PHASE II ENVIRONMENTAL SITE ASSESSMENT (ASTM E1903-11)

Project No. 12MS104.5

Kensington Heights 1827 Fillmore Avenue Buffalo, New York

SUBMITTED TO:

Modesto Candelario
Buffalo Municipal Housing Authority
300 Perry Street
Buffalo, New York 14204

SUBMITTED BY:

ENVIRONMENTAL CONSULTANTS

TABLE OF CONTENTS

- 1. Executive Summary
- 2. Introduction
 - a. Purpose
 - b. Special Terms and Conditions
 - c. Limitations and Exceptions
 - d. Limiting Conditions and Methodologies Used
- 3. Background
 - a. Site Description and Features
 - b. Physical Setting
 - c. Site History and Land Use
 - d. Adjacent Property Uses
 - e. Summary of Previous Study
- 4. Phase II Activities
 - a. Scope of Assessment
 - i. Site Conceptual Model and Sampling Plan
 - ii. Chemical Testing/Laboratory Analysis Plan
 - iii. Deviations from Work Plan
 - b. Field Explorations and Methods
 - i. Test Borings
 - ii. Monitoring Well Installations
 - c. Sampling and Chemical Analyses and Methods
 - i. Soil
 - ii. Groundwater
- 5. Evaluation and Presentation of Results
 - a. Subsurface Conditions
 - b. Field Observations and Screening
 - c. Analytical Data
 - i. Soil
 - ii. Groundwater
- 6. Discussion of Findings and Conclusions
 - a. Recognized Environmental Conditions
 - b. Affected Media
 - c. Evaluation of Media Quality
 - d. Other Concerns
- 7. Recommendations
- 8. Signature of Environmental Professionals

List of Tables

Table 1A Tabulated Soil Analytical Results (VOCs and S-VOCs)

Table 1B Tabulated Soil Analytical Results (Metals)
Table 2 Tabulated Groundwater Analytical Results

List of Figures

Figure 1 Topographic Map
Figure 2 Boring Location Map

List of Appendices

Appendix A Subsurface Exploration Logs Appendix B Laboratory Analytical Reports

1. EXECUTIVE SUMMARY

MS Analytical, LLC (MSA), was contracted to complete a Phase II Environmental Site Assessment at 1827 Fillmore Avenue, City of Buffalo, Erie County, New York, the Site. The Site was historically used as a stone quarry and fill of unknown nature was brought to the Site to bring the former quarry areas, which covered the majority of the Site, to grade. The purpose of the assessment was to assess the nature of the on-site fill and to assess whether the Site qualifies to be entered into the New York State Brownfield Cleanup Program (BCP). Additional information relative to the work completed at the Site is provided below.

A total of 50 soil borings were completed on-site using a hydraulically driven rig (PowerProbe) until equipment refusal, likely due to bedrock and the fill material, was reached between 2 and 23 feet below grade (ftbg).

All of the field photoionization detector (PID) readings (indictors of volatile organic compounds) were above ambient air (0.0 ppm). The highest PID reading was 37.6 ppm at SB-43 (6-8' interval) located at the eastern portion of the Site. Slight suspect petroleum odors were noted at one soil boring, SB-21, completed on the eastern portion of the Site.

Twenty-one soil samples were selected for laboratory analysis consisting of volatile organic compounds (VOCs), semi-volatile organic compounds (S-VOCs), TAL Metals, poly-chlorinated biphenyls (PCBs), pesticides and/or herbicides.

Acetone, a VOC compound, exceeded the Unrestricted Use SCO in 12 of the soil samples collected from the Site. One or more SVOC compound concentrations exceeded Unrestricted Use SCOs in 11 of the soil samples collected from the Site. Several metals were detected at concentrations above Unrestricted Use SCOs in all but one soil sample. The VOC, S-VOC and metal impacted soil samples were collected from various locations and depths across the Site.

In conclusion, while determination of whether a Site can be accepted into the BCP, contaminant concentrations appear to be elevated above state guidance values. Thus the Site appears to meet this BCP criteria.

2. INTRODUCTION

a. Purpose

The Site, 1827 Fillmore Avenue, City of Buffalo, Erie County, New York, was historically used as a stone quarry prior to redevelopment into multi-family housing. Fill of unknown nature was brought to the Site to bring the former quarry areas, which covered the majority of the Site and extended to adjacent properties, to grade. MS Analytical, LLC (MSA), was contracted by the Client to assess the nature of the on-site fill and to assess whether the Site qualifies to be entered into the New York State Brownfield Cleanup Program (BCP). Additional information relative to the work completed at the Site is provided below.

b. Special Terms and Conditions

The scope of work for this project was approved by the Client on August 2, 2012.

c. Limitations and Exceptions

The following limitations/exceptions should be noted.

- The intrusive study was limited to specific areas of the Site due to the presence of numerous buried utilities and known asbestos impacts throughout much of the Site.
- Equipment refusal, likely due to bedrock, was encountered at six of the 15 total boring locations. As such, desired depths could not be reached at these locations.
 - d. Limiting Conditions and Methodologies Used

The study was completed using standard methodologies, as described below, and is generally consistent with ASTM E1903-11. Such would typically include collection of representative samples from various locations and/or at various depths. As with any study, it is possible that additional impact is present at locations not sampled in this study.

3. BACKGROUND

a. Site Description and Features

The Site is one parcel, measuring approximately 17.14 acres, addressed at 1827 Fillmore Avenue, City of Buffalo, Erie County, New York. The Site includes vacant residential high rise apartment buildings. There were historically six total residential structures on-site, one building has recently been demolished and the remaining buildings are proposed to be demolished in the future. Exterior portions of the Site were noted to include asphalt paved areas, grassy areas, overgrown vegetation and sidewalks.

b. Physical Setting

The Site is located between approximately 680 (northeastern portion of the Site) and 660 (southwestern portion of the Site) feet above mean sea level. Groundwater flow would be anticipated southwest, consistent with site topography. It should be noted that localized subsurface variations and man-made structures can modify flow directions, a site-specific study would be required to confirm groundwater flow direction. The topographic map is provided as Figure 1.

c. Site History and Land Use

MSA reviewed historic aerial photographs and Sanborn maps for historical information relative to the Site. According to these historical sources, the Site was utilized as a stone quarry from at least 1917 through at least 1927. Numerous disturbances from quarry activities appear on-site on the 1927 aerial photograph. Initially, the Site was developed into military housing. The Site appears to be level at grade and developed with the current six (now five due to recent demolition) apartment buildings by 1958.

d. Adjacent Property Uses

Direction	Current Use	Apparent Past Use	Comments/Concerns
North:	Kensington Expressway (Route 33) followed by commercial	Vacant and commercial	None
South:	Dr Lydia T Wright School, athletic fields	Quarry	Backfill used in quarry is unknown
East:	Erie County Medical Center and a school	Commercial	None
West:	Kensington Expressway (Route 33) and a machine shop	Vacant and quarry	Backfill used in quarry is unknown.

e. Summary of Previous Study

As indicated above, MSA reviewed historic aerial photographs and Sanborn maps for historical information relative to the Site. MSA is unaware of a previous Phase I completed in connection with the Site. The historical sources reviewed by MSA suggest that the Site was utilized as a stone quarry from at least 1917 through at least 1927.

Previous studies associated with an adjacent property, Dr. Lydia T. Wright School of Excellence, Campus East School #89, 106 Appenheimer Avenue, Buffalo, NY, were provided to MSA. The previous studies associated with the adjacent property include the following:

- Phase II Environmental Site Assessment, completed by Panamerican Environmental, Inc. (PEI) and URS Corporation (URS), dated June 2001.
- Soils Management Plan, completed by PEI and URS Corporation, dated March 2002.

It should be noted that the previous studies reference additional intrusive work completed by others at the adjacent property.

This adjacent property was historically utilized as a stone quarry of which the Site was a part. The previous studies suggest that the quarry operated from at least 1919 until the 1950s. Similar to the Site, fill was brought to the adjacent property to bring it to grade. Fill consisting of sand, gravel, clay, silt and miscellaneous building debris (brick, concrete, wood and glass) was encountered during the investigation. Ash was also encountered. Soil testing was completed at the adjacent property to assess the nature of the fill; PAH and metal concentrations were identified above NYSDEC guidance values. [It does not appear that these studies involved sampling/testing at the Site; however, it should be noted that the subsurface materials encountered at the adjacent property are similar to the materials encountered at the Site.]

4. PHASE II ACTIVITIES

a. Scope of Assessment

This assessment included the following scope of work.

i. Site Conceptual Model and Sampling Plan

As previously indicated, the Site was historically used as a stone quarry. Fill of unknown nature was brought to the Site to bring the former quarry areas, which covered the majority of the Site and extended to adjacent properties, to grade. The purpose of this investigation was to assess the nature of the on-site fill.

A total of 50 soil borings were completed on-site using a hydraulically driven rig (PowerProbe) until equipment refusal, likely due to bedrock and the fill material, was reached between 2 and 23 feet below grade (ftbg). Sampling locations are depicted on the site map provided in the Appendix as Figure 2.

ii. Chemical Testing/Laboratory Analysis Plan

Twenty-one soil samples were selected for laboratory analysis consisting of VOCs, S-VOCs, TAL Metals, PCBs, pesticides and/or herbicides via United States Environmental Protection Agency (USEPA) test methods 8260, 8270, 6010B/3050/7471A, 8082, 8081, 8151, respectively. The soil samples selected for laboratory analysis provided coverage across the Site and varied in depths. Soil samples selected for laboratory analysis were skewed to the ash, elevated PID readings and olfactory evidence of impact. See below for additional information relative to the samples and field observations.

iii. Deviations from Work Plan

There were no significant deviations from the work plan prepared by MSA with exception to equipment refusal and limited boring placement on-site due to the presence of buried utilities and known asbestos impacts.

b. Field Explorations and Methods

i. Test Borings

Fifty test borings (SB-1 through SB-50) were completed between August 7 and 13, 2012, by Russo Development, Inc. (Russo), using a hydraulically driven percussion soil sampler manufactured by PowerProbe. The borings were advanced in four foot intervals until equipment refusal was encountered between 2 and 23 ftbg. Upon completion, each boring was backfilled with soil cuttings and gravel.

Boring logs are included in Appendix A.

ii. Monitoring Well Installations

No monitoring wells were installed on-site as part of the work.

c. Sampling and Chemical Analyses and Methods

i. Soil

Soil samples were characterized using visual and olfactory senses as well as screened using a photo-ionization detector (PID) during completion of each soil boring. The test borings utilized precleaned/decontaminated macrocore samplers, equipped with a new plastic inner liner, advanced by the PowerProbe rig. The four foot liner was removed from the macrocore and opened with a utility knife followed by placing the soil in sample bags (prior to being screened). The soil characterization and PID information were recorded on the boring logs, which are included in Appendix A.

Soil samples selected for laboratory analysis were placed into the appropriate laboratory-supplied sample containers. The containers were sealed and labeled with the project name, sample location identifier, date and technician initials. The sample was then placed into an iced cooler for storage prior to delivery to Chemtech, a MBE certified laboratory in Mountainside, New Jersey; Chemtech is included in the National Environmental Laboratory Accreditation Program (NELAP).

A standard chain-of-custody form was completed to document the samples submitted to the laboratory; such identified the sample, location identification, date/time collected and analyses to be completed. The form was then signed by the sampling technician when the samples were relinquished to the laboratory.

MSA selected 21 soil samples for laboratory analysis. The rationale for the samples and testing completed are presented below.

Sample ID	PID Reading (ppm) ¹	Reason Sample Selected for Analysis	Analyses Completed
SB-2 (4-8')	0.4		VOCs, S-VOCs,
SB-5 (8-12')	1.0		Metals, PCBs,
SB-9 (4-7')	17.6		Pesticides, Herbicides
SB-10 (8-12')) 2.4		S-VOCs and Metals
SB-11 (12-16	') 1.1		VOCs, S-VOCs,
SB-15 (12-16	') 2.1		Metals, PCBs,
SB-18 (4-8')	17.0		Pesticides, Herbicides
SB-19 (12-18	') 2.7		S-VOCs and Metals
SB-21 (12-16	') 3.9		3-VOCS and Metals
SB-21 (16-19)	') 3.5		VOCs, S-VOCs,
			Metals, PCBs,
SB-22 (12-19	') 3.0		Pesticides,
		Subsurface fill conditions across the Site.	Herbicides
SB-27 (8-12')		Cubsurface in conditions deless the cite.	S-VOCs and Metals
SB-37 (8-10')			VOCs, S-VOCs,
SB-39 (6-8')	16.2		Metals, PCBs,
SB-41 (8-11") 1.8		Pesticides,
,	,		Herbicides
SB-42 (14-16			S-VOCs and Metals
SB-43 (6-8')			VOCs, S-VOCs,
SB-43 (10-12)	') 1.5		Metals, PCBs,
SB-43 (16-20	') 1.6		Pesticides, Herbicides
SB-45 (10-12)	') 1.2		S-VOCs and Metals
22 13 (13 12	/		VOCs, S-VOCs,
			Metals, PCBs,
SB-46 (12-16)	') 1.4		Pesticides,
			Herbicides

Analytical results associated with the above samples are discussed below.

ii. Groundwater

Groundwater sampling was not part of the scope of work and apparent groundwater was only encountered at five boring locations.

¹ ppm = parts per million

5. EVALUATION AND PRESENTATION OF RESULTS

The results of this Phase II study are summarized as follows.

a. Subsurface Conditions

Details of the subsurface soil conditions are described within the boring logs included in Appendix A. Generally, all of the borings encountered fill material consisting of clay, sand and gravel was encountered at all soil boring locations. Ash material was also encountered sporadically across the Site.

During drilling, groundwater was encountered at five locations (SB-15, SB-27, SB-37, SB-43, and SB-44) at approximately between 14 and 18 ftbg.

Based on the boring refusal depth, the historic quarry appears to have been deeper near the center of the Site and becomes shallower toward the edges of the Site.

b. Field Observations and Screening

All of the PID readings were above ambient air (0.0 ppm). The highest PID reading was 37.6 ppm at SB-43 (6-8' interval). While this reading is not considered excessive, based on the nature of the fill material (ash, etc.), significantly elevated PID readings were not expected.

Slight suspect petroleum odors were noted at one soil boring, SB-21 (12-16') and (16-19'), completed on the eastern portion of the Site.

Analytical results associated with samples selected for analysis are described below.

c. Analytical Data

Tabulated soil analytical testing results are included in Tables 1A through 1G. The complete laboratory analytical data report is provided in Appendix B.

i. Soil

MSA utilized NYSDEC Unrestricted Use (6NYCRR 375-6 12/06) soil cleanup objectives (SCOs) for comparison of the soil samples selected for analysis on-site. Unrestricted Use SCOs are the most stringent SCOs, they were designed for use at BCP sites.

No PCBs, herbicides or pesticides were detected at concentrations above laboratory detection limits.

With the exception of acetone, the VOC concentrations were either below applicable SCOs or below laboratory detection limits. Acetone exceeded the Unrestricted Use SCO in 12 of the soil samples collected from the Site.

