2021-2022 PERIODIC REVIEW REPORT

1050-1088 NIAGARA STREET SITE SITE No. C915277

BUFFALO, NEW YORK

October 2022 0136-020-002

Prepared for:

9271 Group, LLC

Prepared By:

PERIODIC REVIEW REPORT

1050-1088 Niagara Street Site C915277

Table of Contents

1.0	INT	RODUCTION	1
	1.1	Site Background	
	1.2	Remedial History	
	1.3	Recommendations	2
	1.4	Compliance	
2.0	SITE	E OVERVIEW	2
	0111		
3.0	REM	IEDY PERFORMANCE	4
			_
4.0	SITE	E MANAGEMENT PLAN	5
	4.1	Operation, Monitoring and Maintenance Plan	5
		4.1.1 Long-Term Groundwater Monitoring Plan	
		4.1.2 Annual Inspection and Certification Program	<i>(</i>
	4.2		
	4.3	Engineering and Institutional Control Requirements and Compliance	
		4.3.1 Institutional Controls	
		4.3.2 Engineering Controls	8
5.0	Con	ICLUSIONS AND RECOMMENDATIONS	9
		6-	
6.0	DEC	CLARATION/LIMITATION	10

PERIODIC REVIEW REPORT

1050-1088 Niagara Street Site (C915277)

TABLES

Table 1	Summary of Groundwater Analytical Results
---------	---

FIGURES

Figure 1 Site Location and Vicinity Map

Figure 2 Site Plan

Figure 3 Cover System Layout

Figure 4A-B Groundwater Network and Isopotential (January and June 2022)

APPENDICES

Appendix A NYSDEC Certification and Notification Forms

Appendix B Site Photolog

Appendix C Groundwater Sampling Logs

Appendix D Laboratory Analytical Data Reports

Appendix E Data Usability Summary Report (DUSR)

0136-020-002

1.0 Introduction

Benchmark Civil/Environmental Engineering and Geology, PLLC (Benchmark), in association with TurnKey Environmental Restoration, LLC (TurnKey) has prepared this Periodic Review Report (PRR) on behalf of 9271 Group, LLC to summarize the post-remedial status of New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) Site No. C915277, located in the City of Buffalo, Erie County, New York (Site; see Figures 1 and 2).

This PRR has been prepared for the 1050-1088 Niagara Street Site in accordance with NYSDEC DER-10 *Technical Guidance for Site Investigation and Remediation* (May 2010). The NYSDEC's Institutional and Engineering Controls (IC/EC) Certification Form and Change of Use Notification Form have been completed for the Site (see Appendix A).

This PRR and the associated inspection forms have been completed for the July 31, 2021 to July 31, 2022 reporting period.

1.1 Site Background

The Site consists of two (2) adjoining parcels, identified as 1050 and 1088 Niagara Street, totaling 2.7± acres, located in the City of Buffalo, Erie County, New York. The Site is currently improved with an existing building and parking lot located on the 1050 Niagara Street parcel; and a building with a commercial drive thru and parking lot on the 1088 Niagara Street parcel and associated landscaped areas (see Figures 1 and 2).

The Site has a long history of being used for commercial and industrial operations since at least 1889. The International Brewing Company and American Gelatine Corp. operated on-Site in the early 1900s. The northern portion of the Site (1088 Niagara Street parcel) included a filling station from at least the 1920s through at least 1960. Gulf Oil Corporation and/or Hygrade Petroleum Co. were identified as on-Site operators from at least the 1920s through at least 1960. The Niagara Lithograph Company, a commercial printing company, was located on the 1050 Niagara Street parcel of the Site from at least 1930 through at least 1990; and Miken Companies, also a commercial printing company, was located on-Site until at least 2000.

1.2 Remedial History

After acceptance into the NYS BCP in October 2013, a Remedial Investigation/Interim Remedial Measures/Alternatives Analysis (RI/IRM/AA) Work Plan and supplemental work plans were prepared and submitted to the NYSDEC for review and approval. Interim Remedial Measures (IRM) activities were completed to address the removal of multiple abandoned USTs, appurtenant piping, and hydraulic lifts; excavation of petroleum, PCB, PAH, and metals impacted soils; groundwater management; and excavation backfilling. A Remedial Action Work Plan (RAWP) was prepared and approved by the NYSDEC detailing the soil vapor extraction (SVE) system and site-wide cover system. The cleanup was successful in achieving the remedial objectives for the Site. The Site Management Plan (SMP) and Final Engineering Report (FER) were approved by the Department in December 2017. The NYSDEC issued a COC for the Site on December 29, 2017.

1.3 Recommendations

Based on the post-remedial monitoring and analytical results for the Site, the following recommendations are provided for the Site.

- Modification of groundwater sampling parameter list to NYSDEC Commissioners Policy-51 (CP-51) Volatile Organic Compounds (VOCs) plus Tentatively Identified Compounds (TICs) starting in 2023.
- Removal of TMW-3 from future groundwater sampling events and decommissioning of the well.

1.4 Compliance

The Site is in general compliance with the SMP. The completed IC/EC form is included in Appendix A and a Site photo log is included in Appendix B.

2.0 SITE OVERVIEW

Previous investigations identified environmental contamination on-Site that required remediation. 9271 Group, LLC entered into a Brownfield Cleanup Agreement (BCA) with the NYSDEC to remediate the Site. BCP investigations and remediation were completed between 2014 and 2017.

The remedial activities included:

- Excavation, cleaning, and removal of four (4) underground storage tanks (USTs) and appurtenant piping;
- Excavation and off-site disposal of non-hazardous soil/fill exceeding the Part 375 Restricted Residential Use Soil Cleanup Objectives (SCOs);
- Delineation, excavation and off-site disposal of hazardous PCB impacted soil/fill;
- Installation of a Soil Vapor Extraction (SVE) system to mitigate nuisance petroleum VOCs within the subsurface soil/fill and petroleum related VOCs and semi-volatile organic compounds (SVOCs) in groundwater.
- Construction and maintenance of a cover system consisting of the existing building, new building, asphalt and concrete pavement, sidewalks; and minimum 24-inches soil cover of approved clean material placed on top of demarcation layer, to prevent human exposure to remaining soil/fill exceeding RRSCOs.
- Placement of an environmental easement to (1) implement, maintain, and monitor
 Engineering Controls; (2) prevent future exposure to remaining contamination by
 controlling disturbances of the subsurface contamination; and (3) limit the use
 and development of the Site to Restricted Residential, Commercial, or Industrial
 uses only.

Remedial activities were completed in September 2017. The FER and SMP for the Site were approved by the Department in December 2017. The Certificate of Completion (COC) was issued for the Site on December 29, 2017.

3.0 REMEDY PERFORMANCE

Post-remedial inspections and groundwater monitoring have been completed at the Site for the current reporting period. Groundwater sample analytical results are summarized on Table 1, with representative groundwater isopotential shown on Figures 4A through 4B for the associated sampling events. Groundwater monitoring and sampling logs are provided in Appendix C. Laboratory analytical data reports are provided electronically in Appendix D.

The completed IC/EC Certification form and site photographs are included in Appendix A and Appendix B, respectively.

Based on the Department's 2021 PRR approval correspondence, and 2022 site meeting and inspection, 9271 Group, LLC will address the on-Site invasive species (knotweed), will complete restoration of a limited area of soil erosion along the western cover embankment related to a varmint burrow (groundhog), and determine final cover system completion in the area of the former SVE trailer. It is expected this area will be covered with asphalt and/or concrete. It should be noted that the area is compliant with the SMP requirements, however, is not the final cover type planned for the development.

Beyond those issues identified above, the cover system is maintained in general accordance with the SMP.

4.0 SITE MANAGEMENT PLAN

The SMP was prepared for the Site and approved by the Department in December 2017. The SMP includes an Institutional and Engineering Control (IC/EC) Plan, Operation, Monitoring and Maintenance (OM&M) Plan, an Excavation Work Plan (EWP), and a copy of the Environmental Easements. A brief description of the components of the SMP is presented below.

4.1 Operation, Monitoring and Maintenance Plan

The OM&M Plan consists of two major components, including the Long-Term Groundwater Monitoring (LTGWM) Plan; and the Annual Inspection & Certification Program. The Soil Vapor Extraction (SVE) system was approved for shutdown and removal by the Department in December 2020 and is no longer a component of the SMP.

4.1.1 Long-Term Groundwater Monitoring Plan

Long-term groundwater monitoring (LTGWM) has been completed since issuance of COC in 2017. A total of nine (9) rounds of post-IRM groundwater samples have been collected to date. Two (2) sampling events were completed during this reporting period, on January 8, 2022, and June 12, 2022. It should be noted that groundwater wells were inspected in November 2021 to determine if previous in-situ groundwater amendment completed in June 2021 was still evident. MW-3 exhibited a yellow tint with high turbidity and therefore the sampling was postponed until January 2022. Odors were noted at MW-3 during pre-sample purge during both sampling events this period. No odors were noted at any of the other well locations.

MW-4 and MW-5R have been dry since completion of the cover system. Wells are checked during sampling events and will be sampled if recoverable volume is present during future sampling events.

Groundwater sampling logs are provided in Appendix C. Groundwater analytical results are summarized on Table 1 and laboratory analytical data reports are provided in Appendix D. The Data Usability Summary Report (DUSR) for this reporting period is provided in Appendix E.

Based on the post-remedial groundwater analytical results, it is recommended to modify the ongoing groundwater sampling constituent to NYSDEC CP-51 VOCs plus TICs and remove and decommission TMW-3 from the well list.

4.1.2 Annual Inspection and Certification Program

The Annual Inspection and Certification Program outlines the requirements for the Site, to certify and attest that the institutional controls and/or engineering controls employed at the Site are unchanged from the previous certification. The Annual Certification will primarily consist of an annual Site Inspection to complete the NYSDEC's IC/EC Certification Form. The Site inspection will verify that the IC/ECs:

- Are in place and effective.
- Are performing as designed.
- That nothing has occurred that would impair the ability of the controls to protect the public health and environment.
- That nothing has occurred that would constitute a violation or failure to comply with any operation and maintenance plan for such controls.
- Access is available to the Site to evaluate continued maintenance of such controls.

Site inspections were completed throughout the reporting period. The property is being used in accordance with the Restricted Residential Use [mixed-use commercial (office and retail) and residential (apartments)], with surface parking, paved walkways, and landscaped areas. Ongoing maintenance of the hardscape cover, mainly related to the drive-thru lane was noted. No observable indication of intrusive activities was noted during the Site inspection. No observable use of groundwater was noted during the reporting period.

Invasive knotweed has been identified along the Albany Street and western embankment of the Site. 9271 Group is in the process of hiring a licensed herbicide applicator/landscaper to address the onsite knotweed. Knotweed and other invasive species are abundant along the I-190 expressway directly west of the site, as invasive management will be difficult and likely an ongoing maintenance issue that is not the results of the Volunteers efforts. Additionally, a varmint (groundhog) hole was identified on the western embankment, and 9271 Group will address.

Vegetation identified along the southern side of the 1050 Niagara Street building will be removed to protect the hardscape cover (asphalt) along the site boundary (see Photolog No. 11).

It should also be noted that municipal utility excavation work offsite along the Albany Street (paper street) northern boundary has been ongoing during the 2022 construction season, as was still ongoing during the Site Inspections.

The completed Site Management Periodic Review Report Notice – Institutional and Engineering Controls Certification Form is included in Appendix A. A photolog of the most recent Site inspection is included in Appendix B.

4.2 Excavation Work Plan

An Excavation Work Plan (EWP) was included in the approved-SMP for the Site. The EWP provides guidelines for the management of soil and fill material during any future intrusive actives.

No intrusive activities requiring management of on-Site soil or fill material; or the placement of backfill materials occurred during the monitoring period.

Notification will be provided to the Department when corrective actions for the cover system are scheduled.

4.3 Engineering and Institutional Control Requirements and Compliance

As detailed in the Environmental Easements, several IC/ECs need to be maintained as a requirement of the SMP for the Site.

4.3.1 Institutional Controls

- Groundwater-Use Restriction the use of groundwater for potable and nonpotable purposes is prohibited without water quality treatment as determined by the NYSDOH;
- Land-Use Restriction: The controlled property may be used for restricted residential, commercial and/or industrial use; and
- Implementation of the SMP.

4.3.2 Engineering Controls

- All engineering controls must be operated, maintained, and inspected as specified in the SMP;
- Soil Vapor Extraction SVE System was operated and maintained from 2017 to 2020. The Department approved the shutdown and removal of the SVE system in December 2020.
- Cover System The cover system, including buildings, concrete sidewalks, asphalt, stone, and landscaped vegetated areas are being maintained in general compliance with the SMP. Upon shutdown of the SVE system and removal of the SVE trailer, stone cover in this area was repaired and regraded to establish the required minimum depth of clean cover material in accordance with the Department-approved SMP.

Cover system maintenance issues related to encroachment by invasive knotweed and varmint will be completed and details provided to the Department.

At the time of the site inspection, the Site was generally compliant with the engineering and institutional control requirements, with exceptions as noted above.

5.0 CONCLUSIONS AND RECOMMENDATIONS

Conclusions:

The Site was in general compliance with the SMP.

Recommendations:

- Modification of groundwater sampling parameter list to NYSDEC Commissioners Policy-51 (CP-51) Volatile Organic Compounds (VOCs) plus Tentatively Identified Compounds (TICs) starting in 2023.
- Removal of TMW-3 from future groundwater sampling events and decommissioning of the well.

0136-020-002

6.0 DECLARATION/LIMITATION

Benchmark-TurnKey personnel conducted the annual site inspections for the 1050-1088 Niagara Street BCP Site No. C915277, located in Buffalo, New York, according to generally accepted practices. This report complied with the scope of work provided to 9271 Group, LLC by Benchmark TurnKey.

This report has been prepared for the exclusive use of 9271 Group, LLC. The contents of this report are limited to information available at the time of the site inspection. The findings herein may be relied upon only at the discretion of 9271 Group, LLC. Use of or reliance upon this report or its findings by any other person or entity is prohibited without written permission of Benchmark-TurnKey.

TABLE

TABLE 1

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

1050-1088 NIAGARA STREET SITE BCP Site No. C915277 BUFFALO, NEW YORK

	BUFFALO, NEW YORK																							
	Class CA						TM	N 2											MW-3					
Parameters ¹	Class GA GWQS ²																							
Volatile Organic Compounds (VOCs) - ug/	<u> </u> /L	11/9/14	2/12/15	5/1/17 D	11/15/17	5/12/18	4/6/19	11/2/19	7/2/20	11/7/20	5/23/21	1/8/22	6/12/22	2/12/15	5/8/17	11/15/17	5/12/18	4/6/19	11/2/19	7/2/20	11/7/20	5/23/21	1/8/22	6/12/22
1,1 Dichloroethane 1,2,4-Trimethylbenzene	5 5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1.7 0.83 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,3,5-Trimethylbenzene 2-Butanone (MEK)	5 50	ND ND	ND 1.7 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	100 D ND	ND ND ND	ND ND ND	ND ND	ND ND	ND ND ND	ND ND	ND ND	ND ND	ND ND ND	ND ND ND
2-Hexanone	50	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	7.6 54 D	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4-isopropyltoluene Acetone	50	ND	0.62 J 4.1 J	ND	ND	2.4 J	ND	3.8 J	5.8	1.5 J	2 J	1.8 J	1.5 J	21	ND	ND	ND	ND	ND	ND	27	ND	ND	ND
Benzene Carbon disulfide	60	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	67 D 0.37 J	7.9 ND	10 ND	ND	39 ND	28 ND	32 ND	36 ND	ND	16 J- ND	7.6 J - ND
Cyclohexane Ethylbenzene	 5	75 ND	66 1.5	2.8 J ND	0.9 J ND	0.47 J ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.44 J ND	1000 D 30 D	70 ND	100 ND	160 ND	260 ND	210 1.7 J	350 D 2.2 J	370 D	540 3.6.J	280 J- 2.9 J-	230 D, J- 2.4 J-
Isopropylbenzene Methylcyclohexane	5	91 130	87 90	9.8 J 5.7 J	1.3 J 2.1 J	1.4 J 0.96 J	0.72 J 0.46 J	ND ND	0.84 J ND	ND ND	ND ND	ND ND	ND 0.66 J	200 D 1200 D	36 170	44 210	27 210	60 230	60 160	57 210 D	70 320 D	88 380	55 J- 130 J-	51 J- 160 J-
Methylene Chloride	5	2.6 J,B	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	18 54 D	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
n-Butylbenzene n-Proplybenzene	5	20 100	98	13 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	200 D	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND
sec-Butylbenzene tert-butylbenzene	5 5	ND ND	21 2.8	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	50 D 2.6	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Toluene Xylene, Total	5 5	ND ND	1.9 1.6 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	7.1 13 J. D	ND ND	ND 2.1 J	2.4 J 3.6 J	4.2 J 6.2 J	4 J 8.8 J	4.2 9.6	5.1 11.9	5.2 J 11.2 J	3.4 J- 7.9 J-	1.9 J- 4.6 J-
Total VOCs VOCs Tentatively Identified Compounds (1)		418.6 J,B	393.22 J	31.3 J	4.3 J	5.23 J	1.18 J	3.8 J	6.64 J	1.5 J	2 J	1.8 J	2.6 J	3027.2 J, D	283.9	366.1 J	434 J	599.4 J	472.5 J	665 J	842.8	1059 J	495.2 J-	457.5 J
3-Phenylbut-1-ene		-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	133 NJ	ND	ND
Benzene, cyclopropyl- Benzene, 1-methyl-2-(1-methylethyl)-	-		160 NJ 140 NJ	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	29 NJ ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Benzene, 1-methyl-3-(1-methylethyl)- Benzene, 1,2,3-trimethyl-	-		200 NJ ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 50 NJ	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Benzene, 1,2,3,4-tetramethyl- Butane, 2-Methyl-	-	-	49 NJ ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 57.2 NJ	ND ND	ND ND	ND 116 NJ	ND 38.7 NJ	ND ND
Cyclohexane Cyclohexane,1,1-dimethyl-	-	-	ND ND	ND ND	ND 3 84 NJ	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	93.4 NJ ND	ND ND	ND ND	ND ND	154 NJ ND	41.4 NJ ND	ND ND
Cyclohexane,1,1,3-trimethyl-	-	-	ND	ND	4.14 NJ	3.09 NJ	ND	ND	ND	ND	ND	ND	ND	ND	71.6 J	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyclopentane Cyclopentane, methyl-	-	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 83 NJ	ND ND	ND 77.3 NJ	ND 87.4 NJ	ND 150 NJ	ND 151 NJ	ND 207 NJ	ND 169 NJ	ND 390 NJ	102 NJ 153 NJ	ND ND
Cyclopentane, 1,3-dimethyl- 1,4-Pentadiene, 3,3-dimethyl-	-	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 26 NJ	ND ND	ND ND	89.2 NJ ND	ND ND	58.4 NJ ND	ND ND	ND ND	ND ND	ND ND	ND ND
Ethylidenecyclobutane Isopropylcyclobutane	-	-	ND 130 NJ	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	83.2 NJ ND	ND ND	ND ND	ND ND
Cyclohexane, 1,3-dimethyl-,cis- Cyclohexane.4-methyl-	-	-	81 NJ ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 21 NJ	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Cyclohexane, ethyl-	-	-	54 NJ	16.6 NJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	33 NJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyclobutane, (1-methylethylidene)- Cyclohexene, 1-methyl-	-		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	30 NJ 37 NJ	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Indan, 1-methyl- 1H-Indene, 2,3-dihydro-2,2-dimethyl-	=		68 NJ 43 NJ	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Hexane 1-Pentane	=	-	ND ND	ND ND	ND ND	ND ND	ND ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	19 NJ ND	ND ND ND	ND ND	ND ND	ND 153 NJ	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Pentane, 2-methyl- Pentane, 3-methyl-	-	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	94.3 NJ 65.4 NJ	111 NJ ND	ND 62.8 NJ	ND 55.2 NJ	ND ND	ND ND	ND 98.8 NJ	ND ND	ND ND
Indane	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	124 J	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pentane Sulfur Dioxide	-	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND 1 NJ	ND ND	ND ND	ND 2 NJ	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	47 NJ ND	55.1 NJ ND	80.5 NJ ND	ND ND	133 NJ ND	34.7 NJ ND	ND ND
Unknown Benzene Unknown Aromatic(s)	-	-	ND ND	43.8 J 48.8 J	ND 7.35 J	4.57 J 5.53 J	1.31 J 4.03 J	ND ND	1.12 J 1.07 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND 62.9 J	ND 39.7 J	ND 77.3 J	ND 124.9 J	ND 60 J	ND 154.5	ND 166.6 J	ND ND	ND 32.6 J	ND ND
Unknown Cyclohexane Unknown Cycloalkane(s)	-	-	ND ND	21.2 J ND	10.84 J 7.75 J	ND 8.17 J	4.91 J 1 1 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	164 J ND	141.6 J 180 1 J	159 J 238 1 J	90.7 J 174 4 J	68.5 J 71.9 J	106 J 158 2 J	121 J 141 2 J	140 J 143 J	ND ND	ND ND
Unknown(s) Total TICs	=	-	52 J	18.4 J 149	3.41 J 37.3	5.16 J 26.5	1.29 J 12.6	1.08 J 2.08	ND 2.19	ND ND	ND 2.00	ND ND	ND ND	45 J 373	508.8 J 931	98.4 J 697	164.1 J 926	ND 896	237.8 J 815	368.9 1075	291.3 972	390.3 J 1698	154.7 J 557.1 J	ND ND
Semivolatile Organic Compounds (SVOCs) - ug/L		911	149	31.3										931	097								ND ND
2-Methylnaphthalene Acenaphthene	20	44 ND	-	-	-	ND ND	ND ND	0.07 J 0.03 J	0.06 J ND	0.08 J 0.04 J	ND ND	0.19 0.02 J	0.08 ND	ND ND	-		0.04 J 0.07 J	0.06 J 0.13	0.1 J 0.12	0.07 J 0.49	0.13 0.35	0.11 J 0.1	0.13 0.07 J	ND
Acenaphthylene Acetophenone	=	ND 27	-	-	-	ND ND	ND ND	ND ND	0.03 J ND	0.04 J ND	0.02 J ND	ND ND	0.03 J ND	ND 86 J		-	ND ND	0.02 J ND	ND ND	ND ND	0.05 J ND	0.05 J ND	ND ND	ND ND
Anthracene Benzaldehyde	50	0.7 J ND		-		0.02 J ND	ND ND	0.1 J ND	0.05 J ND	0.08 J ND	0.04 J ND	ND ND	0.1 J ND	ND ND	-	-	0.05 J ND	0.06 J ND	0.06 J ND	0.05 J ND	0.11 ND	0.11 J ND	ND ND	0.02 J ND
Benzo(a)anthracene Benzo(a)pyrene	0.002 ND	0.46 J 0.66 J	-	-		ND 0.03 J	ND 0.04 J	0.46 0.49	0.2 0.27	0.15 0.17	0.09 J 0.1	0.32 0.35	0.22 0.24	ND ND		-	0.09 J 0.08 J	0.1 J 0.07 J	0.12 0.08 J	0.12 0.09 J	0.23 0.18	0.24 0.18	ND ND	0.02 J ND
Benzo(b)fluoranthene Benzo(ghi)perylene	0.002	1.5 J	-	_	-	0.04 J	0.04 J 0.03 J	0.77 0.48 J	0.33	0.21	0.14	0.54 0.46	0.34	ND ND	-	_	0.13	0.08 J 0.05 J	0.13 0.05 J	0.13 0.06 J	0.23	0.24	ND ND	0.01 J ND
Benzo(k)fluoranthene	0.002	ND	-	-	-	0.02 J	0.04 J	0.22	0.14	0.09 J	0.04 J	0.16	0.09	ND	-	-	0.05 J	0.07 J	0.04 J	0.06 J	0.12	0.08 J	ND	ND
Benzoic acid Bis(2-ethylhexyl) phthalate	5	ND 6.7 B	-	-	-	ND 8.2 B	ND ND	ND 3.6	ND 7.8	ND 2 J	ND 1.7 J	ND ND	ND ND	ND ND	-	-	7.2 B	ND 3.6	ND 2.6 J	ND 2 J	ND 2.6 J	ND 2.4 J	ND ND	ND 6.2
Butyl benzyl phthalate Carbazole	50	ND ND		-		ND ND	ND ND	ND ND	7.9 ND	6.6 ND	3.5 J ND	10 ND	ND ND	ND ND		-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Caprolactam Chrysene	0.002	ND ND 0.49 J	-	-	1 1	ND ND ND	ND 0.04 J	ND 0.44	ND 0.35	ND ND 0.21	3.5 J 0.11	49 0.49	ND 0.32	ND ND		-	ND 0.13	ND ND	ND ND 0.1	ND 0.12	ND 0.23	ND 0.26	93 ND	ND ND
Dibenzo(a,h)anthracene Dibenzofuran	-	ND 0.95 J		-	-	ND ND	ND ND	0.11 ND	0.05 J ND	0.05 J ND	0.03 J ND	ND ND	0.05 J ND	ND ND		-	ND ND	0.01 J ND	0.02 J ND	ND ND	0.04 J ND	0.03 J ND	0.02 J ND	ND ND
Diethyl phthalate	50	ND	-	-	-	0.73 J	ND	1.6 J	ND	ND	ND	ND	ND	ND	-	-	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-butylphthalate Fluoranthene	50 50	ND 1.3 J	-	-	-	ND 0.07 J	ND 0.07 J	ND 0.73 J	ND 0.4	0.56 J 0.23	ND 0.18	ND 0.62	ND 0.44	ND ND	-	-	ND 0.23	2.6 J 0.22	ND 0.22	ND 0.22	ND 0.36	ND 0.47	ND ND	ND ND
Fluorene Indeno(1,2,3-cd)pyrene	50 0.002	1.2 J 0.64 J	-	-	-	0.02 J 0.02 J	ND 0.03 J	0.05 J 0.48	0.03 J 0.22	0.05 J 0.16	0.02 J 0.1 J	ND 0.33	0.03 J 0.2	ND ND		-	0.06 J 0.05 J	0.07 J 0.04 J	0.08 J 0.07 J	0.08 J 0.06 J	0.1 J 0.14	0.12 0.13	ND ND	ND ND
Isophorone Naphthalene	50 10	37 9.6		-		ND ND	ND ND	ND 0.09 J	ND 0.06 J	ND 0.08 J	ND 0.09 J	ND 0.16	ND 0.1	ND ND		-	ND ND	ND 0.59	ND 0.58	ND ND	ND 0.19	ND 1.6	ND ND	ND 0.19
Pentachlorophenol Phenanthrene	1 50	2.5 J	-	-	-	ND 0.07 J	ND 0.05 J	ND 0.41	0.32 J 0.29	0.21 J 0.2	ND 0.11	0.48 J 0.58	ND 0.38	ND ND	-	-	0.11 J 0.2	ND 0.24	ND 0.21	ND 0.18	ND 0.3	ND 0.4	ND ND	ND 0.03 J
Phenol Pyrene	1 50	ND 1.J				ND 0.06 J	ND 0.07 J	ND 0.66	ND 0.35	ND 0.2	ND 0.16	ND 0.54	ND 0.38	ND ND	-	-	1.6 J	ND 0.22	1.3 J 0.21	ND 0.23	ND 0.38	ND 0.46	ND ND	1.7 J ND
Total SVOCs	-	136.37 J	-	-	-	9.3 J, B	0.07 J	10.79 J	19.16 J	11.64 J	10.03 J	64.24 J	3.3 J	86 J	-	-	0.22 10.35 J, B	8.23 J	6.09 J	3.96 J	5.87 J	7.09 J		8.17 J
SVOCs Tentatively Identified Compounds 1-Phenyl-1-butene	(TICs)- ug/L	- 1	-	- 1	-	ND	ND	ND	ND	ND	ND	ND	ND	230 JN	-	-	ND	ND	ND	ND	ND	ND	ND	ND
Aldol Condensates Benzene, 1,2,4,-trimethyl-			-	-	1 1	34 J ND	188.3 J ND	14.1 J ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 280 JN		-	ND ND	375.3 J ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Benzene, 1-ethyl-2-methyl- Benzene, 1-methyl-2-(1-methylethyl)-	-			-	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	180 JN 220 JN	-	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Benzene, 1,4-diethyl-	_	-	-	-	-	ND	ND	ND	ND	ND	ND	ND	ND	180 JN	-	-	ND	ND	ND	ND	ND	ND ND	ND	ND
Benzene, propyl- Caffeine	-	-		-	1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	150 JN ND	-	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	19.5 NJ ND	16.5 NJ 11.3 NJ
Cyclic Octaatomic Sulfur Cyclohexane, 1,1,2,3-tetramethyl-	-	-	-	-		ND ND	ND ND	ND ND	ND ND	4.47 NJ ND	ND ND	ND ND	ND ND	ND 170 JN	-	_	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Cyclohexane, 1,1,3-trimethyl- Cyclohexane, ethyl-	-					ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	120 JNB		-	ND ND	ND ND	ND 34.9 NJ	ND ND	ND ND	ND ND	ND ND	ND
Cyclohexane, propyl- Indane	-	-		-		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND 200 JN	-	-	ND ND	ND ND	29.2 NJ 97.5 NJ	ND 115 NJ	ND 46.6 NJ	ND 79.7 NJ	ND 71.4 NJ	ND ND 69.1 NJ
Octane, 2,6-dimethyl-	-	-	-	-	-	ND	ND	ND	ND	ND	ND	ND	ND	150 JN	-	=	ND	ND	ND	ND	ND	ND	ND	ND
Octane, 3-methyl- Unknown Alcohol	-		-	-		ND ND	ND ND	ND ND	ND 128.8 J	ND ND	ND 3.31 J	ND ND	ND ND	140 JN ND		-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND ND
Unknown Aldehyde Unknown Alkane	-	-	-	-		ND ND	ND ND	ND 31.41 J	ND ND	ND 11.85	ND ND	ND ND	4.44 J 64.91 J	ND ND	-	-	ND 40.6 J	ND 271.9 J	ND 117.4 J	ND 201.9 J	ND 270.6 J	ND 150.6 J	ND ND	51.7 J
Unknown Amide Unknown Benzene	-	-				ND ND	ND ND	ND ND	ND ND	6.91 J 4.04	ND ND	ND ND	ND 13.6 J	ND ND		-	ND 63.1 J	ND 42.8 J	ND 60 J	ND ND	ND ND	ND 71.1 J	ND 33.3 J	ND 34.4 J
Unknown Cycloalkane	-	-	-	-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND ND ND	-	-	13.7 J	ND	ND	86.5 J	205.2 J	55.1 J	ND	ND ND
Unknown Cyclohexane Unknown Organic Acid	-		-	-	-	ND 161.49 J	ND 1.45 J	ND 42.1 J	ND 94.7 J	ND 10.2 J	ND 15.45 J	ND 50.1 J	ND 12.83 J	ND		-	ND ND	92.2 J ND	138.3 J ND	ND ND	ND ND	ND ND	ND 444.9 J	12.4
Unknown Phenol Unknown Siloxane	-		-	-	1 1	ND ND	ND ND	2.84 J ND	ND 12.2 J	ND ND	ND ND	ND ND	ND ND	ND ND			ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Unknown Total TICs	-	-	-	-	1 1	9.99 J 205	12.21 J 202	76.61 J 167	337.1 J 573	69.42 J 107	165.59 J 184	841.44 J 988 J	15.16 J 126 J	1200 J 3220		-	216.4 J 334	237.7 J 1020	117.5 J 595	249.1 J 653	277.5 J 800	122.5 J 479	134.5 J 736 J	100.3 J 318 J
						200	-04	.57	UIU	107	704	550 5	1200	U22U			UU4	1020	303		550	7/0	, , , ,	

Notes:

1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.

