

Periodic Review Report

1050-1088 Niagara Street Site NYSDEC BCP #C915277 Buffalo, New York

June 2025 (reporting period of July 31, 2023 to December 23, 2024)

Prepared for:

9271 Group, LLC

Prepared by:

Roux Environmental Engineering and Geology, D.P.C. 2558 Hamburg Turnpike, Suite 300 Buffalo, New York 14218

Environmental Consulting & Management +1.800.322.ROUX rouxinc.com

Table of Contents

1. Introd	uction	1
1.1	Site Background	1
1.2	Remedial History	1
1.3	Recommendations	2
1.4	Compliance	2
2. Site O	verview	3
3. Reme	dy Performance	4
	lanagement Plan	
	Operation, Monitoring, and Maintenance Plan	
	4.1.1 Long-Term Groundwater Monitoring Plan	
4	4.1.2 Annual Inspection and Certification Program	5
	4.1.3 Decommissioning of SVE Wells and Vapor Monitoring Points	
4.2 E	Excavation Work Plan	6
4.3 E	Engineering and Institutional Control Requirements and Compliance	6
4	4.3.1 Institutional Controls	6
4	4.3.2 Engineering Controls	7
5. Concl	usions and Recommendations	8
6 Declar	ration/Limitation	g

Tables

- 1. Summary of Groundwater Elevations
- 2. Summary of Groundwater Analytical Results
- 3. Historical Total VOCs, SVOCs and TICs Concentrations Over Time at TMW-3
- 4. Historical Total VOCs, SVOCs and TICs Concentrations Over Time at MW-3
- 5. Historical Total VOCs, SVOCs and TICs Concentrations Over Time at MW-6

Figures

- 1. Site Location Map
- 2. Site Plan
- 3. Cover System layout
- 4. Groundwater Network and Isopotential (December 2024)

Appendices

- A. NYSDEC Certification and Notification Forms and Site Inspection Form
- B. Groundwater Sampling Logs
- C. Laboratory Analytical Data Packages
- D. Data Usability Summary Report (DUSR)

1. Introduction

Roux Environmental Engineering and Geology, DPC (Roux), has prepared this Periodic Review Report (PRR) on behalf of 9271 Group, LLC to summarize the post-remedial status of New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) Site No. C915277, located in the City of Buffalo, Erie County, New York (Site; see Figures 1 and 2).

This PRR has been prepared for the 1050-1088 Niagara Street Site in accordance with NYSDEC DER-10 *Technical Guidance for Site Investigation and Remediation* (May 2010). The NYSDEC's Institutional and Engineering Controls (IC/EC) Certification Form has been completed for the Site (see Appendix A).

This PRR and the associated inspection forms have been completed for the July 31, 2023 to December 23, 2024 reporting period, per supplemental Department correspondence.

1.1 Site Background

The Site consists of two (2) adjoining parcels, identified as 1050 and 1088 Niagara Street, totaling 2.7± acres, located in the City of Buffalo, Erie County, New York. The Site is currently improved with an existing building and parking lot located on the 1050 Niagara Street parcel; a building with a commercial drive thru and parking lot on the 1088 Niagara Street parcel; and associated landscaped areas (see Figures 1 and 2).

The Site was historically used for commercial and industrial operations since at least 1889. The International Brewing Company and American Gelatine Corp. operated on-Site in the early 1900s. The northern portion of the Site (1088 Niagara Street parcel) included a filling station from at least the 1920s through at least 1960. The Niagara Lithograph Company, a commercial printing company, was located on the 1050 Niagara Street parcel of the Site from at least 1930 through at least 1990; and Miken Companies, also a commercial printing company, was located on-Site until at least 2000.

1.2 Remedial History

After acceptance into the NYS BCP in October 2013, a Remedial Investigation/Interim Remedial Measures/Alternatives Analysis (RI/IRM/AA) Work Plan and supplemental work plans were prepared and submitted to the NYSDEC for review and approval. Interim Remedial Measures (IRM) activities were completed to address the removal of multiple abandoned USTs, appurtenant piping, and hydraulic lifts; excavation of petroleum, PCB, PAH, and metals impacted soils; groundwater management; and excavation backfilling. A Remedial Action Work Plan (RAWP) was prepared and approved by the NYSDEC detailing the soil vapor extraction (SVE) system and site-wide cover system. The cleanup was successful in achieving the remedial objectives for the Site. The Site Management Plan (SMP) and Final Engineering Report (FER) were approved by the Department in December 2017. The NYSDEC issued a COC for the Site on December 29, 2017.

Post-COC operation of the SVE system was completed from 2017 to 2020, with Department approval to discontinue operation in December 2020. The SVE system was demobilized in 2021. Decommissioning of the SVE wells is planned for 2025.

Long-term groundwater monitoring has been completed since COC. Results are discussed below. Groundwater monitoring well MW-4 was decommissioned and removed in April 2023 in accordance with NYSDEC CP-43 guidelines as approved by the Department.

1.3 Recommendations

Based on the post-remedial monitoring and analytical results for the Site, no modifications are recommended at this time for the Site.

1.4 Compliance

The Site is in general compliance with the SMP. The completed IC/EC form is included in Appendix A.

Cover system corrective action related to erosion noted along the western embankment (along the I-190) assumed related to a varmint burrow (groundhog) is ongoing. Several attempts have been made to humanely capture and remove the varmint unsuccessfully. Additional actions to be completed during 2025, in accordance with the Department requested supplemental cover system corrective action work plan. Additional details are provided in Section 4.

2. Site Overview

Previous investigations identified environmental contamination on-Site that required remediation. 9271 Group, LLC entered into a Brownfield Cleanup Agreement (BCA) with the NYSDEC to remediate the Site. BCP investigations and remediation were completed between 2014 and 2017.

The remedial activities included:

- Excavation, cleaning, and removal of four (4) underground storage tanks (USTs) and appurtenant piping;
- Excavation and off-site disposal of non-hazardous soil/fill exceeding the Part 375 Restricted Residential Use Soil Cleanup Objectives (SCOs);
- Delineation, excavation, and off-site disposal of hazardous PCB impacted soil/fill;
- Installation of a SVE system to mitigate nuisance petroleum volatile organic compounds (VOCs)
 within the subsurface soil/fill and petroleum related VOCs and semi-volatile organic compounds
 (SVOCs) in groundwater;
- Construction and maintenance of a cover system consisting of the existing building, new building, asphalt and concrete pavement, sidewalks; and minimum 24-inches soil cover of approved clean material placed on top of demarcation layer, to prevent human exposure to remaining soil/fill exceeding RRSCOs; and
- Placement of an environmental easement to (1) implement, maintain, and monitor Engineering Controls; (2) prevent future exposure to remaining contamination by controlling disturbances of the subsurface contamination; and (3) limit the use and development of the Site to Restricted Residential, Commercial, or Industrial uses only.

Remedial activities were completed in September 2017. The FER and SMP for the Site were approved by the Department in December 2017. The Certificate of Completion (COC) was issued for the Site on December 29, 2017.

3. Remedy Performance

Post-remedial inspections and groundwater monitoring have been completed at the Site for the current reporting period. Groundwater elevation data for the reporting period is provided on Table 1; groundwater sample analytical results are summarized on Table 2; with representative groundwater isopotential shown on Figure 4 for the associated sampling event. Historical trends for total concentrations of total VOCs, SVOCs, and associated tentatively identified compounds (TICs) are provided on Tables 3 through 5. Groundwater monitoring and sampling logs are provided in Appendix B. Laboratory analytical data reports are provided electronically in Appendix C.

As shown on Tables 3 through 5, total concentrations of reported analytes have reduced over time at all sample locations as follows:

• TMW-3:

- Total VOCs and VOCs TICs have reduced significantly over time with no elevated detections of VOCs exceeding GWQS.
- Total SVOCs and SVOCs TICs have reduced significantly over time with total concentrations 0.17 ug/L and 16.6 ug/L, respectively. Residual detections are likely related to suspended solids within the water samples.

MW-3:

- Total VOCs concentrations have decreased since 2015, with decrease in number of elevated analytes. Continued downward trend in Total VOC concentrations likely indicating natural degradation is ongoing.
- Total SVOCs detections are reported as estimated (J-flagged) by laboratory. Residual detections are likely related to suspended solids within the water samples.

MW-6:

- o Total VOCs and VOCs TICs are non-detect.
- Total SVOCs concentrations are generally reported as non-detect, with certain analytes during select sampling events being reported as estimated (J-flagged) by the laboratory.

Overall, residual groundwater VOC concentrations remain low and decreasing trend indicates ongoing natural degradation. Detection of certain SVOC analytes likely related to suspended solids within the water samples.

Ongoing cover corrective actions related to erosion along the western embankment are ongoing. The remaining cover system is being maintained in general accordance with the SMP. Invasive knotweed measures were completed in 2023 and will be included in annual inspections of the cover system, as the invasive plant is common along the I-190 corridor adjacent to the site. Application of herbicide was completed along the northern and western embankment by TruGreen Commercial (NYS pesticide applicator identification number C9823813) on May 11, 2023 and July 7, 2023. No applications were completed in 2024, with reassessment of knotweed to be completed in future site inspections.

The completed IC/EC Certification form is included in Appendix A.

4. Site Management Plan

The SMP was prepared for the Site and approved by the Department in December 2017. The SMP includes an Institutional and Engineering Control (IC/EC) Plan, Operation, Monitoring and Maintenance (OM&M) Plan, an Excavation Work Plan (EWP), and a copy of the Environmental Easements. A brief description of the components of the SMP is presented below.

4.1 Operation, Monitoring, and Maintenance Plan

The OM&M Plan consists of two major components, including the Long-Term Groundwater Monitoring (LTGWM) Plan; and the Annual Inspection & Certification Program. The SVE system was previously shutdown and is no longer a component of the SMP.

4.1.1 Long-Term Groundwater Monitoring Plan

Long-term groundwater monitoring (LTGWM) has been completed since issuance of COC in 2017. A total of twelve (12) rounds of post-IRM groundwater samples have been collected to date. One (1) sampling event was completed during this reporting period, on December 23, 2024. Minor odors were noted at MW-3 during pre-sample purge only, though no odors were noted at any of the other well locations.

Groundwater well MW-5R continues to be observed as dry. MW-5R will be sampled if recoverable volume is present during future sampling events.

Groundwater sampling logs are provided in Appendix B. Groundwater elevation data is provided on Table 1 and groundwater analytical results are summarized on Table 2. Historical trends for total concentrations of total VOCs, SVOCs, and associated tentatively identified compounds (TICs) are provided on Tables 3 through 5. Laboratory analytical data reports are provided in Appendix C. The Data Usability Summary Report (DUSR) for this reporting period is provided in Appendix D.

4.1.2 Annual Inspection and Certification Program

The Annual Inspection and Certification Program outlines the requirements for the Site, to certify and attest that the institutional controls and/or engineering controls employed at the Site are unchanged from the previous certification. The Annual Certification will primarily consist of an annual Site Inspection to complete the NYSDEC's IC/EC Certification Form. The Site inspection will verify that the IC/ECs:

- Are in place and effective.
- Are performing as designed.
- That nothing has occurred that would impair the ability of the controls to protect the public health and environment.
- That nothing has occurred that would constitute a violation or failure to comply with any operation and maintenance plan for such controls.
- Access is available to the Site to evaluate continued maintenance of such controls.

Site inspection was completed on December 23, 2024 concurrent with the sampling event; however, snow cover was present during the 2024 site inspection. The Site inspection form is included in Appendix A; however, no photolog is provided due to Site conditions at the time of inspection.

The property is being used in accordance with the Restricted Residential Use [mixed-use commercial (office and retail) and residential (apartments)], with surface parking, paved walkways, and landscaped areas. No observable indication of intrusive activities was noted during the Site inspection. No observable use of groundwater was noted during the reporting period.

Prior invasive species knotweed was addressed during the 2023 growing season, as detailed in the 2023 PRR. No recurrence was noted during the 2024 inspection. Inspection for knotweed will be completed during the 2025 site inspection as the invasive plant is abundant along the I-190 expressway directly west of the site.

Ongoing cover corrective action for the erosion along the western embankment is noted. The western embankment will be addressed during the 2025 construction season and documented in future PRRs. As requested by the Department, a supplemental cover system corrective action plan will be provided for Department review.

The completed Site Management Periodic Review Report Notice – Institutional and Engineering Controls Certification Form is included in Appendix A.

4.1.3 Decommissioning of SVE Wells and Vapor Monitoring Points

As requested by the Department, the decommissioning of the SVE wells and Vapor Monitoring points will be completed during the 2025 construction season in accordance with the CP-43. Details will be provided in the 2024-2025 PRR.

4.2 Excavation Work Plan

An Excavation Work Plan (EWP) was included in the approved-SMP for the Site. The EWP provides guidelines for the management of soil and fill material during any future intrusive activities.

No intrusive activities requiring management of on-Site soil or fill material; or the import and placement of backfill materials occurred during the reporting period. As noted above, a supplemental cover system corrective action plan will be provided for Department review.

Notification will be provided to the Department when corrective actions for the cover system are scheduled.

4.3 Engineering and Institutional Control Requirements and Compliance

As detailed in the Environmental Easements, several IC/ECs need to be maintained as a requirement of the SMP for the Site.

4.3.1 Institutional Controls

- Groundwater-Use Restriction the use of groundwater for potable and non-potable purposes is prohibited without water quality treatment as determined by the NYSDOH;
- Land-Use Restriction The controlled property may be used for restricted residential, commercial, and/or industrial use; and
- Implementation of the SMP.

4.3.2 Engineering Controls

- All engineering controls must be operated, maintained, and inspected as specified in the SMP;
- Soil Vapor Extraction SVE System was operated and maintained from 2017 to 2020. The Department approved the shutdown and removal of the SVE system in December 2020.
- Cover System The cover system, including buildings, concrete sidewalks, asphalt, stone, and landscaped vegetated areas are being maintained in general compliance with the SMP. The former area of stone cover (SVE trailer) has been covered in concrete.

With the exception of the western embankment, as noted above, the Site was generally compliant with the SMP requirements.

5. Conclusions and Recommendations

Conclusions:

The Site was in general compliance with the SMP.

Cover system corrective actions to address the erosion on the western embankment will be completed during the 2025 construction season.

Recommendations:

No modifications are recommended at this time.

6. Declaration/Limitation

Roux personnel conducted the annual site inspection for the 1050-1088 Niagara Street BCP Site No. C915277, located in Buffalo, New York, according to generally accepted practices. This report complied with the scope of work provided to 9271 Group, LLC by Roux.

This report has been prepared for the exclusive use of 9271 Group, LLC. The contents of this report are limited to information available at the time of the site inspection. The findings herein may be relied upon only at the discretion of 9271 Group, LLC. Use of or reliance upon this report or its findings by any other person or entity is prohibited without written permission of Roux.

TABLES

TABLE 1

SUMMARY OF GROUNDWATER ELEVATIONS PERIODIC REVIEW REPORT 1050-1088 NIAGARA STREET SITE (BCP SITE NO. C915277) BUFFALO, NEW YORK

Location	TOR Elevation	DTW (fbTOR) ¹	Groundwater Elevation (feet) ²				
	(feet)	Sample Date					
	(lest)	12/23	3/2024				
TMW-3	598.31	9.95	588.36				
MW-3	613.44	26.88	586.56				
MW-5R ²	615.62	Dry	595.39				
MW-6	622.01	9.68	612.33				

Notes:

- 1. DTW based on water levels collected by Roux on 12/23/24.
- 2. Groundwater elevation based on bottom of well elevation.

Defintions:

TOR = Top of riser DTW = Depth to water

fb = feet below

Parameters ¹	Class GA GWQS ²				TM	IW-3			
Volatile Organic Compounds (VOCs) - ug	g/L	11/9/14	2/12/15	5/1/17	11/15/17	5/12/18	4/6/19	11/2/19	7/2/20
1,1 Dichloroethane 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	5 5 5	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
2-Butanone (MEK) 2-Hexanone	50 50	ND ND	1.7 J ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4-Isopropyltoluene Acetone Benzene	5 50 1	ND ND ND	0.62 J 4.1 J ND	ND ND ND	ND ND ND	ND 2.4 J ND	ND ND ND	ND 3.8 J ND	ND 5.8 ND
Carbon disulfide Cyclohexane	60	ND ND 75	ND ND 66	ND ND 2.8 J	ND 0.9 J	ND 0.47 J	ND ND	ND ND	ND ND ND
Ethylbenzene Isopropylbenzene	5 5	ND 91	1.5 87	ND 9.8 J	ND 1.3 J	ND 1.4 J	ND 0.72 J	ND ND	ND 0.84 J
Methyl Acetate Methylcyclohexane Methylene Chloride	 5	ND 130 2.6 J,B	ND 90 ND	ND 5.7 J ND	ND 2.1 J ND	ND 0.96 J ND	ND 0.46 J ND	ND ND ND	ND ND ND
n-Butylbenzene n-Proplybenzene	5 5	20 100	17 98	ND 13 J	ND ND	ND ND	ND ND	ND ND	ND ND
sec-Butylbenzene tert-butylbenzene Toluene	5 5 5	ND ND ND	21 2.8 1.9	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Xylene, Total Total VOCs	5 	ND 418.6 J,B	1.6 J 393.22 J	ND 31.3 J	ND 4.3 J	ND 5.23 J	ND 1.18 J	ND 3.8 J	ND 6.64 J
VOCs Tentatively Identified Compounds (3-Phenylbut-1-ene Benzene, cyclopropyl-	TICs)- ug/L 		ND 160 NJ	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Benzene, 1-methyl-2-(1-methylethyl)- Benzene, 1-methyl-3-(1-methylethyl)-			140 NJ 200 NJ	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Benzene, 1,2,3-trimethyl- Benzene, 1,2,3,4-tetramethyl- Butane, 2-Methyl-			ND 49 NJ ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Cyclohexane Cyclohexane,1,1-dimethyl-			ND ND	ND ND	ND 3.84 NJ	ND ND	ND ND	ND ND	ND ND
Cyclohexane,1,1,3-trimethyl- Cyclohexene, 3-methyl- Cyclohexene, 4-methyl-			ND ND ND	ND ND ND	4.14 NJ ND ND	3.09 NJ ND ND	ND ND ND	ND ND ND	ND ND ND
Cyclopentane Cyclopentane, methyl-			ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Cyclopentane, 1,3-dimethyl- 1,4-Pentadiene, 3,3-dimethyl- Ethylidenecyclobutane			ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Isopropylcyclobutane Cyclohexane, 1,3-dimethyl-,cis-			130 NJ 81 NJ	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Cyclohexane,4-methyl- Cyclohexane, ethyl- Cyclobutane, (1-methylethylidene)-			ND 54 NJ	ND 16.6 NJ	ND ND ND	ND ND ND	ND ND	ND ND	ND ND
Cyclohexene Cyclohexene, 1-methyl-	 	 	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Indan, 1-methyl- 1H-Indene, 2,3-dihydro-2,2-dimethyl-			68 NJ 43 NJ	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Hexane 1-Pentane Pentane, 2-methyl-	 		ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Pentane, 3-methyl- Indane			ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Pentane Sulfur Dioxide Unknown Benzene			ND ND ND	ND ND 43.8 J	ND ND ND	ND ND 4.57 J	ND ND 1.31 J	ND 1 NJ ND	ND ND 1.12 J
Unknown Aromatic(s) Unknown Cyclohexane			ND ND	48.8 J 21.2 J	7.35 J 10.84 J	5.53 J ND	4.03 J 4.91 J	ND ND	1.07 J ND
Unknown Cycloalkane(s) Unknown(s) Total TICs		 	ND 52 J 977	ND 18.4 J 148.8	7.75 J 3.41 J 37.33 J	8.17 J 5.16 J 26.52 J	1.1 J 1.29 J 12.64 J	ND 1.08 J 2.08 J	ND ND 2.19 J
Semivolatile Organic Compounds (SVOC 2-Chloronaphthalene		ND				ND	ND	ND	ND
2-Methylnaphthalene Acenaphthene Acenaphthylene	20	44 ND ND				ND ND ND	ND ND ND	0.07 J 0.03 J ND	0.06 J ND 0.03 J
Acetophenone Anthracene	 50	27 0.7 J				ND 0.02 J	ND ND	ND 0.1 J	0.05 J ND 0.05 J
Benzaldehyde Benzo(a)anthracene	0.002 ND	ND 0.46 J 0.66 J				ND ND 0.03 J	ND ND 0.04 J	0.46 0.49	0.2 0.27
Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene	0.002	1.5 J 0.67 J				0.04 J 0.02 J	0.04 J 0.03 J	0.49 0.77 0.48 J	0.33 0.31
Benzo(k)fluoranthene Benzoic acid Bis(2-ethylhexyl) phthalate	0.002 5	ND ND 6.7 B	 			0.02 J ND 8.2 B	0.04 J ND ND	0.22 ND 3.6	0.14 ND 7.8
Butyl benzyl phthalate Carbazole	50 	ND ND				ND ND	ND ND	ND ND	7.9 ND
Caprolactam Chrysene	0.002	ND 0.49 J				ND ND ND	ND 0.04 J	ND 0.44	ND 0.35
Dibenzo(a,h)anthracene Dibenzofuran Diethyl phthalate	 50	ND 0.95 J ND				ND 0.73 J	ND ND ND	0.11 ND 1.6 J	0.05 J ND ND
Di-n-butylphthalate Fluoranthene	50 50	ND 1.3 J			-	ND 0.07 J	ND 0.07 J	ND 0.73 J	ND 0.4
Fluorene Hexachlorobenzene Indeno(1,2,3-cd)pyrene	50 0.002	1.2 J ND 0.64 J				0.02 J ND 0.02 J	ND ND 0.03 J	0.05 J ND 0.48	0.03 J ND 0.22
Isophorone Naphthalene	50 10	37 9.6				ND ND	ND ND	ND 0.09 J	ND 0.06 J
Pentachlorophenol Phenanthrene Phenol	50 1	2.5 J ND			 	ND 0.07 J ND	ND 0.05 J ND	ND 0.41 ND	0.32 J 0.29 ND
Pyrene Total SVOCs	50 	1 J 136.37				0.06 J 9.3	0.07 J 0.41	0.66 10.79	0.35 19.16
SVOCs Tentatively Identified Compounds 1-Phenyl-1-butene 1h-Indene, 2,3-dihydro-5-methyl-	: (TICs)- ug/L 					ND ND	ND ND	ND ND	ND ND
Aldol Condensates Benzene, 1,2,4,-trimethyl-	 					34 J ND	188.3 J ND	14.1 J ND	ND ND
Benzene, 1,2,4,5-tetramethyl- Benzene, 1,3-diethyl- Benzene, 1-ethyl-2-methyl-	 	 			 	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Benzene, (1-methylethyl)- Benzene, (1-methylpropyl)-						ND ND	ND ND	ND ND	ND ND
Benzene, 1-methyl-2-(1-methylethyl)- Benzene, 1-ethyl-2,3-dimethyl- Benzene, 1,4-diethyl-	 	 	 			ND ND ND	ND ND ND	ND ND ND	ND ND ND
Benzene, propyl- Caffeine						ND ND	ND ND	ND ND	ND ND
Cyclic Octaatomic Sulfur Cyclohexane, 1,1,2,3-tetramethyl- Cyclohexane, 1,1,3-trimethyl-	 			 		ND ND ND	ND ND ND	ND ND ND	ND ND ND
Cyclohexane, ethyl- Cyclohexane, propyl-	 					ND ND	ND ND	ND ND	ND ND
Erucylamide Indane n-Hexadecanoic acid	 					ND ND	ND ND	ND ND	ND ND ND
n-Hexadecanoic acid Octane, 2,6-dimethyl- Octane, 3-methyl-	 	 	 			ND ND ND	ND ND ND	ND ND ND	ND ND ND
Unknown Alcohol Unknown Aldehyde						ND ND	ND ND	ND ND	128.8 J ND
Unknown Alkane Unknown Amide Unknown Benzene						ND ND ND	ND ND ND	31.41 J ND ND	ND ND ND
Unknown Cycloalkane Unknown Cyclohexane	 					ND ND	ND ND	ND ND	ND ND
Unknown Cyclopentene Unknown Furan Unknown Organic Acid	 					ND ND 161.49 J	ND ND 1.45 J	ND ND 42.1 J	ND ND 94.7 J
Unknown Phenol									
Unknown Siloxane Unknown			 			ND ND 9.99 J	ND ND 12.21 J	2.84 J ND 76.61 J	ND 12.2 J 337.1 J

- Notes:
 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
 2. Values per NYSDEC TOGS 1.1.1 Class GA Groundwater Quality Standards.
- 3. MW-5 was not sampled during May 2017 sampling due to damage to the well. MW-5R has been routinely dry.

