (HCN)	Other: Methane Chemicals Subject to OSHA Hazard Communication (Note: For commercial chemical products, attach MSDSs if applicable)
B. CHEMICAL/EXPOSURE HAZARDS No chemical hazards anticipated Hydrogen Sulfide (H2S) Cyanides, Hydrogen Cyanide (HCN) Carbon Monoxide	Other: Methane Chemicals Subject to OSHA Hazard Communication (Note: For commercial chemical products, attach MSDSs if applicable) Containerized Waste, Chemicals in Piping & Process Equipment Emissions from Gasoline-, Diesel-, Propane-fired
B. CHEMICAL/EXPOSURE HAZARDS No chemical hazards anticipated Hydrogen Sulfide (H2S) Cyanides, Hydrogen Cyanide (HCN) Carbon Monoxide Herbicides, Pesticide, Fungicide, Animal Poisons	Other: Methane Chemicals Subject to OSHA Hazard Communication (Note: For commercial chemical products, attach MSDSs if applicable) Containerized Waste, Chemicals in Piping & Process Equipment Emissions from Gasoline-, Diesel-, Propane-fired Engine, Heater, Similar Equipment
B. CHEMICAL/EXPOSURE HAZARDS No chemical hazards anticipated Hydrogen Sulfide (H2S) Cyanides, Hydrogen Cyanide (HCN) Carbon Monoxide Herbicides, Pesticide, Fungicide, Animal Poisons Metals, Metal Compounds	Other: Methane Chemicals Subject to OSHA Hazard Communication (Note: For commercial chemical products, attach MSDSs if applicable) Containerized Waste, Chemicals in Piping & Process Equipment Emissions from Gasoline-, Diesel-, Propane-fired Engine, Heater, Similar Equipment General Work Site Airborne Dust Hazards
B. CHEMICAL/EXPOSURE HAZARDS No chemical hazards anticipated Hydrogen Sulfide (H2S) Cyanides, Hydrogen Cyanide (HCN) Carbon Monoxide Herbicides, Pesticide, Fungicide, Animal Poisons Metals, Metal Compounds Corrosives, Acids, Caustics, Strong Irritants	
B. CHEMICAL/EXPOSURE HAZARDS No chemical hazards anticipated Hydrogen Sulfide (H2S) Cyanides, Hydrogen Cyanide (HCN) Carbon Monoxide Herbicides, Pesticide, Fungicide, Animal Poisons Metals, Metal Compounds Corrosives, Acids, Caustics, Strong Irritants Polychlorinated Biphenyls (PCBs)	
B. CHEMICAL/EXPOSURE HAZARDS No chemical hazards anticipated Hydrogen Sulfide (H2S) Cyanides, Hydrogen Cyanide (HCN) Carbon Monoxide Herbicides, Pesticide, Fungicide, Animal Poisons Metals, Metal Compounds Corrosives, Acids, Caustics, Strong Irritants Polychlorinated Biphenyls (PCBs) Polycyclic Aromatic Hydrocarbons (PAHs)	
B. CHEMICAL/EXPOSURE HAZARDS No chemical hazards anticipated Hydrogen Sulfide (H2S) Cyanides, Hydrogen Cyanide (HCN) Carbon Monoxide Herbicides, Pesticide, Fungicide, Animal Poisons Metals, Metal Compounds Corrosives, Acids, Caustics, Strong Irritants Polychlorinated Biphenyls (PCBs) Polycyclic Aromatic Hydrocarbons (PAHs) Compressed Gases Flammable/Combustible Liquids Radiation Hazards (i.e. radioactive sealed/open source,	
B. CHEMICAL/EXPOSURE HAZARDS No chemical hazards anticipated Hydrogen Sulfide (H2S) Cyanides, Hydrogen Cyanide (HCN) Carbon Monoxide Herbicides, Pesticide, Fungicide, Animal Poisons Metals, Metal Compounds Corrosives, Acids, Caustics, Strong Irritants Polychlorinated Biphenyls (PCBs) Polycyclic Aromatic Hydrocarbons (PAHs) Compressed Gases Flammable/Combustible Liquids	

11. PLAN AC	KNOWLEDGEMENT AND APPROV	/ALS		
	Empl	loyee P	lan Acknowledgement	
will follow gu	idance in this plan and in the Hea	alth and	formation set forth in this Safety and Ac I Safety Program Manual. I understand I in this plan and have met those require	the training and medical
Employee Name Employee Signature				Date
	Subcontract	or Emp	loyee Plan Acknowledgement	
visitors, and o protection. S	others at the site must refer to the Subcontractor employees may use to comply with safety regulations	ir organ this pl	rotecting the health and safety of future of its and safety program or so an for general informational purposes of able to their work, and understand this p	ite-specific HASP for their nly. Subcontractor firms
Subcontracto	r Employee Name	Subco	ontractor Employee Signatures	Date
	Site-Specific Hea	alth and	d Safety Plan Approval Signatures	
based on thei			nent and/or approval of the contents of t , associated hazards and the appropriate	
Signatory	Employee Name		Employee Signature	Date
Preparer:				
EHS Reviewer:				
PIC Approval:				
				•

129 Holden St, Buffalo, NY 14214

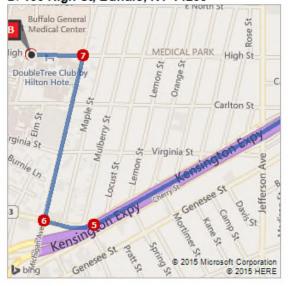

100 High St, Buffalo, NY 14203


Type your route notes here (up to 120 characters).

On the go? Use **m.bing.com** to find maps, directions, businesses, and more

Route: 4.9 mi, 8 min

	129 Holden St, Buffalo, NY 14214	A–B: 4.9 mi 8 min
1.	Depart Holden St toward Wade Ave	0.3 mi
2.	Turn left onto Leroy Ave	0.3 mi
3.	Turn right onto Grider St	0.2 mi
4.	Take ramp right and follow signs for RT-33 West	3.4 mi
5.	Take ramp right and follow signs for RT-33 West	0.1 mi
6.	Turn right onto Michigan Ave	0.4 mi
7.	Turn left onto High St	0.1 mi
8.	Arrive at 100 High St, Buffalo, NY 14203 The last intersection is Michigan Ave If you reach N Oak St, you've gone too far	
	 2. 3. 4. 5. 6. 7. 	1. Depart Holden St toward Wade Ave 2. Turn left onto Leroy Ave 3. Turn right onto Grider St 4. Take ramp right and follow signs for RT-33 West 5. Take ramp right and follow signs for RT-33 West 6. Turn right onto Michigan Ave 7. Turn left onto High St 8. Arrive at 100 High St, Buffalo, NY 14203 The last intersection is Michigan Ave



A: 129 Holden St, Buffalo, NY 14214

B: 100 High St, Buffalo, NY 14203

APPENDIX F – QUALITY ASSURANCE PROJECT PLAN

QUALITY ASSURANCE PROJECT PLAN

129 HOLDEN STREET BUFFALO, NEW YORK

BROWNFIELD CLEANUP PROGRAM

SITE NO. C915261

TABLE OF CONTENTS

		<u>Page</u>
1.0	INTRODUCTION	1
1.1	PURPOSE AND OBJECTIVE	1
1.2	PROJECT BACKGROUND	1
1.3	PROJECT DESCRIPTION	3
2.0	SITE INVESTIGATION PROCEDURES AND RATIONALE	3
2.1	AIR SURVEILLANCE AND MONITORING	3
2.2		
2.3	B EQUIPMENT DECONTAMINATION	5
	2.3.1 Non-Dedicated Reusable Equipment	5
	2.3.2 Disposable Sampling Equipment	6
	2.3.3 Heavy Equipment	6
2.4	STORAGE AND DISPOSAL OF INVESTIGATION-DERIVED WASTE	6
3.0	SAMPLE HANDLING	7
3.1	SAMPLE IDENTIFICATION/LABELING	7
3.2	SAMPLE, BOTTLES, PRESERVATION, AND HOLDING TIME	8
	3.2.1 Sample Bottles	
	3.2.2 Holding Times	
3.3	CHAIN OF CUSTODY AND SHIPPING	9
4.0	QUALITY ASSURANCE/QUALITY CONTROL PROTOCOLS	9
4.1	ANALYTICAL METHODS, PROCEDURES & CALIBRATION	10
	4.1.1 Methods	10
	4.1.2 Laboratory Instrumentation & Equipment	
	4.1.3 Field Equipment	10
4.2	QUALITY CONTROL SAMPLES	11
	4.2.1 Analytical Equipment	11
	4.2.2 Field Samples	12
5.0	DATA DOCUMENTATION	13
5.1	FIELD NOTEBOOK	13
5.2	2 FIELD REPORTING FORMS	13
6.0	CORRECTIVE ACTIONS	14
7.0	DATA REDUCTION, VALIDATION, AND REPORTING	14
7.1	LABORATORY DATA REPORTING AND REDUCTION	15
7.2		
7.3	B FIELD DATA	16

