132 DINGENS ST. SITE ERIE COUNTY BUFFALO, NY

FINAL ENGINEERING REPORT BROWNFIELDS CLEANUP PROGRAM

NYSDEC Site Number: C915263

Prepared for 132 Dingens St, LLC Buffalo, NY

Prepared by Iyer Environmental Group, PLLC Orchard Park, NY 14127 (716)445-9684

July 2016 (revised October 2016)

CERTIFICATIONS

I, Dharmarajan Iyer, Ph.D., PE, am currently a registered professional engineer licensed by the State of New York, I had primary direct responsibility for implementation of the remedial program activities, and I certify that the Remedial Action Work Plan was implemented and that all construction activities were completed in substantial conformance with the Department-approved Remedial Action Work Plan.

I certify that the data submitted to the Department with this Final Engineering Report demonstrates that the remediation requirements set forth in the Remedial Action Work Plan and in all applicable statutes and regulations have been achieved in accordance with the time frames, if any, established for the remedy.

I certify that all use restrictions, Institutional Controls, Engineering Controls, and/or any operation and maintenance requirements applicable to the Site are contained in an environmental easement created and recorded pursuant ECL 71-3605 and that all affected local governments, as defined in ECL 71-3603, have been notified that such easement has been recorded.

I certify that a Site Management Plan has been submitted for the continual and proper operation, maintenance, and monitoring of all Engineering Controls employed at the Site, including the proper maintenance of all remaining monitoring wells, and that such plan has been approved by the Department.

I certify that all documents generated in support of this report have been submitted in accordance with the DER's electronic submission protocols and have been accepted by the Department.

I certify that all data generated in support of this report have been submitted in accordance with the Department's electronic data deliverable and have been accepted by the Department.

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, Dharmarajan Iyer, Ph.D., PE, of Iyer Environmental Group, PLLC, am certifying as Owner's Designated Site Representative for the site.

073104 NYS Professional Engineer #

10/31/16

Signature

Date

TABLE OF CONTENTS

Section		Description				
CERTIFICATIONS TABLE OF CONTENTS LIST OF ACRONYMS						
FINAL	ENGI	NEERING REPORT	1			
1.0	BACI 1.1 1.2	KGROUND AND SITE DESCRIPTIONSite DescriptionSummary of Site Contamination	1			
2.0	SUM 2.1 2.2	MARY OF SITE REMEDYSoil Remedial Action Objectives Description of Selected Remedy	3			
3.0	3.1 3.2 3.3	CRIPTION OF REMEDIAL ACTIONS PERFORMED GOVERNING DOCUMENTS	5 5 5 6 6 6 7 7 8 11 11			
	3.4	3.3.4 On-site Reuse	11			
	3.5	IMPORTED BACKFILL 3.5.1 Clean Off-site Backfill 3.5.2 Clean Off-site Topsoil 3.5.3 Clean Off-site Crushed Stone	14 14 14			
	3.6 3.7	CONTAMINATION REMAINING AT THE SITE COVER/CAP SYSTEM 3.7.1 Asphalt/Concrete Pavement 3.7.2 Crushed Stone Cover 3.7.3 Topsoil Cover	16 16 16			
	3.8 3.9 3.10	OTHER ENGINEERING CONTROLS	17 17			

TABLE OF CONTENT (contd.)

LIST OF FIGURES

- 1. Site Location Map
- 2. Site Layout Maps
 - A. Aerial Photo; B. Tax Map; C. Sample Locations; D. Excavated Areas
- 3. Sub-Surface Cross Sections (A-A' to G-G')
- 4. Remaining Contamination Investigation Soils
- 5. Remaining Contamination Confirmatory Soils
- 6. Engineering Controls New and Existing Cover System Details
- 7. Decontamination Pad Details

DRAWINGS

- 1. Site Survey Map
- RA Excavation Areas (with photos)
- 3. Backfill/Grading Layout
- Final As-Built

TABLES

- 1. Summary of Soil Contamination Pre-Remediation
- Final Confirmatory Soil Samples (Analytical Data):
 A. Metals, Total SVOCs & Total PCBs; B. SVOCs; and C. PCBs
- 3. Analytical Data QA/QC Field Duplicates & Rinse Blanks
- 4. Analytical Data RA Test Pit Soils Characterization (Vegetated Strips)
- 5. Analytical Data Soil Characterization for Disposal
- Quantities
 - A. Excavation & Backfill; and B. Off-site Disposal & Imported Materials
- 7. Analytical Data Off-site Imported Materials A. Topsoil; B. Soil Fill; and C. Crushed Stone

APPENDICES

- A PROJECT PHOTOPAGES
- B SURVEY MAP, DEEDS & BOUNDS
- C DIGITAL COPY OF FER (CD)
- D ENVIRONMENTAL EASEMENT
- E DAILY ACTIVITIES SUMMARY
- F SOIL/WASTE DISPOSAL DOCUMENTATION
 - F-1: WASTE HAULER PERMIT CERTIFICATES
 - F-2: DISPOSAL FACILITY APPROVAL LETTERS
 - F-3: TABULATED LOAD SUMMARIES
 - F-4: WASTE MANIFESTS/BILLS OF LADING (on CD)
 - F-5: LABORATORY REPORTS (Form 1s) (on CD)
- G REMAINING SOIL CONTAMINATION TABLES
 - 1. Phase II Soils; 2. RI Soils; 3. RA Soils; 4. Confirmatory Soil; 5. Sample Survey
- H INTERMEDIATE & FINAL CONFIRMATORY SOIL SAMPLES (Field Sketches: Analytical Tables: and Location Figures)
- I DUSRS FOR CONFIRMATORY SOIL AND OFF-SITE MATERIALS (on CD)
 - I-1: DUSRs (on CD)
 - I-2: LABORATORY REPORTS (Form 1s) (on CD)
- J CAMP FIELD DATA
- K IMPORTED MATERIALS DOCUMENTATION (on CD)
- L WORKER EXPOSURE ASSESSMENT REPORT
- M COVER SYSTEM DEPTH VERIFICATION

List of Acronyms

ASP Analytical Services Protocol
BCA Brownfield Cleanup Agreement
BCP Brownfield Cleanup Program
CBS Confirmatory Bottom Soil sample

CERCLA Comprehensive Environmental Response, Compensation and Liability Act

CAMP Community Air Monitoring Plan
CFR Code of Federal Regulation
CLP Contract Laboratory Program
COC Certificate of Completion

CSCO Commercial Use Soil Cleanup Objective

CWS Confirmatory Wall Soil sample

DER Division of Environmental Remediation

EC Engineering Control

ECL Environmental Conservation Law

ELAP Environmental Laboratory Approval Program

ERP Environmental Restoration Program

EWP Excavation Work Plan
GHG Green House Gas
HASP Health and Safety Plan
IC Institutional Control

NA Not Analyzed (or Not Applicable)

ND Not Detected

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health NYCRR New York Codes, Rules and Regulations

O&M Operation and Maintenance

OM&M Operation, Maintenance and Monitoring

OSHA Occupational Safety and Health Administration
PETL Proposed Excavation Threshold Limit (site-specific)

PRP Potentially Responsible Party

PRR Periodic Review Report

QA/QC Quality Assurance/Quality Control
QAPP Quality Assurance Project Plan
RAO Remedial Action Objective
RAWP Remedial Action Work Plan

RCRA Resource Conservation and Recovery Act RI/FS Remedial Investigation/Feasibility Study

ROD Record of Decision RP Remedial Party

RSO Remedial System Optimization SAC State Assistance Contract

SCGs Standards, Criteria and Guidelines

SCO Soil Cleanup Objective SMP Site Management Plan

SOP Standard Operating Procedures

SOW Statement of Work
TAL Target Analyte List
TCL Target Compound List

TCLP Toxicity Characteristic Leachate Procedure
USEPA United States Environmental Protection Agency

FINAL ENGINEERING REPORT 132 DINGENS ST. SITE

1.0 BACKGROUND AND SITE DESCRIPTION

132 Dingens St, LLC entered into a Brownfield Cleanup Agreement (BCA) with the New York State Department of Environmental Conservation (NYSDEC) in June 2012 to investigate and remediate a 13.22-acre property located in the City of Buffalo, Erie County, New York (see Figure 1). The property was remediated to restricted commercial use.

The site boundary is outlined on the aerial map on Figure 2A and on the site survey map included as Drawing D-1. It is located in the County of Erie, New York and is identified as Section 112.19, Block 1 and Lot 14.11 on the Erie County Tax Map (see Figure 2B). The site is 13.22 acres in area and is bounded by UPS ground terminal and Buffalo Games to the north, Dingens Street to the south, Niagara Tying Service to the east, and warehouses owned by Buffalo News and FPPF Chemical Company to the west. The site boundaries are more fully described on the site survey map (Drawing D-1) and in Appendix D – Environmental Easement.

An electronic copy of this FER with all supporting documentation is included as Appendix C.

1.1 <u>Site Description</u>

The site and its surrounding areas contained numerous rail lines and yards dating back to 1917, and this area was built up to its current grade with various types of industrial/urban fill. Soils on the site are mapped by the Soil Conservation Service as "Urban Land" which can typically contain fill materials with little native soil conditions remaining. No sensitive ecological receptors were identified in and around the site. Potable water is supplied from Lake Erie by the City of Buffalo, and there are no drinking water wells in the area.

The site consists of the following: an 85,000 square-foot foundation (remaining from an old warehouse that burned down in 2010) and a one-story storage building. Most of the remaining land area is covered with asphalt/concrete/stone with small areas of vegetation. The site is zoned commercial/light industrial, and is currently vacant except for new automobiles temporarily parked in the paved area to the south.

The properties adjoining the site and in the surrounding neighborhood primarily include commercial and residential properties. The properties immediately south of the site across Dingens St. include commercial and residential properties; the properties immediately north of the site include commercial properties; the properties immediately east of the site include commercial properties; and the properties to the west of the site include commercial properties.

1.2 **Summary of Site Contamination**

Site investigations (2011 Phase II and 2015 BCP RI; see sampling locations on Figure 2C) revealed various types of industrial/urban type fill that was used to elevate the ground surface to its present grade in and around the site.

The fill (see geologic cross-sections in Figure 3) includes randomly deposited heterogeneous materials, construction debris (bricks, concrete and wood), trash (rubbish, glass, paper and scrap metal), oil soaked materials and sludge. The fill is underlain by various types of natural soils (clay, silt, sand and gravel). The thickness of the fills ranged from four feet along the southeastern boundary to twenty feet along the northern boundary.

Volatile organics, pesticides and cyanide were found only at trace levels in soil and groundwater and are therefore not of significance at this site. No petroleum compounds of significance were found in any of the soil samples, even in the paved area northeast of the old warehouse foundation that was the location of petroleum USTs.

The bulk of the contamination appeared to be limited to the industrial fill material, while the underlying natural soil (clay, silt) appeared to be minimally impacted. The highest levels of soil contamination exceeding SCOs for restricted commercial and industrial use appear to be in previously vegetated areas along the northern property boundary and the eastern section. Elevated levels were also found in the old UST area just northeast of the warehouse foundation. Relatively lower levels of contamination were found in the paved areas surrounding the old warehouse foundation, and even lower along the southeastern property boundary.

Of greater significance has been soil contamination with several semi-volatile compounds, PCBs and a few metals which are listed in Table 1 along with the range of concentrations found in site soils during the Phase II (2011) and RI (2015) investigations. SVOC and metals contamination in the soil is widespread across the vegetated areas of the site. These two parameters are typically associated with the industrial type fill material making up the top four to twenty feet of the subsurface. Among the metals, lead was of the greatest concern since high concentrations of total lead (greater than 5,000 mg/Kg) can result in exceedance of its TCLP limit.

Based on the results of two rounds of sampling, groundwater did not appear to be adversely impacted at the site. Unfiltered groundwater samples from eight overburden monitoring wells straddling the fill materials were found to have low levels of contaminants consistent with the carryover of fine solids from the formation. Filtered groundwater samples from the first round and unfiltered samples from the second round were found to have only trace levels of semivolatile organics and metals typical of the area. These findings indicated that the site contaminants do not readily leach from the fill materials into the groundwater.

Site-specific PETLs (Proposed Excavation Threshold Limits) were established in the AAR (Alternatives Analysis Report; May 2015) and became part of the Decision Document (May 2015) for remediation of the site. The hotspot source areas exceeding the PETLs are shown on Figure 2D (see sample locations on Figure 2C associated with these areas).

2.0 <u>SUMMARY OF SITE REMEDY</u>

2.1 Soil Remedial Action Objectives

Soil is the primary contaminated medium identified at the site, with the potential to impact the underlying groundwater. The area is bordered by commercial properties. Groundwater is not adversely impacted at the site and does not require long term monitoring.

Based on the results of the Remedial Investigation, the Remedial Action Objectives (RAOs) for the site as listed in the Decision Document (May 2015) are as follows:

- RAOs for Public Health Protection: Prevent ingestion/direct contact with contaminated soil
- RAOs for Environmental Protection: Prevent potential migration of contaminants that will result in groundwater contamination

2.2 <u>Description of Selected Remedy</u>

The site was remediated in accordance with the remedy selected by the NYSDEC in the RAWP dated July 2015. The factors considered during the selection of the remedy are those listed in 6NYCRR 375-1.8. The remedy for this site was performed as a single project, and no interim remedial measures, operable units or separate construction contracts were performed.

The following are the components of the selected remedy:

a. Excavation of soil/fill exceeding the site-specific Soil Cleanup Objectives (SCOs) as defined by the Proposed Excavation Threshold Limits (PETLs) listed below:

PARAMETER	PETL (mg/Kg)
Total SVOCs	500
Total PCBs	1.0
Arsenic	79
Lead	5,000
Mercury	5.7

- b. Backfill excavations and grade site with clean imported materials. All fill material brought to the site met the requirements for the identified site use as set forth in 6 NYCRR Part 375-6.7(d).
- c. Excavation water was discharged on the ground surface in one area.
- d. Construction and maintenance of a cover system to prevent human exposure to remaining contaminated soil/fill remaining at the site. The cover system (see Drawing D-4 for layout of the cover system and Figure 6 for details) included asphalt, concrete, gravel, floor slab,

building, or a soil cover in areas where the upper one foot of exposed surface soil exceeds the applicable soil cleanup objectives (SCOs).

The soil or crushed stone cover has a minimum thickness of one foot, meeting the SCOs for cover material as set forth in 6 NYCRR Part 375-6.7(d) for commercial use (CSCOs). The asphalt cover includes a 2" base of crushed stone, and 4" of blacktop material on top of that.

- e. Newly installed cover systems were placed over a demarcation layer of Geotextile fabric to distinguish them from the underlying industrial/urban fill or clean fill that was used to establish the required grade.
- f. Development and implementation of a Site Management Plan for long term management of remaining contamination as required by the Environmental Easement, which includes plans for: (1) Institutional and Engineering Controls, (2) maintenance and (3) reporting;
- g. Execution and recording of an Environmental Easement to restrict land use and prevent future exposure to any contamination remaining at the site.
- h. Institutional controls implemented for the site:
 - Allows the use and development of the controlled property for commercial and industrial uses as defined by Part 375-1.8(g), with subject to local zoning laws;
 - Restricts the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by the NYSDOH or Erie County DOH; and
 - Requires compliance with the Department approved Site Management
- i. Periodic certification of the institutional and engineering controls listed above.

3.0 DESCRIPTION OF REMEDIAL ACTIONS PERFORMED

Prior to this Remedial Action, debris from the 2010 warehouse fire was cleared by Pinto Construction Services. During the course of the BCP remedial investigation, Pinto continued to remove old refrigeration equipment from the pump-house building and pad-mounted transformers outside, and processed them for recycling. Drums containing various chemicals were also properly disposed off-site. The site with its one remaining building is secured by a chain link fence surrounding the entire perimeter.

Remedial activities completed at the Site were conducted in accordance with the NYSDEC-approved Remedial Action Work Plan (RAWP, July 2015) for the 132 Dingens St. site. There were two deviations from the RAWP as described in Section 3.1, but these do not materially affect the site remedy.

The progress of site work is documented by the photopages in Appendix A. It includes photopages illustrating weekly activities during remediation as well as site conditions at the conclusion of remediation. A log of daily activities is included as Appendix E.

3.1 **Governing Documents**

3.1.1 Site Specific Health & Safety Plan (HASP)

All remedial work performed under this Remedial Action was in full compliance with governmental requirements, including Site and worker safety requirements mandated by Federal OSHA.

The Health and Safety Plan (HASP, Appendix C of the RAWP) was included as complied with for all remedial and invasive work performed at the Site.

3.1.2 Quality Assurance Project Plan (QAPP)

The QAPP was included as Section 12 of the RAWP approved by the NYSDEC. The QAPP describes the specific policies, objectives, organization, functional activities and quality assurance/ quality control activities designed to achieve the project data quality objectives.

3.1.3 Soil/Materials Management Plan (S/MMP)

The excavation, handling, testing, transport and disposal of contaminated soil/urban fill were detailed in Section 9 of the RAWP.

3.1.4 Community Air Monitoring Plan (CAMP)

The NYSDOH's Generic Community Air Monitoring Plan was included as Appendix D of the RAWP. Volatile organics were not of concern at the site. Particulates were monitored upwind and downwind of each of the work areas during soil excavation and backfilling operations.

3.2 Remedial Program Elements

3.2.1 Contractors and Consultants

Consultant – Iyer Environmental Group, PLLC, 44 Rolling Hills Dr., Orchard Park, NY 14127. Dharmarajan Iyer, Ph.D., PE, is the certifying Engineer of Record responsible for inspection of the work.

Contractor – Pinto Construction Services Inc., 1 Babcock St, Buffalo, NY 14210

Laboratory Services – Test America Laboratories, Inc., 10 Hazelwood Dr., Amherst, NY 14228

Landfill Services – Modern Landfill, Inc., 4746 Model City Rd, Model City, NY 14107

3.2.2 Site Preparation

A NYSDEC-approved project sign was erected at the project entrance on Dingens Street and remained in place during all phases of the Remedial Action.

A pre-construction meeting was held with NYSDEC and the Contractor in May, 2015. During June 2015, Pinto mobilized equipment and fenced the entire perimeter of the site. DigSafe was called for the site mark up.

No specific agency or non-agency approvals were required during the course of this remediation. SEQRA requirements and compliance requirements for attainment of applicable natural resource or other permits were also not required.

lyer Environmental Group (IEG) took backfill samples on May 12, 2015 on topsoil that was being stored in Pinto Construction Services (Pinto) maintenance yard. IEG assisted Pinto in getting the landfill approval from Modern Landfill, Inc., and the Buffalo Sewer Authority for a sewer permit. There were no discharges to the sewer during the site remediation.

3.2.3 General Site Controls

Site security was provided by the Chain link fence that was erected around the perimeter of the site. Job site records were kept by IEG in the form of a Log Book dedicated to site work. Pinto kept Manifest Sheets for all disposed truck loads. Erosion and sedimentation controls were not an issue at this site because of the relatively small areas that were being excavated inside the 13.2-acre property. Equipment decontamination was achieved with a decontamination pad (see details on Figure 7) that Pinto set up near the building at the north central section of the site.

Excavation areas were marked with paint and staked with IDs. Fences were constructed around each excavation area and left in place until receipt of confirmatory sample results and backfilling was completed.

Some excavation piles with high lead content were mixed with cement and moisture so as to stabilize the lead and render the material non-hazardous. Water was added during the mixing operation to achieve the optimum treatment process and to reduce

dust. Cement was added to excavation piles before disposal at the following excavation areas: GS-30, MW-7, TS-9, GS-20 and TS-15.

Excavated material had to be stockpiled near each excavation area while awaiting analytical results from the laboratory (Test America) to confirm its acceptability for landfill disposal. It was placed on plastic sheets as it was being excavated and then covered in plastic at the end of each day to prevent wind and rain erosion.

While waiting for confirmatory lab results, the excavation at one location (GS-30) would partially fill with water. The settled water was pumped onto the surrounding land before further excavations or backfill could be realized – this was acceptable since the site-specific contaminants did not readily leach. Some of the excavated piles contained lead in excess of the RCRA TCLP limit of 5 mg/L. These soil stockpiles were mixed with cement in a roll-off bin to stabilize the heavy metal and retested to confirm they meet the TCLP limit before disposing at the solid waste landfill.

3.2.4 Nuisance controls

The trucks were loaded carefully to avoid spillage and plastic was used on the side of the dump boxes to make cleaning them off after loading easier. The contaminated areas were small compared to the overall site and the trucks were not exposed to contaminated ground as they were coming and going. The decontamination pad was used (see details on Figure 7) as necessary to clean excavating and loading equipment.

The commercially zoned location of the property combined with relatively close access to highways made for convenient truck routing.

Pinto's Standard Operating Procedures (SOP) for Spill Control and Contingency Measures were in place for any spills occurring at the Site during remediation activities.

IEG stayed in close contact with the NYSDEC during the entire remediation. Working closely with Pinto, IEG addressed problems quickly and did not receive any complaints from the surrounding properties.

3.2.5 CAMP Results

Particulates were monitored upwind and downwind of the work areas during soil excavation and backfilling operations. Real-time air monitoring included visual observations for fugitive dust and particulate measurements with a MIE Miniram PDM-3. Dust was monitored with the hand held particulate meter on all four sides of the excavations while excavation and on-site treatment with cement was in progress. The PDM-3 with an audible alarm is capable of measuring particulates less than 10 micrometers in size (PM-10) and integrating over time for comparison to the airborne particulate action level.

The PDM-3 readings (included as Appendix J) ranged from non-detect to a high of $2.59~\mu g/M^3$ during the course of the site work, all well below the RAWP threshold of $100~\mu g/M^3$. Fugitive dust, if any, was observed only in the immediate vicinity of the

excavator. As a precautionary measure, water was sprayed in the excavation during the few times such observations were made, and also on the excavated stockpile during on-site treatment with cement.

The open unobstructed landscape of the site meant that odors from these areas were quickly dissipated by the prevailing breeze.

3.2.6 Reporting

IEG kept a Field Log Book for the site which was used to record daily activities. This was used in part to create the Log of Daily Activities in Appendix E. In addition, IEG took numerous photos of the work in progress. These were used to create the photopages in Appendix A which document the work on a weekly time frame.

Pinto field staff handled all disposal manifests with the waste hauler during the remediation. Copies of these manifests are included in Appendix F, along with the waste hauler's 9A permit and disposal facility approval documentation.

Test America provided a report for each batch of samples sent to them. Copies of these Laboratory Reports for landfill samples are included in Appendix F. Laboratory analytical reports for confirmatory soil samples and off-site materials are included in Appendix I along with the Data Useability Reports (DUSRs).

A worker exposure assessment (see Report in Appendix L) was performed by the Contractor's Certified Industrial Hygienist in July 2015 during remedial activities. It included personal samples for arsenic and lead which were found to be non-detect, suggesting no worker exposure above Personal Exposure Limits.

The quantities of excavated soil/fill and other materials (brush, stumps, scrap metal and broken up asphalt) disposed off-site and imported off-site materials (backfill, topsoil, crushed stone, blacktop binder, Geotextile fabric, concrete and cement) are tabulated in Tables 7A and 7B. Tabulated load summaries for excavated materials disposed at Modern Landfill's solid waste disposal facility are included in Appendix F.

3.3 Contaminated Materials Removal

Soil from the source areas of concern were sequentially excavated and the excavation proceeded in each area until confirmatory soil samples met the site-specific excavation objectives (PETLs) as per the RAWP.

The sequence of operation was as follows:

- A. An HDPE liner (minimum 10 mil) was placed next to the source area for staging of excavated soil.
- B. Fill/soil across the entire cross-section of the source area was excavated initially to a depth of 4 feet.
- C. The excavated soil was staged on the HDPE liner next to the source to allow sampling to determine disposal options.
- D. The excavated soil layers were logged by depth intervals in accordance with the Unified Soil Classification System.

- E. Confirmatory wall and bottom samples were collected from the excavation at a frequency of at least 1 per 30 feet, and submitted for laboratory analysis for the parameter of concern identified for that area.
- F. Composite soil samples were collected from the excavated soil stockpile at a minimum frequency of 1 sample per 100 CY and submitted for laboratory analysis for TCLP Lead.
- G. The results of the confirmatory soil samples were used to determine the need for further excavation at each source area. Excavation proceeded in each source area until the confirmatory samples met the PETLs.
- H. Based on the results of the soil testing, soil stockpiles that met the landfill's acceptance criteria, including TCLP lead, were loaded on to waste haulers for disposal at the landfill. The analytical data were submitted to the landfill for prior approval before shipping.
- I. Based on the results of the soil testing for TCLP lead, soil stockpiles with TCLP lead above the RCRA toxicity limit (5 mg/L) were treated on-site in a roll-off bin by mixing them with cement (~5% by weight), slightly wetted with water and restaged on an HDPE liner for at least one day to cure. The stockpile was then resampled for TCLP lead, and the stockpile was shipped to the solid waste landfill if TCLP lead was below the RCRA limit. The analytical data were submitted to the landfill for prior approval before shipping.
- J. Every effort was made to stage the trucks so as to prevent excavation spoils from being tracked off-site. Provisions were made to handle any spills of contaminated materials during excavation as per Pinto's SOP for Spill Control but was not required.
- K. Water infiltrating into the excavation bottom (in one excavation area only) was pre-tested and, based on low contaminant levels, was pumped onto the ground surface
- L. The excavated area was progressively backfilled following confirmatory sampling of the wall and bottom. Only off-site fill meeting DER-10 requirements was used for backfill.
- M. The backfilled areas were compacted in 2-foot lifts and graded as necessary.
- N. The excavations were surveyed on a regular basis and updated on the site map.

A protective cover system was established in accordance with DER-10 requirements for restricted commercial use. It includes asphalt, concrete, gravel, floor slab, building, or a soil cover in areas where the upper one foot of exposed surface soil exceeds the site-specific SCOs/PETLs. These different kinds of cover systems are detailed on Figure 6A (new asphalt and new concrete cover systems) and Figure 6B (existing asphalt, concrete and soil cover systems). The excavation, backfill and grading layout is shown on Drawing D-3, while the layout of the cover systems is shown on the as-built survey map in Drawing D-4.

The soil or crushed stone cover has a minimum thickness of one foot, meeting the SCOs for cover material as set forth in 6 NYCRR Part 375-6.7(d) for commercial use. The asphalt cover includes a 2" base of crushed stone, and 4" of blacktop material on top of that. As shown on the as-built drawing (Drawing D-4), the cover system includes crushed stone in the eastern section of the site, existing paved areas in the middle and northern section, and a combination of new asphalt paving

and crushed stone in the northern and western sections. Photopages included in Appendix A show site conditions immediately after completion of remediation.

3.3.1 Contaminated Soil Removal

Site specific excavation objectives (PETLs, Proposed Excavation Threshold Limits) were established for arsenic (79 mg/Kg), lead (5,000 mg/Kg), mercury (5.7 mg/Kg), and total semi-volatile organic compounds (500 mg/Kg). PCBs were remediated to meet Part 375 commercial use soil cleanup objectives of 1 mg/Kg which also meets the Toxic Substances Control Act (TSCA) self-implementing requirements. Site remediation entailed the removal of soil/fill exceeding the site-specific PETLs.

The source areas (see locations on Drawing D-2 and Figure 2D) with high levels of contamination were identified during the BCP remedial investigation. The PETLs were exceeded in mostly the unpaved areas of the Site delineated on Figure 2D. Contaminated soil/industrial fill, which formed the source areas of concern, was excavated and disposed off-site at Modern Landfill's solid waste facility in Model City, NY.

The excavations of the hot spots started at the end of July 2015. Areas were marked out with paint and then enclosed with fences. Material was excavated and put on plastic. Based on the results for landfill parameters, the excavated stockpiles were either directly loaded onto trucks and disposed at the solid waste landfill or treated with cement, allowed to stabilize and retested. Treated stockpiles meeting landfill acceptance criteria were then loaded onto trucks and disposed offsite.

Confirmatory samples were taken on all excavation walls and bottom. Composite samples for the landfill parameters were taken from the excavation piles. The excavations were backfilled only after confirmatory sampling demonstrated that the site-specific PETLs were met. Where the confirmatory soil results did not meet the PETLs, the excavations were extended in an attempt to reach material meeting the PETLs. Each extension of an excavation would be completed with a wall or bottom resampling depending on the circumstance. Once the bottom and wall samples of the final excavation at each location was confirmed to meet the PETLs, the excavation at that location was backfilled and compacted in lifts.

All soil/fill with lead concentrations greater than 5,000 mg/Kg had the potential to exceed the RCRA TCLP limit of 5 mg/L. Based on soil stockpile analysis, those that exceeded the TCLP lead limit were treated on-site with cement (at least 5% by weight) and water (enough to wet the soil) to stabilize the lead, retested to confirm TCLP lead was below the RCRA limit and then disposed at a solid waste landfill. As seen in Table 5, the on-site chemical treatment process worked very well by reducing TCLP lead from a range of 5.9 to 115 mg/L before treatment to a range of non-detect to 0.29 mg/L after treatment in the soil stockpile. In most cases, TCLP lead in the treated samples was two to three orders of magnitude lower than the untreated stockpiles.

Excavations went on in this manner until the beginning of Nov 2015. The last excavation completed was at GS-19. Table 6A lists soil excavation quantities by source areas, as well as backfill quantities. Other materials disposed off-site included broken blacktop, brush, stumps and scrap metal, and these are tabulated in

Table 6B. A total of 2033 cubic yards of contaminated soils and industrial fill were excavated from these areas during the 2015 remedial action and disposed off-site.

Clean fill meeting the requirements of 6 NYCRR Part 375-6.7(d) was brought in to complete the backfilling of the excavations. The site was also re-graded to accommodate installation of a cover system. Table 6A also includes off-site fill volumes for backfill as well as to regrade areas in the northeast portion of the Site. Other imported materials are listed in Table 6B. A total of 11,782 cubic yards of clean off-site fill was used to backfill the excavated areas and to regrade the surrounding areas. A geotextile fabric was placed in all areas over existing soil/urban fill and over clean fill used for regrading before placement of the cover system.

3.3.2 Monitoring Well Decommissioning

All eight overburden wells installed during the RI were decommissioned during site remediation as they were no longer needed. The wells were decommissioned in accordance with the NYSDEC's CP-43, Groundwater Well Decommissioning Procedures. Taking into account the site conditions, the overburden wells were decommissioned by grouting in-place followed by pulling the casing.

3.3.3 <u>Disposal Details</u>

The vast majority of the material disposed off-site was soil/urban fill at 2,695 tons. The next largest material disposed was broken asphalt with (10) dump truck loads going off-site. Three (3) loads of brush and (1) load of stumps were also disposed. The quantity tabulations for all materials are included in Tables 6A and 6B.

The soil/urban fill, brush and stumps were taken to Modern Landfill's Model City solid waste facility in Niagara County. Copies of the waste profile and acceptance letter from Modern Landfill are included in Appendix F. Copies of the manifests and bills of lading can be found in Appendix F.

Four waste/material haulers were used for the remediation: B Pariso Transport Inc., 2647 Whitehaven Rd, Grand Island, NY 14072; Laraba Enterprises LLC, 4633 Mapleton Rd, Lockport, NY 14094: Artmeier's Trucking, 478 Hopkins St, Buffalo, NY 14220; Mallare Enterprises, 174 N Ellicott Creek Rd, Buffalo, NY 14228. Pariso's 9A permit for waste hauling is included in Appendix F.

3.3.4 On-site Reuse

Due to the targeted hot spot nature of the excavations and the primarily man-made nature of the material on site, none of the excavated material was reused on site.

3.4 Remedial Performance/Documentation Sampling

For remediation of this Site to restricted commercial use, PETLs were established (see Table 1) for Total SVOCs, PCBs, arsenic, lead and mercury. These PETLs allow for the removal of meaningful quantities of contaminated soil/fill SVOCs and yet be protective of human health and the environment. The recommended soil cleanup level of 500 mg/Kg for total PAHs in the NYSDEC's CP-51 Soil Cleanup Guidance is proposed as the PETL for Total SVOCs. For arsenic, the proposed

PETL of 79 mg/Kg is the mean plus two standard deviations (excluding the outlier). In the case of lead, a soil cleanup level of 5,000 mg/Kg is proposed as the PETL based on a correlation between total lead and TCLP lead, instead of a statistically determined value. The PETL of 5.7 mg/Kg for mercury is set at its ISCO.

3.4.1 Sampling Approach and Methodology

A total of thirteen (13) locations were excavated at the site. The anticipated source areas (see Figure 2D for layout and Drawing D-2 for locations of the excavation areas) targeted for excavation and their corresponding analytical parameters for confirmatory soil analysis are as follows:

SOURCE AREAS	PARAMETERS FOR
EXCAVATED	CONFIRMATORY SOIL
(see Figure 2D)	ANALYSIS
Α	Pb
В	Pb
D	As, Hg
E	SVOCs
F	SVOCs, Pb, PCBs
Ğ	PCBs
L	Hg

Confirmatory soil samples were collected at the bottom of the excavations and from the side walls in accordance with NYSDEC requirements to determine the need for further excavation based on the PETLs for restricted commercial use, and to document residual levels of contaminants at the Site. Samples were collected using a minimum grid spacing of 30'x30'. The sampling frequency was doubled as required by the NYSDEC for excavation side walls along the northern property boundary.

The excavations were performed to depths ranging from two feet (e.g. the western section with PCB contamination) to over ten feet (e.g. the eastern section with metals contamination). Confirmatory soil samples were taken from the excavation bottom and side walls and analyzed for parameters of concern associated with each excavation area (see table above). Each bottom confirmatory soil sample was made up of a composite of seven to ten grab samples across the excavation bottom. Each wall sample was made up of a composite of seven to ten grab samples directly from the side wall or from the excavation bucket after scraping across the side wall at depth intervals based on field visual observations and previous investigation data.

Once final confirmation samples were determined to meet the PETLs, the excavations were backfilled with clean backfill from a known source that was precharacterized. The excavated/backfilled areas thus have at least two (2) feet of clean off-site fill in the upper layer as the underlying soil cover. In addition, the excavated and backfilled areas include a top layer of new asphalt, new concrete or new crushed stone as part of the cover system. Details of the newly established cover system are provided on Figure 6A, while the existing cover systems in un-excavated areas are detailed on Figure 6B.

A total of ninety-two (92) confirmatory wall samples (CWS) and twenty-nine (29) confirmatory bottom samples (CBS) were taken during consecutive stages of excavations until the PETLs were met. Analytical results for all confirmatory soil samples (intermediate and final) are included in Appendix H as Tables H-1 (for As, Hg, Pb, total SVOCs and total PCBs), H-2 (for detected SVOCs), and H-3 (for detected PCBs). Confirmatory soil sample results following the final excavations are presented in Tables 2A (metals), 2B (SVOCs) and 2C (PCBs).

Appendix H also includes sketches of the layout of all confirmatory soil samples with sampling dates, and figures with sample locations and analytical results for each excavation area. Field duplicates and equipment rinse blanks collected during the confirmatory soil sampling are included in Table 3. Laboratory Reports (Form 1s) are included in Appendix I, while Category B laboratory reports are included in digital format on CD.

During remediation, two small vegetated strips near the site entrance (off Dingens St.) were sampled on 10/14/15 (upon consultation with the NYSDEC) to supplement existing data for the site and confirm that this area did not warrant remediation. Four soil samples (designated TS-18 through TS-21; see locations on Figure 2C) were collected from the top two feet in these two areas and analyzed for semivolatile organics (SVOCs), PCBs and metals.

The results of the soil sampling in the vegetated strips during remediation are presented in Table 4. No PCBs were detected in these samples, while total SVOCs ranged from 7.2 to 99.6 mg/Kg, all below the site-specific PETL of 500 mg/Kg. Among the three metals, arsenic ranged from 6.8 to 14.1 mg/Kg (well below its PETL of 71 mg/Kg), lead was 86 to 1840 mg/Kg (compared to 5,000 mg/Kg PETL), and mercury was 0.19 to 0.67 mg/Kg (compared to PETL of 5.7 mg/Kg). Previous investigations have indicated the southern-most area of the site along Dingens St. to be generally below the SCOs. The upper layer of soil in these two areas with two (2) feet of soil below PETLs can therefore be part of the cover system for the Site.

Remaining contamination at the site is documented by compiling investigation and remediation data for soil samples at unexcavated locations and for confirmatory soil samples in remedial excavation areas. The analytical data is shown on Figures 4 (investigation data) and 5 (confirmatory soil data), and fully tabulated in Appendix G. The locations of the investigation samples are shown on Figure 2C while intermediate and final confirmatory samples are shown on the figures included in Appendix H.

A memo dated 11/16/15 documenting the end of soil excavation and associated confirmatory sampling was submitted to the NYSDEC. All final confirmatory samples representing remaining contamination in the excavated areas were below the PETLs (see Table 5) with just one exception (a low level PCB exceedance in the western area of the site).

A total of fifty-eight (58) composite soil samples (LFS) were taken for landfill parameters in excavated stockpiles and their results are presented in Table 5. Laboratory Reports (Form 1s) are included in Appendix I-2 (digital copy on CD).

3.4.2 QA/QC

Quality Control (QA/QC) was achieved using measures implemented in the field and in the laboratory. During field sampling the tools used were washed with distilled water after each sample was taken. The location and ID of the sample were entered in the Log Book. All backfilling was done only after post excavation confirmatory soil sampling and QA/QC activities were performed.

IEG designated eight (8) duplicate confirmatory soil samples to be analyzed. The results of the duplicate samples can be found on Table 3A. There were a total of ten (10) matrix spike/matrix spike duplicates (MS/MSD) samples. In addition, four (4) Rinse Blank samples were taken and their results are included in Table 3B. The Data Useability Summary Reports (DUSRs) for the confirmatory samples are included in Appendix I along with Laboratory Reports.

3.5 <u>Imported Backfill</u>

3.5.1 Clean Off-site Backfill

The excavated areas were backfilled with clean fill from off-site sources, properly sampled and tested to ensure it met DER-10 analytical parameters and frequency requirements for use at this Site. The backfill (332 loads) was supplied from a stockpile location on Seneca St in Buffalo. This material was mostly sand brought in from a construction excavation at the Children's Hospital in Buffalo, NY.

The stockpile was sampled on Apr 7, 2015. Results of this sampling are included in Table 7B. Documentation for the backfill material included in Appendix K consisted of a BUD (Beneficial Use Determination) application to the NYSDEC and its approval for use at the site.

3.5.2 Clean Off-site Topsoil

Clean topsoil was taken from a supply in Pinto's Yard which was sampled on May 12, 2015. The analytical results of this sampling can be seen in Table 7A. Five loads of soil were used from this location. Documentation for the topsoil included in Appendix K consists of a memo for NYSDEC approval that documented the source of the topsoil (St. Joseph Collegiate Institute in Tonawanda, NY and Boulevard Mall in Amherst, NY) and analytical results.

3.5.3 Clean Off-site Crushed Stone

16,383 tons of 2' crushed stone was used on the surfaces of the property that were not paved or were covered with vegetation. The virgin crushed stone was obtained from Lockport Quarry and was sampled on November 2, 2015 upon delivery to the site. Analytical results for this crushed stone batch are included in Table 7C.

3.6 Contamination Remaining at The Site

The entire site and its surrounding areas are underlain by industrial/urban fill down to depths of up to 20 feet below ground surface. Heavy metals (arsenic, mercury and lead) are of concern across the site, SVOCs in the middle north section and PCBs in the western section.

The SVOC compounds of concern include benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene, indeno(1,2,3-cd)pyrene, phenanthrene and pyrene. Aroclor 1248 and 1254 are the two PCB compounds of concern. These site-specific contaminants of concern have relatively low mobility.

An estimated 212,000 cubic yards make up the layer of industrial/urban fill with contaminated soil across the site. A total of 2,033 cubic yards of contaminated soil were removed from all highly contaminated source areas identified during the site investigations. The clay layer beneath the urban fill layer is relatively unimpacted.

The elevations of the top of remaining soil contamination and the thickness of the remaining contamination are shown on the Geologic cross sections in Figures 3-2 (A-A') through 3-8 (G-G'). The cross-section locations are shown on Figure 3-1. These cross-sections also show the cover system across various portions of the site, while the layout of the cover system is shown on Drawing D-4.

A geotextile membrane serves as the demarcation layer between the remaining contaminated soil layer and cover system made up of clean off-site fill, crushed stone and asphalt. All the excavations were lined with the geotextile membrane prior to backfill. After regrading with additional clean fill, all areas that received an asphalt or crushed stone cover were lined with the geotextile.

Figure 4 (see full listing in Appendix G) summarizes the results of all soil samples that were collected during previous investigations (Phase II and RI) but remain after excavation of the source areas of concern. All these samples are below the PETLs. Figure 5 summarizes (full listing in Appendix G) the results of all soil samples collected during the remedial action. While some of these investigation and confirmatory samples may exceed Unrestricted Use SCOs, they all meet the PETLs or site-specific restricted commercial Use SCOs at the site after completion of remedial action.

Since contaminated soil remains beneath the site after completion of the Remedial Action, Institutional and Engineering Controls are required to protect human health and the environment. These Engineering and Institutional Controls (ECs/ICs) are described in the following sections. Long-term management of these EC/ICs and residual contamination will be performed under the Site Management Plan (SMP) approved by the NYSDEC.

3.7 Cover/Cap System

Exposure to remaining contamination in soil/urban fill at the site is prevented by a cover system placed over the site. The Site has four types of cover systems (see layout on Drawing D-4 and details in the cross-sections on Figures 6A and 6B) to prevent exposure and be protective of human health:

- ➤ Soil cover, mostly along the sidewalks near the front entrance (Dingens St.) to the property
- Crushed stone, mostly along the property boundary and the eastern portion
- Asphalt cover for paved parking areas
- Concrete cover, including the warehouse foundation and building

The crushed stone, clean fill and top-soil was obtained from known sources and precharacterized to confirm with DER-10 requirements for imports from off-site. Details of the new asphalt and crushed stone cover systems are shown on Figure 6A while the existing cover systems (asphalt, concrete and soil covers) are detailed in Figure 6B.

Following a site inspection in April 2016 by the NYSDEC, IEG/Pinto dug test holes in the new crushed stone covers in the eastern portion of the site along their transitions from the existing asphalt cover. The depth of the crushed stone cover was measured to range from 1.33 to 1.9 feet, well above the required 1-foot (12") cover for restricted commercial use. The locations of these test holes and measured depths are shown on a drawing in Appendix M along with photos.

This cover system will be maintained and repaired as necessary to provide the protective barrier to human contact that is a key element of the selected remedy. An Excavation Work Plan, which outlines the procedures required in the event the cover system and/or underlying residual contamination are disturbed, is provided in Appendix C of the SMP.

3.7.1 Asphalt/Concrete Pavement

The northwest section of the Site around the Cell Tower was paved over with an asphalt cover. The west leg of the site was also paved over. Areas that currently had asphalt/concrete were repaired as necessary to render them suitable for use after Site redevelopment.

3.7.2 Crushed Stone Cover

Crushed stone was used as a final cover along the south, north and eastern borders of the property. The north border stoned areas are wider than the narrow strip along the southern border. The entire east end which was previously vegetated is now covered with stone after bringing up the grade with backfill soil. Areas along some property boundaries were covered with a minimum 1-foot layer of clean fill and then finished with crushed stone.

3.7.3 Topsoil Cover

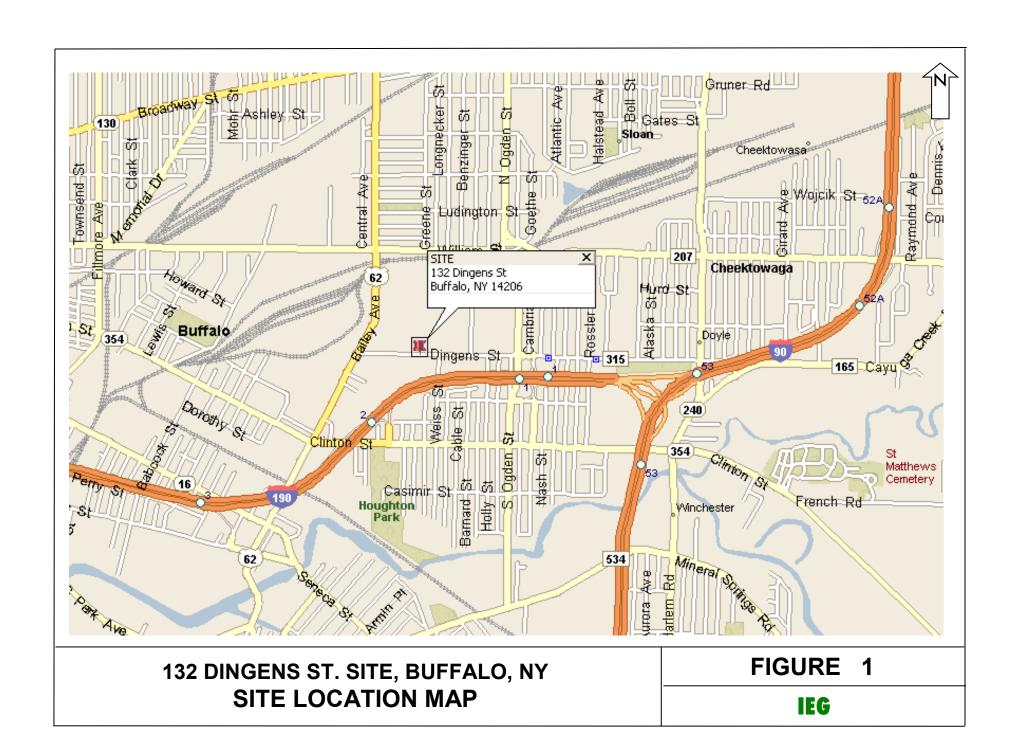
Some areas along property boundaries have a minimum 12" of soil meeting PETLs and were covered with 2" to 3" of top-soil to support vegetation. These perimeter areas were then seeded and straw mulched to establish grass.

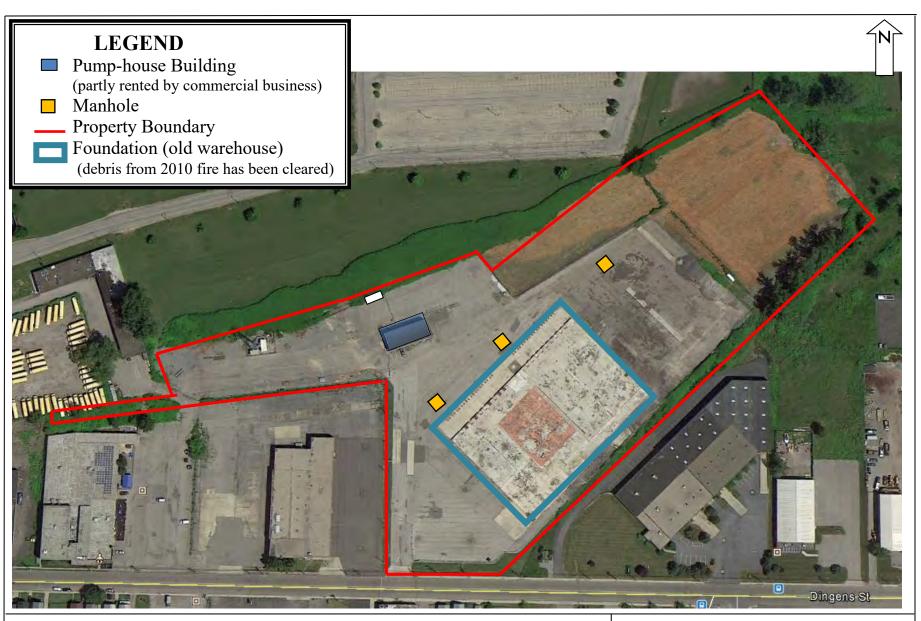
3.8 Other Engineering Controls

The remedy for the site did not require the construction of any other engineering control systems.

3.9 <u>Institutional Controls</u>

The site remedy requires that an environmental easement be placed on the property to (1) implement and maintain the Engineering Controls; (2) prevent future exposure to remaining contamination by controlling disturbances of the subsurface contamination; and, (3) limit the use and development of the site to restricted commercial/industrial uses only.

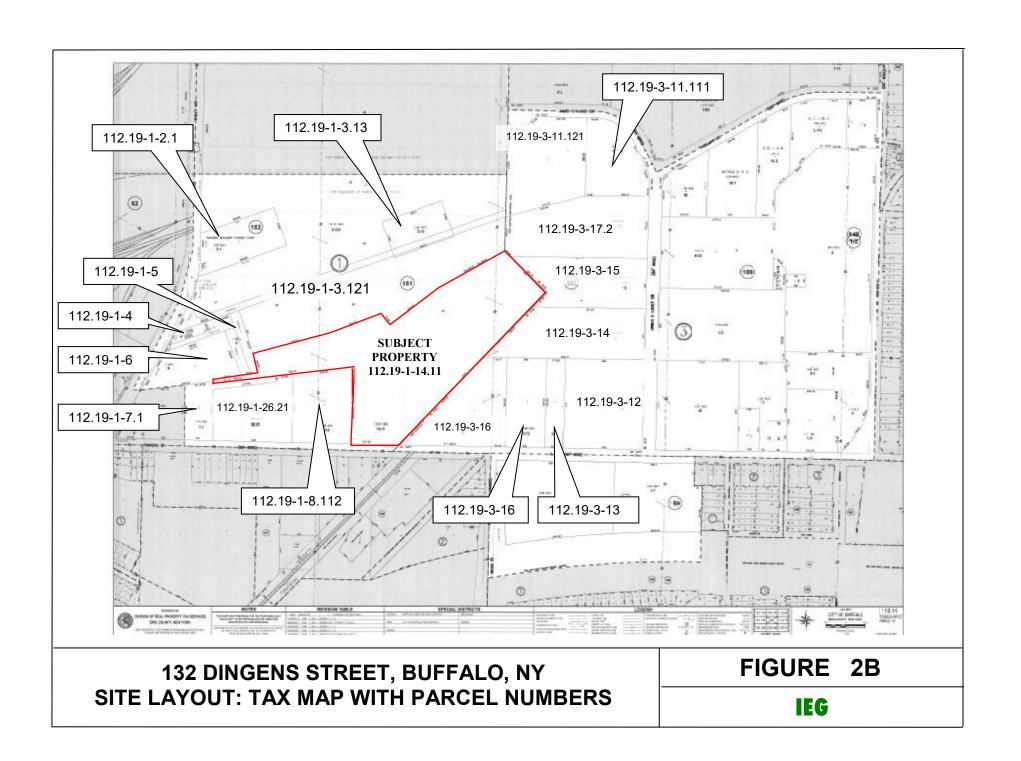

The environmental easement for the site was executed by the Department on May 2, 2016, and filed with the Erie County Clerk on May 17, 2016. The County Recording Identifier number for this filing is 2016099658, BK/PK D112296/1444, Deed Sequence TT2015020561. A copy of the easement and proof of filing is provided in Appendix D.

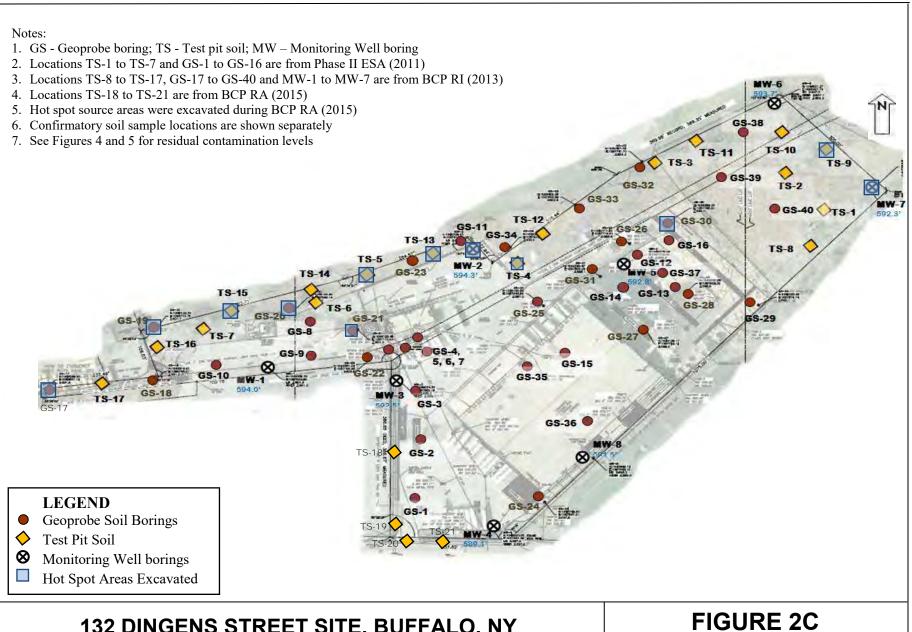

3.10 <u>Deviations from The Remedial Action Work Plan</u>

The following are the only deviations from the RAWP:

- Excavation water had to be pumped out in only one source area (GS-30) to facilitate further excavation to meet confirmatory soil criteria. Rather than stage the excavation water in a Frac Tank as outlined in the RAWP, the water was discharged directly on the ground surface in the immediate vicinity, with the NYSDEC's approval. This was considered acceptable due to the low leachability of the site-specific contaminants.
- Excavated soil stockpiles that did not meet the RCRA TCLP lead limit of 5 mg/L for landfill acceptance was treated on-site by mixing the soil with cement in a roll-off bin so as to stabilize lead and render it non-hazardous. The RAWP provided for disposal of such material at a hazardous waste landfill. On-site treatment process was a more efficient and cost effective alternative. TCLP lead was reduced from a range of 5.9 to 115 mg/L before treatment to a range of non-detect to 0.29 mg/L after treatment.

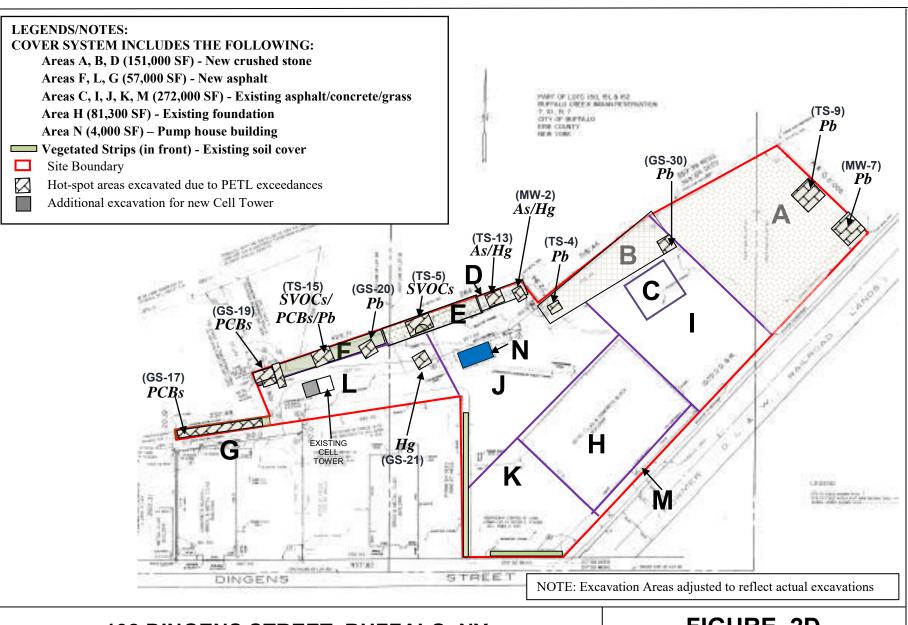
FIGURES



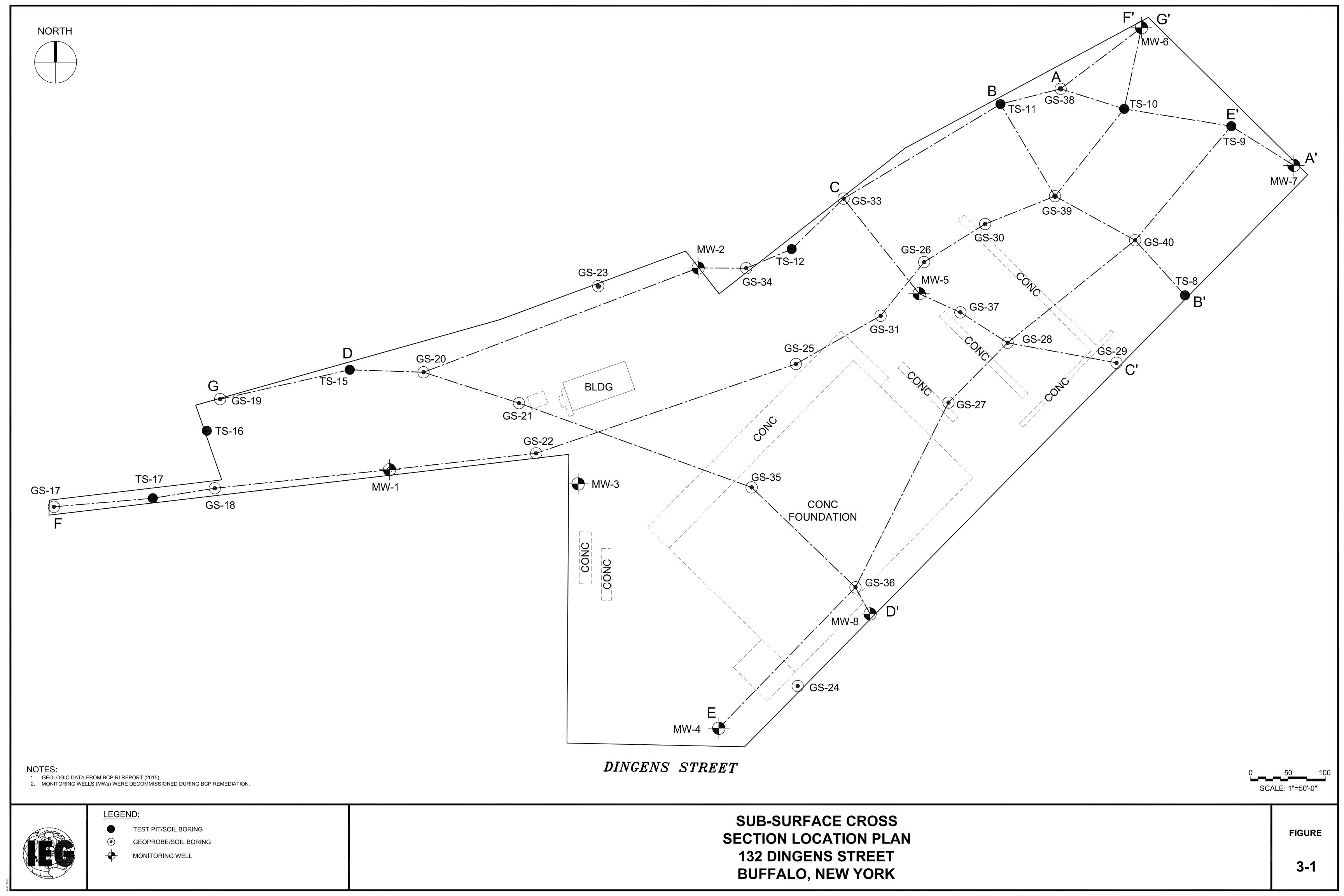


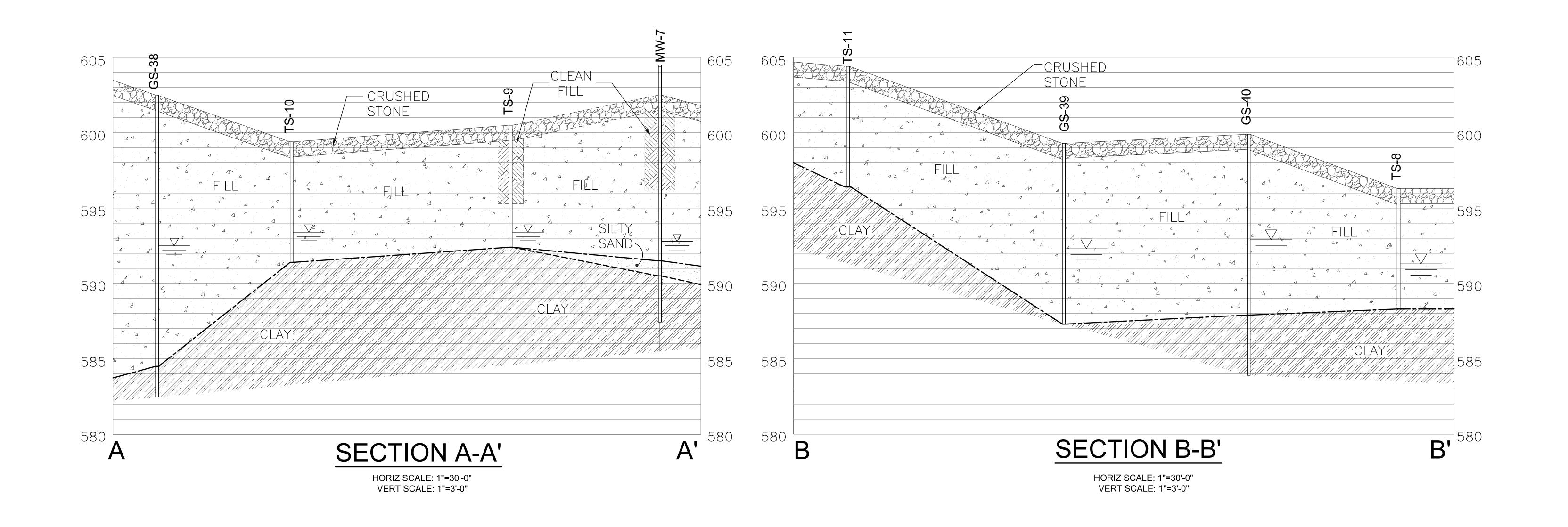
132 DINGENS ST. SITE, BUFFALO, NY SITE LAYOUT: AERIAL PHOTO WITH PROPERTY BOUNDARY

FIGURE 2A


IEG

132 DINGENS STREET SITE, BUFFALO, NY SITE LAYOUT: PHASE II/RI/RA SAMPLE LOCATIONS

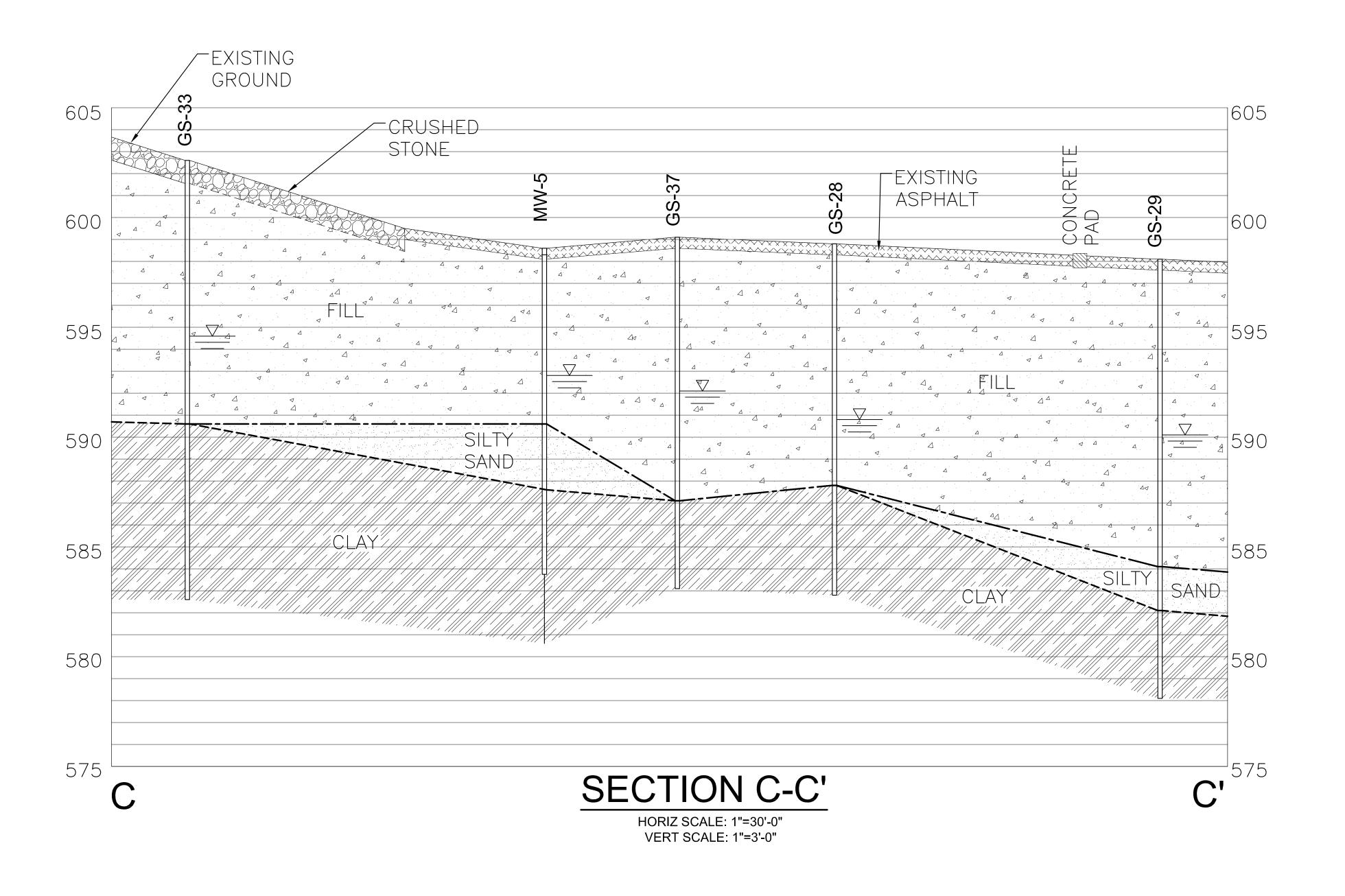

IEG



132 DINGENS STREET, BUFFALO, NY
SITE LAYOUT: HOT SPOT SOURCE AREAS EXCAVATED DURING RA

FIGURE 2D

IEG



TS TESTPIT/SOIL BORING
GS GEOPROBE/SOIL BORING
MW MONITORING WELL
WATER ELEVATION

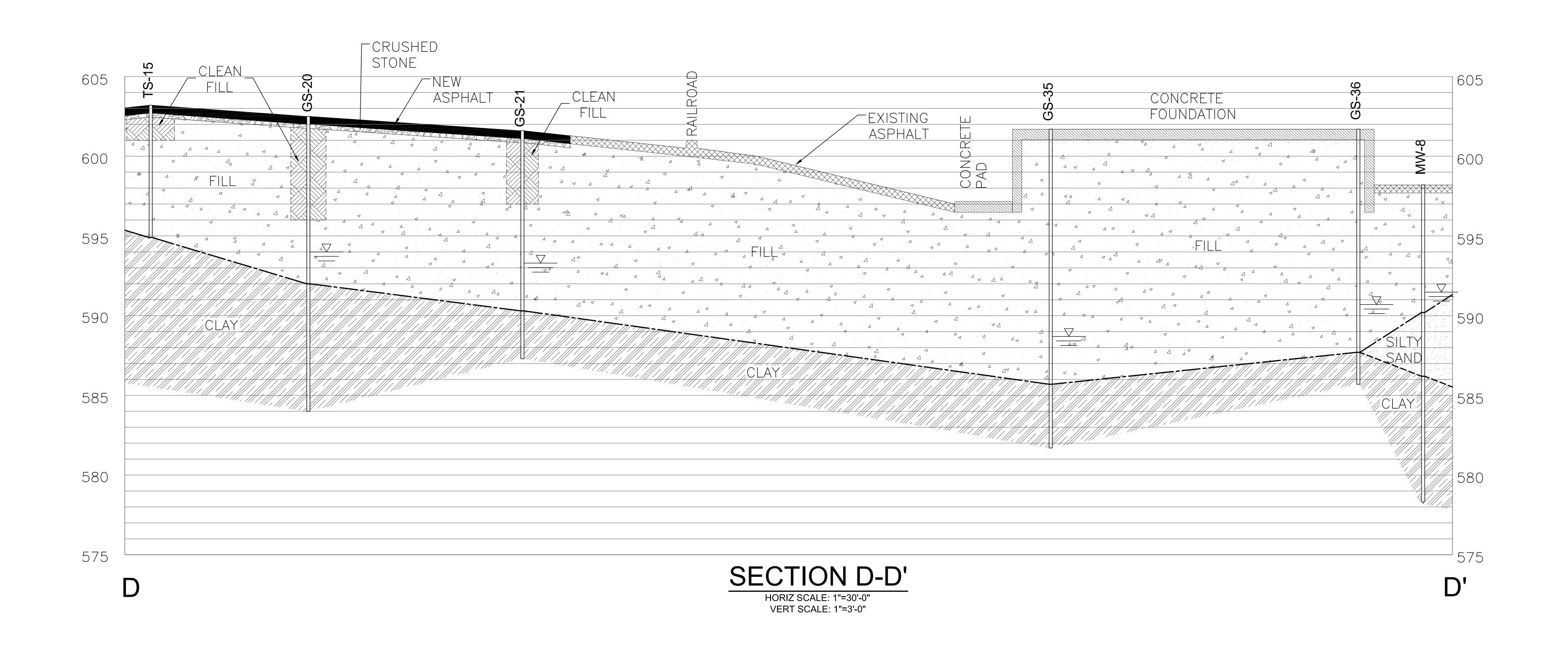
FILL
SILTY SAND
CLAY
CLEAN FILL
CRUSHED

SUB-SURFACE CROSS SECTION
A-A' & B-B'
132 DINGENS STREET
BUFFALO, NEW YORK

LEGEND:

TESTPIT/SOIL BORING

GS GEOPROBE/SOIL BORING


MW MONITORING WELL

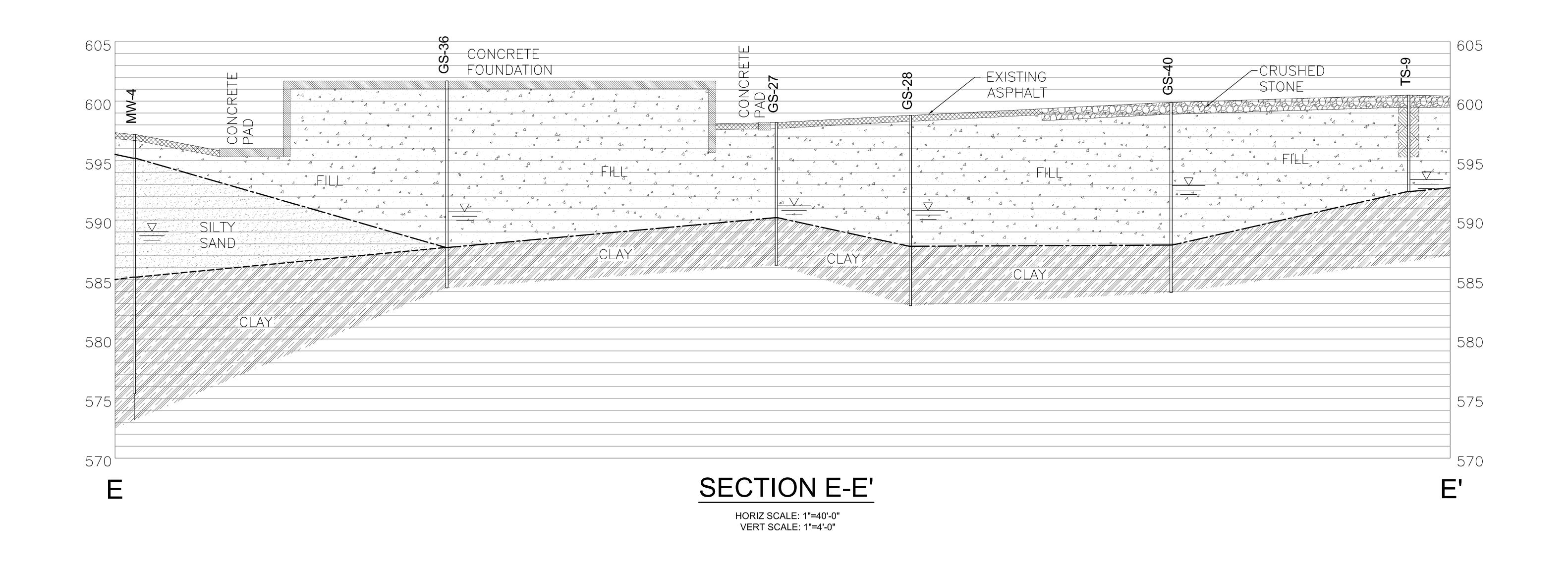
WATER ELEVATION

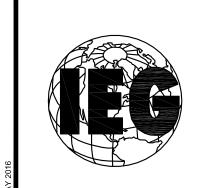
FILL
SILTY SAND
CLAY
CLEAN FILL

CRUSHED STONE SUB-SURFACE CROSS SECTION C-C' 132 DINGENS STREET BUFFALO, NEW YORK

FIGURE

TS SOIL BORING SILTY SAND


GS SOIL BORING CLAY


MW MONITORING WELL

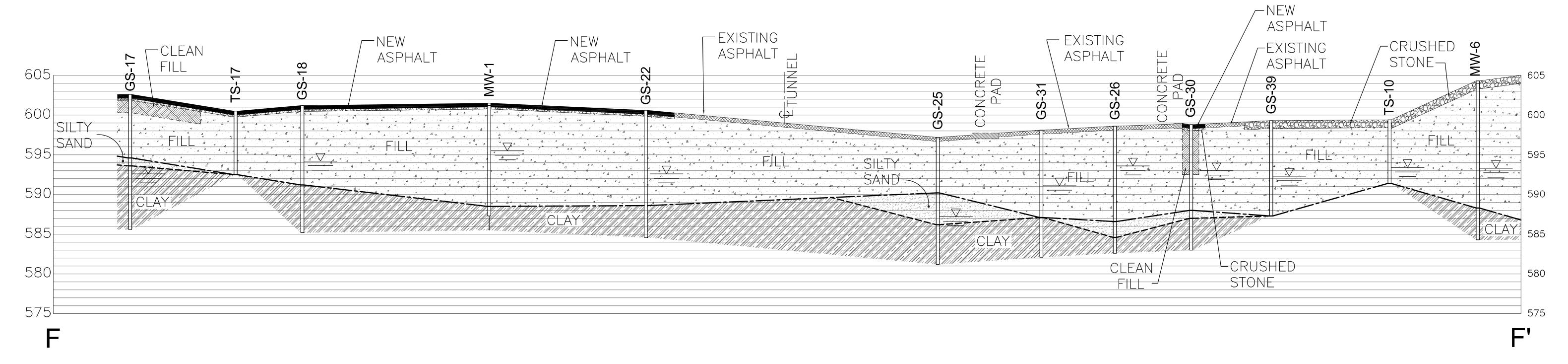
WATER ELEVATION

CRUSHED STONE

SUB-SURFACE CROSS SECTION D-D' 132 DINGENS STREET BUFFALO, NEW YORK

TS SOIL BORING SILTY SAND

GS SOIL BORING CLAY


MW MONITORING WELL

WATER ELEVATION

CRUSHED STONE

SUB-SURFACE CROSS SECTION
E-E'
132 DINGENS STREET
BUFFALO, NEW YORK

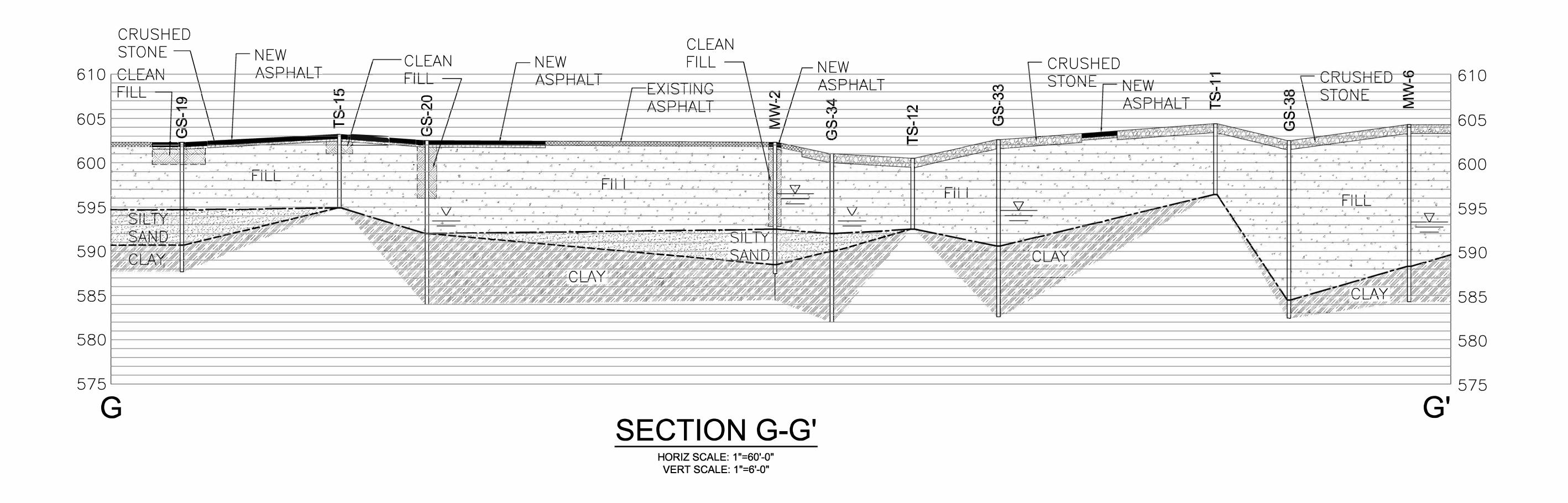
FIGURE

SECTION F-F'

HORIZ SCALE: 1"=60'-0"

VERT SCALE: 1"=6'-0"

LEGEND:


S SOIL BORING
S SOIL BORING
W MONITORING WELL

WATER ELEVATION

FILL
SILTY SAND
CLAY
CLEAN FILL
CRUSHED

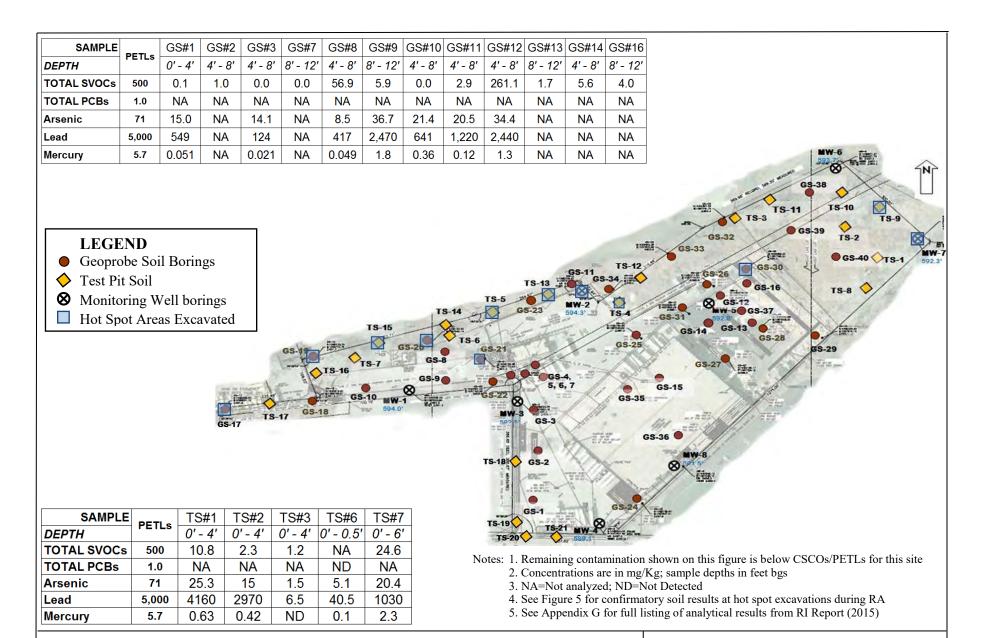
SUB-SURFACE CROSS SECTION
F-F'
132 DINGENS STREET
BUFFALO, NEW YORK

FIGURE

<u>LEGEND:</u>

SOIL BORING
SOIL BORING

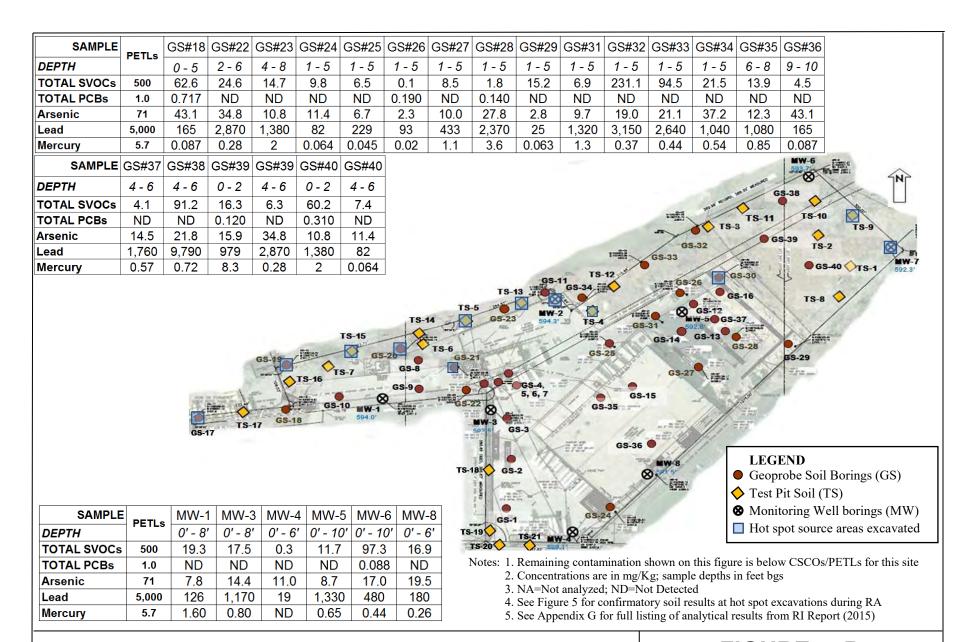
SOIL BORING


W MONITORING WELL

WATER ELEVATION

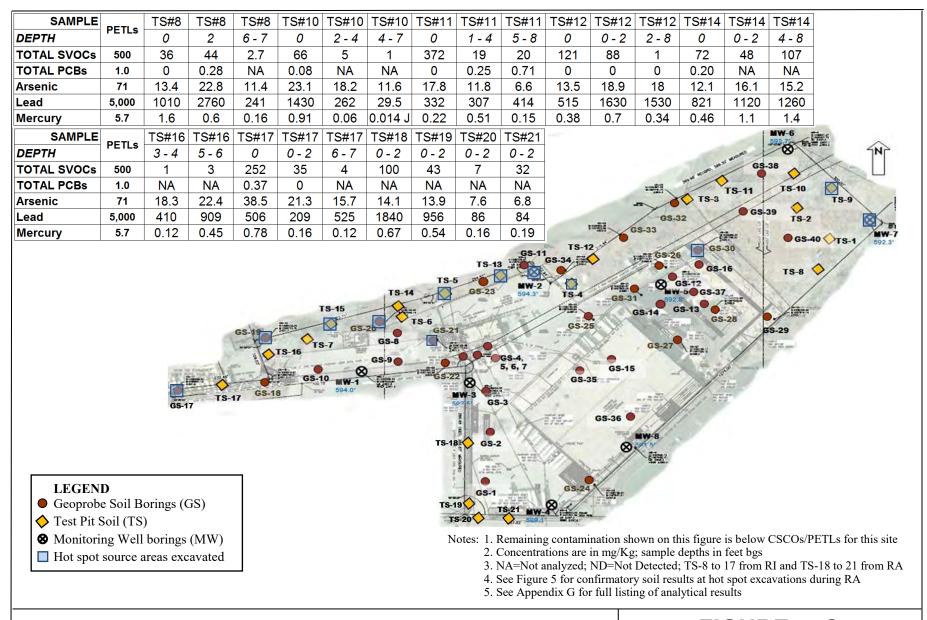
FILL
SILTY SAND
CLAY
CLEAN FILL
CRUSHED

SUB-SURFACE CROSS SECTION
G-G'
132 DINGENS STREET
BUFFALO, NEW YORK


FIGURE

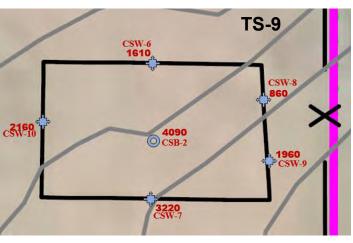
132 DINGENS STREET SITE, BUFFALO, NY REMAINING CONTAMINATION – PHASE II SOILS

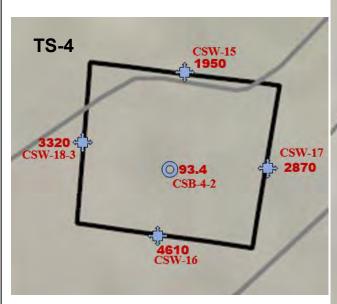
FIGURE 4A

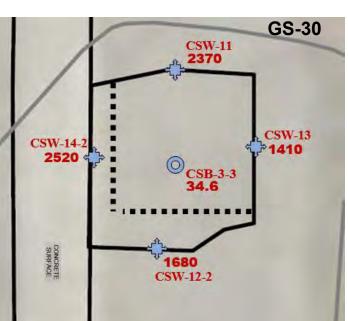


132 DINGENS STREET SITE, BUFFALO, NY REMAINING CONTAMINATION – RI SOIL BORINGS

FIGURE 4B




132 DINGENS STREET SITE, BUFFALO, NY REMAINING CONTAMINATION – RI/RA TEST PITS


FIGURE 4C

Limits of excavation

Property Boundary

Fence

CSW – Confirmatory soil wall samples

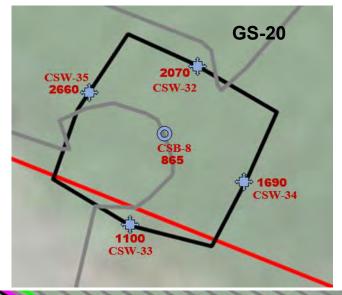
CSB – Confirmatory soil bottom samples

Vegetation

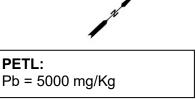
Intermediate excavation

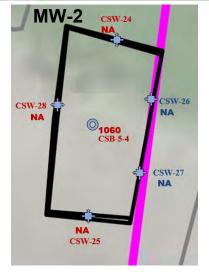
4610

Total Lead mg/Kg (within property)


1710 Total Lead mg/Kg (property boundary)

PETL:


Pb = 5000 mg/Kg


Note: Remaining contamination shown is below PETL for this site

132 DINGENS STREET SITE, BUFFALO, NY REMAINING SOIL CONTAMINATION **RA FINAL CONFIRMATORY SAMPLES - LEAD** FIGURE 5A-1

Limits of excavation

Property Boundary

X Fence

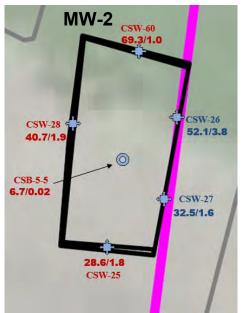
 \bigcirc

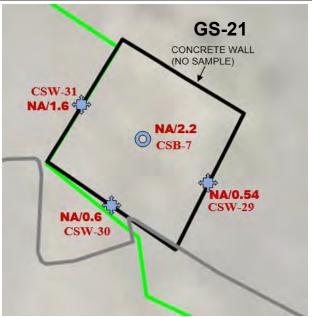
Overhead electric

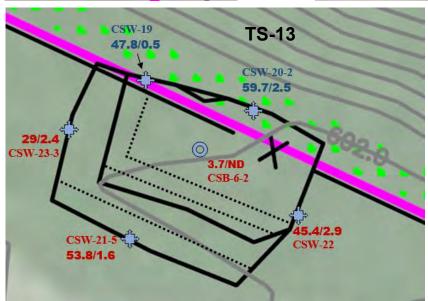
CSW – Confirmatory soil wall samples

CSB – Confirmatory soil bottom samples

Vegetation


3040 Total Lead mg/Kg (within property)


1080 Total Lead mg/Kg (property boundary


(NA = Not analyzed)

Note: Remaining contamination shown is below PETL for this site

132 DINGENS STREET SITE, BUFFALO, NY REMAINING SOIL CONTAMINATION RA FINAL CONFIRMATORY SAMPLES - LEAD FIGURE 5A-2

Limits of excavation Property Boundary

Fence

Overhead electric

CSW – Confirmatory soil wall samples CSB – Confirmatory soil bottom samples

Vegetation

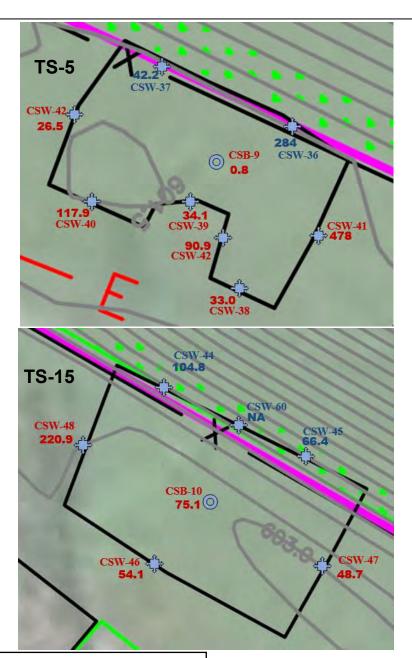
Intermediate excavation

53.8/1.6 Total As/Hg mg/Kg (within property)

59.7/2.5 Total As/Hg mg/Kg (property boundary)

(NA = Not Analyzed)

PETLs:


As = 71 mg/Kg

Hg = 5.7 mg/Kg

Note:

Remaining contamination shown is below PETL for this site

132 DINGENS STREET SITE, BUFFALO, NY REMAINING SOIL CONTAMINATION RA FINAL CONFIRMATORY SAMPLES - ARSENIC/MERCURY FIGURE 5B

— Limits of excavation

Property Boundary

Overhead electric

X Fence

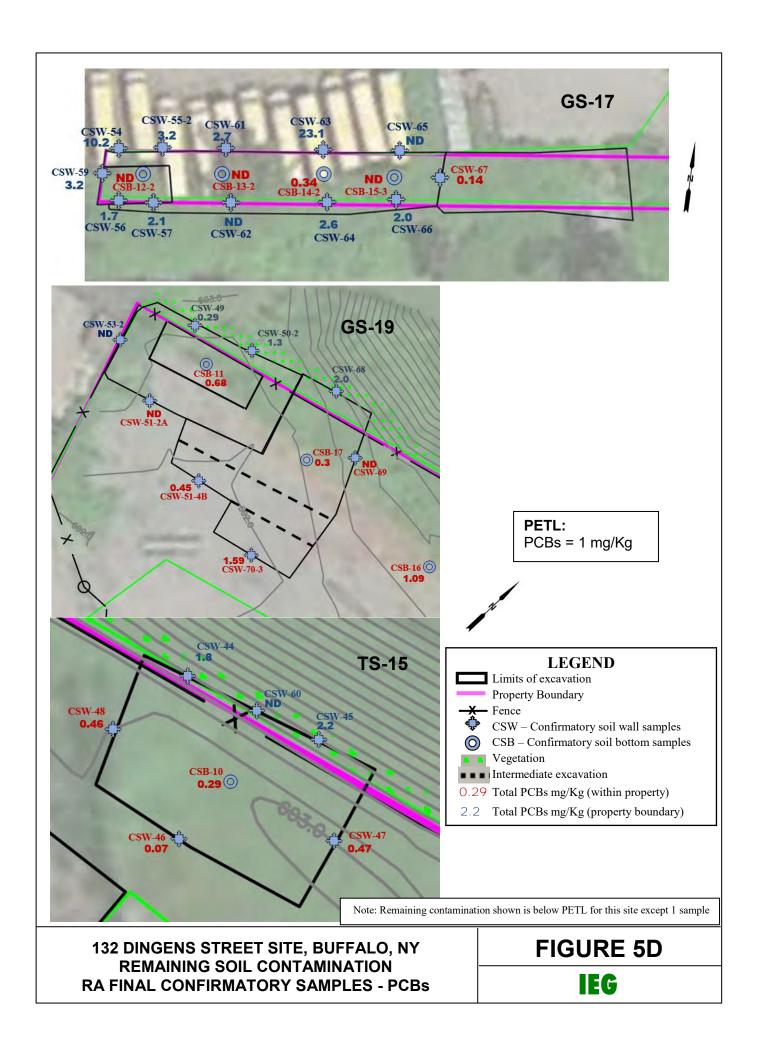
Vegetation

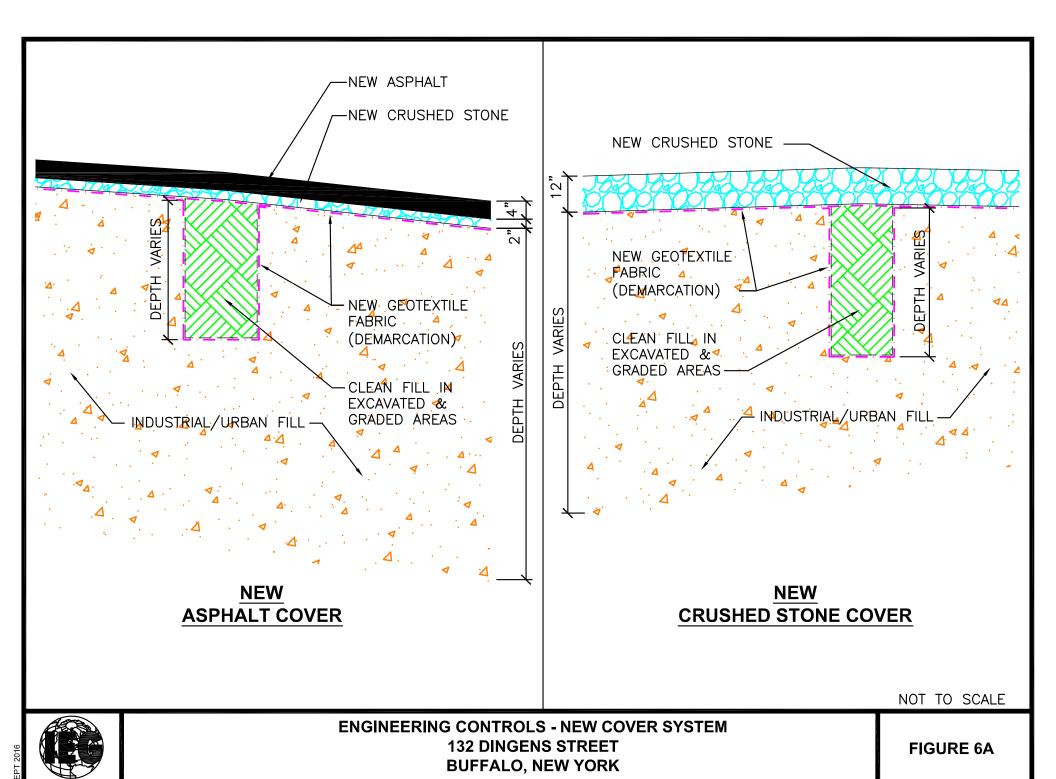
— Delineates existing/new asphalt

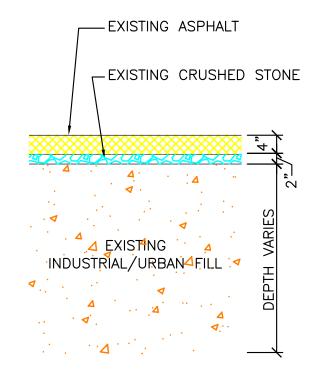
• CSW – Confirmatory soil wall samples

O CSB – Confirmatory soil bottom samples

75.1 Total SVOCs mg/Kg (within property)

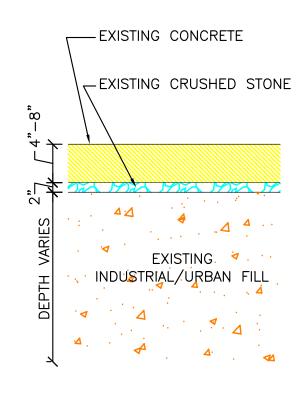

66.4 Total SVOCs mg/Kg (property boundary) (NA = Not analyzed)

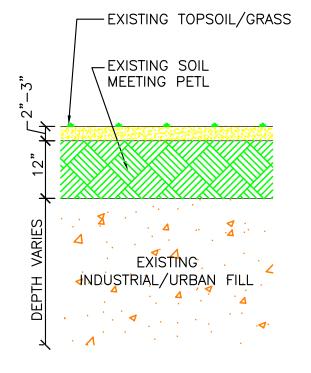



PETL: SVOCs = 500 mg/Kg

Note: Remaining contamination shown is below PETL for this site

132 DINGENS STREET SITE, BUFFALO, NY REMAINING SOIL CONTAMINATION RA CONFIRMATORY SAMPLES - SVOCs FIGURE 5C





EXISTING

ASPHALT COVER

EXISTING CONCRETE COVER

EXISTING TOPSOIL COVER

NOT TO SCALE

ENGINEERING CONTROLS - EXISTING COVER SYSTEM
132 DINGENS STREET
BUFFALO, NEW YORK

Note: Decon pad is sloped to one corner with sump to collect wash water for treatment

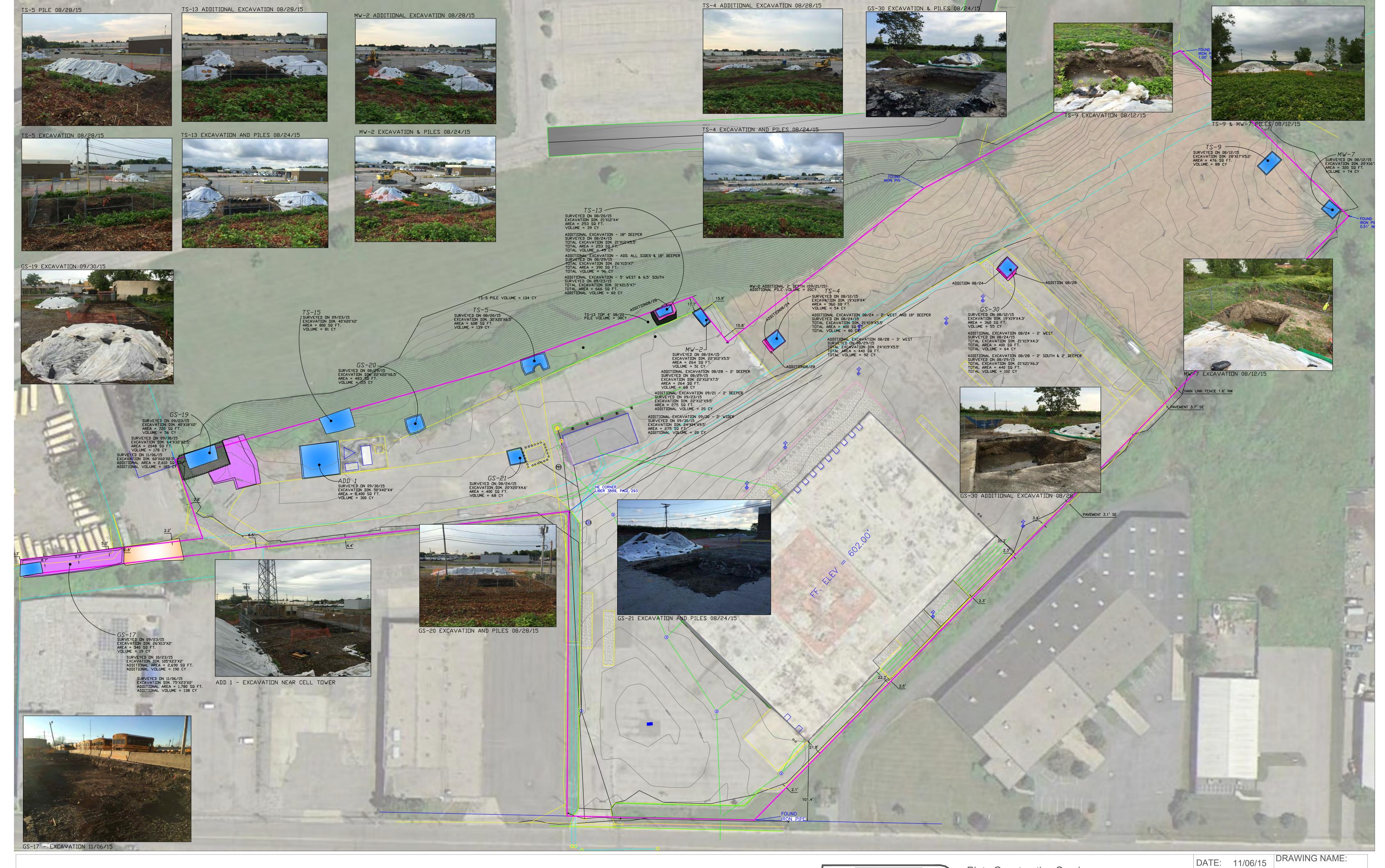
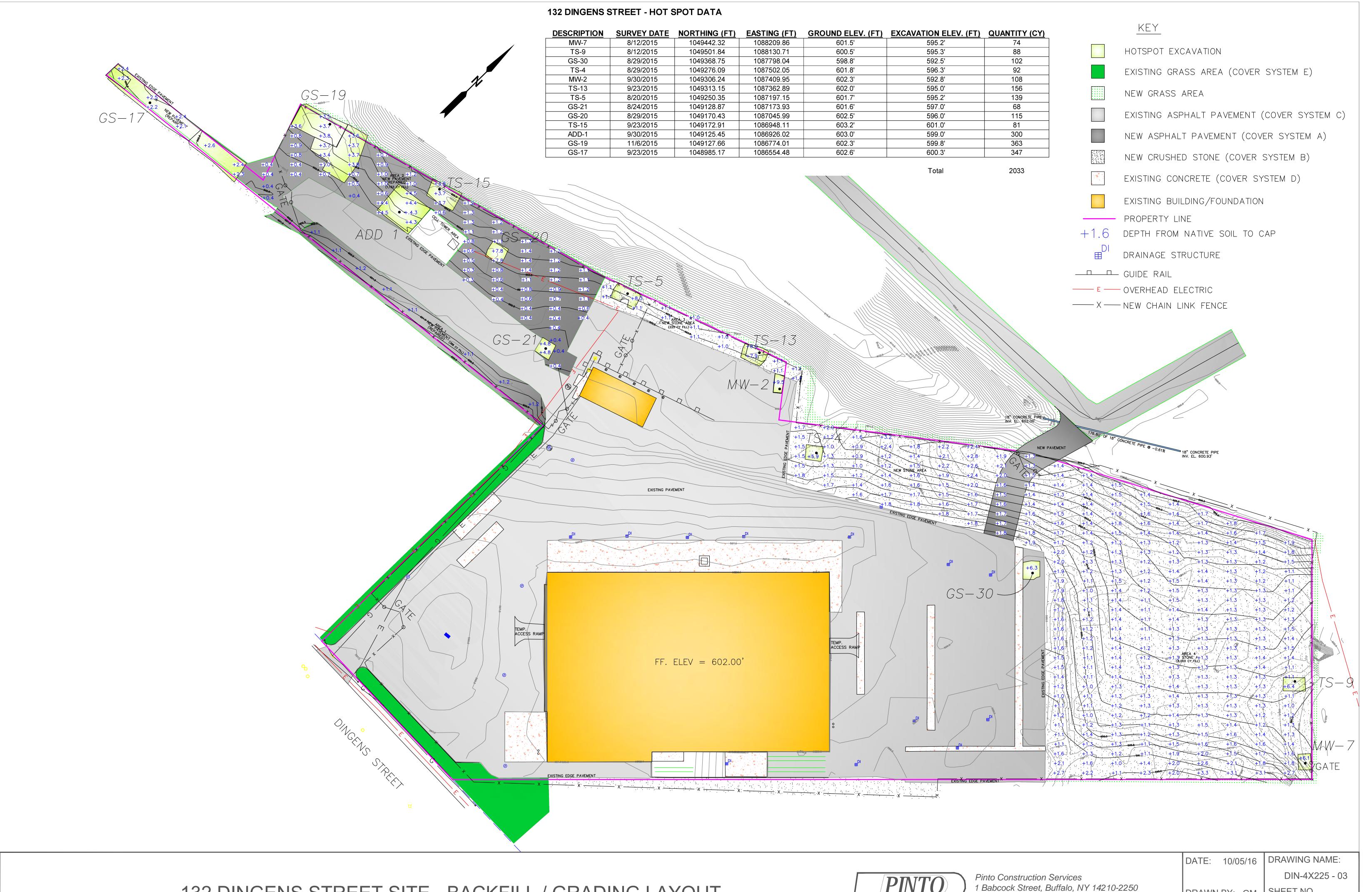

132 DINGENS ST. SITE, BUFFALO, NY DECONTAMINATION PAD CROSS-SECTION

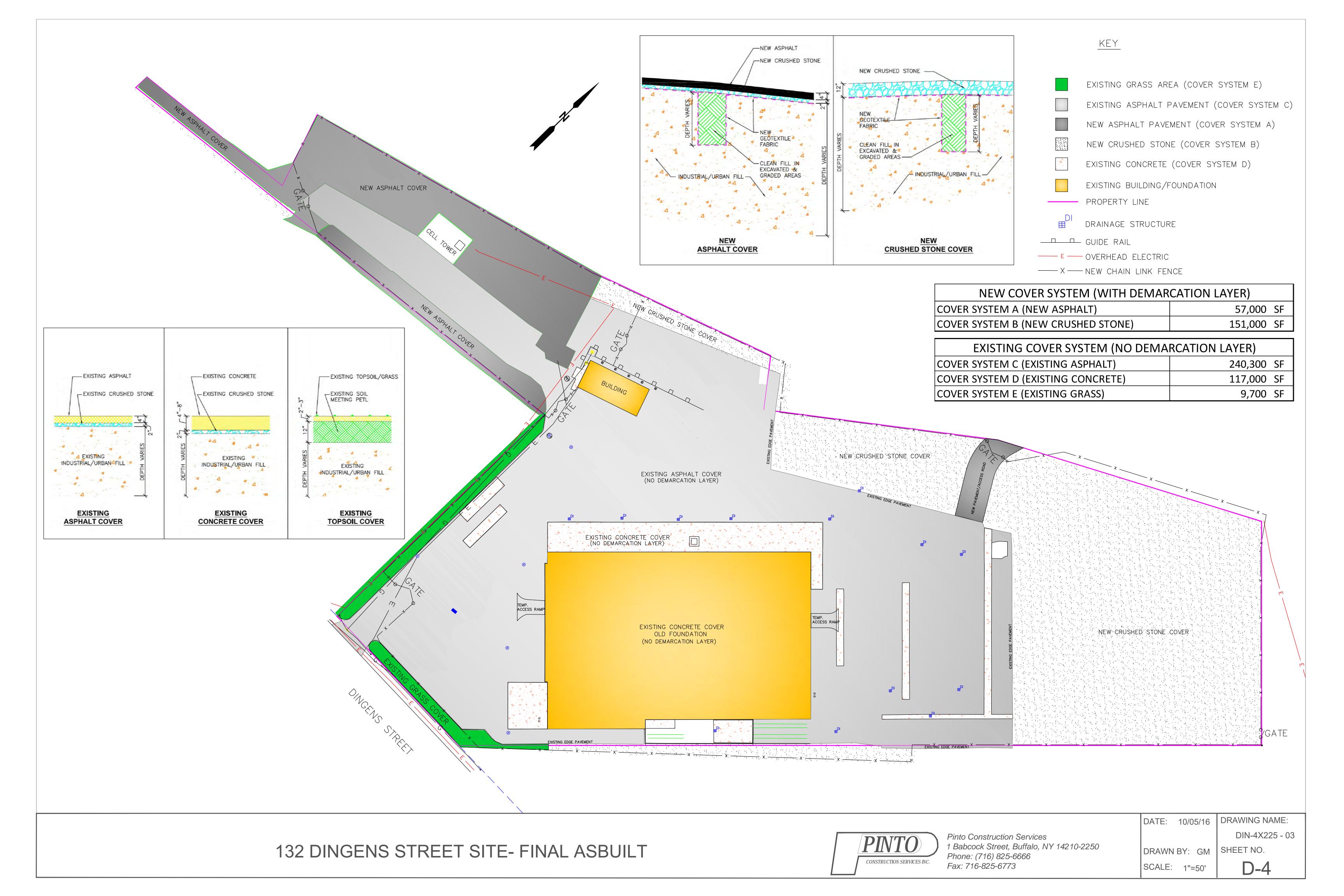
FIGURE 7

DRAWINGS

Fax: 716-825-6773

DRAWN BY: GM SHEET NO.


SCALE: 1"=50'


DRAWING NAME:

DINGENS REM.

SHEET NO.

D-2

TABLES

TABLE 1
132 DINGENS STREET - BCP REMEDIATION
SUMMARY OF SOIL CONTAMINATION - PRE-REMEDIATION

PARAMETER	PETLs		ANGE of DETE	
		MINIMUM	AVERAGE	MAXIMUM
SEMIVOLATILE ORGANI	CS (SVOCs,	ug/Kg)		
Benzo(a)anthracene		ND	10,299	490,000
Benzo(a)pyrene		ND	10,673	550,000
Benzo(b)fluoranthene		ND	12,008	600,000
Benzo(k)fluoranthene		ND	6,237	240,000
Chrysene	500,000	ND	9,996	450,000
Dibenz(a,h)anthracene	500,000	ND	1,704	86,000
Fluoranthene		ND	22,727	1,200,000
Indeno(1,2,3-cd)pyrene		ND	5,015	250,000
Phenanthrene		31	21,955	1,200,000
Pyrene		35	19,588	880,000
PCBs (ug/Kg)				
Aroclor 1248	1,000	ND	1,125	59,000
Aroclor 1254	1,000	ND	133	3,400
METALS (mg/Kg)				
Arsenic	79	1	24	274
Barium		7	550	4,530
Copper		5	221	2,400
Lead	5,000	3	2,981	93,500
Nickel		2	41	863
Zinc		9	1,655	22,900
Mercury	5.7	ND	0.90	8.30

Note: PETL = Proposed Excavation Threshold Limit (site-specific)

TABLE 2A

132 DINGENS STREET - BCP REMEDIATION FINAL CONFIRMATORY SOIL SAMPLES - METALS

	ı	FINAL CONFIRM	MATORY SOIL SAM			
SAMPLE	LOGATION	EXCAVATION	EXCAVATION	TOTAL	TOTAL	TOTAL
ID	LOCATION	WIDTH	DEPTH	LEAD	ARSENIC	MERCURY
				(mg/Kg)	(mg/Kg)	(mg/Kg)
	PROPOSED EXCAV		' '	5000	71	5.7
CSW-24	MW-2-N	12'W x 5.5'D	1' - 4'	CATION	69.3	0.96
CSW-25	MW-2-S	12'W x 5.5'D	1' - 4'		28.6	1.8
CSW-26	MW-2-EN		1' - 4'	NA	52.1	3.8
CSW-27	MW-2-ES	22'W x 5.5'D	1' - 4'	1473	32.5	1.6
CSW-28	MW-2-W	22'W x 5.5'D	1' - 4'		40.7	1.9
CSB-5-4	MW-2-B	12'x22'W@9.5'D	9.5'	1060	NA	NA
CSB-5-5	MW-2-B	12'x22'W@10.5'D	10.5'	NA	6.7	0.022
	•	EXCAVA	ATION AT MW-7 LO	CATION		
CSW-1	MW-7-N	20'W x 8'D	2' - 6'	2830		
CSW-2	MW-7-S	20'W x 8'D	2' - 6'	166		
CSW-3	MW-7-EN	16'W x 8'D	2' - 6'	2140	NA	NA
CSW-4	MW-7-ES		2' - 6'	1710		
CSW-5	MW-7-W	16'W x 8'D	2' - 6'	611		
CSB-1	MW-7-B	20'x16'W@8'D	8' ATION AT GS-20 LC	53.6		
CSW-32	GS-20-N	22'W x 6.5'D	2' - 5.5'	2070		
CSW-33	GS-20-S	22'W x 6.5'D	2' - 5.5'	1100		
CSW-34	GS-20-E	22'W x 6.5'D	2' - 5.5'	1690	NA	NA
CSW-35	GS-20-W	22'W x 6.5'D	2' - 5.5'	2660		
CSB-8	GS-20-B	22'x22'W@6.5'D	6.5'	865		
		EXCAVA	TION AT GS-21 LC			•
CSW-29	GS-21-N	20'W x 6.6'D	2' - 5.5'			0.54
CSW-30	GS-21-S	22'W x 6.5'D	2' - 5.5'	NA	NA	0.67
CSW-31	GS-21-W	22'W x 6.5'D	2' - 5.5'			1.6
CSB-7	GS-21-B	22'x22'W@6.5'D	6.5' ATION AT GS-30 LC	CATION		2.2
CSW-11	GS-30-N	19'W x 4.3'D	1' - 4'	2370		
CSW-12-2	GS-30-S	21'W x 6.3'D	2' - 6'	1680		
CSW-13	GS-30-E	19'W x 4.3'D	1' - 4'	1410	NA	NA
CSW-14-2	GS-30-W	21'W x 4.3'D	1' - 4'	2520		
CSB-3-3	GS-30-B	21'x21'W@7.3'D	7.3'	34.6		
	I		ATION AT TS-4 LO			
CSW-15	TS-4-N	19'W x 4'D	0' - 4'	1950	NA	NA
CSW-16	TS-4-S	19'W x 4'D	0' - 4'	4610		
CSW-17	TS-4-E	19'W x 4'D	0' - 4'	2870	NIA	NIA
CSW-18-3 CSB-4-2	TS-4-W TS-4-B	19'W x 5.5'D 21'x19'W@5.5'D	2' - 5' 5.5'	3320 93.4	NA	NA
C3D-4-2	13-4-0	. 0	ATION AT TS-9 LO			
CSW-6	TS-9-N	17'W x 5.2'D	1' - 4'	1610		
CSW-7	TS-9-S	17'W x 5.2'D	1' - 4'	3220		
CSW-8	TS-9-EN	28'W x 5.2'D	1' - 4'	860	NA	NA
CSW-9	TS-9-ES	20 W X 3.2 D	1' - 4'	1960	INA	INA
CSW-10	TS-9-W	228'W x 5.2'D	1' - 4'	2160		
CSB-2	TS-9-B	20'x16'W@8'D	8'	4090		
0014/40	TO 40 NOA/		ATION AT TS-13 LO	CATION	47.0	0.54
CSW-19 CSW-20-2	TS-13-NW	11'W x 4'D	1' - 4'		47.8	0.51
CSW-20-2 CSW-21-5	TS-13-NE TS-13-S	13'W x 7'D 31'W x 7'D	2' - 6' 2' - 6'		59.7 53.8	2.5 1.6
CSW-21-3	TS-13-5	21'W x 4'D	1' - 4'	NA	45.4	2.9
CSW-23-3	TS-13-W	15'W x 7'D	2' - 6'		29	2.4
CSB-6-2	TS-13-B	26'x15'W@7'D	7'		3.7	ND
		EXCAVA	ATION AT TS-15 LO			
CSW-44	TS-15-NW*	40'W x 2'D	0' - 2'	5200		
CSW-45	TS-15-NE		0' - 2'	1080		
CSW-46	TS-15-S	40'W x 2'D	0' - 2'	1750	NA	NA
CSW-47 CSW-48	TS-15-E	20'W x 2'D	0' - 2' 0' - 2'	989 1800		
CSW-48 CSB-10	TS-15-W TS-15-B	20'W x 2'D 20'x40'W@2'D	2'	3040		
	S: ND=Not Detected: N					

Note: 1. ANALYSIS: ND=Not Detected; NA=Not Analyzed; SAMPLES: CSWs are wall and CSBs are bottom samples
2. Each sample is a composite of 7 to 10 grab samples; Dimensions are at time of sampling
3. LOCATION: N=North; S=South; E=East; W=West; M=Middle; B=Bottom; W=Horizontal Width; D=Vertical Depth; *=site boundary
4. Confirmatory wall soil samples were taken across excavation width/depth; bottom samples were taken across excavation floor

TABLE 2B 132 DINGENS STREET - BCP SITE REMEDIATION FINAL CONFIRMATORY SOIL SAMPLES - SVOCs

0.44151.5.157		CSW-36	CSW-37	CSW-38	CSW-39	CSW-40	CSW-41	CSW-42	CSW-43	CSB-9	CSW-44	CSW-45	CSW-46	CSW-47	CSW-48	CSB-9
SAMPLE ID/ LOCATION	PETL			EXC	AVATION	AT TS-5	LOCATIO	N				EXCAVA	TION AT	TS-15 LC	CATION	
LOCATION		TS-	5-N		TS-5-S		TS-5-E	TS-5-W	TS-5-S	TS-5-B	TS-1	5-N	TS-5-S	TS-15-E	TS-15-W	TS-15-B
DATE SAMPLED					8	3/27/2015			•				9/14/	2015		•
SAMPLE DEPTH		2' - 6'	2' - 6'	2' - 6'	2' - 6'	2' - 6'	2' - 6'	2' - 6'	2' - 6'	6.5'	0' - 2'	0' - 2'	0' - 2'	0' - 2'	0' - 2'	2'
SEMIVOLATILE ORGANIC	COMPOL	JNDS (SVO	Cs, μg/Kg)									I I			
Percent Solids (%)		73.8	77.1	74.2	80.6	80.7	80.1	74	75.3	68.7	83.8	86.7	78.5	77.5	76.4	74.3
Biphenyl		430 J														
2-Methylnaphthalene		1400 J			230 J		920 J									
3 & 4-Methylphenol																
Acenaphthene		4400	450 J	240 J	280 J	760 J	2700 J					740 J	690 J		2000 J	960 J
Acenaphthylene		1700 J	200 J	280 J	230 J	1000 J	3800 J		690 J						1300 J	
Acetophenone																
Anthracene		12000	1400	830 J	1300	4000	17000		1700 J		2200 J	1800 J	1800 J	1400 J	5100	2400 J
Benzaldehyde																
Benzo(a)anthracene		23000	3400	3000	2800	8900	40000	2500 J	10000		9800	5800	4100 J	4600	19000	5800
Benzo(a)pyrene		18000	3800	2700	2500	8000	31000	2300 J	9000		7600	4900	3300 J	3500 J	18000	4900
Benzo(b)fluoranthene		23000	4500	3500	3000	9300	43000	3100 J	12000		11000	5800	3700 J	4700	23000	6700
Benzo(g,h,i)perylene		9400	2000	1400	1000	4600	10000	1500 J	3400 J		6000 J	4000	2800 J	2800 J	9400	4500 J
Benzo(k)fluoranthene		8200	2400	1800	1800	3600	20000	1400 J	6500		4100	3200 J	2000 J	1800 J	10000	2300 J
Bis(2-ethylhexyl) phthalate																
Butyl benzyl phthalate																
Carbazole		5500	680 J	430 J	630 J	960 J	4900				860 J	820 J	780 J	670 J	3400 J	1300 J
Chrysene		20000	3500	3000	2900	9100	38000	2600 J	10000		10000	5900	4100 J	4100 J	20000	5900
Dibenz(a,h)anthracene															3100 J	
Dibenzofuran		3800	410 J	160 J	350 J	930 J	4400								1200 J	630 J
Di-n-butyl phthalate																
Fluoranthene		51000	6500	6300	6400	24000	110000	5400	17000	830 J	20000	12000	11000	9300	38000	13000
Fluorene		6100 J	530 J	260 J	450 J	1600 J	7500 J					870 J	1000 J	640 J	2200 J	1100 J
Indeno(1,2,3-cd)pyrene		8800	1800	1400	1100	4100	11000	1200 J	3700 J		5200	3400 J	2200 J	2200 J	8100	3600 J
Naphthalene		2400			320 J										1100 J	
Phenanthrene		49000	5800	3500	5100	20000	77000	3100 J	5900		11000	7600	8500	6200	25000	12000
Pyrene		36000	4800	4200	3700	17000	57000	3400 J	11000		17000 J	9600 J	8100 J	6800 J	31000 J	10000 J
TOTAL SVOCs (μg/Kg)	500,000	284,130	42,170	33,000	34,090	117,850	478,220	26,500	90,890	830	104,760	66,430	54,070	48,710	220,900	75,090

Note: 1. ANALYSIS: ND=Not Detected; NA=Not Analyzed; J=Below MDL; SAMPLES: CSWs are wall and CSBs are bottom samples

^{2.} Each sample is a composite of 7 to 10 grab samples; See Figures in Report for sample locations

^{3.} Only detected semivolatile compounds are listed; all other SVOCs are non-detect; PETL = Proposed Excavation Threshold Limit

^{4.} LOCATION: N=North; S=South; E=East; W=West; M=Middle; B=Bottom

TABLE 2C

132 DINGENS STREET - BCP REMEDIATION FINAL CONFIRMATORY SOIL SAMPLES - PCBs

SAMPLE ID	LOCATION	SAMPLE DEPTH	PCB-1242 (mg/Kg)	PCB-1248 (mg/Kg)	PCB-1254 (mg/Kg)	PCB-1260 (mg/Kg)	TOTAL PCBs (mg/Kg)	REMARKS
		PROPOS	ED EXCAVA	TION THRES	SHOLD LIMI	T (PETL) >>	1	
		EXCAVATI	ON AT TS-1	5 LOCATION	l (sampled 9	9/14/16)		
CSW-44	TS-15-N	0' - 2'	ND	1.8	ND	ND	1.8	OFF-SITE
CSW-45	10-15-11	0' - 2'	ND	1.1	0.63	0.43	2.16	OTT-OTTE
CSW-46	TS-15-S	0' - 2'	ND	0.065 J	ND	ND	0.065	
CSW-47	TS-15-E	0' - 2'	ND	0.24	0.23	ND	0.47	
CSW-48	TS-15-W	0' - 2'	ND	0.46	ND	ND	0.46	
CSW-60	TS-15-NM	1'	ND	ND	ND	ND	0	OFF-SITE
CSB-10	TS-15-B	2'	ND	0.29 J	ND	ND	0.29	
		TION AREA	AT GS-17 LO	DCATION (sa	mpled 9/14,	10/14 & 10/2	26/16)	
CSW-54	GS-17-N	0' - 2'	ND	4.5	4.2	1.5	10.2	
CSW-55-2	GS-17-WN	0' - 3'	ND	ND	2.2	0.97	3.17	AT
CSW-56	GS-17-S	0' - 2'	ND	0.62	0.67	0.38	1.67	BOUNDARY
CSW-57		0' - 2'	ND	0.65	0.96	0.48	2.09	
CSW-59	GS-17-W	0' - 2'	0.68	ND	1.8	0.76	3.24	
CSW-61	GS-17-MN	0' - 2'	ND	ND	1.9	0.78	2.68	
CSW-62	GS-17-MS	0' - 2'	ND	ND	ND	ND	0	
CSW-63	GS-17-MN	0' - 2'	18	ND	5.1	ND	23.1	AT
CSW-64	GS-17-MS	0' - 2'	ND	0.78	1.2	0.61	2.59	BOUNDARY
CSW-65	GS-17-EN	0' - 2'	ND	ND	ND	ND	0	AT
CSW-66	GS-17-ES	0' - 2'	ND	0.55 J	0.94 J	0.55 J	2.04	BOUNDARY
CSW-67	GS-17-E	0' - 2'	ND	ND	0.14 J	ND	0.14	
CSB-12-2	GS-17-EB	3'	ND	ND	ND	ND	0	
CSB-13-2	GS-17-MW	3'	ND	ND	ND	ND	0	
CSB-14-2	GS-17-ME	3'	ND	ND	ND	0.34	0.34	
CSB-15-3	GS-17-EB	3'	ND	ND	ND	ND	0	
		ATION AT G			T	1	r -	
CSW-49	GS-19-N	0' - 2'	ND	0.13 J	0.16 J	ND	0.29	OFF-SITE
CSW-50-2	GS-19-NE	0' - 2'	ND	1.3	ND	ND	1.3	OFF-SITE
CSW-51-2A	GS-19-S	0' - 2'	ND	ND	ND	ND	0	
CSW-51-4B	GS-19-SW	0' - 2'	ND	0.29	0.16 J	ND	0.45	
CSW-53-2	GS-19-W	0' - 2'	ND	ND	ND	ND	0	
CSW-68	GS-19-NE	0' - 2'	ND	1.4	0.64	ND	2.04	OFF-SITE
CSW-69	GS-19-E	0' - 2'	ND	ND	ND	ND	0	
CSW-70-3	GS-19-SE	0' - 2'	ND	0.78	0.64	0.17 J	1.59	SEE NOTE 3
CSB-11	GS-19-B	2'	ND	0.68	ND	ND	0.68	
CSB-17	GS-19-EB	2'	ND	0.3	ND	ND	0.30	1
	· v			9 AND TS-1				1
CSB-16	GS-19/TS-15	0' - 1'	ND	ND	0.9	0.19	1.09	

Note: 1. ANALYSIS: ND=Not Detected; NA=Not Analyzed; J= Below MDL; SAMPLES: CSWs are wall and CSBs are bottom samples

^{2.} Each sample is a composite of 7 to 10 grab samples; See Figures in Report for sample locations $\frac{1}{2}$

^{3.} PETL exceedances shaded - all were off-site except GS-19 where excavation was terminated 19 based on this single on-site exceedance

^{4.} LOCATION: N=North; S=South; E=East; W=West; M=Middle; B=Bottom

TABLE 3A

132 DINGENS STREET - BCP REMEDIATION 2015

ANALYTICAL DATA - QA/QC FIELD DUPLICATES METALS, TOTAL SVOCs & TOTAL PCBs

SAMPLE ID	LOCATION	SAMPLE DATE	TOTAL LEAD (mg/Kg)	TOTAL ARSENIC (mg/Kg)	TOTAL MERCURY (mg/Kg)	TOTAL SVOCs (mg/Kg)	TOTAL PCBs (mg/Kg)
CSW-12	GS-30-S		2360				
CSW-12DUP	03-30-3	7/30/2015 LAB SDG#	6110	NA	NA	NA	NA
CSB-4	TS-4-B	84833	10000	INA	INA	INA	INA
CSB-4DUP	13-4-0		11600				
CSW-33	GS-20-S		901	NA	NA	NA	NA
CSW-33DUP	GS-20-S	8/27/2015 LAB SDG#	1100	INA	INA	INA	INA
CSW-37	TS-5-N	86308	NA	NA	NA	54.1	NA
CSW-37DUP	I 3-3-IV		INA	INA	INA	42.2	INA
CSW-20-2	TS-13-NE		NA	59.70	2.50	NA	NA
CSW-20-2DUP	13-13-NE	8/28/15 LAB SDG#	INA	69.65	2.36	INA	INA
CSB-3-2	GS-30-B	86366	5790	NA	NA	NA	NA
CSB-3-2DUP	GS-30-B		6522	INA	INA	INA	INA
CSW-52	GS-19-E	9/14/2015 LAB SDG#					1.70
CSB-52DUP	GS-19-B	87201					1.65
CSW-51-2A	GS-19-S	9/24/15	NA	NA	NA	NA	ND
CSW-51-2ADUP	33-19-3	LAB SDG# 87872	INA	INA	INA	INA	ND

Note: 1. ND=Not Detected; NA=Not Analyzed; J=Below MDL; N=North; S=South; E=East; W=West 2. Each sample is a composite of 7 to 10 grab samples; CSWs are wall and CSBs are bottom samples

TABLE 3B

132 DINGENS STREET - BCP REMEDIATION

ANALYTICAL DATA - QA/QC RINSE BLANKS

SAMPLE ID/ LOCATION	ERB-1	ERB-2	ERB-3	ERB-4
LAB BATCH NUMBER	J84833	J86066	J86308	J87201
SAMPLE BATCH	CS Soils	MW Smpls	CS Soils	CS Soils
Sample Date	7/30/15	8/21/15	8/27/15	9/14/15
PCBs (ug/L)	NA	NA	NA	ND
METALS (mg/L)				
Arsenic	NA	ND	NA	
Lead	9.0 J	NA	0.015	NA
Mercury	NA	ND	NA	

Note: 1. ANALYSIS: "NA" = Not Analyzed; ND = Not Detected

2. SAMPLES: ERB = Equipment Rinse Blank

TABLE 4

132 DINGENS STREET - BCP REMEDIATION **ANALYTICAL DATA - RA TEST PIT SOILS CHARACTERIZATION** ON VEGETATED STRIPS IN FRONT OF SITE

(SAMPLED 10/14/15 during RA); LAB SDG #J89112

SAMPLE ID/	PETLs	TS#18	TS#19	TS#20	TS#21
LOCATION	or CSCOs	WEST VEGE	TATED STRIP	SOUTH VEGE	TATED STRIP
DEPTH INTERVAL (ft)		0 - 2'	0 - 2'	0 - 2'	0 - 2'
Percent Solids (%)		79.0	82.6	74.8	74.7
PCBs (ug/Kg)		ND	ND	ND	ND
SEMIVOLATILE ORGANI	ICS (ug/Kg)				
Acenaphthene	1	920 J	ND	ND	190 J
Acenaphthylene		280 J	ND	ND	ND
Anthracene		3000	700 J	ND	330 J
Benzo(a)anthracene		7700	3700	510 J	2400
Benzo(a)pyrene		7000	3400	840 J	2400
Benzo(b)fluoranthene		9400 J	4800 J	1000 J	3900
Benzo(g,h,i)perylene		5100 J	3000 J	750 J	2000
Benzo(k)fluoranthene		5000	2500	300 J	1600
Carbazole		1500 J	470 J	ND	340 J
Chrysene		8300	4100	630 J	3100
Dibenzofuran		830	ND	ND	ND
Fluoranthene		19000	7200	1100 J	6000
Fluorene		1200 J	290 J	ND	160 J
Indeno(1,2,3-cd)pyrene		4400 J	2500	790 J	1800 J
Phenanthrene		12000	3900	430 J	2700
Pyrene		14000	6000	850 J	4800
TOTAL SVOCs	500,000	99,630	42,560	7,200	31,720
METALS (mg/Kg)					
Aluminum		14000	13100	19800	16800
Antimony		1.8	2.6	ND	ND
Arsenic	71.0	14.1	13.9	7.6	6.8
Barium	400	531	264	114	106
Beryllium	590	1.5	1.2	0.78	0.75
Cadmium	9.3	3.2	2.1	0.88	0.93
Calcium		32500	32400	5820	6730
Chromium	1,500	49.5	39.6	42.2	42.7
Cobalt		7.7	9.0	9.1	9.3
Copper	270	127	130	36.5	36.7
Iron		33500	34900	24400	23400
Lead	5,000	1840	956	86	84.2
Magnesium		7610	8160	4270	4700
Manganese	10,000	793	632	455	457
Nickel	310	23.4	27.0	22.1	22.1
Potassium		1920	2050	2560	1860
Selenium	1,500	1.3	0.89	1.3	0.86
Silver	1,500	0.48	ND	ND	0.3
Sodium		382	297	134	114
Thallium		ND	ND	ND	ND
Vanadium		27	25.2	37.4	32.9
Zinc	10,000	794	601	179	176
Mercury Note: 1 "ND" = Not Detected:	5.7	0.67	0.54	0.16	0.19

- Note: 1. "ND" = Not Detected; "NA" = Not Analyzed

 - Not Not Detected, NA Not Allayzed
 Only detected organic compounds are listed; all metals analyzed are listed
 CSCOs are listed in italics; PETLs are listed in bold; Compounds exceeding CSCOs or PETLs are shown in bold numbers
 See table of sample coordinates in Appendix, and figure in Report for locations
 CSCOs = Commercial Soil Cleanup Objective; PETL = Proposed Excavation Threshold Limit

TABLE 5 132 DINGENS STREET - BCP REMEDIATION 2015 ANALYTICAL DATA - SOIL CHARACTERIZATION FOR DISPOSAL

SAMPLE	LOCATION	ΔRFΔ	SAMPLE DATE/	ESTIMATED	TCLP LEAD	TCLP ARSENIC	TCLP BARIUM	TCLP CADMIUM	TCLP CHROMIUM	TCLP MERCURY	TCLP SELENIUM	TCLP SILVER		PCBs	(mg/Kg)		REMARKS/
ID	LOGATION	AKLA	LAB BATCH	VOLUME	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	PCB- 1248	PCB- 1254	PCB- 1260	TOTAL PCBs	ACTION
RCRA LIN	ИТ				5	5	100	1	5	0.2	1	5				50	
LFS-1	MW-7-1	Α		20'X16'X6.25'D	8.8												
LFS-2	MW-7-2	А		= 74 CY	1.8												
LFS-3	TS-9-1	Α		28'X17'X5.2'D	1.3		NA		NA								TREATED
LFS-4	TS-9-2		7/30/2015	= 88 CY	11.1	NA	INA	NA	INA	NA	NA	NA	NA	NA	NA	NA	INEATED
LFS-5	GS-30-1	В	J84833	19'X19'X4.3'D	5.9	INA		INA		INA	INA	INA	INA	INA	INA	INA	
LFS-6	GS-30-2			= 55 CY	20.1												
LFS-7	TS-4-1	В		19'X19'X4'D	4.8		2.1		ND								APPROVED/
LFS-8	TS-4-2			= 54 CY	4.2		2.0		ND								DISPOSED
LFS-9	GS-21-1	L		20'X20X8'D	1.3	0.016	1.0	0.016	ND	ND	ND	ND					
LFS-10	GS-21-2			= 120 CY	2.2	0.013	0.9	0.012	ND	ND	ND	ND					
LFS-11	TS-13-1	D		20'X10X8'D	1.6	0.022	1.7	0.020	ND	ND	ND	ND					APPROVED/
LFS-12	TS-13-2		8/21/2015	= 60 CY	2.4	ND	1.6	0.031	ND	ND	ND	ND	NA	NA	NA	NA	DISPOSED
LFS-13	MW-2-1	D	J86065	20'X10X8'D	1.3	ND	1.8	0.020	ND	ND	ND	ND					
LFS-14	MW-2-2			= 60 CY	3.7	0.013	2.0	0.018	ND	ND	ND	ND					
LFS-15	TS-4-3*	В		20'X2X8'D=12 CY	3.1	0.0058	1.3	0.021	NA	NA	ND	ND					
LFS-16	GS-30-3*	В		20'X2X8'D=12 CY	90.2	ND	1.0	0.013	ND		ND	ND					TREATED
LFS-17	GS-20-1	F		20'X20X8'D	0.41	ND	1.1	0.011	ND		ND	ND					APPROVED/DISPOSED
LFS-18	GS-20-2	·	8/27/2015	= 120 CY	7.2	ND	1.5	0.020	ND	NA	ND	ND	NA	NA	NA	NA	TREATED
LFS-19	TS-5-1	E	J86309	30'X15X8'D	1.2	ND	1.9	0.025	ND]	ND	ND	100	107	100	100	APPROVED/
LFS-20	TS-5-2			= 120 CY	0.73	ND	1.7	0.019	ND		ND	ND					DISPOSED
LFS-21	TS-4-4*	В		20'X2X8'D=12 CY	2.8	ND	2.2	0.041	ND	ND	ND	ND					
LFS-22	MW-2-3*	D		20'X10X2'D=15 CY	0.14	0.018	0.7	ND	ND	ND	ND	ND					
LFS-23	TS-13-2*	D	8/28/2015 J86367	20'X2'X8'D=12 CY	1.2	ND	1.0	0.016	ND	ND	ND	ND	NA	NA	NA	NA	APPROVED/ DISPOSED
LFS-5-T	GS-30-1T	Α		20'X10X2'D=15 CY	ND	0.0064	0.2	ND	0.43	ND	ND	ND					
LFS-16-T	GS-30-3T			20'X2'X8'D=12 CY	0.086	ND	0.5	ND	0.30	ND	ND	ND					
LFS-5-T2	GS-30-1T			19'X19'X4.3'D	ND	0.01	0.2	ND	0.39	ND	ND	ND					
LFS-6-T	GS-30-2T	В	0/4/0045	= 55 CY	ND	0.013	0.2	ND	0.33	ND	ND	ND					
LFS-24-T	GS-30-4T		9/1/2015 J86451	20'X2'X8'D=12 CY	0.052	0.01	1.1	0.00057	ND	ND	ND	ND					ADDDOVED
LFS-1-T	MW-7-1	Α		20'X16'X6.25'D	ND	ND	0.2	ND	0.49	ND	ND	ND	NA	NA	NA	NA	APPROVED/ DISPOSED
LFS-2-T	MW-7-2	.,		= 74 CY	1.0	ND	8.0	0.017	0.04	ND	ND	ND					
LFS-3-T	TS-9-1T	Α	9/2/2015	28'X17'X5.2'D	0.0074	0.022	0.5	ND	0.11	ND	ND	ND					
LFS-4-T	TS-9-2T	,,	J86546	= 88 CY	ND	0.0077	0.4	ND	0.42	ND	ND	ND					

TABLE 5 132 DINGENS STREET - BCP REMEDIATION 2015 ANALYTICAL DATA - SOIL CHARACTERIZATION FOR DISPOSAL

SAMPLE	LOCATION	ΔRFΔ	SAMPLE DATE/	ESTIMATED	TCLP LEAD	TCLP ARSENIC	TCLP BARIUM	TCLP CADMIUM	TCLP CHROMIUM	TCLP MERCURY	TCLP SELENIUM	TCLP SILVER		PCBs	(mg/Kg)		REMARKS/
ID	2007111011	,	LAB BATCH	VOLUME	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	PCB- 1248	PCB- 1254	PCB- 1260	TOTAL PCBs	ACTION
RCRA LII	MIT				5	5	100	1	5	0.2	1	5				50	
LFS-18-T	GS-20-2	F		20'X10'X8'D=60 CY	0.0078 J	0.016	0.3	ND	0.13	ND	ND	ND					
LFS-25	TS-13-3*	D	9/9/2015 J86937	20'X2'X8'D=12 CY	3.5	ND	2.2	0.051	ND	ND	ND	ND	NA	NA	NA	NA	APPROVED/ DISPOSED
LFS-26	MW-2-4*	D		20'X20'X2'D=30 CY	0.035	0.096	1.5	ND	ND	ND	ND	ND					
LFS-27-T	TS-15-1T			40'X25'X2.5'D	1.1	0.0072	1.1	0.032	0.0014	ND	ND	ND	3.9	ND	0.13 J	4.03	
LFS-28-T	TS-15-2T	F	9/14/2015	=90 CY	0.74	ND	1.1	0.024	0.011	ND	ND	ND	3.9	ND	0.12 J	4.02	APPROVED/
LFS-29	GS-19-1		J87202	40'X20'X2'D=60 CY	4	ND	2.0	0.032	ND	ND	ND	ND	23	ND	ND	23	DISPOSED
LFS-30	GS-17-1	G		25'X15'X2'D=28 CY	0.42	ND	1.4	0.330	ND	ND	ND	ND	2	3.8	2.5	8.3	
LFS-31	MW-2-5*	D		20'X20'X2'D=30 CY	0.034	0.075	1.2	ND	ND	ND	ND	ND					
LFS-32	TS-13-4*		9/17/2015 J87472	20'X2'X8'D=12 CY	3.3	0.012	0.0	0.032	ND	0.00029	ND	ND	NA	NA	NA	NA	APPROVED/ DISPOSED
LFS-33-T	GS-30-5T	В		20'X24'X2'D=35 CY	0.0079 J	0.0098	0.3	ND	ND	ND	ND	ND					
LFS-34					0.11	ND	0.7	0.015	ND	ND	ND	ND	0.18 J	0.29	0.13	0.60	
LFS-35					0.045	ND	0.5	0.008	ND	ND	ND	ND	ND	1.10	0.40	1.50	
LFS-36					0.11	ND	0.8	0.042	0.01	ND	ND	ND	ND	ND	5.50	5.50	
LFS-37	GS-17-2	G		125'X20'X2'D =185 CY	0.48	ND	0.8	0.075	ND	ND	ND	ND	1.10	1.20	0.57	2.87	APPROVED/ DISPOSED
LFS-38			9/24/2015 J87871	-100 01	0.40	ND	0.7	0.067	0.014	ND	ND	ND	0.81	ND	1.60	2.41	DIOI GOLD
LFS-39			307071		0.26	ND	0.6	0.044	ND	ND	ND	ND	0.48	1.10	0.76	2.34	
LFS-40					0.27	0.0058	1.4	0.047	ND	ND	ND	ND	0.28	0.53	0.30	1.11	
LFS-41	GS-19-2			ALL SIDES = 60 CY	115	ND	1.4	0.047	ND	ND	ND	ND	14	ND	ND	14.00	TREATED/SAMPLED
LFS-42	TS-15-3	F		40'X25'X2'D=90 CY	2.1	ND	1.5	0.038	ND	ND	ND	ND	43	ND	ND	43.00	APPROVED/DISPOSED
LFS-43					0.78	ND	1.5	0.017	ND	ND	ND	ND	0.096 J	ND	ND	0.096	
LFS-44	CT-1	F	9/28/2015	125'X20'X2'D	2.0	ND	1.6	0.062	ND	ND	ND	ND	1.6	ND	0.41	2.01	APPROVED/
LFS-45			J88006	=185 CY	3.3	ND	1.6	0.020	ND	ND	ND	ND	0.65	ND	ND	0.65	DISPOSED
LFS-46	TS-13	D	10/9/2015	Two sides = 75 cv	1.8	ND	2.0	0.026	ND	ND	ND	ND	0.00		NA	0.00	APPROVED/DISPOSED
LFS-47	10-13		J88823	1 WO SIGES - 13 Cy	-		_						2.5	2.1	1	6.04	NO \$25/5/5/ 3025
	GS-19-4	F	10/14/2015 J89113	Two sides = 125 cy	1.4	ND	1.6	0.041	ND	ND	ND	ND	3.5		0.64	6.24	APPROVED/
LFS-48	00.40.0	_	10/15/2015	411	1.3	ND	1.6	0.018	ND	ND	ND	ND	1.5	ND	ND	1.50	DISPOSED
LFS-41T	GS-19-2	F	J89232	All sides = 60 cy	0.29	ND	1.0	0.017	0.097	ND	ND	ND	3.9	ND	0.15 J	4.05	

Note: 1. ND=Not Detected; N=NORTH; S=SOUTH; E=EAST; W=WEST; T=TREATED STOCKPILE SAMPLE; *=Stockpile from re-excavation

^{2.} Each soil sample is a composite of 7 to 10 grab samples; CY = cubic yards

^{3.} TS & GS refer to Phase II and RI soil samples; CT refers to excavaton for new cell tower

^{4.} Shaded values exceed corresponding TCLP Limit; TCLP=Toxicity Characteristic Leaching Procedure

TABLE 6A 132 DINGENS STREET - BCP REMEDIATION 2015 QUANTITIES - EXCAVATION & BACKFILL

		CONTAMIN	NATED SOIL/FILL	EXCAVATION VOLU	MES	
LOCATION	SURVEY DATE	NORTHING (FT)	EASTING (FT)	GROUND ELEV. (FT)	EXCAVATION ELEV. (FT)	QUANTITY (CY)
MW-7	8/12/2015	1049442.32	1088209.86	601.5'	595.2'	74
TS-9	8/12/2015	1049501.84	1088130.71	600.5'	595.3'	88
GS-30	8/29/2015	1049368.75	1087798.04	598.8'	592.5'	102
TS-4	8/29/2015	1049276.09	1087502.05	601.8'	596.3'	92
MW-2	9/30/2015	1049306.24	1087409.95	602.3'	592.8'	108
TS-13	9/23/2015	1049313.15	1087362.89	602.0'	595.0'	156
TS-5	8/20/2015	1049250.35	1087197.15	601.7'	595.2'	139
GS-21	8/24/2015	1049128.87	1087173.93	601.6'	597.0'	68
GS-20	8/29/2015	1049170.43	1087045.99	602.5'	596.0'	115
TS-15	9/23/2015	1049172.91	1086948.11	603.2'	601.0'	81
ADD-1	9/30/2015	1049125.45	1086926.02	603.0'	599.0'	300
GS-19	11/6/2015	1049127.66	1086774.01	602.3'	599.8'	363
GS-17	9/23/2015	1048985.17	1086554.48	602.6'	600.3'	347
TOTAL						2033

FILL VOLUMES											
AREAS	VOLUME (CY)										
3" COMPACTED BINDER	680										
BACKFILL HOTPOT EXCAVATION AREAS	2,033										
REGRADING AREA B (see Figure 2D)	1,746										
REGRADING AREA A (see Figure 2D)	8,003										
TOTAL OFF-SITE FILL	11,782										

TABLE 6B 132 DINGENS STREET - BCP REMEDIATION 2015 QUANTITIES - OFF-SITE DISPOSAL & IMPORTED MATERIALS

		OFF-SITE	DISPOS	AL				II.	MPORT	ED MAT	ERIAL			
SOURCE	CONTAMINATED WASTE	LOADS OF BROKEN BLACKTOP	LOADS OF BRUSH	LOADS OF STUMPS	SCRAP METAL	GEOTEXTILE DEMARKATION LAYER	BACKFILL FROM SENECA	TOPSOIL FROM PINTO YARD	BLACK TOP	BINDER	2" ROC	LOADS OF CONCRETE	TONS OF CEMENT	94# BAGS OF CEMENT
	Tons	Loads	Loads	Loads	Tons	SY	Loads	Loads	Tons	Tons	Tons	Loads	Tons	94# Bags
BUFFALO CRUSHED STONE									7	1478.4				
AH HARRIS						38400								
ALLIED BUILDERS														70
CRAIGS SERVICES							40							
CTS CONTRACTING							80							
LAFARGE											16383			
LARDON			3	1										
MALLARE		10					212	5						
MODERN DISPOSAL	2695													
PINTO TRUCKING					5.95									
SWIFT RIVER												5		
UNITED MATERIALS													20	
TOTALS	2695	10	3	1	5.95	38400	332	5	7	1478.4	16383	5	20	70

TABLE 7A

132 DINGENS STREET - BCP REMEDIATION ANALYTICAL DATA - OFF-SITE IMPORTED MATERIALS: TOP SOIL

SAMPLE TYPE/	DER-	VOCS: GRAB SAMPLES OTHERS: COMPOSITE SAMPLES			GRAB SAMPLES (VOCs ONLY)												
ID	UNRESTRICTED RESIDENTIAL	RESTRICTED RESIDENTIAL	RESTRICTED COMMERCIAL	CTS-1C	CTS-2C	стѕ-зс	CTS-4G	CTS-5G	CTS-6G	CTS-7G	CTS-8G	CTS-9G	CTS-10G	CTS-11G	CTS-12G		
		LAB	BATCH NUMBER	80176													
			Sample Date														
Percent Solids (%)			84.1	84.4	80.4	84.7	79.6	78.7	84.3	82.7	85.3	84.0	83.7	73.2			
pH (s.u.)				7.67	7.43	7.31	NA	NA	NA								
TOC (mg/Kg)				16,900	21,300	24,500	NA	NA	NA								
VOLATILE ORGANICS (VOCs, ug/Kg)					ė											
Chloroform	370	100,000	350,000	ND	ND	ND	0.80 J	0.80 J	1.1 J	0.68 J	0.84 J	0.76 J	0.75 J	0.93 J	12 J		
Ethylbenzene	1000	41,000	390,000	ND	ND	ND	ND	ND	0.43 J	ND	ND	ND	ND	ND	ND		
Methylene Chloride	50	100,000	500,000	5.2 J	4.4 JB	4.7 JB	6.5 B	8.0 B	13 B	6.7 B	5.8 B	4.0 JB	2.9 JB	6.8 B	8.5 B		
Toluene	700	100,000	500,000	ND	ND	ND	1.1 J	ND	3.7 J	1.1 J	0.72 J	ND	ND	ND	ND		
SEMIVOLATILE ORGAN	IICS (SVOCs, ug/	Kg)					•	•	•	•	•	•	•	•			
Benzo(a)anthracene	1,000	1,000	5,600	770 J	960 J	ND											
Benzo(a)pyrene	1,000	1,000	1,000	ND	790 J	ND						NA NA					
Benzo(b)fluoranthene	1,000	3,900	5,600	ND	1100 J	ND	NA	NA	NA	NA				NA	NA		
Fluoranthene	100,000	100,000	500,000	1100 J	1500 J	ND	NA	NA	INA	INA	NA	INA	NA	INA	INA		
Phenanthrene	100,000	100,000	500,000	ND	1000 J	ND											
Pyrene	100,000	100,000	500,000	950 J	1200 J	ND											
PESTICIDES (ug/Kg)																	
delta-BHC	40	100,000	500,000	51 J	ND	ND	NA	NA	NA								
PCBs (ug/Kg)	PCBs (ug/Kg)				ND	ND	NA	NA	NA								
HERBICIDES (ug/Kg)				ND	ND	ND	NA	NA	NA								

TABLE 7A

132 DINGENS STREET - BCP REMEDIATION ANALYTICAL DATA - OFF-SITE IMPORTED MATERIALS: TOP SOIL

SAMPLE TYPE/	VOCS: OTHERS: C	GRAB SAMPLES (VOCs ONLY)													
ID	UNRESTRICTED RESIDENTIAL	RESTRICTED RESIDENTIAL	RESTRICTED COMMERCIAL	CTS-1C	CTS-2C	CTS-3C	CTS-4G	CTS-5G	CTS-6G	CTS-7G	CTS-8G	CTS-9G	CTS-10G	CTS-11G	CTS-12G
METALS (mg/Kg)															
Arsenic	13	16	16	4.7	5.6	4.9									
Barium	350	400	400	62.6	79.1	119									
Beryllium	7.2	72	590	0.5	0.47	0.65									
Cadmium	2.5	4.3	9.3	0.68	0.42	0.40									
Chromium	30	180	1,500	13.8	14.7	17.4									
Copper	50	270	270	173.0	25.1	20.9									
Lead	63	400	1,000	65.3	73.1	47.7	NA	NA	NA						
Manganese	1600	2,000	10,000	281	309	224									
Nickel	30	310	310	12.6	15.5	18.2									
Selenium	3.9	180	1,500	ND	ND	ND									
Silver	2	180	1,500	ND	ND	ND									
Zinc	109	10,000	10,000	94.4	93.8	98.8									
Mercury	0.18	0.81	2.8	0.08	0.14	0.11									
Total Cyanide (mg/Kg)	27	27	27	ND	ND	ND	NA	NA	NA						

Notes: 1. "NA" = Not Analyzed; "ND" = Not Detected

2. Only detected volatile and semivolatile compounds are listed; all metals analyzed are listed

TABLE 7B

132 DINGENS STREET - BCP REMEDIATION ANALYTICAL DATA - OFF-SITE IMPORTED MATERIALS: SOIL FILL

SAMPLE TYPE/	DER-10	SCOs	CON	//POSITE	SAMPLES	(EXCL. V	OCs)		GRAB SAMPLES (VOCs ONLY)									
ID	UNRESTRICTED	RESTRICTED RESIDENTIAL	CHF-1	CHF-2	CHF-3	CHF-4	CHF-5	CHF-1A	CHF-1B	CHF-2A	CHF-2B	CHF-3A	CHF-3B	CHF-4A	CHF-4B	CHF-5A	CHF-5B	CRS-1
	LAB	BATCH NUMBER									7902							
	Dou	Sample Date	91.6	92.4	93.5	90.7	91.4	92.5	93.4	93.4	7/2015 91.8	94.1	92.1	88.7	91.8	91.5	88.9	98.2
VOLATILE ORGANICS (VO		cent Solids (%)	91.0	92.4	93.5	90.7	91.4	92.5	93.4	93.4	91.0	94.1	92.1	00.7	91.0	91.5	00.9	96.2
VOLATILE ORGANICS (VO	rcs, ug/kg)			ı		ı	ı						ı	ı				
Benzene	60	4,800						0.68 J	0.45 J	0.46 J	0.42 J	0.44 J	0.74 J	0.50 J	0.79 J	0.45 J	0.49 J	ND
Methylene Chloride	50	100,000	NA	NA	NA	NA	NA	3.0 JB	2.6 JB	2.5 JB	2.8 JB	2.5 JB	2.6 JB	3.0 JB	3.1 JB	2.6 JB	3.9 J	3.7 J
Styrene			INA	INA	INA	INA	INA	ND	ND	ND	ND	ND	ND	0.29 J	ND	ND	ND	ND
Toluene	700	100,000						0.92 J	0.83 J	0.81 J	0.84 J	0.78 J	1.3 J	1.1 J	1.1 J	0.78 J	0.64 J	ND
SEMIVOLATILE ORGANIC	S (SVOCs, ug/Kg)																
Bis(2-ethylhexyl) phthalate			100 JB	59 JB	51 JB	65 JB	84 JB											59 JB
Diethyl phthalate			42 J	ND	55 JB	63 JB	JB 87 JB											41 JB
Di-n-butyl phthalate			17 JB	ND	ND	ND ND ND ND 41 J	NA	NA	NIA	NA	NA	NA	NA	NA	NA	NA	ND	
Fluoranthene	100,000	100,000	28 J	ND	17 J		41 J	- NA -	NA .	NA	NA	IVA	INA	INA	IVA	IVA	NA	ND
Phenanthrene	100,000		ND	ND	ND	ND	28 J											32 J
Pyrene	100,000	100,000	24 J	ND	ND	ND	34 J											ND
PESTICIDES (ug/Kg)																		
4,4'-DDE	3.3	8,900	0.43 J	0.40 J	ND	ND	ND											ND
4,4'-DDT	3.3	7,900	0.65 JB	ND	ND	ND	ND											ND
delta-BHC	40	360	0.45 J	0.46 J	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND
Endosulfan sulfate	2,400	24,000	ND	ND	0.52 J	ND	ND											ND
Endrin Aldehyde			0.67 J	ND	ND	ND	ND											ND
HERBICIDES (ug/Kg)			ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND
PCBs (ug/Kg)			ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND

TABLE 7B 132 DINGENS STREET - BCP REMEDIATION

ANALYTICAL DATA - OFF-SITE IMPORTED MATERIALS: SOIL FILL

SAMPLE TYPE/	DER-10	SCOs	CON	/IPOSITE	SAMPLES	(EXCL. V	OCs)		GRAB SAMPLES (VOCs ONLY)										
ID	UNRESTRICTED	RESTRICTED RESIDENTIAL	CHF-1	CHF-2	CHF-3	CHF-4	CHF-5	CHF-1A	CHF-1B	CHF-2A	CHF-2B	CHF-3A	CHF-3B	CHF-4A	CHF-4B	CHF-5A	CHF-5B	CRS-1	
METALS (mg/Kg)																			
Aluminum			2900	2310	2980	2670	3100											2000	
Antimony			ND	ND	ND	ND	ND											ND	
Arsenic	13	16	1.5	1.2	2.1	1.2	1.6											3.4	
Barium	350	350	12.8	10.2	12.7	13.2	15.1											16.8	
Beryllium	7.2	14	0.19	0.14	0.18	0.15	0.18											0.12	
Cadmium	2.5	2.5	0.21	0.2	0.18	0.2	0.18											0.81	
Calcium			52600	44800	53400	47600	50700											184000	
Chromium	30	36	4.1	3.3	4.0	4.0	4.5											4.4	
Cobalt			1.9	1.7	2.2	2.0	2.1											1.4	
Copper	50	270	7.4	6.2	7.7	6.1	7.0											3.5	
Iron			5510	4600	5960	5420	5960											6210	
Lead	63	400	7.2	6.6	8.3	7.6 B	8.6 B	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	147	
Magnesium			24300	20400	23300	21400	19300											114000	
Manganese	1,600	2,000	239	195	218	213	215											524	
Nickel	30	140	4.2	3.6	4.9	4	4.9											4.1	
Potassium			787	706	755	803	923											1270	
Selenium	3.9	36	ND	ND	ND	ND	ND											ND	
Silver	2	36	ND	ND	ND	ND	ND											ND	
Sodium			173	142	165	256	203											242	
Thallium			ND	ND	ND	ND	ND											ND	
Vanadium		-	9.0	7.8	8.7	9.6	10.4											7.7	
Zinc	109	2,200	68.4	60.7	70.4	67.1	65.4											199	
Mercury	0.18	0.81	ND	ND	ND	ND	ND											ND	
Total Cyanide (mg/Kg)	27	27	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	

Notes: 1. "NA" = Not Analyzed; "ND" = Not Detected

^{2.} Only detected volatile and semivolatile compounds are listed; all metals analyzed are listed

TABLE 7C

132 DINGENS STREET - BCP REMEDIATION ANALYTICAL DATA - OFF-SITE IMPORTED MATERIALS CRUSHED STONE

SAMPLE TYPE/ ID	RESTRICTED COMMERCIAL	CRUSHED STONE
		BFS-1
	J90293	
	11/2/2015	
VOLATILE ORGANICS (VOCs	98.2	
Chloroform		0.35 J
SEMIVOLATILE ORGANICS (SVOCs, ug/Kg)	ND
PESTICIDES (ug/Kg)		ND
HERBICIDES (ug/Kg)		ND
PCBs (ug/Kg)		ND
METALS (mg/Kg)		
Arsenic	16	2.2
Barium	350	14.8
Beryllium	14	0.13
Cadmium	2.5	0.75
Chromium	36	ND
Copper	270	3.3
Lead	400	82.8
Manganese	2,000	441 B
Nickel	140	4.3 J
Selenium	36	ND
Silver	36	ND
Zinc	2,200	133
Mercury	0.81	ND
Total Cyanide (mg/Kg)	27	ND

Notes: 1. "NA" = Not Analyzed; "ND" = Not Detected

^{2.} Only detected volatile and semivolatile compounds are listed; all metals analyzed are listed

APPENDIX A PROJECT PHOTOPAGES

1. View of Topsoil Pile at Seneca Street Site

2. One of the three Test Pits for Sample CHF-1

3. View of the Test Pits for Sample CHF-2

4. View of the Test Pits for Sample CHF-3

5. View of the Test Pits for Sample CHF-4

6. View of the Test Pits for Sample CHF-5

BCP REMEDIATION

OFF-SITE BACKFILL SOURCE

DATE: April 7, 2015

1. South section of Pinto Construction Yard topsoil mound

2. North section of Pinto Construction Yard topsoil mound

3. South end of Pinto Construction Yard topsoil mound

4. North end of Pinto Construction Yard topsoil mound

5. View of Test Pit A

6. View of Test Pit M

BCP REMEDIATION

132 DINGENS ST. SITE, BUFFALO, NY

OFF-SITE BACKFILL SOURCE

DATE: May 12, 2015

1. Before a hot spot is excavated, plastic is put down for the excavated material

2. View of GS-30 being excavated

3. All excavated piles are covered with plastic before the end of each day

4. View of TS-9 as groundwater is pumped out

5. View of GS-30 as groundwater is pumped out

6. View of TS-4 after initial excavation

BCP REMEDIATION

SITE PHOTOGRAPHS

DATE: Jul 27-Aug 2, 2015

1. View of TS-13 excavation pile showing the bricks, bottles, scrap metal and other trash that typifies this site

3. The stored drill cuttings in the 55 gal drums were dumped onto the MW-2 excavation pile

5. View of west wall of GS-30 after it was excavated an additional 2' in an attempt to border cleaner material

2. View of GS-21 with foundation wall exposed on the east (right) border

4. View of TS-4 excavation as its west wall is widened another

6. View of MW-2 Piezometer Well being decommissioned at MW-2

SITE PHOTOGRAPHS

DATE: Aug 17-23, 2015

1. Pumping ground water out of TS-9

3. View of Pinto's Equipment Wash being set up near the Building

5. View of Pinto crew pumping ground water out of TS-5

2. View of MW-7 and TS-9 at the east corner of the site and their excavation piles covered with plastic

4. View of GS-20 near the Cell Tower being excavated

6. MW-2 contained very dark material below 4' and had a slight sheen on the ground water

132 DINGENS ST. SITE, BUFFALO, NY

SITE PHOTOGRAPHS

DATE: Aug 24-30, 2015

1. View of cement being mixed with excavated soil at TS-9

3. Water is added during and after the mixing to achieve the correct moisture content

5. Approved excavation piles are loaded into dump trucks for disposal. The plastic sheet keeps the outside of the truck clean.

2. After the cement is added to the pile, it is mixed inside the stone vat

4. Before the end of the day, all mixed excavation piles are covered with plastic

6. View of GS-21 excavated pile being loaded into a tandem dump truck for disposal

SITE PHOTOGRAPHS

DATE: Aug 31-Sep 6, 2015

1. View of GS-21 lined with plastic and ready to be filled with approved backfill soil

3. View of excavation pile from another 2' deeper dig at MW-2

5. View of TS-5 lined with plastic and being backfilled with approved soil

2. View of Tractor Trailer Dump Truck being loaded with excavated material from TS-5

4. View of composite sample from MW-2 excavation pile

6. View of TS-5 after it is graded off with gravel

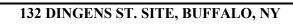
SITE PHOTOGRAPHS

DATE: Sep 7-13, 2015

1. View of GS-19 being marked for excavation

2. View of GS-19 after the first excavation is completed

3. View of the first excavation of GS-17 showing excavated trash and old railroad rail


4. Approved backfill material is staged on asphalt

5. GS-30 after being widened and deepened to border with cleaner material

6. View of excavated material from GS-30 drying out on plastic

SITE PHOTOGRAPHS

DATE: Sep 14-20, 2015

1. View of GS-17 after vegetation has been cleared for further sampling

3. Close view of a GS-17 test pit used for composite sampling

4. View of the south border of GS-19 after it has been widened

5. View of Cell Tower Expansion excavation

6. View of excavated material from Cell Tower Expansion excavation

SITE PHOTOGRAPHS

DATE: Sep 21-27, 2015

1. View of Cell Tower Expansion after being filled in and graded

2. View of covered Cell Tower Expansion excavated material

3. View of stockpiled backfill soil and excavated material from GS-19 under plastic

4. View of stockpiled backfill soil and excavated material from GS-19 and Cell Tower material under plastic

132 DINGENS ST. SITE, BUFFALO, NY

SITE PHOTOGRAPHS

DATE: Sep 28-Oct 4, 2015

1. View of TS-9 and MW-7 after they have been backfilled and graded

2. View of GS-30 after it has been backfilled and graded

3. View of TS-15 after excavation

4. View of GS-19 after widening in an attempt to border on cleaner material

5. View of excavated trash at the bottom of MW-2 as it is deepened again in an attempt to reach cleaner material

6. View of TS-13 after widening in an attempt to border on cleaner material

SITE PHOTOGRAPHS

132 DINGENS ST. SITE, BUFFALO, NY

DATE: Oct 5-11, 2015

1. View of a lawn area of the site to be sampled

2. Close view during the sampling of the south most lawn area

3. View of some scrap metal that was excavated during widening of GS-19

4. Pinto's bulldozer gravels and grades a strip along the south border across from the Cell Tower

5. IEG takes confirmatory samples after GS-17 is further excavated

6. View of excavated material from GS-19

SITE PHOTOGRAPHS

DATE: Oct 12-18, 2015

1. View of north section of site showing delivered gravel piles

2. View of south section of site after graveling and grading

3. View of north section of site after graveling and grading

4. Geotextile fabric is put down before the gravel is applied

5. View of GS-19 excavation pile while waiting for disposal approval

6. View of TS-15 excavation pile while waiting for disposal approval

SITE PHOTOGRAPHS

DATE: Oct 19-25, 2015

1. View of GS-19 after widening several times

2. View of most recently widened south wall of GS-19

3. View of GS-17 after east end was deepened by 1'

4. View of the north wall of the east end of GS-17

5. View of gravel application on the east section of the site

6. Close view of gravel application with the geotextile underlay on the north side of the site

SITE PHOTOGRAPHS

DATE: Oct 26-Nov 1, 2015

1. Some of the last excavated piles are approved for disposal

3. GS-19 is widened to the south yet again in an attempt to find cleaner border material

5. After the gravel is graded, it is tamped down with a roller

2. Load after load of gravel is brought in to be spread around the site

4. View of grading and graveling on a north section of the site

6. The grading begins on the northeast section of the site

SITE PHOTOGRAPHS

DATE: Nov 2-8, 2015

1. View of east end of the site after initial grading

2. View of geotextile and backfill being applied to northeast section of site

3. GS-19 is approved and gets backfilled

4. GS-17 is approved and gets backfilled

5. View of GS-19 after graveling and grading

6. View of GS-17 after graveling and grading

SITE PHOTOGRAPHS

DATE: Nov 9-15, 2015

1. View of the southeast border of the property after grading

3. The bulldozer spreads backfill over the geotextile fabric

5. Gravel application continues on the northeast section of the property

2. Truckloads of clean fill are brought in to raise the grade on the east end of the site

4. View of the backfill extending into the graded east end of the site

6. A driveway is built to the UPS property to the immediate north

SITE PHOTOGRAPHS

DATE: Nov 16-22, 2015

1. The eastern most corner has been graded and backfilled where needed

2. Gravel is applied over backfill on the east end

3. The entire northeast section has been graveled and graded

4. The driveway to the UPS property to the north has been paved

5. The north section of the property around the Cell Tower has been paved

6. View of the south section around the Cell Tower being paved

SITE PHOTOGRAPHS

132 DINGENS ST. SITE, BUFFALO, NY

DATE: Nov 23-29, 2015

1. View of eastern most corner of the site with permanent perimeter fence installation in progress

3. View of north central section of the property with perimeter fence in progress

5. View of the western most leg of the property after paving has been completed

2. The entire east end of the property has been graveled and graded

4. Pinto adds topsoil around the border on the north section of the property

6. View of the south border of the property across from the Cell Tower after paving has been completed

132 DINGENS ST. SITE, BUFFALO, NY

DATE: Dec 14-20, 2015

1. Looking east along the south border next to large paved area

2. Close view of graded topsoil after seeding and mulch just outside property border fence on the east end

3. Looking north along the eastern border

4. Looking west along the northeastern border

5. The driveway access to the UPS property on the north border

6. Looking west along the north border near the driveway access

132 DINGENS ST. SITE, BUFFALO, NY

SITE PHOTOGRAPHS (Borders East Half)

View of the west leg of the property

5. Looking south from near the Building along the west border

2. Looking west along the north border near the Cell Tower

4. Looking east along the south border across from Cell Tower

6. Looking east along the south border near the foundation

132 DINGENS ST. SITE, BUFFALO, NY

SITE PHOTOGRAPHS (Borders West Half)

1. Looking east from the middle of the property

2. The east side of concrete foundation showing stone ramp

3. Looking north across paved area showing UPS driveway

4. Looking south along border of graveled east end and paved area to the west

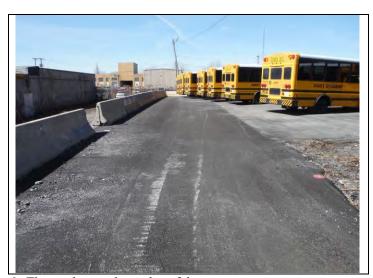
5. Looking west from the east end of the property

6. View of the north central section of the property

SITE PHOTOGRAPHS (Interior East Half)

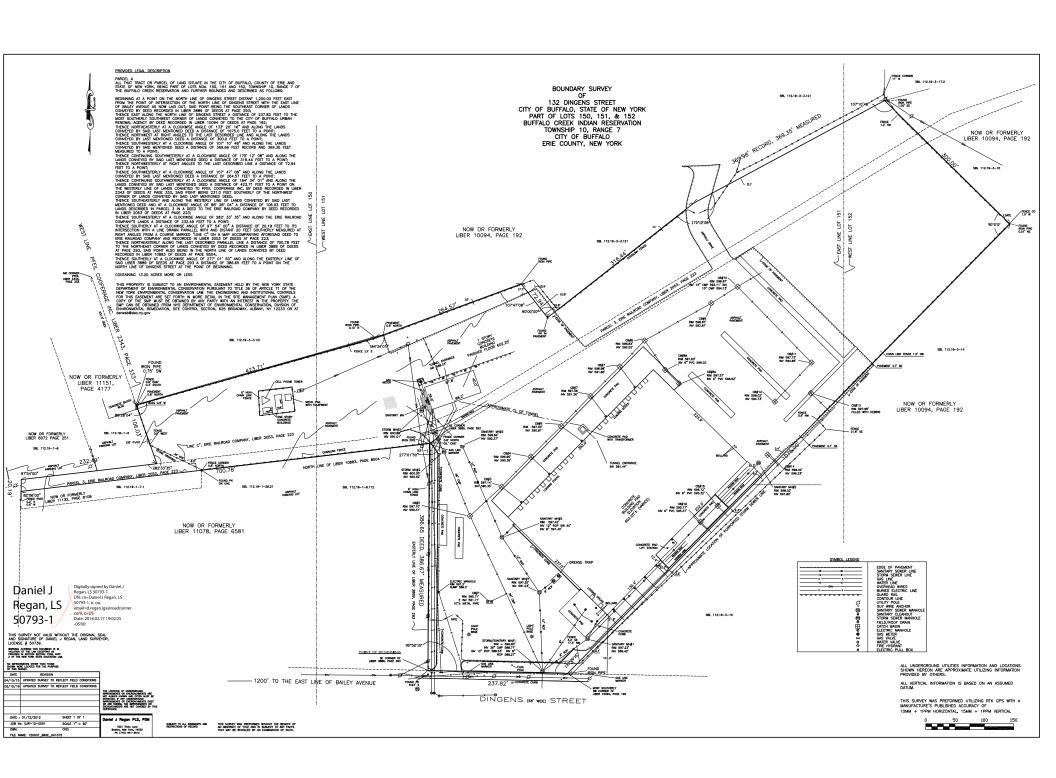
1. Looking south across the property from the Building

3. Looking east from the Cell Tower toward the Building


5. View of the new asphalt to the west of the Cell Tower

2. Looking east from near property entrance toward concrete foundation

4. View of the new asphalt east of the Cell Tower


6. The newly paved west leg of the property

132 DINGENS ST. SITE, BUFFALO, NY

SITE PHOTOGRAPHS (Interior West Half)

APPENDIX B SURVEY MAP, DEEDS & BOUNDS

SCHEDULE A

PARCEL A

All that tract or parcel of land situate in the City of Buffalo, County of Erie and State of New York, being part of Lots Nos. 150, 151 and 152, Township 10, Range 7 of the Buffalo Creek Reservation and further bounded and described as follows:

Beginning at a point on the north line of Dingens Street distant 1,200.00 feet east from the point of intersection of the north line of Dingens Street with the east line of Bailey Avenue as now laid out, said point being the southeast corner of lands conveyed by Deed recorded in Liber 3889 of Deeds at page 293;

thence east along the north line of Dingens Street a distance of 237.82 feet to the most southerly southwest corner of lands conveyed to the City of Buffalo Urban Renewal Agency by Deed recorded in Liber 10094 of Deeds at Page 192;

thence northeasterly at a clockwise angle of 133° 20' 16" and along the lands conveyed by said last mentioned Deed a distance of 1075.0 feet to a point;

thence northwest at right angles to the last described line and along the lands conveyed by last mentioned Deed a distance of 300.0 feet to a point;

thence southwesterly at a clockwise angle of 107° 10' 48" and along the lands conveyed by said mentioned Deed a distance of 369.66 feet record and 369.35 feet measured to a point;

thence continuing southwesterly at a clockwise angle of 170° 12' 08" and along the lands conveyed by said last mentioned Deed a distance of 316.44 feet to a point;

thence northwesterly at right angles to the last described line a distance of 72.94 feet to a point;

thence southwesterly at a clockwise angle of 107° 47' 08" and along the lands conveyed by said last mentioned Deed a distance of 264.57 feet to a point;

thence continuing southwesterly at a clockwise angle of 184° 34' 01" and along the lands conveyed by said last mentioned Deed a distance of 423.71 feet to a point on the westerly line of lands conveyed to Pfeil Cooperage Inc. by Deed recorded in Liber 2343 of Deeds at Page 333, said point being 231.0 feet southerly of the northwest corner of lands conveyed by said last mentioned Deed;

thence southeasterly and along the westerly line of lands conveyed by said last mentioned Deed and at a clockwise angle of 86° 28' 04" a distance of 106.03 feet to lands described in Parcel 3 in a Deed to the Erie Railroad Company by Deed recorded in Liber 2053 of Deeds at Page 223;

thence southwesterly at a clockwise angle of 282° 33' 35" and along the Eric Railroad Company's lands a distance of 232.49 feet to a point;

thence southerly at a clockwise angle of 97° 54' 00" a distance of 20.19 feet to its intersection with a line drawn parallel with and distant 20 feet southerly measured at right angles from a course marked "Line C" on a map accompanying aforesaid Deed to Erie Railroad Company and recorded in Liber 2053 of Deeds at Page 223;

thence northeasterly along the last described parallel line a distance of 700.78 feet to the northeast corner of lands conveyed by Deed recorded in Liber 3889 of Deeds at page 293, said point also being in the north line of lands conveyed by Deed recorded in Liber 10883 of Deeds at page 8504;

thence southerly at a clockwise angle of 277° 01' 50" and along the easterly line of said Liber 3889 of Deeds at page 293 a distance of 386.65 feet to a point on the north line of Dingens Street at the point of beginning.

Title Number: 201-035870 (Owner's)

INSUR

Page 3

APPENDIX C DIGITAL COPY OF FER (CD)

APPENDIX D ENVIRONMENTAL EASEMENT

CHRISTOPHER L. JACOBS, ERIE COUNTY CLERK REF:

DATE:5/17/2016 TIME:11:42:28 AM RECEIPT: 16079532

PARALEGAL SERVICES OF BUFFALO

ACCOUNT #: 9273

ITEM - 01 785

RECD: 5/17/2016 11:44:24 AM

FILE: 2016099658 BK/PG D 11296/1444 Deed Sequence: TT2015020561 132 DINGENS ST LLC

PEOPLE OF THE STATE OF NEW YORK (THE)

Recording Fees

95.00

TP584

10.00

Subtotal

105.00

TOTAL DUE PAID TOTAL PAID ESCROW \$105.00 \$105.00

\$105.00

REC BY: Sharon COUNTY RECORDER PARALEGAL SERVICES OF BUFFALO

1133 LIBERTY BUILDING, BUFFALO, NY 14202

www.paralegalservicesofbuffalo.com

Fax: 853-0184

856-3818 - 852-2028

FIRM	7KG	7
	1) 2 d aa 1	
ORIGINATOR		

SUBJECT: 132 Dingens Easement
INSTRUCTIONS:

Please Sile the attached

Casement + vature Sile

Stamped Copies, 17/1

CHECK ATTACHED:

ATTACHMENTS:

PERFORMANCE REPORT

DISBURSMT.

NO. OF SERV

DATE COMPLETE 5/17

RECEIVED BY:

County: Erie Site No: C915263 Brownfield Cleanup Agreement Index: C915263-05-12 as amended August 14, 2012

MAY 1 7 2016

ENVIRONMENTAL EASEMENT GRANTED PURSUANT TO ARTICLE 71, TITLE 36 OF THE NEW YORK STATE ENVIRONMENTAL CONSERVATION FANK'S OFFICE

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to encourage the remediation of abandoned and likely contaminated properties ("sites") that threaten the health and vitality of the communities they burden while at the same time ensuring the protection of public health and the environment; and

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to establish within the Department a statutory environmental remediation program that includes the use of Environmental Easements as an enforceable means of ensuring the performance of operation, maintenance, and/or monitoring requirements and the restriction of future uses of the land, when an environmental remediation project leaves residual contamination at levels that have been determined to be safe for a specific use, but not all uses, or which includes engineered structures that must be maintained or protected against damage to perform properly and be effective, or which requires groundwater use or soil management restrictions; and

WHEREAS, the Legislature of the State of New York has declared that Environmental Easement shall mean an interest in real property, created under and subject to the provisions of Article 71, Title 36 of the New York State Environmental Conservation Law ("ECL") which contains a use restriction and/or a prohibition on the use of land in a manner inconsistent with engineering controls which are intended to ensure the long term effectiveness of a site remedial program or eliminate potential exposure pathways to hazardous waste or petroleum; and

WHEREAS, Grantor, is the owner of real property located at the address of 132-136 Dingens Street in the City of Buffalo, County of Erie and State of New York, known and designated on the tax map of the County Clerk of Erie as tax map parcel numbers: Section 112.19 Block 1 Lot 14.11, being the same as that property conveyed to Grantor by deed dated June 20, 2012 and recorded in the Erie County Clerk's Office in Liber and Page 11225/899. The property subject to this Environmental Easement (the "Controlled Property") comprises approximately 13.2 +/- acres, and is hereinafter more fully described in the Land Title Survey dated January 12, 2012 and last revised March 10, 2016 prepared by Daniel J. Regan, NYSLLS, which will be attached to the Site Management Plan. The Controlled Property description is set forth in and attached hereto as Schedule A; and

WHEREAS, the Department accepts this Environmental Easement in order to ensure the protection of public health and the environment and to achieve the requirements for remediation

established for the Controlled Property until such time as this Environmental Easement is extinguished pursuant to ECL Article 71, Title 36; and

NOW THEREFORE, in consideration of the mutual covenants contained herein and the terms and conditions of Brownfield Cleanup Agreement Index Number: C915263-05-12 as amended August 14, 2012, Grantor conveys to Grantee a permanent Environmental Easement pursuant to ECL Article 71, Title 36 in, on, over, under, and upon the Controlled Property as more fully described herein ("Environmental Easement").

- 1. <u>Purposes</u>. Grantor and Grantee acknowledge that the Purposes of this Environmental Easement are: to convey to Grantee real property rights and interests that will run with the land in perpetuity in order to provide an effective and enforceable means of encouraging the reuse and redevelopment of this Controlled Property at a level that has been determined to be safe for a specific use while ensuring the performance of operation, maintenance, and/or monitoring requirements; and to ensure the restriction of future uses of the land that are inconsistent with the above-stated purpose.
- 2. <u>Institutional and Engineering Controls</u>. The controls and requirements listed in the Department approved Site Management Plan ("SMP") including any and all Department approved amendments to the SMP are incorporated into and made part of this Environmental Easement. These controls and requirements apply to the use of the Controlled Property, run with the land, are binding on the Grantor and the Grantor's successors and assigns, and are enforceable in law or equity against any owner of the Controlled Property, any lessees and any person using the Controlled Property.
 - A. (1) The Controlled Property may be used for:

Commercial as described in 6 NYCRR Part 375-1.8(g)(2)(iii) and Industrial as described in 6 NYCRR Part 375-1.8(g)(2)(iv)

- (2) All Engineering Controls must be operated and maintained as specified in the Site Management Plan (SMP);
- (3) All Engineering Controls must be inspected at a frequency and in a manner defined in the SMP;
- (4) The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Erie County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department;
- (5) Groundwater and other environmental or public health monitoring must be performed as defined in the SMP;
- (6) Data and information pertinent to Site Management of the Controlled Property must be reported at the frequency and in a manner defined in the SMP;

County: Erie Site No: C915263 Brownfield Cleanup Agreement Index: C915263-05-12 as amended August 14, 2012

(7) All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP;

- (8) Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP;
- (9) Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical components of the remedy shall be performed as defined in the SMP;
- (10) Access to the site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by this Environmental Easement.
- B. The Controlled Property shall not be used for Residential or Restricted Residential purposes as defined in 6NYCRR 375-1.8(g)(2)(i) and (ii), and the above-stated engineering controls may not be discontinued without an amendment or extinguishment of this Environmental Easement.
- C. The SMP describes obligations that the Grantor assumes on behalf of Grantor, its successors and assigns. The Grantor's assumption of the obligations contained in the SMP which may include sampling, monitoring, and/or operating a treatment system, and providing certified reports to the NYSDEC, is and remains a fundamental element of the Department's determination that the Controlled Property is safe for a specific use, but not all uses. The SMP may be modified in accordance with the Department's statutory and regulatory authority. The Grantor and all successors and assigns, assume the burden of complying with the SMP and obtaining an up-to-date version of the SMP from:

Site Control Section Division of Environmental Remediation NYSDEC 625 Broadway Albany, New York 12233 Phone: (518) 402-9553

- D. Grantor must provide all persons who acquire any interest in the Controlled Property a true and complete copy of the SMP that the Department approves for the Controlled Property and all Department-approved amendments to that SMP.
- E. Grantor covenants and agrees that until such time as the Environmental Easement is extinguished in accordance with the requirements of ECL Article 71, Title 36 of the ECL, the property deed and all subsequent instruments of conveyance relating to the Controlled Property shall state in at least fifteen-point bold-faced type:

This property is subject to an Environmental Easement held

by the New York State Department of Environmental Conservation pursuant to Title 36 of Article 71 of the Environmental Conservation Law.

- F. Grantor covenants and agrees that this Environmental Easement shall be incorporated in full or by reference in any leases, licenses, or other instruments granting a right to use the Controlled Property.
- G. Grantor covenants and agrees that it shall, at such time as NYSDEC may require, submit to NYSDEC a written statement by an expert the NYSDEC may find acceptable certifying under penalty of perjury, in such form and manner as the Department may require, that:
- (1) the inspection of the site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under the direction of the individual set forth at 6 NYCRR Part 375-1.8(h)(3).
 - (2) the institutional controls and/or engineering controls employed at such site:
 - (i) are in-place;
- (ii) are unchanged from the previous certification, or that any identified changes to the controls employed were approved by the NYSDEC and that all controls are in the Department-approved format; and
- (iii) that nothing has occurred that would impair the ability of such control to protect the public health and environment;
- (3) the owner will continue to allow access to such real property to evaluate the continued maintenance of such controls;
- (4) nothing has occurred that would constitute a violation or failure to comply with any site management plan for such controls;
- (5) the report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;
- (6) to the best of his/her knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and
 - (7) the information presented is accurate and complete.
- 3. <u>Right to Enter and Inspect</u>. Grantee, its agents, employees, or other representatives of the State may enter and inspect the Controlled Property in a reasonable manner and at reasonable times to assure compliance with the above-stated restrictions.
- 4. <u>Reserved Grantor's Rights</u>. Grantor reserves for itself, its assigns, representatives, and successors in interest with respect to the Property, all rights as fee owner of the Property, including:
- A. Use of the Controlled Property for all purposes not inconsistent with, or limited by the terms of this Environmental Easement;
- B. The right to give, sell, assign, or otherwise transfer part or all of the underlying fee interest to the Controlled Property, subject and subordinate to this Environmental Easement;

County: Erie Site No: C915263 Brownfield Cleanup Agreement Index: C915263-05-12 as amended August 14, 2012

5. Enforcement

A. This Environmental Easement is enforceable in law or equity in perpetuity by Grantor, Grantee, or any affected local government, as defined in ECL Section 71-3603, against the owner of the Property, any lessees, and any person using the land. Enforcement shall not be defeated because of any subsequent adverse possession, laches, estoppel, or waiver. It is not a defense in any action to enforce this Environmental Easement that: it is not appurtenant to an interest in real property; it is not of a character that has been recognized traditionally at common law; it imposes a negative burden; it imposes affirmative obligations upon the owner of any interest in the burdened property; the benefit does not touch or concern real property; there is no privity of estate or of contract; or it imposes an unreasonable restraint on alienation.

- B. If any person violates this Environmental Easement, the Grantee may revoke the Certificate of Completion with respect to the Controlled Property.
- C. Grantee shall notify Grantor of a breach or suspected breach of any of the terms of this Environmental Easement. Such notice shall set forth how Grantor can cure such breach or suspected breach and give Grantor a reasonable amount of time from the date of receipt of notice in which to cure. At the expiration of such period of time to cure, or any extensions granted by Grantee, the Grantee shall notify Grantor of any failure to adequately cure the breach or suspected breach, and Grantee may take any other appropriate action reasonably necessary to remedy any breach of this Environmental Easement, including the commencement of any proceedings in accordance with applicable law.
- D. The failure of Grantee to enforce any of the terms contained herein shall not be deemed a waiver of any such term nor bar any enforcement rights.
- 6. <u>Notice</u>. Whenever notice to the Grantee (other than the annual certification) or approval from the Grantee is required, the Party providing such notice or seeking such approval shall identify the Controlled Property by referencing the following information:

County, NYSDEC Site Number, NYSDEC Brownfield Cleanup Agreement, State Assistance Contract or Order Number, and the County tax map number or the Liber and Page or computerized system identification number.

Parties shall address correspondence to:

Site Number: C915263

Office of General Counsel

NYSDEC 625 Broadway

Albany New York 12233-5500

With a copy to:

Site Control Section

Division of Environmental Remediation

NYSDEC 625 Broadway Albany, NY 12233

All notices and correspondence shall be delivered by hand, by registered mail or by Certified mail

and return receipt requested. The Parties may provide for other means of receiving and communicating notices and responses to requests for approval.

- 7. <u>Recordation</u>. Grantor shall record this instrument, within thirty (30) days of execution of this instrument by the Commissioner or her/his authorized representative in the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.
- 8. <u>Amendment</u>. Any amendment to this Environmental Easement may only be executed by the Commissioner of the New York State Department of Environmental Conservation or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.
- 9. <u>Extinguishment.</u> This Environmental Easement may be extinguished only by a release by the Commissioner of the New York State Department of Environmental Conservation, or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.
- 10. <u>Joint Obligation</u>. If there are two or more parties identified as Grantor herein, the obligations imposed by this instrument upon them shall be joint and several.

Remainder of Page Intentionally Left Blank

IN WITNESS WHEREOF, Grantor has caused this instrument to be signed in its name.

132 Dingens St, LLC:	
By:	
Print Name: James Pane	pinto
Time ivame.	115116
Title: Manager	Date: 4/5/16

Grantor's Acknowledgment

STATE OF NEW YORK)
) ss
COUNTY OF)

On the 5th day of April, in the year 2016, before me, the undersigned, personally appeared James Panepinto, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their capacity(ies), and that by his/her/their signature(s) on the instrument, the individual(s), or the person upon behalf of which the individual(s) acted, executed the instrument.

Notary Public - State of New York

Allison K. Laurienzo
Notary Public State of New York
Qualified in Erie County
My Commission Expires 10 30 116

County: Erie Site No: C915263 Brownfield Cleanup Agreement Index: C915263-05-12 as amended August 14, 2012

THIS ENVIRONMENTAL EASEMENT IS HEREBY ACCEPTED BY THE PEOPLE OF THE STATE OF NEW YORK, Acting By and Through the Department of Environmental Conservation as Designee of the Commissioner, By: Schick, Director Robert W Division of Environmental Remediation **Grantee's Acknowledgment** STATE OF NEW YORK) ss: COUNTY OF ALBANY _, in the year 2016, before me, the undersigned, On the day of why, in the year 2016, before me, the undersigned, personally appeared Robert W. Schick, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/ executed the same in his/her/ capacity as Designee of the/Commissioner of the State of New York Department of Environmental Conservation, and that by his/her/ signature on the instrument, the individual, or the person upon behalf of which the individual/acted, executed the instrument. or New York ublic David J. Chiusano Notary Public, State of New York No. 01CH5032146 Qualified in Schenectady County Commission Expires August 22, 201

County: Erie Site No: C915263 Brownfield Cleanup Agreement Index: C915263-05-12 as amended August 14, 2012

SCHEDULE "A" PROPERTY DESCRIPTION

ALL THAT TRACT OR PARCEL OF LAND situate in the City of Buffalo, County of Erie and State of New York, being part of Lots Nos. 150, 151 and 152, Township 10, Range 7 of the Buffalo Creek Reservation and further bounded and described as follows:

Beginning at a point on the north line of Dingens Street distant 1,200.00 feet east from the point of intersection of the north line of Dingens Street with the east line of Bailey Avenue as now laid out, said point being the southeast corner of lands conveyed by Deed recorded in Liber 3889 of Deeds at page 293;

Thence east along the north line of Dingens Street a distance of 237.82 feet to the most southerly southwest corner of lands conveyed to the City of Buffalo Urban Renewal Agency by Deed recorded in Liber 10094 of Deeds at page 192;

Thence northeasterly at a clockwise angle of 133° 20' 16" and along the lands conveyed by said last mentioned Deed a distance of 1075.0 feet to a point;

Thence northwest at right angles to the last described line and along the lands conveyed by last mentioned Deed a distance of 300.0 feet to a point;

Thence southwesterly at a clockwise angle of 107° 10' 48" and along the lands conveyed by said mentioned Deed a distance of 369.66 feet record and 369.35 feet measured to a point;

Thence continuing southwesterly at a clockwise angle of 170° 12' 08" and along the lands conveyed by said last mentioned Deed a distance of 316.44 feet to a point;

Thence northwesterly at right angles to the last described line a distance of 72.94 feet to a point;

Thence southwesterly at a clockwise angle of 107° 47' 08" and along the lands conveyed by said last mentioned Deed a distance of 264.57 feet to a point;

Thence continuing southwesterly at a clockwise angle of 184° 34' 01" and along the lands conveyed by said last mentioned Deed a distance of 423.71 feet to a point on the westerly line of lands conveyed to Pfeil Cooperage Inc. by Deed recorded in Liber 2343 of Deeds at page 333, said point being 231.0 feet southerly of the northwest corner of lands conveyed by said last mentioned Deed;

Thence southeasterly and along the westerly line of lands conveyed by said last mentioned Deed and at a clockwise angle of 86° 28' 04" a distance of 106.03 feet to lands described in Parcel 3 in a Deed to the Erie Railroad Company by Deed recorded in Liber 2053 of Deeds at page 223;

Thence southwesterly at a clockwise angle of 282° 33' 35" and along the Erie Railroad Company's lands a distance of 232.49 feet to a point;

Thence southerly at a clockwise angle of 97° 54' 00" a distance of 20.19 feet to its intersection with a line drawn parallel with and distant 20 feet southerly measured at right angles from a course marked "Line C" on a map accompanying aforesaid Deed to Erie Railroad Company and recorded

in Liber 2053 of Deeds at page 223;

Thence northeasterly at a clockwise angle of 82° 06' 00" a distance of 700.78 feet to the northeast corner of lands conveyed by Deed recorded in Liber 3889 of Deeds at page 293, said point also being in the north line of lands conveyed by Deed recorded in Liber 10883 of Deeds at page 8504;

Thence southerly at a clockwise angle of 277° 01' 50" and along the easterly line of said Liber 3889 of Deeds at page 293 a distance of 386.65 feet record and 386.67 feet measured to a point on the north line of Dingens Street at the point of beginning.

Containing 13.20 acres more or less.

TP-584 (4/13)

New York State Department of Taxation and Finance

Schedule B., Part II \$

Combined Real Estate Transfer Tax Return, Credit Line Mortgage Certificate, and Certification of Exemption from the Payment of Estimated Personal Income Tax

Recording office time stamp

See Form TP-584-I, Instructions for Form TP-584, before completing this form. Print or type. Schedule A — Information relating to conveyance Name (if individual, last, first, middle initial) (check if more than one grantor) Grantor/Transferor 132 Dingens St. LLC ☐ Individual Social security number Mailing address ☐ Corporation 132 Dingens Street Partnership ZIP code Federal EIN State City ☐ Estate/Trust 14206 35-2438055 NY Buffalo ★ Single member LLC Single member EIN or SSN Single member's name if grantor is a single member LLC (see instructions) ☐ Other 051-60-2697 Social security number Name (if individual, last, first, middle initial) (check if more than one grantee) Grantee/Transferee The People of the State of NY, acting through their Commissioner of the NYSDEC ☐ Individual Social security number Mailing address ☐ Corporation 625 Broadway ☐ Partnership Federal EIN ZIP code City State ☐ Estate/Trust 14-6013200 12233 Albany ☐ Single member LLC Single member EIN or SSN Single member's name if grantee is a single member LLC (see instructions) X Other Location and description of property conveyed SWIS code (six digits) Street address City, town, or village County Tax map designation -Section, block & lot (include dots and dashes) Buffalo Erie 112.19-1-14.11 132 Dingens Street 140200 Type of property conveyed (check applicable box) Percentage of real property Date of conveyance 1 __ One- to three-family house 5 ⊠ Commercial/Industrial conveyed which is residential Apartment building Residential cooperative 0 % real property_ Residential condominium 7 Office building (see instructions) 4 Vacant land Condition of conveyance (check all that apply) f.

Conveyance which consists of a I. Doption assignment or surrender mere change of identity or form of a.

Conveyance of fee interest ownership or organization (attach m. Leasehold assignment or surrender Form TP-584.1, Schedule F) b. Acquisition of a controlling interest (state g. \square Conveyance for which credit for tax n. Leasehold grant percentage acquired _____ previously paid will be claimed (attach Form TP-584.1, Schedule G) o.

Conveyance of an easement c.
 ☐ Transfer of a controlling interest (state) h. Conveyance of cooperative apartment(s) percentage transferred ______%) p. Z Conveyance for which exemption from transfer tax claimed (complete d.
 ☐ Conveyance to cooperative housing i. Syndication Schedule B, Part III) corporation j.

Conveyance of air rights or g. Conveyance of property partly within and partly outside the state development rights e.

Conveyance pursuant to or in lieu of r.

Conveyance pursuant to divorce or separation foreclosure or enforcement of security k.
Contract assignment s. X Other (describe) Env. Easement interest (attach Form TP-584.1, Schedule E) Transaction number Date received For recording officer's use Amount received Schedule B., Part I \$

S	chedule B — Real estate transfer tax return (Tax Law, Article 31)			
	art I – Computation of tax due 1 Enter amount of consideration for the conveyance (if you are claiming a total exemption from tax, check the			
	exemption claimed box, enter consideration and proceed to Part III)	1.		
	2 Continuing lien deduction (see instructions if property is taken subject to mortgage or lien)	2.		
	3 Taxable consideration (subtract line 2 from line 1)	3.		
	4 Tax: \$2 for each \$500, or fractional part thereof, of consideration on line 3	4.		
	5 Amount of credit claimed for tax previously paid (see instructions and attach Form TP-584.1, Schedule G)	5. 6.		-
	6 Total tax due* (subtract line 5 from line 4)	0.]		
Pi	art II - Computation of additional tax due on the conveyance of residential real property for \$1 million or more			
	1 Enter amount of consideration for conveyance (from Part I, line 1)	1.		
	2 Taxable consideration (multiply line 1 by the percentage of the premises which is residential real property, as shown in Schedule A)	2.		
į	3 Total additional transfer tax due* (multiply line 2 by 1% (.01))	3.		
Pá	art III – Explanation of exemption claimed on Part I, line 1 (check any boxes that apply)			
	ne conveyance of real property is exempt from the real estate transfer tax for the following reason:			
a.	Conveyance is to the United Nations, the United States of America, the state of New York, or any of their instru	mentalities,		
	agencies, or political subdivisions (or any public corporation, including a public corporation created pursuant to compact with another state or Canada)	agreement	t or a	\times
b.	Conveyance is to secure a debt or other obligation		b	
c.	Conveyance is without additional consideration to confirm, correct, modify, or supplement a prior conveyance.		с	
d.	Conveyance of real property is without consideration and not in connection with a sale, including conveyances realty as bona fide gifts	conveying	d	
e.	Conveyance is given in connection with a tax sale		е	
_		ficial		
f.	Conveyance is a mere change of identity or form of ownership or organization where there is no change in bene ownership. (This exemption cannot be claimed for a conveyance to a cooperative housing corporation of real p comprising the cooperative dwelling or dwellings.) Attach Form TP-584.1, Schedule F	roperty	f	
g.	Conveyance consists of deed of partition		g	
h.	Conveyance is given pursuant to the federal Bankruptcy Act		h	
i.	Conveyance consists of the execution of a contract to sell real property, without the use or occupancy of such the granting of an option to purchase real property, without the use or occupancy of such property	oroperty, or	i	
j.	Conveyance of an option or contract to purchase real property with the use or occupancy of such property who consideration is less than \$200,000 and such property was used solely by the grantor as the grantor's personal and consists of a one-, two-, or three-family house, an individual residential condominium unit, or the sale of stin a cooperative housing corporation in connection with the grant or transfer of a proprietary leasehold covering individual residential cooperative apartment	residence ock g an	j	
k.	Conveyance is not a conveyance within the meaning of Tax Law, Article 31, section 1401(e) (attach documents supporting such claim)		k	

*The total tax (from Part I, line 6 and Part II, line 3 above) is due within 15 days from the date conveyance. Please make check(s) payable to the county clerk where the recording is to take place. If the recording is to take place in the New York City boroughs of Manhattan, Bronx, Brooklyn, or Queens, make check(s) payable to the **NYC Department of Finance**. If a recording is not required, send this return and your check(s) made payable to the **NYS Department of Taxation and Finance**, directly to the NYS Tax Department, RETT Return Processing, PO Box 5045, Albany NY 12205-5045.

Sched	dule C — Credit Line Mortgage Ce	ertificate (Tax Law, Ar	ticle 11)	
	ete the following only if the interest be ertify that: (check the appropriate box)	eing transferred is a fe	e simple interest.	
1. 🗙	The real property being sold or transfer	red is not subject to an	outstanding credit line mortgage.	
2.	is claimed for the following reason: The transfer of real property is a tra	nsfer of a fee simple inte	tanding credit line mortgage. However, an erest to a person or persons who held a feat or otherwise) immediately before the tran	e simple interest in the
	to one or more of the original obligo	ors or (B) to a person or or the transferor or such r	lated by blood, marriage or adoption to the entity where 50% or more of the beneficial elated person or persons (as in the case of the transferor).	interest in such real
	The transfer of real property is a tra	nsfer to a trustee in ban	kruptcy, a receiver, assignee, or other office	er of a court.
	The maximum principal amount sec or transferred is not principally imp	cured by the credit line many roved nor will it be impro	nortgage is \$3,000,000 or more, and the re oved by a one- to six-family owner-occupie	al property being sold ed residence or dwelling.
		o or more credit line mor	mum principal amount secured is \$3,000,0 tgages may be aggregated under certain o gation requirements.	
	Other (attach detailed explanation).			
3.	following reason:		tstanding credit line mortgage. However, r	
	A check has been drawn payable for satisfaction of such mortgage will be		edit line mortgagee or his agent for the bala is available.	ance due, and a
	by the mortgage is	entification of the mortga No exemption vable to county clerk who	age). The maximum principal amount of de n from tax is claimed and the tax of ere deed will be recorded or, if the recordin	
Signat	cure (both the grantor(s) and grant	ee(s) must sign)		
attachn	dersigned certify that the above information in the design of the design	, true and complete, and	ules A, B, and C, including any return, certical authorize the person(s) submitting such for authorize the conveyance. Grantee signature Andrew Myres	orm on their behalf to
1/11/1	Grantor signature	Title	Grantee signature	Title

Reminder: Did you complete all of the required information in Schedules A, B, and C? Are you required to complete Schedule D? If you checked *e*, *f*, or *g* in Schedule A, did you complete Form TP-584.1? Have you attached your check(s) made payable to the county clerk where recording will take place or, if the recording is in the New York City boroughs of Manhattan, Bronx, Brooklyn, or Queens, to the **NYC Department of Finance**? If no recording is required, send your check(s), made payable to the **Department of Taxation and Finance**, directly to the NYS Tax Department, RETT Return Processing, PO Box 5045, Albany NY 12205-5045.

Schedule D - Certification of exemption from the payment of estimated personal income tax (Tax Law, Article 22, section 663)

Complete the following only if a fee simple interest or a cooperative unit is being transferred by an individual or estate or trust.

If the property is being conveyed by a referee pursuant to a foreclosure proceeding, proceed to Part II, and check the second box under Exemptions for nonresident transferor(s)/seller(s) and sign at bottom.

Part I - New York State residents

If you are a New York State resident transferor(s)/seller(s) listed in Schedule A of Form TP-584 (or an attachment to Form TP-584), you must sign the certification below. If one or more transferors/sellers of the real property or cooperative unit is a resident of New York State, each resident transferor/seller must sign in the space provided. If more space is needed, please photocopy this Schedule D and submit as many schedules as necessary to accommodate all resident transferors/sellers.

Certification of resident transferor(s)/seller(s)

This is to certify that at the time of the sale or transfer of the real property or cooperative unit, the transferor(s)/seller(s) as signed below was a resident of New York State, and therefore is not required to pay estimated personal income tax under Tax Law, section 663(a) upon the sale or transfer of this real property or cooperative unit.

Signature	Print full name	Date
Signature	Print full name	Date
Signature	Print full name	Date
Signature	Print full name	Date

Note: A resident of New York State may still be required to pay estimated tax under Tax Law, section 685(c), but not as a condition of recording a deed.

Part II - Nonresidents of New York State

If you are a nonresident of New York State listed as a transferor/seller in Schedule A of Form TP-584 (or an attachment to Form TP-584) but are not required to pay estimated personal income tax because one of the exemptions below applies under Tax Law, section 663(c), check the box of the appropriate exemption below. If any one of the exemptions below applies to the transferor(s)/seller(s), that transferor(s)/seller(s) is not required to pay estimated personal income tax to New York State under Tax Law, section 663. **Each** nonresident transferor/seller who qualifies under one of the exemptions below must sign in the space provided. If more space is needed, please photocopy this Schedule D and submit as many schedules as necessary to accommodate all nonresident transferors/sellers.

If none of these exemption statements apply, you must complete Form IT-2663, Nonresident Real Property Estimated Income Tax Payment Form, or Form IT-2664, Nonresident Cooperative Unit Estimated Income Tax Payment Form. For more information, see Payment of estimated personal income tax, on page 1 of Form TP-584-I.

Exemption for nonresident transferor(s)/seller(s)

This is to certify that at the time of the sale or transfer of the real property or cooperative unit, the transferor(s)/seller(s) (grantor) of this real property or cooperative unit was a nonresident of New York State, but is not required to pay estimated personal income tax under Tax Law, section 663 due to one of the following exemptions:

n 66	3 due to one of the following exemptions:
	The real property or cooperative unit being sold or transferred qualifies in total as the transferor's/seller's principal residence (within the meaning of Internal Revenue Code, section 121) from to (see instructions).
	The transferor/seller is a mortgagor conveying the mortgaged property to a mortgagee in foreclosure, or in lieu of foreclosure with no additional consideration.
	The transferor or transferee is an agency or authority of the United States of America, an agency or authority of the state of New York, the Federal National Mortgage Association, the Federal Home Loan Mortgage Corporation, the Government National Mortgage Association, or a private mortgage insurance company.

Signature	Print full name	Date
Signature	Print full name	Date
Signature	Print full name	Date
Signature	Print full name	Date

APPENDIX E DAILY ACTIVITIES SUMMARY

APPENDIX E

132 DINGENS ST PROPERTY - BCP SITE REMEDIATION LOG OF DAILY ACTIVITIES

ACTIVITY	DESCRIPTION
12-May-2015	Sample Pinto's Yard backfill soil. Samples: CTS-1C, CTS-2C, CTS-3C, CTS-4G, CTS-5G, CTS-6G, CTS-7G, CTS-8G, CTS-9G, CTS-10G, CTS-11G, CTS-12G. Fill (1) Gradation Bag and leave with Pinto.
28-Jul-2015	Excavate areas TS-4 and GS-30. Cover excavated material with plastic.
29-Jul-2015	Excavate areas TS-9 and MW-7. Cover excavated material with plastic.
30-Jul-2015	Meeting with NYSDEC at site to discuss excavating and grading. Pump out water from MW-7. Sampled MW-7, TS-9, GS-30 and TS-4. Samples: CSW-1, CSW-2, CSW-3, CSW-4, CSW-5, CSW-6, CSW-7, CSW-8, CSW-9, CSW-10, CSW-11, CSW-12, CSW-13, CSW-14, CSW-15, CSW-16, CSW-17, CSW-18, CSB-1, CSB-2, CSB-3, CSB-4, LFS-2, LFS-3, LFS-4, LFS-5, LFS-6, LFS-7, LFS-8.
19-Aug-2015	Excavate TS-13 and GS-21. Cover excavated material with plastic.
20-Aug-2015	Excavate TS-13 (2' deeper) and TS-4. Empty stored 55 gal drill cuttings drums into excavated material from TS-13. Cover excavated material with plastic.
21-Aug-2015	Excavate GS-30 west wall and MW-2. Pump water out of GS-30 hole. Sampled GS-21, TS-13, MW-2, TS-4, GS-30. Samples: CSB-5, CSB-6, CSB-7, CSW-19, CSW-20, CSW-21, CSW-22, CSW-23, CSW-24, CSW-25, CSW-26, CSW-27, CSW-28, CSW-29, CSW-30, CSW-31, CSW-18-2, CSW-14-2, CSB-4-2, LFS-9, LFS-10, LFS-11, LFS-12, LFS-13, LFS-14, LFS-15, LFS-16.
24-Aug-2015	Water is pumped out of TS-9 and MW-7 holes. Meet with Pinto about job schedule.
27-Aug-2015	Sampled GS-20 and TS-5. Samples: CSW-32, CSW-33, CSW-34, CSW-35, CSW-36, CSW-37, CSW-38, CSW-39, CSW-40, CSW-41, CSW-42, CSB-8, CSB-9, LFS-17, LFS-18, LFS-19, LFS-20.
28-Aug-2015	(3) Soil loads disposed. Excavate TS-4 (2' west wall) and GS-30 (bottom and south wall) and MW-2 (bottom) and TS-13 (bottom and south and west walls). Mix cement with GS-30 excavation pile. Sample TS-4, GS-30, MW-2 and TS-13. Samples: CSW-18-3, CSW-12-2, CSB-3-2, CSB-5-2, CSB-6-2, CSW-20-2, CSW-21-2, CSW-23-2, LFS-17, LFS-18, LFS-16-T, LFS-5-T, LFS-19.
1-Sep-2015	Mixed cement into GS-30 and MW-7 excavation piles. Covered mixed piles with plastic. Sampled MW-7 and GS-30. Samples: LFS-5-T, LFS-6-T, LFS-24-T, LFS-1-T, LFS-2-T.
2-Sep-2015	Mixed cement into TS-9 excavated soil. Sample TS-9. Samples: LFS-3-T, LFS-4-T.
3-Sep-2015	(7?) soil loads disposed. Soil disposed from GS-21, MW-2 and TS-13. Install fences around excavations TS-9, MW-7, MW-2 and TS-13.
8-Sep-2015	Pinto mixes cement into GS-20 excavation pile. Backfills GS-21.
9-Sep-2015	(11?) soil loads disposed. Excavated MW-2 (2' deeper) TS-13 (south wall and west wall). Sampled TS-13, MW-2 and GS-20. Samples: CSW-21-3, CSW-23-3, CSB-5-3, LFS-18-7, LFS-25, LFS-26.
10-Sep-2015	TS-5 and GS-20 holes are lined with geotextile and backfilled. Graveled and graded south border from GS-10 area to GS-22 area.
11-Sep-2015	Excavated TS-15 area. Mixed excavated material from TS-15 with cement. Continue backfilling GS-20. Backfilled TS-4 after lining hole with geotextile. Added gravel over GS-20.
14-Sep-2015	Sampled GS-19, TS-15 and GS-17. Samples: CSW-44, CSW-45, CSW-46, CSW-47, CSW-48, CSW-49, CSW-50, CSW-51, CSW-52, CSW-53, CSW-54, CSW-55, CSW-56, CSW-57, CSW-58, CSW-59, CSB-10, CSB-11, CSB-12, ERB-4, LFS-27, LFS-28, LFS-29, LFS-30.
17-Sep-2015	(2?) soil loads disposed. Excavate MW-2 (2' deeper) TS-13 (south wall) GS-30 (>2' deeper). Sample MW-2, TS-13 and GS-30. Samples: CSB-5-4, CSB-3-3, CSW-21-4, LFS-31, LFS-32, LFS-33-T.
22-Sep-2015	IEG consults for an hour with Pinto about further excavations for GS-17 and GS-19.
23-Sep-2015	(7?) soil loads disposed. Excavates GS-19 (south, east and west walls). GS-17 excavates (2' deeper). Digs test pits every 30' going east from GS-17. Cover excavation piles with plastic.

132 DINGENS ST PROPERTY - BCP SITE REMEDIATION LOG OF DAILY ACTIVITIES

ACTIVITY	DESCRIPTION
24-Sep-2015	(?) soil loads disposed. Mark cell tower expansion excavation. Sample GS-17, GS-19 and TS-15. CSB13, CSB-14, CSB-15, CSB-16, CSW-50-2, CSW-53-2, CSW-52-2, CSW-51-2A, CSW-51-2B, CSW-60, LFS-34, LFS-35, LFS-36, LFS-37, LFS-38, LFS-39, LFS-40, LFS-41, LFS-42.
28-Sep-2015	Take samples from Cell Tower Excavation soil. Samples: LFS-43, LFS-44 and LFS-45.
9-Oct-2015	MW-2 - excavate > 3' deeper. TS-13 - excavate south wall. Take samples of south wall of TS-13, bottom of MW-2 and excavated pile from both digs. Samples: CSW-21-5, CSB-5-5 and LFS-46.
14-Oct-2015	Take samples from GS-17 and GS-19. Take surface soil samples in (2) lawn areas near the entrance to the site. Samples: TS-18, TS-19, TS-20, TS-21, LFS-47, LFS-48, CSB-12-2, CSB-13-2, CSB-14-2, CSB-17, CSB-15-2, CSW-51-3B, CSW-55-2, CSW-61, CSW-62, CSW-63, CSW-64, CSW-65, CSW-66, CSW-67, CSW-68, CSW-69 and CSW-70.
15-Oct-2015	Take sample of GS-19 excavation pile. Sample: LFS-41-T.
26-Oct-2015	Pinto is disposing of excavated soil piles LFS-41T and LFS 47/48. GS-19 - excavate south wall > 5'. GS-17 - excavate east most section > 1' deeper. Samples: CSW-51-4B, CSW-70-2 and CSB-15-3.
27-Oct-2015	Photo inspect entire site. Pinto is finishing the surface adjacent to the asphalt on the east end and the north and south sides of the west section. Black fabric is put down and crushed stone is graded over it.
2-Nov-2015	Pinto is disposing of excavated soil pile LFS 47. GS-19 - is excavated 15' south at the southeast corner. Pinto grades area between Cell Tower and GS-19. Puts the excess material with LFS-47 to be hauled away. Take sample of backfill stone. Samples: CSW-70-3 and BFS-1.
3-Nov-2015	Pinto is spreading black fabric and gravel on the northeast portion of the site.
11-Nov-2015	Photo inspect entire site.
13-Nov-2015	Pinto is finishing areas GS-17 and GS-19 with fabric and gravel.
18-Nov-2015	Pinto is bringing in soil and grading it over the fabric on the east end of the site.
25-Nov-2015	Pinto is grading stone over fabric on the east end of the site. The east end had been previously brought up to grade with soil. Asphalt is being put down on the south side of the west end of the site.
16-Dec-2015	Pinto is adding topsoil to north border around Cell Tower west leg. Bus Parking west extension is fully paved. East end has been graded and graveled. North section between TS-4 and GS-30 has been graded and graveled. A paved UPS access drivedway has been added through the north border near GS-30.

APPENDIX F SOIL/WASTE DISPOSAL DOCUMENTATION

APPENDIX F-1 WASTE HAULER PERMITS & CERTIFICATES

Department of NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION **DIVISION OF MATERIALS MANAGEMENT**

PART 364 WASTE TRANSPORTER PERMIT NO. 9A-035

Pursuant to Article 27 ,Titles 3 and 15 of the Environmental Conservation Law and 6 NYCRR 364

PERMIT ISSUED TO:

CARMEN M. PARISO, INC. 3649 RIVER ROAD TONAWANDA, NY 14150

GERALD BEDNASZ

TELEPHONE NO:

COUNTY:

CONTACT NAME:

ERIE (716)875-6168

PERMIT TYPE:

□ NEW

☐ RENEWAL

MODIFICATION

EFFECTIVE DATE: EXPIRATION DATE: 06/04/2016 03/31/2017

US EPA ID NUMBER:

AUTHORIZED WASTE TYPES BY DESTINATION FACILITY:

The Permittee is Authorized to Transport the Following Waste Type(s) to the Destination Facility listed:

Destination Facility	Location	Waste Type(s) Note
Allied Waste Niagara Falls Landfill	Niagara Falls , NY	Non-Hazardous Industrial/Commercial Asbestos Petroleum Contaminated Soil
Chaffee Landfill	Sardinia , NY	Non-Hazardous Industrial/Commercial Asbestos Petroleum Contaminated Soil Waste Tires Grease Trap Waste
Chautauqua Landfili	Ellery , NY	Non-Hazardous Industrial/Commercial Asbestos Petroleum Contaminated Soil Waste Tires
High Acres Western Expansion Landfill	Fairport , NY	Non-Hazardous Industrial/Commercial Asbestos Petroleum Contaminated Soil
Hyland Landfill	Angelica , NY	Non-Hazardous Industrial/Commercial Petroleum Contaminated Soil Sludge from Sewage or Water Supply Treatment Plant
Mill Seat SLF	Riga , NY	Non-Hazardous Industrial/Commercial Asbestos

^{***} AUTHORIZED WASTE TYPES BY DESTINATION FACILITY LISTING (continued on next page) ***

NOTE: By acceptance of this permit, the permittee agrees that the permit is contingent upon strict compliance with the Environmental Conservation Law, all applicable regulations, and the General Conditions printed on the back of this page.

ADDRESS:

New York State Department of Environmental Conservation Division of Materials Management - Waste Transporter Program

625 Broadway, 9th Floor Albany, NY 12233-7251

AUTHORIZED SIGNATURE

Date: 06 193 1/6

WASTE TRANSPORTER PERMIT

GENERAL CONDITIONS

The permittee must:

- 1. Carry a copy of this waste transporter permit in each vehicle to transport waste. Failure to produce a copy of the permit upon request is a violation of the permit.
- 2. Display the full name of the transporter on both sides of each vehicle and display the waste transporter permit number on both sides and rear of each vehicle containing waste. The displayed name and permit number must be in characters at least three inches high and of a color that contrasts sharply with the background.
- 3. Transport waste only in authorized vehicles. An authorized vehicle is one that is listed on this permit.
- 4. Submit to the Department a modification application for additions/deletions to the authorized fleet of vehicles. The permittee must wait for a modified permit before operating the vehicles identified in the modification application.
- 5. Submit to the Department a modification application to add a new waste category or a new destination facility, or to change the current waste or destination facility category. The permittee must wait for a modified permit before transporting new waste types or transporting to new destination facilities.
- 6. Submit to the Department a modification application for change of address or company name.
- 7. Comply with requirements for placarding and packaging as set forth in New York State Transportation Law as well as any applicable federal rules and regulations.
- 8. Contain all wastes in the vehicle so there is no leaking, blowing, or other discharge of waste.
- 9. Use vehicles to transport only materials not intended for human or animal consumption unless the vehicle is properly cleaned.
- 10. Comply with requirements for manifesting hazardous waste, regulated medical waste, or low-level radioactive waste as set forth in the New York State Environmental Conservation Law and the implementing regulations. Transporters who provide a pre-printed manifest to a generator/shipper/ offeror of regulated waste shall ensure that all information is correct and clearly legible on all copies of the manifest.
- 11. Deliver waste only to transfer, storage, treatment and disposal facilities authorized to accept such waste.

 Permittee must demonstrate that facilities are so authorized if requested to do so.
- 12. Maintain liability insurance as required by New York State Environmental Conservation Law.
- 13. Maintain records of the amount of each waste type transported to each destination facility on a calendaryear basis. The transporter is obligated to provide a report of this information to the Department at the time of permit renewal, or to any law enforcement officer, if requested to do so.
- 14. Pay regulatory fees on an annual basis. Non-payment may be cause for revocation or suspension of permit.
- 15. This permit is not transferrable. A change of ownership will invalidate this permit.
- 16. This permit does not relieve the permittee from the obligation to obtain any other approvals or permits, or from complying with any other applicable federal, state, or local requirement.
- 17. Renewal applications must be submitted no less than 30 days prior to the expiration date of the permit to:

New York State Department of Environmental Conservation Division of Materials Management, Waste Transporter Program 625 Broadway, 9th Floor Albany, NY 12233-7251

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION **DIVISION OF MATERIALS MANAGEMENT**

PART 364 WASTE TRANSPORTER PERMIT NO. 9A-035

Pursuant to Article 27, Titles 3 and 15 of the Environmental Conservation Law and 6 NYCRR 364

PERMIT ISSUED TO:

CARMEN M. PARISO, INC. 3649 RIVER ROAD TONAWANDA, NY 14150

CONTACT NAME:

GERALD BEDNASZ

COUNTY:

TELEPHONE NO:

ERIE (716)875-6168 **EFFECTIVE DATE:**

PERMIT TYPE:

□ NEW

☐ RENEWAL

MODIFICATION

EXPIRATION DATE:

06/04/2016 03/31/2017

US EPA ID NUMBER:

AUTHORIZED WASTE TYPES BY DESTINATION FACILITY: (Continued)

The Permittee is Authorized to Transport the Following Waste Type(s) to the Destination Facility listed :

Destination Facility	Location	Waste Type(s)	ote
Mill Seat SLF	Riga , NY	Petroleum Contaminated Soil	
Modern Landfill	Model City , NY	Non-Hazardous Industrial/Commercial Asbestos Petroleum Contaminated Soil Waste Tires	
North Youngmann Commerce Center	Tonawanda , NY	Non-Hazardous Industrial/Commercial Petroleum Contaminated Soil	
NRG Huntley	Tonawanda , NY	Non-Hazardous Industrial/Commercial	-
Ontario County Sanitary Landfill	Stanley , NY	Non-Hazardous Industrial/Commercial Asbestos Petroleum Contaminated Soil	
TONAWANDA (T) LANDFILL	TONAWANDA, NY	Non-Hazardous Industrial/Commercial Petroleum Contaminated Soil	
TONAWANDA BIOREMEDIATION FACILITY	TONAWANDA, NY	Petroleum Contaminated Soil	,

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION **DIVISION OF MATERIALS MANAGEMENT**

PART 364 WASTE TRANSPORTER PERMIT NO. 9A-035

경기를 보고 그렇게 그렇게 되었다.	Pursuant to Article 27 , Titles 3 and 15 of the I	Environmental Conservation Law and 6 NYCF	R 364	
PERMIT ISSUED	го:	PERMIT TYPE:		
CARMEN M. PAF 3649 RIVER ROA TONAWANDA, N	\D	□ NEW □ RENEWAL ■ MODIFICATION		
CONTACT NAME: COUNTY: TELEPHONE NO:	GERALD BEDNASZ ERIE (716)875-6168	EFFECTIVE DATE: EXPIRATION DATE: US EPA ID NUMBER:	06/04/2016 03/31/2017	
 A service of the control of the contro	.ES: rized to Operate the Following Vehicles enclosed in <>'s are authorized to haul Re	Section Building State Section (Section 2) Sec	NO.	
8 (Eight) Permitted Veh	장시 경기 그림의 회사를 하기 때문에 나는 이 사고를 하는 것을 때 동생을 가지하는 점점하게 된다.			
NY 11820JX NY 15980PC NY 28362MG NY 39239MC NY 39493JZ NY 53400PC NY AV97316 NY AW94210 End of List				

APPENDIX F-2 DISPOSAL FACILITY APPROVAL LETTERS

Subj: approval

Date: 8/27/2015 11:13:14 A.M. Eastern Daylight Time

From: <u>brianh@modern-corp.com</u>

To: louiscannata@gmail.com, jpinto@pintocs.com, iegpllc@aol.com, gcatlin@pintoheavyconst.com

Gentlemen

We secured the first approval and I have spoken to Gary already and Pariso, plan on removing soil tomorrow AM.

Brian R. Hanaka

Account Executive, LEED WasteCap AP

Modern Disposal Services

PO Box 209

Model City, New York 14107

800-662-0012 ext 269

Direct: 716-405-1269

Cell: 716.417.9086, Fax: 716-754-8964

brianh@modern-corp.com

Website; www.moderncorporation.com Please contact customer service at cs@modern-corp.com or call 800-330-7107 for all your scheduling needs.

*Any and all quotations presented via email unless otherwise noted are acceptable for a period of 60 days.

APPENDIX F-3 TABULATED LOAD SUMMARIES

TABLE F-3

SOIL/FILL DAILY DISPOSAL DETAIL - MANIFESTS/QUANTITIES

9/16/2015

1002486430

PARISO

301	L/I ILL DAIL	i bisi o	JAL DETAIL	- MANIES		
Erie Coun	ty Central-NY:	CLIENT#	3700-0100			DERN Corporation
Date	Scale Ticket	Route	Workorder#	Destination	Material	Weight (est)
8/28/2015	1002481047	BROKER	0001208088	ML	3700-0100	16.20
8/28/2015	1002481096	BROKER	0001208090	ML	3700-0100	13.68
8/28/2015	1002481099	BROKER	0001208091	ML	3700-0100	16.97
9/3/2015	1002482688	BROKER	0001213841	ML	3700-0100	16.09
9/3/2015	1002482704	PARISO	0001213842	ML	3700-0100	23.14
9/3/2015	1002482790	BROKER	0001213844	ML	3700-0100	19.26
9/3/2015	1002482823	PARISO	0001213845	ML	3700-0100	22.56
9/3/2015	1002482883	BROKER	0001213846	ML	3700-0100	20.25
9/3/2015	1002483006	BROKER	0001213847	ML	3700-0100	22.95
9/4/2015	1002483115	BROKER	0001214321	ML	3700-0100	21.24
9/4/2015	1002483136	BROKER	0001214322	ML	3700-0100	17.31
9/4/2015	1002483164	BROKER	0001214323	ML	3700-0100	21.41
9/4/2015	1002483225	BROKER	0001214324	ML	3700-0100	17.96
9/4/2015	1002483254	BROKER	0001214325	ML	3700-0100	8.89
9/9/2015	1002484003	BROKER	0001213843	ML	3700-0100	16.75
9/9/2015	1002484042	BROKER	0001216942	ML	3700-0100	19.07
9/9/2015	1002484048	BROKER	0001216943	ML	3700-0100	17.72
9/9/2015	1002484074	BROKER	0001216944	ML	3700-0100	28.73
9/9/2015	1002484104	BROKER	0001216945	ML	3700-0100	29.64
9/9/2015	1002484137	BROKER	0001216946	ML	3700-0100	30.15
9/9/2015	1002484146	BROKER	0001216947	ML	3700-0100	18.69
9/9/2015	1002484169	BROKER	0001216948	ML	3700-0100	19.52
9/9/2015	1002484186	BROKER	0001216949	ML	3700-0100	24.68
9/9/2015	1002484230	BROKER	0001216950	ML	3700-0100	22.36
9/9/2015	1002484251	BROKER	0001216951	ML	3700-0100	22.25
9/9/2015	1002484289	BROKER	0001216952	ML	3700-0100	29.02
9/15/2015	1002485882	BROKER	0001218639	ML	3700-0100	19.07
9/15/2015	1002485893	PARISO	0001218640	ML	3700-0100	23.97
9/15/2015	1002485909	BROKER	0001218641	ML	3700-0100	20.54
9/15/2015	1002485961	BROKER	0001218642	ML	3700-0100	20.62
9/15/2015	1002485991	BROKER	0001218643	ML	3700-0100	19.29
9/15/2015	1002486015	PARISO	0001218644	ML	3700-0100	22.88
9/15/2015	1002486022	BROKER	0001218645	ML	3700-0100	23.07
9/15/2015	1002486044	BROKER	0001218646	ML	3700-0100	20.40
9/15/2015	1002486077	BROKER	0001218647	ML	3700-0100	21.87
9/15/2015	1002486111	BROKER	0001218648	ML	3700-0100	21.11
9/15/2015	1002486135	PARISO	0001218649	ML	3700-0100	23.16
9/15/2015	1002486158	BROKER	0001218650	ML	3700-0100	20.32
9/15/2015	1002486201	BROKER	0001218651	ML	3700-0100	20.36
9/15/2015	1002486216	BROKER	0001218652	ML	3700-0100	12.41
9/16/2015	1002486322	PARISO	0001221267	ML	3700-0100	22.51
9/16/2015	1002486327	BROKER	0001221268	ML	3700-0100	19.06

ML

3700-0100

0001221269

22.42

TABLE F-3

SOIL/FILL DAILY DISPOSAL DETAIL - MANIF

Workorder #

0001221270

0001221271

0001221814

Erie County Central-NY: CLIENT #3700-0100

Route

BROKER

PARISO

BROKER

Scale Ticket

1002486434

1002486575

1002486765

Date

9/16/2015

9/16/2015

9/17/2015

MANIFESTS/QUANTITIES				
	MMO	DFRN		
		Corporation		
Destination	Material	Weight (est)		
ML	3700-0100	17.38		
ML	3700-0100	14.77		
ML	3700-0100	23.35		
ML	3700-0100	20.44		
ML	3700-0100	21.68		
ML	3700-0100	20.79		
ML	3700-0100	20.08		
ML	3700-0100	20.19		
ML	3700-0100	19.96		
ML	3700-0100	20.45		
ML	3700-0100	22.07		
ML	3700-0100	17.73		
ML	3700-0100	22.21		
ML	3700-0100	21.34		
ML	3700-0100	23.46		
ML	3700-0100	24.88		
ML	3700-0100	25.30		
ML	3700-0100	22.27		
ML	3700-0100	16.81		
ML	3700-0100	21.45		
ML	3700-0100	23.75		
ML	3700-0100	29.50		
ML	3700-0100	37.70		
ML	3700-0100	40.24		
ML	3700-0100	42.41		
ML	3700-0100	37.96		
ML	3700-0100	36.34		
ML	3700-0100	36.12		
ML	3700-0100	39.40		
ML	3700-0100	23.96		
ML	3700-0100	24.29		
ML	3700-0100	22.31		
ML	3700-0100	21.70		
ML	3700-0100	26.82		
ML	3700-0100	18.04		
ML	3700-0100	20.64		

TABLE F-3 SOIL/FILL DAILY DISPOSAL DETAIL - MANIFESTS/QUANTITIES

Erie County Central-NY: C	LIENT #3700-0100
---------------------------	------------------

3011	L/FILL DAIL	DISPU	DAL DETAIL	- WANTES	13/QUANTIT	
Erie Count	ty Central-NY:	CLIENT#	3700-0100		MOD	Corporation
Date	Scale Ticket	Route	Workorder#	Destination	Material	Weight (est)
10/13/2015	1002494800	BROKER	0001236788	ML	3700-0100	23.12
10/13/2015	1002494801	BROKER	0001236789	ML	3700-0100	18.70
10/13/2015	1002494810	BROKER	0001236791	ML	3700-0100	19.29
10/13/2015	1002494819	BROKER	0001236792	ML	3700-0100	21.37
10/13/2015	1002494828	BROKER	0001236793	ML	3700-0100	21.21
10/14/2015	1002494944	BROKER	0001237477	ML	3700-0100	16.44
10/14/2015	1002494962	BROKER	0001237478	ML	3700-0100	20.15
10/14/2015	1002494982	BROKER	0001237479	ML	3700-0100	21.77
10/14/2015	1002495031	BROKER	0001237480	ML	3700-0100	26.95
10/14/2015	1002495042	BROKER	0001237481	ML	3700-0100	26.71
10/14/2015	1002495075	BROKER	0001237482	ML	3700-0100	28.11
10/14/2015	1002495122	BROKER	0001237483	ML	3700-0100	25.01
10/26/2015	1002498433	PARISO	0001243213	ML	3700-0100	19.05
10/26/2015	1002498449	BROKER	0001243214	ML	3700-0100	18.56
10/26/2015	1002498462	BROKER	0001243215	ML	3700-0100	17.74
10/26/2015	1002498474	BROKER	0001243216	ML	3700-0100	17.50
10/26/2015	1002498532	PARISO	0001243217	ML	3700-0100	23.73
10/26/2015	1002498557	BROKER	0001243218	ML	3700-0100	23.99
10/26/2015	1002498574	BROKER	0001243219	ML	3700-0100	20.96
10/26/2015	1002498577	BROKER	0001243220	ML	3700-0100	19.92
10/26/2015	1002498635	PARISO	0001243221	ML	3700-0100	21.19
10/26/2015	1002498665	BROKER	0001243222	ML	3700-0100	20.49
10/26/2015	1002498686	BROKER	0001243223	ML	3700-0100	19.05
10/26/2015	1002498699	BROKER	0001243224	ML	3700-0100	15.24
10/26/2015	1002498750	PARISO	0001243225	ML	3700-0100	22.36
10/26/2015	1002498766	BROKER	0001243226	ML	3700-0100	20.09
10/26/2015	1002498803	BROKER	0001243227	ML	3700-0100	19.42
10/26/2015	1002498809	BROKER	0001243228	ML	3700-0100	18.47
10/27/2015	1002498880	PARISO	0001244760	ML	3700-0100	19.75
10/27/2015	1002498904	BROKER	0001244761	ML	3700-0100	18.49
10/27/2015	1002498985	PARISO	0001244762	ML	3700-0100	20.29
10/27/2015	1002499019	BROKER	0001244763	ML	3700-0100	19.75
10/27/2015	1002499092	PARISO	0001244764	ML	3700-0100	20.72
11/2/2015	1002500510	BROKER	0001246922	ML	3700-0100	22.58
11/2/2015	1002500622	BROKER	0001246923	ML	3700-0100	23.52
11/2/2015	1002500745	BROKER	0001246924	ML	3700-0100	29.34
					3700-0100 Total	2,695.09

2,695.09

APPENDIX F-4 WASTE MANIFESTS/BILLS OF LADING (included on CD)

LARDON CONST. CORP. 108 LAKE AVENUE BLASDELL, NY 14219 716-822-4642

SOLD Pariso Trucking

	# 23	<u>2 </u>	
	Tandem		
	3 localsdist bush		
	3 loads disty brush		
			vi i
401			
	<u>X</u>		
	1 110		
Ĺ,	A my Haller		

31502

Thank-you

Swift River Associates, Inc.

4051 RIVER ROAD 561 PAVEMENT RD.
TONAWANDA, NEW YORK 14150 LANCASTER, NEW YORK 14086
SCALE: (716) 875-0902 FAX: (716) 875-0088

Recycled Crushed Concrete Products
WE ACCEPT CLEAN BROKEN CONCRETE & ASPHALT
AT BOTH LOCATIONS.

Delivery Available

CUSTOMER#

CUSTOMER NAME

TICKET #\$ 309277

DATE

09/04/2015

TIME

02:03PM

JOB#

SHIP TO

132- Drugens

CUSTOMER P.O. #

WEIGHED BY

GROSS 47340 15

TARE 27440 15 RECALLED

NET 19900 lb

9.94 t

PRODUCT_____

Concrete

SITE

WEIGHMASTERS: S.FAWE / E.RAWE N.Y.S. LICENSE #140331 / 601381

TRUCK NO.

TRUCKING CO.:

TRUCKER'S SIGNATURE

BILLING

Truck: PARISO-232

1445 Pletcher Road Model City, NY 14107 (716) 754-8226

Ticket: 1002481047 Date: 8/28/2015

Time: 08:45:29 - 08:47:05

Scale

56980 POUIn Gross:

Scale INBOUN P.T.

Tare: 24580 POU

Net: 32400 POU

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRC

WO: 0001208088

Profile: M15-2829/132 DINGENS SITE,LLC

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: PARI-003/PARISO INC. CARMEN

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin	Materials & Services	Quantity Unit	
140200/Buffalo	DC DEC Approved Waste	16.20 TON	

Driver:

Truck: PARISO-104

1445 Pletcher Road Model City, NY 14107 (716) 754-8226

Ticket: 1002481096

Date: 8/28/2015

Time: 09:47:08 - 09:47:51

Scale

Gross: Tare:

26260 POU

Scale INBOUN P.T.

53620 POUIn

27360 POU

Net:

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRC Profile: M15-2829/132 DINGENS SITE, LLC WO: 0001208090

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: PARI-004/PARISO, B TRANSPORT

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Materials & Services Origin Quantity Unit DC DEC Approved Waste 13.68 TON 140200/Buffalo

Driver:

Carrier: PARI-002/Pariso Hauling

Truck: PARISO-16

1445 Pletcher Road Model City, NY 14107 (716) 754-8226

Ticket: 1002481099

Date: 8/28/2015

Time: 09:54:28 - 09:55:05

Scale

Gross: 61320 POU In Scale INBOUN

Tare: 27380 POU P.T.

Net:

33940 POU

Route: BROKER/SUB OUT VARIOUS BRO Profile: M15-2829/132 DINGENS SITE,LLC -

WO: 0001208091

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Materials & Services Quantity Unit Origin 140200/Buffalo DC DEC Approved Waste 16.97 TON

Truck Type: TA

Driver;

Trock: PARISO-246

1445 Pletcher Road Model City, NY 14107 (715) 754-8226

Ticket: 1002482790 Date: 9/3/2015

Time: 10:56:34 - 10:57:06

Scale

P.T.

Gross:

65420 POU In Scale INBOUN

26900 POU

Tare:

38520 POU Net:

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRO

WO: 0001213844

Profile: M15-2829/132 DINGENS SITE, LLC - Manifest: AREA "L"

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: PARI-003/PARISO INC. CARMEN

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin	Materials & Services	Quantity Unit	
140200/Buffalo	DC DEC Approved Waste	19.26 TON	

Driver: Weighmaster: Deb Lehman

1445 Pletcher Road Model City, NY 14107 (716) 754-8226

Truck: PARISO-246

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: PARI-003/PARISO INC. CARMEN

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRO

Profile: M15-2829/132 DINGENS SITE,LLC - Manifest: AREA'L'

Gross:

Tare:

Net:

Ticket: 1002482688 Date: 9/3/2015

59080 POU

26900 POU

32180 POU

Time: 08:41:34 - 08:42:42

Scale

In Scale INBOUN

P.T.

WO: 0001213841

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin Materials & Services Quantity Unit

140200/Buffalo DC DEC Approved Waste 16.09 TON

Driver: Weighmaster: Deb Lehman

1445 Pletcher Road Model City, NY 14107 (716) 754-8226

Ticket: 1002482704 Date: 9/3/2015

Time: 09:11:17 - 09:11:44

Scale

Gross:

73880 POLIn

Scale INBOUN P.T.

Tare:

27600 POU

Net:

46280 POU

Truck: PARISO-13

Truck Type: TA

Route: PARISO/PARISO

WO: 0001213842

Profile: M15-2829/132 DINGENS SITE, LLC Manifest: AREA "L"

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: PARI-003/PARISO INC. CARMEN

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin Materials & Services Quantity Unit TON 140200/Buffalo DC DEC Approved Waste 23.14

Carrier: PARI-002/Pariso Hauling

Truck: PARISO-13

1445 Pletcher Road Model City, NY 14107 (716) 754-8226

Ticket: 1002482823 Date: 9/3/2015

Time: 11:51:10 - 11:51:52

Scale Scale INBOUN

Gross: 72720 POUIn

27600 POU Tare: P.T.

45120 POU

Net:

Truck Type: TA Route: PARISO/PARISO

WO: 0001213845 Profile: M15-2829/132 DINGENS SITE, LLC Manifest: SECTION D

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin	Materials & Services	Quantity	Unit
I40200/Buffalo	DC DEC Approved Waste	22.56	TON

Driver: Weighmaster: Deb Lehman

1445 Pletcher Road Model City, NY 14107 (716) 754-8226

Truck: PARISO-246

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: PARI-003/PARISO INC. CARMEN

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRO

Profile: M15-2829/132 DINGENS SITE,LLC -

Gross:

Таге:

Net:

Ticket: 1002482883 Date: 9/3/2015

67400 POU

26900 POU

40500 POU

Time: 13:09:43 - 13:10:05

Scale

In Scale INBOUN

P.T.

WO: 0001213846

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin Materials & Services Quantity Unit 140200/Buffalo DC DEC Approved Waste 20.25 TON

Weighmaster: Deb Lehman Driver:

Carrier: PARI-002/Pariso Hauling

Truck: PARISO-246

1445 Pletcher Road Model City, NY 14107 (716) 754-8226

Ticket: 1002483006

Date: 9/3/2015

Time: 15:35:04 - 15:35:22

Scale

72800 POUIn Gross:

Scale INBOUN P.T.

26900 POU Tare:

45900 POU Net:

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRO Profile: M15-2829/132 DINGENS SITE,LLC WO: 0001213847

Generator: 0250310002/MODERN DISPOSAL ROL

Customer: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin Materials & Services Quantity Unit 140200/Buffalo DC DEC Approved Waste 22.95 TON

Driver: Weighmaster: Deb Lehman

Truck: PARISO-223

1445 Pletcher Road Model City, NY 14107 (716) 754-8226

Ticket: 1002483115 Date: 9/4/2015

Time: 08:47:11 - 08:48:00

Scale

Gross: 69200 POUIn Scale INBOUN P.T.

Tare: 26720 POU

Net: 42480 POU

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRC Profile: M15-2829/132 DINGENS SITE,LLC

WO: 0001214321

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: PARI-003/PARISO INC. CARMEN

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin Materials & Services Quantity Unit 140200/Buffalo DC DEC Approved Waste 21.24 TON

Driver:

1445 Pletcher Road Model City, NY 14107 (716) 754-8226 Ticket: 1002483136 Date: 9/4/2015

Time: 09:25:43 - 09:26:26

Scale

Gross: 61520 POU In Scale INBOUN

Tare: 26900 POU

P.T.

Net: 34620 POU

Truck: PARISO-246
Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: PARI-003/PARISO INC, CARMEN

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRO

WO: 0001214322

Profile: M15-2829/132 DINGENS SITE,LLC -

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin Materials & Services Quantity Unit

140200/Buffalo DC DEC Approved Waste 17.31 TON

Driver.

1445 Pletcher Road Model City, NY 14107 (716) 754-8226

Truck: PARISO-233

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: PARI-001/PARISO INC, CARMEN

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRO

Profile: M15-2829/132 DINGENS SITE, LLC - Manifest: LSF#13/14

Gross:

Tare:

Net:

Ticket: 1002483164 Date: 9/4/2015

69700 POU

26880 POU

42820 POU

Time: 09:59:55 - 10:01:05

Scale

In Scale INBOUN

P.T.

WO: 0001214323

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment: area "D"

Origin	Materials & Services	Quantity	Unit

140200/Buffalo	DC DEC Approved Waste	21.41	TON

Driver: Weighmaster: Deb Lehman

Carrier: PARI-002/Pariso Hauling

Truck: PARISO-246

1445 Pletcher Road Model City, NY 14107 (716) 754-8226

Ticket: 1002483254 Date: 9/4/2015

Time: 11:55:27 - 11:55:54

Scale

WO: 0001214325

Gross: 44680 POUIn Scale INBOUN

Tare: 26900 POU P.T.

17780 POU

Net:

Route: BROKER/SUB OUT VARIOUS BRC

Profile: M15-2829/132 DINGENS SITE,LLC

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Materials & Services Origin Quantity Unit 140200/Buffalo DC DEC Approved Waste 8.89 TON

Truck Type: TA

Driver: Weighmaster: Deb Lehman

Truck: PARISO-223

1445 Pletcher Road Model City, NY 14107 (716) 754-8226

Ticket: 1002483225

Date: 9/4/2015 Time: 11:07:32 - 11:09:12

Scale

Gross:

62640 POU In Scale INBOUN

Tare: 26720 POU P.T.

Net:

35920 POU

Truck Type: TA Route: BROKER/SUB OUT VARIOUS BR(

WO: 0001214324 Profile: M15-2829/132 DINGENS SITE,LLC - Manifest: LFS#15 "B"

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: PARI-001/PARISO INC, CARMEN

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin Materials & Services Quantity Unit 140200/Buffalo DC DEC Approved Waste 17.96 TON

Driver: ___

Truck: LARABA-99

Model City, NY 14107 (716) 754-8226

Ticket: 1002484003

Date: 9/9/2015

Time: 07:53:06 - 07:53:42

Scale

Gross: 64040 POU In Manual Wt M P.T.

Tare: 30540 POU

33500 POU

Net:

Customer: 0250310002/MODERN DISPOSAL ROI

Route: BROKER/SUB OUT VARIOUS BR(

WO: 0001213843 Profile: M15-2829/132 DINGENS SITE, LLC - Manifest: LFS-13-14

Generator: 0250310002/MODERN DISPOSAL ROI

Carrier: LARAB-001/LARABA ENTERPRI!

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Origin Materials & Services Quantity Unit 140200/Buffalo DC DEC Approved Waste 16.75 TON

Truck Type: TA

Driver: _____

Truck: A64-TA

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LCA-001/LCA DEVELOPMENT

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRO

WO: 0001216942

Gross:

Tare:

Net:

Ticket: 1002484042 Date: 9/9/2015

29140 POU

38140 POU

Time: 08:55:08 - 08:55:33

Scale

67280 POU In Scale INBOUN

P.T.

Profile: M15-2829/132 DINGENS SITE,LLC - Manifest: LFS20

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin Materials & Services Quantity Unit 140200/Buffalo DC DEC Approved Waste 19.07 TON

Driver: __ Weighmaster: Deb Lehman

Ticket: 1002484048 Date: 9/9/2015

29140 POU

35440 POU

Time: 09:11:58 - 09:12:27

Scale 64580 POUIn

Truck: L65-TA
Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LCA-001/LCA DEVELOPMENT

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRC

WO: 0001216943

P.T.

Scale INBOUN

Profile: M15-2829/132 DINGENS SITE,LLC Manifest: LFS20

Gross:

Tare:

Not:

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin	Materials & Services	Quantity	
140200/Buffalo	DC DEC Approved Waste	17.72	TON

Driver: _____ Weighmaster: Deb Lehman

Ticket: 1002484074 Date: 9/9/2015

92760 POUI:

Gross:

Tare:

Nct:

Time: 09:36:44 - 09:49:38

Scale

35300 POUOut Scale OUTBOI

WO: 0001216944

Scale INBOUR

Truck: A82-T22
Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LCA-001/LCA DEVELOPMENT

Truck Type: DT

Route: BROKER/SUB OUT VARIOUS BRC

Profile: M15-2829/132 DINGENS SITE,LLC

57460 POU

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

 Origin
 Materials & Services
 Quantity Unit

 140200/Buffalo
 DC DEC Approved Waste
 28.73
 TON

Driver: _____ Weighmaster: Deb Lehman

Ticket: 1002484104 Date: 9/9/2015

Time: 10:03:19 - 10:20:54

Scale

Gross:

93060 POUIn

Scale INBOUN 33780 POUOut Scale OUTBO

Tare:

Net: 59280 POU

Truck Type: DT

Route: BROKER/SUB OUT VARIOUS BRC

Profile: M15-2829/132 DINGENS SITELLC Manifest: LFS20 AREA E

WO: 0001216945

Truck: A83-T24

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LCA-001/LCA DEVELOPMENT

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

. Comment:

·			
Origin	Materials & Services	Quantity Unit	
140200/Buffalo	DC DEC Approved Waste	29.64 TON	

Driver: __ Weighmaster: Kevin Vendetta

Ticket: 1002484137 Date: 9/9/2015

95960 POUIn

60300 POU

Time: 10:31:49 - 10:48:55

Scale

Truck: A76-T28

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LCA-001/LCA DEVELOPMENT

Truck Type: DT

Rome: BROKER/SUB OUT VARIOUS BRC

WO: 0001216946

35660 POUOut Scale OUTBO

Scale INBOUN

Profile: M15-2829/132 DINGENS SITE,LLC Manifest: LFS19 "E"

Gross:

Tare:

Net:

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin	Materials & Services	Quantity Unit	
140200/Buffalo	DC DEC Approved Waste	30.15 TON	

Driver: Weighmaster: Kevin Vendetta

Ticket: 1002484146 Date: 9/9/2015

29140 POU

37380 POU

Time: 10:57:12 - 10:57:57

Scale 66520 POUIn

Truck: A64-TA

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LCA-001/LCA DEVELOPMENT

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRC

WO: 0001216947

P.T.

Scale INBOUN

Profile: M15-2829/132 DINGENS SITE, LLC Manifest: LFS19 AREA E

Gross:

Tare:

Net:

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Materials & Services Origin Quantity Unit 140200/Buffalo DC DEC Approved Waste 18.69 TON

Driver: _ Weighmaster. Deb Lehman

Ticket: 1002484169

Date: 9/9/2015

Time: 11:38:18 - 11:38:44

Scale

68180 POUIn Gross:

Scale INBOUN

29140 POU P.T.

Tare: Net:

39040 POU

Route: BROKER/SUB OUT VARIOUS BRC

WO: 0001216948

Truck: L65-TA

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LCA-001/LCA DEVELOPMENT

Generator: 0250310002/MODERN DISPOSAL ROI

Truck Type: TA

Profile: M15-2829/132 DINGENS SITE,LLC Manifest: LFS19 "E"

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Materials & Services Quantity Unit Origin 19.52 TON DC DEC Approved Waste 140200/Buffalo

Driver:

Model City, NY 14107 (716) 754-8226

Truck: A82-T22

Ticket: 1002484186 Date: 9/9/2015

Time: 12:06:16 - 12:22:36

Scale

84720 POUIn Gross:

Scale INBOUN Tare: 35360 POUOut Scale OUTBO

Net: 49360 POU

Truck Type: DT

Route: BROKER/SUB OUT VARIOUS BRC

WO: 0001216949

Profile: M15-2829/132 DINGENS SITE,LLC Manifest: LFS23 "D"

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LCA-001/LCA DEVELOPMENT

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Materials & Services Origin Quantity Unit 140200/Buffalo DC DEC Approved Waste 24.68 TON

Driver: _ Weighmaster: Deb Lehman

Truck: A83-T24

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LCA-001/LCA DEVELOPMENT

Truck Type: DT

Route: BROKER/SUB OUT VARIOUS BRC

Profile: M15-2829/132 DINGENS SITE, LLC Manifest: LFS22 & LFS21

WO: 0001216950

Ticket: 1002484230 Date: 9/9/2015

78520 POUIn

44720 POU

Gross:

Tare:

Net:

Time: 12:53:23 - 13:25:01

Scale

33800 POUOut Scale OUTBO

Scale INBOUN

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin Materials & Services Quantity Unit 22.36 TON 140200/Buffalo DC DEC Approved Waste

Weighmaster: Kevin Vendetta Driver:

Truck: A76-T28

Ticket: 1002484251

Date: 9/9/2015

Time: 13:26:21 - 13:43:10

Scale

Gross: 79880 POUIn

Tare: 35380 POUOut Scale OUTBO!

Net: 44500 POU

Truck Type: DT

Route: BROKER/SUB OUT VARIOUS BRC

WO: 0001216951 Profile: M15-2829/132 DINGENS SITE/LLC Manifest: LFS21/LFS16

Scale INBOUN

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LCA-001/LCA DEVELOPMENT

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin	Materials & Services	Quantity Unit	
140200/Bnffalo	DC DEC Approved Waste	22.25 TON	

Driver: Weighmaster: Kevin Vendetta

Truck: A82-T22

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LCA-001/LCA DEVELOPMENT

Truck Type: DT

Route: BROKER/SUB OUT VARIOUS BRC

Gross:

Tare:

Net:

WO: 0001216952 Profile: M15-2829/132 DINGENS SITE,LLC Manifest: LFS17 AREA "F"

Ticket: 1002484289

Time: 14:27:25 - 14:40:05

Scale

35020 POUOut Scale OUTBO

Date: 9/9/2015

93060 POUIn

58040 POU

Scale INBOUN

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Materials & Services Origin

Quantity Unit

140200/Buffalo

DC DEC Approved Waste

29.02 TON

	•	
Driver:	Weighmaster:	Kevin Vendetta

Truck: PARISO-223

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: PARI-003/PARISO INC. CARMEN

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRO

Scale

In Scale INBOUN

P.T.

WO: 0001218639

Ticket: 1002485882

Date: 9/15/2015 Time: 08:40:16 - 08:42:31

64860 POU

26720 POU

38140 POU

Gross:

Tare:

Net:

Profile: M15-2829/132 DINGENS SITE,LLC -

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment

 Origin
 Materials & Services
 Quantity
 Unit

 140200/Buffalo
 DC DEC Approved Waste
 19.07
 TON

Driver:		Weighmaster:	Deb Lehman

Carrier: PARI-002/Pariso Hauling

Truck: PARISO-13

1445 Pletcher Read Model City, NY 14107 (716) 754-8226

Time: 09:02:29 - 09:03:36

1002485893

Scale

75540 POUIn Scale INBOUN Gross: P.T.

Date: 9/15/2015

Tare: 27600 POU

47940 POU Net:

Ticket:

Truck Type: TA

Route: PARISO/PARISO

Profile: M15-2829/132 DINGENS SITE,LLC Manifest: 1T & 2T "A"

WO: 0001218640

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin Materials & Services Quantity Unit 140200/Buffalo TON DC DEC Approved Waste 23.97

Driver:	Weighmaster:	Deb Lehmar

Model City, NY 14107 (716) 754-8226

Truck: PARISO-243

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: PARI-003/PARISO INC. CARMEN

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRO WO: 0001218641

Profile: M15-2829/132 DINGENS SITE, LLC - Manifest: IT/2T AREA A

Gross:

Tare:

Net:

Scale

P.T.

67920 POU In Scale INBOUN

Ticket: 1002485909

Date: 9/15/2015 Time: 09:18:25 - 09:19:06

26840 POU

41080 POU

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin	Materials & Services	Quantity	
140200/Buffalo	DC DEC Approved Waste	20.54	TON

Driver:

Ticket: 1002485961 Date: 9/15/2015 Time: 10:22:58 - 10:23:59

Scale

****** Reprinted Ticket - Edited ******* Truck: PARISO-229

Gross: Tare:

68320 POU In Scale INBOU!

Net:

P.T. 27080 POU

41240 POU

Customer: 0250310002/MODERN DISPOSAL ROI Carrier: PARI-003/PARISO INC. CARMEN

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRO

WO: 0001218642

Profile: M15-2829/132 DINGENS SITE,LLC -

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Materials & Services Quantity Unit Origin 20.62 TON 140200/Buffalo DC DEC Approved Waste

	*** * *	B 1 F 3
)river;	Weighmaster:	Dep Peruman

Truck: PARISO-223

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: PARI-003/PARISO INC. CARMEN

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRC

RC WO: 0001218643

Ticket: 1002485991

Date: 9/15/2015

26720 POU

38580 POU

Time: 10:58:49 - 10:59:34

Scale

65300 POU in Scale INBOUN

P.T.

Profile: M15-2829/132 DINGENS SITE, LLC - Manifest: 1/2T AREA A

Gross:

Tare:

Net:

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin	Materials & Services	Quantity Unit	
140200/Buffalo	DC DEC Approved Waste	19.29 TON	

Driver:	Weighmaster:	Deb Lehmar

Carrier: PARI-002/Pariso Hauling

Truck: PARISO-13

1445 Pletehër Road Model City, NY 14107 (716) 754-8226

Ticket: 1002486015 Date: 9/15/2015

Time: 11:42:31 - 11:43:30

Scale

Gross:

73360 POUIn

Scale INBOUN

27600 POU

P.T.

Tare:

45760 POU Net:

Truck Type: TA

Route: PARISO/PARISO

WO: 0001218644 Profile: M15-2829/132 DINGENS SITE, LLC Manifest: 1T & 2T AREA A

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin Materials & Services Quantity Unit 140200/Buffalo DC DEC Approved Waste 22.88 TON

Driver:	Weighmaster:	Deb Lahmar
Driver:	weignmaster:	Ded Lenmai

Ticket: 1002486022 Date: 9/15/2015

Time: 11:49:25 - 11:50:25

Scale

Gross:

72980 POUIn

Scale INBOUN

26840 POU

P.T.

Таге: Net:

46140 POU

Truck: PARISO-243

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: PARI-003/PARISO INC. CARMEN

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRC

WO: 0001218645

Profile: M15-2829/132 DINGENS SITE,LLC Manifest: 3T & 4T

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Materials & Services Origin Quantity Unit 140200/Buffalo DC DEC Approved Waste 23.07 TON

Driver:	

1445 Pletcher Road Model City, NY 14107 (716) 754-8226

Date: 9/15/2015

Ticket: 1002486044

Time: 12:26:36 - 12:27:24

Scale

Gross:

67880 POUIn

Scale INBOU!

Tare:

27080 POU Net: 40800 POU

P.T.

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: PARI-003/PARISO INC. CARMEN

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRC

WO: 0001218646

Profile: M15-2829/132 DINGENS SITE,LLC Manifest: 3T & 4T

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin	Materials & Services	Quantity	Unit
140200/Buffalo	DC DEC Approved Waste	20.40	TON

Driver: Weighmaster: Deb Lehman

Truck: PARISO-223

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: PARI-003/PARISO INC. CARMEN

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRO

Scale

In Scale INBOU?

P.T.

WO: 0001218647

Ticket: 1002486077 Date: 9/15/2015

70460 POU

26720 POU

43740 POU

Gross:

Tare:

Net:

Time: 13:12:04 - 13:12:47

Profile: M15-2829/132 DINGENS SITE,LLC -

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin	Materials & Services	Quantity Unit
140 200/Buffalo	DC DEC Approved Waste	21.87 TON

Driver: ____ Weighmaster: Deb Lehman

Model City, NY 14107 (716) 754-8226

Truck: PARISO-243

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: PARI-003/PARISO INC. CARMEN

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRO

Profile: M15-2829/132 DINGENS SITE,LLC - Manifest: 3T/4T AREA A

Gross: Tare:

Net:

Ticket: 1002486111

Date: 9/15/2015

26840 POU

42220 POU

Time: 13:50:16 - 13:50:58

Scale

69060 POU In Scale INBOUN

P.T.

WO: 0001218648

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin	Materials & Services	Quantity Unit
140200/Buffalo	DC DEC Approved Waste	21.11 TON

Driver: Weighmaster: Deb Lehman

Ticket: 1002486135 Date: 9/15/2015

Time: 14:21:53 - 14:22:40

Scale

Truck: PARISO-13

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: PARI-002/Pariso Hauling

Gross: 73920 POU
Tare: 27600 POU

In Scale INBOUN P.T.

Tare:

46320 POU

Truck Type: TA

Route: PARISO/PARISO

WO: 0001218649

Profile: M15-2829/132 DINGENS SITE, LLC - Manifest: 3T/4T AREA A

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin	Materials & Services	Quantity	Unit
140200/Buffalo	DC DEC Approved Waste	23.16	TON

Driver:

Truck: PARISO-229

Carrier: PARI-001/PARISO INC, CARMEN

Customer: 0250310002/MODERN DISPOSAL ROI Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRO

WO: 0001218650 Profile: M15-2829/132 DINGENS SITE, LLC - Manifest: 3T/4T AREA A

Gross:

Tare:

Net:

Scale

In Scale INBOUN

P.T.

Ticket: 1002486158

Date: 9/15/2015

67720 POU

27080 POU

40640 POU

Time: 14:48:23 - 14:49:00

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin	Materials & Services	Quantity	Unit
140200/Buffalo	DC DEC Approved Waste	20.32	TON

Driver:	Weighmaster:	Deb Lehman

(716) 754-8226

Ticket: 1002486201

Date: 9/15/2015

Time: 15:38:46 - 15:39:16

Scale

67440 POUIn Scale INBOUN Gross:

Tare: 26720 POU P.T.

40720 POU Net:

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRC

WO: 0001218651

Profile: M15-2829/132 DINGENS SITE, LLC Manifest: 2T/4T

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: PARI-003/PARISO INC. CARMEN

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin	Materials & Services	Quantity Unit	
140200/Buffalo	DC DEC Approved Waste	20.36 TON	

Driver: Weighmaster: Deb Lehman

1445 Pletcher Road Model City, NY 14107 (716) 754-8226

Ticket: 1002486216 Date: 9/15/2015

Time: 15:55:40 - 15:55:56

Scale

Gross:

51660 POUIn

Scale INBOUN

26840 POU

P.T.

Tare:

24820 POU Net:

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRC

WO: 0001218652

Profile: M15-2829/132 DINGENS SITE,LLC

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: PARI-003/PARISO INC. CARMEN

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin Materials & Services Quantity Unit 140200/Buffalo DC DEC Approved Waste TON 12.41

Driver:

Carrier: PARI-002/Pariso Hauling

Truck: PARISO-13

1445 Pletcher Road Model City, NY 14107 (716) 754-8226

Ticket: 1002486322 Date: 9/16/2015

Time: 08:49:47 - 08:51:58

Scale

72620 POUIn Gross:

Scale INBOUN P.T.

Tare: 27600 POU

Net: 45020 POU

Route: PARISO/PARISO Profile: M15-2829/132 DINGENS SITE,LLC Manifest: 5T & 6T

WO: 0001221267

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin Materials & Services Quantity Unit 140200/Buffalo 22.51 TON DC DEC Approved Waste

Truck Type: TA

Driver: Weighmaster: Deb Lehman

1445 Pletcher Road Model City, NY 14107 (716) 754-8226

1002486327 Ticket: Date: 9/16/2015

Time: 08:58:05 - 08:58:59

Scale

65020 POUIn Gross:

Scale INBOUN

P.T.

26900 POU Tare:

38120 POU Net:

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRC

WO: 0001221268

Profile: M15-2829/132 DINGENS SITE,LLC

Manifest: 5T & 6T

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: PARI-003/PARISO INC. CARMEN

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin	Materials & Services	Quantity	
140 2 00/Buffalo	DC DEC Approved Waste	19.06	TON

Weighmaster: Deb Lehman Driver:

1445 Pletcher Road Model City, NY 14107 (716) 754-8226

Ticket: 1002486430 Date: 9/16/2015

Time: 11:11:06 - 11:12:02

Scale

Gross:

72440 POU

In Scale INBOUN

27600 POU

P.T.

Tare: Net: 44840 POU

Customer: 0250310002/MODERN DISPOSAL ROI Carrier: PARI-003/PARISO INC. CARMEN Truck Type: TA

Route: PARISO/PARISO

WO: 0001221269

Profile: M15-2829/132 DINGENS SITE, LLC - Manifest: LFS 5&6T

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin Materials & Services Quantity Unit TON 22,42 140200/Buffalo DC DEC Approved Waste

Weighmaster: Deb Lehman Driver:

Model City, NY 14107 (716) 754-8226

Truck: PARISO-246

Customer: 0250310002/MODERN DISPOSAL ROI Carrier: PARI-003/PARISO INC, CARMEN

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRC

Profile: M15-2829/132 DINGENS SITE, LLC - Manifest: LFS #5T

Gross:

Tare:

Net:

Ticket: 1002486434 Date: 9/16/2015

61660 POU

26900 POU

34760 POU

Time: 11:19:37 - 11:20:43

Scale

In Scale INBOU?

P.T.

WO: 0001221270

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Quantity Unit Materials & Services Origin TON 140200/Buffalo DC DEC Approved Waste 17.38

Driver: Weighmaster: Deb Lehman

Truck: PARISO-13

Carrier: PARI-002/Pariso Hauling

Customer: 0250310002/MODERN DISPOSAL ROI

Truck Type: TA

Route: PARISO/PARISO

Profile: M15-2829/132 DINGENS SITE, LLC - Manifest: LFS 17 AREA 7

Gross:

Tare:

Net:

Ticket: 1002486575 · Date: 9/16/2015

57140 POU

27600 POU

29540 POU

Time: 14:17:05 - 14:18:12

Scale

In Scale INBOUN

P.T.

WO: 0001221271

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Materials & Services Quantity Unit Origin TON 140200/Buffalo DC DEC Approved Waste 14.77

Weighmaster: Deb Lehman Driver:

Truck: PARISO-233

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: PARI-003/PARISO INC. CARMEN

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRO

WO: 0001221814

Profile: M15-2829/132 DINGENS SITE, LLC - Manifest: LFS 25&26

Gross:

Tare:

Net:

Scale

73580 POU In Scale INBOUN

P.T.

Ticket: 1002486765

Date: 9/17/2015

26880 POU

46700 POU

Time: 09:08:32 - 09:09:26

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin	Materials & Services	Quantity Unit	******
140200/Buffalo	DC DEC Approved Waste	23.35 TON	

Driver:	Weighmaster:	Deb Lehman
Direct.	 4. or Francous.	

1445 Pletcher Road Model City, NY 14107 (716) 754-8226

Ticket: 1002486885 Date: 9/17/2015

Time: 11:41:49 - 11:42:46

Scale

Gross: 67760 POUIn Scale INBOU?

P.T.

26880 POU Tare:

Net: 40880 POU

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRO

WO: 0001221815 Profile: M15-2829/132 DINGENS SITE,LLC Manifest: LFS 25 & 26

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: PARI-003/PARISO INC. CARMEN

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin Materials & Services Quantity Unit 140200/Buffalo DC DEC Approved Waste 20,44 TON

Driver: Weighmaster: Deb Lehman

1445 Pletcher Road Model City, NY 14107 (716) 754-8226

Date: 9/17/2015 Time: 14:17:12 - 14:17:45 Gross: 70240 POU

In Scale INBOUN Tare: 26880 POU P.T.

Ticket: 1002487016

Scale

Net: 43360 POU

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRO WO: 0001221816

Profile: M15-2829/132 DINGENS SITE,LLC -

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: PARI-003/PARISO INC. CARMEN

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin	Materials & Services	Quantity	Unit
140200/Buffalo	DC DEC Approved Waste	21.68	TON

Driver: Weighmaster: Deb Lehman

1445 Pletcher Road Model City, NY 14107 (716) 754-8226

Ticket: 1002487102 Date: 9/17/2015

Time: 16:34:19 - 16:35:03

Scale

68460 POU In Scale INBOUN Gross: P.T.

26880 POU Tare:

41580 POU

Net:

Truck Type: TA Route: BROKER/SUB OUT VARIOUS BRC

WO: 0001221817

Profile: M15-2829/132 DINGENS SITE, LLC - Manifest: LFS 18T

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: PARI-003/PARISO INC. CARMEN

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin Materials & Services Quantity Unit 140200/Buffalo DC DEC Approved Waste 20.79 TON

Driver:

Carrier: PARI-002/Pariso Hauling

Truck; LARABA-97

1445 Pletcher Road Model City, NY 14107 (716) 754-8226

Ticket: 1002488060

Date: 9/22/2015

Time: 09:16:59 - 09:17:24

Scale

Gross:

Scale INBOUN P.T.

WO: 0001225082

69340 POUIn

Tare: 29180 POU

40160 POU

Net:

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRC

Profile: M15-2829/132 DINGENS SITE,LLC

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin	Materials & Services	Quantity	
140200/Buffalo	DC DEC Approved Waste	20.08	TON

Driver:

Truck: LARABA-97

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LARAB-001/LARABA ENTERPRI:

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRC

WO: 0001225083

Profile: M15-2829/132 DINGENS SITE,LLC - Manifest: LFS18T

Gross:

Ture:

Net

Ticket: 1002488175 Date: 9/22/2015

29180 POU

40380 POU

Time: 11:36:48 - 11:37:25 Scale

69560 POU In Scale INBOUN

P.T.

Generator: 0250310002/MODERN DISPOSAL ROL

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin Materials & Services Quantity Unit 140200/Buffalo DC DEC Approved Waste 20.19 TON

Driver:	Weighmaster:	Deb Lehman

Truck: LARABA-97

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LARAB-001/LARABA ENTERPRI:

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRO

Profile: M15-2829/132 DINGENS SITE,LLC -

Generator: 0250310002/MODERN DISPOSAL ROI

Materials & Services

Comment:

Origin

140200/Buffalo DC DEC Approved Waste

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Quantity Unit

19.96

TON

Gross:

Tare:

Nct:

Scale

69100 POU In Scale INBOUN

P.T.

WO: 0001225084

Ticket: 1002488310

Time: 14:31:37 - 14:32:00

Date: 9/22/2015

29180 POU

39920 POU

Driver: _____ Weighmaster: Deb Lehman

Truck: PARISO-233

1445 Pletcher Road Model City, NY 14107 (716) 754-8226

Ticket: 1002488469

Date: 9/23/2015

Time: 08:52:04 - 08:52:49

Scale

67780 POUIn Gross:

Scale INBOUN

P.T.

Tare: 26880 POU Net: 40900 POU

Truck Type: TA

ROUTE: BROKER/SUB OUT VARIOUS BRC

WO: 0001225448

Profile: M15-2829/132 DINGENS SITE, LLC Manifest: LFS 29T

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: PARI-003/PARISO INC. CARMEN

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

aiginO Materials & Services Quantity Unit 140200/Buffalo DC DEC Approved Waste 20.45 TON

Driver: ___

Date: 9/23/2015 Time: 11:19:52 - 11:20:11

Scale

****** Reprinted Ticket *******

Gross: 71020 POU In Scale INBOUN

P.T.

Truck: PARISO-233

Customer: 0250310002/MODERN DISPOSAL ROI

Truck Type: TA

Tare: 26880 POU Net: 44140 POU

Carrier: PARI-003/PARISO INC. CARMEN

Route: BROKER/SUB OUT VARIOUS BRO

WO: 0001225449

Profile: M15-2829/132 DINGENS SITE,LLC - Manifest: LFS 29

Generator: 0250310002/MODERN DISPOSAL RO1

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Materials & Services Origin Quantity Unit 140200/Buffalo DC DEC Approved Waste 22.07 TON

Driver:	Weighmaster:	Kevin Vendett

Truck: PARISO-223

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: PARI-003/PARISO INC. CARMEN

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRO

Profile: M15-2829/132 DINGENS SITE, LLC - Manifest: LFS-29

Gross:

Tare:

WQ: 0001225450

Date: 9/23/2015

26720 POU

35460 POU

Time: 11:49:17 - 11:50:18

Scale

62180 POU In Scale INBOUN

P.T.

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin Materials & Services Quantity Unit

140200/Buffalo

DC DEC Approved Waste

17.73 TON

Driver:	 Weighmaster:	Deb Lehman
	 ***************************************	TACC PARTITION

Truck: PARISO-233

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: PARI-003/PARISO INC, CARMEN

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRO

Profile: M15-2829/132 DINGENS SITE,LLC - Manifest: LFS29

Gross:

Tare:

Nct:

Ticket: 1002488701

Date: 9/23/2015

69560 POU

26880 POU

42680 POU

Time: 13:57:07 - 13:57:49 Scale

In Scale INBOUN

P.Ţ.

WO: 0001225451

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin Materials & Services Quantity Unit 140200/Buffalo DC DEC Approved Waste 21,34 TON

Driver. Weighmaster: Deb Lehman

Truck: PARISO-223

1445 Pietcher Road Model City, NY 14107 (716) 754-8226

BSIZEME BEEFE PER PER

Ticker: 1002488697

Date: 9/23/2015

Time: 13:55:08 - 13:55:34

Scale

71140 POUIn Scale INBOUN Gross:

Tare: 26720 POU

P.T.

Net: 44420 POU

Truck Type: TA Route: BROKER/SUB OUT VARIOUS BRC

WO: 0001225452

Profile: M15-2829/132 DINGENS SITE,LLC Manifest: LFS 27/28

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: PARI-003/PARISO INC. CARMEN

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Meterials & Services Origin Quantity Unit 140200/Buffalo DC DEC Approved Waste 22.21 TON

Driver:

Truck: PARISO-223

1445 Pietcher Road Model City, NY 14107 (716) 754-8226

Ticket: 1002488786 Date: 9/23/2015

Time: 16:04:35 - 16:05:06

Scale

Gross: 73640 POUIn

Scale INBOUN P.T.

WO: 0001225453

Tare:

Net:

Profile: M15-2829/132 DINGENS SITE,LLC Manifest: LFS-27 & 28

26720 POU

46920 POU

Truck Type: TA

Route: PARISO/PARISO

Carrier: PARI-003/PARISO INC. CARMEN

Customer: 0250310002/MODERN DISPOSAL ROI

Generator: 0250310002/MODERN DISPOSAL ROI Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Commient:

Origin Materials & Services

Quantity Unit

140200/Buffalo

DC DEC Approved Waste

23,46 TON

Driver:

Truck: PARISO-233

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: PARI-003/PARISO INC. CARMEN

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRO

Profile: M15-2829/132 DINGENS SITE,LLC - Manifest: LFS27&28

IOUS BRC WO: 0001225454 SITELLC - Manifest: LFS278/28

Ticket: 1002488792 Date: 9/23/2015

26880 POU

49760 POU

Net:

Time: 16:19:28 - 16:19:56

Scale
76640 POU In Scale INBOUN

P.T.

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment

Origin

Materials & Services Quantity Unit.

140200/Buffalo DC DEC Approved Waste 24.88 TON

Driver: _____ Weighmaster: Deb Lehrnan

Truck: PARISO-233

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: PARI-003/PARISO INC. CARMEN

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BR(

Profile: M15-2829/132 DINGENS SITELLC -

Generator: 0250310002/MODERN DISPOSAL ROJ

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

140200/Buffalo

Origin

Materials & Services

DC DEC Approved Waste

Quantity Unit

Date: 9/24/2015

77480 POU

26880 POU

50600 POU

Tare:

Net:

Time: 09:04:33 - 09:05:00

Scale

In Scale INBOUN

P.T.

WO: 0001225972

25.30 TON

Driver: _____ Weighmaster. Deb Lehman

Truck: PARISO-233

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: PARI-003/PARISO INC. CARMEN

Generator: 0250310002/MODERN DISPOSAL ROI

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRC

Profile: M15-2829/132 DINGENS SITE,LLC Manifest: LFS 27 & 28

Gross:

Tare:

Net:

Ticket: 1002489000

Date: 9/24/2015

71420 POUIn

26880 POU

44540 POU

Time: 11:39:43 - 11:40:11

Scale

WO: 0001225973

P.T.

Scale INBOUN

Origin

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Materials & Services Quantity Unit 140200/Buffalo DC DEC Approved Waste 22.27 TON

Driver:

Truck: VENTRY-001

1445 Pletcher Road Model City, NY 14107 (716) 754-8226

Ticket: 1002490232 Date: 9/29/2015

Time: 10:41:40 - 10:42:42

Scale

Gross:

Scale INBOUN

60280 POUIn

P.T.

Tare: 26660 POU

33620 POU

Net:

Truck Type: TA Route: BROKER/SUB OUT VARIOUS BRC

WO: 0001228729

Profile: MI5-2829/132 DINGENS SITE, LLC Manifest: LFS 33T

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: VENT-002/VENTRY SERVICES

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Содинак.			
Origin	Materials & Services	Quantity Unit	
140200/Buffalo	DC DEC Approved Waste	16.81 TON	

Driver: Weighmaster: Deb Lehman

Truck: VENTRY-001

1445 Pletcher Road Model City, NY 14107 . (716) 754-8226

Ticket: 1002490358 Date: 9/29/2015

Time: 13:28:08 - 13:28:50

Scale

69560 POUIn Scale INBOUN Gross:

Tare: 26660 POU P.T.

42900 POU Net

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRC

WO: 0001228730

Profile: M15-2829/132 DINGENS SITE,LLC Manifest: LFS 31 & 32

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: VENT-002/VENTRY SERVICES

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment

			
Origin	Materials & Services	Quantity Unit	
140200/Buffalo	DC DEC Approved Waste	21.45 TON	,

Driver: Weighmaster: Deb Lehman

Truck: VENTRY-001

1445 Pletcher Road Model City, NY 14107 (716) 754-8226

Ticket: 1002490478

Date: 9/29/2015 Time: 15:46:57 - 15:47:32

Scale

Gross: 7

Scale INBOUN

: 74160 POUIn

P.T.

Tare: 26660 POU

Net: 47500 POU

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRC

WO: 0001228731

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: VENT-002/VENTRY SERVICES

Comment:

 Origin
 Materials & Services
 Quantity Unit

 140200/Buffalo
 DC DEC Approved Waste
 23,75
 TON

Driver: _____ Weighmaster: Deb Lehman

Truck: A82-T22

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LCA-001/LCA DEVELOPMENT

Truck Type: DT

Route: BROKER/SUB OUT VARIOUS BRC

Profile: MI5-2829/132 DINGENS SITE,LLC Manifest: LFS-42

Gross:

Tare:

Net:

WO: 0001235486

Scale INBOUN

34760 POUOut Scale CLAY St

Ticket: 1002494138

Date: 10/12/2015

93760 POUIn

59000 POU

Time: 09:01:20 - 09:20:00

Scale

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin Materials & Services Quantity Unit 140200/Buffalo DC DEC Approved Waste 29.50 TON

Driver:

Truck: A72-T23

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LCA-001/LCA DEVELOPMENT

Truck Type: DT

Route: BROKER/SUB OUT VARIOUS BRC

Profile: M15-2829/132 DINGENS SITE,LLC Manifest: LFS-42

WO: 0001235499

Ticket: 1002494158

Date: 10/12/2015

Gross: 108900 POUIn

Net: 75400 POU

Time: 09:26:43 - 09:44:34

Tare: 33500 POUOut Scale CLAY

Scale

Scale INBOUN

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin	Materials & Services	Quantity Unit
140200/Buffalo	DC DEC Approved Waste	37.70 TON

Driver: Weighmaster: Kevin Vendetta

Truck: A82-T22

Ticket: 1002494238 Date: 10/12/2015

Time: 11:23:12 - 11:38:10

Scale

Gross: 115140 POUin Scale INBOUN

Tare: 34560 POUOut Scale CLAY

Net: 80480 POU

Truck Type: DT Route: BROKER/SUB OUT VARIOUS BRC

WO: 0001235500

Profile: M15-2829/132 DINGENS SITE,LLC Manifest: LFS-45

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LCA-001/LCA DEVELOPMENT

Service Site: 9000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Materials & Services Quantity Unit 140200/Buffalo DC DEC Approved Waste 40.24 TON

Driver:

Weighmaster: Kevin Vendetta

Truck: A72-T23

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LCA-001/LCA DEVELOPMENT

Truck Type: DT

Route: BROKER/SUB OUT VARIOUS BRC

WO: 0001235501

والمرازي المرازي المرازي المرازي

Time: 11:44:14 - 11:44:45

Gross: 118140 POU In Scale INBOUN

Scale

P.T.

Ticket: 1002494242

Date: 10/12/2015

Tare: 33320 POU

Net: 84820 POU

Profile: M15-2829/132 DINGENS SITELLC - Manifest: LFS-45

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

 Origin
 Materials & Services
 Quantity Unit

 140200/Buffalo
 DC DEC Approved Waste
 42.41
 TON

Driver: _____ Weighmaster: Deb Lehman

Truck: A82-T22

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LCA-001/LCA DEVELOPMENT

Truck Type: DT

Route: BROKER/SUB OUT VARIOUS BRC

WO: 0001235502

Profile: M15-2829/132 DINGENS SITE, LLC Manifest: LFS-45

Net:

Ticket: 1002494335

Date: 10/12/2015

Gross: 110660 POUIn

75920 POU

Time: 13:32:42 - 13:50:10

Tare: 34740 POUOut Scale CLAY

Scale

Scale INBOUN

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin	Materials & Services	Quantity Unit	
140200/Buffalo	DC DEC Approved Waste	37.96 TON	

Driver: Weighmaster: Kevin Vendetta

Truck: A72-T23

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LCA-001/LCA DEVELOPMENT

Generator: 0250310002/MODERN DISPOSAL ROI

Truck Type: DT

Route: BROKER/SUB OUT VARIOUS BRO

Tare:

Net:

Ticket: 1002494337

Date: 10/12/2015

33320 POU

72680 POU

Time: 13:51:20 - 13:52:04

Gross: 106000 POU In Scale INBOUN

Scale

Profile: M15-2829/132 DINGENS SITE,LLC - Manifest: LFS-44

WO: 0001235503

P.T.

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin Materials & Services 140200/Buffalo

DC DEC Approved Waste

Quantity Unit 36.34

TON

Driver.	Weighmaster:	Deb Lehmen
13114di.	MEISTITIERICE.	Ded Dennish

Truck: A82-T22

Ticket: 1002494433 Date: 10/12/2015

Time: 15:39:05 - 15:50:23

Scale

Gross: 106660 POUIn

Scale INBOUN

Tare: 34420 POUOut Scale CLAY

72240 POU

Net:

Truck Type: DT

Route: BROKER/SUB OUT VARIOUS BRC

Profile: M15-2829/132 DINGENS STIELLIC Manifest: LFS 44

WO: 0001235504

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LCA-001/LCA DEVELOPMENT

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

-			
Origin	Materials & Services	Quantity Uni	t
140200/Buffalo	DC DEC Approved Waste	36.12 TO	

Driver: Weighmaster: Kevin Vendetta

Truck: A72-T23

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LCA-001/LCA DEVELOPMENT

Truck Type: DT

Route: BROKER/SUB OUT VARIOUS BRC

Profile: M15-2829/132 DINGENS SITE,LLC Manifest: LFS44

WO: 0001235505

Ticket: 1002494451

Date: 10/12/2015

Gross: 111940 POUIn

Net: 78800 POU

Time: 16:00:38 - 16:15:45

Tare: 33140 POUOut Scale CLAY

Scale

Scale INBOUN

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin	Materials & Services	Quantity	Unit	
140200/Buffalo	DC DEC Approved Waste	39.40	TON	

Driver: Weighmaster: Kevin Vendetta

Truck: A64-TA

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LCA-001/LCA DEVELOPMENT

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRO

WO: 0001236775 Profile: M15-2829/132 DINGENS SITE,LLC - Manifest: LFS44

Gross:

Tare:

Net:

Ticket: 1002494516

Date: 10/13/2015

29140 POU

47920 POU

Time: 08:27:48 - 08:28:12

Scale

77060 POU In Scale INBOUN

P.T.

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin Materials & Services Quantity Unit 140200/Buffalo DC DEC Approved Waste 23.96 TON

Driver: Weighmaster: Deb Lehman

Truck: L49-TA

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LCA-001/LCA DEVELOPMENT

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRO

Gross:

Tare:

Net:

Ticket: 1002494526 Date: 10/13/2015

27760 POU

48580 POU

Time: 08:44:18 - 08:45:01

Scale

76340 POU In Scale INBOUN

P.T.

WO: 0001236776

Profile: M15-2829/132 DINGENS SITE,LLC -

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin Materials & Services Quentity Unit 140200/Buffalo DC DEC Approved Waste 24.29 TON

Driver: Weighmaster: Deb Lehman

Truck: PARISO-100

1445 Pletcher Road Model City, NY 14107 (716) 754-8226

Customer: 0250310002/MODERN DISPOSAL ROI

Certier: PARI-004/PARISO, B TRANSPORT

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRC

Profile: M15-2829/132 DINGENS SITE,LLC

Ticket: 1002494531

Date: 10/13/2015

Gross: 68640 POUIn

Tare: 24020 POU

Net: 44620 POU

Time: 08:52:35 - 08:53:09

Scale

Scale INBOUN

P.T.

WO: 0001236777

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

 Origin
 Materials & Services
 Quantity Unit

 140200/Buffalo
 DC DEC Approved Waste
 22.31 TON

Driver:

Truck: AS4-TA

LO TOUR TO LAN RAIR DETE HALL RIPAL INTERPRETATION FOR THE

Ticket: 1002494539

Date: 10/13/2015 Time: 08:49:56 - 09:02:01

Scale

71060 POUIn Стозь:

Scale INBOUN 27660 POUOut Scale OUTBO!

Tare:

43400 POU

Net:

Route: BROKER/SUB OUT VARIOUS BRC

WO: 0001236778

Profile: M15-2829/132 DINGENS SITE,LLC Manifest: LFS43

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Customer: 0250310002/MODERN DISPOSAL ROJ

Generator: 0250310002/MODERN DISPOSAL ROI

Carrier: LCA-001/LCA DEVELOPMENT

Comment;

Origin Materials & Services Quantity Unit 140200/Buffalo DC DEC Approved Waste 21.70 TON

Truck Type: TA

Driver:	Weighmaster:	Verin	Vandatt
DUACE:	Weigninaster:	K CVID	venden

Modern Disposal Services, Inc.

4746 Model City Road

PO Box 209

Model City, NY 14107

TEL. (716) 754-8226 (800) 662-0012 FAX. (716) 754-8964

Customer #: 000098

PO #:

Site #: 0000980122

Customer Name:

PINTO CONSTRUCTION SERVICE INC

Address:

132 DINGENS ST

City:

BUFFALO

Contact:

GARY CATLIN

Phone:

Work Order

(716) 622-0160

Time Window

Begin:

End:

Qty

Action

Type

Description

Work Order:

Requested By:

Route:

0001236789

HAULING

DUMPTRUCK

Dump Truck Services

Service Notes: CONTAMINATED - APPROVAL (M15-2829) "SECTION ID#

WO0001236789

Rep/Order Date: MODERN\miker 10/12/2015 4:04:27PM

Map Grid:

Depart Time:

PARISO

brian h

Destination

Service Date: 10/13/2015

Bin # Dropped:

Bin # Picked up:

Trip Charge Reason: __

Arrival Time:

Access Notes:

Detailed Notes:

Work Order Notes:

PLEASE NOTE INDEMNIFICATION AGREEMENT

The Customer agrees to indemnify, defend and hold harmless the Contractor against all claims, damages, suits, judgments, penalties, fines and other liability or injury or death to persons or loss or damage to property arising out of the Customer's use, operation or possession of the equipment or arising out of the Customer's breach of any warranty created hereunder by the Customer. The Customer shall not overload the equipment nor use it for incineration purposes or

make alterations without the contractor's written approval.

ER SIGNATURE

CUSTOMER SIGNATURE

Truck: A64-TA

Customer: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Carrier: LCA-001/LCA DEVELOPMENT

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRC

Profile: M15-2829/132 DINGENS SITE LLC -

Ticket: 1002494790

Date: 10/13/2015

29140 POU

Net: 42920 POU

Tare:

Time: 14:23:31 - 14:24:08

Gross: 72060 POU In Scale INBOUN

Scale

P.T.

WO: 0001236790

Generator: 0250310002/MODERN DISPOSAL ROI

Comment:

Origin Materials & Services Quantity Unit 140200/Buffalo DC DEC Approved Waste 21.46 TON

Driver:

Truck: A59-TA

Ticket: 1002494810 Date: 10/13/2015

Time: 14:38:59 - 14:53:44

Scale

63820 POUL Tare:

Scale INBOUN 25240 POUOut Scale OUTBO

Net: 38580 POU

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRC

WO: 0001236791

Profile: M15-2829/132 DINGENS SITE,LLC Manifest: LFS37

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LCA-001/LCA DEVELOPMENT

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin Materials & Services Quantity Unit 140200/Buffalo DC DEC Approved Waste 19.29 TON

Driver:

Weighmaster; Kevin Vendetta

Truck: L49-TA

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LCA-001/LCA DEVELOPMENT

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRO

Profile: M15-2829/132 DINGENS SITE,LLC - Manifest: LFS38

WO: 0001236792

Scale

70500 POU In Scale INBOUN

P.T.

Ticket: 1002494819

Date: 10/13/2015

27760 POU

Net: 42740 POU

Time: 15:01:18 - 15:01:46

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin Materials & Services 140200/Buffalo DC DEC Approved Waste

Quantity Unit 21.37

TON

Gross:

Tare:

Driver:

Truck: A54-TA

Ticket: 1002494828

Date: 10/13/2015

Time: 15:09:51 - 15:10:15

Scale

70080 POUIn Gross:

Scale INBOUN P.T.

Tare: 27660 POU

Net: 42420 POU

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRC

WO: 0001236793

Profile: M15-2829/132 DINGENS SITE,LLC Manifest: LFS38

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LCA-001/LCA DEVELOPMENT

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin Materials & Services Quantity Unit 140200/Buffalo DC DEC Approved Waste 21.21 TON

Driver: _

Ticket: 1002494944

Date: 10/14/2015

Time: 08:21:09 - 08:21:41

Scale

Gross:

62020 POU In Scale INBOUN

Tare: 29140 POU P.T.