- Amage to the well. MW-5R has been rounnery day.

 Qualifiers:

 D = Dilution required due to high concentration of target analyte above the laboratory reporting limit.

 ND = Parameter not detected above laboratory detection limit.

 "--" = Sample not analyzed for parameter or no GWQS available for the parameter.

 J = Estimated Value Below calibration range

 NJ = Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.

 E = Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

 B = Compund was found in the blank and sample.

 Result exceeds GWQS.

Parameters ¹	Class GA GWQS ²				TMW-3			
Volatile Organic Compounds (VOCs) - us	g/L	11/7/20	5/23/21	1/8/22	6/12/22	10/30/22	4/24/23	12/23/24
1,1 Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	5	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5	ND	ND	ND	ND	ND	ND	ND
2-Butanone (MEK) 2-Hexanone 4-Isopropyltoluene	50	ND	ND	ND	ND	ND	ND	ND
	50	ND	ND	ND	ND	ND	ND	ND
	5	ND	ND	ND	ND	ND	ND	ND
Acetone	50	1.5 J	2 J	1.8 J	1.5 J	1.8 J-	ND	1.6 J
Benzene	1	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide Cyclohexane Ethylbenzene	60	ND	ND	ND	ND	ND	ND	ND
		ND	ND	ND	0.44 J	ND	ND	ND
	5	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene Methyl Acetate	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Methylcyclohexane Methylene Chloride		ND	ND	ND	0.66 J	ND	ND	ND
	5	ND	ND	ND	ND	ND	ND	ND
n-Butylbenzene n-Proplybenzene sec-Butylbenzene	5	ND	ND	ND	ND	ND	ND	ND
	5	ND	ND	ND	ND	ND	ND	ND
	5	ND	ND	ND	ND	ND	ND	ND
tert-butylbenzene	5	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND
Xylene, Total Total VOCs VOCs Tentatively Identified Compounds	5 (TICs)- µg/l	ND 1.5 J	ND 2 J	ND 1.8 J	ND 2.6 J	ND 1.8 J	ND ND	ND 1.6 J
3-Phenylbut-1-ene		ND	ND	ND	ND	ND	ND	ND
Benzene, cyclopropyl-		ND	ND	ND	ND	ND	ND	ND
Benzene, 1-methyl-2-(1-methylethyl)-		ND	ND	ND	ND	ND	ND	ND
Benzene, 1-methyl-3-(1-methylethyl)-		ND	ND	ND	ND	ND	ND	ND
Benzene, 1,2,3-trimethyl-		ND	ND	ND	ND	ND	ND	ND
Benzene, 1,2,3,4-tetramethyl-		ND	ND	ND	ND	ND	ND	ND
Butane, 2-Methyl-		ND	ND	ND	ND	ND	ND	ND
Cyclohexane Cyclohexane,1,1-dimethyl- Cyclohexane,1,1,3-trimethyl-	-	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Cyclohexene, 3-methyl-		ND	ND	ND	ND	ND	ND	ND
Cyclohexene, 4-methyl-		ND	ND	ND	ND	ND	ND	ND
Cyclopentane Cyclopentane, methyl- Cyclopentane, 1,3-dimethyl-	 	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND
1,4-Pentadiene, 3,3-dimethyl- Ethylidenecyclobutane	 	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND ND	ND ND ND
Isopropylcyclobutane Cyclohexane, 1,3-dimethyl-,cis-	 	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Cyclohexane, 4-methyl-		ND	ND	ND	ND	ND	ND	ND
Cyclohexane, ethyl-		ND	ND	ND	ND	ND	ND	ND
Cyclobutane, (1-methylethylidene)-		ND	ND	ND	ND	ND	ND	ND
Cyclohexene Cyclohexene, 1-methyl-		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Indan, 1-methyl-		ND	ND	ND	ND	ND	ND	ND
1H-Indene, 2,3-dihydro-2,2-dimethyl-		ND	ND	ND	ND	ND	ND	ND
Hexane		ND	ND	ND	ND	ND	ND	ND
1-Pentane	-	ND	ND	ND	ND	ND	ND	ND
Pentane, 2-methyl-		ND	ND	ND	ND	ND	ND	ND
Pentane, 3-methyl-		ND	ND	ND	ND	ND	ND	ND
Indane		ND	ND	ND	ND	ND	ND	ND
Pentane		ND	ND	ND	ND	ND	ND	ND
Sulfur Dioxide		ND	2 NJ	ND	ND	ND	ND	ND
Unknown Benzene		ND	ND	ND	ND	ND	ND	ND
Unknown Aromatic(s) Unknown Cyclohexane Unknown Cycloalkane(s)		ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Unknown(s) Total TICs		ND ND	ND 2 J	ND ND	ND ND	ND ND	ND ND	ND ND
Semivolatile Organic Compounds (SVOC 2-Chloronaphthalene 2-Methylnaphthalene	s) - ug/L 10 	ND 0.08 J	ND ND	ND 0.19	ND 0.08	ND ND	ND 0.18	ND ND
Acenaphthene Acenaphthylene	20	0.04 J 0.04 J	ND 0.02 J	0.19 0.02 J ND	ND 0.03 J	ND ND	0.03 J 0.04 J	ND ND
Acetophenone Anthracene Reparaldehyde	50	ND 0.08 J	ND 0.04 J	ND ND	ND 0.1 J	ND 0.02 J	ND 0.07 J	ND ND
Benzaldehyde Benzo(a)anthracene Benzo(a)pyrene	0.002 ND	0.15 0.17	0.09 J 0.1	0.32 0.35	ND 0.22 0.24	0.03 J ND	0.25 0.39	0.03 J ND
Benzo(b)fluoranthene Benzo(ghi)perylene	0.002	0.21 0.23	0.14 0.1	0.54 0.46	0.34 0.3	0.02 J 0.02 J	0.52 0.36	0.03 J ND
Benzo(k)fluoranthene Benzoic acid Bis(2-ethylhexyl) phthalate	0.002 5	0.09 J ND 2 J	0.04 J ND 1.7 J	0.16 ND ND	ND ND	ND ND ND	0.14 ND ND	ND ND ND
Butyl benzyl phthalate	50	6.6	3.5 J	10	ND	ND	3.6 J	ND
Carbazole		ND	ND	ND	ND	ND	ND	ND
Caprolactam Chrysene Dibenzo(a,h)anthracene	0.002	ND 0.21 0.05 J	3.5 J 0.11 0.03 J	49 0.49 ND	ND 0.32 0.05 J	ND 0.01 J ND	0.37 0.08 J	ND ND ND
Dibenzofuran Diethyl phthalate		ND	ND	ND	ND	ND	ND	ND
	50	ND	ND	ND	ND	ND	ND	ND
Di-n-butylphthalate Fluoranthene Fluorene	50 50 50	0.56 J 0.23 0.05 J	ND 0.18 0.02 J	ND 0.62 ND	0.44 0.03 J	0.53 J 0.02 J ND	ND 0.56 0.04 J	ND 0.05 J ND
Hexachlorobenzene	0.002	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene		0.16	0.1 J	0.33	0.2	0.01 J	0.27	ND
Isophorone Naphthalene Pentachlorophenol	50 10 1	ND 0.08 J 0.21 J	ND 0.09 J ND	ND 0.16 0.48 J	0.1 ND	ND 0.05 J ND	ND 0.16 0.22 J	ND ND ND
Phenanthrene	50	0.2	0.11	0.58	0.38	0.05 J	0.43	0.06 J
Phenol	1	ND	ND	ND	ND	ND	ND	ND
Pyrene Total SVOCs SVOCs Tentatively Identified Compounds	50 s (TICs)- ug/L	0.2 11.64	0.16 10.03	0.54 64.24	0.38 3.3	ND 0.76	0.48 8.19 J	ND 0.17 J
1-Phenyl-1-butene		ND	ND	ND	ND	ND	ND	ND
1h-Indene, 2,3-dihydro-5-methyl-		ND	ND	ND	ND	ND	ND	ND
Aldol Condensates Benzene, 1,2,4,-trimethyl- Benzene, 1,2,4,5-tetramethyl-	 	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Benzene, 1,3-diethyl-		ND	ND	ND	ND	ND	ND	ND
Benzene, 1-ethyl-2-methyl-		ND	ND	ND	ND	ND	ND	ND
Benzene, (1-methylethyl)-		ND	ND	ND	ND	ND	ND	ND
Benzene, (1-methylpropyl)-		ND	ND	ND	ND	ND	ND	ND
Benzene, 1-methyl-2-(1-methylethyl)-		ND	ND	ND	ND	ND	ND	ND
Benzene, 1-ethyl-2,3-dimethyl-		ND	ND	ND	ND	ND	ND	ND
Benzene, 1,4-diethyl-		ND	ND	ND	ND	ND	ND	ND
Benzene, propyl- Caffeine Cyclic Octaatomic Sulfur		ND	ND	ND	ND	ND	ND	ND
		ND	ND	ND	ND	ND	ND	ND
		4.47 NJ	ND	ND	ND	ND	ND	ND
Cyclohexane, 1,1,2,3-tetramethyl- Cyclohexane, 1,1,3-trimethyl-	 	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Cyclohexane, ethyl- Cyclohexane, propyl-		ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Erucylamide Indane n-Hexadecanoic acid	- - -	ND ND ND	ND ND	ND ND	ND ND ND	ND ND	ND ND ND	ND ND
Octane, 2,6-dimethyl-		ND	ND	ND	ND	ND	ND	ND
Octane, 3-methyl-		ND	ND	ND	ND	ND	ND	ND
Unknown Alcohol Unknown Aldehyde Unknown Alkane		ND ND 11.85	3.31 J ND ND	ND ND ND	ND 4.44 J 64.91 J	2.11 JB ND 4.65 JB	ND ND 61.8 J	ND ND ND
Unknown Amide		6.91 J	ND	ND	ND	ND	ND	ND
Unknown Benzene		4.04	ND	ND	13.6 J	ND	13 J	ND
Unknown Cycloalkane Unknown Cyclohexane Unknown Cyclopentene	 	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Unknown Furan Unknown Organic Acid		ND 10.2 J	ND 15.45 J	ND 50.1 J	ND 12.83 J	1.78 JB 7.45 JB	ND ND	ND 9.2 J
Unknown Phenol Unknown Siloxane Unknown		ND	ND	ND	ND	ND	ND	ND
		ND	ND	ND	ND	ND	ND	ND
		69.42 J	165.59 J	841.44 J	15.16 J	3.78 J	27.57 JB	7.4 J
Total TICs		106.89 J	184.35 J	988 J	126 J	19.8 J	102.37 J	16.6 J

- Notes:
 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
 2. Values per NYSDEC TOGS 1.1.1 Class GA Groundwater Quality Standards.
- 3. MW-5 was not sampled during May 2017 sampling due to damage to the well. MW-5R has been routinely dry.

- Qualifiers:

 D = Dilution required due to high concentration of target analyte above the laboratory reporting limit.

 ND = Parameter not detected above laboratory detection limit.

 "--" = Sample not analyzed for parameter or no GWQS available for the parameter.

 J = Estimated Value Below calibration range

 NJ = Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.

 E = Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

 B = Compund was found in the blank and sample.

 BOLD

 GWGS.

Parameters ¹	Class GA GWQS ²	0/40/45	F/0/47	444545	MW-3	4/6/19	44/0/40	7/0/00
Volatile Organic Compounds (VOCs) - ug	g/L 5	2/12/15	5/8/17 ND	11/15/17 ND	5/12/18 ND	4/6/19 ND	11/2/19 ND	7/2/20 ND
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	5	0.83 J 100 D	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-Butanone (MEK) 2-Hexanone 4-Isopropyltoluene	50 50 5	7.6 54 D	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Acetone Benzene	50 1	21 67 D	ND 7.9	ND 10	ND 31	ND 39	ND 28	ND 32
Carbon disulfide Cyclohexane Ethylbenzene	60 5	0.37 J 1000 D 30 D	70 ND	ND 100 ND	ND 160 ND	ND 260 ND	ND 210 1.7 J	ND 350 D 2.2 J
Isopropylbenzene Methyl Acetate	5 	200 D ND	36 ND	44 ND	27 ND	60 ND	60 ND	57 ND
Methylcyclohexane Methylene Chloride n-Butylbenzene	5 5	1200 D 18 54 D	170 ND ND	210 ND ND	210 ND ND	230 ND ND	160 ND ND	210 D ND ND
n-Proplybenzene sec-Butylbenzene	5 5	200 D 50 D	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
tert-butylbenzene Toluene Xylene, Total	5 5 5	2.6 7.1 13 J, D	ND ND ND	ND ND 2.1 J	ND 2.4 J 3.6 J	ND 4.2 J 6.2 J	ND 4 J 8.8 J	ND 4.2 9.6
Total VOCs VOCs Tentatively Identified Compounds ((TICs)- ug/L	3027.2 J, D	283.9	366.1 J	434 J	599.4 J	472.5 J	665 J
3-Phenylbut-1-ene Benzene, cyclopropyl- Benzene, 1-methyl-2-(1-methylethyl)-		ND 29 NJ ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Benzene, 1-methyl-3-(1-methylethyl)- Benzene, 1,2,3-trimethyl-		ND 50 NJ	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Benzene, 1,2,3,4-tetramethyl- Butane, 2-Methyl- Cyclohexane		ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND 93.4 NJ	ND 57.2 NJ ND	ND ND ND
Cyclohexane,1,1-dimethyl- Cyclohexane,1,1,3-trimethyl-		ND ND	ND 71.6 J	ND ND	ND ND	ND ND	ND ND	ND ND
Cyclohexene, 3-methyl- Cyclohexene, 4-methyl- Cyclopentane		ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Cyclopentane, methyl- Cyclopentane, 1,3-dimethyl-	 	83 NJ ND	ND ND	77.3 NJ ND	87.4 NJ 89.2 NJ	150 NJ ND	151 NJ 58.4 NJ	207 NJ ND
1,4-Pentadiene, 3,3-dimethyl- Ethylidenecyclobutane Isopropylcyclobutane		26 NJ ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Cyclohexane, 1,3-dimethyl-,cis- Cyclohexane,4-methyl-		ND 21 NJ	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Cyclohexane, ethyl- Cyclobutane, (1-methylethylidene)- Cyclohexene		33 NJ 30 NJ ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Cyclohexene, 1-methyl- Indan, 1-methyl-		37 NJ ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1H-Indene, 2,3-dihydro-2,2-dimethyl- Hexane 1-Pentane		ND 19 NJ ND	ND ND ND	ND ND ND	ND ND ND	ND ND 153 NJ	ND ND ND	ND ND ND
Pentane, 2-methyl- Pentane, 3-methyl-		ND ND	ND ND	94.3 NJ 65.4 NJ	111 NJ ND	ND 62.8 NJ	ND 55.2 NJ	ND ND
Indane Pentane Sulfur Dioxide		ND ND ND	124 J ND ND	ND ND ND	ND ND ND	ND 47 NJ ND	ND 55.1 NJ ND	ND 80.5 NJ ND
Unknown Benzene Unknown Aromatic(s)		ND ND	ND 62.9 J	ND 39.7 J	ND 77.3 J	ND 124.9 J	ND 60 J	ND 154.5
Unknown Cyclohexane Unknown Cycloalkane(s) Unknown(s)		ND ND 45 J	164 J ND 508.8 J	141.6 J 180.1 J 98.4 J	159 J 238.1 J 164.1 J	90.7 J 174.4 J ND	68.5 J 71.9 J 237.8 J	106 J 158.2 J 368.9
Total TICs Semivolatile Organic Compounds (SVOC	-	373	931.3	696.8 J	926.1 J	896.2 J	815.1 J	1075.1 J
2-Chloronaphthalene 2-Methylnaphthalene Acenaphthene	10 20	ND ND ND			ND 0.04 J 0.07 J	ND 0.06 J 0.13	ND 0.1 J 0.12	ND 0.07 J 0.49
Acenaphthylene Acetophenone		ND 86 J			ND ND	0.02 J ND	ND ND	ND ND
Anthracene Benzaldehyde Benzo(a)anthracene	50 0.002	ND ND ND			0.05 J ND 0.09 J	0.06 J ND 0.1 J	0.06 J ND 0.12	0.05 J ND 0.12
Benzo(a)pyrene Benzo(b)fluoranthene	ND 0.002	ND ND			0.08 J 0.13	0.07 J 0.08 J	0.08 J 0.13	0.09 J 0.13
Benzo(ghi)perylene Benzo(k)fluoranthene Benzoic acid	0.002	ND ND ND			0.04 J 0.05 J ND	0.05 J 0.07 J ND	0.05 J 0.04 J ND	0.06 J 0.06 J ND
Bis(2-ethylhexyl) phthalate Butyl benzyl phthalate	5 50	ND ND			7.2 B ND	3.6 ND	2.6 J ND	2 J ND
Carbazole Caprolactam Chrysene	 0.002	ND ND ND	 		ND ND 0.13	ND ND ND	ND ND 0.1	ND ND 0.12
Dibenzo(a,h)anthracene Dibenzofuran		ND ND			ND ND	0.01 J ND	0.02 J ND	ND ND
Diethyl phthalate Di-n-butylphthalate Fluoranthene	50 50 50	ND ND ND			ND ND 0.23	ND 2.6 J 0.22	ND ND 0.22	ND ND 0.22
Fluorene Hexachlorobenzene	50 	ND ND			0.06 J ND	0.07 J ND	0.08 J ND	0.08 J ND
Indeno(1,2,3-cd)pyrene Isophorone Naphthalene	0.002 50 10	ND ND ND			0.05 J ND ND	0.04 J ND 0.59	0.07 J ND 0.58	0.06 J ND ND
Pentachlorophenol Phenanthrene	1 50	ND ND			0.11 J 0.2	ND 0.24	ND 0.21	ND 0.18
Phenol Pyrene Total SVOCs	50 	ND ND 86			1.6 J 0.22 10.35	ND 0.22 8.23	1.3 J 0.21 6.09	ND 0.23 3.96
SVOCs Tentatively Identified Compounds 1-Phenyl-1-butene	s (TICs)- ug/L 	230 JN			ND	ND	ND	ND
1h-Indene, 2,3-dihydro-5-methyl- Aldol Condensates Benzene, 1,2,4,-trimethyl-		ND ND 280 JN			ND ND ND	ND 375.3 J ND	ND ND ND	ND ND ND
Benzene, 1,2,4,5-tetramethyl- Benzene, 1,3-diethyl-		ND ND			ND ND	ND ND	ND ND	ND ND
Benzene, 1-ethyl-2-methyl- Benzene, (1-methylethyl)- Benzene, (1-methylpropyl)-	 	180 JN ND ND			ND ND ND	ND ND ND	ND ND ND	ND ND ND
Benzene, 1-methyl-2-(1-methylethyl)- Benzene, 1-ethyl-2,3-dimethyl-		220 JN ND			ND ND	ND ND	ND ND	ND ND
Benzene, 1,4-diethyl- Benzene, propyl- Caffeine	- - -	180 JN 150 JN ND			ND ND ND	ND ND ND	ND ND ND	ND ND ND
Cyclic Octaatomic Sulfur Cyclohexane, 1,1,2,3-tetramethyl-		ND 170 JN			ND ND	ND ND	ND ND	ND ND
Cyclohexane, 1,1,3-trimethyl- Cyclohexane, ethyl- Cyclohexane, propyl-	 	120 JNB ND ND			ND ND ND	ND ND ND	ND 34.9 NJ 29.2 NJ	ND ND ND
Erucylamide Indane		ND 200 JN			ND ND	ND ND	ND 97.5 NJ	ND 115 NJ
n-Hexadecanoic acid Octane, 2,6-dimethyl- Octane, 3-methyl-	 	ND 150 JN 140 JN	 		ND ND ND	ND ND ND	ND ND ND	ND ND ND
Unknown Alcohol Unknown Aldehyde Unknown Alkane	 	ND ND ND			ND ND 40.6 J	ND ND 271.9 J	ND ND 117.4 J	ND ND 201.9 J
Unknown Amide Unknown Benzene	 	ND ND			ND 63.1 J	ND 42.8 J	ND 60 J	ND ND
Unknown Cycloalkane Unknown Cyclohexane Unknown Cyclopentene		ND ND ND			13.7 J ND ND	ND 92.2 J ND	ND 138.3 J ND	86.5 J ND ND
Unknown Furan Unknown Organic Acid		ND ND			ND ND	ND ND	ND ND	ND ND
Unknown Phenol Unknown Siloxane Unknown	 	ND ND 1200 J	 		ND ND 216.4 J	ND ND 237.7 J	ND ND 117.5 J	ND ND 249.1 J
Total TICs	-	3220		-	333.8 J	1019.9 J	594.8 J	652.5 J

- Notes:
 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
 2. Values per NYSDEC TOGS 1.1.1 Class GA Groundwater Quality Standards.
- 3. MW-5 was not sampled during May 2017 sampling due to damage to the well. MW-5R has been routinely dry.

- Qualifiers:

 D = Dilution required due to high concentration of target analyte above the laboratory reporting limit.

 ND = Parameter not detected above laboratory detection limit.

 "--" = Sample not analyzed for parameter or no GWQS available for the parameter.

 J = Estimated Value Below calibration range

 NJ = Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.

 E = Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

 B = Compund was found in the blank and sample.

 BOLD

 GWGS.