8.0	PERFORMANCE AND SYSTEM AUDITS	. 16
9.0	QUALITY ASSURANCE REPORTS TO MANAGEMENT	. 17

LIST OF TABLES

Table 1 Summary of Container, Preservation and Holding Time Requirements

1.0 INTRODUCTION

1.1 PURPOSE AND OBJECTIVE

This Quality Assurance Project Plan (QAPP) has been developed for the Site Management Plan (SMP) associated with the 129 Holden Street Brownfield Cleanup Program (BCP) Site No. C915261 located at 129 Holden Street, Buffalo, New York. This QAPP presents the project scope, objectives, organization, planned activities, sampling procedures, data quality objectives and quality assurance/quality control (QA/QC) procedures.

Protocols for sample collection, sample handling and storage, equipment decontamination, chain-of-custody procedures, etc. are described in Section 3. This QAPP was developed in general accordance with the requirements of Section 2.4 of the NYSDEC DER-10/Technical Guidance for Site Investigation and Remediation, effective June 18, 2010 (NYSDEC DER-10).

1.2 PROJECT BACKGROUND

As described in more detail in Section 2.3 of this SMP, the 27.09-acre Site is located at 129 Holden Street, Buffalo, New York. No structures currently occupy the property. Surrounding adjacent areas are zoned for residential and public service use. The Site was originally developed for industrial use as early as 1874 for the mining industry and the production of limestone and natural rock cement.

The following environmental site assessments have been completed at the Site.

- In August 2011, GZA performed a Phase I Environmental Site Assessment (Phase I ESA) at the Site.
- In October 2011, GZA performed a Phase II Environmental Site Assessment (Phase II ESA) at the Site.

The Site was accepted by the NYSDEC into the BCP on January 31, 2012. The BCA required that a site-wide remedial investigation be completed.

GZA conducted a Remedial Investigation (RI) at the Site between July 2012 and March 2013 to characterize the nature and extent of contamination at the Site. Generally, the RI identified that a significant amount of fill material had been placed at the Site after the quarry operations ceased in the 1950s, prior to construction of the Central Park Plaza. Fill was identified from the ground surface to depths ranging from 5 to 19 feet bgs. Fill materials consisted of granular soils (gravel and sand with lesser amounts of silt and clay) overlying cohesive fill soils (silt and clay) with various amounts of brick, glass, slag, wood, and limestone fragments. It was evident from the subsurface investigation that extensive excavation of bedrock had been previously conducted at the Site.

According to the analytical results generated during the RI, SVOCs and metals were detected in shallow soil/fill samples at concentrations above the Part 375 SCOs for restricted residential site use (RRSCOs); however, specific sources of the SVOCs and metals contamination were not identified. No VOCs, PCBs, herbicides, or pesticides were detected at concentrations above the RRSCOs in the fill/soil samples submitted for analysis. Five SVOCs (Benzo (a) anthracene, Benzo (a) pyrene, Benzo (b) fluoranthene, Dibenz (a,h) anthracene, and Indeno (1,2,3-cd) pyrene) and five metals (arsenic, chromium, copper, nickel, and zinc) had at least one exceedance of the Part 375 SCOs for industrial site use (ISCOs) in the shallow soil/fill samples and were considered the Significant Contaminants of Concern (SCOC). No specific contaminants of concern were identified in the groundwater samples submitted for analysis; therefore, no groundwater remediation was required as part of the remedial action.

Based on the results of the RI and previous Phase II ESA, it was determined that remedial measures would be required to address SVOC- and metal- impacted shallow soil/fill at the Site prior to the anticipated redevelopment. Specifically, thirteen areas of concern (AOCs) were identified during the RI where SVOC- and metal- contaminated soil/fill was identified in exceedance of the RRSCOs. Within four of the AOCs (Areas 3, 4, 5, and 11), five "hotspots" (TP-10, TP-70, TP-74, TP-75, and TP-77) were identified with contamination above the site-specific Proposed Excavation Limit Threshold (PELT), derived by a statistical analysis of the concentrations of the ten above-listed SCOC. A Remedial Action

(RA) consisting of excavation and proper off-site disposal of shallow soil/fill at the five hotspots followed by installation of a 2-foot thick cover system over the entire Site that met the RRSCOs was recommended in order to achieve the RRSCOs via a Track 4 (site-specific) cleanup.

1.3 PROJECT DESCRIPTION

This QAPP is the quality control basis for the scope of work, which is further described in the Excavation Work Plan of the Site Management Plan. The major task involved at the Site is:

• Implementation of the Site Management Plan

2.0 SITE INVESTIGATION PROCEDURES AND RATIONALE

Shallow soil/fill containing concentrations of metals and SVOCs remain at the Site, underneath the demarcation layer and the cover system. Because of the presence of remaining impacted subsurface soil, future excavation activities require certain monitoring and other protocols which could include sampling. Environmental sampling, if warranted, would be performed in conjunction with the removal actions for the following purposes:

- confirmation sampling of excavation sidewalls and bottom;
- characterization of "clean" backfill materials; and
- characterization of soil and waters (if present) for disposal purposes.

Environmental sampling and other field activities will be performed in general accordance with the NYSDEC DER-10 guidance document.

General field activities are described in the following sections and described in further detail in the Remedial Action Work Plan (RAWP).

2.1 AIR SURVEILLANCE AND MONITORING

Air surveillance screening for total volatile organics and particulates for health and safety concerns will be performed with a portable organic vapor meter (OVM) equipped with a

photoionization detector (PID) that is using a 10.6 electron volt (eV) bulb and dust monitors placed both upwind and downwind of intrusive work sites. Monitoring will be performed during invasive activities such as soil/fill excavation. The OVM will also be used to field screen samples. Additional details are presented in the Site-specific Health and Safety Plan and RAWP, which includes the NYSDOH generic Community Air Monitoring Plan (CAMP).

2.2 SOIL SAMPLING

Soil/fill sampling will occur during any site improvement activities where disturbance to soil/fill beneath the site-wide cover system identified in the SMP may occur. This may include, but is not limited to, activities involving excavation and removal of impacted soil/fill, confirmatory sampling, and waste characterization. Samples will be collected and transferred to sample containers as soon as possible after being retrieved from the subsurface (i.e., excavator bucket).

The excavator will be decontaminated by the subcontractor prior to arrival on-Site. During remedial activities, decontamination will be accomplished using steam cleaning or high pressure hot water to wash equipment prior to moving to the next location. Stainless steel sampling devices will be cleaned manually with non-phosphate detergent (i.e., alconox) wash and potable water followed by a potable water rinse or a second steam cleaning followed by a distilled/deionized water rinse. Equipment will be similarly cleaned prior to leaving the Site.

Soil/fill samples, with the exception of those for VOCs, will be homogenized using a "coning and quartering" procedure. The soil will be removed from the sampling equipment and transferred to a clean surface (metal foil, steel pan, bowl, etc.). Observed debris, such as bricks, large stones, organics, etc. will be removed from the sample. The soil will be mixed to provide a more homogeneous sample for lab analysis. The soil will be scraped from the sides, corners, and bottom of the clean surface, rolled to the middle, and thoroughly mixed until the material appears homogeneous. An aliquot of this pile will then be transferred to the required sample containers, slightly tamped-down, filled to near the top of the container, and sealed with the appropriate cap. Soil or sediment on the threads

of the container will be removed prior to placing the cap on the sample container. Soil samples for VOC analysis will be collected and directly placed into one unpreserved 2 oz jar per sample location.

Soil screening will be performed in two ways: by holding the probe of the OVM directly over the sample once it is retrieved from the subsurface and again by headspace screening after a representative portion of the soil samples has been placed in plastic bags, allowed to warm to ambient temperature, and placing the tip of the OVM into the plastic bag. The OVM used will be equipped with a PID that is using a 10.6 eV bulb.