S-VOC compounds (2-methylphenol, benzo(a)anthracene, chrysene, naphthalene, phenol, etc.) were detected at concentrations above laboratory detection limits in the majority of the soil samples selected for laboratory analysis. One or more SVOC concentrations exceeded Unrestricted Use SCOs in 11 of the soil samples collected from the Site.

Metals (arsenic, barium, cadmium, lead, mercury, zinc, etc.) were detected above laboratory detection limits in all of the soil samples selected for laboratory analysis. All but one sample had

metal concentrations that exceed Unrestricted Use SCOs.

The S-VOC and metal impacted soil samples were collected from various locations and depths across the Site. There does not appear to be an obvious trend in the contaminant concentrations across the Site.

ii. Groundwater

As indicated above, groundwater sampling was not part of the scope of work and apparent groundwater was encountered at five boring location.

6. DISCUSSION OF FINDINGS AND CONCLUSIONS

The results of the Phase II environmental site assessment are presented below.

a. Recognized Environmental Conditions

Based on the analytical results and field observations, elevated concentrations (as compared to BCP guidance values) of S-VOCs and metals have been detected on-site. Such would be considered a recognized environmental condition.

b. Affected Media

The impacted media appears to be the fill used as backfill on-site. However, this level of effort did not include groundwater sampling.

c. Evaluation of Media Quality

S-VOCs and metals present in the fill on-site above BCP guidance values suggest that the Site may be eligible for the BCP.

d. Other Concerns

See recommendations below.

7. RECOMMENDATIONS

This report should be provided to the NYSDEC as part of the BCP application.

8. SIGNATURE OF ENVIRONMENTAL PROFESSIONALS

We trust that this report satisfies your current needs. Should you have any questions, please contact the undersigned at 716-649-9718.

MS Analytical

DRAFT

12MS104 Kensington Heights 1827 Fillmore Avenue, Buffalo, New York

Sample ID		Part 375	SB-2(4-8)	SB-2(4-8)RE	SB-5(8-12)	SB-5(8-12)RE	SB-9(4-7)	SB-9(4-7)RE	SB-11(12-16)	SB-11(12-16)RE	SB-15(12-16)	SB-15(12-16)RE	SB-18(4-8)	SB-18(4-8)RE	SB-21(16-19)	SB-21(16-19)RE	SB-22(12-19)	SB-22(12-19)RE
Sampling Date	Unit of Measurement	Unrestricted	8/7/2012	8/7/2012	8/7/2012	8/7/2012	8/7/2012	8/7/2012	8/7/2012	8/7/2012	8/8/2012	8/8/2012	8/8/2012	8/8/2012	8/9/2012	8/9/2012	8/9/2012	8/9/2012
Matrix	Wieasurement	Use SCOs	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
1,2,4-Trimethylbenzene	mg/Kg	3.6	0.00057 L	J 0.00057 U	0.00061 U	0.00061 U	0.0006 L	0.00059 U	0.00068 U	0.00067 U	0.00069	J 0.0007 U	0.0006 U	0.0006 L	J 0.003 J	0.00074 U	0.00056 L	0.00056 U
2-Butanone	mg/Kg	0.12	0.0036 L	J 0.0036 U	0.0038 U	0.0038 U	0.0037 L	0.0037 U	0.0042 U	0.0042 U	0.0043	J 0.0043 U	0.0037 U	0.0037 L	J 0.0700	0.0630	0.0035 L	0.0035 U
Acetone	mg/Kg	0.05	0.013 J	0.045 Q	0.035	0.045 Q	0.0036 L	0.049 Q	0.041	0.049 Q	0.02	0.053 Q	0.0036 U	0.045	0.15	0.15 Q	0.074	0.045 Q
Carbon Disulfide	mg/Kg	NS	0.0012 L	J 0.0012 U	0.0013 U	0.0013 U	0.0013 L	J 0.0012 U	0.0014 U	0.0014 U	0.0015	0.0015 U	0.0013 U	0.0013 L	J 0.01	0.0046 J	0.0012 L	0.0012 U
Methylcyclohexane	mg/Kg	NS	0.0012 L	J 0.0012 U	0.0013 U	0.0013 U	0.0013 L	J 0.0012 U	0.0014 U	0.0014 U	0.0015	J 0.0015 U	0.0013 U	0.0013 L	J 0.0025 J	0.0016 U	0.0012 L	0.0012 U
Naphthalene	mg/Kg	12	0.00052 L	0.00052 UQ	0.00055 U	0.00055 UQ	0.00054 L	0.00053 UQ	0.00061 U	0.00061 U	Q 0.044	0.0039 JC	0.00054 U	0.003 J	Q 0.019	0.0039 JQ	0.0005 L	0.0005 UQ
p-Isopropyltoluene	mg/Kg	NS	0.00033 L	0.00033 U	0.0013 J	0.00036 U	0.00035 L	0.00034 U	0.00039 U	0.00039 U	0.0004	0.0004 U	0.00035 U	0.00035 L	J 0.0032 J	0.00043 U	0.00032 L	0.00032 U
Toluene	mg/Kg	0.7	0.00074 L	J 0.00073 U	0.00079 U	0.00078 U	0.00076 L	J 0.00075 U	0.00087 U	0.00086 U	0.00088	0.00089 U	0.00077 U	0.00077 L	J 0.00094 U	0.00095 U	0.00071 L	0.00071 U

Total Concentration. 0.013 0.045 0.0363 0.045 0.049 0.041 0.048 0.2577 0.2215 0.074 0.045

Notes:

Only the analytes detected are shown in the table above. Refer to laboratory report for a complete list of analytes.

=analyte detected <u>above</u> Part 375 Unrestricted Use SCOs.

NS = not specified.

Qualifiers

U - The compound was not detected above laboratory detection limits.

- Q indicates LCS control criteria did not meet requirements
- N Presumptive Evidence of a Compound
- J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than MDL. The concentration given is an approximate value.

- B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
- P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.
- * For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.

E (Organics) - Indicates the analyte 's concentration exceeds the calibrated range of the instrument for that specific analysis.

E (Inorganics) - The reported value is estimated because of the presence of interference.

- D The reported value is from a secondary analysis with a dilution factor. The original analysis exceeded the calibration range.
- * For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.
- NR Not analyzed

DRAFT

12MS104 Kensington Heights 1827 Fillmore Avenue, Buffalo, New York

Sample ID		Part 375	SB-37(8-10)	SB-37(8-10)RE	SB-39(6-	SB-39(6-8)RE	SB-41(8-11)	SB-41(8-11)RE	SB-43(6-8)	SB-43(6-8)RE	SB-43(10-12)	SB-43(10-12)RE	SB-43(16-20)	SB-43(16-20)RE	SB-46(12-16)	SB-46(12-16)RE
Sampling Date	Unit of Measurement	Unrestricted Use	8/10/2012	8/10/2012	8/10/201	2 8/10/2012	8/10/2012	8/10/2012	8/13/2012	8/13/2012	8/13/2012	8/13/2012	8/13/2012	8/13/2012	8/13/2012	8/13/2012
Matrix	Wieasurement	SCOs	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
1,2,4-Trimethylbenzene	mg/Kg	3.6	0.00071 l	J 0.00071	U 0.000	54 U 0.00054	1 U 0.00062 U	0.00062	U 0.00054 l	0.00054 U	0.00061	U 0.0006 U	0.0007	U 0.0007	U 0.00069	U 0.00069 L
2-Butanone	mg/Kg	0.12	0.0044 l	0.0044	U 0.00	33 U 0.003	0.0038 U	0.0038	UQ 0.0034 l	0.0034 UC	0.0038	U 0.0038 UC	0.0044	U 0.0044	UQ 0.0043	U 0.0043 L
Acetone	mg/Kg	0.05	0.025	0.044	Q 0.0	0.035	Q 0.03	0.074	Q 0.037	0.045 Q	0.075	0.069 Q	0.097	0.056	Q 0.13	0.085
Carbon Disulfide	mg/Kg	NS	0.0015 l	J 0.0015	U 0.00	11 U 0.001	U 0.0013	0.0013	U 0.0011	J 0.0011 U	0.0013	U 0.0013 U	0.005	J 0.0015	U 0.0019	J 0.0015 L
Methylcyclohexane	mg/Kg	NS	0.0015 l	J 0.0015	U 0.00	11 U 0.001	U 0.0013	0.0013	U 0.0011	J 0.0011 U	0.0013	0.0013 U	0.0015	U 0.0015	U 0.0015	U 0.0015 L
Naphthalene	mg/Kg	12	0.00064 l	0.00064	UQ 0.000	48 U 0.00048	0.00056 UQ	0.00055	UQ 0.00049 l	0.00049 UC	0.00055	0.00054 UC	0.00063	U 0.00063	UQ 0.00062	U 0.00062 U
p-Isopropyltoluene	mg/Kg	NS	0.00041 l	J 0.00041	U 0.000	31 U 0.0003	U 0.00036	0.00036	U 0.00031 U	0.00031 U	0.00035	0.00035 U	0.00041	U 0.00041	U 0.0004	U 0.0004 L
Toluene	mg/Kg	0.7	0.00091	0.00091	U 0.00	26 J 0.00069	0.00079 U	0.00079	U 0.0019	0.00069 U	0.00078	0.00077 U	0.0009	U 0.0009	U 0.00089	U 0.00089 L
			0.025	0.044	0.06	36 0.035	5 0.03	0.074	0.0389	0.045	0.075	0.069	0.102	0.056	0.1319	0.085

Notas:

Only the analytes detected are shown in the table above. Refer to laboratory report for a complete list of analytes.

=analyte detected <u>above</u> Part 375 Unrestricted Use SCOs.

NS = not specified.

Qualifiers

U - The compound was not detected above laboratory detection limits.

- Q indicates LCS control criteria did not meet requirements
- N Presumptive Evidence of a Compound
- J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than MDL.

The concentration given is an approximate value.

- B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
- P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.
- * For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.

E (Organics) - Indicates the analyte 's concentration exceeds the calibrated range of the instrument for that specific analysis.

E (Inorganics) - The reported value is estimated because of the presence of interference.

- D The reported value is from a secondary analysis with a dilution factor. The original analysis exceeded the calibration range.
- * For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.
- NR Not analyzed