Parameters ¹	Class GA GWQS ²				MW-3			
Volatile Organic Compounds (VOCs) - us 1,1 Dichloroethane	g/L 5	11/7/20 ND	5/23/21 ND	1/8/22 ND	6/12/22 ND	10/30/22 D ND	4/24/23 ND	12/23/24 ND
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-Butanone (MEK) 2-Hexanone	50	ND	ND	ND	ND	ND	ND	ND
	50	ND	ND	ND	ND	ND	ND	ND
4-Isopropyltoluene Acetone Benzene	5	ND	ND	ND	ND	ND	ND	ND
	50	27	ND	ND	ND	ND	ND	ND
	1	36	31	16 J-	7.6 J-	25 J-	28	10
Carbon disulfide Cyclohexane	60	ND 370 D	ND 540	ND 280 J-	ND 230 D, J-	ND 150 J-	ND 250 D	ND 130
Ethylbenzene	5	2.8	3.6 J	2.9 J-	2.4 J-	3.1 J-	2.6	ND
Isopropylbenzene	5	70	88	55 J-	51 J-	48 J-	48	9.1
Methyl Acetate Methylcyclohexane		ND	ND	ND	ND	ND	ND	ND
		320 D	380	130 J-	160 J-	100 J-	180	110
	5	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride n-Butylbenzene n-Proplybenzene	5 5	ND ND	ND ND	ND ND ND	ND ND	ND ND	ND ND	ND ND
sec-Butylbenzene	5	ND	ND	ND	ND	ND	ND	ND
tert-butylbenzene	5	ND	ND	ND	ND	ND	ND	ND
Toluene Xylene, Total Total VOCs	5 5	5.1 11.9 842.8	5.2 J 11.2 J 1059 J	3.4 J- 7.9 J- 495.2 J-	1.9 J- 4.6 J- 457.5 J	3.4 J- 4.9 J- 334.4 J	3.9 5.7 J 518.2 J	1.5 J 2.44 J
VOCs Tentatively Identified Compounds 3-Phenylbut-1-ene	(TICs)- ug/L	842.8 ND	133 NJ	495.2 J-	457.5 J	334.4 J	518.2 J	263.04 J
Benzene, cyclopropyl-		ND	ND	ND	ND	ND	ND	ND
Benzene, 1-methyl-2-(1-methylethyl)-		ND	ND	ND	ND	ND	ND	ND
Benzene, 1-methyl-3-(1-methylethyl)-		ND	ND	ND	ND	ND	ND	ND
Benzene, 1,2,3-trimethyl-		ND	ND	ND	ND	ND	ND	ND
Benzene, 1,2,3,4-tetramethyl-		ND	ND	ND	ND	ND	ND	ND
Butane, 2-Methyl-		ND	116 NJ	38.7 NJ	ND	ND	ND	ND
Cyclohexane		ND	154 NJ	41.4 NJ	ND	ND	ND	ND
Cyclohexane,1,1-dimethyl-		ND	ND	ND	ND	ND	ND	ND
Cyclohexane,1,1,3-trimethyl-		ND	ND	ND	ND	ND	ND	ND
Cyclohexene, 3-methyl-		ND	ND	ND	ND	ND	ND	ND
Cyclohexene, 4-methyl-		ND	ND	ND	ND	ND	ND	ND
Cyclopentane Cyclopentane, methyl- Cyclopentane, 1,3-dimethyl-		ND 169 NJ ND	ND 390 NJ ND	102 NJ 153 NJ ND	ND ND ND	ND 97.9 NJ ND	ND 103 NJ ND	ND 104 NJ ND
1,4-Pentadiene, 3,3-dimethyl- Ethylidenecyclobutane		ND ND 83.2 NJ	ND ND	ND ND ND	ND ND	ND ND	ND ND	ND ND ND
Isopropylcyclobutane Cyclohexane, 1,3-dimethyl-,cis-		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Cyclohexane, 4-methyl- Cyclohexane, ethyl- Cyclohutane, (1-methylethylidene)		ND ND	ND ND	ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Cyclobutane, (1-methylethylidene)- Cyclohexene Cyclohexene, 1-methyl-	 	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	38.4 NJ ND	ND ND ND
Indan, 1-methyl-		ND	ND	ND	ND	ND	ND	ND
1H-Indene, 2,3-dihydro-2,2-dimethyl-		ND	ND	ND	ND	ND	ND	ND
Hexane		ND	ND	ND	ND	ND	ND	ND
1-Pentane		ND	ND	ND	ND	ND	ND	ND
Pentane, 2-methyl-		ND	ND	ND	ND	ND	ND	ND
Pentane, 3-methyl-		ND	98.8 NJ	ND	ND	ND	ND	ND
Indane		ND	ND	ND	ND	ND	126 NJ	47.8 NJ
Pentane		ND	133 NJ	34.7 NJ	ND	ND	ND	ND
Sulfur Dioxide		ND	ND	ND	ND	ND	ND	ND
Unknown Benzene		ND	ND	ND	ND	34.6 J	29.8 J	ND
Unknown Aromatic(s)		166.6 J	ND	32.6 J	ND	129.2 J	122.8 J	61.7 J
Unknown Cyclohexane Unknown Cycloalkane(s) Unknown(s)		121 J 141.2 J 291.3	140 J 143 J 390.3 J	ND ND 154.7 J	ND ND ND	ND 25.5 J 222.3 J	ND 32.6 J 125.9 J	ND 86.4 J 141.2 J
Total TICs Semivolatile Organic Compounds (SVOC	 's) - ua/L	972.3 J	1698.1 J	557.1 J	ND	510 J	579 J	441.1 J
2-Chloronaphthalene	10	ND	ND	ND	ND	ND	ND	0.09 J
2-Methylnaphthalene		0.13	0.11 J	0.13	ND	ND	0.1 J	ND
Acenaphthylene	20 	0.35 0.05 J	0.1 0.05 J	0.07 J ND ND	ND ND	ND ND ND	0.5 0.02 J ND	ND ND ND
Acetophenone Anthracene Benzaldehyde	50	0.11 ND	ND 0.11 J ND	ND ND ND	0.02 J ND	0.03 J ND	0.03 J ND	ND ND
Benzo(a)anthracene Benzo(a)pyrene	0.002	0.23	0.24	ND	0.02 J	0.03 J	0.05 J	0.05 J
	ND	0.18	0.18	ND	ND	ND	0.09 J	0.06 J
Benzo(b)fluoranthene Benzo(ghi)perylene	0.002	0.23 0.13	0.24 0.11 J	ND ND	0.01 J ND	0.03 J ND	0.14 0.09 J	0.09 J 0.08 J
Benzo(k)fluoranthene Benzoic acid Bis(2-ethylhexyl) phthalate	0.002 5	0.12 ND 2.6 J	0.08 J ND 2.4 J	ND ND ND	ND ND 6.2	ND ND ND	ND ND	ND ND ND
Butyl benzyl phthalate	50	ND	ND	ND	ND	ND	ND	ND
Carbazole		ND	ND	ND	ND	ND	ND	ND
Caprolactam Chrysene	0.002	ND 0.23	ND 0.26	93 ND	ND ND	ND 0.01 J	ND 0.08 J	ND 0.04 J
Dibenzo(a,h)anthracene Dibenzofuran Diethyl phthalate		0.04 J	0.03 J	0.02 J	ND	ND	0.02 J	ND
		ND	ND	ND	ND	ND	ND	ND
	50	ND	ND	ND	ND	ND	ND	ND
Di-n-butylphthalate Fluoranthene	50	ND	ND	ND	ND	ND	ND	1.8 J
	50	0.36	0.47	ND	ND	0.05 J	0.19	0.07 J
Fluorene	50	0.1 J	0.12	ND	ND	ND	0.07 J	ND
Hexachlorobenzene		ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene Isophorone Naphthalene	0.002	0.14	0.13	ND	ND	ND	0.09 J	0.06 J
	50	ND	ND	ND	ND	ND	ND	ND
	10	0.19	1.6	ND	0.19	0.53	0.24	0.12
Pentachlorophenol Phenanthrene	1 50	ND 0.3	ND 0.4	ND ND ND	ND 0.03 J	0.53 ND 0.11	ND 0.16	ND ND
Phenol	1	ND	ND	ND	1.7 J	ND	1.3 J	ND
Pyrene	50	0.38	0.46	ND	ND	0.05 J	0.15	0.08 J
Total SVOCs SVOCs Tentatively Identified Compounds 1-Phenyl-1-butene	 s (TICs)- ug/L 	5.87 ND	7.09 ND	93.22 ND	8.17 ND	0.84 ND	3.36 ND	2.54 J ND
1-Pnenyi-1-butene 1h-Indene, 2,3-dihydro-5-methyl- Aldol Condensates		ND ND ND	ND ND	ND ND ND	ND ND	ND ND	ND ND	ND ND ND
Benzene, 1,2,4,-trimethyl-		ND	ND	ND	ND	ND	ND	ND
Benzene, 1,2,4,5-tetramethyl-		ND	ND	ND	ND	ND	ND	ND
Benzene, 1,3-diethyl-	-	ND	ND	ND	ND	ND	ND	ND
Benzene, 1-ethyl-2-methyl-		ND	ND	ND	ND	ND	ND	ND
Benzene, (1-methylethyl)		ND	ND	ND	ND	ND	ND	ND
Benzene, (1-methylethyl)- Benzene, (1-methylpropyl)- Benzene, 1-methyl-2-(1-methylethyl)-	 	ND ND ND	ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND	ND ND ND
Benzene, 1-ethyl-2,3-dimethyl-		ND	ND	ND	ND	ND	ND	ND
Benzene, 1,4-diethyl-		ND	ND	ND	ND	ND	ND	ND
Benzene, propyl- Caffeine Cyclic Octantomic Sulfur		ND ND	ND ND	19.5 NJ ND	16.5 NJ 11.3 NJ	ND ND	ND ND	ND ND
Cyclic Octaatomic Sulfur Cyclohexane, 1,1,2,3-tetramethyl- Cyclohexane, 1,1,3-trimethyl-		ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Cyclohexane, ethyl-		ND	ND	ND	ND	ND	ND	ND
Cyclohexane, propyl-		ND	ND	ND	ND	ND	ND	ND
Erucylamide		ND	ND	ND	ND	ND	ND	ND
Indane		46.6 NJ	79.7 NJ	71.4 NJ	69.1 NJ	78.9 NJ	68.8 NJ	ND
n-Hexadecanoic acid Octane, 2,6-dimethyl- Octane, 3-methyl-	-	ND	ND	ND	ND	ND	ND	ND
	-	ND	ND	ND	ND	ND	ND	ND
	-	ND	ND	ND	ND	ND	ND	ND
Unknown Alcohol Unknown Aldehyde		ND ND	ND ND	ND ND	ND ND	13.9 J ND	14.6 J ND	ND ND
Unknown Alkane		270.6 J	150.6 J	ND	51.7 J	ND	ND	ND
Unknown Amide		ND	ND	ND	ND	ND	ND	ND
Unknown Benzene Unknown Cycloalkane Unknown Cycloheyane		ND 205.2 J	71.1 J 55.1 J	33.3 J ND	34.4 J ND ND	38.7 J 18.61 J 11.4 J	19.47 J ND ND	ND ND ND
Unknown Cyclohexane Unknown Cyclopentene Unknown Furan		ND ND ND	ND ND ND	ND ND ND	ND ND	8.14 J ND	ND ND	ND ND
Unknown Organic Acid		ND	ND	444.9 J	12.4	ND	ND	5.5 J
Unknown Phenol		ND	ND	ND	ND	ND	ND	ND
Unknown Siloxane Unknown		ND 277.5 J	ND 122.5 J	ND 134.5 J	ND 100.3 J	ND 70.37 J	ND 120.74 JB	ND 91.5 J
Total TICs		799.9 J	479 J	736 J	318 J	240.02 J	223.61 J	97 J

- Notes:
 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
 2. Values per NYSDEC TOGS 1.1.1 Class GA Groundwater Quality Standards.
- MW-5 was not sampled during May 2017 sampling due to damage to the well. MW-5R has been routinely dry.

- Qualifiers:

 D = Dilution required due to high concentration of target analyte above the laboratory reporting limit.

 ND = Parameter not detected above laboratory detection limit.

 "--" = Sample not analyzed for parameter or no GWQS available for the parameter.

 J = Estimated Value Below calibration range

 NJ = Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.

 E = Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

 B = Compund was found in the blank and sample.

 BOLD

 GWGS.

Parameters ¹	Class GA GWQS ²	MW-5R	MW-6						
Volatile Organic Compounds (VOCs) - ug		11/15/2017 - 12/23/2024 DRY	11/9/14	11/15/17	5/12/18	4/6/19	11/2/19	7/2/20	11/7/20
1,1 Dichloroethane 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	5 5 5	 	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
2-Butanone (MEK) 2-Hexanone	50 50		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4-Isopropyltoluene Acetone Benzene	5 50 1	 	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND 2.5 J ND	ND ND ND	ND ND ND
Carbon disulfide Cyclohexane	60		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Ethylbenzene Isopropylbenzene	5 5		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Methyl Acetate Methylcyclohexane Methylene Chloride	 5	 	ND ND ND	ND ND ND	ND ND ND	ND ND ND	0.53 J ND ND	ND ND ND	ND ND ND
n-Butylbenzene n-Proplybenzene	5 5	 	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
sec-Butylbenzene tert-butylbenzene Toluene	5 5 5	 	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Xylene, Total Total VOCs	5		ND ND	ND ND	ND ND	ND ND	ND 3.03 J	ND ND	ND ND
VOCs Tentatively Identified Compounds (3-Phenylbut-1-ene				ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Benzene, cyclopropyl- Benzene, 1-methyl-2-(1-methylethyl)- Benzene, 1-methyl-3-(1-methylethyl)-	 		 	ND ND	ND ND	ND ND	ND ND ND	ND ND	ND ND
Benzene, 1,2,3-trimethyl- Benzene, 1,2,3,4-tetramethyl-		 		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Butane, 2-Methyl- Cyclohexane Cyclohexane,1,1-dimethyl-			 	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Cyclohexane,1,1,3-trimethyl- Cyclohexene, 3-methyl-				ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Cyclohexene, 4-methyl- Cyclopentane Cyclopentane, methyl-		 		ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Cyclopentane, 1,3-dimethyl- 1,4-Pentadiene, 3,3-dimethyl-		 		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Ethylidenecyclobutane Isopropylcyclobutane Cyclobayana 1.3 dimethyl cis			 -	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND
Cyclohexane, 1,3-dimethyl-,cis- Cyclohexane,4-methyl- Cyclohexane, ethyl-	 	 	-	ND ND ND	ND ND ND	ND ND	ND ND ND	ND ND	ND ND ND
Cyclobutane, (1-methylethylidene)- Cyclohexene				ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Cyclohexene, 1-methyl- Indan, 1-methyl- 1H-Indene, 2,3-dihydro-2,2-dimethyl-	 		 	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Hexane 1-Pentane				ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Pentane, 2-methyl- Pentane, 3-methyl- Indane	 		 	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Pentane Sulfur Dioxide				ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Unknown Benzene Unknown Aromatic(s) Unknown Cyclohexane	 			ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Unknown Cycloalkane(s) Unknown(s)		 		ND ND	ND ND 1.41 J	ND ND	ND ND ND	ND ND	ND ND
Total TICs Semivolatile Organic Compounds (SVOC				ND	1.41 J	ND	ND	ND	ND
2-Chloronaphthalene 2-Methylnaphthalene Acenaphthene	10 20	 	ND ND ND	 	ND ND ND	ND ND ND	ND 0.1 J ND	ND ND ND	ND 0.03 J ND
Acenaphthylene Acetophenone			ND ND		ND ND	ND ND	ND ND	ND ND	ND ND
Anthracene Benzaldehyde Benzo(a)anthracene	50 0.002	 	ND 0.54 JB ND		ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Benzo(a)pyrene Benzo(b)fluoranthene	ND 0.002		ND ND		ND ND	ND ND	ND ND	ND ND	ND ND
Benzo(ghi)perylene Benzo(k)fluoranthene Benzoic acid	0.002	 	ND ND ND	 	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Bis(2-ethylhexyl) phthalate Butyl benzyl phthalate	5 50		4.5 JB ND		6.4 B ND	ND ND	ND ND	ND ND	1.5 J ND
Carbazole Caprolactam Chrysene	 0.002		ND ND ND		ND ND ND	ND ND 0.02 J	ND ND ND	ND ND ND	ND ND 0.01 J
Dibenzo(a,h)anthracene Dibenzofuran		 	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND
Diethyl phthalate Di-n-butylphthalate	50 50		ND ND		ND ND	ND ND	ND ND	ND ND	ND ND
Fluoranthene Fluorene Hexachlorobenzene	50 50 	 	ND ND ND	 	ND ND ND	ND 0.03 J ND	ND ND ND	ND ND ND	ND ND ND
Indeno(1,2,3-cd)pyrene Isophorone	0.002 50		ND ND		ND ND	ND ND	ND ND	ND ND	ND ND
Naphthalene Pentachlorophenol Phenanthrene	10 1 50		ND ND ND	 	ND ND ND	ND ND 0.07 J	ND ND ND	ND ND ND	ND ND ND
Phenol Pyrene	1 50		ND ND	-	ND ND	ND ND	ND ND	ND ND	ND ND
Total SVOCs SVOCs Tentatively Identified Compounds 1-Phenyl-1-butene	 s (TICs)- ug/L 		5.04		6.4 ND	0.12 ND	0.1 ND	ND ND	1.54 ND
1h-Indene, 2,3-dihydro-5-methyl- Aldol Condensates		 			ND 31.7 J	ND 226.5 J	ND 10.7 J	ND ND	ND ND
Benzene, 1,2,4,-trimethyl- Benzene, 1,2,4,5-tetramethyl- Benzene, 1,3-diethyl-	 		-		ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Benzene, 1-ethyl-2-methyl- Benzene, (1-methylethyl)-		 			ND ND	ND ND	ND ND	ND ND	ND ND
Benzene, (1-methylpropyl)- Benzene, 1-methyl-2-(1-methylethyl)-					ND ND	ND ND	ND ND	ND ND	ND ND
Benzene, 1-ethyl-2,3-dimethyl- Benzene, 1,4-diethyl- Benzene, propyl-	 	 	 	 	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Caffeine Cyclic Octaatomic Sulfur					ND ND	ND ND	ND ND	ND ND	ND ND
Cyclohexane, 1,1,2,3-tetramethyl- Cyclohexane, 1,1,3-trimethyl- Cyclohexane, ethyl-	 		 	 	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Cyclohexane, propyl- Erucylamide					ND ND	ND ND	ND ND	ND ND	ND ND
Indane n-Hexadecanoic acid Octane, 2,6-dimethyl-	 			 	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Octane, 3-methyl- Unknown Alcohol		 		 	ND ND	ND ND	ND ND	ND ND	ND 2.14 J
Unknown Aldehyde Unknown Alkane					ND ND	ND ND	ND ND	ND ND	ND 11.27 J
Unknown Amide Unknown Benzene Unknown Cycloalkane		 		 	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND 3.27 J ND
Unknown Cyclohexane Unknown Cyclopentene					ND ND	ND ND	ND ND	ND ND	ND ND
Unknown Furan Unknown Organic Acid Unknown Phenol		 	 	 	ND ND ND	ND 1.93 J ND	ND 1.6 J ND	ND 2.62 J ND	ND 3.89 J ND
Unknown Siloxane Unknown					ND ND	ND 1.64 J	ND 2.4 J	ND 17.98 J	ND 13.45 J
Total TICs					31.7 J	230.07 J	14.7 J	20.6 J	34.02 J

- Notes:
 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
 2. Values per NYSDEC TOGS 1.1.1 Class GA Groundwater Quality Standards.
- 3. MW-5 was not sampled during May 2017 sampling due to damage to the well. MW-5R has been routinely dry.

- damage to the well. MW-5R has been rouuriery dry.

 Qualifiers:

 D = Dilution required due to high concentration of target analyte above the laboratory reporting limit.

 ND = Parameter not detected above laboratory detection limit.

 "--" = Sample not analyzed for parameter or no GWQS available for the parameter.

 J = Estimated Value Below calibration range

 NJ = Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.

 E = Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

 B = Compund was found in the blank and sample.

 Result exceeds

 GWQS.

Parameters ¹	Class GA GWQS ²	5/23/21	1/8/22	MV 6/12/2022	V-6 10/30/2022	4/24/2023	12/23/2024	Blind Dup-1 (MW-6) 6/12/2022	Blind Dup (MW-6) 12/23/2024
Volatile Organic Compounds (VOCs) - ug	5	ND	ND	ND ND	ND	ND ND	ND	ND	ND ND
1,2,4-Trimethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone (MEK)	50	ND	ND	ND	ND	ND	ND	ND	ND
2-Hexanone	50	ND	ND	ND	ND	ND	ND	ND	ND
4-Isopropyltoluene	5	ND	ND	ND	ND	ND	ND	ND	ND
Acetone Benzene Carbon disulfide	50	ND	ND	ND	ND	ND	ND	ND	ND
	1	ND	ND	ND	ND	ND	ND	ND	ND
	60	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane	5	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene		ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene Methyl Acetate Methylcyclohexane	5	ND	ND	ND	ND	ND	ND	ND	ND
		ND	ND	ND	ND	ND	ND	ND	ND
		ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride n-Butylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND
	5	ND	ND	ND	ND	ND	ND	ND	ND
n-Proplybenzene	5	ND	ND	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND
tert-butylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND
Toluene Xylene, Total	5 5 5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND ND
Total VOCs VOCs Tentatively Identified Compounds (ND	ND	ND	ND	ND	ND	ND	ND
3-Phenylbut-1-ene Benzene, cyclopropyl- Benzene, 1-methyl-2-(1-methylethyl)-		ND	ND	ND	ND	ND	ND	ND	ND
		ND	ND	ND	ND	ND	ND	ND	ND
		ND	ND	ND	ND	ND	ND	ND	ND
Benzene, 1-methyl-3-(1-methylethyl)-		ND	ND	ND	ND	ND	ND	ND	ND
Benzene, 1,2,3-trimethyl-		ND	ND	ND	ND	ND	ND	ND	ND
Benzene, 1,2,3,4-tetramethyl-		ND	ND	ND	ND	ND	ND	ND	ND
Butane, 2-Methyl-		ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane		ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane,1,1-dimethyl-		ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane,1,1,3-trimethyl-		ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexene, 3-methyl-		ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexene, 4-methyl-		ND	ND	ND	ND	ND	ND	ND	ND
Cyclopentane		ND	ND	ND	ND	ND	ND	ND	ND
Cyclopentane, methyl-	-	ND	ND	ND	ND	ND	ND	ND	ND
Cyclopentane, 1,3-dimethyl-		ND	ND	ND	ND	ND	ND	ND	ND
1,4-Pentadiene, 3,3-dimethyl-		ND	ND	ND	ND	ND	ND	ND	ND
Ethylidenecyclobutane		ND	ND	ND	ND	ND	ND	ND	ND
Isopropylcyclobutane		ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane, 1,3-dimethyl-,cis-		ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane,4-methyl-		ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane, ethyl-		ND	ND	ND	ND	ND	ND	ND	ND
Cyclobutane, (1-methylethylidene)-		ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexene		ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexene, 1-methyl-		ND	ND	ND	ND	ND	ND	ND	ND
Indan, 1-methyl-		ND	ND	ND	ND	ND	ND	ND	ND
1H-Indene, 2,3-dihydro-2,2-dimethyl-		ND	ND	ND	ND	ND	ND	ND	ND
Hexane		ND	ND	ND	ND	ND	ND	ND	ND
1-Pentane		ND	ND	ND	ND	ND	ND	ND	ND
Pentane, 2-methyl- Pentane, 3-methyl-		ND ND	ND ND	ND ND	ND ND	ND ND ND	ND ND	ND ND	ND ND ND
Indane Pentane		ND ND ND	ND ND	ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND	ND ND ND
Sulfur Dioxide Unknown Benzene Unknown Aromatic(s)	 	ND ND	ND ND ND	ND ND ND	ND ND	ND ND	ND ND	ND ND ND	ND ND ND
Unknown Cyclohexane Unknown Cycloalkane(s)		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Unknown(s) Total TICs Semivolatile Organic Compounds (SVOC	 s) - ua/L	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-Chloronaphthalene 2-Methylnaphthalene	10	ND	ND	ND	ND	ND	ND	ND	ND
		ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene Acenaphthylene Acetophenone	20 	ND ND ND	ND ND ND	0.14 ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Anthracene	50	ND	ND	0.14	ND	ND	ND	ND	ND
Benzaldehyde		ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	0.002 ND 0.002	0.03 J 0.02 J 0.02 J	ND ND ND	0.17 0.15 0.27	ND ND ND	0.02 J 0.03 J	ND ND ND	ND ND 0.01 J	ND ND ND
Benzo(ghi)perylene	0.002	0.02 J	ND	0.18	ND	0.02 J	ND	ND	ND
Benzo(k)fluoranthene		ND	ND	0.07 J	ND	ND	ND	ND	ND
Benzoic acid Bis(2-ethylhexyl) phthalate Butyl benzyl phthalate	5 50	ND 1.5 J ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
Carbazole		ND	ND	ND	ND	ND	ND	ND	ND
Caprolactam		ND	ND	ND	ND	ND	ND	ND	ND
Chrysene Dibenzo(a,h)anthracene Dibenzofuran	0.002	0.02 J ND ND	ND ND ND	0.2 0.04 J ND	ND ND ND	0.01 J ND ND	ND ND ND	ND ND ND	ND ND ND
Diethyl phthalate	50	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-butylphthalate	50	ND	ND	ND	0.43 J	ND	ND	ND	ND
Fluoranthene Fluorene Hexachlorobenzene	50 50	0.04 J ND ND	ND ND ND	0.53 0.14 0.12 J	ND ND ND	0.03 J ND ND	ND ND ND	0.02 J ND ND	ND ND ND
Indeno(1,2,3-cd)pyrene	0.002	0.01 J	ND	0.16	ND	0.01 J	ND	ND	ND
Isophorone	50	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene Pentachlorophenol Phenanthrene	10	ND	ND	0.56	0.06 J	ND	ND	ND	ND
	1	ND	ND	ND	ND	ND	ND	ND	ND
	50	0.03 J	ND	0.44	ND	ND	ND	0.02 J	ND
Phenol	1	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	50	0.03 J	ND	0.42	ND	0.03 J	ND	ND	ND
Total SVOCs SVOCs Tentatively Identified Compounds 1-Phenyl-1-butene	 (TICs)- ug/L 	1.72 ND	ND ND	3.73 ND	0.49 ND	0.15 ND	ND ND	0.05 ND	ND ND
1h-Indene, 2,3-dihydro-5-methyl-		ND	ND	ND	ND	ND	ND	ND	ND
Aldol Condensates		ND	ND	ND	ND	ND	ND	ND	ND
Benzene, 1,2,4,-trimethyl-		ND	ND	ND	ND	ND	ND	ND	ND
Benzene, 1,2,4,5-tetramethyl-		ND	ND	ND	ND	ND	ND	ND	ND
Benzene, 1,3-diethyl-		ND	ND	ND	ND	ND	ND	ND	ND
Benzene, 1-ethyl-2-methyl-		ND	ND	ND	ND	ND	ND	ND	ND
Benzene, (1-methylethyl)-		ND	ND	ND	ND	ND	ND	ND	ND
Benzene, (1-methylpropyl)-		ND	ND	ND	ND	ND	ND	ND	ND
Benzene, 1-methyl-2-(1-methylethyl)-		ND	ND	ND	ND	ND	ND	ND	ND
Benzene, 1-ethyl-2,3-dimethyl-		ND	ND	ND	ND	ND	ND	ND	ND
Benzene, 1,4-diethyl-		ND	ND	ND	ND	ND	ND	ND	ND
Benzene, propyl-		ND	ND	ND	ND	ND	ND	ND	ND
Caffeine Cyclic Octaatomic Sulfur Cyclohexane, 1,1,2,3-tetramethyl-		ND	ND	ND	ND	ND	ND	ND	ND
		ND	ND	ND	ND	ND	ND	ND	ND
		ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane, 1,1,3-trimethyl-		ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane, ethyl-		ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane, propyl-		ND	ND	ND	ND	ND	ND	ND	ND
Erucylamide		ND	ND	ND	ND	ND	ND	ND	ND
Indane		ND	ND	ND	ND	ND	ND	ND	ND
n-Hexadecanoic acid Octane, 2,6-dimethyl-	 	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Octane, 3-methyl-		ND	ND	ND	ND	ND	ND	ND	ND
Unknown Alcohol		ND	ND	16	ND	ND	ND	ND	ND
Unknown Aldehyde Unknown Alkane Unknown Amide		ND ND ND	ND 3.78 J ND	ND 66.13 J ND	ND ND ND	ND 42.48 J ND	ND ND ND	2.68 54.02 ND	ND ND ND
Unknown Benzene		ND	ND	ND	ND	ND	ND	11.1	ND
Unknown Cycloalkane		ND	ND	ND	ND	ND	ND	ND	ND
Unknown Cyclohexane Unknown Cyclopentene Unknown Furan		ND	ND	ND	ND	ND	ND	ND	ND
		ND	ND	ND	ND	ND	ND	ND	ND
		ND	ND	ND	ND	ND	ND	ND	ND
Unknown Organic Acid		ND	8.25 J	5.38 J	ND	ND	ND	6.11	ND
Unknown Phenol		ND	ND	ND	ND	ND	ND	ND	ND
Unknown Siloxane Unknown Total TICs		ND	ND	ND	ND	ND	ND	ND	ND
		ND	1.78 J	43.42 J	ND	54.79 JB	ND	31.41	4.8 J
		ND	13.81 J	131 J	ND	97.27 J	ND	105 J	4.8 J
rotal 1103	-	טא	13.81 J	I IST J	IND	91.21 J	ИП	105 J	4.6 J

- Notes:
 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
 2. Values per NYSDEC TOGS 1.1.1 Class GA Groundwater Quality Standards.
- 3. MW-5 was not sampled during May 2017 sampling due to damage to the well. MW-5R has been routinely dry.