The OVM will be calibrated daily, in accordance to manufacturer's requirements using a standard gas. Prior to screening, the headspace soil samples will be allowed to equilibrate to ambient temperature. For headspace screening, a hole will be made in the sample bag and the tip of the OVM inserted into the bag, and the peak response will be recorded. A response of less than 1 part per million (ppm), using this method, is not considered significant and will be reported as not detected. A blank will be run between test samples to check that extraneous contamination was not carried over.

2.3 EQUIPMENT DECONTAMINATION

To avoid cross contamination, non-disposable sampling equipment (defined as any piece of re-usable equipment which may contact a sample) will be decontaminated according to the following procedures outlined below.

2.3.1 Non-Dedicated Reusable Equipment

Non-dedicated reusable equipment such as stainless steel mixing bowls; pumps used for groundwater evacuation (and sampling, if applicable) etc. will require field decontamination. Acids and solvents will not be used in the field decontamination of such equipment. Decontamination typically involves scrubbing/washing with a laboratory grade detergent (e.g. alconox) to remove visible contamination, followed by potable (tap) water and analyte-free water rinses. Tap water may be used from any treated municipal water system; the use of an untreated potable water supply is not an acceptable substitute. Equipment should be allowed to dry prior to use. Steam cleaning or high pressure hot

water cleaning may be used in the initial removal of gross, visible contamination. Tubing will not be re-used (new tubing will be used for each well).

2.3.2 Disposable Sampling Equipment

Disposable sampling equipment will not be field-decontaminated; equipment may be rinsed with laboratory-provided analyte-free water prior to use. Disposable spoons or spatulas purchased from non-environmental equipment vendors (such as restaurant supply houses) will be decontaminated by scrubbing/washing with a laboratory grade detergent followed by potable water and Analyte-free water rinse; or by using steam or high pressure hot water rinse, followed by analyte free water rinse. The equipment will be allowed to air dry prior to use.

2.3.3 Heavy Equipment

Certain heavy equipment such as, excavator buckets, etc. may be used to obtain samples. Such equipment will be subject to high pressure hot water or steam cleaning between uses. A member of the sampling team will visually inspect the equipment to check that visible contamination has been removed by this procedure prior to sampling. Such equipment will be cleaned between excavation locations. Decontamination between excavation samples at a single location will be performed using alconox and water to clean the samplers. Samples submitted for analysis will not include material, which has been in direct contact with the excavator bucket.

2.4 STORAGE AND DISPOSAL OF WASTE GENERATED DURING SITE IMPROVEMENT ACTIVITIES

The sampling methods and equipment have been selected to limit both the need for decontamination and the volume of waste material to be generated. Investigation-derived material (e.g., decon sediments and water) generated during this project shall be presumed to be non-hazardous waste and will be characterized for off-site disposal at a permitted and NYSDEC-approved waste disposal facility.

Personal protective equipment and disposable sampling equipment will be placed in plastic garbage bags for disposal as a non-hazardous solid waste.

Decontamination Fluids

Wash water and rinse water, including detergent, may be generated during Site work. Non-phosphate detergent and water rinse will be disposed off-Site along with water generated from excavations if present.

3.0 SAMPLE HANDLING

3.1 SAMPLE IDENTIFICATION/LABELING

Samples will be assigned a unique identification using the sample location or other sample-specific identifier. Sample identification will be limited to seven alphanumeric characters to be consistent with the limitations of the laboratory tracking/reporting software. The general sample identification format follows.

Where:

SW = Type of sample (i.e., Side Wall, Excavation Bottom) Numeric character indicating the number from which the sample

XX = was obtained.

Y-Y = Depth of the sample.

Quality control (QC) field duplicate samples will be submitted blind to the laboratory; a fictitious sample identification will be created using the same system as the original. The sample identifications (of the original sample and its field duplicate) will be marked in the project specific field book and on the copy of the chain-of-custody kept by the sampler and copied to the project manager. Sample containers will be labeled in the field prior to the collection of samples. Affixed to each sampling container will be a non-removable label on which the following information will be recorded with permanent water-proof ink:

- Site name and location:
- Sample identification code;
- Date and time;
- Sampler's initials;
- Preservative; and

• Requested analyses.

3.2 SAMPLES, BOTTLES, PRESERVATION, AND HOLDING TIME

Table 1 specifies the analytical method, matrix, holding time, containers, and preservatives for the various analyses to be completed. Sample bottle requirements and holding times are discussed further below.

3.2.1 Sample Bottles

The selection of sample containers used to collect samples is based on the criteria of sample matrix, analytical method, potential contaminants of concern, reactivity of container material with the sample, QA/QC requirements and regulatory protocol requirements. Sample bottles will be provided by the analytical laboratory and will conform to the requirements of USEPA's Specifications and Guidance for Contaminant-Free sample Containers.

3.2.2 Holding Times

Holding times are judged from the verified time of sample receipt (VTSR) by the laboratory; samples will be shipped from the field to arrive at the lab no later than 48 hours from the time of sample collection. Holding time requirements will be those specified in the NYSDEC ASP; it should be noted that for some analyses, these holding times are more stringent than the holding time for the corresponding USEPA method.

Although trip blanks are prepared in the analytical laboratory and shipped to the Site prior to the collection of environmental samples, for the purposes of determining holding time conformance, trip blanks will be considered to have been generated on the same day as the environmental samples with which they are shipped and delivered. Procurement of bottles and blanks will be scheduled to prevent trip blanks from being stored for excessive periods prior to their return to the laboratory; the goal is that trip blanks should be held for no longer than one week prior to use.

3.3 CHAIN OF CUSTODY AND SHIPPING

A chain-of-custody form will trace the path of sample containers from the project site to the laboratory. Sample/bottle tracking sheets or the chain-of-custody will be used to track the containers from the laboratory to the containers' destination. The project manager will notify the laboratory of upcoming field sampling events and the subsequent transfer of samples. This notification will include information concerning the number and type of samples, and the anticipated date of arrival. Insulated sample shipping containers (typically coolers) will be provided by the laboratory for shipping samples. All sample bottles within each shipping container will be individually labeled with an adhesive identification label provided by the laboratory. Project personnel receiving the sample containers from the laboratory will check each cooler for the condition and integrity of the bottles prior to field work.

Once the sample containers are filled, they will be immediately placed in the cooler with ice (in plastic bags to prevent leaking) or synthetic ice packs to maintain the samples at 4 °C. The field sampler will indicate the sample designation/location number in the space provided on the chain-of-custody form for each sample. The chain of custody forms will be signed and placed in a sealed plastic bag in the cooler. The completed shipping container will be closed for transport with nylon strapping, or a similar shipping tape, and two paper seals will be affixed to the lid. The seals must be broken to open the cooler and will indicate tampering if the seals are broken before receipt at the laboratory. The cooler will be shipped either by laboratory-provided courier or by an overnight delivery service to the laboratory. When the laboratory receives the coolers, the custody seals will be checked and lab personnel will sign the chain-of-custody form.

4.0 QUALITY ASSURANCE/QUALITY CONTROL PROTOCOLS

This section describes the analytical methods, principles and procedures that will be used to generate quality data. These protocols include laboratory calibration, field equipment calibration, QC sample collection and analysis, quantitative evaluation of data quality protocols and data qualification, if necessary.

4.1 ANALYTICAL METHODS, PROCEDURES & CALIBRATION

4.1.1 Methods

Analytical methods to be used during this project are presented in the NYSDEC Analytical Services Protocol (ASP), June 2005. Specific methods and references for each parameter are shown in Table 1. The sample preservation and holding time requirements are also identified in Table 1. Quantification and detections limits for all analysis are those specified under the appropriate test methods.

It is the laboratory's responsibility to be familiar with this document, procedures and deliverables pertaining to the Site work. The laboratory selected to perform the analytical testing will be certified by the NYSDOH Environmental Laboratory Approval Program and Contract Laboratory Protocol certified.

4.1.2 Laboratory Instrumentation & Equipment

Laboratory instruments and equipment will be calibrated following SW-846 analytical methods protocol. Initial calibrations will be performed before samples analysis. Calibration checks will be performed at the frequencies specified in each analytical method.

4.1.3 Field Equipment

Field equipment will be used during various activities of the project and during the collection of environmental samples. The field equipment to be used may include the following.

Field equipment used includes:

- OVM with a photoionization detector.
- Electronic water level indicator.
- Multi-gas meter (CO, LEL, O₂, and H₂S).
- Particulate monitor

Field equipment will be cleaned and calibrated prior to use. The Operating and Maintenance (O&M) manuals for the field equipment will be kept in the field when in use and a copy will be retained in project files.