32880 POU

Net:

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRC

Profile: M15-2829/132 DINGENS SITE LLC -

WO: 0001237477

Truck: A64-TA

Generator: 0250310002/MODERN DISPOSAL ROL

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LCA-001/LCA DEVELOPMENT

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin Materials & Services Quantity Unit 140200/Buffalo DC DEC Approved Waste 16.44 TON

Driver:

Truck: L65-TA

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LCA-001/LCA DEVELOPMENT

Ticket: 1002494962 Date: 10/14/2015 Time: 08:37:45 - 08:38:14

Scale

P.T.

iross: 69440 POU In Scale INBOUN

Ture: 29140 POU

Net: 40300 POU

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRO

WO: 0001237478

Profile: M15-2829/132 DINGENS SITE,LLC - Manifest: LFS-39

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin Materials & Services Quantity Unit

140200/Buffalo DC DEC Approved Waste 20.15 TON

Driver:				Weighmaster:	Nah I alma
Dillar.	 	_		WEIGHT WAREL.	Dep Penna

Truck: A62-TA

Ticket: 1002494982 Date: 10/14/2015

Time: 09:00:17 - 09:11:27

Scale

Gross: 72280 POUIn Tare: 28740 POUOut Scale OUTBO

Scale INBOUN

Net: 43540 POU

WO: 0001237479 Profile: M15-2829/132 DINGENS SITE, LLC Manifest: LFS40

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LCA-001/LCA DEVELOPMENT

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin Materials & Services Quantity Unit 140200/Buffalo DC DEC Approved Waste TON 21.77

Truck Type: TA

Driver:

Weighmaster: Deb Lehman

Route: BROKER/SUB OUT VARIOUS BRC

Truck: A64-TA

Ticket: 1002495031 Date: 10/14/2015 Time: 10:15:20 - 10:15:53

Scale

83040 POU In Scale INBOUN Gross:

P.T.

Tare: 29140 POU

Net: 53900 POU

Route: BROKER/SUB OUT VARIOUS BRO

WO: 0001237480

Profile: M15-2829/132 DINGENS SITE,LLC - Manifest: LFS43

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LCA-001/LCA DEVELOPMENT

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment

Origin	Materials & Services	Quantity Unit	
140200/Buffalo	DC DEC Approved Waste	. 26.95 TON	•

Truck Type: TA

Driver: _ Weighmaster: Deb Lehman

Truck: L65-TA

Ticket: 1002495042 Date: 10/14/2015 Time: 10:37:24 - 10:37:54

Scale

82560 POUIn

Scale INBOUN P.T.

Tare: 29140 POU

Gross:

Net: 53420 POU

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRC

WO: 0001237481

Profile: M15-2829/132 DINGENS SITE,LLC Manifest: LFS43

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LCA-001/LCA DEVELOPMENT

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin Materials & Services Quantity Unit 140200/Buffalo DC DEC Approved Waste 26.71 TON

Driver: _

Truck: A62-TA

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LCA-001/LCA DEVELOPMENT

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRC

Profile: M15-2829/132 DINGENS SITE, LLC Manifest: LFS43

Gross:

Tare:

Net:

Ticket: 1002495075

Date: 10/14/2015

85180 POUIn

56220 POU

Time: 11:04:41 - 11:22:16

Scale

28960 POUOut Scale OUTBO

Scale INBOUN

WO: 0001237482

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin	Materials & Services	Quantity Unit	******
140200/Buffalo	DC DEC Approved Waste	28.11 TON	

Truck: L65-TA

Ticket: 1002495122 Date: 10/14/2015 Time: 12:38:08 - 12:39:05

Scale

79160 POUIn Scale INBOUN

P.T.

Tare: 29140 POU

Net: 50020 POU

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRC

WO: 0001237483

Profile: M15-2829/132 DINGENS SITE,LLC Manifest: LFS43

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LCA-001/LCA DEVELOPMENT

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin	Materials & Services	Quantity	Unit
140200/Buffalo	DC DEC Approved Waste	25.01	TON

Truck: A64-TA

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LCA-001/LCA DEVELOPMENT

Ticket: 1002494689 Date: 10/13/2015

Time: 12:24:45 - 12:25:14

Scale

Gross: 69640 POU In Scale INBOUN Tare: 29140 POU

P.T.

Net: 40500 POU

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRO

WO: 0001236784

Profile: M15-2829/132 DINGENS SITE, LLC - Manifest: LFS-35

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin Materials & Services Quantity Unit 140200/Buffalo DC DEC Approved Waste 20.25 TON

Driver:

Truck: L49-TA

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LCA-001/LCA DEVELOPMENT

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRC

WO: 0001236785

Ticket: 1002494718

Date: 10/13/2015

72800 POUIn

27760 POU

45040 POU

Time: 13:00:38 - 13:01:04

Scale

Scale INBOUN

P.T.

Profile: M15-2829/132 DINGENS SITE, LLC Manifest: LFS35 Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin

Materials & Services

Quantity Unit

140200/Buffalo

DC DEC Approved Waste

22.52

TON

Gross:

Tare:

Net:

Truck: A54-TA

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LCA-001/LCA DEVELOPMENT

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRC

WO: 0001236786

Profile: M15-2829/132 DINGENS SITE, LLC - Manifest: LSF35

Gross:

Net:

Tare: 27660 POU

43900 POU

Ticket: 1002494728 Date: 10/13/2015

Time: 13:06:57 - 13:07:26

Scale

P.T.

71560 POU In Scale INBOUN

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment

Origin Materials & Services Quantity Unit 140200/Buffalo 21.95 DC DEC Approved Waste TON

Driver:

Truck: L45-TANDEM

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LCA-001/LCA DEVELOPMENT

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRO

WO: 0001236787

Scale

73300 POU In Scale INBOUN

28260 POU Out Scale OUTBOI

Ticket: 1002494779

Date: 10/13/2015

Time: 13:52:59 - 14:06:31

45040 POU

Profile: M15-2829/132 DINGENS SITE/LLC - Manifest: LSF36

Gross:

Tare:

Net:

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin Materials & Services Quantity Unit

140200/Buffalo DC DEC Approved Waste 22.52 TON

Driver: _____ Weighmester: Kevin Vendetta

Truck: PARISO-233

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: PARI-003/PARISO INC. CARMEN

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRC

Profile: M15-2829/132 DINGENS SITE,LLC - Manifest: LSF 36

WO: 0001236788

Ticket: 1002494800 Date: 10/13/2015 Time: 14:31:56 - 14:32:33

Gross:

Net:

Tare: 26880 POU

46240 POU

Scale

73120 POU In Scale INBOUN

P.T.

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Materials & Services Quantity Unit Origin 140200/Buffalo DC DEC Approved Waste 23.12 TON

Weighmaster: Deb Lehman Driver:

Truck: PARISO-233

1445 Pletcher Road Model City, NY 14107 (716) 754-8226

Ticket: 1002494554 Date: 10/13/2015 Time: 09:23:40 - 09:24:15

Scale

80520 POU In Scale INBOUN Gross:

P.T.

Tare:

26880 POU

Net: 53640 POU

Route: BROKER/SUB OUT VARIOUS BRO

WO: 0001236779

Profile: M15-2829/132 DINGENS SITE,LLC - Manifest: LFS43

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: PARI-003/PARISO INC. CARMEN

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin Materials & Services Quantity Unit 140200/Buffalo DC DEC Approved Waste 26.82 TON

Truck Type: TA

Truck: A64-TA

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LCA-001/LCA DEVELOPMENT

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRC

Profile: M15-2829/132 DINGENS SITELLIC Manifest: LFS-34

WO: 0001236780

Ticket: 1002494602

Date: 10/13/2015

Gross: 65220 POUln

Tare: 29140 POU

Net: 36080 POU

Time: 10:16:06 - 10:16:41

Scale

Scale INBOUN

P.T.

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Materials & Services Origin Quantity Unit 140200/Buffalo DC DEC Approved Waste 18.04 TON

Truck: L49-TA

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LCA-001/LCA DEVELOPMENT

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRC

Ticket: 1002494619

Date: 10/13/2015

27760 POU

41280 POU

Gross:

Tare:

Net

Time: 10:49:10 - 10:49:51

Scale

69040 POU In Scale INBOUN

P.T.

WO: 0001236781

Profile: M15-2829/132 DINGENS SITE,LLC -

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin	Materials & Services	Quantity (Juit
140200/Buffalo	DC DEC Approved Waste	20.64	TON

Truck: A54-TA

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LCA-001/LCA DEVELOPMENT

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRO

Profile: M15-2829/132 DINGENS SITELLLC -

Gross:

Tare:

Net:

Ticket: 1002494624 Date: 10/13/2015

27660 POU

33920 POU

Time: 10:54:04 - 10:54:39

Scale

61580 POU In Scale INBOUN

P.T.

WO: 0001236782

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC Comment:

 Origin
 Materials & Services
 Quantity
 Unit

 140200/Buffalo
 DC DEC Approved Waste
 16.96
 TON

Driver:

Truck: PARISO-233

Carrier: PARI-003/PARISO INC. CARMEN

Customer: 0250310002/MODERN DISPOSAL ROI

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRO

WO: 0001236783 Profile: M15-2829/132 DINGENS SITE, LLC - Manifest: LFS-35

Tare:

Ticket: 1002494654

Date: 10/13/2015

26880 POU

Net: 42120 POU

Time: 11:29:37 - 11:30:19

Gross: 69000 POU In Scale INBOUN

Scale

P.T.

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin Materials & Services Quantity Unit 140200/Buffalo DC DEC Approved Waste 21.06 TON

Driver:

Truck: PARISO-109

Customer: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Carrier: PARI-004/PARISO, B TRANSPORT

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRC

Ticket: 1002494801

Date: 10/13/2015

62720 POUIn

25320 POU

37400 POU

Gross:

Tare:

Net:

Time: 14:33:26 - 14:34:11

Scale

Scale INBOUN

P.T.

WO: 0001236789

Profile: M15-2829/132 DINGENS SITE,LLC

Generator: 0250310002/MODERN DISPOSAL ROI

Comment:

Origin Materials & Services Quantity Unit 140200/Buffalo DC DEC Approved Waste 18.70 TON

Truck: PARISO-223

1445 Pletcher Road Model City, NY 14107 (716) 754-8226

Ticket: 1002498433 Date: 10/26/2015

Time: 08:41:16 - 08:42:40

Scale

64820 POUIn Gross: Scale INBOUN

Tare: 26720 POU

38100 POU Net:

Truck Type: TA

Route: PARISO/PARISO

WO: 0001243213

P.T.

Profile: M15-2829/132 DINGENS SITE,LLC Manifest: LFS41T

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: PARI-003/PARISO INC. CARMEN

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Materials & Services Quantity Unit Origin 19.05 140200/Buffalo DC DEC Approved Waste TON

Weighmaster: Deb Lehman Driver:

Truck: LARABA-97

1445 Pletcher Road Model City, NY 14107 (716) 754-8226

Ticket: 1002498449

Date: 10/26/2015

Time: 09:02:17 - 09:03:51

Scale

Gross: 66300 POUIn Tare: 29180 POU

Scale INBOUN P.T.

37120 POU Net:

Route: BROKER/SUB OUT VARIOUS BRC WO: 0001243214 Profile: M15-2829/132 DINGENS SITE,LLC Manifest: LFS41T

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LARAB-001/LARABA ENTERPRIS

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin Materials & Services Quantity Unit 140200/Buffalo DC DEC Approved Waste 18.56 TON

Truck Type: TA

Driver:

Truck: LARABA-99

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LARAB-001/LARABA ENTERPRI!

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BROKER/SUB OUT

Time: 09:14:29 - 09:14:54

Scale

In Scale INBOUN

P.T.

WO: 0001243215

Ticket: 1002498462

Date: 10/26/2015

66020 POU

30540 POU

35480 POU

Gross:

Tare:

Net:

Profile: M15-2829/132 DINGENS SITE,LLC -

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin Materials & Services Quantity Unit 140200/Buffalo TON DC DEC Approved Waste 17.74

Weighmaster: Deb Lehman Driver:

Truck: LARABA-98

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LARAB-001/LARABA ENTERPRIS

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRO

Profile: M15-2829/132 DINGENS SITE,LLC -

Gross:

Tare:

Net:

Ticket: 1002498474 Date: 10/26/2015

63000 POU

28000 POU

35000 POU

Time: 09:30:46 - 09:31:26

Scale

In Scale INBOUN

P.T.

WO: 0001243216

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Materials & Services Origin Quantity Unit 140200/Buffalo DC DEC Approved Waste 17.50 TON

Weighmaster: Deb Lehman Driver:

Truck: PARISO-223

1445 Pletcher Poad Model Cay, NY 14107 (716) 754-8226 115 (1186) 10 (1011) 1811 | 1811 | 1812 | 1814 | 1816 | 1816 | 1816 | 1816 | 1816 | 1816 | 1816 | 1816 | 181

Ticket: 1002498532 Date: 10/26/2015

Time: 10:44:31 - 10:45:21

Scale

Gross:

Net:

74180 POUIn

Scale INBOUN

РΤ

Tare: 2

26720 POU

47460 POU

Customer: 0250310002/MODERN DISPOSAL ROI

Truck Type: TA

Route: PARISO/PARISO

Profile: M15-2829/132 DINGENS SITE,LLC

WO: 0001243217 Manifest: LFS41T

Generator: 0250310002/MODERN DISPOSAL ROI

Carrier: PARI-003/PARISO INC. CARMEN

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin Materials & Services Quantity Unit

140200/Buffalo DC DEC Approved Waste 23.73 TON

Driver: _____ Weighmaster: Deb Lehman

Truck: LARABA-97

1445 Pletcher Road Model @ 14107 (716) 754-8226

Ticket: 1002498557 Date: 10/26/2015

Time: 11:07:21 - 11:08:35

Scale

Gross:

77160 POUIn

Scale INBOUN

P.T.

Tare:

29180 POU

Net:

47980 POU

Route: BROKER/SUB OUT VARIOUS BRC

WO: 0001243218

Profile: M15-2829/132 DINGENS SITE,LLC

Manifest: LFS48

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LARAB-001/LARABA ENTERPRI:

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin Materials & Services Quantity Unit 140200/Buffalo DC DEC Approved Waste 23.99 TON

Truck Type: TA

Driver:

Truck: LARABA-99

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LARAB-001/LARABA ENTERPRI!

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRO

Ticket: 1002498574

Date: 10/26/2015

72460 POU

30540 POU

41920 POU

Time: 11:39:12 - 11:39:34

Scale

In Scale INBOUN

P.T.

WO: 0001243219

Profile: M15-2829/132 DINGENS SITE, LLC - Manifest: LFS48

Gross:

Tare:

Net:

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Materials & Services Origin Quantity Unit 140200/Buffalo DC DEC Approved Waste 20.96 TON

Truck: LARABA-98

1445 Pletcher Road Model City, NY 14107 (716) 754-8226

Ticket: 1002498577 Date: 10/26/2015

Time: 11:40:53 - 11:41:22

Scale

67840 POUIn Gross: Scale INBOUN

Tare: 28000 POU

P.T.

39840 POU Net:

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRC Profile: M15-2829/132 DINGENS SITE,LLC

WO: 0001243220

Manifest: LFS48

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LARAB-001/LARABA ENTERPRI:

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Materials & Services Quantity Unit Origin 140200/Buffalo DC DEC Approved Waste 19.92 TON

Truck: PARISO-223

1445 Plancher Road Model City, NY 14107 (716) 754-8226

Ticket: 1002498635 Date: 10/26/2015 Time: 12:58:27 - 12:59:17

Scale

Gross: 69100 POU

In Scale INBOUN

Tare: 26720 POU P.T.

Net:

Profile: M15-2829/132 DINGENS SITE, LLC - Manifest: LFS40

42380 POU

WO: 0001243221

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: PARI-003/PARISO INC. CARMEN

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Materials & Services Origin Quantity Unit DC DEC Approved Waste 21.19 TON 140200/Buffalo

Truck Type: TA

Route: PARISO/PARISO

Driver:

Truck: LARABA-97

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LARAB-001/LARABA ENTERPRI:

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BROKER/SUB OUT

Profile: M15-2829/132 DINGENS SITE.LLC -

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

140200/Buffalo

Materials & Services Origin

DC DEC Approved Waste

Quantity Unit

20.49

TON

Gross:

Tare:

Net:

Ticket: 1002498665

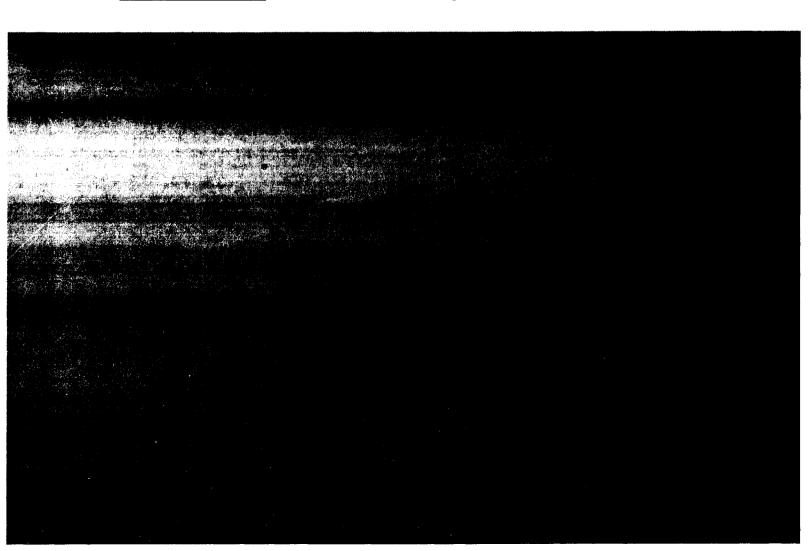
Date: 10/26/2015

70160 POU

29180 POU

40980 POU

Time: 13:26:13 - 13:26:30


Scale

In Scale INBOUN

P.T.

WO: 0001243222

Driver:

Ticket: 1002498686

Date: 10/26/2015 Time: 13:55:07 - 13:55:44

Scale

P.T.

WO: 0001243223

Gross:

68640 POU

In Scale INBOUN

Tare:

30540 POU

38100 POU Net:

Profile: M15-2829/132 DINGENS SITE, LLC - Manifest: LFS48

Route: BROKER/SUB OUT VARIOUS BROKER/SUB OUT

Generator: 0250310002/MODERN DISPOSAL ROI

Truck: LARABA-99

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LARAB-001/LARABA ENTERPRI:

Comment:

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Materials & Services Quantity Unit Origin 19.05 TON 140200/Buffalo DC DEC Approved Waste

Truck Type: TA

Driver:

Truck: LARABA-98

1445 Pletcher Road Model City, NY 14107 (716) 754-8226

Ticket: 1002498699

Date: 10/26/2015

Time: 14:10:46 - 14:11:18

Scale

Gross:

58480 POU In Scale INBOUN

28000 POU Tare:

P.T.

30480 POU

Net:

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BROKER/SUB OUT

15.24

WO: 0001243224

Profile: M15-2829/132 DINGENS SITE, LLC - Manifest: LFS48

TON

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LARAB-001/LARABA ENTERPRIS

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

DC DEC Approved Waste

Comment:

140200/Buffalo

Materials & Services Origin Quantity Unit

Weighmaster: Deb Lehman Driver:

Truck: PARISO-223

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: PARI-003/PARISO INC. CARMEN

Truck Type: TA

Route: PARISO/PARISO

Profile: M15-2829/132 DINGENS SITE, LLC - Manifest: LFS48

Gross:

Tare:

Net:

Scale

In Scale INBOUN

P.T.

WO: 0001243225

Time: 15:10:56 - 15:11:28

Ticket: 1002498750 Date: 10/26/2015

71440 POU

26720 POU

44720 POU

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Materials & Services Origin Quantity Unit 140200/Buffalo DC DEC Approved Waste 22.36 TON

Truck: LARABA-97

1445 Pletcher Road Model City, NY 14107 (716) 754-8226

Ticket: 1002498766 Date: 10/26/2015 Time: 15:29:35 - 15:29:58

Scale

Gross:

69360 POU

In Scale INBOUN

29180 POU

P.T.

Tare:

40180 POU Net:

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRO

WO: 0001243226

Profile: M15-2829/132 DINGENS SITE, LLC - Manifest: LFS48

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: MDS-001/MODERN DISPOSAL

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Materials & Services Origin Quantity Unit 140200/Buffalo DC DEC Approved Waste 20.09 TON

Driver:

Truck: LARABA-99

Model City, NY 14107 (716) 754-8226

Ticket: 1002498803 Date: 10/26/2015

Time: 16:12:43 - 16:13:05

Scale

Gross:

69380 POUIn

Scale INBOUN P.T.

Tare:

30540 POU

38840 POU

WO: 0001243227

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRC

Profile: M15-2829/132 DINGENS SITE,LLC

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LARAB-001/LARABA ENTERPRIS

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin Materials & Services Quantity Unit 19.42 TON 140200/Buffalo DC DEC Approved Waste

Driver:

Truck: LARABA-98

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: LARAB-001/LARABA ENTERPRI!

DINGID COMPENSAGE DITENTION

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRO

Profile: M15-2829/132 DINGENS SITE,LLC -

Scale

In Scale INBOUN

P.T.

WO: 0001243228

Date: 10/26/2015 Time: 16:23:55 - 16:24:57

Ticket: 1002498809

64940 POU

28000 POU

36940 POU

Gross:

Tare:

Net:

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin Materials & Services Quantity Unit

140200/Buffalo DC DEC Approved Waste 18.47 TON

Driver:

Truck: PARISO-223

1445 Pletcher Road Model City, NY 14107 (716) 754-8226

Ticket: 1002498880 Date: 10/27/2015

Time: 08:37:21 - 08:37:48

Scale

Gross:

66220 POUIn

Scale INBOUN

26720 POU

P.T.

Tare:

39500 POU Net:

WO: 0001244760

Profile: M15-2829/132 DINGENS SITE,LLC

Route: PARISO/PARISO

Manifest: LFS47

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: PARI-003/PARISO INC. CARMEN

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin Materials & Services Quantity Unit 140200/Buffalo DC DEC Approved Waste 19.75 TON

Truck Type: TA

Driver:

Truck: PARISO-26

1445 Pletcher Road Model Sity, NY 14107 (716) 754-8226

Ticket: 1002498904 Date: 10/27/2015

Time: 09:04:37 - 09:06:07

Scale

Gross:

62160 POUIn

Scale INBOUN

Tare:

25180 POU

36980 POU

P.T.

Net:

Truck Type: TA Carrier: PARI-002/Pariso Hauling

Route: BROKER/SUB OUT VARIOUS BRC WO: 0001244761 Profile: M15-2829/132 DINGENS SITE, LLC Manifest: LFS47

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Materials & Services Origin Quantity Unit 140200/Buffalo DC DEC Approved Waste 18.49 TON

Truck: PARISO-223

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: PARI-003/PARISO INC. CARMEN

Truck Type: TA

Route: PARISO/PARISO

Profile: M15-2829/132 DINGENS SITE,LLC -

Generator: 0250310002/MODERN DISPOSAL ROI

Comment:

Origin Materials & Services

140200/Buffalo DC DEC Approved Waste

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Quantity Unit

20.29 TON

Gross:

Tare:

Net:

Ticket: 1002498985

Date: 10/27/2015

67300 POU

26720 POU

40580 POU

Time: 10:50:10 - 10:50:33

Scale

In Scale INBOUN

P.T.

WO: 0001244762

Driver:

1445 Road Model City, NY 14107 (716) 754-8226

Truck: PARISO-26

Carrier: PARI-002/Pariso Hauling

Customer: 0250310002/MODERN DISPOSAL ROI

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BR(

Profile: M15-2829/132 DINGENS SITE,LLC -

WO: 0001244763

In Scale INBOUN

P.T.

Scale

Ticket: 1002499019

Date: 10/27/2015 Time: 11:22:35 - 11:22:55

64680 POU

25180 POU

39500 POU

Gross:

Tare:

Net:

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin Materials & Services Quantity Unit

140200/Buffalo DC DEC Approved Waste 19.75 TON

Driver: _____ Weighmaster: Deb Lehman

Truck: PARISO-223

1445 Pletcher Road Model City NY 14107 (716) 754-8226

Ticket: 1002499092 Date: 10/27/2015

Time: 13:14:29 - 13:14:56

Scale

Gross: 68160 POUIn Scale INBOUN

26720 POU P.T.

Net: 41440 POU

Tare:

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: PARI-003/PARISO INC. CARMEN

Truck Type: TA

Route: PARISO/PARISO

WO: 0001244764

Profile: M15-2829/132 DINGENS SITE,LLC

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin Materials & Services Quantity Unit 20.72 TON DC DEC Approved Waste 140200/Buffalo

Driver:

Ticket: 1002500510

Date: 11/2/2015 Time: 09:27:17 - 09:27:57

Scale

Gross: 71420 POU In Scale INBOUN

26260 POU

P.T.

Tare: Net:

45160 POU

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRO

Profile: M15-2829/132 DINGENS SITE,LLC -

WO: 0001246922

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: PARI-004/PARISO, B TRANSPORT

Truck: PARISO-104

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin Materials & Services Quantity Unit 140200/Buffalo 22.58 DC DEC Approved Waste TON

Driver: ___

Truck: PARISO-104

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: PARI-004/PARISO, B TRANSPORT

Truck Type: TA

Route: BROKER/SUB OUT VARIOUS BRO

Profile: M15-2829/132 DINGENS SITE, LLC - Manifest: LFS47

Gross:

Tare:

Time: 12:00:18 - 12:00:52

Scale 73300 POU In Scale INBOUN

P.T.

WO: 0001246923

Ticket: 1002500622

Date: 11/2/2015

26260 POU

Net: 47040 POU

Generator: 0250310002/MODERN DISPOSAL ROI

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin Materials & Services Quantity Unit 140200/Buffalo DC DEC Approved Waste 23.52 TON

Driver: _

Truck: PARISO-104

1445 Pletcher Road Model City, NY 14107 (716) 754-8226

Ticket: 1002500745

Date: 11/2/2015

Time: 14:34:55 - 14:36:03

Gross:

84940 POU In Scale INBOUN

Tare: 26260 POU

P.T.

Net: 58680 POU

Truck Type: TA Route: BROKER/SUB OUT VARIOUS BRO

WO: 0001246924

Profile: M15-2829/132 DINGENS SITE, LLC - Manifest: LFS47

Generator: 0250310002/MODERN DISPOSAL ROI

Customer: 0250310002/MODERN DISPOSAL ROI

Carrier: PARI-004/PARISO, B TRANSPORT

Service Site: 0000980122 PINTO CONSTRUCTION SERVICE INC

Comment:

Origin Materials & Services Quantity Unit 140200/Buffalo DC DEC Approved Waste 29.34 TON

Driver:

Weighmaster: Deb Lehman

APPENDIX F-5 LABORATORY REPORTS (Digital Copy on CD)

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-86937-1 Client Project/Site: 132 Dingens

For:

Iyer Environmental Group, LLC 44 Rolling Hills Drive Orchard Park, New York 14127

Attn: Dr. Dharmarajan R Iyer

Zi-

Authorized for release by: 9/14/2015 4:19:21 PM Rebecca Jones, Project Management Assistant I rebecca.jones@testamericainc.com

Designee for

Melissa Deyo, Project Manager I (716)504-9874 melissa.deyo@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	9
Lab Chronicle	10
Certification Summary	11
Method Summary	12
Sample Summary	13
Chain of Custody	14
Receipt Checklists	15

-5

4

6

8

9

11

12

Definitions/Glossary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-86937-1

3

Qualifiers

Metals

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)
PQL Practical Quantitation Limit

QC Quality Control

RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TestAmerica Buffalo

Page 3 of 15

9/14/2015

Case Narrative

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-86937-1

Job ID: 480-86937-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-86937-1

Receipt

The samples were received on 9/9/2015 4:30 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 22.5° C.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method(s) 1311: Insufficient sample was provided to perform the leaching procedure with the required 100g for the following samples: LFS-25 (480-86937-2). The volume of leaching fluid was adjusted proportionally to maintain a 20:1 ratio of leaching fluid to weight of sample. Reporting limits (RLs) are not affected.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

1

4

J

6

7

8

9

1.0

13

Detection Summary

Client: Iyer Environmental Group, LLC

Client Sample ID: LFS-18-T

Project/Site: 132 Dingens

TestAmerica Job ID: 480-86937-1

Lab Sample ID: 480-86937-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.016		0.015	0.0056	mg/L		_	6010C	TCLP
Barium	0.34	J	1.0	0.10	mg/L	1		6010C	TCLP
Chromium	0.13		0.020	0.010	mg/L	1		6010C	TCLP
Lead	0.0078	J	0.020	0.0030	mg/L	1		6010C	TCLP

Client Sample ID: LFS-25 Lab Sample ID: 480-86937-2

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac [Method	Prep Type
Barium	2.2	1.0	0.10	mg/L		6010C	TCLP
Cadmium	0.051	0.0020	0.00050	mg/L	1	6010C	TCLP
Lead	3.5	0.020	0.0030	mg/L	1	6010C	TCLP

Client Sample ID: LFS-26 Lab Sample ID: 480-86937-3

Analyte	Result Qualifier	r RL	MDL	Unit	Dil Fac	D Method	Prep Type
Arsenic	0.096	0.015	0.0056	mg/L		6010C	TCLP
Barium	1.5	1.0	0.10	mg/L	1	6010C	TCLP
Lead	0.035	0.020	0.0030	mg/L	1	6010C	TCLP

Lab Sample ID: 480-86937-1

<u>09/11/15 11:50</u> <u>09/11/15 16:03</u>

Matrix: Solid

Date Collected: 09/09/15 00:00 Date Received: 09/09/15 16:30

Client Sample ID: LFS-18-T

Method: 6010C - Metal Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.016		0.015	0.0056	mg/L		09/11/15 10:40	09/14/15 12:47	1
Barium	0.34	J	1.0	0.10	mg/L		09/11/15 10:40	09/14/15 12:47	1
Cadmium	ND		0.0020	0.00050	mg/L		09/11/15 10:40	09/14/15 12:47	1
Chromium	0.13		0.020	0.010	mg/L		09/11/15 10:40	09/14/15 12:47	1
Lead	0.0078	J	0.020	0.0030	mg/L		09/11/15 10:40	09/14/15 12:47	1
Selenium	ND		0.025	0.0087	mg/L		09/11/15 10:40	09/14/15 12:47	1
Silver	ND		0.0060	0.0017	mg/L		09/11/15 10:40	09/14/15 12:47	1
Method: 7470A - Merc	ury (CVAA) - TCLP								
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Lab Sample ID: 480-86937-2 **Client Sample ID: LFS-25** Date Collected: 09/09/15 00:00 **Matrix: Solid**

0.00020

0.00012 mg/L

ND

Date Received: 09/09/15 16:30

Mercury

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND ND	0.015	0.0056	mg/L		09/11/15 10:40	09/14/15 12:50	1
Barium	2.2	1.0	0.10	mg/L		09/11/15 10:40	09/14/15 12:50	1
Cadmium	0.051	0.0020	0.00050	mg/L		09/11/15 10:40	09/14/15 12:50	1
Chromium	ND	0.020	0.010	mg/L		09/11/15 10:40	09/14/15 12:50	1
Lead	3.5	0.020	0.0030	mg/L		09/11/15 10:40	09/14/15 12:50	1
Selenium	ND	0.025	0.0087	mg/L		09/11/15 10:40	09/14/15 12:50	1
Silver	ND	0.0060	0.0017	mg/L		09/11/15 10:40	09/14/15 12:50	1

Method: 7470A - Mercury (CVAA) - TCLP										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Mercury	ND		0.00020	0.00012	mg/L		09/11/15 11:50	09/11/15 16:04	1

Client Sample ID: LFS-26 Lab Sample ID: 480-86937-3 **Matrix: Solid**

Date Collected: 09/09/15 00:00 Date Received: 09/09/15 16:30

Date Neceived. 03/03/13 10.30									

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.096		0.015	0.0056	mg/L		09/11/15 10:40	09/14/15 12:53	1
Barium	1.5		1.0	0.10	mg/L		09/11/15 10:40	09/14/15 12:53	1
Cadmium	ND		0.0020	0.00050	mg/L		09/11/15 10:40	09/14/15 12:53	1
Chromium	ND		0.020	0.010	mg/L		09/11/15 10:40	09/14/15 12:53	1
Lead	0.035		0.020	0.0030	mg/L		09/11/15 10:40	09/14/15 12:53	1
Selenium	ND		0.025	0.0087	mg/L		09/11/15 10:40	09/14/15 12:53	1
Silver	ND		0.0060	0.0017	mg/L		09/11/15 10:40	09/14/15 12:53	1

Method: 7470A - Mercury (CVAA) - TCLP								
	Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
	Mercury	ND	0.00020	0.00012 mg/L		09/11/15 11:50	09/11/15 16:06	1

TestAmerica Buffalo

TestAmerica Job ID: 480-86937-1

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-263081/2-A

Matrix: Solid

Analysis Batch: 263471

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 263081

	MR I	MR							
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND ND		0.015	0.0056	mg/L		09/11/15 10:40	09/14/15 12:17	1
Barium	ND		1.0	0.10	mg/L		09/11/15 10:40	09/14/15 12:17	1
Cadmium	ND		0.0020	0.00050	mg/L		09/11/15 10:40	09/14/15 12:17	1
Chromium	ND		0.020	0.010	mg/L		09/11/15 10:40	09/14/15 12:17	1
Lead	ND		0.020	0.0030	mg/L		09/11/15 10:40	09/14/15 12:17	1
Selenium	ND		0.025	0.0087	mg/L		09/11/15 10:40	09/14/15 12:17	1
Silver	ND		0.0060	0.0017	mg/L		09/11/15 10:40	09/14/15 12:17	1

Lab Sample ID: LCS 480-263081/3-A

Matrix: Solid

Analysis Batch: 263471

Client Sample ID: Lab Control Sample

Prep Type: Total/NA **Prep Batch: 263081**

%Rec.

LCS LCS Spike Added Analyte Result Qualifier Unit D %Rec Limits Arsenic 1.00 80 - 120 1.11 mg/L 111 Barium 1.00 1.04 mg/L 104 80 - 120 107 Cadmium 1.00 1.07 mg/L 80 - 120 Chromium 1.00 1.01 101 80 - 120 mg/L Lead 1.00 1.06 mg/L 106 80 - 120 Selenium 1.00 1.15 mg/L 115 80 - 120 Silver 1.00 114 80 - 120 1.14 mg/L

Lab Sample ID: LB 480-262833/1-B

Matrix: Solid

Analysis Batch: 263471

Client Sample ID: Method Blank

Prep Type: TCLP Prep Batch: 263081

MDL Unit Analyte Result Qualifier RL Prepared Analyzed Dil Fac 09/11/15 10:40 09/14/15 12:14 Arsenic ND 0.015 0.0056 mg/L Barium ND 0.10 mg/L 09/11/15 10:40 09/14/15 12:14 1.0 ND 0.0020 0.00050 mg/L 09/11/15 10:40 09/14/15 12:14 Cadmium Chromium ND 0.020 0.010 mg/L 09/11/15 10:40 09/14/15 12:14 Lead ND 0.0030 mg/L 09/11/15 10:40 09/14/15 12:14 0.020

0.025

0.0060

0.0087 mg/L

0.0017 mg/L

LB LB

ND

ND

Lab Sample ID: 480-86937-3 MS

Matrix: Solid

Selenium

Silver

Analysis Batch: 263471

Client Sample ID: LFS-26 **Prep Type: TCLP**

09/11/15 10:40 09/14/15 12:14

09/11/15 10:40 09/14/15 12:14

Prep Batch: 263081

_	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	0.096		1.00	1.18		mg/L		108	75 - 125	
Barium	1.5		1.00	2.46		mg/L		95	75 - 125	
Cadmium	ND		1.00	1.06		mg/L		106	75 - 125	
Chromium	ND		1.00	0.947		mg/L		95	75 - 125	
Lead	0.035		1.00	1.08		mg/L		104	75 - 125	
Selenium	ND		1.00	1.12		mg/L		112	75 - 125	
Silver	ND		1.00	1.10		mg/L		110	75 - 125	

TestAmerica Buffalo

Page 7 of 15

TestAmerica Job ID: 480-86937-1

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Selenium

Silver

Method: 6010C - Metals (ICP) (Continued)

ND

ND

ND

Lab Sample ID: 480-86937-3 Matrix: Solid Analysis Batch: 263471	3 MSD							Clie	ent Sampl Prep Prep Ba	Type:	TCLP
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	0.096		1.00	1.16		mg/L		107	75 - 125	1	20
Barium	1.5		1.00	2.43		mg/L		92	75 - 125	1	20
Cadmium	ND		1.00	1.05		mg/L		105	75 - 125	1	20
Chromium	ND		1.00	0.943		mg/L		94	75 - 125	0	20
Lead	0.035		1.00	1.07		mg/L		104	75 - 125	0	20

1.09

1.10

mg/L

mg/L

mg/L

109

110

75 - 125

75 - 125

2

20

20

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 480-263101/2-A **Client Sample ID: Method Blank Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 263169 Prep Batch: 263101** MB MB

1.00

1.00

Result Qualifier RL **MDL** Unit Analyte Prepared Analyzed Dil Fac 09/11/15 11:50 09/11/15 15:52 0.00020 0.00012 mg/L Mercury ND

Lab Sample ID: LCS 480-263101/3-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 263169 Prep Batch: 263101** LCS LCS Spike %Rec. Analyte Added Result Qualifier Limits Unit D %Rec Mercury 0.00668 0.00578 87 80 - 120 mg/L

Lab Sample ID: LB 480-262833/1-C **Client Sample ID: Method Blank Matrix: Solid Prep Type: TCLP**

Analysis Batch: 263169

Mercury

LB LB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Mercury 0.00020 0.00012 mg/L 09/11/15 11:50 09/11/15 15:50

Lab Sample ID: 480-86937-3 MS Client Sample ID: LFS-26 **Matrix: Solid Prep Type: TCLP Analysis Batch: 263169 Prep Batch: 263101** MS MS Sample Sample Spike %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits

0.00615

0.00668

Lab Sample ID: 480-86937-3 MSD **Client Sample ID: LFS-26 Matrix: Solid Prep Type: TCLP Analysis Batch: 263169 Prep Batch: 263101** Spike MSD MSD %Rec. **RPD** Sample Sample

Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit ND 0.00668 92 80 - 120 Mercury 0.00615 mg/L 0

TestAmerica Buffalo

9/14/2015

Prep Batch: 263101

80 - 120

TestAmerica Job ID: 480-86937-1

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Metals

Leach Batch: 262833

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-86937-1	LFS-18-T	TCLP	Solid	1311	
480-86937-2	LFS-25	TCLP	Solid	1311	
480-86937-3	LFS-26	TCLP	Solid	1311	
480-86937-3 MS	LFS-26	TCLP	Solid	1311	
480-86937-3 MSD	LFS-26	TCLP	Solid	1311	
LB 480-262833/1-B	Method Blank	TCLP	Solid	1311	
LB 480-262833/1-C	Method Blank	TCLP	Solid	1311	

Prep Batch: 263081

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-86937-1	LFS-18-T	TCLP	Solid	3010A	262833
480-86937-2	LFS-25	TCLP	Solid	3010A	262833
480-86937-3	LFS-26	TCLP	Solid	3010A	262833
480-86937-3 MS	LFS-26	TCLP	Solid	3010A	262833
480-86937-3 MSD	LFS-26	TCLP	Solid	3010A	262833
LB 480-262833/1-B	Method Blank	TCLP	Solid	3010A	262833
LCS 480-263081/3-A	Lab Control Sample	Total/NA	Solid	3010A	
MB 480-263081/2-A	Method Blank	Total/NA	Solid	3010A	

Prep Batch: 263101

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-86937-1	LFS-18-T	TCLP	Solid	7470A	262833
480-86937-2	LFS-25	TCLP	Solid	7470A	262833
480-86937-3	LFS-26	TCLP	Solid	7470A	262833
480-86937-3 MS	LFS-26	TCLP	Solid	7470A	262833
480-86937-3 MSD	LFS-26	TCLP	Solid	7470A	262833
LB 480-262833/1-C	Method Blank	TCLP	Solid	7470A	262833
LCS 480-263101/3-A	Lab Control Sample	Total/NA	Solid	7470A	
MB 480-263101/2-A	Method Blank	Total/NA	Solid	7470A	

Analysis Batch: 263169

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-86937-1	LFS-18-T	TCLP	Solid	7470A	263101
480-86937-2	LFS-25	TCLP	Solid	7470A	263101
480-86937-3	LFS-26	TCLP	Solid	7470A	263101
480-86937-3 MS	LFS-26	TCLP	Solid	7470A	263101
480-86937-3 MSD	LFS-26	TCLP	Solid	7470A	263101
LB 480-262833/1-C	Method Blank	TCLP	Solid	7470A	263101
LCS 480-263101/3-A	Lab Control Sample	Total/NA	Solid	7470A	263101
MB 480-263101/2-A	Method Blank	Total/NA	Solid	7470A	263101

Analysis Batch: 263471

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-86937-1	LFS-18-T	TCLP	Solid	6010C	263081
480-86937-2	LFS-25	TCLP	Solid	6010C	263081
480-86937-3	LFS-26	TCLP	Solid	6010C	263081
480-86937-3 MS	LFS-26	TCLP	Solid	6010C	263081
480-86937-3 MSD	LFS-26	TCLP	Solid	6010C	263081
LB 480-262833/1-B	Method Blank	TCLP	Solid	6010C	263081
LCS 480-263081/3-A	Lab Control Sample	Total/NA	Solid	6010C	263081
MB 480-263081/2-A	Method Blank	Total/NA	Solid	6010C	263081

TestAmerica Buffalo

9/14/2015

Page 9 of 15

Lab Chronicle

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-86937-1

Lab Sample ID: 480-86937-1

Matrix: Solid

Client Sample ID: LFS-18-T Date Collected: 09/09/15 00:00 Date Received: 09/09/15 16:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			262833	09/10/15 10:07	JLS	TAL BUF
TCLP	Prep	3010A			263081	09/11/15 10:40	CMM	TAL BUF
TCLP	Analysis	6010C		1	263471	09/14/15 12:47	AMH	TAL BUF
TCLP	Leach	1311			262833	09/10/15 10:07	JLS	TAL BUF
TCLP	Prep	7470A			263101	09/11/15 11:50	TAS	TAL BUF
TCLP	Analysis	7470A		1	263169	09/11/15 16:03	TAS	TAL BUF

Client Sample ID: LFS-25 Lab Sample ID: 480-86937-2

Date Collected: 09/09/15 00:00 Matrix: Solid

Date Received: 09/09/15 16:30

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			262833	09/10/15 10:07	JLS	TAL BUF
TCLP	Prep	3010A			263081	09/11/15 10:40	CMM	TAL BUF
TCLP	Analysis	6010C		1	263471	09/14/15 12:50	AMH	TAL BUF
TCLP	Leach	1311			262833	09/10/15 10:07	JLS	TAL BUF
TCLP	Prep	7470A			263101	09/11/15 11:50	TAS	TAL BUF
TCLP	Analysis	7470A		1	263169	09/11/15 16:04	TAS	TAL BUF

Client Sample ID: LFS-26

Date Collected: 09/09/15 00:00

Lab Sample ID: 480-86937-3

Matrix: Solid

Date Collected: 09/09/15 00:00
Date Received: 09/09/15 16:30

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			262833	09/10/15 10:07	JLS	TAL BUF
TCLP	Prep	3010A			263081	09/11/15 10:40	CMM	TAL BUF
TCLP	Analysis	6010C		1	263471	09/14/15 12:53	AMH	TAL BUF
TCLP	Leach	1311			262833	09/10/15 10:07	JLS	TAL BUF
TCLP	Prep	7470A			263101	09/11/15 11:50	TAS	TAL BUF
TCLP	Analysis	7470A		1	263169	09/11/15 16:06	TAS	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

6

4.0

11

Certification Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-86937-1

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date
New York	NELAP		2	10026	03-31-16
The following analytes	s are included in this repor	rt, but certification is	not offered by the go	overning authority:	
The following analytes Analysis Method	s are included in this repor Prep Method	rt, but certification is Matrix	not offered by the go Analyt	0 ,	

3

6

8

10

111

13

Method Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-86937-1

Method	Method Description	Protocol	Laboratory
6010C	Metals (ICP)	SW846	TAL BUF
7470A	Mercury (CVAA)	SW846	TAL BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

9

4

7

Q

4 4

19

13

Sample Summary

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

TestAmerica Job ID: 480-86937-1

Lab Sample ID	Client Sample ID	Matrix	Collected Receive	red
480-86937-1	LFS-18-T	Solid	09/09/15 00:00 09/09/15	16:30
480-86937-2	LFS-25	Solid	09/09/15 00:00 09/09/15	16:30
480-86937-3	LFS-26	Solid	09/09/15 00:00 09/09/15	16:30

Chain of Custody Record

Temperature on Receipt _

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

*8*0*8*0

Drinking Water? Yes□

TAL-4124 (1007)		>			
> Environmental	drak.	Project Manager	That my lyon	Date 9.20 (5)	Chain of Custody Number 264471
44 Rolling Hill		Telephone Number (Area Code)/Fax Number (716) 662-4157	a Code)/Fax Number 5 - 4157	Lab Number (Page
Orland Port NY (To Code [4127	Site Contact R & Wen	Lab Contact M Devio	Analysis (Attach list if more space is needed)	
ocation (State)		·			Spacial Instructions/
chase Order Quote No.		Matrix	Containers & R. Preservatives		Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time suceuph suceuph lios	HOBN SUYCI HOSN HOI HOSOH FOSCH		CATAGRY A
Lts-18-7	9/9/15	>	>		
153-25	9/9/13	3	>		_
92-517 P	9/9/15		>		
age	, , ,				
14 c					
of 15					
				480-86937 Chain of Custody	f Custody
Possible Hazard Identification **Mon. Hazard Flammahle Suin Irritant	/ Lapison B	Sample Disposal	sal Sal Disnosal By I ah Arrhive For	Months	(A fee may be assessed if samples are retained
e Required		_	, OC Requirements (St		l'a
🗌 24 Hours 📗 48 Hours 📈 7 Days 🔲 14 Days	ys 🗌 21 Days	ther			
1. Relinquished By Col Man C Klan	7 2	9/9/15 Time	Time 630 1. Received By 1		9/9/15 Time
		Date 1 Time	2. Received By V		Ďate Time
3. Relinquished By		Date Time	3. Received By		Date Time
Comments				71.5 41	

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

Login Sample Receipt Checklist

Client: Iyer Environmental Group, LLC

Job Number: 480-86937-1

Login Number: 86937 List Source: TestAmerica Buffalo

List Number: 1

Creator: Janish, Carl M

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	False	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	False	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	IYER
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

2

4

6

8

11

13

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-87202-1 Client Project/Site: 132 Dingens

For:

Iyer Environmental Group, LLC 44 Rolling Hills Drive Orchard Park, New York 14127

Attn: Dr. Dharmarajan R Iyer

Melisso Deyo

Authorized for release by: 9/18/2015 4:35:40 PM

Melissa Deyo, Project Manager I (716)504-9874

melissa.deyo@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

TestAmerica Job ID: 480-87202-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	14
Lab Chronicle	16
Certification Summary	18
Method Summary	19
Sample Summary	20
Chain of Custody	21
Receipt Checklists	22

3

4

6

0

9

11

12

14

Definitions/Glossary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87202-1

Qualifiers

GC Semi VOA

Qualifier	Qualifier Description
F1	MS and/or MSD Recovery is outside acceptance limits

F1 MS and/or MSD Recovery is outside acceptance limits.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this repo	rt.
--------------	--	-----

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CNF Contains no Free Liquid

DER Duplicate error ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision level concentration
MDA Minimum detectable activity
EDL Estimated Detection Limit
MDC Minimum detectable appears

MDC Minimum detectable concentration

MDL Method Detection Limit
ML Minimum Level (Dioxin)
NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control
RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TestAmerica Buffalo

Case Narrative

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87202-1

Job ID: 480-87202-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-87202-1

Receipt

The samples were received on 9/14/2015 5:30 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 21.7° C.

Receipt Exceptions

Sample collection times were not listed on COC or labels. A time of 0000 was used for login purposes.

GC Semi VOA

Method(s) 8082A: The following sample was diluted due to the abundance of target analytes: LFS-29 (480-87202-3). Elevated reporting limits (RLs) are provided.

Method(s) 8082A: The following samples appear to contain PCB-1248; however, due to weathering or other environmental processes, PCB-1248 in the samples does not closely match the laboratory's Aroclor standard used for instrument calibration: LFS-27 (480-87202-1), LFS-28 (480-87202-2), LFS-29 (480-87202-3) and LFS-30 (480-87202-4). Due to the poor match with the Aroclor standard, there is increased qualitative and quantitative uncertainty associated with these results.

Method(s) 8082A: All primary data is reported from the ZB-5 column.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method(s) 1311: Insufficient samples were provided to perform the leaching procedure with the required 100g for the following samples: LFS-27 (480-87202-1) and LFS-29 (480-87202-3). The volume of leaching fluid was adjusted proportionally to maintain a 20:1 ratio of leaching fluid to weight of sample. Reporting limits (RLs) are not affected.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Л

_

6

Я

11

12

4 /

TestAmerica Job ID: 480-87202-1

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Client Sample ID: LFS-27

Lab Sample ID: 480-87202-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
PCB-1248	3.9		0.24	0.047	mg/Kg		珙	8082A	Total/NA
PCB-1260	0.13	J	0.24	0.11	mg/Kg	1	₩	8082A	Total/NA
Arsenic	0.0072	J	0.015	0.0056	mg/L	1		6010C	TCLP
Barium	1.1		1.0	0.10	mg/L	1		6010C	TCLP
Cadmium	0.032		0.0020	0.00050	mg/L	1		6010C	TCLP
Chromium	0.014	J	0.020	0.010	mg/L	1		6010C	TCLP
Lead	1.1		0.020	0.0030	ma/L	1		6010C	TCLP

Client Sample ID: LFS-28

Lab	Sami	ole	ID:	480-87202-2
	Odilli	J. J		TOO OI LOL L

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
PCB-1248	3.9		0.25	0.048	mg/Kg		₩	8082A	Total/NA
PCB-1260	0.12	J	0.25	0.12	mg/Kg	1	₩	8082A	Total/NA
Barium	1.1		1.0	0.10	mg/L	1		6010C	TCLP
Cadmium	0.024		0.0020	0.00050	mg/L	1		6010C	TCLP
Chromium	0.011	J	0.020	0.010	mg/L	1		6010C	TCLP
Lead	0.74		0.020	0.0030	mg/L	1		6010C	TCLP

Client Sample ID: LFS-29

Lab Sample ID: 480-87202-3

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
PCB-1248	23	4.5	0.88	mg/Kg	20	☼	8082A	Total/NA
Barium	2.0	1.0	0.10	mg/L	1		6010C	TCLP
Cadmium	0.032	0.0020	0.00050	mg/L	1		6010C	TCLP
Lead	4.0	0.020	0.0030	mg/L	1		6010C	TCLP

Client Sample ID: LFS-30

Lab Sample ID: 480-87202-4

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
PCB-1248	2.0	0.26	0.050	mg/Kg		₩	8082A	Total/NA
PCB-1254	3.8	0.26	0.12	mg/Kg	1	₩	8082A	Total/NA
PCB-1260	2.5	0.26	0.12	mg/Kg	1	₩	8082A	Total/NA
Barium	1.4	1.0	0.10	mg/L	1		6010C	TCLP
Cadmium	0.33	0.0020	0.00050	mg/L	1		6010C	TCLP
Lead	0.42	0.020	0.0030	mg/L	1		6010C	TCLP

This Detection Summary does not include radiochemical test results.

TestAmerica Job ID: 480-87202-1

Project/Site: 132 Dingens

Client: Iyer Environmental Group, LLC

Client Sample ID: LFS-27 Lab Sample ID: 480-87202-1

Date Collected: 09/14/15 00:00 **Matrix: Solid** Date Received: 09/14/15 17:30 Percent Solids: 86.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND	F1	0.24	0.047	mg/Kg	₩	09/16/15 08:40	09/17/15 04:26	1
PCB-1221	ND		0.24	0.047	mg/Kg	☼	09/16/15 08:40	09/17/15 04:26	1
PCB-1232	ND		0.24	0.047	mg/Kg	☼	09/16/15 08:40	09/17/15 04:26	1
PCB-1242	ND		0.24	0.047	mg/Kg	₽	09/16/15 08:40	09/17/15 04:26	1
PCB-1248	3.9		0.24	0.047	mg/Kg	☼	09/16/15 08:40	09/17/15 04:26	1
PCB-1254	ND		0.24	0.11	mg/Kg	☼	09/16/15 08:40	09/17/15 04:26	1
PCB-1260	0.13	J	0.24	0.11	mg/Kg		09/16/15 08:40	09/17/15 04:26	1
PCB-1262	ND		0.24	0.11	mg/Kg	☼	09/16/15 08:40	09/17/15 04:26	1
PCB-1268	ND		0.24	0.11	mg/Kg	₩	09/16/15 08:40	09/17/15 04:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	97		60 - 154				09/16/15 08:40	09/17/15 04:26	1
DCB Decachlorobiphenyl	95		65 - 174				09/16/15 08:40	09/17/15 04:26	1
Method: 6010C - Metals (ICP) - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.0072	J	0.015	0.0056	mg/L		09/16/15 09:10	09/16/15 23:07	1
Barium	1.1		1.0	0.10	mg/L		09/16/15 09:10	09/16/15 23:07	1
Cadmium	0.032		0.0020	0.00050	mg/L		09/16/15 09:10	09/16/15 23:07	1
Chromium	0.014	J	0.020	0.010	mg/L		09/16/15 09:10	09/16/15 23:07	1
Lead	1.1		0.020	0.0030	mg/L		09/16/15 09:10	09/16/15 23:07	1
Selenium	ND		0.025	0.0087	mg/L		09/16/15 09:10	09/16/15 23:07	1
Silver	ND		0.0060	0.0017	mg/L		09/16/15 09:10	09/16/15 23:07	1
Method: 7470A - Mercury	(CVAA) - TCLP								
Analyte	•	Qualifier	RL	MDL	l lmit	D	Prepared	Analyzed	Dil Fac

0.00012 mg/L 09/16/15 09:45 09/16/15 14:57 Mercury ND 0.00020

Client Sample ID: LFS-28 Lab Sample ID: 480-87202-2 Date Collected: 09/14/15 00:00 **Matrix: Solid** Date Received: 09/14/15 17:30 Percent Solids: 83.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.25	0.048	mg/Kg	<u> </u>	09/16/15 08:40	09/17/15 04:42	1
PCB-1221	ND		0.25	0.048	mg/Kg	☼	09/16/15 08:40	09/17/15 04:42	1
PCB-1232	ND		0.25	0.048	mg/Kg	☼	09/16/15 08:40	09/17/15 04:42	1
PCB-1242	ND		0.25	0.048	mg/Kg	₩	09/16/15 08:40	09/17/15 04:42	1
PCB-1248	3.9		0.25	0.048	mg/Kg	☼	09/16/15 08:40	09/17/15 04:42	1
PCB-1254	ND		0.25	0.12	mg/Kg	☼	09/16/15 08:40	09/17/15 04:42	1
PCB-1260	0.12	J	0.25	0.12	mg/Kg	₽	09/16/15 08:40	09/17/15 04:42	1
PCB-1262	ND		0.25	0.12	mg/Kg	☼	09/16/15 08:40	09/17/15 04:42	1
PCB-1268	ND		0.25	0.12	mg/Kg	≎	09/16/15 08:40	09/17/15 04:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	91		60 - 154				09/16/15 08:40	09/17/15 04:42	1
DCB Decachlorobiphenyl	83		65 - 174				09/16/15 08:40	09/17/15 04:42	1

09/16/15 09:10 09/16/15 23:10

Page 6 of 22

0.015

0.0056 mg/L

ND

Arsenic

Client Sample Results

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: LFS-28

Date Collected: 09/14/15 00:00

Date Received: 09/14/15 17:30

Date Received: 09/14/15 17:30

DCB Decachlorobiphenyl

TestAmerica Job ID: 480-87202-1

Lab Sample ID: 480-87202-2

Matrix: Solid

Percent Solids: 83.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	1.1		1.0	0.10	mg/L		09/16/15 09:10	09/16/15 23:10	1
Cadmium	0.024		0.0020	0.00050	mg/L		09/16/15 09:10	09/16/15 23:10	1
Chromium	0.011	J	0.020	0.010	mg/L		09/16/15 09:10	09/16/15 23:10	1
Lead	0.74		0.020	0.0030	mg/L		09/16/15 09:10	09/16/15 23:10	1
Selenium	ND		0.025	0.0087	mg/L		09/16/15 09:10	09/16/15 23:10	1
Silver	ND		0.0060	0.0017	mg/L		09/16/15 09:10	09/16/15 23:10	1

Method: 7470A - Mercury (CVAA) - TCLP										
	Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac		
	Mercury	ND	0.00020	0.00012 mg/L		09/16/15 09:45	09/16/15 15:00	1		

Client Sample ID: LFS-29 Lab Sample ID: 480-87202-3 Date Collected: 09/14/15 00:00

Matrix: Solid Percent Solids: 83.4

09/16/15 08:40 09/17/15 04:58

								•. ••.
_	lorinated Biphenyls (PCBs	•	_		_			
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND ND	4.5	0.88	mg/Kg	<u></u>	09/16/15 08:40	09/17/15 04:58	20
PCB-1221	ND	4.5	0.88	mg/Kg	☼	09/16/15 08:40	09/17/15 04:58	20
PCB-1232	ND	4.5	0.88	mg/Kg	☼	09/16/15 08:40	09/17/15 04:58	20
PCB-1242	ND	4.5	0.88	mg/Kg	₽	09/16/15 08:40	09/17/15 04:58	20
PCB-1248	23	4.5	0.88	mg/Kg	☼	09/16/15 08:40	09/17/15 04:58	20
PCB-1254	ND	4.5	2.1	mg/Kg	☼	09/16/15 08:40	09/17/15 04:58	20
PCB-1260	ND	4.5	2.1	mg/Kg	₽	09/16/15 08:40	09/17/15 04:58	20
PCB-1262	ND	4.5	2.1	mg/Kg	☼	09/16/15 08:40	09/17/15 04:58	20
PCB-1268	ND	4.5	2.1	mg/Kg	≎	09/16/15 08:40	09/17/15 04:58	20
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	109	60 - 154				09/16/15 08:40	09/17/15 04:58	20

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	ND	0.015	0.0056	mg/L		09/16/15 09:10	09/16/15 23:13	
Barium	2.0	1.0	0.10	mg/L		09/16/15 09:10	09/16/15 23:13	
Cadmium	0.032	0.0020	0.00050	mg/L		09/16/15 09:10	09/16/15 23:13	
Chromium	ND	0.020	0.010	mg/L		09/16/15 09:10	09/16/15 23:13	
Lead	4.0	0.020	0.0030	mg/L		09/16/15 09:10	09/16/15 23:13	
Selenium	ND	0.025	0.0087	mg/L		09/16/15 09:10	09/16/15 23:13	
Silver	ND	0.0060	0.0017	mg/L		09/16/15 09:10	09/16/15 23:13	

65 - 174

131

Wethod: /4/UA - Wercury (CV <i>F</i>	AA) - ICLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		09/16/15 09:45	09/16/15 15:02	1

20

TestAmerica Buffalo

Client Sample Results

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87202-1

Client Sample ID: LFS-30 Lab Sample ID: 480-87202-4

 Date Collected: 09/14/15 00:00
 Matrix: Solid

 Date Received: 09/14/15 17:30
 Percent Solids: 86.8

yte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1016	ND		0.26	0.050	mg/Kg	<u> </u>	09/16/15 08:40	09/17/15 05:14	1
1221	ND		0.26	0.050	mg/Kg	☼	09/16/15 08:40	09/17/15 05:14	1
1232	ND		0.26	0.050	mg/Kg	☼	09/16/15 08:40	09/17/15 05:14	1
1242	ND		0.26	0.050	mg/Kg	₩.	09/16/15 08:40	09/17/15 05:14	1
-1248	2.0		0.26	0.050	mg/Kg	☼	09/16/15 08:40	09/17/15 05:14	1
-1254	3.8		0.26	0.12	mg/Kg	☼	09/16/15 08:40	09/17/15 05:14	1
-1260	2.5		0.26	0.12	mg/Kg	φ.	09/16/15 08:40	09/17/15 05:14	1
1262	ND		0.26	0.12	mg/Kg	☼	09/16/15 08:40	09/17/15 05:14	1
1268	ND		0.26	0.12	mg/Kg	≎	09/16/15 08:40	09/17/15 05:14	1
ogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
chloro-m-xylene	95		60 - 154				09/16/15 08:40	09/17/15 05:14	1
Decachlorobiphenyl	116		65 - 174				09/16/15 08:40	09/17/15 05:14	1
Decachlorobiphenyl hod: 6010C - Metals (ICP)			65 - 174				09/16/15 08:40	09/17/15 05:14	
hod: 6010C - Metals (ICP) yte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		09/16/15 09:10	09/16/15 23:16	1
Barium	1.4		1.0	0.10	mg/L		09/16/15 09:10	09/16/15 23:16	1
Cadmium	0.33	0.	.0020	0.00050	mg/L		09/16/15 09:10	09/16/15 23:16	1
Chromium	ND	(0.020	0.010	mg/L		09/16/15 09:10	09/16/15 23:16	1
Lead	0.42	(0.020	0.0030	mg/L		09/16/15 09:10	09/16/15 23:16	1
Selenium	ND	(0.025	0.0087	mg/L		09/16/15 09:10	09/16/15 23:16	1
Silver	ND	0.	.0060	0.0017	mg/L		09/16/15 09:10	09/16/15 23:16	1

Method: 7470A - Mercury (CVAA) - TCLP									
	Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
	Mercury	ND	0.00020	0.00012 mg/L		09/16/15 09:45	09/16/15 15:04	1	

Surrogate Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87202-1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid Prep Type: Total/NA

		TCX1	DCB1	
Lab Sample ID	Client Sample ID	(60-154)	(65-174)	
480-87202-1	LFS-27	97	95	
480-87202-1 MS	LFS-27	112	108	
480-87202-1 MSD	LFS-27	116	114	
480-87202-2	LFS-28	91	83	
480-87202-3	LFS-29	109	131	
480-87202-4	LFS-30	95	116	
LCS 480-263829/2-A	Lab Control Sample	121	117	
MB 480-263829/1-A	Method Blank	104	103	

Surrogate Legend

TCX = Tetrachloro-m-xylene

DCB = DCB Decachlorobiphenyl

TestAmerica Job ID: 480-87202-1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 480-263829/1-A **Client Sample ID: Method Blank Matrix: Solid** Prep Type: Total/NA Prep Batch: 263829 Analysis Batch: 263984

Alialysis Dalcil. 200304								Fieb Datcii.	203023
-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.21	0.041	mg/Kg		09/16/15 08:40	09/17/15 03:23	1
PCB-1221	ND		0.21	0.041	mg/Kg		09/16/15 08:40	09/17/15 03:23	1
PCB-1232	ND		0.21	0.041	mg/Kg		09/16/15 08:40	09/17/15 03:23	1
PCB-1242	ND		0.21	0.041	mg/Kg		09/16/15 08:40	09/17/15 03:23	1
PCB-1248	ND		0.21	0.041	mg/Kg		09/16/15 08:40	09/17/15 03:23	1
PCB-1254	ND		0.21	0.098	mg/Kg		09/16/15 08:40	09/17/15 03:23	1
PCB-1260	ND		0.21	0.098	mg/Kg		09/16/15 08:40	09/17/15 03:23	1
PCB-1262	ND		0.21	0.098	mg/Kg		09/16/15 08:40	09/17/15 03:23	1
PCB-1268	ND		0.21	0.098	mg/Kg		09/16/15 08:40	09/17/15 03:23	1

	МВ	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	104		60 - 154	09/16/15 08:40	09/17/15 03:23	1
DCB Decachlorobiphenyl	103		65 - 174	09/16/15 08:40	09/17/15 03:23	1

Lab Sample ID: LCS 480-263829/2-A

Matrix: Solid

Analysis Batch: 263984								Prep B	atch: 26	3829
-		Spike	LCS	LCS				%Rec.		
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits		
PCB-1016		1.72	1.94		mg/Kg		112	51 - 185		
PCB-1260		1.72	2.19		mg/Kg		127	61 - 184		

	LCS LCS	
Surrogate	%Recovery Qualifier	Limits
Tetrachloro-m-xylene	121	60 - 154
DCB Decachlorobiphenyl	117	65 - 174

Lab Sample ID: 480-87202-1 MS **Client Sample ID: LFS-27 Matrix: Solid Prep Type: Total/NA**

Analysis Batch: 263984									Prep Batch: 263829
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
PCB-1016	ND	F1	2.01	4.35	F1	mg/Kg	₩	216	50 - 177
PCB-1260	0.13	J	2.01	2.51		mg/Kg	≎	118	33 - 200

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	112		60 - 154
DCB Decachlorobiphenyl	108		65 ₋ 174

Lab Sample ID: 480-87202-1 MSD **Client Sample ID: LFS-27 Prep Type: Total/NA Matrix: Solid**

Analysis Batch: 263984									Prep Ba	aten: 20	53829	
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
PCB-1016	ND	F1	2.71	5.56	F1	mg/Kg	₩	205	50 - 177	24	50	
PCB-1260	0.13	J	2.71	3.62		mg/Kg	≎	129	33 - 200	36	50	

TestAmerica Buffalo

Client Sample ID: Method Blank

Prep Type: Total/NA

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: 480-87202-1 MSD

Matrix: Solid

Analysis Batch: 263984

Client Sample ID: LFS-27 Prep Type: Total/NA Prep Batch: 263829

MSD MSD

Surrogate	%Recovery Qualifier	Limits
Tetrachloro-m-xylene	116	60 - 154
DCB Decachlorobiphenyl	114	65 ₋ 174

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-263827/2-A

Matrix: Solid

Analysis Batch: 264148	nalysis Batch: 264148							Prep Batch: 263827		
•	MB	MB						•		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Arsenic	ND		0.015	0.0056	mg/L		09/16/15 09:10	09/16/15 23:01	1	
Barium	ND		1.0	0.10	mg/L		09/16/15 09:10	09/16/15 23:01	1	
Cadmium	ND		0.0020	0.00050	mg/L		09/16/15 09:10	09/16/15 23:01	1	
Chromium	ND		0.020	0.010	mg/L		09/16/15 09:10	09/16/15 23:01	1	
Lead	ND		0.020	0.0030	mg/L		09/16/15 09:10	09/16/15 23:01	1	
Selenium	ND		0.025	0.0087	mg/L		09/16/15 09:10	09/16/15 23:01	1	
Silver	ND		0.0060	0.0017	mg/L		09/16/15 09:10	09/16/15 23:01	1	

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 263827

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	1.00	1.14	-	mg/L		114	80 - 120	
Barium	1.00	0.997	J	mg/L		100	80 - 120	
Cadmium	1.00	1.05		mg/L		105	80 - 120	
Chromium	1.00	1.04		mg/L		104	80 - 120	
Lead	1.00	1.03		mg/L		103	80 - 120	
Selenium	1.00	1.07		mg/L		107	80 - 120	
Silver	1.00	1 10		ma/l		110	80 120	

Lab Sample ID: LB 480-263650/1-B

Lab Sample ID: LCS 480-263827/3-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 264148

Analysis Batch: 264148

Client Sample ID: Method Blank Prep Type: TCLP

Prep Batch: 263827

	LB LB	}						
Analyte	Result Qua	ıalifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND	0.015	0.0056	mg/L		09/16/15 09:10	09/16/15 22:58	1
Barium	ND	1.0	0.10	mg/L		09/16/15 09:10	09/16/15 22:58	1
Cadmium	ND	0.0020	0.00050	mg/L		09/16/15 09:10	09/16/15 22:58	1
Chromium	ND	0.020	0.010	mg/L		09/16/15 09:10	09/16/15 22:58	1
Lead	ND	0.020	0.0030	mg/L		09/16/15 09:10	09/16/15 22:58	1
Selenium	ND	0.025	0.0087	mg/L		09/16/15 09:10	09/16/15 22:58	1
Silver	ND	0.0060	0.0017	mg/L		09/16/15 09:10	09/16/15 22:58	1

TestAmerica Buffalo

TestAmerica Job ID: 480-87202-1

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 480-87202-4 MS Client Sample ID: LFS-30 **Matrix: Solid Prep Type: TCLP**

Analysis Ratch: 264148

Analysis Batch: 264148	Sample	Sample	Spike	MS	MS				Prep Batch: 263827 %Rec.
Analyte	•	Qualifier	Added	_	Qualifier	Unit	D	%Rec	Limits
Arsenic	ND		1.00	1.15		mg/L		115	75 - 125
Barium	1.4		1.00	2.33		mg/L		91	75 - 125
Cadmium	0.33		1.00	1.38		mg/L		105	75 - 125
Chromium	ND		1.00	0.981		mg/L		98	75 - 125
Lead	0.42		1.00	1.42		mg/L		100	75 - 125
Selenium	ND		1.00	1.10		mg/L		110	75 - 125
Silver	ND		1.00	1.08		mg/L		108	75 - 125

Lab Sample ID: 480-87202-4 MSD **Client Sample ID: LFS-30 Matrix: Solid Prep Type: TCLP**

Analysis Batch: 264148 **Prep Batch: 263827**

Allalysis Datoll. 204140		Camula							i icp De	itoii. Z	JUULI
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	ND		1.00	1.19		mg/L		119	75 - 125	3	20
Barium	1.4		1.00	2.39		mg/L		98	75 - 125	3	20
Cadmium	0.33		1.00	1.42		mg/L		110	75 - 125	3	20
Chromium	ND		1.00	1.01		mg/L		101	75 - 125	3	20
Lead	0.42		1.00	1.46		mg/L		104	75 - 125	3	20
Selenium	ND		1.00	1.13		mg/L		113	75 - 125	3	20
Silver	ND		1.00	1.11		mg/L		111	75 - 125	2	20

Method: 7470A - Mercury (CVAA)

Mercury

Lab Sample ID: MB 480-263835/2-A **Client Sample ID: Method Blank Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 263951

MB MB

Result Qualifier RL MDL Unit Analyte **Prepared** Analyzed 0.00020 09/16/15 09:45 09/16/15 14:51 Mercury $\overline{\mathsf{ND}}$ 0.00012 mg/L

Lab Sample ID: LCS 480-263835/3-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 263951 Prep Batch: 263835 LCS LCS Spike %Rec. **Analyte** Added Result Qualifier Unit %Rec

Client Sample ID: Method Blank Lab Sample ID: LB 480-263650/1-C

0.00650

mg/L

0.00668

Matrix: Solid Prep Type: TCLP **Analysis Batch: 263951 Prep Batch: 263835**

LB LB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Mercury ND 0.00020 0.00012 mg/L 09/16/15 09:45 09/16/15 14:49

TestAmerica Buffalo

Prep Batch: 263835

97

80 - 120

QC Sample Results

Client: Iyer Environmental Group, LLC TestAmerica Job ID: 480-87202-1

Project/Site: 132 Dingens

Method: 7470A - Mercury (CVAA) (Continued)

Lab Sample ID: 480-87202-4 MS				Client Sample ID: LFS-30
Matrix: Solid				Prep Type: TCLP
Analysis Batch: 263951				Prep Batch: 263835
Sample	Sample	Spike	MS MS	%Rec.

 Analyte
 Result Mercury
 Qualifier ND
 Added 0.00668
 Result 0.00643
 Qualifier Qualifier 0.00643
 Unit mg/L
 D 96 80 120

Lab Sample ID: 480-87202-4 MSD

Matrix: Solid

Analysis Batch: 263951

Sample Sample Spike MSD MSD

Client Sample ID: LFS-30
Prep Type: TCLP
Prep Batch: 263835
%Rec. RPD

Result Qualifier Analyte Added Result Qualifier Limits RPD Limit Unit %Rec 0.00668 95 80 - 120 2 20 Mercury ND 0.00632 mg/L

3

4

5

7

8

11

13

14

TestAmerica Job ID: 480-87202-1

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

GC Semi VOA

Prep Batch: 263829

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87202-1	LFS-27	Total/NA	Solid	3550C	
480-87202-1 MS	LFS-27	Total/NA	Solid	3550C	
480-87202-1 MSD	LFS-27	Total/NA	Solid	3550C	
480-87202-2	LFS-28	Total/NA	Solid	3550C	
480-87202-3	LFS-29	Total/NA	Solid	3550C	
480-87202-4	LFS-30	Total/NA	Solid	3550C	
LCS 480-263829/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-263829/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 263984

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87202-1	LFS-27	Total/NA	Solid	8082A	263829
480-87202-1 MS	LFS-27	Total/NA	Solid	8082A	263829
480-87202-1 MSD	LFS-27	Total/NA	Solid	8082A	263829
480-87202-2	LFS-28	Total/NA	Solid	8082A	263829
480-87202-3	LFS-29	Total/NA	Solid	8082A	263829
480-87202-4	LFS-30	Total/NA	Solid	8082A	263829
LCS 480-263829/2-A	Lab Control Sample	Total/NA	Solid	8082A	263829
MB 480-263829/1-A	Method Blank	Total/NA	Solid	8082A	263829

Metals

Leach Batch: 263650

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87202-1	LFS-27	TCLP	Solid	1311	
480-87202-2	LFS-28	TCLP	Solid	1311	
480-87202-3	LFS-29	TCLP	Solid	1311	
480-87202-4	LFS-30	TCLP	Solid	1311	
480-87202-4 MS	LFS-30	TCLP	Solid	1311	
480-87202-4 MSD	LFS-30	TCLP	Solid	1311	
LB 480-263650/1-B	Method Blank	TCLP	Solid	1311	
LB 480-263650/1-C	Method Blank	TCLP	Solid	1311	

Prep Batch: 263827

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87202-1	LFS-27	TCLP	Solid	3010A	263650
480-87202-2	LFS-28	TCLP	Solid	3010A	263650
480-87202-3	LFS-29	TCLP	Solid	3010A	263650
480-87202-4	LFS-30	TCLP	Solid	3010A	263650
480-87202-4 MS	LFS-30	TCLP	Solid	3010A	263650
480-87202-4 MSD	LFS-30	TCLP	Solid	3010A	263650
LB 480-263650/1-B	Method Blank	TCLP	Solid	3010A	263650
LCS 480-263827/3-A	Lab Control Sample	Total/NA	Solid	3010A	
MB 480-263827/2-A	Method Blank	Total/NA	Solid	3010A	

Prep Batch: 263835

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87202-1	LFS-27	TCLP	Solid	7470A	263650
480-87202-2	LFS-28	TCLP	Solid	7470A	263650
480-87202-3	LFS-29	TCLP	Solid	7470A	263650

TestAmerica Buffalo

Page 14 of 22

TestAmerica Job ID: 480-87202-1

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Metals (Continued)

Prep Batch: 263835 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87202-4	LFS-30	TCLP	Solid	7470A	263650
480-87202-4 MS	LFS-30	TCLP	Solid	7470A	263650
480-87202-4 MSD	LFS-30	TCLP	Solid	7470A	263650
LB 480-263650/1-C	Method Blank	TCLP	Solid	7470A	263650
LCS 480-263835/3-A	Lab Control Sample	Total/NA	Solid	7470A	
MB 480-263835/2-A	Method Blank	Total/NA	Solid	7470A	

Analysis Batch: 263951

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87202-1	LFS-27	TCLP	Solid	7470A	263835
480-87202-2	LFS-28	TCLP	Solid	7470A	263835
480-87202-3	LFS-29	TCLP	Solid	7470A	263835
480-87202-4	LFS-30	TCLP	Solid	7470A	263835
480-87202-4 MS	LFS-30	TCLP	Solid	7470A	263835
480-87202-4 MSD	LFS-30	TCLP	Solid	7470A	263835
LB 480-263650/1-C	Method Blank	TCLP	Solid	7470A	263835
LCS 480-263835/3-A	Lab Control Sample	Total/NA	Solid	7470A	263835
MB 480-263835/2-A	Method Blank	Total/NA	Solid	7470A	263835

Analysis Batch: 264148

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87202-1	LFS-27	TCLP	Solid	6010C	263827
480-87202-2	LFS-28	TCLP	Solid	6010C	263827
480-87202-3	LFS-29	TCLP	Solid	6010C	263827
480-87202-4	LFS-30	TCLP	Solid	6010C	263827
480-87202-4 MS	LFS-30	TCLP	Solid	6010C	263827
480-87202-4 MSD	LFS-30	TCLP	Solid	6010C	263827
LB 480-263650/1-B	Method Blank	TCLP	Solid	6010C	263827
LCS 480-263827/3-A	Lab Control Sample	Total/NA	Solid	6010C	263827
MB 480-263827/2-A	Method Blank	Total/NA	Solid	6010C	263827

General Chemistry

Analysis Batch: 263547

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87202-1	LFS-27	Total/NA	Solid	Moisture	
480-87202-2	LFS-28	Total/NA	Solid	Moisture	
480-87202-3	LFS-29	Total/NA	Solid	Moisture	
480-87202-4	LFS-30	Total/NA	Solid	Moisture	

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: LFS-27 Lab Sample ID: 480-87202-1

Date Collected: 09/14/15 00:00 **Matrix: Solid** Date Received: 09/14/15 17:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			263650	09/15/15 11:09	JLS	TAL BUF
TCLP	Prep	3010A			263827	09/16/15 09:10	KJ1	TAL BUF
TCLP	Analysis	6010C		1	264148	09/16/15 23:07	AMH	TAL BUF
TCLP	Leach	1311			263650	09/15/15 11:09	JLS	TAL BUF
TCLP	Prep	7470A			263835	09/16/15 09:45	TAS	TAL BUF
TCLP	Analysis	7470A		1	263951	09/16/15 14:57	TAS	TAL BUF
Total/NA	Analysis	Moisture		1	263547	09/15/15 05:21	CSW	TAL BUF

Client Sample ID: LFS-27 Lab Sample ID: 480-87202-1

Date Collected: 09/14/15 00:00 **Matrix: Solid** Date Received: 09/14/15 17:30 Percent Solids: 86.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			263829	09/16/15 08:40	TRG	TAL BUF
Total/NA	Analysis	8082A		1	263984	09/17/15 04:26	KS	TAL BUF

Client Sample ID: LFS-28 Lab Sample ID: 480-87202-2

Date Collected: 09/14/15 00:00 **Matrix: Solid** Date Received: 09/14/15 17:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			263650	09/15/15 11:09	JLS	TAL BUF
TCLP	Prep	3010A			263827	09/16/15 09:10	KJ1	TAL BUF
TCLP	Analysis	6010C		1	264148	09/16/15 23:10	AMH	TAL BUF
TCLP	Leach	1311			263650	09/15/15 11:09	JLS	TAL BUF
TCLP	Prep	7470A			263835	09/16/15 09:45	TAS	TAL BUF
TCLP	Analysis	7470A		1	263951	09/16/15 15:00	TAS	TAL BUF
Total/NA	Analysis	Moisture		1	263547	09/15/15 05:21	CSW	TAL BUF

Client Sample ID: LFS-28 Lab Sample ID: 480-87202-2

Date Collected: 09/14/15 00:00 **Matrix: Solid** Date Received: 09/14/15 17:30 Percent Solids: 83.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			263829	09/16/15 08:40	TRG	TAL BUF
Total/NA	Analysis	8082A		1	263984	09/17/15 04:42	KS	TAL BUF

Client Sample ID: LFS-29 Lab Sample ID: 480-87202-3

Date Collected: 09/14/15 00:00 **Matrix: Solid** Date Received: 09/14/15 17:30

Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst TCLP Leach 1311 263650 09/15/15 11:09 JLS TAL BUF

TestAmerica Buffalo

Project/Site: 132 Dingens

Client: Iyer Environmental Group, LLC

Date Received: 09/14/15 17:30

Client Sample ID: LFS-29 Lab Sample ID: 480-87202-3 Date Collected: 09/14/15 00:00

Matrix: Solid

10

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Prep	3010A			263827	09/16/15 09:10	KJ1	TAL BUF
TCLP	Analysis	6010C		1	264148	09/16/15 23:13	AMH	TAL BUF
TCLP	Leach	1311			263650	09/15/15 11:09	JLS	TAL BUF
TCLP	Prep	7470A			263835	09/16/15 09:45	TAS	TAL BUF
TCLP	Analysis	7470A		1	263951	09/16/15 15:02	TAS	TAL BUF
Total/NA	Analysis	Moisture		1	263547	09/15/15 05:21	CSW	TAL BUF

Client Sample ID: LFS-29 Lab Sample ID: 480-87202-3

Date Collected: 09/14/15 00:00 **Matrix: Solid**

Date Received: 09/14/15 17:30 Percent Solids: 83.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			263829	09/16/15 08:40	TRG	TAL BUF
Total/NA	Analysis	8082A		20	263984	09/17/15 04:58	KS	TAL BUF

Client Sample ID: LFS-30 Lab Sample ID: 480-87202-4

Date Collected: 09/14/15 00:00 **Matrix: Solid**

Date Received: 09/14/15 17:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			263650	09/15/15 11:09	JLS	TAL BUF
TCLP	Prep	3010A			263827	09/16/15 09:10	KJ1	TAL BUF
TCLP	Analysis	6010C		1	264148	09/16/15 23:16	AMH	TAL BUF
TCLP	Leach	1311			263650	09/15/15 11:09	JLS	TAL BUF
TCLP	Prep	7470A			263835	09/16/15 09:45	TAS	TAL BUF
TCLP	Analysis	7470A		1	263951	09/16/15 15:04	TAS	TAL BUF
Total/NA	Analysis	Moisture		1	263547	09/15/15 05:21	CSW	TAL BUF

Client Sample ID: LFS-30 Lab Sample ID: 480-87202-4

Date Collected: 09/14/15 00:00 **Matrix: Solid** Date Received: 09/14/15 17:30 Percent Solids: 86.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			263829	09/16/15 08:40	TRG	TAL BUF
Total/NA	Analysis	8082A		1	263984	09/17/15 05:14	KS	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TestAmerica Buffalo

Certification Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87202-1

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date	
New York	NELAP	NELAP		10026	03-31-16	
The following analytes	s are included in this repo	ort, but certification is	s not offered by the go	overning authority:		
Analysis Method	Prep Method	Matrix	Analyt	е		
7470A	7470A	Solid	Mercu	ry		
Moisture		Solid	Percei	nt Moisture		
Moisture		Solid	_	nt Solids		

4

9

11

12

14

Method Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87202-1

Method	Method Description	Protocol	Laboratory
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF
7470A	Mercury (CVAA)	SW846	TAL BUF
Moisture	Percent Moisture	EPA	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

4

5

7

8

9

10

12

13

Sample Summary

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

TestAmerica Job ID: 480-87202-1

Lab Sample ID	Client Sample ID	Matrix	Collected Received	d
480-87202-1	LFS-27	Solid	09/14/15 00:00 09/14/15 17	7:30
480-87202-2	LFS-28	Solid	09/14/15 00:00 09/14/15 17	7:30
480-87202-3	LFS-29	Solid	09/14/15 00:00 09/14/15 17	7:30
480-87202-4	LFS-30	Solid	09/14/15 00:00 09/14/15 17	7:30

Custody Record Chain of

Temperature on Receipt

Drinking Water? Yes □ No 🖫

[estAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Special Instructions/ Conditions of Receipt 480-87202 Chain of Custody (A fee may be assessed if samples are retained longer than 1 month) Page 2015 Analysis (Attach list if more space is needed) Sep H, Months Date Archive For 16LP Metals OC Requirements (Specify) 🔀 Disposal By Lab Containers & Preservatives M. Desta HOBN 1. Received By Project Manager Dhalima (Vel Tejephone Number (Area Code)/Fax Number ЮH EONH 662-4157 tOSZH seudun പ S N M ☐ Return To Client Sample Disposa 110S R. Allen Carrier/Waybill Number Matrix pes all'Als (1 (b) Site Confact 116 □ Other_ Unknown Time 🗌 21 Days 9/14/15 diag ☐ Poison B Date 14127 44 Rolling Hills Dr Sale Island 1412 ☐ 14 Days Sample I.D. No. and Description (Containers for each sample may be combined on one line) Yer Environmental Skin Imitant 7 Days 132 Dingers St ContractPurchase(Opler/Quote No. Non-Hazard 🔲 Flammable Orchard Park Project Name and Location (State) 145-27 ☐ 24 Hours ☐ 48 Hours FS-29 F5 - 30 FS-28 Possible Hazard Identification 1. Relinquished By Turn Around Time Required TAL-4124 (1007) Client & Address

Page 21 of 22

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

Tem P 21,7 \$ 100 EE

Time

Date

3. Received By

Time

Date

3. Relinquished By 2 1000 Comments

2. Relinquished By

2. Received By

Time

Date Office

ر ال ال

える

Login Sample Receipt Checklist

Client: Iyer Environmental Group, LLC

Job Number: 480-87202-1

Login Number: 87202 List Source: TestAmerica Buffalo

List Number: 1

Creator: Williams, Christopher S

Creator. Williams, Christopher 3		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	SAMPLE TIMES NOT LISTED
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	False	SAMPLE TIMES NOT LISTED ON LABELS
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	IYER
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

2

5

6

10

12

13

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-87472-1 Client Project/Site: 132 Dingens

For:

Iyer Environmental Group, LLC 44 Rolling Hills Drive Orchard Park, New York 14127

Attn: Dr. Dharmarajan R Iyer

Melisso Deyo

Authorized for release by: 9/24/2015 9:48:35 AM

Melissa Deyo, Project Manager I (716)504-9874

melissa.deyo@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

TestAmerica Job ID: 480-87472-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	9
Lab Chronicle	10
Certification Summary	11
Method Summary	12
Sample Summary	13
Chain of Custody	14
Receipt Checklists	15

4

5

6

8

9

11

Definitions/Glossary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87472-1

Qualifiers

Metals

Qualifier	Qualifier	Descript	ior
Qualifier	Quaimer	Descript	10

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit

ML Minimum Level (Dioxin)

NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC **Quality Control** RER Relative error ratio

RLReporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TestAmerica Buffalo

Page 3 of 15

9/24/2015

Case Narrative

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87472-1

Job ID: 480-87472-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-87472-1

Receipt

The samples were received on 9/17/2015 5:40 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 19.1° C.

Receipt Exceptions

No times of collection provided, time of 00:00 was used for sample login.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method(s) 1311: Insufficient sample was provided to perform the leaching procedure with the required 100g for the following samples: LFS-32 (480-87472-2). The volume of leaching fluid was adjusted proportionally to maintain a 20:1 ratio of leaching fluid to weight of sample. Reporting limits (RLs) are not affected.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

3

1

_

0

_

1 በ

1 1

12

IS

Detection Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: LFS-31

TestAmerica Job ID: 480-87472-1

Lab Sample ID: 480-87472-1

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac	D N	Method	Prep Type
Arsenic	0.075	0.015	0.0056	mg/L	1	_ 6	6010C	TCLP
Barium	1.2	1.0	0.10	mg/L	1	6	6010C	TCLP
Lead	0.034	0.020	0.0030	mg/L	1	6	6010C	TCLP

Client Sample ID: LFS-32 Lab Sample ID: 480-87472-2

Analyte	Result C	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.012 J		0.015	0.0056	mg/L	1	_	6010C	TCLP
Barium	2.0		1.0	0.10	mg/L	1		6010C	TCLP
Cadmium	0.038		0.0020	0.00050	mg/L	1		6010C	TCLP
Lead	3.3		0.020	0.0030	mg/L	1		6010C	TCLP
Mercury	0.00029		0.00020	0.00012	mg/L	1		7470A	TCLP

Client Sample ID: LFS-33-T Lab Sample ID: 480-87472-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.0098	J	0.015	0.0056	mg/L	1	_	6010C	TCLP
Barium	0.33	J	1.0	0.10	mg/L	1		6010C	TCLP
Lead	0.0079	J	0.020	0.0030	mg/L	1		6010C	TCLP

This Detection Summary does not include radiochemical test results.

4

J

7

_

1 N

11

4.0

Client Sample Results

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87472-1

Lab Sample ID: 480-87472-1

Matrix: Solid

Client Sample ID: LFS-31 Date Collected: 09/17/15 00:00 Date Received: 09/17/15 17:40

Analyte	Result Q	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.075	0.015	0.0056	mg/L		09/22/15 10:50	09/23/15 11:19	1
Barium	1.2	1.0	0.10	mg/L		09/22/15 10:50	09/23/15 11:19	1
Cadmium	ND	0.0020	0.00050	mg/L		09/22/15 10:50	09/23/15 11:19	1
Chromium	ND	0.020	0.010	mg/L		09/22/15 10:50	09/23/15 11:19	1
Lead	0.034	0.020	0.0030	mg/L		09/22/15 10:50	09/23/15 11:19	1
Selenium	ND	0.025	0.0087	mg/L		09/22/15 10:50	09/23/15 11:19	1
Silver	ND	0.0060	0.0017	mg/L		09/22/15 10:50	09/23/15 11:19	1

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 0.00020 <u>09/22/15 11:15</u> <u>09/22/15 15:19</u> Mercury ND 0.00012 mg/L

Lab Sample ID: 480-87472-2 **Client Sample ID: LFS-32** Date Collected: 09/17/15 00:00 **Matrix: Solid**

Date Received: 09/17/15 17:40

Analyte	Result Q	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.012 J	0.015	0.0056	mg/L		09/22/15 10:50	09/23/15 11:35	1
Barium	2.0	1.0	0.10	mg/L		09/22/15 10:50	09/23/15 11:35	1
Cadmium	0.038	0.0020	0.00050	mg/L		09/22/15 10:50	09/23/15 11:35	1
Chromium	ND	0.020	0.010	mg/L		09/22/15 10:50	09/23/15 11:35	1
Lead	3.3	0.020	0.0030	mg/L		09/22/15 10:50	09/23/15 11:35	1
Selenium	ND	0.025	0.0087	mg/L		09/22/15 10:50	09/23/15 11:35	1
Silver	ND	0.0060	0.0017	mg/L		09/22/15 10:50	09/23/15 11:35	1

Method: 7470A - Mercury (CVA	AA) - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.00029		0.00020	0.00012	mg/L		09/22/15 11:15	09/22/15 15:26	1

Client Sample ID: LFS-33-T Lab Sample ID: 480-87472-3 **Matrix: Solid**

Date Collected: 09/17/15 00:00

Date Received: 09/17/15 17:40	
_	

Method: 6010C - Meta	Is (ICP) - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.0098	J	0.015	0.0056	mg/L		09/22/15 10:50	09/23/15 11:46	1
Barium	0.33	J	1.0	0.10	mg/L		09/22/15 10:50	09/23/15 11:46	1
Cadmium	ND		0.0020	0.00050	mg/L		09/22/15 10:50	09/23/15 11:46	1
Chromium	ND		0.020	0.010	mg/L		09/22/15 10:50	09/23/15 11:46	1
Lead	0.0079	J	0.020	0.0030	mg/L		09/22/15 10:50	09/23/15 11:46	1
Selenium	ND		0.025	0.0087	mg/L		09/22/15 10:50	09/23/15 11:46	1
Silver	ND		0.0060	0.0017	mg/L		09/22/15 10:50	09/23/15 11:46	1

Method: 7470A - Mercury (CVA)	A) - TCLP						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND	0.00020	0.00012 mg/L		09/22/15 11:15	09/22/15 15:27	1

TestAmerica Buffalo

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-264839/2-A

Matrix: Solid

Analysis Batch: 265222

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 264839

	MB I	MB							
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND ND		0.015	0.0056	mg/L		09/22/15 10:50	09/23/15 11:13	1
Barium	ND		1.0	0.10	mg/L		09/22/15 10:50	09/23/15 11:13	1
Cadmium	ND		0.0020	0.00050	mg/L		09/22/15 10:50	09/23/15 11:13	1
Chromium	ND		0.020	0.010	mg/L		09/22/15 10:50	09/23/15 11:13	1
Lead	ND		0.020	0.0030	mg/L		09/22/15 10:50	09/23/15 11:13	1
Selenium	ND		0.025	0.0087	mg/L		09/22/15 10:50	09/23/15 11:13	1
Silver	ND		0.0060	0.0017	mg/L		09/22/15 10:50	09/23/15 11:13	1

Lab Sample ID: LCS 480-264839/3-A

Matrix: Solid

Analysis Batch: 265222

Client Sample ID: Lab Control Sample

Prep Type: Total/NA **Prep Batch: 264839**

%Rec.

LCS LCS Spike Added Analyte Result Qualifier Unit D %Rec Limits Arsenic 1.20 1.23 80 - 120 mg/L 102 Barium 1.20 1.16 mg/L 96 80 - 120 Cadmium 1.20 mg/L 99 80 - 120 1.19 Chromium 1.20 97 80 - 120 1.17 mg/L Lead 1.20 1.18 mg/L 98 80 - 120 Selenium 1.20 1.25 mg/L 104 80 - 120 103 Silver 1.05 1.08 80 - 120 mg/L

Lab Sample ID: LB 480-264642/1-B

Matrix: Solid

Analysis Batch: 265222

Client Sample ID: Method Blank

Prep Type: TCLP Prep Batch: 264839

LB LB **MDL** Unit Analyte Result Qualifier RL Prepared Analyzed Dil Fac Arsenic 09/22/15 10:50 09/23/15 11:10 ND 0.015 0.0056 mg/L Barium ND 0.10 mg/L 09/22/15 10:50 09/23/15 11:10 1.0 ND 0.0020 0.00050 mg/L 09/22/15 10:50 09/23/15 11:10 Cadmium Chromium ND 0.020 0.010 mg/L 09/22/15 10:50 09/23/15 11:10 Lead ND 0.0030 mg/L 09/22/15 10:50 09/23/15 11:10 0.020 Selenium ND 0.025 0.0087 mg/L 09/22/15 10:50 09/23/15 11:10 Silver ND 0.0060 0.0017 mg/L 09/22/15 10:50 09/23/15 11:10

Lab Sample ID: 480-87472-1 MS

Matrix: Solid

Analysis Batch: 265222

Client Sample ID: LFS-31 Prep Type: TCLP Prep Batch: 264839

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	0.075		1.20	1.33		mg/L		104	75 - 125	
Barium	1.2		1.20	2.32		mg/L		90	75 - 125	
Cadmium	ND		1.20	1.24		mg/L		103	75 - 125	
Chromium	ND		1.20	1.14		mg/L		95	75 - 125	
Lead	0.034		1.20	1.23		mg/L		100	75 - 125	
Selenium	ND		1.20	1.30		mg/L		108	75 - 125	
Silver	ND		1.05	1.11		mg/L		106	75 - 125	

TestAmerica Buffalo

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 480-87472- Matrix: Solid Analysis Batch: 265222	1 MSD							Clie	nt Sample Prep Prep Ba	Type:	TCLP
Analysis Batch. 200222	Sample	Sample	Spike	MSD	MSD				%Rec.	iton. 20	RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	0.075		1.20	1.30		mg/L		102	75 - 125	2	20
Barium	1.2		1.20	2.25		mg/L		83	75 - 125	3	20
Cadmium	ND		1.20	1.20		mg/L		100	75 - 125	3	20
Chromium	ND		1.20	1.11		mg/L		93	75 - 125	2	20
Lead	0.034		1.20	1.20		mg/L		97	75 - 125	3	20
Selenium	ND		1.20	1.24		mg/L		104	75 - 125	4	20
Silver	ND		1.05	1.08		mg/L		103	75 - 125	3	20

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 480-264856/2-A **Client Sample ID: Method Blank Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 264978 Prep Batch: 264856** MB MB

Result Qualifier RL **MDL** Unit Analyte Prepared Analyzed 09/22/15 11:15 09/22/15 15:11 0.00020 0.00012 mg/L Mercury \overline{ND}

Lab Sample ID: LCS 480-264856/3-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 264978** Prep Batch: 264856 LCS LCS Spike %Rec. Analyte Added Result Qualifier Limits Unit D %Rec

Lab Sample ID: LB 480-264642/1-C **Client Sample ID: Method Blank Matrix: Solid Prep Type: TCLP**

0.00657

mg/L

98

80 - 120

Prep Batch: 264856

0.00668

Analysis Batch: 264978

Mercury

LB LB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Mercury 0.00020 0.00012 mg/L 09/22/15 11:15 09/22/15 15:10

Lab Sample ID: 480-87472-1 MS Client Sample ID: LFS-31 **Matrix: Solid Prep Type: TCLP Analysis Batch: 264978** Prep Batch: 264856

MS MS Sample Sample Spike %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Mercury ND 0.00668 0.00658 mg/L 80 - 120

Lab Sample ID: 480-87472-1 MSD **Client Sample ID: LFS-31 Matrix: Solid Prep Type: TCLP Analysis Batch: 264978** Prep Batch: 264856

Spike MSD MSD %Rec. **RPD** Sample Sample Added Analyte Result Qualifier Result Qualifier Unit D %Rec Limits RPD Limit 0.00668 ND 98 80 - 120 Mercury 0.00652 mg/L

TestAmerica Buffalo

9/24/2015

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Metals

Leach Batch: 264642

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87472-1	LFS-31	TCLP	Solid	1311	
480-87472-1 MS	LFS-31	TCLP	Solid	1311	
480-87472-1 MSD	LFS-31	TCLP	Solid	1311	
480-87472-2	LFS-32	TCLP	Solid	1311	
480-87472-3	LFS-33-T	TCLP	Solid	1311	
LB 480-264642/1-B	Method Blank	TCLP	Solid	1311	
LB 480-264642/1-C	Method Blank	TCLP	Solid	1311	

Prep Batch: 264839

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87472-1	LFS-31	TCLP	Solid	3010A	264642
480-87472-1 MS	LFS-31	TCLP	Solid	3010A	264642
480-87472-1 MSD	LFS-31	TCLP	Solid	3010A	264642
480-87472-2	LFS-32	TCLP	Solid	3010A	264642
480-87472-3	LFS-33-T	TCLP	Solid	3010A	264642
LB 480-264642/1-B	Method Blank	TCLP	Solid	3010A	264642
LCS 480-264839/3-A	Lab Control Sample	Total/NA	Solid	3010A	
MB 480-264839/2-A	Method Blank	Total/NA	Solid	3010A	

Prep Batch: 264856

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87472-1	LFS-31	TCLP	Solid	7470A	264642
480-87472-1 MS	LFS-31	TCLP	Solid	7470A	264642
480-87472-1 MSD	LFS-31	TCLP	Solid	7470A	264642
480-87472-2	LFS-32	TCLP	Solid	7470A	264642
480-87472-3	LFS-33-T	TCLP	Solid	7470A	264642
LB 480-264642/1-C	Method Blank	TCLP	Solid	7470A	264642
LCS 480-264856/3-A	Lab Control Sample	Total/NA	Solid	7470A	
MB 480-264856/2-A	Method Blank	Total/NA	Solid	7470A	

Analysis Batch: 264978

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87472-1	LFS-31	TCLP	Solid	7470A	264856
480-87472-1 MS	LFS-31	TCLP	Solid	7470A	264856
480-87472-1 MSD	LFS-31	TCLP	Solid	7470A	264856
480-87472-2	LFS-32	TCLP	Solid	7470A	264856
480-87472-3	LFS-33-T	TCLP	Solid	7470A	264856
LB 480-264642/1-C	Method Blank	TCLP	Solid	7470A	264856
LCS 480-264856/3-A	Lab Control Sample	Total/NA	Solid	7470A	264856
MB 480-264856/2-A	Method Blank	Total/NA	Solid	7470A	264856

Analysis Batch: 265222

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87472-1	LFS-31	TCLP	Solid	6010C	264839
480-87472-1 MS	LFS-31	TCLP	Solid	6010C	264839
480-87472-1 MSD	LFS-31	TCLP	Solid	6010C	264839
480-87472-2	LFS-32	TCLP	Solid	6010C	264839
480-87472-3	LFS-33-T	TCLP	Solid	6010C	264839
LB 480-264642/1-B	Method Blank	TCLP	Solid	6010C	264839
LCS 480-264839/3-A	Lab Control Sample	Total/NA	Solid	6010C	264839
MB 480-264839/2-A	Method Blank	Total/NA	Solid	6010C	264839

TestAmerica Buffalo

Lab Chronicle

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87472-1

Lab Sample ID: 480-87472-1

Matrix: Solid

Client Sample ID: LFS-31
Date Collected: 09/17/15 00:00
Date Received: 09/17/15 17:40

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			264642	09/21/15 09:10	JLS	TAL BUF
TCLP	Prep	3010A			264839	09/22/15 10:50	KJ1	TAL BUF
TCLP	Analysis	6010C		1	265222	09/23/15 11:19	AMH	TAL BUF
TCLP	Leach	1311			264642	09/21/15 09:10	JLS	TAL BUF
TCLP	Prep	7470A			264856	09/22/15 11:15	TAS	TAL BUF
TCLP	Analysis	7470A		1	264978	09/22/15 15:19	TAS	TAL BUF

Client Sample ID: LFS-32 Lab Sample ID: 480-87472-2

Date Collected: 09/17/15 00:00 Matrix: Solid

Date Received: 09/17/15 17:40

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			264642	09/21/15 09:10	JLS	TAL BUF
TCLP	Prep	3010A			264839	09/22/15 10:50	KJ1	TAL BUF
TCLP	Analysis	6010C		1	265222	09/23/15 11:35	AMH	TAL BUF
TCLP	Leach	1311			264642	09/21/15 09:10	JLS	TAL BUF
TCLP	Prep	7470A			264856	09/22/15 11:15	TAS	TAL BUF
TCLP	Analysis	7470A		1	264978	09/22/15 15:26	TAS	TAL BUF

Client Sample ID: LFS-33-T Lab Sample ID: 480-87472-3

Date Collected: 09/17/15 00:00 Matrix: Solid
Date Received: 09/17/15 17:40

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			264642	09/21/15 09:10	JLS	TAL BUF
TCLP	Prep	3010A			264839	09/22/15 10:50	KJ1	TAL BUF
TCLP	Analysis	6010C		1	265222	09/23/15 11:46	AMH	TAL BUF
TCLP	Leach	1311			264642	09/21/15 09:10	JLS	TAL BUF
TCLP	Prep	7470A			264856	09/22/15 11:15	TAS	TAL BUF
TCLP	Analysis	7470A		1	264978	09/22/15 15:27	TAS	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

4

6

8

10

12

Certification Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87472-1

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority New York The following analyte:	Program NELAP s are included in this repo	rt, but certification is	EPA Region 2 s not offered by the go	Certification ID 10026 overning authority:	Expiration Date 03-31-16
Analysis Method	Prep Method	Matrix	Analyt	te	
7470A	7470A	Solid	Mercu	1 m 1	

4

0

4.0

11

12

Method Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87472-1

Method	Method Description	Protocol	Laboratory
6010C	Metals (ICP)	SW846	TAL BUF
7470A	Mercury (CVAA)	SW846	TAL BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

- 5

4

5

6

Q

9

11

12

13

Sample Summary

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

TestAmerica Job ID: 480-87472-1

Lab Sample ID	Client Sample ID	Matrix	Collected Received
480-87472-1	LFS-31	Solid	09/17/15 00:00 09/17/15 17:40
480-87472-2	LFS-32	Solid	09/17/15 00:00 09/17/15 17:4
480-87472-3	LFS-33-T	Solid	09/17/15 00:00 09/17/15 17:40

THE LEADER IN ENVIRONMENTAL TESTING **TestAmerica** Drinking Water? Yes□ Nox Temperature on Receipt ---

> Chain of Custody Record

TAL-4124 (1007) Ollent	Project Manager F j		Date	Chain of Custody Number
LYER Erwirmmental Good	Dharma	ing Iyer	Sep17, 2015	264467
Rolling Hills D	Telephone Number (Area Code)/Fax Number (716) 662-4157	e)Fax Number (din.	Page of
State Pork NIV 14127	She Confact Allen	Lab Contact Do M	Analysis (Attach list if more space is needed)	
ocation (State)	Z Z	5	त्रुध्वत	Snecial Inetructions/
ContractPurchase OctobriCucte No.	Matrix	Containers & Preservatives	Wd	Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	IIA Suoeuph IbeS IloS	POSSH HOSSH HOSSH HOBN HOBN HOBN	721	Cat A
51/1/15	>			
F5-32 9/17/15	>			
F5-33-7 4/11/15	>			
			480-87472 Chain of Custody	Custody
Possible Hazard Identification Non-Hazard	Sample Disposal Unknown	Disposal By Lab	(A fee may be ass	(A fee may be assessed if samples are retained longer than 1 month)
Turn Around Time Required 24 Hours	Other	OC Requirements (Sp.		
Ridge Collection St	9 W1 (15 1740	1. Received By	1	Pate 1/5/1/5/
	Date Thine	2. Received By		Date Time
	Date Time	3. Received By		Date Time
			-	
				(

13

TEMP 19,1 NO ICE#

DISTRIBUTION: WHITE- Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

Login Sample Receipt Checklist

Client: Iyer Environmental Group, LLC

Job Number: 480-87472-1

Login Number: 87472 List Source: TestAmerica Buffalo

List Number: 1

Creator: Kolb, Chris M

Creator. Roll, Critis W		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	False	
Cooler Temperature is acceptable.	True	Yes: Received same day of collection
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	Refer to job narrative for details
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	False	Refer to job narrative for details
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	iyer env.
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

3

4

6

8

10

10

13

| | 4

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-87871-1 Client Project/Site: 132 Dingens

For:

Iyer Environmental Group, LLC 44 Rolling Hills Drive Orchard Park, New York 14127

Attn: Dr. Dharmarajan R Iyer

Melisso Deyo

Authorized for release by: 10/1/2015 11:50:48 AM

Melissa Deyo, Project Manager I (716)504-9874

melissa.deyo@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents	
Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	7
Surrogate Summary	13
QC Sample Results	14
QC Association Summary	19
Lab Chronicle	23
Certification Summary	28
Method Summary	29
Sample Summary	30
Chain of Custody	31
Receipt Checklists	32

Definitions/Glossary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87871-1

Qualifiers

GC Semi VOA

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier Qualifier Description

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Name and the stable a

MDA Minimum detectable activity
EDL Estimated Detection Limit
MDC Minimum detectable concentration
MDL Method Detection Limit

ML Method Detection Limit
ML Minimum Level (Dioxin)
NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control
RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TestAmerica Buffalo

Page 3 of 32

2

4

5

9

11

12

4 /

Case Narrative

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87871-1

Job ID: 480-87871-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-87871-1

Receipt

The samples were received on 9/24/2015 1:50 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 25.3° C.

Receipt Exceptions

Times of collection were not provided. Time of 00:00 was used for login.

GC Semi VOA

Method(s) 8082A: The following sample was diluted due to the nature of the sample matrix: LFS-35 (480-87871-2). Elevated reporting limits (RLs) are provided.

Method(s) 8082A: The following samples were diluted due to the abundance of target analytes: LFS-36 (480-87871-3), LFS-41 (480-87871-8) and LFS-42 (480-87871-9). Elevated reporting limits (RLs) are provided.

Method(s) 8082A: The following sample appears to contain polychlorinated biphenyls (PCBs); however, due to the presence of unknown patterns, the PCBs in the sample do not closely match any of the laboratory's Aroclor standards used for instrument calibration: LFS-41 (480-87871-8). The sample has been quantified and reported as a mixture of PCB-1248 and PCB-1254. Due to the poor match with the Aroclor standards, there is increased qualitative and quantitative uncertainty associated with the results.

Method(s) 8082A: All primary data is reported from the ZB-5 column.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method(s) 6010C: The following sample was diluted for TCLP Selenium due to the nature of the sample matrix: LFS-37 (480-87871-4). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method(s) 1311: Due to the sample matrix and associated reaction to the extraction fluid, the laboratory was unable to perform the leaching procedure with the required 100g for the following sample: LFS-37 (480-87871-4). The volume of leaching fluid was adjusted proportionally to maintain a 20:1 ratio of leaching fluid to weight of sample. Reporting limits (RLs) are not affected.

Method(s) 1311: Insufficient samples were provided to perform the leaching procedure with the required 100g for the following sample: LFS-34 (480-87871-1) and LFS-42 (480-87871-9). The volume of leaching fluid was adjusted proportionally to maintain a 20:1 ratio of leaching fluid to weight of sample. Reporting limits (RLs) are not affected.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

5

6

7

8

10

11

13

14

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Client Sample ID: LFS-34 Lab Sample ID: 480-87871-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
PCB-1248	0.18	J	0.22	0.043	mg/Kg	1	₩	8082A	Total/NA
PCB-1254	0.29		0.22	0.10	mg/Kg	1	₩	8082A	Total/NA
PCB-1260	0.13	J	0.22	0.10	mg/Kg	1	₩	8082A	Total/NA
Barium	0.72	J	1.0	0.10	mg/L	1		6010C	TCLP
Cadmium	0.015		0.0020	0.00050	mg/L	1		6010C	TCLP
Lead	0.11		0.020	0.0030	mg/L	1		6010C	TCLP

Client Sample ID: LFS-35 Lab Sample ID: 480-87871-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
PCB-1254	1.1		0.42	0.20	mg/Kg	2	₩	8082A	Total/NA
PCB-1260	0.40	J	0.42	0.20	mg/Kg	2	₩	8082A	Total/NA
Barium	0.46	J	1.0	0.10	mg/L	1		6010C	TCLP
Cadmium	0.0081		0.0020	0.00050	mg/L	1		6010C	TCLP
Lead	0.045		0.020	0.0030	mg/L	1		6010C	TCLP

Client Sample ID: LFS-36 Lab Sample ID: 480-87871-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
PCB-1260	5.5		2.3	1.1	mg/Kg	10	苺	8082A	Total/NA
Barium	0.80	J	1.0	0.10	mg/L	1		6010C	TCLP
Cadmium	0.042		0.0020	0.00050	mg/L	1		6010C	TCLP
Chromium	0.011	J	0.020	0.010	mg/L	1		6010C	TCLP
Lead	0.11		0.020	0.0030	mg/L	1		6010C	TCLP

Client Sample ID: LFS-37 Lab Sample ID: 480-87871-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
PCB-1248	1.1		0.23	0.045	mg/Kg	1	☼	8082A	Total/NA
PCB-1254	1.2		0.23	0.11	mg/Kg	1	₩	8082A	Total/NA
PCB-1260	0.57		0.23	0.11	mg/Kg	1	₩	8082A	Total/NA
Barium	0.83	J	1.0	0.10	mg/L	1		6010C	TCLP
Cadmium	0.075		0.0020	0.00050	mg/L	1		6010C	TCLP
Lead	0.48		0.020	0.0030	ma/l	1		6010C	TCLP

Lab Sample ID: 480-87871-5 **Client Sample ID: LFS-38**

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
PCB-1248	0.81		0.24	0.046	mg/Kg		₩	8082A	Total/NA
PCB-1260	1.6		0.24	0.11	mg/Kg	1	₩	8082A	Total/NA
Barium	0.68	J	1.0	0.10	mg/L	1		6010C	TCLP
Cadmium	0.067		0.0020	0.00050	mg/L	1		6010C	TCLP
Chromium	0.014	J	0.020	0.010	mg/L	1		6010C	TCLP
Lead	0.40		0.020	0.0030	mg/L	1		6010C	TCLP

Client Sample ID: LFS-39 Lab Sample ID: 480-87871-6

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
PCB-1248	0.48	0.22	0.043 mg/Kg	1 ≅ 8082A	Total/NA
PCB-1254	1.1	0.22	0.10 mg/Kg	1 ☼ 8082A	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

10/1/2015

Page 5 of 32

Detection Summary

Client: Iyer Environmental Group, LLC

Client Sample ID: LFS-39 (Continued)

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87871-1

Lab Sample ID: 480-87871-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
PCB-1260	0.76		0.22	0.10	mg/Kg	1	₩	8082A	Total/NA
Barium	0.58	J	1.0	0.10	mg/L	1		6010C	TCLP
Cadmium	0.044		0.0020	0.00050	mg/L	1		6010C	TCLP
Lead	0.26		0.020	0.0030	mg/L	1		6010C	TCLP

Client Sample ID: LFS-40 Lab Sample ID: 480-87871-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
PCB-1248	0.28		0.23	0.046	mg/Kg		₩	8082A	Total/NA
PCB-1254	0.53		0.23	0.11	mg/Kg	1	₩	8082A	Total/NA
PCB-1260	0.30		0.23	0.11	mg/Kg	1	☆	8082A	Total/NA
Arsenic	0.0058	J	0.015	0.0056	mg/L	1		6010C	TCLP
Barium	0.54	J	1.0	0.10	mg/L	1		6010C	TCLP
Cadmium	0.014		0.0020	0.00050	mg/L	1		6010C	TCLP
Chromium	0.029		0.020	0.010	mg/L	1		6010C	TCLP
Lead	0.27		0.020	0.0030	mg/L	1		6010C	TCLP

Client Sample ID: LFS-41 Lab Sample ID: 480-87871-8

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
PCB-1248	14		12	2.4	mg/Kg	50	苺	8082A	Total/NA
Barium	1.4		1.0	0.10	mg/L	1		6010C	TCLP
Cadmium	0.047		0.0020	0.00050	mg/L	1		6010C	TCLP
Lead	115		0.10	0.015	mg/L	5		6010C	TCLP

Client Sample ID: LFS-42 Lab Sample ID: 480-87871-9

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
PCB-1248	43	2.7	0.53	mg/Kg	10	☼	8082A	Total/NA
Barium	1.5	1.0	0.10	mg/L	1		6010C	TCLP
Cadmium	0.038	0.0020	0.00050	mg/L	1		6010C	TCLP
Lead	2.1	0.020	0.0030	mg/L	1		6010C	TCLP

This Detection Summary does not include radiochemical test results.

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Arsenic

Client Sample ID: LFS-34 Lab Sample ID: 480-87871-1

Date Collected: 09/24/15 00:00 Matrix: Solid
Date Received: 09/24/15 13:50 Percent Solids: 94.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.22	0.043	mg/Kg	<u></u>	09/25/15 08:41	09/25/15 20:29	1
PCB-1221	ND		0.22	0.043	mg/Kg	₩	09/25/15 08:41	09/25/15 20:29	1
PCB-1232	ND		0.22	0.043	mg/Kg	≎	09/25/15 08:41	09/25/15 20:29	1
PCB-1242	ND		0.22	0.043	mg/Kg	₽	09/25/15 08:41	09/25/15 20:29	1
PCB-1248	0.18	J	0.22	0.043	mg/Kg	☼	09/25/15 08:41	09/25/15 20:29	1
PCB-1254	0.29		0.22	0.10	mg/Kg	☼	09/25/15 08:41	09/25/15 20:29	1
PCB-1260	0.13	J	0.22	0.10	mg/Kg	₽	09/25/15 08:41	09/25/15 20:29	1
PCB-1262	ND		0.22	0.10	mg/Kg	☼	09/25/15 08:41	09/25/15 20:29	1
PCB-1268	ND		0.22	0.10	mg/Kg	₩	09/25/15 08:41	09/25/15 20:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	96		60 - 154				09/25/15 08:41	09/25/15 20:29	1
0000	400		05 474				00/05/45 00:44	09/25/15 20:29	- 4
DCB Decachlorobiphenyl	100		65 ₋ 174				09/25/15 08:41	09/25/15 20.29	7
DCB Decachlorobiphenyl Method: 6010C - Metals (65 - 174				09/25/15 08:41	09/25/15 20.29	1
Method: 6010C - Metals ((ICP) - TCLP	Qualifier	65 - 174 RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Method: 6010C - Metals (Analyte	(ICP) - TCLP	Qualifier		MDL 0.0056		<u>D</u>			Dil Fac
Method: 6010C - Metals (Analyte Arsenic	(ICP) - TCLP Result		RL	0.0056		D	Prepared	Analyzed	Dil Fac
Method: 6010C - Metals (Analyte Arsenic Barium	(ICP) - TCLP Result ND		RL 0.015	0.0056	mg/L mg/L	D	Prepared 09/29/15 11:15	Analyzed 09/30/15 00:57	Dil Fac 1 1 1
Method: 6010C - Metals (Analyte Arsenic Barium Cadmium	(ICP) - TCLP Result ND 0.72		RL 0.015 1.0	0.0056 0.10	mg/L mg/L mg/L	<u>D</u>	Prepared 09/29/15 11:15 09/29/15 11:15	Analyzed 09/30/15 00:57 09/30/15 00:57 09/30/15 00:57	Dil Fac 1 1 1 1
Method: 6010C - Metals (Analyte Arsenic Barium Cadmium Chromium	(ICP) - TCLP Result ND 0.72 0.015		RL 0.015 1.0 0.0020	0.0056 0.10 0.00050	mg/L mg/L mg/L mg/L	D	Prepared 09/29/15 11:15 09/29/15 11:15 09/29/15 11:15	Analyzed 09/30/15 00:57 09/30/15 00:57 09/30/15 00:57	Dil Fac 1 1 1 1 1 1 1 1
Method: 6010C - Metals (Analyte Arsenic Barium Cadmium Chromium Lead	(ICP) - TCLP Result ND 0.72 0.015 ND		RL 0.015 1.0 0.0020 0.0020	0.0056 0.10 0.00050 0.010	mg/L mg/L mg/L mg/L mg/L	D	Prepared 09/29/15 11:15 09/29/15 11:15 09/29/15 11:15 09/29/15 11:15	Analyzed 09/30/15 00:57 09/30/15 00:57 09/30/15 00:57 09/30/15 00:57	Dil Fac 1 1 1 1 1 1 1 1 1
	(ICP) - TCLP Result ND 0.72 0.015 ND 0.11		RL 0.015 1.0 0.0020 0.020 0.020	0.0056 0.10 0.00050 0.010 0.0030	mg/L mg/L mg/L mg/L mg/L mg/L	D	Prepared 09/29/15 11:15 09/29/15 11:15 09/29/15 11:15 09/29/15 11:15 09/29/15 11:15	Analyzed 09/30/15 00:57 09/30/15 00:57 09/30/15 00:57 09/30/15 00:57 09/30/15 00:57	Dil Fac 1 1 1 1 1 1 1 1
Method: 6010C - Metals (Analyte Arsenic Barium Cadmium Chromium Lead Selenium Silver	(ICP) - TCLP Result ND 0.72 0.015 ND 0.11 ND ND		RL 0.015 1.0 0.0020 0.020 0.020 0.025	0.0056 0.10 0.00050 0.010 0.0030 0.0087	mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	Prepared 09/29/15 11:15 09/29/15 11:15 09/29/15 11:15 09/29/15 11:15 09/29/15 11:15	Analyzed 09/30/15 00:57 09/30/15 00:57 09/30/15 00:57 09/30/15 00:57 09/30/15 00:57 09/30/15 00:57	Dil Fac 1 1 1 1 1 1 1 1 1
Method: 6010C - Metals (Analyte Arsenic Barium Cadmium Chromium Lead Selenium	(ICP) - TCLP Result ND 0.72 0.015 ND 0.11 ND ND V (CVAA) - TCLP		RL 0.015 1.0 0.0020 0.020 0.020 0.025	0.0056 0.10 0.00050 0.010 0.0030 0.0087 0.0017	mg/L mg/L mg/L mg/L mg/L mg/L	D	Prepared 09/29/15 11:15 09/29/15 11:15 09/29/15 11:15 09/29/15 11:15 09/29/15 11:15	Analyzed 09/30/15 00:57 09/30/15 00:57 09/30/15 00:57 09/30/15 00:57 09/30/15 00:57 09/30/15 00:57	Dil Fac 1 1 1 1 1 1 1 Dil Fac

Client Sample ID: LFS-35

Date Collected: 09/24/15 00:00

Matrix: Solid

Date Received: 09/24/15 13:50

Lab Sample ID: 480-87871-2

Matrix: Solid

Percent Solids: 95.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.42	0.082	mg/Kg	₩	09/25/15 08:41	09/25/15 20:45	2
PCB-1221	ND		0.42	0.082	mg/Kg	☼	09/25/15 08:41	09/25/15 20:45	2
PCB-1232	ND		0.42	0.082	mg/Kg	☼	09/25/15 08:41	09/25/15 20:45	2
PCB-1242	ND		0.42	0.082	mg/Kg	₽	09/25/15 08:41	09/25/15 20:45	2
PCB-1248	ND		0.42	0.082	mg/Kg	☼	09/25/15 08:41	09/25/15 20:45	2
PCB-1254	1.1		0.42	0.20	mg/Kg	☼	09/25/15 08:41	09/25/15 20:45	2
PCB-1260	0.40	J	0.42	0.20	mg/Kg	₽	09/25/15 08:41	09/25/15 20:45	2
PCB-1262	ND		0.42	0.20	mg/Kg	☼	09/25/15 08:41	09/25/15 20:45	2
PCB-1268	ND		0.42	0.20	mg/Kg	₩	09/25/15 08:41	09/25/15 20:45	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	85		60 - 154				09/25/15 08:41	09/25/15 20:45	2
DCB Decachlorobiphenyl	97		65 - 174				09/25/15 08:41	09/25/15 20:45	2

TestAmerica Buffalo

09/29/15 11:15 09/30/15 01:14

0.015

0.0056 mg/L

ND

Client Sample Results

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87871-1

Client Sample ID: LFS-35

Lab Sample ID: 480-87871-2 Date Collected: 09/24/15 00:00

Matrix: Solid Percent Solids: 95.4

Date Received: 09/24/15 13:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	0.46	J	1.0	0.10	mg/L		09/29/15 11:15	09/30/15 01:14	1
Cadmium	0.0081		0.0020	0.00050	mg/L		09/29/15 11:15	09/30/15 01:14	1
Chromium	ND		0.020	0.010	mg/L		09/29/15 11:15	09/30/15 01:14	1
Lead	0.045		0.020	0.0030	mg/L		09/29/15 11:15	09/30/15 01:14	1
Selenium	ND		0.025	0.0087	mg/L		09/29/15 11:15	09/30/15 01:14	1
Silver	ND		0.0060	0.0017	mg/L		09/29/15 11:15	09/30/15 01:14	1

Method: 7470A - Mercury (CVAA) - TCLP MDL Unit Analyte Result Qualifier RL Prepared Analyzed Dil Fac 0.00012 mg/L 09/29/15 11:45 09/29/15 15:08 Mercury ND 0.00020

Client Sample ID: LFS-36 Lab Sample ID: 480-87871-3

> **Matrix: Solid** Percent Solids: 92.0

Date Collected: 09/24/15 00:00 Date Received: 09/24/15 13:50

Analyte	Result Qualifi	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND	2.3	0.45	mg/Kg	<u> </u>	09/25/15 08:41	09/25/15 21:01	10
PCB-1221	ND	2.3	0.45	mg/Kg	☼	09/25/15 08:41	09/25/15 21:01	10
PCB-1232	ND	2.3	0.45	mg/Kg	☼	09/25/15 08:41	09/25/15 21:01	10
PCB-1242	ND	2.3	0.45	mg/Kg	₽	09/25/15 08:41	09/25/15 21:01	10
PCB-1248	ND	2.3	0.45	mg/Kg	☼	09/25/15 08:41	09/25/15 21:01	10
PCB-1254	ND	2.3	1.1	mg/Kg	☼	09/25/15 08:41	09/25/15 21:01	10
PCB-1260	5.5	2.3	1.1	mg/Kg	₽	09/25/15 08:41	09/25/15 21:01	10
PCB-1262	ND	2.3	1.1	mg/Kg	☼	09/25/15 08:41	09/25/15 21:01	10
PCB-1268	ND	2.3	1.1	mg/Kg	≎	09/25/15 08:41	09/25/15 21:01	10

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	100		60 - 154	09/25/15 08:41	09/25/15 21:01	10
DCB Decachlorobiphenyl	110		65 - 174	09/25/15 08:41	09/25/15 21:01	10

Method: 6010C - Metals (ICP) - TCLP

motification (i.e.)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		09/29/15 11:15	09/30/15 01:17	1
Barium	0.80	J	1.0	0.10	mg/L		09/29/15 11:15	09/30/15 01:17	1
Cadmium	0.042		0.0020	0.00050	mg/L		09/29/15 11:15	09/30/15 01:17	1
Chromium	0.011	J	0.020	0.010	mg/L		09/29/15 11:15	09/30/15 01:17	1
Lead	0.11		0.020	0.0030	mg/L		09/29/15 11:15	09/30/15 01:17	1
Selenium	ND		0.025	0.0087	mg/L		09/29/15 11:15	09/30/15 01:17	1
Silver	ND		0.0060	0.0017	mg/L		09/29/15 11:15	09/30/15 01:17	1
<u></u>									

Method: 7470A - Mercury (CVA	AA) - TCLP							
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
Mercury	ND	0.00020	0.00012 mg/l		09/29/15 11:45	09/29/15 15:10		

10/1/2015

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: LFS-37 Lab Sample ID: 480-87871-4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.23	0.045	mg/Kg	<u> </u>	09/25/15 08:41	09/25/15 21:16	1
PCB-1221	ND		0.23	0.045	mg/Kg	☼	09/25/15 08:41	09/25/15 21:16	1
PCB-1232	ND		0.23	0.045	mg/Kg	☼	09/25/15 08:41	09/25/15 21:16	1
PCB-1242	ND		0.23	0.045	mg/Kg	₽	09/25/15 08:41	09/25/15 21:16	1
PCB-1248	1.1		0.23	0.045	mg/Kg	☼	09/25/15 08:41	09/25/15 21:16	1
PCB-1254	1.2		0.23	0.11	mg/Kg	₩	09/25/15 08:41	09/25/15 21:16	1
PCB-1260	0.57		0.23	0.11	mg/Kg	\$	09/25/15 08:41	09/25/15 21:16	1
PCB-1262	ND		0.23	0.11	mg/Kg	☼	09/25/15 08:41	09/25/15 21:16	1
PCB-1268	ND		0.23	0.11	mg/Kg	☼	09/25/15 08:41	09/25/15 21:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	86		60 - 154				09/25/15 08:41	09/25/15 21:16	1
DCB Decachlorobiphenyl	91		65 - 174				09/25/15 08:41	09/25/15 21:16	1

Method: 6010C - Metals (ICP) - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		09/29/15 11:05	09/30/15 11:42	1
Barium	0.83	J	1.0	0.10	mg/L		09/29/15 11:05	09/30/15 11:42	1
Cadmium	0.075		0.0020	0.00050	mg/L		09/29/15 11:05	09/30/15 11:42	1
Chromium	ND		0.020	0.010	mg/L		09/29/15 11:05	09/30/15 11:42	1
Lead	0.48		0.020	0.0030	mg/L		09/29/15 11:05	09/30/15 11:42	1
Selenium	ND		0.050	0.017	mg/L		09/29/15 11:05	09/30/15 17:36	2
Silver	ND		0.0060	0.0017	mg/L		09/29/15 11:05	09/30/15 11:42	1

Method: 7470A - Mercury (CVA	AA) - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		09/29/15 11:45	09/29/15 16:01	1

 Client Sample ID: LFS-38
 Lab Sample ID: 480-87871-5

 Date Collected: 09/24/15 00:00
 Matrix: Solid

 Date Received: 09/24/15 13:50
 Percent Solids: 96.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.24	0.046	mg/Kg	<u> </u>	09/25/15 08:41	09/25/15 21:32	1
PCB-1221	ND		0.24	0.046	mg/Kg	☼	09/25/15 08:41	09/25/15 21:32	1
PCB-1232	ND		0.24	0.046	mg/Kg	☼	09/25/15 08:41	09/25/15 21:32	1
PCB-1242	ND		0.24	0.046	mg/Kg	₩.	09/25/15 08:41	09/25/15 21:32	1
PCB-1248	0.81		0.24	0.046	mg/Kg	☼	09/25/15 08:41	09/25/15 21:32	1
PCB-1254	ND		0.24	0.11	mg/Kg	☼	09/25/15 08:41	09/25/15 21:32	1
PCB-1260	1.6		0.24	0.11	mg/Kg	₽	09/25/15 08:41	09/25/15 21:32	1
PCB-1262	ND		0.24	0.11	mg/Kg	☼	09/25/15 08:41	09/25/15 21:32	1
PCB-1268	ND		0.24	0.11	mg/Kg	₩	09/25/15 08:41	09/25/15 21:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	76	·	60 - 154				09/25/15 08:41	09/25/15 21:32	1
DCB Decachlorobiphenyl	84		65 - 174				09/25/15 08:41	09/25/15 21:32	1
Method: 6010C - Metals (I	CP) - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		09/29/15 11:15	09/30/15 01:30	1

TestAmerica Buffalo

Client Sample Results

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87871-1

Client Sample ID: LFS-38 Lab Sample ID: 480-87871-5

Date Collected: 09/24/15 00:00 **Matrix: Solid** Date Received: 09/24/15 13:50 Percent Solids: 96.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	0.68	J	1.0	0.10	mg/L		09/29/15 11:15	09/30/15 01:30	1
Cadmium	0.067		0.0020	0.00050	mg/L		09/29/15 11:15	09/30/15 01:30	1
Chromium	0.014	J	0.020	0.010	mg/L		09/29/15 11:15	09/30/15 01:30	1
Lead	0.40		0.020	0.0030	mg/L		09/29/15 11:15	09/30/15 01:30	1
Selenium	ND		0.025	0.0087	mg/L		09/29/15 11:15	09/30/15 12:32	1
Silver	ND		0.0060	0.0017	mg/L		09/29/15 11:15	09/30/15 01:30	1
- Method: 7470A - Merc	urv (CVAA) - TCLP								
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

0.00012 mg/L Mercury 0.00020 09/29/15 11:45 09/29/15 15:11

Client Sample ID: LFS-39 Lab Sample ID: 480-87871-6 Date Collected: 09/24/15 00:00 **Matrix: Solid** Date Received: 09/24/15 13:50 Percent Solids: 95.7

Method: 8082A - Polych Analyte	nlorinated Biphenyls Result Q		by Gas Chro	matogr MDL		D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.22		mg/Kg	<u> </u>	09/25/15 08:41	09/25/15 21:48	1
PCB-1221	ND		0.22	0.043	mg/Kg	☆	09/25/15 08:41	09/25/15 21:48	1
PCB-1232	ND		0.22	0.043	mg/Kg	☼	09/25/15 08:41	09/25/15 21:48	1
PCB-1242	ND		0.22	0.043	mg/Kg	ф.	09/25/15 08:41	09/25/15 21:48	1
PCB-1248	0.48		0.22	0.043	mg/Kg	☼	09/25/15 08:41	09/25/15 21:48	1
PCB-1254	1.1		0.22	0.10	mg/Kg	☼	09/25/15 08:41	09/25/15 21:48	1
PCB-1260	0.76		0.22	0.10	mg/Kg	₽	09/25/15 08:41	09/25/15 21:48	1
PCB-1262	ND		0.22	0.10	mg/Kg	☼	09/25/15 08:41	09/25/15 21:48	1
PCB-1268	ND		0.22	0.10	mg/Kg	₩	09/25/15 08:41	09/25/15 21:48	1
Surrogate	%Recovery Q	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Totrophlara m vulana	07		60 151				00/25/15 00:41	00/25/15 21:49	

	,			· ·····, - · · ·	
Tetrachloro-m-xylene	87	60 - 154	09/25/15 08:41	09/25/15 21:48	1
DCB Decachlorobiphenyl	103	65 - 174	09/25/15 08:41	09/25/15 21:48	1
	TCLP				

Method: 6010C - Metals (ICI	P) - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		09/29/15 11:15	09/30/15 01:34	1
Barium	0.58	J	1.0	0.10	mg/L		09/29/15 11:15	09/30/15 01:34	1
Cadmium	0.044		0.0020	0.00050	mg/L		09/29/15 11:15	09/30/15 01:34	1
Chromium	ND		0.020	0.010	mg/L		09/29/15 11:15	09/30/15 01:34	1
Lead	0.26		0.020	0.0030	mg/L		09/29/15 11:15	09/30/15 01:34	1
Selenium	ND		0.025	0.0087	mg/L		09/29/15 11:15	09/30/15 12:35	1
Silver	ND		0.0060	0.0017	mg/L		09/29/15 11:15	09/30/15 01:34	1

Method: 7470A - Mercury (CVA	A) - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		09/29/15 11:45	09/29/15 15:16	1

<u>09/29/15 11:45</u> <u>09/29/15 15:18</u>

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Mercury

Client Sample ID: LFS-40 Lab Sample ID: 480-87871-7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.23	0.046	mg/Kg	<u></u>	09/25/15 08:41	09/25/15 22:36	1
PCB-1221	ND		0.23	0.046	mg/Kg	☼	09/25/15 08:41	09/25/15 22:36	1
PCB-1232	ND		0.23	0.046	mg/Kg	☼	09/25/15 08:41	09/25/15 22:36	1
PCB-1242	ND		0.23	0.046	mg/Kg	₽	09/25/15 08:41	09/25/15 22:36	1
PCB-1248	0.28		0.23	0.046	mg/Kg	☼	09/25/15 08:41	09/25/15 22:36	1
PCB-1254	0.53		0.23	0.11	mg/Kg	☼	09/25/15 08:41	09/25/15 22:36	1
PCB-1260	0.30		0.23	0.11	mg/Kg	₽	09/25/15 08:41	09/25/15 22:36	1
PCB-1262	ND		0.23	0.11	mg/Kg	☼	09/25/15 08:41	09/25/15 22:36	1
PCB-1268	ND		0.23	0.11	mg/Kg	₩	09/25/15 08:41	09/25/15 22:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	99		60 - 154				09/25/15 08:41	09/25/15 22:36	1
DCB Decachlorobiphenyl	104		65 - 174				09/25/15 08:41	09/25/15 22:36	1
Method: 6010C - Metals (ICP) - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.0058	J	0.015	0.0056	mg/L		09/29/15 11:15	09/30/15 01:37	1
Barium	0.54	J	1.0	0.10	mg/L		09/29/15 11:15	09/30/15 01:37	1
Cadmium	0.014		0.0020	0.00050	mg/L		09/29/15 11:15	09/30/15 01:37	1
Chromium	0.029		0.020	0.010	mg/L		09/29/15 11:15	09/30/15 01:37	1
Lead	0.27		0.020	0.0030	mg/L		09/29/15 11:15	09/30/15 01:37	1
Selenium	ND		0.025	0.0087	mg/L		09/29/15 11:15	09/30/15 12:39	1
Silver	ND		0.0060	0.0017	mg/L		09/29/15 11:15	09/30/15 01:37	1
Method: 7470A - Mercury	(CVAA) - TCLP								
Analyte		Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: LFS-41

Date Collected: 09/24/15 00:00

Matrix: Solid

Date Received: 09/24/15 13:50

Lab Sample ID: 480-87871-8

Matrix: Solid

Percent Solids: 89.6

0.00020

0.00012 mg/L

ND

Method: 8082A - Polychic Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND	-		2.4	mg/Kg	<u>₩</u>	09/25/15 08:41	09/25/15 22:52	50
PCB-1221	ND		12	2.4	mg/Kg	☼	09/25/15 08:41	09/25/15 22:52	50
PCB-1232	ND		12	2.4	mg/Kg	☼	09/25/15 08:41	09/25/15 22:52	50
PCB-1242	ND		12	2.4	mg/Kg	₩.	09/25/15 08:41	09/25/15 22:52	50
PCB-1248	14		12	2.4	mg/Kg	₩	09/25/15 08:41	09/25/15 22:52	50
PCB-1254	ND		12	5.6	mg/Kg	₩	09/25/15 08:41	09/25/15 22:52	50
PCB-1260	ND		12	5.6	mg/Kg	₩.	09/25/15 08:41	09/25/15 22:52	50
PCB-1262	ND		12	5.6	mg/Kg	₩	09/25/15 08:41	09/25/15 22:52	50
PCB-1268	ND		12	5.6	mg/Kg	₩	09/25/15 08:41	09/25/15 22:52	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	110		60 - 154				09/25/15 08:41	09/25/15 22:52	50
DCB Decachlorobiphenyl	124		65 - 174				09/25/15 08:41	09/25/15 22:52	50
Method: 6010C - Metals (ICP) - TCLP								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND	-	0.015	0.0056	mg/L		09/29/15 11:15	09/30/15 01:41	1

TestAmerica Buffalo

Client Sample Results

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

DCB Decachlorobiphenyl

TestAmerica Job ID: 480-87871-1

Client Sample ID: LFS-41

Lab Sample ID: 480-87871-8 Date Collected: 09/24/15 00:00

Matrix: Solid Percent Solids: 89.6

Date Received: 09/24/15 13:50

	(ICP) - TCLP (Continued)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	1.4	1.0	0.10	mg/L		09/29/15 11:15	09/30/15 01:41	1
Cadmium	0.047	0.0020	0.00050	mg/L		09/29/15 11:15	09/30/15 01:41	1
Chromium	ND	0.020	0.010	mg/L		09/29/15 11:15	09/30/15 01:41	1
Lead	115	0.10	0.015	mg/L		09/29/15 11:15	09/30/15 15:56	5
Selenium	ND	0.025	0.0087	mg/L		09/29/15 11:15	09/30/15 12:52	1
Silver	ND	0.0060	0.0017	mg/L		09/29/15 11:15	09/30/15 01:41	1

Method: 7470A - Mercury (CVAA) - TCLP										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Mercury	ND		0.00020	0.00012	mg/L		09/29/15 11:45	09/29/15 15:20	1

Client Sample ID: LFS-42 Lab Sample ID: 480-87871-9 Date Collected: 09/24/15 00:00 **Matrix: Solid** Date Received: 09/24/15 13:50 Percent Solids: 81.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		2.7	0.53	mg/Kg	<u> </u>	09/25/15 08:41	09/25/15 23:08	10
PCB-1221	ND		2.7	0.53	mg/Kg	☼	09/25/15 08:41	09/25/15 23:08	10
PCB-1232	ND		2.7	0.53	mg/Kg	☼	09/25/15 08:41	09/25/15 23:08	10
PCB-1242	ND		2.7	0.53	mg/Kg	₽	09/25/15 08:41	09/25/15 23:08	10
PCB-1248	43		2.7	0.53	mg/Kg	☼	09/25/15 08:41	09/25/15 23:08	10
PCB-1254	ND		2.7	1.3	mg/Kg	☼	09/25/15 08:41	09/25/15 23:08	10
PCB-1260	ND		2.7	1.3	mg/Kg	₽	09/25/15 08:41	09/25/15 23:08	10
PCB-1262	ND		2.7	1.3	mg/Kg	☼	09/25/15 08:41	09/25/15 23:08	10
PCB-1268	ND		2.7	1.3	mg/Kg	≎	09/25/15 08:41	09/25/15 23:08	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	99		60 - 154				09/25/15 08:41	09/25/15 23:08	10

Method: 6010C - Meta Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		09/29/15 11:15	09/30/15 01:44	1
Barium	1.5		1.0	0.10	mg/L		09/29/15 11:15	09/30/15 01:44	1
Cadmium	0.038		0.0020	0.00050	mg/L		09/29/15 11:15	09/30/15 01:44	1
Chromium	ND		0.020	0.010	mg/L		09/29/15 11:15	09/30/15 01:44	1
Lead	2.1		0.020	0.0030	mg/L		09/29/15 11:15	09/30/15 01:44	1
Selenium	ND		0.025	0.0087	mg/L		09/29/15 11:15	09/30/15 12:55	1
Silver	ND		0.0060	0.0017	mg/L		09/29/15 11:15	09/30/15 01:44	1

65 - 174

114

Method: 7470A - Mercury (CVA	AA) - TCLP								
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		09/29/15 11:45	09/29/15 15:22	1

TestAmerica Buffalo

09/25/15 08:41 09/25/15 23:08

10/1/2015

Surrogate Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87871-1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid Prep Type: Total/NA

			Percent Surrogate	Recovery (Acceptance Limits)
		TCX1	DCB1	
Lab Sample ID	Client Sample ID	(60-154)	65-174)	
480-87871-1	LFS-34	96	100	
480-87871-2	LFS-35	85	97	
480-87871-3	LFS-36	100	110	
480-87871-4	LFS-37	86	91	
480-87871-5	LFS-38	76	84	
480-87871-6	LFS-39	87	103	
480-87871-7	LFS-40	99	104	
480-87871-8	LFS-41	110	124	
480-87871-9	LFS-42	99	114	
LCS 480-265490/2-A	Lab Control Sample	116	117	
MB 480-265490/1-A	Method Blank	97	101	

TCX = Tetrachloro-m-xylene

DCB = DCB Decachlorobiphenyl

TestAmerica Buffalo

09/25/15 08:41 09/25/15 16:15

09/25/15 08:41 09/25/15 16:15

51 - 185

61 - 184

Client Sample ID: Method Blank

Prep Type: Total/NA

125

127

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 480-265490/1-A **Client Sample ID: Method Blank Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 265589								Prep Batch:	265490
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.20	0.038	mg/Kg		09/25/15 08:41	09/25/15 16:15	1
PCB-1221	ND		0.20	0.038	mg/Kg		09/25/15 08:41	09/25/15 16:15	1
PCB-1232	ND		0.20	0.038	mg/Kg		09/25/15 08:41	09/25/15 16:15	1
PCB-1242	ND		0.20	0.038	mg/Kg		09/25/15 08:41	09/25/15 16:15	1
PCB-1248	ND		0.20	0.038	mg/Kg		09/25/15 08:41	09/25/15 16:15	1
PCB-1254	ND		0.20	0.091	mg/Kg		09/25/15 08:41	09/25/15 16:15	1
PCB-1260	ND		0.20	0.091	mg/Kg		09/25/15 08:41	09/25/15 16:15	1
PCB-1262	ND		0.20	0.091	mg/Kg		09/25/15 08:41	09/25/15 16:15	1
PCB-1268	ND		0.20	0.091	mg/Kg		09/25/15 08:41	09/25/15 16:15	1
	МВ	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

PCB-1016

Tetrachloro-m-xylene

DCB Decachlorobiphenyl

Lab Sample ID: LCS 480-265490/2-A				CI	ient Sai	שו mpie	: Lab Control Sample
Matrix: Solid							Prep Type: Total/NA
Analysis Batch: 265589							Prep Batch: 265490
-	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits

2.42

mg/Kg

mg/Kg

60 - 154

65 - 174

1.94

65 - 174

PCB-1260 1.94 2.47 LCS LCS Surrogate %Recovery Qualifier Limits 60 - 154

116

117

97

101

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-266012/2-A

Matrix: Solid

Tetrachloro-m-xylene

DCB Decachlorobiphenyl

						Prep Batch:	266012
MB MB						•	
Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND	0.015	0.0056	mg/L		09/29/15 11:15	09/30/15 00:51	1
ND	1.0	0.10	mg/L		09/29/15 11:15	09/30/15 00:51	1
ND	0.0020	0.00050	mg/L		09/29/15 11:15	09/30/15 00:51	1
ND	0.020	0.010	mg/L		09/29/15 11:15	09/30/15 00:51	1
ND	0.020	0.0030	mg/L		09/29/15 11:15	09/30/15 00:51	1
ND	0.025	0.0087	mg/L		09/29/15 11:15	09/30/15 00:51	1
ND	0.0060	0.0017	mg/L		09/29/15 11:15	09/30/15 00:51	1
	Result Qualifier ND ND ND ND ND ND ND ND ND N	Result Qualifier RL ND 0.015 ND 1.0 ND 0.0020 ND 0.020 ND 0.020 ND 0.025 ND 0.025	Result Qualifier RL MDL ND 0.015 0.0056 ND 1.0 0.10 ND 0.0020 0.00050 ND 0.020 0.010 ND 0.020 0.0030 ND 0.025 0.0087	Result Qualifier RL MDL Unit ND 0.015 0.0056 mg/L ND 1.0 0.10 mg/L ND 0.0020 0.00050 mg/L ND 0.020 0.010 mg/L ND 0.020 0.0030 mg/L ND 0.025 0.0087 mg/L	Result Qualifier RL MDL Unit D ND 0.015 0.0056 mg/L mg/L ND 1.0 0.10 mg/L mg/L ND 0.0020 0.0050 mg/L ND 0.020 0.0030 mg/L ND 0.025 0.0087 mg/L	Result Qualifier RL MDL Unit D Prepared ND 0.015 0.0056 mg/L 09/29/15 11:15 ND 1.0 0.10 mg/L 09/29/15 11:15 ND 0.0020 0.00050 mg/L 09/29/15 11:15 ND 0.020 0.010 mg/L 09/29/15 11:15 ND 0.020 0.0030 mg/L 09/29/15 11:15 ND 0.025 0.0087 mg/L 09/29/15 11:15	MB MB Result Qualifier RL MDL Unit D Prepared Analyzed ND 0.015 0.0056 mg/L 09/29/15 11:15 09/30/15 00:51 ND 1.0 0.10 mg/L 09/29/15 11:15 09/30/15 00:51 ND 0.0020 0.0050 mg/L 09/29/15 11:15 09/30/15 00:51 ND 0.020 0.0030 mg/L 09/29/15 11:15 09/30/15 00:51 ND 0.025 0.0087 mg/L 09/29/15 11:15 09/30/15 00:51 ND 0.025 0.0087 mg/L 09/29/15 11:15 09/30/15 00:51

Lab Sample ID: LCS 480-266012/3-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA Analysis Batch: 266142 Prep Batch: 266012**

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Arsenic 1.00 1.00 mg/L 100 80 - 120

TestAmerica Buffalo

Page 14 of 32

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCS 480-266012/3-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 266142 Prep Batch: 266012**

LCS LCS Spike %Rec. Added Result Qualifier Analyte Unit %Rec Limits Barium 1.00 0.926 J 93 80 - 120 mg/L Cadmium 1.00 0.974 mg/L 97 80 - 120 Chromium 1.00 0.938 mg/L 94 80 - 120 Lead 1.00 0.943 mg/L 94 80 - 120 Selenium 1.00 1.02 mg/L 102 80 - 120 Silver 1.00 0.989 mg/L 99 80 - 120

Lab Sample ID: MB 480-266014/2-A **Client Sample ID: Method Blank Matrix: Solid**

Prep Type: Total/NA **Analysis Batch: 266264** Prep Batch: 266014

мв мв Result Qualifier **Analyte** RL MDL Unit Prepared Analyzed Dil Fac Arsenic $\overline{\mathsf{ND}}$ 0.015 0.0056 mg/L 09/29/15 11:05 09/30/15 11:36 ND Barium 09/29/15 11:05 09/30/15 11:36 1.0 0.10 mg/L Cadmium ND 0.0020 0.00050 mg/L 09/29/15 11:05 09/30/15 11:36 ND 0.020 0.010 mg/L 09/29/15 11:05 09/30/15 11:36 Chromium Lead ND 0.020 0.0030 mg/L 09/29/15 11:05 09/30/15 11:36 Selenium ND 0.025 0.0087 mg/L 09/29/15 11:05 09/30/15 11:36 Silver ND 0.0060 0.0017 mg/L 09/29/15 11:05 09/30/15 11:36

Lab Sample ID: LCS 480-266014/3-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 266264 Prep Batch: 266014

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	1.00	0.995		mg/L		100	80 - 120	
Barium	1.00	0.986	J	mg/L		99	80 - 120	
Cadmium	1.00	0.977		mg/L		98	80 - 120	
Chromium	1.00	1.01		mg/L		101	80 - 120	
Lead	1.00	0.930		mg/L		93	80 - 120	
Selenium	1.00	1.00		mg/L		100	80 - 120	
Silver	1.00	0.976		mg/L		98	80 - 120	

Lab Sample ID: LB 480-265759/1-B **Client Sample ID: Method Blank Matrix: Solid**

Prep Type: TCLP Analysis Batch: 266142 Prep Batch: 266012 ID ID

	LD	LD							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		09/29/15 11:15	09/30/15 00:37	1
Barium	ND		1.0	0.10	mg/L		09/29/15 11:15	09/30/15 00:37	1
Cadmium	ND		0.0020	0.00050	mg/L		09/29/15 11:15	09/30/15 00:37	1
Chromium	ND		0.020	0.010	mg/L		09/29/15 11:15	09/30/15 00:37	1
Lead	ND		0.020	0.0030	mg/L		09/29/15 11:15	09/30/15 00:37	1
Selenium	ND		0.025	0.0087	mg/L		09/29/15 11:15	09/30/15 00:37	1
Silver	ND		0.0060	0.0017	mg/L		09/29/15 11:15	09/30/15 00:37	1

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 480-87871-1 MS

Matrix: Solid

Analysis Batch: 266142

Client Sample ID: LFS-34 **Prep Type: TCLP**

Prep Batch: 266012

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	ND		1.00	0.992		mg/L		99	75 - 125	
Barium	0.72	J	1.00	1.59		mg/L		87	75 - 125	
Cadmium	0.015		1.00	0.985		mg/L		97	75 - 125	
Chromium	ND		1.00	0.938		mg/L		94	75 - 125	
Lead	0.11		1.00	1.06		mg/L		95	75 - 125	
Selenium	ND		1.00	0.989		mg/L		99	75 - 125	
Silver	ND		1.00	0.966		mg/L		97	75 - 125	

Lab Sample ID: 480-87871-1 MSD

Matrix: Solid

Analysis Batch: 266142

Client Sample ID: LFS-34 **Prep Type: TCLP**

Prep Batch: 266012

MSD MSD Sample Sample Spike %Rec. **RPD** Result Qualifier Added Limit Analyte Result Qualifier Unit D %Rec Limits RPD ND 75 - 125 Arsenic 1.00 0.986 mg/L 99 20 Barium 0.72 1.00 86 75 - 125 20 1.58 mg/L 1 Cadmium 0.015 1.00 0.972 mg/L 96 75 - 125 20 Chromium ND 1.00 0.923 mg/L 92 75 - 125 20 Lead 0.11 1.00 1.05 mg/L 93 75 - 125 2 20 Selenium ND 1.00 0.990 mg/L 99 75 - 125 20 Silver ND 1.00 0.947 75 - 125 mg/L

Lab Sample ID: LB2 480-265843/1-B

Matrix: Solid

Analysis Batch: 266264

Client Sample ID: Method Blank

Prep Type: TCLP Prep Batch: 266014

	LB2 L	.B2						
Analyte	Result Q	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND	0.015	0.0056	mg/L		09/29/15 11:05	09/30/15 11:33	1
Barium	ND	1.0	0.10	mg/L		09/29/15 11:05	09/30/15 11:33	1
Cadmium	ND	0.0020	0.00050	mg/L		09/29/15 11:05	09/30/15 11:33	1
Chromium	ND	0.020	0.010	mg/L		09/29/15 11:05	09/30/15 11:33	1
Lead	ND	0.020	0.0030	mg/L		09/29/15 11:05	09/30/15 11:33	1
Selenium	ND	0.025	0.0087	mg/L		09/29/15 11:05	09/30/15 11:33	1
Silver	ND	0.0060	0.0017	mg/L		09/29/15 11:05	09/30/15 11:33	1

Lab Sample ID: 480-87871-4 MS

Matrix: Solid

Analysis Batch: 266264

Client Sample ID: LFS-37 Prep Type: TCLP Prep Batch: 266014

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	ND		1.00	1.11		mg/L		111	75 - 125	
Barium	0.83	J	1.00	1.83		mg/L		99	75 - 125	
Cadmium	0.075		1.00	1.14		mg/L		107	75 - 125	
Chromium	ND		1.00	0.978		mg/L		98	75 - 125	
Lead	0.48		1.00	1.46		mg/L		98	75 - 125	
Silver	ND		1.00	1.07		mg/L		107	75 - 125	

TestAmerica Buffalo

10/1/2015

75 - 125

Prep Type: TCLP

106

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Selenium

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 480-87871-4 MS **Client Sample ID: LFS-37 Matrix: Solid Prep Type: TCLP** Analysis Batch: 266389 **Prep Batch: 266014**

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits

1.00

Lab Sample ID: 480-87871-4 MSD Client Sample ID: LFS-37

1.06

mg/L

Matrix: Solid Analysis Batch: 266264

ND

Analysis Batch: 266264									Prep Ba	atcn: 266014		
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Arsenic	ND		1.00	1.07		mg/L		107	75 - 125	3	20	
Barium	0.83	J	1.00	1.76		mg/L		92	75 - 125	4	20	
Cadmium	0.075		1.00	1.10		mg/L		103	75 - 125	3	20	
Chromium	ND		1.00	0.942		mg/L		94	75 - 125	4	20	
Lead	0.48		1.00	1.40		mg/L		93	75 - 125	4	20	
Silver	ND		1.00	1.02		mg/L		102	75 - 125	5	20	

Lab Sample ID: 480-87871-4 MSD Client Sample ID: LFS-37 **Matrix: Solid Prep Type: TCLP**

Analysis Batch: 266389 Prep Batch: 266014 MSD MSD Sample Sample Spike %Rec. **RPD** Unit Analyte Result Qualifier Added Result Qualifier Limits **RPD** Limit Selenium ND 1.00 1.01 mg/L 101 75 - 125

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 480-266021/2-A Client Sample ID: Method Blank

Matrix: Solid Prep Type: Total/NA **Prep Batch: 266021 Analysis Batch: 266133** MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 09/29/15 11:45 09/29/15 14:58 Mercury ND 0.00020 0.00012 mg/L

Lab Sample ID: LCS 480-266021/3-A **Client Sample ID: Lab Control Sample**

Matrix: Solid Prep Type: Total/NA **Analysis Batch: 266133 Prep Batch: 266021** Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits

Mercury 0.00668 0.00642 mg/L 96 80 - 120 Lab Sample ID: MB 480-266023/2-A **Client Sample ID: Method Blank**

Matrix: Solid Prep Type: Total/NA Prep Batch: 266023 **Analysis Batch: 266133** мв мв

MDL Unit Analyte Result Qualifier RL Prepared Analyzed Dil Fac Mercury $\overline{\mathsf{ND}}$ 0.00020 0.00012 mg/L 09/29/15 11:45 09/29/15 15:58

80 - 120

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Mercury

Method: 7470A - Mercury (CVAA) (Continued)

Lab Sample ID: LCS 480-266023/3-A		Client Sample ID: Lab Control Sample					
Matrix: Solid							Prep Type: Total/NA
Analysis Batch: 266133							Prep Batch: 266023
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits

0.00633

mg/L

Lab Sample ID: LB 480-265759/1-C **Client Sample ID: Method Blank Matrix: Solid Prep Type: TCLP Analysis Batch: 266133 Prep Batch: 266021** LB LB

0.00668

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 09/29/15 11:45 09/29/15 14:56 Mercury $\overline{\mathsf{ND}}$ 0.00020 0.00012 mg/L

Lab Sample ID: 480-87871-1 MS Client Sample ID: LFS-34 **Matrix: Solid Prep Type: TCLP Analysis Batch: 266133 Prep Batch: 266021** Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier %Rec Limits Analyte Unit D Mercury ND 0.00668 0.00610 mg/L 91 80 - 120

Lab Sample ID: 480-87871-1 MSD Client Sample ID: LFS-34 **Matrix: Solid Prep Type: TCLP Analysis Batch: 266133 Prep Batch: 266021** Sample Sample Spike MSD MSD %Rec. **RPD** Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit Mercury $\overline{\mathsf{ND}}$ 0.00668 0.00602 80 - 120 mg/L

Lab Sample ID: LB2 480-265843/1-C Client Sample ID: Method Blank **Matrix: Solid Prep Type: TCLP Analysis Batch: 266133** Prep Batch: 266023 LB2 LB2

Analyte Result Qualifier RL **MDL** Unit **Prepared** Analyzed Dil Fac ND 0.00020 09/29/15 11:45 09/29/15 15:53 Mercury 0.00012 mg/L

Client Sample ID: LFS-37 Lab Sample ID: 480-87871-4 MS **Matrix: Solid Prep Type: TCLP Analysis Batch: 266133 Prep Batch: 266023** Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier Analyte Unit D %Rec Limits

0.00668 ND 0.00618 93 80 - 120 Mercury mg/L Lab Sample ID: 480-87871-4 MSD Client Sample ID: LFS-37 **Matrix: Solid Prep Type: TCLP Analysis Batch: 266133 Prep Batch: 266023**

Sample Sample Spike MSD MSD %Rec. **RPD** Result Qualifier Added RPD Limit **Analyte** Result Qualifier Unit %Rec Limits Mercury ND 0.00668 0.00610 mg/L 91 80 - 120 20

TestAmerica Job ID: 480-87871-1

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

GC Semi VOA

Prep Batch: 265490

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87871-1	LFS-34	Total/NA	Solid	3550C	
480-87871-2	LFS-35	Total/NA	Solid	3550C	
480-87871-3	LFS-36	Total/NA	Solid	3550C	
480-87871-4	LFS-37	Total/NA	Solid	3550C	
480-87871-5	LFS-38	Total/NA	Solid	3550C	
480-87871-6	LFS-39	Total/NA	Solid	3550C	
480-87871-7	LFS-40	Total/NA	Solid	3550C	
480-87871-8	LFS-41	Total/NA	Solid	3550C	
480-87871-9	LFS-42	Total/NA	Solid	3550C	
LCS 480-265490/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-265490/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 265589

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87871-1	LFS-34	Total/NA	Solid	8082A	265490
480-87871-2	LFS-35	Total/NA	Solid	8082A	265490
480-87871-3	LFS-36	Total/NA	Solid	8082A	265490
480-87871-4	LFS-37	Total/NA	Solid	8082A	265490
480-87871-5	LFS-38	Total/NA	Solid	8082A	265490
480-87871-6	LFS-39	Total/NA	Solid	8082A	265490
480-87871-7	LFS-40	Total/NA	Solid	8082A	265490
480-87871-8	LFS-41	Total/NA	Solid	8082A	265490
480-87871-9	LFS-42	Total/NA	Solid	8082A	265490
LCS 480-265490/2-A	Lab Control Sample	Total/NA	Solid	8082A	265490
MB 480-265490/1-A	Method Blank	Total/NA	Solid	8082A	265490

Metals

Leach Batch: 265759

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87871-1	LFS-34	TCLP	Solid	1311	
480-87871-1 MS	LFS-34	TCLP	Solid	1311	
480-87871-1 MSD	LFS-34	TCLP	Solid	1311	
480-87871-2	LFS-35	TCLP	Solid	1311	
480-87871-3	LFS-36	TCLP	Solid	1311	
480-87871-5	LFS-38	TCLP	Solid	1311	
480-87871-6	LFS-39	TCLP	Solid	1311	
480-87871-7	LFS-40	TCLP	Solid	1311	
480-87871-8	LFS-41	TCLP	Solid	1311	
480-87871-9	LFS-42	TCLP	Solid	1311	
LB 480-265759/1-B	Method Blank	TCLP	Solid	1311	
LB 480-265759/1-C	Method Blank	TCLP	Solid	1311	

Leach Batch: 265843

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87871-4	LFS-37	TCLP	Solid	1311	
480-87871-4 MS	LFS-37	TCLP	Solid	1311	
480-87871-4 MSD	LFS-37	TCLP	Solid	1311	
LB2 480-265843/1-B	Method Blank	TCLP	Solid	1311	
LB2 480-265843/1-C	Method Blank	TCLP	Solid	1311	

TestAmerica Buffalo

Page 19 of 32

TestAmerica Job ID: 480-87871-1

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Metals (Continued)

Prep Batch: 266012

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87871-1	LFS-34	TCLP	Solid	3010A	265759
480-87871-1 MS	LFS-34	TCLP	Solid	3010A	265759
480-87871-1 MSD	LFS-34	TCLP	Solid	3010A	265759
480-87871-2	LFS-35	TCLP	Solid	3010A	265759
480-87871-3	LFS-36	TCLP	Solid	3010A	265759
480-87871-5	LFS-38	TCLP	Solid	3010A	265759
480-87871-6	LFS-39	TCLP	Solid	3010A	265759
480-87871-7	LFS-40	TCLP	Solid	3010A	265759
480-87871-8	LFS-41	TCLP	Solid	3010A	265759
480-87871-9	LFS-42	TCLP	Solid	3010A	265759
LB 480-265759/1-B	Method Blank	TCLP	Solid	3010A	265759
LCS 480-266012/3-A	Lab Control Sample	Total/NA	Solid	3010A	
MB 480-266012/2-A	Method Blank	Total/NA	Solid	3010A	

Prep Batch: 266014

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87871-4	LFS-37	TCLP	Solid	3010A	265843
480-87871-4 MS	LFS-37	TCLP	Solid	3010A	265843
480-87871-4 MSD	LFS-37	TCLP	Solid	3010A	265843
LB2 480-265843/1-B	Method Blank	TCLP	Solid	3010A	265843
LCS 480-266014/3-A	Lab Control Sample	Total/NA	Solid	3010A	
MB 480-266014/2-A	Method Blank	Total/NA	Solid	3010A	

Prep Batch: 266021

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87871-1	LFS-34	TCLP	Solid	7470A	265759
480-87871-1 MS	LFS-34	TCLP	Solid	7470A	265759
480-87871-1 MSD	LFS-34	TCLP	Solid	7470A	265759
480-87871-2	LFS-35	TCLP	Solid	7470A	265759
480-87871-3	LFS-36	TCLP	Solid	7470A	265759
480-87871-5	LFS-38	TCLP	Solid	7470A	265759
480-87871-6	LFS-39	TCLP	Solid	7470A	265759
480-87871-7	LFS-40	TCLP	Solid	7470A	265759
480-87871-8	LFS-41	TCLP	Solid	7470A	265759
480-87871-9	LFS-42	TCLP	Solid	7470A	265759
LB 480-265759/1-C	Method Blank	TCLP	Solid	7470A	265759
LCS 480-266021/3-A	Lab Control Sample	Total/NA	Solid	7470A	
MB 480-266021/2-A	Method Blank	Total/NA	Solid	7470A	

Prep Batch: 266023

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87871-4	LFS-37	TCLP	Solid	7470A	265843
480-87871-4 MS	LFS-37	TCLP	Solid	7470A	265843
480-87871-4 MSD	LFS-37	TCLP	Solid	7470A	265843
LB2 480-265843/1-C	Method Blank	TCLP	Solid	7470A	265843
LCS 480-266023/3-A	Lab Control Sample	Total/NA	Solid	7470A	
MB 480-266023/2-A	Method Blank	Total/NA	Solid	7470A	

Analysis Batch: 266133

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87871-1	LFS-34	TCLP	Solid	7470A	266021

TestAmerica Buffalo

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Metals (Continued)

Analysis Batch: 266133 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87871-1 MS	LFS-34	TCLP	Solid	7470A	266021
480-87871-1 MSD	LFS-34	TCLP	Solid	7470A	266021
480-87871-2	LFS-35	TCLP	Solid	7470A	266021
480-87871-3	LFS-36	TCLP	Solid	7470A	266021
480-87871-4	LFS-37	TCLP	Solid	7470A	266023
480-87871-4 MS	LFS-37	TCLP	Solid	7470A	266023
480-87871-4 MSD	LFS-37	TCLP	Solid	7470A	266023
480-87871-5	LFS-38	TCLP	Solid	7470A	266021
480-87871-6	LFS-39	TCLP	Solid	7470A	266021
480-87871-7	LFS-40	TCLP	Solid	7470A	266021
480-87871-8	LFS-41	TCLP	Solid	7470A	266021
480-87871-9	LFS-42	TCLP	Solid	7470A	266021
LB 480-265759/1-C	Method Blank	TCLP	Solid	7470A	266021
LB2 480-265843/1-C	Method Blank	TCLP	Solid	7470A	266023
LCS 480-266021/3-A	Lab Control Sample	Total/NA	Solid	7470A	266021
LCS 480-266023/3-A	Lab Control Sample	Total/NA	Solid	7470A	266023
MB 480-266021/2-A	Method Blank	Total/NA	Solid	7470A	266021
MB 480-266023/2-A	Method Blank	Total/NA	Solid	7470A	266023

Analysis Batch: 266142

-	011 / 0 1 15				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87871-1	LFS-34	TCLP	Solid	6010C	266012
480-87871-1 MS	LFS-34	TCLP	Solid	6010C	266012
480-87871-1 MSD	LFS-34	TCLP	Solid	6010C	266012
480-87871-2	LFS-35	TCLP	Solid	6010C	266012
480-87871-3	LFS-36	TCLP	Solid	6010C	266012
480-87871-5	LFS-38	TCLP	Solid	6010C	266012
480-87871-6	LFS-39	TCLP	Solid	6010C	266012
480-87871-7	LFS-40	TCLP	Solid	6010C	266012
480-87871-8	LFS-41	TCLP	Solid	6010C	266012
480-87871-9	LFS-42	TCLP	Solid	6010C	266012
LB 480-265759/1-B	Method Blank	TCLP	Solid	6010C	266012
LCS 480-266012/3-A	Lab Control Sample	Total/NA	Solid	6010C	266012
MB 480-266012/2-A	Method Blank	Total/NA	Solid	6010C	266012

Analysis Batch: 266264

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87871-4	LFS-37	TCLP	Solid	6010C	266014
480-87871-4 MS	LFS-37	TCLP	Solid	6010C	266014
480-87871-4 MSD	LFS-37	TCLP	Solid	6010C	266014
LB2 480-265843/1-B	Method Blank	TCLP	Solid	6010C	266014
LCS 480-266014/3-A	Lab Control Sample	Total/NA	Solid	6010C	266014
MB 480-266014/2-A	Method Blank	Total/NA	Solid	6010C	266014

Analysis Batch: 266277

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87871-5	LFS-38	TCLP	Solid	6010C	266012
480-87871-6	LFS-39	TCLP	Solid	6010C	266012
480-87871-7	LFS-40	TCLP	Solid	6010C	266012
480-87871-8	LFS-41	TCLP	Solid	6010C	266012
480-87871-9	LFS-42	TCLP	Solid	6010C	266012

TestAmerica Buffalo

TestAmerica Job ID: 480-87871-1

QC Association Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87871-1

Metals (Continued)

Analysis Batch: 266380

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87871-8	LFS-41	TCLP	Solid	6010C	266012

Analysis Batch: 266389

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87871-4	LFS-37	TCLP	Solid	6010C	266014
480-87871-4 MS	LFS-37	TCLP	Solid	6010C	266014
480-87871-4 MSD	LFS-37	TCLP	Solid	6010C	266014

General Chemistry

Analysis Batch: 265421

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87871-1	LFS-34	Total/NA	Solid	Moisture	_
480-87871-2	LFS-35	Total/NA	Solid	Moisture	
480-87871-3	LFS-36	Total/NA	Solid	Moisture	
480-87871-4	LFS-37	Total/NA	Solid	Moisture	
480-87871-5	LFS-38	Total/NA	Solid	Moisture	
480-87871-6	LFS-39	Total/NA	Solid	Moisture	
480-87871-7	LFS-40	Total/NA	Solid	Moisture	
480-87871-8	LFS-41	Total/NA	Solid	Moisture	
480-87871-9	LFS-42	Total/NA	Solid	Moisture	

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: LFS-34 Lab Sample ID: 480-87871-1

Date Collected: 09/24/15 00:00 Matrix: Solid
Date Received: 09/24/15 13:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			265759	09/28/15 08:00	JLS	TAL BUF
TCLP	Prep	3010A			266012	09/29/15 11:15	KJ1	TAL BUF
TCLP	Analysis	6010C		1	266142	09/30/15 00:57	AMH	TAL BUF
TCLP	Leach	1311			265759	09/28/15 08:00	JLS	TAL BUF
TCLP	Prep	7470A			266021	09/29/15 11:45	TAS	TAL BUF
TCLP	Analysis	7470A		1	266133	09/29/15 15:01	TAS	TAL BUF
Total/NA	Analysis	Moisture		1	265421	09/24/15 19:58	CMK	TAL BUF

Client Sample ID: LFS-34 Lab Sample ID: 480-87871-1

Date Collected: 09/24/15 00:00 Matrix: Solid
Date Received: 09/24/15 13:50 Percent Solids: 94.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			265490	09/25/15 08:41	JLS	TAL BUF
Total/NA	Analysis	8082A		1	265589	09/25/15 20:29	KS	TAL BUF

Client Sample ID: LFS-35 Lab Sample ID: 480-87871-2

Date Collected: 09/24/15 00:00
Date Received: 09/24/15 13:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			265759	09/28/15 08:00	JLS	TAL BUF
TCLP	Prep	3010A			266012	09/29/15 11:15	KJ1	TAL BUF
TCLP	Analysis	6010C		1	266142	09/30/15 01:14	AMH	TAL BUF
TCLP	Leach	1311			265759	09/28/15 08:00	JLS	TAL BUF
TCLP	Prep	7470A			266021	09/29/15 11:45	TAS	TAL BUF
TCLP	Analysis	7470A		1	266133	09/29/15 15:08	TAS	TAL BUF
Total/NA	Analysis	Moisture		1	265421	09/24/15 19:58	CMK	TAL BUF

Client Sample ID: LFS-35 Lab Sample ID: 480-87871-2

 Date Collected: 09/24/15 00:00
 Matrix: Solid

 Date Received: 09/24/15 13:50
 Percent Solids: 95.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			265490	09/25/15 08:41	JLS	TAL BUF
Total/NA	Analysis	8082A		2	265589	09/25/15 20:45	KS	TAL BUF

Client Sample ID: LFS-36 Lab Sample ID: 480-87871-3

Date Collected: 09/24/15 00:00 Matrix: Solid
Date Received: 09/24/15 13:50

Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst TCLP Leach 1311 265759 09/28/15 08:00 JLS TAL BUF

TestAmerica Buffalo

Matrix: Solid

Project/Site: 132 Dingens

Client Sample ID: LFS-36 Lab Sample ID: 480-87871-3 Date Collected: 09/24/15 00:00 **Matrix: Solid**

Date Received: 09/24/15 13:50

Client: Iyer Environmental Group, LLC

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Prep	3010A		· <u></u>	266012	09/29/15 11:15	KJ1	TAL BUF
TCLP	Analysis	6010C		1	266142	09/30/15 01:17	AMH	TAL BUF
TCLP	Leach	1311			265759	09/28/15 08:00	JLS	TAL BUF
TCLP	Prep	7470A			266021	09/29/15 11:45	TAS	TAL BUF
TCLP	Analysis	7470A		1	266133	09/29/15 15:10	TAS	TAL BUF
Total/NA	Analysis	Moisture		1	265421	09/24/15 19:58	CMK	TAL BUF

Client Sample ID: LFS-36 Lab Sample ID: 480-87871-3

Date Collected: 09/24/15 00:00

Date Received: 09/24/15 13:50 Percent Solids: 92.0

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			265490	09/25/15 08:41	JLS	TAL BUF
Total/NA	Analysis	8082A		10	265589	09/25/15 21:01	KS	TAL BUF

Client Sample ID: LFS-37 Lab Sample ID: 480-87871-4 **Matrix: Solid**

Date Collected: 09/24/15 00:00

Date Received: 09/24/15 13:50

Γ	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			265843	09/28/15 12:31	JLS	TAL BUF
TCLP	Prep	3010A			266014	09/29/15 11:05	KJ1	TAL BUF
TCLP	Analysis	6010C		1	266264	09/30/15 11:42	SLB	TAL BUF
TCLP	Leach	1311			265843	09/28/15 12:31	JLS	TAL BUF
TCLP	Prep	3010A			266014	09/29/15 11:05	KJ1	TAL BUF
TCLP	Analysis	6010C		2	266389	09/30/15 17:36	SLB	TAL BUF
TCLP	Leach	1311			265843	09/28/15 12:31	JLS	TAL BUF
TCLP	Prep	7470A			266023	09/29/15 11:45	TAS	TAL BUF
TCLP	Analysis	7470A		1	266133	09/29/15 16:01	TAS	TAL BUF
Total/NA	Analysis	Moisture		1	265421	09/24/15 19:58	CMK	TAL BUF

Client Sample ID: LFS-37 Lab Sample ID: 480-87871-4 **Matrix: Solid**

Date Collected: 09/24/15 00:00 Date Received: 09/24/15 13:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			265490	09/25/15 08:41	JLS	TAL BUF
Total/NA	Analysis	8082A		1	265589	09/25/15 21:16	KS	TAL BUF

TestAmerica Buffalo

Percent Solids: 95.9

10

Matrix: Solid

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Client Sample ID: LFS-38

Date Collected: 09/24/15 00:00 Date Received: 09/24/15 13:50

Lab Sample ID: 480-87871-5

Matrix: Solid

Matrix: Solid

Percent Solids: 96.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			265759	09/28/15 08:00	JLS	TAL BUF
TCLP	Prep	3010A			266012	09/29/15 11:15	KJ1	TAL BUF
TCLP	Analysis	6010C		1	266142	09/30/15 01:30	AMH	TAL BUF
TCLP	Leach	1311			265759	09/28/15 08:00	JLS	TAL BUF
TCLP	Prep	3010A			266012	09/29/15 11:15	KJ1	TAL BUF
TCLP	Analysis	6010C		1	266277	09/30/15 12:32	AMH	TAL BUF
TCLP	Leach	1311			265759	09/28/15 08:00	JLS	TAL BUF
TCLP	Prep	7470A			266021	09/29/15 11:45	TAS	TAL BUF
TCLP	Analysis	7470A		1	266133	09/29/15 15:11	TAS	TAL BUF
Total/NA	Analysis	Moisture		1	265421	09/24/15 19:58	CMK	TAL BUF

Client Sample ID: LFS-38 Lab Sample ID: 480-87871-5

Date Collected: 09/24/15 00:00 Date Received: 09/24/15 13:50

Batch Batch Dilution Batch Prepared Method **Prep Type** Type **Factor** Number or Analyzed Run Analyst

Total/NA Prep 3550C 265490 09/25/15 08:41 JLS TAL BUF Total/NA Analysis 8082A 265589 09/25/15 21:32 KS TAL BUF 1

Client Sample ID: LFS-39 Lab Sample ID: 480-87871-6

Date Collected: 09/24/15 00:00 **Matrix: Solid** Date Received: 09/24/15 13:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			265759	09/28/15 08:00	JLS	TAL BUF
TCLP	Prep	3010A			266012	09/29/15 11:15	KJ1	TAL BUF
TCLP	Analysis	6010C		1	266142	09/30/15 01:34	AMH	TAL BUF
TCLP	Leach	1311			265759	09/28/15 08:00	JLS	TAL BUF
TCLP	Prep	3010A			266012	09/29/15 11:15	KJ1	TAL BUF
TCLP	Analysis	6010C		1	266277	09/30/15 12:35	AMH	TAL BUF
TCLP	Leach	1311			265759	09/28/15 08:00	JLS	TAL BUF
TCLP	Prep	7470A			266021	09/29/15 11:45	TAS	TAL BUF
TCLP	Analysis	7470A		1	266133	09/29/15 15:16	TAS	TAL BUF
Total/NA	Analysis	Moisture		1	265421	09/24/15 19:58	CMK	TAL BUF

Client Sample ID: LFS-39 Lab Sample ID: 480-87871-6

Date Collected: 09/24/15 00:00 **Matrix: Solid** Date Received: 09/24/15 13:50 Percent Solids: 95.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			265490	09/25/15 08:41	JLS	TAL BUF
Total/NA	Analysis	8082A		1	265589	09/25/15 21:48	KS	TAL BUF

TestAmerica Buffalo

Project/Site: 132 Dingens

Client Sample ID: LFS-40

Client: Iyer Environmental Group, LLC

Date Collected: 09/24/15 00:00 Date Received: 09/24/15 13:50

Lab Sample ID: 480-87871-7

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			265759	09/28/15 08:00	JLS	TAL BUF
TCLP	Prep	3010A			266012	09/29/15 11:15	KJ1	TAL BUF
TCLP	Analysis	6010C		1	266142	09/30/15 01:37	AMH	TAL BUF
TCLP	Leach	1311			265759	09/28/15 08:00	JLS	TAL BUF
TCLP	Prep	3010A			266012	09/29/15 11:15	KJ1	TAL BUF
TCLP	Analysis	6010C		1	266277	09/30/15 12:39	AMH	TAL BUF
TCLP	Leach	1311			265759	09/28/15 08:00	JLS	TAL BUF
TCLP	Prep	7470A			266021	09/29/15 11:45	TAS	TAL BUF
TCLP	Analysis	7470A		1	266133	09/29/15 15:18	TAS	TAL BUF
Total/NA	Analysis	Moisture		1	265421	09/24/15 19:58	CMK	TAL BUF

Client Sample ID: LFS-40

Date Collected: 09/24/15 00:00 Date Received: 09/24/15 13:50

Lab Sample ID: 480-87871-7 **Matrix: Solid**

Percent Solids: 94.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			265490	09/25/15 08:41	JLS	TAL BUF
Total/NA	Analysis	8082A		1	265589	09/25/15 22:36	KS	TAL BUF

Client Sample ID: LFS-41

Date Received: 09/24/15 13:50

Date Collected: 09/24/15 00:00

.ab	Sample	ID: 480-87871-8	
		Matrix: Solid	

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			265759	09/28/15 08:00	JLS	TAL BUF
TCLP	Prep	3010A			266012	09/29/15 11:15	KJ1	TAL BUF
TCLP	Analysis	6010C		5	266380	09/30/15 15:56	AMH	TAL BUF
TCLP	Leach	1311			265759	09/28/15 08:00	JLS	TAL BUF
TCLP	Prep	3010A			266012	09/29/15 11:15	KJ1	TAL BUF
TCLP	Analysis	6010C		1	266142	09/30/15 01:41	AMH	TAL BUF
TCLP	Leach	1311			265759	09/28/15 08:00	JLS	TAL BUF
TCLP	Prep	3010A			266012	09/29/15 11:15	KJ1	TAL BUF
TCLP	Analysis	6010C		1	266277	09/30/15 12:52	AMH	TAL BUF
TCLP	Leach	1311			265759	09/28/15 08:00	JLS	TAL BUF
TCLP	Prep	7470A			266021	09/29/15 11:45	TAS	TAL BUF
TCLP	Analysis	7470A		1	266133	09/29/15 15:20	TAS	TAL BUF
Total/NA	Analysis	Moisture		1	265421	09/24/15 19:58	CMK	TAL BUF

Client Sample ID: LFS-41 Lab Sample ID: 480-87871-8

Date Collected: 09/24/15 00:00 **Matrix: Solid** Date Received: 09/24/15 13:50 Percent Solids: 89.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			265490	09/25/15 08:41	JLS	TAL BUF

TestAmerica Buffalo

Page 26 of 32

Lab Chronicle

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: LFS-41

Date Collected: 09/24/15 00:00

Date Received: 09/24/15 13:50

TestAmerica Job ID: 480-87871-1

Lab Sample ID: 480-87871-8

Matrix: Solid

Percent Solids: 89.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8082A		50	265589	09/25/15 22:52	KS	TAL BUF

Lab Sample ID: 480-87871-9 **Client Sample ID: LFS-42**

Date Collected: 09/24/15 00:00 **Matrix: Solid**

Date Received: 09/24/15 13:50

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			265759	09/28/15 08:00	JLS	TAL BUF
TCLP	Prep	3010A			266012	09/29/15 11:15	KJ1	TAL BUF
TCLP	Analysis	6010C		1	266142	09/30/15 01:44	AMH	TAL BUF
TCLP	Leach	1311			265759	09/28/15 08:00	JLS	TAL BUF
TCLP	Prep	3010A			266012	09/29/15 11:15	KJ1	TAL BUF
TCLP	Analysis	6010C		1	266277	09/30/15 12:55	AMH	TAL BUF
TCLP	Leach	1311			265759	09/28/15 08:00	JLS	TAL BUF
TCLP	Prep	7470A			266021	09/29/15 11:45	TAS	TAL BUF
TCLP	Analysis	7470A		1	266133	09/29/15 15:22	TAS	TAL BUF
Total/NA	Analysis	Moisture		1	265421	09/24/15 19:58	CMK	TAL BUF

Client Sample ID: LFS-42 Lab Sample ID: 480-87871-9

Date Collected: 09/24/15 00:00 **Matrix: Solid** Date Received: 09/24/15 13:50 Percent Solids: 81.3

Batch Batch Dilution **Batch** Prepared

	Daton	Daton		Dilation	Duton	ricparca		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			265490	09/25/15 08:41	JLS	TAL BUF
Total/NA	Analysis	8082A		10	265589	09/25/15 23:08	KS	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TestAmerica Buffalo

Certification Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87871-1

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date		
New York	NELAP		2	10026 03-31-16			
The following analyte	s are included in this repo	rt, but certification is	s not offered by the go	overning authority:			
Analysis Method	Prep Method	Matrix	Analyt	e			
7470A	7470A	Solid	Mercu	ry			
Moisture		Solid	Percei	nt Moisture			

2

- 0

5

7

11

12

14

Method Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87871-1

Method	Method Description	Protocol	Laboratory
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF
7470A	Mercury (CVAA)	SW846	TAL BUF
Moisture	Percent Moisture	EPA	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

ŏ

10

11

12

Sample Summary

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

TestAmerica Job ID: 480-87871-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-87871-1	LFS-34	Solid	09/24/15 00:00	09/24/15 13:50
480-87871-2	LFS-35	Solid	09/24/15 00:00	09/24/15 13:50
480-87871-3	LFS-36	Solid	09/24/15 00:00	09/24/15 13:50
480-87871-4	LFS-37	Solid	09/24/15 00:00	09/24/15 13:50
480-87871-5	LFS-38	Solid	09/24/15 00:00	09/24/15 13:50
480-87871-6	LFS-39	Solid	09/24/15 00:00	09/24/15 13:50
480-87871-7	LFS-40	Solid	09/24/15 00:00	09/24/15 13:50
480-87871-8	LFS-41	Solid	09/24/15 00:00	09/24/15 13:50
480-87871-9	LFS-42	Solid	09/24/15 00:00	09/24/15 13:50

Chain of Custody Record

Temperature on Receipt ...

Drinking Water? Yes□ No'

THE LEADER IN ENVIRONMENTAL TESTING **TestAmerica**

	Project Manager	t-		- 1	Chain of Custody Number
Let Invitormental Group) harma Lyer		Sep 24, 2015	264468
	Telephone Number (Årea (716)	~ .		Lab Number	Page of
whard Park NY 14127	tac	Lab Contact N	A, m	Analysis (Attach list if more space is needed)	
(XX) to	Camer/Waybill Number		સ્ટી. રોકો:		Special Instructions/
Contract/Purchase Oxign/Quote No.	Matrix	Containers & Preservatives			Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Time Nik suoeupA	HOBN PANZ HOBN HOSZH SOJU IVOS	49L		CATAGORY A
-FS-34 9/24/15		<u>.</u>	>>		
		\ 	\ \ \		
FS-36 (\ \			
F5-37		\ \	>		
FS-38					
F5-39			/ /		
FS-40			٧٧		
FS-41			> >	480-87871 Chain of Custody	iin of Custody
FS-42		1 /	>>		
Identification				ı	sessed if samples are retained
mmable Skin Imitant Poison B	☐ Unknown ☐ Return To Client	🗹 Disposal By Lab	Archive For	Months longer than 1 mo	longer than 1 month)
Tum Around Time Required 24 Hours	Other	OC Requirements (Specify)	cify)		
Allen To	10	Time 1. Received By	May Kork	サー	109/24/15 Time
2. Relinquished By	-	Time 2. Received By			Date
3. Relinquished By	Date Til	Time 3. Received By			Date Time
	-	4	Tem P	253 NO JOE#)#

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

Client: Iyer Environmental Group, LLC

Job Number: 480-87871-1

Login Number: 87871 List Source: TestAmerica Buffalo

List Number: 1

Creator: Kolb, Chris M

Creator. Roll, Critis W		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	False	
Cooler Temperature is acceptable.	True	Yes: Received same day of collection
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	Refer to job narrative for details
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	False	Refer to job narrative for details
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	IYER ENV.
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

TestAmerica Buffalo

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-88006-1 Client Project/Site: 132 Dingens

For:

Iyer Environmental Group, LLC 44 Rolling Hills Drive Orchard Park, New York 14127

Attn: Dr. Dharmarajan R Iyer

Melisso J

Authorized for release by: 10/2/2015 10:41:52 AM

Melissa Deyo, Project Manager I (716)504-9874

melissa.deyo@testamericainc.com

-----LINKS -----

Review your project results through Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	12
Lab Chronicle	14
Certification Summary	16
Method Summary	17
Sample Summary	18
Chain of Custody	19
Receipt Checklists	20

6

8

9

11

12

14

Definitions/Glossary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-88006-1

Qualifiers

GC Semi VOA

Qualifier	Qualifier	Description
-----------	-----------	-------------

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL **Practical Quantitation Limit**

QC **Quality Control RER** Relative error ratio

RLReporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

10/2/2015

Page 3 of 20

Case Narrative

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-88006-1

Job ID: 480-88006-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-88006-1

Comments

No additional comments.

Receipt

The samples were received on 9/28/2015 4:45 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 18.7° C.

Receipt Exceptions

Sample times not listed on COC or labels. Logged in a time of 0000

GC Semi VOA

Method(s) 8082A: All primary data is reported from the ZB-35 column.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

2

3

4

6

7

8

11

12

13

Detection Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: LFS-43

TestAmerica Job ID: 480-88006-1

Lab Sample ID: 480-88006-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
PCB-1248	0.096	J	0.24	0.047	mg/Kg		₩	8082A	Total/NA
Barium	1.5		1.0	0.10	mg/L	1		6010C	TCLP
Cadmium	0.017		0.0020	0.00050	mg/L	1		6010C	TCLP
Lead	0.78		0.020	0.0030	mg/L	1		6010C	TCLP

Client Sample ID: LFS-44 Lab Sample ID: 480-88006-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
PCB-1248	1.6		0.27	0.052	mg/Kg	1	₩	8082A	Total/NA
PCB-1260	0.41		0.27	0.13	mg/Kg	1	₩	8082A	Total/NA
Barium	1.6		1.0	0.10	mg/L	1		6010C	TCLP
Cadmium	0.062		0.0020	0.00050	mg/L	1		6010C	TCLP
Lead	2.0		0.020	0.0030	mg/L	1		6010C	TCLP

Client Sample ID: LFS-45 Lab Sample ID: 480-88006-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
PCB-1248	0.65		0.29	0.057	mg/Kg	1	₩	8082A	Total/NA
Barium	1.6		1.0	0.10	mg/L	1		6010C	TCLP
Cadmium	0.020		0.0020	0.00050	mg/L	1		6010C	TCLP
Lead	3.3		0.020	0.0030	mg/L	1		6010C	TCLP

TestAmerica Job ID: 480-88006-1

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Client Sample ID: LFS-43 Lab Sample ID: 480-88006-1

Date Collected: 09/28/15 00:00 Matrix: Solid
Date Received: 09/28/15 16:45 Percent Solids: 83.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.24	0.047	mg/Kg	<u>₩</u>	09/29/15 13:33	09/30/15 17:04	1
PCB-1221	ND		0.24	0.047	mg/Kg	☼	09/29/15 13:33	09/30/15 17:04	1
PCB-1232	ND		0.24	0.047	mg/Kg	☼	09/29/15 13:33	09/30/15 17:04	1
PCB-1242	ND		0.24	0.047	mg/Kg		09/29/15 13:33	09/30/15 17:04	1
PCB-1248	0.096	J	0.24	0.047	mg/Kg	☼	09/29/15 13:33	09/30/15 17:04	1
PCB-1254	ND		0.24	0.11	mg/Kg	☼	09/29/15 13:33	09/30/15 17:04	1
PCB-1260	ND		0.24	0.11	mg/Kg	₩.	09/29/15 13:33	09/30/15 17:04	1
PCB-1262	ND		0.24	0.11	mg/Kg	☼	09/29/15 13:33	09/30/15 17:04	1
PCB-1268	ND		0.24	0.11	mg/Kg	₽	09/29/15 13:33	09/30/15 17:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	99		60 - 154				09/29/15 13:33	09/30/15 17:04	1
DCB Decachlorobiphenyl	84		65 - 174				09/29/15 13:33	09/30/15 17:04	1
Method: 6010C - Metals (I	ICP) - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		09/30/15 09:28	09/30/15 18:15	1
Barium	1.5		1.0	0.10	mg/L		09/30/15 09:28	09/30/15 18:15	1
Cadmium	0.017		0.0020	0.00050	mg/L		09/30/15 09:28	09/30/15 18:15	1
Chromium	ND		0.020	0.010	mg/L		09/30/15 09:28	09/30/15 18:15	1
Lead	0.78		0.020	0.0030	mg/L		09/30/15 09:28	09/30/15 18:15	1
Selenium	ND		0.025	0.0087	mg/L		09/30/15 09:28	09/30/15 18:15	1
Silver	ND		0.0060	0.0017	ma/l		09/30/15 09:28	09/30/15 18:15	1

Method: 7470A - Mercury (CVA	AA) - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		09/30/15 10:15	09/30/15 15:17	1

 Client Sample ID: LFS-44
 Lab Sample ID: 480-88006-2

 Date Collected: 09/28/15 00:00
 Matrix: Solid

 Date Received: 09/28/15 16:45
 Percent Solids: 86.9

Analyte	Result Qu	alifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.27	0.052	mg/Kg	<u> </u>	09/29/15 13:33	09/30/15 17:19	1
PCB-1221	ND		0.27	0.052	mg/Kg	₩	09/29/15 13:33	09/30/15 17:19	1
PCB-1232	ND		0.27	0.052	mg/Kg	₩	09/29/15 13:33	09/30/15 17:19	1
PCB-1242	ND		0.27	0.052	mg/Kg	ф	09/29/15 13:33	09/30/15 17:19	1
PCB-1248	1.6		0.27	0.052	mg/Kg	₩	09/29/15 13:33	09/30/15 17:19	1
PCB-1254	ND		0.27	0.13	mg/Kg	₩	09/29/15 13:33	09/30/15 17:19	1
PCB-1260	0.41		0.27	0.13	mg/Kg	₽	09/29/15 13:33	09/30/15 17:19	1
PCB-1262	ND		0.27	0.13	mg/Kg	₩	09/29/15 13:33	09/30/15 17:19	1
PCB-1268	ND		0.27	0.13	mg/Kg	₩	09/29/15 13:33	09/30/15 17:19	1
Surrogate	%Recovery Qu	alifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	106		60 - 154				09/29/15 13:33	09/30/15 17:19	1
DCB Decachlorobiphenyl	108		65 - 174				09/29/15 13:33	09/30/15 17:19	1

 Analyte
 Result Arsenic
 Qualifier
 RL 0.015
 MDL 0.015
 Unit 0.0056
 D 09/30/15 09:28
 Analyzed 09/30/15 18:18
 Dil Factoria

TestAmerica Buffalo

Page 6 of 20

2

3

Ė

6

8

10

12

13

14

Client Sample Results

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-88006-1

Client Sample ID: LFS-44 Lab Sample ID: 480-88006-2

Date Collected: 09/28/15 00:00 Matrix: Solid
Date Received: 09/28/15 16:45 Percent Solids: 86.9

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	1.6	1.0	0.10	mg/L		09/30/15 09:28	09/30/15 18:18	1
Cadmium	0.062	0.0020	0.00050	mg/L		09/30/15 09:28	09/30/15 18:18	1
Chromium	ND	0.020	0.010	mg/L		09/30/15 09:28	09/30/15 18:18	1
Lead	2.0	0.020	0.0030	mg/L		09/30/15 09:28	09/30/15 18:18	1
Selenium	ND	0.025	0.0087	mg/L		09/30/15 09:28	09/30/15 18:18	1
Silver	ND	0.0060	0.0017	mg/L		09/30/15 09:28	09/30/15 18:18	1

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Mercury
 ND
 0.00020
 0.00012
 mg/L
 09/30/15 10:15
 09/30/15 15:19
 1

 Client Sample ID: LFS-45

 Date Collected: 09/28/15 00:00
 Lab Sample ID: 480-88006-3

 Matrix: Solid
 Matrix: Solid: Percent Solids: 83.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.29	0.057	mg/Kg	<u> </u>	09/29/15 13:33	09/30/15 17:34	1
PCB-1221	ND		0.29	0.057	mg/Kg	☼	09/29/15 13:33	09/30/15 17:34	1
PCB-1232	ND		0.29	0.057	mg/Kg	☼	09/29/15 13:33	09/30/15 17:34	1
PCB-1242	ND		0.29	0.057	mg/Kg	₩.	09/29/15 13:33	09/30/15 17:34	1
PCB-1248	0.65		0.29	0.057	mg/Kg	☼	09/29/15 13:33	09/30/15 17:34	1
PCB-1254	ND		0.29	0.14	mg/Kg	☼	09/29/15 13:33	09/30/15 17:34	1
PCB-1260	ND		0.29	0.14	mg/Kg	₩	09/29/15 13:33	09/30/15 17:34	1
PCB-1262	ND		0.29	0.14	mg/Kg	☼	09/29/15 13:33	09/30/15 17:34	1
PCB-1268	ND		0.29	0.14	mg/Kg	≎	09/29/15 13:33	09/30/15 17:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	101		60 - 154				09/29/15 13:33	09/30/15 17:34	1
DCB Decachlorobiphenyl	102		65 - 174				09/29/15 13:33	09/30/15 17:34	1

Analyte	Result Q	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND ND	0.015	0.0056	mg/L		09/30/15 09:28	09/30/15 18:22	1
Barium	1.6	1.0	0.10	mg/L		09/30/15 09:28	09/30/15 18:22	1
Cadmium	0.020	0.0020	0.00050	mg/L		09/30/15 09:28	09/30/15 18:22	1
Chromium	ND	0.020	0.010	mg/L		09/30/15 09:28	09/30/15 18:22	1
Lead	3.3	0.020	0.0030	mg/L		09/30/15 09:28	09/30/15 18:22	1
Selenium	ND	0.025	0.0087	mg/L		09/30/15 09:28	09/30/15 18:22	1
Silver	ND	0.0060	0.0017	mg/L		09/30/15 09:28	09/30/15 18:22	1

Method: 7470A - Mercury (CVA	AA) - TCLP						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND —	0.00020	0.00012 mg/L		09/30/15 10:15	09/30/15 15:21	1

10/2/2015

Surrogate Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-88006-1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid Prep Type: Total/NA

		TCX2	DCB2	t Surrogate Recovery (Acceptance Limits)
Lab Sample ID	Client Sample ID	(60-154)	(65-174)	
480-88006-1	LFS-43	99	84	
480-88006-2	LFS-44	106	108	
480-88006-3	LFS-45	101	102	
LCS 480-266057/2-A	Lab Control Sample	115	115	
MB 480-266057/1-A	Method Blank	107	104	

TCX = Tetrachloro-m-xylene

DCB = DCB Decachlorobiphenyl

TestAmerica Buffalo

Page 8 of 20

TestAmerica Job ID: 480-88006-1

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

MD MD

Lab Sample ID: MB 480-266057/1-A **Matrix: Solid**

Analysis Batch: 266272

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 266057

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.24	0.047	mg/Kg		09/29/15 13:33	09/30/15 14:06	1
PCB-1221	ND		0.24	0.047	mg/Kg		09/29/15 13:33	09/30/15 14:06	1
PCB-1232	ND		0.24	0.047	mg/Kg		09/29/15 13:33	09/30/15 14:06	1
PCB-1242	ND		0.24	0.047	mg/Kg		09/29/15 13:33	09/30/15 14:06	1
PCB-1248	ND		0.24	0.047	mg/Kg		09/29/15 13:33	09/30/15 14:06	1
PCB-1254	ND		0.24	0.11	mg/Kg		09/29/15 13:33	09/30/15 14:06	1
PCB-1260	ND		0.24	0.11	mg/Kg		09/29/15 13:33	09/30/15 14:06	1
PCB-1262	ND		0.24	0.11	mg/Kg		09/29/15 13:33	09/30/15 14:06	1
PCB-1268	ND		0.24	0.11	mg/Kg		09/29/15 13:33	09/30/15 14:06	1

MB MB

Surrogate	%Recovery Qual	lifier Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	107	60 - 154	09/29/15 13:33	09/30/15 14:06	1
DCB Decachlorobiphenyl	104	65 - 174	09/29/15 13:33	09/30/15 14:06	1

Lab Sample ID: LCS 480-266057/2-A

Matrix: Solid

Analysis Batch: 266272

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 266057 LCS LCS Spike %Rec.

Added Analyte Result Qualifier Unit D %Rec Limits PCB-1016 2.20 51 - 185 1.86 mg/Kg 118 PCB-1260 1.86 2.23 mg/Kg 120 61 - 184

LCS LCS

Surrogate	%Recovery Qualifier	Limits
Tetrachloro-m-xylene	115	60 - 154
DCB Decachlorobiphenyl	115	65 - 174

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-266173/2-A

Matrix: Solid

Analysis Batch: 266392

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 266173

Client Sample ID: Lab Control Sample

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		09/30/15 09:28	09/30/15 18:08	1
Barium	ND		1.0	0.10	mg/L		09/30/15 09:28	09/30/15 18:08	1
Cadmium	ND		0.0020	0.00050	mg/L		09/30/15 09:28	09/30/15 18:08	1
Chromium	ND		0.020	0.010	mg/L		09/30/15 09:28	09/30/15 18:08	1
Lead	ND		0.020	0.0030	mg/L		09/30/15 09:28	09/30/15 18:08	1
Selenium	ND		0.025	0.0087	mg/L		09/30/15 09:28	09/30/15 18:08	1
Silver	ND		0.0060	0.0017	mg/L		09/30/15 09:28	09/30/15 18:08	1

Lab Sample ID: LCS 480-266173/3-A

l	Matrix: Solid							Prep Type	e: Total/NA
l	Analysis Batch: 266392							Prep Bat	ch: 266173
l	•	Spike	LCS	LCS				%Rec.	
l	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
	Arsenic	1.00	1.10	-	mg/L		110	80 - 120	

TestAmerica Buffalo

Page 9 of 20

TestAmerica Job ID: 480-88006-1

Client Sample ID: Lab Control Sample

80 - 120

Client Sample ID: LFS-45

Client Sample ID: LFS-45

Prep Type: TCLP

108

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCS 480-266173/3-A Matrix: Solid

Matrix: Solid Analysis Batch: 266392	Spike	LCS	LCS			Prep Type: Total/NA Prep Batch: 266173 %Rec.
Analyte	Added	Result	Qualifier	Unit	D %Rec	Limits
Barium	1.00	1.00		mg/L	100	80 - 120
Cadmium	1.00	1.03		mg/L	103	80 - 120
Chromium	1.00	1.02		mg/L	102	80 - 120
Lead	1.00	0.999		mg/L	100	80 - 120
Selenium	1.00	1.09		mg/L	109	80 - 120

1.08

mg/L

1.00

Lab Sample ID: 480-88006-3 MS

Matrix: Solid

Silver

Analysis Batch: 266392								Prep Batch: 266173		
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	ND		1.00	1.12		mg/L		112	75 - 125	
Barium	1.6		1.00	2.63		mg/L		99	75 - 125	
Cadmium	0.020		1.00	1.09		mg/L		107	75 - 125	
Chromium	ND		1.00	0.998		mg/L		100	75 - 125	
Lead	3.3		1.00	4.29		mg/L		99	75 - 125	
Selenium	ND		1.00	1.11		mg/L		111	75 - 125	
Silver	ND		1.00	1.09		mg/L		109	75 - 125	

Lab Sample ID: 480-88006-3 MSD

Matrix: Solid Analysis Batch: 266392									Prep Prep Ba	Type: 'itch: 26	
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	ND		1.00	1.12		mg/L		112	75 - 125	0	20
Barium	1.6		1.00	2.62		mg/L		99	75 - 125	0	20
Cadmium	0.020		1.00	1.08		mg/L		106	75 - 125	0	20
Chromium	ND		1.00	0.992		mg/L		99	75 - 125	1	20
Lead	3.3		1.00	4.28		mg/L		98	75 - 125	0	20
Selenium	ND		1.00	1.11		mg/L		111	75 - 125	0	20
Silver	ND		1.00	1.07		mg/L		107	75 - 125	2	20

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 480-266177/2-A

Matrix: Solid

Analysis Batch: 266365

MB MB

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND	0.00020	0.00012 mg/L		09/30/15 10:15	09/30/15 15:13	1

Lab Sample ID: LCS 480-266177/3-A

Matrix: Solid

Analysis	Batch: 26	66365	

Spike Analyte Added Mercury 0.00668

LCS LCS Result Qualifier 0.00630

Unit mg/L

%Rec 94

Prep Type: Total/NA Prep Batch: 266177 %Rec. Limits

80 - 120

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Prep Type: Total/NA **Prep Batch: 266177**

TestAmerica Buffalo

QC Sample Results

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-88006-1

Method: 7470A - Mercury (CVAA) (Continued)

Lab Sample ID: LB 480-266026/1-C **Client Sample ID: Method Blank Matrix: Solid Prep Type: TCLP**

Analysis Batch: 266365

Prep Batch: 266177 LB LB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 0.00020 <u>09/30/15 10:15</u> <u>09/30/15 15:12</u> Mercury ND 0.00012 mg/L

Lab Sample ID: 480-88006-3 MS **Client Sample ID: LFS-45 Matrix: Solid Prep Type: TCLP Analysis Batch: 266365 Prep Batch: 266177** Sample Sample Spike MS MS %Rec.

Result Qualifier Added Limits Analyte Result Qualifier Unit %Rec D 80 - 120 Mercury $\overline{\mathsf{ND}}$ 0.00668 0.00582 mg/L 87

Lab Sample ID: 480-88006-3 MSD **Client Sample ID: LFS-45**

Matrix: Solid Prep Type: TCLP

Analysis Batch: 266365 Prep Batch: 266177 Sample Sample Spike MSD MSD %Rec. **RPD** Result Qualifier RPD Limit Analyte Added Result Qualifier D %Rec Limits Unit

Mercury ND 0.00668 0.00552 mg/L 83 80 - 120 20

TestAmerica Job ID: 480-88006-1

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

GC Semi VOA

Prep Batch: 266057

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-88006-1	LFS-43	Total/NA	Solid	3550C	
480-88006-2	LFS-44	Total/NA	Solid	3550C	
480-88006-3	LFS-45	Total/NA	Solid	3550C	
LCS 480-266057/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-266057/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 266272

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-88006-1	LFS-43	Total/NA	Solid	8082A	266057
480-88006-2	LFS-44	Total/NA	Solid	8082A	266057
480-88006-3	LFS-45	Total/NA	Solid	8082A	266057
LCS 480-266057/2-A	Lab Control Sample	Total/NA	Solid	8082A	266057
MB 480-266057/1-A	Method Blank	Total/NA	Solid	8082A	266057

Metals

Leach Batch: 266026

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-88006-1	LFS-43	TCLP	Solid	1311	
480-88006-2	LFS-44	TCLP	Solid	1311	
480-88006-3	LFS-45	TCLP	Solid	1311	
480-88006-3 MS	LFS-45	TCLP	Solid	1311	
480-88006-3 MSD	LFS-45	TCLP	Solid	1311	
LB 480-266026/1-C	Method Blank	TCLP	Solid	1311	

Prep Batch: 266173

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-88006-1	LFS-43	TCLP	Solid	3010A	266026
480-88006-2	LFS-44	TCLP	Solid	3010A	266026
480-88006-3	LFS-45	TCLP	Solid	3010A	266026
480-88006-3 MS	LFS-45	TCLP	Solid	3010A	266026
480-88006-3 MSD	LFS-45	TCLP	Solid	3010A	266026
LCS 480-266173/3-A	Lab Control Sample	Total/NA	Solid	3010A	
MB 480-266173/2-A	Method Blank	Total/NA	Solid	3010A	

Prep Batch: 266177

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-88006-1	LFS-43	TCLP	Solid	7470A	266026
480-88006-2	LFS-44	TCLP	Solid	7470A	266026
480-88006-3	LFS-45	TCLP	Solid	7470A	266026
480-88006-3 MS	LFS-45	TCLP	Solid	7470A	266026
480-88006-3 MSD	LFS-45	TCLP	Solid	7470A	266026
LB 480-266026/1-C	Method Blank	TCLP	Solid	7470A	266026
LCS 480-266177/3-A	Lab Control Sample	Total/NA	Solid	7470A	
MB 480-266177/2-A	Method Blank	Total/NA	Solid	7470A	

Analysis Batch: 266365

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-88006-1	LFS-43	TCLP	Solid	7470A	266177
480-88006-2	LFS-44	TCLP	Solid	7470A	266177

TestAmerica Buffalo

Page 12 of 20

QC Association Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-88006-1

Metals (Continued)

Analysis Batch: 266365 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-88006-3	LFS-45	TCLP	Solid	7470A	266177
480-88006-3 MS	LFS-45	TCLP	Solid	7470A	266177
480-88006-3 MSD	LFS-45	TCLP	Solid	7470A	266177
LB 480-266026/1-C	Method Blank	TCLP	Solid	7470A	266177
LCS 480-266177/3-A	Lab Control Sample	Total/NA	Solid	7470A	266177
MB 480-266177/2-A	Method Blank	Total/NA	Solid	7470A	266177

Analysis Batch: 266392

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-88006-1	LFS-43	TCLP	Solid	6010C	266173
480-88006-2	LFS-44	TCLP	Solid	6010C	266173
480-88006-3	LFS-45	TCLP	Solid	6010C	266173
480-88006-3 MS	LFS-45	TCLP	Solid	6010C	266173
480-88006-3 MSD	LFS-45	TCLP	Solid	6010C	266173
LCS 480-266173/3-A	Lab Control Sample	Total/NA	Solid	6010C	266173
MB 480-266173/2-A	Method Blank	Total/NA	Solid	6010C	266173

General Chemistry

Analysis Batch: 265922

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-88006-1	LFS-43	Total/NA	Solid	Moisture	
480-88006-2	LFS-44	Total/NA	Solid	Moisture	
480-88006-3	LFS-45	Total/NA	Solid	Moisture	

2

3

4

6

7

9

10

10

13

14

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Client Sample ID: LFS-43

Date Collected: 09/28/15 00:00 Date Received: 09/28/15 16:45

Lab Sample ID: 480-88006-1

Matrix: Solid

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			266026	09/29/15 10:59	JLS	TAL BUF
TCLP	Prep	3010A			266173	09/30/15 09:28	KJ1	TAL BUF
TCLP	Analysis	6010C		1	266392	09/30/15 18:15	AMH	TAL BUF
TCLP	Leach	1311			266026	09/29/15 10:59	JLS	TAL BUF
TCLP	Prep	7470A			266177	09/30/15 10:15	TAS	TAL BUF
TCLP	Analysis	7470A		1	266365	09/30/15 15:17	TAS	TAL BUF
Total/NA	Analysis	Moisture		1	265922	09/29/15 00:41	CSW	TAL BUF

Client Sample ID: LFS-43 Lab Sample ID: 480-88006-1

Date Collected: 09/28/15 00:00 **Matrix: Solid** Date Received: 09/28/15 16:45 Percent Solids: 83.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			266057	09/29/15 13:33	CAM	TAL BUF
Total/NA	Analysis	8082A		1	266272	09/30/15 17:04	KS	TAL BUF

Lab Sample ID: 480-88006-2 Client Sample ID: LFS-44

Date Collected: 09/28/15 00:00 Date Received: 09/28/15 16:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			266026	09/29/15 10:59	JLS	TAL BUF
TCLP	Prep	3010A			266173	09/30/15 09:28	KJ1	TAL BUF
TCLP	Analysis	6010C		1	266392	09/30/15 18:18	AMH	TAL BUF
TCLP	Leach	1311			266026	09/29/15 10:59	JLS	TAL BUF
TCLP	Prep	7470A			266177	09/30/15 10:15	TAS	TAL BUF
TCLP	Analysis	7470A		1	266365	09/30/15 15:19	TAS	TAL BUF
Total/NA	Analysis	Moisture		1	265922	09/29/15 00:41	CSW	TAL BUF

Client Sample ID: LFS-44 Lab Sample ID: 480-88006-2

Date Collected: 09/28/15 00:00 **Matrix: Solid** Date Received: 09/28/15 16:45 Percent Solids: 86.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			266057	09/29/15 13:33	CAM	TAL BUF
Total/NA	Analysis	8082A		1	266272	09/30/15 17:19	KS	TAL BUF

Client Sample ID: LFS-45 Lab Sample ID: 480-88006-3

Date Collected: 09/28/15 00:00 Date Received: 09/28/15 16:45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			266026	09/29/15 10:59	JLS	TAL BUF

TestAmerica Buffalo

Matrix: Solid

Lab Chronicle

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-88006-1

Lab Sample ID: 480-88006-3

Matrix: Solid

Date Collected: 09/28/15 00:00 Date Received: 09/28/15 16:45

Client Sample ID: LFS-45

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Prep	3010A			266173	09/30/15 09:28	KJ1	TAL BUF
TCLP	Analysis	6010C		1	266392	09/30/15 18:22	AMH	TAL BUF
TCLP	Leach	1311			266026	09/29/15 10:59	JLS	TAL BUF
TCLP	Prep	7470A			266177	09/30/15 10:15	TAS	TAL BUF
TCLP	Analysis	7470A		1	266365	09/30/15 15:21	TAS	TAL BUF
Total/NA	Analysis	Moisture		1	265922	09/29/15 00:41	CSW	TAL BUF

Client Sample ID: LFS-45 Lab Sample ID: 480-88006-3

Date Collected: 09/28/15 00:00 Date Received: 09/28/15 16:45 Matrix: Solid

Percent Solids: 83.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			266057	09/29/15 13:33	CAM	TAL BUF
Total/NA	Analysis	8082A		1	266272	09/30/15 17:34	KS	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

5

7

9 10

11

10

14

Certification Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-88006-1

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date	
New York	NELAP		2	10026	03-31-16	
The following analytes	s are included in this repo	rt, but certification is	s not offered by the g	overning authority:		
Analysis Method	Prep Method	Matrix	Analyt	e		
7470A	7470A	Solid	Mercu	iry		
Moisture		Solid	Perce	nt Moisture		
Moisture		Solid	Perce	nt Solids		

4

5

6

8

10

11

12

14

Method Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-88006-1

Method	Method Description	Protocol	Laboratory
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF
7470A	Mercury (CVAA)	SW846	TAL BUF
Moisture	Percent Moisture	EPA	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

2

3

4

5

0

8

9

11

16

14

Sample Summary

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

TestAmerica Job ID: 480-88006-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-88006-1	LFS-43	Solid	09/28/15 00:00	09/28/15 16:45
480-88006-2	LFS-44	Solid	09/28/15 00:00	09/28/15 16:45
480-88006-3	LFS-45	Solid	09/28/15 00:00	09/28/15 16:45

Temperature on Receipt

Custody Record

Chain of

Drinking Water? Yes No 🖾

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Special Instructions/ Conditions of Receipt (A fee may be assessed if samples are retained longer than 1 month) CATABRY chain of Custody Number 264479 Time Page Date 480-88006 Chain of Custody # Sep 24, 2015 Lab Number more space is needed) Analysis (Attach list if Months Archive For 4731 OC Requirements (Specify NAON HOBN 🔀 Disposal By Lab Containers & Preservatives HOBN 3. Received By ナンで IOH EONH Telephone Number (Area Code)/Fax Numb tOSZH Project Manager DIACMA seudur ☐ Unknown ☐ Return To Client 2 > 1105 Time She Coffact | R. All Con Carrier/Waybill Number Matrix pes 9/28/15 1/1 ☐ Other_ Date Time 🗌 21 Days 9/26/15 9/28/15 9/82/6 ☐ Poison B Date 14127 Iyer Environmental Googs Zip Code ☐ 14 Days 44 Rolling Hills Dr (Containers for each sample may be combined on one line) Skin Imitant Sample I.D. No. and Description 7 7 Days 132 Din April 54 ContractPurchase Obber Ouche No. X Non-Hazard F5-43 1FS-44 Project Name and Location (State) 1FS-45 Ordhard Park ☐ 24 Hours ☐ 48 Hours Possible Hazard Identification Turn Around Time Required 3. Relinquished By Comments 1. Relinquished By 2. Relinquished By Page 19 of 20

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

Client: Iyer Environmental Group, LLC

Job Number: 480-88006-1

Login Number: 88006 List Source: TestAmerica Buffalo

List Number: 1

Creator: Williams, Christopher S

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	SAMPLE TIMES NOT LISTED
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	False	SAMPLE TIMES NOT LISTED ON LABELS
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	IYER
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

TestAmerica Buffalo

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-88823-1 Client Project/Site: 132 Dingens

For:

Iyer Environmental Group, LLC 44 Rolling Hills Drive Orchard Park, New York 14127

Attn: Dr. Dharmarajan R Iyer

Melisso Deyo

Authorized for release by: 10/15/2015 9:18:46 AM

Melissa Deyo, Project Manager I (716)504-9874

melissa.deyo@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

TestAmerica Job ID: 480-88823-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	9
Lab Chronicle	10
Certification Summary	11
Method Summary	12
Sample Summary	13
Chain of Custody	14
Receipt Checklists	15

5

4

8

9

11

12

Definitions/Glossary

Client: Iyer Environmental Group, LLC

Toxicity Equivalent Quotient (Dioxin)

Project/Site: 132 Dingens

TestAmerica Job ID: 480-88823-1

Glossary

TEQ

These commonly used abbreviations may or may not be present in this report.
Listed under the "D" column to designate that the result is reported on a dry weight basis
Percent Recovery
Contains Free Liquid
Contains no Free Liquid
Duplicate error ratio (normalized absolute difference)
Dilution Factor
Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
Decision level concentration
Minimum detectable activity
Estimated Detection Limit
Minimum detectable concentration
Method Detection Limit
Minimum Level (Dioxin)
Not Calculated
Not detected at the reporting limit (or MDL or EDL if shown)
Practical Quantitation Limit
Quality Control
Relative error ratio
Reporting Limit or Requested Limit (Radiochemistry)
Relative Percent Difference, a measure of the relative difference between two points
Toxicity Equivalent Factor (Dioxin)

Case Narrative

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-88823-1

Job ID: 480-88823-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-88823-1

Receipt

The sample was received on 10/9/2015 1:50 PM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 17.5° C.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

5

6

0

9

10

. .

13

Detection Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: LFS-46

TestAmerica Job ID: 480-88823-1

Lab Sample ID: 480-88823-1

 Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	2.0		1.0	0.10	mg/L	1	_	6010C	TCLP
Cadmium	0.026		0.0020	0.00050	mg/L	1		6010C	TCLP
Lead	1.8		0.020	0.0030	mg/L	1		6010C	TCLP

3

4

_

8

9

11

Client Sample Results

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-88823-1

Lab Sample ID: 480-88823-1

Matrix: Solid

Client Sample ID: LFS-46
Date Collected: 10/09/15 00:00
Date Received: 10/09/15 13:50

Method: 6010C - Meta	als (ICP) - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		10/13/15 11:35	10/14/15 10:30	1
Barium	2.0		1.0	0.10	mg/L		10/13/15 11:35	10/14/15 10:30	1
Cadmium	0.026		0.0020	0.00050	mg/L		10/13/15 11:35	10/14/15 10:30	1
Chromium	ND		0.020	0.010	mg/L		10/13/15 11:35	10/14/15 10:30	1
Lead	1.8		0.020	0.0030	mg/L		10/13/15 11:35	10/14/15 10:30	1
Selenium	ND		0.025	0.0087	mg/L		10/13/15 11:35	10/14/15 10:30	1
Silver	ND		0.0060	0.0017	mg/L		10/13/15 11:35	10/14/15 10:30	1
Method: 7470A - Merc	cury (CVAA) - TCLP								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		10/13/15 12:00	10/13/15 18:24	1

5

8

9

10

12

13

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-268431/2-A

Matrix: Solid Analysis Batch: 268742 Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 268431

	MB N	ИB							
Analyte	Result 0	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		10/13/15 11:35	10/14/15 10:20	1
Barium	ND		1.0	0.10	mg/L		10/13/15 11:35	10/14/15 10:20	1
Cadmium	ND		0.0020	0.00050	mg/L		10/13/15 11:35	10/14/15 10:20	1
Chromium	ND		0.020	0.010	mg/L		10/13/15 11:35	10/14/15 10:20	1
Lead	ND		0.020	0.0030	mg/L		10/13/15 11:35	10/14/15 10:20	1
Selenium	ND		0.025	0.0087	mg/L		10/13/15 11:35	10/14/15 10:20	1
Silver	ND		0.0060	0.0017	mg/L		10/13/15 11:35	10/14/15 10:20	1

Lab Sample ID: LCS 480-268431/3-A

Matrix: Solid

Analysis Batch: 268742

Client Sample ID: Lab Control Sample

Prep Type: Total/NA **Prep Batch: 268431**

%Rec.

Spike LCS LCS Analyte Added Result Qualifier Unit %Rec Limits D Arsenic 1.00 80 - 120 1.07 mg/L 107 Barium 1.00 1.00 mg/L 100 80 - 120 Cadmium 1.00 1.02 mg/L 80 - 120 102 Chromium 1.00 1.02 102 80 - 120 mg/L 80 - 120 Lead 1.00 0.998 mg/L 100 Selenium 1.00 1.08 108 80 - 120 mg/L Silver 1.00 1.07 107 80 - 120 mg/L

Lab Sample ID: LB 480-268176/1-B

Matrix: Solid

Analysis Batch: 268742

Client Sample ID: Method Blank

Prep Type: TCLP Prep Batch: 268431

LB LB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Arsenic ND 0.015 0.0056 mg/L 10/13/15 11:35 10/14/15 10:17 Barium ND 10/13/15 11:35 10/14/15 10:17 1.0 0.10 mg/L ND 0.0020 0.00050 mg/L Cadmium 10/13/15 11:35 10/14/15 10:17 Chromium ND 0.020 0.010 mg/L 10/13/15 11:35 10/14/15 10:17 ND 0.0030 mg/L Lead 0.020 10/13/15 11:35 10/14/15 10:17 Selenium ND 0.025 0.0087 mg/L 10/13/15 11:35 10/14/15 10:17 ND 0.0060 Silver 0.0017 mg/L 10/13/15 11:35 10/14/15 10:17

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 480-268444/2-A

Matrix: Solid

Analysis Batch: 268621

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Batch: 268444

MB MB Result Qualifier RL **MDL** Unit Dil Fac Analyte Prepared Analyzed <u>10/13/15 12:00</u> <u>10/13/15 18:19</u> 0.00020 0.00012 mg/L Mercury \overline{ND}

Lab Sample ID: LCS 480-268444/3-A

Matrix: Solid

Analysis Batch: 268621

Prep Type: Total/NA **Prep Batch: 268444** Spike LCS LCS %Rec. D

Limits **Analyte** Added Result Qualifier Unit %Rec Mercury 0.00668 0.00673 mg/L 101 80 - 120

TestAmerica Buffalo

Page 7 of 15

10/15/2015

QC Sample Results

Client: Iyer Environmental Group, LLC TestAmerica Job ID: 480-88823-1

Project/Site: 132 Dingens

Method: 7470A - Mercury (CVAA) (Continued)

Lab Sample ID: LB 480-268176/1-C **Client Sample ID: Method Blank Matrix: Solid**

Prep Type: TCLP Analysis Batch: 268621 **Prep Batch: 268444** LB LB

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac ND 0.00020 0.00012 mg/L <u>10/13/15 12:00</u> <u>10/13/15 16:57</u> Mercury

QC Association Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-88823-1

Metals

Leach Batch: 268176

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-88823-1	LFS-46	TCLP	Solid	1311	
LB 480-268176/1-B	Method Blank	TCLP	Solid	1311	
LB 480-268176/1-C	Method Blank	TCLP	Solid	1311	

Prep Batch: 268431

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-88823-1	LFS-46	TCLP	Solid	3010A	268176
LB 480-268176/1-B	Method Blank	TCLP	Solid	3010A	268176
LCS 480-268431/3-A	Lab Control Sample	Total/NA	Solid	3010A	
MB 480-268431/2-A	Method Blank	Total/NA	Solid	3010A	

Prep Batch: 268444

F	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
2	480-88823-1	LFS-46	TCLP	Solid	7470A	268176
l	_B 480-268176/1-C	Method Blank	TCLP	Solid	7470A	268176
I	_CS 480-268444/3-A	Lab Control Sample	Total/NA	Solid	7470A	
ı	MB 480-268444/2-A	Method Blank	Total/NA	Solid	7470A	

Analysis Batch: 268621

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-88823-1	LFS-46	TCLP	Solid	7470A	268444
LB 480-268176/1-C	Method Blank	TCLP	Solid	7470A	268444
LCS 480-268444/3-A	Lab Control Sample	Total/NA	Solid	7470A	268444
MB 480-268444/2-A	Method Blank	Total/NA	Solid	7470A	268444

Analysis Batch: 268742

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-88823-1	LFS-46	TCLP	Solid	6010C	268431
LB 480-268176/1-B	Method Blank	TCLP	Solid	6010C	268431
LCS 480-268431/3-A	Lab Control Sample	Total/NA	Solid	6010C	268431
MB 480-268431/2-A	Method Blank	Total/NA	Solid	6010C	268431

4

O

9

10

4.0

13

4/

Lab Chronicle

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-88823-1

Lab Sample ID: 480-88823-1

Matrix: Solid

Client Sample ID: LFS-46 Date Collected: 10/09/15 00:00 Date Received: 10/09/15 13:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			268176	10/12/15 07:59	JLS	TAL BUF
TCLP	Prep	3010A			268431	10/13/15 11:35	KJ1	TAL BUF
TCLP	Analysis	6010C		1	268742	10/14/15 10:30	AMH	TAL BUF
TCLP	Leach	1311			268176	10/12/15 07:59	JLS	TAL BUF
TCLP	Prep	7470A			268444	10/13/15 12:00	TAS	TAL BUF
TCLP	Analysis	7470A		1	268621	10/13/15 18:24	TAS	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Certification Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-88823-1

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority New York The following analyte	Program NELAP s are included in this repo	rt, but certification is	EPA Region 2 not offered by the go	Certification ID 10026 overning authority:	Expiration Date 03-31-16
Analysis Method	Prep Method	Matrix	Analyt	e	
7 than your mounted					

e

3

4

5

9

4 4

12

13

Method Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-88823-1

Method	Method Description	Protocol	Laboratory
6010C	Metals (ICP)	SW846	TAL BUF
7470A	Mercury (CVAA)	SW846	TAL BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

Δ

5

6

0

9

11

-

13

Sample Summary

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

TestAmerica Job ID: 480-88823-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-88823-1	LFS-46	Solid	10/09/15 00:00	10/09/15 13:50

Special Instructions/ Conditions of Receipt (A fee may be assessed if samples are retained Months longer than 1 month) なるとなって Page B Date 2,5 Date 9, 2013 more space is needed) Analysis (Attach list if THE LEADER IN ENVIRONMENTAL: ☐ Archive For 2771 OC Requirements (Specify) VOANZ HOBN 🔏 Disposal By Lab Containers & Preservatives HOBN 1. Received By 3. Received By Telephone Number (Area Code) Fax Number ЮH EONH Drinking Water? Yes□ No日 716) 662-4157 **ÞOSZH** seudun Temperature on Receipt ☐ Unknown ☐ Return To Client Sample Disposal 1105 Time Matrix Camer/Waybill Number R. Allen :pe5 Project Manager noenby 4/1 □ Other 10/9 / Date Time 💆 7 Days 🛚 14 Days 🔻 21 Days ☐ Poison B 10/9/15 Date 44 Rolling Hills Dr. Mard Bark MY 14127 Brough Sample I.D. No. and Description (Containers for each sample may be combined on one line) 🛭 Non-Hazard 📗 Flammable 🔲 Skin Imitant Iver Environmental 32 Dingers St Orchard Park -FS-46 Custody Record 24 Hours 🔲 48 Hours Possible Hazard Identification Turn Around Time Required 3. Relinquished By Comments 1. Relinquished By 2. Relinquished By Chain of FAL-4124 (1007)

Page 14 of 15

ð

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

Login Sample Receipt Checklist

Client: Iyer Environmental Group, LLC

Job Number: 480-88823-1

Login Number: 88823 List Source: TestAmerica Buffalo

List Number: 1

Creator: Wallace, Cameron

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	IYER
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

2

4

၁ —

7

9

11

12

1/

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-89113-1 Client Project/Site: 132 Dingens

For:

Iyer Environmental Group, LLC 44 Rolling Hills Drive Orchard Park, New York 14127

Attn: Dr. Dharmarajan R Iyer

Melisso Deyo

Authorized for release by: 10/21/2015 10:00:30 AM

Melissa Deyo, Project Manager I (716)504-9874

melissa.deyo@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	11
Lab Chronicle	13
Certification Summary	14
Method Summary	15
Sample Summary	16
Chain of Custody	17
Receipt Checklists	18

3

4

6

8

9

11

12

11

Definitions/Glossary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-89113-1

3

Qualifiers

Metals

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)

Not detected at the reporting limit (or MDL or EDL if shown) ΝD

PQL **Practical Quantitation Limit**

QC **Quality Control** RER Relative error ratio

RLReporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TestAmerica Buffalo

Case Narrative

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-89113-1

Job ID: 480-89113-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-89113-1

Receipt

The samples were received on 10/14/2015 6:00 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 13.6° C.

Receipt Exceptions

No times of collection were provided. Time of 00:00 was used for sample login.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

5

6

0

10

13

14

Detection Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: LFS-47

TestAmerica Job ID: 480-89113-1

Lab Sample ID: 480-89113-1

Analyte	Result C	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
PCB-1248	3.5		0.21	0.041	mg/Kg	1	₩	8082A	Total/NA
PCB-1254	2.1		0.21	0.098	mg/Kg	1	₩	8082A	Total/NA
PCB-1260	0.64		0.21	0.098	mg/Kg	1	₩	8082A	Total/NA
Barium	1.6		1.0	0.10	mg/L	1		6010C	TCLP
Cadmium	0.041		0.0020	0.00050	mg/L	1		6010C	TCLP
Lead	1.4		0.020	0.0030	mg/L	1		6010C	TCLP

Client Sample ID: LFS-48 Lab Sample ID: 480-89113-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
PCB-1248	1.5		0.25	0.049	mg/Kg	1	₩	8082A	Total/NA
Barium	1.6		1.0	0.10	mg/L	1		6010C	TCLP
Cadmium	0.018		0.0020	0.00050	mg/L	1		6010C	TCLP
Lead	1.3		0.020	0.0030	ma/L	1		6010C	TCLP

2

3

Δ

5

7

8

9

11

4.0

1 4

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Client Sample ID: LFS-47
Date Collected: 10/14/15 00:00
Date Received: 10/14/15 18:00

Lab Sample ID: 480-89113-1

Matrix: Solid Percent Solids: 86.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.21	0.041	mg/Kg	<u> </u>	10/16/15 08:13	10/16/15 18:34	1
PCB-1221	ND		0.21	0.041	mg/Kg	₩	10/16/15 08:13	10/16/15 18:34	1
PCB-1232	ND		0.21	0.041	mg/Kg	☼	10/16/15 08:13	10/16/15 18:34	1
PCB-1242	ND		0.21	0.041	mg/Kg	₩.	10/16/15 08:13	10/16/15 18:34	1
PCB-1248	3.5		0.21	0.041	mg/Kg	₩	10/16/15 08:13	10/16/15 18:34	1
PCB-1254	2.1		0.21	0.098	mg/Kg	☼	10/16/15 08:13	10/16/15 18:34	1
PCB-1260	0.64		0.21	0.098	mg/Kg	₩.	10/16/15 08:13	10/16/15 18:34	1
PCB-1262	ND		0.21	0.098	mg/Kg	₩	10/16/15 08:13	10/16/15 18:34	1
PCB-1268	ND		0.21	0.098	mg/Kg	₽	10/16/15 08:13	10/16/15 18:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	92		60 - 154				10/16/15 08:13	10/16/15 18:34	1
DCB Decachlorobiphenyl	86		65 - 174				10/16/15 08:13	10/16/15 18:34	1

Method: 6010C - Metals (IC	P) - TCLP							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND	0.015	0.0056	mg/L		10/20/15 09:41	10/20/15 17:06	1
Barium	1.6	1.0	0.10	mg/L		10/20/15 09:41	10/20/15 17:06	1
Cadmium	0.041	0.0020	0.00050	mg/L		10/20/15 09:41	10/20/15 17:06	1
Chromium	ND	0.020	0.010	mg/L		10/20/15 09:41	10/20/15 17:06	1
Lead	1.4	0.020	0.0030	mg/L		10/20/15 09:41	10/20/15 17:06	1
Selenium	ND	0.025	0.0087	mg/L		10/20/15 09:41	10/20/15 17:06	1
Silver	ND	0.0060	0.0017	mg/L		10/20/15 09:41	10/20/15 17:06	1

Method: 7470A - Mercury (CV)	AA) - TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020	0.00012	mg/L		10/20/15 10:10	10/20/15 13:39	1

 Client Sample ID: LFS-48
 Lab Sample ID: 480-89113-2

 Date Collected: 10/14/15 00:00
 Matrix: Solid

 Date Received: 10/14/15 18:00
 Percent Solids: 83.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.25	0.049	mg/Kg	<u> </u>	10/16/15 08:15	10/16/15 18:50	1
PCB-1221	ND		0.25	0.049	mg/Kg	₩	10/16/15 08:15	10/16/15 18:50	1
PCB-1232	ND		0.25	0.049	mg/Kg	₩	10/16/15 08:15	10/16/15 18:50	1
PCB-1242	ND		0.25	0.049	mg/Kg	₩.	10/16/15 08:15	10/16/15 18:50	1
PCB-1248	1.5		0.25	0.049	mg/Kg	₩	10/16/15 08:15	10/16/15 18:50	1
PCB-1254	ND		0.25	0.12	mg/Kg	₩	10/16/15 08:15	10/16/15 18:50	1
PCB-1260	ND		0.25	0.12	mg/Kg	₩.	10/16/15 08:15	10/16/15 18:50	1
PCB-1262	ND		0.25	0.12	mg/Kg	₩	10/16/15 08:15	10/16/15 18:50	1
PCB-1268	ND		0.25	0.12	mg/Kg	₩	10/16/15 08:15	10/16/15 18:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	98		60 - 154				10/16/15 08:15	10/16/15 18:50	1
DCB Decachlorobiphenyl	98		65 - 174				10/16/15 08:15	10/16/15 18:50	1

Method: 6010C - Metals (ICP) -	TCLP								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		10/20/15 09:41	10/20/15 17:09	1

TestAmerica Buffalo

Page 6 of 18

2

6

8

4.0

11

13

14

15

estAmerica Buttaio

Client Sample Results

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-89113-1

Client Sample ID: LFS-48	Lab Sample ID: 480-89113-2
Date Collected: 10/14/15 00:00	Matrix: Solid
Date Received: 10/14/15 18:00	Percent Solids: 83.5

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	1.6	1.0	0.10	mg/L		10/20/15 09:41	10/20/15 17:09	1
Cadmium	0.018	0.0020	0.00050	mg/L		10/20/15 09:41	10/20/15 17:09	1
Chromium	ND	0.020	0.010	mg/L		10/20/15 09:41	10/20/15 17:09	1
Lead	1.3	0.020	0.0030	mg/L		10/20/15 09:41	10/20/15 17:09	1
Selenium	ND	0.025	0.0087	mg/L		10/20/15 09:41	10/20/15 17:09	1
Silver	ND	0.0060	0.0017	mg/L		10/20/15 09:41	10/20/15 17:09	1

Method: 7470A - Mercury (CVA	AA) - TCLP						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND —	0.00020	0.00012 mg/L		10/20/15 10:10	10/20/15 13:41	1

Surrogate Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-89113-1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)							
		TCX1	DCB1						
Lab Sample ID	Client Sample ID	(60-154)	65-174)						
480-89113-1	LFS-47	92	86						
480-89113-2	LFS-48	98	98						
LCS 480-269148/2-A	Lab Control Sample	119	115						
MB 480-269148/1-A	Method Blank	100	100						

TCX = Tetrachloro-m-xylene

DCB = DCB Decachlorobiphenyl

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 480-269148/1-A **Client Sample ID: Method Blank Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 269215 Prep Batch: 269148**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.19	0.037	mg/Kg		10/16/15 08:13	10/16/15 12:13	1
PCB-1221	ND		0.19	0.037	mg/Kg		10/16/15 08:13	10/16/15 12:13	1
PCB-1232	ND		0.19	0.037	mg/Kg		10/16/15 08:13	10/16/15 12:13	1
PCB-1242	ND		0.19	0.037	mg/Kg		10/16/15 08:13	10/16/15 12:13	1
PCB-1248	ND		0.19	0.037	mg/Kg		10/16/15 08:13	10/16/15 12:13	1
PCB-1254	ND		0.19	0.088	mg/Kg		10/16/15 08:13	10/16/15 12:13	1
PCB-1260	ND		0.19	0.088	mg/Kg		10/16/15 08:13	10/16/15 12:13	1
PCB-1262	ND		0.19	0.088	mg/Kg		10/16/15 08:13	10/16/15 12:13	1
PCB-1268	ND		0.19	0.088	mg/Kg		10/16/15 08:13	10/16/15 12:13	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	100		60 - 154	10/16/15 08:13	10/16/15 12:13	1
DCB Decachlorobiphenyl	100		65 - 174	10/16/15 08:13	10/16/15 12:13	1

Lab Sample ID: LCS 480-269148/2-A

Matrix: Solid

Analysis Batch: 269215								Prep Batc	n: 269148
		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016		2.28	2.53		mg/Kg		111	51 - 185	
PCB-1260		2.28	2.78		mg/Kg		122	61 - 184	
	Analyte PCB-1016	Analyte PCB-1016	Analyte Added PCB-1016 2.28	Analyte Spike LCS PCB-1016 Added Result 2.28 2.53	Analyte Added PCB-1016 Result Qualifier 2.28 2.53	Analyte Added PCB-1016 Result 2.28 Qualifier mg/Kg Unit mg/Kg	Analyte Added PCB-1016 Result 2.28 Qualifier mg/Kg Unit mg/Kg D	Analyte Added PCB-1016 Result 2.28 Qualifier mg/Kg Unit mg/Kg D mg/Kg %Rec 1111	Analyte Added PCB-1016 Result Result 2.28 Qualifier LCS LCS WRec. WRec. 2.28 2.53 mg/Kg D 31-185

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	119		60 - 154
DCB Decachlorobiphenyl	115		65 - 174

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-269776/2-A Client Sample ID: Method Blank **Matrix: Solid Prep Type: Total/NA Prep Batch: 269776**

Analysis Batch: 270032

	MB	МВ							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		10/20/15 09:41	10/20/15 16:59	1
Barium	ND		1.0	0.10	mg/L		10/20/15 09:41	10/20/15 16:59	1
Cadmium	ND		0.0020	0.00050	mg/L		10/20/15 09:41	10/20/15 16:59	1
Chromium	ND		0.020	0.010	mg/L		10/20/15 09:41	10/20/15 16:59	1
Lead	ND		0.020	0.0030	mg/L		10/20/15 09:41	10/20/15 16:59	1
Selenium	ND		0.025	0.0087	mg/L		10/20/15 09:41	10/20/15 16:59	1
Silver	ND		0.0060	0.0017	ma/l		10/20/15 09:41	10/20/15 16:59	1

Lab Sample ID: LCS 480-269776/3-A Matrix: Solid Analysis Batch: 270032				Clie	nt Sar	mple ID	Prep Type: Total/NA Prep Batch: 269776
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	1.00	1.03		mg/L		103	80 - 120

Page 9 of 18

Prep Type: Total/NA Prep Batch: 269776

Prep Batch: 269776

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

%Rec

%Rec.

Limits

80 - 120

Client Sample ID: Method Blank

Prep Type: Total/NA **Prep Batch: 269801**

Prep Type: Total/NA

Prep Batch: 269801

Prep Type: TCLP

Prep Batch: 269801

Client Sample ID: Lab Control Sample

Project/Site: 132 Dingens

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCS 480-269776/3-A **Matrix: Solid**

Client: Iyer Environmental Group, LLC

Analysis Batch: 270032

	Бріке	LUS	LUS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Barium	1.00	0.966	J	mg/L		97	80 - 120	
Cadmium	1.00	0.983		mg/L		98	80 - 120	
Chromium	1.00	0.973		mg/L		97	80 - 120	
Lead	1.00	0.975		mg/L		98	80 - 120	
Selenium	1.00	1.03		mg/L		103	80 - 120	
Silver	1.00	1.03		mg/L		103	80 - 120	

Lab Sample ID: LB 480-269556/1-B Client Sample ID: Method Blank **Prep Type: TCLP**

Matrix: Solid

Analysis Batch: 270032

LB LB

Result Qualifier **Analyte** RL **MDL** Unit Prepared Analyzed Dil Fac Arsenic $\overline{\mathsf{ND}}$ 0.015 0.0056 mg/L 10/20/15 09:41 10/20/15 16:55 ND Barium 0.10 mg/L 10/20/15 09:41 10/20/15 16:55 1.0 Cadmium ND 0.0020 0.00050 mg/L 10/20/15 09:41 10/20/15 16:55 Chromium ND 0.020 0.010 mg/L 10/20/15 09:41 10/20/15 16:55 Lead ND 0.020 0.0030 mg/L 10/20/15 09:41 10/20/15 16:55 Selenium 0.00870 J 0.025 0.0087 mg/L 10/20/15 09:41 10/20/15 16:55 Silver ND 0.0060 0.0017 mg/L 10/20/15 09:41 10/20/15 16:55

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 480-269801/2-A

Matrix: Solid

Analysis Batch: 269883

MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Mercury $\overline{\mathsf{ND}}$ 0.00020 0.00012 mg/L <u>10/20/15 10:10</u> <u>10/20/15 13:35</u>

Lab Sample ID: LCS 480-269801/3-A

Matrix: Solid

Analysis Batch: 269883

Spike LCS LCS Analyte Added Result Qualifier Unit 0.00668 Mercury 0.00643 mg/L

Lab Sample ID: LB 480-269556/1-C

Matrix: Solid

Analysis Batch: 269883

LB LB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Mercury ND 0.00020 0.00012 mg/L 10/20/15 10:10 10/20/15 13:33

TestAmerica Buffalo

10/21/2015

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

GC Semi VOA

Prep Batch: 269148

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89113-1	LFS-47	Total/NA	Solid	3550C	
480-89113-2	LFS-48	Total/NA	Solid	3550C	
LCS 480-269148/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-269148/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 269215

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89113-1	LFS-47	Total/NA	Solid	8082A	269148
480-89113-2	LFS-48	Total/NA	Solid	8082A	269148
LCS 480-269148/2-A	Lab Control Sample	Total/NA	Solid	8082A	269148
MB 480-269148/1-A	Method Blank	Total/NA	Solid	8082A	269148

Metals

Leach Batch: 269556

Lab Sample ID 480-89113-1	Client Sample ID	Prep Type TCLP	Matrix Solid	Method 1311	Prep Batch
480-89113-2	LFS-48	TCLP	Solid	1311	
LB 480-269556/1-B	Method Blank	TCLP	Solid	1311	
LB 480-269556/1-C	Method Blank	TCLP	Solid	1311	

Prep Batch: 269776

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89113-1	LFS-47	TCLP	Solid	3010A	269556
480-89113-2	LFS-48	TCLP	Solid	3010A	269556
LB 480-269556/1-B	Method Blank	TCLP	Solid	3010A	269556
LCS 480-269776/3-A	Lab Control Sample	Total/NA	Solid	3010A	
MB 480-269776/2-A	Method Blank	Total/NA	Solid	3010A	

Prep Batch: 269801

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89113-1	LFS-47	TCLP	Solid	7470A	269556
480-89113-2	LFS-48	TCLP	Solid	7470A	269556
LB 480-269556/1-C	Method Blank	TCLP	Solid	7470A	269556
LCS 480-269801/3-A	Lab Control Sample	Total/NA	Solid	7470A	
MB 480-269801/2-A	Method Blank	Total/NA	Solid	7470A	

Analysis Batch: 269883

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89113-1	LFS-47	TCLP	Solid	7470A	269801
480-89113-2	LFS-48	TCLP	Solid	7470A	269801
LB 480-269556/1-C	Method Blank	TCLP	Solid	7470A	269801
LCS 480-269801/3-A	Lab Control Sample	Total/NA	Solid	7470A	269801
MB 480-269801/2-A	Method Blank	Total/NA	Solid	7470A	269801

Analysis Batch: 270032

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89113-1	LFS-47	TCLP	Solid	6010C	269776
480-89113-2	LFS-48	TCLP	Solid	6010C	269776
LB 480-269556/1-B	Method Blank	TCLP	Solid	6010C	269776

TestAmerica Buffalo

Page 11 of 18

QC Association Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-89113-1

Metals (Continued)

Analysis Batch: 270032 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-269776/3-A	Lab Control Sample	Total/NA	Solid	6010C	269776
MB 480-269776/2-A	Method Blank	Total/NA	Solid	6010C	269776

General Chemistry

Analysis Batch: 268855

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89113-1	LFS-47	Total/NA	Solid	Moisture	
480-89113-2	LFS-48	Total/NA	Solid	Moisture	

Project/Site: 132 Dingens

Client Sample ID: LFS-47 Lab Sample ID: 480-89113-1 Date Collected: 10/14/15 00:00 **Matrix: Solid**

Date Received: 10/14/15 18:00

Client: Iyer Environmental Group, LLC

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			269556	10/19/15 08:35	JLS	TAL BUF
TCLP	Prep	3010A			269776	10/20/15 09:41	KJ1	TAL BUF
TCLP	Analysis	6010C		1	270032	10/20/15 17:06	AMH	TAL BUF
TCLP	Leach	1311			269556	10/19/15 08:35	JLS	TAL BUF
TCLP	Prep	7470A			269801	10/20/15 10:10	TAS	TAL BUF
TCLP	Analysis	7470A		1	269883	10/20/15 13:39	TAS	TAL BUF
Total/NA	Analysis	Moisture		1	268855	10/14/15 22:10	CMK	TAL BUF

Client Sample ID: LFS-47 Lab Sample ID: 480-89113-1

Date Collected: 10/14/15 00:00 **Matrix: Solid** Date Received: 10/14/15 18:00 Percent Solids: 86.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			269148	10/16/15 08:13	JLS	TAL BUF
Total/NA	Analysis	8082A		1	269215	10/16/15 18:34	KS	TAL BUF

Lab Sample ID: 480-89113-2 **Client Sample ID: LFS-48**

Date Collected: 10/14/15 00:00 Date Received: 10/14/15 18:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			269556	10/19/15 08:35	JLS	TAL BUF
TCLP	Prep	3010A			269776	10/20/15 09:41	KJ1	TAL BUF
TCLP	Analysis	6010C		1	270032	10/20/15 17:09	AMH	TAL BUF
TCLP	Leach	1311			269556	10/19/15 08:35	JLS	TAL BUF
TCLP	Prep	7470A			269801	10/20/15 10:10	TAS	TAL BUF
TCLP	Analysis	7470A		1	269883	10/20/15 13:41	TAS	TAL BUF
Total/NA	Analysis	Moisture		1	268855	10/14/15 22:10	CMK	TAL BUF

Client Sample ID: LFS-48 Lab Sample ID: 480-89113-2

Date Collected: 10/14/15 00:00 **Matrix: Solid** Percent Solids: 83.5 Date Received: 10/14/15 18:00

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			269148	10/16/15 08:15	JLS	TAL BUF
Total/NA	Analysis	8082A		1	269215	10/16/15 18:50	KS	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TestAmerica Buffalo

Matrix: Solid

Certification Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-89113-1

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date
New York	NELAP		2	10026	03-31-16
The following analytes	s are included in this repo	ort, but certification is	s not offered by the go	overning authority:	
Analysis Method	Prep Method	Matrix	Analyt	е	
7470A	7470A	Solid	Mercu	ry	
Moisture		Solid	Percei	nt Moisture	
Moisture		Solid	_	nt Solids	

2

6

9

11

12

14

Method Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-89113-1

Method	Method Description	Protocol	Laboratory
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF
7470A	Mercury (CVAA)	SW846	TAL BUF
Moisture	Percent Moisture	EPA	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

4

O

7

8

9

11

12

4 /

Sample Summary

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

TestAmerica Job ID: 480-89113-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-89113-1	LFS-47	Solid	10/14/15 00:00	10/14/15 18:00
480-89113-2	LFS-48	Solid	10/14/15 00:00	10/14/15 18:00

No ter

16mp 13,64

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

(A fee may be assessed if samples are retained longer than 1 month)

Months

Archive For

☐ Return To Client

П Ипкпомп

☐ Poison B

Skin Imitant

Mon-Hazard 🔲 Flammable

Possible Hazard Identification

OC Requirements (Specify) 🗹 Disposal By Lab

1. Received By

4. Months

2. Received By

1800

0/4/15

Other_

☐ 21 Days

🛭 7 Days 🗌 14 Days

1. Relinquished By Dishard

2. Relinquished By

3. Refinquished By

Comments

10/21/2015

☐ 24 Hours ☐ 48 Hours

Turn Around Time Required

3. Received By

Date

480-89113 Chain of Custody

Time

Date

Special Instructions/ Conditions of Receipt

Page

Analysis (Attach list if more space is needed)

माभ

Containers & Preservatives

Matrix

HOBN

IDH

EONH

tOSZH

<u> ilos</u> > \

pas

snoenby 116

Time

Date

Sample I.D. No. and Description (Containers for each sample may be combined on one line)

F5-47

FS-48

Page 17 of 18

Oct 14,2015 Oct H.2015

Oct (4, 2015 Lab Number

Gephone Number (Area Code) Fak Number

Project Manager

Iver Etriponmental Grap

Custody Record

FAL-4124 (1007)

Chain of

4 Rolling Hils D

716) 662-4157

Site Contact | R. Allen

State Zip Code

Z

132 Dingens St ContractPurchase Querouote No.

Orchard Park Project Name and Location (State)

Carrier/Waybill Number

Drinking Water? Yes Nor

Temperature on Receipt _

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica

Catagory A

<u>></u> <u>></u>

ı	
ı	
1	
1	
1	
ì	

Client: Iyer Environmental Group, LLC

Job Number: 480-89113-1

Login Number: 89113 List Source: TestAmerica Buffalo

List Number: 1

Creator: Kolb, Chris M

Creator. Roll, Critis W		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	False	
Cooler Temperature is acceptable.	True	Yes: Received same day of collection
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	Refer to job narrative for details
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	False	Refer to job narrative for details
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	IYER ENV.
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

TestAmerica Buffalo

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-89232-1 Client Project/Site: 132 Dingens

For:

Iyer Environmental Group, LLC 44 Rolling Hills Drive Orchard Park, New York 14127

Attn: Dr. Dharmarajan R Iyer

Melisso Deyo

Authorized for release by: 10/21/2015 10:03:27 AM

Melissa Deyo, Project Manager I (716)504-9874

melissa.deyo@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	7
QC Sample Results	8
QC Association Summary	10
Lab Chronicle	12
Certification Summary	13
Method Summary	14
Sample Summary	15
Chain of Custody	16
Receipt Checklists	17

4

5

7

a

10

12

13

14

Definitions/Glossary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-89232-1

Qualifiers

GC Semi VOA

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDI	Fatimental Detection Limit

EDL Estimated Detection Limit

MDC Minimum detectable concentration

MDL Method Detection Limit

Minimum Level (Dispire)

ML Minimum Level (Dioxin)
NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control
RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TestAmerica Buffalo

Case Narrative

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-89232-1

Job ID: 480-89232-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-89232-1

Receipt

The sample was received on 10/15/2015 3:35 PM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 17.5° C.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method(s) 1311: Insufficient sample was provided to perform the leaching procedure with the required 100g for the following sample: LFS-41-T (480-89232-1). The volume of leaching fluid was adjusted proportionally to maintain a 20:1 ratio of leaching fluid to weight of sample. Reporting limits (RLs) are not affected.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

3

4

5

6

Ö

10

11

Detection Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-89232-1

Client Sample ID: LFS-41-T Lab Sample ID: 480-89232-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
PCB-1248	3.9	-	0.23	0.045	mg/Kg		₩	8082A	Total/NA
PCB-1260	0.15	J	0.23	0.11	mg/Kg	1	₩	8082A	Total/NA
Barium	0.95	J	1.0	0.10	mg/L	1		6010C	TCLP
Cadmium	0.017		0.0020	0.00050	mg/L	1		6010C	TCLP
Chromium	0.097		0.020	0.010	mg/L	1		6010C	TCLP
Lead	0.29		0.020	0.0030	mg/L	1		6010C	TCLP

5

4

J

Q

9

11

12

1 *1*

Client Sample Results

Client: Iyer Environmental Group, LLC

Client Sample ID: LFS-41-T

Date Collected: 10/15/15 00:00

Date Received: 10/15/15 15:35

Project/Site: 132 Dingens

TestAmerica Job ID: 480-89232-1

Lab Sample ID: 480-89232-1

Matrix: Solid Percent Solids: 83.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.23	0.045	mg/Kg	<u> </u>	10/16/15 08:13	10/16/15 16:43	1
PCB-1221	ND		0.23	0.045	mg/Kg	₩	10/16/15 08:13	10/16/15 16:43	1
PCB-1232	ND		0.23	0.045	mg/Kg	₩	10/16/15 08:13	10/16/15 16:43	1
PCB-1242	ND		0.23	0.045	mg/Kg	₩.	10/16/15 08:13	10/16/15 16:43	1
PCB-1248	3.9		0.23	0.045	mg/Kg	₩	10/16/15 08:13	10/16/15 16:43	1
PCB-1254	ND		0.23	0.11	mg/Kg	₩	10/16/15 08:13	10/16/15 16:43	1
PCB-1260	0.15	J	0.23	0.11	mg/Kg	φ.	10/16/15 08:13	10/16/15 16:43	1
PCB-1262	ND		0.23	0.11	mg/Kg	₩	10/16/15 08:13	10/16/15 16:43	1
PCB-1268	ND		0.23	0.11	mg/Kg	₩	10/16/15 08:13	10/16/15 16:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	94		60 - 154				10/16/15 08:13	10/16/15 16:43	1
DCB Decachlorobiphenyl	92		65 - 174				10/16/15 08:13	10/16/15 16:43	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		10/20/15 09:41	10/20/15 18:09	1
Barium	0.95	J	1.0	0.10	mg/L		10/20/15 09:41	10/20/15 18:09	1
Cadmium	0.017		0.0020	0.00050	mg/L		10/20/15 09:41	10/20/15 18:09	1
Chromium	0.097		0.020	0.010	mg/L		10/20/15 09:41	10/20/15 18:09	1
Lead	0.29		0.020	0.0030	mg/L		10/20/15 09:41	10/20/15 18:09	1
Selenium	ND		0.025	0.0087	mg/L		10/20/15 09:41	10/20/15 18:09	1
Silver	ND		0.0060	0.0017	mg/L		10/20/15 09:41	10/20/15 18:09	1

Method: 7470A - Mercury (CVAA) - ICLP										
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac			
Mercury	ND	0.00020	0.00012 mg/L		10/20/15 10:10	10/20/15 14:04	1			

Surrogate Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-89232-1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid Prep Type: Total/NA

			Percent	Surrogate Recovery (Acceptance I	Limits)
		TCX1	DCB1		
Lab Sample ID	Client Sample ID	(60-154)	(65-174)		
480-89232-1	LFS-41-T	94	92		
LCS 480-269148/2-A	Lab Control Sample	119	115		
MB 480-269148/1-A	Method Blank	100	100		
Surrogate Legend					
TCX = Tetrachloro-m-	xylene				
DCB = DCB Decachlo	robiphenyl				

3

4

6

9

11

12

1 /

TestAmerica Job ID: 480-89232-1

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Client Sample ID: Method Blank Lab Sample ID: MB 480-269148/1-A **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 269215 Prep Batch: 269148**

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.19	0.037	mg/Kg		10/16/15 08:13	10/16/15 12:13	1
PCB-1221	ND		0.19	0.037	mg/Kg		10/16/15 08:13	10/16/15 12:13	1
PCB-1232	ND		0.19	0.037	mg/Kg		10/16/15 08:13	10/16/15 12:13	1
PCB-1242	ND		0.19	0.037	mg/Kg		10/16/15 08:13	10/16/15 12:13	1
PCB-1248	ND		0.19	0.037	mg/Kg		10/16/15 08:13	10/16/15 12:13	1
PCB-1254	ND		0.19	0.088	mg/Kg		10/16/15 08:13	10/16/15 12:13	1
PCB-1260	ND		0.19	0.088	mg/Kg		10/16/15 08:13	10/16/15 12:13	1
PCB-1262	ND		0.19	0.088	mg/Kg		10/16/15 08:13	10/16/15 12:13	1
PCB-1268	ND		0.19	0.088	mg/Kg		10/16/15 08:13	10/16/15 12:13	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	100		60 - 154	10/16/15 08:13	10/16/15 12:13	1
DCB Decachlorobiphenyl	100		65 - 174	10/16/15 08:13	10/16/15 12:13	1

Lab Sample ID: LCS 480-269148/2-A

Matrix: Solid

Analysis Batch: 269215								Prep Ba	itch: 269148
-		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016		2.28	2.53		mg/Kg		111	51 - 185	
PCB-1260		2.28	2.78		mg/Kg		122	61 - 184	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	119		60 - 154
DCB Decachlorobiphenyl	115		65 ₋ 174

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-269776/2-A

Matrix: Solid

Analysis Batch: 270032								Prep Batch:	269776
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.015	0.0056	mg/L		10/20/15 09:41	10/20/15 16:59	1
Barium	ND		1.0	0.10	mg/L		10/20/15 09:41	10/20/15 16:59	1
Cadmium	ND		0.0020	0.00050	mg/L		10/20/15 09:41	10/20/15 16:59	1
Chromium	ND		0.020	0.010	mg/L		10/20/15 09:41	10/20/15 16:59	1
Lead	ND		0.020	0.0030	mg/L		10/20/15 09:41	10/20/15 16:59	1
Selenium	ND		0.025	0.0087	mg/L		10/20/15 09:41	10/20/15 16:59	1
Silver	ND		0.0060	0.0017	mg/L		10/20/15 09:41	10/20/15 16:59	1

Lab Sample ID: LCS 480-269776/3-A	•					mple ID	: Lab Control Sample
Matrix: Solid							Prep Type: Total/NA
Analysis Batch: 270032							Prep Batch: 269776
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	1.00	1.03		mg/L		103	80 - 120

TestAmerica Buffalo

Page 8 of 17

TestAmerica Job ID: 480-89232-1

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCS 480-269776/3-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 270032** Prep Batch: 269776

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Barium	1.00	0.966	J	mg/L		97	80 - 120	
Cadmium	1.00	0.983		mg/L		98	80 - 120	
Chromium	1.00	0.973		mg/L		97	80 - 120	
Lead	1.00	0.975		mg/L		98	80 - 120	
Selenium	1.00	1.03		mg/L		103	80 - 120	
Silver	1.00	1.03		mg/L		103	80 - 120	

Lab Sample ID: LB 480-269556/1-B Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 270032

Prep Type: TCLP Prep Batch: 269776

mg/L

LB LB Result Qualifier **Analyte** RL **MDL** Unit Prepared Analyzed Dil Fac Arsenic $\overline{\mathsf{ND}}$ 0.015 0.0056 mg/L 10/20/15 09:41 10/20/15 16:55 Barium ND 0.10 mg/L 10/20/15 09:41 10/20/15 16:55 1.0 Cadmium ND 0.0020 0.00050 mg/L 10/20/15 09:41 10/20/15 16:55 Chromium ND 0.020 0.010 mg/L 10/20/15 09:41 10/20/15 16:55 Lead ND 0.020 0.0030 mg/L 10/20/15 09:41 10/20/15 16:55 Selenium 0.00870 J 0.025 0.0087 mg/L 10/20/15 09:41 10/20/15 16:55 Silver ND 0.0060 0.0017 mg/L 10/20/15 09:41 10/20/15 16:55

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 480-269801/2-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 269883

MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Mercury $\overline{\mathsf{ND}}$ 0.00020 0.00012 mg/L <u>10/20/15 10:10</u> <u>10/20/15 13:35</u>

Lab Sample ID: LCS 480-269801/3-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 269883 Prep Batch: 269801** Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits

Lab Sample ID: LB 480-269556/1-C **Client Sample ID: Method Blank**

0.00643

0.00668

Matrix: Solid

Mercury

Analysis Batch: 269883 LB LB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed

Mercury ND 0.00020 0.00012 mg/L <u>10/20/15 10:10</u> <u>10/20/15 13:33</u>

TestAmerica Buffalo

10/21/2015

Prep Batch: 269801

Prep Type: TCLP

Prep Batch: 269801

80 - 120

QC Association Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-89232-1

GC Semi VOA

Prep Batch: 269148

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89232-1	LFS-41-T	Total/NA	Solid	3550C	
LCS 480-269148/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-269148/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 269215

Lab Sample ID 480-89232-1	Client Sample ID	Prep Type Total/NA	Matrix Solid	Method 8082A	Prep Batch 269148
LCS 480-269148/2-A	Lab Control Sample	Total/NA Total/NA	Solid	8082A	269148 269148
MB 480-269148/1-A	Method Blank	Total/NA	Solid	8082A	269148

Metals

Leach Batch: 269556

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89232-1	LFS-41-T	TCLP	Solid	1311	<u> </u>
LB 480-269556/1-B	Method Blank	TCLP	Solid	1311	
LB 480-269556/1-C	Method Blank	TCLP	Solid	1311	

Prep Batch: 269776

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89232-1	LFS-41-T	TCLP	Solid	3010A	269556
LB 480-269556/1-B	Method Blank	TCLP	Solid	3010A	269556
LCS 480-269776/3-A	Lab Control Sample	Total/NA	Solid	3010A	
MB 480-269776/2-A	Method Blank	Total/NA	Solid	3010A	

Prep Batch: 269801

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89232-1	LFS-41-T	TCLP	Solid	7470A	269556
LB 480-269556/1-C	Method Blank	TCLP	Solid	7470A	269556
LCS 480-269801/3-A	Lab Control Sample	Total/NA	Solid	7470A	
MB 480-269801/2-A	Method Blank	Total/NA	Solid	7470A	

Analysis Batch: 269883

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89232-1	LFS-41-T	TCLP	Solid	7470A	269801
LB 480-269556/1-C	Method Blank	TCLP	Solid	7470A	269801
LCS 480-269801/3-A	Lab Control Sample	Total/NA	Solid	7470A	269801
MB 480-269801/2-A	Method Blank	Total/NA	Solid	7470A	269801

Analysis Batch: 270032

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89232-1	LFS-41-T	TCLP	Solid	6010C	269776
LB 480-269556/1-B	Method Blank	TCLP	Solid	6010C	269776
LCS 480-269776/3-A	Lab Control Sample	Total/NA	Solid	6010C	269776
MB 480-269776/2-A	Method Blank	Total/NA	Solid	6010C	269776

TestAmerica Buffalo

QC Association Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-89232-1

General Chemistry

Analysis Batch: 269106

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89232-1	LFS-41-T	Total/NA	Solid	Moisture	

4

6

8

9

10

12

4 4

Lab Chronicle

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-89232-1

Lab Sample ID: 480-89232-1

Matrix: Solid

Client Sample ID: LFS-41-T Date Collected: 10/15/15 00:00 Date Received: 10/15/15 15:35

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
TCLP	Leach	1311			269556	10/19/15 08:35	JLS	TAL BUF
TCLP	Prep	3010A			269776	10/20/15 09:41	KJ1	TAL BUF
TCLP	Analysis	6010C		1	270032	10/20/15 18:09	AMH	TAL BUF
TCLP	Leach	1311			269556	10/19/15 08:35	JLS	TAL BUF
TCLP	Prep	7470A			269801	10/20/15 10:10	TAS	TAL BUF
TCLP	Analysis	7470A		1	269883	10/20/15 14:04	TAS	TAL BUF
Total/NA	Analysis	Moisture		1	269106	10/15/15 21:56	CMK	TAL BUF

Client Sample ID: LFS-41-T Lab Sample ID: 480-89232-1

Date Collected: 10/15/15 00:00 Matrix: Solid
Date Received: 10/15/15 15:35 Percent Solids: 83.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			269148	10/16/15 08:13	JLS	TAL BUF
Total/NA	Analysis	8082A		1	269215	10/16/15 16:43	KS	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

2

44

12

IR

Certification Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-89232-1

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date
New York	NELAP		2	10026	03-31-16
The following analyte	s are included in this repo	rt, but certification is	s not offered by the go	overning authority:	
Analysis Method	Prep Method	Matrix	Analyt	e	
7470A	7470A	Solid	Mercu	ry	
Moisture		Solid	Percei	nt Moisture	

5

6

8

9

11

12

14

Method Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-89232-1

Method	Method Description	Protocol	Laboratory
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF
7470A	Mercury (CVAA)	SW846	TAL BUF
Moisture	Percent Moisture	EPA	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

7

8

9

11

12

4 /

Sample Summary

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

TestAmerica Job ID: 480-89232-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-89232-1	LFS-41-T	Solid	10/15/15 00:00	10/15/15 15:35

Special Instructions/ Conditions of Receipt (A fee may be assessed if samples are retained longer than 1 month) Chain of Custody Number 264444 Time Page Date LEGATON L 480-89232 Chain of Custody THE LEADER IN ENVIRONMENTAL TESTING Date (5, 2015 **TestAmerico** Analysis (Attach list if more space is needed) Lab Number Months Archive For 12] OC Requirements (Specify, NaOA HOBN 🗭 Disposal By Lab Containers & Preservatives HOBN 1. Received By 3. Received By IDH Dharima Lyer EONH Drinking Water? Yes Nor≰ səudur Temperature on Receipt Hetum To Client DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy Sample Disposal Matrix рөс Project Manager Date | 15 | 15 snoenb_b 417 □ other_ П Ипкпомп Time 🗌 21 Days OKS (15 ☐ Poison B Date Charb ☐ 14 Days Sample I.D. No. and Description (Containers for each sample may be combined on one line) Skin Irritant 44 Rolling Hills Liér Environmental 🛚 7 Days アラーオート ☐ Flammable 132 Dingens ST Contract/Purchase Drder/Quote No. Project Name and Location (State) Custody Record ☐ 24 Hours ☐ 48 Hours Possible Hazard Identification Tum Around Time Required Orchand Parl 3. Relinquished By Comments 1. Relinquished By 2. Relinquished By Chain of Non-Hazard TAL-4124 (1007) Page 16 of 17

Login Sample Receipt Checklist

Client: Iyer Environmental Group, LLC

Job Number: 480-89232-1

Login Number: 89232 List Source: TestAmerica Buffalo

List Number: 1

Creator: Kinecki, Kenneth P

	_	
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	False	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	False	No time
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	IYER
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

2

4

5

_

0

10

12

10

APPENDIX G REMAINING SOIL CONTAMINATION TABLES

TABLE G-1A

132 DINGENS STREET - BCP RI/RA REMAINING CONTAMINATION BELOW PETLs AND CSCOs PHASE II ESA (2011) TEST PIT SOIL SAMPLES

(SAMPLED 12/19/11 DURING PHASE II)

SAMPLE ID/		TS-1	TS-2	TS-3	TS-6	TS-7
LOCATION	PETLs		eastern section	•	northern	section
DEPTH INTERVAL (ft)	or CSCOs	0' - 4'	0' - 4'	0' - 4'	0' - 0.5'	0' - 6'
Percent Solids (%)		56.5	70.5	90.3	75.3	74.2
SEMIVOLATILE ORGANICS (S	VOCs, ug/Kg)					
2-Methylnaphthalene				14		
Anthracene						650
Benzo(a)anthracene		830	140	60]	1,900
Benzo(a)pyrene		1,300	170	170]	2,400
Benzo(b)fluoranthene		1,400	190	240		2,500
Benzo(k)fluoranthene		730		88		1,100
Benzo(g,h,i)perylene	1	720		200	1	1,800
Bis(2-ethylhexyl) phthalate			1,300		NA I	
Carbazole		120			INA	
Chrysene		1,100	200	82]	2,100
Dibenz(a,h)anthracene				71]	520
Fluoranthene		1,600	180	39	1	3,800
Indeno(1,2,3-cd)pyrene		750		170	1	1,500
Phenanthrene		740	88	31	1	3,100
Pyrene		1,500		35		3,200
TOTAL SVOCs	500,000	10,790	2,268	1,200		24,570
PCBs (ug/Kg)	1,000	NA	NA	NA	NA	ND
ASBESTOS	-	NA	NA	NA	NA	ND

TABLE G-1A

132 DINGENS STREET - BCP RI/RA REMAINING CONTAMINATION BELOW PETLs AND CSCOs PHASE II ESA (2011) TEST PIT SOIL SAMPLES

(SAMPLED 12/19/11 DURING PHASE II)

SAMPLE ID/	DET	TS-1	TS-2	TS-3	TS-6	TS-7
LOCATION	PETLs or		eastern section		northerr	n section
DEPTH INTERVAL (ft)	CSCOs	0' - 4'	0' - 4'	0' - 4'	0' - 0.5'	0' - 6'
Percent Solids (%)		56.5	70.5	90.3	75.3	74.2
METALS (mg/Kg)						
Aluminum		12,700	7,200	1,190	13,600	6,010
Antimony		9.6	3.3			4.1
Mercury	5.7	0.6	0.4		0.1	2.3
Arsenic	71	25.3	15.0	1.5	5.1	20.4
Barium	400	1,270	376	7	80	1,500
Beryllium	590	1.0	0.8	0.1	0.6	0.6
Cadmium	9.3	2.2	1.1	0.0	0.4	2.9
Calcium		12,600	11,100	769	16,400	25,600
Chromium	1,500	50.7	20.5	2.6	45.5	17.3
Cobalt		7.7	8.0	0.2	7.1	6.7
Copper	270	382	106	16	18	124
Iron		47,000	16,200	4,060	22,300	21,300
Lead	5,000	4,160	2,970	6.5	41	1,030
Magnesium		2,230	771	157	3,280	3,450
Manganese	10,000	254	426	61	1,080	334
Nickel	310	23	20	2	17	17
Potassium		1,240	772	93	1,620	799
Selenium	1,500	4.0	0.8		1.7	1.2
Silver	1,500	4.4	0.3			0.4
Sodium		369	312	32	78	275
Thallium					1.1	
Vanadium		41.0	30.7	1.3	37.9	24.5
Zinc	10,000	2,600	525	11	133	2,980

Note: 1. "ND" = Not Detected; "NA" = Not Analyzed; Sample interval based on observed soil layers

^{2.} Only detected organic compounds are listed; All metals analyzed are listed; Blank cells indicate non-detect

^{3.} CSCOs are listed in italics; PETLs are listed in bold; Compounds exceeding CSCOs or PETLs are shown in bold numbers

^{4.} Table of sample coordinates is in this appendix, and location figure is in this report

^{5.} CSCO = Commercial Soil Cleanup Objective; PETL = Proposed Excavation Threshold Limit

TABLE G-1B

132 DINGENS STREET - BCP REMEDIATION REMAINING CONTAMINATION BELOW PETLS AND CSCOS

PHASE II ESA (2011) GEOPROBE SOIL SAMPLES (SAMPLED 12/16/11 DURING PHASE II)

SAMPLE ID/	PETLs	GS#1	GS#2	GS#3	GS#7	GS#8	GS#9	GS#10	GS#11	GS#12	GS#13	GS#14	GS#16
LOCATION	or	S	southwest are	ea	refr. bldg.		northwest area	1	north corner		eastern	section	
DEPTH INTERVAL (ft)	CSCOs	0 - 4	4 - 8	4 - 8	8 - 12	4 - 8	8 - 12	4 - 8	4 - 8	4 - 8	8 - 12	4 - 8	8 - 12
Percent Solids (%)	Cocos	76.6	84.3	78.6	86.3	62.0	67.1	72.3	59.2	41.5	60.1	84.0	68.7
VOLATILE ORGANICS (VOCs,	ug/Kg)												
Acetone	500,000		48		28		160			460		33	100
Methylene chloride	500,000		3.5		4.8								
Cyclohexane					1.7					27		6.1	
Benzene	45,000									5			
Toluene	500,000									1.3		0.58	
Ethylbenzene	390,000									20		2.1	
Total Xylenes	500,000	NA		NA		NA		NA	NA	89	NA	3.2	
2-Butanone (MEK)	500,000		11		6.1		25			120		8.2	23
Methylcyclohexane										150		22	
Methylene Chloride	500,000									9.7			
Isopropylbenzene	500,000									150		20	
TOTAL BTEX			0		0		0			115		6	0
TOTAL VOCs			63		41		185			1,032		95	123
SEMIVOLATILE ORGANICS (S'	VOCs, ug/Kg)												
Naphthalene]		25										<u> </u>
2-Methylnaphthalene										82,000		470	41
Anthracene	1				2,200	230		47	5,300	51		140	
Acenaphthene	1					920				3,900			110
Acenaphthylene	1									4,400			42
Acetophenone	1									3,500			
Benzo(a)anthracene	1	13	84			3,900	520		240	13,000	120	470	250
Benzo(a)pyrene	1		89			4,800	580		320	13,000	120	440	300
Benzo(b)fluoranthene	1	21	120			4,900	660		300	15,000	140	690	400
Benzo(k)fluoranthene	1		40			2,300	360		140	6.600	83	270	120
Benzo(g,h,i)perylene	1	19	76			3,200	333		190	5,900	98	400	190
Bis(2-ethylhexyl) phthalate	 	- 10		ND	NA	0,200		NA	210	0,000	180	100	
Carbazole	1				10.	710			30	1,200	23		85
Chrysene	1	19	88			3,600	540		220	14,000	120	290	260
Dibenzofuran	┪	- 10	- 00			880	0-10		220	17,000	120	200	200
Dibenz(a,h)anthracene	┪					000			58	2,800	30		51
Fluoranthene	┪ │	15	200			9,600	1,100		410	27,000	250	740	690
Fluorene	-	10	200			940	1,100		410	7,800	33	400	100
Indeno(1,2,3-cd)pyrene	-	14	58			2,600	270		170	5.600	82	400	160
Naphthalene	-	14	50			2,000	210		170	8,100	UZ	-	56
•	-					9.000	720		220		100	000	
Phenanthrene	-{		400			8,000	730		230	24,000	190	900	450
Pyrene		46.1	180		1	8,300	890		360	18,000	200	570	520
TOTAL SVOCs	500,000	101	960	0		56,850	5,880		2,925	261,100	1,720	5,640	3,965

TABLE G-1B

132 DINGENS STREET - BCP REMEDIATION REMAINING CONTAMINATION BELOW PETLs AND CSCOs

PHASE II ESA (2011) GEOPROBE SOIL SAMPLES

(SAMPLED 12/16/11 DURING PHASE II)

SAMPLE ID/	PETLs	GS#1	GS#2	GS#3	GS#7	GS#8	GS#9	GS#10	GS#11	GS#12	GS#13	GS#14	GS#16
LOCATION	or	S	outhwest are	ea	refr. bldg.		northwest area	3	north corner		eastern	section	
DEPTH INTERVAL (ft)	CSCOs	0 - 4	4 - 8	4 - 8	8 - 12	4 - 8	8 - 12	4 - 8	4 - 8	4 - 8	8 - 12	4 - 8	8 - 12
Percent Solids (%)	00003	76.6	84.3	78.6	86.3	62.0	67.1	72.3	59.2	41.5	60.1	84.0	68.7
METALS (mg/Kg)			1		,			ı			T	T	1
Aluminum		6400		4570		5260	4890	6880	6910	5810			
Antimony		1.6					2.7	1.8		2.4			
Mercury	5.7	0.05		0.02		0.05	1.80	0.36	0.12	1.30			
Arsenic	71	15		14.1		8.5	36.7	21.4	20.5	34.4			
Barium	400	352		90.3		162	736	202	234	1890			
Beryllium	590	0.98		0.52		0.54	0.59	0.72	0.81	0.7			
Cadmium	9.3	0.43		0.29		0.52	3.3	0.98	0.63	3.2			
Calcium		8510		3190		4310	19200	7490	7360	34600			
Chromium	1,500	12.4		12		9.9	52.7	16.9	10.8	55.3			
Cobalt		6.4		10.4		5	6.6	6.5	7.5	9.9	NA		
Copper	270	63.8	NA	139	NA	45.7	143	137	350	111		NA	NA
Iron		32800	INA	87400	INA	9680	51300	21700	9600	51100	INA	INA	INA
Lead	5,000	549		124		417	2470	641	1220	2440			
Magnesium		626		273		577	3280	2180	556	3480			
Manganese	10,000	280		697		88.1	453	298	168	566			
Nickel	310	17.5		21.7		13.6	20.2	25.1	24	18.9			
Potassium		770		460		757	902	803	971	1190			
Selenium	1,500	0.8		2.3 0.3 201 28.2		ND	5.1	2.4	1.4	2.8			
Silver	1,500				1	0.33	0.69	ND	ND	11			1
Sodium		411			371	860	160	551	1710				
Vanadium		23.6			26.5	20.3	29.8	31.3	18.6				
Zinc	10,000	276		282]	196	1450	470	318	1600			1

Note: 1. "ND" = Not Detected; "NA" = Not Analyzed; Sample interval based on observed soil layers

- 2. Only detected organic compounds are listed; All metals analyzed are listed; Blank cells indicate non-detect
- 3. CSCOs are listed in italics; PETLs are listed in bold; Compounds exceeding CSCOs or PETLs are shown in bold numbers
- 4. Table of sample coordinates is in this appendix, and location figure is in this report
- 5. CSCO = Commercial Soil Cleanup Objective; PETL = Proposed Excavation Threshold Limit

SAMPLE ID/	PETLS or	TS#8	TS#8	TS#8	TS#9	TS#9	TS#10	TS#10	TS#10	TS#11	TS#11	TS#11	TS#12	TS#12	TS#12
LOCATION	CSCOs			East End		l .			Eas	st End		l		North Center	r
VOLATILE ORGANICS (ug	/Kg)														
DEPTH INTERVAL (ft)			0' - 2'								1' - 4'				
Percent Solids (%)		NA	72.5	NA	NA	NA	NA	NA	NA	NA	75.3	NA	NA	NA	NA
Trichloroethene	21,000		2.4 J								2.5 J				
PESTICIDES (ug/Kg)															
DEPTH INTERVAL (ft)		0	2		0	2 - 8	0			0	1 - 4	5 - 8	0	0-2	2 - 8
Percent Solids (%)		71.6	72.5		72.9	82 8	63.8			73.7	75.3	89.9	90.7	79.4	83.1
4,4'-DDE	62,000									330 J	100 J	76 J			
4,4'-DDT	47,000				46 J		78 J				160 J		74 J	86 J	
Dieldrin	1,400							NA	NA		73 J	82 J			
Endosulfan II	200,000			NA			24 J								
Endrin	89,000	33 J			31 J	27 J									11 J
gamma-Chlordane	9,200										140 J				
Methoxychlor							72 J								
TOTAL PEST		33	ND		77	27	174			330	473	158	74	86	11
PCBs (ug/Kg)															
DEPTH INTERVAL (ft)		0	2		0	2 - 8	0			0	1 - 4	5 - 8	0	0 - 2	2 - 8
Percent Solids (%)		71.6	72.5		72.9	82 8	63.8			73.7	75.3	89.9	90.7	79.4	83.1
Aroclor 1242			280 J				79 J	NA	NA						
Aroclor 1248	T			NA				INC	INA						
Aroclor 1254				INA											
Aroclor 1260											250	710			
TOTAL PCBs	1,000	ND	280		ND	ND	79			ND	250	710	ND	ND	ND

SAMPLE ID/	PETLS	TS#8	TS#8	TS#8	TS#9	TS#9	TS#10	TS#10	TS#10	TS#11	TS#11	TS#11	TS#12	TS#12	TS#12
LOCATION	or CSCOs			East End					Fas	L st End			N	l North Center	
SEMIVOLATILE ORGANICS													•		
DEPTH INTERVAL (ft)	(ug/Ng)	0	2	6 - 7	0	2 - 8	0	2 - 4	4 - 7		1 - 4	5-8	0	0-2	2 - 8
· · · · · · · · · · · · · · · · · · ·			2		70.0		0			70.7			0		
Percent Solids (%)		71.6	72.5	74.5	72.9	82.8	63.8	68.2	88.7	73.7	75.3	89.9	90.7	79.4	83.1
Biphenyl		04.1	400 1	45 J	47.1		400 1	22 J	00.1		22 J	FO 1	310 J	210 J	-
2-Methylnaphthalene		94 J	100 J	120 J	47 J		160 J	89 J	83 J		68 J	50 J	410 J	680 J	
3 & 4-Methylphenol										2222					
Acenaphthene		230 J	270 J	63 J			430 J			2200 J	140 J	110 J	1100 J	1100 J	
Acenaphthylene			52 J		43 J						53 J		240 J		
Acetophenone															
Anthracene		700 J	1200	85 J	260 J	110 J	1200 J	55 J		6000 J	440	280 J	3200 J	3200	
Benzaldehyde															
Benzo(a)anthracene		3000	3600	160 J	2400	300 J	5400	470 J	78 J	26000	1500	1500	9600	6900	80 J
Benzo(a)pyrene		3100	3200	120 J	1900	280 J	5500	400 J	53 J	31000	1500	1700	8000	5900	81 J
Benzo(b)fluoranthene		3400	3300	130 J	2600	400 J	6700	620	75 J	36000	2000	2400	9000	5800	120 J
Benzo(g,h,i)perylene		1700	2100	94 J	970	240 J	4100	230 J	31 J	25000	1300	1500	4800	2300 J	85 J
Benzo(k)fluoranthene		3600	2700	130 J	1800	270 J	4500	570	84 J	28000	1200	1500	7700	5300	92 J
Bis(2-ethylhexyl) phthalate		200 J			64 J		560 J	44 J	35 J		140 J	160 J			
Butyl benzyl phthalate											30 J				
Carbazole		280 J	370 J				650 J	40 J		4600 J	230 J	110 J	1600 J	1500 J	
Chrysene		3200	3900	180 J	2300	340 J	6000	690	120 J	31000	1500	1800	9600	6700	100
Dibenz(a,h)anthracene		630 J	730 J		410 J	97 J	1400 J	110 J	14 J	6500 J	550	390 J	1600 J	1100 J	30 J
Dibenzofuran		170 J	240 J	120 J		46 J	290 J	57 J	25 J	1100 J	110 J	57 J	1100 J	1200 J	
Di-n-butyl phthalate		42 J						43 J			43 J	55 J			
Fluoranthene		4300	5900	290 J	4100	490 J	8500	430 J	43 J	48000	2100	1900	15000	11000	74 J
Fluorene		340 J	480 J	100 J	62 J	45 J	450 J	23 J		2100 J	220 J	86 J	1600 J	1600 J	
Indeno(1,2,3-cd)pyrene		1600	1800	77 J	950	200 J	3700	210 J	26 J	20000	1100	1200	4600	3100	81 J
Naphthalene		110 J	140 J	180 J	32 J		340 J	120 J	40 J	600 J	100 J	57 J	840 J	1900 J	
Phenanthrene		3200	4900	340 J	880	390 J	5000	350 J	120 J	30000	1800	1300	15000	13000	56 J
Pyrene		6500	9200	500 J	5800	620 J	11000	840	100 J	74000	3200	4100	26000	16000	150 J
TOTAL SVOCs	500,000	36,396	44,182	2,734	24,618	3,828	65,880	5,413	927	372,100	19,346	20,255	121,300	88,490	949

SAMPLE ID/	PETLS or	TS#8	TS#8	TS#8	TS#9	TS#9	TS#10	TS#10	TS#10	TS#11	TS#11	TS#11	TS#12	TS#12	TS#12
LOCATION	CSCOs		1	East End	ı	I			Eas	st End			1	North Center	
METALS (mg/Kg)															
DEPTH INTERVAL (ft)		0	2	6 - 7	0	2 - 8	0	2 - 4	4 - 7	0	1 - 4	5 - 8	0	0-2	2 - 8
Percent Solids (%)		71.6	72.5	74.5	72.9	82 8	63.8	68.2	88.7	73.7	75.3	89.9	90.7	79.4	83.1
Aluminum		8400	10300	3860	8100	3610	5660	3160	2400	5710	3900	3240	7900	7950	4770
Antimony		1.5	2			4460	32.8	9.4	1.8	11	0.5	1.1		0.65	
Arsenic	71.0	13.4	22.8	11.4	6.3	43.6	23.1	18.2	11.6	17.8	11.8	6.6	13.5	18.9	18
Barium	400	453	816	191	113	954	1290	421	75.5	165	116	135	238	440	298
Beryllium	590	0.85	1.3	0.42	0.57	0.38	0.74	0.92	0.57	0.69	0.34	0.27	0.8	0.98	0.58
Cadmium	9.3	1.9	3.4	0.47	0.45	3.6	3.6	0.6	0.076	1.9	5.4	1.2	1.6	2.4	2.2
Calcium		28300	33900	183000	41700	15700	15700	4150	3380	126000	11500	13600	28100	35900	2710
Chromium	1,500	29.6	32.8	8.2	13.4	13.6	24.7	11.2	2.8	76.8	18.7	12.1	21.4	24.8	14.3
Cobalt		8	9.1	4.4	6.6	3.6	4.7	6.8	3.2	4.8	3.2	2.4	6.1	7.7	16.3
Copper	270	123	263	31.9	147	1290	139	201	41.1	304	2400	92.8	76.8	139	2030
Iron		23600	51400	18700	16000	14000	17200	33800	20200	25800	17900	9680	20400	22900	134000
Lead	5,000	1010	2760	241	133	93500	1430	262	29.5	332	307	414	515	1630	1530
Magnesium		7540	4470	5910	12500	2070	3310	478	206	13300	1730	2990	7160	6310	206
Manganese	10,000	626	749	580	302	384	395	64.8	34.2	2310	315	235	486	547	236
Nickel	310	23.6	27.8	11.8	17.1	17.6	20.6	20.2	8.7	27.5	20.7	10.9	20.7	25.7	36.1
Potassium		1830	1340	776	1730	548	1140	365	366	1330	496	499	1620	1180	400
Selenium	1,500	2.5	4.7	1.2	0.86	2.1	1.8	1.8	1.3	2.3	1.1	0.89	1.8	2.1	4.1
Silver	1,500	0.39	1.2			17.2	0.75			0.35	0.49		0.27	0.31	0.75
Sodium		157	346	179	299	514	135	124	90.5	258	84.1	71.8	135	161	593
Thallium															
Vanadium		24.1	29.3	14.7	20.2	19	18	16.8	9	41.6	11.5	8.7	20.3	23.8	30.8
Zinc	10,000	1610	1820	672	187	1120	14300	201	26.2	1230	426	279	593	834	1710
Mercury	5.7	1.6	0.6	0.16	0.094	0.25	0.91	0.06	0.014	0.22	0.51	0.15	0.38	0.7	0.34
Total Cyanide (mg/Kg)	27	1.2	1.1	NA		1.4	1.8	NA	NA	0.89	1	0.55	1.2	0.99	1.1

SAMPLE ID/	PETLS or	TS#13	TS#13	TS#13	TS#14	TS#14	TS#14	TS#16	TS#16	TS#17	TS#17	TS#17
LOCATION	CSCOs		North Cente	r		I		West	End	I		
VOLATILE ORGANICS (ug/l	Kg)											
DEPTH INTERVAL (ft)												
Percent Solids (%)		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Trichloroethene	21,000											
PESTICIDES (ug/Kg)												
DEPTH INTERVAL (ft)		0	0-2	2 - 8	0					0	0 - 2	
Percent Solids (%)		66.1	72.8	73.9	70.2					69.3	80.2	
4,4'-DDE	62,000											
4,4'-DDT	47,000	110 J			100 J					180 J	160 J	
Dieldrin	1,400					NA	NA	NA	NA			NA
Endosulfan II	200,000									44 J		
Endrin	89,000		94 J	17 J						120 J	100 J	
gamma-Chlordane	9,200			17 J								
Methoxychlor												
TOTAL PEST		110	94	34	100					344	260	
PCBs (ug/Kg)												
DEPTH INTERVAL (ft)		0	0-2	2 - 8	0					0	0 - 2	
Percent Solids (%)		66.1	72.8	73.9	70.2					69.3	80.2	
Aroclor 1242						NA	NA	NA	NA			NA
Aroclor 1248	1 _					INC	11/7	INA	INC			INA
Aroclor 1254	1											
Aroclor 1260					200 J					370		
TOTAL PCBs	1,000	ND	ND	ND	200					370	ND	