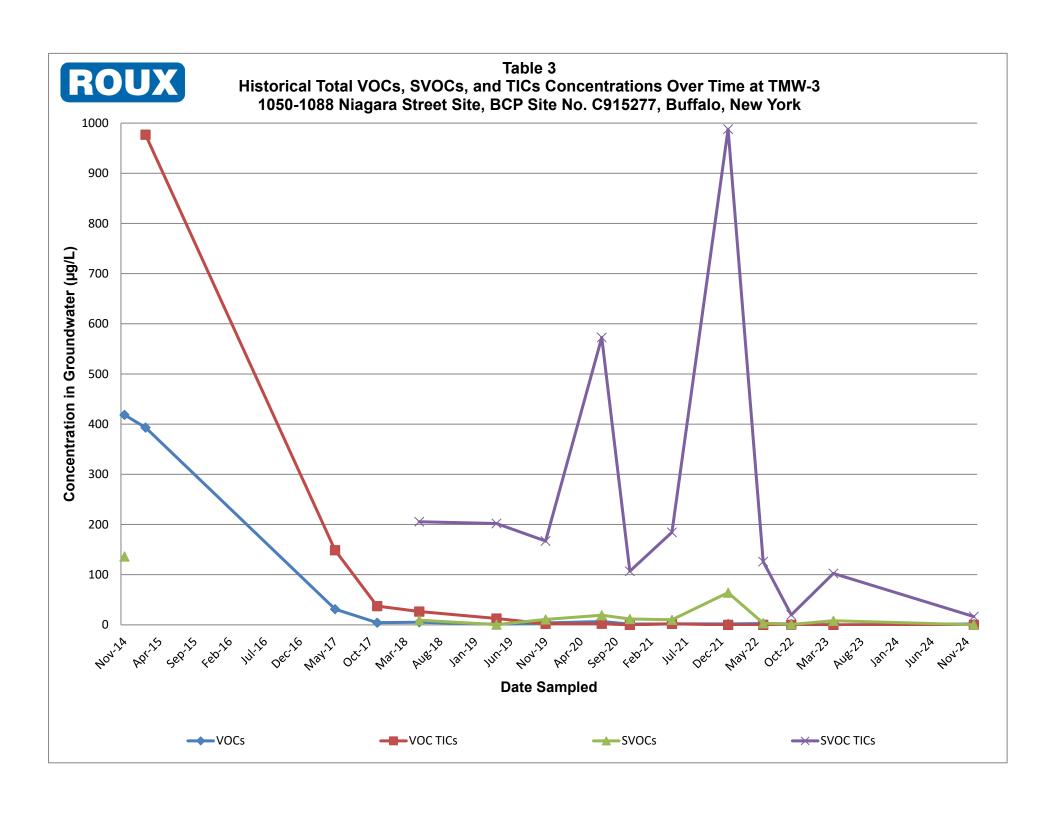
- Amage to the well. MW-5R has been rounnery day.

 Qualifiers:

 D = Dilution required due to high concentration of target analyte above the laboratory reporting limit.

 ND = Parameter not detected above laboratory detection limit.

 "--" = Sample not analyzed for parameter or no GWQS available for the parameter.


 J = Estimated Value Below calibration range

 NJ = Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.

 E = Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

 B = Compund was found in the blank and sample.

 Result exceeds GWQS.

ROUX Table 4 Historical Total VOCs, SVOCs, and TICs Concentrations Over Time at MW-3 1050-1088 Niagara Street Site, BCP Site No. C915277, Buffalo, New York 3250 3000 2750 2500 Concentration in Groundwater (hg/L) 2250 2250 2000 1750 1500 1000 750 500 250 mu. 0 0 20

Date Sampled →VOCs **──**VOC TICs SVOCs → SVOC TICs

Table 5 ROUX Historical Total VOCs, SVOCs, and TICs Concentrations Over Time at MW-6 1050-1088 Niagara Street Site, BCP Site No. C915277, Buffalo, New York 240 220 200 Concentration in Groundwater (µg/L) 160 140 150 80 60 60 40 20 0 111.20 . Nov 20 MOV. 29 , Mar.20 I my hand hand my hand hand Pariguette mit Parit Metro mit Parit Metro. **Date Sampled**

SVOCs

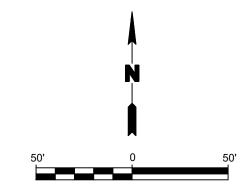
→ SVOC TICs

──VOC TICs

→VOCs

FIGURES

File: FIGURE 1 - SITE LOCATION AND VICINITY MAP DWG


LEGEND:

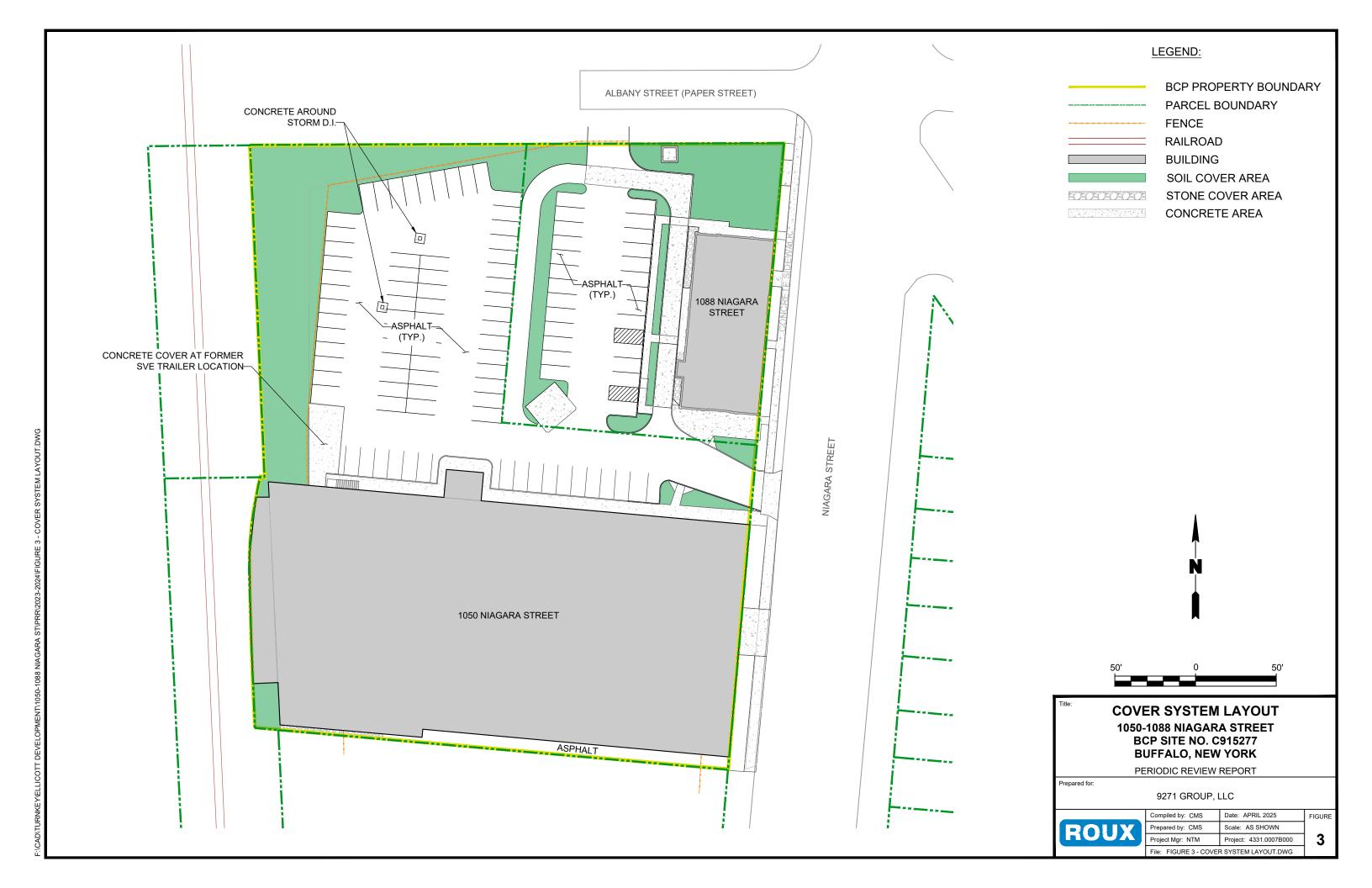
BCP SITE BOUNDARY

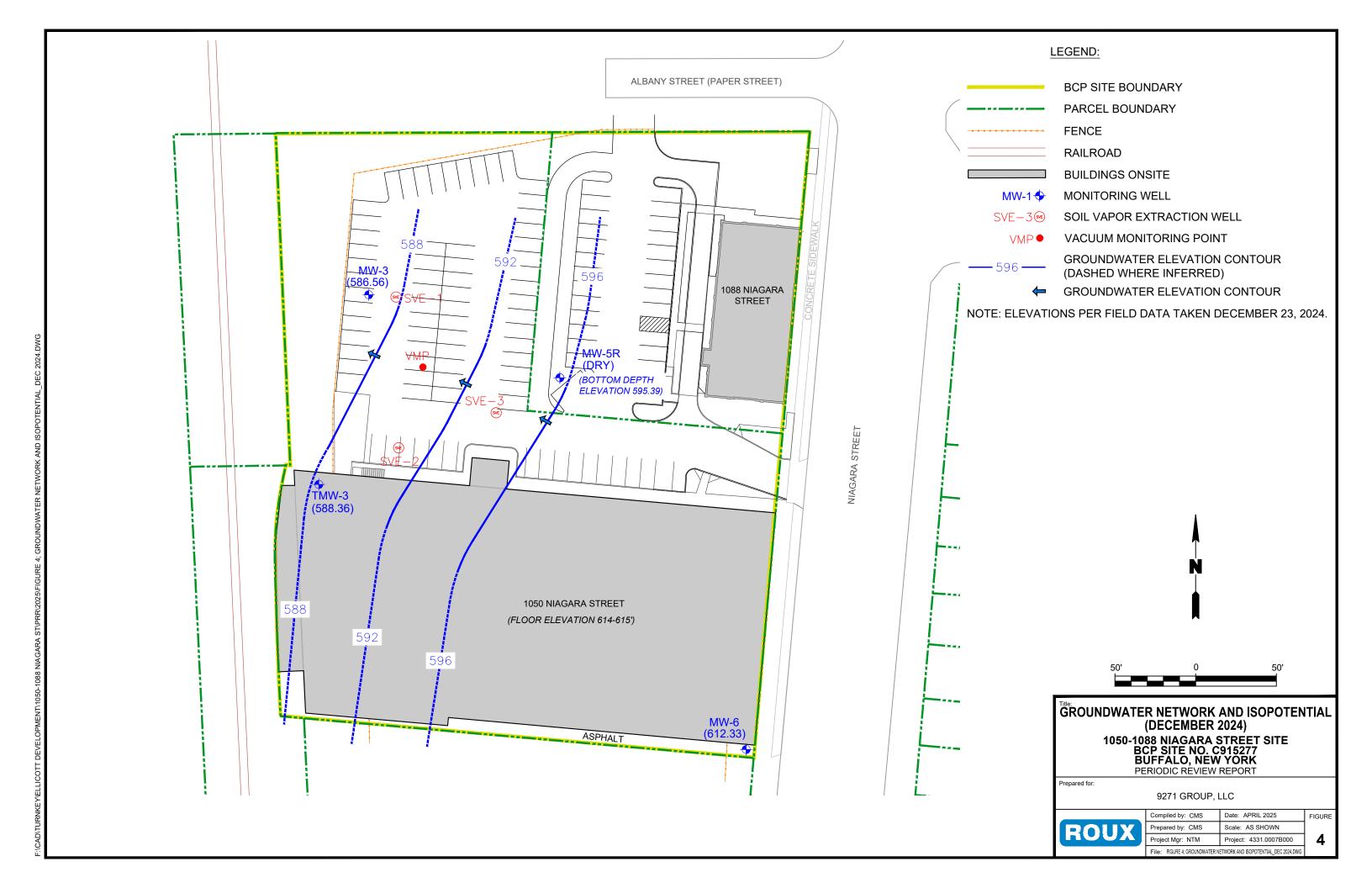
PARCEL BOUNDARY

NOTE

- PARCEL INFORMATION PER ERIE COUNTY GIS,
- JANUARY 2025.
 AERIAL IMAGE PROVIDED BY GOOGLE EARTH DATED JUNE 2024

SITE PLAN (AERIAL) 1050-1088 NIAGARA STREET SITE BCP SITE NO. C915377 BUFFALO, NEW YORK


epared for:


9271 GROUP, LLC

PERIODIC REVIEW REPORT

ROUX

Compiled by: CMS	Date: APRIL 2025	FIGU
Prepared by: CMS	Scale: AS SHOWN	
Project Mgr: NTM	Project: 4331.0007B000	2
File: FIGURE 2 - SITE P	LAN (AERIAL).DWG	

APPENDIX A

NYSDEC CERTIFICATION AND NOTIFICATION FORMS AND SITE INSPECTION FORM

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site Details Site No. C915277	Box 1
Site Name 1050-1088 Niagara Street Site	
Site Address: 1050-1088 Niagara Street Zip Code: 14213 City/Town: Buffalo County: Erie Site Acreage: 2.700	
Reporting Period: July 31, 2023 to July 31, 2024 December 23, 2024	
	YES NO
Is the information above correct?	\checkmark
If NO, include handwritten above or on a separate sheet.	
2. Has some or all of the site property been sold, subdivided, merged, or undergon tax map amendment during this Reporting Period?	e a
 Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))? 	
4. Have any federal, state, and/or local permits (e.g., building, discharge) been issufor or at the property during this Reporting Period?	ued
If you answered YES to questions 2 thru 4, include documentation or evidenthat documentation has been previously submitted with this certification for	
5. Is the site currently undergoing development?	
	Box 2
	YES NO
Is the current site use consistent with the use(s) listed below?Restricted-Residential, Commercial, and Industrial	\checkmark
7. Are all ICs in place and functioning as designed?	\checkmark
IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date beld DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continu	
A Corrective Measures Work Plan must be submitted along with this form to addre	ess these issues.
Signature of Owner, Remedial Party or Designated Representative Da	ute

			Box 2A
			YES NO
8.	•	led that assumptions made in the 0	Qualitative Exposure
	Assessment regarding offsite co	ontamination are no longer valid?	
	If you answered VES to guest	tion 8, include documentation or	evidence
		previously submitted with this	
		•	
9.	•	litative Exposure Assessment still	
	(The Qualitative Exposure Asse	essment must be certified every five	e years)
	If you answered NO to questi	on 9, the Periodic Review Repor	t must include an
	updated Qualitative Exposure	Assessment based on the new	assumptions.
SITE	NO. C915277		Box 3
	escription of Institutional Co	ntrols	
Parcel			Institutional Control
99.41-	1-15.1 9271 Gr	oup, LLC	
			Ground Water Use Restriction Soil Management Plan
			Landuse Restriction
			Monitoring Plan
			Site Management Plan IC/EC Plan
			IC/EC FIAIT
ConConSen	ibition against well installation (apliance with the Site Managem apliance with the Soils Manager ani-Annual monitoring of groundwates anest land use is restricted to res	ent Plan nent Plan vater	
_		oup, LLC	
			Monitoring Plan
			Ground Water Use Restriction
			Soil Management Plan
			Landuse Restriction
			Site Management Plan IC/EC Plan
	ibition against well installation (•	
	npliance with the Site Managem		
	ni-Annual monitoring of groundw		
	nest land use is restricted to res		
			Box 4
-	Asserintian of Engineering Co.	ntrole	
	escription of Engineering Co	Engineering Control	
Parcel 99.41 -		Engineering Control	
23.71		Cover System	
_		Monitoring Wells	
	er consisting of hardscape or cle	ean soil	
	tu plume reduction measure 1-15.21		
		Monitoring Wells	
_	an ann atalling of the territory	Cover System	
 Cove 	er consisting of hardscape or cle	ean soil	

•	In-situ plume reduction measure
	Box 5
	Periodic Review Report (PRR) Certification Statements
1.	I certify by checking "YES" below that:
	 a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;
	 b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.
	YES NO
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.
	YES NO
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.
	Signature of Owner, Remedial Party or Designated Representative Date

Engineering Control

Parcel

IC CERTIFICATIONS SITE NO. C915277

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

295 116 St. 5_ to 700 Bolico Mit 14202 print business address
(Owner or Remedial Party)
ignated Representative State
ection

EC CERTIFICATIONS

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

print name at Rox Environmental Engineering & Geology, DRE

am certifying as a Professional Engineer for the Remedial Party

- ----

(Owner or Remedial Party)

Signature of Professional Engineer, for the Owner or Remedial Party, Rendering Certification

Date

Annual Site Inspection Checklist

1050-1088 Niagara Street Site BCP Site No. C915277

Inspector's Initials_CS	tor's InitialsCS' Inspe		ection Date: 12/23/24	
Site Use: PLS/comm				
General Site Conditions:	AIR			
· · · · · · · · · · · · · · · · · · ·				
Cover Inspection				
Hardscape Areas	Yes	No	Notes	
Asphalt		nav		
Cover Area	SEE			
Grass Cover				
Groundwater Monitori	ng Network			
	Yes	No	Notes	
Roadbox Covers / Collars	9E E	per		
Well Condition	700			
Additional Comments: SIT NOT BE OBSTRIVE MW-3 & MW-6 (5)	D DUE HEAD	14 SNOW COVE	2. UPON DISCOVER	
	TRKEN DUE			
-0.4. 11	,			
Signature: Chel M Idia	A Com	pany: Rox	Date: 12/23/24	

APPENDIX B

GROUNDWATER SAMPLING LOGS

GROUNDWATER FIELD FORM

Project Name: 1050-1088 NIALAWA ST SOLE Date: 12/23/24 Field Team: CS Location: BUFFALD, NY Project No.: 4331.00078020

Well N	lo. TMW-	3	Diameter (ii	nches): 1 A		Sample Da	to / Time: 12	23/24	1020
	epth (fbTOR):		Water Colu		12	Sample Date / Time: (4/23/24 1020) DTW when sampled: 13. 77			
	tic) (fbTOR):	.95			121	Purpose: Development Sample Purge & Sample			
Total Dep	th (fbTOR): 5	.07		ne Purged (gal):		Purge Meth	od: BAILE		
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
1005	o Initial	1	610	13.8	4170	684	5.53	199	TURBID NO
1010	1 13-50	0.25	6.49	13.8	4148	984	5.41	194	2000
1015	2 DRY	0.50	6.49	13.8	3866	977	4.92	192	
1018	3 DRY	0.75	6.71	13.8	4211	982	5.51	195	
	4			1 - 1 - 1					
	5								
	6								
	7					J			
	8								
	9								
	10								
Sample	Information:			1					•
1026	51 13.77	1.00	6.77	(3.8	4185	998	5.15	195	SLICHT TURBI
1025	S2 [4.65	1.25	6.79	(3.8	4169	962	5.32	197	No oDOR

	ADLIS			2 1			A #		
Well N	10.MW-3		Diameter (ir	nches):		Sample Dat	te / Time: 17 🎵	23/24	1145
Product D	epth (fbTOR):		Water Colu	mn (ft): 🚺 - 🞖	2	DTW when	sampled: 27	.50	
DTW (stat	tic) (fbTOR): 况	.88.	One Well V	olume (gal): 🖇	.20	Purpose: [Development	Samp	le Purge & Sample
Total Dept	th (fbTOR): 28	.70	Total Volum	e Purged (gal):	5.90	Purge Meth	od: BAILE	2	
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
1040	o Initial	_	9.88	11.6	2995	64.7	2.86	145	SLIGHTLY TUPELD
1045	1 DRY	0.36	7.79	11.4	3111	78.5	3.11	112	FAINT OPOR
1115	2 DRY	0,60	9.84	11.5	7895	101.5	2.91	143	SMEUS LIKE
1130	3 DRY	∂.°10	9.81	11.7	2991	123.4	2.95	121	INVESTED THATBELL
	5								
	6								
	7								
	В								
	9								
	10								
Sample	Information:		"						•
1145	\$1 27.50	1.20	9.77	11.6	3011	124.2	3.02	117)1
1155	s2 27.63	1.30	9.85	11.0	2899	95.4	2.87	141	

REMARKS: Note: All water level measurements are in feet, distance from top of riser.