Calibration and standardization for the field equipment during project use will be in accordance with the manufacturer's recommendations, and will be recorded in the field log book. If instrument performance or data fall outside acceptable limits, then corrective actions will be taken. These actions may include recalibration of instruments, acquiring new standards, replacing equipment or repairing equipment. Subcontractors providing analytical services should perform their own internal laboratory audits and calibration procedures with data review conducted at a frequency so that errors and problems are detected early, thus avoiding the prospect of redoing large segments of work.

4.2 QUALITY CONTROL SAMPLES

4.2.1 Analytical Equipment

The analytical methods to be utilized (see Table 1) for laboratory sample analysis address the quality control to be used and the frequency of replicates, blanks and calibration standards for laboratory analytical equipment.

Table 1 Summary of Sample Methods, Container, Preservation and Holding Time Requirements Quality Assurance Project Plan 129 Holden Street Buffalo, New York Brownfield Cleanup Program Site No. C915261

Analysis	Method	Holding Time (days)		Containers		Preservative
		To Extraction	To Analyze	Number	Type	
Soil Samples			THE PARTY OF			
Volatile Organic Compounds	SW-846 8260B		14	2	L	Cool
Semivolatile Organic Compounds	SW-846 8270C	14	40	2 *	J	Cool
PCBs	SW-846 8082	14	365		J	Cool
Metals	SW-846 6010B/7470A		180 (28 for Hg)		J	Cool
Pesticides	SW-846 8082	14	40		J	Cool
Herbicides	SW-846 8151	14	40		J	Cool
Aqueous Samples				91/02/12		
Volatile Organic Compounds	SW-846 8260B		14	3	G	Cool
Semivolatile Organic Compounds	SW-846 8270C	7	40	1	Н	Cool
PCBs	SW-846 8080	7	365	1	Н	Cool
Metals	SW-846 6010B/7470A	7	180 (28 for Hg)	1	1	HNO3
Pesticides	SW-846 8082	7	40	1	Н	Cool
Herbicides	SW-846 8151	7	40	1	Н	Cool

Notes:

Container Types

- G 40 ml glass, Teflon septum cap liner, HCL
- H 1L glass, Teflon cap liner
- I 250 ml, polyethylene, Teflon cap liner
- J 8 oz. wide mouth glass, Teflon cap liner L - 2 oz. glass widemouth with Teflon cap liner
- M 1 liter vacuum canister

Preservatives

Cool - Cool to 4 degrees Celsius

HNO3 - Nitric Acid to <2 pH

NaOH - Sodium Hydroxide to >12pH

HCI - Hydrochloric acid to pH<2

* - Semi-volatiles, PCBs, metals pesticides, and herbicides analyses can take place from two 8 ounce glass widemouth jar with a teflon lined cap.

4.2.2 Field Samples

Field quality control samples will consist of trip blanks, sample duplicate, matrix spike and matrix spike duplicate. Trip blanks, for VOCs only, will consist of analyte free reagent grade water in VOC sampling containers to be used for the project. Trip blanks will be prepared at the laboratory, sealed, transported to the Site and returned without being opened to assess contamination that may have occurred during transport. Trip blanks will be submitted at a rate of one per sampling event when VOCs are shipped to the laboratory.

Field duplicate samples are used to assess the variability of a matrix at a specific sampling point and to assess the reproducibility of the sampling method. For soil samples, these samples are separate aliquots of the same sample; prior to dividing the sample into "sample" and "duplicate" aliquots, the samples are homogenized (except for the VOC aliquots, which are not homogenized). Aqueous field duplicate samples are second samples collected from the same location, at the same time, in the same manner as the first, and placed into a separate container. Each duplicate sample will be analyzed for the same

parameters as the original sample collected that day. The blind field duplicate Relative Percent Difference (RPD) objective will be $\pm 50\%$ percent RPD for all matrices. Field duplicates will be collected at a frequency of 1 per 20 environmental samples for both matrices (aqueous and non-aqueous) and test parameters.

Matrix spike/matrix spike duplicate (MS/MSD) samples are used to assess the laboratory method's accuracy and precision. These samples are spiked with known quantities of target analytes at the laboratory. The samples are collected at a frequency of five percent (1 in 20).

5.0 DATA DOCUMENTATION

5.1 FIELD NOTEBOOK

Field notebooks will be initiated at the start of on-Site work, in addition to field forms that will be filled out summarizing field work and become part of the project file. The field notebook will include the following daily information for Site activities:

- Date;
- Meteorological conditions (temperature, wind, precipitation);
- Site conditions (e.g., dry, damp, dusty, etc.);
- Identification of crew members (GZA and subcontractor present) and other personnel (e.g., agency or site owner) present;
- Description of field activities;
- Location(s) where work is performed;
- Problems encountered and corrective actions taken;
- Records of field measurements or descriptions recorded; and,
- Notice of modifications to the scope of work.

5.2 FIELD REPORTING FORMS

Field reporting forms (or their equivalent) to be utilized during the remediation may include the following:

- Excavation Log;
- Sample Collection Log;
- Chain of Custody Form; and
- Calibration Log.

These forms, when completed, will become part of the project file.

6.0 CORRECTIVE ACTIONS

If instrument performance or data fall outside acceptable limits, then corrective actions will be taken. These actions may include recalibration or standardization of instruments, acquiring new standards, replacing equipment, repairing equipment, and reanalyzing samples or redoing sections of work. Subcontractors providing analytical services should perform their own internal laboratory audits and calibration procedures with data review conducted at a frequency so that errors and problems are detected early, thus avoiding the prospect of redoing large segments of work.

Situations related to this project requiring corrective action will be documented and made part of the project file. For each measurement system identified requiring corrective action, the responsible individual for initiating the corrective action and also the individual responsible for approving the corrective action, if necessary, will be identified. As part of its total quality management program, GZA makes the results of laboratory audits and data validation reports available to the analytical laboratories. The laboratories are therefore made aware of non-critical items and areas where improvement may be made in subsequent NYSDEC ASP work.

7.0 DATA REDUCTION, VALIDATION, AND REPORTING

The guidance followed to perform quality data validation, and the methods and procedures outlined herein pertain to initiating and performing data validation, as well as reviewing

data validation performed by others (if applicable). An outline of the data validation process is presented here, followed by a description of data validation review summaries.

7.1 LABORATORY DATA REPORTING AND REDUCTION

The laboratory will meet the applicable documentation, data reduction, and reporting protocols as specified in the 2005 revision of the NYSDEC ASP CLP. Laboratory data reports for non-CLP data will conform to NYSDEC Category B deliverable requirements. With full CLP documentation, deliverables will include, but not be limited to:

Organics

Chains of Custody
Blanks
Holding Times
Internal Standards
Laboratory Duplicates
Tentatively Identified Compounds
GC/MS Instrument Performance Check
System Monitoring Compound Recovery
Matrix Spike & Matrix Spike Duplicates
GC/MS Tuning
Surrogate Recoveries

Inorganics

Chains of Custody
Blanks
Holding Times
Furnace AA QC
CRDL Standards
ICP Serial Dilutions
Laboratory Control Samples
Laboratory Duplicates
ICP Interference Check
Spiked Sample Recovery

Copies of the laboratory's generic Quality Assurance Plan (QAP) will be on file at GZA. The laboratory's QAP will indicate the standard methods and practices for obtaining and assessing data, and how data are reduced from the analytical instruments to a finished report, indicating levels of review along the way.

In addition to the hard copy of the data report, the laboratory will be asked to provide the sample data in spreadsheet form to minimize possible transcription errors resulting from the manual transcription of data.

7.2 DATA VALIDATION AND DATA USABILITY SUMMARY REPORT

CLP data will be validated by a data validation subcontractor. Data validation will be performed in accordance with guidelines established in Appendix 2B of the NYSDEC

DER-10. Where necessary and appropriate, supplemental validation criteria may be derived from the EPA Functional Guidelines (<u>USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review</u>, EPA-540/R-94/012, February 1993; and <u>USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review</u>, EPA-540/R-94/013, February, 1994).

Data Usability Summary Reports (DUSRs) will consist of text results of the review and marked up copies of Form I (results with qualifiers applied by the validator). Validation will consist of target and non-target compounds with corresponding method blank data, spike and surrogate recoveries, sample data, and a final note of validation decision or qualification, along with any pertinent footnote references. Qualifiers applied to the data will be documented in the report text.