2. Values per NYSDEC TOCS 1.1.1 Class GA Groundwater Quality Standards.

3. MW-4 was not sampled during May 2017 sampling due to damage to the well. MW-4 and MW-5R has have been routinely dry.

Constitutes:

D = Dilution required due to high concentration of target analyte above the laboratory reporting limit.

ND = Parameter not detected above laboratory detection limit.

"--" = Sample not analyzed for parameter or no GWQS available for the parameter.

J = Estimated Value - Below calibration range

N = Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.

E = Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

B = Compund was found in the blank and sample.

BOLD = Result exceeds GWQS.

TABLE 1

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

1050-1088 NIAGARA STREET SITE BCP Site No. C915277 BUFFALO, NEW YORK

						BUFFALO, I										
Parameters ¹	Class GA GWQS ²		MW-	4	MW-5R					MV	V-6					Blind Dup-1 (MW-6)
		2/12/15	5/8/17	11/15/2017 - 6/12/2022	11/15/2017 - 6/12/2022	11/9/14	11/15/17	5/12/18	4/6/19	11/2/19	7/2/20	11/7/20	5/23/21	1/8/22	6/12/2022	6/12/2022
Volatile Organic Compounds (VOCs) - ug.		0.50.1	ND	DRY	DRY	ND.	L	ND	1 115	115	115	115		ND.	ND	ND
1,1 Dichloroethane 1,2,4-Trimethylbenzene	5	0.59 J 12 D	ND ND	-		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,3,5-Trimethylbenzene	5	9.2 J, D	ND	-		ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND	ND	ND ND
2-Butanone (MEK)	50	6.5 J	ND	_		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	50	4.9 J	ND	-		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Isopropyltoluene	5	2.4	ND	-		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	50	17	5.4	-		ND	ND	ND	ND	2.5 J	ND	ND	ND	ND	ND	ND
Benzene Oarhan disulfida	1 00	370 D	66	-		ND ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND ND
Carbon disulfide Cyclohexane	60	1 240 D	ND	-		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Ethylbenzene	5	6.2	33 0.75 J	_	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
Isopropylbenzene	5	120 D	9			ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND
Methyl Acetate	-	ND	ND	-		ND	ND	ND	ND	0.53 J	ND	ND	ND	ND	ND	ND
Methylcyclohexane	-	240 D	14	-		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	5	5	ND	-		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Butylbenzene	5	23 D	ND	-		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Proplybenzene	5 5	130 D	ND ND	-		ND ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND ND
sec-Butylbenzene tert-butylbenzene	5	25 D	ND ND	-		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Toluene	5	12 D	ND 1.2 J	-	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Xylene, Total	5	19 J, D	1.2 J	-		ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
Total VOCs		1246.79 J, D	130.35 J	-						3.03 J	ND	ND	ND	ND	ND	ND
VOCs Tentatively Identified Compounds (TICs)- ug/L															
Butane, 2-Methyl-		ND	2.22 NJ					ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene, cyclopropyl-	-	150 NJ	ND	-		_	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene, 1-methyl-2-(1-methylethyl)-	-	120 NJ	ND	-		-		ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane,1,1,3-trimethyl-	-	ND 49 N I	2.46 NJ	-	-	-	-	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND
Cyclopentane Cyclopentane, methyl-		48 NJ 81 NJ	ND 14.9 NJ	-		-		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Cyclohexane,4-methyl-		ND ND	4.35 NJ	_				ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Cyclohexane, ethyl-	_	56 NJ	ND	-		_	-	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND
Cyclobutane, (1-methylethylidene)-	-	39 NJ	ND	-		-		ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexene, 3-methyl-	-	66 NJ	ND	_		-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexene, 4-methyl-	-	47 NJ	ND	-		-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indan, 1-methyl-	-	194 NJ	ND			-	-	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indane		ND	26 NJ	-			-	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pentane	-	ND ND	1.79 NJ	-		-	-	ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND
Unknown Benzene Unknown Aromatic		ND ND	11.92 J 13.58 J	-			_	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Unknown Cycloalkane		ND	4.06 J	-				ND ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND ND
Unknown	-	ND	17.01 J			_		1.41 J	ND	ND	ND	ND	ND	ND	ND	ND
Total TICs	-	801	98.3 J	_		-		1.41	ND	ND	ND	ND	ND	ND	ND	ND
Semi-volatile Organic Compounds (SVOC	's) - ug/L															
2-Methylnaphthalene	-	0.94 J	-	-		ND	-	ND	ND	0.1 J	ND	0.03 J	ND	ND	ND	ND
Acenaphthene	20	ND		-		ND ND	-	ND	ND	ND	ND	ND	ND	ND	0.14	ND
Acenaphthylene Acetophenone	-	ND 6		-		ND ND	-	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Anthracene	50	ND ND				ND ND	-	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	0.14	ND ND
Benzaldehyde		ND ND				0.54 J,B		ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND
Benzo(a)anthracene	0.002	ND		-		ND ND		ND	ND	ND	ND	ND	0.03 J	ND	0.17	ND
Benzo(a)pyrene	ND	ND		-		ND	-	ND	ND	ND	ND	ND	0.02 J	ND	0.15	ND
Benzo(b)fluoranthene	0.002	ND	-	-		ND	_	ND	ND	ND	ND	ND	0.02 J	ND	0.27	0.01 J
Benzo(ghi)perylene		ND	-	-		ND ND	-	ND	ND	ND	ND	ND	0.02 J	ND	0.18	ND
Benzo(k)fluoranthene Bis(2-ethylhexyl) phthalate	0.002 5	ND ND		-		ND 4.5 J,B		ND 6.4 B	ND ND	ND ND	ND ND	ND 1.5 J	ND 1.5 J	ND ND	0.07 J ND	ND ND
Chrysene	0.002	ND ND				4.5 J,B ND		ND	0.02 J	ND ND	ND ND	0.01 J	0.02 J	ND ND	0.2	ND ND
Dibenzo(a,h)anthracene		ND ND		-	-	ND ND	_	ND ND	ND	ND ND	ND	ND	ND	ND ND	0.04 J	ND ND
Fluoranthene	50	ND		-		ND	-	ND	ND	ND	ND	ND	0.04 J	ND	0.53	0.02 J
Fluorene	50	0.7 J		-		ND		ND	0.03 J	ND	ND	ND	ND	ND	0.14	ND
Hexachlorobenzene	0.04	ND		-		ND	-	ND	ND	ND	ND	ND	ND	ND	0.12 J	ND
Indeno(1,2,3-cd)pyrene	0.002	ND ND		-		ND ND		ND	ND ND	ND	ND	ND	0.01 J	ND	0.16	ND ND
Naphthalene Phenanthrene	10 50	ND 0.63 J		-		ND ND		ND ND	ND 0.07 J	ND ND	ND ND	ND ND	ND 0.03 J	ND ND	0.56 0.44	ND 0.02 J
Pyrene	50	0.63 J ND	-			ND ND	-	ND ND	0.07 J ND	ND ND	ND ND	ND ND	0.03 J	ND ND	0.44	0.02 J ND
Total SVOCs		8.27 J		_		5.04 J, B	-	6.4 B	0.12 J	0.1 J	ND	1.54 J	1.72 J	ND ND	3.73 J	0.05 J
SVOCs Tentatively Identified Compounds	(TICs)- ua/L	0.213				0.070, 0		U. T.D	0.120	0.10	140		20	140	5.700	
1h-Indene, 2,3-dihydro-5-methyl-	//	17 NJ		-	-	-		ND	ND	ND	ND	ND	ND	ND	ND	ND
Aldol Condensates		ND	-		-			31.7 J	226.5 J	10.7 J	ND	ND	ND	ND	ND	ND
Benzene, 1-ethyl-2,3-dimethyl-		52 NJ		-		-		ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene, (1-methylethyl)-	-	31 NJ		-		-		ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene, (1-methylpropyl)-		15 NJ		-				ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene, 1,2,4,5-tetramethyl- Benzene, 1,3-diethyl-	-	38 NJ		-				ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND
Benzene, 1,3-diethyl- Benzene, 1,4-diethyl-		16 NJ 23 NJ		-		-		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Benzene, r,4-dietriyi- Benzene, propyl-	-	30 NJ		-				ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Erucylamide	-	19 NJB		-	-	-	-	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
Indane	-	80 NJ		_	-	_		ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND
n-Hexadecanoic acid		16 NJB		-				ND	ND	ND ND	ND	ND	ND	ND	ND	ND
Unknown Alcohol		ND		-				ND	ND	ND	ND	2.14 J	ND	ND	16 J	ND
Ubnkown Aldehyde		ND		-		-	-	ND	ND	ND	ND	ND	ND	ND	ND	2.69 J
Unknown Alkane		ND		-				ND	ND	ND	ND	11.27 J	ND	3.78 J	66.13 J	54.02 J
Unknown Benzene		ND		-				ND	ND 4.00 I	ND 4.6.1	ND	3.27 J	ND	ND 0.05 I	ND 5 00 1	11.1 J
Unknown Organic Acid		ND 318 JB		-				ND	1.93 J	1.6 J	2.62 J	3.89 J	ND ND	8.25 J	5.38 J 43.42 J	6.11 J 17.6 J
Unknown Total TICs	- -	318 JB 655						ND 31.7	1.64 J 230	2.4 J 14.7	17.98 J 20.6	13.45 J 34.0	ND ND	1.78 J 13.8 J	43.42 J 131 J	17.6 J 105 J
10.01 1100		ບບບ		-				J1./	430	14.7	۷.0	J4.U	NU	10.0 J	1010	1000

Notes:

1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.

2. Values per NYSDEC TOGS 1.1.1 Class GA Groundwater Quality Standards.

3. MW-5 was not sampled during May 2017 sampling due to damage to the well. MW-4 and MW-5R has have been routinely dry.

Qualifiers:

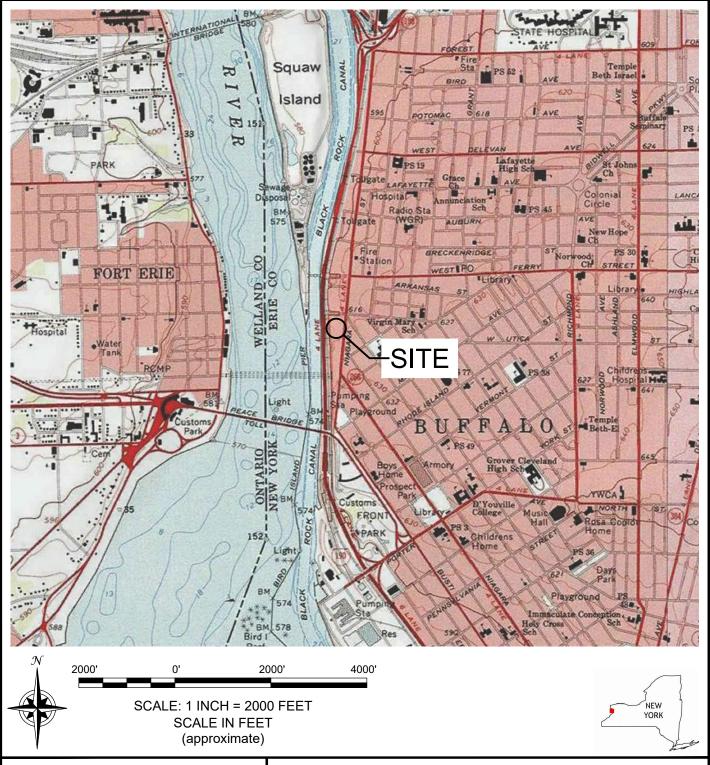
D = Dilution required due to high concentration of target analyte above the laboratory reporting limit.

ND = Parameter not detected above laboratory detection limit.

"--" = Sample not analyzed for parameter or no GWQS available for the parameter.

J = Estimated Value - Below calibration range

NJ = Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.


B = Compund was found in the blank and sample.

BOLD = Result exceeds GWQS.

FIGURES

FIGURE 1

PROJECT NO.: 0136-013-005

DATE: JULY 2022

DRAFTED BY: CMS

F:\CAD\TurnKey\Ellicott Development\1050-1088 Niagara St\PRR\2022\Flgure 1 - Site Location and Vicinity Map.dwg

SITE LOCATION AND VICINITY MAP

PERIODIC REVIEW REPORT

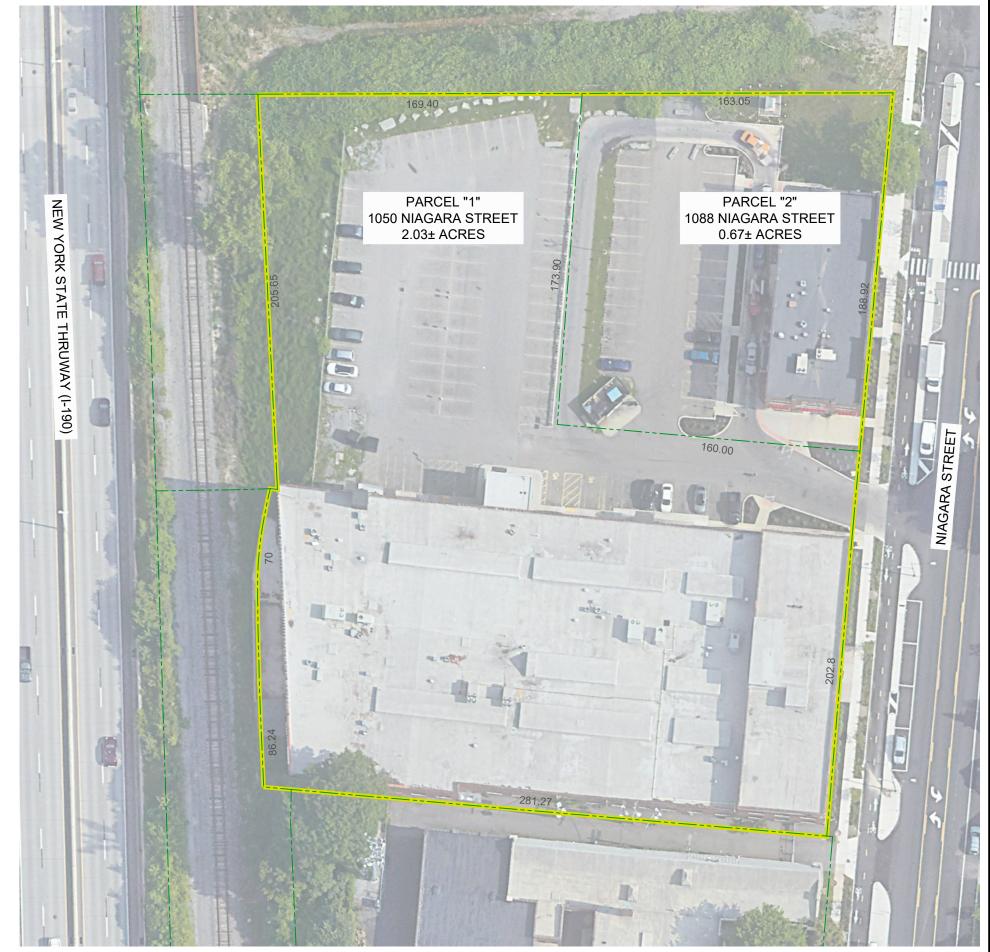
1050-1088 NIAGARA STREET SITE BCP SITE NO. C915277 BUFFALO, NEW YORK PREPARED FOR

9271 GROUP, LLC

DISCLAIMER: PROPERTY OF BENCHMARK CIVIL/ENVIRONMENTAL ENGINEERING & GEOLOGY, PLLC. & TURNKEY ENVIRONMENTAL RESTORATION, LLC IMPORTANT: THIS DRAWING PRINT IS LOANED FOR MUTUAL ASSISTANCE AND AS SUCH IS SUBJECT TO RECALL AT ANY TIME. INFORMATION CONTAINED HEREON IS NOT TO BE DISCLOSED OR REPRODUCED IN ANY FORM FOR THE BENEFIT OF PARTIES OTHER THAN NECESSARY SUBCONTRACTORS & SUPPLIERS WITHOUT THE WRITTEN CONSENT OF BENCHMARK CIVIL/ENVIRONMENTAL ENGINEERING & GEOLOGY, PLLC & TURNKEY ENVIRONMENTAL RESTORATION, LLC.

LEGEND:

BCP SITE BOUNDARY

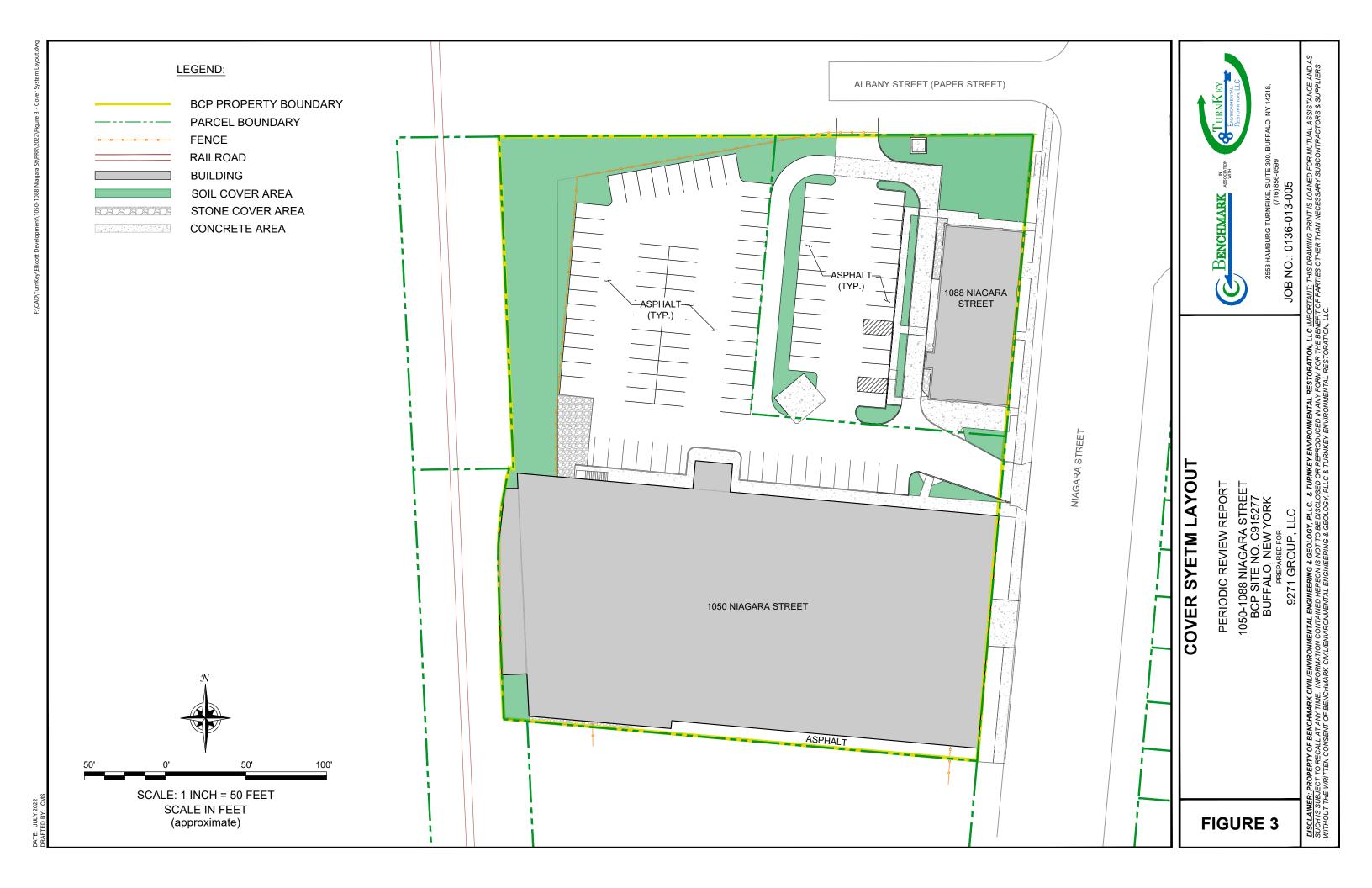

PARCEL BOUNDARY

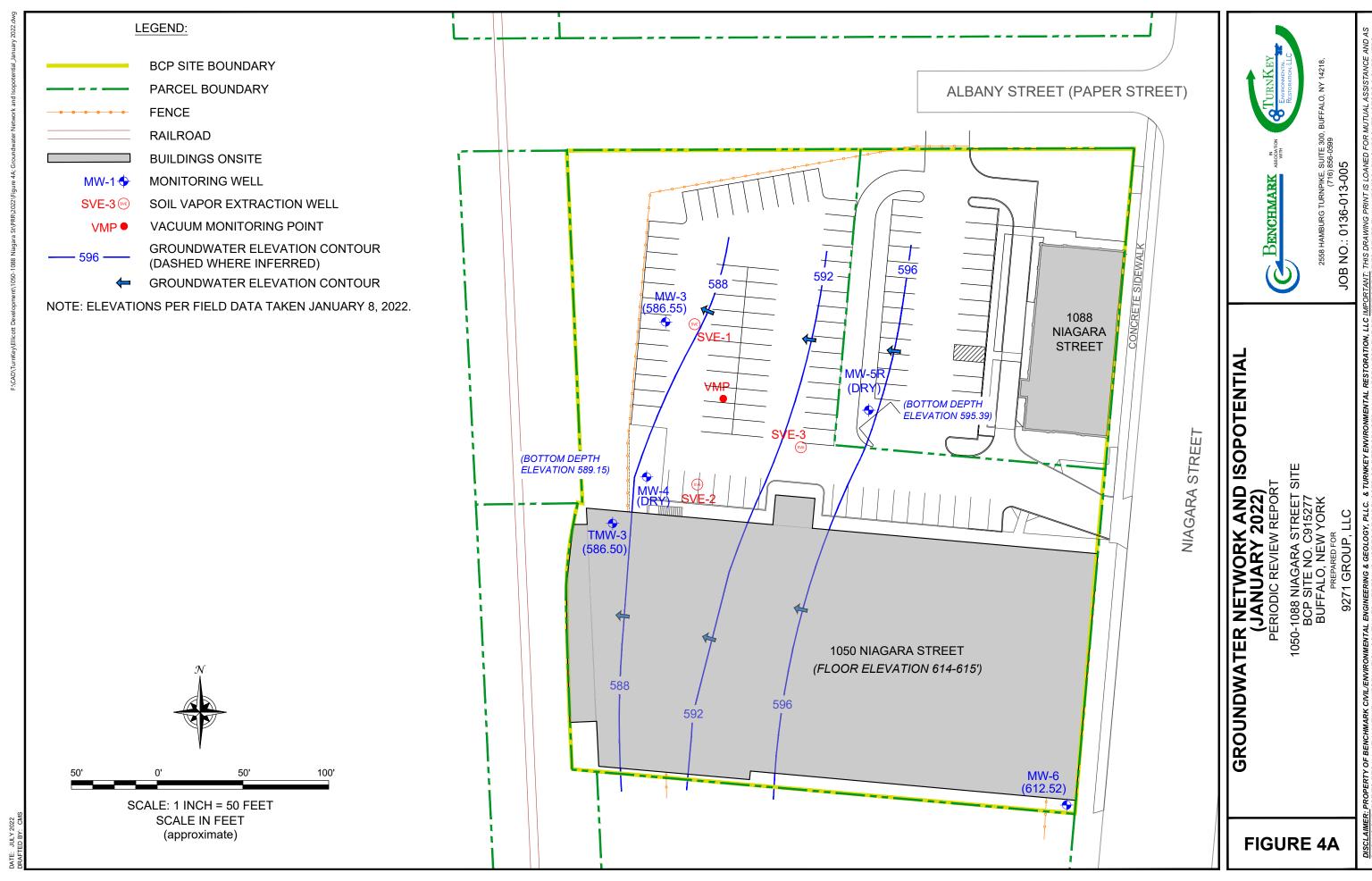
NOTE:

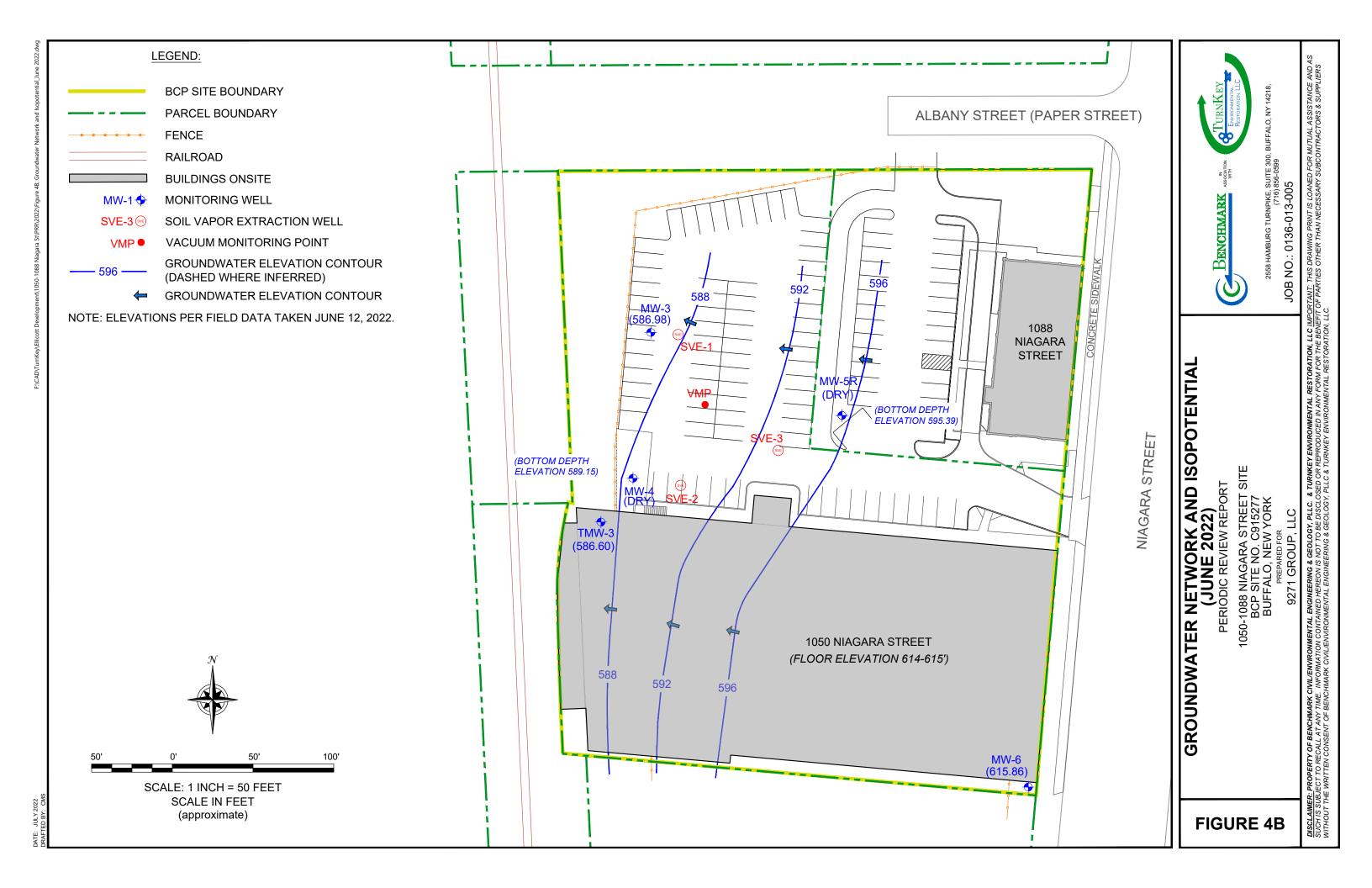
- PARCEL INFORMATION PER SURVEY BY KHEOPS ARCHITECTURE, ENGINEERING & SURVEY, DPC REVISED MAY 16, 2017.
- ERIE COUNTY REAL ESTATE ONLY REVISES TAX MAPS AND ISSUES S.B.L. NUMBERS BI-ANNUALLY, AND AT THE TIME OF THIS REPORT, THE NEWLY RECONFIGURED PARCELS HAVE NOT BEEN UPDATED BY ERIE COUNTY. WHEN ERIE COUNTY UPDATES THE DATABASE, A COPY OF THE PARCEL REPORTS WILL BE PROVIDED TO THE DEPARTMENT.
- AERIAL IMAGE PROVIDED BY GOOGLE EARTH DATED JULY 2021.