0.1115/F.1D/	PETLS	TS#13	TS#13	TS#13	TS#14	TS#14	TS#14	TS#16	TS#16	TS#17	TS#17	TS#17
SAMPLE ID/ LOCATION	or				10#14	10#14	10#14			10π11	10π11	10#17
	CSCOs		North Cente	r				West	End			
SEMIVOLATILE ORGANICS	S (ug/Kg)											
DEPTH INTERVAL (ft)		0	0-2	2 - 8	0	0-2	4 - 8	3 - 4	5 - 6	0	0-2	6 - 7
Percent Solids (%)		66.1	72.8	73.9	70.2	79.4	87.1	91.6	72.4	69.3	80.2	78.8
Biphenyl												
2-Methylnaphthalene		150 J	1600 J		140 J	320 J	200 J	36 J			110 J	
3 & 4-Methylphenol												
Acenaphthene		410 J	4000 J	37 J	450 J	760 J	370 J			1000 J	87 J	
Acenaphthylene			460 J								220 J	
Acetophenone												
Anthracene		1300 J	12000	150 J	1600 J	1600 J	3300 J		56 J	3200 J	330 J	88 J
Benzaldehyde												
Benzo(a)anthracene		4600	28000	630 J	6200	3400 J	8700	100 J	220 J	20000	2800	330 J
Benzo(a)pyrene		4600	20000	750 J	5900	3100 J	6200	110 J	200 J	19000	3100	310 J
Benzo(b)fluoranthene		5700	23000	930	6700	3700 J	6900	120 J	270 J	28000	4100	310 J
Benzo(g,h,i)perylene		2900	12000	690 J	4600	2400 J	3500 J	75 J	140 J	9700	1500	220 J
Benzo(k)fluoranthene		3800	21000	870	5300	2800 J	7100	87 J	190 J	21000	4700	270 J
Bis(2-ethylhexyl) phthalate												
Butyl benzyl phthalate												
Carbazole		610 J	6400 J	100 J	940 J	490 J	830 J			2300 J	270 J	46 J
Chrysene		4900	33000	1000	6700	3700 J	8800	180 J	240 J	28000	3900	380 J
Dibenz(a,h)anthracene		1000 J	5400 J	210 J	1500 J	770 J	1200 J		38 J	2200 J	470 J	55 J
Dibenzofuran		350 J	3300 J	83 J	310 J	530 J	980 J			750 J	93 J	
Di-n-butyl phthalate											91 J	
Fluoranthene		7400	47000	1300	8400	4500	17000	84 J	280 J	34000	5600	460 J
Fluorene		540 J	5500 J	75 J	530 J	720 J	1700 J			1000 J	78 J	
Indeno(1,2,3-cd)pyrene		2700	12000	580 J	4100	2100 J	3400 J	57 J	110 J	13000	1500	230 J
Naphthalene		210 J	2600 J	44 J	160 J	350 J		36 J		710 J	130 J	
Phenanthrene		5700	52000	1400	6600	7200	17000	110 J	310 J	18000	1600	450 J
Pyrene		11000	61000	2300	12000	9100	20000	180 J	510 J	50000	4100	800 J
TOTAL SVOCs	500,000	57,870	350,260	11,149	72,130	47,540	107,180	1,175	2,564	251,860	34,779	3,949

(SAMPLED 9/25/12 DURING RI)

SAMPLE ID/	PETLS	TS#13	TS#13	TS#13	TS#14	TS#14	TS#14	TS#16	TS#16	TS#17	TS#17	TS#17
LOCATION	or CSCOs		L North Cente	r				West	End			
METALS (mg/Kg)	•											
DEPTH INTERVAL (ft)		0	0-2	2 - 8	0	0-2	4 - 8	3 - 4	5 - 6	0	0 - 2	6 - 7
Percent Solids (%)		66.1	72.8	73.9	70.2	79.4	87.1	91.6	72.4	69.3	80.2	78.8
Aluminum		8240	4060	7110	10600	4080	5730	5250	7600	3580	2760	5570
Antimony		0.72	11.9	2	1.3	7.4	0.68	4.5	0.74	5.2	2.2	1.3
Arsenic	71.0	23.7	167	274	12.1	16.1	15.2	18.3	22.4	38.5	21.3	15.7
Barium	400	286	871	931	277	242	316	307	924	256	219	269
Beryllium	590	0.79	0.44	1.8	0.82	0.43	0.6	0.81	0.88	0.53	0.72	0.72
Cadmium	9.3	1.9	3.7	7.2	1.7	1.2	0.91	1.5	0.9	6.3	1.7	0.69
Calcium		27500	31700	72900	73100	26400	21100	10500	13600	31900	5220	3710
Chromium	1,500	23.5	42.9	15.9	140	15	27.6	8.8	21.2	52	21.3	23.9
Cobalt		7.8	10	7.7	5.7	4.1	5.6	5.2	8.5	6.8	4.1	5.2
Copper	270	132	225	117	111	251	136	173	117	166	71.8	113
Iron		29600	136000	26300	28900	16800	21000	9670	31600	39500	24500	17300
Lead	5,000	1120	1600	706	821	1120	1260	410	909	506	209	525
Magnesium		7230	3280	2130	6760	4330	3750	1750	3760	2740	515	857
Manganese	10,000	503	810	1220	4710	344	414	154	377	439	113	393
Nickel	310	24.8	38.8	38.8	19.7	13.9	13.9	13.1	28.2	48.9	16.3	14.2
Potassium		1630	594	1060	1890	679	935	498	912	666	894	702
Selenium	1,500	2	3.6	3.1	4.3	1.6	1.3	2.6	2.9	2.4	2	1.4
Silver	1,500	0.45			0.41	0.35	0.33		0.55	0.4		0.31
Sodium		167	356	1020	173	138	195	350	316	119	99.6	266
Thallium				0.86	0.8						0.94	
Vanadium		23	20.6	38.7	78.6	12.4	20.4	22.1	38.3	19.1	15.6	29.7
Zinc	10,000	740	1280	2870	559	617	610	877	947	1020	301	405
Mercury	5.7	0.91	5.8	0.46	0.46	1.1	1.4	0.12	0.45	0.78	0.16	0.12
Total Cyanide (mg/Kg)	27	1	1.8	1.1	0.9	NA	NA	NA	NA	3.0	1.6	NA

Note: 1. "ND" = Not Detected; "NA" = Not Analyzed; Sample interval based on observed soil layers

^{2.} Only detected organic compounds are listed; All metals analyzed are listed; Blank cells indicate non-detect

^{3.} CSCOs are listed in italics; PETLs are listed in bold; Compounds exceeding CSCOs or PETLs are shown in bold numbers

^{4.} Table of sample coordinates is in this appendix, and location figure is in this report

^{5.} CSCO = Commercial Soil Cleanup Objective; PETL = Proposed Excavation Threshold Limit

132 DINGENS STREET - BCP REMEDIATION REMAINING CONTAMINATION BELOW PETLs AND CSCOs RI GEOPROBE SOIL BORING SAMPLES

SAMPLE ID/	PETL or	GS#18	GS#18D	GS#22	GS#23	GS#24	GS#25	GS#26	GS#27	GS#28	GS#29	GS#31
LOCATION	CSCOs				north	south		centra	l area		eastern area	central area
VOLATILE ORGANICS (ug/Kg)											
DEPTH INTERVAL (ft)		7	7	7	10	7	10	5	6	9	8	7
Percent Solids (%)		78.1	78.4	73.3	37	63.1	84.3	93.2	62.9	77.1	57.3	79.2
2-Hexanone											4.8 JB	
Acetone	100,000			15 J		410	76	12 J	250	26 J	17 J	110
Benzene	4,800											
Carbon disulfide								4.4 J				
Cyclohexane								1.2 J				
Ethylbenzene	41,000											
Isopropylbenzene	100,000											
2-Butanone (MEK)	100,000					88	15 J		44	4.2 J		14 J
Toluene	100,000							1.2 JB				
Methylcyclohexane												
Methylene Chloride	100,000											
Tetrachloroethene	3,500											
Trichloroethene	21,000											
Total Xylenes	100,000											
TOTAL VOCs		ND	ND	15	ND	498	91	19	294	30	22	124
PESTICIDES (ug/Kg)												
DEPTH INTERVAL (ft)		0 - 5	0 - 5	2 - 6	4 - 8	1 - 5	1 - 5	1 - 5	1 - 5	1 - 5	1 - 5	1 - 5
Percent Solids (%)		93.2	91	82.8	78.6	81	82.5	88.7	83	88.5	88.3	85.1
4,4'-DDE	62,000							21 J	9.8 J		8.9 J	
4,4'-DDT	47,000		36 J	8.2 J	11 J	52 J						
Dieldrin	1,400											
Endosulfan II	200,000											
Endrin	89,000											
Methoxychlor			120									
TOTAL PEST		ND	156	8	11	52	ND	21	10	ND	9	ND
PCBs (ug/Kg)	•									•		
DEPTH INTERVAL (ft)		0 - 5	0 - 5	2 - 6	4 - 8	1 - 5	1 - 5	1 - 5	1 - 5	1 - 5	1 - 5	1 - 5
Percent Solids (%)		93.2	91	82.8	78.6	81	82.5	88.7	83	88.5	88.3	85.1
Aroclor 1248		190 J	230 J									
Aroclor 1254	1	450	490									
Aroclor 1260	1	77 J	140 J					190 J		140 J		
TOTAL PCBs	1,000	717	860	ND	ND	ND	ND	190	ND	140	ND	ND

132 DINGENS STREET - BCP REMEDIATION REMAINING CONTAMINATION BELOW PETLs AND CSCOs RI GEOPROBE SOIL BORING SAMPLES

SAMPLE ID/	PETL or	GS#18	GS#18D	GS#22	GS#23	GS#24	GS#25	GS#26	GS#27	GS#28	GS#29	GS#31
LOCATION	CSCOs				north	south		central	area		eastern area	central area
SEMIVOLATILE ORGANIC	S (ug/Kg)											
DEPTH INTERVAL (ft)		0 - 5	0 - 5	2 - 6	4 - 8	1 - 5	1 - 5	1 - 5	1 - 5	1 - 5	1 - 5	1 - 5
Percent Solids (%)		93.2	91	82.8	78.6	81	82.5	88.7	83	88.5	88.3	85.1
Biphenyl												
2-Methylnaphthalene												
3 & 4-Methylphenol												
Acenaphthene			200 J	61 J	220 J		44 J				590 J	
Acenaphthylene			480 J	180 J								
Acetophenone												
Anthracene		850 J	1000 J	470 J	530 J		180 J		170 J		490 J	130 J
Benzaldehyde												
Benzo(a)anthracene		6200	6900	2500	1300 J	1000 J	580 J		930 J		1000 J	720 J
Benzo(a)pyrene		5800	6500	2400	1300 J	1000 J	600 J		860 J	230 J	890 J	730 J
Benzo(b)fluoranthene		9800	11000	3400	1800 J	1400 J	850 J	86 J	1000 J	310 J	1200 J	970 J
Benzo(g,h,i)perylene		1800 J	2000 J	660 J			120 J		260 J		240 J	230 J
Benzo(k)fluoranthene		3700	4100	1500	740 J	740 J	350 J	46 J	450 J	170 J	710 J	450 J
Bis(2-ethylhexyl) phthalate			2400 JB									
Butyl benzyl phthalate												
Carbazole			540 J	87 J							180 J	
Chrysene		6600	7300	2300	1400 J	1100 J	570 J		800 J	230 J	860 J	630 J
Dibenz(a,h)anthracene		710 J	850 J									
Dibenzofuran				46 J							490 J	
Di-n-butyl phthalate												
Fluoranthene		12000	13000	4600	2700 J	2000 J	1300		1600 J	360 J	2700	1200 J
Fluorene				100 J							770 J	
Indeno(1,2,3-cd)pyrene		2300 J	2400 J	770 J	270 J		140 J		270 J		270 J	230 J
Naphthalene											250 J	
Phenanthrene		3700	3800	2000	2300 J	1000 J	810 J		720 J	260 J	2800	680 J
Pyrene		9100	9900	3500	2100 J	1600 J	910 J		1400 J	280 J	1800 J	910 J
TOTAL SVOCs	500,000	62,560	72,370	24,574	14,660	9,840	6,454	132	8,460	1,840	15,240	6,880

132 DINGENS STREET - BCP REMEDIATION REMAINING CONTAMINATION BELOW PETLs AND CSCOs RI GEOPROBE SOIL BORING SAMPLES

SAMPLE ID/	PETL or	GS#18	GS#18D	GS#22	GS#23	GS#24	GS#25	GS#26	GS#27	GS#28	GS#29	GS#31
LOCATION	CSCOs				north	south		centra	area		eastern area	central area
METALS (mg/Kg)												
DEPTH INTERVAL (ft)		0 - 5	0 - 5	2 - 6	4 - 8	1 - 5	1 - 5	1 - 5	1 - 5	1 - 5	1 - 5	1 - 5
Percent Solids (%)		93.2	91	82.8	78.6	81	82.5	88.7	83	88.5	88.3	85.1
Aluminum	-	2190	2710	6610	8050	9870	13600	20000	6250	4890	26300	10700
Antimony	-	1.7	3.3	3.6	2.5				2.9	111	0.78	1.7
Arsenic	71.0	43	43.1	34.8	10.8	11.4	6.7	2.3	10	27.8	2.8	9.7
Barium	400	81.7	91.7	379	265	116	163	230	357	1800	206	403
Beryllium	590	0.41	0.51	0.7	0.71	0.55	1.8	4.9	0.8	0.62	4.8	2
Cadmium	9.3	0.6	1.1	0.77	0.8	0.2	0.42	0.21	1	9.5	0.15	1
Calcium		7080	21800	30000	6640	43200	47300	199000	15900	33800	187000	37300
Chromium	1,500	11.8	27.4	27.7	13.3	18.2	14.9	11.5	19.8	265	8.9	20.2
Cobalt		3.7	9.1	7.4	7	11.1	7.3	0.62	5.5	6.2	1.6	6
Copper	270	64.1	143	90.3	284	32.1	25.8	18.1	170	110	7.1	214
Iron		29600	40300	31300	10100	23200	18500	3470	17100	73700	4480	19400
Lead	5,000	149	165	2870	1380	82	229	93.3	433	2370	25.3	1320
Magnesium	-	858	1270	2480	946	15400	17100	29500	2450	4950	35300	10300
Manganese	10,000	135	231	357	382	412	1100	1690	344	805	2630	650
Nickel	310	12.2	20.4	19.5	18.5	25.4	17.1	3.1	13.5	40.6	5.1	18.2
Potassium	1	487	497	625	764	2770	1800	1460	532	458	1970	1070
Selenium	1,500	1.1	1.1	2.8	0.81	1.2	1.6	3	2.2	1.3	3.9	2.9
Silver	1,500			0.64					0.69			
Sodium		51.6	65.5	236	265	244	735	661	340	208	649	433
Thallium							0.41	1.1		0.9	3.2	0.46
Vanadium		12.4	15.4	18.4	20.8	21.6	18.9	5	23.1	18.4	6.5	22.2
Zinc	10,000	210	498	457	473	67	144	44.4	1320	14400	45.6	605
Mercury	5.7	0.087	0.057	0.28	2	0.064	0.045	0.02	1.1	3.6	0.063	1.3
Total Cyanide (mg/Kg)	27	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

132 DINGENS STREET - BCP REMEDIATION REMAINING CONTAMINATION BELOW PETLs AND CSCOs RI GEOPROBE SOIL BORING SAMPLES

SAMPLE ID/	PETL or	GS#32	GS#32	GS#33	GS#34	GS#35	GS#36	GS#37	GS#38	GS#39	GS#39	GS#40	GS#40
LOCATION	CSCOs	north	east	northe	rn area	Concre	ete Slab	Central			Eastern En	d	
VOLATILE ORGANICS (ι	ıg/Kg)												
DEPTH INTERVAL (ft)		11		8	8	5							
Percent Solids (%)		67.6		76.5	74.7	88.6							
2-Hexanone													
Acetone	100,000	150		39									
Benzene	4,800			4.5 J									
Carbon disulfide													
Cyclohexane													
Ethylbenzene	41,000		NA	2.5 J									
Isopropylbenzene	100,000						NA	NA	NA	NA	NA	NA	NA
2-Butanone (MEK)	100,000	20 J		4.6 J			INA	INA	INA	INA	INA	INA	INA
Toluene	100,000			6.4									
Methylcyclohexane													
Methylene Chloride	100,000												
Tetrachloroethene	3,500												
Trichloroethene	21,000						1						
Total Xylenes	100,000			13			1						
TOTAL VOCs		170		70	ND	ND							
PESTICIDES (ug/Kg)	-												
DEPTH INTERVAL (ft)		1 - 5		1 - 5	1 - 5	6-8	9-10	4-6	4-6	0-2	4-6	0-2	4-6
Percent Solids (%)		91.3		87.2	82.5	83.8	72.7	66.6	90.1	83.2	78.4	82	69
4,4'-DDE	62,000	21 J		26 J	9.3 J								
4,4'-DDT	47,000			34 J						39 J		80 J	
Dieldrin	1,400												
Endosulfan II	200,000		NA	34 J									
Endrin	89,000			25 J									
Methoxychlor										69 J			
TOTAL PEST		21	NA	119	9	ND	ND	ND	ND	108	ND	80	ND
PCBs (ug/Kg)	•				•		•				•	•	
DEPTH INTERVAL (ft)		1 - 5		1 - 5	1 - 5	6-8	9-10	4-6	4-6	0-2	4-6	0-2	4-6
Percent Solids (%)	1	91.3		87.2	82.5	83.8	72.7	66.6	90.1	83.1	78.4	82	69
Aroclor 1248													
Aroclor 1254	- -		NA										
Aroclor 1260	1									120 J		310	
TOTAL PCBs	1,000	ND	NA	ND	ND	ND	ND	ND	ND	120	ND	310	ND

132 DINGENS STREET - BCP REMEDIATION REMAINING CONTAMINATION BELOW PETLs AND CSCOs RI GEOPROBE SOIL BORING SAMPLES

SAMPLE ID/	PETL or	GS#32	GS#32	GS#33	GS#34	GS#35	GS#36	GS#37	GS#38	GS#39	GS#39	GS#40	GS#40
LOCATION	CSCOs	northe		northe			ete Slab	Central	33/100		Eastern En		001110
SEMIVOLATILE ORGANIC	CS (ug/Kg)												
DEPTH INTERVAL (ft)		1 - 5	12	1 - 5	1 - 5	6-8	9-10	4-6	4-6	0-2	<i>4</i> -6	0-2	4-6
Percent Solids (%)		91.3	66.7	87.2	82.5	83.8	72.7	66.6	90.1	83.2	78.4	82	69
Biphenyl		630 J				26 J			190 J				
2-Methylnaphthalene		2000		340 J	110 J	100 J	46 J	44 J	630 J	37 J	29 J	94 J	
3 & 4-Methylphenol			270 J					160 J					
Acenaphthene		3500	100 J	980 J	96 J	160 J		40 J	2500 J	84 J	26 J	190 J	24 J
Acenaphthylene				170 J						36 J		470 J	
Acetophenone													
Anthracene		12000	240 J	3200	410 J	400 J	59 J	65 J	4000	280 J	120 J	1300 J	180 J
Benzaldehyde							120 J	120 J			27 J		
Benzo(a)anthracene		17000	680 J	8400	1800 J	1000	260 J	250 J	5400	1300	530	5200	670
Benzo(a)pyrene		17000	740 J	8000	2400	930	330 J	240 J	4900	1400	470	4800	590
Benzo(b)fluoranthene		24000	980 J	12000	3300	950	360 J	240 J	4800	1400	530	5600	720
Benzo(g,h,i)perylene		5200	230 J	2300	1200 J	450	270 J	220 J	2400 J	560	220 J	1900 J	190 J
Benzo(k)fluoranthene		12000	490 J	4400	1700 J	1100	410 J	330 J	4800	1500	520	5000	610
Bis(2-ethylhexyl) phthalate						87 J	120 J	280 J		110 J	170 J	210 J	150 J
Butyl benzyl phthalate						27 J		57 J					40 J
Carbazole		8000	150 J	1200 J	190 J	140 J	47 J		1800 J	140 J	45 J	370 J	27 J
Chrysene		15000	690 J	7500	2100	1000	360 J	330 J	5600	1600	620	5400	680
Dibenz(a,h)anthracene		1600 J	99 J	790 J	400 J	160 J				140 J		810 J	
Dibenzofuran		4900		630 J		130 J	31 J	28 J	1500 J	59 J	23 J	190 J	
Di-n-butyl phthalate										180 J		120 J	
Fluoranthene		34000	1200 J	17000	2900	1700	480	430 J	15000	2300	820	11000	1100
Fluorene		7100		1000 J		220 J	26 J	43 J	2100 J	85 J	25 J	410 J	44 J
Indeno(1,2,3-cd)pyrene		5100	220 J	2100	1100 J	430	190 J	170 J	2100 J	610	240 J	2100	260 J
Naphthalene		5100	270 J	450 J		160 J	59 J	68 J	1500 J	51 J	33 J	140 J	
Phenanthrene		36000	1000 J	11000	1600 J	1700	430 J	300 J	18000	1400	510	5400	710
Pyrene		21000	890 J	13000	2200	3000	910	720	14000	3000	1300	9500	1400
TOTAL SVOCs	500,000	231,130	8,249	94,460	21,506	13,870	4,508	4,135	91,220	16,272	6,258	60,204	7,395

132 DINGENS STREET - BCP REMEDIATION REMAINING CONTAMINATION BELOW PETLs AND CSCOs RI GEOPROBE SOIL BORING SAMPLES

(SAMPLED 7/23/12, 7/24/12 9/21/12 DURING RI)

SAMPLE ID/	PETL or	GS#32	GS#32	GS#33	GS#34	GS#35	GS#36	GS#37	GS#38	GS#39	GS#39	GS#40	GS#40
LOCATION	CSCOs	north	east	northe	n area	Concre	ete Slab	Central			Eastern En	d	
METALS (mg/Kg)													
DEPTH INTERVAL (ft)		1 - 5	12	1 - 5	1 - 5	6-8	9-10	4-6	4-6	0-2	4-6	0-2	4-6
Percent Solids (%)		91.3	66.7	87.2	82.5	83.8	72.7	66.6	90.1	83.2	78.4	82	69
Aluminum		2140	7840	8570	5070	10900	15200	8740	3260	7210	3890	7270	6860
Antimony		0.65	11.8	7	6.5				4.3	2.4		7	
Arsenic	71.0	2.7	19	21.1	37.2	9	9.7	23.6	10.8	22	11.9	26.1	12.5
Barium	400	33.7	563	612	717	150	187	475	218	669	2120	1150	217
Beryllium	590	0.15	0.9	0.58	0.63	1.2	1.3	1.6	0.33	1.1	0.47	0.86	0.68
Cadmium	9.3	0.22	3.1	3.5	1.2	0.78	0.99	2.5	3	3.4	2	8.4	0.49
Calcium		2020	8130	33800	12600	49300	29300	73200	9320	14500	6390	23600	89800
Chromium	1,500	21.9	48.2	32.5	32.1	23.5	34.6	38.6	15.7	27	12.3	28.7	11
Cobalt		1.1	9.6	6.1	5.5	8	10.1	7.8	2.5	6.1	3.7	6.9	7.2
Copper	270	21.5	1200	211	147	49.1	72.2	177	112	197	94.7	171	43
Iron		10000	38300	32600	35000	19400	33400	74000	15600	20100	21600	30900	21700
Lead	5,000	73.6	3150	2640	1040	250	392	3320	2630	2240	941	2880	258
Magnesium		537	960	4470	1590	11400	9350	10700	1770	2680	687	5270	31500
Manganese	10,000	1000	273	376	407	664	664	1010	231	506	160	536	404
Nickel	310	5.2	743	18.7	19.5	22.7	22	29.3	10	28.1	11.1	24.5	17.3
Potassium		187	640	795	565	1690	1710	916	348	892	496	980	1080
Selenium	1,500		1	1.9	3	1.4	2	4.6	1.4	2.5	1.8	2.1	0.93
Silver	1,500		1.6	0.52				0.9	0.3	5	0.29	0.64	
Sodium		51.9	728	557	178	345	305	797	90.1	266	313	183	1720
Thallium		1.7		0.39									
Vanadium		5.5	27.9	16.8	21.9	21.2	31	23.7	10.1	26.1	14.8	23.6	24.5
Zinc	10,000	50.5	2630	1770	4400	194	361	1270	995	975	1410	13100	278
Mercury	5.7	0.3	0.37	0.44	0.54	0.5	0.26	3.3	0.3	0.71	0.32	0.6	0.25
Total Cyanide (mg/Kg)	27	ND	ND	ND	ND	ND	ND	1.7	0.6	ND	0.84	1.5	0.95

Note: 1. "ND" = Not Detected; "NA" = Not Analyzed; Sample interval based on observed soil layers

- 2. Only detected organic compounds are listed; All metals analyzed are listed; Blank cells indicate non-detect
- 3. CSCOs are listed in italics; PETLs are listed in bold; Compounds exceeding CSCOs or PETLs are shown in bold numbers
- 4. Table of sample coordinates is in this appendix, and location figure is in this report
- 5. CSCO = Commercial Soil Cleanup Objective; PETL = Proposed Excavation Threshold Limit

TABLE G-2C

132 DINGENS STREET - BCP RI/RA REMAINING CONTAMINATION BELOW PETLs AND CSCOs MONITORING WELL SOIL BORING SAMPLES (SAMPLED 7/16/12 - 7/19/12 during RI)

SAMPLE ID/	PETL or	MW-1	MW-3	MW-4	MW-5	MW-5	MW-5	MW-6	MW-8
LOCATION	CSCOs	west section	middle section	south section	middle section	middle section	middle section	east section	south section
VOLATILE ORGANICS (VO	Cs, ug/Kg)				1				
DEPTH INTERVAL (ft)		7.0	9.0	3.0	5.0	12.0	15.0	11.0	3.0
Percent Solids (%)		85.3	79.3	86.6	83.8	76.7	76.4	69.7	85.7
Acetone	500,000		20 J	78.0	60.0	12 J	15 J		
Benzene	45,000								1.0 J
Cyclohexane					140.0				
Ethylbenzene	390,000								1.2 J
Isopropylbenzene	500,000				78.0				
2 - Butanone (MEK)	500,000		3.6 J	15 J	19 J				
Methylcyclohexane					310.0				
Methylene chloride	500,000								
Tetrachloroethene	150,000	0.86 J			1.6 J				
Toluene	500,000				3.5 J				2.6 J
Total Xylenes	500,000								3.7 J
TOTAL VOCs		0.9	23.6	93.0	612.1	12.0	15.0	ND	8.5
PESTICIDES (ug/Kg)	•		•	•					
DEPTH INTERVAL (ft)		0 - 8	0 - 8	0 - 6	0 - 10			0 - 10	0 - 6
Percent Solids (%)		88.4	81.4	88.4	82.7	NA	NA	82.6	92.0
4,4'-DDT	47,000	20 J	-					11 J	
PCBs (ug/Kg)									
DEPTH INTERVAL (ft)		0 - 8	0 - 8	0-6	0 - 10			0 - 10	0-6
Percent Solids (%)		88.4	81.4	88.4	82.7	NA	NA	82.6	92.0
Aroclor 1248	1,000							88 J	
SEMIVOLATILE ORGANIC	· ·	3)		1	I	1	J		I
DEPTH INTERVAL (ft)	I	0-8	0 - 8	0-6	0 - 10			0 - 10	0-6
Percent Solids (%)		88	81	88	83			83	92
Biphenyl									-
2-Methylnaphthalene	1	85 J			1500 J			240 J	
Acenaphthene					220 J			950 J	
Acenaphthylene		230 J			62 J			380 J	
Anthracene		310 J	390 J		180 J			3,700	330 J
Benzo(a)anthracene		1,900	1400 J	28 J	570 J			8,400	1700 J
Benzo(a)pyrene		1,700	1500 J	24 J	580 J			7,200	1600 J
Benzo(b)fluoranthene		2,700	1900 J	36 J	720 J			9,300	2200 J
Benzo(g,h,i)perylene		880 J	1000 J	23 J	250 J			2,800	700 J
Benzo(k)fluoranthene		1,100	880 J	25 J	240 J			3,700	990 J
Bis(2-ethylhexyl) phthalate		840 J	680 J			NA	NA	-,	
Caprolactam		0.00	555 5		3,100				
Carbazole	-	130 J	200 J		120 J			970 J	
Chrysene	-	1.800	1400 J	32 J	600 J			7,300	1700 J
Dibenz(a,h)anthracene	1	300 J	440 J	15 J	99 J	1		860 J	440 J
Dibenzofuran	1	0000	4400	100	000	1		930 J	4400
Fluoranthene	†	2,900	2,800	49 J	1100 J	†		18,000	2900 J
Fluorene	1	2,300	2,000	730	270 J	1		1900 J	2300 3
Indeno(1,2,3-cd)pyrene	1	910 J	860 J	23 J	250 J	1		3,300	730 J
Naphthalene	1	3103	000 3	23 3	230 0	1		370 J	7303
Phenanthrene	1	1,100	1800 J	38 J	1000 J	1		14,000	1200 J
Pyrene	1	2,400	2,200	40 J	880 J	1		13,000	2400 J
TOTAL SVOCs	500,000	19,285	17,450	333	11,741	NA	NA	97,300	16,890

TABLE G-2C

132 DINGENS STREET - BCP RI/RA **REMAINING CONTAMINATION BELOW PETLs AND CSCOs** MONITORING WELL SOIL BORING SAMPLES

(SAMPLED 7/16/12 - 7/19/12 during RI)

SAMPLE ID/	PETL or	MW-1	MW-3	MW-4	MW-5	MW-5	MW-5	MW-6	MW-8
LOCATION	CSCOs	west section	middle section	south section	middle section	middle section	middle section	east section	south section
METALS (mg/Kg)									
DEPTH INTERVAL (ft)		0 - 8	0 - 8	0 - 6	0 - 10			0 - 10	0 - 6
Percent Solids (%)		88.4	81.4	88.4	82.7			82.6	92.0
Aluminum		2580	8690	14400	16800			7630	4540
Antimony		0.94	3.2		0.92			1.4	3.2
Arsenic	71.0	7.8	14.4	11	8.7			17	19.5
Barium	400	69.3	418	92.3	751			266	79.5
Beryllium	590	0.36	1.3	0.84	4.3			0.6	0.69
Cadmium	9.3	0.3	1.7	0.2	2.7			1.4	0.48
Calcium		6070	48900	21000	113000			31500	61500
Chromium	1,500	6.3	20.6	19.7	21.4			20.9	16.9
Cobalt		3.5	5.2	13.8	2.9			7	6.8
Copper	270	51.7	148	30.8	90.2			160	189
Iron		16900	35800	26600	18000	NA	NA	21500	17400
Lead	5,000	126	1170	18.8	1330			480	180
Magnesium	-	1160	13500	9850	27200			8230	4930
Manganese	10,000	100	742	551	1470			492	316
Nickel	310	8.8	15.4	32	11.6			23.7	16.5
Potassium		426	1060	2320	1670			1240	609
Selenium	1,500		4.1		2.8			1.2	1.4
Silver	1,500		1.1						
Sodium		156	409	216	678			170	187
Thallium			0.37	0.4	1				
Vanadium		20.4	15.7	26.3	7.4			19.5	11.6
Zinc	10,000	158	790	68.5	946			375	251
Mercury	5.7	1.6	0.8		0.65			0.44	0.26

Note: 1. "ND" = Not Detected; "NA" = Not Analyzed; Sample interval based on observed soil layers

^{2.} Only detected organic compounds are listed; All metals analyzed are listed; Blank cells indicate non-detect

^{3.} CSCOs are listed in italics; PETLs are listed in bold; Compounds exceeding CSCOs or PETLs are shown in bold numbers

^{4.} Table of sample coordinates is in this appendix, and location figure is in this report

^{5.} CSCO = Commercial Soil Cleanup Objective; PETL = Proposed Excavation Threshold Limit

TABLE G-3

132 DINGENS STREET - BCP REMEDIATION REMAINING CONTAMINATION BELOW PETLS AND CSCOS TEST PIT SOIL SAMPLES IN FRONT VEGETATED AREA

(SAMPLED 10/14/15 during RA); LAB SDG #J89112

SAMPLE ID/	PETLs	TS#18	TS#19	TS#20	TS#21
LOCATION	or CSCOs	WEST VEGET			TATED STRIP
DEPTH INTERVAL (ft)	CSCOS	0 - 2'	0 - 2'	0 - 2'	0 - 2'
Percent Solids (%)		79.0	82.6	74.8	74.7
PCBs (ug/Kg)		ND	ND	ND	ND
SEMIVOLATILE ORGANIC	26 (ua/Ka)	ND	ND	IND	IND
Acenaphthene	Jo (ug/Rg)	920 J	ND	ND	190 J
Acenaphthylene	1	280 J	ND ND	ND ND	ND
Anthracene	1	3000	700 J	ND ND	330 J
Benzo(a)anthracene	-	7700	3700	510 J	2400
	4	7000			
Benzo(a)pyrene	4		3400	840 J	2400
Benzo(b)fluoranthene	-	9400 J	4800 J	1000 J	3900
Benzo(g,h,i)perylene	_	5100 J	3000 J	750 J	2000
Benzo(k)fluoranthene	_	5000	2500	300 J	1600
Carbazole	_	1500 J	470 J	ND	340 J
Chrysene	_	8300	4100	630 J	3100
Dibenzofuran	_	830	ND	ND	ND
Fluoranthene		19000	7200	1100 J	6000
Fluorene		1200 J	290 J	ND	160 J
Indeno(1,2,3-cd)pyrene		4400 J	2500	790 J	1800 J
Phenanthrene		12000	3900	430 J	2700
Pyrene		14000	6000	850 J	4800
TOTAL SVOCs	500,000	99,630	42,560	7,200	31,720
METALS (mg/Kg)					
Aluminum		14000	13100	19800	16800
Antimony		1.8	2.6		
Arsenic	71.0	14.1	13.9	7.6	6.8
Barium	400	531	264	114	106
Beryllium	590	1.5	1.2	0.78	0.75
Cadmium	9.3	3.2	2.1	0.88	0.93
Calcium		32500	32400	5820	6730
Chromium	1,500	49.5	39.6	42.2	42.7
Cobalt		7.7	9.0	9.1	9.3
Copper	270	127	130	36.5	36.7
Iron		33500	34900	24400	23400
Lead	5,000	1840	956	86 4270	84.2
Magnesium	10,000	7610	8160		4700
Manganese Nickel	310	793 23.4	632 27.0	455 22.1	457 22.1
Potassium	310	1920	2050	2560	1860
Selenium	1,500	1.3	0.89	1.3	0.86
Silver	1,500	0.48	0.09	1.3	0.3
Sodium		382	297	134	114
Thallium	 	302	231	104	114
Vanadium		27	25.2	37.4	32.9
Zinc	10,000	794	601	179	176
Mercury	5.7	0.67	0.54	0.16	0.19

Note: 1. "ND" = Not Detected; "NA" = Not Analyzed; Sample interval based on observed soil layers

- 2. Only detected organic compounds are listed; All metals analyzed are listed; Blank cells indicate non-detect
- 3. CSCOs are listed in italics; PETLs are listed in bold; Compounds exceeding CSCOs or PETLs are shown in bold numbers
- 4. Table of sample coordinates is in this appendix, and location figure is in this report
- 5. CSCOs = Commercial Soil Cleanup Objective; PETL = Proposed Excavation Threshold Limit

TABLE G-4A

132 DINGENS STREET - BCP REMEDIATION

REMAINING METALS CONTAMINATION BELOW PETL AND CSCOs - FINAL CONFIRMATORY SOIL SAMPLES

SAMPLE ID	LOCATION	EXCAVATION WIDTH	EXCAVATION DEPTH	TOTAL LEAD (mg/Kg)	TOTAL ARSENIC (mg/Kg)	TOTAL MERCURY (mg/Kg)
F	PROPOSED EXCAV			5000	71	5.7
0014/ 04	MAY O N		ATION AT MW-2 LO	CATION	20.0	0.00
CSW-24	MW-2-N	12'W x 5.5'D	1' - 4'		69.3	0.96
CSW-25	MW-2-S	12'W x 5.5'D	1' - 4'	NIA	28.6	1.8
CSW-26	MW-2-EN	22'W x 5.5'D	1' - 4'	NA	52.1	3.8
CSW-27	MW-2-ES		1' - 4'		32.5	1.6
CSW-28	MW-2-W	22'W x 5.5'D	1' - 4'	1000	40.7	1.9
CSB-5-4	MW-2-B	12'x22'W@9.5'D	9.5'	1060	NA 0.5	NA
CSB-5-5	MW-2-B	12'x22'W@10.5'D	10.5'	NA	6.7	0.022
0014/4	104/ 711		ATION AT MW-7 LO			П
CSW-1	MW-7-N	20'W x 8'D	2' - 6'	2830		
CSW-2	MW-7-S	20'W x 8'D	2' - 6'	166		
CSW-3	MW-7-EN	16'W x 8'D	2' - 6'	2140	NA	NA
CSW-4	MW-7-ES		2' - 6'	1710		
CSW-5	MW-7-W	16'W x 8'D	2' - 6'	611		
CSB-1	MW-7-B	20'x16'W@8'D	8'	53.6		
0014/ 00	00.00.11		ATION AT GS-20 LC			1
CSW-32	GS-20-N	22'W x 6.5'D	2' - 5.5'	2070	_	
CSW-33	GS-20-S	22'W x 6.5'D	2' - 5.5'	1100		
CSW-34	GS-20-E	22'W x 6.5'D	2' - 5.5'	1690	NA	NA
CSW-35	GS-20-W	22'W x 6.5'D	2' - 5.5'	2660		
CSB-8	GS-20-B	22'x22'W@6.5'D	6.5'	865		
			ATION AT GS-21 LC	CATION	1	
CSW-29	GS-21-N	20'W x 6.6'D	2' - 5.5'			0.54
CSW-30	GS-21-S	22'W x 6.5'D	2' - 5.5'	NA	NA	0.67
CSW-31	GS-21-W	22'W x 6.5'D	2' - 5.5'			1.6
CSB-7	GS-21-B	22'x22'W@6.5'D	6.5'	0.47/0.1/		2.2
CSW-11	CC 20 N		ATION AT GS-30 LC			1
CSW-11-2	GS-30-N	19'W x 4.3'D	1' - 4' 2' - 6'	2370		
	GS-30-S	21'W x 6.3'D		1680	H NA	NA
CSW-13	GS-30-E	19'W x 4.3'D	1' - 4' 1' - 4'	1410	INA	INA
CSW-14-2	GS-30-W	21'W x 4.3'D	7.3'	2520 34.6		
CSB-3-3	GS-30-B	21'x21'W@7.3'D	ATION AT TS-4 LO			
CSW-15	TS-4-N	19'W x 4'D	0' - 4'	1950	NA	NA
CSW-16	TS-4-N	19'W x 4'D	0' - 4'	4610	- INA	INA
CSW-17	TS-4-E	19'W x 4'D	0' - 4'	2870		
CSW-17	TS-4-W	19'W x 5.5'D	2' - 5'	3320	NA	NA
CSW-16-3 CSB-4-2			5.5'	93.4	INA	INA
USB-4-2	TS-4-B	21'x19'W@5.5'D	ATION AT TS-9 LO			
CSW-6	TS-9-N	17'W x 5.2'D	1' - 4'	1610		
CSW-7	TS-9-N TS-9-S	17 W x 5.2 D	1 - 4	3220	+	
CSW-8	TS-9-5N	17 VV X O.Z D	1 - 4	860	-	
		28'W x 5.2'D			NA	NA
CSW-9	TS-9-ES	220114 5 015	1' - 4'	1960	=	
CSW-10	TS-9-W	228'W x 5.2'D	1' - 4'	2160	4	
CSB-2	TS-9-B	20'x16'W@8'D	8'	4090		
CS/M 40	TQ 10 NIM/	11'W x 4'D	ATION AT TS-13 LO 1' - 4'	CATION	170	0.51
CSW-19 CSW-20-2	TS-13-NW TS-13-NE				47.8	0.51
CSW-20-2 CSW-21-5		13'W x 7'D	2' - 6' 2' - 6'		59.7 53.8	2.5
	TS-13-S	31'W x 7'D 21'W x 4'D	2 - 6	NA		1.6
CSW-22	TS-13-E				45.4	2.9
CSW-23-3 CSB-6-2	TS-13-W	15'W x 7'D	2' - 6' 7'		3.7	2.4 ND
USD-0-2	TS-13-B	26'x15'W@7'D	ATION AT TS-15 LO	CATION	3.1	עוו
CSW-44	TS-15-NW*		0' - 2'	5200		
CSW-45	TS-15-NE	40'W x 2'D	0' - 2'	1080	-	
CSW-46	TS-15-NE	40'W x 2'D	0' - 2'	1750	-	
		20'W x 2'D	0' - 2'		NA	NA
CSW-47	TS-15-E			989	_	
CSW-48	TS-15-W	20'W x 2'D	0' - 2' 2'	1800 3040	=	
CSB-10	TS-15-B	20'x40'W@2'D		all and CSBs are botto		

Note: 1. ANALYSIS: ND=Not Detected; NA=Not Analyzed; SAMPLES: CSWs are wall and CSBs are bottom samples
2. Each sample is a composite of 7 to 10 grab samples; Dimensions are at time of sampling
3. LOCATION: N=North; S=South; E=East; W=West; M=Middle; B=Bottom; W=Horizontal Width; D=Vertical Depth; *=site boundary
4. Confirmatory wall soil samples were taken across excavation width/depth; bottom samples were taken across excavation floor

TABLE G-4B 132 DINGENS STREET - BCP SITE REMEDIATION REMAINING SVOC CONTAMINATION BELOW PETL and CSCOs - FINAL CONFIRMATORY SOIL

CAMPLE ID		CSW-36	CSW-37	CSW-38	CSW-39	CSW-40	CSW-41	CSW-42	CSW-43	CSB-9	CSW-44	CSW-45	CSW-46	CSW-47	CSW-48	CSB-9
SAMPLE ID/ LOCATION	PETL			EXC	AVATION	I AT TS-5	LOCATIO	N				EXCAVA	TION AT	TS-15 LC	CATION	
LOCATION		TS-	5-N		TS-5-S		TS-5-E	TS-5-W	TS-5-S	TS-5-B	TS-1	5-N	TS-5-S	TS-15-E	TS-15-W	TS-15-B
DATE SAMPLED					8	3/27/2015			•	L.			9/14/	2015		
SAMPLE DEPTH		2' - 6'	2' - 6'	2' - 6'	2' - 6'	2' - 6'	2' - 6'	2' - 6'	2' - 6'	6.5'	0' - 2'	0' - 2'	0' - 2'	0' - 2'	0' - 2'	2'
SEMIVOLATILE ORGANIC	COMPOL	JNDS (SVC	Cs, μg/Kg)			ı									
Percent Solids (%)		73.8	77.1	74.2	80.6	80.7	80.1	74	75.3	68.7	83.8	86.7	78.5	77.5	76.4	74.3
Biphenyl		430 J														
2-Methylnaphthalene		1400 J			230 J		920 J									
3 & 4-Methylphenol																
Acenaphthene		4400	450 J	240 J	280 J	760 J	2700 J					740 J	690 J		2000 J	960 J
Acenaphthylene		1700 J	200 J	280 J	230 J	1000 J	3800 J		690 J						1300 J	
Acetophenone																
Anthracene		12000	1400	830 J	1300	4000	17000		1700 J		2200 J	1800 J	1800 J	1400 J	5100	2400 J
Benzaldehyde																
Benzo(a)anthracene		23000	3400	3000	2800	8900	40000	2500 J	10000		9800	5800	4100 J	4600	19000	5800
Benzo(a)pyrene		18000	3800	2700	2500	8000	31000	2300 J	9000		7600	4900	3300 J	3500 J	18000	4900
Benzo(b)fluoranthene		23000	4500	3500	3000	9300	43000	3100 J	12000		11000	5800	3700 J	4700	23000	6700
Benzo(g,h,i)perylene		9400	2000	1400	1000	4600	10000	1500 J	3400 J		6000 J	4000	2800 J	2800 J	9400	4500 J
Benzo(k)fluoranthene		8200	2400	1800	1800	3600	20000	1400 J	6500		4100	3200 J	2000 J	1800 J	10000	2300 J
Bis(2-ethylhexyl) phthalate																
Butyl benzyl phthalate																
Carbazole		5500	680 J	430 J	630 J	960 J	4900				860 J	820 J	780 J	670 J	3400 J	1300 J
Chrysene		20000	3500	3000	2900	9100	38000	2600 J	10000		10000	5900	4100 J	4100 J	20000	5900
Dibenz(a,h)anthracene															3100 J	
Dibenzofuran		3800	410 J	160 J	350 J	930 J	4400								1200 J	630 J
Di-n-butyl phthalate																
Fluoranthene		51000	6500	6300	6400	24000	110000	5400	17000	830 J	20000	12000	11000	9300	38000	13000
Fluorene		6100 J	530 J	260 J	450 J	1600 J	7500 J					870 J	1000 J	640 J	2200 J	1100 J
Indeno(1,2,3-cd)pyrene		8800	1800	1400	1100	4100	11000	1200 J	3700 J		5200	3400 J	2200 J	2200 J	8100	3600 J
Naphthalene		2400			320 J										1100 J	
Phenanthrene		49000	5800	3500	5100	20000	77000	3100 J	5900		11000	7600	8500	6200	25000	12000
Pyrene		36000	4800	4200	3700	17000	57000	3400 J	11000		17000 J	9600 J	8100 J	6800 J	31000 J	10000 J
TOTAL SVOCs (μg/Kg)	500,000	284,130	42,170	33,000	34,090	117,850	478,220	26,500	90,890	830	104,760	66,430	54,070	48,710	220,900	75,090

Note: 1. ANALYSIS: ND=Not Detected; NA=Not Analyzed; J=Below MDL; SAMPLES: CSWs are wall and CSBs are bottom samples

^{2.} Each sample is a composite of 7 to 10 grab samples; See Figures in Report for sample locations

^{3.} Only detected semivolatile compounds are listed; all other SVOCs are non-detect; PETL = Proposed Excavation Threshold Limit

^{4.} LOCATION: N=North; S=South; E=East; W=West; M=Middle; B=Bottom

TABLE G-4C

132 DINGENS STREET - BCP REMEDIATION

REMAINING PCB CONTAMINATION BELOW PETL AND CSCOs - FINAL CONFIRMATORY SOIL

SAMPLE ID	LOCATION	SAMPLE DEPTH	PCB-1242 (mg/Kg)	PCB-1248 (mg/Kg)	PCB-1254 (mg/Kg)	PCB-1260 (mg/Kg)	TOTAL PCBs (mg/Kg)	REMARKS
		PROPOS	ED EXCAVA	TION THRES	SHOLD LIMI	T (PETL) >>	1	
		EXCAVATI	ON AT TS-1	5 LOCATION	l (sampled 9	9/14/16)		
CSW-44	TS-15-N	0' - 2'	ND	1.8	ND	ND	1.8	OFF-SITE
CSW-45	10-15-11	0' - 2'	ND	1.1	0.63	0.43	2.16	OTT-OTTE
CSW-46	TS-15-S	0' - 2'	ND	0.065 J	ND	ND	0.065	
CSW-47	TS-15-E	0' - 2'	ND	0.24	0.23	ND	0.47	
CSW-48	TS-15-W	0' - 2'	ND	0.46	ND	ND	0.46	
CSW-60	TS-15-NM	1'	ND	ND	ND	ND	0	OFF-SITE
CSB-10	TS-15-B	2'	ND	0.29 J	ND	ND	0.29	
		TION AREA	AT GS-17 LO	DCATION (sa	mpled 9/14,	10/14 & 10/2	26/16)	
CSW-54	GS-17-N	0' - 2'	ND	4.5	4.2	1.5	10.2	
CSW-55-2	GS-17-WN	0' - 3'	ND	ND	2.2	0.97	3.17	AT
CSW-56	GS-17-S	0' - 2'	ND	0.62	0.67	0.38	1.67	BOUNDARY
CSW-57		0' - 2'	ND	0.65	0.96	0.48	2.09	
CSW-59	GS-17-W	0' - 2'	0.68	ND	1.8	0.76	3.24	
CSW-61	GS-17-MN	0' - 2'	ND	ND	1.9	0.78	2.68	
CSW-62	GS-17-MS	0' - 2'	ND	ND	ND	ND	0	
CSW-63	GS-17-MN	0' - 2'	18	ND	5.1	ND	23.1	AT
CSW-64	GS-17-MS	0' - 2'	ND	0.78	1.2	0.61	2.59	BOUNDARY
CSW-65	GS-17-EN	0' - 2'	ND	ND	ND	ND	0	AT
CSW-66	GS-17-ES	0' - 2'	ND	0.55 J	0.94 J	0.55 J	2.04	BOUNDARY
CSW-67	GS-17-E	0' - 2'	ND	ND	0.14 J	ND	0.14	
CSB-12-2	GS-17-EB	3'	ND	ND	ND	ND	0	
CSB-13-2	GS-17-MW	3'	ND	ND	ND	ND	0	
CSB-14-2	GS-17-ME	3'	ND	ND	ND	0.34	0.34	
CSB-15-3	GS-17-EB	3'	ND	ND	ND	ND	0	
		ATION AT G			T	1	r -	
CSW-49	GS-19-N	0' - 2'	ND	0.13 J	0.16 J	ND	0.29	OFF-SITE
CSW-50-2	GS-19-NE	0' - 2'	ND	1.3	ND	ND	1.3	OFF-SITE
CSW-51-2A	GS-19-S	0' - 2'	ND	ND	ND	ND	0	
CSW-51-4B	GS-19-SW	0' - 2'	ND	0.29	0.16 J	ND	0.45	
CSW-53-2	GS-19-W	0' - 2'	ND	ND	ND	ND	0	
CSW-68	GS-19-NE	0' - 2'	ND	1.4	0.64	ND	2.04	OFF-SITE
CSW-69	GS-19-E	0' - 2'	ND	ND	ND	ND	0	
CSW-70-3	GS-19-SE	0' - 2'	ND	0.78	0.64	0.17 J	1.59	SEE NOTE 3
CSB-11	GS-19-B	2'	ND	0.68	ND	ND	0.68	
CSB-17	GS-19-EB	2'	ND	0.3	ND	ND	0.30	1
	· v			9 AND TS-1				1
CSB-16	GS-19/TS-15	0' - 1'	ND	ND	0.9	0.19	1.09	

Note: 1. ANALYSIS: ND=Not Detected; NA=Not Analyzed; J= Below MDL; SAMPLES: CSWs are wall and CSBs are bottom samples

^{2.} Each sample is a composite of 7 to 10 grab samples; See Figures in Report for sample locations ${\bf r}$

^{3.} PETL exceedances shaded - all were off-site except GS-19 where excavation was terminated 19 based on this single on-site exceedance

^{4.} LOCATION: N=North; S=South; E=East; W=West; M=Middle; B=Bottom

TABLE G-5

132 DINGENS STREET - BCP RI/RA SURVEY COORDINATES FOR SAMPLE LOCATIONS

A. DECIMAL DEGREE COORDINATES (LATITUDE/LONGITUDE)

INVESTIGATION SAMPLES

Phase II: GS1 to GS16 & TS1 to TS7 (2011)

	II: GS1 to GS16 & TS1 to MW7, GS18 to GS40 & TRA: TS18 to TS21 (2)	TS8 to TS17 (2013)
SAMPLE ID	LONGITUDE	LATITUDE
MW-1	-78.81200556	42.87894293
MW-2	-78.81046630	42.87968711
MW-3	-78.81106294	42.87889267
MW-4	-78.81035675	42.87799627
MW-5	-78.80936123	42.87959601
MW-6	-78.80825407	42.88057474
MW-7	-78.80749112	42.88006999
MW-8	-78.80960279	42.87841758
	-78.81088182	42.87813380
GS1		
GS2	-78.81089042	42.87854619
GS3	-78.81093283	42.87881638
GS4	-78.81086096	42.87905771
GS5	-78.81085605	42.87904016
GS6	-78.81083968	42.87905308
GS7	-78.81084532	42.87906487
GS8	-78.81164264	42.87927374
GS9	-78.81169995	42.87903162
GS10	-78.81241047	42.87897175
GS11	-78.81055305	42.87973853
GS12	-78.80927635	42.87964776
GS13	-78.80900426	42.87941617
GS13	-78.80933003	42.87943171
GS14 GS15	-78.80980435	42.87905431
	-78.80980435 -78.80905325	
GS16		42.87975247
GS17	-78.81368209	42.87880319
GS18	-78.81287833	42.87887313
GS19	-78.81285306	42.87920053
GS20	-78.81183712	42.87930134
GS21	-78.81135990	42.87918897
GS22	-78.81127303	42.87900448
GS23	-78.81096525	42.87961945
GS24	-78.80996334	42.87815208
GS25	-78.80997663	42.87933550
GS26	-78.80933702	42.87971130
GS27	-78.80921388	42.87919514
GS28	-78.80891920	42.87941551
GS29	-78.80837496	42.87934277
GS30	-78.80903309	42.87985156
GS31	-78.80955382	42.87951359
GS32	-78.80924518	42.88020593
GS33	-78.80974044	42.87994373
GS34		42.87968677
	-78.81022602	
GS35	-78.81019621	42.87888150
GS36	-78.80967590	42.87851539
GS37	-78.80915577	42.87952672
GS38	-78.80865732	42.88034922
GS39	-78.80868424	42.87995460
GS40	-78.80828332	42.87979322
TS1	-78.80789726	42.87992185
TS2	-78.80817065	42.88010158
TS3	-78.80913821	42.88023550
TS4	-78.81018006	42.87956530
TS5	-78.81129955	42.87952028
TS6	-78.81160570	42.87937369
TS07	-78.81256241	42.87919699
TS08	-78.80803336	42.87959176
TS09	-78.80780430	42.88021370
TS10	-78.80833955	42.88027604
TS11	-78.80895783	42.88029211
TS12	-78.80999944	42.87975746
TS13	-78.81067012	42.87971744
TS14	-78.81162943	42.87943428
TS15	-78.81220577	42.87930966
TS16	-78.81291904	42.87908433
TS17	-78.81318786	42.87883574
TS18	-78.81108296	42.87885751
1010		
TS19	-78.81108462	42.87809141
	-78.81108462 -78.81081888	42.87809141 42.87796106

		CC	NFIRMA
	CSW & CSB samp		
SAMPLE ID	LONGITUDE	LATITUDE	AREA
CSW-1	-78.80748665	42.88007247	MW-7-N
CSW-2	-78.80752423	42.88004413	MW-7-S
CSW-3	-78.80747349	42.88004396	MW-7-EN
CSW-4	-78.80749656	42.88002745	MW-7-ES
CSW-5	-78.80753218	42.88007540	MW-7-W
CSB-1	-78.80750115	42.88005844	MW-7-B
CSW-6	-78.80778133	42.88025875	TS-9-N
CSW-7	-78.80781052	42.88017994	TS-9-S
CSW-8	-78.80774502	42.88022699	TS-9-EN
CSW-9	-78.80778112	42.88020085	TS-9-ES
CSW-10	-78.80783157	42.88022463	TS-9-W
CSB-2	-78.80779871	42.88021728	TS-9-B
CSW-11	-78.80902985	42.87988505	GS-30-N
CSW-12	-78.80900023	42.87984587	GS-30-S
CSW-13	-78.80901152	42.87987246	GS-30-E
CSW-14	-78.80905504	42.87983478	GS-30-W
CSB-3	-78.80903725	42.87986665	GS-30-B
CSW-15	-78.81015302	42.87961804	TS-4-N
CSW-16	-78.81011556	42.87957860	TS-4-S
CSW-17	-78.81010675	42.87961621	TS-4-E
CSW-18	-78.81016110	42.87958290	TS-4-W
CSB-4	-78.81013507	42.87960738	TS-4-B
CSW-19	-78.81069022	42.87970478	TS-13-NV
CSW-20	-78.81064736	42.87971639	TS-13-NE
CSW-21	-78.81064986	42.87968702	TS-13-S
CSW-22	-78.81062308	42.87971013	TS-13-E
CSW-23	-78.81069276	42.87968612	TS-13-W
CSB-6	-78.81066894	42.87969988	TS-13-B
CSW-24	-78.81050403	42.87970158	MW-2-N
CSW-25	-78.81045723	42.87965475	MW-2-S
CSW-26	-78.81047828	42.87969889	MW-2-EN
CSW-27	-78.81045843	42.87967862	MW-2-ES
CSW-28	-78.81049720	42.87967004	MW-2-W
CSB-5	-78.81049354	42.87968871	MW-2-B
CSW-29	-78.81137044	42.87921474	GS-21-N
CSW-30	-78.81135011	42.87916539	GS-21-S
CSW-31	-78.81139346	42.87918534	GS-21-W
CSB-7	-78.81135654	42.87918898	GS-21-B
CSW-18-2	-78.81016928	42.87957630	TS-4-W
CSB-4-2	-78.81013507	42.87960738	TS-4-B
CSW-14-2	-78.80906325	42.87983504	GS-30-W
CSW-32	-78.81185066	42.87932875	GS-20-N
CSW-33	-78.81181950	42.87927750	GS-20-S
CSW-34	-78.81180210	42.87931376	GS-20-E
CSW-35	-78.81187964	42.87929714	GS-20-W
CSB-8	-78.81184012	42.87930572	GS-20-B
CSW-36	-78.81125153	42.87954754	TS-5-N
CSW-37	-78.81131191	42.87953287	TS-5-N
CSW-38	-78.81121776	42.87949739	TS-5-S
CSW-39	-78.81126221	42.87950938	TS-5-S
CSW-40	-78.81129382	42.87948270	TS-5-S
CSW-41	-78.81121789	42.87953114	TS-5-E
CSW-42	-78.81133232	42.87950073	TS-5-W
CSW-43	-78.81124281	42.87950969	TS-5-S
CSB-9	-78.81130624	42.87951176	TS-5-B
CSW-18-3	-78.81016813	42.87956917	TS-4-W
CSW-20-2	-78.81061564	42.87971535	TS-13-NE
CSW-21-2	-78.81063941	42.87968485	TS-13-S
CSW-23-2	-78.81069536	42.87968282	TS-13-W
CSB-6-2	-78.81066894	42.87969988	TS-13-B
CCDFO	70 04040054	40.07000074	1 11 1/ O D

CSB-5-2

CSW-12-2

CSB-3-2

CSB-5-3 CSW-44 -78.81049354 42.87968871

42.87981811

42.87986665

42.87966533

42.87967621

42.87968871

42.87933515

-78.80902252

-78.80903725

-78.81049354

-78.81222154

CSW-45 -78.81215595 42.87935531

CSW-46 -78.81393144 42.87893852

CSW-21-3 -78.81065762

CSW-23-3 -78.81070579

SAMPLE LONGITUDE LATITUDE AREA CSW-47 -78 81213304 42 87931611 TS-15-F CSW-48 -78.81227249 42.87929224 TS-15-W TS-15-B CSB-10 -78.81220688 42.87930691 CSW-49 -78 81286018 42 87920847 GS-19-N CSW-50 -78.81271778 42.87924333 GS-19-N GS-19-S CSW-51 42.87916324 -78.81284024 CSW-52 -78 81277919 42 87920232 GS-19-F CSW-53 -78.81291749 42.87916857 GS-19-W GS-19-B CSB-11 -78.81284852 42.87918517 CSW-54 -78.81368439 42.87881993 GS-17-N CSW-55 -78.81364411 42.87882385 GS-17-N CSW-56 42.87876947 GS-17-S -78.81367189 CSW-57 -78.81361744 42.87877561 GS-17-S CSW-58 -78.81369960 42.87879657 GS-17-W GS-17-W CSW-59 -78.81370179 42.87878340 GS-17-WB CSB-12 -78.81364513 42.87879613 CSB-5-4 -78.81049354 42.87968871 MW-2-B GS-30-B CSW-3-3 -78.80903725 42.87986665 TS-13-S CSW-21-4 -78.81063785 42.87966812 CSB-13 -78.81357389 42.87880341 GS-17-MW -78.81343999 GS-17-ME CSB-14 42.87881411 CSB-15 -78.81349083 42.87884144 GS-17-E CSB-16 -78.81275198 42 87920951 GS-19 -78.81271031 42.87924060 GS-19-NE CSW-50-2 CSW-51-2A -78.81272568 42.87915990 GS-19-S CSW-51-2B -78.81276299 42 87915982 GS-19-S CSW-52-2 -78.81268102 42.87918990 GS-19-E CSW-53-2 -78.81279455 42.87911888 GS-19-W CSW-60 -78 81218874 42 87934536 TS-15-N CSB-5-5 -78.81048267 42.87967528 MW-2-B TS-13-S CSW-21-5 -78.81068855 42.87965649 CSB-12-2 -78.81332811 42.87882586 GS-17-WB CSB-13-2 -78.81314014 42.87884517 GS-17-MW CSB-14-2 -78.81295255 42.87886448 GS-17-ME GS-17-EB CSB-15-2 -78.81308348 42.87885708 CSW-55-2 -78.81309587 42.87887846 GS-17-WN CSW-61 -78.81301607 42.87888959 GS-17-MS GS-17-MN 42.87889683 CSW-62 -78.81296498 CSW-63 -78.81319375 42.87881433 GS-17-MS GS-17-MS CSW-64 -78.81314229 42.87882157 GS-17-EN -78.81296362 42.87883180 CSW-65 CSW-66 -78.81309305 42.87882386 GS-17-ES GS-17-E CSW-67 -78.81299617 42.87885671 -78.81265662 GS-19-NE 42.87925031 CSW-68 CSW-69 -78.81261199 42 87918619 GS-19-F -78.81257846 42.87909901 GS-19-SE

collected during RA (2015)

CSW-70-3

MW-2-B

GS-30-S

GS-30-B

TS-13-S

TS-13-W

MW-2-B

TS-15-N

TS-15-N

TS-15-S

CSW-70

CSW-51-3B

CSB-17

CSB-15-3

CSW-51-4B

CSW-70-2

GS = Geoprobe boring soil samples; TS = Test pit soil samples MW = Monitoring well soil boring samples

GS-19-SW

GS-19-FB

GS-17-EB

GS-19-SW

GS-19-SF

GS-19-SE

42.87907904

42 87911441

42.87880462

42.87912725

42 87916098

42.87910586

CSW = Confirmatory soil wall samples

-78.81268136

-78 81269567

-78.81338101

-78.81258565

-78 81259622

-78.81258072

CSB = Confirmatory soil bottom samples

RI = Remedial Investigation; RA = Remedial Action

TABLE G-5

132 DINGENS STREET - BCP RI/RA SURVEY COORDINATES FOR SAMPLE LOCATIONS

B. NEW YORK STATE PLANE COORDINATES (NAD83)

CONFIRMATORY SAMPLES CSW & CSB samples collected during RA (2015)

SAMPLE

ID CSW-47

CSW-48

CSB-10

CSW-49

CSW-50

CSW-51

CSW-52

CSW-53

CSB-11

CSW-54

CSW-55

CSW-56

CSW-57

CSW-58

CSW-59 CSB-12

CSB-5-4

CSW-3-3

CSW-21-4

CSB-13

CSB-14 CSB-15

CSB-16

CSW-50-2 CSW-51-2A

CSW-51-2B

CSW-52-2 CSW-53-2

CSW-60

CSB-5-5

CSW-21-5

CSB-12-2

CSB-13-2

CSB-14-2

CSB-15-2

CSW-55-2

CSW-61 CSW-62

CSW-63

CSW-64

CSW-65

CSW-66

CSW-67 CSW-68

CSW-69

CSW-70 CSW-51-3B

CSB-17 CSB-15-3

CSW-51-4B

NORTHING

1049175.4

1049166.8

1049172.1

1049136.7

1049149.3

1049120.2

1049134.4

1049122.2

1049128.2

1048995.7

1048997.1

1048977.3

1048979.5

1048987.2

1048982.4

1048987 0

1049310.0

1049373.8

1049302.6

1048989.6

1048993.4

1049003.4

1049137.0

1049148.3

1049118.9

1049118.9

1049129.8

1049104.0

1049186.1

1049305.1

1049298.4

1048997.6

1049004.5

1049011.4

1049008.8

1049016.6

1049020.6

1049023 2

1048993.3

1048995.9

1048999.5

1048996.7

1049008.6

1049151.8

1049128.4

1049096.6

1049089.4

1049102.3

1048989.9

1049106.9

1049119.2

1049099.1

EASTING

1086966.8

1086929.4

1086947.0

1086771.8

1086810.0

1086777.1

1086793.5

1086756.4

1086774.9

1086550.5

1086561.3

1086553.8

1086568.4

1086546.4

1086545.8

1086561 0

1087406.6

1087797.1

1087367.9

1086580.1

1086616.0

1086602.4

1086800.8

1086812.0

1086807.8

1086797.8

1086819.8

1086789.3

1086951.9

1087409.5

1087354.3

1086646.0

1086696.4

1086746.7

1086711.6

1086708.3

1086729.7

1086743 4

1086682.0 1086695.8

1086743.7

1086709.0

1086735.0

1086826.4

1086838.3

1086847.2

1086819.6

1086815.8

1086631.8

1086845.3

1086842.5

1086846.6

AREA

TS-15-E

TS-15-W

TS-15-B

GS-19-N

GS-19-N GS-19-S

GS-19-E

GS-19-W

GS-19-B

GS-17-N

GS-17-N GS-17-S

GS-17-S GS-17-W

GS-17-W

GS-17-WB MW-2-B

GS-30-B

TS-13-S

GS-17-MW

GS-17-ME

GS-17-F

GS-19

GS-19-NE

GS-19-S

GS-19-S

GS-19-W

TS-15-N

MW-2-B

TS-13-S

GS-17-WB

GS-17-MW

GS-17-ME

GS-17-EB

GS-17-WN

GS-17-MS

GS-17-MN GS-17-MS

GS-17-MS

GS-17-EN

GS-17-ES

GS-17-E

GS-19-NE

GS-19-E

GS-19-SE

GS-19-SW

GS-19-EB

GS-17-EB

GS-19-SW

GS-19-SE

GS-19-SE

INVESTIGATION SAMPLES

	II: GS1 to GS16 & TS1 IW7, GS18 to GS40 & RA: TS18 to TS21 (2	TS8 to TS17 (2013)
SAMPLE ID	NORTHING	EASTING
MW-1	1049039.3	1087000.6
MW-2	1049309.4	1087413.9
MW-3	1049020.3	1087253.2
MW-4	1048693.1 1049275.4	1087441.6
MW-5 MW-6		1087710.0
MW-7	1049631.3 1049446.8	1088007.7 1088211.7
MW-8	1048846.1	1087644.1
GS1	1048743.6	1087301.0
GS2	1048893.9	1087299.1
GS3	1048992.4	1087288.0
GS4	1049080.3	1087307.5
GS5	1049073.9	1087308.8
GS6	1049078.6	1087313.2
GS7	1049082.9	1087311.7
GS8	1049159.6	1087098.2
GS9	1049071.4	1087082.6
GS10	1049050.1	1086892.1
GS11	1049328.2	1087390.7
GS12 GS13	1049294.2 1049209.6	1087732.8 1087805.5
GS13 GS14	1049209.6	1087805.5
GS14 GS15	1049215.5	1087590.7
GS16	1049332.2	1087792.7
GS17	1048989.6	1086551.1
GS18	1049014.5	1086766.6
GS19	1049133.8	1086773.7
GS20	1049169.8	1087046.1
GS21	1049128.5	1087173.9
GS22	1049061.2	1087197.0
GS23	1049285.1	1087280.1
GS24	1048749.6	1087547.2
GS25	1049180.9	1087544.8
GS26	1049317.4	1087716.6
GS27	1049129.2	1087749.1
GS28	1049209.3	1087828.3
GS29	1049182.4	1087974.1
GS30 GS31	1049368.3 1049245.5	1087798.2
GS32	1049245.5	1087658.3 1087741.7
GS33	1049402.4	1087608.7
GS34	1049309.1	1087478.3
GS35	1049015.6	1087485.5
GS36	1048881.8	1087624.6
GS37	1049250.0	1087765.0
GS38	1049549.4	1087899.4
GS39	1049405.6	1087891.8
GS40	1049346.5	1087999.1
TS1	1049393.1	1088102.7
TS2	1049458.8	1088029.6
TS3	1049508.3	1087770.4
TS4	1049264.8	1087490.5
TS5 TS6	1049249.2 1049196.0	1087190.4 1087108.2
TS07	1049196.0	1087108.2
TS08	1049132.3	1088065.9
TS09	1049272.9	1088003.9
TS10	1049522.5	1087984.5
TS11	1049528.8	1087818.8
TS12	1049334.7	1087539.1
TS13	1049320.6	1087359.3
TS14	1049218.1	1087101.9
TS15	1049173.1	1086947.3
TS16	1049091.5	1086755.9
TS17	1049001.1	1086683.6
TS18	1049007.5	1087247.8
TS19	1048728.3	1087246.6
TS20	1048680.6	1087317.7
TS21	1048676.5	1087451.1

SAMPLE ID	NORTHING	EASTING	AREA
CSW-1	1049447.7	1088212.9	MW-7-N
CSW-2	1049437.4	1088202.8	MW-7-S
CSW-3	1049437.3	1088216.4	MW-7-EN
CSW-4	1049431.3	1088210.2	MW-7-ES
CSW-5	1049448.8	1088200.7	MW-7-W
CSB-1	1049442.6	1088209.0	MW-7-B
CSW-6	1049515.8	1088134.1	TS-9-N
CSW-7	1049487.1	1088126.2	TS-9-S
CSW-8	1049504.2	1088143.8	TS-9-EN
CSW-9	1049494.7	1088134.1	TS-9-ES
CSW-10	1049503.4	1088120.6	TS-9-W
CSB-2	1049500.7	1088129.4	TS-9-B
CSW-11	1049380.5	1087799.1	GS-30-N
CSW-12	1049366.2	1087807.0	GS-30-S
CSW-13	1049375.9	1087804.0	GS-30-E
CSW-14	1049362.2	1087792.3	GS-30-W
CSB-3	1049373.8	1087797.1	GS-30-B
CSW-15	1049284.0	1087497.8	TS-4-N
CSW-16	1049269.6	1087507.8	TS-4-S
CSW-17	1049283.3	1087510.2	TS-4-E
CSW-18	1049271.2	1087495.6	TS-4-W
CSB-4	1049280.1	1087502.6	TS-4-B
CSW-19	1049316.0	1087353.9	TS-13-NW
CSW-20	1049320.2	1087365.4	TS-13-NE
CSW-21	1049309.5	1087364.7	TS-13-S
CSW-22	1049317.9	1087371.9	TS-13-E
CSW-23	1049309.2	1087353.2	TS-13-W
CSB-6	1049314.2	1087359.6	TS-13-B
CSW-24	1049314.7	1087403.8	MW-2-N
CSW-25	1049297.6	1087416.3	MW-2-S
CSW-26	1049313.7	1087410.7	MW-2-EN
CSW-27	1049306.3	1087416.0	MW-2-ES
CSW-28	1049303.2	1087405.6	MW-2-W
CSB-5	1049310.0	1087406.6	MW-2-B
CSW-29	1049137.9	1087171.1	GS-21-N
CSW-30	1049119.9	1087176.5	GS-21-S
CSW-31	1049127.2	1087164.9	GS-21-W
CSB-7	1049128.5	1087174.8	GS-21-B
CSW-18-2	1049268.8	1087493.4	TS-4-W
CSB-4-2	1049280.1	1087502.6	TS-4-B
CSW-14-2	1049362.3	1087790.1	GS-30-W
CSW-32	1049302.3	1087042.5	GS-20-N
CSW-32	1049173.0	1087050.8	GS-20-N
CSW-34	1049174.3	1087055.5	GS-20-5 GS-20-E
CSW-35	1049174.3	1087033.3	GS-20-E GS-20-W
CSW-35	1049100.3	1087034.7	GS-20-W GS-20-B
CSB-6 CSW-36	1049171.4	1087203.3	TS-5-N
CSW-36 CSW-37	1049259.1	1087203.3	TS-5-N
CSW-37 CSW-38	1049253.8	1087187.1	TS-5-N
CSW-38 CSW-39			
	1049245.2 1049235.5	1087200.4	TS-5-S TS-5-S
CSW-40		1087191.9	
CSW-41	1049253.1	1087212.3	TS-5-E
CSW-42	1049242.1	1087181.6	TS-5-W

CSW-43

CSB-9

CSW-18-3

CSW-20-2

CSW-21-2

CSW-23-2

CSB-6-2

CSB-5-2

CSW-12-2 CSB-3-2

CSW-21-3

CSW-23-3 CSB-5-3

CSW-44 CSW-45

CSW-46

1049245.3

1049246.1

1049266.2

1049319.8

1049308.7

1049308.0

1049314.2

1049310.0

1049356.1

1049373.8

1049301.6

1049305.6

1049310.0

1049182.4

1049189.7

1049039.1

1087205.6

1087188.6

1087493.7

1087373.9

1087367.5

1087352.5

1087359.6

1087406.6

1087801.0

1087797.1

1087362.6

1087349.7

1087406.6

1086943.1

1086960.7

1086484.4

TS-5-S

TS-5-B

TS-4-W

TS-13-NE

TS-13-S

TS-13-W

TS-13-B

MW-2-B

GS-30-S

GS-30-B

TS-13-S

TS-13-W

MW-2-B

TS-15-N

TS-15-N

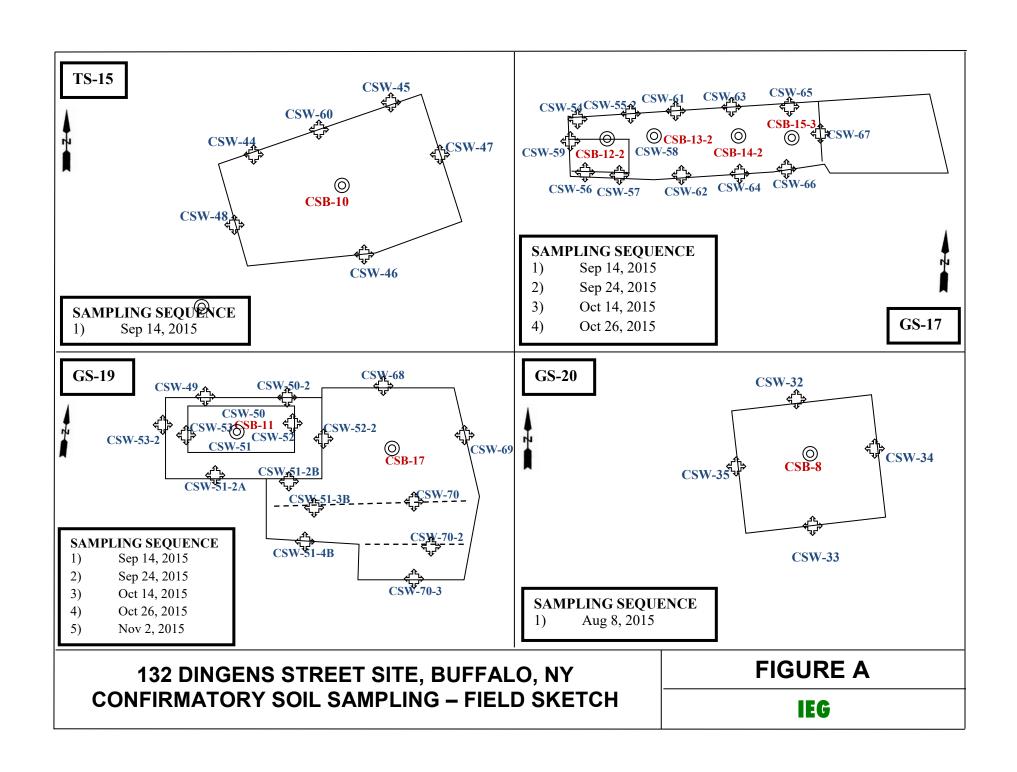
TS-15-S

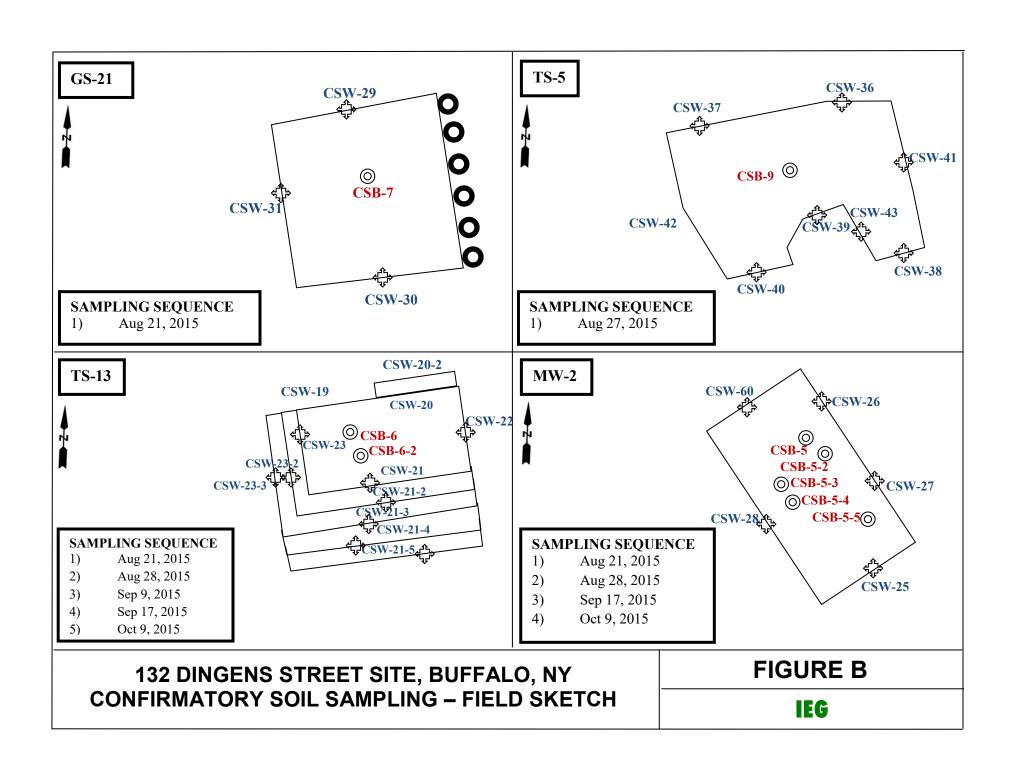
CSW-70-2 CSW-70-3 SAMPLE KEY:

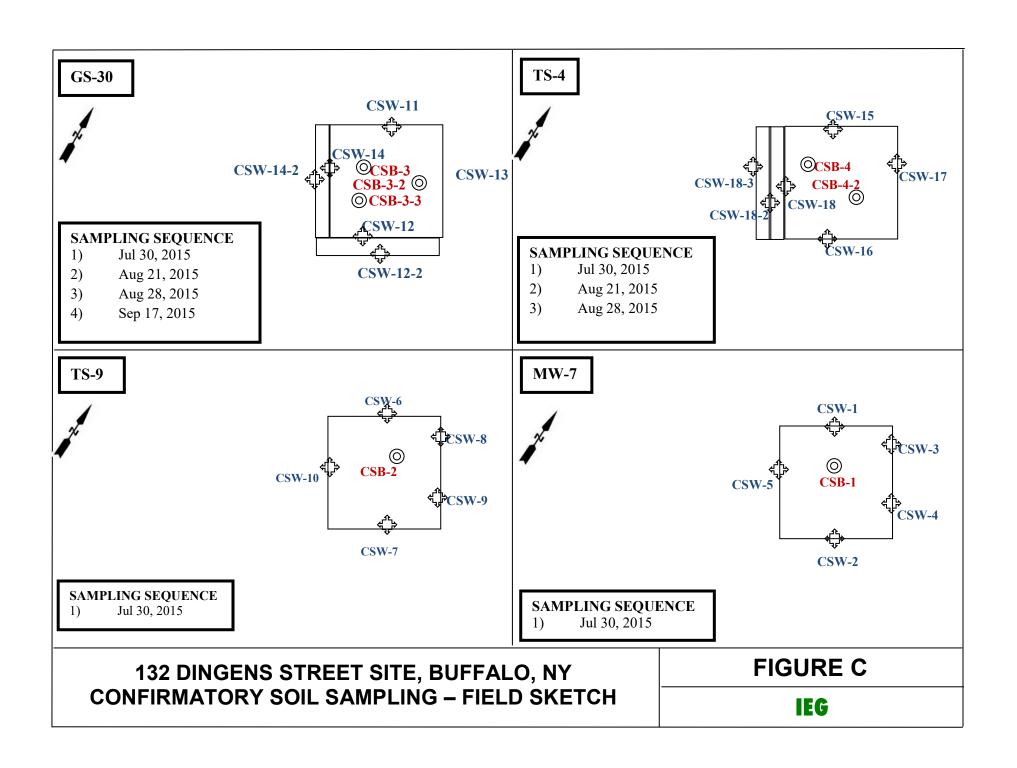
GS = Geoprobe boring soil samples; TS = Test pit soil samples

MW = Monitoring well soil boring samples

CSW = Confirmatory soil wall samples


CSB = Confirmatory soil bottom samples


RI = Remedial Investigation; RA = Remedial Action


APPENDIX H

INTERMEDIATE & FINAL CONFIRMATORY SOIL SAMPLES

(FIELD SKETCHES; LOCATION FIGURES; & ANALYTICAL TABLES)

132 DINGENS STREET - BCP REMEDIATION 2015

ANALYTICAL DATA - INTERMEDIATE AND FINAL CONFIRMATORY SOIL SAMPLES METALS, TOTAL SVOCs & TOTAL PCBs

				0, 1017	L SVOCs		1	1	1	
SAMPLE ID	LOCATION	SAMPLE DATE	EXCAVATION DIMENSIONS (ft)	SAMPLE DEPTH(ft)	TOTAL LEAD (mg/Kg)	TOTAL ARSENIC (mg/Kg)	TOTAL MERCURY (mg/Kg)	TOTAL SVOCs (mg/Kg)	TOTAL PCBs (mg/Kg)	REMARKS/ ACTION
PROF	OSED EXCAV	ATION THR	ESHOLD LIMIT	(PETL) >>	5000	71	5.7	500	1	7.0
CSW-1	MW-7-N		20'W x 8'D	2' - 6'	2830		0.7	000		
CSW-2	MW-7-S		20'W x 8'D	2' - 6'	166					
CSW-3	MW-7-EN			2' - 6'	2140		NA			BACKFILL
CSW-4	MW-7-ES		16'W x 8'D	2' - 6'	1710	NA		NA	NA	EXCAVATION
CSW-5	MW-7-W		16'W x 8'D	2' - 6'	611					
CSB-1	MW-7-B		20'x16'W@8'D	8'	53.6					
CSW-6	TS-9-N		17'W x 5.2'D	1' - 4'	1610					
CSW-7	TS-9-S		17'W x 5.2'D	1' - 4'	3220					
CSW-8	TS-9-EN			1' - 4'	860					BACKFILL
CSW-9	TS-9-ES		28'W x 5.2'D	1' - 4'	1960	NA	`	NA	NA	EXCAVATION
CSW-10	TS-9-W	7/30/2015	28'W x 5.2'D	1' - 4'	2160					
CSB-2	TS-9-B	LAB SDG#	20'x16'W@8'D	8'	4090 J					
CSW-11	GS-30-N	84833	19'W x 4.3'D	1' - 4'	2370					
CSW-12	GS-30-S		19'W x 4.3'D	1' - 4'	2360/6110					ADDITIONAL EXCAVATION
CSW-13	GS-30-E		19'W x 4.3'D	1' - 4'	1410	NA	NA	NA	NA	EAST/SOUTH
CSW-14	GS-30-W		19'W x 4.3'D	1' - 4'	6530					WALLS
CSB-3	GS-30-B		19'x19'W@4.3'D	4.3'	14400 J	1				& BOTTOM
CSW-15	TS-4-N	1	19'W x 4'D	0' - 4'	1950					
CSW-16	TS-4-S	1	19'W x 4'D	0' - 4'	4610	†				ADDITIONAL
CSW-17	TS-4-E	1	19'W x 4'D	0' - 4'	2870	NA	NA	NA	NA	EXCAVATION
CSW-17	TS-4-L	1	19'W x 4'D	0' - 4'	9450	1	""		, .	WEST WALL & BOTTOM
CSB-4	TS-4-B		19'x19'W@4'D	4'	11600					BOTTOW
CSW-19	TS-13-NW			1' - 4'	11000	47.8 J	0.51			
CSW-20	TS-13-NE		21'W x 4'D	1' - 4'		113 J	1.6			
CSW-21	TS-13-S		21'W x 4'D	1' - 4'		79.3 J	3.7			ADDITIONAL
CSW-22	TS-13-E		21'W x 4'D	1' - 4'	NA	45.4 J	2.9	NA	NA NA	& WEST WALLS
CSW-23	TS-13-W		12'W x 4'D	1' - 4'		312 J	9.8			
CSB-6	TS-13-B		21'x12'W@4'D	4'		27.3 J	6.3			
CSW-24	MW-2-N		12'W x 5.5'D	1' - 4'		69.3 J	0.96			
CSW-25	MW-2-S		12'W x 5.5'D	1' - 4'		28.6 J	1.8			
CSW-26	MW-2-EN	8/21/2015	12 W X 0.0 B	1' - 4'		52.1 J	3.8			ADDITIONAL
CSW-27	MW-2-ES	LAB SDG#	22'W x 5.5'D	1' - 4'	NA	32.5 J	1.6	NA	NA	EXCAVATION
CSW-28	MW-2-W	86066	22'W x 5.5'D	1' - 4'		40.7 J	1.9			BOTTOM
CSB-5	MW-2-B		12'x22'W@5.5'D	5.5'		156 J	5.4			
CSW-29	GS-21-N		20'W x 6.6'D	2' - 5.5'		1000	0.54			
CSW-30	GS-21-S		22'W x 6.5'D	2' - 5.5'			0.67			BACKFILL
CSW-31	GS-21-W		22'W x 6.5'D	2' - 5.5'	NA	NA	1.6	NA	NA	EXCAVATION
CSB-7	GS-21-B		22'x22'W@6.5'D	6.5'			2.2			
CSW-18-2	TS-4-W		19'W x 5.5'D	2' - 5'	7370					ADD. EXCAV.
CSB-4-2	TS-4-B		21'x19'W@5.5'D	5.5'	93.4	NA	NA	NA	NA	WEST WALL
CSW-14-2	GS-30-W		21'W x 4.3'D	1' - 4'	2520	NA	NA	NA	NA	
CSW-32	GS-20-N		22'W x 6.5'D	2' - 5.5'	2070 J					
CSW-33	GS-20-S		22'W x 6.5'D	2' - 5.5'	1100 J					
CSW-34	GS-20-E		22'W x 6.5'D	2' - 5.5'	1690 J	NA	NA	NA	NA	BACKFILL
CSW-35	GS-20-W		22'W x 6.5'D	2' - 5.5'	2660 J	1				EXCAVATION
CSB-8	GS-20-W	1	22'x22'W@6.5'D	6.5'	865 J	†				
CSW-36	TS-5-NE	1		2' - 6'	3000			284.1		
CSW-37	TS-5-NW	8/27/2015	30'W x 6.5'D	2' - 6'				42.2		
CSW-38	TS-5-SE	LAB SDG#		2' - 6'				33.0		
CSW-39	TS-5-SM	86308	30'W x 6.5'D	2' - 6'		1		34.1		
CSW-40	TS-5-SW			2' - 6'	NA	NA	NA	117.9	NA	BACKFILL
CSW-41	TS-5-E		20'W x 6.5'D	2' - 6'		""		478.2	""	EXCAVATION
CSW-42	TS-5-W	1	20'W x 6.5'D	2' - 6'		1		26.5		
CSW-43	TS-5-SM	1	10'W x 6.5'D	2' - 6'		1		90.9		
CSB-9	TS-5-B		30'x20'W@6.5'D	6.5'				0.83		
CSW-18-3	TS-4-W		19'W x 5.5'D	2' - 5'	3320	NA	NA	NA	NA	BACKFILL
CSW-10-3	TS-13-NE		13'W x 7'D	2' - 6'	3320	59.7	2.5	IVA	14/4	
CSW-20-2 CSW-21-2	TS-13-NE	1	26'W x 7'D	2' - 6'		75.7	1.9			ADDITIONAL
		8/28/15			NA			NA	NA	EXCAVATION WEST/SOLITH
CSW-23-2	TS-13-W	LAB SDG#	15'W x 7'D	2' - 6'	INA	126	3.1	INA	INA	WEST/SOUTH WALL
CSB-6-2	TS-13-B	86366	26'x15'W@7'D	7'		3.7	ND 0.43			& BOTTOM
CSB-5-2	MW-2-B	-	15'x22'W@7.5'D	7.5'	4000	89.3	0.43			
CSW-12-2	GS-30-S	-	21'W x 6.3'D	2' - 6'	1680	NA	NA	NA	NA	EVALUATE
CSB-3-2	GS-30-B		21'x21'W@6.3'D	6.3'	5790					

132 DINGENS STREET - BCP REMEDIATION 2015

ANALYTICAL DATA - INTERMEDIATE AND FINAL CONFIRMATORY SOIL SAMPLES METALS, TOTAL SVOCs & TOTAL PCBs

					LOTAL						
SAMPLE	LOCATION	SAMPLE	EXCAVATION	SAMPLE	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	DEMARKO/	
ID	LOCATION	DATE	DIMENSIONS (ft)	DEPTH(ft)	LEAD	ARSENIC		SVOCs	PCBs	REMARKS/	
5505	OOED EVOAL	(ATION TUD	ESHOLD LIMIT	(DET()	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	ACTION	
		ATION THE		<u> </u>	5000	71	5.7	500	1	ADDITIONAL	
CSW-21-3	TS-13-S	9/9/15	26'W x 7'D	2' - 6'		125	5.9			ADDITIONAL SOUTH WALL	
CSW-23-3	TS-13-W	LAB SDG#	15'W x 7'D	2' - 6'	NA	29	2.4	NA	NA	& BOTTOM	
CSB-5-3	MW-2-B	86938	12'x22'W@9.5'D	9.5'		84.6	11.2			EXCAVATION	
CSW-44	TS-15-NW*		40'W x 2'D	0' - 2'	5200 J			104.8	1.8		
CSW-45	TS-15-NE		40 W X Z D	0' - 2'	1080 J			66.4	2.16		
CSW-46	TS-15-S		40'W x 2'D	0' - 2'	1750	NA	NA	54.1	0.065	EVALUATE	
CSW-47	TS-15-E		20'W x 2'D	0' - 2'	989 J	INA	INA	48.7	0.47	EVALUATE	
CSW-48	TS-15-W		20'W x 2'D	0' - 2'	1800 J			220.9	0.46		
CSB-10	TS-15-B		20'x40'W@2'D	2'	3040 J			75.1	0.29		
CSW-49	GS-19-NW	1	40044 015	0' - 2'					0.29		
CSW-50	GS-19-NE		40'W x 2'D	0' - 2'					33.0		
CSW-51	GS-19-S	9/14/2015	40'W x 2'D	0' - 2'					2.84	ADDITIONAL	
CSW-52	GS-19-E	LAB SDG#	18'W x 2'D	0' - 2'	NA	NA	NA	NA	1.70	EXCAVATION	
CSW-53	GS-19-W	87201	18'W x 2'D	0' - 2'					5.32	ALL WALLS	
CSB-11	GS-19-W		18'x40'W@2'D	2'					0.68		
CSW-54	GS-17-NW		10 X40 W@2 B	0' - 2'					10.20		
CSW-55	GS-17-NE		26'W x 2'D	0' - 2'					5.44		
CSW-55				0' - 2'					1.67	ADDITIONAL	
	GS-17-SW		26'W x 2'D		NA	NA	NA	NA		EXCAVATION	
CSW-57	GS-17-SE		4004 010	0' - 2'	INA	INA	INA	INA	2.09	ALL WALLS	
CSW-58	GS-17-E		13'W x 2'D	0' - 2'					13.30	& BOTTOM	
CSW-59	GS-17-W		13'W x 2'D	0' - 2'					3.24		
CSB-12	GS-17-B		13'x26'W@2'D	2'	1000				1.96		
CSB-5-4	MW-2-B	9/17/15	12'x22'W@9.5'D	9.5'	1060	NA	NA			BACKFILL	
CSW-3-3	GS-30-B	LAB SDG# 87473	21'x21'W@7.3'D	7.3'	34.6			NA	NA		
CSW-21-4	TS-13-S	01413	29'W x 7'D	2' - 6'	NA	111	3.3 J			ADDL. EXCAVATION	
CSB-13	GS-17-MW		30'W x 2'D	2'					10.0		
CSB-14	GS-17-ME		30'W x 2'D	2'	NA	NA	NA	NA	1.43	ADDITIONAL	
CSB-15	GS-17-E		30'W x 2'D	2'	-				1.20	EXCAVATION	
CSB-16	GS-19/TS-15	0/04/45	BETWEEN AREAS	0' - 1'				1.09			
CSW-50-2	GS-19-NE	9/24/15 LAB SDG#	20'W x 2'D	0' - 2'					1.30		
CSW-51-2A	GS-19-SW	87872	64'W x 2'D	0' - 2'					0	ADDITIONAL	
CSW-51-2B	GS-19-SE		0' - 2' NA NA	NA	NA	1.77	EXCAVATION				
CSW-52-2	GS-19-E			32'W x 2'D	0' - 2'					1.10	
CSW-53-2	GS-19-W		32'W x 2'D						0		
CSW-60	TS-15-NM		WALL MIDDLE	1'	NA	NA	NA	NA	0	BACKFILL	
CSB-5-5	MW-2-B	10/9/2015 LAB SDG#	12'x22'W@10.5'D	10.5'	NIA	6.7	0.022 J	NIA	NIA	DACKELLI	
CSW-21-5	TS-13-S	88825	31'W x 7'D	2' - 6'	NA	53.8	1.6	NA	NA	BACKFILL	
CSB-12-2	GS-17-WB		23'x26'W@3'D	3'					0		
CSB-13-2	GS-17-MW		30'W x 2'D	3'					0	1	
CSB-14-2	GS-17-ME		30'W x 2'D	3'					0.34		
CSB-15-2	GS-17-EB		23'x26'W@3'D	3'					1.46		
CSW-55-2	GS-17-WN		13'W x 2'D	0' - 3'					3.17	ADDITIONAL	
CSW-61	GS-17-MN		30'W x 2'D	0' - 2'					2.68	EXCAVATION	
CSW-62	GS-17-MS		30'W x 2'D	0' - 2'	NA	NA	NA	NA	0	NORTH/SOUTH	
CSW-63	GS-17-MN	10/14/15	30'W x 2'D	0' - 2'					23.1	WALL & BOTTOM	
CSW-64	GS-17-MN GS-17-MS	LAB SDG#	30'W x 2'D	0' - 2'					2.59	a borrow	
CSW-65	GS-17-WS GS-17-EN	89114	30'W x 2'D	0' - 2'					0	1	
CSW-66			30 W X 2 D	0 - 2					2.04	1	
	GS-17-ES	1	30 W X 2 D	0 - 2					0.14	1	
CSW-67 CSW-68	GS-17-E GS-19-NE	1	20'W x 2'D	0' - 2'					2.04	BOUNDARY	
CSW-69	GS-19-NE GS-19-E		30'W x 2'D	0' - 2'					0	ADDITIONAL	
CSW-09	GS-19-E	1	20'W x 2'D	0' - 2'	NA	NA	NA	NA	1.10	EXCAVATION	
CSW-51-3B	GS-19-SW		20'W x 2'D	0' - 2'					1.15	SOUTH WALLS	
CSB-17	GS-19-EB	1	30'x20'W@2'D	2'					0.30	BACKFILL	
CSB-15-3	GS-17-EB	10/26/15	23'x30'W@3'D	3'					0	DACKELL	
CSW-51-4B	GS-19-SW	LAB SDG#	20'W x 2'D	0' - 2'	NA	NA	NA	NA	0.45	BACKFILL	
CSW-70-2	GS-19-SE	89839	20'W x 2'D	0' - 2'					1.51	ADDL. EXCAVATION	
CSW-70-3	GS-19-SE	11/2/2015	20'W x 2'D	0' - 2'	NA	NA	NA	NA	1.59	EVALUATE	
C3VV-7U-3	G3-19-3E	#90295	20 W X 2 D	0-2	INA	INA	INA	INA	1.09	EVALUATE	

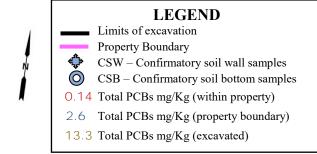
Note: 1. ND - Not Detected; NA = Not Analyzed; J = Below MDL; N=North; S=South; E=East; W=West; M=Middle; B=Bottom; W =Horizontal Width; D = Vertical Depth 2. Each sample is a composite of 7 to 10 grab samples:; CSWs are wall sample, and CSBs are bottom samples; * = at property boundary 3. 2nd excavation indicated by "-2" at end of sample ID; 3rd excavation by "-3"; 4th by "-4" and 5th by "-5"

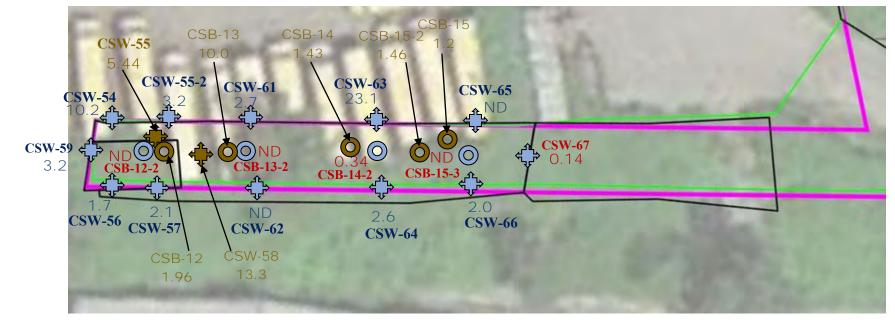
Confirmatory wall soil samples were taken across excavation width/depth; bottom samples were taken across excavation floor
 Exceedance of PETL by confirmatory soil sample indicated by GREY color shading
 Confirmatory soil samples below PETLs indicated by GREEN color shading

132 DINGENS STREET - BCP SITE REMEDIATION 2015 ANALYTICAL DATA - INTERMEDIATE AND FINAL CONFIRMATORY SOIL SAMPLES SVOCs

0.14D) = ID/		CSW-36	CSW-37	CSW-38	CSW-39	CSW-40	CSW-41	CSW-42	CSW-43	CSB-9	CSW-44	CSW-45	CSW-46	CSW-47	CSW-48	CSB-10
SAMPLE ID/ LOCATION	PETL			EXCA	VATION A	AT TS-5 SI/I	RI LOCAT	ION			Е	EXCAVAT	TON AT	ΓS-15 SI/F	RI LOCATI	ON
LOCATION		TS-	5-N		TS-5-S		TS-5-E	TS-5-W	TS-5-S	TS-5-B	TS-	15-N	TS-5-S	TS-15-E	TS-15-W	TS-15-B
DATE SAMPLED/LAB #			<u> </u>		8/27/201	5; LAB SDG #	#86308	<u>I</u>	1				9/1	14/2015	<u>.</u>	
SAMPLE DEPTH		2' - 6'	2' - 6'	2' - 6'	2' - 6'	2' - 6'	2' - 6'	2' - 6'	2' - 6'	6.5'	0' - 2'	0' - 2'	0' - 2'	0' - 2'	0' - 2'	2'
SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs, μg/Kg)																
Percent Solids (%)		73.8	77.1	74.2	80.6	80.7	80.1	74	75.3	68.7	83.8	86.7	78.5	77.5	76.4	74.3
Biphenyl		430 J														
2-Methylnaphthalene		1400 J			230 J		920 J									
3 & 4-Methylphenol																
Acenaphthene		4400	450 J	240 J	280 J	760 J	2700 J					740 J	690 J		2000 J	960 J
Acenaphthylene		1700 J	200 J	280 J	230 J	1000 J	3800 J		690 J						1300 J	
Acetophenone	-															
Anthracene		12000	1400	830 J	1300	4000	17000		1700 J		2200 J	1800 J	1800 J	1400 J	5100	2400 J
Benzaldehyde																
Benzo(a)anthracene		23000	3400	3000	2800	8900	40000	2500 J	10000		9800	5800	4100 J	4600	19000	5800
Benzo(a)pyrene		18000	3800	2700	2500	8000	31000	2300 J	9000		7600	4900	3300 J	3500 J	18000	4900
Benzo(b)fluoranthene		23000	4500	3500	3000	9300	43000	3100 J	12000		11000	5800	3700 J	4700	23000	6700
Benzo(g,h,i)perylene	-	9400	2000	1400	1000	4600	10000	1500 J	3400 J		6000 J	4000	2800 J	2800 J	9400	4500 J
Benzo(k)fluoranthene	-	8200	2400	1800	1800	3600	20000	1400 J	6500		4100	3200 J	2000 J	1800 J	10000	2300 J
Bis(2-ethylhexyl) phthalate	-															
Butyl benzyl phthalate																
Carbazole		5500	680 J	430 J	630 J	960 J	4900				860 J	820 J	780 J	670 J	3400 J	1300 J
Chrysene		20000	3500	3000	2900	9100	38000	2600 J	10000		10000	5900	4100 J	4100 J	20000	5900
Dibenz(a,h)anthracene															3100 J	
Dibenzofuran		3800	410 J	160 J	350 J	930 J	4400								1200 J	630 J
Di-n-butyl phthalate																
Fluoranthene		51000	6500	6300	6400	24000	110000	5400	17000	830 J	20000	12000	11000	9300	38000	13000
Fluorene		6100 J	530 J	260 J	450 J	1600 J	7500 J					870 J	1000 J	640 J	2200 J	1100 J
Indeno(1,2,3-cd)pyrene		8800	1800	1400	1100	4100	11000	1200 J	3700 J		5200	3400 J	2200 J	2200 J	8100	3600 J
Naphthalene		2400			320 J										1100 J	
Phenanthrene		49000	5800	3500	5100	20000	77000	3100 J	5900		11000	7600	8500	6200	25000	12000
Pyrene		36000	4800	4200	3700	17000	57000	3400 J	11000		17000 J	9600 J	8100 J	6800 J	31000 J	10000 J
TOTAL SVOCs (μg/Kg)	500,000	284,130	42,170	33,000	34,090	117,850	478,220	26,500	90,890	830	104,760	66,430	54,070	48,710	220,900	75,090

Note: 1. ND = Not Detected; NA = Not Analyzed; J = Below MDL; N=North; S=South; E=East; W=West; CSWs are wall and CSBs are bottom samples

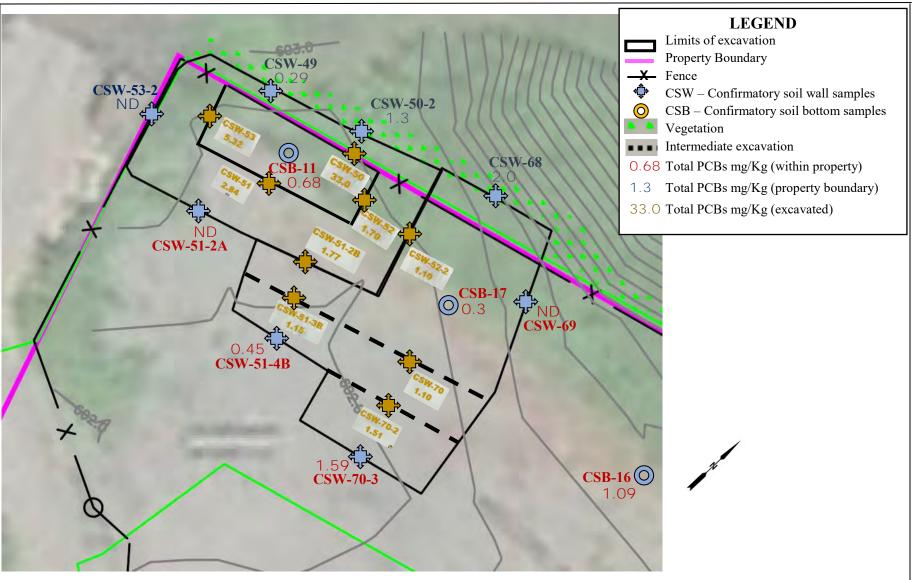

- 2. Each sample is a composite of 7 to 10 grab samples; See Figures in Report for sample locations
- 3. Only detected semivolatile compounds are listed; all other SVOCs are non-detect; PETL = Proposed Excavation Threshold Limit
- 4. There were intermediate confirmatory soil samples in the two SVOC source areas; Confirmatory soil samples below PETL indicated by GREEN color shading


132 DINGENS STREET - BCP REMEDIATION 2015 **ANALYTICAL DATA - INTERMEDIATE AND FINAL CONFIRMATORY SOIL SAMPLES PCBs**

SAMPLE ID	LOCATION	SAMPLE DATE/ LAB SDG#	EXCAVATION/ SAMPLE DEPTH	PCB-1242 (mg/Kg)	PCB-1248 (mg/Kg)	PCB-1254 (mg/Kg)	PCB-1260 (mg/Kg)	TOTAL PCBs (mg/Kg)	REMARKS/ ACTION	
			PROPOSE	D EXCAVA	TION THRES	HOLD LIMI	T (PETL) >>	1		
CSW-44	TC 45 N		01 01	ND	1.8 J	ND	ND	1.8	DOLIND A DV	
CSW-45	TS-15-N		0' - 2'	ND	1.1 J	0.63	0.43	2.16	BOUNDARY	
CSW-46	TS-15-S		0' - 2'	ND	0.065 J	ND	ND	0.065		
CSW-47	TS-15-E		0' - 2'	ND	0.24 J	0.23	ND	0.47	DELOW DET	
CSW-48	TS-15-W		0' - 2'	ND	0.46 J	ND	ND	0.46	BELOW PETL	
CSB-10	TS-15-B		2'	ND	0.29 J	ND	ND	0.29		
CSW-49	00 40 N			ND	0.13 J	0.16 J	ND	0.29	BELOW PETL	
CSW-50	GS-19-N			ND	33 J	ND	ND	33.0		
CSW-51	GS-19-S	9/14/2015	0' - 2'	ND	1.5 J	1.1	0.24 J	2.84	EVOAVATED	
CSW-52	GS-19-E	#87201		ND	1.7 J	ND	ND	1.70	EXCAVATED	
CSW-53	GS-19-W	#07201		ND	1.9	2.5	0.92	5.32		
CSB-11	GS-19-B		2'	ND	0.68 J	ND	ND	0.68	BELOW PETL	
CSW-54	GS-17-N			ND	4.5 J	4.2	1.5	10.2	AT BOUNDARY	
CSW-55	00-17-10			ND	2.1	2.5	0.84	5.44	EXCAVATED	
CSW-56	GS-17-S		0' - 2'	ND	0.62 J	0.67	0.38	1.67	AT BOUNDARY	
CSW-57			0 2	ND	0.65	0.96	0.48	2.09		
CSW-58	GS-17-W			ND	7.5 J	4.4	1.4	13.3	EXCAVATED	
CSW-59	GS-17-W		01	0.68	ND	1.8 J	0.76	3.24	AT BOUNDARY	
CSB-12	GS-17-B		2'	0.57	ND	1.0 J	0.39	1.96	EXCAVATED	
CSB-13	GS-17-MW		01	ND	ND	6.6	3.4	10		
CSB-14	GS-17-ME		2'	ND	ND	0.90	0.53	1.43	EXCAVATED	
CSB-15	GS-17-E		01	ND	ND	0.58	0.62 J	1.20		
CSB-16	GS-19/TS-15	0/04/45	2'	ND	ND	0.90	0.19 J	1.09		
CSW-50-2	GS-19-NE	9/24/15 #87872	2'	ND	1.30	ND	ND	1.30	EXCAVATED	
CSW-51-2A	GS-19-S	#01012		ND	ND 4.00	ND 0.57	ND	0	BELOW PETL	
CSW-51-2B CSW-52-2	GS-19-E		0' - 2'	ND ND	1.20 1.10	0.57 ND	ND ND	1.77	EXCAVATED EXCAVATED	
CSW-53-2	GS-19-E GS-19-W					ND ND	ND	ND ND	ND	1.10 0
CSW-60	TS-15-N		1'	ND ND	ND ND	ND ND	ND ND	0	BELOW PETL	
CSW-00 CSB-12-2	GS-17-EB		'	ND	ND	ND	ND ND	0	BELOW PETL	
CSB-12-2 CSB-13-2	GS-17-EB			ND	ND	ND	ND ND	0	BELOW PETL	
CSB-14-2	GS-17-ME		3'	ND	ND	ND	0.34	0.34	BELOW PETE	
CSB-15-2	GS-17-E			ND	ND	0.86 J	0.60 J	1.46	EXCAVATED	
CSW-55-2	GS-17-WN		0' - 3'	ND	ND	2.2	0.97 J	3.17	501115151	
CSW-61	GS-17-MN			ND	ND	1.9	0.78 J	2.68	BOUNDARY	
CSW-62	GS-17-MS			ND	ND	ND	ND	0	BELOW PETL	
CSW-63	GS-17-MN	40/44/45		18	ND	5.1 J	ND	23.1	BOUNDARY	
CSW-64	GS-17-MS	10/14/15 #89114	0' - 2'	ND	0.78 J	1.2 J	0.61 J	2.59	DOUNDAIN	
CSW-65	GS-17-EN	#09114		ND	ND	ND	ND	0	BOUNDARY	
CSW-66	GS-17-ES			ND	0.55 J	0.94 J	0.55 J	2.04	BOOMBART	
CSW-67	GS-17-E			ND	ND	0.14 J	ND	0.14	BELOW PETL	
CSW-68	GS-19-NE			ND	1.4	0.64 J	ND	2.04	BOUNDARY	
CSW-69	GS-19-E		0' - 2'	ND	ND 0.70	ND	ND	0	BELOW PETL	
CSW-70	GS-19-SE			ND	0.72	0.38	ND	1.1	EXCAVATED	
CSW-51-3B	GS-19-SW		01	ND	0.81	0.34	ND	1.15	DELOW DET	
CSB-17	GS-19-EB		2'	ND	0.30	ND	ND	0.30	BELOW PETL	
CSB-15-3	GS-17-EB	10/26/15	3'	ND	ND 0.00	ND 0.40 I	ND	0	BEI 817:	
CSW-51-4B	GS-19-SW	#89839	0' - 2'	ND	0.29	0.16 J	ND 0.47 I	0.45	BELOW PETL	
CSW-70-2	GS-19-SE	11/2/2015		ND	0.77	0.57	0.17 J	1.51	EXCAVATED	
CSW-70-3	GS-19-SE	11/2/2015 #90295	0' - 2'	ND	0.78	0.64	0.17 J	1.59	EVALUATE	

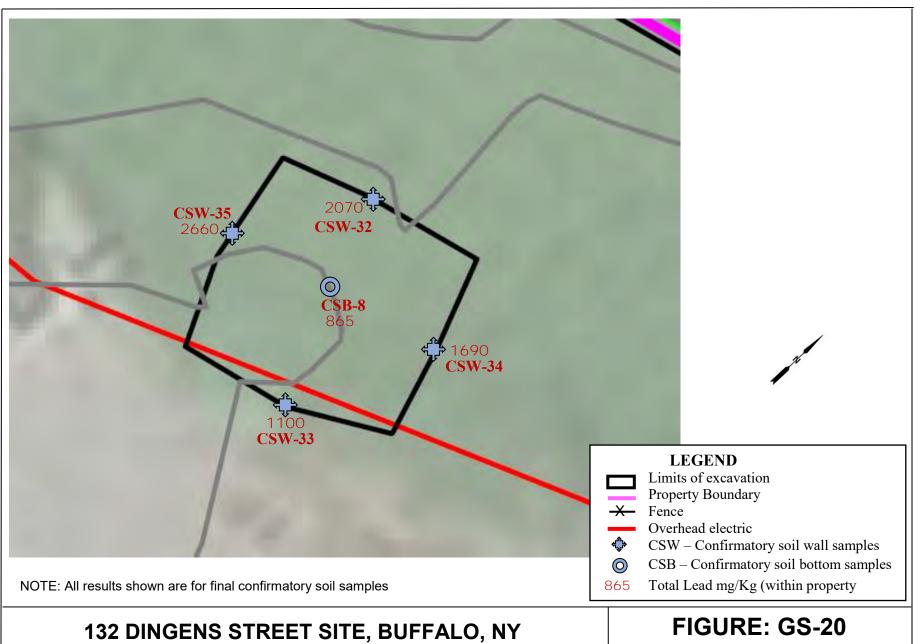
Note: 1. ND - Not Detected; NA = Not Analyzed; J = Below MDL; N=North; S=South; E=East; W=West; CSWs are wall and CSBs are bottom samples 2. EACH SOIL SAMPLE IS A COMPOSITE OF 7 TO 10 GRAB SAMPLES

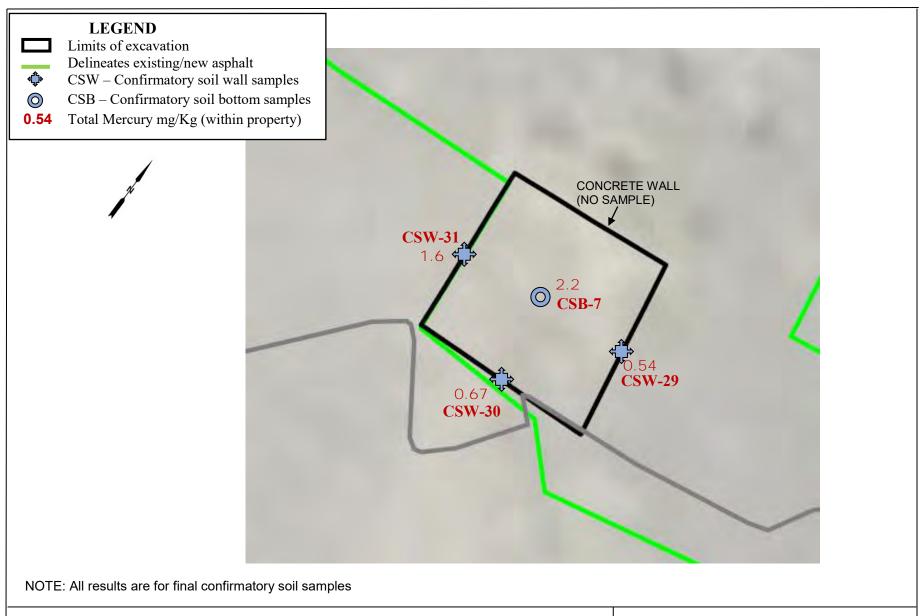
 ^{2. 2}nd excavation indicated by "-2" at end of sample ID; 3rd excavation by "-3"; and 4th by "-4"
 4. Exceedance of PETL by confirmatory soil sample indicated by GREY color shading
 5. Confirmatory soil samples below PETLs indicated by GREEN color shading



NOTE: Figure shows intermediate and final confirmatory soil sample results

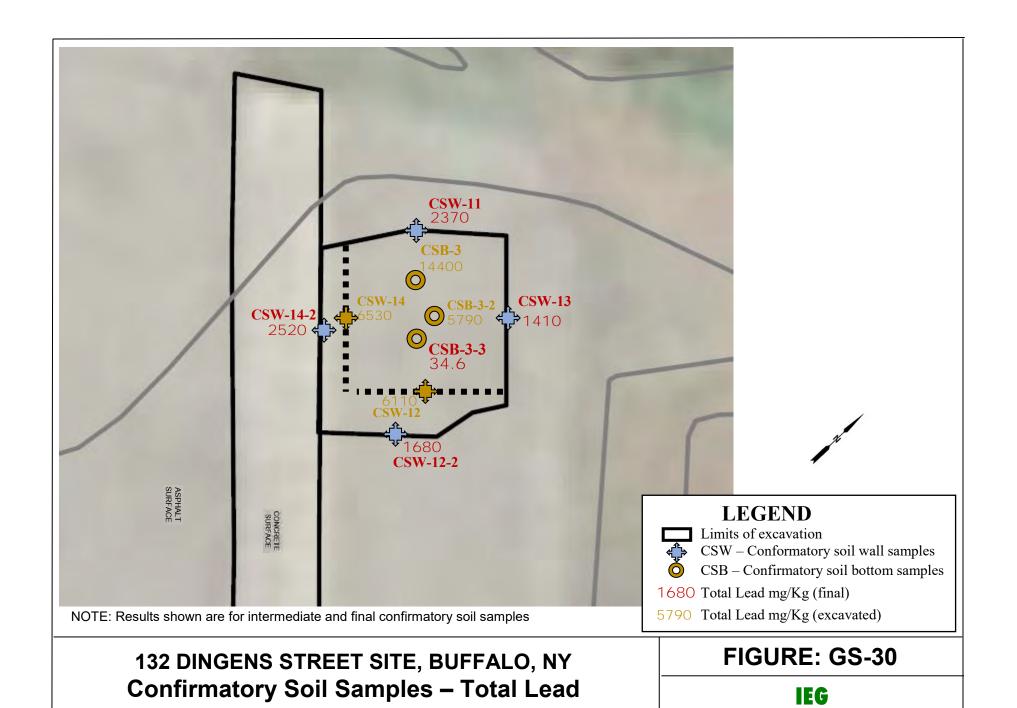
132 DINGENS STREET SITE, BUFFALO, NY Confirmatory Soil Samples - PCBs

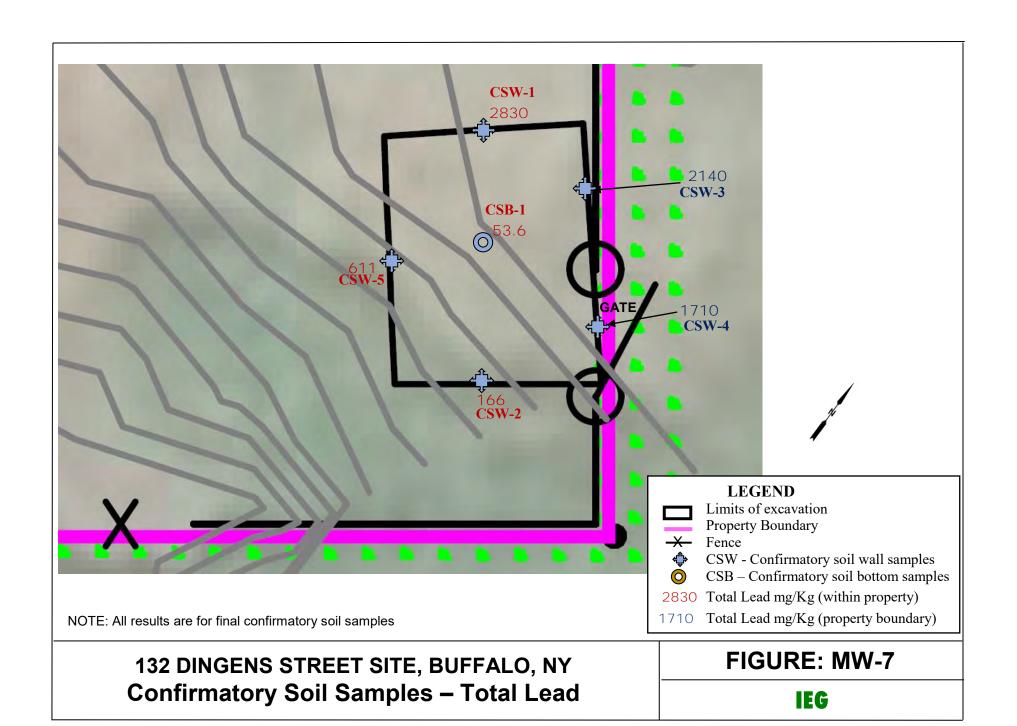

FIGURE: GS-17

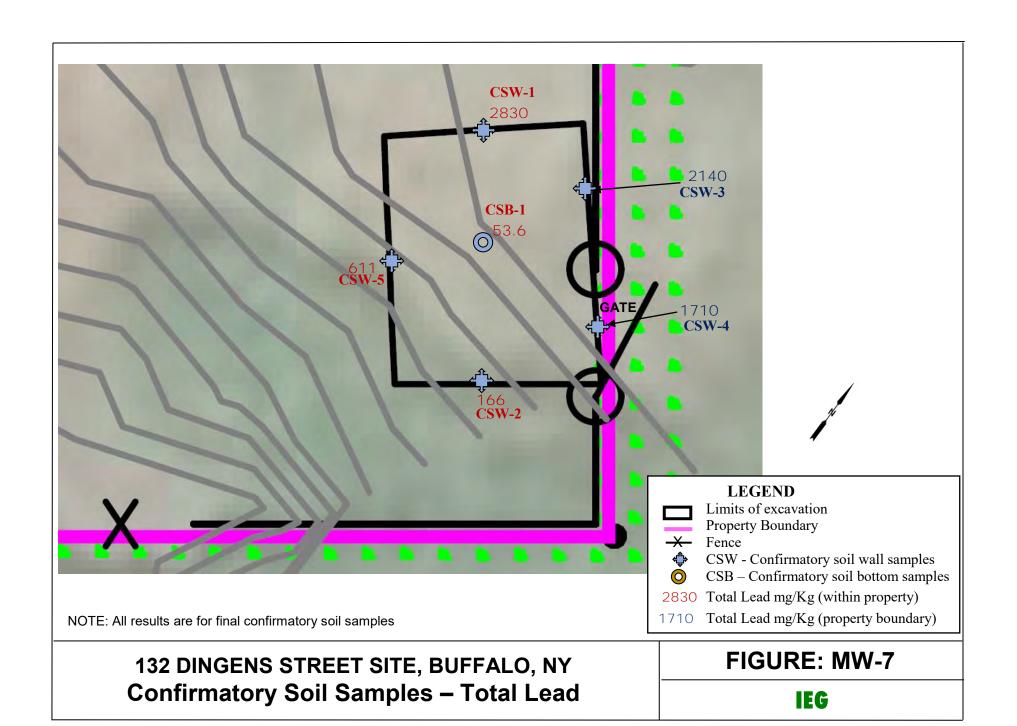

NOTE: Figure shows intermediate and final confirmatory soil sample results

132 DINGENS STREET SITE, BUFFALO, NY Confirmatory Soil Samples - PCBs

FIGURE: GS-19




132 DINGENS STREET SITE, BUFFALO, NY Confirmatory Soil Samples - Lead



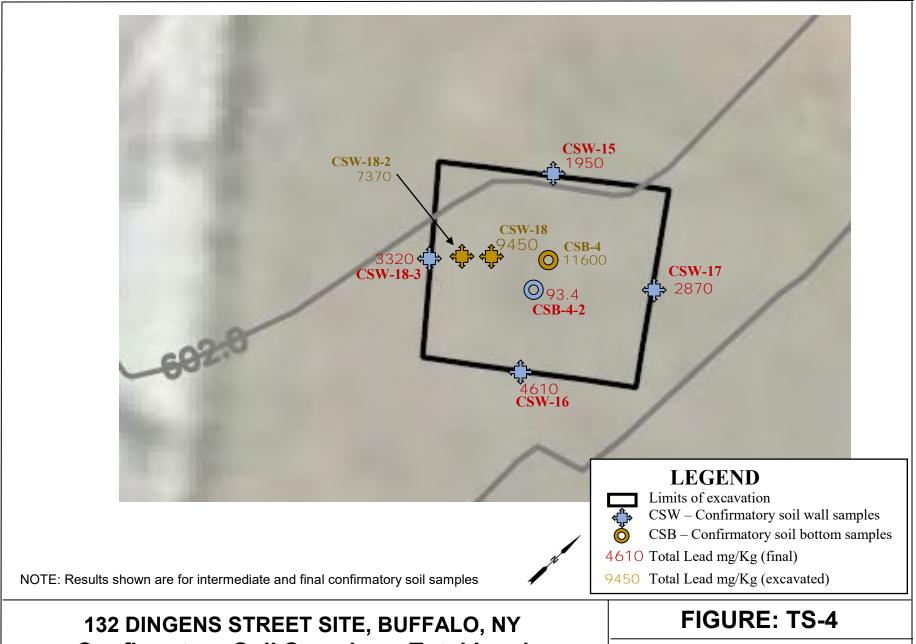
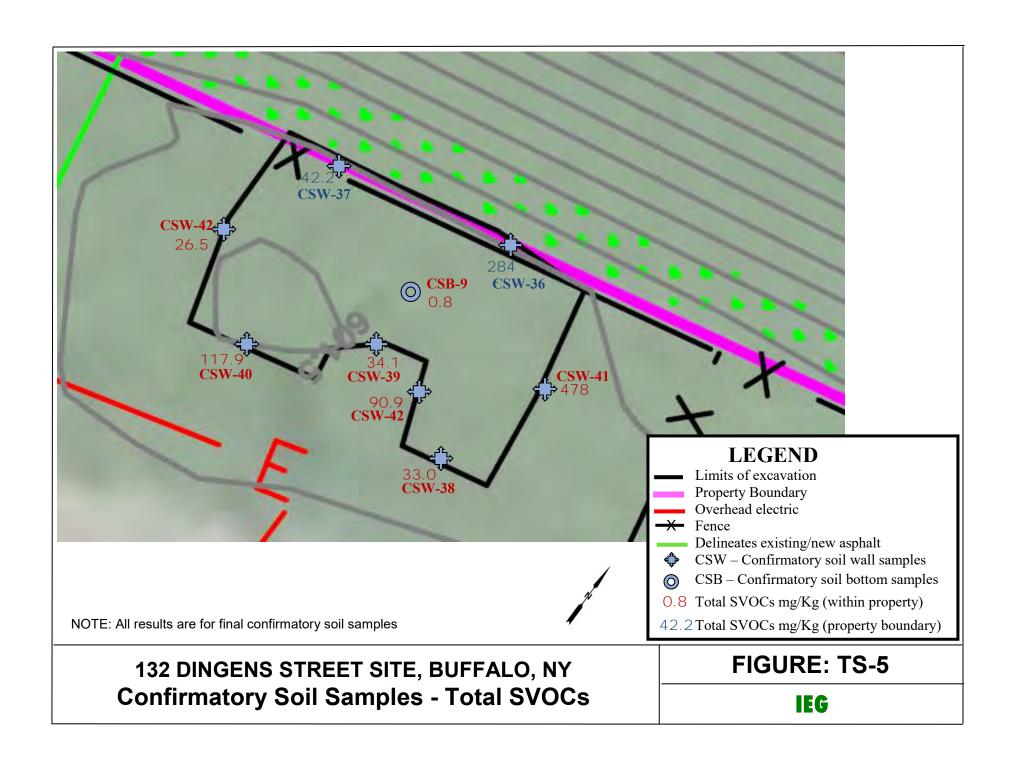
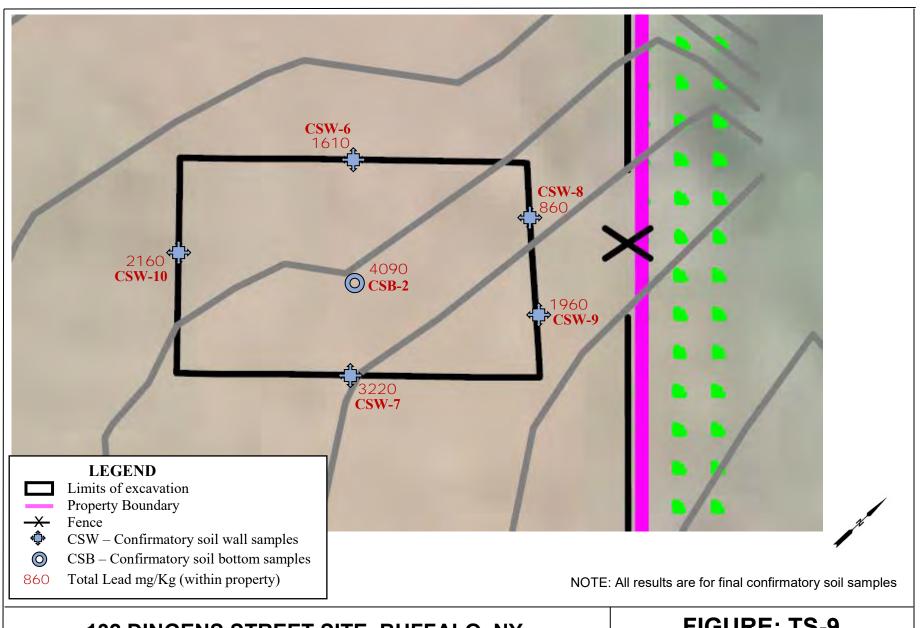
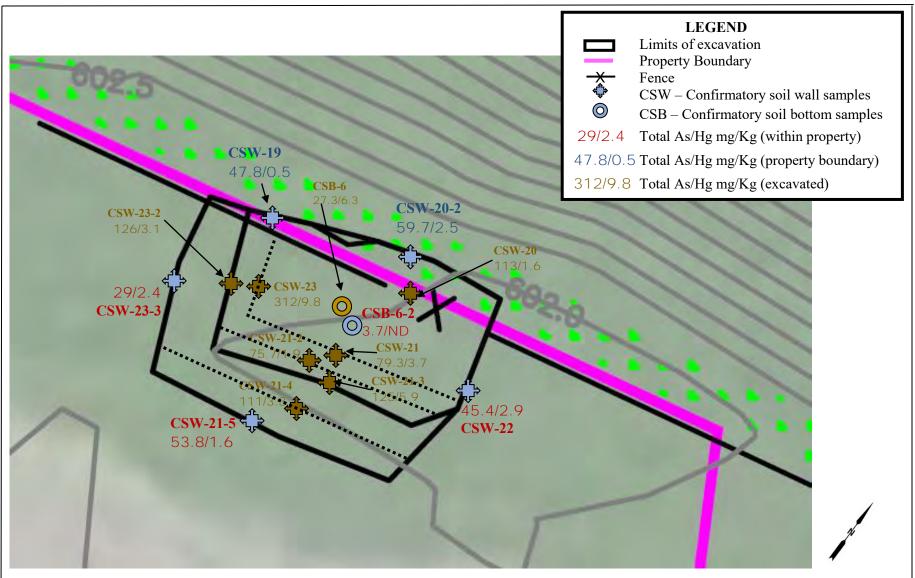
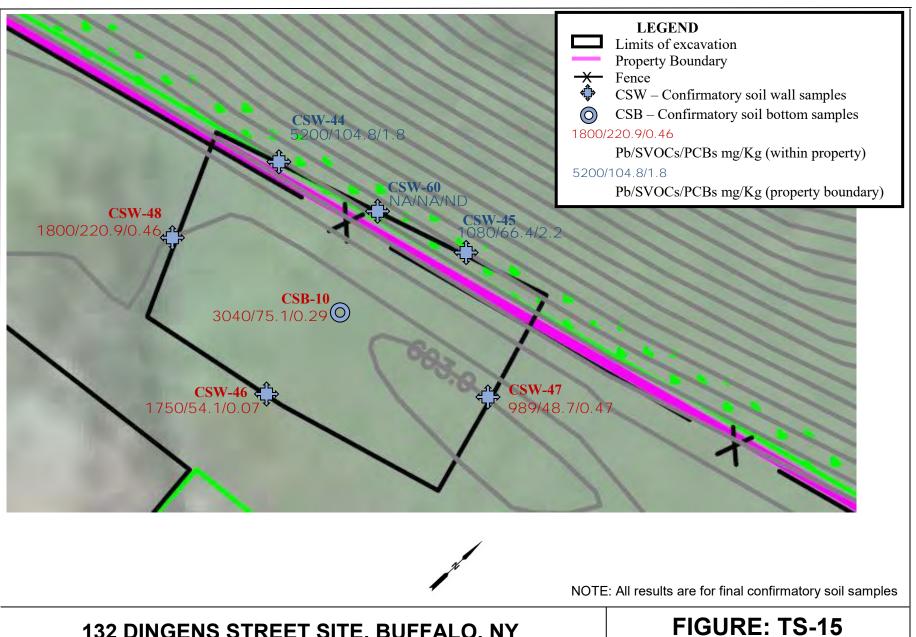

132 DINGENS STREET SITE, BUFFALO, NY Confirmatory Soil Samples - Mercury

FIGURE: GS-21






Confirmatory Soil Samples – Total Lead


132 DINGENS STREET SITE, BUFFALO, NY **Confirmatory Soil Samples - Total Lead** FIGURE: TS-9

NOTE: Results are for intermediate and final confirmatory soil samples

132 DINGENS STREET SITE, BUFFALO, NY Confirmatory Soil Samples – Arsenic/Mercury

FIGURE: TS-13

132 DINGENS STREET SITE, BUFFALO, NY **Confirmatory Soil Samples – Lead/SVOCs/PCBs**

APPENDIX I DUSRs for CONFIRMATORY SOIL & OFF-SITE MATERIALS (Digital Copy on CD)

APPENDIX I-1 DUSRs (Digital Copy on CD)

SUMMARY OF THE ANALYTICAL DATA VALIDATION 132 Dingens

Soil and Water Total Metals - for Lead Samples Collected: July 30, 2015 Samples Received: July 30, 2015 Sample Delivery Group: J84833 Laboratory – TestAmerica Laboratory Reference Numbers:

Lab ID	Field Sample #	Matrix
480-84833-1	CSW-1	Solid
480-84833-2	CSW-2	Solid
480-84833-3	CSW-3	Solid
480-84833-4	CSW-4	Solid
480-84833-4MS	CSW-4	Solid
480-84833-4MSD	CSW-4	Solid
480-84833-5	CSW-5	Solid
480-84833-6	CSB-1	Solid
480-84833-9	CSW-6	Solid
480-84833-10	CSW-7	Solid
480-84833-11	CSW-8	Solid
480-84833-12	CSW-9	Solid
480-84833-13	CSW-10	Solid
480-84833-14	CSB-2	Solid
480-84833-17	CSW-11	Solid
480-84833-18	CSW-12	Solid
480-84833-19	CSW-12 DUP	Solid
480-84833-20	ERB-1	Water
480-84833-21	CSW-13	Solid
480-84833-22	CSW-14	Solid
480-84833-23	CSB-3	Solid
480-84833-26	CSW-15	Solid
480-84833-26MS	CSW-15	Solid
480-84833-26MSD	CSW-15	Solid
480-84833-27	CSW-16	Solid
480-84833-28	CSW-17	Solid
480-84833-29	CSW-18	Solid
480-84833-30	CSB-4	Solid
480-84833-31	CSB-4 DUP	Solid

Inorganics SDG: J84833 Page 2

Soil and water samples were validated for inorganic analyses by the US EPA Region II data validation SOP (HW-2, Revision 13). Data were reviewed for usability according to the following criteria:

- * Holding Times
- * Calibration Verification
- * CRDL Standard
- * Laboratory Control Sample
- * Serial Dilution
- * Calibration Blanks
- * Field Blank / Equipment Rinsate Blank
- * Preparation Blanks
- * Matrix Spike
- * Duplicate Analyses
- * ICP Interference Check Sample
- * Detection Limit Results
- * Linear Range
- * Sample Results

Data Validation Summary

No problems were detected that would affect the use of the data.

Holding Times

All samples were analyzed within the required holding times.

CRDL Standards

All of the CRDL standards were within the 70% - 130% quality control limits used for the validation.

Initial and Continuing Calibrations

No problems were found with any of the initial or continuing calibrations directly associated with the analyses of these samples.

Preparation Blank

Lead was detected at a concentration of 0.0258 J mg/kg in the soil preparation blank.

The concentrations of lead in the samples were too high to be affected by the low level method blank contamination.

The "B" qualifiers were removed from the "Interpreted Qualifier" column in the EDD.

^{* -} Indicates that all criteria were met for this parameter.

Calibration Blanks

Lead was not detected in any of the calibration blanks.

Equipment Rinsate Blank

Lead was detected at a concentration of 9.0 mg/l in rinsate blank 480-84833-20 / ERB-1.

The concentrations of lead in the samples were too high to be affected by the low level blank contamination.

ICP Interference Check Sample

All of the ICP Interference Check Sample recoveries were within the required limits.

Matrix Spike Recovery

Samples 480-84833-4 / CSW-4 and 480-84833-26 / CSW-15 were used as the matrix spike and matrix spike duplicate.

The concentrations of lead in the samples (1710 mg/kg and 1950 mg/kg) were much too high to be affected by the concentration of the matrix spike added (70 mg/kg).

The data were not required to be qualified for the low spike recovery.

Duplicate Analysis

Samples 480-84833-4 / CSW-4 and 480-84833-26 / CSW-15 were used as the matrix spike duplicates. All RPDs were less than the 20% required limit (5% & 2%).

Laboratory Control Sample

No problems were detected with the recoveries of the LCS standards.

Serial Dilution

Samples 480-84833-4 / CSW-4 and 480-84833-26 / CSW-15 were used as the serial dilutions. All percent differences were less than 10%.

Instrument Detection Limit

No problems were found with the instrument detection limits.

ICP Linear Ranges

No problems were detected with the linear ranges.

Inorganics SDG: J84833 Page 4

Sample Results

Sample 480-84833-14 / CSB-2

The lead data for this sample was flagged with the "J" qualifier since the percent moisture in the sample (54%) was greater than 50%.

Sample 480-84833-23 / CSB-3

The lead data for this sample was flagged with the "J" qualifier since the percent moisture in the sample (60%) was greater than 50%.

No other problems were detected with any of the data.

SUMMARY OF THE ANALYTICAL DATA VALIDATION 132 Dingens

Soil and Water Total Metals - for Lead, Arsenic and Mercury

Samples Collected: August 21, 2015 Samples Received: August 21, 2015 Sample Delivery Group: J86066 Laboratory – TestAmerica

Laboratory Reference Numbers:

Lab ID	Field Sample #	Matrix
480-86066-1	CSW-23	Solid
480-86066-2	CSW-24	Solid
480-86066-3	CSW-25	Solid
480-86066-4	CSW-26	Solid
480-86066-4MS	CSW-26	Solid
480-86066-4MSD	CSW-26	Solid
480-86066-5	CSW-27	Solid
480-86066-6	CSW-28	Solid
480-86066-7	CSW-29	Solid
480-86066-8	CSW-30	Solid
480-86066-9	CSW-31	Solid
480-86066-10	CSB-5	Solid
480-86066-11	CSB-6	Solid
480-86066-12	CSB-7	Solid
480-86066-13	CSW-18-2	Solid
480-86066-14	CSW-14-2	Solid
480-86066-15	CSB-4-2	Solid
480-86066-16	ERB-2	Water
480-86066-17	CSW-19	Solid
480-86066-18	CSW-20	Solid
480-86066-19	CSW-21	Solid
480-86066-20	CSW-22	Solid

Soil and water samples were validated for inorganic analyses by the US EPA Region II data validation SOP (HW-2, Revision 13). Data were reviewed for usability according to the following criteria:

- * Holding Times
- * Calibration Verification
- * CRDL Standard
- * Laboratory Control Sample
- * Serial Dilution
- * Calibration Blanks
- * Field Blank / Equipment Rinsate Blank
- * Preparation Blanks
 - Matrix Spike
- * Duplicate Analyses
- * ICP Interference Check Sample
- * Detection Limit Results
- * Linear Range
- * Sample Results

^{* -} Indicates that all criteria were met for this parameter.

Data Validation Summary

The laboratory's case narrative states:

The following samples were received unpreserved and were preserved upon receipt to the laboratory: ERB-2 (480-86066-16). Regulatory documents require a 24-hour waiting period from the time of the addition of the acid preservative to the time of digestion. Preserved on 08/21/15 @ 1950 using HNO3 acid, lot number 106819.

The samples were collected on 8/21/15. The lack of field preservation did not affect the use of the data.

The problem with the low matrix spike recovery for arsenic (64%) should be noted.

No other problems were detected that would affect the use of the data.

Holding Times

All samples were analyzed within the required holding times.

CRDL Standards

All of the CRDL standards were within the 70% - 130% quality control limits used for the validation.

Initial and Continuing Calibrations

No problems were found with any of the initial or continuing calibrations directly associated with the analyses of these samples.

Preparation Blank

No analytes were detected in the preparation blank.

Calibration Blanks

No analytes were detected in the calibration blanks.

Equipment Rinsate Blank

No analytes were detected in the rinsate blank.

ICP Interference Check Sample

All of the ICP Interference Check Sample recoveries were within the required limits.

Matrix Spike Recovery

Sample 480-86066-4 / CSW-26 was used as the matrix spike and matrix spike duplicate.

The concentration of mercury in the sample (3.8 mg/kg) was much too high to be affected by the concentration of the matrix spike added (0.412 mg/kg).

The data were not required to be qualified for the low spike recovery.

The recovery of arsenic in the matrix spike duplicate (64%) was less than the 75% quality control limit.

All of the arsenic data were flagged with the "J" qualifier and are estimated values.

A matrix spike was not analyzed for lead.

Duplicate Analysis

Sample 480-86066-4 / CSW-26 was used as the matrix spike duplicate. All RPDs were less than the 20% required limit (15% & 10%).

Laboratory Control Sample

No problems were detected with the recoveries of the LCS standards.

Serial Dilution

Sample 480-86066-4 / CSW-26 was used as the serial dilution. All percent differences were less than 10%.

A lead serial dilution was not analyzed.

Instrument Detection Limit

No problems were found with the instrument detection limits.

ICP Linear Ranges

No problems were detected with the linear ranges.

Sample Results

No problems were detected with any of the data.

SUMMARY OF THE ANALYTICAL DATA VALIDATION 132 Dingens

Soil and Water Total Metals - for Lead Samples Collected: August 27, 2015 Samples Received: August 27, 2015 Sample Delivery Group: J86308

Laboratory - TestAmerica

Laboratory Reference Numbers:

Lab ID	Field Sample #	Matrix
480-86308-1	CSW-32	Solid
480-86308-2	CSW-33	Solid
480-86308-2DU	CSW-33	Solid
480-86308-3	CSW-34	Solid
480-86308-4	CSW-35	Solid
480-86308-4MS	CSW-35	Solid
480-86308-4MSD	CSW-35	Solid
480-86308-5	CSB-8	Solid
480-86308-6	ERB-3	Water

Soil and water samples were validated for inorganic analyses by the US EPA Region II data validation SOP (HW-2, Revision 13). Data were reviewed for usability according to the following criteria:

- * Holding Times
- * Calibration Verification
- * CRDL Standard
- * Laboratory Control Sample
- * Serial Dilution
- * Calibration Blanks
- * Field Blank / Equipment Rinsate Blank
- * Preparation Blanks
- * Matrix Spike
- Duplicate Analyses
- * ICP Interference Check Sample
- * Detection Limit Results
- * Linear Range
- * Sample Results

Data Validation Summary

The RPD of the lead analyses in the matrix spike duplicate was 63% which was greater than the 20% quality control limit.

No other problems were detected that would affect the use of the data.

^{* -} Indicates that all criteria were met for this parameter.

Holding Times

All samples were analyzed within the required holding times.

CRDL Standards

All of the CRDL standards were within the 70% - 130% quality control limits used for the validation.

Initial and Continuing Calibrations

No problems were found with any of the initial or continuing calibrations directly associated with the analyses of these samples.

Preparation Blank

Lead was not detected in the soil preparation blank.

Calibration Blanks

Lead was not detected in any of the calibration blanks.

Equipment Rinsate Blank

Lead was detected at a concentration of 0.015 mg/l in rinsate blank 480-86308-6 / ERB-3.

The concentrations of lead in the samples were too high to be affected by the low level blank contamination.

ICP Interference Check Sample

All of the ICP Interference Check Sample recoveries were within the required limits.

Matrix Spike Recovery

Sample 480-86308-4 / CSW-35 was used as the matrix spike and matrix spike duplicate.

The concentration of lead in the sample (2660 mg/kg) was too high to be affected by the concentration of the matrix spike added (70 mg/kg).

Duplicate Analysis

Sample 480-86308-4 / CSW-35 was used as the matrix spike duplicate.

The RPD of the lead analyses was 63% which was greater than the 20% quality control limit.

All of the lead data were flagged with the "J" qualifier and are estimated values.

Sample 480-86308-2 / CSW-33 was analyzed as a laboratory duplicate.

The RPD was at the 20% quality control limit used for the data validation.

Page 3

Laboratory Control Sample

No problems were detected with the recoveries of the LCS standards.

Serial Dilution

Sample 480-86308-2 / CSW-33 was used as the serial dilution. All percent differences were less than 10%.

Instrument Detection Limit

No problems were found with the instrument detection limits.

ICP Linear Ranges

No problems were detected with the linear ranges.

Sample Results

No problems were detected with any of the data.

DATA USABILITY SUMMARY REPORT 132 Dingens

Soil Semivolatile Organic Analyses by Method SW846 8260B

Samples Collected: June 3, 2015 Samples Collected: August 27, 2015 Samples Received: August 27, 2015 Sample Delivery Group: J86308

Laboratory - TestAmerica

Laboratory Reference Numbers:

Lab ID	Field Sample #
480-86308-7	CSW-36
480-86308-8	CSW-37
480-86308-8DU	CSW-37
480-86308-9	CSW-38
480-86308-10	CSW-39
480-86308-11	CSW-40
480-86308-11MS	CSW-40
480-86308-11MSD	CSW-40
480-86308-12	CSW-41
480-86308-12 DL	CSW-41 DL
480-86308-13	CSW-42
480-86308-14	CSW-43
480-86308-15	CSB-9

Soil samples were validated for analyses of semivolatile organics by the US EPA Region II data validation SOP (HW-22, Revision 3). Data were reviewed for usability according to the following criteria:

- * Data Completeness
- * GC/MS Tuning
- * Holding Times
- * Calibrations
- * Laboratory Blanks
- Laboratory Control Sample
- * Surrogate Compound Recoveries
- * Internal Standard Recoveries
 - Matrix Spike / Matrix Spike Duplicate
 - Field Blank
- * Compound Identification
- * Compound Quantitation

^{* -} Indicates that all criteria were met for this parameter.

DATA VALIDATION SUMMARY

The laboratory's case narrative states:

The following samples were diluted due to appearance and viscosity: CSW-41 (480-86308-12), CSW-42 (480-86308-13), CSW-43 (480-86308-14) and CSB-9 (480-86308-15). As such, surrogate recoveries are below the calibration range, and elevated reporting limits (RLs) are provided.

The following samples were diluted due to appearance and viscosity: CSW-36 (480-86308-7), CSW-37 (480-86308-8), CSW-37 (480-86308-8[DU]), CSW-38 (480-86308-9), CSW-39 (480-86308-10), CSW-40 (480-86308-11), CSW-40 (480-86308-11[MS]) and CSW-40 (480-86308-11[MSD]). Elevated reporting limits (RL) are provided.

Six surrogates are used for this analysis. The laboratory's SOP allows two of these surrogates to be outside acceptance criteria without performing reanalysis. The following samples contained an allowable number of surrogate compounds outside limits: CSW-36 (480-86308-7), CSW-37 (480-86308-8[DU]), CSW-39 (480-86308-10) and CSW-40 (480-86308-11). These results have been reported and qualified.

The following analyte recovered outside control limits for the LCS associated with preparation batch 480-261380 and analytical batch 480-262027: Atrazine. This is not indicative of a systematic control problem because these were random marginal exceedances. Qualified results have been reported.

The following sample was diluted due to an abundance of target analytes: CSW-41 (480-86308-12). As such, surrogate recoveries are below the calibration range and may not be reported.

The problems with the laboratory control sample and matrix spike should be noted

Holding Times

All samples were extracted (14 days) and analyzed (40 days) within the contractual and technical times required by the US EPA Region II protocols.

Tunes

No problems were detected with any of the tunes associated with the samples of this delivery group.

Surrogate Recoveries

All of the surrogate recoveries were within the required limits with the following exceptions:

		A	A	В	В	Α	В
Client Sample	ID Lab Sample ID	2FP	PHL	NBZ	FBP	TBP	TPH
CSW-36	480-86308-7						64%
CSW-39	480-86308-10						59 %
CSW-40	480-86308-11						63%
CSW-41	480-86308-12					151%	
CSW-41 DL	480-86308-12 DL					0%	
CSW-42	480-86308-13					164%	
CSW-43	480-86308-14						62%
CSB-9	480-86308-15					147%	59%
CSW-37 DU	480-86308-8 DU						58%

QC LIMITS

2FP = 2-Fluorophenol (Surr) 18-120

PHL = Phenol-d5 (Surr) 11-120

NBZ = Nitrobenzene-d5 (Surr) 34-132

FBP = 2-Fluorobiphenyl 37-120

TBP = 2,4,6-Tribromophenol (Surr) 39-146

TPH = p-Terphenyl-d14 (Surr) 65-153

The NYS DEC ASP protocols allow for one surrogate in each fraction to be outside of the quality control limits.

The 0% surrogate recovery in sample CSW-41 DL / 480-86308-12 DL was due to a dilution and the data were not required to be qualified.

All other surrogate recoveries were within the required limits.

Matrix Spike / Matrix Spike Duplicate

Sample 480-86308-11 / CSW-40 was used as the matrix spike and matrix spike duplicate. All recoveries and RPDs were within the required limits with the following exceptions:

Compound	MS % Rec.	MSD % Rec.	%RPD
Atrazine	49%	57%	
4-Nitrophenol			28%
Fluorene	11%	27%	16%

The data for atrazine and fluorine were flagged with the "J" qualifier and are estimated values.

The data for 4-nitrophenol were not qualified for the high RPD since it was not detected in the sample.

The concentration of pyrene in the sample (17,000 ug/kg) was too high to be affected by the spike concentration (2,050 ug/kg). The data were not required to be qualified.

Laboratory Control Sample

All LCS recoveries were within the require limits with the exception of atrazine (59%) which was just under the 60% quality control limit.

The data for atrazine were flagged with the "J" qualifier and are estimated values.

Only 13 compounds were included in the target list.

Calibrations

Several compounds in the initial calibration had %RPDs greater that 15%. None of these were detected in the samples and the data were not required to be qualified.

All percent differences in the continuing calibration associated with the original analyses of the samples were less than 20%.

All percent differences in the continuing calibration associated with the diluted analysis sample 480-86308-12 / CSW-41 were less than 20%.

Method Blanks

No compounds were detected in the method blank.

Field Blank

A field blank was not analyzed with this sample delivery group.

Internal Standard Areas and Retention Times

All internal standard recoveries and retention times were within the required limits.

Sample Results

No problems were found with the results of any of the samples of this delivery group.

Soil Total Metals - for Lead, Arsenic and Mercury

Samples Collected: August 28, 2015 Samples Received: August 28, 2015 Sample Delivery Group: J86366

Laboratory – TestAmerica

Laboratory Reference Numbers:

Lab ID	Field Sample #
480-86366-1	CSW-18-3
480-86366-2	CSW-12-2
480-86366-3	CSB-3-2
480-86366-3DU	CSB-3-2
480-86366-4	CSB-5-2
480-86366-5	CSB-6-2
480-86366-6	CSW-20-2
480-86366-6DU	CSW-20-2
480-86366-7	CSW-21-2
480-86366-8	CSW-23-2

Soil samples were validated for inorganic analyses by the US EPA Region II data validation SOP (HW-2, Revision 13). Data were reviewed for usability according to the following criteria:

- * Holding Times
- * Calibration Verification
- * CRDL Standard
- * Laboratory Control Sample
 - Serial Dilution
- * Calibration Blanks
 - Field Blank / Equipment Rinsate Blank
- * Preparation Blanks
 - Matrix Spike
 - Duplicate Analyses
- * ICP Interference Check Sample
- * Detection Limit Results
- * Linear Range
- * Sample Results

Data Validation Summary

No problems were detected that would affect the use of the data.

^{* -} Indicates that all criteria were met for this parameter.

Holding Times

All samples were analyzed within the required holding times.

CRDL Standards

All of the CRDL standards were within the 70% - 130% quality control limits used for the validation.

Initial and Continuing Calibrations

No problems were found with any of the initial or continuing calibrations directly associated with the analyses of these samples.

Preparation Blank

No analytes were detected in the preparation blanks.

Calibration Blanks

No analytes were detected in the calibration blanks.

Equipment Rinsate Blank

An equipment rinsate blank was not analyzed.

ICP Interference Check Sample

All of the ICP Interference Check Sample recoveries were within the required limits.

Matrix Spike Recovery

A matrix spike was not analyzed.

Duplicate Analysis

A matrix spike duplicate was not analyzed.

Samples 480-86366-3 / CSB-3-2 and 480-86366-6 / CSW-20-2 were used as the matrix spike duplicates. All RPDs were less than the 20% required limit.

Laboratory Control Sample

No problems were detected with the recoveries of the LCS standards.

Serial Dilution

A serial dilution was not analyzed.

Inorganics SDG: J86366 Page 3

Instrument Detection Limit

No problems were found with the instrument detection limits.

ICP Linear Ranges

No problems were detected with the linear ranges.

Sample Results

No problems were detected with any of the data.

Soil Total Metals - for Arsenic and Mercury Samples Collected: September 9, 2015 Samples Received: September 9, 2015 Sample Delivery Group: J86938 Laboratory – TestAmerica Laboratory Reference Numbers:

Lab ID	Field Sample #
480-86938-1	CSW-21-3
480-86938-2	CSW-23-3
480-86938-3	CSB-5-3

Soil samples were validated for inorganic analyses by the US EPA Region II data validation SOP (HW-2, Revision 13). Data were reviewed for usability according to the following criteria:

- * Holding Times
- * Calibration Verification
- * CRDL Standard
- * Laboratory Control Sample
 - Serial Dilution
- * Calibration Blanks
- Field Blank / Equipment Rinsate Blank
- * Preparation Blanks
 - Matrix Spike
 - Duplicate Analyses
- * ICP Interference Check Sample
- * Detection Limit Results
- * Linear Range
- * Sample Results

Data Validation Summary

No problems were detected that would affect the use of the data.

^{* -} Indicates that all criteria were met for this parameter.

Holding Times

All samples were analyzed within the required holding times.

CRDL Standards

All of the CRDL standards were within the 70% - 130% quality control limits used for the validation.

Initial and Continuing Calibrations

No problems were found with any of the initial or continuing calibrations directly associated with the analyses of these samples.

Preparation Blank

No analytes were detected in the preparation blanks.

Calibration Blanks

No analytes were detected in the calibration blanks.

Equipment Rinsate Blank

An equipment rinsate blank was not analyzed.

ICP Interference Check Sample

All of the ICP Interference Check Sample recoveries were within the required limits.

Matrix Spike Recovery

A matrix spike was not analyzed.

Duplicate Analysis

A matrix spike duplicate was not analyzed.

Laboratory Control Sample

No problems were detected with the recoveries of the LCS standards.

Serial Dilution

A serial dilution was not analyzed.

Instrument Detection Limit

No problems were found with the instrument detection limits.

Inorganics SDG: J86938 Page 3

ICP Linear Ranges

No problems were detected with the linear ranges.

Sample Results

No problems were detected with any of the data.

Soil Total Metals - for Lead

Samples Collected: September 14, 2015 Samples Received: September 14, 2015

Sample Delivery Group: J87201

Laboratory - TestAmerica

Laboratory Reference Numbers:

Lab ID	Field Sample #	Matrix
480-87201-1	CSW-44	Solid
480-87201-2	CSW-45	Solid
480-87201-3	CSW-46	Solid
480-87201-4	CSW-47	Solid
480-87201-5	CSW-48	Solid
480-87201-17	CSB-10	Solid
480-87201-17MS	CSB-10	Solid
480-87201-17MSD	CSB-10	Solid

Soil samples were validated for inorganic analyses by the US EPA Region II data validation SOP (HW-2, Revision 13). Data were reviewed for usability according to the following criteria:

- * Holding Times
- * Calibration Verification
- * CRDL Standard
- * Laboratory Control Sample
- * Serial Dilution
- * Calibration Blanks
- Field Blank / Equipment Rinsate Blank
- * Preparation Blanks
- * Matrix Spike
- Duplicate Analyses
- * ICP Interference Check Sample
- * Detection Limit Results
- * Linear Range
- * Sample Results

Data Validation Summary

The problems with the matrix spike duplicate RPD of 55% should be noted.

No other problems were detected that would affect the use of the data.

^{* -} Indicates that all criteria were met for this parameter.

Holding Times

All samples were analyzed within the required holding times.

CRDL Standards

All of the CRDL standards were within the 70% - 130% quality control limits used for the validation.

Initial and Continuing Calibrations

No problems were found with any of the initial or continuing calibrations directly associated with the analyses of these samples.

Preparation Blank

Lead was not detected in the preparation blank.

Calibration Blanks

Lead was not detected in any of the calibration blanks.

Equipment Rinsate Blank

An equipment rinsate blank was not analyzed.

ICP Interference Check Sample

All of the ICP Interference Check Sample recoveries were within the required limits.

Matrix Spike Recovery

Sample 480-87201-17 / CSB-10 was used as the matrix spike and matrix spike duplicate.

The concentrations of lead in the samples (3000 mg/kg were much too high to be affected by the concentration of the matrix spike added (60 mg/kg).

Duplicate Analysis

Sample 480-87201-17 / CSB-10 was used as the matrix spike duplicates. The RPD of 55% was above the 20% quality control limit.

All of the lead data were flagged with the "J" qualifier and are estimated values.

Laboratory Control Sample

No problems were detected with the recoveries of the LCS standards.

Inorganics SDG: J87201 Page 3

Serial Dilution

Sample 480-87201-17 / CSB-10 was used as the serial dilution. The lead percent differences was less than 10% (4%).

Instrument Detection Limit

No problems were found with the instrument detection limits.

ICP Linear Ranges

No problems were detected with the linear ranges.

Sample Results

No problems were detected with any of the data.

Soil and Water PCB Analyses by Method SW846 8082

Samples Collected: September 14, 2015 Samples Received: September 14, 2015

Sample Delivery Group: J87201

Laboratory – TestAmerica

Laboratory Reference Numbers:

Lab ID	Field Sample #	Matrix
480-87201-1	CSW-44	Solid
480-87201-2	CSW-45	Solid
480-87201-3	CSW-46	Solid
480-87201-4	CSW-47	Solid
480-87201-5	CSW-48	Solid
480-87201-6	CSW-49	Solid
480-87201-7	CSW-50	Solid
480-87201-8	CSW-51	Solid
480-87201-9	CSW-52	Solid
480-87201-9DU	CSW-52	Solid
480-87201-10	CSW-53	Solid
480-87201-11	CSW-54	Solid
480-87201-12	CSW-55	Solid
480-87201-13	CSW-56	Solid
480-87201-14	CSW-57	Solid
480-87201-15	CSW-58	Solid
480-87201-16	CSW-59	Solid
480-87201-17	CSB-10	Solid
480-87201-17MS	CSB-10	Solid
480-87201-17MSD	CSB-10	Solid
480-87201-18	CSB-11	Solid
480-87201-19	CSB-12	Solid
480-87201-20	ERB-4	Water

Soil and water samples were validated for analyses of PCBs by the US EPA Region II data validation SOP (HW-45, Revision 1). Data were reviewed for usability according to the following criteria:

- Data Completeness
- * Holding Times
 - Laboratory Blanks
- * Field Blank / Equipment Rinsate Blank
- Surrogate Recoveries
- * Matrix Spike / Matrix Spike Duplicate
- * Laboratory Control Sample
 - Calibrations
- * Method Blanks
 - GPC Calibration
- * Compound Identification

^{* -} Indicates that all criteria were met for this parameter.

PCBs SDG: J87201 Page 2

DATA VALIDATION SUMMARY

The laboratory's case narrative states:

The following samples were diluted due to the abundance of target analytes: CSW-50 (480-87201-7), CSW-54 (480-87201-11) and CSW-58 (480-87201-15). Elevated reporting limits (RLs) are provided.

The following samples appear to contain PCB-1248; however, due to weathering or other environmental processes, PCB-1248 in the samples does not closely match the laboratory's Aroclor standard used for instrument calibration: CSW-44 (480-87201-1), CSW-45 (480-87201-2), CSW-46 (480-87201-3), CSW-47 (480-87201-4), CSW-48 (480-87201-5), CSW-49 (480-87201-6), CSW-50 (480-87201-7), CSW-51 (480-87201-8), CSW-54 (480-87201-11), CSW-56 (480-87201-13), CSW-58 (480-87201-15), CSB-10 (480-87201-17), CSB-10 (480-87201-18). Due to the poor match with the Aroclor standard, there is increased qualitative and quantitative uncertainty associated with these results.

The following samples appear to contain PCB-1254; however, due to weathering or other environmental processes, PCB-1254 in the samples does not closely match the laboratory's Aroclor standard used for instrument calibration: CSW-59 (480-87201-16) and CSB-12 (480-87201-19). Due to the poor match with the Aroclor standard, there is increased qualitative and quantitative uncertainty associated with these results.

The following samples appear to contain PCB-1248; however, due to weathering or other environmental processes, PCB-1248 in the samples does not closely match the laboratory's Aroclor standard used for instrument calibration: CSW-52 (480-87201-9) and CSW-52 (480-87201-9[DU]). Due to the poor match with the Aroclor standard, there is increased qualitative and quantitative uncertainty associated with these results.

All primary data is reported from the ZB-5 column.

The data for the samples referenced above were flagged with the "J" qualifier and are estimated values.

Surrogate recoveries were only reported from the ZB-5 column. Recoveries from both columns should be reported.

Calibration blanks did not appear to be analyzed.

PCBs SDG: J87201 Page 3

Holding Times

All extractions and analyses were performed within the required holding times.

Surrogate Recoveries

Surrogate recoveries were only reported from the ZB-5 column.

All surrogate recoveries were within the required limits.

Matrix Spike

Sample 480-87201-17 / CSB-10 was used as the matrix spike and matrix spike duplicate.

All recoveries and RPDs were within the required limits.

Laboratory Control Samples

All recoveries were within the laboratory's quality control limits.

Initial Calibrations

All %RSDs were less than 20%.

Continuing Calibrations

Several of the percent differences on the ZB-35 column were greater than 20% (as high as 31%).

The laboratory's case narrative notes that the data were reported from the ZB-5 column

The data were not qualified for the high percent differences.

GPC Calibration

A GPC cleanup was not performed on these samples.

Method Blanks

No problems were detected with any of the method blanks.

Calibration Blanks

Calibration blanks did not appear to be analyzed.

Field Blank / Equipment Rinsate Blank.

No compounds were detected in the rinsate blank.

PCBs SDG: J87201 Page 4

Sample Results

Samples 480-87201-9 / CSW-52 and 480-87201-9DU / CSW-52

Sample 480-87201-9 / CSW-52 was reported as sample 480-87201-9 RE / CSW-52 RE. (Page 195). This sample was reported in the run log.

Sample 480-87201-9 / CSW-52 was not found in the run log.

Several samples were noted in the laboratory's case narrative as having Aroclor patterns that did not closely match those of the standards. The data for these Aroclors were flagged with the "J" qualifier and are estimated values.

The data were qualified on the basis of the percent difference of the concentrations on the two columns:

% Difference	Qualifier
0 - 25%	None
25 - 70%	"J"
70 - 100%	"JN"
> 100%	"R"
100 - 200% (Interference detected)	"JN"
> 50% (Value is < CRQL)	"∪"

All percent differences were less than 25%.

No other problems were detected with the sample data.

DATA USABILITY SUMMARY REPORT 132 Dingens

Soil Semivolatile Organic Analyses by Method SW846 8260B

Samples Collected: September 14, 2015 Samples Received: September 14, 2015

Sample Delivery Group: J87201

Laboratory - TestAmerica

Laboratory Reference Numbers:

Lab ID	Field Sample #	Matrix
480-87201-1	CSW-44	Solid
480-87201-2	CSW-45	Solid
480-87201-3	CSW-46	Solid
480-87201-4	CSW-47	Solid
480-87201-5	CSW-48	Solid
480-87201-17	CSB-10	Solid
480-87201-17MS	CSB-10	Solid
480-87201-17MSD	CSB-10	Solid

Soil samples were validated for analyses of semivolatile organics by the US EPA Region II data validation SOP (HW-22, Revision 3). Data were reviewed for usability according to the following criteria:

- * Data Completeness
- * GC/MS Tuning
- * Holding Times
 - Calibrations
- * Laboratory Blanks
- * Laboratory Control Sample
- * Surrogate Compound Recoveries
- * Internal Standard Recoveries
 - Matrix Spike / Matrix Spike Duplicate
 - Field Blank
- * Compound Identification
- * Compound Quantitation

DATA VALIDATION SUMMARY

The laboratory's case narrative states:

The following samples was diluted due to the nature of the sample matrix: CSW-44 (480-87201-1), CSW-45 (480-87201-2), CSW-46 (480-87201-3), CSW-47

^{* -} Indicates that all criteria were met for this parameter.

(480-87201-4), CSW-48 (480-87201-5), CSB-10 (480-87201-17), CSB-10 (480-87201-17[MS]) and CSB-10 (480-87201-17[MSD]). As such, surrogate and spike recoveries are below the calibration range or are not reported, and elevated reporting limits (RLs) are provided.

The problems with the calibrations and matrix spike should be noted

Holding Times

All samples were extracted (14 days) and analyzed (40 days) within the contractual and technical times required by the US EPA Region II protocols.

Tunes

No problems were detected with any of the tunes associated with the samples of this delivery group.

Surrogate Recoveries

All of the surrogate recoveries were within the required limits with the following exceptions:

		Α	Α	В	В	Α	В
Client Sample	ID Lab Sample ID	2FP	PHL	NBZ	FBP	TBP	TPH
CSW-46	480-87201-3						60%
CSW-48	480-87201-5						42%

QC LIMITS

2FP = 2-Fluorophenol (Surr) 18-120

PHL = Phenol-d5 (Surr) 11-120

NBZ = Nitrobenzene-d5 (Surr) 34-132

FBP = 2-Fluorobiphenyl 37-120

TBP = 2,4,6-Tribromophenol (Surr) 39-146

TPH = p-Terphenyl-d14 (Surr) 65-153

The NYS DEC ASP protocols allow for one surrogate in each fraction to be outside of the quality control limits. The data were not required to be qualified.

All other surrogate recoveries were within the required limits.

Matrix Spike / Matrix Spike Duplicate

Sample 480-87201-17 / CSB-10 was used as the matrix spike and matrix spike duplicate. All recoveries and RPDs were within the required limits with the exception of pentachlorophenol (141%) which was just over the 136% quality control limit and pyrene which was not recovered from the matrix spike.

Pentachlorophenol was not detected in any of the samples and the high recovery does not affect the use of the data. The data were not required to be qualified.

When pyrene was detected in a sample, it was flagged with the "J" qualifier and is an estimated value. If it was not detected in a sample it was flagged with the "R" qualifier and technically rejected.

The RPD of 2-chlorophenol (27%) was just over the 25% quality control limit. This compound was not detected in any of the samples and the high RPD does not affect the use of the data.

Laboratory Control Sample

All LCS recoveries were within the required limits.

Only 13 compounds were included in the target list.

Calibrations

The following compounds in the initial calibration had %RPDs greater that 15%:

- 2,4-Dinitrophenol
- 2,4-Dinitrotoluene
- 2,6-Dinitrotoluene
- 2-Nitroaniline
- 2-Nitrophenol
- 4,6-Dinitro-2-Methylphenol
- 4-Nitrophenol

Atrazine

Benzaldehyde

Benzo(g,h,i)Perylene

Caprolactam

Dibenz(a,h)Anthracene

Hexachlorobutadiene

Hexachlorocyclopentadiene

Hexachloroethane

Indeno(1,2,3-c,d)Pyrene

N-Nitrosodiphenylamine

Pentachlorophenol

When one of these compounds was detected in a sample, it was flagged with a "J" qualifier and is an estimated value.

Undetected data were not required to be qualified.

All percent differences in the continuing calibration were less than 20% with the exception of bis(2-chloroethyl)ether (22%).

The data for this compound were flagged with the "J" qualifier and are estimated values.

Method Blanks

No compounds were detected in the method blank.

Field Blank

A field blank was not analyzed with this sample delivery group.

Internal Standard Areas and Retention Times

All internal standard recoveries and retention times were within the required limits.

Sample Results

No problems were found with the results of any of the samples of this delivery group.

Soil Total Metals - for Lead, Arsenic and Mercury

Samples Collected: September 17, 2015 Samples Received: September 17, 2015

Sample Delivery Group: J87473

Laboratory – TestAmerica

Laboratory Reference Numbers:

Lab ID	Field Sample #
480-87473-1	CSB-5-4
480-87473-2	CSB-3-3
480-87473-3	CSW-21-4
480-87473-3MS (Hg Only)	CSW-21-4
480-87473-3MSD (Hg Only	() CSW-21-4

Soil samples were validated for inorganic analyses by the US EPA Region II data validation SOP (HW-2, Revision 13). Data were reviewed for usability according to the following criteria:

- * Holding Times
- * Calibration Verification
- * CRDL Standard
- * Laboratory Control Sample
 - Serial Dilution
- * Calibration Blanks
- Field Blank / Equipment Rinsate Blank
- * Preparation Blanks
- * Matrix Spike
- Duplicate Analyses
- * ICP Interference Check Sample
- * Detection Limit Results
- * Linear Range
- * Sample Results

Data Validation Summary

No problems were detected that would affect the use of the data.

^{* -} Indicates that all criteria were met for this parameter.

Inorganics SDG: J87473 Page 2

Holding Times

All samples were analyzed within the required holding times.

CRDL Standards

All of the CRDL standards were within the 70% - 130% quality control limits used for the validation.

Initial and Continuing Calibrations

No problems were found with any of the initial or continuing calibrations directly associated with the analyses of these samples.

Preparation Blank

None of the analytes were detected in the preparation blank.

Calibration Blanks

None of the analytes were detected in the calibration blanks.

Equipment Rinsate Blank

An equipment rinsate blank was not analyzed.

ICP Interference Check Sample

All of the ICP Interference Check Sample recoveries were within the required limits.

Matrix Spike Recovery

Sample 480-87473-3 / CSW-21-4 was used as the matrix spike and matrix spike duplicate for mercury.

The concentrations of mercury in the samples (3.3 mg/kg) were much too high to be affected by the concentration of the matrix spike added (0.47 mg/kg).

Lead and arsenic matrix spikes were not analyzed.

Duplicate Analysis

Sample 480-87473-3 / CSW-21-4 was used as the matrix spike duplicate for mercury.

The RPD of 26% was greater than the quality control limit of 20%.

All of the mercury data were flagged with the "J" qualifier and are estimated values.

Lead and arsenic matrix duplicates were not analyzed.

Inorganics SDG: J87473 Page 3

Laboratory Control Samples

No problems were detected with the recoveries of the LCS standards.

Serial Dilution

A serial dilution was not analyzed.

Instrument Detection Limit

No problems were found with the instrument detection limits.

ICP Linear Ranges

No problems were detected with the linear ranges.

Sample Results

No other problems were detected with any of the data.

Soil PCB Analyses by Method SW846 8082 Samples Collected: September 24, 2015 Samples Received: September 24, 2015

Sample Delivery Group: J87872

Laboratory - TestAmerica

Laboratory Reference Numbers:

Lab ID	Field Sample
480-87872-1	CSB-13
480-87872-2	CSB-14
480-87872-3	CSB-15
480-87872-4	CSB-16
480-87872-4MS	CSB-16
480-87872-4MSD	CSB-16
480-87872-5	CSW-50-2
480-87872-6	CSW-53-2
480-87872-7	CSW-52-2
480-87872-8	CSW-51-2A
480-87872-8DU	CSW-51-2A
480-87872-9	CSW-51-2B
480-87872-10	CSW-60

Soil samples were validated for analyses of PCBs by the US EPA Region II data validation SOP (HW-45, Revision 1). Data were reviewed for usability according to the following criteria:

- Data Completeness
- * Holding Times
 - Laboratory Blanks
 - Field Blank / Equipment Rinsate Blank
 - Surrogate Recoveries
 - Surrogate Retention Times
- * Matrix Spike / Matrix Spike Duplicate
- * Laboratory Control Sample
- * Calibrations
- * Method Blanks
 - GPC Calibration
- * Compound Identification

^{* -} Indicates that all criteria were met for this parameter.

PCBs SDG: J87872 Page 2

DATA VALIDATION SUMMARY

The laboratory's case narrative states:

The following sample was diluted due to the abundance of target analytes: CSB-13 (480-87872-1). Elevated reporting limits (RLs) are provided.

All primary data is reported from the ZB-35 column.

Surrogate recoveries were only reported from the ZB-5 column. Recoveries from both columns should be reported.

Calibration blanks did not appear to be analyzed.

Holding Times

All extractions and analyses were performed within the required holding times.

Surrogate Recoveries

Surrogate recoveries were only reported from the ZB-5 column.

All surrogate recoveries were within the required limits.

Matrix Spike

Sample 480-87872-4 / CSB-16 was used as the matrix spike and matrix spike duplicate.

All recoveries and RPDs were within the required limits.

Laboratory Control Samples

All recoveries were within the laboratory's quality control limits.

Initial Calibrations

All %RSDs were less than 20%.

Continuing Calibrations

All of the percent differences were less than 20%.

GPC Calibration

A GPC cleanup was not performed on these samples.

Method Blanks

No problems were detected with any of the method blanks.

PCBs SDG: J87872 Page 3

Calibration Blanks

Calibration blanks did not appear to be analyzed.

Field Blank / Equipment Rinsate Blank.

An equipment rinsate blank was not analyzed.

Sample Results

Samples 480-87872-8 / CSW-51-2A and 480-87872-8 DU / CSW-51-2A DU

No compounds were detected in either sample.

The data were qualified on the basis of the percent difference of the concentrations on the two columns:

% Difference	Qualifier
0 - 25%	None
25 - 70%	"J"
70 - 100%	"JN"
> 100%	"R"
100 - 200% (Interference detected)	"JN"
> 50% (Value is < CRQL)	"U"

Sample 480-87872-3 / CSB-15

The percent difference of PCB-1260 on the two columns was 35%.

The PCB-1260 data were flagged with the "J" qualifier and are estimated values.

All other percent differences were less than 25%.

No other problems were detected with the sample data.

Soil Total Metals - for Arsenic and Mercury Samples Collected: October 9, 2015 Samples Received: October 9, 2015 Sample Delivery Group: J88825 Laboratory – TestAmerica Laboratory Reference Numbers:

 Lab ID
 Field Sample #

 480-88825-1
 CSW-21-5

 480-88825-2
 CSB-5-5

Soil samples were validated for inorganic analyses by the US EPA Region II data validation SOP (HW-2, Revision 13). Data were reviewed for usability according to the following criteria:

- * Holding Times
- * Calibration Verification
- * CRDL Standard
- * Laboratory Control Sample
- Serial Dilution
- * Calibration Blanks
 - Field Blank / Equipment Rinsate Blank
- * Preparation Blanks
 - Matrix Spike
 - Duplicate Analyses
- * ICP Interference Check Sample
- * Detection Limit Results
- * Linear Range
- * Sample Results

Data Validation Summary

No problems were detected that would affect the use of the data.

^{* -} Indicates that all criteria were met for this parameter.

Holding Times

All samples were analyzed within the required holding times.

CRDL Standards

All of the CRDL standards were within the 70% - 130% quality control limits used for the validation.

Initial and Continuing Calibrations

No problems were found with any of the initial or continuing calibrations directly associated with the analyses of these samples.

Preparation Blank

No compounds were detected in the preparation blank.

Calibration Blanks

No compounds were detected in the calibration blanks.

Equipment Rinsate Blank

An equipment rinsate blank was not analyzed.

ICP Interference Check Sample

All of the ICP Interference Check Sample recoveries were within the required limits.

Matrix Spike Recovery

A matrix spike was not analyzed.

Duplicate Analysis

A matrix duplicate was not analyzed.

Laboratory Control Sample

No problems were detected with the recoveries of the LCS standards.

Serial Dilution

A serial dilution was not analyzed.

Instrument Detection Limit

No problems were found with the instrument detection limits.

Inorganics SDG: J88825 Page 3

ICP Linear Ranges

No problems were detected with the linear ranges.

Sample Results

No problems were detected with any of the data.

Soil Total Metals - TAL

Samples Collected: October 14, 2015 Samples Received: October 14, 2015 Sample Delivery Group: J89112

Laboratory - TestAmerica

Laboratory Reference Numbers:

Lab ID	Field Sample #
480-89112-1	TS-18
480-89112-1 MS	TS-18 MS
480-89112-1 MSD	TS-18 MSD
480-89112-2	TS-19
480-89112-3	TS-20
480-89112-3MS	TS-20 MS
480-89112-3MSD	TS-20 MSD
480-89112-4	TS-21

Soil samples were validated for inorganic analyses by the US EPA Region II data validation SOP (HW-2, Revision 13). Data were reviewed for usability according to the following criteria:

- * Holding Times
- * Calibration Verification
- * CRDL Standard
- * Laboratory Control Sample
 - Serial Dilution
- * Calibration Blanks
 - Field Blank / Equipment Rinsate Blank
 - Preparation Blanks
 - Matrix Spike
 - Matrix Spike Duplicate Analyses
- * ICP Interference Check Sample
- * Detection Limit Results
- * Linear Range
- * Sample Results

Data Validation Summary

The problems with the spike recoveries and serial dilutions should be noted. These are described in detail below.

No other problems were detected that would affect the use of the data.

^{* -} Indicates that all criteria were met for this parameter.

Holding Times

All samples were analyzed within the required holding times.

CRDL Standards

All of the CRDL standards were within the 70% - 130% quality control limits used for the validation.

Initial and Continuing Calibrations

No problems were found with any of the initial or continuing calibrations directly associated with the analyses of these samples.

Preparation Blank

Low concentrations of calcium (4 mg/kg) were detected in the method blanks.

The concentrations of calcium in the samples were too high to be affected by the blank contamination. The "B" qualifier was removed during the data validation.

Calibration Blanks

No analytes were detected in the calibration blanks.

Equipment Rinsate Blank

A rinsate blank was not collected.

ICP Interference Check Sample

All of the ICP Interference Check Sample recoveries were within the required limits.

Matrix Spike Recovery / Matrix Spike Duplicate

Samples 480-89112-1 / TS-18 and 480-89112-3 / TS-20 were used as the matrix spike and matrix spike duplicate.

Sample 480-89112-1 / TS-18

The concentrations of aluminum, barium, calcium, iron, lead, and manganese in the sample were too high to accurately calculate the spike recoveries. The data for these analytes were not required to be qualified.

All of the remaining spike recoveries and matrix spike duplicate RPDs were within the required limits with the following exceptions:

Analyte	MS % Rec.	MSD % REC.	RPD
Antimony	62%	59%	
Calcium			43%
Copper		1961%	142%
Magnesium	152%		
Potassium	149%	151%	
Zinc		31%	

The copper data were flagged with the "R" qualifier and technically rejected since the spike recovery (2,000%) was greater than 200% and the RPD (142%) was greater than 120%.

The data for the remaining compounds in sample 480-89112-1 / TS-18 were flagged with the "J" qualifier and are estimated values.

Sample 480-89112-3 / TS-20

The concentrations of aluminum, iron, and manganese in the sample were too high to accurately calculate the spike recoveries. The data for these analytes were not required to be qualified.

All of the remaining matrix spike recoveries and matrix spike duplicate RPDs were within the required limits with the following exceptions:

	MS % Rec.	MSD % REC.	RPD
Antimony	56%	55%	
Arsenic	147%		
Calcium	126%		44%
Magnesium	162%		
Potassium	221%		185%
Vanadium	132%		
Zinc			58%

The potassium data were flagged with the "R" qualifier and technically rejected since the spike recovery (221%) was greater than 200%.

The data for the remaining compounds in sample 480-89112-3 / TS-20 were flagged with the "J" qualifier and are estimated values.

Samples 480-89112-2 / TS-19 and 480-89112-4 / TS-21

The data for these samples were qualified on the basis of the total of the qualifiers for samples 480-89112-1 / TS-18 and 480-89112-3 / TS-20.

Analyte	Qualifier	
Antimony	J	
Arsenic	J	
Calcium	J	
Copper	R	
Magnesium	J	
Potassium	R	
Vanadium	J	
Zinc	J	

A matrix spike and duplicate were not analyzed for mercury.

Laboratory Control Sample

No problems were detected with the recoveries of the LCS standards.

Serial Dilution

Samples 480-89112-1 / TS-18 and 480-89112-3 / TS-20 were used as the serial dilutions

Sample 480-89112-1 / TS-18

All of the percent differences were less than 10% with the following exceptions:

Analyte	%D
Aluminum	12%
Arsenic	11%
Barium	12%
Beryllium	14%
Cadmium	15%
Calcium	15%
Chromium, Total	16%
Copper	11%
Iron	19%
Magnesium	14%
Manganese	18%
Potassium	11%
Vanadium	13%
Zinc	20%

The data for these compounds were flagged with the "J" qualifier and are estimated values.

Sample 480-89112-3 / TS-20

All of the percent differences were less than 10% with the following exception:

Analyte	%D
Barium	12%

The data for barium was flagged with the "J" qualifier and is an estimated value.

Samples 480-89112-2 / TS-19 and 480-89112-4 / TS-21

The data for these samples were qualified on the basis of the total of the qualifiers for samples 480-89112-1 / TS-18 and 480-89112-3 / TS-20.

This was equivalent to the qualifiers for sample 480-89112-1 / TS-18.

Inorganics SDG: J89112 Page 5

Instrument Detection Limit

No problems were found with the instrument detection limits.

ICP Linear Ranges

No problems were detected with the linear ranges.

Sample Results

No problems were detected with any of the data.

Soil PCB Analyses by Method SW846 8082

Samples Collected: October 14, 2015 Samples Received: October 14, 2015

Sample Delivery Group: J89112

Laboratory - TestAmerica

Laboratory Reference Numbers:

Lab ID	Field Sample #
480-89112-1	TS-18
480-89112-1 MS	TS-18 MS
480-89112-1 MSD	TS-18 MSD
480-89112-2	TS-19
480-89112-3	TS-20
480-89112-3MS	TS-20 MS
480-89112-3MSD	TS-20 MSD
480-89112-4	TS-21

Soil samples were validated for analyses of PCBs by the US EPA Region II data validation SOP (HW-45, Revision 1). Data were reviewed for usability according to the following criteria:

- Data Completeness
- * Holding Times
 - Laboratory Blanks
 - Field Blank / Equipment Rinsate Blank
 - Surrogate Recoveries
 - Surrogate Retention Times
- * Matrix Spike / Matrix Spike Duplicate
- * Laboratory Control Sample
- * Calibrations
- * Method Blanks
 - GPC Calibration
- * Compound Identification

DATA VALIDATION SUMMARY

The laboratory's case narrative states:

All primary data is reported from the ZB-35 column.

Surrogate recoveries were only reported from the ZB-5 column. Recoveries from both columns should be reported.

Calibration blanks did not appear to be analyzed.

^{* -} Indicates that all criteria were met for this parameter.

PCBs SDG: J89112 Page 2

Holding Times

All extractions and analyses were performed within the required holding times.

Surrogate Recoveries

Surrogate recoveries were only reported from the ZB-5 column.

All surrogate recoveries were within the required limits.

Matrix Spike

Samples 480-89112-1 / TS-18 and 480-89112-3 / TS-20 were used as the matrix spike and matrix spike duplicate.

All recoveries and RPDs were within the required limits.

Laboratory Control Samples

All recoveries were within the laboratory's quality control limits.

Initial Calibrations

All %RSDs were less than 20%.

Continuing Calibrations

All of the percent differences on the ZB-35 column were greater than 20% (as high as 40%).

The laboratory's case narrative notes that the data were reported from the ZB-5 column.

The data were not qualified for the high percent differences.

GPC Calibration

A GPC cleanup was not performed on these samples.

Method Blanks

No problems were detected with any of the method blanks.

Calibration Blanks

Calibration blanks did not appear to be analyzed.

Field Blank / Equipment Rinsate Blank.

An equipment rinsate blank was not analyzed.

PCBs SDG: J89112 Page 3

Sample Results

The data were qualified on the basis of the percent difference of the concentrations on the two columns:

<u>% Difference</u>	Qualifier
0 - 25%	None
25 - 70%	"J"
70 - 100%	"JN"
> 100%	"R"
100 - 200% (Interference detected)	"JN"
> 50% (Value is < CRQL)	"U"

No PCBs were detected in any of the samples.

No other problems were detected with the sample data.

DATA USABILITY SUMMARY REPORT 132 Dingens

Soil Semivolatile Organic Analyses by Method SW846 8260B

Samples Collected: October 14, 2015 Samples Received: October 14, 2015 Sample Delivery Group: J89112

Laboratory - TestAmerica

Laboratory Reference Numbers:

Lab ID	Field Sample #
480-89112-1	TS-18
480-89112-2	TS-19
480-89112-3	TS-20
480-89112-3MS	TS-20
480-89112-3MSD	TS-20
480-89112-4	TS-21

Soil samples were validated for analyses of semivolatile organics by the US EPA Region II data validation SOP (HW-22, Revision 3). Data were reviewed for usability according to the following criteria:

- * Data Completeness
- * GC/MS Tuning
- * Holding Times
 - Calibrations
- * Laboratory Blanks
- * Laboratory Control Sample
- * Surrogate Compound Recoveries
- * Internal Standard Recoveries
 - Matrix Spike / Matrix Spike Duplicate
 - Field Blank
- * Compound Identification
- * Compound Quantitation

DATA VALIDATION SUMMARY

The laboratory's case narrative states:

The following samples were diluted due to color and, viscosity: TS-20 (480-89112-3), TS-20 (480-89112-3[MS]) and TS-20 (480-89112-3[MSD]). Elevated reporting limits (RL) are provided.

^{* -} Indicates that all criteria were met for this parameter.

The continuing calibration verification (CCV) associated with batch 480-269161 recovered above the upper control limit for Benzaldehyde. The samples associated with this CCV were non-detects for the affected analyte; therefore, the data have been reported. The following samples are impacted: TS-18 (480-89112-1), TS-19 (480-89112-2) and TS-21 (480-89112-4).

The following samples were diluted due to appearance and viscosity: TS-18 (480-89112-1), TS-19 (480-89112-2) and TS-21 (480-89112-4). Elevated reporting limits (RL) are provided.

The following samples were diluted due to the nature of the sample matrix: TS-20 (480-89112-3[MS]) and TS-20 (480-89112-3[MSD]). As such, surrogate and MS/MSD spike recoveries were diluted out and are not reported.

The problems with the calibrations should be noted.

Holding Times

All samples were extracted (14 days) and analyzed (40 days) within the contractual and technical times required by the US EPA Region II protocols.

Tunes

No problems were detected with any of the tunes associated with the samples of this delivery group.

Surrogate Recoveries

All of the surrogate recoveries were within the required limits with the following exceptions:

		A	A	D	D	A	D
Client Sample	ID Lab Sample ID	2FP	PHL	NBZ	FBP	TBP	TPH
TS-20MS	480-89112-3MS					158%	

QC LIMITS

2FP = 2-Fluorophenol (Surr) 18-120

PHL = Phenol-d5 (Surr) 11-120

NBZ = Nitrobenzene-d5 (Surr) 34-132

FBP = 2-Fluorobiphenyl 37-120

TBP = 2,4,6-Tribromophenol (Surr) 39-146

TPH = p-Terphenyl-d14 (Surr) 65-153

The NYS DEC ASP protocols allow for one surrogate in each fraction to be outside of the quality control limits. The data were not required to be qualified.

All other surrogate recoveries were within the required limits.

Matrix Spike / Matrix Spike Duplicate

Sample 480-89112-3 TS-20 was used as the matrix spike and matrix spike duplicate. All recoveries and RPDs were within the required limits with the following exceptions:

Compound	MS % Rec.	MSD % Rec.	%RPD
2,4-Dinitrotoluene	127%		
Bis(2-ethylhexyl)phthalate	148%	136%	

Neither of these compounds were detected in any of the samples.

High recoveries do not affect undetected data and undetected data were not required to be qualified.

Laboratory Control Sample

All LCS recoveries were within the required limits.

Only 13 compounds were included in the target list.

Calibrations

The following samples were analyzed on GC/MS HP5973U:

480-89112-3	TS-20
480-89112-3MS	TS-20
480-89112-3MSD	TS-20

The following compounds had %RPDs greater that 15% in the initial calibration:

- 2,4,5-Trichlorophenol
- 2,4,6-Trichlorophenol
- 2,4-Dichlorophenol
- 2,4-Dinitrophenol
- 2,4-Dinitrotoluene
- 2,6-Dinitrotoluene
- 2-Nitroaniline
- 2-Nitrophenol
- 3,3'-Dichlorobenzidine
- 3-Nitroaniline
- 4,6-Dinitro-2-Methylphenol
- 4-Chloro-3-Methylphenol
- 4-Nitroaniline
- 4-Nitrophenol
- Atrazine
- Benzaldehyde
- Benzo(a)Pyrene
- Benzo(b)Fluoranthene
- Benzo(g,h,i)Perylene
- Bis(2-Ethylhexyl) Phthalate
- Caprolactam
- Dibenz(a,h)Anthracene
- Di-N-Butyl Phthalate
- Di-N-Octylphthalate
- Indeno(1,2,3-c,d)Pyrene
- Isophorone
- N-Nitrosodi-N-Propylamine
- Pentachlorophenol

When one of these compounds was detected in a sample, it was flagged with a "J" qualifier and is an estimated value.

Undetected data were not required to be qualified.

All percent differences in the continuing calibration were less than 20%.

The following samples were analyzed on GC/MS HP5973X:

480-89112-1	TS-18
480-89112-2	TS-19
480-89112-4	TS-21

The following compounds had %RPDs greater that 15% in the initial calibration:

- 2,4,6-Trichlorophenol
- 2,4-Dinitrophenol
- 2,4-Dinitrotoluene
- 2,6-Dinitrotoluene
- 2-Nitroaniline
- 2-Nitrophenol
- 4,6-Dinitro-2-Methylphenol
- 4-Nitrophenol
- Atrazine
- Benzaldehyde
- Benzo(b)Fluoranthene
- Benzo(g,h,i)Perylene
- Caprolactam
- Dibenz(a,h)Anthracene
- Hexachlorobutadiene
- Hexachlorocyclopentadiene
- Hexachloroethane
- Indeno(1,2,3-c,d)Pyrene
- N-Nitrosodi-N-Propylamine
- Pentachlorophenol

When one of these compounds was detected in a sample, it was flagged with a "J" qualifier and is an estimated value.

Undetected data were not required to be qualified.

All percent differences in the continuing calibration were less than 20%.

Method Blanks

No compounds were detected in either of the method blanks.

Field Blank

A field blank was not analyzed with this sample delivery group.

Internal Standard Areas and Retention Times

All internal standard recoveries and retention times were within the required limits.

Sample Results

No problems were found with the results of any of the samples of this delivery group.

SUMMARY OF THE ANALYTICAL DATA VALIDATION 132 Dingens

Soil PCB Analyses by Method SW846 8082

Samples Collected: October 14, 2015 Samples Received: October 14, 2015 Sample Delivery Group: J89114

Laboratory - TestAmerica

Laboratory Reference Numbers:

Lab ID	Field Sample #
480-89114-1	CSB-12-2
480-89114-1 MS	CSB-12-2 MS
480-89114-1 MSD	CSB-12-2 MSD
480-89114-2	CSB-13-2
480-89114-3	CSB-14-2
480-89114-4	CSB-17
480-89114-5	CSB-15-2
480-89114-6	CSW-51-3B
480-89114-7	CSW-55-2
480-89114-8	CSW-61
480-89114-9	CSW-62
480-89114-10	CSW-63
480-89114-11	CSW-64
480-89114-12	CSW-65
480-89114-13	CSW-66
480-89114-14	CSW-67
480-89114-15	CSW-68
480-89114-16	CSW-69
480-89114-17	CSW-70

Soil samples were validated for analyses of PCBs by the US EPA Region II data validation SOP (HW-45, Revision 1). Data were reviewed for usability according to the following criteria:

- Data Completeness
- * Holding Times
- * Laboratory Blanks
 - Field Blank / Equipment Rinsate Blank
 - Surrogate Recoveries
- * Matrix Spike / Matrix Spike Duplicate
- * Laboratory Control Sample
- * Calibrations
- * Method Blanks
 - GPC Calibration
 - Compound Identification

^{* -} Indicates that all criteria were met for this parameter.

PCBs SDG: J89114 Page 2

DATA VALIDATION SUMMARY

The laboratory's case narrative states:

Decachlorobiphenyl surrogate recovery for the following sample was outside control limits: CSW-64 (480-89114-11). Matrix interference is suspected and Tetrachloro-m-xylene surrogate recovery was within control limits; therefore, reextraction and re-analysis were not performed.

The following sample required a dilution due to the matrix effects and is reported as elevated non-detections for all target analytes (Aroclors); CSW-62 (480-89114-9). The reported values represent the lowest limit that can be ascertained given the sample composition.

The following samples were diluted due to the nature of the sample matrix: CSB-15-2 (480-89114-5), CSW-63 (480-89114-10) and CSW-66 (480-89114-13). Elevated reporting limits (RLs) are provided.

The following sample appears to contain polychlorinated biphenyls (PCBs); however, due to the presence of unknown patterns, the PCBs in the sample do not closely match any of the laboratory's Aroclor standards used for instrument calibration: CSW-62 (480-89114-9). The sample was attempted to be quantified and reported as PCB-1254, though due to the poor match with the Aroclor standard, qualitative and quantitative uncertainty the final result was below the method detection limit and reported as non-detect.

All primary data is reported from the ZB-5 column.

Calibration blanks did not appear to be analyzed.

Holding Times

All extractions and analyses were performed within the required holding times.

Surrogate Recoveries

The recoveries of the following surrogates were outside of the quality control limits.

Client Sample	Lab Sample ID	TCX1	TCX2	DCB1	DCB2
CSW-62	480-89114-9				177%
CSW-63	480-89114-10				206%
CSW-64	480-89114-11			218%	284%

The NYS DES ASP protocols allow the recovery of one surrogate to be outside of the quality control limits. The data for samples CSW-62 / 480-89114-9 and CSW-63 / 480-89114-10 were not required to be qualified.

PCBs SDG: J89114 Page 3

Sample CSW-64 / 480-89114-11 contained PCB-1248, PCB-1254 and PCB-1260.

The data for the detected PCBs were flagged with the "J" qualifier and are estimated values.

Data for undetected compounds were not qualified since the surrogate recoveries were above the quality control limit. High recoveries do not affect the use of undetected data.

All other surrogate recoveries were within the required limits.

Matrix Spike

Sample 480-89114-1 / CSB-12-2 was used as the matrix spike and matrix spike duplicate.

All recoveries and RPDs were within the required limits.

Laboratory Control Samples

All recoveries were within the laboratory's quality control limits.

Initial Calibrations

All %RSDs were less than 20%.

Continuing Calibrations

Many of the percent differences on the ZB-35 column were greater than 20% (as high as 40%).

The laboratory's case narrative notes that the data were reported from the ZB-5 column.

The data were not qualified for the high percent differences.

GPC Calibration

A GPC cleanup was not performed on these samples.

Method Blanks

No problems were detected with any of the method blanks.

Calibration Blanks

Calibration blanks did not appear to be analyzed.

Field Blank / Equipment Rinsate Blank.

An equipment rinsate blank was not analyzed.

PCBs SDG: J89114 Page 4

Sample Results

The data were qualified on the basis of the percent difference of the concentrations on the two columns:

<u>% Difference</u>	Qualifier
0 - 25%	None
25 - 70%	"J"
70 - 100%	"JN"
> 100%	"R"
100 - 200% (Interference detected)	"JN"
> 50% (Value is < CRQL)	"U"

The following samples had PCB percent differences between 25% and 70%:

Lab Sample ID	Client Sample	PCB-1248	PCB-1254	PCB-1260
480-89114-5	CSB-15-2		34%	55%
480-89114-7	CSW-55-2			42%
480-89114-8	CSW-61			59%
480-89114-11	CSW-64		28%	28%
480-89114-13	CSW-66			48%
480-89114-15	CSW-68		26%	

The data for these PCBs were flagged with the "J" qualifier and are estimated values.

No other problems were detected with the sample data.

SUMMARY OF THE ANALYTICAL DATA VALIDATION 132 Dingens

Soil PCB Analyses by Method SW846 8082 Samples Collected: October 26, 2015 Samples Received: October 26, 2015

Sample Delivery Group: J89839

Laboratory – TestAmerica

Laboratory Reference Numbers:

Lab ID	Field Sample #
480-89839-1	CSB-15-3
480-89839-2	CSW-51-4B
480-89839-2MS	CSW-51-4B
480-89839-2MSD	CSW-51-4B
480-89839-3	CSW-70-2

Soil samples were validated for analyses of PCBs by the US EPA Region II data validation SOP (HW-45, Revision 1). Data were reviewed for usability according to the following criteria:

- Data Completeness
- * Holding Times
- * Laboratory Blanks
 - Field Blank / Equipment Rinsate Blank
- * Surrogate Recoveries
- * Matrix Spike / Matrix Spike Duplicate
- * Laboratory Control Sample
- * Calibrations
- * Method Blanks
 - GPC Calibration
- * Compound Identification

DATA VALIDATION SUMMARY

The laboratory's case narrative states:

All primary data is reported from the ZB-5 column.

Calibration blanks did not appear to be analyzed.

Surrogate recoveries were only reported from the ZB-5 column. Recoveries from both columns should be reported.

^{* -} Indicates that all criteria were met for this parameter.

PCBs SDG: J89839 Page 2

Holding Times

All extractions and analyses were performed within the required holding times.

Surrogate Recoveries

All surrogate recoveries were within the required limits.

Matrix Spike

Sample 480-89839-2 / CSW-51-4B was used as the matrix spike and matrix spike duplicate.

All recoveries and RPDs were within the required limits.

Laboratory Control Samples

All recoveries were within the laboratory's quality control limits.

Initial Calibrations

All %RSDs were less than 20%.

Continuing Calibrations

All %Ds were less than 20%.

GPC Calibration

A GPC cleanup was not performed on these samples.

Method Blanks

No problems were detected with any of the method blanks.

Calibration Blanks

Calibration blanks did not appear to be analyzed.

Field Blank / Equipment Rinsate Blank.

An equipment rinsate blank was not analyzed.

Sample Results

The data were qualified on the basis of the percent difference of the concentrations on the two columns:

PCBs SDG: J89839 Page 3

<u>% Difference</u>	Qualifier
0 - 25%	None
25 - 70%	"J"
70 - 100%	"JN"
> 100%	"R"
100 - 200% (Interference detected)	"JN"
> 50% (Value is < CRQL)	"∪"

The following sample had PCB percent differences between 25% and 70%:

Lab Sample ID	Client Sample	PCB-1248	PCB-1254	PCB-1260
480-89839-2	CSW-51-4B		28%	

The data for this PCB was flagged with the "J" qualifier and are estimated values.

No other problems were detected with the sample data.

SUMMARY OF THE ANALYTICAL DATA VALIDATION 132 Dingens

Soil Total Metals – TAL & Cyanide Sample Collected: November 2, 2015 Sample Received: November 2, 2015 Sample Delivery Group: 780-90293

Laboratory - TestAmerica

Laboratory Reference Numbers:

Lab ID Field Sample # 480-90293-1 BFS-1

One soil sample was validated for inorganic analyses by the US EPA Region II data validation SOP (HW-2, Revision 13). Data were reviewed for usability according to the following criteria:

- * Holding Times
- * Calibration Verification
- * CRDL Standard
- * Laboratory Control Sample
 - Serial Dilution
 - Calibration Blanks
 - Field Blank / Equipment Rinsate Blank
 - Preparation Blanks
 - Matrix Spike
 - Matrix Spike Duplicate Analyses
- * ICP Interference Check Sample
- * Detection Limit Results
- * Linear Range
- * Sample Results

Data Validation Summary

The laboratory's case narrative states:

The following sample was diluted due to the presence of total Calcium which interferes with total Copper: BFS-1 (480-90293-1). Elevated reporting limits (RLs) are provided.

The data were reported on a wet weight basis.

No other problems were detected that would affect the use of the data.

^{* -} Indicates that all criteria were met for this parameter.

Inorganics SDG: J90293 Page 2

Holding Times

All samples were analyzed within the required holding times.

CRDL Standards

All of the CRDL standards were within the 70% - 130% quality control limits used for the validation.

Initial and Continuing Calibrations

No problems were found with any of the initial or continuing calibrations directly associated with the analyses of these samples.

Preparation Blank

A low concentration of manganese (0.0521 mg/kg) was present in the preparation blank.

The concentration of manganese in the sample was too high to be affected by the low level blank contamination.

No other analytes were detected in the preparation blank.

Calibration Blanks

Very low concentrations of several analytes were detected in the continuing calibration blanks.

The concentrations of these analytes in the sample were too high to be affected by the low level blank contamination.

Equipment Rinsate Blank

A rinsate blank was not collected.

ICP Interference Check Sample

All of the ICP Interference Check Sample recoveries were within the required limits.

Matrix Spike

A matrix spike was not analyzed.

Matrix Duplicate

A matrix duplicate was not analyzed.

Laboratory Control Sample

No problems were detected with the recoveries of the LCS standards.

Inorganics SDG: J90293 Page 3

Serial Dilution

A serial dilution was not analyzed.

Instrument Detection Limit

No problems were found with the instrument detection limits.

ICP Linear Ranges

No problems were detected with the linear ranges.

Sample Results

The data were reported on a wet weight basis.

No other problems were detected with any of the data.

SUMMARY OF THE ANALYTICAL DATA VALIDATION 132 Dingens

Soil PCB Analyses by Method SW846 8082 Sample Collected: November 2, 2015 Sample Received: November 2, 2015 Sample Delivery Group: 780-90293 Laboratory – TestAmerica Laboratory Reference Numbers:

Lab ID Field Sample # 480-90293-1 BFS-1

Soil samples were validated for analyses of PCBs by the US EPA Region II data validation SOP (HW-45, Revision 1). Data were reviewed for usability according to the following criteria:

- Data Completeness
- * Holding Times
- * Laboratory Blanks
 - Field Blank / Equipment Rinsate Blank
- * Surrogate Recoveries
 - Matrix Spike / Matrix Spike Duplicate
- * Laboratory Control Sample
- * Calibrations
- * Method Blanks
 - GPC Calibration
- * Compound Identification

DATA VALIDATION SUMMARY

The laboratory's case narrative states:

All primary data is reported from the ZB-5 column.

The data appear to be reported on a wet weight basis

Calibration blanks did not appear to be analyzed.

Surrogate recoveries were only reported from the ZB-5 column. Recoveries from both columns should be reported.

^{* -} Indicates that all criteria were met for this parameter.

PCBs SDG: J90293 Page 2

Holding Times

All extractions and analyses were performed within the required holding times.

Surrogate Recoveries

All surrogate recoveries were within the required limits.

Matrix Spike

A matrix spike was not analyzed.

Laboratory Control Samples

All recoveries were within the laboratory's quality control limits.

Initial Calibrations

All %RSDs were less than 20%.

Continuing Calibrations

All %Ds were less than 20%.

GPC Calibration

A GPC cleanup was not performed on these samples.

Method Blanks

No problems were detected with any of the method blanks.

Calibration Blanks

Calibration blanks did not appear to be analyzed.

Field Blank / Equipment Rinsate Blank.

An equipment rinsate blank was not analyzed.

Sample Results

The data appear to be reported on a wet weight basis.

The data were qualified on the basis of the percent difference of the concentrations on the two columns:

% Difference	Qualifier
0 - 25%	None
25 - 70%	"J"
70 - 100%	"JN"
> 100%	"R"
100 - 200% (Interference detected)	"JN"
> 50% (Value is < CRQL)	"U"

PCBs SDG: J90293 Page 3

All percent differences were less than 25%.

No other problems were detected with the sample data.

SUMMARY OF THE ANALYTICAL DATA VALIDATION 132 Dingens

Soil Pesticide Analyses

Sample Collected: November 2, 2015 Sample Received: November 2, 2015 Sample Delivery Group: 780-90293

Laboratory - TestAmerica

Laboratory Reference Numbers:

Lab ID Field Sample #

480-90293-1 BFS-1

One soil sample was validated for analyses of pesticides by the US EPA Region II data validation SOP (HW-44, Revision 1). Data were reviewed for usability according to the following criteria:

- * Data Completeness
- * Holding Times
 - Field Blanks
- * Field Duplicates
 - Surrogate Recoveries
- * Surrogate Retention Times
 - Matrix Spike / Matrix Spike Duplicate
- * Laboratory Control Sample
 - Calibrations
- * Method Blanks
- Calibration Blanks
- * Performance Evaluation Mixtures
 - GPC Analysis
- * Compound Identification
- * Indicates that all criteria were met for this parameter.

DATA VALIDATION SUMMARY

The laboratory's case narrative states:

All primary data is reported from the RTX-CLP-II column.

The data appear to be reported on a wet weight basis.

Calibration blanks did not appear to have been analyzed.

No other problems were detected with any of the data.

Pesticides SDG: J90293 Page 2

Holding Times

All extractions and analyses were performed within the required holding times.

Surrogate Recoveries

All surrogate recoveries were within the required limits.

Matrix Spike

A matrix spike was not analyzed.

Laboratory Control Samples

All recoveries were within the quality control limits used for the validation.

Initial Calibrations

The initial calibrations were calculated on the basis of a linear regressions as opposed to %RSD. All correlation coefficients were greater than 0.99.

Continuing Calibrations

The percent difference of several of the continuing calibrations were greater than the 20% quality control limit.

In all cases the calculated concentration was greater than the concentration of the standard. No pesticides were detected in the sample.

The high recoveries do not affect the use of the data.

GPC Calibration

A GPC cleanup was not performed on these samples.

Calibration Blanks

Calibration blanks did not appear to have been analyzed.

Method Blank

No compounds were detected in the method blank.

Field Blank

A field blank was not analyzed with this sample delivery group.

Sample Results

The data appear to be reported on a wet weight basis.

Pesticides SDG: J90293 Page 3

The data were qualified on the basis of the percent difference of the concentrations on the two columns:

<u>% Difference</u>	Qualifier
0 - 25%	None
25 - 70%	"J"
70 - 100%	"JN"
> 100%	"R"
100 - 200% (Interference detected)	"JN"
> 50% (Value is < CRQL)	"U"

No pesticides were detected in the sample.

DATA USABILITY SUMMARY REPORT 132 Dingens

Soil Semivolatile Organic Analyses by Method SW846 8260B

Sample Collected: November 2, 2015 Sample Received: November 2, 2015 Sample Delivery Group: 780-90293

Laboratory - TestAmerica

Laboratory Reference Numbers:

Lab ID Field Sample #

480-90293-1 BFS-1

One soil sample was validated for analyses of semivolatile organics by the US EPA Region II data validation SOP (HW-22, Revision 3). Data were reviewed for usability according to the following criteria:

- * Data Completeness
- * GC/MS Tuning
- * Holding Times
 - Calibrations
- * Laboratory Blanks
- * Laboratory Control Sample
- * Surrogate Compound Recoveries
- * Internal Standard Recoveries
 - Matrix Spike / Matrix Spike Duplicate
 - Field Blank
- * Compound Identification
- * Compound Quantitation

DATA VALIDATION SUMMARY

The laboratory's case narrative states:

The following samples were diluted due to appearance and viscosity: BFS-1 (480-90293-1). Elevated reporting limits (RL) are provided.

The data appear to be reported on a wet weight basis.

No problems were found that would affect the use of the data.

^{* -} Indicates that all criteria were met for this parameter.

Holding Times

All samples were extracted (14 days) and analyzed (40 days) within the contractual and technical times required by the US EPA Region II protocols.

Tunes

No problems were detected with any of the tunes associated with the samples of this delivery group.

Surrogate Recoveries

All of the surrogate recoveries were within the required limits.

Matrix Spike / Matrix Spike Duplicate

A matrix spike and matrix spike duplicate were not analyzed.

Laboratory Control Sample

All LCS recoveries were within the required limits.

Only 6 compounds were included in the target list.

Calibrations

Several compounds had %RSDs greater than 15% in the initial calibration. None of these were detected in the sample and the data were not required to be qualified.

All percent differences in the continuing calibration were less than 20%.

Method Blanks

No compounds were detected in either of the method blanks.

Field Blank

A field blank was not analyzed with this sample delivery group.

Internal Standard Areas and Retention Times

All internal standard recoveries and retention times were within the required limits.

Sample Results

The data appear to be reported on a wet weight basis.

No problems were found with the results of any of the samples of this delivery group.

DATA USABILITY SUMMARY REPORT 132 Dingens

Soil Volatile Organic Analyses by Method SW846 8260C

Sample Collected: November 2, 2015 Sample Received: November 2, 2015 Sample Delivery Group: 780-90293

Laboratory - TestAmerica

Laboratory Reference Numbers:

Lab ID Field Sample #

480-90293-1 BFS-1

One soil sample was validated for analyses of volatile organics by the US EPA Region II data validation SOP (HW-24, Revision 2, 2008). Data were reviewed for usability according to the following criteria:

- * Data Completeness
- * GC/MS Tuning
- * Holding Times
 - Calibrations
- * Laboratory Blank
 - Trip Blank
 - Equipment Blank
 - Field Blank
- * Surrogate Compound Recoveries
- * Internal Standard Recoveries
 - Matrix Spike
- * Laboratory Control Samples
- * Compound Identification
- * Compound Quantitation

DATA VALIDATION SUMMARY

The laboratory's case narrative states:

Reported analyte concentrations in the following samples are below 200 ug/kg and may be biased low due to the samples not being collected according to 5035-L/5035A-L low-level specifications: BFS-1 (480-90293-1).

Only a low concentration of chloroform (0.35J ug/kg) was detected in the sample. The data were not qualified for the sample collection.

Percent moisture was not noted on the sample data summary form. The metals data summary form indicates that the analyses were reported on a wet weight basis.

^{* -} Indicates that all criteria were met for this parameter.

Volatile Organics SDG: J90293 Page 2

No other problems were detected that would affect the use of the data.

Holding Times

All of the samples were analyzed within 14 days of collection.

Tunes

No problems were detected with the tunes associated with the samples of this delivery group.

Surrogate Compound Recoveries

All surrogate compound recoveries were within the quality assurance limits.

Calibrations

All of the %RSDs in the initial calibration on were less than 20%.

All of the percent differences in the one continuing calibration were less than 20%.

All of the relative response factors (rrfs) were greater than 0.05 with the exception of 1,4-dioxane (0.0067).

This compound was not detected in the sample. The data were flagged with the "R" qualifier and technically rejected.

Matrix Spike

A matrix spike was not analyzed.

Laboratory Control Sample

All LCS recoveries were within the 70% - 130% quality control limits used for the validation.

Only 14 compounds were included in the laboratory control sample.

Method Blank

No compounds were detected in the method blank.

Trip Blank

A trip blank was not analyzed.

Equipment Blank

An equipment blank was not analyzed.

Volatile Organics SDG: J90293 Page 3

Field Blank

A field blank was not analyzed.

Internal Standard Areas and Retention Times

The areas and retention times of all internal standards were within the required quality control limits.

Sample Results

Percent moisture was not noted on the sample data summary form. The metals data summary form indicates that the analyses were reported on a wet weight basis.

No problems were detected with any of the samples.

SUMMARY OF THE ANALYTICAL DATA VALIDATION 132 Dingens

Soil PCB Analyses by Method SW846 8082 Sample Collected: November 2, 2015

Sample Received: November 2, 2015 Sample Delivery Group: 780-90295

Laboratory - TestAmerica

Laboratory Reference Numbers:

Lab ID	Field Sample #
480-90295-1	CSW-70-3
480-90295-1MS	CSW-70-3
480-90295-1MSD	CSW-70-3

Soil samples were validated for analyses of PCBs by the US EPA Region II data validation SOP (HW-45, Revision 1). Data were reviewed for usability according to the following criteria:

- Data Completeness
- * Holding Times
- * Laboratory Blanks
 - Field Blank / Equipment Rinsate Blank
- * Surrogate Recoveries
- * Matrix Spike / Matrix Spike Duplicate
- * Laboratory Control Sample
- * Calibrations
- * Method Blanks
 - GPC Calibration
- * Compound Identification

DATA VALIDATION SUMMARY

The laboratory's case narrative states:

All primary data is reported from the ZB-5 column.

Calibration blanks did not appear to be analyzed.

Surrogate recoveries were only reported from the ZB-5 column. Recoveries from both columns should be reported.

^{* -} Indicates that all criteria were met for this parameter.

PCBs SDG: J90295 Page 2

Holding Times

All extractions and analyses were performed within the required holding times.

Surrogate Recoveries

All surrogate recoveries were within the required limits.

Matrix Spike

Sample 480-90295-1 / CSW-70-3 was used as the matrix spike and matrix spike duplicate.

All recoveries and RPDs were within the required limits.

Laboratory Control Samples

All recoveries were within the laboratory's quality control limits.

Initial Calibrations

All %RSDs were less than 20%.

Continuing Calibrations

All %Ds were less than 20%.

GPC Calibration

A GPC cleanup was not performed on these samples.

Method Blanks

No problems were detected with any of the method blanks.

Calibration Blanks

Calibration blanks did not appear to be analyzed.

Field Blank / Equipment Rinsate Blank.

An equipment rinsate blank was not analyzed.

Sample Results

The data were qualified on the basis of the percent difference of the concentrations on the two columns:

PCBs SDG: J90295 Page 3

% Difference	Qualifier
0 - 25%	None
25 - 70%	"J"
70 - 100%	"JN"
> 100%	"R"
100 - 200% (Interference detected)	"JN"
> 50% (Value is < CRQL)	"U"

All of the percent differences in the sample were less than 20%.

No other problems were detected with the sample data.

APPENDIX I-2 LABORATORY REPORTS (Digital Copy on CD)

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-84833-1 Client Project/Site: 132 Dingens

For:

Iyer Environmental Group, LLC 44 Rolling Hills Drive Orchard Park, New York 14127

Attn: Dr. Dharmarajan R Iyer

Melisso Deyo

Authorized for release by: 8/6/2015 4:09:05 PM

Melissa Deyo, Project Manager I (716)504-9874

melissa.deyo@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

TestAmerica Job ID: 480-84833-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	8
QC Sample Results	12
QC Association Summary	14
Lab Chronicle	17
Certification Summary	26
Method Summary	27
Sample Summary	28
Chain of Custody	29
Receipt Checklists	32

4

8

9

11

12

13

Definitions/Glossary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-84833-1

Qualifiers

Metals

Qualitier	Qualifier Description
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.

Glossary

RPD

TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
a	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
₹L	Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Buffalo

8/6/2015

Page 3 of 32

Case Narrative

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-84833-1

Job ID: 480-84833-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-84833-1

Receipt

The samples were received on 7/30/2015 5:30 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 18.6° C.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

- 0

4

ī

6

6

q

10

4.0

13

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: CSW-1

TestAmerica Job ID: 480-84833-1

Lab Sample ID: 480-84833-1

· · · · · · · · · · · · · · · · · · ·							•	
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Lead	2830	В	5.5	0.12	mg/Kg	5	☼ 6010C	Total/NA
Client Sample ID: CSW-2						Lab S	Sample ID:	480-84833-2
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Lead	166	R	13	0.020	ma/Ka		₩ 6010C	Total/NA

Client Sample ID: CSW-3	Lab Sample ID: 480-84833-3

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Lead	2140 B	6.4	0.14 mg/Kg	5 ₹ 6010C	Total/NA

Client Sample ID: CSW-4	Lab Sample ID: 480-84833-4

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Lead	1710 B	1.4	0.032 mg/Kg	1 🌣 6010C	Total/NA

Client Sample ID: CSW-5	Lab Sample ID: 480-84833-5

Analyte	Result	Qualifier	RL	MDL	Unit	Di	il Fac	D	Method	Prep Type
Lead	611	В	1.1	0.025	mg/Kg		1	₩	6010C	Total/NA

Client Sample ID: CSB-1 Lab Sample ID: 480-84833-6

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Lead	53.6 B	1.4	0.031 mg/Kg	1 🌣 6010C	Total/NA

Lab Sample ID: 480-84833-9

Analyte	Result	Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
Lead	1610	В	1.1	0.024 mg/Kg		[☼] 6010C	Total/NA

Client Sample ID: CSW-7 Lab Sample ID: 480-84833-10

Analyte	Result C	Qualifier	RL		Unit	Dil Fac	D Meth	od	Prep Type
Lead	3220 E	3	8.2	0.18	mg/Kg	5	₹ 60100	С	Total/NA

Client Sample ID: CSW-8 Lab Sample ID: 480-84833-11

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Lead	860	В	1.3	0.029	mg/Kg	1	≅ 6010C	Total/NA

Client Sample ID: CSW-9 Lab Sample ID: 480-84833-12

Analyte	Result	Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Lead	1960	В	5.3	0.12 mg/Kg	5 🕏	6010C	Total/NA

Client Sample ID: CSW-10	Lab Sample ID: 480-84833-13
--------------------------	-----------------------------

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-84833-1

Client Sample ID: CSW-10 (C	Lab Sample ID: 480-84833-13							
Analyte	Result	Qualifier	RL	MDL	Unit		D Method	Prep Type
Lead	2160	В	5.2	0.11	mg/Kg	5	≅ 6010C	Total/NA
Client Sample ID: CSB-2						Lab Sa	ample ID: 4	80-84833-14
Analyte		Qualifier	RL		Unit		D Method	Prep Type
Lead	4090	В	7.7	0.17	mg/Kg	5	☼ 6010C	Total/NA
Client Sample ID: CSW-11						Lab Sa	ample ID: 4	80-84833-17
Analyte	Result	Qualifier	RL	MDL	Unit		D Method	Prep Type
Lead	2370	В	1.7	0.037	mg/Kg	1	≅ 6010C	Total/NA
Client Sample ID: CSW-12						Lab Sa	ample ID: 4	80-84833-18
Analyte	Result	Qualifier	RL	MDL	Unit		D Method	Prep Type
Lead	2360	В	1.8	0.040	mg/Kg	1	≅ 6010C	Total/NA
Client Sample ID: CSW-12 D	UP					Lab Sa	ample ID: 4	80-84833-19
Analyte	Result	Qualifier	RL	MDL	Unit		D Method	Prep Type
Lead	6110	В	8.0	0.18	mg/Kg	5	≅ 6010C	Total/NA
Client Sample ID: ERB-1						Lab Sa	ample ID: 4	80-84833-20
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Lead	9.0	J	10.0	1.9	ug/L	1	6010C	Total Recoverable
Client Sample ID: CSW-13						Lab Sa	ample ID: 4	80-84833-21
Analyte	Result	Qualifier	RL	MDL	Unit		D Method	Prep Type
Lead	1410	В	1.5	0.032	mg/Kg	1	≅ 6010C	Total/NA
Client Sample ID: CSW-14						Lab Sa	ample ID: 4	80-84833-22
Analyte	Result	Qualifier	RL		Unit		D Method	Prep Type
Lead	6530	В	14.2	0.31	mg/Kg	10	☼ 6010C	Total/NA
Client Sample ID: CSB-3						Lab Sa	ample ID: 4	80-84833-23
Analyte		Qualifier	RL		Unit		D Method	Prep Type
Lead	14400	В	19.4	0.43	mg/Kg	10	☼ 6010C	Total/NA
Client Sample ID: CSW-15						Lab Sa	ample ID: 4	80-84833-26

This Detection Summary does not include radiochemical test results.

Client Sample ID: CSW-16

Result Qualifier

1950

Analyte

Lead

TestAmerica Buffalo

Dil Fac D Method

1 ☼ 6010C

Lab Sample ID: 480-84833-27

RL

1.5

MDL Unit

0.032 mg/Kg

Prep Type

Total/NA

Detection Summary

Client: Iyer Environmental Group, LLC

Client Sample ID: CSW-16 (Continued)

Project/Site: 132 Dingens

Analyte

Lead

TestAmerica Job ID: 480-84833-1

Lab Sa	Lab Sample ID: 480-84833-27									
	_	Method	Prep Type							
5	₽	6010C	Total/NA							

Client Sample ID: CSW-17	Lab Sample ID: 480-84833-28

RL

7.1

MDL Unit

0.16 mg/Kg

Result Qualifier

4610 B

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Lead	2870 B	6.8	0.15 mg/Kg	5 🌣 6010C	Total/NA

Client Sample ID: CSW-18	Lab Sample ID: 480-84833-29

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Lead	9450	13.9	0.31 mg/Kg	10 ☼ 6010C	Total/NA

Client Sample ID: CSB-4	Lab Sample ID: 480-84833-30

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Lead	10000	12.0	0.26 mg/Kg		Total/NA

Client Sample ID: CSB-4 DUP	Lab Sample ID: 480-84833-31
<u> </u>	.

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Lead	11600	13.0	0.29 mg/Kg	10 🌣 6010C	Total/NA

2

5

0

8

11

12

13

Client: Iyer Environmental Group, LLC TestAmerica Job ID: 480-84833-1 Project/Site: 132 Dingens Client Sample ID: CSW-1 Lab Sample ID: 480-84833-1 Date Collected: 07/30/15 10:30 Matrix: Solid Date Received: 07/30/15 17:30 Percent Solids: 80.2 Method: 6010C - Metals (ICP) Analyte Result Qualifier RL **MDL** Unit D Dil Fac Prepared Analyzed ₩ 08/04/15 10:39 08/05/15 10:05 Lead 2830 B 5.5 0.12 mg/Kg Client Sample ID: CSW-2 Lab Sample ID: 480-84833-2 Date Collected: 07/30/15 10:30 Matrix: Solid Date Received: 07/30/15 17:30 Percent Solids: 66.4 Method: 6010C - Metals (ICP) Result Qualifier **MDL** Unit Analyte RL D Prepared Analyzed Dil Fac 1.3 0.029 mg/Kg 08/04/15 10:39 08/05/15 07:47 166 B Lead Lab Sample ID: 480-84833-3 Client Sample ID: CSW-3 Date Collected: 07/30/15 10:30 Matrix: Solid Date Received: 07/30/15 17:30 Percent Solids: 74.9 Method: 6010C - Metals (ICP) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 0.14 mg/Kg Lead 2140 B 6 4 08/04/15 10:39 08/05/15 10:09 Client Sample ID: CSW-4 Lab Sample ID: 480-84833-4 Date Collected: 07/30/15 10:30 Matrix: Solid Date Received: 07/30/15 17:30 Percent Solids: 65.2 Method: 6010C - Metals (ICP) Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac 1.4 0.032 mg/Kg 08/04/15 10:39 08/05/15 07:22 Lead 1710 B Client Sample ID: CSW-5 Lab Sample ID: 480-84833-5 Date Collected: 07/30/15 10:30 **Matrix: Solid** Date Received: 07/30/15 17:30 Percent Solids: 64.1 Method: 6010C - Metals (ICP) Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac 0.025 mg/Kg 1.1 08/04/15 10:39 08/05/15 08:03 Lead 611 B Client Sample ID: CSB-1 Lab Sample ID: 480-84833-6 Date Collected: 07/30/15 10:30 Matrix: Solid Date Received: 07/30/15 17:30 Percent Solids: 65.3 Method: 6010C - Metals (ICP) Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Lead 53.6 B 1.4 0.031 mg/Kg 08/04/15 10:39 08/05/15 08:07 Client Sample ID: CSW-6 Lab Sample ID: 480-84833-9 Date Collected: 07/30/15 11:30 **Matrix: Solid** Date Received: 07/30/15 17:30 Percent Solids: 66.3

TestAmerica Buffalo

Analyzed

Prepared

08/04/15 10:39 08/05/15 08:11

RL

1.1

MDL Unit

0.024 mg/Kg

Result Qualifier

1610 B

Method: 6010C - Metals (ICP)

Analyte

Lead

Dil Fac

	Client 9	Sample Res	ults	
Client: Iyer Environmental Group, LI Project/Site: 132 Dingens	LC	·		TestAmerica Job ID: 480-84833-1
Client Sample ID: CSW-7 Date Collected: 07/30/15 11:30 Date Received: 07/30/15 17:30				Lab Sample ID: 480-84833-10 Matrix: Solid Percent Solids: 60.5
Method: 6010C - Metals (ICP) Analyte Lead	Result Qualifier		MDL Unit 0.18 mg/Kg	D Prepared Analyzed Dil Fac
		0.2	7.10 mg/Ng	
Client Sample ID: CSW-8 Date Collected: 07/30/15 11:30 Date Received: 07/30/15 17:30				Lab Sample ID: 480-84833-11 Matrix: Solid Percent Solids: 69.6
Method: 6010C - Metals (ICP) Analyte Lead	Result Qualifier		MDL Unit 029 mg/Kg	D Prepared Analyzed Dil Fac □ 08/04/15 10:39 08/05/15 08:19 1
Client Sample ID: CSW-9 Date Collected: 07/30/15 11:30 Date Received: 07/30/15 17:30				Lab Sample ID: 480-84833-12 Matrix: Solid Percent Solids: 79.9
Method: 6010C - Metals (ICP) Analyte Lead	Result Qualifier 1960 B		MDL Unit 0.12 mg/Kg	D Prepared Analyzed Dil Fac □ 08/04/15 10:39 08/05/15 10:17 5
Client Sample ID: CSW-10 Date Collected: 07/30/15 11:30 Date Received: 07/30/15 17:30				Lab Sample ID: 480-84833-13 Matrix: Solid Percent Solids: 69.9
Method: 6010C - Metals (ICP) Analyte Lead	Result Qualifier B		MDL Unit 0.11 mg/Kg	D Prepared Analyzed Dil Fac
Client Sample ID: CSB-2 Date Collected: 07/30/15 11:30 Date Received: 07/30/15 17:30				Lab Sample ID: 480-84833-14 Matrix: Solid Percent Solids: 45.6
Method: 6010C - Metals (ICP) Analyte Lead	Result Qualifier		MDL Unit 0.17 mg/Kg	D Prepared Analyzed Dil Fac
Client Sample ID: CSW-11 Date Collected: 07/30/15 14:30 Date Received: 07/30/15 17:30	4030 B	7.7	7.17 Highty	Lab Sample ID: 480-84833-17 Matrix: Solid Percent Solids: 57.8
Method: 6010C - Metals (ICP) Analyte Lead	Result Qualifier		MDL Unit 037 mg/Kg	D Prepared Analyzed Dil Fac □ 08/04/15 10:39 08/05/15 08:36 1
		1.7 0.	oor mg/Ng	
Client Sample ID: CSW-12 Date Collected: 07/30/15 14:30 Date Received: 07/30/15 17:30				Lab Sample ID: 480-84833-18 Matrix: Solid Percent Solids: 52.4
Method: 6010C - Metals (ICP) Analyte	Result Qualifier		MDL Unit	D Prepared Analyzed Dil Fac
Lead	2360 B	1.8 0.	040 mg/Kg	© 08/04/15 10:39 08/05/15 08:40 1

Client Sample ID: CSW-12 DUP

Date Collected: 07/30/15 14:30

Date Received: 07/30/15 17:30

Lab Sample ID: 480-84833-19

Matrix: Solid

Percent Solids: 54.1

Matrix: Water

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	6110	В	8.0	0.18	mg/Kg		08/04/15 10:39	08/05/15 10:37	5

Client Sample ID: ERB-1 Lab Sample ID: 480-84833-20

Date Collected: 07/30/15 14:30 Date Received: 07/30/15 17:30

Date Received: 07/30/15 17:30

Method: 6010C - Metals (ICP) -	- Total Recover	rable						
Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	9.0 J	10.0	1.9	ug/L		08/04/15 08:53	08/05/15 12:11	1

Client Sample ID: CSW-13 Lab Sample ID: 480-84833-21 Date Collected: 07/30/15 14:30 **Matrix: Solid** Date Received: 07/30/15 17:30 Percent Solids: 66.9

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	1410	В	1.5	0.032	mg/Kg		08/04/15 10:3	08/05/15 08:56	1

Client Sample ID: CSW-14 Lab Sample ID: 480-84833-22 Date Collected: 07/30/15 14:30 **Matrix: Solid** Percent Solids: 63.0

Date Received: 07/30/15 17:30

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	6530	В	14.2	0.31	mg/Kg	 \	08/04/15 10:39	08/05/15 10:41	10

Client Sample ID: CSB-3 Lab Sample ID: 480-84833-23 Date Collected: 07/30/15 14:30 **Matrix: Solid** Date Received: 07/30/15 17:30 Percent Solids: 40.0

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	14400	В	19.4	0.43	mg/Kg	\	08/04/15 10:39	08/05/15 10:45	10

Client Sample ID: CSW-15 Lab Sample ID: 480-84833-26 Date Collected: 07/30/15 15:40 Matrix: Solid Date Received: 07/30/15 17:30 Percent Solids: 63.0

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	1950		1.5	0.032	mg/Kg		08/04/15 11:13	08/05/15 09:25	1

Client Sample ID: CSW-16 Lab Sample ID: 480-84833-27 Date Collected: 07/30/15 15:40 Matrix: Solid

Method: 6010C - Metals (ICP) Analyte Result Qualifier **MDL** Unit Prepared Analyzed Dil Fac 0.16 mg/Kg © 08/04/15 10:39 08/05/15 10:50 Lead 4610 B

Percent Solids: 62.4

Client Sample Results

Client: Iyer Environmental Group, LLC TestAmerica Job ID: 480-84833-1 Project/Site: 132 Dingens Client Sample ID: CSW-17 Lab Sample ID: 480-84833-28 Date Collected: 07/30/15 15:40 **Matrix: Solid** Date Received: 07/30/15 17:30 Percent Solids: 68.7 Method: 6010C - Metals (ICP) Result Qualifier RL **MDL** Unit **Analyte** D Prepared Analyzed Dil Fac 08/04/15 10:39 08/05/15 10:54 6.8 0.15 mg/Kg 5 Lead 2870 B Client Sample ID: CSW-18 Lab Sample ID: 480-84833-29 Date Collected: 07/30/15 15:40 **Matrix: Solid** Date Received: 07/30/15 17:30 Percent Solids: 59.5 Method: 6010C - Metals (ICP) Analyte Result Qualifier RL**MDL** Unit Prepared Analyzed Dil Fac 13.9 08/04/15 11:13 08/05/15 10:58 0.31 mg/Kg Lead 9450 Client Sample ID: CSB-4 Lab Sample ID: 480-84833-30 Date Collected: 07/30/15 15:40 **Matrix: Solid** Date Received: 07/30/15 17:30 Percent Solids: 72.8 Method: 6010C - Metals (ICP) Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac ₩ Lead 10000 12.0 0.26 mg/Kg 08/04/15 11:13 08/05/15 11:18

> Lab Sample ID: 480-84833-31 **Matrix: Solid** Percent Solids: 73.8

6

Date Received: 07/30/15 17:30 Method: 6010C - Metals (ICP) Analyte Result Qualifier RL **MDL** Unit Prepared D Analyzed Dil Fac 13.0 08/04/15 11:13 08/05/15 11:06 0.29 mg/Kg

11600

Client Sample ID: CSB-4 DUP

Date Collected: 07/30/15 15:40

Lead

TestAmerica Job ID: 480-84833-1

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 240-191804/1-A

Matrix: Solid

Analysis Batch: 191928

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 191804

MB MB

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Lead
 0.0258
 J
 1.0
 0.022
 mg/Kg
 08/04/15 10:39
 08/05/15 07:13
 1

Lab Sample ID: LCS 240-191804/2-A Client Sample ID: Lab Control Sample **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 191928 Prep Batch: 191804** Spike LCS LCS %Rec. Added Limits Analyte Result Qualifier Unit D %Rec 80 - 120 Lead 50.0 46.86 mg/Kg 94

Lab Sample ID: 480-84833-4 MS Client Sample ID: CSW-4 **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 191928** Prep Batch: 191804 Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier D %Rec Limits Analyte Unit 77 Lead 1710 B 70.3 1739 4 38 75 - 125 mg/Kg

Client Sample ID: CSW-4 Lab Sample ID: 480-84833-4 MSD **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 191928 Prep Batch: 191804** Sample Sample Spike MSD MSD %Rec. RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit Lead 1710 B 70.3 1662 -72 75 - 125 mg/Kg

Lab Sample ID: MB 240-191809/1-A

Matrix: Solid

Analysis Batch: 191928

Client Sample ID: Method Blank
Prep Type: Total/NA

Prep Batch: 191809

MB MB

Lab Sample ID: LCS 240-191809/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 191928 Prep Batch: 191809** Spike LCS LCS %Rec. Added Result Qualifier Unit Limits Analyte D %Rec 50.0 47.15 94 80 - 120 Lead mg/Kg

Lab Sample ID: 480-84833-26 MS Client Sample ID: CSW-15 **Matrix: Solid** Prep Type: Total/NA **Prep Batch: 191809 Analysis Batch: 191928** Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier **Analyte** Unit D %Rec Limits Lead 1950 68.4 1154 4 mg/Kg -1157 75 - 125

Lab Sample ID: 480-84833-26 MSD **Client Sample ID: CSW-15 Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 191928 Prep Batch: 191809** Sample Sample Spike MSD MSD %Rec. **RPD** Result Qualifier Added Result Qualifier Limits RPD Limit Analyte Unit D %Rec Lead 1950 68.4 1181 4 ₩ -1117 75 - 125 mq/Kq

QC Sample Results

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-84833-1

Lab Sample ID: MB 240-191781/1-A

Matrix: Water

Analysis Batch: 191928

Analysis Batch: 191928

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 191781

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Lead 10.0 1.9 ug/L 08/04/15 08:53 08/05/15 11:55 ND

Lab Sample ID: LCS 240-191781/2-A **Client Sample ID: Lab Control Sample Matrix: Water**

Prep Type: Total Recoverable Prep Batch: 191781

%Rec.

Spike LCS LCS D %Rec Added Result Qualifier Unit Limits Analyte Lead 500 496.1 ug/L 99 80 - 120

MB MB

TestAmerica Job ID: 480-84833-1

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Metals

Prep Batch: 191781

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-84833-20	ERB-1	Total Recoverable	Water	3005A	
LCS 240-191781/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
MB 240-191781/1-A	Method Blank	Total Recoverable	Water	3005A	

Prep Batch: 191804

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-84833-1	CSW-1	Total/NA	Solid	3050B	
480-84833-2	CSW-2	Total/NA	Solid	3050B	
480-84833-3	CSW-3	Total/NA	Solid	3050B	
480-84833-4	CSW-4	Total/NA	Solid	3050B	
480-84833-4 MS	CSW-4	Total/NA	Solid	3050B	
480-84833-4 MSD	CSW-4	Total/NA	Solid	3050B	
480-84833-5	CSW-5	Total/NA	Solid	3050B	
480-84833-6	CSB-1	Total/NA	Solid	3050B	
480-84833-9	CSW-6	Total/NA	Solid	3050B	
480-84833-10	CSW-7	Total/NA	Solid	3050B	
480-84833-11	CSW-8	Total/NA	Solid	3050B	
480-84833-12	CSW-9	Total/NA	Solid	3050B	
480-84833-13	CSW-10	Total/NA	Solid	3050B	
480-84833-14	CSB-2	Total/NA	Solid	3050B	
480-84833-17	CSW-11	Total/NA	Solid	3050B	
480-84833-18	CSW-12	Total/NA	Solid	3050B	
480-84833-19	CSW-12 DUP	Total/NA	Solid	3050B	
480-84833-21	CSW-13	Total/NA	Solid	3050B	
480-84833-22	CSW-14	Total/NA	Solid	3050B	
480-84833-23	CSB-3	Total/NA	Solid	3050B	
480-84833-27	CSW-16	Total/NA	Solid	3050B	
480-84833-28	CSW-17	Total/NA	Solid	3050B	
LCS 240-191804/2-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 240-191804/1-A	Method Blank	Total/NA	Solid	3050B	

Prep Batch: 191809

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-84833-26	CSW-15	Total/NA	Solid	3050B	_
480-84833-26 MS	CSW-15	Total/NA	Solid	3050B	
480-84833-26 MSD	CSW-15	Total/NA	Solid	3050B	
480-84833-29	CSW-18	Total/NA	Solid	3050B	
480-84833-30	CSB-4	Total/NA	Solid	3050B	
480-84833-31	CSB-4 DUP	Total/NA	Solid	3050B	
LCS 240-191809/2-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 240-191809/1-A	Method Blank	Total/NA	Solid	3050B	

Analysis Batch: 191928

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-84833-1	CSW-1	Total/NA	Solid	6010C	191804
480-84833-2	CSW-2	Total/NA	Solid	6010C	191804
480-84833-3	CSW-3	Total/NA	Solid	6010C	191804
480-84833-4	CSW-4	Total/NA	Solid	6010C	191804
480-84833-4 MS	CSW-4	Total/NA	Solid	6010C	191804
480-84833-4 MSD	CSW-4	Total/NA	Solid	6010C	191804
480-84833-5	CSW-5	Total/NA	Solid	6010C	191804

Page 14 of 32

TestAmerica Buffalo

8/6/2015

TestAmerica Job ID: 480-84833-1

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Metals (Continued)

Analysis Batch: 191928 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-84833-6	CSB-1	Total/NA	Solid	6010C	191804
480-84833-9	CSW-6	Total/NA	Solid	6010C	191804
480-84833-10	CSW-7	Total/NA	Solid	6010C	191804
480-84833-11	CSW-8	Total/NA	Solid	6010C	191804
480-84833-12	CSW-9	Total/NA	Solid	6010C	191804
480-84833-13	CSW-10	Total/NA	Solid	6010C	191804
480-84833-14	CSB-2	Total/NA	Solid	6010C	191804
480-84833-17	CSW-11	Total/NA	Solid	6010C	191804
480-84833-18	CSW-12	Total/NA	Solid	6010C	191804
480-84833-19	CSW-12 DUP	Total/NA	Solid	6010C	191804
480-84833-20	ERB-1	Total Recoverable	Water	6010C	191781
480-84833-21	CSW-13	Total/NA	Solid	6010C	191804
480-84833-22	CSW-14	Total/NA	Solid	6010C	191804
480-84833-23	CSB-3	Total/NA	Solid	6010C	191804
480-84833-26	CSW-15	Total/NA	Solid	6010C	191809
480-84833-26 MS	CSW-15	Total/NA	Solid	6010C	191809
480-84833-26 MSD	CSW-15	Total/NA	Solid	6010C	191809
480-84833-27	CSW-16	Total/NA	Solid	6010C	191804
480-84833-28	CSW-17	Total/NA	Solid	6010C	191804
480-84833-29	CSW-18	Total/NA	Solid	6010C	191809
480-84833-30	CSB-4	Total/NA	Solid	6010C	191809
480-84833-31	CSB-4 DUP	Total/NA	Solid	6010C	191809
LCS 240-191781/2-A	Lab Control Sample	Total Recoverable	Water	6010C	191781
LCS 240-191804/2-A	Lab Control Sample	Total/NA	Solid	6010C	191804
LCS 240-191809/2-A	Lab Control Sample	Total/NA	Solid	6010C	191809
MB 240-191781/1-A	Method Blank	Total Recoverable	Water	6010C	191781
MB 240-191804/1-A	Method Blank	Total/NA	Solid	6010C	191804
MB 240-191809/1-A	Method Blank	Total/NA	Solid	6010C	191809

General Chemistry

Analysis Batch: 191773

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
480-84833-1	CSW-1	Total/NA	Solid	Moisture	
480-84833-2	CSW-2	Total/NA	Solid	Moisture	
480-84833-3	CSW-3	Total/NA	Solid	Moisture	
480-84833-4	CSW-4	Total/NA	Solid	Moisture	
480-84833-4 DU	CSW-4	Total/NA	Solid	Moisture	
480-84833-5	CSW-5	Total/NA	Solid	Moisture	
480-84833-6	CSB-1	Total/NA	Solid	Moisture	
480-84833-9	CSW-6	Total/NA	Solid	Moisture	
480-84833-10	CSW-7	Total/NA	Solid	Moisture	
480-84833-11	CSW-8	Total/NA	Solid	Moisture	
480-84833-12	CSW-9	Total/NA	Solid	Moisture	
480-84833-13	CSW-10	Total/NA	Solid	Moisture	
480-84833-14	CSB-2	Total/NA	Solid	Moisture	
480-84833-17	CSW-11	Total/NA	Solid	Moisture	
480-84833-18	CSW-12	Total/NA	Solid	Moisture	
480-84833-19	CSW-12 DUP	Total/NA	Solid	Moisture	
480-84833-21	CSW-13	Total/NA	Solid	Moisture	

TestAmerica Buffalo

Page 15 of 32

QC Association Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-84833-1

General Chemistry (Continued)

Analysis Batch: 191773 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-84833-22	CSW-14	Total/NA	Solid	Moisture	_
480-84833-23	CSB-3	Total/NA	Solid	Moisture	
480-84833-26	CSW-15	Total/NA	Solid	Moisture	
480-84833-26 DU	CSW-15	Total/NA	Solid	Moisture	
480-84833-27	CSW-16	Total/NA	Solid	Moisture	
480-84833-28	CSW-17	Total/NA	Solid	Moisture	
480-84833-29	CSW-18	Total/NA	Solid	Moisture	
480-84833-30	CSB-4	Total/NA	Solid	Moisture	
480-84833-31	CSB-4 DUP	Total/NA	Solid	Moisture	

-6

4

5

6

8

9

11

16

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Lab Sample ID: 480-84833-1

Matrix: Solid

Date Collected: 07/30/15 10:30 Date Received: 07/30/15 17:30

Client Sample ID: CSW-1

Date Collected: 07/30/15 10:30

Date Received: 07/30/15 17:30

Client Sample ID: CSW-1

Dilution Batch Prepared Batch Batch Method Run Factor Number or Analyzed **Prep Type** Type Analyst Lab 191773 08/04/15 08:46 DTN TAL CAN Total/NA Analysis Moisture

Lab Sample ID: 480-84833-1

Matrix: Solid

Percent Solids: 80.2

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA 3050B 191804 08/04/15 10:39 DEE TAL CAN Prep Total/NA Analysis 6010C 5 191928 08/05/15 10:05 KLC TAL CAN

Client Sample ID: CSW-2 Lab Sample ID: 480-84833-2

Date Collected: 07/30/15 10:30 Matrix: Solid

Date Received: 07/30/15 17:30

Batch Batch Dilution **Batch Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab 191773 08/04/15 08:46 DTN TAL CAN Total/NA Analysis Moisture

Client Sample ID: CSW-2 Lab Sample ID: 480-84833-2

Date Collected: 07/30/15 10:30

Matrix: Solid Date Received: 07/30/15 17:30 Percent Solids: 66.4

	Batcn	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			191804	08/04/15 10:39	DEE	TAL CAN
Total/NA	Analysis	6010C		1	191928	08/05/15 07:47	KLC	TAL CAN

Lab Sample ID: 480-84833-3 Client Sample ID: CSW-3

Date Collected: 07/30/15 10:30 Matrix: Solid

Date Received: 07/30/15 17:30

Batch Dilution Batch Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis Moisture 191773 08/04/15 08:46 DTN TAL CAN

Lab Sample ID: 480-84833-3 Client Sample ID: CSW-3

Date Collected: 07/30/15 10:30 Matrix: Solid

Date Received: 07/30/15 17:30 Percent Solids: 74.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			191804	08/04/15 10:39	DEE	TAL CAN
Total/NA	Analysis	6010C		5	191928	08/05/15 10:09	KLC	TAL CAN

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Client Sample ID: CSW-4 Lab Sample ID: 480-84833-4 Date Collected: 07/30/15 10:30

Matrix: Solid

Date Received: 07/30/15 17:30

Dilution Batch Batch Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Total/NA Analysis Moisture 191773 08/04/15 08:46 DTN TAL CAN

Client Sample ID: CSW-4 Lab Sample ID: 480-84833-4

Date Collected: 07/30/15 10:30 Matrix: Solid Date Received: 07/30/15 17:30 Percent Solids: 65.2

Batch Batch Dilution **Batch Prepared** Prep Type Type Method Run Factor Number or Analyzed Analyst Lab 3050B 08/04/15 10:39 TAL CAN Total/NA Prep 191804 DFF Total/NA Analysis 6010C 1 191928 08/05/15 07:22 KLC TAL CAN

Client Sample ID: CSW-5 Lab Sample ID: 480-84833-5

Date Collected: 07/30/15 10:30 **Matrix: Solid**

Date Received: 07/30/15 17:30

Batch Batch Dilution Batch Prepared Method Run Factor Number or Analyzed Analyst **Prep Type** Type Lab 08/04/15 08:46 DTN TAL CAN Total/NA Moisture 191773 Analysis

Client Sample ID: CSW-5 Lab Sample ID: 480-84833-5

Date Collected: 07/30/15 10:30 **Matrix: Solid** Date Received: 07/30/15 17:30 Percent Solids: 64.1

Batch Batch Dilution Batch Prepared

Prep Type Type Method Run Factor Number or Analyzed **Analyst** Lab Total/NA Prep 3050B 191804 08/04/15 10:39 DEE TAL CAN 6010C 191928 08/05/15 08:03 KLC TAL CAN Total/NA Analysis 1

Client Sample ID: CSB-1 Lab Sample ID: 480-84833-6

Date Collected: 07/30/15 10:30 Matrix: Solid

Date Received: 07/30/15 17:30

Dilution Batch Batch Batch Prepared Prep Type Method Factor Number or Analyzed Type Run **Analyst** Lab TAL CAN Total/NA Analysis Moisture 191773 08/04/15 08:46 DTN

Client Sample ID: CSB-1 Lab Sample ID: 480-84833-6

Date Collected: 07/30/15 10:30 Matrix: Solid Date Received: 07/30/15 17:30 Percent Solids: 65.3

Batch Batch Dilution Batch Prepared **Prep Type** Method Run Number or Analyzed Type **Factor** Analyst Lab Total/NA 3050B 191804 08/04/15 10:39 DEE TAL CAN Prep 6010C Total/NA 191928 08/05/15 08:07 KLC TAL CAN Analysis 1

TestAmerica Buffalo

8/6/2015

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Client Sample ID: CSW-6 Lab Sample ID: 480-84833-9 Date Collected: 07/30/15 11:30

Matrix: Solid

Date Received: 07/30/15 17:30

Batch Dilution Batch Batch **Prepared** Prep Type Type Method Run **Factor** Number or Analyzed Analyst Total/NA Analysis Moisture 191773 08/04/15 08:46 DTN TAL CAN

Lab Sample ID: 480-84833-9

Client Sample ID: CSW-6 Date Collected: 07/30/15 11:30 Matrix: Solid

Percent Solids: 66.3

Date Received: 07/30/15 17:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			191804	08/04/15 10:39	DEE	TAL CAN
Total/NA	Analysis	6010C		1	191928	08/05/15 08:11	KLC	TAL CAN

Client Sample ID: CSW-7 Lab Sample ID: 480-84833-10

Matrix: Solid

Date Collected: 07/30/15 11:30 Date Received: 07/30/15 17:30

Batch Batch Dilution Batch Prepared **Prep Type** Туре Method Run **Factor** Number or Analyzed Analyst Lab TAL CAN 191773 08/04/15 08:46 DTN Total/NA Analysis Moisture

Lab Sample ID: 480-84833-10

Client Sample ID: CSW-7

Date Collected: 07/30/15 11:30 **Matrix: Solid** Date Received: 07/30/15 17:30 Percent Solids: 60.5

ı		Batch	Batch		Dilution	Batch	Prepared		
	Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
	Total/NA	Prep	3050B			191804	08/04/15 10:39	DEE	TAL CAN
	Total/NA	Analysis	6010C		5	191928	08/05/15 10:13	KLC	TAL CAN

Client Sample ID: CSW-8 Lab Sample ID: 480-84833-11

Date Collected: 07/30/15 11:30 Matrix: Solid

Date Received: 07/30/15 17:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	191773	08/04/15 08:46	DTN	TAL CAN

Client Sample ID: CSW-8 Lab Sample ID: 480-84833-11

Date Collected: 07/30/15 11:30 Matrix: Solid

Date Received: 07/30/15 17:30 Percent Solids: 69.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			191804	08/04/15 10:39	DEE	TAL CAN
Total/NA	Analysis	6010C		1	191928	08/05/15 08:19	KLC	TAL CAN

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Percent Solids: 45.6

Percent Solids: 69.9

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: CSW-9 Lab Sample ID: 480-84833-12 Date Collected: 07/30/15 11:30 **Matrix: Solid**

Date Received: 07/30/15 17:30

Batch Dilution Batch Batch **Prepared** Prep Type Type Method Run **Factor** Number or Analyzed Analyst Total/NA Analysis Moisture 191773 08/04/15 08:46 DTN TAL CAN

Client Sample ID: CSW-9 Lab Sample ID: 480-84833-12

Date Collected: 07/30/15 11:30

Matrix: Solid Date Received: 07/30/15 17:30 Percent Solids: 79.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			191804	08/04/15 10:39	DEE	TAL CAN
Total/NA	Analysis	6010C		5	191928	08/05/15 10:17	KLC	TAL CAN

Client Sample ID: CSW-10 Lab Sample ID: 480-84833-13

Date Collected: 07/30/15 11:30

Date Received: 07/30/15 17:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	191773	08/04/15 08:46	DTN	TAL CAN

Client Sample ID: CSW-10 Lab Sample ID: 480-84833-13

Date Collected: 07/30/15 11:30

Date Received: 07/30/15 17:30

Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Prep 3050B 191804 08/04/15 10:39 DEE TAL CAN Total/NA 6010C 5 191928 08/05/15 10:29 KLC TAL CAN Analysis

Client Sample ID: CSB-2 Lab Sample ID: 480-84833-14

Date Collected: 07/30/15 11:30

Date Received: 07/30/15 17:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture			191773	08/04/15 08:46	DTN	TAL CAN

Client Sample ID: CSB-2 Lab Sample ID: 480-84833-14

Date Collected: 07/30/15 11:30

Date Received: 07/30/15 17:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			191804	08/04/15 10:39	DEE	TAL CAN
Total/NA	Analysis	6010C		5	191928	08/05/15 10:33	KLC	TAL CAN

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: CSW-11

Date Collected: 07/30/15 14:30

Date Received: 07/30/15 17:30

Lab Sample ID: 480-84833-17

Matrix: Solid

Matrix: Solid

Matrix: Solid

Percent Solids: 52.4

Batch Dilution Batch Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis Moisture 191773 08/04/15 08:46 DTN TAL CAN

Client Sample ID: CSW-11 Lab Sample ID: 480-84833-17

Date Collected: 07/30/15 14:30 Matrix: Solid Date Received: 07/30/15 17:30 Percent Solids: 57.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			191804	08/04/15 10:39	DEE	TAL CAN
Total/NA	Analysis	6010C		1	191928	08/05/15 08:36	KLC	TAL CAN

Client Sample ID: CSW-12 Lab Sample ID: 480-84833-18

Date Collected: 07/30/15 14:30

Date Received: 07/30/15 17:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	191773	08/04/15 08:46	DTN	TAL CAN

Client Sample ID: CSW-12 Lab Sample ID: 480-84833-18

Date Collected: 07/30/15 14:30

Date Received: 07/30/15 17:30

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			191804	08/04/15 10:39	DEE	TAL CAN
Total/NA	Analysis	6010C		1	191928	08/05/15 08:40	KI C	TAL CAN

Client Sample ID: CSW-12 DUP Lab Sample ID: 480-84833-19

Date Collected: 07/30/15 14:30 **Matrix: Solid**

Date Received: 07/30/15 17:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	191773	08/04/15 08:46	DTN	TAL CAN

Client Sample ID: CSW-12 DUP Lab Sample ID: 480-84833-19

Date Collected: 07/30/15 14:30 Matrix: Solid Date Received: 07/30/15 17:30 Percent Solids: 54.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			191804	08/04/15 10:39	DEE	TAL CAN
Total/NA	Analysis	6010C		5	191928	08/05/15 10:37	KLC	TAL CAN

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: ERB-1 Lab Sample ID: 480-84833-20 Date Collected: 07/30/15 14:30

Matrix: Water

Date Received: 07/30/15 17:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			191781	08/04/15 08:53	WAL	TAL CAN
Total Recoverable	Analysis	6010C		1	191928	08/05/15 12:11	KLC	TAL CAN

Client Sample ID: CSW-13 Lab Sample ID: 480-84833-21

Date Collected: 07/30/15 14:30 **Matrix: Solid**

Date Received: 07/30/15 17:30

Dilution Batch Batch Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed **Analyst** Lab Total/NA Analysis Moisture 191773 08/04/15 08:46 DTN TAL CAN

Client Sample ID: CSW-13 Lab Sample ID: 480-84833-21

Date Collected: 07/30/15 14:30 **Matrix: Solid**

Date Received: 07/30/15 17:30 Percent Solids: 66.9

Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab TAL CAN Total/NA Prep 3050B 191804 08/04/15 10:39 DEE Total/NA 6010C 191928 08/05/15 08:56 KLC TAL CAN Analysis 1

Client Sample ID: CSW-14 Lab Sample ID: 480-84833-22

Date Collected: 07/30/15 14:30

Date Received: 07/30/15 17:30

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab 191773 08/04/15 08:54 DTN TAL CAN Total/NA Analysis Moisture

Client Sample ID: CSW-14 Lab Sample ID: 480-84833-22

Date Collected: 07/30/15 14:30

Matrix: Solid Date Received: 07/30/15 17:30 Percent Solids: 63.0

Dilution Batch **Batch** Batch Prepared Prep Type Method Run Factor Number or Analyzed **Analyst** Type Lab Total/NA Prep 3050B 191804 08/04/15 10:39 DEE TAL CAN Total/NA 6010C 191928 08/05/15 10:41 KLC TAL CAN Analysis 10

Lab Sample ID: 480-84833-23

Client Sample ID: CSB-3

Date Collected: 07/30/15 14:30 Date Received: 07/30/15 17:30

Batch Batch Dilution Batch Prepared **Prep Type** Method Run Factor Number or Analyzed Type Analyst Lab Total/NA 191773 08/04/15 08:54 DTN TAL CAN Analysis Moisture

TestAmerica Buffalo

Matrix: Solid

Matrix: Solid

2

Client: Iyer Environmental Group, LLC

Client Sample ID: CSW-15

Project/Site: 132 Dingens

Client Sample ID: CSB-3

Date Collected: 07/30/15 14:30

Lab Sample ID: 480-84833-23

Matrix: Solid

Percent Solids: 40.0

Matrix: Solid

Date Received: 07/30/15 17:30 Batch Dilution Batch Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Prep 3050B 191804 08/04/15 10:39 DEE TAL CAN

Total/NA Analysis 6010C 10 191928 08/05/15 10:45 KLC TAL CAN

Lab Sample ID: 480-84833-26

Dilution Batch Batch Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed **Analyst** Lab Total/NA Analysis Moisture 191773 08/04/15 08:54 DTN TAL CAN

Client Sample ID: CSW-15 Lab Sample ID: 480-84833-26

Batch Batch Dilution Batch Prepared Type Method Run Factor Number or Analyzed Analyst **Prep Type** Lab TAL CAN Total/NA Prep 3050B 191809 08/04/15 11:13 DEE Total/NA 6010C 191928 08/05/15 09:25 KLC TAL CAN Analysis 1

Client Sample ID: CSW-16 Lab Sample ID: 480-84833-27

Date Received: 07/30/15 17:30

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab 191773 08/04/15 08:54 DTN TAL CAN Total/NA Analysis Moisture

Client Sample ID: CSW-16 Lab Sample ID: 480-84833-27

Date Collected: 07/30/15 15:40 Matrix: Solid
Date Received: 07/30/15 17:30 Percent Solids: 62.4

Dilution Batch Batch Batch Prepared Prep Type Method Run Factor Number or Analyzed **Analyst** Type Lab Total/NA Prep 3050B 191804 08/04/15 10:39 DEE TAL CAN Total/NA 191928 08/05/15 10:50 KLC TAL CAN Analysis 6010C 5

Client Sample ID: CSW-17 Lab Sample ID: 480-84833-28

Date Collected: 07/30/15 15:40 Matrix: Solid

Date Received: 07/30/15 17:30

Date Collected: 07/30/15 15:40

Batch Batch Dilution Batch Prepared **Prep Type** Method Run Factor Number or Analyzed Type **Analyst** Lab Total/NA 191773 08/04/15 08:54 DTN TAL CAN Analysis Moisture

2

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: CSW-17

Date Collected: 07/30/15 15:40

Lab Sample ID: 480-84833-28

Matrix: Solid

Matrix: Solid Percent Solids: 68.7

Batch Dilution Batch Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Prep 3050B 191804 08/04/15 10:39 DEE TAL CAN Total/NA Analysis 6010C 5 191928 08/05/15 10:54 KLC TAL CAN

Client Sample ID: CSW-18 Lab Sample ID: 480-84833-29

Date Collected: 07/30/15 15:40 Matrix: Solid

Date Received: 07/30/15 17:30

Date Collected: 07/30/15 15:40

Date Received: 07/30/15 17:30

Dilution Batch Batch Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed **Analyst** Lab Total/NA Analysis Moisture 191773 08/04/15 08:54 DTN TAL CAN

Client Sample ID: CSW-18 Lab Sample ID: 480-84833-29

Date Collected: 07/30/15 15:40

Matrix: Solid

Date Received: 07/30/15 17:30 Percent Solids: 59.5

Batch Batch Dilution Batch Prepared Type Method Run Factor Number or Analyzed Analyst **Prep Type** Lab TAL CAN Total/NA Prep 3050B 191809 08/04/15 11:13 DEE Total/NA 6010C 191928 08/05/15 10:58 KLC TAL CAN Analysis 10

Client Sample ID: CSB-4 Lab Sample ID: 480-84833-30

Date Received: 07/30/15 17:30

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab 191773 08/04/15 08:54 DTN TAL CAN Total/NA Analysis Moisture

Client Sample ID: CSB-4 Lab Sample ID: 480-84833-30

 Date Collected: 07/30/15 15:40
 Matrix: Solid

 Date Received: 07/30/15 17:30
 Percent Solids: 72.8

Batch Batch Batch Dilution Prepared Prep Type Method Run Factor Number or Analyzed **Analyst** Type Lab Total/NA Prep 3050B 191809 08/04/15 11:13 DEE TAL CAN 6010C 191928 08/05/15 11:18 KLC TAL CAN Total/NA Analysis 10

Client Sample ID: CSB-4 DUP Lab Sample ID: 480-84833-31

Date Collected: 07/30/15 15:40 Matrix: Solid

Date Received: 07/30/15 17:30

Batch Batch Dilution Batch Prepared **Prep Type** Method Run Number or Analyzed Type Factor **Analyst** Lab Total/NA 191773 08/04/15 08:54 DTN TAL CAN Analysis Moisture

TestAmerica Buffalo

Matrix: Solid

Lab Chronicle

Client: Iyer Environmental Group, LLC

Client Sample ID: CSB-4 DUP Date Collected: 07/30/15 15:40

Date Received: 07/30/15 17:30

Project/Site: 132 Dingens

TestAmerica Job ID: 480-84833-1

Lab Sample ID: 480-84833-31

Matrix: Solid

Percent Solids: 73.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			191809	08/04/15 11:13	DEE	TAL CAN
Total/NA	Analysis	6010C		10	191928	08/05/15 11:06	KLC	TAL CAN

Laboratory References:

TAL CAN = TestAmerica Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

9

10

12

13

Certification Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-84833-1

Laboratory: TestAmerica Buffalo

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
New York	NELAP	2	10026	03-31-16

Laboratory: TestAmerica Canton

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date
New York	NELAP		2	10975	03-31-16 *
The following analytes	s are included in this repo	rt, but certification is	not offered by the g	overning authority:	
Analysis Method	Prep Method	Matrix	Analy	te	
Moisture		Solid	Perce	nt Moisture	
Moisture		Solid	Perce	nt Solids	

^{*} Certification renewal pending - certification considered valid.

Method Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-84833-1

Method	Method Description	Protocol	Laboratory
6010C	Metals (ICP)	SW846	TAL CAN
Moisture	Percent Moisture	EPA	TAL CAN

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CAN = TestAmerica Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

8/6/2015

2

3

7

9

. .

12

13

Sample Summary

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

TestAmerica Job ID: 480-84833-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-84833-1	CSW-1	Solid	07/30/15 10:30	07/30/15 17:30
480-84833-2	CSW-2	Solid	07/30/15 10:30 (07/30/15 17:30
480-84833-3	CSW-3	Solid	07/30/15 10:30 (07/30/15 17:30
480-84833-4	CSW-4	Solid	07/30/15 10:30 (07/30/15 17:30
480-84833-5	CSW-5	Solid	07/30/15 10:30 (07/30/15 17:30
480-84833-6	CSB-1	Solid	07/30/15 10:30 (07/30/15 17:30
480-84833-9	CSW-6	Solid	07/30/15 11:30 (07/30/15 17:30
480-84833-10	CSW-7	Solid	07/30/15 11:30 (07/30/15 17:30
480-84833-11	CSW-8	Solid	07/30/15 11:30 (07/30/15 17:30
480-84833-12	CSW-9	Solid	07/30/15 11:30 (07/30/15 17:30
480-84833-13	CSW-10	Solid	07/30/15 11:30 (07/30/15 17:30
480-84833-14	CSB-2	Solid	07/30/15 11:30 (07/30/15 17:30
480-84833-17	CSW-11	Solid	07/30/15 14:30 (07/30/15 17:30
480-84833-18	CSW-12	Solid	07/30/15 14:30 (07/30/15 17:30
480-84833-19	CSW-12 DUP	Solid	07/30/15 14:30 (07/30/15 17:30
480-84833-20	ERB-1	Water	07/30/15 14:30 (07/30/15 17:30
480-84833-21	CSW-13	Solid	07/30/15 14:30 (07/30/15 17:30
480-84833-22	CSW-14	Solid	07/30/15 14:30 (07/30/15 17:30
480-84833-23	CSB-3	Solid	07/30/15 14:30 (07/30/15 17:30
480-84833-26	CSW-15	Solid	07/30/15 15:40 (07/30/15 17:30
480-84833-27	CSW-16	Solid	07/30/15 15:40 (07/30/15 17:30
480-84833-28	CSW-17	Solid	07/30/15 15:40 (07/30/15 17:30
480-84833-29	CSW-18	Solid	07/30/15 15:40 (07/30/15 17:30
480-84833-30	CSB-4	Solid	07/30/15 15:40 (07/30/15 17:30
480-84833-31	CSB-4 DUP	Solid	07/30/15 15:40 (07/30/15 17:30

Chain of Custody Record

Temperature on Receipt ____

Drinking Water? Yes□ No□

1	Ś	
	1	
	eceipt	
	on Rec	

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

IAL-4124 (1007)						
WER ENVIRON WENTH (SPEN)	Project Manager D NG 7 mg	malyes	7		Date 7/36/15	Chain of Custody Number 264450
15		glephone Number (Area Code)/Fax Number	x Number		Lab Number	Page / of 3
Brchard Park No 1012	Site Contact P. A	for Lab	ab Contact	A.	Analysis (Attach list if more space is needed)	
ation (State)	Carrier/Waybii	lumber		W TI		Special Instructions/
Contract/Purchase-Sirder/Quote No.		Matrix	Containers & Preservatives			Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	ate Time	ilos Sendu ibes	POSSH FONH FONH FONH	7 <i>01</i> 44.		
CS W-1 7/30/	15 10:300	7		2		
C562-2				\ \		
BCSW-3				<i>`</i>		•
\$ -750 e				\ 		CSW/SW +
5 -757 00						
1-85732				\ \		
1-517				7		
P 7 -547	7	1 12		1		
CSW- 6	11:30a			7		
				7	480-84833	480-84833 Chain of Custody
S < W> >				<u>></u>		
	<u> </u>	$ \Upsilon \Upsilon $		1		
Possible Hazard Identification Non-Hazard Flammahle Skin Irritant Poison B	Inknown	Sample Disposal Return To Client	Disnosal Rv I ab	Acchive For	(A fee may be a may be a may be a	(A fee may be assessed if samples are retained brones than 1 month)
9 Required			18	Ņ		, and
48 Hours 7 Days 14 Days	21 Days Other					
1. Relinquished By	7/30/15	Time S.3s p	1. Received By			7/30/10 Time
2. Relinquished By	bate (Time U	2. Redaked By			Date Time
9/9/3. Relinquished By	Date	Time	3. Received By			Date Time
O Comments			,	1.8.0	1	
				ころと	ショ こったの ギ	

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

Chain of Custody Record

Temperature on Receipt ____

1		
ture on Heceipt		
0		
ture		

№

Drinking Water? Yes□

7	
1	1
\cup	
-	
11	
W	
	ř
	١.
-	
V.	
1 20	ı,
T	١.
U)	
1	
W	

THE LEADER IN ENVIRONMENTAL TESTING

Special Instructions/ Conditions of Receipt (A fee may be assessed if samples are retained longer than 1 month) Time chain of Custody Numb Page Date Analysis (Attach list if more space is needed) Lab Mumbe Date Archive For QC Requirements (Specify, NORNZ HOBN Disposal By Lab Containers & Preservatives HOBN 1. Received By 3. Received By 2. Received By IOH Telephone Number (Area Code)/Fax Nymber EONH Lab Contact tOSZH ☐ Return To Client 233 Sample Disposar Ma 1105 Time Carrier/Waybill Number Matrix pes snoenby Site Contact 114 Other W. 30 □ Unknown 7/30/ Date (2 <u>:</u> Date Time 🗌 21 Days 1752 Emy 20000 PATIFIC GRAV P ☐ Poison B 1/08/ Date ☐ 14 Days (Containers for each sample may be combined on one line) Skin Irritant Sample I.D. No. and Description □ 7 Days Tragery | Flammable Contract/Purchase Order/Quoff No. as Hours Possible Hazard Identification 7 Tum Around Time Required 0 CSW-- m57 1. Relinquished By 2. Relinquished By 3. Relinquished By CSW--C12 Non-Hazard いころ 24 Hours CSB TAL-4124 (1007)

Page 30 of 32

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

Comments

8/6/2015

Temperature on Receipt

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Drinking Water? Yes□ No日

Custody Record

Chain of

Special Instructions/ Conditions of Receipt (A fee may be assessed if samples are retained longer than 1 month) Chain of Custody Number 239970 Time he. Dug Date Date [] 20, 2015 Lab Number Analysis (Attach list if more space is needed) Months ✓ Disposal By Lab ☐ Archive For (716) 662-2118 1991 J275 7 QC Requirements (Specify) Containers & Preservatives M. Devo 3. Received By Telephone Number (Area Code)/Fax Number ЮH EONH sə.idu/) S) (716) 662-4157 Site Contact R, Allen Camer/Waybill Number 1105 Matrix pes Project Manager 416 Other. 2/30/163:40p Date Time ☐ 7 Days ☐ 14 Days ☐ 21 Days ☐ Poison B Date yer Environmental Group 44 Rolling Hills Dr (Containers for each sample may be combined on one line) Skin Irritant Sample I.D. No. and Description (32 Dingen St. Contract/Purchase Ordek Juste No. On Orchard Park Project Name and Location (State) | Flammable 48 Hours Possible Hazard Identification S 2 2 2 Turn Around Time Required CSW-16 3. Relinquished By Sw. Non-Hazard 24 Hours TAL-4124 (1007) Client Comments

Page 31 of 32

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

8/6/2015

Login Sample Receipt Checklist

Client: Iyer Environmental Group, LLC

Job Number: 480-84833-1

Login Number: 84833 List Source: TestAmerica Buffalo

List Number: 1

Creator: Kolb, Chris M

creator. Roll, Chris W	_	_
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below packground	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or ampered with.	True	
Samples were received on ice.	False	
Cooler Temperature is acceptable.	True	Yes: Received same day of collection
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and he COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
/OA sample vials do not have headspace or bubble is <6mm (1/4") in liameter.	True	
f necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	iyer env.
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	True	

Δ

3

7

9

10

12

13

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-86066-1 Client Project/Site: 132 Dingens

For:

Iyer Environmental Group, LLC 44 Rolling Hills Drive Orchard Park, New York 14127

Attn: Dr. Dharmarajan R Iyer

Melisso Deyo

Authorized for release by: 8/27/2015 11:51:42 AM

Melissa Deyo, Project Manager I (716)504-9874

melissa.deyo@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

TestAmerica Job ID: 480-86066-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	8
QC Sample Results	12
QC Association Summary	14
Lab Chronicle	17
Certification Summary	25
Method Summary	26
Sample Summary	27
Chain of Custody	28
Receipt Checklists	30

6

4

8

9

1 U 1 A

12

13

Definitions/Glossary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-86066-1

Qualifiers

Metals

Qualifier	Qualifier Description
F1	MS and/or MSD Recovery is outside acceptance limits.
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.

Glossary

RPD

TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Case Narrative

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-86066-1

Job ID: 480-86066-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-86066-1

Receipt

The samples were received on 8/21/2015 4:50 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 18.7° C.

Receipt Exceptions

No times sample of collection were provided. A time of 00:00 was used for sample login purposes.

The following samples were received unpreserved and were preserved upon receipt to the laboratory: ERB-2 (480-86066-16). Regulatory documents require a 24-hour waiting period from the time of the addition of the acid preservative to the time of digestion. Preserved on 08/21/15 @ 1950 usin HNO3 acid, lot number 106819.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

5

3

4

_

_

R

9

10

12

TestAmerica Job ID: 480-86066-1

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: CSW-23						Lab Sample ID: 4	80-86066-1
Analyte		Qualifier	RL		Unit	Dil Fac D Method	Prep Type
Arsenic	312		3.0		mg/Kg	1 ☼ 6010C	Total/NA
Hg	9.8		0.28	0.12	mg/Kg	10 ☼ 7471B	Total/NA
Client Sample ID: CSW-24						Lab Sample ID: 4	80-86066-2
Analyte		Qualifier	RL		Unit	Dil Fac D Method	Prep Type
Arsenic	69.3		2.8		mg/Kg	1 🌣 6010C	Total/NA
Hg	0.96		0.027	0.011	mg/Kg	1 ☼ 7471B	Total/NA
Client Sample ID: CSW-25						Lab Sample ID: 4	80-86066-3
Analyte		Qualifier	RL	MDL	Unit	Dil Fac D Method	Prep Type
Arsenic	28.6		2.4	0.49	mg/Kg	1 🌣 6010C	Total/NA
Hg	1.8		0.12	0.048	mg/Kg	5 🌣 7471B	Total/NA
Client Sample ID: CSW-26						Lab Sample ID: 4	80-86066-4
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D Method	Prep Type
Arsenic	52.1	F1	2.8	0.55	mg/Kg	1 ≅ 6010C	Total/NA
Hg	3.8		0.13	0.052	mg/Kg	5 🌣 7471B	Total/NA
Client Sample ID: CSW-27						Lab Sample ID: 4	180-86066-5
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D Method	Prep Type
Arsenic	32.5		2.4	0.48	mg/Kg	1 ≅ 6010C	Total/NA
Hg	1.6		0.13	0.051	mg/Kg	5 🌣 7471B	Total/NA
Client Sample ID: CSW-28						Lab Sample ID: 4	180-86066-6
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D Method	Prep Type
Arsenic	40.7		2.7	0.55	mg/Kg	1 ₹ 6010C	Total/NA
Hg	1.9		0.13	0.051	mg/Kg	5 🌣 7471B	Total/NA
Client Sample ID: CSW-29						Lab Sample ID: 4	180-86066-7
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D Method	Prep Type
Hg	0.54		0.026	0.011	mg/Kg	1	Total/NA
Client Sample ID: CSW-30						Lab Sample ID: 4	180-86066-8
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D Method	Prep Type
Hg	0.67		0.026	0.011	mg/Kg	1	Total/NA
Client Sample ID: CSW-31						Lab Sample ID: 4	180-86066-9
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D Method	Prep Type
Hg	1.6		0.14	0.057	mg/Kg	5 ₹ 7471B	Total/NA
Client Sample ID: CSB-5						Lab Sample ID: 48	30-86066-10

This Detection Summary does not include radiochemical test results.

TestAmerica Job ID: 480-86066-1

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: CSB-5 (Continued) Lab Sample ID: 480-86066-10 Analyte Result Qualifier RL **MDL** Unit Dil Fac D Method Prep Type 1 ☼ 6010C Arsenic 3.3 156 0.66 mg/Kg Total/NA Hg 5 🌣 7471B Total/NA 5.4 0.16 0.063 mg/Kg Client Sample ID: CSB-6 Lab Sample ID: 480-86066-11 Analyte Result Qualifier RL **MDL** Unit Dil Fac D Method **Prep Type** 27.3 3.1 0.63 mg/Kg 1 ≅ 6010C Arsenic Total/NA 10 ☼ 7471B 6.3 0.31 0.12 mg/Kg Total/NA Hg Client Sample ID: CSB-7 Lab Sample ID: 480-86066-12 RL **MDL** Unit Analyte Result Qualifier Dil Fac D Method **Prep Type** 0.15 5 ₹ 7471B Total/NA Hg 2.2 0.063 mg/Kg Client Sample ID: CSW-18-2 Lab Sample ID: 480-86066-13 Analyte Result Qualifier RL **MDL** Unit Dil Fac D Method **Prep Type** 1 ≅ 6010C Lead 7370 1.3 0.31 mg/Kg Total/NA Client Sample ID: CSW-14-2 Lab Sample ID: 480-86066-14 Result Qualifier RL **MDL** Unit Dil Fac D Method Analyte Prep Type 1 ₹ 6010C 0.37 mg/Kg Lead 2520 1.6 Total/NA Client Sample ID: CSB-4-2 Lab Sample ID: 480-86066-15 Result Qualifier **MDL** Unit **Analyte** RL Dil Fac D Method **Prep Type** 0.31 mg/Kg 1 ≅ 6010C Lead 93.4 1.3 Total/NA Lab Sample ID: 480-86066-16 Client Sample ID: ERB-2 No Detections. Client Sample ID: CSW-19 Lab Sample ID: 480-86066-17 **MDL** Unit Dil Fac D Method Analyte Result Qualifier RL **Prep Type** 47.8 2.5 1 ☼ 6010C Total/NA Arsenic 0.51 mg/Kg 1 🌣 7471B Total/NA Hg 0.51 0.026 0.011 mg/Kg Client Sample ID: CSW-20 Lab Sample ID: 480-86066-18 Analyte Result Qualifier RL **MDL** Unit Dil Fac D Method **Prep Type** Arsenic 113 2.8 0.55 mg/Kg 1 ≅ 6010C Total/NA 5 🌣 7471B Total/NA Hg 1.6 0.14 0.055 mg/Kg Client Sample ID: CSW-21 Lab Sample ID: 480-86066-19 **MDL** Unit Analyte Result Qualifier RL Dil Fac D Method **Prep Type** 1 ≅ 6010C Arsenic 79.3 2.8 0.57 mg/Kg Total/NA 3.7 5 ☼ 7471B Total/NA Hg 0.14 0.057 mg/Kg

This Detection Summary does not include radiochemical test results.

Detection Summary

Client: Iyer Environmental Group, LLC

Client Sample ID: CSW-22

Project/Site: 132 Dingens

TestAmerica Job ID: 480-86066-1

Lab Sample ID: 480-86066-20

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D M	Method Prep Type
Arsenic	45.4	2.5	0.49 mg/Kg	1 🌣 60	010C Total/NA
Hg	2.9	0.12	0.049 mg/Kg	5 🌣 74	471B Total/NA

5

4

5

6

8

9

11

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: CSW-23

Date Collected: 08/21/15 00:00

Lab Sample ID: 480-86066-1

Matrix: Solid

Date Received: 08/21/15 16:50 Watrix. Solid

Percent Solids: 70.4

Method: 6010C - Metals (ICP)	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzad	Dil Fac
Analyte	Result Qualifier	KL	MDL UIII	ט	Frepareu	Analyzed	DII Fac
Arsenic	312	3.0	0.60 mg/Kg	<u> </u>	08/24/15 10:02	08/25/15 02:38	1
Г.							

 Method: 7471B - Mercury (CVAA)

 Analyte
 Result Properties
 Qualifier Properties
 RL Properties
 MDL Properties
 Description
 Prepared Properties
 Analyzed Properties
 Dil Factor
 Fig.
 0.12 Properties
 0.12 Properties
 08/24/15 09:25 Properties
 08/24/15 16:52 Properties
 10

Client Sample ID: CSW-24

Date Collected: 08/21/15 00:00

Lab Sample ID: 480-86066-2

Matrix: Solid

Date Received: 08/21/15 16:50 Percent Solids: 73.5

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	69.3		2.8	0.56	mg/Kg		08/24/15 10:02	08/25/15 02:42	1

Method: 7471B - Mercury (CVAA)										
Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Hg	0.96		0.027	0.011	mg/Kg	<u> </u>	(08/24/15 09:25	08/24/15 15:10	1

Client Sample ID: CSW-25

Date Collected: 08/21/15 00:00

Lab Sample ID: 480-86066-3

Matrix: Solid

Date Received: 08/21/15 16:50 Percent Solids: 81.5

Method: 6010C - Metals (ICP) Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	28.6	2.4	0.49	mg/Kg		08/24/15 10:02	08/25/15 02:45	1
Method: 7471B - Mercury (CVAA)	\							

Method: 7471B - Mercury (CVAA) Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	1.8	0.12	0.048	mg/Kg		08/24/15 09:25	08/24/15 16:54	5

Client Sample ID: CSW-26

Date Collected: 08/21/15 00:00

Matrix: Solid

Date Received: 08/21/15 16:50

Lab Sample ID: 480-86066-4

Matrix: Solid

Percent Solids: 76.9

Method: 6010C - Metals (ICP)						_			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	52.1	F1	2.8	0.55	mg/Kg		08/24/15 10:02	08/25/15 02:48	1
-									

	_ Method: 7471B - Mercury (CVA	A)								
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Į	Hg	3.8		0.13	0.052	mg/Kg	₩	08/24/15 09:25	08/25/15 07:31	5

Client Sample ID: CSW-27

Date Collected: 08/21/15 00:00

Matrix: Solid

Date Received: 08/21/15 16:50

Lab Sample ID: 480-86066-5

Matrix: Solid

Percent Solids: 78.7

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	32.5		2.4	0.48	mg/Kg		08/24/15 10:02	08/25/15 03:14	1

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: CSW-27 Lab Sample ID: 480-86066-5

Date Collected: 08/21/15 00:00 Matrix: Solid Date Received: 08/21/15 16:50

Percent Solids: 78.7

Method: 7471B - Mercury (CVAA	•	O	DI	MDI	1114		Duamanad	A	Dil Faa
Analyte	Result	Qualifier	RL	MDL	Unit		Prepared	Analyzed	Dil Fac
Hg	1.6		0.13	0.051	mg/Kg	₩	08/24/15 09:25	08/25/15 07:38	5

Client Sample ID: CSW-28 Lab Sample ID: 480-86066-6 Date Collected: 08/21/15 00:00 **Matrix: Solid**

Date Received: 08/21/15 16:50 Percent Solids: 77.2

Method: 6010C - Metals (ICP)								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	40.7	2.7	0.55	mg/Kg	₩	08/24/15 10:02	08/25/15 03:17	1

Method: 7471B - Mercury (CVAA) Result Qualifier **MDL** Unit Analyte RL Prepared Analyzed Dil Fac © 08/24/15 09:25 08/25/15 07:41 0.13 0.051 mg/Kg Hg 1.9

Client Sample ID: CSW-29 Lab Sample ID: 480-86066-7

Date Collected: 08/21/15 00:00 **Matrix: Solid** Date Received: 08/21/15 16:50 Percent Solids: 71.4

Method: 7471B - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	0.54		0.026	0.011	mg/Kg	₩	08/24/15 09:25	08/24/15 15:30	1

Client Sample ID: CSW-30 Lab Sample ID: 480-86066-8 Date Collected: 08/21/15 00:00 **Matrix: Solid**

Date Received: 08/21/15 16:50 Percent Solids: 74.3

Method: 7471B - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	0.67		0.026	0.011	mg/Kg	 -	08/24/15 09:25	08/24/15 15:33	1

Client Sample ID: CSW-31 Lab Sample ID: 480-86066-9 Date Collected: 08/21/15 00:00 Matrix: Solid Date Received: 08/21/15 16:50 Percent Solids: 67.2

Method: 7471B - Mercury (CVAA)									
Analyte	Result Q	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	1.6		0.14	0.057	mg/Kg	₩	08/24/15 09:25	08/25/15 07:43	5

Client Sample ID: CSB-5 Lab Sample ID: 480-86066-10

Date Collected: 08/21/15 00:00 **Matrix: Solid** Date Received: 08/21/15 16:50 Percent Solids: 62.9

	Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
L	Arsenic	156		3.3	0.66	mg/Kg		08/24/15 10:02	08/25/15 03:21	1

Method: 7471B - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	5.4		0.16	0.063	mg/Kg		08/24/15 09:25	08/25/15 07:45	5

6

TestAmerica Job ID: 480-86066-1

Client Sample ID: CSB-6

Lab Sample ID: 480-86066-11 Date Collected: 08/21/15 00:00 Matrix: Solid

Percent Solids: 63.5

Date Received: 08/21/15 16:50

Method: 6010C - Metals (ICP) RLMDL Unit Dil Fac **Analyte** Result Qualifier D Prepared Analyzed ₩ 3.1 08/24/15 10:02 08/25/15 03:24 Arsenic 0.63 mg/Kg 27.3

Method: 7471B - Mercury (CVAA)

Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac 0.31 0.12 mg/Kg 08/24/15 09:25 08/25/15 07:47 Hg 6.3 10

Client Sample ID: CSB-7 Lab Sample ID: 480-86066-12 Date Collected: 08/21/15 00:00 Matrix: Solid

Date Received: 08/21/15 16:50 Percent Solids: 64.8

Method: 7471B - Mercury (CVAA)

MDL Unit D Analyte Result Qualifier RL Prepared Analyzed Dil Fac 0.063 mg/Kg 0.15 08/24/15 09:25 08/25/15 07:49 Hg 2.2

Client Sample ID: CSW-18-2 Lab Sample ID: 480-86066-13

Date Collected: 08/21/15 00:00 Matrix: Solid Date Received: 08/21/15 16:50 Percent Solids: 76.1

Method: 6010C - Metals (ICP) RL MDL Unit Analyte Result Qualifier ח Prepared Analyzed Dil Fac 1.3 08/24/15 10:02 08/25/15 03:27 Lead 7370 0.31 mg/Kg

Client Sample ID: CSW-14-2 Lab Sample ID: 480-86066-14

Date Collected: 08/21/15 00:00 **Matrix: Solid** Date Received: 08/21/15 16:50 Percent Solids: 63.4

Method: 6010C - Metals (ICP) Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac 1.6 08/24/15 10:02 08/25/15 03:40 0.37 mg/Kg Lead 2520

Client Sample ID: CSB-4-2 Lab Sample ID: 480-86066-15

Date Collected: 08/21/15 00:00 Matrix: Solid Date Received: 08/21/15 16:50 Percent Solids: 78.9

Method: 6010C - Metals (ICP) RL **MDL** Unit D **Analyte** Result Qualifier Prepared Analyzed Dil Fac 08/24/15 10:02 08/25/15 03:43 1.3 0.31 mg/Kg Lead 93.4

Client Sample ID: ERB-2 Lab Sample ID: 480-86066-16

Date Collected: 08/21/15 00:00 **Matrix: Water** Date Received: 08/21/15 16:50

Method: 6010C - Metals (ICP) Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Arsenic ND 0.015 0.0056 mg/L 08/26/15 07:27 08/26/15 17:30 Iron ND 0.050 0.019 mg/L 08/26/15 07:27 08/26/15 17:30

Method: 7470A - Mercury (CVAA) Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac Prepared $\overline{\mathsf{ND}}$ Mercury 0.00020 0.00012 mg/L 08/26/15 10:20 08/26/15 15:20

6

Date Received: 08/21/15 16:50

Date Received: 08/21/15 16:50

Date Received: 08/21/15 16:50

Project/Site: 132 Dingens

Client Sample ID: CSW-19 Lab Sample ID: 480-86066-17 Date Collected: 08/21/15 00:00 Matrix: Solid

Percent Solids: 74.5

Method: 6010C - Metals (ICP) RL **MDL** Unit **Analyte** Result Qualifier D Prepared Analyzed Dil Fac ₩ 2.5 08/24/15 10:02 08/25/15 03:46 Arsenic 0.51 mg/Kg 47.8

Method: 7471B - Mercury (CVAA) Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac 0.026 0.011 mg/Kg 08/24/15 09:25 08/24/15 15:48 Hg 0.51

Client Sample ID: CSW-20 Lab Sample ID: 480-86066-18 Date Collected: 08/21/15 00:00 Matrix: Solid

Percent Solids: 73.4

Method: 6010C - Metals (ICP) D Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 2.8 0.55 mg/Kg 08/24/15 10:02 08/25/15 03:49 Arsenic 113

Method: 7471B - Mercury (CVAA) Result Qualifier RL **MDL** Unit D Dil Fac **Analyte** Prepared Analyzed 08/24/15 09:25 08/25/15 07:55 0.055 mg/Kg 0.14 Hg 1.6

Client Sample ID: CSW-21 Lab Sample ID: 480-86066-19 Date Collected: 08/21/15 00:00

Matrix: Solid

Date Received: 08/21/15 16:50 Percent Solids: 68.3

Method: 6010C - Metals (ICP) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 2.8 08/24/15 10:02 08/25/15 03:53 79.3 0.57 mg/Kg **Arsenic**

Method: 7471B - Mercury (CVAA) RL **MDL** Unit Analyte Result Qualifier D Prepared Analyzed Dil Fac 0.14 0.057 mg/Kg 08/24/15 09:25 08/25/15 08:22 Hg 3.7

Client Sample ID: CSW-22 Lab Sample ID: 480-86066-20 Date Collected: 08/21/15 00:00

Matrix: Solid Percent Solids: 76.3

Method: 6010C - Metals (ICP) **MDL** Unit RL Analyte Result Qualifier D Prepared Analyzed Dil Fac ₩ **Arsenic** 45.4 2.5 0.49 mg/Kg 08/24/15 10:02 08/25/15 03:56

Method: 7471B - Mercury (CVAA) Result Qualifier Analyte RL MDL Unit D Prepared Analyzed Dil Fac 0.12 Hg 2.9 0.049 mg/Kg 08/24/15 09:25 08/25/15 07:58 5

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-86066-1

9

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-260042/1-A

Matrix: Solid Analysis Batch: 260223

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 260042 MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 2.0 08/24/15 10:02 08/25/15 02:29 $\overline{\mathsf{ND}}$ 0.41 mg/Kg Arsenic ND 1.0 0.24 mg/Kg 08/24/15 10:02 08/25/15 02:29 Lead

Lab Sample ID: LCSSRM 480-260042/2-A Client Sample ID: Lab Control Sample **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 260223** Prep Batch: 260042 LCSSRM LCSSRM Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits 69.7 - 142. Arsenic 113 101.9 mg/Kg 90.2 5 90.1 92.82 103.0 70.1 - 129. Lead mg/Kg

Lab Sample ID: 480-86066-4 MS Client Sample ID: CSW-26 **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 260223 Prep Batch: 260042 %Rec. Sample Sample Spike MS MS

Result Qualifier Added Result Qualifier Unit D %Rec Limits Analyte 52 1 F1 53.0 100.5 91 75 - 125 Arsenic mg/Kg

Lab Sample ID: 480-86066-4 MSD Client Sample ID: CSW-26 **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 260223** Prep Batch: 260042 Sample Sample Spike MSD MSD %Rec. **RPD** Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit 77 Arsenic 52.1 F1 53.8 86.29 F1 64 75 - 125 mg/Kg

Lab Sample ID: MB 480-260411/1-A **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA **Analysis Batch: 260684 Prep Batch: 260411**

MB MB RL **MDL** Unit Analyte Result Qualifier Prepared Dil Fac Analyzed Arsenic $\overline{\mathsf{ND}}$ 0.015 0.0056 mg/L 08/26/15 07:27 08/26/15 17:15 Iron ND 0.050 0.019 mg/L 08/26/15 07:27 08/26/15 17:15

Lab Sample ID: LCS 480-260411/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 260684 Prep Batch: 260411 Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 0.200 Arsenic 0.189 95 mg/L 80 - 120 Iron 10.0 9.31 mg/L 93 80 - 120

TestAmerica Job ID: 480-86066-1

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 480-260477/1-A

Matrix: Water

Analysis Batch: 260662

MB MB

Analyte Result Qualifier RL **MDL** Unit $\overline{\mathsf{ND}}$ Mercury

0.00020

Spike

Spike

Added

8.37

Spike

Added

0.412

0.00012 mg/L

Unit

mg/L

Unit

Unit

mg/Kg

mg/Kg

Prepared

Analyzed 08/26/15 10:20 08/26/15 15:06

Client Sample ID: Method Blank

Dil Fac

Lab Sample ID: LCS 480-260477/2-A

Matrix: Water

Analysis Batch: 260662

Added Analyte Mercury 0.00667 Client Sample ID: Lab Control Sample

%Rec

%Rec

126.9

%Rec

-404

98

Prep Type: Total/NA Prep Batch: 260477

Prep Type: Total/NA

Prep Batch: 260477

%Rec.