There may be some analyses for which there is no established USEPA or NYSDEC data validation protocol. In such cases, validation will be based on the EPA Region II SOPs and EPA Functional Guidelines as much as possible, as well as the laboratory's adherence to the technical requirements of the method, and the professional judgment of the validator. The degree of rigor in such validation will correspond to the nature of the data and the significance of the data and its intended use. Unless otherwise requested, non-CLP data (e.g., total organic carbon) is not subject to validation.

7.3 FIELD DATA

Field chemistry data collected during air monitoring, and soil screening (e.g., OVM readings), will be presented on field logs and provided in the appendices of the report.

8.0 PERFORMANCE AND SYSTEM AUDITS

An audit of the laboratory(s) during the BCP work will not be performed unless warranted by a problem(s) that cannot be resolved by any other means, or at the discretion of GZA or NYSDEC.

9.0 QUALITY ASSURANCE REPORTS TO MANAGEMENT

Monthly project status reporting to the NYSDEC will include aspects of quality control that were pertinent during the month's activities. Problems revealed during review of the month's activities will be documented and addressed. These reports will include a description of completed and on-going activities, and an indication how each task is progressing relative to the project schedule.

The project manager, through task managers, will be responsible for verifying that records and files related to this project are stored appropriately and are retrievable.

The laboratory will submit memoranda or correspondence related to quality control of this project's samples as part of its deliverables package.

APPENDIX G SITE MANAGEMENT FORMS

129 Holden Street, Buffalo, NY BCP Site No.: C915261 Site Management Form

SITE DETAILS
Site No.: Site Name:
Site Address:
PERSON PERFORMING INSPECTION
Name: Email:
Company: Phone Number:
Others Present:
INSPECTION DATE AND SITE CONDITIONS
Insepction Date: Inspection Time:
Weather Conditions:
REASON FOR SITE INSPECTION
Type of Inspection: Annual Inspection Routine Maintenance Inspection Non-Routine Inspection
Inspection after a Severe Condition that could effect Site contro
Describe severe condition triggering inspection:
VERIFICATION OF SITE DETAILS
Current Site Owner:
Current Site Operator:
Describe Current Site Use (<i>check all that apply</i>)
☐ Industrial ☐ Commercial ☐ Residential ☐ Other
Briefly describe observed site uses:
Note any additional pertinent information to Verification of Site Details (use additional pages if necessary.
DESCRIPTION OF ENGINEERING CONTROLS
Are the Engineering Controls still in place:
If No, explain:
Is the Site Management Plan still in place:
If No, explain:
AREAS IN NEED OF REPAIR OR MAINTENANCE
Area discussed in this section must be shown on a figure and have photographic documentation.

129 Holden Street, Buffalo, NY BCP Site No.: C915261 Site Management Form

INTRUSIVE ACTIVITIES PERFORMED AT SITE DURING INSPECTION PERIOD			
Location:	Date:		
Description of activities being performed:			
Are Site records being properly generated and mainta	ined: Yes No		
Provide a summary of recordkeeping review and adeuacy:			
ADDITIONAL N	OTES & COMMENTS		
INSPECTION	CERTIFICATION		
I hereby certify that the information included in this r	report is complete and accurate to the best of my knowledge		
	- · · · · ·		
Inspector Signature:	Date:		

Summary of Green Remediation Metrics for Site Management

Site Name:	Site Code:	
Address:		
State: Zip Code:	County:	_
Initial Report Period (Start Date of period cov Start Date:	vered by the Initial F	Report submittal)
Current Reporting Period		
Reporting Period From:	To:	
Contact Information Preparer's Name: Preparer's Affiliation:		
I. Solid Waste Generation: Quantify the rasite.	management of solid	waste generated on-
	Current Reporting Period (tons)	Total to Date (tons)
Total waste generated on-site	,	
OM&M generated waste		
Of that total amount, provide quantity:		
Transported off-site to landfills		
Transported off-site to other disposal facilities		
Transported off-site for recycling/reuse		
Reused on-site		
Provide a description of any implemented wast space provided on Page 3. II. Transportation/Shipping: Quantify the supplies, shipping of laboratory samples, and the	ne distances travelle	·
	Current Reporting Period (miles)	Total to Date (miles)
Standby Engineer/Contractor		1

Provide a description of all mileage reduction programs for the site in the space provided on Page 3. Include specifically any local vendor/services utilized that are within 50 miles of the site.

Laboratory Courier/Delivery Service

Waste Removal/Hauling

Description of green remediation programs reported above
(Attach additional sheets if needed)
Waste Generation:
Transportation/Shipping:
Other:
CERTIFICATION BY CONTRACTOR
I, (Name) do hereby certify that I am (Title) of the Company/Corporation herein referenced and contractor for the work described in the foregoing application for payment. According to my knowledge and belief, all items and amounts shown on the face of this application for payment are correct, all work has been performed and/or materials supplied, the foregoing is a true and correct statement of the contract account up to and including that last day of the period covered by this application.

APPENDIX H – FIELD SAMPLING PLAN

Excavations/Pits/Trenches

If sampling of subsurface soil/fill is warranted per the provisions of the Excavation Work Plan, than such sampling will be conducted following the provisions of this Field Sampling Plan. The NYSDEC Part 375 Restricted Residential Soil Cleanup Objectives (RRSCOs) will have to be met within the cover system and if the cover system is breached. Under the Environmental Easement, the Site has been classified for restricted residential, commercial, and industrial use only. Confirmation samples are used to establish that the chosen remedies have been achieved regarding the soil cleanup levels. Confirmation samples are required when the limits of the soil cleanup objectives are being determined in the field. The minimal confirmation soil sampling frequencies for soil excavations from NYSDEC DER-10 are below:

- If the area perimeter is less than 20 feet, one sample is to be collected from the bottom of the excavation, and one sample is to be collected on the sidewall sample biased in the direction of surface runoff.
- If the excavation area is between 20 to 300 feet in diameter, then one sample from the top of each sidewall for every 30 linear feet of sidewall and one sample from the excavation bottom for every 900 square feet of bottom area.
- If the excavation is to be greater than 300 feet in diameter, then a sampling plan shall be submitted to DER for approval. The sampling plan should have supporting rationale for reduced sampling frequency of appropriate.
- If multiple excavations are to be located within a larger excavation, each excavation will be considered a separate excavation.
- Confirmation samples will be analyzed for EPA Method 8270 (SVOCs) and EPA Method 6010/7471 (metals). Confirmation samples are to be collected from sidewalls and floor bottoms as described above.
- In an excavation where multiple layers of contamination have been visually or analytically identified, additional side wall samples in the horizon in which evidence of contamination was observed will be necessary.

Soil Imported/Exported To/From Site

If importing or exporting fill materials at the Site, personnel will sample and analyze the fill as outlined below and in the following table.

If VOC grab samples are to be collected and analyzed for EPA Method 8260, these samples will be collected from discrete locations within the fill material. Composite samples for SVOCs, PCBs, Pesticides, and Metals will be collected and are to be analyzed for EPA Methods 8270, 8082, 8151, and 6010/7471, respectfully. SVOCs, PCBs, Pesticides, and Metals composite samples are to be prepared by collecting samples from three to five random locations, mixing the samples together, then preparing the sample for analysis. Volume of samples to be collected and analyzed are provided in the table below.