Volume Calculation Diam. Vol. (g/ft) 1" 0.041 2" 0.163 4" 0.653 1,469

Stabilization Criteria Parameter Criteria pН ± 0.1 unit SC ± 3% Turbidity ± 10% DO ± 0.3 mg/L ORP ± 10 mV

PREPARED BY:

GROUNDWATER FIELD FORM

Project Name: 1250-1388 NAZARA ST STT Project No.: 4331. 027 B 335 Field Team: Location: BUFFALO, NY

Well N	10. MW-6		Diameter (ii	nches): 2"		Sample Dat	e / Time: 12/	23/24	(310
Product D	Depth (fbTOR):		Water Colu	mn (ft): 7.	93	DTW when	sampled:		
DTW (sta	itic) (fbTOR): 🤨	68	One Well V	olume (gal): [-	29	Purpose:	Development	Samp	le Purge & Sample
Total Dep	th (fbTOR): 17	.61	Total Volum	e Purged (gal):	3.90 .	Purge Meth	od: BAILERZ	•	
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
1250	o Initial	(10)	80.8	16.5	1885	51.4	4.64	19	ULTAR TO
1255	1 10,95	1.30	7.66	16.3	1911	QQQ)<	4.71	58	START. TURB
1357	2 13.52	2.60	7.71	16.7	1951		4.51	63	AFTER IST
1203	3 14.10	3.90	7.69	16.9	1879	V	4.61	76	BAILTER
	4								NO DOON
	5								
	6								
	7								
	8								
	9								
	10								
Sample	Information:								
1310	s1 14.52	3.20	7.77	16.5	(918	>1000	4.71	69	[UNBID
1325	s2 13.61	7.00	7.63	16.5	1888	S(000)	4.48	61	NO ODOR

Well	No.		Diameter (i	nches):		Sample Dat	e / Time:		
Product [Depth (fbTOR):		Water Colu	mn (ft):		DTW when	sampled:		
DTW (sta	atic) (fbTOR):		One Well V	olume (gal):		Purpose:	Development	Sample	Purge & Sample
Total Dep	oth (fbTOR):		Total Volun	ne Purged (gal):		Purge Metho	od:		
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
	o Initial								
	1								
	3								
	4								
	5								
	6								
	7								
	8								
	9								
	10								
Sample	Information:			·					
	S1								
	S2								

REMARKS: MS/MED/ BD D MW-C Note: All water level measurements are in feet, distance from top of riser.

Volume Calculation Diam. Vol. (g/ft) 1" 0.041 2" 0.163 4" 0.653 1.469

Stabilization Criteria

Parameter	Criteria
pН	± 0.1 unit
SC	± 3%
Turbidity	± 10%
DO	± 0,3 mg/L
ORP	± 10 mV

PREPARED BY:

EQUIPMENT CALIBRATION LOG

PROJECT INFORMATION:	Ë							
Project Name: 1050 - 1058 NIAG	NIACARA	11	ST SME		Date: (Tryly	Wha		
Client: 927 (work, L.C.	3				Instrumer	Instrument Source:	Roux	Rental
METER TYPE	UNITS	TIME	MAKE/MODEL	SERIAL NUMBER	CAL. BY	STANDARD	POST CAL.	SETTINGS
			Myron L Company	6213516		4.00	4.01	
pH meter	units	<u>R</u>	Ultra Meter 6P	6243084	8	7.00	4.8	
				6243003		10.01	10,01	
						10 NTU verification	\	
	į	923	Hach 2100P or	06120C020523 (P)		<0.4		
I urbidity meter	D N		2100Q T.::tidimeter	13120C030432 (Q)	0	20		
				17110C062619 (Q)	3	100		
				1 (c) 4707-117-		800		
Sp. Cond. meter	Sm Sm	1831	Myron L Company Ultra Meter 6P	6213516	S	100 ms @ 25°C	loot	
				6243003			_	
PID	maa		MinRAE 2000			open air zero		MIBK response
						ppm Iso. Gas		factor = 1.0
Dissolved Oxygen	mdd	3	HACH Model HQ30d	171932597009	0		1,001	
		2		100500041867	\$	100% Satuartion	2	
				22293299821				
☐ Particulate meter	mg/m ₃					zero air		
Radiation Meter	uR/H					background area		
ADDITIONAL REMARKS:								
PREPARED BY:	10 0	Y		CATE Of CA				
Vano	2 2	-		DAIE. (4/44/43				

APPENDIX C

LABORATORY ANALYTICAL DATA PACKAGES

ANALYTICAL REPORT

Lab Number: L2475702

Client: Roux

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Nate Munley Phone: (716) 856-0599

Project Name: 1050-1058 NIAGARA ST SITE

Project Number: 4331.0007B000

Report Date: 12/31/24

The original project report/data package is held by Pace Analytical Services. This report/data package is paginated and should be reproduced only in its entirety. Pace Analytical Services holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930A1).

Project Name: 1050-1058 NIAGARA ST SITE

Project Number: 4331.0007B000

Lab Number: L2475702 **Report Date:** 12/31/24

Lab Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2475702-01	TMW-3	WATER	BUFFALO, NY	12/23/24 10:20	12/23/24
L2475702-02	MW-3	WATER	BUFFALO, NY	12/23/24 11:45	12/23/24
L2475702-03	MW-6	WATER	BUFFALO, NY	12/23/24 13:10	12/23/24
L2475702-04	TRIP BLANK	WATER	BUFFALO, NY	12/23/24 00:00	12/23/24
L2475702-05	BLIND DUP	WATER	BUFFALO, NY	12/23/24 12:00	12/23/24

Project Name: 1050-1058 NIAGARA ST SITE Lab Number: L2475702

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Pace Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments and solids are reported on a dry weight basis unless otherwise noted. Tissues are reported "as received" or on a wet weight basis, unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Pace's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Pace Project Manager and made arrangements for Pace to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

r icase contact i roject management at 000 02+ t	ozzo with any questions.	

Please contact Project Management at 800-624-9220 with any questions

L2475702

Project Name: 1050-1058 NIAGARA ST SITE

1058 NIAGARA ST SITE Lab Number:

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Cattlin Wallet Caitlin Walukevich

Authorized Signature:

Title: Technical Director/Representative

Date: 12/31/24

Pace

ORGANICS

VOLATILES

L2475702

Project Name: 1050-1058 NIAGARA ST SITE

Project Number: 4331.0007B000

SAMPLE RESULTS

Report Date: 12/31/24

Lab Number:

Lab ID: L2475702-01 Date Collected: 12/23/24 10:20

Client ID: TMW-3 Date Received: 12/23/24 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 12/28/24 10:41

Analyst: PID

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: 1050-1058 NIAGARA ST SITE **Lab Number:** L2475702

Project Number: 4331.0007B000 **Report Date:** 12/31/24

SAMPLE RESULTS

Lab ID: L2475702-01 Date Collected: 12/23/24 10:20

Client ID: TMW-3 Date Received: 12/23/24 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westl	oorough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	1.6	J	ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	

Tentatively	/ Identified	Compounds

No Tentatively Identified Compounds ND ug/l 1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	109		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	87		70-130	
Dibromofluoromethane	114		70-130	

L2475702

12/31/24

Project Name: 1050-1058 NIAGARA ST SITE

L2475702-02

BUFFALO, NY

MW-3

Project Number: 4331.0007B000

SAMPLE RESULTS

Date Collected: 12/23/24 11:45

Report Date:

Lab Number:

Date Received: 12/23/24 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 12/28/24 12:18

Analyst: PID

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	10		ug/l	0.50	0.16	1
Toluene	1.5	J	ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: 1050-1058 NIAGARA ST SITE Lab Number: L2475702

Project Number: 4331.0007B000 **Report Date:** 12/31/24

SAMPLE RESULTS

Lab ID: L2475702-02 Date Collected: 12/23/24 11:45

Client ID: MW-3 Date Received: 12/23/24 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbord	ough Lab					
1.3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	1.7	J	ug/l	2.5	0.70	1
o-Xylene	0.74	J	ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	9.1		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	130		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	110		ug/l	10	0.40	1

Project Name: 1050-1058 NIAGARA ST SITE **Lab Number:** L2475702

Project Number: 4331.0007B000 **Report Date:** 12/31/24

SAMPLE RESULTS

Lab ID: L2475702-02 Date Collected: 12/23/24 11:45

Client ID: MW-3 Date Received: 12/23/24 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	441	J	ug/l	1
Unknown	43.5	J	ug/l	1
Cyclopentane, Methyl-	104	NJ	ug/l	1
Unknown Aromatic	26.1	J	ug/l	1
Unknown Aromatic	35.6	J	ug/l	1
Unknown	70.5	J	ug/l	1
Unknown	27.2	J	ug/l	1
Unknown Cycloalkane	22.4	J	ug/l	1
Unknown Cycloalkane	37.4	J	ug/l	1
Indane	47.8	NJ	ug/l	1
Unknown Cycloalkane	26.6	J	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	109	70-130	
4-Bromofluorobenzene	92	70-130	
Dibromofluoromethane	97	70-130	

L2475702

12/31/24

Project Name: 1050-1058 NIAGARA ST SITE

MW-6

L2475702-03

BUFFALO, NY

Project Number: 4331.0007B000

SAMPLE RESULTS

Date Collected: 12/23/24 13:10

Lab Number:

Report Date:

Date Received: 12/23/24 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 12/28/24 11:06

Analyst: PID

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	gh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: 1050-1058 NIAGARA ST SITE Lab Number: L2475702

Project Number: 4331.0007B000 **Report Date:** 12/31/24

SAMPLE RESULTS

Lab ID: L2475702-03 Date Collected: 12/23/24 13:10

Client ID: MW-6 Date Received: 12/23/24 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	ND		ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	

Tentatively	Identified	Compounds	

No Tentatively Identified Compounds ND ug/l 1

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	110		70-130
Toluene-d8	100		70-130
4-Bromofluorobenzene	88		70-130
Dibromofluoromethane	117		70-130

Project Name: 1050-1058 NIAGARA ST SITE

Project Number: 4331.0007B000

SAMPLE RESULTS

Lab Number: L2475702

Report Date: 12/31/24

Lab ID: L2475702-04 Date Collected: 12/23/24 00:00

Client ID: Date Received: 12/23/24 TRIP BLANK Field Prep: Sample Location: BUFFALO, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 12/28/24 11:30

Analyst: PID

Wolatile Organics by GC/MS - Westborough Lab Methylene chloride ND ug/l 2.5 0.70 1 1,1-Dichloroethane ND ug/l 2.5 0.70 1 Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 Carbon tetrachloropropane ND ug/l 0.50 0.13 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 0.50 0.18 1 Tichloroethane ND ug/l 0.50 0.18 1 L2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.19 1 Bromodichloromethane <th>Parameter</th> <th>Result</th> <th>Qualifier</th> <th>Units</th> <th>RL</th> <th>MDL</th> <th>Dilution Factor</th>	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane ND ug/l 2.5 0.70 1 Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 0.50 0.14 1 Dibromochloromethane ND ug/l 0.50 0.14 1 Tetrachloroethane ND ug/l 0.50 0.18 1 1,1-2-Trichloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorothurormethane ND ug/l 2.5 0.70 1 1,1-1-Trichloroethane ND ug/l 0.50 0.13 1 1,1-1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50	Volatile Organics by GC/MS - Wes	tborough Lab					
Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorotluoromethane ND ug/l 2.5 0.70 1 1,1-1-Trichloroethane ND ug/l 0.50 0.13 1 1,1-1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 Bromoform ND ug/l 0.50 0.17	Methylene chloride	ND		ug/l	2.5	0.70	1
Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethene ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichloroethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bermoform ND ug/l 0.50 <t< td=""><td>1,1-Dichloroethane</td><td>ND</td><td></td><td>ug/l</td><td>2.5</td><td>0.70</td><td>1</td></t<>	1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
1,2-Dichloropropane ND ug/l 1,0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethene ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,1-1,1-Trichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloropropene ND ug/l 0.50 0.16 1 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 <td< td=""><td>Chloroform</td><td>ND</td><td></td><td>ug/l</td><td>2.5</td><td>0.70</td><td>1</td></td<>	Chloroform	ND		ug/l	2.5	0.70	1
Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 sis-1,3-Dichloropropene ND ug/l 2.0 0.65 1 Bromoform ND ug/l 2.0 0.65 1 Toluene ND ug/l 0.50 0.16 </td <td>Carbon tetrachloride</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>0.13</td> <td>1</td>	Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethene ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.17 1 Elenzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 <td>1,2-Dichloropropane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>1.0</td> <td>0.14</td> <td>1</td>	1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Tetrachloroethene ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.16 1 dis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 <td>Dibromochloromethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>0.15</td> <td>1</td>	Dibromochloromethane	ND		ug/l	0.50	0.15	1
Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.19 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 Bromoform ND ug/l 0.50 0.14 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1	1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 Bromodichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 </td <td>Tetrachloroethene</td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>0.18</td> <td>1</td>	Tetrachloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1	Chlorobenzene	ND		ug/l	2.5	0.70	1
1,1,1-Trichloroethane ND	Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 2.5 0.70 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 2.5 0.70 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 2.5 0.70 1	1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 0.50 0.18 1 Trichloroethene ND ug/l 0.50 0.18 1	Bromodichloromethane	ND		ug/l	0.50	0.19	1
Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 0.50 0.18 1	trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 0.50 0.18 1	cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 0.50 0.18 1	Bromoform	ND		ug/l	2.0	0.65	1
Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 0.50 0.18 1	1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 0.50 0.18 1	Benzene	ND		ug/l	0.50	0.16	1
Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 0.50 0.18 1	Toluene	ND		ug/l	2.5	0.70	1
Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 0.50 0.18 1	Ethylbenzene	ND		ug/l	2.5	0.70	1
Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 0.50 0.18 1	Chloromethane	ND		ug/l	2.5	0.70	1
Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 0.50 0.18 1	Bromomethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene ND ug/l 0.50 0.17 1 trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 0.50 0.18 1	Vinyl chloride	ND		ug/l	1.0	0.07	1
trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Trichloroethene ND ug/l 0.50 0.18 1	Chloroethane	ND		ug/l	2.5	0.70	1
Trichloroethene ND ug/l 0.50 0.18 1	1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
	trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichlorobenzene ND ug/l 2.5 0.70 1	Trichloroethene	ND		ug/l	0.50	0.18	1
	1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: 1050-1058 NIAGARA ST SITE Lab Number: L2475702

Project Number: 4331.0007B000 **Report Date:** 12/31/24

SAMPLE RESULTS

Lab ID: L2475702-04 Date Collected: 12/23/24 00:00

Client ID: TRIP BLANK Date Received: 12/23/24
Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Tentativel	v Identified	Compounds
remaniver	y luerillileu	Compounds

No Tentatively Identified Compounds ND ug/l 1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	108		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	88		70-130	
Dibromofluoromethane	115		70-130	

L2475702

Project Name: 1050-1058 NIAGARA ST SITE

Project Number: 4331.0007B000

SAMPLE RESULTS

12/31/24

Report Date:

Lab Number:

Lab ID: L2475702-05 Date Collected: 12/23/24 12:00

Client ID: Date Received: 12/23/24 **BLIND DUP** Field Prep: Sample Location: Not Specified BUFFALO, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 12/28/24 11:54

Analyst: PID

Parameter	Result	Qualifier Units	s RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	tborough Lab				
Methylene chloride	ND	ug/l	2.5	0.70	1
1,1-Dichloroethane	ND	ug/l	2.5	0.70	1
Chloroform	ND	ug/l	2.5	0.70	1
Carbon tetrachloride	ND	ug/l	0.50	0.13	1
1,2-Dichloropropane	ND	ug/l	1.0	0.14	1
Dibromochloromethane	ND	ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	1
Tetrachloroethene	ND	ug/l	0.50	0.18	1
Chlorobenzene	ND	ug/l	2.5	0.70	1
Trichlorofluoromethane	ND	ug/l	2.5	0.70	1
1,2-Dichloroethane	ND	ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	1
Bromodichloromethane	ND	ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	1
Bromoform	ND	ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	1
Benzene	ND	ug/l	0.50	0.16	1
Toluene	ND	ug/l	2.5	0.70	1
Ethylbenzene	ND	ug/l	2.5	0.70	1
Chloromethane	ND	ug/l	2.5	0.70	1
Bromomethane	ND	ug/l	2.5	0.70	1
Vinyl chloride	ND	ug/l	1.0	0.07	1
Chloroethane	ND	ug/l	2.5	0.70	1
1,1-Dichloroethene	ND	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1
Trichloroethene	ND	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70	1

Project Name: 1050-1058 NIAGARA ST SITE Lab Number: L2475702

Project Number: 4331.0007B000 **Report Date:** 12/31/24

SAMPLE RESULTS

Lab ID: L2475702-05 Date Collected: 12/23/24 12:00

Client ID: BLIND DUP Date Received: 12/23/24
Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

1,3-Dichlorobenzene ND ug/l 2.5 0.70 1 1,4-Dichlorobenzene ND ug/l 2.5 0.70 1 1,4-Dichlorobenzene ND ug/l 2.5 0.70 1 1,4-Dichlorobenzene ND ug/l 2.5 0.17 1 1,4-Dichlorobenzene ND ug/l 2.5 0.70 1 0-Xylene ND ug/l 2.5 0.70 1 1-Xylene ND ug/l 2.5 0.70 1 1-Xylene ND ug/l 2.5 0.70 1 1-Xylene ND ug/l 5.0 1.0 1 1-Xetone ND ug/l 5.0 1.5 1 1-Xetone ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 1-2-Dibromoethane ND ug/l 5.0 1.0 1 1-2-Dibromoethane ND ug/l 2.5 0.70 1 1-2-Dibromoethane ND ug/l 2.5 0.70 1 1-2-Dibromoeshane ND ug/l 2.5 0.70 1 1-2-Dibromoeshane ND ug/l 2.5 0.70 1 1-2-Dibromoethane ND ug/l 2.5 0.70 1 1-2-Dibromoethane	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,4-Dichlorobenzene ND ug/l 2.5 0.70 1 Methyl tert butyl ether ND ug/l 2.5 0.17 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2	Volatile Organics by GC/MS - Wes	tborough Lab					
Methyl tert butyl ether ND ug/l 2.5 0.17 1 p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.0 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromo-3	1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
p/m-Xylene ND ug/l 2.5 0.70 1 o-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isoproylb	1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
o-Xylene ND ug/l 2.5 0.70 1 cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 1,2	Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
cis-1,2-Dichloroethene ND ug/l 2.5 0.70 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1	p/m-Xylene	ND		ug/l	2.5	0.70	1
Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1,2-3-Trichlorobenzene ND ug/l 2.5 0.70 1	o-Xylene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1sopropylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1	cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1sopropylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1	Styrene	ND		ug/l	2.5	0.70	1
Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 1sopropylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 250 61. 1	Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
2-Butanone ND ug/l 5.0 1.9 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 2.0 0.23 1 1,4-Dioxane ND ug/l 2.5 61. 1	Acetone	ND		ug/l	5.0	1.5	1
4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1	Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 Cyclohexane ND ug/l 2.5 0.70 1 ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 2.0 0.23 1 1,4-Dioxane ND ug/l 10 0.27 1	2-Butanone	ND		ug/l	5.0	1.9	1
Bromochloromethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61 1	4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane ND ug/l 2.0 0.65 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61 1	2-Hexanone	ND		ug/l	5.0	1.0	1
1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61 1	Bromochloromethane	ND		ug/l	2.5	0.70	1
Isopropylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61 1	1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61 1	1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1	Isopropylbenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate ND ug/l 2.0 0.23 1 Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1	1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Cyclohexane ND ug/l 10 0.27 1 1,4-Dioxane ND ug/l 250 61. 1	1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dioxane ND ug/l 250 61. 1	Methyl Acetate	ND		ug/l	2.0	0.23	1
	Cyclohexane	ND		ug/l	10	0.27	1
Freon-113 ND ug/l 2.5 0.70 1	1,4-Dioxane	ND		ug/l	250	61.	1
	Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane ND ug/l 10 0.40 1	Methyl cyclohexane	ND		ug/l	10	0.40	1

I entatively	Identified	Compounds	
--------------	------------	-----------	--

No Tentatively Identified Compounds ND ug/l 1

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	107	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	87	70-130
Dibromofluoromethane	112	70-130

Project Name: 1050-1058 NIAGARA ST SITE **Lab Number:** L2475702

Project Number: 4331.0007B000 **Report Date:** 12/31/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 12/28/24 10:17

Analyst: PID

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-05 Batch:	WG2014860-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: 1050-1058 NIAGARA ST SITE **Lab Number:** L2475702

Project Number: 4331.0007B000 **Report Date:** 12/31/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 12/28/24 10:17

Analyst: PID

Parameter	Result	Qualifier Unit	s	RL	MDL	
Volatile Organics by GC/MS - We	stborough Lab	o for sample(s):	01-05	Batch:	WG2014860-5	
1,4-Dichlorobenzene	ND	ug	/I	2.5	0.70	
Methyl tert butyl ether	ND	ug	/I	2.5	0.17	
p/m-Xylene	ND	ug	/I	2.5	0.70	
o-Xylene	ND	ug	/I	2.5	0.70	
cis-1,2-Dichloroethene	ND	ug	/I	2.5	0.70	
Styrene	ND	ug	/I	2.5	0.70	
Dichlorodifluoromethane	ND	ug	/I	5.0	1.0	
Acetone	ND	ug	/I	5.0	1.5	
Carbon disulfide	ND	ug	/I	5.0	1.0	
2-Butanone	ND	ug	/I	5.0	1.9	
4-Methyl-2-pentanone	ND	ug	/I	5.0	1.0	
2-Hexanone	ND	ug	/I	5.0	1.0	
Bromochloromethane	ND	ug	/I	2.5	0.70	
1,2-Dibromoethane	ND	ug	/I	2.0	0.65	
1,2-Dibromo-3-chloropropane	ND	ug	/I	2.5	0.70	
Isopropylbenzene	ND	ug	/I	2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug	/I	2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug	/I	2.5	0.70	
Methyl Acetate	ND	ug	/I	2.0	0.23	
Cyclohexane	ND	ug	/I	10	0.27	
1,4-Dioxane	ND	ug	/I	250	61.	
Freon-113	ND	ug	/I	2.5	0.70	
Methyl cyclohexane	ND	ug	/I	10	0.40	

Tentatively Identified Compounds					
Total TIC Compounds	1.03	J	ug/l		
Unknown	1.03	J	ug/l		

Project Name: 1050-1058 NIAGARA ST SITE **Lab Number:** L2475702

Project Number: 4331.0007B000 **Report Date:** 12/31/24

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 12/28/24 10:17

Analyst: PID

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-05 Batch: WG2014860-5

		-	Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	106		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	86		70-130	
Dibromofluoromethane	114		70-130	

Lab Control Sample Analysis Batch Quality Control

Project Name: 1050-1058 NIAGARA ST SITE

Project Number: 4331.0007B000

Lab Number: L2475702

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
/olatile Organics by GC/MS - W	estborough Lab Associa	ated sample(s):	01-05 Bato	h: WG20	14860-3 WG201	4860-4	
Methylene chloride	92		91		70-130	1	20
1,1-Dichloroethane	100		98		70-130	2	20
Chloroform	100		99		70-130	1	20
Carbon tetrachloride	100		94		63-132	6	20
1,2-Dichloropropane	99		98		70-130	1	20
Dibromochloromethane	90		92		63-130	2	20
1,1,2-Trichloroethane	87		91		70-130	4	20
Tetrachloroethene	110		100		70-130	10	20
Chlorobenzene	100		100		75-130	0	20
Trichlorofluoromethane	100		96		62-150	4	20
1,2-Dichloroethane	94		96		70-130	2	20
1,1,1-Trichloroethane	97		94		67-130	3	20
Bromodichloromethane	96		97		67-130	1	20
trans-1,3-Dichloropropene	91		96		70-130	5	20
cis-1,3-Dichloropropene	99		96		70-130	3	20
Bromoform	83		88		54-136	6	20
1,1,2,2-Tetrachloroethane	78		84		67-130	7	20
Benzene	99		95		70-130	4	20
Toluene	97		98		70-130	1	20
Ethylbenzene	98		98		70-130	0	20
Chloromethane	64		56	Q	64-130	13	20
Bromomethane	110		120		39-139	9	20
Vinyl chloride	85		78		55-140	9	20