S-VOC Analytical Results

DRAFT

498.7

12MS104 Kensington Heights 1827 Fillmore Avenue, Buffalo, New York

Sample ID			SB-2(4-8)	SB-5(8-12)	SB-9(4-7)	SB-10(8-12)	SB-11(12-16)	SB-15(12-16)	SB-15(12-16)DL	SB-15(12-16)DL2	SB-18(4-8)	SB-19(12-18)	SB-21(12-16)	SB-21(16-19)	SB-21(16-19)DL	SB-22(12-19)	SB-27(8-12)	SB-37(8-10)	SB-37(8-10)DL	SB-39(6-8)	SB-41(8-11)	SB-42(14-16)	SB-43(6-8)	SB-43(10-12)	SB-43(16-20)	SB-45(10-12)	SB-46(12-16)	SB-46(12-16)RX
Sampling Date		Part 375	8/7/2012	8/7/2012	8/7/2012	8/7/2012	8/7/2012	8/8/2012	8/8/2012	8/8/2012	8/8/2012	8/8/2012	8/9/2012	8/9/2012	8/9/2012	8/9/2012	8/9/2012	8/10/2012	8/10/2012	8/10/2012	8/10/2012	8/13/2012	8/13/2012	8/13/2012	8/13/2012	8/13/2012	8/13/2012	8/13/2012
Matrix	Unit of	Unrestricted	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Dilution Factor	Measurement	Use SCOs	1	1	1	5	1	5	25	50	1	1	1	5	10	1	1	5	10	1	1	1	1	5	1	5	1	1
Units			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
		•				•																						•
1,1-Biphenyl	mg/Kg	NS	0.014 U	0.016 L	U 0.015	U 0.085	U 0.017	U 2.3	J 0.44 U	D 0.87 U	0.015 U	0.02	U 0.018 U	0.092	U 0.18 UI	0.014	U 0.016	U 0.09 L	J 0.18 UI	0.014 L	J 0.016 l	U 0.015	U 0.014 U	0.077	U 0.018	0.087	U 0.017 U	Q 0.017 U
2-Methylnaphthalene	mg/Kg	NS	0.0096 U	0.01 L	U 0.01	U 0.057	U 0.011	U 8.7	9.4 J	D 0.58 U	0.01 U	0.014	U 0.26 J	0.062	U 0.12 UI	0.0092	U 0.01	U 0.06 L	J 0.12 UI	0.0091 L	J 0.01 L	U 0.01	U 0.0091 U	0.051	U 0.012	J 0.058	U 0.012 l	J 0.012 U
2-Methylphenol	mg/Kg	0.33	0.021 U	0.022 L	U 0.022	U 0.12	U 0.024	U 0.13	U 0.63 U	ID 1.3 U	0.021 U	0.029	U 0.026 U	0.13	U 0.27 UI	0.02	U 0.022	U 0.13 L	J 0.26 UI	0.02 L	J 0.022 l	U 0.022	U 0.02 U	0.11	U 0.025	J 0.13	U 0.025 L	J 0.025 U
3+4-Methylphenols	mg/Kg	0.33	0.02 U	0.021 l	U 0.021	U 0.12	U 0.023	U 0.12	U 0.6 U	1.2 U	0.021 U	0.028	U 0.025 U	0.13	U 0.25 UI	0.019	U 0.021	U 0.12 L	J 0.25 UI	0.019 L	J 0.021 l	U 0.021	U 0.019 U	0.11	U 0.024	J 0.12	U 0.024 l	0.34 J
Acenaphthene	mg/Kg	20	0.011 U	0.012 l	U 0.011	U 0.063	U 0.013	U 8.6	8.7 J	D 0.65 U	0.011 U	0.015	U 0.24 J	0.069	U 0.14 UI	0.01	U 0.012	U 0.067 L	J 0.13 UI	0.01 L	0.19	J 0.011	U 0.01 U	0.057	U 0.013	J 0.065	U 0.013 U	Q 0.013 U
Acenaphthylene	mg/Kg	100	0.0096 U	0.01 L	U 0.01	U 0.057	U 0.011	U 2.9	0.29 U	D 0.58 U	0.01 U	0.014	U 0.012 U	2	J 0.12 UI	0.0092	U 0.01	U 4.7	3.2 JI	0.0091 L	J 0.01 L	U 0.01	U 0.0091 U	0.051	U 0.012	0.058	U 0.012 U	Q 0.012 U
Anthracene	mg/Kg	100	0.0078 U	0.0084 L	U 0.0081	U 0.046	U 0.0092	U 24	E 28 I	28 [0.0081 U	0.011	U 0.46 J	11	11 0	0.0074	U 0.0084	U 4.1	3.5 JI	0.0074 L	0.38	J 0.0082	U 0.0074 U	0.041	U 0.0096	J 0.047	U 0.0094 L	J 0.0094 U
Benzo(a)anthracene	mg/Kg	1	0.018 U	0.02 l	U 0.019	U 0.11	U 0.021	U 29	E 32	32	0.019 U	0.026	U 0.89	13	13	0.017	U 0.53	15	15	0.017 L	0.88	0.16	J 0.017 U	0.097	U 0.022	J 0.11	U 0.022 U	Q 0.32 J
Benzo(a)pyrene	mg/Kg	1	0.0083 U	0.0089 L	U 0.0086	U 0.049	U 0.0097	U 24	E 25	25	0.0086 U	0.012	U 0.84	11	11	0.0079	U 0.72	18	18	0.0078 L	0.91	0.17	J 0.0078 U	0.044	U 0.01	J 0.05	U 0.01 U	Q 0.39 J
Benzo(b)fluoranthene	mg/Kg	1	0.013 U	0.013 L	U 0.013	U 0.074	U 0.015	U 29	E 32	30	0.013 U	0.018	U 1	13	13	0.15	J 1.1	22	22	0.012 L	1.1	0.2	J 0.012 U	0.066	U 0.015	J 0.076	U 0.015 U	Q 0.53
Benzo(g,h,i)perylene	mg/Kg	100	0.015 U	0.017 L	U 0.28	J 0.091	U 0.018	U 12	12 I) 12 JI	0.016 U	0.022	U 0.46 J	5.5	5 D	0.015	U 0.58	12	11 0	0.015 L	0.47	0.016	U 0.015 U	0.082	U 0.019	J 0.094	U 0.019 L	J 0.21 J
Benzo(k)fluoranthene	mg/Kg	0.8	0.018 U	0.019 L	U 0.019	U 0.11	U 0.021	U 11	11 J	D 12 JI	0.019 U	0.025	U 0.36 J	5.4	5.1	0.017	U 0.28	J 7.9	8.9	0.017 L	0.37	J 0.019	U 0.017 U	0.096	U 0.022	J 0.11	U 0.022 U	Q 0.22 J
Benzoic acid	mg/Kg	NS	0.076 U	0.081 L	U 0.078	U 0.45	U 0.089	U 0.46	U 2.3 U	D 4.6 U	0.078 U	0.11	U 0.094 U	0.48	U 0.97 UI	0.072	U 0.081	U 0.47 L	0.94 UI	0.072 L	0.71	J 0.079	U 0.072 U	0.4	U 0.093	J 0.46	U 0.092 l	J 0.092 U
Carbazole	mg/Kg	NS	0.0084 U	0.009 L	U 0.0087	U 0.049	U 0.0098	U 12	13 I) 13 Ji	0.0087 U	0.012	U 0.36 J	1.3	J 0.11 UI	0.008	U 0.009	U 0.052 L	J 0.1 UI	0.0079 L	0.009 U	U 0.0088	U 0.0079 U	0.044	U 0.01	J 0.051	U 0.01 U	Q 0.01 U
Chrysene	mg/Kg	1	0.017 U	0.019 L	U 0.018	U 0.1	U 0.02	U 27	E 30	30	0.018 U	0.024	U 1	12	12	0.017	U 0.64	17	17	0.016 L	0.89	0.17	J 0.016 U	0.092	U 0.021	J 0.1	U 0.021 U	Q 0.42 J
Dibenz(a,h)anthracene	mg/Kg	0.33	0.011 U	0.012 L	U 0.2	J 0.065	U 0.013	U 4.4	0.33	D 0.66 U	0.011 U	0.015	U 0.014 U	1.8	J 0.14 UI	0.011	U 0.19	J 3.6	2.3 JI	0.01 L	J 0.012 l	U 0.012	U 0.01 U	0.058	U 0.013	0.067	U 0.013 L	J 0.013 U
Dibenzofuran	mg/Kg	7	0.015 U	0.016 L	U 0.015	U 0.088	U 0.018	U 14	14	D 13 JI	0.015 U	0.021	U 0.36 J	0.095	U 0.19 UI	0.014	U 0.016	U 0.093 L	0.19 UI	0.014 L	0.016 U	U 0.016	U 0.014 U	0.079	U 0.018	0.09	U 0.018 U	Q 0.018 U
Dimethylphthalate	mg/Kg	NS	0.23 J	0.29	J 0.53	0.061	U 0.38	J 0.062	U 0.31 U	ID 0.62 U	0.37 J	0.49	J 0.49	0.066	U 0.13 UI	0.35	J 0.46	0.064 L	U 0.13 UI	0.36	0.36	J 0.31	J 0.36	0.055	U 0.42	J 0.062	U 0.42 J	Q 0.58
Fluoranthene	mg/Kg	100	0.0077 U	0.0083 U	U 0.008	U 0.045	U 0.009	U 43	E 74 I	75	0.008 U	0.011	U 2.4	26	E 28 D	0.21	J 0.59	23 E	E 24 D	0.0073 L	1.7	0.27	J 0.0073 U	0.041	U 0.0094	J 0.046	U 0.2 J	Q 0.69
Fluorene	mg/Kg	30	0.014 U	0.016 L	U 0.015	U 0.085	U 0.017	U 20	E 21 I	D 20 JI	0.015 U	0.02	U 0.55	3.6	3.6 JI	0.014	U 0.016	U 1.4	J 0.18 UI	0.014 L	0.016 U	U 0.015	U 0.014 U	0.077	U 0.018	J 0.087	U 0.017 U	Q 0.017 U
Hexachlorobenzene	mg/Kg	0.33	0.016 U	0.017 L	U 0.016	U 0.092	U 0.018	U 0.094	U 0.47 U	D 0.94 U	0.016 U	0.022	U 0.019 U	0.1	U 0.2 UI	0.015	U 0.017	U 0.097 L	J 0.19 UI	0.015 L	0.017 l	U 0.016	U 0.015 U	0.083	U 0.019	0.094	U 0.019 U	Q 0.019 U
Indeno(1,2,3-cd)pyrene	mg/Kg	0.5	0.013 U	0.014 L	U 0.19	J 0.075	U 0.015	U 13	11 J	D 11 JI	0.013 U	0.018	U 0.46 J	5.7	5	0.012	U 0.56	12	10	0.012 L	0.5	0.013	U 0.012 U	0.068	U 0.016	J 0.077	U 0.015 L	J 0.19 J
Naphthalene	mg/Kg	12	0.013 U	0.014 L	U 0.014	U 0.078	U 0.015	U 23	E 25	25	0.014 U	0.019	U 0.9	0.084	U 0.17 UI	0.013	U 0.014	U 0.082 L	J 0.16 UI	0.012 L	0.29	J 0.014	U 0.012 U	0.07	U 0.016	J 0.08	U 0.016 l	J 0.016 U
Pentachlorophenol	mg/Kg	0.8	0.026 U	0.028 L	U 0.027	U 0.15	U 0.031	U 0.16	U 0.79 U	1.6 U	0.027 U	0.037	U 0.033 U	0.17	U 0.33 UI	0.025	U 0.028	U 0.16 L	J 0.33 UI	0.025 L	0.028 U	U 0.027	U 0.025 U	0.14	U 0.032	J 0.16	U 0.032 U	Q 0.032 U
Phenanthrene	mg/Kg	100	0.01 U	0.011 l	U 0.011	U 0.061	U 0.012	U 54	E 95 E	D 100 D	0.011 U	0.015	U 3.2	27	E 29 D	0.19	J 0.011	U 10	11 🛭	0.0098 L	1.3	0.011	U 0.0098 U	0.055	U 0.013	J 0.062	U 0.012 U	Q 0.36 J
Phenol	mg/Kg	0.33	0.0088 U	0.0095 L	U 0.0092	U 0.052	U 0.01	U 0.053	U 0.27 U	D 0.53 U	0.0091 U	0.012	U 0.011 U	0.056	U 0.11 UI	0.0084	U 0.0095	U 0.055 L	J 0.11 UI	0.0083 L	0.0095 U	U 0.0093	U 0.0084 U	0.047	U 0.011	0.053	U 0.011 U	Q 0.011 U
Pyrene	mg/Kg	100	0.0092 U	0.0099 U	U 0.0095	U 0.054	U 0.011	U 40	E 57 I	D 59 [0.0095 U	0.013	U 2	20	E 21 C	0.18	J 0.55	22 E	24 C	0.0087 L	1.4	0.22	J 0.0087 U	0.049	U 0.011	J 0.055	U 0.011 U	Q 0.65
																			•					•		•		

486.2 0.37 0.49 16.23 158.3

Total Concentration.

Only the analytes detected are shown in the table above. Refer to laboratory report for a complete list of analytes

analyte detected <u>above</u> Part 375 Unrestricted Use SCOs

NS = Not specified.

0.23 0.29 1.2 0 0.38 401.9

Qualifiers
U - The compound was not detected above laboratory detection limits.

Q - indicates LCS control criteria did not meet requirements
N - Presumptive Evidence of a Compound

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than MDL. The concentration given is an approximate value.

B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
P - For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.
To roul column analysis, the lowest quantitated concentration is being reported due to coeluting interference.

E (Organics) - Indicates the analyte 's concentration exceeds the calibrated range of the instrument for that specific analysis.

E (Inorganics) - The reported value is estimated because of the presence of interference.

D - The reported value is from a secondary analysis with a dilution factor. The original analysis exceeded the calibration range.

* For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.

NR - Not analyzed

TAL Metals Analytical Results

DRAFT

12MS104 Kensington Heights, 1827 Fillmore Avenue, Buffalo, New York

Sample ID		Part 375	SB-2(4-8)	SB-5(8-12)	SB-9(4-7)	SB-10(8-12)	SB-11(12-16)	SB-15(12-16)	SB-18(4-8)	SR-19(12-18)	SB-21(12-16)	SB-21(12-16)DL	SR-21(16-19)	SB-22(12-19)	SB-27(8-12)	SB-37(8-10)	SR-39(6-8)	SB-41(8-11)	SB-42(14-16)	SB-43(6-8)	SB-43(10-12)	SB-43(16-20)	SB-45(10-12)	SB-46(12-16)
Sampling Date	Unit of	1 411 57 5	8/7/2012	(- /	8/7/2012	8/7/2012	8/7/2012	8/8/2012	8/8/2012	8/8/2012	8/9/2012	8/9/2012	8/9/2012	8/9/2012	8/9/2012	8/10/2012	, ,	8/10/2012	8/13/2012	8/13/2012	8/13/2012	8/13/2012	8/13/2012	8/13/2012
Matrix	Measurement	Use SCOs	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Aluminum	mg/kg	NS	6300	4290	4550	2730	3370	5640	4890	5650	3700		3920	5180	2420	5290	7000	8490	3910	5650	4210	4020	5350	3460
Antimony	mg/kg	NS	1.17	J 1.2	J 0.47 U	4.45	0.549	U 2.49 .	J 1.96 J	J 0.891	J 174		146	1.61	J 3.71	0.904	J 1.63 J	42	0.712	J 7.64	2.11	J 1.05	J 1.11	J 2.09 J
Arsenic	mg/kg	13	10.2	9	4.95	13.3	13.7	15.4	7.35	31.6	23.8		27.4	5.24	11.7	12	5.37	73	8.79	6.91	18.7	14.4	23.3	12.2
Barium	mg/kg	350	84.4	190	36.5	252	62.8	128	97.1	597	461		977	65.9	675	71.4	85.9	113	90.2	36.3	973	174	266	113
Beryllium	mg/kg	7.2	0.207	J 0.283	0.067 J	0.126	J 0.146	J 0.18	J 0.05 L	J 0.065	U 0.13	J	0.062 L	0.048	U 0.054	U 0.356	0.047 L	16	0.338	0.049 I	J 0.315	0.537	0.422	0.294
Cadmium	mg/kg	2.5	0.432	1.31	0.345	0.948	0.48	0.878	0.849	0.814	2.72		2.55	0.315	2.04	0.452	0.459	17	0.398	1.47	1.14	0.284	J 82.3	0.392
Calcium	mg/kg	NS	5970	87400	18900	20400	10500	5340	14800	11900	20800		56100	26500	9710	54000	14200	6530	4420	30300	20600	2300	16200	12100
Chromium*	mg/kg	30	8.95 N	N 10.3	N 8.68 N	7.85	N 7.05	N 13 N	N 25.4 N	N 12.8	N 14.2	N	29.9 N	9.53	N 46.4	N 7.42	N 9.25 N	41.1	N 8.63	N 7.9 I	N 6.87	N 7.06	N 15.2	N 8.07
Cobalt	mg/kg	NS	6.54	5.59	8.47	4.91	6.26	7.83	6.21	8.59	4.25		9.98	4.76	5.27	5.41	11.8	24.7	7.89	4.24	6.07	6.4	7.8	6.47
Copper	mg/kg	50	40.2 N	N 46.7	N 19 N	120	N 51.5	N 42.9 N	N 54 N	N 110	N 425	N	130 N	89.2	N 407	N 39.5	N 59.2 N	62.3	N 33.1	N 34.1 I	N 38.4	N 43.1	N 139	N 47.4
Iron	mg/kg	NS	21600	9790	26400	24900	37300	44400	61200	20500	27600		74700	28900	56600	8300	35700	34600	11200	22400	26200	8690	20700	8440
Lead	mg/kg	63	1040	628	22.7	263	59	236	96.1	410	20455	OR 21800	D 6540	68.1	1910	290	27.4	527	99.5	63.5	1100	606	481	246
Magnesium	mg/kg	NS	921	2580	10700	884	1280	954	3580	1080	3880		7890	2200	1240	3610	1150	1360	517	3190	536	317	473	1560
Manganese	mg/kg	1600	379	143	416	159	255	190	793	6770	238		583	776	452	121	1500	498	140	1390	135	80.9	208	142
Mercury	mg/kg	0.18	1.54	0.132	0.111	0.15	0.13	0.054	0.022	0.219	0.125		0.598	0.014	0.464	0.091	0.024	0.145	0.155	0.007	J 0.157	0.04	0.119	0.044
Nickel	mg/kg	30	13.7	39.8	11.2	12.2	11	15.2	17.2	28.1	12.4		22.1	14	29.4	12.7	7.79	56.4	13.5	8.75	15.6	12.8	18.1	14.4
Potassium	mg/kg	NS	488 N	N 576	N 774 N	397	N 526	N 724 N	N 733 N	N 834	N 477	N	865 N	624	N 254	N 593	N 830 N	1430	N 553	N 621 I	N 446	N 497	N 494	N 359
Selenium	mg/kg	3.9	0.338 L	J 0.363	U 0.344 U	1.78	0.402	U 0.412 L	J 0.345 L	J 1.45	2.15		0.421 L	0.326	U 0.371	U 0.438	U 0.321 L	149	0.346	U 0.336 I	J 0.365	U 1.58	0.413	U 1.42
Silver	mg/kg	2	0.561	0.213	J 0.592	0.715	0.808	2.45	1.33	1.51	3.11		2.33	0.692	1.36	0.214	J 0.92	6.33	0.294	J 0.659	0.604	0.328	J 0.607	0.312 J
Sodium	mg/kg	NS	301 N	N 83.6	JN 2.12 UN	N 4930	N 13.7	JN 2.53 U	N 2.12 U	N 240	N 2.49 l	JN	2.59 UI	N 2	UN 2.28	UN 118	N 1.97 UI	N 432	N 90.4	N 2.06 U	N 49.7	JN 988	N 78.2 J	IN 82 JN
Thallium	mg/kg	NS	0.562	J 0.239	U 1.39 J	0.804	J 1.52	J 1.81 .	J 3.28	7.02	0.897	J	4.54	1.24	J 3.3	0.288	U 2.16	158	0.228	U 1.46	J 0.693	J 0.283	U 0.272	U 0.263 U
Vanadium	mg/kg	NS	18.9	15.4	8.98	14.9	19.8	26	22	28.1	15.5		10.9	11.9	6.92	18.7	15.1	47.7	19.9	12.2	22.1	25.8	29.7	20.5
Zinc	mg/kg	109	97.1	273	33	341	101	308	101	790	941		1120	339	712	165	50.3	121	128	1610	935	109		169 N

37283.5 106083.5 61898.1 55438.13 53579.894 58050.722 86431.92 49002.094 79232.772 21800 153083.89 64793.501 74492.84 **72656.1**5 60659.27 54794.68 21241.807 65348.2 55297.459 17895.279 44567.858 26784.592 Total Concentration.