Recommended Number of Soil Samples for Soil Imported To or Exported From a Site				
Contaminant	VOCs	SVOCs, Inorganics & PCBs/Pesticides		
Soil Quantity (cubic yards)	Discrete Samples	Composite	Discrete Samples/Composite	
0-50	1	1	3-5 discrete samples from	
50-100	2	1	different locations in the fill	
100-200	3	1	being provided will comprise a	
200-300	4	1	composite sample for analysis	
300-400	4	2		
400-500	5	2		
500-800	6	2		
800-1000	7	2		
> 1000	Add an additional 2 VOC and 1 composite for each additional 1000 Cubic yards or consult with DER			

APPENDIX I EROSION AND SEDIMENT CONTROL PLAN

EROSION AND SEDIMENT CONTROL PLAN

Highland Park Village, LLC 129 Holden Street (City of Buffalo, Erie County, NY)

December 2014

Contents

1.0 – INTRODUCTION	3
2.0 – GENERAL PROJECT INFORMATION	3
3.0 – SITE TOPOGRAPHY	4
4.0 – WATERSHED INFORMATION	5
5.0 – LAND USES – PREDEVELOPMENT CONDITIONS	5
6.0 – SOILS INFORMATION	5
7.0 – PROPOSED IMPROVEMENTS TO THE AREAS	6
7.1 – Remedial Activities	6
8.0 – EROSION AND SEDIMENT CONTROL MEASURES	7
8.1 – Construction Ingress/Egress	7
8.2 - Filter Fabric Fence (Silt Fence)	7
8.3 - Vegetative Surface Stabilization	7
9.0 – MAINTANANCE PROGRAM	8
9.1 - Frequency of Inspections	8
9.2 – Construction Ingress/Egress	8
9.3 - Fabric Fence	8
9.4 - Seeded and Mulched Areas	8
10.0 – IMPLEMENTATION SCHEDULE AND MAINTENANCE	9
FIGURES	10
APPENDIX A PHOTO LOG	11
APPENDIX B – Best Management Practices (BMP) Diagrams	12
Diagram 1 – Construction Ingress/Egress	13
Diagram 2 – Filter Fabric Fence (Silt Fence)	14
APPENDIX C – Erosion and Sediment Control Inspection Form	15

1.0 - INTRODUCTION

This Erosion and Sediment Control Plan (E&SCP) has been prepared by GZA GeoEnvironmental, Inc. (GZA) to control and minimize potential impacts to the environment resulting from activities related to the remediation and redevelopment site preparation at the 129 Holden Street Brownfield Cleanup Program (BCP) Site No. C915261 (Site). The Site was formerly known as the Central Park Plaza, and is located in the City of Buffalo, Erie County, New York (Refer to Figure 1). This plan was prepared to satisfy requirements of state and local agencies pertinent to the planned work. This plan also provides GZA employees and contractors with site-specific Best Management Practices (BMPs) to be applied prior to, during, and following the remedial and Site preparation activities to minimize accelerated erosion and sedimentation. The remedial activities and Site preparation include excavation and removal of soil/fill, stripping/stock piling of blacktop pavement, earth moving to establish pre-cover site grade, and placement of a clean soil cover.

2.0 – GENERAL PROJECT INFORMATION

Project Name: 129 Holden Street Brownfield Redevelopment

Project Location: City of Buffalo, Erie County, NY.

See Figure 1 – Project Locus

Land Owner: Highland Park Village, LLC

129 Holden Street Buffalo, NY

Contractor: LPCiminelli Construction (LPC)

2421 Main Street Buffalo, NY 14214 **GZA Project Manager:** Jim Richert (716) 844-7048

General Scope of Project:

Remedial and Site preparation actions at 129 Holden Street include:

- The excavation and removal of contaminated soil/fill.
- Stripping/stock piling of blacktop pavement.
- Establishment of pre-cover site grade, and placement of clean soil cover.

Description of Earth Disturbance Activities:

Earth disturbance associated with the remedial actions at 129 Holden Street may include the following activities:

- Excavation and disposal of contaminated soil.
- Stripping/stock piling and eventual re-use of blacktop material onsite.
- Relocation of approximately 30,000 cubic yards of on-site fill material by transporting and re-grading (Refer to pg. 14 of Remedial Action Work Plan Soil Relocation and Clean Soil Cover System Installation).
- Stripping of ingress/egress blacktop, removal of material, and construction of a crushed concrete ingress/egress (Refer to Diagram 1).
- Stockpile and placement of clean soil cover (Refer to pg. 5 of Remedial Action Work Plan – Soil Relocation and Clean Soil Cover Installation).

Timing of Project:

Remedial activities began on Tuesday December 11, 2014 and are expected to extend into winter of 2014/2015. Remedial activities are proposed to be completed prior to spring of 2015.

3.0 – SITE TOPOGRAPHY

General site topography prior to startup of Site work is illustrated on **Figure 2** depicting the gentle slope of the Site within the project area. Elevations range from a high of approximately 670 feet above sea level at the South end of the site to a low of approximately 650 feet above sea level at the Northwest end of the site. Total area relief is approximately 20 feet.

4.0 – WATERSHED INFORMATION

The project area for the 129 Holden Street lies within the Two Mile Creek-Niagara River watershed. The closest waterbody to the project area is Scajaquada Creek, a tributary of the Niagara River, which is located approximately 7,600 feet southwest of the project area.

While surface water is absent at the site, previous studies have indicated that depth to groundwater ranges from approximately 13-26 feet below ground surface (bgs). Groundwater is not anticipated to be encountered during remedial activities, however, if encountered it will be managed in accordance with Buffalo Sewer Authority regulations and in consultation with the NYSDEC (Refer to pg. 16 of Remedial Action Work Plan – Section 2.3.6 Groundwater Management).

5.0 – LAND USES – PREDEVELOPMENT CONDITIONS

The Site was first utilized by Buffalo Cement as a quarry from the early 1900s until the mid-1950s. The Site was then backfilled with approximately 30 feet of mixed soil/fill and developed as the Central Park Plaza in 1958. Three Site buildings were originally constructed at Central Park Plaza. Two additional buildings were erected in 1967 and 1989, respectively. The Site operated as a shopping plaza from 1958 until July 2011 when the last tenant vacated the property. All but one small building remains on the Site. Building slab foundations have been removed, ground, and stockpiled for recycling during development. The site consists primarily of asphalt paved parking surfaces, which are underlain by soil/fill.

6.0 – SOILS INFORMATION

Soil/fill material was added to the site post-quarry operations and prior to the construction of the Central Park Plaza in 1958. On-site soil/fill is heterogeneous and contains various anthropogenic materials including brick, slag, ash, and concrete. Surface water readily infiltrates the onsite soil due to the course grain size of backfill materials.

7.0 – PROPOSED IMPROVEMENTS TO THE AREAS

Earth disturbances activities associated with the remedial actions at 129 Holden Street may include the following activities:

- Implementation of BMPs such as, the cleaning and repair of existing controls straw bale barriers, silt fence, etc. onsite and the inspection of controls as needed (Refer to Photos No. 3 & No. 5 E&SCP Photo Log).
- Excavation and disposal of contaminated soil.
- Stripping/stock piling and eventual re-use of blacktop material onsite.
- Relocation of approximately 30,000 cubic yards of on-site soil/fill pre-cover by transporting and re-grading onsite fill (Refer to pg. 14 of Remedial Action Work Plan Soil Relocation and Clean Soil Cover System Installation).
- Removal of excess mud and debris on adjacent roads will be controlled using a street sweeper and/or spray machine.
- Dust generated will be monitored using the Community Air Monitoring Plan (CAMP) and managed throughout the duration of excavation to mitigate airborne dust generation and migration (Refer to pg. 17 of Remedial Action Work Plan Section 3.0 Community Air Monitoring).
- Stripping of ingress/egress blacktop, removal of material, and construction of a crushed concrete aggregate ingress/egress.
- Stockpile and placement of clean soil cover (Refer to pg. 5 of Remedial Action Work Plan Soil Relocation and Clean Soil Cover Installation).

Erosion and sedimentation of site material will be controlled along the access/egress road and throughout Site by the use of temporary and permanent BMPs. Temporary and permanent BMPs will be used to filter and impede surficial water flow offsite.

Refer to Figure 3 – Site Erosion and Sediment Controls.

7.1 – Remedial Activities

Throughout remedial activities actions will be performed to prevent tracking of soil onto public road. The use of BMP's will include one or more of the following, but not limited to:

- 1. A crushed concrete aggregate exit will be constructed at the Site exit to remove away mud from vehicles exiting the Site.
- 2. The adjacent roads will be maintained using a street sweeper and/or spray machine; monitored by the CAMP.
- 3. MOB soil stockpiles are maintained using vegetative cover and/or silt fences located on the Site

- 4. Upon completion or temporary cessation of earth disturbance activities the project site will be stabilized.
- 5. Inspection log sheets for BMPs will be used after/during major weather events, or on a weekly basis.

8.0 – EROSION AND SEDIMENT CONTROL MEASURES

8.1 – Construction Ingress/Egress

All traffic into and exiting the site will be through the south-central paved ingress/egress point. The paved ingress/egress has been demonstrated to be sufficient in removing excess mud from truck tires. Once the paved blacktop pavement is removed the removal of excess mud and debris on ingress/egress road will be controlled using a crushed concrete pad mud removal system.

Ingress/egress construction will be built on the existing access road after the demolition of the paved ingress/egress point. At a minimum, the ingress/egress road will be constructed as illustrated on **Diagram 1**. The constructed ingress/egress thickness will be maintained and crushed concrete will be added as necessary to continue to remove sediment.