Lab Control Sample Analysis Batch Quality Control

Project Name: 1050-1058 NIAGARA ST SITE

Project Number: 4331.0007B000

Lab Number: L2475702

Parameter	LCS %Recovery	LCSI Qual %Recov	, 02 1000		RPD Qual Limits	
/olatile Organics by GC/MS - V	Westborough Lab Associa	ated sample(s): 01-05	Batch: WG2014860-3	WG2014860-4		
Chloroethane	120	110	55-13	8 9	20	
1,1-Dichloroethene	95	91	61-14	5 4	20	
trans-1,2-Dichloroethene	100	97	70-13	0 3	20	
Trichloroethene	94	88	70-13	0 7	20	
1,2-Dichlorobenzene	96	98	70-13	0 2	20	
1,3-Dichlorobenzene	100	100	70-13	0 0	20	
1,4-Dichlorobenzene	96	98	70-13	0 2	20	
Methyl tert butyl ether	89	96	63-13	0 8	20	
p/m-Xylene	95	95	70-13	0 0	20	
o-Xylene	100	100	70-13	0 0	20	
cis-1,2-Dichloroethene	97	96	70-13	0 1	20	
Styrene	100	100	70-13	0 0	20	
Dichlorodifluoromethane	47	41	36-14	7 14	20	
Acetone	71	86	58-14	8 19	20	
Carbon disulfide	96	91	51-13	0 5	20	
2-Butanone	83	88	63-13	8 6	20	
4-Methyl-2-pentanone	78	88	59-13	0 12	20	
2-Hexanone	79	89	57-13	0 12	20	
Bromochloromethane	88	89	70-13	0 1	20	
1,2-Dibromoethane	91	96	70-13	0 5	20	
1,2-Dibromo-3-chloropropane	78	84	41-14	4 7	20	
Isopropylbenzene	94	91	70-13	0 3	20	
1,2,3-Trichlorobenzene	87	96	70-13	0 10	20	

Lab Control Sample Analysis Batch Quality Control

Project Name: 1050-1058 NIAGARA ST SITE

Project Number: 4331.0007B000

Lab Number: L2475702

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westboroug	h Lab Associated	d sample(s):	01-05 Batch	n: WG2014	360-3 WG2014	1860-4		
1,2,4-Trichlorobenzene	93		98		70-130	5		20
Methyl Acetate	73		82		70-130	12		20
Cyclohexane	99		91		70-130	8		20
1,4-Dioxane	90		102		56-162	13		20
Freon-113	100		96		70-130	4		20
Methyl cyclohexane	110		91		70-130	19		20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	108	112	70-130
Toluene-d8	100	102	70-130
4-Bromofluorobenzene	89	90	70-130
Dibromofluoromethane	111	109	70-130

Matrix Spike Analysis Batch Quality Control

Project Name: 1050-1058 NIAGARA ST SITE

Project Number: 4331.0007B000

Lab Number:

L2475702

Report Date:

12/31/24

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MS Qual Fou		MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS Client ID: MW-6	- Westborou	ıgh Lab <i>A</i>	Associated san	nple(s): 01-05	QC Batch ID	: WG	2014860-6 V	VG201	4860-7 QC	Samp	le: L247	75702-03
Methylene chloride	ND	10	9.2	92	9	.2	92		70-130	0		20
1,1-Dichloroethane	ND	10	10	100	1	0	100		70-130	0		20
Chloroform	ND	10	10	100	1	0	100		70-130	0		20
Carbon tetrachloride	ND	10	9.6	96	9	.5	95		63-132	1		20
1,2-Dichloropropane	ND	10	10	100	9	.7	97		70-130	3		20
Dibromochloromethane	ND	10	9.2	92	9	.2	92		63-130	0		20
1,1,2-Trichloroethane	ND	10	9.4	94	9	.2	92		70-130	2		20
Tetrachloroethene	ND	10	10	100	1	0	100		70-130	0		20
Chlorobenzene	ND	10	10	100	9	.8	98		75-130	2		20
Trichlorofluoromethane	ND	10	9.8	98	9	.9	99		62-150	1		20
1,2-Dichloroethane	ND	10	9.9	99	1	0	100		70-130	1		20
1,1,1-Trichloroethane	ND	10	10	100	9	.8	98		67-130	2		20
Bromodichloromethane	ND	10	9.6	96	9	.5	95		67-130	1		20
trans-1,3-Dichloropropene	ND	10	9.1	91	9	.0	90		70-130	1		20
cis-1,3-Dichloropropene	ND	10	9.2	92	9	.0	90		70-130	2		20
Bromoform	ND	10	8.2	82	8	.4	84		54-136	2		20
1,1,2,2-Tetrachloroethane	ND	10	8.1	81	8	.1	81		67-130	0		20
Benzene	ND	10	9.8	98	9	.8	98		70-130	0		20
Toluene	ND	10	10	100	9	.9	99		70-130	1		20
Ethylbenzene	ND	10	9.8	98	9	.6	96		70-130	2		20
Chloromethane	ND	10	5.7	57	Q 5	.8	58	Q	64-130	2		20
Bromomethane	ND	10	9.3	93	1	1	110		39-139	17		20
Vinyl chloride	ND	10	8.1	81	8	.1	81		55-140	0		20

Matrix Spike Analysis Batch Quality Control

Project Name: 1050-1058 NIAGARA ST SITE

Project Number: 4331.0007B000

Lab Number:

L2475702

Report Date:

12/31/24

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS Client ID: MW-6	- Westborou	ıgh Lab A	ssociated sar	mple(s): 01-05	QC Batch ID: W	G2014860-6	WG2014860-7 Q0	C Samp	le: L2475702-03
Chloroethane	ND	10	12	120	12	120	55-138	0	20
1,1-Dichloroethene	ND	10	9.7	97	9.5	95	61-145	2	20
trans-1,2-Dichloroethene	ND	10	10	100	10	100	70-130	0	20
Trichloroethene	ND	10	9.0	90	9.0	90	70-130	0	20
1,2-Dichlorobenzene	ND	10	9.3	93	9.2	92	70-130	1	20
1,3-Dichlorobenzene	ND	10	9.4	94	9.4	94	70-130	0	20
1,4-Dichlorobenzene	ND	10	9.5	95	9.3	93	70-130	2	20
Methyl tert butyl ether	ND	10	9.6	96	9.4	94	63-130	2	20
o/m-Xylene	ND	20	20	100	20	100	70-130	0	20
o-Xylene	ND	20	20	100	20	100	70-130	0	20
cis-1,2-Dichloroethene	ND	10	9.9	99	9.7	97	70-130	2	20
Styrene	ND	20	20	100	20	100	70-130	0	20
Dichlorodifluoromethane	ND	10	3.2J	32	Q 3.2J	32	Q 36-147	0	20
Acetone	ND	10	8.0	80	8.0	80	58-148	0	20
Carbon disulfide	ND	10	9.4	94	9.4	94	51-130	0	20
2-Butanone	ND	10	8.6	86	8.4	84	63-138	2	20
4-Methyl-2-pentanone	ND	10	9.0	90	8.6	86	59-130	5	20
2-Hexanone	ND	10	8.6	86	8.8	88	57-130	2	20
Bromochloromethane	ND	10	9.3	93	9.2	92	70-130	1	20
1,2-Dibromoethane	ND	10	9.7	97	9.4	94	70-130	3	20
1,2-Dibromo-3-chloropropane	ND	10	7.7	77	7.9	79	41-144	3	20
sopropylbenzene	ND	10	8.8	88	8.9	89	70-130	1	20
1,2,3-Trichlorobenzene	ND	10	7.8	78	8.5	85	70-130	9	20

Matrix Spike Analysis Batch Quality Control

Project Name: 1050-1058 NIAGARA ST SITE

Project Number: 4331.0007B000

Lab Number:

L2475702

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MacClient ID: MW-6	S - Westborou	gh Lab Ass	sociated sam	ple(s): 01-05	QC Bato	ch ID: WG	32014860-6 V	VG2014	860-7 Q0	C Samp	le: L2475702-03
1,2,4-Trichlorobenzene	ND	10	8.3	83		8.6	86		70-130	4	20
Methyl Acetate	ND	10	7.2	72		7.2	72		70-130	0	20
Cyclohexane	ND	10	8.7J	87		8.6J	86		70-130	1	20
1,4-Dioxane	ND	500	500	100		500	100		56-162	0	20
Freon-113	ND	10	8.8	88		8.6	86		70-130	2	20
Methyl cyclohexane	ND	10	8.6J	86		8.0J	80		70-130	7	20

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	113	115	70-130
4-Bromofluorobenzene	87	89	70-130
Dibromofluoromethane	110	110	70-130
Toluene-d8	103	102	70-130

SEMIVOLATILES

Project Name: 1050-1058 NIAGARA ST SITE **Lab Number:** L2475702

Project Number: 4331.0007B000 **Report Date:** 12/31/24

SAMPLE RESULTS

Lab ID: L2475702-01 Date Collected: 12/23/24 10:20

Client ID: TMW-3 Date Received: 12/23/24 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270E Extraction Date: 12/28/24 10:08

Analytical Method: 1,8270E Extraction Date: 12/28/24 10:08

Analytical Date: 12/29/24 18:34

Analyst: EK

3.3-Dichlorobenzidine ND ug/l 5.0 1.8 1 2.4-Dinitrotoluene ND ug/l 5.0 0.54 1 2.6-Dinitrotoluene ND ug/l 5.0 0.84 1 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.39 1 4-Bromophenyl phenyl ether ND ug/l 2.0 0.40 1 4-Bromophenyl phenyl ether ND ug/l 2.0 0.40 1 3-Sis(2-chlorostospropyl)ether ND ug/l 5.0 0.84 1 4-Bromophenyl phenyl ether ND ug/l 5.0 0.84 1 3-Sis(2-chlorostospropyl)ether ND ug/l 5.0 0.84 1 4-Export phenyl ghenyl ether ND ug/l 5.0 0.86 1 4-Export phenyl ghenyl ether ND ug/l 5.0 0.86 1 4-Export phenyl ghenyl ether ND ug/l 5.0 0.96 1 NDPACDPA	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
3.3-Dichlorobenzidine ND ug/l 5.0 1.8 1 2.4-Dinitrotoluene ND ug/l 5.0 0.54 1 2.6-Dinitrotoluene ND ug/l 5.0 0.84 1 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.39 1 4-Bromophenyl phenyl ether ND ug/l 2.0 0.40 1 4-Bromophenyl phenyl ether ND ug/l 2.0 0.40 1 3-Sis(2-chlorostospropyl)ether ND ug/l 5.0 0.84 1 4-Bromophenyl phenyl ether ND ug/l 5.0 0.84 1 3-Sis(2-chlorostospropyl)ether ND ug/l 5.0 0.84 1 4-Export phenyl ghenyl ether ND ug/l 5.0 0.86 1 4-Export phenyl ghenyl ether ND ug/l 5.0 0.86 1 4-Export phenyl ghenyl ether ND ug/l 5.0 0.96 1 NDPACDPA	Semivolatile Organics by GC/MS - W	estborough Lab					
ND	Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.39	1
ND	3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.8	1
A-Chlorophenyl phenyl ether ND ug/l 2.0 0.39 1 A-Bromophenyl phenyl ether ND ug/l 2.0 0.24 1 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.40 1 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.40 1 Bis(2-chloroethoxy)methane ND ug/l 5.0 0.84 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.86 1 ND ug/l 5.0 0.86 1 NITrobenzene ND ug/l 5.0 0.86 1 NITrobenzene ND ug/l 5.0 0.86 1 NITrobenzene ND ug/l 5.0 0.92 1 NITrobenzene ND ug/l 5.0 0.91 1 Di-n-Nitrosodi-n-propylamine ND ug/l 5.0 0.91 1 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.91 1 Di-n-butyl benzyl phthalate ND ug/l 5.0 0.96 1 Di-n-butylphthalate ND ug/l 5.0 0.92 1 Di-n-butylphthalate ND ug/l 5.0 0.76 1 Di-n-butylphthalate ND ug/l 5.0 0.76 1 Di-n-butylphthalate ND ug/l 5.0 0.76 1 Di-n-butylphthalate ND ug/l 5.0 0.92 1 Di-n-butylphthalate ND ug/l 5.0 0.47 1 Di-n-butylphthalate ND ug/l 5.0 0.40 1 Di-n-butylphthalate ND ug/l 5.0 0.40 1 Di-n-butylphthalate ND ug/l 5.0 0.40 1 Di-n-butylphthalate	2,4-Dinitrotoluene	ND		ug/l	5.0	0.54	1
A-Bromophenyl phenyl ether ND ug/l 2.0 0.24 1	2,6-Dinitrotoluene	ND		ug/l	5.0	0.84	1
ND	4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.39	1
Sis 2-chloroethoxy)methane ND ug/l 5.0 0.84 1	4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.24	1
Hexachlorocyclopentadiene ND	Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.40	1
ND	Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.84	1
ND	Hexachlorocyclopentadiene	ND		ug/l	20	1.2	1
NDPA/DPA	Isophorone	ND		ug/l	5.0	0.86	1
ND	Nitrobenzene	ND		ug/l	2.0	0.20	1
Sis(2-ethylhexyl)phthalate	NDPA/DPA	ND		ug/l	2.0	0.92	1
Sutyl benzyl phthalate ND ug/l 5.0 2.6 1 Sutyl benzyl phthalate ND ug/l 5.0 0.96 1 Sutyl benzyl phthalate ND ug/l 5.0 0.96 1 Sutyl benzyl phthalate ND ug/l 5.0 2.3 1 Sutyl phthalate ND ug/l 5.0 0.76 1 Sutyl phthalate ND ug/l 5.0 0.76 1 Sutyl phthalate ND ug/l 5.0 0.92 1 Sutyl phthalate ND ug/l 2.0 0.20 1 Sutyl phthalate ND ug/l 5.0 0.47 1 Sutyl phthalate ND ug/l 5.0 0.47 1 Sutyl phthalate ND ug/l 5.0 0.47 1 Sutyl phthalate ND ug/l 5.0 1.0 1 Sutyl phthalate ND ug/l 5.0 1.2 1 Sutyl phthalate ND ug/l 5.0 1.4 1 Sutyl phthalate ND ug/l 5.0 0.40 1 Sutyl phthalate ND ug/l 5.0 0.40 1 Sutyl phthalate ND ug/l 5.0 0.92 1 Sutyl phthalate ND Ug/l Sutyl phthalate ND Ug/l Sutyl phthalate ND Ug/l Su	n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.91	1
Di-n-butylphthalate	Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.4	1
Di-n-octylphthalate	Butyl benzyl phthalate	ND		ug/l	5.0	2.6	1
Diethyl phthalate	Di-n-butylphthalate	ND		ug/l	5.0	0.96	1
ND	Di-n-octylphthalate	ND		ug/l	5.0	2.3	1
ND	Diethyl phthalate	ND		ug/l	5.0	0.76	1
4-Chloroaniline ND ug/l 5.0 0.47 1 2-Nitroaniline ND ug/l 5.0 1.0 1 3-Nitroaniline ND ug/l 5.0 1.2 1 4-Nitroaniline ND ug/l 5.0 1.4 1 5-Dibenzofuran ND ug/l 5.0 1.4 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.24 1 Acetophenone ND ug/l 5.0 0.92 1	Dimethyl phthalate	ND		ug/l	5.0	0.92	1
2-Nitroaniline ND ug/l 5.0 1.0 1 3-Nitroaniline ND ug/l 5.0 1.2 1 4-Nitroaniline ND ug/l 5.0 1.4 1 Dibenzofuran ND ug/l 2.0 0.40 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.24 1 Acetophenone ND ug/l 5.0 0.92 1	Biphenyl	ND		ug/l	2.0	0.20	1
ND	4-Chloroaniline	ND		ug/l	5.0	0.47	1
4-Nitroaniline ND ug/l 5.0 1.4 1 Dibenzofuran ND ug/l 2.0 0.40 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.24 1 Acetophenone ND ug/l 5.0 0.92 1	2-Nitroaniline	ND		ug/l	5.0	1.0	1
Dibenzofuran ND ug/l 2.0 0.40 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.24 1 Acetophenone ND ug/l 5.0 0.92 1	3-Nitroaniline	ND		ug/l	5.0	1.2	1
1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.24 1 Acetophenone ND ug/l 5.0 0.92 1	4-Nitroaniline	ND		ug/l	5.0	1.4	1
Acetophenone ND ug/l 5.0 0.92 1	Dibenzofuran	ND		ug/l	2.0	0.40	1
•	1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.24	1
2,4,6-Trichlorophenol ND ug/l 5.0 2.1 1	Acetophenone	ND		ug/l	5.0	0.92	1
· · · · · · · · · · · · · · · · · · ·	2,4,6-Trichlorophenol	ND		ug/l	5.0	2.1	1

Project Name: 1050-1058 NIAGARA ST SITE Lab Number: L2475702

Project Number: 4331.0007B000 **Report Date:** 12/31/24

SAMPLE RESULTS

Lab ID: L2475702-01 Date Collected: 12/23/24 10:20

Client ID: TMW-3 Date Received: 12/23/24 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - V	Vestborough Lab						
p-Chloro-m-cresol	ND		ug/l	2.0	0.61	1	
2-Chlorophenol	ND		ug/l	2.0	0.65	1	
2,4-Dichlorophenol	ND		ug/l	5.0	1.7	1	
2,4-Dimethylphenol	ND		ug/l	5.0	2.0	1	
2-Nitrophenol	ND		ug/l	10	2.0	1	
4-Nitrophenol	ND		ug/l	10	1.4	1	
2,4-Dinitrophenol	ND		ug/l	20	5.4	1	
4,6-Dinitro-o-cresol	ND		ug/l	10	2.3	1	
Phenol	ND		ug/l	5.0	0.35	1	
2-Methylphenol	ND		ug/l	5.0	2.3	1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.4	1	
2,4,5-Trichlorophenol	ND		ug/l	5.0	2.1	1	
Carbazole	ND		ug/l	2.0	0.31	1	
Atrazine	ND		ug/l	10	1.0	1	
Benzaldehyde	ND		ug/l	5.0	1.1	1	
Caprolactam	ND		ug/l	10	1.2	1	
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	2.2	1	

Tentatively Identified Compounds				
Total TIC Compounds	16.6	J	ug/l	1
Unknown Organic Acid	5.00	J	ug/l	1
Unknown	7.40	J	ug/l	1
Unknown Organic Acid	4.20	J	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	47	21-120	
Phenol-d6	34	10-120	
Nitrobenzene-d5	62	23-120	
2-Fluorobiphenyl	60	15-120	
2,4,6-Tribromophenol	94	10-120	
4-Terphenyl-d14	74	41-149	

Project Name: 1050-1058 NIAGARA ST SITE **Lab Number:** L2475702

Project Number: 4331.0007B000 **Report Date:** 12/31/24

SAMPLE RESULTS

Lab ID: L2475702-01 Date Collected: 12/23/24 10:20

Client ID: TMW-3 Date Received: 12/23/24 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270E-SIM Extraction Date: 12/28/24 10:08
Analytical Date: 12/29/24 09:50

Analyst: KMH

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM -	Westborough La	ab				
Acenaphthene	ND		ug/l	0.10	0.02	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	0.05	J	ug/l	0.10	0.03	1
Hexachlorobutadiene	ND		ug/l	0.50	0.02	1
Naphthalene	ND		ug/l	0.10	0.02	1
Benzo(a)anthracene	0.03	J	ug/l	0.10	0.03	1
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1
Benzo(b)fluoranthene	0.03	J	ug/l	0.10	0.03	1
Benzo(k)fluoranthene	ND		ug/l	0.10	0.03	1
Chrysene	ND		ug/l	0.10	0.03	1
Acenaphthylene	ND		ug/l	0.10	0.02	1
Anthracene	ND		ug/l	0.10	0.02	1
Benzo(ghi)perylene	ND		ug/l	0.10	0.02	1
Fluorene	ND		ug/l	0.10	0.03	1
Phenanthrene	0.06	J	ug/l	0.10	0.04	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.02	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.02	1
Pyrene	ND		ug/l	0.10	0.04	1
2-Methylnaphthalene	ND		ug/l	0.10	0.03	1
Pentachlorophenol	ND		ug/l	0.80	0.06	1
Hexachlorobenzene	ND		ug/l	0.80	0.01	1
Hexachloroethane	ND		ug/l	0.80	0.02	1

Project Name: 1050-1058 NIAGARA ST SITE **Lab Number:** L2475702

Project Number: 4331.0007B000 **Report Date:** 12/31/24

SAMPLE RESULTS

Lab ID: L2475702-01 Date Collected: 12/23/24 10:20

Client ID: TMW-3 Date Received: 12/23/24 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

2-Fluorophenol 43 21-12
Phenol-d6 30 10-12
Nitrobenzene-d5 64 23-12
2-Fluorobiphenyl 64 15-12
2,4,6-Tribromophenol 80 10-12
4-Terphenyl-d14 80 41-14

Project Name: 1050-1058 NIAGARA ST SITE **Lab Number:** L2475702

Project Number: 4331.0007B000 **Report Date:** 12/31/24

SAMPLE RESULTS

Lab ID: L2475702-02 Date Collected: 12/23/24 11:45

Client ID: MW-3 Date Received: 12/23/24 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270E Extraction Date: 12/28/24 10:08
Analytical Date: 12/29/24 18:56

Analyst: EK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westbo	orough Lab					
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.39	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.8	1
2,4-Dinitrotoluene	ND		ug/l	5.0	0.54	1
2,6-Dinitrotoluene	ND		ug/l	5.0	0.84	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.39	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.24	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.40	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.84	1
Hexachlorocyclopentadiene	ND		ug/l	20	1.2	1
Isophorone	ND		ug/l	5.0	0.86	1
Nitrobenzene	ND		ug/l	2.0	0.20	1
NDPA/DPA	ND		ug/l	2.0	0.92	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.91	1
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.4	1
Butyl benzyl phthalate	ND		ug/l	5.0	2.6	1
Di-n-butylphthalate	1.8	J	ug/l	5.0	0.96	1
Di-n-octylphthalate	ND		ug/l	5.0	2.3	1
Diethyl phthalate	ND		ug/l	5.0	0.76	1
Dimethyl phthalate	ND		ug/l	5.0	0.92	1
Biphenyl	ND		ug/l	2.0	0.20	1
4-Chloroaniline	ND		ug/l	5.0	0.47	1
2-Nitroaniline	ND		ug/l	5.0	1.0	1
3-Nitroaniline	ND		ug/l	5.0	1.2	1
4-Nitroaniline	ND		ug/l	5.0	1.4	1
Dibenzofuran	ND		ug/l	2.0	0.40	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.24	1
Acetophenone	ND		ug/l	5.0	0.92	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	2.1	1

Project Name: 1050-1058 NIAGARA ST SITE Lab Number: L2475702

Project Number: 4331.0007B000 **Report Date:** 12/31/24

SAMPLE RESULTS

Lab ID: L2475702-02 Date Collected: 12/23/24 11:45

Client ID: MW-3 Date Received: 12/23/24 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - V	Vestborough Lab						
p-Chloro-m-cresol	ND		ug/l	2.0	0.61	1	
2-Chlorophenol	ND		ug/l	2.0	0.65	1	
2,4-Dichlorophenol	ND		ug/l	5.0	1.7	1	
2,4-Dimethylphenol	ND		ug/l	5.0	2.0	1	
2-Nitrophenol	ND		ug/l	10	2.0	1	
4-Nitrophenol	ND		ug/l	10	1.4	1	
2,4-Dinitrophenol	ND		ug/l	20	5.4	1	
4,6-Dinitro-o-cresol	ND		ug/l	10	2.3	1	
Phenol	ND		ug/l	5.0	0.35	1	
2-Methylphenol	ND		ug/l	5.0	2.3	1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.4	1	
2,4,5-Trichlorophenol	ND		ug/l	5.0	2.1	1	
Carbazole	ND		ug/l	2.0	0.31	1	
Atrazine	ND		ug/l	10	1.0	1	
Benzaldehyde	ND		ug/l	5.0	1.1	1	
Caprolactam	ND		ug/l	10	1.2	1	
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	2.2	1	

Project Name: 1050-1058 NIAGARA ST SITE Lab Number: L2475702

Project Number: 4331.0007B000 **Report Date:** 12/31/24

SAMPLE RESULTS

Lab ID: L2475702-02 Date Collected: 12/23/24 11:45

Client ID: MW-3 Date Received: 12/23/24 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	97.0	J	ug/l	1
Unknown	4.10	J	ug/l	1
Unknown	6.70	J	ug/l	1
Unknown	6.40	J	ug/l	1
Unknown Organic Acid	5.50	J	ug/l	1
Unknown	8.90	J	ug/l	1
Unknown	6.60	J	ug/l	1
Unknown	4.30	J	ug/l	1
Unknown	6.80	J	ug/l	1
Unknown	8.70	J	ug/l	1
Unknown	4.70	J	ug/l	1
Unknown	4.70	J	ug/l	1
Unknown	4.90	J	ug/l	1
Unknown	7.20	J	ug/l	1
Unknown	7.20	J	ug/l	1
Unknown	10.3	J	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	37	21-120
Phenol-d6	30	10-120
Nitrobenzene-d5	64	23-120
2-Fluorobiphenyl	58	15-120
2,4,6-Tribromophenol	80	10-120
4-Terphenyl-d14	63	41-149