Prep Type: Total/NA

Prep Batch: 260022

Prep Type: Total/NA

Prep Batch: 260022

Limits

80 - 120

Client Sample ID: Method Blank

Method: 7471B - Mercury (CVAA)

Lab Sample ID: MB 480-260022/1-A

Matrix: Solid

Hg

Hg

Analysis Batch: 260260

MB MB

Analyte

Result Qualifier $\overline{\mathsf{ND}}$

RL **MDL** Unit 0.020 0.0081 mg/Kg

LCSSRM LCSSRM

MS MS

2.18 4

Result Qualifier

10.62

Result Qualifier

LCS LCS

0.00655

Result Qualifier

Prepared

Analyzed 08/24/15 09:25 08/24/15 15:05

%Rec.

Limits

51.3 - 148.

%Rec.

Limits

80 - 120

Dil Fac

Client Sample ID: Lab Control Sample

Client Sample ID: CSW-26

Client Sample ID: CSW-26

Prep Type: Total/NA

Prep Batch: 260022

Lab Sample ID: LCSSRM 480-260022/2-A **Matrix: Solid**

Analysis Batch: 260260

Analyte

Lab Sample ID: 480-86066-4 MS

Matrix: Solid

Analysis Batch: 260260

Analyte

Hg

Lab Sample ID: 480-86066-4 MSD

Matrix: Solid

Analyte

Hg

Analysis Batch: 260260

Sample Sample

Spike Result Qualifier 3.8

Sample Sample

3.8

Result Qualifier

Added 0.417

MSD MSD Result Qualifier Unit 2.41 4 mg/Kg

D

D

☼

%Rec. %Rec Limits -345

RPD Limit 80 - 120 10

Prep Type: Total/NA

Prep Batch: 260022

RPD

20

TestAmerica Job ID: 480-86066-1

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Metals

Prep Batch: 260022

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-86066-1	CSW-23	Total/NA	Solid	7471B	
480-86066-2	CSW-24	Total/NA	Solid	7471B	
480-86066-3	CSW-25	Total/NA	Solid	7471B	
480-86066-4	CSW-26	Total/NA	Solid	7471B	
480-86066-4 MS	CSW-26	Total/NA	Solid	7471B	
480-86066-4 MSD	CSW-26	Total/NA	Solid	7471B	
480-86066-5	CSW-27	Total/NA	Solid	7471B	
480-86066-6	CSW-28	Total/NA	Solid	7471B	
480-86066-7	CSW-29	Total/NA	Solid	7471B	
480-86066-8	CSW-30	Total/NA	Solid	7471B	
480-86066-9	CSW-31	Total/NA	Solid	7471B	
480-86066-10	CSB-5	Total/NA	Solid	7471B	
480-86066-11	CSB-6	Total/NA	Solid	7471B	
480-86066-12	CSB-7	Total/NA	Solid	7471B	
480-86066-17	CSW-19	Total/NA	Solid	7471B	
480-86066-18	CSW-20	Total/NA	Solid	7471B	
480-86066-19	CSW-21	Total/NA	Solid	7471B	
480-86066-20	CSW-22	Total/NA	Solid	7471B	
LCSSRM 480-260022/2-A	Lab Control Sample	Total/NA	Solid	7471B	
MB 480-260022/1-A	Method Blank	Total/NA	Solid	7471B	

Prep Batch: 260042

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
480-86066-1	CSW-23	Total/NA	Solid	3050B	
480-86066-2	CSW-24	Total/NA	Solid	3050B	
480-86066-3	CSW-25	Total/NA	Solid	3050B	
480-86066-4	CSW-26	Total/NA	Solid	3050B	
480-86066-4 MS	CSW-26	Total/NA	Solid	3050B	
480-86066-4 MSD	CSW-26	Total/NA	Solid	3050B	
480-86066-5	CSW-27	Total/NA	Solid	3050B	
480-86066-6	CSW-28	Total/NA	Solid	3050B	
480-86066-10	CSB-5	Total/NA	Solid	3050B	
480-86066-11	CSB-6	Total/NA	Solid	3050B	
480-86066-13	CSW-18-2	Total/NA	Solid	3050B	
480-86066-14	CSW-14-2	Total/NA	Solid	3050B	
480-86066-15	CSB-4-2	Total/NA	Solid	3050B	
480-86066-17	CSW-19	Total/NA	Solid	3050B	
480-86066-18	CSW-20	Total/NA	Solid	3050B	
480-86066-19	CSW-21	Total/NA	Solid	3050B	
480-86066-20	CSW-22	Total/NA	Solid	3050B	
LCSSRM 480-260042/2-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 480-260042/1-A	Method Blank	Total/NA	Solid	3050B	

Analysis Batch: 260223

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-86066-1	CSW-23	Total/NA	Solid	6010C	260042
480-86066-2	CSW-24	Total/NA	Solid	6010C	260042
480-86066-3	CSW-25	Total/NA	Solid	6010C	260042
480-86066-4	CSW-26	Total/NA	Solid	6010C	260042
480-86066-4 MS	CSW-26	Total/NA	Solid	6010C	260042
480-86066-4 MSD	CSW-26	Total/NA	Solid	6010C	260042

TestAmerica Buffalo

8/27/2015

Page 14 of 30

TestAmerica Job ID: 480-86066-1

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Metals (Continued)

Analysis Batch: 260223 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
480-86066-5	CSW-27	Total/NA	Solid	6010C	260042	
480-86066-6	CSW-28	Total/NA	Solid	6010C	260042	
480-86066-10	CSB-5	Total/NA	Solid	6010C	260042	
480-86066-11	CSB-6	Total/NA	Solid	6010C	260042	
480-86066-13	CSW-18-2	Total/NA	Solid	6010C	260042	
480-86066-14	CSW-14-2	Total/NA	Solid	6010C	260042	
480-86066-15	CSB-4-2	Total/NA	Solid	6010C	260042	
480-86066-17	CSW-19	Total/NA	Solid	6010C	260042	
480-86066-18	CSW-20	Total/NA	Solid	6010C	260042	
480-86066-19	CSW-21	Total/NA	Solid	6010C	260042	
480-86066-20	CSW-22	Total/NA	Solid	6010C	260042	
LCSSRM 480-260042/2-A	Lab Control Sample	Total/NA	Solid	6010C	260042	
MB 480-260042/1-A	Method Blank	Total/NA	Solid	6010C	260042	

Analysis Batch: 260260

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-86066-1	CSW-23	Total/NA	Solid	7471B	260022
480-86066-2	CSW-24	Total/NA	Solid	7471B	260022
480-86066-3	CSW-25	Total/NA	Solid	7471B	260022
480-86066-4	CSW-26	Total/NA	Solid	7471B	260022
480-86066-4 MS	CSW-26	Total/NA	Solid	7471B	260022
480-86066-4 MSD	CSW-26	Total/NA	Solid	7471B	260022
480-86066-5	CSW-27	Total/NA	Solid	7471B	260022
480-86066-6	CSW-28	Total/NA	Solid	7471B	260022
480-86066-7	CSW-29	Total/NA	Solid	7471B	260022
480-86066-8	CSW-30	Total/NA	Solid	7471B	260022
480-86066-9	CSW-31	Total/NA	Solid	7471B	260022
480-86066-10	CSB-5	Total/NA	Solid	7471B	260022
480-86066-11	CSB-6	Total/NA	Solid	7471B	260022
480-86066-12	CSB-7	Total/NA	Solid	7471B	260022
480-86066-17	CSW-19	Total/NA	Solid	7471B	260022
480-86066-18	CSW-20	Total/NA	Solid	7471B	260022
480-86066-19	CSW-21	Total/NA	Solid	7471B	260022
480-86066-20	CSW-22	Total/NA	Solid	7471B	260022
LCSSRM 480-260022/2-A	Lab Control Sample	Total/NA	Solid	7471B	260022
MB 480-260022/1-A	Method Blank	Total/NA	Solid	7471B	260022

Prep Batch: 260411

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-86066-16	ERB-2	Total/NA	Water	3005A	
LCS 480-260411/2-A	Lab Control Sample	Total/NA	Water	3005A	
MB 480-260411/1-A	Method Blank	Total/NA	Water	3005A	

Prep Batch: 260477

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-86066-16	ERB-2	Total/NA	Water	7470A	
LCS 480-260477/2-A	Lab Control Sample	Total/NA	Water	7470A	
MB 480-260477/1-A	Method Blank	Total/NA	Water	7470A	

Page 15 of 30

QC Association Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-86066-1

Metals (Continued)

Analysis Batch: 260662

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-86066-16	ERB-2	Total/NA	Water	7470A	260477
LCS 480-260477/2-A	Lab Control Sample	Total/NA	Water	7470A	260477
MB 480-260477/1-A	Method Blank	Total/NA	Water	7470A	260477

Analysis Batch: 260684

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-86066-16	ERB-2	Total/NA	Water	6010C	260411
LCS 480-260411/2-A	Lab Control Sample	Total/NA	Water	6010C	260411
MB 480-260411/1-A	Method Blank	Total/NA	Water	6010C	260411

General Chemistry

Analysis Batch: 259944

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-86066-1	CSW-23	Total/NA	Solid	Moisture	_
480-86066-2	CSW-24	Total/NA	Solid	Moisture	
480-86066-3	CSW-25	Total/NA	Solid	Moisture	
480-86066-4	CSW-26	Total/NA	Solid	Moisture	
480-86066-4 MS	CSW-26	Total/NA	Solid	Moisture	
480-86066-4 MSD	CSW-26	Total/NA	Solid	Moisture	
480-86066-5	CSW-27	Total/NA	Solid	Moisture	
480-86066-6	CSW-28	Total/NA	Solid	Moisture	
480-86066-7	CSW-29	Total/NA	Solid	Moisture	
480-86066-8	CSW-30	Total/NA	Solid	Moisture	
480-86066-9	CSW-31	Total/NA	Solid	Moisture	
480-86066-10	CSB-5	Total/NA	Solid	Moisture	
480-86066-11	CSB-6	Total/NA	Solid	Moisture	
480-86066-12	CSB-7	Total/NA	Solid	Moisture	
480-86066-13	CSW-18-2	Total/NA	Solid	Moisture	
480-86066-14	CSW-14-2	Total/NA	Solid	Moisture	
480-86066-15	CSB-4-2	Total/NA	Solid	Moisture	
480-86066-17	CSW-19	Total/NA	Solid	Moisture	
480-86066-18	CSW-20	Total/NA	Solid	Moisture	
480-86066-19	CSW-21	Total/NA	Solid	Moisture	
480-86066-20	CSW-22	Total/NA	Solid	Moisture	

6

8

9

11

12

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: CSW-23 Lab Sample ID: 480-86066-1 Date Collected: 08/21/15 00:00

Matrix: Solid

Date Received: 08/21/15 16:50

Dilution Batch Prepared Batch Batch Method Run Factor Number or Analyzed **Prep Type** Type Analyst Lab Total/NA Analysis Moisture 259944 08/21/15 21:18 CMK TAL BUF

Client Sample ID: CSW-23 Lab Sample ID: 480-86066-1

Date Collected: 08/21/15 00:00 **Matrix: Solid**

Date Received: 08/21/15 16:50 Percent Solids: 70.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			260042	08/24/15 10:02	TAS	TAL BUF
Total/NA	Analysis	6010C		1	260223	08/25/15 02:38	AMH	TAL BUF
Total/NA	Prep	7471B			260022	08/24/15 09:25	TAS	TAL BUF
Total/NA	Analysis	7471B		10	260260	08/24/15 16:52	TAS	TAL BUF

Client Sample ID: CSW-24 Lab Sample ID: 480-86066-2

Date Collected: 08/21/15 00:00 **Matrix: Solid**

Date Received: 08/21/15 16:50

Batch Batch Dilution **Batch** Prepared Method **Prep Type** Type Run **Factor** Number or Analyzed Analyst Lab Total/NA 259944 08/21/15 21:18 CMK TAL BUF Analysis Moisture

Client Sample ID: CSW-24 Lab Sample ID: 480-86066-2

Date Collected: 08/21/15 00:00 **Matrix: Solid**

Date Received: 08/21/15 16:50 Percent Solids: 73.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			260042	08/24/15 10:02	TAS	TAL BUF
Total/NA	Analysis	6010C		1	260223	08/25/15 02:42	AMH	TAL BUF
Total/NA	Prep	7471B			260022	08/24/15 09:25	TAS	TAL BUF
Total/NA	Analysis	7471B		1	260260	08/24/15 15:10	TAS	TAL BUF

Lab Sample ID: 480-86066-3 Client Sample ID: CSW-25

Date Collected: 08/21/15 00:00 **Matrix: Solid** Date Received: 08/21/15 16:50

Batch Batch Dilution Batch Prepared Prep Type Method Number or Analyzed Analyst Type Run **Factor** Lab Total/NA Analysis Moisture 259944 08/21/15 21:18 CMK TAL BUF

Client Sample ID: CSW-25 Lab Sample ID: 480-86066-3

Date Collected: 08/21/15 00:00 Matrix: Solid

Date Received: 08/21/15 16:50 Percent Solids: 81.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			260042	08/24/15 10:02	TAS	TAL BUF

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Client Sample ID: CSW-25

Date Collected: 08/21/15 00:00

Date Received: 08/21/15 16:50

Lab Sample ID: 480-86066-3

Matrix: Solid

Percent Solids: 81.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	6010C		1	260223	08/25/15 02:45	AMH	TAL BUF
Total/NA	Prep	7471B			260022	08/24/15 09:25	TAS	TAL BUF
Total/NA	Analysis	7471B		5	260260	08/24/15 16:54	TAS	TAL BUF

Client Sample ID: CSW-26 Lab Sample ID: 480-86066-4 Date Collected: 08/21/15 00:00

Matrix: Solid

Date Received: 08/21/15 16:50

Batch Batch Dilution **Batch** Prepared **Prep Type** Туре Method Run **Factor** Number or Analyzed Analyst Lab 259944 08/21/15 21:18 CMK TAL BUF Total/NA Analysis Moisture

Client Sample ID: CSW-26 Lab Sample ID: 480-86066-4

Date Collected: 08/21/15 00:00 **Matrix: Solid**

Date Received: 08/21/15 16:50 Percent Solids: 76.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			260042	08/24/15 10:02	TAS	TAL BUF
Total/NA	Analysis	6010C		1	260223	08/25/15 02:48	AMH	TAL BUF
Total/NA	Prep	7471B			260022	08/24/15 09:25	TAS	TAL BUF
Total/NA	Analysis	7471B		5	260260	08/25/15 07:31	TAS	TAL BUF

Client Sample ID: CSW-27 Lab Sample ID: 480-86066-5

Date Collected: 08/21/15 00:00 **Matrix: Solid**

Date Received: 08/21/15 16:50

Batch Batch Batch Dilution Prepared or Analyzed **Prep Type** Type Method Run **Factor** Number Analyst Total/NA 259944 08/21/15 21:18 CMK TAL BUF Analysis Moisture

Lab Sample ID: 480-86066-5 Client Sample ID: CSW-27

Date Collected: 08/21/15 00:00 Matrix: Solid

Date Received: 08/21/15 16:50 Percent Solids: 78.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			260042	08/24/15 10:02	TAS	TAL BUF
Total/NA	Analysis	6010C		1	260223	08/25/15 03:14	AMH	TAL BUF
Total/NA	Prep	7471B			260022	08/24/15 09:25	TAS	TAL BUF
Total/NA	Analysis	7471B		5	260260	08/25/15 07:38	TAS	TAL BUF

8/27/2015

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Client Sample ID: CSW-28 Lab Sample ID: 480-86066-6

Date Collected: 08/21/15 00:00 **Matrix: Solid**

Date Received: 08/21/15 16:50

Batch Dilution Batch Batch **Prepared** Prep Type Type Method Run **Factor** Number or Analyzed Analyst 259944 08/21/15 21:18 CMK Total/NA Analysis Moisture TAL BUF

Client Sample ID: CSW-28 Lab Sample ID: 480-86066-6

Date Collected: 08/21/15 00:00

Matrix: Solid Date Received: 08/21/15 16:50 Percent Solids: 77.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			260042	08/24/15 10:02	TAS	TAL BUF
Total/NA	Analysis	6010C		1	260223	08/25/15 03:17	AMH	TAL BUF
Total/NA	Prep	7471B			260022	08/24/15 09:25	TAS	TAL BUF
Total/NA	Analysis	7471B		5	260260	08/25/15 07:41	TAS	TAL BUF

Client Sample ID: CSW-29 Lab Sample ID: 480-86066-7

Date Collected: 08/21/15 00:00

Date Received: 08/21/15 16:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture			259944	08/21/15 21:18	CMK	TAL BUF

Client Sample ID: CSW-29 Lab Sample ID: 480-86066-7

Date Collected: 08/21/15 00:00

Matrix: Solid Date Received: 08/21/15 16:50 Percent Solids: 71.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	7471B			260022	08/24/15 09:25	TAS	TAL BUF
Total/NA	Analysis	7471B		1	260260	08/24/15 15:30	TAS	TAL BUF

Client Sample ID: CSW-30 Lab Sample ID: 480-86066-8

Date Collected: 08/21/15 00:00

Date Received: 08/21/15 16:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	259944	08/21/15 21:18	CMK	TAL BUF

Client Sample ID: CSW-30 Lab Sample ID: 480-86066-8

Date Collected: 08/21/15 00:00

Matrix: Solid Date Received: 08/21/15 16:50 Percent Solids: 74.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	7471B			260022	08/24/15 09:25	TAS	TAL BUF
Total/NA	Analysis	7471B		1	260260	08/24/15 15:33	TAS	TAL BUF

TestAmerica Buffalo

Matrix: Solid

Matrix: Solid

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: CSW-31

Date Collected: 08/21/15 00:00 Date Received: 08/21/15 16:50

Lab Sample ID: 480-86066-9

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	259944	08/21/15 21:18	CMK	TAL BUF

Lab Sample ID: 480-86066-9

Client Sample ID: CSW-31 Date Collected: 08/21/15 00:00 Matrix: Solid Date Received: 08/21/15 16:50

Percent Solids: 67.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	7471B			260022	08/24/15 09:25	TAS	TAL BUF
Total/NA	Analysis	7471B		5	260260	08/25/15 07:43	TAS	TAL BUF

Client Sample ID: CSB-5 Lab Sample ID: 480-86066-10 Date Collected: 08/21/15 00:00

Matrix: Solid

Date Received: 08/21/15 16:50

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab TAL BUF Total/NA 259944 08/21/15 21:18 CMK Analysis Moisture

Client Sample ID: CSB-5 Lab Sample ID: 480-86066-10

Date Collected: 08/21/15 00:00 **Matrix: Solid**

Date Received: 08/21/15 16:50 Percent Solids: 62.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			260042	08/24/15 10:02	TAS	TAL BUF
Total/NA	Analysis	6010C		1	260223	08/25/15 03:21	AMH	TAL BUF
Total/NA	Prep	7471B			260022	08/24/15 09:25	TAS	TAL BUF
Total/NA	Analysis	7471B		5	260260	08/25/15 07:45	TAS	TAL BUF

Client Sample ID: CSB-6 Lab Sample ID: 480-86066-11

Date Collected: 08/21/15 00:00 **Matrix: Solid**

Date Received: 08/21/15 16:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	259944	08/21/15 21:18	CMK	TAL BUF

Lab Sample ID: 480-86066-11 Client Sample ID: CSB-6

Date Collected: 08/21/15 00:00 **Matrix: Solid**

Date Received: 08/21/15 16:50 Percent Solids: 63.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			260042	08/24/15 10:02	TAS	TAL BUF
Total/NA	Analysis	6010C		1	260223	08/25/15 03:24	AMH	TAL BUF
Total/NA	Prep	7471B			260022	08/24/15 09:25	TAS	TAL BUF

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Client Sample ID: CSB-6

Date Collected: 08/21/15 00:00

Date Received: 08/21/15 16:50

Lab Sample ID: 480-86066-11

Matrix: Solid

Percent Solids: 63.5

Batch Batch Batch Dilution Prepared Method Number **Prep Type** Type Run **Factor** or Analyzed Analyst Lab Total/NA Analysis 7471B 10 260260 08/25/15 07:47 TAS TAL BUF

Client Sample ID: CSB-7 Lab Sample ID: 480-86066-12 Date Collected: 08/21/15 00:00

Matrix: Solid

Date Received: 08/21/15 16:50

Batch Batch Dilution **Batch Prepared** Prep Type Type Method Run Factor Number or Analyzed Analyst Lab 08/21/15 21:18 CMK TAL BUF Total/NA 259944 Analysis Moisture

Client Sample ID: CSB-7 Lab Sample ID: 480-86066-12

Date Collected: 08/21/15 00:00 **Matrix: Solid** Date Received: 08/21/15 16:50 Percent Solids: 64.8

Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run Factor Number or Analyzed **Analyst** Lab 7471B TAL BUF Total/NA Prep 260022 08/24/15 09:25 TAS 5 Total/NA 7471B 260260 08/25/15 07:49 TAS TAL BUF Analysis

Client Sample ID: CSW-18-2 Lab Sample ID: 480-86066-13

Date Collected: 08/21/15 00:00 **Matrix: Solid**

Date Received: 08/21/15 16:50

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed **Analyst** 08/21/15 21:18 Total/NA Analysis Moisture 259944 CMK TAL BUF

Client Sample ID: CSW-18-2 Lab Sample ID: 480-86066-13

Date Collected: 08/21/15 00:00 Matrix: Solid Date Received: 08/21/15 16:50 Percent Solids: 76.1

Batch Batch Dilution Batch Prepared Method Number or Analyzed **Prep Type** Type Run Factor Analyst Lab 3050B 260042 08/24/15 10:02 TAS Total/NA Prep TAL BUF Total/NA Analysis 6010C 260223 08/25/15 03:27 AMH TAL BUF 1

Client Sample ID: CSW-14-2 Lab Sample ID: 480-86066-14

Date Collected: 08/21/15 00:00 Matrix: Solid Date Received: 08/21/15 16:50

Batch Batch Dilution Batch Prepared **Prep Type** Method Number or Analyzed Type Run **Factor** Analyst Total/NA Analysis Moisture 259944 08/21/15 21:18 CMK TAL BUF

Project/Site: 132 Dingens

Client Sample ID: CSW-14-2

Client: Iyer Environmental Group, LLC

Date Collected: 08/21/15 00:00 Date Received: 08/21/15 16:50

Lab Sample ID: 480-86066-14

Matrix: Solid Percent Solids: 63.4

Matrix: Water

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			260042	08/24/15 10:02	TAS	TAL BUF
Total/NA	Analysis	6010C		1	260223	08/25/15 03:40	AMH	TAL BUF

Client Sample ID: CSB-4-2 Lab Sample ID: 480-86066-15

Date Collected: 08/21/15 00:00 **Matrix: Solid**

Date Received: 08/21/15 16:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	259944	08/21/15 21:18	CMK	TAL BUF

Client Sample ID: CSB-4-2 Lab Sample ID: 480-86066-15

Date Collected: 08/21/15 00:00

Date Received: 08/21/15 16:50

Matrix: Solid Percent Solids: 78.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			260042	08/24/15 10:02	TAS	TAL BUF
Total/NA	Analysis	6010C		1	260223	08/25/15 03:43	AMH	TAL BUF

Client Sample ID: ERB-2 Lab Sample ID: 480-86066-16

Date Collected: 08/21/15 00:00

Date Received: 08/21/15 16:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3005A			260411	08/26/15 07:27	KJ1	TAL BUF
Total/NA	Analysis	6010C		1	260684	08/26/15 17:30	AMH	TAL BUF
Total/NA	Prep	7470A			260477	08/26/15 10:20	TAS	TAL BUF
Total/NA	Analysis	7470A		1	260662	08/26/15 15:20	TAS	TAL BUF

Client Sample ID: CSW-19 Lab Sample ID: 480-86066-17

Date Collected: 08/21/15 00:00

Date Received: 08/21/15 16:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture			259944	08/21/15 21:18	CMK	TAL BUF

Client Sample ID: CSW-19 Lab Sample ID: 480-86066-17

Date Collected: 08/21/15 00:00 **Matrix: Solid** Date Received: 08/21/15 16:50 Percent Solids: 74.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			260042	08/24/15 10:02	TAS	TAL BUF
Total/NA	Analysis	6010C		1	260223	08/25/15 03:46	AMH	TAL BUF

2

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Total/NA

Analysis

Date Received: 08/21/15 16:50

7471B

Lab Sample ID: 480-86066-17

TAL BUF

Matrix: Solid Percent Solids: 74.5

Client Sample ID: CSW-19
Date Collected: 08/21/15 00:00
Date Received: 08/21/15 16:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	7471B			260022	08/24/15 09:25	TAS	TAL BUF
Total/NA	Analysis	7471B		1	260260	08/24/15 15:48	TAS	TAL BUF

Client Sample ID: CSW-20 Lab Sample ID: 480-86066-18

Date Collected: 08/21/15 00:00 Matrix: Solid Date Received: 08/21/15 16:50

Dilution Batch Batch Batch Prepared or Analyzed Prep Type Type Method Run Factor Number Analyst Lab Total/NA Analysis Moisture 259944 08/21/15 21:18 CMK TAL BUF

Client Sample ID: CSW-20 Lab Sample ID: 480-86066-18

Date Collected: 08/21/15 00:00 Matrix: Solid
Date Received: 08/21/15 16:50 Percent Solids: 73.4

Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab TAL BUF Total/NA Prep 3050B 260042 08/24/15 10:02 TAS Total/NA 6010C 260223 08/25/15 03:49 AMH TAL BUF Analysis 1 Total/NA 260022 08/24/15 09:25 TAS TAL BUF Prep 7471B

Client Sample ID: CSW-21 Lab Sample ID: 480-86066-19

260260 08/25/15 07:55 TAS

5

Date Collected: 08/21/15 00:00 Matrix: Solid

Batch Batch Dilution Batch Prepared

	Datell	Datcii		Dilution	Datcii	riepaieu			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	Moisture		1	259944	08/21/15 21:18	CMK	TAL BUF	

Client Sample ID: CSW-21 Lab Sample ID: 480-86066-19

Date Collected: 08/21/15 00:00 Matrix: Solid
Date Received: 08/21/15 16:50 Percent Solids: 68.3

Dilution Batch Batch Batch Prepared **Prep Type** Type Method Run Factor Number or Analyzed Analyst Total/NA Prep 3050B 260042 08/24/15 10:02 TAS TAL BUF Total/NA Analysis 6010C 1 260223 08/25/15 03:53 AMH TAL BUF Total/NA 7471B 260022 08/24/15 09:25 TAS TAL BUF Prep 260260 08/25/15 08:22 TAS TAL BUF Total/NA Analysis 7471B 5

Lab Chronicle

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-86066-1

Lab Sample ID: 480-86066-20

Matrix: Solid

Date Collected: 08/21/15 00:00 Date Received: 08/21/15 16:50

Client Sample ID: CSW-22

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	259944	08/21/15 21:18	CMK	TAL BUF

Client Sample ID: CSW-22 Lab Sample ID: 480-86066-20

Date Collected: 08/21/15 00:00

Matrix: Solid
Pete Received: 08/21/15 16:50

Date Received: 08/21/15 16:50 Percent Solids: 76.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			260042	08/24/15 10:02	TAS	TAL BUF
Total/NA	Analysis	6010C		1	260223	08/25/15 03:56	AMH	TAL BUF
Total/NA	Prep	7471B			260022	08/24/15 09:25	TAS	TAL BUF
Total/NA	Analysis	7471B		5	260260	08/25/15 07:58	TAS	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

4 4

12

13

Certification Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-86066-1

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date
New York	NELAP		2	10026	03-31-16
The following analytes	s are included in this repo	rt, but certification is	not offered by the go	overning authority:	
The following analytes Analysis Method	s are included in this repo Prep Method	rt, but certification is Matrix	not offered by the go Analyt	,	
,	·	·	Analyt	,	

3

4

5

7

10

4.6

13

Method Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-86066-1

Method	Method Description	Protocol	Laboratory
6010C	Metals (ICP)	SW846	TAL BUF
7470A	Mercury (CVAA)	SW846	TAL BUF
7471B	Mercury (CVAA)	SW846	TAL BUF
Moisture	Percent Moisture	EPA	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

2

6

7

8

46

11

Sample Summary

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

TestAmerica Job ID: 480-86066-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-86066-1	CSW-23	Solid	08/21/15 00:00	08/21/15 16:50
480-86066-2	CSW-24	Solid	08/21/15 00:00	08/21/15 16:50
480-86066-3	CSW-25	Solid	08/21/15 00:00	08/21/15 16:50
480-86066-4	CSW-26	Solid	08/21/15 00:00	08/21/15 16:50
480-86066-5	CSW-27	Solid	08/21/15 00:00	08/21/15 16:50
480-86066-6	CSW-28	Solid	08/21/15 00:00	08/21/15 16:50
480-86066-7	CSW-29	Solid	08/21/15 00:00	08/21/15 16:50
480-86066-8	CSW-30	Solid	08/21/15 00:00	08/21/15 16:50
480-86066-9	CSW-31	Solid	08/21/15 00:00	08/21/15 16:50
480-86066-10	CSB-5	Solid	08/21/15 00:00	08/21/15 16:50
480-86066-11	CSB-6	Solid	08/21/15 00:00	08/21/15 16:50
480-86066-12	CSB-7	Solid	08/21/15 00:00	08/21/15 16:50
480-86066-13	CSW-18-2	Solid	08/21/15 00:00	08/21/15 16:50
480-86066-14	CSW-14-2	Solid	08/21/15 00:00	08/21/15 16:50
480-86066-15	CSB-4-2	Solid	08/21/15 00:00	08/21/15 16:50
480-86066-16	ERB-2	Water	08/21/15 00:00	08/21/15 16:50
480-86066-17	CSW-19	Solid	08/21/15 00:00	08/21/15 16:50
480-86066-18	CSW-20	Solid	08/21/15 00:00	08/21/15 16:50
480-86066-19	CSW-21	Solid	08/21/15 00:00	08/21/15 16:50
480-86066-20	CSW-22	Solid	08/21/15 00:00	08/21/15 16:50

Chain of Custody Record

Temperature on Receipt

Drinking Water? Yes□

No K

THE LEADER IN ENVIRONMENTAL TESTING <u>TestAmerica</u>

TAL-4124 (1007)				
cient (Jer Amirunmental Gaud	Project Manager	jarma 176	Aug 21/15	Chain of Custody Number 254454
1	Telephone Number (Area Code)/Fax Numble $(716)662-4657$	code)/Fax Number	,	Page & I of & 2
Orchard Park NV 14127	2	Lab Contact M. Det	Analysis (Attach list if more space is needed)	
d Location (State)	Carrier/Waybill Number		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Special Instructions/
hase	Matrix	Containers & Preservatives	77 11 6 12 1	Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Time All Sed.	HOBN /SYUZ HOBN IOH EONH FOSZH	기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기	Catagony B
C,5W-23 Aug 2, 2015	>	>	>	>
CSW-24	<i>></i>	>	>	
GSW-25	>	7		
CSU	>		>	MS/ MSD
0 CSW-27		7	>	•
© CS√-28	>	,	>	
CSW				
C5W-30	>		>	
C5W-31	_			
C5B-5	>	,	480-86066 C	480-86066 Chain of Custody
1) 9-85	<u>\</u>	>		
CSB-7	<u>></u>			-
ntification Skin Infant Poison B	Sample Disposal Sample Disposal	M Disposal By Lab	(A fee may be as Month's Joner than 1 mo	(A fee may be assessed if samples are retained foncer than 1 month)
e Required		, QC Requirements (Sp		
☐ 24 Hours ☐ 48 Hours [A] 7 Days ☐ 14 Days ☐ 21 Days	Other_			
1. Relinquished By Cylan C & Com Tr	B(21/15 76	50 1. Received By	M H	Date VIN Time SS
2. Relinquished By	Date t Time	2. Received By U	,	Date
2. 3. Relinquished By	Date Time	3. Received By		Date Time
Comments			Teno 1817# 1 WOZER	NOTCH.

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

Custody Record Chain of

TAL-4124 (1007)

Temperature on Receipt

THE LEADER IN ENVIRONMENTAL TESTING Drinking Water? Yes□ No 环

TestAmerica

NOT BESENDA! Special Instructions/ Conditions of Receipt Catagory B (A fee may be assessed if samples are retained longer than 1 month) Chain of Custody Number 264455 Time Pate) Date A 2015 Lab Mimber Analysis (Attach list if more space is needed) Months 910T 本出出名書記 1121 म्**न** क्षेठी क्षेठी Archive For OC Requirements (Specify, Deyo Disposal By Lab Containers & Preservatives 1. Received By P 2. Received By 3. Received By Project Manager Dharma 1/6/ Telephone Number (Area Code)/Fax Number (7 (6) 662-4157 IDH EONH tOSZH ☐ Return To Client Sample Disposa 1105 site Contact R, Allen Time Carrier/Waybill Numbe Matrix pes 110 Other_ П Ипкпомп Date Time Toays | 14 Days | 21 Days 8/21/12 ☐ Poison B Date سیب مست \simeq Iver Environmental Group (Containers for each sample may be combined on one line) Skin Irritant Project Name and Location (State)

| 3 2 | Dingers State)
Contract/Purchase Order/Quoje No. At Rolling Hills Sample I.D. No. and Description Ŋ CSW-18-2 N - Flammable 1. Refinquished By Colluns Orchard Park 05W-14-24 Hours 148 Hours GSW-20 CSM-22 Possible Hazard Identification (か) - 5 ERB - D CSW -19 Non-Hazard | Flan CSB-2. Relinquished By 3. Relinquished By 8/27/2015 Page 29 of 30

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

Login Sample Receipt Checklist

Client: Iyer Environmental Group, LLC

Job Number: 480-86066-1

Login Number: 86066 List Source: TestAmerica Buffalo

List Number: 1

Creator: Kolb, Chris M

Creator: Kold, Chris M		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	False	
Cooler Temperature is acceptable.	True	Yes: Received same day of collection
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	Refer to job narrative for details
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	False	Refer to job narrative for details
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	iyer env
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

3

6

0

9

11

12

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-86308-1 Client Project/Site: 132 Dingens

For:

Iyer Environmental Group, LLC 44 Rolling Hills Drive Orchard Park, New York 14127

Attn: Dr. Dharmarajan R Iyer

Melisso Deyo

Authorized for release by: 9/8/2015 12:59:26 PM

Melissa Deyo, Project Manager I (716)504-9874

melissa.deyo@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	9
Surrogate Summary	26
QC Sample Results	27
QC Association Summary	33
Lab Chronicle	36
Certification Summary	41
Method Summary	42
Sample Summary	43
Chain of Custody	44
Receipt Checklists	46

4

6

8

9

11

13

14

Definitions/Glossary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-86308-1

Qualifiers

GC/MS Semi VOA

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
*	LCS or LCSD is outside acceptance limits.
Χ	Surrogate is outside control limits
F2	MS/MSD RPD exceeds control limits
F1	MS and/or MSD Recovery is outside acceptance limits.
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
E	Result exceeded calibration range.
F5	Duplicate RPD exceeds limit, and one or both sample results are less than 5 times RL. The data are considered valid because the absolute difference is less than the RL.
F3	Duplicate RPD exceeds the control limit

Metals

Qualifier	Qualifier Description
F2	MS/MSD RPD exceeds control limits
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not
	applicable.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit

ML Minimum Level (Dioxin) NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

Quality Control QC **RER** Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points RPD

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TestAmerica Buffalo

Page 3 of 46

Case Narrative

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-86308-1

Job ID: 480-86308-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-86308-1

Receipt

The samples were received on 8/27/2015 4:40 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 20.5° C.

GC/MS Semi VOA

Method(s) 8270D: The following samples were diluted due to appearance and viscosity: CSW-41 (480-86308-12), CSW-42 (480-86308-13), CSW-43 (480-86308-14) and CSB-9 (480-86308-15). As such, surrogate recoveries are below the calibration range, and elevated reporting limits (RLs) are provided.

Method(s) 8270D: The following samples were diluted due to appearance and viscosity: CSW-36 (480-86308-7), CSW-37 (480-86308-8), CSW-37 (480-86308-8[DU]), CSW-38 (480-86308-9), CSW-39 (480-86308-10), CSW-40 (480-86308-11), CSW-40 (480-86308-11[MS]) and CSW-40 (480-86308-11[MSD]). Elevated reporting limits (RL) are provided.

Method(s) 8270D: Six surrogates are used for this analysis. The laboratory's SOP allows two of these surrogates to be outside acceptance criteria without performing re-analysis. The following samples contained an allowable number of surrogate compounds outside limits: CSW-36 (480-86308-7), CSW-37 (480-86308-8[DU]), CSW-39 (480-86308-10) and CSW-40 (480-86308-11). These results have been reported and qualified.

Method(s) 8270D: The laboratory control sample (LCS) for batch preparation batch 480-261380 and analytical batch 480-262027 recovered outside control limits for the following analyte: Benzaldehyde. This analyte was biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method(s) 8270D: The laboratory control sample (LCS) for preparation batch 480-261380 and analytical batch 480-262027 recovered outside control limits for the following analyte: 4-Nitroaniline. This analyte has been identified as a poor performing analyte when analyzed using this method; therefore,re-analysis was not performed. These results have been reported and qualified.

Method(s) 8270D: The following analyte recovered outside control limits for the LCS associated with preparation batch 480-261380 and analytical batch 480-262027: Atrazine. This is not indicative of a systematic control problem because these were random marginal exceedances. Qualified results have been reported.

Method(s) 8270D: The following sample was diluted due to an abundance of target analytes: CSW-41 (480-86308-12). As such, surrogate recoveries are below the calibration range and may not be reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method(s) 3550C: The following sample: CSB-9 (480-86308-15) was decanted prior to preparation.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Analyte

Lead

TestAmerica Job ID: 480-86308-1

Client Sample ID: CSW-32						Lab Sample ID:	480-86308-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D Method	Prep Type
Lead	2070		1.3	0.30	mg/Kg	1 🌣 6010C	Total/NA
Client Sample ID: CSW-33						Lab Sample ID:	480-86308-2
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D Method	Prep Type
Lead	1100		1.4	0.34	mg/Kg	1 🌣 6010C	Total/NA
Client Sample ID: CSW-34						Lab Sample ID:	480-86308-3
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D Method	Prep Type
Lead	1690		1.2	0.28	mg/Kg	1 🌣 6010C	Total/NA
Client Sample ID: CSW-35						Lab Sample ID:	480-86308-4
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D Method	Prep Type
Lead	2660	F2	1.3	0.31	mg/Kg	1 🌣 6010C	Total/NA
Client Sample ID: CSB-8						Lab Sample ID:	480-86308-5
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D Method	Prep Type
Lead	865		1.5	0.36	mg/Kg	1 🌣 6010C	Total/NA
Client Sample ID: ERB-3						Lab Sample ID:	480-86308-6

Client Sample ID: CSW-36	Lab Sample ID: 480-86308-7

0.010

MDL Unit

0.0030 mg/L

Dil Fac D Method

6010C

Result Qualifier

0.015

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Biphenyl	430 J	2300	330	ug/Kg	10	₩	8270D	Total/NA
2-Methylnaphthalene	1400 J	2300	450	ug/Kg	10	₩	8270D	Total/NA
Acenaphthene	4400	2300	330	ug/Kg	10	₩	8270D	Total/NA
Acenaphthylene	1700 J	2300	290	ug/Kg	10	₩	8270D	Total/NA
Anthracene	12000	2300	560	ug/Kg	10	₩	8270D	Total/NA
Benzo[a]anthracene	23000	2300	230	ug/Kg	10	₩	8270D	Total/NA
Benzo[a]pyrene	18000	2300	330	ug/Kg	10	₩	8270D	Total/NA
Benzo[b]fluoranthene	23000	2300	360	ug/Kg	10	₩	8270D	Total/NA
Benzo[g,h,i]perylene	9400	2300	240	ug/Kg	10	₩	8270D	Total/NA
Benzo[k]fluoranthene	8200	2300	290	ug/Kg	10	₽	8270D	Total/NA
Carbazole	5500	2300	270	ug/Kg	10	₩	8270D	Total/NA
Chrysene	20000	2300	510	ug/Kg	10	₩	8270D	Total/NA
Dibenzofuran	3800	2300	270	ug/Kg	10	₩	8270D	Total/NA
Fluoranthene	51000	2300	240	ug/Kg	10	₩	8270D	Total/NA
Fluorene	6100	2300	270	ug/Kg	10	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	8800	2300	280	ug/Kg	10	₩	8270D	Total/NA
Naphthalene	2400	2300	290	ug/Kg	10	₩	8270D	Total/NA
Phenanthrene	49000	2300	330	ug/Kg	10	₩	8270D	Total/NA
Pyrene	36000	2300	270	ug/Kg	10	₩	8270D	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

9/8/2015

2

3

5

7

0

10

12

1 1

13

Prep Type

Total/NA

TestAmerica Job ID: 480-86308-1

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Client Sample ID: CSW-37

Lab Sample ID: 480-86308-8

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acenaphthene	450	J	1100	160	ug/Kg	5	₩	8270D	Total/NA
Acenaphthylene	200	J	1100	140	ug/Kg	5	₩	8270D	Total/NA
Anthracene	1400		1100	270	ug/Kg	5	₩	8270D	Total/NA
Benzo[a]anthracene	3400		1100	110	ug/Kg	5	₽	8270D	Total/NA
Benzo[a]pyrene	3800		1100	160	ug/Kg	5	₩	8270D	Total/NA
Benzo[b]fluoranthene	4500		1100	170	ug/Kg	5	₩	8270D	Total/NA
Benzo[g,h,i]perylene	2000		1100	120	ug/Kg	5	₩	8270D	Total/NA
Benzo[k]fluoranthene	2400		1100	140	ug/Kg	5	₩	8270D	Total/NA
Carbazole	680	J	1100	130	ug/Kg	5	₩	8270D	Total/NA
Chrysene	3500		1100	240	ug/Kg	5	₩.	8270D	Total/NA
Dibenzofuran	410	J	1100	130	ug/Kg	5	₩	8270D	Total/NA
Fluoranthene	6500		1100	120	ug/Kg	5	₩	8270D	Total/NA
Fluorene	530	J	1100	130	ug/Kg	5	ф.	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	1800		1100	130	ug/Kg	5	₩	8270D	Total/NA
Phenanthrene	5800		1100	160	ug/Kg	5	₩	8270D	Total/NA
Pyrene	4800		1100	130	ug/Kg	5	₩.	8270D	Total/NA

Client Sample ID: CSW-38 Lab Sample ID: 480-86308-9

Analyte	Result (Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acenaphthene	240 J	J –	1100	170	ug/Kg	5	₩	8270D	Total/NA
Acenaphthylene	280 J	J	1100	150	ug/Kg	5	₩	8270D	Total/NA
Anthracene	830 J	J	1100	280	ug/Kg	5	₩	8270D	Total/NA
Benzo[a]anthracene	3000		1100	110	ug/Kg	5	₩	8270D	Total/NA
Benzo[a]pyrene	2700		1100	170	ug/Kg	5	₩	8270D	Total/NA
Benzo[b]fluoranthene	3500		1100	180	ug/Kg	5	₩	8270D	Total/NA
Benzo[g,h,i]perylene	1400		1100	120	ug/Kg	5	₩	8270D	Total/NA
Benzo[k]fluoranthene	1800		1100	150	ug/Kg	5	₩	8270D	Total/NA
Carbazole	430 J	J	1100	130	ug/Kg	5	₩	8270D	Total/NA
Chrysene	3000		1100	250	ug/Kg	5	₩	8270D	Total/NA
Dibenzofuran	160 J	J	1100	130	ug/Kg	5	₩	8270D	Total/NA
Fluoranthene	6300		1100	120	ug/Kg	5	₩	8270D	Total/NA
Fluorene	260 J	J	1100	130	ug/Kg	5	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	1400		1100	140	ug/Kg	5	₩	8270D	Total/NA
Phenanthrene	3500		1100	170	ug/Kg	5	₩	8270D	Total/NA
Pyrene	4200		1100	130	ug/Kg	5	₽	8270D	Total/NA

Client Sample ID: CSW-39 Lab Sample ID: 480-86308-10

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
2-Methylnaphthalene	230 J	1000	210	ug/Kg	5	₩	8270D	Total/NA
Acenaphthene	280 J	1000	150	ug/Kg	5	₩	8270D	Total/NA
Acenaphthylene	230 J	1000	130	ug/Kg	5	₩	8270D	Total/NA
Anthracene	1300	1000	250	ug/Kg	5	₩	8270D	Total/NA
Benzo[a]anthracene	2800	1000	100	ug/Kg	5	₩	8270D	Total/NA
Benzo[a]pyrene	2500	1000	150	ug/Kg	5	₩	8270D	Total/NA
Benzo[b]fluoranthene	3000	1000	160	ug/Kg	5	Ċ.	8270D	Total/NA
Benzo[g,h,i]perylene	1000	1000	110	ug/Kg	5	₩	8270D	Total/NA
Benzo[k]fluoranthene	1800	1000	130	ug/Kg	5	₩	8270D	Total/NA
Carbazole	630 J	1000	120	ug/Kg	5	Ϋ́	8270D	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

9/8/2015

J

5

7

9

10

12

1 A

TestAmerica Job ID: 480-86308-1

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: CSW-39 (Continued)

Lab Sample ID: 480-86308-10

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chrysene	2900		1000	230	ug/Kg	5	₩	8270D	Total/NA
Dibenzofuran	350	J	1000	120	ug/Kg	5	₩	8270D	Total/NA
Fluoranthene	6400		1000	110	ug/Kg	5	₩.	8270D	Total/NA
Fluorene	450	J	1000	120	ug/Kg	5	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	1100		1000	130	ug/Kg	5	₩	8270D	Total/NA
Naphthalene	320	J	1000	130	ug/Kg	5	₩.	8270D	Total/NA
Phenanthrene	5100		1000	150	ug/Kg	5	₩	8270D	Total/NA
Pyrene	3700		1000	120	ug/Kg	5	₩	8270D	Total/NA

Client Sample ID: CSW-40

Lab Sample ID: 480-86308-11

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acenaphthene	760	J	2100	310	ug/Kg		₩	8270D	Total/NA
Acenaphthylene	1000	J F1	2100	270	ug/Kg	10	₩	8270D	Total/NA
Anthracene	4000	F1	2100	510	ug/Kg	10	₩	8270D	Total/NA
Benzo[a]anthracene	8900		2100	210	ug/Kg	10	₩	8270D	Total/NA
Benzo[a]pyrene	8000	F1	2100	310	ug/Kg	10	₩	8270D	Total/NA
Benzo[b]fluoranthene	9300	F2	2100	330	ug/Kg	10	₩	8270D	Total/NA
Benzo[g,h,i]perylene	4600	F1	2100	220	ug/Kg	10	₩	8270D	Total/NA
Benzo[k]fluoranthene	3600	F1	2100	270	ug/Kg	10	₩	8270D	Total/NA
Carbazole	960	J F1	2100	240	ug/Kg	10	₩	8270D	Total/NA
Chrysene	9100		2100	470	ug/Kg	10	₩	8270D	Total/NA
Dibenzofuran	930	J F1	2100	240	ug/Kg	10	₩	8270D	Total/NA
Fluoranthene	24000	F2	2100	220	ug/Kg	10	₩	8270D	Total/NA
Fluorene	1600	J F2 F1	2100	240	ug/Kg	10	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	4100	F1	2100	260	ug/Kg	10	₩	8270D	Total/NA
Phenanthrene	20000	F2	2100	310	ug/Kg	10	₩	8270D	Total/NA
Pyrene	17000		2100	240	ug/Kg	10		8270D	Total/NA

Client Sample ID: CSW-41

Lab Sample ID: 480-86308-12

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
2-Methylnaphthalene	920	J	4100	830	ug/Kg	20	₩	8270D	Total/NA
Acenaphthene	2700	J	4100	610	ug/Kg	20	₽	8270D	Total/NA
Acenaphthylene	3800	J	4100	540	ug/Kg	20	₩	8270D	Total/NA
Anthracene	17000		4100	1000	ug/Kg	20	₩	8270D	Total/NA
Benzo[a]anthracene	40000		4100	410	ug/Kg	20	₩	8270D	Total/NA
Benzo[a]pyrene	31000		4100	610	ug/Kg	20	₽	8270D	Total/NA
Benzo[b]fluoranthene	43000		4100	660	ug/Kg	20	₩	8270D	Total/NA
Benzo[g,h,i]perylene	10000		4100	440	ug/Kg	20	₩	8270D	Total/NA
Benzo[k]fluoranthene	20000		4100	540	ug/Kg	20	₽	8270D	Total/NA
Carbazole	4900		4100	490	ug/Kg	20	₩	8270D	Total/NA
Chrysene	38000		4100	930	ug/Kg	20	₩	8270D	Total/NA
Dibenzofuran	4400		4100	490	ug/Kg	20	₩	8270D	Total/NA
Fluoranthene	110000	E	4100	440	ug/Kg	20	₩	8270D	Total/NA
Fluorene	7500		4100	490	ug/Kg	20	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	11000		4100	510	ug/Kg	20	₩	8270D	Total/NA
Phenanthrene	77000		4100	610	ug/Kg	20	₩.	8270D	Total/NA
Pyrene	57000		4100	490	ug/Kg	20	₩	8270D	Total/NA
Acenaphthene - DL	2600	J	10000	1500	ug/Kg	50	₩	8270D	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

Page 7 of 46

TestAmerica Job ID: 480-86308-1

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: CSW-41 (Continued)

Lab Sample ID: 480-86308-12

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acenaphthylene - DL	2000	J	10000	1300	ug/Kg	50	₩	8270D	Total/NA
Anthracene - DL	15000		10000	2600	ug/Kg	50	₩.	8270D	Total/NA
Benzo[a]anthracene - DL	38000		10000	1000	ug/Kg	50	₩	8270D	Total/NA
Benzo[a]pyrene - DL	31000		10000	1500	ug/Kg	50		8270D	Total/NA
Benzo[b]fluoranthene - DL	40000		10000	1600	ug/Kg	50	₩	8270D	Total/NA
Benzo[g,h,i]perylene - DL	23000		10000	1100	ug/Kg	50	₩	8270D	Total/NA
Benzo[k]fluoranthene - DL	19000		10000	1300	ug/Kg	50	₩	8270D	Total/NA
Carbazole - DL	4200	J	10000	1200	ug/Kg	50	₩	8270D	Total/NA
Chrysene - DL	36000		10000	2300	ug/Kg	50	₩	8270D	Total/NA
Dibenzofuran - DL	4200	J	10000	1200	ug/Kg	50	₩	8270D	Total/NA
Fluoranthene - DL	91000		10000	1100	ug/Kg	50	₩	8270D	Total/NA
Fluorene - DL	6900	J	10000	1200	ug/Kg	50	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene - DL	20000		10000	1300	ug/Kg	50	₩	8270D	Total/NA
Phenanthrene - DL	72000		10000	1500	ug/Kg	50	₩	8270D	Total/NA
Pyrene - DL	61000		10000	1200	ug/Kg	50	₩	8270D	Total/NA

Client Sample ID: CSW-42

Lab Sample ID: 480-86308-13

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo[a]anthracene	2500	J	4500	450	ug/Kg	20	₩	8270D	Total/NA
Benzo[a]pyrene	2300	J	4500	660	ug/Kg	20	₩	8270D	Total/NA
Benzo[b]fluoranthene	3100	J	4500	710	ug/Kg	20	₩	8270D	Total/NA
Benzo[g,h,i]perylene	1500	J	4500	480	ug/Kg	20		8270D	Total/NA
Benzo[k]fluoranthene	1400	J	4500	580	ug/Kg	20	₩	8270D	Total/NA
Chrysene	2600	J	4500	1000	ug/Kg	20	₩	8270D	Total/NA
Fluoranthene	5400		4500	480	ug/Kg	20		8270D	Total/NA
Indeno[1,2,3-cd]pyrene	1200	J	4500	560	ug/Kg	20	₩	8270D	Total/NA
Phenanthrene	3100	J	4500	660	ug/Kg	20	₩	8270D	Total/NA
Pyrene	3400	J	4500	530	ug/Kg	20	₽	8270D	Total/NA

Client Sample ID: CSW-43

Lab Sample ID: 480-86308-14

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acenaphthylene	690	J -	4500	580	ug/Kg		₩	8270D	Total/NA
Anthracene	1700	J	4500	1100	ug/Kg	20	₩	8270D	Total/NA
Benzo[a]anthracene	10000		4500	450	ug/Kg	20	₩	8270D	Total/NA
Benzo[a]pyrene	9000		4500	660	ug/Kg	20	₩	8270D	Total/NA
Benzo[b]fluoranthene	12000		4500	710	ug/Kg	20	₩	8270D	Total/NA
Benzo[g,h,i]perylene	3400	J	4500	470	ug/Kg	20	₩	8270D	Total/NA
Benzo[k]fluoranthene	6500		4500	580	ug/Kg	20	₩	8270D	Total/NA
Chrysene	10000		4500	1000	ug/Kg	20	₩	8270D	Total/NA
Fluoranthene	17000		4500	470	ug/Kg	20	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	3700	J	4500	550	ug/Kg	20	₩.	8270D	Total/NA
Phenanthrene	5900		4500	660	ug/Kg	20	₩	8270D	Total/NA
Pyrene	11000		4500	530	ug/Kg	20	₩	8270D	Total/NA

Client Sample ID: CSB-9

Lab Sample ID: 480-86308-15

Analyte	Result (Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Fluoranthene	830	J	4900	520	ug/Kg	20	₩	8270D	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

Page 8 of 46

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: CSW-32

Date Collected: 08/27/15 13:00

Lab Sample ID: 480-86308-1

Matrix: Solid

Date Received: 08/27/15 16:40 Watrix. Solid

Percent Solids: 77.2

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	2070		1.3	0.30	mg/Kg		08/28/15 13:15	08/31/15 09:15	1

Client Sample ID: CSW-33 Lab Sample ID: 480-86308-2

Date Collected: 08/27/15 13:00 Matrix: Solid
Date Received: 08/27/15 16:40 Percent Solids: 75.2

Method: 6010C - Metals (ICP)									
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	1100		1.4	0.34	mg/Kg	\	08/28/15 13:15	08/31/15 09:18	1

Client Sample ID: CSW-34

Lab Sample ID: 480-86308-3

 Date Collected: 08/27/15 13:00
 Matrix: Solid

 Date Received: 08/27/15 16:40
 Percent Solids: 81.1

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	1690		1.2	0.28	mg/Kg	₩	08/28/15 13:15	08/31/15 09:33	1

Client Sample ID: CSW-35

Date Collected: 08/27/15 13:00

Lab Sample ID: 480-86308-4

Matrix: Solid

 Date Collected: 08/27/15 13:00
 Matrix: Solid

 Date Received: 08/27/15 16:40
 Percent Solids: 79.8

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	2660	F2	1.3	0.31	mg/Kg	₩.	08/28/15 13:15	08/31/15 09:36	1

Client Sample ID: CSB-8

Lab Sample ID: 480-86308-5

Date Collected: 08/27/15 13:00

Matrix: Solid

Date Received: 08/27/15 16:40 Watrix: Solid

Percent Solids: 64.4

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	865		1.5	0.36	mg/Kg	\	08/28/15 13:15	08/31/15 09:51	1

Client Sample ID: ERB-3

Date Collected: 08/27/15 14:00

Lab Sample ID: 480-86308-6

Matrix: Water

Date Received: 08/27/15 16:40

2,4,5-Trichlorophenol

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	0.015		0.010	0.0030				09/01/15 11:16	1

Client Sample ID: CSW-36

Date Collected: 08/27/15 14:15

Date Received: 08/27/15 16:40

Lab Sample ID: 480-86308-7

Matrix: Solid
Percent Solids: 73.8

Method: 8270D - Semivolatil	e Organic Compounds (GC/MS)						
Analyte	Result Qualifier	ŘL	MDL U	Jnit	D	Prepared	Analyzed	Dil Fac
Biphenyl	430 J	2300	330 u	ıg/Kg	<u> </u>	09/01/15 08:11	09/04/15 13:06	10
bis (2-chloroisopropyl) ether	ND	2300	450 u	ıa/Ka	₩	09/01/15 08:11	09/04/15 13:06	10

2300

610 ug/Kg

ND

TestAmerica Buffalo

© 09/01/15 08:11 09/04/15 13:06

Client: Iyer Environmental Group, LLC

Client Sample ID: CSW-36

Date Collected: 08/27/15 14:15

Project/Site: 132 Dingens

TestAmerica Job ID: 480-86308-1

Lab Sample ID: 480-86308-7

Matrix: Solid

Mothod: 9270D Somissolatil	o Organia Carr	anounde //	CC/MC) (Co	ntinued					
Method: 8270D - Semivolatile Analyte	e Organic Con Result C		3C/W3) (C0 RL	ntinuea MDL	•	D	Prepared	Analyzed	Dil Fa
2,4,6-Trichlorophenol	ND -		2300	450	ug/Kg	₩	09/01/15 08:11	09/04/15 13:06	10
2,4-Dichlorophenol	ND		2300	240	ug/Kg		09/01/15 08:11	09/04/15 13:06	10
2,4-Dimethylphenol	ND		2300	550	ug/Kg	☼	09/01/15 08:11	09/04/15 13:06	10
2,4-Dinitrophenol	ND		22000	10000	ug/Kg	☼	09/01/15 08:11	09/04/15 13:06	1
2,4-Dinitrotoluene	ND		2300	470	ug/Kg	☼	09/01/15 08:11	09/04/15 13:06	1
2,6-Dinitrotoluene	ND		2300	270	ug/Kg	☼	09/01/15 08:11	09/04/15 13:06	10
2-Chloronaphthalene	ND		2300	370	ug/Kg	☆	09/01/15 08:11	09/04/15 13:06	10
2-Chlorophenol	ND		2300	410	ug/Kg	₩	09/01/15 08:11	09/04/15 13:06	10
2-Methylphenol	ND		2300	270	ug/Kg	₩	09/01/15 08:11	09/04/15 13:06	1
2-Methylnaphthalene	1400 J	j	2300	450	ug/Kg	₩	09/01/15 08:11	09/04/15 13:06	1
2-Nitroaniline	ND		4400	330	ug/Kg	₩	09/01/15 08:11	09/04/15 13:06	1
2-Nitrophenol	ND		2300	640	ug/Kg	☼	09/01/15 08:11	09/04/15 13:06	1
3,3'-Dichlorobenzidine	ND		4400	2700	ug/Kg	₩	09/01/15 08:11	09/04/15 13:06	1
3-Nitroaniline	ND		4400	630	ug/Kg	₩	09/01/15 08:11	09/04/15 13:06	1
4,6-Dinitro-2-methylphenol	ND		4400	2300	ug/Kg	₩	09/01/15 08:11	09/04/15 13:06	1
4-Bromophenyl phenyl ether	ND		2300	320	ug/Kg	₩	09/01/15 08:11	09/04/15 13:06	1
4-Chloro-3-methylphenol	ND		2300	560	ug/Kg	₩	09/01/15 08:11	09/04/15 13:06	1
4-Chloroaniline	ND		2300	560	ug/Kg	₩	09/01/15 08:11	09/04/15 13:06	1
4-Chlorophenyl phenyl ether	ND		2300	280	ug/Kg		09/01/15 08:11	09/04/15 13:06	1
4-Methylphenol	ND		4400	270	ug/Kg	₩	09/01/15 08:11	09/04/15 13:06	1
4-Nitroaniline	ND *	•	4400	1200	ug/Kg	₩	09/01/15 08:11	09/04/15 13:06	1
4-Nitrophenol	ND		4400	1600	ug/Kg		09/01/15 08:11	09/04/15 13:06	1
Acenaphthene	4400		2300	330	ug/Kg	₩	09/01/15 08:11	09/04/15 13:06	10
Acenaphthylene	1700 J	J	2300	290	ug/Kg	≎	09/01/15 08:11	09/04/15 13:06	10
Acetophenone	ND		2300	310	ua/Ka		09/01/15 08:11	09/04/15 13:06	1

Acenaphthene	4400	2300	330 u	ıg/Kg [☼]	09/01/15 08:11	09/04/15 13:06	10
Acenaphthylene	1700 J	2300	290 u	ıg/Kg [⇔]	09/01/15 08:11	09/04/15 13:06	10
Acetophenone	ND	2300	310 u	ıg/Kg [☼]	09/01/15 08:11	09/04/15 13:06	10
Anthracene	12000	2300	560 u	ıg/Kg [☼]	09/01/15 08:11	09/04/15 13:06	10
Atrazine	ND *	2300	790 u	ıg/Kg [⇔]	09/01/15 08:11	09/04/15 13:06	10
Benzaldehyde	ND *	2300	1800 u	ıg/Kg ☆	09/01/15 08:11	09/04/15 13:06	10
Benzo[a]anthracene	23000	2300	230 u	ıg/Kg [⇔]	09/01/15 08:11	09/04/15 13:06	10
Benzo[a]pyrene	18000	2300	330 u	ıg/Kg ☆	09/01/15 08:11	09/04/15 13:06	10
Benzo[b]fluoranthene	23000	2300	360 u	ıg/Kg ☆	09/01/15 08:11	09/04/15 13:06	10
Benzo[g,h,i]perylene	9400	2300	240 u	ıg/Kg [☼]	09/01/15 08:11	09/04/15 13:06	10
Benzo[k]fluoranthene	8200	2300	290 u	ıg/Kg [☼]	09/01/15 08:11	09/04/15 13:06	10
Bis(2-chloroethoxy)methane	ND	2300	480 u	ıg/Kg ☆	09/01/15 08:11	09/04/15 13:06	10
Bis(2-chloroethyl)ether	ND	2300	290 ug	ıg/Kg [☼]	09/01/15 08:11	09/04/15 13:06	10
Bis(2-ethylhexyl) phthalate	ND	2300	770 u	ıg/Kg [☼]	09/01/15 08:11	09/04/15 13:06	10
Butyl benzyl phthalate	ND	2300	370 u	ıg/Kg ☆	09/01/15 08:11	09/04/15 13:06	10
Caprolactam	ND	2300	680 u	ıg/Kg [☼]	09/01/15 08:11	09/04/15 13:06	10
Carbazole	5500	2300	270 u	ıg/Kg [☼]	09/01/15 08:11	09/04/15 13:06	10
Chrysene	20000	2300	510 ug	ıg/Kg ☆	09/01/15 08:11	09/04/15 13:06	10
Dibenz(a,h)anthracene	ND	2300	400 u	ıg/Kg [☼]	09/01/15 08:11	09/04/15 13:06	10
Di-n-butyl phthalate	ND	2300	390 u	ıg/Kg [☼]	09/01/15 08:11	09/04/15 13:06	10
Di-n-octyl phthalate	ND	2300	270 u	ıg/Kg ☆	09/01/15 08:11	09/04/15 13:06	10
Dibenzofuran	3800	2300	270 u	ıg/Kg [☼]	09/01/15 08:11	09/04/15 13:06	10
Diethyl phthalate	ND	2300	290 ug	ıg/Kg [☼]	09/01/15 08:11	09/04/15 13:06	10
Dimethyl phthalate	ND	2300	270 u	ıg/Kg ☆	09/01/15 08:11	09/04/15 13:06	10
Fluoranthene	51000	2300	240 u	ıg/Kg ☆	09/01/15 08:11	09/04/15 13:06	10
Fluorene	6100	2300	270 ug	ıg/Kg [☼]	09/01/15 08:11	09/04/15 13:06	10
Hexachlorobenzene	ND	2300	310 u	ig/Kg	09/01/15 08:11	09/04/15 13:06	10
						TaatAmariaa	Duffala

Client: Iyer Environmental Group, LLC

Client Sample ID: CSW-36

Date Collected: 08/27/15 14:15

Project/Site: 132 Dingens

TestAmerica Job ID: 480-86308-1

Lab Sample ID: 480-86308-7

Matrix: Solid Percent Solids: 73.8

Date Received: 08/27/15 16:40 Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hexachlorobutadiene	ND		2300	330	ug/Kg	<u></u>	09/01/15 08:11	09/04/15 13:06	10
Hexachlorocyclopentadiene	ND		2300	310	ug/Kg	₩	09/01/15 08:11	09/04/15 13:06	10
Hexachloroethane	ND		2300	290	ug/Kg	₩	09/01/15 08:11	09/04/15 13:06	10
Indeno[1,2,3-cd]pyrene	8800		2300	280	ug/Kg	₩	09/01/15 08:11	09/04/15 13:06	10
Isophorone	ND		2300	480	ug/Kg	≎	09/01/15 08:11	09/04/15 13:06	10
N-Nitrosodi-n-propylamine	ND		2300	390	ug/Kg	₩	09/01/15 08:11	09/04/15 13:06	10
N-Nitrosodiphenylamine	ND		2300	1800	ug/Kg	₩	09/01/15 08:11	09/04/15 13:06	10
Naphthalene	2400		2300	290	ug/Kg	₩	09/01/15 08:11	09/04/15 13:06	10
Nitrobenzene	ND		2300	250	ug/Kg	₩	09/01/15 08:11	09/04/15 13:06	10
Pentachlorophenol	ND		4400	2300	ug/Kg	☼	09/01/15 08:11	09/04/15 13:06	10
Phenanthrene	49000		2300	330	ug/Kg	₩	09/01/15 08:11	09/04/15 13:06	10
Phenol	ND		2300	350	ug/Kg	₩	09/01/15 08:11	09/04/15 13:06	10
Pyrene	36000		2300	270	ug/Kg	☼	09/01/15 08:11	09/04/15 13:06	10

S	Gurrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
<u></u>	litrobenzene-d5 (Surr)	66		34 - 132	09/01/15 08:11	09/04/15 13:06	10
F	Phenol-d5 (Surr)	74		11 - 120	09/01/15 08:11	09/04/15 13:06	10
р	-Terphenyl-d14 (Surr)	64	X	65 - 153	09/01/15 08:11	09/04/15 13:06	10
2	,4,6-Tribromophenol (Surr)	89		39 - 146	09/01/15 08:11	09/04/15 13:06	10
2	-Fluorobiphenyl	74		37 - 120	09/01/15 08:11	09/04/15 13:06	10
2	-Fluorophenol (Surr)	68		18 - 120	09/01/15 08:11	09/04/15 13:06	10

Client Sample ID: CSW-37 Lab Sample ID: 480-86308-8

Date Collected: 08/27/15 14:15 **Matrix: Solid** Date Received: 08/27/15 16:40 Percent Solids: 77.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		1100	160	ug/Kg	<u> </u>	09/01/15 08:11	09/04/15 13:33	5
bis (2-chloroisopropyl) ether	ND		1100	220	ug/Kg	☼	09/01/15 08:11	09/04/15 13:33	5
2,4,5-Trichlorophenol	ND		1100	290	ug/Kg	₩	09/01/15 08:11	09/04/15 13:33	5
2,4,6-Trichlorophenol	ND		1100	220	ug/Kg		09/01/15 08:11	09/04/15 13:33	5
2,4-Dichlorophenol	ND		1100	120	ug/Kg	☼	09/01/15 08:11	09/04/15 13:33	5
2,4-Dimethylphenol	ND		1100	260	ug/Kg	☼	09/01/15 08:11	09/04/15 13:33	5
2,4-Dinitrophenol	ND		11000	5000	ug/Kg	₽	09/01/15 08:11	09/04/15 13:33	5
2,4-Dinitrotoluene	ND		1100	220	ug/Kg	☼	09/01/15 08:11	09/04/15 13:33	5
2,6-Dinitrotoluene	ND		1100	130	ug/Kg	₩	09/01/15 08:11	09/04/15 13:33	5
2-Chloronaphthalene	ND		1100	180	ug/Kg	₽	09/01/15 08:11	09/04/15 13:33	5
2-Chlorophenol	ND		1100	200	ug/Kg	₩	09/01/15 08:11	09/04/15 13:33	5
2-Methylphenol	ND		1100	130	ug/Kg	☼	09/01/15 08:11	09/04/15 13:33	5
2-Methylnaphthalene	ND		1100	220	ug/Kg		09/01/15 08:11	09/04/15 13:33	5
2-Nitroaniline	ND		2100	160	ug/Kg	☼	09/01/15 08:11	09/04/15 13:33	5
2-Nitrophenol	ND		1100	310	ug/Kg	₩	09/01/15 08:11	09/04/15 13:33	5
3,3'-Dichlorobenzidine	ND		2100	1300	ug/Kg	φ.	09/01/15 08:11	09/04/15 13:33	5
3-Nitroaniline	ND		2100	300	ug/Kg	☼	09/01/15 08:11	09/04/15 13:33	5
4,6-Dinitro-2-methylphenol	ND		2100	1100	ug/Kg	☼	09/01/15 08:11	09/04/15 13:33	5
4-Bromophenyl phenyl ether	ND		1100	150	ug/Kg		09/01/15 08:11	09/04/15 13:33	5
4-Chloro-3-methylphenol	ND		1100	270	ug/Kg	☼	09/01/15 08:11	09/04/15 13:33	5
4-Chloroaniline	ND		1100	270	ug/Kg	☼	09/01/15 08:11	09/04/15 13:33	5
4-Chlorophenyl phenyl ether	ND		1100	130	ug/Kg	₽	09/01/15 08:11	09/04/15 13:33	5

Page 11 of 46

Client: Iyer Environmental Group, LLC

Client Sample ID: CSW-37

Date Collected: 08/27/15 14:15

Date Received: 08/27/15 16:40

Project/Site: 132 Dingens

Phenol-d5 (Surr)

2-Fluorobiphenyl

p-Terphenyl-d14 (Surr)

2,4,6-Tribromophenol (Surr)

TestAmerica Job ID: 480-86308-1

Lab Sample ID: 480-86308-8

Matrix: Solid

Percent Solids: 77.1

		RL		•	D	Prepared	Analyzed	Dil Fa
ND		2100	130	ug/Kg	<u> </u>	09/01/15 08:11	09/04/15 13:33	
ND	*	2100	570	ug/Kg	₩	09/01/15 08:11	09/04/15 13:33	
ND		2100	760	ug/Kg	☆	09/01/15 08:11	09/04/15 13:33	
450	J	1100			≎	09/01/15 08:11	09/04/15 13:33	
200	J	1100	140	ug/Kg	≎	09/01/15 08:11	09/04/15 13:33	
ND		1100				09/01/15 08:11	09/04/15 13:33	
1400		1100			₩	09/01/15 08:11	09/04/15 13:33	
	*	1100			≎	09/01/15 08:11	09/04/15 13:33	
ND	*							
					₩			
	. .							
					₩			
410	J	1100	130	ug/Kg	₩	09/01/15 08:11	09/04/15 13:33	
ND		1100	140	ug/Kg	≎	09/01/15 08:11	09/04/15 13:33	
ND		1100	130	ug/Kg	☆	09/01/15 08:11	09/04/15 13:33	
6500		1100	120	ug/Kg	₩	09/01/15 08:11	09/04/15 13:33	
530	J	1100	130	ug/Kg	≎	09/01/15 08:11	09/04/15 13:33	
ND		1100	150	ug/Kg	☆	09/01/15 08:11	09/04/15 13:33	
ND		1100	160	ug/Kg	₩	09/01/15 08:11	09/04/15 13:33	
ND		1100	150	ug/Kg	₩	09/01/15 08:11	09/04/15 13:33	
ND		1100	140	ug/Kg		09/01/15 08:11	09/04/15 13:33	
1800		1100			₩	09/01/15 08:11	09/04/15 13:33	
ND		1100			₽	09/01/15 08:11	09/04/15 13:33	
ND		1100						
					☼			
					☼			
ND		2100		ug/Kg	₽	09/01/15 08:11		
ND		1100		ug/Kg	₽	09/01/15 08:11	09/04/15 13:33	
EQUU		1100	100				00/07/10 10.00	
5800		1100	170	ua/Ka	-77-	00/01/15 00·11	00/04/15 12:22	
ND		1100		ug/Kg	₩ ₩	09/01/15 08:11		
		1100 1100		ug/Kg ug/Kg	₽	09/01/15 08:11 09/01/15 08:11		
ND	Qualifier							Dil F
	Result	Result Qualifier ND * ND ND	Result Qualifier RL ND 2100 ND 2100 ND 2100 A50 J 1100 200 J 1100 ND 1100 ND 1100 ND 1100 3400 1100 3800 1100 4500 1100 2000 1100 ND 1100 <	Result Qualifier RL MDL ND 2100 130 ND 2100 570 ND 2100 760 450 J 1100 160 200 J 1100 140 ND 1100 150 1400 1100 270 ND * 1100 380 ND * 1100 380 ND * 1100 110 3400 1100 110 110 3800 1100 160 4500 1100 170 2000 1100 120 2400 1100 140 ND 1100 140 ND 1100 370 ND 1100 330 680 J 1100 330 680 J 1100 30 ND 1100 130 ND 1	Result Qualifier RL MDL Unit ND 2100 130 ug/Kg ND 2100 570 ug/Kg ND 2100 760 ug/Kg A50 J 1100 160 ug/Kg 200 J 1100 140 ug/Kg ND 1100 150 ug/Kg ND 1100 380 ug/Kg ND 1100 380 ug/Kg ND 1100 380 ug/Kg 3400 1100 110 ug/Kg 3400 1100 110 ug/Kg 3800 1100 160 ug/Kg 3450 1100 160 ug/Kg 4500 1100 170 ug/Kg 2400 1100 140 ug/Kg ND 1100 140 ug/Kg ND 1100 370 ug/Kg ND 1100 30	Result Qualifier RL MDL Unit D	Result Qualifier RL MDL Unit D Prepared	ND

TestAmerica Buffalo

09/01/15 08:11 09/04/15 13:33

09/01/15 08:11 09/04/15 13:33

09/01/15 08:11 09/04/15 13:33

09/01/15 08:11 09/04/15 13:33

11 - 120

65 - 153

39 - 146

37 - 120

83

70

92

80

5

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-86308-1

Lab Sample ID: 480-86308-8

Matrix: Solid

Percent Solids: 77.1

Client Sample ID: CSW-37 Date Collected: 08/27/15 14:15

Date Received: 08/27/15 16:40

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

 Surrogate
 %Recovery
 Qualifier
 Limits
 Prepared
 Analyzed
 Dil Fac

 2-Fluorophenol (Surr)
 89
 18 - 120
 09/01/15 08:11
 09/04/15 13:33
 5

Client Sample ID: CSW-38 Lab Sample ID: 480-86308-9

Date Collected: 08/27/15 14:15

Matrix: Solid
Date Received: 08/27/15 16:40

Percent Solids: 74.2

Method: 8270D - Semivolatile Analyte	Result Qualifi		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND ND	1100	170	ug/Kg	<u></u>	09/01/15 08:11		5
bis (2-chloroisopropyl) ether	ND	1100	230	ug/Kg	☼	09/01/15 08:11	09/04/15 14:25	5
2,4,5-Trichlorophenol	ND	1100	310	ug/Kg	☼	09/01/15 08:11	09/04/15 14:25	5
2,4,6-Trichlorophenol	ND	1100	230	ug/Kg	· · · · · · · · · · · · · · · · · · ·	09/01/15 08:11	09/04/15 14:25	5
2,4-Dichlorophenol	ND	1100	120	ug/Kg	₩	09/01/15 08:11	09/04/15 14:25	5
2,4-Dimethylphenol	ND	1100	270	ug/Kg	₩	09/01/15 08:11	09/04/15 14:25	5
2,4-Dinitrophenol	ND	11000	5200	ug/Kg		09/01/15 08:11	09/04/15 14:25	5
2,4-Dinitrotoluene	ND	1100	230	ug/Kg	₩	09/01/15 08:11	09/04/15 14:25	5
2,6-Dinitrotoluene	ND	1100	130	ug/Kg	₩	09/01/15 08:11	09/04/15 14:25	5
2-Chloronaphthalene	ND	1100	190	ug/Kg		09/01/15 08:11	09/04/15 14:25	5
2-Chlorophenol	ND	1100	210	ug/Kg	₩	09/01/15 08:11	09/04/15 14:25	5
2-Methylphenol	ND	1100	130	ug/Kg	₩	09/01/15 08:11	09/04/15 14:25	5
2-Methylnaphthalene	ND	1100	230	ug/Kg	φ.	09/01/15 08:11	09/04/15 14:25	5
2-Nitroaniline	ND	2200	170	ug/Kg	☼	09/01/15 08:11	09/04/15 14:25	5
2-Nitrophenol	ND	1100	320	ug/Kg	☼	09/01/15 08:11	09/04/15 14:25	5
3,3'-Dichlorobenzidine	ND	2200	1300	ug/Kg	φ.	09/01/15 08:11	09/04/15 14:25	5
3-Nitroaniline	ND	2200	310	ug/Kg	☼	09/01/15 08:11	09/04/15 14:25	5
4,6-Dinitro-2-methylphenol	ND	2200	1100	ug/Kg	₩	09/01/15 08:11	09/04/15 14:25	5
4-Bromophenyl phenyl ether	ND	1100	160	ug/Kg		09/01/15 08:11	09/04/15 14:25	5
4-Chloro-3-methylphenol	ND	1100	280	ug/Kg	₩	09/01/15 08:11	09/04/15 14:25	5
4-Chloroaniline	ND	1100	280	ug/Kg	☼	09/01/15 08:11	09/04/15 14:25	5
4-Chlorophenyl phenyl ether	ND	1100	140	ug/Kg		09/01/15 08:11	09/04/15 14:25	5
4-Methylphenol	ND	2200	130	ug/Kg	☼	09/01/15 08:11	09/04/15 14:25	5
4-Nitroaniline	ND *	2200	590	ug/Kg	☼	09/01/15 08:11	09/04/15 14:25	5
4-Nitrophenol	ND	2200	800	ug/Kg	₽	09/01/15 08:11	09/04/15 14:25	5
Acenaphthene	240 J	1100	170	ug/Kg	☼	09/01/15 08:11	09/04/15 14:25	5
Acenaphthylene	280 J	1100	150	ug/Kg	₩	09/01/15 08:11	09/04/15 14:25	5
Acetophenone	ND	1100	150	ug/Kg	₽	09/01/15 08:11	09/04/15 14:25	5
Anthracene	830 J	1100	280	ug/Kg	₩	09/01/15 08:11	09/04/15 14:25	5
Atrazine	ND *	1100	390	ug/Kg	₩	09/01/15 08:11	09/04/15 14:25	5
Benzaldehyde	ND *	1100	900	ug/Kg	₽	09/01/15 08:11	09/04/15 14:25	5
Benzo[a]anthracene	3000	1100	110	ug/Kg	☼	09/01/15 08:11	09/04/15 14:25	5
Benzo[a]pyrene	2700	1100	170	ug/Kg	₩	09/01/15 08:11	09/04/15 14:25	5
Benzo[b]fluoranthene	3500	1100	180	ug/Kg	φ.	09/01/15 08:11	09/04/15 14:25	5
Benzo[g,h,i]perylene	1400	1100	120	ug/Kg	☼	09/01/15 08:11	09/04/15 14:25	5
Benzo[k]fluoranthene	1800	1100	150	ug/Kg	₩	09/01/15 08:11	09/04/15 14:25	5
Bis(2-chloroethoxy)methane	ND	1100	240	ug/Kg		09/01/15 08:11	09/04/15 14:25	5
Bis(2-chloroethyl)ether	ND	1100	150	ug/Kg	₩	09/01/15 08:11	09/04/15 14:25	5
Bis(2-ethylhexyl) phthalate	ND	1100	390	ug/Kg	☼	09/01/15 08:11	09/04/15 14:25	5
Butyl benzyl phthalate	ND	1100	190	ug/Kg	₽	09/01/15 08:11	09/04/15 14:25	5
Caprolactam	ND	1100	340	ug/Kg	₩	09/01/15 08:11	09/04/15 14:25	5

TestAmerica Buffalo

3

F

6

9

11

13

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-86308-1

Client Sample ID: CSW-38 Lab Sample ID: 480-86308-9 Date Collected: 08/27/15 14:15 **Matrix: Solid**

Date Received: 08/27/15 16:40 Percent Solids: 74.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbazole	430	J	1100	130	ug/Kg	<u></u>	09/01/15 08:11	09/04/15 14:25	5
Chrysene	3000		1100	250	ug/Kg	φ.	09/01/15 08:11	09/04/15 14:25	5
Dibenz(a,h)anthracene	ND		1100	200	ug/Kg	☼	09/01/15 08:11	09/04/15 14:25	5
Di-n-butyl phthalate	ND		1100	190	ug/Kg	₽	09/01/15 08:11	09/04/15 14:25	5
Di-n-octyl phthalate	ND		1100	130	ug/Kg	₽	09/01/15 08:11	09/04/15 14:25	5
Dibenzofuran	160	J	1100	130	ug/Kg	☼	09/01/15 08:11	09/04/15 14:25	5
Diethyl phthalate	ND		1100	150	ug/Kg	₽	09/01/15 08:11	09/04/15 14:25	5
Dimethyl phthalate	ND		1100	130	ug/Kg	₽	09/01/15 08:11	09/04/15 14:25	5
Fluoranthene	6300		1100	120	ug/Kg	☼	09/01/15 08:11	09/04/15 14:25	5
Fluorene	260	J	1100	130	ug/Kg	☼	09/01/15 08:11	09/04/15 14:25	5
Hexachlorobenzene	ND		1100	150	ug/Kg	₽	09/01/15 08:11	09/04/15 14:25	5
Hexachlorobutadiene	ND		1100	170	ug/Kg	☼	09/01/15 08:11	09/04/15 14:25	5
Hexachlorocyclopentadiene	ND		1100	150	ug/Kg	☼	09/01/15 08:11	09/04/15 14:25	5
Hexachloroethane	ND		1100	150	ug/Kg	₽	09/01/15 08:11	09/04/15 14:25	5
Indeno[1,2,3-cd]pyrene	1400		1100	140	ug/Kg	☼	09/01/15 08:11	09/04/15 14:25	5
Isophorone	ND		1100	240	ug/Kg	☼	09/01/15 08:11	09/04/15 14:25	5
N-Nitrosodi-n-propylamine	ND		1100	190	ug/Kg	₽	09/01/15 08:11	09/04/15 14:25	5
N-Nitrosodiphenylamine	ND		1100	920	ug/Kg	☼	09/01/15 08:11	09/04/15 14:25	5
Naphthalene	ND		1100	150	ug/Kg	☼	09/01/15 08:11	09/04/15 14:25	5
Nitrobenzene	ND		1100	130	ug/Kg	₽	09/01/15 08:11	09/04/15 14:25	5
Pentachlorophenol	ND		2200	1100	ug/Kg	☼	09/01/15 08:11	09/04/15 14:25	5
Phenanthrene	3500		1100	170	ug/Kg	☼	09/01/15 08:11	09/04/15 14:25	5
Phenol	ND		1100	170	ug/Kg	₽	09/01/15 08:11	09/04/15 14:25	5
Pyrene	4200		1100	130	ug/Kg	☼	09/01/15 08:11	09/04/15 14:25	5

Surrogate	%Recovery Qualific	er Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	71	34 - 132	09/01/15 08:11	09/04/15 14:25	5
Phenol-d5 (Surr)	67	11 - 120	09/01/15 08:11	09/04/15 14:25	5
p-Terphenyl-d14 (Surr)	66	65 ₋ 153	09/01/15 08:11	09/04/15 14:25	5
2,4,6-Tribromophenol (Surr)	90	39 - 146	09/01/15 08:11	09/04/15 14:25	5
2-Fluorobiphenyl	74	37 - 120	09/01/15 08:11	09/04/15 14:25	5
2-Fluorophenol (Surr)	63	18 - 120	09/01/15 08:11	09/04/15 14:25	5

Client Sample ID: CSW-39 Lab Sample ID: 480-86308-10 Date Collected: 08/27/15 14:15 **Matrix: Solid** Date Received: 08/27/15 16:40 Percent Solids: 80.6

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND ND	1000	150	ug/Kg	₽	09/01/15 08:11	09/04/15 14:51	- 5
bis (2-chloroisopropyl) ether	ND	1000	210	ug/Kg	☼	09/01/15 08:11	09/04/15 14:51	5
2,4,5-Trichlorophenol	ND	1000	280	ug/Kg	☼	09/01/15 08:11	09/04/15 14:51	5
2,4,6-Trichlorophenol	ND	1000	210	ug/Kg	₽	09/01/15 08:11	09/04/15 14:51	5
2,4-Dichlorophenol	ND	1000	110	ug/Kg	☼	09/01/15 08:11	09/04/15 14:51	5
2,4-Dimethylphenol	ND	1000	250	ug/Kg	₩	09/01/15 08:11	09/04/15 14:51	5
2,4-Dinitrophenol	ND	10000	4700	ug/Kg	₽	09/01/15 08:11	09/04/15 14:51	5
2,4-Dinitrotoluene	ND	1000	210	ug/Kg	☼	09/01/15 08:11	09/04/15 14:51	5
2,6-Dinitrotoluene	ND	1000	120	ug/Kg	☼	09/01/15 08:11	09/04/15 14:51	5
2-Chloronaphthalene	ND	1000	170	ug/Kg	₽	09/01/15 08:11	09/04/15 14:51	5
2-Chlorophenol	ND	1000	190	ug/Kg	₩	09/01/15 08:11	09/04/15 14:51	5

TestAmerica Buffalo

Page 14 of 46

Client: Iyer Environmental Group, LLC

Client Sample ID: CSW-39

Date Collected: 08/27/15 14:15

Date Received: 08/27/15 16:40

Project/Site: 132 Dingens

TestAmerica Job ID: 480-86308-1

Lab Sample ID: 480-86308-10

Matrix: Solid

Percent Solids: 80.6

Method: 8270D - Semivolatil Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylphenol	ND		1000	120	ug/Kg	₩	09/01/15 08:11	09/04/15 14:51	į
2-Methylnaphthalene	230	J	1000	210	ug/Kg	₩	09/01/15 08:11	09/04/15 14:51	į
2-Nitroaniline	ND		2000	150	ug/Kg	☆	09/01/15 08:11	09/04/15 14:51	į
2-Nitrophenol	ND		1000	290	ug/Kg	₩	09/01/15 08:11	09/04/15 14:51	5
3,3'-Dichlorobenzidine	ND		2000	1200	ug/Kg	₽	09/01/15 08:11	09/04/15 14:51	5
3-Nitroaniline	ND		2000	280	ug/Kg	☆	09/01/15 08:11	09/04/15 14:51	į
4,6-Dinitro-2-methylphenol	ND		2000	1000	ug/Kg	₩	09/01/15 08:11	09/04/15 14:51	į
4-Bromophenyl phenyl ether	ND		1000	150	ug/Kg	₽	09/01/15 08:11	09/04/15 14:51	
4-Chloro-3-methylphenol	ND		1000	250	ug/Kg	≎	09/01/15 08:11	09/04/15 14:51	
4-Chloroaniline	ND		1000	250	ug/Kg	₩	09/01/15 08:11	09/04/15 14:51	į
4-Chlorophenyl phenyl ether	ND		1000	130	ug/Kg	☆	09/01/15 08:11	09/04/15 14:51	
4-Methylphenol	ND		2000	120	ug/Kg	☆	09/01/15 08:11	09/04/15 14:51	į
4-Nitroaniline	ND	*	2000	540	ug/Kg	₩	09/01/15 08:11	09/04/15 14:51	į
4-Nitrophenol	ND		2000	720	ug/Kg		09/01/15 08:11	09/04/15 14:51	
Acenaphthene	280	J	1000	150	ug/Kg	☆	09/01/15 08:11	09/04/15 14:51	į
Acenaphthylene	230	J	1000	130	ug/Kg	☆	09/01/15 08:11	09/04/15 14:51	į
Acetophenone	ND		1000	140	ug/Kg		09/01/15 08:11	09/04/15 14:51	
Anthracene	1300		1000	250	ug/Kg	₩	09/01/15 08:11	09/04/15 14:51	Į
Atrazine	ND	*	1000	360	ug/Kg	₩	09/01/15 08:11	09/04/15 14:51	į
Benzaldehyde	ND	*	1000	820	ug/Kg		09/01/15 08:11	09/04/15 14:51	
Benzo[a]anthracene	2800		1000	100	ug/Kg	≎	09/01/15 08:11	09/04/15 14:51	į
Benzo[a]pyrene	2500		1000	150	ug/Kg	≎	09/01/15 08:11	09/04/15 14:51	į
Benzo[b]fluoranthene	3000		1000	160	ug/Kg	· · · · · · · · · · · · · · · · · · ·	09/01/15 08:11	09/04/15 14:51	
Benzo[g,h,i]perylene	1000		1000	110	ug/Kg	₩	09/01/15 08:11	09/04/15 14:51	5
Benzo[k]fluoranthene	1800		1000	130	ug/Kg	₩	09/01/15 08:11	09/04/15 14:51	į
Bis(2-chloroethoxy)methane	ND		1000	220	ug/Kg	· · · · · · · · · · · · · · · · · · ·	09/01/15 08:11	09/04/15 14:51	
Bis(2-chloroethyl)ether	ND		1000	130	ug/Kg	₩	09/01/15 08:11	09/04/15 14:51	į
Bis(2-ethylhexyl) phthalate	ND		1000	350		₩	09/01/15 08:11	09/04/15 14:51	į
Butyl benzyl phthalate	ND		1000	170	ug/Kg		09/01/15 08:11	09/04/15 14:51	
Caprolactam	ND		1000	310	ug/Kg	☆	09/01/15 08:11	09/04/15 14:51	į
Carbazole	630	1	1000	120	ug/Kg	₩	09/01/15 08:11	09/04/15 14:51	į
Chrysene	2900		1000	230	ug/Kg	 ☆	09/01/15 08:11	09/04/15 14:51	
Dibenz(a,h)anthracene	ND		1000	180	ug/Kg	☆	09/01/15 08:11	09/04/15 14:51	į
Di-n-butyl phthalate	ND ND		1000	180	ug/Kg ug/Kg	₽	09/01/15 08:11	09/04/15 14:51	į
Di-n-octyl phthalate	ND		1000		ug/Kg		09/01/15 08:11		
* *						₩	09/01/15 08:11	09/04/15 14:51	
Dibenzofuran Diethyl phthalate	350 ND	3	1000 1000	120	ug/Kg ug/Kg	≎	09/01/15 08:11	09/04/15 14:51	;
Dimethyl phthalate	ND		1000		ug/Kg	· · · · · · · · · · · · · · · · · · ·	09/01/15 08:11		
• •			1000		ug/Kg ug/Kg	≎	09/01/15 08:11		į
Fluoranthene	6400		1000			☆			
Fluorene	450				ug/Kg	· · · · · · · · · · · · · · · · · · ·	09/01/15 08:11		
Hexachlorobenzene	ND		1000		ug/Kg		09/01/15 08:11		
Hexachlorobutadiene	ND		1000		ug/Kg	☆	09/01/15 08:11		
Hexachlorocyclopentadiene	ND		1000		ug/Kg		09/01/15 08:11		
Hexachloroethane	ND		1000		ug/Kg	☆	09/01/15 08:11		;
Indeno[1,2,3-cd]pyrene	1100		1000		ug/Kg	₩	09/01/15 08:11		
Isophorone	ND		1000	220		· · · · ·	09/01/15 08:11		
N-Nitrosodi-n-propylamine	ND		1000	180		₩	09/01/15 08:11		ţ
N-Nitrosodiphenylamine	ND		1000		ug/Kg	₩.	09/01/15 08:11		į
Naphthalene	320	J	1000	130	ug/Kg	₩	09/01/15 08:11	09/04/15 14:51	

TestAmerica Buffalo

3

5

9

11

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-86308-1

Client Sample ID: CSW-39

Date Collected: 08/27/15 14:15

Lab Sample ID: 480-86308-10

Matrix: Solid

Date Received: 08/27/15 16:40 Percent Solids: 80.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrobenzene	ND		1000	110	ug/Kg	<u></u>	09/01/15 08:11	09/04/15 14:51	5
Pentachlorophenol	ND		2000	1000	ug/Kg	φ.	09/01/15 08:11	09/04/15 14:51	5
Phenanthrene	5100		1000	150	ug/Kg	☼	09/01/15 08:11	09/04/15 14:51	5
Phenol	ND		1000	160	ug/Kg	φ.	09/01/15 08:11	09/04/15 14:51	5
Pyrene	3700		1000	120	ug/Kg	₩	09/01/15 08:11	09/04/15 14:51	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	74		34 - 132				09/01/15 08:11	09/04/15 14:51	5
Phenol-d5 (Surr)	67		11 - 120				09/01/15 08:11	09/04/15 14:51	5
p-Terphenyl-d14 (Surr)	59	X	65 - 153				09/01/15 08:11	09/04/15 14:51	5
2,4,6-Tribromophenol (Surr)	89		39 - 146				09/01/15 08:11	09/04/15 14:51	5
2-Fluorobiphenyl	79		37 - 120				09/01/15 08:11	09/04/15 14:51	5

Client Sample ID: CSW-40 Lab Sample ID: 480-86308-11

Date Collected: 08/27/15 14:15

Date Received: 08/27/15 16:40

Matrix: Solid
Percent Solids: 80.7

Method: 8270D - Semivolatil									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		2100	310	ug/Kg	<u> </u>	09/01/15 08:11	09/04/15 12:40	10
bis (2-chloroisopropyl) ether	ND		2100	420	ug/Kg	₩	09/01/15 08:11	09/04/15 12:40	10
2,4,5-Trichlorophenol	ND		2100	560	ug/Kg	₩	09/01/15 08:11	09/04/15 12:40	10
2,4,6-Trichlorophenol	ND		2100	420	ug/Kg	₩	09/01/15 08:11	09/04/15 12:40	10
2,4-Dichlorophenol	ND		2100	220	ug/Kg	☼	09/01/15 08:11	09/04/15 12:40	10
2,4-Dimethylphenol	ND		2100	500	ug/Kg	₩	09/01/15 08:11	09/04/15 12:40	10
2,4-Dinitrophenol	ND		20000	9600	ug/Kg	☼	09/01/15 08:11	09/04/15 12:40	10
2,4-Dinitrotoluene	ND		2100	430	ug/Kg	≎	09/01/15 08:11	09/04/15 12:40	10
2,6-Dinitrotoluene	ND		2100	240	ug/Kg	≎	09/01/15 08:11	09/04/15 12:40	10
2-Chloronaphthalene	ND		2100	340	ug/Kg	₽	09/01/15 08:11	09/04/15 12:40	10
2-Chlorophenol	ND		2100	380	ug/Kg	₽	09/01/15 08:11	09/04/15 12:40	10
2-Methylphenol	ND		2100	240	ug/Kg	₽	09/01/15 08:11	09/04/15 12:40	10
2-Methylnaphthalene	ND		2100	420	ug/Kg	₽	09/01/15 08:11	09/04/15 12:40	10
2-Nitroaniline	ND	F2	4000	310	ug/Kg	₽	09/01/15 08:11	09/04/15 12:40	10
2-Nitrophenol	ND		2100	590	ug/Kg	₽	09/01/15 08:11	09/04/15 12:40	10
3,3'-Dichlorobenzidine	ND		4000	2400	ug/Kg	₽	09/01/15 08:11	09/04/15 12:40	10
3-Nitroaniline	ND	F1	4000	580	ug/Kg	☼	09/01/15 08:11	09/04/15 12:40	10
4,6-Dinitro-2-methylphenol	ND		4000	2100	ug/Kg	₽	09/01/15 08:11	09/04/15 12:40	10
4-Bromophenyl phenyl ether	ND		2100	290	ug/Kg	.	09/01/15 08:11	09/04/15 12:40	10
4-Chloro-3-methylphenol	ND		2100	510	ug/Kg	₩	09/01/15 08:11	09/04/15 12:40	10
4-Chloroaniline	ND		2100	510	ug/Kg	₽	09/01/15 08:11	09/04/15 12:40	10
4-Chlorophenyl phenyl ether	ND		2100	260	ug/Kg		09/01/15 08:11	09/04/15 12:40	10
4-Methylphenol	ND		4000	240	ug/Kg	₩	09/01/15 08:11	09/04/15 12:40	10
4-Nitroaniline	ND	F1 *	4000	1100	ug/Kg	₽	09/01/15 08:11	09/04/15 12:40	10
4-Nitrophenol	ND	F2	4000	1500	ug/Kg		09/01/15 08:11	09/04/15 12:40	10
Acenaphthene	760	J	2100	310	ug/Kg	₩	09/01/15 08:11	09/04/15 12:40	10
Acenaphthylene	1000	J F1	2100	270	ug/Kg	₽	09/01/15 08:11	09/04/15 12:40	10
Acetophenone	ND	F1	2100	280	ug/Kg	\$	09/01/15 08:11	09/04/15 12:40	10
Anthracene	4000	F1	2100	510	ug/Kg	₩	09/01/15 08:11	09/04/15 12:40	10
Atrazine	ND	F1 *	2100	720	ug/Kg	☼	09/01/15 08:11	09/04/15 12:40	10

TestAmerica Buffalo

3

5

7

9

11

12

14

Client: Iyer Environmental Group, LLC

Client Sample ID: CSW-40

Date Collected: 08/27/15 14:15

Date Received: 08/27/15 16:40

Project/Site: 132 Dingens

TestAmerica Job ID: 480-86308-1

Lab Sample ID: 480-86308-11

Matrix: Solid

Percent Solids: 80.7

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzaldehyde	ND	F1 *	2100	1700	ug/Kg	₩	09/01/15 08:11	09/04/15 12:40	10
Benzo[a]anthracene	8900		2100	210	ug/Kg	\$	09/01/15 08:11	09/04/15 12:40	10
Benzo[a]pyrene	8000	F1	2100	310	ug/Kg	≎	09/01/15 08:11	09/04/15 12:40	10
Benzo[b]fluoranthene	9300	F2	2100	330	ug/Kg	₽	09/01/15 08:11	09/04/15 12:40	10
Benzo[g,h,i]perylene	4600	F1	2100	220	ug/Kg	☼	09/01/15 08:11	09/04/15 12:40	10
Benzo[k]fluoranthene	3600	F1	2100	270	ug/Kg	≎	09/01/15 08:11	09/04/15 12:40	10
Bis(2-chloroethoxy)methane	ND		2100	440	ug/Kg	₽	09/01/15 08:11	09/04/15 12:40	10
Bis(2-chloroethyl)ether	ND		2100	270	ug/Kg	≎	09/01/15 08:11	09/04/15 12:40	10
Bis(2-ethylhexyl) phthalate	ND		2100	710	ug/Kg	≎	09/01/15 08:11	09/04/15 12:40	10
Butyl benzyl phthalate	ND		2100	340	ug/Kg	\$	09/01/15 08:11	09/04/15 12:40	10
Caprolactam	ND		2100	620	ug/Kg	☼	09/01/15 08:11	09/04/15 12:40	10
Carbazole	960	J F1	2100	240	ug/Kg	☼	09/01/15 08:11	09/04/15 12:40	10
Chrysene	9100		2100	470	ug/Kg	₽	09/01/15 08:11	09/04/15 12:40	10
Dibenz(a,h)anthracene	ND		2100	370	ug/Kg	☼	09/01/15 08:11	09/04/15 12:40	10
Di-n-butyl phthalate	ND		2100	360	ug/Kg	☼	09/01/15 08:11	09/04/15 12:40	10
Di-n-octyl phthalate	ND		2100	240	ug/Kg	₽	09/01/15 08:11	09/04/15 12:40	10
Dibenzofuran	930	J F1	2100	240	ug/Kg	₽	09/01/15 08:11	09/04/15 12:40	10
Diethyl phthalate	ND		2100	270	ug/Kg	☼	09/01/15 08:11	09/04/15 12:40	10
Dimethyl phthalate	ND		2100	240	ug/Kg	₽	09/01/15 08:11	09/04/15 12:40	10
Fluoranthene	24000	F2	2100	220	ug/Kg	☼	09/01/15 08:11	09/04/15 12:40	10
Fluorene	1600	J F2 F1	2100	240	ug/Kg	☼	09/01/15 08:11	09/04/15 12:40	10
Hexachlorobenzene	ND		2100	280	ug/Kg	₽	09/01/15 08:11	09/04/15 12:40	10
Hexachlorobutadiene	ND		2100	310	ug/Kg	☼	09/01/15 08:11	09/04/15 12:40	10
Hexachlorocyclopentadiene	ND	F1	2100	280	ug/Kg	☼	09/01/15 08:11	09/04/15 12:40	10
Hexachloroethane	ND		2100	270	ug/Kg	₽	09/01/15 08:11	09/04/15 12:40	10
Indeno[1,2,3-cd]pyrene	4100	F1	2100	260	ug/Kg	☼	09/01/15 08:11	09/04/15 12:40	10
Isophorone	ND		2100	440	ug/Kg	₽	09/01/15 08:11	09/04/15 12:40	10
N-Nitrosodi-n-propylamine	ND		2100	360	ug/Kg	₽	09/01/15 08:11	09/04/15 12:40	10
N-Nitrosodiphenylamine	ND		2100	1700	ug/Kg	☼	09/01/15 08:11	09/04/15 12:40	10
Naphthalene	ND		2100	270	ug/Kg	☼	09/01/15 08:11	09/04/15 12:40	10
Nitrobenzene	ND		2100	230	ug/Kg		09/01/15 08:11	09/04/15 12:40	10
Pentachlorophenol	ND		4000	2100	ug/Kg	☼	09/01/15 08:11	09/04/15 12:40	10
Phenanthrene	20000	F2	2100	310	ug/Kg	≎	09/01/15 08:11	09/04/15 12:40	10
Phenol	ND		2100	320	ug/Kg		09/01/15 08:11	09/04/15 12:40	10
Pyrene	17000		2100	240	ug/Kg	₩	09/01/15 08:11	09/04/15 12:40	10

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	78		34 - 132	09/01/15 08:11	09/04/15 12:40	10
Phenol-d5 (Surr)	69		11 - 120	09/01/15 08:11	09/04/15 12:40	10
p-Terphenyl-d14 (Surr)	63	Χ	65 - 153	09/01/15 08:11	09/04/15 12:40	10
2,4,6-Tribromophenol (Surr)	101		39 - 146	09/01/15 08:11	09/04/15 12:40	10
2-Fluorobiphenyl	85		37 - 120	09/01/15 08:11	09/04/15 12:40	10
2-Fluorophenol (Surr)	62		18 - 120	09/01/15 08:11	09/04/15 12:40	10

3

5

7

9

11

13

Client: Iyer Environmental Group, LLC

Client Sample ID: CSW-41

Date Collected: 08/27/15 14:15

Project/Site: 132 Dingens

Lab Sample ID: 480-86308-12

TestAmerica Job ID: 480-86308-1

Matrix: Solid

Date Received: 08/27/15 16:40	0						Percent Solid	ls: 80.1
Method: 8270D - Semivolatil Analyte	e Organic Compounds Result Qualifier	(GC/MS) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Biphenyl	ND ND	4100	610	ug/Kg	<u> </u>	09/01/15 08:11	09/04/15 15:18	2
bis (2-chloroisopropyl) ether	ND	4100	830	ug/Kg	☼	09/01/15 08:11	09/04/15 15:18	20
2,4,5-Trichlorophenol	ND	4100	1100	ug/Kg	☼	09/01/15 08:11	09/04/15 15:18	20
2,4,6-Trichlorophenol	ND	4100	830	ug/Kg	₽	09/01/15 08:11	09/04/15 15:18	20
2,4-Dichlorophenol	ND	4100	440	ug/Kg	☼	09/01/15 08:11	09/04/15 15:18	20
2,4-Dimethylphenol	ND	4100	1000	ug/Kg	☼	09/01/15 08:11	09/04/15 15:18	2
2,4-Dinitrophenol	ND	40000	19000	ug/Kg		09/01/15 08:11	09/04/15 15:18	2
2,4-Dinitrotoluene	ND	4100	850	ug/Kg	☼	09/01/15 08:11	09/04/15 15:18	2
2,6-Dinitrotoluene	ND	4100	490	ug/Kg	☼	09/01/15 08:11	09/04/15 15:18	2
2-Chloronaphthalene	ND	4100	680	ug/Kg	₽	09/01/15 08:11	09/04/15 15:18	20
2-Chlorophenol	ND	4100	750	ug/Kg	☼	09/01/15 08:11	09/04/15 15:18	2
2-Methylphenol	ND	4100	490	ug/Kg	☼	09/01/15 08:11	09/04/15 15:18	2
2-Methylnaphthalene	920 J	4100	830	ug/Kg	₽	09/01/15 08:11	09/04/15 15:18	20
2-Nitroaniline	ND	8000	610	ug/Kg	☼	09/01/15 08:11	09/04/15 15:18	20
2-Nitrophenol	ND	4100	1200	ug/Kg	☼	09/01/15 08:11	09/04/15 15:18	20
3,3'-Dichlorobenzidine	ND	8000	4900	ug/Kg		09/01/15 08:11	09/04/15 15:18	2
3-Nitroaniline	ND	8000	1100	ug/Kg	☼	09/01/15 08:11	09/04/15 15:18	2
4,6-Dinitro-2-methylphenol	ND	8000	4100	ug/Kg	☼	09/01/15 08:11	09/04/15 15:18	2
4-Bromophenyl phenyl ether	ND	4100	580	ug/Kg	· · · · · · · · · · · · · · · · · · ·	09/01/15 08:11	09/04/15 15:18	2
4-Chloro-3-methylphenol	ND	4100	1000	ug/Kg	☼	09/01/15 08:11	09/04/15 15:18	20
4-Chloroaniline	ND	4100	1000	ug/Kg	☼	09/01/15 08:11	09/04/15 15:18	20
4-Chlorophenyl phenyl ether	ND	4100	510	ug/Kg	φ.	09/01/15 08:11	09/04/15 15:18	2
4-Methylphenol	ND	8000	490	ua/Ka	☆	09/01/15 08:11	09/04/15 15:18	2

2,4-Dinitrotoluene	ND	4100	850 ug/K	.g ∵	09/01/15 08:11	09/04/15 15:18	20
2,6-Dinitrotoluene	ND	4100	490 ug/K	.g ☆	09/01/15 08:11	09/04/15 15:18	20
2-Chloronaphthalene	ND	4100	680 ug/K	.g ☆	09/01/15 08:11	09/04/15 15:18	20
2-Chlorophenol	ND	4100	750 ug/K	0	09/01/15 08:11	09/04/15 15:18	20
2-Methylphenol	ND	4100	490 ug/K	.g ☆	09/01/15 08:11	09/04/15 15:18	20
2-Methylnaphthalene	920 J	4100	830 ug/K	•	09/01/15 08:11	09/04/15 15:18	20
2-Nitroaniline	ND	8000	610 ug/K	.g ☆	09/01/15 08:11	09/04/15 15:18	20
2-Nitrophenol	ND	4100	1200 ug/K	.g ☆	09/01/15 08:11	09/04/15 15:18	20
3,3'-Dichlorobenzidine	ND	8000	4900 ug/K	.g ☆	09/01/15 08:11	09/04/15 15:18	20
3-Nitroaniline	ND	8000	1100 ug/K	.g ☆	09/01/15 08:11	09/04/15 15:18	20
4,6-Dinitro-2-methylphenol	ND	8000	4100 ug/K	.g ⇔	09/01/15 08:11	09/04/15 15:18	20
4-Bromophenyl phenyl ether	ND	4100	580 ug/K	.g ☆	09/01/15 08:11	09/04/15 15:18	20
4-Chloro-3-methylphenol	ND	4100	1000 ug/K	.g ⇔	09/01/15 08:11	09/04/15 15:18	20
4-Chloroaniline	ND	4100	1000 ug/K	.g ⇔	09/01/15 08:11	09/04/15 15:18	20
4-Chlorophenyl phenyl ether	ND	4100	510 ug/K	.g ⇔	09/01/15 08:11	09/04/15 15:18	20
4-Methylphenol	ND	8000	490 ug/K	.g ⇔	09/01/15 08:11	09/04/15 15:18	20
4-Nitroaniline	ND *	8000	2200 ug/K	.g ⇔	09/01/15 08:11	09/04/15 15:18	20
4-Nitrophenol	ND	8000	2900 ug/K	.g ⇔	09/01/15 08:11	09/04/15 15:18	20
Acenaphthene	2700 J	4100	610 ug/K	.g ⇔	09/01/15 08:11	09/04/15 15:18	20
Acenaphthylene	3800 J	4100	540 ug/K	.g ⇔	09/01/15 08:11	09/04/15 15:18	20
Acetophenone	ND	4100	560 ug/K	.g ⇔	09/01/15 08:11	09/04/15 15:18	20
Anthracene	17000	4100	1000 ug/K	.g ⇔	09/01/15 08:11	09/04/15 15:18	20
Atrazine	ND *	4100	1400 ug/K	.g ⇔	09/01/15 08:11	09/04/15 15:18	20
Benzaldehyde	ND *	4100	3300 ug/K	g 🌣	09/01/15 08:11	09/04/15 15:18	20
Benzo[a]anthracene	40000	4100	410 ug/K	.g ⇔	09/01/15 08:11	09/04/15 15:18	20
Benzo[a]pyrene	31000	4100	610 ug/K	.g ⇔	09/01/15 08:11	09/04/15 15:18	20
Benzo[b]fluoranthene	43000	4100	660 ug/K	g 🌣	09/01/15 08:11	09/04/15 15:18	20
Benzo[g,h,i]perylene	10000	4100	440 ug/K	.g ⇔	09/01/15 08:11	09/04/15 15:18	20
Benzo[k]fluoranthene	20000	4100	540 ug/K	.g ⇔	09/01/15 08:11	09/04/15 15:18	20
Bis(2-chloroethoxy)methane	ND	4100	880 ug/K	.g ⊅	09/01/15 08:11	09/04/15 15:18	20
Bis(2-chloroethyl)ether	ND	4100	540 ug/K	.g ☆	09/01/15 08:11	09/04/15 15:18	20
Bis(2-ethylhexyl) phthalate	ND	4100	1400 ug/K	.g ☆	09/01/15 08:11	09/04/15 15:18	20
Butyl benzyl phthalate	ND	4100	680 ug/K	.g ☆	09/01/15 08:11	09/04/15 15:18	20
Caprolactam	ND	4100	1200 ug/K	.g ☆	09/01/15 08:11	09/04/15 15:18	20
Carbazole	4900	4100	490 ug/K	.g ☆	09/01/15 08:11	09/04/15 15:18	20
Chrysene	38000	4100	930 ug/K	.g	09/01/15 08:11	09/04/15 15:18	20
Dibenz(a,h)anthracene	ND	4100	730 ug/K	.g ☆	09/01/15 08:11	09/04/15 15:18	20
Di-n-butyl phthalate	ND	4100	710 ug/K	.g ⇔	09/01/15 08:11	09/04/15 15:18	20
Di-n-octyl phthalate	ND	4100	490 ug/K	g 🌣	09/01/15 08:11	09/04/15 15:18	20
Dibenzofuran	4400	4100	490 ug/K	.g ⇔	09/01/15 08:11	09/04/15 15:18	20
Diethyl phthalate	ND	4100	540 ug/K	.g ⇔	09/01/15 08:11	09/04/15 15:18	20
Dimethyl phthalate	ND	4100	490 ug/K	a \$	00/04/45 00:44	09/04/15 15:18	20

Client: Iyer Environmental Group, LLC

Client Sample ID: CSW-41

Date Collected: 08/27/15 14:15

Date Received: 08/27/15 16:40

Project/Site: 132 Dingens

2-Fluorobiphenyl

2-Fluorophenol (Surr)

Lab Sample ID: 480-86308-12

09/01/15 08:11 09/04/15 15:18

09/01/15 08:11 09/04/15 15:18

TestAmerica Job ID: 480-86308-1

Matrix: Solid

Percent Solids: 80.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoranthene	110000	E	4100	440	ug/Kg	₩	09/01/15 08:11	09/04/15 15:18	20
Fluorene	7500		4100	490	ug/Kg	☼	09/01/15 08:11	09/04/15 15:18	20
Hexachlorobenzene	ND		4100	560	ug/Kg	₽	09/01/15 08:11	09/04/15 15:18	20
Hexachlorobutadiene	ND		4100	610	ug/Kg	☼	09/01/15 08:11	09/04/15 15:18	20
Hexachlorocyclopentadiene	ND		4100	560	ug/Kg	☼	09/01/15 08:11	09/04/15 15:18	20
Hexachloroethane	ND		4100	540	ug/Kg	₽	09/01/15 08:11	09/04/15 15:18	20
Indeno[1,2,3-cd]pyrene	11000		4100	510	ug/Kg	☼	09/01/15 08:11	09/04/15 15:18	20
Isophorone	ND		4100	880	ug/Kg	☼	09/01/15 08:11	09/04/15 15:18	20
N-Nitrosodi-n-propylamine	ND		4100	710	ug/Kg	₽	09/01/15 08:11	09/04/15 15:18	20
N-Nitrosodiphenylamine	ND		4100	3400	ug/Kg	☼	09/01/15 08:11	09/04/15 15:18	20
Naphthalene	ND		4100	540	ug/Kg	₽	09/01/15 08:11	09/04/15 15:18	20
Nitrobenzene	ND		4100	460	ug/Kg	φ.	09/01/15 08:11	09/04/15 15:18	20
Pentachlorophenol	ND		8000	4100	ug/Kg	₽	09/01/15 08:11	09/04/15 15:18	20
Phenanthrene	77000		4100	610	ug/Kg	☼	09/01/15 08:11	09/04/15 15:18	20
Phenol	ND		4100	630	ug/Kg	₽	09/01/15 08:11	09/04/15 15:18	20
Pyrene	57000		4100	490	ug/Kg	☼	09/01/15 08:11	09/04/15 15:18	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	96		34 - 132				09/01/15 08:11	09/04/15 15:18	20
Phenol-d5 (Surr)	73		11 - 120				09/01/15 08:11	09/04/15 15:18	20
p-Terphenyl-d14 (Surr)	72		65 - 153				09/01/15 08:11	09/04/15 15:18	20
2,4,6-Tribromophenol (Surr)	151	X	39 - 146				09/01/15 08:11	09/04/15 15:18	20

37 - 120

18 - 120

87

66

Analyte	Result Qu	ıalifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND ND	10000	1500	ug/Kg	<u> </u>	09/01/15 08:11	09/08/15 09:37	50
bis (2-chloroisopropyl) ether	ND	10000	2100	ug/Kg	₩	09/01/15 08:11	09/08/15 09:37	50
2,4,5-Trichlorophenol	ND	10000	2800	ug/Kg	☼	09/01/15 08:11	09/08/15 09:37	50
2,4,6-Trichlorophenol	ND	10000	2100	ug/Kg	₽	09/01/15 08:11	09/08/15 09:37	50
2,4-Dichlorophenol	ND	10000	1100	ug/Kg	☼	09/01/15 08:11	09/08/15 09:37	50
2,4-Dimethylphenol	ND	10000	2500	ug/Kg	☼	09/01/15 08:11	09/08/15 09:37	50
2,4-Dinitrophenol	ND	100000	48000	ug/Kg	φ.	09/01/15 08:11	09/08/15 09:37	50
2,4-Dinitrotoluene	ND	10000	2100	ug/Kg	₩	09/01/15 08:11	09/08/15 09:37	50
2,6-Dinitrotoluene	ND	10000	1200	ug/Kg	₩	09/01/15 08:11	09/08/15 09:37	50
2-Chloronaphthalene	ND	10000	1700	ug/Kg	φ.	09/01/15 08:11	09/08/15 09:37	50
2-Chlorophenol	ND	10000	1900	ug/Kg	₩	09/01/15 08:11	09/08/15 09:37	50
2-Methylphenol	ND	10000	1200	ug/Kg	☼	09/01/15 08:11	09/08/15 09:37	50
2-Methylnaphthalene	ND	10000	2100	ug/Kg	₽	09/01/15 08:11	09/08/15 09:37	50
2-Nitroaniline	ND	20000	1500	ug/Kg	☼	09/01/15 08:11	09/08/15 09:37	50
2-Nitrophenol	ND	10000	2900	ug/Kg	☼	09/01/15 08:11	09/08/15 09:37	50
3,3'-Dichlorobenzidine	ND	20000	12000	ug/Kg	₽	09/01/15 08:11	09/08/15 09:37	50
3-Nitroaniline	ND	20000	2900	ug/Kg	☼	09/01/15 08:11	09/08/15 09:37	50
4,6-Dinitro-2-methylphenol	ND	20000	10000	ug/Kg	☼	09/01/15 08:11	09/08/15 09:37	50
4-Bromophenyl phenyl ether	ND	10000	1500	ug/Kg	₽	09/01/15 08:11	09/08/15 09:37	50
4-Chloro-3-methylphenol	ND	10000	2600	ug/Kg	₩	09/01/15 08:11	09/08/15 09:37	50
4-Chloroaniline	ND	10000	2600	ug/Kg	☼	09/01/15 08:11	09/08/15 09:37	50
4-Chlorophenyl phenyl ether	ND	10000	1300	ug/Kg	₽	09/01/15 08:11	09/08/15 09:37	50
4-Methylphenol	ND	20000	1200	ug/Kg	≎	09/01/15 08:11	09/08/15 09:37	50

TestAmerica Buffalo

Page 19 of 46

. . . EO

3

5

7

9

11

12

14

15

20

Client: Iyer Environmental Group, LLC

Client Sample ID: CSW-41

Date Collected: 08/27/15 14:15

Date Received: 08/27/15 16:40

Project/Site: 132 Dingens

Surrogate

Nitrobenzene-d5 (Surr)

p-Terphenyl-d14 (Surr)

2-Fluorophenol (Surr)

2,4,6-Tribromophenol (Surr)

Phenol-d5 (Surr)

2-Fluorobiphenyl

Lab Sample ID: 480-86308-12

TestAmerica Job ID: 480-86308-1

Matrix: Solid

Percent Solids: 80.1

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitroaniline	ND	*	20000	5400	ug/Kg	<u>₩</u>	09/01/15 08:11	09/08/15 09:37	50
4-Nitrophenol	ND		20000	7200	ug/Kg	₽	09/01/15 08:11	09/08/15 09:37	50
Acenaphthene	2600	J	10000	1500	ug/Kg	₩	09/01/15 08:11	09/08/15 09:37	50
Acenaphthylene	2000	J	10000	1300	ug/Kg	₩	09/01/15 08:11	09/08/15 09:37	50
Acetophenone	ND		10000	1400	ug/Kg	₩	09/01/15 08:11	09/08/15 09:37	50
Anthracene	15000		10000	2600	ug/Kg	₩	09/01/15 08:11	09/08/15 09:37	50
Atrazine	ND	*	10000	3600	ug/Kg	₩	09/01/15 08:11	09/08/15 09:37	50
Benzaldehyde	ND	*	10000	8200	ug/Kg	₩	09/01/15 08:11	09/08/15 09:37	50
Benzo[a]anthracene	38000		10000	1000	ug/Kg	₩	09/01/15 08:11	09/08/15 09:37	50
Benzo[a]pyrene	31000		10000	1500	ug/Kg	₩	09/01/15 08:11	09/08/15 09:37	50
Benzo[b]fluoranthene	40000		10000	1600	ug/Kg	₩	09/01/15 08:11	09/08/15 09:37	50
Benzo[g,h,i]perylene	23000		10000	1100	ug/Kg	₩	09/01/15 08:11	09/08/15 09:37	50
Benzo[k]fluoranthene	19000		10000	1300	ug/Kg	₩	09/01/15 08:11	09/08/15 09:37	50
Bis(2-chloroethoxy)methane	ND		10000	2200	ug/Kg	₽	09/01/15 08:11	09/08/15 09:37	50
Bis(2-chloroethyl)ether	ND		10000	1300	ug/Kg	₩	09/01/15 08:11	09/08/15 09:37	50
Bis(2-ethylhexyl) phthalate	ND		10000	3500	ug/Kg	₩	09/01/15 08:11	09/08/15 09:37	50
Butyl benzyl phthalate	ND		10000	1700	ug/Kg	₽	09/01/15 08:11	09/08/15 09:37	50
Caprolactam	ND		10000	3100	ug/Kg	₩	09/01/15 08:11	09/08/15 09:37	50
Carbazole	4200	J	10000	1200	ug/Kg	₩	09/01/15 08:11	09/08/15 09:37	50
Chrysene	36000		10000	2300	ug/Kg	₩	09/01/15 08:11	09/08/15 09:37	50
Dibenz(a,h)anthracene	ND		10000	1800	ug/Kg	₩	09/01/15 08:11	09/08/15 09:37	50
Di-n-butyl phthalate	ND		10000	1800	ug/Kg	₩	09/01/15 08:11	09/08/15 09:37	50
Di-n-octyl phthalate	ND		10000	1200	ug/Kg	₽	09/01/15 08:11	09/08/15 09:37	50
Dibenzofuran	4200	J	10000	1200	ug/Kg	₩	09/01/15 08:11	09/08/15 09:37	50
Diethyl phthalate	ND		10000	1300	ug/Kg	₩	09/01/15 08:11	09/08/15 09:37	50
Dimethyl phthalate	ND		10000	1200	ug/Kg	₽	09/01/15 08:11	09/08/15 09:37	50
Fluoranthene	91000		10000	1100	ug/Kg	₩	09/01/15 08:11	09/08/15 09:37	50
Fluorene	6900	J	10000	1200	ug/Kg	₩	09/01/15 08:11	09/08/15 09:37	50
Hexachlorobenzene	ND		10000	1400	ug/Kg	₩	09/01/15 08:11	09/08/15 09:37	50
Hexachlorobutadiene	ND		10000	1500	ug/Kg	₩	09/01/15 08:11	09/08/15 09:37	50
Hexachlorocyclopentadiene	ND		10000	1400	ug/Kg		09/01/15 08:11	09/08/15 09:37	50
Hexachloroethane	ND		10000	1300	ug/Kg	☼	09/01/15 08:11	09/08/15 09:37	50
Indeno[1,2,3-cd]pyrene	20000		10000	1300	ug/Kg	₩	09/01/15 08:11	09/08/15 09:37	50
Isophorone	ND		10000	2200	ug/Kg		09/01/15 08:11	09/08/15 09:37	50
N-Nitrosodi-n-propylamine	ND		10000		ug/Kg	₩	09/01/15 08:11	09/08/15 09:37	50
N-Nitrosodiphenylamine	ND		10000	8400	ug/Kg	₩	09/01/15 08:11	09/08/15 09:37	50
Naphthalene	ND		10000		ug/Kg			09/08/15 09:37	50
Nitrobenzene	ND		10000		ug/Kg	Þ		09/08/15 09:37	50
Pentachlorophenol	ND		20000	10000		☼		09/08/15 09:37	50
Phenanthrene	72000		10000		ug/Kg	₩		09/08/15 09:37	50
Phenol	ND		10000		ug/Kg	₽		09/08/15 09:37	50
Pyrene	61000		10000	1200	ug/Kg	₩	09/01/15 08:11	09/08/15 09:37	50

TestAmerica Buffalo

Analyzed

Prepared

09/01/15 08:11 09/08/15 09:37

09/01/15 08:11 09/08/15 09:37

09/01/15 08:11 09/08/15 09:37

09/01/15 08:11 09/08/15 09:37

09/01/15 08:11 09/08/15 09:37

09/01/15 08:11 09/08/15 09:37

Limits

34 - 132

11 - 120

65 - 153

39 - 146

37 - 120

18 - 120

%Recovery Qualifier

60

59

74

81

67

0 X

Dil Fac

50

50

50

50

50

50

3

5

7

_

10

12

Client: Iyer Environmental Group, LLC

Client Sample ID: CSW-42

Project/Site: 132 Dingens

TestAmerica Job ID: 480-86308-1

Lab Sample ID: 480-86308-13

Matrix: Solid Percent Solids: 74.0

Date Collected: 08/27/15 14:45 Date Received: 08/27/15 16:40 Percei

Method: 8270D - Semivolatile		Qualifier RL	MDI	Unit	ъ	Prepared	Apolyzod	Dil F
Analyte	ND	4500			— D <u>₩</u>	09/01/15 08:11	Analyzed 09/04/15 15:44	
Biphenyl	ND ND	4500		ug/Kg	≎			
ois (2-chloroisopropyl) ether				ug/Kg		09/01/15 08:11		
2,4,5-Trichlorophenol	ND	4500		ug/Kg	· · · · · *.	09/01/15 08:11		
2,4,6-Trichlorophenol	ND	4500		ug/Kg	☆	09/01/15 08:11		
2,4-Dichlorophenol	ND	4500		ug/Kg	Ţ.	09/01/15 08:11		
2,4-Dimethylphenol	ND	4500		ug/Kg	<u>.</u> .	09/01/15 08:11		
2,4-Dinitrophenol	ND	44000	21000	ug/Kg	₩	09/01/15 08:11		
2,4-Dinitrotoluene	ND	4500		ug/Kg	*	09/01/15 08:11		
2,6-Dinitrotoluene	ND	4500				09/01/15 08:11		
2-Chloronaphthalene	ND	4500			₩	09/01/15 08:11	09/04/15 15:44	
2-Chlorophenol	ND	4500	820	ug/Kg	☼	09/01/15 08:11	09/04/15 15:44	
2-Methylphenol	ND	4500	530	ug/Kg	☆	09/01/15 08:11	09/04/15 15:44	
2-Methylnaphthalene	ND	4500	900	ug/Kg	₩	09/01/15 08:11	09/04/15 15:44	
2-Nitroaniline	ND	8700	660	ug/Kg	₩	09/01/15 08:11	09/04/15 15:44	
2-Nitrophenol	ND	4500	1300	ug/Kg	₩	09/01/15 08:11	09/04/15 15:44	
3,3'-Dichlorobenzidine	ND	8700	5300	ug/Kg	₽	09/01/15 08:11	09/04/15 15:44	
3-Nitroaniline	ND	8700	1200	ug/Kg	☆	09/01/15 08:11	09/04/15 15:44	
1,6-Dinitro-2-methylphenol	ND	8700	4500	ug/Kg	₩	09/01/15 08:11	09/04/15 15:44	
1-Bromophenyl phenyl ether	ND	4500	640	ug/Kg	₩	09/01/15 08:11	09/04/15 15:44	
I-Chloro-3-methylphenol	ND	4500	1100	ug/Kg	☆	09/01/15 08:11	09/04/15 15:44	
I-Chloroaniline	ND	4500	1100	ug/Kg	≎	09/01/15 08:11	09/04/15 15:44	
I-Chlorophenyl phenyl ether	ND	4500	560	ug/Kg		09/01/15 08:11	09/04/15 15:44	
I-Methylphenol	ND	8700	530	ug/Kg	₽	09/01/15 08:11	09/04/15 15:44	
1-Nitroaniline	ND	* 8700	2400	ug/Kg	₩	09/01/15 08:11	09/04/15 15:44	
1-Nitrophenol	ND	8700	3200	ug/Kg		09/01/15 08:11	09/04/15 15:44	
Acenaphthene	ND	4500	660	ug/Kg	☆	09/01/15 08:11	09/04/15 15:44	
Acenaphthylene	ND	4500	580	ug/Kg	☼	09/01/15 08:11	09/04/15 15:44	
Acetophenone	ND	4500			 \$	09/01/15 08:11	09/04/15 15:44	
Anthracene	ND	4500	1100		₩	09/01/15 08:11		
Atrazine		* 4500		ug/Kg	☆	09/01/15 08:11	09/04/15 15:44	
Benzaldehyde	ND	* 4500				09/01/15 08:11		
Benzo[a]anthracene	2500			ug/Kg	≎	09/01/15 08:11		
Benzo[a]pyrene	2300	~		ug/Kg	₩	09/01/15 08:11		
Benzo[b]fluoranthene	3100		710	ug/Kg		09/01/15 08:11		
Benzo[g,h,i]perylene	1500	~			₩	09/01/15 08:11		
Benzo[k]fluoranthene	1400	~			≎	09/01/15 08:11		
Bis(2-chloroethoxy)methane	ND	4500				09/01/15 08:11		
Bis(2-chloroethyl)ether	ND ND	4500			≎	09/01/15 08:11		
• • •	ND ND	4500		0 0	≎	09/01/15 08:11		
Bis(2-ethylhexyl) phthalate								
Butyl benzyl phthalate	ND	4500		ug/Kg	☆	09/01/15 08:11		
Caprolactam	ND	4500		ug/Kg	₩ ₩	09/01/15 08:11		
Carbazole	ND	4500		ug/Kg	X .	09/01/15 08:11		
Chrysene	2600			ug/Kg	₩ ₩	09/01/15 08:11		
Dibenz(a,h)anthracene	ND	4500		0 0	☆	09/01/15 08:11		
Di-n-butyl phthalate	ND	4500			<u>.</u> .	09/01/15 08:11		
Di-n-octyl phthalate	ND	4500		0 0	<u></u>	09/01/15 08:11		
Dibenzofuran	ND	4500			*	09/01/15 08:11		
Diethyl phthalate	ND	4500	580	ug/Kg	₩	09/01/15 08:11	09/04/15 15:44	

TestAmerica Buffalo

3

5

7

9

11

12

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Client Sample ID: CSW-42 Lab Sample ID: 480-86308-13

Date Collected: 08/27/15 14:45 **Matrix: Solid** Date Received: 08/27/15 16:40 Percent Solids: 74.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoranthene	5400		4500	480	ug/Kg	<u> </u>	09/01/15 08:11	09/04/15 15:44	20
Fluorene	ND		4500	530	ug/Kg	₽	09/01/15 08:11	09/04/15 15:44	20
Hexachlorobenzene	ND		4500	610	ug/Kg	₽	09/01/15 08:11	09/04/15 15:44	20
Hexachlorobutadiene	ND		4500	660	ug/Kg	☼	09/01/15 08:11	09/04/15 15:44	20
Hexachlorocyclopentadiene	ND		4500	610	ug/Kg	₽	09/01/15 08:11	09/04/15 15:44	20
Hexachloroethane	ND		4500	580	ug/Kg	₽	09/01/15 08:11	09/04/15 15:44	20
Indeno[1,2,3-cd]pyrene	1200	J	4500	560	ug/Kg	☼	09/01/15 08:11	09/04/15 15:44	20
Isophorone	ND		4500	950	ug/Kg	☼	09/01/15 08:11	09/04/15 15:44	20
N-Nitrosodi-n-propylamine	ND		4500	770	ug/Kg	₽	09/01/15 08:11	09/04/15 15:44	20
N-Nitrosodiphenylamine	ND		4500	3700	ug/Kg	☼	09/01/15 08:11	09/04/15 15:44	20
Naphthalene	ND		4500	580	ug/Kg	☼	09/01/15 08:11	09/04/15 15:44	20
Nitrobenzene	ND		4500	500	ug/Kg	₽	09/01/15 08:11	09/04/15 15:44	20
Pentachlorophenol	ND		8700	4500	ug/Kg	☼	09/01/15 08:11	09/04/15 15:44	20
Phenanthrene	3100	J	4500	660	ug/Kg	☼	09/01/15 08:11	09/04/15 15:44	20
Phenol	ND		4500	690	ug/Kg	₽	09/01/15 08:11	09/04/15 15:44	20
Pyrene	3400	J	4500	530	ug/Kg	₩	09/01/15 08:11	09/04/15 15:44	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	82		34 - 132				09/01/15 08:11	09/04/15 15:44	20
Phenol-d5 (Surr)	91		11 - 120				09/01/15 08:11	09/04/15 15:44	20
p-Terphenyl-d14 (Surr)	83		65 - 153				09/01/15 08:11	09/04/15 15:44	20
2,4,6-Tribromophenol (Surr)	164	X	39 - 146				09/01/15 08:11	09/04/15 15:44	20
2-Fluorobiphenyl	96		37 - 120				09/01/15 08:11	09/04/15 15:44	20
2-Fluorophenol (Surr)	73		18 - 120				09/01/15 08:11	09/04/15 15:44	20

Client Sample ID: CSW-43 Lab Sample ID: 480-86308-14 Date Collected: 08/27/15 14:45 **Matrix: Solid** Date Received: 08/27/15 16:40 Percent Solids: 75.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		4500	660	ug/Kg	₩	09/01/15 08:11	09/04/15 16:10	20
bis (2-chloroisopropyl) ether	ND		4500	890	ug/Kg	☼	09/01/15 08:11	09/04/15 16:10	20
2,4,5-Trichlorophenol	ND		4500	1200	ug/Kg	☼	09/01/15 08:11	09/04/15 16:10	20
2,4,6-Trichlorophenol	ND		4500	890	ug/Kg	₽	09/01/15 08:11	09/04/15 16:10	20
2,4-Dichlorophenol	ND		4500	470	ug/Kg	☼	09/01/15 08:11	09/04/15 16:10	20
2,4-Dimethylphenol	ND		4500	1100	ug/Kg	☼	09/01/15 08:11	09/04/15 16:10	20
2,4-Dinitrophenol	ND		44000	21000	ug/Kg	₽	09/01/15 08:11	09/04/15 16:10	20
2,4-Dinitrotoluene	ND		4500	920	ug/Kg	☼	09/01/15 08:11	09/04/15 16:10	20
2,6-Dinitrotoluene	ND		4500	530	ug/Kg	₩	09/01/15 08:11	09/04/15 16:10	20
2-Chloronaphthalene	ND		4500	740	ug/Kg		09/01/15 08:11	09/04/15 16:10	20
2-Chlorophenol	ND		4500	820	ug/Kg	☼	09/01/15 08:11	09/04/15 16:10	20
2-Methylphenol	ND		4500	530	ug/Kg	☼	09/01/15 08:11	09/04/15 16:10	20
2-Methylnaphthalene	ND		4500	890	ug/Kg	φ.	09/01/15 08:11	09/04/15 16:10	20
2-Nitroaniline	ND		8700	660	ug/Kg	☼	09/01/15 08:11	09/04/15 16:10	20
2-Nitrophenol	ND		4500	1300	ug/Kg	₩	09/01/15 08:11	09/04/15 16:10	20
3,3'-Dichlorobenzidine	ND		8700	5300	ug/Kg	φ.	09/01/15 08:11	09/04/15 16:10	20
3-Nitroaniline	ND		8700	1200	ug/Kg	☼	09/01/15 08:11	09/04/15 16:10	20
4,6-Dinitro-2-methylphenol	ND		8700	4500	ug/Kg	☼	09/01/15 08:11	09/04/15 16:10	20
4-Bromophenyl phenyl ether	ND		4500	630	ug/Kg	φ.	09/01/15 08:11	09/04/15 16:10	20

TestAmerica Buffalo

Page 22 of 46

Client: Iyer Environmental Group, LLC

Client Sample ID: CSW-43

Date Collected: 08/27/15 14:45

Date Received: 08/27/15 16:40

Project/Site: 132 Dingens

Phenol-d5 (Surr)

TestAmerica Job ID: 480-86308-1

Lab Sample ID: 480-86308-14

Matrix: Solid

Percent Solids: 75.3

Method: 8270D - Semivola Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
4-Chloro-3-methylphenol	ND		4500		ug/Kg	— -	09/01/15 08:11	09/04/15 16:10	20
4-Chloroaniline	ND		4500		ug/Kg	≎	09/01/15 08:11	09/04/15 16:10	20
4-Chlorophenyl phenyl ether	ND		4500		ug/Kg	.	09/01/15 08:11	09/04/15 16:10	20
4-Methylphenol	ND		8700		ug/Kg	≎	09/01/15 08:11	09/04/15 16:10	20
4-Nitroaniline	ND	*	8700		ug/Kg	≎	09/01/15 08:11	09/04/15 16:10	20
4-Nitrophenol	ND		8700		ug/Kg		09/01/15 08:11	09/04/15 16:10	20
Acenaphthene	ND		4500		ug/Kg	≎	09/01/15 08:11	09/04/15 16:10	20
Acenaphthylene	690	J	4500		ug/Kg	≎	09/01/15 08:11	09/04/15 16:10	20
Acetophenone	ND		4500		ug/Kg		09/01/15 08:11	09/04/15 16:10	20
Anthracene	1700	J	4500			₽	09/01/15 08:11	09/04/15 16:10	20
Atrazine	ND	*	4500			₽	09/01/15 08:11	09/04/15 16:10	20
Benzaldehyde	ND	*	4500		ug/Kg		09/01/15 08:11	09/04/15 16:10	20
Benzo[a]anthracene	10000		4500		ug/Kg	₩	09/01/15 08:11	09/04/15 16:10	20
Benzo[a]pyrene	9000		4500		ug/Kg	₽	09/01/15 08:11	09/04/15 16:10	20
Benzo[b]fluoranthene	12000		4500		ug/Kg		09/01/15 08:11	09/04/15 16:10	20
Benzo[g,h,i]perylene	3400	1	4500		ug/Kg	₽	09/01/15 08:11	09/04/15 16:10	20
Benzo[k]fluoranthene	6500	•	4500		ug/Kg	₩	09/01/15 08:11	09/04/15 16:10	20
Bis(2-chloroethoxy)methane	ND		4500		ug/Kg		09/01/15 08:11	09/04/15 16:10	20
Bis(2-chloroethyl)ether	ND		4500		ug/Kg	₩	09/01/15 08:11	09/04/15 16:10	20
Bis(2-ethylhexyl) phthalate	ND		4500		ug/Kg	₽	09/01/15 08:11	09/04/15 16:10	20
Butyl benzyl phthalate	ND		4500		ug/Kg		09/01/15 08:11	09/04/15 16:10	20
Caprolactam	ND		4500		ug/Kg	₩	09/01/15 08:11	09/04/15 16:10	20
Carbazole	ND.		4500		ug/Kg	₽	09/01/15 08:11	09/04/15 16:10	20
Chrysene	10000		4500				09/01/15 08:11	09/04/15 16:10	20
Dibenz(a,h)anthracene	ND		4500			₽	09/01/15 08:11	09/04/15 16:10	20
Di-n-butyl phthalate	ND		4500			₽	09/01/15 08:11	09/04/15 16:10	20
Di-n-octyl phthalate	ND		4500		0 0		09/01/15 08:11	09/04/15 16:10	20
Dibenzofuran	ND		4500		ug/Kg	₽	09/01/15 08:11	09/04/15 16:10	20
Diethyl phthalate	ND		4500		ug/Kg	₩	09/01/15 08:11	09/04/15 16:10	20
Dimethyl phthalate	ND		4500		ug/Kg		09/01/15 08:11	09/04/15 16:10	20
Fluoranthene	17000		4500		ug/Kg	₩	09/01/15 08:11	09/04/15 16:10	20
Fluorene	ND		4500		ug/Kg	₩	09/01/15 08:11	09/04/15 16:10	20
Hexachlorobenzene	ND		4500		ug/Kg		09/01/15 08:11	09/04/15 16:10	20
Hexachlorobutadiene	ND		4500		ug/Kg	₩	09/01/15 08:11	09/04/15 16:10	20
Hexachlorocyclopentadiene	ND		4500		ug/Kg	☆	09/01/15 08:11	09/04/15 16:10	20
Hexachloroethane	ND		4500		ug/Kg		09/01/15 08:11		20
Indeno[1,2,3-cd]pyrene	3700	1	4500		ug/Kg	₩	09/01/15 08:11		20
Isophorone	ND	3	4500		ug/Kg	₽	09/01/15 08:11	09/04/15 16:10	20
N-Nitrosodi-n-propylamine	ND		4500		ug/Kg		09/01/15 08:11		20
N-Nitrosodiphenylamine	ND		4500		ug/Kg	₽	09/01/15 08:11	09/04/15 16:10	20
Naphthalene	ND		4500		ug/Kg	₽	09/01/15 08:11	09/04/15 16:10	20
Nitrobenzene	ND		4500		ug/Kg ug/Kg		09/01/15 08:11	09/04/15 16:10	20
						т Ф			
Pentachlorophenol Phonorthropo	ND 5000		8700 4500		ug/Kg ug/Kg	₩	09/01/15 08:11 09/01/15 08:11	09/04/15 16:10 09/04/15 16:10	20 20
Phenanthrene	5900								
Phenol	ND		4500 4500		ug/Kg	₩	09/01/15 08:11		20
Pyrene	11000		4500	530	ug/Kg	₽	09/01/15 08:11	09/04/15 16:10	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	— 70.100070.7		34 - 132				09/01/15 08:11		20
	• •		- · · • -						

TestAmerica Buffalo

09/01/15 08:11 09/04/15 16:10

11 - 120

67

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-86308-1

Lab Sample ID: 480-86308-14

Matrix: Solid

Percent Solids: 75.3

Client Sample ID: CSW-43 Date Collected: 08/27/15 14:45

Date Received: 08/27/15 16:40

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
p-Terphenyl-d14 (Surr)	62	X	65 - 153	09/01/15 08:11	09/04/15 16:10	20
2,4,6-Tribromophenol (Surr)	139		39 - 146	09/01/15 08:11	09/04/15 16:10	20
2-Fluorobiphenyl	78		37 - 120	09/01/15 08:11	09/04/15 16:10	20
2-Fluorophenol (Surr)	64		18 - 120	09/01/15 08:11	09/04/15 16:10	20

Client Sample ID: CSB-9

Date Collected: 08/27/15 14:45

Date Received: 08/27/15 16:40

Lab Sample ID: 480-86308-15

Matrix: Solid

Percent Solids: 68.7

Method: 8270D - Semivolatile Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND	4900	720	ug/Kg	<u> </u>	09/01/15 08:11	09/04/15 16:36	20
bis (2-chloroisopropyl) ether	ND	4900	980	ug/Kg	₩	09/01/15 08:11	09/04/15 16:36	20
2,4,5-Trichlorophenol	ND	4900	1300	ug/Kg	≎	09/01/15 08:11	09/04/15 16:36	20
2,4,6-Trichlorophenol	ND	4900	980	ug/Kg	≎	09/01/15 08:11	09/04/15 16:36	20
2,4-Dichlorophenol	ND	4900	520	ug/Kg	☼	09/01/15 08:11	09/04/15 16:36	20
2,4-Dimethylphenol	ND	4900	1200	ug/Kg	₽	09/01/15 08:11	09/04/15 16:36	20
2,4-Dinitrophenol	ND	48000	23000	ug/Kg		09/01/15 08:11	09/04/15 16:36	20
2,4-Dinitrotoluene	ND	4900	1000	ug/Kg	₽	09/01/15 08:11	09/04/15 16:36	20
2,6-Dinitrotoluene	ND	4900	580	ug/Kg	₽	09/01/15 08:11	09/04/15 16:36	20
2-Chloronaphthalene	ND	4900	810	ug/Kg	₽	09/01/15 08:11	09/04/15 16:36	20
2-Chlorophenol	ND	4900	900	ug/Kg	₩	09/01/15 08:11	09/04/15 16:36	20
2-Methylphenol	ND	4900	580	ug/Kg	₩	09/01/15 08:11	09/04/15 16:36	20
2-Methylnaphthalene	ND	4900	980	ug/Kg		09/01/15 08:11	09/04/15 16:36	20
2-Nitroaniline	ND	9600	720	ug/Kg	₩	09/01/15 08:11	09/04/15 16:36	20
2-Nitrophenol	ND	4900	1400	ug/Kg	≎	09/01/15 08:11	09/04/15 16:36	20
3,3'-Dichlorobenzidine	ND	9600	5800	ug/Kg		09/01/15 08:11	09/04/15 16:36	20
3-Nitroaniline	ND	9600	1400	ug/Kg	₽	09/01/15 08:11	09/04/15 16:36	20
4,6-Dinitro-2-methylphenol	ND	9600	4900	ug/Kg	≎	09/01/15 08:11	09/04/15 16:36	20
4-Bromophenyl phenyl ether	ND	4900	700	ug/Kg		09/01/15 08:11	09/04/15 16:36	20
4-Chloro-3-methylphenol	ND	4900	1200	ug/Kg	₽	09/01/15 08:11	09/04/15 16:36	20
4-Chloroaniline	ND	4900	1200	ug/Kg	₽	09/01/15 08:11	09/04/15 16:36	20
4-Chlorophenyl phenyl ether	ND	4900	610	ug/Kg	φ.	09/01/15 08:11	09/04/15 16:36	20
4-Methylphenol	ND	9600	580	ug/Kg	₩	09/01/15 08:11	09/04/15 16:36	20
4-Nitroaniline	ND *	9600	2600	ug/Kg	₽	09/01/15 08:11	09/04/15 16:36	20
4-Nitrophenol	ND	9600	3400	ug/Kg	₽	09/01/15 08:11	09/04/15 16:36	20
Acenaphthene	ND	4900	720	ug/Kg	₽	09/01/15 08:11	09/04/15 16:36	20
Acenaphthylene	ND	4900	640	ug/Kg	≎	09/01/15 08:11	09/04/15 16:36	20
Acetophenone	ND	4900	670	ug/Kg		09/01/15 08:11	09/04/15 16:36	20
Anthracene	ND	4900	1200	ug/Kg	₽	09/01/15 08:11	09/04/15 16:36	20
Atrazine	ND *	4900	1700	ug/Kg	₽	09/01/15 08:11	09/04/15 16:36	20
Benzaldehyde	ND *	4900	3900	ug/Kg		09/01/15 08:11	09/04/15 16:36	20
Benzo[a]anthracene	ND	4900	490	ug/Kg	₩	09/01/15 08:11	09/04/15 16:36	20
Benzo[a]pyrene	ND	4900	720	ug/Kg	₩	09/01/15 08:11	09/04/15 16:36	20
Benzo[b]fluoranthene	ND	4900		ug/Kg	-	09/01/15 08:11	09/04/15 16:36	20
Benzo[g,h,i]perylene	ND	4900		ug/Kg	☆	09/01/15 08:11	09/04/15 16:36	20
Benzo[k]fluoranthene	ND	4900			☆		09/04/15 16:36	20
Bis(2-chloroethoxy)methane	ND	4900		ug/Kg		09/01/15 08:11		20
Bis(2-chloroethyl)ether	ND	4900		ug/Kg	☼		09/04/15 16:36	20

TestAmerica Buffalo

3

4

6

Q

9

11

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: CSB-9

Date Collected: 08/27/15 14:45

Date Received: 08/27/15 16:40

TestAmerica Job ID: 480-86308-1

Lab Sample ID: 480-86308-15

Matrix: Solid

Percent Solids: 68.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bis(2-ethylhexyl) phthalate	ND		4900	1700	ug/Kg	\	09/01/15 08:11	09/04/15 16:36	20
Butyl benzyl phthalate	ND		4900	810	ug/Kg	≎	09/01/15 08:11	09/04/15 16:36	20
Caprolactam	ND		4900	1500	ug/Kg	₽	09/01/15 08:11	09/04/15 16:36	20
Carbazole	ND		4900	580	ug/Kg	≎	09/01/15 08:11	09/04/15 16:36	20
Chrysene	ND		4900	1100	ug/Kg	₽	09/01/15 08:11	09/04/15 16:36	20
Dibenz(a,h)anthracene	ND		4900	870	ug/Kg	≎	09/01/15 08:11	09/04/15 16:36	20
Di-n-butyl phthalate	ND		4900	840	ug/Kg	≎	09/01/15 08:11	09/04/15 16:36	20
Di-n-octyl phthalate	ND		4900	580	ug/Kg	\$	09/01/15 08:11	09/04/15 16:36	20
Dibenzofuran	ND		4900	580	ug/Kg	☼	09/01/15 08:11	09/04/15 16:36	20
Diethyl phthalate	ND		4900	640	ug/Kg	₽	09/01/15 08:11	09/04/15 16:36	20
Dimethyl phthalate	ND		4900	580	ug/Kg	\$	09/01/15 08:11	09/04/15 16:36	20
Fluoranthene	830	J	4900	520	ug/Kg	☼	09/01/15 08:11	09/04/15 16:36	20
Fluorene	ND		4900	580	ug/Kg	☼	09/01/15 08:11	09/04/15 16:36	20
Hexachlorobenzene	ND		4900	670	ug/Kg	φ.	09/01/15 08:11	09/04/15 16:36	20
Hexachlorobutadiene	ND		4900	720	ug/Kg	₽	09/01/15 08:11	09/04/15 16:36	20
Hexachlorocyclopentadiene	ND		4900	670	ug/Kg	☼	09/01/15 08:11	09/04/15 16:36	20
Hexachloroethane	ND		4900	640	ug/Kg	φ.	09/01/15 08:11	09/04/15 16:36	20
Indeno[1,2,3-cd]pyrene	ND		4900	610	ug/Kg	₽	09/01/15 08:11	09/04/15 16:36	20
Isophorone	ND		4900	1000	ug/Kg	₽	09/01/15 08:11	09/04/15 16:36	20
N-Nitrosodi-n-propylamine	ND		4900	840	ug/Kg	₽	09/01/15 08:11	09/04/15 16:36	20
N-Nitrosodiphenylamine	ND		4900	4000	ug/Kg	₽	09/01/15 08:11	09/04/15 16:36	20
Naphthalene	ND		4900	640	ug/Kg	☼	09/01/15 08:11	09/04/15 16:36	20
Nitrobenzene	ND		4900	550	ug/Kg	₽	09/01/15 08:11	09/04/15 16:36	20
Pentachlorophenol	ND		9600	4900	ug/Kg	₽	09/01/15 08:11	09/04/15 16:36	20
Phenanthrene	ND		4900	720	ug/Kg	₽	09/01/15 08:11	09/04/15 16:36	20
Phenol	ND		4900	750	ug/Kg	₽	09/01/15 08:11	09/04/15 16:36	20
Pyrene	ND		4900	580	ug/Kg	₩	09/01/15 08:11	09/04/15 16:36	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	81		34 - 132				09/01/15 08:11	09/04/15 16:36	20
Phenol-d5 (Surr)	72		11 - 120				09/01/15 08:11	09/04/15 16:36	20
p-Terphenyl-d14 (Surr)	59	Χ	65 - 153				09/01/15 08:11	09/04/15 16:36	20
2,4,6-Tribromophenol (Surr)	147	X	39 - 146				09/01/15 08:11	09/04/15 16:36	20
2-Fluorobiphenyl	69		37 - 120				09/01/15 08:11	09/04/15 16:36	20
2-Fluorophenol (Surr)	79		18 - 120				09/01/15 08:11	09/04/15 16:36	20

3

5

O

8

10

11

13

14

Surrogate Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-86308-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

			Pe	rcent Surre	ogate Reco	very (Acce _l	otance Lin
		NBZ	PHL	TPH	TBP	FBP	2FP
Lab Sample ID	Client Sample ID	(34-132)	(11-120)	(65-153)	(39-146)	(37-120)	(18-120)
80-86308-7	CSW-36	66	74	64 X	89	74	68
80-86308-8	CSW-37	86	83	70	92	80	89
80-86308-8 DU	CSW-37	78	67	58 X	82	70	67
80-86308-9	CSW-38	71	67	66	90	74	63
80-86308-10	CSW-39	74	67	59 X	89	79	69
80-86308-11	CSW-40	78	69	63 X	101	85	62
80-86308-11 MS	CSW-40	80	66	65	105	93	70
30-86308-11 MSD	CSW-40	70	68	66	105	92	58
30-86308-12	CSW-41	96	73	72	151 X	87	66
30-86308-12 - DL	CSW-41	60	59	74	0 X	81	67
80-86308-13	CSW-42	82	91	83	164 X	96	73
180-86308-14	CSW-43	74	67	62 X	139	78	64
180-86308-15	CSB-9	81	72	59 X	147 X	69	79
CS 480-261380/2-A	Lab Control Sample	74	72	88	86	79	68
MB 480-261380/1-A	Method Blank	69	64	84	70	69	59

Surrogate Legend

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

TPH = p-Terphenyl-d14 (Surr)

TBP = 2,4,6-Tribromophenol (Surr)

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol (Surr)

4

5

6

•

9

11

40

14

QC Sample Results

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-86308-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-261380/1-A

Matrix: Solid

Client Sample ID: Method Blank **Prep Type: Total/NA**

)	Prepared	Analyzed	Dil Fac
-	09/01/15 08:11	09/04/15 10:55	1
	09/01/15 08:11	09/04/15 10:55	1
	09/01/15 08:11	09/04/15 10:55	1

MR	MR						Prep Batch:	
		RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
					— <u> </u>		-	
ND		170						1
								1
								1
								1
								1
								1
								1
								1
								· · · · · · · · · · · · · · · · · · ·
				0 0				1
								1
								1
								1
								1
								1
								,
								1
								-
								-
ND		170	20	ug/ n .g		09/01/15 08:11	09/04/15 10:55	1
	Result ND	ND N	Result Qualifier RL ND 170 ND 330 ND 170 ND 330 ND 330 ND 170 ND	Result Qualifier RL MDL ND 170 25 ND 170 34 ND 170 45 ND 170 18 ND 170 40 ND 170 20 ND 170 20 ND 170 20 ND 170 23 ND 170 23 ND 170 34 ND 170 47 ND 330 25 ND 170 47 ND 330 46 ND 330 46 ND 330 170	Result Qualifier RL MDL Unit	Result Qualifier RL MDL Unit D Unit Unit	Result Qualifier RL MDL Unit D Prepared	Result Qualifier RL MDL Unit D Propared Analyzed

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-261380/1-A

Matrix: Solid

Analysis Batch: 262027

Client Sample ID: Method Blank **Prep Type: Total/NA**

Prep Batch: 261380

Analysis Batom 202021	MD	МВ						Trop Batom	_0.000
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dimethyl phthalate	ND		170	20	ug/Kg		09/01/15 08:11	09/04/15 10:55	1
Fluoranthene	ND		170	18	ug/Kg		09/01/15 08:11	09/04/15 10:55	1
Fluorene	ND		170	20	ug/Kg		09/01/15 08:11	09/04/15 10:55	1
Hexachlorobenzene	ND		170	23	ug/Kg		09/01/15 08:11	09/04/15 10:55	1
Hexachlorobutadiene	ND		170	25	ug/Kg		09/01/15 08:11	09/04/15 10:55	1
Hexachlorocyclopentadiene	ND		170	23	ug/Kg		09/01/15 08:11	09/04/15 10:55	1
Hexachloroethane	ND		170	22	ug/Kg		09/01/15 08:11	09/04/15 10:55	1
Indeno[1,2,3-cd]pyrene	ND		170	21	ug/Kg		09/01/15 08:11	09/04/15 10:55	1
Isophorone	ND		170	36	ug/Kg		09/01/15 08:11	09/04/15 10:55	1
N-Nitrosodi-n-propylamine	ND		170	29	ug/Kg		09/01/15 08:11	09/04/15 10:55	1
N-Nitrosodiphenylamine	ND		170	140	ug/Kg		09/01/15 08:11	09/04/15 10:55	1
Naphthalene	ND		170	22	ug/Kg		09/01/15 08:11	09/04/15 10:55	1
Nitrobenzene	ND		170	19	ug/Kg		09/01/15 08:11	09/04/15 10:55	1
Pentachlorophenol	ND		330	170	ug/Kg		09/01/15 08:11	09/04/15 10:55	1
Phenanthrene	ND		170	25	ug/Kg		09/01/15 08:11	09/04/15 10:55	1
Phenol	ND		170	26	ug/Kg		09/01/15 08:11	09/04/15 10:55	1
Pyrene	ND		170	20	ug/Kg		09/01/15 08:11	09/04/15 10:55	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	69	34 - 132	09/01/15 08:11	09/04/15 10:55	1
Phenol-d5 (Surr)	64	11 - 120	09/01/15 08:11	09/04/15 10:55	1
p-Terphenyl-d14 (Surr)	84	65 - 153	09/01/15 08:11	09/04/15 10:55	1
2,4,6-Tribromophenol (Surr)	70	39 - 146	09/01/15 08:11	09/04/15 10:55	1
2-Fluorobiphenyl	69	37 - 120	09/01/15 08:11	09/04/15 10:55	1
2-Fluorophenol (Surr)	59	18 - 120	09/01/15 08:11	09/04/15 10:55	1

Lab Sample ID: LCS 480-261380/2-A

Matrix: Solid

Analysis Batch: 262027

Client Sample IL	D: Lab Control Sample
	Prep Type: Total/NA
	Prep Batch: 261380
	0/ Daa

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,4-Dinitrotoluene	1630	1160		ug/Kg		71	55 - 125	
2-Chlorophenol	1630	1200		ug/Kg		74	38 - 120	
4-Chloro-3-methylphenol	1630	1220		ug/Kg		75	49 - 125	
4-Nitrophenol	3260	1950		ug/Kg		60	43 - 137	
Acenaphthene	1630	1280		ug/Kg		78	53 - 120	
Atrazine	3260	1910	*	ug/Kg		59	60 - 164	
Bis(2-ethylhexyl) phthalate	1630	1280		ug/Kg		79	61 - 133	
Fluorene	1630	1270		ug/Kg		78	63 - 126	
Hexachloroethane	1630	1010		ug/Kg		62	41 - 120	
N-Nitrosodi-n-propylamine	1630	1120		ug/Kg		69	46 - 120	
Pentachlorophenol	3260	2230		ug/Kg		68	33 - 136	
Phenol	1630	1160		ug/Kg		71	36 - 120	
Pyrene	1630	1650		ug/Kg		101	51 - 133	

LCS LCS

Surrogate %Recovery Qualifier Limits Nitrobenzene-d5 (Surr) 34 - 132

TestAmerica Buffalo

Page 28 of 46

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-261380/2-A

Matrix: Solid

Analysis Batch: 262027

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 261380

LCS LCS %Recovery Qualifier Surrogate

Phenol-d5 (Surr) 72 11 - 120 p-Terphenyl-d14 (Surr) 88 65 - 153 2,4,6-Tribromophenol (Surr) 86 39 - 146 79 37 - 120 2-Fluorobiphenyl

68

Client Sample ID: CSW-40

Prep Type: Total/NA

Prep Batch: 261380

Lab Sample ID: 480-86308-11 MS

Matrix: Solid

2-Fluorophenol (Surr)

Analysis Batch: 262027

-	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
2,4-Dinitrotoluene	ND		2050	1750	J	ug/Kg	\	85	55 - 125
2-Chlorophenol	ND		2050	1380	J	ug/Kg	₩	68	38 - 120
4-Chloro-3-methylphenol	ND		2050	1220	J	ug/Kg	₩	59	49 - 125
4-Nitrophenol	ND	F2	4100	1740	J	ug/Kg	₩	43	43 - 137
Acenaphthene	760	J	2050	1970	J	ug/Kg	₩	59	53 - 120
Atrazine	ND	F1 *	4100	1990	J F1	ug/Kg	₩	49	60 - 164
Bis(2-ethylhexyl) phthalate	ND		2050	1620	J	ug/Kg	₩	79	61 - 133
Fluorene	1600	J F2 F1	2050	1860	J F1	ug/Kg	₩	11	63 - 126
Hexachloroethane	ND		2050	1730	J	ug/Kg	₩	85	41 - 120
N-Nitrosodi-n-propylamine	ND		2050	1720	J	ug/Kg	₩.	84	46 - 120
Pentachlorophenol	ND		4100	3470	J	ug/Kg	₩	85	33 - 136
Phenol	ND		2050	1430	J	ug/Kg	₩	70	36 - 120
Pyrene	17000		2050	7740	4	ug/Kg	₩.	-436	51 - 133

Limits

18 - 120

MS MS

Sample Sample

ND

ND

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5 (Surr)	80		34 - 132
Phenol-d5 (Surr)	66		11 - 120
p-Terphenyl-d14 (Surr)	65		65 - 153
2,4,6-Tribromophenol (Surr)	105		39 - 146
2-Fluorobiphenyl	93		37 - 120
2-Fluorophenol (Surr)	70		18 - 120

Lab Sample ID: 480-86308-11 MSD Client Sample ID: CSW-40 **Matrix: Solid** Prep Type: Total/NA

Spike

2040

2040

MSD MSD

1510 J

1610 J

Analysis Batch: 262027

Hexachloroethane

N-Nitrosodi-n-propylamine

Result Qualifier Added Result Qualifier %Rec Limits RPD Limit Analyte Unit D ₩ 2,4-Dinitrotoluene ND 2040 1800 J 88 55 - 125 3 20 ug/Kg Ö 2-Chlorophenol ND 2040 1420 J ug/Kg 69 38 - 120 2 25 ug/Kg ₩ 4-Chloro-3-methylphenol ND 2040 1380 J 68 49 - 125 13 27 . . 4-Nitrophenol ND F2 4080 2320 JF2 ug/Kg 57 43 - 137 28 25 Acenaphthene 760 2040 1940 J ₩ 58 53 - 120 1 35 ug/Kg ND F1 * 4080 ₩ 57 20 Atrazine 2350 F1 ug/Kg 60 - 164 16 2040 ₩ 74 Bis(2-ethylhexyl) phthalate ND 1510 J ug/Kg 61 - 133 15 ₩ 2040 2170 F1 F2 27 16 Fluorene 1600 J F2 F1 63 - 126 15 ug/Kg

TestAmerica Buffalo

Page 29 of 46

Prep Batch: 261380

%Rec.

41 - 120

46 - 120

Ö

ug/Kg

ug/Kg

74

79

RPD

46

31

51 - 133

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-86308-11 MSD Client Sample ID: CSW-40 **Matrix: Solid Prep Type: Total/NA Analysis Batch: 262027** Prep Batch: 261380 MSD MSD Sample Sample Spike %Rec. **RPD** Analyte Result Qualifier Added Result Qualifier %Rec Limits RPD Limit Unit Pentachlorophenol $\overline{\mathsf{ND}}$ 4080 3620 J ug/Kg 89 33 - 136 4 35 ₩ Phenol ND 2040 1370 J ug/Kg 67 36 - 120 4 35

10200 4

ug/Kg

-315

2040

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5 (Surr)	70		34 - 132
Phenol-d5 (Surr)	68		11 - 120
p-Terphenyl-d14 (Surr)	66		65 - 153
2,4,6-Tribromophenol (Surr)	105		39 - 146
2-Fluorobiphenyl	92		37 - 120
2-Fluorophenol (Surr)	58		18 - 120

17000

Lab Sample ID: 480-86308-8 DU

Pyrene

Client Sample ID: CSW-37

28

Matrix: Solid Analysis Batch: 262027							Prep Type Prep Bat		
	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Biphenyl	ND		 ND		ug/Kg	\		NC	20

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Biphenyl	ND		ND		ug/Kg	- -	NC	20
bis (2-chloroisopropyl) ether	ND		ND		ug/Kg	₩.	NC	24
2,4,5-Trichlorophenol	ND		ND		ug/Kg	₩.	NC	18
2,4,6-Trichlorophenol	ND		ND		ug/Kg	₩	NC	19
2,4-Dichlorophenol	ND		ND		ug/Kg	₩.	NC	19
2,4-Dimethylphenol	ND		ND		ug/Kg	₩.	NC	42
2,4-Dinitrophenol	ND		ND		ug/Kg	₩	NC	22
2,4-Dinitrotoluene	ND		ND		ug/Kg	⇔	NC	20
2,6-Dinitrotoluene	ND		ND		ug/Kg	⇔	NC	15
2-Chloronaphthalene	ND		ND		ug/Kg	₩	NC	21
2-Chlorophenol	ND		ND		ug/Kg	⇔	NC	25
2-Methylphenol	ND		ND		ug/Kg	⇔	NC	27
2-Methylnaphthalene	ND		235	j	ug/Kg	*	NC	21
2-Nitroaniline	ND		ND		ug/Kg	⇔	NC	15
2-Nitrophenol	ND		ND		ug/Kg	₩.	NC	18
3,3'-Dichlorobenzidine	ND		ND		ug/Kg	*	NC	25
3-Nitroaniline	ND		ND		ug/Kg	₩	NC	19
4,6-Dinitro-2-methylphenol	ND		ND		ug/Kg	₩	NC	15
4-Bromophenyl phenyl ether	ND		ND		ug/Kg	*	NC	15
4-Chloro-3-methylphenol	ND		ND		ug/Kg	₩.	NC	27
4-Chloroaniline	ND		ND		ug/Kg	₩	NC	22
4-Chlorophenyl phenyl ether	ND		ND		ug/Kg	₩	NC	16
4-Methylphenol	ND		ND		ug/Kg	₩	NC	24
4-Nitroaniline	ND	*	ND	*	ug/Kg	₩	NC	24
4-Nitrophenol	ND		ND		ug/Kg	₩	NC	25
Acenaphthene	450	J	646	J F5	ug/Kg	₩	36	35
Acenaphthylene	200	J	217	J	ug/Kg	₩.	9	18
Acetophenone	ND		ND		ug/Kg	₩	NC	20
Anthracene	1400		1690	F5	ug/Kg	₩	16	15
Atrazine	ND	*	ND	*	ug/Kg	₩	NC	20
Benzaldehyde	ND	*	ND	*	ug/Kg	₩	NC	20

TestAmerica Buffalo

Page 30 of 46

QC Sample Results

Client: Iyer Environmental Group, LLC TestAmerica Job ID: 480-86308-1

Project/Site: 132 Dingens

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Matrix: Solid

Analysis Batch: 262027

Client Sample ID: CSW-37 Prep Type: Total/NA

Prep Batch: 261380

Analysis Batch: 262027	Sample	Sample	DU	DU			Prep Batch: 20	RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Benzo[a]anthracene	3400	<u> </u>	4510		ug/Kg	- \tilde{\tii		15
Benzo[a]pyrene	3800		4120		ug/Kg	₩	8	15
Benzo[b]fluoranthene	4500		5700	F3	ug/Kg	₩	23	15
Benzo[g,h,i]perylene	2000		2250		ug/Kg	₩	14	15
Benzo[k]fluoranthene	2400		2910		ug/Kg	☼	19	22
Bis(2-chloroethoxy)methane	ND		ND		ug/Kg		NC	17
Bis(2-chloroethyl)ether	ND		ND		ug/Kg	₩	NC	21
Bis(2-ethylhexyl) phthalate	ND		ND		ug/Kg	₩	NC	15
Butyl benzyl phthalate	ND		ND		ug/Kg	₩	NC	16
Caprolactam	ND		ND		ug/Kg	₩	NC	20
Carbazole	680	J	1130	F5	ug/Kg	☼	50	20
Chrysene	3500		4630	F3	ug/Kg	₩	29	15
Dibenz(a,h)anthracene	ND		ND		ug/Kg	₩	NC	15
Di-n-butyl phthalate	ND		ND		ug/Kg	₩	NC	15
Di-n-octyl phthalate	ND		ND		ug/Kg	₩	NC	16
Dibenzofuran	410	J	618	J F5	ug/Kg	₩	39	15
Diethyl phthalate	ND		ND		ug/Kg	₩	NC	15
Dimethyl phthalate	ND		ND		ug/Kg	₩	NC	15
Fluoranthene	6500		10400	F3	ug/Kg	₩	46	15
Fluorene	530	J	644	J F5	ug/Kg	₩	19	15
Hexachlorobenzene	ND		ND		ug/Kg	₩	NC	15
Hexachlorobutadiene	ND		ND		ug/Kg	₩	NC	44
Hexachlorocyclopentadiene	ND		ND		ug/Kg	₩	NC	49
Hexachloroethane	ND		ND		ug/Kg	₩	NC	46
Indeno[1,2,3-cd]pyrene	1800		2230	F5	ug/Kg	₩	21	15
Isophorone	ND		ND		ug/Kg	₩	NC	17
N-Nitrosodi-n-propylamine	ND		ND		ug/Kg	₩	NC	31
N-Nitrosodiphenylamine	ND		ND		ug/Kg	₩	NC	15
Naphthalene	ND		439	J	ug/Kg	₩	NC	29
Nitrobenzene	ND		ND		ug/Kg	₩	NC	24
Pentachlorophenol	ND		ND		ug/Kg	₩	NC	35
Phenanthrene	5800		9160	F3	ug/Kg	₩	45	15
Phenol	ND		ND		ug/Kg	₩	NC	35
Pyrene	4800		6720		ug/Kg	₩	33	35

DU	DU
90	DU

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5 (Surr)	78		34 - 132
Phenol-d5 (Surr)	67		11 - 120
p-Terphenyl-d14 (Surr)	58	X	65 ₋ 153
2,4,6-Tribromophenol (Surr)	82		39 - 146
2-Fluorobiphenyl	70		37 - 120
2-Fluorophenol (Surr)	67		18 - 120

TestAmerica Buffalo

Page 31 of 46

4

4

0

8

10

12

Prep Batch: 260966

Prep Batch: 260997

Prep Batch: 260997

Client Sample ID: CSW-35

Prep Type: Total/NA

Prep Batch: 260997

Prep Type: Total/NA

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-260966/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 261438

MB MB

Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac Prepared 0.010 08/31/15 08:05 09/01/15 09:48 Lead ND 0.0030 mg/L

Lab Sample ID: LCS 480-260966/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Analysis Batch: 261438** Prep Batch: 260966 Spike LCS LCS %Rec. Added Limits Analyte Result Qualifier Unit %Rec

Lab Sample ID: MB 480-260997/1-A **Client Sample ID: Method Blank Prep Type: Total/NA**

0.205

mg/L

102

80 - 120

0.200

Matrix: Solid

Lead

Analyte

Analysis Batch: 261286

MB MB

RL **MDL** Unit Analyte Result Qualifier Prepared Analyzed Dil Fac Lead $\overline{\mathsf{ND}}$ 0.95 0.23 mg/Kg 08/28/15 13:15 08/31/15 09:09

Lab Sample ID: LCSSRM 480-260997/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 261286

LCSSRM LCSSRM Spike %Rec. Added Result Qualifier Unit %Rec Limits 90.1 85.37 94.7 mg/Kg

Lead 70.1 - 129 9

Lab Sample ID: 480-86308-4 MS **Matrix: Solid**

Analysis Batch: 261286

Sample Sample Spike MS MS %Rec. Result Qualifier Added Limits Result Qualifier Unit D %Rec Analyte

Lead 2660 F2 50.0 1767 4 mg/Kg -1777 75 - 125 Client Sample ID: CSW-35

Lab Sample ID: 480-86308-4 MSD **Matrix: Solid**

Analysis Batch: 261286

Prep Batch: 260997 MSD MSD Sample Sample Spike %Rec. **RPD** Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits **RPD** Limit Ö Lead 2660 F2 50.6 919.7 4 F2 mg/Kg -3434 75 - 125

Lab Sample ID: 480-86308-2 DU Client Sample ID: CSW-33 **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 261286 Prep Batch: 260997 Sample Sample DU DU **RPD** Analyte Result Qualifier Result Qualifier Unit D **RPD** Limit 77 Lead 1100 901.2 mg/Kg

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

GC/MS Semi VOA

Prep Batch: 261380

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-86308-7	CSW-36	Total/NA	Solid	3550C	_
480-86308-8	CSW-37	Total/NA	Solid	3550C	
480-86308-8 DU	CSW-37	Total/NA	Solid	3550C	
480-86308-9	CSW-38	Total/NA	Solid	3550C	
480-86308-10	CSW-39	Total/NA	Solid	3550C	
480-86308-11	CSW-40	Total/NA	Solid	3550C	
480-86308-11 MS	CSW-40	Total/NA	Solid	3550C	
480-86308-11 MSD	CSW-40	Total/NA	Solid	3550C	
480-86308-12 - DL	CSW-41	Total/NA	Solid	3550C	
480-86308-12	CSW-41	Total/NA	Solid	3550C	
480-86308-13	CSW-42	Total/NA	Solid	3550C	
480-86308-14	CSW-43	Total/NA	Solid	3550C	
480-86308-15	CSB-9	Total/NA	Solid	3550C	
LCS 480-261380/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-261380/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 262027

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-86308-7	CSW-36	Total/NA	Solid	8270D	261380
480-86308-8	CSW-37	Total/NA	Solid	8270D	261380
480-86308-8 DU	CSW-37	Total/NA	Solid	8270D	261380
480-86308-9	CSW-38	Total/NA	Solid	8270D	261380
480-86308-10	CSW-39	Total/NA	Solid	8270D	261380
480-86308-11	CSW-40	Total/NA	Solid	8270D	261380
480-86308-11 MS	CSW-40	Total/NA	Solid	8270D	261380
480-86308-11 MSD	CSW-40	Total/NA	Solid	8270D	261380
480-86308-12	CSW-41	Total/NA	Solid	8270D	261380
480-86308-13	CSW-42	Total/NA	Solid	8270D	261380
480-86308-14	CSW-43	Total/NA	Solid	8270D	261380
480-86308-15	CSB-9	Total/NA	Solid	8270D	261380
LCS 480-261380/2-A	Lab Control Sample	Total/NA	Solid	8270D	261380
MB 480-261380/1-A	Method Blank	Total/NA	Solid	8270D	261380

Analysis Batch: 262311

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-86308-12 - DL	CSW-41	Total/NA	Solid	8270D	261380

Metals

Prep Batch: 260966

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-86308-6	ERB-3	Total/NA	Water	3005A	 : :
LCS 480-260966/2-A	Lab Control Sample	Total/NA	Water	3005A	
MB 480-260966/1-A	Method Blank	Total/NA	Water	3005A	

Prep Batch: 260997

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-86308-1	CSW-32	Total/NA	Solid	3050B	
480-86308-2	CSW-33	Total/NA	Solid	3050B	
480-86308-2 DU	CSW-33	Total/NA	Solid	3050B	

TestAmerica Buffalo

Page 33 of 46

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Metals (Continued)

Prep Batch: 260997 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-86308-3	CSW-34	Total/NA	Solid	3050B	
480-86308-4	CSW-35	Total/NA	Solid	3050B	
480-86308-4 MS	CSW-35	Total/NA	Solid	3050B	
480-86308-4 MSD	CSW-35	Total/NA	Solid	3050B	
480-86308-5	CSB-8	Total/NA	Solid	3050B	
LCSSRM 480-260997/2-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 480-260997/1-A	Method Blank	Total/NA	Solid	3050B	

Analysis Batch: 261286

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-86308-1	CSW-32	Total/NA	Solid	6010C	260997
480-86308-2	CSW-33	Total/NA	Solid	6010C	260997
480-86308-2 DU	CSW-33	Total/NA	Solid	6010C	260997
480-86308-3	CSW-34	Total/NA	Solid	6010C	260997
480-86308-4	CSW-35	Total/NA	Solid	6010C	260997
480-86308-4 MS	CSW-35	Total/NA	Solid	6010C	260997
480-86308-4 MSD	CSW-35	Total/NA	Solid	6010C	260997
480-86308-5	CSB-8	Total/NA	Solid	6010C	260997
LCSSRM 480-260997/2-A	Lab Control Sample	Total/NA	Solid	6010C	260997
MB 480-260997/1-A	Method Blank	Total/NA	Solid	6010C	260997

Analysis Batch: 261438

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-86308-6	ERB-3	Total/NA	Water	6010C	260966
LCS 480-260966/2-A	Lab Control Sample	Total/NA	Water	6010C	260966
MB 480-260966/1-A	Method Blank	Total/NA	Water	6010C	260966

General Chemistry

Analysis Batch: 260863

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
480-86308-1	CSW-32	Total/NA	Solid	Moisture	_
480-86308-2	CSW-33	Total/NA	Solid	Moisture	
480-86308-2 DU	CSW-33	Total/NA	Solid	Moisture	
480-86308-3	CSW-34	Total/NA	Solid	Moisture	
480-86308-4	CSW-35	Total/NA	Solid	Moisture	
480-86308-4 MS	CSW-35	Total/NA	Solid	Moisture	
480-86308-4 MSD	CSW-35	Total/NA	Solid	Moisture	
480-86308-5	CSB-8	Total/NA	Solid	Moisture	
480-86308-7	CSW-36	Total/NA	Solid	Moisture	
480-86308-8	CSW-37	Total/NA	Solid	Moisture	
480-86308-8 DU	CSW-37	Total/NA	Solid	Moisture	
480-86308-9	CSW-38	Total/NA	Solid	Moisture	
480-86308-10	CSW-39	Total/NA	Solid	Moisture	
480-86308-11	CSW-40	Total/NA	Solid	Moisture	
480-86308-11 MS	CSW-40	Total/NA	Solid	Moisture	
480-86308-11 MSD	CSW-40	Total/NA	Solid	Moisture	
480-86308-12	CSW-41	Total/NA	Solid	Moisture	
480-86308-13	CSW-42	Total/NA	Solid	Moisture	
480-86308-14	CSW-43	Total/NA	Solid	Moisture	

QC Association Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-86308-1

General Chemistry (Continued)

Analysis Batch: 260863 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-86308-15	CSB-9	Total/NA	Solid	Moisture	

4

4

6

8

9

11

4.0

14

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Lab Sample ID: 480-86308-1

Matrix: Solid

Date Collected: 08/27/15 13:00 Date Received: 08/27/15 16:40

Client Sample ID: CSW-32

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	260863	08/27/15 22:08	CMK	TAL BUF

Lab Sample ID: 480-86308-1 Client Sample ID: CSW-32

Date Collected: 08/27/15 13:00 Date Received: 08/27/15 16:40

Matrix: Solid

Percent Solids: 77.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			260997	08/28/15 13:15	TAS	TAL BUF
Total/NA	Analysis	6010C		1	261286	08/31/15 09:15	AMH	TAL BUF

Client Sample ID: CSW-33 Lab Sample ID: 480-86308-2

Date Collected: 08/27/15 13:00 **Matrix: Solid**

Date Received: 08/27/15 16:40

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	Moisture			260863	08/27/15 22:08	CMK	TAL BUF	-

Client Sample ID: CSW-33 Lab Sample ID: 480-86308-2

Date Collected: 08/27/15 13:00 Date Received: 08/27/15 16:40

Matrix: Solid Percent Solids: 75.2

Batch Batch Dilution Batch Prepared

Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			260997	08/28/15 13:15	TAS	TAL BUF
Total/NA	Analysis	6010C		1	261286	08/31/15 09:18	AMH	TAL BUF

Client Sample ID: CSW-34 Lab Sample ID: 480-86308-3

Date Collected: 08/27/15 13:00 Date Received: 08/27/15 16:40

Matrix: Solid

Datala

	Daten	Daton		Dilution	Daten	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	260863	08/27/15 22:08	CMK	TAL BUF

Lab Sample ID: 480-86308-3 Client Sample ID: CSW-34

Date Collected: 08/27/15 13:00 **Matrix: Solid**

Date Received: 08/27/15 16:40 Percent Solids: 81.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			260997	08/28/15 13:15	TAS	TAL BUF
Total/NA	Analysis	6010C		1	261286	08/31/15 09:33	AMH	TAL BUF

10

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Lab Sample ID: 480-86308-4

Matrix: Solid

Date Collected: 08/27/15 13:00 Date Received: 08/27/15 16:40

Date Received: 08/27/15 16:40

Client Sample ID: CSW-35

Batch Dilution Batch Batch **Prepared** Prep Type Type Method Run **Factor** Number or Analyzed Analyst Total/NA Analysis Moisture 260863 08/27/15 22:08 CMK TAL BUF

Lab Sample ID: 480-86308-4

Client Sample ID: CSW-35 Date Collected: 08/27/15 13:00 Matrix: Solid

Percent Solids: 79.8

Batch Batch Dilution **Batch** Prepared Method **Prep Type** Type Run **Factor** Number or Analyzed Analyst Lab 3050B 08/28/15 13:15 TAS TAL BUF Total/NA Prep 260997 Total/NA Analysis 6010C 1 261286 08/31/15 09:36 AMH **TAL BUF**

Client Sample ID: CSB-8 Lab Sample ID: 480-86308-5

Matrix: Solid

Date Collected: 08/27/15 13:00 Date Received: 08/27/15 16:40

Batch Batch Dilution Batch Prepared **Prep Type** Method Run **Factor** Number or Analyzed Analyst Type Lab 260863 08/27/15 22:08 CMK TAL BUF Total/NA Analysis Moisture

Client Sample ID: CSB-8 Lab Sample ID: 480-86308-5

Date Collected: 08/27/15 13:00

Matrix: Solid Date Received: 08/27/15 16:40

Percent Solids: 64.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			260997	08/28/15 13:15	TAS	TAL BUF
Total/NA	Analysis	6010C		1	261286	08/31/15 09:51	AMH	TAL BUF

Client Sample ID: ERB-3 Lab Sample ID: 480-86308-6

Date Collected: 08/27/15 14:00 **Matrix: Water**

Date Received: 08/27/15 16:40

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3005A			260966	08/31/15 08:05	KJ1	TAL BUF
Total/NA	Analysis	6010C		1	261438	09/01/15 11:16	AMH	TAL BUF

Lab Sample ID: 480-86308-7 Client Sample ID: CSW-36

Date Collected: 08/27/15 14:15 Matrix: Solid

Date Received: 08/27/15 16:40

ſ		Batch	Batch		Dilution	Batch	Prepared		
	Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
	Total/NA	Analysis	Moisture		1	260863	08/27/15 22:08	CMK	TAL BUF

10

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Total/NA

Total/NA

Client Sample ID: CSW-36 Lab Sample ID: 480-86308-7

Date Collected: 08/27/15 14:15

Matrix: Solid
Date Received: 08/27/15 16:40

Percent Solids: 73.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			261380	09/01/15 08:11	CAM	TAL BUF
Total/NA	Analysis	8270D		10	262027	09/04/15 13:06	LMW	TAL BUF

Client Sample ID: CSW-37 Lab Sample ID: 480-86308-8

Date Collected: 08/27/15 14:15

Date Received: 08/27/15 16:40

Matrix: Solid

260863

262027

08/27/15 22:08

09/04/15 13:33 LMW

CMK

TAL BUF

TAL BUF

Batch Batch Dilution Batch Prepared
Prep Type Type Method Run Factor Number or Analyzed Analyst Lab

Client Sample ID: CSW-37 Lab Sample ID: 480-86308-8

Date Collected: 08/27/15 14:15

Matrix: Solid
Date Received: 08/27/15 16:40

Percent Solids: 77.1

Batch Batch Dilution Batch Prepared Туре Method Run Factor Number or Analyzed Analyst **Prep Type** Lab Total/NA Prep 3550C 261380 09/01/15 08:11 CAM TAL BUF

Client Sample ID: CSW-38 Lab Sample ID: 480-86308-9

Date Collected: 08/27/15 14:15 Matrix: Solid

5

Date Received: 08/27/15 16:40

Analysis

Analysis

Moisture

8270D

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA 260863 08/27/15 22:08 CMK TAL BUF Analysis Moisture

Client Sample ID: CSW-38 Lab Sample ID: 480-86308-9

Date Collected: 08/27/15 14:15

Matrix: Solid
Date Received: 08/27/15 16:40

Percent Solids: 74.2

Batch **Batch** Batch Dilution Prepared Prep Type Method Run Factor Number or Analyzed Type **Analyst** Lab Total/NA Prep 3550C 261380 09/01/15 08:11 CAM TAL BUF 262027 09/04/15 14:25 LMW Total/NA Analysis 8270D 5 TAL BUF

Client Sample ID: CSW-39 Lab Sample ID: 480-86308-10

Date Collected: 08/27/15 14:15 Matrix: Solid

Date Received: 08/27/15 16:40

Batch Dilution Batch Batch Prepared **Prep Type** Method Run Factor Number or Analyzed Type Analyst Lab Total/NA 260863 08/27/15 22:08 CMK TAL BUF Analysis Moisture

10

Client: Iyer Environmental Group, LLC

Client Sample ID: CSW-39

Date Collected: 08/27/15 14:15

Date Received: 08/27/15 16:40

Project/Site: 132 Dingens

Lab Sample ID: 480-86308-10

Matrix: Solid

Matrix: Solid Percent Solids: 80.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			261380	09/01/15 08:11	CAM	TAL BUF
Total/NA	Analysis	8270D		5	262027	09/04/15 14:51	LMW	TAL BUF

Client Sample ID: CSW-40 Lab Sample ID: 480-86308-11

Matrix: Solid

TAL BUF

Date Collected: 08/27/15 14:15 Date Received: 08/27/15 16:40

8270D

Analysis

Total/NA

Dilution Batch Batch Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed **Analyst** Lab Total/NA Analysis Moisture 260863 08/27/15 22:08 CMK TAL BUF

Client Sample ID: CSW-40 Lab Sample ID: 480-86308-11

Date Collected: 08/27/15 14:15 **Matrix: Solid** Date Received: 08/27/15 16:40 Percent Solids: 80.7

Batch Batch Dilution Batch Prepared **Prep Type** Туре Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Prep 3550C 261380 09/01/15 08:11 CAM TAL BUF

Client Sample ID: CSW-41 Lab Sample ID: 480-86308-12

10

262027 09/04/15 12:40

LMW

Date Collected: 08/27/15 14:15 Date Received: 08/27/15 16:40

Batch Batch Dilution Batch **Prepared**

Prep Type Type Method Run **Factor** Number or Analyzed Analyst Lab 260863 08/27/15 22:08 CMK TAL BUF Total/NA Analysis Moisture

Client Sample ID: CSW-41 Lab Sample ID: 480-86308-12

Date Collected: 08/27/15 14:15 Matrix: Solid Date Received: 08/27/15 16:40 Percent Solids: 80.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			261380	09/01/15 08:11	CAM	TAL BUF
Total/NA	Analysis	8270D		20	262027	09/04/15 15:18	LMW	TAL BUF
Total/NA	Prep	3550C	DL		261380	09/01/15 08:11	CAM	TAL BUF
Total/NA	Analysis	8270D	DL	50	262311	09/08/15 09:37	LMW	TAL BUF

Client Sample ID: CSW-42 Lab Sample ID: 480-86308-13

Date Collected: 08/27/15 14:45 **Matrix: Solid** Date Received: 08/27/15 16:40

Batch Batch Dilution Batch Prepared Method **Prep Type** Type Run **Factor** Number or Analyzed Analyst Lab Total/NA Moisture 260863 08/27/15 22:08 CMK TAL BUF Analysis

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: CSW-42 Lab Sample ID: 480-86308-13 Date Collected: 08/27/15 14:45 **Matrix: Solid**

Percent Solids: 74.0

Date Received: 08/27/15 16:40

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			261380	09/01/15 08:11	CAM	TAL BUF
Total/NA	Analysis	8270D		20	262027	09/04/15 15:44	LMW	TAL BUF

Client Sample ID: CSW-43 Lab Sample ID: 480-86308-14

Matrix: Solid

Date Collected: 08/27/15 14:45 Date Received: 08/27/15 16:40

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture			260863	08/27/15 22:08	CMK	TAL BUF

Client Sample ID: CSW-43 Lab Sample ID: 480-86308-14

Date Collected: 08/27/15 14:45 **Matrix: Solid** Date Received: 08/27/15 16:40 Percent Solids: 75.3

Batch Batch Dilution Batch Prepared **Prep Type** Туре Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Prep 3550C 261380 09/01/15 08:11 CAM TAL BUF Total/NA Analysis 8270D 20 262027 09/04/15 16:10 LMW TAL BUF

Client Sample ID: CSB-9 Lab Sample ID: 480-86308-15

Date Collected: 08/27/15 14:45 **Matrix: Solid**

Date Received: 08/27/15 16:40

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture	-		260863	08/27/15 22:08	CMK	TAL BUF

Client Sample ID: CSB-9 Lab Sample ID: 480-86308-15

Date Collected: 08/27/15 14:45 **Matrix: Solid** Date Received: 08/27/15 16:40 Percent Solids: 68.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			261380	09/01/15 08:11	CAM	TAL BUF
Total/NA	Analysis	8270D		20	262027	09/04/15 16:36	LMW	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Certification Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-86308-1

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority New York	Program NELAP		EPA Region	Certification ID 10026	Expiration Date 03-31-16
			. "		00 01 10
The following analytes	s are included in this repor	rt, but certification is r	not offered by the go	overning authority:	
Analysis Method	Prep Method	Matrix	Analyt	е	
Analysis Method Moisture	Prep Method	Matrix Solid		e nt Moisture	

3

4

5

6

8

10

111

13

14

Method Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-86308-1

Method	Method Description	Protocol	Laboratory
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF
Moisture	Percent Moisture	EPA	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

4

5

7

Ö

10

11

10

14

Sample Summary

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

TestAmerica Job ID: 480-86308-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-86308-1	CSW-32	Solid	08/27/15 13:00	08/27/15 16:40
480-86308-2	CSW-33	Solid	08/27/15 13:00	08/27/15 16:40
480-86308-3	CSW-34	Solid	08/27/15 13:00	08/27/15 16:40
480-86308-4	CSW-35	Solid	08/27/15 13:00	08/27/15 16:40
480-86308-5	CSB-8	Solid	08/27/15 13:00	08/27/15 16:40
480-86308-6	ERB-3	Water	08/27/15 14:00	08/27/15 16:40
480-86308-7	CSW-36	Solid	08/27/15 14:15	08/27/15 16:40
480-86308-8	CSW-37	Solid	08/27/15 14:15	08/27/15 16:40
480-86308-9	CSW-38	Solid	08/27/15 14:15	08/27/15 16:40
480-86308-10	CSW-39	Solid	08/27/15 14:15	08/27/15 16:40
480-86308-11	CSW-40	Solid	08/27/15 14:15	08/27/15 16:40
480-86308-12	CSW-41	Solid	08/27/15 14:15	08/27/15 16:40
480-86308-13	CSW-42	Solid	08/27/15 14:45	08/27/15 16:40
480-86308-14	CSW-43	Solid	08/27/15 14:45	08/27/15 16:40
480-86308-15	CSB-9	Solid	08/27/15 14:45	08/27/15 16:40

Chain of Custody Record

Temperature on Receipt —

Drinking Water? Yes□ No□

\mathbf{O}	
Ŭ	
er.	
E	
₹	
E SS	
I	

THE LEADER IN ENVIRONMENTAL TESTING

TAL_4124 (1007)	,			
Client I YER ENVIRONMENTE (RENTUR)	Project Manager DAM TMO	Iyen	Date	2)//5 Chain of Oustody Number 28/202
44 Relling HIB B.	Telephone Number (Area Code)/Fax flumbe	te)Fax Number	Labflumbe	9
	Site Contact Rich Men	Heliscon Dego	Analysis (Attach list if more space is needed)	
Trocation (State) St. Buffer	pill Nur		en. Es	
ContractPurchase Offer(Quote No.	Matrix	Containers & Preservatives	SP.	
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	IIVS SHOENDY	HOBN HOBN HOBN HOSH FONH	4 2	480-86308 Chain of Custody
CSW-32	1:00:1	A	>	
33		`	*	4000
Da CSW-38	1	>	>	
0 CSW - 35-		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	>	(Ben/SW+
8-4570	->		7	
ERB C	2.00 1/4	7	>	
25. W22	2:160 14		>	
		\	2	126+
5w - 3¢		>	7	
		7	>	,
C5W-40		`	2	05w/5w+
65214/	<i>></i> >		>	
Possible Hazard Identification Non-Hazard	Sample Disposal Unknown	Disposal By Lab	Archive For Months	(A fee may be assessed if samples are retained foncer than 1 month)
e Required		OC Requirements (Spe		
24 Hours 48 Hours 7 Days 14 Days 21 Days	☐ Other			
1. Relinquished By	St2) 15 4:4	1. Received By (Muss	1/4K2 1	May 120 19 27 15 11610
2. Reimradished By ()	Date / Time	2. Received By	}	Daje Time
8 3. Relinquished By	Date Time	3. Received By		Date Time
Comments			Temp 2015	1年3次の
CANADA TO THE COLUMN TO THE CANADA COLUMN CO	Told Committee DINIV Civild Com			

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

Custody Record Chain of

Temperature on Receipt –

№

Drinking Water? Yes□

TestAmerica THE LEADER IN ENVIRONMENTAL TESTING

TAL-4124 (1007)						-			
THER ENVIRONMENTALL FROM	Project Manager	å	167			Salar	124/15	297374	374
¹ ``	Telephone Number	er (Area Códe) , 44 🖒	Fax Number	7		Lab Mur	nber /	Page	2 10
Signal Park 16.23	Site Contact,	Men	Lab Confact	Chal		Analysis (Attach list if more space is needed)	ach list if s needed)		
0	Carrier/Waybill Number	umber			3	- 0		Soe	Special Instructions/
ContractPurchase Order/Quote No.	W	Matrix	Containers & Preservatives	ors & atives	7 (h			Cond	Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Time Nir	110S 198S	HCI HSCO¢ hSco¢ nubles:	HOBN VOBN	25	<i>2</i> /9			
2/102/8	7.45	1. 1	1		>			,	
csw - 43	1	1	/		1				
7 6 -857 PM	Ť	/	. >		12				
Ge 4									
45 0									
f 46									
Possible Hazard Identification Non-Hazard	Sample Unknown Re	Sample Disposal Return To Client	Disposal By Lab		Archive For	Months		(A fee may be assessed if samples are retained longer than 1 month)	are retained
-	Javs Other		QC Requiren	OC Requirements (Specify)	:				
ABY C	-	Time	1. Received By	11 rs	0	W.	CAO, CA. 669	Coal	D Jime /
2. Relingtisfied By	\$/37//)	Time	2. Received By	3, (2/1/2)	2	8	The state of	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Time
9/									
3 Relinquished By	Date	Time	3. Received By	ŝ				Date	Ime
Comments									

Login Sample Receipt Checklist

Client: Iyer Environmental Group, LLC

Job Number: 480-86308-1

Login Number: 86308 List Source: TestAmerica Buffalo

List Number: 1

Creator: Kolb, Chris M

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
he cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or ampered with.	True	
Samples were received on ice.	False	
Cooler Temperature is acceptable.	True	Yes: Received same day of collection
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
/OA sample vials do not have headspace or bubble is <6mm (1/4") in liameter.	N/A	
f necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	iyer env.
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

2

Λ

5

6

Ŏ

10

12

13

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-86366-1 Client Project/Site: 132 Dingens

For:

Iyer Environmental Group, LLC 44 Rolling Hills Drive Orchard Park, New York 14127

Attn: Dr. Dharmarajan R Iyer

Melisso Deyo

Authorized for release by: 9/3/2015 11:59:01 AM

Melissa Deyo, Project Manager I (716)504-9874

melissa.deyo@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	8
QC Association Summary	10
Lab Chronicle	12
Certification Summary	15
Method Summary	16
Sample Summary	17
Chain of Custody	18
Receipt Checklists	19

R

9

Definitions/Glossary

Client: Iyer Environmental Group, LLC

Toxicity Equivalent Quotient (Dioxin)

Project/Site: 132 Dingens

TestAmerica Job ID: 480-86366-1

Glossary

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

Case Narrative

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-86366-1

Job ID: 480-86366-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-86366-1

Receipt

The samples were received on 8/28/2015 3:30 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 21.6° C.

Receipt Exceptions

No times of sample collection were provided. A time of 00:00 was used for login purposes.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

4

5

6

8

9

44

12

13

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: CSW-18-3						Lab Sample ID: 4	480-86366-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D Method	Prep Type
Lead	3320		1.3	0.31	mg/Kg	1 ₹ 6010C	Total/NA
Client Sample ID: CSW-12-2						Lab Sample ID:	480-86366-2
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D Method	Prep Type
Lead	1680		1.3	0.32	mg/Kg	1 🌣 6010C	Total/NA
Client Sample ID: CSB-3-2						Lab Sample ID:	480-86366-3
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D Method	Prep Type
Lead	5790		1.8	0.42	mg/Kg	1 🌣 6010C	Total/NA
Client Sample ID: CSB-5-2						Lab Sample ID:	480-86366-4
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D Method	Prep Type
Arsenic	89.3		3.4	0.69	mg/Kg	1 ≅ 6010C	Total/NA
Hg	0.43		0.035	0.014	mg/Kg	1 🌣 7471B	Total/NA
Client Sample ID: CSB-6-2						Lab Sample ID:	480-86366-5
Analyte		Qualifier	RL		Unit	Dil Fac D Method	Prep Type
Arsenic	3.7		2.5	0.51	mg/Kg	1 ≅ 6010C	Total/NA
Client Sample ID: CSW-20-2						Lab Sample ID:	480-86366-6
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D Method	Prep Type
Arsenic	59.7		2.6	0.52	mg/Kg	1 ≅ 6010C	Total/NA
Hg	2.5		0.13	0.052	mg/Kg	5 ☼ 7471B	Total/NA
Client Sample ID: CSW-21-2						Lab Sample ID:	480-86366-7
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D Method	Prep Type
Arsenic	75.7		2.6	0.52	mg/Kg	1 ₹ 6010C	Total/NA
Hg	1.9		0.13	0.052	mg/Kg	5 ☼ 7471B	Total/NA
Client Sample ID: CSW-23-2						Lab Sample ID:	480-86366-8
Analyte		Qualifier	RL		Unit	Dil Fac D Method	Prep Type
Arsenic	126		2.6	0.53	mg/Kg	1 ≅ 6010C	Total/NA

This Detection Summary does not include radiochemical test results.

3.1

Hg

9/3/2015

Total/NA

5 🌣 7471B

0.12

0.050 mg/Kg

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: CSW-18-3 Lab Sample ID: 480-86366-1

Date Collected: 08/28/15 00:00 Matrix: Solid
Date Received: 08/28/15 15:30 Percent Solids: 77.6

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Allulyto	- Itosuit	Qualifici			O		Trepared	Allalyzea	Dii i uo
Lead	3320		1.3	0.31	mg/Kg	☼	09/01/15 09:27	09/02/15 13:17	1

Client Sample ID: CSW-12-2 Lab Sample ID: 480-86366-2

Client Sample ID: CSB-3-2 Lab Sample ID: 480-86366-3

 Date Collected: 08/28/15 00:00
 Matrix: Solid

 Date Received: 08/28/15 15:30
 Percent Solids: 57.5

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	5790		1.8	0.42	mg/Kg	\	09/01/15 09:27	09/02/15 13:29	1

Client Sample ID: CSB-5-2

Date Collected: 08/28/15 00:00

Lab Sample ID: 480-86366-4

Matrix: Solid

Date Received: 08/28/15 15:30 Percent Solids: 56.8

Method: 6010C - Metals (ICP) Analyte	Result Qua	alifier R	_ MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	89.3	3.	0.69	mg/Kg		09/01/15 09:27	09/02/15 13:50	1
Method: 7471B - Mercury (CVA4	۸)							

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	0.43		0.035	0.014	mg/Kg	<u> </u>	09/01/15 08:30	09/01/15 11:53	1

Client Sample ID: CSB-6-2

Date Collected: 08/28/15 00:00

Lab Sample ID: 480-86366-5

Matrix: Solid

Date Received: 08/28/15 15:30 Percent Solids: 81.6

Method: 6010C - Metals (ICP)

Analyte	Result Qualifier	RL	MDL U	Jnit	D	Prepared	Analyzed	Dil Fac
Arsenic	3.7	2.5	0.51 m	ng/Kg	\	09/01/15 09:27	09/02/15 13:53	1
Method: 7471B - Mercury (CVA	A)							

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Hg
 ND
 0.023
 0.0095
 mg/Kg
 Total prepared
 Analyzed
 Dil Fac

 09/01/15 08:30
 09/01/15 11:55
 1

Client Sample ID: CSW-20-2

Date Collected: 08/28/15 00:00

Matrix: Solid

Date Received: 08/28/15 15:30

Lab Sample ID: 480-86366-6

Matrix: Solid

Percent Solids: 74.5

 Method: 6010C - Metals (ICP)

 Analyte
 Result Arsenic
 Qualifier
 RL 2.6
 MDL 2.6
 Unit 3.5
 D 2.6
 Prepared 3.6
 Analyzed 3.7
 D 3.7
 D 3.7
 O9/01/15 09:27
 O9/02/15 13:56
 D 3.7

Client: Iyer Environmental Group, LLC TestAmerica Job ID: 480-86366-1 Project/Site: 132 Dingens Client Sample ID: CSW-20-2 Lab Sample ID: 480-86366-6 Date Collected: 08/28/15 00:00 **Matrix: Solid** Date Received: 08/28/15 15:30 Percent Solids: 74.5 Method: 7471B - Mercury (CVAA) RL **MDL** Unit Dil Fac **Analyte** Result Qualifier D Prepared Analyzed 0.13 0.052 mg/Kg 09/01/15 08:30 09/01/15 13:02 5 Hg 2.5 Client Sample ID: CSW-21-2 Lab Sample ID: 480-86366-7 Date Collected: 08/28/15 00:00 **Matrix: Solid** Date Received: 08/28/15 15:30 Percent Solids: 76.5 Method: 6010C - Metals (ICP) Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 2.6 09/01/15 09:27 09/02/15 14:20 0.52 mg/Kg Arsenic 75.7 Method: 7471B - Mercury (CVAA) Result Qualifier RL **MDL** Unit Analyte **Prepared** Analyzed Dil Fac

Client Sample ID: CSW-2	3-2				ab Sample	D: 480-86	366-8
Hg	1.9	0.13	0.052 mg/Kg	<u>∓</u>		09/01/15 13:06	5

Date Collected: 08/28/15 00:00 **Matrix: Solid** Date Received: 08/28/15 15:30 Percent Solids: 80.0

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	126		2.6	0.53	mg/Kg	\	09/01/15 09:27	09/02/15 14:26	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	3.1		0.12	0.050	mg/Kg	₽	09/01/15 08:30	09/01/15 13:08	5

Method: 7471B - Mercury (CVAA)

TestAmerica Job ID: 480-86366-1

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-261388/1-A

Analysis Batch: 261800

Matrix: Solid

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 261388

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 0.93 0.22 mg/Kg Lead ND 09/01/15 09:27 09/02/15 13:08 ND 1.9 0.37 mg/Kg 09/01/15 09:27 09/02/15 13:08 Arsenic

Lab Sample ID: LCDSRM 480-261388/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 261800** Prep Batch: 261388 LCDSRM LCDSRM Spike %Rec. **RPD** Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit 70.1 - 129. 96.5 Lead 90.1 86.91 mg/Kg 5 20 92.65 82.0 69.7 - 142. Arsenic 113 mg/Kg 2 20 5

Lab Sample ID: LCSSRM 480-261388/2-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA Prep Batch: 261388**

Analysis Batch: 261800

	Spike	LCSSRM	LCSSRM				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Lead	90.1	91.20		mg/Kg		101.2	70.1 - 129.	
Arsenic	113	94.92		mg/Kg		84.0	69.7 - 142. 5	

Lab Sample ID: 480-86366-3 DU Client Sample ID: CSB-3-2 Matrix: Solid Prep Type: Total/NA **Analysis Batch: 261800** Prep Batch: 261388 DU DU Sample Sample **RPD** Result Qualifier Result Qualifier Analyte Unit D RPD Limit

Lab Sample ID: 480-86366-6 DU Client Sample ID: CSW-20-2 Prep Type: Total/NA

6522

mg/Kg

Matrix: Solid

Lead

Analysis Batch: 261800							Prep Batch: 2	61388
-	Sample	Sample	DU	DU			•	RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Arsenic	59.7		69.65		mg/Kg	<u></u>		20

Method: 7471B - Mercury (CVAA)

Lab Sample ID: MB 480-261276/1-A **Client Sample ID: Method Blank Matrix: Solid** Prep Type: Total/NA Analysis Batch: 261461 **Prep Batch: 261276**

5790

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	ND		0.020	0.0081	mg/Kg		09/01/15 08:30	09/01/15 11:46	1

QC Sample Results

Client: Iyer Environmental Group, LLC TestAmerica Job ID: 480-86366-1

Project/Site: 132 Dingens

Method: 7471B - Mercury (CVAA) (Continued)

Lab Sample ID: LCDSRM 480-261276/3-A			C	lient Sam	ple	ID: La	b Control	Sample	Dup
Matrix: Solid							Prep Ty	e: Tot	al/NA
Analysis Batch: 261461							Prep Ba	itch: 26	1276
	Spike	LCDSRM	LCDSRM				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Hg	8.37	8.41		mg/Kg	_	100.5	51.3 - 148.	8	20
							1		

Lab Sample ID: LCSSRM 480-261276/2-A Matrix: Solid Analysis Batch: 261461				Clier	nt Sai	mple II	Prep Tyl Prep Ba	ntrol Sample pe: Total/NA atch: 261276
	Spike	LCSSRM	LCSSRM				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Hg	8.37	9.09		mg/Kg		108.6	51.3 - 148.	
							1	

Lab Sample ID: 480-86366-6 I Matrix: Solid Analysis Batch: 261461						Cli	ent Sample ID: CSW Prep Type: Tot Prep Batch: 20	al/NA 61276
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Hg	2.5		2.36		mg/Kg	☼		20

TestAmerica Job ID: 480-86366-1

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Metals

Prep Batch: 261276

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-86366-4	CSB-5-2	Total/NA	Solid	7471B	_
480-86366-5	CSB-6-2	Total/NA	Solid	7471B	
480-86366-6	CSW-20-2	Total/NA	Solid	7471B	
480-86366-6 DU	CSW-20-2	Total/NA	Solid	7471B	
480-86366-7	CSW-21-2	Total/NA	Solid	7471B	
480-86366-8	CSW-23-2	Total/NA	Solid	7471B	
LCDSRM 480-261276/3-A	Lab Control Sample Dup	Total/NA	Solid	7471B	
LCSSRM 480-261276/2-A	Lab Control Sample	Total/NA	Solid	7471B	
MB 480-261276/1-A	Method Blank	Total/NA	Solid	7471B	

Prep Batch: 261388

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-86366-1	CSW-18-3	Total/NA	Solid	3050B	_
480-86366-2	CSW-12-2	Total/NA	Solid	3050B	
480-86366-3	CSB-3-2	Total/NA	Solid	3050B	
480-86366-3 DU	CSB-3-2	Total/NA	Solid	3050B	
480-86366-4	CSB-5-2	Total/NA	Solid	3050B	
480-86366-5	CSB-6-2	Total/NA	Solid	3050B	
480-86366-6	CSW-20-2	Total/NA	Solid	3050B	
480-86366-6 DU	CSW-20-2	Total/NA	Solid	3050B	
480-86366-7	CSW-21-2	Total/NA	Solid	3050B	
480-86366-8	CSW-23-2	Total/NA	Solid	3050B	
LCDSRM 480-261388/3-A	Lab Control Sample Dup	Total/NA	Solid	3050B	
LCSSRM 480-261388/2-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 480-261388/1-A	Method Blank	Total/NA	Solid	3050B	

Analysis Batch: 261461

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-86366-4	CSB-5-2	Total/NA	Solid	7471B	261276
480-86366-5	CSB-6-2	Total/NA	Solid	7471B	261276
480-86366-6	CSW-20-2	Total/NA	Solid	7471B	261276
480-86366-6 DU	CSW-20-2	Total/NA	Solid	7471B	261276
480-86366-7	CSW-21-2	Total/NA	Solid	7471B	261276
480-86366-8	CSW-23-2	Total/NA	Solid	7471B	261276
LCDSRM 480-261276/3-A	Lab Control Sample Dup	Total/NA	Solid	7471B	261276
LCSSRM 480-261276/2-A	Lab Control Sample	Total/NA	Solid	7471B	261276
MB 480-261276/1-A	Method Blank	Total/NA	Solid	7471B	261276

Analysis Batch: 261800

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-86366-1	CSW-18-3	Total/NA	Solid	6010C	261388
480-86366-2	CSW-12-2	Total/NA	Solid	6010C	261388
480-86366-3	CSB-3-2	Total/NA	Solid	6010C	261388
480-86366-3 DU	CSB-3-2	Total/NA	Solid	6010C	261388
480-86366-4	CSB-5-2	Total/NA	Solid	6010C	261388
480-86366-5	CSB-6-2	Total/NA	Solid	6010C	261388
480-86366-6	CSW-20-2	Total/NA	Solid	6010C	261388
480-86366-6 DU	CSW-20-2	Total/NA	Solid	6010C	261388
480-86366-7	CSW-21-2	Total/NA	Solid	6010C	261388
480-86366-8	CSW-23-2	Total/NA	Solid	6010C	261388
LCDSRM 480-261388/3-A	Lab Control Sample Dup	Total/NA	Solid	6010C	261388

TestAmerica Buffalo

QC Association Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-86366-1

Metals (Continued)

Analysis Batch: 261800 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSSRM 480-261388/2-A	Lab Control Sample	Total/NA	Solid	6010C	261388
MB 480-261388/1-A	Method Blank	Total/NA	Solid	6010C	261388

General Chemistry

Analysis Batch: 261146

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-86366-1	CSW-18-3	Total/NA	Solid	Moisture	-
480-86366-2	CSW-12-2	Total/NA	Solid	Moisture	
480-86366-3	CSB-3-2	Total/NA	Solid	Moisture	
480-86366-3 DU	CSB-3-2	Total/NA	Solid	Moisture	
480-86366-4	CSB-5-2	Total/NA	Solid	Moisture	
480-86366-5	CSB-6-2	Total/NA	Solid	Moisture	
480-86366-6	CSW-20-2	Total/NA	Solid	Moisture	
480-86366-6 DU	CSW-20-2	Total/NA	Solid	Moisture	
480-86366-7	CSW-21-2	Total/NA	Solid	Moisture	
480-86366-8	CSW-23-2	Total/NA	Solid	Moisture	

6

3

5

O

8

9

10

11

13

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Lab Sample ID: 480-86366-1

Matrix: Solid

Date Collected: 08/28/15 00:00 Date Received: 08/28/15 15:30

Client Sample ID: CSW-18-3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	261146	08/29/15 15:43	CMK	TAL BUF

Client Sample ID: CSW-18-3 Lab Sample ID: 480-86366-1

Date Collected: 08/28/15 00:00 Date Received: 08/28/15 15:30 Matrix: Solid
Percent Solids: 77.6

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA 3050B 261388 09/01/15 09:27 CMM TAL BUF Prep Total/NA Analysis 6010C 261800 09/02/15 13:17 AMH TAL BUF 1

Client Sample ID: CSW-12-2 Lab Sample ID: 480-86366-2

Date Collected: 08/28/15 00:00

Matrix: Solid

Date Received: 08/28/15 15:30

Batch Batch Dilution **Batch** Prepared **Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab 261146 08/29/15 15:43 CMK TAL BUF Total/NA Analysis Moisture

Client Sample ID: CSW-12-2 Lab Sample ID: 480-86366-2

Date Collected: 08/28/15 00:00 Date Received: 08/28/15 15:30 Matrix: Solid
Percent Solids: 71.1

Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Prep 3050B 261388 09/01/15 09:27 CMM TAL BUF Total/NA Analysis 6010C 261800 09/02/15 13:23 AMH TAL BUF 1

Client Sample ID: CSB-3-2 Lab Sample ID: 480-86366-3

Date Collected: 08/28/15 00:00

Matrix: Solid

Date Received: 08/28/15 15:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	261146	08/29/15 15:43	CMK	TAL BUF

Client Sample ID: CSB-3-2 Lab Sample ID: 480-86366-3

Date Collected: 08/28/15 00:00

Matrix: Solid

Date Received: 08/28/15 15:30

Percent Solids: 57.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			261388	09/01/15 09:27	CMM	TAL BUF
Total/NA	Analysis	6010C		1	261800	09/02/15 13:29	AMH	TAL BUF

TestAmerica Job ID: 480-86366-1

Matrix: Solid

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: CSB-5-2 Lab Sample ID: 480-86366-4

Date Collected: 08/28/15 00:00 **Matrix: Solid**

Date Received: 08/28/15 15:30

Batch Dilution Batch Batch **Prepared** Prep Type Type Method Run **Factor** Number or Analyzed Analyst Total/NA Analysis Moisture 261146 08/29/15 15:43 CMK TAL BUF

Client Sample ID: CSB-5-2 Lab Sample ID: 480-86366-4

Date Collected: 08/28/15 00:00

Matrix: Solid Date Received: 08/28/15 15:30 Percent Solids: 56.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			261388	09/01/15 09:27	CMM	TAL BUF
Total/NA	Analysis	6010C		1	261800	09/02/15 13:50	AMH	TAL BUF
Total/NA	Prep	7471B			261276	09/01/15 08:30	TAS	TAL BUF
Total/NA	Analysis	7471B		1	261461	09/01/15 11:53	TAS	TAL BUF

Client Sample ID: CSB-6-2 Lab Sample ID: 480-86366-5

Date Collected: 08/28/15 00:00

Date Received: 08/28/15 15:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	261146	08/29/15 15:43	CMK	TAL BUF

Client Sample ID: CSB-6-2 Lab Sample ID: 480-86366-5

Date Collected: 08/28/15 00:00

Matrix: Solid Date Received: 08/28/15 15:30 Percent Solids: 81.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			261388	09/01/15 09:27	CMM	TAL BUF
Total/NA	Analysis	6010C		1	261800	09/02/15 13:53	AMH	TAL BUF
Total/NA	Prep	7471B			261276	09/01/15 08:30	TAS	TAL BUF
Total/NA	Analysis	7471B		1	261461	09/01/15 11:55	TAS	TAL BUF

Lab Sample ID: 480-86366-6 Client Sample ID: CSW-20-2

Date Collected: 08/28/15 00:00 Date Received: 08/28/15 15:30

Batch Batch Dilution **Batch** Prepared Prep Type Method Factor Number or Analyzed Analyst Type Run Total/NA Analysis Moisture 261146 08/29/15 15:43 CMK TAL BUF

Client Sample ID: CSW-20-2 Lab Sample ID: 480-86366-6

Date Collected: 08/28/15 00:00

Date Received: 08/28/15 15:30 Percent Solids: 74.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B	_		261388	09/01/15 09:27	CMM	TAL BUF

TestAmerica Buffalo

Matrix: Solid

Matrix: Solid

Project/Site: 132 Dingens

Date Received: 08/28/15 15:30

Client: Iyer Environmental Group, LLC

Client Sample ID: CSW-20-2 Lab Sample ID: 480-86366-6 Date Collected: 08/28/15 00:00

Matrix: Solid Percent Solids: 74.5

Batch Dilution Batch Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis 6010C 261800 09/02/15 13:56 AMH TAL BUF Total/NA Prep 7471B 261276 09/01/15 08:30 TAS TAL BUF Total/NA Analysis 7471B 5 261461 09/01/15 13:02 TAS **TAL BUF**

Client Sample ID: CSW-21-2 Lab Sample ID: 480-86366-7 Date Collected: 08/28/15 00:00

Matrix: Solid

Date Received: 08/28/15 15:30

Batch Batch Dilution **Batch** Prepared Туре Method Run **Factor** Number or Analyzed **Prep Type** Analyst Lab 261146 08/29/15 15:43 CMK TAL BUF Total/NA Analysis Moisture

Lab Sample ID: 480-86366-7 Client Sample ID: CSW-21-2

Date Collected: 08/28/15 00:00 **Matrix: Solid**

Date Received: 08/28/15 15:30 Percent Solids: 76.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			261388	09/01/15 09:27	CMM	TAL BUF
Total/NA	Analysis	6010C		1	261800	09/02/15 14:20	AMH	TAL BUF
Total/NA	Prep	7471B			261276	09/01/15 08:30	TAS	TAL BUF
Total/NA	Analysis	7471B		5	261461	09/01/15 13:06	TAS	TAL BUF

Client Sample ID: CSW-23-2 Lab Sample ID: 480-86366-8

Date Collected: 08/28/15 00:00 Matrix: Solid

Date Received: 08/28/15 15:30

Batch Batch Batch Dilution Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab 261146 08/29/15 15:43 CMK TAL BUF Total/NA Analysis Moisture

Client Sample ID: CSW-23-2 Lab Sample ID: 480-86366-8

Date Collected: 08/28/15 00:00 Matrix: Solid

Date Received: 08/28/15 15:30 Percent Solids: 80.0

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			261388	09/01/15 09:27	CMM	TAL BUF
Total/NA	Analysis	6010C		1	261800	09/02/15 14:26	AMH	TAL BUF
Total/NA	Prep	7471B			261276	09/01/15 08:30	TAS	TAL BUF
Total/NA	Analysis	7471B		5	261461	09/01/15 13:08	TAS	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TestAmerica Buffalo

Certification Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-86366-1

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority New York	Program NELAP		EPA Region	Certification ID 10026	Expiration Date 03-31-16
			. "		00 01 10
The following analytes	s are included in this repor	rt, but certification is r	not offered by the go	overning authority:	
Analysis Method	Prep Method	Matrix	Analyt	е	
Analysis Method Moisture	Prep Method	Matrix Solid		e nt Moisture	

3

4

8

11

40

Method Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-86366-1

Method	Method Description	Protocol	Laboratory
6010C	Metals (ICP)	SW846	TAL BUF
7471B	Mercury (CVAA)	SW846	TAL BUF
Moisture	Percent Moisture	EPA	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

4

2

7

8

11

12

13

Sample Summary

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

TestAmerica Job ID: 480-86366-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-86366-1	CSW-18-3	Solid	08/28/15 00:00	08/28/15 15:30
480-86366-2	CSW-12-2	Solid	08/28/15 00:00	08/28/15 15:30
480-86366-3	CSB-3-2	Solid	08/28/15 00:00	08/28/15 15:30
480-86366-4	CSB-5-2	Solid	08/28/15 00:00	08/28/15 15:30
480-86366-5	CSB-6-2	Solid	08/28/15 00:00	08/28/15 15:30
480-86366-6	CSW-20-2	Solid	08/28/15 00:00	08/28/15 15:30
480-86366-7	CSW-21-2	Solid	08/28/15 00:00	08/28/15 15:30
480-86366-8	CSW-23-2	Solid	08/28/15 00:00	08/28/15 15:30

Special Instructions/ Conditions of Receipt (A fee may be assessed if samples are retained longer than 1 month) Time ð Sign 480-86366 Chain of Custody 25 Page Date 2116 WO ILE #1 THE LEADER IN ENVIRONMENTAL TESTING **TestAmerico** Analysis (Attach list if more space is needed) Set Set Months Q 16m0 Archive For OC Requirements (Specify) NANZ HORN Disposal By Lab Containers & Preservatives НО₽Л 3. Received By IDH e)/Fax Mumber EONH Drinking Water? Yes□ No□ tOSZH Dhawas Ine səudun Temperature on Receipt ☐ Unknown ☐ Return To Client 7.me 3:30 Sample Disposar Site Contact Rick III 1105 2 Time Carrier/Waybill Number Matrix рөς 41 Other_ Date Time ☐ 21 Days □ Poison B Date HE SNILBNINGENTAL GOLD □ 14 Days (Containers for each sample may be combined on one line) Skin Irritant Sample I.D. No. and Description 7 Days 5W-21-2 | Flammable ase Proter Quote No. **Custody Record** 24 Hours 24 Hours 5-8-05 Possible Hazard Identification 25W-20-Turn Around Time Required 3/3/2015 3. Relinquished By Comments CSin -2. Relinquished By 1. Relinquished By C52-Non-Hazard Chain of TAL-4124 (1007) Client Page 18 of 19

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

Login Sample Receipt Checklist

Client: Iyer Environmental Group, LLC

Job Number: 480-86366-1

Login Number: 86366 List Source: TestAmerica Buffalo

List Number: 1

Creator: Kolb, Chris M

Creator. Rold, Chiris W		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	False	
Cooler Temperature is acceptable.	True	Yes: Received same day of collection
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	Refer to job narrative for details
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	False	Refer to job narrative for details
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	iyer env.
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

3

4

8

10

11

13

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-86938-1 Client Project/Site: 132 Dingens

For:

Iyer Environmental Group, LLC 44 Rolling Hills Drive Orchard Park, New York 14127

Attn: Dr. Dharmarajan R Iyer

Melisso Deyo

Authorized for release by: 9/14/2015 4:45:53 PM

Melissa Deyo, Project Manager I (716)504-9874

melissa.deyo@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	11
Method Summary	12
Sample Summary	13
Chain of Custody	14
Receipt Checklists	15

-5

4

R

40

11

12

Definitions/Glossary

Client: Iyer Environmental Group, LLC

Toxicity Equivalent Quotient (Dioxin)

Project/Site: 132 Dingens

TestAmerica Job ID: 480-86938-1

Glossary

TEQ

%R CFL	Listed under the "D" column to designate that the result is reported on a dry weight basis Percent Recovery Contains Free Liquid Contains no Free Liquid Duplicate error ratio (normalized absolute difference)
CFL	Contains Free Liquid Contains no Free Liquid
	Contains no Free Liquid
	·
CNF	Duplicate error ratio (normalized absolute difference)
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

Case Narrative

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-86938-1

Job ID: 480-86938-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-86938-1

Receipt

The samples were received on 9/9/2015 4:30 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 22.5° C.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

4

O

6

0

Detection Summary

Client: Iyer Environmental Group, LLC

Client Sample ID: CSW-21-3

Project/Site: 132 Dingens

TestAmerica Job ID: 480-86938-1

Lab Sa	ample ID	: 480	-86938-1
--------	----------	-------	----------

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	125		2.9	0.58	mg/Kg	1	₩	6010C	Total/NA
Hg	5.9		0.29	0.12	mg/Kg	10	₩	7471B	Total/NA

Client Sample ID: CSW-23-3 Lab Sample ID: 480-86938-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	29.0		2.8	0.57	mg/Kg	1	₩	6010C	Total/NA
Hg	2.4		0.13	0.055	mg/Kg	5	₩	7471B	Total/NA

Client Sample ID: CSB-5-3 Lab Sample ID: 480-86938-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Pr	ер Туре
Arsenic	84.6		3.9	0.78	mg/Kg	1	₩	6010C	То	tal/NA
Hg	11.2		0.35	0.14	mg/Kg	10	₩	7471B	То	tal/NA

3

Л

E

6

9

10

12

16

М

Client Sample Results

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Method: 6010C - Metals (ICP)

Analyte

TestAmerica Job ID: 480-86938-1

6

Dil Fac

Analyzed

Client Sample ID: CSW-21-3 Lab Sample ID: 480-86938-1 Date Collected: 09/09/15 00:00 **Matrix: Solid** Date Received: 09/09/15 16:30 Percent Solids: 70.4 Method: 6010C - Metals (ICP) Analyte Result Qualifier RL **MDL** Unit D Analyzed Dil Fac Prepared ₩ 09/10/15 13:40 09/11/15 14:39 Arsenic 125 2.9 0.58 mg/Kg Method: 7471B - Mercury (CVAA) Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac ₩ <u>09/10/15 10:10</u> <u>09/11/15 07:50</u> Hg 0.29 0.12 mg/Kg 5.9 10 Client Sample ID: CSW-23-3 Lab Sample ID: 480-86938-2 Date Collected: 09/09/15 00:00 **Matrix: Solid** Percent Solids: 72.5 Date Received: 09/09/15 16:30 Method: 6010C - Metals (ICP) Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac

Arsenic	29.0		2.8	0.57	mg/Kg	 \$	09/10/15 13:40	09/11/15 14:51	1
Method: 7471B - Mercury (CVAA Analyte Hg	•	Qualifier	RL 0.13	MDL 0.055	Unit mg/Kg	D	Prepared 09/10/15 10:10	Analyzed 09/11/15 07:52	Dil Fac

Client Sample ID: CSB-5-3	Lab Sample ID: 480-86938-3
Date Collected: 09/09/15 00:00	Matrix: Solid
Date Received: 09/09/15 16:30	Percent Solids: 56.3

Result Qualifier

Arsenic	84.6	3.9	0.78 mg/Kg	14.	09/10/15 13:40	09/11/15 14:54	1
Method: 7471B - Mercury (CVAA) Analyte	Result Qualifier	RL	MDL Unit	D	Dranarad	Analvzed	Dil Fac
Analyte	Result Qualifier	KL	WIDE UNIT	ט	Prepared	Analyzeu	DII Fac
Hg	11.2	0.35	0.14 mg/Kg	₩	09/10/15 10:10	09/11/15 07:54	10

RL

MDL Unit

Prepared

TestAmerica Job ID: 480-86938-1

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 262864

Prep Type: Total/NA

Prep Batch: 262864

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-262864/1-A

Matrix: Solid Analysis Batch: 263412

MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 2.0 09/10/15 13:40 09/11/15 14:22 Arsenic $\overline{\mathsf{ND}}$ 0.41 mg/Kg

RL

0.019

Spike

Added

8.37

Spike

Added

8.37

Lab Sample ID: LCSSRM 480-262864/2-A

Matrix: Solid

Arsenic

Hg

Analysis Batch: 263412

Analyte

Spike Added 113

LCSSRM LCSSRM Result Qualifier 101.5

MDL Unit

0.0078 mg/Kg

LCDSRM LCDSRM

LCSSRM LCSSRM

10.79

Result Qualifier

10.86

Result Qualifier

Unit mg/Kg

Unit

Unit

mg/Kg

mg/Kg

D %Rec

Limits 89.8 69.7 - 142.

Client Sample ID: Lab Control Sample

5

%Rec.

Method: 7471B - Mercury (CVAA)

Lab Sample ID: MB 480-262798/1-A

Matrix: Solid

Analysis Batch: 263031

MB MB

Analyte Result Qualifier $\overline{\mathsf{ND}}$ Hg

Lab Sample ID: LCDSRM 480-262798/3-A

Matrix: Solid

Analysis Batch: 263031

Analyte

Lab Sample ID: LCSSRM 480-262798/2-A

Matrix: Solid

Analysis Batch: 263031

Analyte Hg

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 262798

Analyzed

Client Sample ID: Lab Control Sample Dup

09/10/15 10:10 09/10/15 15:53

Prepared

%Rec

Prep Type: Total/NA Prep Batch: 262798

%Rec. **RPD** Limits D %Rec RPD Limit 129.7 51.3 - 148.

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 262798

%Rec.

Limits

129.0 51.3 - 148.

Dil Fac

9/14/2015

QC Association Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-86938-1

Metals

Prep Batch: 262798

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-86938-1	CSW-21-3	Total/NA	Solid	7471B	
480-86938-2	CSW-23-3	Total/NA	Solid	7471B	
480-86938-3	CSB-5-3	Total/NA	Solid	7471B	
LCDSRM 480-262798/3-A	Lab Control Sample Dup	Total/NA	Solid	7471B	
LCSSRM 480-262798/2-A	Lab Control Sample	Total/NA	Solid	7471B	
MB 480-262798/1-A	Method Blank	Total/NA	Solid	7471B	

Prep Batch: 262864

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-86938-1	CSW-21-3	Total/NA	Solid	3050B	
480-86938-2	CSW-23-3	Total/NA	Solid	3050B	
480-86938-3	CSB-5-3	Total/NA	Solid	3050B	
LCSSRM 480-262864/2-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 480-262864/1-A	Method Blank	Total/NA	Solid	3050B	

Analysis Batch: 263031

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-86938-1	CSW-21-3	Total/NA	Solid	7471B	262798
480-86938-2	CSW-23-3	Total/NA	Solid	7471B	262798
480-86938-3	CSB-5-3	Total/NA	Solid	7471B	262798
LCDSRM 480-262798/3-A	Lab Control Sample Dup	Total/NA	Solid	7471B	262798
LCSSRM 480-262798/2-A	Lab Control Sample	Total/NA	Solid	7471B	262798
MB 480-262798/1-A	Method Blank	Total/NA	Solid	7471B	262798

Analysis Batch: 263412

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-86938-1	CSW-21-3	Total/NA	Solid	6010C	262864
480-86938-2	CSW-23-3	Total/NA	Solid	6010C	262864
480-86938-3	CSB-5-3	Total/NA	Solid	6010C	262864
LCSSRM 480-262864/2-A	Lab Control Sample	Total/NA	Solid	6010C	262864
MB 480-262864/1-A	Method Blank	Total/NA	Solid	6010C	262864

General Chemistry

Analysis Batch: 262703

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-86938-1	CSW-21-3	Total/NA	Solid	Moisture	 :
480-86938-2	CSW-23-3	Total/NA	Solid	Moisture	
480-86938-3	CSB-5-3	Total/NA	Solid	Moisture	

TestAmerica Buffalo

Page 8 of 15

4

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Lab Sample ID: 480-86938-1

Matrix: Solid

Date Collected: 09/09/15 00:00 Date Received: 09/09/15 16:30

Client Sample ID: CSW-21-3

Client Sample ID: CSW-21-3

Date Collected: 09/09/15 00:00

Date Received: 09/09/15 16:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture			262703	09/09/15 17:17	MJH	TAL BUF

Lab Sample ID: 480-86938-1

Matrix: Solid

Percent Solids: 70.4

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA 3050B 262864 09/10/15 13:40 TAS TAL BUF Prep Total/NA Analysis 6010C 263412 09/11/15 14:39 AMH TAL BUF 1 Total/NA Prep 7471B 262798 09/10/15 10:10 TAS TAL BUF Total/NA 263031 09/11/15 07:50 TAS TAL BUF Analysis 7471B 10

Client Sample ID: CSW-23-3 Lab Sample ID: 480-86938-2

Date Collected: 09/09/15 00:00 Matrix: Solid

Date Received: 09/09/15 16:30

Date Received: 09/09/15 16:30

Batch Batch Dilution **Batch** Prepared Method **Prep Type** Type Run **Factor** Number or Analyzed Analyst Lab Total/NA 262703 09/09/15 17:22 MJH TAL BUF Moisture Analysis

Client Sample ID: CSW-23-3 Lab Sample ID: 480-86938-2

Date Collected: 09/09/15 00:00

Matrix: Solid

Percent Solids: 72.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			262864	09/10/15 13:40	TAS	TAL BUF
Total/NA	Analysis	6010C		1	263412	09/11/15 14:51	AMH	TAL BUF
Total/NA	Prep	7471B			262798	09/10/15 10:10	TAS	TAL BUF
Total/NA	Analysis	7471B		5	263031	09/11/15 07:52	TAS	TAL BUF

Client Sample ID: CSB-5-3 Lab Sample ID: 480-86938-3

Date Collected: 09/09/15 00:00 Matrix: Solid
Date Received: 09/09/15 16:30

Batch Batch Batch Dilution Prepared Prep Type Method Number or Analyzed Analyst Type Run **Factor** Total/NA Analysis Moisture 09/09/15 17:22 MJH TAL BUF

Client Sample ID: CSB-5-3 Lab Sample ID: 480-86938-3

Date Collected: 09/09/15 00:00 Matrix: Solid

Date Received: 09/09/15 16:30 Percent Solids: 56.3

Batch Dilution Batch Batch Prepared Method **Prep Type** Туре Run Factor Number or Analyzed Analyst Lab Total/NA Prep 3050B 262864 09/10/15 13:40 TAS TAL BUF

TestAmerica Buffalo

Lab Chronicle

Client: Iyer Environmental Group, LLC

Client Sample ID: CSB-5-3 Date Collected: 09/09/15 00:00

Date Received: 09/09/15 16:30

Project/Site: 132 Dingens

TestAmerica Job ID: 480-86938-1

Lab Sample ID: 480-86938-3

Matrix: Solid

Percent Solids: 56.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	6010C		1	263412	09/11/15 14:54	AMH	TAL BUF
Total/NA	Prep	7471B			262798	09/10/15 10:10	TAS	TAL BUF
Total/NA	Analysis	7471B		10	263031	09/11/15 07:54	TAS	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

a

10

13

Certification Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-86938-1

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date
New York	NELAP		2	10026	03-31-16
The following analytes	s are included in this repo	rt, but certification is	not offered by the go	overning authority:	
The following analytes Analysis Method	s are included in this repo Prep Method	rt, but certification is Matrix	not offered by the go Analyt	,	
,	·	·	Analyt	,	

9

3

4

5

8

10

13

Method Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-86938-1

Method	Method Description	Protocol	Laboratory
6010C	Metals (ICP)	SW846	TAL BUF
7471B	Mercury (CVAA)	SW846	TAL BUF
Moisture	Percent Moisture	EPA	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

4

_

7

8

4.6

11

12

Sample Summary

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

TestAmerica Job ID: 480-86938-1

Lab Sample ID	Client Sample ID	Matrix	Collected Received
480-86938-1	CSW-21-3	Solid	09/09/15 00:00 09/09/15 16:
480-86938-2	CSW-23-3	Solid	09/09/15 00:00 09/09/15 16:
480-86938-3	CSB-5-3	Solid	09/09/15 00:00 09/09/15 16:

Chain of Custody Record

Temperature on Receipt ____

Drinking Water? Yes⊟ NoX

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

TAL-4124 (1007)				
Client Levinonimental Group	Project Manager $\bigcap \mathcal{N}_{\mathbf{w}}$	harma lyer	Date 5.20 KS	Chain of Custody Number 264475
4 Rolling Kits D	1 (7)	e)Fax Number /	nber	Page of 1
Others Park NY 14127	Site Confact	Lab Contact M. Devon	Analysis (Attach list if more space is needed)	
(State) (State)	Carrier/Waybill Number	5)		Special Instructions/
	Matrix	Containers & A A Preservatives		Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Ilos Sucenph	HOEN HOEN HOEN HOEN HOEN FONH FOSTH		CATAGORY B
- HT 18-7 B-18-7				
age 21 (b) b	>	^		
CSW-23-3	>	7		
> 2-5-850 ff 15	>	<i>∨</i> 1		
			480-86938 Chain of Custody	of Custody
Possible Hazard (dentification	Sample Disnosal			
mable 🗌 Skin Imitant 📋 Poison B	Unknown Return To Client		(A fee may be ass Months longer than 1 mor	(A fee may be assessed if samples are retained longer than 1 month)
, Turn Around Time Required \Box 24 Hours \Box 48 Hours \Box 7 Days \Box 21 Days	Other	OC Requirements (Specify) 		
1. Relinquished By Piphys C Aller IT	9/4/15 Time 3	O 1. Recepted By U		1991 - 1903 D
2. Relinquished By	Dåte Time	2. Received By		Date Time
7 A Relinquished By	Date Time	3. Received By		Date Time
Comments			一年ノート	

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

Login Sample Receipt Checklist

Client: Iyer Environmental Group, LLC

Job Number: 480-86938-1

Login Number: 86938 List Source: TestAmerica Buffalo

List Number: 1

Creator: Janish, Carl M

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	False	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	False	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	IYER
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

9

7

q

. .

12

13

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-87201-1 Client Project/Site: 132 Dingens

For:

Iyer Environmental Group, LLC 44 Rolling Hills Drive Orchard Park, New York 14127

Attn: Dr. Dharmarajan R Iyer

Melisso Deyo

Authorized for release by: 9/18/2015 4:28:39 PM

Melissa Deyo, Project Manager I (716)504-9874

melissa.deyo@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	8
Surrogate Summary	16
QC Sample Results	17
QC Association Summary	20
Lab Chronicle	23
Certification Summary	30
Method Summary	31
Sample Summary	32
Chain of Custody	33
Receipt Checklists	35

3

4

6

8

9

11

16

14

Definitions/Glossary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87201-1

3

Qualifiers

GC Semi VOA

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
п	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
ИDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit

RER Relative error ratio

QC

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

Quality Control

Case Narrative

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87201-1

Job ID: 480-87201-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-87201-1

Receipt

The samples were received on 9/14/2015 5:30 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 21.7° C.

Receipt Exceptions

Sample collection times were not listed on COC or labels. A time of 0000 was used for login purposes.

GC Semi VOA

Method(s) 8082A: The following samples were diluted due to the abundance of target analytes: CSW-50 (480-87201-7), CSW-54 (480-87201-11) and CSW-58 (480-87201-15). Elevated reporting limits (RLs) are provided.

Method(s) 8082A: The following samples appear to contain PCB-1248; however, due to weathering or other environmental processes, PCB-1248 in the samples does not closely match the laboratory's Aroclor standard used for instrument calibration: CSW-44 (480-87201-1), CSW-45 (480-87201-2), CSW-46 (480-87201-3), CSW-47 (480-87201-4), CSW-48 (480-87201-5), CSW-49 (480-87201-6), CSW-50 (480-87201-7), CSW-51 (480-87201-8), CSW-54 (480-87201-11), CSW-56 (480-87201-13), CSW-58 (480-87201-15), CSB-10 (480-87201-17), CSB-10 (480-87201-17[MS]), CSB-10 (480-87201-17[MS]) and CSB-11 (480-87201-18). Due to the poor match with the Aroclor standard, there is increased qualitative and quantitative uncertainty associated with these results.

Method(s) 8082A: The following samples appear to contain PCB-1254; however, due to weathering or other environmental processes, PCB-1254 in the samples does not closely match the laboratory's Aroclor standard used for instrument calibration: CSW-59 (480-87201-16) and CSB-12 (480-87201-19). Due to the poor match with the Aroclor standard, there is increased qualitative and quantitative uncertainty associated with these results.

Method(s) 8082A: The following samples appear to contain PCB-1248; however, due to weathering or other environmental processes, PCB-1248 in the samples does not closely match the laboratory's Aroclor standard used for instrument calibration: CSW-52 (480-87201-9[DU]). Due to the poor match with the Aroclor standard, there is increased qualitative and quantitative uncertainty associated with these results.

Method(s) 8082A: All primary data is reported from the ZB-5 column.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method(s) 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with analytical batch 480-263691.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

_

_

8

9

11

14

TestAmerica Job ID: 480-87201-1

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: CSW-44						Lab Sample ID: 4	80-87201-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D Method	Prep Type
PCB-1248	1.8		0.21	0.041	mg/Kg	1 ₹ 8082A	Total/NA
Client Sample ID: CSW-45						Lab Sample ID: 4	80-87201-2
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D Method	Prep Type
PCB-1248	1.1		0.22	0.042	mg/Kg	1 ₹ 8082A	Total/NA
PCB-1254	0.63		0.22	0.10	mg/Kg	1 ☼ 8082A	Total/NA
PCB-1260	0.43		0.22	0.10	mg/Kg	1 [☆] 8082A	Total/NA
Client Sample ID: CSW-46						Lab Sample ID: 4	80-87201-3
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D Method	Prep Type
PCB-1248	0.065	J –	0.24	0.047	mg/Kg	1	Total/NA
Client Sample ID: CSW-47						Lab Sample ID: 4	80-87201-4
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D Method	Prep Type
PCB-1248	0.24		0.22	0.044	mg/Kg	1	Total/NA
PCB-1254	0.23		0.22	0.10	mg/Kg	1 [☆] 8082A	Total/NA
Client Sample ID: CSW-48						Lab Sample ID: 4	80-87201-5
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D Method	Prep Type
PCB-1248	0.46		0.29	0.057	mg/Kg	1	Total/NA
Client Sample ID: CSW-49						Lab Sample ID: 4	80-87201-6
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D Method	Prep Type
PCB-1248	0.13	J	0.21	0.041	mg/Kg	1 ≅ 8082A	Total/NA
PCB-1254	0.16	J	0.21	0.099	mg/Kg	1 ☼ 8082A	Total/NA
Client Sample ID: CSW-50						Lab Sample ID: 4	80-87201-7
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D Method	Prep Type
PCB-1248	33		2.3	0.46	mg/Kg	10 🌣 8082A	Total/NA
Client Sample ID: CSW-51						Lab Sample ID: 4	80-87201-8
Analyte	Result	Qualifier	RL		Unit	Dil Fac D Method	Prep Type
PCB-1248	1.5		0.27		mg/Kg	1	Total/NA
PCB-1254	1.1		0.27		mg/Kg	1 🌣 8082A	Total/NA
PCB-1260	0.24	J	0.27	0.13	mg/Kg	1 [☼] 8082A	Total/NA
Client Sample ID: CSW-52						Lab Sample ID: 4	80-87201-9
Analyte		Qualifier	RL		Unit	Dil Fac D Method	Prep Type
PCB-1248 - RE	1.7		0.30	0.059	mg/Kg	1	Total/NA

This Detection Summary does not include radiochemical test results.

Client Sample ID: CSW-53

TestAmerica Buffalo

Lab Sample ID: 480-87201-10

TestAmerica Job ID: 480-87201-1

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: CSW-53 (Continued) Lab Sample ID: 480-87201-10

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
PCB-1248	1.9	0.20	0.040 mg/Kg	1 ≅ 8082A	Total/NA
PCB-1254	2.5	0.20	0.096 mg/Kg	1 🌣 8082A	Total/NA
PCB-1260	0.92	0.20	0.096 mg/Kg	1 🌣 8082A	Total/NA

Client Sample ID: CSW-54 Lab Sample ID: 480-87201-11

Analyte	Result Q	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
PCB-1248	4.5	0.47	0.092	mg/Kg	2	₩	8082A	Total/NA
PCB-1254	4.2	0.47	0.22	mg/Kg	2	₩	8082A	Total/NA
PCB-1260	1.5	0.47	0.22	mg/Kg	2	₩	8082A	Total/NA

Client Sample ID: CSW-55 Lab Sample ID: 480-87201-12

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
PCB-1248	2.1		0.22	0.043	mg/Kg	1	₩	8082A	Total/NA
PCB-1254	2.5		0.22	0.10	mg/Kg	1	₩	8082A	Total/NA
PCB-1260	0.84		0.22	0.10	mg/Kg	1	₩	8082A	Total/NA

Client Sample ID: CSW-56 Lab Sample ID: 480-87201-13

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
PCB-1248	0.62	0.29	0.056	mg/Kg	1	₩	8082A	Total/NA
PCB-1254	0.67	0.29	0.13	mg/Kg	1	₩	8082A	Total/NA
PCB-1260	0.38	0.29	0.13	mg/Kg	1	₩	8082A	Total/NA

Client Sample ID: CSW-57 Lab Sample ID: 480-87201-14

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
PCB-1248	0.65	0.25	0.049 mg/Kg	1 ≅ 8082A	Total/NA
PCB-1254	0.96	0.25	0.12 mg/Kg	1 🌣 8082A	Total/NA
PCB-1260	0.48	0.25	0.12 mg/Kg	1 ☼ 8082A	Total/NA

Client Sample ID: CSW-58 Lab Sample ID: 480-87201-15

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
PCB-1248	7.5		0.49	0.096	mg/Kg	2	₩	8082A	Total/NA
PCB-1254	4.4		0.49	0.23	mg/Kg	2	₩	8082A	Total/NA
PCB-1260	1.4		0.49	0.23	ma/Ka	2	₽	8082A	Total/NA

Lab Sample ID: 480-87201-16 Client Sample ID: CSW-59

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D M	ethod	Prep Type
PCB-1242	0.68	0.20	0.040 mg/k	(g 1	₩ 80	82A	Total/NA
PCB-1254	1.8	0.20	0.095 mg/k	(g 1	⊅ 80	82A	Total/NA
PCB-1260	0.76	0.20	0.095 mg/k	(g 1	₩ 80	82A	Total/NA

Client Sample ID: CSB-10 Lab Sample ID: 480-87201-17

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
PCB-1248	0.29 J	0.32	0.062 mg/Kg	1 ≅ 8082A	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

Detection Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87201-1

Client Sample ID: CSB-11	Lab Sample ID: 480-87201-18

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
PCB-1248	0.68	0.26	0.052 mg/Kg	1 ≅ 8082A	Total/NA

Client Sample ID: CSB-12 Lab Sample ID: 480-87201-19

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
PCB-1242	0.57		0.24	0.046	mg/Kg	1	₩	8082A	Total/NA
PCB-1254	1.0		0.24	0.11	mg/Kg	1	₩	8082A	Total/NA
PCB-1260	0.39		0.24	0.11	mg/Kg	1	₩	8082A	Total/NA

Client Sample ID: ERB-4	Lab Sample ID: 480-87201-20

No Detections.

6

7

8

9

11

12

1 /

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87201-1

Client Sample ID: CSW-44 Lab Sample ID: 480-87201-1 Date Collected: 09/14/15 00:00

Matrix: Solid Date Received: 09/14/15 17:30 Percent Solids: 83.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.21	0.041	mg/Kg	<u> </u>	09/16/15 08:17	09/16/15 20:46	1
PCB-1221	ND		0.21	0.041	mg/Kg	☼	09/16/15 08:17	09/16/15 20:46	1
PCB-1232	ND		0.21	0.041	mg/Kg	☼	09/16/15 08:17	09/16/15 20:46	1
PCB-1242	ND		0.21	0.041	mg/Kg	₽	09/16/15 08:17	09/16/15 20:46	1
PCB-1248	1.8		0.21	0.041	mg/Kg	☼	09/16/15 08:17	09/16/15 20:46	1
PCB-1254	ND		0.21	0.099	mg/Kg	☼	09/16/15 08:17	09/16/15 20:46	1
PCB-1260	ND		0.21	0.099	mg/Kg	₽	09/16/15 08:17	09/16/15 20:46	1
PCB-1262	ND		0.21	0.099	mg/Kg	☼	09/16/15 08:17	09/16/15 20:46	1
PCB-1268	ND		0.21	0.099	mg/Kg	₩	09/16/15 08:17	09/16/15 20:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	87		60 - 154				09/16/15 08:17	09/16/15 20:46	1
DCB Decachlorobiphenyl	79		65 - 174				09/16/15 08:17	09/16/15 20:46	1

Client Sample ID: CSW-45 Lab Sample ID: 480-87201-2 Date Collected: 09/14/15 00:00 **Matrix: Solid**

Date Received: 09/14/15 17:30 Percent Solids: 86.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.22	0.042	mg/Kg	<u> </u>	09/16/15 08:17	09/16/15 21:02	1
PCB-1221	ND		0.22	0.042	mg/Kg	☼	09/16/15 08:17	09/16/15 21:02	1
PCB-1232	ND		0.22	0.042	mg/Kg	☼	09/16/15 08:17	09/16/15 21:02	1
PCB-1242	ND		0.22	0.042	mg/Kg	₩	09/16/15 08:17	09/16/15 21:02	1
PCB-1248	1.1		0.22	0.042	mg/Kg	☼	09/16/15 08:17	09/16/15 21:02	1
PCB-1254	0.63		0.22	0.10	mg/Kg	☼	09/16/15 08:17	09/16/15 21:02	1
PCB-1260	0.43		0.22	0.10	mg/Kg	φ.	09/16/15 08:17	09/16/15 21:02	1
PCB-1262	ND		0.22	0.10	mg/Kg	☼	09/16/15 08:17	09/16/15 21:02	1
PCB-1268	ND		0.22	0.10	mg/Kg	₩	09/16/15 08:17	09/16/15 21:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	94		60 - 154				09/16/15 08:17	09/16/15 21:02	1
DCB Decachlorobiphenyl	90		65 - 174				09/16/15 08:17	09/16/15 21:02	1

Client Sample ID: CSW-46 Lab Sample ID: 480-87201-3 Date Collected: 09/14/15 00:00 **Matrix: Solid** Date Received: 09/14/15 17:30 Percent Solids: 78.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.24	0.047	mg/Kg	<u> </u>	09/16/15 08:17	09/16/15 21:17	1
PCB-1221	ND		0.24	0.047	mg/Kg	☼	09/16/15 08:17	09/16/15 21:17	1
PCB-1232	ND		0.24	0.047	mg/Kg	☼	09/16/15 08:17	09/16/15 21:17	1
PCB-1242	ND		0.24	0.047	mg/Kg	φ.	09/16/15 08:17	09/16/15 21:17	1
PCB-1248	0.065	J	0.24	0.047	mg/Kg	☼	09/16/15 08:17	09/16/15 21:17	1
PCB-1254	ND		0.24	0.11	mg/Kg	☼	09/16/15 08:17	09/16/15 21:17	1
PCB-1260	ND		0.24	0.11	mg/Kg	φ.	09/16/15 08:17	09/16/15 21:17	1
PCB-1262	ND		0.24	0.11	mg/Kg	☼	09/16/15 08:17	09/16/15 21:17	1
PCB-1268	ND		0.24	0.11	mg/Kg	≎	09/16/15 08:17	09/16/15 21:17	1

TestAmerica Buffalo

Page 8 of 35

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87201-1

Client Sample ID: CSW-46

Date Collected: 09/14/15 00:00 Date Received: 09/14/15 17:30

Lab Sample ID: 480-87201-3

Matrix: Solid Percent Solids: 78.5

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	80		60 - 154	09/16/15 08:17	09/16/15 21:17	1
DCB Decachlorobiphenyl	68		65 - 174	09/16/15 08:17	09/16/15 21:17	1

Client Sample ID: CSW-47 Lab Sample ID: 480-87201-4

Date Collected: 09/14/15 00:00 **Matrix: Solid** Date Received: 09/14/15 17:30 Percent Solids: 77.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.22	0.044	mg/Kg	<u> </u>	09/16/15 08:17	09/16/15 21:34	1
PCB-1221	ND		0.22	0.044	mg/Kg	☼	09/16/15 08:17	09/16/15 21:34	1
PCB-1232	ND		0.22	0.044	mg/Kg	☼	09/16/15 08:17	09/16/15 21:34	1
PCB-1242	ND		0.22	0.044	mg/Kg	₽	09/16/15 08:17	09/16/15 21:34	1
PCB-1248	0.24		0.22	0.044	mg/Kg	☼	09/16/15 08:17	09/16/15 21:34	1
PCB-1254	0.23		0.22	0.10	mg/Kg	☼	09/16/15 08:17	09/16/15 21:34	1
PCB-1260	ND		0.22	0.10	mg/Kg	φ.	09/16/15 08:17	09/16/15 21:34	1
PCB-1262	ND		0.22	0.10	mg/Kg	☼	09/16/15 08:17	09/16/15 21:34	1
PCB-1268	ND		0.22	0.10	mg/Kg	≎	09/16/15 08:17	09/16/15 21:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	83		60 - 154				09/16/15 08:17	09/16/15 21:34	1
DCB Decachlorobiphenyl	68		65 - 174				09/16/15 08:17	09/16/15 21:34	1

Lab Sample ID: 480-87201-5 Client Sample ID: CSW-48 Date Collected: 09/14/15 00:00 **Matrix: Solid** Date Received: 09/14/15 17:30 Percent Solids: 76.4

Method: 8082A - Polychio Analyte	Result Quali	fier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND ND	0.29	0.057	mg/Kg	<u> </u>	09/16/15 08:17	09/16/15 21:49	1
PCB-1221	ND	0.29	0.057	mg/Kg	☼	09/16/15 08:17	09/16/15 21:49	1
PCB-1232	ND	0.29	0.057	mg/Kg	☼	09/16/15 08:17	09/16/15 21:49	1
PCB-1242	ND	0.29	0.057	mg/Kg	₽	09/16/15 08:17	09/16/15 21:49	1
PCB-1248	0.46	0.29	0.057	mg/Kg	☼	09/16/15 08:17	09/16/15 21:49	1
PCB-1254	ND	0.29	0.14	mg/Kg	☼	09/16/15 08:17	09/16/15 21:49	1
PCB-1260	ND	0.29	0.14	mg/Kg	φ.	09/16/15 08:17	09/16/15 21:49	1
PCB-1262	ND	0.29	0.14	mg/Kg	☼	09/16/15 08:17	09/16/15 21:49	1
PCB-1268	ND	0.29	0.14	mg/Kg	≎	09/16/15 08:17	09/16/15 21:49	1
Surrogate	%Recovery Quali	ifier Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	89	60 - 154				09/16/15 08:17	09/16/15 21:49	1
DCB Decachlorobiphenyl	79	65 ₋ 174				09/16/15 08:17	09/16/15 21:49	1

Client Sample ID: CSW-49 Lab Sample ID: 480-87201-6 Date Collected: 09/14/15 00:00 **Matrix: Solid** Date Received: 09/14/15 17:30 Percent Solids: 93.7

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography									
	Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	PCB-1016	ND	0.21	0.041	mg/Kg	₩	09/16/15 08:17	09/16/15 22:37	1
	PCB-1221	ND	0.21	0.041	mg/Kg	≎	09/16/15 08:17	09/16/15 22:37	1

TestAmerica Buffalo

Page 9 of 35 9/18/2015

09/16/15 08:17 09/16/15 22:37

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

DCB Decachlorobiphenyl

Client Sample ID: CSW-49 Lab Sample ID: 480-87201-6

Date Collected: 09/14/15 00:00 **Matrix: Solid** Date Received: 09/14/15 17:30 Percent Solids: 93.7

Method: 8082A - Polych	Iorinated Biphenyls	(PCBs)	by Gas Chro	matogr	aphy (Co	ntinu	ed)		
Analyte	Result Q	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1232	ND ND		0.21	0.041	mg/Kg	<u> </u>	09/16/15 08:17	09/16/15 22:37	1
PCB-1242	ND		0.21	0.041	mg/Kg	φ.	09/16/15 08:17	09/16/15 22:37	1
PCB-1248	0.13 J		0.21	0.041	mg/Kg	☼	09/16/15 08:17	09/16/15 22:37	1
PCB-1254	0.16 J		0.21	0.099	mg/Kg	☼	09/16/15 08:17	09/16/15 22:37	1
PCB-1260	ND		0.21	0.099	mg/Kg	₽	09/16/15 08:17	09/16/15 22:37	1
PCB-1262	ND		0.21	0.099	mg/Kg	☼	09/16/15 08:17	09/16/15 22:37	1
PCB-1268	ND		0.21	0.099	mg/Kg	≎	09/16/15 08:17	09/16/15 22:37	1
Surrogate	%Recovery Q	ualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	98		60 - 154				09/16/15 08:17	09/16/15 22:37	1

Client Sample ID: CSW-50 Lab Sample ID: 480-87201-7 Date Collected: 09/14/15 00:00 **Matrix: Solid** Date Received: 09/14/15 17:30 Percent Solids: 85.8

65 - 174

102

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		2.3	0.46	mg/Kg	<u></u>	09/16/15 08:17	09/16/15 22:53	10
PCB-1221	ND		2.3	0.46	mg/Kg	☼	09/16/15 08:17	09/16/15 22:53	10
PCB-1232	ND		2.3	0.46	mg/Kg	☼	09/16/15 08:17	09/16/15 22:53	10
PCB-1242	ND		2.3	0.46	mg/Kg	φ.	09/16/15 08:17	09/16/15 22:53	10
PCB-1248	33		2.3	0.46	mg/Kg	☼	09/16/15 08:17	09/16/15 22:53	10
PCB-1254	ND		2.3	1.1	mg/Kg	☼	09/16/15 08:17	09/16/15 22:53	10
PCB-1260	ND		2.3	1.1	mg/Kg	₽	09/16/15 08:17	09/16/15 22:53	10
PCB-1262	ND		2.3	1.1	mg/Kg	₽	09/16/15 08:17	09/16/15 22:53	10
PCB-1268	ND		2.3	1.1	mg/Kg	☼	09/16/15 08:17	09/16/15 22:53	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	97		60 - 154				09/16/15 08:17	09/16/15 22:53	10
DCB Decachlorobiphenyl	111		65 - 174				09/16/15 08:17	09/16/15 22:53	10

Client Sample ID: CSW-51 Lab Sample ID: 480-87201-8 Date Collected: 09/14/15 00:00 **Matrix: Solid** Date Received: 09/14/15 17:30 Percent Solids: 82.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.27	0.053	mg/Kg	<u> </u>	09/16/15 08:17	09/16/15 23:09	1
PCB-1221	ND		0.27	0.053	mg/Kg	☼	09/16/15 08:17	09/16/15 23:09	1
PCB-1232	ND		0.27	0.053	mg/Kg	☼	09/16/15 08:17	09/16/15 23:09	1
PCB-1242	ND		0.27	0.053	mg/Kg		09/16/15 08:17	09/16/15 23:09	1
PCB-1248	1.5		0.27	0.053	mg/Kg	☼	09/16/15 08:17	09/16/15 23:09	1
PCB-1254	1.1		0.27	0.13	mg/Kg	☼	09/16/15 08:17	09/16/15 23:09	1
PCB-1260	0.24	J	0.27	0.13	mg/Kg	₽	09/16/15 08:17	09/16/15 23:09	1
PCB-1262	ND		0.27	0.13	mg/Kg	☼	09/16/15 08:17	09/16/15 23:09	1
PCB-1268	ND		0.27	0.13	mg/Kg	₩	09/16/15 08:17	09/16/15 23:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	90		60 - 154				09/16/15 08:17	09/16/15 23:09	1
DCB Decachlorobiphenyl	75		65 - 174				09/16/15 08:17	09/16/15 23:09	1

TestAmerica Buffalo

Page 10 of 35

9/18/2015

Project/Site: 132 Dingens

Client: Iyer Environmental Group, LLC

Client Sample ID: CSW-52

Date Collected: 09/14/15 00:00

Lab Sample ID: 480-87201-9

Matrix: Solid

 Date Collected: 09/14/15 00:00
 Matrix: Solid

 Date Received: 09/14/15 17:30
 Percent Solids: 78.9

nated Bipheny	ıls (PCBs)	by Gas Chro	omatogr	aphy - Rl	E			
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND		0.30	0.059	mg/Kg	<u></u>	09/17/15 12:18	09/17/15 18:10	1
ND		0.30	0.059	mg/Kg	☼	09/17/15 12:18	09/17/15 18:10	1
ND		0.30	0.059	mg/Kg	☼	09/17/15 12:18	09/17/15 18:10	1
ND		0.30	0.059	mg/Kg	₽	09/17/15 12:18	09/17/15 18:10	1
1.7		0.30	0.059	mg/Kg	☼	09/17/15 12:18	09/17/15 18:10	1
ND		0.30	0.14	mg/Kg	☼	09/17/15 12:18	09/17/15 18:10	1
ND		0.30	0.14	mg/Kg		09/17/15 12:18	09/17/15 18:10	1
ND		0.30	0.14	mg/Kg	☼	09/17/15 12:18	09/17/15 18:10	1
ND		0.30	0.14	mg/Kg	₩	09/17/15 12:18	09/17/15 18:10	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
92		60 - 154				09/17/15 12:18	09/17/15 18:10	1
85		65 - 174				09/17/15 12:18	09/17/15 18:10	1
	Result ND	Result Qualifier ND ND ND ND 1.7 ND ND ND ND ND ND ND ND ND N	Result Qualifier RL ND 0.30 ND 0.30 ND 0.30 1.7 0.30 ND 0.30 ND 0.30 ND 0.30 ND 0.30 ND 0.30 ND 0.30 WRecovery Qualifier Limits 92 60 - 154	Result Qualifier RL MDL ND 0.30 0.059 ND 0.30 0.059 ND 0.30 0.059 1.7 0.30 0.059 ND 0.30 0.14 WRecovery Qualifier Limits 92 60 - 154	Result Qualifier RL MDL Unit ND 0.30 0.059 mg/Kg ND 0.30 0.059 mg/Kg ND 0.30 0.059 mg/Kg ND 0.30 0.059 mg/Kg ND 0.30 0.14 mg/Kg WRecovery Qualifier Limits 92 60 - 154 - 154	ND 0.30 0.059 mg/Kg □ 1.7 0.30 0.059 mg/Kg □ ND 0.30 0.14 mg/Kg □ WRecovery Qualifier Limits 92 60 - 154	Result Qualifier RL MDL Unit D Prepared ND 0.30 0.059 mg/Kg © 09/17/15 12:18 ND 0.30 0.14 mg/Kg © 09/17/15 12:18 **ND 0.30 0.14 mg/Kg © 09/17/15 12:18 **WRecovery **Qualifier **Limits **Prepared **09/17/15 12:18 **O9/17/15 12:18	Result ND Qualifier RL MDL Unit D 97epared Analyzed ND 0.30 0.059 mg/Kg © 09/17/15 12:18 09/17/15 18:10 ND 0.30 0.059 mg/Kg © 09/17/15 12:18 09/17/15 18:10 ND 0.30 0.059 mg/Kg © 09/17/15 12:18 09/17/15 18:10 ND 0.30 0.059 mg/Kg © 09/17/15 12:18 09/17/15 18:10 1.7 0.30 0.059 mg/Kg © 09/17/15 12:18 09/17/15 18:10 ND 0.30 0.14 mg/Kg © 09/17/15 12:18 09/17/15 18:10 ND 0.30 0.14 mg/Kg © 09/17/15 12:18 09/17/15 18:10 ND 0.30 0.14 mg/Kg © 09/17/15 12:18 09/17/15 18:10 ND 0.30 0.14 mg/Kg © 09/17/15 12:18 09/17/15 18:10 ND 0.30 0.14 mg/Kg © 09/17/15 12:18 09/17/15 18:10 WRecovery Qualifier Limits Prepared Analyzed 09/17/15 12:18 09/17/15 18:10 09/17/15 18:10

Client Sample ID: CSW-53

Date Collected: 09/14/15 00:00

Matrix: Solid

Date Received: 09/14/15 17:30

Lab Sample ID: 480-87201-10

Matrix: Solid

Percent Solids: 89.9

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography MDL Unit Analyte Result Qualifier RL D Prepared Dil Fac Analyzed PCB-1016 $\overline{\mathsf{ND}}$ 0.20 0.040 mg/Kg 09/16/15 08:17 09/16/15 23:57 PCB-1221 ND 0.20 0.040 mg/Kg 09/16/15 08:17 09/16/15 23:57 PCB-1232 ND 0.20 0.040 mg/Kg 09/16/15 08:17 09/16/15 23:57 PCB-1242 ND 0.20 0.040 mg/Kg 09/16/15 08:17 09/16/15 23:57 **PCB-1248** 1.9 0.20 0.040 mg/Kg 09/16/15 08:17 09/16/15 23:57 0.20 0.096 mg/Kg 09/16/15 08:17 09/16/15 23:57 PCB-1254 2.5 0.20 0.096 mg/Kg 09/16/15 08:17 09/16/15 23:57 PCB-1260 0.92 PCB-1262 © 09/16/15 08:17 09/16/15 23:57 ND 0.20 0.096 mg/Kg PCB-1268 ND © 09/16/15 08:17 09/16/15 23:57 0.20 0.096 mg/Kg Surrogate %Recovery Qualifier Limits Prepared Dil Fac Analyzed 09/16/15 08:17 09/16/15 23:57 Tetrachloro-m-xylene 82 60 - 154 75 09/16/15 08:17 09/16/15 23:57 DCB Decachlorobiphenyl 65 - 174

Client Sample ID: CSW-54

Date Collected: 09/14/15 00:00

Matrix: Solid

Date Received: 09/14/15 17:30

Lab Sample ID: 480-87201-11

Matrix: Solid

Percent Solids: 90.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND ND		0.47	0.092	mg/Kg	<u> </u>	09/16/15 08:17	09/17/15 00:13	2
PCB-1221	ND		0.47	0.092	mg/Kg	₩	09/16/15 08:17	09/17/15 00:13	2
PCB-1232	ND		0.47	0.092	mg/Kg	₩	09/16/15 08:17	09/17/15 00:13	2
PCB-1242	ND		0.47	0.092	mg/Kg	₩.	09/16/15 08:17	09/17/15 00:13	2
PCB-1248	4.5		0.47	0.092	mg/Kg	☼	09/16/15 08:17	09/17/15 00:13	2
PCB-1254	4.2		0.47	0.22	mg/Kg	₩	09/16/15 08:17	09/17/15 00:13	2
PCB-1260	1.5		0.47	0.22	mg/Kg	₩.	09/16/15 08:17	09/17/15 00:13	2
PCB-1262	ND		0.47	0.22	mg/Kg	₩	09/16/15 08:17	09/17/15 00:13	2
PCB-1268	ND		0.47	0.22	mg/Kg	₩	09/16/15 08:17	09/17/15 00:13	2

TestAmerica Buffalo

Page 11 of 35

9

3

5

7

9

40

13

14

Lab Sample ID: 480-87201-11

Client Sample ID: CSW-54 Date Collected: 09/14/15 00:00 **Matrix: Solid** Date Received: 09/14/15 17:30

Percent Solids: 90.8

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	90		60 - 154	09/16/15 08:17	09/17/15 00:13	2
DCB Decachlorobiphenyl	122		65 - 174	09/16/15 08:17	09/17/15 00:13	2

Client Sample ID: CSW-55 Lab Sample ID: 480-87201-12

Date Collected: 09/14/15 00:00 **Matrix: Solid** Date Received: 09/14/15 17:30 Percent Solids: 79.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.22	0.043	mg/Kg	<u> </u>	09/16/15 08:17	09/17/15 00:29	1
PCB-1221	ND		0.22	0.043	mg/Kg	₩	09/16/15 08:17	09/17/15 00:29	1
PCB-1232	ND		0.22	0.043	mg/Kg	₩	09/16/15 08:17	09/17/15 00:29	1
PCB-1242	ND		0.22	0.043	mg/Kg	₩.	09/16/15 08:17	09/17/15 00:29	1
PCB-1248	2.1		0.22	0.043	mg/Kg	₩	09/16/15 08:17	09/17/15 00:29	1
PCB-1254	2.5		0.22	0.10	mg/Kg	₩	09/16/15 08:17	09/17/15 00:29	1
PCB-1260	0.84		0.22	0.10	mg/Kg	φ.	09/16/15 08:17	09/17/15 00:29	1
PCB-1262	ND		0.22	0.10	mg/Kg	₩	09/16/15 08:17	09/17/15 00:29	1
PCB-1268	ND		0.22	0.10	mg/Kg	₩	09/16/15 08:17	09/17/15 00:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	78		60 - 154				09/16/15 08:17	09/17/15 00:29	1
DCB Decachlorobiphenyl	76		65 - 174				09/16/15 08:17	09/17/15 00:29	1

Client Sample ID: CSW-56 Lab Sample ID: 480-87201-13 Date Collected: 09/14/15 00:00 **Matrix: Solid** Date Received: 09/14/15 17:30 Percent Solids: 85.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.29	0.056	mg/Kg	<u></u>	09/16/15 08:17	09/17/15 00:45	1
PCB-1221	ND		0.29	0.056	mg/Kg	₩	09/16/15 08:17	09/17/15 00:45	1
PCB-1232	ND		0.29	0.056	mg/Kg	☆	09/16/15 08:17	09/17/15 00:45	1
PCB-1242	ND		0.29	0.056	mg/Kg	₩	09/16/15 08:17	09/17/15 00:45	1
PCB-1248	0.62		0.29	0.056	mg/Kg	₩	09/16/15 08:17	09/17/15 00:45	1
PCB-1254	0.67		0.29	0.13	mg/Kg	₩	09/16/15 08:17	09/17/15 00:45	1
PCB-1260	0.38		0.29	0.13	mg/Kg	₩	09/16/15 08:17	09/17/15 00:45	1
PCB-1262	ND		0.29	0.13	mg/Kg	☆	09/16/15 08:17	09/17/15 00:45	1
PCB-1268	ND		0.29	0.13	mg/Kg	₩	09/16/15 08:17	09/17/15 00:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	99		60 - 154				09/16/15 08:17	09/17/15 00:45	1
DCB Decachlorobiphenyl	102		65 - 174				09/16/15 08:17	09/17/15 00:45	1

Client Sample ID: CSW-57 Lab Sample ID: 480-87201-14 Date Collected: 09/14/15 00:00 **Matrix: Solid**

Date Received: 09/14/15 17:30 Percent Solids: 89.8

Method: 8082A - Polychlorinat	ted Biphenyl	s (PCBs) b	y Gas Chro	matogr	aphy				
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.25	0.049	mg/Kg	<u>₩</u>	09/16/15 08:17	09/17/15 01:00	1
PCB-1221	ND		0.25	0.049	mg/Kg	≎	09/16/15 08:17	09/17/15 01:00	1

TestAmerica Buffalo

Page 12 of 35

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Client Sample ID: CSW-57

Lab Sample ID: 480-87201-14

Matrix: Solid

Percent Solids: 89.8

Date Collected: 09/14/15 00:00

Date Received: 09/14/15 17:30

Method: 8082A - Polychic Analyte		/Is (PCBs) Qualifier	by Gas Chro	omatogr MDL		ntinu D	ed) Prepared	Analyzed	Dil Fac
PCB-1232	ND		0.25	0.049	mg/Kg	<u></u>	09/16/15 08:17	09/17/15 01:00	1
PCB-1242	ND		0.25	0.049	mg/Kg		09/16/15 08:17	09/17/15 01:00	1
PCB-1248	0.65		0.25	0.049	mg/Kg	☼	09/16/15 08:17	09/17/15 01:00	1
PCB-1254	0.96		0.25	0.12	mg/Kg	☼	09/16/15 08:17	09/17/15 01:00	1
PCB-1260	0.48		0.25	0.12	mg/Kg	₽	09/16/15 08:17	09/17/15 01:00	1
PCB-1262	ND		0.25	0.12	mg/Kg	₽	09/16/15 08:17	09/17/15 01:00	1
PCB-1268	ND		0.25	0.12	mg/Kg	☼	09/16/15 08:17	09/17/15 01:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	102		60 - 154				09/16/15 08:17	09/17/15 01:00	1
DCB Decachlorobiphenyl	101		65 - 174				09/16/15 08:17	09/17/15 01:00	1

Client Sample ID: CSW-58 Lab Sample ID: 480-87201-15 Date Collected: 09/14/15 00:00 **Matrix: Solid**

Date Received: 09/14/15 17:30 Percent Solids: 86.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.49	0.096	mg/Kg	<u></u>	09/16/15 08:17	09/17/15 01:48	2
PCB-1221	ND		0.49	0.096	mg/Kg	₽	09/16/15 08:17	09/17/15 01:48	2
PCB-1232	ND		0.49	0.096	mg/Kg	☼	09/16/15 08:17	09/17/15 01:48	2
PCB-1242	ND		0.49	0.096	mg/Kg	φ.	09/16/15 08:17	09/17/15 01:48	2
PCB-1248	7.5		0.49	0.096	mg/Kg	₽	09/16/15 08:17	09/17/15 01:48	2
PCB-1254	4.4		0.49	0.23	mg/Kg	☼	09/16/15 08:17	09/17/15 01:48	2
PCB-1260	1.4		0.49	0.23	mg/Kg	₽	09/16/15 08:17	09/17/15 01:48	2
PCB-1262	ND		0.49	0.23	mg/Kg	☼	09/16/15 08:17	09/17/15 01:48	2
PCB-1268	ND		0.49	0.23	mg/Kg	☼	09/16/15 08:17	09/17/15 01:48	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	96		60 - 154				09/16/15 08:17	09/17/15 01:48	2
DCB Decachlorobiphenyl	98		65 - 174				09/16/15 08:17	09/17/15 01:48	2

Lab Sample ID: 480-87201-16 **Client Sample ID: CSW-59** Date Collected: 09/14/15 00:00 **Matrix: Solid** Date Received: 09/14/15 17:30 Percent Solids: 87.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.20	0.040	mg/Kg	₩	09/16/15 08:17	09/17/15 02:04	1
PCB-1221	ND		0.20	0.040	mg/Kg	₩	09/16/15 08:17	09/17/15 02:04	1
PCB-1232	ND		0.20	0.040	mg/Kg	☼	09/16/15 08:17	09/17/15 02:04	1
PCB-1242	0.68		0.20	0.040	mg/Kg	\$	09/16/15 08:17	09/17/15 02:04	1
PCB-1248	ND		0.20	0.040	mg/Kg	☼	09/16/15 08:17	09/17/15 02:04	1
PCB-1254	1.8		0.20	0.095	mg/Kg	☼	09/16/15 08:17	09/17/15 02:04	1
PCB-1260	0.76		0.20	0.095	mg/Kg	₽	09/16/15 08:17	09/17/15 02:04	1
PCB-1262	ND		0.20	0.095	mg/Kg	☼	09/16/15 08:17	09/17/15 02:04	1
PCB-1268	ND		0.20	0.095	mg/Kg	☼	09/16/15 08:17	09/17/15 02:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	85		60 - 154				09/16/15 08:17	09/17/15 02:04	1
DCB Decachlorobiphenyl	75		65 - 174				09/16/15 08:17	09/17/15 02:04	1

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Client Sample ID: CSB-10 Date Collected: 09/14/15 00:00 Date Received: 09/14/15 17:30

Lab Sample ID: 480-87201-17

Matrix: Solid Percent Solids: 74.3

Method: 8082A - Polychic	orinated Bipheny	/Is (PCBs)	by Gas Chro	omatogr	aphy				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.32	0.062	mg/Kg	<u> </u>	09/16/15 08:17	09/16/15 20:30	1
PCB-1221	ND		0.32	0.062	mg/Kg	☼	09/16/15 08:17	09/16/15 20:30	1
PCB-1232	ND		0.32	0.062	mg/Kg	☼	09/16/15 08:17	09/16/15 20:30	1
PCB-1242	ND		0.32	0.062	mg/Kg	₽	09/16/15 08:17	09/16/15 20:30	1
PCB-1248	0.29	J	0.32	0.062	mg/Kg	☼	09/16/15 08:17	09/16/15 20:30	1
PCB-1254	ND		0.32	0.15	mg/Kg	☼	09/16/15 08:17	09/16/15 20:30	1
PCB-1260	ND		0.32	0.15	mg/Kg	₽	09/16/15 08:17	09/16/15 20:30	1
PCB-1262	ND		0.32	0.15	mg/Kg	☼	09/16/15 08:17	09/16/15 20:30	1
PCB-1268	ND		0.32	0.15	mg/Kg	₩	09/16/15 08:17	09/16/15 20:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	92		60 - 154				09/16/15 08:17	09/16/15 20:30	1
DCB Decachlorobiphenyl	85		65 - 174				09/16/15 08:17	09/16/15 20:30	1

Client Sample ID: CSB-11 Lab Sample ID: 480-87201-18 Date Collected: 09/14/15 00:00 **Matrix: Solid**

Date Received: 09/14/15 17:30 Percent Solids: 91.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.26	0.052	mg/Kg	<u> </u>	09/16/15 08:17	09/17/15 02:20	1
PCB-1221	ND		0.26	0.052	mg/Kg	☼	09/16/15 08:17	09/17/15 02:20	1
PCB-1232	ND		0.26	0.052	mg/Kg	☼	09/16/15 08:17	09/17/15 02:20	1
PCB-1242	ND		0.26	0.052	mg/Kg	φ.	09/16/15 08:17	09/17/15 02:20	1
PCB-1248	0.68		0.26	0.052	mg/Kg	☼	09/16/15 08:17	09/17/15 02:20	1
PCB-1254	ND		0.26	0.12	mg/Kg	☼	09/16/15 08:17	09/17/15 02:20	1
PCB-1260	ND		0.26	0.12	mg/Kg	φ.	09/16/15 08:17	09/17/15 02:20	1
PCB-1262	ND		0.26	0.12	mg/Kg	☼	09/16/15 08:17	09/17/15 02:20	1
PCB-1268	ND		0.26	0.12	mg/Kg	≎	09/16/15 08:17	09/17/15 02:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	104		60 - 154				09/16/15 08:17	09/17/15 02:20	1
DCB Decachlorobiphenyl	99		65 - 174				09/16/15 08:17	09/17/15 02:20	1

Client Sample ID: CSB-12 Lab Sample ID: 480-87201-19 Date Collected: 09/14/15 00:00 **Matrix: Solid** Date Received: 09/14/15 17:30 Percent Solids: 89.8

Analyte	Result Qua	lifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND ND	0.24	0.046	mg/Kg	<u> </u>	09/16/15 08:21	09/17/15 02:36	1
PCB-1221	ND	0.24	0.046	mg/Kg	☼	09/16/15 08:21	09/17/15 02:36	1
PCB-1232	ND	0.24	0.046	mg/Kg	☼	09/16/15 08:21	09/17/15 02:36	1
PCB-1242	0.57	0.24	0.046	mg/Kg	φ.	09/16/15 08:21	09/17/15 02:36	1
PCB-1248	ND	0.24	0.046	mg/Kg	☼	09/16/15 08:21	09/17/15 02:36	1
PCB-1254	1.0	0.24	0.11	mg/Kg	☼	09/16/15 08:21	09/17/15 02:36	1
PCB-1260	0.39	0.24	0.11	mg/Kg	₩	09/16/15 08:21	09/17/15 02:36	1
PCB-1262	ND	0.24	0.11	mg/Kg	☼	09/16/15 08:21	09/17/15 02:36	1
PCB-1268	ND	0.24	0.11	mg/Kg	₽	09/16/15 08:21	09/17/15 02:36	1

TestAmerica Buffalo

Page 14 of 35

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87201-1

Client Sample ID: CSB-12 Lab Sample ID: 480-87201-19

Date Collected: 09/14/15 00:00
Date Received: 09/14/15 17:30

Matrix: Solid Percent Solids: 89.8

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	95		60 - 154	09/16/15 08:21	09/17/15 02:36	1
DCB Decachlorobiphenyl	89		65 - 174	09/16/15 08:21	09/17/15 02:36	1

Client Sample ID: ERB-4 Lab Sample ID: 480-87201-20

Date Collected: 09/14/15 00:00 Matrix: Water

Date Received: 09/14/15 17:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.50	0.18	ug/L		09/15/15 14:07	09/16/15 17:03	1
PCB-1221	ND		0.50	0.18	ug/L		09/15/15 14:07	09/16/15 17:03	1
PCB-1232	ND		0.50	0.18	ug/L		09/15/15 14:07	09/16/15 17:03	1
PCB-1242	ND		0.50	0.18	ug/L		09/15/15 14:07	09/16/15 17:03	1
PCB-1248	ND		0.50	0.18	ug/L		09/15/15 14:07	09/16/15 17:03	1
PCB-1254	ND		0.50	0.25	ug/L		09/15/15 14:07	09/16/15 17:03	1
PCB-1260	ND		0.50	0.25	ug/L		09/15/15 14:07	09/16/15 17:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	58		19 - 125				09/15/15 14:07	09/16/15 17:03	1
Tetrachloro-m-xylene	72		24 - 137				09/15/15 14:07	09/16/15 17:03	1

3

4

6

9

10

12

13

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid Prep Type: Total/NA

		 0.4.		nt Surrogate Recovery (Acceptance I
		TCX1	DCB1	
Lab Sample ID	Client Sample ID	(60-154)	(65-174)	
480-87201-1	CSW-44	87	79	
480-87201-2	CSW-45	94	90	
480-87201-3	CSW-46	80	68	
480-87201-4	CSW-47	83	68	
480-87201-5	CSW-48	89	79	
180-87201-6	CSW-49	98	102	
180-87201-7	CSW-50	97	111	
180-87201-8	CSW-51	90	75	
80-87201-9 - RE	CSW-52	92	85	
80-87201-9 DU - RE	CSW-52	93	82	
80-87201-10	CSW-53	82	75	
80-87201-11	CSW-54	90	122	
80-87201-12	CSW-55	78	76	
180-87201-13	CSW-56	99	102	
80-87201-14	CSW-57	102	101	
80-87201-15	CSW-58	96	98	
80-87201-16	CSW-59	85	75	
80-87201-17	CSB-10	92	85	
80-87201-17 MS	CSB-10	119	117	
80-87201-17 MSD	CSB-10	116	115	
80-87201-18	CSB-11	104	99	
80-87201-19	CSB-12	95	89	
_CS 480-263806/2-A	Lab Control Sample	125	122	
.CS 480-264056/2-A	Lab Control Sample	120	115	
MB 480-263806/1-A	Method Blank	103	104	
/IB 480-264056/1-A	Method Blank	104	104	

DCB = DCB Decachlorobiphenyl

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)					
		DCB1	TCX1					
Lab Sample ID	Client Sample ID	(19-125)	(24-137)					
480-87201-20	ERB-4	58	72					
LCS 480-263691/2-A	Lab Control Sample	34	71					
LCSD 480-263691/3-A	Lab Control Sample Dup	34	64					
MB 480-263691/1-A	Method Blank	60	69					

Surrogate Legend

DCB = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 480-263691/1-A **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA **Analysis Batch: 263878 Prep Batch: 263691**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.50	0.18	ug/L		09/15/15 14:07	09/16/15 13:36	1
PCB-1221	ND		0.50	0.18	ug/L		09/15/15 14:07	09/16/15 13:36	1
PCB-1232	ND		0.50	0.18	ug/L		09/15/15 14:07	09/16/15 13:36	1
PCB-1242	ND		0.50	0.18	ug/L		09/15/15 14:07	09/16/15 13:36	1
PCB-1248	ND		0.50	0.18	ug/L		09/15/15 14:07	09/16/15 13:36	1
PCB-1254	ND		0.50	0.25	ug/L		09/15/15 14:07	09/16/15 13:36	1
PCB-1260	ND		0.50	0.25	ug/L		09/15/15 14:07	09/16/15 13:36	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	69		24 - 137	09/15/15 14:07	09/16/15 13:36	1
DCB Decachlorobiphenyl	60		19 - 125	09/15/15 14:07	09/16/15 13:36	1

Lab Sample ID: LCS 480-263691/2-A **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA**

Analysis Batch: 263878 Prep Batch: 263691 LCS LCS %Rec. Snika

	Opino						/01 CC.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016	 4.00	3.59		ug/L		90	62 - 130	
PCB-1260	4.00	3.28		ug/L		82	56 - 123	

LCS LCS Surrogate %Recovery Qualifier Limits Tetrachloro-m-xylene 71 24 - 137 DCB Decachlorobiphenyl 34 19 - 125

Lab Sample ID: LCSD 480-263691/3-A **Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 263878

_	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
PCB-1016	4.00	3.16		ug/L		79	62 - 130	13	50
PCB-1260	4.00	3.20		ug/L		80	56 - 123	2	50

1 OB-1200			4.00	5.20	ug/L	00
	LCSD	LCSD				
Surrogate	%Recovery	Qualifier	Limits			
Tetrachloro-m-xylene	64		24 - 137			
DCB Decachlorobiphenyl	34		19 - 125			

Lab Sample ID: MB 480-263806/1-A **Client Sample ID: Method Blank**

Matrix: Solid

Analysis Batch: 263984 **Prep Batch: 263806** MB MB

	1410	1410							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.23	0.044	mg/Kg		09/16/15 08:17	09/16/15 19:26	1
PCB-1221	ND		0.23	0.044	mg/Kg		09/16/15 08:17	09/16/15 19:26	1
PCB-1232	ND		0.23	0.044	mg/Kg		09/16/15 08:17	09/16/15 19:26	1
PCB-1242	ND		0.23	0.044	mg/Kg		09/16/15 08:17	09/16/15 19:26	1
PCB-1248	ND		0.23	0.044	mg/Kg		09/16/15 08:17	09/16/15 19:26	1
PCB-1254	ND		0.23	0.11	mg/Kg		09/16/15 08:17	09/16/15 19:26	1
a control of the cont									

TestAmerica Buffalo

Prep Batch: 263691

Prep Type: Total/NA

Page 17 of 35

Client Sample ID: Lab Control Sample

Client Sample ID: CSB-10

Prep Type: Total/NA

Prep Type: Total/NA Prep Batch: 263806

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: MB 480-263806/1-A Client Sample ID: Method Blank **Matrix: Solid**

Analysis Batch: 263984

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1260	ND		0.23	0.11	mg/Kg		09/16/15 08:17	09/16/15 19:26	1
PCB-1262	ND		0.23	0.11	mg/Kg		09/16/15 08:17	09/16/15 19:26	1
PCB-1268	ND		0.23	0.11	mg/Kg		09/16/15 08:17	09/16/15 19:26	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
Tetrachloro-m-xylene	103		60 - 154	09/16/15 08:17 09/16/15 19:26	1
DCB Decachlorobiphenyl	104		65 - 174	09/16/15 08:17 09/16/15 19:26	1

Lab Sample ID: LCS 480-263806/2-A

Matrix: Solid Analysis Batch: 263984						Prep Type: Total/NA Prep Batch: 263806
	Spike	LCS	LCS			%Rec.
Analyte	Added	Result	Qualifier	Unit [%Rec	Limits
PCB-1016	2.30	2.74		mg/Kg	119	51 - 185
PCB-1260	2.30	3.09		mg/Kg	134	61 ₋ 184

LCS LCS %Recovery Qualifier Surrogate Limits Tetrachloro-m-xylene 60 - 154 125 DCB Decachlorobiphenyl 122 65 - 174

Lab Sample ID: 480-87201-17 MS

Matrix: Solid

Analysis Batch: 263984	Sample	Sample	Spike	MS	MS				Prep Bato %Rec.	h: 263806
Analyte	•	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016	ND		2.98	3.34		mg/Kg		112	50 - 177	
PCB-1260	ND		2.98	3.71		mg/Kg	≎	125	33 - 200	

MS MS Surrogate %Recovery Qualifier Limits Tetrachloro-m-xylene 119 60 - 154 DCB Decachlorobiphenyl 117 65 - 174

Lab Sample ID: 480-87201-17 MSD

PCB-1260

Matrix: Solid									Prep Ty	pe: Tot	al/NA
Analysis Batch: 263984									Prep Ba	atch: 20	63806
_	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
PCB-1016	ND		3.35	3.91		mg/Kg	<u></u>	117	50 - 177	15	50

4.28

mg/Kg

128

33 - 200

3.35

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	116		60 - 154
DCB Decachlorobiphenyl	115		65 - 174

ND

TestAmerica Buffalo

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: MB 480-264056/1-A

Matrix: Solid

Analysis Batch: 264131

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 264056

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.22	0.043	mg/Kg		09/17/15 07:56	09/17/15 16:50	1
PCB-1221	ND		0.22	0.043	mg/Kg		09/17/15 07:56	09/17/15 16:50	1
PCB-1232	ND		0.22	0.043	mg/Kg		09/17/15 07:56	09/17/15 16:50	1
PCB-1242	ND		0.22	0.043	mg/Kg		09/17/15 07:56	09/17/15 16:50	1
PCB-1248	ND		0.22	0.043	mg/Kg		09/17/15 07:56	09/17/15 16:50	1
PCB-1254	ND		0.22	0.10	mg/Kg		09/17/15 07:56	09/17/15 16:50	1
PCB-1260	ND		0.22	0.10	mg/Kg		09/17/15 07:56	09/17/15 16:50	1
PCB-1262	ND		0.22	0.10	mg/Kg		09/17/15 07:56	09/17/15 16:50	1
PCB-1268	ND		0.22	0.10	mg/Kg		09/17/15 07:56	09/17/15 16:50	1
The state of the s									

MB MB

Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	104		60 - 154
DCB Decachlorobiphenyl	104		65 - 174

Sample Sample

ND

Result Qualifier

09/17/15 07:56 09/17/15 16:50 **Client Sample ID: Lab Control Sample**

09/17/15 07:56 09/17/15 16:50

Analyzed

Prepared

Prep Type: Total/NA Prep Batch: 264056

Analysis Batch: 264131

Matrix: Solid

Lab Sample ID: LCS 480-264056/2-A

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits PCB-1016 51 - 185 1.79 2.02 mg/Kg 113 PCB-1260 1.79 2.28 mg/Kg 127 61 - 184

LCS LCS Surrogate %Recovery Qualifier Limits 60 - 154 Tetrachloro-m-xylene 120 DCB Decachlorobiphenyl 115 65 - 174

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography - RE

Lab Sample ID: 480-87201-9 DU

Matrix: Solid

PCB-1016 - RE

Analyte

Analysis Batch: 264131

Client Sample ID: CSW-52 Prep Type: Total/NA Prep Batch: 264056

> **RPD** RPD Limit NC

PCB-1221 - RE	ND	ND	mg/Kg	₩.	NC
PCB-1232 - RE	ND	ND	mg/Kg	☼	NC
PCB-1242 - RE	ND	ND	mg/Kg	₩.	NC
PCB-1248 - RE	1.7	1.65	mg/Kg	₩.	3
PCB-1254 - RE	ND	ND	mg/Kg	☼	NC
PCB-1260 - RE	ND	ND	mg/Kg	₩.	NC 50
PCB-1262 - RE	ND	ND	mg/Kg	₩.	NC
PCB-1268 - RE	ND	ND	mg/Kg	₩	NC

DU DU

ND

Result Qualifier

Unit

mg/Kg

☼

	DU	DU	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene - RE	93		60 - 154
DCB Decachlorobinhenyl - RF	82		65 - 174

TestAmerica Buffalo

Dil Fac

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

GC Semi VOA

Prep	Batch:	263691
------	--------	--------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
480-87201-20	ERB-4	Total/NA	Water	3510C
LCS 480-263691/2-A	Lab Control Sample	Total/NA	Water	3510C
LCSD 480-263691/3-A	Lab Control Sample Dup	Total/NA	Water	3510C
MB 480-263691/1-A	Method Blank	Total/NA	Water	3510C

Prep Batch: 263806

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87201-1	CSW-44	Total/NA	Solid	3550C	_
480-87201-2	CSW-45	Total/NA	Solid	3550C	
480-87201-3	CSW-46	Total/NA	Solid	3550C	
480-87201-4	CSW-47	Total/NA	Solid	3550C	
480-87201-5	CSW-48	Total/NA	Solid	3550C	
480-87201-6	CSW-49	Total/NA	Solid	3550C	
480-87201-7	CSW-50	Total/NA	Solid	3550C	
480-87201-8	CSW-51	Total/NA	Solid	3550C	
480-87201-10	CSW-53	Total/NA	Solid	3550C	
480-87201-11	CSW-54	Total/NA	Solid	3550C	
480-87201-12	CSW-55	Total/NA	Solid	3550C	
480-87201-13	CSW-56	Total/NA	Solid	3550C	
480-87201-14	CSW-57	Total/NA	Solid	3550C	
480-87201-15	CSW-58	Total/NA	Solid	3550C	
480-87201-16	CSW-59	Total/NA	Solid	3550C	
480-87201-17	CSB-10	Total/NA	Solid	3550C	
480-87201-17 MS	CSB-10	Total/NA	Solid	3550C	
480-87201-17 MSD	CSB-10	Total/NA	Solid	3550C	
480-87201-18	CSB-11	Total/NA	Solid	3550C	
480-87201-19	CSB-12	Total/NA	Solid	3550C	
LCS 480-263806/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-263806/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 263878

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87201-20	ERB-4	Total/NA	Water	8082A	263691
LCS 480-263691/2-A	Lab Control Sample	Total/NA	Water	8082A	263691
LCSD 480-263691/3-A	Lab Control Sample Dup	Total/NA	Water	8082A	263691
MB 480-263691/1-A	Method Blank	Total/NA	Water	8082A	263691

Analysis Batch: 263984

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87201-1	CSW-44	Total/NA	Solid	8082A	263806
480-87201-2	CSW-45	Total/NA	Solid	8082A	263806
480-87201-3	CSW-46	Total/NA	Solid	8082A	263806
480-87201-4	CSW-47	Total/NA	Solid	8082A	263806
480-87201-5	CSW-48	Total/NA	Solid	8082A	263806
480-87201-6	CSW-49	Total/NA	Solid	8082A	263806
480-87201-7	CSW-50	Total/NA	Solid	8082A	263806
480-87201-8	CSW-51	Total/NA	Solid	8082A	263806
480-87201-10	CSW-53	Total/NA	Solid	8082A	263806
480-87201-11	CSW-54	Total/NA	Solid	8082A	263806
480-87201-12	CSW-55	Total/NA	Solid	8082A	263806
480-87201-13	CSW-56	Total/NA	Solid	8082A	263806

TestAmerica Buffalo

9/18/2015

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

GC Semi VOA (Continued)

Analysis Batch: 263984 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87201-14	CSW-57	Total/NA	Solid	8082A	263806
480-87201-15	CSW-58	Total/NA	Solid	8082A	263806
480-87201-16	CSW-59	Total/NA	Solid	8082A	263806
480-87201-17	CSB-10	Total/NA	Solid	8082A	263806
480-87201-17 MS	CSB-10	Total/NA	Solid	8082A	263806
480-87201-17 MSD	CSB-10	Total/NA	Solid	8082A	263806
480-87201-18	CSB-11	Total/NA	Solid	8082A	263806
480-87201-19	CSB-12	Total/NA	Solid	8082A	263806
LCS 480-263806/2-A	Lab Control Sample	Total/NA	Solid	8082A	263806
MB 480-263806/1-A	Method Blank	Total/NA	Solid	8082A	263806

Prep Batch: 264056

Lab Sample	ID Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87201-9	- RE CSW-52	Total/NA	Solid	3550C	
480-87201-9	DU - RE CSW-52	Total/NA	Solid	3550C	
LCS 480-264	056/2-A Lab Control Sample	Total/NA	Solid	3550C	
MB 480-2640	56/1-A Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 264131

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87201-9 - RE	CSW-52	Total/NA	Solid	8082A	264056
480-87201-9 DU - RE	CSW-52	Total/NA	Solid	8082A	264056
LCS 480-264056/2-A	Lab Control Sample	Total/NA	Solid	8082A	264056
MB 480-264056/1-A	Method Blank	Total/NA	Solid	8082A	264056

General Chemistry

Analysis Batch: 263547

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87201-1	CSW-44	Total/NA	Solid	Moisture	
480-87201-2	CSW-45	Total/NA	Solid	Moisture	
480-87201-3	CSW-46	Total/NA	Solid	Moisture	
180-87201-4	CSW-47	Total/NA	Solid	Moisture	
480-87201-5	CSW-48	Total/NA	Solid	Moisture	
480-87201-6	CSW-49	Total/NA	Solid	Moisture	
480-87201-7	CSW-50	Total/NA	Solid	Moisture	
180-87201-8	CSW-51	Total/NA	Solid	Moisture	
180-87201-9	CSW-52	Total/NA	Solid	Moisture	
180-87201-9 DU	CSW-52	Total/NA	Solid	Moisture	
180-87201-10	CSW-53	Total/NA	Solid	Moisture	
80-87201-11	CSW-54	Total/NA	Solid	Moisture	
180-87201-12	CSW-55	Total/NA	Solid	Moisture	
180-87201-13	CSW-56	Total/NA	Solid	Moisture	
180-87201-14	CSW-57	Total/NA	Solid	Moisture	
180-87201-15	CSW-58	Total/NA	Solid	Moisture	
180-87201-16	CSW-59	Total/NA	Solid	Moisture	
80-87201-17	CSB-10	Total/NA	Solid	Moisture	
180-87201-17 MS	CSB-10	Total/NA	Solid	Moisture	
80-87201-17 MSD	CSB-10	Total/NA	Solid	Moisture	
480-87201-18	CSB-11	Total/NA	Solid	Moisture	

TestAmerica Buffalo

Page 21 of 35

QC Association Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87201-1

General Chemistry (Continued)

Analysis Batch: 263547 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87201-19	CSB-12	Total/NA	Solid	Moisture	

6

Δ

4

6

Q

9

10

4.0

13

14

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Lab Sample ID: 480-87201-1

Matrix: Solid

Date Collected: 09/14/15 00:00 Date Received: 09/14/15 17:30

Client Sample ID: CSW-44

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture			263547	09/15/15 05:21	CSW	TAL BUF

Client Sample ID: CSW-44 Lab Sample ID: 480-87201-1 **Matrix: Solid**

Date Collected: 09/14/15 00:00 Date Received: 09/14/15 17:30 Percent Solids: 83.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			263806	09/16/15 08:17	TRG	TAL BUF
Total/NA	Analysis	8082A		1	263984	09/16/15 20:46	KS	TAL BUF

Client Sample ID: CSW-45 Lab Sample ID: 480-87201-2

Date Collected: 09/14/15 00:00 **Matrix: Solid**

Date Received: 09/14/15 17:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture			263547	09/15/15 05:21	CSW	TAL BUF

Client Sample ID: CSW-45 Lab Sample ID: 480-87201-2

Date Collected: 09/14/15 00:00 Matrix: Solid Date Received: 09/14/15 17:30 Percent Solids: 86.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			263806	09/16/15 08:17	TRG	TAL BUF
Total/NA	Analysis	8082A		1	263984	09/16/15 21:02	KS	TAL BUF

Client Sample ID: CSW-46 Lab Sample ID: 480-87201-3 **Matrix: Solid**

Date Collected: 09/14/15 00:00 Date Received: 09/14/15 17:30

_								
	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture			263547	09/15/15 05:21	CSW	TAL BUF

Client Sample ID: CSW-46 Lab Sample ID: 480-87201-3

Date Collected: 09/14/15 00:00 **Matrix: Solid** Date Received: 09/14/15 17:30 Percent Solids: 78.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			263806	09/16/15 08:17	TRG	TAL BUF
Total/NA	Analysis	8082A		1	263984	09/16/15 21:17	KS	TAL BUF

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Lab Sample ID: 480-87201-4

Matrix: Solid

Client Sample ID: CSW-47 Date Collected: 09/14/15 00:00 Date Received: 09/14/15 17:30

Batch Dilution Batch Batch **Prepared** Prep Type Type Method Run **Factor** Number or Analyzed Analyst Total/NA Analysis Moisture 263547 09/15/15 05:21 CSW TAL BUF

Lab Sample ID: 480-87201-4

Client Sample ID: CSW-47 Date Collected: 09/14/15 00:00 Matrix: Solid Date Received: 09/14/15 17:30

Percent Solids: 77.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			263806	09/16/15 08:17	TRG	TAL BUF
Total/NA	Analysis	8082A		1	263984	09/16/15 21:34	KS	TAL BUF

Client Sample ID: CSW-48 Lab Sample ID: 480-87201-5 Date Collected: 09/14/15 00:00

Matrix: Solid

Date Received: 09/14/15 17:30

Batch Batch Dilution Batch Prepared **Prep Type** Method Run **Factor** Number or Analyzed Analyst Type Lab 263547 09/15/15 05:21 CSW TAL BUF Total/NA Analysis Moisture

Client Sample ID: CSW-48 Lab Sample ID: 480-87201-5

Date Collected: 09/14/15 00:00

Matrix: Solid

Date Received: 09/14/15 17:30 Percent Solids: 76.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			263806	09/16/15 08:17	TRG	TAL BUF
Total/NA	Analysis	8082A		1	263984	09/16/15 21:49	KS	TAL BUF

Client Sample ID: CSW-49 Lab Sample ID: 480-87201-6

Date Collected: 09/14/15 00:00 **Matrix: Solid**

Date Received: 09/14/15 17:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture			263547	09/15/15 05:21	CSW	TAL BUF

Client Sample ID: CSW-49 Lab Sample ID: 480-87201-6

Date Collected: 09/14/15 00:00 Matrix: Solid

Date Received: 09/14/15 17:30 Percent Solids: 93.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			263806	09/16/15 08:17	TRG	TAL BUF
Total/NA	Analysis	8082A		1	263984	09/16/15 22:37	KS	TAL BUF

Matrix: Solid

Matrix: Solid

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: CSW-50 Lab Sample ID: 480-87201-7

Date Collected: 09/14/15 00:00 **Matrix: Solid**

Date Received: 09/14/15 17:30

Dilution Batch Batch Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Total/NA Analysis Moisture 263547 09/15/15 05:21 CSW TAL BUF

Client Sample ID: CSW-50 Lab Sample ID: 480-87201-7

Date Collected: 09/14/15 00:00

Matrix: Solid Date Received: 09/14/15 17:30 Percent Solids: 85.8

Batch Batch Dilution **Batch Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab 3550C 263806 09/16/15 08:17 TRG TAL BUF Total/NA Prep Total/NA Analysis 8082A 10 263984 09/16/15 22:53 KS TAL BUF

Client Sample ID: CSW-51 Lab Sample ID: 480-87201-8

Date Collected: 09/14/15 00:00

Date Received: 09/14/15 17:30

Batch Batch Dilution **Batch** Prepared Method Run Factor Number or Analyzed Analyst **Prep Type** Type Lab 09/15/15 05:21 CSW TAL BUF Total/NA Moisture 263547 Analysis

Client Sample ID: CSW-51 Lab Sample ID: 480-87201-8

Date Collected: 09/14/15 00:00

Date Received: 09/14/15 17:30 Percent Solids: 82.3

Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Prep Total/NA 3550C 263806 09/16/15 08:17 TRG TAL BUF Total/NA 8082A 263984 09/16/15 23:09 KS TAL BUF Analysis 1

Client Sample ID: CSW-52 Lab Sample ID: 480-87201-9

Date Collected: 09/14/15 00:00

Matrix: Solid Date Received: 09/14/15 17:30

Dilution **Batch** Batch Batch Prepared Prep Type Method Factor Number or Analyzed Type Run **Analyst** Lab 263547 09/15/15 05:21 TAL BUF Total/NA Analysis Moisture CSW

Client Sample ID: CSW-52 Lab Sample ID: 480-87201-9

Date Collected: 09/14/15 00:00 **Matrix: Solid**

Date Received: 09/14/15 17:30 Percent Solids: 78.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C	RE		264056	09/17/15 12:18	RMZ	TAL BUF
Total/NA	Analysis	8082A	RE	1	264131	09/17/15 18:10	KS	TAL BUF

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Lab Sample ID: 480-87201-10

. Matrix: Solid

Date Collected: 09/14/15 00:00 Date Received: 09/14/15 17:30

Client Sample ID: CSW-53

Batch Dilution Batch Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst TAL BUF Total/NA Analysis Moisture 263547 09/15/15 05:21 CSW

Client Sample ID: CSW-53 Lab Sample ID: 480-87201-10

 Date Collected: 09/14/15 00:00
 Matrix: Solid

 Date Received: 09/14/15 17:30
 Percent Solids: 89.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			263806	09/16/15 08:17	TRG	TAL BUF
Total/NA	Analysis	8082A		1	263984	09/16/15 23:57	KS	TAL BUF

Client Sample ID: CSW-54 Lab Sample ID: 480-87201-11

Date Collected: 09/14/15 00:00 Matrix: Solid

Date Received: 09/14/15 17:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture			263547	09/15/15 05:21	CSW	TAL BUF

Client Sample ID: CSW-54 Lab Sample ID: 480-87201-11

 Date Collected: 09/14/15 00:00
 Matrix: Solid

 Date Received: 09/14/15 17:30
 Percent Solids: 90.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			263806	09/16/15 08:17	TRG	TAL BUF
Total/NA	Analysis	8082A		2	263984	09/17/15 00:13	KS	TAL BUF

Client Sample ID: CSW-55 Lab Sample ID: 480-87201-12

Date Collected: 09/14/15 00:00 Matrix: Solid
Date Received: 09/14/15 17:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture			263547	09/15/15 05:21	CSW	TAL BUF

Client Sample ID: CSW-55 Lab Sample ID: 480-87201-12

 Date Collected: 09/14/15 00:00
 Matrix: Solid

 Date Received: 09/14/15 17:30
 Percent Solids: 79.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			263806	09/16/15 08:17	TRG	TAL BUF
Total/NA	Analysis	8082A		1	263984	09/17/15 00:29	KS	TAL BUF

TestAmerica Job ID: 480-87201-1

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Client Sample ID: CSW-56 Lab Sample ID: 480-87201-13 Date Collected: 09/14/15 00:00

Matrix: Solid

Date Received: 09/14/15 17:30

Date Received: 09/14/15 17:30

Dilution Batch Batch Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Total/NA Analysis Moisture 263547 09/15/15 05:21 CSW TAL BUF

Lab Sample ID: 480-87201-13

Client Sample ID: CSW-56 Date Collected: 09/14/15 00:00 Matrix: Solid

Percent Solids: 85.9

Batch Batch Dilution **Batch Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab 3550C 263806 09/16/15 08:17 TRG TAL BUF Total/NA Prep Total/NA Analysis 8082A 1 263984 09/17/15 00:45 KS TAL BUF

Client Sample ID: CSW-57 Lab Sample ID: 480-87201-14

Matrix: Solid

Date Collected: 09/14/15 00:00 Date Received: 09/14/15 17:30

Batch Batch Dilution **Batch** Prepared Method Run Factor Number or Analyzed Analyst **Prep Type** Type Lab 09/15/15 05:21 CSW TAL BUF Total/NA Analysis Moisture 263547

Client Sample ID: CSW-57 Lab Sample ID: 480-87201-14

Date Collected: 09/14/15 00:00

Matrix: Solid Date Received: 09/14/15 17:30 Percent Solids: 89.8

Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Prep Total/NA 3550C 263806 09/16/15 08:17 TRG TAL BUF Total/NA 8082A 263984 09/17/15 01:00 KS TAL BUF Analysis 1

Client Sample ID: CSW-58 Lab Sample ID: 480-87201-15

Date Collected: 09/14/15 00:00 Matrix: Solid

Date Received: 09/14/15 17:30

Dilution Batch **Batch** Batch Prepared Prep Type Method Run Factor Number or Analyzed Type **Analyst** Lab 263547 09/15/15 05:21 TAL BUF Total/NA Analysis Moisture CSW

Client Sample ID: CSW-58 Lab Sample ID: 480-87201-15

Date Collected: 09/14/15 00:00 **Matrix: Solid**

Date Received: 09/14/15 17:30 Percent Solids: 86.0

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			263806	09/16/15 08:17	TRG	TAL BUF
Total/NA	Analysis	8082A		2	263984	09/17/15 01:48	KS	TAL BUF

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: CSW-59 Lab Sample ID: 480-87201-16 Date Collected: 09/14/15 00:00

Matrix: Solid

Date Received: 09/14/15 17:30

Dilution Batch Batch Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Total/NA Analysis Moisture 263547 09/15/15 05:21 CSW TAL BUF

Client Sample ID: CSW-59 Lab Sample ID: 480-87201-16

Date Collected: 09/14/15 00:00 Matrix: Solid Date Received: 09/14/15 17:30

Percent Solids: 87.9

Batch Batch Dilution **Batch Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab 3550C 263806 09/16/15 08:17 TRG TAL BUF Total/NA Prep Total/NA Analysis 8082A 1 263984 09/17/15 02:04 KS TAL BUF

Client Sample ID: CSB-10 Lab Sample ID: 480-87201-17

Date Collected: 09/14/15 00:00 Matrix: Solid

Date Received: 09/14/15 17:30

Batch Batch Dilution **Batch** Prepared Method Run Factor Number or Analyzed Analyst **Prep Type** Type Lab 09/15/15 05:21 CSW TAL BUF Total/NA Moisture 263547 Analysis

Client Sample ID: CSB-10 Lab Sample ID: 480-87201-17

Date Collected: 09/14/15 00:00 **Matrix: Solid** Date Received: 09/14/15 17:30 Percent Solids: 74.3

Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Prep Total/NA 3550C 263806 09/16/15 08:17 TRG TAL BUF

Client Sample ID: CSB-11 Lab Sample ID: 480-87201-18

1

263984 09/16/15 20:30 KS

TAL BUF

Date Collected: 09/14/15 00:00 Matrix: Solid

Date Received: 09/14/15 17:30

8082A

Analysis

Total/NA

Dilution **Batch** Batch Batch Prepared Prep Type Method Factor Number or Analyzed Type Run **Analyst** Lab 263547 09/15/15 05:21 TAL BUF Total/NA Analysis Moisture CSW

Client Sample ID: CSB-11 Lab Sample ID: 480-87201-18

Date Collected: 09/14/15 00:00 **Matrix: Solid**

Date Received: 09/14/15 17:30 Percent Solids: 91.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			263806	09/16/15 08:17	TRG	TAL BUF
Total/NA	Analysis	8082A		1	263984	09/17/15 02:20	KS	TAL BUF

Lab Chronicle

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: CSB-12

TestAmerica Job ID: 480-87201-1

Lab Sample ID: 480-87201-19

Matrix: Solid

Date Collected: 09/14/15 00:00
Date Received: 09/14/15 17:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	263547	09/15/15 05:21	CSW	TAL BUF

Client Sample ID: CSB-12 Lab Sample ID: 480-87201-19

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			263806	09/16/15 08:21	TRG	TAL BUF
Total/NA	Analysis	8082A		1	263984	09/17/15 02:36	KS	TAL BUF

Client Sample ID: ERB-4 Lab Sample ID: 480-87201-20

Date Collected: 09/14/15 00:00 Matrix: Water

Date Received: 09/14/15 17:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			263691	09/15/15 14:07	CPH	TAL BUF
Total/NA	Analysis	8082A		1	263878	09/16/15 17:03	KS	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

2

3

4

7

9

11

14

14

Certification Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87201-1

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date
New York	NELAP		2	10026	03-31-16
The following analytes	s are included in this repo	rt, but certification is	not offered by the go	overning authority:	
The following analytes Analysis Method	s are included in this repo Prep Method	rt, but certification is Matrix	not offered by the go Analyt	,	
,	·	·	Analyt	,	

3

4

5

6

8

10

13

14

Method Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87201-1

Method	Method Description	Protocol	Laboratory
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL BUF
Moisture	Percent Moisture	EPA	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

J

4

5

0

9

44

12

14

Sample Summary

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

TestAmerica Job ID: 480-87201-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-87201-1	CSW-44	Solid	09/14/15 00:00	09/14/15 17:30
480-87201-2	CSW-45	Solid	09/14/15 00:00	09/14/15 17:30
480-87201-3	CSW-46	Solid	09/14/15 00:00	09/14/15 17:30
480-87201-4	CSW-47	Solid	09/14/15 00:00	09/14/15 17:30
480-87201-5	CSW-48	Solid	09/14/15 00:00	09/14/15 17:30
480-87201-6	CSW-49	Solid	09/14/15 00:00	09/14/15 17:30
480-87201-7	CSW-50	Solid	09/14/15 00:00	09/14/15 17:30
480-87201-8	CSW-51	Solid	09/14/15 00:00	09/14/15 17:30
480-87201-9	CSW-52	Solid	09/14/15 00:00	09/14/15 17:30
480-87201-10	CSW-53	Solid	09/14/15 00:00	09/14/15 17:30
480-87201-11	CSW-54	Solid	09/14/15 00:00	09/14/15 17:30
480-87201-12	CSW-55	Solid	09/14/15 00:00	09/14/15 17:30
480-87201-13	CSW-56	Solid	09/14/15 00:00	09/14/15 17:30
480-87201-14	CSW-57	Solid	09/14/15 00:00	09/14/15 17:30
480-87201-15	CSW-58	Solid	09/14/15 00:00	09/14/15 17:30
480-87201-16	CSW-59	Solid	09/14/15 00:00	09/14/15 17:30
480-87201-17	CSB-10	Solid	09/14/15 00:00	09/14/15 17:30
480-87201-18	CSB-11	Solid	09/14/15 00:00	09/14/15 17:30
480-87201-19	CSB-12	Solid	09/14/15 00:00	09/14/15 17:30
480-87201-20	ERB-4	Water	09/14/15 00:00	09/14/15 17:30

Custody Record Chain of

TAL-4124 (1007)

Temperature on Receipt

No X Drinking Water? Yes□

ていこうなくせつし

TAL TESTING	
TAL TES	
SEADER IN ENVIRONMENTAL	
E E	

Special Instructions/ Conditions of Receipt Ŋ 3 (A fee may be assessed if samples are retained longer than 1 month) Chain of Custody Number 264472 Time ŏ 20 Field Cat 321日十二7 Page Date Ser 14, 20 18 480-87201 Chain of Custody Analysis (Attach list if more space is needed) Months Date 103 P 120 C/0 S Archive For __ *শ্ব*ঠন 147 <> > OC Requirements (Specify) NOANZ HOBN <u>マ</u> Containers & Preservatives 🔀 Disposal By Lab HOBN M. Devo 1. Received By 2. Received By 3. Received By IDH Telephone Number (Area Code)/Fax Number EONH Dharma DOSZH seudun ☐ Retum To Client DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy Sample Disposal C 110S > Time Тіте Matrix Carrier/Waybill Number Site Confect R + Allen рөд Project Manager *sпоель*), 716 416 Other_ Pate 9/14/ П Ипкломп Date Time 🗌 21 Days Sep 14,2015 ☐ Poison B Date Zip Code you Environmental Grass ☐ 14 Days 44 Rolling Hills D Sample I.D. No. and Description (Containers for each sample may be combined on one line) Skin Irritant 7 Days 132 Dimeens St ContractPurchase Operations No. 400 ころ逐ーチャ CSN 145 Non-Hazard 🔲 Flammable 55W146 いろびし 49 CSW-47 5W150 CSW-52 CSW-54 Project Name and Location (State) CSW-53 Orchard Park CSW-SS 15-MSD 24 Hours 48 Hours Possible Hazard Identification Tum Around Time Required 125 1. Relinquished By 2. Relinquished By Page 33 of 35

Custody Record Chain of

Temperature on Receipt

Drinking Water? Yes□ No⊠

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

CamerWaybull Number Matrix Containers & Special Instructions/ Conditions of Receipt And Matrix Conditions of Receipt Cat B Ms/ MsP	South Sendul Sen	Containers & Preservatives & P	Containers & Preservatives & P	Comtainers & Containers & Conta	Containers & Conta	Containers & Preservatives Pre	Containers & Containers (Specify) CC Requirements (Specify) CC Received By Lab	Contentes & Contes
S S S S S S S S S S	TOP	TOTAL SOLUTION SOLUTI	10 10 10 10 10 10 10 10	Sendary Sendar	As Disposal By Lab Archive For Months	B Disposal By Lab Archive For Months 1. Received By Months	A Disposal By Lab Archive For Months A Bookwood By Lab Months 2. Received By 2. Received By 3. Contract By 4. Contract By	B Disposal By Lab Archive For Months C. Received By 3. Received By 3. Received By 3. Received By 3. Received By
SW	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>					
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	3	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	A Discovered But an		S Disposal By Lab		
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	A Discovered But ab		B Disposal By Lab Archive For Months CRequirements (Specify)	B Disposal By Lab Archive For Months OC Requirements (Specify) 1. Received By	A Disposal By Lat
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	A Discovered But ab		A Disposal By Lab Archive For Months OC Requirements (Specify) 1. Fleceived By MAN KOW	A Disposal By Lab Archive For Months AC Requirements (Specity) 1. Received By	B Disposal By Lab Archive For Months OC Requirements (Specify) 1. Received By 2. Received By 3. Received By 3. Received By
WS W	SW	SW	SW	A Discoved BV ab		B Disposal By Lab	B Disposal By Lab	B Disposal By Lab Archive For Months OC Requirements (Specify) 1. Received By 2. Received By 3. Received By
	>>> 	>>>		A Discoved BV Jah		B Disposal By Lab Archive For Months CRequirements (Specify)	B Disposal By Lab Archive For Months OC Requirements (Specify) A Received By	A Disposal By Lab Archive For Months OC Requirements (Specify) 1. Received By 2. Received By 3. Received By 3. Received By
7			>	A Discoved BV ab Archive For Months	A Disposal By Lab	A Disposal By Lab Archive For Months OC Requirements (Specify) 1. Received By MAN KOW	B Disposal By Lab Archive For Months OC Requirements (Specify) 1. Received By	B Disposal By Lab Archive For Months OC Requirements (Specify) 1. Received By 2. Received By 3. Received By
		>		A Discosal BV 20	S Disposal By Lab Archive For Months	B Disposal By Lab Archive For Months OC Requirements (Specify) 1. Received By MAN KOW	B Disposal By Lab Archive For Months OC Requirements (Specify) 1. Fleceived By 2. Received By	B Disposal By Lab Archive For Months OC Requirements (Specify) 1. Received By 2. Received By 3. Received By 3. Received By
				R Dismosal Bu / ab Authino For Months	RS Disposal By Lab Archive For Months OC Requirements (Specify)	B Disposal By Lab Archive For Months OC Requirements (Specify) - 7. Received By MON KOV	B Disposal By Lab Archive For Months OC Requirements (Specify) 1. Received By 2. Received By	B Disposal By Lab Archive For Months OC Requirements (Specify) 1. Received By 2. Received By 3. Received By

DISTRIBUTION: WHITE- Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

Login Sample Receipt Checklist

Client: Iyer Environmental Group, LLC

Job Number: 480-87201-1

Login Number: 87201 List Source: TestAmerica Buffalo

List Number: 1

Creator: Williams, Christopher S

Creator. Williams, Christopher 3		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	Sample times not listed
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	False	Sample times not listed on labels
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	False	Additional containers for MS/MSD not provided
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	IYER
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

2

4

0

10

12

19

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-87201-2 Client Project/Site: 132 Dingens

Revision: 1

For:

Iyer Environmental Group, LLC 44 Rolling Hills Drive Orchard Park, New York 14127

Attn: Dr. Dharmarajan R Iyer

Melisso Deyo

Authorized for release by: 9/29/2015 1:18:18 PM

Melissa Deyo, Project Manager I (716)504-9874

melissa.deyo@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	8
Surrogate Summary	18
QC Sample Results	19
QC Association Summary	24
Lab Chronicle	26
Certification Summary	28
Method Summary	29
Sample Summary	30
Chain of Custody	31
Receipt Checklists	33

4

6

8

9

11

12

.