Notes:

Only the analytes detected are shown in the table above. Refer to laboratory report for a complete list of analytes

=analyte detected <u>above</u> Part 375 Unrestricted Use SCOs NS = Not specified.

*While testing results would represent total chromium, the tri-valent chromium standard was used as most chromium in the environment is tri- and not hexa-valent Qualifiers

- U The compound was not detected above laboratory detection limits.
- Q indicates LCS control criteria did not meet requirements
- N Presumptive Evidence of a Compound
- J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than MDL. The concentration given is an approximate value.
- B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
- P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.
- * For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.
- E (Organics) Indicates the analyte 's concentration exceeds the calibrated range of the instrument for that specific analysis.
- E (Inorganics) The reported value is estimated because of the presence of interference.
- D The reported value is from a secondary analysis with a dilution factor. The original analysis exceeded the calibration range.
- * For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.
- NR Not analyzed

PCB Analytical Results

DRAFT

12MS104 Kensington Heights 1827 Fillmore Avenue, Buffalo, New York

Sample ID	SB-2(4-8)	SB-5(8-12)	SB-9(4-7)	SB-11(12-16)	SB-15(12-16)	SB-18(4-8)	SB-21(16-19)	SB-21(16-19)RE	SB-22(12-19)	SB-37(8-10)	SB-39(6-8)	SB-41(8-11)	SB-43(6-8)	SB-43(10-12)	SB-43(10-12)RE	SB-43(16-20)	SB-46(12-16)
Sampling Date	8/7/2012	8/7/2012	8/7/2012	8/7/2012	8/8/2012	8/8/2012	8/9/2012	8/9/2012	8/9/2012	8/10/2012	8/10/2012	8/10/2012	8/13/2012	8/13/2012	8/13/2012	8/13/2012	8/13/2012
Matrix	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
					No F	CB analyt	es were dete	cted above lab	oratory dete	ction limits.							
				•				•							•		•
Total Concentration.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Notes:

Only analytes detected are shown in the table above. Please refer to laboratory report for a complete list of analytes

Pesticide Analytical Results

DRAFT

12MS104 Kensington Heights 1827 Fillmore Avenue, Buffalo, New York

Sample ID	SB-2(4-8)	SB-5(8-12)	SB-9(4-7)	SB-11(12-16)	SB-15(12-16)	SB-18(4-8)	SB-21(16-19)	SB-22(12-19)	SB-37(8-10)	SB-39(6-8)	SB-41(8-11)	SB-43(6-8)	SB-43(10-12)	SB-43(16-20)	SB-46(12-16)
Sampling Date	8/7/2012	8/7/2012	8/7/2012	8/7/2012	8/8/2012	8/8/2012	8/9/2012	8/9/2012	8/10/2012	8/10/2012	8/10/2012	8/13/2012	8/13/2012	8/13/2012	8/13/2012
Matrix	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				No Pestic	ide analytes	were dete	cted above la	aboratory de	tection limi	ts.					
Total Concentration.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

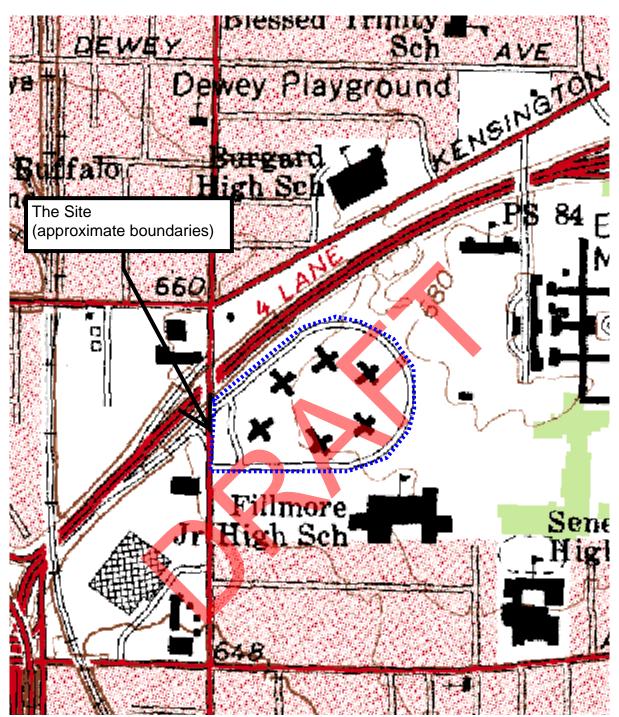
Notes:

Only analytes detected are shown in the table above. Please refer to laboratory report for a complete list of analytes.

Herbicide Analytical Results

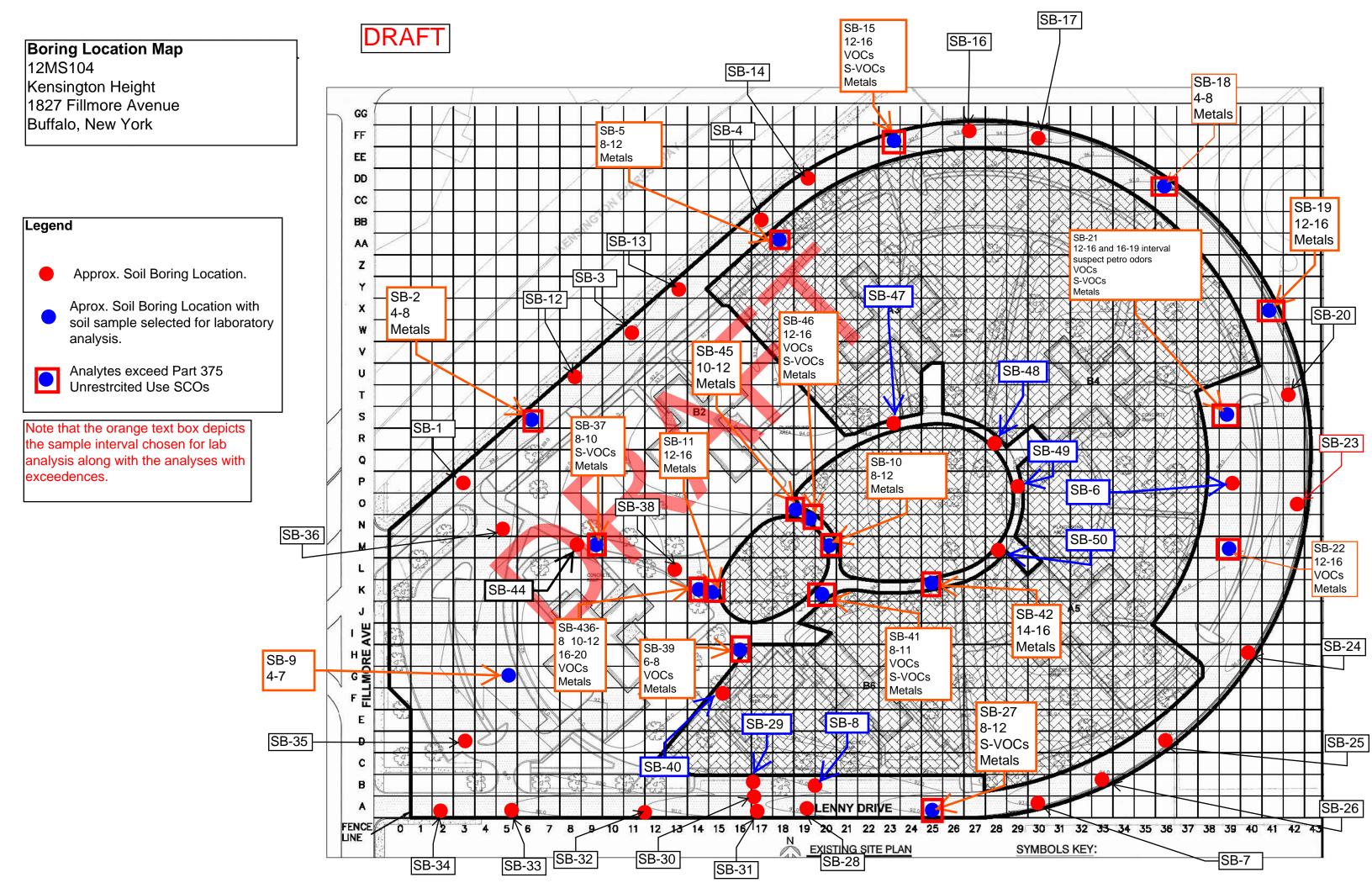
DRAFT

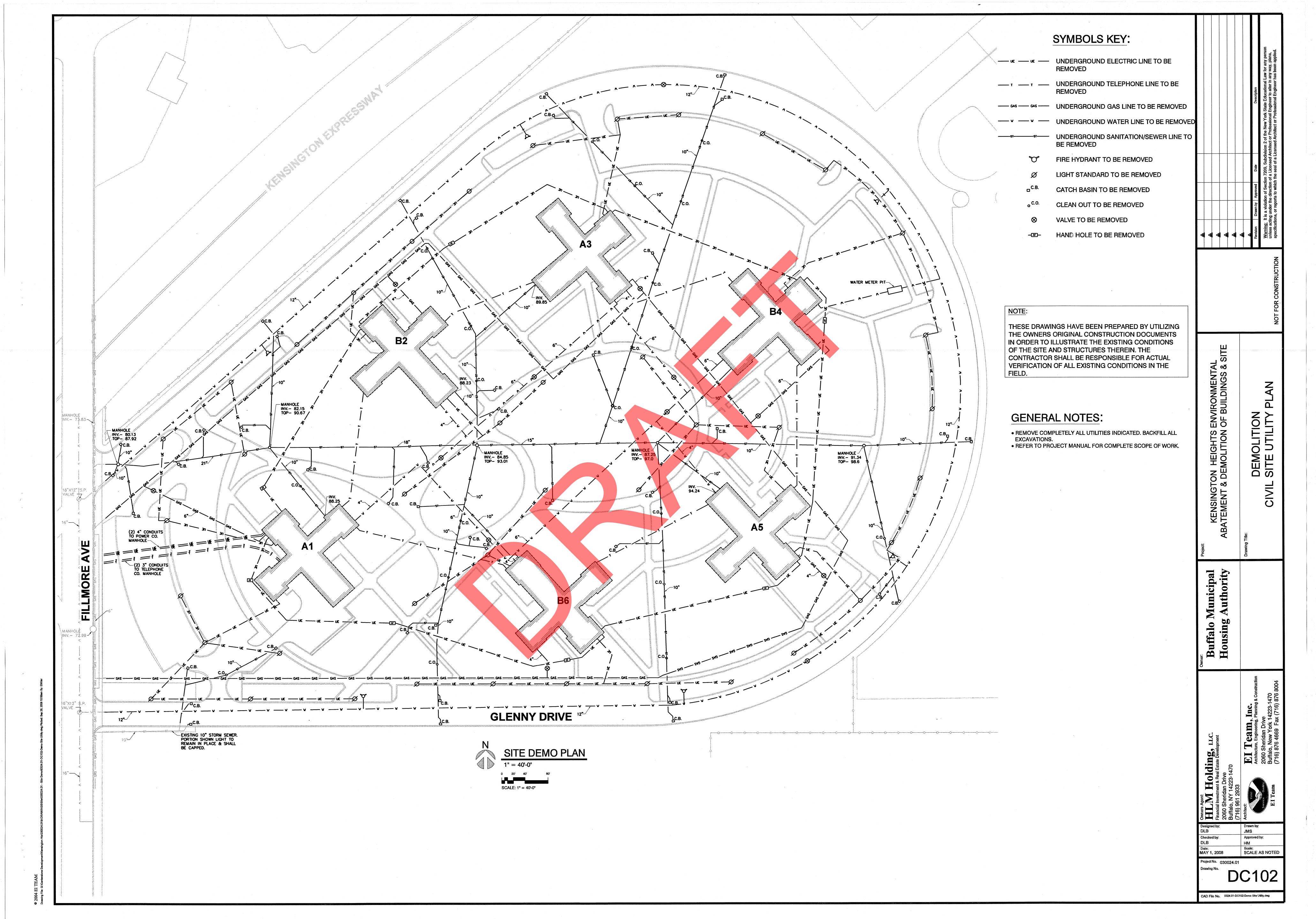
12MS104 Kensington Heights 1827 Fillmore Avenue, Buffalo, New York


Sample ID	SB-2(4-8)	SB-5(8-12)	SB-9(4-7)	SB-11(12-16)	SB-15(12-16)	SB-18(4-8)	SB-21(16-19)	SB-22(12-19)	SB-37(8-10)	SB-39(6-8)	SB-41(8-11)	SB-43(6-8)	SB-43(10-12)	SB-43(16-20)	SB-46(12-16)
Sampling Date	8/7/2012	8/7/2012	8/7/2012	8/7/2012	8/8/2012	8/8/2012	8/9/2012	8/9/2012	8/10/2012	8/10/2012	8/10/2012	8/13/2012	8/13/2012	8/13/2012	8/13/2012
Matrix	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Units	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
					No Herbicide	analytes det	ected above la	boratory detec	tion limits.						
				•	•			•	•	•	•	•	•	•	
Total Concentration.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Notes

Only analytes detected are shown in the table above. Please refer to laboratory report for a complete list of analytes





Center: 42.9266°N 78.8371°W

Elevation at center: 676 feet (206 meters)

Quad: USGS Buffalo NE Drg Name: o42078h7 Drg Source Scale: 1:24,000 Topo Map 12MS104.6 1827 Fillmore Avenue Buffalo, New York

DRAFT

SECTION 01901

SOILS MANAGEMENT PLAN

DR. LYDIA T. WRIGHT SCHOOL OF EXCELLENCE CAMPUS EAST SCHOOL #89 106 APPENHEIMER AVENUE CITY OF BUFFALO, ERIE COUNTY, NEW YORK

Prepared for:

Buffalo Public Schools Buffalo Board of Education

Prepared by:

Panamerican Environmental, Inc. 2390 Clinton Street Buffalo, New York 14227-1735 Ph: (716) 821-1650 Fax: (716) 821-1607