Project Name: 1050-1058 NIAGARA ST SITE Lab Number: L2475702

Project Number: 4331.0007B000 **Report Date:** 12/31/24

SAMPLE RESULTS

Lab ID: L2475702-02 Date Collected: 12/23/24 11:45

Client ID: MW-3 Date Received: 12/23/24

Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270E-SIM Extraction Date: 12/28/24 10:08
Analytical Date: 12/29/24 10:06

Analyst: KMH

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS-SIM - Westborough Lab								
Acenaphthene	ND		ug/l	0.10	0.02	1		
2-Chloronaphthalene	0.09	J	ug/l	0.20	0.02	1		
·						·		
Fluoranthene	0.07	J	ug/l	0.10	0.03	1		
Hexachlorobutadiene	ND		ug/l	0.50	0.02	1		
Naphthalene	0.12		ug/l	0.10	0.02	1		
Benzo(a)anthracene	0.05	J	ug/l	0.10	0.03	1		
Benzo(a)pyrene	0.06	J	ug/l	0.10	0.02	1		
Benzo(b)fluoranthene	0.09	J	ug/l	0.10	0.03	1		
Benzo(k)fluoranthene	ND		ug/l	0.10	0.03	1		
Chrysene	0.04	J	ug/l	0.10	0.03	1		
Acenaphthylene	ND		ug/l	0.10	0.02	1		
Anthracene	ND		ug/l	0.10	0.02	1		
Benzo(ghi)perylene	0.08	J	ug/l	0.10	0.02	1		
Fluorene	ND		ug/l	0.10	0.03	1		
Phenanthrene	ND		ug/l	0.10	0.04	1		
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.02	1		
Indeno(1,2,3-cd)pyrene	0.06	J	ug/l	0.10	0.02	1		
Pyrene	0.08	J	ug/l	0.10	0.04	1		
2-Methylnaphthalene	ND		ug/l	0.10	0.03	1		
Pentachlorophenol	ND		ug/l	0.80	0.06	1		
Hexachlorobenzene	ND		ug/l	0.80	0.01	1		
Hexachloroethane	ND		ug/l	0.80	0.02	1		

Project Name: 1050-1058 NIAGARA ST SITE **Lab Number:** L2475702

Project Number: 4331.0007B000 **Report Date:** 12/31/24

SAMPLE RESULTS

Lab ID: L2475702-02 Date Collected: 12/23/24 11:45

Client ID: MW-3 Date Received: 12/23/24 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	41	21-120
Phenol-d6	30	10-120
Nitrobenzene-d5	76	23-120
2-Fluorobiphenyl	69	15-120
2,4,6-Tribromophenol	85	10-120
4-Terphenyl-d14	77	41-149

Project Name: 1050-1058 NIAGARA ST SITE Lab Number: L2475702

Project Number: 4331.0007B000 **Report Date:** 12/31/24

SAMPLE RESULTS

Lab ID: L2475702-03 Date Collected: 12/23/24 13:10

Client ID: MW-6 Date Received: 12/23/24 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270E Extraction Date: 12/28/24 10:08

Analytical Method: 1,8270E Extraction Date: 12/28/24 10:08

Analytical Date: 12/29/24 19:19

Analyst: EK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - \	Westborough Lab						
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.39	1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.8	1	
2,4-Dinitrotoluene	ND		ug/l	5.0	0.54	1	
2,6-Dinitrotoluene	ND		ug/l	5.0	0.84	1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.39	1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.24	1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.40	1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.84	1	
Hexachlorocyclopentadiene	ND		ug/l	20	1.2	1	
Isophorone	ND		ug/l	5.0	0.86	1	
Nitrobenzene	ND		ug/l	2.0	0.20	1	
NDPA/DPA	ND		ug/l	2.0	0.92	1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.91	1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.4	1	
Butyl benzyl phthalate	ND		ug/l	5.0	2.6	1	
Di-n-butylphthalate	ND		ug/l	5.0	0.96	1	
Di-n-octylphthalate	ND		ug/l	5.0	2.3	1	
Diethyl phthalate	ND		ug/l	5.0	0.76	1	
Dimethyl phthalate	ND		ug/l	5.0	0.92	1	
Biphenyl	ND		ug/l	2.0	0.20	1	
4-Chloroaniline	ND		ug/l	5.0	0.47	1	
2-Nitroaniline	ND		ug/l	5.0	1.0	1	
3-Nitroaniline	ND		ug/l	5.0	1.2	1	
4-Nitroaniline	ND		ug/l	5.0	1.4	1	
Dibenzofuran	ND		ug/l	2.0	0.40	1	
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.24	1	
Acetophenone	ND		ug/l	5.0	0.92	1	
2,4,6-Trichlorophenol	ND		ug/l	5.0	2.1	1	

Project Name: 1050-1058 NIAGARA ST SITE Lab Number: L2475702

Project Number: 4331.0007B000 **Report Date:** 12/31/24

SAMPLE RESULTS

Lab ID: L2475702-03 Date Collected: 12/23/24 13:10

Client ID: MW-6 Date Received: 12/23/24 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Tentatively Identified Compounds

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - V	Vestborough Lab					
p-Chloro-m-cresol	ND		ug/l	2.0	0.61	1
2-Chlorophenol	ND		ug/l	2.0	0.65	1
2,4-Dichlorophenol	ND		ug/l	5.0	1.7	1
2,4-Dimethylphenol	ND		ug/l	5.0	2.0	1
2-Nitrophenol	ND		ug/l	10	2.0	1
4-Nitrophenol	ND		ug/l	10	1.4	1
2,4-Dinitrophenol	ND		ug/l	20	5.4	1
4,6-Dinitro-o-cresol	ND		ug/l	10	2.3	1
Phenol	ND		ug/l	5.0	0.35	1
2-Methylphenol	ND		ug/l	5.0	2.3	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.4	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	2.1	1
Carbazole	ND		ug/l	2.0	0.31	1
Atrazine	ND		ug/l	10	1.0	1
Benzaldehyde	ND		ug/l	5.0	1.1	1
Caprolactam	ND		ug/l	10	1.2	1
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	2.2	1

No Tentatively Identified Compounds	ND	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	48	21-120
Phenol-d6	33	10-120
Nitrobenzene-d5	62	23-120
2-Fluorobiphenyl	65	15-120
2,4,6-Tribromophenol	91	10-120
4-Terphenyl-d14	74	41-149

Project Name: Lab Number: 1050-1058 NIAGARA ST SITE L2475702

Project Number: Report Date: 4331.0007B000 12/31/24

SAMPLE RESULTS

Lab ID: Date Collected: 12/23/24 13:10 L2475702-03

Date Received: Client ID: 12/23/24 MW-6

Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 12/28/24 10:08 Analytical Method: 1,8270E-SIM Analytical Date: 12/29/24 10:23

Analyst: KMH

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM	Л - Westborough La	b				
Acenaphthene	ND		ug/l	0.10	0.02	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	ND		ug/l	0.10	0.03	1
Hexachlorobutadiene	ND		ug/l	0.50	0.02	1
Naphthalene	ND		ug/l	0.10	0.02	1
Benzo(a)anthracene	ND		ug/l	0.10	0.03	1
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1
Benzo(b)fluoranthene	ND		ug/l	0.10	0.03	1
Benzo(k)fluoranthene	ND		ug/l	0.10	0.03	1
Chrysene	ND		ug/l	0.10	0.03	1
Acenaphthylene	ND		ug/l	0.10	0.02	1
Anthracene	ND		ug/l	0.10	0.02	1
Benzo(ghi)perylene	ND		ug/l	0.10	0.02	1
Fluorene	ND		ug/l	0.10	0.03	1
Phenanthrene	ND		ug/l	0.10	0.04	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.02	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.02	1
Pyrene	ND		ug/l	0.10	0.04	1
2-Methylnaphthalene	ND		ug/l	0.10	0.03	1
Pentachlorophenol	ND		ug/l	0.80	0.06	1
Hexachlorobenzene	ND		ug/l	0.80	0.01	1
Hexachloroethane	ND		ug/l	0.80	0.02	1

Project Name: 1050-1058 NIAGARA ST SITE **Lab Number:** L2475702

Project Number: 4331.0007B000 **Report Date:** 12/31/24

SAMPLE RESULTS

Lab ID: L2475702-03 Date Collected: 12/23/24 13:10

Client ID: MW-6 Date Received: 12/23/24 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	47	21-120
Phenol-d6	35	10-120
Nitrobenzene-d5	75	23-120
2-Fluorobiphenyl	73	15-120
2,4,6-Tribromophenol	93	10-120
4-Terphenyl-d14	80	41-149

Project Name: 1050-1058 NIAGARA ST SITE Lab Number: L2475702

Project Number: 4331.0007B000 **Report Date:** 12/31/24

SAMPLE RESULTS

Lab ID: L2475702-05 Date Collected: 12/23/24 12:00

Client ID: BLIND DUP Date Received: 12/23/24
Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1,8270E Extraction Date: 12/28/24 10:08

Analytical Date: 12/29/24 20:26

Analyst: EK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - W	estborough Lab						
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.39	1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.8	1	
2,4-Dinitrotoluene	ND		ug/l	5.0	0.54	1	
2,6-Dinitrotoluene	ND		ug/l	5.0	0.84	1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.39	1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.24	1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.40	1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.84	1	
Hexachlorocyclopentadiene	ND		ug/l	20	1.2	1	
Isophorone	ND		ug/l	5.0	0.86	1	
Nitrobenzene	ND		ug/l	2.0	0.20	1	
NDPA/DPA	ND		ug/l	2.0	0.92	1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.91	1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.4	1	
Butyl benzyl phthalate	ND		ug/l	5.0	2.6	1	
Di-n-butylphthalate	ND		ug/l	5.0	0.96	1	
Di-n-octylphthalate	ND		ug/l	5.0	2.3	1	
Diethyl phthalate	ND		ug/l	5.0	0.76	1	
Dimethyl phthalate	ND		ug/l	5.0	0.92	1	
Biphenyl	ND		ug/l	2.0	0.20	1	
4-Chloroaniline	ND		ug/l	5.0	0.47	1	
2-Nitroaniline	ND		ug/l	5.0	1.0	1	
3-Nitroaniline	ND		ug/l	5.0	1.2	1	
4-Nitroaniline	ND		ug/l	5.0	1.4	1	
Dibenzofuran	ND		ug/l	2.0	0.40	1	
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.24	1	
Acetophenone	ND		ug/l	5.0	0.92	1	
2,4,6-Trichlorophenol	ND		ug/l	5.0	2.1	1	

Project Name: 1050-1058 NIAGARA ST SITE Lab Number: L2475702

Project Number: 4331.0007B000 **Report Date:** 12/31/24

SAMPLE RESULTS

Lab ID: L2475702-05 Date Collected: 12/23/24 12:00

Client ID: BLIND DUP Date Received: 12/23/24
Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - V	Vestborough Lab						
p-Chloro-m-cresol	ND		ug/l	2.0	0.61	1	
2-Chlorophenol	ND		ug/l	2.0	0.65	1	
2,4-Dichlorophenol	ND		ug/l	5.0	1.7	1	
2,4-Dimethylphenol	ND		ug/l	5.0	2.0	1	
2-Nitrophenol	ND		ug/l	10	2.0	1	
4-Nitrophenol	ND		ug/l	10	1.4	1	
2,4-Dinitrophenol	ND		ug/l	20	5.4	1	
4,6-Dinitro-o-cresol	ND		ug/l	10	2.3	1	
Phenol	ND		ug/l	5.0	0.35	1	
2-Methylphenol	ND		ug/l	5.0	2.3	1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.4	1	
2,4,5-Trichlorophenol	ND		ug/l	5.0	2.1	1	
Carbazole	ND		ug/l	2.0	0.31	1	
Atrazine	ND		ug/l	10	1.0	1	
Benzaldehyde	ND		ug/l	5.0	1.1	1	
Caprolactam	ND		ug/l	10	1.2	1	
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	2.2	1	

Tentatively Identified Compounds				
Total TIC Compounds	4.80	J	ug/l	1
Unknown	4.80	J	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	40	21-120
Phenol-d6	31	10-120
Nitrobenzene-d5	64	23-120
2-Fluorobiphenyl	61	15-120
2,4,6-Tribromophenol	78	10-120
4-Terphenyl-d14	71	41-149

Project Name: 1050-1058 NIAGARA ST SITE **Lab Number:** L2475702

Project Number: 4331.0007B000 **Report Date:** 12/31/24

SAMPLE RESULTS

Lab ID: L2475702-05 Date Collected: 12/23/24 12:00

Client ID: BLIND DUP Date Received: 12/23/24
Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270E-SIM Extraction Date: 12/28/24 10:08
Analytical Date: 12/29/24 11:12

Analyst: KMH

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM -	Westborough La	ab				
Acenaphthene	ND		ug/l	0.10	0.02	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	ND		ug/l	0.10	0.03	1
Hexachlorobutadiene	ND		ug/l	0.50	0.02	1
Naphthalene	ND		ug/l	0.10	0.02	1
Benzo(a)anthracene	ND		ug/l	0.10	0.03	1
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1
Benzo(b)fluoranthene	ND		ug/l	0.10	0.03	1
Benzo(k)fluoranthene	ND		ug/l	0.10	0.03	1
Chrysene	ND		ug/l	0.10	0.03	1
Acenaphthylene	ND		ug/l	0.10	0.02	1
Anthracene	ND		ug/l	0.10	0.02	1
Benzo(ghi)perylene	ND		ug/l	0.10	0.02	1
Fluorene	ND		ug/l	0.10	0.03	1
Phenanthrene	ND		ug/l	0.10	0.04	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.02	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.02	1
Pyrene	ND		ug/l	0.10	0.04	1
2-Methylnaphthalene	ND		ug/l	0.10	0.03	1
Pentachlorophenol	ND		ug/l	0.80	0.06	1
Hexachlorobenzene	ND		ug/l	0.80	0.01	1
Hexachloroethane	ND		ug/l	0.80	0.02	1

Project Name: 1050-1058 NIAGARA ST SITE **Lab Number:** L2475702

Project Number: 4331.0007B000 **Report Date:** 12/31/24

SAMPLE RESULTS

Lab ID: L2475702-05 Date Collected: 12/23/24 12:00

Client ID: BLIND DUP Date Received: 12/23/24
Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	43	21-120
Phenol-d6	33	10-120
Nitrobenzene-d5	74	23-120
2-Fluorobiphenyl	73	15-120
2,4,6-Tribromophenol	77	10-120
4-Terphenyl-d14	79	41-149

L2475702

Project Name: 1050-1058 NIAGARA ST SITE **Lab Number:**

Project Number: 4331.0007B000 **Report Date:** 12/31/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Extraction Method: EPA 3510C
Analytical Date: 12/29/24 16:42 Extraction Date: 12/28/24 10:08

Analyst: EK

Parameter	Result	Qualifier	Units	RL	ME	DL
Semivolatile Organics by GC/M	IS - Westborough	Lab for s	ample(s):	01-03,05	Batch:	WG2014326-1
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.	39
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1	.8
2,4-Dinitrotoluene	ND		ug/l	5.0	0.	54
2,6-Dinitrotoluene	ND		ug/l	5.0	0.	84
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.	39
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.	24
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.	40
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.	84
Hexachlorocyclopentadiene	ND		ug/l	20	1	.2
Isophorone	ND		ug/l	5.0	0.	86
Nitrobenzene	ND		ug/l	2.0	0.	20
NDPA/DPA	ND		ug/l	2.0	0.	92
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.	91
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1	.4
Butyl benzyl phthalate	ND		ug/l	5.0	2	.6
Di-n-butylphthalate	ND		ug/l	5.0	0.	96
Di-n-octylphthalate	ND		ug/l	5.0	2	.3
Diethyl phthalate	ND		ug/l	5.0	0.	76
Dimethyl phthalate	ND		ug/l	5.0	0.	92
Biphenyl	ND		ug/l	2.0	0.	20
4-Chloroaniline	ND		ug/l	5.0	0.	47
2-Nitroaniline	ND		ug/l	5.0	1	.0
3-Nitroaniline	ND		ug/l	5.0	1	.2
4-Nitroaniline	ND		ug/l	5.0	1	.4
Dibenzofuran	ND		ug/l	2.0	0.	40
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.	24
Acetophenone	ND		ug/l	5.0	0.	92
2,4,6-Trichlorophenol	ND		ug/l	5.0	2	.1
p-Chloro-m-cresol	ND		ug/l	2.0	0.	61

Project Name: 1050-1058 NIAGARA ST SITE **Lab Number:** L2475702

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270E Extraction Method: EPA 3510C
Analytical Date: 12/29/24 16:42 Extraction Date: 12/28/24 10:08

Analyst: EK

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS	S - Westboroug	h Lab for sa	ımple(s):	01-03,05	Batch: WG201	4326-1
2-Chlorophenol	ND		ug/l	2.0	0.65	
2,4-Dichlorophenol	ND		ug/l	5.0	1.7	
2,4-Dimethylphenol	ND		ug/l	5.0	2.0	
2-Nitrophenol	ND		ug/l	10	2.0	
4-Nitrophenol	ND		ug/l	10	1.4	
2,4-Dinitrophenol	ND		ug/l	20	5.4	
4,6-Dinitro-o-cresol	ND		ug/l	10	2.3	
Phenol	ND		ug/l	5.0	0.35	
2-Methylphenol	ND		ug/l	5.0	2.3	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.4	
2,4,5-Trichlorophenol	ND		ug/l	5.0	2.1	
Carbazole	ND		ug/l	2.0	0.31	
Atrazine	ND		ug/l	10	1.0	
Benzaldehyde	ND		ug/l	5.0	1.1	
Caprolactam	ND		ug/l	10	1.2	
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	2.2	

Tentatively Identified Compounds

No Tentatively Identified Compounds $\,$ ND $\,$ ug/l $\,$

Project Name: 1050-1058 NIAGARA ST SITE **Lab Number:** L2475702

Project Number: 4331.0007B000 **Report Date:** 12/31/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Extraction Method: EPA 3510C
Analytical Date: 12/29/24 16:42 Extraction Date: 12/28/24 10:08

Analyst: EK

Parameter Result Qualifier Units RL MDL

Semivolatile Organics by GC/MS - Westborough Lab for sample(s): 01-03,05 Batch: WG2014326-1

Surrogate	%Recovery Qualific	Acceptance er Criteria
2-Fluorophenol	44	21-120
Phenol-d6	30	10-120
Nitrobenzene-d5	61	23-120
2-Fluorobiphenyl	62	15-120
2,4,6-Tribromophenol	80	10-120
4-Terphenyl-d14	73	41-149

Project Name: 1050-1058 NIAGARA ST SITE **Lab Number:** L2475702

Project Number: 4331.0007B000 **Report Date:** 12/31/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E-SIM Extraction Method: EPA 3510C
Analytical Date: 12/29/24 09:01 Extraction Date: 12/28/24 10:08

Analyst: KMH

Parameter	Result	Qualifier Units	RL	MDL	
Semivolatile Organics by GC/MS-S	IM - Westbo	rough Lab for sample(s)	: 01-03,05	Batch:	WG2014328-1
Acenaphthene	ND	ug/l	0.10	0.02	
2-Chloronaphthalene	ND	ug/l	0.20	0.02	
Fluoranthene	ND	ug/l	0.10	0.03	
Hexachlorobutadiene	ND	ug/l	0.50	0.02	
Naphthalene	ND	ug/l	0.10	0.02	
Benzo(a)anthracene	ND	ug/l	0.10	0.03	
Benzo(a)pyrene	ND	ug/l	0.10	0.02	
Benzo(b)fluoranthene	ND	ug/l	0.10	0.03	
Benzo(k)fluoranthene	ND	ug/l	0.10	0.03	
Chrysene	ND	ug/l	0.10	0.03	
Acenaphthylene	ND	ug/l	0.10	0.02	
Anthracene	ND	ug/l	0.10	0.02	
Benzo(ghi)perylene	ND	ug/l	0.10	0.02	
Fluorene	ND	ug/l	0.10	0.03	
Phenanthrene	ND	ug/l	0.10	0.04	
Dibenzo(a,h)anthracene	ND	ug/l	0.10	0.02	
Indeno(1,2,3-cd)pyrene	ND	ug/l	0.10	0.02	
Pyrene	ND	ug/l	0.10	0.04	
2-Methylnaphthalene	ND	ug/l	0.10	0.03	
Pentachlorophenol	ND	ug/l	0.80	0.06	
Hexachlorobenzene	ND	ug/l	0.80	0.01	
Hexachloroethane	ND	ug/l	0.80	0.02	

L2475702

Project Name: 1050-1058 NIAGARA ST SITE Lab Number:

Project Number: 4331.0007B000 **Report Date:** 12/31/24

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270E-SIM Extraction Method: EPA 3510C
Analytical Date: 12/29/24 09:01 Extraction Date: 12/28/24 10:08

Analyst: KMH

Parameter Result Qualifier Units RL MDL

Semivolatile Organics by GC/MS-SIM - Westborough Lab for sample(s): 01-03,05 Batch: WG2014328-1

Surrogate	%Recovery Q	Acceptance qualifier Criteria
2-Fluorophenol	45	21-120
Phenol-d6	33	10-120
Nitrobenzene-d5	74	23-120
2-Fluorobiphenyl	69	15-120
2,4,6-Tribromophenol	67	10-120
4-Terphenyl-d14	75	41-149

Project Name: 1050-1058 NIAGARA ST SITE

Project Number: 4331.0007B000

Lab Number: L2475702

Report Date: 12/31/24

Parameter	LCS %Recovery	Qual %	LCSD Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - West	borough Lab Ass	sociated sample(s): 01-03,05	Batch:	WG2014326-2	WG2014326-	3
Bis(2-chloroethyl)ether	64		62		40-140	3	30
3,3'-Dichlorobenzidine	93		97		40-140	4	30
2,4-Dinitrotoluene	81		79		48-143	3	30
2,6-Dinitrotoluene	80		83		40-140	4	30
4-Chlorophenyl phenyl ether	71		67		40-140	6	30
4-Bromophenyl phenyl ether	76		72		40-140	5	30
Bis(2-chloroisopropyl)ether	56		54		40-140	4	30
Bis(2-chloroethoxy)methane	67		64		40-140	5	30
Hexachlorocyclopentadiene	29	Q	29	Q	40-140	0	30
Isophorone	71		66		40-140	7	30
Nitrobenzene	66		60		40-140	10	30
NDPA/DPA	73		74		40-140	1	30
n-Nitrosodi-n-propylamine	69		65		29-132	6	30
Bis(2-ethylhexyl)phthalate	83		85		40-140	2	30
Butyl benzyl phthalate	90		94		40-140	4	30
Di-n-butylphthalate	94		84		40-140	11	30
Di-n-octylphthalate	85		87		40-140	2	30
Diethyl phthalate	81		77		40-140	5	30
Dimethyl phthalate	80		79		40-140	1	30
Biphenyl	79		75		40-140	5	30
4-Chloroaniline	64		64		40-140	0	30
2-Nitroaniline	84		84		52-143	0	30
3-Nitroaniline	86		84		25-145	2	30

Project Name: 1050-1058 NIAGARA ST SITE

Project Number: 4331.0007B000

Lab Number: L2475702

Report Date: 12/31/24

arameter	LCS %Recovery		CSD covery	Qual	%Recovery Limits	RPD	RPD Qual Limits
emivolatile Organics by GC/MS - Wes	stborough Lab Ass	ociated sample(s):	01-03,05	Batch:	WG2014326-2	WG2014326	-3
4-Nitroaniline	95		90		51-143	5	30
Dibenzofuran	68		68		40-140	0	30
1,2,4,5-Tetrachlorobenzene	70		67		2-134	4	30
Acetophenone	89		83		39-129	7	30
2,4,6-Trichlorophenol	78		82		30-130	5	30
p-Chloro-m-cresol	77		79		23-97	3	30
2-Chlorophenol	72		68		27-123	6	30
2,4-Dichlorophenol	72		75		30-130	4	30
2,4-Dimethylphenol	51		44		30-130	15	30
2-Nitrophenol	68		70		30-130	3	30
4-Nitrophenol	66		65		10-80	2	30
2,4-Dinitrophenol	42		44		20-130	5	30
4,6-Dinitro-o-cresol	73		73		20-164	0	30
Phenol	43		39		12-110	10	30
2-Methylphenol	66		60		30-130	10	30
3-Methylphenol/4-Methylphenol	69		67		30-130	3	30
2,4,5-Trichlorophenol	80		83		30-130	4	30
Carbazole	82		84		55-144	2	30
Atrazine	114		113		40-140	1	30
Benzaldehyde	95		87		40-140	9	30
Caprolactam	34		32		10-130	6	30
2,3,4,6-Tetrachlorophenol	85		88		40-140	3	30