SCALE: 1 INCH = 50 FEET SCALE IN FEET

(approximate)




AN (AERIAL) SITE


PERIODIC REVIEW REPORT

JOB NO.: 0136-013-005

FIGURE 2

APPENDIX A

NYSDEC CERTIFICATION AND NOTIFICATION FORMS

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site	e No.	C915277	Site Details	Box 1	
Site	e Name 10	50-1088 Niagara Street Sit	te		
City Cou	e Address: //Town: Bu unty:Erie e Acreage: 2		Zip Code: 14213		
Rep	porting Perio	od: July 31, 2021 to July 31	1, 2022		
				YES	NO
	Is the inform	mation above correct?		×	
	If NO, inclu	de handwritten above or or	n a separate sheet.		
		or all of the site property be nendment during this Repor	en sold, subdivided, merged, or undergone rting Period?	a	X
•		peen any change of use at t RR 375-1.11(d))?	the site during this Reporting Period		X^\square
		ederal, state, and/or local p e property during this Repor	ermits (e.g., building, discharge) been issue rting Period?	d	X
			thru 4, include documentation or eviden busly submitted with this certification for		
-	Is the site of	currently undergoing develo	pment?		X
				Box 2	
				YES	NO
•		ent site use consistent with t Residential, Commercial, a	• •	X	
	Are all ICs	in place and functioning as	designed?	X 🗆	
_		DO NOT COMPLETE THE	UESTION 6 OR 7 IS NO, sign and date below REST OF THIS FORM. Otherwise continue		21102
, C	orrective M	easures Work Plan must be	e submitted alo ng with this form to address	s mese iss	sues.
<u></u>		The Deposition Deposition of the Control of the Con			-
าเต	nature of Ow	ner. Remedial Party or Design	gnated Representative Date	1	

		Box 2	Α
		YES	NO
8.	Has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid?		×
	If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.		
9.	Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years)	X	
	If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.		

SITE NO. C915277 Box 3

Description of Institutional Controls

<u>Parcel</u> <u>Owner</u> <u>Institutional Control</u>

99.41-1-15.1 9271 Group, LLC

Ground Water Use Restriction Soil Management Plan Landuse Restriction Monitoring Plan Site Management Plan O&M Plan IC/EC Plan

- Prohibition against well installation (or use of gw without treatment)
- Compliance with the Site Management Plan
- Compliance with the Soils Management Plan
- Semi-Annual monitoring of groundwater
- Highest land use is restricted to restricted residential

99.41-1-15.21 9271 Group, LLC

Monitoring Plan

Ground Water Use Restriction Soil Management Plan Landuse Restriction Site Management Plan

IC/EC Plan

- Prohibition against well installation (or use of gw without treatment)
- Compliance with the Site Management Plan
- Compliance with the Soils Management Plan
- Semi-Annual monitoring of groundwater
- Highest land use is restricted to restricted residential

Box 4

Description of Engineering Controls

<u>Parcel</u> <u>Engineering Control</u>

99.41-1-15.1

Cover System Monitoring Wells

- · Cover consisting of hardscape or clean soil
- In-situ plume reduction measure

99.41-1-15.21

Monitoring Wells Cover System

	Engineering Control Cover consisting of hardscape or clean soil	
	In-situ plume reduction measure	
		Box 5
	Periodic Review Report (PRR) Certification Statements	
1.	I certify by checking "YES" below that:	
	a) the Periodic Review report and all attachments were prepared under the direction of, reviewed by, the party making the Engineering Control certification;	and
	 b) to the best of my knowledge and belief, the work and conclusions described in this ce are in accordance with the requirements of the site remedial program, and generally acce engineering practices; and the information presented is accurate and compete. 	
	YES	NO
	X	
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:	
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department	·,
	(b) nothing has occurred that would impair the ability of such Control, to protect public he the environment;	ealth and
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;	
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and	
	(e) if a financial assurance mechanism is required by the oversight document for the site mechanism remains valid and sufficient for its intended purpose established in the document for the site mechanism remains valid and sufficient for its intended purpose established in the document.	
	YES	NO

IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.

A Corrective Measures Work Plan must be submitted along with this form to address these issues.

Signature of Owner, Remedial Party or Designated Representative

X

Date

IC CERTIFICATIONS SITE NO. C915277

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

William Paladius at print name	295 Main St Ste 200, Buttal, Ny print business address 1420.
am certifying as	(Owner or Remedial Party)
for the Site named in the Site Details Section	Mar 10/10/22
Signature of Owner, Remedial Party, or Des Rendering Certification	signated Representative Date

EC CERTIFICATIONS

1050-1088 Niagara Street Site C915277

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Thomas H Forbes at 2	558 Hamburg Turnpike, Buffalo NY 14218
print name	print business address
am certifying as a Professional Engineer for the	Printerior Carlos Control Cont
Signature of Professional Engineer, for the Own Remedial Party, Rendering Certification	ner or Stamp Date (Required for PE)

APPENDIX B

SITE PHOTO LOG

SITE PHOTOGRAPHS

Photo 1:

Photo 2:

Photo 3:

Photo 4:

Photo 1: View of the existing asphalt parking area/cover system and vegetated cover along the northern portion

of the Site - facing west

Photo 2: View of the existing asphalt parking area/cover system – facing south

Photo 3: View of typical vegetated cover within the northeastern portion of the Site – facing west

Photo 4: View of the drive-thru area and vegetated cover system (note: cover system repair) – facing north

1050-1088 Niagara Street Site BCP Site No. C915277

Photo Date: June 11 and September 9, 2022

SITE PHOTOGRAPHS

Photo 5:

Photo 6:

Photo 7:

Photo 8:

Photo 5: View of typical landscaping within the parking area – facing southwest

Photo 6: View of typical landscaping within the parking area – facing southeast

Photo 7: View of the stabilized bank along the western portion of the Site – facing southwest

Photo 8: View of the stabilized bank along the western portion of the Site – facing northwest

1050-1088 Niagara Street Site BCP Site No. C915277

Photo Date: June 11 and September 9, 2022

SITE PHOTOGRAPHS

Photo 9:

Photo 11:

Photo 10:

Photo 12:

Photo 9: View of the former location of the SVE trailer with stone cover – facing north

Photo 10: View of typical vegetated cover within the northwestern portion of the Site – facing east

Photo 11: View of the cover system within the southern portion of the Site – facing west

Photo 12: View of stabilized bank and stone cover south of the existing 1050 Niagara Street building – facing east

1050-1088 Niagara Street Site BCP Site No. C915277

Photo Date: June 11 and September 9, 2022

APPENDIX C

GROUNDWATER MONITORING SAMPLING LOGS

GROUNDWATER FIELD FORM

Well N	0.MW-3		Diameter (ir	nches): 2 "		Sample Date	e / Time: -				
	epth (fbTOR):		Water Colu	mn (ft): L. +.	3	DTW when	sampled:	-			
DTW (stati	c) (fbTOR): 2-	1.00	One Well V	olume (gal): 2	.23	Purpose: Development Sample Purge & Sample					
Total Dept	n (fbTOR): 28	5.43	Total Volum	e Purged (gal):	0	Purge Method: BAILEC					
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH ⊵(units)	Temp. (deg. C)	\$ 2.33 SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor		
915	o Initial		13.12	10.4	5655	71000		98	TURBID, TAN		
922	128.11	0.25	10.12	10.	5339		1	36	FAINT ODOR		
929	2 28.12	2.5	10.22	u.t	5549			35	THICK WATER		
936	3 DRY	0.75	10.17	10.5	5459	V		37	NFIRST		
942	128.07	1.00	10.08	12.5	4439	958		-11			
948	52813	1.25	10.08	12.8	4410	71.2		-20			
954	027.91	1.50	10.03	13.4	4648	60.1		43			
1920	728.19	1.75	12.00	13.5	4190	62.9		4			
1007	8 28.05	200	9.98	11.5	4135	74.5		20			
1014	9 28.17	7.25	9.89	12.2	3848	34.8		28			
1021	10 28.19	2.50	9.94	11.9	3950	46.8	Ť	32			
Sample	Information:										
	S1										
	S2										

Well	No.		Diameter (in	nches):		Sample Date	e / Time:				
Product [Depth (fbTOR):		Water Colu	mn (ft):		DTW when	sampled:				
DTW (sta	itic) (fbTOR):		One Well V	olume (gal):		Purpose:	Purpose: Development Sample Purge & Sa				
Total Deg	oth (fbTOR):		Total Volum	ne Purged (gal):		Purge Metho	od:				
Time	Water Level (fbTOR)	Acc. Volume (gallons)	ρΗ (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor		
	o Initial										
	2										
	3										
	4					1					
	5										
	6										
	7										
	8										
	9										
	10										
Sample	Information:										
	S1										
	S2										

REMARKS: Do Stopped wacking AFTEL CACIBRATION

Note: All water level measurements are in feet, distance from top of riser.

Volume Calculation

Diam.	Vol. (g/ft)
1"	0.041
2"	0.163
4"	0.653
6"	1.469

Stabilization Criteria

0.000 450 450 450 450 450 450 450 450 450	1711-111-111-
Parameter	Criteria
рН	± 0,1 unit
sc	± 3%
Turbidity	± 10%
DO	± 0.3 mg/L
ORP	± 10 mV

PREPARED BY:

EQUIPMENT CALIBRATION LOG

Project Name: Project Name:					Date:	12/27		
Client:					Instrumer	Instrument Source:	ВМ	Rental
METER TYPE	STINU	TIME	MAKE/MODEL	SERIAL NUMBER	CAL. BY	STANDARD	POST CAL. READING	SETTINGS
			Myron I Company	6213516		4.00	4.01	
pH meter	units	903	Ultra Meter 6P	6243084 6212375	δ	7.00	10.7	
:				6243003		10.01	10.01	
,			Hach 2100P or	06120C020523 (P)		10 NTU verification <0.4		
Turbidity meter	UTN	Joh	2100Q Turbidimeter	13120C030432 (Q) X 17110C062619 (Q)	\Im	20	18.8	
	Su		Myron L Company	6213516 6243084				
Sp. Cond. meter		409	Ultra Meter 6P	6212375	S	7000 ms @ 25 °C	7003	
				6223973				
□ PID	ppm		MinRAE 2000			open air zero		MIBK response factor = 1.0
				080700023281			1,001	
Dissolved Oxygen	ppm	910	HACH Model HQ30d	100500041867	8	100% Satuartion	98.1 SLOPE	
	۰			140200100319				
Particulate meter	mg/m³					zero air		
Radiation Meter	uR/H					background area		
ADDITIONAL REMARKS:								
PREPARED BY:				DATE: (/7/22				

GROUNDWATER FIELD FORM

Project Name: 1050 - 1888 NIACACA

Location:

Project No.: 0136 - 020 - 002 Field Team: CS

Well N	10.7MW-3	3	Diameter (ir	nches):		Sample Dat	e / Time: 1	3/22	1046	
	epth (fbTOR):		Water Column (ft): 3, 25			DTW when sampled: 4.53				
DTW (stat	tic) (fbTOR):	- 81	One Well Volume (gai): 0.13			Purpose: Development Sample Purge & Sample				
Total Dept	th (fbTOR): 15	.06	Total Volum	ne Purged (gal):	0.40	Purge Method: BAILEY				
Time	Water Level (fbTOR)	Acc Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
931	o Initial	-	6.94	12.3	2705	>1000	3.02		TUEBID TAN	
936	113.59	0.13	7.17	12.2	2665		4.55		NO ODÓL	
942	2 13.90	0.26	7.25	11.5	2653					
946	314.32	0.40	7.32	12.3	2546	V				
	4 (DRY)									
	5									
	6									
	7 -									
	В									
	9									
	10									
Sample	Information:									
1046	\$114.68	2.50	7.36	12.2	2621	>1000				
1047	\$214.75	2.60	7.31	12.2	2579	7000				

Well No. MW-3			Diameter (inches): 2			Sample Date / Time: (/8/22 1225			
Product De	epth (fbTOR):		Water Column (ft):			DTW when sampled: 28.20			
DTW (stat		6.89	One Well Volume (gal): 0.25			Purpose: Development Sample Purge & Sample			
Total Dept	h (fbTOR): 25	8.43	Total Volum	e Purged (gal):	0.75	Purge Method: BULEV			
Time	Water Level (fbTOR)	Acc. Volume (gallons)	_ pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
1215	o Initial	~	10.01	12.2	4235	>(200	-	25	TURBID, TAN
1218	128.1	0.25	9.95	11.9	4130	113	-1	30	1
1221	2 78.12	0.50	9.97	12.1	3948	75.4	t.ls	38	
1223	3 128-14	2.75	9.87	12.2	4007	89.1	- 4	36	CLEADISH
	4				2				
	6								
	7								
	8								
	9								
	10								
Sample	Information:						-		
1225	\$128.20	1.00	9.91	12.0	3.766	56.1		40	
1229	\$278.70	1.20	9.96	12.2	4010	51.4		32	

REMARKS: D.O. STOPPED WORKING DURING SAMPLING OF TMW-3.

Note: All measurements are in feet, distance from top of riser.

 Diam.
 Vol. (g/ft)

 1"
 0.041

 2"
 0.163

 4"
 0.653

 6"
 1.469

 Stabilization Criteria

 Parameter
 Criteria

 pH
 ± 0.1 unit

 SC
 ± 3%

 Turbidity
 ± 10%

 DO
 ± 0.3 mg/L

 ORP
 ± 10 mV

PREPARED BY:

GROUNDWATER FIELD FORM

Project Name: 1050 - 1088 NIACAPA

Location: Project No.: 013L-022-002 Field Team: CS

Well N	No. MW - (,	Diameter (i	nches): 2°		Sample Date	e / Time:	8/22	1140	
Product [Depth (fbTOR):		Water Colu	mn (ft): みい	41	DTW when s		4.03	\	
DTW (sta	atic) (fbTOR): 9.	49	One Well V	olume (gal): [,	21	Purpose:	Developmen		ole X Purge & Sample	
Total Dep	pth (fbTOR): 16.	96	Total Volun	ne Purged (gal):	3.62	Purge Metho	d BAILE	2		
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
1125	o Initial		8.04	13.4	1534			43	SLIGHT THEB	
1128			7.68	13.7	1543	71000	1		TAN, NO ODOR	
1132	2 13,55	2.50	7.65	14,0	1516			86		
1135	3 13.98	3.75	7.64 14.3		1525	Ψ	Ψ	98		
	1		\$ 3							
	5									
	6									
	7									
	8									
	9									
	10									
Sample	Information:							•	·	
1140	\$1 14. 83	4.25	7.70	13.7	1538	7)000		105	11	
1147	S2 13-47	4.50	7.65	14.0	1551	71000		108		

Well N	o.		Diameter (ii	nches):		Sample Date	e / Time:		
Product D	epth (fbTOR):		Water Colu	mn (ft):		DTW when	sampled:		
DTW (stat	ic) (fbTOR):		One Well V	olume (gal):		Purpose:	Development	Sample	Purge & Sample
Total Dept	h (fbTOR):		Total Volum	ne Purged (gal):		Purge Metho	od:		
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
	o Initial								
	1								
	2				N				
	3								
	4								
	5								
	6								
	7								
	В								
	9								
	10								
Sample	Information:								
	S1					×			
	S2								

Note: All measurements are in feet, distance from top of riser.

 Volume Calculation

 Diam.
 Vol. (g/ft)

 1"
 0.041

 2"
 0.163

 4"
 0.653

 6"
 1,469

Stabilization Criteria

Parameter	Criteria
рН	± 0.1 unit
SC	± 3%
Turbidity	± 10%
DO	± 0.3 mg/L
ORP	± 10 mV

PREPARED BY:

EQUIPMENT CALIBRATION LOG

Project Name: 1050 - 1088	7	444			Date: √√√27	12		
Client: ELL FOIT		100-070	to		Instrumen	Instrument Source:	BM	Rental
METER TYPE	STINU	TIME	MAKE/MODEL	SERIAL NUMBER	CAL. BY	STANDARD	POST CAL. READING	SETTINGS
	units	716	Myron L Company Ultra Meter 6P	6213516 6243084 6212375	S	7.00	4 20 4 01	
				6243003		10.01	10,01	
						10 NTU verification		
Turbidity meter	N U	<u> </u>	Hach 2100P or 2100Q	06120C020523 (P)	Ď	<0.4 20	اه ۲	
		017	Turbidimeter		$\overline{\mathcal{C}}$	100	1.49	
						800	785	
∭ Sp. Cond. meter	mS	北	Myron L Company Ultra Meter 6P	6213516	7	7000 ms@25°c	tot !	
				6243003 □ 6223973 ☒	(2)			
☐ PID	mag		MinRAE 2000			open air zero		MIBK response
[1					ppm Iso. Gas		factor = 1.0
Dissolved Oxygen	B B	·	HACH Model HO30d	080700023281			100%	
		700		100500041867	8	100% Satuartion	97.9% sak	
				140200100319			.,4	
Particulate meter	mg/m³					zero air		
Radiation Meter	uR/H					background area		
PREPARED BY: CS				DATE: 1/8/72				

GROUNDWATER FIELD FORM

Project Name: 1050 Niagura St. Site. Date: 6/12/22

Location: Bulfalo, M Project No.: TO136-020-002 Field Team: FAS

Moll No	7-44	1 2						1 = 1=2	
Well No	. TMW	-2	Diameter (in			Sample Date	e / Time: 6/	12/22	12.15
Product Der			Water Colur	mn (ft): 5,	09	DTW when	sampled:		
DTW (statio	(fbTOR):	7.71	One Well Vo	olume (gal): (2.21	Purpose:	Development	Sample	Purge & Sample
Total Depth	(fbTOR):	1.80	Total Volum	e Purged (gal):	0.5	Purge Metho	od: Revile		
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
1048	1048 o Initial	1	6.75	15.7	4475	325	7.73	239	Clear, no order
1101		0.2	7.25	17.9	2776	71000	7.64	220	Trubid no odo
1112-	2 12,45	0.4	7.44	15.9	2737	71000	6.28	205	11 11
1118	3 NRY	0.5	7.47	16.7	2751	71000	6.85	198	11 11
	4								
	5								
	6								
	7								
	8								
	9								
	10								
Sample I	nformation:			- 1					
	SI DRY	0.5	7.36	16.4	2781	2/000	6.71	197	y 1)
1218	S2 NRV	0.5	7.41	16.3	2756	>1000	6.85	198	9.0

Well No	. MW	1-3	Diameter (in	iches): 2.	′(Sample Dat	e / Time: 6/	112/22	1Z3 O
Product Dep	oth (fbTOR):		Water Colur	mn (ft): 2	-06	DTW when			
DTW (static	e) (fbTOR):	26-46	One Well Vo	olume (gal):	7.33	Purpose:	Development	Sample Sample	Purge & Sample
Total Depth	(fbTOR): 2	8.50	Total Volum	e Purged (gal):	0.6	Purge Meth	od: Ray	ler	
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
//38	o Initial	-	9.80	17.7	3857	103	2.46	-74	Clear, State
1148	1 28.18	0.3	10.33	16.6	5892	271	2.56	-107	Netro I order
1155	2 NRY	0.5	10.28	16.6	5802	338	2.70	-103	,
1200	3 NRY	0.6	10.17	16.5	58/8	340	2.76	-100	El .
	4						17		
	5								
	6								
	7								
	8								
	9								
	10								
Sample I	nformation:								
	SI NRY	0.7	10.13	16.6	5813	330	2.81	-100	1 1
	S2 NRV	0.8	10-08	16,4	5807	337	271	-105	11 11

			Stabilizatio	n Criteria
REMARKS:	Volume	Calculation	Parameter	Criteria
	Diam.	Vol. (g/ft)	pН	± 0.1 unit
	1"	0.041	sc	± 3%
	2"	0.163	Turbidity	± 10%
	4"	0.653	DO	± 0.3 mg/L
lote: All measurements are in feet, distance from top of riser.	6"	1.469	ORP	± 10 mV

PREPARED BY:

EAS

GROUNDWATER FIELD FORM

Project Name: 1050 Niagara St. S.te Date: 6/12/2 Location: Buffalo, NIO Project No.: 70/36 020 - 002. Field Team: EAS 6/12/22

Well No	o. Mh/	1-6	Diameter (ir	nches): 2) //	Sample Date	e / Time:	112/22	1315
Product De	pth (fbTOR):		Water Colu	mn (ft): //	1.45	DTW when			
DTW (statio	c) (fbTOR):	6.15	One Well V	olume (gal):	1.70	Purpose:	Development	Sampl	e 🔀 Purge & Sample
Total Depth	(fbTOR): /	6.80	Total Volum	e Purged (gal):	~6	Purge Metho	od: Rcile	_	
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
12.40	o Initial	_	8.93	15.4	1412	198	4.08	27	Cleur no mor
1248	1 1/09/	2	3.28	15.1	1462	2/000	3.78	60	Tred of horn so
1254	2 12,10	4	7.98	14,6	1519	71000	4.59	75	11 111
1302	3 14.31	6	7.84	14.8	15/4	682	3.11	80	11 11
	4								
	5								
	6								
	7								
	В								
	9								
	10								
	nformation:								
1000	S1 14.42	6	7.86	15.3	1522	680	3.16	60	11 11
1320	52 14 73	6	7.83	14.7	1573	671	3-42-	71	27 /1

Well N	o.		Diameter (i	nches):		Sample Date	e / Time:		
Product D	epth (fbTOR):		Water Colu	mn (ft):		DTW when	sampled:		
DTW (stat	ic) (fbTOR):		One Well V	olume (gal):		Purpose:	Development	Sample	Purge & Sample
Total Dept	th (fbTOR):		Total Volun	ne Purged (gal):		Purge Metho	od:		
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)		SC (uS)	Turbidity (NTU)		ORP (mV)	Appearance & Odor
	o Initial								
	1								
	2								
	3								
	4								
	5								
	6								
	7								
	8								
	9								
	10								
Sample	Information:						1;		
	S1								
	S2								

MW-6 corresponds w/ **REMARKS:**

Volume Calculation

Diam.	Vol. (g/ft)
1"	0.041
2"	0.163
4"	0,653
6"	1.469

Stabilization Criteria

Parameter	Criteria
pН	± 0.1 unit
SC	± 3%
Turbidity	± 10%
DO	± 0.3 mg/L
ORP	± 10 mV

Note: All measurements are in feet, distance from top of riser.

PREPARED BY:

Groundwater Field Form GWFF - TK

EQUIPMENT CALIBRATION LOG

PROJECT INFORMATION: Project Name: 1050 Niveral Street Project No. 1050 Niveral	- Seen	Treet.	SK		Date:	72/11/9		
Client Elich Asvelopmen	ment	1			Instrument Source:	it Source:	BM	Rental
METER TYPE	UNITS	TIME	MAKE/MODEL	SERIAL NUMBER	CAL. BY	STANDARD	POST CAL. READING	SETTINGS
M pH meter	units	0501	Myron L Company Ultra Meter 6P	6213516	瓮	4.00	4.00	
			65	6243003 □ 6223973 Œ	2	10.01	10.01	
				70,000,000		10 NTU verification	9.18	m. This
Turbidity meter	NTO	1035	Hach 2100P or 2100Q Turbidimotor		ESS	< 0.4 20	14.1	imis
		-	i di Didii lietei	17110C062619 (Q) 🖎		100	78.4	
Sp. Cond. meter	Sm	0501	Myron L Company Ultra Meter 6P	6213516	S S	700/ms@25°C	1001	
IPID	maa		MinRAF 2000			open air zero		MIBK response
						ppm Iso. Gas		factor = 1.0
Discolved Oxygen	muu		НАСН Модел НОЗОЯ	080700023281			26001	
	7	0701		100500041867 🔯 140200100319 🗌		100% Satuartion	59.97 504.2	
Particulate meter	mg/m ₃					zero air		
Radiation Meter	uR/H					background area		
ADDITIONAL REMARKS:								
	四人			DATE: 6/12/22	72,			

传

APPENDIX D

LABORATORY ANALYTICAL DATA REPORTS

ANALYTICAL REPORT

Lab Number: L2201207

Client: Turnkey Environmental Restoration, LLC

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Nate Munley
Phone: (716) 856-0599

Project Name: 1050-1088 NIAGARA

Project Number: T0136-020-002

Report Date: 01/24/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 1050-1088 NIAGARA

Project Number: T0136-020-002

 Lab Number:
 L2201207

 Report Date:
 01/24/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2201207-01	TMW-3	WATER	BUFFALO, NY	01/08/22 10:46	01/10/22
L2201207-02	MW-3	WATER	BUFFALO, NY	01/08/22 12:25	01/10/22
L2201207-03	MW-6	WATER	BUFFALO, NY	01/08/22 11:40	01/10/22

 Project Name:
 1050-1088 NIAGARA
 Lab Number:
 L2201207

 Project Number:
 T0136-020-002
 Report Date:
 01/24/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

 Project Name:
 1050-1088 NIAGARA
 Lab Number:
 L2201207

 Project Number:
 T0136-020-002
 Report Date:
 01/24/22

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L2201207-02 and -02D: The sample was received in the proper acid-preserved containers; however, upon analysis, the pH was determined to be greater than 2, and thus the method required holding time was exceeded.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 01/24/22

Melissa Sturgis Melissa Sturgis

ALPHA

ORGANICS

VOLATILES

L2201207

01/08/22 10:46

Project Name: 1050-1088 NIAGARA

Project Number: T0136-020-002

SAMPLE RESULTS

Lab Number:

Date Collected:

Report Date: 01/24/22

Lab ID: L2201207-01 Client ID: TMW-3

Sample Location: BUFFALO, NY Date Received: 01/10/22 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 01/17/22 15:48

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

Project Name: 1050-1088 NIAGARA Lab Number: L2201207

Project Number: T0136-020-002 **Report Date:** 01/24/22

SAMPLE RESULTS

Lab ID: Date Collected: 01/08/22 10:46

Client ID: TMW-3 Date Received: 01/10/22 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Volatile Organics by GC/MS - Westborough Lab 1,3-Dichlorobenzene 1,4-Dichlorobenzene Methyl tert butyl ether p/m-Xylene o-Xylene	ND ND ND ND ND ND ND ND ND		ug/l ug/l ug/l ug/l ug/l ug/l	2.5 2.5 2.5 2.5 2.5 2.5 2.5	0.70 0.70 0.70 0.70 0.70 0.70	1 1 1 1
1,4-Dichlorobenzene Methyl tert butyl ether p/m-Xylene o-Xylene	ND ND ND ND ND ND ND ND		ug/l ug/l ug/l ug/l	2.5 2.5 2.5 2.5	0.70 0.70 0.70 0.70	1 1 1
Methyl tert butyl ether p/m-Xylene o-Xylene	ND ND ND ND ND		ug/l ug/l ug/l ug/l	2.5 2.5 2.5	0.70 0.70 0.70	1 1 1
p/m-Xylene o-Xylene	ND ND ND		ug/l ug/l ug/l	2.5 2.5	0.70 0.70	1
o-Xylene	ND ND ND		ug/l ug/l	2.5	0.70	1
·	ND ND		ug/l			
	ND			2.5	0.70	1
cis-1,2-Dichloroethene						•
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	1.8	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Tentatively Identified Compounds				
Total TIC Compounds	1.52	J	ug/l	1
Unknown	1.52	J	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	115	70-130	
Toluene-d8	94	70-130	
4-Bromofluorobenzene	87	70-130	
Dibromofluoromethane	119	70-130	