AND

URS Corporation 282 Delaware Avenue Buffalo, New York 14202-1805

March 2002

TABLE OF CONTENTS

			<u>Page No</u>
1.0	INTR	ODUCTI	ON
	1.1	Genera	1 Description of Project
	1.2	Objecti	ives of Soils Management Plan
	1.3	Organi	zation of the Soils Management Plan
2.0	SITE	DESCRI	PTION AND PREVIOUS INVESTIGATIONS
	2.1	Site De	escription and History
	2.2	Previou	us Environmental Investigations
		2.2.1	Geotechnical Engineering Report
		2.2,2	Phase II Environmental Site Assessment
3.0	EXIST	TING SIT	TE CONDITIONS
	3.1	Soil an	d Fill Materials
	3.2	Nature	and Extent of Contamination
	3.3	Risk A	ssessment
		3.3.1	Soils
		3.3.2	Groundwater
4.0	PROP	OSED SI	TTE DEVELOPMENT
5.0	SOIL	S MANA	GEMENT STRATEGIES
	5.1	Genera	ıl 13
	5.2	Soils M	Management/Handling Procedures
		5.2,1	Building Addition Foundations
	•	5.2.2	Utility Trenches
		5.2.3	Site Grading
		5.2.4	Construction Observation
		5.2.5	Clean Fill Requirements
		5.2.6	Manifesting of Excavated Fill Materials
6.0	CON	TRACTO	OR REQUIREMENTS

ii

FIGURES

Figure No.	Followin Page No	-
1-1	Site Location Plan	1
2-1	Test Pit & Borehole Location Plan (Geotechnical Report)	3
2-2	Test Pit and Sample Locations (Phase II Report)	
	TABLES	
Table <u>No.</u>	Followin Page No	_
3-1	Subsurface Conditions	7
3-2	Surface Soil Sampling Analytical Results Summary	7
3-3	Subsurface Soil Sampling Analytical Results Summary	7
3-4	Borehole Sampling Analytical Results Summary	9
_		
•	APPENDICES	
Appen	dix A Phase II Environmental Site Assessment Report (Minus Appendix B-D)	
Appen	dix B Site Health and Safety Plan Requirements	

1.0 INTRODUCTION

1.1 General Description of Project

The Dr. Lydia T. Wright School of Excellence (Campus East School - School #89) Site (the "Site") is located at 109 Appenheimer Street in the City of Buffalo. The Site encompasses approximately 9-acres of land see Figure 1-1. As part of a renovation project at the Site, the City of Buffalo Board of Education plans to construct several additions onto the current structure.

Re-development plans include leaving the existing structure in its present form and regrading the Site as necessary to allow for the construction of four (4) new additions which will abut the current school building. As part of the redevelopment, it will be necessary to excavate soil from various areas of the Site for installation of utilities and building foundations. Additionally, onsite soils will be utilized for regrading areas of the Site.

1.2 Objectives of the Soils Management Plan

The primary objective of this Soils Management Plan (SMP) is to provide a description of how environmentally impacted soils/fill materials at the site will be handled during construction/excavation to minimize any potential risks to human health and the environment. Any subsequent additions, expansions or alterations at the Dr. Lydia T. Wright School will result in a new, or revised SMP.

1.3 Organization of the Soils Management Plan

Section 2 of this SMP presents a brief description of the site and site history and a discussion of previous environmental investigations. Section 3 presents an overview of existing site conditions and discusses the nature and extent of contaminants detected in the surface and subsurface materials. Section 4 provides an overview of the proposed site development. The soils management strategies are outlined in Section 5 and the Contractor requirements are outlined in Section 6.

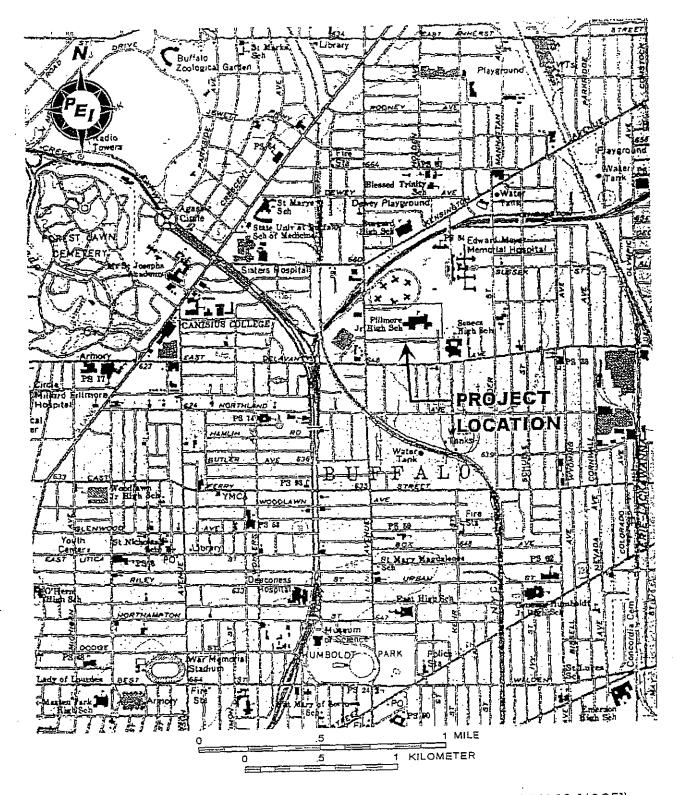


Figure 1-1 Project Location (USGS 7.5' Quadrangle, Buffalo SW, NY 1989 [1965]).

2.1 Site Description and History

The Dr. Lydia T. Wright School of Excellence (Campus East School - School #89) was constructed about 1959 on property that previously was utilized as a limestone quarry from at least 1919 to the 1950's. Filled prior to construction of the school, the quarry extended from near Appenheimer Avenue, north to Kensington Avenue and west almost to Fillmore Avenue.

During recent assessments for planned additions to the school, contractors for the Buffalo Board of Education performed a Phase I Environmental Site Assessment and a series of geotechnical and engineering design studies ("Geotechnical Engineering Report, Public School 89 Additions, Buffalo, New York Prepared for Buffalo Board of Education, Prepared by McMahon & Mann Consulting Engineers, P.C. December 2000"). These studies suggested that the quarry was filled with ash and cinders that are covered by a layer of soil fill/topsoil. The topsoil varies from as much as approximately 6-7 feet to as little as less than 1 foot. The ash and cinders appear to extend from below the cover to the bottom of the quarry which was measured to be as much as 27 feet deep. Limited samples of the ash and cinder collected during these geotechnical/engineering design studies indicated elevated levels of polynuclear aromatic hydrocarbons (PAHs) and metals at concentrations, that in some cases, exceed the New York State Department of Environmental Conservation (NYSDEC) Technical Assistance and Guidance Memorandum #4046 (TAGM #4046, revised 1994) soil cleanup value guidelines. Of particular concern to the NYSDEC was that the investigation identified subsurface lead levels in two samples (24 to 26 feet and 14 to 18 feet bgs, respectively) at 5,030 mg/kg and 1,310 mg/kg.

A Phase II Surface and Subsurface Soil Environmental Assessment (Phase II Environmental Site Assessment Campus East School #89,106 Appenheimer Avenue, City of Buffalo, Erie County, New York, PEI/URS February 2001) has been completed on the Site. The Phase II Investigation confirmed that certain surface and subsurface soils at the Site contain low levels of PAHs and metals from historic activities conducted on or in the vicinity of the site such as the development and backfilling of a rock quarry and fossil fuel burning for heat and manufacturing. Many of the compounds found at the Site are widely distributed in the environment, and are typical of older urban environments.

A review of historical records and aerial photographs confirm that the current building was

constructed in the mid-late 1950's. Earlier historical maps and records indicate that the property was used primarily for a rock quarry and an area of discharge for incinerator ash prior to the development of the school.

2.2 Previous Environmental Investigations

2.2.1 Geotechnical Engineering Report

In December 2000, a Geotechnical Engineering Report ("Geotechnical Engineering Report, Public School 89 Additions, Buffalo, New York. Prepared for Buffalo Board of Education, Prepared by McMahon & Mann Consulting Engineers, P.C. December 2000") was performed on the site by McMahon and Mann with Earth Dimensions, Inc. The work included:

- Review of subsurface data contained on plans for the existing school;
- A subsurface soil investigation with Earth Dimensions, Inc. to make four test borings and five test pits within the proposed addition limits;
- Testing of selected samples of fill from within the quarry limits to identify the composition of the fill;
- Testing of selected environmental samples from the four test borings;
- Analysis of subsurface conditions relative to the effect of the static loads applied by the proposed buildings;
- Preparation of a report summarizing the subsurface conditions and presenting the recommendations for foundation design.

The Geotechnical Report's review of historical records identified that the current use of the property as a school began in the mid 1950's. Prior to the middle 1950's, the property was used primarily for rock quarrying and disposal of incinerator ash purposes. Analytical testing conducted on ash and cinder samples indicated elevated concentrations of metals, such as lead, and PAHs. Borehole and test pit locations installed during the Geotechnical Program are shown on Figure 2-1.

The report recommended that additional environmental sampling be conducted to plan the requirements for construction worker health and safety during construction and for planning fill disposal requirements.

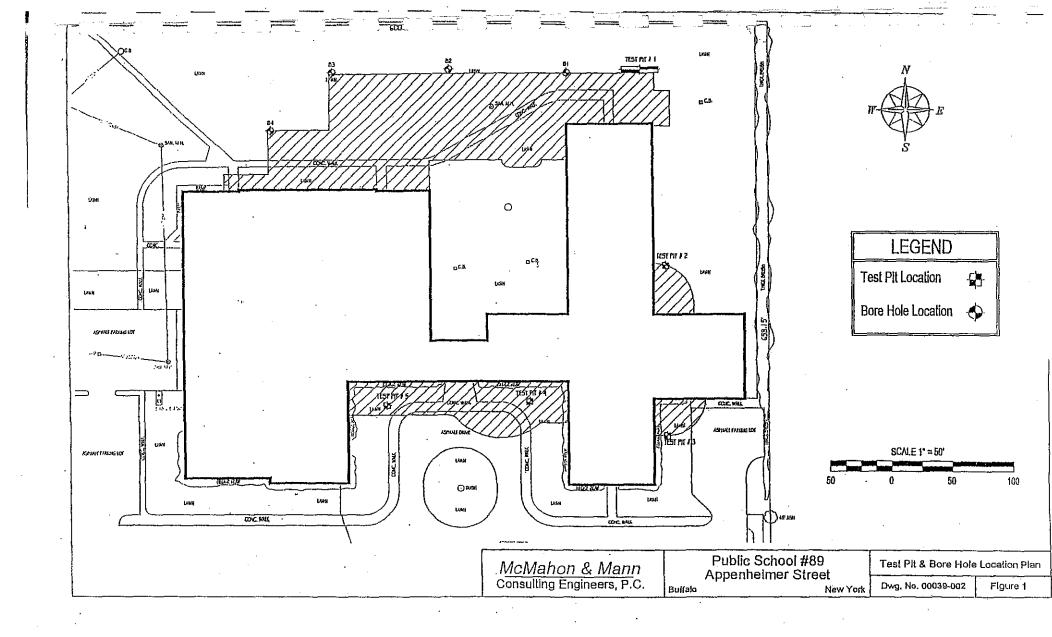


Figure 2-1

2.2.2 Phase II Environmental Site Assessment

The purpose of the surface and subsurface environmental assessment conducted by PEI/URS (Phase II Environmental Site Assessment, Campus East School #89, 106 Appenheimer Avenue, City of Buffalo, Erie County, New York, PEI/URS, April - June 2001) was to further identify potential environmental impairment at the Site and the associated impacts on planned construction activities associated with the additions to the existing school. The work included:

- An investigation of surface soils on school property, adjacent property including the park/ball field and playground area west of the school;
- An assessment of the subsurface soil/fill across the property;
- An assessment of the air quality inside the existing school building;
- The development of a report of findings and recommendations.

The field program consisted of surface and subsurface soil sampling. A total of nineteen (19) test trenches were advanced, at the surveyed locations shown on Figure 2-2, to an average depth of 6 feet below ground surface (range between 2.5 and 8 feet) using a rubber tire backhoe.

A total of thirteen (13) surface samples and five (5) subsurface samples were submitted for laboratory analysis. Soil samples submitted for analysis were selected from the test trenches exhibiting the highest organic vapor readings or based on visual appearance (i.e., stained or discolored fill material). It should be noted, however, in general no elevated organic vapor readings were observed during the subsurface program. Based on the past use of the property (limestone rock quarry filled with miscellaneous debris/ash), the samples were submitted to a laboratory for analysis of the full Target Compound List/Target Analyte List (TCL/TAL) compounds including PCBs.

These Investigations indicated the presence of detectable levels of semi-volatile organic compounds (SVOCs-primarily PAHs) and metals in both the surface soils and the fill materials (see Tables 3-2 and 3-3). With the exception of one location (tar-like materials in subsurface ash in TP-19), no PID readings above ambient levels were recorded on any of the samples and no volatile organic compounds were detected in samples.

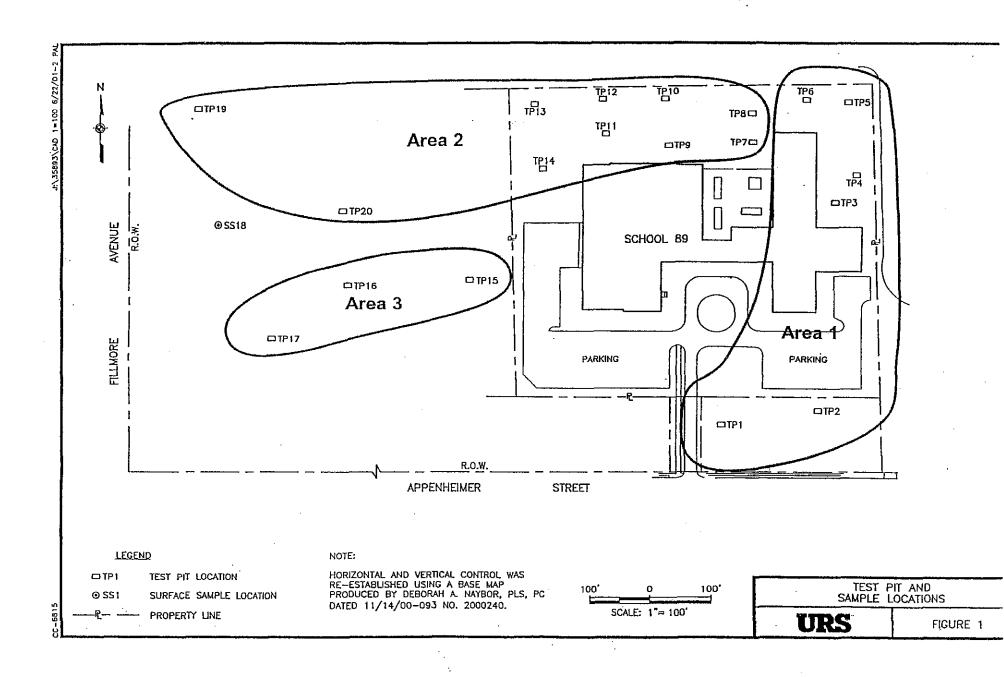


Figure 2-2

PAHs and metals can be introduced into the environment by natural (e.g., soil chemistry, forest fires) and human (e.g., automobile, coal or other heating fuel combustion, industry, or stone quarrying) processes. These compounds are typically bound up in the soil/fill materials and are not very mobile. They have low solubilities and do not leach readily to groundwater, even at relatively high concentrations. Chronic exposure to PAHs and metals in surface soils is not likely to occur under current conditions.