Definitions/Glossary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87201-2

Qualifiers

GC/MS Semi VOA

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
F1	MS and/or MSD Recovery is outside acceptance limits.
F2	MS/MSD RPD exceeds control limits
Χ	Surrogate is outside control limits
Metals	

Qualifier	Qualifier Description
F2	MS/MSD RPD exceeds control limits
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.

Glossary

NC

ND

PQL

QC **RER**

RL

RPD

TEF

TEQ

Not Calculated

Quality Control

Relative error ratio

Practical Quantitation Limit

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Not detected at the reporting limit (or MDL or EDL if shown)

Relative Percent Difference, a measure of the relative difference between two points

Reporting Limit or Requested Limit (Radiochemistry)

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)

Case Narrative

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87201-2

Job ID: 480-87201-2

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-87201-2

Revision I

This report was revised to add Total Lead to the following sample:CSW-48 (480-87201-5). and to add SVOC analysis to all the samples.

Receipt

The samples were received on 9/14/2015 5:30 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 21.7° C.

Receipt Exceptions

Sample times not listed on COC or labels. Entered a time of 0000 for login.

GC/MS Semi VOA

Method(s) 8270D: The continuing calibration verification (CCV) associated with batch 480-265604 recovered above the upper control limit for 2,2'-oxybis[1-chloropropane]. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: CSW-44 (480-87201-1), CSW-45 (480-87201-2), CSW-46 (480-87201-3), CSW-47 (480-87201-4), CSW-48 (480-87201-5), CSB-10 (480-87201-17, CSB-10 (480-87201-17[MS]) and CSB-10 (480-87201-17[MSD]).

Method(s) 8270D: The following samples was diluted due to the nature of the sample matrix: CSW-44 (480-87201-1), CSW-45 (480-87201-2), CSW-46 (480-87201-3), CSW-47 (480-87201-4), CSW-48 (480-87201-5), CSB-10 (480-87201-17), CSB-10 (480-87201-17[MS]) and CSB-10 (480-87201-17[MSD]). As such, surrogate and spike recoveries are below the calibration range or are not reported, and elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method(s) 3550C: Elevated reporting limits are provided for the following samples due to insufficient sample provided for preparation: CSB-10 (480-87201-17[MS]) and CSB-10 (480-87201-17[MSD]).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

7

6

_

10

10

13

16

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Client Sample ID: CSW-44

Lab Sample ID: 480-87201-1

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Anthracene	2200 J	4000	980	ug/Kg	20	₩	8270D	Total/NA
Benzo[a]anthracene	9800	4000	400	ug/Kg	20	₩	8270D	Total/NA
Benzo[a]pyrene	7600	4000	580	ug/Kg	20	₩	8270D	Total/NA
Benzo[b]fluoranthene	11000	4000	630	ug/Kg	20	₽	8270D	Total/NA
Benzo[g,h,i]perylene	6000	4000	420	ug/Kg	20	₩	8270D	Total/NA
Benzo[k]fluoranthene	4100	4000	510	ug/Kg	20	₩	8270D	Total/NA
Carbazole	860 J	4000	470	ug/Kg	20	₩	8270D	Total/NA
Chrysene	10000	4000	890	ug/Kg	20	₩	8270D	Total/NA
Fluoranthene	20000	4000	420	ug/Kg	20	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	5200	4000	490	ug/Kg	20	₩	8270D	Total/NA
Phenanthrene	11000	4000	580	ug/Kg	20	₩	8270D	Total/NA
Pyrene	17000	4000	470	ug/Kg	20	₩	8270D	Total/NA
Lead	5200	1.2	0.28	mg/Kg	1	₩.	6010C	Total/NA

Client Sample ID: CSW-45 Lab Sample ID: 480-87201-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acenaphthene	740	J	3800	560	ug/Kg	20	₩	8270D	Total/NA
Anthracene	1800	J	3800	940	ug/Kg	20	₩	8270D	Total/NA
Benzo[a]anthracene	5800		3800	380	ug/Kg	20	₩	8270D	Total/NA
Benzo[a]pyrene	4900		3800	560	ug/Kg	20		8270D	Total/NA
Benzo[b]fluoranthene	5800		3800	610	ug/Kg	20	₩	8270D	Total/NA
Benzo[g,h,i]perylene	4000		3800	400	ug/Kg	20	₩	8270D	Total/NA
Benzo[k]fluoranthene	3200	J	3800	490	ug/Kg	20	₩	8270D	Total/NA
Carbazole	820	J	3800	450	ug/Kg	20	₽	8270D	Total/NA
Chrysene	5900		3800	850	ug/Kg	20	₩	8270D	Total/NA
Fluoranthene	12000		3800	400	ug/Kg	20	æ	8270D	Total/NA
Fluorene	870	J	3800	450	ug/Kg	20	₽	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	3400	J	3800	470	ug/Kg	20	☼	8270D	Total/NA
Phenanthrene	7600		3800	560	ug/Kg	20	₩.	8270D	Total/NA
Pyrene	9600		3800	450	ug/Kg	20	₩	8270D	Total/NA
Lead	1080		1.2	0.29	mg/Kg	1	☼	6010C	Total/NA

Client Sample ID: CSW-46 Lab Sample ID: 480-87201-3

Analyte	Result (Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acenaphthene	690		4300	630	ug/Kg	20	☼	8270D	Total/NA
Anthracene	1800	J	4300	1100	ug/Kg	20	₩	8270D	Total/NA
Benzo[a]anthracene	4100	J	4300	430	ug/Kg	20	₩	8270D	Total/NA
Benzo[a]pyrene	3300	J	4300	630	ug/Kg	20	₩.	8270D	Total/NA
Benzo[b]fluoranthene	3700	J	4300	680	ug/Kg	20	₩	8270D	Total/NA
Benzo[g,h,i]perylene	2800	J	4300	450	ug/Kg	20	₩	8270D	Total/NA
Benzo[k]fluoranthene	2000	J	4300	550	ug/Kg	20	₽	8270D	Total/NA
Carbazole	780	J	4300	500	ug/Kg	20	₩	8270D	Total/NA
Chrysene	4100	J	4300	950	ug/Kg	20	₩	8270D	Total/NA
Fluoranthene	11000		4300	450	ug/Kg	20	₽	8270D	Total/NA
Fluorene	1000	J	4300	500	ug/Kg	20	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	2200	J	4300	530	ug/Kg	20	₩	8270D	Total/NA
Phenanthrene	8500		4300	630	ug/Kg	20	₽	8270D	Total/NA
Pyrene	8100		4300	500	ug/Kg	20	₩	8270D	Total/NA

This Detection Summary does not include radiochemical test results.

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: CSW-46 (Continued) Lab Sample ID: 480-87201-3

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Lead	1750	1.2	0.30 mg/Kg	1 ≅ 6010C	Total/NA

Client Sample ID: CSW-47 Lab Sample ID: 480-87201-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Anthracene	1400	J	4300	1100	ug/Kg	20	₩	8270D	Total/NA
Benzo[a]anthracene	4600		4300	430	ug/Kg	20	☼	8270D	Total/NA
Benzo[a]pyrene	3500	J	4300	640	ug/Kg	20	₩	8270D	Total/NA
Benzo[b]fluoranthene	4700		4300	690	ug/Kg	20	₩	8270D	Total/NA
Benzo[g,h,i]perylene	2800	J	4300	460	ug/Kg	20	☼	8270D	Total/NA
Benzo[k]fluoranthene	1800	J	4300	560	ug/Kg	20	₩	8270D	Total/NA
Carbazole	670	J	4300	510	ug/Kg	20	₩	8270D	Total/NA
Chrysene	4100	J	4300	970	ug/Kg	20	₩	8270D	Total/NA
Fluoranthene	9300		4300	460	ug/Kg	20	₩	8270D	Total/NA
Fluorene	640	J	4300	510	ug/Kg	20	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	2200	J	4300	530	ug/Kg	20	₩	8270D	Total/NA
Phenanthrene	6200		4300	640	ug/Kg	20	₩	8270D	Total/NA
Pyrene	6800		4300	510	ug/Kg	20	₩	8270D	Total/NA
Lead	989		1.3	0.30	mg/Kg	1	₩	6010C	Total/NA

Lab Sample ID: 480-87201-5 **Client Sample ID: CSW-48**

Analyte	Result Qı	ualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acenaphthene	2000 J	4300	640	ug/Kg	20	₩	8270D	Total/NA
Acenaphthylene	1300 J	4300	560	ug/Kg	20	₩	8270D	Total/NA
Anthracene	5100	4300	1100	ug/Kg	20	₩	8270D	Total/NA
Benzo[a]anthracene	19000	4300	430	ug/Kg	20	₩	8270D	Total/NA
Benzo[a]pyrene	18000	4300	640	ug/Kg	20	₩	8270D	Total/NA
Benzo[b]fluoranthene	23000	4300	690	ug/Kg	20	₩	8270D	Total/NA
Benzo[g,h,i]perylene	9400	4300	460	ug/Kg	20	₩	8270D	Total/NA
Benzo[k]fluoranthene	10000	4300	560	ug/Kg	20	₩	8270D	Total/NA
Carbazole	3400 J	4300	510	ug/Kg	20	₩	8270D	Total/NA
Chrysene	20000	4300	970	ug/Kg	20	₩	8270D	Total/NA
Dibenz(a,h)anthracene	3100 J	4300	770	ug/Kg	20	₩	8270D	Total/NA
Dibenzofuran	1200 J	4300	510	ug/Kg	20	₩	8270D	Total/NA
Fluoranthene	38000	4300	460	ug/Kg	20	₩.	8270D	Total/NA
Fluorene	2200 J	4300	510	ug/Kg	20	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	8100	4300	540	ug/Kg	20	₩	8270D	Total/NA
Naphthalene	1100 J	4300	560	ug/Kg	20	₩.	8270D	Total/NA
Phenanthrene	25000	4300	640	ug/Kg	20	₩	8270D	Total/NA
Pyrene	31000	4300	510	ug/Kg	20	₩	8270D	Total/NA
Lead	1800	1.4	0.33	mg/Kg	1	₩.	6010C	Total/NA

Client Sample ID: CSB-10 Lab Sample ID: 480-87201-17

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Acenaphthene	960 J	4600	670 ug/Kg		Total/NA
Anthracene	2400 J	4600	1100 ug/Kg	20 🌣 8270D	Total/NA
Benzo[a]anthracene	5800 F1	4600	460 ug/Kg	20 🌣 8270D	Total/NA
Benzo[a]pyrene	4900 F1	4600	670 ug/Kg	20 🌣 8270D	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

9/29/2015

Page 6 of 33

Detection Summary

Client: Iyer Environmental Group, LLC

Client Sample ID: CSB-10 (Continued)

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87201-2

Lab Sample ID: 480-87201-17

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo[b]fluoranthene	6700	F1	4600	730	ug/Kg		艾	8270D	Total/NA
Benzo[g,h,i]perylene	4500	J	4600	480	ug/Kg	20	₩	8270D	Total/NA
Benzo[k]fluoranthene	2300	J	4600	590	ug/Kg	20	₩	8270D	Total/NA
Carbazole	1300	J	4600	540	ug/Kg	20	₩	8270D	Total/NA
Chrysene	5900	F2 F1	4600	1000	ug/Kg	20	₩	8270D	Total/NA
Dibenzofuran	630	J	4600	540	ug/Kg	20	÷	8270D	Total/NA
Fluoranthene	13000	F2	4600	480	ug/Kg	20	₩	8270D	Total/NA
Fluorene	1100	J	4600	540	ug/Kg	20	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	3600	J	4600	560	ug/Kg	20	₩.	8270D	Total/NA
Phenanthrene	12000	F2	4600	670	ug/Kg	20	₩	8270D	Total/NA
Pyrene	10000	F1	4600	540	ug/Kg	20	₩	8270D	Total/NA
Lead	3040	F2	1.3	0.32	mg/Kg	1	₩.	6010C	Total/NA

6

q

10

11

13

14

Client: Iyer Environmental Group, LLC

Client Sample ID: CSW-44

Date Collected: 09/14/15 00:00

Date Received: 09/14/15 17:30

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87201-2

Lab Sample ID: 480-87201-1

Matrix: Solid Percent Solids: 83.8

Method: 8270D - Semivolatil Analyte	Result Q	ualifier RL	MDL		D	Prepared	Analyzed	Dil Fa
Biphenyl	ND	4000	580	ug/Kg	₩	09/25/15 13:06	09/28/15 15:44	2
bis (2-chloroisopropyl) ether	ND	4000	790	ug/Kg	₩	09/25/15 13:06	09/28/15 15:44	2
2,4,5-Trichlorophenol	ND	4000	1100	ug/Kg	₩	09/25/15 13:06	09/28/15 15:44	2
2,4,6-Trichlorophenol	ND	4000	790	ug/Kg	₩	09/25/15 13:06	09/28/15 15:44	2
2,4-Dichlorophenol	ND	4000	420	ug/Kg	₩	09/25/15 13:06	09/28/15 15:44	2
2,4-Dimethylphenol	ND	4000	960	ug/Kg	₩	09/25/15 13:06	09/28/15 15:44	2
2,4-Dinitrophenol	ND	39000	18000	ug/Kg	☼	09/25/15 13:06	09/28/15 15:44	2
2,4-Dinitrotoluene	ND	4000	820	ug/Kg	₩	09/25/15 13:06	09/28/15 15:44	2
2,6-Dinitrotoluene	ND	4000	470	ug/Kg	₩	09/25/15 13:06	09/28/15 15:44	2
2-Chloronaphthalene	ND	4000	650	ug/Kg		09/25/15 13:06	09/28/15 15:44	2
2-Chlorophenol	ND	4000	720	ug/Kg	₩	09/25/15 13:06	09/28/15 15:44	2
2-Methylphenol	ND	4000	470	ug/Kg	☼	09/25/15 13:06	09/28/15 15:44	2
2-Methylnaphthalene	ND	4000	790	ug/Kg		09/25/15 13:06	09/28/15 15:44	2
2-Nitroaniline	ND	7700	580	ug/Kg	₩	09/25/15 13:06	09/28/15 15:44	2
2-Nitrophenol	ND	4000	1100	ug/Kg	₽	09/25/15 13:06	09/28/15 15:44	2
3,3'-Dichlorobenzidine	ND	7700	4700	ug/Kg			09/28/15 15:44	2
3-Nitroaniline	ND	7700	1100	ug/Kg	₩	09/25/15 13:06	09/28/15 15:44	2
4,6-Dinitro-2-methylphenol	ND	7700	4000	ug/Kg	₩		09/28/15 15:44	2
4-Bromophenyl phenyl ether	ND	4000	560	ug/Kg		09/25/15 13:06	09/28/15 15:44	2
4-Chloro-3-methylphenol	ND	4000	980	ug/Kg	₩		09/28/15 15:44	2
4-Chloroaniline	ND	4000	980	ug/Kg	₩		09/28/15 15:44	2
4-Chlorophenyl phenyl ether	ND	4000	490	ug/Kg			09/28/15 15:44	2
4-Methylphenol	ND	7700	470	ug/Kg	₩		09/28/15 15:44	2
4-Nitroaniline	ND	7700	2100	ug/Kg	₩		09/28/15 15:44	2
4-Nitrophenol	ND	7700	2800	ug/Kg			09/28/15 15:44	2
Acenaphthene	ND	4000	580	ug/Kg	₽		09/28/15 15:44	2
Acenaphthylene	ND	4000	510	ug/Kg	₽		09/28/15 15:44	2
	ND	4000	540				09/28/15 15:44	2
Acetophenone		4000	980		☆	09/25/15 13:06	09/28/15 15:44	2
Anthracene Atrazine	2200 J ND	4000	1400	ug/Kg	☆	09/25/15 13:06	09/28/15 15:44	2
				ug/Kg	· · · · · · · · · · · · · · · · · · ·		09/28/15 15:44	
Benzaldehyde	ND	4000	3200	ug/Kg	₩	09/25/15 13:06		2
Benzo[a]anthracene	9800	4000	400	ug/Kg	**	09/25/15 13:06	09/28/15 15:44	2
Benzo[a]pyrene	7600	4000	580	ug/Kg	[.]		09/28/15 15:44	2
Benzo[b]fluoranthene	11000	4000	630	ug/Kg	×.		09/28/15 15:44	2
Benzo[g,h,i]perylene	6000	4000		ug/Kg	₩		09/28/15 15:44	2
Benzo[k]fluoranthene	4100	4000			14: 		09/28/15 15:44	
Bis(2-chloroethoxy)methane	ND	4000		ug/Kg	1.)t		09/28/15 15:44	2
Bis(2-chloroethyl)ether	ND	4000		ug/Kg	₽		09/28/15 15:44	2
Bis(2-ethylhexyl) phthalate	ND	4000		ug/Kg	::::::::::::::::::::::::::::::::::::::		09/28/15 15:44	2
Butyl benzyl phthalate	ND	4000		ug/Kg	:		09/28/15 15:44	2
Caprolactam	ND	4000		ug/Kg	.		09/28/15 15:44	2
Carbazole	860 J	4000		ug/Kg			09/28/15 15:44	
Chrysene	10000	4000		ug/Kg	₽		09/28/15 15:44	2
Dibenz(a,h)anthracene	ND	4000		ug/Kg	☼	09/25/15 13:06	09/28/15 15:44	2
Di-n-butyl phthalate	ND	4000		ug/Kg	₩	09/25/15 13:06	09/28/15 15:44	2
Di-n-octyl phthalate	ND	4000	470	ug/Kg	₽	09/25/15 13:06	09/28/15 15:44	2
Dibenzofuran	ND	4000	470	ug/Kg	₩	09/25/15 13:06	09/28/15 15:44	2
Diethyl phthalate	ND	4000	510	ug/Kg	≎	09/25/15 13:06	09/28/15 15:44	2
Dimethyl phthalate	ND	4000	470	ug/Kg		09/25/15 13:06	09/28/15 15:44	2

TestAmerica Buffalo

Page 8 of 33

2

3

6

8

10

12

14

Client: Iyer Environmental Group, LLC

Client Sample ID: CSW-44

Date Collected: 09/14/15 00:00

Date Received: 09/14/15 17:30

Project/Site: 132 Dingens

Lab Sample ID: 480-87201-1

10 Sample וט: 480-87201-1 Matrix: Solid

TestAmerica Job ID: 480-87201-2

Percent Solids: 83.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoranthene	20000		4000	420	ug/Kg	<u></u>	09/25/15 13:06	09/28/15 15:44	20
Fluorene	ND		4000	470	ug/Kg	☼	09/25/15 13:06	09/28/15 15:44	20
Hexachlorobenzene	ND		4000	540	ug/Kg	\$	09/25/15 13:06	09/28/15 15:44	20
Hexachlorobutadiene	ND		4000	580	ug/Kg	☼	09/25/15 13:06	09/28/15 15:44	20
Hexachlorocyclopentadiene	ND		4000	540	ug/Kg	☼	09/25/15 13:06	09/28/15 15:44	20
Hexachloroethane	ND		4000	510	ug/Kg	₽	09/25/15 13:06	09/28/15 15:44	20
Indeno[1,2,3-cd]pyrene	5200		4000	490	ug/Kg	☼	09/25/15 13:06	09/28/15 15:44	20
Isophorone	ND		4000	840	ug/Kg	₽	09/25/15 13:06	09/28/15 15:44	20
N-Nitrosodi-n-propylamine	ND		4000	680	ug/Kg	φ.	09/25/15 13:06	09/28/15 15:44	20
N-Nitrosodiphenylamine	ND		4000	3200	ug/Kg	☼	09/25/15 13:06	09/28/15 15:44	20
Naphthalene	ND		4000	510	ug/Kg	₽	09/25/15 13:06	09/28/15 15:44	20
Nitrobenzene	ND		4000	440	ug/Kg	φ.	09/25/15 13:06	09/28/15 15:44	20
Pentachlorophenol	ND		7700	4000	ug/Kg	☼	09/25/15 13:06	09/28/15 15:44	20
Phenanthrene	11000		4000	580	ug/Kg	☼	09/25/15 13:06	09/28/15 15:44	20
Phenol	ND		4000	610	ug/Kg	₽	09/25/15 13:06	09/28/15 15:44	20
Pyrene	17000		4000	470	ug/Kg	☼	09/25/15 13:06	09/28/15 15:44	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	66		34 - 132				09/25/15 13:06	09/28/15 15:44	20
Phenol-d5 (Surr)	69		11 - 120				09/25/15 13:06	09/28/15 15:44	20
p-Terphenyl-d14 (Surr)	78		65 - 153				09/25/15 13:06	09/28/15 15:44	20
2,4,6-Tribromophenol (Surr)	115		39 - 146				09/25/15 13:06	09/28/15 15:44	20
2-Fluorobiphenyl	67		37 - 120				09/25/15 13:06	09/28/15 15:44	20
2-Fluorophenol (Surr)	70		18 - 120				09/25/15 13:06	09/28/15 15:44	20

Method: 6010C - Metals (ICP)							
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Lead	5200	1.2	0.28 mg/Kg		09/21/15 13:25	09/22/15 14:34	1

Client Sample ID: CSW-45

Date Collected: 09/14/15 00:00

Date Received: 09/14/15 17:30

Lab Sample ID: 480-87201-2

Matrix: Solid

Percent Solids: 86.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		3800	560	ug/Kg	<u> </u>	09/25/15 13:06	09/28/15 16:10	20
bis (2-chloroisopropyl) ether	ND		3800	760	ug/Kg	☼	09/25/15 13:06	09/28/15 16:10	20
2,4,5-Trichlorophenol	ND		3800	1000	ug/Kg	☼	09/25/15 13:06	09/28/15 16:10	20
2,4,6-Trichlorophenol	ND		3800	760	ug/Kg		09/25/15 13:06	09/28/15 16:10	20
2,4-Dichlorophenol	ND		3800	400	ug/Kg	☼	09/25/15 13:06	09/28/15 16:10	20
2,4-Dimethylphenol	ND		3800	920	ug/Kg	☼	09/25/15 13:06	09/28/15 16:10	20
2,4-Dinitrophenol	ND		37000	18000	ug/Kg	₽	09/25/15 13:06	09/28/15 16:10	20
2,4-Dinitrotoluene	ND		3800	790	ug/Kg	☼	09/25/15 13:06	09/28/15 16:10	20
2,6-Dinitrotoluene	ND		3800	450	ug/Kg	☼	09/25/15 13:06	09/28/15 16:10	20
2-Chloronaphthalene	ND		3800	630	ug/Kg	₽	09/25/15 13:06	09/28/15 16:10	20
2-Chlorophenol	ND		3800	700	ug/Kg	☼	09/25/15 13:06	09/28/15 16:10	20
2-Methylphenol	ND		3800	450	ug/Kg	☼	09/25/15 13:06	09/28/15 16:10	20
2-Methylnaphthalene	ND		3800	760	ug/Kg		09/25/15 13:06	09/28/15 16:10	20
2-Nitroaniline	ND		7400	560	ug/Kg	☼	09/25/15 13:06	09/28/15 16:10	20
2-Nitrophenol	ND		3800	1100	ug/Kg	≎	09/25/15 13:06	09/28/15 16:10	20

TestAmerica Buffalo

Page 9 of 33

2

3

5

-

9

11

13

14

Client: Iyer Environmental Group, LLC

Client Sample ID: CSW-45

Date Collected: 09/14/15 00:00

Date Received: 09/14/15 17:30

Project/Site: 132 Dingens

Lab Sample ID: 480-87201-2 **Matrix: Solid**

TestAmerica Job ID: 480-87201-2

Percent Solids: 86.7

Method: 8270D - Semivolatil	e Organic Compounds	(GC/MS) (Con	itinued)
Analyte	Result Qualifier	RL	MDL Ur

Analyte	e Organic Co Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
3,3'-Dichlorobenzidine	ND		7400	4500	ug/Kg	<u> </u>	09/25/15 13:06	09/28/15 16:10	20
3-Nitroaniline	ND		7400	1100	ug/Kg		09/25/15 13:06	09/28/15 16:10	20
4,6-Dinitro-2-methylphenol	ND		7400	3800	ug/Kg	☼	09/25/15 13:06	09/28/15 16:10	20
4-Bromophenyl phenyl ether	ND		3800	540	ug/Kg		09/25/15 13:06	09/28/15 16:10	20
4-Chloro-3-methylphenol	ND		3800	940	ug/Kg	≎	09/25/15 13:06	09/28/15 16:10	20
4-Chloroaniline	ND		3800	940	ug/Kg	≎	09/25/15 13:06	09/28/15 16:10	20
4-Chlorophenyl phenyl ether	ND		3800	470	ug/Kg		09/25/15 13:06	09/28/15 16:10	20
4-Methylphenol	ND		7400	450	ug/Kg	₩	09/25/15 13:06	09/28/15 16:10	20
4-Nitroaniline	ND		7400	2000	ug/Kg	₩	09/25/15 13:06	09/28/15 16:10	20
4-Nitrophenol	ND		7400	2700	ug/Kg		09/25/15 13:06	09/28/15 16:10	20
Acenaphthene	740	J	3800	560	ug/Kg	₩	09/25/15 13:06	09/28/15 16:10	20
Acenaphthylene	ND		3800	490	ug/Kg	≎	09/25/15 13:06	09/28/15 16:10	20
Acetophenone	ND		3800	520	ug/Kg		09/25/15 13:06	09/28/15 16:10	20
Anthracene	1800	J	3800	940	ug/Kg	≎	09/25/15 13:06	09/28/15 16:10	20
Atrazine	ND		3800	1300	ug/Kg	≎	09/25/15 13:06	09/28/15 16:10	20
Benzaldehyde	ND		3800	3000	ug/Kg		09/25/15 13:06	09/28/15 16:10	20
Benzo[a]anthracene	5800		3800	380	ug/Kg	≎	09/25/15 13:06	09/28/15 16:10	20
Benzo[a]pyrene	4900		3800	560	ug/Kg	₩	09/25/15 13:06	09/28/15 16:10	20
Benzo[b]fluoranthene	5800		3800	610	ug/Kg		09/25/15 13:06	09/28/15 16:10	20
Benzo[g,h,i]perylene	4000		3800	400	ug/Kg	₩	09/25/15 13:06	09/28/15 16:10	20
Benzo[k]fluoranthene	3200	J	3800	490	ug/Kg	₩		09/28/15 16:10	20
Bis(2-chloroethoxy)methane	ND		3800		ug/Kg		09/25/15 13:06	09/28/15 16:10	20
Bis(2-chloroethyl)ether	ND		3800	490	ug/Kg	₽	09/25/15 13:06	09/28/15 16:10	20
Bis(2-ethylhexyl) phthalate	ND		3800	1300	ug/Kg	₩	09/25/15 13:06	09/28/15 16:10	20
Butyl benzyl phthalate	ND		3800		ug/Kg		09/25/15 13:06	09/28/15 16:10	20
Caprolactam	ND		3800	1100	ug/Kg	₽		09/28/15 16:10	20
Carbazole	820	J	3800	450	ug/Kg	₩		09/28/15 16:10	20
Chrysene	5900		3800	850	ug/Kg			09/28/15 16:10	20
Dibenz(a,h)anthracene	ND		3800	670	ug/Kg	≎		09/28/15 16:10	20
Di-n-butyl phthalate	ND		3800	650	ug/Kg	⇔		09/28/15 16:10	20
Di-n-octyl phthalate	ND		3800	450	ug/Kg			09/28/15 16:10	20
Dibenzofuran	ND		3800	450	ug/Kg	≎		09/28/15 16:10	20
Diethyl phthalate	ND		3800	490	ug/Kg	₩		09/28/15 16:10	20
Dimethyl phthalate	ND		3800		ug/Kg		09/25/15 13:06	09/28/15 16:10	20
Fluoranthene	12000		3800	400	ug/Kg	⇔		09/28/15 16:10	20
Fluorene	870	J	3800		ug/Kg	≎		09/28/15 16:10	20
Hexachlorobenzene	ND		3800		ug/Kg		09/25/15 13:06	09/28/15 16:10	20
Hexachlorobutadiene	ND		3800	560	ug/Kg	⇔		09/28/15 16:10	20
Hexachlorocyclopentadiene	ND		3800		ug/Kg	₽		09/28/15 16:10	20
Hexachloroethane	ND		3800		ug/Kg	 \$		09/28/15 16:10	20
Indeno[1,2,3-cd]pyrene	3400	4	3800	470	ug/Kg	₽		09/28/15 16:10	20
Isophorone	ND		3800		ug/Kg	⇔		09/28/15 16:10	20
N-Nitrosodi-n-propylamine	ND		3800					09/28/15 16:10	20
N-Nitrosodiphenylamine	ND		3800		0 0	₽		09/28/15 16:10	20
Naphthalene	ND		3800		ug/Kg	₽		09/28/15 16:10	20
Nitrobenzene	ND		3800		ug/Kg	· · · · · · · · · · · · · · ·		09/28/15 16:10	20
Pentachlorophenol	ND		7400		ug/Kg ug/Kg			09/28/15 16:10	20
Phenanthrene	7600		3800		ug/Kg ug/Kg			09/28/15 16:10	20
Phenol	7600 ND		3800		ug/Kg ug/Kg	^		09/28/15 16:10	20

Client: Iyer Environmental Group, LLC

Client Sample ID: CSW-45

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87201-2

Lab Sample ID: 480-87201-2

 Date Collected: 09/14/15 00:00
 Matrix: Solid

 Date Received: 09/14/15 17:30
 Percent Solids: 86.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pyrene	9600		3800	450	ug/Kg	\	09/25/15 13:06	09/28/15 16:10	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	66		34 - 132				09/25/15 13:06	09/28/15 16:10	20
Phenol-d5 (Surr)	77		11 - 120				09/25/15 13:06	09/28/15 16:10	20
p-Terphenyl-d14 (Surr)	94		65 - 153				09/25/15 13:06	09/28/15 16:10	20
2,4,6-Tribromophenol (Surr)	114		39 - 146				09/25/15 13:06	09/28/15 16:10	20
2-Fluorobiphenyl	91		37 - 120				09/25/15 13:06	09/28/15 16:10	20
2-Fluorophenol (Surr)	82		18 - 120				09/25/15 13:06	09/28/15 16:10	20

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	1080	1.2	0.29	mg/Kg	\	09/21/15 13:25	09/22/15 14:38	1

 Client Sample ID: CSW-46
 Lab Sample ID: 480-87201-3

 Date Collected: 09/14/15 00:00
 Matrix: Solid

 Date Received: 09/14/15 17:30
 Percent Solids: 78.5

Method: 8270D - Semivolatil Analyte	•	mpounds (Qualifier	GC/MS) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		4300	630	ug/Kg	— Ţ	09/25/15 13:06	09/28/15 16:36	20
bis (2-chloroisopropyl) ether	ND		4300	850	ug/Kg	₩	09/25/15 13:06	09/28/15 16:36	20
2,4,5-Trichlorophenol	ND		4300	1200	ug/Kg	₩	09/25/15 13:06	09/28/15 16:36	20
2,4,6-Trichlorophenol	ND		4300	850	ug/Kg		09/25/15 13:06	09/28/15 16:36	20
2,4-Dichlorophenol	ND		4300	450	ug/Kg	₩	09/25/15 13:06	09/28/15 16:36	20
2,4-Dimethylphenol	ND		4300	1000	ug/Kg	₩	09/25/15 13:06	09/28/15 16:36	20
2,4-Dinitrophenol	ND		42000	20000	ug/Kg		09/25/15 13:06	09/28/15 16:36	20
2,4-Dinitrotoluene	ND		4300	880	ug/Kg	₩	09/25/15 13:06	09/28/15 16:36	20
2,6-Dinitrotoluene	ND		4300	500	ug/Kg	₩	09/25/15 13:06	09/28/15 16:36	20
2-Chloronaphthalene	ND		4300	700	ug/Kg		09/25/15 13:06	09/28/15 16:36	20
2-Chlorophenol	ND		4300	780	ug/Kg	₩	09/25/15 13:06	09/28/15 16:36	20
2-Methylphenol	ND		4300	500	ug/Kg	₩	09/25/15 13:06	09/28/15 16:36	20
2-Methylnaphthalene	ND		4300	850	ug/Kg	φ.	09/25/15 13:06	09/28/15 16:36	20
2-Nitroaniline	ND		8300	630	ug/Kg	₩	09/25/15 13:06	09/28/15 16:36	20
2-Nitrophenol	ND		4300	1200	ug/Kg	₩	09/25/15 13:06	09/28/15 16:36	20
3,3'-Dichlorobenzidine	ND		8300	5000	ug/Kg	ф.	09/25/15 13:06	09/28/15 16:36	20
3-Nitroaniline	ND		8300	1200	ug/Kg	₩	09/25/15 13:06	09/28/15 16:36	20
4,6-Dinitro-2-methylphenol	ND		8300	4300	ug/Kg	₩	09/25/15 13:06	09/28/15 16:36	20
4-Bromophenyl phenyl ether	ND		4300	600	ug/Kg		09/25/15 13:06	09/28/15 16:36	20
4-Chloro-3-methylphenol	ND		4300	1100	ug/Kg	₩	09/25/15 13:06	09/28/15 16:36	20
4-Chloroaniline	ND		4300	1100	ug/Kg	☼	09/25/15 13:06	09/28/15 16:36	20
4-Chlorophenyl phenyl ether	ND		4300	530	ug/Kg		09/25/15 13:06	09/28/15 16:36	20
4-Methylphenol	ND		8300	500	ug/Kg	₩	09/25/15 13:06	09/28/15 16:36	20
4-Nitroaniline	ND		8300	2200	ug/Kg	☼	09/25/15 13:06	09/28/15 16:36	20
4-Nitrophenol	ND		8300	3000	ug/Kg		09/25/15 13:06	09/28/15 16:36	20
Acenaphthene	690	J	4300	630	ug/Kg	₩	09/25/15 13:06	09/28/15 16:36	20
Acenaphthylene	ND		4300	550	ug/Kg	₩	09/25/15 13:06	09/28/15 16:36	20
Acetophenone	ND		4300	580	ug/Kg		09/25/15 13:06	09/28/15 16:36	20
Anthracene	1800	J	4300	1100	ug/Kg	☼	09/25/15 13:06	09/28/15 16:36	20
Atrazine	ND		4300	1500	ug/Kg	₩	09/25/15 13:06	09/28/15 16:36	20

TestAmerica Buffalo

Page 11 of 33

Client: Iyer Environmental Group, LLC

Client Sample ID: CSW-46

Date Collected: 09/14/15 00:00

Date Received: 09/14/15 17:30

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87201-2

Lab Sample ID: 480-87201-3

Matrix: Solid
Percent Solids: 78.5

Method: 8270D - Semivolatile Analyte		Qualifier	ŘL	MDL		D	Prepared	Analyzed	Dil Fac
Benzaldehyde	ND		4300	3400	ug/Kg	<u> </u>	09/25/15 13:06	09/28/15 16:36	20
Benzo[a]anthracene	4100	J	4300	430	ug/Kg	₽	09/25/15 13:06	09/28/15 16:36	20
Benzo[a]pyrene	3300	J	4300	630	ug/Kg	☼	09/25/15 13:06	09/28/15 16:36	20
Benzo[b]fluoranthene	3700	J	4300	680	ug/Kg		09/25/15 13:06	09/28/15 16:36	20
Benzo[g,h,i]perylene	2800	J	4300	450	ug/Kg	₩	09/25/15 13:06	09/28/15 16:36	20
Benzo[k]fluoranthene	2000	J	4300	550	ug/Kg	₩	09/25/15 13:06	09/28/15 16:36	20
Bis(2-chloroethoxy)methane	ND		4300	900	ug/Kg	φ.	09/25/15 13:06	09/28/15 16:36	20
Bis(2-chloroethyl)ether	ND		4300	550	ug/Kg	₩	09/25/15 13:06	09/28/15 16:36	20
Bis(2-ethylhexyl) phthalate	ND		4300	1500	ug/Kg	₩	09/25/15 13:06	09/28/15 16:36	20
Butyl benzyl phthalate	ND		4300	700	ug/Kg		09/25/15 13:06	09/28/15 16:36	20
Caprolactam	ND		4300	1300	ug/Kg	₩	09/25/15 13:06	09/28/15 16:36	20
Carbazole	780	J	4300	500	ug/Kg	₩	09/25/15 13:06	09/28/15 16:36	20
Chrysene	4100	J	4300	950	ug/Kg	ф.	09/25/15 13:06	09/28/15 16:36	20
Dibenz(a,h)anthracene	ND	-	4300	750	ug/Kg	₽		09/28/15 16:36	20
Di-n-butyl phthalate	ND		4300	730		₩		09/28/15 16:36	20
Di-n-octyl phthalate	ND		4300		ug/Kg		09/25/15 13:06	09/28/15 16:36	20
Dibenzofuran	ND		4300		ug/Kg	₩		09/28/15 16:36	20
Diethyl phthalate	ND		4300		ug/Kg	₽		09/28/15 16:36	20
Dimethyl phthalate	ND		4300		ug/Kg			09/28/15 16:36	20
Fluoranthene	11000		4300		ug/Kg	₩		09/28/15 16:36	20
Fluorene	1000	J.	4300		ug/Kg	₩		09/28/15 16:36	20
Hexachlorobenzene	ND		4300	580		<u>.</u> .		09/28/15 16:36	20
Hexachlorobutadiene	ND		4300	630	ug/Kg	₩		09/28/15 16:36	20
Hexachlorocyclopentadiene	ND		4300	580	ug/Kg	₩		09/28/15 16:36	20
Hexachloroethane	ND		4300	550	ug/Kg	 ф		09/28/15 16:36	20
Indeno[1,2,3-cd]pyrene	2200	1	4300	530	ug/Kg	₩		09/28/15 16:36	20
Isophorone	ND.	3	4300	900	ug/Kg	₩		09/28/15 16:36	20
N-Nitrosodi-n-propylamine	ND		4300	730	ug/Kg			09/28/15 16:36	20
N-Nitrosodiphenylamine	ND		4300	3500	ug/Kg	₩		09/28/15 16:36	20
Naphthalene	ND		4300		ug/Kg	₩		09/28/15 16:36	20
Nitrobenzene	ND		4300		ug/Kg			09/28/15 16:36	20
Pentachlorophenol	ND		8300	4300				09/28/15 16:36	20
Phenanthrene	8500		4300		ug/Kg ug/Kg			09/28/15 16:36	20
Phenol	ND		4300		ug/Kg ug/Kg	· · · · · · .		09/28/15 16:36	20
						~ ☆			20
Pyrene	8100		4300	500	ug/Kg	*	09/25/15 13:06	09/28/15 16:36	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	55		34 - 132				09/25/15 13:06		20
Phenol-d5 (Surr)	60		11 - 120				09/25/15 13:06	09/28/15 16:36	20
p-Terphenyl-d14 (Surr)	60	X	65 ₋ 153				09/25/15 13:06	09/28/15 16:36	20
2,4,6-Tribromophenol (Surr)	94		39 - 146				09/25/15 13:06	09/28/15 16:36	20
2-Fluorobiphenyl	62		37 - 120				09/25/15 13:06	09/28/15 16:36	20
2-Fluorophenol (Surr)	59		18 - 120				09/25/15 13:06	09/28/15 16:36	20
Method: 6010C - Metals (ICP)						_	_		-
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

3

5

7

9

11

13

14

Client: Iyer Environmental Group, LLC

Client Sample ID: CSW-47

Date Collected: 09/14/15 00:00

Date Received: 09/14/15 17:30

Project/Site: 132 Dingens

Diethyl phthalate

Dimethyl phthalate

Lab Sample ID: 480-87201-4

TestAmerica Job ID: 480-87201-2

Matrix: Solid

Percent Solids: 77.5

Method: 8270D - Semivolatil Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Biphenyl	ND	4300	640	ug/Kg		09/25/15 13:08	09/28/15 17:02	20
bis (2-chloroisopropyl) ether	ND	4300	870	ug/Kg	₩	09/25/15 13:08	09/28/15 17:02	20
2,4,5-Trichlorophenol	ND	4300	1200	ug/Kg	≎	09/25/15 13:08	09/28/15 17:02	20
2,4,6-Trichlorophenol	ND	4300	870	ug/Kg	≎	09/25/15 13:08	09/28/15 17:02	20
2,4-Dichlorophenol	ND	4300	460	ug/Kg	₽	09/25/15 13:08	09/28/15 17:02	20
2,4-Dimethylphenol	ND	4300	1000	ug/Kg	₽	09/25/15 13:08	09/28/15 17:02	20
2,4-Dinitrophenol	ND	42000	20000	ug/Kg	☼	09/25/15 13:08	09/28/15 17:02	20
2,4-Dinitrotoluene	ND	4300	890	ug/Kg	≎	09/25/15 13:08	09/28/15 17:02	20
2,6-Dinitrotoluene	ND	4300	510	ug/Kg	₩	09/25/15 13:08	09/28/15 17:02	20
2-Chloronaphthalene	ND	4300	710	ug/Kg	≎	09/25/15 13:08	09/28/15 17:02	20
2-Chlorophenol	ND	4300	790	ug/Kg	≎	09/25/15 13:08	09/28/15 17:02	20
2-Methylphenol	ND	4300	510	ug/Kg	≎	09/25/15 13:08	09/28/15 17:02	20
2-Methylnaphthalene	ND	4300	870	ug/Kg	₩.	09/25/15 13:08	09/28/15 17:02	20
2-Nitroaniline	ND	8400	640	ug/Kg	₩	09/25/15 13:08	09/28/15 17:02	20
2-Nitrophenol	ND	4300	1200	ug/Kg	₩	09/25/15 13:08	09/28/15 17:02	20
3,3'-Dichlorobenzidine	ND	8400	5100	ug/Kg		09/25/15 13:08	09/28/15 17:02	20
3-Nitroaniline	ND	8400	1200	ug/Kg	≎	09/25/15 13:08	09/28/15 17:02	20
4,6-Dinitro-2-methylphenol	ND	8400	4300	ug/Kg	⇔	09/25/15 13:08	09/28/15 17:02	20
4-Bromophenyl phenyl ether	ND	4300	610	ug/Kg	 .	09/25/15 13:08	09/28/15 17:02	20
4-Chloro-3-methylphenol	ND	4300	1100	ug/Kg	₩	09/25/15 13:08	09/28/15 17:02	20
4-Chloroaniline	ND	4300		ug/Kg	₩	09/25/15 13:08	09/28/15 17:02	20
4-Chlorophenyl phenyl ether	ND	4300		ug/Kg		09/25/15 13:08	09/28/15 17:02	20
4-Methylphenol	ND	8400		ug/Kg	≎	09/25/15 13:08	09/28/15 17:02	20
4-Nitroaniline	ND	8400		ug/Kg	≎		09/28/15 17:02	20
4-Nitrophenol	ND	8400		ug/Kg	 		09/28/15 17:02	20
Acenaphthene	ND	4300			⇔		09/28/15 17:02	20
Acenaphthylene	ND	4300	560	ug/Kg	⇔		09/28/15 17:02	20
Acetophenone	ND	4300	590	ug/Kg			09/28/15 17:02	20
Anthracene	1400 J	4300		ug/Kg	₩		09/28/15 17:02	20
Atrazine	ND	4300		ug/Kg	₩		09/28/15 17:02	20
Benzaldehyde	ND	4300		ug/Kg			09/28/15 17:02	20
Benzo[a]anthracene	4600	4300		ug/Kg	₽		09/28/15 17:02	20
Benzo[a]pyrene	3500 J	4300		ug/Kg	₽		09/28/15 17:02	20
Benzo[b]fluoranthene	4700	4300		ug/Kg			09/28/15 17:02	20
Benzo[g,h,i]perylene	2800 J	4300		ug/Kg	₽		09/28/15 17:02	20
Benzo[k]fluoranthene	1800 J	4300		ug/Kg	₽		09/28/15 17:02	20
Bis(2-chloroethoxy)methane	ND	4300			<u>.</u> .		09/28/15 17:02	20
Bis(2-chloroethyl)ether		4300		ug/Kg	₽			
Bis(2-ethylhexyl) phthalate	ND ND	4300		ug/Kg		09/25/15 13:08	09/28/15 17:02	20
				ug/Kg	V.			20
Butyl benzyl phthalate	ND	4300		ug/Kg	*		09/28/15 17:02	20
Caprolactam	ND	4300		ug/Kg	₩ ₩		09/28/15 17:02	20
Carbazole	670 J	4300		ug/Kg	% .		09/28/15 17:02	20
Chrysene	4100 J	4300		ug/Kg	φ. ×		09/28/15 17:02	20
Dibenz(a,h)anthracene	ND	4300		ug/Kg	₽		09/28/15 17:02	20
Di-n-butyl phthalate	ND	4300		ug/Kg			09/28/15 17:02	20
Di-n-octyl phthalate	ND	4300		ug/Kg	\		09/28/15 17:02	20
Dibenzofuran	ND	4300	510	ug/Kg	☼	09/25/15 13:08	09/28/15 17:02	20

TestAmerica Buffalo

© 09/25/15 13:08 09/28/15 17:02

© 09/25/15 13:08 09/28/15 17:02

4300

4300

560 ug/Kg

510 ug/Kg

ND

ND

20

2

5

7

9

11 12

1 /

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Analyte

Client Sample ID: CSW-47 Lab Sample ID: 480-87201-4

Date Collected: 09/14/15 00:00 **Matrix: Solid** Date Received: 09/14/15 17:30 Percent Solids: 77.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoranthene	9300		4300	460	ug/Kg	₩	09/25/15 13:08	09/28/15 17:02	20
Fluorene	640	J	4300	510	ug/Kg	≎	09/25/15 13:08	09/28/15 17:02	20
Hexachlorobenzene	ND		4300	590	ug/Kg	₽	09/25/15 13:08	09/28/15 17:02	20
Hexachlorobutadiene	ND		4300	640	ug/Kg	≎	09/25/15 13:08	09/28/15 17:02	20
Hexachlorocyclopentadiene	ND		4300	590	ug/Kg	≎	09/25/15 13:08	09/28/15 17:02	20
Hexachloroethane	ND		4300	560	ug/Kg	₽	09/25/15 13:08	09/28/15 17:02	20
Indeno[1,2,3-cd]pyrene	2200	J	4300	530	ug/Kg	☼	09/25/15 13:08	09/28/15 17:02	20
Isophorone	ND		4300	920	ug/Kg	☼	09/25/15 13:08	09/28/15 17:02	20
N-Nitrosodi-n-propylamine	ND		4300	740	ug/Kg	₽	09/25/15 13:08	09/28/15 17:02	20
N-Nitrosodiphenylamine	ND		4300	3500	ug/Kg	☼	09/25/15 13:08	09/28/15 17:02	20
Naphthalene	ND		4300	560	ug/Kg	☼	09/25/15 13:08	09/28/15 17:02	20
Nitrobenzene	ND		4300	480	ug/Kg	₽	09/25/15 13:08	09/28/15 17:02	20
Pentachlorophenol	ND		8400	4300	ug/Kg	☼	09/25/15 13:08	09/28/15 17:02	20
Phenanthrene	6200		4300	640	ug/Kg	☼	09/25/15 13:08	09/28/15 17:02	20
Phenol	ND		4300	660	ug/Kg	₽	09/25/15 13:08	09/28/15 17:02	20
Pyrene	6800		4300	510	ug/Kg	₩	09/25/15 13:08	09/28/15 17:02	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	79		34 - 132				09/25/15 13:08	09/28/15 17:02	20
Phenol-d5 (Surr)	71		11 - 120				09/25/15 13:08	09/28/15 17:02	20
p-Terphenyl-d14 (Surr)	82		65 - 153				09/25/15 13:08	09/28/15 17:02	20
2,4,6-Tribromophenol (Surr)	121		39 - 146				09/25/15 13:08	09/28/15 17:02	20
2-Fluorobiphenyl	87		37 - 120				09/25/15 13:08	09/28/15 17:02	20
2-Fluorophenol (Surr)	73		18 - 120				09/25/15 13:08	09/28/15 17:02	20

Lead	989	1.3	0.30 mg/Kg	© 09/21/15 13:25 09/22/15 14:44 1
Client Sample ID: CSW-48				Lab Sample ID: 480-87201-5

RL

MDL Unit

Prepared

Result Qualifier

Date Collected: 09/14/15 00:00 **Matrix: Solid** Date Received: 09/14/15 17:30 Percent Solids: 76.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		4300	640	ug/Kg	<u> </u>	09/25/15 13:08	09/28/15 17:29	20
bis (2-chloroisopropyl) ether	ND		4300	870	ug/Kg	☼	09/25/15 13:08	09/28/15 17:29	20
2,4,5-Trichlorophenol	ND		4300	1200	ug/Kg	☼	09/25/15 13:08	09/28/15 17:29	20
2,4,6-Trichlorophenol	ND		4300	870	ug/Kg		09/25/15 13:08	09/28/15 17:29	20
2,4-Dichlorophenol	ND		4300	460	ug/Kg	☼	09/25/15 13:08	09/28/15 17:29	20
2,4-Dimethylphenol	ND		4300	1000	ug/Kg	☼	09/25/15 13:08	09/28/15 17:29	20
2,4-Dinitrophenol	ND		42000	20000	ug/Kg	₽	09/25/15 13:08	09/28/15 17:29	20
2,4-Dinitrotoluene	ND		4300	890	ug/Kg	₩	09/25/15 13:08	09/28/15 17:29	20
2,6-Dinitrotoluene	ND		4300	510	ug/Kg	₩	09/25/15 13:08	09/28/15 17:29	20
2-Chloronaphthalene	ND		4300	710	ug/Kg	₽	09/25/15 13:08	09/28/15 17:29	20
2-Chlorophenol	ND		4300	790	ug/Kg	₩	09/25/15 13:08	09/28/15 17:29	20
2-Methylphenol	ND		4300	510	ug/Kg	☼	09/25/15 13:08	09/28/15 17:29	20
2-Methylnaphthalene	ND		4300	870	ug/Kg		09/25/15 13:08	09/28/15 17:29	20
2-Nitroaniline	ND		8400	640	ug/Kg	☼	09/25/15 13:08	09/28/15 17:29	20
2-Nitrophenol	ND		4300	1200	ug/Kg	≎	09/25/15 13:08	09/28/15 17:29	20

TestAmerica Buffalo

Page 14 of 33

Dil Fac

Analyzed

Client: Iyer Environmental Group, LLC

Client Sample ID: CSW-48

Date Collected: 09/14/15 00:00

Project/Site: 132 Dingens

Dibenz(a,h)anthracene

Di-n-butyl phthalate

Di-n-octyl phthalate

Dibenzofuran

Diethyl phthalate

Fluoranthene

Fluorene

Isophorone

Naphthalene

Nitrobenzene

Pentachlorophenol

Phenanthrene Phenol

Dimethyl phthalate

Hexachlorobenzene

Hexachlorobutadiene

Hexachloroethane

Hexachlorocyclopentadiene

Indeno[1,2,3-cd]pyrene

N-Nitrosodi-n-propylamine

N-Nitrosodiphenylamine

Lab Sample ID: 480-87201-5

TestAmerica Job ID: 480-87201-2

Matrix: Solid

Method: 8270D - Semivolatile	e Organic Co	mpounds (0	GC/MS) (Co	ntinued)				
Analyte	_	Qualifier	RL	MDL	•	D	Prepared	Analyzed	Dil Fac
3,3'-Dichlorobenzidine	ND		8400	5100	ug/Kg	<u> </u>	09/25/15 13:08	09/28/15 17:29	20
3-Nitroaniline	ND		8400	1200	ug/Kg	φ.	09/25/15 13:08	09/28/15 17:29	20
4,6-Dinitro-2-methylphenol	ND		8400	4300	ug/Kg	☼	09/25/15 13:08	09/28/15 17:29	20
4-Bromophenyl phenyl ether	ND		4300	610	ug/Kg	φ.	09/25/15 13:08	09/28/15 17:29	20
4-Chloro-3-methylphenol	ND		4300	1100	ug/Kg	☼	09/25/15 13:08	09/28/15 17:29	20
4-Chloroaniline	ND		4300	1100	ug/Kg	☼	09/25/15 13:08	09/28/15 17:29	20
4-Chlorophenyl phenyl ether	ND		4300	540	ug/Kg	₩.	09/25/15 13:08	09/28/15 17:29	20
4-Methylphenol	ND		8400	510	ug/Kg	☼	09/25/15 13:08	09/28/15 17:29	20
4-Nitroaniline	ND		8400	2300	ug/Kg	☼	09/25/15 13:08	09/28/15 17:29	20
4-Nitrophenol	ND		8400	3000	ug/Kg	₽	09/25/15 13:08	09/28/15 17:29	20
Acenaphthene	2000	J	4300	640	ug/Kg	☼	09/25/15 13:08	09/28/15 17:29	20
Acenaphthylene	1300	J	4300	560	ug/Kg	☼	09/25/15 13:08	09/28/15 17:29	20
Acetophenone	ND		4300	590	ug/Kg	₽	09/25/15 13:08	09/28/15 17:29	20
Anthracene	5100		4300	1100	ug/Kg	☼	09/25/15 13:08	09/28/15 17:29	20
Atrazine	ND		4300	1500	ug/Kg	☼	09/25/15 13:08	09/28/15 17:29	20
Benzaldehyde	ND		4300	3400	ug/Kg	*	09/25/15 13:08	09/28/15 17:29	20
Benzo[a]anthracene	19000		4300	430	ug/Kg	☼	09/25/15 13:08	09/28/15 17:29	20
Benzo[a]pyrene	18000		4300	640	ug/Kg	☼	09/25/15 13:08	09/28/15 17:29	20
Benzo[b]fluoranthene	23000		4300	690	ug/Kg		09/25/15 13:08	09/28/15 17:29	20
Benzo[g,h,i]perylene	9400		4300	460	ug/Kg	☼	09/25/15 13:08	09/28/15 17:29	20
Benzo[k]fluoranthene	10000		4300	560	ug/Kg	☼	09/25/15 13:08	09/28/15 17:29	20
Bis(2-chloroethoxy)methane	ND		4300	920	ug/Kg	₽	09/25/15 13:08	09/28/15 17:29	20
Bis(2-chloroethyl)ether	ND		4300	560	ug/Kg	☼	09/25/15 13:08	09/28/15 17:29	20
Bis(2-ethylhexyl) phthalate	ND		4300	1500	ug/Kg	☼	09/25/15 13:08	09/28/15 17:29	20
Butyl benzyl phthalate	ND		4300	710	ug/Kg	₽	09/25/15 13:08	09/28/15 17:29	20
Caprolactam	ND		4300	1300	ug/Kg	☼	09/25/15 13:08	09/28/15 17:29	20
Carbazole	3400	J	4300	510	ug/Kg	☼	09/25/15 13:08	09/28/15 17:29	20
Chrysene	20000		4300	970	ug/Kg		09/25/15 13:08	09/28/15 17:29	20
•									

4300

4300

4300

4300

4300

4300

4300

4300

4300

4300

4300

4300

4300

4300

4300

4300

4300

4300

8400

4300

4300

770

740

510

510

560

510

460

510

590

640

590

560

540

920

740

3500

560

490

4300 ug/Kg

640 ug/Kg

660 ug/Kg

₩

₩.

3100 J

ND

ND

1200 J

ND

ND

38000

2200

ND

25000

1100

8100

09/25/15 13:08 09/28/15 17:29 09/25/15 13:08 09/28/15 17:29 20 20 09/25/15 13:08 09/28/15 17:29 09/25/15 13:08 09/28/15 17:29 20 20 09/25/15 13:08 09/28/15 17:29 09/25/15 13:08 09/28/15 17:29 20 09/25/15 13:08 09/28/15 17:29 20

09/25/15 13:08 09/28/15 17:29

09/25/15 13:08 09/28/15 17:29

09/25/15 13:08 09/28/15 17:29

09/25/15 13:08 09/28/15 17:29

09/25/15 13:08 09/28/15 17:29

09/25/15 13:08 09/28/15 17:29

09/25/15 13:08 09/28/15 17:29

09/25/15 13:08 09/28/15 17:29

09/25/15 13:08 09/28/15 17:29

09/25/15 13:08 09/28/15 17:29

09/25/15 13:08 09/28/15 17:29

09/25/15 13:08 09/28/15 17:29

09/28/15 17:29

09/28/15 17:29

09/25/15 13:08

09/25/15 13:08

TestAmerica Buffalo

20

20

20 20

20

20

20

20

20

20

20

20

20

20

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87201-2

Lab Sample ID: 480-87201-5

Matrix: Solid

Percent Solids: 76.4

Client Sample ID: CSW-48	
Date Collected: 09/14/15 00:00	
Date Received: 09/14/15 17:30	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Pyrene	31000		4300	510	ug/Kg	\	09/25/15 13:08	09/28/15 17:29	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	52		34 - 132				09/25/15 13:08	09/28/15 17:29	20
Phenol-d5 (Surr)	42		11 - 120				09/25/15 13:08	09/28/15 17:29	20
p-Terphenyl-d14 (Surr)	42	X	65 - 153				09/25/15 13:08	09/28/15 17:29	20
2,4,6-Tribromophenol (Surr)	94		39 - 146				09/25/15 13:08	09/28/15 17:29	20
2-Fluorobiphenyl	44		37 - 120				09/25/15 13:08	09/28/15 17:29	20
2-Fluorophenol (Surr)	42		18 - 120				09/25/15 13:08	09/28/15 17:29	20

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	1800		1.4	0.33	mg/Kg	<u> </u>	09/23/15 10:40	09/24/15 11:34	1

Client Sample ID: 480-87201-17

Lab Sample ID: 480-87201-17

 Date Collected: 09/14/15 00:00
 Matrix: Solid

 Date Received: 09/14/15 17:30
 Percent Solids: 74.3

·									
Method: 8270D - Semivolatil Analyte		mpounds (Qualifier	GC/MS) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		4600	670	ug/Kg	<u> </u>	09/25/15 13:06	09/28/15 15:17	20
bis (2-chloroisopropyl) ether	ND		4600	910	ug/Kg	☼	09/25/15 13:06	09/28/15 15:17	20
2,4,5-Trichlorophenol	ND		4600	1200	ug/Kg	☼	09/25/15 13:06	09/28/15 15:17	20
2,4,6-Trichlorophenol	ND	F2 F1	4600	910	ug/Kg	₽	09/25/15 13:06	09/28/15 15:17	20
2,4-Dichlorophenol	ND		4600	480	ug/Kg	☼	09/25/15 13:06	09/28/15 15:17	20
2,4-Dimethylphenol	ND		4600	1100	ug/Kg	₩	09/25/15 13:06	09/28/15 15:17	20
2,4-Dinitrophenol	ND		45000	21000	ug/Kg	₽	09/25/15 13:06	09/28/15 15:17	20
2,4-Dinitrotoluene	ND		4600	940	ug/Kg	☼	09/25/15 13:06	09/28/15 15:17	20
2,6-Dinitrotoluene	ND	F2 F1	4600	540	ug/Kg	₩	09/25/15 13:06	09/28/15 15:17	20
2-Chloronaphthalene	ND		4600	750	ug/Kg	₽	09/25/15 13:06	09/28/15 15:17	20
2-Chlorophenol	ND	F2	4600	830	ug/Kg	☼	09/25/15 13:06	09/28/15 15:17	20
2-Methylphenol	ND		4600	540	ug/Kg	☼	09/25/15 13:06	09/28/15 15:17	20
2-Methylnaphthalene	ND		4600	910	ug/Kg	₽	09/25/15 13:06	09/28/15 15:17	20
2-Nitroaniline	ND	F2	8900	670	ug/Kg	☼	09/25/15 13:06	09/28/15 15:17	20
2-Nitrophenol	ND		4600	1300	ug/Kg	☼	09/25/15 13:06	09/28/15 15:17	20
3,3'-Dichlorobenzidine	ND		8900	5400	ug/Kg	φ.	09/25/15 13:06	09/28/15 15:17	20
3-Nitroaniline	ND		8900	1300	ug/Kg	☼	09/25/15 13:06	09/28/15 15:17	20
4,6-Dinitro-2-methylphenol	ND		8900	4600	ug/Kg	₩	09/25/15 13:06	09/28/15 15:17	20
4-Bromophenyl phenyl ether	ND	F2	4600	650	ug/Kg	φ.	09/25/15 13:06	09/28/15 15:17	20
4-Chloro-3-methylphenol	ND		4600	1100	ug/Kg	☼	09/25/15 13:06	09/28/15 15:17	20
4-Chloroaniline	ND		4600	1100	ug/Kg	₩	09/25/15 13:06	09/28/15 15:17	20
4-Chlorophenyl phenyl ether	ND	F2	4600	560	ug/Kg	₽	09/25/15 13:06	09/28/15 15:17	20
4-Methylphenol	ND		8900	540	ug/Kg	₩	09/25/15 13:06	09/28/15 15:17	20
4-Nitroaniline	ND		8900	2400	ug/Kg	₩	09/25/15 13:06	09/28/15 15:17	20
4-Nitrophenol	ND		8900	3200	ug/Kg	₽	09/25/15 13:06	09/28/15 15:17	20
Acenaphthene	960	J	4600	670	ug/Kg	☼	09/25/15 13:06	09/28/15 15:17	20
Acenaphthylene	ND		4600	590	ug/Kg	☼	09/25/15 13:06	09/28/15 15:17	20
Acetophenone	ND	F2	4600	620	ug/Kg		09/25/15 13:06	09/28/15 15:17	20
Anthracene	2400	J	4600	1100	ug/Kg	☼	09/25/15 13:06	09/28/15 15:17	20
Atrazine	ND		4600	1600	ug/Kg	☼	09/25/15 13:06	09/28/15 15:17	20

TestAmerica Buffalo

Page 16 of 33

9/29/2015

3

+

6

Q

9

11

14

Client: Iyer Environmental Group, LLC

Client Sample ID: CSB-10

Date Collected: 09/14/15 00:00

Date Received: 09/14/15 17:30

Project/Site: 132 Dingens

Lab Sample ID: 480-87201-17

TestAmerica Job ID: 480-87201-2

Matrix: Solid

Percent Solids: 74.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzaldehyde	ND	F1	4600	3600	ug/Kg	<u> </u>	09/25/15 13:06	09/28/15 15:17	2
Benzo[a]anthracene	5800	F1	4600	460	ug/Kg	₩	09/25/15 13:06	09/28/15 15:17	20
Benzo[a]pyrene	4900	F1	4600	670	ug/Kg	☼	09/25/15 13:06	09/28/15 15:17	20
Benzo[b]fluoranthene	6700	F1	4600	730	ug/Kg		09/25/15 13:06	09/28/15 15:17	20
Benzo[g,h,i]perylene	4500	J	4600	480	ug/Kg	₩	09/25/15 13:06	09/28/15 15:17	20
Benzo[k]fluoranthene	2300	J	4600	590	ug/Kg	₩	09/25/15 13:06	09/28/15 15:17	20
Bis(2-chloroethoxy)methane	ND		4600	970	ug/Kg	φ.	09/25/15 13:06	09/28/15 15:17	20
Bis(2-chloroethyl)ether	ND		4600	590	ug/Kg	₩	09/25/15 13:06	09/28/15 15:17	20
Bis(2-ethylhexyl) phthalate	ND		4600	1600		₩	09/25/15 13:06	09/28/15 15:17	20
Butyl benzyl phthalate	ND		4600	750			09/25/15 13:06	09/28/15 15:17	20
Caprolactam	ND		4600	1400	ug/Kg	₩	09/25/15 13:06	09/28/15 15:17	20
Carbazole	1300	J	4600	540		₩	09/25/15 13:06	09/28/15 15:17	20
Chrysene	5900	F2 F1	4600	1000		ф.	09/25/15 13:06	09/28/15 15:17	20
Dibenz(a,h)anthracene	ND		4600	810		₽		09/28/15 15:17	20
Di-n-butyl phthalate	ND		4600	780	0 0	₩		09/28/15 15:17	20
Di-n-octyl phthalate	ND		4600		ug/Kg		09/25/15 13:06	09/28/15 15:17	20
Dibenzofuran	630	J	4600		ug/Kg	₩		09/28/15 15:17	20
Diethyl phthalate	ND		4600		ug/Kg	₽		09/28/15 15:17	20
Dimethyl phthalate	ND		4600		ug/Kg			09/28/15 15:17	20
Fluoranthene	13000	F2	4600		ug/Kg	₩		09/28/15 15:17	20
Fluorene	1100	J	4600		ug/Kg	₩		09/28/15 15:17	20
Hexachlorobenzene	ND		4600	620				09/28/15 15:17	20
Hexachlorobutadiene	ND		4600	670		₩		09/28/15 15:17	20
Hexachlorocyclopentadiene	ND		4600	620		₩		09/28/15 15:17	20
Hexachloroethane	ND		4600	590				09/28/15 15:17	20
Indeno[1,2,3-cd]pyrene	3600	1	4600	560		₩		09/28/15 15:17	20
Isophorone	ND	•	4600	970		₩		09/28/15 15:17	20
N-Nitrosodi-n-propylamine	ND		4600	780				09/28/15 15:17	20
N-Nitrosodiphenylamine	ND	F1	4600	3700		₩		09/28/15 15:17	20
Naphthalene	ND		4600		ug/Kg	₩		09/28/15 15:17	20
Nitrobenzene	ND		4600		ug/Kg			09/28/15 15:17	20
Pentachlorophenol	ND		8900		ug/Kg ug/Kg	₩		09/28/15 15:17	20
Phenanthrene		F0	4600			☼		09/28/15 15:17	20
Phenol	12000	F2			ug/Kg	· · · · · · ☆·			
	ND	E4	4600		ug/Kg	₩		09/28/15 15:17	20
Pyrene	10000	F1	4600	540	ug/Kg	*	09/25/15 13:06	09/28/15 15:17	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Nitrobenzene-d5 (Surr)	76		34 - 132				09/25/15 13:06	09/28/15 15:17	20
Phenol-d5 (Surr)	80		11 - 120				09/25/15 13:06	09/28/15 15:17	20
p-Terphenyl-d14 (Surr)	86		65 - 153				09/25/15 13:06	09/28/15 15:17	20
2,4,6-Tribromophenol (Surr)	117		39 - 146					09/28/15 15:17	20
2-Fluorobiphenyl	79		37 - 120				09/25/15 13:06	09/28/15 15:17	2
2-Fluorophenol (Surr)	85		18 - 120				09/25/15 13:06	09/28/15 15:17	2
Mathada CO400 Blatala (ICD)									
Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	МП	Unit	D	Prepared	Analyzed	Dil Fa
Lead	3040		1.3		mg/Kg		09/21/15 13:25	-	Dilla

TestAmerica Buffalo

_

А

R

9

11

1 /

Surrogate Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87201-2

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

_		Percent Surrogate Recovery (Acceptance Limits)								
		NBZ	PHL	TPH	TBP	FBP	2FP			
Lab Sample ID	Client Sample ID	(34-132)	(11-120)	(65-153)	(39-146)	(37-120)	(18-120)			
480-87201-1	CSW-44	66	69	78	115	67	70			
480-87201-2	CSW-45	66	77	94	114	91	82			
480-87201-3	CSW-46	55	60	60 X	94	62	59			
480-87201-4	CSW-47	79	71	82	121	87	73			
480-87201-5	CSW-48	52	42	42 X	94	44	42			
480-87201-17	CSB-10	76	80	86	117	79	85			
480-87201-17 MS	CSB-10	78	68	94	117	77	66			
480-87201-17 MSD	CSB-10	75	81	88	131	86	82			
LCS 480-265552/2-A	Lab Control Sample	74	80	95	84	80	74			
MB 480-265552/1-A	Method Blank	76	81	96	76	80	81			

Surrogate Legend

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

TPH = p-Terphenyl-d14 (Surr)

TBP = 2,4,6-Tribromophenol (Surr)

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol (Surr)

3

4

0

0

9

11

14

QC Sample Results

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87201-2

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-265552/1-A

Matrix: Solid

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 265552

Analysis Batch: 265604								Prep Type: 10	
Analysis Batch: 265604	MB	MB						Prep Batch:	200002
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		170	25	ug/Kg		09/25/15 13:06	09/28/15 13:31	1
bis (2-chloroisopropyl) ether	ND		170	34	ug/Kg		09/25/15 13:06	09/28/15 13:31	1
2,4,5-Trichlorophenol	ND		170	46	ug/Kg		09/25/15 13:06	09/28/15 13:31	1
2,4,6-Trichlorophenol	ND		170	34	ug/Kg		09/25/15 13:06	09/28/15 13:31	1
2,4-Dichlorophenol	ND		170	18	ug/Kg		09/25/15 13:06	09/28/15 13:31	1
2,4-Dimethylphenol	ND		170	41	ug/Kg		09/25/15 13:06	09/28/15 13:31	1
2,4-Dinitrophenol	ND		1600	780	ug/Kg		09/25/15 13:06	09/28/15 13:31	1
2,4-Dinitrotoluene	ND		170	35	ug/Kg		09/25/15 13:06	09/28/15 13:31	1
2,6-Dinitrotoluene	ND		170	20	ug/Kg		09/25/15 13:06	09/28/15 13:31	1
2-Chloronaphthalene	ND		170	28	ug/Kg		09/25/15 13:06	09/28/15 13:31	1
2-Chlorophenol	ND		170	31	ug/Kg		09/25/15 13:06	09/28/15 13:31	1
2-Methylphenol	ND		170	20	ug/Kg		09/25/15 13:06	09/28/15 13:31	1
2-Methylnaphthalene	ND		170	34	ug/Kg		09/25/15 13:06	09/28/15 13:31	1
2-Nitroaniline	ND		330	25	ug/Kg		09/25/15 13:06	09/28/15 13:31	1
2-Nitrophenol	ND		170	48	ug/Kg		09/25/15 13:06	09/28/15 13:31	1
3,3'-Dichlorobenzidine	ND		330	200	ug/Kg		09/25/15 13:06	09/28/15 13:31	1
3-Nitroaniline	ND		330		ug/Kg		09/25/15 13:06	09/28/15 13:31	1
4,6-Dinitro-2-methylphenol	ND		330		ug/Kg			09/28/15 13:31	1
4-Bromophenyl phenyl ether	ND		170		ug/Kg			09/28/15 13:31	1
4-Chloro-3-methylphenol	ND		170		ug/Kg			09/28/15 13:31	1
4-Chloroaniline	ND		170		ug/Kg			09/28/15 13:31	1
4-Chlorophenyl phenyl ether	ND		170		ug/Kg			09/28/15 13:31	
4-Methylphenol	ND		330		ug/Kg			09/28/15 13:31	1
4-Nitroaniline	ND		330		ug/Kg			09/28/15 13:31	1
4-Nitrophenol	ND		330					09/28/15 13:31	· · · · · · · 1
Acenaphthene	ND		170		ug/Kg			09/28/15 13:31	1
Acenaphthylene	ND		170		ug/Kg			09/28/15 13:31	1
Acetophenone	ND		170		ug/Kg			09/28/15 13:31	· · · · · · · · · · · · · · · · · · ·
Anthracene	ND		170		ug/Kg			09/28/15 13:31	1
Atrazine	ND		170		ug/Kg			09/28/15 13:31	1
Benzaldehyde	ND		170		ug/Kg			09/28/15 13:31	1
•	ND ND		170					09/28/15 13:31	1
Benzo[a]anthracene	ND ND		170		ug/Kg ug/Kg			09/28/15 13:31	
Benzo[a]pyrene Benzo[b]fluoranthene	ND		170					09/28/15 13:31	1
					ug/Kg			09/28/15 13:31	1
Benzo[g,h,i]perylene	ND		170		ug/Kg				1
Benzo[k]fluoranthene	ND		170		ug/Kg			09/28/15 13:31	1
Bis(2-chloroethoxy)methane	ND		170		ug/Kg			09/28/15 13:31	1
Bis(2-chloroethyl)ether	ND		170		ug/Kg			09/28/15 13:31	1
Bis(2-ethylhexyl) phthalate	ND		170		ug/Kg			09/28/15 13:31	1
Butyl benzyl phthalate	ND		170		ug/Kg			09/28/15 13:31	1
Caprolactam	ND		170		ug/Kg			09/28/15 13:31	1
Carbazole	ND		170		ug/Kg			09/28/15 13:31	1
Chrysene	ND		170		ug/Kg			09/28/15 13:31	1
Dibenz(a,h)anthracene	ND		170		ug/Kg			09/28/15 13:31	1
Di-n-butyl phthalate	ND		170		ug/Kg			09/28/15 13:31	
Di-n-octyl phthalate	ND		170		ug/Kg			09/28/15 13:31	1
Dibenzofuran	ND		170		ug/Kg			09/28/15 13:31	1
Diethyl phthalate	ND		170	22	ug/Kg		09/25/15 13:06	09/28/15 13:31	1

TestAmerica Buffalo

Page 19 of 33

1

11

12

14

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-265552/1-A

Matrix: Solid

Analysis Batch: 265604

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 265552

_	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dimethyl phthalate	ND		170	20	ug/Kg		09/25/15 13:06	09/28/15 13:31	1
Fluoranthene	ND		170	18	ug/Kg		09/25/15 13:06	09/28/15 13:31	1
Fluorene	ND		170	20	ug/Kg		09/25/15 13:06	09/28/15 13:31	1
Hexachlorobenzene	ND		170	23	ug/Kg		09/25/15 13:06	09/28/15 13:31	1
Hexachlorobutadiene	ND		170	25	ug/Kg		09/25/15 13:06	09/28/15 13:31	1
Hexachlorocyclopentadiene	ND		170	23	ug/Kg		09/25/15 13:06	09/28/15 13:31	1
Hexachloroethane	ND		170	22	ug/Kg		09/25/15 13:06	09/28/15 13:31	1
Indeno[1,2,3-cd]pyrene	ND		170	21	ug/Kg		09/25/15 13:06	09/28/15 13:31	1
Isophorone	ND		170	36	ug/Kg		09/25/15 13:06	09/28/15 13:31	1
N-Nitrosodi-n-propylamine	ND		170	29	ug/Kg		09/25/15 13:06	09/28/15 13:31	1
N-Nitrosodiphenylamine	ND		170	140	ug/Kg		09/25/15 13:06	09/28/15 13:31	1
Naphthalene	ND		170	22	ug/Kg		09/25/15 13:06	09/28/15 13:31	1
Nitrobenzene	ND		170	19	ug/Kg		09/25/15 13:06	09/28/15 13:31	1
Pentachlorophenol	ND		330	170	ug/Kg		09/25/15 13:06	09/28/15 13:31	1
Phenanthrene	ND		170	25	ug/Kg		09/25/15 13:06	09/28/15 13:31	1
Phenol	ND		170	26	ug/Kg		09/25/15 13:06	09/28/15 13:31	1
Pyrene	ND		170	20	ug/Kg		09/25/15 13:06	09/28/15 13:31	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	76		34 - 132	09/25/15 13:06	09/28/15 13:31	1
Phenol-d5 (Surr)	81		11 - 120	09/25/15 13:06	09/28/15 13:31	1
p-Terphenyl-d14 (Surr)	96		65 - 153	09/25/15 13:06	09/28/15 13:31	1
2,4,6-Tribromophenol (Surr)	76		39 - 146	09/25/15 13:06	09/28/15 13:31	1
2-Fluorobiphenyl	80		37 - 120	09/25/15 13:06	09/28/15 13:31	1
2-Fluorophenol (Surr)	81		18 - 120	09/25/15 13:06	09/28/15 13:31	1

Lab Sample ID: LCS 480-265552/2-A

Matrix: Solid

Analysis Batch: 265604

Client Sample ID: Lab Control Sample Prep Type: Total/NA **Prep Batch: 265552**

Analysis Batch. 200004	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
2,4-Dinitrotoluene	1650	1390		ug/Kg		85	55 - 125
2-Chlorophenol	1650	1290		ug/Kg		78	38 - 120
4-Chloro-3-methylphenol	1650	1490		ug/Kg		91	49 - 125
4-Nitrophenol	3290	2690		ug/Kg		82	43 - 137
Acenaphthene	1650	1310		ug/Kg		79	53 - 120
Atrazine	3290	2900		ug/Kg		88	60 - 164
Bis(2-ethylhexyl) phthalate	1650	1440		ug/Kg		88	61 - 133
Fluorene	1650	1360		ug/Kg		83	63 - 126
Hexachloroethane	1650	1190		ug/Kg		72	41 - 120
N-Nitrosodi-n-propylamine	1650	1310		ug/Kg		79	46 - 120
Pentachlorophenol	3290	2550		ug/Kg		77	33 - 136
Phenol	1650	1320		ug/Kg		80	36 - 120
Pyrene	1650	1450		ug/Kg		88	51 - 133

LCS	LCS
-----	-----

Surrogate	%Recovery Qualifier	Limits
Nitrobenzene-d5 (Surr)	74	34 - 132

Page 20 of 33

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-265552/2-A

Matrix: Solid

Analysis Batch: 265604

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 265552

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Phenol-d5 (Surr)	80		11 - 120
p-Terphenyl-d14 (Surr)	95		65 - 153
2,4,6-Tribromophenol (Surr)	84		39 - 146
2-Fluorobiphenyl	80		37 - 120
2-Fluorophenol (Surr)	74		18 - 120

Lab Sample ID: 480-87201-17 MS **Client Sample ID: CSB-10**

Matrix: Solid

Analysis Batch: 265604

Prep Type: Total/NA Prep Batch: 265552

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,4-Dinitrotoluene	ND		2850	2680	J	ug/Kg	₩	94	55 - 125	
2-Chlorophenol	ND	F2	2850	1820	J	ug/Kg	☼	64	38 - 120	
4-Chloro-3-methylphenol	ND		2850	1920	J	ug/Kg	☼	67	49 - 125	
4-Nitrophenol	ND		5700	5930	J	ug/Kg	₽	104	43 - 137	
Acenaphthene	960	J	2850	3340	J	ug/Kg	☼	83	53 - 120	
Atrazine	ND		5700	4600	J	ug/Kg	☼	81	60 - 164	
Bis(2-ethylhexyl) phthalate	ND		2850	2520	J	ug/Kg	₩	88	61 - 133	
Fluorene	1100	J	2850	3370	J	ug/Kg	☼	80	63 - 126	
Hexachloroethane	ND		2850	2370	J	ug/Kg	₩	83	41 - 120	
N-Nitrosodi-n-propylamine	ND		2850	2700	J	ug/Kg	₩	95	46 - 120	
Pentachlorophenol	ND		5700	8260	J	ug/Kg	☼	NC	33 - 136	
Phenol	ND		2850	2080	J	ug/Kg	₩	73	36 - 120	
Pyrene	10000	F1	2850	12100		ug/Kg	₩.	76	51 - 133	

Limits

%Recovery Qualifier Surrogate Nitrobenzene-d5 (Surr) 78

34 - 132 Phenol-d5 (Surr) 68 11 - 120 p-Terphenyl-d14 (Surr) 94 65 - 153 2,4,6-Tribromophenol (Surr) 117 39 - 146

MS MS

2-Fluorobiphenyl 37 - 120 77 2-Fluorophenol (Surr) 18 - 120 66

Lab Sample ID: 480-87201-17 MSD

Matrix: Solid

Analysis Batch: 265604

Client Sample ID: CSB-10 Prep Type: Total/NA

Prep Batch: 265552

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2,4-Dinitrotoluene	ND		2810	2420	J	ug/Kg	<u></u>	86	55 - 125	10	20
2-Chlorophenol	ND	F2	2810	2400	J F2	ug/Kg	☼	86	38 - 120	27	25
4-Chloro-3-methylphenol	ND		2810	2190	J	ug/Kg	☼	78	49 - 125	13	27
4-Nitrophenol	ND		5610	6050	J	ug/Kg	₩	108	43 - 137	2	25
Acenaphthene	960	J	2810	3070	J	ug/Kg	☼	75	53 - 120	8	35
Atrazine	ND		5610	5300	J	ug/Kg	☼	94	60 - 164	14	20
Bis(2-ethylhexyl) phthalate	ND		2810	2410	J	ug/Kg	₩.	86	61 - 133	5	15
Fluorene	1100	J	2810	3300	J	ug/Kg	☼	79	63 - 126	2	15
Hexachloroethane	ND		2810	2380	J	ug/Kg	☼	85	41 - 120	1	46
N-Nitrosodi-n-propylamine	ND		2810	2650	J	ug/Kg	₽	94	46 - 120	2	31

TestAmerica Buffalo

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-8720' Matrix: Solid	1-17 MSD							Clie	ent Sample ID: CSB-10 Prep Type: Total/NA		
Analysis Batch: 265604	Sample	Sample	Spike	MSD	MSD				Prep Ba %Rec.	itch: 26	65552 RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Pentachlorophenol	ND		5610	8200	J	ug/Kg	<u> </u>	NC	33 - 136	1	35
Phenol	ND		2810	2230	J	ug/Kg	₩	79	36 - 120	7	35
Pyrene	10000	F1	2810	9360	F1	ug/Kg	₩	-22	51 - 133	26	35
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
Nitrobenzene-d5 (Surr)	75		34 - 132								

Phenol-d5 (Surr)	81	11 - 120
p-Terphenyl-d14 (Surr)	88	65 - 153
2,4,6-Tribromophenol (Surr)	131	39 - 146
2-Fluorobiphenyl	86	37 - 120
2-Fluorophenol (Surr)	82	18 - 120
_		

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-264694/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA Prep Batch: 264694

Analysis Batch: 265030

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 1.0 09/21/15 13:25 09/22/15 13:48 Lead 0.24 mg/Kg ND

Lab Sample ID: LCSSRM 480-264694/2-A Matrix: Solid Analysis Batch: 265030				Clien	t Saı	mple II	D: Lab Control Samp Prep Type: Total/N Prep Batch: 26469	IA
	Spike	LCSSRM	LCSSRM				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Lead	90.1	89.65		ma/Ka		99.5	70.1 - 129	_

Lab Sample ID: 480-87201-	17 MS							Clie	nt Sample ID: CSB-10
Matrix: Solid									Prep Type: Total/NA
Analysis Batch: 265030									Prep Batch: 264694
_	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Lead	3040	F2	56.9	3750	4	mg/Kg	₩	1247	75 - 125

Lab Sample ID: 480-87201-	17 MSD							Clie	nt Sample	D: CS	SB-10
Matrix: Solid									Prep Ty	pe: Tot	al/NA
Analysis Batch: 265030									Prep Ba	itch: 26	34694
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Lead	3040	F2	50.8	2133	4 F2	mg/Kg	<u>₩</u>	-1787	75 - 125	55	20

Lab Sample ID: MB 480-265052/1-A **Client Sample ID: Method Blank Matrix: Solid Prep Type: Total/NA**

Analysis Batch: 265346

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Lead ND 0.98 09/23/15 10:40 09/24/15 09:44 0.24 mg/Kg

TestAmerica Buffalo

9/29/2015

Page 22 of 33

Prep Batch: 265052

QC Sample Results

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87201-2

Prep Type: Total/NA Prep Batch: 265052

Lab Sample ID: LCSSRM 480-265052/2-A

Matrix: Solid

Analysis Batch: 265346

		Spike	
Analyte		Added	
Lead		90.1	_

LCSSRM LCSSRM Result Qualifier Unit 92.98

mg/Kg

D %Rec

%Rec. Limits 103.2 70.1 - 129. 9

Client Sample ID: Lab Control Sample

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

GC/MS Semi VOA

Prep Batch: 265552

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87201-1	CSW-44	Total/NA	Solid	3550C	
480-87201-2	CSW-45	Total/NA	Solid	3550C	
480-87201-3	CSW-46	Total/NA	Solid	3550C	
480-87201-4	CSW-47	Total/NA	Solid	3550C	
480-87201-5	CSW-48	Total/NA	Solid	3550C	
480-87201-17	CSB-10	Total/NA	Solid	3550C	
480-87201-17 MS	CSB-10	Total/NA	Solid	3550C	
480-87201-17 MSD	CSB-10	Total/NA	Solid	3550C	
LCS 480-265552/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-265552/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 265604

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87201-1	CSW-44	Total/NA	Solid	8270D	265552
480-87201-2	CSW-45	Total/NA	Solid	8270D	265552
480-87201-3	CSW-46	Total/NA	Solid	8270D	265552
480-87201-4	CSW-47	Total/NA	Solid	8270D	265552
480-87201-5	CSW-48	Total/NA	Solid	8270D	265552
480-87201-17	CSB-10	Total/NA	Solid	8270D	265552
480-87201-17 MS	CSB-10	Total/NA	Solid	8270D	265552
480-87201-17 MSD	CSB-10	Total/NA	Solid	8270D	265552
LCS 480-265552/2-A	Lab Control Sample	Total/NA	Solid	8270D	265552
MB 480-265552/1-A	Method Blank	Total/NA	Solid	8270D	265552

Metals

Prep Batch: 264694

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87201-1	CSW-44	Total/NA	Solid	3050B	
480-87201-2	CSW-45	Total/NA	Solid	3050B	
480-87201-3	CSW-46	Total/NA	Solid	3050B	
480-87201-4	CSW-47	Total/NA	Solid	3050B	
480-87201-17	CSB-10	Total/NA	Solid	3050B	
480-87201-17 MS	CSB-10	Total/NA	Solid	3050B	
480-87201-17 MSD	CSB-10	Total/NA	Solid	3050B	
LCSSRM 480-264694/2-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 480-264694/1-A	Method Blank	Total/NA	Solid	3050B	

Analysis Batch: 265030

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87201-1	CSW-44	Total/NA	Solid	6010C	264694
480-87201-2	CSW-45	Total/NA	Solid	6010C	264694
480-87201-3	CSW-46	Total/NA	Solid	6010C	264694
480-87201-4	CSW-47	Total/NA	Solid	6010C	264694
480-87201-17	CSB-10	Total/NA	Solid	6010C	264694
480-87201-17 MS	CSB-10	Total/NA	Solid	6010C	264694
480-87201-17 MSD	CSB-10	Total/NA	Solid	6010C	264694
LCSSRM 480-264694/2-A	Lab Control Sample	Total/NA	Solid	6010C	264694
MB 480-264694/1-A	Method Blank	Total/NA	Solid	6010C	264694

TestAmerica Buffalo

Page 24 of 33

QC Association Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87201-2

Metals (Continued)

Prep Batch: 265052

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87201-5	CSW-48	Total/NA	Solid	3050B	
LCSSRM 480-265052/2-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 480-265052/1-A	Method Blank	Total/NA	Solid	3050B	

Analysis Batch: 265346

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87201-5	CSW-48	Total/NA	Solid	6010C	265052
LCSSRM 480-265052/2-A	Lab Control Sample	Total/NA	Solid	6010C	265052
MB 480-265052/1-A	Method Blank	Total/NA	Solid	6010C	265052

3

4

5

6

8

9

10

14

14

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Client Sample ID: CSW-44 Lab Sample ID: 480-87201-1 Date Collected: 09/14/15 00:00 **Matrix: Solid**

Date Received: 09/14/15 17:30 Percent Solids: 83.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			265552	09/25/15 13:06	TRG	TAL BUF
Total/NA	Analysis	8270D		20	265604	09/28/15 15:44	DMR	TAL BUF
Total/NA	Prep	3050B			264694	09/21/15 13:25	CMM	TAL BUF
Total/NA	Analysis	6010C		1	265030	09/22/15 14:34	LMH	TAL BUF

Lab Sample ID: 480-87201-2 **Client Sample ID: CSW-45**

Date Collected: 09/14/15 00:00 **Matrix: Solid** Date Received: 09/14/15 17:30 Percent Solids: 86.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			265552	09/25/15 13:06	TRG	TAL BUF
Total/NA	Analysis	8270D		20	265604	09/28/15 16:10	DMR	TAL BUF
Total/NA	Prep	3050B			264694	09/21/15 13:25	CMM	TAL BUF
Total/NA	Analysis	6010C		1	265030	09/22/15 14:38	LMH	TAL BUF

Client Sample ID: CSW-46 Lab Sample ID: 480-87201-3 Date Collected: 09/14/15 00:00 **Matrix: Solid**

Date Received: 09/14/15 17:30 Percent Solids: 78.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			265552	09/25/15 13:06	TRG	TAL BUF
Total/NA	Analysis	8270D		20	265604	09/28/15 16:36	DMR	TAL BUF
Total/NA	Prep	3050B			264694	09/21/15 13:25	CMM	TAL BUF
Total/NA	Analysis	6010C		1	265030	09/22/15 14:41	LMH	TAL BUF

Client Sample ID: CSW-47 Lab Sample ID: 480-87201-4 Date Collected: 09/14/15 00:00 **Matrix: Solid**

Date Received: 09/14/15 17:30 Percent Solids: 77.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			265552	09/25/15 13:08	TRG	TAL BUF
Total/NA	Analysis	8270D		20	265604	09/28/15 17:02	DMR	TAL BUF
Total/NA	Prep	3050B			264694	09/21/15 13:25	CMM	TAL BUF
Total/NA	Analysis	6010C		1	265030	09/22/15 14:44	LMH	TAL BUF

Client Sample ID: CSW-48 Lab Sample ID: 480-87201-5

Date Collected: 09/14/15 00:00 **Matrix: Solid** Date Received: 09/14/15 17:30 Percent Solids: 76.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			265552	09/25/15 13:08	TRG	TAL BUF
Total/NA	Analysis	8270D		20	265604	09/28/15 17:29	DMR	TAL BUF
Total/NA	Prep	3050B			265052	09/23/15 10:40	CMM	TAL BUF

TestAmerica Buffalo

Page 26 of 33

10

9/29/2015

Lab Chronicle

Client: Iyer Environmental Group, LLC

Client Sample ID: CSW-48

Date Collected: 09/14/15 00:00

Date Received: 09/14/15 17:30

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87201-2

Lab Sample ID: 480-87201-5

Matrix: Solid

Percent Solids: 76.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	6010C	-		265346	09/24/15 11:34	JRK	TAL BUF

Client Sample ID: CSB-10 Lab Sample ID: 480-87201-17

Date Collected: 09/14/15 00:00 Matrix: Solid

Date Received: 09/14/15 17:30 Percent Solids: 74.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			265552	09/25/15 13:06	TRG	TAL BUF
Total/NA	Analysis	8270D		20	265604	09/28/15 15:17	DMR	TAL BUF
Total/NA	Prep	3050B			264694	09/21/15 13:25	CMM	TAL BUF
Total/NA	Analysis	6010C		1	265030	09/22/15 14:58	LMH	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

7

R

9

44

12

4 4

a E

Certification Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87201-2

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date
New York	NELAP		2	10026	03-31-16
Analysis Method	Prep Method	Matrix	Analyt	е	

3

A

6

8

10

11

13

14

Method Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87201-2

Method	Method Description	Protocol	Laboratory
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

4

5

7

Ŏ

10

11

13

14

Sample Summary

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

TestAmerica Job ID: 480-87201-2

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-87201-1	CSW-44	Solid	09/14/15 00:00	09/14/15 17:30
480-87201-2	CSW-45	Solid	09/14/15 00:00	09/14/15 17:30
480-87201-3	CSW-46	Solid	09/14/15 00:00	09/14/15 17:30
480-87201-4	CSW-47	Solid	09/14/15 00:00	09/14/15 17:30
480-87201-5	CSW-48	Solid	09/14/15 00:00	09/14/15 17:30
480-87201-17	CSB-10	Solid	09/14/15 00:00	09/14/15 17:30

Chain of Custody Record

Temperature on Receipt ____

Drinking Water? Yes□ No 🛣

TestAmerica

9
Ξ
B
–
¥.
Z
Æ
ź
Õ
뽎
ź
ш
2
띪
ADE
≅
_
뿌
Ë

TAL-4124 (1007)					
Client Livingamental Grap	Project Manager	Tharma (Ver	Date Seto i4.	2018 Chain of Ca	Chain of Custody Number 264472
8	Telephone Number (Ar	Number (Area Code)/Fax Number / 662- 4/57	Lab Number	Page	ري م
Orchard Park NY 14127		M. Ook	Analysis (Attach list if more space is needed)		
s St (NY	Carrier/Waybill Number		587	· · · · · · · · · · · · · · · · · · ·	ecial Instructions/
Contract/Purchase Orde/Cuote No.	Matrix	Containers & Preservatives	M)		Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	IIMe suoeuph	HOEN POSTH FORTH F	막-91.	4	AG T
CSW-44 Sept.2015			- 		
CSW-45		1			
) CSW-46		1 /	>	stody	
GSW-47				or Cua	
310				uish	
t 333		2		504 C	
CSW-50				ZZ8-0	
CSW-51	7			87 	
CSW-52				Field	4 Dup
CSW-53		\ 			
CSW-54			<u> </u>		
CSW-55			~		
Possible Hazard Identification Non-Hazard	Sample Disposal	S Disposal By Lab	(A fe	(A fee may be assessed if samples are retained longer than 1 month)	iles are retained
		OC Requirements (Sp		francia i i i i i i i i i i i i i i i i i i	
24 Hours 46 Hours 18 7 Days 14 Days 21 Days	Other				
1. Relinquished By Physics Con Strain Fr	9/14(15)		Marchan TA	- Date	4/15 June 730
2. Relinquished By O	Date Time	2. Received By		Date	Time
7. Relinquished By	Date Time	3. Received By		Date	Tine
Comments			Temp 2117 #1 100 TCE	打防江	

Custody Record Chain of

Temperature on Receipt

Drinking Water? Yes \ No \

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

m (730) N Special Instructions/ Conditions of Receipt (A fee may be assessed if samples are retained longer than 1 month) Time $\overline{\omega}$ MS/ MSD Date O'GI (4/115 Cat Date Sep 14 2015 TEMP 2117 40 70F 4 Analysis (Attach list if more space is needed) Months Date Archive For 597d 191g > OC Requirements (Specify) NOANZ HOBN Desp 🛭 Disposal By Lab Containers & Preservatives اچ/ ا HOBN 1. Received By 3. Received By 2. Received By IDH Telephone Number (Area Cocle)/Fax Number (716) 662-4|57 EONH Project Manager Ongrima tOSZH Hetum To Client Sample Disposal > > Time Time Carrier/Waybill Numbe Matrix pəs *sповпь*ъ > 46 □ Other П Ипкломп Date Time 🗌 21 Days Sep 14, 2015 ☐ Poison B Date At Rolling Hills D-Mard Park NY 14127 828 مسبه مسد ☐ 14 Days Sample I.D. No. and Description (Containers for each sample may be combined on one line) Skin Irritant VET ENVIRONMENTAL X 7 Days 132 Dingens St Contract Purchase Order Ouche No. 98-MSI イSー NSU CSW-SB CSW-59 🗌 Flammable Orchard Park 1. Relinquished By R. Hard CSK ~10 Project Name and Location (State) CSB - 11 CSB-12 ERBIA 24 Hours 1 48 Hours Possible Hazard Identification Tum Around Time Required 05/6 3 Relinquished By 2 Relinquished By 2 Comments 2. Relinquished By Non-Hazard TAL-4124 (1007) Client Page 32 of 33

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

Login Sample Receipt Checklist

Client: Iyer Environmental Group, LLC

Job Number: 480-87201-2

Login Number: 87201 List Source: TestAmerica Buffalo

List Number: 1

Creator: Williams, Christopher S

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	Sample times not listed
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	False	Sample times not listed on labels
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	False	Additional containers for MS/MSD not provided
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	IYER
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

2

J

5

6

10

12

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-87473-1 Client Project/Site: 132 Dingens

For:

Iyer Environmental Group, LLC 44 Rolling Hills Drive Orchard Park, New York 14127

Attn: Dr. Dharmarajan R Iyer

Melisso Deyo

Authorized for release by: 9/22/2015 4:30:29 PM

Melissa Deyo, Project Manager I (716)504-9874

melissa.deyo@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	11
Method Summary	12
Sample Summary	13
Chain of Custody	14
Receipt Checklists	15

-6

4

5

6

8

3

11

Definitions/Glossary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87473-1

Qualifiers

Metals

Qualifier	Qualifier Description
F2	MS/MSD RPD exceeds control limits
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.

Glossary

RL

RPD

TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio

Reporting Limit or Requested Limit (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Relative Percent Difference, a measure of the relative difference between two points

TestAmerica Buffalo

Case Narrative

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87473-1

Job ID: 480-87473-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-87473-1

Receipt

The samples were received on 9/17/2015 5:40 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 19.1° C.

Receipt Exceptions

No times of collection were provided, time of 00:00 was used for login.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

0

9

10

11

13

Detection Summary

Client: Iyer Environmental Group, LLC

Client Sample ID: CSB-5-4

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87473-1

Lab Sample ID: 480-87473-	-1

Analyte	Result C	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lead	1060		1.9	0.46	mg/Kg	1	₩	6010C	 Total/NA

Client Sample ID: CSB-3-3 Lab Sample ID: 480-87473-2

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Lead	34.6	1.3	0.32 mg/Kg	1 🌣 6010C	Total/NA

Client Sample ID: CSW-21-4 Lab Sample ID: 480-87473-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	111		3.0	0.60	mg/Kg		₩	6010C	Total/NA
Hg	3.3	F2	0.15	0.060	mg/Kg	5	₩	7471B	Total/NA

This Detection Summary does not include radiochemical test results.

Client: Iyer Environmental Group, LLC

Method: 7471B - Mercury (CVAA)

Analyte

Hg

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87473-1

6

Dil Fac

Analyzed

Client Sample ID: CSB-5-4 Lab Sample ID: 480-87473-1 Date Collected: 09/17/15 00:00 Matrix: Solid Date Received: 09/17/15 17:40 Percent Solids: 53.8 Method: 6010C - Metals (ICP) Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac ₩ 09/18/15 13:00 09/21/15 13:36 Lead 1060 1.9 0.46 mg/Kg Client Sample ID: CSB-3-3 Lab Sample ID: 480-87473-2 Date Collected: 09/17/15 00:00 **Matrix: Solid** Date Received: 09/17/15 17:40 Percent Solids: 75.2 Method: 6010C - Metals (ICP) Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac 1.3 0.32 mg/Kg 09/18/15 13:00 09/21/15 13:39 Lead 34.6 Client Sample ID: CSW-21-4 Lab Sample ID: 480-87473-3 Date Collected: 09/17/15 00:00 **Matrix: Solid** Date Received: 09/17/15 17:40 Percent Solids: 67.8 Method: 6010C - Metals (ICP) Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac ₩ **Arsenic** 111 3.0 0.60 mg/Kg 09/18/15 13:00 09/21/15 13:42

RL

0.15

MDL Unit

0.060 mg/Kg

Prepared

09/21/15 09:32 09/21/15 14:01

Result Qualifier

3.3 F2

TestAmerica Job ID: 480-87473-1

Prep Type: Total/NA

Prep Batch: 264376

Client Sample ID: Method Blank

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-264376/1-A

Matrix: Solid Analysis Batch: 264734

MB MB

Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Analyte 1.0 09/18/15 13:00 09/21/15 12:38 Lead $\overline{\mathsf{ND}}$ 0.24 mg/Kg ND 2.0 0.41 mg/Kg 09/18/15 13:00 09/21/15 12:38 Arsenic

Lab Sample ID: LCSSRM 480-264376/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 264734 Prep Batch: 264376** LCSSRM LCSSRM Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits 70.1 - 129. Lead 90.1 80.96 mg/Kg 89.9 82.2 69.7 - 142. Arsenic 113 92.91 mg/Kg 5

RL

0.020

Spike

Added

8.37

Spike

Added

0.469

MDL Unit

0.0080 mg/Kg

LCSSRM LCSSRM

MS MS

MSD MSD

6.25 4 F2

Result Qualifier

4.83 4

Result Qualifier

9.66

Result Qualifier

Unit

Unit

Unit

mg/Kg

mg/Kg

mg/Kg

Method: 7471B - Mercury (CVAA)

Lab Sample ID: MB 480-264646/1-A

Matrix: Solid

Hg

Hg

Analysis Batch: 264737

MB MB

Result Qualifier Analyte Hg \overline{ND}

Lab Sample ID: LCSSRM 480-264646/2-A

Matrix: Solid Analysis Batch: 264737

Analyte

Lab Sample ID: 480-87473-3 MS

Matrix: Solid Analysis Batch: 264737

Analyte

Lab Sample ID: 480-87473-3 MSD

Matrix: Solid Analysis Batch: 264737

Sample Sample Analyte Result Qualifier

3.3 F2 Hg

Spike Added 0.500

Sample Sample

3.3 F2

Result Qualifier

Client Sample ID: Method Blank

Prep Batch: 264646 Dil Fac Prepared Analyzed

D

D

%Rec

%Rec

589

09/21/15 09:32 09/21/15 13:41 **Client Sample ID: Lab Control Sample**

> Prep Type: Total/NA Prep Batch: 264646 %Rec.

Prep Type: Total/NA

Limits D %Rec 115.5 51.3 - 148. 1

> Client Sample ID: CSW-21-4 Prep Type: Total/NA

Prep Batch: 264646

%Rec. Limits

325 80 - 120

Client Sample ID: CSW-21-4 Prep Type: Total/NA **Prep Batch: 264646**

%Rec. **RPD** Limits RPD Limit 80 - 120 26 20

TestAmerica Buffalo

QC Association Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87473-1

Metals

Prep Batch: 264376

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87473-1	CSB-5-4	Total/NA	Solid	3050B	
480-87473-2	CSB-3-3	Total/NA	Solid	3050B	
480-87473-3	CSW-21-4	Total/NA	Solid	3050B	
LCSSRM 480-264376/2-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 480-264376/1-A	Method Blank	Total/NA	Solid	3050B	

Prep Batch: 264646

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87473-3	CSW-21-4	Total/NA	Solid	7471B	
480-87473-3 MS	CSW-21-4	Total/NA	Solid	7471B	
480-87473-3 MSD	CSW-21-4	Total/NA	Solid	7471B	
LCSSRM 480-264646/2-A	Lab Control Sample	Total/NA	Solid	7471B	
MB 480-264646/1-A	Method Blank	Total/NA	Solid	7471B	

Analysis Batch: 264734

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87473-1	CSB-5-4	Total/NA	Solid	6010C	264376
480-87473-2	CSB-3-3	Total/NA	Solid	6010C	264376
480-87473-3	CSW-21-4	Total/NA	Solid	6010C	264376
LCSSRM 480-264376/2-A	Lab Control Sample	Total/NA	Solid	6010C	264376
MB 480-264376/1-A	Method Blank	Total/NA	Solid	6010C	264376

Analysis Batch: 264737

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87473-3	CSW-21-4	Total/NA	Solid	7471B	264646
480-87473-3 MS	CSW-21-4	Total/NA	Solid	7471B	264646
480-87473-3 MSD	CSW-21-4	Total/NA	Solid	7471B	264646
LCSSRM 480-264646/2-A	Lab Control Sample	Total/NA	Solid	7471B	264646
MB 480-264646/1-A	Method Blank	Total/NA	Solid	7471B	264646

General Chemistry

Analysis Batch: 264231

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87473-1	CSB-5-4	Total/NA	Solid	Moisture	
480-87473-2	CSB-3-3	Total/NA	Solid	Moisture	
480-87473-3	CSW-21-4	Total/NA	Solid	Moisture	

5

6

8

46

11

16

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Client Sample ID: CSB-5-4

Date Collected: 09/17/15 00:00

Date Received: 09/17/15 17:40

Lab Sample ID: 480-87473-1

Matrix: Solid

Dilution Batch Prepared Batch Batch Method Run Factor Number or Analyzed **Prep Type** Type Analyst Lab TAL BUF Total/NA Analysis Moisture 264231 09/17/15 22:22 CMK

Client Sample ID: CSB-5-4 Lab Sample ID: 480-87473-1

Date Collected: 09/17/15 00:00 Date Received: 09/17/15 17:40

Matrix: Solid

Percent Solids: 53.8

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Total/NA 3050B 264376 09/18/15 13:00 CMM TAL BUF Prep Total/NA Analysis 6010C 264734 09/21/15 13:36 TRB TAL BUF 1

Client Sample ID: CSB-3-3 Lab Sample ID: 480-87473-2

Date Collected: 09/17/15 00:00 Matrix: Solid

Date Received: 09/17/15 17:40

Batch Batch Dilution **Batch Prepared** Type Method Run Factor Number or Analyzed Analyst Prep Type Lab 264231 09/17/15 22:22 CMK Moisture TAL BUF Total/NA Analysis

Client Sample ID: CSB-3-3 Lab Sample ID: 480-87473-2

Date Collected: 09/17/15 00:00

Matrix: Solid Date Received: 09/17/15 17:40 Percent Solids: 75.2

Batch Batch Dilution Batch Prepared or Analyzed **Prep Type** Type Method Run **Factor** Number **Analyst** Lab Total/NA Prep 3050B 264376 09/18/15 13:00 CMM TAL BUF Total/NA Analysis 6010C 264734 09/21/15 13:39 TRB TAL BUF 1

Client Sample ID: CSW-21-4 Lab Sample ID: 480-87473-3

Date Collected: 09/17/15 00:00

Date Received: 09/17/15 17:40

Batch Dilution Batch Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis Moisture 264231 09/17/15 22:22 CMK TAL BUF

Lab Sample ID: 480-87473-3 Client Sample ID: CSW-21-4

Date Collected: 09/17/15 00:00 Matrix: Solid

Date Received: 09/17/15 17:40 Percent Solids: 67.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			264376	09/18/15 13:00	CMM	TAL BUF
Total/NA	Analysis	6010C		1	264734	09/21/15 13:42	TRB	TAL BUF
Total/NA	Prep	7471B			264646	09/21/15 09:32	TAS	TAL BUF
Total/NA	Analysis	7471B		5	264737	09/21/15 14:01	TAS	TAL BUF

TestAmerica Buffalo

Matrix: Solid

Lab Chronicle

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87473-1

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

9

Δ

5

6

8

9

11

12

13

Certification Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87473-1

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date
New York	NELAP		2	10026	03-31-16
The following analytes	are included in this repo	rt, but certification is	not offered by the go	overning authority:	
The following analytes Analysis Method	s are included in this repo Prep Method	rt, but certification is Matrix	not offered by the go Analyt	,	
,	·	·	Analyt	,	

3

4

5

-

10

13

Method Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87473-1

Method	Method Description	Protocol	Laboratory
6010C	Metals (ICP)	SW846	TAL BUF
7471B	Mercury (CVAA)	SW846	TAL BUF
Moisture	Percent Moisture	EPA	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Л

5

6

Q

10

11

13

Sample Summary

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

TestAmerica Job ID: 480-87473-1

Lab Sample ID	Client Sample ID	Matrix	Collected Received
480-87473-1	CSB-5-4	Solid	09/17/15 00:00 09/17/15 17:4
480-87473-2	CSB-3-3	Solid	09/17/15 00:00 09/17/15 17:4
480-87473-3	CSW-21-4	Solid	09/17/15 00:00 09/17/15 17:4

TestAmerica Temperature on Receipt _

Drinking Water? Yes□ No

Chain of Custody Record

THE LEADER IN ENVIRONMENTAL TESTING

TAL-4124 (1007)							
(Shviron manta)	Sing.	Project	Project Manager Ong CMG	Ma Iver		Sen 17. 2015	Chain of Custody Number 264477
(C		Telephon (71/2)	e Numb	te)Fax Number 4 15 7		mber	Pageof
State	Tp Code		fact	Lab Contact	Ar mo	Analysis (Attach list if more space is needed)	
くがな	(\)	Carrier	Carrier/Waybill Number		<u> </u>		Special Instructions/
Contract/Purchase OrdekQuote No.			Matrix	Containers & Preservatives	# 11		Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	rith suoeuph be2 lio2	HOBOH ZUYON NBOH HOI HNO3 H5CO¢	121		Cat B
C5B-5-4	211-119		>		>		
G58-3-3	9 m (15		>		>		
CSW 21-4	श/ग/ष		>		\frac{1}{2}		
age	•						
14 c							
of 15		ì					
						480-87473 Chain of Clistody	
							:
Possible Hazard Identification Non-Hazard	□ Poison B	☐ Unknown	Sample Disposal Return To Client	Disposal By Lab	Archive For	(A fee may be ass. — Months longer than 1 mor	(A fee may be assessed if samples are retained longer than 1 month)
Tum Around Time Required 24 Hours	Days 🗌 21 Days			OC Requirements (Specify)	Ng.		
Reliable All			1/15 174(1. Received By	4)	OMI - Ime
2. Relinquished By		Date	Time	2. Received By			Date I Time
3. Relinquished By		Date	Time	3. Received By			Date Time
Comments 2015					0000	# 11:15	- L

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

13

丼

18mp 19,1 No ICE

Login Sample Receipt Checklist

Client: Iyer Environmental Group, LLC

Job Number: 480-87473-1

Login Number: 87473 List Source: TestAmerica Buffalo

List Number: 1

Creator: Kolb, Chris M

Creator: Kold, Chris M		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	False	
Cooler Temperature is acceptable.	True	Yes: Received same day of collection
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	Refer to job narrative for details
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	False	Refer to job narrative for details
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	iyer env.
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

TestAmerica Buffalo

4

5

10

11

4.0

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-87473-2 Client Project/Site: 132 Dingens

For:

Iyer Environmental Group, LLC 44 Rolling Hills Drive Orchard Park, New York 14127

Attn: Dr. Dharmarajan R Iyer

Melisso Deyo

Authorized for release by: 9/30/2015 8:38:46 AM

Melissa Deyo, Project Manager I (716)504-9874

melissa.deyo@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

TestAmerica Job ID: 480-87473-2

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	10
Method Summary	11
Sample Summary	12
Chain of Custody	13
Receipt Checklists	14

-5

4

6

8

9

11

13

Definitions/Glossary

Client: Iyer Environmental Group, LLC

Toxicity Equivalent Quotient (Dioxin)

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87473-2

Glossary

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

Case Narrative

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87473-2

Job ID: 480-87473-2

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-87473-2

Receipt

The samples were received on 9/17/2015 5:40 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 19.1° C.

Receipt Exceptions

No times of collection were provided, time of 00:00 was used for login.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

4

6

7

8

9

12

13

Detection Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87473-2

Client Sample ID: CSB-5-4 Lab Sample ID: 480-87473-1

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Arsenic	84.2	3.9	0.77 mg/Kg	1 ♀ 6010C	Total/NA
Mercury	4.1	0.18	0.074 mg/Kg	5 🌣 7471B	Total/NA

3

4

5

0

8

9

10

12

13

Client Sample Results

Client: Iyer Environmental Group, LLC

Client Sample ID: CSB-5-4 Date Collected: 09/17/15 00:00

Date Received: 09/17/15 17:40

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87473-2

Lab Sample ID: 480-87473-1

Matrix: Solid

Percent Solids: 53.8

Arsenic 84.2	3.9	0.77	Unit mg/Kg	— □	Prepared 09/18/15 13:00	Analyzed 09/21/15 13:36	Dil Fac
Method: 7471B - Mercury (CVAA) Analyte Result Q	ualifier RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac

QC Sample Results

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87473-2

Client Sample ID: Method Blank

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-264376/1-A

Matrix: Solid

Analysis Batch: 264734

MB MB

Analyte Result Qualifier Arsenic

ND

RL 2.0

MDL Unit 0.41 mg/Kg

Prepared 09/18/15 13:00 09/21/15 12:38

Client Sample ID: Lab Control Sample

Analyzed Dil Fac

Prep Type: Total/NA

Prep Batch: 264376

Prep Type: Total/NA

Prep Batch: 264376

Lab Sample ID: LCSSRM 480-264376/2-A

Matrix: Solid

Analysis Batch: 264734

Analyte

Arsenic

Spike LCSSRM LCSSRM Added

RL

113

Result Qualifier 92.91

Unit mg/Kg

D %Rec 82.2 69.7 - 142.

5

Client Sample ID: Method Blank

%Rec.

Limits

Method: 7471B - Mercury (CVAA)

Lab Sample ID: MB 480-265961/1-A

Matrix: Solid

Analysis Batch: 266060

MB MB

Analyte Result Qualifier Mercury ND

0.020

MDL Unit 0.0081 mg/Kg

LCSSRM LCSSRM

9.77

Result Qualifier

Unit

mg/Kg

Analyzed Prepared 09/29/15 11:25 09/29/15 13:24

Dil Fac

Lab Sample ID: LCSSRM 480-265961/2-A

Matrix: Solid

Analysis Batch: 266060

Spike Added Analyte 8.37 Mercury

Client Sample ID: Lab Control Sample

D %Rec

Prep Type: Total/NA **Prep Batch: 265961**

Prep Type: Total/NA

Prep Batch: 265961

%Rec. Limits

116.7 51.3 - 148.

QC Association Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87473-2

Metals

Prep Batch: 264376

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87473-1	CSB-5-4	Total/NA	Solid	3050B	
LCSSRM 480-264376/2-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 480-264376/1-A	Method Blank	Total/NA	Solid	3050B	

Analysis Batch: 264734

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87473-1	CSB-5-4	Total/NA	Solid	6010C	264376
LCSSRM 480-264376/2-A	Lab Control Sample	Total/NA	Solid	6010C	264376
MB 480-264376/1-A	Method Blank	Total/NA	Solid	6010C	264376

Prep Batch: 265961

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87473-1	CSB-5-4	Total/NA	Solid	7471B	<u> </u>
LCSSRM 480-265961/2-A	Lab Control Sample	Total/NA	Solid	7471B	
MB 480-265961/1-A	Method Blank	Total/NA	Solid	7471B	

Analysis Batch: 266060

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87473-1	CSB-5-4	Total/NA	Solid	7471B	265961
LCSSRM 480-265961/2-A	Lab Control Sample	Total/NA	Solid	7471B	265961
MB 480-265961/1-A	Method Blank	Total/NA	Solid	7471B	265961

6

4

5

7

8

10

11

13

Lab Chronicle

5

266060 09/29/15 13:40 TAS

Client: Iyer Environmental Group, LLC

Analysis

7471B

Client Sample ID: CSB-5-4 Date Collected: 09/17/15 00:00

Date Received: 09/17/15 17:40

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87473-2

Lab Sample ID: 480-87473-1

TAL BUF

Matrix: Solid

Percent Solids: 53.8

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analvst	Lab
Total/NA	Prep	3050B				09/18/15 13:00	. ,	TAL BUF
Total/NA	Analysis	6010C		1	264734	09/21/15 13:36	TRB	TAL BUF
Total/NA	Prep	7471B			265961	09/29/15 11:25	TAS	TAL BUF

Laboratory References:

Total/NA

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Я

9

10

12

13

Certification Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87473-2

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date
New York	NELAP		2	10026	03-31-16
Analysis Method	Prep Method	Matrix	Analyt	е	

2

7

9

10

12

16

Method Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87473-2

Method	Method Description	Protocol	Laboratory
6010C	Metals (ICP)	SW846	TAL BUF
7471B	Mercury (CVAA)	SW846	TAL BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

-

5

7

8

11

12

13

Sample Summary

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

TestAmerica Job ID: 480-87473-2

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-87473-1	CSB-5-4	Solid	09/17/15 00:00	09/17/15 17:40

TestAmerica Temperature on Receipt _

Drinking Water? Yes□ NoS

Custody Record

Chain of

THE LEADER IN ENVIRONMENTAL TESTING

TAL-4124 (1007)							
ir (Environmental	Quint of the second	Project Manager	Dharma	1 Lver		Date Sep 17, 2015	Chain of Custody Number 264477
2. (Fina HILS D		Telephone Num	Number (Area Code)	Fax Number FIS 7		nber	
State 2	Zip Code	onflact	, ~q)	ab Contact	An	Analysis (Attach list if more space is needed)	
(State) St (A	F 5	Carrier/Waybill Number	Vumber		<u>6</u>		Special Instructions/
hase (Matrix	Containers & Preservatives	11		Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time Air Aqueous	IIOS IPOS	HOSUH FOSTH FOSTH	121 101		Cat B
C5B-5-4	9/17/15		>		>		
G58-3-3	9 m/15		.>		>		
CSW-21-4	शान/ग	-	>		7		
age	•						
13 c							
of 14							
						480-87473 Chain of Clistody	
Possible Hazard Identification Non-Hazard	☐ Poison B	Samp Unknown	Sample Disposal Return To Client	Disposal By Lab	Archive For	(A fee may be a: — Months longer than 1 mc	(A fee may be assessed if samples are retained forger than 1 month)
Tum Around Time Required 24 Hours	ays 🗌 21 Days	Other		QC Requirements (Specify)	<i>S</i>		
1. Relinquished By Rolling C. Allen 3	17	Date 17/15	OpC+	1. Received By	*)	GI/TIME (9/1)
2. Relinguished By		Date	Time	2. Received By			Date I Time
S 3. Relinquished By		Date	Time	3. Received By			Date Time
Comments					0.00	9	+

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

13

18mp 19,1 No ICE #

Login Sample Receipt Checklist

Client: Iyer Environmental Group, LLC

Job Number: 480-87473-2

Login Number: 87473 List Source: TestAmerica Buffalo

List Number: 1

Creator: Kolb, Chris M

Creator: Kolb, Chris M		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	False	
Cooler Temperature is acceptable.	True	Yes: Received same day of collection
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	Refer to job narrative for details
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	False	Refer to job narrative for details
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	iyer env.
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

5

_

9

10

12

IR

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-87872-1 Client Project/Site: 132 Dingens

For:

Iyer Environmental Group, LLC 44 Rolling Hills Drive Orchard Park, New York 14127

Attn: Dr. Dharmarajan R Iyer

Melisso Deyo

Authorized for release by: 9/29/2015 11:24:14 AM

Melissa Deyo, Project Manager I (716)504-9874

melissa.deyo@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	13
Lab Chronicle	15
Certification Summary	19
Method Summary	20
Sample Summary	21
Chain of Custody	22
Receipt Checklists	23

3

4

6

8

46

11

13

14

Definitions/Glossary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87872-1

Qualifiers

GC Semi VOA

Qualifier	Qualifier	Description
-----------	-----------	-------------

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Ciossaiy	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control
RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TestAmerica Buffalo

Page 3 of 23

4

3

5

8

10

1 1

13

14

9/29/2015

Case Narrative

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87872-1

Job ID: 480-87872-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-87872-1

Receipt

The samples were received on 9/24/2015 1:50 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 25.3° C.

GC Semi VOA

Method(s) 8082A: The following sample was diluted due to the abundance of target analytes: CSB-13 (480-87872-1). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

6

3

4

<u>_</u>

7

8

9

10

12

13

TestAmerica Job ID: 480-87872-1

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: CSB-13	Lab Sample ID: 480-87872-1
--------------------------	----------------------------

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
PCB-1254	6.6		0.53	0.25	mg/Kg	2	₩	8082A	Total/NA
PCB-1260	3.4		0.53	0.25	mg/Kg	2	₩	8082A	Total/NA

Client Sample ID: CSB-14 Lab Sample ID: 480-87872-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
PCB-1254	0.90		0.20	0.093	mg/Kg	1	₩	8082A	Total/NA
PCB-1260	0.53		0.20	0.093	mg/Kg	1	₩	8082A	Total/NA

Client Sample ID: CSB-15 Lab Sample ID: 480-87872-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	F	Prep Type
PCB-1254	0.58		0.25	0.12	mg/Kg	1	₩	8082A	T	Γotal/NA
PCB-1260	0.62		0.25	0.12	mg/Kg	1	₩	8082A	Т	Γotal/NA

Client Sample ID: CSB-16 Lab Sample ID: 480-87872-4

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
PCB-1254	0.90	0.25	0.12 mg/Kg	1	8082A	Total/NA
PCB-1260	0.19 J	0.25	0.12 mg/Kg	1 [‡]	8082A	Total/NA

Client Sample ID: CSW-50-2 Lab Sample ID: 480-87872-5

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
PCB-1248	1.3	0.24	0.048 mg/Kg	1	Total/NA

Client Sample ID: CSW-53-2 Lab Sample ID: 480-87872-6

No Detections.

Client Sample ID: CSW-52-2	Lab Sample ID: 480-87872-7

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
PCB-1248	1.1	0.31	0.061 mg/Kg	<u> </u>	8082A	Total/NA

Client Sample ID: CSW-51-2A Lab Sample ID: 480-87872-8

No Detections.

Client Sample ID: CSW-51-2B Lab Sample ID: 480-87872-9

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
PCB-1248	1.2	0.26	0.050 mg/Kg		8082A	Total/NA
PCB-1254	0.57	0.26	0.12 mg/Kg	1 ∜	€ 8082A	Total/NA

Client Sample ID: CSW-60 Lab Sample ID: 480-87872-10

No Detections.

This Detection Summary does not include radiochemical test results.

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

DCB Decachlorobiphenyl

Client Sample ID: CSB-13

Date Collected: 09/24/15 00:00

Date Received: 09/24/15 13:50

TestAmerica Job ID: 480-87872-1

Lab Sample ID: 480-87872-1

09/25/15 08:45 09/25/15 18:36

Matrix: Solid Percent Solids: 92.8

Analyte	lorinated Biphenyls (PCBs) Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
PCB-1016	ND ND	0.53	0.10	mg/Kg	₩	09/25/15 08:45	09/25/15 18:36	2
PCB-1221	ND	0.53	0.10	mg/Kg	☼	09/25/15 08:45	09/25/15 18:36	2
PCB-1232	ND	0.53	0.10	mg/Kg	☼	09/25/15 08:45	09/25/15 18:36	2
PCB-1242	ND	0.53	0.10	mg/Kg	₽	09/25/15 08:45	09/25/15 18:36	2
PCB-1248	ND	0.53	0.10	mg/Kg	₽	09/25/15 08:45	09/25/15 18:36	2
PCB-1254	6.6	0.53	0.25	mg/Kg	☼	09/25/15 08:45	09/25/15 18:36	2
PCB-1260	3.4	0.53	0.25	mg/Kg	₽	09/25/15 08:45	09/25/15 18:36	2
PCB-1262	ND	0.53	0.25	mg/Kg	☼	09/25/15 08:45	09/25/15 18:36	2
PCB-1268	ND	0.53	0.25	mg/Kg	≎	09/25/15 08:45	09/25/15 18:36	2
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	89	60 - 154				09/25/15 08:45	09/25/15 18:36	2

Client Sample ID: CSB-14 Lab Sample ID: 480-87872-2 Date Collected: 09/24/15 00:00 **Matrix: Solid**

65 - 174

140

Date Received: 09/24/15 13:50 Percent Solids: 97.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.20	0.039	mg/Kg	<u></u>	09/25/15 08:45	09/25/15 18:52	1
PCB-1221	ND		0.20	0.039	mg/Kg	☼	09/25/15 08:45	09/25/15 18:52	1
PCB-1232	ND		0.20	0.039	mg/Kg	☼	09/25/15 08:45	09/25/15 18:52	1
PCB-1242	ND		0.20	0.039	mg/Kg	₽	09/25/15 08:45	09/25/15 18:52	1
PCB-1248	ND		0.20	0.039	mg/Kg	☼	09/25/15 08:45	09/25/15 18:52	1
PCB-1254	0.90		0.20	0.093	mg/Kg	₽	09/25/15 08:45	09/25/15 18:52	1
PCB-1260	0.53		0.20	0.093	mg/Kg	φ.	09/25/15 08:45	09/25/15 18:52	1
PCB-1262	ND		0.20	0.093	mg/Kg	☼	09/25/15 08:45	09/25/15 18:52	1
PCB-1268	ND		0.20	0.093	mg/Kg	₩	09/25/15 08:45	09/25/15 18:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	80		60 - 154				09/25/15 08:45	09/25/15 18:52	1
DCB Decachlorobiphenyl	99		65 - 174				09/25/15 08:45	09/25/15 18:52	1

Client Sample ID: CSB-15 Lab Sample ID: 480-87872-3 Date Collected: 09/24/15 00:00 **Matrix: Solid** Date Received: 09/24/15 13:50 Percent Solids: 90.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.25	0.049	mg/Kg	<u></u>	09/25/15 08:45	09/25/15 19:08	1
PCB-1221	ND		0.25	0.049	mg/Kg	☼	09/25/15 08:45	09/25/15 19:08	1
PCB-1232	ND		0.25	0.049	mg/Kg	☼	09/25/15 08:45	09/25/15 19:08	1
PCB-1242	ND		0.25	0.049	mg/Kg	₽	09/25/15 08:45	09/25/15 19:08	1
PCB-1248	ND		0.25	0.049	mg/Kg	☼	09/25/15 08:45	09/25/15 19:08	1
PCB-1254	0.58		0.25	0.12	mg/Kg	☼	09/25/15 08:45	09/25/15 19:08	1
PCB-1260	0.62		0.25	0.12	mg/Kg	₽	09/25/15 08:45	09/25/15 19:08	1
PCB-1262	ND		0.25	0.12	mg/Kg	≎	09/25/15 08:45	09/25/15 19:08	1
PCB-1268	ND		0.25	0.12	mg/Kg	₩	09/25/15 08:45	09/25/15 19:08	1

Page 6 of 23

TestAmerica Buffalo

Client Sample ID: CSB-15

Lab Sample ID: 480-87872-3

Date Collected: 09/24/15 00:00 **Matrix: Solid** Date Received: 09/24/15 13:50 Percent Solids: 90.6

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	94		60 - 154	09/25/15 08:45	09/25/15 19:08	1
DCB Decachlorobiphenyl	108		65 - 174	09/25/15 08:45	09/25/15 19:08	1

Client Sample ID: CSB-16 Lab Sample ID: 480-87872-4 Date Collected: 09/24/15 00:00 **Matrix: Solid** Date Received: 09/24/15 13:50 Percent Solids: 85.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.25	0.049	mg/Kg	<u> </u>	09/25/15 08:45	09/25/15 18:20	1
PCB-1221	ND		0.25	0.049	mg/Kg	₩	09/25/15 08:45	09/25/15 18:20	1
PCB-1232	ND		0.25	0.049	mg/Kg	₩	09/25/15 08:45	09/25/15 18:20	1
PCB-1242	ND		0.25	0.049	mg/Kg	₩.	09/25/15 08:45	09/25/15 18:20	1
PCB-1248	ND		0.25	0.049	mg/Kg	₩	09/25/15 08:45	09/25/15 18:20	1
PCB-1254	0.90		0.25	0.12	mg/Kg	₩	09/25/15 08:45	09/25/15 18:20	1
PCB-1260	0.19	J	0.25	0.12	mg/Kg	φ.	09/25/15 08:45	09/25/15 18:20	1
PCB-1262	ND		0.25	0.12	mg/Kg	₩	09/25/15 08:45	09/25/15 18:20	1
PCB-1268	ND		0.25	0.12	mg/Kg	₩	09/25/15 08:45	09/25/15 18:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	88		60 - 154				09/25/15 08:45	09/25/15 18:20	1
DCB Decachlorobiphenyl	87		65 - 174				09/25/15 08:45	09/25/15 18:20	1

Lab Sample ID: 480-87872-5 Client Sample ID: CSW-50-2 Date Collected: 09/24/15 00:00 **Matrix: Solid** Date Received: 09/24/15 13:50 Percent Solids: 87.7

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND ND	0.24	0.048	mg/Kg	<u> </u>	09/25/15 08:45	09/25/15 19:24	1
PCB-1221	ND	0.24	0.048	mg/Kg	₩	09/25/15 08:45	09/25/15 19:24	1
PCB-1232	ND	0.24	0.048	mg/Kg	₩	09/25/15 08:45	09/25/15 19:24	1
PCB-1242	ND	0.24	0.048	mg/Kg	φ.	09/25/15 08:45	09/25/15 19:24	1
PCB-1248	1.3	0.24	0.048	mg/Kg	₩	09/25/15 08:45	09/25/15 19:24	1
PCB-1254	ND	0.24	0.11	mg/Kg	₩	09/25/15 08:45	09/25/15 19:24	1
PCB-1260	ND	0.24	0.11	mg/Kg	ф	09/25/15 08:45	09/25/15 19:24	1
PCB-1262	ND	0.24	0.11	mg/Kg	₩	09/25/15 08:45	09/25/15 19:24	1
PCB-1268	ND	0.24	0.11	mg/Kg	₩	09/25/15 08:45	09/25/15 19:24	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	94	60 - 154				09/25/15 08:45	09/25/15 19:24	1
DCB Decachlorobiphenyl	102	65 - 174				09/25/15 08:45	09/25/15 19:24	1

Client Sample ID: CSW-53-2 Lab Sample ID: 480-87872-6 Date Collected: 09/24/15 00:00 **Matrix: Solid** Date Received: 09/24/15 13:50 Percent Solids: 92.9

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography								
Analyte	Result Qualifier	RL	MDL Un	nit D	Prepared	Analyzed	Dil Fac	
PCB-1016	ND	0.24	0.048 mg	g/Kg 🐺	09/25/15 08:45	09/25/15 19:40	1	
PCB-1221	ND	0.24	0.048 mg	g/Kg ☼	09/25/15 08:45	09/25/15 19:40	1	

TestAmerica Buffalo

9/29/2015

Page 7 of 23

TestAmerica Job ID: 480-87872-1

Project/Site: 132 Dingens

DCB Decachlorobiphenyl

Client Sample ID: CSW-53-2

Client: Iyer Environmental Group, LLC

Lab Sample ID: 480-87872-6

Date Collected: 09/24/15 00:00 **Matrix: Solid** Date Received: 09/24/15 13:50

Percent Solids: 92.9

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1232	ND		0.24	0.048	mg/Kg	<u> </u>	09/25/15 08:45	09/25/15 19:40	1
PCB-1242	ND		0.24	0.048	mg/Kg	₽	09/25/15 08:45	09/25/15 19:40	1
PCB-1248	ND		0.24	0.048	mg/Kg	☼	09/25/15 08:45	09/25/15 19:40	1
PCB-1254	ND		0.24	0.11	mg/Kg	₩	09/25/15 08:45	09/25/15 19:40	1
PCB-1260	ND		0.24	0.11	mg/Kg	₽	09/25/15 08:45	09/25/15 19:40	1
PCB-1262	ND		0.24	0.11	mg/Kg	☼	09/25/15 08:45	09/25/15 19:40	1
PCB-1268	ND		0.24	0.11	mg/Kg	₩	09/25/15 08:45	09/25/15 19:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	95		60 - 154				09/25/15 08:45	09/25/15 19:40	1
DCB Decachlorobiphenyl	103		65 - 174				09/25/15 08:45	09/25/15 19:40	1

Client Sample ID: CSW-52-2 Lab Sample ID: 480-87872-7 Date Collected: 09/24/15 00:00 **Matrix: Solid**

Date Received: 09/24/15 13:50 Percent Solids: 76.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.31	0.061	mg/Kg	<u></u>	09/25/15 08:45	09/25/15 20:27	1
PCB-1221	ND		0.31	0.061	mg/Kg	☼	09/25/15 08:45	09/25/15 20:27	1
PCB-1232	ND		0.31	0.061	mg/Kg	☼	09/25/15 08:45	09/25/15 20:27	1
PCB-1242	ND		0.31	0.061	mg/Kg	₽	09/25/15 08:45	09/25/15 20:27	1
PCB-1248	1.1		0.31	0.061	mg/Kg	☼	09/25/15 08:45	09/25/15 20:27	1
PCB-1254	ND		0.31	0.15	mg/Kg	☼	09/25/15 08:45	09/25/15 20:27	1
PCB-1260	ND		0.31	0.15	mg/Kg	₽	09/25/15 08:45	09/25/15 20:27	1
PCB-1262	ND		0.31	0.15	mg/Kg	≎	09/25/15 08:45	09/25/15 20:27	1
PCB-1268	ND		0.31	0.15	mg/Kg	₩	09/25/15 08:45	09/25/15 20:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	92		60 - 154				09/25/15 08:45	09/25/15 20:27	1

Client Sample ID: CSW-51-2A Lab Sample ID: 480-87872-8 Date Collected: 09/24/15 00:00 Date Received: 09/24/15 13:50 Percent Solids: 77.1

65 - 174

92

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.30	0.059	mg/Kg	<u> </u>	09/25/15 08:45	09/25/15 20:43	1
PCB-1221	ND		0.30	0.059	mg/Kg	☼	09/25/15 08:45	09/25/15 20:43	1
PCB-1232	ND		0.30	0.059	mg/Kg	☼	09/25/15 08:45	09/25/15 20:43	1
PCB-1242	ND		0.30	0.059	mg/Kg		09/25/15 08:45	09/25/15 20:43	1
PCB-1248	ND		0.30	0.059	mg/Kg	☼	09/25/15 08:45	09/25/15 20:43	1
PCB-1254	ND		0.30	0.14	mg/Kg	☼	09/25/15 08:45	09/25/15 20:43	1
PCB-1260	ND		0.30	0.14	mg/Kg	₽	09/25/15 08:45	09/25/15 20:43	1
PCB-1262	ND		0.30	0.14	mg/Kg	☼	09/25/15 08:45	09/25/15 20:43	1
PCB-1268	ND		0.30	0.14	mg/Kg	☼	09/25/15 08:45	09/25/15 20:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	98		60 - 154				09/25/15 08:45	09/25/15 20:43	1
DCB Decachlorobiphenyl	93		65 - 174				09/25/15 08:45	09/25/15 20:43	1

TestAmerica Buffalo

Page 8 of 23

Matrix: Solid

09/25/15 08:45 09/25/15 20:27

Client Sample Results

Client: Iyer Environmental Group, LLC

Client Sample ID: CSW-51-2B

Date Collected: 09/24/15 00:00

Date Received: 09/24/15 13:50

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87872-1

Lab Sample ID: 480-87872-9

Percent Solids: 82.1

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.26	0.050	mg/Kg	₩	09/25/15 08:45	09/25/15 21:14	1
PCB-1221	ND		0.26	0.050	mg/Kg	☼	09/25/15 08:45	09/25/15 21:14	1
PCB-1232	ND		0.26	0.050	mg/Kg	☼	09/25/15 08:45	09/25/15 21:14	1
PCB-1242	ND		0.26	0.050	mg/Kg	₽	09/25/15 08:45	09/25/15 21:14	1
PCB-1248	1.2		0.26	0.050	mg/Kg	☼	09/25/15 08:45	09/25/15 21:14	1
PCB-1254	0.57		0.26	0.12	mg/Kg	☼	09/25/15 08:45	09/25/15 21:14	1
PCB-1260	ND		0.26	0.12	mg/Kg	₽	09/25/15 08:45	09/25/15 21:14	1
PCB-1262	ND		0.26	0.12	mg/Kg	☼	09/25/15 08:45	09/25/15 21:14	1
PCB-1268	ND		0.26	0.12	mg/Kg	₩	09/25/15 08:45	09/25/15 21:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	94		60 - 154				09/25/15 08:45	09/25/15 21:14	1
DCB Decachlorobiphenyl	95		65 - 174				09/25/15 08:45	09/25/15 21:14	1

Client Sample ID: CSW-60 Lab Sample ID: 480-87872-10 Date Collected: 09/24/15 00:00 **Matrix: Solid** Date Received: 09/24/15 13:50 Percent Solids: 91.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.25	0.049	mg/Kg	₩	09/25/15 08:46	09/25/15 21:30	1
PCB-1221	ND		0.25	0.049	mg/Kg	☼	09/25/15 08:46	09/25/15 21:30	1
PCB-1232	ND		0.25	0.049	mg/Kg	☼	09/25/15 08:46	09/25/15 21:30	1
PCB-1242	ND		0.25	0.049	mg/Kg	₽	09/25/15 08:46	09/25/15 21:30	1
PCB-1248	ND		0.25	0.049	mg/Kg	₩	09/25/15 08:46	09/25/15 21:30	1
PCB-1254	ND		0.25	0.12	mg/Kg	☼	09/25/15 08:46	09/25/15 21:30	1
PCB-1260	ND		0.25	0.12	mg/Kg	₽	09/25/15 08:46	09/25/15 21:30	1
PCB-1262	ND		0.25	0.12	mg/Kg	☼	09/25/15 08:46	09/25/15 21:30	1
PCB-1268	ND		0.25	0.12	mg/Kg	₩	09/25/15 08:46	09/25/15 21:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	99		60 - 154				09/25/15 08:46	09/25/15 21:30	1
DCB Decachlorobiphenyl	101		65 - 174				09/25/15 08:46	09/25/15 21:30	1

Surrogate Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87872-1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid Prep Type: Total/NA

			Percent St	urrogate Recovery (Acceptance Limits)
		TCX2	DCB2	
ab Sample ID	Client Sample ID	(60-154)	(65-174)	
80-87872-1	CSB-13	89	140	
80-87872-2	CSB-14	80	99	
80-87872-3	CSB-15	94	108	
80-87872-4	CSB-16	88	87	
80-87872-4 MS	CSB-16	107	127	
80-87872-4 MSD	CSB-16	87	108	
80-87872-5	CSW-50-2	94	102	
80-87872-6	CSW-53-2	95	103	
80-87872-7	CSW-52-2	92	92	
30-87872-8	CSW-51-2A	98	93	
80-87872-8 DU	CSW-51-2A	94	91	
80-87872-9	CSW-51-2B	94	95	
80-87872-10	CSW-60	99	101	
CS 480-265493/2-A	Lab Control Sample	110	115	
MB 480-265493/1-A	Method Blank	102	101	

DCB = DCB Decachlorobiphenyl

TestAmerica Buffalo

TestAmerica Job ID: 480-87872-1

Client Sample ID: Lab Control Sample

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 480-265493/1-A **Client Sample ID: Method Blank Matrix: Solid** Prep Type: Total/NA Analysis Batch: 265611 **Prep Batch: 265493**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.17	0.033	mg/Kg		09/25/15 08:45	09/25/15 17:19	1
PCB-1221	ND		0.17	0.033	mg/Kg		09/25/15 08:45	09/25/15 17:19	1
PCB-1232	ND		0.17	0.033	mg/Kg		09/25/15 08:45	09/25/15 17:19	1
PCB-1242	ND		0.17	0.033	mg/Kg		09/25/15 08:45	09/25/15 17:19	1
PCB-1248	ND		0.17	0.033	mg/Kg		09/25/15 08:45	09/25/15 17:19	1
PCB-1254	ND		0.17	0.080	mg/Kg		09/25/15 08:45	09/25/15 17:19	1
PCB-1260	ND		0.17	0.080	mg/Kg		09/25/15 08:45	09/25/15 17:19	1
PCB-1262	ND		0.17	0.080	mg/Kg		09/25/15 08:45	09/25/15 17:19	1
PCB-1268	ND		0.17	0.080	mg/Kg		09/25/15 08:45	09/25/15 17:19	1

MB MB %Recovery Qualifier Surrogate Limits Prepared Analyzed Dil Fac Tetrachloro-m-xylene 102 60 - 154 09/25/15 08:45 09/25/15 17:19 DCB Decachlorobiphenyl 101 65 - 174 09/25/15 08:45 09/25/15 17:19

Lab Sample ID: LCS 480-265493/2-A Matrix: Solid

Matrix: Solid Analysis Batch: 265611								pe: Total/NA atch: 265493
Analysis Batch. 200011	Spike	LCS	LCS				%Rec.	atcii. 200430
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016	 1.73	2.02		mg/Kg		117	51 - 185	
PCB-1260	1.73	2.08		mg/Kg		120	61 - 184	

	LCS LC	s
Surrogate	%Recovery Qu	alifier Limits
Tetrachloro-m-xylene	110	60 - 154
DCB Decachlorobiphenyl	115	65 - 174

Lab Sample ID: 480-87872-4 MS **Client Sample ID: CSB-16 Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 265611

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016	ND		2.39	3.31		mg/Kg	\	139	50 - 177	
PCB-1260	0.19	J	2.39	3.40		mg/Kg	₩	135	33 - 200	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	107		60 - 154
DCB Decachlorobiphenyl	127		65 ₋ 174

Lab Sample ID: 480-87872-4 MSD **Client Sample ID: CSB-16 Matrix: Solid Prep Type: Total/NA**

Analysis Batch: 265611									Prep Ba	atch: 20	35493
_	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
PCB-1016	ND		2.54	2.72		mg/Kg	₩	107	50 - 177	20	50
PCB-1260	0.19	J	2.54	2.60		mg/Kg	☼	95	33 - 200	27	50

TestAmerica Buffalo

Prep Batch: 265493

Page 11 of 23

QC Sample Results

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87872-1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: 480-87872-4 MSD

Lab Sample ID: 480-87872-8 DU

Matrix: Solid

Matrix: Solid

Analysis Batch: 265611

Analysis Batch: 265611

Client Sample ID: CSB-16 Prep Type: Total/NA

Prep Batch: 265493

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	87		60 - 154
DCB Decachlorobiphenyl	108		65 - 174

Client Sample ID: CSW-51-2A

Prep Type: Total/NA

Prep Batch: 265493

9

-	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
PCB-1016	ND		ND		mg/Kg	<u> </u>		50
PCB-1221	ND		ND		mg/Kg	☼	NC	
PCB-1232	ND		ND		mg/Kg	₽	NC	
PCB-1242	ND		ND		mg/Kg	₩	NC	
PCB-1248	ND		ND		mg/Kg	₩	NC	
PCB-1254	ND		ND		mg/Kg	₩	NC	
PCB-1260	ND		ND		mg/Kg	₩	NC	50
PCB-1262	ND		ND		mg/Kg	₩	NC	
PCB-1268	ND		ND		mg/Kg	₩	NC	

SurrogateMRecovery
%RecoveryQualifier
QualifierLimitsTetrachloro-m-xylene9460 - 154DCB Decachlorobiphenyl9165 - 174

10

13

TestAmerica Job ID: 480-87872-1

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

GC Semi VOA

Prep Batch: 265493

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87872-1	CSB-13	Total/NA	Solid	3550C	_
480-87872-2	CSB-14	Total/NA	Solid	3550C	
480-87872-3	CSB-15	Total/NA	Solid	3550C	
480-87872-4	CSB-16	Total/NA	Solid	3550C	
480-87872-4 MS	CSB-16	Total/NA	Solid	3550C	
480-87872-4 MSD	CSB-16	Total/NA	Solid	3550C	
480-87872-5	CSW-50-2	Total/NA	Solid	3550C	
480-87872-6	CSW-53-2	Total/NA	Solid	3550C	
480-87872-7	CSW-52-2	Total/NA	Solid	3550C	
480-87872-8	CSW-51-2A	Total/NA	Solid	3550C	
480-87872-8 DU	CSW-51-2A	Total/NA	Solid	3550C	
480-87872-9	CSW-51-2B	Total/NA	Solid	3550C	
480-87872-10	CSW-60	Total/NA	Solid	3550C	
LCS 480-265493/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-265493/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 265611

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87872-1	CSB-13	Total/NA	Solid	8082A	265493
480-87872-2	CSB-14	Total/NA	Solid	8082A	265493
480-87872-3	CSB-15	Total/NA	Solid	8082A	265493
480-87872-4	CSB-16	Total/NA	Solid	8082A	265493
480-87872-4 MS	CSB-16	Total/NA	Solid	8082A	265493
480-87872-4 MSD	CSB-16	Total/NA	Solid	8082A	265493
480-87872-5	CSW-50-2	Total/NA	Solid	8082A	265493
480-87872-6	CSW-53-2	Total/NA	Solid	8082A	265493
480-87872-7	CSW-52-2	Total/NA	Solid	8082A	265493
480-87872-8	CSW-51-2A	Total/NA	Solid	8082A	265493
480-87872-8 DU	CSW-51-2A	Total/NA	Solid	8082A	265493
480-87872-9	CSW-51-2B	Total/NA	Solid	8082A	265493
480-87872-10	CSW-60	Total/NA	Solid	8082A	265493
LCS 480-265493/2-A	Lab Control Sample	Total/NA	Solid	8082A	265493
MB 480-265493/1-A	Method Blank	Total/NA	Solid	8082A	265493

General Chemistry

Analysis Batch: 265421

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87872-1	CSB-13	Total/NA	Solid	Moisture	
480-87872-2	CSB-14	Total/NA	Solid	Moisture	
180-87872-3	CSB-15	Total/NA	Solid	Moisture	
480-87872-4	CSB-16	Total/NA	Solid	Moisture	
480-87872-4 MS	CSB-16	Total/NA	Solid	Moisture	
480-87872-4 MSD	CSB-16	Total/NA	Solid	Moisture	
480-87872-5	CSW-50-2	Total/NA	Solid	Moisture	
180-87872-6	CSW-53-2	Total/NA	Solid	Moisture	
180-87872-7	CSW-52-2	Total/NA	Solid	Moisture	
180-87872-8	CSW-51-2A	Total/NA	Solid	Moisture	
180-87872-8 DU	CSW-51-2A	Total/NA	Solid	Moisture	
480-87872-9	CSW-51-2B	Total/NA	Solid	Moisture	

TestAmerica Buffalo

Page 13 of 23

QC Association Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87872-1

General Chemistry (Continued)

Analysis Batch: 265421 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-87872-10	CSW-60	Total/NA	Solid	Moisture	

3

4

6

8

9

11

12

14

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Lab Sample ID: 480-87872-1

Matrix: Solid

Client Sample ID: CSB-13 Date Collected: 09/24/15 00:00 Date Received: 09/24/15 13:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	265421	09/24/15 19:58	CMK	TAL BUF

Lab Sample ID: 480-87872-1 Client Sample ID: CSB-13

Date Collected: 09/24/15 00:00 Date Received: 09/24/15 13:50

Matrix: Solid

Percent Solids: 92.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			265493	09/25/15 08:45	CAM	TAL BUF
Total/NA	Analysis	8082A		2	265611	09/25/15 18:36	KS	TAL BUF

Client Sample ID: CSB-14 Lab Sample ID: 480-87872-2

Date Collected: 09/24/15 00:00 **Matrix: Solid**

Date Received: 09/24/15 13:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture			265421	09/24/15 19:58	CMK	TAL BUF

Client Sample ID: CSB-14 Lab Sample ID: 480-87872-2

Date Collected: 09/24/15 00:00

Matrix: Solid Date Received: 09/24/15 13:50 Percent Solids: 97.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			265493	09/25/15 08:45	CAM	TAL BUF
Total/NA	Analysis	8082A		1	265611	09/25/15 18:52	KS	TAL BUF

Client Sample ID: CSB-15 Lab Sample ID: 480-87872-3

Date Collected: 09/24/15 00:00 **Matrix: Solid**

Date Received: 09/24/15 13:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	265421	09/24/15 19:58	CMK	TAL BUF

Lab Sample ID: 480-87872-3 **Client Sample ID: CSB-15**

Date Collected: 09/24/15 00:00 **Matrix: Solid**

Date Received: 09/24/15 13:50 Percent Solids: 90.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			265493	09/25/15 08:45	CAM	TAL BUF
Total/NA	Analysis	8082A		1	265611	09/25/15 19:08	KS	TAL BUF

10

Matrix: Solid

Matrix: Solid

Matrix: Solid

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: CSB-16 Lab Sample ID: 480-87872-4

Date Collected: 09/24/15 00:00 **Matrix: Solid**

Date Received: 09/24/15 13:50

Dilution Batch Batch Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Total/NA Analysis Moisture 265421 09/24/15 19:58 CMK TAL BUF

Client Sample ID: CSB-16 Lab Sample ID: 480-87872-4

Date Collected: 09/24/15 00:00

Matrix: Solid Date Received: 09/24/15 13:50 Percent Solids: 85.2

Batch Batch Dilution **Batch Prepared** Prep Type Type Method Run Factor Number or Analyzed Analyst Lab 3550C TAL BUF Total/NA Prep 265493 09/25/15 08:45 CAM Total/NA Analysis 8082A 1 265611 09/25/15 18:20 KS TAL BUF

Client Sample ID: CSW-50-2 Lab Sample ID: 480-87872-5

Date Collected: 09/24/15 00:00

Date Received: 09/24/15 13:50

Batch Batch Dilution Batch Prepared Method Run Factor Number or Analyzed Analyst **Prep Type** Type Lab 09/24/15 19:58 CMK TAL BUF Total/NA Analysis Moisture 265421

Client Sample ID: CSW-50-2 Lab Sample ID: 480-87872-5

Date Collected: 09/24/15 00:00

Date Received: 09/24/15 13:50 Percent Solids: 87.7

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Prep 3550C 265493 09/25/15 08:45 CAM TAL BUF 8082A 265611 09/25/15 19:24 KS TAL BUF Total/NA Analysis 1

Client Sample ID: CSW-53-2 Lab Sample ID: 480-87872-6

Date Collected: 09/24/15 00:00

Date Received: 09/24/15 13:50

Dilution Batch **Batch** Batch Prepared Prep Type Method Factor Number or Analyzed Type Run **Analyst** Lab TAL BUF Total/NA Analysis Moisture 265421 09/24/15 19:58 CMK

Client Sample ID: CSW-53-2 Lab Sample ID: 480-87872-6

Date Collected: 09/24/15 00:00

Matrix: Solid Date Received: 09/24/15 13:50 Percent Solids: 92.9

Batch Batch Dilution **Batch** Prepared **Prep Type** Method Run Number or Analyzed Type **Factor** Analyst Lab Total/NA 3550C 265493 09/25/15 08:45 CAM TAL BUF Prep Total/NA 8082A 265611 09/25/15 19:40 TAL BUF Analysis 1

TestAmerica Buffalo

10

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Client Sample ID: CSW-52-2

Date Collected: 09/24/15 00:00

Date Received: 09/24/15 13:50

Lab Sample ID: 480-87872-7

Matrix: Solid

Matrix: Solid

Matrix: Solid

Percent Solids: 77.1

Lab Sample ID: 480-87872-9

Batch Dilution Batch Batch **Prepared** Prep Type Type Method Run **Factor** Number or Analyzed Analyst Total/NA Analysis Moisture 265421 09/24/15 19:58 CMK TAL BUF

Client Sample ID: CSW-52-2 Lab Sample ID: 480-87872-7

Date Collected: 09/24/15 00:00 Date Received: 09/24/15 13:50

Matrix: Solid Percent Solids: 76.0

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			265493	09/25/15 08:45	CAM	TAL BUF
Total/NA	Analysis	8082A		1	265611	09/25/15 20:27	KS	TAL BUF

Client Sample ID: CSW-51-2A Lab Sample ID: 480-87872-8

Date Collected: 09/24/15 00:00

Date Received: 09/24/15 13:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	265421	09/24/15 19:58	CMK	TAL BUF

Client Sample ID: CSW-51-2A Lab Sample ID: 480-87872-8

Date Collected: 09/24/15 00:00

Date Received: 09/24/15 13:50

Batch Batch Dilution Batch Prepared Prep Type Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Prep 3550C 265493 09/25/15 08:45 CAM TAL BUF

Total/NA 8082A 265611 09/25/15 20:43 KS TAL BUF Analysis 1

Client Sample ID: CSW-51-2B

Date Collected: 09/24/15 00:00 **Matrix: Solid**

Date Received: 09/24/15 13:50

	Batch	Batch Dilution		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture			265421	09/24/15 19:58	CMK	TAL BUF

Client Sample ID: CSW-51-2B Lab Sample ID: 480-87872-9

Date Collected: 09/24/15 00:00 **Matrix: Solid**

Date Received: 09/24/15 13:50 Percent Solids: 82.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			265493	09/25/15 08:45	CAM	TAL BUF
Total/NA	Analysis	8082A		1	265611	09/25/15 21:14	KS	TAL BUF

TestAmerica Buffalo

Lab Chronicle

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87872-1

Lab Sample ID: 480-87872-10

. Matrix: Solid

Date Collected: 09/24/15 00:00 Date Received: 09/24/15 13:50

Client Sample ID: CSW-60

Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Total/NA Analysis Moisture 265421 09/24/15 19:58 CMK TAL BUF

Client Sample ID: CSW-60 Lab Sample ID: 480-87872-10

Date Collected: 09/24/15 00:00

Matrix: Solid
Percent Solids: 04.4

Date Received: 09/24/15 13:50 Percent Solids: 91.1

	Batch	Batch Dilut		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			265493	09/25/15 08:46	CAM	TAL BUF
Total/NA	Analysis	8082A		1	265611	09/25/15 21:30	KS	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TestAmerica Buffalo

2

4

6

7

Q

10

4.0

13

14

Certification Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87872-1

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date	
New York	NELAP		2	10026	03-31-16	
The following analytes	s are included in this repo	rt, but certification is i	not offered by the go	overning authority:		
Analysis Method	Prep Method	Matrix	A 1.6			
Alialysis Melliou	riep Method	Manx	Analyt	e		
Moisture	FIEP MELIIOU	Solid		e nt Moisture		

3

E

6

8

10

11

13

14

Method Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-87872-1

Method	Method Description	Protocol	Laboratory
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL BUF
Moisture	Percent Moisture	EPA	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

2

-0

4

5

6

9

4 4

12

14

Sample Summary

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

TestAmerica Job ID: 480-87872-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-87872-1	CSB-13	Solid	09/24/15 00:00	09/24/15 13:50
480-87872-2	CSB-14	Solid	09/24/15 00:00	09/24/15 13:50
480-87872-3	CSB-15	Solid	09/24/15 00:00	09/24/15 13:50
480-87872-4	CSB-16	Solid	09/24/15 00:00	09/24/15 13:50
480-87872-5	CSW-50-2	Solid	09/24/15 00:00	09/24/15 13:50
480-87872-6	CSW-53-2	Solid	09/24/15 00:00	09/24/15 13:50
480-87872-7	CSW-52-2	Solid	09/24/15 00:00	09/24/15 13:50
480-87872-8	CSW-51-2A	Solid	09/24/15 00:00	09/24/15 13:50
480-87872-9	CSW-51-2B	Solid	09/24/15 00:00	09/24/15 13:50
480-87872-10	CSW-60	Solid	09/24/15 00:00	09/24/15 13:50

Chain of Custody Record

Temperature on Receipt ____

Drinking Water? Yes□ No

TestAmerica

-1

THE LEADER IN ENVIRONMENTAL TESTING

Special Instructions/ Conditions of Receipt [350 內 Chain of Custody Number 264469 ð Time MS/MSD CALKORY The second CA PLY 480-87872 Chain of Custody Page Date Months longer than 1 month) 5cp 24, 2015 LabWumber Analysis (Attach list if more space is needed) Archive For <u> इब्वज्य</u> किन्द्रा --OC Requirements (Specify NANZ HOBN 🛚 Disposal By Lab Containers & Preservatives HOBN 1. Received By 2. Received By 3. Received By <u>E</u> ЮH Telephone Number (Area Code)/Fax Number EONH tOSZH Project Manager Dhapma (716) 662-4157 Site Coffract seudur Hetum To Client Sample Disposa > > > > 1105 > Time Time Matrix Carrier/Waybill Number R. Allen pes 9/24/15 114 Other_ П Ипкпомп Date Time 21 Days 9/24/15 ☐ Poison B Date State Zip Code yor this ronmontal group ☐ 14 Days (Containers for each sample may be combined on one line) 44 Rolling Hills Dr Skin Imitant 🔀 7 Days Sample I.D. No. and Description 132 Dingens St. | Flammable CSW-51-2B Orchard Park Project Name and Location (State) CSW-51-2A CSW- 50-2 CSW-52-2 CSW-53-2 48 Hours Possible Hazard Identification Turn Around Time Required CS B- 13 CSB- 15 CSM-60 CSB-14 21 -850 1. Relinquished By Non-Hazard 2. Relinquished By 3. Relinquished By 24 Hours TAL-4124 (1007) Client Page 22 of 23

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

th out on

lemp 25,3

9/29/2015

Comments

Login Sample Receipt Checklist

Client: Iyer Environmental Group, LLC Job Number: 480-87872-1

Login Number: 87872 List Source: TestAmerica Buffalo

List Number: 1

Creator: Kolb, Chris M

Creator. Rolls, Clins W		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	False	
Cooler Temperature is acceptable.	True	Yes: Received same day of collection
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	Refer to job narrative for details
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	False	Refer to job narrative for details
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	iyer env.
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

1

5

6

10

12

13

4 E

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-88825-1 Client Project/Site: 132 Dingens

For:

Iyer Environmental Group, LLC 44 Rolling Hills Drive Orchard Park, New York 14127

Attn: Dr. Dharmarajan R Iyer

Melisso Deyo

Authorized for release by: 10/15/2015 9:22:51 AM

Melissa Deyo, Project Manager I (716)504-9874

melissa.deyo@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	10
Method Summary	11
Sample Summary	12
Chain of Custody	13
Receint Checklists	14

10

12

13

Definitions/Glossary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-88825-1

Qualifiers

Metals

Quality Control

Relative error ratio

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

QC

RL

RER

RPD

TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit

TestAmerica Buffalo

10/15/2015

Page 3 of 14

1

3

12

13

Case Narrative

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-88825-1

Job ID: 480-88825-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-88825-1

Receipt

The samples were received on 10/9/2015 1:50 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 17.5° C.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

4

6

7

8

9

11

4.6

Detection Summary

Client: Iyer Environmental Group, LLC

Client Sample ID: CSW-21-5

Project/Site: 132 Dingens

TestAmerica Job ID: 480-88825-1

Lab Sample ID: 480-88825-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	53.8	·	2.7	0.54	mg/Kg	1	₩	6010C	Total/NA
Mercury	1.6		0.13	0.055	mg/Kg	5	₩	7471B	Total/NA

Client Sample ID: CSB-5-5 Lab Sample ID: 480-88825-2

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Arsenic	6.7	2.5	0.50 mg/Kg	<u> </u>	6010C	Total/NA
Mercury	0.022 J	0.026	0.010 mg/Kg	1 ♡	7471B	Total/NA

4

5

6

_

9

11

13

Client Sample Results

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Mercury

TestAmerica Job ID: 480-88825-1

₩

<u>10/12/15 10:05</u> <u>10/12/15 12:47</u>

0.010 mg/Kg

6

Client Sample ID: CSW-21-5 Lab Sample ID: 480-88825-1 Date Collected: 10/09/15 00:00 **Matrix: Solid** Date Received: 10/09/15 13:50 Percent Solids: 73.8 Method: 6010C - Metals (ICP) Analyte Result Qualifier RL **MDL** Unit D Analyzed Dil Fac Prepared ₩ 2.7 10/12/15 09:31 10/13/15 01:49 Arsenic 53.8 0.54 mg/Kg Method: 7471B - Mercury (CVAA) Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac ₩ Mercury 0.13 0.055 mg/Kg <u>10/12/15 10:05</u> <u>10/12/15 14:26</u> 1.6 Client Sample ID: CSB-5-5 Lab Sample ID: 480-88825-2 Date Collected: 10/09/15 00:00 **Matrix: Solid** Date Received: 10/09/15 13:50 Percent Solids: 75.7 Method: 6010C - Metals (ICP) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 2.5 ☼ 10/12/15 09:31 10/13/15 01:52 Arsenic 0.50 mg/Kg 6.7 Method: 7471B - Mercury (CVAA) Analyte Result Qualifier RL MDL Unit **Prepared** Analyzed Dil Fac D

0.026

0.022 J

QC Sample Results

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Analysis Batch: 268388

Analysis Batch: 268388

Matrix: Solid

Analyte

Arsenic

TestAmerica Job ID: 480-88825-1

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-268057/1-A **Matrix: Solid**

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 268057

MB MB

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 2.0 <u>10/12/15 09:31</u> <u>10/13/15 01:43</u> Arsenic ND 0.39 mg/Kg

Spike

Added

113

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 268057

Prep Batch: 268071

Prep Type: Total/NA

Prep Batch: 268071

LCSSRM LCSSRM %Rec. Result Qualifier Limits Unit D %Rec mg/Kg

88.5 69.7 - 142. 5

Method: 7471B - Mercury (CVAA)

Lab Sample ID: LCSSRM 480-268057/2-A

Lab Sample ID: MB 480-268071/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

100.0

Analysis Batch: 268278

MB MB Analyte **MDL** Unit Analyzed Result Qualifier RL Prepared Dil Fac

0.021 0.0083 mg/Kg 10/12/15 10:05 T0/12/15 12:41 Mercury ND

Lab Sample ID: LCSSRM 480-268071/2-A **Client Sample ID: Lab Control Sample Matrix: Solid**

Analysis Batch: 268278

LCSSRM LCSSRM Spike %Rec.

Added Result Qualifier Limits Analyte Unit D %Rec 118.0 51.3 - 148. 8.37 9.87 Mercury mg/Kg

TestAmerica Buffalo

QC Association Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-88825-1

M	eta	ls
	CLU	10

Prep	Batc	h: 20	68057
------	------	-------	-------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-88825-1	CSW-21-5	Total/NA	Solid	3050B	
480-88825-2	CSB-5-5	Total/NA	Solid	3050B	
LCSSRM 480-268057/2-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 480-268057/1-A	Method Blank	Total/NA	Solid	3050B	

Prep Batch: 268071

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-88825-1	CSW-21-5	Total/NA	Solid	7471B	
480-88825-2	CSB-5-5	Total/NA	Solid	7471B	
LCSSRM 480-268071/2-A	Lab Control Sample	Total/NA	Solid	7471B	
MB 480-268071/1-A	Method Blank	Total/NA	Solid	7471B	

Analysis Batch: 268278

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-88825-1	CSW-21-5	Total/NA	Solid	7471B	268071
480-88825-2	CSB-5-5	Total/NA	Solid	7471B	268071
LCSSRM 480-268071/2-A	Lab Control Sample	Total/NA	Solid	7471B	268071
MB 480-268071/1-A	Method Blank	Total/NA	Solid	7471B	268071

Analysis Batch: 268388

Lab Sample ID 480-88825-1	Client Sample ID	Prep Type Total/NA	Matrix Solid	Method 6010C	Prep Batch 268057
480-88825-2	CSB-5-5	Total/NA	Solid	6010C	268057
LCSSRM 480-268057/2-A	Lab Control Sample	Total/NA	Solid	6010C	268057
MB 480-268057/1-A	Method Blank	Total/NA	Solid	6010C	268057

General Chemistry

Analysis Batch: 268040

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-88825-1	CSW-21-5	Total/NA	Solid	Moisture	

Analysis Batch: 268361

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-88825-2	CSB-5-5	Total/NA	Solid	Moisture	

TestAmerica Buffalo

Lab Chronicle

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-88825-1

Lab Sample ID: 480-88825-1

Matrix: Solid

Client Sample ID: CSW-21-5
Date Collected: 10/09/15 00:00
Date Received: 10/09/15 13:50

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	268040	10/09/15 23:05	CMK	TAL BUF

Client Sample ID: CSW-21-5 Lab Sample ID: 480-88825-1

Date Collected: 10/09/15 00:00 Date Received: 10/09/15 13:50 Matrix: Solid Percent Solids: 73.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			268057	10/12/15 09:31	CMM	TAL BUF
Total/NA	Analysis	6010C		1	268388	10/13/15 01:49	SLB	TAL BUF
Total/NA	Prep	7471B			268071	10/12/15 10:05	TAS	TAL BUF
Total/NA	Analysis	7471B		5	268278	10/12/15 14:26	TAS	TAL BUF

Client Sample ID: CSB-5-5 Lab Sample ID: 480-88825-2

Date Collected: 10/09/15 00:00 Date Received: 10/09/15 13:50

Date Received: 10/09/15 13:50

Matrix: Solid

Dilution Batch Batch **Batch** Prepared Method Number Prep Type Type Run **Factor** or Analyzed Analyst Lab Moisture 268361 10/13/15 07:05 CSW TAL BUF Total/NA Analysis

Client Sample ID: CSB-5-5

Date Collected: 10/09/15 00:00

Lab Sample ID: 480-88825-2

Matrix: Solid

Percent Solids: 75.7

Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Total/NA Prep 3050B 268057 10/12/15 09:31 CMM TAL BUF Total/NA 6010C 268388 10/13/15 01:52 SLB Analysis 1 TAL BUF Total/NA Prep 7471B 268071 10/12/15 10:05 TAS TAL BUF Total/NA 268278 10/12/15 12:47 TAS TAL BUF Analysis 7471B 1

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TestAmerica Buffalo

11

12

R

1.

Certification Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-88825-1

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date		
New York	NELAP		2	10026	03-31-16		
The following analytes	s are included in this repo	rt, but certification is	not offered by the go	overning authority:			
The following analytes Analysis Method	s are included in this repo Prep Method	rt, but certification is Matrix	not offered by the go Analyt	,			
,	·	·	Analyt	,			

3

4

5

6

8

10

44

Method Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-88825-1

Method	Method Description	Protocol	Laboratory
6010C	Metals (ICP)	SW846	TAL BUF
7471B	Mercury (CVAA)	SW846	TAL BUF
Moisture	Percent Moisture	EPA	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Sample Summary

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

TestAmerica Job ID: 480-88825-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-88825-1	CSW-21-5	Solid	10/09/15 00:00	10/09/15 13:50
480-88825-2	CSB-5-5	Solid	10/09/15 00:00	10/09/15 13:50

Chain of Custody Record

Temperature on Receipt __

Drinking Water? Yes \ Nor

(1)	
	:
<u></u>	
1	
S	
٨ì	
$\underline{\mathbf{v}}$	

THE LEADER IN ENVIRONME 480-88825 Chain of Custody

	Chain of Custody Number 264459	Page of		Coopial Instructions/	Special Instructions Conditions of Receipt	CATABORY B									(A fee may be assessed if samples are retained longer than 1 month)		3	10/9/11 mgs 5	Date Time	. Date Time	-# 1 -# 1
	Oct 9, 2015	Lab Number	Analysis (Attach list if more space is needed)			hiol									Months						
	Project Manager Phatyma Ver) be Number (Area Code)) Fax Num $)$	She Confact Reference M. Dewin	Vaybill Number	Matrix Containers & Preservatives	HOSNH SONH SONH SONH SONH SONH SONH SONH									Sample Disposal nown	QC Requirements (Sp)ther	4/15 1 700	atè Time 2. Received By	Date Time 3. Received By	
4 (1007)	yer Environmental Grays	Rolling Hills Dr	ite Zip Code	1. Location (State)	urchase &der/Quote No.	Sample I.D. No. and Description (Containers for each sample may be combined on one line)	CSW-21-5 1019/15	CSB-5-5 10/9/15	Pa	 13 0	f 1 <i>A</i>				Possible Hazard Identification Skin Intrant Design B Unknown	Time Required	48 Hours 📉 7 Days 📋 14 Days 📋 21 Days	1. Relinquished By Chur Sc Date 100	yed By	2 Pelinquished By (2)	Comments

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

Login Sample Receipt Checklist

Client: Iyer Environmental Group, LLC

Job Number: 480-88825-1

Login Number: 88825 List Source: TestAmerica Buffalo

List Number: 1

Creator: Wallace, Cameron

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	False	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	IYER
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

2

Δ

o

9

11

13

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-89114-1 Client Project/Site: 132 Dingens

Revision: 1

For:

Iyer Environmental Group, LLC 44 Rolling Hills Drive Orchard Park, New York 14127

Attn: Dr. Dharmarajan R Iyer

Melisso Deyo

Authorized for release by: 6/14/2016 9:29:36 AM

Melissa Deyo, Project Manager I (716)504-9874

melissa.deyo@testamericainc.com

-----LINKS -----

Review your project results through Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	7
Surrogate Summary	15
QC Sample Results	16
QC Association Summary	18
Lab Chronicle	20
Certification Summary	26
Method Summary	27
Sample Summary	28
Chain of Custody	29
Receipt Checklists	31

12

Definitions/Glossary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-89114-1

Qualifiers

GC Semi VOA

Qualitier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Χ	Surrogate is outside control limits

Glossary

RPD

TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Buffalo

Case Narrative

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-89114-1

Job ID: 480-89114-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-89114-1

Receipt

The samples were received on 10/14/2015 6:00 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 13.6° C.

Receipt Exceptions

no times of collection were provided. Time of 00:00 was used for sample login.

GC Semi VOA

Method(s) 8082A: Decachlorobiphenyl surrogate recovery for the following sample was outside control limits: CSW-64 (480-89114-11). Matrix interference is suspected and Tetrachloro-m-xylene surrogate recovery was within control limits; therefore, re-extraction and re-analysis were not performed.

Method(s) 8082A: The following sample required a dilution due to the matrix effects and is reported as elevated non-detections for all target analytes (Aroclors); CSW-62 (480-89114-9). The reported values represent the lowest limit that can be ascertained given the sample composition.

Method(s) 8082A: The following samples were diluted due to the nature of the sample matrix: CSB-15-2 (480-89114-5), CSW-63 (480-89114-10) and CSW-66 (480-89114-13). Elevated reporting limits (RLs) are provided.

Method(s) 8082A: The following sample appears to contain polychlorinated biphenyls (PCBs); however, due to the presence of unknown patterns, the PCBs in the sample do not closely match any of the laboratory's Aroclor standards used for instrument calibration: CSW-62 (480-89114-9). The sample was attempted to be quantified and reported as PCB-1254, though due to the poor match with the Aroclor standard, qualitative and quantitative uncertainty the final result was below the method detection limit and reported as non-detect.

Method(s) 8082A: All primary data is reported from the ZB-5 column.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

2

1

4

E

6

1

0

1 በ

11

13

14

Client: Iyer Environmental Group, LLC

Client Sample ID: CSB-12-2

Project/Site: 132 Dingens

Lab Sample ID: 480-89114-1

No Detections.

Client Sample ID: CSB-13-2 Lab Sample ID: 480-89114-2

No Detections.

Client Sample ID: CSB-14-2 Lab Sample ID: 480-89114-3

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
PCB-1260	0.34	0.28	0.13 mg/Kg	1	≅ 8082A	Total/NA

Client Sample ID: CSB-17 Lab Sample ID: 480-89114-4

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
PCB-1248	0.30	0.27	0.053 mg/Kg	1 Þ	8082A	Total/NA

Client Sample ID: CSB-15-2 Lab Sample ID: 480-89114-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	O Method	Prep Type
PCB-1254	0.86	J	1.3	0.60	mg/Kg	5	₹ 8082A	Total/NA
PCB-1260	0.60	J	1.3	0.60	mg/Kg	5	[≎] 8082A	Total/NA

Client Sample ID: CSW-51-3B Lab Sample ID: 480-89114-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
PCB-1248	0.81		0.21	0.042	mg/Kg	1	₩	8082A	Total/NA
PCB-1254	0.34		0.21	0.10	mg/Kg	1	₩	8082A	Total/NA

Client Sample ID: CSW-55-2 Lab Sample ID: 480-89114-7

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
PCB-1254	2.2	0.29	0.14 mg/Kg	<u> </u>	8082A	Total/NA
PCB-1260	0.97	0.29	0.14 mg/Kg	1 ❖	8082A	Total/NA

Client Sample ID: CSW-61 Lab Sample ID: 480-89114-8

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
PCB-1254	1.9	0.21	0.097 mg/Kg	1 ₹ 8082A	Total/NA
PCB-1260	0.78	0.21	0.097 mg/Kg	1 ☼ 8082A	Total/NA

Client Sample ID: CSW-62 Lab Sample ID: 480-89114-9

No Detections.

Client Sample ID: CSW-63 Lab Sample ID: 480-89114-10

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
PCB-1242	18		5.7	1.1	mg/Kg	20	₩	8082A	Total/NA
PCB-1254	5.1	J	5.7	2.7	mg/Kg	20	₩	8082A	Total/NA

Client Sample ID: CSW-64 Lab Sample ID: 480-89114-11

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

Client: Iyer Environmental Group, LLC

Client Sample ID: CSW-64 (Continued)

Project/Site: 132 Dingens

TestAmerica Job ID: 480-89114-1

Lab Sample	D: 480	-89114-11
------------	--------	-----------

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
PCB-1248	0.78	0.26	0.052	mg/Kg	1	₩	8082A	Total/NA
PCB-1254	1.2	0.26	0.12	mg/Kg	1	₩	8082A	Total/NA
PCB-1260	0.61	0.26	0.12	mg/Kg	1	₩	8082A	Total/NA

Client Sample ID: CSW-65 Lab Sample ID: 480-89114-12

No Detections.

Client Sample ID: CSW-66 Lab Sample ID: 480-89114-13

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
PCB-1248	0.55	J	1.1	0.21	mg/Kg	5	₩	8082A	Total/NA
PCB-1254	0.94	J	1.1	0.50	mg/Kg	5	₩	8082A	Total/NA
PCB-1260	0.55	J	1.1	0.50	mg/Kg	5	₩	8082A	Total/NA

Client Sample ID: CSW-67 Lab Sample ID: 480-89114-14

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
PCB-1254	0.14 J	0.29	0.14 mg/Kg	1 ≅ 8082A	Total/NA

Client Sample ID: CSW-68 Lab Sample ID: 480-89114-15

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
PCB-1248	1.4		0.30	0.060	mg/Kg	1	₩	8082A	Total/NA
PCB-1254	0.64		0.30	0.14	mg/Kg	1	☼	8082A	Total/NA

Client Sample ID: CSW-69 Lab Sample ID: 480-89114-16

No Detections.

Client Sample ID: CSW-70 Lab Sample ID: 480-89114-17

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep	Туре
PCB-1248	0.72		0.27	0.053	mg/Kg		₩	8082A	Total/	NA
PCB-1254	0.38		0.27	0.13	mg/Kg	1	₩	8082A	Total/	NA

This Detection Summary does not include radiochemical test results.

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Client Sample ID: CSB-12-2

Date Collected: 10/14/15 00:00 Date Received: 10/14/15 18:00 Lab Sample ID: 480-89114-1

Matrix: Solid Percent Solids: 85.4

Method: 8082A - Polychic	orinated Bipheny	/Is (PCBs)	by Gas Chro	omatogr	aphy				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.27	0.054	mg/Kg	<u></u>	10/15/15 09:26	10/15/15 15:21	1
PCB-1221	ND		0.27	0.054	mg/Kg	☼	10/15/15 09:26	10/15/15 15:21	1
PCB-1232	ND		0.27	0.054	mg/Kg	☼	10/15/15 09:26	10/15/15 15:21	1
PCB-1242	ND		0.27	0.054	mg/Kg	₽	10/15/15 09:26	10/15/15 15:21	1
PCB-1248	ND		0.27	0.054	mg/Kg	☼	10/15/15 09:26	10/15/15 15:21	1
PCB-1254	ND		0.27	0.13	mg/Kg	☼	10/15/15 09:26	10/15/15 15:21	1
PCB-1260	ND		0.27	0.13	mg/Kg	₽	10/15/15 09:26	10/15/15 15:21	1
PCB-1262	ND		0.27	0.13	mg/Kg	☼	10/15/15 09:26	10/15/15 15:21	1
PCB-1268	ND		0.27	0.13	mg/Kg	≎	10/15/15 09:26	10/15/15 15:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	104		60 - 154				10/15/15 09:26	10/15/15 15:21	1
Tetrachloro-m-xylene	112		60 - 154				10/15/15 09:26	10/15/15 15:21	1
DCB Decachlorobiphenyl	107		65 - 174				10/15/15 09:26	10/15/15 15:21	1
DCB Decachlorobiphenyl	141		65 - 174				10/15/15 09:26	10/15/15 15:21	1

 Client Sample ID: CSB-13-2
 Lab Sample ID: 480-89114-2

 Date Collected: 10/14/15 00:00
 Matrix: Solid

 Date Received: 10/14/15 18:00
 Percent Solids: 85.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.24	0.047	mg/Kg	<u> </u>	10/15/15 09:26	10/15/15 15:37	1
PCB-1221	ND		0.24	0.047	mg/Kg	₩	10/15/15 09:26	10/15/15 15:37	1
PCB-1232	ND		0.24	0.047	mg/Kg	₩	10/15/15 09:26	10/15/15 15:37	1
PCB-1242	ND		0.24	0.047	mg/Kg	₩	10/15/15 09:26	10/15/15 15:37	1
PCB-1248	ND		0.24	0.047	mg/Kg	₩	10/15/15 09:26	10/15/15 15:37	1
PCB-1254	ND		0.24	0.11	mg/Kg	₩	10/15/15 09:26	10/15/15 15:37	1
PCB-1260	ND		0.24	0.11	mg/Kg	₩	10/15/15 09:26	10/15/15 15:37	1
PCB-1262	ND		0.24	0.11	mg/Kg	☆	10/15/15 09:26	10/15/15 15:37	1
PCB-1268	ND		0.24	0.11	mg/Kg	₩	10/15/15 09:26	10/15/15 15:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	101		60 - 154				10/15/15 09:26	10/15/15 15:37	1
Tetrachloro-m-xylene	110		60 - 154				10/15/15 09:26	10/15/15 15:37	1
DCB Decachlorobiphenyl	105		65 - 174				10/15/15 09:26	10/15/15 15:37	1
DCB Decachlorobiphenyl	136		65 - 174				10/15/15 09:26	10/15/15 15:37	1

 Client Sample ID: CSB-14-2
 Lab Sample ID: 480-89114-3

 Date Collected: 10/14/15 00:00
 Matrix: Solid

 Date Received: 10/14/15 18:00
 Percent Solids: 89.4

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography									
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
PCB-1016	ND —	0.28	0.054	mg/Kg	<u> </u>	10/15/15 09:26	10/15/15 15:53	1	
PCB-1221	ND	0.28	0.054	mg/Kg	₩	10/15/15 09:26	10/15/15 15:53	1	
PCB-1232	ND	0.28	0.054	mg/Kg	₩	10/15/15 09:26	10/15/15 15:53	1	
PCB-1242	ND	0.28	0.054	mg/Kg	₩.	10/15/15 09:26	10/15/15 15:53	1	
PCB-1248	ND	0.28	0.054	mg/Kg	₩	10/15/15 09:26	10/15/15 15:53	1	
PCB-1254	ND	0.28	0.13	mg/Kg	☼	10/15/15 09:26	10/15/15 15:53	1	

TestAmerica Buffalo

6/14/2016

Page 7 of 31

2

3

Ė

6

8

10

12

4 4

TestAmerica Job ID: 480-89114-1

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Client Sample ID: CSB-14-2

Lab Sample ID: 480-89114-3

Date Collected: 10/14/15 00:00 **Matrix: Solid** Date Received: 10/14/15 18:00 Percent Solids: 89.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1260	0.34		0.28	0.13	mg/Kg	<u> </u>	10/15/15 09:26	10/15/15 15:53	1
PCB-1262	ND		0.28	0.13	mg/Kg	φ.	10/15/15 09:26	10/15/15 15:53	1
PCB-1268	ND		0.28	0.13	mg/Kg	≎	10/15/15 09:26	10/15/15 15:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	94		60 - 154				10/15/15 09:26	10/15/15 15:53	1
Tetrachloro-m-xylene	100		60 - 154				10/15/15 09:26	10/15/15 15:53	1
DCB Decachlorobiphenyl	99		65 - 174				10/15/15 09:26	10/15/15 15:53	1
DCB Decachlorobiphenyl	160		65 - 174				10/1E/1E 00:06	10/15/15 15:53	

Client Sample ID: CSB-17 Lab Sample ID: 480-89114-4 Date Collected: 10/14/15 00:00 **Matrix: Solid** Date Received: 10/14/15 18:00 Percent Solids: 83.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.27	0.053	mg/Kg	<u> </u>	10/15/15 09:26	10/15/15 16:09	1
PCB-1221	ND		0.27	0.053	mg/Kg	₩	10/15/15 09:26	10/15/15 16:09	1
PCB-1232	ND		0.27	0.053	mg/Kg	₩	10/15/15 09:26	10/15/15 16:09	1
PCB-1242	ND		0.27	0.053	mg/Kg	₩	10/15/15 09:26	10/15/15 16:09	1
PCB-1248	0.30		0.27	0.053	mg/Kg	₩	10/15/15 09:26	10/15/15 16:09	1
PCB-1254	ND		0.27	0.13	mg/Kg	☼	10/15/15 09:26	10/15/15 16:09	1
PCB-1260	ND		0.27	0.13	mg/Kg	₩	10/15/15 09:26	10/15/15 16:09	1
PCB-1262	ND		0.27	0.13	mg/Kg	₩	10/15/15 09:26	10/15/15 16:09	1
PCB-1268	ND		0.27	0.13	mg/Kg	☼	10/15/15 09:26	10/15/15 16:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	95		60 - 154				10/15/15 09:26	10/15/15 16:09	1
Tetrachloro-m-xylene	110		60 - 154				10/15/15 09:26	10/15/15 16:09	1
DCB Decachlorobiphenyl	86		65 - 174				10/15/15 09:26	10/15/15 16:09	1
DCB Decachlorobiphenyl	108		65 - 174				10/15/15 09:26	10/15/15 16:09	1

Client Sample ID: CSB-15-2 Lab Sample ID: 480-89114-5 Date Collected: 10/14/15 00:00 **Matrix: Solid** Date Received: 10/14/15 18:00 Percent Solids: 83.9

Method: 8082A - Polych Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		1.3	0.25	mg/Kg	-	10/15/15 09:26	10/15/15 16:25	5
PCB-1221	ND		1.3	0.25	mg/Kg	☼	10/15/15 09:26	10/15/15 16:25	5
PCB-1232	ND		1.3	0.25	mg/Kg	₩	10/15/15 09:26	10/15/15 16:25	5
PCB-1242	ND		1.3	0.25	mg/Kg	₩	10/15/15 09:26	10/15/15 16:25	5
PCB-1248	ND		1.3	0.25	mg/Kg	₩	10/15/15 09:26	10/15/15 16:25	5
PCB-1254	0.86	J	1.3	0.60	mg/Kg	☼	10/15/15 09:26	10/15/15 16:25	5
PCB-1260	0.60	J	1.3	0.60	mg/Kg	₩.	10/15/15 09:26	10/15/15 16:25	5
PCB-1262	ND		1.3	0.60	mg/Kg	☼	10/15/15 09:26	10/15/15 16:25	5
PCB-1268	ND		1.3	0.60	mg/Kg	₩	10/15/15 09:26	10/15/15 16:25	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	107		60 - 154				10/15/15 09:26	10/15/15 16:25	5
Tetrachloro-m-xylene	112		60 - 154				10/15/15 09:26	10/15/15 16:25	5

TestAmerica Buffalo

6/14/2016

Page 8 of 31

Project/Site: 132 Dingens

Client Sample ID: CSB-15-2

Date Collected: 10/14/15 00:00 Date Received: 10/14/15 18:00 Lab Sample ID: 480-89114-5

Matrix: Solid

Percent Solids: 83.9

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	123		65 - 174	10/15/15 09:26	10/15/15 16:25	5
DCB Decachlorobiphenyl	159		65 - 174	10/15/15 09:26	10/15/15 16:25	5

Client Sample ID: CSW-51-3B

Date Collected: 10/14/15 00:00 Date Received: 10/14/15 18:00

Lab Sample ID: 480-89114-6 **Matrix: Solid**

Percent Solids: 83.2

Analyte	lychlorinated Bipheny Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.21	0.042	mg/Kg	<u> </u>	10/15/15 09:26	10/15/15 16:41	1
PCB-1221	ND		0.21	0.042	mg/Kg	☼	10/15/15 09:26	10/15/15 16:41	1
PCB-1232	ND		0.21	0.042	mg/Kg	☼	10/15/15 09:26	10/15/15 16:41	1
PCB-1242	ND		0.21	0.042	mg/Kg	₩	10/15/15 09:26	10/15/15 16:41	1
PCB-1248	0.81		0.21	0.042	mg/Kg	☼	10/15/15 09:26	10/15/15 16:41	1
PCB-1254	0.34		0.21	0.10	mg/Kg	☼	10/15/15 09:26	10/15/15 16:41	1
PCB-1260	ND		0.21	0.10	mg/Kg	₩.	10/15/15 09:26	10/15/15 16:41	1
PCB-1262	ND		0.21	0.10	mg/Kg	☼	10/15/15 09:26	10/15/15 16:41	1
PCB-1268	ND		0.21	0.10	mg/Kg	₽	10/15/15 09:26	10/15/15 16:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery G	Qualifier Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	93	60 - 15	10/15/15 09:26	10/15/15 16:41	1
Tetrachloro-m-xylene	99	60 - 15	4 10/15/15 09:26	10/15/15 16:41	1
DCB Decachlorobiphenyl	84	65 - 17	4 10/15/15 09:26	10/15/15 16:41	1
DCB Decachlorobiphenyl	106	65 - 174	4 10/15/15 09:26	10/15/15 16:41	1

Client Sample ID: CSW-55-2

Date Collected: 10/14/15 00:00 Date Received: 10/14/15 18:00

Lab Sample ID: 480-89114-7 **Matrix: Solid** Percent Solids: 82.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.29	0.057	mg/Kg	<u> </u>	10/15/15 09:26	10/15/15 17:29	1
PCB-1221	ND		0.29	0.057	mg/Kg	☼	10/15/15 09:26	10/15/15 17:29	1
PCB-1232	ND		0.29	0.057	mg/Kg	☼	10/15/15 09:26	10/15/15 17:29	1
PCB-1242	ND		0.29	0.057	mg/Kg	₽	10/15/15 09:26	10/15/15 17:29	1
PCB-1248	ND		0.29	0.057	mg/Kg	☼	10/15/15 09:26	10/15/15 17:29	1
PCB-1254	2.2		0.29	0.14	mg/Kg	☼	10/15/15 09:26	10/15/15 17:29	1
PCB-1260	0.97		0.29	0.14	mg/Kg	₽	10/15/15 09:26	10/15/15 17:29	1
PCB-1262	ND		0.29	0.14	mg/Kg	☼	10/15/15 09:26	10/15/15 17:29	1
PCB-1268	ND		0.29	0.14	mg/Kg	≎	10/15/15 09:26	10/15/15 17:29	1

Surrogate	%Recovery Qualitier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	103	60 - 154	10/15/15 09:26	10/15/15 17:29	1
Tetrachloro-m-xylene	113	60 - 15 4	10/15/15 09:26	10/15/15 17:29	1
DCB Decachlorobiphenyl	107	65 - 174	10/15/15 09:26	10/15/15 17:29	1
DCB Decachlorobiphenyl	136	65 - 174	10/15/15 09:26	10/15/15 17:29	1

Client: Iyer Environmental Group, LLC

Client Sample ID: CSW-61

Project/Site: 132 Dingens

DCB Decachlorobiphenyl

DCB Decachlorobiphenyl

Lab Sample ID: 480-89114-8

10/15/15 09:26 10/15/15 17:45

10/15/15 09:26 10/15/15 17:45

TestAmerica Job ID: 480-89114-1

Date Collected: 10/14/15 00:00 Date Received: 10/14/15 18:00						Matrix Percent Solid	: Solid ls: 85.4
Method: 8082A - Polychlorina Analyte	ted Biphenyls (PCBs) by Result Qualifier	/ Gas Chro RL	omatography MDL Unit	D	Prepared	Analyzed	Dil Fac
DOD 4040	ND	0.04	0.044	— 7	40/45/45 00 00	40/45/45 47 45	

Method: 8082A - Polych	nlorinated Bipheny	yls (PCBs)	by Gas Chro	omatogr	aphy				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.21	0.041	mg/Kg	<u> </u>	10/15/15 09:26	10/15/15 17:45	1
PCB-1221	ND		0.21	0.041	mg/Kg	☼	10/15/15 09:26	10/15/15 17:45	1
PCB-1232	ND		0.21	0.041	mg/Kg	₽	10/15/15 09:26	10/15/15 17:45	1
PCB-1242	ND		0.21	0.041	mg/Kg	φ.	10/15/15 09:26	10/15/15 17:45	1
PCB-1248	ND		0.21	0.041	mg/Kg	☼	10/15/15 09:26	10/15/15 17:45	1
PCB-1254	1.9		0.21	0.097	mg/Kg	☼	10/15/15 09:26	10/15/15 17:45	1
PCB-1260	0.78		0.21	0.097	mg/Kg	φ.	10/15/15 09:26	10/15/15 17:45	1
PCB-1262	ND		0.21	0.097	mg/Kg	☼	10/15/15 09:26	10/15/15 17:45	1
PCB-1268	ND		0.21	0.097	mg/Kg	₩	10/15/15 09:26	10/15/15 17:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	88		60 - 154				10/15/15 09:26	10/15/15 17:45	1
Tetrachloro-m-xylene	96		60 154				10/15/15 09:26	10/15/15 17:45	1

Client Sample ID: CSW-62 Lab Sample ID: 480-89114-9 Date Collected: 10/14/15 00:00 **Matrix: Solid** Date Received: 10/14/15 18:00 Percent Solids: 83.5

65 - 174

65 - 174

164

75

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		5.3	1.0	mg/Kg	₽	10/15/15 09:26	10/15/15 18:01	20
PCB-1221	ND		5.3	1.0	mg/Kg	☼	10/15/15 09:26	10/15/15 18:01	20
PCB-1232	ND		5.3	1.0	mg/Kg	₽	10/15/15 09:26	10/15/15 18:01	20
PCB-1242	ND		5.3	1.0	mg/Kg	\$	10/15/15 09:26	10/15/15 18:01	20
PCB-1248	ND		5.3	1.0	mg/Kg	☼	10/15/15 09:26	10/15/15 18:01	20
PCB-1254	ND		5.3	2.5	mg/Kg	₽	10/15/15 09:26	10/15/15 18:01	20
PCB-1260	ND		5.3	2.5	mg/Kg	φ.	10/15/15 09:26	10/15/15 18:01	20
PCB-1262	ND		5.3	2.5	mg/Kg	☼	10/15/15 09:26	10/15/15 18:01	20
PCB-1268	ND		5.3	2.5	mg/Kg	☼	10/15/15 09:26	10/15/15 18:01	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	102		60 - 154				10/15/15 09:26	10/15/15 18:01	20
Tetrachloro-m-xylene	115		60 - 154				10/15/15 09:26	10/15/15 18:01	20
DCB Decachlorobiphenyl	119		65 - 174				10/15/15 09:26	10/15/15 18:01	20
DCB Decachlorobiphenyl	177	X	65 - 174				10/15/15 09:26	10/15/15 18:01	20

Client Sample ID: CSW-63 Lab Sample ID: 480-89114-10 Date Collected: 10/14/15 00:00 **Matrix: Solid** Date Received: 10/14/15 18:00 Percent Solids: 78.1

Method: 8082A - Polychl	orinated Biphenyls (PCBs) by	Gas Chro	matogra	aphy				
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND —	5.7	1.1	mg/Kg	<u> </u>	10/15/15 09:26	10/15/15 18:17	20
PCB-1221	ND	5.7	1.1	mg/Kg	☼	10/15/15 09:26	10/15/15 18:17	20
PCB-1232	ND	5.7	1.1	mg/Kg	☼	10/15/15 09:26	10/15/15 18:17	20
PCB-1242	18	5.7	1.1	mg/Kg	₽	10/15/15 09:26	10/15/15 18:17	20
PCB-1248	ND	5.7	1.1	mg/Kg	☼	10/15/15 09:26	10/15/15 18:17	20
PCB-1254	5.1 J	5.7	2.7	mg/Kg	₩	10/15/15 09:26	10/15/15 18:17	20

TestAmerica Buffalo

2

TestAmerica Job ID: 480-89114-1

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Client Sample ID: CSW-63

7-63 Lab Sample ID: 480-89114-10

Date Collected: 10/14/15 00:00 Matrix: Solid
Date Received: 10/14/15 18:00 Percent Solids: 78.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1260	ND		5.7	2.7	mg/Kg	<u> </u>	10/15/15 09:26	10/15/15 18:17	20
PCB-1262	ND		5.7	2.7	mg/Kg	₩.	10/15/15 09:26	10/15/15 18:17	20
PCB-1268	ND		5.7	2.7	mg/Kg	₩	10/15/15 09:26	10/15/15 18:17	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	98		60 - 154				10/15/15 09:26	10/15/15 18:17	20
Tetrachloro-m-xylene	111		60 - 154				10/15/15 09:26	10/15/15 18:17	20
DCB Decachlorobiphenyl	173		65 - 174				10/15/15 09:26	10/15/15 18:17	20

Client Sample ID: CSW-64

Date Collected: 10/14/15 00:00

Matrix: Solid

Date Received: 10/14/15 18:00

Lab Sample ID: 480-89114-11

Matrix: Solid

Percent Solids: 86.5

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac PCB-1016 ND 0.26 0.052 mg/Kg PCB-1221 ND 0.26 0.052 mg/Kg 10/15/15 09:26 10/15/15 18:33 PCB-1232 ND 0.26 0.052 mg/Kg ☼ 10/15/15 09:26 10/15/15 18:33 PCB-1242 ND 0.26 0.052 mg/Kg 10/15/15 09:26 10/15/15 18:33 0.052 mg/Kg 10/15/15 09:26 10/15/15 18:33 **PCB-1248** 0.78 0.26 0.12 mg/Kg PCB-1254 1.2 0.26 10/15/15 09:26 10/15/15 18:33 **PCB-1260** 0.61 0.26 0.12 mg/Kg 10/15/15 09:26 10/15/15 18:33 PCB-1262 ND 0.26 0.12 mg/Kg 10/15/15 09:26 10/15/15 18:33 PCB-1268 ND 0.26 0.12 mg/Kg 10/15/15 09:26 10/15/15 18:33

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	104		60 - 154	10/15/15 09:26	10/15/15 18:33	1
Tetrachloro-m-xylene	110		60 - 154	10/15/15 09:26	10/15/15 18:33	1
DCB Decachlorobiphenyl	218	X	65 - 174	10/15/15 09:26	10/15/15 18:33	1
DCB Decachlorobiphenyl	284	X	65 - 174	10/15/15 09:26	10/15/15 18:33	1

 Client Sample ID: CSW-65
 Lab Sample ID: 480-89114-12

 Date Collected: 10/14/15 00:00
 Matrix: Solid

 Date Received: 10/14/15 18:00
 Percent Solids: 83.2

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND ND	0.30	0.058	mg/Kg	₩	10/15/15 09:26	10/15/15 18:48	1
PCB-1221	ND	0.30	0.058	mg/Kg	☼	10/15/15 09:26	10/15/15 18:48	1
PCB-1232	ND	0.30	0.058	mg/Kg	☼	10/15/15 09:26	10/15/15 18:48	1
PCB-1242	ND	0.30	0.058	mg/Kg	₩	10/15/15 09:26	10/15/15 18:48	1
PCB-1248	ND	0.30	0.058	mg/Kg	₩	10/15/15 09:26	10/15/15 18:48	1
PCB-1254	ND	0.30	0.14	mg/Kg	☼	10/15/15 09:26	10/15/15 18:48	1
PCB-1260	ND	0.30	0.14	mg/Kg	₩.	10/15/15 09:26	10/15/15 18:48	1
PCB-1262	ND	0.30	0.14	mg/Kg	☼	10/15/15 09:26	10/15/15 18:48	1
PCB-1268	ND	0.30	0.14	mg/Kg	₽	10/15/15 09:26	10/15/15 18:48	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	104	60 - 154				10/15/15 09:26	10/15/15 18:48	1
Tetrachloro-m-xylene	108	60 - 154				10/15/15 09:26	10/15/15 18:48	1

TestAmerica Buffalo

Page 11 of 31

10/15/15 09:26 10/15/15 19:04

Project/Site: 132 Dingens

DCB Decachlorobiphenyl

Client Sample ID: CSW-65

Lab Sample ID: 480-89114-12 Date Collected: 10/14/15 00:00 **Matrix: Solid**

Date Received: 10/14/15 18:00 Percent Solids: 83.2

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	99		65 - 174	10/15/15 09:26	10/15/15 18:48	1
DCB Decachlorobiphenyl	124		65 - 174	10/15/15 09:26	10/15/15 18:48	1

Client Sample ID: CSW-66 Lab Sample ID: 480-89114-13 Date Collected: 10/14/15 00:00 **Matrix: Solid**

Date Received: 10/14/15 18:00 Percent Solids: 89.7

Method: 8082A - Polychio Analyte		Qualifier	RL	_	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		1.1	0.21	mg/Kg	<u> </u>	10/15/15 09:26	10/15/15 19:04	5
PCB-1221	ND		1.1	0.21	mg/Kg	☼	10/15/15 09:26	10/15/15 19:04	5
PCB-1232	ND		1.1	0.21	mg/Kg	☼	10/15/15 09:26	10/15/15 19:04	5
PCB-1242	ND		1.1	0.21	mg/Kg	₽	10/15/15 09:26	10/15/15 19:04	5
PCB-1248	0.55	J	1.1	0.21	mg/Kg	☼	10/15/15 09:26	10/15/15 19:04	5
PCB-1254	0.94	J	1.1	0.50	mg/Kg	☼	10/15/15 09:26	10/15/15 19:04	5
PCB-1260	0.55	J	1.1	0.50	mg/Kg	₽	10/15/15 09:26	10/15/15 19:04	5
PCB-1262	ND		1.1	0.50	mg/Kg	☼	10/15/15 09:26	10/15/15 19:04	5
PCB-1268	ND		1.1	0.50	mg/Kg	₩	10/15/15 09:26	10/15/15 19:04	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	108		60 - 154				10/15/15 09:26	10/15/15 19:04	5
Tetrachloro-m-xylene	110		60 - 154				10/15/15 09:26	10/15/15 19:04	5
DCB Decachlorobiphenyl	146		65 - 174				10/15/15 09:26	10/15/15 19:04	5

Client Sample ID: CSW-67 Lab Sample ID: 480-89114-14 Date Collected: 10/14/15 00:00 **Matrix: Solid** Date Received: 10/14/15 18:00 Percent Solids: 76.9

65 - 174

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.29	0.058	mg/Kg	<u> </u>	10/15/15 09:26	10/15/15 19:20	1
PCB-1221	ND		0.29	0.058	mg/Kg	₩	10/15/15 09:26	10/15/15 19:20	1
PCB-1232	ND		0.29	0.058	mg/Kg	₩	10/15/15 09:26	10/15/15 19:20	1
PCB-1242	ND		0.29	0.058	mg/Kg	₩	10/15/15 09:26	10/15/15 19:20	1
PCB-1248	ND		0.29	0.058	mg/Kg	₩	10/15/15 09:26	10/15/15 19:20	1
PCB-1254	0.14	J	0.29	0.14	mg/Kg	☼	10/15/15 09:26	10/15/15 19:20	1
PCB-1260	ND		0.29	0.14	mg/Kg	₽	10/15/15 09:26	10/15/15 19:20	1
PCB-1262	ND		0.29	0.14	mg/Kg	☼	10/15/15 09:26	10/15/15 19:20	1
PCB-1268	ND		0.29	0.14	mg/Kg	₩	10/15/15 09:26	10/15/15 19:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	103		60 - 154				10/15/15 09:26	10/15/15 19:20	1
Tetrachloro-m-xylene	111		60 - 154				10/15/15 09:26	10/15/15 19:20	1
DCB Decachlorobiphenyl	93		65 - 174				10/15/15 09:26	10/15/15 19:20	1
DCB Decachlorobiphenyl	119		65 - 174				10/15/15 09:26	10/15/15 19:20	1

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

DCB Decachlorobiphenyl

DCB Decachlorobiphenyl

Client Sample ID: CSW-68

Lab Sample ID: 480-89114-15

Date Collected: 10/14/15 00:00 **Matrix: Solid** Date Received: 10/14/15 18:00 Percent Solids: 81.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.30	0.060	mg/Kg	<u> </u>	10/15/15 09:26	10/15/15 19:36	1
PCB-1221	ND		0.30	0.060	mg/Kg	☼	10/15/15 09:26	10/15/15 19:36	1
PCB-1232	ND		0.30	0.060	mg/Kg	☼	10/15/15 09:26	10/15/15 19:36	1
PCB-1242	ND		0.30	0.060	mg/Kg	₩.	10/15/15 09:26	10/15/15 19:36	1
PCB-1248	1.4		0.30	0.060	mg/Kg	☼	10/15/15 09:26	10/15/15 19:36	1
PCB-1254	0.64		0.30	0.14	mg/Kg	☼	10/15/15 09:26	10/15/15 19:36	1
PCB-1260	ND		0.30	0.14	mg/Kg	φ.	10/15/15 09:26	10/15/15 19:36	1
PCB-1262	ND		0.30	0.14	mg/Kg	☼	10/15/15 09:26	10/15/15 19:36	1
PCB-1268	ND		0.30	0.14	mg/Kg	☼	10/15/15 09:26	10/15/15 19:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	96		60 - 154				10/15/15 09:26	10/15/15 19:36	1
Tetrachloro-m-xylene	103		60 - 154				10/15/15 09:26	10/15/15 19:36	1
DCB Decachlorobiphenyl	84		65 - 174				10/15/15 09:26	10/15/15 19:36	1
DCB Decachlorobiphenyl	105		65 - 174				10/15/15 09:26	10/15/15 19:36	1

Client Sample ID: CSW-69 Lab Sample ID: 480-89114-16 Date Collected: 10/14/15 00:00 **Matrix: Solid**

Date Received: 10/14/15 18:00 Percent Solids: 86.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.21	0.042	mg/Kg	₩	10/15/15 09:26	10/15/15 19:52	1
PCB-1221	ND		0.21	0.042	mg/Kg	☼	10/15/15 09:26	10/15/15 19:52	1
PCB-1232	ND		0.21	0.042	mg/Kg	₩	10/15/15 09:26	10/15/15 19:52	1
PCB-1242	ND		0.21	0.042	mg/Kg	₩	10/15/15 09:26	10/15/15 19:52	1
PCB-1248	ND		0.21	0.042	mg/Kg	☼	10/15/15 09:26	10/15/15 19:52	1
PCB-1254	ND		0.21	0.10	mg/Kg	☼	10/15/15 09:26	10/15/15 19:52	1
PCB-1260	ND		0.21	0.10	mg/Kg		10/15/15 09:26	10/15/15 19:52	1
PCB-1262	ND		0.21	0.10	mg/Kg	☼	10/15/15 09:26	10/15/15 19:52	1
PCB-1268	ND		0.21	0.10	mg/Kg	☆	10/15/15 09:26	10/15/15 19:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	101		60 - 154				10/15/15 09:26	10/15/15 19:52	1
Tetrachloro-m-xylene	111		60 ₋ 154				10/15/15 09:26	10/15/15 19:52	1

Client Sample ID: CSW-70 Lab Sample ID: 480-89114-17 Date Collected: 10/14/15 00:00 **Matrix: Solid** Percent Solids: 81.6 Date Received: 10/14/15 18:00

65 - 174

65 - 174

94

117

Analyte	Result Qualif	ier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND ND	0.27	0.053	mg/Kg	<u> </u>	10/15/15 09:26	10/15/15 20:39	1
PCB-1221	ND	0.27	0.053	mg/Kg	₩	10/15/15 09:26	10/15/15 20:39	1
PCB-1232	ND	0.27	0.053	mg/Kg	₩	10/15/15 09:26	10/15/15 20:39	1
PCB-1242	ND	0.27	0.053	mg/Kg	₩	10/15/15 09:26	10/15/15 20:39	1
PCB-1248	0.72	0.27	0.053	mg/Kg	₩	10/15/15 09:26	10/15/15 20:39	1
PCB-1254	0.38	0.27	0.13	mg/Kg	☼	10/15/15 09:26	10/15/15 20:39	1

TestAmerica Buffalo

10/15/15 09:26 10/15/15 19:52

10/15/15 09:26 10/15/15 19:52

Page 13 of 31

Client Sample Results

Client: Iyer Environmental Group, LLC

Client Sample ID: CSW-70

Date Collected: 10/14/15 00:00

Date Received: 10/14/15 18:00

Project/Site: 132 Dingens

DCB Decachlorobiphenyl

TestAmerica Job ID: 480-89114-1

Lab Sample ID: 480-89114-17

10/15/15 09:26 10/15/15 20:39

. Matrix: Solid

Percent Solids: 81.6

Method: 8082A - Polychic Analyte		IS (PCBS) Qualifier	by Gas Chro	_	apny (Co Unit	ntinu D	ed) Prepared	Analyzed	Dil Fac
PCB-1260	ND		0.27	0.13	mg/Kg	<u></u>	10/15/15 09:26	10/15/15 20:39	1
PCB-1262	ND		0.27	0.13	mg/Kg	₽	10/15/15 09:26	10/15/15 20:39	1
PCB-1268	ND		0.27	0.13	mg/Kg	☆	10/15/15 09:26	10/15/15 20:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	100		60 - 154				10/15/15 09:26	10/15/15 20:39	1
Tetrachloro-m-xylene	105		60 - 154				10/15/15 09:26	10/15/15 20:39	1
DCB Decachlorobiphenyl	94		65 - 174				10/15/15 09:26	10/15/15 20:39	1

65 - 174

119

6/14/2016

Surrogate Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-89114-1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		TCX1	TCX2	DCB1	DCB2
Lab Sample ID	Client Sample ID	(60-154)	(60-154)	(65-174)	(65-174)
480-89114-1	CSB-12-2	104	112	107	141
480-89114-1 MS	CSB-12-2	119	122	118	157
480-89114-1 MSD	CSB-12-2	117	124	118	156
480-89114-2	CSB-13-2	101	110	105	136
480-89114-3	CSB-14-2	94	100	99	160
480-89114-4	CSB-17	95	110	86	108
480-89114-5	CSB-15-2	107	112	123	159
480-89114-6	CSW-51-3B	93	99	84	106
480-89114-7	CSW-55-2	103	113	107	136
480-89114-8	CSW-61	88	96	164	75
480-89114-9	CSW-62	102	115	119	177 X
480-89114-10	CSW-63	98	111	173	206 X
480-89114-11	CSW-64	104	110	218 X	284 X
480-89114-12	CSW-65	104	108	99	124
480-89114-13	CSW-66	108	110	146	84
480-89114-14	CSW-67	103	111	93	119
480-89114-15	CSW-68	96	103	84	105
480-89114-16	CSW-69	101	111	94	117
480-89114-17	CSW-70	100	105	94	119
LCS 480-268942/2-A	Lab Control Sample	120	134	119	159
MB 480-268942/1-A	Method Blank	102	118	105	140

Surrogate Legend

TCX = Tetrachloro-m-xylene

DCB = DCB Decachlorobiphenyl

TestAmerica Buffalo

TestAmerica Job ID: 480-89114-1

10/15/15 09:26 10/15/15 14:18

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

ND

Lab Sample ID: MB 480-268942/1-A **Client Sample ID: Method Blank Matrix: Solid** Prep Type: Total/NA Analysis Batch: 268999 Prep Batch: 268942

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac PCB-1016 ND 0.23 0.045 mg/Kg <u>10/15/15 09:26</u> <u>10/15/15 14:18</u> PCB-1221 ND 10/15/15 09:26 10/15/15 14:18 0.23 0.045 mg/Kg ND PCB-1232 0.23 0.045 mg/Kg 10/15/15 09:26 10/15/15 14:18 PCB-1242 ND 0.045 mg/Kg 10/15/15 09:26 10/15/15 14:18 0.23 PCB-1248 ND 0.23 0.045 mg/Kg 10/15/15 09:26 10/15/15 14:18 PCB-1254 ND 0.23 0.11 mg/Kg 10/15/15 09:26 10/15/15 14:18 PCB-1260 ND 0.23 0.11 mg/Kg 10/15/15 09:26 10/15/15 14:18 PCB-1262 ND 0.23 0.11 mg/Kg 10/15/15 09:26 10/15/15 14:18

		MB	MB				
S	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
7	etrachloro-m-xylene	102		60 - 154	10/15/15 09:26	10/15/15 14:18	1
7	「etrachloro-m-xylene	118		60 - 154	10/15/15 09:26	10/15/15 14:18	1
E	DCB Decachlorobiphenyl	105		65 - 174	10/15/15 09:26	10/15/15 14:18	1
E	DCB Decachlorobiphenyl	140		65 - 174	10/15/15 09:26	10/15/15 14:18	1

0.23

0.11 mg/Kg

Lab Sample ID: LCS 480-268942/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA **Prep Batch: 268942**

Analysis Batch: 268999

PCB-1268

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits PCB-1016 1.92 2.15 51 - 185 mg/Kg 112 PCB-1260 1.92 2.35 mg/Kg 123 61 - 184

	LCS L	LCS	
Surrogate	%Recovery G	Qualifier	Limits
Tetrachloro-m-xylene	120		60 - 154
Tetrachloro-m-xylene	134		60 - 154
DCB Decachlorobiphenyl	119		65 - 174
DCB Decachlorobiphenyl	159		65 - 174

Lab Sample ID: 480-89114-1 MS Client Sample ID: CSB-12-2 Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 268999									Prep Batch: 268	942
-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016	ND		2.42	2.69		mg/Kg	<u> </u>	111	50 - 177	
PCB-1260	ND		2 42	3.00		ma/Ka	☼	124	33 - 200	

	MS I	MS	
Surrogate	%Recovery (Qualifier	Limits
Tetrachloro-m-xylene	119		60 - 154
Tetrachloro-m-xylene	122		60 - 154
DCB Decachlorobiphenyl	118		65 - 174
DCB Decachlorobiphenyl	157		65 - 174

QC Sample Results

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Surrogate

Tetrachloro-m-xylene

Tetrachloro-m-xylene
DCB Decachlorobiphenyl

DCB Decachlorobiphenyl

TestAmerica Job ID: 480-89114-1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Limits 60 - 154

60 - 154

65 - 174

65 - 174

%Recovery Qualifier

117 124

118

156

Lab Sample ID: 480-89114- Matrix: Solid Analysis Batch: 268999	1 MSD							Client	Sample I Prep Tyl Prep Ba	pe: Tot	al/NA
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
PCB-1016	ND		2.65	2.91		mg/Kg	<u></u>	110	50 - 177	8	50
PCB-1260	ND		2.65	3.24		mg/Kg	≎	122	33 - 200	8	50
	MSD	MSD									

	v	

10

11

13

QC Association Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-89114-1

GC Semi VOA

Prep Batch: 268942

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89114-1	CSB-12-2	Total/NA	Solid	3550C	
480-89114-1 MS	CSB-12-2	Total/NA	Solid	3550C	
480-89114-1 MSD	CSB-12-2	Total/NA	Solid	3550C	
480-89114-2	CSB-13-2	Total/NA	Solid	3550C	
480-89114-3	CSB-14-2	Total/NA	Solid	3550C	
480-89114-4	CSB-17	Total/NA	Solid	3550C	
480-89114-5	CSB-15-2	Total/NA	Solid	3550C	
480-89114-6	CSW-51-3B	Total/NA	Solid	3550C	
480-89114-7	CSW-55-2	Total/NA	Solid	3550C	
480-89114-8	CSW-61	Total/NA	Solid	3550C	
480-89114-9	CSW-62	Total/NA	Solid	3550C	
480-89114-10	CSW-63	Total/NA	Solid	3550C	
480-89114-11	CSW-64	Total/NA	Solid	3550C	
480-89114-12	CSW-65	Total/NA	Solid	3550C	
480-89114-13	CSW-66	Total/NA	Solid	3550C	
480-89114-14	CSW-67	Total/NA	Solid	3550C	
480-89114-15	CSW-68	Total/NA	Solid	3550C	
480-89114-16	CSW-69	Total/NA	Solid	3550C	
480-89114-17	CSW-70	Total/NA	Solid	3550C	
LCS 480-268942/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-268942/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 268999

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89114-1	CSB-12-2	Total/NA	Solid	8082A	268942
480-89114-1 MS	CSB-12-2	Total/NA	Solid	8082A	268942
480-89114-1 MSD	CSB-12-2	Total/NA	Solid	8082A	268942
480-89114-2	CSB-13-2	Total/NA	Solid	8082A	268942
480-89114-3	CSB-14-2	Total/NA	Solid	8082A	268942
480-89114-4	CSB-17	Total/NA	Solid	8082A	268942
480-89114-5	CSB-15-2	Total/NA	Solid	8082A	268942
480-89114-6	CSW-51-3B	Total/NA	Solid	8082A	268942
480-89114-7	CSW-55-2	Total/NA	Solid	8082A	268942
480-89114-8	CSW-61	Total/NA	Solid	8082A	268942
180-89114-9	CSW-62	Total/NA	Solid	8082A	268942
180-89114-10	CSW-63	Total/NA	Solid	8082A	268942
480-89114-11	CSW-64	Total/NA	Solid	8082A	268942
480-89114-12	CSW-65	Total/NA	Solid	8082A	268942
480-89114-13	CSW-66	Total/NA	Solid	8082A	268942
480-89114-14	CSW-67	Total/NA	Solid	8082A	268942
480-89114-15	CSW-68	Total/NA	Solid	8082A	268942
480-89114-16	CSW-69	Total/NA	Solid	8082A	268942
480-89114-17	CSW-70	Total/NA	Solid	8082A	268942
_CS 480-268942/2-A	Lab Control Sample	Total/NA	Solid	8082A	268942
MB 480-268942/1-A	Method Blank	Total/NA	Solid	8082A	268942

TestAmerica Buffalo

Page 18 of 31

QC Association Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-89114-1

General Chemistry

Analysis Batch: 268855

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89114-1	CSB-12-2	Total/NA	Solid	Moisture	_
480-89114-2	CSB-13-2	Total/NA	Solid	Moisture	
480-89114-3	CSB-14-2	Total/NA	Solid	Moisture	
480-89114-4	CSB-17	Total/NA	Solid	Moisture	
480-89114-5	CSB-15-2	Total/NA	Solid	Moisture	
480-89114-6	CSW-51-3B	Total/NA	Solid	Moisture	
480-89114-7	CSW-55-2	Total/NA	Solid	Moisture	
480-89114-8	CSW-61	Total/NA	Solid	Moisture	
480-89114-9	CSW-62	Total/NA	Solid	Moisture	
480-89114-10	CSW-63	Total/NA	Solid	Moisture	
480-89114-11	CSW-64	Total/NA	Solid	Moisture	
480-89114-12	CSW-65	Total/NA	Solid	Moisture	
480-89114-13	CSW-66	Total/NA	Solid	Moisture	
480-89114-14	CSW-67	Total/NA	Solid	Moisture	
480-89114-15	CSW-68	Total/NA	Solid	Moisture	
480-89114-16	CSW-69	Total/NA	Solid	Moisture	
480-89114-17	CSW-70	Total/NA	Solid	Moisture	

4

5

8

9

10

12

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Client Sample ID: CSB-12-2 Lab Sample ID: 480-89114-1 Date Collected: 10/14/15 00:00

Matrix: Solid

Date Received: 10/14/15 18:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	268855	10/14/15 22:10	CMK	TAL BUF

Lab Sample ID: 480-89114-1 Client Sample ID: CSB-12-2 Date Collected: 10/14/15 00:00

Matrix: Solid

Date Received: 10/14/15 18:00 Percent Solids: 85.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			268942	10/15/15 09:26	TRG	TAL BUF
Total/NA	Analysis	8082A		1	268999	10/15/15 15:21	KS	TAL BUF

Client Sample ID: CSB-13-2 Lab Sample ID: 480-89114-2

Date Collected: 10/14/15 00:00 **Matrix: Solid**

Date Received: 10/14/15 18:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	268855	10/14/15 22:10	CMK	TAL BUF

Client Sample ID: CSB-13-2 Lab Sample ID: 480-89114-2

Date Collected: 10/14/15 00:00 Matrix: Solid Date Received: 10/14/15 18:00 Percent Solids: 85.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			268942	10/15/15 09:26	TRG	TAL BUF
Total/NA	Analysis	8082A		1	268999	10/15/15 15:37	KS	TAL BUF

Client Sample ID: CSB-14-2 Lab Sample ID: 480-89114-3

Date Collected: 10/14/15 00:00 **Matrix: Solid** Date Received: 10/14/15 18:00

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	Moisture			268855	10/14/15 22:10	CMK	TAL BUF	-

Client Sample ID: CSB-14-2 Lab Sample ID: 480-89114-3

Date Collected: 10/14/15 00:00 **Matrix: Solid** Date Received: 10/14/15 18:00 Percent Solids: 89.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			268942	10/15/15 09:26	TRG	TAL BUF
Total/NA	Analysis	8082A		1	268999	10/15/15 15:53	KS	TAL BUF

Matrix: Solid

Matrix: Solid

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: CSB-17 Lab Sample ID: 480-89114-4 Date Collected: 10/14/15 00:00

Matrix: Solid

Date Received: 10/14/15 18:00

Dilution Batch Batch Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Total/NA Analysis Moisture 268855 10/14/15 22:10 CMK TAL BUF

Client Sample ID: CSB-17 Lab Sample ID: 480-89114-4

Date Collected: 10/14/15 00:00 Date Received: 10/14/15 18:00

Matrix: Solid

Percent Solids: 83.0

Batch Batch Dilution **Batch Prepared** Prep Type Type Method Run Factor Number or Analyzed Analyst Lab 3550C 268942 10/15/15 09:26 TRG TAL BUF Total/NA Prep Total/NA Analysis 8082A 1 268999 10/15/15 16:09 KS TAL BUF

Client Sample ID: CSB-15-2 Lab Sample ID: 480-89114-5

Date Collected: 10/14/15 00:00

Date Received: 10/14/15 18:00

Batch Batch Dilution Batch Prepared Method Run Factor Number or Analyzed Analyst **Prep Type** Type Lab 268855 10/14/15 22:10 CMK TAL BUF Total/NA Analysis Moisture

Client Sample ID: CSB-15-2 Lab Sample ID: 480-89114-5

Date Collected: 10/14/15 00:00 **Matrix: Solid** Date Received: 10/14/15 18:00 Percent Solids: 83.9

Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Prep Total/NA 3550C 268942 10/15/15 09:26 TRG TAL BUF 10/15/15 16:25 KS Total/NA 8082A 5 268999 TAL BUF Analysis

Client Sample ID: CSW-51-3B Lab Sample ID: 480-89114-6

Date Collected: 10/14/15 00:00 Date Received: 10/14/15 18:00

Dilution Batch Batch Batch Prepared Prep Type Method Factor Number or Analyzed Type Run **Analyst** Lab 10/14/15 22:10 TAL BUF Total/NA Analysis Moisture 268855 CMK

Client Sample ID: CSW-51-3B Lab Sample ID: 480-89114-6

Date Collected: 10/14/15 00:00 **Matrix: Solid**

Date Received: 10/14/15 18:00 Percent Solids: 83.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			268942	10/15/15 09:26	TRG	TAL BUF
Total/NA	Analysis	8082A		1	268999	10/15/15 16:41	KS	TAL BUF

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: CSW-55-2

Lab Sample ID: 480-89114-7 Date Collected: 10/14/15 00:00

Matrix: Solid

Date Received: 10/14/15 18:00

Date Received: 10/14/15 18:00

Batch Dilution Batch Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Total/NA Analysis Moisture 268855 10/14/15 22:10 CMK TAL BUF

Lab Sample ID: 480-89114-7

Client Sample ID: CSW-55-2 Date Collected: 10/14/15 00:00 Matrix: Solid

Percent Solids: 82.3

Batch Batch Dilution **Batch Prepared** Method **Prep Type** Type Run Factor Number or Analyzed Analyst Lab 3550C 268942 10/15/15 09:26 TRG TAL BUF Total/NA Prep Total/NA Analysis 8082A 1 268999 10/15/15 17:29 KS TAL BUF

Client Sample ID: CSW-61 Lab Sample ID: 480-89114-8

Matrix: Solid

Date Collected: 10/14/15 00:00 Date Received: 10/14/15 18:00

Total/NA

Batch Batch Dilution Batch Prepared Method Run Factor Number or Analyzed Analyst **Prep Type** Type Lab 268855 10/14/15 22:10 CMK TAL BUF Total/NA Analysis Moisture

Client Sample ID: CSW-61 Lab Sample ID: 480-89114-8

Date Collected: 10/14/15 00:00 Date Received: 10/14/15 18:00

8082A

Analysis

Matrix: Solid Percent Solids: 85.4

TAL BUF

Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Prep Total/NA 3550C 268942 10/15/15 09:26 TRG TAL BUF

1

Client Sample ID: CSW-62 Lab Sample ID: 480-89114-9

Date Collected: 10/14/15 00:00 Matrix: Solid Date Received: 10/14/15 18:00

268999

10/15/15 17:45 KS

Dilution Batch **Batch** Batch Prepared Prep Type Method Factor Number or Analyzed Type Run **Analyst** Lab TAL BUF Total/NA Analysis Moisture 268855 10/14/15 22:10 CMK

Client Sample ID: CSW-62 Lab Sample ID: 480-89114-9

Date Collected: 10/14/15 00:00 **Matrix: Solid**

Date Received: 10/14/15 18:00 Percent Solids: 83.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			268942	10/15/15 09:26	TRG	TAL BUF
Total/NA	Analysis	8082A		20	268999	10/15/15 18:01	KS	TAL BUF

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Percent Solids: 86.5

TAL BUF

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Client Sample ID: CSW-63 Lab Sample ID: 480-89114-10

Date Collected: 10/14/15 00:00 Matrix: Solid

Date Received: 10/14/15 18:00

Dilution Batch Batch Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Total/NA Analysis Moisture 268855 10/14/15 22:10 CMK TAL BUF

Client Sample ID: CSW-63 Lab Sample ID: 480-89114-10

Date Collected: 10/14/15 00:00 Date Received: 10/14/15 18:00

Matrix: Solid Percent Solids: 78.1

Batch Batch Dilution **Batch Prepared** Prep Type Type Method Run Factor Number or Analyzed Analyst Lab 3550C 268942 10/15/15 09:26 TRG TAL BUF Total/NA Prep Total/NA Analysis 8082A 20 268999 10/15/15 18:17 KS TAL BUF

Client Sample ID: CSW-64 Lab Sample ID: 480-89114-11

Date Collected: 10/14/15 00:00

Date Received: 10/14/15 18:00

Batch Batch Dilution Batch Prepared Method Run Factor Number or Analyzed Analyst **Prep Type** Type Lab 10/14/15 22:10 CMK TAL BUF Total/NA Moisture 268855 Analysis

Client Sample ID: CSW-64 Lab Sample ID: 480-89114-11

Date Collected: 10/14/15 00:00

Date Received: 10/14/15 18:00

Total/NA

Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Prep 3550C 268942 10/15/15 09:26 TRG TAL BUF

Client Sample ID: CSW-65 Lab Sample ID: 480-89114-12

1

268999

10/15/15 18:33 KS

Date Collected: 10/14/15 00:00

Analysis

8082A

Date Received: 10/14/15 18:00

Dilution Batch Batch Batch Prepared Prep Type Method Run Factor Number or Analyzed Type **Analyst** Lab TAL BUF Total/NA Analysis Moisture 268855 10/14/15 22:10 CMK

Client Sample ID: CSW-65 Lab Sample ID: 480-89114-12

Date Collected: 10/14/15 00:00

Date Received: 10/14/15 18:00 Percent Solids: 83.2

Batch Batch Dilution Batch Prepared **Prep Type** Method Run Number or Analyzed Type **Factor** Analyst Lab

Total/NA 3550C 268942 10/15/15 09:26 TRG TAL BUF Prep Total/NA 8082A 268999 10/15/15 18:48 **TAL BUF** Analysis 1

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: CSW-66 Lab Sample ID: 480-89114-13 Date Collected: 10/14/15 00:00

Matrix: Solid

Date Received: 10/14/15 18:00

Batch Dilution Batch Batch **Prepared** Number **Prep Type** Type Method Run **Factor** or Analyzed Analyst Total/NA Analysis Moisture 268855 10/14/15 22:10 CMK TAL BUF

Client Sample ID: CSW-66 Lab Sample ID: 480-89114-13

Date Collected: 10/14/15 00:00 Date Received: 10/14/15 18:00

Matrix: Solid

Percent Solids: 89.7

Batch Batch Dilution **Batch Prepared** Method **Prep Type** Type Run **Factor** Number or Analyzed Analyst Lab Total/NA 3550C 268942 10/15/15 09:26 TRG TAL BUF Prep Total/NA Analysis 8082A 5 268999 10/15/15 19:04 KS **TAL BUF**

Client Sample ID: CSW-67 Lab Sample ID: 480-89114-14

Date Collected: 10/14/15 00:00

Matrix: Solid

Date Received: 10/14/15 18:00

Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab 268855 10/14/15 22:10 CMK TAL BUF Total/NA Analysis Moisture

Client Sample ID: CSW-67 Lab Sample ID: 480-89114-14

Date Collected: 10/14/15 00:00

Matrix: Solid

Date Received: 10/14/15 18:00 Percent Solids: 76.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			268942	10/15/15 09:26	TRG	TAL BUF
Total/NA	Analysis	8082A		1	268999	10/15/15 19:20	KS	TAL BUF

Client Sample ID: CSW-68 Lab Sample ID: 480-89114-15

Date Collected: 10/14/15 00:00

Matrix: Solid

Date Received: 10/14/15 18:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture	_		268855	10/14/15 22:10	CMK	TAL BUF

Client Sample ID: CSW-68 Lab Sample ID: 480-89114-15

Date Collected: 10/14/15 00:00

Matrix: Solid

Date Received: 10/14/15 18:00 Percent Solids: 81.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			268942	10/15/15 09:26	TRG	TAL BUF
Total/NA	Analysis	8082A		1	268999	10/15/15 19:36	KS	TAL BUF

Lab Chronicle

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-89114-1

Lab Sample ID: 480-89114-16

Date Collected: 10/14/15 00:00 Matrix: Solid

Date Received: 10/14/15 18:00

Client Sample ID: CSW-69

Dilution Batch Batch Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Total/NA Analysis Moisture 268855 10/14/15 22:10 CMK TAL BUF

Client Sample ID: CSW-69 Lab Sample ID: 480-89114-16

Date Collected: 10/14/15 00:00 Date Received: 10/14/15 18:00 Matrix: Solid
Percent Solids: 86.1

10

Matrix: Solid

Batch Batch Dilution **Batch** Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab 3550C TRG TAL BUF Total/NA Prep 268942 10/15/15 09:26 Total/NA Analysis 8082A 1 268999 10/15/15 19:52 **TAL BUF**

Client Sample ID: CSW-70 Lab Sample ID: 480-89114-17

Date Collected: 10/14/15 00:00 Date Received: 10/14/15 18:00

Batch Batch Dilution Batch Prepared

Method Run **Factor** Number or Analyzed **Prep Type** Type Analyst Lab 10/14/15 22:10 TAL BUF Total/NA Analysis Moisture 268855 CMK

Client Sample ID: CSW-70 Lab Sample ID: 480-89114-17

Date Collected: 10/14/15 00:00 Matrix: Solid
Date Received: 10/14/15 18:00 Percent Solids: 81.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			268942	10/15/15 09:26	TRG	TAL BUF
Total/NA	Analysis	8082A		1	268999	10/15/15 20:39	KS	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Certification Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-89114-1

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date
New York	NELAP		2	10026	03-31-16
The following analytes	s are included in this repo	rt, but certification is	not offered by the go	overning authority:	
Analysis Method	Prep Method	Matrix	Analyt	e	
Moisture		Solid	Percer	nt Moisture	

3

4

5

q

11

12

14

Method Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-89114-1

Method	Method Description	Protocol	Laboratory
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL BUF
Moisture	Percent Moisture	EPA	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

__

5

4

7

8

10

11

13

14

Sample Summary

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

TestAmerica Job ID: 480-89114-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-89114-1	CSB-12-2	Solid	10/14/15 00:00 10)/14/15 18:00
480-89114-2	CSB-13-2	Solid	10/14/15 00:00 10)/14/15 18:00
480-89114-3	CSB-14-2	Solid	10/14/15 00:00 10)/14/15 18:00
480-89114-4	CSB-17	Solid	10/14/15 00:00 10)/14/15 18:00
480-89114-5	CSB-15-2	Solid	10/14/15 00:00 10)/14/15 18:00
480-89114-6	CSW-51-3B	Solid	10/14/15 00:00 10)/14/15 18:00
480-89114-7	CSW-55-2	Solid	10/14/15 00:00 10)/14/15 18:00
480-89114-8	CSW-61	Solid	10/14/15 00:00 10)/14/15 18:00
480-89114-9	CSW-62	Solid	10/14/15 00:00 10)/14/15 18:00
480-89114-10	CSW-63	Solid	10/14/15 00:00 10)/14/15 18:00
480-89114-11	CSW-64	Solid	10/14/15 00:00 10)/14/15 18:00
480-89114-12	CSW-65	Solid	10/14/15 00:00 10)/14/15 18:00
480-89114-13	CSW-66	Solid	10/14/15 00:00 10	0/14/15 18:00
480-89114-14	CSW-67	Solid	10/14/15 00:00 10)/14/15 18:00
480-89114-15	CSW-68	Solid	10/14/15 00:00 10)/14/15 18:00
480-89114-16	CSW-69	Solid	10/14/15 00:00 10)/14/15 18:00
480-89114-17	CSW-70	Solid	10/14/15 00:00 10)/14/15 18:00

Chain of Custody Record

Temperature on Receipt

Drinking Water? Yes□ Nots

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

TAL-4124 (1007)	,	-		
Client Tyer Ehritonmental Grove	Project Manager DK	Dharma Iver	Oct 14, 2015	Chain of Custody Number 264462
Address Achina Hills Dr	Telephone Number (Area Code)	a Code) Fax Mumber 4 S 7	qu	
On Said Port NV 14127	Site Contact R. A (len	Lab Contact M. De sin	Analysis (Attach list if more space is needed)	
reation (State)			54	Special Instructions/
Contract/Purchase Okdgi/Quote No.	Matrix	Containers & Preservatives	[24]	Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Time Air suoeupA Sed.	HOBN /ANZ HOBN IOH FONH \$007H	ptol	Catagon B
CSB-12-2 10/4/15		1		70
CSB-13-2			>	
TO CSB-14-2	,			
age CSB-IT	<i>^</i>	a====	^	
2-21-850				
CSW-S1-3B				
CSW-55-2				
/ le 19- NSJ			/ 480-8911	480-89114 Chain of Custody
CSW-62	<u> </u>			
CSW-63	Λ			
CSW-64			-	
N 59-MS2				
Identification				e assessed if samples are refained
mmable 🔲 Skin Imitant 🔝 Poison B	☐ Unknown ☐ Retum To Client	Disposal By Lab	Archive For Months longer than	longer than 1 month)
Tum Around Time Required 24 Hours	Other	OC Requirements (Specify)		
Elling Com		Mark Adams		Date Time
ned By	3	2. Received By		
9 3. Relinquished By	Date Time	3. Received By	· ·	Date Time
Comments 20			Temp 13,6#1 40	Rofee

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

			て くこく とくさい	
Chain of Custody Record	Temperature on Receipt	2		
	Drinking Water? Yes□ Not		THE LEADER IN ENVIRONMENTAL TESTING	
IAL-4124 (1007)				
Olient # 1 .	Project Manager	~	Date ,	Chain of Custody Number
Lyer Fivienmental Graph	Char	Tharima wer	8t 4, 20 (5	264406
Address () () ()	Telephone Number (Area Code)/Fax Number	ax Number	Lab Number	
44 No line	1(716)662-4157	. /:		Page 2 of 2
City (State , Zip Code	Site Confact	Lab Contact	Analysis (Attach list if	
0 to 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1	D, 4/62	W. Della	more space is needed)	-
state)	Je.			
132 Dingens St (NY)		•	<u> </u>	Special Instructions/
Contract/Purchase/Qiber/Quote No.	Matrix	Containers & Preservatives	전 14	Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Ilme Ilos pes sucenby	HOSOH HOBN HOIN HOSOH	ग.ब.	Cotagn B

S	•			-				-				retained				Vine Vioo	Тіте	Time	
Catagory B	်											sed if samples are	longer than 1 month)			Date Time (0/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1	Date	Date	
												e mav be asses	er than 1 month						
				-						-		14/6	Months long						
													re For						
NOBN NOBN	<u> </u>	>	>	>	>		-						ab	ts (Specify)	-	李字	>		
OBN OBN OBN OSSH													Disposal By Lab Trchive For	OC Requirements (Specify)		A Colored By	2. Received By	3. Received By	
1105	>			>	>								Return To Client			4/15 1/800	Time	Time	
Air noeupA												Sample Disposal		; [Omer	ملتيد ا	Date	Date	
Date Time	165												оп В 🔲 Ипкпочип		☐ 21 Days	Date	De	Ö	
	10 14				>								ant Doison B		☐ 14 Days	かって			
Sample 1.D. NO. and Description (Containers for each sample may be combined on one line)	99-MSD	CSW-67	89-MSJ	CSW-69	02 - MSO						1000		☐ Flammable ☐ Skin Irritant	52	rs 💌 / Days	had CAlle			
Sample L.D. (Containers for each sam,	150	M 50	MSJ	MSD	CSW							Possible Hazard Identification	Non-Hazard 🛮 🗸		☐ 24 HOUIS ☐ 48 HOUIS	1. Relinquished By Ra	2. Relinquished By	3. Relinquished By	
	. '		Pa	age	30 c	of 31		-	*	-	•		•					6/14/2	•

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

Login Sample Receipt Checklist

Client: Iyer Environmental Group, LLC

Job Number: 480-89114-1

Login Number: 89114 List Source: TestAmerica Buffalo

List Number: 1

Creator: Kolb, Chris M

Creator. Roll, Chiris W		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	False	
Cooler Temperature is acceptable.	True	Yes: Received same day of collection
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	Refer to job narrative for details
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	False	Refer to job narrative for details
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	IYER ENV.
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

5

6

_

11

13

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-89112-1 Client Project/Site: 132 Dingens

For:

Iyer Environmental Group, LLC 44 Rolling Hills Drive Orchard Park, New York 14127

Attn: Dr. Dharmarajan R Iyer

Melisso Deyo

Authorized for release by: 10/21/2015 8:46:52 AM

Melissa Deyo, Project Manager I (716)504-9874

melissa.deyo@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

5110d 005 1B. 100 001 12 1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	8
Surrogate Summary	18
QC Sample Results	19
QC Association Summary	34
Lab Chronicle	37
Certification Summary	39
Method Summary	40
Sample Summary	41
Detection Limit Exceptions Summary	42
Chain of Custody	43
Receipt Checklists	44

5

6

8

40

11

13

15

Definitions/Glossary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-89112-1

Qualifiers

GC/MS Semi VOA

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
*	LCS or LCSD is outside acceptance limits.
F1	MS and/or MSD Recovery is outside acceptance limits.
F2	MS/MSD RPD exceeds control limits
Χ	Surrogate is outside control limits
Metals	
Qualifier	Qualifier Description

F1 MS and/or MSD Recovery is outside acceptance limits. J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. F2 MS/MSD RPD exceeds control limits B Compound was found in the blank and sample. 4 MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable. E Result exceeded calibration range.	Qualifier	Qualifier Description
F2 MS/MSD RPD exceeds control limits B Compound was found in the blank and sample. 4 MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.	F1	MS and/or MSD Recovery is outside acceptance limits.
B Compound was found in the blank and sample. 4 MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.	F2	MS/MSD RPD exceeds control limits
applicable.	В	Compound was found in the blank and sample.
E Result exceeded calibration range.	4	
	E	Result exceeded calibration range.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)

ND	Not detected at the reporting little (or MDL or EDL if show
PQL	Practical Quantitation Limit

PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio

DI	Donorting	Limit or Poguested	Limit (Radiochemistry)

RPD	Polativa Parcent Difference	a measure of the relative difference between two points

TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

TestAmerica Buffalo

Page 3 of 44

Case Narrative

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-89112-1

Job ID: 480-89112-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-89112-1

Receipt

The samples were received on 10/14/2015 6:00 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 13.6° C.

Receipt Exceptions

No times of collection were provided. Time of 00:00 was used for sample login.

GC/MS Semi VOA

Method(s) 8270D: The following samples were diluted due to color and, viscosity: TS-20 (480-89112-3), TS-20 (480-89112-3[MS]) and TS-20 (480-89112-3[MSD]). Elevated reporting limits (RL) are provided.

Method(s) 8270D: The continuing calibration verification (CCV) associated with batch 480-269161 recovered above the upper control limit for Benzaldehyde. The samples associated with this CCV were non-detects for the affected analyte; therefore, the data have been reported. The following samples are impacted: TS-18 (480-89112-1), TS-19 (480-89112-2) and TS-21 (480-89112-4).

Method(s) 8270D: The laboratory control sample (LCS) for batch preparation batch 480-268902 and analytical batch 480-269161 recovered outside control limits for the following analytes: Benzaldehyde. This analyte was biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method(s) 8270D: The following samples were diluted due to appearance and viscosity: TS-18 (480-89112-1), TS-19 (480-89112-2) and TS-21 (480-89112-4). Elevated reporting limits (RL) are provided.

Method(s) 8270D: The following samples were diluted due to the nature of the sample matrix: TS-20 (480-89112-3[MS]) and TS-20 (480-89112-3[MSD]). As such, surrogate and MS/MSD spike recoveries were diluted out and are not reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method(s) 8082A: All primary data is reported from the ZB-5 column.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method(s) 6010C: The Serial Dilution (480-89112-B-1-B SD ^) in batch 480-268944, exhibited results outside the quality control limits for Total Arsenic, Barium, Beryllium, Calcium, Cadmium, Chromium, Copper, Iron, Potassium, Magnesium, Manganese, Vanadium, and Zinc. However, the Post Digestion Spike was compliant so no corrective action was necessary.

Method(s) 6010C: The Serial Dilution and Post Spike (480-89112-B-1-B PDS) and (480-89112-B-1-B SD ^) exceeded the quality control limits for Total Aluminum. Sample matrix is suspected, therefore, no corrective action was necessary.

Method(s) 6010C: The Serial Dilution (480-89112-B-3-D SD ^) in batch 480-269194, exhibited results outside the quality control limits for Total Barium. However, the Post Digestion Spike was compliant so no corrective action was necessary.