Project Name: 1050-1088 NIAGARA

Project Number: T0136-020-002

Lab Number: L2201207

Report Date: 01/24/22

SAMPLE RESULTS

Lab ID: L2201207-02 Date Collected: 01/08/22 12:25

Client ID: Date Received: 01/10/22 MW-3

Sample Location: Field Prep: BUFFALO, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 01/17/22 16:11

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	oorough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	16		ug/l	0.50	0.16	1
Toluene	3.4		ug/l	2.5	0.70	1
Ethylbenzene	2.9		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: 1050-1088 NIAGARA Lab Number: L2201207

Project Number: T0136-020-002 **Report Date:** 01/24/22

SAMPLE RESULTS

Lab ID: L2201207-02 Date Collected: 01/08/22 12:25

Client ID: MW-3 Date Received: 01/10/22 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	5.5		ug/l	2.5	0.70	1
o-Xylene	2.4	J	ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	55		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	280	E	ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	130		ug/l	10	0.40	1

Project Name: 1050-1088 NIAGARA Lab Number: L2201207

Project Number: T0136-020-002 **Report Date:** 01/24/22

SAMPLE RESULTS

Lab ID: L2201207-02 Date Collected: 01/08/22 12:25

Client ID: MW-3 Date Received: 01/10/22 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	557	J	ug/l	1
Unknown	31.2	J	ug/l	1
Cyclopentane	102	NJ	ug/l	1
Pentane	34.7	NJ	ug/l	1
Unknown	39.5	J	ug/l	1
Unknown	37.4	J	ug/l	1
Unknown	46.6	J	ug/l	1
Cyclopentane, Methyl-	153	NJ	ug/l	1
Unknown Aromatic	32.6	J	ug/l	1
Cyclohexene	41.4	NJ	ug/l	1
Butane, 2-Methyl-	38.7	NJ	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	128	70-130	
Toluene-d8	111	70-130	
4-Bromofluorobenzene	89	70-130	
Dibromofluoromethane	85	70-130	

L2201207

Project Name: 1050-1088 NIAGARA Lab Number:

Project Number: T0136-020-002 **Report Date:** 01/24/22

SAMPLE RESULTS

Lab ID: L2201207-02 D Date Collected: 01/08/22 12:25

Client ID: MW-3 Date Received: 01/10/22

Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 01/18/22 22:06

Analyst: KTD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough L	.ab					
Cyclohexane	280		ug/l	40	1.1	4

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	104		70-130
Toluene-d8	93		70-130
4-Bromofluorobenzene	89		70-130
Dibromofluoromethane	101		70-130

01/08/22 11:40

Project Name: 1050-1088 NIAGARA

Project Number: T0136-020-002

SAMPLE RESULTS

Lab Number: L2201207

Report Date: 01/24/22

Lab ID: L2201207-03
Client ID: MW-6

Sample Location: BUFFALO, NY

Date Received: 01/10/22
Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 01/17/22 15:25

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: 1050-1088 NIAGARA Lab Number: L2201207

Project Number: T0136-020-002 **Report Date:** 01/24/22

SAMPLE RESULTS

Lab ID: L2201207-03 Date Collected: 01/08/22 11:40

Client ID: MW-6 Date Received: 01/10/22 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Tentatively Identified Compounds				
Total TIC Compounds	1.41	J	ug/l	1
Unknown	1.41	J	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	116	70-130	
Toluene-d8	94	70-130	
4-Bromofluorobenzene	86	70-130	
Dibromofluoromethane	121	70-130	

Project Name: 1050-1088 NIAGARA Lab Number: L2201207

Project Number: T0136-020-002 **Report Date:** 01/24/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 01/17/22 08:06

Analyst: PD

arameter	Result	Qualifier Units	. RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-03 Batch:	WG1594752-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

L2201207

Project Name: 1050-1088 NIAGARA Lab Number:

> Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 01/17/22 08:06

Analyst: PD

Parameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - V	Vestborough Lab	for sample(s): 01-03	Batch:	WG1594752-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Tentatively Identified Compounds			
Total TIC Compounds	2.71	J	ug/l
Sulfur Dioxide	2.71	NJ	ug/l

L2201207

Project Name: 1050-1088 NIAGARA Lab Number:

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 01/17/22 08:06

Analyst: PD

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-03 Batch: WG1594752-5

		Acceptance			
Surrogate	%Recovery	Qualifier Criteria			
1,2-Dichloroethane-d4	109	70-130			
Toluene-d8	95	70-130			
4-Bromofluorobenzene	91	70-130			
Dibromofluoromethane	117	70-130			

Project Name: 1050-1088 NIAGARA Lab Number: L2201207

Project Number: T0136-020-002 **Report Date:** 01/24/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 01/18/22 20:12

Analyst: LAC

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	02 Batch:	WG1595775-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: 1050-1088 NIAGARA Lab Number: L2201207

Project Number: T0136-020-002 **Report Date:** 01/24/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 01/18/22 20:12

Analyst: LAC

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by GC/MS - Westb	orough Lab	for sample	e(s): 02	Batch:	WG1595775-5
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70
Methyl tert butyl ether	ND		ug/l	2.5	0.70
p/m-Xylene	ND		ug/l	2.5	0.70
o-Xylene	ND		ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70
Styrene	ND		ug/l	2.5	0.70
Dichlorodifluoromethane	ND		ug/l	5.0	1.0
Acetone	ND		ug/l	5.0	1.5
Carbon disulfide	ND		ug/l	5.0	1.0
2-Butanone	ND		ug/l	5.0	1.9
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0
2-Hexanone	ND		ug/l	5.0	1.0
Bromochloromethane	ND		ug/l	2.5	0.70
1,2-Dibromoethane	ND		ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70
Isopropylbenzene	ND		ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70
Methyl Acetate	ND		ug/l	2.0	0.23
Cyclohexane	ND		ug/l	10	0.27
1,4-Dioxane	ND		ug/l	250	61.
Freon-113	ND		ug/l	2.5	0.70
Methyl cyclohexane	ND		ug/l	10	0.40

L2201207

Project Name: 1050-1088 NIAGARA Lab Number:

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 01/18/22 20:12

Analyst: LAC

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 02 Batch: WG1595775-5

		Acceptance			
Surrogate	%Recovery	Qualifier Criteria			
1,2-Dichloroethane-d4	107	70-130			
Toluene-d8	93	70-130			
4-Bromofluorobenzene	91	70-130			
Dibromofluoromethane	119	70-130			

Project Name: 1050-1088 NIAGARA

Project Number: T0136-020-002

Lab Number: L2201207

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	RPD Qual Limits	
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-03 Batch:	WG1594752-3	WG1594752-4			
Methylene chloride	99		96		70-130	3	20	
1,1-Dichloroethane	120		110		70-130	9	20	
Chloroform	100		100		70-130	0	20	
Carbon tetrachloride	98		95		63-132	3	20	
1,2-Dichloropropane	110		110		70-130	0	20	
Dibromochloromethane	91		93		63-130	2	20	
1,1,2-Trichloroethane	84		89		70-130	6	20	
Tetrachloroethene	100		98		70-130	2	20	
Chlorobenzene	100		100		75-130	0	20	
Trichlorofluoromethane	120		120		62-150	0	20	
1,2-Dichloroethane	100		110		70-130	10	20	
1,1,1-Trichloroethane	100		99		67-130	1	20	
Bromodichloromethane	95		95		67-130	0	20	
trans-1,3-Dichloropropene	77		78		70-130	1	20	
cis-1,3-Dichloropropene	85		88		70-130	3	20	
Bromoform	78		83		54-136	6	20	
1,1,2,2-Tetrachloroethane	82		88		67-130	7	20	
Benzene	100		97		70-130	3	20	
Toluene	98		95		70-130	3	20	
Ethylbenzene	99		97		70-130	2	20	
Chloromethane	130		120		64-130	8	20	
Bromomethane	97		79		39-139	20	20	
Vinyl chloride	130		120		55-140	8	20	

Project Name: 1050-1088 NIAGARA

Project Number: T0136-020-002

Lab Number: L2201207

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	01-03 Batch: WG	G1594752-3 WG1594752-4		
Chloroethane	130		120	55-138	8	20
1,1-Dichloroethene	110		110	61-145	0	20
trans-1,2-Dichloroethene	100		100	70-130	0	20
Trichloroethene	100		98	70-130	2	20
1,2-Dichlorobenzene	94		94	70-130	0	20
1,3-Dichlorobenzene	95		94	70-130	1	20
1,4-Dichlorobenzene	95		95	70-130	0	20
Methyl tert butyl ether	88		92	63-130	4	20
p/m-Xylene	100		95	70-130	5	20
o-Xylene	100		95	70-130	5	20
cis-1,2-Dichloroethene	100		99	70-130	1	20
Styrene	100		95	70-130	5	20
Dichlorodifluoromethane	100		96	36-147	4	20
Acetone	90		95	58-148	5	20
Carbon disulfide	110		100	51-130	10	20
2-Butanone	91		96	63-138	5	20
4-Methyl-2-pentanone	84		88	59-130	5	20
2-Hexanone	88		94	57-130	7	20
Bromochloromethane	110		110	70-130	0	20
1,2-Dibromoethane	86		90	70-130	5	20
1,2-Dibromo-3-chloropropane	74		80	41-144	8	20
Isopropylbenzene	96		94	70-130	2	20
1,2,3-Trichlorobenzene	88		93	70-130	6	20

Project Name: 1050-1088 NIAGARA

Project Number: T0136-020-002

Lab Number: L2201207

Parameter	LCS %Recovery	Qual	_	SD covery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-03 B	Batch:	WG1594752-3	WG1594752-4				
1,2,4-Trichlorobenzene	88		9	90		70-130	2		20	
Methyl Acetate	94		1	100		70-130	6		20	
Cyclohexane	130		1	130		70-130	0		20	
1,4-Dioxane	98		1	108		56-162	10		20	
Freon-113	120		1	110		70-130	9		20	
Methyl cyclohexane	99		9	96		70-130	3		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	108	110	70-130
Toluene-d8	100	99	70-130
4-Bromofluorobenzene	91	92	70-130
Dibromofluoromethane	109	109	70-130

Project Name: 1050-1088 NIAGARA

Project Number: T0136-020-002

Lab Number: L2201207

Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane	97 110 100 100 99 95 82	sample(s): 02	96 110 100 100 98 93	595775-3	70-130 70-130 70-130 63-132 70-130	1 0 0 0	20 20 20 20 20 20
1,1-Dichloroethane Chloroform Carbon tetrachloride	110 100 100 99 95		110 100 100 98		70-130 70-130 63-132	0 0 0	20 20 20
Chloroform Carbon tetrachloride	100 100 99 95		100 100 98		70-130 63-132	0	20 20
Carbon tetrachloride	100 99 95		100 98		63-132	0	20
	99 95		98				
1,2-Dichloropropane	95				70-130	1	20
			93				
Dibromochloromethane	82				63-130	2	20
1,1,2-Trichloroethane			80		70-130	2	20
Tetrachloroethene	110		110		70-130	0	20
Chlorobenzene	100		100		75-130	0	20
Trichlorofluoromethane	120		120		62-150	0	20
1,2-Dichloroethane	100		99		70-130	1	20
1,1,1-Trichloroethane	100		100		67-130	0	20
Bromodichloromethane	92		90		67-130	2	20
trans-1,3-Dichloropropene	75		72		70-130	4	20
cis-1,3-Dichloropropene	82		80		70-130	2	20
Bromoform	86		83		54-136	4	20
1,1,2,2-Tetrachloroethane	80		78		67-130	3	20
Benzene	95		93		70-130	2	20
Toluene	97		95		70-130	2	20
Ethylbenzene	97		95		70-130	2	20
Chloromethane	110		110		64-130	0	20
Bromomethane	65		68		39-139	5	20
Vinyl chloride	120		120		55-140	0	20

Project Name: 1050-1088 NIAGARA

Project Number: T0136-020-002

Lab Number: L2201207

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 02	2 Batch: WG	1595775-3	WG1595775-4		
Chloroethane	110		110		55-138	0	20
1,1-Dichloroethene	120		110		61-145	9	20
trans-1,2-Dichloroethene	100		100		70-130	0	20
Trichloroethene	99		98		70-130	1	20
1,2-Dichlorobenzene	96		96		70-130	0	20
1,3-Dichlorobenzene	98		98		70-130	0	20
1,4-Dichlorobenzene	99		98		70-130	1	20
Methyl tert butyl ether	88		88		63-130	0	20
p/m-Xylene	100		100		70-130	0	20
o-Xylene	100		95		70-130	5	20
cis-1,2-Dichloroethene	100		100		70-130	0	20
Styrene	100		95		70-130	5	20
Dichlorodifluoromethane	110		110		36-147	0	20
Acetone	78		83		58-148	6	20
Carbon disulfide	110		110		51-130	0	20
2-Butanone	84		77		63-138	9	20
4-Methyl-2-pentanone	80		76		59-130	5	20
2-Hexanone	78		76		57-130	3	20
Bromochloromethane	110		110		70-130	0	20
1,2-Dibromoethane	90		89		70-130	1	20
1,2-Dibromo-3-chloropropane	78		80		41-144	3	20
Isopropylbenzene	94		93		70-130	1	20
1,2,3-Trichlorobenzene	94		94		70-130	0	20

Project Name: 1050-1088 NIAGARA

Project Number: T0136-020-002

Lab Number: L2201207

Doromotor	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Parameter	76Necovery	Quai	7011CCOVERY	Quai	Lililits	KPU	Quai	Lililits	
Volatile Organics by GC/MS - Westborough	Lab Associated s	sample(s): 02	Batch: WG	1595775-3	WG1595775-4				
1,2,4-Trichlorobenzene	93		92		70-130	1		20	
Methyl Acetate	86		80		70-130	7		20	
Cyclohexane	120		120		70-130	0		20	
1,4-Dioxane	94		96		56-162	2		20	
Freon-113	120		120		70-130	0		20	
Methyl cyclohexane	91		87		70-130	4		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	107	107	70-130
Toluene-d8	99	98	70-130
4-Bromofluorobenzene	88	87	70-130
Dibromofluoromethane	111	112	70-130

SEMIVOLATILES

L2201207

01/08/22 10:46

Project Name: 1050-1088 NIAGARA

Project Number: T0136-020-002

SAMPLE RESULTS

Report Date: 01/24/22

Lab Number:

Date Collected:

Lab ID: L2201207-01

Client ID: TMW-3 Sample Location: BUFFALO, NY Date Received: 01/10/22 Not Specified

Field Prep:

Sample Depth:

Matrix: Water Analytical Method: 1,8270D

Analytical Date: 01/13/22 13:54

JG Analyst:

Extraction	Method:	EPA 3510C
Extraction	Date:	01/12/22 08:27

Semivolatile Organics by GC/MS - Westboroug Bis(2-chloroethyl)ether 3,3'-Dichlorobenzidine 2,4-Dinitrotoluene 2,6-Dinitrotoluene 4-Chlorophenyl phenyl ether 4-Bromophenyl phenyl ether Bis(2-chloroisopropyl)ether Bis(2-chloroethoxy)methane	yh Lab ND ND ND ND ND ND ND ND	ug/l ug/l ug/l	2.0 5.0	0.50 1.6	1
3,3'-Dichlorobenzidine 2,4-Dinitrotoluene 2,6-Dinitrotoluene 4-Chlorophenyl phenyl ether 4-Bromophenyl phenyl ether Bis(2-chloroisopropyl)ether Bis(2-chloroethoxy)methane	ND ND ND	ug/l			
2,4-Dinitrotoluene 2,6-Dinitrotoluene 4-Chlorophenyl phenyl ether 4-Bromophenyl phenyl ether Bis(2-chloroisopropyl)ether Bis(2-chloroethoxy)methane	ND ND		5.0	1.6	
2,6-Dinitrotoluene 4-Chlorophenyl phenyl ether 4-Bromophenyl phenyl ether Bis(2-chloroisopropyl)ether Bis(2-chloroethoxy)methane	ND	ua/l			1
4-Chlorophenyl phenyl ether 4-Bromophenyl phenyl ether Bis(2-chloroisopropyl)ether Bis(2-chloroethoxy)methane		ug/i	5.0	1.2	1
4-Bromophenyl phenyl ether Bis(2-chloroethoxy)methane	ND	ug/l	5.0	0.93	1
Bis(2-chloroisopropyl)ether Bis(2-chloroethoxy)methane		ug/l	2.0	0.49	1
Bis(2-chloroethoxy)methane	ND	ug/l	2.0	0.38	1
	ND	ug/l	2.0	0.53	1
Have able as a vale a sea to disco	ND	ug/l	5.0	0.50	1
Hexachlorocyclopentadiene	ND	ug/l	20	0.69	1
Isophorone	ND	ug/l	5.0	1.2	1
Nitrobenzene	ND	ug/l	2.0	0.77	1
NDPA/DPA	ND	ug/l	2.0	0.42	1
n-Nitrosodi-n-propylamine	ND	ug/l	5.0	0.64	1
Bis(2-ethylhexyl)phthalate	4.2	ug/l	3.0	1.5	1
Butyl benzyl phthalate	10.	ug/l	5.0	1.2	1
Di-n-butylphthalate	ND	ug/l	5.0	0.39	1
Di-n-octylphthalate	ND	ug/l	5.0	1.3	1
Diethyl phthalate	ND	ug/l	5.0	0.38	1
Dimethyl phthalate	ND	ug/l	5.0	1.8	1
Biphenyl	ND	ug/l	2.0	0.46	1
4-Chloroaniline	ND	ug/l	5.0	1.1	1
2-Nitroaniline	ND	ug/l	5.0	0.50	1
3-Nitroaniline	ND	ug/l	5.0	0.81	1
4-Nitroaniline	ND	ug/l	5.0	0.80	1
Dibenzofuran	ND	ug/l	2.0	0.50	1
1,2,4,5-Tetrachlorobenzene	ND	ug/l	10	0.44	1
Acetophenone	ND	ug/l	5.0	0.53	1
2,4,6-Trichlorophenol	ND	ug/l	5.0	0.61	1

Project Name: 1050-1088 NIAGARA Lab Number: L2201207

Project Number: T0136-020-002 **Report Date:** 01/24/22

SAMPLE RESULTS

Lab ID: L2201207-01 Date Collected: 01/08/22 10:46

Client ID: TMW-3 Date Received: 01/10/22 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westbord	ough Lab					
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1
2-Chlorophenol	ND		ug/l	2.0	0.48	1
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1
2-Nitrophenol	ND		ug/l	10	0.85	1
4-Nitrophenol	ND		ug/l	10	0.67	1
2,4-Dinitrophenol	ND		ug/l	20	6.6	1
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1
Phenol	ND		ug/l	5.0	0.57	1
2-Methylphenol	ND		ug/l	5.0	0.49	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1
Carbazole	ND		ug/l	2.0	0.49	1
Atrazine	ND		ug/l	10	0.76	1
Benzaldehyde	ND		ug/l	5.0	0.53	1
Caprolactam	49.		ug/l	10	3.3	1
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1

Project Name: 1050-1088 NIAGARA Lab Number: L2201207

Project Number: T0136-020-002 **Report Date:** 01/24/22

SAMPLE RESULTS

Lab ID: L2201207-01 Date Collected: 01/08/22 10:46

Client ID: TMW-3 Date Received: 01/10/22 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	988	J	ug/l	1
Unknown	51.0	J	ug/l	1
Unknown	52.2	J	ug/l	1
Unknown Organic Acid	10.5	J	ug/l	1
Unknown	15.4	J	ug/l	1
Unknown	59.0	J	ug/l	1
Unknown Alcohol	28.7	J	ug/l	1
Unknown	9.34	J	ug/l	1
Unknown	14.5	J	ug/l	1
Unknown	586	J	ug/l	1
Unknown	20.0	J	ug/l	1
Unknown	11.2	J	ug/l	1
Unknown	17.5	J	ug/l	1
Unknown Organic Acid	36.5	J	ug/l	1
Unknown Organic Acid	50.1	J	ug/l	1
Unknown	9.64	J	ug/l	1
Unknown	16.2	J	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	33	21-120	
Phenol-d6	37	10-120	
Nitrobenzene-d5	46	23-120	
2-Fluorobiphenyl	44	15-120	
2,4,6-Tribromophenol	37	10-120	
4-Terphenyl-d14	63	41-149	

Project Name: 1050-1088 NIAGARA Lab Number: L2201207

Project Number: T0136-020-002 **Report Date:** 01/24/22

SAMPLE RESULTS

Lab ID: L2201207-01 Date Collected: 01/08/22 10:46

Client ID: TMW-3 Date Received: 01/10/22 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 01/12/22 08:29
Analytical Date: 01/13/22 16:18

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Semivolatile Organics by GC/MS-SIM - W	Semivolatile Organics by GC/MS-SIM - Westborough Lab									
Acenaphthene	0.02	J	ug/l	0.10	0.01	1				
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1				
Fluoranthene	0.62		ug/l	0.10	0.02	1				
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1				
Naphthalene	0.16		ug/l	0.10	0.05	1				
Benzo(a)anthracene	0.32		ug/l	0.10	0.02	1				
Benzo(a)pyrene	0.35		ug/l	0.10	0.02	1				
Benzo(b)fluoranthene	0.54		ug/l	0.10	0.01	1				
Benzo(k)fluoranthene	0.16		ug/l	0.10	0.01	1				
Chrysene	0.49		ug/l	0.10	0.01	1				
Acenaphthylene	0.10	J	ug/l	0.10	0.01	1				
Anthracene	0.09	J	ug/l	0.10	0.01	1				
Benzo(ghi)perylene	0.46		ug/l	0.10	0.01	1				
Fluorene	0.08	J	ug/l	0.10	0.01	1				
Phenanthrene	0.58		ug/l	0.10	0.02	1				
Dibenzo(a,h)anthracene	0.09	J	ug/l	0.10	0.01	1				
Indeno(1,2,3-cd)pyrene	0.33		ug/l	0.10	0.01	1				
Pyrene	0.54		ug/l	0.10	0.02	1				
2-Methylnaphthalene	0.19		ug/l	0.10	0.02	1				
Pentachlorophenol	0.48	J	ug/l	0.80	0.01	1				
Hexachlorobenzene	ND		ug/l	0.80	0.01	1				
Hexachloroethane	ND		ug/l	0.80	0.06	1				

Project Name: 1050-1088 NIAGARA Lab Number: L2201207

Project Number: T0136-020-002 **Report Date:** 01/24/22

SAMPLE RESULTS

Lab ID: L2201207-01 Date Collected: 01/08/22 10:46

Client ID: TMW-3 Date Received: 01/10/22 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	30	21-120
Phenol-d6	33	10-120
Nitrobenzene-d5	48	23-120
2-Fluorobiphenyl	52	15-120
2,4,6-Tribromophenol	41	10-120
4-Terphenyl-d14	66	41-149

Project Name: 1050-1088 NIAGARA Lab Number: L2201207

Project Number: T0136-020-002 **Report Date:** 01/24/22

SAMPLE RESULTS

Lab ID: L2201207-02 Date Collected: 01/08/22 12:25

Client ID: MW-3 Date Received: 01/10/22 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270D Extraction Date: 01/12/22 08:27

Analytical Method: 1,8270D Extraction Date: 01/12/22 08:27

Analytical Date: 01/13/22 14:45

Analyst: JG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - W	estborough Lab					
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1
2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1
Isophorone	ND		ug/l	5.0	1.2	1
Nitrobenzene	ND		ug/l	2.0	0.77	1
NDPA/DPA	ND		ug/l	2.0	0.42	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1
Bis(2-ethylhexyl)phthalate	2.9	J	ug/l	3.0	1.5	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1
Di-n-butylphthalate	ND		ug/l	5.0	0.39	1
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1
Diethyl phthalate	ND		ug/l	5.0	0.38	1
Dimethyl phthalate	ND		ug/l	5.0	1.8	1
Biphenyl	ND		ug/l	2.0	0.46	1
4-Chloroaniline	ND		ug/l	5.0	1.1	1
2-Nitroaniline	ND		ug/l	5.0	0.50	1
3-Nitroaniline	ND		ug/l	5.0	0.81	1
4-Nitroaniline	ND		ug/l	5.0	0.80	1
Dibenzofuran	ND		ug/l	2.0	0.50	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1
Acetophenone	ND		ug/l	5.0	0.53	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1

Project Name: 1050-1088 NIAGARA Lab Number: L2201207

Project Number: T0136-020-002 **Report Date:** 01/24/22

SAMPLE RESULTS

Lab ID: L2201207-02 Date Collected: 01/08/22 12:25

Client ID: MW-3 Date Received: 01/10/22 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Wes	stborough Lab					
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1
2-Chlorophenol	ND		ug/l	2.0	0.48	1
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1
2-Nitrophenol	ND		ug/l	10	0.85	1
4-Nitrophenol	ND		ug/l	10	0.67	1
2,4-Dinitrophenol	ND		ug/l	20	6.6	1
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1
Phenol	ND		ug/l	5.0	0.57	1
2-Methylphenol	ND		ug/l	5.0	0.49	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1
Carbazole	ND		ug/l	2.0	0.49	1
Atrazine	ND		ug/l	10	0.76	1
Benzaldehyde	ND		ug/l	5.0	0.53	1
Caprolactam	93.		ug/l	10	3.3	1
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1

Project Name: 1050-1088 NIAGARA Lab Number: L2201207

Project Number: T0136-020-002 **Report Date:** 01/24/22

SAMPLE RESULTS

Lab ID: L2201207-02 Date Collected: 01/08/22 12:25

Client ID: MW-3 Date Received: 01/10/22 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	736	J	ug/l	1
Unknown	21.3	J	ug/l	1
Unknown Organic Acid	422	J	ug/l	1
Unknown Alcohol	11.3	J	ug/l	1
Unknown Organic Acid	22.9	J	ug/l	1
Unknown	13.6	J	ug/l	1
Unknown	14.0	J	ug/l	1
Unknown Organic Acid	20.6	J	ug/l	1
Unknown Benzene	11.7	J	ug/l	1
Unknown Benzene	21.6	J	ug/l	1
Unknown	20.2	J	ug/l	1
Unknown	32.0	J	ug/l	1
Benzene, Propyl-	19.5	NJ	ug/l	1
Unknown	12.9	J	ug/l	1
Unknown	20.5	J	ug/l	1
Indane	71.4	NJ	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	58	21-120	
Phenol-d6	49	10-120	
Nitrobenzene-d5	72	23-120	
2-Fluorobiphenyl	61	15-120	
2,4,6-Tribromophenol	64	10-120	
4-Terphenyl-d14	75	41-149	

Project Name: 1050-1088 NIAGARA Lab Number: L2201207

Project Number: T0136-020-002 **Report Date:** 01/24/22

SAMPLE RESULTS

Lab ID: L2201207-02 Date Collected: 01/08/22 12:25

Client ID: MW-3 Date Received: 01/10/22 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 01/12/22 08:29
Analytical Date: 01/13/22 16:37

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - W	estborough La	ab				
Acenaphthene	0.07	J	ug/l	0.10	0.01	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	0.06	J	ug/l	0.10	0.02	1
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1
Naphthalene	0.71		ug/l	0.10	0.05	1
Benzo(a)anthracene	0.04	J	ug/l	0.10	0.02	1
Benzo(a)pyrene	0.03	J	ug/l	0.10	0.02	1
Benzo(b)fluoranthene	0.04	J	ug/l	0.10	0.01	1
Benzo(k)fluoranthene	0.02	J	ug/l	0.10	0.01	1
Chrysene	0.03	J	ug/l	0.10	0.01	1
Acenaphthylene	0.04	J	ug/l	0.10	0.01	1
Anthracene	0.05	J	ug/l	0.10	0.01	1
Benzo(ghi)perylene	0.04	J	ug/l	0.10	0.01	1
Fluorene	0.09	J	ug/l	0.10	0.01	1
Phenanthrene	0.15		ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	0.02	J	ug/l	0.10	0.01	1
Indeno(1,2,3-cd)pyrene	0.04	J	ug/l	0.10	0.01	1
Pyrene	0.05	J	ug/l	0.10	0.02	1
2-Methylnaphthalene	0.13		ug/l	0.10	0.02	1
Pentachlorophenol	ND		ug/l	0.80	0.01	1
Hexachlorobenzene	ND		ug/l	0.80	0.01	1
Hexachloroethane	ND		ug/l	0.80	0.06	1

Project Name: 1050-1088 NIAGARA Lab Number: L2201207

Project Number: T0136-020-002 **Report Date:** 01/24/22

SAMPLE RESULTS

Lab ID: L2201207-02 Date Collected: 01/08/22 12:25

Client ID: MW-3 Date Received: 01/10/22 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	50	21-120
Phenol-d6	45	10-120
Nitrobenzene-d5	73	23-120
2-Fluorobiphenyl	73	15-120
2,4,6-Tribromophenol	77	10-120
4-Terphenyl-d14	81	41-149

Project Name: 1050-1088 NIAGARA Lab Number: L2201207

Project Number: T0136-020-002 **Report Date:** 01/24/22

SAMPLE RESULTS

Lab ID: L2201207-03 Date Collected: 01/08/22 11:40

Client ID: MW-6 Date Received: 01/10/22 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270D Extraction Date: 01/12/22 08:27