Three distinct areas of subsurface conditions were observed at the property as follows (refer to Figure 2-2).

Area 1

The area along the southeast and northeast portion of the property appeared to be outside the former quarry area. This area consists of topsoil, fill and a thin ash layer (note, this is not the same ash found in the quarry areas), and bedrock at a shallow depth (bedrock at depths of less than 3-4 feet). Surface soils (0-2 inch) in this area indicated elevated levels of PAHs and some metals particularly in the southeast portion of the property. Subsurface soils did not appear to be significantly elevated.

Area 2

The area behind and to the north of the school and within the center and northern portions of the park/ball field is within the former quarry. This area consisted of a topsoil layer, a fill layer consisting of soil, brick, pipe, wood and building fragments over an ash layer. Previous studies indicate that the ash fill was found to be at depths down to 26 to 30 feet to the top of bedrock. Surface and subsurface soils in this area had detectable levels of PAHs and metals above regulatory guidelines, but generally at much lower levels then test pits in the southeast and northeast. The exception, however, was Test Pit TP-19 which had levels significantly higher and was associated with a "tar like" material that appeared to be buried roofing materials. This test pit was located along the roadway near the adjacent residential housing complex.

Area 3

The area to the southwest of the school and along the southern end of the park/ball field contained

about ½ foot of topsoil over approximately 8 feet of fill consisting of silt and sand with some clay, wood, and brick fragments. No ash was encountered in the test pits in this area and only surface samples were collected. Although detectable levels of metals and PAHs in surface soil samples were indicated above regulatory guidelines, levels were relatively low. Total SVOCs and carcinogenic PAHS (cPAH) were well below 10ppm and two of the locations were below 1ppm cPAHs.

With the exception of a few isolated samples (i.e. TP-19), the concentrations of the various PAHs and metal compounds detected are slightly above the NYSDEC TAGM 4046 recommended soil cleanup objectives. This would indicate that the associated health risks, assuming workers/students and pedestrians are actually subjected to substantial long-term exposure, are also minimal. Considering the nature of the proposed continued use of the property as a school and park/ball field, the potential exposure of students and residents to surface soil and workers to subsurface fill materials via the above potential exposure routes is low and will be virtually eliminated if engineering and administrative controls are instituted.

The complete results of the Phase II Investigation (minus Appendix B-D) are presented in Appendix A.

3.0 EXISTING SITE CONDITIONS

3.1 Soil and Fill Materials

The surface of the property, including the school area; area adjacent to the asphalt covered playground; and park/ball field, consists primarily of a relatively flat grass lawn with some side walks and asphalt drive areas.

Generally, the fill overburden consists of a mixture of sand and clayey silt with some gravel and miscellaneous building debris including brick, concrete, wood, and glass under a layer of topsoil. The soil fill separates the topsoil from the underlying ash fill in most locations. The ash fill extends from beneath the soil fill to the top of bedrock in the former quarry area.

Top soil covering fill material was observed at all locations across the property and a soil fill separating a ash layer was observed at most locations. However, the depth of topsoil and the type of fill varied across the property (refer to Table 3-1).

3.2 Nature and Extent of Contamination

Investigations conducted at the Site have indicated the presence of detectable levels of SVOCs and metals in the fill materials that comprise the upper 0 to 8 feet of soils. In both the surface (0-2") and subsurface soils the concentrations of several PAHs and metals exceed the NYSDEC TAGM 4046. A summary of the Phase II analytical data is presented in Tables 3-2 and 3-3.

There were no VOCs detected above the detection limits. Low levels of PCB Aroclor 1260 was detected in test pits TP-16 and TP-18 at 0.027 ppm and 0.024 ppm respectively. These levels are well below the NYSDEC TAGM guidelines.

As indicated on Table 3-2, the chemical constituents in the surface soils are generally distributed uniformly across the site, and fall within fairly narrow ranges of concentration. This is most likely a result of wind borne dispersion of chemical constituents from historical industrial and/or residential activities in the area, such as, historic use of coal, fuel oil or other fossil fuel burning for heat.

Campus School Subsurface Conditions

Table 3-1

		Cover	Fill Thickness	Top of Ash	Top of Bedrock	Final Depth
Test Pit	Location	Thickness (ft.)	(ft.)	Layer (ft.)	Layer (ft.)	of Test Pit (ft.)
			AREA 1			
TP-1	Southeast - Front of School	1.5	2.5	1.5*	4	4
TP-2	Southeast - Front of School	0.5	2	0.5*	2.5	2.5
TP-3	East of School	2	2.5	2*	4.5	4.5
TP-4	East of School	1	2	1*	3	3
TP-5	Northeast of School	1.5	1.5	1.5*	2.5	2.5
TP-6	Northeast of School	2	2.6	2*	NA	4.6
			AREA 2			
TP-7	North of School	1	5	6	NA	8
TP-8	North of School	1	5	6	NA NA	7.5
TP-9	North of School	1	4	4	NA	8
TP-10	North of School	3	0.5	3.5	NA.	6
TP-11	North of School	0.5	3,5	4	NA	6
TP-12	North of School	3.5	1	4.5	NA	6
TP-13	Northwest of School	2.5	0.9	3.4	NA	4.5
TP-14	West of School	0.5	5.1	5.6	NA	6.5
TP-19	Northwest corner of Park/Ball field	0,5	3.5	4	NA	5
TP-20	Middle of the Field	0.2	3.8	4	NA	6
			AREA 3	·		
TP-15	Northeast corner of playground	.0.5	7.5	NA	NA NA	8
TP-16	Northwest of Basketball Court	0.5	3.5	NA	NA	4
TP-17	South side of Park/Ball Field	0.5	4.5	NA	NA	5
SS-18	Middle of the Field	NA	NA	NA	NA	0.5

Fill includes soil, brick, wood, building fragments and other miscellaneous construction debris

^{*}TP-1 thru 6 not within quarry area - different type of ash encountered TP-7 thru 14, 19 and 20 were within the former Quarry and had gray ash and debris TP-15, 16, and 17 contained different type of fill - no ash

Table 3-2

SURFACE SOIL SAMPLING ANALYTICAL RESULTS SUMMARY CAMPUS SCHOOL #89, BUFFALO, NEW YORK

	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Eastern		Rec. Soil
	Soils	Soils	Soils	Soils	Solls	Solls	Solls	Solls	Solls	Soils	Solls	Solls	Solls	USA	Average	Cleanup
-	TP-2	TP-3	TP-4	TP-7	TP-8	TP-9	TP-12.	TP-13	TP-15	TP-16	TP-17	TP-18	TP-19	Background	Background	Values
Metals	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Cyanide	U	Ü	Ü	Ü	- U	U	U	Ü	Ū	U	Ŭ	0.782	0.645	N/A	1.52	***
Aluminum	13300	11600	5820	10700	8480	10800	7420	4180	8140	7260	6480	8530	10200	33,000	10,870	SB
Antimony	4.26 B	U	U	U	3.39 B	Ü	7.44	5.25 B	U	4.19 B	3.64 B	3.21 B	3.46 B	N/A	U	SB
Arsenic	6.6	5.1	3.5	4.7	4	5.5		4.3	4.8		3.9		爆舞18	3 to 12	9.93	7.5 or SB
Barium	72.3	86.6	56.6	79.7	81.7	83.3	91.9		78.1	60.1	35.4	79.1	231	15 to 600	92.56	300 or SB
Beryllium	0.624 B	0.593 B	0.312 B	0.568 B	.0.435 B	.0.568 B	0.4 B	∴,0.24.B		0،355 B	0.29.B			0-1,75	0.573 B	0.16 or SB
Cadmium	U	Ū	U	0.655 B	0.631	0.518 B	U	Ü	U	U	U	U	2.86	0,1-1	0.681	10 or SB
Calcium	2080	3850	3950	4700	14900	9870		61400	28000	78300	23700		25300	130 to 35000	29700	SB
Chromium	14.4	17.2	8.92	22.7	11.6	21.6		6.12	9.68	8.41	8.64	14.4	20,1	1.5 to 40	15.3	50 or SB
Cobalt	9	11.3	5.42 B	9.54	6.13	8.71	5.82	3.01 B	5.27 B			6.51	7.56	2.5 to 40	7.72	30 or SB
Соррег	22.1	30			21.1	27.8		24.4	31.4	22.9		33		1 to 50	25.7	25 or SB
Iron	21800 يند	22700	15000	21400	14800	20500	17.			7.5		<u>% 17400</u>		2000 to 550000	18100	2,000 or SB
Lead	61.9	46	42	71	80.1	59.8	76.4	73.5	125	63		234		200 to 500	551.3	SB****200-500
Magnesium	2930	4360	2240	4390	7010	7080	19200	7420	7780	11500	7170	13500	8130	100 to 5000	1027.6	SB
Manganese	497	588	367	492	340	460	329	216	449	324	341	409	1600	50 to 5000	427.3	SB
Mercury	0.08	0.27	0.2	0.086	0.17			0.14		0.073		0.1		0.001 to 0.2	0.145	0.1
Nickel	5 4.4. 24.3	.∴32.6	million 17.2	30.4	<u>⊭</u> ⊛16.9	-Caic 26.8	- 海班 14	9.29	aug.:15,3	12.2	Maria 16:1	18.3	29,3	0.5 to 25	18.03	13 or SB
Potassium	1080			1290	879	1410			969	1050	784	1640	1320	8500 to 43000	1633.3	SB
Selenlum	UW	UW	UW	U	U	UW_	U	UW	U	U	Ü	UW	0.66	0.1 to 3.9	U	2 or SB
Sodium	56.5 B				61.4 B	51.3 B			84.6 B	142 B	71.6 B	125 B	188 B	6000 to 8000	220.3	SB
Thailium	0.78 B													N/A	0.51 B	SB
Vanadium	23.5					21.1		11.1	17,5		13.2	20.7	24.4	1 to 300	24.83	150 or SB
Zinc	34. 15. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	114 to 14	WHE.78.2	#### 126	#65 456	132 Jan	108	20.4	assimulat	(現 61	204.460i6	159	±65 ±65	9 to 50	239.3	20 or SB
PCB's	<u> </u>	<u> </u>				·			<u> </u>	<u> </u>		L	<u> </u>			
	1			<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u></u>				
PBB 1260	*	*	<u> </u>			*	*	*	*	0.027	<u> </u>	0.024	*	N/A	N/A	1 Surface
ļ	<u> </u>	ļ	 	<u> </u>	<u> </u>	↓		<u> </u>	↓	ļ	ļ	ļ	ļ			
Semi-Volatile Organics				<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u></u>	<u> </u>						
	T			T					ĺ	T	}					
Naphthalene	3 J	0.77 J	U	U	0.83 J	il U	Ū	U	Ū	U	T U	Ü	Ú	. N/A	U	13
4-Chloroaniline	14 WAY 212 U		U	Ü	U	Ū	Ü	Ü	Ū	Ū	<u> </u>	 	Ū	N/A	Ü	0.22
2-Methylnaphthalene	1.1 J		j U	T Ū	0.3 J	j U	Ü	Ū	Ū	T U	Ū	T U	Ü	N/A	Ü	36.4
Acenaphthene	3.9 J			0.12 J	0.58 J		J 0.056 J	0.065 J	il Ū	Ū	 	† ù	0.1 J	N/A	0.05 J	50
Dibenzofuran	2.6 J			T U	0.55 J		Ü	U	1-0	Ü	1 - ŭ -	 	Ü	N/A	U	6.2
Fluorene	4.2 J			0.1 J			Ü	† ŭ−	1-0	† <u>ŭ</u>	Ū	 Ū	0.13 J		Ü	50
Phenanthrene	26						0.54	0.63	0.31	0.058	0.54	0.47		N/A	0.88	50
Keir				~			~									

Key:

TP- Test Pit

W - Post Spike recovery is out of limits

U- Not Detected SB- Sile Background

* - No tests done for the sample W - Post Spike reco
****- Lead Range is 200-500 ppm in Urban Areas N/A - Not Available
B - Analyte Detected in Method or Trip Blank

Total cPAH value includes: benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo (a)pyrene, indeno(1,2,3-cd)pyrene, dibenzo(a,h)anthracene