Method(s) 6010C: The recovery of Post Spike, (480-89112-B-3-D PDS), in batch 480-269194 exhibited results outside the quality control limits for Total Aluminum, Iron, Manganese, and Zinc. However, the Serial Dilution of this sample was compliant. Therefore, no corrective action was necessary.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

TestAmerica Buffalo 10/21/2015

Page 4 of 44

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Client Sample ID: TS-18

Lab Sample ID: 480-89112-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acenaphthene	920	J	2100	310	ug/Kg	10	₩	8270D	Total/NA
Acenaphthylene	280	J	2100	270	ug/Kg	10	₩	8270D	Total/NA
Anthracene	3000		2100	520	ug/Kg	10	₩	8270D	Total/NA
Benzo[a]anthracene	7700		2100	210	ug/Kg	10	₩	8270D	Total/NA
Benzo[a]pyrene	7000		2100	310	ug/Kg	10	₩	8270D	Total/NA
Benzo[b]fluoranthene	9400		2100	330	ug/Kg	10	₩	8270D	Total/NA
Benzo[g,h,i]perylene	5100		2100	220	ug/Kg	10	₩.	8270D	Total/NA
Benzo[k]fluoranthene	5000		2100	270	ug/Kg	10	₩	8270D	Total/NA
Carbazole	1500	J	2100	250	ug/Kg	10	₩	8270D	Total/NA
Chrysene	8300		2100	470	ug/Kg	10	₩.	8270D	Total/NA
Dibenzofuran	830	J	2100	250	ug/Kg	10	₩	8270D	Total/NA
Fluoranthene	19000		2100	220	ug/Kg	10	₩	8270D	Total/NA
Fluorene	1200	J	2100	250	ug/Kg	10	₩.	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	4400		2100	260	ug/Kg	10	₩	8270D	Total/NA
Phenanthrene	12000		2100	310	ug/Kg	10	₩	8270D	Total/NA
Pyrene	14000		2100	250	ug/Kg	10	₩.	8270D	Total/NA
Aluminum	14000		12.5	5.5	mg/Kg	1	₩	6010C	Total/NA
Antimony	1.8	J F1	18.7	0.50	mg/Kg	1	₩	6010C	Total/NA
Arsenic	14.1		2.5	0.50	mg/Kg	1	₩.	6010C	Total/NA
Barium	531	F2	0.62	0.14	mg/Kg	1	₩	6010C	Total/NA
Beryllium	1.5		0.25	0.035	mg/Kg	1	₩	6010C	Total/NA
Cadmium	3.2		0.25	0.037	mg/Kg	1	₩	6010C	Total/NA
Calcium	32500	B F2	62.4	4.1	mg/Kg	1	₩	6010C	Total/NA
Chromium	49.5		0.62	0.25	mg/Kg	1	₩	6010C	Total/NA
Cobalt	7.7		0.62	0.062	mg/Kg	1	₩	6010C	Total/NA
Copper	127	F1 F2	1.2	0.26	mg/Kg	1	₩	6010C	Total/NA
Iron	33500		12.5	4.4	mg/Kg	1	₩	6010C	Total/NA
Lead	1840		1.2	0.30	mg/Kg	1	₩.	6010C	Total/NA
Magnesium	7610	F1	25.0	1.2	mg/Kg	1	₩	6010C	Total/NA
Manganese	793		0.25	0.040		1	₩	6010C	Total/NA
Nickel	23.4		6.2	0.29	mg/Kg	1	₩.	6010C	Total/NA
Potassium	1920	F1	37.4	25.0	mg/Kg	1	₽	6010C	Total/NA
Selenium	1.3		5.0	0.50	mg/Kg	1	₩	6010C	Total/NA
Silver	0.48	J	0.62	0.25	mg/Kg	1	₩.	6010C	Total/NA
Sodium	382		175	16.2	mg/Kg	1	₩	6010C	Total/NA
Vanadium	27.0		0.62		mg/Kg	1	₩	6010C	Total/NA
Zinc	794	F2	2.5		mg/Kg		₩.	6010C	Total/NA
Mercury	0.67		0.024	0.0099		1	₩	7471B	Total/NA

			lie	nt	Sa	mp	ie i	D:	IS-19
--	--	--	-----	----	----	----	------	----	-------

Lab Sample ID: 480-89112-2

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Anthracene	700 J	2000	500	ug/Kg		₩	8270D	Total/NA
Benzo[a]anthracene	3700	2000	200	ug/Kg	10	₩	8270D	Total/NA
Benzo[a]pyrene	3400	2000	300	ug/Kg	10	₩	8270D	Total/NA
Benzo[b]fluoranthene	4800	2000	320	ug/Kg	10	₽	8270D	Total/NA
Benzo[g,h,i]perylene	3000	2000	220	ug/Kg	10	₩	8270D	Total/NA
Benzo[k]fluoranthene	2500	2000	260	ug/Kg	10	₩	8270D	Total/NA
Carbazole	470 J	2000	240	ug/Kg	10	₩	8270D	Total/NA
Chrysene	4100	2000	460	ug/Kg	10	₽	8270D	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

Page 5 of 44

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Client Sample ID: TS-19 (Continued)

Lab Sample ID: 480-89112-2

	(33	-/							
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Fluoranthene	7200		2000	220	ug/Kg		₩	8270D	Total/NA
Fluorene	290	J	2000	240	ug/Kg	10	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	2500		2000	250	ug/Kg	10	₩	8270D	Total/NA
Phenanthrene	3900		2000	300	ug/Kg	10	₩	8270D	Total/NA
Pyrene	6000		2000	240	ug/Kg	10	₩	8270D	Total/NA
Aluminum	13100		12.1	5.3	mg/Kg	1	₩	6010C	Total/NA
Antimony	2.6	J	18.1	0.48	mg/Kg	1	₩	6010C	Total/NA
Arsenic	13.9		2.4	0.48	mg/Kg	1	₩.	6010C	Total/NA
Barium	264		0.60	0.13	mg/Kg	1	₩	6010C	Total/NA
Beryllium	1.2		0.24	0.034	mg/Kg	1	₩	6010C	Total/NA
Cadmium	2.1		0.24	0.036	mg/Kg	1	ψ	6010C	Total/NA
Calcium	32400	В	60.4	4.0	mg/Kg	1	₩	6010C	Total/NA
Chromium	39.6		0.60	0.24	mg/Kg	1	₩	6010C	Total/NA
Cobalt	9.0		0.60	0.060	mg/Kg	1	₩	6010C	Total/NA
Copper	130		1.2	0.25	mg/Kg	1	₩	6010C	Total/NA
Iron	34900		12.1	4.2	mg/Kg	1	₩	6010C	Total/NA
Lead	956		1.2	0.29	mg/Kg	1	₩	6010C	Total/NA
Magnesium	8160		24.2	1.1	mg/Kg	1	₩	6010C	Total/NA
Manganese	632		0.24	0.039	mg/Kg	1	₩	6010C	Total/NA
Nickel	27.0		6.0	0.28	mg/Kg	1	₩.	6010C	Total/NA
Potassium	2050		36.3	24.2	mg/Kg	1	₩	6010C	Total/NA
Selenium	0.89	J	4.8	0.48	mg/Kg	1	₩	6010C	Total/NA
Sodium	297		169	15.7	mg/Kg	1		6010C	Total/NA
Vanadium	25.2		0.60	0.13	mg/Kg	1	₩	6010C	Total/NA
Zinc	601		2.4	0.77	mg/Kg	1	₩	6010C	Total/NA
Mercury	0.54		0.023	0.0094	mg/Kg	1	₽	7471B	Total/NA

Client Sample ID: TS-20 Lab Sample ID: 480-89112-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo[a]anthracene	510	J	2300	230	ug/Kg	10	₩	8270D	Total/NA
Benzo[a]pyrene	840	J	2300	330	ug/Kg	10	₩	8270D	Total/NA
Benzo[b]fluoranthene	1000	J	2300	360	ug/Kg	10	₩	8270D	Total/NA
Benzo[g,h,i]perylene	750	J	2300	240	ug/Kg	10	₩	8270D	Total/NA
Benzo[k]fluoranthene	300	J	2300	290	ug/Kg	10	₩	8270D	Total/NA
Chrysene	630	J	2300	510	ug/Kg	10	₩	8270D	Total/NA
Fluoranthene	1100	J	2300	240	ug/Kg	10	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	790	J	2300	280	ug/Kg	10	₩	8270D	Total/NA
Phenanthrene	430	J	2300	330	ug/Kg	10	₩	8270D	Total/NA
Pyrene	850	J	2300	270	ug/Kg	10	₩.	8270D	Total/NA
Aluminum	19800		13.4	5.9	mg/Kg	1	₩	6010C	Total/NA
Arsenic	7.6		2.7	0.53	mg/Kg	1	₩	6010C	Total/NA
Barium	114	F1	0.67	0.15	mg/Kg	1	₩	6010C	Total/NA
Beryllium	0.78		0.27	0.037	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.88		0.27	0.040	mg/Kg	1	₩	6010C	Total/NA
Calcium	5820	B F1 F2	66.9	4.4	mg/Kg	1	₩	6010C	Total/NA
Chromium	42.2		0.67	0.27	mg/Kg	1	₩	6010C	Total/NA
Cobalt	9.1		0.67	0.067	mg/Kg	1	₩	6010C	Total/NA
Copper	36.5		1.3	0.28	mg/Kg	1	₩	6010C	Total/NA
Iron	24400		13.4	4.7	mg/Kg	1	₩	6010C	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

Page 6 of 44

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: TS-20 (Continued)

Lab Sample ID: 480-89112-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lead	86.0		1.3	0.32	mg/Kg	1	₩	6010C	Total/NA
Magnesium	4270	F1	26.7	1.2	mg/Kg	1	₩	6010C	Total/NA
Manganese	455		0.27	0.043	mg/Kg	1	₩	6010C	Total/NA
Nickel	22.1		6.7	0.31	mg/Kg	1	₩	6010C	Total/NA
Potassium	2560	F1	40.1	26.7	mg/Kg	1	₩	6010C	Total/NA
Selenium	1.3	J	5.3	0.53	mg/Kg	1	₩	6010C	Total/NA
Sodium	134	J	187	17.4	mg/Kg	1	₩	6010C	Total/NA
Vanadium	37.4	F1	0.67	0.15	mg/Kg	1	₩.	6010C	Total/NA
Zinc	179	F1	2.7	0.86	mg/Kg	1	₩	6010C	Total/NA
Mercury	0.16		0.026	0.010	mg/Kg	1	₩	7471B	Total/NA

Client Sample ID: TS-21

Lab Sample ID: 480-89112-4

Analyte		Qualifier	RL	MDL	Unit	Dil Fac			Prep Type
Acenaphthene	190	J	1100	170	ug/Kg	5	₩	8270D	Total/NA
Anthracene	330	J	1100	280	ug/Kg	5	₩	8270D	Total/NA
Benzo[a]anthracene	2400		1100	110	ug/Kg	5	₩	8270D	Total/NA
Benzo[a]pyrene	2400		1100	170	ug/Kg	5	₩	8270D	Total/NA
Benzo[b]fluoranthene	3900		1100	180	ug/Kg	5	₩	8270D	Total/NA
Benzo[g,h,i]perylene	2000		1100	120	ug/Kg	5	₩	8270D	Total/NA
Benzo[k]fluoranthene	1600		1100	150	ug/Kg	5	₩	8270D	Total/NA
Carbazole	340	J	1100	130	ug/Kg	5	₩	8270D	Total/NA
Chrysene	3100		1100	250	ug/Kg	5	₩	8270D	Total/NA
Fluoranthene	6000		1100	120	ug/Kg	5	₩	8270D	Total/NA
Fluorene	160	J	1100	130	ug/Kg	5	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	1800		1100	140	ug/Kg	5	₩	8270D	Total/NA
Phenanthrene	2700		1100	170	ug/Kg	5	₩	8270D	Total/NA
Pyrene	4800		1100	130	ug/Kg	5	₩	8270D	Total/NA
Aluminum	16800		13.2	5.8	mg/Kg	1	₩	6010C	Total/NA
Arsenic	6.8		2.6	0.53	mg/Kg	1	₩.	6010C	Total/NA
Barium	106		0.66	0.14	mg/Kg	1	₩	6010C	Total/NA
Beryllium	0.75		0.26	0.037	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.93		0.26	0.039	mg/Kg	1	₩	6010C	Total/NA
Calcium	6730	В	65.8	4.3	mg/Kg	1	₩	6010C	Total/NA
Chromium	42.7		0.66	0.26	mg/Kg	1	₩	6010C	Total/NA
Cobalt	9.3		0.66	0.066	mg/Kg	1	₽	6010C	Total/NA
Copper	36.7		1.3	0.28	mg/Kg	1	₩	6010C	Total/NA
Iron	23400		13.2	4.6	mg/Kg	1	₩	6010C	Total/NA
Lead	84.2		1.3	0.32	mg/Kg	1	₩	6010C	Total/NA
Magnesium	4700		26.3	1.2	mg/Kg	1	₩	6010C	Total/NA
Manganese	457		0.26	0.042	mg/Kg	1	₽	6010C	Total/NA
Nickel	22.1		6.6	0.30	mg/Kg	1	₩	6010C	Total/NA
Potassium	1860		39.5	26.3	mg/Kg	1	₩	6010C	Total/NA
Selenium	0.86	J	5.3	0.53	mg/Kg	1	₩	6010C	Total/NA
Silver	0.30	J	0.66	0.26	mg/Kg	1	\$	6010C	Total/NA
Sodium	114	J	184	17.1		1	₩	6010C	Total/NA
Vanadium	32.9		0.66	0.14	mg/Kg	1	₩	6010C	Total/NA
Zinc	176		2.6		mg/Kg	1	ф	6010C	Total/NA
Mercury	0.19		0.026		mg/Kg	1	₩	7471B	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

10/21/2015

Page 7 of 44

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: TS-18

Date Collected: 10/14/15 00:00

Date Received: 10/14/15 18:00

TestAmerica Job ID: 480-89112-1

Lab Sample ID: 480-89112-1 Matrix: Solid

Percent Solids: 79.0

Method: 8270D - Semivolatile Analyte		Qualifier R	I MDI	Unit	D	Prepared	Analyzed	Dil F
Biphenyl	ND	210			— ğ	10/15/15 07:51		DII F
bis (2-chloroisopropyl) ether	ND ND	210			₩		10/16/15 14:11	
2,4,5-Trichlorophenol	ND ND	210					10/16/15 14:11	
	ND							
2,4,6-Trichlorophenol	ND ND	210		0 0	₩		10/16/15 14:11	
2,4-Dichlorophenol		210					10/16/15 14:11	
2,4-Dimethylphenol	ND	210		0 0	×.		10/16/15 14:11	
2,4-Dinitrophenol	ND	2100		ug/Kg	☆		10/16/15 14:11	
2,4-Dinitrotoluene	ND	210		ug/Kg	ψ.		10/16/15 14:11	
2,6-Dinitrotoluene	ND	210		ug/Kg			10/16/15 14:11	
2-Chloronaphthalene	ND	210		ug/Kg	<u></u>		10/16/15 14:11	
2-Chlorophenol	ND	210		0 0	₽		10/16/15 14:11	
2-Methylphenol	ND	210		ug/Kg	: Q		10/16/15 14:11	
2-Methylnaphthalene	ND	210		0 0	₩.		10/16/15 14:11	
2-Nitroaniline	ND	410		0 0	₩.		10/16/15 14:11	
2-Nitrophenol	ND	210		ug/Kg	‡		10/16/15 14:11	
3,3'-Dichlorobenzidine	ND	410	0 2500	ug/Kg	≎	10/15/15 07:51	10/16/15 14:11	
3-Nitroaniline	ND	410	0 580	ug/Kg	≎	10/15/15 07:51	10/16/15 14:11	
1,6-Dinitro-2-methylphenol	ND	410	0 2100	ug/Kg	☼	10/15/15 07:51	10/16/15 14:11	
4-Bromophenyl phenyl ether	ND	210	0 300	ug/Kg	₽	10/15/15 07:51	10/16/15 14:11	
1-Chloro-3-methylphenol	ND	210	0 520	ug/Kg	☼	10/15/15 07:51	10/16/15 14:11	
1-Chloroaniline	ND	210	0 520	ug/Kg	≎	10/15/15 07:51	10/16/15 14:11	
4-Chlorophenyl phenyl ether	ND	210	0 260	ug/Kg	≎	10/15/15 07:51	10/16/15 14:11	
1-Methylphenol	ND	410	0 250	ug/Kg	₽	10/15/15 07:51	10/16/15 14:11	
4-Nitroaniline	ND	410	0 1100	ug/Kg	₽	10/15/15 07:51	10/16/15 14:11	
4-Nitrophenol	ND	410	0 1500	ug/Kg	₽	10/15/15 07:51	10/16/15 14:11	
Acenaphthene	920	J 210	0 310	ug/Kg	☼	10/15/15 07:51	10/16/15 14:11	
Acenaphthylene	280	J 210	0 270	ug/Kg	☼	10/15/15 07:51	10/16/15 14:11	
Acetophenone	ND	210	0 280	ug/Kg		10/15/15 07:51	10/16/15 14:11	
Anthracene	3000	210	0 520	ug/Kg	≎	10/15/15 07:51	10/16/15 14:11	
Atrazine	ND	210	0 730	ug/Kg	₽	10/15/15 07:51	10/16/15 14:11	
Benzaldehyde	ND	* 210	0 1700	ug/Kg		10/15/15 07:51	10/16/15 14:11	
Benzo[a]anthracene	7700	210	0 210		☆	10/15/15 07:51	10/16/15 14:11	
Benzo[a]pyrene	7000	210	0 310		☼	10/15/15 07:51	10/16/15 14:11	
Benzo[b]fluoranthene	9400	210			· · · · · · · · · · · · · · · · · · ·	10/15/15 07:51	10/16/15 14:11	
Benzo[g,h,i]perylene	5100	210			₽		10/16/15 14:11	
Benzo[k]fluoranthene	5000	210			₽		10/16/15 14:11	
Bis(2-chloroethoxy)methane	ND	210					10/16/15 14:11	
Bis(2-chloroethyl)ether	ND	210			₩		10/16/15 14:11	
Sis(2-ethylhexyl) phthalate	ND	210		ug/Kg	₩		10/16/15 14:11	
Butyl benzyl phthalate	ND	210		ug/Kg			10/16/15 14:11	
• •	ND ND	210			т Ф		10/16/15 14:11	
Caprolactam				ug/Kg				
Carbazole	1500			ug/Kg			10/16/15 14:11 10/16/15 14:11	
Chrysene	8300	210		ug/Kg	☆			
Dibenz(a,h)anthracene	ND	210		ug/Kg	☆		10/16/15 14:11	
Di-n-butyl phthalate	ND	210					10/16/15 14:11	
Di-n-octyl phthalate	ND	210			ψ.		10/16/15 14:11	
Dibenzofuran	830				₩		10/16/15 14:11	
Diethyl phthalate	ND	210	0 270	ug/Kg	≎	10/15/15 07:51	10/16/15 14:11	

TestAmerica Buffalo

Page 8 of 44

10/21/2015

3

5

7

9

11

13

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

DCB Decachlorobiphenyl

Client Sample ID: TS-18

TestAmerica Job ID: 480-89112-1

Lab Sample ID: 480-89112-1

Matrix: Solid

Date Collected: 10/14/15 00:00 Date Received: 10/14/15 18:00 Percent Solids: 79.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoranthene	19000		2100	220	ug/Kg	<u> </u>	10/15/15 07:51	10/16/15 14:11	10
Fluorene	1200	J	2100	250	ug/Kg	☼	10/15/15 07:51	10/16/15 14:11	10
Hexachlorobenzene	ND		2100	280	ug/Kg	₩	10/15/15 07:51	10/16/15 14:11	10
Hexachlorobutadiene	ND		2100	310	ug/Kg	☼	10/15/15 07:51	10/16/15 14:11	10
Hexachlorocyclopentadiene	ND		2100	280	ug/Kg	☼	10/15/15 07:51	10/16/15 14:11	10
Hexachloroethane	ND		2100	270	ug/Kg	₩	10/15/15 07:51	10/16/15 14:11	10
Indeno[1,2,3-cd]pyrene	4400		2100	260	ug/Kg	₩	10/15/15 07:51	10/16/15 14:11	10
Isophorone	ND		2100	440	ug/Kg	☼	10/15/15 07:51	10/16/15 14:11	10
N-Nitrosodi-n-propylamine	ND		2100	360	ug/Kg	₩	10/15/15 07:51	10/16/15 14:11	10
N-Nitrosodiphenylamine	ND		2100	1700	ug/Kg	☼	10/15/15 07:51	10/16/15 14:11	10
Naphthalene	ND		2100	270	ug/Kg	☼	10/15/15 07:51	10/16/15 14:11	10
Nitrobenzene	ND		2100	230	ug/Kg		10/15/15 07:51	10/16/15 14:11	10
Pentachlorophenol	ND		4100	2100	ug/Kg	☼	10/15/15 07:51	10/16/15 14:11	10
Phenanthrene	12000		2100	310	ug/Kg	☼	10/15/15 07:51	10/16/15 14:11	10
Phenol	ND		2100	320	ug/Kg	₽	10/15/15 07:51	10/16/15 14:11	10
Pyrene	14000		2100	250	ug/Kg	≎	10/15/15 07:51	10/16/15 14:11	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	78		34 - 132				10/15/15 07:51	10/16/15 14:11	10
Phenol-d5 (Surr)	85		11 - 120				10/15/15 07:51	10/16/15 14:11	10
p-Terphenyl-d14 (Surr)	89		65 - 153				10/15/15 07:51	10/16/15 14:11	10
2,4,6-Tribromophenol (Surr)	111		39 - 146				10/15/15 07:51	10/16/15 14:11	10
2-Fluorobiphenyl	78		37 - 120				10/15/15 07:51	10/16/15 14:11	10
2-Fluorophenol (Surr)	74		18 - 120				10/15/15 07:51	10/16/15 14:11	10

Method: 8082A - Polychic	rinated Bipheny	/Is (PCBs)	by Gas Chro	matogr	aphy				
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.25	0.048	mg/Kg	\	10/15/15 09:30	10/15/15 22:30	1
PCB-1221	ND		0.25	0.048	mg/Kg	₩	10/15/15 09:30	10/15/15 22:30	1
PCB-1232	ND		0.25	0.048	mg/Kg	☼	10/15/15 09:30	10/15/15 22:30	1
PCB-1242	ND		0.25	0.048	mg/Kg	₩	10/15/15 09:30	10/15/15 22:30	1
PCB-1248	ND		0.25	0.048	mg/Kg	₩	10/15/15 09:30	10/15/15 22:30	1
PCB-1254	ND		0.25	0.11	mg/Kg	₩	10/15/15 09:30	10/15/15 22:30	1
PCB-1260	ND		0.25	0.11	mg/Kg		10/15/15 09:30	10/15/15 22:30	1
PCB-1262	ND		0.25	0.11	mg/Kg	₩	10/15/15 09:30	10/15/15 22:30	1
PCB-1268	ND		0.25	0.11	mg/Kg	≎	10/15/15 09:30	10/15/15 22:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	93		60 - 154				10/15/15 09:30	10/15/15 22:30	1
Tetrachloro-m-xylene	97		60 - 154				10/15/15 09:30	10/15/15 22:30	1
DCB Decachlorobiphenyl	81		65 - 174				10/15/15 09:30	10/15/15 22:30	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	14000		12.5	5.5	mg/Kg	<u> </u>	10/15/15 11:40	10/16/15 03:40	1
Antimony	1.8	J F1	18.7	0.50	mg/Kg	₩	10/15/15 11:40	10/16/15 03:40	1
Arsenic	14.1		2.5	0.50	mg/Kg	☆	10/15/15 11:40	10/16/15 03:40	1
Barium	531	F2	0.62	0.14	mg/Kg	₿	10/15/15 11:40	10/16/15 03:40	1
Beryllium	1.5		0.25	0.035	mg/Kg	₩	10/15/15 11:40	10/16/15 03:40	1

65 - 174

101

TestAmerica Buffalo

10/15/15 09:30 10/15/15 22:30

Page 9 of 44

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Mercury

Client Sample ID: TS-18

TestAmerica Job ID: 480-89112-1

Lab Sample ID: 480-89112-1

10/15/15 13:20 10/15/15 15:41

Matrix: Solid

Date Collected: 10/14/15 00:00 Date Received: 10/14/15 18:00 Percent Solids: 79.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	3.2		0.25	0.037	mg/Kg	<u> </u>	10/15/15 11:40	10/16/15 03:40	1
Calcium	32500	B F2	62.4	4.1	mg/Kg	φ.	10/15/15 11:40	10/16/15 03:40	1
Chromium	49.5		0.62	0.25	mg/Kg	₩	10/15/15 11:40	10/16/15 03:40	1
Cobalt	7.7		0.62	0.062	mg/Kg	₩	10/15/15 11:40	10/16/15 03:40	1
Copper	127	F1 F2	1.2	0.26	mg/Kg	₩	10/15/15 11:40	10/16/15 03:40	1
Iron	33500		12.5	4.4	mg/Kg	₩	10/15/15 11:40	10/16/15 03:40	1
Lead	1840		1.2	0.30	mg/Kg	₩	10/15/15 11:40	10/16/15 03:40	1
Magnesium	7610	F1	25.0	1.2	mg/Kg	₽	10/15/15 11:40	10/16/15 03:40	1
Manganese	793		0.25	0.040	mg/Kg	₩	10/15/15 11:40	10/16/15 03:40	1
Nickel	23.4		6.2	0.29	mg/Kg	₩	10/15/15 11:40	10/16/15 03:40	1
Potassium	1920	F1	37.4	25.0	mg/Kg	₩.	10/15/15 11:40	10/16/15 03:40	1
Selenium	1.3	J	5.0	0.50	mg/Kg	₩	10/15/15 11:40	10/16/15 03:40	1
Silver	0.48	J	0.62	0.25	mg/Kg	₩	10/15/15 11:40	10/16/15 03:40	1
Sodium	382		175	16.2	mg/Kg		10/15/15 11:40	10/16/15 03:40	1
Thallium	ND		7.5	0.37	mg/Kg	₩	10/15/15 11:40	10/16/15 03:40	1
Vanadium	27.0		0.62	0.14	mg/Kg	₩	10/15/15 11:40	10/16/15 03:40	1
Zinc	794	F2	2.5	0.80	mg/Kg	ф.	10/15/15 11:40	10/16/15 03:40	1
Method: 7471B - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: TS-19 Lab Sample ID: 480-89112-2

0.024

0.0099 mg/Kg

0.67

Date Collected: 10/14/15 00:00 **Matrix: Solid** Date Received: 10/14/15 18:00 Percent Solids: 82.6

Analyte	Result	Qualifier	RL MD	L	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND	2	000 30	00	ug/Kg		10/15/15 07:51	10/16/15 14:38	10
bis (2-chloroisopropyl) ether	ND	2	000 4	0	ug/Kg	₩	10/15/15 07:51	10/16/15 14:38	10
2,4,5-Trichlorophenol	ND	2	000 5	50	ug/Kg	₩	10/15/15 07:51	10/16/15 14:38	10
2,4,6-Trichlorophenol	ND	2	000 4	0	ug/Kg	₩	10/15/15 07:51	10/16/15 14:38	10
2,4-Dichlorophenol	ND	2	000 22	20	ug/Kg	₩	10/15/15 07:51	10/16/15 14:38	10
2,4-Dimethylphenol	ND	2	000 49	90	ug/Kg	☼	10/15/15 07:51	10/16/15 14:38	10
2,4-Dinitrophenol	ND	20	000 940	00	ug/Kg	₩	10/15/15 07:51	10/16/15 14:38	10
2,4-Dinitrotoluene	ND	2	000 42	20	ug/Kg	₩	10/15/15 07:51	10/16/15 14:38	10
2,6-Dinitrotoluene	ND	2	000 24	10	ug/Kg	☼	10/15/15 07:51	10/16/15 14:38	10
2-Chloronaphthalene	ND	2	000 34	10	ug/Kg	₩	10/15/15 07:51	10/16/15 14:38	10
2-Chlorophenol	ND	2	000 37	0'	ug/Kg	☼	10/15/15 07:51	10/16/15 14:38	10
2-Methylphenol	ND	2	000 24	10	ug/Kg	₩	10/15/15 07:51	10/16/15 14:38	10
2-Methylnaphthalene	ND	2	000 4	0	ug/Kg	₽	10/15/15 07:51	10/16/15 14:38	10
2-Nitroaniline	ND	4	000 30	00	ug/Kg	₩	10/15/15 07:51	10/16/15 14:38	10
2-Nitrophenol	ND	2	000 58	30	ug/Kg	₩	10/15/15 07:51	10/16/15 14:38	10
3,3'-Dichlorobenzidine	ND	4	000 240	00	ug/Kg	₽	10/15/15 07:51	10/16/15 14:38	10
3-Nitroaniline	ND	4	000 57	0'	ug/Kg	₩	10/15/15 07:51	10/16/15 14:38	10
4,6-Dinitro-2-methylphenol	ND	4	000 200	00	ug/Kg	₩	10/15/15 07:51	10/16/15 14:38	10
4-Bromophenyl phenyl ether	ND	2	000 29	90	ug/Kg	₩	10/15/15 07:51	10/16/15 14:38	10
4-Chloro-3-methylphenol	ND	2	000 50	00	ug/Kg	☼	10/15/15 07:51	10/16/15 14:38	10
4-Chloroaniline	ND	2	000 50	00	ug/Kg	₩	10/15/15 07:51	10/16/15 14:38	10
4-Chlorophenyl phenyl ether	ND	2	000 25	0	ug/Kg	☆	10/15/15 07:51	10/16/15 14:38	10

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-89112-1

Client Sample ID: TS-19

Date Collected: 10/14/15 00:00

Lab Sample ID: 480-89112-2

Matrix: Solid

Date Received: 10/14/15 18:00 Percent Solids: 82.6

Analyte	tile Organic Co Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Methylphenol	ND		4000	240	ug/Kg	<u> </u>	10/15/15 07:51	10/16/15 14:38	10
4-Nitroaniline	ND		4000	1100	ug/Kg	₽	10/15/15 07:51	10/16/15 14:38	10
4-Nitrophenol	ND		4000	1400	ug/Kg	₩.	10/15/15 07:51	10/16/15 14:38	10
Acenaphthene	ND		2000	300	ug/Kg	₩	10/15/15 07:51	10/16/15 14:38	10
Acenaphthylene	ND		2000	260	ug/Kg	₩	10/15/15 07:51	10/16/15 14:38	10
Acetophenone	ND		2000	280	ug/Kg	₩.	10/15/15 07:51	10/16/15 14:38	10
Anthracene	700	J	2000	500	ug/Kg	₩	10/15/15 07:51	10/16/15 14:38	10
Atrazine	ND		2000	710	ug/Kg	₩	10/15/15 07:51	10/16/15 14:38	10
Benzaldehyde	ND	*	2000	1600	ug/Kg		10/15/15 07:51	10/16/15 14:38	10
Benzo[a]anthracene	3700		2000	200	ug/Kg	₩	10/15/15 07:51	10/16/15 14:38	10
Benzo[a]pyrene	3400		2000	300	ug/Kg	₩	10/15/15 07:51	10/16/15 14:38	10
Benzo[b]fluoranthene	4800		2000	320	ug/Kg	₩.	10/15/15 07:51	10/16/15 14:38	10
Benzo[g,h,i]perylene	3000		2000	220	ug/Kg	≎	10/15/15 07:51	10/16/15 14:38	10
Benzo[k]fluoranthene	2500		2000	260	ug/Kg	≎	10/15/15 07:51	10/16/15 14:38	10
Bis(2-chloroethoxy)methane	ND		2000	430	ug/Kg	≎	10/15/15 07:51	10/16/15 14:38	10
Bis(2-chloroethyl)ether	ND		2000	260	ug/Kg	≎	10/15/15 07:51	10/16/15 14:38	10
Bis(2-ethylhexyl) phthalate	ND		2000	700	ug/Kg	≎	10/15/15 07:51	10/16/15 14:38	10
Butyl benzyl phthalate	ND		2000	340	ug/Kg	ф.	10/15/15 07:51	10/16/15 14:38	10
Caprolactam	ND		2000	610	ug/Kg	₽	10/15/15 07:51	10/16/15 14:38	10
Carbazole	470	J	2000	240	ug/Kg	₩	10/15/15 07:51	10/16/15 14:38	10
Chrysene	4100		2000	460	ug/Kg	÷	10/15/15 07:51	10/16/15 14:38	10
Dibenz(a,h)anthracene	ND		2000	360	ug/Kg	₽	10/15/15 07:51	10/16/15 14:38	10
Di-n-butyl phthalate	ND		2000	350	ug/Kg	₩	10/15/15 07:51	10/16/15 14:38	10
Di-n-octyl phthalate	ND		2000	240	ug/Kg	ф.	10/15/15 07:51	10/16/15 14:38	10
Dibenzofuran	ND		2000	240	ug/Kg	₽	10/15/15 07:51	10/16/15 14:38	10
Diethyl phthalate	ND		2000	260	ug/Kg	₽	10/15/15 07:51	10/16/15 14:38	10
Dimethyl phthalate	ND		2000	240	ug/Kg	ф.	10/15/15 07:51	10/16/15 14:38	10
Fluoranthene	7200		2000	220	ug/Kg	₽	10/15/15 07:51	10/16/15 14:38	10
Fluorene	290	J	2000	240	ug/Kg	≎	10/15/15 07:51	10/16/15 14:38	10
Hexachlorobenzene	ND		2000	280	ug/Kg	₽	10/15/15 07:51	10/16/15 14:38	10
Hexachlorobutadiene	ND		2000	300	ug/Kg	₽	10/15/15 07:51	10/16/15 14:38	10
Hexachlorocyclopentadiene	ND		2000	280	ug/Kg	≎	10/15/15 07:51	10/16/15 14:38	10
Hexachloroethane	ND		2000	260	ug/Kg	ф.	10/15/15 07:51	10/16/15 14:38	10
Indeno[1,2,3-cd]pyrene	2500		2000	250	ug/Kg	₽	10/15/15 07:51	10/16/15 14:38	10
Isophorone	ND		2000	430	ug/Kg	₽	10/15/15 07:51	10/16/15 14:38	10
N-Nitrosodi-n-propylamine	ND		2000	350	ug/Kg		10/15/15 07:51	10/16/15 14:38	10
N-Nitrosodiphenylamine	ND		2000	1700	ug/Kg	≎	10/15/15 07:51	10/16/15 14:38	10
Naphthalene	ND		2000		ug/Kg	₽	10/15/15 07:51	10/16/15 14:38	10
Nitrobenzene	ND		2000		ug/Kg	ф.	10/15/15 07:51	10/16/15 14:38	10
Pentachlorophenol	ND		4000		ug/Kg	₽	10/15/15 07:51	10/16/15 14:38	10
Phenanthrene	3900		2000	300	ug/Kg	₽	10/15/15 07:51	10/16/15 14:38	10
Phenol	ND		2000		ug/Kg	ф.	10/15/15 07:51	10/16/15 14:38	10
Pyrene	6000		2000		ug/Kg	₽	10/15/15 07:51	10/16/15 14:38	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	80		34 - 132					10/16/15 14:38	10
Phenol-d5 (Surr)	82		11 - 120				10/15/15 07:51	10/16/15 14:38	10
p-Terphenyl-d14 (Surr)	84		65 - 153				10/15/15 07:51	10/16/15 14:38	10
2,4,6-Tribromophenol (Surr)	101		39 - 146				10/15/15 07:51	10/16/15 14:38	10
2-Fluorobiphenyl	95		37 - 120				10/15/15 07:51	10/16/15 14:38	10

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-89112-1

Client Sample ID: TS-19 Lab Sample ID: 480-89112-2

Date Collected: 10/14/15 00:00 Matrix: Solid
Date Received: 10/14/15 18:00 Percent Solids: 82.6

Mathadi 0070D	Cambralatila C		/	COMIC	(Cantinual)	
Method: 8270D -	- Semivolatile C	organic Com	pounas (GC/IVIS)	(Continuea))

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorophenol (Surr)	89	18 - 120	10/15/15 07:51	10/16/15 14:38	10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.28	0.055	mg/Kg	<u> </u>	10/15/15 09:30	10/15/15 22:46	1
PCB-1221	ND		0.28	0.055	mg/Kg	₩	10/15/15 09:30	10/15/15 22:46	1
PCB-1232	ND		0.28	0.055	mg/Kg	₩	10/15/15 09:30	10/15/15 22:46	1
PCB-1242	ND		0.28	0.055	mg/Kg	₽	10/15/15 09:30	10/15/15 22:46	1
PCB-1248	ND		0.28	0.055	mg/Kg	₩	10/15/15 09:30	10/15/15 22:46	1
PCB-1254	ND		0.28	0.13	mg/Kg	₩	10/15/15 09:30	10/15/15 22:46	1
PCB-1260	ND		0.28	0.13	mg/Kg	₽	10/15/15 09:30	10/15/15 22:46	1
PCB-1262	ND		0.28	0.13	mg/Kg	₩	10/15/15 09:30	10/15/15 22:46	1
PCB-1268	ND		0.28	0.13	mg/Kg	₩	10/15/15 09:30	10/15/15 22:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	99		60 - 154				10/15/15 09:30	10/15/15 22:46	1
Tetrachloro-m-xylene	112		60 - 154				10/15/15 09:30	10/15/15 22:46	1
DCB Decachlorobiphenyl	92		65 - 174				10/15/15 09:30	10/15/15 22:46	1
DCB Decachlorobiphenyl	118		65 - 174				10/15/15 09:30	10/15/15 22:46	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	13100		12.1	5.3	mg/Kg	<u></u>	10/15/15 11:40	10/16/15 03:57	1
Antimony	2.6	J	18.1	0.48	mg/Kg	₩	10/15/15 11:40	10/16/15 03:57	1
Arsenic	13.9		2.4	0.48	mg/Kg	₩	10/15/15 11:40	10/16/15 03:57	1
Barium	264		0.60	0.13	mg/Kg	₩	10/15/15 11:40	10/16/15 03:57	1
Beryllium	1.2		0.24	0.034	mg/Kg	₩	10/15/15 11:40	10/16/15 03:57	1
Cadmium	2.1		0.24	0.036	mg/Kg	₩	10/15/15 11:40	10/16/15 03:57	1
Calcium	32400	В	60.4	4.0	mg/Kg	₩	10/15/15 11:40	10/16/15 03:57	1
Chromium	39.6		0.60	0.24	mg/Kg	₩	10/15/15 11:40	10/16/15 03:57	1
Cobalt	9.0		0.60	0.060	mg/Kg	₩	10/15/15 11:40	10/16/15 03:57	1
Copper	130		1.2	0.25	mg/Kg	ф	10/15/15 11:40	10/16/15 03:57	1
Iron	34900		12.1	4.2	mg/Kg	₩	10/15/15 11:40	10/16/15 03:57	1
Lead	956		1.2	0.29	mg/Kg	₩	10/15/15 11:40	10/16/15 03:57	1
Magnesium	8160		24.2	1.1	mg/Kg	ф.	10/15/15 11:40	10/16/15 03:57	1
Manganese	632		0.24	0.039	mg/Kg	₩	10/15/15 11:40	10/16/15 03:57	1
Nickel	27.0		6.0	0.28	mg/Kg	₩	10/15/15 11:40	10/16/15 03:57	1
Potassium	2050		36.3	24.2	mg/Kg	₩	10/15/15 11:40	10/16/15 03:57	1
Selenium	0.89	J	4.8	0.48	mg/Kg	₩	10/15/15 11:40	10/16/15 03:57	1
Silver	ND		0.60	0.24	mg/Kg	₩	10/15/15 11:40	10/16/15 03:57	1
Sodium	297		169	15.7	mg/Kg	₩	10/15/15 11:40	10/16/15 03:57	1
Thallium	ND		7.3	0.36	mg/Kg	☆	10/15/15 11:40	10/16/15 03:57	1
Vanadium	25.2		0.60	0.13	mg/Kg	☼	10/15/15 11:40	10/16/15 03:57	1
Zinc	601		2.4	0.77	mg/Kg		10/15/15 11:40	10/16/15 03:57	1

Method: 7471B - Mercury (CVA	AA)								
Analyte	Result Q	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.54		0.023	0.0094	mg/Kg	\	10/15/15 13:20	10/15/15 15:43	1

TestAmerica Buffalo

2

4

6

8

10

11

13

4 5

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Carbazole

Chrysene

Dibenz(a,h)anthracene

Di-n-butyl phthalate

Di-n-octyl phthalate

Dibenzofuran

Diethyl phthalate

Dimethyl phthalate

Client Sample ID: TS-20

Date Collected: 10/14/15 00:00

Date Received: 10/14/15 18:00

Lab Cample ID: 490 90442 2

TestAmerica Job ID: 480-89112-1

Lab Sample ID: 480-89112-3
Matrix: Solid

Percent Solids: 74.8

Date Received. 10/14/15 16.0	00							Percent Sono	15. 14.0
Method: 8270D - Semivolat Analyte		mpounds Qualifier	(GC/MS) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		2300	330	ug/Kg	<u> </u>	10/16/15 08:10	10/19/15 16:54	10
bis (2-chloroisopropyl) ether	ND		2300	450	ug/Kg	≎	10/16/15 08:10	10/19/15 16:54	10
2,4,5-Trichlorophenol	ND		2300	610	ug/Kg	≎	10/16/15 08:10	10/19/15 16:54	10
2,4,6-Trichlorophenol	ND	F1	2300	450	ug/Kg	₽	10/16/15 08:10	10/19/15 16:54	10
2,4-Dichlorophenol	ND		2300	240	ug/Kg	☼	10/16/15 08:10	10/19/15 16:54	10
2,4-Dimethylphenol	ND		2300	550	ug/Kg	₩	10/16/15 08:10	10/19/15 16:54	10
2,4-Dinitrophenol	ND		22000	10000	ug/Kg		10/16/15 08:10	10/19/15 16:54	10
2,4-Dinitrotoluene	ND	F1	2300	470	ug/Kg	₩	10/16/15 08:10	10/19/15 16:54	10
2,6-Dinitrotoluene	ND		2300	270	ug/Kg	₩	10/16/15 08:10	10/19/15 16:54	10
2-Chloronaphthalene	ND		2300	370	ug/Kg	₽	10/16/15 08:10	10/19/15 16:54	10
2-Chlorophenol	ND		2300	410	ug/Kg	₩	10/16/15 08:10	10/19/15 16:54	10
2-Methylphenol	ND		2300	270	ug/Kg	₩	10/16/15 08:10	10/19/15 16:54	10
2-Methylnaphthalene	ND		2300	450	ug/Kg	\$	10/16/15 08:10	10/19/15 16:54	10
2-Nitroaniline	ND	F1	4400	330	ug/Kg	₩	10/16/15 08:10	10/19/15 16:54	10
2-Nitrophenol	ND	F1	2300	640	ug/Kg	≎	10/16/15 08:10	10/19/15 16:54	10
3,3'-Dichlorobenzidine	ND	F1	4400	2700	ug/Kg		10/16/15 08:10	10/19/15 16:54	10
3-Nitroaniline	ND		4400	630	ug/Kg	₩	10/16/15 08:10	10/19/15 16:54	10
4,6-Dinitro-2-methylphenol	ND		4400	2300	ug/Kg	₩	10/16/15 08:10	10/19/15 16:54	10
4-Bromophenyl phenyl ether	ND	F2	2300	320	ug/Kg		10/16/15 08:10	10/19/15 16:54	10
4-Chloro-3-methylphenol	ND		2300	560	ug/Kg	≎	10/16/15 08:10	10/19/15 16:54	10
4-Chloroaniline	ND		2300	560	ug/Kg	₩	10/16/15 08:10	10/19/15 16:54	10
4-Chlorophenyl phenyl ether	ND		2300	280	ug/Kg		10/16/15 08:10	10/19/15 16:54	10
4-Methylphenol	ND		4400	270	ug/Kg	₩	10/16/15 08:10	10/19/15 16:54	10
4-Nitroaniline	ND		4400	1200	ug/Kg	₩	10/16/15 08:10	10/19/15 16:54	10
4-Nitrophenol	ND		4400	1600	ug/Kg		10/16/15 08:10	10/19/15 16:54	10
Acenaphthene	ND		2300	330	ug/Kg	₩	10/16/15 08:10	10/19/15 16:54	10
Acenaphthylene	ND		2300	290	ug/Kg	₩	10/16/15 08:10	10/19/15 16:54	10
Acetophenone	ND		2300	310	ug/Kg	₩.	10/16/15 08:10	10/19/15 16:54	10
Anthracene	ND		2300	560	ug/Kg	₩	10/16/15 08:10	10/19/15 16:54	10
Atrazine	ND		2300	790	ug/Kg	≎	10/16/15 08:10	10/19/15 16:54	10
Benzaldehyde	ND	F1	2300	1800	ug/Kg		10/16/15 08:10	10/19/15 16:54	10
Benzo[a]anthracene	510	J	2300	230	ug/Kg	₩	10/16/15 08:10	10/19/15 16:54	10
Benzo[a]pyrene	840	J	2300	330	ug/Kg	≎	10/16/15 08:10	10/19/15 16:54	10
Benzo[b]fluoranthene	1000	J	2300	360	ug/Kg		10/16/15 08:10	10/19/15 16:54	10
Benzo[g,h,i]perylene	750	J	2300	240	ug/Kg	≎	10/16/15 08:10	10/19/15 16:54	10
Benzo[k]fluoranthene	300	J	2300	290	ug/Kg	₩	10/16/15 08:10	10/19/15 16:54	10
Bis(2-chloroethoxy)methane	ND		2300	480	ug/Kg		10/16/15 08:10	10/19/15 16:54	10
Bis(2-chloroethyl)ether	ND		2300	290	ug/Kg	₩	10/16/15 08:10	10/19/15 16:54	10
Bis(2-ethylhexyl) phthalate	ND	F1	2300	770	ug/Kg	₩	10/16/15 08:10	10/19/15 16:54	10
Butyl benzyl phthalate	ND	F1	2300	370	ug/Kg		10/16/15 08:10	10/19/15 16:54	10
Caprolactam	ND		2300	680	ug/Kg	₩	10/16/15 08:10	10/19/15 16:54	10

TestAmerica Buffalo

☼ 10/16/15 08:10 10/19/15 16:54

☼ 10/16/15 08:10 10/19/15 16:54

10/16/15 08:10 10/19/15 16:54

10/16/15 08:10 10/19/15 16:54

10/16/15 08:10 10/19/15 16:54

10/16/15 08:10 10/19/15 16:54

☼ 10/16/15 08:10 10/19/15 16:54

10/16/15 08:10 10/19/15 16:54

2300

2300

2300

2300

2300

2300

2300

2300

270 ug/Kg

510 ug/Kg

400 ug/Kg

390 ug/Kg

270 ug/Kg

270 ug/Kg

290 ug/Kg

270 ug/Kg

ψ.

ND

ND

ND

ND

ND

630 J

ND F1

ND F1

10

10

10

10

10

10

10

4

6

Q

9

11

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

2-Fluorobiphenyl

2-Fluorophenol (Surr)

Client Sample ID: TS-20

Date Collected: 10/14/15 00:00

Date Received: 10/14/15 18:00

TestAmerica Job ID: 480-89112-1

Lab Sample ID: 480-89112-3

10/16/15 08:10 10/19/15 16:54

10/16/15 08:10 10/19/15 16:54

Matrix: Solid Percent Solids: 74.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoranthene	1100	J	2300	240	ug/Kg	<u></u>	10/16/15 08:10	10/19/15 16:54	10
Fluorene	ND		2300	270	ug/Kg	☼	10/16/15 08:10	10/19/15 16:54	10
Hexachlorobenzene	ND		2300	310	ug/Kg	\$	10/16/15 08:10	10/19/15 16:54	10
Hexachlorobutadiene	ND		2300	330	ug/Kg	☼	10/16/15 08:10	10/19/15 16:54	10
Hexachlorocyclopentadiene	ND		2300	310	ug/Kg	☼	10/16/15 08:10	10/19/15 16:54	10
Hexachloroethane	ND		2300	290	ug/Kg	₽	10/16/15 08:10	10/19/15 16:54	10
Indeno[1,2,3-cd]pyrene	790	J	2300	280	ug/Kg	₽	10/16/15 08:10	10/19/15 16:54	10
Isophorone	ND		2300	480	ug/Kg	☼	10/16/15 08:10	10/19/15 16:54	10
N-Nitrosodi-n-propylamine	ND		2300	390	ug/Kg	₽	10/16/15 08:10	10/19/15 16:54	10
N-Nitrosodiphenylamine	ND		2300	1800	ug/Kg	☼	10/16/15 08:10	10/19/15 16:54	10
Naphthalene	ND		2300	290	ug/Kg	☼	10/16/15 08:10	10/19/15 16:54	10
Nitrobenzene	ND		2300	250	ug/Kg	φ.	10/16/15 08:10	10/19/15 16:54	10
Pentachlorophenol	ND		4400	2300	ug/Kg	☼	10/16/15 08:10	10/19/15 16:54	10
Phenanthrene	430	J	2300	330	ug/Kg	☼	10/16/15 08:10	10/19/15 16:54	10
Phenol	ND		2300	350	ug/Kg	₽	10/16/15 08:10	10/19/15 16:54	10
Pyrene	850	J	2300	270	ug/Kg	₩	10/16/15 08:10	10/19/15 16:54	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	72		34 - 132				10/16/15 08:10	10/19/15 16:54	10
Phenol-d5 (Surr)	88		11 - 120				10/16/15 08:10	10/19/15 16:54	10
p-Terphenyl-d14 (Surr)	96		65 - 153				10/16/15 08:10	10/19/15 16:54	10
2,4,6-Tribromophenol (Surr)	119		39 - 146				10/16/15 08:10	10/19/15 16:54	10

Method: 8082A - Polych Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.32	0.063	mg/Kg	<u>₩</u>	10/16/15 08:13	10/16/15 13:17	1
PCB-1221	ND		0.32	0.063	mg/Kg	☼	10/16/15 08:13	10/16/15 13:17	1
PCB-1232	ND		0.32	0.063	mg/Kg	☼	10/16/15 08:13	10/16/15 13:17	1
PCB-1242	ND		0.32	0.063	mg/Kg	₩	10/16/15 08:13	10/16/15 13:17	1
PCB-1248	ND		0.32	0.063	mg/Kg	₩	10/16/15 08:13	10/16/15 13:17	1
PCB-1254	ND		0.32	0.15	mg/Kg	☼	10/16/15 08:13	10/16/15 13:17	1
PCB-1260	ND		0.32	0.15	mg/Kg	₩.	10/16/15 08:13	10/16/15 13:17	1
PCB-1262	ND		0.32	0.15	mg/Kg	☼	10/16/15 08:13	10/16/15 13:17	1
PCB-1268	ND		0.32	0.15	mg/Kg	₩	10/16/15 08:13	10/16/15 13:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tatus alalama ma un lama							40/40/45 00:40	10/40/45 10:17	

37 - 120

18 - 120

90

85

Surrogate	%Recovery Qualit	fier Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	95	60 - 154	10/16/15 08:13	10/16/15 13:17	1
Tetrachloro-m-xylene	103	60 - 154	10/16/15 08:13	10/16/15 13:17	1
DCB Decachlorobiphenyl	91	65 - 174	10/16/15 08:13	10/16/15 13:17	1
DCB Decachlorobiphenyl	121	65 - 174	10/16/15 08:13	10/16/15 13:17	1

Method: 6010C - Metals (ICP) Analyte	Pocult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result	Qualifier	NL.	MDL	Ollit	U	Fiepareu	Allalyzeu	DII Fac
Aluminum	19800		13.4	5.9	mg/Kg	<u> </u>	10/16/15 10:50	10/16/15 21:49	1
Antimony	ND	F1	20.1	0.53	mg/Kg	₽	10/16/15 10:50	10/16/15 21:49	1
Arsenic	7.6		2.7	0.53	mg/Kg	₩	10/16/15 10:50	10/16/15 21:49	1
Barium	114	F1	0.67	0.15	mg/Kg	φ.	10/16/15 10:50	10/16/15 21:49	1
Beryllium	0.78		0.27	0.037	mg/Kg	☼	10/16/15 10:50	10/16/15 21:49	1

TestAmerica Buffalo

Page 14 of 44

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Mercury

Client Sample ID: TS-20

Date Collected: 10/14/15 00:00

Date Received: 10/14/15 18:00

TestAmerica Job ID: 480-89112-1

Lab Sample ID: 480-89112-3

Matrix: Solid

Percent Solids: 74.8

Method: 6010C - Metals (ICP) (Cor Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cadmium	0.88		0.27	0.040	mg/Kg	<u>₩</u>	10/16/15 10:50	10/16/15 21:49	1
Calcium	5820	B F1 F2	66.9	4.4	mg/Kg	₩.	10/16/15 10:50	10/16/15 21:49	1
Chromium	42.2		0.67	0.27	mg/Kg	☼	10/16/15 10:50	10/16/15 21:49	1
Cobalt	9.1		0.67	0.067	mg/Kg	☼	10/16/15 10:50	10/16/15 21:49	1
Copper	36.5		1.3	0.28	mg/Kg	₩	10/16/15 10:50	10/16/15 21:49	1
Iron	24400		13.4	4.7	mg/Kg	☼	10/16/15 10:50	10/16/15 21:49	1
Lead	86.0		1.3	0.32	mg/Kg	₩	10/16/15 10:50	10/16/15 21:49	1
Magnesium	4270	F1	26.7	1.2	mg/Kg	₩	10/16/15 10:50	10/16/15 21:49	1
Manganese	455		0.27	0.043	mg/Kg	☼	10/16/15 10:50	10/16/15 21:49	1
Nickel	22.1		6.7	0.31	mg/Kg	☼	10/16/15 10:50	10/16/15 21:49	1
Potassium	2560	F1	40.1	26.7	mg/Kg	₩	10/16/15 10:50	10/16/15 21:49	1
Selenium	1.3	J	5.3	0.53	mg/Kg	₩	10/16/15 10:50	10/16/15 21:49	1
Silver	ND		0.67	0.27	mg/Kg	☼	10/16/15 10:50	10/16/15 21:49	1
Sodium	134	J	187	17.4	mg/Kg	₩.	10/16/15 10:50	10/16/15 21:49	1
Thallium	ND		8.0	0.40	mg/Kg	☼	10/16/15 10:50	10/16/15 21:49	1
Vanadium	37.4	F1	0.67	0.15	mg/Kg	☼	10/16/15 10:50	10/16/15 21:49	1
Zinc	179	F1	2.7	0.86	mg/Kg		10/16/15 10:50	10/16/15 21:49	1
Method: 7471B - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: TS-21 Lab Sample ID: 480-89112-4

0.026

0.010 mg/Kg

0.16

Date Collected: 10/14/15 00:00 **Matrix: Solid** Date Received: 10/14/15 18:00 Percent Solids: 74.7

Analyte	Result Qua	lifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND	1100	170	ug/Kg	<u> </u>	10/15/15 07:51	10/16/15 15:30	- 5
bis (2-chloroisopropyl) ether	ND	1100	230	ug/Kg	₩	10/15/15 07:51	10/16/15 15:30	5
2,4,5-Trichlorophenol	ND	1100	310	ug/Kg	₩	10/15/15 07:51	10/16/15 15:30	5
2,4,6-Trichlorophenol	ND	1100	230	ug/Kg	₩.	10/15/15 07:51	10/16/15 15:30	5
2,4-Dichlorophenol	ND	1100	120	ug/Kg	☼	10/15/15 07:51	10/16/15 15:30	5
2,4-Dimethylphenol	ND	1100	270	ug/Kg	₩	10/15/15 07:51	10/16/15 15:30	5
2,4-Dinitrophenol	ND	11000	5200	ug/Kg	φ.	10/15/15 07:51	10/16/15 15:30	5
2,4-Dinitrotoluene	ND	1100	230	ug/Kg	☼	10/15/15 07:51	10/16/15 15:30	5
2,6-Dinitrotoluene	ND	1100	130	ug/Kg	☼	10/15/15 07:51	10/16/15 15:30	5
2-Chloronaphthalene	ND	1100	190	ug/Kg	φ.	10/15/15 07:51	10/16/15 15:30	5
2-Chlorophenol	ND	1100	210	ug/Kg	☼	10/15/15 07:51	10/16/15 15:30	5
2-Methylphenol	ND	1100	130	ug/Kg	☼	10/15/15 07:51	10/16/15 15:30	5
2-Methylnaphthalene	ND	1100	230	ug/Kg	₽	10/15/15 07:51	10/16/15 15:30	5
2-Nitroaniline	ND	2200	170	ug/Kg	₩	10/15/15 07:51	10/16/15 15:30	5
2-Nitrophenol	ND	1100	320	ug/Kg	☼	10/15/15 07:51	10/16/15 15:30	5
3,3'-Dichlorobenzidine	ND	2200	1300	ug/Kg	₩	10/15/15 07:51	10/16/15 15:30	5
3-Nitroaniline	ND	2200	310	ug/Kg	☼	10/15/15 07:51	10/16/15 15:30	5
4,6-Dinitro-2-methylphenol	ND	2200	1100	ug/Kg	☼	10/15/15 07:51	10/16/15 15:30	5
4-Bromophenyl phenyl ether	ND	1100	160	ug/Kg	₽	10/15/15 07:51	10/16/15 15:30	5
4-Chloro-3-methylphenol	ND	1100	280	ug/Kg	☼	10/15/15 07:51	10/16/15 15:30	5
4-Chloroaniline	ND	1100	280	ug/Kg	☼	10/15/15 07:51	10/16/15 15:30	5
4-Chlorophenyl phenyl ether	ND	1100	140	ug/Kg		10/15/15 07:51	10/16/15 15:30	5

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: TS-21

Date Collected: 10/14/15 00:00

Date Received: 10/14/15 18:00

TestAmerica Job ID: 480-89112-1

Lab Sample ID: 480-89112-4

Matrix: Solid Percent Solids: 74.7

Method: 9270D Semivolatile Organic Compounds (CC/MS) (Centinued)

Analyte	Result (Qualifier	ŔĹ	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Methylphenol	ND ND		2200	130	ug/Kg		10/15/15 07:51	10/16/15 15:30	
4-Nitroaniline	ND		2200	590	ug/Kg	☼	10/15/15 07:51	10/16/15 15:30	į
4-Nitrophenol	ND		2200	790	ug/Kg		10/15/15 07:51	10/16/15 15:30	
Acenaphthene	190 、	J	1100	170	ug/Kg	☼	10/15/15 07:51	10/16/15 15:30	5
Acenaphthylene	ND		1100	150	ug/Kg	☼	10/15/15 07:51	10/16/15 15:30	5
Acetophenone	ND		1100	150	ug/Kg		10/15/15 07:51	10/16/15 15:30	5
Anthracene	330 .	J	1100	280	ug/Kg	☼	10/15/15 07:51	10/16/15 15:30	5
Atrazine	ND		1100	390	ug/Kg	₩	10/15/15 07:51	10/16/15 15:30	5
Benzaldehyde	ND '	*	1100		ug/Kg		10/15/15 07:51	10/16/15 15:30	
Benzo[a]anthracene	2400		1100	110	ug/Kg	₩	10/15/15 07:51	10/16/15 15:30	5
Benzo[a]pyrene	2400		1100	170	ug/Kg	₩	10/15/15 07:51	10/16/15 15:30	5
Benzo[b]fluoranthene	3900		1100		ug/Kg	ф	10/15/15 07:51	10/16/15 15:30	5
Benzo[g,h,i]perylene	2000		1100	120	ug/Kg	₩	10/15/15 07:51	10/16/15 15:30	5
Benzo[k]fluoranthene	1600		1100		ug/Kg	₩	10/15/15 07:51	10/16/15 15:30	5
Bis(2-chloroethoxy)methane	ND		1100		ug/Kg		10/15/15 07:51	10/16/15 15:30	5
Bis(2-chloroethyl)ether	ND		1100	150	ug/Kg	₩	10/15/15 07:51	10/16/15 15:30	5
Bis(2-ethylhexyl) phthalate	ND		1100	390	ug/Kg	₩	10/15/15 07:51	10/16/15 15:30	5
Butyl benzyl phthalate	ND		1100		ug/Kg		10/15/15 07:51	10/16/15 15:30	5
Caprolactam	ND		1100		ug/Kg	₩	10/15/15 07:51	10/16/15 15:30	5
Carbazole	340	J	1100		ug/Kg	₩	10/15/15 07:51	10/16/15 15:30	5
Chrysene	3100		1100		ug/Kg		10/15/15 07:51	10/16/15 15:30	5
Dibenz(a,h)anthracene	ND		1100		ug/Kg	₩	10/15/15 07:51	10/16/15 15:30	5
Di-n-butyl phthalate	ND		1100		ug/Kg	₩	10/15/15 07:51	10/16/15 15:30	5
Di-n-octyl phthalate	ND		1100		ug/Kg		10/15/15 07:51	10/16/15 15:30	5
Dibenzofuran	ND		1100		ug/Kg	₩	10/15/15 07:51	10/16/15 15:30	5
Diethyl phthalate	ND		1100		ug/Kg	₩	10/15/15 07:51	10/16/15 15:30	5
Dimethyl phthalate	ND		1100		ug/Kg		10/15/15 07:51	10/16/15 15:30	5
Fluoranthene	6000		1100	120	ug/Kg	₩	10/15/15 07:51	10/16/15 15:30	5
Fluorene	160	J	1100		ug/Kg	₩	10/15/15 07:51	10/16/15 15:30	5
Hexachlorobenzene	ND		1100		ug/Kg		10/15/15 07:51	10/16/15 15:30	5
Hexachlorobutadiene	ND		1100		ug/Kg	₩	10/15/15 07:51	10/16/15 15:30	5
Hexachlorocyclopentadiene	ND		1100		ug/Kg	₩	10/15/15 07:51	10/16/15 15:30	5
Hexachloroethane	ND		1100		ug/Kg		10/15/15 07:51	10/16/15 15:30	5
Indeno[1,2,3-cd]pyrene	1800		1100		ug/Kg	₩	10/15/15 07:51	10/16/15 15:30	5
Isophorone	ND		1100		ug/Kg	₩	10/15/15 07:51	10/16/15 15:30	5
N-Nitrosodi-n-propylamine	ND		1100	190	ug/Kg		10/15/15 07:51	10/16/15 15:30	5
N-Nitrosodiphenylamine	ND		1100		ug/Kg	₩	10/15/15 07:51	10/16/15 15:30	5
Naphthalene	ND		1100		ug/Kg	≎		10/16/15 15:30	5
Nitrobenzene	ND		1100		ug/Kg			10/16/15 15:30	5
Pentachlorophenol	ND		2200		ug/Kg	₩		10/16/15 15:30	5
Phenanthrene	2700		1100		ug/Kg	₩	10/15/15 07:51		5
Phenol	ND		1100		ug/Kg			10/16/15 15:30	5
Pyrene	4800		1100		ug/Kg	₩		10/16/15 15:30	5
Surrogate	%Recovery	Ouglifion	l imits				Prenared	Analyzed	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	82	34 - 132	10/15/15 07:51	10/16/15 15:30	5
Phenol-d5 (Surr)	82	11 - 120	10/15/15 07:51	10/16/15 15:30	5
p-Terphenyl-d14 (Surr)	85	65 - 153	10/15/15 07:51	10/16/15 15:30	5
2,4,6-Tribromophenol (Surr)	88	39 - 146	10/15/15 07:51	10/16/15 15:30	5
2-Fluorobiphenyl	83	37 - 120	10/15/15 07:51	10/16/15 15:30	5

TestAmerica Buffalo

Page 16 of 44

3

5

7

9

10

12

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: TS-21

Date Collected: 10/14/15 00:00

Date Received: 10/14/15 18:00

TestAmerica Job ID: 480-89112-1

Lab Sample ID: 480-89112-4

Matrix: Solid

Percent Solids: 74.7

Method: 8270D	- Samivalatila	Organic	Compounds	(CC/MS)	(Continued)
	- Jellii v Olatile	Organic	Colliboulius		(Continued)

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorophenol (Surr)	72	18 - 120	10/15/15 07:51	10/16/15 15:30	5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.23	0.044	mg/Kg	<u> </u>	10/15/15 09:30	10/15/15 23:18	1
PCB-1221	ND		0.23	0.044	mg/Kg	₩	10/15/15 09:30	10/15/15 23:18	1
PCB-1232	ND		0.23	0.044	mg/Kg	₩	10/15/15 09:30	10/15/15 23:18	1
PCB-1242	ND		0.23	0.044	mg/Kg	₽	10/15/15 09:30	10/15/15 23:18	1
PCB-1248	ND		0.23	0.044	mg/Kg	₩	10/15/15 09:30	10/15/15 23:18	1
PCB-1254	ND		0.23	0.11	mg/Kg	☼	10/15/15 09:30	10/15/15 23:18	1
PCB-1260	ND		0.23	0.11	mg/Kg	₩	10/15/15 09:30	10/15/15 23:18	1
PCB-1262	ND		0.23	0.11	mg/Kg	☼	10/15/15 09:30	10/15/15 23:18	1
PCB-1268	ND		0.23	0.11	mg/Kg	₽	10/15/15 09:30	10/15/15 23:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	95		60 - 154				10/15/15 09:30	10/15/15 23:18	1
Tetrachloro-m-xylene	101		60 - 154				10/15/15 09:30	10/15/15 23:18	1
DCB Decachlorobiphenyl	88		65 - 174				10/15/15 09:30	10/15/15 23:18	1
DCB Decachlorobiphenyl	111		65 - 174				10/15/15 09:30	10/15/15 23:18	1

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	16800		13.2	5.8	mg/Kg	\	10/15/15 11:40	10/16/15 04:13	1
Antimony	ND		19.7	0.53	mg/Kg	₩	10/15/15 11:40	10/16/15 04:13	1
Arsenic	6.8		2.6	0.53	mg/Kg	₩	10/15/15 11:40	10/16/15 04:13	1
Barium	106		0.66	0.14	mg/Kg	₩	10/15/15 11:40	10/16/15 04:13	1
Beryllium	0.75		0.26	0.037	mg/Kg	₩	10/15/15 11:40	10/16/15 04:13	1
Cadmium	0.93		0.26	0.039	mg/Kg	₩	10/15/15 11:40	10/16/15 04:13	1
Calcium	6730	В	65.8	4.3	mg/Kg	ф.	10/15/15 11:40	10/16/15 04:13	1
Chromium	42.7		0.66	0.26	mg/Kg	₩	10/15/15 11:40	10/16/15 04:13	1
Cobalt	9.3		0.66	0.066	mg/Kg	₩	10/15/15 11:40	10/16/15 04:13	1
Copper	36.7		1.3	0.28	mg/Kg	ф.	10/15/15 11:40	10/16/15 04:13	1
Iron	23400		13.2	4.6	mg/Kg	₩	10/15/15 11:40	10/16/15 04:13	1
Lead	84.2		1.3	0.32	mg/Kg	₩	10/15/15 11:40	10/16/15 04:13	1
Magnesium	4700		26.3	1.2	mg/Kg	₽	10/15/15 11:40	10/16/15 04:13	1
Manganese	457		0.26	0.042	mg/Kg	₩	10/15/15 11:40	10/16/15 04:13	1
Nickel	22.1		6.6	0.30	mg/Kg	₩	10/15/15 11:40	10/16/15 04:13	1
Potassium	1860		39.5	26.3	mg/Kg	₽	10/15/15 11:40	10/16/15 04:13	1
Selenium	0.86	J	5.3	0.53	mg/Kg	₩	10/15/15 11:40	10/16/15 04:13	1
Silver	0.30	J	0.66	0.26	mg/Kg	₩	10/15/15 11:40	10/16/15 04:13	1
Sodium	114	J	184	17.1	mg/Kg	₩	10/15/15 11:40	10/16/15 04:13	1
Thallium	ND		7.9	0.39	mg/Kg	₩	10/15/15 11:40	10/16/15 04:13	1
Vanadium	32.9		0.66	0.14	mg/Kg	₩	10/15/15 11:40	10/16/15 04:13	1
Zinc	176		2.6	0.84	mg/Kg	₩.	10/15/15 11:40	10/16/15 04:13	1

Method: 7471B - Mercury (CVA	A)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.19		0.026	0.011	mg/Kg		10/15/15 13:20	10/15/15 15:47	1

TestAmerica Buffalo

3

6

8

10

12

14

15

Project/Site: 132 Dingens

Client: Iyer Environmental Group, LLC

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

-		Percent Surrogate Recovery (Acceptance Limits)							
		NBZ	PHL	TPH	TBP	FBP	2FP		
Lab Sample ID	Client Sample ID	(34-132)	(11-120)	(65-153)	(39-146)	(37-120)	(18-120)		
80-89112-1	TS-18	78	85	89	111	78	74		
30-89112-2	TS-19	80	82	84	101	95	89		
0-89112-3	TS-20	72	88	96	119	90	85		
30-89112-3 MS	TS-20	91	93	107	158 X	96	84		
0-89112-3 MSD	TS-20	84	82	97	132	89	76		
0-89112-4	TS-21	82	82	85	88	83	72		
S 480-268902/2-A	Lab Control Sample	76	76	88	90	80	69		
S 480-269145/2-A	Lab Control Sample	98	92	104	115	102	88		
B 480-268902/1-A	Method Blank	80	89	108	85	81	87		
B 480-269145/1-A	Method Blank	89	91	110	101	96	86		

Surrogate Legend

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

TPH = p-Terphenyl-d14 (Surr)

TBP = 2,4,6-Tribromophenol (Surr)

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol (Surr)

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid Prep Type: Total/NA

			Pe	rcent Surro	ogate Recove
		TCX1	TCX2	DCB1	DCB2
Lab Sample ID	Client Sample ID	(60-154)	(60-154)	(65-174)	(65-174)
480-89112-1	TS-18	93	97	81	101
480-89112-1 MS	TS-18	115	123	119	153
480-89112-1 MSD	TS-18	112	118	105	132
480-89112-2	TS-19	99	112	92	118
480-89112-3	TS-20	95	103	91	121
480-89112-3 MS	TS-20	117	143	120	154
480-89112-3 MSD	TS-20	98	118	94	125
480-89112-4	TS-21	95	101	88	111
LCS 480-268943/2-A	Lab Control Sample	124	138	117	151
LCS 480-269148/2-A	Lab Control Sample	119	145	115	155
MB 480-268943/1-A	Method Blank	104	116	102	131
MB 480-269148/1-A	Method Blank	100	127	100	135

Surrogate Legend

TCX = Tetrachloro-m-xylene

DCB = DCB Decachlorobiphenyl

4

6

_

9

11

13

15

QC Sample Results

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-89112-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-268902/1-A

Matrix: Solid

Analysis Batch: 269161

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 268902

Analysis Batch: 269161								Prep Type: 10 Prep Batch:	
Analysis Baton. 200101	MB	MB						Trop Buton.	200002
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		170	25	ug/Kg		10/15/15 07:51		1
bis (2-chloroisopropyl) ether	ND		170		ug/Kg		10/15/15 07:51	10/16/15 10:14	1
2,4,5-Trichlorophenol	ND		170	46	ug/Kg		10/15/15 07:51	10/16/15 10:14	1
2,4,6-Trichlorophenol	ND		170	34	ug/Kg		10/15/15 07:51	10/16/15 10:14	1
2,4-Dichlorophenol	ND		170	18	ug/Kg		10/15/15 07:51	10/16/15 10:14	1
2,4-Dimethylphenol	ND		170	41	ug/Kg		10/15/15 07:51	10/16/15 10:14	1
2,4-Dinitrophenol	ND		1600	780	ug/Kg		10/15/15 07:51	10/16/15 10:14	1
2,4-Dinitrotoluene	ND		170	35	ug/Kg		10/15/15 07:51	10/16/15 10:14	1
2,6-Dinitrotoluene	ND		170	20	ug/Kg		10/15/15 07:51	10/16/15 10:14	1
2-Chloronaphthalene	ND		170	28	ug/Kg		10/15/15 07:51	10/16/15 10:14	1
2-Chlorophenol	ND		170	31	ug/Kg		10/15/15 07:51	10/16/15 10:14	1
2-Methylphenol	ND		170	20	ug/Kg		10/15/15 07:51	10/16/15 10:14	1
2-Methylnaphthalene	ND		170	34	ug/Kg		10/15/15 07:51	10/16/15 10:14	1
2-Nitroaniline	ND		330	25	ug/Kg		10/15/15 07:51	10/16/15 10:14	1
2-Nitrophenol	ND		170	48	ug/Kg		10/15/15 07:51	10/16/15 10:14	1
3,3'-Dichlorobenzidine	ND		330	200	ug/Kg		10/15/15 07:51	10/16/15 10:14	1
3-Nitroaniline	ND		330		ug/Kg		10/15/15 07:51	10/16/15 10:14	1
4,6-Dinitro-2-methylphenol	ND		330		ug/Kg			10/16/15 10:14	1
4-Bromophenyl phenyl ether	ND		170		ug/Kg			10/16/15 10:14	1
4-Chloro-3-methylphenol	ND		170		ug/Kg			10/16/15 10:14	1
4-Chloroaniline	ND		170		ug/Kg			10/16/15 10:14	1
4-Chlorophenyl phenyl ether	ND		170		ug/Kg			10/16/15 10:14	· · · · · · · · · · · · · · · · · · ·
4-Methylphenol	ND		330		ug/Kg			10/16/15 10:14	1
4-Nitroaniline	ND		330		ug/Kg			10/16/15 10:14	1
4-Nitrophenol	ND		330		ug/Kg			10/16/15 10:14	
Acenaphthene	ND		170		ug/Kg		10/15/15 07:51		1
Acenaphthylene	ND		170		ug/Kg		10/15/15 07:51		1
Acetophenone	ND		170		ug/Kg			10/16/15 10:14	······································
Anthracene	ND ND		170		ug/Kg			10/16/15 10:14	1
Atrazine	ND ND		170		ug/Kg			10/16/15 10:14	
	ND		170					10/16/15 10:14	1
Benzaldehyde	ND ND		170		ug/Kg				-
Benzo[a]anthracene					ug/Kg			10/16/15 10:14	1
Benzo[a]pyrene	ND		170		ug/Kg			10/16/15 10:14	1
Benzo[b]fluoranthene	ND		170		ug/Kg			10/16/15 10:14	1
Benzo[g,h,i]perylene	ND		170		ug/Kg			10/16/15 10:14	1
Benzo[k]fluoranthene	ND		170		ug/Kg			10/16/15 10:14	1
Bis(2-chloroethoxy)methane	ND		170		ug/Kg		10/15/15 07:51		1
Bis(2-chloroethyl)ether	ND		170		ug/Kg		10/15/15 07:51		1
Bis(2-ethylhexyl) phthalate	ND		170		ug/Kg		10/15/15 07:51		
Butyl benzyl phthalate	ND		170		ug/Kg		10/15/15 07:51		1
Caprolactam	ND		170		ug/Kg		10/15/15 07:51		1
Carbazole	ND		170		ug/Kg		10/15/15 07:51		1
Chrysene	ND		170		ug/Kg		10/15/15 07:51		1
Dibenz(a,h)anthracene	ND		170		ug/Kg			10/16/15 10:14	1
Di-n-butyl phthalate	ND		170		ug/Kg			10/16/15 10:14	1
Di-n-octyl phthalate	ND		170	20	ug/Kg		10/15/15 07:51	10/16/15 10:14	1
Dibenzofuran	ND		170	20	ug/Kg		10/15/15 07:51	10/16/15 10:14	1
Diethyl phthalate	ND		170	22	ug/Kg		10/15/15 07:51	10/16/15 10:14	1

TestAmerica Buffalo

Page 19 of 44

2

3

4

6

ŏ

10

12

14

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-268902/1-A

Matrix: Solid

Analysis Batch: 269161

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 268902

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dimethyl phthalate	ND		170	20	ug/Kg		10/15/15 07:51	10/16/15 10:14	1
Fluoranthene	ND		170	18	ug/Kg		10/15/15 07:51	10/16/15 10:14	1
Fluorene	ND		170	20	ug/Kg		10/15/15 07:51	10/16/15 10:14	1
Hexachlorobenzene	ND		170	23	ug/Kg		10/15/15 07:51	10/16/15 10:14	1
Hexachlorobutadiene	ND		170	25	ug/Kg		10/15/15 07:51	10/16/15 10:14	1
Hexachlorocyclopentadiene	ND		170	23	ug/Kg		10/15/15 07:51	10/16/15 10:14	1
Hexachloroethane	ND		170	22	ug/Kg		10/15/15 07:51	10/16/15 10:14	1
Indeno[1,2,3-cd]pyrene	ND		170	21	ug/Kg		10/15/15 07:51	10/16/15 10:14	1
Isophorone	ND		170	36	ug/Kg		10/15/15 07:51	10/16/15 10:14	1
N-Nitrosodi-n-propylamine	ND		170	29	ug/Kg		10/15/15 07:51	10/16/15 10:14	1
N-Nitrosodiphenylamine	ND		170	140	ug/Kg		10/15/15 07:51	10/16/15 10:14	1
Naphthalene	ND		170	22	ug/Kg		10/15/15 07:51	10/16/15 10:14	1
Nitrobenzene	ND		170	19	ug/Kg		10/15/15 07:51	10/16/15 10:14	1
Pentachlorophenol	ND		330	170	ug/Kg		10/15/15 07:51	10/16/15 10:14	1
Phenanthrene	ND		170	25	ug/Kg		10/15/15 07:51	10/16/15 10:14	1
Phenol	ND		170	26	ug/Kg		10/15/15 07:51	10/16/15 10:14	1
Pyrene	ND		170	20	ug/Kg		10/15/15 07:51	10/16/15 10:14	1

MB MB

Surrogate	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	80	34 - 132	10/15/15 07:51	10/16/15 10:14	1
Phenol-d5 (Surr)	89	11 - 120	10/15/15 07:51	10/16/15 10:14	1
p-Terphenyl-d14 (Surr)	108	65 - 153	10/15/15 07:51	10/16/15 10:14	1
2,4,6-Tribromophenol (Surr)	85	39 - 146	10/15/15 07:51	10/16/15 10:14	1
2-Fluorobiphenyl	81	37 - 120	10/15/15 07:51	10/16/15 10:14	1
2-Fluorophenol (Surr)	87	18 - 120	10/15/15 07:51	10/16/15 10:14	1

Lab Sample ID: LCS 480-268902/2-A

Matrix: Solid

Analysis Batch: 269161

Client Sample ID: Lab Control Sample Prep Type: Total/NA **Prep Batch: 268902**

Analysis Batch. 200101	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
2,4-Dinitrotoluene	1650	1350		ug/Kg		81	55 - 125
2-Chlorophenol	1650	1220		ug/Kg		74	38 - 120
4-Chloro-3-methylphenol	1650	1370		ug/Kg		83	49 - 125
4-Nitrophenol	3310	2910		ug/Kg		88	43 - 137
Acenaphthene	1650	1330		ug/Kg		80	53 - 120
Atrazine	3310	2870		ug/Kg		87	60 - 164
Bis(2-ethylhexyl) phthalate	1650	1380		ug/Kg		84	61 - 133
Fluorene	1650	1380		ug/Kg		83	63 - 126
Hexachloroethane	1650	1150		ug/Kg		69	41 - 120
N-Nitrosodi-n-propylamine	1650	1270		ug/Kg		77	46 - 120
Pentachlorophenol	3310	2460		ug/Kg		74	33 - 136
Phenol	1650	1240		ug/Kg		75	36 - 120
Pyrene	1650	1690		ug/Kg		102	51 - 133

LCS	LCS
-----	-----

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5 (Surr)	76		34 - 132

Page 20 of 44

QC Sample Results

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-89112-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-268902/2-A

Matrix: Solid

Analysis Batch: 269161

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 268902

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Phenol-d5 (Surr)	76		11 - 120
p-Terphenyl-d14 (Surr)	88		65 - 153
2,4,6-Tribromophenol (Surr)	90		39 - 146
2-Fluorobiphenyl	80		37 - 120
2-Fluorophenol (Surr)	69		18 - 120

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 269145

Lab Sample ID: MB 480-269145/1-A

Matrix: Solid

Analysis Batch: 269526

Analysis Baton. 200020	МВ	МВ						Trop Baton.	200140
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		170	25	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
bis (2-chloroisopropyl) ether	ND		170	34	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
2,4,5-Trichlorophenol	ND		170	46	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
2,4,6-Trichlorophenol	ND		170	34	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
2,4-Dichlorophenol	ND		170	18	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
2,4-Dimethylphenol	ND		170	41	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
2,4-Dinitrophenol	ND		1600	780	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
2,4-Dinitrotoluene	ND		170	35	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
2,6-Dinitrotoluene	ND		170	20	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
2-Chloronaphthalene	ND		170	28	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
2-Chlorophenol	ND		170	31	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
2-Methylphenol	ND		170	20	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
2-Methylnaphthalene	ND		170	34	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
2-Nitroaniline	ND		330	25	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
2-Nitrophenol	ND		170	48	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
3,3'-Dichlorobenzidine	ND		330	200	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
3-Nitroaniline	ND		330	47	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
4,6-Dinitro-2-methylphenol	ND		330	170	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
4-Bromophenyl phenyl ether	ND		170	24	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
4-Chloro-3-methylphenol	ND		170	42	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
4-Chloroaniline	ND		170	42	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
4-Chlorophenyl phenyl ether	ND		170	21	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
4-Methylphenol	ND		330	20	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
4-Nitroaniline	ND		330	88	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
4-Nitrophenol	ND		330	120	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
Acenaphthene	ND		170	25	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
Acenaphthylene	ND		170	22	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
Acetophenone	ND		170	23	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
Anthracene	ND		170	42	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
Atrazine	ND		170	59	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
Benzaldehyde	ND		170	130	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
Benzo[a]anthracene	ND		170	17			10/16/15 08:10	10/19/15 12:32	1
Benzo[a]pyrene	ND		170	25	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
Benzo[b]fluoranthene	ND		170	27	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
Benzo[g,h,i]perylene	ND		170		ug/Kg		10/16/15 08:10	10/19/15 12:32	1
Benzo[k]fluoranthene	ND		170		ug/Kg		10/16/15 08:10	10/19/15 12:32	1
Bis(2-chloroethoxy)methane	ND		170	36	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
• • • • • • • • • • • • • • • • • • • •					5 5				

TestAmerica Buffalo

3

4

6

8

11

3

15

П

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-269145/1-A **Client Sample ID: Method Blank Matrix: Solid Prep Type: Total/NA Prep Batch: 269145 Analysis Batch: 269526**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bis(2-chloroethyl)ether	ND		170	22	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
Bis(2-ethylhexyl) phthalate	ND		170	58	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
Butyl benzyl phthalate	ND		170	28	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
Caprolactam	ND		170	51	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
Carbazole	ND		170	20	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
Chrysene	ND		170	38	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
Dibenz(a,h)anthracene	ND		170	30	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
Di-n-butyl phthalate	ND		170	29	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
Di-n-octyl phthalate	ND		170	20	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
Dibenzofuran	ND		170	20	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
Diethyl phthalate	ND		170	22	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
Dimethyl phthalate	ND		170	20	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
Fluoranthene	ND		170	18	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
Fluorene	ND		170	20	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
Hexachlorobenzene	ND		170	23	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
Hexachlorobutadiene	ND		170	25	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
Hexachlorocyclopentadiene	ND		170	23	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
Hexachloroethane	ND		170	22	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
Indeno[1,2,3-cd]pyrene	ND		170	21	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
Isophorone	ND		170	36	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
N-Nitrosodi-n-propylamine	ND		170	29	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
N-Nitrosodiphenylamine	ND		170	140	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
Naphthalene	ND		170	22	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
Nitrobenzene	ND		170	19	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
Pentachlorophenol	ND		330	170	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
Phenanthrene	ND		170	25	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
Phenol	ND		170	26	ug/Kg		10/16/15 08:10	10/19/15 12:32	1
Pyrene	ND		170		ug/Kg		10/16/15 08:10	10/19/15 12:32	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	89		34 - 132	10/16/15 08:10	10/19/15 12:32	1
Phenol-d5 (Surr)	91		11 - 120	10/16/15 08:10	10/19/15 12:32	1
p-Terphenyl-d14 (Surr)	110		65 ₋ 153	10/16/15 08:10	10/19/15 12:32	1
2,4,6-Tribromophenol (Surr)	101		39 - 146	10/16/15 08:10	10/19/15 12:32	1
2-Fluorobiphenyl	96		37 - 120	10/16/15 08:10	10/19/15 12:32	1
2-Fluorophenol (Surr)	86		18 - 120	10/16/15 08:10	10/19/15 12:32	1

Lab Sample ID: LCS 480-269145/2-A

Matrix: Solid

Analysis Batch: 269526	Spike	LCS	LCS				Prep Batch: %Rec.	269145
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,4-Dinitrotoluene	1660	1600		ug/Kg		96	55 - 125	
2-Chlorophenol	1660	1500		ug/Kg		90	38 - 120	
4-Chloro-3-methylphenol	1660	1520		ug/Kg		92	49 - 125	
4-Nitrophenol	3320	2890		ug/Kg		87	43 - 137	
Acenaphthene	1660	1660		ug/Kg		100	53 - 120	
Atrazine	3320	3340		ug/Kg		101	60 - 164	

TestAmerica Buffalo

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Page 22 of 44

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sam	ple ID:	LCS 48	0-2691	45/2-A
---------	---------	---------------	--------	--------

Matrix: Solid

Analysis Batch: 269526

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 269145

7 manyolo Batom 200020	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Bis(2-ethylhexyl) phthalate	1660	1810		ug/Kg		109	61 - 133
Fluorene	1660	1630		ug/Kg		99	63 - 126
Hexachloroethane	1660	1460		ug/Kg		88	41 - 120
N-Nitrosodi-n-propylamine	1660	1520		ug/Kg		91	46 - 120
Pentachlorophenol	3320	3140		ug/Kg		95	33 - 136
Phenol	1660	1420		ug/Kg		85	36 - 120
Pyrene	1660	1670		ug/Kg		101	51 - 133

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5 (Surr)	98		34 - 132
Phenol-d5 (Surr)	92		11 - 120
p-Terphenyl-d14 (Surr)	104		65 - 153
2,4,6-Tribromophenol (Surr)	115		39 - 146
2-Fluorobiphenyl	102		37 - 120
2-Fluorophenol (Surr)	88		18 - 120

Lab Sample ID: 480-89112-3 MS

Matrix: Solid

Analysis Batch: 269526

Client Sample ID: TS-20 Prep Type: Total/NA Prep Batch: 269145

7 maryolo Batom 200020	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
2,4-Dinitrotoluene	ND	F1	2210	2800	F1	ug/Kg	₽	127	55 - 125
2-Chlorophenol	ND		2210	2080	J	ug/Kg	₩	94	38 - 120
4-Chloro-3-methylphenol	ND		2210	2660		ug/Kg	₩	120	49 - 125
4-Nitrophenol	ND		4420	5340		ug/Kg	₽	121	43 - 137
Acenaphthene	ND		2210	2280	J	ug/Kg	₩	103	53 - 120
Atrazine	ND		4420	5320		ug/Kg	₩	121	60 - 164
Bis(2-ethylhexyl) phthalate	ND	F1	2210	3280	F1	ug/Kg	₩.	148	61 - 133
Fluorene	ND		2210	2280	J	ug/Kg	₩	103	63 - 126
Hexachloroethane	ND		2210	1710	J	ug/Kg	₩	77	41 - 120
N-Nitrosodi-n-propylamine	ND		2210	2270	j	ug/Kg	₩.	103	46 - 120
Pentachlorophenol	ND		4420	5390		ug/Kg	₩	122	33 - 136
Phenol	ND		2210	1910	J	ug/Kg	₩	87	36 - 120
Pyrene	850	J	2210	3580		ug/Kg	₩	124	51 - 133

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5 (Surr)	91		34 - 132
Phenol-d5 (Surr)	93		11 - 120
p-Terphenyl-d14 (Surr)	107		65 - 153
2,4,6-Tribromophenol (Surr)	158	X	39 - 146
2-Fluorobiphenyl	96		37 - 120
2-Fluorophenol (Surr)	84		18 - 120

Page 23 of 44

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 480-89112-3 MSD **Matrix: Solid**

Analysis Batch: 269526

Client Sample ID: TS-20 Prep Type: Total/NA

Prep Batch: 269145

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2,4-Dinitrotoluene	ND	F1	2220	2590		ug/Kg	<u> </u>	117	55 - 125	8	20
2-Chlorophenol	ND		2220	1800	J	ug/Kg	₩	81	38 - 120	14	25
4-Chloro-3-methylphenol	ND		2220	2380		ug/Kg	₩	107	49 - 125	11	27
4-Nitrophenol	ND		4430	4870		ug/Kg	₩.	110	43 - 137	9	25
Acenaphthene	ND		2220	1980	J	ug/Kg	₩	89	53 - 120	14	35
Atrazine	ND		4430	4920		ug/Kg	₩	111	60 - 164	8	20
Bis(2-ethylhexyl) phthalate	ND	F1	2220	3020	F1	ug/Kg	₽	136	61 - 133	8	15
Fluorene	ND		2220	2060	J	ug/Kg	₩	93	63 - 126	10	15
Hexachloroethane	ND		2220	1750	J	ug/Kg	₩	79	41 - 120	2	46
N-Nitrosodi-n-propylamine	ND		2220	2210	J	ug/Kg	₽	100	46 - 120	2	31
Pentachlorophenol	ND		4430	5140		ug/Kg	₩	116	33 - 136	5	35
Phenol	ND		2220	1820	J	ug/Kg	≎	82	36 - 120	5	35
Pyrene	850	J	2220	3170		ug/Kg	₩.	104	51 - 133	12	35

MSD MSD

%Recovery	Qualifier	Limits
84		34 - 132
82		11 - 120
97		65 - 153
132		39 - 146
89		37 - 120
76		18 - 120
	84 82 97 132 89	82 97 132 89

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 480-268943/1-A

Matrix: Solid

Analysis Batch: 268999

Client Sample ID: Method Blank **Prep Type: Total/NA Prep Batch: 268943**

	MB N	ИB							
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.18	0.034	mg/Kg		10/15/15 09:30	10/15/15 21:27	1
PCB-1221	ND		0.18	0.034	mg/Kg		10/15/15 09:30	10/15/15 21:27	1
PCB-1232	ND		0.18	0.034	mg/Kg		10/15/15 09:30	10/15/15 21:27	1
PCB-1242	ND		0.18	0.034	mg/Kg		10/15/15 09:30	10/15/15 21:27	1
PCB-1248	ND		0.18	0.034	mg/Kg		10/15/15 09:30	10/15/15 21:27	1
PCB-1254	ND		0.18	0.082	mg/Kg		10/15/15 09:30	10/15/15 21:27	1
PCB-1260	ND		0.18	0.082	mg/Kg		10/15/15 09:30	10/15/15 21:27	1
PCB-1262	ND		0.18	0.082	mg/Kg		10/15/15 09:30	10/15/15 21:27	1
PCB-1268	ND		0.18	0.082	mg/Kg		10/15/15 09:30	10/15/15 21:27	1

	MB N	ИΒ				
Surrogate	%Recovery 0	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	104		60 - 154	10/15/15 09:30	10/15/15 21:27	
Tetrachloro-m-xylene	116		60 - 154	10/15/15 09:30	10/15/15 21:27	1
DCB Decachlorobiphenyl	102		65 - 174	10/15/15 09:30	10/15/15 21:27	1
DCB Decachlorobiphenyl	131		65 - 174	10/15/15 09:30	10/15/15 21:27	1

TestAmerica Buffalo

Page 24 of 44

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: LCS 480- Matrix: Solid Analysis Batch: 268999	268943/2-A		Spike	ıcs	LCS	Clie	nt Sai	mple ID	: Lab Control Sample Prep Type: Total/NA Prep Batch: 268943 %Rec.
Analyte			Added	_	Qualifier	Unit	D	%Rec	Limits
PCB-1016			2.34	2.65		mg/Kg	_ =	114	51 - 185
PCB-1260			2.34	2.88		mg/Kg		123	61 - 184
	LCS	LCS							
Surrogate	%Recovery	Qualifier	Limits						
Tetrachloro-m-xylene	124		60 - 154						
Tetrachloro-m-xylene	138		60 - 154						
DCB Decachlorobiphenyl	117		65 - 174						

DCB Decachlorobiphenyl	151		65 - 174						
Lab Sample ID: 480-89112 Matrix: Solid Analysis Batch: 268999				•••				CI	ient Sample ID: TS-18 Prep Type: Total/NA Prep Batch: 268943
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
PCB-1016	ND		2.42	2.60		mg/Kg	☼	108	50 - 177
PCB-1260	ND		2.42	2.95		mg/Kg	₩	122	33 - 200
	MS	MS							
Surrogate	%Recovery	Qualifier	Limits						
Tetrachloro-m-xylene	115		60 - 154						
Tetrachloro-m-xylene	123		60 - 154						
DCB Decachlorobiphenyl	119		65 - 174						
DCB Decachlorobiphenyl	153		65 - 174						

Lab Sample ID: 480-89112	2-1 MSD							CI	ient Samp	ole ID:	TS-18
Matrix: Solid									Prep Typ	pe: Tot	al/NA
Analysis Batch: 268999									Prep Ba	itch: 20	68943
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
PCB-1016	ND		2.69	2.64		mg/Kg	<u></u>	98	50 - 177	2	50
PCB-1260	ND		2.69	3.02		mg/Kg	₩	112	33 - 200	2	50
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
Tetrachloro-m-xylene	112		60 - 154								
Tetrachloro-m-xylene	118		60 - 154								
DCB Decachlorobiphenyl	105		65 - 174								
DCB Decachlorobiphenyl	132		65 - 174								

 Lab Sample ID: MB 480-269148/1-A	Client Sample ID: Method Blank
Matrix: Solid	Prep Type: Total/NA
Analysis Batch: 269215	Prep Batch: 269148

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.19	0.037	mg/Kg		10/16/15 08:13	10/16/15 12:13	1
PCB-1221	ND		0.19	0.037	mg/Kg		10/16/15 08:13	10/16/15 12:13	1
PCB-1232	ND		0.19	0.037	mg/Kg		10/16/15 08:13	10/16/15 12:13	1
PCB-1242	ND		0.19	0.037	mg/Kg		10/16/15 08:13	10/16/15 12:13	1
PCB-1248	ND		0.19	0.037	mg/Kg		10/16/15 08:13	10/16/15 12:13	1

TestAmerica Buffalo

Page 25 of 44

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: MB 480-269148/1-A

Lab Sample ID: LCS 480-269148/2-A

Matrix: Solid

Matrix: Solid

Matrix: Solid

Analysis Batch: 269215

Analysis Batch: 269215

Client Sample ID: Method Blank **Prep Type: Total/NA**

Prep Batch: 269148

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1254	ND		0.19	0.088	mg/Kg		10/16/15 08:13	10/16/15 12:13	1
PCB-1260	ND		0.19	0.088	mg/Kg		10/16/15 08:13	10/16/15 12:13	1
PCB-1262	ND		0.19	0.088	mg/Kg		10/16/15 08:13	10/16/15 12:13	1
PCB-1268	ND		0.19	0.088	mg/Kg		10/16/15 08:13	10/16/15 12:13	1

MB MB

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	100		60 - 154	10/16/15 08:13	10/16/15 12:13	1
Tetrachloro-m-xylene	127		60 ₋ 154	10/16/15 08:13	10/16/15 12:13	1
DCB Decachlorobiphenyl	100		65 - 174	10/16/15 08:13	10/16/15 12:13	1
DCB Decachlorobiphenyl	135		65 - 174	10/16/15 08:13	10/16/15 12:13	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 269148

Spike LCS LCS %Rec. Added Result Qualifier Limits Analyte Unit D %Rec PCB-1016 2.28 2.53 mg/Kg 111 51 - 185 PCB-1260 2.28 mg/Kg 2.78 122 61 - 184

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	119		60 - 154
Tetrachloro-m-xylene	145		60 - 154
DCB Decachlorobiphenyl	115		65 - 174
DCB Decachlorobiphenyl	155		65 - 174

Client Sample ID: TS-20 Prep Type: Total/NA

Prep Batch: 269148

MS MS Sample Sample Spike %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits PCB-1016 3.44 ₩ ND 3.14 mg/Kg 110 50 - 177 PCB-1260 ND 3.14 3.72 mg/Kg 118 33 - 200

MS MS %Recovery Qualifier Limits Surrogate Tetrachloro-m-xylene 117 60 - 154 Tetrachloro-m-xylene 143 60 - 154 DCB Decachlorobiphenyl 65 - 174 120 DCB Decachlorobiphenyl 154 65 - 174

Lab Sample ID: 480-89112-3 MSD

Lab Sample ID: 480-89112-3 MS

Analysis Batch: 269215

Matrix: Solid Analysis Batch: 269215									Prep Ty Prep Ba	•	
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
PCB-1016	ND		3.32	2.59		mg/Kg	<u> </u>	78	50 - 177	28	50
PCB-1260	ND		3.32	2.73		mg/Kg	☼	82	33 - 200	30	50

TestAmerica Buffalo

Client Sample ID: TS-20

Page 26 of 44

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: 480-89112-3 MSD

Matrix: Solid

Analysis Batch: 269215

Client Sample ID: TS-20 Prep Type: Total/NA

Prep Batch: 269148

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	98		60 - 154
Tetrachloro-m-xylene	118		60 - 154
DCB Decachlorobiphenyl	94		65 - 174
DCB Decachlorobiphenyl	125		65 - 174

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-268944/1-A

Matrix: Solid

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 268944

Analysis Batch: 269139								Prep Batch:	268944
-	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		9.9	4.3	mg/Kg		10/15/15 11:40	10/16/15 03:04	1
Antimony	ND		14.8	0.39	mg/Kg		10/15/15 11:40	10/16/15 03:04	1
Arsenic	ND		2.0	0.39	mg/Kg		10/15/15 11:40	10/16/15 03:04	1
Barium	ND		0.49	0.11	mg/Kg		10/15/15 11:40	10/16/15 03:04	1
Beryllium	ND		0.20	0.028	mg/Kg		10/15/15 11:40	10/16/15 03:04	1
Cadmium	ND		0.20	0.030	mg/Kg		10/15/15 11:40	10/16/15 03:04	1
Calcium	4.62	J	49.3	3.3	mg/Kg		10/15/15 11:40	10/16/15 03:04	1
Chromium	ND		0.49	0.20	mg/Kg		10/15/15 11:40	10/16/15 03:04	1
Cobalt	ND		0.49	0.049	mg/Kg		10/15/15 11:40	10/16/15 03:04	1
Copper	ND		0.99	0.21	mg/Kg		10/15/15 11:40	10/16/15 03:04	1
Iron	ND		9.9	3.5	mg/Kg		10/15/15 11:40	10/16/15 03:04	1
Lead	ND		0.99	0.24	mg/Kg		10/15/15 11:40	10/16/15 03:04	1
Magnesium	ND		19.7	0.91	mg/Kg		10/15/15 11:40	10/16/15 03:04	1
Manganese	ND		0.20	0.032	mg/Kg		10/15/15 11:40	10/16/15 03:04	1
Nickel	ND		4.9	0.23	mg/Kg		10/15/15 11:40	10/16/15 03:04	1
Potassium	ND		29.6	19.7	mg/Kg		10/15/15 11:40	10/16/15 03:04	1
Selenium	ND		3.9	0.39	mg/Kg		10/15/15 11:40	10/16/15 03:04	1
Silver	ND		0.49	0.20	mg/Kg		10/15/15 11:40	10/16/15 03:04	1
Sodium	ND		138	12.8	mg/Kg		10/15/15 11:40	10/16/15 03:04	1
Thallium	ND		5.9	0.30	mg/Kg		10/15/15 11:40	10/16/15 03:04	1
Vanadium	ND		0.49	0.11	mg/Kg		10/15/15 11:40	10/16/15 03:04	1
Zinc	ND		2.0	0.63	mg/Kg		10/15/15 11:40	10/16/15 03:04	1

Lab Sample ID: LCSSRM 480-268944/2-A

Matrix: Solid

Analysis Batch: 269139

Client Sample II	D: Lab Control Sample
	Prep Type: Total/NA

Prep Batch: 268944

	Spike	LCSSRM	LCSSRM				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	8060	8153		mg/Kg		101.2	39.5 - 160. 0	
Antimony	94.0	76.62		mg/Kg		81.5	22.8 - 257. 4	
Arsenic	113	97.55		mg/Kg		86.3	69.7 - 142. 5	
Barium	155	135.1		mg/Kg		87.2	72.9 - 127. 1	

TestAmerica Buffalo

Page 27 of 44

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCSSRM 480-268944/2-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA**

Analysis Batch: 269139	Spike	LCSSRM	LCSSRM			Prep Batch: 268944 %Rec.
Analyte	Added	Result	Qualifier Unit		%Rec	Limits
Beryllium	109	93.86	mg/K	g –	86.1	74.7 - 124. 8
Cadmium	67.5	60.29	mg/K	g	89.3	
Calcium	5850	5026	mg/K	g	85.9	73.7 - 126. 5
Chromium	164	146.6	mg/K	g	89.4	70.7 - 129. 9
Cobalt	100	96.83	mg/K	g	96.8	74.4 - 126.
Copper	100	109.8	mg/K	g	109.8	
Iron	15200	13510	mg/K	g	88.9	
Lead	90.1	84.53	mg/K	g	93.8	5 70.1 - 129.
Magnesium	2790	2549	mg/K	g g	91.4	9 65.2 - 135.
Manganese	363	318.9	mg/K	g	87.8	1 75.8 - 124.
Nickel	89.3	87.33	mg/K	g	97.8	
Potassium	2770	2667	mg/K	g 9	96.3	7 61.7 - 138.
Selenium	156	136.8	mg/K	g	87.7	3 67.3 - 132.
Silver	52.6	45.01	mg/K	g	85.6	1 66.7 - 133.
Sodium	686	627.3	mg/K	9	91.4	5 55.8 - 144.
Thallium	116	111.1	mg/K	g	95.8	
Vanadium	73.0	69.64	mg/K	g	95.4	
Zinc	168	148.2	mg/K	g g	88.2	7 69.0 - 131.
						5

Lab Sample ID: 480-89112-1 MS

49.5

7.7

33500

127 F1 F2

Matrix: Solid

Chromium

Cobalt

Copper

Iron

Analysis Batch: 269139	Sample	Sample	Spike	MS	MS				Prep Batch: 268944 %Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aluminum	14000		2500	19940	4	mg/Kg	₩	239	75 - 125
Antimony	1.8	JF1	50.0	32.94	F1	mg/Kg	₩	62	75 - 125
Arsenic	14.1		50.0	59.78		mg/Kg	₩	91	75 - 125
Barium	531	F2	50.0	1255	E 4	mg/Kg	₩	1448	75 - 125
Beryllium	1.5		50.0	44.25		mg/Kg	₩	85	75 - 125
Cadmium	3.2		50.0	47.14		mg/Kg	₩	88	75 - 125
Calcium	32500	B F2	2500	52430	4	mg/Kg	₩	796	75 - 125

94.28

57.63

188.5

40100 4

50.0

50.0

50.0

2500

TestAmerica Buffalo

₩

Ď.

₩

90

100

123

266

75 - 125

75 - 125

75 - 125

75 - 125

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Client Sample ID: TS-18

Prep Type: Total/NA

Page 28 of 44

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 480-89112-1 MS

Matrix: Solid

Analysis Batch: 269139

Client Sample ID: TS-18 Prep Type: Total/NA Prep Batch: 268944

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Lead	1840		50.0	1399	4	mg/Kg	-	-887	75 - 125	
Magnesium	7610	F1	2500	11410	F1	mg/Kg	₩	152	75 - 125	
Manganese	793		50.0	805.5	4	mg/Kg	₩	24	75 - 125	
Nickel	23.4		50.0	74.05		mg/Kg	₩	101	75 - 125	
Potassium	1920	F1	2500	5642	F1	mg/Kg	₩.	149	75 - 125	
Selenium	1.3	J	50.0	44.83		mg/Kg	₩	87	75 - 125	
Silver	0.48	J	12.5	12.69		mg/Kg	₩	98	75 - 125	
Sodium	382		2510	2661		mg/Kg	₩	91	75 - 125	
Thallium	ND		50.0	45.81		mg/Kg	₩	92	75 - 125	
Vanadium	27.0		50.0	79.23		mg/Kg	₩	104	75 - 125	
Zinc	794	F2	50.0	1062	4	mg/Kg	₽	535	75 - 125	

Lab Sample ID: 480-89112-1 MSD

Matrix: Solid

Client Sample ID: TS-18 Prep Type: Total/NA

Wattix. Solid									Fleb iy		
Analysis Batch: 269139	Sample	Sample	Spike	MSD	MSD				Prep Ba	itch: 20	8944 RPD
Analyte	•	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	14000		2510	20890	4	mg/Kg	<u>∓</u>	276	75 - 125	5	20
Antimony	1.8	J F1	50.2	31.32	F1	mg/Kg	₩	59	75 - 125	5	20
Arsenic	14.1		50.2	57.94		mg/Kg	☼	87	75 - 125	3	20
Barium	531	F2	50.2	415.6	4 F2	mg/Kg	₩.	-230	75 - 125	101	20
Beryllium	1.5		50.2	44.05		mg/Kg	☼	85	75 - 125	0	20
Cadmium	3.2		50.2	46.74		mg/Kg	☼	87	75 - 125	1	20
Calcium	32500	B F2	2510	34050	4 F2	mg/Kg	₩.	61	75 - 125	43	20
Chromium	49.5		50.2	96.08		mg/Kg	₩	93	75 - 125	2	20
Cobalt	7.7		50.2	56.71		mg/Kg	☼	98	75 - 125	2	20
Copper	127	F1 F2	50.2	1112	F1 F2	mg/Kg	₽	1961	75 - 125	142	20
Iron	33500		2510	35460	4	mg/Kg	☼	80	75 - 125	12	20
Lead	1840		50.2	1409	4	mg/Kg	₩	-864	75 - 125	1	20
Magnesium	7610	F1	2510	9937		mg/Kg	₽	93	75 - 125	14	20
Manganese	793		50.2	713.6	4	mg/Kg	☼	-159	75 - 125	12	20
Nickel	23.4		50.2	72.72		mg/Kg	☼	98	75 - 125	2	20
Potassium	1920	F1	2510	5713	F1	mg/Kg		151	75 - 125	1	20
Selenium	1.3	J	50.2	44.44		mg/Kg	☼	86	75 - 125	1	20
Silver	0.48	J	12.6	12.45		mg/Kg	☼	95	75 - 125	2	20
Sodium	382		2520	2608		mg/Kg	₩.	89	75 - 125	2	20
Thallium	ND		50.2	45.67		mg/Kg	₩	91	75 - 125	0	20

Lab Sample ID: MB 480-269194/1-A

27.0

794 F2

Matrix: Solid

Vanadium

Zinc

Analysis Batch: 269531

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 269194

75 - 125

75 - 125

106

	MR	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		10.2	4.5	mg/Kg		10/16/15 10:50	10/16/15 21:11	1
Antimony	ND		15.3	0.41	mg/Kg		10/16/15 10:50	10/16/15 21:11	1
Arsenic	ND		2.0	0.41	mg/Kg		10/16/15 10:50	10/16/15 21:11	1
Barium	ND		0.51	0.11	mg/Kg		10/16/15 10:50	10/16/15 21:11	1
Aluminum Antimony Arsenic	ND ND ND		10.2 15.3 2.0	4.5 0.41 0.41	mg/Kg mg/Kg mg/Kg	=	10/16/15 10:50 10/16/15 10:50	10/16/15 21:11 10/16/15 21:11 10/16/15 21:11	

50.2

50.2

80.38

778.3 4 F2

mg/Kg

mg/Kg

TestAmerica Buffalo

Page 29 of 44

QC Sample Results

Client: Iyer Environmental Group, LLC

Lab Sample ID: MB 480-269194/1-A

Method: 6010C - Metals (ICP) (Continued)

Project/Site: 132 Dingens

Analysis Batch: 269531

Matrix: Solid

TestAmerica Job ID: 480-89112-1

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 269194

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Beryllium	ND		0.20	0.028	mg/Kg		10/16/15 10:50	10/16/15 21:11	1
Cadmium	ND		0.20	0.031	mg/Kg		10/16/15 10:50	10/16/15 21:11	1
Calcium	4.21	J	50.8	3.4	mg/Kg		10/16/15 10:50	10/16/15 21:11	1
Chromium	ND		0.51	0.20	mg/Kg		10/16/15 10:50	10/16/15 21:11	1
Cobalt	ND		0.51	0.051	mg/Kg		10/16/15 10:50	10/16/15 21:11	1
Copper	ND		1.0	0.21	mg/Kg		10/16/15 10:50	10/16/15 21:11	1
Iron	ND		10.2	3.6	mg/Kg		10/16/15 10:50	10/16/15 21:11	1
Lead	ND		1.0	0.24	mg/Kg		10/16/15 10:50	10/16/15 21:11	1
Magnesium	ND		20.3	0.94	mg/Kg		10/16/15 10:50	10/16/15 21:11	1
Manganese	ND		0.20	0.033	mg/Kg		10/16/15 10:50	10/16/15 21:11	1
Nickel	ND		5.1	0.23	mg/Kg		10/16/15 10:50	10/16/15 21:11	1
Potassium	ND		30.5	20.3	mg/Kg		10/16/15 10:50	10/16/15 21:11	1
Selenium	ND		4.1	0.41	mg/Kg		10/16/15 10:50	10/16/15 21:11	1
Silver	ND		0.51	0.20	mg/Kg		10/16/15 10:50	10/16/15 21:11	1
Sodium	ND		142	13.2	mg/Kg		10/16/15 10:50	10/16/15 21:11	1
Thallium	ND		6.1	0.31	mg/Kg		10/16/15 10:50	10/16/15 21:11	1
Vanadium	ND		0.51	0.11	mg/Kg		10/16/15 10:50	10/16/15 21:11	1
Zinc	ND		2.0	0.65	mg/Kg		10/16/15 10:50	10/16/15 21:11	1

Lab Sample ID: LCSSRM 480-269194/2-A

Matrix: Solid

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 269194

Analysis Batch: 269531	Spike	LCSSRM	LCSSRM				Prep Batch: 269194 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aluminum	8060	8942		mg/Kg		110.9	39.5 - 160.
							0
Antimony	94.0	84.68		mg/Kg		90.1	22.8 - 257.
A	440	400.4				00.0	4
Arsenic	113	102.4		mg/Kg		90.6	69.7 - 142.
Barium	155	149.8		mg/Kg		96.6	5 72.9 - 127.
Danam	100	143.0		mg/rtg		30.0	1
Beryllium	109	100.4		mg/Kg		92.1	74.7 - 124.
				3. 3			8
Cadmium	67.5	61.45		mg/Kg		91.0	73.2 - 126.
							8
Calcium	5850	5438		mg/Kg		93.0	73.7 - 126.
		.=					5
Chromium	164	153.3		mg/Kg		93.4	70.7 - 129.
Cobalt	100	100.0		ma/Ka		100	9 74.4 - 126.
Copail	100	100.0		mg/Kg		100	74.4 - 126. 0
Copper	100	118.6		mg/Kg		118 6	96.2 - 161.
Сорро.	.00			9/9			0
Iron	15200	14460		mg/Kg		95.1	37.4 - 162.
							5
Lead	90.1	89.03		mg/Kg		98.8	70.1 - 129.
							9
Magnesium	2790	2715		mg/Kg		97.3	65.2 - 135.
	202	005.0		// /		00.4	1
Manganese	363	335.6		mg/Kg		92.4	75.8 - 124.
							5

TestAmerica Buffalo

Page 30 of 44

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCSSRM 480-269194/2-A **Client Sample ID: Lab Control Sample** Matrix: Solid Prep Type: Total/NA Analysis Batch: 269531 **Prep Batch: 269194**

	Spike	LCSSRM	LCSSRM				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Nickel	89.3	89.22		mg/Kg		99.9	72.0 - 127. 7	
Potassium	2770	2842		mg/Kg		102.6	61.7 - 138. 3	
Selenium	156	143.9		mg/Kg		92.2	67.3 - 132. 1	
Silver	52.6	47.47		mg/Kg		90.3	66.7 - 133.	
Sodium	686	673.0		mg/Kg		98.1	55.8 - 144. 2	
Thallium	116	113.3		mg/Kg		97.7	67.4 - 131. 9	
Vanadium	73.0	72.67		mg/Kg		99.5	59.7 - 139. 7	
Zinc	168	152.5		mg/Kg		90.8	69.0 - 131. 5	

Lab Sample ID: 480-89112-3 MS **Client Sample ID: TS-20**

Matrix: Solid Analysis Batch: 269531					MO			J.	Prep Type: Total/NA Prep Batch: 269194
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aluminum	19800		2580	32470	4	mg/Kg	₩	492	75 - 125
Antimony	ND	F1	51.6	29.10	F1	mg/Kg	₩	56	75 - 125
Arsenic	7.6		51.6	56.12		mg/Kg	₩	94	75 - 125
Barium	114	F1	51.6	189.7	F1	mg/Kg	₩.	147	75 - 125
Beryllium	0.78		51.6	48.37		mg/Kg	≎	92	75 - 125
Cadmium	0.88		51.6	48.82		mg/Kg	₩	93	75 - 125
Calcium	5820	B F1 F2	2580	9059	F1	mg/Kg	☼	126	75 - 125
Chromium	42.2		51.6	96.17		mg/Kg	≎	105	75 - 125
Cobalt	9.1		51.6	62.72		mg/Kg	₩	104	75 - 125
Copper	36.5		51.6	84.51		mg/Kg	₩	93	75 - 125
Iron	24400		2580	30600	4	mg/Kg	≎	241	75 - 125
Lead	86.0		51.6	136.2		mg/Kg	≎	97	75 - 125
Magnesium	4270	F1	2580	8455	F1	mg/Kg	₩	162	75 - 125
Manganese	455		51.6	624.1	4	mg/Kg	≎	327	75 - 125
Nickel	22.1		51.6	73.81		mg/Kg	≎	100	75 - 125
Potassium	2560	F1	2580	8267	F1	mg/Kg		221	75 - 125
Selenium	1.3	J	51.6	49.56		mg/Kg	≎	94	75 - 125
Silver	ND		12.9	12.54		mg/Kg	≎	97	75 - 125
Sodium	134	J	2580	2597		mg/Kg	- - - - - -	95	75 - 125
Thallium	ND		51.6	49.18		mg/Kg	≎	95	75 - 125
Vanadium	37.4	F1	51.6	105.3	F1	mg/Kg	≎	132	75 - 125
						5 0			

Lab Sample ID: 480-89112-3 MSD

179 F1

Matrix: Solid

Zinc

Matrix: Solid									Prep Ty	pe: Tot	al/NA
Analysis Batch: 269531									Prep Ba	atch: 20	69194
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	19800		2640	30040	4	mg/Kg	₩	389	75 - 125	8	20

226.5

mg/Kg

51.6

TestAmerica Buffalo

75 - 125

Client Sample ID: TS-20

Page 31 of 44

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 480-89112-3 MSD Client Sample ID: TS-20 **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 269531	Sample	Sample	Spike	MSD	MSD				Prep Ba %Rec.	atch: 20	69194 RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	ND	F1	52.7	28.77	F1	mg/Kg	₩	55	75 - 125	1	20
Arsenic	7.6		52.7	52.15		mg/Kg	☼	85	75 - 125	7	20
Barium	114	F1	52.7	179.5		mg/Kg		124	75 - 125	6	20
Beryllium	0.78		52.7	46.88		mg/Kg	☼	87	75 - 125	3	20
Cadmium	0.88		52.7	47.35		mg/Kg	☼	88	75 - 125	3	20
Calcium	5820	B F1 F2	2640	14210	F1 F2	mg/Kg	₩.	318	75 - 125	44	20
Chromium	42.2		52.7	89.35		mg/Kg	☼	89	75 - 125	7	20
Cobalt	9.1		52.7	58.86		mg/Kg	☼	94	75 - 125	6	20
Copper	36.5		52.7	80.42		mg/Kg	₩.	83	75 - 125	5	20
Iron	24400		2640	25510	4	mg/Kg	☼	43	75 - 125	18	20
Lead	86.0		52.7	128.3		mg/Kg	₩	80	75 - 125	6	20
Magnesium	4270	F1	2640	7315		mg/Kg	₩.	116	75 - 125	14	20
Manganese	455		52.7	532.2	4	mg/Kg	☼	146	75 - 125	16	20
Nickel	22.1		52.7	69.43		mg/Kg	☼	90	75 - 125	6	20
Potassium	2560	F1	2640	7428	F1	mg/Kg		185	75 - 125	11	20
Selenium	1.3	J	52.7	46.81		mg/Kg	☼	86	75 - 125	6	20
Silver	ND		13.2	12.10		mg/Kg	₩	92	75 - 125	4	20
Sodium	134	J	2640	2539		mg/Kg	₩.	91	75 - 125	2	20
Thallium	ND		52.7	47.40		mg/Kg	₩	90	75 - 125	4	20
Vanadium	37.4	F1	52.7	94.21		mg/Kg	₩	108	75 - 125	11	20
Zinc	179	F1	52.7	209.6	F1	mg/Kg	₩	58	75 - 125	8	20

Method: 7471B - Mercury (CVAA)

Lab Sample ID: MB 480-268933/1-A Client Sample ID: Method Blank **Matrix: Solid Prep Type: Total/NA**

Analysis Batch: 269123 Prep Batch: 268933 MB MB

Analyte Result Qualifier RL MDL Unit **Prepared** Analyzed Dil Fac 0.020 10/15/15 13:20 10/15/15 17:45 Mercury ND 0.0079 mg/Kg

Lab Sample ID: LCSSRM 480-268933/2-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA**

Analysis Batch: 269123 Prep Batch: 268933 Spike LCSSRM LCSSRM %Rec. Added Analyte Result Qualifier Unit %Rec Limits

8.37 11.41 136.3 51.3 - 148. Mercury mg/Kg

Lab Sample ID: MB 480-269176/1-A **Client Sample ID: Method Blank Matrix: Solid**

Prep Type: Total/NA Analysis Batch: 269302 Prep Batch: 269176

MB MB Analyte **Result Qualifier** RL MDL Unit Prepared Analyzed Dil Fac 0.020 <u>10/16/15 11:15</u> <u>10/16/15 13:28</u> Mercury ND 0.0081 mg/Kg

QC Sample Results

Client: Iyer Environmental Group, LLC TestAmerica Job ID: 480-89112-1

Project/Site: 132 Dingens

Method: 7471B - Mercury (CVAA) (Continued)

Lab Sample ID: LCSSRM 480-269176/2-A				Client	Sar	mple IE): Lab Con	trol Sample
Matrix: Solid							Prep Typ	e: Total/NA
Analysis Batch: 269302							Prep Ba	tch: 269176
	Spike	LCSSRM	LCSSRM				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	8.37	10.61		mg/Kg		126.7	51.3 - 148.	
							4	

Lab Sample ID: 480-89112- Matrix: Solid Analysis Batch: 269302		Sample	Spike	MS	MS			Cli	ent Sample ID: Prep Type: Tot Prep Batch: 2 %Rec.	al/NA
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	0.16		0.419	0.557		mg/Kg	₩	94	80 - 120	

Lab Sample ID: 480-89112-3 MSD Matrix: Solid Analysis Batch: 269302								CI	ient Samp Prep Ty Prep Ba	pe: Tot	al/NA
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury	0.16		0.432	0.557		mg/Kg	<u> </u>	91	80 - 120	0	20

6

8

40

11

12

1 0

15

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

GC/MS Semi VOA

Prep Batch: 268902

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89112-1	TS-18	Total/NA	Solid	3550C	
480-89112-2	TS-19	Total/NA	Solid	3550C	
480-89112-4	TS-21	Total/NA	Solid	3550C	
LCS 480-268902/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-268902/1-A	Method Blank	Total/NA	Solid	3550C	

Prep Batch: 269145

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89112-3	TS-20	Total/NA	Solid	3550C	
480-89112-3 MS	TS-20	Total/NA	Solid	3550C	
480-89112-3 MSD	TS-20	Total/NA	Solid	3550C	
LCS 480-269145/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-269145/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 269161

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89112-1	TS-18	Total/NA	Solid	8270D	268902
480-89112-2	TS-19	Total/NA	Solid	8270D	268902
480-89112-4	TS-21	Total/NA	Solid	8270D	268902
LCS 480-268902/2-A	Lab Control Sample	Total/NA	Solid	8270D	268902
MB 480-268902/1-A	Method Blank	Total/NA	Solid	8270D	268902

Analysis Batch: 269526

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89112-3	TS-20	Total/NA	Solid	8270D	269145
480-89112-3 MS	TS-20	Total/NA	Solid	8270D	269145
480-89112-3 MSD	TS-20	Total/NA	Solid	8270D	269145
LCS 480-269145/2-A	Lab Control Sample	Total/NA	Solid	8270D	269145
MB 480-269145/1-A	Method Blank	Total/NA	Solid	8270D	269145

GC Semi VOA

Prep Batch: 268943

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89112-1	TS-18	Total/NA	Solid	3550C	
480-89112-1 MS	TS-18	Total/NA	Solid	3550C	
480-89112-1 MSD	TS-18	Total/NA	Solid	3550C	
480-89112-2	TS-19	Total/NA	Solid	3550C	
480-89112-4	TS-21	Total/NA	Solid	3550C	
LCS 480-268943/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-268943/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 268999

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89112-1	TS-18	Total/NA	Solid	8082A	268943
480-89112-1 MS	TS-18	Total/NA	Solid	8082A	268943
480-89112-1 MSD	TS-18	Total/NA	Solid	8082A	268943
480-89112-2	TS-19	Total/NA	Solid	8082A	268943
480-89112-4	TS-21	Total/NA	Solid	8082A	268943
LCS 480-268943/2-A	Lab Control Sample	Total/NA	Solid	8082A	268943

TestAmerica Buffalo

Page 34 of 44

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

GC Semi VOA (Continued)

Analysis Batch: 268999 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-268943/1-A	Method Blank	Total/NA	Solid	8082A	268943

Prep Batch: 269148

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89112-3	TS-20	Total/NA	Solid	3550C	
480-89112-3 MS	TS-20	Total/NA	Solid	3550C	
480-89112-3 MSD	TS-20	Total/NA	Solid	3550C	
LCS 480-269148/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-269148/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 269215

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
480-89112-3	TS-20	Total/NA	Solid	8082A	269148	
480-89112-3 MS	TS-20	Total/NA	Solid	8082A	269148	
480-89112-3 MSD	TS-20	Total/NA	Solid	8082A	269148	
LCS 480-269148/2-A	Lab Control Sample	Total/NA	Solid	8082A	269148	
MB 480-269148/1-A	Method Blank	Total/NA	Solid	8082A	269148	

Metals

Prep Batch: 268933

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89112-1	TS-18	Total/NA	Solid	7471B	
480-89112-2	TS-19	Total/NA	Solid	7471B	
480-89112-4	TS-21	Total/NA	Solid	7471B	
LCSSRM 480-268933/2-A	Lab Control Sample	Total/NA	Solid	7471B	
MB 480-268933/1-A	Method Blank	Total/NA	Solid	7471B	

Prep Batch: 268944

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89112-1	TS-18	Total/NA	Solid	3050B	
480-89112-1 MS	TS-18	Total/NA	Solid	3050B	
480-89112-1 MSD	TS-18	Total/NA	Solid	3050B	
480-89112-2	TS-19	Total/NA	Solid	3050B	
480-89112-4	TS-21	Total/NA	Solid	3050B	
LCSSRM 480-268944/2-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 480-268944/1-A	Method Blank	Total/NA	Solid	3050B	

Analysis Batch: 269123

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89112-1	TS-18	Total/NA	Solid	7471B	268933
480-89112-2	TS-19	Total/NA	Solid	7471B	268933
480-89112-4	TS-21	Total/NA	Solid	7471B	268933
LCSSRM 480-268933/2-A	Lab Control Sample	Total/NA	Solid	7471B	268933
MB 480-268933/1-A	Method Blank	Total/NA	Solid	7471B	268933

Analysis Batch: 269139

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89112-1	TS-18	Total/NA	Solid	6010C	268944
480-89112-1 MS	TS-18	Total/NA	Solid	6010C	268944

TestAmerica Buffalo

Page 35 of 44

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Metals (Continued)

Analysis Batch: 269139 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89112-1 MSD	TS-18	Total/NA	Solid	6010C	268944
480-89112-2	TS-19	Total/NA	Solid	6010C	268944
480-89112-4	TS-21	Total/NA	Solid	6010C	268944
LCSSRM 480-268944/2-A	Lab Control Sample	Total/NA	Solid	6010C	268944
MB 480-268944/1-A	Method Blank	Total/NA	Solid	6010C	268944

Prep Batch: 269176

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89112-3	TS-20	Total/NA	Solid	7471B	
480-89112-3 MS	TS-20	Total/NA	Solid	7471B	
480-89112-3 MSD	TS-20	Total/NA	Solid	7471B	
LCSSRM 480-269176/2-A	Lab Control Sample	Total/NA	Solid	7471B	
MB 480-269176/1-A	Method Blank	Total/NA	Solid	7471B	

Prep Batch: 269194

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89112-3	TS-20	Total/NA	Solid	3050B	
480-89112-3 MS	TS-20	Total/NA	Solid	3050B	
480-89112-3 MSD	TS-20	Total/NA	Solid	3050B	
LCSSRM 480-269194/2-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 480-269194/1-A	Method Blank	Total/NA	Solid	3050B	

Analysis Batch: 269302

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89112-3	TS-20	Total/NA	Solid	7471B	269176
480-89112-3 MS	TS-20	Total/NA	Solid	7471B	269176
480-89112-3 MSD	TS-20	Total/NA	Solid	7471B	269176
LCSSRM 480-269176/2-A	Lab Control Sample	Total/NA	Solid	7471B	269176
MB 480-269176/1-A	Method Blank	Total/NA	Solid	7471B	269176

Analysis Batch: 269531

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89112-3	TS-20	Total/NA	Solid	6010C	269194
480-89112-3 MS	TS-20	Total/NA	Solid	6010C	269194
480-89112-3 MSD	TS-20	Total/NA	Solid	6010C	269194
LCSSRM 480-269194/2-A	Lab Control Sample	Total/NA	Solid	6010C	269194
MB 480-269194/1-A	Method Blank	Total/NA	Solid	6010C	269194

General Chemistry

Analysis Batch: 268855

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89112-1	TS-18	Total/NA	Solid	Moisture	
480-89112-2	TS-19	Total/NA	Solid	Moisture	
480-89112-3	TS-20	Total/NA	Solid	Moisture	
480-89112-3 MS	TS-20	Total/NA	Solid	Moisture	
480-89112-3 MSD	TS-20	Total/NA	Solid	Moisture	
480-89112-4	TS-21	Total/NA	Solid	Moisture	

Page 36 of 44

Lab Chronicle

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-89112-1

Lab Sample ID: 480-89112-1

Matrix: Solid

Date Collected: 10/14/15 00:00 Date Received: 10/14/15 18:00

Client Sample ID: TS-18

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture			268855	10/14/15 22:10	CMK	TAL BUF

Client Sample ID: TS-18 Lab Sample ID: 480-89112-1

Date Collected: 10/14/15 00:00 Date Received: 10/14/15 18:00 Matrix: Solid
Percent Solids: 79.0

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			268902	10/15/15 07:51	CAM	TAL BUF
Total/NA	Analysis	8270D		10	269161	10/16/15 14:11	LMW	TAL BUF
Total/NA	Prep	3550C			268943	10/15/15 09:30	TRG	TAL BUF
Total/NA	Analysis	8082A		1	268999	10/15/15 22:30	KS	TAL BUF
Total/NA	Prep	3050B			268944	10/15/15 11:40	CMM	TAL BUF
Total/NA	Analysis	6010C		1	269139	10/16/15 03:40	AMH	TAL BUF
Total/NA	Prep	7471B			268933	10/15/15 13:20	TAS	TAL BUF
Total/NA	Analysis	7471B		1	269123	10/15/15 15:41	TAS	TAL BUF

Client Sample ID: TS-19 Lab Sample ID: 480-89112-2

Date Collected: 10/14/15 00:00

Mate: 0.11

Date Received: 10/14/15 18:00

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	268855	10/14/15 22:10	CMK	TAL BUF

Client Sample ID: TS-19 Lab Sample ID: 480-89112-2

Date Collected: 10/14/15 00:00 Date Received: 10/14/15 18:00 Matrix: Solid
Percent Solids: 82.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			268902	10/15/15 07:51	CAM	TAL BUF
Total/NA	Analysis	8270D		10	269161	10/16/15 14:38	LMW	TAL BUF
Total/NA	Prep	3550C			268943	10/15/15 09:30	TRG	TAL BUF
Total/NA	Analysis	8082A		1	268999	10/15/15 22:46	KS	TAL BUF
Total/NA	Prep	3050B			268944	10/15/15 11:40	CMM	TAL BUF
Total/NA	Analysis	6010C		1	269139	10/16/15 03:57	AMH	TAL BUF
Total/NA	Prep	7471B			268933	10/15/15 13:20	TAS	TAL BUF
Total/NA	Analysis	7471B		1	269123	10/15/15 15:43	TAS	TAL BUF

2

3

5

7

4.0

11

13

15

Lab Chronicle

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-89112-1

Lab Sample ID: 480-89112-3

Matrix: Solid

Date Collected: 10/14/15 00:00 Date Received: 10/14/15 18:00

Client Sample ID: TS-20

Batch Dilution Batch Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Total/NA Analysis Moisture 268855 10/14/15 22:10 CMK TAL BUF

Client Sample ID: TS-20 Lab Sample ID: 480-89112-3

Date Collected: 10/14/15 00:00 Matrix: Solid Date Received: 10/14/15 18:00 Percent Solids: 74.8

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			269145	10/16/15 08:10	TRG	TAL BUF
Total/NA	Analysis	8270D		10	269526	10/19/15 16:54	CAS	TAL BUF
Total/NA	Prep	3550C			269148	10/16/15 08:13	JLS	TAL BUF
Total/NA	Analysis	8082A		1	269215	10/16/15 13:17	KS	TAL BUF
Total/NA	Prep	3050B			269194	10/16/15 10:50	CMM	TAL BUF
Total/NA	Analysis	6010C		1	269531	10/16/15 21:49	AMH	TAL BUF
Total/NA	Prep	7471B			269176	10/16/15 11:15	TAS	TAL BUF
Total/NA	Analysis	7471B		1	269302	10/16/15 13:32	TAS	TAL BUF

Client Sample ID: TS-21 Lab Sample ID: 480-89112-4

Date Collected: 10/14/15 00:00 **Matrix: Solid**

Date Received: 10/14/15 18:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	268855	10/14/15 22:10	CMK	TAL BUF

Lab Sample ID: 480-89112-4 Client Sample ID: TS-21 Date Collected: 10/14/15 00:00 **Matrix: Solid** Date Received: 10/14/15 18:00 Percent Solids: 74.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			268902	10/15/15 07:51	CAM	TAL BUF
Total/NA	Analysis	8270D		5	269161	10/16/15 15:30	LMW	TAL BUF
Total/NA	Prep	3550C			268943	10/15/15 09:30	TRG	TAL BUF
Total/NA	Analysis	8082A		1	268999	10/15/15 23:18	KS	TAL BUF
Total/NA	Prep	3050B			268944	10/15/15 11:40	CMM	TAL BUF
Total/NA	Analysis	6010C		1	269139	10/16/15 04:13	AMH	TAL BUF
Total/NA	Prep	7471B			268933	10/15/15 13:20	TAS	TAL BUF
Total/NA	Analysis	7471B		1	269123	10/15/15 15:47	TAS	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TestAmerica Buffalo

Certification Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-89112-1

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority New York	Program NELAP		EPA Region	Certification ID 10026	Expiration Date 03-31-16
			. "		00 01 10
The following analytes	s are included in this repor	rt, but certification is r	not offered by the go	overning authority:	
Analysis Method	Prep Method	Matrix	Analyt	е	
Analysis Method Moisture	Prep Method	Matrix Solid		e nt Moisture	

3

4

5

9

11

12

14

15

Method Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-89112-1

Method	Method Description	Protocol	Laboratory
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL BUF
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF
7471B	Mercury (CVAA)	SW846	TAL BUF
Moisture	Percent Moisture	EPA	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TestAmerica Buffalo

2

3

5

0

8

10

46

13

15

Sample Summary

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

TestAmerica Job ID: 480-89112-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-89112-1	TS-18	Solid	10/14/15 00:00	10/14/15 18:00
480-89112-2	TS-19	Solid	10/14/15 00:00	10/14/15 18:00
480-89112-3	TS-20	Solid	10/14/15 00:00	10/14/15 18:00
480-89112-4	TS-21	Solid	10/14/15 00:00	10/14/15 18:00

Detection Limit Exceptions Summary

Client: Iyer Environmental Group, LLC
Project/Site: 132 Dingens
TestAmerica Job ID: 480-89112-1

The requested project specific reporting limits listed below were less than laboratory standard quantitation limits (PQL) but great than or equal to the laboratory method detection limits (MDL). It must be noted that results reported below lab standard quantitation limits may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedure do not indicate corrective action for detections below the laboratory's PQL.

Method	Matrix	Analyte	Units	Client RL	Lab PQL
6010C	Solid	Silver	mg/Kg	0.50	0.6

Δ

£

,

10

12

11

15

Chain of Custody Record

Temperature on Receipt __

Drinking Water? Yes□

Not

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

Date Chair of Custory Number 264480		Analysis (Attach list if more space is needed)	Special Instructions/	Conditions of Receipt	Catagory B).0		DSM/SM	,			450-58112 Chain of Custody	(A fee may be assessed if samples are retained Months (onger than 1 month)		Date Time	4	Date Time	- 1
		Analy more	200 200 28 28	73 M	바인. 바인. 바인. 카인.	> >	2	\ \ \ \ \ \ \ \ \ \	\ \ \ \				Archive For	6	E			キーつい
1		Lab Contact		Containers & Preservatives	Sendru LOSSH LONH SANS NAROH NAROH	2	2	3	2				Disposal By Lab	QC Requirements (Specify)	1. Received By	2. Received By	3. Received By	
Manager Sharma	ne Number (Area Code)/Fax M	<u> </u>	Carrier/Waybill Number	Matrix	I/OS snoenby	\$ J	>	>	>				Sample Disposal Return To Client	- >	re Time	2	Time	
Project Managel					Time	5)02,							пВ 🛚 Ипкпочт	Da		Date	Date	
Client Environmental Grays	Rolling Hills D	Orkerd Park NY 14127	State)) 	Sample I.D. No. and Description (Containers for each sample may be combined on one line)	[5-18 of 14,2015			个 12-51	43 of			Possible Hazard Identification Mon-Hazard	red Hours NA 7 Days 14 Days	1. M. T.	2. Relinquished By	0/3. Relinquished By	Comments

Login Sample Receipt Checklist

Client: Iyer Environmental Group, LLC

Job Number: 480-89112-1

Login Number: 89112 List Source: TestAmerica Buffalo

List Number: 1

Creator: Kolb, Chris M

Radioactivity either was not measured or, if measured, is at or below background True cooler's custody seal, if present, is intact. The cooler or samples do not appear to have been compromised or tampered with. Samples were received on ice. Cooler Temperature is acceptable. Cooler Temperature is recorded. COC is present. COC is present. COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? There are no discrepancies between the sample IDs on the containers and the COC. Samples are received within Holding Time. Sample containers have legible labels. Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. Sample preservation Verified True Sample reservation Verified True MS/MSDs VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter. If necessary, staff have been informed of any short hold time or quick TAT needs Multiphasic samples are not present. Samples company provided. Samples company provided. True IYER ENV. Samples received within 48 hours of sampling. True IYER ENV.	Question	Answer	Comment
background The cooler's custody seal, if present, is intact. The cooler or samples do not appear to have been compromised or tampered with. Samples were received on ice. Cooler Temperature is acceptable. Cooler Temperature is acceptable. True COC is filled out in ink and legible. COC is filled out in ink and legible. True COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? There are no discrepancies between the sample IDs on the containers and the COC. Samples are received within Holding Time. Sample containers have legible labels. Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. Sample bottles are completely filled. True Sample Preservation Verified True There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter. If necessary, staff have been informed of any short hold time or quick TAT needs Multiphasic samples are not present. Samples do not require splitting or compositing. True Samples or require splitting or compositing. True Samples received within 48 hours of sampling. Samples requiring field filtration have been filtered in the field.			Comment
The cooler or samples do not appear to have been compromised or tampered with. Samples were received on ice. Cooler Temperature is acceptable. Cooler Temperature is recorded. COC is present. COC is present. COC is filled out in ink and legible. COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? There are no discrepancies between the sample IDs on the containers and the COC. Samples are received within Holding Time. Sample containers have legible labels. Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. Sample bottles are completely filled. Sample Preservation Verified True Sample reservation Verified True MS/MSDs VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter. If necessary, staff have been informed of any short hold time or quick TAT needs Multiphasic samples are not present. Samples do not require splitting or compositing. True Samples requiring field filtration have been filtered in the field.	background	rue	
tampered with. Samples were received on ice. Cooler Temperature is acceptable. Crue Cooler Temperature is recorded. True COC is filled out in ink and legible. COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? There are no discrepancies between the sample IDs on the containers and the COC. Samples are received within Holding Time. Sample containers have legible labels. Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. Sample bottles are completely filled. True Sample bottles are completely filled. True Sample Preservation Verified There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter. If necessary, staff have been informed of any short hold time or quick TAT needs Multiphasic samples are not present. Samples one require splitting or compositing. Samples received within 48 hours of sampling. Samples requiring field filtration have been filtered in the field.	The cooler's custody seal, if present, is intact.	True	
Cooler Temperature is acceptable. Cooler Temperature is recorded. CoC is present. CoC is present. True CoC is filled out in ink and legible. True CoC is filled out with all pertinent information. Is the Field Sampler's name present on CoC? True There are no discrepancies between the sample IDs on the containers and the CoC. Samples are received within Holding Time. Sample containers have legible labels. Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. Sample bottles are completely filled. Sample Preservation Verified True There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter. If necessary, staff have been informed of any short hold time or quick TAT needs Multiphasic samples are not present. Samples do not require splitting or compositing. Samples focusing samples are not present. Samples received within 48 hours of sampling. Samples requiring field filtration have been filtered in the field.		True	
Cooler Temperature is recorded. COC is present. True COC is present. True COC is filled out in ink and legible. True COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? True There are no discrepancies between the sample IDs on the containers and the COC. Samples are received within Holding Time. Sample containers have legible labels. Containers are not broken or leaking. True Sample collection date/times are provided. Appropriate sample containers are used. Sample bottles are completely filled. Sample Preservation Verified There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter. If necessary, staff have been informed of any short hold time or quick TAT res Samples do not require splitting or compositing. True Samples do not require splitting or compositing. Samples received within 48 hours of sampling. Samples received within 48 hours of sampling.	Samples were received on ice.	False	
COC is present. COC is filled out in ink and legible. COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? True True True True True True True There are no discrepancies between the sample IDs on the containers and the COC. Samples are received within Holding Time. Samples are received within Holding Time. Sample containers have legible labels. Containers are not broken or leaking. True Sample collection date/times are provided. Appropriate sample containers are used. True Sample bottles are completely filled. True Sample Preservation Verified True There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter. If necessary, staff have been informed of any short hold time or quick TAT needs Multiphasic samples are not present. True Samples do not require splitting or compositing. True Samples received within 48 hours of sampling. True Samples received within 48 hours of sampling. True True True IYER ENV.	Cooler Temperature is acceptable.	True	Yes: Received same day of collection
COC is filled out in ink and legible. COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? True There are no discrepancies between the sample IDs on the containers and the COC. Samples are received within Holding Time. Sample containers have legible labels. Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. Sample bottles are completely filled. Sample Preservation Verified True There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter. If necessary, staff have been informed of any short hold time or quick TAT needs Multiphasic samples are not present. Samples do not require splitting or compositing. Samples received within 48 hours of sampling. Samples requiring field filtration have been filtered in the field.	Cooler Temperature is recorded.	True	
COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? True There are no discrepancies between the sample IDs on the containers and the COC. Samples are received within Holding Time. Sample containers have legible labels. True Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. Sample bottles are completely filled. True Sample Preservation Verified True There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter. If necessary, staff have been informed of any short hold time or quick TAT needs Multiphasic samples are not present. True Samples do not require splitting or compositing. Samples received within 48 hours of sampling. Samples requiring field filtration have been filtered in the field. False True True True Refer to job narrative for details Refer to job narrative for details Prue Refer to job narrative for details	COC is present.	True	
Is the Field Sampler's name present on COC? True There are no discrepancies between the sample IDs on the containers and the COC. Samples are received within Holding Time. Sample containers have legible labels. Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. Sample bottles are completely filled. Sample Preservation Verified True There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter. If necessary, staff have been informed of any short hold time or quick TAT needs Multiphasic samples are not present. Samples do not require splitting or compositing. Samples received within 48 hours of sampling. Samples requiring field filtration have been filtered in the field.	COC is filled out in ink and legible.	True	
There are no discrepancies between the sample IDs on the containers and the COC. Samples are received within Holding Time. Sample containers have legible labels. Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. Sample bottles are completely filled. Sample Preservation Verified True There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter. If necessary, staff have been informed of any short hold time or quick TAT rue Samples do not require splitting or compositing. Samples received within 48 hours of sampling. Samples requiring field filtration have been filtered in the field.	COC is filled out with all pertinent information.	False	Refer to job narrative for details
the COC. Samples are received within Holding Time. Sample containers have legible labels. Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. Sample bottles are completely filled. Sample Preservation Verified True Sample Preservation Verified True There is sufficient vol. for all requested analyses, incl. any requested M/S/MSDs VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter. If necessary, staff have been informed of any short hold time or quick TAT needs Multiphasic samples are not present. Samples do not require splitting or compositing. True Sampling Company provided. Samples received within 48 hours of sampling. Samples requiring field filtration have been filtered in the field.	Is the Field Sampler's name present on COC?	True	
Sample containers have legible labels. Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. Sample bottles are completely filled. Sample Preservation Verified True There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter. If necessary, staff have been informed of any short hold time or quick TAT needs Multiphasic samples are not present. Samples do not require splitting or compositing. True Sampling Company provided. Samples received within 48 hours of sampling. Samples requiring field filtration have been filtered in the field.		True	
Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. True Sample bottles are completely filled. Sample Preservation Verified True There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter. If necessary, staff have been informed of any short hold time or quick TAT needs Multiphasic samples are not present. Samples do not require splitting or compositing. Samples received within 48 hours of sampling. Samples requiring field filtration have been filtered in the field. True Refer to job narrative for details True Refer to job narrative for details True Refer to job narrative for details True If ue Sample N/A If ue IYER ENV. True Samples requiring field filtration have been filtered in the field. True	Samples are received within Holding Time.	True	
Sample collection date/times are provided. Appropriate sample containers are used. True Sample bottles are completely filled. Sample Preservation Verified True There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter. If necessary, staff have been informed of any short hold time or quick TAT needs Multiphasic samples are not present. Samples do not require splitting or compositing. Samples received within 48 hours of sampling. Samples requiring field filtration have been filtered in the field. True Refer to job narrative for details True Refer to job narrative for details True Refer to job narrative for details	Sample containers have legible labels.	True	
Appropriate sample containers are used. Sample bottles are completely filled. Sample Preservation Verified True There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter. If necessary, staff have been informed of any short hold time or quick TAT needs Multiphasic samples are not present. Samples do not require splitting or compositing. Samples received within 48 hours of sampling. Samples requiring field filtration have been filtered in the field. True True True IYER ENV. True Samples requiring field filtration have been filtered in the field.	Containers are not broken or leaking.	True	
Sample bottles are completely filled. Sample Preservation Verified True There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter. If necessary, staff have been informed of any short hold time or quick TAT needs Multiphasic samples are not present. Samples do not require splitting or compositing. Sampling Company provided. True Samples received within 48 hours of sampling. Samples requiring field filtration have been filtered in the field. True	Sample collection date/times are provided.	False	Refer to job narrative for details
Sample Preservation Verified True There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter. If necessary, staff have been informed of any short hold time or quick TAT needs Multiphasic samples are not present. Samples do not require splitting or compositing. True Sampling Company provided. True Samples received within 48 hours of sampling. True Samples requiring field filtration have been filtered in the field. True	Appropriate sample containers are used.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter. If necessary, staff have been informed of any short hold time or quick TAT needs Multiphasic samples are not present. Samples do not require splitting or compositing. True Sampling Company provided. True Samples received within 48 hours of sampling. True Samples requiring field filtration have been filtered in the field. True	Sample bottles are completely filled.	True	
MS/MSDs VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter. If necessary, staff have been informed of any short hold time or quick TAT needs Multiphasic samples are not present. Samples do not require splitting or compositing. True Sampling Company provided. True Samples received within 48 hours of sampling. True Samples requiring field filtration have been filtered in the field. True	Sample Preservation Verified	True	
diameter. If necessary, staff have been informed of any short hold time or quick TAT rue needs Multiphasic samples are not present. Samples do not require splitting or compositing. True Sampling Company provided. True Samples received within 48 hours of sampling. True Samples requiring field filtration have been filtered in the field. True	There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
needs Multiphasic samples are not present. Samples do not require splitting or compositing. Sampling Company provided. Samples received within 48 hours of sampling. Samples requiring field filtration have been filtered in the field. True True IYER ENV. True	VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
Samples do not require splitting or compositing. Sampling Company provided. Samples received within 48 hours of sampling. Samples requiring field filtration have been filtered in the field. True True True	If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Sampling Company provided. Samples received within 48 hours of sampling. Samples requiring field filtration have been filtered in the field. True True True True True	Multiphasic samples are not present.	True	
Samples received within 48 hours of sampling. True Samples requiring field filtration have been filtered in the field. True	Samples do not require splitting or compositing.	True	
Samples requiring field filtration have been filtered in the field. True	Sampling Company provided.	True	IYER ENV.
	Samples received within 48 hours of sampling.	True	
Chlorine Residual checked. N/A	Samples requiring field filtration have been filtered in the field.	True	
	Chlorine Residual checked.	N/A	

2

A

5

7

9

11

13

14

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-89839-1 Client Project/Site: 132 Dingens

For:

Iyer Environmental Group, LLC 44 Rolling Hills Drive Orchard Park, New York 14127

Attn: Dr. Dharmarajan R Iyer

Melisso Deyo

Authorized for release by: 10/30/2015 2:26:24 PM

Melissa Deyo, Project Manager I (716)504-9874

melissa.deyo@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	11
Lab Chronicle	12
Certification Summary	13
Method Summary	14
Sample Summary	15
Chain of Custody	16
Receipt Checklists	17

6

8

9

1 U

12

4 /

Definitions/Glossary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-89839-1

Qualifiers

GC Semi VOA

ier Description

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
1	Listed under the "D" column to designate that the result is reported on a dry weight basis
6R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
ER	Duplicate error ratio (normalized absolute difference)
Oil Fac	Dilution Factor
L, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
/IDA	Minimum detectable activity
DL	Estimated Detection Limit
MDC	Minimum detectable concentration
IDL	Method Detection Limit
ΛL	Minimum Level (Dioxin)
IC	Not Calculated
1D	Not detected at the reporting limit (or MDL or EDL if shown)

QC Quality Control
RER Relative error ratio

PQL

RL Reporting Limit or Requested Limit (Radiochemistry)

Practical Quantitation Limit

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TestAmerica Buffalo

Page 3 of 17

4

3

6

8

10

12

13

Case Narrative

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-89839-1

Job ID: 480-89839-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-89839-1

Receipt

The samples were received on 10/26/2015 2:30 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 14.0° C.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

5

6

_

10

11

4.0

14

Detection Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-89839-1

Client Sample ID: CSB-15-3

Lab Sample ID: 480-89839-1

No Detections.

Client Sample ID: CSW-51-4B Lab Sample ID: 480-89839-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
PCB-1248	0.29		0.27	0.054	mg/Kg	1	₩	8082A	 Total/NA
PCB-1254	0.16	J	0.27	0.13	mg/Kg	1	₩	8082A	Total/NA

Client Sample ID: CSW-70-2 Lab Sample ID: 480-89839-3

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Metho	od Prep Type
PCB-1248	0.77	0.33	0.064 mg/Kg	1 🌣 8082A	Total/NA
PCB-1254	0.57	0.33	0.15 mg/Kg	1 🌣 8082 <i>F</i>	A Total/NA
PCB-1260	0.17 J	0.33	0.15 mg/Kg	1 🌣 8082 <i>F</i>	A Total/NA

This Detection Summary does not include radiochemical test results.

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: CSB-15-3 Lab Sample ID: 480-89839-1

Date Collected: 10/26/15 14:30 **Matrix: Solid** Date Received: 10/26/15 14:30 Percent Solids: 76.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.32	0.063	mg/Kg	<u> </u>	10/28/15 07:52	10/28/15 15:19	1
PCB-1221	ND		0.32	0.063	mg/Kg	☼	10/28/15 07:52	10/28/15 15:19	1
PCB-1232	ND		0.32	0.063	mg/Kg	☼	10/28/15 07:52	10/28/15 15:19	1
PCB-1242	ND		0.32	0.063	mg/Kg	₽	10/28/15 07:52	10/28/15 15:19	1
PCB-1248	ND		0.32	0.063	mg/Kg	☼	10/28/15 07:52	10/28/15 15:19	1
PCB-1254	ND		0.32	0.15	mg/Kg	☼	10/28/15 07:52	10/28/15 15:19	1
PCB-1260	ND		0.32	0.15	mg/Kg	φ.	10/28/15 07:52	10/28/15 15:19	1
PCB-1262	ND		0.32	0.15	mg/Kg	☼	10/28/15 07:52	10/28/15 15:19	1
PCB-1268	ND		0.32	0.15	mg/Kg	≎	10/28/15 07:52	10/28/15 15:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	91		60 - 154				10/28/15 07:52	10/28/15 15:19	1
Tetrachloro-m-xylene	93		60 ₋ 154				10/28/15 07:52	10/28/15 15:19	1
DCB Decachlorobiphenyl	86		65 - 174				10/28/15 07:52	10/28/15 15:19	1
DCB Decachlorobiphenyl	91		65 - 174				10/28/15 07:52	10/28/15 15:19	1

Client Sample ID: CSW-51-4B Lab Sample ID: 480-89839-2 Date Collected: 10/26/15 14:30 Matrix: Solid

Date Received: 10/26/15 14:30 Percent Solids: 81.6

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND ND		0.27	0.054	mg/Kg	₩	10/28/15 07:52	10/28/15 14:20	1
PCB-1221	ND		0.27	0.054	mg/Kg	₩	10/28/15 07:52	10/28/15 14:20	1
PCB-1232	ND		0.27	0.054	mg/Kg	₩	10/28/15 07:52	10/28/15 14:20	1
PCB-1242	ND		0.27	0.054	mg/Kg		10/28/15 07:52	10/28/15 14:20	1
PCB-1248	0.29		0.27	0.054	mg/Kg	₩	10/28/15 07:52	10/28/15 14:20	1
PCB-1254	0.16	J	0.27	0.13	mg/Kg	₩	10/28/15 07:52	10/28/15 14:20	1
PCB-1260	ND		0.27	0.13	mg/Kg	₩	10/28/15 07:52	10/28/15 14:20	1
PCB-1262	ND		0.27	0.13	mg/Kg	₩	10/28/15 07:52	10/28/15 14:20	1
PCB-1268	ND		0.27	0.13	mg/Kg	₩	10/28/15 07:52	10/28/15 14:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	94		60 - 154				10/28/15 07:52	10/28/15 14:20	1
Tetrachloro-m-xylene	95		60 - 154				10/28/15 07:52	10/28/15 14:20	1
DCB Decachlorobiphenyl	91		65 - 174				10/28/15 07:52	10/28/15 14:20	1
DCB Decachlorobiphenyl	89		65 - 174				10/28/15 07:52	10/28/15 14:20	1

Client Sample ID: CSW-70-2 Lab Sample ID: 480-89839-3 Date Collected: 10/26/15 14:30 **Matrix: Solid** Percent Solids: 72.0 Date Received: 10/26/15 14:30

Analyte	chlorinated Biphenyls (PCBs) b Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND ND	0.33	0.064 mg/Kg	<u> </u>	10/28/15 07:52	10/28/15 15:34	1
PCB-1221	ND	0.33	0.064 mg/Kg	₩	10/28/15 07:52	10/28/15 15:34	1
PCB-1232	ND	0.33	0.064 mg/Kg	₩	10/28/15 07:52	10/28/15 15:34	1
PCB-1242	ND	0.33	0.064 mg/Kg	₩.	10/28/15 07:52	10/28/15 15:34	1
PCB-1248	0.77	0.33	0.064 mg/Kg	₩	10/28/15 07:52	10/28/15 15:34	1
PCB-1254	0.57	0.33	0.15 mg/Kg	₩	10/28/15 07:52	10/28/15 15:34	1

TestAmerica Buffalo

10/30/2015

Page 6 of 17

Client Sample Results

Client: Iyer Environmental Group, LLC

Client Sample ID: CSW-70-2

Date Collected: 10/26/15 14:30

Date Received: 10/26/15 14:30

Project/Site: 132 Dingens

TestAmerica Job ID: 480-89839-1

Lab Sample ID: 480-89839-3

Matrix: Solid

Percent Solids: 72.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1260	0.17	J	0.33	0.15	mg/Kg	₩	10/28/15 07:52	10/28/15 15:34	1
PCB-1262	ND		0.33	0.15	mg/Kg		10/28/15 07:52	10/28/15 15:34	1
PCB-1268	ND		0.33	0.15	mg/Kg	☼	10/28/15 07:52	10/28/15 15:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	89		60 - 154				10/28/15 07:52	10/28/15 15:34	1
Tetrachloro-m-xylene	84		60 - 154				10/28/15 07:52	10/28/15 15:34	1
DCB Decachlorobiphenyl	71		65 - 174				10/28/15 07:52	10/28/15 15:34	1

Surrogate Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-89839-1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid Prep Type: Total/NA

		TOVA				cceptance Limits)
		TCX1	TCX2	DCB1	DCB2	
Lab Sample ID	Client Sample ID	(60-154)	(60-154)	(65-174)	(65-174)	
480-89839-1	CSB-15-3	91	93	86	91	
480-89839-2	CSW-51-4B	94	95	91	89	
480-89839-2 MS	CSW-51-4B	100	93	93	94	
480-89839-2 MSD	CSW-51-4B	122	106	95	106	
480-89839-3	CSW-70-2	89	84	71	80	
LCS 480-271532/2-A	Lab Control Sample	131	109	114	116	
MB 480-271532/1-A	Method Blank	99	101	101	102	

TCX = Tetrachloro-m-xylene

DCB = DCB Decachlorobiphenyl

TestAmerica Buffalo

TestAmerica Job ID: 480-89839-1

Client Sample ID: Lab Control Sample

61 - 184

Client Sample ID: CSW-51-4B

Prep Type: Total/NA

122

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 480-271532/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA **Prep Batch: 271532**

Analysis Batch: 271611

•	MB	МВ						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.21	0.041	mg/Kg		10/28/15 07:52	10/28/15 12:32	1
PCB-1221	ND		0.21	0.041	mg/Kg		10/28/15 07:52	10/28/15 12:32	1
PCB-1232	ND		0.21	0.041	mg/Kg		10/28/15 07:52	10/28/15 12:32	1
PCB-1242	ND		0.21	0.041	mg/Kg		10/28/15 07:52	10/28/15 12:32	1
PCB-1248	ND		0.21	0.041	mg/Kg		10/28/15 07:52	10/28/15 12:32	1
PCB-1254	ND		0.21	0.098	mg/Kg		10/28/15 07:52	10/28/15 12:32	1
PCB-1260	ND		0.21	0.098	mg/Kg		10/28/15 07:52	10/28/15 12:32	1
PCB-1262	ND		0.21	0.098	mg/Kg		10/28/15 07:52	10/28/15 12:32	1
PCB-1268	ND		0.21	0.098	mg/Kg		10/28/15 07:52	10/28/15 12:32	1

	MB MB				
Surrogate %Reco	ery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	99	60 - 154	10/28/15 07:52	10/28/15 12:32	1
Tetrachloro-m-xylene	101	60 - 154	10/28/15 07:52	10/28/15 12:32	1
DCB Decachlorobiphenyl	101	65 - 174	10/28/15 07:52	10/28/15 12:32	1
DCB Decachlorobiphenyl	102	65 - 174	10/28/15 07:52	10/28/15 12:32	1

Lab Sample ID: LCS 480-271532/2-A

Matrix: Solid

PCB-1260

Matrix: Solid							Prep 1y	pe: Total/NA
Analysis Batch: 271611							Prep Ba	atch: 271532
_	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016	 2.20	2.65		mg/Kg		120	51 - 185	

2.69

mg/Kg

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	131		60 - 154
Tetrachloro-m-xylene	109		60 - 154
DCB Decachlorobiphenyl	114		65 - 174
DCB Decachlorobiphenyl	116		65 - 174

2.20

Lab Sample ID: 480-89839-2 MS

Matrix: Solid

Analysis Batch: 271611									Prep Ba	atch: 271532
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016	ND		2.79	2.77		mg/Kg	₩	99	50 - 177	
PCB-1260	ND		2.79	2.46		mg/Kg	₩	88	33 - 200	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	100		60 - 154
Tetrachloro-m-xylene	93		60 ₋ 154
DCB Decachlorobiphenyl	93		65 - 174
DCB Decachlorobiphenyl	94		65 - 174

QC Sample Results

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

DCB Decachlorobiphenyl

TestAmerica Job ID: 480-89839-1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

65 - 174

106

Lab Sample ID: 480-89839-2 MSD Matrix: Solid Analysis Batch: 271611							C	Client Sample ID: CSW-51-4 Prep Type: Total/N Prep Batch: 27153			
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
PCB-1016	ND		2.89	3.45		mg/Kg	<u>₩</u>	119	50 - 177	22	50
PCB-1260	ND		2.89	3.17		mg/Kg	₩	110	33 - 200	25	50
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
Tetrachloro-m-xylene	122		60 - 154								
Tetrachloro-m-xylene	106		60 - 154								
DCB Decachlorobiphenyl	95		65 - 174								

3

4

5

6

8

9

10

12

4 4

QC Association Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-89839-1

GC Semi VOA

Prep Batch: 271532

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89839-1	CSB-15-3	Total/NA	Solid	3550C	
480-89839-2	CSW-51-4B	Total/NA	Solid	3550C	
480-89839-2 MS	CSW-51-4B	Total/NA	Solid	3550C	
480-89839-2 MSD	CSW-51-4B	Total/NA	Solid	3550C	
480-89839-3	CSW-70-2	Total/NA	Solid	3550C	
LCS 480-271532/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-271532/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 271611

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89839-1	CSB-15-3	Total/NA	Solid	8082A	271532
480-89839-2	CSW-51-4B	Total/NA	Solid	8082A	271532
480-89839-2 MS	CSW-51-4B	Total/NA	Solid	8082A	271532
480-89839-2 MSD	CSW-51-4B	Total/NA	Solid	8082A	271532
480-89839-3	CSW-70-2	Total/NA	Solid	8082A	271532
LCS 480-271532/2-A	Lab Control Sample	Total/NA	Solid	8082A	271532
MB 480-271532/1-A	Method Blank	Total/NA	Solid	8082A	271532

General Chemistry

Analysis Batch: 271251

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-89839-1	CSB-15-3	Total/NA	Solid	Moisture	
480-89839-2	CSW-51-4B	Total/NA	Solid	Moisture	
480-89839-2 MS	CSW-51-4B	Total/NA	Solid	Moisture	
480-89839-2 MSD	CSW-51-4B	Total/NA	Solid	Moisture	
480-89839-3	CSW-70-2	Total/NA	Solid	Moisture	

5

_

10

4.6

13

14

10

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: CSB-15-3 Lab Sample ID: 480-89839-1 Date Collected: 10/26/15 14:30

Matrix: Solid

Date Received: 10/26/15 14:30

Prepared Dilution Batch Batch Batch Method Run Factor Number or Analyzed **Prep Type** Type Analyst Lab Total/NA Analysis Moisture 271251 10/27/15 05:25 CSW TAL BUF

Client Sample ID: CSB-15-3 Lab Sample ID: 480-89839-1

Date Collected: 10/26/15 14:30 Date Received: 10/26/15 14:30

Matrix: Solid

Percent Solids: 76.5

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab 3550C 10/28/15 07:52 CAM TAL BUF Total/NA Prep 271532 Total/NA Analysis 8082A 271611 10/28/15 15:19 KS TAL BUF 1

Client Sample ID: CSW-51-4B Lab Sample ID: 480-89839-2

Date Collected: 10/26/15 14:30

Matrix: Solid

Date Received: 10/26/15 14:30

Batch Batch Dilution **Batch** Prepared Method Run Factor Number or Analyzed Prep Type Type Analyst Lab Moisture 10/27/15 05:25 CSW TAL BUF Total/NA Analysis 271251

Client Sample ID: CSW-51-4B Lab Sample ID: 480-89839-2

Date Collected: 10/26/15 14:30

Matrix: Solid

Date Received: 10/26/15 14:30

Percent Solids: 81.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			271532	10/28/15 07:52	CAM	TAL BUF
Total/NA	Analysis	8082A		1	271611	10/28/15 14:20	KS	TAL BUF

Client Sample ID: CSW-70-2 Lab Sample ID: 480-89839-3

Date Collected: 10/26/15 14:30

Matrix: Solid

Date Received: 10/26/15 14:30

Batch Dilution Batch Batch Prepared **Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis Moisture 271251 10/27/15 05:25 CSW TAL BUF

Client Sample ID: CSW-70-2 Lab Sample ID: 480-89839-3

Date Collected: 10/26/15 14:30

Matrix: Solid

Date Received: 10/26/15 14:30 Percent Solids: 72.0

Batch Batch Dilution Batch Prepared Method Type Run Factor Number or Analyzed **Prep Type** Analyst Lab 3550C Total/NA Prep 271532 10/28/15 07:52 CAM TAL BUF Total/NA Analysis 8082A 1 271611 10/28/15 15:34 KS **TAL BUF**

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TestAmerica Buffalo

Certification Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-89839-1

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date	
New York	NELAP	NELAP		10026	03-31-16	
The following analytes	are included in this repo	rt, but certification is	not offered by the go	overning authority:		
The following analytes Analysis Method	s are included in this repo	rt, but certification is Matrix	not offered by the go Analyt	,		
,	·		Analyt	,		

3

4

5

6

0

11

12

11

Method Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-89839-1

Method	Method Description	Protocol	Laboratory
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL BUF
Moisture	Percent Moisture	EPA	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

2

3

4

5

0

2

9

11

12

1 *1*

Sample Summary

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

TestAmerica Job ID: 480-89839-1

Lab Sample ID	Client Sample ID	Matrix	Collected Received
480-89839-1	CSB-15-3	Solid	10/26/15 14:30 10/26/15 14:30
480-89839-2	CSW-51-4B	Solid	10/26/15 14:30 10/26/15 14:30
480-89839-3	CSW-70-2	Solid	10/26/15 14:30 10/26/15 14:30

Custody Record Chain of

Temperature on Receipt

\Box	
Ö	
\odot	
\triangleleft	
S	
7	
<u> </u>	

THE LEADER IN ENVIRONMENTAL TESTING

№

Drinking Water? Yes□

Special Instructions/ Conditions of Receipt Time (430 (A fee may be assessed if samples are retained longer than 1 month) Time Time Chain of Custody Numbe 284257 480-89839 Chain of Custody Page Date Analysis (Attach list if more space is needed) Lab Number Months Date Archive For 5876 7 OC Requirements (Specify, VOANZ HOBN Containers & Preservatives Disposal By Lab 3. Received By IOH Telephone Number (Area Code)/Fax Number EONH 10/1 tOSZH seudun ☐ Return To Client Other 5 day Sample Disposal Dharma 1105 > 5/16 43) Site Contact 4/16m R. C. H. H. P. Carrier Waybil Number Time Matrix pes Project Manager snoenby 114 Опкпомп Date Date Date Time IYER SWIROWNPONTH DONG BUC 🗌 21 Days 10/26/15 ☐ Poison B Date 6/3/ Zip Code 14 Days (Containers for each sample may be combined on one line) 05C Skin Irritant Sample I.D. No. and Description □ 7 Days ☐ Flammable 48 Hours Possible Hazard Identification Tum Around Time Required 20 3. Relinquished By **Contract/Purchase** Non-Hazard TAL-4124 (1007) Client CSB LSi2-☐ 24 Hours 1. Relinguis 65W 4ddress

Page 16 of 17

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

Comments

10/30/2015

- es

Login Sample Receipt Checklist

Client: Iyer Environmental Group, LLC

Job Number: 480-89839-1

Login Number: 89839 List Source: TestAmerica Buffalo

List Number: 1

Creator: Janish, Carl M

Creator: Janish, Cari M		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	IYER
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

4

7

9

11

12

4 1

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-90295-1 Client Project/Site: 132 Dingens

For:

Iyer Environmental Group, LLC 44 Rolling Hills Drive Orchard Park, New York 14127

Attn: Dr. Dharmarajan R Iyer

Melisso Deyo

Authorized for release by: 11/5/2015 9:59:25 AM

Melissa Deyo, Project Manager I (716)504-9874

melissa.deyo@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents	
Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	7
QC Sample Results	8
QC Association Summary	10
Lab Chronicle	11
Certification Summary	12
Method Summary	13
Sample Summary	14
Chain of Custody	15
Receipt Checklists	16

Definitions/Glossary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-90295-1

3

Qualifiers

GC Semi VOA

Qualifier (Qualifier	Description
Qualifier (Qualifier	Description

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
a	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit

RER RL

QC

 $\label{eq:Reporting Limit or Requested Limit (Radiochemistry)} Reporting Limit or Requested Limit (Radiochemistry)$

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

Quality Control

Relative error ratio

TestAmerica Buffalo

Page 3 of 16

11/5/2015

Case Narrative

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-90295-1

Job ID: 480-90295-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-90295-1

Receipt

The samples were received on 11/2/2015 2:04 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 16.1° C.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

_

6

d

9

4 4

12

13

4 -

Detection Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-90295-1

Client Sample ID: CSW-70-3 Lab Sample ID: 480-90295-1

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
PCB-1248	0.78	0.31	0.061	mg/Kg	1	₩	8082A	Total/NA
PCB-1254	0.64	0.31	0.14	mg/Kg	1	₩	8082A	Total/NA
PCB-1260	0.17 J	0.31	0.14	mg/Kg	1	₩	8082A	Total/NA

3

4

5

-

8

10

11

13

14

Client Sample Results

Client: Iyer Environmental Group, LLC

Client Sample ID: CSW-70-3

Date Collected: 11/02/15 00:00

Date Received: 11/02/15 14:04

Project/Site: 132 Dingens

TestAmerica Job ID: 480-90295-1

Lab Sample ID: 480-90295-1

Matrix: Solid

Percent Solids: 78.1

Method: 8082A - Polychic	orinated Biphen	yls (PCBs)	by Gas Chro	omatogr	aphy				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.31	0.061	mg/Kg	<u> </u>	11/03/15 08:08	11/03/15 17:15	1
PCB-1221	ND		0.31	0.061	mg/Kg	☆	11/03/15 08:08	11/03/15 17:15	1
PCB-1232	ND		0.31	0.061	mg/Kg	☆	11/03/15 08:08	11/03/15 17:15	1
PCB-1242	ND		0.31	0.061	mg/Kg	☆	11/03/15 08:08	11/03/15 17:15	1
PCB-1248	0.78		0.31	0.061	mg/Kg	₩	11/03/15 08:08	11/03/15 17:15	1
PCB-1254	0.64		0.31	0.14	mg/Kg	₩	11/03/15 08:08	11/03/15 17:15	1
PCB-1260	0.17	J	0.31	0.14	mg/Kg	₩	11/03/15 08:08	11/03/15 17:15	1
PCB-1262	ND		0.31	0.14	mg/Kg	☆	11/03/15 08:08	11/03/15 17:15	1
PCB-1268	ND		0.31	0.14	mg/Kg	₩	11/03/15 08:08	11/03/15 17:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	93		60 - 154				11/03/15 08:08	11/03/15 17:15	1
Tetrachloro-m-xylene	95		60 ₋ 154				11/03/15 08:08	11/03/15 17:15	1
DCB Decachlorobiphenyl	85		65 - 174				11/03/15 08:08	11/03/15 17:15	1
DCB Decachlorobiphenyl	100		65 - 174				11/03/15 08:08	11/03/15 17:15	1

TestAmerica Buffalo

Surrogate Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-90295-1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		TCX1	TCX2	DCB1	DCB2
Lab Sample ID	Client Sample ID	(60-154)	(60-154)	(65-174)	(65-174)
480-90295-1	CSW-70-3	93	95	85	100
480-90295-1 MS	CSW-70-3	118	108	106	122
480-90295-1 MSD	CSW-70-3	119	107	104	121
LCS 480-272710/2-A	Lab Control Sample	120	107	107	113
MB 480-272710/1-A	Method Blank	98	92	95	99

Surrogate Legend

TCX = Tetrachloro-m-xylene

DCB = DCB Decachlorobiphenyl

TestAmerica Buffalo

2

-5

7

8

3

11

12

1 A

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Analysis Batch: 272834

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 480-272710/1-A **Matrix: Solid** Analysis Batch: 272834

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 272710

	MB I	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.23	0.045	mg/Kg		11/03/15 08:08	11/03/15 16:12	1
PCB-1221	ND		0.23	0.045	mg/Kg		11/03/15 08:08	11/03/15 16:12	1
PCB-1232	ND		0.23	0.045	mg/Kg		11/03/15 08:08	11/03/15 16:12	1
PCB-1242	ND		0.23	0.045	mg/Kg		11/03/15 08:08	11/03/15 16:12	1
PCB-1248	ND		0.23	0.045	mg/Kg		11/03/15 08:08	11/03/15 16:12	1
PCB-1254	ND		0.23	0.11	mg/Kg		11/03/15 08:08	11/03/15 16:12	1
PCB-1260	ND		0.23	0.11	mg/Kg		11/03/15 08:08	11/03/15 16:12	1
PCB-1262	ND		0.23	0.11	mg/Kg		11/03/15 08:08	11/03/15 16:12	1
PCB-1268	ND		0.23	0.11	mg/Kg		11/03/15 08:08	11/03/15 16:12	1

		0 0			
0.23	0.045	mg/Kg	11/03/15 08:08	11/03/15 16:12	1
0.23	0.045	mg/Kg	11/03/15 08:08	11/03/15 16:12	1
0.23	0.11	mg/Kg	11/03/15 08:08	11/03/15 16:12	1
0.23	0.11	mg/Kg	11/03/15 08:08	11/03/15 16:12	1
0.23	0.11	mg/Kg	11/03/15 08:08	11/03/15 16:12	1
0.23	0.11	mg/Kg	11/03/15 08:08	11/03/15 16:12	1

	IVIB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	98		60 - 154	11/03/15 08:08	11/03/15 16:12	1
Tetrachloro-m-xylene	92		60 - 154	11/03/15 08:08	11/03/15 16:12	1
DCB Decachlorobiphenyl	95		65 - 174	11/03/15 08:08	11/03/15 16:12	1
DCB Decachlorobiphenyl	99		65 - 174	11/03/15 08:08	11/03/15 16:12	1
_						

Lab Sample ID: LCS 480-272710/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA Analysis Batch: 272834 **Prep Batch: 272710**

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 2.39 PCB-1016 2.79 117 51 - 185 mg/Kg PCB-1260 2.39 2.86 mg/Kg 120 61 - 184

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	120		60 - 154
Tetrachloro-m-xylene	107		60 - 154
DCB Decachlorobiphenyl	107		65 - 174
DCB Decachlorobiphenyl	113		65 - 174

Lab Sample ID: 480-90295-1 MS Client Sample ID: CSW-70-3 **Matrix: Solid** Prep Type: Total/NA

Sample Sample

	Sample	Sample	Spike	IVIO	IVIO				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016	ND		3.11	4.12		mg/Kg	<u>∓</u>	133	50 - 177	
PCB-1260	0.17	J	3.11	3.99		mg/Kg	₩	123	33 - 200	
	MS	MS								

	MS MS		
Surrogate	%Recovery Qual	ifier Limits	
Tetrachloro-m-xylene	118	60 - 154	
Tetrachloro-m-xylene	108	60 - 154	
DCB Decachlorobiphenyl	106	65 - 174	
DCB Decachlorobiphenyl	122	65 - 174	

Prep Batch: 272710

QC Sample Results

Client: Iyer Environmental Group, LLC TestAm

Project/Site: 132 Dingens

TestAmerica Job ID: 480-90295-1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: 480-90295-1 MSD Matrix: Solid Analysis Batch: 272834								Client	Sample II Prep Tyl Prep Ba	oe: Tot	al/NA
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
PCB-1016	ND		2.90	3.48		mg/Kg	<u>∓</u>	120	50 - 177	17	50
PCB-1260	0.17	J	2.90	3.52		mg/Kg	☼	115	33 - 200	13	50
	MCD	MCD									

		MSD	MSD	
Surrogate		%Recovery	Qualifier	Limits
Tetrachloro-m-xy	vlene	119		60 - 154
Tetrachloro-m-xy	<i>lene</i>	107		60 - 154
DCB Decachloro	biphenyl	104		65 - 174
DCB Decachloro	biphenyl	121		65 - 174

10

12

13

14

QC Association Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-90295-1

GC Semi VOA

Prep Batch: 272710

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90295-1	CSW-70-3	Total/NA	Solid	3550C	
480-90295-1 MS	CSW-70-3	Total/NA	Solid	3550C	
480-90295-1 MSD	CSW-70-3	Total/NA	Solid	3550C	
LCS 480-272710/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-272710/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 272834

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90295-1	CSW-70-3	Total/NA	Solid	8082A	272710
480-90295-1 MS	CSW-70-3	Total/NA	Solid	8082A	272710
480-90295-1 MSD	CSW-70-3	Total/NA	Solid	8082A	272710
LCS 480-272710/2-A	Lab Control Sample	Total/NA	Solid	8082A	272710
MB 480-272710/1-A	Method Blank	Total/NA	Solid	8082A	272710

General Chemistry

Analysis Batch: 272914

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90295-1	CSW-70-3	Total/NA	Solid	Moisture	
480-90295-1 MS	CSW-70-3	Total/NA	Solid	Moisture	
480-90295-1 MSD	CSW-70-3	Total/NA	Solid	Moisture	

11/5/2015

Lab Chronicle

Client: Iyer Environmental Group, LLC

Client Sample ID: CSW-70-3

Project/Site: 132 Dingens

TestAmerica Job ID: 480-90295-1

Lab Sample ID: 480-90295-1

Matrix: Solid

Date Collected: 11/02/15 00:00 Date Received: 11/02/15 14:04

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture			272914	11/03/15 22:30	CMK	TAL BUF

Client Sample ID: CSW-70-3 Lab Sample ID: 480-90295-1

Date Collected: 11/02/15 00:00

Matrix: Solid

Date Received: 11/02/15 14:04 Percent Solids: 78.1

		Batch	Batch		Dilution	Batch	Prepared		
	Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
	Total/NA	Prep	3550C			272710	11/03/15 08:08	TRG	TAL BUF
l	Total/NA	Analysis	8082A		1	272834	11/03/15 17:15	KS	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

9

10

12

11

Certification Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-90295-1

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date	
New York	NELAP	NELAP		10026	03-31-16	
The following analytes	s are included in this repo	rt, but certification is	not offered by the go	overning authority:		
The following analytes Analysis Method	s are included in this repo Prep Method	rt, but certification is Matrix	not offered by the go Analyt	,		
,	·	·	Analyt	,		

3

4

E

6

8

10

11

13

14

Method Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-90295-1

Method	Method Description	Protocol	Laboratory
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL BUF
Moisture	Percent Moisture	EPA	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

2

3

4

5

6

Q

10

111

13

14

Sample Summary

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

TestAmerica Job ID: 480-90295-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-90295-1	CSW-70-3	Solid	11/02/15 00:00	11/02/15 14:04

Special Instructions/ Conditions of Receipt (A fee may be assessed if samples are retained longer than 1 month) Catagory Page Date 480-90295 Chain of custody THE LEADER IN ENVIRONMENTAL TESTING **[estAmericc**] Nov 2.205 بر چين Analysis (Attach list if more space is needed) Months Archive For 800 401 OC Requirements (Specify) NOBN HOBN 🗹 Disposal By Lab Containers & Preservatives HOBN 3. Received By IOH Telephone Number (Area Code)/Fax Number EONH Drinking Water? Yes \ No \ \ †OS7h 3 seudun Temperature on Receipt ☐ Unknown ☐ Return To Client Date | fime | Val 2, 2015 | Val 10-4 HOS Po Other 5 days Time R. Allen Carrier/Waybill Number Matrix pes Project Manager IJУ Date Time 🗌 21 Days ☐ Paison B (1/2/15 Date In code ☐ 14 Days 44 Rolling Hills Dr (Containers for each sample may be combined on one line) Skin Imitant of Environmental Sample I.D. No. and Description Syea7 □ CSW-70-3 | Flammable (32 Dingers St Orchard Park Custody Record 24 Hours 148 Hours Possible Hazard Identification Turn Around Time Required 1. Relinquished By * 3. Relinquished By 2010 Comments 2. Relinquished By Non-Hazard Chain of TAL-4124 (1007) Page 15 of 16

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

Client: Iyer Environmental Group, LLC

Job Number: 480-90295-1

Login Number: 90295 List Source: TestAmerica Buffalo

List Number: 1

Creator: Janish, Carl M

ordatori damoni dan m		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	IYER
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

TestAmerica Buffalo

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-90293-1 Client Project/Site: 132 Dingens

For:

Iyer Environmental Group, LLC 44 Rolling Hills Drive Orchard Park, New York 14127

Attn: Dr. Dharmarajan R Iyer

Authorized for release by: 11/16/2015 1:53:43 PM Rebecca Jones, Project Management Assistant I rebecca.jones@testamericainc.com

Designee for

Melissa Deyo, Project Manager I (716)504-9874 melissa.deyo@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

TestAmerica Job ID: 480-90293-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	9
QC Sample Results	11
QC Association Summary	19
Lab Chronicle	22
Certification Summary	23
Method Summary	24
Sample Summary	25
Chain of Custody	26
Receipt Checklists	27

-5

4

8

10

12

.

Definitions/Glossary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-90293-1

Qualifiers

GC/MS VOA

Quality Control

Relative error ratio

Toxicity Equivalent Factor (Dioxin)
Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
٨	ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC is outside acceptance limits.
В	Compound was found in the blank and sample.

Glossary

QC

RER

RPD

TEF

TEQ

RL

Abbreviation	These commonly used abbreviations may or may not be present in this report.
ū	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit

TestAmerica Buffalo

Case Narrative

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-90293-1

Job ID: 480-90293-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-90293-1

Receipt

The sample was received on 11/2/2015 2:04 PM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 16.1° C.

GC/MS VOA

Method(s) 8260C: Reported analyte concentrations in the following samples are below 200 ug/kg and may be biased low due to the samples not being collected according to 5035-L/5035A-L low-level specifications: BFS-1 (480-90293-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method(s) 8270D: The following samples were diluted due to appearance and viscosity: BFS-1 (480-90293-1). Elevated reporting limits (RL) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method(s) 8081B: The continuing calibration verification (CCV) associated with batch 480-273255 recovered above the upper control limit for Endosulfan I and Endrin. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following sample is impacted: BFS-1 (480-90293-1).

Method(s) 8081B: All primary data is reported from the RTX-CLP-II column.

Method(s) 8082A: All primary data is reported from the ZB-35 column.

Method(s) 8151A: All primary data is reported from the RTX-CLP-I column.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method(s) 6010C: The low level continuing calibration verification (CCVL 480-273495/51) recovered above the upper control limit for total Manganese. The sample BFS-1 (480-90293-1) associated with this CCVL were either ND or less than the reporting limit (RL) for this analyte or contained this analyte at a concentration greater than 10X the value found in the CCVL; therefore, re-analysis of samples was not performed.

Method(s) 6010C: The following sample was diluted due to the presence of total Calcium which interferes with total Copper: BFS-1 (480-90293-1). Elevated reporting limits (RLs) are provided.

Method(s) 6010C: The continuing calibration blank (CCB 480-273495/50) for analytical batch 480-273495 contained total Manganese above the reporting limit (RL). All reported samples associated with this CCB were either ND for this analyte or contained this analyte at a concentration greater than 10X the value found in the CCB; therefore, re-analysis of sample BFS-1 (480-90293-1) was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method(s) 3550C: The following sample required a Florisil clean-up, via EPA Method 3620C, to reduce matrix interferences: BFS-1 (480-90293-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

TestAmerica Buffalo 11/16/2015

Detection Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: BFS-1

TestAmerica Job ID: 480-90293-1

Lab Sample ID: 480-90293-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Metho	d	Prep Type
Chloroform	0.35	J	4.8	0.30	ug/Kg	1	8260C		Total/NA
Arsenic	2.2		2.0	0.40	mg/Kg	1	6010C		Total/NA
Barium	14.8		0.50	0.11	mg/Kg	1	6010C		Total/NA
Beryllium	0.13	J	0.20	0.028	mg/Kg	1	6010C		Total/NA
Cadmium	0.75		0.20	0.030	mg/Kg	1	6010C		Total/NA
Copper	3.3		2.0	0.42	mg/Kg	2	6010C		Total/NA
Lead	82.8		0.99	0.24	mg/Kg	1	6010C		Total/NA
Manganese	441	B ^	0.20	0.032	mg/Kg	1	6010C		Total/NA
Nickel	4.3	J	5.0	0.23	mg/Kg	1	6010C		Total/NA
Zinc	133		2.0	0.63	mg/Kg	1	6010C		Total/NA

А

5

7

8

10

11

13

14

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Client Sample ID: BFS-1 Lab Sample ID: 480-90293-1

Date Collected: 11/02/15 00:00 **Matrix: Solid**

Date Received: 11/02/15 14:04

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		4.8	0.35	ug/Kg		11/03/15 23:21	11/04/15 09:44	1
1,1-Dichloroethane	ND		4.8	0.59	ug/Kg		11/03/15 23:21	11/04/15 09:44	1
1,1-Dichloroethene	ND		4.8	0.59	ug/Kg		11/03/15 23:21	11/04/15 09:44	1
1,2-Dichlorobenzene	ND		4.8	0.38	ug/Kg		11/03/15 23:21	11/04/15 09:44	1
1,2-Dichloroethane	ND		4.8	0.24	ug/Kg		11/03/15 23:21	11/04/15 09:44	1
1,2-Dichloroethene, cis-	ND		4.8	0.62	ug/Kg		11/03/15 23:21	11/04/15 09:44	1
1,2-Dichloroethene, trans-	ND		4.8	0.50	ug/Kg		11/03/15 23:21	11/04/15 09:44	1
1,3-Dichlorobenzene	ND		4.8	0.25	ug/Kg		11/03/15 23:21	11/04/15 09:44	1
1,4-Dichlorobenzene	ND		4.8	0.67	ug/Kg		11/03/15 23:21	11/04/15 09:44	1
1,4-Dioxane	ND		96	21	ug/Kg		11/03/15 23:21	11/04/15 09:44	1
Acetone	ND		24	4.0	ug/Kg		11/03/15 23:21	11/04/15 09:44	1
Benzene	ND		4.8	0.24	ug/Kg		11/03/15 23:21	11/04/15 09:44	1
Butylbenzene	ND		4.8	0.42	ug/Kg		11/03/15 23:21	11/04/15 09:44	1
Carbon tetrachloride	ND		4.8	0.47	ug/Kg		11/03/15 23:21	11/04/15 09:44	1
Chlorobenzene	ND		4.8	0.63	ug/Kg		11/03/15 23:21	11/04/15 09:44	1
Chloroform	0.35	J	4.8	0.30	ug/Kg		11/03/15 23:21	11/04/15 09:44	1
Ethylbenzene	ND		4.8	0.33	ug/Kg		11/03/15 23:21	11/04/15 09:44	1
Methyl Ethyl Ketone	ND		24	1.8	ug/Kg		11/03/15 23:21	11/04/15 09:44	1
Methyl tert-butyl ether	ND		4.8	0.47	ug/Kg		11/03/15 23:21	11/04/15 09:44	1
Methylene Chloride	ND		4.8	2.2	ug/Kg		11/03/15 23:21	11/04/15 09:44	1
Propylbenzene, n-	ND		4.8	0.38	ug/Kg		11/03/15 23:21	11/04/15 09:44	1
sec-Butylbenzene	ND		4.8	0.42	ug/Kg		11/03/15 23:21	11/04/15 09:44	1
tert-Butylbenzene	ND		4.8	0.50	ug/Kg		11/03/15 23:21	11/04/15 09:44	1
Tetrachloroethene	ND		4.8	0.65	ug/Kg		11/03/15 23:21	11/04/15 09:44	1
Toluene	ND		4.8	0.36	ug/Kg		11/03/15 23:21	11/04/15 09:44	1
Trichloroethene	ND		4.8	1.1	ug/Kg		11/03/15 23:21	11/04/15 09:44	1
Trimethylbenzene, 1,2,4-	ND		4.8	0.92	ug/Kg		11/03/15 23:21	11/04/15 09:44	1
Trimethylbenzene, 1,3,5-	ND		4.8	0.31	ug/Kg		11/03/15 23:21	11/04/15 09:44	1
Vinyl chloride	ND		4.8	0.59	ug/Kg		11/03/15 23:21	11/04/15 09:44	1
Xylene (mixed)	ND		9.6	0.81	ug/Kg		11/03/15 23:21	11/04/15 09:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		64 - 126				11/03/15 23:21	11/04/15 09:44	1
4-Bromofluorobenzene (Surr)	99		72 - 126				11/03/15 23:21	11/04/15 09:44	1
Toluene-d8 (Surr)	102		71 - 125				11/03/15 23:21	11/04/15 09:44	1
Dibromofluoromethane (Surr)	101		60 - 140				11/03/15 23:21	11/04/15 09:44	

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND ND	840	120	ug/Kg		11/03/15 07:59	11/04/15 16:30	5
Acenaphthylene	ND	840	110	ug/Kg		11/03/15 07:59	11/04/15 16:30	5
Anthracene	ND	840	210	ug/Kg		11/03/15 07:59	11/04/15 16:30	5
Benzo(a)anthracene	ND	840	84	ug/Kg		11/03/15 07:59	11/04/15 16:30	5
Benzo(a)pyrene	ND	840	120	ug/Kg		11/03/15 07:59	11/04/15 16:30	5
Benzo(b)fluoranthene	ND	840	130	ug/Kg		11/03/15 07:59	11/04/15 16:30	5
Benzo(g,h,i)perylene	ND	840	89	ug/Kg		11/03/15 07:59	11/04/15 16:30	5
Benzo(k)fluoranthene	ND	840	110	ug/Kg		11/03/15 07:59	11/04/15 16:30	5
Chrysene	ND	840	190	ug/Kg		11/03/15 07:59	11/04/15 16:30	5
Dibenz(a,h)anthracene	ND	840	150	ug/Kg		11/03/15 07:59	11/04/15 16:30	5
Dibenzofuran	ND	840	99	ug/Kg		11/03/15 07:59	11/04/15 16:30	5

TestAmerica Buffalo

Page 6 of 27

11/16/2015

Client Sample Results

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: BFS-1

Date Collected: 11/02/15 00:00

Date Received: 11/02/15 14:04

TestAmerica Job ID: 480-90293-1

Lab Sample ID: 480-90293-1

Matrix: Solid

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	ŘĹ	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoranthene	ND		840	89	ug/Kg		11/03/15 07:59	11/04/15 16:30	5
Fluorene	ND		840	99	ug/Kg		11/03/15 07:59	11/04/15 16:30	5
Hexachlorobenzene	ND		840	110	ug/Kg		11/03/15 07:59	11/04/15 16:30	5
Indeno(1,2,3-cd)pyrene	ND		840	100	ug/Kg		11/03/15 07:59	11/04/15 16:30	5
Naphthalene	ND		840	110	ug/Kg		11/03/15 07:59	11/04/15 16:30	5
o-Cresol	ND		840	99	ug/Kg		11/03/15 07:59	11/04/15 16:30	5
p-Cresol	ND		1600	99	ug/Kg		11/03/15 07:59	11/04/15 16:30	5
Pentachlorophenol	ND		1600	840	ug/Kg		11/03/15 07:59	11/04/15 16:30	5
Phenanthrene	ND		840	120	ug/Kg		11/03/15 07:59	11/04/15 16:30	5
Phenol	ND		840	130	ug/Kg		11/03/15 07:59	11/04/15 16:30	5
Pyrene	ND		840	99	ug/Kg		11/03/15 07:59	11/04/15 16:30	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	94		39 - 146				11/03/15 07:59	11/04/15 16:30	5
2-Eluorohinhenyl	96		37 120				11/03/15 07:50	11/04/15 16:30	5

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	94		39 - 146	11/03/15 07:59	11/04/15 16:30	5
2-Fluorobiphenyl	96		37 - 120	11/03/15 07:59	11/04/15 16:30	5
2-Fluorophenol	83		18 - 120	11/03/15 07:59	11/04/15 16:30	5
Nitrobenzene-d5	82		34 - 132	11/03/15 07:59	11/04/15 16:30	5
Phenol-d5	86		11 - 120	11/03/15 07:59	11/04/15 16:30	5
p-Terphenyl-d14 (Surr)	108		65 - 153	11/03/15 07:59	11/04/15 16:30	5

Method: 8081B - Org	ganochlorine Pesticides	(GC)
---------------------	-------------------------	------

Analyte	Result Qualifie	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND ND	8.2	1.6	ug/Kg		11/03/15 08:04	11/05/15 12:44	5
4,4'-DDE	ND	8.2	1.7	ug/Kg		11/03/15 08:04	11/05/15 12:44	5
4,4'-DDT	ND	8.2	1.9	ug/Kg		11/03/15 08:04	11/05/15 12:44	5
Aldrin	ND	8.2	2.0	ug/Kg		11/03/15 08:04	11/05/15 12:44	5
alpha-BHC	ND	8.2	1.5	ug/Kg		11/03/15 08:04	11/05/15 12:44	5
beta-BHC	ND	8.2	1.5	ug/Kg		11/03/15 08:04	11/05/15 12:44	5
Chlordane (.alpha.)	ND	8.2	4.1	ug/Kg		11/03/15 08:04	11/05/15 12:44	5
delta-BHC	ND	8.2	1.5	ug/Kg		11/03/15 08:04	11/05/15 12:44	5
Dieldrin	ND	8.2	2.0	ug/Kg		11/03/15 08:04	11/05/15 12:44	5
Endosulfan I	ND	8.2	1.6	ug/Kg		11/03/15 08:04	11/05/15 12:44	5
Endosulfan II	ND	8.2	1.5	ug/Kg		11/03/15 08:04	11/05/15 12:44	5
Endosulfan sulfate	ND	8.2	1.5	ug/Kg		11/03/15 08:04	11/05/15 12:44	5
Endrin	ND	8.2	1.6	ug/Kg		11/03/15 08:04	11/05/15 12:44	5
Heptachlor	ND	8.2	1.8	ug/Kg		11/03/15 08:04	11/05/15 12:44	5
Lindane	ND	8.2	1.5	ug/Kg		11/03/15 08:04	11/05/15 12:44	5
Surragata	% Boowers Ouglific	or Limito				Branarad	Analyzad	Dil Ess

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	44		32 - 136	11/03/15 08:04	11/05/15 12:44	- 5
DCB Decachlorobiphenyl	98		32 - 136	11/03/15 08:04	11/05/15 12:44	5
Tetrachloro-m-xylene	76		30 - 124	11/03/15 08:04	11/05/15 12:44	5
Tetrachloro-m-xylene	86		30 - 124	11/03/15 08:04	11/05/15 12:44	5

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac	
PCB-1016	ND	0.20	0.039 mg/Kg	11/03/15 08:08	11/03/15 18:39	1	
PCB-1221	ND	0.20	0.039 mg/Kg	11/03/15 08:08	11/03/15 18:39	1	
PCB-1232	ND	0.20	0.039 mg/Kg	11/03/15 08:08	11/03/15 18:39	1	
PCB-1242	ND	0.20	0.039 mg/Kg	11/03/15 08:08	11/03/15 18:39	1	
PCB-1242	ND	0.20	0.039 mg/Kg	11/03/15 08:08	11/03/15 18:39	1	ļ

TestAmerica Buffalo

Page 7 of 27

3

6

8

10

11

12

14

Client Sample Results

Client: Iyer Environmental Group, LLC

Method: 7471B - Mercury (CVAA)

Result Qualifier

Result Qualifier

ND

ND

Analyte

Mercury

Analyte

Cyanide, Total

General Chemistry

Project/Site: 132 Dingens

Client Sample ID: BFS-1

Date Collected: 11/02/15 00:00

Date Received: 11/02/15 14:04

TestAmerica Job ID: 480-90293-1

Lab Sample ID: 480-90293-1

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
PCB-1248	ND		0.20	0.039	mg/Kg		11/03/15 08:08	11/03/15 18:39	
PCB-1254	ND		0.20	0.093	mg/Kg		11/03/15 08:08	11/03/15 18:39	
PCB-1260	ND		0.20	0.093	mg/Kg		11/03/15 08:08	11/03/15 18:39	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Tetrachloro-m-xylene	98		60 - 154				11/03/15 08:08	11/03/15 18:39	
Tetrachloro-m-xylene	88		60 - 154				11/03/15 08:08	11/03/15 18:39	
DCB Decachlorobiphenyl	90		65 - 174				11/03/15 08:08	11/03/15 18:39	
DCB Decachlorobiphenyl	99		65 - 174				11/03/15 08:08	11/03/15 18:39	
Method: 8151A - Herbicide	es (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
2,4,5-TP (Silvex)	ND		16	5.8	ug/Kg		11/06/15 13:11	11/09/15 19:34	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
DCAA	79		28 - 129				11/06/15 13:11	11/09/15 19:34	
DCAA	75		28 - 129				11/06/15 13:11	11/09/15 19:34	
Method: 6010C - Metals (IC	CP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	2.2		2.0	0.40	mg/Kg		11/04/15 12:07	11/06/15 02:33	
Barium	14.8		0.50	0.11	mg/Kg		11/04/15 12:07	11/06/15 02:33	
Beryllium	0.13	J	0.20	0.028	mg/Kg		11/04/15 12:07	11/06/15 02:33	
Cadmium	0.75		0.20	0.030	mg/Kg		11/04/15 12:07	11/06/15 02:33	
Copper	3.3		2.0	0.42	mg/Kg		11/04/15 12:07	11/06/15 11:39	
_ead	82.8		0.99	0.24	mg/Kg		11/04/15 12:07	11/06/15 02:33	
<i>l</i> langanese	441	B ^	0.20	0.032	mg/Kg		11/04/15 12:07	11/06/15 02:33	
Nickel	4.3	J	5.0	0.23	mg/Kg		11/04/15 12:07	11/06/15 02:33	
Selenium	ND		4.0	0.40	mg/Kg		11/04/15 12:07	11/06/15 02:33	
Silver	ND		0.59	0.20	mg/Kg		11/04/15 12:07	11/06/15 02:33	
Zinc	133		2.0		mg/Kg		44/04/45 40 07	11/06/15 02:33	

RL

RL

0.94

0.020

MDL Unit

0.0080 mg/Kg

MDL Unit

0.45 mg/Kg

Prepared

Prepared

Analyzed

Analyzed

11/05/15 14:05 11/05/15 17:06

<u>11/12/15 14:26</u> <u>11/13/15 11:43</u>

Dil Fac

Dil Fac

Project/Site: 132 Dingens

Client: Iyer Environmental Group, LLC

TestAmerica Job ID: 480-90293-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)						
		12DCE	BFB	TOL	DBFM			
Lab Sample ID	Client Sample ID	(64-126)	(72-126)	(71-125)	(60-140)			
480-90293-1	BFS-1	100	99	102	101			
LCS 480-272919/1-A	Lab Control Sample	95	98	101	100			
LCSD 480-272919/2-A	Lab Control Sample Dup	95	97	100	98			
MB 480-272919/3-A	Method Blank	100	97	103	102			

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Prep Type: Total/NA **Matrix: Solid**

		Percent Surrogate Recovery (Acceptance Limits)						
		ТВР	FBP	2FP	NBZ	PHL	TPH	
Lab Sample ID	Client Sample ID	(39-146)	(37-120)	(18-120)	(34-132)	(11-120)	(65-153)	
480-90293-1	BFS-1	94	96	83	82	86	108	
LCS 480-272706/2-A	Lab Control Sample	100	86	66	73	67	98	
MB 480-272706/1-A	Method Blank	93	89	74	79	73	96	

Surrogate Legend

TBP = 2,4,6-Tribromophenol

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

PHL = Phenol-d5

TPH = p-Terphenyl-d14 (Surr)

Method: 8081B - Organochlorine Pesticides (GC)

Matrix: Solid Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)					
		DCB1	DCB2	TCX1	TCX2		
Lab Sample ID	Client Sample ID	(32-136)	(32-136)	(30-124)	(30-124)		
480-90293-1	BFS-1	44	98	76	86		
LCS 480-272709/2-A	Lab Control Sample	70	85	70	62		
MB 480-272709/1-A	Method Blank	70	85	78	64		

DCB = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid Prep Type: Total/NA

	very (Acceptance Limits)					
		TCX1	TCX2	DCB1	DCB2	
Lab Sample ID	Client Sample ID	(60-154)	(60-154)	(65-174)	(65-174)	
480-90293-1	BFS-1	98	88	90	99	

TestAmerica Buffalo

Page 9 of 27 11/16/2015

Surrogate Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-90293-1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Matrix: Solid Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)						
		TCX1	TCX2	DCB1	DCB2			
Lab Sample ID	Client Sample ID	(60-154)	(60-154)	(65-174)	(65-174)			
LCS 480-272710/2-A	Lab Control Sample	120	107	107	113			
MB 480-272710/1-A	Method Blank	98	92	95	99			
Surrogate Legend								
TCX = Tetrachloro-m-	xylene							
DCB = DCB Decachlo	robiphenyl							

Method: 8151A - Herbicides (GC)

Matrix: Solid Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)						
		DCPA1	DCPA2					
Lab Sample ID	Client Sample ID	(28-129)	(28-129)					
480-90293-1	BFS-1	79	75					
LCS 480-273595/2-A	Lab Control Sample	87	93					
LCSD 480-273595/3-A	Lab Control Sample Dup	87	88					
MB 480-273595/1-A	Method Blank	79	76					
Surrogate Legend								
DCPA = DCAA								

TestAmerica Buffalo

2

Л

5

7

8

10

11

13

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-272919/3-A **Client Sample ID: Method Blank Matrix: Solid Prep Type: Total/NA** Analysis Batch: 272908 **Prep Batch: 272919**

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.0	0.36	ug/Kg		11/03/15 23:21	11/04/15 04:45	1
1,1-Dichloroethane	ND		5.0	0.61	ug/Kg		11/03/15 23:21	11/04/15 04:45	1
1,1-Dichloroethene	ND		5.0	0.61	ug/Kg		11/03/15 23:21	11/04/15 04:45	1
1,2-Dichlorobenzene	ND		5.0	0.39	ug/Kg		11/03/15 23:21	11/04/15 04:45	1
1,2-Dichloroethane	ND		5.0	0.25	ug/Kg		11/03/15 23:21	11/04/15 04:45	1
1,2-Dichloroethene, cis-	ND		5.0	0.64	ug/Kg		11/03/15 23:21	11/04/15 04:45	1
1,2-Dichloroethene, trans-	ND		5.0	0.51	ug/Kg		11/03/15 23:21	11/04/15 04:45	1
1,3-Dichlorobenzene	ND		5.0	0.26	ug/Kg		11/03/15 23:21	11/04/15 04:45	1
1,4-Dichlorobenzene	ND		5.0	0.70	ug/Kg		11/03/15 23:21	11/04/15 04:45	1
1,4-Dioxane	ND		100	22	ug/Kg		11/03/15 23:21	11/04/15 04:45	1
Acetone	ND		25	4.2	ug/Kg		11/03/15 23:21	11/04/15 04:45	1
Benzene	ND		5.0	0.24	ug/Kg		11/03/15 23:21	11/04/15 04:45	1
Butylbenzene	ND		5.0	0.43	ug/Kg		11/03/15 23:21	11/04/15 04:45	1
Carbon tetrachloride	ND		5.0	0.48	ug/Kg		11/03/15 23:21	11/04/15 04:45	1
Chlorobenzene	ND		5.0	0.66	ug/Kg		11/03/15 23:21	11/04/15 04:45	1
Chloroform	ND		5.0	0.31	ug/Kg		11/03/15 23:21	11/04/15 04:45	1
Ethylbenzene	ND		5.0	0.34	ug/Kg		11/03/15 23:21	11/04/15 04:45	1
Methyl Ethyl Ketone	ND		25	1.8	ug/Kg		11/03/15 23:21	11/04/15 04:45	1
Methyl tert-butyl ether	ND		5.0	0.49	ug/Kg		11/03/15 23:21	11/04/15 04:45	1
Methylene Chloride	ND		5.0	2.3	ug/Kg		11/03/15 23:21	11/04/15 04:45	1
Propylbenzene, n-	ND		5.0	0.40	ug/Kg		11/03/15 23:21	11/04/15 04:45	1
sec-Butylbenzene	ND		5.0		ug/Kg		11/03/15 23:21	11/04/15 04:45	1
tert-Butylbenzene	ND		5.0	0.52	ug/Kg		11/03/15 23:21	11/04/15 04:45	1
Tetrachloroethene	ND		5.0	0.67	0 0		11/03/15 23:21	11/04/15 04:45	1
Toluene	ND		5.0	0.38	ug/Kg		11/03/15 23:21	11/04/15 04:45	1
Trichloroethene	ND		5.0	1.1	ug/Kg		11/03/15 23:21	11/04/15 04:45	1
Trimethylbenzene, 1,2,4-	ND		5.0	0.96	ug/Kg		11/03/15 23:21	11/04/15 04:45	1
Trimethylbenzene, 1,3,5-	ND		5.0	0.32	ug/Kg		11/03/15 23:21	11/04/15 04:45	1
Vinyl chloride	ND		5.0		ug/Kg		11/03/15 23:21	11/04/15 04:45	1
Xylene (mixed)	ND		10	0.84	ug/Kg		11/03/15 23:21	11/04/15 04:45	1

	MB	MB							
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed				
1,2-Dichloroethane-d4 (Surr)	100		64 - 126	11/03/15 23:21	11/04/15 04:45				
4-Bromofluorobenzene (Surr)	97		72 - 126	11/03/15 23:21	11/04/15 04:45				

4:45 Toluene-d8 (Surr) 71 - 125 11/03/15 23:21 11/04/15 04:45 103 Dibromofluoromethane (Surr) 102 60 - 140 11/03/15 23:21 11/04/15 04:45

Lab Sample ID: LCS 480-272919/1-A

Matrix: Solid

Analysis Batch: 272908	Spike	LCS	LCS				Prep Batch: 272919
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1-Dichloroethane	49.9	44.6		ug/Kg		89	73 - 126
1,1-Dichloroethene	49.9	45.7		ug/Kg		92	59 - 125
1,2-Dichlorobenzene	49.9	46.6		ug/Kg		93	75 - 120
1,2-Dichloroethane	49.9	43.8		ug/Kg		88	77 - 122
1,2-Dichloroethene, cis-	49.9	47.4		ug/Kg		95	81 - 117
1,2-Dichloroethene, trans-	49.9	46.9		ug/Kg		94	78 - 126

TestAmerica Buffalo

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Page 11 of 27

Dil Fac

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-272919/1-A

Lab Sample ID: LCSD 480-272919/2-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 272908

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 272919

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	49.9	46.5		ug/Kg		93	79 - 127	
Chlorobenzene	49.9	48.0		ug/Kg		96	76 - 124	
Ethylbenzene	49.9	47.3		ug/Kg		95	80 - 120	
Methyl tert-butyl ether	49.9	47.3		ug/Kg		95	63 - 125	
Tetrachloroethene	49.9	47.3		ug/Kg		95	74 - 122	
Toluene	49.9	51.2		ug/Kg		103	74 - 128	
Trichloroethene	49.9	46.9		ug/Kg		94	77 - 129	
Trimethylbenzene, 1,2,4-	49.9	46.9		ug/Kg		94	74 - 120	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	95		64 - 126
4-Bromofluorobenzene (Surr)	98		72 - 126
Toluene-d8 (Surr)	101		71 - 125
Dibromofluoromethane (Surr)	100		60 - 140

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 272919

Analysis Batch: 272908 Spike LCSD LCSD %Rec. **RPD** Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit 1,1-Dichloroethane 49.5 43.6 ug/Kg 88 73 - 126 2 20 1,1-Dichloroethene 49.5 43.1 87 59 - 125 20 ug/Kg 6 1,2-Dichlorobenzene 49.5 45.6 ug/Kg 92 75 - 120 2 20 1,2-Dichloroethane 49.5 43.1 87 77 - 122 20 ug/Kg 1,2-Dichloroethene, cis-49.5 45.5 ug/Kg 92 81 - 117 20 ug/Kg 1,2-Dichloroethene, trans-49.5 44.8 90 78 - 126 5 20 Benzene 49.5 45.0 ug/Kg 91 79 - 127 20 Chlorobenzene 49.5 46.0 ug/Kg 93 76 - 124 20 45.0 91 Ethylbenzene 49.5 80 - 120 20 ug/Kg Methyl tert-butyl ether 49.5 47.3 95 63 - 125 20 ug/Kg Tetrachloroethene 90 20 49.5 44.5 74 - 122 6 ug/Kg Toluene 49.5 46.4 ug/Kg 94 74 - 128 10 20 Trichloroethene 77 - 129 91 49.5 44.9 ug/Kg 20 Trimethylbenzene, 1,2,4-49.5 45.1 ug/Kg 74 - 120 20

	L	CSD	LCSD
--	---	-----	------

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	95		64 - 126
4-Bromofluorobenzene (Surr)	97		72 - 126
Toluene-d8 (Surr)	100		71 - 125
Dibromofluoromethane (Surr)	98		60 - 140

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-272706/1-A **Client Sample ID: Method Blank Matrix: Solid Prep Type: Total/NA Analysis Batch: 272963 Prep Batch: 272706** MB MB

	INID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acenaphthene	ND		170	25	ug/Kg		11/03/15 07:59	11/04/15 09:56	
Acenaphthylene	ND		170	22	ug/Kg		11/03/15 07:59	11/04/15 09:56	
Anthracene	ND		170	42	ug/Kg		11/03/15 07:59	11/04/15 09:56	
Benzo(a)anthracene	ND		170	17	ug/Kg		11/03/15 07:59	11/04/15 09:56	
Benzo(a)pyrene	ND		170	25	ug/Kg		11/03/15 07:59	11/04/15 09:56	
Benzo(b)fluoranthene	ND		170	27	ug/Kg		11/03/15 07:59	11/04/15 09:56	
Benzo(g,h,i)perylene	ND		170	18	ug/Kg		11/03/15 07:59	11/04/15 09:56	
Benzo(k)fluoranthene	ND		170	22	ug/Kg		11/03/15 07:59	11/04/15 09:56	
Chrysene	ND		170	38	ug/Kg		11/03/15 07:59	11/04/15 09:56	
Dibenz(a,h)anthracene	ND		170	30	ug/Kg		11/03/15 07:59	11/04/15 09:56	
Dibenzofuran	ND		170	20	ug/Kg		11/03/15 07:59	11/04/15 09:56	
Fluoranthene	ND		170	18	ug/Kg		11/03/15 07:59	11/04/15 09:56	
Fluorene	ND		170	20	ug/Kg		11/03/15 07:59	11/04/15 09:56	
Hexachlorobenzene	ND		170	23	ug/Kg		11/03/15 07:59	11/04/15 09:56	
Indeno(1,2,3-cd)pyrene	ND		170	21	ug/Kg		11/03/15 07:59	11/04/15 09:56	
Naphthalene	ND		170	22	ug/Kg		11/03/15 07:59	11/04/15 09:56	
o-Cresol	ND		170	20	ug/Kg		11/03/15 07:59	11/04/15 09:56	
p-Cresol	ND		330	20	ug/Kg		11/03/15 07:59	11/04/15 09:56	
Pentachlorophenol	ND		330	170	ug/Kg		11/03/15 07:59	11/04/15 09:56	
Phenanthrene	ND		170	25	ug/Kg		11/03/15 07:59	11/04/15 09:56	
Phenol	ND		170	26	ug/Kg		11/03/15 07:59	11/04/15 09:56	
Pyrene	ND		170	20	ug/Kg		11/03/15 07:59	11/04/15 09:56	

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	93		39 - 146	11/03/15 07:59	11/04/15 09:56	1
2-Fluorobiphenyl	89		37 - 120	11/03/15 07:59	11/04/15 09:56	1
2-Fluorophenol	74		18 - 120	11/03/15 07:59	11/04/15 09:56	1
Nitrobenzene-d5	79		34 - 132	11/03/15 07:59	11/04/15 09:56	1
Phenol-d5	73		11 - 120	11/03/15 07:59	11/04/15 09:56	1
p-Terphenvl-d14 (Surr)	96		65 ₋ 153	11/03/15 07:59	11/04/15 09:56	1

Lab Sample ID: LCS 480-272706/2-A				Clier	ıt Saı	nple ID	: Lab Control Sam	ple
Matrix: Solid						-	Prep Type: Total/	NA
Analysis Batch: 272963							Prep Batch: 2727	706
•	Spike	LCS I	LCS				%Rec.	
Analyte	Added	Result (Qualifier	Unit	D	%Rec	Limits	
Acenaphthene	1640	1380		ug/Kg		84	53 - 120	
Fluorene	1640	1410		ua/Ka		86	63 - 126	

7 ti lai y to	710001	· · · · · · · · · · · · · · · · · · · ·	Qualifier Office	2 /0.100		
Acenaphthene	1640	1380	ug/Kg	84	53 - 120	
Fluorene	1640	1410	ug/Kg	86	63 - 126	
p-Cresol	1640	1110	ug/Kg	67	50 - 119	
Pentachlorophenol	3290	3210	ug/Kg	98	33 - 136	
Phenol	1640	1060	ug/Kg	65	36 - 120	
Pyrene	1640	1640	ug/Kg	100	51 - 133	

LCS	LCS
-----	-----

Surrogate	%Recovery G	Qualifier	Limits
2,4,6-Tribromophenol	100		39 - 146
2-Fluorobiphenyl	86		37 - 120
2-Fluorophenol	66		18 - 120

TestAmerica Buffalo

Page 13 of 27

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

LCS LCS

Lab Sample ID: LCS 480-272706/2-A

Matrix: Solid

Analysis Batch: 272963

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 272706

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5	73		34 - 132
Phenol-d5	67		11 - 120
p-Terphenyl-d14 (Surr)	98		65 - 153

Method: 8081B - Organochlorine Pesticides (GC)

Lab Sample ID: MB 480-272709/1-A **Client Sample ID: Method Blank**

Matrix: Solid Prep Type: Total/NA Analysis Batch: 273016 **Prep Batch: 272709**

	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		1.7	0.32	ug/Kg		11/03/15 08:04	11/04/15 10:41	1
4,4'-DDE	ND		1.7	0.35	ug/Kg		11/03/15 08:04	11/04/15 10:41	1
4,4'-DDT	ND		1.7	0.39	ug/Kg		11/03/15 08:04	11/04/15 10:41	1
Aldrin	ND		1.7	0.41	ug/Kg		11/03/15 08:04	11/04/15 10:41	1
alpha-BHC	ND		1.7	0.30	ug/Kg		11/03/15 08:04	11/04/15 10:41	1
beta-BHC	ND		1.7	0.30	ug/Kg		11/03/15 08:04	11/04/15 10:41	1
Chlordane (.alpha.)	ND		1.7	0.82	ug/Kg		11/03/15 08:04	11/04/15 10:41	1
delta-BHC	ND		1.7	0.31	ug/Kg		11/03/15 08:04	11/04/15 10:41	1
Dieldrin	ND		1.7	0.40	ug/Kg		11/03/15 08:04	11/04/15 10:41	1
Endosulfan I	ND		1.7	0.32	ug/Kg		11/03/15 08:04	11/04/15 10:41	1
Endosulfan II	ND		1.7	0.30	ug/Kg		11/03/15 08:04	11/04/15 10:41	1
Endosulfan sulfate	ND		1.7	0.31	ug/Kg		11/03/15 08:04	11/04/15 10:41	1
Endrin	ND		1.7	0.33	ug/Kg		11/03/15 08:04	11/04/15 10:41	1
Heptachlor	ND		1.7	0.36	ug/Kg		11/03/15 08:04	11/04/15 10:41	1
Lindane	ND		1.7	0.30	ug/Kg		11/03/15 08:04	11/04/15 10:41	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	70	32 - 136	11/03/15 08:04	11/04/15 10:41	1
DCB Decachlorobiphenyl	85	32 - 136	11/03/15 08:04	11/04/15 10:41	1
Tetrachloro-m-xylene	78	30 - 124	11/03/15 08:04	11/04/15 10:41	1
Tetrachloro-m-xylene	64	30 - 124	11/03/15 08:04	11/04/15 10:41	1

Lab Sample ID: LCS 480-272709/2-A

Matrix: Solid

Analysis Batch: 273016

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Pren Batch: 272709

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
4,4'-DDD	16.6	14.6		ug/Kg		88	52 - 138	
4,4'-DDE	16.6	13.1		ug/Kg		79	52 - 131	
4,4'-DDT	16.6	14.1		ug/Kg		85	50 - 131	
Aldrin	16.6	11.8		ug/Kg		71	35 - 120	
alpha-BHC	16.6	11.0		ug/Kg		66	49 - 120	
beta-BHC	16.6	11.5		ug/Kg		69	52 - 127	
Chlordane (.alpha.)	16.6	12.5		ug/Kg		76	40 - 133	
delta-BHC	16.6	12.5		ug/Kg		75	45 - 123	
Dieldrin	16.6	14.1		ug/Kg		85	50 - 131	

TestAmerica Buffalo

Page 14 of 27

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: LCS 480-272709/2-A

Matrix: Solid

Analysis Batch: 273016

Client Sample ID: La	b Control Sample
Pre	ep Type: Total/NA
_	D 4 1 0-0-00

Prep Batch: 272709

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Endosulfan I	16.6	11.6		ug/Kg		70	43 - 121	
Endosulfan II	16.6	13.3		ug/Kg		80	48 - 134	
Endosulfan sulfate	16.6	13.4		ug/Kg		81	46 - 144	
Endrin	16.6	14.7		ug/Kg		89	46 - 134	
Heptachlor	16.6	13.1		ug/Kg		79	51 - 121	
Lindane	16.6	11.9		ug/Kg		72	50 - 120	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	70		32 - 136
DCB Decachlorobiphenyl	85		32 - 136
Tetrachloro-m-xylene	70		30 - 124
Tetrachloro-m-xylene	62		30 - 124

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 480-272710/1-A

Matrix: Solid

Analysis Batch: 272834

Prep Type: Total/NA **Prep Batch: 272710**

Client Sample ID: Method Blank

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.23	0.045	mg/Kg		11/03/15 08:08	11/03/15 16:12	1
PCB-1221	ND		0.23	0.045	mg/Kg		11/03/15 08:08	11/03/15 16:12	1
PCB-1232	ND		0.23	0.045	mg/Kg		11/03/15 08:08	11/03/15 16:12	1
PCB-1242	ND		0.23	0.045	mg/Kg		11/03/15 08:08	11/03/15 16:12	1
PCB-1248	ND		0.23	0.045	mg/Kg		11/03/15 08:08	11/03/15 16:12	1
PCB-1254	ND		0.23	0.11	mg/Kg		11/03/15 08:08	11/03/15 16:12	1
PCB-1260	ND		0.23	0.11	mg/Kg		11/03/15 08:08	11/03/15 16:12	1

MB MB

Surrogate	%Recovery Qual	ifier Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	98	60 - 154	11/03/15 08:08	11/03/15 16:12	1
Tetrachloro-m-xylene	92	60 ₋ 154	11/03/15 08:08	11/03/15 16:12	1
DCB Decachlorobiphenyl	95	65 ₋ 174	11/03/15 08:08	11/03/15 16:12	1
DCB Decachlorobiphenyl	99	65 - 174	11/03/15 08:08	11/03/15 16:12	1

Lab Sample ID: LCS 480-272710/2-A

Matrix: Solid

Analysis Batch: 272834

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 272710

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016	2.39	2.79		mg/Kg		117	51 - 185	
PCB-1260	2.39	2.86		mg/Kg		120	61 - 184	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	120		60 - 154
Tetrachloro-m-xylene	107		60 - 154
DCB Decachlorobiphenyl	107		65 - 174
DCB Decachlorobiphenyl	113		65 - 174

TestAmerica Buffalo

Client Sample ID: Method Blank

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Method: 8151A - Herbicides (GC)

Lab Sample ID: MB 480-273595/1-A

Matrix: Solid

Analyte

Surrogate

DCAA

DCAA

Analyte

2,4,5-TP (Silvex)

Analysis Batch: 273977

MB MB

MB MB

79

76

%Recovery

2,4,5-TP (Silvex)

Result Qualifier

 $\overline{\mathsf{ND}}$

Qualifier

RL 16

Limits

28 - 129

28 - 129

MDL Unit 5.9 ug/Kg

Prepared

Prepared

Analyzed 11/06/15 13:11 11/09/15 17:05

Analyzed

11/06/15 13:11 11/09/15 17:05

11/06/15 13:11 11/09/15 17:05

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

%Rec

81

%Rec.

Limits

26 - 168

Dil Fac

Prep Type: Total/NA

Prep Batch: 273595

Dil Fac

Lab Sample ID: LCS 480-273595/2-A

Matrix: Solid

Analysis Batch: 273977

Spike Added 66.1

Spike

Added

66.3

LCS LCS Result Qualifier 54.2

LCSD LCSD

53.5

Result Qualifier

Unit ug/Kg

Unit

ug/Kg

%Rec D 82 **Prep Batch: 273595** %Rec.

Prep Type: Total/NA

Limits 26 - 168

Prep Type: Total/NA

Prep Batch: 273595

RPD

LCS LCS

Surrogate %Recovery Qualifier Limits 28 - 129 **DCAA** 87 DCAA 93 28 - 129

Lab Sample ID: LCSD 480-273595/3-A

Matrix: Solid

Analysis Batch: 273977

Analyte

2,4,5-TP (Silvex) LCSD LCSD %Recovery Qualifier Surrogate

Limits DCAA 87 28 - 129 DCAA 88 28 - 129

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-273042/1-A

Matrix: Solid

Analysis Batch: 273495

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 273042

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Dil Fac Analyzed ND 2.0 11/04/15 12:07 11/06/15 00:56 Arsenic 0.40 mg/Kg Barium 0.50 11/04/15 12:07 11/06/15 00:56 ND 0.11 mg/Kg ND Beryllium 0.20 0.028 mg/Kg 11/04/15 12:07 11/06/15 00:56 Cadmium ND 0.20 0.030 mg/Kg 11/04/15 12:07 11/06/15 00:56 Copper ND 0.21 mg/Kg 11/04/15 12:07 11/06/15 00:56 1.0 Lead ND 1.0 0.24 mg/Kg 11/04/15 12:07 11/06/15 00:56 0.0510 J 0.20 0.032 mg/Kg 11/04/15 12:07 11/06/15 00:56 Manganese Nickel ND 5.0 0.23 mg/Kg 11/04/15 12:07 11/06/15 00:56 Selenium ND 4.0 0.40 mg/Kg 11/04/15 12:07 11/06/15 00:56 Silver ND 0.60 0.20 mg/Kg 11/04/15 12:07 11/06/15 00:56 Zinc ND 2.0 0.64 mg/Kg 11/04/15 12:07 11/06/15 00:56

TestAmerica Buffalo

Page 16 of 27

RPD

Limit

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCSSRM 480-273042/2-A			Client Sample ID: Lab Control Sample
Matrix: Solid			Prep Type: Total/NA
Analysis Batch: 273495			Prep Batch: 273042
	Spike	LCSSRM LCSSRM	%Rec.

Analysis Batch: 273495	Spike	LCSSRM	LCSSRM				Prep Batch: 273042 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	113	91.88		mg/Kg		81.3	69.7 - 142.
							5
Barium	155	129.8		mg/Kg		83.7	72.9 - 127.
							1
Beryllium	109	90.60		mg/Kg		83.1	74.7 - 124.
							8
Cadmium	67.5	59.64		mg/Kg		88.4	73.2 - 126.
_							8
Copper	100	110.0		mg/Kg		110.0	96.2 - 161.
	00.4	24.42				00.4	0
Lead	90.1	81.49		mg/Kg		90.4	70.1 - 129.
						04.5	9
Manganese	363	306.8		mg/Kg		84.5	75.8 - 124.
Niekal	80.3	02.44				02.4	5
Nickel	89.3	83.44		mg/Kg		93.4	72.0 - 127.
Selenium	156	127.3		mg/Kg		81.6	67.3 - 132.
Seleman	130	127.5		mg/rtg		01.0	07.5 - 132.
Silver	52.6	43.21		mg/Kg		82.2	66.7 - 133.
	02.0	10.21		9, 1.9		02.2	5
Zinc	168	141.6		mg/Kg		84.3	69.0 - 131.
	100	111.0		9, 1.9		31.0	5
L							•

Method: 7471B - Mercury (CVAA)

Lab Sample ID: MB 480-273324/1-A **Client Sample ID: Method Blank Matrix: Solid Prep Type: Total/NA** Prep Batch: 273324 **Analysis Batch: 273457**

MB MB Analyte Result Qualifier **MDL** Unit Prepared Analyzed 0.020 ND

Mercury 0.0081 mg/Kg 11/05/15 14:05 11/05/15 16:37

Lab Sample ID: LCSSRM 480-273324/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 273457** Prep Batch: 273324 Spike LCSSRM LCSSRM %Rec.

Analyte Added Result Qualifier Unit D %Rec Limits Mercury 8.37 10.47 mg/Kg 125.0 51.3 - 148.

Method: 9012B - Cyanide, Total andor Amenable

Lab Sample ID: MB 480-274693/1-A **Client Sample ID: Method Blank Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 274917** Prep Batch: 274693

MB MB

Result Qualifier RL MDL Unit Prepared Analyzed 0.99 11/12/15 14:26 11/13/15 11:40 Cyanide, Total ND 0.48 mg/Kg

TestAmerica Buffalo

11/16/2015

QC Sample Results

Client: Iyer Environmental Group, LLC
TestAmerica Job ID: 480-90293-1

Project/Site: 132 Dingens

Method: 9012B - Cyanide, Total andor Amenable (Continued)

Lab Sample ID: LCS 480-274693/2-A

Matrix: Solid

Analysis Batch: 274917

Spike

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Prep Batch: 274693

Rec.

AnalyteAddedResult QualifierUnit mg/KgD 60WRec LimitsCyanide, Total39.623.84mg/Kg6029 - 122

5

6

8

10

11

13

14

QC Association Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-90293-1

GC/MS VOA

Analysis Batch: 272908

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90293-1	BFS-1	Total/NA	Solid	8260C	272919
LCS 480-272919/1-A	Lab Control Sample	Total/NA	Solid	8260C	272919
LCSD 480-272919/2-A	Lab Control Sample Dup	Total/NA	Solid	8260C	272919
MB 480-272919/3-A	Method Blank	Total/NA	Solid	8260C	272919

Prep Batch: 272919

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90293-1	BFS-1	Total/NA	Solid	5035	
LCS 480-272919/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 480-272919/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
MB 480-272919/3-A	Method Blank	Total/NA	Solid	5035	

GC/MS Semi VOA

Prep Batch: 272706

Lab Sample ID 480-90293-1	Client Sample ID BFS-1	Prep Type Total/NA	Matrix Solid	Method 3550C	Prep Batch
LCS 480-272706/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-272706/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 272963

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90293-1	BFS-1	Total/NA	Solid	8270D	272706
LCS 480-272706/2-A	Lab Control Sample	Total/NA	Solid	8270D	272706
MB 480-272706/1-A	Method Blank	Total/NA	Solid	8270D	272706

GC Semi VOA

Prep Batch: 272709

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90293-1	BFS-1	Total/NA	Solid	3550C	
LCS 480-272709/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-272709/1-A	Method Blank	Total/NA	Solid	3550C	

Prep Batch: 272710

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90293-1	BFS-1	Total/NA	Solid	3550C	
LCS 480-272710/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-272710/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 272834

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90293-1	BFS-1	Total/NA	Solid	8082A	272710
LCS 480-272710/2-A	Lab Control Sample	Total/NA	Solid	8082A	272710
MB 480-272710/1-A	Method Blank	Total/NA	Solid	8082A	272710

Analysis Batch: 273016

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-272709/2-A	Lab Control Sample	Total/NA	Solid	8081B	272709
MB 480-272709/1-A	Method Blank	Total/NA	Solid	8081B	272709

TestAmerica Buffalo

Page 19 of 27

2

3

4

6

9

4 4

12

14

1 E

Le

TestAmerica Job ID: 480-90293-1

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

GC Semi VOA (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90293-1	BFS-1	Total/NA	Solid	8081B	272709

Prep Batch: 273595

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90293-1	BFS-1	Total/NA	Solid	8151A	<u> </u>
LCS 480-273595/2-A	Lab Control Sample	Total/NA	Solid	8151A	
LCSD 480-273595/3-A	Lab Control Sample Dup	Total/NA	Solid	8151A	
MB 480-273595/1-A	Method Blank	Total/NA	Solid	8151A	

Analysis Batch: 273977

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90293-1	BFS-1	Total/NA	Solid	8151A	273595
LCS 480-273595/2-A	Lab Control Sample	Total/NA	Solid	8151A	273595
LCSD 480-273595/3-A	Lab Control Sample Dup	Total/NA	Solid	8151A	273595
MB 480-273595/1-A	Method Blank	Total/NA	Solid	8151A	273595

Metals

Prep Batch: 273042

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90293-1	BFS-1	Total/NA	Solid	3050B	
LCSSRM 480-273042/2-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 480-273042/1-A	Method Blank	Total/NA	Solid	3050B	

Prep Batch: 273324

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90293-1	BFS-1	Total/NA	Solid	7471B	<u> </u>
LCSSRM 480-273324/2-A	Lab Control Sample	Total/NA	Solid	7471B	
MB 480-273324/1-A	Method Blank	Total/NA	Solid	7471B	

Analysis Batch: 273457

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90293-1	BFS-1	Total/NA	Solid	7471B	273324
LCSSRM 480-273324/2-A	Lab Control Sample	Total/NA	Solid	7471B	273324
MB 480-273324/1-A	Method Blank	Total/NA	Solid	7471B	273324

Analysis Batch: 273495

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90293-1	BFS-1	Total/NA	Solid	6010C	273042
LCSSRM 480-273042/2-A	Lab Control Sample	Total/NA	Solid	6010C	273042
MB 480-273042/1-A	Method Blank	Total/NA	Solid	6010C	273042

Analysis Batch: 273599

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90293-1	BFS-1	Total/NA	Solid	6010C	273042

QC Association Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-90293-1

General Chemistry

Prep Batch: 274693

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90293-1	BFS-1	Total/NA	Solid	9012B	
LCS 480-274693/2-A	Lab Control Sample	Total/NA	Solid	9012B	
MB 480-274693/1-A	Method Blank	Total/NA	Solid	9012B	

Analysis Batch: 274917

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-90293-1	BFS-1	Total/NA	Solid	9012B	274693
LCS 480-274693/2-A	Lab Control Sample	Total/NA	Solid	9012B	274693
MB 480-274693/1-A	Method Blank	Total/NA	Solid	9012B	274693

3

4

5

6

Q

9

10

12

13

Lab Chronicle

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-90293-1

Lab Sample ID: 480-90293-1

Matrix: Solid

Client Sample ID: BFS-1
Date Collected: 11/02/15 00:00

Date Received: 11/02/15 14:04

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			272919	11/03/15 23:21	CDC	TAL BUF
Total/NA	Analysis	8260C		1	272908	11/04/15 09:44	CDC	TAL BUF
Total/NA	Prep	3550C			272706	11/03/15 07:59	TRG	TAL BUF
Total/NA	Analysis	8270D		5	272963	11/04/15 16:30	LMW	TAL BUF
Total/NA	Prep	3550C			272709	11/03/15 08:04	CAM	TAL BUF
Total/NA	Analysis	8081B		5	273255	11/05/15 12:44	JRL	TAL BUF
Total/NA	Prep	3550C			272710	11/03/15 08:08	TRG	TAL BUF
Total/NA	Analysis	8082A		1	272834	11/03/15 18:39	KS	TAL BUF
Total/NA	Prep	8151A			273595	11/06/15 13:11	TRG	TAL BUF
Total/NA	Analysis	8151A		1	273977	11/09/15 19:34	JRL	TAL BUF
Total/NA	Prep	3050B			273042	11/04/15 12:07	CNS	TAL BUF
Total/NA	Analysis	6010C		1	273495	11/06/15 02:33	SLB	TAL BUF
Total/NA	Prep	3050B			273042	11/04/15 12:07	CNS	TAL BUF
Total/NA	Analysis	6010C		2	273599	11/06/15 11:39	SLB	TAL BUF
Total/NA	Prep	7471B			273324	11/05/15 14:05	TAS	TAL BUF
Total/NA	Analysis	7471B		1	273457	11/05/15 17:06	TAS	TAL BUF
Total/NA	Prep	9012B			274693	11/12/15 14:26	SER	TAL BUF
Total/NA	Analysis	9012B		1	274917	11/13/15 11:43	JJK	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

Į.

6

ŏ

10

10

12

Certification Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-90293-1

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority New York	Program NELAP		EPA Region	Certification ID 10026	Expiration Date 03-31-16
Analysis Method	Prep Method	Matrix	Analyt	e	

3

4

5

7

9

11

12

14

Method Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-90293-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL BUF
8081B	Organochlorine Pesticides (GC)	SW846	TAL BUF
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL BUF
8151A	Herbicides (GC)	SW846	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF
7471B	Mercury (CVAA)	SW846	TAL BUF
9012B	Cyanide, Total andor Amenable	SW846	TAL BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

5

8

9

10

13

14

Sample Summary

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

TestAmerica Job ID: 480-90293-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-90293-1	BFS-1	Solid	11/02/15 00:00	11/02/15 14:04

Special Instructions/ Conditions of Receipt HOK) (A fee may be assessed if samples are letained knger than 1 month) Chain of Custody Number 264488 Тіте ð Page Date 480-90293 Chain of Custody THE LEADER IN ENVIRONMENTAL TESTING May 2, 2015 **TestAmerica** more space is needed) Analysis (Attach list if Months ** `Š ☐ Archive For OC Requirements (Specify) NBON HOBN Disposal By Lab Containers & Preservatives HOBN IDH Project Manager Dharma lyler EONH Drinking Water? Yes No DOSZH Temperature on Receipt ... anote han ☐ Unknown ☐ Return To Client 4071 DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy Matrix Carrier/Waybill Numbe 7005 Date, W/2/15 114 ☐ 7 Days 🙀 14 Days 🗆 21 Days 📋 Other. Time 11/2/15 🗌 Poison B 44 Rolling Hilk Or and Park NY 14127 Date her Environmental Grap (Containers for each sample may be combined on one line) Skin Imitant Sample I.D. No. and Description 32 Dimens Strong Strong Contract Purchase Order Order Strong Stro Mon-Hazard | Flammable Tum Around Time Required Orchard Park Custody Record ☐ 24 Hours ☐ 48 Hours Possible Hazard Identification BFS-1. Relinquished By 2. Relinquished By 3. Relinquished By Chain of 11/16/2015 Page 26 of 27

Client: Iyer Environmental Group, LLC

Job Number: 480-90293-1

Login Number: 90293 List Source: TestAmerica Buffalo

List Number: 1

Creator: Janish, Carl M

Creator: Janish, Cari M		
Question	Answer	Commen
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	iyer
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

TestAmerica Buffalo

APPENDIX J CAMP FIELD DATA

APPENDIX J

132 DINGENS ST PROPERTY - BCP SITE REMEDIATION CAMP FIELD DATA

LOG OF FIGUTIVE DUST MONITORING

	AREA BEING		NORTH	SOUTH	EAST	WEST			
DATE	EXCAVATED	ACTIVITY	PDM-3 READINGS (μg/M³)						
28-Jul-2015	TS-13	EXCAVATION	0.00	0.00	0.53	0.00			
29-Jul-2015	TS-9	EXCAVATION	0.04	0.00	0.18	0.00			
	MW-7	EXCAVATION	0.07	0.27	0.18	0.16			
30-Jul-2015	TS-9	EXCAVATION	0.00	0.80	0.25	0.00			
30-Jul-2013	GS-30	EXCAVATION	0.00	0.10	2.40	0.10			
	TS-4	EXCAVATION	0.00	0.00	0.27	0.00			
19-Aug-2015	GS-21	EXCAVATION	0.00	0.00	0.40	0.00			
20-Aug-2015	TS-13	EXCAVATION	0.57	0.00	0.53	0.63			
21-Aug-2015	MW-2	EXCAVATION	0.00	0.00	0.00	0.00			
27-Aug-2015	GS-20	EXCAVATION	0.07	0.05	0.78	0.06			
20 A 2045	TS-4	EXCAVATION	0.03	0.05	0.05	0.07			
28-Aug-2015	GS-30	MIXING CEMENT	0.00	0.22	0.12	0.76			
1-Sep-2015	GS-30	EXCAVATION	0.97	1.06	1.12	1.23			
0.000	MW-7	MIXING CEMENT	2.59	1.72	2.21	2.17			
2-Sep-2015	TS-9	EXCAVATION	0.20	0.25	1.23	0.86			
3-Sep-2015	GS-21	EXCAVATION	0.27	0.25	0.59	0.31			
9-Sep-2015	TS-13/MW-2	EXCAVATION	0.07	0.10	0.00	0.29			
44 0 2045	TS-15	EXCAVATION	0.98	0.54	0.67	0.00			
11-Sep-2015	15-15	MIXING CEMENT	0.20	0.28	0.18	1.05			
17-Sep-2015	TS-13	EXCAVATION	0.00	0.22	0.00	0.00			
24-Sep-2015	GS-17	EXCAVATION	0.00	0.00	0.00	0.00			

APPENDIX K IMPORTED MATERIALS DOCUMENTATION (Digital Copy on CD)

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Request to Import/Reuse Fill or Soil

This form is based on the information required by DER-10, Section 5.4(e). Use of this form is not a substitute for reading the applicable Technical Guidance document.

SECTION 1 – SITE BACKGROUND
The allowable site use is: Commercial or Industrial Use
Have Ecological Resources been identified? no
Is this soil originating from the site? no
How many cubic yards of soil will be imported/reused? >1000
If greater than 1000 cubic yards will be imported, enter volume to be imported: 4000
SECTION 2 – MATERIAL OTHER THAN SOIL
Is the material to be imported gravel, rock or stone? no
Does it contain less than 10%, by weight, material that would pass a size 80 sieve? yes
Is this virgin material from a permitted mine or quarry? no
Is this material recycled concrete or brick from a DEC registered processing facility? no
SECTION 3 - SAMPLING
Provide a brief description of the number and type of samples collected in the space below:
The native soil was sampled by C&S Engineers at the Children's Hospital location during the course of excavation for site redevelopment. A total of 23 samples were collected and analyzed for DER-10 parameters - including VOCs, SVOCs, inorganics and PCBs/Pesticides.
The excavated native soil from Children's Hospital is stockpiled at a site on Seneca St., Buffalo. Iyer Environmental sampled this pile on 4/7/15. A total of 15 test pits were dug. Ten (10) discrete samples were collected and analyzed for VOCs, and five (5) composite samples were collected and analyzed for SVOCs, inorganics and PCBs/Pesticides.
Example Text: 5 discrete samples were collected and analyzed for VOCs. 2 composite samples were collected and analyzed for SVOCs, Inorganics & PCBs/Pesticides.
If the material meets requirements of DER-10 section 5.5 (other material), no chemical testing needed.

SECTION 3 CONT'D - SAMPLING

Provide a brief written summary of the sampling results or attach evaluation tables (compare to DER-10, Appendix 5):

All detected VOCs, SVOCs and metals were below their corresponding Unrestricted Use soil SCOs. Cyanide, PCBs and herbicides were not detected in any of the samples.

Amongst VOCs, benzene was detected up to 0.74 μ g/Kg, methylene chloride up to 3.7 μ g/K, styrene up to 0.29 μ g/Kg and toluene up to 1.3 μ g/Kg. SVOCs included bis (2-ethylhexyl) phthalate (up to 100 μ g/Kg), diethyl phthalate (up to 87 μ g/Kg), di-n-butyl phthalate (up to 17 μ g/Kg), fluoranthene (up to 41 μ g/Kg), phenanthrene (up to 32 μ g/Kg), and pyrene (up to 34 μ g/Kg). Pesticides included 4,4'-DDE (up to 0.43 μ g/Kg), 4,4'-DDT (up to 0.65 μ g/Kg), delta-BHC (up to 0.46 μ g/Kg), endosulfan sulfate (up to 0.52 μ g/Kg), and endrin aldehyde (up to 0.67 μ g/Kg). Metals included arsenic up to 3.4 μ g/Kg, barium up to 16.8 μ g/Kg, beryllium up to 0.19 μ g/Kg, cadmium up to 0.81 μ g/Kg, chromium up to 4.5 μ g/Kg, copper up to 7.7 μ g/Kg, lead up to 8.6 μ g/Kg, manganese up to 524 μ g/Kg, nickel up to 4.9 μ g/Kg, and zinc up to 199 μ g/Kg.

Example Text: Arsenic was detected up to 17 ppm in 1 (of 5) samples; the allowable level is 16 ppm.

If Ecological Resources have been identified use the "If Ecological Resources are Present" column in Appendix 5.

SECTION 4 – SOURCE OF FILL

Name of person providing fill and relationship to the source:

Pinto CS is subcontractor for Kaleida Health's new JR Oshei Children's Hospital site

Location where fill was obtained:

50 High Street (corner with Ellicott Street), Buffalo, NY

Identification of any state or local approvals as a fill source:

None

If no approvals are available, provide a brief history of the use of the property that is the fill source:

This 1.5-acre property has been developed since various uses since the 1880s - battery charging shop, steam/dry cleaning and dyeing business, and most recently as a parking lot. The two formers uses of the site and the adjacent NYS Spill are the only RECs.

Provide a list of supporting documentation included with this request:

IEG Memo on 5/12/15 DER-10 sampling of stock pile; C&S's 2014 Soil Characterization Reports

James Panepinto

Print Name

132 Dingens St, LLC

Firm

The information provided on this form is accurate and complete.

MEMORANDUM

TO:	J. Walia (NYSDEC)
CC:	J. Panepinto, L. Cannata (Pinto CS)
FROM:	Dharma Iyer (IEG)
DATE:	June 9, 2015 (revised)
RE:	132 Dingens St. BCP Site OFF-SITE NATIVE SOIL FILL - STOCKPILE SAMPLING & ANALYSIS

132 Dingens St, LLC is proposing to use the following materials at the 132 Dingens St. site after excavation of contaminated soil/fill:

- Backfill: Native soil from Children's Hospital construction site, Buffalo, NY. Pinto CS excavated this soil and stockpiled it at a site on Seneca St, Buffalo.
- Cover material: crushed stone from LaFarge's Lockport guarry.

BACKFILL FROM CHILDREN'S: Pinto is a subcontractor for the John R. Oshei (JRO) Children's Hospital site redevelopment by Kaleida Health at the northwest corner of Ellicott & High Streets, and identified it as a sizeable source of backfill. Kaleida Health had the top layer of urban fill disposed elsewhere. C&S Engineers, Inc. (C&S), Kaleida Health's consultant, then implemented a sampling program for the underlying native soils to determine the suitability of the native soil for use as off-site fill at a BCP site. C&S completed the native soil sampling in stages as the excavation proceeded. Over three sampling events C&S collected a total of twenty three (23) samples and had them analyzed them for the full list of DER-10 parameters - including VOCs, SVOCs, Metals, Cyanide, PCBs and Pesticides.

Based upon a review of the analytical data provided by C&S (report and data tables included as Attachment A), Pinto trucked and stockpiled an estimated 20,000 CY from this site at a yard on Seneca St., Buffalo, NY (see photos). Pinto anticipates using approximately 4,000 CY of soil from this stockpile as backfill at the Dingens St. Site.

<u>CRUSHED STONE</u>: This stone fill will be trucked from LaFarge's Lockport quarry to the site when needed. At that time IEG will obtain necessary gradation test results and certifications from LaFarge for submittal to the NYSDEC.

<u>SAMPLING</u> by <u>IEG</u>: The off-site soil stockpile was sampled by IEG on April 7, 2015 at a staging site (see photo below) on Seneca St. In addition, a crushed stone sample was obtained from the LaFarge's virgin source.

The sampling was performed by digging into the stock pile with a shovel. A total of fifteen (15) test pits were dug in an area representative of the 4,000 CY needed for the 132 Dingens St. site. The locations of these test pits are shown on the attached Figure 1. From each group of three test pits, two grab samples (marked A and B in each group on Figure 1) were collected for VOCs, and one composite sample was collected for all other DER-10 parameters. Thus a total of ten (10) grab soil samples were collected for TCL volatile organics, and five composite soil samples were collected for the remaining DER-10 parameters – TCL semivolatile organics, pesticides, herbicides, PCBs, TAL metals (including mercury) and cyanide. All soil samples were submitted to a NYS ELAP-certified analytical laboratory for DER-10 parameters for use of off-site fill at a BCP site.

Memorandum Page 2

June 9, 2015

Subject: 132 Dingens St. Site: Backfill From D. Iyer (IEG) to J. Walia (NYSDEC)

ANALYTICAL RESULTS: Analytical results for soil samples from the stockpile are included as Table 1.

<u>VOCs</u>: Trace levels of up to only four (4) VOCs were detected in the soil samples, all well below Unrestricted Use SCOs. The detected VOCs included benzene (non-detect to 0.74 μ g/Kg), methylene chloride (2.5 to 3.7 μ g/Kg), styrene (non-detect to 0.29 μ g/Kg), and toluene (non-detect to 1.3 μ g/Kg).

<u>SVOCs</u>: Up to only six (6) SVOCs were detected in the samples. These included bis (2-ethylhexyl) phthalate (up to 100 μ g/Kg), diethyl phthalate (up to 87 μ g/Kg), dien-butyl phthalate (up to 17 μ g/Kg), fluoranthene (up to 41 μ g/Kg), phenanthrene (up to 32 μ g/Kg), and pyrene (up to 34 μ g/Kg).

<u>Pesticides</u>: Up to five (5) pesticide compounds were detected in the five composite soil samples. These included 4,4'-DDE (up to 0.43 μ g/Kg), 4,4'-DDT (up to 0.65 μ g/Kg), delta-BHC (up to 0.46 μ g/Kg), endosulfan sulfate (up to 0.52 μ g/Kg), and endrin aldehyde (up to 0.67 μ g/Kg).

PCBs: No PCBS were present in any sample.

Herbicides: No herbicides were present in any sample.

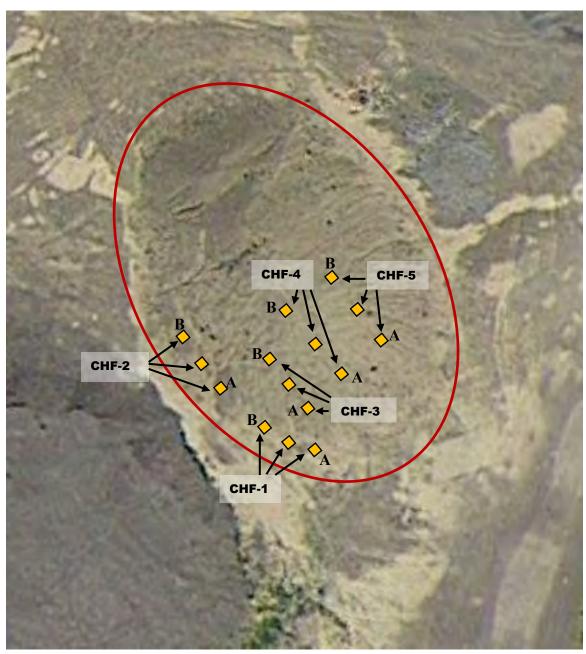
Metals & Cyanide: No cyanide was detected in any of the samples. Three (3) of the thirteen (13) metals on the DER-10 list were non-detect in the samples. All others were detected at trace levels and well below their corresponding Unrestricted Use SCOs. Amongst these, arsenic ranged up to 3.4 mg/Kg, barium up to 16.8 mg/Kg, beryllium up to 0.19 mg/Kg, cadmium up to 0.81mg/Kg, chromium up to 4.5 mg/Kg, copper up to 7.7 mg/Kg, lead up to 8.6 mg/Kg (except the crushed stone had 147 mg/Kg), manganese up to 524 mg/Kg, nickel up to 4.9 mg/Kg, and zinc up to 199 mg/Kg.

<u>SUMMARY</u>: No PCBs, herbicides or cyanide were detected in the samples. All detected organics and metals were well below their corresponding unrestricted use SCOs. Based on these results, the native soil fill from the JRO Children's Hospital site, and crushed stone from LaFarge should be suitable for use at the 132 Dingens St. site.

TABLE 1 132 DINGENS STREET - BCP REMEDIATION OFF-SITE NATIVE SOIL FILL (STOCKPILED ON SENECA ST., BUFFALO, NY)

SAMPLE TYPE/			CON	/IPOSITE	SAMPLES	(EXCL. V	OCs)		GRAB SAMPLES (VOCs ONLY)							STONE		
ID	UNRESTRICTED	RESTRICTED RESIDENTIAL	CHF-1	CHF-2	CHF-3	CHF-4	CHF-5	CHF-1A	CHF-1B	CHF-2A	CHF-2B	CHF-3A	CHF-3B	CHF-4A	CHF-4B	CHF-5A	CHF-5B	CRS-1
	LAB	BATCH NUMBER			1	1					7902		1					
	5	Sample Date	01.0	00.4	00.5	00.7	04.4	00.5	00.4		7/2015	04.4	00.4	00.7	04.0	04.5	00.0	00.0
		cent Solids (%)	91.6	92.4	93.5	90.7	91.4	92.5	93.4	93.4	91.8	94.1	92.1	88.7	91.8	91.5	88.9	98.2
VOLATILE ORGANICS (VO	Cs, ug/Kg)		1	1	1	1	1				1		1		1			
Benzene	60	4,800						0.68 J	0.45 J	0.46 J	0.42 J	0.44 J	0.74 J	0.50 J	0.79 J	0.45 J	0.49 J	ND
Methylene Chloride	50	100,000	NA	NA	NA	NA	NA	3.0 JB	2.6 JB	2.5 JB	2.8 JB	2.5 JB	2.6 JB	3.0 JB	3.1 JB	2.6 JB	3.9 J	3.7 J
Styrene			10.			101	101	ND	ND	ND	ND	ND	ND	0.29 J	ND	ND	ND	ND
Toluene	700	100,000						0.92 J	0.83 J	0.81 J	0.84 J	0.78 J	1.3 J	1.1 J	1.1 J	0.78 J	0.64 J	ND
SEMIVOLATILE ORGANIC	S (SVOCs, ug/Kg)																
Bis(2-ethylhexyl) phthalate			100 JB	59 JB	51 JB	65 JB	84 JB											59 JB
Diethyl phthalate			42 J	ND	55 JB	63 JB	87 JB											41 JB
Di-n-butyl phthalate			17 JB	ND	ND	ND	ND	NA NA	N.A.	NIA	NA	ND						
Fluoranthene	100,000	100,000	28 J	ND	17 J	ND	41 J	- INA	NA	NA	NA	INA	INA	INA	INA	NA .	NA	ND
Phenanthrene	100,000		ND	ND	ND	ND	28 J											32 J
Pyrene	100,000	100,000	24 J	ND	ND	ND	34 J											ND
PESTICIDES (ug/Kg)																		
4,4'-DDE	3.3	8,900	0.43 J	0.40 J	ND	ND	ND											ND
4,4'-DDT	3.3	7,900	0.65 JB	ND	ND	ND	ND											ND
delta-BHC	40	360	0.45 J	0.46 J	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND
Endosulfan sulfate	2,400	24,000	ND	ND	0.52 J	ND	ND											ND
Endrin Aldehyde	-		0.67 J	ND	ND	ND	ND											ND
HERBICIDES (ug/Kg)			ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND
PCBs (ug/Kg)			ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND

TABLE 1
132 DINGENS STREET - BCP REMEDIATION
OFF-SITE NATIVE SOIL FILL (STOCKPILED ON SENECA ST., BUFFALO, NY)


SAMPLE TYPE/	DER-10) SCOs	CON	//POSITE	SAMPLES	(EXCL. V	OCs)				GRAE	3 SAMPLE	S (VOCs	ONLY)				STONE
ID	UNRESTRICTED	RESTRICTED RESIDENTIAL	CHF-1	CHF-2	CHF-3	CHF-4	CHF-5	CHF-1A	CHF-1B	CHF-2A	CHF-2B	CHF-3A	CHF-3B	CHF-4A	CHF-4B	CHF-5A	CHF-5B	CRS-1
METALS (mg/Kg)																		
Aluminum			2900 F1	2310	2980	2670	3100											2000
Antimony	-		ND	ND	ND	ND	ND											
Arsenic	13	16	1.5 J	1.2 J	2.1	1.2 J	1.6 J											3.4
Barium	350	350	12.8	10.2	12.7	13.2	15.1											16.8
Beryllium	7.2	14	0.19 J	0.14 J	0.18 J	0.15 J	0.18 J											0.12 J
Cadmium	2.5	2.5	0.21	0.20 J	0.18 J	0.20 J	0.18 J											0.81
Calcium			52600 B	44800 B	53400 B	47600 B	50700 B											184000 B
Chromium	30	36	4.1	3.3	4.0	4.0	4.5											4.4
Cobalt			1.9	1.7	2.2	2.0	2.1											1.4
Copper	50	270	7.4	6.2	7.7	6.1	7.0											3.5 J
Iron			5510 F1	4600	5960	5420	5960											6210
Lead	63	400	7.2 B	6.6 B	8.3 B	7.6 B	8.6 B	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	147 B
Magnesium			24300 B	20400	23300 B	21400 B	19300 B											114000 B
Manganese	1,600	2,000	239 B	195 B	218 B	213 B	215 B											524 B
Nickel	30	140	4.2 J	3.6 J	4.9 J	4.0 J	4.9 J											4.1 J
Potassium			787 F1	706	755	803	923											1270
Selenium	3.9	36	ND	ND	ND	ND	ND											ND
Silver	2	36	ND	ND	ND	ND	ND											ND
Sodium			173	142 J	165	256	203											242
Thallium	-		ND	ND	ND	ND	ND											ND
Vanadium			9.0	7.8	8.7	9.6	10.4											7.7
Zinc	109	2,200	68.4 BF1	60.7 B	70.4 B	67.1 B	65.4 B											199 B
Mercury	0.18	0.81	ND	ND	ND	ND	ND											ND
Total Cyanide (mg/Kg)	27	27	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND

Notes: 1. "NA" or "--" = not analyzed; "ND" = Not Detected

^{2.} Only detected volatile and semivolatile compounds are listed; all metals analyzed are listed

Note: Background aerial photo is just to show location of stockpile; see photo page showing actual stockpile

132 DINGENS STREET, BUFFALO, NY
NATIVE SOIL STOCKPILE SAMPLING (SENECA ST.)

FIGURE 1

IEG

1. View of Native Soil Stockpile at Seneca Street Site

2. One of the three Test Pits for Sample CHF-1

3. View of the Test Pits for Sample CHF-2

4. View of the Test Pits for Sample CHF-3

5 View of the Test Pits for Sample CHF-4

6. View of the Test Pits for Sample CHF-5

NATIVE SOIL STOCKPILE TEST PIT SAMPLING

SENECA ST., BUFFALO, NY

SITE PHOTOGRAPHS

DATE: April 7, 2015

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-77902-1 Client Project/Site: 132 Dingens

For:

Iyer Environmental Group, LLC 44 Rolling Hills Drive Orchard Park, New York 14127

Attn: Dr. Dharmarajan R Iyer

T

Authorized for release by: 4/20/2015 3:06:25 PM
Rebecca Jones, Project Management Assistant I rebecca.jones@testamericainc.com

Designee for

Melissa Deyo, Project Manager I (716)504-9874 melissa.deyo@testamericainc.com

.....LINKS

Review your project results through
Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Tal	h	○ f	C0	nto	nts
ı a	U	OI.	CU	me	HLS

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	6
Client Sample Results	11
Surrogate Summary	44
QC Sample Results	47
QC Association Summary	64
Lab Chronicle	70
Certification Summary	76
Method Summary	77
Sample Summary	78
Detection Limit Exceptions Summary	79
Chain of Custody	80
Receipt Checklists	82

Definitions/Glossary

Client: Iyer Environmental Group, LLC

Qualifier Description

Project/Site: 132 Dingens

TestAmerica Job ID: 480-77902-1

Qualifiers

GC/MS VOA

Qualifier Description
Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Compound was found in the blank and sample.
MS and/or MSD Recovery exceeds the control limits
LCS or LCSD exceeds the control limits

GC/MS Semi VOA

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC Semi VOA

Qualifier

В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Metals	
Qualifier	Qualifier Description
F1	MS and/or MSD Recovery exceeds the control limits

	
F1	MS and/or MSD Recovery exceeds the control limits
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
В	Compound was found in the blank and sample.
F2	MS/MSD RPD exceeds control limits
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.

General Chemistry

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

TestAmerica Buffalo

Page 3 of 83 4/20/2015

Case Narrative

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-77902-1

Job ID: 480-77902-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-77902-1

Receipt

The samples were received on 4/7/2015 3:40 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 19.0° C.

GC/MS VOA

Method(s) 8260C: Reported analyte concentrations in the following samples are below 200ug/kg and may be biased low due to the samples not being collected according to 5035-L/5035A-L low-level specifications: CHF-1A (480-77902-6), CHF-1B (480-77902-7), CHF-2A (480-77902-8), CHF-2B (480-77902-9), CHF-3A (480-77902-10), (480-77902-B-6-B MS) and (480-77902-B-6-C MSD).

Method(s) 8260C: Reported analyte concentrations in the following samples are below 200ug/kg and may be biased low due to the samples not being collected according to 5035-L/5035A-L low-level specifications: CHF-3B (480-77902-11), CHF-4A (480-77902-12), CHF-4B (480-77902-13), CHF-5A (480-77902-14), CHF-5B (480-77902-15), CRS-1 (480-77902-16), (480-77902-A-15-B MS) and (480-77902-A-15-C MSD).

Method(s) 8260C: The laboratory control sample (LCS) for preparation batch 234987 recovered outside control limits for the following analyte: Cyclohexane. This was not a requested spike compound; therefore, the data have been qualified and reported. CHF-3B (480-77902-11), CHF-4A (480-77902-12), CHF-4B (480-77902-13), CHF-5A (480-77902-14), CHF-5B (480-77902-15) and CRS-1 (480-77902-16)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC Semi VOA

Method(s) 8081B: The continuing calibration verification (CCV) (CCV 480-235402/16) for Toxaphene was decreased and exceeded control criteria of 20%D, though all associated samples did not show any potential pattern. The data has been reported.

Method(s) 8081B: All sample primary data is reported from RTX-CLPII column, with the exception of 4,4'-DDT, for which primary data is reported from the RTX-CLPI column due to CCV failure.

The percent difference in a multi-component continuing calibration verification is assessed on the basis of the total amount, individual peak calculations are only listed for completeness.

Method(s) 8082A: All primary data is reported from the ZB-35 column.

Method(s) 8082A: The percent difference in a multi-component continuing calibration verification is assessed on the basis of the total amount, individual peak calculations are only listed for completeness.

Method(s) 8151A: All primary data is reported from the RTX-CLPI column.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method(s) 6010C: The post digestion spike % recovery and serial dilution for manganese associated with batch 480-235162 was outside of control limits. Matrix effects are suspected.

Method(s) 6010C: The serial dilution performed for the following samples associated with batch 480-235162 was outside control limits for barium, calcium, cobalt, iron, magnesium, vanadium and zinc: (480-77902-A-1-B SD ^). However, the post spike was compliant, therefore, no corrective action is needed.

Method(s) 6010C: The following sample was diluted due to the presence of total calcium which interferes with copper: CRS-1 (480-77902-16). Elevated reporting limits (RLs) are provided.

4

6

6

4 0

13

15

Case Narrative

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-77902-1

Job ID: 480-77902-1 (Continued)

Laboratory: TestAmerica Buffalo (Continued)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method(s) 3550C: Sample was made up with mostly large rocks. Took smallest particales possible for extraction CRS-1 (480-77902-16)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

1

7

10

11

13

15

TestAmerica Job ID: 480-77902-1

Project/Site: 132 Dingens

Client: Iyer Environmental Group, LLC

Client Sample ID: CHF-1

Lab Sample ID: 480-77902-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Bis(2-ethylhexyl) phthalate	100	JB	370	23	ug/Kg		₩	8270D	Total/NA
Diethyl phthalate	42	J	370	17	ug/Kg	1	₽	8270D	Total/NA
Di-n-butyl phthalate	17	JB	370	17	ug/Kg	1	₽	8270D	Total/NA
Fluoranthene	28	J	370	13	ug/Kg	1	₽	8270D	Total/NA
Pyrene	24	J	370	16	ug/Kg	1	₩	8270D	Total/NA
4,4'-DDE	0.43	J	1.8	0.37	ug/Kg	1	₽	8081B	Total/NA
4,4'-DDT	0.65	JВ	1.8	0.42	ug/Kg	1	₽	8081B	Total/NA
delta-BHC	0.45	J	1.8	0.33	ug/Kg	1	₩	8081B	Total/NA
Endrin aldehyde	0.67	J	1.8	0.45	ug/Kg	1	₽	8081B	Total/NA
Aluminum	2900	F1	10.2	4.5	mg/Kg	1	₩	6010C	Total/NA
Arsenic	1.5	J	2.0	0.41	mg/Kg	1	₩	6010C	Total/NA
Barium	12.8		0.51	0.11	mg/Kg	1	₽	6010C	Total/NA
Beryllium	0.19	J	0.20	0.029	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.21		0.20	0.031	mg/Kg	1	₽	6010C	Total/NA
Calcium	52600	В	51.1	3.4	mg/Kg	1	₽	6010C	Total/NA
Chromium	4.1		0.51	0.20	mg/Kg	1	₽	6010C	Total/NA
Cobalt	1.9		0.51	0.051	mg/Kg	1	₩	6010C	Total/NA
Copper	7.4		1.0	0.21	mg/Kg	1	₩	6010C	Total/NA
Iron	5510	F1	10.2	1.1	mg/Kg	1	₽	6010C	Total/NA
Lead	7.2	В	1.0	0.25	mg/Kg	1	₩	6010C	Total/NA
Magnesium	24300	В	20.4	0.95	mg/Kg	1	₽	6010C	Total/NA
Manganese	239	В	0.20	0.033	mg/Kg	1	₽	6010C	Total/NA
Nickel	4.2	J	5.1	0.23	mg/Kg	1	₩	6010C	Total/NA
Potassium	787	F1	30.6	20.4	mg/Kg	1	₽	6010C	Total/NA
Sodium	173		143	13.3	mg/Kg	1	₽	6010C	Total/NA
Vanadium	9.0		0.51	0.11	mg/Kg	1	₽	6010C	Total/NA
Zinc	68.4	B F1	2.0	0.16	mg/Kg	1	₽	6010C	Total/NA

Client Sample ID: CHF-2 Lab Sample ID: 480-77902-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Bis(2-ethylhexyl) phthalate	59	J B	350	22	ug/Kg		₩	8270D	Total/NA
4,4'-DDE	0.40	J	1.8	0.37	ug/Kg	1	₽	8081B	Total/NA
delta-BHC	0.46	J	1.8	0.33	ug/Kg	1	₩	8081B	Total/NA
Aluminum	2310		10.8	4.8	mg/Kg	1	₽	6010C	Total/NA
Arsenic	1.2	J	2.2	0.43	mg/Kg	1	₩	6010C	Total/NA
Barium	10.2		0.54	0.12	mg/Kg	1	₽	6010C	Total/NA
Beryllium	0.14	J	0.22	0.030	mg/Kg	1	₽	6010C	Total/NA
Cadmium	0.20	J	0.22	0.033	mg/Kg	1	₩	6010C	Total/NA
Calcium	44800	В	54.2	3.6	mg/Kg	1	₽	6010C	Total/NA
Chromium	3.3		0.54	0.22	mg/Kg	1	₽	6010C	Total/NA
Cobalt	1.7		0.54	0.054	mg/Kg	1	₽	6010C	Total/NA
Copper	6.2		1.1	0.23	mg/Kg	1	₽	6010C	Total/NA
Iron	4600		10.8	1.2	mg/Kg	1	₽	6010C	Total/NA
Lead	6.6	В	1.1	0.26	mg/Kg	1	₽	6010C	Total/NA
Magnesium	20400	В	21.7	1.0	mg/Kg	1	₽	6010C	Total/NA
Manganese	195	В	0.22	0.035	mg/Kg	1	₩	6010C	Total/NA
Nickel	3.6	J	5.4	0.25	mg/Kg	1	₩	6010C	Total/NA
Potassium	706		32.5	21.7	mg/Kg	1	₽	6010C	Total/NA
Sodium	142	J	152	14.1	mg/Kg	1	φ.	6010C	Total/NA

This Detection Summary does not include radiochemical test results.