Analytical Method: 1,8270D Extraction Date: 01/12/22 08:27

Analytical Date: 01/13/22 15:11

Analyst: JG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - W	estborough Lab					
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1
2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1
Isophorone	ND		ug/l	5.0	1.2	1
Nitrobenzene	ND		ug/l	2.0	0.77	1
NDPA/DPA	ND		ug/l	2.0	0.42	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1
Bis(2-ethylhexyl)phthalate	1.8	J	ug/l	3.0	1.5	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1
Di-n-butylphthalate	ND		ug/l	5.0	0.39	1
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1
Diethyl phthalate	ND		ug/l	5.0	0.38	1
Dimethyl phthalate	ND		ug/l	5.0	1.8	1
Biphenyl	ND		ug/l	2.0	0.46	1
4-Chloroaniline	ND		ug/l	5.0	1.1	1
2-Nitroaniline	ND		ug/l	5.0	0.50	1
3-Nitroaniline	ND		ug/l	5.0	0.81	1
4-Nitroaniline	ND		ug/l	5.0	0.80	1
Dibenzofuran	ND		ug/l	2.0	0.50	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1
Acetophenone	ND		ug/l	5.0	0.53	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1

Project Name: 1050-1088 NIAGARA Lab Number: L2201207

Project Number: T0136-020-002 **Report Date:** 01/24/22

SAMPLE RESULTS

Lab ID: L2201207-03 Date Collected: 01/08/22 11:40

Client ID: MW-6 Date Received: 01/10/22 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - W	estborough Lab					
p-Chloro-m-cresol	ND		//	2.0	0.35	1
2-Chlorophenol	ND		ug/l	2.0	0.33	1
2,4-Dichlorophenol	ND		ug/l ug/l	5.0	0.40	1
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	 1
2-Nitrophenol	ND		ug/l	10	0.85	1
4-Nitrophenol	ND		ug/l	10	0.67	1
2,4-Dinitrophenol	ND		ug/l	20	6.6	1
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1
Phenol	ND		ug/l	5.0	0.57	1
2-Methylphenol	ND		ug/l	5.0	0.49	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1
Carbazole	ND		ug/l	2.0	0.49	1
Atrazine	ND		ug/l	10	0.76	1
Benzaldehyde	ND		ug/l	5.0	0.53	1
Caprolactam	ND		ug/l	10	3.3	1
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1

Tentatively Identified Compounds				
Total TIC Compounds	13.8	J	ug/l	1
Unknown	1.78	J	ug/l	1
Unknown Organic Acid	4.69	J	ug/l	1
Unknown Organic Acid	3.56	J	ug/l	1
Unknown Alkane	3.78	J	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	55	21-120	
Phenol-d6	46	10-120	
Nitrobenzene-d5	58	23-120	
2-Fluorobiphenyl	55	15-120	
2,4,6-Tribromophenol	57	10-120	
4-Terphenyl-d14	75	41-149	

Project Name: 1050-1088 NIAGARA Lab Number: L2201207

Project Number: T0136-020-002 **Report Date:** 01/24/22

SAMPLE RESULTS

Lab ID: L2201207-03 Date Collected: 01/08/22 11:40

Client ID: MW-6 Date Received: 01/10/22 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 01/12/22 08:29
Analytical Date: 01/13/22 16:57

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - V	Vestborough La	ab				
Acenaphthene	ND		ug/l	0.10	0.01	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	0.03	J	ug/l	0.10	0.02	1
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1
Naphthalene	ND		ug/l	0.10	0.05	1
Benzo(a)anthracene	0.03	J	ug/l	0.10	0.02	1
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1
Benzo(b)fluoranthene	0.02	J	ug/l	0.10	0.01	1
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1
Chrysene	0.03	J	ug/l	0.10	0.01	1
Acenaphthylene	0.03	J	ug/l	0.10	0.01	1
Anthracene	0.01	J	ug/l	0.10	0.01	1
Benzo(ghi)perylene	0.02	J	ug/l	0.10	0.01	1
Fluorene	0.03	J	ug/l	0.10	0.01	1
Phenanthrene	0.06	J	ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1
Indeno(1,2,3-cd)pyrene	0.02	J	ug/l	0.10	0.01	1
Pyrene	0.04	J	ug/l	0.10	0.02	1
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1
Pentachlorophenol	ND		ug/l	0.80	0.01	1
Hexachlorobenzene	ND		ug/l	0.80	0.01	1
Hexachloroethane	ND		ug/l	0.80	0.06	1

Project Name: 1050-1088 NIAGARA Lab Number: L2201207

Project Number: T0136-020-002 **Report Date:** 01/24/22

SAMPLE RESULTS

Lab ID: L2201207-03 Date Collected: 01/08/22 11:40

Client ID: MW-6 Date Received: 01/10/22 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	50	21-120
Phenol-d6	44	10-120
Nitrobenzene-d5	63	23-120
2-Fluorobiphenyl	63	15-120
2,4,6-Tribromophenol	68	10-120
4-Terphenyl-d14	74	41-149

L2201207

Lab Number:

Project Name: 1050-1088 NIAGARA

Project Number: T0136-020-002 **Report Date:** 01/24/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 01/13/22 11:20

Analyst: JG

Extraction Method: EPA 3510C Extraction Date: 01/12/22 08:27

arameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS -	Westborough	Lab for s	ample(s):	01-03	Batch:	WG1593101-1
Bis(2-chloroethyl)ether	ND		ug/l	2.0		0.50
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1.6
2,4-Dinitrotoluene	ND		ug/l	5.0		1.2
2,6-Dinitrotoluene	ND		ug/l	5.0		0.93
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		0.49
4-Bromophenyl phenyl ether	ND		ug/l	2.0		0.38
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		0.53
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		0.50
Hexachlorocyclopentadiene	ND		ug/l	20		0.69
Isophorone	ND		ug/l	5.0		1.2
Nitrobenzene	ND		ug/l	2.0		0.77
NDPA/DPA	ND		ug/l	2.0		0.42
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		0.64
Bis(2-ethylhexyl)phthalate	1.6	J	ug/l	3.0		1.5
Butyl benzyl phthalate	ND		ug/l	5.0		1.2
Di-n-butylphthalate	ND		ug/l	5.0		0.39
Di-n-octylphthalate	ND		ug/l	5.0		1.3
Diethyl phthalate	ND		ug/l	5.0		0.38
Dimethyl phthalate	ND		ug/l	5.0		1.8
Biphenyl	ND		ug/l	2.0		0.46
4-Chloroaniline	ND		ug/l	5.0		1.1
2-Nitroaniline	ND		ug/l	5.0		0.50
3-Nitroaniline	ND		ug/l	5.0		0.81
4-Nitroaniline	ND		ug/l	5.0		0.80
Dibenzofuran	ND		ug/l	2.0		0.50
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10		0.44
Acetophenone	ND		ug/l	5.0		0.53
2,4,6-Trichlorophenol	ND		ug/l	5.0		0.61
p-Chloro-m-cresol	ND		ug/l	2.0		0.35

Lab Number:

Project Name: 1050-1088 NIAGARA

Project Number: T0136-020-002

nalvsis

Report Date: 01/24/22

L2201207

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 01/13/22 11:20

Analyst: JG

Extraction Method: EPA 3510C Extraction Date: 01/12/22 08:27

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS	- Westborough	Lab for s	ample(s):	01-03	Batch:	WG1593101-1
2-Chlorophenol	ND		ug/l	2.0		0.48
2,4-Dichlorophenol	ND		ug/l	5.0		0.41
2,4-Dimethylphenol	ND		ug/l	5.0		1.8
2-Nitrophenol	ND		ug/l	10		0.85
4-Nitrophenol	ND		ug/l	10		0.67
2,4-Dinitrophenol	ND		ug/l	20		6.6
4,6-Dinitro-o-cresol	ND		ug/l	10		1.8
Phenol	ND		ug/l	5.0		0.57
2-Methylphenol	ND		ug/l	5.0		0.49
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		0.48
2,4,5-Trichlorophenol	ND		ug/l	5.0		0.77
Carbazole	ND		ug/l	2.0		0.49
Atrazine	ND		ug/l	10		0.76
Benzaldehyde	ND		ug/l	5.0		0.53
Caprolactam	ND		ug/l	10		3.3
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0		0.84

Tentatively Identified Compounds				
Total TIC Compounds	426	J	ug/l	
Unknown Alcohol	22.2	J	ug/l	
Unknown	26.2	J	ug/l	
Unknown	30.8	J	ug/l	
Unknown	35.9	J	ug/l	
Unknown	20.9	J	ug/l	
Unknown	23.7	J	ug/l	

Project Name: 1050-1088 NIAGARA

Report Date: **Project Number:** T0136-020-002

01/24/22

L2201207

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 01/13/22 11:20

Analyst: JG

Unknown

Extraction Method: EPA 3510C 01/12/22 08:27 **Extraction Date:**

Parameter	Result	Qualifier	Units	RL		MDL	
Semivolatile Organics by GC/MS -	Westborough	n Lab for s	ample(s):	01-03	Batch:	WG1593101-1	
Tentatively Identified Compounds							
Unknown	25.3	J	ug/l				
Unknown	28.3	J	ug/l				
Unknown Alcohol	33.3	J	ug/l				
Unknown	22.9	J	ug/l				
Unknown	34.6	J	ug/l				
Unknown	36.6	J	ug/l				
Unknown	28.8	J	ug/l				

J

ug/l

		Acceptance
Surrogate	%Recovery Q	ualifier Criteria
2-Fluorophenol	53	21-120
Phenol-d6	44	10-120
Nitrobenzene-d5	56	23-120
2-Fluorobiphenyl	57	15-120
2,4,6-Tribromophenol	61	10-120
4-Terphenyl-d14	76	41-149

26.1

Project Name: 1050-1088 NIAGARA

Project Number: T0136-020-002

Lab Number: L2201207

Report Date: 01/24/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM Analytical Date: 01/13/22 12:32

Analyst: RP

Extraction Method: EPA 3510C Extraction Date: 01/12/22 08:29

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS-	SIM - Westbo	rough Lab	for sample	e(s): 01-03	Batch:	WG1593102-1
Acenaphthene	ND		ug/l	0.10	0.0	I
2-Chloronaphthalene	ND		ug/l	0.20	0.02	2
Fluoranthene	0.03	J	ug/l	0.10	0.02	2
Hexachlorobutadiene	ND		ug/l	0.50	0.05	5
Naphthalene	ND		ug/l	0.10	0.05	5
Benzo(a)anthracene	0.03	J	ug/l	0.10	0.02	2
Benzo(a)pyrene	0.02	J	ug/l	0.10	0.02	2
Benzo(b)fluoranthene	0.03	J	ug/l	0.10	0.0	
Benzo(k)fluoranthene	0.02	J	ug/l	0.10	0.0	
Chrysene	0.03	J	ug/l	0.10	0.0	
Acenaphthylene	0.03	J	ug/l	0.10	0.0	
Anthracene	0.02	J	ug/l	0.10	0.0	
Benzo(ghi)perylene	0.02	J	ug/l	0.10	0.0	
Fluorene	0.04	J	ug/l	0.10	0.0	1
Phenanthrene	0.06	J	ug/l	0.10	0.02	2
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.0	1
Indeno(1,2,3-cd)pyrene	0.02	J	ug/l	0.10	0.0	1
Pyrene	0.03	J	ug/l	0.10	0.02	2
2-Methylnaphthalene	ND		ug/l	0.10	0.02	2
Pentachlorophenol	ND		ug/l	0.80	0.0	1
Hexachlorobenzene	0.01	J	ug/l	0.80	0.0	1
Hexachloroethane	ND		ug/l	0.80	0.06	5

L2201207

Project Name: 1050-1088 NIAGARA Lab Number:

Project Number: T0136-020-002 **Report Date:** 01/24/22

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D-SIM Extraction Method: EPA 3510C
Analytical Date: 01/13/22 12:32 Extraction Date: 01/12/22 08:29

Analyst: RP

Parameter Result Qualifier Units RL MDL

Semivolatile Organics by GC/MS-SIM - Westborough Lab for sample(s): 01-03 Batch: WG1593102-1

Surrogate	%Recovery G	Acceptance Qualifier Criteria
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
2-Fluorophenol	50	21-120
Phenol-d6	42	10-120
Nitrobenzene-d5	61	23-120
2-Fluorobiphenyl	65	15-120
2,4,6-Tribromophenol	58	10-120
4-Terphenyl-d14	78	41-149

Project Name: 1050-1088 NIAGARA

Project Number: T0136-020-002

Lab Number: L2201207

Report Date: 01/24/22

Parameter	LCS %Recovery	Qual	LCSI %Recov		%Recovery Qual Limits	RPD	RPD Qual Limits	
Semivolatile Organics by GC/MS - Westbor	rough Lab Assoc	iated sample(s):	01-03	Batch:	WG1593101-2 WG1593	101-3		
Bis(2-chloroethyl)ether	63		62		40-140	2	30	
3,3'-Dichlorobenzidine	67		55		40-140	20	30	
2,4-Dinitrotoluene	70		67		48-143	4	30	
2,6-Dinitrotoluene	67		60		40-140	11	30	
4-Chlorophenyl phenyl ether	64		63		40-140	2	30	
4-Bromophenyl phenyl ether	67		63		40-140	6	30	
Bis(2-chloroisopropyl)ether	59		56		40-140	5	30	
Bis(2-chloroethoxy)methane	65		63		40-140	3	30	
Hexachlorocyclopentadiene	56		55		40-140	2	30	
Isophorone	65		63		40-140	3	30	
Nitrobenzene	65		61		40-140	6	30	
NDPA/DPA	74		70		40-140	6	30	
n-Nitrosodi-n-propylamine	65		59		29-132	10	30	
Bis(2-ethylhexyl)phthalate	88		83		40-140	6	30	
Butyl benzyl phthalate	89		80		40-140	11	30	
Di-n-butylphthalate	83		77		40-140	8	30	
Di-n-octylphthalate	89		86		40-140	3	30	
Diethyl phthalate	74		71		40-140	4	30	
Dimethyl phthalate	65		60		40-140	8	30	
Biphenyl	69		65		40-140	6	30	
4-Chloroaniline	72		58		40-140	22	30	
2-Nitroaniline	74		68		52-143	8	30	
3-Nitroaniline	69		59		25-145	16	30	

Project Name: 1050-1088 NIAGARA

Project Number: T0136-020-002

Lab Number: L2201207

Report Date: 01/24/22

Parameter	LCS %Recovery	Qual	LCSD %Recover	y Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westl	oorough Lab Associ	ated sample(s):	01-03 B	atch: WG1593	3101-2 WG15931	101-3			
4-Nitroaniline	76		73		51-143	4		30	
Dibenzofuran	69		66		40-140	4		30	
1,2,4,5-Tetrachlorobenzene	64		60		2-134	6		30	
Acetophenone	70		66		39-129	6		30	
2,4,6-Trichlorophenol	64		58		30-130	10		30	
p-Chloro-m-cresol	85		72		23-97	17		30	
2-Chlorophenol	74		65		27-123	13		30	
2,4-Dichlorophenol	73		67		30-130	9		30	
2,4-Dimethylphenol	72		49		30-130	38	Q	30	
2-Nitrophenol	69		62		30-130	11		30	
4-Nitrophenol	71		64		10-80	10		30	
2,4-Dinitrophenol	50		59		20-130	17		30	
4,6-Dinitro-o-cresol	62		58		20-164	7		30	
Phenol	53		50		12-110	6		30	
2-Methylphenol	74		69		30-130	7		30	
3-Methylphenol/4-Methylphenol	77		67		30-130	14		30	
2,4,5-Trichlorophenol	68		62		30-130	9		30	
Carbazole	81		75		55-144	8		30	
Atrazine	82		78		40-140	5		30	
Benzaldehyde	68		62		40-140	9		30	
Caprolactam	37		34		10-130	8		30	
2,3,4,6-Tetrachlorophenol	70		67		40-140	4		30	

Project Name: 1050-1088 NIAGARA

Lab Number:

L2201207

Project Number:

T0136-020-002

Report Date:

01/24/22

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-03 Batch: WG1593101-2 WG1593101-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	70	66	21-120
Phenol-d6	57	51	10-120
Nitrobenzene-d5	65	62	23-120
2-Fluorobiphenyl	63	55	15-120
2,4,6-Tribromophenol	81	78	10-120
4-Terphenyl-d14	79	74	41-149

Project Name: 1050-1088 NIAGARA

Project Number: T0136-020-002

Lab Number: L2201207

Report Date: 01/24/22

ırameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recove Limits	ry RPD	Qual	RPD Limits
emivolatile Organics by GC/MS-SIM -	Westborough Lab A	ssociated sam	nple(s): 01-03	Batch: \	WG1593102-2	WG1593102-3		
Acenaphthene	77		80		40-140	4		40
2-Chloronaphthalene	75		79		40-140	5		40
Fluoranthene	81		81		40-140	0		40
Hexachlorobutadiene	64		71		40-140	10		40
Naphthalene	68		75		40-140	10		40
Benzo(a)anthracene	82		82		40-140	0		40
Benzo(a)pyrene	77		77		40-140	0		40
Benzo(b)fluoranthene	84		84		40-140	0		40
Benzo(k)fluoranthene	81		80		40-140	1		40
Chrysene	76		76		40-140	0		40
Acenaphthylene	75		78		40-140	4		40
Anthracene	79		80		40-140	1		40
Benzo(ghi)perylene	88		87		40-140	1		40
Fluorene	81		84		40-140	4		40
Phenanthrene	77		78		40-140	1		40
Dibenzo(a,h)anthracene	92		91		40-140	1		40
Indeno(1,2,3-cd)pyrene	87		86		40-140	1		40
Pyrene	81		81		40-140	0		40
2-Methylnaphthalene	73		79		40-140	8		40
Pentachlorophenol	79		82		40-140	4		40
Hexachlorobenzene	77		79		40-140	3		40
Hexachloroethane	56		64		40-140	13		40

Project Name: 1050-1088 NIAGARA

Lab Number: L2201207

Project Number: T0136-020-002 Report Date:

01/24/22

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01-03 Batch: WG1593102-2 WG1593102-3

Surrogate	LCS %Recovery Qua	LCSD Il %Recovery Qual	Acceptance Criteria
2-Fluorophenol	54	67	21-120
Phenol-d6	49	57	10-120
Nitrobenzene-d5	71	80	23-120
2-Fluorobiphenyl	72	77	15-120
2,4,6-Tribromophenol	66	83	10-120
4-Terphenyl-d14	80	81	41-149

1050-1088 NIAGARA *Lab Number:* L2201207

Project Number: T0136-020-002 **Report Date:** 01/24/22

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Project Name:

Cooler Custody Seal

A Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2201207-01A	Vial HCl preserved	Α	NA		2.3	Υ	Absent		NYTCL-8260-R2(14)
L2201207-01B	Vial HCl preserved	Α	NA		2.3	Υ	Absent		NYTCL-8260-R2(14)
L2201207-01C	Vial HCl preserved	Α	NA		2.3	Υ	Absent		NYTCL-8260-R2(14)
L2201207-01D	Amber 250ml unpreserved	Α	7	7	2.3	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2201207-01E	Amber 250ml unpreserved	Α	7	7	2.3	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2201207-02A	Vial HCl preserved	Α	NA		2.3	Υ	Absent		NYTCL-8260-R2(14)
L2201207-02B	Vial HCl preserved	Α	NA		2.3	Υ	Absent		NYTCL-8260-R2(14)
L2201207-02C	Vial HCl preserved	Α	NA		2.3	Υ	Absent		NYTCL-8260-R2(14)
L2201207-02D	Amber 250ml unpreserved	Α	10	10	2.3	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2201207-02E	Amber 250ml unpreserved	Α	10	10	2.3	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2201207-03A	Vial HCl preserved	Α	NA		2.3	Υ	Absent		NYTCL-8260-R2(14)
L2201207-03B	Vial HCl preserved	Α	NA		2.3	Υ	Absent		NYTCL-8260-R2(14)
L2201207-03C	Vial HCl preserved	Α	NA		2.3	Υ	Absent		NYTCL-8260-R2(14)
L2201207-03D	Amber 250ml unpreserved	Α	7	7	2.3	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2201207-03E	Amber 250ml unpreserved	Α	7	7	2.3	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)

Project Name: 1050-1088 NIAGARA Lab Number: L2201207

GLOSSARY

Acronyms

EDL

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

 Project Name:
 1050-1088 NIAGARA
 Lab Number:
 L2201207

 Project Number:
 T0136-020-002
 Report Date:
 01/24/22

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

 Project Name:
 1050-1088 NIAGARA
 Lab Number:
 L2201207

 Project Number:
 T0136-020-002
 Report Date:
 01/24/22

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits.
 (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

 Project Name:
 1050-1088 NIAGARA
 Lab Number:
 L2201207

 Project Number:
 T0136-020-002
 Report Date:
 01/24/22

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Con Project Information Project Name: 10 5 0 - Project Location: 3 VE	ay oper Ave, Suite 10		Page of	1	Delive	in La in La arables ASP-A EQuIS	ec'd b /	1	ASP-B	(4 File)	ALPHA Job # L 2 2 0/207 Billing Information Same as Client Info	
Of an Information	ISSIE / POSSI	Project # To136 - 1		7				Other						
Client Information Client: TURNEY	STATE OF THE PERSON	(Use Project name as Pr	pronq	-			Regu	latory R	equiremo	ent	No. of Street, or other		Disposal Site Information	
Address: 2558 HA	WRUPE TRAK	Project Manager: NAT		7				NY TOG	S		NY Par	375	Please identify below location	of
BUPFALO, N		ALPHAQuote #:	o I-tpreso		He contract			AWQ St	andards		NY CP-	51	applicable disposal facilities.	Dispersion Co.
Phone: 716-856-		Turn-Around Time	7 7 30			MI THE STATE OF THE PARTY OF TH		NY Rest	ricted Use		Other		Disposal Facility:	
Fax:	00	Standard	N N	Due Date	o:			NY Unre	stricted U	se			□ N1 💢 NA	
Email: nmunley w	Lun-Hercon	Rush (only if pre approved		# of Days				NYC Se	wer Disch	arge			Other:	
These samples have be	A CONTRACT OF THE PARTY OF THE						ANA	LYSIS					Sample Filtration	T
Other project specific	requirements/comm						3 +7165	oc +Thes					☐ Done ☐ Lab to do Preservation ☐ Lab to do	t a I B
riease specify metals	or rac.						100	Syloc			1 1		(Please Specify below)	t
AV DUAL TO ID			Colle	ection	Sample	Sampler's	1 .	1			1 1			t
ALPHA Lab ID (Lab Use Only)	S	ample ID	Date	Time	Matrix	Initials	결	B			1 1	- 1	Sample Specific Comments	
	Tabul 7		18/22	1046	AUSA	CS	×	X	_	+				5
201307 -01	TMW-3		4812-	1225	1	1	X	X	\neg	+	\vdash			5
703	MW-6		1	1140	U	V	bc.	Y	\neg	1				5
US.	ION-P			11 (0			-				П			
														_
														_
														_
														_
											_			
Preservative Code: A = None B = HCl C = HNO ₃ D = H ₂ SO ₄	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification Mansfield: Certification				ntainer Type		A					Please print clearly, leg and completely. Sampl not be logged in and turnaround time clock v start until any ambiguiti	es can will not
E = NaOH F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH O = Other	C = Cube O = Other E = Encore D = BOD Bottle	Relinquished They M I chas		Date 1/10/22	e/Time 939 939	MA	Recei	ived By:		1/1	10/20	759 0100	resolved. BY EXECUT THIS COC, THE CLIE! HAS READ AND AGR! TO BE BOUND BY AL TERMS & CONDITION (See reverse side.)	ING NT EES PHA'S

ANALYTICAL REPORT

Lab Number: L2231260

Client: Turnkey Environmental Restoration, LLC

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Nate Munley
Phone: (716) 856-0599

Project Name: 1050-1088 NIAGARA STREET SITE

Project Number: T0136-013-001

Report Date: 06/27/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 1050-1088 NIAGARA STREET SITE

Project Number: T0136-013-001

Lab Number:

L2231260

Report Date: 06/27/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2231260-01	TMW-3	WATER	1050-1088 NIAGARA ST., BUFFALO, NY	06/12/22 12:15	06/13/22
L2231260-02	MW-3	WATER	1050-1088 NIAGARA ST., BUFFALO, NY	06/12/22 12:30	06/13/22
L2231260-03	MW-6	WATER	1050-1088 NIAGARA ST., BUFFALO, NY	06/12/22 13:15	06/13/22
L2231260-04	BLIND DUP-1	WATER	1050-1088 NIAGARA ST., BUFFALO, NY	06/12/22 00:00	06/13/22
L2231260-05	TRIP BLANK	WATER	1050-1088 NIAGARA ST., BUFFALO, NY	06/12/22 00:00	06/13/22

Project Name: 1050-1088 NIAGARA STREET SITE Lab Number: L2231260
Project Number: T0136-013-001 Report Date: 06/27/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Serial_No:06272215:36

Project Name:1050-1088 NIAGARA STREET SITELab Number:L2231260Project Number:T0136-013-001Report Date:06/27/22

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L2231260-02 and -02D: The sample was received in the proper acid-preserved containers; however, upon analysis, the pH was determined to be greater than 2, and thus the method required holding time was exceeded.

L2231260-02: The surrogate recovery is outside the acceptance criteria for 1,2-dichloroethane-d4 (131%); however, the sample was not re-analyzed due to coelution with an obvious interference. A copy of the chromatogram is included as an attachment to this report.

Semivolatile Organics

The WG1652319-1 Method Blank, associated with L2231260-01 through -04, has TIC(s) detected. The results are qualified with a "B" for any associated samples that have detections of the same TIC(s).

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Jufani Morrissey-Tiffani Morrissey

Authorized Signature:

Title: Technical Director/Representative

Alama .