Project Name: 1050-1058 NIAGARA ST SITE

Project Number:

4331.0007B000

Lab Number:

L2475702

Report Date:

12/31/24

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-03,05 Batch: WG2014326-2 WG2014326-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	57	53	21-120
Phenol-d6	39	37	10-120
Nitrobenzene-d5	70	61	23-120
2-Fluorobiphenyl	68	62	15-120
2,4,6-Tribromophenol	96	96	10-120
4-Terphenyl-d14	78	76	41-149

Project Name: 1050-1058 NIAGARA ST SITE

Project Number: 4331.0007B000

Lab Number: L2475702

Report Date: 12/31/24

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qua	%Recovery Limits	RPD	RPD Qual Limits	
emivolatile Organics by GC/MS-SIM	- Westborough Lab	Associated s	ample(s): 01	1-03,05	Batch: WG201432	8-2 WG201	4328-3	
Acenaphthene	78		79		40-140	1	40	
2-Chloronaphthalene	67		68		40-140	1	40	
Fluoranthene	91		95		40-140	4	40	
Hexachlorobutadiene	54		54		40-140	0	40	
Naphthalene	65		66		40-140	2	40	
Benzo(a)anthracene	101		104		40-140	3	40	
Benzo(a)pyrene	103		107		40-140	4	40	
Benzo(b)fluoranthene	101		104		40-140	3	40	
Benzo(k)fluoranthene	103		106		40-140	3	40	
Chrysene	108		111		40-140	3	40	
Acenaphthylene	74		75		40-140	1	40	
Anthracene	91		94		40-140	3	40	
Benzo(ghi)perylene	98		101		40-140	3	40	
Fluorene	85		87		40-140	2	40	
Phenanthrene	100		103		40-140	3	40	
Dibenzo(a,h)anthracene	100		104		40-140	4	40	
Indeno(1,2,3-cd)pyrene	102		107		40-140	5	40	
Pyrene	90		93		40-140	3	40	
2-Methylnaphthalene	66		67		40-140	2	40	
Pentachlorophenol	86		98		40-140	13	40	
Hexachlorobenzene	101		103		40-140	2	40	
Hexachloroethane	56		58		40-140	4	40	

Project Name: 1050-1058 NIAGARA ST SITE

Project Number:

Lab Number:

L2475702

4331.0007B000

Report Date:

12/31/24

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01-03,05 Batch: WG2014328-2 WG2014328-3

Surrogate	LCS %Recovery Qua	LCSD al %Recovery Qual	Acceptance Criteria
2-Fluorophenol	54	53	21-120
Phenol-d6	42	41	10-120
Nitrobenzene-d5	76	74	23-120
2-Fluorobiphenyl	73	70	15-120
2,4,6-Tribromophenol	96	99	10-120
4-Terphenyl-d14	80	82	41-149

Project Name: 1050-1058 NIAGARA ST SITE

Project Number: 4331.0007B000

Lab Number:

L2475702

Report Date:

12/31/24

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		overy mits F	RPD		PD mits
Semivolatile Organics by 0 03 Client ID: MW-6	GC/MS - Westh	orough Lab	Associate	d sample(s): 01	-03,05	QC Batch	i ID: WG2014	326-4 WG2	2014326-	5 Q(C Sample:	L2475702-
Bis(2-chloroethyl)ether	ND	20	13	65		15	75	40	-140	14		30
3,3'-Dichlorobenzidine	ND	20	18	90		19	95	40	-140	5		30
2,4-Dinitrotoluene	ND	20	17	85		17	85	48	-143	0		30
2,6-Dinitrotoluene	ND	20	16	80		16	80	40	-140	0		30
4-Chlorophenyl phenyl ether	ND	20	14	70		14	70	40	-140	0		30
4-Bromophenyl phenyl ether	ND	20	16	80		17	85	40	-140	6		30
Bis(2-chloroisopropyl)ether	ND	20	12	60		13	65	40	-140	8		30
Bis(2-chloroethoxy)methane	ND	20	14	70		15	75	40	-140	7		30
Hexachlorocyclopentadiene	ND	20	7.5J	38	Q	7.7J	39	Q 40	-140	3		30
Isophorone	ND	20	14	70		15	75	40	-140	7		30
Nitrobenzene	ND	20	15	75		15	75	40	-140	0		30
NDPA/DPA	ND	20	15	75		15	75	40	-140	0		30
n-Nitrosodi-n-propylamine	ND	20	14	70		14	70	29	-132	0		30
Bis(2-ethylhexyl)phthalate	ND	20	15	75		17	85	40	-140	13		30
Butyl benzyl phthalate	ND	20	19	95		20	100	40	-140	5		30
Di-n-butylphthalate	ND	20	19	95		19	95	40	-140	0		30
Di-n-octylphthalate	ND	20	16	80		18	90	40	-140	12		30
Diethyl phthalate	ND	20	17	85		17	85	40	-140	0		30
Dimethyl phthalate	ND	20	16	80		16	80	40	-140	0		30
Biphenyl	ND	20	17	85		17	85	40	-140	0		30
4-Chloroaniline	ND	20	13	65		14	70	40	-140	7		30
2-Nitroaniline	ND	20	17	85		16	80	52	-143	6		30
3-Nitroaniline	ND	20	17	85		17	85	25	-145	0		30

Project Name: 1050-1058 NIAGARA ST SITE

Project Number: 4331.0007B000

Lab Number:

L2475702

Report Date:

12/31/24

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by Go 03 Client ID: MW-6	C/MS - Westb	orough Lab	Associated	d sample(s): 01	-03,05	QC Batch	ID: WG2014	326-4	NG2014326	6-5 Q	C Samp	e: L2475702-
4-Nitroaniline	ND	20	19	95		19	95		51-143	0		30
Dibenzofuran	ND	20	14	70		15	75		40-140	7		30
1,2,4,5-Tetrachlorobenzene	ND	20	15	75		16	80		2-134	6		30
Acetophenone	ND	20	18	90		20	100		39-129	11		30
2,4,6-Trichlorophenol	ND	20	17	85		16	80		30-130	6		30
p-Chloro-m-cresol	ND	20	17	85		18	90		23-97	6		30
2-Chlorophenol	ND	20	14	70		15	75		27-123	7		30
2,4-Dichlorophenol	ND	20	15	75		17	85		30-130	13		30
2,4-Dimethylphenol	ND	20	10	50		11	55		30-130	10		30
2-Nitrophenol	ND	20	15	75		16	80		30-130	6		30
4-Nitrophenol	ND	20	12	60		13	65		10-80	8		30
2,4-Dinitrophenol	ND	20	14.J	70		14.J	70		20-130	0		30
4,6-Dinitro-o-cresol	ND	20	17	85		18	90		20-164	6		30
Phenol	ND	20	7.9	40		8.5	43		12-110	7		30
2-Methylphenol	ND	20	14	70		14	70		30-130	0		30
3-Methylphenol/4-Methylphenol	ND	20	14	70		14	70		30-130	0		30
2,4,5-Trichlorophenol	ND	20	17	85		17	85		30-130	0		30
Carbazole	ND	20	17	85		17	85		55-144	0		30
Atrazine	ND	20	24	120		24	120		40-140	0		30
Benzaldehyde	ND	20	21	110		22	110		40-140	5		30
Caprolactam	ND	20	6.2J	31		7.6J	38		10-130	20		30
2,3,4,6-Tetrachlorophenol	ND	20	17	85		18	90		40-140	6		30

Project Name: 1050-1058 NIAGARA ST SITE

Project Number: 4331.0007B000 Lab Number:

L2475702

Report Date:

12/31/24

	Native	MS	MS	MS		MSD	MSD		Recovery			RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-03,05 QC Batch ID: WG2014326-4 WG2014326-5 QC Sample: L2475702-03 Client ID: MW-6

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
2,4,6-Tribromophenol	104	99	10-120
2-Fluorobiphenyl	69	69	15-120
2-Fluorophenol	56	59	21-120
4-Terphenyl-d14	76	78	41-149
Nitrobenzene-d5	72	76	23-120
Phenol-d6	42	39	10-120

Project Name: 1050-1058 NIAGARA ST SITE

Project Number: 4331.0007B000

Lab Number:

L2475702

Report Date:

12/31/24

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by 0 L2475702-03 Client ID:		Westborough	Lab Asso	ciated sample(s	s): 01-03,05 QC I	Batch ID: WG	32014328-4 WG20 ⁻	14328-	5 QC Sample:
Acenaphthene	ND	20	16	80	16	80	40-140	0	40
2-Chloronaphthalene	ND	20	14	70	15	75	40-140	7	40
Fluoranthene	ND	20	18	90	19	95	40-140	5	40
Hexachlorobutadiene	ND	20	12	60	12	60	40-140	0	40
Naphthalene	ND	20	14	70	14	70	40-140	0	40
Benzo(a)anthracene	ND	20	20	100	21	110	40-140	5	40
Benzo(a)pyrene	ND	20	20	100	21	110	40-140	5	40
Benzo(b)fluoranthene	ND	20	20	100	20	100	40-140	0	40
Benzo(k)fluoranthene	ND	20	20	100	22	110	40-140	10	40
Chrysene	ND	20	21	110	21	110	40-140	0	40
Acenaphthylene	ND	20	15	75	16	80	40-140	6	40
Anthracene	ND	20	18	90	18	90	40-140	0	40
Benzo(ghi)perylene	ND	20	18	90	19	95	40-140	5	40
Fluorene	ND	20	18	90	18	90	40-140	0	40
Phenanthrene	ND	20	21	110	21	110	40-140	0	40
Dibenzo(a,h)anthracene	ND	20	18	90	20	100	40-140	11	40
Indeno(1,2,3-cd)pyrene	ND	20	19	95	20	100	40-140	5	40
Pyrene	ND	20	18	90	18	90	40-140	0	40
2-Methylnaphthalene	ND	20	14	70	14	70	40-140	0	40
Pentachlorophenol	ND	20	21	110	21	110	40-140	0	40
Hexachlorobenzene	ND	20	20	100	20	100	40-140	0	40
Hexachloroethane	ND	20	13	65	13	65	40-140	0	40

Project Name: 1050-1058 NIAGARA ST SITE

Project Number: 4331.0007B000

Lab Number:

L2475702

Report Date:

12/31/24

	Native	MS	MS	MS		MSD	MSD		Recovery	•		RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01-03,05 QC Batch ID: WG2014328-4 WG2014328-5 QC Sample: L2475702-03 Client ID: MW-6

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
2,4,6-Tribromophenol	104	106	10-120
2-Fluorobiphenyl	73	74	15-120
2-Fluorophenol	53	53	21-120
4-Terphenyl-d14	78	81	41-149
Nitrobenzene-d5	77	78	23-120
Phenol-d6	40	40	10-120

Project Name: 1050-1058 NIAGARA ST SITE

Project Number: 4331.0007B000

Lab Number: L2475702 **Report Date:** 12/31/24

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Custody Seal Cooler

Α Absent

Container Information		Initial	Final	Temp			Frozen			
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)	
L2475702-01A	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)	
L2475702-01B	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)	
L2475702-01C	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)	
L2475702-01D	Amber 100ml unpreserved	Α	7	7	2.8	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)	
L2475702-01E	Amber 100ml unpreserved	Α	7	7	2.8	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM- RVT(7)	
L2475702-02A	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)	
L2475702-02B	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)	
L2475702-02C	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)	
L2475702-02D	Amber 100ml unpreserved	Α	7	7	2.8	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)	
L2475702-02E	Amber 100ml unpreserved	Α	7	7	2.8	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM- RVT(7)	
L2475702-03A	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)	
L2475702-03A1	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)	
L2475702-03A2	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)	
L2475702-03B	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)	
L2475702-03B1	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)	
L2475702-03B2	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)	
L2475702-03C	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)	
L2475702-03C1	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)	
L2475702-03C2	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)	
L2475702-03D	Amber 100ml unpreserved	Α	7	7	2.8	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)	

Lab Number: L2475702

Report Date: 12/31/24

Project Name: 1050-1058 NIAGARA ST SITE

Project Number: 4331.0007B000

Container Information			Initial	Final	Temp			Frozen			
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)		
L2475702-03D1	Amber 100ml unpreserved	Α	7	7	2.8	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)		
L2475702-03D2	Amber 100ml unpreserved	Α	7	7	2.8	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)		
L2475702-03E	Amber 100ml unpreserved	Α	7	7	2.8	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)		
L2475702-03E1	Amber 100ml unpreserved	Α	7	7	2.8	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)		
L2475702-03E2	Amber 100ml unpreserved	Α	7	7	2.8	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)		
L2475702-04A	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)		
L2475702-04B	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)		
L2475702-05A	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)		
L2475702-05B	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)		
L2475702-05C	Vial HCl preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)		
L2475702-05D	Amber 100ml unpreserved	Α	7	7	2.8	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)		
L2475702-05E	Amber 100ml unpreserved	Α	7	7	2.8	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)		

 Project Name:
 1050-1058 NIAGARA ST SITE
 Lab Number:
 L2475702

 Project Number:
 4331.0007B000
 Report Date:
 12/31/24

GLOSSARY

Acronyms

LOQ

MS

RPD

SRM

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

 Project Name:
 1050-1058 NIAGARA ST SITE
 Lab Number:
 L2475702

 Project Number:
 4331.0007B000
 Report Date:
 12/31/24

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

peaks eluting from Hexane through Dodecane.

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

 Project Name:
 1050-1058 NIAGARA ST SITE
 Lab Number:
 L2475702

 Project Number:
 4331.0007B000
 Report Date:
 12/31/24

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

 Project Name:
 1050-1058 NIAGARA ST SITE
 Lab Number:
 L2475702

 Project Number:
 4331.0007B000
 Report Date:
 12/31/24

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Pace Analytical Services performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Pace Analytical Services shall be to re-perform the work at it's own expense. In no event shall Pace Analytical Services be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Pace Analytical Services.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Pace Analytical Services LLC

Facility: Northeast

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 23

Published Date: 12/09/2024

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility - 8 Walkup Dr. Westborough, MA 01581

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol, Azobenzene; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Nonpotable Water: EPA RSK-175 Dissolved Gases

Biological Tissue Matrix: EPA 3050B

Mansfield Facility - 120 Forbes Blvd. Mansfield, MA 02048

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Nonpotable Water: EPA RSK-175 Dissolved Gases

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility - 8 Walkup Dr. Westborough, MA 01581

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables).

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility - 320 Forbes Blvd. Mansfield, MA 02048

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Project Manager.

Document Type: Form

Westhorough, MA 0158 8 Walkup Dr.	Comment of the Commen	Service Centers Mahwah, NJ 07430: 35 Whitn Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 C	Way		105		Pag	of		-/10/00		c'd / 2	124	1/24	ROU	75702 31DI JX — BENCH	EC2	
TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300	Project Name: 1050 -	1088	MI	LCLAA .	200			D		rables					Billing Information		
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: BUP	=AL a I	NY	eccentras ;	20 5	SITE		-		ASP-A	252.57%	L	ASP-		Same as Client Info		
Client Information	Mary San	Project # 4331.00	NAR N	20		-	_		_		EQuIS (File)	L	_ EQul	S (4 File)	PO#		
Client: Rox		(Use Project name as F				_	_		100	_	Other	ALTERNATION CO.	/5/67/E					
Address: 2558	HEMBURL THAK	Project Manager: NAT			v				_ 13		story Re	SAME OF THE PARTY	int	100		Disposal Site Information		
	MY 14218	ALPHAQuote #:	1010	I't out	-/				_		YY TOGS		L	NY Pa	rt 375	Please identify below location	of	
Phone: 76- 55	5-0599	Turn-Around Time	A SHARE							_	AWQ Stan		L	NY CP	-51	applicable disposal facilities.		
Fax:		Standar	N. D.		Due Dete					=	NY Restric	Service Services		Other		Disposal Facility:		
Email: hmunley 2	rakinc.com	Rush (only if pre approve			Due Date # of Days						Y Unrest					□ NJ NA		
These samples have	been previously analyze			_	# Of Days	6			-	SUSPENIES	YC Sewe	r Discha	rge			Other:		
Other project specif	fic requirements/comm	nents:				_			_		YSIS	_				Sample Filtration	T	
Please specify Meta	als or TAL.	CAT B							1	4115	soll+			Н		Done Lab to do Preservation	o t a	
A STATE OF THE STA	53.37. 13.181									200	Sydes			1 1		Lab to do	В	
ALPHA Lab ID (Lab Use Only)	Sa	mple ID			ection	-	mple	Sampler	_	v.	1				- -	(Please Specify below)	0 t	
75702 -01	TMW-3		Da		Time	-	atrix	Initials	1	_	2					Sample Specific Comments	1	
-02	MW-3		12/23	124		A,6	R LAP	CS	×		X						5	
-03	Mi-6 (M5/N	150	-		1145				>	()	<						5	
-04	TRIP BLANK	08)	1		[310				×	2	0						5	
-05	BLIND DIAP			_	1210				×								2	
ONURS ELECTION	polity by		V		1200		Þ	4	×	1	<						5	
										+	+							
Preservative Code:	0-11-0							11	-	-								
A = None 3 = HCl C = HNO ₃ D = H ₂ SO ₄	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	MA935 Container Type			٧	1	t					Please print clearly, legi and completely. Sample						
= NaOH = MeOH		3 44 1 1 1 1 1 1 1				Preservative			BA						not be logged in and turnaround time clock will not			
$S = NaHSO_4$ $H = Na_2S_2O_3$ H = Zn Ac/NaOH	O = Other E = Encore D = BOD Bottle	Chal M Sheet 12/23/2				te/Time F			Rece	eceived By:			Date/Time /2 - 23 - 24 /3:5			resolved. BY EXECUTING THIS COC, THE CLIENT	start until any ambiguities are resolved. BY EXECUTING THIS COC, THE CLIENT	
) = Other		Rundl B. R.	free	-	22324	130	\rightarrow		16.0	6	13/2			23-3	-	HAS READ AND AGREE TO BE BOUND BY ALPH	S IA'S	
orm No: 01-25 HC (rev. 3	0-Sept-2013)					00	30	-					121	24 0	0030	TERMS & CONDITIONS. (See reverse side.)	-	

APPENDIX D

DATA USABILITY SUMMARY REPORT (DUSR)

Data Validation Services

120 Cobble Creek Road P. O. Box 208 North Creek, NY 12853 Phone (518) 251-4429 harry@frontiernet.net

February 14, 2025

Chad Schuster
Roux Environmental Engineering and Geology, D. P. C.
2558 Hamburg Turnpike Suite 300
Buffalo, NY 14218

RE: 1050-1088 Niagara Street

Data Usability Summary Report (DUSR); Validation of Analytical Laboratory Data Packages Pace/Alpha SDG No. L2475702

Dear Mr. Schuster:

Review has been completed for the data package generated by Pace/Alpha Analytical that pertains to samples collected 12/23/24 at the 1050-1088 Niagara Street site. Three aqueous samples and a field duplicate were processed for TCL volatiles and TCL semivolatiles by USEPA SW846 Methods 8260D and 8270E. Tentatively Identified Compounds (TICs) were also processed.

The data packages submitted by the laboratory contain full deliverables for validation, and this usability report is generated from review of the QC summary form information, with full review of sample raw data and limited review of associated QC raw data. The reported QC summary forms and sample raw data have been reviewed for application of validation qualifiers, with guidance from the USEPA national and regional validation documents, and in consideration for the specific requirements of the analytical methodology. The following items were reviewed:

- * Data Completeness
- * Case Narrative
- * Custody Documentation/Sample Receipt
- * Holding Times
- * Surrogate and Internal Standard Recoveries
- * Method and Calibration Blanks
- * Matrix Spike Recoveries/Duplicate Correlations
- * Blind Field Duplicate Correlations
- * Laboratory Control Sample (LCS)
- * Instrumental Tunes
- * Initial and Continuing Calibration Standards
- * Method Compliance
- * Sample Result Verification

Those items listed above which show deficiencies are discussed within the text of this narrative. All of the other items were determined to be acceptable for the DUSR level review, as discussed in NYS DER-10 Appendix B Section 2.0 (c). Documentation of the outlying parameters cited in this report can be found in the laboratory data packages.

In summary, results for the samples are usable either as reported or with minor qualification.

Data completeness, accuracy, precision, representativeness, reproducibility, sensitivity, and comparability are acceptable.

Validation data qualifier definitions and client sample identifications are attached to this text. Also included in this report is the client EDD with recommended qualifiers/edits applied in red.

Chain-of-Custody/Sample Receipt

One of the interim laboratory transfers omits the receipt date/time and the subsequent relinquish date.

Blind Field Duplicates

The blind field duplicate evaluation was performed on MW-6. Correlations for the evaluation fall within validation guidelines.

Volatile Analyses by EPA 8260D

The matrix spike evaluation was performed on MW-6. Recoveries and correlations are within validation guidelines, with the exception of the recoveries for chloromethane (57% and 58%) and dichlorodifluoromethane (32% and 32%). Results for those two analytes are qualified as estimated in that parent sample.

Results for 1,4-dioxane are rejected due to low relative response in the calibration standards. Other calibration standards show responses within validation guidelines, with the exception of the following, the results for which are qualified as estimated in the project samples/trip blank: dichlorodifluoromethane (53%D) and 1,1,2,2-tetrachloroethane (22%D).

Surrogate and internal standard recoveries are compliant. Blanks show no contamination. LCS recoveries are within validation guidelines.

<u>Semivolatile Analyses by EPA 8270E – Full Scan and SIM</u>

The results for hexachlorocyclopentadiene in the project samples are qualified as estimated due to low LCS recoveries (29% and 29%).

The matrix spike evaluation was performed on MW-6. Recoveries and correlations are within validation guidelines, with the exception of the recoveries for hexachlorocyclopentadiene (38% and 39%). The result for those that analyte is qualified as estimated in that parent sample.

Calibration standards show responses within validation guidelines.

Surrogate and internal standard recoveries are compliant. Blanks show no contamination. LCS recoveries are within validation guidelines.

The TICs reported in MW-3 can be further characterized as oxygenated and cyclic hydrocarbons.

Please do not hesitate to contact me if questions or comments arise during your review of this report.

Very truly yours,

Judy Harry

Judy Harry

Validation Data Qualifier Definitions Sample Identifications Qualified Laboratory EQuIS EDD Attachments:

VALIDATION DATA QUALIFIER DEFINITIONS

- U The analyte was analyzed for, but was not detected above the level of the associated reported quantitation limit.
- J The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte in the sample.
- J- The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased low.
- J+ The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased high.
- UJ The analyte was analyzed for, but was not detected. The associated reported quantitation limit is approximate and may be inaccurate or imprecise.
- NJ The detection is tentative in identification and estimated in value. Although there is presumptive evidence of the analyte, the result should be used with caution as a potential false positive and/or elevated quantitative value.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control limits. The analyte may or may not be present.
- EMPC The results do not meet all criteria for a confirmed identification.

 The quantitative value represents the Estimated Maximum Possible

 Concentration of the analyte in the sample.

Sample Identification Summary

Project Name: 1050-1058 NIAGARA ST SITE

Lab Number: L2475702 Project Number: Report Date: 12/31/24 4331.0007B000

Lab Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2475702-01	TMW-3	WATER	BUFFALO, NY	12/23/24 10:20	12/23/24
L2475702-02	MW-3	WATER	BUFFALO, NY	12/23/24 11:45	12/23/24
L2475702-03	MW-6	WATER	BUFFALO, NY	12/23/24 13:10	12/23/24
L2475702-04	TRIP BLANK	WATER	BUFFALO, NY	12/23/24 00:00	12/23/24
L2475702-05	BLIND DUP	WATER	BUFFALO, NY	12/23/24 12:00	12/23/24