Page 6 of 83

Client: Iyer Environmental Group, LLC

Client Sample ID: CHF-2 (Continued)

Project/Site: 132 Dingens

Client Sample ID: CHF-3

TestAmerica Job ID: 480-77902-1

Lab Sample ID: 480-77902-2

Analyte	Result Qualifier	RL	MDL Ur	nit	Dil Fac	D	Method	Prep Type
Vanadium	7.8	0.54	0.12 mg	g/Kg	1	#	6010C	Total/NA
Zinc	60.7 B	2.2	0.17 mg	g/Kg	1	₽	6010C	Total/NA

Lab Sample ID: 480-77902-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Bis(2-ethylhexyl) phthalate	51	JB	350	22	ug/Kg	1	#	8270D	Total/NA
Diethyl phthalate	55	JB	350	16	ug/Kg	1	₽	8270D	Total/NA
Fluoranthene	17	J	350	13	ug/Kg	1	₩	8270D	Total/NA
Endosulfan sulfate	0.52	J	1.8	0.33	ug/Kg	1	₩	8081B	Total/NA
Aluminum	2980		10.7	4.7	mg/Kg	1	₩	6010C	Total/NA
Arsenic	2.1		2.1	0.43	mg/Kg	1	₽	6010C	Total/NA
Barium	12.7		0.53	0.12	mg/Kg	1	₩.	6010C	Total/NA
Beryllium	0.18	J	0.21	0.030	mg/Kg	1	₽	6010C	Total/NA
Cadmium	0.18	J	0.21	0.032	mg/Kg	1	₽	6010C	Total/NA
Calcium	53400	В	53.5	3.5	mg/Kg	1	₩.	6010C	Total/NA
Chromium	4.0		0.53	0.21	mg/Kg	1	₽	6010C	Total/NA
Cobalt	2.2		0.53	0.053	mg/Kg	1	₽	6010C	Total/NA
Copper	7.7		1.1	0.22	mg/Kg	1	₽	6010C	Total/NA
Iron	5960		10.7	1.2	mg/Kg	1	₽	6010C	Total/NA
Lead	8.3	В	1.1	0.26	mg/Kg	1	₩	6010C	Total/NA
Magnesium	23300	В	21.4	0.99	mg/Kg	1	\$	6010C	Total/NA
Manganese	218	В	0.21	0.034	mg/Kg	1	₩	6010C	Total/NA
Nickel	4.9	J	5.3	0.25	mg/Kg	1	₽	6010C	Total/NA
Potassium	755		32.1	21.4	mg/Kg	1	₩.	6010C	Total/NA
Sodium	165		150	13.9	mg/Kg	1	₩	6010C	Total/NA
Vanadium	8.7		0.53	0.12	mg/Kg	1	₩	6010C	Total/NA
Zinc	70.4	В	2.1	0.16	mg/Kg	1	₩.	6010C	Total/NA

Client Sample ID: CHF-4

Lab Sample	ID: 480-77902-4
------------	-----------------

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Bis(2-ethylhexyl) phthalate	65	JB	370	23	ug/Kg	1	₩	8270D	Total/NA
Diethyl phthalate	63	JB	370	17	ug/Kg	1	₽	8270D	Total/NA
Aluminum	2670		11.0	4.8	mg/Kg	1	₽	6010C	Total/NA
Arsenic	1.2	J	2.2	0.44	mg/Kg	1	₽	6010C	Total/NA
Barium	13.2		0.55	0.12	mg/Kg	1	₽	6010C	Total/NA
Beryllium	0.15	J	0.22	0.031	mg/Kg	1	₽	6010C	Total/NA
Cadmium	0.20	J	0.22	0.033	mg/Kg	1	₽	6010C	Total/NA
Calcium	47600	В	54.8	3.6	mg/Kg	1	₽	6010C	Total/NA
Chromium	4.0		0.55	0.22	mg/Kg	1	₽	6010C	Total/NA
Cobalt	2.0		0.55	0.055	mg/Kg	1	₽	6010C	Total/NA
Copper	6.1		1.1	0.23	mg/Kg	1	₽	6010C	Total/NA
Iron	5420		11.0	1.2	mg/Kg	1	₩	6010C	Total/NA
Lead	7.6	В	1.1	0.26	mg/Kg	1	₽	6010C	Total/NA
Magnesium	21400	В	21.9	1.0	mg/Kg	1	₩	6010C	Total/NA
Manganese	213	В	0.22	0.035	mg/Kg	1	₽	6010C	Total/NA
Nickel	4.0	J	5.5	0.25	mg/Kg	1	₽	6010C	Total/NA
Potassium	803		32.9	21.9	mg/Kg	1	₽	6010C	Total/NA
Sodium	256		154	14.3	mg/Kg	1	₩	6010C	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

4/20/2015

Page 7 of 83

3

9

11

16

14

10

Ш

TestAmerica Job ID: 480-77902-1

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Client Sample ID: CHF-5

Client Sample ID: CHF-4 (Continued)

Lab Sample ID: 480-77902-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Vanadium	9.6		0.55	0.12	mg/Kg	1	₩	6010C	Total/NA
Zinc	67.1	В	2.2	0.17	mg/Kg	1	₽	6010C	Total/NA

Lab Sample ID: 480-77902-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Bis(2-ethylhexyl) phthalate	84	JB	370	23	ug/Kg	1	₩	8270D	Total/NA
Diethyl phthalate	87	JB	370	17	ug/Kg	1	₩	8270D	Total/NA
Fluoranthene	41	J	370	13	ug/Kg	1	₽	8270D	Total/NA
Phenanthrene	28	J	370	13	ug/Kg	1	₽	8270D	Total/NA
Pyrene	34	J	370	16	ug/Kg	1	₽	8270D	Total/NA
Aluminum	3100		11.1	4.9	mg/Kg	1	₽	6010C	Total/NA
Arsenic	1.6	J	2.2	0.44	mg/Kg	1	₽	6010C	Total/NA
Barium	15.1		0.56	0.12	mg/Kg	1	₽	6010C	Total/NA
Beryllium	0.18	J	0.22	0.031	mg/Kg	1	₽	6010C	Total/NA
Cadmium	0.18	J	0.22	0.033	mg/Kg	1	\$	6010C	Total/NA
Calcium	50700	В	55.6	3.7	mg/Kg	1	₽	6010C	Total/NA
Chromium	4.5		0.56	0.22	mg/Kg	1	₽	6010C	Total/NA
Cobalt	2.1		0.56	0.056	mg/Kg	1	\$	6010C	Total/NA
Copper	7.0		1.1	0.23	mg/Kg	1	₽	6010C	Total/NA
Iron	5960		11.1	1.2	mg/Kg	1	₽	6010C	Total/NA
Lead	8.6	В	1.1	0.27	mg/Kg	1	\$	6010C	Total/NA
Magnesium	19300	В	22.2	1.0	mg/Kg	1	₽	6010C	Total/NA
Manganese	215	В	0.22	0.036	mg/Kg	1	₽	6010C	Total/NA
Nickel	4.9	J	5.6	0.26	mg/Kg	1	₽	6010C	Total/NA
Potassium	923		33.4	22.2	mg/Kg	1	₽	6010C	Total/NA
Sodium	203		156	14.5	mg/Kg	1	₽	6010C	Total/NA
Vanadium	10.4		0.56	0.12	mg/Kg	1	Φ.	6010C	Total/NA
Zinc	65.4	В	2.2	0.17	mg/Kg	1	₩	6010C	Total/NA

Client Sample ID: CHF-1A

Lab	Camp	ا ما	ID: 400	-77902-6	•
Lau	Samo	ıe	ID: 40U	I-//9UZ-0	•

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	0.68	J –	5.4	0.26	ug/Kg	1	₩	8260C	Total/NA
Methylene Chloride	3.0	JB	5.4	2.5	ug/Kg	1	₽	8260C	Total/NA
Toluene	0.92	J	5.4	0.41	ug/Kg	1	₽	8260C	Total/NA

Client Sample ID: CHF-1B

Lab Sample	ID: 480-77902-7
------------	-----------------

Analyte	Result Q	ualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	0.45 J		5.3	0.26	ug/Kg	1	₩	8260C	Total/NA
Methylene Chloride	2.6 J	В	5.3	2.4	ug/Kg	1	₽	8260C	Total/NA
Toluene	0.83 J		5.3	0.40	ug/Kg	1	₽	8260C	Total/NA

Client Sample ID: CHF-2A

Lab Sample ID: 480-77902-8

	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	0.46	J	5.2	0.26	ug/Kg	1	₩	8260C	Total/NA
Methylene Chloride	2.5	JB	5.2	2.4	ug/Kg	1	₩	8260C	Total/NA
Toluene	0.81	J	5.2	0.39	ug/Kg	1	₽	8260C	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

4/20/2015

Page 8 of 83

3

4

7

9

11

13

15

TestAmerica Job ID: 480-77902-1

Project/Site: 132 Dingens

Client: Iyer Environmental Group, LLC

Lab Sample ID: 480-77902-9

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	0.42	J	5.3	0.26	ug/Kg	1	#	8260C	Total/NA
Methylene Chloride	2.8	JB	5.3	2.4	ug/Kg	1	₽	8260C	Total/NA
Toluene	0.84	J	5.3	0.40	ug/Kg	1	₽	8260C	Total/NA

Client Sample ID: CHF-3A Lab Sample ID: 480-77902-10

	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	0.44	J	5.2	0.26	ug/Kg	1	₽	8260C	 Total/NA
Methylene Chloride	2.5	JB	5.2	2.4	ug/Kg	1	₩	8260C	Total/NA
Toluene	0.78	J	5.2	0.40	ug/Kg	1	₽	8260C	Total/NA

Lab Sample ID: 480-77902-11 **Client Sample ID: CHF-3B**

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	0.74	J	5.2	0.26	ug/Kg	1	₩	8260C	Total/NA
Methylene Chloride	2.6	JB	5.2	2.4	ug/Kg	1	₩	8260C	Total/NA
Toluene	1.3	J	5.2	0.40	ug/Kg	1	₽	8260C	Total/NA

Client Sample ID: CHF-4A Lab Sample ID: 480-77902-12

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	0.50	J	5.4	0.27	ug/Kg	1	₩	8260C	Total/NA
Methylene Chloride	3.0	JB	5.4	2.5	ug/Kg	1	₩	8260C	Total/NA
Styrene	0.29	J	5.4	0.27	ug/Kg	1	₽	8260C	Total/NA
Toluene	1.1	J	5.4	0.41	ug/Kg	1	₩.	8260C	Total/NA

Client Sample ID: CHF-4B Lab Sample ID: 480-77902-13

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	0.79	J	5.4	0.26	ug/Kg	1	₩	8260C	Total/NA
Methylene Chloride	3.1	JB	5.4	2.5	ug/Kg	1	₽	8260C	Total/NA
Toluene	1.1	J	5.4	0.41	ug/Kg	1	₩	8260C	Total/NA

Client Sample ID: CHF-5A Lab Sample ID: 480-77902-14

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Benzene	0.45 J	5.3	0.26 ug/Kg	1 × 8260C	Total/NA
Methylene Chloride	2.6 JB	5.3	2.4 ug/Kg	1 🌣 8260C	Total/NA
Toluene	0.78 J	5.3	0.40 ug/Kg	1 🌣 8260C	Total/NA

Client Sample ID: CHF-5B Lab Sample ID: 480-77902-15

Analyte	Result Qu	ualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	0.49 J		5.5	0.27	ug/Kg	1	₩	8260C	Total/NA
Methylene Chloride	3.9 J		5.5	2.5	ug/Kg	1	₽	8260C	Total/NA
Toluene	0.64 J		5.5	0.42	ug/Kg	1	₽	8260C	Total/NA

Client Sample ID: CRS-1	Lab Sample ID: 480-77902-16
-------------------------	-----------------------------

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

4/20/2015

Page 9 of 83

Detection Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-77902-1

Lab Sample ID: 480-77902-16

Client Sample ID: CRS-1	(Continued)
-------------------------	-------------

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methylene Chloride	3.7	J	5.0	2.3	ug/Kg	1	₩	8260C	Total/NA
Bis(2-ethylhexyl) phthalate	59	JB	340	22	ug/Kg	1	₩	8270D	Total/NA
Diethyl phthalate	41	JB	340	16	ug/Kg	1	₩	8270D	Total/NA
Phenanthrene	32	J	340	13	ug/Kg	1	₽	8270D	Total/NA
Aluminum	2000		11.0	4.8	mg/Kg	1	₩	6010C	Total/NA
Arsenic	3.4		2.2	0.44	mg/Kg	1	₽	6010C	Total/NA
Barium	16.8		0.55	0.12	mg/Kg	1	₩	6010C	Total/NA
Beryllium	0.12	J	0.22	0.031	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.81		0.22	0.033	mg/Kg	1	₩	6010C	Total/NA
Calcium	184000	В	275	18.1	mg/Kg	5	₽	6010C	Total/NA
Chromium	4.4		0.55	0.22	mg/Kg	1	₽	6010C	Total/NA
Cobalt	1.4		0.55	0.055	mg/Kg	1	₽	6010C	Total/NA
Copper	3.5	J	5.5	1.2	mg/Kg	5	₽	6010C	Total/NA
Iron	6210		11.0	1.2	mg/Kg	1	₩	6010C	Total/NA
Lead	147	В	1.1	0.26	mg/Kg	1	₩	6010C	Total/NA
Magnesium	114000	В	110	5.1	mg/Kg	5	₽	6010C	Total/NA
Manganese	524	В	0.22	0.035	mg/Kg	1	₽	6010C	Total/NA
Nickel	4.1	J	5.5	0.25	mg/Kg	1	₽	6010C	Total/NA
Potassium	1270		33.0	22.0	mg/Kg	1	₩	6010C	Total/NA
Sodium	242		154	14.3	mg/Kg	1	₩	6010C	Total/NA
Vanadium	7.7		0.55	0.12	mg/Kg	1	₩	6010C	Total/NA
Zinc	199	В	2.2	0.17	mg/Kg	1	₩	6010C	Total/NA

1

12

14

15

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Dibenzofuran

Diethyl phthalate

Dimethyl phthalate

Di-n-octyl phthalate

Di-n-butyl phthalate

Client Sample ID: CHF-1

Date Collected: 04/07/15 00:00

Date Received: 04/07/15 15:40

TestAmerica Job ID: 480-77902-1

Lab Sample ID: 480-77902-1

Matrix: Solid Percent Solids: 91.6

Method: 8270D - Semivolatile Organic Compounds (GC/MS) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac ₩ 2,4,5-Trichlorophenol ND 920 38 ug/Kg 04/13/15 08:37 04/14/15 10:14 ND 370 04/14/15 10:14 2,4,6-Trichlorophenol 38 ug/Kg 04/13/15 08:37 2,4-Dichlorophenol ND 370 37 ug/Kg ₽ 04/13/15 08:37 04/14/15 10:14 ND 370 2,4-Dimethylphenol 58 ug/Kg 04/13/15 08:37 04/14/15 10:14 ä 2,4-Dinitrophenol ND 920 160 ug/Kg 04/13/15 08:37 04/14/15 10:14 ND 370 04/13/15 08:37 2.4-Dinitrotoluene 27 ug/Kg 04/14/15 10:14 2,6-Dinitrotoluene ND 370 04/13/15 08:37 04/14/15 10:14 ug/Kg 2-Chloronaphthalene ND 370 ₽ 04/13/15 08:37 04/14/15 10:14 48 ug/Kg ₩ 2-Chlorophenol ND 370 38 ug/Kg 04/13/15 08:37 04/14/15 10:14 2-Methylnaphthalene ₽ ND 370 17 ug/Kg 04/13/15 08:37 04/14/15 10:14 1 2-Methylphenol ND 370 44 ug/Kg 04/13/15 08:37 04/14/15 10:14 ₩ 2-Nitroaniline ND 920 41 ug/Kg 04/13/15 08:37 04/14/15 10:14 φ ND 370 2-Nitrophenol 41 ug/Kg 04/13/15 08:37 04/14/15 10:14 3 & 4 Methylphenol ND 750 82 ug/Kg 04/13/15 08:37 04/14/15 10:14 370 3.3'-Dichlorobenzidine ND 04/13/15 08:37 04/14/15 10:14 53 ug/Kg ġ 04/13/15 08:37 3-Nitroaniline ND 920 42 ug/Kg 04/14/15 10:14 4,6-Dinitro-2-methylphenol NΠ 920 04/13/15 08:37 04/14/15 10:14 110 ug/Kg 4-Bromophenyl phenyl ether ND 370 04/13/15 08:37 04/14/15 10:14 20 ug/Kg φ 370 4-Chloro-3-methylphenol ND 44 ug/Kg 04/13/15 08:37 04/14/15 10:14 4-Chloroaniline ND 370 36 04/13/15 08:37 04/14/15 10:14 ug/Kg ND 370 # 17 04/13/15 08:37 04/14/15 10:14 4-Chlorophenyl phenyl ether ug/Kg ġ 4-Nitroaniline ND 920 36 ug/Kg 04/13/15 08:37 04/14/15 10:14 ND 920 04/13/15 08:37 4-Nitrophenol 93 ua/Ka 04/14/15 10:14 ₽ Acenaphthene ND 370 ug/Kg 04/13/15 08:37 04/14/15 10:14 Acenaphthylene ND 370 17 ₽ 04/13/15 08:37 04/14/15 10:14 ug/Kg ₽ Acetophenone ND 370 18 ug/Kg 04/13/15 08:37 04/14/15 10:14 Anthracene ND 370 16 ug/Kg 04/13/15 08:37 04/14/15 10:14 ND 370 Atrazine 18 ug/Kg 04/13/15 08:37 04/14/15 10:14 370 ₽ Benzaldehyde ND 18 ug/Kg 04/13/15 08:37 04/14/15 10:14 ₽ ND 370 ug/Kg Benzo(a)anthracene 14 04/13/15 08:37 04/14/15 10:14 Benzo(a)pyrene ND 370 13 ug/Kg 04/13/15 08:37 04/14/15 10:14 Benzo(b)fluoranthene ND 370 04/13/15 08:37 04/14/15 10:14 26 ug/Kg ä Benzo(g,h,i)perylene ND 370 14 ug/Kg 04/13/15 08:37 04/14/15 10:14 φ Benzo(k)fluoranthene ND 370 04/13/15 08:37 04/14/15 10:14 33 ug/Kg ŭ Biphenyl ND 370 17 ug/Kg 04/13/15 08:37 04/14/15 10:14 ₽ ND 370 04/13/15 08:37 04/14/15 10:14 bis (2-chloroisopropyl) ether ua/Ka 18 ND Bis(2-chloroethoxy)methane 370 17 ug/Kg 04/13/15 08:37 04/14/15 10:14 ₽ Bis(2-chloroethyl)ether ND 370 17 ug/Kg 04/13/15 08:37 04/14/15 10:14 ₩ 370 Bis(2-ethylhexyl) phthalate 100 23 ug/Kg 04/13/15 08:37 04/14/15 10:14 ġ 04/13/15 08:37 Butyl benzyl phthalate ND 370 22 ug/Kg 04/14/15 10:14 ND 370 04/13/15 08:37 Caprolactam 39 ug/Kg 04/14/15 10:14 ND 370 ä 04/13/15 08:37 Carbazole 17 ug/Kg 04/14/15 10:14 ġ ND 370 20 04/13/15 08:37 Chrysene 04/14/15 10:14 ug/Kg ND 370 04/13/15 08:37 04/14/15 10:14 Dibenz(a,h)anthracene 12 ug/Kg

TestAmerica Buffalo

04/14/15 10:14

04/14/15 10:14

04/14/15 10:14

04/14/15 10:14

04/14/15 10:14

04/13/15 08:37

04/13/15 08:37

04/13/15 08:37

04/13/15 08:37

04/13/15 08:37

₽

#

₩

370

370

370

370

370

18 ug/Kg

17

17

17 ug/Kg

26 ug/Kg

ug/Kg

ug/Kg

ND

42

ND

17

ND

2

5

7

6

9

1 4

12

14

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Lab Sample ID: 480-77902-1

TestAmerica Job ID: 480-77902-1

Matrix: Solid

Percent Solids: 91.6

Client Sample ID: CHF-1 Date Collected: 04/07/15 00:00

Date Received: 04/07/15 15:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoranthene	28	J	370	13	ug/Kg	₩	04/13/15 08:37	04/14/15 10:14	1
Fluorene	ND		370	17	ug/Kg	₩	04/13/15 08:37	04/14/15 10:14	1
Hexachlorobenzene	ND		370	51	ug/Kg	₽	04/13/15 08:37	04/14/15 10:14	1
Hexachlorobutadiene	ND		370	39	ug/Kg	₽	04/13/15 08:37	04/14/15 10:14	1
Hexachlorocyclopentadiene	ND		370	72	ug/Kg	₽	04/13/15 08:37	04/14/15 10:14	1
Hexachloroethane	ND		370	38	ug/Kg	₩	04/13/15 08:37	04/14/15 10:14	1
Indeno(1,2,3-cd)pyrene	ND		370	16	ug/Kg	₩	04/13/15 08:37	04/14/15 10:14	1
Isophorone	ND		370	47	ug/Kg	₩	04/13/15 08:37	04/14/15 10:14	1
Naphthalene	ND		370	17	ug/Kg	₽	04/13/15 08:37	04/14/15 10:14	1
Nitrobenzene	ND		370	46	ug/Kg	₩	04/13/15 08:37	04/14/15 10:14	1
N-Nitrosodi-n-propylamine	ND		370	51	ug/Kg	₩	04/13/15 08:37	04/14/15 10:14	1
N-Nitrosodiphenylamine	ND		370	18	ug/Kg	₽	04/13/15 08:37	04/14/15 10:14	1
Pentachlorophenol	ND		920	76	ug/Kg	₩	04/13/15 08:37	04/14/15 10:14	1
Phenanthrene	ND		370	13	ug/Kg	₩	04/13/15 08:37	04/14/15 10:14	1
Phenol	ND		370	44	ug/Kg		04/13/15 08:37	04/14/15 10:14	1
Pyrene	24	J	370	16	ug/Kg	₽	04/13/15 08:37	04/14/15 10:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	76		25 - 135				04/13/15 08:37	04/14/15 10:14	
2-Fluorobiphenyl	86		35 - 110				04/13/15 08:37	04/14/15 10:14	1
2-Fluorophenol	85		30 - 135				04/13/15 08:37	04/14/15 10:14	1
Nitrobenzene-d5	74		35 - 110				04/13/15 08:37	04/14/15 10:14	1
Phenol-d5	86		30 - 130				04/13/15 08:37	04/14/15 10:14	
Terphenyl-d14 (Surr)	83		30 - 130				04/13/15 08:37	04/14/15 10:14	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		1.8	0.35	ug/Kg	₩	04/09/15 16:11	04/10/15 14:50	1
4,4'-DDE	0.43	J	1.8	0.37	ug/Kg	≎	04/09/15 16:11	04/10/15 14:50	1
4,4'-DDT	0.65	JB	1.8	0.42	ug/Kg	₽	04/09/15 16:11	04/10/15 14:50	1
Aldrin	ND		1.8	0.44	ug/Kg	₽	04/09/15 16:11	04/10/15 14:50	1
alpha-BHC	ND		1.8	0.32	ug/Kg	≎	04/09/15 16:11	04/10/15 14:50	1
alpha-Chlordane	ND		1.8	0.89	ug/Kg	₽	04/09/15 16:11	04/10/15 14:50	1
beta-BHC	ND		1.8	0.32	ug/Kg	\$	04/09/15 16:11	04/10/15 14:50	1
delta-BHC	0.45	J	1.8	0.33	ug/Kg	₽	04/09/15 16:11	04/10/15 14:50	1
Dieldrin	ND		1.8	0.43	ug/Kg	₽	04/09/15 16:11	04/10/15 14:50	1
Endosulfan I	ND		1.8	0.34	ug/Kg	\$	04/09/15 16:11	04/10/15 14:50	1
Endosulfan II	ND		1.8	0.32	ug/Kg	₽	04/09/15 16:11	04/10/15 14:50	1
Endosulfan sulfate	ND		1.8	0.33	ug/Kg	₽	04/09/15 16:11	04/10/15 14:50	1
Endrin	ND		1.8	0.35	ug/Kg	\$	04/09/15 16:11	04/10/15 14:50	1
Endrin aldehyde	0.67	J	1.8	0.45	ug/Kg	₽	04/09/15 16:11	04/10/15 14:50	1
Endrin ketone	ND		1.8	0.44	ug/Kg	₽	04/09/15 16:11	04/10/15 14:50	1
gamma-BHC (Lindane)	ND		1.8	0.33	ug/Kg	₽	04/09/15 16:11	04/10/15 14:50	1
gamma-Chlordane	ND		1.8	0.57	ug/Kg	₽	04/09/15 16:11	04/10/15 14:50	1
Heptachlor	ND		1.8	0.39	ug/Kg	₽	04/09/15 16:11	04/10/15 14:50	1
Heptachlor epoxide	ND		1.8	0.46	ug/Kg	₽	04/09/15 16:11	04/10/15 14:50	1
Methoxychlor	ND		1.8	0.36	ug/Kg	₽	04/09/15 16:11	04/10/15 14:50	1
Toxaphene	ND		18	10	ug/Kg	₽	04/09/15 16:11	04/10/15 14:50	1

TestAmerica Buffalo

5

7

9

11

13

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Lab Sample ID: 480-77902-1

Client Sample ID: CHF-1 Date Collected: 04/07/15 00:00 Matrix: Solid Date Received: 04/07/15 15:40 Percent Solids: 91.6

Surrogate	%Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	84	32 - 13	04/09/15 16:11	04/10/15 14:50	1
Tetrachloro-m-xylene	83	30 - 12	4 04/09/15 16:11	04/10/15 14:50	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.26	0.050	mg/Kg	\$	04/09/15 17:30	04/10/15 14:45	1
PCB-1221	ND		0.26	0.050	mg/Kg	₽	04/09/15 17:30	04/10/15 14:45	1
PCB-1232	ND		0.26	0.050	mg/Kg	₽	04/09/15 17:30	04/10/15 14:45	1
PCB-1242	ND		0.26	0.050	mg/Kg	₩	04/09/15 17:30	04/10/15 14:45	1
PCB-1248	ND		0.26	0.050	mg/Kg	₽	04/09/15 17:30	04/10/15 14:45	1
PCB-1254	ND		0.26	0.12	mg/Kg	₽	04/09/15 17:30	04/10/15 14:45	1
PCB-1260	ND		0.26	0.12	mg/Kg	₽	04/09/15 17:30	04/10/15 14:45	1
PCB-1262	ND		0.26	0.12	mg/Kg	₽	04/09/15 17:30	04/10/15 14:45	1
PCB-1268	ND		0.26	0.12	mg/Kg	₽	04/09/15 17:30	04/10/15 14:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	99		46 - 175				04/09/15 17:30	04/10/15 14:45	1
DCB Decachlorobiphenyl	99		47 - 176				04/09/15 17:30	04/10/15 14:45	1

Method: 8151A - Herbicides (GC) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-T	ND		18	5.7	ug/Kg	<u></u>	04/08/15 11:35	04/17/15 05:22	1
2,4-D	ND		18	11	ug/Kg	₽	04/08/15 11:35	04/17/15 05:22	1
Silvex (2,4,5-TP)	ND		18	6.4	ug/Kg	₩	04/08/15 11:35	04/17/15 05:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	76		39 - 120				04/08/15 11:35	04/17/15 05:22	1

-	, •		00 - 720				0 11 00/10 11:00	0 1/ 1// 10 00:22	•
Method: 6010C - Metals (ICP)		0 115				_			D.11 E
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Aluminum	2900	F1	10.2	4.5	mg/Kg	<u> </u>	04/09/15 15:30	04/10/15 21:24	1
Antimony	ND		15.3	0.41	mg/Kg	₩	04/09/15 15:30	04/10/15 21:24	1
Arsenic	1.5	J	2.0	0.41	mg/Kg	₩	04/09/15 15:30	04/11/15 18:06	1
Barium	12.8		0.51	0.11	mg/Kg	₽	04/09/15 15:30	04/11/15 18:06	1
Beryllium	0.19	J	0.20	0.029	mg/Kg	₩	04/09/15 15:30	04/10/15 21:24	1
Cadmium	0.21		0.20	0.031	mg/Kg	₩	04/09/15 15:30	04/10/15 21:24	1
Calcium	52600	В	51.1	3.4	mg/Kg	₩	04/09/15 15:30	04/10/15 21:24	1
Chromium	4.1		0.51	0.20	mg/Kg	₩	04/09/15 15:30	04/10/15 21:24	1
Cobalt	1.9		0.51	0.051	mg/Kg	₽	04/09/15 15:30	04/10/15 21:24	1
Copper	7.4		1.0	0.21	mg/Kg	₽	04/09/15 15:30	04/10/15 21:24	1
Iron	5510	F1	10.2	1.1	mg/Kg	₩	04/09/15 15:30	04/10/15 21:24	1
Lead	7.2	В	1.0	0.25	mg/Kg	₩	04/09/15 15:30	04/10/15 21:24	1
Magnesium	24300	В	20.4	0.95	mg/Kg	\$	04/09/15 15:30	04/10/15 21:24	1
Manganese	239	В	0.20	0.033	mg/Kg	₩	04/09/15 15:30	04/10/15 21:24	1
Nickel	4.2	J	5.1	0.23	mg/Kg	₩	04/09/15 15:30	04/10/15 21:24	1
Potassium	787	F1	30.6	20.4	mg/Kg	₩	04/09/15 15:30	04/10/15 21:24	1
Selenium	ND		4.1	0.41	mg/Kg	₩	04/09/15 15:30	04/10/15 21:24	1
Silver	ND	F2	0.51	0.20	mg/Kg	₩	04/09/15 15:30	04/10/15 21:24	1
Sodium	173		143	13.3	mg/Kg	₩	04/09/15 15:30	04/10/15 21:24	1
Thallium	ND		6.1	0.31	mg/Kg	≎	04/09/15 15:30	04/10/15 21:24	1
Vanadium	9.0		0.51	0.11	mg/Kg	₩	04/09/15 15:30	04/10/15 21:24	1

TestAmerica Buffalo

Page 13 of 83

4/20/2015

TestAmerica Job ID: 480-77902-1

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: CHF-1

Date Collected: 04/07/15 00:00

Date Received: 04/07/15 15:40

TestAmerica Job ID: 480-77902-1

Lab Sample ID: 480-77902-1

Matrix: Solid

Percent Solids: 91.6

Method: 6010C - Metals	(ICP)	(Continued)
motifical correct motals	1.0.	(Gontiniaca)

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Zinc	68.4 B F1	2.0	0.16 mg/Kg	-	04/09/15 15:30	04/10/15 21:24	1

Method: 7471B - Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)

Popult Qualifier

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	ND		0.022	0.0090	mg/Kg	₩	04/16/15 14:35	04/16/15 15:44	1

General Chemistry

Allalyte	itesuit Qu	anner KL	WIDE	Oilit		riepareu	Allalyzeu	Diriac
Cyanide, Total	ND	1.1	0.53	mg/Kg	₩	04/14/15 15:30	04/15/15 13:16	1

Client Sample ID: CHF-2 Lab Sample ID: 480-77902-2

Date Collected: 04/07/15 00:00 **Matrix: Solid** Date Received: 04/07/15 15:40 Percent Solids: 92.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND		880	36	ug/Kg	<u> </u>	04/13/15 08:37	04/14/15 12:19	1
2,4,6-Trichlorophenol	ND		350	36	ug/Kg	₩	04/13/15 08:37	04/14/15 12:19	1
2,4-Dichlorophenol	ND		350	35	ug/Kg	₩	04/13/15 08:37	04/14/15 12:19	1
2,4-Dimethylphenol	ND		350	55	ug/Kg	₽	04/13/15 08:37	04/14/15 12:19	1
2,4-Dinitrophenol	ND		880	150	ug/Kg	₽	04/13/15 08:37	04/14/15 12:19	1
2,4-Dinitrotoluene	ND		350	26	ug/Kg	₩	04/13/15 08:37	04/14/15 12:19	1
2,6-Dinitrotoluene	ND		350	32	ug/Kg	₽	04/13/15 08:37	04/14/15 12:19	1
2-Chloronaphthalene	ND		350	46	ug/Kg	₩	04/13/15 08:37	04/14/15 12:19	1
2-Chlorophenol	ND		350	36	ug/Kg	₩	04/13/15 08:37	04/14/15 12:19	1
2-Methylnaphthalene	ND		350	16	ug/Kg	₽	04/13/15 08:37	04/14/15 12:19	1
2-Methylphenol	ND		350	43	ug/Kg	₩	04/13/15 08:37	04/14/15 12:19	1
2-Nitroaniline	ND		880	39	ug/Kg	₩	04/13/15 08:37	04/14/15 12:19	1
2-Nitrophenol	ND		350	39	ug/Kg	₩.	04/13/15 08:37	04/14/15 12:19	1
3 & 4 Methylphenol	ND		710	79	ug/Kg	₽	04/13/15 08:37	04/14/15 12:19	1
3,3'-Dichlorobenzidine	ND		350	51	ug/Kg	₩	04/13/15 08:37	04/14/15 12:19	1
3-Nitroaniline	ND		880	41	ug/Kg	₽	04/13/15 08:37	04/14/15 12:19	1
4,6-Dinitro-2-methylphenol	ND		880	100	ug/Kg	₩	04/13/15 08:37	04/14/15 12:19	1
4-Bromophenyl phenyl ether	ND		350	19	ug/Kg	₩	04/13/15 08:37	04/14/15 12:19	1
4-Chloro-3-methylphenol	ND		350	43	ug/Kg		04/13/15 08:37	04/14/15 12:19	1
4-Chloroaniline	ND		350	34	ug/Kg	₩	04/13/15 08:37	04/14/15 12:19	1
4-Chlorophenyl phenyl ether	ND		350	16	ug/Kg	₩	04/13/15 08:37	04/14/15 12:19	1
4-Nitroaniline	ND		880	34	ug/Kg		04/13/15 08:37	04/14/15 12:19	1
4-Nitrophenol	ND		880	90	ug/Kg	₩	04/13/15 08:37	04/14/15 12:19	1
Acenaphthene	ND		350	14	ug/Kg	₩	04/13/15 08:37	04/14/15 12:19	1
Acenaphthylene	ND		350	16	ug/Kg	₩.	04/13/15 08:37	04/14/15 12:19	1
Acetophenone	ND		350	17	ug/Kg	₩	04/13/15 08:37	04/14/15 12:19	1
Anthracene	ND		350	15	ug/Kg	₩	04/13/15 08:37	04/14/15 12:19	1
Atrazine	ND		350	17	ug/Kg	₩.	04/13/15 08:37	04/14/15 12:19	1
Benzaldehyde	ND		350	17	ug/Kg	₩	04/13/15 08:37	04/14/15 12:19	1
Benzo(a)anthracene	ND		350	14	ug/Kg	₩	04/13/15 08:37	04/14/15 12:19	1
Benzo(a)pyrene	ND		350	13	ug/Kg	φ.	04/13/15 08:37	04/14/15 12:19	1
Benzo(b)fluoranthene	ND		350	25	ug/Kg	₽	04/13/15 08:37	04/14/15 12:19	1
Benzo(g,h,i)perylene	ND		350	14	ug/Kg	₽	04/13/15 08:37	04/14/15 12:19	1
Benzo(k)fluoranthene	ND		350	32	ug/Kg		04/13/15 08:37	04/14/15 12:19	1

TestAmerica Buffalo

Dil Esc

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: CHF-2

Date Collected: 04/07/15 00:00

Date Received: 04/07/15 15:40

Lab Sample ID: 480-77902-2

TestAmerica Job ID: 480-77902-1

Matrix: Solid Percent Solids: 92.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		350	16	ug/Kg		04/13/15 08:37	04/14/15 12:19	1
bis (2-chloroisopropyl) ether	ND		350	17	ug/Kg	₽	04/13/15 08:37	04/14/15 12:19	1
Bis(2-chloroethoxy)methane	ND		350	16	ug/Kg	*	04/13/15 08:37	04/14/15 12:19	1
Bis(2-chloroethyl)ether	ND		350	16	ug/Kg	☼	04/13/15 08:37	04/14/15 12:19	1
Bis(2-ethylhexyl) phthalate	59	J B	350	22	ug/Kg	₽	04/13/15 08:37	04/14/15 12:19	1
Butyl benzyl phthalate	ND		350	21	ug/Kg	*	04/13/15 08:37	04/14/15 12:19	1
Caprolactam	ND		350	37	ug/Kg	₩	04/13/15 08:37	04/14/15 12:19	1
Carbazole	ND		350	16	ug/Kg	₽	04/13/15 08:37	04/14/15 12:19	1
Chrysene	ND		350	19	ug/Kg	₽	04/13/15 08:37	04/14/15 12:19	1
Dibenz(a,h)anthracene	ND		350	12	ug/Kg	₽	04/13/15 08:37	04/14/15 12:19	1
Dibenzofuran	ND		350	17	ug/Kg	₽	04/13/15 08:37	04/14/15 12:19	1
Diethyl phthalate	ND		350	16	ug/Kg	\$	04/13/15 08:37	04/14/15 12:19	1
Dimethyl phthalate	ND		350	16	ug/Kg	₽	04/13/15 08:37	04/14/15 12:19	1
Di-n-butyl phthalate	ND		350	16	ug/Kg	₽	04/13/15 08:37	04/14/15 12:19	1
Di-n-octyl phthalate	ND		350	25	ug/Kg	\$	04/13/15 08:37	04/14/15 12:19	1
Fluoranthene	ND		350	13	ug/Kg	₽	04/13/15 08:37	04/14/15 12:19	1
Fluorene	ND		350	16	ug/Kg	₽	04/13/15 08:37	04/14/15 12:19	1
Hexachlorobenzene	ND		350	49	ug/Kg	\$	04/13/15 08:37	04/14/15 12:19	1
Hexachlorobutadiene	ND		350	37	ug/Kg	₽	04/13/15 08:37	04/14/15 12:19	1
Hexachlorocyclopentadiene	ND		350	69	ug/Kg	₽	04/13/15 08:37	04/14/15 12:19	1
Hexachloroethane	ND		350	36	ug/Kg		04/13/15 08:37	04/14/15 12:19	1
Indeno(1,2,3-cd)pyrene	ND		350	15	ug/Kg	₽	04/13/15 08:37	04/14/15 12:19	1
Isophorone	ND		350	45	ug/Kg	☼	04/13/15 08:37	04/14/15 12:19	1
Naphthalene	ND		350	16	ug/Kg		04/13/15 08:37	04/14/15 12:19	1
Nitrobenzene	ND		350	44	ug/Kg	₽	04/13/15 08:37	04/14/15 12:19	1
N-Nitrosodi-n-propylamine	ND		350	49	ug/Kg	₽	04/13/15 08:37	04/14/15 12:19	1
N-Nitrosodiphenylamine	ND		350	17	ug/Kg		04/13/15 08:37	04/14/15 12:19	1
Pentachlorophenol	ND		880	73	ug/Kg	₽	04/13/15 08:37	04/14/15 12:19	1
Phenanthrene	ND		350	13	ug/Kg	₽	04/13/15 08:37	04/14/15 12:19	1
Phenol	ND		350	43	ug/Kg		04/13/15 08:37	04/14/15 12:19	1
Pyrene	ND		350	15	ug/Kg	₽	04/13/15 08:37	04/14/15 12:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2.4.6-Tribromophenol	79		25 - 135				04/13/15 08:37	04/14/15 12:19	

rogate	%Recovery Qualitier	Limits	Prepared
ribromophenol	79	25 - 135	04/13/15 08:37
luorobiphenyl	87	35 - 110	04/13/15 08:37
uorophenol	87	30 - 135	04/13/15 08:37
benzene-d5	75	35 - 110	04/13/15 08:37
nol-d5	92	30 - 130	04/13/15 08:37
phenyl-d14 (Surr)	85	30 - 130	04/13/15 08:37

Method: 8081B - Organochlorine Pesticides (G	3C)
--	----	---

mountain total and game of game of the control of t									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		1.8	0.35	ug/Kg	<u> </u>	04/09/15 16:11	04/10/15 15:07	1
4,4'-DDE	0.40	J	1.8	0.37	ug/Kg	₽	04/09/15 16:11	04/10/15 15:07	1
4,4'-DDT	ND		1.8	0.42	ug/Kg	₽	04/09/15 16:11	04/10/15 15:07	1
Aldrin	ND		1.8	0.44	ug/Kg	₽	04/09/15 16:11	04/10/15 15:07	1
alpha-BHC	ND		1.8	0.32	ug/Kg	₽	04/09/15 16:11	04/10/15 15:07	1
alpha-Chlordane	ND		1.8	0.88	ug/Kg	₽	04/09/15 16:11	04/10/15 15:07	1
beta-BHC	ND		1.8	0.32	ug/Kg	₽	04/09/15 16:11	04/10/15 15:07	1
delta-BHC	0.46	J	1.8	0.33	ug/Kg	₽	04/09/15 16:11	04/10/15 15:07	1

TestAmerica Buffalo

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

PCB-1262

PCB-1268

Client Sample ID: CHF-2

Lab Cample ID: 400 77000 0

Lab Sample ID: 480-77902-2

TestAmerica Job ID: 480-77902-1

Matrix: Solid Percent Solids: 92.4

Date Collected: 04/07/15 00:00

Date Received: 04/07/15 15:40

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dieldrin	ND		1.8	0.43	ug/Kg	₩	04/09/15 16:11	04/10/15 15:07	1
Endosulfan I	ND		1.8	0.34	ug/Kg	₽	04/09/15 16:11	04/10/15 15:07	1
Endosulfan II	ND		1.8	0.32	ug/Kg	₽	04/09/15 16:11	04/10/15 15:07	1
Endosulfan sulfate	ND		1.8	0.33	ug/Kg	₽	04/09/15 16:11	04/10/15 15:07	1
Endrin	ND		1.8	0.35	ug/Kg	₽	04/09/15 16:11	04/10/15 15:07	1
Endrin aldehyde	ND		1.8	0.45	ug/Kg	₽	04/09/15 16:11	04/10/15 15:07	1
Endrin ketone	ND		1.8	0.44	ug/Kg	₽	04/09/15 16:11	04/10/15 15:07	1
gamma-BHC (Lindane)	ND		1.8	0.33	ug/Kg	₽	04/09/15 16:11	04/10/15 15:07	1
gamma-Chlordane	ND		1.8	0.56	ug/Kg	₽	04/09/15 16:11	04/10/15 15:07	1
Heptachlor	ND		1.8	0.38	ug/Kg	₽	04/09/15 16:11	04/10/15 15:07	1
Heptachlor epoxide	ND		1.8	0.46	ug/Kg	₽	04/09/15 16:11	04/10/15 15:07	1
Methoxychlor	ND		1.8	0.36	ug/Kg	₽	04/09/15 16:11	04/10/15 15:07	1
Toxaphene	ND		18	10	ug/Kg	₽	04/09/15 16:11	04/10/15 15:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	90		32 - 136				04/09/15 16:11	04/10/15 15:07	1
Tetrachloro-m-xvlene	86		30 - 124				04/09/15 16:11	04/10/15 15:07	1

Total delilloro III xyrono	00		00 - 12 1				0 17 0 07 10 10:11	0 11 101 10 10.01	•
Method: 8082A - Polychlorina	ated Biphenyls (PC	CBs) by Gas	Chromatograp	hy					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.21	0.041	mg/Kg	\$	04/09/15 17:30	04/10/15 15:17	1
PCB-1221	ND		0.21	0.041	mg/Kg	₽	04/09/15 17:30	04/10/15 15:17	1
PCB-1232	ND		0.21	0.041	mg/Kg	₽	04/09/15 17:30	04/10/15 15:17	1
PCB-1242	ND		0.21	0.041	mg/Kg	\$	04/09/15 17:30	04/10/15 15:17	1
PCB-1248	ND		0.21	0.041	mg/Kg	₽	04/09/15 17:30	04/10/15 15:17	1
PCB-1254	ND		0.21	0.099	mg/Kg	₽	04/09/15 17:30	04/10/15 15:17	1
PCB-1260	ND		0.21	0.099	mg/Kg		04/09/15 17:30	04/10/15 15:17	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	105		46 - 175	04/09/15 17:30	04/10/15 15:17	1
DCB Decachlorobiphenyl	94		47 - 176	04/09/15 17:30	04/10/15 15:17	1

0.21

0.21

ND

ND

0.099 mg/Kg

0.099 mg/Kg

04/09/15 17:30

04/09/15 17:30

04/10/15 15:17

04/10/15 15:17

Method: 8151A - Herbicides (GC) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-T	ND		18	5.7	ug/Kg	\$	04/08/15 11:35	04/17/15 05:51	1
2,4-D	ND		18	11	ug/Kg	₽	04/08/15 11:35	04/17/15 05:51	1
Silvex (2,4,5-TP)	ND		18	6.4	ug/Kg	₽	04/08/15 11:35	04/17/15 05:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	73		39 - 120				04/08/15 11:35	04/17/15 05:51	1

Method: 6010C - Metals (ICP)											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Aluminum	2310		10.8	4.8	mg/Kg	\	04/09/15 15:30	04/10/15 21:38	1		
Antimony	ND		16.3	0.43	mg/Kg	₩	04/09/15 15:30	04/10/15 21:38	1		
Arsenic	1.2	J	2.2	0.43	mg/Kg	₽	04/09/15 15:30	04/11/15 18:20	1		
Barium	10.2		0.54	0.12	mg/Kg	₽	04/09/15 15:30	04/11/15 18:20	1		
Beryllium	0.14	J	0.22	0.030	mg/Kg	₽	04/09/15 15:30	04/10/15 21:38	1		
Cadmium	0.20	J	0.22	0.033	mg/Kg	₩	04/09/15 15:30	04/10/15 21:38	1		

TestAmerica Buffalo

Page 16 of 83

4

6

8

10

12

14

15

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Lab Sample ID: 480-77902-2

TestAmerica Job ID: 480-77902-1

Matrix: Solid Percent Solids: 92.4

Client Sample ID: CHF-2
Date Collected: 04/07/15 00:00
Date Received: 04/07/15 15:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	44800	В	54.2	3.6	mg/Kg	<u></u>	04/09/15 15:30	04/10/15 21:38	1
Chromium	3.3		0.54	0.22	mg/Kg	*	04/09/15 15:30	04/10/15 21:38	1
Cobalt	1.7		0.54	0.054	mg/Kg	₽	04/09/15 15:30	04/10/15 21:38	1
Copper	6.2		1.1	0.23	mg/Kg	₽	04/09/15 15:30	04/10/15 21:38	1
Iron	4600		10.8	1.2	mg/Kg	₽	04/09/15 15:30	04/10/15 21:38	1
Lead	6.6	В	1.1	0.26	mg/Kg	₽	04/09/15 15:30	04/10/15 21:38	1
Magnesium	20400	В	21.7	1.0	mg/Kg	\$	04/09/15 15:30	04/10/15 21:38	1
Manganese	195	В	0.22	0.035	mg/Kg	₽	04/09/15 15:30	04/10/15 21:38	1
Nickel	3.6	J	5.4	0.25	mg/Kg	₽	04/09/15 15:30	04/10/15 21:38	1
Potassium	706		32.5	21.7	mg/Kg	₽	04/09/15 15:30	04/10/15 21:38	1
Selenium	ND		4.3	0.43	mg/Kg	₽	04/09/15 15:30	04/10/15 21:38	1
Silver	ND		0.54	0.22	mg/Kg	₽	04/09/15 15:30	04/10/15 21:38	1
Sodium	142	J	152	14.1	mg/Kg	₽	04/09/15 15:30	04/10/15 21:38	1
Thallium	ND		6.5	0.33	mg/Kg	₽	04/09/15 15:30	04/10/15 21:38	1
Vanadium	7.8		0.54	0.12	mg/Kg	₩	04/09/15 15:30	04/10/15 21:38	1
Zinc	60.7	В	2.2	0.17	mg/Kg		04/09/15 15:30	04/10/15 21:38	1

Method: 7471B - Mercury in Solid (or Semisolid	Waste (Ma	nual Cold Va	por Technic	que)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	ND		0.022	0.0089	mg/Kg		04/16/15 14:35	04/16/15 15:51	1

General Chemistry							
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	ND ND	1.1	0.51 mg/Kg	<u> </u>	04/10/15 15:51	04/11/15 11:02	1

Client Sample ID: CHF-3 Lab Sample ID: 480-77902-3 Date Collected: 04/07/15 00:00 Matrix: Solid

Date Received: 04/07/15 15:40 Percent Solids: 93.5

Analyte	Result (Qualifier F	L MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND	87	0 36	ug/Kg	₩	04/13/15 08:37	04/14/15 13:01	1
2,4,6-Trichlorophenol	ND	35	0 36	ug/Kg	₽	04/13/15 08:37	04/14/15 13:01	1
2,4-Dichlorophenol	ND	35	0 35	ug/Kg	₽	04/13/15 08:37	04/14/15 13:01	1
2,4-Dimethylphenol	ND	35	0 55	ug/Kg	₽	04/13/15 08:37	04/14/15 13:01	1
2,4-Dinitrophenol	ND	87	0 150	ug/Kg	₽	04/13/15 08:37	04/14/15 13:01	1
2,4-Dinitrotoluene	ND	35	0 25	ug/Kg	₽	04/13/15 08:37	04/14/15 13:01	1
2,6-Dinitrotoluene	ND	35	0 32	ug/Kg	\$	04/13/15 08:37	04/14/15 13:01	1
2-Chloronaphthalene	ND	35	0 45	ug/Kg	₽	04/13/15 08:37	04/14/15 13:01	1
2-Chlorophenol	ND	35	0 36	ug/Kg	₽	04/13/15 08:37	04/14/15 13:01	1
2-Methylnaphthalene	ND	35	0 16	ug/Kg	₽	04/13/15 08:37	04/14/15 13:01	1
2-Methylphenol	ND	35	0 42	ug/Kg	₽	04/13/15 08:37	04/14/15 13:01	1
2-Nitroaniline	ND	87	0 39	ug/Kg	₽	04/13/15 08:37	04/14/15 13:01	1
2-Nitrophenol	ND	35	0 39	ug/Kg	₽	04/13/15 08:37	04/14/15 13:01	1
3 & 4 Methylphenol	ND	70	0 78	ug/Kg	₽	04/13/15 08:37	04/14/15 13:01	1
3,3'-Dichlorobenzidine	ND	35	0 50	ug/Kg	₽	04/13/15 08:37	04/14/15 13:01	1
3-Nitroaniline	ND	87	0 40	ug/Kg		04/13/15 08:37	04/14/15 13:01	1
4,6-Dinitro-2-methylphenol	ND	87	0 100	ug/Kg	₩	04/13/15 08:37	04/14/15 13:01	1
4-Bromophenyl phenyl ether	ND	35	0 19	ug/Kg	₩	04/13/15 08:37	04/14/15 13:01	1
4-Chloro-3-methylphenol	ND	35	0 42	ug/Kg		04/13/15 08:37	04/14/15 13:01	1

TestAmerica Buffalo

Page 17 of 83

4/20/2015

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

2-Fluorobiphenyl

Date Received: 04/07/15 15:40

TestAmerica Job ID: 480-77902-1

Lab Sample ID: 480-77902-3

Matrix: Solid Percent Solids: 93.5

Client Sample ID: CHF-3 Date Collected: 04/07/15 00:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
4-Chloroaniline	ND		350	34	ug/Kg		04/13/15 08:37	04/14/15 13:01	
4-Chlorophenyl phenyl ether	ND		350	16	ug/Kg	₩	04/13/15 08:37	04/14/15 13:01	
4-Nitroaniline	ND		870	34	ug/Kg	₽	04/13/15 08:37	04/14/15 13:01	
4-Nitrophenol	ND		870	88	ug/Kg	₩	04/13/15 08:37	04/14/15 13:01	
Acenaphthene	ND		350	14	ug/Kg	₩	04/13/15 08:37	04/14/15 13:01	
Acenaphthylene	ND		350	16	ug/Kg		04/13/15 08:37	04/14/15 13:01	
Acetophenone	ND		350	17	ug/Kg	₩	04/13/15 08:37	04/14/15 13:01	
Anthracene	ND		350	15	ug/Kg	₩	04/13/15 08:37	04/14/15 13:01	
Atrazine	ND		350	17	ug/Kg		04/13/15 08:37	04/14/15 13:01	
Benzaldehyde	ND		350	17	ug/Kg	₩	04/13/15 08:37	04/14/15 13:01	
Benzo(a)anthracene	ND		350	14	ug/Kg	₩	04/13/15 08:37	04/14/15 13:01	
Benzo(a)pyrene	ND		350		ug/Kg		04/13/15 08:37	04/14/15 13:01	
Benzo(b)fluoranthene	ND		350	24		₽	04/13/15 08:37	04/14/15 13:01	
Benzo(g,h,i)perylene	ND		350		ug/Kg	₽	04/13/15 08:37	04/14/15 13:01	
Benzo(k)fluoranthene	ND		350		ug/Kg	· · · · · · · · · · · · · · · · · · ·	04/13/15 08:37	04/14/15 13:01	
Biphenyl	ND		350		ug/Kg	₽	04/13/15 08:37	04/14/15 13:01	
bis (2-chloroisopropyl) ether	ND		350		ug/Kg	₽	04/13/15 08:37	04/14/15 13:01	
Bis(2-chloroethoxy)methane	ND		350		ug/Kg		04/13/15 08:37	04/14/15 13:01	
Bis(2-chloroethyl)ether	ND		350		ug/Kg ug/Kg	₽	04/13/15 08:37	04/14/15 13:01	
Bis(2-ethylhexyl) phthalate	51	JB	350		ug/Kg	₩	04/13/15 08:37	04/14/15 13:01	
Butyl benzyl phthalate	ND		350	21			04/13/15 08:37	04/14/15 13:01	
Caprolactam	ND		350	37	0 0	₩	04/13/15 08:37	04/14/15 13:01	
Carbazole	ND		350		ug/Kg ug/Kg	₽	04/13/15 08:37	04/14/15 13:01	
	ND		350	19			04/13/15 08:37	04/14/15 13:01	
Chrysene Dibenz(a,h)anthracene	ND ND		350		ug/Kg ug/Kg		04/13/15 08:37	04/14/15 13:01	
Dibenzofuran	ND		350						
					ug/Kg		04/13/15 08:37	04/14/15 13:01	
Diethyl phthalate	55 ND	JB	350		ug/Kg	₩	04/13/15 08:37	04/14/15 13:01	
Dimethyl phthalate	ND		350	16	ug/Kg	₩	04/13/15 08:37	04/14/15 13:01	
Di-n-butyl phthalate	ND		350		ug/Kg		04/13/15 08:37	04/14/15 13:01	
Di-n-octyl phthalate	ND		350		ug/Kg	₽	04/13/15 08:37	04/14/15 13:01	
Fluoranthene	17	J	350	13		₽	04/13/15 08:37	04/14/15 13:01	
Fluorene	ND		350		ug/Kg	<u></u>	04/13/15 08:37	04/14/15 13:01	
Hexachlorobenzene	ND		350		ug/Kg		04/13/15 08:37	04/14/15 13:01	
Hexachlorobutadiene	ND		350	37	0 0	₩.	04/13/15 08:37	04/14/15 13:01	
Hexachlorocyclopentadiene	ND		350	68	ug/Kg		04/13/15 08:37	04/14/15 13:01	
Hexachloroethane	ND		350		ug/Kg	*	04/13/15 08:37	04/14/15 13:01	
ndeno(1,2,3-cd)pyrene	ND		350		ug/Kg	₩	04/13/15 08:37	04/14/15 13:01	
sophorone	ND		350		ug/Kg		04/13/15 08:37	04/14/15 13:01	
Naphthalene	ND		350		ug/Kg	₩	04/13/15 08:37	04/14/15 13:01	
Nitrobenzene	ND		350		ug/Kg	#	04/13/15 08:37	04/14/15 13:01	
N-Nitrosodi-n-propylamine	ND		350		ug/Kg	₩	04/13/15 08:37	04/14/15 13:01	
N-Nitrosodiphenylamine	ND		350		ug/Kg	₩	04/13/15 08:37	04/14/15 13:01	
Pentachlorophenol	ND		870	71	ug/Kg	₩	04/13/15 08:37	04/14/15 13:01	
Phenanthrene	ND		350	13	ug/Kg		04/13/15 08:37	04/14/15 13:01	
Phenol	ND		350	42	ug/Kg	₽	04/13/15 08:37	04/14/15 13:01	
Pyrene	ND		350	15	ug/Kg	\$	04/13/15 08:37	04/14/15 13:01	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol	80		25 - 135				04/13/15 08:37	04/14/15 13:01	

TestAmerica Buffalo

04/14/15 13:01

04/13/15 08:37

35 - 110

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Tetrachloro-m-xylene

DCB Decachlorobiphenyl

Client Sample ID: CHF-3

Date Collected: 04/07/15 00:00

Date Received: 04/07/15 15:40

Lab Sample ID: 480-77902-3

TestAmerica Job ID: 480-77902-1

Matrix: Solid

Percent Solids: 93.5

Method: 8270D.	Semivolatile Or	ganic Compounds	(GC/MS)	(Continued)
MICHIOU. UZI UD .	· Delilivolatile Oi	gaine compounds	(OC/INIO/	(Continueu)

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorophenol	87	30 - 135	04/13/15 08:37	04/14/15 13:01	1
Nitrobenzene-d5	74	35 - 110	04/13/15 08:37	04/14/15 13:01	1
Phenol-d5	90	30 - 130	04/13/15 08:37	04/14/15 13:01	1
Terphenyl-d14 (Surr)	85	30 - 130	04/13/15 08:37	04/14/15 13:01	1

ı	Method: 8081B - Organochlorine Pesticides (GC)	
ı	Metrica, coord - Organicalitatine resticiaes (\mathbf{u}	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		1.8	0.34	ug/Kg	*	04/09/15 16:11	04/10/15 15:25	1
4,4'-DDE	ND		1.8	0.37	ug/Kg	₩	04/09/15 16:11	04/10/15 15:25	1
4,4'-DDT	ND		1.8	0.41	ug/Kg	₩	04/09/15 16:11	04/10/15 15:25	1
Aldrin	ND		1.8	0.43	ug/Kg	₽	04/09/15 16:11	04/10/15 15:25	1
alpha-BHC	ND		1.8	0.32	ug/Kg	₩	04/09/15 16:11	04/10/15 15:25	1
alpha-Chlordane	ND		1.8	0.88	ug/Kg	₩	04/09/15 16:11	04/10/15 15:25	1
beta-BHC	ND		1.8	0.32	ug/Kg	₽	04/09/15 16:11	04/10/15 15:25	1
delta-BHC	ND		1.8	0.33	ug/Kg	₩	04/09/15 16:11	04/10/15 15:25	1
Dieldrin	ND		1.8	0.42	ug/Kg	₽	04/09/15 16:11	04/10/15 15:25	1
Endosulfan I	ND		1.8	0.34	ug/Kg	\$	04/09/15 16:11	04/10/15 15:25	1
Endosulfan II	ND		1.8	0.32	ug/Kg	₽	04/09/15 16:11	04/10/15 15:25	1
Endosulfan sulfate	0.52	J	1.8	0.33	ug/Kg	₽	04/09/15 16:11	04/10/15 15:25	1
Endrin	ND		1.8	0.35	ug/Kg	*	04/09/15 16:11	04/10/15 15:25	1
Endrin aldehyde	ND		1.8	0.45	ug/Kg	₽	04/09/15 16:11	04/10/15 15:25	1
Endrin ketone	ND		1.8	0.43	ug/Kg	₽	04/09/15 16:11	04/10/15 15:25	1
gamma-BHC (Lindane)	ND		1.8	0.32	ug/Kg	₽	04/09/15 16:11	04/10/15 15:25	1
gamma-Chlordane	ND		1.8	0.56	ug/Kg	₽	04/09/15 16:11	04/10/15 15:25	1
Heptachlor	ND		1.8	0.38	ug/Kg	₽	04/09/15 16:11	04/10/15 15:25	1
Heptachlor epoxide	ND		1.8	0.45	ug/Kg	₽	04/09/15 16:11	04/10/15 15:25	1
Methoxychlor	ND		1.8	0.36	ug/Kg	₽	04/09/15 16:11	04/10/15 15:25	1
Toxaphene	ND		18	10	ug/Kg	₽	04/09/15 16:11	04/10/15 15:25	1

Surrogate	%Recovery	Qualifier	Limits	Prepare	:d	Analyzed	Dil Fac
DCB Decachlorobiphenyl	96		32 - 136	04/09/15 1	6:11 04	4/10/15 15:25	1
Tetrachloro-m-xylene	87		30 - 124	04/09/15 1	6:11 04	4/10/15 15:25	1

100

99

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.24	0.048	mg/Kg	<u></u>	04/09/15 17:30	04/10/15 15:33	1
PCB-1221	ND		0.24	0.048	mg/Kg	₽	04/09/15 17:30	04/10/15 15:33	1
PCB-1232	ND		0.24	0.048	mg/Kg	₽	04/09/15 17:30	04/10/15 15:33	1
PCB-1242	ND		0.24	0.048	mg/Kg	₽	04/09/15 17:30	04/10/15 15:33	1
PCB-1248	ND		0.24	0.048	mg/Kg	₽	04/09/15 17:30	04/10/15 15:33	1
PCB-1254	ND		0.24	0.11	mg/Kg	₽	04/09/15 17:30	04/10/15 15:33	1
PCB-1260	ND		0.24	0.11	mg/Kg	₽	04/09/15 17:30	04/10/15 15:33	1
PCB-1262	ND		0.24	0.11	mg/Kg	₽	04/09/15 17:30	04/10/15 15:33	1
PCB-1268	ND		0.24	0.11	mg/Kg	₩	04/09/15 17:30	04/10/15 15:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

TestAmerica Buffalo

04/10/15 15:33

04/09/15 17:30

46 - 175

47 - 176

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: CHF-3

Lab Sample ID: 480-77902-3

TestAmerica Job ID: 480-77902-1

Matrix: Solid

Date Collected: 04/07/15 00:00 Date Received: 04/07/15 15:40 Percent Solids: 93.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
2,4,5-T	ND			5.6	ug/Kg	<u> </u>	04/08/15 11:35	04/17/15 06:21	
2,4-D	ND		18	11	ug/Kg	₩	04/08/15 11:35	04/17/15 06:21	
Silvex (2,4,5-TP)	ND		18	6.3	ug/Kg	\$	04/08/15 11:35	04/17/15 06:21	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
2,4-Dichlorophenylacetic acid	67		39 - 120				04/08/15 11:35	04/17/15 06:21	
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Aluminum	2980		10.7	4.7	mg/Kg		04/09/15 15:30	04/10/15 21:41	
Antimony	ND		16.0	0.43	mg/Kg	₩	04/09/15 15:30	04/10/15 21:41	
Arsenic	2.1		2.1	0.43	mg/Kg	₩	04/09/15 15:30	04/11/15 18:23	
Barium	12.7		0.53	0.12	mg/Kg	₽	04/09/15 15:30	04/11/15 18:23	
Beryllium	0.18	J	0.21	0.030	mg/Kg	₩	04/09/15 15:30	04/10/15 21:41	
Cadmium	0.18	J	0.21	0.032	mg/Kg	₽	04/09/15 15:30	04/10/15 21:41	
Calcium	53400	В	53.5	3.5	mg/Kg	₽	04/09/15 15:30	04/10/15 21:41	
Chromium	4.0		0.53	0.21	mg/Kg	₽	04/09/15 15:30	04/10/15 21:41	
Cobalt	2.2		0.53	0.053	mg/Kg	₽	04/09/15 15:30	04/10/15 21:41	
Copper	7.7		1.1	0.22	mg/Kg	\$	04/09/15 15:30	04/10/15 21:41	
Iron	5960		10.7	1.2	mg/Kg	₽	04/09/15 15:30	04/10/15 21:41	
Lead	8.3	В	1.1	0.26	mg/Kg	₽	04/09/15 15:30	04/10/15 21:41	
Magnesium	23300	В	21.4	0.99	mg/Kg	₽	04/09/15 15:30	04/10/15 21:41	
Manganese	218	В	0.21	0.034	mg/Kg	₽	04/09/15 15:30	04/10/15 21:41	
Nickel	4.9	J	5.3	0.25	mg/Kg	₩	04/09/15 15:30	04/10/15 21:41	
Potassium	755		32.1	21.4	mg/Kg	₩	04/09/15 15:30	04/10/15 21:41	
Selenium	ND		4.3	0.43	mg/Kg	₩	04/09/15 15:30	04/10/15 21:41	
Silver	ND		0.53	0.21	mg/Kg	₩	04/09/15 15:30	04/10/15 21:41	
Sodium	165		150	13.9	mg/Kg	₩	04/09/15 15:30	04/10/15 21:41	
Thallium	ND		6.4	0.32	mg/Kg	₩	04/09/15 15:30	04/10/15 21:41	
Vanadium	8.7		0.53	0.12	mg/Kg	₩	04/09/15 15:30	04/10/15 21:41	
Zinc	70.4	В	2.1	0.16	mg/Kg	\$	04/09/15 15:30	04/10/15 21:41	
Method: 7471B - Mercury in Solid (or Semisolid	Waste (Mai	nual Cold Vapo	r Technic	que)				
Analyte		Qualifier	RL .		Unit	D	Prepared	Analyzed	Dil F
Hg	ND		0.021	0.0087	mg/Kg		04/16/15 14:35	04/16/15 15:53	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Cyanide, Total	ND		1.1	0.51	mg/Kg	<u> </u>	04/10/15 15:51	04/11/15 11:03	

Client Sample ID: CHF-4 Lab Sample ID: 480-77902-4

Date Collected: 04/07/15 00:00 **Matrix: Solid** Date Received: 04/07/15 15:40 Percent Solids: 90.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND		930	38	ug/Kg	\$	04/13/15 08:37	04/14/15 13:42	1
2,4,6-Trichlorophenol	ND		370	38	ug/Kg	₽	04/13/15 08:37	04/14/15 13:42	1
2,4-Dichlorophenol	ND		370	37	ug/Kg	₽	04/13/15 08:37	04/14/15 13:42	1
2,4-Dimethylphenol	ND		370	58	ug/Kg	₽	04/13/15 08:37	04/14/15 13:42	1
2,4-Dinitrophenol	ND		930	160	ug/Kg	≎	04/13/15 08:37	04/14/15 13:42	1

TestAmerica Buffalo

Page 20 of 83

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Hexachlorocyclopentadiene

Client Sample ID: CHF-4

Date Collected: 04/07/15 00:00

Date Received: 04/07/15 15:40

Matrix: Solid Percent Solids: 90.7

Lab Sample ID: 480-77902-4

TestAmerica Job ID: 480-77902-1

Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
2,4-Dinitrotoluene	ND	370	27	ug/Kg	₩	04/13/15 08:37	04/14/15 13:42	1
2,6-Dinitrotoluene	ND	370	33	ug/Kg	*	04/13/15 08:37	04/14/15 13:42	1
2-Chloronaphthalene	ND	370	48	ug/Kg	*	04/13/15 08:37	04/14/15 13:42	•
2-Chlorophenol	ND	370	38	ug/Kg	<u>.</u>	04/13/15 08:37	04/14/15 13:42	
2-Methylnaphthalene	ND	370	17	ug/Kg	₽	04/13/15 08:37	04/14/15 13:42	•
2-Methylphenol	ND	370	45	ug/Kg	*	04/13/15 08:37	04/14/15 13:42	•
2-Nitroaniline	ND	930	41	ug/Kg		04/13/15 08:37	04/14/15 13:42	
2-Nitrophenol	ND	370	41	0 0	₽	04/13/15 08:37	04/14/15 13:42	•
3 & 4 Methylphenol	ND	750	83	ug/Kg	₽	04/13/15 08:37	04/14/15 13:42	
3,3'-Dichlorobenzidine	ND	370	54	ug/Kg	₽	04/13/15 08:37	04/14/15 13:42	
3-Nitroaniline	ND	930	42	ug/Kg	₽	04/13/15 08:37	04/14/15 13:42	
4,6-Dinitro-2-methylphenol	ND	930	110	ug/Kg	₽	04/13/15 08:37	04/14/15 13:42	
4-Bromophenyl phenyl ether	ND	370	20	ug/Kg	₩	04/13/15 08:37	04/14/15 13:42	
4-Chloro-3-methylphenol	ND	370	45	ug/Kg	₽	04/13/15 08:37	04/14/15 13:42	
4-Chloroaniline	ND	370	36	ug/Kg	₽	04/13/15 08:37	04/14/15 13:42	
4-Chlorophenyl phenyl ether	ND	370	17	ug/Kg	₽	04/13/15 08:37	04/14/15 13:42	
4-Nitroaniline	ND	930	36	ug/Kg	₽	04/13/15 08:37	04/14/15 13:42	
4-Nitrophenol	ND	930	94	ug/Kg	₩	04/13/15 08:37	04/14/15 13:42	
Acenaphthene	ND	370	15	ug/Kg	₩	04/13/15 08:37	04/14/15 13:42	
Acenaphthylene	ND	370	17	ug/Kg	₽	04/13/15 08:37	04/14/15 13:42	
Acetophenone	ND	370	18	ug/Kg	₽	04/13/15 08:37	04/14/15 13:42	
Anthracene	ND	370	16	ug/Kg	₽	04/13/15 08:37	04/14/15 13:42	
Atrazine	ND	370	18	ug/Kg	\$	04/13/15 08:37	04/14/15 13:42	
Benzaldehyde	ND	370	18	ug/Kg	₽	04/13/15 08:37	04/14/15 13:42	
Benzo(a)anthracene	ND	370	15	ug/Kg	₩	04/13/15 08:37	04/14/15 13:42	
Benzo(a)pyrene	ND	370	13	ug/Kg		04/13/15 08:37	04/14/15 13:42	
Benzo(b)fluoranthene	ND	370	26	ug/Kg	₩	04/13/15 08:37	04/14/15 13:42	
Benzo(g,h,i)perylene	ND	370	15	ug/Kg	₩	04/13/15 08:37	04/14/15 13:42	
Benzo(k)fluoranthene	ND	370	33	ug/Kg		04/13/15 08:37	04/14/15 13:42	
Biphenyl	ND	370	17	ug/Kg	₽	04/13/15 08:37	04/14/15 13:42	
bis (2-chloroisopropyl) ether	ND	370	18	ug/Kg	₽	04/13/15 08:37	04/14/15 13:42	
Bis(2-chloroethoxy)methane	ND	370		ug/Kg		04/13/15 08:37	04/14/15 13:42	
Bis(2-chloroethyl)ether	ND	370		ug/Kg	₩	04/13/15 08:37	04/14/15 13:42	
Bis(2-ethylhexyl) phthalate	65 JB	370		ug/Kg	₽	04/13/15 08:37	04/14/15 13:42	
Butyl benzyl phthalate	ND	370		ug/Kg		04/13/15 08:37	04/14/15 13:42	
Caprolactam	ND	370		ug/Kg	₩	04/13/15 08:37	04/14/15 13:42	
Carbazole	ND	370		ug/Kg	₽	04/13/15 08:37	04/14/15 13:42	
Chrysene	ND	370		ug/Kg		04/13/15 08:37	04/14/15 13:42	
Dibenz(a,h)anthracene	ND	370		ug/Kg	₽	04/13/15 08:37	04/14/15 13:42	
Dibenzofuran	ND	370		ug/Kg ug/Kg	₽	04/13/15 08:37	04/14/15 13:42	
Diethyl phthalate	63 JB	370		ug/Kg		04/13/15 08:37	04/14/15 13:42	
Dimethyl phthalate	ND	370		ug/Kg ug/Kg	₽	04/13/15 08:37	04/14/15 13:42	
Di-n-butyl phthalate	ND	370		ug/Kg ug/Kg	₽	04/13/15 08:37	04/14/15 13:42	
Di-n-octyl phthalate	ND	370		ug/Kg ug/Kg		04/13/15 08:37	04/14/15 13:42	
Fluoranthene	ND	370		ug/Kg ug/Kg		04/13/15 08:37		
Fluoranmene Fluorene	ND ND	370 370		ug/Kg ug/Kg	~ ⇔		04/14/15 13:42	
						04/13/15 08:37	04/14/15 13:42	
Hexachlorobenzene	ND	370		ug/Kg		04/13/15 08:37	04/14/15 13:42	
Hexachlorobutadiene	ND	370	39	ug/Kg	#	04/13/15 08:37	04/14/15 13:42	•

TestAmerica Buffalo

04/14/15 13:42

370

73 ug/Kg

☼ 04/13/15 08:37

ND

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Surrogate

DCB Decachlorobiphenyl

Tetrachloro-m-xylene

Lab Sample ID: 480-77902-4

TestAmerica Job ID: 480-77902-1

Matrix: Solid

Percent Solids: 90.7

Client	Sample	D:	CHF-4
--------	--------	----	-------

Date Collected: 04/07/15 00:00 Date Received: 04/07/15 15:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hexachloroethane	ND		370	38	ug/Kg	₩	04/13/15 08:37	04/14/15 13:42	1
Indeno(1,2,3-cd)pyrene	ND		370	16	ug/Kg	\$	04/13/15 08:37	04/14/15 13:42	1
Isophorone	ND		370	47	ug/Kg	₽	04/13/15 08:37	04/14/15 13:42	1
Naphthalene	ND		370	17	ug/Kg	₽	04/13/15 08:37	04/14/15 13:42	1
Nitrobenzene	ND		370	46	ug/Kg	₽	04/13/15 08:37	04/14/15 13:42	1
N-Nitrosodi-n-propylamine	ND		370	51	ug/Kg	₽	04/13/15 08:37	04/14/15 13:42	1
N-Nitrosodiphenylamine	ND		370	18	ug/Kg	\$	04/13/15 08:37	04/14/15 13:42	1
Pentachlorophenol	ND		930	76	ug/Kg	₽	04/13/15 08:37	04/14/15 13:42	1
Phenanthrene	ND		370	13	ug/Kg	₽	04/13/15 08:37	04/14/15 13:42	1
Phenol	ND		370	45	ug/Kg		04/13/15 08:37	04/14/15 13:42	1
Pyrene	ND		370	16	ug/Kg	₽	04/13/15 08:37	04/14/15 13:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	70		25 - 135				04/13/15 08:37	04/14/15 13:42	1
2-Fluorobiphenyl	81		35 - 110				04/13/15 08:37	04/14/15 13:42	1
2-Fluorophenol	81		30 - 135				04/13/15 08:37	04/14/15 13:42	1
Nitrobenzene-d5	72		35 - 110				04/13/15 08:37	04/14/15 13:42	1
Phenol-d5	85		30 - 130				04/13/15 08:37	04/14/15 13:42	1
Terphenyl-d14 (Surr)	79		30 - 130				04/13/15 08:37	04/14/15 13:42	1
- Method: 8081B - Organochio	orine Pesticides (G	C)							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		1.8	0.35	ug/Kg	<u> </u>	04/09/15 16:11	04/10/15 15:43	1
4,4'-DDE	ND		1.8	0.38	ug/Kg	₽	04/09/15 16:11	04/10/15 15:43	1
4,4'-DDT	ND		1.8	0.43	ug/Kg	₽	04/09/15 16:11	04/10/15 15:43	1
Aldrin	ND		1.8	0.45	ug/Kg	₽	04/09/15 16:11	04/10/15 15:43	1
alpha-BHC	ND		1.8	0.33	ug/Kg	₽	04/09/15 16:11	04/10/15 15:43	1
alpha-Chlordane	ND		1.8	0.91	ug/Kg	₽	04/09/15 16:11	04/10/15 15:43	1
beta-BHC	ND		1.8	0.33	ug/Kg		04/09/15 16:11	04/10/15 15:43	1
dolta BHC	ND		1.0	0.24	ua/Ka	÷Ö-	04/00/15 16:11	04/10/15 15:43	4

Result Qualifier	KL	MDL	Unit	U	Prepared	Analyzed	DII Fac
ND ND	1.8	0.35	ug/Kg	₩	04/09/15 16:11	04/10/15 15:43	1
ND	1.8	0.38	ug/Kg	₽	04/09/15 16:11	04/10/15 15:43	1
ND	1.8	0.43	ug/Kg	₩	04/09/15 16:11	04/10/15 15:43	1
ND	1.8	0.45	ug/Kg	₽	04/09/15 16:11	04/10/15 15:43	1
ND	1.8	0.33	ug/Kg	₽	04/09/15 16:11	04/10/15 15:43	1
ND	1.8	0.91	ug/Kg	₩	04/09/15 16:11	04/10/15 15:43	1
ND	1.8	0.33	ug/Kg	\$	04/09/15 16:11	04/10/15 15:43	1
ND	1.8	0.34	ug/Kg	₩	04/09/15 16:11	04/10/15 15:43	1
ND	1.8	0.44	ug/Kg	₽	04/09/15 16:11	04/10/15 15:43	1
ND	1.8	0.35	ug/Kg	₽	04/09/15 16:11	04/10/15 15:43	1
ND	1.8	0.33	ug/Kg	₽	04/09/15 16:11	04/10/15 15:43	1
ND	1.8	0.34	ug/Kg	₽	04/09/15 16:11	04/10/15 15:43	1
ND	1.8	0.36	ug/Kg	₽	04/09/15 16:11	04/10/15 15:43	1
ND	1.8	0.47	ug/Kg	₽	04/09/15 16:11	04/10/15 15:43	1
ND	1.8	0.45	ug/Kg	₽	04/09/15 16:11	04/10/15 15:43	1
ND	1.8	0.33	ug/Kg	₽	04/09/15 16:11	04/10/15 15:43	1
ND	1.8	0.58	ug/Kg	₽	04/09/15 16:11	04/10/15 15:43	1
ND	1.8	0.39	ug/Kg	₽	04/09/15 16:11	04/10/15 15:43	1
ND	1.8	0.47	ug/Kg	₽	04/09/15 16:11	04/10/15 15:43	1
ND	1.8	0.37	ug/Kg	₩	04/09/15 16:11	04/10/15 15:43	1
ND	18	11	ug/Kg	₽	04/09/15 16:11	04/10/15 15:43	1
	ND N	ND 1.8 ND 1.8 <td< td=""><td>ND 1.8 0.35 ND 1.8 0.38 ND 1.8 0.43 ND 1.8 0.45 ND 1.8 0.33 ND 1.8 0.33 ND 1.8 0.34 ND 1.8 0.34 ND 1.8 0.33 ND 1.8 0.34 ND 1.8 0.34 ND 1.8 0.34 ND 1.8 0.47 ND 1.8 0.33 ND 1.8 0.33 ND 1.8 0.33 ND 1.8 0.33 ND 1.8 0.39 ND 1.8 0.39 ND 1.8 0.47 ND 1.8 0.47 ND 1.8 0.37</td><td>ND 1.8 0.35 ug/Kg ND 1.8 0.38 ug/Kg ND 1.8 0.43 ug/Kg ND 1.8 0.45 ug/Kg ND 1.8 0.33 ug/Kg ND 1.8 0.91 ug/Kg ND 1.8 0.34 ug/Kg ND 1.8 0.34 ug/Kg ND 1.8 0.35 ug/Kg ND 1.8 0.35 ug/Kg ND 1.8 0.34 ug/Kg ND 1.8 0.34 ug/Kg ND 1.8 0.47 ug/Kg ND 1.8 0.47 ug/Kg ND 1.8 0.45 ug/Kg ND 1.8 0.39 ug/Kg ND 1.8 0.58 ug/Kg ND 1.8 0.47 ug/Kg <td< td=""><td>ND 1.8 0.35 ug/Kg ND 1.8 0.38 ug/Kg ND 1.8 0.43 ug/Kg ND 1.8 0.45 ug/Kg ND 1.8 0.33 ug/Kg ND 1.8 0.91 ug/Kg ND 1.8 0.33 ug/Kg ND 1.8 0.34 ug/Kg ND 1.8 0.35 ug/Kg ND 1.8 0.35 ug/Kg ND 1.8 0.35 ug/Kg ND 1.8 0.33 ug/Kg ND 1.8 0.34 ug/Kg ND 1.8 0.36 ug/Kg ND 1.8 0.47 ug/Kg ND 1.8 0.45 ug/Kg ND 1.8 0.45 ug/Kg ND 1.8 0.33 ug/Kg ND 1.8 0.45 ug/Kg ND 1.8 0.39 ug/Kg ND 1.8 0.47 ug/Kg ND 1.8 0.47 ug/Kg ND 1.8 0.47 ug/Kg</td><td>ND 1.8 0.35 0.4/09/15 16:11 ND 1.8 0.38 0.4/09/15 16:11 ND 1.8 0.43 0.4/09/15 16:11 ND 1.8 0.43 0.4/09/15 16:11 ND 1.8 0.43 0.4/09/15 16:11 ND 1.8 0.45 0.4/09/15 16:11 ND 1.8 0.33 0.4/09/15 16:11 ND 1.8 0.91 0.4/09/15 16:11 ND 1.8 0.91 0.4/09/15 16:11 ND 1.8 0.91 0.4/09/15 16:11 ND 1.8 0.33 0.4/09/15 16:11 ND 1.8 0.34 0.4/09/15 16:11 ND 1.8 0.35 0.4/09/15 16:11 ND 1.8 0.35 0.4/09/15 16:11 ND 1.8 0.36 0.4/09/15 16:11 ND 1.8 0.37 0.4/09/15 16:11 ND 1.8 0.47 0.4/09/15 16:11 ND 1.8 0.45 0.47 0.4/09/15 16:11 ND 1.8 0.49/Kg 0.4/09/15 16:11 ND 1.8 0.47 0.4/09/15 16:11</td><td>ND 1.8 0.35 0.36 0.37 0.38 0.3</td></td<></td></td<>	ND 1.8 0.35 ND 1.8 0.38 ND 1.8 0.43 ND 1.8 0.45 ND 1.8 0.33 ND 1.8 0.33 ND 1.8 0.34 ND 1.8 0.34 ND 1.8 0.33 ND 1.8 0.34 ND 1.8 0.34 ND 1.8 0.34 ND 1.8 0.47 ND 1.8 0.33 ND 1.8 0.33 ND 1.8 0.33 ND 1.8 0.33 ND 1.8 0.39 ND 1.8 0.39 ND 1.8 0.47 ND 1.8 0.47 ND 1.8 0.37	ND 1.8 0.35 ug/Kg ND 1.8 0.38 ug/Kg ND 1.8 0.43 ug/Kg ND 1.8 0.45 ug/Kg ND 1.8 0.33 ug/Kg ND 1.8 0.91 ug/Kg ND 1.8 0.34 ug/Kg ND 1.8 0.34 ug/Kg ND 1.8 0.35 ug/Kg ND 1.8 0.35 ug/Kg ND 1.8 0.34 ug/Kg ND 1.8 0.34 ug/Kg ND 1.8 0.47 ug/Kg ND 1.8 0.47 ug/Kg ND 1.8 0.45 ug/Kg ND 1.8 0.39 ug/Kg ND 1.8 0.58 ug/Kg ND 1.8 0.47 ug/Kg <td< td=""><td>ND 1.8 0.35 ug/Kg ND 1.8 0.38 ug/Kg ND 1.8 0.43 ug/Kg ND 1.8 0.45 ug/Kg ND 1.8 0.33 ug/Kg ND 1.8 0.91 ug/Kg ND 1.8 0.33 ug/Kg ND 1.8 0.34 ug/Kg ND 1.8 0.35 ug/Kg ND 1.8 0.35 ug/Kg ND 1.8 0.35 ug/Kg ND 1.8 0.33 ug/Kg ND 1.8 0.34 ug/Kg ND 1.8 0.36 ug/Kg ND 1.8 0.47 ug/Kg ND 1.8 0.45 ug/Kg ND 1.8 0.45 ug/Kg ND 1.8 0.33 ug/Kg ND 1.8 0.45 ug/Kg ND 1.8 0.39 ug/Kg ND 1.8 0.47 ug/Kg ND 1.8 0.47 ug/Kg ND 1.8 0.47 ug/Kg</td><td>ND 1.8 0.35 0.4/09/15 16:11 ND 1.8 0.38 0.4/09/15 16:11 ND 1.8 0.43 0.4/09/15 16:11 ND 1.8 0.43 0.4/09/15 16:11 ND 1.8 0.43 0.4/09/15 16:11 ND 1.8 0.45 0.4/09/15 16:11 ND 1.8 0.33 0.4/09/15 16:11 ND 1.8 0.91 0.4/09/15 16:11 ND 1.8 0.91 0.4/09/15 16:11 ND 1.8 0.91 0.4/09/15 16:11 ND 1.8 0.33 0.4/09/15 16:11 ND 1.8 0.34 0.4/09/15 16:11 ND 1.8 0.35 0.4/09/15 16:11 ND 1.8 0.35 0.4/09/15 16:11 ND 1.8 0.36 0.4/09/15 16:11 ND 1.8 0.37 0.4/09/15 16:11 ND 1.8 0.47 0.4/09/15 16:11 ND 1.8 0.45 0.47 0.4/09/15 16:11 ND 1.8 0.49/Kg 0.4/09/15 16:11 ND 1.8 0.47 0.4/09/15 16:11</td><td>ND 1.8 0.35 0.36 0.37 0.38 0.3</td></td<>	ND 1.8 0.35 ug/Kg ND 1.8 0.38 ug/Kg ND 1.8 0.43 ug/Kg ND 1.8 0.45 ug/Kg ND 1.8 0.33 ug/Kg ND 1.8 0.91 ug/Kg ND 1.8 0.33 ug/Kg ND 1.8 0.34 ug/Kg ND 1.8 0.35 ug/Kg ND 1.8 0.35 ug/Kg ND 1.8 0.35 ug/Kg ND 1.8 0.33 ug/Kg ND 1.8 0.34 ug/Kg ND 1.8 0.36 ug/Kg ND 1.8 0.47 ug/Kg ND 1.8 0.45 ug/Kg ND 1.8 0.45 ug/Kg ND 1.8 0.33 ug/Kg ND 1.8 0.45 ug/Kg ND 1.8 0.39 ug/Kg ND 1.8 0.47 ug/Kg ND 1.8 0.47 ug/Kg ND 1.8 0.47 ug/Kg	ND 1.8 0.35 0.4/09/15 16:11 ND 1.8 0.38 0.4/09/15 16:11 ND 1.8 0.43 0.4/09/15 16:11 ND 1.8 0.43 0.4/09/15 16:11 ND 1.8 0.43 0.4/09/15 16:11 ND 1.8 0.45 0.4/09/15 16:11 ND 1.8 0.33 0.4/09/15 16:11 ND 1.8 0.91 0.4/09/15 16:11 ND 1.8 0.91 0.4/09/15 16:11 ND 1.8 0.91 0.4/09/15 16:11 ND 1.8 0.33 0.4/09/15 16:11 ND 1.8 0.34 0.4/09/15 16:11 ND 1.8 0.35 0.4/09/15 16:11 ND 1.8 0.35 0.4/09/15 16:11 ND 1.8 0.36 0.4/09/15 16:11 ND 1.8 0.37 0.4/09/15 16:11 ND 1.8 0.47 0.4/09/15 16:11 ND 1.8 0.45 0.47 0.4/09/15 16:11 ND 1.8 0.49/Kg 0.4/09/15 16:11 ND 1.8 0.47 0.4/09/15 16:11	ND 1.8 0.35 0.36 0.37 0.38 0.3

TestAmerica Buffalo

Dil Fac

Analyzed

04/10/15 15:43

04/09/15 16:11 04/10/15 15:43

Prepared

04/09/15 16:11

Limits

32 - 136

30 - 124

%Recovery Qualifier

77

78

2

5

7

0

10

12

14

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Lab Sample ID: 480-77902-4

TestAmerica Job ID: 480-77902-1

Matrix: Solid Percent Solids: 90.7

Client	Sample	ID:	CHF-4
--------	--------	-----	-------

Date Collected: 04/07/15 00:00 Date Received: 04/07/15 15:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.21	0.041	mg/Kg	\$	04/09/15 17:30	04/10/15 15:49	1
PCB-1221	ND		0.21	0.041	mg/Kg	₽	04/09/15 17:30	04/10/15 15:49	1
PCB-1232	ND		0.21	0.041	mg/Kg	₽	04/09/15 17:30	04/10/15 15:49	1
PCB-1242	ND		0.21	0.041	mg/Kg	₽	04/09/15 17:30	04/10/15 15:49	1
PCB-1248	ND		0.21	0.041	mg/Kg	₽	04/09/15 17:30	04/10/15 15:49	1
PCB-1254	ND		0.21	0.097	mg/Kg	₽	04/09/15 17:30	04/10/15 15:49	1
PCB-1260	ND		0.21	0.097	mg/Kg	₽	04/09/15 17:30	04/10/15 15:49	1
PCB-1262	ND		0.21	0.097	mg/Kg	₽	04/09/15 17:30	04/10/15 15:49	1
PCB-1268	ND		0.21	0.097	mg/Kg	₽	04/09/15 17:30	04/10/15 15:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	94		46 - 175				04/09/15 17:30	04/10/15 15:49	1
DCB Decachlorobiphenyl	85		47 - 176				04/09/15 17:30	04/10/15 15:49	1
- Method: 8151A - Herbicides ((GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-T	ND	-	18	5.8	ug/Kg	☼	04/08/15 11:35	04/17/15 06:50	1
						u.			

2,4-Dichlorophenylacetic acid	77	39 - 120			04/08/15 11:35	04/17/15 06:50	1
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
Silvex (2,4,5-TP)	ND	18	6.5 ug/Kg	₽	04/08/15 11:35	04/17/15 06:50	1
2,4-D	ND	18	11 ug/Kg	₩	04/08/15 11:35	04/17/15 06:50	1
7 7-							

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	2670		11.0	4.8	mg/Kg		04/09/15 15:30	04/10/15 21:52	1
Antimony	ND		16.4	0.44	mg/Kg	₽	04/09/15 15:30	04/10/15 21:52	1
Arsenic	1.2	J	2.2	0.44	mg/Kg	₽	04/09/15 15:30	04/11/15 18:34	1
Barium	13.2		0.55	0.12	mg/Kg	*	04/09/15 15:30	04/11/15 18:34	1
Beryllium	0.15	J	0.22	0.031	mg/Kg	₽	04/09/15 15:30	04/10/15 21:52	1
Cadmium	0.20	J	0.22	0.033	mg/Kg	₽	04/09/15 15:30	04/10/15 21:52	1
Calcium	47600	В	54.8	3.6	mg/Kg	₽	04/09/15 15:30	04/10/15 21:52	1
Chromium	4.0		0.55	0.22	mg/Kg	₽	04/09/15 15:30	04/10/15 21:52	1
Cobalt	2.0		0.55	0.055	mg/Kg	₽	04/09/15 15:30	04/10/15 21:52	1
Copper	6.1		1.1	0.23	mg/Kg	\$	04/09/15 15:30	04/10/15 21:52	1
Iron	5420		11.0	1.2	mg/Kg	₽	04/09/15 15:30	04/10/15 21:52	1
Lead	7.6	В	1.1	0.26	mg/Kg	₽	04/09/15 15:30	04/10/15 21:52	1
Magnesium	21400	В	21.9	1.0	mg/Kg	₽	04/09/15 15:30	04/10/15 21:52	1
Manganese	213	В	0.22	0.035	mg/Kg	₽	04/09/15 15:30	04/10/15 21:52	1
Nickel	4.0	J	5.5	0.25	mg/Kg	₽	04/09/15 15:30	04/10/15 21:52	1
Potassium	803		32.9	21.9	mg/Kg		04/09/15 15:30	04/10/15 21:52	1
Selenium	ND		4.4	0.44	mg/Kg	₽	04/09/15 15:30	04/10/15 21:52	1
Silver	ND		0.55	0.22	mg/Kg	₽	04/09/15 15:30	04/10/15 21:52	1
Sodium	256		154	14.3	mg/Kg	*	04/09/15 15:30	04/10/15 21:52	1
Thallium	ND		6.6	0.33	mg/Kg	₽	04/09/15 15:30	04/10/15 21:52	1
Vanadium	9.6		0.55	0.12	mg/Kg	₽	04/09/15 15:30	04/10/15 21:52	1
Zinc	67.1	В	2.2	0.17	mg/Kg		04/09/15 15:30	04/10/15 21:52	1

Method: 7471B - Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Hg	ND		0.022	0.0089	mg/Kg	\	04/16/15 14:35	04/16/15 15:55	1

TestAmerica Buffalo

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: CHF-4

Date Collected: 04/07/15 00:00

Date Received: 04/07/15 15:40

TestAmerica Job ID: 480-77902-1

Lab Sample ID: 480-77902-4

Matrix: Solid

Percent Solids: 90.7

General Chemistry Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	ND ND	1.1	0.53 mg/Kg		04/10/15 15:51	04/11/15 11:06	1

Lab Sample ID: 480-77902-5 **Client Sample ID: CHF-5**

Date Collected: 04/07/15 00:00 **Matrix: Solid**

Date Received: 04/07/15 15:40 Percent Solids: 91.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND		930	38	ug/Kg	\	04/13/15 08:37	04/14/15 14:24	1
2,4,6-Trichlorophenol	ND		370	38	ug/Kg	₩	04/13/15 08:37	04/14/15 14:24	1
2,4-Dichlorophenol	ND		370	37	ug/Kg	₩	04/13/15 08:37	04/14/15 14:24	1
2,4-Dimethylphenol	ND		370	58	ug/Kg	₩	04/13/15 08:37	04/14/15 14:24	1
2,4-Dinitrophenol	ND		930	160	ug/Kg	₩	04/13/15 08:37	04/14/15 14:24	1
2,4-Dinitrotoluene	ND		370	27	ug/Kg	₽	04/13/15 08:37	04/14/15 14:24	1
2,6-Dinitrotoluene	ND		370	34	ug/Kg	₩.	04/13/15 08:37	04/14/15 14:24	1
2-Chloronaphthalene	ND		370	48	ug/Kg	₩	04/13/15 08:37	04/14/15 14:24	1
2-Chlorophenol	ND		370	38	ug/Kg	₩	04/13/15 08:37	04/14/15 14:24	1
2-Methylnaphthalene	ND		370	17	ug/Kg	₩.	04/13/15 08:37	04/14/15 14:24	1
2-Methylphenol	ND		370	45	ug/Kg	₩	04/13/15 08:37	04/14/15 14:24	1
2-Nitroaniline	ND		930	41	ug/Kg	₩	04/13/15 08:37	04/14/15 14:24	1
2-Nitrophenol	ND		370	41	ug/Kg		04/13/15 08:37	04/14/15 14:24	1
3 & 4 Methylphenol	ND		750	83	ug/Kg	₽	04/13/15 08:37	04/14/15 14:24	1
3,3'-Dichlorobenzidine	ND		370	54	ug/Kg	₽	04/13/15 08:37	04/14/15 14:24	1
3-Nitroaniline	ND		930	43	ug/Kg		04/13/15 08:37	04/14/15 14:24	1
4,6-Dinitro-2-methylphenol	ND		930	110	ug/Kg	₩	04/13/15 08:37	04/14/15 14:24	1
4-Bromophenyl phenyl ether	ND		370	20	ug/Kg	₽	04/13/15 08:37	04/14/15 14:24	1
4-Chloro-3-methylphenol	ND		370	45	ug/Kg		04/13/15 08:37	04/14/15 14:24	1
4-Chloroaniline	ND		370	36	ug/Kg	₩	04/13/15 08:37	04/14/15 14:24	1
4-Chlorophenyl phenyl ether	ND		370	17	ug/Kg	₽	04/13/15 08:37	04/14/15 14:24	1
4-Nitroaniline	ND		930	36	ug/Kg		04/13/15 08:37	04/14/15 14:24	1
4-Nitrophenol	ND		930	94	ug/Kg	₩	04/13/15 08:37	04/14/15 14:24	1
Acenaphthene	ND		370	15	ug/Kg	₩	04/13/15 08:37	04/14/15 14:24	1
Acenaphthylene	ND		370		ug/Kg		04/13/15 08:37	04/14/15 14:24	1
Acetophenone	ND		370	18	ug/Kg	₩	04/13/15 08:37	04/14/15 14:24	1
Anthracene	ND		370	16	ug/Kg	₩	04/13/15 08:37	04/14/15 14:24	1
Atrazine	ND		370		ug/Kg		04/13/15 08:37	04/14/15 14:24	1
Benzaldehyde	ND		370	18	ug/Kg	₽	04/13/15 08:37	04/14/15 14:24	1
Benzo(a)anthracene	ND		370			₩	04/13/15 08:37	04/14/15 14:24	1
Benzo(a)pyrene	ND		370	13			04/13/15 08:37	04/14/15 14:24	1
Benzo(b)fluoranthene	ND		370	26	ug/Kg	₽	04/13/15 08:37	04/14/15 14:24	1
Benzo(g,h,i)perylene	ND		370		ug/Kg	₽	04/13/15 08:37	04/14/15 14:24	1
Benzo(k)fluoranthene	ND		370	34	ug/Kg		04/13/15 08:37	04/14/15 14:24	1
Biphenyl	ND		370		ug/Kg	₽	04/13/15 08:37	04/14/15 14:24	1
bis (2-chloroisopropyl) ether	ND		370		ug/Kg	₽	04/13/15 08:37	04/14/15 14:24	1
Bis(2-chloroethoxy)methane	ND		370		ug/Kg		04/13/15 08:37	04/14/15 14:24	1
Bis(2-chloroethyl)ether	ND		370		ug/Kg	₽	04/13/15 08:37	04/14/15 14:24	1
Bis(2-ethylhexyl) phthalate	84	JB	370		ug/Kg	₽	04/13/15 08:37	04/14/15 14:24	1
Butyl benzyl phthalate	ND		370		ug/Kg		04/13/15 08:37	04/14/15 14:24	
Caprolactam	ND		370		ug/Kg	₩	04/13/15 08:37	04/14/15 14:24	1
Carbazole	ND		370		ug/Kg	₽	04/13/15 08:37	04/14/15 14:24	1

TestAmerica Buffalo

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Pyrene

Client Sample ID: CHF-5

Date Collected: 04/07/15 00:00

Date Received: 04/07/15 15:40

Lab Sample ID: 480-77902-5

04/13/15 08:37

04/14/15 14:24

TestAmerica Job ID: 480-77902-1

Matrix: Solid Percent Solids: 91.4

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued) Dil Fac Analyte Result Qualifier MDL Unit D Prepared Analyzed $\overline{\varphi}$ Chrysene ND 370 20 ug/Kg 04/13/15 08:37 04/14/15 14:24 ND 370 04/13/15 08:37 Dibenz(a,h)anthracene 12 ug/Kg 04/14/15 14:24 ₩ Dibenzofuran ND 370 18 ug/Kg 04/13/15 08:37 04/14/15 14:24 φ 04/14/15 14:24 JΒ 370 ug/Kg 04/13/15 08:37 **Diethyl phthalate** 87 17 Dimethyl phthalate ND 370 17 ug/Kg 04/13/15 08:37 04/14/15 14:24 Di-n-butyl phthalate 370 04/13/15 08:37 04/14/15 14:24 ND 17 ug/Kg ₽ Di-n-octyl phthalate ND 370 ug/Kg 04/13/15 08:37 04/14/15 14:24 41 370 04/13/15 08:37 04/14/15 14:24 **Fluoranthene** 13 ug/Kg ₩ 370 Fluorene ND 17 ug/Kg 04/13/15 08:37 04/14/15 14:24 ND 370 04/13/15 08:37 Hexachlorobenzene 51 ug/Kg 04/14/15 14:24 ₩ ND 370 04/13/15 08:37 Hexachlorobutadiene 39 ug/Kg 04/14/15 14:24 ND 370 ₩ 04/13/15 08:37 04/14/15 14:24 Hexachlorocyclopentadiene 73 ug/Kg ND 370 Hexachloroethane 38 ug/Kg 04/13/15 08:37 04/14/15 14:24 Indeno(1,2,3-cd)pyrene ND 370 16 ug/Kg 04/13/15 08:37 04/14/15 14:24 370 ug/Kg Isophorone ND 47 04/13/15 08:37 04/14/15 14:24 ä Naphthalene ND 370 04/13/15 08:37 04/14/15 14:24 ug/Kg ND 370 04/13/15 08:37 04/14/15 14:24 Nitrobenzene 46 ug/Kg N-Nitrosodi-n-propylamine ND 370 ug/Kg Ü 04/13/15 08:37 04/14/15 14:24 N-Nitrosodiphenylamine ND 370 04/13/15 08:37 04/14/15 14:24 18 ug/Kg ₩ ND 930 Pentachlorophenol ug/Kg 04/13/15 08:37 04/14/15 14:24 370 **Phenanthrene** 28 13 ug/Kg 04/13/15 08:37 04/14/15 14:24 ND 370 ₽ Phenol 04/13/15 08:37 45 ug/Kg 04/14/15 14:24

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	81		25 - 135	04/13/15 08:37	04/14/15 14:24	1
2-Fluorobiphenyl	93		35 - 110	04/13/15 08:37	04/14/15 14:24	1
2-Fluorophenol	92		30 - 135	04/13/15 08:37	04/14/15 14:24	1
Nitrobenzene-d5	79		35 - 110	04/13/15 08:37	04/14/15 14:24	1
Phenol-d5	96		30 - 130	04/13/15 08:37	04/14/15 14:24	1
Terphenyl-d14 (Surr)	90		30 - 130	04/13/15 08:37	04/14/15 14:24	1

370

34 J

16 ug/Kg

Method: 8081B - Organochlorine Pestic	les (GC)
---------------------------------------	----------

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND ND		1.8	0.35	ug/Kg	\$	04/09/15 16:11	04/10/15 16:01	1
4,4'-DDE	ND		1.8	0.37	ug/Kg	₽	04/09/15 16:11	04/10/15 16:01	1
4,4'-DDT	ND		1.8	0.42	ug/Kg	₽	04/09/15 16:11	04/10/15 16:01	1
Aldrin	ND		1.8	0.44	ug/Kg	\$	04/09/15 16:11	04/10/15 16:01	1
alpha-BHC	ND		1.8	0.32	ug/Kg	₽	04/09/15 16:11	04/10/15 16:01	1
alpha-Chlordane	ND		1.8	0.88	ug/Kg	₽	04/09/15 16:11	04/10/15 16:01	1
beta-BHC	ND		1.8	0.32	ug/Kg	₽	04/09/15 16:11	04/10/15 16:01	1
delta-BHC	ND		1.8	0.33	ug/Kg	₽	04/09/15 16:11	04/10/15 16:01	1
Dieldrin	ND		1.8	0.43	ug/Kg	₽	04/09/15 16:11	04/10/15 16:01	1
Endosulfan I	ND		1.8	0.34	ug/Kg	\$	04/09/15 16:11	04/10/15 16:01	1
Endosulfan II	ND		1.8	0.32	ug/Kg	₽	04/09/15 16:11	04/10/15 16:01	1
Endosulfan sulfate	ND		1.8	0.33	ug/Kg	₽	04/09/15 16:11	04/10/15 16:01	1
Endrin	ND		1.8	0.35	ug/Kg	₽	04/09/15 16:11	04/10/15 16:01	1
Endrin aldehyde	ND		1.8	0.45	ug/Kg	₽	04/09/15 16:11	04/10/15 16:01	1
Endrin ketone	ND		1.8	0.44	ug/Kg	₽	04/09/15 16:11	04/10/15 16:01	1
gamma-BHC (Lindane)	ND		1.8	0.33	ug/Kg		04/09/15 16:11	04/10/15 16:01	1

TestAmerica Buffalo

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: CHF-5

Date Collected: 04/07/15 00:00

Date Received: 04/07/15 15:40

Lab Sample ID: 480-77902-5

TestAmerica Job ID: 480-77902-1

Matrix: Solid Percent Solids: 91.4

_ <u>Dil Fac</u> 1 1
1
1
1
1
1
Dil Fac
1
1
1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.21	0.040	mg/Kg	₩	04/09/15 17:30	04/10/15 16:04	1
PCB-1221	ND		0.21	0.040	mg/Kg	₽	04/09/15 17:30	04/10/15 16:04	1
PCB-1232	ND		0.21	0.040	mg/Kg	₩	04/09/15 17:30	04/10/15 16:04	1
PCB-1242	ND		0.21	0.040	mg/Kg	₽	04/09/15 17:30	04/10/15 16:04	1
PCB-1248	ND		0.21	0.040	mg/Kg	₽	04/09/15 17:30	04/10/15 16:04	1
PCB-1254	ND		0.21	0.096	mg/Kg	₩	04/09/15 17:30	04/10/15 16:04	1
PCB-1260	ND		0.21	0.096	mg/Kg	₽	04/09/15 17:30	04/10/15 16:04	1
PCB-1262	ND		0.21	0.096	mg/Kg	₩	04/09/15 17:30	04/10/15 16:04	1
PCB-1268	ND		0.21	0.096	mg/Kg	₽	04/09/15 17:30	04/10/15 16:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	99		46 - 175				04/09/15 17:30	04/10/15 16:04	1
DCB Decachlorobiphenyl	96		47 - 176				04/09/15 17:30	04/10/15 16:04	1

Method: 8151A - Herbicides (G	SC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-T	ND		18	5.8	ug/Kg	<u> </u>	04/08/15 11:35	04/17/15 07:20	1
2,4-D	ND		18	11	ug/Kg	₽	04/08/15 11:35	04/17/15 07:20	1
Silvex (2,4,5-TP)	ND		18	6.5	ug/Kg	₽	04/08/15 11:35	04/17/15 07:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	79		39 - 120				04/08/15 11:35	04/17/15 07:20	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	3100		11.1	4.9	mg/Kg	-	04/09/15 15:30	04/10/15 21:54	1
Antimony	ND		16.7	0.44	mg/Kg	₩	04/09/15 15:30	04/10/15 21:54	1
Arsenic	1.6	J	2.2	0.44	mg/Kg	₽	04/09/15 15:30	04/11/15 18:37	1
Barium	15.1		0.56	0.12	mg/Kg	₽	04/09/15 15:30	04/11/15 18:37	1
Beryllium	0.18	J	0.22	0.031	mg/Kg	₩	04/09/15 15:30	04/10/15 21:54	1
Cadmium	0.18	J	0.22	0.033	mg/Kg	₽	04/09/15 15:30	04/10/15 21:54	1
Calcium	50700	В	55.6	3.7	mg/Kg	\$	04/09/15 15:30	04/10/15 21:54	1
Chromium	4.5		0.56	0.22	mg/Kg	₩	04/09/15 15:30	04/10/15 21:54	1
Cobalt	2.1		0.56	0.056	mg/Kg	₩	04/09/15 15:30	04/10/15 21:54	1
Copper	7.0		1.1	0.23	mg/Kg	₽	04/09/15 15:30	04/10/15 21:54	1
Iron	5960		11.1	1.2	mg/Kg	₩	04/09/15 15:30	04/10/15 21:54	1
Lead	8.6	В	1.1	0.27	mg/Kg	₩	04/09/15 15:30	04/10/15 21:54	1
Magnesium	19300	В	22.2	1.0	mg/Kg	₽	04/09/15 15:30	04/10/15 21:54	1
Manganese	215	В	0.22	0.036	mg/Kg	₽	04/09/15 15:30	04/10/15 21:54	1

TestAmerica Buffalo

Page 26 of 83

4/20/2015

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: CHF-5

Date Collected: 04/07/15 00:00

Lab Sample ID: 480-77902-5

TestAmerica Job ID: 480-77902-1

Matrix: Solid Percent Solids: 91.4

Date Received: 04/07/15 1	5:40							Percent Soli	ds: 91.4
Method: 6010C - Metals ((ICP) (Continued)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nickel	4.9	J	5.6	0.26	mg/Kg	<u></u>	04/09/15 15:30	04/10/15 21:54	1
Potassium	923		33.4	22.2	mg/Kg	\$	04/09/15 15:30	04/10/15 21:54	1
Selenium	ND		4.4	0.44	mg/Kg	₩	04/09/15 15:30	04/10/15 21:54	1
Silver	ND		0.56	0.22	mg/Kg	₽	04/09/15 15:30	04/10/15 21:54	1

Nickel	4.9 J	5.6	0.26	mg/Kg	Д:	04/09/15 15:30	04/10/15 21:54	1
Potassium	923	33.4	22.2	mg/Kg	₩	04/09/15 15:30	04/10/15 21:54	1
Selenium	ND	4.4	0.44	mg/Kg	₩	04/09/15 15:30	04/10/15 21:54	1
Silver	ND	0.56	0.22	mg/Kg	₩	04/09/15 15:30	04/10/15 21:54	1
Sodium	203	156	14.5	mg/Kg	₽	04/09/15 15:30	04/10/15 21:54	1
Thallium	ND	6.7	0.33	mg/Kg	₩	04/09/15 15:30	04/10/15 21:54	1
Vanadium	10.4	0.56	0.12	mg/Kg	₩	04/09/15 15:30	04/10/15 21:54	1
Zinc	65.4 B	2.2	0.17	mg/Kg	₩	04/09/15 15:30	04/10/15 21:54	1

Method: 7471B - Mercury in Solid o	r Semisolid	Waste (Manu	ual Cold Vapo	r Technic	que)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hg	ND		0.021	0.0086	mg/Kg	₩	04/16/15 14:35	04/16/15 15:56	1
General Chemistry									

Contra Chombury									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	ND		1.1	0.52	mg/Kg	‡	04/10/15 15:51	04/11/15 11:08	1

Client Sample ID: CHF-1A Lab Sample ID: 480-77902-6 Date Collected: 04/07/15 00:00 **Matrix: Solid** Date Received: 04/07/15 15:40 Percent Solids: 92.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.4	0.39	ug/Kg	\	04/08/15 11:20	04/08/15 18:07	1
1,1,2,2-Tetrachloroethane	ND		5.4	0.87	ug/Kg	₩	04/08/15 11:20	04/08/15 18:07	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.4	1.2	ug/Kg	₩	04/08/15 11:20	04/08/15 18:07	1
1,1,2-Trichloroethane	ND		5.4	0.70	ug/Kg	*	04/08/15 11:20	04/08/15 18:07	1
1,1-Dichloroethane	ND		5.4	0.66	ug/Kg	₩	04/08/15 11:20	04/08/15 18:07	1
1,1-Dichloroethene	ND		5.4	0.66	ug/Kg	₩	04/08/15 11:20	04/08/15 18:07	•
1,2,4-Trichlorobenzene	ND	F1	5.4	0.33	ug/Kg	*	04/08/15 11:20	04/08/15 18:07	1
1,2-Dibromo-3-Chloropropane	ND		5.4	2.7	ug/Kg	₽	04/08/15 11:20	04/08/15 18:07	1
1,2-Dichlorobenzene	ND		5.4	0.42	ug/Kg	₽	04/08/15 11:20	04/08/15 18:07	1
1,2-Dichloroethane	ND		5.4	0.27	ug/Kg	₽	04/08/15 11:20	04/08/15 18:07	
1,2-Dichloropropane	ND		5.4	2.7	ug/Kg	₽	04/08/15 11:20	04/08/15 18:07	
1,3-Dichlorobenzene	ND		5.4	0.28	ug/Kg	₽	04/08/15 11:20	04/08/15 18:07	
1,4-Dichlorobenzene	ND		5.4	0.76	ug/Kg	₽	04/08/15 11:20	04/08/15 18:07	
2-Hexanone	ND		27	2.7	ug/Kg	₽	04/08/15 11:20	04/08/15 18:07	
Acetone	ND		27	4.5	ug/Kg	₽	04/08/15 11:20	04/08/15 18:07	
Benzene	0.68	J	5.4	0.26	ug/Kg	₩	04/08/15 11:20	04/08/15 18:07	
Bromoform	ND		5.4	2.7	ug/Kg	₽	04/08/15 11:20	04/08/15 18:07	
Bromomethane	ND		5.4	0.49	ug/Kg	₽	04/08/15 11:20	04/08/15 18:07	
Carbon disulfide	ND		5.4	2.7	ug/Kg	₽	04/08/15 11:20	04/08/15 18:07	
Carbon tetrachloride	ND		5.4	0.52	ug/Kg	₽	04/08/15 11:20	04/08/15 18:07	
Chlorobenzene	ND		5.4	0.71	ug/Kg	₩	04/08/15 11:20	04/08/15 18:07	
Dibromochloromethane	ND		5.4	0.69	ug/Kg	₽	04/08/15 11:20	04/08/15 18:07	
Chloroethane	ND		5.4	1.2	ug/Kg	₽	04/08/15 11:20	04/08/15 18:07	
Chloroform	ND		5.4	0.33	ug/Kg	₩	04/08/15 11:20	04/08/15 18:07	
Chloromethane	ND		5.4	0.33	ug/Kg		04/08/15 11:20	04/08/15 18:07	,
cis-1,2-Dichloroethene	ND		5.4	0.69	ug/Kg	₽	04/08/15 11:20	04/08/15 18:07	1
cis-1,3-Dichloropropene	ND		5.4	0.78	ug/Kg	₽	04/08/15 11:20	04/08/15 18:07	1

TestAmerica Buffalo

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: CHF-1A

Date Collected: 04/07/15 00:00

Date Received: 04/07/15 15:40

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Lab Sample ID: 480-77902-6

04/08/15 11:20

04/08/15 11:20

04/08/15 18:07

04/08/15 18:07

TestAmerica Job ID: 480-77902-1

Matrix: Solid

Percent Solids: 92.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyclohexane	ND		5.4	0.76	ug/Kg	₽	04/08/15 11:20	04/08/15 18:07	1
Bromodichloromethane	ND		5.4	0.72	ug/Kg	₽	04/08/15 11:20	04/08/15 18:07	1
Dichlorodifluoromethane	ND		5.4	0.45	ug/Kg	₽	04/08/15 11:20	04/08/15 18:07	1
Ethylbenzene	ND		5.4	0.37	ug/Kg	₽	04/08/15 11:20	04/08/15 18:07	1
1,2-Dibromoethane	ND		5.4	0.69	ug/Kg	₽	04/08/15 11:20	04/08/15 18:07	1
Isopropylbenzene	ND		5.4	0.81	ug/Kg	₽	04/08/15 11:20	04/08/15 18:07	1
Methyl acetate	ND		5.4	3.3	ug/Kg	₽	04/08/15 11:20	04/08/15 18:07	1
2-Butanone (MEK)	ND		27	2.0	ug/Kg	₽	04/08/15 11:20	04/08/15 18:07	1
4-Methyl-2-pentanone (MIBK)	ND		27	1.8	ug/Kg	₽	04/08/15 11:20	04/08/15 18:07	1
Methyl tert-butyl ether	ND		5.4	0.53	ug/Kg	₽	04/08/15 11:20	04/08/15 18:07	1
Methylcyclohexane	ND		5.4	0.82	ug/Kg	₽	04/08/15 11:20	04/08/15 18:07	1
Methylene Chloride	3.0	JB	5.4	2.5	ug/Kg	₽	04/08/15 11:20	04/08/15 18:07	1
Styrene	ND		5.4	0.27	ug/Kg	₽	04/08/15 11:20	04/08/15 18:07	1
Tetrachloroethene	ND		5.4	0.72	ug/Kg	₽	04/08/15 11:20	04/08/15 18:07	1
Toluene	0.92	J	5.4	0.41	ug/Kg	₽	04/08/15 11:20	04/08/15 18:07	1
trans-1,2-Dichloroethene	ND		5.4	0.56	ug/Kg	₽	04/08/15 11:20	04/08/15 18:07	1
trans-1,3-Dichloropropene	ND		5.4	2.4	ug/Kg	₽	04/08/15 11:20	04/08/15 18:07	1
Trichloroethene	ND		5.4	1.2	ug/Kg	₽	04/08/15 11:20	04/08/15 18:07	1
Trichlorofluoromethane	ND		5.4	0.51	ug/Kg	₽	04/08/15 11:20	04/08/15 18:07	1
Vinyl chloride	ND		5.4	0.66	ug/Kg	₽	04/08/15 11:20	04/08/15 18:07	1
Xylenes, Total	ND		11	0.91	ug/Kg	₽	04/08/15 11:20	04/08/15 18:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91		64 - 126				04/08/15 11:20	04/08/15 18:07	1
Toluene-d8 (Surr)	102		71 - 125				04/08/15 11:20	04/08/15 18:07	1

Client Sample ID: CHF-1B Lab Sample ID: 480-77902-7 Date Collected: 04/07/15 00:00 **Matrix: Solid**

72 - 126

60 - 140

98

98

Date Received: 04/07/15 15:40 Percent Solids: 93.4

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.3	0.38	ug/Kg	\$	04/08/15 11:20	04/08/15 18:33	1
1,1,2,2-Tetrachloroethane	ND	5.3	0.85	ug/Kg	₽	04/08/15 11:20	04/08/15 18:33	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.3	1.2	ug/Kg	₽	04/08/15 11:20	04/08/15 18:33	1
1,1,2-Trichloroethane	ND	5.3	0.68	ug/Kg	₽	04/08/15 11:20	04/08/15 18:33	1
1,1-Dichloroethane	ND	5.3	0.64	ug/Kg	₽	04/08/15 11:20	04/08/15 18:33	1
1,1-Dichloroethene	ND	5.3	0.64	ug/Kg	₽	04/08/15 11:20	04/08/15 18:33	1
1,2,4-Trichlorobenzene	ND	5.3	0.32	ug/Kg	₽	04/08/15 11:20	04/08/15 18:33	1
1,2-Dibromo-3-Chloropropane	ND	5.3	2.6	ug/Kg	₽	04/08/15 11:20	04/08/15 18:33	1
1,2-Dichlorobenzene	ND	5.3	0.41	ug/Kg	₽	04/08/15 11:20	04/08/15 18:33	1
1,2-Dichloroethane	ND	5.3	0.26	ug/Kg	₽	04/08/15 11:20	04/08/15 18:33	1
1,2-Dichloropropane	ND	5.3	2.6	ug/Kg	₽	04/08/15 11:20	04/08/15 18:33	1
1,3-Dichlorobenzene	ND	5.3	0.27	ug/Kg	₽	04/08/15 11:20	04/08/15 18:33	1
1,4-Dichlorobenzene	ND	5.3	0.74	ug/Kg	₽	04/08/15 11:20	04/08/15 18:33	1
2-Hexanone	ND	26	2.6	ug/Kg	₽	04/08/15 11:20	04/08/15 18:33	1
Acetone	ND	26	4.4	ug/Kg	₽	04/08/15 11:20	04/08/15 18:33	1
Benzene	0.45 J	5.3	0.26	ug/Kg	\$	04/08/15 11:20	04/08/15 18:33	1

TestAmerica Buffalo

Page 28 of 83

Project/Site: 132 Dingens

Client Sample ID: CHF-1B

Client: Iyer Environmental Group, LLC

Lab Sample ID: 480-77902-7

Date Collected: 04/07/15 00:00 Matrix: Solid Date Received: 04/07/15 15:40 Percent Solids: 93.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromoform	MD		5.3	2.6	ug/Kg	<u> </u>	04/08/15 11:20	04/08/15 18:33	1
Bromomethane	ND		5.3	0.47	ug/Kg	₩	04/08/15 11:20	04/08/15 18:33	1
Carbon disulfide	ND		5.3	2.6	ug/Kg	₽	04/08/15 11:20	04/08/15 18:33	1
Carbon tetrachloride	ND		5.3	0.51	ug/Kg	₩	04/08/15 11:20	04/08/15 18:33	1
Chlorobenzene	ND		5.3	0.69	ug/Kg	₩	04/08/15 11:20	04/08/15 18:33	1
Dibromochloromethane	ND		5.3	0.67	ug/Kg	₽	04/08/15 11:20	04/08/15 18:33	1
Chloroethane	ND		5.3	1.2	ug/Kg	₩	04/08/15 11:20	04/08/15 18:33	1
Chloroform	ND		5.3	0.32	ug/Kg	₽	04/08/15 11:20	04/08/15 18:33	1
Chloromethane	ND		5.3	0.32	ug/Kg	₽	04/08/15 11:20	04/08/15 18:33	1
cis-1,2-Dichloroethene	ND		5.3	0.67	ug/Kg	₽	04/08/15 11:20	04/08/15 18:33	1
cis-1,3-Dichloropropene	ND		5.3	0.76	ug/Kg	₽	04/08/15 11:20	04/08/15 18:33	1
Cyclohexane	ND		5.3	0.74	ug/Kg	₽	04/08/15 11:20	04/08/15 18:33	1
Bromodichloromethane	ND		5.3	0.70	ug/Kg	₽	04/08/15 11:20	04/08/15 18:33	1
Dichlorodifluoromethane	ND		5.3	0.43	ug/Kg	₽	04/08/15 11:20	04/08/15 18:33	1
Ethylbenzene	ND		5.3	0.36	ug/Kg	\$	04/08/15 11:20	04/08/15 18:33	1
1,2-Dibromoethane	ND		5.3	0.68	ug/Kg	₩	04/08/15 11:20	04/08/15 18:33	1
Isopropylbenzene	ND		5.3	0.79	ug/Kg	₩	04/08/15 11:20	04/08/15 18:33	1
Methyl acetate	ND		5.3	3.2	ug/Kg	\$	04/08/15 11:20	04/08/15 18:33	1
2-Butanone (MEK)	ND		26	1.9	ug/Kg	₩	04/08/15 11:20	04/08/15 18:33	1
4-Methyl-2-pentanone (MIBK)	ND		26	1.7	ug/Kg	₩	04/08/15 11:20	04/08/15 18:33	1
Methyl tert-butyl ether	ND		5.3	0.52	ug/Kg	₩.	04/08/15 11:20	04/08/15 18:33	1
Methylcyclohexane	ND		5.3	0.80	ug/Kg	₽	04/08/15 11:20	04/08/15 18:33	1
Methylene Chloride	2.6	JB	5.3	2.4	ug/Kg	₩	04/08/15 11:20	04/08/15 18:33	1
Styrene	ND		5.3	0.26	ug/Kg	₽	04/08/15 11:20	04/08/15 18:33	1
Tetrachloroethene	ND		5.3	0.71	ug/Kg	₩	04/08/15 11:20	04/08/15 18:33	1
Toluene	0.83	J	5.3	0.40	ug/Kg	₩	04/08/15 11:20	04/08/15 18:33	1
trans-1,2-Dichloroethene	ND		5.3	0.54	ug/Kg	₽	04/08/15 11:20	04/08/15 18:33	1
trans-1,3-Dichloropropene	ND		5.3	2.3	ug/Kg	₽	04/08/15 11:20	04/08/15 18:33	1
Trichloroethene	ND		5.3	1.2	ug/Kg	₽	04/08/15 11:20	04/08/15 18:33	1
Trichlorofluoromethane	ND		5.3	0.50	ug/Kg	\$	04/08/15 11:20	04/08/15 18:33	1
Vinyl chloride	ND		5.3	0.64	ug/Kg	₩	04/08/15 11:20	04/08/15 18:33	1
Xylenes, Total	ND		11	0.88	ug/Kg	₽	04/08/15 11:20	04/08/15 18:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	90		64 - 126				04/08/15 11:20	04/08/15 18:33	1
Toluene-d8 (Surr)	101		71 - 125				04/08/15 11:20	04/08/15 18:33	1
4-Bromofluorobenzene (Surr)	98		72 - 126				04/08/15 11:20	04/08/15 18:33	1
Dibromofluoromethane (Surr)	97		60 - 140				04/08/15 11:20	04/08/15 18:33	1

Client Sample ID: CHF-2A Lab Sample ID: 480-77902-8

Date Collected: 04/07/15 00:00 Matrix: Solid Date Received: 04/07/15 15:40 Percent Solids: 93.4

Method: 8260C - Volatile Organic Compounds by GC/MS										
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac			
1,1,1-Trichloroethane	ND -	5.2	0.38 ug/Kg		04/08/15 11:20	04/08/15 18:59	1			
1,1,2,2-Tetrachloroethane	ND	5.2	0.84 ug/Kg	₩	04/08/15 11:20	04/08/15 18:59	1			
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.2	1.2 ug/Kg	₽	04/08/15 11:20	04/08/15 18:59	1			
1,1,2-Trichloroethane	ND	5.2	0.68 ug/Kg	\$	04/08/15 11:20	04/08/15 18:59	1			
1,1-Dichloroethane	ND	5.2	0.64 ug/Kg	₽	04/08/15 11:20	04/08/15 18:59	1			

TestAmerica Buffalo

Page 29 of 83

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Date Received: 04/07/15 15:40

Dibromofluoromethane (Surr)

TestAmerica Job ID: 480-77902-1

Lab Sample ID: 480-77902-8

Matrix: Solid Percent Solids: 93.4

Client Sample ID: CHF-2A Date Collected: 04/07/15 00:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		5.2	0.64	ug/Kg		04/08/15 11:20	04/08/15 18:59	1
1,2,4-Trichlorobenzene	ND		5.2	0.32	ug/Kg	φ	04/08/15 11:20	04/08/15 18:59	
1,2-Dibromo-3-Chloropropane	ND		5.2	2.6	ug/Kg	₽	04/08/15 11:20	04/08/15 18:59	1
1,2-Dichlorobenzene	ND		5.2	0.41	ug/Kg	₽	04/08/15 11:20	04/08/15 18:59	
1,2-Dichloroethane	ND		5.2	0.26	ug/Kg	ф	04/08/15 11:20	04/08/15 18:59	1
1,2-Dichloropropane	ND		5.2	2.6	ug/Kg	₽	04/08/15 11:20	04/08/15 18:59	1
1,3-Dichlorobenzene	ND		5.2	0.27	ug/Kg	₽	04/08/15 11:20	04/08/15 18:59	1
1,4-Dichlorobenzene	ND		5.2	0.73	ug/Kg	φ.	04/08/15 11:20	04/08/15 18:59	
2-Hexanone	ND		26	2.6	ug/Kg	₽	04/08/15 11:20	04/08/15 18:59	
Acetone	ND		26	4.4	ug/Kg	₽	04/08/15 11:20	04/08/15 18:59	
Benzene	0.46	J	5.2		ug/Kg	φ.	04/08/15 11:20	04/08/15 18:59	1
Bromoform	ND		5.2	2.6	ug/Kg	₽	04/08/15 11:20	04/08/15 18:59	
Bromomethane	ND		5.2	0.47	ug/Kg	₩	04/08/15 11:20	04/08/15 18:59	1
Carbon disulfide	ND		5.2		ug/Kg		04/08/15 11:20	04/08/15 18:59	1
Carbon tetrachloride	ND		5.2	0.50	ug/Kg	₽	04/08/15 11:20	04/08/15 18:59	1
Chlorobenzene	ND		5.2	0.69	ug/Kg	₽	04/08/15 11:20	04/08/15 18:59	
Dibromochloromethane	ND		5.2	0.67			04/08/15 11:20	04/08/15 18:59	
Chloroethane	ND		5.2	1.2	ug/Kg	₽	04/08/15 11:20	04/08/15 18:59	
Chloroform	ND		5.2	0.32		₽	04/08/15 11:20	04/08/15 18:59	1
Chloromethane	ND		5.2	0.31	ug/Kg		04/08/15 11:20	04/08/15 18:59	1
cis-1,2-Dichloroethene	ND		5.2	0.67	ug/Kg	₽	04/08/15 11:20	04/08/15 18:59	1
cis-1,3-Dichloropropene	ND		5.2	0.75	ug/Kg	₽	04/08/15 11:20	04/08/15 18:59	1
Cyclohexane	ND		5.2	0.73	ug/Kg		04/08/15 11:20	04/08/15 18:59	1
Bromodichloromethane	ND		5.2	0.70	ug/Kg	₩	04/08/15 11:20	04/08/15 18:59	1
Dichlorodifluoromethane	ND		5.2	0.43	ug/Kg	*	04/08/15 11:20	04/08/15 18:59	1
Ethylbenzene	ND		5.2				04/08/15 11:20	04/08/15 18:59	
1,2-Dibromoethane	ND		5.2	0.67		₩	04/08/15 11:20	04/08/15 18:59	,
Isopropylbenzene	ND		5.2	0.79	ug/Kg	₩	04/08/15 11:20	04/08/15 18:59	1
Methyl acetate	ND		5.2	3.1	ug/Kg		04/08/15 11:20	04/08/15 18:59	,
2-Butanone (MEK)	ND		26	1.9	ug/Kg	₽	04/08/15 11:20	04/08/15 18:59	1
4-Methyl-2-pentanone (MIBK)	ND		26	1.7	ug/Kg	₽	04/08/15 11:20	04/08/15 18:59	1
Methyl tert-butyl ether	ND		5.2	0.51	ug/Kg		04/08/15 11:20	04/08/15 18:59	
Methylcyclohexane	ND		5.2	0.79	ug/Kg	*	04/08/15 11:20	04/08/15 18:59	,
Methylene Chloride		JB	5.2	2.4	ug/Kg ug/Kg	*	04/08/15 11:20	04/08/15 18:59	1
Styrene Styrene	ND	J B	5.2	0.26	ug/Kg		04/08/15 11:20	04/08/15 18:59	
Tetrachloroethene	ND ND		5.2	0.20	ug/Kg ug/Kg	₩	04/08/15 11:20	04/08/15 18:59	1
			5.2			*	04/08/15 11:20		1
Toluene trans-1,2-Dichloroethene	0.81				ug/Kg ug/Kg		04/08/15 11:20	04/08/15 18:59 04/08/15 18:59	
trans-1,3-Dichloropropene	ND ND		5.2 5.2		ug/Kg ug/Kg	₩	04/08/15 11:20	04/08/15 18:59	1
Trichloroethene	ND ND		5.2		ug/Kg ug/Kg	~ \$	04/08/15 11:20	04/08/15 18:59	1
Trichlorofluoromethane	ND		5.2		ug/Kg ug/Kg		04/08/15 11:20	04/08/15 18:59	
Vinyl chloride	ND ND		5.2		ug/Kg ug/Kg	₩	04/08/15 11:20	04/08/15 18:59	1
•						*			1
Xylenes, Total	ND		10	0.88	ug/Kg	<i>λ</i> 4.	04/08/15 11:20	04/08/15 18:59	
Surrogate	%Recovery		Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	95		64 - 126				04/08/15 11:20	04/08/15 18:59	1
Toluene-d8 (Surr)	102		71 - 125				04/08/15 11:20	04/08/15 18:59	1
4-Bromofluorobenzene (Surr)	102		72 - 126				04/08/15 11:20	04/08/15 18:59	1

TestAmerica Buffalo

04/08/15 18:59

04/08/15 11:20

60 - 140

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Trichlorofluoromethane

Vinyl chloride

Xylenes, Total

Lab Sample ID: 480-77902-9

TestAmerica Job ID: 480-77902-1

Matrix: Solid Percent Solids: 91.8

Client Sample ID: CHF-2B Date Collected: 04/07/15 00:00

Date Received: 04/07/15 15:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.3	0.38	ug/Kg	<u> </u>	04/08/15 11:20	04/08/15 19:25	1
1,1,2,2-Tetrachloroethane	ND		5.3	0.86	ug/Kg	₩	04/08/15 11:20	04/08/15 19:25	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.3	1.2	ug/Kg	₩	04/08/15 11:20	04/08/15 19:25	1
1,1,2-Trichloroethane	ND		5.3	0.69	ug/Kg		04/08/15 11:20	04/08/15 19:25	1
1,1-Dichloroethane	ND		5.3	0.65	ug/Kg	₩	04/08/15 11:20	04/08/15 19:25	1
1,1-Dichloroethene	ND		5.3	0.65	ug/Kg	₩	04/08/15 11:20	04/08/15 19:25	1
1,2,4-Trichlorobenzene	ND		5.3	0.32	ug/Kg	₩	04/08/15 11:20	04/08/15 19:25	1
1,2-Dibromo-3-Chloropropane	ND		5.3	2.7	ug/Kg	₩	04/08/15 11:20	04/08/15 19:25	1
1,2-Dichlorobenzene	ND		5.3	0.41	ug/Kg	₩	04/08/15 11:20	04/08/15 19:25	1
1,2-Dichloroethane	ND		5.3	0.27	ug/Kg	\$	04/08/15 11:20	04/08/15 19:25	1
1,2-Dichloropropane	ND		5.3	2.7	ug/Kg	₩	04/08/15 11:20	04/08/15 19:25	1
1,3-Dichlorobenzene	ND		5.3	0.27	ug/Kg	₩	04/08/15 11:20	04/08/15 19:25	1
1,4-Dichlorobenzene	ND		5.3	0.74	ug/Kg	₩	04/08/15 11:20	04/08/15 19:25	1
2-Hexanone	ND		27	2.7	ug/Kg	₩	04/08/15 11:20	04/08/15 19:25	1
Acetone	ND		27	4.5	ug/Kg	₩	04/08/15 11:20	04/08/15 19:25	1
Benzene	0.42	J	5.3	0.26	ug/Kg		04/08/15 11:20	04/08/15 19:25	1
Bromoform	ND		5.3	2.7	ug/Kg	₩	04/08/15 11:20	04/08/15 19:25	1
Bromomethane	ND		5.3	0.48	ug/Kg	₩	04/08/15 11:20	04/08/15 19:25	1
Carbon disulfide	ND		5.3	2.7	ug/Kg	₩	04/08/15 11:20	04/08/15 19:25	1
Carbon tetrachloride	ND		5.3	0.51	ug/Kg	₩	04/08/15 11:20	04/08/15 19:25	1
Chlorobenzene	ND		5.3	0.70	ug/Kg	₩	04/08/15 11:20	04/08/15 19:25	1
Dibromochloromethane	ND		5.3	0.68	ug/Kg		04/08/15 11:20	04/08/15 19:25	1
Chloroethane	ND		5.3	1.2	ug/Kg	₩	04/08/15 11:20	04/08/15 19:25	1
Chloroform	ND		5.3	0.33	ug/Kg	₩	04/08/15 11:20	04/08/15 19:25	1
Chloromethane	ND		5.3	0.32	ug/Kg	\$	04/08/15 11:20	04/08/15 19:25	1
cis-1,2-Dichloroethene	ND		5.3	0.68	ug/Kg	₩	04/08/15 11:20	04/08/15 19:25	1
cis-1,3-Dichloropropene	ND		5.3	0.76	ug/Kg	₩	04/08/15 11:20	04/08/15 19:25	1
Cyclohexane	ND		5.3	0.74	ug/Kg	₩	04/08/15 11:20	04/08/15 19:25	1
Bromodichloromethane	ND		5.3	0.71	ug/Kg	₩	04/08/15 11:20	04/08/15 19:25	1
Dichlorodifluoromethane	ND		5.3	0.44	ug/Kg	₩	04/08/15 11:20	04/08/15 19:25	1
Ethylbenzene	ND		5.3	0.37	ug/Kg		04/08/15 11:20	04/08/15 19:25	1
1,2-Dibromoethane	ND		5.3	0.68	ug/Kg	₩	04/08/15 11:20	04/08/15 19:25	1
Isopropylbenzene	ND		5.3	0.80	ug/Kg	₩	04/08/15 11:20	04/08/15 19:25	1
Methyl acetate	ND		5.3	3.2	ug/Kg		04/08/15 11:20	04/08/15 19:25	1
2-Butanone (MEK)	ND		27	1.9	ug/Kg	₩	04/08/15 11:20	04/08/15 19:25	1
4-Methyl-2-pentanone (MIBK)	ND		27	1.7	ug/Kg	₩	04/08/15 11:20	04/08/15 19:25	1
Methyl tert-butyl ether	ND		5.3	0.52	ug/Kg		04/08/15 11:20	04/08/15 19:25	1
Methylcyclohexane	ND		5.3	0.81	ug/Kg	₩	04/08/15 11:20	04/08/15 19:25	1
Methylene Chloride	2.8	JB	5.3	2.4	ug/Kg	₩	04/08/15 11:20	04/08/15 19:25	1
Styrene	ND		5.3	0.27	ug/Kg		04/08/15 11:20	04/08/15 19:25	1
Tetrachloroethene	ND		5.3	0.71	ug/Kg	₩	04/08/15 11:20	04/08/15 19:25	1
Toluene	0.84	J	5.3	0.40	ug/Kg	₩	04/08/15 11:20	04/08/15 19:25	1
trans-1,2-Dichloroethene	ND		5.3		ug/Kg		04/08/15 11:20	04/08/15 19:25	1
trans-1,3-Dichloropropene	ND		5.3		ug/Kg	₽	04/08/15 11:20	04/08/15 19:25	1
Trichloroethene	ND		5.3		ug/Kg	₩	04/08/15 11:20	04/08/15 19:25	1
				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	04/00/45 44 66	04/00/45 40 65	

TestAmerica Buffalo

04/08/15 19:25

04/08/15 19:25

04/08/15 19:25

5.3

5.3

11

0.50 ug/Kg

0.65 ug/Kg

0.89 ug/Kg

04/08/15 11:20

04/08/15 11:20

04/08/15 11:20

ND

ND

ND

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Lab Sample ID: 480-77902-9

TestAmerica Job ID: 480-77902-1

Matrix: Solid Percent Solids: 91.8

Client Sample ID: CHF-2B Date Collected: 04/07/15 00:00 Date Received: 04/07/15 15:40

Surrogate	%Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	88	64 - 126	04/08/15 11:20	04/08/15 19:25	1
Toluene-d8 (Surr)	102	71 - 125	04/08/15 11:20	04/08/15 19:25	1
4-Bromofluorobenzene (Surr)	98	72 - 126	04/08/15 11:20	04/08/15 19:25	1
Dibromofluoromethane (Surr)	96	60 - 140	04/08/15 11:20	04/08/15 19:25	1

Client Sample ID: CHF-3A Lab Sample ID: 480-77902-10

Date Collected: 04/07/15 00:00 **Matrix: Solid** Date Received: 04/07/15 15:40 Percent Solids: 94.1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.2	0.38	ug/Kg	₩	04/08/15 11:20	04/08/15 19:51	1
1,1,2,2-Tetrachloroethane	ND	5.2	0.85	ug/Kg	₽	04/08/15 11:20	04/08/15 19:51	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.2	1.2	ug/Kg	₽	04/08/15 11:20	04/08/15 19:51	1
1,1,2-Trichloroethane	ND	5.2	0.68	ug/Kg	₽	04/08/15 11:20	04/08/15 19:51	1
1,1-Dichloroethane	ND	5.2	0.64	ug/Kg	₽	04/08/15 11:20	04/08/15 19:51	1
1,1-Dichloroethene	ND	5.2	0.64	ug/Kg	₽	04/08/15 11:20	04/08/15 19:51	1
1,2,4-Trichlorobenzene	ND	5.2	0.32	ug/Kg	₽	04/08/15 11:20	04/08/15 19:51	1
1,2-Dibromo-3-Chloropropane	ND	5.2	2.6	ug/Kg	₽	04/08/15 11:20	04/08/15 19:51	1
1,2-Dichlorobenzene	ND	5.2	0.41	ug/Kg	₽	04/08/15 11:20	04/08/15 19:51	,
1,2-Dichloroethane	ND	5.2	0.26	ug/Kg		04/08/15 11:20	04/08/15 19:51	1
1,2-Dichloropropane	ND	5.2	2.6	ug/Kg	₽	04/08/15 11:20	04/08/15 19:51	1
1,3-Dichlorobenzene	ND	5.2	0.27	ug/Kg	☼	04/08/15 11:20	04/08/15 19:51	1
1,4-Dichlorobenzene	ND	5.2	0.73	ug/Kg	\$	04/08/15 11:20	04/08/15 19:51	1
2-Hexanone	ND	26	2.6	ug/Kg	₽	04/08/15 11:20	04/08/15 19:51	1
Acetone	ND	26	4.4	ug/Kg	₽	04/08/15 11:20	04/08/15 19:51	1
Benzene	0.44 J	5.2	0.26	ug/Kg	\$	04/08/15 11:20	04/08/15 19:51	
Bromoform	ND	5.2	2.6	ug/Kg	₽	04/08/15 11:20	04/08/15 19:51	1
Bromomethane	ND	5.2	0.47	ug/Kg	₽	04/08/15 11:20	04/08/15 19:51	1
Carbon disulfide	ND	5.2	2.6	ug/Kg		04/08/15 11:20	04/08/15 19:51	1
Carbon tetrachloride	ND	5.2	0.51	ug/Kg	₽	04/08/15 11:20	04/08/15 19:51	1
Chlorobenzene	ND	5.2	0.69	ug/Kg	₽	04/08/15 11:20	04/08/15 19:51	1
Dibromochloromethane	ND	5.2	0.67	ug/Kg		04/08/15 11:20	04/08/15 19:51	1
Chloroethane	ND	5.2	1.2	ug/Kg	₽	04/08/15 11:20	04/08/15 19:51	
Chloroform	ND	5.2	0.32	ug/Kg	₽	04/08/15 11:20	04/08/15 19:51	1
Chloromethane	ND	5.2	0.32	ug/Kg		04/08/15 11:20	04/08/15 19:51	1
cis-1,2-Dichloroethene	ND	5.2	0.67	ug/Kg	₽	04/08/15 11:20	04/08/15 19:51	1
cis-1,3-Dichloropropene	ND	5.2	0.75	ug/Kg	₽	04/08/15 11:20	04/08/15 19:51	1
Cyclohexane	ND	5.2	0.73	ug/Kg	φ.	04/08/15 11:20	04/08/15 19:51	1
Bromodichloromethane	ND	5.2	0.70	ug/Kg	₽	04/08/15 11:20	04/08/15 19:51	
Dichlorodifluoromethane	ND	5.2	0.43		₽	04/08/15 11:20	04/08/15 19:51	1
Ethylbenzene	ND	5.2	0.36	ug/Kg		04/08/15 11:20	04/08/15 19:51	,
1,2-Dibromoethane	ND	5.2	0.67	ug/Kg	₽	04/08/15 11:20	04/08/15 19:51	
Isopropylbenzene	ND	5.2	0.79	ug/Kg	₽	04/08/15 11:20	04/08/15 19:51	
Methyl acetate	ND	5.2	3.2	ug/Kg		04/08/15 11:20	04/08/15 19:51	,
2-Butanone (MEK)	ND	26	1.9	ug/Kg	₽	04/08/15 11:20	04/08/15 19:51	
4-Methyl-2-pentanone (MIBK)	ND	26	1.7		₽	04/08/15 11:20	04/08/15 19:51	
Methyl tert-butyl ether	ND	5.2	0.51			04/08/15 11:20	04/08/15 19:51	1
Methylcyclohexane	ND	5.2	0.80		₽	04/08/15 11:20	04/08/15 19:51	1
Methylene Chloride	2.5 JB	5.2		ug/Kg	₽	04/08/15 11:20	04/08/15 19:51	1

TestAmerica Buffalo

Page 32 of 83

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Date Received: 04/07/15 15:40

Lab Sample ID: 480-77902-10

TestAmerica Job ID: 480-77902-1

Client Sample ID: CHF-3A Date Collected: 04/07/15 00:00 Matrix: Solid

Percent Solids: 94.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	ND		5.2	0.26	ug/Kg	₩	04/08/15 11:20	04/08/15 19:51	1
Tetrachloroethene	ND		5.2	0.70	ug/Kg	₽	04/08/15 11:20	04/08/15 19:51	1
Toluene	0.78	J	5.2	0.40	ug/Kg	₽	04/08/15 11:20	04/08/15 19:51	1
trans-1,2-Dichloroethene	ND		5.2	0.54	ug/Kg	₽	04/08/15 11:20	04/08/15 19:51	1
trans-1,3-Dichloropropene	ND		5.2	2.3	ug/Kg	₽	04/08/15 11:20	04/08/15 19:51	1
Trichloroethene	ND		5.2	1.2	ug/Kg	₽	04/08/15 11:20	04/08/15 19:51	1
Trichlorofluoromethane	ND		5.2	0.50	ug/Kg	\$	04/08/15 11:20	04/08/15 19:51	1
Vinyl chloride	ND		5.2	0.64	ug/Kg	₽	04/08/15 11:20	04/08/15 19:51	1
Xylenes, Total	ND		10	0.88	ug/Kg	₽	04/08/15 11:20	04/08/15 19:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91		64 - 126				04/08/15 11:20	04/08/15 19:51	1
Toluene-d8 (Surr)	103		71 - 125				04/08/15 11:20	04/08/15 19:51	1
4-Bromofluorobenzene (Surr)	100		72 - 126				04/08/15 11:20	04/08/15 19:51	1
Dibromofluoromethane (Surr)	99		60 - 140				04/08/15 11:20	04/08/15 19:51	1

Client Sample ID: CHF-3B Lab Sample ID: 480-77902-11 Date Collected: 04/07/15 00:00 Matrix: Solid

Date Received: 04/07/15 15:40 Percent Solids: 92.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.2	0.38	ug/Kg		04/08/15 11:20	04/09/15 01:21	1
1,1,2,2-Tetrachloroethane	ND		5.2	0.85	ug/Kg	≎	04/08/15 11:20	04/09/15 01:21	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.2	1.2	ug/Kg	₽	04/08/15 11:20	04/09/15 01:21	1
1,1,2-Trichloroethane	ND		5.2	0.68	ug/Kg	₽	04/08/15 11:20	04/09/15 01:21	1
1,1-Dichloroethane	ND		5.2	0.64	ug/Kg	₩	04/08/15 11:20	04/09/15 01:21	1
1,1-Dichloroethene	ND		5.2	0.64	ug/Kg	₽	04/08/15 11:20	04/09/15 01:21	1
1,2,4-Trichlorobenzene	ND		5.2	0.32	ug/Kg	\$	04/08/15 11:20	04/09/15 01:21	1
1,2-Dibromo-3-Chloropropane	ND		5.2	2.6	ug/Kg	₽	04/08/15 11:20	04/09/15 01:21	1
1,2-Dichlorobenzene	ND		5.2	0.41	ug/Kg	₽	04/08/15 11:20	04/09/15 01:21	1
1,2-Dichloroethane	ND		5.2	0.26	ug/Kg	₽	04/08/15 11:20	04/09/15 01:21	1
1,2-Dichloropropane	ND		5.2	2.6	ug/Kg	₽	04/08/15 11:20	04/09/15 01:21	1
1,3-Dichlorobenzene	ND		5.2	0.27	ug/Kg	≎	04/08/15 11:20	04/09/15 01:21	1
1,4-Dichlorobenzene	ND		5.2	0.73	ug/Kg	\$	04/08/15 11:20	04/09/15 01:21	1
2-Hexanone	ND		26	2.6	ug/Kg	₽	04/08/15 11:20	04/09/15 01:21	1
Acetone	ND		26	4.4	ug/Kg	≎	04/08/15 11:20	04/09/15 01:21	1
Benzene	0.74	J	5.2	0.26	ug/Kg	₽	04/08/15 11:20	04/09/15 01:21	1
Bromoform	ND		5.2	2.6	ug/Kg	≎	04/08/15 11:20	04/09/15 01:21	1
Bromomethane	ND		5.2	0.47	ug/Kg	₽	04/08/15 11:20	04/09/15 01:21	1
Carbon disulfide	ND		5.2	2.6	ug/Kg	₽	04/08/15 11:20	04/09/15 01:21	1
Carbon tetrachloride	ND		5.2	0.51	ug/Kg	₽	04/08/15 11:20	04/09/15 01:21	1
Chlorobenzene	ND		5.2	0.69	ug/Kg	₽	04/08/15 11:20	04/09/15 01:21	1
Dibromochloromethane	ND		5.2	0.67	ug/Kg	\$	04/08/15 11:20	04/09/15 01:21	1
Chloroethane	ND		5.2	1.2	ug/Kg	₽	04/08/15 11:20	04/09/15 01:21	1
Chloroform	ND		5.2	0.32	ug/Kg	₽	04/08/15 11:20	04/09/15 01:21	1
Chloromethane	ND		5.2	0.32	ug/Kg	₽	04/08/15 11:20	04/09/15 01:21	1
cis-1,2-Dichloroethene	ND		5.2	0.67	ug/Kg	₽	04/08/15 11:20	04/09/15 01:21	1
cis-1,3-Dichloropropene	ND		5.2	0.75	ug/Kg	₽	04/08/15 11:20	04/09/15 01:21	1
Cyclohexane	ND		5.2	0.73	ug/Kg		04/08/15 11:20	04/09/15 01:21	1

TestAmerica Buffalo

Page 33 of 83

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Lab Sample ID: 480-77902-11

TestAmerica Job ID: 480-77902-1

Matrix: Solid

Percent Solids: 92.1

Client Sample ID: CHF-3B Date Collected: 04/07/15 00:00

Date Received: 04/07/15 15:40

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued) Result Qualifier MDL Unit D Prepared Dil Fac Analyte RL Analyzed ND 5.2 04/08/15 11:20 04/09/15 01:21 Bromodichloromethane 0.70 ug/Kg Dichlorodifluoromethane ND 52 04/08/15 11:20 04/09/15 01:21 0.43 ug/Kg ā Ethylbenzene ND 5.2 0.36 ug/Kg 04/08/15 11:20 04/09/15 01:21 1,2-Dibromoethane ND 5.2 04/08/15 11:20 04/09/15 01:21 0.67 ug/Kg ₩ Isopropylbenzene ND 5.2 0.79 ug/Kg 04/08/15 11:20 04/09/15 01:21 ND 5.2 ug/Kg 04/08/15 11:20 04/09/15 01:21 Methyl acetate 32 ug/Kg ₩ 2-Butanone (MEK) ND 26 04/08/15 11:20 04/09/15 01:21 ND 26 04/08/15 11:20 4-Methyl-2-pentanone (MIBK) 1.7 ug/Kg 04/09/15 01:21 ā ND 04/08/15 11:20 Methyl tert-butyl ether 5.2 0.51 ug/Kg 04/09/15 01:21 Methylcyclohexane ND 5.2 0.80 ug/Kg 04/08/15 11:20 04/09/15 01:21 ŭ **Methylene Chloride** 2.6 5.2 2.4 ug/Kg 04/08/15 11:20 04/09/15 01:21 à 04/08/15 11:20 Styrene ND 5.2 0.26 ug/Kg 04/09/15 01:21 Tetrachloroethene ND 52 0.70 ug/Kg 04/08/15 11:20 04/09/15 01:21 **Toluene** 5.2 0.40 ug/Kg 04/08/15 11:20 04/09/15 01:21 1.3 5.2 ND 0.54 04/08/15 11:20 04/09/15 01:21 trans-1.2-Dichloroethene ug/Kg trans-1,3-Dichloropropene ä ND 5.2 04/08/15 11:20 04/09/15 01:21 ug/Kg 04/08/15 11:20 Trichloroethene ND 5.2 1.2 ug/Kg 04/09/15 01:21 Trichlorofluoromethane ND 5.2 0.50 04/08/15 11:20 04/09/15 01:21 ug/Kg Vinyl chloride ND 5.2 04/08/15 11:20 04/09/15 01:21 0.64 ug/Kg Xylenes, Total ND 10 88.0 ug/Kg 04/08/15 11:20 04/09/15 01:21

Surrogate	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95	64 - 126	04/08/15 11:20	04/09/15 01:21	1
Toluene-d8 (Surr)	103	71 - 125	04/08/15 11:20	04/09/15 01:21	1
4-Bromofluorobenzene (Surr)	100	72 - 126	04/08/15 11:20	04/09/15 01:21	1
Dibromofluoromethane (Surr)	99	60 - 140	04/08/15 11:20	04/09/15 01:21	1

Client Sample ID: CHF-4A

Date Collected: 04/07/15 00:00

Date Received: 04/07/15 15:40

Lab Sample ID: 480-77902-12

Matrix: Solid

Percent Solids: 88.7

Method: 8260C - Volatile Organic Compounds by GC/MS Result Qualifier MDL Unit Prepared Dil Fac RLD Analyzed Analyte ₩ 1,1,1-Trichloroethane ND 5.4 04/08/15 11:20 04/09/15 01:47 0.39 ug/Kg ND 5.4 04/08/15 11:20 04/09/15 01:47 1.1.2.2-Tetrachloroethane 0.88 ug/Kg 1,1,2-Trichloro-1,2,2-trifluoroethane ND 5.4 1.2 ug/Kg ₽ 04/08/15 11:20 04/09/15 01:47 1.1.2-Trichloroethane ND 5.4 0.71 ug/Kg ₽ 04/08/15 11:20 04/09/15 01:47 ug/Kg ŭ 1,1-Dichloroethane ND 5.4 0.66 04/08/15 11:20 04/09/15 01:47 1,1-Dichloroethene ND 5.4 0.66 04/08/15 11:20 04/09/15 01:47 ug/Kg Ψ 1,2,4-Trichlorobenzene ND 5.4 0.33 ug/Kg 04/08/15 11:20 04/09/15 01:47 \$ 1,2-Dibromo-3-Chloropropane ND 5.4 04/08/15 11:20 04/09/15 01:47 2.7 ug/Kg ₩ 1.2-Dichlorobenzene ND 5.4 0.42 ug/Kg 04/08/15 11:20 04/09/15 01:47 ġ 1,2-Dichloroethane ND 5.4 0.27 ug/Kg 04/08/15 11:20 04/09/15 01:47 ND 5.4 04/08/15 11:20 04/09/15 01:47 1,2-Dichloropropane 2.7 ug/Kg ND 5.4 ď 04/08/15 11:20 04/09/15 01:47 1.3-Dichlorobenzene 0.28 ug/Kg 1,4-Dichlorobenzene ND 04/08/15 11:20 54 0.76 ug/Kg 04/09/15 01:47 Ü 2-Hexanone ND 27 2.7 04/08/15 11:20 04/09/15 01:47 ug/Kg 27 4.6 04/08/15 11:20 04/09/15 01:47 Acetone ND ug/Kg ġ Benzene 0.50 5.4 0.27 ug/Kg 04/08/15 11:20 04/09/15 01:47 Bromoform ND 54 27 ug/Kg 04/08/15 11:20 04/09/15 01:47

TestAmerica Buffalo

Page 34 of 83

1

3

6

8

11

13

14

Project/Site: 132 Dingens

Client: Iyer Environmental Group, LLC

Client Sample ID: CHF-4A Lab Sample ID: 480-77902-12

Date Collected: 04/07/15 00:00 Matrix: Solid Date Received: 04/07/15 15:40 Percent Solids: 88.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromomethane	ND		5.4	0.49	ug/Kg		04/08/15 11:20	04/09/15 01:47	1
Carbon disulfide	ND		5.4	2.7	ug/Kg	\$	04/08/15 11:20	04/09/15 01:47	1
Carbon tetrachloride	ND		5.4	0.53	ug/Kg	₩	04/08/15 11:20	04/09/15 01:47	1
Chlorobenzene	ND		5.4	0.72	ug/Kg	₩	04/08/15 11:20	04/09/15 01:47	1
Dibromochloromethane	ND		5.4	0.70	ug/Kg	\$	04/08/15 11:20	04/09/15 01:47	1
Chloroethane	ND		5.4	1.2	ug/Kg	₽	04/08/15 11:20	04/09/15 01:47	1
Chloroform	ND		5.4	0.34	ug/Kg	☼	04/08/15 11:20	04/09/15 01:47	1
Chloromethane	ND		5.4	0.33	ug/Kg	\$	04/08/15 11:20	04/09/15 01:47	1
cis-1,2-Dichloroethene	ND		5.4	0.70	ug/Kg	₩	04/08/15 11:20	04/09/15 01:47	1
cis-1,3-Dichloropropene	ND		5.4	0.78	ug/Kg	₽	04/08/15 11:20	04/09/15 01:47	1
Cyclohexane	ND		5.4	0.76	ug/Kg	\$	04/08/15 11:20	04/09/15 01:47	1
Bromodichloromethane	ND		5.4	0.73	ug/Kg	₩	04/08/15 11:20	04/09/15 01:47	1
Dichlorodifluoromethane	ND		5.4	0.45	ug/Kg	₽	04/08/15 11:20	04/09/15 01:47	1
Ethylbenzene	ND		5.4	0.37	ug/Kg	₽	04/08/15 11:20	04/09/15 01:47	1
1,2-Dibromoethane	ND		5.4	0.70	ug/Kg	₽	04/08/15 11:20	04/09/15 01:47	1
Isopropylbenzene	ND		5.4	0.82	ug/Kg	₽	04/08/15 11:20	04/09/15 01:47	1
Methyl acetate	ND		5.4	3.3	ug/Kg	₽	04/08/15 11:20	04/09/15 01:47	1
2-Butanone (MEK)	ND		27	2.0	ug/Kg	₽	04/08/15 11:20	04/09/15 01:47	1
4-Methyl-2-pentanone (MIBK)	ND		27	1.8	ug/Kg	₽	04/08/15 11:20	04/09/15 01:47	1
Methyl tert-butyl ether	ND		5.4	0.53	ug/Kg	₽	04/08/15 11:20	04/09/15 01:47	1
Methylcyclohexane	ND		5.4	0.83	ug/Kg	₽	04/08/15 11:20	04/09/15 01:47	1
Methylene Chloride	3.0	JB	5.4	2.5	ug/Kg	₩	04/08/15 11:20	04/09/15 01:47	1
Styrene	0.29	J	5.4	0.27	ug/Kg	\$	04/08/15 11:20	04/09/15 01:47	1
Tetrachloroethene	ND		5.4	0.73	ug/Kg	₩	04/08/15 11:20	04/09/15 01:47	1
Toluene	1.1	J	5.4	0.41	ug/Kg	₽	04/08/15 11:20	04/09/15 01:47	1
trans-1,2-Dichloroethene	ND		5.4	0.56	ug/Kg	\$	04/08/15 11:20	04/09/15 01:47	1
trans-1,3-Dichloropropene	ND		5.4	2.4	ug/Kg	₩	04/08/15 11:20	04/09/15 01:47	1
Trichloroethene	ND		5.4	1.2	ug/Kg	₽	04/08/15 11:20	04/09/15 01:47	1
Trichlorofluoromethane	ND		5.4	0.51	ug/Kg	₽	04/08/15 11:20	04/09/15 01:47	1
Vinyl chloride	ND		5.4	0.66	ug/Kg	₽	04/08/15 11:20	04/09/15 01:47	1
Xylenes, Total	ND		11	0.91	ug/Kg	₽	04/08/15 11:20	04/09/15 01:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	88		64 - 126				04/08/15 11:20	04/09/15 01:47	1
Toluene-d8 (Surr)	103		71 - 125				04/08/15 11:20	04/09/15 01:47	1
4-Bromofluorobenzene (Surr)	97		72 - 126				04/08/15 11:20	04/09/15 01:47	1
Dibromofluoromethane (Surr)	97		60 - 140				04/08/15 11:20	04/09/15 01:47	1

Client Sample ID: CHF-4B Lab Sample ID: 480-77902-13 Date Collected: 04/07/15 00:00 Matrix: Solid

Date Received: 04/07/15 15:40 Percent Solids: 91.8

Method: 8260C - Volatile Organic Co	ompounds by GC/MS							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.4	0.39	ug/Kg	\$	04/08/15 11:20	04/09/15 02:13	1
1,1,2,2-Tetrachloroethane	ND	5.4	0.88	ug/Kg	₽	04/08/15 11:20	04/09/15 02:13	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.4	1.2	ug/Kg	₽	04/08/15 11:20	04/09/15 02:13	1
1,1,2-Trichloroethane	ND	5.4	0.70	ug/Kg	₽	04/08/15 11:20	04/09/15 02:13	1
1,1-Dichloroethane	ND	5.4	0.66	ug/Kg	₽	04/08/15 11:20	04/09/15 02:13	1
1,1-Dichloroethene	ND	5.4	0.66	ug/Kg	₽	04/08/15 11:20	04/09/15 02:13	1

TestAmerica Buffalo

4/20/2015

Page 35 of 83

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Dibromofluoromethane (Surr)

Lab Sample ID: 480-77902-13

TestAmerica Job ID: 480-77902-1

Matrix: Solid

Percent Solids: 91.8

Client Sample ID: CHF-4B

Date Collected: 04/07/15 00:00 Date Received: 04/07/15 15:40

Method: 8260C - Volatile Organ Analyte	•	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fa
1,2,4-Trichlorobenzene	ND Result	Qualifier	5.4	0.33		— ¤	04/08/15 11:20	04/09/15 02:13	- ОП Га
1,2-Dibromo-3-Chloropropane	ND		5.4	2.7	ug/Kg		04/08/15 11:20	04/09/15 02:13	
, , ,					0 0	₩			
1,2-Dichlorobenzene	ND		5.4		ug/Kg		04/08/15 11:20	04/09/15 02:13	
1,2-Dichloroethane	ND		5.4	0.27		*	04/08/15 11:20	04/09/15 02:13	
1,2-Dichloropropane	ND		5.4		ug/Kg		04/08/15 11:20	04/09/15 02:13	
1,3-Dichlorobenzene	ND		5.4		ug/Kg	<u></u>	04/08/15 11:20	04/09/15 02:13	
1,4-Dichlorobenzene	ND		5.4		ug/Kg	#	04/08/15 11:20	04/09/15 02:13	
2-Hexanone	ND		27	2.7	ug/Kg	**	04/08/15 11:20	04/09/15 02:13	
Acetone	ND		27	4.5	ug/Kg		04/08/15 11:20	04/09/15 02:13	
Benzene	0.79	J	5.4	0.26	ug/Kg	₩	04/08/15 11:20	04/09/15 02:13	
Bromoform	ND		5.4	2.7	ug/Kg	₽	04/08/15 11:20	04/09/15 02:13	
Bromomethane	ND		5.4	0.49	ug/Kg	₽	04/08/15 11:20	04/09/15 02:13	
Carbon disulfide	ND		5.4	2.7	ug/Kg	\$	04/08/15 11:20	04/09/15 02:13	
Carbon tetrachloride	ND		5.4	0.52	ug/Kg	₽	04/08/15 11:20	04/09/15 02:13	
Chlorobenzene	ND		5.4	0.71	ug/Kg	₽	04/08/15 11:20	04/09/15 02:13	
Dibromochloromethane	ND		5.4	0.69	ug/Kg		04/08/15 11:20	04/09/15 02:13	
Chloroethane	ND		5.4	1.2	ug/Kg	₩	04/08/15 11:20	04/09/15 02:13	
Chloroform	ND		5.4	0.33	ug/Kg	₽	04/08/15 11:20	04/09/15 02:13	
Chloromethane	ND		5.4	0.33	ug/Kg	ф	04/08/15 11:20	04/09/15 02:13	
cis-1,2-Dichloroethene	ND		5.4	0.69	ug/Kg	₩	04/08/15 11:20	04/09/15 02:13	
cis-1,3-Dichloropropene	ND		5.4	0.78	ug/Kg	₩	04/08/15 11:20	04/09/15 02:13	
Cyclohexane	ND		5.4	0.76	ug/Kg		04/08/15 11:20	04/09/15 02:13	
Bromodichloromethane	ND		5.4		ug/Kg	₽	04/08/15 11:20	04/09/15 02:13	
Dichlorodifluoromethane	ND		5.4		ug/Kg	₽	04/08/15 11:20	04/09/15 02:13	
Ethylbenzene	ND		5.4	0.37			04/08/15 11:20	04/09/15 02:13	
1,2-Dibromoethane	ND		5.4	0.69	ug/Kg	₩	04/08/15 11:20	04/09/15 02:13	
lsopropylbenzene	ND.		5.4	0.81	ug/Kg	₩	04/08/15 11:20	04/09/15 02:13	
Methyl acetate	ND		5.4		ug/Kg		04/08/15 11:20	04/09/15 02:13	
2-Butanone (MEK)	ND		27	2.0		₩	04/08/15 11:20	04/09/15 02:13	
4-Methyl-2-pentanone (MIBK)	ND		27		ug/Kg ug/Kg	*	04/08/15 11:20	04/09/15 02:13	
Methyl tert-butyl ether	ND		5.4		ug/Kg		04/08/15 11:20	04/09/15 02:13	
Methylcyclohexane	ND ND		5.4				04/08/15 11:20	04/09/15 02:13	
• •					ug/Kg				
Methylene Chloride	3.1	JB	5.4		ug/Kg		04/08/15 11:20	04/09/15 02:13	
Styrene	ND		5.4		ug/Kg	₩	04/08/15 11:20	04/09/15 02:13	
Tetrachloroethene	ND		5.4		ug/Kg		04/08/15 11:20	04/09/15 02:13	
Toluene	1.1	J	5.4	0.41		<u></u>	04/08/15 11:20	04/09/15 02:13	
trans-1,2-Dichloroethene	ND		5.4		ug/Kg	*	04/08/15 11:20	04/09/15 02:13	
trans-1,3-Dichloropropene	ND		5.4	2.4	0 0	₽	04/08/15 11:20	04/09/15 02:13	
Trichloroethene	ND		5.4		ug/Kg	T Å	04/08/15 11:20	04/09/15 02:13	
Trichlorofluoromethane	ND		5.4		ug/Kg	₩	04/08/15 11:20	04/09/15 02:13	
Vinyl chloride	ND		5.4	0.66	0 0	#	04/08/15 11:20	04/09/15 02:13	
Xylenes, Total	ND		11	0.91	ug/Kg	₩	04/08/15 11:20	04/09/15 02:13	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	92		64 - 126				04/08/15 11:20	04/09/15 02:13	
Toluene-d8 (Surr)	103		71 - 125				04/08/15 11:20	04/09/15 02:13	
4-Bromofluorobenzene (Surr)	97		72 - 126				04/08/15 11:20	04/09/15 02:13	

04/09/15 02:13

04/08/15 11:20

60 - 140

97

3

5

7

. . 12

14

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Lab Sample ID: 480-77902-14

TestAmerica Job ID: 480-77902-1

Matrix: Solid

Percent Solids: 91.5

Client Sample ID: CHF-5A

Date Collected: 04/07/15 00:00 Date Received: 04/07/15 15:40

Method: 8260C - Volatile Organic	•	•			1114	_	D '	A 1 .	D.: -
Analyte		Qualifier	RL	MDL		— D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.3	0.38	ug/Kg		04/08/15 11:20	04/09/15 02:39	1
1,1,2,2-Tetrachloroethane	ND		5.3	0.85	ug/Kg	<u>*</u>	04/08/15 11:20	04/09/15 02:39	1
I,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.3		ug/Kg	<u></u>	04/08/15 11:20	04/09/15 02:39	
1,1,2-Trichloroethane	ND		5.3			*	04/08/15 11:20	04/09/15 02:39	1
,1-Dichloroethane	ND		5.3		ug/Kg	#	04/08/15 11:20	04/09/15 02:39	1
1,1-Dichloroethene	ND		5.3		ug/Kg		04/08/15 11:20	04/09/15 02:39	1
1,2,4-Trichlorobenzene	ND		5.3	0.32	ug/Kg	₩	04/08/15 11:20	04/09/15 02:39	1
1,2-Dibromo-3-Chloropropane	ND		5.3	2.6	ug/Kg	₩	04/08/15 11:20	04/09/15 02:39	1
1,2-Dichlorobenzene	ND		5.3	0.41	ug/Kg		04/08/15 11:20	04/09/15 02:39	1
I,2-Dichloroethane	ND		5.3	0.26	ug/Kg	₽	04/08/15 11:20	04/09/15 02:39	1
1,2-Dichloropropane	ND		5.3	2.6	ug/Kg	₩	04/08/15 11:20	04/09/15 02:39	1
1,3-Dichlorobenzene	ND		5.3	0.27	ug/Kg	₩	04/08/15 11:20	04/09/15 02:39	1
1,4-Dichlorobenzene	ND		5.3	0.74	ug/Kg	*	04/08/15 11:20	04/09/15 02:39	1
2-Hexanone	ND		26	2.6	ug/Kg	☼	04/08/15 11:20	04/09/15 02:39	1
Acetone	ND		26	4.4	ug/Kg	₩	04/08/15 11:20	04/09/15 02:39	1
Benzene	0.45	J	5.3	0.26	ug/Kg		04/08/15 11:20	04/09/15 02:39	1
Bromoform	ND		5.3	2.6	ug/Kg	₽	04/08/15 11:20	04/09/15 02:39	1
Bromomethane	ND		5.3	0.47	ug/Kg	₩	04/08/15 11:20	04/09/15 02:39	1
Carbon disulfide	ND		5.3		ug/Kg		04/08/15 11:20	04/09/15 02:39	1
Carbon tetrachloride	ND		5.3	0.51	ug/Kg	₽	04/08/15 11:20	04/09/15 02:39	1
Chlorobenzene	ND		5.3		ug/Kg	₩	04/08/15 11:20	04/09/15 02:39	1
Dibromochloromethane	ND		5.3		ug/Kg		04/08/15 11:20	04/09/15 02:39	1
Chloroethane	ND		5.3		ug/Kg	₩	04/08/15 11:20	04/09/15 02:39	1
Chloroform	ND		5.3		ug/Kg	₩	04/08/15 11:20	04/09/15 02:39	
Chloromethane	ND		5.3		ug/Kg		04/08/15 11:20	04/09/15 02:39	
cis-1,2-Dichloroethene	ND		5.3	0.67		₽	04/08/15 11:20	04/09/15 02:39	1
cis-1,3-Dichloropropene	ND		5.3	0.76	ug/Kg ug/Kg	₽	04/08/15 11:20	04/09/15 02:39	1
Cyclohexane	ND		5.3				04/08/15 11:20	04/09/15 02:39	' 1
Bromodichloromethane	ND ND		5.3	0.74					1
Dichlorodifluoromethane	ND ND				ug/Kg		04/08/15 11:20	04/09/15 02:39	1
			5.3	0.43	ug/Kg		04/08/15 11:20	04/09/15 02:39	
Ethylbenzene	ND		5.3		ug/Kg	₩	04/08/15 11:20	04/09/15 02:39	1
1,2-Dibromoethane	ND		5.3	0.68	ug/Kg		04/08/15 11:20	04/09/15 02:39	1
sopropylbenzene	ND		5.3		ug/Kg	<u></u>	04/08/15 11:20	04/09/15 02:39	1
Methyl acetate	ND		5.3		ug/Kg	₩.	04/08/15 11:20	04/09/15 02:39	1
2-Butanone (MEK)	ND		26		ug/Kg	₩	04/08/15 11:20	04/09/15 02:39	1
4-Methyl-2-pentanone (MIBK)	ND		26		ug/Kg		04/08/15 11:20	04/09/15 02:39	1
Methyl tert-butyl ether	ND		5.3	0.52	ug/Kg	₩	04/08/15 11:20	04/09/15 02:39	1
Methylcyclohexane	ND		5.3	0.80	ug/Kg	₩	04/08/15 11:20	04/09/15 02:39	1
Methylene Chloride	2.6	JB	5.3	2.4	ug/Kg		04/08/15 11:20	04/09/15 02:39	1
Styrene	ND		5.3	0.26	ug/Kg	₽	04/08/15 11:20	04/09/15 02:39	1
Tetrachloroethene	ND		5.3	0.71	ug/Kg	₽	04/08/15 11:20	04/09/15 02:39	1
Toluene	0.78	J	5.3	0.40	ug/Kg	₩	04/08/15 11:20	04/09/15 02:39	1
rans-1,2-Dichloroethene	ND		5.3	0.54	ug/Kg	₽	04/08/15 11:20	04/09/15 02:39	1
rans-1,3-Dichloropropene	ND		5.3	2.3	ug/Kg	☼	04/08/15 11:20	04/09/15 02:39	1
Trichloroethene	ND		5.3	1.2	ug/Kg	₩	04/08/15 11:20	04/09/15 02:39	1
Trichlorofluoromethane	ND		5.3		ug/Kg	₽	04/08/15 11:20	04/09/15 02:39	1
Vinyl chloride	ND		5.3		ug/Kg	₽	04/08/15 11:20	04/09/15 02:39	1
Xylenes, Total	ND		11		ug/Kg	₽	04/08/15 11:20	04/09/15 02:39	1

3

5

7

46

11

13

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: CHF-5A

Date Collected: 04/07/15 00:00

Date Received: 04/07/15 15:40

TestAmerica Job ID: 480-77902-1

Lab Sample ID: 480-77902-14

Matrix: Solid

Percent Solids: 91.5

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	92	64 - 126	04/08/15 11:20	04/09/15 02:39	1
Toluene-d8 (Surr)	100	71 - 125	04/08/15 11:20	04/09/15 02:39	1
4-Bromofluorobenzene (Surr)	99	72 - 126	04/08/15 11:20	04/09/15 02:39	1
Dibromofluoromethane (Surr)	99	60 - 140	04/08/15 11:20	04/09/15 02:39	1

Client Sample ID: CHF-5B Lab Sample ID: 480-77902-15

Date Collected: 04/07/15 00:00 **Matrix: Solid** Date Received: 04/07/15 15:40 Percent Solids: 88.9

Method: 8260C - Volatile Organic Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.5	0.40	ug/Kg	<u></u>	04/08/15 23:10	04/09/15 03:05	1
1,1,2,2-Tetrachloroethane	ND	F1	5.5	0.90	ug/Kg	₽	04/08/15 23:10	04/09/15 03:05	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		5.5	1.3	ug/Kg	₽	04/08/15 23:10	04/09/15 03:05	1
1,1,2-Trichloroethane	ND		5.5	0.72	ug/Kg		04/08/15 23:10	04/09/15 03:05	1
1,1-Dichloroethane	ND		5.5	0.68	ug/Kg	₽	04/08/15 23:10	04/09/15 03:05	1
1,1-Dichloroethene	ND		5.5	0.68	ug/Kg	₽	04/08/15 23:10	04/09/15 03:05	1
1,2,4-Trichlorobenzene	ND		5.5	0.34	ug/Kg		04/08/15 23:10	04/09/15 03:05	1
1,2-Dibromo-3-Chloropropane	ND	F1	5.5	2.8	ug/Kg	₽	04/08/15 23:10	04/09/15 03:05	1
1,2-Dichlorobenzene	ND		5.5	0.43	ug/Kg	₩	04/08/15 23:10	04/09/15 03:05	1
1,2-Dichloroethane	ND	F1	5.5	0.28	ug/Kg		04/08/15 23:10	04/09/15 03:05	1
1,2-Dichloropropane	ND		5.5	2.8	ug/Kg	₽	04/08/15 23:10	04/09/15 03:05	1
1,3-Dichlorobenzene	ND		5.5	0.28	ug/Kg	₽	04/08/15 23:10	04/09/15 03:05	1
1,4-Dichlorobenzene	ND		5.5	0.77	ug/Kg	\$	04/08/15 23:10	04/09/15 03:05	1
2-Hexanone	ND		28	2.8	ug/Kg	₽	04/08/15 23:10	04/09/15 03:05	1
Acetone	ND	F1	28	4.7	ug/Kg	₽	04/08/15 23:10	04/09/15 03:05	1
Benzene	0.49	J	5.5	0.27	ug/Kg	÷	04/08/15 23:10	04/09/15 03:05	1
Bromoform	ND		5.5	2.8	ug/Kg	₽	04/08/15 23:10	04/09/15 03:05	1
Bromomethane	ND		5.5	0.50	ug/Kg	₽	04/08/15 23:10	04/09/15 03:05	1
Carbon disulfide	ND		5.5	2.8	ug/Kg		04/08/15 23:10	04/09/15 03:05	1
Carbon tetrachloride	ND		5.5	0.54	ug/Kg	₽	04/08/15 23:10	04/09/15 03:05	1
Chlorobenzene	ND		5.5	0.73	ug/Kg	₽	04/08/15 23:10	04/09/15 03:05	1
Dibromochloromethane	ND		5.5	0.71	ug/Kg		04/08/15 23:10	04/09/15 03:05	1
Chloroethane	ND		5.5	1.3	ug/Kg	₽	04/08/15 23:10	04/09/15 03:05	1
Chloroform	ND		5.5	0.34	ug/Kg	₽	04/08/15 23:10	04/09/15 03:05	1
Chloromethane	ND		5.5	0.33	ug/Kg		04/08/15 23:10	04/09/15 03:05	1
cis-1,2-Dichloroethene	ND		5.5	0.71	ug/Kg	₽	04/08/15 23:10	04/09/15 03:05	1
cis-1,3-Dichloropropene	ND		5.5	0.80	ug/Kg	₽	04/08/15 23:10	04/09/15 03:05	1
Cyclohexane	ND	F1 *	5.5	0.77	ug/Kg		04/08/15 23:10	04/09/15 03:05	1
Bromodichloromethane	ND		5.5	0.74	ug/Kg	₽	04/08/15 23:10	04/09/15 03:05	1
Dichlorodifluoromethane	ND		5.5	0.46	ug/Kg	₽	04/08/15 23:10	04/09/15 03:05	1
Ethylbenzene	ND		5.5	0.38	ug/Kg	ф.	04/08/15 23:10	04/09/15 03:05	1
1,2-Dibromoethane	ND	F1	5.5	0.71	ug/Kg	₩	04/08/15 23:10	04/09/15 03:05	1
Isopropylbenzene	ND		5.5	0.83	ug/Kg	₩	04/08/15 23:10	04/09/15 03:05	1
Methyl acetate	ND		5.5	3.3	ug/Kg		04/08/15 23:10	04/09/15 03:05	1
2-Butanone (MEK)	ND	F1	28	2.0	ug/Kg	₩	04/08/15 23:10	04/09/15 03:05	1
4-Methyl-2-pentanone (MIBK)	ND	F1	28	1.8	ug/Kg	₽	04/08/15 23:10	04/09/15 03:05	1
Methyl tert-butyl ether	ND		5.5	0.54	ug/Kg	· · · · · · · · · · · · · · · · · · ·	04/08/15 23:10	04/09/15 03:05	1
Methylcyclohexane	ND		5.5	0.84		₽	04/08/15 23:10	04/09/15 03:05	1
Methylene Chloride	3.9	J.	5.5	2.5	ug/Kg	₩	04/08/15 23:10	04/09/15 03:05	1

TestAmerica Buffalo

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: CHF-5B Lab Sample ID: 480-77902-15

Date Collected: 04/07/15 00:00 Matrix: Solid Date Received: 04/07/15 15:40 Percent Solids: 88.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	ND		5.5	0.28	ug/Kg	₩	04/08/15 23:10	04/09/15 03:05	1
Tetrachloroethene	ND		5.5	0.74	ug/Kg	\$	04/08/15 23:10	04/09/15 03:05	1
Toluene	0.64	J	5.5	0.42	ug/Kg	₽	04/08/15 23:10	04/09/15 03:05	1
trans-1,2-Dichloroethene	ND		5.5	0.57	ug/Kg	\$	04/08/15 23:10	04/09/15 03:05	1
trans-1,3-Dichloropropene	ND		5.5	2.4	ug/Kg	₽	04/08/15 23:10	04/09/15 03:05	1
Trichloroethene	ND		5.5	1.2	ug/Kg	₽	04/08/15 23:10	04/09/15 03:05	1
Trichlorofluoromethane	ND		5.5	0.52	ug/Kg	\$	04/08/15 23:10	04/09/15 03:05	1
Vinyl chloride	ND		5.5	0.68	ug/Kg	₽	04/08/15 23:10	04/09/15 03:05	1
Xylenes, Total	ND		11	0.93	ug/Kg	₽	04/08/15 23:10	04/09/15 03:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	92		64 - 126				04/08/15 23:10	04/09/15 03:05	1
Toluene-d8 (Surr)	100		71 - 125				04/08/15 23:10	04/09/15 03:05	1
4-Bromofluorobenzene (Surr)	97		72 - 126				04/08/15 23:10	04/09/15 03:05	1
Dibromofluoromethane (Surr)	99		60 - 140				04/08/15 23:10	04/09/15 03:05	1

Client Sample ID: CRS-1 Lab Sample ID: 480-77902-16 Date Collected: 04/07/15 00:00 Matrix: Solid Date Received: 04/07/15 15:40 Percent Solids: 98.2

Method: 8260C - Volatile Organic	Compounds by G	SC/MS						
Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.0	0.36	ug/Kg	₩	04/08/15 23:10	04/09/15 03:30	1
1,1,2,2-Tetrachloroethane	ND	5.0	0.81	ug/Kg	₽	04/08/15 23:10	04/09/15 03:30	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0	1.1	ug/Kg	₽	04/08/15 23:10	04/09/15 03:30	1
1,1,2-Trichloroethane	ND	5.0	0.65	ug/Kg	\$	04/08/15 23:10	04/09/15 03:30	1
1,1-Dichloroethane	ND	5.0	0.61	ug/Kg	₽	04/08/15 23:10	04/09/15 03:30	1
1,1-Dichloroethene	ND	5.0	0.61	ug/Kg	₽	04/08/15 23:10	04/09/15 03:30	1
1,2,4-Trichlorobenzene	ND	5.0	0.30	ug/Kg	\$	04/08/15 23:10	04/09/15 03:30	1
1,2-Dibromo-3-Chloropropane	ND	5.0	2.5	ug/Kg	₽	04/08/15 23:10	04/09/15 03:30	1
1,2-Dichlorobenzene	ND	5.0	0.39	ug/Kg	₽	04/08/15 23:10	04/09/15 03:30	1
1,2-Dichloroethane	ND	5.0	0.25	ug/Kg	₽	04/08/15 23:10	04/09/15 03:30	1
1,2-Dichloropropane	ND	5.0	2.5	ug/Kg	₽	04/08/15 23:10	04/09/15 03:30	1
1,3-Dichlorobenzene	ND	5.0	0.26	ug/Kg	₽	04/08/15 23:10	04/09/15 03:30	1
1,4-Dichlorobenzene	ND	5.0	0.70	ug/Kg	₽	04/08/15 23:10	04/09/15 03:30	1
2-Hexanone	ND	25	2.5	ug/Kg	₽	04/08/15 23:10	04/09/15 03:30	1
Acetone	ND	25	4.2	ug/Kg	₽	04/08/15 23:10	04/09/15 03:30	1
Benzene	ND	5.0	0.24	ug/Kg	₽	04/08/15 23:10	04/09/15 03:30	1
Bromoform	ND	5.0	2.5	ug/Kg	₽	04/08/15 23:10	04/09/15 03:30	1
Bromomethane	ND	5.0	0.45	ug/Kg	₽	04/08/15 23:10	04/09/15 03:30	1
Carbon disulfide	ND	5.0	2.5	ug/Kg	\$	04/08/15 23:10	04/09/15 03:30	1
Carbon tetrachloride	ND	5.0	0.48	ug/Kg	₩	04/08/15 23:10	04/09/15 03:30	1
Chlorobenzene	ND	5.0	0.66	ug/Kg	₩	04/08/15 23:10	04/09/15 03:30	1
Dibromochloromethane	ND	5.0	0.64	ug/Kg	ф.	04/08/15 23:10	04/09/15 03:30	1
Chloroethane	ND	5.0	1.1	ug/Kg	₩	04/08/15 23:10	04/09/15 03:30	1
Chloroform	ND	5.0	0.31	ug/Kg	₩	04/08/15 23:10	04/09/15 03:30	1
Chloromethane	ND	5.0	0.30	ug/Kg	*	04/08/15 23:10	04/09/15 03:30	1
cis-1,2-Dichloroethene	ND	5.0	0.64	ug/Kg	₩	04/08/15 23:10	04/09/15 03:30	1
cis-1,3-Dichloropropene	ND	5.0	0.72	ug/Kg	₩	04/08/15 23:10	04/09/15 03:30	1
Cyclohexane	ND *	5.0	0.70	ug/Kg		04/08/15 23:10	04/09/15 03:30	1

TestAmerica Buffalo

Page 39 of 83

TestAmerica Job ID: 480-77902-1

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: CRS-1

Date Collected: 04/07/15 00:00

Date Received: 04/07/15 15:40

Lab Sample ID: 480-77902-16

TestAmerica Job ID: 480-77902-1

Matrix: Solid

Percent Solids: 98.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromodichloromethane	ND		5.0	0.67	ug/Kg	₩	04/08/15 23:10	04/09/15 03:30	1
Dichlorodifluoromethane	ND		5.0	0.41	ug/Kg	₩	04/08/15 23:10	04/09/15 03:30	1
Ethylbenzene	ND		5.0	0.34	ug/Kg	*	04/08/15 23:10	04/09/15 03:30	1
1,2-Dibromoethane	ND		5.0	0.64	ug/Kg	₽	04/08/15 23:10	04/09/15 03:30	1
Isopropylbenzene	ND		5.0	0.75	ug/Kg	₩	04/08/15 23:10	04/09/15 03:30	1
Methyl acetate	ND		5.0	3.0	ug/Kg	*	04/08/15 23:10	04/09/15 03:30	1
2-Butanone (MEK)	ND		25	1.8	ug/Kg	₽	04/08/15 23:10	04/09/15 03:30	1
4-Methyl-2-pentanone (MIBK)	ND		25	1.6	ug/Kg	₽	04/08/15 23:10	04/09/15 03:30	1
Methyl tert-butyl ether	ND		5.0	0.49	ug/Kg	₽	04/08/15 23:10	04/09/15 03:30	1
Methylcyclohexane	ND		5.0	0.76	ug/Kg	₽	04/08/15 23:10	04/09/15 03:30	1
Methylene Chloride	3.7	J	5.0	2.3	ug/Kg	₽	04/08/15 23:10	04/09/15 03:30	1
Styrene	ND		5.0	0.25	ug/Kg	\$	04/08/15 23:10	04/09/15 03:30	1
Tetrachloroethene	ND		5.0	0.67	ug/Kg	₽	04/08/15 23:10	04/09/15 03:30	1
Toluene	ND		5.0	0.38	ug/Kg	₽	04/08/15 23:10	04/09/15 03:30	1
trans-1,2-Dichloroethene	ND		5.0	0.51	ug/Kg	₽	04/08/15 23:10	04/09/15 03:30	1
trans-1,3-Dichloropropene	ND		5.0	2.2	ug/Kg	₽	04/08/15 23:10	04/09/15 03:30	1
Trichloroethene	ND		5.0	1.1	ug/Kg	₽	04/08/15 23:10	04/09/15 03:30	1
Trichlorofluoromethane	ND		5.0	0.47	ug/Kg	₽	04/08/15 23:10	04/09/15 03:30	1
Vinyl chloride	ND		5.0	0.61	ug/Kg	₽	04/08/15 23:10	04/09/15 03:30	1
Xylenes, Total	ND		10	0.84	ug/Kg	\$	04/08/15 23:10	04/09/15 03:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91		64 - 126				04/08/15 23:10	04/09/15 03:30	1
Toluene-d8 (Surr)	102		71 - 125				04/08/15 23:10	04/09/15 03:30	1
4-Bromofluorobenzene (Surr)	98		72 - 126				04/08/15 23:10	04/09/15 03:30	1
Dibromofluoromethane (Surr)	97		60 - 140				04/08/15 23:10	04/09/15 03:30	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND		870	35	ug/Kg	\$	04/13/15 08:37	04/14/15 15:06	1
2,4,6-Trichlorophenol	ND		340	35	ug/Kg	₽	04/13/15 08:37	04/14/15 15:06	1
2,4-Dichlorophenol	ND		340	34	ug/Kg	₽	04/13/15 08:37	04/14/15 15:06	1
2,4-Dimethylphenol	ND		340	54	ug/Kg	₽	04/13/15 08:37	04/14/15 15:06	1
2,4-Dinitrophenol	ND		870	150	ug/Kg	₽	04/13/15 08:37	04/14/15 15:06	1
2,4-Dinitrotoluene	ND		340	25	ug/Kg	₽	04/13/15 08:37	04/14/15 15:06	1
2,6-Dinitrotoluene	ND		340	31	ug/Kg	₽	04/13/15 08:37	04/14/15 15:06	1
2-Chloronaphthalene	ND		340	45	ug/Kg	₽	04/13/15 08:37	04/14/15 15:06	1
2-Chlorophenol	ND		340	35	ug/Kg	₽	04/13/15 08:37	04/14/15 15:06	1
2-Methylnaphthalene	ND		340	16	ug/Kg	\$	04/13/15 08:37	04/14/15 15:06	1
2-Methylphenol	ND		340	42	ug/Kg	₽	04/13/15 08:37	04/14/15 15:06	1
2-Nitroaniline	ND		870	39	ug/Kg	₽	04/13/15 08:37	04/14/15 15:06	1
2-Nitrophenol	ND		340	39	ug/Kg	₽	04/13/15 08:37	04/14/15 15:06	1
3 & 4 Methylphenol	ND		700	77	ug/Kg	₽	04/13/15 08:37	04/14/15 15:06	1
3,3'-Dichlorobenzidine	ND		340	50	ug/Kg	₽	04/13/15 08:37	04/14/15 15:06	1
3-Nitroaniline	ND		870	40	ug/Kg	₽	04/13/15 08:37	04/14/15 15:06	1
4,6-Dinitro-2-methylphenol	ND		870	100	ug/Kg	₽	04/13/15 08:37	04/14/15 15:06	1
4-Bromophenyl phenyl ether	ND		340	19	ug/Kg	₽	04/13/15 08:37	04/14/15 15:06	1
4-Chloro-3-methylphenol	ND		340	42	ug/Kg		04/13/15 08:37	04/14/15 15:06	1
4-Chloroaniline	ND		340	33	ug/Kg	☼	04/13/15 08:37	04/14/15 15:06	1
4-Chlorophenyl phenyl ether	ND		340	16	ug/Kg	₩	04/13/15 08:37	04/14/15 15:06	1

TestAmerica Buffalo

Page 40 of 83

4/20/2015

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

N-Nitrosodiphenylamine

Client Sample ID: CRS-1

Date Collected: 04/07/15 00:00

Lab Sample ID: 480-77902-16

TestAmerica Job ID: 480-77902-1

Matrix: Solid Percent Solids: 98.2

Date Received: 04/07/15 15:4	Date Received: 04/07/15 15:40									
Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil I	
4-Nitroaniline	ND		870	33	ug/Kg	₽	04/13/15 08:37	04/14/15 15:06		
4-Nitrophenol	ND		870	88	ug/Kg	₽	04/13/15 08:37	04/14/15 15:06		
Acenaphthene	ND		340	14	ug/Kg	₽	04/13/15 08:37	04/14/15 15:06		
Acenaphthylene	ND		340	16	ug/Kg		04/13/15 08:37	04/14/15 15:06		

	5	0.0	-	~9/.19		0 17 107 10 00101	0 11 11 110 10100
Acenaphthene	ND	340	14	ug/Kg	₩	04/13/15 08:37	04/14/15 15:06
Acenaphthylene	ND	340	16	ug/Kg	₩	04/13/15 08:37	04/14/15 15:06
Acetophenone	ND	340	17	ug/Kg	₽	04/13/15 08:37	04/14/15 15:06
Anthracene	ND	340	15	ug/Kg	₽	04/13/15 08:37	04/14/15 15:06
Atrazine	ND	340	17	ug/Kg	₽	04/13/15 08:37	04/14/15 15:06
Benzaldehyde	ND	340	17	ug/Kg	₽	04/13/15 08:37	04/14/15 15:06
Benzo(a)anthracene	ND	340	14	ug/Kg	₽	04/13/15 08:37	04/14/15 15:06
Panzalahurana	ND	240	12	ua/Ka	**	04/12/15 00:27	04/14/15 15:06

Benzo(a)anthracene	ND	340	14 ug/Kg	₽	04/13/15 08:37	04/14/15 15:06	
Benzo(a)pyrene	ND	340	13 ug/Kg	₽	04/13/15 08:37	04/14/15 15:06	
Benzo(b)fluoranthene	ND	340	24 ug/Kg	₽	04/13/15 08:37	04/14/15 15:06	
Benzo(g,h,i)perylene	ND	340	14 ug/Kg	☼	04/13/15 08:37	04/14/15 15:06	
Benzo(k)fluoranthene	ND	340	31 ug/Kg	₽	04/13/15 08:37	04/14/15 15:06	
Biphenyl	ND	340	16 ug/Kg	☼	04/13/15 08:37	04/14/15 15:06	
bis (2-chloroisopropyl) ether	ND	340	17 ug/Kg	₽	04/13/15 08:37	04/14/15 15:06	

bis (2-chioroisopropyi) ether	ND	340	17 ug/kg	240	04/13/15 08:37	04/14/15 15:06	
Bis(2-chloroethoxy)methane	ND	340	16 ug/Kg	₽	04/13/15 08:37	04/14/15 15:06	
Bis(2-chloroethyl)ether	ND	340	16 ug/Kg	₩	04/13/15 08:37	04/14/15 15:06	
Bis(2-ethylhexyl) phthalate	59 JB	340	22 ug/Kg	₩	04/13/15 08:37	04/14/15 15:06	
Butyl benzyl phthalate	ND	340	21 ug/Kg		04/13/15 08:37	04/14/15 15:06	
Caprolactam	ND	340	36 ug/Kg	₩	04/13/15 08:37	04/14/15 15:06	
Carbazole	ND	340	16 ug/Kg	₩	04/13/15 08:37	04/14/15 15:06	
Chrysene	ND	340	19 ug/Kg	₽	04/13/15 08:37	04/14/15 15:06	
Dibenz(a,h)anthracene	ND	340	11 ug/Kg	₩	04/13/15 08:37	04/14/15 15:06	
Dihanzafuran	ND	240	17 ua/Ka	-77-	04/12/15 00:27	04/14/15 15:06	

Dibenzoturan	ND	340	17	ug/Kg	340	04/13/15 08:37	04/14/15 15:06
Diethyl phthalate	41 JB	340	16	ug/Kg	₽	04/13/15 08:37	04/14/15 15:06
Dimethyl phthalate	ND	340	16	ug/Kg	₽	04/13/15 08:37	04/14/15 15:06
Di-n-butyl phthalate	ND	340	16	ug/Kg	₩	04/13/15 08:37	04/14/15 15:06
Di-n-octyl phthalate	ND	340	24	ug/Kg	₽	04/13/15 08:37	04/14/15 15:06
Fluoranthene	ND	340	13	ug/Kg	₽	04/13/15 08:37	04/14/15 15:06
Fluorene	ND	340	16	ug/Kg	₽	04/13/15 08:37	04/14/15 15:06
Hexachlorobenzene	ND	340	48	ug/Kg	₽	04/13/15 08:37	04/14/15 15:06
Hexachlorobutadiene	ND	340	36	ug/Kg	₩	04/13/15 08:37	04/14/15 15:06

i lexacilioropulatierie	ND	340	30 ug/kg	.,,	04/13/13 00.37	04/14/13 13.00	
Hexachlorocyclopentadiene	ND	340	68 ug/Kg	₩	04/13/15 08:37	04/14/15 15:06	
Hexachloroethane	ND	340	35 ug/Kg	₩	04/13/15 08:37	04/14/15 15:06	
Indeno(1,2,3-cd)pyrene	ND	340	15 ug/Kg	₩	04/13/15 08:37	04/14/15 15:06	
Isophorone	ND	340	44 ug/Kg	₩	04/13/15 08:37	04/14/15 15:06	
Naphthalene	ND	340	16 ug/Kg	₽	04/13/15 08:37	04/14/15 15:06	
Nitrobenzene	ND	340	43 ug/Kg	₩	04/13/15 08:37	04/14/15 15:06	
N-Nitrosodi-n-propylamine	ND	340	48 ug/Kg	₩	04/13/15 08:37	04/14/15 15:06	

ND

Pentachlorophenol	ND	870	71 ug/Kg	Д:	04/13/15 08:37	04/14/15 15:06
Phenanthrene	32 J	340	13 ug/Kg	₽	04/13/15 08:37	04/14/15 15:06
Phenol	ND	340	42 ug/Kg	₩	04/13/15 08:37	04/14/15 15:06
Pyrene	ND	340	15 ug/Kg	₩	04/13/15 08:37	04/14/15 15:06

340

17 ug/Kg

04/13/15 08:37

Surrogate	%Recovery Qualit	fier Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	70	25 - 135	04/13/15 08:37	04/14/15 15:06	1
2-Fluorobiphenyl	91	35 - 110	04/13/15 08:37	04/14/15 15:06	1
2-Fluorophenol	86	30 - 135	04/13/15 08:37	04/14/15 15:06	1
Nitrobenzene-d5	79	35 _ 110	04/13/15 08:37	04/14/15 15:06	1

TestAmerica Buffalo

04/14/15 15:06

3

5

7

9

10

12

14

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: CRS-1

Lab Sample ID: 480-77902-16

TestAmerica Job ID: 480-77902-1

Matrix: Solid Percent Solids: 98.2

Date Collected: 04/07/15 00:00 Date Received: 04/07/15 15:40

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Phenol-d5	90	30 - 130	04/13/15 08:37	04/14/15 15:06	1
Terphenyl-d14 (Surr)	82	30 - 130	04/13/15 08:37	04/14/15 15:06	1

Method: 8081B -	O	Destisias	/OO\
INIDITATION: XIIXIR -	Lirnannchinring	Paeticinae	/ (= (.)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		1.6	0.32	ug/Kg	\$	04/09/15 16:11	04/10/15 16:19	1
4,4'-DDE	ND		1.6	0.35	ug/Kg	₽	04/09/15 16:11	04/10/15 16:19	1
4,4'-DDT	ND		1.6	0.38	ug/Kg	₽	04/09/15 16:11	04/10/15 16:19	1
Aldrin	ND		1.6	0.40	ug/Kg	₽	04/09/15 16:11	04/10/15 16:19	1
alpha-BHC	ND		1.6	0.30	ug/Kg	₽	04/09/15 16:11	04/10/15 16:19	1
alpha-Chlordane	ND		1.6	0.82	ug/Kg	₽	04/09/15 16:11	04/10/15 16:19	1
beta-BHC	ND		1.6	0.30	ug/Kg	₽	04/09/15 16:11	04/10/15 16:19	1
delta-BHC	ND		1.6	0.31	ug/Kg	₽	04/09/15 16:11	04/10/15 16:19	1
Dieldrin	ND		1.6	0.39	ug/Kg	₽	04/09/15 16:11	04/10/15 16:19	1
Endosulfan I	ND		1.6	0.32	ug/Kg	\$	04/09/15 16:11	04/10/15 16:19	1
Endosulfan II	ND		1.6	0.30	ug/Kg	₽	04/09/15 16:11	04/10/15 16:19	1
Endosulfan sulfate	ND		1.6	0.31	ug/Kg	₽	04/09/15 16:11	04/10/15 16:19	1
Endrin	ND		1.6	0.33	ug/Kg	₽	04/09/15 16:11	04/10/15 16:19	1
Endrin aldehyde	ND		1.6	0.42	ug/Kg	₽	04/09/15 16:11	04/10/15 16:19	1
Endrin ketone	ND		1.6	0.40	ug/Kg	₽	04/09/15 16:11	04/10/15 16:19	1
gamma-BHC (Lindane)	ND		1.6	0.30	ug/Kg	₽	04/09/15 16:11	04/10/15 16:19	1
gamma-Chlordane	ND		1.6	0.52	ug/Kg	₽	04/09/15 16:11	04/10/15 16:19	1
Heptachlor	ND		1.6	0.36	ug/Kg	₽	04/09/15 16:11	04/10/15 16:19	1
Heptachlor epoxide	ND		1.6	0.42	ug/Kg	₽	04/09/15 16:11	04/10/15 16:19	1
Methoxychlor	ND		1.6	0.34	ug/Kg	₽	04/09/15 16:11	04/10/15 16:19	1
Toxaphene	ND		16	9.6	ug/Kg	₩	04/09/15 16:11	04/10/15 16:19	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	79		32 - 136	04/09/15 16:11	04/10/15 16:19	1
Tetrachloro-m-xylene	75		30 - 124	04/09/15 16:11	04/10/15 16:19	1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.21	0.042	mg/Kg	\	04/09/15 17:30	04/10/15 16:52	1
PCB-1221	ND		0.21	0.042	mg/Kg	₩	04/09/15 17:30	04/10/15 16:52	1
PCB-1232	ND		0.21	0.042	mg/Kg	₩	04/09/15 17:30	04/10/15 16:52	1
PCB-1242	ND		0.21	0.042	mg/Kg		04/09/15 17:30	04/10/15 16:52	1
PCB-1248	ND		0.21	0.042	mg/Kg	₩	04/09/15 17:30	04/10/15 16:52	1
PCB-1254	ND		0.21	0.10	mg/Kg	₩	04/09/15 17:30	04/10/15 16:52	1
PCB-1260	ND		0.21	0.10	mg/Kg	₽	04/09/15 17:30	04/10/15 16:52	1
PCB-1262	ND		0.21	0.10	mg/Kg	₩	04/09/15 17:30	04/10/15 16:52	1
PCB-1268	ND		0.21	0.10	mg/Kg	₩	04/09/15 17:30	04/10/15 16:52	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	100		46 - 175	04/09/15 17:30	04/10/15 16:52	1
DCB Decachlorobiphenyl	100		47 - 176	04/09/15 17:30	04/10/15 16:52	1

Method:	8151A	- Herbicides	(GC)
11100110			(,

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-T	ND —	17	5.3 ug/Kg	₩	04/08/15 11:38	04/17/15 07:49	1

TestAmerica Buffalo

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: CRS-1

Date Collected: 04/07/15 00:00

Date Received: 04/07/15 15:40

Lab Sample ID: 480-77902-16

Matrix: Solid Percent Solids: 98.2

TestAmerica Job ID: 480-77902-1

Method: 8151A - Herbicides (G	C) (Continued)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	ND		17	10	ug/Kg	\	04/08/15 11:38	04/17/15 07:49	1
Silvex (2,4,5-TP)	ND		17	6.0	ug/Kg	₽	04/08/15 11:38	04/17/15 07:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	69		39 - 120				04/08/15 11:38	04/17/15 07:49	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	2000		11.0	4.8	mg/Kg	<u></u>	04/09/15 15:30	04/10/15 21:57	1
Antimony	ND		16.5	0.44	mg/Kg	☼	04/09/15 15:30	04/10/15 21:57	1
Arsenic	3.4		2.2	0.44	mg/Kg	₩	04/09/15 15:30	04/11/15 18:39	1
Barium	16.8		0.55	0.12	mg/Kg	₽	04/09/15 15:30	04/11/15 18:39	1
Beryllium	0.12	J	0.22	0.031	mg/Kg	₽	04/09/15 15:30	04/10/15 21:57	1
Cadmium	0.81		0.22	0.033	mg/Kg	₽	04/09/15 15:30	04/10/15 21:57	1
Calcium	184000	В	275	18.1	mg/Kg	\$	04/09/15 15:30	04/13/15 11:34	5
Chromium	4.4		0.55	0.22	mg/Kg	₩	04/09/15 15:30	04/10/15 21:57	1
Cobalt	1.4		0.55	0.055	mg/Kg	₽	04/09/15 15:30	04/10/15 21:57	1
Copper	3.5	J	5.5	1.2	mg/Kg		04/09/15 15:30	04/13/15 11:34	5
Iron	6210		11.0	1.2	mg/Kg	₽	04/09/15 15:30	04/10/15 21:57	1
Lead	147	В	1.1	0.26	mg/Kg	₩	04/09/15 15:30	04/10/15 21:57	1
Magnesium	114000	В	110	5.1	mg/Kg	₽	04/09/15 15:30	04/13/15 11:34	5
Manganese	524	В	0.22	0.035	mg/Kg	₽	04/09/15 15:30	04/10/15 21:57	1
Nickel	4.1	J	5.5	0.25	mg/Kg	₩	04/09/15 15:30	04/10/15 21:57	1
Potassium	1270		33.0	22.0	mg/Kg	₽	04/09/15 15:30	04/10/15 21:57	1
Selenium	ND		4.4	0.44	mg/Kg	₩	04/09/15 15:30	04/10/15 21:57	1
Silver	ND		0.55	0.22	mg/Kg	₩	04/09/15 15:30	04/10/15 21:57	1
Sodium	242		154	14.3	mg/Kg	₽	04/09/15 15:30	04/10/15 21:57	1
Thallium	ND		6.6	0.33	mg/Kg	☼	04/09/15 15:30	04/10/15 21:57	1
Vanadium	7.7		0.55	0.12	mg/Kg	₽	04/09/15 15:30	04/10/15 21:57	1
Zinc	199	В	2.2	0.17	mg/Kg		04/09/15 15:30	04/10/15 21:57	1

Method: 7471B - Mercury in S		Waste (Manu	ıal Cold Vapo		que) Unit	D	Prepared	Analyzed	Dil Fac
Hg	ND		0.020	0.0083		<u></u>	04/16/15 14:35	04/16/15 16:02	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	ND		0.99	0.48	mg/Kg	<u> </u>	04/10/15 15:51	04/11/15 11:09	1

Project/Site: 132 Dingens

Client: Iyer Environmental Group, LLC

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid Prep Type: Total/NA

						(Acceptance Limits)
		12DCE	TOL	BFB	DBFM	
ab Sample ID	Client Sample ID	(64-126)	(71-125)	(72-126)	(60-140)	
80-77902-6	CHF-1A	91	102	98	98	
80-77902-6 MS	CHF-1A	91	104	103	98	
80-77902-6 MSD	CHF-1A	90	105	105	99	
80-77902-7	CHF-1B	90	101	98	97	
80-77902-8	CHF-2A	95	102	102	100	
80-77902-9	CHF-2B	88	102	98	96	
80-77902-10	CHF-3A	91	103	100	99	
80-77902-11	CHF-3B	95	103	100	99	
80-77902-12	CHF-4A	88	103	97	97	
80-77902-13	CHF-4B	92	103	97	97	
80-77902-14	CHF-5A	92	100	99	99	
80-77902-15	CHF-5B	92	100	97	99	
80-77902-15 MS	CHF-5B	72	106	98	90	
80-77902-15 MSD	CHF-5B	74	104	99	92	
80-77902-16	CRS-1	91	102	98	97	
.CS 480-234791/1-A	Lab Control Sample	89	103	103	95	
.CS 480-234987/1-A	Lab Control Sample	89	100	101	94	
/IB 480-234791/2-A	Method Blank	88	102	100	95	
/IB 480-234987/2-A	Method Blank	90	98	95	94	

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)							
		ТВР	FBP	2FP	NBZ	PHL	TPH		
Lab Sample ID	Client Sample ID	(25-135)	(35-110)	(30-135)	(35-110)	(30-130)	(30-130)		
480-77902-1	CHF-1	76	86	85	74	86	83		
480-77902-2	CHF-2	79	87	87	75	92	85		
480-77902-3	CHF-3	80	88	87	74	90	85		
480-77902-4	CHF-4	70	81	81	72	85	79		
480-77902-5	CHF-5	81	93	92	79	96	90		
480-77902-16	CRS-1	70	91	86	79	90	82		
LCS 200-86757/2-A	Lab Control Sample	81	77	66	59	78	82		
MB 200-86757/1-A	Method Blank	66	78	76	63	79	79		

Surrogate Legend

TBP = 2,4,6-Tribromophenol

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

PHL = Phenol-d5

TPH = Terphenyl-d14 (Surr)

TestAmerica Buffalo

Page 44 of 83

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-77902-1

Method: 8081B - Organochlorine Pesticides (GC)

Matrix: Solid Prep Type: Total/NA

		2020	TOY 0	Percent Surrogate Recovery (Acceptance Limits)
		DCB2	TCX2	
Lab Sample ID	Client Sample ID	(32-136)	(30-124)	
480-77902-1	CHF-1	84	83	
480-77902-1 MS	CHF-1	95	87	
480-77902-1 MSD	CHF-1	40	85	
480-77902-2	CHF-2	90	86	
480-77902-3	CHF-3	96	87	
480-77902-4	CHF-4	77	78	
480-77902-5	CHF-5	81	74	
480-77902-16	CRS-1	79	75	
LCS 480-235202/2-A	Lab Control Sample	94	92	
MB 480-235202/1-A	Method Blank	94	94	

Surrogate Legend

DCB = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		TCX2	DCB2	
Lab Sample ID	Client Sample ID	(46-175)	(47-176)	
480-77902-1	CHF-1	99	99	
480-77902-1 MS	CHF-1	112	113	
480-77902-1 MSD	CHF-1	118	113	
480-77902-2	CHF-2	105	94	
480-77902-3	CHF-3	100	99	
480-77902-4	CHF-4	94	85	
480-77902-5	CHF-5	99	96	
480-77902-16	CRS-1	100	100	
LCS 480-235225/2-A	Lab Control Sample	112	114	
MB 480-235225/1-A	Method Blank	106	101	

Surrogate Legend

TCX = Tetrachloro-m-xylene

DCB = DCB Decachlorobiphenyl

Method: 8151A - Herbicides (GC)

Matrix: Solid Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)						
		DCPA1						
Lab Sample ID	Client Sample ID	(39-120)						
480-77902-1	CHF-1	76						
480-77902-2	CHF-2	73						
480-77902-3	CHF-3	67						
480-77902-4	CHF-4	77						
480-77902-5	CHF-5	79						
480-77902-16	CRS-1	69						
LCS 480-234732/2-A	Lab Control Sample	77						
MB 480-234732/1-A	Method Blank	74						

Page 45 of 83

TestAmerica Buffalo

Surrogate Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Surrogate Legend

DCPA = 2,4-Dichlorophenylacetic acid

TestAmerica Job ID: 480-77902-1

4

3

4

5

7

0

10

11

13

4 -

QC Sample Results

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-77902-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-234791/2-A

Matrix: Solid

Analysis Batch: 234784

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 234791

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		4.9	0.36	ug/Kg		04/08/15 09:07	04/08/15 12:28	
1,1,2,2-Tetrachloroethane	ND		4.9	0.80	ug/Kg		04/08/15 09:07	04/08/15 12:28	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.9	1.1	ug/Kg		04/08/15 09:07	04/08/15 12:28	
1,1,2-Trichloroethane	ND		4.9	0.64	ug/Kg		04/08/15 09:07	04/08/15 12:28	
1,1-Dichloroethane	ND		4.9	0.60	ug/Kg		04/08/15 09:07	04/08/15 12:28	
1,1-Dichloroethene	ND		4.9	0.60	ug/Kg		04/08/15 09:07	04/08/15 12:28	
1,2,4-Trichlorobenzene	ND		4.9	0.30	ug/Kg		04/08/15 09:07	04/08/15 12:28	
1,2-Dibromo-3-Chloropropane	ND		4.9	2.5	ug/Kg		04/08/15 09:07	04/08/15 12:28	
1,2-Dichlorobenzene	ND		4.9	0.39	ug/Kg		04/08/15 09:07	04/08/15 12:28	
1,2-Dichloroethane	ND		4.9	0.25	ug/Kg		04/08/15 09:07	04/08/15 12:28	
1,2-Dichloropropane	ND		4.9	2.5	ug/Kg		04/08/15 09:07	04/08/15 12:28	
1,3-Dichlorobenzene	ND		4.9	0.25	ug/Kg		04/08/15 09:07	04/08/15 12:28	
1,4-Dichlorobenzene	ND		4.9	0.69	ug/Kg		04/08/15 09:07	04/08/15 12:28	
2-Hexanone	ND		25	2.5	ug/Kg		04/08/15 09:07	04/08/15 12:28	
Acetone	ND		25	4.2	ug/Kg		04/08/15 09:07	04/08/15 12:28	
Benzene	ND		4.9	0.24	ug/Kg		04/08/15 09:07	04/08/15 12:28	
Bromoform	ND		4.9	2.5	ug/Kg		04/08/15 09:07	04/08/15 12:28	
Bromomethane	ND		4.9	0.44	ug/Kg		04/08/15 09:07	04/08/15 12:28	
Carbon disulfide	ND		4.9	2.5	ug/Kg		04/08/15 09:07	04/08/15 12:28	
Carbon tetrachloride	ND		4.9	0.48	ug/Kg		04/08/15 09:07	04/08/15 12:28	
Chlorobenzene	ND		4.9		ug/Kg		04/08/15 09:07	04/08/15 12:28	
Dibromochloromethane	ND		4.9	0.63	ug/Kg		04/08/15 09:07	04/08/15 12:28	
Chloroethane	ND		4.9		ug/Kg		04/08/15 09:07	04/08/15 12:28	
Chloroform	ND		4.9		ug/Kg		04/08/15 09:07	04/08/15 12:28	
Chloromethane	ND		4.9	0.30	ug/Kg		04/08/15 09:07	04/08/15 12:28	
cis-1,2-Dichloroethene	ND		4.9		ug/Kg		04/08/15 09:07	04/08/15 12:28	
cis-1,3-Dichloropropene	ND		4.9	0.71	ug/Kg		04/08/15 09:07	04/08/15 12:28	
Cyclohexane	ND		4.9	0.69	ug/Kg		04/08/15 09:07	04/08/15 12:28	
Bromodichloromethane	ND		4.9		ug/Kg		04/08/15 09:07	04/08/15 12:28	
Dichlorodifluoromethane	ND		4.9	0.41			04/08/15 09:07	04/08/15 12:28	
Ethylbenzene	ND		4.9		ug/Kg		04/08/15 09:07	04/08/15 12:28	
1,2-Dibromoethane	ND		4.9		ug/Kg		04/08/15 09:07	04/08/15 12:28	
Isopropylbenzene	ND		4.9		ug/Kg		04/08/15 09:07	04/08/15 12:28	
Methyl acetate	ND		4.9		ug/Kg		04/08/15 09:07	04/08/15 12:28	
2-Butanone (MEK)	ND		25		ug/Kg		04/08/15 09:07	04/08/15 12:28	
4-Methyl-2-pentanone (MIBK)	ND		25		ug/Kg		04/08/15 09:07	04/08/15 12:28	
Methyl tert-butyl ether	ND		4.9		ug/Kg		04/08/15 09:07	04/08/15 12:28	
Methylcyclohexane	ND		4.9		ug/Kg		04/08/15 09:07	04/08/15 12:28	
Methylene Chloride	2.47	J	4.9		ug/Kg		04/08/15 09:07	04/08/15 12:28	
Styrene	ND		4.9		ug/Kg		04/08/15 09:07	04/08/15 12:28	
Tetrachloroethene	ND		4.9		ug/Kg		04/08/15 09:07	04/08/15 12:28	
Toluene	ND		4.9		ug/Kg		04/08/15 09:07	04/08/15 12:28	
trans-1,2-Dichloroethene	ND		4.9		ug/Kg		04/08/15 09:07	04/08/15 12:28	
trans-1,3-Dichloropropene	ND		4.9		ug/Kg		04/08/15 09:07	04/08/15 12:28	
Trichloroethene	ND		4.9		ug/Kg		04/08/15 09:07	04/08/15 12:28	
Trichlorofluoromethane	ND		4.9		ug/Kg		04/08/15 09:07	04/08/15 12:28	
Vinyl chloride	ND		4.9		ug/Kg ug/Kg		04/08/15 09:07	04/08/15 12:28	
Xylenes, Total	ND ND		9.9		ug/Kg ug/Kg		04/08/15 09:07	04/08/15 12:28	

TestAmerica Buffalo

Page 47 of 83

4/20/2015

Project/Site: 132 Dingens

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-234791/2-A

Client: Iyer Environmental Group, LLC

Matrix: Solid

Analysis Batch: 234784

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 234791

	IVID IVID	D			
Surrogate	%Recovery Qu	ualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	88	64 - 126	04/08/15 09:07	04/08/15 12:28	1
Toluene-d8 (Surr)	102	71 - 125	04/08/15 09:07	04/08/15 12:28	1
4-Bromofluorobenzene (Surr)	100	72 - 126	04/08/15 09:07	04/08/15 12:28	1
Dibromofluoromethane (Surr)	95	60 - 140	04/08/15 09:07	04/08/15 12:28	1

Lab Sample ID: LCS 480-234791/1-A

Matrix: Solid

Analysis Batch: 234784

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 234791

LCS LCS Spike %Rec. Added Result Qualifier %Rec Limits Analyte Unit 1,1-Dichloroethane 49.2 48.3 73 - 126 ug/Kg 98 1,1-Dichloroethene 49.2 49.1 ug/Kg 100 59 - 125 1,2-Dichlorobenzene 49.2 47.3 ug/Kg 96 75 - 120 1,2-Dichloroethane 49.2 42.4 ug/Kg 86 77 - 122 49.2 49.8 101 79 - 127 Benzene ug/Kg 49.2 50.1 76 - 124 Chlorobenzene ug/Kg 102 81 - 117 cis-1,2-Dichloroethene 49.2 48.9 ug/Kg 99 Ethylbenzene 49.2 48.8 ug/Kg 99 80 - 120 Methyl tert-butyl ether 49.2 47.9 ug/Kg 97 63 - 125 Tetrachloroethene 49.2 48.7 99 74 - 122 ug/Kg Toluene 49.2 49.9 101 74 - 128 ug/Kg trans-1,2-Dichloroethene 49.2 48.8 ug/Kg 99 78 - 126 Trichloroethene 49.2 45.3 ug/Kg 92 77 - 129

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	89		64 - 126
Toluene-d8 (Surr)	103		71 - 125
4-Bromofluorobenzene (Surr)	103		72 - 126
Dibromofluoromethane (Surr)	95		60 - 140

Lab Sample ID: 480-77902-6 MS

Matrix: Solid

Analysis Batch: 234784

Client Sample ID: CHF-1A Prep Type: Total/NA

Prep Batch: 234791

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	ND		54.0	51.5		ug/Kg	*	95	73 - 126	
1,1-Dichloroethene	ND		54.0	52.4		ug/Kg	₩	97	59 - 125	
1,2-Dichlorobenzene	ND		54.0	41.0		ug/Kg	₩	76	75 - 120	
1,2-Dichloroethane	ND		54.0	42.8		ug/Kg	₽	79	77 - 122	
Benzene	0.68	J	54.0	52.3		ug/Kg	₩	96	79 - 127	
Chlorobenzene	ND		54.0	47.6		ug/Kg	₩	88	76 - 124	
cis-1,2-Dichloroethene	ND		54.0	50.5		ug/Kg	₽	93	81 - 117	
Ethylbenzene	ND		54.0	46.9		ug/Kg	₩	87	80 - 120	
Methyl tert-butyl ether	ND		54.0	46.8		ug/Kg	₩	87	63 - 125	
Tetrachloroethene	ND		54.0	48.1		ug/Kg	*	89	74 - 122	
Toluene	0.92	J	54.0	50.9		ug/Kg	₩	93	74 - 128	
trans-1,2-Dichloroethene	ND		54.0	51.3		ug/Kg	₩	95	78 - 126	
Trichloroethene	ND		54.0	46.4		ug/Kg	₩.	86	77 - 129	

TestAmerica Buffalo

Page 48 of 83

Project/Site: 132 Dingens

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-77902-6 MS

Client: Iyer Environmental Group, LLC

Matrix: Solid

Analysis Batch: 234784

Client Sample ID: CHF-1A Prep Type: Total/NA

Prep Batch: 234791

MS MS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	91		64 - 126
Toluene-d8 (Surr)	104		71 - 125
4-Bromofluorobenzene (Surr)	103		72 - 126
Dibromofluoromethane (Surr)	98		60 - 140

Client Sample ID: CHF-1A

Prep Type: Total/NA

Prep Batch: 234791

Matrix: Solid

Lab Sample ID: 480-77902-6 MSD

Analysis Batch: 234784

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1-Dichloroethane	ND		53.8	50.6		ug/Kg	₽	94	73 - 126	2	30
1,1-Dichloroethene	ND		53.8	51.2		ug/Kg	₽	95	59 - 125	2	30
1,2-Dichlorobenzene	ND		53.8	41.2		ug/Kg	₽	76	75 - 120	0	30
1,2-Dichloroethane	ND		53.8	43.3		ug/Kg		80	77 - 122	1	30
Benzene	0.68	J	53.8	52.1		ug/Kg	₽	95	79 - 127	1	30
Chlorobenzene	ND		53.8	47.4		ug/Kg	₽	88	76 - 124	0	30
cis-1,2-Dichloroethene	ND		53.8	50.6		ug/Kg	₽	94	81 - 117	0	30
Ethylbenzene	ND		53.8	46.4		ug/Kg	₽	86	80 - 120	1	30
Methyl tert-butyl ether	ND		53.8	47.5		ug/Kg	₽	88	63 - 125	1	30
Tetrachloroethene	ND		53.8	46.8		ug/Kg	₽	87	74 - 122	3	30
Toluene	0.92	J	53.8	50.0		ug/Kg	₽	91	74 - 128	2	30
trans-1,2-Dichloroethene	ND		53.8	50.1		ug/Kg	₽	93	78 - 126	2	30
Trichloroethene	ND		53.8	46.3		ug/Kg		86	77 - 129	0	30

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	90		64 - 126
Toluene-d8 (Surr)	105		71 - 125
4-Bromofluorobenzene (Surr)	105		72 - 126
Dibromofluoromethane (Surr)	99		60 - 140

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 234987

Analysis Batch: 234974 MB

Lab Sample ID: MB 480-234987/2-A

Matrix: Solid

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		4.9	0.36	ug/Kg		04/08/15 23:10	04/09/15 00:42	1
1,1,2,2-Tetrachloroethane	ND		4.9	0.80	ug/Kg		04/08/15 23:10	04/09/15 00:42	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.9	1.1	ug/Kg		04/08/15 23:10	04/09/15 00:42	1
1,1,2-Trichloroethane	ND		4.9	0.64	ug/Kg		04/08/15 23:10	04/09/15 00:42	1
1,1-Dichloroethane	ND		4.9	0.60	ug/Kg		04/08/15 23:10	04/09/15 00:42	1
1,1-Dichloroethene	ND		4.9	0.60	ug/Kg		04/08/15 23:10	04/09/15 00:42	1
1,2,4-Trichlorobenzene	ND		4.9	0.30	ug/Kg		04/08/15 23:10	04/09/15 00:42	1
1,2-Dibromo-3-Chloropropane	ND		4.9	2.5	ug/Kg		04/08/15 23:10	04/09/15 00:42	1
1,2-Dichlorobenzene	ND		4.9	0.38	ug/Kg		04/08/15 23:10	04/09/15 00:42	1
1,2-Dichloroethane	ND		4.9	0.25	ug/Kg		04/08/15 23:10	04/09/15 00:42	1
1,2-Dichloropropane	ND		4.9	2.5	ug/Kg		04/08/15 23:10	04/09/15 00:42	1
1,3-Dichlorobenzene	ND		4.9	0.25	ug/Kg		04/08/15 23:10	04/09/15 00:42	1
1 4-Dichlorobenzene	ND		4.9	0.69	ua/Ka		04/08/15 23:10	04/09/15 00:42	1

TestAmerica Buffalo

Page 49 of 83

2

5

9

10

12

1 *1*

15

1 (

Project/Site: 132 Dingens

Client: Iyer Environmental Group, LLC

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-234987/2-A Client Sample ID: Method Blank **Matrix: Solid Prep Type: Total/NA Prep Batch: 234987**

Analysis Batch: 234974 MR MR

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Hexanone	ND		25	2.5	ug/Kg		04/08/15 23:10	04/09/15 00:42	1
Acetone	ND		25	4.1	ug/Kg		04/08/15 23:10	04/09/15 00:42	1
Benzene	ND		4.9	0.24	ug/Kg		04/08/15 23:10	04/09/15 00:42	1
Bromoform	ND		4.9	2.5	ug/Kg		04/08/15 23:10	04/09/15 00:42	1
Bromomethane	ND		4.9	0.44	ug/Kg		04/08/15 23:10	04/09/15 00:42	1
Carbon disulfide	ND		4.9	2.5	ug/Kg		04/08/15 23:10	04/09/15 00:42	1
Carbon tetrachloride	ND		4.9	0.48	ug/Kg		04/08/15 23:10	04/09/15 00:42	1
Chlorobenzene	ND		4.9	0.65	ug/Kg		04/08/15 23:10	04/09/15 00:42	1
Dibromochloromethane	ND		4.9	0.63	ug/Kg		04/08/15 23:10	04/09/15 00:42	1
Chloroethane	ND		4.9	1.1	ug/Kg		04/08/15 23:10	04/09/15 00:42	1
Chloroform	ND		4.9	0.30	ug/Kg		04/08/15 23:10	04/09/15 00:42	1
Chloromethane	ND		4.9	0.30	ug/Kg		04/08/15 23:10	04/09/15 00:42	1
cis-1,2-Dichloroethene	ND		4.9	0.63	ug/Kg		04/08/15 23:10	04/09/15 00:42	1
cis-1,3-Dichloropropene	ND		4.9	0.71	ug/Kg		04/08/15 23:10	04/09/15 00:42	1
Cyclohexane	ND		4.9	0.69	ug/Kg		04/08/15 23:10	04/09/15 00:42	1
Bromodichloromethane	ND		4.9	0.66	ug/Kg		04/08/15 23:10	04/09/15 00:42	1
Dichlorodifluoromethane	ND		4.9	0.41	ug/Kg		04/08/15 23:10	04/09/15 00:42	1
Ethylbenzene	ND		4.9	0.34			04/08/15 23:10	04/09/15 00:42	1
1,2-Dibromoethane	ND		4.9	0.63	ug/Kg		04/08/15 23:10	04/09/15 00:42	1
Isopropylbenzene	ND		4.9	0.74	ug/Kg		04/08/15 23:10	04/09/15 00:42	1
Methyl acetate	ND		4.9	3.0	ug/Kg		04/08/15 23:10	04/09/15 00:42	1
2-Butanone (MEK)	ND		25	1.8	ug/Kg		04/08/15 23:10	04/09/15 00:42	1
4-Methyl-2-pentanone (MIBK)	ND		25	1.6	ug/Kg		04/08/15 23:10	04/09/15 00:42	1
Methyl tert-butyl ether	ND		4.9	0.48	ug/Kg		04/08/15 23:10	04/09/15 00:42	1
Methylcyclohexane	ND		4.9	0.75	ug/Kg		04/08/15 23:10	04/09/15 00:42	1
Methylene Chloride	ND		4.9	2.3	ug/Kg		04/08/15 23:10	04/09/15 00:42	1
Styrene	ND		4.9		ug/Kg		04/08/15 23:10	04/09/15 00:42	1
Tetrachloroethene	ND		4.9	0.66	ug/Kg		04/08/15 23:10	04/09/15 00:42	1
Toluene	ND		4.9	0.37	ug/Kg		04/08/15 23:10	04/09/15 00:42	1
trans-1,2-Dichloroethene	ND		4.9	0.51	ug/Kg		04/08/15 23:10	04/09/15 00:42	1
trans-1,3-Dichloropropene	ND		4.9	2.2	ug/Kg		04/08/15 23:10	04/09/15 00:42	1
Trichloroethene	ND		4.9		ug/Kg		04/08/15 23:10	04/09/15 00:42	1
Trichlorofluoromethane	ND		4.9		ug/Kg		04/08/15 23:10	04/09/15 00:42	1
Vinyl chloride	ND		4.9		ug/Kg		04/08/15 23:10	04/09/15 00:42	1
Xylenes, Total	ND		9.8		ug/Kg		04/08/15 23:10	04/09/15 00:42	1

	MB MB				
Surrogate	%Recovery Qualifie	er Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	90	64 - 126	04/08/15 23:10	04/09/15 00:42	1
Toluene-d8 (Surr)	98	71 - 125	04/08/15 23:10	04/09/15 00:42	1
4-Bromofluorobenzene (Surr)	95	72 - 126	04/08/15 23:10	04/09/15 00:42	1
Dibromofluoromethane (Surr)	94	60 - 140	04/08/15 23:10	04/09/15 00:42	1

Lab Sample ID: LCS 480-234987/1-A

Matrix: Solid

Analysis Batch: 234974							Prep	Batch: 2349	01
	Spike	LCS	LCS				%Rec.		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
1,1-Dichloroethane	49.7	51.6		ug/Kg		104	73 - 126		

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Page 50 of 83

Project/Site: 132 Dingens

Client: Iyer Environmental Group, LLC

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-234987/1-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA Analysis Batch: 234974 Prep Batch: 234987

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	49.7	54.2		ug/Kg		109	59 - 125	
1,2-Dichlorobenzene	49.7	48.6		ug/Kg		98	75 - 120	
1,2-Dichloroethane	49.7	43.2		ug/Kg		87	77 - 122	
Benzene	49.7	53.4		ug/Kg		107	79 - 127	
Chlorobenzene	49.7	52.2		ug/Kg		105	76 - 124	
cis-1,2-Dichloroethene	49.7	52.3		ug/Kg		105	81 - 117	
Ethylbenzene	49.7	52.0		ug/Kg		105	80 - 120	
Methyl tert-butyl ether	49.7	47.5		ug/Kg		96	63 - 125	
Tetrachloroethene	49.7	53.8		ug/Kg		108	74 - 122	
Toluene	49.7	52.2		ug/Kg		105	74 - 128	
trans-1,2-Dichloroethene	49.7	52.9		ug/Kg		107	78 - 126	
Trichloroethene	49.7	49.8		ug/Kg		100	77 - 129	

LCS LCS Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 89 64 - 126 Toluene-d8 (Surr) 100 71 - 125 4-Bromofluorobenzene (Surr) 101 72 - 126 60 - 140 Dibromofluoromethane (Surr) 94

Lab Sample ID: 480-77902-15 MS

Matrix: Solid

Toluene

trans-1,2-Dichloroethene

Trichloroethene

Analysis Batch: 234974

 ,										
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	ND		55.2	55.5		ug/Kg	₩	101	73 - 126	
1,1-Dichloroethene	ND		55.2	58.5		ug/Kg	₽	106	59 - 125	
1,2-Dichlorobenzene	ND		55.2	48.0		ug/Kg	₽	87	75 - 120	
1,2-Dichloroethane	ND	F1	55.2	38.2	F1	ug/Kg	₽	69	77 - 122	
Benzene	0.49	J	55.2	57.4		ug/Kg	₽	103	79 - 127	
Chlorobenzene	ND		55.2	55.0		ug/Kg	₽	100	76 - 124	
cis-1,2-Dichloroethene	ND		55.2	54.7		ug/Kg	₽	99	81 - 117	
Ethylbenzene	ND		55.2	56.9		ug/Kg	₽	103	80 - 120	
Methyl tert-butyl ether	ND		55.2	38.5		ug/Kg	₽	70	63 - 125	
Tetrachloroethene	ND		55.2	58.8		ug/Kg	₽	106	74 - 122	

58.8

57.8

53.5

ug/Kg

ug/Kg

ug/Kg

₩

Ü

105

105

97

74 - 128

78 - 126

77 - 129

55.2

55.2

55.2

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	72		64 - 126
Toluene-d8 (Surr)	106		71 - 125
4-Bromofluorobenzene (Surr)	98		72 - 126
Dibromofluoromethane (Surr)	90		60 - 140

0.64 J

ND

ND

TestAmerica Buffalo

Client Sample ID: CHF-5B

Prep Type: Total/NA

Prep Batch: 234987

Project/Site: 132 Dingens

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-77902-15 MSD

Client: Iyer Environmental Group, LLC

Matrix: Solid

Analysis Batch: 234974

Client Sample ID: CHF-5B Prep Type: Total/NA **Prep Batch: 234987**

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
1,1-Dichloroethane	ND		55.4	54.4		ug/Kg	<u> </u>	98	73 - 126	2	30	
1,1-Dichloroethene	ND		55.4	56.1		ug/Kg	₽	101	59 - 125	4	30	
1,2-Dichlorobenzene	ND		55.4	48.1		ug/Kg	₽	87	75 - 120	0	30	
1,2-Dichloroethane	ND	F1	55.4	40.1	F1	ug/Kg		72	77 - 122	5	30	
Benzene	0.49	J	55.4	55.9		ug/Kg	₽	100	79 - 127	2	30	
Chlorobenzene	ND		55.4	54.2		ug/Kg	₽	98	76 - 124	2	30	
cis-1,2-Dichloroethene	ND		55.4	53.7		ug/Kg	₽	97	81 - 117	2	30	
Ethylbenzene	ND		55.4	54.7		ug/Kg	₽	99	80 - 120	4	30	
Methyl tert-butyl ether	ND		55.4	42.4		ug/Kg	₽	77	63 - 125	10	30	
Tetrachloroethene	ND		55.4	55.8		ug/Kg	₽	101	74 - 122	5	30	
Toluene	0.64	J	55.4	56.8		ug/Kg	₽	101	74 - 128	3	30	
trans-1,2-Dichloroethene	ND		55.4	55.2		ug/Kg	₩	100	78 - 126	5	30	
Trichloroethene	ND		55.4	52.0		ug/Kg	₽	94	77 - 129	3	30	

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	74		64 - 126
Toluene-d8 (Surr)	104		71 - 125
4-Bromofluorobenzene (Surr)	99		72 - 126
Dibromofluoromethane (Surr)	92		60 - 140

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 200-86757/1-A

Matrix: Solid

Client Sample ID: Method Blank Prep Type: Total/NA

Analysis Batch: 86803								Prep Batch	ո։ 86757
		МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	ND		830	34	ug/Kg		04/13/15 08:37	04/14/15 11:38	1
2,4,6-Trichlorophenol	ND		330	34	ug/Kg		04/13/15 08:37	04/14/15 11:38	1
2,4-Dichlorophenol	ND		330	33	ug/Kg		04/13/15 08:37	04/14/15 11:38	1
2,4-Dimethylphenol	ND		330	52	ug/Kg		04/13/15 08:37	04/14/15 11:38	1
2,4-Dinitrophenol	ND		830	140	ug/Kg		04/13/15 08:37	04/14/15 11:38	1
2,4-Dinitrotoluene	ND		330	24	ug/Kg		04/13/15 08:37	04/14/15 11:38	1
2,6-Dinitrotoluene	ND		330	30	ug/Kg		04/13/15 08:37	04/14/15 11:38	1
2-Chloronaphthalene	ND		330	43	ug/Kg		04/13/15 08:37	04/14/15 11:38	1
2-Chlorophenol	ND		330	34	ug/Kg		04/13/15 08:37	04/14/15 11:38	1
2-Methylnaphthalene	ND		330	15	ug/Kg		04/13/15 08:37	04/14/15 11:38	1
2-Methylphenol	ND		330	40	ug/Kg		04/13/15 08:37	04/14/15 11:38	1
2-Nitroaniline	ND		830	37	ug/Kg		04/13/15 08:37	04/14/15 11:38	1
2-Nitrophenol	ND		330	37	ug/Kg		04/13/15 08:37	04/14/15 11:38	1
3 & 4 Methylphenol	ND		670	74	ug/Kg		04/13/15 08:37	04/14/15 11:38	1
3,3'-Dichlorobenzidine	ND		330	48	ug/Kg		04/13/15 08:37	04/14/15 11:38	1
3-Nitroaniline	ND		830	38	ug/Kg		04/13/15 08:37	04/14/15 11:38	1
4,6-Dinitro-2-methylphenol	ND		830	97	ug/Kg		04/13/15 08:37	04/14/15 11:38	1
4-Bromophenyl phenyl ether	ND		330	18	ug/Kg		04/13/15 08:37	04/14/15 11:38	1
4-Chloro-3-methylphenol	ND		330	40	ug/Kg		04/13/15 08:37	04/14/15 11:38	1
4-Chloroaniline	ND		330	32	ug/Kg		04/13/15 08:37	04/14/15 11:38	1
4-Officioarilline	NB		000	02	ug/itg		0-1/10/10 00.07	04/14/10 11:00	

TestAmerica Buffalo

Page 52 of 83

4/20/2015

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

MR MR

Lab Sample ID: MB 200-86757/1-A

Matrix: Solid

Analysis Batch: 86803

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 86757

		MB							
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
4-Chlorophenyl phenyl ether	ND		330	15	ug/Kg		04/13/15 08:37	04/14/15 11:38	1
4-Nitroaniline	ND		830	32	ug/Kg		04/13/15 08:37	04/14/15 11:38	1
4-Nitrophenol	ND		830	84	ug/Kg		04/13/15 08:37	04/14/15 11:38	1
Acenaphthene	ND		330	13	ug/Kg		04/13/15 08:37	04/14/15 11:38	1
Acenaphthylene	ND		330	15	ug/Kg		04/13/15 08:37	04/14/15 11:38	1
Acetophenone	ND		330	16	ug/Kg		04/13/15 08:37	04/14/15 11:38	1
Anthracene	ND		330	14	ug/Kg		04/13/15 08:37	04/14/15 11:38	1
Atrazine	ND		330	16	ug/Kg		04/13/15 08:37	04/14/15 11:38	1
Benzaldehyde	ND		330	16	ug/Kg		04/13/15 08:37	04/14/15 11:38	1
Benzo(a)anthracene	ND		330	13	ug/Kg		04/13/15 08:37	04/14/15 11:38	1
Benzo(a)pyrene	ND		330	12	ug/Kg		04/13/15 08:37	04/14/15 11:38	1
Benzo(b)fluoranthene	ND		330	23	ug/Kg		04/13/15 08:37	04/14/15 11:38	1
Benzo(g,h,i)perylene	ND		330		ug/Kg		04/13/15 08:37	04/14/15 11:38	1
Benzo(k)fluoranthene	ND		330		ug/Kg		04/13/15 08:37	04/14/15 11:38	1
Biphenyl	ND		330		ug/Kg		04/13/15 08:37	04/14/15 11:38	1
bis (2-chloroisopropyl) ether	ND		330		ug/Kg		04/13/15 08:37	04/14/15 11:38	1
Bis(2-chloroethoxy)methane	ND		330		ug/Kg		04/13/15 08:37	04/14/15 11:38	1
Bis(2-chloroethyl)ether	ND		330		ug/Kg		04/13/15 08:37	04/14/15 11:38	1
Bis(2-ethylhexyl) phthalate	43.4	J	330		ug/Kg		04/13/15 08:37	04/14/15 11:38	1
Butyl benzyl phthalate	ND		330		ug/Kg		04/13/15 08:37	04/14/15 11:38	 1
Caprolactam	ND		330		ug/Kg ug/Kg		04/13/15 08:37	04/14/15 11:38	1
Carbazole	ND ND		330		ug/Kg ug/Kg		04/13/15 08:37	04/14/15 11:38	1
Chrysene	ND		330		ug/Kg ug/Kg		04/13/15 08:37	04/14/15 11:38	' 1
•	ND ND		330					04/14/15 11:38	1
Dibenz(a,h)anthracene Dibenzofuran	ND ND		330		ug/Kg		04/13/15 08:37		
					ug/Kg		04/13/15 08:37	04/14/15 11:38	1
Diethyl phthalate	75.4	J	330		ug/Kg		04/13/15 08:37	04/14/15 11:38	1
Dimethyl phthalate	ND		330		ug/Kg		04/13/15 08:37	04/14/15 11:38	1
Di-n-butyl phthalate	ND		330		ug/Kg		04/13/15 08:37	04/14/15 11:38	1
Di-n-octyl phthalate	ND		330		ug/Kg		04/13/15 08:37	04/14/15 11:38	1
Fluoranthene	ND		330		ug/Kg		04/13/15 08:37	04/14/15 11:38	1
Fluorene	ND		330		ug/Kg		04/13/15 08:37	04/14/15 11:38	
Hexachlorobenzene	ND		330		ug/Kg		04/13/15 08:37	04/14/15 11:38	1
Hexachlorobutadiene	ND		330		ug/Kg		04/13/15 08:37	04/14/15 11:38	1
Hexachlorocyclopentadiene	ND		330		ug/Kg		04/13/15 08:37	04/14/15 11:38	
Hexachloroethane	ND		330	34	ug/Kg		04/13/15 08:37	04/14/15 11:38	1
Indeno(1,2,3-cd)pyrene	ND		330	14	ug/Kg		04/13/15 08:37	04/14/15 11:38	1
Isophorone	ND		330	42	ug/Kg		04/13/15 08:37	04/14/15 11:38	1
Naphthalene	ND		330	15	ug/Kg		04/13/15 08:37	04/14/15 11:38	1
Nitrobenzene	ND		330	41	ug/Kg		04/13/15 08:37	04/14/15 11:38	1
N-Nitrosodi-n-propylamine	ND		330	46	ug/Kg		04/13/15 08:37	04/14/15 11:38	1
N-Nitrosodiphenylamine	ND		330	16	ug/Kg		04/13/15 08:37	04/14/15 11:38	1
Pentachlorophenol	ND		830	68	ug/Kg		04/13/15 08:37	04/14/15 11:38	1
Phenanthrene	ND		330	12	ug/Kg		04/13/15 08:37	04/14/15 11:38	1
Phenol	ND		330	40	ug/Kg		04/13/15 08:37	04/14/15 11:38	1
Pyrene	ND		330	14	ug/Kg		04/13/15 08:37	04/14/15 11:38	1
		440							
Sumanata	MB	MB	l imair-				Duan	A m a l : 1	D# 5-
Surrogate 2,4,6-Tribromophenol	%Recovery 66	Qualifier	25 ₋ 135				Prepared 04/13/15 08:37	Analyzed 04/14/15 11:38	Dil Fac

TestAmerica Buffalo

Page 53 of 83

4/20/2015

Project/Site: 132 Dingens

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 200-86757/1-A

Client: Iyer Environmental Group, LLC

Matrix: Solid

Analysis Batch: 86803

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 86757

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	78		35 - 110	04/13/15 08:37	04/14/15 11:38	1
2-Fluorophenol	76		30 - 135	04/13/15 08:37	04/14/15 11:38	1
Nitrobenzene-d5	63		35 _ 110	04/13/15 08:37	04/14/15 11:38	1
Phenol-d5	79		30 - 130	04/13/15 08:37	04/14/15 11:38	1
Terphenyl-d14 (Surr)	79		30 - 130	04/13/15 08:37	04/14/15 11:38	1

Lab Sample ID: LCS 200-86757/2-A

Matrix: Solid

Analysis Batch: 86803

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 86757

7 in any one Battern Court								
-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,4-Dinitrotoluene	1670	1180		ug/Kg		71	50 - 130	
2-Chlorophenol	1670	1150		ug/Kg		69	65 - 110	
4-Chloro-3-methylphenol	1670	1220		ug/Kg		73	60 - 120	
4-Nitrophenol	3330	2210		ug/Kg		66	40 - 140	
Acenaphthene	1670	1190		ug/Kg		71	65 _ 110	
Bis(2-ethylhexyl) phthalate	1670	1300		ug/Kg		78	55 - 130	
Fluorene	1670	1240		ug/Kg		74	65 - 110	
Hexachloroethane	1670	1070		ug/Kg		64	60 - 105	
N-Nitrosodi-n-propylamine	1670	1240		ug/Kg		74	65 - 120	
Pentachlorophenol	3330	2220		ug/Kg		67	40 - 115	
Phenol	1670	1200		ug/Kg		72	60 - 110	
Pyrene	1670	1190		ug/Kg		71	60 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol	81		25 - 135
2-Fluorobiphenyl	77		35 _ 110
2-Fluorophenol	66		30 - 135
Nitrobenzene-d5	59		35 - 110
Phenol-d5	78		30 - 130
Terphenyl-d14 (Surr)	82		30 - 130

Method: 8081B - Organochlorine Pesticides (GC)

Lab Sample ID: MB 480-235202/1-A

Matrix: Solid

Analysis Batch: 235402

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 235202

MB	MB							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND		1.7	0.32	ug/Kg		04/09/15 16:11	04/10/15 13:39	1
ND		1.7	0.35	ug/Kg		04/09/15 16:11	04/10/15 13:39	1
0.645	J	1.7	0.39	ug/Kg		04/09/15 16:11	04/10/15 13:39	1
ND		1.7	0.41	ug/Kg		04/09/15 16:11	04/10/15 13:39	1
ND		1.7	0.30	ug/Kg		04/09/15 16:11	04/10/15 13:39	1
ND		1.7	0.83	ug/Kg		04/09/15 16:11	04/10/15 13:39	1
ND		1.7	0.30	ug/Kg		04/09/15 16:11	04/10/15 13:39	1
ND		1.7	0.31	ug/Kg		04/09/15 16:11	04/10/15 13:39	1
	Result ND ND 0.645 ND ND ND ND ND	ND 0.645 J ND ND ND ND	Result Qualifier RL ND 1.7 ND 1.7 0.645 J 1.7 ND 1.7 ND 1.7 ND 1.7 ND 1.7 ND 1.7 ND 1.7	Result Qualifier RL MDL ND 1.7 0.32 ND 1.7 0.35 0.645 J 1.7 0.39 ND 1.7 0.41 ND 1.7 0.30 ND 1.7 0.83 ND 1.7 0.30	Result Qualifier RL MDL Unit ND 1.7 0.32 ug/Kg ND 1.7 0.35 ug/Kg 0.645 J 1.7 0.39 ug/Kg ND 1.7 0.41 ug/Kg ND 1.7 0.30 ug/Kg ND 1.7 0.83 ug/Kg ND 1.7 0.30 ug/Kg	Result Qualifier RL MDL Unit D ND 1.7 0.32 ug/Kg ug/Kg ND 1.7 0.35 ug/Kg ND 1.7 0.41 ug/Kg ND 1.7 0.30 ug/Kg ND 1.7 0.83 ug/Kg ND 1.7 0.30 ug/Kg ND 1.7 0.30 ug/Kg	Result Qualifier RL MDL Unit D Prepared ND 1.7 0.32 ug/Kg 04/09/15 16:11 ND 1.7 0.35 ug/Kg 04/09/15 16:11 ND 1.7 0.39 ug/Kg 04/09/15 16:11 ND 1.7 0.41 ug/Kg 04/09/15 16:11 ND 1.7 0.30 ug/Kg 04/09/15 16:11 ND 1.7 0.83 ug/Kg 04/09/15 16:11 ND 1.7 0.30 ug/Kg 04/09/15 16:11	Result Qualifier RL MDL Unit D Prepared Analyzed ND 1.7 0.32 ug/Kg 04/09/15 16:11 04/10/15 13:39 ND 1.7 0.35 ug/Kg 04/09/15 16:11 04/10/15 13:39 ND 1.7 0.41 ug/Kg 04/09/15 16:11 04/10/15 13:39 ND 1.7 0.30 ug/Kg 04/09/15 16:11 04/10/15 13:39 ND 1.7 0.83 ug/Kg 04/09/15 16:11 04/10/15 13:39 ND 1.7 0.83 ug/Kg 04/09/15 16:11 04/10/15 13:39 ND 1.7 0.83 ug/Kg 04/09/15 16:11 04/10/15 13:39

TestAmerica Buffalo

Page 54 of 83

Project/Site: 132 Dingens

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: MB 480-235202/1-A

Client: Iyer Environmental Group, LLC

Matrix: Solid

Analysis Batch: 235402

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 235202

_									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dieldrin	ND		1.7	0.40	ug/Kg		04/09/15 16:11	04/10/15 13:39	1
Endosulfan I	ND		1.7	0.32	ug/Kg		04/09/15 16:11	04/10/15 13:39	1
Endosulfan II	ND		1.7	0.30	ug/Kg		04/09/15 16:11	04/10/15 13:39	1
Endosulfan sulfate	ND		1.7	0.31	ug/Kg		04/09/15 16:11	04/10/15 13:39	1
Endrin	ND		1.7	0.33	ug/Kg		04/09/15 16:11	04/10/15 13:39	1
Endrin aldehyde	ND		1.7	0.42	ug/Kg		04/09/15 16:11	04/10/15 13:39	1
Endrin ketone	ND		1.7	0.41	ug/Kg		04/09/15 16:11	04/10/15 13:39	1
gamma-BHC (Lindane)	ND		1.7	0.30	ug/Kg		04/09/15 16:11	04/10/15 13:39	1
gamma-Chlordane	ND		1.7	0.53	ug/Kg		04/09/15 16:11	04/10/15 13:39	1
Heptachlor	ND		1.7	0.36	ug/Kg		04/09/15 16:11	04/10/15 13:39	1
Heptachlor epoxide	ND		1.7	0.43	ug/Kg		04/09/15 16:11	04/10/15 13:39	1
Methoxychlor	ND		1.7	0.34	ug/Kg		04/09/15 16:11	04/10/15 13:39	1
Toxaphene	ND		17	9.7	ug/Kg		04/09/15 16:11	04/10/15 13:39	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fa
DCB Decachlorobiphenyl	94		32 - 136	04/09/15 16:11	04/10/15 13:39	
Tetrachloro-m-xylene	94		30 - 124	04/09/15 16:11	04/10/15 13:39	

Lab Sample ID: LCS 480-235202/2-A

Matrix: Solid

Analysis Batch: 235402

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 235202

7 many 610 2 attorn 200 102	.							
	Spike		LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
4,4'-DDD	16.5	17.4		ug/Kg		106	52 - 138	
4,4'-DDE	16.5	15.4		ug/Kg		94	52 - 131	
4,4'-DDT	16.5	17.0		ug/Kg		103	50 - 131	
Aldrin	16.5	14.4		ug/Kg		88	35 - 120	
alpha-BHC	16.5	15.7		ug/Kg		95	49 - 120	
alpha-Chlordane	16.5	15.9		ug/Kg		96	40 - 133	
beta-BHC	16.5	15.9		ug/Kg		96	52 - 127	
delta-BHC	16.5	16.1		ug/Kg		98	45 - 123	
Dieldrin	16.5	16.8		ug/Kg		102	50 - 131	
Endosulfan I	16.5	15.1		ug/Kg		92	43 - 121	
Endosulfan II	16.5	15.8		ug/Kg		96	48 - 134	
Endosulfan sulfate	16.5	17.1		ug/Kg		104	46 - 144	
Endrin	16.5	16.6		ug/Kg		101	46 - 134	
Endrin aldehyde	16.5	16.3		ug/Kg		99	31 - 137	
Endrin ketone	16.5	17.5		ug/Kg		106	44 - 140	
gamma-BHC (Lindane)	16.5	16.8		ug/Kg		102	50 - 120	
gamma-Chlordane	16.5	15.5		ug/Kg		94	52 - 129	
Heptachlor	16.5	16.4		ug/Kg		99	51 - 121	
Heptachlor epoxide	16.5	15.8		ug/Kg		96	52 - 129	
Methoxychlor	16.5	20.7		ug/Kg		126	50 - 149	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
DCB Decachlorobiphenyl	94	32 - 136
Tetrachloro-m-vylene	92	30 124

TestAmerica Buffalo

Page 55 of 83

Project/Site: 132 Dingens

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: 480-77902-1 MS

Client: Iyer Environmental Group, LLC

Matrix: Solid

Analysis Batch: 235402

Client Sample ID: CHF-1

Prep Type: Total/NA **Prep Batch: 235202**

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
4,4'-DDD	ND		17.8	17.5		ug/Kg	\	98	26 - 162
4,4'-DDE	0.43	J	17.8	14.6		ug/Kg	₩	80	34 - 138
4,4'-DDT	0.65	JB	17.8	13.6		ug/Kg	₩	72	43 - 131
Aldrin	ND		17.8	15.7		ug/Kg	₽	88	37 - 125
alpha-BHC	ND		17.8	16.1		ug/Kg	₩	90	39 - 117
alpha-Chlordane	ND		17.8	15.8		ug/Kg	₩	89	29 - 141
beta-BHC	ND		17.8	15.2		ug/Kg	₩.	85	36 - 139
delta-BHC	0.45	J	17.8	16.1		ug/Kg	₩	88	23 - 132
Dieldrin	ND		17.8	17.5		ug/Kg	₩	98	38 - 135
Endosulfan I	ND		17.8	15.1		ug/Kg	₽	85	39 - 128
Endosulfan II	ND		17.8	16.2		ug/Kg	₩	91	24 - 134
Endosulfan sulfate	ND		17.8	17.5		ug/Kg	₩	98	19 - 137
Endrin	ND		17.8	16.8		ug/Kg	₩	94	41 - 147
Endrin aldehyde	0.67	J	17.8	14.6		ug/Kg	₩	78	20 - 120
Endrin ketone	ND		17.8	18.0		ug/Kg	₩	101	31 - 139
gamma-BHC (Lindane)	ND		17.8	17.5		ug/Kg	₩	98	50 - 120
gamma-Chlordane	ND		17.8	15.0		ug/Kg	₩	79	31 - 140
Heptachlor	ND		17.8	16.9		ug/Kg	₩	95	42 - 128
Heptachlor epoxide	ND		17.8	16.1		ug/Kg	₩.	90	26 - 141
Methoxychlor	ND		17.8	21.9		ug/Kg	₩	123	44 - 157

MS MS

Surrogate %Recovery Qualifier Limits DCB Decachlorobiphenyl 95 32 - 136 30 - 124 Tetrachloro-m-xylene 87

Lab Sample ID: 480-77902-1 MSD

Matrix: Solid

Analysis Batch: 235402

Client Sample ID: CHF-1
Prep Type: Total/NA
Pren Batch: 235202

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
4,4'-DDD	ND		18.2	17.2		ug/Kg	₽	94	26 - 162	2	21
4,4'-DDE	0.43	J	18.2	14.9		ug/Kg	₽	80	34 - 138	2	18
4,4'-DDT	0.65	JB	18.2	14.4		ug/Kg	₩	76	43 - 131	6	25
Aldrin	ND		18.2	15.8		ug/Kg	₽	87	37 - 125	0	12
alpha-BHC	ND		18.2	16.0		ug/Kg	₽	88	39 - 117	0	15
alpha-Chlordane	ND		18.2	15.8		ug/Kg	₩	87	29 - 141	0	23
beta-BHC	ND		18.2	15.6		ug/Kg	₩	86	36 - 139	3	19
delta-BHC	0.45	J	18.2	16.1		ug/Kg	₽	86	23 - 132	0	14
Dieldrin	ND		18.2	17.1		ug/Kg	₩	94	38 - 135	3	12
Endosulfan I	ND		18.2	15.3		ug/Kg	₽	84	39 - 128	1	18
Endosulfan II	ND		18.2	15.9		ug/Kg	₩	88	24 - 134	2	26
Endosulfan sulfate	ND		18.2	16.7		ug/Kg	₽	92	19 - 137	4	35
Endrin	ND		18.2	16.5		ug/Kg	₽	91	41 - 147	2	20
Endrin aldehyde	0.67	J	18.2	14.9		ug/Kg	₩	78	20 - 120	2	47
Endrin ketone	ND		18.2	17.7		ug/Kg	₩	98	31 - 139	1	37
gamma-BHC (Lindane)	ND		18.2	17.4		ug/Kg	₩	96	50 - 120	1	12
gamma-Chlordane	ND		18.2	15.4		ug/Kg	₩	80	31 - 140	3	15
Heptachlor	ND		18.2	16.9		ug/Kg	₩	93	42 - 128	0	22

TestAmerica Buffalo

Page 56 of 83

Project/Site: 132 Dingens

Client: Iyer Environmental Group, LLC

Analysis Batch: 235425

DCB Decachlorobiphenyl

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: 480-77902-1 MSE)			Client Sample ID: CH	IF-1
Matrix: Solid				Prep Type: Total	/NA
Analysis Batch: 235402				Prep Batch: 235	202
	Camania Camania	Cuilea	MCD MCD	0/ Daa	DDD

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Heptachlor epoxide	ND		18.2	16.1		ug/Kg	*	89	26 - 141	0	15	
Methoxychlor	ND		18.2	18.7		ug/Kg	₩	103	44 - 157	16	24	

_		MSD	
Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	40		32 - 136
Tetrachloro-m-xylene	85		30 - 124

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

114

Lab Sample ID: MB 480-235225/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 235425 **Prep Batch: 235225**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.23	0.045	mg/Kg		04/09/15 17:30	04/10/15 13:42	1
PCB-1221	ND		0.23	0.045	mg/Kg		04/09/15 17:30	04/10/15 13:42	1
PCB-1232	ND		0.23	0.045	mg/Kg		04/09/15 17:30	04/10/15 13:42	1
PCB-1242	ND		0.23	0.045	mg/Kg		04/09/15 17:30	04/10/15 13:42	1
PCB-1248	ND		0.23	0.045	mg/Kg		04/09/15 17:30	04/10/15 13:42	1
PCB-1254	ND		0.23	0.11	mg/Kg		04/09/15 17:30	04/10/15 13:42	1
PCB-1260	ND		0.23	0.11	mg/Kg		04/09/15 17:30	04/10/15 13:42	1
PCB-1262	ND		0.23	0.11	mg/Kg		04/09/15 17:30	04/10/15 13:42	1
PCB-1268	ND		0.23	0.11	mg/Kg		04/09/15 17:30	04/10/15 13:42	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	106		46 - 175	04/09/15 17:30	04/10/15 13:42	1
DCB Decachlorobiphenyl	101		47 - 176	04/09/15 17:30	04/10/15 13:42	1

Lab Sample ID: LCS 480-235225/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit Limits %Rec PCB-1016 1.99 2.61 mg/Kg 131 51 - 185

PCB-1260			1.99	2.57	mg/Kg	129	61 - 184	
	LCS	LCS						
Surrogate	%Recovery	Qualifier	Limits					
Tetrachloro-m-xylene	112		46 - 175					

47 - 176

Lab Sample ID: 480-77902-1 MS Client Sample ID: CHF-1 Matrix: Solid Prep Type: Total/NA Analysis Batch: 235425 Prep Batch: 235225 Sample Sample Spike MS MS %Rec.

Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits 77 PCB-1016 ND 2.35 3.05 130 42 - 159 mg/Kg PCB-1260 ND 2.35 47 - 153 3.00 mg/Kg 128

TestAmerica Buffalo

Prep Batch: 235225

Page 57 of 83

Project/Site: 132 Dingens

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: 480-77902-1 MS

Client: Iyer Environmental Group, LLC

Matrix: Solid

Analysis Batch: 235425

Client Sample ID: CHF-1 Prep Type: Total/NA

Prep Batch: 235225

MS MS

Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	112		46 - 175
DCB Decachlorobiphenyl	113		47 - 176

Lab Sample ID: 480-77902-1 MSD Client Sample ID: CHF-1 **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 235425

Prep Batch: 235225 MSD MSD Sample Sample Spike %Rec. **RPD** Qualifier Added Qualifier D RPD Analyte Result Result Unit %Rec Limits Limit ₩ PCB-1016 ND 2.53 3.30 130 42 - 159 8 50 mg/Kg Ü PCB-1260 ND 2.53 3.21 mg/Kg 127 47 - 153 6 50

MSD MSD

Result

ND

ND

Qualifier

Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	118		46 - 175
DCB Decachlorobiphenyl	113		47 - 176

Method: 8151A - Herbicides (GC)

Lab Sample ID: MB 480-234732/1-A

Matrix: Solid

Analyte

2,4,5-T

2,4-D

Analysis Batch: 236267

мв мв

Client Sample ID: Method Blank Prep Type: Total/NA

Prepared

04/08/15 07:40

04/08/15 07:40

83

Prep Batch: 234732

Analyzed

04/15/15 11:06 04/15/15 11:06

04/08/15 07:40 04/15/15 11:06 Silvex (2,4,5-TP) ND 17 6.0 ug/Kg

MB MB

%Recovery Limits Prepared Dil Fac Surrogate Qualifier Analyzed 39 - 120 2,4-Dichlorophenylacetic acid 74 04/08/15 07:40 04/15/15 11:06

54.8

RL

17

17

MDL Unit

ug/Kg

ug/Kg

5.3 ug/Kg

Lab Sample ID: LCS 480-234732/2-A

Matrix: Solid

Silvex (2,4,5-TP)

Analysis Batch: 236267

Client Sample ID: Lab Control Sample

42 - 149

Prep Type: Total/NA

Prep Batch: 234732

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits

2,4,5-T 65.8 51.9 ug/Kg 79 42 - 127 2,4-D 65.8 53.0 80 47 - 130 ug/Kg

65.8

LCS LCS Surrogate %Recovery Qualifier Limits 2,4-Dichlorophenylacetic acid 39 - 120 77

TestAmerica Buffalo

Dil Fac

Project/Site: 132 Dingens

Method: 6010C - Metals (ICP)

Client: Iyer Environmental Group, LLC

Lab Sample ID: MB 480-235162/1-A

Matrix: Solid Analysis Batch: 235545 Client Sample ID: Method Blank Prep Type: Total/NA **Prep Batch: 235162**

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum	ND		10.2	4.5	mg/Kg		04/09/15 15:30	04/10/15 21:19	
Antimony	ND		15.3	0.41	mg/Kg		04/09/15 15:30	04/10/15 21:19	
Barium	ND		0.51	0.11	mg/Kg		04/09/15 15:30	04/10/15 21:19	
Beryllium	ND		0.20	0.029	mg/Kg		04/09/15 15:30	04/10/15 21:19	
Cadmium	ND		0.20	0.031	mg/Kg		04/09/15 15:30	04/10/15 21:19	
Calcium	11.65	J	50.9	3.4	mg/Kg		04/09/15 15:30	04/10/15 21:19	
Chromium	ND		0.51	0.20	mg/Kg		04/09/15 15:30	04/10/15 21:19	
Cobalt	ND		0.51	0.051	mg/Kg		04/09/15 15:30	04/10/15 21:19	
Copper	ND		1.0	0.21	mg/Kg		04/09/15 15:30	04/10/15 21:19	
Iron	ND		10.2	1.1	mg/Kg		04/09/15 15:30	04/10/15 21:19	
Lead	0.321	J	1.0	0.24	mg/Kg		04/09/15 15:30	04/10/15 21:19	
Magnesium	3.89	J	20.4	0.94	mg/Kg		04/09/15 15:30	04/10/15 21:19	
Manganese	0.0744	J	0.20	0.033	mg/Kg		04/09/15 15:30	04/10/15 21:19	
Nickel	ND		5.1	0.23	mg/Kg		04/09/15 15:30	04/10/15 21:19	
Potassium	ND		30.6	20.4	mg/Kg		04/09/15 15:30	04/10/15 21:19	
Selenium	ND		4.1	0.41	mg/Kg		04/09/15 15:30	04/10/15 21:19	
Silver	ND		0.51	0.20	mg/Kg		04/09/15 15:30	04/10/15 21:19	
Sodium	ND		143	13.2	mg/Kg		04/09/15 15:30	04/10/15 21:19	
Thallium	ND		6.1	0.31	mg/Kg		04/09/15 15:30	04/10/15 21:19	
Vanadium	ND		0.51	0.11	mg/Kg		04/09/15 15:30	04/10/15 21:19	
Zinc	0.472	J	2.0	0.16	mg/Kg		04/09/15 15:30	04/10/15 21:19	

Lab Sample ID: MB 480-235162/1-A

Matrix: Solid

Analysis Batch: 235726

MB MB

Analyte Result Qualifier RL MDL Unit Prepared Analyzed 0.41 mg/Kg ND 2.0 04/09/15 15:30 04/11/15 18:01 Arsenic

Lab Sample ID: LCSSRM 480-235162/2-A

Matrix: Solid

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA **Prep Batch: 235162**

Analysis Batch: 235545							Prep Ba	atch: 235162
	Spike	LCSSRM	LCSSRM				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum	8740	7680		mg/Kg		87.9	41.6 - 157.	
							9	
Antimony	108	88.06		mg/Kg		81.5	23.0 - 254.	
							6	
Beryllium	149	105.0		mg/Kg		70.5	67.0 - 111.	
							4	
Cadmium	152	115.7		mg/Kg		76.1	73.0 - 126.	
							3	
Calcium	6400	4883		mg/Kg		76.3	73.9 - 125.	
							9	
Chromium	117	90.36		mg/Kg		77.2	69.7 - 129.	
							9	
Cobalt	68.7	56.86		mg/Kg		82.8	74.4 - 125.	
							8	
Copper	68.6	56.01		mg/Kg		81.7	73.2 - 129.	
							2	

TestAmerica Buffalo

Page 59 of 83

Project/Site: 132 Dingens

Client: Iyer Environmental Group, LLC

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCSSRM 480-235162/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA Analysis Batch: 235545 Prep Batch: 235162

Analysis Batch: 235545							Prep Batc	n: 23516.
	Spike	LCSSRM	LCSSRM				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Iron	12300	9979		mg/Kg		81.1	30.5 - 169.	
							9	
Lead	254	200.4		mg/Kg		78.9	75.6 - 124.	
							8	
Magnesium	3600	2808		mg/Kg		78.0	68.3 - 131.	
							7	
Manganese	563	436.6		mg/Kg		77.6	77.4 - 122.	
	<u></u>						6	
Nickel	315	261.3		mg/Kg		83.0	74.3 - 126.	
D	2040	0447		11.4		70.5	7	
Potassium	3040	2417		mg/Kg		79.5	62.5 - 137.	
Calanium	160	100.0				76.0	2	
Selenium	162	123.2		mg/Kg		76.0	67.3 - 132.	
Silver	44.3	34.98		mg/Kg		79.0	66.4 - 133.	
Oliver	44.0	04.00		mg/rtg		75.0	9	
Sodium	746	569.4		mg/Kg		76.3	ŭ	
				99			4	
Thallium	259	208.4		mg/Kg		80.5	69.5 - 130.	
							5	
Vanadium	116	97.74		mg/Kg		84.3	67.5 - 131.	
							9	
Zinc	306	248.5		mg/Kg		81.2	71.9 - 128.	
							4	

Lab Sample ID: LCSSRM 480-235162/2-A

Matrix: Solid

Analysis Ratch: 235726

Analysis Batch: 235726							Prep	batch: 2	35162
	Spike	LCSSRM	LCSSRM				%Rec.		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Arsenic	 151	113.4		mg/Kg		75.1	70.9 - 129.		
							8		
Barium	262	207.7		mg/Kg		79.3	73.7 - 126.		
							2		

Lab Sample ID: 480-77902-1 MS

Matrix: Solid

Analysis Batch: 235545									Prep Batch: 235162
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aluminum	2900	F1	2120	7397	F1	mg/Kg	₩	212	75 - 125
Antimony	ND		42.4	37.08		mg/Kg	₩	87	75 - 125
Barium	12.3	*	42.4	57.87		mg/Kg	₩	107	75 - 125
Beryllium	0.19	J	42.4	41.25		mg/Kg	₩.	97	75 - 125
Cadmium	0.21		42.4	41.65		mg/Kg	₩	98	75 - 125
Calcium	52600	В	2120	55120	4	mg/Kg	₩	121	75 - 125
Chromium	4.1		42.4	45.30		mg/Kg	₩	97	75 - 125
Cobalt	1.9		42.4	44.47		mg/Kg	₩	100	75 - 125
Copper	7.4		42.4	51.53		mg/Kg	₩	104	75 - 125
Iron	5510	F1	2120	8307	F1	mg/Kg	₩	132	75 - 125
Lead	7.2	В	42.4	50.07		mg/Kg	₩	101	75 - 125
Magnesium	24300	В	2120	25250	4	mg/Kg	₩	43	75 - 125

TestAmerica Buffalo

Page 60 of 83

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

QC Sample Results

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-77902-1

Method: 6010C - Metals (ICP) (Continued) Lab Sample ID: 480-77902-1 MS

Matrix: Solid

Analysis Batch: 235545

Client Sample ID: CHF-1 Prep Type: Total/NA **Prep Batch: 235162**

-	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Manganese	239	В	42.4	277.9	4	mg/Kg	₩	91	75 - 125
Nickel	4.2	J	42.4	45.57		mg/Kg	\$	97	75 - 125
Potassium	787	F1	2120	3747	F1	mg/Kg	₩	139	75 - 125
Selenium	ND		42.4	38.54		mg/Kg	\$	91	75 - 125
Silver	ND	F2	10.6	13.26		mg/Kg	₩	125	75 - 125
Sodium	173		2130	2320		mg/Kg	₩	101	75 - 125
Thallium	ND		42.4	40.04		mg/Kg	₩.	94	75 - 125
Vanadium	9.0		42.4	56.10		mg/Kg	₽	111	75 - 125
Zinc	68.4	B F1	42.4	105.0		mg/Kg	₽	86	75 - 125

Lab Sample ID: 480-77902-1 MS

Matrix: Solid

Analysis Batch: 235726

Client Sample ID: CHF-1 Prep Type: Total/NA **Prep Batch: 235162**

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits 1.5 J 42.4 ₩ 92 Arsenic 40.39 75 - 125 mg/Kg Barium 12.8 42.4 59.38 mg/Kg ₩ 110 75 - 125

Lab Sample ID: 480-77902-1 MSD

Matrix: Solid

Client Sample ID: CHF-1 Prep Type: Total/NA

Analysis Batch: 235545									Prep I	Batch: 2	35162
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	2900	F1	2220	6359	F1	mg/Kg	₩	156	75 - 125	15	20
Antimony	ND		44.5	33.61		mg/Kg	₽	76	75 - 125	10	20
Barium	12.3	*	44.5	50.98		mg/Kg	₽	87	75 - 125	13	20
Beryllium	0.19	J	44.5	37.35		mg/Kg	₽	84	75 - 125	10	20
Cadmium	0.21		44.5	37.78		mg/Kg	₽	84	75 - 125	10	20
Calcium	52600	В	2220	49350	4	mg/Kg	₽	-144	75 - 125	11	20
Chromium	4.1		44.5	41.34		mg/Kg	₽	84	75 - 125	9	20
Cobalt	1.9		44.5	39.89		mg/Kg	₽	85	75 - 125	11	20
Copper	7.4		44.5	46.09		mg/Kg	₽	87	75 - 125	11	20
Iron	5510	F1	2220	7235		mg/Kg	₽	78	75 - 125	14	20
Lead	7.2	В	44.5	43.98		mg/Kg	₩	83	75 - 125	13	20
Magnesium	24300	В	2220	23250	4	mg/Kg	₽	-49	75 - 125	8	20
Manganese	239	В	44.5	246.7	4	mg/Kg	₩	17	75 - 125	12	20
Nickel	4.2	J	44.5	41.13		mg/Kg	₽	83	75 - 125	10	20
Potassium	787	F1	2230	3281		mg/Kg	₩	112	75 - 125	13	20
Selenium	ND		44.5	35.59		mg/Kg	₩.	80	75 - 125	8	20
Silver	ND	F2	11.1	9.79	F2	mg/Kg	₽	88	75 - 125	30	20
Sodium	173		2230	2066		mg/Kg	₽	85	75 - 125	12	20
Thallium	ND		44.5	36.36		mg/Kg	₽	82	75 - 125	10	20
Vanadium	9.0		44.5	50.23		mg/Kg	₽	93	75 - 125	11	20
Zinc	68.4	B F1	44.5	98.04	F1	mg/Kg	₩	67	75 - 125	7	20

Prep Type: Total/NA

Prep Batch: 236601

Prep Batch: 236601

Client Sample ID: CHF-1

Prep Type: Total/NA

Prep Batch: 235507

Project/Site: 132 Dingens

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 480-77902-1

Client: Iyer Environmental Group, LLC

Matrix: Solid

Analysis Batch: 235726

-1 MSD			Client Sample ID:	CHF-1
			Prep Type: To	otal/NA
			Prep Batch:	235162
	 • "	MOD MOD	0/ 5	

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Arsenic	1.5	J	44.5	36.53		mg/Kg		79	75 - 125	10	20	
Barium	12.8		44.5	52.26		mg/Kg	₽	89	75 - 125	13	20	

Method: 7471B - Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)

Lab Sample ID: MB 480-236601/1-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 236693

MB MB

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 0.020 04/16/15 14:35 04/16/15 15:41 Hg ND 0.0081 mg/Kg

Lab Sample ID: LCSSRM 480-236601/2-A Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 236693

Spike LCSSRM LCSSRM %Rec. babbA Result Qualifier Limits Analyte Unit D %Rec Hg 5.76 5.21 mg/Kg 90.5 51.0 - 148.

Lab Sample ID: 480-77902-1 MS Client Sample ID: CHF-1 **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 236693

Prep Batch: 236601 MS MS Sample Sample Spike %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits 77 Hg ND 0.340 0.330 97 80 - 120 mg/Kg

Lab Sample ID: 480-77902-1 MSD

Matrix: Solid

Analysis Batch: 236693

Prep Batch: 236601 Sample Sample Spike MSD MSD %Rec. RPD Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit Hg ND 0.365 0.349 80 - 120 mg/Kg 20

Method: 9012B - Cyanide, Total andor Amenable

Lab Sample ID: MB 480-235507/1-A Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 235618

мв мв

Analyte Result Qualifier RL MDL Unit Prepared Dil Fac Analyzed ი 98 04/10/15 15:51 Cyanide, Total 0.895 J 0.47 mg/Kg 04/11/15 10:42

Lab Sample ID: LCS 480-235507/2-A ^5 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 235618

Prep Batch: 235507 Spike LCS LCS %Rec. Added Unit D Limits

Analyte Result Qualifier %Rec Cyanide, Total 101 98.83 98 29 - 122 mg/Kg

TestAmerica Buffalo

4/20/2015

Page 62 of 83

QC Sample Results

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-77902-1

Method: 9012B - Cyanide, Total andor Amenable (Continued)

Lab Sample ID: 480-77902-3 DU

Matrix: Solid

Analysis Batch: 235618

Client Sample ID: CHF-3

Prep Type: Total/NA

Prep Batch: 235507

Lab Sample ID: MB 480-236126/1-A

Matrix: Solid

Client Sample ID: Method Blank
Prep Type: Total/NA

Matrix: Solid Prep Type: Total/NA
Analysis Batch: 236347 Prep Batch: 236126

 MB MB

 Analyte
 Result Cyanide, Total
 Qualifier
 RL ND
 MDL Unit Unit MDL Unit MDL MR
 D Prepared MR
 Analyzed MR
 Dil Fac Dil

Lab Sample ID: LCS 480-236126/2-A ^5

Client Sample ID: Lab Control Sample
Matrix: Solid

Prep Type: Total/NA

Analysis Batch: 236347

Spike

LCS LCS

Prep Batch: 236126

**Rec.

 Analyte
 Added Cyanide, Total
 Result 101
 Qualifier 92.61
 Unit mg/Kg
 D 92 29 - 122
 %Rec Limits 29 - 122

2

Δ

5

6

7

8

9

10

12

13

4 5

QC Association Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-77902-1

GC/MS VOA

Analysis Batch: 234784

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-77902-6	CHF-1A	Total/NA	Solid	8260C	234791
480-77902-6 MS	CHF-1A	Total/NA	Solid	8260C	234791
480-77902-6 MSD	CHF-1A	Total/NA	Solid	8260C	234791
480-77902-7	CHF-1B	Total/NA	Solid	8260C	234791
480-77902-8	CHF-2A	Total/NA	Solid	8260C	234791
480-77902-9	CHF-2B	Total/NA	Solid	8260C	234791
480-77902-10	CHF-3A	Total/NA	Solid	8260C	234791
LCS 480-234791/1-A	Lab Control Sample	Total/NA	Solid	8260C	234791
MB 480-234791/2-A	Method Blank	Total/NA	Solid	8260C	234791

Prep Batch: 234791

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
480-77902-6	CHF-1A	Total/NA	Solid	5035	
480-77902-6 MS	CHF-1A	Total/NA	Solid	5035	
480-77902-6 MSD	CHF-1A	Total/NA	Solid	5035	
480-77902-7	CHF-1B	Total/NA	Solid	5035	
480-77902-8	CHF-2A	Total/NA	Solid	5035	
480-77902-9	CHF-2B	Total/NA	Solid	5035	
480-77902-10	CHF-3A	Total/NA	Solid	5035	
480-77902-11	CHF-3B	Total/NA	Solid	5035	
480-77902-12	CHF-4A	Total/NA	Solid	5035	
480-77902-13	CHF-4B	Total/NA	Solid	5035	
480-77902-14	CHF-5A	Total/NA	Solid	5035	
LCS 480-234791/1-A	Lab Control Sample	Total/NA	Solid	5035	
MB 480-234791/2-A	Method Blank	Total/NA	Solid	5035	

Analysis Batch: 234974

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-77902-11	CHF-3B	Total/NA	Solid	8260C	234791
480-77902-12	CHF-4A	Total/NA	Solid	8260C	234791
480-77902-13	CHF-4B	Total/NA	Solid	8260C	234791
480-77902-14	CHF-5A	Total/NA	Solid	8260C	234791
480-77902-15	CHF-5B	Total/NA	Solid	8260C	234987
480-77902-15 MS	CHF-5B	Total/NA	Solid	8260C	234987
480-77902-15 MSD	CHF-5B	Total/NA	Solid	8260C	234987
480-77902-16	CRS-1	Total/NA	Solid	8260C	234987
LCS 480-234987/1-A	Lab Control Sample	Total/NA	Solid	8260C	234987
MB 480-234987/2-A	Method Blank	Total/NA	Solid	8260C	234987

Prep Batch: 234987

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-77902-15	CHF-5B	Total/NA	Solid	5035	<u> </u>
480-77902-15 MS	CHF-5B	Total/NA	Solid	5035	
480-77902-15 MSD	CHF-5B	Total/NA	Solid	5035	
480-77902-16	CRS-1	Total/NA	Solid	5035	
LCS 480-234987/1-A	Lab Control Sample	Total/NA	Solid	5035	
MB 480-234987/2-A	Method Blank	Total/NA	Solid	5035	

Page 64 of 83

Client: Iyer Environmental Group, LLC

TestAmerica Job ID: 480-77902-1

Project/Site: 132 Dingens

GC/MS Semi VOA

Prep Batch: 86757

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-77902-1	CHF-1	Total/NA	Solid	3550C	
480-77902-2	CHF-2	Total/NA	Solid	3550C	
480-77902-3	CHF-3	Total/NA	Solid	3550C	
480-77902-4	CHF-4	Total/NA	Solid	3550C	
480-77902-5	CHF-5	Total/NA	Solid	3550C	
480-77902-16	CRS-1	Total/NA	Solid	3550C	
LCS 200-86757/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 200-86757/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 86803

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-77902-1	CHF-1	Total/NA	Solid	8270D	86757
480-77902-2	CHF-2	Total/NA	Solid	8270D	86757
480-77902-3	CHF-3	Total/NA	Solid	8270D	86757
480-77902-4	CHF-4	Total/NA	Solid	8270D	86757
480-77902-5	CHF-5	Total/NA	Solid	8270D	86757
480-77902-16	CRS-1	Total/NA	Solid	8270D	86757
LCS 200-86757/2-A	Lab Control Sample	Total/NA	Solid	8270D	86757
MB 200-86757/1-A	Method Blank	Total/NA	Solid	8270D	86757

GC Semi VOA

Prep Batch: 234732

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-77902-1	CHF-1	Total/NA	Solid	8151A	_
480-77902-2	CHF-2	Total/NA	Solid	8151A	
480-77902-3	CHF-3	Total/NA	Solid	8151A	
480-77902-4	CHF-4	Total/NA	Solid	8151A	
480-77902-5	CHF-5	Total/NA	Solid	8151A	
480-77902-16	CRS-1	Total/NA	Solid	8151A	
LCS 480-234732/2-A	Lab Control Sample	Total/NA	Solid	8151A	
MB 480-234732/1-A	Method Blank	Total/NA	Solid	8151A	

Prep Batch: 235202

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
480-77902-1	CHF-1	Total/NA	Solid	3550C	_
480-77902-1 MS	CHF-1	Total/NA	Solid	3550C	
480-77902-1 MSD	CHF-1	Total/NA	Solid	3550C	
480-77902-2	CHF-2	Total/NA	Solid	3550C	
480-77902-3	CHF-3	Total/NA	Solid	3550C	
480-77902-4	CHF-4	Total/NA	Solid	3550C	
480-77902-5	CHF-5	Total/NA	Solid	3550C	
480-77902-16	CRS-1	Total/NA	Solid	3550C	
LCS 480-235202/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-235202/1-A	Method Blank	Total/NA	Solid	3550C	

Prep Batch: 235225

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-77902-1	CHF-1	Total/NA	Solid	3550C	
480-77902-1 MS	CHF-1	Total/NA	Solid	3550C	

TestAmerica Buffalo

Page 65 of 83

-

4

6

ŏ

9

11

12

1 1

46

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

GC Semi VOA (Continued)

Prep Batch: 235225 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-77902-1 MSD	CHF-1	Total/NA	Solid	3550C	
480-77902-2	CHF-2	Total/NA	Solid	3550C	
480-77902-3	CHF-3	Total/NA	Solid	3550C	
480-77902-4	CHF-4	Total/NA	Solid	3550C	
480-77902-5	CHF-5	Total/NA	Solid	3550C	
480-77902-16	CRS-1	Total/NA	Solid	3550C	
LCS 480-235225/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-235225/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 235402

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-77902-1	CHF-1	Total/NA	Solid	8081B	235202
480-77902-1 MS	CHF-1	Total/NA	Solid	8081B	235202
480-77902-1 MSD	CHF-1	Total/NA	Solid	8081B	235202
480-77902-2	CHF-2	Total/NA	Solid	8081B	235202
480-77902-3	CHF-3	Total/NA	Solid	8081B	235202
480-77902-4	CHF-4	Total/NA	Solid	8081B	235202
480-77902-5	CHF-5	Total/NA	Solid	8081B	235202
480-77902-16	CRS-1	Total/NA	Solid	8081B	235202
LCS 480-235202/2-A	Lab Control Sample	Total/NA	Solid	8081B	235202
MB 480-235202/1-A	Method Blank	Total/NA	Solid	8081B	235202

Analysis Batch: 235425

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-77902-1	CHF-1	Total/NA	Solid	8082A	235225
480-77902-1 MS	CHF-1	Total/NA	Solid	8082A	235225
480-77902-1 MSD	CHF-1	Total/NA	Solid	8082A	235225
480-77902-2	CHF-2	Total/NA	Solid	8082A	235225
480-77902-3	CHF-3	Total/NA	Solid	8082A	235225
480-77902-4	CHF-4	Total/NA	Solid	8082A	235225
480-77902-5	CHF-5	Total/NA	Solid	8082A	235225
480-77902-16	CRS-1	Total/NA	Solid	8082A	235225
LCS 480-235225/2-A	Lab Control Sample	Total/NA	Solid	8082A	235225
MB 480-235225/1-A	Method Blank	Total/NA	Solid	8082A	235225

Analysis Batch: 236267

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-234732/2-A	Lab Control Sample	Total/NA	Solid	8151A	234732
MB 480-234732/1-A	Method Blank	Total/NA	Solid	8151A	234732

Analysis Batch: 236680

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-77902-1	CHF-1	Total/NA	Solid	8151A	234732
480-77902-2	CHF-2	Total/NA	Solid	8151A	234732
480-77902-3	CHF-3	Total/NA	Solid	8151A	234732
480-77902-4	CHF-4	Total/NA	Solid	8151A	234732
480-77902-5	CHF-5	Total/NA	Solid	8151A	234732
480-77902-16	CRS-1	Total/NA	Solid	8151A	234732

Page 66 of 83

Client: Iyer Environmental Group, LLC Project/Site: 132 Dingens

Metals

Prep Batch: 235162

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-77902-1	CHF-1	Total/NA	Solid	3050B	
480-77902-1 MS	CHF-1	Total/NA	Solid	3050B	
480-77902-1 MSD	CHF-1	Total/NA	Solid	3050B	
480-77902-2	CHF-2	Total/NA	Solid	3050B	
480-77902-3	CHF-3	Total/NA	Solid	3050B	
480-77902-4	CHF-4	Total/NA	Solid	3050B	
480-77902-5	CHF-5	Total/NA	Solid	3050B	
480-77902-16	CRS-1	Total/NA	Solid	3050B	
LCSSRM 480-235162/2-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 480-235162/1-A	Method Blank	Total/NA	Solid	3050B	

Analysis Batch: 235545

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-77902-1	CHF-1	Total/NA	Solid	6010C	235162
480-77902-1 MS	CHF-1	Total/NA	Solid	6010C	235162
480-77902-1 MSD	CHF-1	Total/NA	Solid	6010C	235162
480-77902-2	CHF-2	Total/NA	Solid	6010C	235162
480-77902-3	CHF-3	Total/NA	Solid	6010C	235162
480-77902-4	CHF-4	Total/NA	Solid	6010C	235162
480-77902-5	CHF-5	Total/NA	Solid	6010C	235162
480-77902-16	CRS-1	Total/NA	Solid	6010C	235162
LCSSRM 480-235162/2-A	Lab Control Sample	Total/NA	Solid	6010C	235162
MB 480-235162/1-A	Method Blank	Total/NA	Solid	6010C	235162

Analysis Batch: 235726

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-77902-1	CHF-1	Total/NA	Solid	6010C	235162
480-77902-1 MS	CHF-1	Total/NA	Solid	6010C	235162
480-77902-1 MSD	CHF-1	Total/NA	Solid	6010C	235162
480-77902-2	CHF-2	Total/NA	Solid	6010C	235162
480-77902-3	CHF-3	Total/NA	Solid	6010C	235162
480-77902-4	CHF-4	Total/NA	Solid	6010C	235162
480-77902-5	CHF-5	Total/NA	Solid	6010C	235162
480-77902-16	CRS-1	Total/NA	Solid	6010C	235162
LCSSRM 480-235162/2-A	Lab Control Sample	Total/NA	Solid	6010C	235162
MB 480-235162/1-A	Method Blank	Total/NA	Solid	6010C	235162

Analysis Batch: 235835

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-77902-16	CRS-1	Total/NA	Solid	6010C	235162

Prep Batch: 236601

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-77902-1	CHF-1	Total/NA	Solid	7471B	
480-77902-1 MS	CHF-1	Total/NA	Solid	7471B	
480-77902-1 MSD	CHF-1	Total/NA	Solid	7471B	
480-77902-2	CHF-2	Total/NA	Solid	7471B	
480-77902-3	CHF-3	Total/NA	Solid	7471B	
480-77902-4	CHF-4	Total/NA	Solid	7471B	
480-77902-5	CHF-5	Total/NA	Solid	7471B	
480-77902-16	CRS-1	Total/NA	Solid	7471B	

TestAmerica Buffalo

4/20/2015

Page 67 of 83

QC Association Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-77902-1

Metals (Continued)

Prep Batch: 236601 (Continued)

١	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
	LCSSRM 480-236601/2-A	Lab Control Sample	Total/NA	Solid	7471B	
١	MB 480-236601/1-A	Method Blank	Total/NA	Solid	7471B	

Analysis Batch: 236693

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-77902-1	CHF-1	Total/NA	Solid	7471B	236601
480-77902-1 MS	CHF-1	Total/NA	Solid	7471B	236601
480-77902-1 MSD	CHF-1	Total/NA	Solid	7471B	236601
480-77902-2	CHF-2	Total/NA	Solid	7471B	236601
480-77902-3	CHF-3	Total/NA	Solid	7471B	236601
480-77902-4	CHF-4	Total/NA	Solid	7471B	236601
480-77902-5	CHF-5	Total/NA	Solid	7471B	236601
480-77902-16	CRS-1	Total/NA	Solid	7471B	236601
LCSSRM 480-236601/2-A	Lab Control Sample	Total/NA	Solid	7471B	236601
MB 480-236601/1-A	Method Blank	Total/NA	Solid	7471B	236601

General Chemistry

Analysis Batch: 234763

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-77902-1	CHF-1	Total/NA	Solid	Moisture	
480-77902-2	CHF-2	Total/NA	Solid	Moisture	
480-77902-3	CHF-3	Total/NA	Solid	Moisture	
480-77902-4	CHF-4	Total/NA	Solid	Moisture	
480-77902-5	CHF-5	Total/NA	Solid	Moisture	
480-77902-16	CRS-1	Total/NA	Solid	Moisture	

Analysis Batch: 234883

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-77902-6	CHF-1A	Total/NA	Solid	Moisture	
480-77902-7	CHF-1B	Total/NA	Solid	Moisture	
480-77902-8	CHF-2A	Total/NA	Solid	Moisture	
480-77902-9	CHF-2B	Total/NA	Solid	Moisture	
480-77902-10	CHF-3A	Total/NA	Solid	Moisture	
480-77902-11	CHF-3B	Total/NA	Solid	Moisture	
480-77902-12	CHF-4A	Total/NA	Solid	Moisture	
480-77902-13	CHF-4B	Total/NA	Solid	Moisture	
480-77902-14	CHF-5A	Total/NA	Solid	Moisture	
480-77902-15	CHF-5B	Total/NA	Solid	Moisture	

Prep Batch: 235507

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-77902-2	CHF-2	Total/NA	Solid	9012B	
480-77902-3	CHF-3	Total/NA	Solid	9012B	
480-77902-3 DU	CHF-3	Total/NA	Solid	9012B	
480-77902-4	CHF-4	Total/NA	Solid	9012B	
480-77902-5	CHF-5	Total/NA	Solid	9012B	
480-77902-16	CRS-1	Total/NA	Solid	9012B	
LCS 480-235507/2-A ^5	Lab Control Sample	Total/NA	Solid	9012B	
MB 480-235507/1-A	Method Blank	Total/NA	Solid	9012B	

TestAmerica Buffalo

4/20/2015

Page 68 of 83

3

4

6

8

1 N

13

15

QC Association Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-77902-1

General Chemistry (Continued)

Analysis Batch: 235618

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-77902-2	CHF-2	Total/NA	Solid	9012B	235507
480-77902-3	CHF-3	Total/NA	Solid	9012B	235507
480-77902-3 DU	CHF-3	Total/NA	Solid	9012B	235507
480-77902-4	CHF-4	Total/NA	Solid	9012B	235507
480-77902-5	CHF-5	Total/NA	Solid	9012B	235507
480-77902-16	CRS-1	Total/NA	Solid	9012B	235507
LCS 480-235507/2-A ^5	Lab Control Sample	Total/NA	Solid	9012B	235507
MB 480-235507/1-A	Method Blank	Total/NA	Solid	9012B	235507

Prep Batch: 236126

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-77902-1	CHF-1	Total/NA	Solid	9012B	
LCS 480-236126/2-A ^5	Lab Control Sample	Total/NA	Solid	9012B	
MB 480-236126/1-A	Method Blank	Total/NA	Solid	9012B	

Analysis Batch: 236347

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-77902-1	CHF-1	Total/NA	Solid	9012B	236126
LCS 480-236126/2-A ^5	Lab Control Sample	Total/NA	Solid	9012B	236126
MR 480-236126/1-A	Method Blank	Total/NA	Solid	0012B	236126

Client: Iyer Environmental Group, LLC

Client Sample ID: CHF-1

Date Collected: 04/07/15 00:00

Date Received: 04/07/15 15:40

Project/Site: 132 Dingens

Lab Sample ID: 480-77902-1

Matrix: Solid Percent Solids: 91.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			86757	04/13/15 08:37	NJS	TAL BUR
Total/NA	Analysis	8270D		1	86803	04/14/15 10:14	DJB	TAL BUR
Total/NA	Prep	3550C			235202	04/09/15 16:11	CPH	TAL BUF
Total/NA	Analysis	8081B		1	235402	04/10/15 14:50	MAN	TAL BUF
Total/NA	Prep	3550C			235225	04/09/15 17:30	CPH	TAL BUF
Total/NA	Analysis	8082A		1	235425	04/10/15 14:45	KS	TAL BUF
Total/NA	Prep	8151A			234732	04/08/15 11:35	MRB	TAL BUF
Total/NA	Analysis	8151A		1	236680	04/17/15 05:22	JRL	TAL BUF
Total/NA	Prep	3050B			235162	04/09/15 15:30	TAS	TAL BUF
Total/NA	Analysis	6010C		1	235726	04/11/15 18:06	SLB	TAL BUF
Total/NA	Prep	3050B			235162	04/09/15 15:30	TAS	TAL BUF
Total/NA	Analysis	6010C		1	235545	04/10/15 21:24	TRB	TAL BUF
Total/NA	Prep	7471B			236601	04/16/15 14:35	LRK	TAL BUF
Total/NA	Analysis	7471B		1	236693	04/16/15 15:44	LRK	TAL BUF
Total/NA	Prep	9012B			236126	04/14/15 15:30	EKB	TAL BUF
Total/NA	Analysis	9012B		1	236347	04/15/15 13:16	KC	TAL BUF
Total/NA	Analysis	Moisture		1	234763	04/08/15 08:12	CSW	TAL BUF

Client Sample ID: CHF-2

Date Collected: 04/07/15 00:00 Date Received: 04/07/15 15:40 Lab Sample ID: 480-77902-2

Matrix: Solid Percent Solids: 92.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			86757	04/13/15 08:37	NJS	TAL BUI
Total/NA	Analysis	8270D		1	86803	04/14/15 12:19	DJB	TAL BUI
Total/NA	Prep	3550C			235202	04/09/15 16:11	CPH	TAL BUI
Total/NA	Analysis	8081B		1	235402	04/10/15 15:07	MAN	TAL BUI
Total/NA	Prep	3550C			235225	04/09/15 17:30	CPH	TAL BU
Total/NA	Analysis	8082A		1	235425	04/10/15 15:17	KS	TAL BU
Total/NA	Prep	8151A			234732	04/08/15 11:35	MRB	TAL BU
Total/NA	Analysis	8151A		1	236680	04/17/15 05:51	JRL	TAL BU
Total/NA	Prep	3050B			235162	04/09/15 15:30	TAS	TAL BU
Total/NA	Analysis	6010C		1	235726	04/11/15 18:20	SLB	TAL BU
Total/NA	Prep	3050B			235162	04/09/15 15:30	TAS	TAL BU
Total/NA	Analysis	6010C		1	235545	04/10/15 21:38	TRB	TAL BU
Total/NA	Prep	7471B			236601	04/16/15 14:35	LRK	TAL BU
Total/NA	Analysis	7471B		1	236693	04/16/15 15:51	LRK	TAL BU
Total/NA	Prep	9012B			235507	04/10/15 15:51	EKB	TAL BU
Γotal/NA	Analysis	9012B		1	235618	04/11/15 11:02	KC	TAL BU
Total/NA	Analysis	Moisture		1	234763	04/08/15 08:12	CSW	TAL BU

Lab Chronicle

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-77902-1

Lab Sample ID: 480-77902-3

Matrix: Solid Percent Solids: 93.5

Client Sample ID: CHF-3

Date Collected: 04/07/15 00:00 Date Received: 04/07/15 15:40

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C	 -		86757	04/13/15 08:37	NJS	TAL BUR
Total/NA	Analysis	8270D		1	86803	04/14/15 13:01	DJB	TAL BUR
Total/NA	Prep	3550C			235202	04/09/15 16:11	CPH	TAL BUF
Total/NA	Analysis	8081B		1	235402	04/10/15 15:25	MAN	TAL BUF
Total/NA	Prep	3550C			235225	04/09/15 17:30	CPH	TAL BUF
Total/NA	Analysis	8082A		1	235425	04/10/15 15:33	KS	TAL BUF
Total/NA	Prep	8151A			234732	04/08/15 11:35	MRB	TAL BUF
Total/NA	Analysis	8151A		1	236680	04/17/15 06:21	JRL	TAL BUF
Total/NA	Prep	3050B			235162	04/09/15 15:30	TAS	TAL BUF
Total/NA	Analysis	6010C		1	235726	04/11/15 18:23	SLB	TAL BUF
Total/NA	Prep	3050B			235162	04/09/15 15:30	TAS	TAL BUF
Total/NA	Analysis	6010C		1	235545	04/10/15 21:41	TRB	TAL BUF
Total/NA	Prep	7471B			236601	04/16/15 14:35	LRK	TAL BUF
Total/NA	Analysis	7471B		1	236693	04/16/15 15:53	LRK	TAL BUF
Total/NA	Prep	9012B			235507	04/10/15 15:51	EKB	TAL BUF
Total/NA	Analysis	9012B		1	235618	04/11/15 11:03	KC	TAL BUF
Total/NA	Analysis	Moisture		1	234763	04/08/15 08:12	CSW	TAL BUF

Client Sample ID: CHF-4

Date Collected: 04/07/15 00:00 Date Received: 04/07/15 15:40 Lab Sample ID: 480-77902-4

Matrix: Solid Percent Solids: 90.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			86757	04/13/15 08:37	NJS	TAL BUF
Total/NA	Analysis	8270D		1	86803	04/14/15 13:42	DJB	TAL BUF
Total/NA	Prep	3550C			235202	04/09/15 16:11	CPH	TAL BUF
Total/NA	Analysis	8081B		1	235402	04/10/15 15:43	MAN	TAL BUF
Total/NA	Prep	3550C			235225	04/09/15 17:30	CPH	TAL BUF
Total/NA	Analysis	8082A		1	235425	04/10/15 15:49	KS	TAL BUF
Total/NA	Prep	8151A			234732	04/08/15 11:35	MRB	TAL BUF
Total/NA	Analysis	8151A		1	236680	04/17/15 06:50	JRL	TAL BUF
Γotal/NA	Prep	3050B			235162	04/09/15 15:30	TAS	TAL BUI
Total/NA	Analysis	6010C		1	235726	04/11/15 18:34	SLB	TAL BUI
Total/NA	Prep	3050B			235162	04/09/15 15:30	TAS	TAL BUF
Γotal/NA	Analysis	6010C		1	235545	04/10/15 21:52	TRB	TAL BUI
Γotal/NA	Prep	7471B			236601	04/16/15 14:35	LRK	TAL BUI
Γotal/NA	Analysis	7471B		1	236693	04/16/15 15:55	LRK	TAL BUI
Γotal/NA	Prep	9012B			235507	04/10/15 15:51	EKB	TAL BUI
Total/NA	Analysis	9012B		1	235618	04/11/15 11:06	KC	TAL BU
Γotal/NA	Analysis	Moisture		1	234763	04/08/15 08:12	CSW	TAL BU

Project/Site: 132 Dingens

Client: Iyer Environmental Group, LLC

Client Sample ID: CHF-5 Lab Sample ID: 480-77902-5 Date Collected: 04/07/15 00:00 Matrix: Solid

Percent Solids: 91.4 Date Received: 04/07/15 15:40

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3550C			86757	04/13/15 08:37	NJS	TAL BUR
Total/NA	Analysis	8270D		1	86803	04/14/15 14:24	DJB	TAL BUR
Total/NA	Prep	3550C			235202	04/09/15 16:11	CPH	TAL BUF
Total/NA	Analysis	8081B		1	235402	04/10/15 16:01	MAN	TAL BUF
Total/NA	Prep	3550C			235225	04/09/15 17:30	CPH	TAL BUF
Total/NA	Analysis	8082A		1	235425	04/10/15 16:04	KS	TAL BUF
Total/NA	Prep	8151A			234732	04/08/15 11:35	MRB	TAL BUF
Total/NA	Analysis	8151A		1	236680	04/17/15 07:20	JRL	TAL BUF
Total/NA	Prep	3050B			235162	04/09/15 15:30	TAS	TAL BUF
Total/NA	Analysis	6010C		1	235726	04/11/15 18:37	SLB	TAL BUF
Total/NA	Prep	3050B			235162	04/09/15 15:30	TAS	TAL BUF
Total/NA	Analysis	6010C		1	235545	04/10/15 21:54	TRB	TAL BUF
Total/NA	Prep	7471B			236601	04/16/15 14:35	LRK	TAL BUF
Total/NA	Analysis	7471B		1	236693	04/16/15 15:56	LRK	TAL BUF
Total/NA	Prep	9012B			235507	04/10/15 15:51	EKB	TAL BUF
Total/NA	Analysis	9012B		1	235618	04/11/15 11:08	KC	TAL BUF
Total/NA	Analysis	Moisture		1	234763	04/08/15 08:12	CSW	TAL BUF

Client Sample ID: CHF-1A Lab Sample ID: 480-77902-6

Date Collected: 04/07/15 00:00

Date Received: 04/07/15 15:40 Percent Solids: 92.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			234791	04/08/15 11:20	RAS	TAL BUF
Total/NA	Analysis	8260C		1	234784	04/08/15 18:07	CDC	TAL BUF
Total/NA	Analysis	Moisture		1	234883	04/08/15 14:40	RAS	TAL BUF

Client Sample ID: CHF-1B Lab Sample ID: 480-77902-7

Date Collected: 04/07/15 00:00 **Matrix: Solid** Date Received: 04/07/15 15:40 Percent Solids: 93.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			234791	04/08/15 11:20	RAS	TAL BUF
Total/NA	Analysis	8260C		1	234784	04/08/15 18:33	CDC	TAL BUF
Total/NA	Analysis	Moisture		1	234883	04/08/15 14:40	RAS	TAL BUF

Client Sample ID: CHF-2A Lab Sample ID: 480-77902-8

Date Collected: 04/07/15 00:00 **Matrix: Solid** Date Received: 04/07/15 15:40 Percent Solids: 93.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			234791	04/08/15 11:20	RAS	TAL BUF
Total/NA	Analysis	8260C		1	234784	04/08/15 18:59	CDC	TAL BUF

TestAmerica Buffalo

4/20/2015

Page 72 of 83

Matrix: Solid

Project/Site: 132 Dingens

Lab Sample ID: 480-77902-8

Matrix: Solid

Client Sample ID: CHF-2A Date Collected: 04/07/15 00:00 Date Received: 04/07/15 15:40

Client Sample ID: CHF-2B

Date Collected: 04/07/15 00:00

Date Received: 04/07/15 15:40

Date Collected: 04/07/15 00:00

Client: Iyer Environmental Group, LLC

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	234883	04/08/15 14:40	RAS	TAL BUF

Lab Sample ID: 480-77902-9

Matrix: Solid

Percent Solids: 91.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			234791	04/08/15 11:20	RAS	TAL BUF
Total/NA	Analysis	8260C		1	234784	04/08/15 19:25	CDC	TAL BUF
Total/NA	Analysis	Moisture		1	234883	04/08/15 14:40	RAS	TAL BUF

Client Sample ID: CHF-3A Lab Sample ID: 480-77902-10

Matrix: Solid

Date Received: 04/07/15 15:40 Percent Solids: 94.1

Batch Prepared Batch Batch Dilution Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab Total/NA Prep 5035 234791 04/08/15 11:20 RAS TAL BUF Total/NA Analysis 8260C 234784 04/08/15 19:51 CDC TAL BUF Total/NA Analysis Moisture 04/08/15 14:40 TAL BUF 1 234883 RAS

Client Sample ID: CHF-3B Lab Sample ID: 480-77902-11

Date Collected: 04/07/15 00:00 **Matrix: Solid** Date Received: 04/07/15 15:40 Percent Solids: 92.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			234791	04/08/15 11:20	RAS	TAL BUF
Total/NA	Analysis	8260C		1	234974	04/09/15 01:21	RAS	TAL BUF
Total/NA	Analysis	Moisture		1	234883	04/08/15 14:40	RAS	TAL BUF

Client Sample ID: CHF-4A Lab Sample ID: 480-77902-12

Date Collected: 04/07/15 00:00 Matrix: Solid Date Received: 04/07/15 15:40 Percent Solids: 88.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			234791	04/08/15 11:20	RAS	TAL BUF
Total/NA	Analysis	8260C		1	234974	04/09/15 01:47	RAS	TAL BUF
Total/NA	Analysis	Moisture		1	234883	04/08/15 14:40	RAS	TAL BUF

Project/Site: 132 Dingens

Client: Iyer Environmental Group, LLC

Client Sample ID: CHF-4B Lab Sample ID: 480-77902-13

Date Collected: 04/07/15 00:00 Matrix: Solid Date Received: 04/07/15 15:40 Percent Solids: 91.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			234791	04/08/15 11:20	RAS	TAL BUF
Total/NA	Analysis	8260C		1	234974	04/09/15 02:13	RAS	TAL BUF
Total/NA	Analysis	Moisture		1	234883	04/08/15 14:40	RAS	TAL BUF

Client Sample ID: CHF-5A Lab Sample ID: 480-77902-14

Date Collected: 04/07/15 00:00 **Matrix: Solid** Date Received: 04/07/15 15:40 Percent Solids: 91.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			234791	04/08/15 11:20	RAS	TAL BUF
Total/NA	Analysis	8260C		1	234974	04/09/15 02:39	RAS	TAL BUF
Total/NA	Analysis	Moisture		1	234883	04/08/15 14:40	RAS	TAL BUF

Client Sample ID: CHF-5B Lab Sample ID: 480-77902-15

Date Collected: 04/07/15 00:00 **Matrix: Solid** Date Received: 04/07/15 15:40 Percent Solids: 88.9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			234987	04/08/15 23:10	CDC	TAL BUF
Total/NA	Analysis	8260C		1	234974	04/09/15 03:05	RAS	TAL BUF
Total/NA	Analysis	Moisture		1	234883	04/08/15 14:40	RAS	TAL BUF

Client Sample ID: CRS-1 Lab Sample ID: 480-77902-16

Date Collected: 04/07/15 00:00 **Matrix: Solid** Date Received: 04/07/15 15:40 Percent Solids: 98.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			234987	04/08/15 23:10	CDC	TAL BUF
Total/NA	Analysis	8260C		1	234974	04/09/15 03:30	RAS	TAL BUF
Total/NA	Prep	3550C			86757	04/13/15 08:37	NJS	TAL BUR
Total/NA	Analysis	8270D		1	86803	04/14/15 15:06	DJB	TAL BUR
Total/NA	Prep	3550C			235202	04/09/15 16:11	CPH	TAL BUF
Total/NA	Analysis	8081B		1	235402	04/10/15 16:19	MAN	TAL BUF
Total/NA	Prep	3550C			235225	04/09/15 17:30	CPH	TAL BUF
Total/NA	Analysis	8082A		1	235425	04/10/15 16:52	KS	TAL BUF
Total/NA	Prep	8151A			234732	04/08/15 11:38	MRB	TAL BUF
Total/NA	Analysis	8151A		1	236680	04/17/15 07:49	JRL	TAL BUF
Total/NA	Prep	3050B			235162	04/09/15 15:30	TAS	TAL BUF
Total/NA	Analysis	6010C		1	235726	04/11/15 18:39	SLB	TAL BUF
Total/NA	Prep	3050B			235162	04/09/15 15:30	TAS	TAL BUF
Total/NA	Analysis	6010C		5	235835	04/13/15 11:34	LMH	TAL BUF
Total/NA	Prep	3050B			235162	04/09/15 15:30	TAS	TAL BUF
Total/NA	Analysis	6010C		1	235545	04/10/15 21:57	TRB	TAL BUF

Page 74 of 83

Lab Chronicle

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

Client Sample ID: CRS-1

Date Collected: 04/07/15 00:00

Date Received: 04/07/15 15:40

TestAmerica Job ID: 480-77902-1

Lab Sample ID: 480-77902-16

Matrix: Solid

Percent Solids: 98.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	7471B			236601	04/16/15 14:35	LRK	TAL BUF
Total/NA	Analysis	7471B		1	236693	04/16/15 16:02	LRK	TAL BUF
Total/NA	Prep	9012B			235507	04/10/15 15:51	EKB	TAL BUF
Total/NA	Analysis	9012B		1	235618	04/11/15 11:09	KC	TAL BUF
Total/NA	Analysis	Moisture		1	234763	04/08/15 08:12	CSW	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL BUR = TestAmerica Burlington, 30 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

Certification Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-77902-1

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

uthority	Program		EPA Region	Certification ID	Expiration Date
w York	NELAP		2	10026	03-31-16
		it cortification is not offor	ad by the governing o	outhority:	
Analysis Method	are included in this report, bu Prep Method	ut certification is not offer Matrix	ed by the governing a Analyt	•	
0 ,	• •		Analyt	•	

Laboratory: TestAmerica Burlington

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Connecticut	State Program	1	PH-0751	09-30-15
DE Haz. Subst. Cleanup Act (HSCA)	State Program	3	NA	02-13-16
Florida	NELAP	4	E87467	06-30-15
L-A-B	DoD ELAP		L2336	02-26-17
Maine	State Program	1	VT00008	04-17-17
Minnesota	NELAP	5	050-999-436	12-31-15
New Hampshire	NELAP	1	2006	12-18-15
New Jersey	NELAP	2	VT972	06-30-15
New York	NELAP	2	10391	03-31-16
Pennsylvania	NELAP	3	68-00489	04-30-15 *
Rhode Island	State Program	1	LAO00298	12-30-15
US Fish & Wildlife	Federal		LE-058448-0	02-28-16
USDA	Federal		P330-11-00093	10-28-16
Vermont	State Program	1	VT-4000	12-31-15
Virginia	NELAP	3	460209	12-14-15

Ţ

6

9

11

12

14

TestAmerica Buffalo

^{*} Certification renewal pending - certification considered valid.

Method Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-77902-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL BUR
8081B	Organochlorine Pesticides (GC)	SW846	TAL BUF
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL BUF
8151A	Herbicides (GC)	SW846	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF
7471B	Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)	SW846	TAL BUF
9012B	Cyanide, Total andor Amenable	SW846	TAL BUF
Moisture	Percent Moisture	EPA	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL BUR = TestAmerica Burlington, 30 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

2

- 0

5

8

. .

12

15

Sample Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-77902-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	
480-77902-1	CHF-1	Solid	04/07/15 00:00	04/07/15 15:40	
480-77902-2	CHF-2	Solid	04/07/15 00:00	04/07/15 15:40	
480-77902-3	CHF-3	Solid	04/07/15 00:00	04/07/15 15:40	
480-77902-4	CHF-4	Solid	04/07/15 00:00	04/07/15 15:40	
480-77902-5	CHF-5	Solid	04/07/15 00:00	04/07/15 15:40	
480-77902-6	CHF-1A	Solid	04/07/15 00:00	04/07/15 15:40	
480-77902-7	CHF-1B	Solid	04/07/15 00:00	04/07/15 15:40	
480-77902-8	CHF-2A	Solid	04/07/15 00:00	04/07/15 15:40	
480-77902-9	CHF-2B	Solid	04/07/15 00:00	04/07/15 15:40	
480-77902-10	CHF-3A	Solid	04/07/15 00:00	04/07/15 15:40	
480-77902-11	CHF-3B	Solid	04/07/15 00:00	04/07/15 15:40	
480-77902-12	CHF-4A	Solid	04/07/15 00:00	04/07/15 15:40	
480-77902-13	CHF-4B	Solid	04/07/15 00:00	04/07/15 15:40	
480-77902-14	CHF-5A	Solid	04/07/15 00:00	04/07/15 15:40	
480-77902-15	CHF-5B	Solid	04/07/15 00:00	04/07/15 15:40	
480-77902-16	CRS-1	Solid	04/07/15 00:00	04/07/15 15:40	

-5

6

8

9

10

10

13

15

Detection Limit Exceptions Summary

Client: Iyer Environmental Group, LLC

Project/Site: 132 Dingens

TestAmerica Job ID: 480-77902-1

The requested project specific reporting limits listed below were less than laboratory standard quantitation limits (PQL) but greater than or equal to the laboratory method detection limits (MDL). It must be noted that results reported below lab standard quantitation limits may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

Method	Matrix	Analyte	Units	Client RL	Lab PQL
6010C	Solid	Silver	mg/Kg	0.50	0.6

2

4

5

6

9

10

12

14

15

Custody Record Chain of

TAL-4124 (1007) Client

		STOCK VECTOR	7	
in of	Temperature on Receipt	りには、これで	<u>ک</u>	
tody Record				
•	Drinking Water? Yes□ No	THE LEADER IN ENVIRONMENTAL TESTING	ESTING	
(1007)	,			
	Project Manager	Date	Chain of Cu.	Chain of Custody Number
Lyer Environmental Group	Dharing Lyer	Ē	7, 2015 26	264466

Page

Analysis (Attach list if more space is needed)

716) 662-2118

glephone Number (Area Code)/Fax Number

1. Deyo

Allen

14127

Ochard Park NY Project Name and Location (State) 132 Dingemot. St., But ContractPurchase Order Coute No.

Zip Code

44 Rolling Hills

	Special Instructions/	Conditions of Receipt	Perk-10 A-									The state of Custody	480-77902 Criain C		(A fee may be assessed if samples are retained s longer than 1 month)		Data Timo	30F 41-115 1540	Date Time	Date Time	ひる」「とか本一
	. Met Met Met Met	5VS \$P\$\ \$H\ \$P\$\ \$p\$\	191 191 191 191	7/1/2	1712	144	ンマン	1/2/2/							 Archive For Months			TA TA			Temp 19.6 No
2621	5.0	Containers & Servatives	721 HOBN 2040 HOBN HOBN HONH	**	2					>	\rightarrow \frac{1}{2}		7	>	🔀 Disposal By Lab 🛚 Arc	OC Requirements (Specify)	1 Boroistor Bull	Solve & 1	Preceived 55/	3. Received By	TEINP
1 (110)	Carrier/Waybill Number	Matrix	IIOS POS snoenby	>		1 1 63	· S	2 2	2	2	2	2	2	<i>ا</i>	Sample Disposal Return To Client		Time	SHO	Time	Time	-
	N Y Camerin		Date Time	21/	59	15									 □ Unknown	24.00	_ croays	1	Date	Date	
	t., Buttale,	ir/Quote No.	Sample I.D. No. and Description (Containers for each sample may be combined on one line)	1-1	2-2	-3 4/2/	, , , , , , , , , , , , , , , , , , ,	5	' A	8	/ # # # # # # # # # # # # # # # # # # #	2.K	3 A	38	ntification Flammable Skin Irritant Poison B		1 / Days 14 Days	inhurs C Allow To			444444
つつざろう	Project Name and Location (State)	Contract/Purchase Order/Quote No.	Sample I.D. (Containers for each san	の平の	CH F.	Pa	ge &	2HE	83 CHF-1	CHF-1	CHE	CHF -	CH F-	CHF	Possible Hazard Identification Non-Hazard	Turn Around Time Required		nemindusined by	2. Relinquished By 4.	3. Relinquished By	Comments 5

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

Chain of Custody Record

Temperature on Receipt

Drinking Water? Yes□ No⊠

THE LEADER IN ENVIRONMENTAL TESTING **TestAmerica**

TAL-4124 (1007)				ا ا							
T Mariconmental	Grano	Project Manager	Project Manager D harrwwd	harrym	Mer)		Date Ary 7	Sypr	Chain of Custody Number	32 32
44 Rolling Wills 1		Telephon (716)	e Number (Area 662 — 41	ST (Numbel (716)	662	1734 (662-2118	Lato Number		Page 7	7
0, 10,	In Code 7	. 129	act Liles		Sontact N	3	An	Analysis (Attach list if more space is needed)	list if eded)		
3			Carrier/Waybill Number		Ψ.		প্রকা	2		Snacial In	Special Instructions
corPuchase Order/Quote No.			Matrix		Containers & Preservatives	s & ives	00V 284 284	ob ins		Conditions	Operations of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	snoenby	seidul)	IOH EONH POSZH	HOBN VBN HOBN	101	ks		DER-10 Partameters	acters
のはだしそみ	4/7/15		<u> </u>	7			>				•
Cボド - 4B			>	7 /							
CHF - SA	<u></u>		>	,							
Been CHE - SB	<i>></i>		>	7 /			<i>></i>				
31 o											
C R S C 1	4/7/8						V VV				
	•										
	•										
Possible Hazard Identification Mon-Hazard	☐ Poison B	П Ипкпомп	Sample Disposal Retum To Client		📝 Disposal By Lab		Archive For) Months R	4 fee may be ass inger than 1 mon	(A fee may be assessed if samples are retained longer than 1 month)	fained
Tum Around Time Required 24 Hours	ays \Bays	Other		,	QC Requirements (Specify)	nts (Specify)					
OBY Right	1 1 4		Time	67	1. Received By		1/2/	X	TA RID	Date 71/16 71/16	
2. Relinquished By		Date) Jamir		2. Preceived By		2010			Date	ime emi
3. Relinquished By		Date	Time		3. Meceived By)				Date	Time
									-		
Comments							<u> </u>	1	アスト	(Projector)	

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

Login Sample Receipt Checklist

Client: Iyer Environmental Group, LLC

Job Number: 480-77902-1

Login Number: 77902 List Source: TestAmerica Buffalo

List Number: 1 Creator: Kolb, Chris M

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	False	
Cooler Temperature is acceptable.	True	Yes: Received same day of collection.
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	Refer to job narrative for details
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	False	Refer to job narrative for details
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	IYER ENV.
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

5

6

8

3

11

12

11

Login Sample Receipt Checklist

Client: Iyer Environmental Group, LLC Job Number: 480-77902-1

List Source: TestAmerica Burlington
List Number: 2
List Creation: 04/10/15 01:03 PM

Creator: Goodrich, Kenneth L

Creator: Goodrich, Kenneth L		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	True	234022
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	3.0°C
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

4

6

8

10

12

13

15

C&S Companies 141 Elm Street

Suite 100 Buffalo, NY 14203 p: (716) 847-1630 f: (716) 847-1454 www.cscos.com

October 14, 2014

Ms. Mickey Mariacher Project Manager – JRO Children's Hospital of Buffalo Kaleida Health Larkin Building, Suite 200 726 Exchange Street Buffalo, New York 14210

Re: Results of Initial Native Soil Sampling – Event #1

Dear Ms. Mariacher:

C&S Engineers. Inc. ("C&S") is assisting Kaleida Health in the management of excavated soils for the construction on the John R. Oishei Children's Hospital ("JRO"). As part of that work, Kaleida Health has requested C&S to collect samples of the native soils that will be removed during the construction of JRO. Sampling is being conducted concurrent with the excavation of the fill that is present above the native soils. Sampling is being conducted in phases as the material is being exposed during construction. This letter presents the results of the first event of sampling.

Sample Event #1 – Process and Results.

On October 7, 2014, C&S performed the first soil sampling event related to re-use of native soils.

Soil were collected by hand 1-2 feet below the exposed native soils surface following the initial excavation in the northern end of the site. Figure 1 (dated October 10, 2014) shows the excavation area and the sample locations. Soils were collected and submitted to Alpha Analytical to be analyzed for the target compounds specified in NYSDEC DER-10, Table 5.4(e)10 and Appendix 5 (May 2010). Samples were labeled relative to their location from their nearest shoring panel number and collection depth (from grade), as follows:

Sample ID: S67-20' [indicates sample was 20 ft perpendicular from soldier pile #S67]
12 [indicates sample was 12 ft from original grade]

Sample Results are summarized in Table 1 – Summary of Results from Event #1. The laboratory report is attachment to this letter.