	TP-2	TP-3	TP-4	TP-7	TP-8	TP-9	TP-12	TP-13	TP-15	TP-16	TP-17	TP-18	TP-19	Eastern USA	Average	NYSDEC
Semi-Volatile Organics	mg/kg	mg/kg	. mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	Background	Background	TAGM
Anthracene	7.9	3.7	U	0.21 J	1,3	0.15 J	0.13 J	0.15 J	0.07 J	U	U	0.095 J	0.37 J	N/A	0.1499	50
Carbazole	4.1 J	2.1 J	U	0.13 J	0.7 J	0.087 J	0.045 J	0.071 J	U	U	Ü	0.06 J	0.18 J	N/A	U	N/A
Fluoranthene	24	9.6	0.35 J	1	3.8	0.65	0.76	0.97	0.58	0.11 J	0.12 J	0.75	2.4	N/A	1.19	50
Pyrene	25	11	0.42	. 1	3.1	1.1	0,98	1,1	0.64	U	U	0.78	3.3	N/A_	1.29	50
Benzo(a)anthracene	. 12	6.6	0.21 J	0.56		0.4 J	.≥′0.46	2 0.54	0.35 J	0.049 J	0.04 J	0.38 J		N/A	0.89 J	0.224 / MDL
Chrysene	1.1 Addition	44.54.5. 6. 5	0.24 J	0.58	建基料 6	0.46		學達0.6	0.38 J	0.062 J	0.06 J	***	1.7	N/A	2.183 J	0.4
Bis-2-ethylhexyl phthalate	Ū	Ü	Ü	0.17 J	U	0.22 J	0.056 J	0.77 J	0.32 J	U	U_	0.09 J		N/A	1.24	50
Benzo(b)fluoranthene	200 年 18	146° 9.2	0.51	1.1	2.6	0.68		30 k 14	0.67	0.13 J	0.12 J	89.0		N/A	1.2	1.1
Benzo(k)fluoranthene	8.4	3.4	0.23 J	0.45 J	1.2	0,29 J	0.33 J	0.34 J	0.23 J	0.049 J	0.06 J	0.35 J	0.92	N/A	0.51 J	1.1
Benzo(a)pyrene	14 Julian		.4, 0.3B J	××. 0.8		0.52	為線 0.69	越。0.76	0.49	0.084 J	0.079 J		464 July 149	N/A	0.83 J	0.061 / MDL
Indeno(1,2,3-cd)pyrene	2 kg 47.4	3	0.29 J	0.3 J	0.74 J	0.36 J	0.29 J	0.33 J	0.26 J	0.046 J	0.045 J	0.26 J	1	N/A	0.64 J	3.2
Dibenzo(a,h)anthracene	Ü	U	±0.083:J	Ü	#0.096 J	Ü	C	U	U	U	Ü	10,07970	畿0は9.0	N/A	0.055 J	0.014
Benzo(g,h,i)perylene	4.2 J	1.6 J	0.21 J	0.22 J	0.43 J	0.25 J	0.22 J	0.21 J	0.18 J	υ	U	0.2 J	0.69	N/A	0.42 J	50
Total cPAH	70.8	35.3	1.943	3.79	9.836	2.93	3.176	3.97	2.38	0.42	0.404	3.289	10,61	N/A	6.308	1
Total SVOC	179	83.54	3.113	7,65	26.706	5.898	5.907	7.936	4.48	0.588	1.064	5.734	19.561	N/A	11.5279	*
Unknown	1.7	0.2	0.19	0.86		0.16	*	0.11	0.35	0.14	0.25	0.19	0.21	N/A	N/A	N/A
Unknown	2.3	0.3	0,11	2		0.1	*	0.16	0.23	0.092	0.16	0.16		N/A	N/A	N/A
Unknown	2.8	0.39	0.081	1.3		0.14		0,16	0.22	0.21	0.097	0.15		N/A	N/A	N/A
Unknown	1.7	0.19	0.18		0.94	0.11		0.18	0.16	0.26	0.17	0.3	0,15	N/A	N/A	N/A
Unknown	4.7	0.49	0.28	<u> </u>	1.6			0.18	0.2	0.098	0.18	0.19		N/A	N/A	N/A
Unknown	1.5				0.87	0.26		0.17	0.24	0.1		0.099		N/A	N/A	N/A
Unknown	2.1	0.21	0.16		1.3	1.6		0.64	0.58	0.24		0.12	0.16	N/A	N/A	N/A
Unknown	1.6 1.4		0.31 0.14			0.22		0.82	0.81	0.22		0.17	0,16 0,99	N/A N/A	N/A	N/A
Unknown Unknown	2.9	0.33		l	 	0.22		0.9		0.25		0.14			N/A	N/A
Unknown	1.7				 	0,23		1,3 1,4		0.45			0.97 0.88	N/A	N/A	N/A
Unknown	1.1	0.13	0.16	+	 	0.23	*	1,4		1.4	0.10	0.72 0.74		N/A N/A	N/A	N/A
ATTENDED TO THE PARTY OF THE PA	0.96			<u> </u>	 	0.23			*	0.55	0.17	0.74	+		N/A	N/A
Unknown	1.5			L	 	0.27					U.17	0.4		N/A N/A	N/A	N/A
Unknown	1.1	0.12			 	0.23		*	······	*		0.29			N/A	N/A
	 	0.59	0.48		*	0.23				*				N/A N/A	N/A	N/A
Unknown	 	ļ	0.48	-	ļ	0.42				-		1.3 0.38		N/A N/A	N/A N/A	N/A N/A
Unknown	 		0.97	 	 	0.40					 	0.38	1	N/A	N/A N/A	N/A N/A
Unknown Unknown	 		0.42	-	· · · · · ·	0.86			<u> </u>		*	6.39		N/A N/A	N/A N/A	N/A N/A
Unknown	+	+	0.75		<u> </u>	0.92	*	+			ļ <u>-</u>	-		N/A N/A	N/A N/A	N/A N/A
Unknown (PAH)	+	 	0.70		0.36		*	*	*	*	 	 	0.28	N/A	N/A	N/A
Unknown (PAH)	 		 		0.44		*	 			 	*	0.39	N/A	N/A	N/A
Unknown (PAH)	+	 	 	 	0.63				 	 	·} 	 	0.17	N/A	N/A N/A	N/A
Unknown (PAH)	+ -	 	A	*	0.41			+	*	*	+	 	0.15		N/A	N/A
Unknown (PAH)	+	+	+-	*	0.19		+	*	*	 	*	*	0.15		N/A	N/A
Unknown (PAH)		+	-	 	0.2			*			+	 	0.16		N/A	N/A
Unknown (PAH)	*	1	1 +		0.22		 	 	+	 	 	 	0.18		N/A	N/A
Unknown (PAH)	*	*	1	*	0.18			 	*		*	 	0.14	N/A	N/A	N/A
Unknown (PAH)	*	 				' -		*	*	 	+		1.1	N/A	N/A	N/A
LBS#9	*	+	1		+	+		+	0.83	+	 	*	 	N/A	N/A	N/A
Kev:			 -			·		1	1 0.00	1	J			19/74	INA	IWA.

Key: TP- Test Pit

TP- Test Pit * - No tests done for the sample W - Post Spike recovery is out of limits
U- Not Detected ****- Lead Range is 200-500 ppm in Urban Areas
SB- Sile Background B - Analyte Detected in Melhod or Trip Blank
Total cPAH value includes: benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo (a)pyrene, indeno(1,2,3-cd)pyrene, dibenzo(a,h)anthracene

Table 3-3

SUBSURFACE SOIL SAMPLING ANALYTICAL RESULTS SUMMARY CAMPUS SCHOOL #89, BUFFALO, NEW YORK

Surface Surf		OVIIII	00 00	INCOL	moo, w	21126	,,,, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	***	
TP-2 TP-7 TP-12 TP-13 TP-19 Background Background Background Section Section		Sub	Sub	Sub	Sub	Sub	Eastern		NYSDEC
Final Depth of TP's 2.5 ft. 8 ft. 6 ft. 4.5 ft. 5 ft. N/A N/A		Surface	Surface	Surface	Surface	Surface	USA	Äverage	Cleanup
Compounds		TP-2	TP-7	TP-12	TP-13	TP-19	Background		Values
Compounds mg/kg	Final Depth of TP's	2.5 ft.	8 ft.	6 ft.	4.5 ft.	5 ft.	N/A	N/A	N/A
Cyanide U U U U U O.764 N/A 1.52 Site Aluminum 11000 5390 6200 11100 9970 33,000 10,870 Antinony 3.85 B 6.51 B 8 U 4 B N/A U Arsenic 3.31 7 3.47 3 3.99 B 3.000 2.933 7 Barlum 160 116 126 169 211 15 to 600 92.56 30 Beryllium 30529 B 10.584 B 3.481 B 3.1072 F 0-1.75 0.573 B 0.1 Cadmium 0.907 U 1.06 U 1.85 0.11 0.681 1 0.681 1 Calcium 2390 6890 19500 18400 36000 36000 130 to 35000 29700 0 16.01 15.3 5 0.11 0.681 1 Cobalt 6.69 5.81 B 5.04 B 8.85 5.51 B 2.5 to 40 7.72 2 3 Copper 25.5 115 344 4 412 12 147 10 1650 25.00 18100 2.00 Lead 233 43	Compounds	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Aluminum	Metals								
Antimony	Cyanide	U	Ü	Ū	U	0.764	N/A	1.52	Site Specific
Antimony 3.85 B 6.51 B 8 U 4 B N/A U	Aluminum	11000	5390	6200	_11100	9970	33,000	10,870	
Barlum		3.85 B					N/A	U	SB
Barlum	Arsenic	编编增1	7	· A 「新聞館」	睡 9.9	网络森里 15	3 to 12	9.93	7.5 or SB
Cadmlum 0.907 U 1.06 U 1.85 0.1-1 0.681 1 Calcium 2390 6890 19500 18400 36000 130 to 35000 29700 Chromium 12.1 15 12.9 10.2 18.4 1.5 to 40 15.3 5 Cobalt 6.69 5.81 B 5.04 B 8.85 5.51 B 2.5 to 40 7.72 3 Copper 25.5 115 34.4 41.2 147 1 to 50 25.7 2 Iron 12.1100 16600 11.400 20.500 20.500 20.00 to 500 18100 2,00 Lead 233 3830 392 199 425 200 to 500 551,3 S8***** Magneslum 1900 1940 4020 4110 9910 100 to 5000 1027,6 Manganese 482 137 275 293 386 50 to 5000 427,3 Mercury 0.1 0.38 367,315	Barlum			126	169	211	15 lo 600	92,56	300 or SB
Calcium 2390 6890 19500 18400 36000 130 to 35000 29700 Chromium 12.1 15 12.9 10.2 18.4 1.5 to 40 15.3 5 Cobalt 6.69 5.81 B 5.04 B 8.85 5.51 B 2.5 to 40 7.72 3 Copper 25.5 115 B 34.4 34.2 34.7 1 to 50 25.7 2 Iron 3.21900 16600 81.1400 37.400 392000 200 to 550000 18100 2.0 Lead 233 3810 392 199 425 200 to 500 551.3 SB***** Magneslum 1900 1940 4020 4110 9910 100 to 5000 1027.6 Manganese 482 137 275 293 386 50 to 5000 427.3 Mercury 0.1 0.38 0.015 U 312 0.001 to 0.2 0.145 Nickel 3.174 13.13 1812	Beryllium	40,529 B	10.584 B	±0:481;B	81:11:06:E	验1017.24	0-1.75	0.573 B	0.16 or SB
Chromium 12.1 15 12.9 10.2 18.4 1.5 to 40 15,3 E Cobalt 6.69 5.81 B 5.04 B 8.85 5.51 B 2.5 to 40 7.72 3 Copper 25.5 115 34.4 31.2 347 1 to 50 25.7 2 Iron \$2.1960 16600 \$11400 20500 2000 to 50000 18100 2,00 Lead 233 3810 392 199 425 200 to 500 551.3 58************************************	Cadmlum	0.907	U	1.06	U	1.85	0.1-1	0.681	10 or SB
Cobalt 6.69 5.81 B 5.04 B 6.85 5.51 B 2.5 to 40 7.72 3 Copper 25.5 115 44.4 41.2 147 1 to 50 25.7 2 Iron 32.1300 16600 91.1400 20500 2000 to 55000 18100 2,00 Lead 233 38610 392 199 425 200 to 500 551.3 58***** Magneslum 1900 1940 4020 4110 9910 100 to 5000 1027.6 Manganese 482 137 275 293 386 50 to 5000 427.3 Mercury 0.1 0.38 0.15 U 31.4 0.001 to 0.2 0,145 Nickel 317.4 314.3 1812 319.5 0.5 to 25 18.03 1 Polassium 549 B 507 B 660 1080 1270 8500 to 43000 1633,3 Selenium 0.38 WB 0.67 0.39 B 264 B	Calcium	2390	6890	19500	18400	36000	130 to 35000	29700	SB
Copper 25.5 115 34.8 34.2 147 1 to 50 25.7 2 Iron ±21100 ±600 ±1400 27400 20500 2000 to 550000 18100 2,00 Lead 233 ±3810 392 199 425 200 to 500 551.3 SB***** Magneslum 1900 1940 4020 4110 9910 100 to 5000 1027.6 Manganese 482 137 275 293 366 50 to 5000 427.3 Mercury 0.1 538 5015 U 14 0.001 to 0.2 0,145 Nickel ±17.4 ±14.3 1617 38.2 195 0.5 to 25 18.03 1 Potassium 549 B 507 B 650 1080 1270 8500 to 43000 1633,3 Selenium 0.38 WB 0.67 0.39 B 0.64 B U 0.1 to 3.9 U Sodium 105 B 159 B 160 B 280	Chromium	12.1	_ 15	12.9	10.2	18,4	1.5 to 40	15,3	50 or SB
Iron	Cobalt	6.69	5.81 B	5.04 B	8.85			7.72	30 or SB
Iron	Copper	25.5	受性 (115	44.4	7 41.2	147	1 to 50	25.7	25 or SB
Magnesium 1900 1940 4020 4110 9910 100 to 5000 1027.6 Manganese 482 137 275 293 386 50 to 5000 427.3 Mercury 0.1 5038 5038 1038	lron				17400	@J20500	2000 to 550000	18100	2,000 or SB
Manganese 482 137 275 293 386 50 to 5000 427.3 Mercury 0.1 0.38 0.015 U 312 0.001 to 0.2 0.145 Nickel	Lead	233	福建3810	392	199	425	200 to 500	551.3	SB****200-500
Mercury 0.1 638 615 U 314 0.001 to 0.2 0.145 Nickel 317.4 318.2 318.2 319.5 0.5 to 25 18.03 1 Potassium 549 B 507 B 660 1080 1270 8500 to 43000 1633,3 Selenium 0.38 WB 0.67 0.39 B 0.64 B U 0.1 to 3.9 U Sodium 105 B 159 B 160 B 280 B 217 B 6000 to 8000 220.3 Thallium 0.81 B 0.46 B 0.63 B 0.75 B 0.65 B Not Available 0.51 B	Magnesium	1900	1940	4020	4110	9910	100 to 5000	1027.6	SB
Nickel	Manganese	482						427.3	SB
Potassium 549 B 507 B 660 1080 1270 8500 to 43000 1633,3 Selenium 0.38 WB 0.67 0.39 B 0.64 B U 0.1 to 3.9 U Sodium 105 B 159 B 160 B 280 B 217 B 6000 to 8000 220.3 Thallium 0.81 B 0.46 B 0.83 B 0.75 B 0.65 B Not Available 0.51 B								0,145	0,1
Selenium 0.38 WB 0.67 0.39 B 0.64 B U 0.1 to 3.9 U Sodium 105 B 159 B 160 B 280 B 217 B 6000 to 8000 220.3 Thallium 0.81 B 0.46 B 0.63 B 0.75 B 0.65 B Not Available 0.51 B						學 第195		18,03	
Sodium 105 B 159 B 160 B 280 B 217 B 6000 to 8000 220,3 Thallium 0.81 B 0.46 B 0.63 B 0.75 B 0.65 B Not Available 0.51 B	Potassium	549 B	507 B	660	1080	1270	8500 to 43000	1633,3	SB
Thallium 0.61 B 0.46 B 0.63 B 0.75 B 0.65 B Not Available 0.51 B		0.38 WB						Ü	2 or SB
		105 B							
	Vanadium						1 lo 300		
Zinc 编码79 编码280 编码280 编码86 编码86 编码86 9 to 50 239.3 2		始解879	排除8 80	1989 188	操轴线 86	翻编85 3	9 (0 50	239.3	20 or SB

Key: TP- Test Pil

Table 3-3 continued

			JIO 0 1		•••			
						East USA	Average	NYSDEC
	TP-2	TP-7	TP-12	TP-13	TP-19	Background	Background	TAGM
Volatile Organics					{	l	1.	
Methylene chloride	0,004 J	0.005 J	0.005 J	0.006 J	0.004 J	. N/A	N/A	0.1
Acelone	•	0.011 J	0.006 J	0,01 J	•	N/A	N/A	0,2
Benzene		*	*	•	0.035	N/A	N/A	0.08
Toluene	•	*	#	•	0,12	N/A	N/A	1.5
Elhylbenzene	*	*	*	•	0.025	N/A	N/A	5.5
p-Xylene/m-Xylene	*		*		0.16	N/A	N/A	1.2
o-Xylene	*		*	***************************************	0.088	N/A	N/A	1.2
Styrene	*		*	4	0.033	N/A	N/A	N/A
Unknowns								
Unknown	0,006	0.009	0.007	0.014	0.087	N/A	N/A	N/A
Unknown	0.008	0.008	800,0	0.013	0.34	ΝA	N/A	N/A
Unknown	0.007	0.014	0,026	0.009	0.081	N/A	N/A	N/A
Unknown	0.028	0.013	*	0.008	0.13	N/A	N/A	N/A
Unknown	*	0.048	*	0.032	0.045	N/A	N/A	N/A
Unknown (aromatic)	•	*	*	•	_0.061	N/A	N/A	N/A
Unknown (aromalic)		•	*		0.12	N/A	N/A	N/A
Unknown (aromatic)	+	*	*		0,092	N/A	N/A	N/A
Unknown (aromatic)		•	•	*	0.05	N/A	N/A	N/A
Unknown (aromatic)			•		0.056	N/A	N/A	N/A
Kase								