Date: 06/27/22

ORGANICS

VOLATILES

Serial_No:06272215:36

L2231260

06/27/22

Project Name: 1050-1088 NIAGARA STREET SITE

Project Number: T0136-013-001

SAMPLE RESULTS

Date Collected: 06/12/22 12:15

Lab ID: L2231260-01

Client ID: TMW-3

Sample Location: 1050-1088 NIAGARA ST., BUFFALO, NY

Date Received: 06/13/22
Field Prep: Not Specified

Lab Number:

Report Date:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 06/21/22 15:25

Analyst: LAC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	oorough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

Serial_No:06272215:36

06/27/22

Project Name: 1050-1088 NIAGARA STREET SITE Lab Number: L2231260

Project Number: T0136-013-001

SAMPLE RESULTS

Date Collected: 06/12/22 12:15

Report Date:

Lab ID: L2231260-01 Client ID: Date Received: 06/13/22 TMW-3

Sample Location: 1050-1088 NIAGARA ST., BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	1.5	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	0.44	J	ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	0.66	J	ug/l	10	0.40	1

No Tentatively Identified Compounds ND ug/l 1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	103		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	113		70-130	
Dibromofluoromethane	94		70-130	

L2231260

Project Name: 1050-1088 NIAGARA STREET SITE

Project Number: T0136-013-001

SAMPLE RESULTS

Report Date: 06/27/22

Lab Number:

Lab ID: Date Collected: 06/12/22 12:30 L2231260-02

Client ID: Date Received: 06/13/22 MW-3 Field Prep: Sample Location: 1050-1088 NIAGARA ST., BUFFALO, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 06/21/22 17:01

Analyst: LAC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	7.6		ug/l	0.50	0.16	1
Toluene	1.9	J	ug/l	2.5	0.70	1
Ethylbenzene	2.4	J	ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

06/27/22

Project Name: 1050-1088 NIAGARA STREET SITE Lab Number: L2231260

Project Number: Report Date: T0136-013-001

SAMPLE RESULTS

Lab ID: Date Collected: 06/12/22 12:30 L2231260-02

Date Received: Client ID: 06/13/22 MW-3

Sample Location: 1050-1088 NIAGARA ST., BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	2.9		ug/l	2.5	0.70	1
o-Xylene	1.7	J	ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	51		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	280	E	ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	160		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	131	Q	70-130
Toluene-d8	116		70-130
4-Bromofluorobenzene	113		70-130
Dibromofluoromethane	81		70-130

70-130

70-130

L2231260

06/12/22 12:30

Project Name: 1050-1088 NIAGARA STREET SITE

Project Number: T0136-013-001

SAMPLE RESULTS

Report Date:

06/27/22

Lab Number:

Date Collected:

Lab ID: D L2231260-02

MW-3

Client ID: Sample Location: 1050-1088 NIAGARA ST., BUFFALO, NY Date Received: 06/13/22 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 06/23/22 10:17

Analyst: MKS

4-Bromofluorobenzene

Dibromofluoromethane

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbo	rough Lab						
Cyclohexane	230		ug/l	50	1.4	5	
Surrogate			% Recovery	Qualifier	Accep Crit	otance teria	
1,2-Dichloroethane-d4			100		70)-130	
Toluene-d8			104		70)-130	

112

94

L2231260

06/27/22

Project Name: 1050-1088 NIAGARA STREET SITE

Project Number: T0136-013-001

SAMPLE RESULTS

Date Collected: 06/12/22 13:15

Lab ID: L2231260-03
Client ID: MW-6

Sample Location: 1050-1088 NIAGARA ST., BUFFALO, NY

Date Received: 06/13/22
Field Prep: Not Specified

Lab Number:

Report Date:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 06/21/22 15:49

Analyst: LAC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

L2231260

06/27/22

Project Name: Lab Number: 1050-1088 NIAGARA STREET SITE

Project Number: T0136-013-001

SAMPLE RESULTS

Date Collected: 06/12/22 13:15

Report Date:

Lab ID: L2231260-03 Client ID: Date Received: 06/13/22 MW-6

Sample Location: 1050-1088 NIAGARA ST., BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Tentatively	/ Identified	Compounds

No Tentatively Identified Compounds ND ug/l 1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	107		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	110		70-130	
Dibromofluoromethane	96		70-130	

L2231260

06/27/22

Project Name: 1050-1088 NIAGARA STREET SITE

L2231260-04

BLIND DUP-1

1050-1088 NIAGARA ST., BUFFALO, NY

Project Number: T0136-013-001

SAMPLE RESULTS

Date Collected: 06/12/22 00:00

Lab Number:

Report Date:

Date Received: 06/13/22
Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 06/21/22 16:13

Analyst: LAC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

06/27/22

Report Date:

Project Name: 1050-1088 NIAGARA STREET SITE Lab Number: L2231260

Project Number: T0136-013-001

SAMPLE RESULTS

Lab ID: L2231260-04 Date Collected: 06/12/22 00:00

Client ID: BLIND DUP-1 Date Received: 06/13/22

Sample Location: 1050-1088 NIAGARA ST., BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Tentatively Identified Compou	unds
-------------------------------	------

No Tentatively Identified Compounds ND ug/l 1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	106		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	110		70-130	
Dibromofluoromethane	96		70-130	

L2231260

06/27/22

Project Name: 1050-1088 NIAGARA STREET SITE

Project Number: T0136-013-001

SAMPLE RESULTS

Date Collected: 06/12/22 00:00

Lab ID: L2231260-05

Client ID: TRIP BLANK

Sample Location: 1050-1088 NIAGARA ST., BUFFALO, NY

Date Received: 06/13/22
Field Prep: Not Specified

Lab Number:

Report Date:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 06/21/22 16:37

Analyst: LAC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

06/27/22

Project Name: 1050-1088 NIAGARA STREET SITE Lab Number: L2231260

Project Number: T0136-013-001

SAMPLE RESULTS

Date Collected: 06/12/22 00:00

Report Date:

Lab ID: L2231260-05 Date Received: 06/13/22 Client ID: TRIP BLANK

Sample Location: 1050-1088 NIAGARA ST., BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

No Tentatively Identified Compounds ND 1 ug/l

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	104		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	111		70-130	
Dibromofluoromethane	95		70-130	

L2231260

Project Name: 1050-1088 NIAGARA STREET SITE **Lab Number:**

Project Number: T0136-013-001 **Report Date:** 06/27/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 06/23/22 08:45

Analyst: PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	02 Batch:	WG1654981-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

L2231260

Project Name: Lab Number: 1050-1088 NIAGARA STREET SITE

Project Number: Report Date: T0136-013-001 06/27/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 06/23/22 08:45

Analyst: PD

Parameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - Westl	borough Lab	for sample(s): 02	Batch:	WG1654981-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

L2231260

Project Name: 1050-1088 NIAGARA STREET SITE Lab Number:

Project Number: T0136-013-001 **Report Date:** 06/27/22

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 06/23/22 08:45

Analyst: PD

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 02 Batch: WG1654981-5

		Acceptance			
Surrogate	%Recovery	Qualifier Criteria			
1,2-Dichloroethane-d4	107	70-130			
Toluene-d8	101	70-130			
4-Bromofluorobenzene	110	70-130			
Dibromofluoromethane	110	70-130			

Project Name: 1050-1088 NIAGARA STREET SITE Lab Number: L2231260

Project Number: T0136-013-001 **Report Date:** 06/27/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 06/21/22 09:23

Analyst: PD

arameter	Result	Qualifier Units	RL RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-05 Batch:	WG1655046-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: 1050-1088 NIAGARA STREET SITE

Project Number: T0136-013-001

Lab Number: L2231260

Report Date: 06/27/22

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 06/21/22 09:23

Analyst: PD

Parameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - W	estborough Lab	for sample(s): 01-05	Batch:	WG1655046-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Tentatively Identified Compounds

No Tentatively Identified Compounds

ND

ug/l

Project Name: 1050-1088 NIAGARA STREET SITE Lab Number: L2231260

Project Number: T0136-013-001 **Report Date:** 06/27/22

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 06/21/22 09:23

Analyst: PD

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-05 Batch: WG1655046-5

		Acceptance
Surrogate	%Recovery Q	ualifier Criteria
1,2-Dichloroethane-d4	106	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	110	70-130
Dibromofluoromethane	95	70-130

Project Name: 1050-1088 NIAGARA STREET SITE

Project Number: T0136-013-001

Lab Number: L2231260

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 02	2 Batch: WG	1654981-3	WG1654981-4			
Methylene chloride	100		110		70-130	10	20	
1,1-Dichloroethane	110		110		70-130	0	20	
Chloroform	100		110		70-130	10	20	
Carbon tetrachloride	110		120		63-132	9	20	
1,2-Dichloropropane	100		110		70-130	10	20	
Dibromochloromethane	96		98		63-130	2	20	
1,1,2-Trichloroethane	100		110		70-130	10	20	
Tetrachloroethene	110		110		70-130	0	20	
Chlorobenzene	100		100		75-130	0	20	
Trichlorofluoromethane	99		100		62-150	1	20	
1,2-Dichloroethane	100		110		70-130	10	20	
1,1,1-Trichloroethane	110		120		67-130	9	20	
Bromodichloromethane	100		110		67-130	10	20	
trans-1,3-Dichloropropene	100		100		70-130	0	20	
cis-1,3-Dichloropropene	97		100		70-130	3	20	
Bromoform	88		92		54-136	4	20	
1,1,2,2-Tetrachloroethane	110		120		67-130	9	20	
Benzene	100		110		70-130	10	20	
Toluene	100		100		70-130	0	20	
Ethylbenzene	100		100		70-130	0	20	
Chloromethane	87		91		64-130	4	20	
Bromomethane	59		59		39-139	0	20	
Vinyl chloride	95		99		55-140	4	20	

Project Name: 1050-1088 NIAGARA STREET SITE

Project Number: T0136-013-001

Lab Number: L2231260

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
olatile Organics by GC/MS - Westborou	igh Lab Associated	sample(s): 0	2 Batch: WG1	1654981-3	WG1654981-4			
Chloroethane	97		98		55-138	1	20	
1,1-Dichloroethene	110		120		61-145	9	20	
trans-1,2-Dichloroethene	110		110		70-130	0	20	
Trichloroethene	94		92		70-130	2	20	
1,2-Dichlorobenzene	99		100		70-130	1	20	
1,3-Dichlorobenzene	100		100		70-130	0	20	
1,4-Dichlorobenzene	99		100		70-130	1	20	
Methyl tert butyl ether	110		120		63-130	9	20	
p/m-Xylene	105		105		70-130	0	20	
o-Xylene	100		105		70-130	5	20	
cis-1,2-Dichloroethene	100		110		70-130	10	20	
Styrene	100		100		70-130	0	20	
Dichlorodifluoromethane	98		100		36-147	2	20	
Acetone	110		110		58-148	0	20	
Carbon disulfide	120		120		51-130	0	20	
2-Butanone	91		100		63-138	9	20	
4-Methyl-2-pentanone	98		100		59-130	2	20	
2-Hexanone	97		110		57-130	13	20	
Bromochloromethane	100		110		70-130	10	20	
1,2-Dibromoethane	110		110		70-130	0	20	
1,2-Dibromo-3-chloropropane	87		100		41-144	14	20	
Isopropylbenzene	100		110		70-130	10	20	
1,2,3-Trichlorobenzene	100		100		70-130	0	20	

Project Name: 1050-1088 NIAGARA STREET SITE

Project Number: T0136-013-001

Lab Number: L2231260

Parameter	LCS %Recovery	Qual	LCSD %Recove		%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 02	2 Batch:	WG1654981-3	WG1654981-4			
1,2,4-Trichlorobenzene	100		110		70-130	10		20
Methyl Acetate	100		120		70-130	18		20
Cyclohexane	110		110		70-130	0		20
1,4-Dioxane	116		116		56-162	0		20
Freon-113	120		120		70-130	0		20
Methyl cyclohexane	100		110		70-130	10		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	105	107	70-130
Toluene-d8	103	104	70-130
4-Bromofluorobenzene	106	105	70-130
Dibromofluoromethane	102	102	70-130

Project Name: 1050-1088 NIAGARA STREET SITE

Project Number: T0136-013-001

Lab Number: L2231260

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
/olatile Organics by GC/MS - Westboro	ugh Lab Associated	sample(s):	01-05 Batch: W	G1655046-3 WG1655046-4		
Methylene chloride	100		100	70-130	0	20
1,1-Dichloroethane	110		110	70-130	0	20
Chloroform	100		97	70-130	3	20
Carbon tetrachloride	100		96	63-132	4	20
1,2-Dichloropropane	110		100	70-130	10	20
Dibromochloromethane	96		90	63-130	6	20
1,1,2-Trichloroethane	100		99	70-130	1	20
Tetrachloroethene	95		88	70-130	8	20
Chlorobenzene	100		96	75-130	4	20
Trichlorofluoromethane	98		95	62-150	3	20
1,2-Dichloroethane	110		100	70-130	10	20
1,1,1-Trichloroethane	100		97	67-130	3	20
Bromodichloromethane	100		98	67-130	2	20
trans-1,3-Dichloropropene	100		97	70-130	3	20
cis-1,3-Dichloropropene	100		94	70-130	6	20
Bromoform	88		84	54-136	5	20
1,1,2,2-Tetrachloroethane	110		100	67-130	10	20
Benzene	110		100	70-130	10	20
Toluene	110		100	70-130	10	20
Ethylbenzene	110		100	70-130	10	20
Chloromethane	74		72	64-130	3	20
Bromomethane	48		44	39-139	9	20
Vinyl chloride	110		100	55-140	10	20

Project Name: 1050-1088 NIAGARA STREET SITE

Project Number: T0136-013-001

Lab Number: L2231260

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	RPD Qual Limits	
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-05 Batch:	WG1655046-3	WG1655046-4			
Chloroethane	120		110		55-138	9	20	
1,1-Dichloroethene	100		96		61-145	4	20	
trans-1,2-Dichloroethene	100		98		70-130	2	20	
Trichloroethene	100		97		70-130	3	20	
1,2-Dichlorobenzene	100		96		70-130	4	20	
1,3-Dichlorobenzene	100		96		70-130	4	20	
1,4-Dichlorobenzene	100		94		70-130	6	20	
Methyl tert butyl ether	100		97		63-130	3	20	
p/m-Xylene	105		95		70-130	10	20	
o-Xylene	105		95		70-130	10	20	
cis-1,2-Dichloroethene	100		99		70-130	1	20	
Styrene	100		95		70-130	5	20	
Dichlorodifluoromethane	92		89		36-147	3	20	
Acetone	120		100		58-148	18	20	
Carbon disulfide	110		100		51-130	10	20	
2-Butanone	100		99		63-138	1	20	
4-Methyl-2-pentanone	98		94		59-130	4	20	
2-Hexanone	100		97		57-130	3	20	
Bromochloromethane	96		92		70-130	4	20	
1,2-Dibromoethane	98		92		70-130	6	20	
1,2-Dibromo-3-chloropropane	81		78		41-144	4	20	
Isopropylbenzene	110		100		70-130	10	20	
1,2,3-Trichlorobenzene	87		86		70-130	1	20	

Project Name: 1050-1088 NIAGARA STREET SITE

Project Number: T0136-013-001

Lab Number:

L2231260

Report Date:

06/27/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	-		01-05 Batch:	 WG1655046-4				
1,2,4-Trichlorobenzene	93		88	70-130	6		20	
Methyl Acetate	110		100	70-130	10		20	
Cyclohexane	110		100	70-130	10		20	
1,4-Dioxane	102		92	56-162	10		20	
Freon-113	99		94	70-130	5		20	
Methyl cyclohexane	100		95	70-130	5		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	103	104	70-130
Toluene-d8	103	103	70-130
4-Bromofluorobenzene	109	109	70-130
Dibromofluoromethane	99	98	70-130

SEMIVOLATILES

L2231260

06/27/22

Project Name: 1050-1088 NIAGARA STREET SITE

Project Number: T0136-013-001

SAMPLE RESULTS

Date Collected: 06/12/22 12:15

Lab Number:

Report Date:

Lab ID: L2231260-01

Client ID: TMW-3

Date Received: 06/13/22 Sample Location: 1050-1088 NIAGARA ST., BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8270D Analytical Date: 06/22/22 09:21

Analyst: JG Extraction Method: EPA 3510C **Extraction Date:** 06/18/22 11:01

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS -	Westborough Lab						
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1	
2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1	
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1	
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1	
Isophorone	ND		ug/l	5.0	1.2	1	
Nitrobenzene	ND		ug/l	2.0	0.77	1	
NDPA/DPA	ND		ug/l	2.0	0.42	1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.5	1	
Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1	
Di-n-butylphthalate	ND		ug/l	5.0	0.39	1	
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1	
Diethyl phthalate	ND		ug/l	5.0	0.38	1	
Dimethyl phthalate	ND		ug/l	5.0	1.8	1	
Biphenyl	ND		ug/l	2.0	0.46	1	
4-Chloroaniline	ND		ug/l	5.0	1.1	1	
2-Nitroaniline	ND		ug/l	5.0	0.50	1	
3-Nitroaniline	ND		ug/l	5.0	0.81	1	
4-Nitroaniline	ND		ug/l	5.0	0.80	1	
Dibenzofuran	ND		ug/l	2.0	0.50	1	
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1	
Acetophenone	ND		ug/l	5.0	0.53	1	
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1	

06/27/22

Project Name: Lab Number: 1050-1088 NIAGARA STREET SITE L2231260

Project Number: T0136-013-001

SAMPLE RESULTS

Date Collected: 06/12/22 12:15

Report Date:

Lab ID: L2231260-01

Client ID: Date Received: 06/13/22 TMW-3 Sample Location: 1050-1088 NIAGARA ST., BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	estborough Lab						
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1	
2-Chlorophenol	ND		ug/l	2.0	0.48	1	
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1	
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1	
2-Nitrophenol	ND		ug/l	10	0.85	1	
4-Nitrophenol	ND		ug/l	10	0.67	1	
2,4-Dinitrophenol	ND		ug/l	20	6.6	1	
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1	
Phenol	ND		ug/l	5.0	0.57	1	
2-Methylphenol	ND		ug/l	5.0	0.49	1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1	
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1	
Carbazole	ND		ug/l	2.0	0.49	1	
Atrazine	ND		ug/l	10	0.76	1	
Benzaldehyde	ND		ug/l	5.0	0.53	1	
Caprolactam	ND		ug/l	10	3.3	1	
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1	

06/27/22

Project Name: 1050-1088 NIAGARA STREET SITE Lab Number: L2231260

Project Number: T0136-013-001

SAMPLE RESULTS

Date Collected: 06/12/22 12:15

Report Date:

L2231260-01 Date Received: Client ID: 06/13/22 TMW-3

Sample Location: Field Prep: 1050-1088 NIAGARA ST., BUFFALO, NY Not Specified

Sample Depth:

Lab ID:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Semivolatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	126	J	ug/l	1
Unknown	15.5	JB	ug/l	1
Unknown	2.47	J	ug/l	1
Unknown	2.84	J	ug/l	1
Unknown	9.85	J	ug/l	1
Unknown Aldehyde	4.44	J	ug/l	1
Unknown Alkane	7.64	J	ug/l	1
Unknown Alkane	3.24	J	ug/l	1
Unknown Alkane	2.44	J	ug/l	1
Unknown Alkane	18.2	J	ug/l	1
Unknown Alkane	17.7	J	ug/l	1
Unknown Alkane	12.6	J	ug/l	1
Unknown Alkane	3.09	J	ug/l	1
Unknown Benzene	13.6	J	ug/l	1
Unknown Organic Acid	6.94	J	ug/l	1
Unknown Organic Acid	5.89	J	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	43	21-120	
Phenol-d6	38	10-120	
Nitrobenzene-d5	62	23-120	
2-Fluorobiphenyl	58	15-120	
2,4,6-Tribromophenol	39	10-120	
4-Terphenyl-d14	68	41-149	

06/27/22

Report Date:

Project Name: 1050-1088 NIAGARA STREET SITE Lab Number: L2231260

Project Number: T0136-013-001

SAMPLE RESULTS

Lab ID: L2231260-01 Date Collected: 06/12/22 12:15

Client ID: TMW-3 Date Received: 06/13/22

Sample Location: 1050-1088 NIAGARA ST., BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 06/16/22 15:29
Analytical Date: 06/17/22 17:46

Analyst: JJW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM -	Westborough La	ıb				
Acenaphthene	ND		ug/l	0.10	0.01	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	0.44		ug/l	0.10	0.02	1
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1
Naphthalene	0.10		ug/l	0.10	0.05	1
Benzo(a)anthracene	0.22		ug/l	0.10	0.02	1
Benzo(a)pyrene	0.24		ug/l	0.10	0.02	1
Benzo(b)fluoranthene	0.34		ug/l	0.10	0.01	1
Benzo(k)fluoranthene	0.09	J	ug/l	0.10	0.01	1
Chrysene	0.32		ug/l	0.10	0.01	1
Acenaphthylene	0.03	J	ug/l	0.10	0.01	1
Anthracene	0.10	J	ug/l	0.10	0.01	1
Benzo(ghi)perylene	0.30		ug/l	0.10	0.01	1
Fluorene	0.03	J	ug/l	0.10	0.01	1
Phenanthrene	0.38		ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	0.05	J	ug/l	0.10	0.01	1
Indeno(1,2,3-cd)pyrene	0.20		ug/l	0.10	0.01	1
Pyrene	0.38		ug/l	0.10	0.02	1
2-Methylnaphthalene	0.08	J	ug/l	0.10	0.02	1
Pentachlorophenol	ND		ug/l	0.80	0.01	1
Hexachlorobenzene	ND		ug/l	0.80	0.01	1
Hexachloroethane	ND		ug/l	0.80	0.06	1

06/27/22

Project Name: Lab Number: 1050-1088 NIAGARA STREET SITE L2231260

Project Number: T0136-013-001

SAMPLE RESULTS

Date Collected: 06/12/22 12:15

Report Date:

Lab ID: L2231260-01

Date Received: Client ID: 06/13/22 TMW-3 Sample Location: Field Prep: 1050-1088 NIAGARA ST., BUFFALO, NY Not Specified

Sample Depth:

Qualifier Units RL MDL **Dilution Factor** Parameter Result

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	59	21-120
Phenol-d6	48	10-120
Nitrobenzene-d5	67	23-120
2-Fluorobiphenyl	68	15-120
2,4,6-Tribromophenol	98	10-120
4-Terphenyl-d14	75	41-149

L2231260

06/27/22

Project Name: 1050-1088 NIAGARA STREET SITE

06/22/22 09:45

Project Number: T0136-013-001

SAMPLE RESULTS

Date Collected: 06/12/22 12:30

Lab Number:

Report Date:

Lab ID: L2231260-02 Date Received: Client ID: 06/13/22 MW-3

1050-1088 NIAGARA ST., BUFFALO, NY Sample Location: Field Prep: Not Specified

Sample Depth:

Analytical Date:

Extraction Method: EPA 3510C Matrix: Water **Extraction Date:** 06/18/22 11:01 Analytical Method: 1,8270D

Analyst: JG

Semivolatile Organics by GC/MS - Westborough Lab Bis (2-chloroethyllether ND ug/l 2.0 0.50 1 3.3* Dichlorobenzidine ND ug/l 5.0 1.6 1 2,4-Dinitrotoluene ND ug/l 5.0 1.2 1 2,6-Dinitrotoluene ND ug/l 5.0 0.93 1 2,6-Dinitrotoluene ND ug/l 5.0 0.93 1 2,6-Dinitrotoluene ND ug/l 2.0 0.49 1 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.53 1 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.53 1 Bis(2-chlorospoyl)gether ND ug/l 2.0 0.53 1 Bis(2-chlorospoyl)gether ND ug/l 2.0 0.53 1 Bis(2-chlorospoyl)gether ND ug/l 2.0 0.69 1 Hexachtorospoylighter ND ug/l 2.0 0.69 1	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
3,3*Dichlorobenzidine ND ug/l 5.0 1.6 1 2,4*Dinitrotoluene ND ug/l 5.0 1.2 1 2,6*Dinitrotoluene ND ug/l 5.0 0.93 1 2,6*Dinitrotoluene ND ug/l 5.0 0.93 1 2,6*Dinitrotoluene ND ug/l 5.0 0.93 1 2,6*Dinitrotoluene ND ug/l 2.0 0.49 1 2.0 0.49 1 2.0 0.38 1 2.0 0.49 1 2.0 0.38 1 3.0 0.39 1 3.0 0.50 1 3.	Semivolatile Organics by GC/MS - W	estborough Lab					
2,4-Dinitrotoluene ND ug/l 5.0 1.2 1 2,6-Dinitrotoluene ND ug/l 5.0 0.93 1 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.49 1 4-Bromophenyl phenyl ether ND ug/l 2.0 0.38 1 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.53 1 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.53 1 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.53 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.50 1 Isophorone ND ug/l 5.0 0.69 1 Isophorone ND ug/l 5.0 0.69 1 NItrobenzene ND ug/l 5.0 0.42 1 ND-Patrylpatrialite 6.2 ug/l 5.0 0.64 1 Bis(2-chlorethoxyl)phthalate ND ug/l <	Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1
2,6-Dinitrotoluene ND ug/l 5.0 0.93 1 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.49 1 4-Bromophenyl phenyl ether ND ug/l 2.0 0.38 1 Bis(2-chlorospropylether ND ug/l 2.0 0.53 1 Bis(2-chlorospropylether ND ug/l 5.0 0.50 1 Bis(2-chlorospropylether ND ug/l 5.0 0.50 1 Bis(2-chlorospropylether ND ug/l 5.0 0.50 1 Isophorone ND ug/l 5.0 0.50 1 Isophorone ND ug/l 2.0 0.77 1 ND ug/l 2.0 0.77 1 ND ug/l 2.0 0.42 1 ND ug/l 5.0 0.64 1 Bis(2-chlyfexyl)phthalate 6.2 ug/l 5.0 0.39 1 Butyl benzyl phthalate	3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1
4-Chlorophenyl phenyl ether ND ug/l 2.0 0.49 1 4-Bromophenyl phenyl ether ND ug/l 2.0 0.38 1 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.53 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.50 1 Bis(2-chloroethoxy)methane ND ug/l 5.0 0.50 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.69 1 Isophorone ND ug/l 5.0 1.2 1 Nitrobenzene ND ug/l 5.0 0.77 1 Nitrobenzene ND ug/l 2.0 0.77 1 Nitrobenzene ND ug/l 2.0 0.77 1 Nitrobenzene ND ug/l 5.0 1.2 1 Nitrobenzene ND ug/l 5.0 0.64 1 Bis(2-ethylnexyl)phthalate 6.2 ug/l 3.0 1.5 1 Butyl benzyl phthalate ND ug/l 5.0 0.64 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-octylphthalate ND ug/l 5.0 0.39 1 Di-n-octylphthalate ND ug/l 5.0 0.39 1 Di-n-otylphthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 0.66 1 A-Chloroaniline ND ug/l 5.0 0.60 1 A-Chloroaniline ND ug/l 5.0 0.50 1 A-Chloroaniline ND ug/l 5.0 0.50 1 A-Chloroaniline ND ug/l 5.0 0.80 1 A-Chloroaniline ND ug/l 5.0 0.80 1 A-Chloroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 5.0 0.80 1 A-Chloroaniline ND ug/l 5.0 0.80 1	2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1
4-Bromophenyl phenyl ether ND ug/l 2.0 0.38 1 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.53 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.50 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.69 1 Isophorone ND ug/l 5.0 0.77 1 Nitrobenzene ND ug/l 2.0 0.77 1 NDPA/DPA ND ug/l 2.0 0.77 1 NDPA/DPA ND ug/l 5.0 0.64 1 In-Nitrosodi-n-propylamine ND ug/l 5.0 0.64 1 Bis(2-chlylhexyl)phthalate ND ug/l 5.0 0.64 1 Bis(2-blylhexyl)phthalate ND ug/l 5.0 0.64 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.38 1 Di-n-butylphthalate ND ug/l 5.0 0.46 1 4-Chloroaniline ND ug/l 5.0 0.50 1 4-Chloroaniline ND ug/l 5.0 0.80 1 4-Nitroaniline ND ug/l 5.0 0.80 1 1,24,5-Tetrachlorobenzene ND ug/l 5.0 0.50 1 Acetophenone	2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1
Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.53 1 Bis(2-chloroethoxy)methane ND ug/l 5.0 0.50 1 Hexachlorocyclopentadiene ND ug/l 20 0.69 1 Isophorone ND ug/l 5.0 1.2 1 Nitrobenzene ND ug/l 2.0 0.77 1 NDPA/DPA ND ug/l 2.0 0.42 1 n-Nitrosodin-propylamine ND ug/l 5.0 0.64 1 Bis(2-chlylhexyl)phthalate 6.2 ug/l 3.0 0.5 1 Butyl benzyl phthalate ND ug/l 5.0 0.64 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.38 1 Di-n-butylphthalate ND ug/l 5.0 0.38 1 Di-n-butylphthalate ND ug/l 5.0	4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1
Bis(2-chloroethoxy)methane ND ug/l 5.0 0.50 1 Hexachlorocyclopentadiene ND ug/l 20 0.69 1 Isophorone ND ug/l 5.0 1.2 1 Nitrobenzene ND ug/l 2.0 0.77 1 NDPA/DPA ND ug/l 2.0 0.42 1 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate 6.2 ug/l 3.0 1.5 1 Butyl benzyl phthalate 6.2 ug/l 5.0 0.64 1 Butyl benzyl phthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.38 1 Di-n-butylphthalate ND ug/l 5.0 0.38 1 Diethyl phthalate ND ug/l 5.0 0	4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1
Hexachlorocyclopentadiene ND ug/l 20 0.69 1 Isophorone ND ug/l 5.0 1.2 1 Nitrobenzene ND ug/l 2.0 0.77 1 NDPA/DPA ND ug/l 2.0 0.42 1 In-Nitrosodi-n-propylamine ND ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate 6.2 ug/l 3.0 1.5 1 Butyl benzyl phthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-octylphthalate ND ug/l 5.0 0.38 1 Diethyl phthalate ND ug/l 5.0 0.38 1 Diethyl phthalate ND ug/l 5.0 0.46 1 Diethyl phthalate ND ug/l 5.0 0.46 1 Dimethyl phthalate ND ug/l 5.0 0.46 1 4-Chloroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 4-Nitroaniline ND ug/l 5.0 0.50 1 4-Nitroaniline ND ug/l 5.0 0.50 1 4-Nitroaniline ND ug/l 5.0 0.80 1 4-Nitroaniline ND ug/l 5.0 0.50 1	Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1
Sophorone ND ug/l 5.0 1.2 1	Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1
Nitrobenzene ND ug/l 2.0 0.77 1 NDPA/DPA ND ug/l 2.0 0.42 1 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate 6.2 ug/l 3.0 1.5 1 Butyl benzyl phthalate ND ug/l 5.0 1.2 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-octylphthalate ND ug/l 5.0 0.39 1 Di-n-octylphthalate ND ug/l 5.0 0.38 1 Di-n-octylphthalate ND ug/l 5.0 0.38 1 Diethyl phthalate ND ug/l 5.0 0.38 1 Diethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 0.46	Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1
NDPA/DPA ND ug/l 2.0 0.42 1 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate 6.2 ug/l 3.0 1.5 1 Butyl benzyl phthalate ND ug/l 5.0 1.2 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.38 1 Di-n-butylphthalate ND ug/l 5.0 0.38 1 Di-n-butylphthalate ND ug/l 5.0 0.38 1 Diethyl phthalate ND ug/l 5.0 0.38 1 Biphenyl ND ug/l 5.0 0.46 1 4-Chloroaniline ND ug/l 5.0 0.50 1 2-Nitroaniline ND ug/l 5.0 0.80 <td< td=""><td>Isophorone</td><td>ND</td><td></td><td>ug/l</td><td>5.0</td><td>1.2</td><td>1</td></td<>	Isophorone	ND		ug/l	5.0	1.2	1
n-Nitrosodi-n-propylamine ND ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate 6.2 ug/l 3.0 1.5 1 Butyl benzyl phthalate ND ug/l 5.0 1.2 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-cytylphthalate ND ug/l 5.0 0.39 1 Di-n-cytylphthalate ND ug/l 5.0 0.38 1 Diethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 0.38 1 Biphenyl ND ug/l 5.0 1.8 1 Biphenyl ND ug/l 5.0 1.8 1 Biphenyl ND ug/l 5.0 1.8 1 Siphenyl ND ug/l 5.0 1.1 1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 1-2-4,5-Tetrachlorobenzene ND ug/l 5.0 0.50 1 1-2-4,5-Tetrachlorobenzene ND ug/l 5.0 0.53 1	Nitrobenzene	ND		ug/l	2.0	0.77	1
Bis(2-ethylhexyl)phthalate 6.2 ug/l 3.0 1.5 1 Butyl benzyl phthalate ND ug/l 5.0 1.2 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-cylphthalate ND ug/l 5.0 0.39 1 Di-n-cylphthalate ND ug/l 5.0 0.38 1 Diethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 0.46 1 Biphenyl ND ug/l 5.0 0.46 1 4-Chloroaniline ND ug/l 5.0 0.50 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 5.0 0.50 1 Acetophenone ND ug/l 5.0 0.53 1	NDPA/DPA	ND		ug/l	2.0	0.42	1
Butyl benzyl phthalate ND ug/l 5.0 1.2 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-octylphthalate ND ug/l 5.0 1.3 1 Diethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 0.38 1 Biphenyl ND ug/l 5.0 0.46 1 4-Chloroaniline ND ug/l 5.0 0.46 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.80 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 5.0 0.53 1 <td>n-Nitrosodi-n-propylamine</td> <td>ND</td> <td></td> <td>ug/l</td> <td>5.0</td> <td>0.64</td> <td>1</td>	n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1
Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-octylphthalate ND ug/l 5.0 1.3 1 Diethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 1.8 1 Biphenyl ND ug/l 2.0 0.46 1 4-Chloroaniline ND ug/l 5.0 1.1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.80 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 5.0 0.53 1 Acetophenone ND ug/l 5.0 0.53 1	Bis(2-ethylhexyl)phthalate	6.2		ug/l	3.0	1.5	1
Di-n-octylphthalate ND ug/l 5.0 1.3 1 Diethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 1.8 1 Biphenyl ND ug/l 5.0 0.46 1 4-Chloroaniline ND ug/l 5.0 1.1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 1-2-Aitroaniline ND ug/l 5.0 0.50 1 1-2-Aitroaniline ND ug/l 5.0 0.80 1 1-2-Aitroaniline ND ug/l 5.0 0.50 1	Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1
Diethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 1.8 1 Biphenyl ND ug/l 2.0 0.46 1 4-Chloroaniline ND ug/l 5.0 1.1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	Di-n-butylphthalate	ND		ug/l	5.0	0.39	1
Dimethyl phthalate ND ug/l 5.0 1.8 1 Biphenyl ND ug/l 2.0 0.46 1 4-Chloroaniline ND ug/l 5.0 1.1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	Di-n-octylphthalate	ND		ug/l	5.0	1.3	1
Biphenyl ND ug/l 2.0 0.46 1	Diethyl phthalate	ND		ug/l	5.0	0.38	1
4-Chloroaniline ND ug/l 5.0 1.1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 5.0 0.80 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	Dimethyl phthalate	ND		ug/l	5.0	1.8	1
2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 5.0 0.80 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	Biphenyl	ND		ug/l	2.0	0.46	1
3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	4-Chloroaniline	ND		ug/l	5.0	1.1	1
4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	2-Nitroaniline	ND		ug/l	5.0	0.50	1
Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	3-Nitroaniline	ND		ug/l	5.0	0.81	1
1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	4-Nitroaniline	ND		ug/l	5.0	0.80	1
Acetophenone ND ug/l 5.0 0.53 1	Dibenzofuran	ND		ug/l	2.0	0.50	1
·	1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1
2,4,6-Trichlorophenol ND ug/l 5.0 0.61 1	Acetophenone	ND		ug/l	5.0	0.53	1
	2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1