The following is a summary of samples and analyses completed for the site;

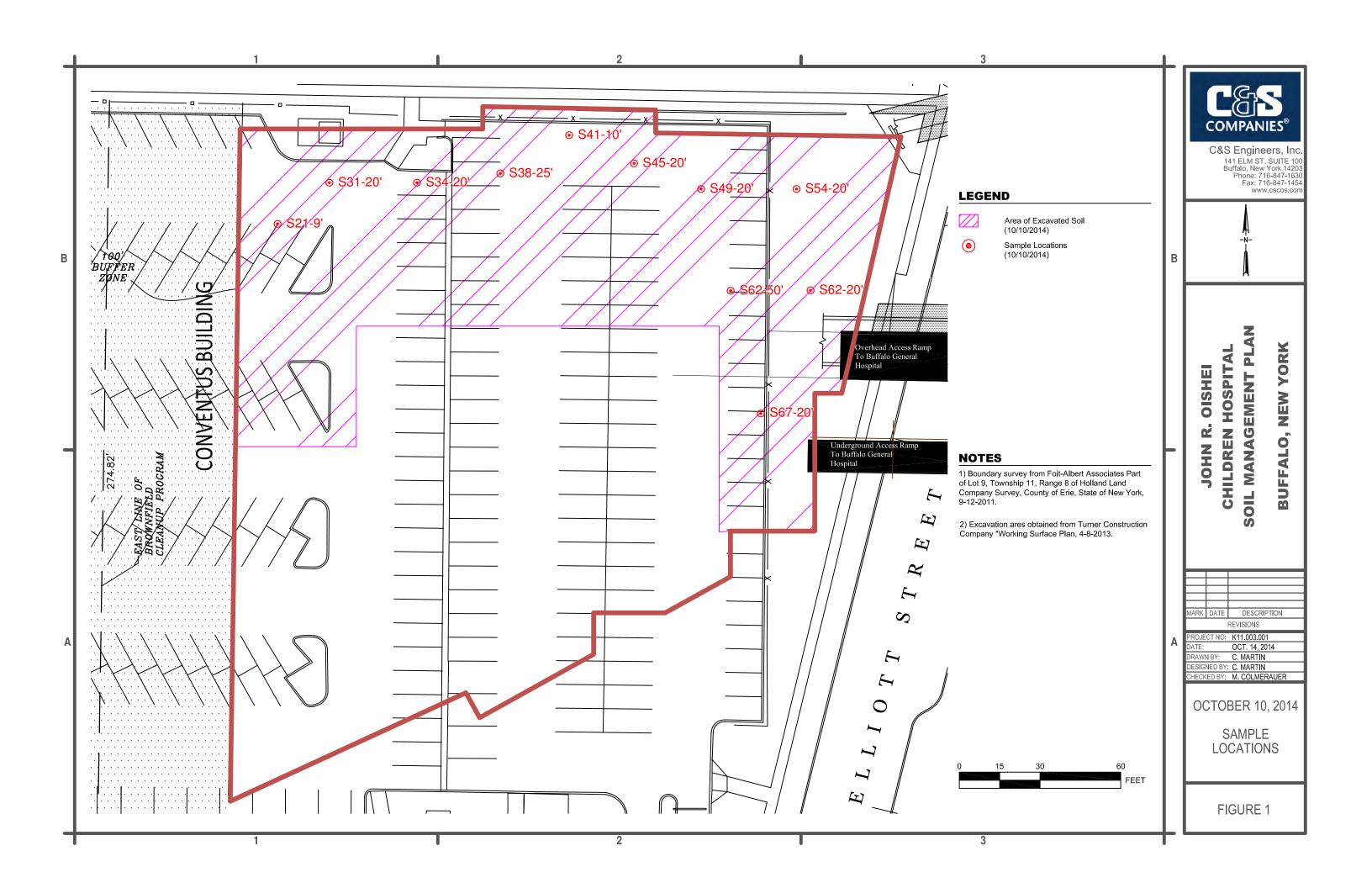
Sample Event	Date	VOCs	SVOCs, Inorganics & PCBc/Pesticides
Event #1	10/07/14	10	10

Kaleida Health October 14, 2014 Page 2

Additional sampling will occur for this initial exposure (lift) of native soils. Subsequent sampling events will occur during excavation of additional lifts of native soils as shoring is added and excavation depths increase.

Please contact me if you have any further questions.

Sincerely,


C&S ENGINEERS, INC.

Mark Colmerauer

Regional Environmental Service Manager

Attached: Lab Data of 10/7/2014 sample event

www.cscos.com (877) CS-SOLVE

TABLE 1 - SUMMARY OF RESULTS FROM SAMPLING EVENT #1

John R Oshie Childrens Hosptial Construciton - Native Soil Assessment

"U" = Not Detected Above Detection Limit, "J" = Estimated Value

LOCATION SAMPLING DATE			S67-20' 10/7/2014		S62-20' 10/7/2014		S62-50' 10/7/2014		S54-20' 10/7/2014		S49-20' 10/7/2014		S45-20' 10/7/2014		S41-10' 10/7/2014		S38-25' 10/7/2014		S34-20' 10/7/2014		S31-20' 10/7/2014	
LAB SAMPLE ID			L1423690-01	[L1423690-02		L1423690-03		L1423690-04		L1423690-05		L1423690-06		L1423690-07		L1423690-08		L1423690-09		L1423690-10	j
SAMPLE TYPE	NYSDEC	NYSDEC	SO																			
SAMPLE DEPTH (ft.)	Protect.	SCO	12		12		12		12		12		9		11		11		20		20	
	Ecology	UNRES. Use Units		Qual																		
Chlorinated Herbicides by GC - Westl	borough Lab																					
2,4,5-TP (Silvex)		3.8 mg/kg	0.204	U	0.201	U	0.197	U	0.206	U	0.209	U	0.201	U	0.181	U	0.18	U	0.175	U	0.174	U
General Chemistry - Westborough La	b																					
Cyanide, Total		27 mg/kg	0.51	J	1.1	U	1.2	U	1.2	U	0.68	J	1.2	U	1.1	U	1.1	U	0.99	U	1	U
Chromium, Hexavalent		1 mg/kg	0.99	U	0.97	U	0.97	U	0.99	U	1	U	0.98	U	0.89	U	0.89	U	0.84	U	0.84	U
Organochlorine Pesticides by GC - W	estborough L																					
Delta-BHC	0.04	1 0.04 mg/kg	0.0019	U	0.00191	U	0.00194	U	0.00194	U	0.00203	U	0.00195	U	0.00177	U	0.00167	U	0.00166	U	0.00159	U
Lindane	6		0.000792	U	0.000796	U	0.000808	U	0.000807	U	0.000846	U	0.000814	U	0.000739	U	0.000698	U	0.000692	U	0.000662	U
Alpha-BHC	0.04		0.000792	U	0.000796	U	0.000808	U	0.000807	U	0.000846	U	0.000814	U	0.000739	U	0.000698	U	0.000692	U	0.000662	U
Beta-BHC	0.6		0.0019	U	0.00191	U	0.00194	U	0.00194	U	0.00203	U	0.00195	U	0.00177	U	0.00167	U	0.00166	U	0.00159	U
Heptachlor	0.14	0 0	0.000951	U	0.000955	U	0.00097	U	0.000969	U	0.00101	U	0.000977	U	0.000886	U	0.000837	U	0.000831	U	0.000795	U
Aldrin	0.14		0.0019	Ū	0.00191	Ū	0.00194	Ū	0.00194	Ū	0.00203	Ū	0.00195	Ū	0.00177	Ū	0.00167	Ū	0.00166	Ū	0.00159	Ū
Heptachlor epoxide		mg/kg	0.00357	Ū	0.00358	Ū	0.00364	Ū	0.00363	Ū	0.0038	Ū	0.00366	Ū	0.00332	Ū	0.00314	Ū	0.00312	Ū	0.00298	Ū
Endrin	0.014		0.000792	Ū	0.000796	Ū	0.000808	Ū	0.000807	Ū	0.000846	Ū	0.000814	Ū	0.000739	Ū	0.000698	Ū	0.000692	Ū	0.000662	Ū
Endrin ketone		mg/kg	0.0019	Ū	0.00191	Ū	0.00194	Ū	0.00194	Ū	0.00203	Ū	0.00195	Ū	0.00177	Ū	0.00167	Ū	0.00166	Ū	0.00159	Ū
Dieldrin	0.006		0.00119	Ū	0.00119	Ū	0.00121	Ū	0.00121	Ū	0.00127	Ū	0.00122	Ū	0.00111	Ū	0.00105	Ū	0.00104	Ū	0.000993	Ū
4,4'-DDE	0.0033	0 0	0.0019	Ū	0.00191	Ū	0.00194	Ū	0.00194	Ū	0.00203	Ū	0.00195	Ū	0.00177	Ū	0.00167	Ū	0.00166	Ū	0.00159	Ū
4,4'-DDD	0.0033		0.0019	U	0.00191	U	0.00194	U	0.00194	U	0.00203	U	0.00195	U	0.00177	U	0.00167	U	0.00166	U	0.00159	U
4,4'-DDT	0.0033		0.00357	Ū	0.00358	Ū	0.00364	Ū	0.00363	Ū	0.0038	Ū	0.00366	Ü	0.00332	Ū	0.00314	Ü	0.00312	Ū	0.00298	Ü
Endosulfan I		2.4 mg/kg	0.0019	U	0.00191	U	0.00194	Ū	0.00194	Ü	0.00203	U	0.00195	Ü	0.00177	Ü	0.00167	Ū	0.00166	Ū	0.00159	Ū
Endosulfan II		2.4 mg/kg	0.0019	Ū	0.00191	Ū	0.00194	Ū	0.00194	Ü	0.00203	Ü	0.00195	Ū	0.00177	Ü	0.00167	Ū	0.00166	Ū	0.00159	Ū
Endosulfan sulfate		2.4 mg/kg	0.000792	Ū	0.000796	Ū	0.000808	Ū	0.000807	Ū	0.000846	Ū	0.000814	Ū	0.000739	Ū	0.000698	Ū	0.000692	Ū	0.000662	Ū
Methoxychlor	1.2		0.00357	U	0.00358	U	0.00364	U	0.00363	U	0.0038	U	0.00366	U	0.00332	U	0.00314	U	0.00312	U	0.00298	U
Toxaphene		mg/kg	0.0357	U	0.0358	U	0.0364	U	0.0363	U	0.038	U	0.0366	U	0.0332	U	0.0314	U	0.0312	U	0.0298	U
cis-Chlordane	1.3		0.00238	U	0.00239	U	0.00242	U	0.00242	U	0.00254	U	0.00244	U	0.00222	U	0.00209	U	0.00208	U	0.00199	U
trans-Chlordane		mg/kg	0.00238	U	0.00239	U	0.00242	U	0.00242	U	0.00254	U	0.00244	U	0.00222	U	0.00209	U	0.00208	U	0.00199	U
Chlordane		mg/kg	0.0154	U	0.0155	U	0.0158	U	0.0157	U	0.0165	U	0.0159	U	0.0144	U	0.0136	U	0.0135	U	0.0129	U
Polychlorinated Biphenyls by GC - We	estborough L																					
Aroclor 1016		0.1 mg/kg	0.0396	U	0.0401	U	0.0386	U	0.0398	U	0.0424	U	0.0388	U	0.0363	U	0.0368	U	0.0339	U	0.0341	U
Aroclor 1221		0.1 mg/kg	0.0396	U	0.0401	U	0.0386	U	0.0398	U	0.0424	U	0.0388	U	0.0363	U	0.0368	U	0.0339	U	0.0341	U
Aroclor 1232		0.1 mg/kg	0.0396	U	0.0401	U	0.0386	U	0.0398	U	0.0424	U	0.0388	U	0.0363	U	0.0368	U	0.0339	U	0.0341	U
Aroclor 1242		0.1 mg/kg	0.0396	U	0.0401	U	0.0386	U	0.0398	U	0.0424	U	0.0388	U	0.0363	U	0.0368	U	0.0339	U	0.0341	U
Aroclor 1248	•	0.1 mg/kg	0.0396	U	0.0401	U	0.0386	U	0.0398	U	0.0424	U	0.0388	U	0.0363	U	0.0368	U	0.0339	U	0.0341	U
Aroclor 1254	•	0.1 mg/kg	0.0396	U	0.0401	U	0.0386	U	0.0398	U	0.0933		0.0388	U	0.0363	U	0.0368	U	0.0339	U	0.0341	U
Aroclor 1260		0.1 mg/kg	0.0396	U	0.0401	U	0.0386	U	0.0398	U	0.0424	U	0.0388	U	0.0363	U	0.0368	U	0.0339	U	0.0341	U
Aroclor 1262		0.1 mg/kg	0.0396	U	0.0401	U	0.0386	U	0.0398	U	0.0424	U	0.0388	U	0.0363	U	0.0368	U	0.0339	U	0.0341	U
Aroclor 1268		0.1 mg/kg	0.0396	U	0.0401	U	0.0386	U	0.0398	U	0.0424	U	0.0388	U	0.0363	U	0.0368	U	0.0339	U	0.0341	U
PCBs, Total		mg/kg	0.0396	U	0.0401	U	0.0386	U	0.0398	U	0.0933		0.0388	U	0.0363	U	0.0368	U	0.0339	U	0.0341	U
Semivolatile Organics by GC/MS - We	estborough L																					
Acenaphthene	20) 20 mg/kg	0.16	U	0.16	U	0.16	U	0.16	U	0.17	U	0.16	U	0.15	U	0.15	U	0.14	U	0.14	U
Hexachlorobenzene		0.33 mg/kg	0.12	U	0.12	U	0.12	U	0.12	U	0.13	U	0.12	U	0.11	U	0.11	U	0.1	U	0.1	U
Bis(2-chloroethyl)ether		mg/kg	0.18	U	0.18	U	0.18	U	0.18	U	0.19	U	0.18	U	0.16	U	0.16	U	0.16	U	0.16	U
2-Chloronaphthalene		mg/kg	0.2	U	0.2	U	0.2	U	0.2	U	0.21	U	0.2	U	0.18	U	0.18	U	0.17	U	0.17	U
3,3'-Dichlorobenzidine		mg/kg	0.2	U	0.2	U	0.2	U	0.2	U	0.21	U	0.2	U	0.18	U	0.18	U	0.17	U	0.17	U
2,4-Dinitrotoluene		mg/kg	0.2	U	0.2	U	0.2	U	0.2	U	0.21	U	0.2	U	0.18	U	0.18	U	0.17	U	0.17	U
2,6-Dinitrotoluene		mg/kg	0.2	U	0.2	U	0.2	U	0.2	U	0.21	U	0.2	U	0.18	U	0.18	U	0.17	U	0.17	U

TABLE 1 - SUMMARY OF RESULTS FROM SAMPLING EVENT #1

John R Oshie Childrens Hosptial Construciton - Native Soil Assessment

"U" = Not Detected Above Detection Limit, "J" = Estimated Value

LOCATION SAMPLING DATE LAB SAMPLE ID SAMPLE TYPE SAMPLE DEPTH (ft.)	NYSDEC Protect.	NYSDEC SCO	S67-20' 10/7/2014 L1423690-0: SO 12	I	S62-20' 10/7/2014 L1423690-02 SO 12		S62-50' 10/7/2014 L1423690-03 SO 12		\$54-20' 10/7/2014 L1423690-04 SO 12		\$49-20' 10/7/2014 L1423690-05 SO 12		\$45-20' 10/7/2014 L1423690-06 SO 9		\$41-10' 10/7/2014 L1423690-07 SO 11		\$38-25' 10/7/2014 L1423690-08 SO 11		\$34-20' 10/7/2014 L1423690-09 SO 20		S31-20' 10/7/2014 L1423690-10 SO 20)
	Ecology	UNRES. Use Units		Qual		Qual		Qual		Qual		Qual		Qua	l	Qual		Qual		Qual		Qual
Fluoranthene		100 mg/kg	0.12	U	0.12	U	0.12	U	0.12	U	0.19		0.12	U	0.11	U	0.11	U	0.1	U	0.1	U
4-Chlorophenyl phenyl ether		mg/kg	0.2	U	0.2	U	0.2	U	0.2	U	0.21	U	0.2	U	0.18	U	0.18	U	0.17	U	0.17	U
4-Bromophenyl phenyl ether		mg/kg	0.2	U	0.2	U	0.2	U	0.2	U	0.21	U	0.2	U	0.18	U	0.18	U	0.17	U	0.17	U
Bis(2-chloroisopropyl)ether		mg/kg	0.24	U	0.24	U	0.24	U	0.24	U	0.26	U	0.24	U	0.22	U	0.22	U	0.21	U	0.21	U
Bis(2-chloroethoxy)methane		mg/kg	0.22	U	0.22	U	0.22	U	0.22	U	0.23	U	0.22	U	0.2	U	0.2	U	0.19	U	0.19	U
Hexachlorobutadiene		mg/kg	0.2	U	0.2	U	0.2	U	0.2	U	0.21	U	0.2	U	0.18	U	0.18	U	0.17	U	0.17	U
Hexachlorocyclopentadiene	1	0 mg/kg	0.57	U	0.58	U	0.57	U	0.59	U	0.61	U	0.58	U	0.52	U	0.52	U	0.5	U	0.5	U
Hexachloroethane		mg/kg	0.16	U	0.16	U	0.16	U	0.16	U	0.17	U	0.16	U	0.15	U	0.15	U	0.14	U	0.14	U
Isophorone		mg/kg	0.18	U	0.18	U	0.18	U	0.18	U	0.19	U	0.18	U	0.16	U	0.16	U	0.16	U	0.16	U
Naphthalene		12 mg/kg	0.2	U	0.2	U	0.2	U	0.2	U	0.21	U	0.2	U	0.18	U	0.18	U	0.17	U	0.17	U
Nitrobenzene	4	mg/kg	0.18	U	0.18	U	0.18	U	0.18	U	0.19	U	0.18	U	0.16	U	0.16	U	0.16	U	0.16	U
NDPA/DPA	2			U	0.16	U	0.16	U	0.16	U	0.17	U	0.16	U	0.15	U	0.15	U	0.14	U	0.14	U
n-Nitrosodi-n-propylamine		mg/kg		U	0.2	U	0.2	U	0.2	U	0.21	U	0.2	U	0.18	U	0.18	U	0.17	U	0.17	U
Bis(2-ethylhexyl)phthalate	23			U	0.2	U	0.2	U	0.2	U	0.21	U	0.2	U	0.18	U	0.18	U	0.17	U	0.17	U
Butyl benzyl phthalate		mg/kg	0.2	U	0.2	U	0.2	U	0.2	U	0.21	U	0.2	U	0.18	U	0.18	U	0.17	U	0.17	U
Di-n-butylphthalate	0.01			U	0.2	U	0.2	U	0.2	U	0.21	U	0.2	U	0.18	U	0.18	U	0.17	U	0.17	U
Di-n-octylphthalate		mg/kg	0.2	_ U	0.2	U	0.2	U	0.2	U	0.21	U	0.2	U	0.18	U	0.18	U	0.17	U	0.17	U
Diethyl phthalate	10	mg/kg	0.2	U	0.2	U	0.2	U	0.2	U	0.21	U	0.2	U	0.18	U	0.18	U	0.17	U	0.17	U
Dimethyl phthalate	20			U	0.2	U	0.2	U	0.2	U	0.21	U	0.2	U	0.18	U	0.18	U	0.17	U	0.17	U
Benzo(a)anthracene		1 mg/kg		U	0.12	U	0.12	U	0.12	U	0.066	J	0.12	U	0.11	U	0.11	U	0.1	U	0.1	U
Benzo(a)pyrene	2.0			U	0.16	U	0.16	U	0.16	U	0.061	J	0.16	U	0.15	U	0.15	U	0.14	U	0.14	U
Benzo(b)fluoranthene		1 mg/kg		U	0.12	U	0.12	U	0.12	U	0.089	J	0.12	U	0.11	U	0.11	U	0.1	U	0.1	U
Benzo(k)fluoranthene		0.8 mg/kg		U	0.12	U	0.12	U	0.12	U	0.13	U	0.12	U	0.11	U	0.11	U	0.1	U	0.1	U
Chrysene		1 mg/kg		U	0.12	U	0.12	U	0.12	U	0.084	J	0.12	U	0.11	U	0.11	U	0.1	U	0.1	U
Acenaphthylene		100 mg/kg		U	0.16	U	0.16	U	0.16	U	0.17	U	0.16	U	0.15	U	0.15	U	0.14	U	0.14	U
Anthracene		100 mg/kg		U	0.12	U	0.12	U	0.12	U	0.13	U	0.12	U	0.11	U	0.11	U	0.1	U	0.1	U
Benzo(ghi)perylene		100 mg/kg		U	0.16	U	0.16	U	0.16	U	0.17	U	0.16	U	0.15	U	0.15	U	0.14	U	0.14	U
Fluorene	3			U	0.2	U	0.2	U	0.2	U	0.21	U	0.2	U	0.18	U	0.18	U	0.17	U	0.17	U
Phenanthrene		100 mg/kg		U	0.12	U	0.12	U	0.12	U	0.082	J	0.12	U	0.11	U	0.11	U	0.1	U	0.1	U
Dibenzo(a,h)anthracene		0.33 mg/kg		U	0.12	U	0.12	U	0.12	U	0.13	U	0.12	U	0.11	U	0.11	U	0.1	U	0.1	U
Indeno(1,2,3-cd)pyrene		0.5 mg/kg		U	0.16	U	0.16	U	0.16	U	0.048	J	0.16	U	0.15	U	0.15	U	0.14	U	0.14	U
Pyrene		100 mg/kg		U	0.12	U	0.12	U	0.12	U	0.14		0.12	U	0.11	U	0.11	U	0.1	U	0.1	U
Biphenyl	6			U	0.46	U	0.46	U	0.47	U	0.48	U	0.46	U	0.42	U	0.42	U	0.39	U	0.39	U
4-Chloroaniline		mg/kg		U	0.2	U	0.2	U	0.2	U	0.21	U	0.2	U	0.18	U	0.18	U	0.17	U	0.17	U
2-Nitroaniline		mg/kg		U	0.2	U	0.2	U	0.2	U	0.21	U	0.2	U	0.18	U	0.18	U	0.17	U	0.17	U
3-Nitroaniline		mg/kg		U	0.2	U	0.2	U	0.2	U	0.21	U	0.2	U	0.18	U	0.18	U	0.17	U	0.17	U
4-Nitroaniline		mg/kg		U	0.2	U	0.2	U	0.2	U	0.21	U	0.2	U	0.18	U	0.18	U	0.17	U	0.17	U
Dibenzofuran		7 mg/kg		U	0.2	U	0.2	U	0.2	U	0.21	U	0.2	U	0.18	U	0.18	U	0.17	U	0.17	U
2-Methylnaphthalene		mg/kg		U	0.24	U	0.24	U	0.24	U	0.26	U	0.24	U	0.22	U	0.22	U	0.21	U	0.21	U
1,2,4,5-Tetrachlorobenzene		mg/kg		U	0.2	U	0.2	U	0.2	U	0.21	U	0.2	U	0.18	U	0.18	U	0.17	U	0.17	U
Acetophenone		mg/kg		Ü	0.2	Ū	0.2	Ü	0.2	Ū	0.21	Ū	0.2	Ū	0.18	Ū	0.18	Ū	0.17	Ū	0.17	U
2,4,6-Trichlorophenol	10			Ü	0.12	Ū	0.12	Ü	0.12	Ū	0.13	Ū	0.12	Ū	0.11	Ū	0.11	Ū	0.1	Ū	0.1	U
p-Chloro-m-cresol		mg/kg		Ū	0.2	U	0.2	Ū	0.2	Ū	0.21	Ū	0.2	Ū	0.18	U	0.18	Ū	0.17	U	0.17	Ū
2-Chlorophenol	0.8			Ü	0.2	Ū	0.2	Ü	0.2	Ū	0.21	Ū	0.2	Ū	0.18	Ū	0.18	Ū	0.17	Ū	0.17	U
2,4-Dichlorophenol	2			Ü	0.18	Ū	0.18	Ü	0.18	Ū	0.19	Ū	0.18	Ū	0.16	Ū	0.16	Ū	0.16	Ū	0.16	U
2,4-Dimethylphenol		mg/kg		U	0.2	U	0.2	U	0.2	U	0.21	U	0.2	U	0.18	U	0.18	Ū	0.17	U	0.17	U

TABLE 1 - SUMMARY OF RESULTS FROM SAMPLING EVENT #1

John R Oshie Childrens Hosptial Construciton - Native Soil Assessment

LOCATION SAMPLING DATE LAB SAMPLE ID SAMPLE TYPE SAMPLE DEPTH (ft.)	NYSDEC Protect. Ecology	NYSDEC SCO UNRES. Use Units	\$67-20' 10/7/2014 L1423690-0 SO 12	1 Qual	S62-20' 10/7/2014 L1423690-02 SO 12	Qual	\$62-50' 10/7/2014 L1423690-03 SO 12	Qual	S54-20' 10/7/2014 L1423690-04 SO 12	Qual	\$49-20' 10/7/2014 L1423690-05 SO 12	Qual	\$45-20' 10/7/2014 L1423690-06 SO 9	Qual	S41-10' 10/7/2014 L1423690-07 SO 11	Qual	\$38-25' 10/7/2014 L1423690-08 SO 11	Qual	\$34-20' 10/7/2014 L1423690-09 SO 20	Qual	\$31-20' 10/7/2014 L1423690-10 SO 20	Qual
2 Nitrophonol	Ecology		0.42		0.43	U	0.43	U	0.44	U	0.46	U	0.44	U	0.39	U	0.4	U	0.37	U	0.37	U
2-Nitrophenol		7 mg/kg	0.43	U U	0.43	U		U	0.44	U		U		_			0.4			U		U
4-Nitrophenol	2	7 mg/kg	0.28			U	0.28			U	0.3	U	0.28	U	0.26	U U	0.26	U	0.24	U	0.24	
2,4-Dinitrophenol	2	0 0	0.96	U	0.96	_	0.96	U	0.98	U	0.55		0.97	U	0.88	-	0.88	U U	0.83	_	0.83	U
4,6-Dinitro-o-cresol	0	mg/kg	0.52	U	0.52	U	0.52	U	0.53	U	0.55	U	0.53	U	0.47	U	0.48	_	0.45	U	0.45	U
Pentachlorophenol	0.0		0.16	U	0.16	U	0.16	U	0.16	U	0.17	U	0.16	U	0.15	U	0.15	U	0.14	U U	0.14	U
Phenol	3		0.2	U	0.2	U	0.2	U	0.2	U	0.21	U	0.2	U	0.18	U	0.18	U	0.17	U	0.17	U
2-Methylphenol		0.33 mg/kg	0.2	U	0.2	U	0.2	U	0.2	U	0.21	U	0.2	U	0.18	U	0.18	U	0.17	•	0.17	U
3-Methylphenol/4-Methylphenol		0.33 mg/kg	0.29	U	0.29	U	0.29	U	0.3	U	0.31	U	0.29	U	0.26	U	0.26	U	0.25	U	0.25	U
2,4,5-Trichlorophenol	•	4 mg/kg	0.2	U	0.2	U	0.2	U	0.2	U	0.21	U	0.2	U	0.18	U	0.18	U	0.17	•	0.17	U
Carbazole		mg/kg	0.2	U	0.2	U	0.2	U	0.2	U	0.21	U	0.2	U	0.18	U	0.18	U	0.17	U	0.17	U
Benzaldehyde		mg/kg	0.26	U	0.26	U	0.26	U U	0.27	U	0.28	U	0.27	U	0.24	U	0.24	U	0.23	U	0.23	U
Caprolactam		mg/kg	0.2	U	0.2	U	0.2	_	0.2	U	0.21	U	0.2	U	0.18	U	0.18	U	0.17	U	0.17	U
Atrazine		mg/kg	0.16	U U	0.16	U	0.16	U	0.16	U	0.17	U U	0.16	U U	0.15	U U	0.15	U U	0.14 0.17	IJ	0.14	U U
2,3,4,6-Tetrachlorophenol Total Metals - Westborough Lab		mg/kg	0.2	U	0.2	U	0.2	U	0.2	U	0.21	U	0.2	U	0.18	U	0.18	U	0.17	U	0.17	U
Arsenic, Total	1	2 12 ma/ka	1		1.0		0.94		0.59		1.0		1 1		0.82		0.7		0.95		1	
Barium. Total	13 43	0 0	6.5		1.2 6.9		0.9 4 13		5.8		1.8 24		1.1 12		10		0.7 5.5		0.95 7.4		15	
•	10			ı							0.22											
Beryllium, Total	11	3. 3	0.07	J	0.09	J	0.17	J	0.08	J		J	0.18	J	0.1	J J	0.09	J	0.08	J	0.09	J
Cadmium, Total	•	4 2.5 mg/kg	0.16	J	0.11	J	0.14	J	0.1	J	0.11	J	0.18	J	0.14	J	0.16	J	0.16	J	0.09	J
Chromium, Total	E	mg/kg	3.2		3.7		5.8 14		3.1		5.1		5.1		4.1		3.2		ა 6.0		3.1 7.3	
Copper, Total	50	0 0	6.4		8.2 7				6.6		9.3		12 8		7.4		6.5		6.2			
Lead, Total	69 160	0 0	6.3 240		260		11 280		6.8 200		29 250		o 410		7.4 230		6.1 250		6.2 190		5.6 190	
Manganese, Total	0.18	0 0	0.08	U	0.08	U	0.02		0.08		0.07		0.02		0.02	J	0.07	U	0.07	U	0.01	
Mercury, Total Nickel. Total	3	0 0	2.9	U	3.4	U	6.8	J	2.8	U	5.07	J	5.7	J	3.7	J	3.4	U	2.9	U	3.2	J
Selenium, Total		0 0			0.95	U	0.8	U			1	U	0.97	U				- 11	0.16		0.82	- 11
Silver, Total	3.9	0 0	0.2 0.46	J	0.95	U	0.94	U	0.93 0.46	IJ	0.51	U	0.49	IJ	0.84 0.42	U U	0.88 0.44	U U	0.10	IJ	0.62	U U
Zinc, Total	10	2 2 mg/kg	59	U	66	U	130	U	49	U	66	U	96	U	57	U	58	U	57	U	51	U
Volatile Organics by 8260/5035 - We			59		00		130		49		00		90		31		36		37		31	
Methylene chloride	siborougii La 1		0.011	U	0.01	U	0.011	U	0.01	- 11	0.01	U	0.0094	U	0.0096	U	0.0092	U	0.01	U	0.01	U
1,1-Dichloroethane	1.	0.03 mg/kg 0.27 mg/kg	0.011	Ü	0.015	U	0.011	U	0.016	11	0.016	U	0.0094	U	0.0090	U	0.0092	U	0.0015	U	0.01	U
Chloroform	1:		0.0016	Ü	0.0015	U	0.0016	Ü	0.0016	11	0.0016	Ü	0.0014	U	0.0014	Ü	0.0014	U	0.0015	U	0.0015	Ü
Carbon tetrachloride	1.	0.76 mg/kg	0.0010	Ü	0.0013	U	0.0010	Ü	0.001	П	0.001	Ü	0.00094	Ü	0.00096	Ü	0.00092	Ü	0.0013	U	0.0013	Ü
1,2-Dichloropropane	70		0.0038	Ü	0.001	Ü	0.0037	Ü	0.001	П	0.001	Ü	0.0034	Ü	0.0033	Ü	0.0032	Ü	0.001	U	0.001	Ü
Dibromochloromethane	10		0.0030	U	0.0030	U	0.0037	Ü	0.0037	П	0.0037	U	0.00094	U	0.00096	Ü	0.00092	U	0.0033	U	0.0033	U
1,1,2-Trichloroethane		mg/kg	0.0011	Ü	0.001	11	0.0011	11	0.001	П	0.001	U	0.00034	11	0.0014	Ü	0.00032	11	0.001	11	0.001	U
Tetrachloroethene	•	2 1.3 mg/kg	0.0010	Ü	0.0013	U	0.0010	IJ	0.001	П	0.001	U	0.00094	11	0.00096	Ü	0.00092	Ü	0.0013	U	0.0013	U
Chlorobenzene	4	0 0	0.0011	Ü	0.001	Ü	0.0011	Ü	0.001	II	0.001	Ü	0.00094	II	0.00096	Ü	0.00092	Ü	0.001	U	0.001	Ü
Trichlorofluoromethane		mg/kg	0.0054	Ü	0.0051	Ü	0.0053	Ü	0.0052	II	0.0053	Ü	0.0047	Ü	0.0048	Ü	0.0046	Ü	0.0051	Ü	0.001	Ü
1,2-Dichloroethane	1		0.0011	Ü	0.001	Ü	0.0011	Ü	0.001	IJ	0.001	Ü	0.00094	Ü	0.00096	Ü	0.00092	Ü	0.001	U	0.000	Ü
1,1,1-Trichloroethane	•	0.68 mg/kg	0.0011	Ü	0.001	Ü	0.0011	Ü	0.001	Ü	0.001	Ü	0.00094	U	0.00096	Ü	0.00092	Ü	0.001	Ü	0.001	Ü
Bromodichloromethane		mg/kg	0.0011	U	0.001	U	0.0011	IJ	0.001	IJ	0.001	Ü	0.00094	IJ	0.00096	Ü	0.00092	Ü	0.001	U	0.001	U
trans-1,3-Dichloropropene		mg/kg	0.0011	U	0.001	U	0.0011	IJ	0.001	IJ	0.001	Ü	0.00094	IJ	0.00096	Ü	0.00092	Ü	0.001	U	0.001	U
cis-1,3-Dichloropropene		mg/kg	0.0011	Ü	0.001	Ü	0.0011	Ü	0.001	IJ	0.001	Ü	0.00094	Ü	0.00096	Ü	0.00092	Ü	0.001	Ü	0.001	Ü
Bromoform		mg/kg	0.0043	Ü	0.001	Ü	0.0042	Ü	0.0042	IJ	0.001	Ü	0.0038	Ü	0.0038	Ü	0.0032	Ü	0.004	U	0.004	Ü
1,1,2,2-Tetrachloroethane		2 mg/kg	0.0011	Ü	0.001	Ü	0.0012	Ü	0.001	IJ	0.001	Ü	0.00094	Ü	0.00096	Ü	0.00092	Ü	0.001	Ü	0.001	Ü
-, -, -,	•	9/119		-		-		-		-		•		-		-		-		-		-

TABLE 1 - SUMMARY OF RESULTS FROM SAMPLING EVENT #1

John R Oshie Childrens Hosptial Construciton - Native Soil Assessment

LOCATION SAMPLING DATE			S67-20' 10/7/2014		S62-20' 10/7/2014		S62-50' 10/7/2014		S54-20' 10/7/2014		S49-20' 10/7/2014		S45-20' 10/7/2014		S41-10' 10/7/2014		S38-25' 10/7/2014		S34-20' 10/7/2014		S31-20' 10/7/2014	
LAB SAMPLE ID SAMPLE TYPE	NYSDEC	NYSDEC	L1423690-01	Į.	L1423690-02		L1423690-03	i	L1423690-04		L1423690-05)	L1423690-06		L1423690-07		L1423690-08		L1423690-09		L1423690-10)
SAMPLE 117E SAMPLE DEPTH (ft.)	Protect.	SCO	SO 12		SO 12		SO 12		SO 12		SO 12		SO		SO 11		SO 11		SO 20		SO 20	
SAMLE DEI III (II.)	Ecology	UNRES. Use Units	12	Oual	12	Oual	12	Qual	12	Qual	12	Oual	,	Qual	11	Qual	11	Qual	20	Qual	20	Qual
Benzene	70 Teology		0.0011	U	0.001	U	0.0011	U	0.001	U	0.001	U	0.00094	U	0.00096	U	0.00092	U	0.001	U	0.001	U
Toluene	36			J	0.00045	J	0.00063	J	0.00035	J	0.00026	J	0.00034	j	0.00030	j	0.00032	J	0.0015	Ü	0.00032	ı
Ethylbenzene	0.	1 mg/kg		Ŭ	0.001	Ü	0.0011	Ŭ	0.001	Ü	0.001	Ü	0.00094	Ŭ	0.00022	Ü	0.00020	Ŭ	0.001	Ü	0.001	Ü
Chloromethane		mg/kg		Ü	0.0051	Ü	0.0053	Ü	0.0052	Ü	0.0053	Ü	0.0047	Ü	0.0048	Ü	0.0046	Ü	0.0051	Ü	0.005	Ü
Bromomethane		mg/kg		Ü	0.002	Ü	0.0021	Ü	0.0021	Ü	0.0021	Ü	0.0019	Ü	0.0019	Ü	0.0018	Ü	0.002	Ü	0.002	Ü
Vinvl chloride		0.02 mg/kg		Ü	0.002	Ü	0.0021	Ü	0.0021	Ü	0.0021	Ü	0.0019	Ü	0.0019	Ü	0.0018	Ü	0.002	Ü	0.002	Ü
Chloroethane		mg/kg		Ū	0.002	Ū	0.0021	Ū	0.0021	Ū	0.0021	Ū	0.0019	Ū	0.0019	Ū	0.0018	Ū	0.002	Ū	0.002	Ū
1,1-Dichloroethene		0.33 mg/kg		Ū	0.001	Ū	0.0011	Ū	0.001	Ū	0.001	Ū	0.00094	Ū	0.00096	Ū	0.00092	Ū	0.001	Ū	0.001	Ū
trans-1,2-Dichloroethene		0.19 mg/kg		U	0.0015	U	0.0016	U	0.0016	U	0.0016	U	0.0014	U	0.0014	U	0.0014	U	0.0015	U	0.0015	U
Trichloroethene	2	2 0.47 mg/kg		U	0.001	U	0.0011	U	0.001	U	0.001	U	0.00094	U	0.00096	U	0.00092	U	0.001	U	0.001	U
1,2-Dichlorobenzene		1.1 mg/kg		U	0.0051	U	0.0053	U	0.0052	U	0.0053	U	0.0047	U	0.0048	U	0.0046	U	0.0051	U	0.005	U
1,3-Dichlorobenzene		2.4 mg/kg		U	0.0051	U	0.0053	U	0.0052	U	0.0053	U	0.0047	U	0.0048	U	0.0046	U	0.0051	U	0.005	U
1,4-Dichlorobenzene	20			U	0.0051	U	0.0053	U	0.0052	U	0.0053	U	0.0047	U	0.0048	U	0.0046	U	0.0051	U	0.005	U
Methyl tert butyl ether		0.93 mg/kg	0.0022	U	0.002	U	0.0021	U	0.0021	U	0.0021	U	0.0019	U	0.0019	U	0.0018	U	0.002	U	0.002	U
p/m-Xylene		mg/kg	0.0022	U	0.002	U	0.0021	U	0.0021	U	0.0021	U	0.0019	U	0.0019	U	0.0018	U	0.002	U	0.002	U
o-Xylene		mg/kg	0.0022	U	0.002	U	0.0021	U	0.0021	U	0.0021	U	0.0019	U	0.0019	U	0.0018	U	0.002	U	0.002	U
cis-1,2-Dichloroethene		0.25 mg/kg	0.0011	U	0.001	U	0.0011	U	0.001	U	0.001	U	0.00094	U	0.00096	U	0.00092	U	0.001	U	0.001	U
Styrene	300) mg/kg	0.0022	U	0.002	U	0.0021	U	0.0021	U	0.0021	U	0.0019	U	0.0019	U	0.0018	U	0.002	U	0.002	U
Dichlorodifluoromethane		mg/kg	0.011	U	0.01	U	0.011	U	0.01	U	0.01	U	0.0094	U	0.0096	U	0.0092	U	0.01	U	0.01	U
Acetone	2.2	2 0.05 mg/kg	0.0072	J	0.009	J	0.025		0.007	J	0.012		0.0061	J	0.028		0.023		0.0074	J	0.0032	J
Carbon disulfide		mg/kg	0.011	U	0.01	U	0.011	U	0.01	U	0.01	U	0.0094	U	0.0096	U	0.0092	U	0.01	U	0.01	U
2-Butanone	100	0.12 mg/kg	0.011	U	0.01	U	0.00085	J	0.01	U	0.01	U	0.0094	U	0.0096	U	0.0092	U	0.01	U	0.01	U
4-Methyl-2-pentanone		mg/kg	0.011	U	0.01	U	0.011	U	0.01	U	0.01	U	0.0094	U	0.0096	U	0.0092	U	0.01	U	0.01	U
2-Hexanone		mg/kg		U	0.01	U	0.011	U	0.01	U	0.01	U	0.0094	U	0.0096	U	0.0092	U	0.01	U	0.01	U
Bromochloromethane		mg/kg	0.0054	U	0.0051	U	0.0053	U	0.0052	U	0.0053	U	0.0047	U	0.0048	U	0.0046	U	0.0051	U	0.005	U
1,2-Dibromoethane		mg/kg		U	0.0041	U	0.0042	U	0.0042	U	0.0042	U	0.0038	U	0.0038	U	0.0037	U	0.004	U	0.004	U
1,2-Dibromo-3-chloropropane		mg/kg	0.0054	U	0.0051	U	0.0053	U	0.0052	U	0.0053	U	0.0047	U	0.0048	U	0.0046	U	0.0051	U	0.005	U
Isopropylbenzene		mg/kg	0.0011	U	0.001	U	0.0011	U	0.001	U	0.001	U	0.00094	U	0.00096	U	0.00092	U	0.001	U	0.001	U
1,2,3-Trichlorobenzene	20	0 0		U	0.0051	U	0.0053	U	0.0052	U	0.0053	U	0.0047	U	0.0048	U	0.0046	U	0.0051	U	0.005	U
1,2,4-Trichlorobenzene	20) mg/kg		U	0.0051	U	0.0053	U	0.0052	U	0.0053	U	0.0047	U	0.0048	U	0.0046	U	0.0051	U	0.005	U
Methyl Acetate		mg/kg		J	0.013	J	0.011	J	0.0055	J	0.026		0.011	J	0.051		0.022		0.02	U	0.0046	J
Cyclohexane		mg/kg		U	0.02	U	0.021	_ U	0.021	U	0.021	U	0.019	U	0.019	U	0.018	U	0.02	U	0.02	U
1,4-Dioxane	0.	- 3		U	0.1	U	0.11	U	0.1	U	0.1	U	0.094	U	0.096	U	0.092	U	0.1	U	0.1	U
Freon-113		mg/kg		U	0.02	U	0.021	U	0.021	U	0.021	U	0.019	U	0.019	U	0.018	U	0.02	U	0.02	U
Methyl cyclohexane		mg/kg	0.0043	U	0.0041	U	0.00026	J	0.0042	U	0.0042	U	0.0038	U	0.0038	U	0.0037	U	0.004	U	0.004	U

C&S Companies 141 Elm Street Suite 100 Buffalo, NY 14203 p: (716) 847-1630

f: (716) 847-1454 www.cscos.com

October 31, 2014

Ms. Mickey Mariacher Project Manager – JRO Children's Hospital of Buffalo Kaleida Health Larkin Building, Suite 200 726 Exchange Street Buffalo, New York 14210

Re: Results of Initial Native Soil Sampling – Events #2 & #3

Dear Ms. Mariacher:

C&S Engineers. Inc. ("C&S") is assisting Kaleida Health in the management of excavated soils for the construction on the John R. Oishei Children's Hospital ("JRO"). As part of that work, Kaleida Health has requested C&S to collect samples of the native soils that will be removed during the construction of JRO. Sampling is being conducted concurrent with the excavation of the fill that is present above the native soils. Sampling is being conducted in phases as the material is being exposed during construction. This letter presents the results of the second and third events of sampling.

Sample Event #2 & 3 – Process and Results.

On October 10 and 14, 2014, C&S performed the additional soil sampling event related to re-use of native soils.

Soil were collected by hand 1-2 feet below the exposed native soils surface following the additional excavation in the western end of the site. Figure 1 (dated October 14, 2014) shows the excavation area and the sample locations. Soils were collected and submitted to Alpha Analytical to be analyzed for the target compounds specified in NYSDEC DER-10, Table 5.4(e)10 and Appendix 5 (May 2010).

Naming Convention

Samples were labeled relative to their location from their nearest column number and collection depth (from grade), as follows:

Sample ID:

J4-10' [indicates sample was collected near Column J4 at 10 ft from grade]

Sample Results are summarized in Table 2 – Summary of Results from Event #2 and Table 3 – Summary of Results from Event #3. The laboratory reports are attached to this letter.

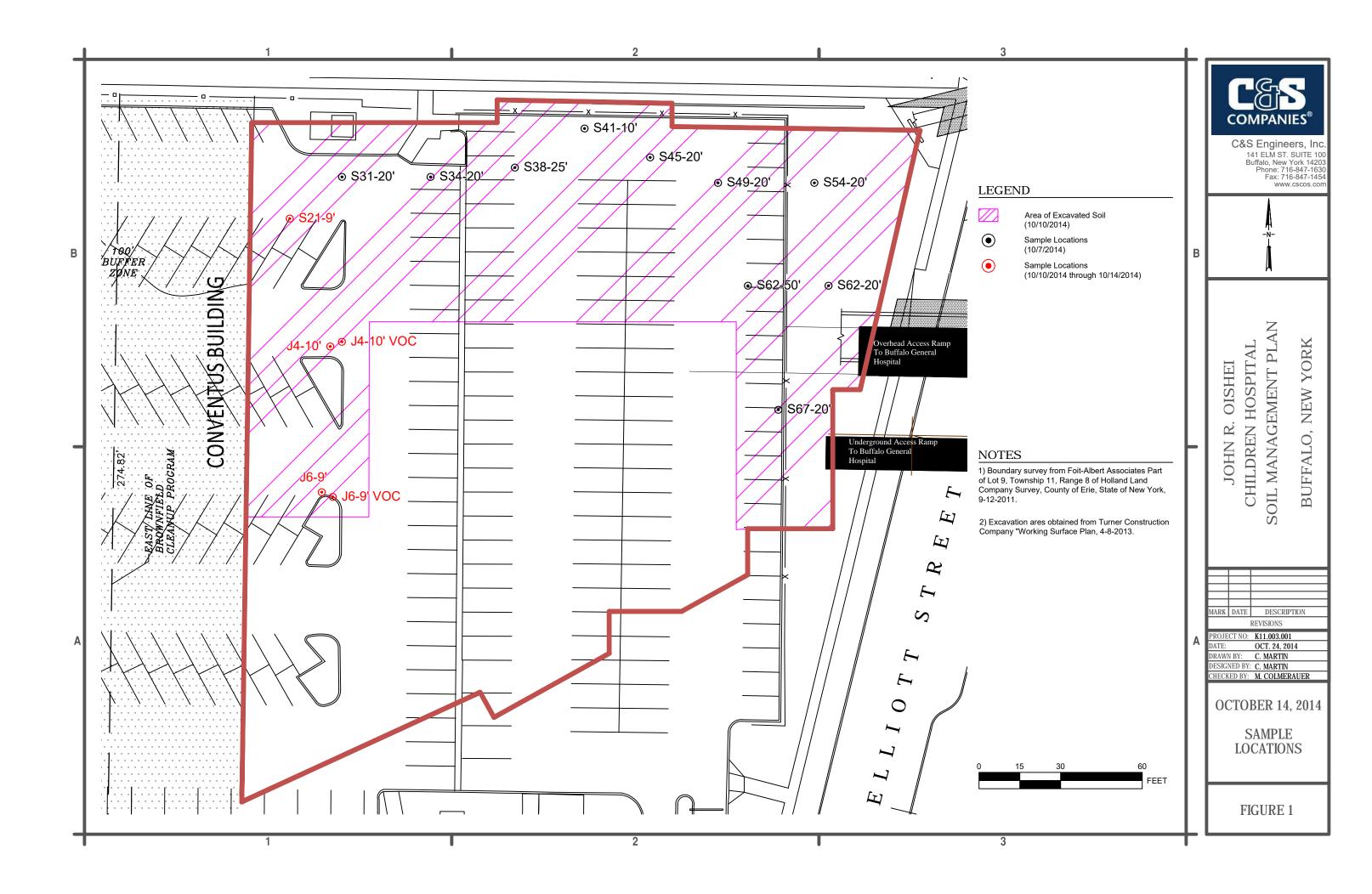
The following is a summary of samples and analyses completed for the site;

Sample Event	Date	VOCs	SVOCs, Inorganics & PCBc/Pesticides
Event #1	10/07/14	10	10
Event #2	10/10/14		1
Event #3	10/14/14	2	2
	TOTAL	12	13

Additional sampling will occur for this initial exposure (lift) of native soils. Subsequent sampling events will occur during excavation of additional lifts of native soils as shoring is added and excavation depths increase.

Please contact me if you have any further questions.

Sincerely,


C&S ENGINEERS, INC.

Mark Colmerauer

Regional Environmental Service Manager

Attached: Lab Data of 10/10/2014 and 10/14/14 sample events

www.cscos.com (877) CS-SOLVE

Ecology UNRES. Use Units Qual Chlorinated Herbicides by GC - Westborough Lab 3.8 mg/kg 0.17 U General Chemistry - Westborough Lab 8 95.8 95.8 95.8 95.8 95.8 1 U 0 0 0.84 U 0 0.84 U 0 0.84 U 0 0.84 U 0 0.04 0.04 mg/kg 0.0016 U 0 0.04 0.04 mg/kg 0.0016 U 0 0.00666 U 0 0.00666 U 0.00666 U 0.00799 U 0.0016 U 0.0016 U 0.00799 U 0.0016 U 0.0016 U 0.0016 U 0.0016 U 0.000799 U 0.0016 U
2,4,5-TP (Silvex) 3.8 mg/kg 0.17 U General Chemistry - Westborough Lab Solids, Total % 95.8 Cyanide, Total 27 mg/kg 1 U Chromium, Hexavalent 1 1 mg/kg 0.84 U Organochlorine Pesticides by GC - Westborough Lab Delta-BHC 0.04 0.04 mg/kg 0.0016 U Lindane 6 0.1 mg/kg 0.000666 U Alpha-BHC 0.04 0.02 mg/kg 0.000666 U Beta-BHC 0.6 0.036 mg/kg 0.0016 U Heptachlor 0.14 0.042 mg/kg 0.000799 U
General Chemistry - Westborough Lab Solids, Total % 95.8 Cyanide, Total 27 mg/kg 1 U Chromium, Hexavalent 1 1 mg/kg 0.84 U Organochlorine Pesticides by GC - Westborough Lab Delta-BHC 0.04 mg/kg 0.0016 U Lindane 6 0.1 mg/kg 0.000666 U Alpha-BHC 0.04 0.02 mg/kg 0.000666 U Beta-BHC 0.6 0.036 mg/kg 0.0016 U Heptachlor 0.14 0.042 mg/kg 0.000799 U
Solids, Total % 95.8 Cyanide, Total 27 mg/kg 1 U Chromium, Hexavalent 1 1 mg/kg 0.84 U Organochlorine Pesticides by GC - Westborough Lab Delta-BHC 0.04 0.04 mg/kg 0.0016 U Lindane 6 0.1 mg/kg 0.000666 U Alpha-BHC 0.04 0.02 mg/kg 0.000666 U Beta-BHC 0.6 0.036 mg/kg 0.0016 U Heptachlor 0.14 0.042 mg/kg 0.000799 U
Cyanide, Total 27 mg/kg 1 U Chromium, Hexavalent 1 1 mg/kg 0.84 U Organochlorine Pesticides by GC - Westborough Lab Delta-BHC 0.04 0.04 mg/kg 0.0016 U Lindane 6 0.1 mg/kg 0.000666 U Alpha-BHC 0.04 0.02 mg/kg 0.000666 U Beta-BHC 0.6 0.036 mg/kg 0.0016 U Heptachlor 0.14 0.042 mg/kg 0.000799 U
Chromium, Hexavalent 1 1 mg/kg 0.84 U Organochlorine Pesticides by GC - Westborough Lab Delta-BHC 0.04 0.04 mg/kg 0.0016 U Lindane 6 0.1 mg/kg 0.000666 U Alpha-BHC 0.04 0.02 mg/kg 0.000666 U Beta-BHC 0.6 0.036 mg/kg 0.0016 U Heptachlor 0.14 0.042 mg/kg 0.000799 U
Organochlorine Pesticides by GC - Westborough Lab Delta-BHC 0.04 0.04 mg/kg 0.0016 U Lindane 6 0.1 mg/kg 0.000666 U Alpha-BHC 0.04 0.02 mg/kg 0.000666 U Beta-BHC 0.6 0.036 mg/kg 0.0016 U Heptachlor 0.14 0.042 mg/kg 0.000799 U
Delta-BHC 0.04 0.04 mg/kg 0.0016 U Lindane 6 0.1 mg/kg 0.000666 U Alpha-BHC 0.04 0.02 mg/kg 0.000666 U Beta-BHC 0.6 0.036 mg/kg 0.0016 U Heptachlor 0.14 0.042 mg/kg 0.000799 U
Lindane 6 0.1 mg/kg 0.000666 U Alpha-BHC 0.04 0.02 mg/kg 0.000666 U Beta-BHC 0.6 0.036 mg/kg 0.0016 U Heptachlor 0.14 0.042 mg/kg 0.000799 U
Alpha-BHC 0.04 0.02 mg/kg 0.000666 U Beta-BHC 0.6 0.036 mg/kg 0.0016 U Heptachlor 0.14 0.042 mg/kg 0.000799 U
Beta-BHC 0.6 0.036 mg/kg 0.0016 U Heptachlor 0.14 0.042 mg/kg 0.000799 U
Heptachlor 0.14 0.042 mg/kg 0.000799 U
Δidrin 11.7/ 11.105 md/kd 11.1016 11
Heptachlor epoxide mg/kg 0.003 U
Endrin 0.014 0.014 mg/kg 0.000666 U
Endrin ketone mg/kg 0.0016 U
Dieldrin 0.006 0.005 mg/kg 0.000998 U
4,4'-DDE 0.0033 0.0033 mg/kg 0.0016 U
4,4'-DDD 0.0033 0.0033 mg/kg 0.0016 U
4,4'-DDT 0.0033 0.0033 mg/kg 0.003 U
Endosulfan I 2.4 mg/kg 0.0016 U
Endosulfan II 2.4 mg/kg 0.0016 U
Endosulfan sulfate 2.4 mg/kg 0.000666 U
Methoxychlor 1.2 mg/kg 0.003 U
Toxaphene mg/kg 0.03 U
cis-Chlordane 1.3 0.094 mg/kg 0.002 U
trans-Chlordane mg/kg 0.002 U
Chlordane mg/kg 0.013 U
Polychlorinated Biphenyls by GC - Westborough Lab
Aroclor 1016 1 0.1 mg/kg 0.0326 U
Aroclor 1221 1 0.1 mg/kg 0.0326 U
Aroclor 1232 1 0.1 mg/kg 0.0326 U
Aroclor 1242 1 0.1 mg/kg 0.0326 U
Aroclor 1248 1 0.1 mg/kg 0.0326 U
Aroclor 1254 1 0.1 mg/kg 0.0326 U
Aroclor 1260 1 0.1 mg/kg 0.0326 U
Aroclor 1262 1 0.1 mg/kg 0.0326 U
Aroclor 1268 1 0.1 mg/kg 0.0326 U
PCBs, Total mg/kg 0.0326 U

LOCATION SAMPLING DATE LAB SAMPLE ID			S21-9 10/10/201 L1424182-0	4
SAMPLE TYPE	NYSDEC	NYSDEC	so	
SAMPLE DEPTH (ft.)	Protect.	SCO	9	
	Ecology	UNRES. Use Units		Qual
Semivolatile Organics by GC/MS -	Westborough L	ab		
Acenaphthene	20	- 3 3	0.14	U
Hexachlorobenzene		0.33 mg/kg	0.1	U
Bis(2-chloroethyl)ether		mg/kg	0.15	U
2-Chloronaphthalene		mg/kg	0.17	U
3,3'-Dichlorobenzidine		mg/kg	0.17	U
2,4-Dinitrotoluene		mg/kg	0.17	U
2,6-Dinitrotoluene		mg/kg	0.17	U
Fluoranthene		100 mg/kg	0.1	U
4-Chlorophenyl phenyl ether		mg/kg	0.17	U
4-Bromophenyl phenyl ether		mg/kg	0.17	U
Bis(2-chloroisopropyl)ether		mg/kg	0.2	U
Bis(2-chloroethoxy)methane		mg/kg	0.18	U
Hexachlorobutadiene		mg/kg	0.17	U
Hexachlorocyclopentadiene	10		0.49	U
Hexachloroethane		mg/kg	0.14	U
Isophorone		mg/kg	0.15	U
Naphthalene		12 mg/kg	0.17	U
Nitrobenzene	40		0.15	U
NDPA/DPA	20		0.14	U
n-Nitrosodi-n-propylamine		mg/kg	0.17	U
Bis(2-ethylhexyl)phthalate	239		0.17	U
Butyl benzyl phthalate		mg/kg	0.17	Ū
Di-n-butylphthalate	0.014		0.17	Ü
Di-n-octylphthalate		mg/kg	0.17	U
Diethyl phthalate	100		0.17	U
Dimethyl phthalate	200	0 0	0.17	Ū
Benzo(a)anthracene		1 mg/kg	0.1	Ū
Benzo(a)pyrene	2.6		0.14	Ū
Benzo(b)fluoranthene		1 mg/kg	0.1	Ū
Benzo(k)fluoranthene		0.8 mg/kg	0.1	Ü
Chrysene		1 mg/kg	0.1	Ū
Acenaphthylene		100 mg/kg	0.14	Ü
Anthracene		100 mg/kg	0.1	Ū
Benzo(ghi)perylene		100 mg/kg	0.14	Ū
Fluorene	30	0 0	0.17	Ū
Phenanthrene		100 mg/kg	0.1	Ū
Dibenzo(a,h)anthracene		0.33 mg/kg	0.1	Ū
Indeno(1,2,3-cd)pyrene		0.5 mg/kg	0.14	Ū
Pyrene		100 mg/kg	0.1	Ü
Biphenyl	60		0.39	Ū
4-Chloroaniline	00	mg/kg	0.17	Ü
2-Nitroaniline		mg/kg	0.17	Ü
3-Nitroaniline		mg/kg	0.17	Ü
4-Nitroaniline		mg/kg	0.17	Ü
Dibenzofuran		7 mg/kg	0.17	Ü
		,aa	J. 1 1	Ü

LOCATION SAMPLING DATE LAB SAMPLE ID SAMPLE TYPE SAMPLE DEPTH (ft.)	NYSDEC Protect.	NYSDEC SCO UNRES. Use	Ilmita	S21-9' 10/10/2014 L1424182-01 SO 9	Owal
O Matter de au latte al ausa	Ecology	UNKES. USE		0.0	Qual
2-Methylnaphthalene			mg/kg	0.2	U U
1,2,4,5-Tetrachlorobenzene			mg/kg	0.17 0.17	U
Acetophenone 2,4,6-Trichlorophenol	10		mg/kg	0.17	U
p-Chloro-m-cresol	10		mg/kg	0.17	U
2-Chlorophenol	0.8		mg/kg	0.17	U
2,4-Dichlorophenol	20		mg/kg	0.17	U
2,4-Dicriloropherior	20		mg/kg	0.15	U
2-Nitrophenol	7		mg/kg	0.17	U
4-Nitrophenol	7		mg/kg	0.37	U
2,4-Dinitrophenol	20		mg/kg	0.24	U
4,6-Dinitro-o-cresol	20		mg/kg mg/kg	0.44	U
Pentachlorophenol	0.8	0.8	mg/kg	0.44	U
Phenol	30		mg/kg	0.17	U
2-Methylphenol	30		mg/kg	0.17	U
3-Methylphenol/4-Methylphenol			mg/kg	0.17	Ü
2,4,5-Trichlorophenol	4		mg/kg	0.24	Ü
Carbazole	7		mg/kg	0.17	Ü
Benzaldehyde			mg/kg	0.17	U
Caprolactam			mg/kg	0.17	Ü
Atrazine			mg/kg	0.17	Ü
2,3,4,6-Tetrachlorophenol			mg/kg	0.17	Ü
Total Metals - Westborough Lab			mg/kg	0.17	O
Arsenic, Total	13	13	mg/kg	0.41	U
Barium, Total	433		mg/kg	6	O
Beryllium, Total	10		mg/kg	0.07	J
Cadmium, Total	4		mg/kg	0.41	Ü
Chromium, Total	•	2.0	mg/kg	2.6	Ü
Copper, Total	50	50	mg/kg	6.2	
Lead, Total	63		mg/kg	6	
Manganese, Total	1600		mg/kg	180	
Mercury, Total	0.18		mg/kg	0.07	U
Nickel, Total	30		mg/kg	2.7	5
Selenium, Total	3.9		mg/kg	0.81	U
Silver, Total	2.3		mg/kg	0.41	Ü
Zinc, Total	109		mg/kg	61	-
, 10.01	100	.00	9,9	٠.	

LOCATION SAMPLING DATE LAB SAMPLE ID				S21-9' 10/10/2014 L1424182-01	
SAMPLE TYPE	NYSDEC	NYSDEC		SO	
SAMPLE DEPTH (ft.)	Protect.	SCO		9	
	Ecology	UNRES. Use	Units		Qual
Volatile Organics by 8260/5035 - West	borough Lab)			
Methylene chloride	12	0.05	mg/kg	0.01	U
1,1-Dichloroethane			mg/kg	0.0015	U
Chloroform	12	0.37	mg/kg	0.0015	U
Carbon tetrachloride		0.76	mg/kg	0.001	U
1,2-Dichloropropane	700		mg/kg	0.0036	U
Dibromochloromethane	10		mg/kg	0.001	U
1,1,2-Trichloroethane			mg/kg	0.0015	U
Tetrachloroethene	2	1.3	mg/kg	0.001	U
Chlorobenzene	40	1.1	mg/kg	0.001	U
Trichlorofluoromethane			mg/kg	0.0051	U
1,2-Dichloroethane	10		mg/kg	0.001	U
1,1,1-Trichloroethane		0.68	mg/kg	0.001	U
Bromodichloromethane			mg/kg	0.001	U
trans-1,3-Dichloropropene			mg/kg	0.001	U
cis-1,3-Dichloropropene			mg/kg	0.001	U
Bromoform			mg/kg	0.0041	U
1,1,2,2-Tetrachloroethane	2		mg/kg	0.001	U
Benzene	70	0.06	mg/kg	0.001	U
Toluene	36	0.7	mg/kg	0.0015	U
Ethylbenzene		1	mg/kg	0.001	U
Chloromethane			mg/kg	0.0051	U
Bromomethane			mg/kg	0.002	U
Vinyl chloride		0.02	mg/kg	0.002	U
Chloroethane			mg/kg	0.002	U
1,1-Dichloroethene		0.33	mg/kg	0.001	U
trans-1,2-Dichloroethene		0.19	mg/kg	0.0015	U
Trichloroethene	2	0.47	mg/kg	0.001	U
1,2-Dichlorobenzene		1.1	mg/kg	0.0051	U
1,3-Dichlorobenzene			mg/kg	0.0051	U
1,4-Dichlorobenzene	20		mg/kg	0.0051	U
Methyl tert butyl ether			mg/kg	0.002	U
p/m-Xylene			mg/kg	0.002	U
o-Xylene			mg/kg	0.002	U
cis-1,2-Dichloroethene		0.25	mg/kg	0.001	U
Styrene	300		mg/kg	0.002	U
Dichlorodifluoromethane			mg/kg	0.01	U
Acetone	2.2	0.05	mg/kg	0.0083	J
Carbon disulfide			mg/kg	0.01	U
2-Butanone	100	0.12	mg/kg	0.01	Ū
4-Methyl-2-pentanone			mg/kg	0.01	Ū
2-Hexanone			mg/kg	0.01	Ü
Bromochloromethane			mg/kg	0.0051	Ü
1,2-Dibromoethane			mg/kg	0.0041	Ü
1,2-Dibromo-3-chloropropane			mg/kg	0.0051	Ü
Isopropylbenzene			mg/kg	0.001	Ü
1 17			JJ		

LOCATION SAMPLING DATE LAB SAMPLE ID SAMPLE TYPE SAMPLE DEPTH (ft.)	NYSDEC Protect.	NYSDEC SCO	S21-9 10/10/201 L1424182-0 SO 9	4
	Ecology	UNRES. Use Units		Qual
1,2,3-Trichlorobenzene	20) mg/kg	0.0051	U
1,2,4-Trichlorobenzene	20) mg/kg	0.0051	U
Methyl Acetate		mg/kg	0.02	U
Cyclohexane		mg/kg	0.02	U
1,4-Dioxane	0.1	0.1 mg/kg	0.1	U
Freon-113		mg/kg	0.02	U
Methyl cyclohexane		mg/kg	0.0041	U

TABLE 3 - SUMMARY OF RESULTS FROM SAMPLING EVENT #3
John R Oshie Childrens Hospital Construction - Native Soil Assessment

LOCATION SAMPLING DATE LAB SAMPLE ID SAMPLE TYPE	NYSDEC	NYSDEC	J4-10' 10/14/2014 L1424545-01 SO	L	J6-9' 10/14/2014 1424545-02 SO	:	J4-10'-VOC 10/14/2014 L1424545-03 SO	1	J6-9'-VOC 10/14/2014 L1424545-04 SO	
SAMPLE DEPTH (ft.)	Protect.	SCO	10		9		10		9	
	O.	UNRES. U Units		Qual		Qual		Qual		Qual
Chlorinated Herbicides by GC - Wes	tborough Lab									
2,4,5-TP (Silvex)		3.8 mg/kg	0.177	U	0.183	U	-	-	-	-
General Chemistry - Westborough L	ab	0/	00.0		00.5		00.0		00.7	
Solids, Total		%	92.2		90.5		92.8		90.7	
Cyanide, Total	1	27 mg/kg	1	U U	1	U	-	-	-	-
Chromium, Hexavalent Organochlorine Pesticides by GC - V		1 mg/kg	0.87	U	0.88	U	-	-	-	-
Delta-BHC	vestborough L 0.04		0.00169	U	0.00168	U				
Lindane	6	0.04 mg/kg 0.1 mg/kg	0.00704	U	0.00108	U	-	-		-
Alpha-BHC	0.04	0.1 mg/kg 0.02 mg/kg	0.000704	Ü	0.0007	U	-	-	-	-
Beta-BHC	0.6	0.036 mg/kg	0.00169	Ü	0.00168	Ü	_	_	_	_
Heptachlor	0.14	0.042 mg/kg	0.000844	Ü	0.00084	Ü	_	_	_	_
Aldrin	0.14	0.005 mg/kg	0.00169	Ü	0.00168	Ü	_	_	_	_
Heptachlor epoxide	0	mg/kg	0.00317	Ü	0.00315	Ü	_	_	_	_
Endrin	0.014	0.014 mg/kg	0.000704	Ū	0.0007	Ü	_	_	_	_
Endrin ketone		mg/kg	0.00169	Ū	0.00168	Ū	-	-	-	-
Dieldrin	0.006	0.005 mg/kg	0.00106	Ū	0.00105	Ū	_	_	_	_
4,4'-DDE	0.0033	0.0033 mg/kg	0.00169	Ū	0.00168	Ū	-	-	-	-
4,4'-DDD	0.0033	0.0033 mg/kg	0.00169	Ū	0.00168	Ū	-	-	-	-
4,4'-DDT	0.0033	0.0033 mg/kg	0.00317	U	0.00315	U	-	-	-	-
Endosulfan I		2.4 mg/kg	0.00169	U	0.00168	U	-	-	-	-
Endosulfan II		2.4 mg/kg	0.00169	U	0.00168	U	-	-	-	-
Endosulfan sulfate		2.4 mg/kg	0.000704	U	0.0007	U	-	-	-	-
Methoxychlor	1.2	mg/kg	0.00317	U	0.00315	U	-	-	-	-
Toxaphene		mg/kg	0.0317	U	0.0315	U	-	-	-	-
cis-Chlordane	1.3	0.094 mg/kg	0.00211	U	0.0021	U	-	-	-	-
trans-Chlordane		mg/kg	0.00211	U	0.0021	U	-	-	-	-
Chlordane		mg/kg	0.0137	U	0.0136	U	-	-	-	-
Polychlorinated Biphenyls by GC - V	Vestborough L									
Aroclor 1016	1	0.1 mg/kg	0.035	U	0.0346	U	-	-	-	-
Aroclor 1221	1	0.1 mg/kg	0.035	U	0.0346	U	-	-	-	-
Aroclor 1232	1	0.1 mg/kg	0.035	U	0.0346	U	-	-	-	-
Aroclor 1242	1	0.1 mg/kg	0.035	U	0.0346	U	-	-	-	-
Aroclor 1248	1	0.1 mg/kg	0.035	U	0.0346	U	-	-	-	-
Aroclor 1254	1	0.1 mg/kg	0.035	U	0.0346	U	-	-	-	-
Aroclor 1260	1	0.1 mg/kg	0.035	U	0.0346	U	-	-	-	-
Aroclor 1262	1 1	0.1 mg/kg	0.035	U	0.0346	U	-	-	-	-
Aroclor 1268	1	0.1 mg/kg	0.035	U U	0.0346	U	-	-	-	-
PCBs, Total Semivolatile Organics by GC/MS - V	Vootborough I	mg/kg	0.035	U	0.0346	U	-	-	-	-
Acenaphthene	vesiborough L 20	20 mg/kg	0.14	U	0.14	U	_		_	_
Hexachlorobenzene	20	0.33 mg/kg	0.11	Ü	0.14	U	-	-	-	-
Bis(2-chloroethyl)ether		mg/kg	0.16	Ü	0.11	Ü	-	_	-	_
2-Chloronaphthalene		mg/kg	0.18	Ü	0.18	Ü	_	_	_	_
3,3'-Dichlorobenzidine		mg/kg	0.18	Ü	0.18	Ü	_	_	_	_
2,4-Dinitrotoluene		mg/kg	0.18	Ü	0.18	Ü	_	_	_	_
2,6-Dinitrotoluene		mg/kg	0.18	Ü	0.18	Ü	_	_	_	_
Fluoranthene		100 mg/kg	0.11	Ū	0.11	Ü	_	_	_	_
4-Chlorophenyl phenyl ether		mg/kg	0.18	Ū	0.18	Ū	-	-	-	-
4-Bromophenyl phenyl ether		mg/kg	0.18	U	0.18	U	-	-	-	-
Bis(2-chloroisopropyl)ether		mg/kg	0.21	U	0.21	U	-	-	-	-
Bis(2-chloroethoxy)methane		mg/kg	0.19	U	0.19	U	-	-	-	-
Hexachlorobutadiene		mg/kg	0.18	U	0.18	U	-	-	-	-
Hexachlorocyclopentadiene	10	mg/kg	0.51	U	0.51	U	-	-	-	-
Hexachloroethane		mg/kg	0.14	U	0.14	U	-	-	-	-
Isophorone		mg/kg	0.16	U	0.16	U	-	-	-	-
Naphthalene		12 mg/kg	0.18	U	0.18	U	-	-	-	-
Nitrobenzene	40	mg/kg	0.16	U	0.16	U	-	-	-	-
NDPA/DPA	20	mg/kg	0.14	U	0.14	U	-	-	-	-
n-Nitrosodi-n-propylamine		mg/kg	0.18	U	0.18	U	-	-	-	-
Bis(2-ethylhexyl)phthalate	239	mg/kg	0.18	U	0.18	U	-	-	-	-

LOCATION		J4-10'	J6-9'	J4-10'-VOC	J6-9'-VOC	
SAMPLING DATE		10/14/2014	10/14/2014	10/14/2014	10/14/2014	
LAB SAMPLE ID		L1424545-01	L1424545-02	L1424545-03	L1424545-04	
SAMPLE TYPE	NYSDEC NYSDEC	so	so	so	SO	
SAMPLE DEPTH (ft.)	Protect. SCO	10	9	10	9	
	Ecology UNRES. U Units		Qual	Qual	Qual	Qual
Butyl benzyl phthalate	mg/kg	0.18	U 0.18	U -		-

TABLE 3 - SUMMARY OF RESULTS FROM SAMPLING EVENT #3
John R Oshie Childrens Hospital Construction - Native Soil Assessment

LOCATION SAMPLING DATE LAB SAMPLE ID			J4-10' 10/14/2014 L1424545-01		J6-9' 10/14/2014 424545-02		J4-10'-VOC 10/14/2014 L1424545-03		J6-9'-VOC 10/14/2014 1424545-04	
SAMPLE TYPE		NYSDEC	so		SO		so		SO	
SAMPLE DEPTH (ft.)	Protect.	SCO	10		9		10		9	
	Ecology	UNRES. U Units		Qual		Qual		Qual		Qual
Di-n-butylphthalate	0.014	0 0	0.18	U	0.18	U	-	-	-	-
Di-n-octylphthalate		mg/kg	0.18	U	0.18	U	-	-	-	-
Diethyl phthalate	100	0 0	0.18	U	0.18	U	-	-	-	-
Dimethyl phthalate	200	3. 3	0.18	U	0.18	U	-	-	-	-
Benzo(a)anthracene		1 mg/kg	0.11	U	0.11	U	-	-	-	-
Benzo(a)pyrene	2.6	0 0	0.14	U	0.14	U	-	-	-	-
Benzo(b)fluoranthene		1 mg/kg	0.11	U	0.11	U	-	-	-	-
Benzo(k)fluoranthene		0.8 mg/kg	0.11	U	0.11	U	-	-	-	-
Chrysene		1 mg/kg	0.11	U	0.11	U	-	-	-	-
Acenaphthylene		100 mg/kg	0.14	U	0.14	U	-	-	-	-
Anthracene		100 mg/kg	0.11	U	0.11	U	-	-	-	-
Benzo(ghi)perylene	20	100 mg/kg	0.14	U	0.14	U	-	-	-	-
Fluorene	30	0 0	0.18	U	0.18	U	-	-	-	-
Phenanthrene		100 mg/kg	0.11	U	0.11	U	-	-	-	-
Dibenzo(a,h)anthracene		0.33 mg/kg	0.11	U	0.11	U	-	-	-	-
Indeno(1,2,3-cd)pyrene		0.5 mg/kg	0.14	U	0.14	U	-	-	-	-
Pyrene	00	100 mg/kg	0.11	U	0.11	U	-	-	-	-
Biphenyl	60	3. 3	0.4	U	0.41	U	-	-	-	-
4-Chloroaniline		mg/kg	0.18	U	0.18	U	-	-	-	-
2-Nitroaniline		mg/kg	0.18	U	0.18	U	-	-	-	-
3-Nitroaniline		mg/kg	0.18	U	0.18	U	-	-	-	-
4-Nitroaniline		_ mg/kg	0.18	U	0.18	U	-	-	-	-
Dibenzofuran		7 mg/kg	0.18	U	0.18	U	-	-	-	-
2-Methylnaphthalene		mg/kg	0.21	U	0.21	U	-	-	-	-
1,2,4,5-Tetrachlorobenzene		mg/kg	0.18	U	0.18	U	-	-	-	-
Acetophenone		mg/kg	0.18	U	0.18	U	-	-	-	-
2,4,6-Trichlorophenol	10	0 0	0.11	U	0.11	U	-	-	-	-
p-Chloro-m-cresol		mg/kg	0.18	U	0.18	U	-	-	-	-
2-Chlorophenol	8.0	0 0	0.18	U	0.18	U	-	-	-	-
2,4-Dichlorophenol	20	0 0	0.16	U	0.16	U	-	-	-	-
2,4-Dimethylphenol		mg/kg	0.18	U	0.18	U	-	-	-	-
2-Nitrophenol	7	0 0	0.38	U	0.39	U	-	-	-	-
4-Nitrophenol	7	0 0	0.25	U	0.25	U	-	-	-	-
2,4-Dinitrophenol	20	0 0	0.85	U	0.86	U	-	-	-	-
4,6-Dinitro-o-cresol		mg/kg	0.46	U	0.46	U	-	-	-	-
Pentachlorophenol	8.0	0 0	0.14	U	0.14	U	-	-	-	-
Phenol	30		0.18	U	0.18	U	-	-	-	-
2-Methylphenol		0.33 mg/kg	0.18	U	0.18	U	-	-	-	-
3-Methylphenol/4-Methylphenol		0.33 mg/kg	0.26	U	0.26	U	-	-	-	-
2,4,5-Trichlorophenol	4	3. 3	0.18	U	0.18	U	-	-	-	-
Carbazole		mg/kg	0.18	U	0.18	U	-	-	-	-
Benzaldehyde		mg/kg	0.23	U	0.24	U	-	-	-	-
Caprolactam		mg/kg	0.18	U	0.18	U	-	-	-	-
Atrazine		mg/kg	0.14	U	0.14	U	-	-	-	-
2,3,4,6-Tetrachlorophenol		mg/kg	0.18	U	0.18	U	-	-	-	-
ıl Metals - Westborough Lab										
Arsenic, Total	13	13 mg/kg	2.7		0.95		-	-	-	-
Barium, Total	433	350 mg/kg	18		20		-	-	-	-
Beryllium, Total	10	7.2 mg/kg	0.1	J	0.1	J	-	-	-	-
Cadmium, Total	4	2.5 mg/kg	0.05	J	0.06	J	-	-	-	-
Chromium, Total		mg/kg	4.4		4.2		-	-	-	-
Copper, Total	50	50 mg/kg	7		7.3		-	-	-	-
Lead, Total	63	63 mg/kg	7		7.8		-	-	-	-
Manganese, Total	1600		240		230		-	-	-	-
Mercury, Total	0.18		0.07	U	0.08	U	-	-	-	-
Nickel, Total	30	0 0	4		3.8		-	-	-	-
Selenium, Total	3.9		0.57	J	0.52	J	-	-	-	-
Silver, Total	2		0.42	U	0.43	U	-	-	-	-
Zinc, Total	109		48		49	-				

TABLE 3 - SUMMARY OF RESULTS FROM SAMPLING EVENT #3
John R Oshie Childrens Hospital Construction - Native Soil Assessment

LOCATION SAMPLING DATE			J4-10' 10/14/2014		J6-9' 10/14/2014		J4-10'-VOC 10/14/2014		J6-9'-VOC 10/14/2014	
LAB SAMPLE ID			L1424545-01		1424545-02		L1424545-03	1	L1424545-04	
SAMPLE TYPE	NYSDEC	NYSDEC	SO		SO		SO	•	so	
SAMPLE DEPTH (ft.)	Protect.	SCO	10		9		10		9	
2	Ecology	UNRES. U Units	10	Qual		Qual		Qual		Qual
Volatile Organics by 8260/5035 - Wes						•				•
Methylene chloride	12		0.009	U	0.0095	U	0.0094	U	0.0098	U
1,1-Dichloroethane		0.27 mg/kg	0.0014	U	0.0014	U	0.0014	U	0.0015	U
Chloroform	12		0.0014	Ū	0.0014	U	0.0014	Ū	0.0015	Ū
Carbon tetrachloride		0.76 mg/kg	0.0009	Ü	0.00095	Ū	0.00094	Ū	0.00098	U
1,2-Dichloropropane	700		0.0032	Ü	0.0033	Ü	0.0033	Ü	0.0034	Ū
Dibromochloromethane	10	3. 3	0.0009	Ü	0.00095	Ü	0.00094	Ü	0.00098	Ü
1,1,2-Trichloroethane		mg/kg	0.0014	Ü	0.0014	Ü	0.0014	Ü	0.0015	Ū
Tetrachloroethene	2		0.0009	Ü	0.00095	Ü	0.00094	Ü	0.00098	Ü
Chlorobenzene	40	0 0	0.0009	Ü	0.00095	Ü	0.00094	Ü	0.00098	Ü
Trichlorofluoromethane		mg/kg	0.0045	U	0.0048	Ū	0.0047	Ū	0.0049	U
1,2-Dichloroethane	10		0.0009	Ü	0.00095	Ü	0.00094	Ü	0.00098	Ū
1,1,1-Trichloroethane		0.68 mg/kg	0.0009	Ū	0.00095	Ü	0.00094	Ū	0.00098	Ū
Bromodichloromethane		mg/kg	0.0009	Ü	0.00095	Ü	0.00094	Ü	0.00098	Ū
trans-1,3-Dichloropropene		mg/kg	0.0009	Ü	0.00095	Ü	0.00094	Ü	0.00098	Ü
cis-1,3-Dichloropropene		mg/kg	0.0009	Ü	0.00095	Ü	0.00094	Ü	0.00098	Ü
Bromoform		mg/kg	0.0036	Ü	0.0038	Ü	0.0038	Ü	0.0039	Ü
1,1,2,2-Tetrachloroethane	2		0.0009	Ü	0.00095	Ü	0.00094	Ü	0.00098	Ü
Benzene	70	0 0	0.0009	Ü	0.00095	Ü	0.00094	Ü	0.00098	Ü
Toluene	36		0.0014	Ü	0.0014	Ü	0.0014	Ü	0.0015	Ü
Ethylbenzene	00	1 mg/kg	0.0009	Ü	0.00095	Ü	0.00094	Ü	0.00098	Ü
Chloromethane		mg/kg	0.0045	Ü	0.0048	Ü	0.0047	Ü	0.0049	Ü
Bromomethane		mg/kg	0.0018	Ü	0.0019	Ü	0.0019	Ü	0.002	Ü
Vinyl chloride		0.02 mg/kg	0.0018	Ü	0.0019	Ü	0.0019	Ü	0.002	Ü
Chloroethane		mg/kg	0.0018	Ü	0.0019	Ü	0.0019	Ü	0.002	Ü
1.1-Dichloroethene		0.33 mg/kg	0.0009	Ü	0.00095	Ü	0.00094	Ü	0.00098	Ü
trans-1,2-Dichloroethene		0.19 mg/kg	0.0014	Ü	0.0014	Ü	0.0014	Ü	0.0015	Ü
Trichloroethene	2		0.0009	Ü	0.00095	Ü	0.00094	Ü	0.00098	Ü
1,2-Dichlorobenzene		1.1 mg/kg	0.0045	Ü	0.0048	Ü	0.0047	Ü	0.0049	Ü
1,3-Dichlorobenzene		2.4 mg/kg	0.0045	Ü	0.0048	Ū	0.0047	Ū	0.0049	U
1,4-Dichlorobenzene	20		0.0045	Ū	0.0048	U	0.0047	Ū	0.0049	Ū
Methyl tert butyl ether		0.93 mg/kg	0.0018	Ū	0.0019	U	0.0019	Ū	0.002	Ū
p/m-Xylene		mg/kg	0.0018	U	0.0019	U	0.0019	U	0.002	U
o-Xylene		mg/kg	0.0018	Ū	0.0019	U	0.0019	Ū	0.002	Ū
cis-1,2-Dichloroethene		0.25 mg/kg	0.0009	Ū	0.00095	U	0.00094	Ū	0.00098	Ū
Styrene	300		0.0018	U	0.0019	U	0.0019	U	0.002	U
Dichlorodifluoromethane		mg/kg	0.009	U	0.0095	U	0.0094	U	0.0098	U
Acetone	2.2		0.009	U	0.0065	J	0.01		0.0077	J
Carbon disulfide		mg/kg	0.009	U	0.0095	U	0.0094	U	0.0098	U
2-Butanone	100		0.009	U	0.0095	U	0.0094	U	0.0098	U
4-Methyl-2-pentanone		mg/kg	0.009	U	0.0095	U	0.0094	U	0.0098	U
2-Hexanone		mg/kg	0.009	U	0.0095	U	0.0094	U	0.0098	U
Bromochloromethane		mg/kg	0.0045	U	0.0048	U	0.0047	U	0.0049	U
1,2-Dibromoethane		mg/kg	0.0036	U	0.0038	U	0.0038	U	0.0039	U
1,2-Dibromo-3-chloropropane		mg/kg	0.0045	U	0.0048	U	0.0047	U	0.0049	U
Isopropylbenzene		mg/kg	0.0009	U	0.00095	U	0.00094	U	0.00098	U
1,2,3-Trichlorobenzene	20		0.0045	U	0.0048	U	0.0047	U	0.0049	U
1,2,4-Trichlorobenzene	20		0.0045	U	0.0048	U	0.0047	Ü	0.0049	U
Methyl Acetate		mg/kg	0.018	U	0.019	U	0.019	Ü	0.02	U
Cyclohexane		mg/kg	0.018	U	0.019	U	0.019	U	0.02	U
1,4-Dioxane	0.1		0.09	U	0.095	U	0.094	Ü	0.098	U
Freon-113		mg/kg	0.018	U	0.019	U	0.019	U	0.02	U
Methyl cyclohexane		mg/kg	0.0036	U	0.0038	U	0.0038	U	0.0039	U

MEMORANDUM

TO:	J. Walia (NYSDEC)
CC:	J. Panepinto, L. Cannata (Pinto CS)
FROM:	Dharma Iyer (IEG)
DATE:	May 27, 2015
RE:	132 Dingens St. BCP Site OFF-SITE TOPSOIL - STOCKPILE SAMPLING & ANALYSIS

132 Dingens St, LLC is proposing to use the following material at the 132 Dingens St. site after excavation of contaminated soil/fill:

Topsoil: Obtained from two locations Pinto CS excavated this soil and stockpiled it at its yard on Babcock St, Buffalo, NY.

<u>TOPSOIL</u>: As the subcontractor for construction work, Pinto excavated topsoil at the St. Joseph Collegiate Institute in Tonawanda, NY and the Boulevard Mall in Amherst, NY. Pinto trucked approximately 3,700 CY of topsoil from these two locations to its yard on Babcock St. in Buffalo, NY. Around 80% of it came from St. Joseph's and the 20% from the Mall.

<u>SAMPLING BY IEG</u>: The topsoil stockpile was sampled by IEG on May 12, 2015 at Pinto's yard on Babcock St.

The sampling was performed by digging into the stock pile a backhoe. A total of fifteen (15) test pits were dug over the stockpile in an area representative of 2000 CY. The locations of these test pits are shown on the attached Figure 1. A total of twelve (12) grab clean topsoil samples (marked 1 through 12 on Figure 1) were collected for VOCs only. From each group of five test pits outlined on Figure 1, one composite sample was collected for the other DER-10 parameters. Thus three composite soil samples were collected for TCL semivolatile organics, pesticides, herbicides, PCBs, TAL metals (including mercury) and cyanide. All soil samples were submitted to a NYS ELAP-certified analytical laboratory for DER-10 parameters for use of off-site fill at a BCP site.

ANALYTICAL RESULTS: Analytical results for soil samples from the stockpile are included as Table 1.

<u>VOCs</u>: Trace levels of up to only four (4) VOCs were detected in the topsoil samples, all below Restricted Residential Use SCOs. The detected VOCs included chloroform (up to 1.1 μ g/Kg), ethylbenzene (up to 0.43 μ g/Kg), methylene chloride (up to 13 μ g/Kg) and toluene (up to 3.7 μ g/Kg).

<u>SVOCs</u>: Up to only six (6) SVOCs were detected in the three composite topsoil samples. These included benzo(a)anthracene(up to 960 μ g/Kg), benzo(a)pyrene (up to 790 μ g/Kg), benzo(b)fluoranthene (up to 1100 μ g/Kg), fluoranthene (up to 1500 μ g/Kg), phenanthrene (up to 1000 μ g/Kg), and pyrene (up to 1200 μ g/Kg).

<u>Pesticides</u>: Only one (1) pesticide compound was detected in the composite topsoil samples. Delta-BHC was detected at $51 \mu g/Kg$ in one sample.

PCBs: No PCBS were present in any sample.

Herbicides: No herbicides were present in any sample.

Memorandum Page 2

Subject: 132 Dingens St. Site: Topsoil From D. Iyer (IEG) to J. Walia (NYSDEC)

May 28, 2015

Metals & Cyanide: No cyanide was detected in any of the samples. Two (2) of the thirteen (13) metals on the DER-10 list were non-detect in the samples. All others were detected at trace levels and below their corresponding Restricted Residential Use SCOs. Amongst these, arsenic ranged up to 5.6 mg/Kg, barium up to 79.1 mg/Kg, beryllium up to 0.65 μg/Kg, cadmium up to 0.42μg/Kg, chromium up to 17.4 μg/Kg, copper up to 25.1 μg/Kg, lead up to 73.1 μg/Kg, manganese up to 309 μg/Kg, nickel up to 18.2 μg/Kg, and zinc up to 98.8 μg/Kg.

<u>SUMMARY</u>: No PCBs, herbicides or cyanide were detected in the samples. All detected organics and metals were below their corresponding Restricted Residential use SCOs. Based on these results, the topsoil fill stockpiled at Pinto's yard from the two locations is suitable for use at the 132 Dingens St. site.

TABLE 1 132 DINGENS STREET - BCP REMEDIATION OFF-SITE TOPSOIL (PINTO YARD)

SAMPLE TYPE/	DER-10) SCOs		AMPLES (VOC		GRAB SAMPLES (VOCs ONLY)								
ID	RESTRICTED RESIDENTIAL	RESTRICTED COMMERCIAL	CTS-1C	CTS-2C	стѕ-зс	CTS-4G	CTS-5G	CTS-6G	CTS-7G	CTS-8G	CTS-9G	CTS-10G	CTS-11G	CTS-12G
	LAB	BATCH NUMBER		80176										
		Sample Date		5/12/2015										
	Pei	rcent Solids (%)	84.1	84.4	80.4	84.7	79.6							
pH (s.u.)			7.67	7.43	7.31	NA	NA	NA	NA	NA	NA	NA	NA	NA
TOC (mg/Kg)			16,900	21,300	24,500	NA	NA	NA	NA	NA	NA	NA	NA	NA
VOLATILE ORGANICS (VOCs, ug/Kg)				-										
Chloroform	100,000	350,000	ND	ND	ND	0.80 J	0.80 J	1.1 J	0.68 J	0.84 J	0.76 J	0.75 J	0.93 J	12 J
Ethylbenzene	41,000	390,000	ND	ND	ND	ND	ND	0.43 J	ND	ND	ND	ND	ND	ND
Methylene Chloride	100,000	500,000	5.2 J	4.4 JB	4.7 JB	6.5 B	8.0 B	13 B	6.7 B	5.8 B	4.0 JB	2.9 JB	6.8 B	8.5 B
Toluene	100,000	500,000	ND	ND	ND	1.1 J	ND	3.7 J	1.1 J	0.72 J	ND	ND	ND	ND
SEMIVOLATILE ORGANICS	S (SVOCs, ug/Kg)												
Benzo(a)anthracene	1,000	5,600	770 J	960 J	ND									
Benzo(a)pyrene	1,000	1,000	ND	790 J	ND									
Benzo(b)fluoranthene	3,900	5,600	ND	1100 J	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluoranthene	100,000	500,000	1100 J	1500 J	ND	INA	INA	INA	INA	INA	INA	INA	INA	INA
Phenanthrene	100,000	500,000	ND	1000 J	ND									
Pyrene	100,000	500,000	950 J	1200 J	ND									
PESTICIDES (ug/Kg)														
delta-BHC	100,000	500,000	51 J	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA
PCBs (ug/Kg)	PCBs (ug/Kg)		ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA
HERBICIDES (ug/Kg)			ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA

TABLE 1 132 DINGENS STREET - BCP REMEDIATION OFF-SITE TOPSOIL (PINTO YARD)

SAMPLE TYPE/	DER-10	SCOs		AMPLES (VOC					GRAB SAI	MPLES (VC	Cs ONLY))		
ID	RESTRICTED RESIDENTIAL	RESTRICTED COMMERCIAL	CTS-1C	CTS-2C	CTS-3C	CTS-4G	CTS-5G	CTS-6G	CTS-7G	CTS-8G	CTS-9G	CTS-10G	CTS-11G	CTS-12G
METALS (mg/Kg)														
Arsenic	16	16	4.7 F1	5.6	4.9									
Barium	400	400	62.6 F1	79.1	119									
Beryllium	72	590	0.50 F1	0.47	0.65									
Cadmium	4.3	9.3	0.68 F1	0.42	0.40									
Chromium	180	1,500	13.8 F1	14.7	17.4									
Copper	270	270	173 F1	25.1	20.9									
Lead	400	1,000	65.3 F2/1	73.1	47.7	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	2,000	10,000	281 F21B	309 B	224 B									
Nickel	310	310	12.6 F1	15.5	18.2									
Selenium	180	1,500	ND	ND	ND									
Silver	180	1,500	ND	ND	ND									
Zinc	10,000	10,000	94.4 F1B	93.8 B	98.8 B									
Mercury	0.81	2.8	0.080 F1	0.14	0.11									
Total Cyanide (mg/Kg)	27	27	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes: 1. "NA" or "--" = not analyzed; "ND" = Not Detected

^{2.} Only detected volatile and semivolatile compounds are listed; all metals analyzed are listed

Note: Background aerial photo is just to show location of stockpile; see photo page showing actual stockpile

132 DINGENS STREET, BUFFALO, NY OFF-SITE TOPSOIL SAMPLING (PINTO YARD)

FIGURE 1

IEG

1. South section of topsoil stockpile, Pinto Construction Yard

2. North section of topsoil stockpile, Pinto Construction Yard

3. South end of topsoil stockpile, Pinto Construction Yard

4. North end of topsoil stockpile, Pinto Construction Yard

5. View of Test Pit 4

6. View of Test Pit 10

TOPSOIL STOCKPILE
TEST PIT SAMPLING
PINTO'S YARD, BABCOCK ST., BUFFALO, NY

SITE PHOTOGRAPHS

DATE: May 12, 2015

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-80176-1 Client Project/Site: Pinto Topsoil (NY)

For:

Iyer Environmental Group, LLC 44 Rolling Hills Drive Orchard Park, New York 14127

Attn: Dr. Dharmarajan R Iyer

Melisso Deyo

Authorized for release by: 5/27/2015 8:26:51 AM

Melissa Deyo, Project Manager I (716)504-9874

melissa.deyo@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	6
Client Sample Results	9
Surrogate Summary	26
QC Sample Results	28
QC Association Summary	38
Lab Chronicle	42
Certification Summary	46
Method Summary	47
Sample Summary	48
Chain of Custody	49
Receipt Checklists	50

3

4

6

R

9

11

16

14

Definitions/Glossary

Client: Iyer Environmental Group, LLC Project/Site: Pinto Topsoil (NY)

Qualifier Description

TestAmerica Job ID: 480-80176-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC/MS Semi VOA

Qualifier	Qualifier Description
X	Surrogate is outside control limits
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC Semi VOA

X	Surrogate is outside control limits
F1	MS and/or MSD Recovery is outside acceptance limits.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier

Qualifier	Qualifier Description
F1	MS and/or MSD Recovery is outside acceptance limits.
F2	MS/MSD RPD exceeds control limits
٨	ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC is outside acceptance limits.
В	Compound was found in the blank and sample.
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualifier	Qualifier Description
HF	Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

TestAmerica Buffalo

Page 3 of 51 5/27/2015

2

3

4

7

0

10

12

13

14

Case Narrative

Client: Iyer Environmental Group, LLC Project/Site: Pinto Topsoil (NY)

TestAmerica Job ID: 480-80176-1

Job ID: 480-80176-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-80176-1

Receipt

The samples were received on 5/12/2015 3:15 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 13.6° C.

GC/MS VOA

Method(s) 8260C: Some reported analyte concentrations in the following samples are below 200ug/kg and may be biased low due to the samples not being collected according to 5035-L/5035A-L low-level specifications: CTS-1C (480-80176-1), CTS-2C (480-80176-2), CTS-3C (480-80176-3), CTS-4G (480-80176-4), CTS-5G (480-80176-5), CTS-6G (480-80176-6), CTS-7G (480-80176-7), CTS-8G (480-80176-8), CTS-9G (480-80176-9), CTS-10G (480-80176-10), CTS-11G (480-80176-11) and CTS-12G (480-80176-12).

Method(s) 8260C: The method blank for batch 242785 contained Methylene Chloride above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Method(s) 8260C: The following samples contained Methylene Chloride above the MDL level and around the RL of the method:CTS-4G (480-80176-4), CTS-5G (480-80176-5), CTS-6G (480-80176-6), CTS-7G (480-80176-7), CTS-8G (480-80176-8), CTS-11G (480-80176-11) and CTS-12G (480-80176-12). Methylene Chloride is a common lab contaminant. The detections in the samples are consistent with the levels in the QC and therefore can be concluded that the sample detections are a lab artifact of contamination. Data has been qualified.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method(s) 8270D: The following samples were diluted due to the nature of the sample matrix: CTS-1C (480-80176-1), CTS-2C (480-80176-2) and CTS-3C (480-80176-3). As such, surrogate recoveries are below the calibration range, and elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method(s) Lloyd Kahn: Please note that the reporting limit for Lloyd Kahn TOC analysis is a nominal value and does not reflect adjustments in sample mass processed on an individual basis. CTS-1C (480-80176-1), CTS-2C (480-80176-2) and CTS-3C (480-80176-3)

Method(s) 8081B: The following samples were diluted due to the nature of the sample matrix: (480-80176-A-1-A MS) and (480-80176-A-1-B MSD). As such, surrogate and MS/MSD spike recoveries were diluted out and are not reported.

Method(s) 8081B: The following sample were diluted due to the nature of the sample matrix: CTS-1C (480-80176-1), CTS-2C (480-80176-2) and CTS-3C (480-80176-3). As such, surrogate recoveries are below the calibration range or are not reported, and elevated reporting limits (RLs) are provided.

Method(s) 8081B: The matrix spike / matrix spike duplicate (MS/MSD) precision for bacth 242466 was outside control limits. Samples were diluted below RL due to matrix interferences.(480-80176-A-1-A MS) and (480-80176-A-1-B MSD).

Method(s) 8081B: All primary data for analytical batch 242738 is reported from the RTX-CLPII column.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method(s) 6010C: The low level continuing calibration verification (CCVL 480-242568/31) for analytical batch 480-242568 contained total manganese above the upper quality control limit. All reported samples associated with this CCVL were either ND for this analyte or contained this analyte at a concentration greater than 10X the value found in the CCVL; therefore, re-analysis of samples CTS-1C (480-80176-1), CTS-2C (480-80176-2), CTS-3C (480-80176-3), (LCSSRM 480-242173/2-), (480-80176-C-1-B MS), (480-80176-C-1-C

2

3

4

5

7

0

10

12

13

14

Case Narrative

Client: Iyer Environmental Group, LLC Project/Site: Pinto Topsoil (NY)

TestAmerica Job ID: 480-80176-1

Job ID: 480-80176-1 (Continued)

Laboratory: TestAmerica Buffalo (Continued)

MSD) and (480-80176-C-1-A SD ^) was not performed.

Method(s) 6010C: The Serial Dilution (480-80176-C-1-A SD ^) in batch 480-242568, exhibited results outside the quality control limits for total barium and copper. However, the Post Digestion Spike was compliant so no corrective action was necessary.

Method(s) 6010C: The Serial Dilution and Post Spike (480-80176-C-1-A PDS) and (480-80176-C-1-A SD ^) exceeded the quality control limits for total manganese and zinc. Sample matrix is suspected, therefore, no corrective action was necessary.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

Method(s) 9045D: This analysis is normally performed in the field and has a method-defined holding time of 15 minutes. The following samples has been qualified with the "HF" flag to indicate analysis was performed in the laboratory outside the 15 minute time frame: CTS-1C (480-80176-1), CTS-2C (480-80176-2) and CTS-3C (480-80176-3).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method(s) 3550C: The following samples required a Florisil clean-up, via EPA Method 3620C, to reduce matrix interferences: CTS-1C (480-80176-1), CTS-2C (480-80176-2), CTS-3C (480-80176-3), (480-80176-A-1 MS) and (480-80176-A-1 MSD).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

_

6

9

10

13

14

TestAmerica Job ID: 480-80176-1

Client: Iyer Environmental Group, LLC

Project/Site: Pinto Topsoil (NY)

Client Sample ID: CTS-1C Lab Sample ID: 480-80176-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methylene Chloride	5.2	JB	5.9	2.7	ug/Kg		₩	8260C	Total/NA
Benzo(a)anthracene	770	J	4000	400	ug/Kg	20	₩	8270D	Total/NA
Fluoranthene	1100	J	4000	420	ug/Kg	20	₩	8270D	Total/NA
Pyrene	950	J	4000	470	ug/Kg	20	₽	8270D	Total/NA
delta-BHC	51	J	98	18	ug/Kg	50	₩	8081B	Total/NA
Arsenic	4.7	F1	2.4	0.48	mg/Kg	1	₩	6010C	Total/NA
Barium	62.6	F1	0.59	0.13	mg/Kg	1	₩	6010C	Total/NA
Beryllium	0.50	F1	0.24	0.033	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.68	F1	0.24	0.036	mg/Kg	1	₩	6010C	Total/NA
Chromium	13.8	F1	0.59	0.24	mg/Kg	1	₩	6010C	Total/NA
Copper	173	F1	1.2	0.25	mg/Kg	1	₩	6010C	Total/NA
Lead	65.3	F2 F1	1.2	0.29	mg/Kg	1	₩	6010C	Total/NA
Manganese	281	^ F2 F1 B	0.24	0.038	mg/Kg	1	₩	6010C	Total/NA
Nickel	12.6	F1	5.9	0.27	mg/Kg	1	₩	6010C	Total/NA
Zinc	94.4	F1 B	2.4	0.18	mg/Kg	1	₩	6010C	Total/NA
Mercury	0.080	F1	0.022	0.0088	mg/Kg	1	₽	7471B	Total/NA
Total Organic Carbon	16900		1190	105	mg/Kg	1	₩	Lloyd Kahn	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
pH	7.67	HF	0.100	0.100	SU		_	9045D	Total/NA

Client Sample ID: CTS-2C

Lab Sample ID: 480-80176-2

- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methylene Chloride	4.4	JB	5.7	2.6	ug/Kg		₩	8260C	Total/NA
Benzo(a)anthracene	960	J	4000	400	ug/Kg	20	₩	8270D	Total/NA
Benzo(a)pyrene	790	J	4000	590	ug/Kg	20	₩	8270D	Total/NA
Benzo(b)fluoranthene	1100	J	4000	640	ug/Kg	20	₩	8270D	Total/NA
Fluoranthene	1500	J	4000	430	ug/Kg	20	₩	8270D	Total/NA
Phenanthrene	1000	J	4000	590	ug/Kg	20	₩	8270D	Total/NA
Pyrene	1200	J	4000	470	ug/Kg	20	₩	8270D	Total/NA
Arsenic	5.6		2.4	0.48	mg/Kg	1	₩	6010C	Total/NA
Barium	79.1		0.59	0.13	mg/Kg	1	₩	6010C	Total/NA
Beryllium	0.47		0.24	0.033	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.42		0.24	0.036	mg/Kg	1	₩	6010C	Total/NA
Chromium	14.7		0.59	0.24	mg/Kg	1	₩	6010C	Total/NA
Copper	25.1		1.2	0.25	mg/Kg	1	Ϋ́	6010C	Total/NA
Lead	73.1		1.2	0.29	mg/Kg	1	₩	6010C	Total/NA
Manganese	309	^ B	0.24	0.038	mg/Kg	1	₩	6010C	Total/NA
Nickel	15.5		5.9	0.27	mg/Kg	1	₩.	6010C	Total/NA
Zinc	93.8	В	2.4	0.18	mg/Kg	1	₩	6010C	Total/NA
Mercury	0.14		0.023	0.0093	mg/Kg	1	₩	7471B	Total/NA
Total Organic Carbon	21300		1180	105	mg/Kg	1	₩.	Lloyd Kahn	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
pH	7.43	HF	0.100	0.100	SU		_	9045D	Total/NA

Client Sample ID: CTS-3C

Lab Sample ID: 480-80176-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methylene Chloride	4.7	JB	6.2	2.8	ug/Kg	1	₩	8260C	Total/NA
Arsenic	4.9		2.4	0.47	mg/Kg	1	☼	6010C	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Buffalo

Page 6 of 51

TestAmerica Job ID: 480-80176-1

Client: Iyer Environmental Group, LLC

Project/Site: Pinto Topsoil (NY)

Client Sample ID: CTS-3C (Continued)	Lab Sample ID: 480-80176-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	119		0.59	0.13	mg/Kg		₩	6010C	Total/NA
Beryllium	0.65		0.24	0.033	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.40		0.24	0.035	mg/Kg	1	₩	6010C	Total/NA
Chromium	17.4		0.59	0.24	mg/Kg	1	₩	6010C	Total/NA
Copper	20.9		1.2	0.25	mg/Kg	1	₩	6010C	Total/NA
Lead	47.7		1.2	0.28	mg/Kg	1	₩	6010C	Total/NA
Manganese	224	^ B	0.24	0.038	mg/Kg	1	₩	6010C	Total/NA
Nickel	18.2		5.9	0.27	mg/Kg	1	₩	6010C	Total/NA
Zinc	98.8	В	2.4	0.18	mg/Kg	1	₩	6010C	Total/NA
Mercury	0.11		0.024	0.0096	mg/Kg	1	₩	7471B	Total/NA
Total Organic Carbon	24500		1240	110	mg/Kg	1	*	Lloyd Kahn	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
pH	7.31	HF	0.100	0.100	SU		_	9045D	Total/NA

Client Sample ID: CTS-4G Lab Sample ID: 480-80176-4

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Met	hod Prep Type
Chloroform	0.80 J	5.7	0.35 ug/Kg	1 👨 826	0C Total/NA
Methylene Chloride	6.5 B	5.7	2.6 ug/Kg	1 🌣 826	0C Total/NA
Toluene	1.1 J	5.7	0.43 ug/Kg	1 🌣 826	0C Total/NA

Client Sample ID: CTS-5G Lab Sample ID: 480-80176-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloroform	0.80	J	6.2	0.39	ug/Kg	1	₩	8260C	Total/NA
Methylene Chloride	8.0	В	6.2	2.9	ug/Kg	1	₩	8260C	Total/NA

Client Sample ID: CTS-6G Lab Sample ID: 480-80176-6

Analyte	Result Qual	lifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloroform	1.1 J	6.3	0.39	ug/Kg	1	₩	8260C	Total/NA
Ethylbenzene	0.43 J	6.3	0.43	ug/Kg	1	₩	8260C	Total/NA
Methylene Chloride	13 B	6.3	2.9	ug/Kg	1	₩	8260C	Total/NA
Toluene	3.7 J	6.3	0.47	ug/Kg	1	₽	8260C	Total/NA

Client Sample ID: CTS-7G Lab Sample ID: 480-80176-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloroform	0.68	J	5.9	0.36	ug/Kg	1	₩	8260C	Total/NA
Methylene Chloride	6.7	В	5.9	2.7	ug/Kg	1	₩	8260C	Total/NA
Toluene	1.1	J	5.9	0.44	ug/Kg	1	₩	8260C	Total/NA

Client Sample ID: CTS-8G Lab Sample ID: 480-80176-8

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloroform	0.84	J	5.8	0.36	ug/Kg	1	₩	8260C	Total/NA
Methylene Chloride	5.8	В	5.8	2.7	ug/Kg	1	₩	8260C	Total/NA
Toluene	0.72	J	5.8	0.44	ug/Kg	1	₩	8260C	Total/NA

This Detection Summary does not include radiochemical test results.

Detection Summary

Client: Iyer Environmental Group, LLC Project/Site: Pinto Topsoil (NY)

TestAmerica Job ID: 480-80176-1

Client Sample ID: CTS-9G	Lab Sample ID: 480-80176-9

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Chloroform	0.76 J	5.8	0.36 ug/Kg	1 ☼ 8260C	Total/NA
Methylene Chloride	4.0 JB	5.8	2.6 ug/Kg	1 ☼ 8260C	Total/NA

Client Sample ID: CTS-10G Lab Sample ID: 480-80176-10

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Chloroform	0.75 J	5.9	0.37 ug/Kg	1 \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	8260C	Total/NA
Methylene Chloride	2.9 JB	5.9	2.7 ug/Kg	1 [‡]	8260C	Total/NA

Client Sample ID: CTS-11G Lab Sample ID: 480-80176-11

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Chloroform	0.93 J	5.9	0.37 ug/Kg	1 ≅ 8260C	Total/NA
Methylene Chloride	6.8 B	5.9	2.7 ug/Kg	1 🌣 8260C	Total/NA

Client Sample ID: CTS-12G Lab Sample ID: 480-80176-12

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloroform	1.2	J	6.6	0.41	ug/Kg	1	₩	8260C	Total/NA
Methylene Chloride	8.5	В	6.6	3.1	ug/Kg	1	₩	8260C	Total/NA

4

5

7

8

1 1

12

13

14

Client: Iyer Environmental Group, LLC

Project/Site: Pinto Topsoil (NY)

Lab Sample ID: 480-80176-1

Matrix: Solid Percent Solids: 84.1

Client Sample ID: CTS-1C
Date Collected: 05/12/15 00:00
Date Received: 05/12/15 15:15
Method: 8260C - Volatile Organic Compounds by GC/MS

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.9	0.43	ug/Kg	<u> </u>	05/15/15 16:06	05/16/15 16:11	1
1,1-Dichloroethane	ND		5.9	0.72	ug/Kg	☼	05/15/15 16:06	05/16/15 16:11	1
1,1-Dichloroethene	ND		5.9	0.72	ug/Kg	≎	05/15/15 16:06	05/16/15 16:11	1
1,2-Dichlorobenzene	ND		5.9	0.46	ug/Kg	☼	05/15/15 16:06	05/16/15 16:11	1
1,2-Dichloroethane	ND		5.9	0.29	ug/Kg	☼	05/15/15 16:06	05/16/15 16:11	1
1,2-Dichloroethene, cis-	ND		5.9	0.75	ug/Kg	≎	05/15/15 16:06	05/16/15 16:11	1
1,2-Dichloroethene, trans-	ND		5.9	0.61	ug/Kg	≎	05/15/15 16:06	05/16/15 16:11	1
1,3-Dichlorobenzene	ND		5.9	0.30	ug/Kg	≎	05/15/15 16:06	05/16/15 16:11	1
1,4-Dichlorobenzene	ND		5.9	0.82	ug/Kg	≎	05/15/15 16:06	05/16/15 16:11	1
1,4-Dioxane	ND		120	26	ug/Kg		05/15/15 16:06	05/16/15 16:11	1
Acetone	ND		29	4.9	ug/Kg	₩	05/15/15 16:06	05/16/15 16:11	1
Benzene	ND		5.9	0.29	ug/Kg	₩	05/15/15 16:06	05/16/15 16:11	1
Butylbenzene	ND		5.9	0.51	ug/Kg		05/15/15 16:06	05/16/15 16:11	1
Carbon tetrachloride	ND		5.9	0.57	ug/Kg	₩	05/15/15 16:06	05/16/15 16:11	1
Chlorobenzene	ND		5.9	0.77	ug/Kg	₩	05/15/15 16:06	05/16/15 16:11	1
Chloroform	ND		5.9	0.36	ug/Kg		05/15/15 16:06	05/16/15 16:11	1
Ethylbenzene	ND		5.9	0.40	ug/Kg	₩	05/15/15 16:06	05/16/15 16:11	1
Methyl Ethyl Ketone	ND		29	2.1	ug/Kg	₩	05/15/15 16:06	05/16/15 16:11	1
Methyl tert-butyl ether	ND		5.9	0.58	ug/Kg		05/15/15 16:06	05/16/15 16:11	1
Methylene Chloride	5.2	JB	5.9	2.7	ug/Kg	₩	05/15/15 16:06	05/16/15 16:11	1
Propylbenzene, n-	ND		5.9	0.47	ug/Kg	₩	05/15/15 16:06	05/16/15 16:11	1
sec-Butylbenzene	ND		5.9	0.51	ug/Kg		05/15/15 16:06	05/16/15 16:11	1
tert-Butylbenzene	ND		5.9	0.61	ug/Kg	₩	05/15/15 16:06	05/16/15 16:11	1
Tetrachloroethene	ND		5.9	0.79	ug/Kg	₩	05/15/15 16:06	05/16/15 16:11	1
Toluene	ND		5.9	0.44	ug/Kg	φ.	05/15/15 16:06	05/16/15 16:11	1
Trichloroethene	ND		5.9	1.3	ug/Kg	₽	05/15/15 16:06	05/16/15 16:11	1
Trimethylbenzene, 1,2,4-	ND		5.9	1.1	ug/Kg	₽	05/15/15 16:06	05/16/15 16:11	1
Trimethylbenzene, 1,3,5-	ND		5.9	0.38	ug/Kg	.	05/15/15 16:06	05/16/15 16:11	1
Vinyl chloride	ND		5.9	0.72	ug/Kg	₽	05/15/15 16:06	05/16/15 16:11	1
Xylene (mixed)	ND		12		ug/Kg	₩	05/15/15 16:06	05/16/15 16:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1 2-Dichloroethane-d4 (Surr)			64 - 126				05/15/15 16:06	05/16/15 16:11	

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101	64 - 126	05/15/15 16:06	05/16/15 16:11	1
4-Bromofluorobenzene (Surr)	92	72 - 126	05/15/15 16:06	05/16/15 16:11	1
Toluene-d8 (Surr)	104	71 - 125	05/15/15 16:06	05/16/15 16:11	1
Dibromofluoromethane (Surr)	102	60 - 140	05/15/15 16:06	05/16/15 16:11	1

Method: 8270D - Semivolatile	Organic Compounds	(GC/MS)
Analyto	Pocult Qualifier	DI

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND ND		4000	580	ug/Kg	<u> </u>	05/14/15 14:33	05/15/15 16:00	20
Acenaphthylene	ND		4000	510	ug/Kg	☼	05/14/15 14:33	05/15/15 16:00	20
Anthracene	ND		4000	980	ug/Kg	₩	05/14/15 14:33	05/15/15 16:00	20
Benzo(a)anthracene	770 J	J	4000	400	ug/Kg	₩	05/14/15 14:33	05/15/15 16:00	20
Benzo(a)pyrene	ND		4000	580	ug/Kg	₩	05/14/15 14:33	05/15/15 16:00	20
Benzo(b)fluoranthene	ND		4000	630	ug/Kg	☼	05/14/15 14:33	05/15/15 16:00	20
Benzo(g,h,i)perylene	ND		4000	420	ug/Kg	₩	05/14/15 14:33	05/15/15 16:00	20
Benzo(k)fluoranthene	ND		4000	510	ug/Kg	☼	05/14/15 14:33	05/15/15 16:00	20
Chrysene	ND		4000	890	ug/Kg	☼	05/14/15 14:33	05/15/15 16:00	20
Dibenz(a,h)anthracene	ND		4000	700	ug/Kg	₩.	05/14/15 14:33	05/15/15 16:00	20
Dibenzofuran	ND		4000	470	ug/Kg	≎	05/14/15 14:33	05/15/15 16:00	20

TestAmerica Buffalo

5/27/2015

Page 9 of 51

TestAmerica Job ID: 480-80176-1

Client: Iyer Environmental Group, LLC Project/Site: Pinto Topsoil (NY)

Client Sample ID: CTS-1C

Lab Sample ID: 480-80176-1

Date Collected: 05/12/15 00:00 **Matrix: Solid** Date Received: 05/12/15 15:15 Percent Solids: 84.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoranthene	1100	J	4000	420	ug/Kg	₩	05/14/15 14:33	05/15/15 16:00	20
Fluorene	ND		4000	470	ug/Kg		05/14/15 14:33	05/15/15 16:00	20
Hexachlorobenzene	ND		4000	540	ug/Kg	☼	05/14/15 14:33	05/15/15 16:00	20
Indeno(1,2,3-cd)pyrene	ND		4000	490	ug/Kg	☼	05/14/15 14:33	05/15/15 16:00	20
Naphthalene	ND		4000	510	ug/Kg	₽	05/14/15 14:33	05/15/15 16:00	20
o-Cresol	ND		4000	470	ug/Kg	☼	05/14/15 14:33	05/15/15 16:00	20
p-Cresol	ND		7700	470	ug/Kg	☼	05/14/15 14:33	05/15/15 16:00	20
Pentachlorophenol	ND		7700	4000	ug/Kg	₽	05/14/15 14:33	05/15/15 16:00	20
Phenanthrene	ND		4000	580	ug/Kg	☼	05/14/15 14:33	05/15/15 16:00	20
Phenol	ND		4000	610	ug/Kg	☼	05/14/15 14:33	05/15/15 16:00	20
Pyrene	950	J	4000	470	ug/Kg	₽	05/14/15 14:33	05/15/15 16:00	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol		X	39 - 146				05/14/15 14:33	05/15/15 16:00	20
2-Fluorobiphenyl	79		37 - 120				05/14/15 14:33	05/15/15 16:00	20
2-Fluorophenol	63		18 - 120				05/14/15 14:33	05/15/15 16:00	20
Nitrobenzene-d5	70		34 - 132				05/14/15 14:33	05/15/15 16:00	20
Phenol-d5	63		11 - 120				05/14/15 14:33	05/15/15 16:00	20
p-Terphenyl-d14 (Surr)	90		65 ₋ 153				05/14/15 14:33	05/15/15 16:00	20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND	F1	98	19	ug/Kg	<u> </u>	05/14/15 14:23	05/15/15 18:41	50
4,4'-DDE	ND		98	21	ug/Kg	☼	05/14/15 14:23	05/15/15 18:41	50
4,4'-DDT	ND		98	23	ug/Kg	☼	05/14/15 14:23	05/15/15 18:41	50
Aldrin	ND		98	24	ug/Kg	₩	05/14/15 14:23	05/15/15 18:41	50
alpha-BHC	ND	F1	98	18	ug/Kg	☼	05/14/15 14:23	05/15/15 18:41	50
beta-BHC	ND	F1	98	18	ug/Kg	☼	05/14/15 14:23	05/15/15 18:41	50
Chlordane (.alpha.)	ND		98	49	ug/Kg		05/14/15 14:23	05/15/15 18:41	50
delta-BHC	51	J	98	18	ug/Kg	☼	05/14/15 14:23	05/15/15 18:41	50
Dieldrin	ND		98	24	ug/Kg	☼	05/14/15 14:23	05/15/15 18:41	50
Endosulfan I	ND	F1	98	19	ug/Kg	₽	05/14/15 14:23	05/15/15 18:41	50
Endosulfan II	ND	F1	98	18	ug/Kg	☼	05/14/15 14:23	05/15/15 18:41	50
Endosulfan sulfate	ND	F1	98	18	ug/Kg	☼	05/14/15 14:23	05/15/15 18:41	50
Endrin	ND	F1	98	19	ug/Kg	₽	05/14/15 14:23	05/15/15 18:41	50
Heptachlor	ND		98	21	ug/Kg	☼	05/14/15 14:23	05/15/15 18:41	50
Lindane	ND	F1	98	18	ug/Kg	₩	05/14/15 14:23	05/15/15 18:41	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	0	X	32 - 136				05/14/15 14:23	05/15/15 18:41	50
DCB Decachlorobiphenyl	0	X	32 - 136				05/14/15 14:23	05/15/15 18:41	50
Tetrachloro-m-xylene	0	Χ	30 - 124				05/14/15 14:23	05/15/15 18:41	50
Tetrachloro-m-xylene	0	X	30 - 124				05/14/15 14:23	05/15/15 18:41	50

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography								
Analyte	Result	Qualifier RL	. MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND	0.25	0.049	mg/Kg	\	05/15/15 12:43	05/16/15 12:54	1
PCB-1221	ND	0.25	0.049	mg/Kg	₩	05/15/15 12:43	05/16/15 12:54	1
PCB-1232	ND	0.25	0.049	mg/Kg	₩	05/15/15 12:43	05/16/15 12:54	1
PCB-1242	ND	0.25	0.049	mg/Kg	₽	05/15/15 12:43	05/16/15 12:54	1

TestAmerica Buffalo

Page 10 of 51

Client: Iyer Environmental Group, LLC Project/Site: Pinto Topsoil (NY)

Client Sample ID: CTS-1C
Date Collected: 05/12/15 00:00

Lab Sample ID: 480-80176-1

Matrix: Solid Percent Solids: 84.1

Date Received: 05/12/15 15:15

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

	,,,,,	, ,				/		
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1248	ND ND	0.25	0.049	mg/Kg	<u> </u>	05/15/15 12:43	05/16/15 12:54	1
PCB-1254	ND	0.25	0.12	mg/Kg	☼	05/15/15 12:43	05/16/15 12:54	1
PCB-1260	ND	0.25	0.12	mg/Kg	₩	05/15/15 12:43	05/16/15 12:54	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
	Analyte PCB-1248 PCB-1254 PCB-1260	Analyte Result Qualifier PCB-1248 ND PCB-1254 ND PCB-1260 ND Surrogate %Recovery Qualifier	PCB-1248 ND 0.25 PCB-1254 ND 0.25 PCB-1260 ND 0.25 Surrogate %Recovery Qualifier Limits	Analyte Result PCB-1248 Qualifier RL ND MDL 0.25 0.049 PCB-1254 ND 0.25 0.12 PCB-1260 ND 0.25 0.12 Surrogate %Recovery Qualifier Limits	Analyte Result Qualifier RL MDL Unit PCB-1248 ND 0.25 0.049 mg/Kg PCB-1254 ND 0.25 0.12 mg/Kg PCB-1260 ND 0.25 0.12 mg/Kg Surrogate %Recovery Qualifier Limits	Analyte Result PCB-1248 Qualifier RL ND MDL Unit Work D mg/Kg D mg/Kg<	Analyte Result PCB-1248 Qualifier RL ND MDL 0.25 Unit 0.049 D 0.049 Prepared 0.05/15/15 12:43 PCB-1254 ND 0.25 0.25 0.12 mg/Kg 05/15/15 12:43 PCB-1260 ND 0.25 0.12 mg/Kg 05/15/15 12:43 Surrogate %Recovery Qualifier Limits Prepared	Analyte Result PCB-1248 Qualifier RL ND MDL Unit mg/Kg D MPrepared Displayed Analyzed Displayed PCB-1248 ND 0.25 0.049 mg/Kg To 5/15/15 12:43 05/16/15 12:54 PCB-1254 ND 0.25 0.12 mg/Kg To 05/15/15 12:43 05/16/15 12:54 PCB-1260 ND 0.25 0.12 mg/Kg To 05/15/15 12:43 05/16/15 12:54 Surrogate WRecovery Qualifier Limits Prepared Analyzed

Surrogate	%Recovery	Qualifier Limi	its	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	97	60 -	154	05/15/15 12:43	05/16/15 12:54	1
Tetrachloro-m-xylene	94	60 -	154	05/15/15 12:43	05/16/15 12:54	1
DCB Decachlorobiphenyl	81	65 -	174	05/15/15 12:43	05/16/15 12:54	1
DCB Decachlorobiphenyl	92	65 -	174	05/15/15 12:43	05/16/15 12:54	1

Method: 8151A - Herbicides (G Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-TP (Silvex)	ND		7.0	ug/Kg	<u> </u>	05/15/15 08:38	05/19/15 20:16	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCAA	74		28 - 129	05/15/15 08:38	05/19/15 20:16	1
DCAA	84		28 - 129	05/15/15 08:38	05/19/15 20:16	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	4.7	F1 -	2.4	0.48	mg/Kg	<u></u>	05/13/15 15:12	05/14/15 23:36	1
Barium	62.6	F1	0.59	0.13	mg/Kg	₩	05/13/15 15:12	05/14/15 23:36	1
Beryllium	0.50	F1	0.24	0.033	mg/Kg	☼	05/13/15 15:12	05/14/15 23:36	1
Cadmium	0.68	F1	0.24	0.036	mg/Kg		05/13/15 15:12	05/14/15 23:36	1
Chromium	13.8	F1	0.59	0.24	mg/Kg	☼	05/13/15 15:12	05/14/15 23:36	1
Copper	173	F1	1.2	0.25	mg/Kg	☼	05/13/15 15:12	05/14/15 23:36	1
Lead	65.3	F2 F1	1.2	0.29	mg/Kg	₽	05/13/15 15:12	05/14/15 23:36	1
Manganese	281	^ F2 F1 B	0.24	0.038	mg/Kg	☼	05/13/15 15:12	05/14/15 23:36	1
Nickel	12.6	F1	5.9	0.27	mg/Kg	₩	05/13/15 15:12	05/14/15 23:36	1
Selenium	ND	F1	4.8	0.48	mg/Kg	*	05/13/15 15:12	05/14/15 23:36	1
Silver	ND	F1	0.71	0.24	mg/Kg	☼	05/13/15 15:12	05/14/15 23:36	1
Zinc	94.4	F1 B	2.4	0.18	mg/Kg	₩	05/13/15 15:12	05/14/15 23:36	1

Method: 7471B - Mercury in Soli	d or Sem	isolid Was	te (Manual C	old Vap	or Tech	nique)			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.080	F1	0.022	0.0088	mg/Kg	<u> </u>	05/18/15 14:30	05/18/15 16:29	1
Gonoral Chamistry									

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	ND		1.2	0.57	mg/Kg	<u>₩</u>	05/14/15 14:25	05/14/15 20:07	1
Total Organic Carbon	16900		1190	105	mg/Kg	☼		05/15/15 16:41	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.67	HF	0.100	0.100	SU			05/13/15 10:50	1

Lab Sample ID: 480-80176-2	Client Sample ID: CTS-2C
Matrix: Solid	Date Collected: 05/12/15 00:00
Percent Solids: 84.4	Date Received: 05/12/15 15:15

– Method: 8260C - Volatile Orga	nic Compounds by GC/	MS						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND —	5.7	0.41	ug/Kg		05/15/15 16:06	05/16/15 16:37	1

TestAmerica Buffalo

Client: Iyer Environmental Group, LLC Project/Site: Pinto Topsoil (NY)

Oliant Canada IDa OTO OC

Client Sample ID: CTS-2C Lab Sample ID: 480-80176-2

 Date Collected: 05/12/15 00:00
 Matrix: Solid

 Date Received: 05/12/15 15:15
 Percent Solids: 84.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethane	ND		5.7	0.70	ug/Kg	<u></u>	05/15/15 16:06	05/16/15 16:37	1
1,1-Dichloroethene	ND		5.7	0.70	ug/Kg	₩	05/15/15 16:06	05/16/15 16:37	1
1,2-Dichlorobenzene	ND		5.7	0.45	ug/Kg	₩	05/15/15 16:06	05/16/15 16:37	1
1,2-Dichloroethane	ND		5.7	0.29	ug/Kg	₩	05/15/15 16:06	05/16/15 16:37	1
1,2-Dichloroethene, cis-	ND		5.7	0.73	ug/Kg	₩	05/15/15 16:06	05/16/15 16:37	1
1,2-Dichloroethene, trans-	ND		5.7	0.59	ug/Kg	☆	05/15/15 16:06	05/16/15 16:37	1
1,3-Dichlorobenzene	ND		5.7	0.29	ug/Kg	☆	05/15/15 16:06	05/16/15 16:37	1
1,4-Dichlorobenzene	ND		5.7	0.80	ug/Kg	☆	05/15/15 16:06	05/16/15 16:37	1
1,4-Dioxane	ND		110	25	ug/Kg	☆	05/15/15 16:06	05/16/15 16:37	1
Acetone	ND		29	4.8	ug/Kg	≎	05/15/15 16:06	05/16/15 16:37	1
Benzene	ND		5.7	0.28	ug/Kg	☆	05/15/15 16:06	05/16/15 16:37	1
Butylbenzene	ND		5.7	0.50	ug/Kg	☆	05/15/15 16:06	05/16/15 16:37	1
Carbon tetrachloride	ND		5.7	0.55	ug/Kg	≎	05/15/15 16:06	05/16/15 16:37	1
Chlorobenzene	ND		5.7	0.75	ug/Kg	≎	05/15/15 16:06	05/16/15 16:37	1
Chloroform	ND		5.7	0.35	ug/Kg	.	05/15/15 16:06	05/16/15 16:37	1
Ethylbenzene	ND		5.7	0.39	ug/Kg	≎	05/15/15 16:06	05/16/15 16:37	1
Methyl Ethyl Ketone	ND		29	2.1	ug/Kg	☆	05/15/15 16:06	05/16/15 16:37	1
Methyl tert-butyl ether	ND		5.7	0.56	ug/Kg	₽	05/15/15 16:06	05/16/15 16:37	1
Methylene Chloride	4.4	J B	5.7	2.6	ug/Kg	☆	05/15/15 16:06	05/16/15 16:37	1
Propylbenzene, n-	ND		5.7	0.46	ug/Kg	≎	05/15/15 16:06	05/16/15 16:37	1
sec-Butylbenzene	ND		5.7	0.50	ug/Kg	₩	05/15/15 16:06	05/16/15 16:37	1
tert-Butylbenzene	ND		5.7	0.59	ug/Kg	☆	05/15/15 16:06	05/16/15 16:37	1
Tetrachloroethene	ND		5.7	0.77	ug/Kg	☆	05/15/15 16:06	05/16/15 16:37	1
Toluene	ND		5.7	0.43	ug/Kg	☆	05/15/15 16:06	05/16/15 16:37	1
Trichloroethene	ND		5.7	1.3	ug/Kg	≎	05/15/15 16:06	05/16/15 16:37	1
Trimethylbenzene, 1,2,4-	ND		5.7	1.1	ug/Kg	☆	05/15/15 16:06	05/16/15 16:37	1
Trimethylbenzene, 1,3,5-	ND		5.7	0.37	ug/Kg	☆	05/15/15 16:06	05/16/15 16:37	1
Vinyl chloride	ND		5.7	0.70	ug/Kg	≎	05/15/15 16:06	05/16/15 16:37	1
Xylene (mixed)	ND		11	0.96	ug/Kg	₩	05/15/15 16:06	05/16/15 16:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		64 - 126				05/15/15 16:06	05/16/15 16:37	1
4-Bromofluorobenzene (Surr)	99		72 - 126				05/15/15 16:06	05/16/15 16:37	1
Toluene-d8 (Surr)	103		71 - 125				05/15/15 16:06	05/16/15 16:37	1
Dibromofluoromethane (Surr)	102		60 - 140				05/15/15 16:06	05/16/15 16:37	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		4000	590	ug/Kg	-	05/14/15 14:33	05/15/15 16:26	20
Acenaphthylene	ND		4000	520	ug/Kg	₩	05/14/15 14:33	05/15/15 16:26	20
Anthracene	ND		4000	990	ug/Kg	₩	05/14/15 14:33	05/15/15 16:26	20
Benzo(a)anthracene	960	J	4000	400	ug/Kg	₽	05/14/15 14:33	05/15/15 16:26	20
Benzo(a)pyrene	790	J	4000	590	ug/Kg	₩	05/14/15 14:33	05/15/15 16:26	20
Benzo(b)fluoranthene	1100	J	4000	640	ug/Kg	₩	05/14/15 14:33	05/15/15 16:26	20
Benzo(g,h,i)perylene	ND		4000	430	ug/Kg	₩	05/14/15 14:33	05/15/15 16:26	20
Benzo(k)fluoranthene	ND		4000	520	ug/Kg	₩	05/14/15 14:33	05/15/15 16:26	20
Chrysene	ND		4000	900	ug/Kg	₩	05/14/15 14:33	05/15/15 16:26	20
Dibenz(a,h)anthracene	ND		4000	710	ug/Kg	₩	05/14/15 14:33	05/15/15 16:26	20
Dibenzofuran	ND		4000	470	ug/Kg	₩	05/14/15 14:33	05/15/15 16:26	20
Fluoranthene	1500	J	4000	430	ug/Kg	₩	05/14/15 14:33	05/15/15 16:26	20

TestAmerica Buffalo

Page 12 of 51

3

4

6

0

11

13

14

TestAmerica Job ID: 480-80176-1

Client: Iyer Environmental Group, LLC Project/Site: Pinto Topsoil (NY)

Client Sample ID: CTS-2C

Date Collected: 05/12/15 00:00

Lab Sample ID: 480-80176-2

Matrix: Solid

Percent Solids: 84.4

Date Received: 05/12/1	5 15:15		
Method: 8270D - Sem	ivolatile Organic Compounds (GC/MS) (Continued)	
Analyte	Result Qualifier	ŘL MDL	Ur

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluorene	ND	4000	470	ug/Kg	<u></u>	05/14/15 14:33	05/15/15 16:26	20
Hexachlorobenzene	ND	4000	540	ug/Kg	₽	05/14/15 14:33	05/15/15 16:26	20
Indeno(1,2,3-cd)pyrene	ND	4000	500	ug/Kg	☼	05/14/15 14:33	05/15/15 16:26	20
Naphthalene	ND	4000	520	ug/Kg	₽	05/14/15 14:33	05/15/15 16:26	20
o-Cresol	ND	4000	470	ug/Kg	☼	05/14/15 14:33	05/15/15 16:26	20
p-Cresol	ND	7800	470	ug/Kg	☼	05/14/15 14:33	05/15/15 16:26	20
Pentachlorophenol	ND	7800	4000	ug/Kg	₽	05/14/15 14:33	05/15/15 16:26	20
Phenanthrene	1000 J	4000	590	ug/Kg	☼	05/14/15 14:33	05/15/15 16:26	20
Phenol	ND	4000	610	ug/Kg	☼	05/14/15 14:33	05/15/15 16:26	20
Pyrene	1200 J	4000	470	ug/Kg		05/14/15 14:33	05/15/15 16:26	20

Surrogate	%Recovery 0	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol	0 X	Υ	39 - 146	05/14/15 14:33	05/15/15 16:26	20
2-Fluorobiphenyl	68		37 - 120	05/14/15 14:33	05/15/15 16:26	20
2-Fluorophenol	66		18 - 120	05/14/15 14:33	05/15/15 16:26	20
Nitrobenzene-d5	73		34 - 132	05/14/15 14:33	05/15/15 16:26	20
Phenol-d5	67		11 - 120	05/14/15 14:33	05/15/15 16:26	20
p-Terphenyl-d14 (Surr)	81		65 - 153	05/14/15 14:33	05/15/15 16:26	20

Method: 8081B - Organochlorine Pesticides ((GC)	
---	------	--

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		97	19	ug/Kg	\	05/14/15 14:23	05/15/15 19:00	50
4,4'-DDE	ND		97	20	ug/Kg	☼	05/14/15 14:23	05/15/15 19:00	50
4,4'-DDT	ND		97	23	ug/Kg	☼	05/14/15 14:23	05/15/15 19:00	50
Aldrin	ND		97	24	ug/Kg	₽	05/14/15 14:23	05/15/15 19:00	50
alpha-BHC	ND		97	18	ug/Kg	☼	05/14/15 14:23	05/15/15 19:00	50
beta-BHC	ND		97	18	ug/Kg	☼	05/14/15 14:23	05/15/15 19:00	50
Chlordane (.alpha.)	ND		97	48	ug/Kg	₽	05/14/15 14:23	05/15/15 19:00	50
delta-BHC	ND		97	18	ug/Kg	☼	05/14/15 14:23	05/15/15 19:00	50
Dieldrin	ND		97	23	ug/Kg	☼	05/14/15 14:23	05/15/15 19:00	50
Endosulfan I	ND		97	19	ug/Kg	φ.	05/14/15 14:23	05/15/15 19:00	50
Endosulfan II	ND		97	18	ug/Kg	☼	05/14/15 14:23	05/15/15 19:00	50
Endosulfan sulfate	ND		97	18	ug/Kg	☼	05/14/15 14:23	05/15/15 19:00	50
Endrin	ND		97	19	ug/Kg	φ.	05/14/15 14:23	05/15/15 19:00	50
Heptachlor	ND		97	21	ug/Kg	☼	05/14/15 14:23	05/15/15 19:00	50
Lindane	ND		97	18	ug/Kg	₩	05/14/15 14:23	05/15/15 19:00	50

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	0 X	32 - 136	<u>05/14/15 14:23</u>	05/15/15 19:00	50
DCB Decachlorobiphenyl	0 X	32 - 136	05/14/15 14:23	05/15/15 19:00	50
Tetrachloro-m-xylene	0 X	30 - 124	05/14/15 14:23	05/15/15 19:00	50
Tetrachloro-m-xylene	0 X	30 - 124	05/14/15 14:23	05/15/15 19:00	50

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND ND	0.20	0.039	mg/Kg	<u> </u>	05/15/15 12:43	05/16/15 13:10	1
PCB-1221	ND	0.20	0.039	mg/Kg	₩	05/15/15 12:43	05/16/15 13:10	1
PCB-1232	ND	0.20	0.039	mg/Kg	₩	05/15/15 12:43	05/16/15 13:10	1
PCB-1242	ND	0.20	0.039	mg/Kg	₽	05/15/15 12:43	05/16/15 13:10	1
PCB-1248	ND	0.20	0.039	mg/Kg	₩	05/15/15 12:43	05/16/15 13:10	1

TestAmerica Buffalo

Page 13 of 51

5/27/2015

4

6

8

9

11

13

14

Client: Iyer Environmental Group, LLC Project/Site: Pinto Topsoil (NY)

TestAmerica Job ID: 480-80176-1

© 05/13/15 15:12 05/14/15 23:49

☼ 05/13/15 15:12 05/14/15 23:49

Client Sample ID: CTS-2C

Silver

Zinc

Lab Sample ID: 480-80176-2

Date Collected: 05/12/15 00:00 **Matrix: Solid** Date Received: 05/12/15 15:15 Percent Solids: 84.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1254	ND		0.20	0.094	mg/Kg	₩	05/15/15 12:43	05/16/15 13:10	1
PCB-1260	ND		0.20	0.094	mg/Kg	₩	05/15/15 12:43	05/16/15 13:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	93		60 - 154				05/15/15 12:43	05/16/15 13:10	1
Tetrachloro-m-xylene	90		60 - 154				05/15/15 12:43	05/16/15 13:10	1
DCB Decachlorobiphenyl	70		65 - 174				05/15/15 12:43	05/16/15 13:10	1
DCB Decachlorobiphenyl	79		65 - 174				05/15/15 12:43	05/16/15 13:10	1
Method: 8151A - Herbicido	es (GC)								
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-TP (Silvex)	ND		19	7.0	ug/Kg	₩	05/15/15 08:38	05/19/15 20:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCAA	63		28 - 129				05/15/15 08:38	05/19/15 20:46	1
DCAA	85		28 - 129				05/15/15 08:38	05/19/15 20:46	1
Method: 6010C - Metals (I	CP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	5.6		2.4	0.48	mg/Kg	₩	05/13/15 15:12	05/14/15 23:49	1
Barium	79.1		0.59	0.13	mg/Kg	☼	05/13/15 15:12	05/14/15 23:49	1
Beryllium	0.47		0.24	0.033	mg/Kg	☼	05/13/15 15:12	05/14/15 23:49	1
Cadmium	0.42		0.24	0.036	mg/Kg	φ.	05/13/15 15:12	05/14/15 23:49	1
Chromium	14.7		0.59	0.24	mg/Kg	☼	05/13/15 15:12	05/14/15 23:49	1
Copper	25.1		1.2	0.25	mg/Kg	☼	05/13/15 15:12	05/14/15 23:49	1
Lead	73.1		1.2	0.29	mg/Kg	φ.	05/13/15 15:12	05/14/15 23:49	1
Manganese	309	^ B	0.24	0.038	mg/Kg	☼	05/13/15 15:12	05/14/15 23:49	1
Nickel	15.5		5.9	0.27	mg/Kg	☼	05/13/15 15:12	05/14/15 23:49	1
Selenium	ND		4.8	0.48	mg/Kg	\$	05/13/15 15:12	05/14/15 23:49	1

Method: 7471B - Mercury in So	olid or Semisolid W	laste (Manua	l Cold Vap	or Tech	nique)			
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.14	0.023	0.0093	mg/Kg	<u> </u>	05/18/15 14:30	05/18/15 16:37	1

0.71

2.4

0.24 mg/Kg 0.18 mg/Kg

ND

93.8 B

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	ND		1.2	0.57	mg/Kg	<u> </u>	05/14/15 14:25	05/14/15 20:08	1
Total Organic Carbon	21300		1180	105	mg/Kg	₩		05/15/15 17:08	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.43	HF	0.100	0.100	SU			05/13/15 10:50	1

Client Sample ID: CTS-3C Lab Sample ID: 480-80176-3 Date Collected: 05/12/15 00:00 **Matrix: Solid** Date Received: 05/12/15 15:15 Percent Solids: 80.4

Method: 8260C - Volatile Orga	nic Compounds by GC/	MS						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	6.2	0.45	ug/Kg	₩	05/15/15 16:06	05/16/15 17:03	1
1,1-Dichloroethane	ND	6.2	0.75	ug/Kg	₩	05/15/15 16:06	05/16/15 17:03	1

TestAmerica Buffalo

Client: Iyer Environmental Group, LLC Project/Site: Pinto Topsoil (NY)

Client Sample ID: CTS-3C Lab Sample ID: 480-80176-3

Date Collected: 05/12/15 00:00 **Matrix: Solid** Date Received: 05/12/15 15:15 Percent Solids: 80.4

Method: 8260C - Volatile O Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloroethene	ND		6.2	0.76	ug/Kg	<u></u>	05/15/15 16:06	05/16/15 17:03	1
1,2-Dichlorobenzene	ND		6.2	0.48	ug/Kg	\	05/15/15 16:06	05/16/15 17:03	1
1,2-Dichloroethane	ND		6.2	0.31	ug/Kg	₩	05/15/15 16:06	05/16/15 17:03	1
1,2-Dichloroethene, cis-	ND		6.2	0.79	ug/Kg	☼	05/15/15 16:06	05/16/15 17:03	1
1,2-Dichloroethene, trans-	ND		6.2	0.64	ug/Kg	φ.	05/15/15 16:06	05/16/15 17:03	1
1,3-Dichlorobenzene	ND		6.2	0.32	ug/Kg	₩	05/15/15 16:06	05/16/15 17:03	1
1,4-Dichlorobenzene	ND		6.2	0.87	ug/Kg	☼	05/15/15 16:06	05/16/15 17:03	1
1,4-Dioxane	ND		120	27	ug/Kg	₽	05/15/15 16:06	05/16/15 17:03	1
Acetone	ND		31	5.2	ug/Kg	₩	05/15/15 16:06	05/16/15 17:03	1
Benzene	ND		6.2	0.30	ug/Kg	☼	05/15/15 16:06	05/16/15 17:03	1
Butylbenzene	ND		6.2	0.54	ug/Kg		05/15/15 16:06	05/16/15 17:03	1
Carbon tetrachloride	ND		6.2	0.60	ug/Kg	₩	05/15/15 16:06	05/16/15 17:03	1
Chlorobenzene	ND		6.2	0.82	ug/Kg	₩	05/15/15 16:06	05/16/15 17:03	1
Chloroform	ND		6.2	0.38	ug/Kg	φ.	05/15/15 16:06	05/16/15 17:03	1
Ethylbenzene	ND		6.2	0.43	ug/Kg	₩	05/15/15 16:06	05/16/15 17:03	1
Methyl Ethyl Ketone	ND		31	2.3	ug/Kg	₩	05/15/15 16:06	05/16/15 17:03	1
Methyl tert-butyl ether	ND		6.2	0.61	ug/Kg	φ.	05/15/15 16:06	05/16/15 17:03	1
Methylene Chloride	4.7	JB	6.2	2.8	ug/Kg	₩	05/15/15 16:06	05/16/15 17:03	1
Propylbenzene, n-	ND		6.2	0.49	ug/Kg	₩	05/15/15 16:06	05/16/15 17:03	1
sec-Butylbenzene	ND		6.2	0.54	ug/Kg	₽	05/15/15 16:06	05/16/15 17:03	1
tert-Butylbenzene	ND		6.2	0.64	ug/Kg	≎	05/15/15 16:06	05/16/15 17:03	1
Tetrachloroethene	ND		6.2	0.83	ug/Kg	≎	05/15/15 16:06	05/16/15 17:03	1
Toluene	ND		6.2	0.47	ug/Kg	₩	05/15/15 16:06	05/16/15 17:03	1
Trichloroethene	ND		6.2	1.4	ug/Kg	≎	05/15/15 16:06	05/16/15 17:03	1
Trimethylbenzene, 1,2,4-	ND		6.2	1.2	ug/Kg	₩	05/15/15 16:06	05/16/15 17:03	1
Trimethylbenzene, 1,3,5-	ND		6.2	0.40	ug/Kg	₽	05/15/15 16:06	05/16/15 17:03	1
Vinyl chloride	ND		6.2	0.75	ug/Kg	₩	05/15/15 16:06	05/16/15 17:03	1
Xylene (mixed)	ND		12	1.0	ug/Kg	₩	05/15/15 16:06	05/16/15 17:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		64 - 126					05/16/15 17:03	1
4-Bromofluorobenzene (Surr)	90		72 - 126				05/15/15 16:06	05/16/15 17:03	1
Toluene-d8 (Surr)	103		71 - 125				05/15/15 16:06	05/16/15 17:03	1
Dibromofluoromethane (Surr)	104		60 - 140				05/15/15 16:06	05/16/15 17:03	1

Analyte	Result Q	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND ND		4200	620	ug/Kg	₩	05/14/15 14:33	05/15/15 16:52	20
Acenaphthylene	ND		4200	540	ug/Kg	₩	05/14/15 14:33	05/15/15 16:52	20
Anthracene	ND		4200	1000	ug/Kg	₩	05/14/15 14:33	05/15/15 16:52	20
Benzo(a)anthracene	ND		4200	420	ug/Kg		05/14/15 14:33	05/15/15 16:52	20
Benzo(a)pyrene	ND		4200	620	ug/Kg	₩	05/14/15 14:33	05/15/15 16:52	20
Benzo(b)fluoranthene	ND		4200	670	ug/Kg	₩	05/14/15 14:33	05/15/15 16:52	20
Benzo(g,h,i)perylene	ND		4200	450	ug/Kg		05/14/15 14:33	05/15/15 16:52	20
Benzo(k)fluoranthene	ND		4200	540	ug/Kg	₩	05/14/15 14:33	05/15/15 16:52	20
Chrysene	ND		4200	940	ug/Kg	₩	05/14/15 14:33	05/15/15 16:52	20
Dibenz(a,h)anthracene	ND		4200	740	ug/Kg	₽	05/14/15 14:33	05/15/15 16:52	20
Dibenzofuran	ND		4200	490	ug/Kg	₩	05/14/15 14:33	05/15/15 16:52	20
Fluoranthene	ND		4200	450	ug/Kg	₩	05/14/15 14:33	05/15/15 16:52	20
Fluorene	ND		4200	490	ug/Kg	₽	05/14/15 14:33	05/15/15 16:52	20

TestAmerica Buffalo

Page 15 of 51

Client Sample Results

Client: Iyer Environmental Group, LLC Project/Site: Pinto Topsoil (NY)

Date Received: 05/12/15 15:15

TestAmerica Job ID: 480-80176-1

Client Sample ID: CTS-3C

Date Collected: 05/12/15 00:00

Lab Sam

Lab Sample ID: 480-80176-3 Matrix: Solid

Percent Solids: 80.4

Method: 8270D - Semivolatile Organ	ic Compounds (GC/MS) (Continued)

Analyte	Result Qualifier	ŔĹ	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hexachlorobenzene	ND	4200	570	ug/Kg	<u> </u>	05/14/15 14:33	05/15/15 16:52	20
Indeno(1,2,3-cd)pyrene	ND	4200	520	ug/Kg	₽	05/14/15 14:33	05/15/15 16:52	20
Naphthalene	ND	4200	540	ug/Kg		05/14/15 14:33	05/15/15 16:52	20
o-Cresol	ND	4200	490	ug/Kg	₩	05/14/15 14:33	05/15/15 16:52	20
p-Cresol	ND	8200	490	ug/Kg	₽	05/14/15 14:33	05/15/15 16:52	20
Pentachlorophenol	ND	8200	4200	ug/Kg	₩.	05/14/15 14:33	05/15/15 16:52	20
Phenanthrene	ND	4200	620	ug/Kg	₩	05/14/15 14:33	05/15/15 16:52	20
Phenol	ND	4200	640	ug/Kg	☼	05/14/15 14:33	05/15/15 16:52	20
Pyrene	ND	4200	490	ug/Kg	\$	05/14/15 14:33	05/15/15 16:52	20

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol		\overline{X}	39 - 146	05/14/15 14:33	05/15/15 16:52	20
2-Fluorobiphenyl	83		37 - 120	05/14/15 14:33	05/15/15 16:52	20
2-Fluorophenol	69		18 - 120	05/14/15 14:33	05/15/15 16:52	20
Nitrobenzene-d5	69		34 - 132	05/14/15 14:33	05/15/15 16:52	20
Phenol-d5	82		11 - 120	05/14/15 14:33	05/15/15 16:52	20
p-Terphenyl-d14 (Surr)	92		65 - 153	05/14/15 14:33	05/15/15 16:52	20

Method: 8081B - Organochlorine Pesticides (GC)

Analyte	Result Qu	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND	41	7.9	ug/Kg	<u> </u>	05/14/15 14:23	05/15/15 19:18	20
4,4'-DDE	ND	41	8.5	ug/Kg	₽	05/14/15 14:23	05/15/15 19:18	20
4,4'-DDT	ND	41	9.5	ug/Kg	☼	05/14/15 14:23	05/15/15 19:18	20
Aldrin	ND	41	10	ug/Kg	₽	05/14/15 14:23	05/15/15 19:18	20
alpha-BHC	ND	41	7.3	ug/Kg	☼	05/14/15 14:23	05/15/15 19:18	20
beta-BHC	ND	41	7.3	ug/Kg	☼	05/14/15 14:23	05/15/15 19:18	20
Chlordane (.alpha.)	ND	41	20	ug/Kg	₽	05/14/15 14:23	05/15/15 19:18	20
delta-BHC	ND	41	7.5	ug/Kg	☼	05/14/15 14:23	05/15/15 19:18	20
Dieldrin	ND	41	9.7	ug/Kg	₽	05/14/15 14:23	05/15/15 19:18	20
Endosulfan I	ND	41	7.8	ug/Kg	₽	05/14/15 14:23	05/15/15 19:18	20
Endosulfan II	ND	41	7.3	ug/Kg	☼	05/14/15 14:23	05/15/15 19:18	20
Endosulfan sulfate	ND	41	7.6	ug/Kg	☼	05/14/15 14:23	05/15/15 19:18	20
Endrin	ND	41	8.0	ug/Kg	₽	05/14/15 14:23	05/15/15 19:18	20
Heptachlor	ND	41	8.8	ug/Kg	☼	05/14/15 14:23	05/15/15 19:18	20
Lindane	ND	41	7.4	ug/Kg	₩	05/14/15 14:23	05/15/15 19:18	20

Surrogate	%Recovery Q	(ualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	0 X	_	32 - 136	05/14/15 14:23	05/15/15 19:18	20
DCB Decachlorobiphenyl	0 X	•	32 - 136	05/14/15 14:23	05/15/15 19:18	20
Tetrachloro-m-xylene	197 X		30 - 124	05/14/15 14:23	05/15/15 19:18	20
Tetrachloro-m-xylene	169 X		30 - 124	05/14/15 14:23	05/15/15 19:18	20

Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND —	0.25	0.048	mg/Kg	<u> </u>	05/15/15 12:43	05/16/15 13:26	1
ND	0.25	0.048	mg/Kg	≎	05/15/15 12:43	05/16/15 13:26	1
ND	0.25	0.048	mg/Kg	☼	05/15/15 12:43	05/16/15 13:26	1
ND	0.25	0.048	mg/Kg	≎	05/15/15 12:43	05/16/15 13:26	1
ND	0.25	0.048	mg/Kg	≎	05/15/15 12:43	05/16/15 13:26	1
ND	0.25	0.12	mg/Kg	₩	05/15/15 12:43	05/16/15 13:26	1
	ND ND ND ND ND	ND 0.25 ND 0.25 ND 0.25 ND 0.25 ND 0.25 ND 0.25	ND 0.25 0.048 ND 0.25 0.048	ND 0.25 0.048 mg/Kg ND 0.25 0.048 mg/Kg	ND 0.25 0.048 mg/Kg ☆ ND 0.25 0.048 mg/Kg ☆	ND 0.25 0.048 mg/Kg © 05/15/15 12:43 ND 0.25 0.048 mg/Kg © 05/15/15 12:43	ND 0.25 0.048 mg/Kg \$\tilde{\text{mg/Kg}}\$ \$\tilde{\text{05/15/15}}\$ 12:43 05/16/15 13:26 ND 0.25 0.048 mg/Kg \$\tilde{\text{05/15/15}}\$ 12:43 05/16/15 13:26

TestAmerica Buffalo

Page 16 of 51

5/27/2015

3

4

6

8

4.6

11

Client: Iyer Environmental Group, LLC Project/Site: Pinto Topsoil (NY)

TestAmerica Job ID: 480-80176-1

Client Sample ID: CTS-3C

Lab Sample ID: 480-80176-3

Date Collected: 05/12/15 00:00 Date Received: 05/12/15 15:15

Matrix: Solid Percent Solids: 80.4

Method: 8082A - Po	olychlorinated Biphe	nyls (PCBs) by Gas	s Chromatography (Continued)
				/

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1260	ND		0.25	0.12	mg/Kg	₩	05/15/15 12:43	05/16/15 13:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	94		60 - 154				05/15/15 12:43	05/16/15 13:26	1
Tetrachloro-m-xylene	90		60 - 154				05/15/15 12:43	05/16/15 13:26	1
DCB Decachlorobiphenyl	73		65 - 174				05/15/15 12:43	05/16/15 13:26	1
DCB Decachlorobiphenyl	82		65 - 174				05/15/15 12:43	05/16/15 13:26	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-TP (Silvex)	ND		21	7.4	ug/Kg	\	05/15/15 08:38	05/19/15 21:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCAA	64		28 - 129				05/15/15 08:38	05/19/15 21:16	1
DCAA	76		28 - 129				05/15/15 08:38	05/19/15 21:16	1

Method: 6010C - Metals (ICF Analyte	P) Result Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
								- III ac
Arsenic	4.9	2.4	0.47	mg/Kg	₩	05/13/15 15:12	05/14/15 23:52	1
Barium	119	0.59	0.13	mg/Kg	₩	05/13/15 15:12	05/14/15 23:52	1
Beryllium	0.65	0.24	0.033	mg/Kg	☼	05/13/15 15:12	05/14/15 23:52	1
Cadmium	0.40	0.24	0.035	mg/Kg	₽	05/13/15 15:12	05/14/15 23:52	1
Chromium	17.4	0.59	0.24	mg/Kg	₩	05/13/15 15:12	05/14/15 23:52	1
Copper	20.9	1.2	0.25	mg/Kg	₩	05/13/15 15:12	05/14/15 23:52	1
Lead	47.7	1.2	0.28	mg/Kg	₽	05/13/15 15:12	05/14/15 23:52	1
Manganese	224 ^ B	0.24	0.038	mg/Kg	₩	05/13/15 15:12	05/14/15 23:52	1
Nickel	18.2	5.9	0.27	mg/Kg	₩	05/13/15 15:12	05/14/15 23:52	1
Selenium	ND	4.7	0.47	mg/Kg	₽	05/13/15 15:12	05/14/15 23:52	1
Silver	ND	0.71	0.24	mg/Kg	☼	05/13/15 15:12	05/14/15 23:52	1
Zinc	98.8 B	2.4	0.18	mg/Kg	₩	05/13/15 15:12	05/14/15 23:52	1

Method: 7471B - Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.11	0.024	0.0096 mg/Kg	<u> </u>	05/18/15 14:30	05/18/15 16:38	1

General Chemistry

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyanide, Total	ND		1.2	0.60	mg/Kg	₽	05/14/15 14:25	05/14/15 20:10	1
Total Organic Carbon	24500		1240	110	mg/Kg	₽		05/15/15 17:18	1
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
pH	7.31	HF	0.100	0.100	SU			05/13/15 10:50	1

Client Sample ID: CTS-4G

Date Collected: 05/12/15 00:00 **Matrix: Solid** Date Received: 05/12/15 15:15 Percent Solids: 84.7

٢	_					
L	Mothodi	926AC	Valatila	Orachia (omnoundo.	by CC/MC

Method: 8260C - Volatile Orga	nic Compounds by	/ GC/MS						
Analyte	Result Qualifier	r RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.7	0.41	ug/Kg	₩	05/15/15 16:06	05/16/15 17:29	1
1,1-Dichloroethane	ND	5.7	0.70	ug/Kg	≎	05/15/15 16:06	05/16/15 17:29	1
1.1-Dichloroethene	ND	5.7	0.70	ua/Ka	₩	05/15/15 16:06	05/16/15 17:29	1

TestAmerica Buffalo

Lab Sample ID: 480-80176-4

Client: Iyer Environmental Group, LLC Project/Site: Pinto Topsoil (NY)

Client Sample ID: CTS-4G Date Collected: 05/12/15 00:00

Date Received: 05/12/15 15:15

Lab Sample ID: 480-80176-4

Matrix: Solid

Percent Solids: 84.7

Method: 8260C - Volatile	Organic Compounds	by GC/MS (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichlorobenzene	ND		5.7	0.45	ug/Kg	<u> </u>	05/15/15 16:06	05/16/15 17:29	1
1,2-Dichloroethane	ND		5.7	0.29	ug/Kg		05/15/15 16:06	05/16/15 17:29	1
1,2-Dichloroethene, cis-	ND		5.7	0.73	ug/Kg	≎	05/15/15 16:06	05/16/15 17:29	1
1,2-Dichloroethene, trans-	ND		5.7	0.59	ug/Kg	\$	05/15/15 16:06	05/16/15 17:29	1
1,3-Dichlorobenzene	ND		5.7	0.29	ug/Kg	₽	05/15/15 16:06	05/16/15 17:29	1
1,4-Dichlorobenzene	ND		5.7	0.80	ug/Kg	≎	05/15/15 16:06	05/16/15 17:29	1
1,4-Dioxane	ND		110	25	ug/Kg		05/15/15 16:06	05/16/15 17:29	1
Acetone	ND		29	4.8	ug/Kg	≎	05/15/15 16:06	05/16/15 17:29	1
Benzene	ND		5.7	0.28	ug/Kg	≎	05/15/15 16:06	05/16/15 17:29	1
Butylbenzene	ND		5.7	0.50	ug/Kg	₩	05/15/15 16:06	05/16/15 17:29	1
Carbon tetrachloride	ND		5.7	0.55	ug/Kg	≎	05/15/15 16:06	05/16/15 17:29	1
Chlorobenzene	ND		5.7	0.75	ug/Kg	≎	05/15/15 16:06	05/16/15 17:29	1
Chloroform	0.80	J	5.7	0.35	ug/Kg	₩.	05/15/15 16:06	05/16/15 17:29	1
Ethylbenzene	ND		5.7	0.39	ug/Kg	₽	05/15/15 16:06	05/16/15 17:29	1
Methyl Ethyl Ketone	ND		29	2.1	ug/Kg	₩	05/15/15 16:06	05/16/15 17:29	1
Methyl tert-butyl ether	ND		5.7	0.56	ug/Kg	₩.	05/15/15 16:06	05/16/15 17:29	1
Methylene Chloride	6.5	В	5.7	2.6	ug/Kg	₩	05/15/15 16:06	05/16/15 17:29	1
Propylbenzene, n-	ND		5.7	0.46	ug/Kg	₩	05/15/15 16:06	05/16/15 17:29	1
sec-Butylbenzene	ND		5.7	0.50	ug/Kg		05/15/15 16:06	05/16/15 17:29	1
tert-Butylbenzene	ND		5.7	0.59	ug/Kg	₩	05/15/15 16:06	05/16/15 17:29	1
Tetrachloroethene	ND		5.7	0.77	ug/Kg	₩	05/15/15 16:06	05/16/15 17:29	1
Toluene	1.1	J	5.7	0.43	ug/Kg		05/15/15 16:06	05/16/15 17:29	1
Trichloroethene	ND		5.7	1.3	ug/Kg	☼	05/15/15 16:06	05/16/15 17:29	1
Trimethylbenzene, 1,2,4-	ND		5.7	1.1	ug/Kg	₩	05/15/15 16:06	05/16/15 17:29	1
Trimethylbenzene, 1,3,5-	ND		5.7	0.37	ug/Kg	φ.	05/15/15 16:06	05/16/15 17:29	1
Vinyl chloride	ND		5.7		ug/Kg	☼	05/15/15 16:06	05/16/15 17:29	1
Xylene (mixed)	ND		11	0.96	ug/Kg	₩	05/15/15 16:06	05/16/15 17:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		64 - 126	05/15/15 16:06	05/16/15 17:29	1
4-Bromofluorobenzene (Surr)	88		72 - 126	05/15/15 16:06	05/16/15 17:29	1
Toluene-d8 (Surr)	105		71 - 125	05/15/15 16:06	05/16/15 17:29	1
Dibromofluoromethane (Surr)	103		60 - 140	05/15/15 16:06	05/16/15 17:29	1

Client Sample ID: CTS-5G

Lab Sample ID: 480-80176-5 Date Collected: 05/12/15 00:00 **Matrix: Solid** Date Received: 05/12/15 15:15 Percent Solids: 79.6

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane		6.2	0.45	ug/Kg	<u> </u>	05/15/15 16:06	05/16/15 17:55	1
1,1-Dichloroethane	ND	6.2	0.76	ug/Kg	₩	05/15/15 16:06	05/16/15 17:55	1
1,1-Dichloroethene	ND	6.2	0.76	ug/Kg	☼	05/15/15 16:06	05/16/15 17:55	1
1,2-Dichlorobenzene	ND	6.2	0.49	ug/Kg	φ.	05/15/15 16:06	05/16/15 17:55	1
1,2-Dichloroethane	ND	6.2	0.31	ug/Kg	☼	05/15/15 16:06	05/16/15 17:55	1
1,2-Dichloroethene, cis-	ND	6.2	0.80	ug/Kg	☼	05/15/15 16:06	05/16/15 17:55	1
1,2-Dichloroethene, trans-	ND	6.2	0.64	ug/Kg	₽	05/15/15 16:06	05/16/15 17:55	1
1,3-Dichlorobenzene	ND	6.2	0.32	ug/Kg	☼	05/15/15 16:06	05/16/15 17:55	1
1,4-Dichlorobenzene	ND	6.2	0.87	ug/Kg	☼	05/15/15 16:06	05/16/15 17:55	1
1,4-Dioxane	ND	120	27	ug/Kg		05/15/15 16:06	05/16/15 17:55	1

TestAmerica Buffalo

Page 18 of 51

Client: Iyer Environmental Group, LLC Project/Site: Pinto Topsoil (NY)

Client Semple ID: CTS 50

Client Sample ID: CTS-5G Lab Sample ID: 480-80176-5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		31	5.2	ug/Kg	<u></u>	05/15/15 16:06	05/16/15 17:55	1
Benzene	ND		6.2	0.31	ug/Kg	≎	05/15/15 16:06	05/16/15 17:55	1
Butylbenzene	ND		6.2	0.54	ug/Kg	₽	05/15/15 16:06	05/16/15 17:55	1
Carbon tetrachloride	ND		6.2	0.60	ug/Kg	☼	05/15/15 16:06	05/16/15 17:55	1
Chlorobenzene	ND		6.2	0.82	ug/Kg	☼	05/15/15 16:06	05/16/15 17:55	1
Chloroform	0.80	J	6.2	0.39	ug/Kg	₽	05/15/15 16:06	05/16/15 17:55	1
Ethylbenzene	ND		6.2	0.43	ug/Kg	☼	05/15/15 16:06	05/16/15 17:55	1
Methyl Ethyl Ketone	ND		31	2.3	ug/Kg	☼	05/15/15 16:06	05/16/15 17:55	1
Methyl tert-butyl ether	ND		6.2	0.61	ug/Kg	φ.	05/15/15 16:06	05/16/15 17:55	1
Methylene Chloride	8.0	В	6.2	2.9	ug/Kg	☼	05/15/15 16:06	05/16/15 17:55	1
Propylbenzene, n-	ND		6.2	0.50	ug/Kg	₽	05/15/15 16:06	05/16/15 17:55	1
sec-Butylbenzene	ND		6.2	0.54	ug/Kg	φ.	05/15/15 16:06	05/16/15 17:55	1
tert-Butylbenzene	ND		6.2	0.65	ug/Kg	☼	05/15/15 16:06	05/16/15 17:55	1
Tetrachloroethene	ND		6.2	0.84	ug/Kg	☼	05/15/15 16:06	05/16/15 17:55	1
Toluene	ND		6.2	0.47	ug/Kg	₽	05/15/15 16:06	05/16/15 17:55	1
Trichloroethene	ND		6.2	1.4	ug/Kg	☼	05/15/15 16:06	05/16/15 17:55	1
Trimethylbenzene, 1,2,4-	ND		6.2	1.2	ug/Kg	₽	05/15/15 16:06	05/16/15 17:55	1
Trimethylbenzene, 1,3,5-	ND		6.2	0.40	ug/Kg	₽	05/15/15 16:06	05/16/15 17:55	1
Vinyl chloride	ND		6.2	0.76	ug/Kg	☼	05/15/15 16:06	05/16/15 17:55	1
Xylene (mixed)	ND		12	1.0	ug/Kg	₩	05/15/15 16:06	05/16/15 17:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		64 - 126				05/15/15 16:06	05/16/15 17:55	1
4-Bromofluorobenzene (Surr)	95		72 - 126				05/15/15 16:06	05/16/15 17:55	1
Toluene-d8 (Surr)	100		71 - 125				05/15/15 16:06	05/16/15 17:55	1
Dibromofluoromethane (Surr)	102		60 - 140				05/15/15 16:06	05/16/15 17:55	1

 Client Sample ID: CTS-6G
 Lab Sample ID: 480-80176-6

 Date Collected: 05/12/15 00:00
 Matrix: Solid

 Date Received: 05/12/15 15:15
 Percent Solids: 78.7

Analyte	Result Qualifie	r RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND	6.3	0.45	ug/Kg	<u> </u>	05/15/15 16:06	05/16/15 18:20	1
1,1-Dichloroethane	ND	6.3	0.76	ug/Kg	☼	05/15/15 16:06	05/16/15 18:20	1
1,1-Dichloroethene	ND	6.3	0.77	ug/Kg	☼	05/15/15 16:06	05/16/15 18:20	1
1,2-Dichlorobenzene	ND	6.3	0.49	ug/Kg		05/15/15 16:06	05/16/15 18:20	1
1,2-Dichloroethane	ND	6.3	0.31	ug/Kg	₩	05/15/15 16:06	05/16/15 18:20	1
1,2-Dichloroethene, cis-	ND	6.3	0.80	ug/Kg	₩	05/15/15 16:06	05/16/15 18:20	1
1,2-Dichloroethene, trans-	ND	6.3	0.65	ug/Kg	₩.	05/15/15 16:06	05/16/15 18:20	1
1,3-Dichlorobenzene	ND	6.3	0.32	ug/Kg	₩	05/15/15 16:06	05/16/15 18:20	1
1,4-Dichlorobenzene	ND	6.3	0.88	ug/Kg	₩	05/15/15 16:06	05/16/15 18:20	1
1,4-Dioxane	ND	130	27	ug/Kg	₩.	05/15/15 16:06	05/16/15 18:20	1
Acetone	ND	31	5.3	ug/Kg	₩	05/15/15 16:06	05/16/15 18:20	1
Benzene	ND	6.3	0.31	ug/Kg	☼	05/15/15 16:06	05/16/15 18:20	1
Butylbenzene	ND	6.3	0.55	ug/Kg	₩	05/15/15 16:06	05/16/15 18:20	1
Carbon tetrachloride	ND	6.3	0.61	ug/Kg	☼	05/15/15 16:06	05/16/15 18:20	1
Chlorobenzene	ND	6.3	0.83	ug/Kg	☼	05/15/15 16:06	05/16/15 18:20	1
Chloroform	1.1 J	6.3	0.39	ug/Kg	₩.	05/15/15 16:06	05/16/15 18:20	1
Ethylbenzene	0.43 J	6.3	0.43	ug/Kg	≎	05/15/15 16:06	05/16/15 18:20	1

TestAmerica Buffalo

Page 19 of 51

5/27/2015

3

_

7

9

10

12

14

1 E

Client Sample ID: CTS-6G

Lab Sample ID: 480-80176-6

Date Collected: 05/12/15 00:00 **Matrix: Solid** Date Received: 05/12/15 15:15 Percent Solids: 78.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl Ethyl Ketone	ND		31	2.3	ug/Kg	<u></u>	05/15/15 16:06	05/16/15 18:20	1
Methyl tert-butyl ether	ND		6.3	0.62	ug/Kg	φ.	05/15/15 16:06	05/16/15 18:20	1
Methylene Chloride	13	В	6.3	2.9	ug/Kg	₽	05/15/15 16:06	05/16/15 18:20	1
Propylbenzene, n-	ND		6.3	0.50	ug/Kg	☼	05/15/15 16:06	05/16/15 18:20	1
sec-Butylbenzene	ND		6.3	0.55	ug/Kg	₽	05/15/15 16:06	05/16/15 18:20	1
tert-Butylbenzene	ND		6.3	0.65	ug/Kg	☼	05/15/15 16:06	05/16/15 18:20	1
Tetrachloroethene	ND		6.3	0.84	ug/Kg	₽	05/15/15 16:06	05/16/15 18:20	1
Toluene	3.7	J	6.3	0.47	ug/Kg	₽	05/15/15 16:06	05/16/15 18:20	1
Trichloroethene	ND		6.3	1.4	ug/Kg	☼	05/15/15 16:06	05/16/15 18:20	1
Trimethylbenzene, 1,2,4-	ND		6.3	1.2	ug/Kg	☼	05/15/15 16:06	05/16/15 18:20	1
Trimethylbenzene, 1,3,5-	ND		6.3	0.40	ug/Kg	₽	05/15/15 16:06	05/16/15 18:20	1
Vinyl chloride	ND		6.3	0.76	ug/Kg	₽	05/15/15 16:06	05/16/15 18:20	1
Xylene (mixed)	ND		13	1.1	ug/Kg	₩	05/15/15 16:06	05/16/15 18:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			64 - 126				05/15/15 16:06	05/16/15 18:20	1
4-Bromofluorobenzene (Surr)	87		72 - 126				05/15/15 16:06	05/16/15 18:20	1
Toluene-d8 (Surr)	106		71 - 125				05/15/15 16:06	05/16/15 18:20	1
Dibromofluoromethane (Surr)	104		60 - 140				05/15/15 16:06	05/16/15 18:20	1

Client Sample ID: CTS-7G Lab Sample ID: 480-80176-7 Date Collected: 05/12/15 00:00 **Matrix: Solid** Date Received: 05/12/15 15:15 Percent Solids: 84.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.9	0.43	ug/Kg	₽	05/15/15 16:06	05/16/15 18:46	1
1,1-Dichloroethane	ND		5.9	0.72	ug/Kg	☼	05/15/15 16:06	05/16/15 18:46	1
1,1-Dichloroethene	ND		5.9	0.72	ug/Kg	₩	05/15/15 16:06	05/16/15 18:46	1
1,2-Dichlorobenzene	ND		5.9	0.46	ug/Kg	₽	05/15/15 16:06	05/16/15 18:46	1
1,2-Dichloroethane	ND		5.9	0.29	ug/Kg	☼	05/15/15 16:06	05/16/15 18:46	1
1,2-Dichloroethene, cis-	ND		5.9	0.75	ug/Kg	☼	05/15/15 16:06	05/16/15 18:46	1
1,2-Dichloroethene, trans-	ND		5.9	0.61	ug/Kg	₽	05/15/15 16:06	05/16/15 18:46	1
1,3-Dichlorobenzene	ND		5.9	0.30	ug/Kg	☼	05/15/15 16:06	05/16/15 18:46	1
1,4-Dichlorobenzene	ND		5.9	0.82	ug/Kg	₩	05/15/15 16:06	05/16/15 18:46	1
1,4-Dioxane	ND		120	26	ug/Kg		05/15/15 16:06	05/16/15 18:46	1
Acetone	ND		29	4.9	ug/Kg	☼	05/15/15 16:06	05/16/15 18:46	1
Benzene	ND		5.9	0.29	ug/Kg	☼	05/15/15 16:06	05/16/15 18:46	1
Butylbenzene	ND		5.9	0.51	ug/Kg	φ.	05/15/15 16:06	05/16/15 18:46	1
Carbon tetrachloride	ND		5.9	0.57	ug/Kg	☼	05/15/15 16:06	05/16/15 18:46	1
Chlorobenzene	ND		5.9	0.78	ug/Kg	☼	05/15/15 16:06	05/16/15 18:46	1
Chloroform	0.68	J	5.9	0.36	ug/Kg	₽	05/15/15 16:06	05/16/15 18:46	1
Ethylbenzene	ND		5.9	0.41	ug/Kg	☼	05/15/15 16:06	05/16/15 18:46	1
Methyl Ethyl Ketone	ND		29	2.1	ug/Kg	₩	05/15/15 16:06	05/16/15 18:46	1
Methyl tert-butyl ether	ND		5.9	0.58	ug/Kg	☼	05/15/15 16:06	05/16/15 18:46	1
Methylene Chloride	6.7	В	5.9	2.7	ug/Kg	☼	05/15/15 16:06	05/16/15 18:46	1
Propylbenzene, n-	ND		5.9	0.47	ug/Kg	☼	05/15/15 16:06	05/16/15 18:46	1
sec-Butylbenzene	ND		5.9	0.51	ug/Kg	₩	05/15/15 16:06	05/16/15 18:46	1
tert-Butylbenzene	ND		5.9	0.61	ug/Kg	☼	05/15/15 16:06	05/16/15 18:46	1
Tetrachloroethene	ND		5.9	0.79	ug/Kg	≎	05/15/15 16:06	05/16/15 18:46	1

TestAmerica Buffalo

Client Sample Results

Client: Iyer Environmental Group, LLC Project/Site: Pinto Topsoil (NY)

TestAmerica Job ID: 480-80176-1

Client Sample ID: CTS-7G

Lab Sample ID: 480-80176-7

Date Collected: 05/12/15 00:00 **Matrix: Solid** Date Received: 05/12/15 15:15 Percent Solids: 84.3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	1.1	J	5.9	0.44	ug/Kg	<u></u>	05/15/15 16:06	05/16/15 18:46	1
Trichloroethene	ND		5.9	1.3	ug/Kg	φ.	05/15/15 16:06	05/16/15 18:46	1
Trimethylbenzene, 1,2,4-	ND		5.9	1.1	ug/Kg	☼	05/15/15 16:06	05/16/15 18:46	1
Trimethylbenzene, 1,3,5-	ND		5.9	0.38	ug/Kg	₽	05/15/15 16:06	05/16/15 18:46	1
Vinyl chloride	ND		5.9	0.72	ug/Kg	☼	05/15/15 16:06	05/16/15 18:46	1
Xylene (mixed)	ND		12	0.99	ug/Kg	₩	05/15/15 16:06	05/16/15 18:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		64 - 126				05/15/15 16:06	05/16/15 18:46	1
4-Bromofluorobenzene (Surr)	92		72 - 126				05/15/15 16:06	05/16/15 18:46	1
Toluene-d8 (Surr)	103		71 - 125				05/15/15 16:06	05/16/15 18:46	1
Dibromofluoromethane (Surr)	103		60 - 140				05/15/15 16:06	05/16/15 18:46	1

Client Sample ID: CTS-8G Lab Sample ID: 480-80176-8

Date Collected: 05/12/15 00:00 **Matrix: Solid** Date Received: 05/12/15 15:15 Percent Solids: 82.7

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND	5.8	0.42	ug/Kg	₩	05/15/15 16:06	05/16/15 19:12	1
1,1-Dichloroethane	ND	5.8	0.71	ug/Kg	₩	05/15/15 16:06	05/16/15 19:12	1
1,1-Dichloroethene	ND	5.8	0.71	ug/Kg	₩	05/15/15 16:06	05/16/15 19:12	1
1,2-Dichlorobenzene	ND	5.8	0.46	ug/Kg	₽	05/15/15 16:06	05/16/15 19:12	1
1,2-Dichloroethane	ND	5.8	0.29	ug/Kg	≎	05/15/15 16:06	05/16/15 19:12	1
1,2-Dichloroethene, cis-	ND	5.8	0.75	ug/Kg	☼	05/15/15 16:06	05/16/15 19:12	1
1,2-Dichloroethene, trans-	ND	5.8	0.60	ug/Kg	\$	05/15/15 16:06	05/16/15 19:12	1
1,3-Dichlorobenzene	ND	5.8	0.30	ug/Kg	☼	05/15/15 16:06	05/16/15 19:12	1
1,4-Dichlorobenzene	ND	5.8	0.82	ug/Kg	₽	05/15/15 16:06	05/16/15 19:12	1
1,4-Dioxane	ND	120	25	ug/Kg	φ.	05/15/15 16:06	05/16/15 19:12	1
Acetone	ND	29	4.9	ug/Kg	☼	05/15/15 16:06	05/16/15 19:12	1
Benzene	ND	5.8	0.29	ug/Kg	₽	05/15/15 16:06	05/16/15 19:12	1
Butylbenzene	ND	5.8	0.51	ug/Kg	₽	05/15/15 16:06	05/16/15 19:12	1
Carbon tetrachloride	ND	5.8	0.56	ug/Kg	₽	05/15/15 16:06	05/16/15 19:12	1
Chlorobenzene	ND	5.8	0.77	ug/Kg	₽	05/15/15 16:06	05/16/15 19:12	1
Chloroform	0.84 J	5.8	0.36	ug/Kg	₽	05/15/15 16:06	05/16/15 19:12	1
Ethylbenzene	ND	5.8	0.40	ug/Kg	☼	05/15/15 16:06	05/16/15 19:12	1
Methyl Ethyl Ketone	ND	29	2.1	ug/Kg	☼	05/15/15 16:06	05/16/15 19:12	1
Methyl tert-butyl ether	ND	5.8	0.57	ug/Kg	₽	05/15/15 16:06	05/16/15 19:12	1
Methylene Chloride	5.8 B	5.8	2.7	ug/Kg	☼	05/15/15 16:06	05/16/15 19:12	1
Propylbenzene, n-	ND	5.8	0.47	ug/Kg	≎	05/15/15 16:06	05/16/15 19:12	1
sec-Butylbenzene	ND	5.8	0.51	ug/Kg		05/15/15 16:06	05/16/15 19:12	1
tert-Butylbenzene	ND	5.8	0.61	ug/Kg	≎	05/15/15 16:06	05/16/15 19:12	1
Tetrachloroethene	ND	5.8	0.78	ug/Kg	≎	05/15/15 16:06	05/16/15 19:12	1
Toluene	0.72 J	5.8	0.44	ug/Kg	ф	05/15/15 16:06	05/16/15 19:12	1
Trichloroethene	ND	5.8	1.3	ug/Kg	☼	05/15/15 16:06	05/16/15 19:12	1
Trimethylbenzene, 1,2,4-	ND	5.8	1.1	ug/Kg	≎	05/15/15 16:06	05/16/15 19:12	1
Trimethylbenzene, 1,3,5-	ND	5.8	0.38	ug/Kg	φ.	05/15/15 16:06	05/16/15 19:12	1
Vinyl chloride	ND	5.8	0.71	ug/Kg	☼	05/15/15 16:06	05/16/15 19:12	1
Xylene (mixed)	ND	12	0.98	ug/Kg	₩	05/15/15 16:06	05/16/15 19:12	1

Client Sample Results

Client: Iyer Environmental Group, LLC Project/Site: Pinto Topsoil (NY)

TestAmerica Job ID: 480-80176-1

Client Sample ID: CTS-8G

Lab Sample ID: 480-80176-8 Date Collected: 05/12/15 00:00

Matrix: Solid Percent Solids: 82.7

Date Received: 05/12/15 15:15

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98	64 - 126	05/15/15 16:06	05/16/15 19:12	1
4-Bromofluorobenzene (Surr)	91	72 - 126	05/15/15 16:06	05/16/15 19:12	1
Toluene-d8 (Surr)	105	71 - 125	05/15/15 16:06	05/16/15 19:12	1
Dibromofluoromethane (Surr)	102	60 - 140	05/15/15 16:06	05/16/15 19:12	1

Lab Sample ID: 480-80176-9 **Client Sample ID: CTS-9G**

Date Collected: 05/12/15 00:00 **Matrix: Solid** Date Received: 05/12/15 15:15 Percent Solids: 85.3

Method: 8260C - Volatile O Analyte		unds by G Qualifier	C/IVIS RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.8		ug/Kg	\	•	05/16/15 19:38	1
1,1-Dichloroethane	ND		5.8		ug/Kg	₽	05/15/15 16:06	05/16/15 19:38	1
1,1-Dichloroethene	ND		5.8		ug/Kg	₽	05/15/15 16:06	05/16/15 19:38	1
1,2-Dichlorobenzene	ND		5.8	0.45	ug/Kg		05/15/15 16:06	05/16/15 19:38	1
1,2-Dichloroethane	ND		5.8		ug/Kg	₽	05/15/15 16:06	05/16/15 19:38	1
1,2-Dichloroethene, cis-	ND		5.8		ug/Kg	₽	05/15/15 16:06	05/16/15 19:38	1
1,2-Dichloroethene, trans-	ND		5.8	0.59	ug/Kg		05/15/15 16:06	05/16/15 19:38	1
1,3-Dichlorobenzene	ND		5.8	0.30	ug/Kg	₽	05/15/15 16:06	05/16/15 19:38	1
1,4-Dichlorobenzene	ND		5.8		ug/Kg	☼	05/15/15 16:06	05/16/15 19:38	1
1,4-Dioxane	ND		120		ug/Kg		05/15/15 16:06	05/16/15 19:38	1
Acetone	ND		29		ug/Kg	₽	05/15/15 16:06	05/16/15 19:38	1
Benzene	ND		5.8		ug/Kg	☼	05/15/15 16:06	05/16/15 19:38	1
Butylbenzene	ND		5.8				05/15/15 16:06	05/16/15 19:38	1
Carbon tetrachloride	ND		5.8	0.56	ug/Kg	☼	05/15/15 16:06	05/16/15 19:38	1
Chlorobenzene	ND		5.8	0.76	ug/Kg	₩	05/15/15 16:06	05/16/15 19:38	1
Chloroform	0.76	J	5.8	0.36	ug/Kg		05/15/15 16:06	05/16/15 19:38	1
Ethylbenzene	ND		5.8		ug/Kg	₩	05/15/15 16:06	05/16/15 19:38	1
Methyl Ethyl Ketone	ND		29	2.1	ug/Kg	☼	05/15/15 16:06	05/16/15 19:38	1
Methyl tert-butyl ether	ND		5.8	0.57	ug/Kg		05/15/15 16:06	05/16/15 19:38	1
Methylene Chloride	4.0	JB	5.8	2.6	ug/Kg	☼	05/15/15 16:06	05/16/15 19:38	1
Propylbenzene, n-	ND		5.8		ug/Kg	₩	05/15/15 16:06	05/16/15 19:38	1
sec-Butylbenzene	ND		5.8	0.50	ug/Kg		05/15/15 16:06	05/16/15 19:38	1
tert-Butylbenzene	ND		5.8	0.60	ug/Kg	₩	05/15/15 16:06	05/16/15 19:38	1
Tetrachloroethene	ND		5.8	0.77	ug/Kg	☼	05/15/15 16:06	05/16/15 19:38	1
Toluene	ND		5.8	0.44	ug/Kg	ф.	05/15/15 16:06	05/16/15 19:38	1
Trichloroethene	ND		5.8	1.3	ug/Kg	☼	05/15/15 16:06	05/16/15 19:38	1
Trimethylbenzene, 1,2,4-	ND		5.8	1.1	ug/Kg	☼	05/15/15 16:06	05/16/15 19:38	1
Trimethylbenzene, 1,3,5-	ND		5.8	0.37	ug/Kg	φ.	05/15/15 16:06	05/16/15 19:38	1
Vinyl chloride	ND		5.8	0.70	ug/Kg	☼	05/15/15 16:06	05/16/15 19:38	1
Xylene (mixed)	ND		12	0.97	ug/Kg	₩	05/15/15 16:06	05/16/15 19:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		64 - 126				05/15/15 16:06	05/16/15 19:38	1
4-Bromofluorobenzene (Surr)	93		72 - 126				05/15/15 16:06	05/16/15 19:38	1
Toluene-d8 (Surr)	105		71 - 125				05/15/15 16:06	05/16/15 19:38	1
Dibromofluoromethane (Surr)	104		60 - 140				05/15/15 16:06	05/16/15 19:38	1

Client: Iyer Environmental Group, LLC Project/Site: Pinto Topsoil (NY)

Client Sample ID: CTS-10G Lab Sample ID: 480-80176-10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		5.9	0.43	ug/Kg	<u> </u>	05/15/15 16:06	05/16/15 20:04	1
1,1-Dichloroethane	ND		5.9	0.72	ug/Kg	₩	05/15/15 16:06	05/16/15 20:04	1
1,1-Dichloroethene	ND		5.9	0.72	ug/Kg	☼	05/15/15 16:06	05/16/15 20:04	1
1,2-Dichlorobenzene	ND		5.9	0.46	ug/Kg	₽	05/15/15 16:06	05/16/15 20:04	1
1,2-Dichloroethane	ND		5.9	0.30	ug/Kg	☼	05/15/15 16:06	05/16/15 20:04	1
1,2-Dichloroethene, cis-	ND		5.9	0.76	ug/Kg	☼	05/15/15 16:06	05/16/15 20:04	1
1,2-Dichloroethene, trans-	ND		5.9	0.61	ug/Kg	₽	05/15/15 16:06	05/16/15 20:04	1
1,3-Dichlorobenzene	ND		5.9	0.30	ug/Kg	☼	05/15/15 16:06	05/16/15 20:04	1
1,4-Dichlorobenzene	ND		5.9	0.83	ug/Kg	☼	05/15/15 16:06	05/16/15 20:04	1
1,4-Dioxane	ND		120	26	ug/Kg		05/15/15 16:06	05/16/15 20:04	1
Acetone	ND		30	5.0	ug/Kg	☼	05/15/15 16:06	05/16/15 20:04	1
Benzene	ND		5.9	0.29	ug/Kg	☼	05/15/15 16:06	05/16/15 20:04	1
Butylbenzene	ND		5.9	0.51	ug/Kg		05/15/15 16:06	05/16/15 20:04	1
Carbon tetrachloride	ND		5.9	0.57	ug/Kg	₩	05/15/15 16:06	05/16/15 20:04	1
Chlorobenzene	ND		5.9	0.78	ug/Kg	₩	05/15/15 16:06	05/16/15 20:04	1
Chloroform	0.75	J	5.9	0.37	ug/Kg		05/15/15 16:06	05/16/15 20:04	1
Ethylbenzene	ND		5.9	0.41	ug/Kg	☼	05/15/15 16:06	05/16/15 20:04	1
Methyl Ethyl Ketone	ND		30	2.2	ug/Kg	☼	05/15/15 16:06	05/16/15 20:04	1
Methyl tert-butyl ether	ND		5.9	0.58	ug/Kg		05/15/15 16:06	05/16/15 20:04	1
Methylene Chloride	2.9	J B	5.9	2.7	ug/Kg	☼	05/15/15 16:06	05/16/15 20:04	1
Propylbenzene, n-	ND		5.9	0.47	ug/Kg	☼	05/15/15 16:06	05/16/15 20:04	1
sec-Butylbenzene	ND		5.9	0.51	ug/Kg	φ.	05/15/15 16:06	05/16/15 20:04	1
tert-Butylbenzene	ND		5.9	0.62	ug/Kg	☼	05/15/15 16:06	05/16/15 20:04	1
Tetrachloroethene	ND		5.9	0.79	ug/Kg	☼	05/15/15 16:06	05/16/15 20:04	1
Toluene	ND		5.9		ug/Kg		05/15/15 16:06	05/16/15 20:04	1
Trichloroethene	ND		5.9	1.3	ug/Kg	☼	05/15/15 16:06	05/16/15 20:04	1
Trimethylbenzene, 1,2,4-	ND		5.9	1.1	ug/Kg	☼	05/15/15 16:06	05/16/15 20:04	1
Trimethylbenzene, 1,3,5-	ND		5.9	0.38	ug/Kg		05/15/15 16:06	05/16/15 20:04	1
Vinyl chloride	ND		5.9	0.72	ug/Kg	☼	05/15/15 16:06	05/16/15 20:04	1
Xylene (mixed)	ND		12	0.99	ug/Kg	₩	05/15/15 16:06	05/16/15 20:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		64 - 126				05/15/15 16:06	05/16/15 20:04	1
4-Bromofluorobenzene (Surr)	91		72 - 126				05/15/15 16:06	05/16/15 20:04	1
Toluene-d8 (Surr)	105		71 - 125				05/15/15 16:06	05/16/15 20:04	1
Dibromofluoromethane (Surr)	104		60 - 140				05/15/15 16:06	05/16/15 20:04	1

Client Sample ID: CTS-11G

Date Collected: 05/12/15 00:00

Lab Sample ID: 480-80176-11

Matrix: Solid

Date Received: 05/12/15 15:15 Percent Solids: 83.7

Method: 8260C - Volatile On Analyte	rganic Compounds by GC/ Result Qualifier	IVIS RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND -	5.9	0.43	ug/Kg	<u></u>	05/15/15 16:06	05/16/15 20:30	1
1,1-Dichloroethane	ND	5.9	0.72	ug/Kg	≎	05/15/15 16:06	05/16/15 20:30	1
1,1-Dichloroethene	ND	5.9	0.73	ug/Kg	☼	05/15/15 16:06	05/16/15 20:30	1
1,2-Dichlorobenzene	ND	5.9	0.46	ug/Kg	₽	05/15/15 16:06	05/16/15 20:30	1
1,2-Dichloroethane	ND	5.9	0.30	ug/Kg	☼	05/15/15 16:06	05/16/15 20:30	1
1,2-Dichloroethene, cis-	ND	5.9	0.76	ug/Kg	₽	05/15/15 16:06	05/16/15 20:30	1
1,2-Dichloroethene, trans-	ND	5.9	0.61	ug/Kg	₽	05/15/15 16:06	05/16/15 20:30	1

TestAmerica Buffalo

Page 23 of 51

Client: Iyer Environmental Group, LLC Project/Site: Pinto Topsoil (NY)

Client Sample ID: CTS-11G

Date Collected: 05/12/15 00:00 Date Received: 05/12/15 15:15

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Lab Sample ID: 480-80176-11

<u>05/15/15 16:06</u> <u>05/16/15 20:30</u>

05/15/15 16:06 05/16/15 20:30

05/15/15 16:06 05/16/15 20:30

05/15/15 16:06 05/16/15 20:30

Matrix: Solid cent Solids: 83.7

Percent So

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3-Dichlorobenzene	ND		5.9	0.31	ug/Kg	₩	05/15/15 16:06	05/16/15 20:30	1
1,4-Dichlorobenzene	ND		5.9	0.83	ug/Kg	₩	05/15/15 16:06	05/16/15 20:30	1
1,4-Dioxane	ND		120	26	ug/Kg		05/15/15 16:06	05/16/15 20:30	1
Acetone	ND		30	5.0	ug/Kg	₩	05/15/15 16:06	05/16/15 20:30	1
Benzene	ND		5.9	0.29	ug/Kg	₩	05/15/15 16:06	05/16/15 20:30	1
Butylbenzene	ND		5.9	0.52	ug/Kg	₽	05/15/15 16:06	05/16/15 20:30	1
Carbon tetrachloride	ND		5.9	0.57	ug/Kg	₩	05/15/15 16:06	05/16/15 20:30	1
Chlorobenzene	ND		5.9	0.78	ug/Kg	₩	05/15/15 16:06	05/16/15 20:30	1
Chloroform	0.93	J	5.9	0.37	ug/Kg	₽	05/15/15 16:06	05/16/15 20:30	1
Ethylbenzene	ND		5.9	0.41	ug/Kg	☼	05/15/15 16:06	05/16/15 20:30	1
Methyl Ethyl Ketone	ND		30	2.2	ug/Kg	₩	05/15/15 16:06	05/16/15 20:30	1
Methyl tert-butyl ether	ND		5.9	0.58	ug/Kg	φ.	05/15/15 16:06	05/16/15 20:30	1
Methylene Chloride	6.8	В	5.9	2.7	ug/Kg	₩	05/15/15 16:06	05/16/15 20:30	1
Propylbenzene, n-	ND		5.9	0.48	ug/Kg	₩	05/15/15 16:06	05/16/15 20:30	1
sec-Butylbenzene	ND		5.9	0.52	ug/Kg	₽	05/15/15 16:06	05/16/15 20:30	1
tert-Butylbenzene	ND		5.9	0.62	ug/Kg	₩	05/15/15 16:06	05/16/15 20:30	1
Tetrachloroethene	ND		5.9	0.80	ug/Kg	₩	05/15/15 16:06	05/16/15 20:30	1
Toluene	ND		5.9	0.45	ug/Kg		05/15/15 16:06	05/16/15 20:30	1
Trichloroethene	ND		5.9	1.3	ug/Kg	₩	05/15/15 16:06	05/16/15 20:30	1
Trimethylbenzene, 1,2,4-	ND		5.9	1.1	ug/Kg	₩	05/15/15 16:06	05/16/15 20:30	1
Trimethylbenzene, 1,3,5-	ND		5.9	0.38	ug/Kg	₽	05/15/15 16:06	05/16/15 20:30	1
Vinyl chloride	ND		5.9	0.72	ug/Kg	☼	05/15/15 16:06	05/16/15 20:30	1
Xylene (mixed)	ND		12	1.0	ug/Kg	₽	05/15/15 16:06	05/16/15 20:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Client Sample ID: CTS-12G

Date Collected: 05/12/15 00:00

Lab Sample ID: 480-80176-12

Matrix: Solid

64 - 126

72 - 126

71 - 125

60 - 140

100

88

106

105

Date Received: 05/12/15 00:00 Matrix: Solid

Date Received: 05/12/15 15:15 Percent Solids: 73.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		6.6	0.48	ug/Kg	\	05/15/15 16:06	05/16/15 20:55	1
1,1-Dichloroethane	ND		6.6	0.81	ug/Kg	₩	05/15/15 16:06	05/16/15 20:55	1
1,1-Dichloroethene	ND		6.6	0.81	ug/Kg	₩	05/15/15 16:06	05/16/15 20:55	1
1,2-Dichlorobenzene	ND		6.6	0.52	ug/Kg	₽	05/15/15 16:06	05/16/15 20:55	1
1,2-Dichloroethane	ND		6.6	0.33	ug/Kg	₩	05/15/15 16:06	05/16/15 20:55	1
1,2-Dichloroethene, cis-	ND		6.6	0.85	ug/Kg	₩	05/15/15 16:06	05/16/15 20:55	1
1,2-Dichloroethene, trans-	ND		6.6	0.68	ug/Kg	₽	05/15/15 16:06	05/16/15 20:55	1
1,3-Dichlorobenzene	ND		6.6	0.34	ug/Kg	₩	05/15/15 16:06	05/16/15 20:55	1
1,4-Dichlorobenzene	ND		6.6	0.93	ug/Kg	₩	05/15/15 16:06	05/16/15 20:55	1
1,4-Dioxane	ND		130	29	ug/Kg	₩	05/15/15 16:06	05/16/15 20:55	1
Acetone	ND		33	5.6	ug/Kg	₩	05/15/15 16:06	05/16/15 20:55	1
Benzene	ND		6.6	0.33	ug/Kg	₩	05/15/15 16:06	05/16/15 20:55	1
Butylbenzene	ND		6.6	0.58	ug/Kg	₩	05/15/15 16:06	05/16/15 20:55	1
Carbon tetrachloride	ND		6.6	0.64	ug/Kg	₩	05/15/15 16:06	05/16/15 20:55	1

TestAmerica Buffalo

Page 24 of 51

Client Sample Results

Client: Iyer Environmental Group, LLC Project/Site: Pinto Topsoil (NY)

TestAmerica Job ID: 480-80176-1

Lab Sample ID: 480-80176-12

Matrix: Solid

Percent Solids: 73.2

Client Sample ID: CTS-12G
Date Collected: 05/12/15 00:00

Date Received: 05/12/15 15:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chlorobenzene	ND		6.6	0.88	ug/Kg	<u></u>	05/15/15 16:06	05/16/15 20:55	1
Chloroform	1.2	J	6.6	0.41	ug/Kg	₩	05/15/15 16:06	05/16/15 20:55	1
Ethylbenzene	ND		6.6	0.46	ug/Kg	☆	05/15/15 16:06	05/16/15 20:55	1
Methyl Ethyl Ketone	ND		33	2.4	ug/Kg	₩	05/15/15 16:06	05/16/15 20:55	1
Methyl tert-butyl ether	ND		6.6	0.65	ug/Kg	☆	05/15/15 16:06	05/16/15 20:55	1
Methylene Chloride	8.5	В	6.6	3.1	ug/Kg	☆	05/15/15 16:06	05/16/15 20:55	1
Propylbenzene, n-	ND		6.6	0.53	ug/Kg	₩	05/15/15 16:06	05/16/15 20:55	1
sec-Butylbenzene	ND		6.6	0.58	ug/Kg	☆	05/15/15 16:06	05/16/15 20:55	1
tert-Butylbenzene	ND		6.6	0.69	ug/Kg	₩	05/15/15 16:06	05/16/15 20:55	1
Tetrachloroethene	ND		6.6	0.89	ug/Kg	☆	05/15/15 16:06	05/16/15 20:55	1
Toluene	ND		6.6	0.50	ug/Kg	☆	05/15/15 16:06	05/16/15 20:55	1
Trichloroethene	ND		6.6	1.5	ug/Kg	₩	05/15/15 16:06	05/16/15 20:55	1
Trimethylbenzene, 1,2,4-	ND		6.6	1.3	ug/Kg	☆	05/15/15 16:06	05/16/15 20:55	1
Trimethylbenzene, 1,3,5-	ND		6.6	0.43	ug/Kg	☆	05/15/15 16:06	05/16/15 20:55	1
Vinyl chloride	ND		6.6	0.81	ug/Kg	≎	05/15/15 16:06	05/16/15 20:55	1
Xylene (mixed)	ND		13	1.1	ug/Kg	₩	05/15/15 16:06	05/16/15 20:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		64 - 126				05/15/15 16:06	05/16/15 20:55	1
4-Bromofluorobenzene (Surr)	100		72 - 126				05/15/15 16:06	05/16/15 20:55	1
Toluene-d8 (Surr)	102		71 - 125				05/15/15 16:06	05/16/15 20:55	1
Dibromofluoromethane (Surr)	107		60 - 140				05/15/15 16:06	05/16/15 20:55	1

Client: Iyer Environmental Group, LLC

Project/Site: Pinto Topsoil (NY)

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid Prep Type: Total/NA

			P	ercent Surre	ogate Recovery ((Acceptance Limits)
		12DCE	BFB	TOL	DBFM	
Lab Sample ID	Client Sample ID	(64-126)	(72-126)	(71-125)	(60-140)	
480-80176-1	CTS-1C	101	92	104	102	
480-80176-2	CTS-2C	100	99	103	102	
480-80176-3	CTS-3C	101	90	103	104	
480-80176-4	CTS-4G	98	88	105	103	
480-80176-5	CTS-5G	100	95	100	102	
480-80176-6	CTS-6G	101	87	106	104	
480-80176-7	CTS-7G	101	92	103	103	
480-80176-8	CTS-8G	98	91	105	102	
480-80176-9	CTS-9G	100	93	105	104	
480-80176-10	CTS-10G	100	91	105	104	
480-80176-11	CTS-11G	100	88	106	105	
480-80176-12	CTS-12G	106	100	102	107	
LCS 480-242785/1-A	Lab Control Sample	97	107	101	100	
MB 480-242785/2-A	Method Blank	101	101	101	101	

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)							
		TBP	FBP	2FP	NBZ	PHL	TPH		
Lab Sample ID	Client Sample ID	(39-146)	(37-120)	(18-120)	(34-132)	(11-120)	(65-153)		
480-80176-1	CTS-1C	0 X	79	63	70	63	90		
480-80176-2	CTS-2C	0 X	68	66	73	67	81		
480-80176-3	CTS-3C	0 X	83	69	69	82	92		
LCS 480-242467/2-A	Lab Control Sample	80	94	68	80	75	77		
MB 480-242467/1-A	Method Blank	69	69	78	72	68	90		

Surrogate Legend

TBP = 2,4,6-Tribromophenol

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol

NBZ = Nitrobenzene-d5

PHL = Phenol-d5

TPH = p-Terphenyl-d14 (Surr)

Method: 8081B - Organochlorine Pesticides (GC)

Matrix: Solid Prep Type: Total/NA

_			Pe	ercent Surre	ogate Reco
		DCB1	DCB2	TCX1	TCX2
Lab Sample ID	Client Sample ID	(32-136)	(32-136)	(30-124)	(30-124)
480-80176-1	CTS-1C	0 X	0 X	0 X	0 X
480-80176-1 MS	CTS-1C	0 X	0 X	0 X	0 X
480-80176-1 MSD	CTS-1C	0 X	0 X	271 X	344 X

TestAmerica Buffalo

Page 26 of 51

Client: Iyer Environmental Group, LLC

Project/Site: Pinto Topsoil (NY)

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Matrix: Solid Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)						
		DCB1	DCB2	TCX1	TCX2			
Lab Sample ID	Client Sample ID	(32-136)	(32-136)	(30-124)	(30-124)			
480-80176-2	CTS-2C	0 X	0 X	0 X	0 X			
480-80176-3	CTS-3C	0 X	0 X	197 X	169 X			
LCS 480-242466/2-A	Lab Control Sample	73	73	84	73			
MB 480-242466/1-A	Method Blank	75	76	89	78			

Surrogate Legend

DCB = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		TCX1	TCX2	DCB1	DCB2
Lab Sample ID	Client Sample ID	(60-154)	(60-154)	(65-174)	(65-174)
480-80176-1	CTS-1C	97	94	81	92
480-80176-2	CTS-2C	93	90	70	79
480-80176-3	CTS-3C	94	90	73	82
LCS 480-242716/2-A	Lab Control Sample	125	114	106	120
MB 480-242716/1-A	Method Blank	103	99	93	104

TCX = Tetrachloro-m-xylene

DCB = DCB Decachlorobiphenyl

Method: 8151A - Herbicides (GC)

Matrix: Solid Prep Type: Total/NA

•		Percent Surrogate Recovery (Acceptance Limits)						
		DCPA1	DCPA2					
Lab Sample ID	Client Sample ID	(28-129)	(28-129)					
480-80176-1	CTS-1C	74	84					
480-80176-2	CTS-2C	63	85					
480-80176-3	CTS-3C	64	76					
LCS 480-242596/2-A	Lab Control Sample	59	71					
MB 480-242596/1-A	Method Blank	68	77					
Surrogate Legend								
DCPA = DCAA								

Page 27 of 51

Client: Iyer Environmental Group, LLC Project/Site: Pinto Topsoil (NY)

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-242785/2-A

Matrix: Solid

Prep Type: Total/NA

Prep Type: Total/NA

Analysis Batch: 242879 Prep Batch: 242785 MB MB Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac **Analyte** 5.0 0.36 ug/Kg 05/15/15 16:06 05/16/15 15:43 1,1,1-Trichloroethane ND ND 1,1-Dichloroethane 5.0 0.61 ug/Kg 05/15/15 16:06 05/16/15 15:43 ND 5.0 05/15/15 16:06 05/16/15 15:43 1,1-Dichloroethene 0.61 ug/Kg 1,2-Dichlorobenzene ND 5.0 0.39 ug/Kg 05/15/15 16:06 05/16/15 15:43 1,2-Dichloroethane ND 5.0 0.25 ug/Kg 05/15/15 16:06 05/16/15 15:43 1,2-Dichloroethene, cis-ND 5.0 0.63 ug/Kg 05/15/15 16:06 05/16/15 15:43 ND 5.0 1,2-Dichloroethene, trans-0.51 05/15/15 16:06 05/16/15 15:43 ug/Kg 1,3-Dichlorobenzene 05/15/15 16:06 05/16/15 15:43 ND 5.0 0.25 ug/Kg ND 5.0 0.69 ug/Kg 1,4-Dichlorobenzene 05/15/15 16:06 05/16/15 15:43 1.4-Dioxane ND 99 05/15/15 16:06 05/16/15 15:43 22 ug/Kg ND 25 4.2 ug/Kg Acetone 05/15/15 16:06 05/16/15 15:43 Benzene ND 5.0 0.24 ug/Kg 05/15/15 16:06 05/16/15 15:43 Butvlbenzene ND 5.0 0.43 ug/Kg 05/15/15 16:06 05/16/15 15:43 Carbon tetrachloride ND 5.0 0.48 ug/Kg 05/15/15 16:06 05/16/15 15:43 Chlorobenzene ND 5.0 0.65 ug/Kg 05/15/15 16:06 05/16/15 15:43 Chloroform ND 5.0 0.31 ug/Kg 05/15/15 16:06 05/16/15 15:43 Ethylbenzene ND 5.0 0.34 ug/Kg 05/15/15 16:06 05/16/15 15:43 Methyl Ethyl Ketone ND 25 1.8 ug/Kg 05/15/15 16:06 05/16/15 15:43 Methyl tert-butyl ether ND 5.0 0.49 ug/Kg 05/15/15 16:06 05/16/15 15:43 Methylene Chloride 6.56 5.0 2.3 ug/Kg 05/15/15 16:06 05/16/15 15:43 Propylbenzene, n-ND 5.0 05/15/15 16:06 05/16/15 15:43 0.40 ug/Kg sec-Butylbenzene ND 5.0 0.43 ug/Kg 05/15/15 16:06 05/16/15 15:43 tert-Butylbenzene ND 5.0 0.52 ug/Kg 05/15/15 16:06 05/16/15 15:43 Tetrachloroethene ND 5.0 0.67 ug/Kg 05/15/15 16:06 05/16/15 15:43 Toluene ND 5.0 0.38 ug/Kg 05/15/15 16:06 05/16/15 15:43 Trichloroethene ND 5.0 1.1 ug/Kg 05/15/15 16:06 05/16/15 15:43 Trimethylbenzene, 1,2,4-ND 5.0 0.95 ug/Kg 05/15/15 16:06 05/16/15 15:43 Trimethylbenzene, 1,3,5-ND 5.0 0.32 ug/Kg 05/15/15 16:06 05/16/15 15:43 ND Vinyl chloride 5.0 0.61 ug/Kg 05/15/15 16:06 05/16/15 15:43 Xylene (mixed) ND 9.9 0.83 ug/Kg 05/15/15 16:06 05/16/15 15:43

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		64 - 126	05/15/15 16:06	05/16/15 15:43	1
4-Bromofluorobenzene (Surr)	101		72 - 126	05/15/15 16:06	05/16/15 15:43	1
Toluene-d8 (Surr)	101		71 - 125	05/15/15 16:06	05/16/15 15:43	1
Dibromofluoromethane (Surr)	101		60 - 140	05/15/15 16:06	05/16/15 15:43	1

Lab Sample ID: LCS 480-242785/1-A

Matrix: Solid

Analysis Batch: 242879

				e: Total/NA ch: 242785
			%Rec.	
nit	D	%Rec	Limits	
/Kg		92	73 - 126	

Client Sample ID: Lab Control Sample

		_						
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	49.9	45.8	-	ug/Kg		92	73 - 126	
1,1-Dichloroethene	49.9	46.2		ug/Kg		93	59 - 125	
1,2-Dichlorobenzene	49.9	46.9		ug/Kg		94	75 - 120	
1,2-Dichloroethane	49.9	46.6		ug/Kg		93	77 - 122	
1,2-Dichloroethene, cis-	49.9	47.2		ug/Kg		95	81 - 117	
1,2-Dichloroethene, trans-	49.9	46.5		ug/Kg		93	78 - 126	

LCS LCS

Spike

TestAmerica Buffalo

Page 28 of 51

2

3

4

6

0

10

16

14

13

5/27/2015

Client: Iyer Environmental Group, LLC

Project/Site: Pinto Topsoil (NY)

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-242785/1-A

Matrix: Solid

Analysis Batch: 242879

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 242785

7 manyolo Batom 2 12010	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	49.9	46.2		ug/Kg		93	79 - 127
Chlorobenzene	49.9	46.8		ug/Kg		94	76 - 124
Ethylbenzene	49.9	47.2		ug/Kg		95	80 - 120
Methyl tert-butyl ether	49.9	49.1		ug/Kg		98	63 - 125
Tetrachloroethene	49.9	46.6		ug/Kg		93	74 - 122
Toluene	49.9	46.2		ug/Kg		93	74 - 128
Trichloroethene	49.9	46.5		ug/Kg		93	77 - 129
Trimethylbenzene, 1,2,4-	49.9	46.3		ug/Kg		93	74 - 120
I and the second							

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		64 - 126
4-Bromofluorobenzene (Surr)	107		72 - 126
Toluene-d8 (Surr)	101		71 - 125
Dibromofluoromethane (Surr)	100		60 - 140

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-242467/1-A

Matrix: Solid

2,4,6-Tribromophenol

Analysis Batch: 242578

Client Sample ID: Method Blank **Prep Type: Total/NA**

Prep Batch: 242467

Analysis Baton. 242010								Trop Baton.	
		MB				_			5
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		170	25	ug/Kg		05/14/15 14:33	05/15/15 09:27	1
Acenaphthylene	ND		170	22	ug/Kg		05/14/15 14:33	05/15/15 09:27	1
Anthracene	ND		170	42	ug/Kg		05/14/15 14:33	05/15/15 09:27	1
Benzo(a)anthracene	ND		170	17	ug/Kg		05/14/15 14:33	05/15/15 09:27	1
Benzo(a)pyrene	ND		170	25	ug/Kg		05/14/15 14:33	05/15/15 09:27	1
Benzo(b)fluoranthene	ND		170	27	ug/Kg		05/14/15 14:33	05/15/15 09:27	1
Benzo(g,h,i)perylene	ND		170	18	ug/Kg		05/14/15 14:33	05/15/15 09:27	1
Benzo(k)fluoranthene	ND		170	22	ug/Kg		05/14/15 14:33	05/15/15 09:27	1
Chrysene	ND		170	38	ug/Kg		05/14/15 14:33	05/15/15 09:27	1
Dibenz(a,h)anthracene	ND		170	30	ug/Kg		05/14/15 14:33	05/15/15 09:27	1
Dibenzofuran	ND		170	20	ug/Kg		05/14/15 14:33	05/15/15 09:27	1
Fluoranthene	ND		170	18	ug/Kg		05/14/15 14:33	05/15/15 09:27	1
Fluorene	ND		170	20	ug/Kg		05/14/15 14:33	05/15/15 09:27	1
Hexachlorobenzene	ND		170	23	ug/Kg		05/14/15 14:33	05/15/15 09:27	1
Indeno(1,2,3-cd)pyrene	ND		170	21	ug/Kg		05/14/15 14:33	05/15/15 09:27	1
Naphthalene	ND		170	22	ug/Kg		05/14/15 14:33	05/15/15 09:27	1
o-Cresol	ND		170	20	ug/Kg		05/14/15 14:33	05/15/15 09:27	1
p-Cresol	ND		330	20	ug/Kg		05/14/15 14:33	05/15/15 09:27	1
Pentachlorophenol	ND		330	170	ug/Kg		05/14/15 14:33	05/15/15 09:27	1
Phenanthrene	ND		170	25	ug/Kg		05/14/15 14:33	05/15/15 09:27	1
Phenol	ND		170	26	ug/Kg		05/14/15 14:33	05/15/15 09:27	1
Pyrene	ND		170		ug/Kg		05/14/15 14:33	05/15/15 09:27	1
	МВ	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

TestAmerica Buffalo

05/14/15 14:33 05/15/15 09:27

Page 29 of 51

39 - 146

69

Client: Iyer Environmental Group, LLC Project/Site: Pinto Topsoil (NY)

Lab Sample ID: MB 480-242467/1-A

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Matrix: Solid

Analysis Batch: 242578

Client Sample ID: Method Blank **Prep Type: Total/NA**

Prep Batch: 242467

MB MB				
%Recovery Qualifi	er Limits	Prepared	Analyzed	Dil Fac
69	37 - 120	05/14/15 14:33	05/15/15 09:27	1
78	18 - 120	05/14/15 14:33	05/15/15 09:27	1
72	34 - 132	05/14/15 14:33	05/15/15 09:27	1
68	11 - 120	05/14/15 14:33	05/15/15 09:27	1
90	65 - 153	05/14/15 14:33	05/15/15 09:27	1
	%Recovery Qualifi 69 78 72 68	%Recovery Qualifier Limits 69 37 - 120 78 18 - 120 72 34 - 132 68 11 - 120	%Recovery Qualifier Limits Prepared 69 37 - 120 05/14/15 14:33 78 18 - 120 05/14/15 14:33 72 34 - 132 05/14/15 14:33 68 11 - 120 05/14/15 14:33	%Recovery Qualifier Limits Prepared Analyzed 69 37 - 120 05/14/15 14:33 05/15/15 09:27 78 18 - 120 05/14/15 14:33 05/15/15 09:27 72 34 - 132 05/14/15 14:33 05/15/15 09:27 68 11 - 120 05/14/15 14:33 05/15/15 09:27

Lab Sample ID: LCS 480-242467/2-A

Matrix: Solid

Analysis Batch: 242578

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 242467

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acenaphthene	1660	1510		ug/Kg		91	53 - 120	
Fluorene	1660	1690		ug/Kg		102	63 - 126	
p-Cresol	1660	1420		ug/Kg		86	50 - 119	
Pentachlorophenol	3320	2150		ug/Kg		65	33 - 136	
Phenol	1660	1260		ug/Kg		76	36 - 120	
Pyrene	1660	1290		ug/Kg		78	51 - 133	

LCS LCS %Recovery Qualifier Surrogate Limits 2,4,6-Tribromophenol 80 39 - 146 2-Fluorobiphenyl 94 37 - 120 2-Fluorophenol 68 18 - 120 Nitrobenzene-d5 80 34 - 132

Phenol-d5 75 11 - 120 p-Terphenyl-d14 (Surr) 77 65 - 153

Method: 8081B - Organochlorine Pesticides (GC)

Matrix: Solid

Analysis Batch: 242738

Lab Sample ID: MB 480-242466/1-A

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 242466

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		1.7	0.32	ug/Kg		05/14/15 14:23	05/15/15 17:27	1
4,4'-DDE	ND		1.7	0.35	ug/Kg		05/14/15 14:23	05/15/15 17:27	1
4,4'-DDT	ND		1.7	0.39	ug/Kg		05/14/15 14:23	05/15/15 17:27	1
Aldrin	ND		1.7	0.41	ug/Kg		05/14/15 14:23	05/15/15 17:27	1
alpha-BHC	ND		1.7	0.30	ug/Kg		05/14/15 14:23	05/15/15 17:27	1
beta-BHC	ND		1.7	0.30	ug/Kg		05/14/15 14:23	05/15/15 17:27	1
Chlordane (.alpha.)	ND		1.7	0.83	ug/Kg		05/14/15 14:23	05/15/15 17:27	1
delta-BHC	ND		1.7	0.31	ug/Kg		05/14/15 14:23	05/15/15 17:27	1
Dieldrin	ND		1.7	0.40	ug/Kg		05/14/15 14:23	05/15/15 17:27	1
Endosulfan I	ND		1.7	0.32	ug/Kg		05/14/15 14:23	05/15/15 17:27	1
Endosulfan II	ND		1.7	0.30	ug/Kg		05/14/15 14:23	05/15/15 17:27	1
Endosulfan sulfate	ND		1.7	0.31	ug/Kg		05/14/15 14:23	05/15/15 17:27	1
Endrin	ND		1.7	0.33	ug/Kg		05/14/15 14:23	05/15/15 17:27	1
Heptachlor	ND		1.7	0.36	ug/Kg		05/14/15 14:23	05/15/15 17:27	1
					0 0				

TestAmerica Buffalo

Page 30 of 51

Client: Iyer Environmental Group, LLC Project/Site: Pinto Topsoil (NY)

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: MB 480-242466/1-A **Client Sample ID: Method Blank Matrix: Solid Prep Type: Total/NA Analysis Batch: 242738** Prep Batch: 242466

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Lindane	ND —	1.7	0.31 ug/Kg		05/14/15 14:23	05/15/15 17:27	1

MB	MB				
Surrogate %Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl 75		32 - 136	05/14/15 14:23	05/15/15 17:27	1
DCB Decachlorobiphenyl 76		32 - 136	05/14/15 14:23	05/15/15 17:27	1
Tetrachloro-m-xylene 89		30 - 124	05/14/15 14:23	05/15/15 17:27	1
Tetrachloro-m-xylene 78		30 - 124	05/14/15 14:23	05/15/15 17:27	1

Lab Sample ID: LCS 480-242466/2-A Client Sample ID: Lab Control Sample **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 242738 Prep Batch: 242466

_	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
4,4'-DDD	16.6	13.4		ug/Kg		80	52 - 138	
4,4'-DDE	16.6	12.1		ug/Kg		73	52 - 131	
4,4'-DDT	16.6	12.1		ug/Kg		73	50 - 131	
Aldrin	16.6	10.1		ug/Kg		61	35 - 120	
alpha-BHC	16.6	12.7		ug/Kg		76	49 - 120	
beta-BHC	16.6	12.1		ug/Kg		72	52 - 127	
Chlordane (.alpha.)	16.6	12.2		ug/Kg		74	40 - 133	
delta-BHC	16.6	14.5		ug/Kg		87	45 - 123	
Dieldrin	16.6	12.9		ug/Kg		77	50 - 131	
Endosulfan I	16.6	11.2		ug/Kg		67	43 - 121	
Endosulfan II	16.6	11.7		ug/Kg		70	48 - 134	
Endosulfan sulfate	16.6	12.7		ug/Kg		76	46 - 144	
Endrin	16.6	13.0		ug/Kg		78	46 - 134	
Heptachlor	16.6	12.8		ug/Kg		77	51 - 121	
Lindane	16.6	13.3		ug/Kg		80	50 - 120	

LCS LCS %Recovery Qualifier Surrogate Limits DCB Decachlorobiphenyl 32 - 136 73 73 32 - 136 DCB Decachlorobiphenyl 30 - 124 Tetrachloro-m-xylene 84 Tetrachloro-m-xylene 73 30 - 124

51 J

Lab Sample ID: 480-80176-1 MS **Client Sample ID: CTS-1C Matrix: Solid Prep Type: Total/NA**

Analysis Batch: 242738

delta-BHC

Analysis Batch: 242738	Sample	Sample	Spike	MS	MS				Prep Batch: 242466 %Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
4,4'-DDD	ND	F1	19.5	ND	F1	ug/Kg	<u> </u>	0	26 - 162
4,4'-DDE	ND		19.5	ND		ug/Kg	₩	NC	34 - 138
4,4'-DDT	ND		19.5	50.8	J	ug/Kg	₩	NC	43 - 131
Aldrin	ND		19.5	ND		ug/Kg	₩	NC	37 - 125
alpha-BHC	ND	F1	19.5	ND	F1	ug/Kg	₩	0	39 - 117
beta-BHC	ND	F1	19.5	ND	F1	ug/Kg	₩	0	36 - 139
Chlordane (.alpha.)	ND		19.5	49.0	J	ug/Kg	₩	NC	29 - 141

TestAmerica Buffalo

Page 31 of 51

61.5 J

ug/Kg

51

23 - 132

19.5

Client: Iyer Environmental Group, LLC Project/Site: Pinto Topsoil (NY)

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: 480-80176-1 MS

Matrix: Solid

Analysis Batch: 242738

Client Sample ID: CTS-1C Prep Type: Total/NA

	Prep Batch: 242466 %Rec.
ес	Limits
IC	38 - 135
0	20 129

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Dieldrin	ND		19.5	ND	-	ug/Kg	\	NC	38 - 135
Endosulfan I	ND	F1	19.5	ND	F1	ug/Kg	₩.	0	39 - 128
Endosulfan II	ND	F1	19.5	ND	F1	ug/Kg	≎	0	24 - 134
Endosulfan sulfate	ND	F1	19.5	49.9	J F1	ug/Kg	☼	255	19 - 137
Endrin	ND	F1	19.5	ND	F1	ug/Kg	₩.	0	41 - 147
Heptachlor	ND		19.5	ND		ug/Kg	☼	NC	42 - 128
Lindane	ND	F1	19.5	37.1	J F1	ug/Kg	≎	190	50 - 120

MS MS

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl		X	32 - 136
DCB Decachlorobiphenyl	0	X	32 - 136
Tetrachloro-m-xylene	0	X	30 - 124
Tetrachloro-m-xylene	0	X	30 - 124

Lab Sample ID: 480-80176-1 MSD **Client Sample ID: CTS-1C**

Matrix: Solid

Prep Type: Total/NA

Analysis Batch: 242738									Prep Ba	atch: 24	42466
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
4,4'-DDD	ND	F1	19.2	ND	F1	ug/Kg	<u></u>	0	26 - 162	NC	21
4,4'-DDE	ND		19.2	ND		ug/Kg	≎	NC	34 - 138	NC	18
4,4'-DDT	ND		19.2	51.2	J	ug/Kg	☼	NC	43 - 131	1	25
Aldrin	ND		19.2	ND		ug/Kg	₽	NC	37 - 125	NC	12
alpha-BHC	ND	F1	19.2	ND	F1	ug/Kg	☼	0	39 - 117	NC	15
beta-BHC	ND	F1	19.2	20.3	J	ug/Kg	☼	105	36 - 139	NC	19
Chlordane (.alpha.)	ND		19.2	49.1	J	ug/Kg	₩	NC	29 - 141	NC	23
delta-BHC	51	J	19.2	59.7	J	ug/Kg	₩	43	23 - 132	3	14
Dieldrin	ND		19.2	ND		ug/Kg	☼	NC	38 - 135	NC	12
Endosulfan I	ND	F1	19.2	ND	F1	ug/Kg	₩.	0	39 - 128	NC	18
Endosulfan II	ND	F1	19.2	ND	F1	ug/Kg	☼	0	24 - 134	NC	26
Endosulfan sulfate	ND	F1	19.2	49.3	J F1	ug/Kg	≎	256	19 - 137	1	35
Endrin	ND	F1	19.2	ND	F1	ug/Kg	₩.	0	41 - 147	NC	20
Heptachlor	ND		19.2	ND		ug/Kg	≎	NC	42 - 128	NC	22
Lindane	ND	F1	19.2	36.8	J F1	ug/Kg	☼	191	50 - 120	1	12

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl		X	32 - 136
DCB Decachlorobiphenyl	0	Χ	32 - 136
Tetrachloro-m-xylene	271	Χ	30 - 124
Tetrachloro-m-xylene	344	X	30 - 124

TestAmerica Buffalo

Page 32 of 51

Client: Iyer Environmental Group, LLC Project/Site: Pinto Topsoil (NY)

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 480-242716/1-A

Matrix: Solid

Analysis Batch: 242862

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 242716

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.22	0.043	mg/Kg		05/15/15 12:43	05/16/15 11:19	1
PCB-1221	ND		0.22	0.043	mg/Kg		05/15/15 12:43	05/16/15 11:19	1
PCB-1232	ND		0.22	0.043	mg/Kg		05/15/15 12:43	05/16/15 11:19	1
PCB-1242	ND		0.22	0.043	mg/Kg		05/15/15 12:43	05/16/15 11:19	1
PCB-1248	ND		0.22	0.043	mg/Kg		05/15/15 12:43	05/16/15 11:19	1
PCB-1254	ND		0.22	0.10	mg/Kg		05/15/15 12:43	05/16/15 11:19	1
PCB-1260	ND		0.22	0.10	mg/Kg		05/15/15 12:43	05/16/15 11:19	1

MB MB

MD MD

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	103		60 - 154	05/15/15 12:43	05/16/15 11:19	1
Tetrachloro-m-xylene	99		60 - 154	05/15/15 12:43	05/16/15 11:19	1
DCB Decachlorobiphenyl	93		65 - 174	05/15/15 12:43	05/16/15 11:19	1
DCB Decachlorobiphenyl	104		65 - 174	05/15/15 12:43	05/16/15 11:19	1
	Tetrachloro-m-xylene Tetrachloro-m-xylene DCB Decachlorobiphenyl	Tetrachloro-m-xylene 103 Tetrachloro-m-xylene 99 DCB Decachlorobiphenyl 93	Tetrachloro-m-xylene 103 Tetrachloro-m-xylene 99 DCB Decachlorobiphenyl 93	Tetrachloro-m-xylene 103 60 - 154 Tetrachloro-m-xylene 99 60 - 154 DCB Decachlorobiphenyl 93 65 - 174	Tetrachloro-m-xylene 103 60 - 154 05/15/15 12:43 Tetrachloro-m-xylene 99 60 - 154 05/15/15 12:43 DCB Decachlorobiphenyl 93 65 - 174 05/15/15 12:43	Tetrachloro-m-xylene 103 60 - 154 05/15/15 12:43 05/16/15 11:19 Tetrachloro-m-xylene 99 60 - 154 05/15/15 12:43 05/16/15 11:19 DCB Decachlorobiphenyl 93 65 - 174 05/15/15 12:43 05/16/15 11:19

Lab Sample ID: LCS 480-242716/2-A

Matrix: Solid

Analysis Batch: 242862

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 242716

LCS LCS Spike %Rec. Added Analyte Result Qualifier Unit D %Rec Limits PCB-1016 51 - 185 1.69 2.10 mg/Kg 124 PCB-1260 1.69 2.19 mg/Kg 129 61 - 184

LCS LCS

MB MB

Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	125		60 - 154
Tetrachloro-m-xylene	114		60 - 154
DCB Decachlorobiphenyl	106		65 - 174
DCB Decachlorobiphenyl	120		65 - 174

Method: 8151A - Herbicides (GC)

Lab Sample ID: MB 480-242596/1-A

Matrix: Solid

Analysis Batch: 243291

Client	Sample	ID: Met	thod	Blank
	_	_	_	

Prep Type: Total/NA Prep Batch: 242596

Analyte	Result	Qualifier	RL	MDL	Unit	[D	Prepared	Analyzed	Dil Fac
2,4,5-TP (Silvex)	ND		17	5.9	ug/Kg		_	05/15/15 08:38	05/19/15 15:19	1
	MD	MD								

	IVID	INID				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCAA	68		28 - 129	05/15/15 08:38	05/19/15 15:19	1
DCAA	77		28 - 129	05/15/15 08:38	05/19/15 15:19	1

Lab Sample ID: LCS 480-242596/2-A

Matrix: Solid

Analysis Batch: 243291

7 maryolo Batom 2-1020 i							
-	Spike	LCS	LCS				
Analyte	Added	Result	Qualifier	Unit	D	%Rec	
2.4.5-TP (Silvex)	64.9	42.7		ua/Ka		66	

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 242596

%Rec. Limits 26 - 168

TestAmerica Buffalo

Page 33 of 51

5/27/2015

QC Sample Results

Client: Iyer Environmental Group, LLC Project/Site: Pinto Topsoil (NY)

TestAmerica Job ID: 480-80176-1

LCS LCS %Recovery Qualifier

Surrogate Limits DCAA 59 28 - 129 DCAA 71 28 - 129

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-242173/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Prep Batch: 242173 Analysis Batch: 242568

Allaryolo Batolii 212000								. Top Batom	
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		2.0	0.39	mg/Kg		05/13/15 15:12	05/14/15 23:22	1
Barium	ND		0.49	0.11	mg/Kg		05/13/15 15:12	05/14/15 23:22	1
Beryllium	ND		0.20	0.027	mg/Kg		05/13/15 15:12	05/14/15 23:22	1
Cadmium	ND		0.20	0.029	mg/Kg		05/13/15 15:12	05/14/15 23:22	1
Chromium	ND		0.49	0.20	mg/Kg		05/13/15 15:12	05/14/15 23:22	1
Copper	ND		0.98	0.20	mg/Kg		05/13/15 15:12	05/14/15 23:22	1
Lead	ND		0.98	0.23	mg/Kg		05/13/15 15:12	05/14/15 23:22	1
Manganese	0.108	J	0.20	0.031	mg/Kg		05/13/15 15:12	05/14/15 23:22	1
Nickel	ND		4.9	0.22	mg/Kg		05/13/15 15:12	05/14/15 23:22	1
Selenium	ND		3.9	0.39	mg/Kg		05/13/15 15:12	05/14/15 23:22	1
Silver	ND		0.59	0.20	mg/Kg		05/13/15 15:12	05/14/15 23:22	1
Zinc	0.274	J	2.0	0.15	mg/Kg		05/13/15 15:12	05/14/15 23:22	1

Lab Sample ID: LCSSRM 480-242173/2-A **Client Sample ID: Lab Control Sample**

Matrix: Solid

Prep Type: Total/NA

Analysis Batch: 242568	Spike	LCSSRM	LCSSRM				Prep Batch: 242173 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	122	108.8		mg/Kg		89.1	70.0 - 145.
							1
Barium	167	155.9		mg/Kg		93.4	73.1 - 126.
D 11:	54.0	50.44		/12		00.0	9
Beryllium	54.3	50.11		mg/Kg		92.3	73.1 - 127.
Cadmium	88.0	82.76		mg/Kg		94.0	73.3 - 127.
Cadman	00.0	02.70		mg/rtg		34.0	3
Chromium	102	93.23		mg/Kg		91.4	69.4 - 130.
				0 0			4
Copper	78.0	74.09		mg/Kg		95.0	73.7 - 132.
Lead	94.5	97.39		mg/Kg		103.1	70.5 - 129.
M	404	044.0		/12		77.0	1
Manganese	401	311.3	N.	mg/Kg		77.6	76.1 - 123.
Nickel	56.3	58.99		mg/Kg		104.8	69.8 - 130.
Hotol	00.0	00.00		mg/rtg		104.0	00.0 - 130.
Selenium	157	141.9		mg/Kg		90.4	67.5 - 131.
				- 0			8
Silver	34.2	31.81		mg/Kg		93.0	65.5 - 134.
_							2
Zinc	207	185.6		mg/Kg		89.7	70.0 - 130.
							4

Client: Iyer Environmental Group, LLC Project/Site: Pinto Topsoil (NY)

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 480-80176-1 MS **Client Sample ID: CTS-1C Matrix: Solid Prep Type: Total/NA** Analysis Batch: 242568 **Prep Batch: 242173**

Sa	mple	Sample	Spike	MS	MS				%Rec.	
Analyte F	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	4.7	F1	45.0	41.92		mg/Kg	₩	83	75 - 125	
Barium	62.6	F1	45.0	122.9	F1	mg/Kg	₩	134	75 - 125	
Beryllium	0.50	F1	45.0	37.81		mg/Kg	☼	83	75 - 125	
Cadmium	0.68	F1	45.0	40.11		mg/Kg	₩.	88	75 - 125	
Chromium	13.8	F1	45.0	56.38		mg/Kg	☼	95	75 - 125	
Copper	173	F1	45.0	63.24	F1	mg/Kg	☼	-243	75 - 125	
Lead	65.3	F2 F1	45.0	96.98	F1	mg/Kg	\$	70	75 - 125	
Manganese	281	^ F2 F1 B	45.0	353.5	^ 4	mg/Kg	☼	160	75 - 125	
Nickel	12.6	F1	45.0	56.57		mg/Kg	≎	98	75 - 125	
Selenium	ND	F1	45.0	37.26		mg/Kg	₩.	83	75 - 125	
Silver	ND	F1	11.3	10.43		mg/Kg	☼	93	75 - 125	
Zinc	94.4	F1 B	45.0	125.7	F1	mg/Kg	☼	70	75 - 125	

Lab Sample ID: 480-80176-1 MSD **Client Sample ID: CTS-1C** Matrix: Solid

Matrix: Solid Analysis Batch: 242568									Prep Tyl Prep Ba		
_	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	4.7	F1	45.2	45.23		mg/Kg	₩	90	75 - 125	8	20
Barium	62.6	F1	45.2	118.7		mg/Kg	₩	124	75 - 125	3	20
Beryllium	0.50	F1	45.2	39.81		mg/Kg	☼	87	75 - 125	5	20
Cadmium	0.68	F1	45.2	41.90		mg/Kg		91	75 - 125	4	20
Chromium	13.8	F1	45.2	57.95		mg/Kg	₩	98	75 - 125	3	20
Copper	173	F1	45.2	61.86	F1	mg/Kg	☼	-245	75 - 125	2	20
Lead	65.3	F2 F1	45.2	119.1	F2	mg/Kg	₩	119	75 - 125	21	20
Manganese	281	^ F2 F1 B	45.2	234.9	^ 4 F2	mg/Kg	₩	-103	75 - 125	40	20
Nickel	12.6	F1	45.2	57.42		mg/Kg	₩	99	75 - 125	1	20
Selenium	ND	F1	45.2	39.01		mg/Kg	₩.	86	75 - 125	5	20
Silver	ND	F1	11.3	11.16		mg/Kg	₩	99	75 - 125	7	20
Zinc	94.4	F1 B	45.2	154.1	F1	mg/Kg	₩	132	75 - 125	20	20

Method: 7471B - Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)

Lab Sample ID: MB 480-243068/1-A Client Sample ID: Method Blank **Matrix: Solid Prep Type: Total/NA Analysis Batch: 243286** Prep Batch: 243068 MB MB

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac ND 0.020 0.0083 mg/Kg 05/18/15 14:30 05/18/15 16:25 Mercury

Lab Sample ID: LCSSRM 480-243068/2-A **Matrix: Solid**

Analysis Batch: 243286							Prep Ba	atch: 243068
	Spike	LCSSRM	LCSSRM				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	 3.98	3.62		mg/Kg		90.9	51.0 - 149.	
							0	

TestAmerica Buffalo

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Page 35 of 51

5/27/2015

Client: Iyer Environmental Group, LLC Project/Site: Pinto Topsoil (NY)

Method: 7471B - Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique) (Continued)

Lab Sample ID: 480-80176-1 MS	S					Client Sample ID: CTS-1C
Matrix: Solid						Prep Type: Total/NA
Analysis Batch: 243286						Prep Batch: 243068
-	Sample	Sample	Spike	MS	MS	%Rec.

Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits 0.080 F1 0.391 0.370 F1 74 80 - 120 mg/Kg Mercury

Lab Sample ID: 480-80176-1 MSD **Client Sample ID: CTS-1C Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 243286** Prep Batch: 243068 Sample Sample Spike MSD MSD %Rec. **RPD** Limits Result Qualifier Added Analyte Result Qualifier **RPD** Limit Unit D %Rec ₩ 0.387 Mercury 0.080 F1 0.350 F1 mg/Kg 70 80 - 120 20

Method: 9012B - Cyanide, Total andor Amenable

Lab Sample ID: MB 480-242476/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 242525** Prep Batch: 242476 MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Cyanide, Total 0.99 0.48 mg/Kg 05/14/15 14:25 05/14/15 19:58 $\overline{\mathsf{ND}}$

Lab Sample ID: LCS 480-242476/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 242525** Prep Batch: 242476 LCS LCS Spike %Rec. Analyte Added Result Qualifier Limits Unit %Rec

Cyanide, Total 101 92.33 91 29 - 122 mg/Kg

Method: 9045D - pH

Lab Sample ID: 480-80176-1 DU **Client Sample ID: CTS-1C Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 242153

DU DU Sample Sample **RPD** Analyte **Result Qualifier** Result Qualifier Unit D **RPD** Limit 7.67 HF 7.520 SU pН

Method: Lloyd Kahn - Organic Carbon, Total (TOC)

Lab Sample ID: MB 180-141842/3 **Client Sample ID: Method Blank Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 141842

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Total Organic Carbon $\overline{\mathsf{ND}}$ 1000 88.7 mg/Kg 05/15/15 13:05

TestAmerica Buffalo

5/27/2015

QC Sample Results

Client: Iyer Environmental Group, LLC Project/Site: Pinto Topsoil (NY)

TestAmerica Job ID: 480-80176-1

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: Lloyd Kahn - Organic Carbon, Total (TOC) (Continued)

Lab Sample ID: LCS 180-141842/4

Matrix: Solid

Analysis Batch: 141842

3

1

6

8

9

11

13

14

15

Client: Iyer Environmental Group, LLC Project/Site: Pinto Topsoil (NY)

GC/MS VOA

Prep Batch: 242785

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-80176-1	CTS-1C	Total/NA	Solid	5035	
480-80176-2	CTS-2C	Total/NA	Solid	5035	
480-80176-3	CTS-3C	Total/NA	Solid	5035	
480-80176-4	CTS-4G	Total/NA	Solid	5035	
480-80176-5	CTS-5G	Total/NA	Solid	5035	
480-80176-6	CTS-6G	Total/NA	Solid	5035	
480-80176-7	CTS-7G	Total/NA	Solid	5035	
480-80176-8	CTS-8G	Total/NA	Solid	5035	
480-80176-9	CTS-9G	Total/NA	Solid	5035	
480-80176-10	CTS-10G	Total/NA	Solid	5035	
480-80176-11	CTS-11G	Total/NA	Solid	5035	
480-80176-12	CTS-12G	Total/NA	Solid	5035	
LCS 480-242785/1-A	Lab Control Sample	Total/NA	Solid	5035	
MB 480-242785/2-A	Method Blank	Total/NA	Solid	5035	

Analysis Batch: 242879

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-80176-1	CTS-1C	Total/NA	Solid	8260C	242785
480-80176-2	CTS-2C	Total/NA	Solid	8260C	242785
480-80176-3	CTS-3C	Total/NA	Solid	8260C	242785
480-80176-4	CTS-4G	Total/NA	Solid	8260C	242785
480-80176-5	CTS-5G	Total/NA	Solid	8260C	242785
480-80176-6	CTS-6G	Total/NA	Solid	8260C	242785
480-80176-7	CTS-7G	Total/NA	Solid	8260C	242785
480-80176-8	CTS-8G	Total/NA	Solid	8260C	242785
480-80176-9	CTS-9G	Total/NA	Solid	8260C	242785
480-80176-10	CTS-10G	Total/NA	Solid	8260C	242785
480-80176-11	CTS-11G	Total/NA	Solid	8260C	242785
480-80176-12	CTS-12G	Total/NA	Solid	8260C	242785
LCS 480-242785/1-A	Lab Control Sample	Total/NA	Solid	8260C	242785
MB 480-242785/2-A	Method Blank	Total/NA	Solid	8260C	242785

GC/MS Semi VOA

Prep Batch: 242467

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-80176-1	CTS-1C	Total/NA	Solid	3550C	-
480-80176-2	CTS-2C	Total/NA	Solid	3550C	
480-80176-3	CTS-3C	Total/NA	Solid	3550C	
LCS 480-242467/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-242467/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 242578

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-80176-1	CTS-1C	Total/NA	Solid	8270D	242467
480-80176-2	CTS-2C	Total/NA	Solid	8270D	242467
480-80176-3	CTS-3C	Total/NA	Solid	8270D	242467
LCS 480-242467/2-A	Lab Control Sample	Total/NA	Solid	8270D	242467
MB 480-242467/1-A	Method Blank	Total/NA	Solid	8270D	242467

TestAmerica Buffalo

5/27/2015

Page 38 of 51

2

3

4

6

8

9

11

14

15

Client: Iyer Environmental Group, LLC Project/Site: Pinto Topsoil (NY)

GC Semi VOA

Prep Batch: 242466

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-80176-1	CTS-1C	Total/NA	Solid	3550C	
480-80176-1 MS	CTS-1C	Total/NA	Solid	3550C	
480-80176-1 MSD	CTS-1C	Total/NA	Solid	3550C	
480-80176-2	CTS-2C	Total/NA	Solid	3550C	
480-80176-3	CTS-3C	Total/NA	Solid	3550C	
LCS 480-242466/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-242466/1-A	Method Blank	Total/NA	Solid	3550C	

Prep Batch: 242596

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-80176-1	CTS-1C	Total/NA	Solid	8151A	
480-80176-2	CTS-2C	Total/NA	Solid	8151A	
480-80176-3	CTS-3C	Total/NA	Solid	8151A	
LCS 480-242596/2-A	Lab Control Sample	Total/NA	Solid	8151A	
MB 480-242596/1-A	Method Blank	Total/NA	Solid	8151A	

Prep Batch: 242716

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-80176-1	CTS-1C	Total/NA	Solid	3550C	
480-80176-2	CTS-2C	Total/NA	Solid	3550C	
480-80176-3	CTS-3C	Total/NA	Solid	3550C	
LCS 480-242716/2-A	Lab Control Sample	Total/NA	Solid	3550C	
MB 480-242716/1-A	Method Blank	Total/NA	Solid	3550C	

Analysis Batch: 242738

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-80176-1	CTS-1C	Total/NA	Solid	8081B	242466
480-80176-1 MS	CTS-1C	Total/NA	Solid	8081B	242466
480-80176-1 MSD	CTS-1C	Total/NA	Solid	8081B	242466
480-80176-2	CTS-2C	Total/NA	Solid	8081B	242466
480-80176-3	CTS-3C	Total/NA	Solid	8081B	242466
LCS 480-242466/2-A	Lab Control Sample	Total/NA	Solid	8081B	242466
MB 480-242466/1-A	Method Blank	Total/NA	Solid	8081B	242466

Analysis Batch: 242862

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-80176-1	CTS-1C	Total/NA	Solid	8082A	242716
480-80176-2	CTS-2C	Total/NA	Solid	8082A	242716
480-80176-3	CTS-3C	Total/NA	Solid	8082A	242716
LCS 480-242716/2-A	Lab Control Sample	Total/NA	Solid	8082A	242716
MB 480-242716/1-A	Method Blank	Total/NA	Solid	8082A	242716

Analysis Batch: 243291

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-80176-1	CTS-1C	Total/NA	Solid	8151A	242596
480-80176-2	CTS-2C	Total/NA	Solid	8151A	242596
480-80176-3	CTS-3C	Total/NA	Solid	8151A	242596
LCS 480-242596/2-A	Lab Control Sample	Total/NA	Solid	8151A	242596
MB 480-242596/1-A	Method Blank	Total/NA	Solid	8151A	242596

TestAmerica Buffalo

Page 39 of 51

Client: Iyer Environmental Group, LLC Project/Site: Pinto Topsoil (NY)

Metals

Prep Batch: 242173

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-80176-1	CTS-1C	Total/NA	Solid	3050B	
480-80176-1 MS	CTS-1C	Total/NA	Solid	3050B	
480-80176-1 MSD	CTS-1C	Total/NA	Solid	3050B	
480-80176-2	CTS-2C	Total/NA	Solid	3050B	
480-80176-3	CTS-3C	Total/NA	Solid	3050B	
LCSSRM 480-242173/2-A	Lab Control Sample	Total/NA	Solid	3050B	
MB 480-242173/1-A	Method Blank	Total/NA	Solid	3050B	

Analysis Batch: 242568

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-80176-1	CTS-1C	Total/NA	Solid	6010C	242173
480-80176-1 MS	CTS-1C	Total/NA	Solid	6010C	242173
480-80176-1 MSD	CTS-1C	Total/NA	Solid	6010C	242173
480-80176-2	CTS-2C	Total/NA	Solid	6010C	242173
480-80176-3	CTS-3C	Total/NA	Solid	6010C	242173
LCSSRM 480-242173/2-A	Lab Control Sample	Total/NA	Solid	6010C	242173
MB 480-242173/1-A	Method Blank	Total/NA	Solid	6010C	242173

Prep Batch: 243068

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-80176-1	CTS-1C	Total/NA	Solid	7471B	
480-80176-1 MS	CTS-1C	Total/NA	Solid	7471B	
480-80176-1 MSD	CTS-1C	Total/NA	Solid	7471B	
480-80176-2	CTS-2C	Total/NA	Solid	7471B	
480-80176-3	CTS-3C	Total/NA	Solid	7471B	
LCSSRM 480-243068/2-A	Lab Control Sample	Total/NA	Solid	7471B	
MB 480-243068/1-A	Method Blank	Total/NA	Solid	7471B	

Analysis Batch: 243286

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-80176-1	CTS-1C	Total/NA	Solid	7471B	243068
480-80176-1 MS	CTS-1C	Total/NA	Solid	7471B	243068
480-80176-1 MSD	CTS-1C	Total/NA	Solid	7471B	243068
480-80176-2	CTS-2C	Total/NA	Solid	7471B	243068
480-80176-3	CTS-3C	Total/NA	Solid	7471B	243068
LCSSRM 480-243068/2-A	Lab Control Sample	Total/NA	Solid	7471B	243068
MB 480-243068/1-A	Method Blank	Total/NA	Solid	7471B	243068

General Chemistry

Analysis Batch: 141842

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-80176-1	CTS-1C	Total/NA	Solid	Lloyd Kahn	
480-80176-2	CTS-2C	Total/NA	Solid	Lloyd Kahn	
480-80176-3	CTS-3C	Total/NA	Solid	Lloyd Kahn	
LCS 180-141842/4	Lab Control Sample	Total/NA	Solid	Lloyd Kahn	
MB 180-141842/3	Method Blank	Total/NA	Solid	Lloyd Kahn	

Page 40 of 51

QC Association Summary

Client: Iyer Environmental Group, LLC Project/Site: Pinto Topsoil (NY)

TestAmerica Job ID: 480-80176-1

General Chemistry (Continued)

Analysis Batch: 242153

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-80176-1	CTS-1C	Total/NA	Solid	9045D	
480-80176-1 DU	CTS-1C	Total/NA	Solid	9045D	
480-80176-2	CTS-2C	Total/NA	Solid	9045D	
480-80176-3	CTS-3C	Total/NA	Solid	9045D	
LCS 480-242153/1	Lab Control Sample	Total/NA	Solid	9045D	

Prep Batch: 242476

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-80176-1	CTS-1C	Total/NA	Solid	9012B	
480-80176-2	CTS-2C	Total/NA	Solid	9012B	
480-80176-3	CTS-3C	Total/NA	Solid	9012B	
LCS 480-242476/2-A	Lab Control Sample	Total/NA	Solid	9012B	
MB 480-242476/1-A	Method Blank	Total/NA	Solid	9012B	

Analysis Batch: 242525

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-80176-1	CTS-1C	Total/NA	Solid	9012B	242476
480-80176-2	CTS-2C	Total/NA	Solid	9012B	242476
480-80176-3	CTS-3C	Total/NA	Solid	9012B	242476
LCS 480-242476/2-A	Lab Control Sample	Total/NA	Solid	9012B	242476
MB 480-242476/1-A	Method Blank	Total/NA	Solid	9012B	242476

Analysis Batch: 242529

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-80176-1	CTS-1C	Total/NA	Solid	Moisture	
480-80176-2	CTS-2C	Total/NA	Solid	Moisture	
480-80176-3	CTS-3C	Total/NA	Solid	Moisture	
480-80176-4	CTS-4G	Total/NA	Solid	Moisture	
480-80176-5	CTS-5G	Total/NA	Solid	Moisture	
480-80176-6	CTS-6G	Total/NA	Solid	Moisture	
480-80176-7	CTS-7G	Total/NA	Solid	Moisture	
480-80176-8	CTS-8G	Total/NA	Solid	Moisture	
480-80176-9	CTS-9G	Total/NA	Solid	Moisture	
480-80176-10	CTS-10G	Total/NA	Solid	Moisture	
480-80176-11	CTS-11G	Total/NA	Solid	Moisture	
480-80176-12	CTS-12G	Total/NA	Solid	Moisture	

TestAmerica Buffalo

Page 41 of 51

2

3

6

Ω

9

11

12

14

A E

Client: Iyer Environmental Group, LLC Project/Site: Pinto Topsoil (NY)

Client Sample ID: CTS-1C

Lab Sample ID: 480-80176-1

Date Collected: 05/12/15 00:00		Matrix: Solid
Date Received: 05/12/15 15:15		Percent Solids: 84.1
Detak Detak	Dilution Botch Browned	

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			242785	05/15/15 16:06	RAS	TAL BUF
Total/NA	Analysis	8260C		1	242879	05/16/15 16:11	CDC	TAL BUF
Total/NA	Prep	3550C			242467	05/14/15 14:33	CPH	TAL BUF
Total/NA	Analysis	8270D		20	242578	05/15/15 16:00	LMW	TAL BUF
Total/NA	Prep	3550C			242466	05/14/15 14:23	CPH	TAL BUF
Total/NA	Analysis	8081B		50	242738	05/15/15 18:41	JRL	TAL BUF
Total/NA	Prep	3550C			242716	05/15/15 12:43	CAM	TAL BUF
Total/NA	Analysis	8082A		1	242862	05/16/15 12:54	KS	TAL BUF
Total/NA	Prep	8151A			242596	05/15/15 08:38	CAM	TAL BUF
Total/NA	Analysis	8151A		1	243291	05/19/15 20:16	JRL	TAL BUF
Total/NA	Prep	3050B			242173	05/13/15 15:12	TAS	TAL BUF
Total/NA	Analysis	6010C		1	242568	05/14/15 23:36	AMH	TAL BUF
Total/NA	Prep	7471B			243068	05/18/15 14:30	LRK	TAL BUF
Total/NA	Analysis	7471B		1	243286	05/18/15 16:29	LRK	TAL BUF
Total/NA	Prep	9012B			242476	05/14/15 14:25	NDB	TAL BUF
Total/NA	Analysis	9012B		1	242525	05/14/15 20:07	JME	TAL BUF
Total/NA	Analysis	9045D		1	242153	05/13/15 10:50	MGH	TAL BUF
Total/NA	Analysis	Lloyd Kahn		1	141842	05/15/15 16:41	JDD	TAL PIT
Total/NA	Analysis	Moisture		1	242529	05/14/15 21:27	MJH	TAL BUF

Lab Sample ID: 480-80176-2 **Client Sample ID: CTS-2C** Date Collected: 05/12/15 00:00 **Matrix: Solid** Date Received: 05/12/15 15:15 Percent Solids: 84.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			242785	05/15/15 16:06	RAS	TAL BUF
Total/NA	Analysis	8260C		1	242879	05/16/15 16:37	CDC	TAL BUF
Total/NA	Prep	3550C			242467	05/14/15 14:33	CPH	TAL BUF
Total/NA	Analysis	8270D		20	242578	05/15/15 16:26	LMW	TAL BUF
Total/NA	Prep	3550C			242466	05/14/15 14:23	CPH	TAL BUF
Total/NA	Analysis	8081B		50	242738	05/15/15 19:00	JRL	TAL BUF
Total/NA	Prep	3550C			242716	05/15/15 12:43	CAM	TAL BUF
Total/NA	Analysis	8082A		1	242862	05/16/15 13:10	KS	TAL BUF
Total/NA	Prep	8151A			242596	05/15/15 08:38	CAM	TAL BUF
Total/NA	Analysis	8151A		1	243291	05/19/15 20:46	JRL	TAL BUF
Total/NA	Prep	3050B			242173	05/13/15 15:12	TAS	TAL BUF
Total/NA	Analysis	6010C		1	242568	05/14/15 23:49	AMH	TAL BUF
Total/NA	Prep	7471B			243068	05/18/15 14:30	LRK	TAL BUF
Total/NA	Analysis	7471B		1	243286	05/18/15 16:37	LRK	TAL BUF
Total/NA	Prep	9012B			242476	05/14/15 14:25	NDB	TAL BUF
Total/NA	Analysis	9012B		1	242525	05/14/15 20:08	JME	TAL BUF
Total/NA	Analysis	9045D		1	242153	05/13/15 10:50	MGH	TAL BUF
Total/NA	Analysis	Lloyd Kahn		1	141842	05/15/15 17:08	JDD	TAL PIT

TestAmerica Buffalo

Page 42 of 51

5/27/2015

Client: Iyer Environmental Group, LLC

Project/Site: Pinto Topsoil (NY)

Lab Sample ID: 480-80176-2

Matrix: Solid

Date Collected: 05/12/15 00:00 Date Received: 05/12/15 15:15

Client Sample ID: CTS-3C

Date Collected: 05/12/15 00:00

Total/NA

Analysis Moisture

Client Sample ID: CTS-2C

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	242529	05/14/15 21:27	MJH	TAL BUF

Lab Sample ID: 480-80176-3

Matrix: Solid

Percent Solids: 80.4

ate Receive	d: 05/12/15 1	15:15						Pe
•	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			242785	05/15/15 16:06	RAS	TAL BUF
Total/NA	Analysis	8260C		1	242879	05/16/15 17:03	CDC	TAL BUF
Total/NA	Prep	3550C			242467	05/14/15 14:33	CPH	TAL BUF
Total/NA	Analysis	8270D		20	242578	05/15/15 16:52	LMW	TAL BUF
Total/NA	Prep	3550C			242466	05/14/15 14:23	CPH	TAL BUF
Total/NA	Analysis	8081B		20	242738	05/15/15 19:18	JRL	TAL BUF
Total/NA	Prep	3550C			242716	05/15/15 12:43	CAM	TAL BUF
Total/NA	Analysis	8082A		1	242862	05/16/15 13:26	KS	TAL BUF
Total/NA	Prep	8151A			242596	05/15/15 08:38	CAM	TAL BUF
Total/NA	Analysis	8151A		1	243291	05/19/15 21:16	JRL	TAL BUF
Total/NA	Prep	3050B			242173	05/13/15 15:12	TAS	TAL BUF
Total/NA	Analysis	6010C		1	242568	05/14/15 23:52	AMH	TAL BUF
Total/NA	Prep	7471B			243068	05/18/15 14:30	LRK	TAL BUF
Total/NA	Analysis	7471B		1	243286	05/18/15 16:38	LRK	TAL BUF
Total/NA	Prep	9012B			242476	05/14/15 14:25	NDB	TAL BUF
Total/NA	Analysis	9012B		1	242525	05/14/15 20:10	JME	TAL BUF
Total/NA	Analysis	9045D		1	242153	05/13/15 10:50	MGH	TAL BUF
Total/NA	Analysis	Lloyd Kahn		1	141842	05/15/15 17:18	JDD	TAL PIT

Client Sample ID: CTS-4G Lab Sample ID: 480-80176-4 Date Collected: 05/12/15 00:00 **Matrix: Solid**

242529 05/14/15 21:27 MJH

TAL BUF

Date Received: 05/12/15 15:15 Percent Solids: 84.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			242785	05/15/15 16:06	RAS	TAL BUF
Total/NA	Analysis	8260C		1	242879	05/16/15 17:29	CDC	TAL BUF
Total/NA	Analysis	Moisture		1	242529	05/14/15 21:27	MJH	TAL BUF

Client Sample ID: CTS-5G Lab Sample ID: 480-80176-5

Date Collected: 05/12/15 00:00 **Matrix: Solid**

Date Received: 05/12/15 15:15 Percent Solids: 79.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			242785	05/15/15 16:06	RAS	TAL BUF
Total/NA	Analysis	8260C		1	242879	05/16/15 17:55	CDC	TAL BUF

TestAmerica Buffalo

Page 43 of 51

5/27/2015

Client: Iyer Environmental Group, LLC

Project/Site: Pinto Topsoil (NY)

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	242529	05/14/15 21:27	MJH	TAL BUF

Client Sample ID: CTS-6G Lab Sample ID: 480-80176-6

Date Collected: 05/12/15 00:00 **Matrix: Solid**

Date Received: 05/12/15 15:15 Percent Solids: 78.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			242785	05/15/15 16:06	RAS	TAL BUF
Total/NA	Analysis	8260C		1	242879	05/16/15 18:20	CDC	TAL BUF
Total/NA	Analysis	Moisture		1	242529	05/14/15 21:27	MJH	TAL BUF

Client Sample ID: CTS-7G Lab Sample ID: 480-80176-7

Date Collected: 05/12/15 00:00 **Matrix: Solid**

Date Received: 05/12/15 15:15 Percent Solids: 84.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			242785	05/15/15 16:06	RAS	TAL BUF
Total/NA	Analysis	8260C		1	242879	05/16/15 18:46	CDC	TAL BUF
Total/NA	Analysis	Moisture		1	242529	05/14/15 21:27	MJH	TAL BUF

Client Sample ID: CTS-8G Lab Sample ID: 480-80176-8

Date Collected: 05/12/15 00:00 **Matrix: Solid** Date Received: 05/12/15 15:15 Percent Solids: 82.7

Batch Batch Dilution Batch Prepared Туре Method or Analyzed Analyst **Prep Type** Run **Factor** Number Lab

Total/NA 5035 242785 05/15/15 16:06 RAS Prep TAL BUF Total/NA 8260C Analysis 1 242879 05/16/15 19:12 CDC TAL BUF TAL BUF Total/NA Analysis Moisture 1 242529 05/14/15 21:27 MJH

Client Sample ID: CTS-9G Lab Sample ID: 480-80176-9

Date Collected: 05/12/15 00:00 **Matrix: Solid**

Date Received: 05/12/15 15:15 Percent Solids: 85.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			242785	05/15/15 16:06	RAS	TAL BUF
Total/NA	Analysis	8260C		1	242879	05/16/15 19:38	CDC	TAL BUF
Total/NA	Analysis	Moisture		1	242529	05/14/15 21:27	MJH	TAL BUF

Client Sample ID: CTS-10G Lab Sample ID: 480-80176-10

Date Collected: 05/12/15 00:00 **Matrix: Solid** Date Received: 05/12/15 15:15

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			242785	05/15/15 16:06	RAS	TAL BUF
Total/NA	Analysis	8260C		1	242879	05/16/15 20:04	CDC	TAL BUF
Total/NA	Analysis	Moisture		1	242529	05/14/15 21:27	MJH	TAL BUF

TestAmerica Buffalo

5/27/2015

Page 44 of 51

10

Lab Chronicle

Client: Iyer Environmental Group, LLC

Project/Site: Pinto Topsoil (NY)

Client Sample ID: CTS-11G

Date Collected: 05/12/15 00:00

Date Received: 05/12/15 15:15

TestAmerica Job ID: 480-80176-1

Lab Sample ID: 480-80176-11

Matrix: Solid

Percent Solids: 83.7

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			242785	05/15/15 16:06	RAS	TAL BUF
Total/NA	Analysis	8260C		1	242879	05/16/15 20:30	CDC	TAL BUF
Total/NA	Analysis	Moisture		1	242529	05/14/15 21:27	MJH	TAL BUF

Client Sample ID: CTS-12G Lab Sample ID: 480-80176-12

Date Collected: 05/12/15 00:00 Matrix: Solid

Date Received: 05/12/15 15:15 Percent Solids: 73.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			242785	05/15/15 16:06	RAS	TAL BUF
Total/NA	Analysis	8260C		1	242879	05/16/15 20:55	CDC	TAL BUF
Total/NA	Analysis	Moisture		1	242529	05/14/15 21:27	MJH	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600
TAL PIT = TestAmerica Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

4

J

9

10

12

13

Certification Summary

Client: Iyer Environmental Group, LLC Project/Site: Pinto Topsoil (NY)

TestAmerica Job ID: 480-80176-1

Laboratory: TestAmerica Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date
New York	NELAP		2	10026	03-31-16
The following analyte	es are included in this repo	ort, but certification is no	t offered by the go	overning authority:	
Analysis Method	Prep Method	Matrix	Analyte	e	
Moisture		Solid	Percer	nt Moisture	

Laboratory: TestAmerica Pittsburgh

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Arkansas DEQ	State Program	6	88-0690	06-27-15
California	State Program	9	2891	03-31-16
Connecticut	State Program	1	PH-0688	09-30-16
Florida	NELAP	4	E871008	06-30-15
Illinois	NELAP	5	002602	06-30-15
Kansas	NELAP	7	E-10350	05-31-15 *
Louisiana	NELAP	6	04041	06-30-15
New Hampshire	NELAP	1	203011	04-04-16
New Jersey	NELAP	2	PA005	06-30-15
New York	NELAP	2	11182	03-31-16
North Carolina (WW/SW)	State Program	4	434	12-31-15
Pennsylvania	NELAP	3	02-00416	04-30-16
South Carolina	State Program	4	89014	04-30-15 *
Texas	NELAP	6	T104704528	03-31-16
US Fish & Wildlife	Federal		LE94312A-1	11-30-15
USDA	Federal		P-Soil-01	05-23-16
Utah	NELAP	8	STLP	05-31-15
Virginia	NELAP	3	460189	09-14-15
West Virginia DEP	State Program	3	142	01-31-16
Wisconsin	State Program	5	998027800	08-31-15

^{*} Certification renewal pending - certification considered valid.

Method Summary

Client: Iyer Environmental Group, LLC Project/Site: Pinto Topsoil (NY)

TestAmerica Job ID: 480-80176-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL BUF
8081B	Organochlorine Pesticides (GC)	SW846	TAL BUF
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL BUF
8151A	Herbicides (GC)	SW846	TAL BUF
6010C	Metals (ICP)	SW846	TAL BUF
7471B	Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)	SW846	TAL BUF
9012B	Cyanide, Total andor Amenable	SW846	TAL BUF
9045D	pH	SW846	TAL BUF
Lloyd Kahn	Organic Carbon, Total (TOC)	EPA	TAL PIT
Moisture	Percent Moisture	EPA	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600 TAL PIT = TestAmerica Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

Sample Summary

Client: Iyer Environmental Group, LLC Project/Site: Pinto Topsoil (NY)

TestAmerica Job ID: 480-80176-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-80176-1	CTS-1C	Solid	05/12/15 00:00	05/12/15 15:15
480-80176-2	CTS-2C	Solid	05/12/15 00:00	05/12/15 15:15
480-80176-3	CTS-3C	Solid	05/12/15 00:00	05/12/15 15:15
480-80176-4	CTS-4G	Solid	05/12/15 00:00	05/12/15 15:15
480-80176-5	CTS-5G	Solid	05/12/15 00:00	05/12/15 15:15
480-80176-6	CTS-6G	Solid	05/12/15 00:00	05/12/15 15:15
480-80176-7	CTS-7G	Solid	05/12/15 00:00	05/12/15 15:15
480-80176-8	CTS-8G	Solid	05/12/15 00:00	05/12/15 15:15
480-80176-9	CTS-9G	Solid	05/12/15 00:00	05/12/15 15:15
480-80176-10	CTS-10G	Solid	05/12/15 00:00	05/12/15 15:15
480-80176-11	CTS-11G	Solid	05/12/15 00:00	05/12/15 15:15
480-80176-12	CTS-12G	Solid	05/12/15 00:00	05/12/15 15:15

_

5

7

8

9

10

12

14

15

Chain of Custody Record

Temperature on Receipt _

Drinking Water? Yes No

TestAmerica

	CNITCH
	-
	LEADER IN ENVIRONMENTAL TESTING
	2
	THEIFADER

Clien Lyer Environmental (FRUD	Δ	Drinking Wate	<u>}</u>	Pest NOW	(46 TE	THE LEADER IN ENVIRONMENTAL TESTING Date May 12, 2015	ENVIRON DE LA CONTROL DE LA CO	ONMENTAL TE	TESTING 2.2.5	Chain of Custody Number	4.46
		Telephoc (7)(6)	imber (4157	الد	7(6) 6	662-21	2118	Lab Mumber		Page (50
Park State TIP Code	~	Site Contact P	tact Allen		Lab Contact M. De.) PAG		Analysı more sp	Analysis (Attach list if more space is needed)	st if 1ed)		
()		Carrier/	Carrier/Waybill Number		g/ 13			19W	Corbat		Snecs	Special Instructions/
ContractPurchase Orden/Quote No.			Matrix		Containers & Preservatives	Containers & Preservatives		ો ચુમ્ખ જો જો	garic John		Condi	Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Тіте	suoeupA be2	IIOS.	HCI HSSO¢	HO _R N \oAn <u>Z</u> -HO _R N	12で 15で 1対網	7世) 		AUI DER-10 Parametr	DER-10 Parameters
CTS-1C 5/1	(2) [5			4			> >	> >	>			
CTS-2C	•			√			> > >	> >	>			
-3c				4			> > >	>	>			
146			,	7			>					
- 56			>	7			5					
99-510			24	7			>					
CTS-76			<u> </u>	7			>					
-86)	7 /			>			200 004 78 Chair of One		
96-			>	را			5		 9		constroid	
901-512				7			5					
011-510				7			>					
VIS-126	•			7 /			>					
Possible Hazard Identification Non-Hazard		□ Unknown	Sample Disposal Retum To Client		Disposal By Lab		☐ Archive For	, "	Months lon	ee may be as: ger than 1 mor	(A fee may be assessed if samples are retained forger than 1 month)	re retained
Tum Around Time Required 24 Hours	21 Days	Other_			OC Require	OC Requirements (Specify)	(A)					
CA		Date May U	12.20 Sime		A Received By	ABY Sold	う				Date	Time
		Date	Time		2. Received By	, Ag,					Daie	Fime
		Date	Time		3. Received By	By					Date	Time
			_		1.		()	, may	٥	,		
					}	10:0	127	7	1	" 7		

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

Temp 13,6 #1 60 IEF

Login Sample Receipt Checklist

Client: Iyer Environmental Group, LLC

Job Number: 480-80176-1

Login Number: 80176 List Source: TestAmerica Buffalo

List Number: 1

Creator: Kolb, Chris M

Creator: Kolb, Chris M		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	Refer to job narrative for details
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	False	Refer to job narrative for details
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	IYER ENV
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

2

5

0

9

10

12

4 4

15

Client: Iyer Environmental Group, LLC

Job Number: 480-80176-1

Login Number: 80176
List Source: TestAmerica Pittsburgh
List Number: 2
List Creation: 05/14/15 08:35 PM

Creator: Lonzo, Michael A

Creator: Lonzo, Michael A		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

TestAmerica Buffalo

APPENDIX L WORKER EXPOSURE ASSESSMENT REPORT

PO Box 2204 Niagara University, NY 14109 Tel (716) 830-5350 e-mail: flsmithjr@usa.net

FRED L. SMITH JR. CIH, CSP LLC

August 6, 2015

Mr. Gary Catlin Pinto Construction Services, Inc. 1 Babcock Street Buffalo, NY 14210 SENT VIA-EMAIL 8 pages

RE: Worker Exposure Assessment - Arsenic and Lead

132 Dingens Street, Buffalo NY

Dear Mr. Catlin:

Representative worker exposures to arsenic and lead were monitored on July 28, 2015 during initial excavation work at the above referenced project. All results were below the limit of analytical detection.

OPERATION DESCRIPTION

Soil excavation and stockpiling operations were conducted at two locations at the site. Fifty (50) cubic yards of material were excavated and stockpiled at location TS-4, and an additional thirty (30) cubic yards from location TS-30.

Personal samples were collected from the excavator operator (Mr. Tony Bykowski) and groundman (Mr. Gary Catlin) during these initial excavation operations. Analytes included arsenic and lead which were indentified in the site-specific health and safety plan as persistent and problematic in the soils to be excavated. Sampling occurred for the majority of the work day. Personal protective equipment included disposable coveralls over work clothing.

All samples were collected in accordance with the National Institute for Occupational Safety and Health (NIOSH) Method 7300. The samples, along with a field blank sample, were submitted to Galson Laboratories in Syracuse NY. Galson is accredited by the American Industrial Hygiene Association and New York State Environmental Laboratory Approval Program for these analytes.

RESULTS

Arsenic and lead were not detected in any sample.

CONCLUSIONS and RECOMMENDATIONS

These data do not suggest worker exposures above current Action Levels or Personal Exposure Limits

under these conditions for the analytes monitored. The following is recommended:

- 1. Continue to use personal protective equipment and work procedures established in the Site Specific Health and Safety Plan.
- 2. Re-sample worker exposures if conditions change including but not limited to increasing fugitive dust generation, significantly increased production, etc.
- 3. Notify both individuals sampled of their results within 5 days.

The analytical report, and sample custody documentation are attached for your reference. If I can answer any questions, or be of any other service, please do not hesitate to call on me.

Rest Regards,

Fred L. Smith Jr. CIH, CSP

ATTACHMENTS

cc: Jim Panepinto

Mr. Fred Smith, Jr., CIH, CSP PO Box 2204 Niagara University, NY 14109 August 05, 2015

DOH ELAP #11626 AIHA-LAP #100324 **Account# 16949**

Login# L352125

Dear Mr. Smith:

Enclosed are the analytical results for the samples received by our laboratory on July 30, 2015. All test results meet the quality control requirements of AIHA-LAP and NELAC unless otherwise stated in this report. All samples on the chain of custody were received in good condition unless otherwise noted.

Results in this report are based on the sampling data provided by the client and refer only to the samples as they were received at the laboratory. Unless otherwise requested, all samples will be discarded 14 days from the date of this report, with the exception of IOMs, which will be cleaned and disposed of after seven calendar days.

Current Scopes of Accreditation can be viewed at www.galsonlabs.com in the accreditations section under the "about Galson" tab.

Please contact Amanda Frateschi at (888) 432-5227, if you would like any additional information regarding this report. Thank you for using Galson Laboratories.

Sincerely,

Galson Laboratories

Mary & Unangst

Mary G. Unangst Laboratory Director

Enclosure(s)

Galson Laboratories, Inc. is now a part of SGS, the world's leading inspection, verification, testing, and certification company. As part of our transition to SGS, you will begin to see some formatting changes with reports that will improve the presentation of data and allow for the transition to the new logo.

LABORATORY ANALYSIS REPORT

6601 Kirkville Road

East Syracuse, NY 13057 (315) 432-5227

FAX: (315) 437-0571 www.galsonlabs.com

Client : Fred L. Smith Jr., CIH, CSP Account No.: 16949 Site : 132 DINGENS ST. Login No. : L352125

Date Sampled : 28-JUL-15 Date Analyzed : 31-JUL-15 - 03-AUG-15

Date Received : 30-JUL-15 Report ID : 894170

Arsenic

Sample ID	Lab ID	Air Vol liter	Total uq	Conc mg/m3
1	L352125-1	708	<0.30	<0.00042
2	L352125-2	708	<0.30	<0.00042
3 (FIELD BLANK)	L352125-3	NA	<0.30	NA

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Level of quantitation: 0.30 ug Submitted by: JMR/AS

Analytical Method : mod. NIOSH 7300/mod. OSHA ID-125G; ICP Approved by : JJL

OSHA PEL : 0.01 mg/m3 (TWA) Date : 05-AUG-15 NYS DOH # : 11626

Collection Media : MCE UW 37mm Supervisor: KEG QC by: AMD

< -Less Than mg -Milligrams m3 -Cubic Meters kg -Kilograms NA -Not Applicable ND -Not Detected

> -Greater Than ug -Micrograms l -Liters NS -Not Specified ppm -Parts per Million

LABORATORY ANALYSIS REPORT

Client

Site

: Fred L. Smith Jr., CIH, CSP

Account No.: 16949 Login No. : L352125

6601 Kirkville Road East Syracuse, NY 13057

: 132 DINGENS ST.

egin no. Esseres

(315) 432-5227

Date Sampled : 28-JUL-15

Date Analyzed : 31-JUL-15 - 03-AUG-15

NYS DOH # : 11626

FAX: (315) 437-0571 www.galsonlabs.com

Date Received : 30-JUL-15

Report ID : 894171

Lead

		Air Vol	Total	Conc
<u>Sample ID</u>	<u>Lab ID</u>	liter	ug	mg/m3
1	L352125-1	708	<0.38	<0.00053
2	L352125-2	708	<0.38	<0.00053
3 (FIELD BLANK)	L352125-3	NA	<0.38	NA

COMMENTS: Please see attached lab footnote report for any applicable footnotes.

Level of quantitation: 0.38 ug

Analytical Method

: mod. NIOSH 7300/mod. OSHA ID-125G; ICP

OSHA PEL : 0.05 mg/m3 (TWA)

5 mg/m3 (TWA) Date: 05-AUG-15

Collection Media : MCE UW 37mm Supervisor: KEG QC by: AMD

< -Less Than mg -Milligrams m3 -Cubic Meters kg -Kilograms NA -Not Applicable ND -Not Detected

> -Greater Than ug -Micrograms l -Liters NS -Not Specified ppm -Parts per Million

Submitted by: JMR/AS

Approved by : JJL

LABORATORY FOOTNOTE REPORT

Client Name : Fred L. Smith Jr., CIH, CSP

Site : 132 DINGENS ST.

6601 Kirkville Road East Syracuse, NY 13057 (315) 432-5227 FAX: (315) 437-0571

www.galsonlabs.com

Date Sampled: 28-JUL-15 Account No.: 16949
Date Received: 30-JUL-15 Login No. : L352125

Date Analyzed: 31-JUL-15 - 03-AUG-15

Unless otherwise noted below, all quality control results associated with the samples were within established control limits or did not impact reported results.

The laboratory does not have control over sampling; reported concentrations are based on client-supplied information (e.g. air volume, sampling time, area).

Unrounded results are carried through the calculations that yield the final result and the final result is rounded to the number of significant figures appropriate to the accuracy of the analytical method. Please note that results appearing in the columns preceding the final result column may have been rounded in order to fit the report format and therefore, if carried through the calculations, may may not yield an identical final result to the one reported.

The stated LOQs for each analyte represent the demonstrated LOQ concentrations prior to correction for desorption efficiency (if applicable).

Unless otherwise noted below, reported results have not been blank corrected for any field blank or method blank.

L352125 (Report ID: 894170):

Reported results reflect elemental analysis of the requested metals. Certain compounds may not be solubilized during digestion, resulting in data that is

biased low.

SOPs: MT-SOP-9(27), im-mwvfilt(22)

L352125-1 (Report ID: 894170):

Particulate present on the back-up pad. Back-up pad was digested and analyzed with the filter.

L352125 (Report ID: 894170):

Accuracy and mean recovery data presented below is based on a 95% confidence interval (k=2). The estimated uncertainty applies to the media, technology, and SOP referenced in this report and does not account for the uncertainty associated with the sampling process.

Parameter	Accuracy	Mean Recovery
Arsenic	+/-8.9%	103%

L352125 (Report ID: 894171):

Reported results reflect elemental analysis of the requested metals. Certain compounds may not be solubilized during digestion, resulting in data that is

biased low.

SOPs: MT-SOP-9(27), im-mwvfilt(22)

L352125-1 (Report ID: 894171):

Particulate present on the back-up pad. Back-up pad was digested and analyzed with the filter.

LABORATORY FOOTNOTE REPORT

Client Name : Fred L. Smith Jr., CIH, CSP

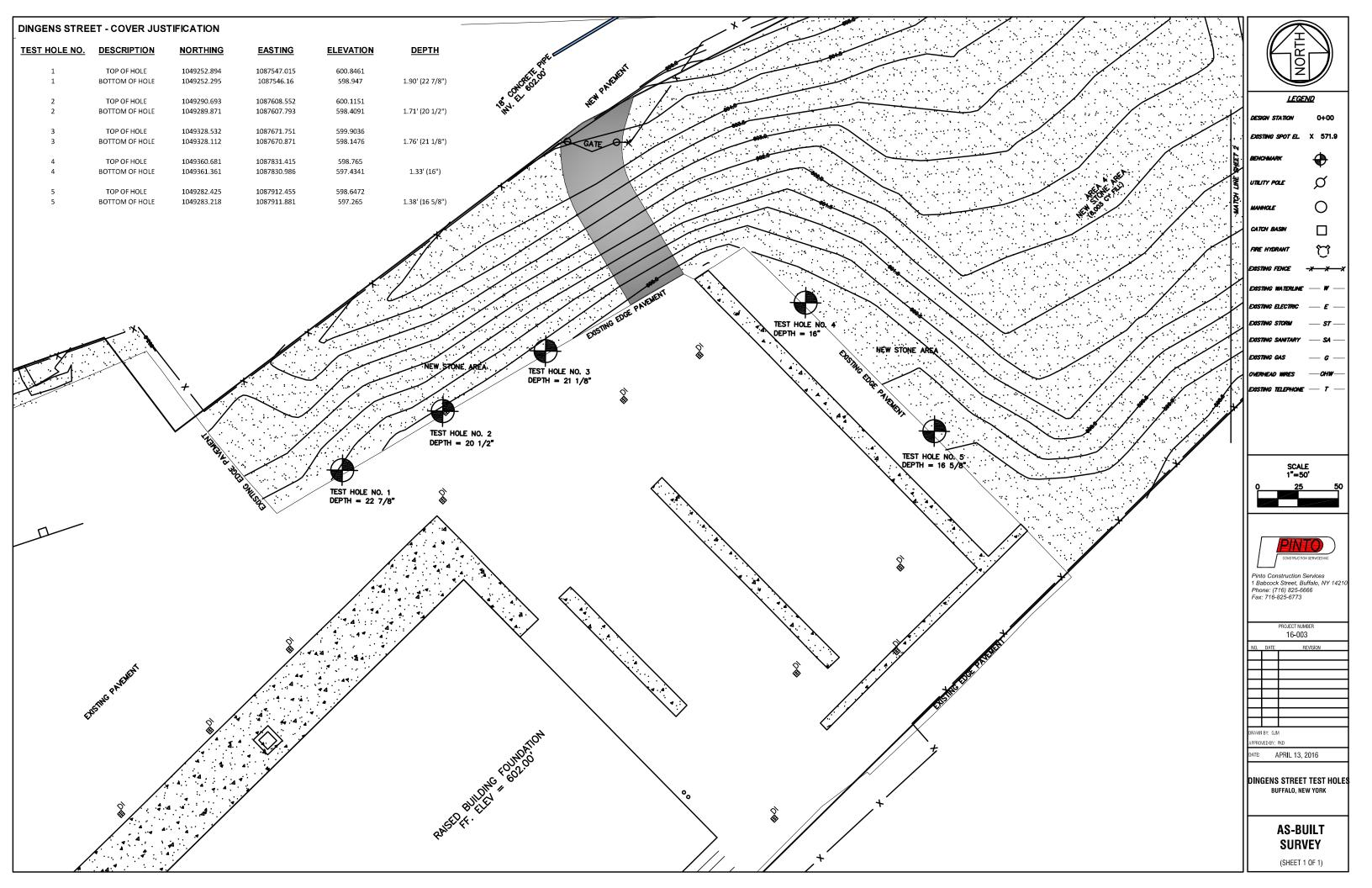
Site : 132 DINGENS ST.

6601 Kirkville Road East Syracuse, NY 13057 (315) 432-5227

FAX: (315) 437-0571 www.galsonlabs.com

Date Sampled: 28-JUL-15 Account No.: 16949
Date Received: 30-JUL-15 Login No.: L352125

Date Analyzed: 31-JUL-15 - 03-AUG-15


Accuracy and mean recovery data presented below is based on a 95% confidence interval (k=2). The estimated uncertainty applies to the media, technology, and SOP referenced in this report and does not account for the uncertainty associated with the sampling process.

Parameter	Accuracy	Mean Recovery
Lead	+/-7.8%	98.3%

NA -Not Applicable

		☐ New Client?	Report T	OT: FRED L	SHITH JA	L. CH.CEP	Invoice To'	: SANFE	
S GS GA	LSON ORATORIES		·		BOX 2204				<u> </u>
076751	ZEZINOLIEZ.	Client Account I	No.* :	· NIAt	JARLA UNIV	FLESTY, NY			
Date:07/30/15 Shipper:FEDEX	!	16949			14109				
Initials:AMsk	•		Phone No	o.*: 716	830-	<u> </u>	Phone No	.:	(100)
	}		Cell N	-			 Emai	ı:	
Prep:PSY349214	!	Email Result		FREN	SMITA			ase Order No. :	
L352125	J	Email Add		Crem 1741R				d : Credit Card on File C	all for Credit Card Info
Nega Results By*:	(surcharge)	-		ng the FreePumpLo				mitted using the FreeSamplingB	
Standard	0%		2 DINGEN		Project :			Sampled By: FUS	2
4 Business Days	35%	Comments:	2011010					Campida Cy · · · · · · · · · · · · · · · · · ·	<u> </u>
3 Business Days	50%	1							
2 Business Days	75%	1:					_		· .
Next Day by 6pm	100%	List description	-	process/interfe	rences	State samples v		licate which OEL this data	
Next Day by Noon	150%	present in samp	ling area:			collected in (ex.	- Contract	=	Cal OSHA
Same Day	200%				Sample Units*:	<u> </u>	☐ MSHA	Other (specify)	
Sample Identi (Maximum of 20 characters, I characters will be ab	ID's longer than 20	Date Sampled* (mm/dd/yy)	Collection Medium	Sample Volume, Sample Time, or Sample Area*	L, ml, min., in2, cm2, ft2	Analysi	s Requested*	Method Reference^	Hexavalent Chromium Process (ex. welding, plating, painting, etc.)*
Examp	le	01/01/11	2pc UW P\	/C 960	L	Hexavalent	Chromium (Cr6)	mod. OSHA ID-215	Welding
1		1128/15	32 DCUN A	4 4004	L	Pb B	ts	WILEY 7200	\
2	<u>-</u> -	1150112		108	1/	Ph' I	e	1	
2.1	E.EIA >	- 1	1 1	700		100	Je.		
	e Ank		V 1-1-	_	 	 	<u>دا ۲</u>	+ 4	-
<u></u>	D-11/6.	4	1×7/3015			<u> </u>			
			-	 	<u> </u>				
					·				
	<u></u>								
								•	,
					<u> </u>	1			
-			<u> </u>		 	 			_
^Galson Laboratories	will substitute	our routine/prefer	red method if	it does not mate	ch the methor	l d listed on the C	OC unless this bo	x is checked:	ethod(s) listed on COC
For metals analysis: if re									and(s) listed on coc
For crystalline silica: 1	•	·						, -,-	
Chain of Custody		Print Name Signa	$\overline{}$		e/Time		Print f	Name/Signature	Date/Time
Relinquished by :		SMINA 1		175	15 1000	Received by:			1 1
Relinquished by :		- Autoria		115-11	12-1-12-17	Received by:	my(aus	m. Lanu	7/30/15 0919
remiquiance by .	Samp	les received after	3phagualObof d	onstaged Refe	nenday's Gosio				1 11 0-11-000
*Required fields, failure to complete these fields may result in a delay in your samples being processed. Page of									

APPENDIX M COVER SYSTEM DEPTH VERIFICATION

DINGENS STREET - COVER JUSTIFICATION

TEST HOLE NO.	DESCRIPTION	NORTHING	EASTING	ELEVATION	<u>DEPTH</u>
1	TOP OF HOLE	1049252.894	1087547.015	600.8461	
1	BOTTOM OF HOLE	1049252.295	1087546.16	598.947	1.90' (22 7/8")
2	TOD OF HOLE	4040200 502	4007600 553	600 4454	
2 2	TOP OF HOLE BOTTOM OF HOLE	1049290.693 1049289.871	1087608.552 1087607.793	600.1151 598.4091	1.71' (20 1/2")
					, , ,
3	TOP OF HOLE	1049328.532	1087671.751	599.9036	4.761/24.4/011)
3	BOTTOM OF HOLE	1049328.112	1087670.871	598.1476	1.76' (21 1/8")
4	TOP OF HOLE	1049360.681	1087831.415	598.765	
4	BOTTOM OF HOLE	1049361.361	1087830.986	597.4341	1.33' (16")
5	TOP OF HOLE	1049282.425	1087912.455	598.6472	
5	BOTTOM OF HOLE	1049283.218	1087911.881	597.265	1.38' (16 5/8")

TEST HOLE NO.	DESCRIPTION	NORTHING	<u>EASTING</u>	ELEVATION
1	TOP OF HOLE	1049252.894	1087547.015	600.8461
1	BOTTOM OF HOLE	1049252.295	1087546.16	598.947

TEST HOLE NO.	DESCRIPTION	<u>NORTHING</u>	<u>EASTING</u>	<u>ELEVATION</u>
2	TOP OF HOLE	1049290.693	1087608.552	600.1151
2	BOTTOM OF HOLE	1049289.871	1087607.793	598.4091

TEST HOLE NO.	<u>DESCRIPTION</u>	NORTHING	<u>EASTING</u>	<u>ELEVATION</u>
3	TOP OF HOLE	1049328.532	1087671.751	599.9036
3	BOTTOM OF HOLE	1049328.112	1087670.871	598.1476

TEST HOLE NO.	DESCRIPTION	<u>NORTHING</u>	<u>EASTING</u>	<u>ELEVATION</u>
4	TOP OF HOLE	1049360.681	1087831.415	598.765
4	BOTTOM OF HOLE	1049361.361	1087830.986	597.4341

TEST HOLE NO.	<u>DESCRIPTION</u>	<u>NORTHING</u>	<u>EASTING</u>	<u>ELEVATION</u>
5	TOP OF HOLE	1049282.425	1087912.455	598.6472
5	BOTTOM OF HOLE	1049283.218	1087911.881	597.265