8.2 - Filter Fabric Fence (Silt Fence)

Where soil stockpiles do not have vegetative cover, filter fabric fence will be used to control runoff from disturbed areas that coincide with the site perimeter. It will not be used in any areas of concentrated flows (i.e. channels, swales, erosion gullies, across pipe outfalls, as inlet protection, etc.).

- Filter fabric fence is recommended to be installed at a level grade.
- Filter fabric should be stretched and fastened to the upslope side of the support stakes. Wherever reinforced fabric fence is installed, the reinforcement mesh should be fastened to the stakes prior to the fabric.

Diagram 2 is a schematic representation of recommended filter fence installation.

8.3 - Vegetative Surface Stabilization

Soil stockpiles have been fertilized, mulched, and seeded. Traffic controls will be implemented to avoid heavy equipment treading over soil stockpiles. Inspections and BMPs will be utilized to maintain the vegetated areas properly.

9.0 – MAINTANANCE PROGRAM

9.1 - Frequency of Inspections

A qualified inspector will be responsible for the maintenance program and to ensure that control structures required have been properly installed and maintained. At a minimum, inspections of the site and control structures shall occur *after each rain event*, as well as, on *a weekly basis* during remedial activities. These weekly inspections shall continue until remedial work is completed.

Inspection criteria and remedial measures are provided below for each of the anticipated erosion control measures of the project:

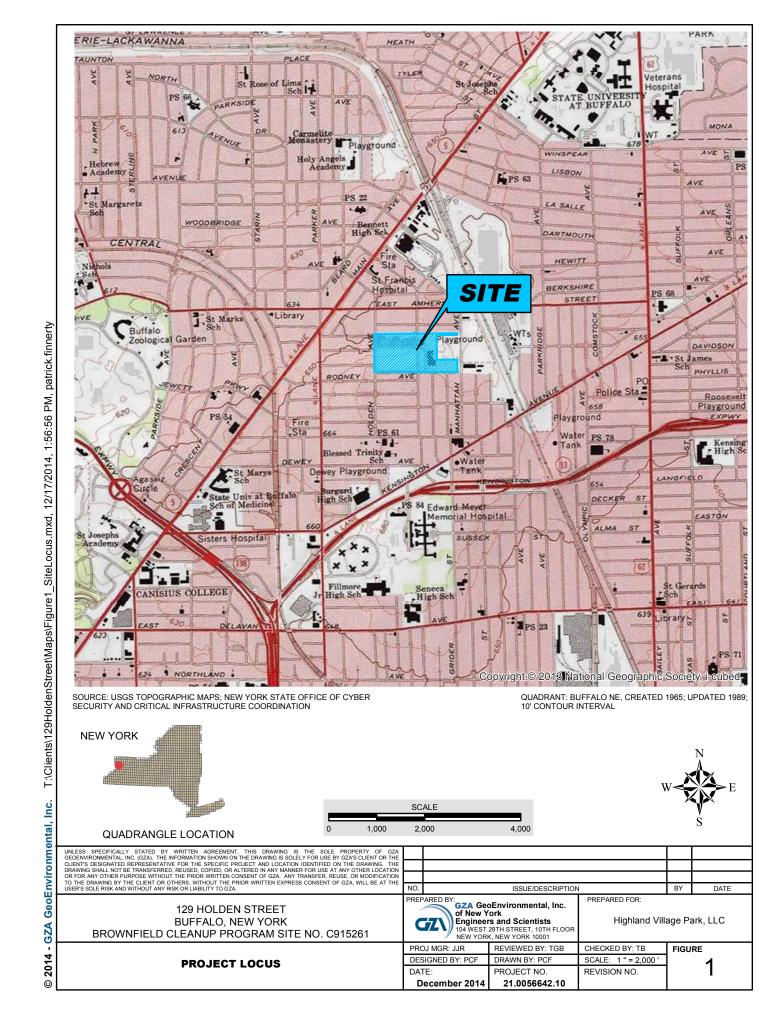
9.2 – Construction Ingress/Egress

Periodic inspections will be completed of the construction entrance. The inspections shall assess the condition of the paved or crushed concrete construction entrance in regards to its effectiveness to remove mud from vehicular tires prior to exiting the project site. The surface of the construction entrance will be maintained and crushed concrete aggregate will be added as necessary to remove tire mud. If the entrance becomes clogged with mud, then the mud will be removed using a street sweeping machine.

9.3 - Fabric Fence

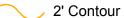
Inspection will assess the placement and condition of filter fabric fencing to ensure that they are in place and functioning as designed. Silt, mud, and litter will be removed manually from the fencing, whenever accumulations are equal or greater than ½ the height of the barrier. These structures may be removed as soon as permanent vegetation is established.

9.4 - Seeded and Mulched Areas


Inspections shall assess the stability of areas which have been seeded and/or mulched to confirm that these areas remain stable and undisturbed. Additional hay mulch and/or seed shall be applied as needed to maintain stability and to promote the establishment of vegetative cover.

Inspections will be documented on an Erosion & Sediment Control Inspection Form, a copy of which is included in **Appendix B**.

10.0 – IMPLEMENTATION SCHEDULE AND MAINTENANCE


Erosion control structures were installed prior to earth disturbance activities as specified herein. These structures will be inspected weekly and after each rainfall event. Appropriate repairs and maintenance of the structures will be made to the structures as needed. Inspections will be documented on the Erosion & Sediment Control Inspection Form located in **Appendix B**. Erosional controls will be removed and inspections ended only after disturbed areas have been adequately re-vegetated and stabilized. Adequate re-vegetation will be considered to be established when there is a uniform coverage $\geq 70\%$. Any areas not meeting this criteria will be reseeded and mulched.

Legend:

Bench Marks Used in Contour Survey

Approximate Site Boundary

- 1) All site features are approximate and NOT exact.
- 2) Contour labels do not represent feet above sea level. Labels represents differences from bench marks.

Sources:

- 1) 2011 U.S. Centus Tract
- 2) Wendel WD Architecture, Engineering, Surveying, and Landscape Architecture P.C.

UNLESS SPECIFICALLY STATED BY WRITTEN AGREEMENT, THIS DRAWING IS THE SOLE PROPERTY OF GZA GEOENVIRONMENTAL, INC. (GZA). THE INFORMATION SHOWN ON THE DRAWING IS SOLELY FOR THE USE BY GZA'S CLIENT OR THE CLIENT'S DESIGNATED REPRESENTATIVE FOR THE SPECIFIC PROJECT AND LOCATION IDENTIFIED ON THE DRAWING. THE DRAWING SHALL NOT BE TRANSFERRED, REUSED, COPIED, OR ALTERED IN ANY MANNER FOR USE AT ANY OTHER LOCATION OR FOR ANY OTHER PURPOSE WITHOUT THE PRIOR WRITTEN CONSENT OF GZA, ANY TRANSFER, REUSE, OR MODIFICATION TO THE DRAWING BY THE CLIENT OR OTHERS, WITHOUT THE PRIOR WRITTEN EXPRESS CONSENT OF GZA, WILL BE AT THE USER'S SOLE RISK AND WITHOUT ANY RISK OR LIABILITY TO GZA.

129 HOLDEN STREET BUFFALO, NEW YORK BROWNFIELD CLEANUP PROGRAM SITE NO. C915261

PRE-REDEVELOPMENT SITE CONTOURS

PREPARED FOR:

HIGHLAND VILLAGE PARK, LLC

PROJ MGR: JRR REVIEWED BY: TGB CHECKED BY: TB DRAWN BY: SCALE: 1 in = 180 f PROJECT NO. 21.0056642.10 DECEMBER 2014

FIGURE

Legend:

Erosion and Sediment Controls

x—x Silt Fence

Soil Stockpile

Construction Entrance

Approximate Site Boundary

- 1) All site features are approximate and NOT exact.
- 2) Site is general covered with blacktop, fill, gravel, and vegetation.