06/27/22

Project Name: Lab Number: 1050-1088 NIAGARA STREET SITE L2231260

Project Number: T0136-013-001

SAMPLE RESULTS

Date Collected: 06/12/22 12:30

Report Date:

Lab ID: L2231260-02 Client ID: Date Received: 06/13/22

MW-3 Sample Location: Field Prep: 1050-1088 NIAGARA ST., BUFFALO, NY Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - \	Westborough Lab						
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1	
2-Chlorophenol	ND		ug/l	2.0	0.48	1	
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1	
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1	
2-Nitrophenol	ND		ug/l	10	0.85	1	
4-Nitrophenol	ND		ug/l	10	0.67	1	
2,4-Dinitrophenol	ND		ug/l	20	6.6	1	
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1	
Phenol	1.7	J	ug/l	5.0	0.57	1	
2-Methylphenol	ND		ug/l	5.0	0.49	1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1	
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1	
Carbazole	ND		ug/l	2.0	0.49	1	
Atrazine	ND		ug/l	10	0.76	1	
Benzaldehyde	ND		ug/l	5.0	0.53	1	
Caprolactam	ND		ug/l	10	3.3	1	
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1	

06/27/22

Project Name: Lab Number: 1050-1088 NIAGARA STREET SITE L2231260

Project Number: T0136-013-001

SAMPLE RESULTS

Date Collected: 06/12/22 12:30

Report Date:

Lab ID: L2231260-02 Date Received: Client ID: 06/13/22 MW-3

Sample Location: Field Prep: 1050-1088 NIAGARA ST., BUFFALO, NY Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Semivolatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	318	J	ug/l	1
Benzene, Propyl-	16.5	NJ	ug/l	1
Caffeine	11.3	NJ	ug/l	1
Indane	69.1	NJ	ug/l	1
Unknown	22.5	JB	ug/l	1
Unknown	25.5	J	ug/l	1
Unknown	11.0	J	ug/l	1
Unknown	14.2	J	ug/l	1
Unknown	33.3	J	ug/l	1
Unknown	16.3	J	ug/l	1
Unknown Alkane	19.2	J	ug/l	1
Unknown Alkane	18.5	J	ug/l	1
Unknown Alkane	14.0	J	ug/l	1
Unknown Benzene	23.4	J	ug/l	1
Unknown Benzene	11.0	J	ug/l	1
Unknown Organic Acid	12.4	J	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	58	21-120
Phenol-d6	47	10-120
Nitrobenzene-d5	66	23-120
2-Fluorobiphenyl	57	15-120
2,4,6-Tribromophenol	75	10-120
4-Terphenyl-d14	78	41-149

06/27/22

Project Name: 1050-1088 NIAGARA STREET SITE Lab Number: L2231260

Project Number: T0136-013-001

L2231260-02

SAMPLE RESULTS

Date Collected: 06/12/22 12:30

Report Date:

Client ID: MW-3 Date Received: 06/13/22

Sample Location: 1050-1088 NIAGARA ST., BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 06/16/22 15:29
Analytical Date: 06/17/22 18:03

Analyst: JJW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS-SIM - Westborough Lab								
Acenaphthene	ND		ug/l	0.10	0.01	1		
<u> </u>	ND			0.20	0.02	 1		
2-Chloronaphthalene			ug/l					
Fluoranthene	ND		ug/l	0.10	0.02	1		
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1		
Naphthalene	0.19		ug/l	0.10	0.05	1		
Benzo(a)anthracene	0.02	J	ug/l	0.10	0.02	1		
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1		
Benzo(b)fluoranthene	0.01	J	ug/l	0.10	0.01	1		
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1		
Chrysene	ND		ug/l	0.10	0.01	1		
Acenaphthylene	ND		ug/l	0.10	0.01	1		
Anthracene	0.02	J	ug/l	0.10	0.01	1		
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1		
Fluorene	ND		ug/l	0.10	0.01	1		
Phenanthrene	0.03	J	ug/l	0.10	0.02	1		
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1		
Pyrene	ND		ug/l	0.10	0.02	1		
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1		
Pentachlorophenol	ND		ug/l	0.80	0.01	1		
Hexachlorobenzene	ND		ug/l	0.80	0.01	1		
Hexachloroethane	ND		ug/l	0.80	0.06	1		

06/27/22

Report Date:

Project Name: 1050-1088 NIAGARA STREET SITE Lab Number: L2231260

Project Number: T0136-013-001

SAMPLE RESULTS

L2231260-02 Date Collected: 06/12/22 12:30

Client ID: MW-3 Date Received: 06/13/22 Sample Location: 1050-1088 NIAGARA ST., BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	52	21-120
Phenol-d6	44	10-120
Nitrobenzene-d5	62	23-120
2-Fluorobiphenyl	62	15-120
2,4,6-Tribromophenol	86	10-120
4-Terphenyl-d14	71	41-149

L2231260

06/27/22

Project Name: 1050-1088 NIAGARA STREET SITE

1050-1088 NIAGARA ST., BUFFALO, NY

L2231260-03

MW-6

Project Number: T0136-013-001

SAMPLE RESULTS

Date Collected: 06/12/22 13:15

Date Received: 06/13/22

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8270D Analytical Date: 06/22/22 10:09

Analyst: JG Extraction Method: EPA 3510C **Extraction Date:** 06/18/22 11:01

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1		
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1		
2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1		
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1		
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1		
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1		
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1		
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1		
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1		
Isophorone	ND		ug/l	5.0	1.2	1		
Nitrobenzene	ND		ug/l	2.0	0.77	1		
NDPA/DPA	ND		ug/l	2.0	0.42	1		
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1		
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.5	1		
Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1		
Di-n-butylphthalate	ND		ug/l	5.0	0.39	1		
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1		
Diethyl phthalate	ND		ug/l	5.0	0.38	1		
Dimethyl phthalate	ND		ug/l	5.0	1.8	1		
Biphenyl	ND		ug/l	2.0	0.46	1		
4-Chloroaniline	ND		ug/l	5.0	1.1	1		
2-Nitroaniline	ND		ug/l	5.0	0.50	1		
3-Nitroaniline	ND		ug/l	5.0	0.81	1		
4-Nitroaniline	ND		ug/l	5.0	0.80	1		
Dibenzofuran	ND		ug/l	2.0	0.50	1		
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1		
Acetophenone	ND		ug/l	5.0	0.53	1		
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1		

06/27/22

Project Name: Lab Number: 1050-1088 NIAGARA STREET SITE L2231260

Project Number: T0136-013-001

SAMPLE RESULTS

Date Collected: 06/12/22 13:15

Report Date:

Lab ID: L2231260-03 Date Received: 06/13/22 Client ID: MW-6

Sample Location: 1050-1088 NIAGARA ST., BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Result	Qualifier	Units	RL	MDL	Dilution Factor				
Semivolatile Organics by GC/MS - Westborough Lab									
ND		ua/l	2.0	0.35	1				
ND			2.0	0.48	1				
ND		ug/l	5.0	0.41	1				
ND		ug/l	5.0	1.8	1				
ND		ug/l	10	0.85	1				
ND		ug/l	10	0.67	1				
ND		ug/l	20	6.6	1				
ND		ug/l	10	1.8	1				
ND		ug/l	5.0	0.57	1				
ND		ug/l	5.0	0.49	1				
ND		ug/l	5.0	0.48	1				
ND		ug/l	5.0	0.77	1				
ND		ug/l	2.0	0.49	1				
ND		ug/l	10	0.76	1				
ND		ug/l	5.0	0.53	1				
ND		ug/l	10	3.3	1				
ND		ug/l	5.0	0.84	1				
	ND N	ND N	ND	ND	tborough Lab ND ug/l 2.0 0.35 ND ug/l 2.0 0.48 ND ug/l 5.0 0.41 ND ug/l 5.0 1.8 ND ug/l 10 0.85 ND ug/l 10 0.67 ND ug/l 20 6.6 ND ug/l 10 1.8 ND ug/l 5.0 0.57 ND ug/l 5.0 0.49 ND ug/l 5.0 0.77 ND ug/l 5.0 0.49 ND ug/l 10 0.76 ND ug/l 5.0 0.53 ND ug/l 5.0 0.53 ND ug/l 10 0.53 ND ug/l 10 0.53 ND ug/l 10 0.53				

06/27/22

Report Date:

Project Name: 1050-1088 NIAGARA STREET SITE Lab Number: L2231260

Project Number: T0136-013-001

SAMPLE RESULTS

Lab ID: L2231260-03 Date Collected: 06/12/22 13:15

Client ID: MW-6 Date Received: 06/13/22

Sample Location: 1050-1088 NIAGARA ST., BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	131	J	ug/l	1
Unknown	3.42	J	ug/l	1
Unknown	4.58	J	ug/l	1
Unknown Alcohol	16.0	J	ug/l	1
Unknown Alkane	8.11	J	ug/l	1
Unknown	3.64	J	ug/l	1
Unknown Alkane	18.4	J	ug/l	1
Unknown	3.20	J	ug/l	1
Unknown	17.2	J	ug/l	1
Unknown Alkane	20.6	J	ug/l	1
Unknown Alkane	3.74	J	ug/l	1
Unknown Organic Acid	5.38	J	ug/l	1
Unknown Alkane	11.9	J	ug/l	1
Unknown	8.14	J	ug/l	1
Unknown Alkane	3.38	J	ug/l	1
Unknown	3.24	J	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	45	21-120
Phenol-d6	41	10-120
Nitrobenzene-d5	64	23-120
2-Fluorobiphenyl	62	15-120
2,4,6-Tribromophenol	51	10-120
4-Terphenyl-d14	71	41-149

Project Name: Lab Number: 1050-1088 NIAGARA STREET SITE L2231260

Project Number: Report Date: T0136-013-001 06/27/22

SAMPLE RESULTS

Lab ID: Date Collected: 06/12/22 13:15 L2231260-03

Date Received: Client ID: 06/13/22 MW-6

1050-1088 NIAGARA ST., BUFFALO, NY Sample Location: Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 06/16/22 15:29 Analytical Method: 1,8270D-SIM Analytical Date: 06/17/22 18:19

Analyst: JJW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS-SIM - Westborough Lab								
Acenaphthene	0.14		ug/l	0.10	0.01	1		
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1		
Fluoranthene	0.53		ug/l	0.10	0.02	1		
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1		
Naphthalene	0.56		ug/l	0.10	0.05	1		
Benzo(a)anthracene	0.17		ug/l	0.10	0.02	1		
Benzo(a)pyrene	0.15		ug/l	0.10	0.02	1		
Benzo(b)fluoranthene	0.27		ug/l	0.10	0.01	1		
Benzo(k)fluoranthene	0.07	J	ug/l	0.10	0.01	1		
Chrysene	0.20		ug/l	0.10	0.01	1		
Acenaphthylene	ND		ug/l	0.10	0.01	1		
Anthracene	0.14		ug/l	0.10	0.01	1		
Benzo(ghi)perylene	0.18		ug/l	0.10	0.01	1		
Fluorene	0.14		ug/l	0.10	0.01	1		
Phenanthrene	0.44		ug/l	0.10	0.02	1		
Dibenzo(a,h)anthracene	0.04	J	ug/l	0.10	0.01	1		
Indeno(1,2,3-cd)pyrene	0.16		ug/l	0.10	0.01	1		
Pyrene	0.42		ug/l	0.10	0.02	1		
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1		
Pentachlorophenol	ND		ug/l	0.80	0.01	1		
Hexachlorobenzene	0.12	J	ug/l	0.80	0.01	1		
Hexachloroethane	ND		ug/l	0.80	0.06	1		

Project Name: Lab Number: 1050-1088 NIAGARA STREET SITE L2231260

Project Number: T0136-013-001

SAMPLE RESULTS

Date Collected: 06/12/22 13:15

Lab ID: L2231260-03

Date Received: Client ID: 06/13/22 MW-6 Sample Location: 1050-1088 NIAGARA ST., BUFFALO, NY

Field Prep:

Report Date:

Not Specified

06/27/22

Sample Depth:

Qualifier Units RL MDL **Dilution Factor** Parameter Result

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	63	21-120
Phenol-d6	54	10-120
Nitrobenzene-d5	76	23-120
2-Fluorobiphenyl	68	15-120
2,4,6-Tribromophenol	88	10-120
4-Terphenyl-d14	66	41-149

L2231260

06/27/22

Project Name: 1050-1088 NIAGARA STREET SITE

06/22/22 10:33

Project Number: T0136-013-001

SAMPLE RESULTS

Date Collected: 06/12/22 00:00

Lab Number:

Report Date:

Lab ID: L2231260-04 Date Received: Client ID: **BLIND DUP-1** 06/13/22

Sample Location: 1050-1088 NIAGARA ST., BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Analytical Date:

Extraction Method: EPA 3510C Matrix: Water **Extraction Date:** 06/18/22 11:01 Analytical Method: 1,8270D

Analyst: JG

3,3 - Dichlorobenzidine ND ug/l 5.0 1.6 1 2,4 - Dinitrotoluene ND ug/l 5.0 1.2 1 2,6 - Dinitrotoluene ND ug/l 5.0 0.93 1 4 - Chlorophenyl phenyl ether ND ug/l 2.0 0.49 1 4 - Chlorophenyl phenyl ether ND ug/l 2.0 0.53 1 Bis(2-chloroispropyl)ether ND ug/l 5.0 0.53 1 Bis(2-chloroethoxy)methane ND ug/l 5.0 0.50 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.50 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.69 1 Stophorone ND ug/l 5.0 0.69 1 Nitrobenzene ND ug/l 2.0 0.77 1 NIBPADPA ND ug/l 2.0 0.64 1 n-Nitrobenzene ND ug/l 5.0 <th>Parameter</th> <th>Result</th> <th>Qualifier</th> <th>Units</th> <th>RL</th> <th>MDL</th> <th>Dilution Factor</th>	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
3.3-Dichlorobenzidine ND	Semivolatile Organics by GC/MS - We	estborough Lab					
2.4-Dinitrotoluene	Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1
2,6-Dinitrotoluene ND ug/l 5.0 0.93 1 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.49 1 4-Bromophenyl phenyl ether ND ug/l 2.0 0.38 1 Bis(2-chlorosepropylether ND ug/l 2.0 0.53 1 Bis(2-chlorosethoxy)methane ND ug/l 5.0 0.50 1 Hexachlorocyclopentadiene ND ug/l 2.0 0.50 1 Isophorone ND ug/l 5.0 0.50 1 Isophorone ND ug/l 2.0 0.77 1 NDrophorone ND ug/l 2.0 0.77 1 NDrophorone ND ug/l 2.0 0.77 1 NDrophorone ND ug/l 2.0 0.42 1 NDrophylatilite ND ug/l 3.0 1.5 1 Bis(2-chlyhkexyl)ghthislate ND ug/l 5.0 0.39 <td>3,3'-Dichlorobenzidine</td> <td>ND</td> <td></td> <td>ug/l</td> <td>5.0</td> <td>1.6</td> <td>1</td>	3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1
4-Chlorophenyl phenyl ether ND ug/l 2.0 0.49 1 4-Bromophenyl phenyl ether ND ug/l 2.0 0.38 1 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.53 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.50 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.69 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.42 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.64 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.64 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.64 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.39 1 Di-n-butyl phthalate ND ug/l 5.0 0.39 1 Di-n-butyl phthalate ND ug/l 5.0 0.38 1 Di-n-butyl phthalate ND ug/l 5.0 0.38 1 Di-n-butyl phthalate ND ug/l 5.0 0.38 1 Dimetryl phthalate ND ug/l 5.0 0.38 1 Dimetryl phthalate ND ug/l 5.0 0.64 1 4-Chloroanliline ND ug/l 5.0 0.60 1.1 1 Biphenyl ND ug/l 5.0 0.50 1.1 1 3-Nitroaniline ND ug/l 5.0 0.60 1 3-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 5.0 0.80 1 1,2.4,5-Tetrachlorobenzene ND ug/l 5.0 0.53 1	2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1
4-Bromophenyl phenyl ether ND ug/l 2.0 0.38 1 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.53 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.50 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.50 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.50 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.69 1 Bis(2-chloroisopropyl)ethane ND ug/l 5.0 0.69 1 Bis(2-chloroisopropyl)ethane ND ug/l 5.0 0.77 1 Bis(2-chloroisopropyl)ethane ND ug/l 2.0 0.77 1 Bis(2-chloroisopropyl)ethane ND ug/l 5.0 0.64 1 Bis(2-chlylhexyl)phthalate ND ug/l 5.0 0.64 1 Bis(2-chlylhexyl)phthalate ND ug/l 5.0 0.39 1 Bir(2-chlylhexyl)phthalate ND ug/l 5.0 0.39 1 Din-butylphthalate ND ug/l 5.0 0.39 1 Din-butylphthalate ND ug/l 5.0 0.38 1 Din-butylphthalate ND ug/l 5.0 0.38 1 Din-octylphthalate ND ug/l 5.0 0.38 1 Biphenyl ND ug/l 5.0 0.38 1 Biphenyl ND ug/l 5.0 0.64 1 4-Chloroiniline ND ug/l 5.0 0.50 1.8 1 Biphenyl ND ug/l 5.0 0.50 1.3 1 Biphenyl ND ug/l 5.0 0.50 1 3-Nitroiniline ND ug/l 5.0 0.50 1 1-Chloroiniline ND ug/l 5.0 0.50 1	2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1
Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.53 1 Bis(2-chloroethoxy)methane ND ug/l 5.0 0.50 1 Hexachlorocyclopentadiene ND ug/l 2.0 0.69 1 Isophorone ND ug/l 5.0 1.2 1 Nitrobenzene ND ug/l 2.0 0.77 1 NDPA/DPA ND ug/l 2.0 0.42 1 NDPA/DPA ND ug/l 5.0 0.42 1 NDPA/DPA ND ug/l 5.0 0.42 1 NDPA/DPA ND ug/l 5.0 0.64 1 NDPA/DPA ND ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.38 1 Di-n-otylphthalate ND ug/l 5.0 0.38 1	4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1
Bis(2-chloroethoxy)methane ND	4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1
Hexachlorocyclopentadiene ND ug/l 20 0.69 1 Isophorone ND ug/l 5.0 1.2 1 Nitrobenzene ND ug/l 2.0 0.77 1 NDPA/DPA ND ug/l 2.0 0.42 1 In-Nitrosodi-n-propylamine ND ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 1.5 1 Butyl benzyl phthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.38 1 Diethyl phthalate ND ug/l 5.0 0.38 1 Diethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 0.46 1 4-Chloroaniline ND ug/l 5.0 0.50 1 4-Chloroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 4-Nitroaniline ND ug/l 5.0 0.50 1 4-Nitroaniline ND ug/l 5.0 0.80 1 4-Nitroaniline ND ug/l 5.0 0.50 1	Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1
Suphorone ND Ug/I 5.0 1.2 1	Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1
Nitrobenzene ND ug/l 2.0 0.77 1 NDPA/DPA ND ug/l 2.0 0.42 1 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 1.5 1 Butyl benzyl phthalate ND ug/l 5.0 1.2 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.38 1 Di-n-octylphthalate ND ug/l 5.0 0.38 1 Diethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 0.46	Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1
NDPA/DPA ND ug/l 2.0 0.42 1 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 1.5 1 Butyl benzyl phthalate ND ug/l 5.0 1.2 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.38 1 Di-n-butylphthalate ND ug/l 5.0 0.38 1 Di-n-butylphthalate ND ug/l 5.0 0.38 1 Diethyl phthalate ND ug/l 5.0 0.38 1 Biphenyl ND ug/l 5.0 0.46 1 4-Chloroaniline ND ug/l 5.0 0.50 1 2-Nitroaniline ND ug/l 5.0 0.80	Isophorone	ND		ug/l	5.0	1.2	1
ND	Nitrobenzene	ND		ug/l	2.0	0.77	1
Bis(2-ethylhexyl)phthalate ND ug/l 3.0 1.5 1	NDPA/DPA	ND		ug/l	2.0	0.42	1
Butyl benzyl phthalate ND ug/l 5.0 1.2 1	n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1
Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-octylphthalate ND ug/l 5.0 1.3 1 Diethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 1.8 1 Biphenyl ND ug/l 2.0 0.46 1 4-Chloroaniline ND ug/l 5.0 1.1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.80 1 4-Nitroaniline ND ug/l 5.0 0.80 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 5.0 0.53 1 Acetophenone ND ug/l 5.0 0.53 1	Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.5	1
Di-n-octylphthalate ND ug/l 5.0 1.3 1 Diethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 1.8 1 Biphenyl ND ug/l 5.0 1.8 1 Biphenyl ND ug/l 5.0 1.8 1 4-Chloroaniline ND ug/l 5.0 1.1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 5.0 0.80 1 1,2,4,5-Tetrachlorobenzene ND ug/l 1 0 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1
Diethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 1.8 1 Biphenyl ND ug/l 2.0 0.46 1 4-Chloroaniline ND ug/l 5.0 1.1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	Di-n-butylphthalate	ND		ug/l	5.0	0.39	1
Dimethyl phthalate ND ug/l 5.0 1.8 1 Biphenyl ND ug/l 2.0 0.46 1 4-Chloroaniline ND ug/l 5.0 1.1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	Di-n-octylphthalate	ND		ug/l	5.0	1.3	1
Biphenyl	Diethyl phthalate	ND		ug/l	5.0	0.38	1
4-Chloroaniline ND ug/l 5.0 1.1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 5.0 0.80 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	Dimethyl phthalate	ND		ug/l	5.0	1.8	1
2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	Biphenyl	ND		ug/l	2.0	0.46	1
3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	4-Chloroaniline	ND		ug/l	5.0	1.1	1
4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	2-Nitroaniline	ND		ug/l	5.0	0.50	1
Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	3-Nitroaniline	ND		ug/l	5.0	0.81	1
1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	4-Nitroaniline	ND		ug/l	5.0	0.80	1
Acetophenone ND ug/l 5.0 0.53 1	Dibenzofuran	ND		ug/l	2.0	0.50	1
·	1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1
2,4,6-Trichlorophenol ND ug/l 5.0 0.61 1	Acetophenone	ND		ug/l	5.0	0.53	1
	2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1

06/27/22

Project Name: Lab Number: 1050-1088 NIAGARA STREET SITE L2231260

Project Number: T0136-013-001

SAMPLE RESULTS

Date Collected: 06/12/22 00:00

Report Date:

Lab ID: L2231260-04 Client ID: Date Received: 06/13/22 **BLIND DUP-1**

Sample Location: 1050-1088 NIAGARA ST., BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - V	Westborough Lab						
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1	
2-Chlorophenol	ND		ug/l	2.0	0.48	1	
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1	
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1	
2-Nitrophenol	ND		ug/l	10	0.85	1	
4-Nitrophenol	ND		ug/l	10	0.67	1	
2,4-Dinitrophenol	ND		ug/l	20	6.6	1	
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1	
Phenol	ND		ug/l	5.0	0.57	1	
2-Methylphenol	ND		ug/l	5.0	0.49	1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1	
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1	
Carbazole	ND		ug/l	2.0	0.49	1	
Atrazine	ND		ug/l	10	0.76	1	
Benzaldehyde	ND		ug/l	5.0	0.53	1	
Caprolactam	ND		ug/l	10	3.3	1	
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1	

06/27/22

Project Name: 1050-1088 NIAGARA STREET SITE Lab Number: L2231260

Project Number: T0136-013-001

SAMPLE RESULTS

Report Date:

 Lab ID:
 L2231260-04
 Date Collected:
 06/12/22 00:00

 Client ID:
 BLIND DUP-1
 Date Received:
 06/13/22

Sample Location: 1050-1088 NIAGARA ST., BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	105	J	ug/l	1
Unknown	17.6	JB	ug/l	1
Unknown	2.65	J	ug/l	1
Unknown	2.44	J	ug/l	1
Unknown	3.34	J	ug/l	1
Unknown	5.38	J	ug/l	1
Unknown Aldehyde	2.69	J	ug/l	1
Unknown Alkane	2.00	J	ug/l	1
Unknown Alkane	7.34	J	ug/l	1
Unknown Alkane	2.18	J	ug/l	1
Unknown Alkane	15.7	J	ug/l	1
Unknown Alkane	15.2	J	ug/l	1
Unknown Alkane	9.42	J	ug/l	1
Unknown Alkane	2.18	J	ug/l	1
Unknown Benzene	11.1	J	ug/l	1
Unknown Organic Acid	6.11	J	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	50	21-120	
Phenol-d6	45	10-120	
Nitrobenzene-d5	66	23-120	
2-Fluorobiphenyl	64	15-120	
2,4,6-Tribromophenol	57	10-120	
4-Terphenyl-d14	79	41-149	

06/27/22

Project Name: Lab Number: 1050-1088 NIAGARA STREET SITE L2231260

Project Number: T0136-013-001

SAMPLE RESULTS

Report Date:

Lab ID: Date Collected: 06/12/22 00:00 L2231260-04

Date Received: Client ID: **BLIND DUP-1** 06/13/22

Sample Location: 1050-1088 NIAGARA ST., BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 06/16/22 15:29 Analytical Method: 1,8270D-SIM Analytical Date: 06/17/22 18:35

Analyst: JJW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-SIM	- Westborough La	ab					
Acenaphthene	ND		ug/l	0.10	0.01	1	
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1	
Fluoranthene	0.02	J	ug/l	0.10	0.02	1	
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1	
Naphthalene	ND		ug/l	0.10	0.05	1	
Benzo(a)anthracene	ND		ug/l	0.10	0.02	1	
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1	
Benzo(b)fluoranthene	0.01	J	ug/l	0.10	0.01	1	
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1	
Chrysene	ND		ug/l	0.10	0.01	1	
Acenaphthylene	ND		ug/l	0.10	0.01	1	
Anthracene	ND		ug/l	0.10	0.01	1	
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1	
Fluorene	ND		ug/l	0.10	0.01	1	
Phenanthrene	0.02	J	ug/l	0.10	0.02	1	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1	
Pyrene	ND		ug/l	0.10	0.02	1	
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1	
Pentachlorophenol	ND		ug/l	0.80	0.01	1	
Hexachlorobenzene	ND		ug/l	0.80	0.01	1	
Hexachloroethane	ND		ug/l	0.80	0.06	1	