1) 2011 U.S. Centus Tract

UNLESS SPECIFICALLY STATED BY WRITTEN AGREEMENT, THIS DRAWING IS THE SOLE PROPERTY OF GZA GEOENVIRONMENTAL, INC. (GZA). THE INFORMATION SHOWN ON THE DRAWING IS SOLELY FOR THE USE BY GZA'S CLIENT OR THE CLIENT'S DESIGNATED REPRESENTATIVE FOR THE SPECIFIC PROJECT AND LOCATION IDENTIFIED ON THE DRAWING. THE DRAWING SHALL NOT BE TRANSFERRED, REUSED, COPIED, OR ALTERED IN ANY MANNER FOR USE AT ANY OTHER LOCATION OR FOR ANY OTHER PURPOSE WITHOUT THE PRIOR WRITTEN CONSENT OF GZA, ANY TRANSFER, REUSE, OR MODIFICATION TO THE DRAWING BY THE CLIENT OR OTHERS, WITHOUT THE PRIOR WRITTEN EXPRESS CONSENT OF GZA, WILL BE AT THE USER'S SOLE RISK AND WITHOUT ANY RISK OR LIABILITY TO GZA.

129 HOLDEN STREET BUFFALO, NEW YORK BROWNFIELD CLEANUP PROGRAM SITE NO. C915261

EROSION AND SEDIMENT CONTROLS

PREPARED BY:	Engine	eoEnvironmenta ers and Scientis ww.gza.com	ıl, Inc. ts	PRI
PROJ MGR:	JRR	REVIEWED BY:	TGB	СН

REPARED FOR: HIGHLAND VILLAGE PARK, LLC

HECKED BY: TB **FIGURE** SCALE: 1 in = 180 f PROJECT NO. 21.0056642.10 DECEMBER 2014

APPENDIX A PHOTO LOG

PHOTOGRAPHIC LOG

Client Name:

Highland Park Village, LLC

Date:

Site Location:

129 Holden Street, Buffalo, New York 12414

Project No.:

21.0056642.10

Photo No.:

1

Direction Photo Taken:

Northeast

Photographer:

Tom Bohlen

Description:

Soil stockpile from UB Medical located in the south-eastern portion of the site.

Photo No.:

Date:

Direction Photo Taken:

East

Photographer:

Tom Bohlen

Description:

Soil stockpile from UB Medical site located in the south-eastern portion of the site.

PHOTOGRAPHIC LOG

Client Name:

Highland Park Village, LLC

Site Location:

129 Holden Street, Buffalo, New York 12414

Project No.:

21.0056642.10

Photo No.:

Date:

Direction Photo Taken:

Southwest

Photographer:

Tom Bohlen

Description:

Soil stockpile from medical office building (MOB) located in the south-central portion of the site. Silt fence located along South side of the MOB.

Photo No.:

Date:

Direction Photo Taken:

West

Photographer:

Tom Bohlen

Description:

Soil stockpile from medical office building (MOB) located in the south-central portion of the site.

PHOTOGRAPHIC LOG

Client Name:

Highland Park Village, LLC

Date:

Site Location:

129 Holden Street, Buffalo, New York 12414

Project No.:

21.0056642.10

Photo No.:

5

Direction Photo Taken:

South

Photographer:

Tom Bohlen

Description:

Current paved construction entrance

Photo No.:

Date:

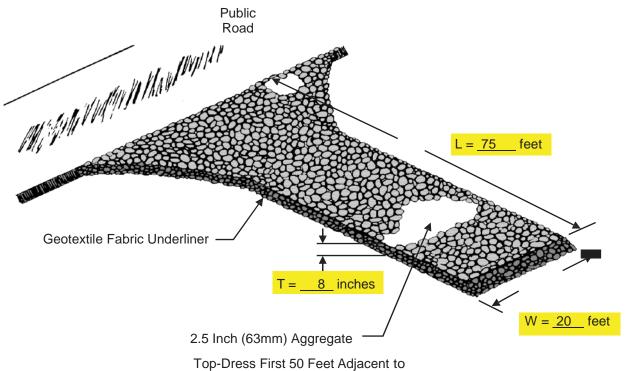
Direction Photo Taken:

N/A

Photographer:

Tom Bohlen

Description:


Street sweeper unit

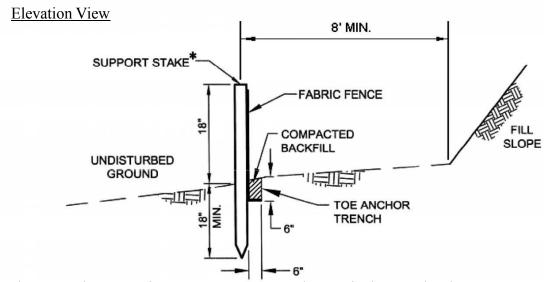
APPENDIX B – Best Management Practices (BMP) Diagrams

<u>Diagram 1 – Construction Ingress/Egress</u>

Temporary Construction Ingress/Egress Pad Plan View Worksheet (large sites—two acres or larger)

Top-Dress First 50 Feet Adjacent to Public Road Way

L = Ingress/Egress Pad LengthW = Ingress/Egress Pad WidthT = Aggregate Thickness


Source: State of Indiana – Storm Water Quality Measures: Construction & Land-Disturbing Activities; Adapted from North Carolina Erosion and Sediment Control Planning and Design Manual, 1993

<u>Diagram 2 – Filter Fabric Fence (Silt Fence)</u>

Standard Filter Fabric Fence (18" High)

Stakes spaced at 8' maximum. Use 2" x 2" wood or equivalent steel stakes.

Filter Fabric Fence must be placed at level existing grade. Both ends of the barrier must be extended at least 8 feet up slope at 45 degrees to the main barrier alignment.

Sediment must be removed when accumulations reach 1/2 the above ground height of the fence.

Any section of Filter Fabric Fence which has been undermined or topped must be immediately replaced with a Rock Filter Outlet. See Standard Construction Detail

Source: PADEP

APPENDIX C – Erosion and **Sediment Control Inspection Form**

Highland Village Park, LLC Site Erosion & Sediment Controls Inspection Form

Inspector Name:	Date:		
Site Conditions			
Is the ingress/egress road in acceptable condition?	Ү	Ν	N/A
Are the public roads in acceptable condition?	Ү	Ν	N/A
Is the project area stable and free from accelerated erosion?	Ү	Ν	N/A
Is the location adequately vegetated (70% permanent groundcover)?	Y	N	N/A
Erosion and Sedimentation Control			
Has clean stormwater runoff has been diverted from areas to be disturbed?	Y	Ν	N/A
Has a temporary construction entrance to capture mud and debris from construction vehicles before they enter the public roadway has been installed?	Y	N	N/A
Is sediment that is tracked onto public streets removed or cleaned on a regular basis?	Y	N	N/A
Is the silt fence is installed at appropriate spacing intervals?	Y	N	N/A
Maintaining Water Quality Is the site free from an increase in turbidity causing a substantial visible contrast to natural	Y	N	N/A
conditions?		N	N/A
		IN	-
Are all ground disturbances within the limits of the approved plans?	Y	N	N/A
Are receiving surface waters and wetlands un-impacted by silt from the project?	. Ү	N	N/A
House Keeping			
Is site litter and debris appropriately managed?	Y	N	N/A
Are facilities and equipment necessary for implementation of erosion and sediment controls in working order and/or properly maintained?	Y	N	N/A
Is dust adequately controlled?	Y	N	N/A
Soil Stabilization			
Are stockpiles stabilized with vegetation and/or mulch?	Y	Ν	N/A
Are sediment controls installed at the boundary of site?	Y	Ν	N/A
Is clean stormwater runoff diverted from stockpile?	Y	Ν	N/A
Have temporary seeding and mulch been applied to idle areas?	Y	Ν	N/A
Approximately% of vegetation cover is present.			

Sediment Control Practices

Is the stone clean enough at ingress/egress point to effectively remove mud from vehicles?	Υ	Ν	N/A
Is the ingress/egress installed per standards and specifications?	Υ	Ν	N/A
Does all traffic use the stabilized ingress/egress to enter and leave site?	Υ	Ν	N/A
Is adequate drainage provided to prevent ponding at entrance?	Υ	N	N/A
Is the silt fence installed on contour?		Ν	N/A
Are joints constructed for the silt fence by wrapping the two ends together for continuous support?		N	N/A
Is the fabric used for the silt fence buried per specifications?	Υ	Ν	N/A
Posts for the silt fence are stable; fabric is tight, upright, and without rips or frayed areas		Ν	N/A
Sediment accumulation is % of design capacity.			

Inspector Comments (Use additional pages if necessary)

APPENDIX J

RESPONSIBILITIES OF OWNER AND REMEDIAL PARTY

As both the Site owner and the remedial party, Highland Park Village, LLC is responsible for implementing the Site Management Plan for the 129 Holden Street Site, Site # 915261.