06/27/22

Project Name: 1050-1088 NIAGARA STREET SITE Lab Number: L2231260

Project Number: T0136-013-001

SAMPLE RESULTS

Date Collected: 06/12/22 00:00

Report Date:

Lab ID: L2231260-04

Date Received: Client ID: 06/13/22 **BLIND DUP-1** Sample Location: Field Prep: 1050-1088 NIAGARA ST., BUFFALO, NY Not Specified

Sample Depth:

Qualifier Units RL MDL **Dilution Factor** Parameter Result

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	51	21-120
Phenol-d6	44	10-120
Nitrobenzene-d5	60	23-120
2-Fluorobiphenyl	60	15-120
2,4,6-Tribromophenol	78	10-120
4-Terphenyl-d14	66	41-149

L2231260

Lab Number:

Project Name: 1050-1088 NIAGARA STREET SITE

Project Number: T0136-013-001 **Report Date:** 06/27/22

Method Blank Analysis

Batch Quality Control

Analytical Method: 1,8270D-SIM Analytical Date: 06/17/22 12:44

Analyst: DV

Extraction Method: EPA 3510C 06/16/22 08:18 **Extraction Date:**

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/N	MS-SIM - Westbo	rough Lab	for sample	e(s): 01-04	Batch: V	/G1651334-1
Acenaphthene	ND		ug/l	0.10	0.01	
2-Chloronaphthalene	ND		ug/l	0.20	0.02	
Fluoranthene	ND		ug/l	0.10	0.02	
Hexachlorobutadiene	ND		ug/l	0.50	0.05	
Naphthalene	ND		ug/l	0.10	0.05	
Benzo(a)anthracene	ND		ug/l	0.10	0.02	
Benzo(a)pyrene	ND		ug/l	0.10	0.02	
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	
Chrysene	ND		ug/l	0.10	0.01	
Acenaphthylene	ND		ug/l	0.10	0.01	
Anthracene	ND		ug/l	0.10	0.01	
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	
Fluorene	0.02	J	ug/l	0.10	0.01	
Phenanthrene	0.05	J	ug/l	0.10	0.02	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	
Pyrene	ND		ug/l	0.10	0.02	
2-Methylnaphthalene	ND		ug/l	0.10	0.02	
Pentachlorophenol	ND		ug/l	0.80	0.01	
Hexachlorobenzene	ND		ug/l	0.80	0.01	
Hexachloroethane	ND		ug/l	0.80	0.06	

Project Name: 1050-1088 NIAGARA STREET SITE Lab Number: L2231260

Project Number: T0136-013-001 **Report Date:** 06/27/22

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D-SIM Extraction Method: EPA 3510C
Analytical Date: 06/17/22 12:44 Extraction Date: 06/16/22 08:18

Analyst: DV

Parameter Result Qualifier Units RL MDL

Semivolatile Organics by GC/MS-SIM - Westborough Lab for sample(s): 01-04 Batch: WG1651334-1

Surrogate	%Recovery Q	Acceptance ualifier Criteria
2-Fluorophenol	72	21-120
Phenol-d6	55	10-120
Nitrobenzene-d5	87	23-120
2-Fluorobiphenyl	89	15-120
2,4,6-Tribromophenol	100	10-120
4-Terphenyl-d14	95	41-149

L2231260

Lab Number:

Project Name: 1050-1088 NIAGARA STREET SITE

Project Number: T0136-013-001 **Report Date:** 06/27/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3510C
Analytical Date: 06/19/22 13:41 Extraction Date: 06/18/22 03:29

Analyst: CMM

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS	- Westborough	Lab for s	ample(s):	01-04	Batch:	WG1652319-1
Bis(2-chloroethyl)ether	ND		ug/l	2.0		0.50
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1.6
2,4-Dinitrotoluene	ND		ug/l	5.0		1.2
2,6-Dinitrotoluene	ND		ug/l	5.0		0.93
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		0.49
4-Bromophenyl phenyl ether	ND		ug/l	2.0		0.38
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		0.53
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		0.50
Hexachlorocyclopentadiene	ND		ug/l	20		0.69
Isophorone	ND		ug/l	5.0		1.2
Nitrobenzene	ND		ug/l	2.0		0.77
NDPA/DPA	ND		ug/l	2.0		0.42
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		0.64
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1.5
Butyl benzyl phthalate	ND		ug/l	5.0		1.2
Di-n-butylphthalate	ND		ug/l	5.0		0.39
Di-n-octylphthalate	ND		ug/l	5.0		1.3
Diethyl phthalate	ND		ug/l	5.0		0.38
Dimethyl phthalate	ND		ug/l	5.0		1.8
Biphenyl	ND		ug/l	2.0		0.46
4-Chloroaniline	ND		ug/l	5.0		1.1
2-Nitroaniline	ND		ug/l	5.0		0.50
3-Nitroaniline	ND		ug/l	5.0		0.81
4-Nitroaniline	ND		ug/l	5.0		0.80
Dibenzofuran	ND		ug/l	2.0		0.50
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10		0.44
Acetophenone	ND		ug/l	5.0		0.53
2,4,6-Trichlorophenol	ND		ug/l	5.0		0.61
p-Chloro-m-cresol	ND		ug/l	2.0		0.35

Project Name: 1050-1088 NIAGARA STREET SITE

Project Number: T0136-013-001

Lab Number: L2231260

Report Date: 06/27/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 06/19/22 13:41

Analyst: CMM

Extraction Method: EPA 3510C Extraction Date: 06/18/22 03:29

arameter	Result	Qualifier	Units	RL		MDL
semivolatile Organics by GC/MS	- Westborough	n Lab for s	ample(s):	01-04	Batch:	WG1652319-1
2-Chlorophenol	ND		ug/l	2.0		0.48
2,4-Dichlorophenol	ND		ug/l	5.0		0.41
2,4-Dimethylphenol	ND		ug/l	5.0		1.8
2-Nitrophenol	ND		ug/l	10		0.85
4-Nitrophenol	ND		ug/l	10		0.67
2,4-Dinitrophenol	ND		ug/l	20		6.6
4,6-Dinitro-o-cresol	ND		ug/l	10		1.8
Phenol	1.6	J	ug/l	5.0		0.57
2-Methylphenol	ND		ug/l	5.0		0.49
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		0.48
2,4,5-Trichlorophenol	ND		ug/l	5.0		0.77
Carbazole	ND		ug/l	2.0		0.49
Atrazine	ND		ug/l	10		0.76
Benzaldehyde	ND		ug/l	5.0		0.53
Caprolactam	ND		ug/l	10		3.3
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0		0.84

Tentatively Identified Compounds			
Total TIC Compounds	23.8	J	ug/l
Unknown	23.8	J	ug/l

L2231260

Project Name: 1050-1088 NIAGARA STREET SITE Lab Number:

Project Number: T0136-013-001 **Report Date:** 06/27/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3510C
Analytical Date: 06/19/22 13:41 Extraction Date: 06/18/22 03:29

Analyst: CMM

Parameter Result Qualifier Units RL MDL

Semivolatile Organics by GC/MS - Westborough Lab for sample(s): 01-04 Batch: WG1652319-1

Surrogate	%Recovery 0	Acceptance Qualifier Criteria
2-Fluorophenol	61	21-120
Phenol-d6	42	10-120
Nitrobenzene-d5	84	23-120
2-Fluorobiphenyl	86	15-120
2,4,6-Tribromophenol	96	10-120
4-Terphenyl-d14	96	41-149

Project Name: 1050-1088 NIAGARA STREET SITE

Project Number: T0136-013-001

Lab Number: L2231260

Report Date: 06/27/22

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recove Limits	ry RPD	RPD Qual Limits	
emivolatile Organics by GC/MS-SIM - West	borough Lab A	ssociated samp	ole(s): 01-04	Batch: W	G1651334-2	WG1651334-3		
Acenaphthene	85		80		40-140	6	40	
2-Chloronaphthalene	84		79		40-140	6	40	
Fluoranthene	91		83		40-140	9	40	
Hexachlorobutadiene	88		82		40-140	7	40	
Naphthalene	86		81		40-140	6	40	
Benzo(a)anthracene	88		83		40-140	6	40	
Benzo(a)pyrene	93		84		40-140	10	40	
Benzo(b)fluoranthene	99		89		40-140	11	40	
Benzo(k)fluoranthene	99		95		40-140	4	40	
Chrysene	90		83		40-140	8	40	
Acenaphthylene	85		79		40-140	7	40	
Anthracene	88		82		40-140	7	40	
Benzo(ghi)perylene	100		92		40-140	8	40	
Fluorene	90		85		40-140	6	40	
Phenanthrene	87		82		40-140	6	40	
Dibenzo(a,h)anthracene	104		95		40-140	9	40	
Indeno(1,2,3-cd)pyrene	100		93		40-140	7	40	
Pyrene	90		82		40-140	9	40	
2-Methylnaphthalene	80		76		40-140	5	40	
Pentachlorophenol	89		79		40-140	12	40	
Hexachlorobenzene	84		79		40-140	6	40	
Hexachloroethane	82		77		40-140	6	40	

Project Name: 1050-1088 NIAGARA STREET SITE

Project Number: T0136-013-001

Lab Number:

L2231260

Report Date:

06/27/22

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01-04 Batch: WG1651334-2 WG1651334-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	70	67	21-120
Phenol-d6	54	53	10-120
Nitrobenzene-d5	86	81	23-120
2-Fluorobiphenyl	84	80	15-120
2,4,6-Tribromophenol	94	93	10-120
4-Terphenyl-d14	90	83	41-149

Project Name: 1050-1088 NIAGARA STREET SITE

Project Number: T0136-013-001

Lab Number: L2231260

Report Date: 06/27/22

Parameter	LCS %Recovery	LCSD Qual %Recov	,		RPD Qual Limits
Semivolatile Organics by GC/MS - V	Westborough Lab Associa	ited sample(s): 01-04	Batch: WG1652319-2 V	VG1652319-3	
Bis(2-chloroethyl)ether	82	78	40-14	40 5	30
3,3'-Dichlorobenzidine	74	69	40-14	40 7	30
2,4-Dinitrotoluene	87	78	48-14	13 11	30
2,6-Dinitrotoluene	91	85	40-14	40 7	30
4-Chlorophenyl phenyl ether	87	80	40-14	40 8	30
4-Bromophenyl phenyl ether	87	80	40-14	40 8	30
Bis(2-chloroisopropyl)ether	83	75	40-14	10	30
Bis(2-chloroethoxy)methane	87	81	40-14	40 7	30
Hexachlorocyclopentadiene	84	82	40-14	40 2	30
Isophorone	81	72	40-14	10 12	30
Nitrobenzene	87	79	40-14	10	30
NDPA/DPA	90	80	40-14	10 12	30
n-Nitrosodi-n-propylamine	88	78	29-13	32 12	30
Bis(2-ethylhexyl)phthalate	103	92	40-14	10 11	30
Butyl benzyl phthalate	104	93	40-14	11	30
Di-n-butylphthalate	92	80	40-14	14	30
Di-n-octylphthalate	98	87	40-14	10 12	30
Diethyl phthalate	90	79	40-14	13	30
Dimethyl phthalate	89	80	40-14	11	30
Biphenyl	97	92	40-14	40 5	30
4-Chloroaniline	88	85	40-14	40 3	30
2-Nitroaniline	86	80	52-14	13 7	30
3-Nitroaniline	82	80	25-14	45 2	30

Project Name: 1050-1088 NIAGARA STREET SITE

Project Number: T0136-013-001

Lab Number: L2231260

Report Date: 06/27/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westboro	ugh Lab Assoc	iated sample(s):	01-04 Bato	h: WG1652319-2 WG16523	19-3	
4-Nitroaniline	86		76	51-143	12	30
Dibenzofuran	85		78	40-140	9	30
1,2,4,5-Tetrachlorobenzene	101		93	2-134	8	30
Acetophenone	94		86	39-129	9	30
2,4,6-Trichlorophenol	90		83	30-130	8	30
p-Chloro-m-cresol	85		76	23-97	11	30
2-Chlorophenol	81		72	27-123	12	30
2,4-Dichlorophenol	87		80	30-130	8	30
2,4-Dimethylphenol	84		74	30-130	13	30
2-Nitrophenol	93		86	30-130	8	30
4-Nitrophenol	63		51	10-80	21	30
2,4-Dinitrophenol	88		68	20-130	26	30
4,6-Dinitro-o-cresol	91		80	20-164	13	30
Phenol	54		56	12-110	4	30
2-Methylphenol	78		66	30-130	17	30
3-Methylphenol/4-Methylphenol	72		67	30-130	7	30
2,4,5-Trichlorophenol	93		82	30-130	13	30
Carbazole	89		80	55-144	11	30
Atrazine	123		111	40-140	10	30
Benzaldehyde	111		104	40-140	7	30
Caprolactam	47		47	10-130	0	30
2,3,4,6-Tetrachlorophenol	93		79	40-140	16	30

Project Name: 1050-1088 NIAGARA STREET SITE

Project Number:

T0136-013-001

Lab Number:

L2231260

Report Date:

06/27/22

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-04 Batch: WG1652319-2 WG1652319-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	62	57	21-120
Phenol-d6	49	42	10-120
Nitrobenzene-d5	85	76	23-120
2-Fluorobiphenyl	82	74	15-120
2,4,6-Tribromophenol	101	85	10-120
4-Terphenyl-d14	88	79	41-149

Project Name: 1050-1088 NIAGARA STREET SITE

Project Number: T0136-013-001

Lab Number: L2231260
Report Date: 06/27/22

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Container Information

Cooler Custody Seal

A Absent

Container Information		rmation		Initial	Final	Temp			Frozen	
	Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
	L2231260-01A	Vial HCl preserved	Α	NA		2.1	Υ	Absent		NYTCL-8260-R2(14)
	L2231260-01B	Vial HCl preserved	Α	NA		2.1	Υ	Absent		NYTCL-8260-R2(14)
	L2231260-01C	Vial HCl preserved	Α	NA		2.1	Υ	Absent		NYTCL-8260-R2(14)
	L2231260-01D	Amber 250ml unpreserved	Α	7	7	2.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
	L2231260-01E	Amber 250ml unpreserved	Α	7	7	2.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
	L2231260-02A	Vial HCl preserved	Α	NA		2.1	Υ	Absent		NYTCL-8260-R2(14)
	L2231260-02B	Vial HCl preserved	Α	NA		2.1	Υ	Absent		NYTCL-8260-R2(14)
	L2231260-02C	Vial HCl preserved	Α	NA		2.1	Υ	Absent		NYTCL-8260-R2(14)
	L2231260-02D	Amber 250ml unpreserved	Α	7	7	2.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
	L2231260-02E	Amber 250ml unpreserved	Α	7	7	2.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
	L2231260-03A	Vial HCl preserved	Α	NA		2.1	Υ	Absent		NYTCL-8260-R2(14)
	L2231260-03B	Vial HCl preserved	Α	NA		2.1	Υ	Absent		NYTCL-8260-R2(14)
	L2231260-03C	Vial HCl preserved	Α	NA		2.1	Υ	Absent		NYTCL-8260-R2(14)
	L2231260-03D	Amber 250ml unpreserved	Α	7	7	2.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
	L2231260-03E	Amber 250ml unpreserved	Α	7	7	2.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
	L2231260-04A	Vial HCl preserved	Α	NA		2.1	Υ	Absent		NYTCL-8260-R2(14)
	L2231260-04B	Vial HCl preserved	Α	NA		2.1	Υ	Absent		NYTCL-8260-R2(14)
	L2231260-04C	Vial HCl preserved	Α	NA		2.1	Υ	Absent		NYTCL-8260-R2(14)
	L2231260-04D	Amber 250ml unpreserved	Α	7	7	2.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
	L2231260-04E	Amber 250ml unpreserved	Α	7	7	2.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
	L2231260-05A	Vial HCl preserved	Α	NA		2.1	Υ	Absent		NYTCL-8260-R2(14)
	L2231260-05B	Vial HCI preserved	Α	NA		2.1	Υ	Absent		NYTCL-8260-R2(14)

Project Name: 1050-1088 NIAGARA STREET SITE Lab Number: L2231260

Project Number: T0136-013-001 Report Date: 06/27/22

GLOSSARY

Acronyms

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable (DoD report formats only)

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:1050-1088 NIAGARA STREET SITELab Number:L2231260Project Number:T0136-013-001Report Date:06/27/22

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic neaks eluting from Methyl tert but

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benzo(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:1050-1088 NIAGARA STREET SITELab Number:L2231260Project Number:T0136-013-001Report Date:06/27/22

Data Qualifiers

Identified Compounds (TICs).

- $\label{eq:main_eq} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits.
 (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name: 1050-1088 NIAGARA STREET SITE Lab Number: L2231260
Project Number: T0136-013-001 Report Date: 06/27/22

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 19

Page 1 of 1

Published Date: 4/2/2021 1:14:23 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 Co Project Information Project Name: 1050	Way poper Ave, Suite 1	Vicgam	Pag / o	Site	Deliv	Date Rec'd in Lab erables ASP-A		14 /2 ASP-1	3	ALPHA Job # L 2231240 Billing Information Same as Client Info	
Client Information	KISLISHO.	Project # TO 136			St. Bu	Hub. N	11	EQuIS (1 File Other	e) [_ EQuit	S (4 File)	PO#	
Client: Turkey Ex	y Restanding	(Use Project name as P	1	2			Regu	latory Require	ement	Seal III	RE-BE	Disposal Site Information	N. A.
Address: 2558 Hay			1 1	inlev				NY TOGS		NY Pa	rt 375	Please identify below location	of
Suite 300 1		ALPHAQuote #:		1			10	AWQ Standard	ds [NY CP	-51	applicable disposal facilities.	
Phone: (7/6) 856		Turn-Around Time	NOW ELE	215 F6	ERICA			NY Restricted	Use [Other		Disposal Facility;	.,
Fax:	•	Standar	d 🔀	Due Date	9:			NY Unrestricte	d Use			□ NJ □ NY	
Email: nountry	obm-th.com	Rush (only if pre approve	d) [# of Days	s:			NYC Sewer Di	ischarge			Other:	
These samples have b	een previously analyz	ed by Alpha					ANA	LYSIS				Sample Filtration	T
Other project specific		CAT	13				IDCs +TICS	SPOG+TE				□ Done □ Lab to do Preservation □ Lab to do (Please Specify below)	t a l B o t
ALPHA Lab ID		- VNC5	Coll	ection	Sample	Sampler's	1000000	4					i
(Lab Use Only)	Sa	ample ID	Date	Time	Matrix	Initials	4	2				Sample Specific Comments	e
31260 -01	TML	- 3	6-12-22	1215	Whiter	EAS	×	×	\neg	_	=		5
-02		- 3	1	1230	IVATCI		X	X					5
-03	MW.	6		13/5	1		X	X	\neg	\top			5
-04	4.1.7	Sus - 1		100	V		X	X					5
-05		Blank	V	_	Water	10/	X						2
					170007								
									+	+			
ADMINISTRATION OF THE PARTY OF													
Preservative Code: A = None B = HCl C = HNO ₃ D = H ₂ SO ₄ E = NaOH	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification No: MA935 Mansfield: Certification No: MA015			Container Type Preservative					Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not			
E = NaOH F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH O = Other Form No: 01-25 HC (rev. 3	C = Cube O = Other E = Encore D = BOD Bottle	Relinguished	By:	6/13/22	0670 -16,20	am		ved By:		13/22	Time 14:35 000	start until any ambiguiti resolved. BY EXECUTI THIS COC, THE CLIEN HAS READ AND AGRE TO BE BOUND BY ALE TERMS & CONDITION (See reverse side.)	NG IT EES PHA'S

Quantitation Report (QT Reviewed)

Data Path : I:\VOLATILES\VOA101\2022\220621A\

Data File : V01220621A24.D

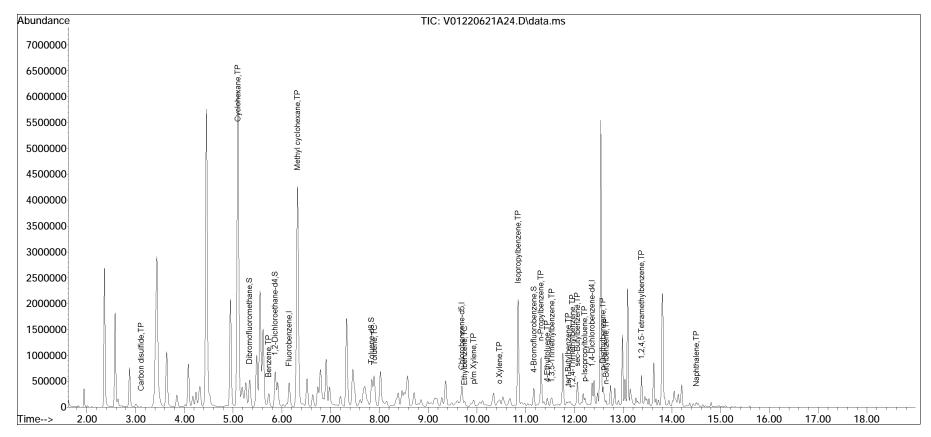
Acq On : 21 Jun 2022 5:01 pm

Operator : VOA101:LAC

Sample : L2231260-02,31,10,10,,A,PRI

Misc : WG1655046,ICAL19013 ALS Vial : 24 Sample Multiplier: 1

Quant Time: Jun 22 16:07:50 2022


Quant Method : I:\VOLATILES\VOA101\2022\220621A\V101_220510N_8260.m

Quant Title : VOLATILES BY GC/MS

QLast Update : Wed May 11 11:10:41 2022

Response via : Initial Calibration

Sub List : 8260-Curve - Megamix plus Diox20621A\V01220621A01.D•

V101_220510N_8260.m Fri Jun 24 13:21:54 2022

APPENDIX E

DATA USABILITY REPORT

Data Validation Services

120 Cobble Creek Road P. O. Box 208 North Creek, NY 12853 Phone (518) 251-4429 harry@frontiernet.net

September 11, 2022

Chad Schuster Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Suite 300 Buffalo, NY 14218

RE: Validation of 1050-1088 Niagara Street Groundwater Sample Analytical Data Data Usability Summary Report (DUSR)
Alpha Analytical SDG Nos. L2201207 and L2231260

Dear Mr. Schuster:

Review has been completed for the data packages generated by Alpha Analytical that pertain to samples collected 01/08/22 and 06/12/22 at the 1050-1088 Niagara Street site. Six aqueous samples and a field duplicate were processed for TCL volatile analytes and TCL semivolatile analytes. Tentatively Identified Compounds (TICs) and a trip blank were also processed. The analytical methodologies are those of the USEPA SW846.

The data packages submitted by the laboratory contain full deliverables for validation, and this usability report is generated from review of the QC summary form information, with full review of sample raw data and limited review of associated QC raw data. The reported QC summary forms and sample raw data have been reviewed for application of validation qualifiers, with guidance from the USEPA national and regional validation documents and the specific requirements of the analytical methodology. The following items were reviewed:

- * Data Completeness
- * Case Narrative
- * Custody Documentation
- * Holding Times
- * Surrogate/Internal Standard Recoveries
- * Method/Preparation Blanks
- * Blind Field Duplicate Correlations
- * Laboratory Control Sample (LCS)
- * Instrumental Tunes
- * Initial and Continuing Calibration Standards
- * Method Compliance
- * Sample Result Verification

Those items listed above which show deficiencies are discussed within the text of this narrative. All of the other items were determined to be acceptable for the DUSR level review, as discussed in NYS DER-10 Appendix B Section 2.0 (c). Documentation of the outlying parameters cited in this report can be found in the laboratory data package.

In summary, the results for the samples are usable either as reported or with minor qualification, with the exception that the results for 1,4-dioxane are rejected and not usable due to limitations of the methodology.

Data completeness, precision, representativeness, reproducibility, and comparability are acceptable. Matrix spikes were not submitted or processed, and the effect of the matrix on analyte recovery and precision has not been evaluated.

Validation data qualifier definitions and client sample identifications are attached to this text. The same sample identifications were used in the two events, and the specific samples are distinguished parenthetically in this report. Also included in this report is the laboratory EDD with recommended qualifiers/edits applied in red.

Blind Field Duplicate

The blind field duplicate evaluation was performed on MW-6 (June), and shows outlying correlations for the following semivolatile analytes, results for which are qualified as estimated in that parent sample and its field duplicate: benzo(b)fluoranthene, fluoranthene, naphthalene, chrysene, phenanthrene, and pyrene.

TCL and CP-51 Volatile Analyses by EPA 8260D

MW-3 exhibited a buffering effect in both events that resulted in elevated pHs. Those samples were therefore analyzed beyond the allowable holding time for inadequately or unpreserved samples. The results for MW-3 in both events have been qualified as estimated, with a low bias.

The results for 1,4-dioxane in the samples are rejected due to low response inherent in the methodology. Other calibration standards show responses within validation action levels, with the following exceptions, results for which are qualified as estimated in the indicated associated samples:

- trans-1,3-dichloropropene and bromoform (22%D and 23%D) in all samples reported in SDG L2201207
- bromomethane (51%D) in all samples reported with SDG L2231260

One of the surrogates in MW-3 (June) exhibited an elevated recovery. The results for that sample have already been qualified as estimated due to elevated pH, as discussed above.

Internal standard recoveries are within validation guidelines, and blanks show no contamination of target analytes.

The Tentatively Identified Compounds (TICs) reported in samples MW-6 (January) and TMW-3 (January) are removed from consideration as sample components due to presence in the associated method blank.

TCL Semivolatile Analyses by EPA8270E - Full Scan and SIM

The method blank associated with samples collected in January was contaminated with low level PAH concentrations and numerous TICs. Consequently, the following PAH detections in the samples collected in January have been edited to reflect non-detection:

- all PAH detections in MW-6
- all PAH detections except acenaphthene, naphthalene, dibenz(a,h)anthracene, and 2-methylnaphthalene in MW-3
- acenaphthylene, anthracene, fluorene, and dibenz(a,h)anthracene in TMW-3 Similarly, the detections of bis(2-ethylhexyl)phthalate in those samples are edited to non-detection due to presence in that method blank. Additionally, the TICs detected in those samples collected in January that

are also detected in associated blank, and the detections of one of the TICs in the samples collected in June, have been removed from consideration as sample components.

This contamination of the January method blank was not noted in the laboratory case narrative, and the detections in the associated samples were not flagged with the "B" qualifier to alert the end user of the data.

Holding times were met. Surrogate and internal standard recoveries are compliant.

Calibration standards show responses within validation action levels, with the exception of the following, the results for which have been qualified as estimated in the indicated associated samples: n-nitrosodi-n-propylamine and isophorone (23%D and 27%D) in all samples reported in SDG L2231260.

Please do not hesitate to contact me if questions or comments arise during your review of this report.

Very truly yours,

Judy Harry

Judy Harry

Attachments: Validation Data Qualifier Definitions

Sample Identifications

Qualified Laboratory EQuIS EDDs

VALIDATION DATA QUALIFIER DEFINITIONS

- U The analyte was analyzed for, but was not detected above the level of the associated reported quantitation limit.
- J The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte in the sample.
- J- The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased low.
- J+ The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased high.
- UJ The analyte was analyzed for, but was not detected. The associated reported quantitation limit is approximate and may be inaccurate or imprecise.
- NJ The detection is tentative in identification and estimated in value. Although there is presumptive evidence of the analyte, the result should be used with caution as a potential false positive and/or elevated quantitative value.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control limits. The analyte may or may not be present.
- EMPC The results do not meet all criteria for a confirmed identification.

 The quantitative value represents the Estimated Maximum Possible

 Concentration of the analyte in the sample.

Sample Summaries

Project Name: Project Number: 1050-1088 NIAGARA

T0136-020-002

Lab Number: Report Date:

L2201207 01/24/22

Alpha Sample ID

L2201207-03

 Sample ID
 Client ID

 L2201207-01
 TMW-3

 L2201207-02
 MW-3

MW-6

ent ID Matrix W-3 WATER V-3 WATER

Matrix Sample Location
WATER BUFFALO, NY
WATER BUFFALO, NY
WATER BUFFALO, NY

 Collection Date/Time
 Receive Date

 01/08/22 10:46
 01/10/22

 01/08/22 12:25
 01/10/22

 01/08/22 11:40
 01/10/22

ANAL

Project Name: 1050-1088 NIAGARA STREET SITE

Project Number: T0136-013-001

Lab Number: Report Date:

L2231260 06/27/22

ANAL

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2231260-01	TMW-3	WATER	1050-1088 NIAGARA ST., BUFFALO, NY	06/12/22 12:15	06/13/22
L2231260-02	MW-3	WATER	1050-1088 NIAGARA ST., BUFFALO, NY	06/12/22 12:30	06/13/22
L2231260-03	MW-6	WATER	1050-1088 NIAGARA ST., BUFFALO, NY	06/12/22 13:15	06/13/22
L2231260-04	BLIND DUP-1	WATER	1050-1088 NIAGARA ST., BUFFALO, NY	06/12/22 00:00	06/13/22
L2231260-05	TRIP BLANK	WATER	1050-1088 NIAGARA ST., BUFFALO, NY	06/12/22 00:00	06/13/22