Key: TP- Test Pil

Tab	le	3-3	continu	ed
-----	----	-----	---------	----

		ı aı	oie a∹	3 con	linued			
						East USA	Average	NYSDEC
	TP-2	TP-7	TP-12	TP-13	TP-19	Background	Background	TAGM
Semi-Volatile Organics	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
4-Methylphenol	U	U	Ü	U	19905 910	N/A	U	0.9
Naphthalene	U	บ_	0.079 J	U	15	N/A	U	13
2-Methylnaphthalene	U	U	U	U	26 J	N/A	U	36.4
Acenaphthylene	U	0	U	Ú	6.3 J	N/A	U /	41
Acenaphihene	U	U	0,15 J	U	38 J	N/A	0.05 J	50
Dibenzofuran	U	U	0.098 J		職職280	N/A	U	6.2
Fluorene		U	0.18 J	U	46	N/A	U	50
Phenanthrene	0.13 J	0.17 J			新型型240	N/A	0.88	50
Anthracene	Ü	U	0,35 J	U	灣 201275	, N/A	0.1499	50
Carbazole	Ü	U	0.22 J	U	27 J	/ N/A	IJ	
Fluoranthene	0.23 J	0.22 J	1.8		发写150	N/A	1.19	50
Pyrene	0.22 J	0.21 J	2.9	U	魏國日60	N/A	1.29	50
Benzo(a)anthracene	0.11 J	0.11 J	1000000	0.06 J	ST2272	N/A	0,89 J	0.224 / MDL
Chrysene	0.13 J	0.12 J	海流型質	0.063 J	美国联票66	~- N/A	2.183 J	0.4
Bls-2-ethylhexyl phthalate	U	U	0,067 J	U	Ü	N/A	1.24	50
Benzo(b)fluoranthene	0.27 J	0.22 J	经数据2	0.13 J	延进,97	N/A	1.2	1.1
Benzo(k)fluoranthene	0.12 J	0.098 J	0.69	0.05 J	H. 33 J	~ N/A	0.51 J	1.1
Benzo(a)pyrene	323 O.18 W	∰ 0.16°J	#### 1.4	0.086	EE 8.87	N/A	0.83 J	0.061 / MDL
Indeno(1,2,3-cd)pyrene	0.12 J	0.081 J	0.88	U	34 U	N/A	0.64 J	3.2
Dibenzo(a,h)anthracene	U	U	3507950	U	3028 9 V	N/A	0.055 J	. 0.014
Benzo(q,h,l)perylene	0,075 J	0.051 J	0.61	Ū	26 J	. N/A	0.42 J	50
Total cPAH	0.93	0.789	7.36	0,389	397.9	N/A	6,308	4
Total SVOC	2,515	2.229		0.568	1301.1	N/A	11,5279	•
	<u> </u>			·	1 - 1			
Unknown	0.15	*	0.16	0.92	16	N/A	N/A	N/A
Unknown	0.21	•	0.12		9.6	N/A	N/A	N/A
Unknown	0.28	*	0.16		13	N/A	N/A	N/A
Unknown	0,19	*	0.16	•	14	N/A	N/A	N/A
Unknown	0.51	*	0.25	•	30	N/A	N/A	N/A
Unknown	0.45		0.29	+	32	N/A	N/A	N/A
Unknown	0.58		0.48	· •	20	N/A	N/A	N/A
Unknown	0.59		0.14	*	51	N/A	N/A	N/A
Unknown	0.6		0.15		20	N/A	N/A	N/A
Unknown	0.5		1.2	*	17	N/A	N/A	N/A
Unknown	1	 	0.15		15	- N/A	N/A	N/A
Unknown	 , 	 	0.16	 •	10	N/A	N/A	N/A
Unknown	 	*	0.10		25	N/A	N/A	N/A
Unknown	 	 -	0,16	-	17	N/A	N/A	N/A
Unknown	 - : -		0.14				N/A	N/A
	 		0.14	ſ <u></u>	10		N/A	N/A
Unknown	 	 	0.16	l	.9.9		N/A N/A	N/A N/A
Unknown	<u> </u>	ļ 		1	36			
Unknown	 	ļ 	0,2	-	 	N/A	N/A	N/A
Unknown	1	 		 -		N/A	N/A	N/A
Unknown	 	 	1.9		 - ; -	N/A	N/A	N/A
Unknown (PAH)	 	 	2.3	<u>' </u>	 	N/A	N/A	N/A
Unknown (PAH) Kev:	<u> </u>		<u> </u>	1	1	N/A	N/A	N/A

Key: TP- Test Pit U- Not Detected

All five subsurface soil samples analyzed had detectable levels of PAHs (refer to Table 3-3). However, only two locations, TP-12 and TP-19 contained levels consistently above TAGM levels. It should be noted that the sample collected from TP-19 at between 4 and 5-feet included tar and shingle materials within the ash material. In general, subsurface PAH levels were less than surface soil levels with the exception of the sample collected from TP-19. This sample, as noted above, contained shingle and roofing tar-like materials which typically contain PAH compounds.

All other test pit samples had total SVOC's significantly below 100 ppm and total cPAHs below 10 ppm. A number of unknown compounds were also detected in test pit samples TP-2, TP 12, and TP-19. Unknown compounds in TP-19 were at levels significantly higher then the other samples and are most likely due to the tar materials.

Various metals were detected in samples from all test pits. Most results were well below the TAGM criteria. Similar to PAH concentrations, metal concentrations were generally higher in surface samples. The highest metal concentration was for calcium at 78300.0 mg/kg in the surface sample at test pit location TP-16. The highest metal concentration above the TAGM cleanup values was for Iron at 22700.0 mg/kg in the surface sample at test pit TP-3. Lead was detected in surface soil sample TP-19 slightly above urban background at 506 mg/kg (this location is near a road and near snow piles created from street plowing) and in subsurface sample TP-7 at 3,810 mg/kg. The Geotechnical Investigation conducted in November 2000 identified subsurface lead levels in two samples (24 to 26 feet and 14 to 18 feet bgs respectively) at 5,030 mg/kg and 1,310 mg/kg.

3.3 Risk Assessment

As indicated above, the primary constituents of concern identified at the Site are cPAHs and metals in the surface and subsurface soils. The primary potential exposure routes associated with the PAHs, and metals in the onsite soils include:

- Dermal contact
- Ingestion
- Inhalation

With the exception of a few isolated samples (i.e. TP-19 Tables 3-2 and 3-3), the concentrations of the various PAHs and metal compounds detected were slightly above the NYSDEC TAGM 4046 recommended soil cleanup objectives. This would indicate that the associated health risks, assuming workers/students and pedestrians are actually subjected to substantial long-term exposure, are also minimal. It should be noted that, during the Phase II investigation, lead was detected in two samples above NYSDEC guidance values at 3,810 mg/kg in one subsurface sample and 506 mg/kg in one surface soil sample near a road way and snow piles. Also, elevated lead levels where detected in two of the boreholes sampled during the Geotechnical Investigation (see Table 3-4). These results indicate that lead above NYSDEC guidelines is not widespread across the property and is most likely limited to localized hot spots.

3.3.1 <u>Soils</u>

Samples collected from surface soils best represent the zone to which the public could routinely be exposed under current Site conditions. People could be exposed to surface soils in all areas of the Site by sitting on the ground, playing, mowing the grass, or landscaping activities. People would only be exposed to subsurface soils if they dig below the surface and/or the subsurface soil is left at the surface.

Surface Soils

PAHs and metals can be introduced into the environment by natural (e.g., soil chemistry, forest fires) and human (e.g., automobile, coal or other heating fuel combustion, industry, or stone quarrying) processes. These compounds are typically bound up in the soil/fill materials and are not very mobile. They have low solubilities and do not leach readily to groundwater, even at relatively high concentrations. People using or maintaining the school could be exposure to PAHs and metals in surface soils by sitting on the ground, playing, gardening, landscaping, or other improvement activities. Students or other members of the community using the play areas could be exposed to surface soils through participating in sports or by sitting on the ground. Since large areas of the school property are paved, the public would not be exposed to surface soil in these areas. The grass on most of the rest of the property was observed to be thick and well-established. Well-established and maintained grass cover usually minimizes human exposure to soil by acting as a barrier to direct contact with soil and minimizes generation of wind blown dust and erosion/transport by surface run-off.

Table 3-4 (Geotechnical Engineering Report - Dec. 2000)

School 89 Campus East Buffalo, New York

Summary of November 1 & 2, 2000 Analytical Test Results

		Concentr	ation (PPM)		NYSDEC Cleanup Objective (PPM)	Eastern U.S.A Background (PPM)
	BH-1	BH-2	BH-3	BH-4		
	(14'-16')	(24'-26')	(14'-18')	(14'-20)		
Aluminum	7,790	4,580	7,120	4,480	SB	33,000
Antinomy	U (6.94)	8.21	8.13	U (6.03)	SB	N/A
Arsenic	U (16.7)	29.7	28.4	U (14.5)	7.5 or SB	3-12
Barium	150	621	1630	342	300 or SB	15-600
Beryllium	0.96	0.678	0.744	0.651	0.16 (Heast) or SB	0-1.75
Cadmium	1117	U (13.9)	U (12.8)	0.722	1 or SB	0.1-1
Calcium .	6,560	16,600	40,600	8,520	SB	130-35,000*
Chromium	9,83	30.8	23.1	11,6	10 or SB	1.5-40*
Cobalti	8.55	9.05	10.5	4.64	30 or SB	2.5-60*
Copper	63:6	185	132	60.6	25 or SB	1-50
Iron	10,700	75,800	39,500	14,500	2,000 or SB	2,000-550,000
Lead	378	5,030	1,310	436	SB	**
Magnesium	1,040	1,690	7,500	730	SB	100-5,000
Manganese	250	383	329	1,100	SB	50-5,000
Mercury	0.048	0.039	0.49	0.24-E	0.1	0.001-0.2
Nickel	18.6	59.6	33.3	19.8	13 or SB	0.5-25
Potassium	624	341	979	446	SB	8,500-43,000*
Selenium	U (9.72)	U (9.72)	11.1	U (8.45)	2 or SB	0.1-3.9
Sodium	326	. 333	424	250	SB	6,000-8,000
Vanadium	42.4	28.4	28.2	18	150 or SB	1-300
Zinc	207	501	3,610	290	20 or SB	9-50

		Concenti	ation (PPM)	i	NYSDEC Cleanup Objective (PPM)	Eastern U.S.A Background (PPM)
	BH-1	BH-2	BH-3	BH-4		
	(14'-16')	(24'-26')	(14'-18')	(14'-20)		
Acetone .	. U (0.034)	U (0.037)	U (0.033)	0.045	0.2	
Methylene chloride	U (0.007)	U (0.007)	0.007	U (0.006)	0.1	lue .
Benzene	Ū	U (0.001)	0.001	U (0.0008)	0.06	-
	(0.0009)		· .			
Phenanthrene	U (1.80)	0.11 J	U (0.34)	U (1.60)	50 ***	-
Fluoranthene	1.30 J	0.57	U (0.34)	U (1.60)	50 ****	1
Pyrene	2.00	0.76	0.13 J	0.79 J	50 ***	•
Benzo(a) anthracene	2:30	0.53	U (0.34)	1.10 J	0.224 or MDL	_
Chrysene	2,20	0.46	U (0.34)	1.50 J	0.4	-
Bis-2- ethylhexyl phthalate	U (1.80)	U (0.40)	0.680	U (1.60)	50 ***	-
Benzo(b) fluoranthene .	5:30	0.84	U (0.34)	3.60	1.1	-
Benzo(k) fluoranthene	1.80 J	0.32 J	U (0.34)	1.20 J	1.1	·
Benzo(a) pyrene	3.50	0.5%	U (0.34)	2.00	0.061 or MDL	
Indeno (1,2,3-cd) pyrene	2.50	0.25 J	U (0.34)	1.80	3.2	-
Benzo(g,h,i) perylene	2.60	0.28 J	U (0.34)	1.90	50 ***	-

PPM - parts per million or mg/kg

U (#) - compound undetected (detection limit)

N/A - not available

SB - site background

E - estimated result due to poor duplicate recovery

J-result estimated below the quantitation limit

MDL - method detection limit

NYSDEC Cleanup Objectives listed in Technical Administrative Guidance Memorandum # 4046 dated January 1994.

* New York State background

^{**} background levels for lead vary widely. Average levels in undeveloped, rural areas may range from 4-61 ppm. Average background levels in metropolitan or suburban areas or near highways are much higher and typically range from 200-500 ppm.

^{***} as per TAGM #4046, total VOC's < 10 ppm, total semi-VOC's < 500ppm and individual semi-VOC's < 50ppm

Subsurface Soils

Evaluation of site data indicates that the concentrations of several metals and cPAHs in the subsurface soils exceed the levels that are typically found in native soils, but are similar to the concentrations found in subsurface soils at other Buffalo neighborhoods.

Exposure to the PAHs and metals in the subsurface is not likely to occur under most conditions. Exposure would only occur if excavations occurred below the surface and if the subsurface soil is left at the surface. In general, potential for exposure to the fill materials at the site will be limited to onsite excavations (i.e. piers, utilities, foundations, etc.) and/or fugitive dust generated at the site during excavations.

The concentrations of total cPAHs in the subsurface soil samples from the Site (Table 3-3) range from 0.389 to 397.9 mg/kg, collected at a depths of 4.5 and 5 feet. The highest concentration is associated with the sample from TP-19 which included a tar like substance that appeared to be buried roofing material. The average concentrations of cPAHs in samples with detectable levels (excluding the highest concentration) is 2.367 mg/kg. The average concentration is at the upper end of the range for urban background (1-3 mg/kg) reported by Menzie et. al. (1992).

Most of the metals detected in subsurface soil were within typical background levels, with the exception of arsenic, beryllium, copper, iron, mercury, nickel, lead and zinc. The average concentrations in subsurface soils are very similar to those in the surface soils at the Site and are generally slightly above or well below eastern USA background values with the exception of the isolated pockets of elevated lead concentrations.

Summary

[]

The primary potential exposure routes associated with the PAHs and metals in the onsite fill materials include dermal contact, ingestion and inhalation.

With a few exceptions, all surface and subsurface samples analyzed had concentrations of various PAHs and metal compounds only slightly above the NYSDEC TAGM #4046 recommended soi

cleanup objectives. This would indicate that the associated health risks, assuming workers/students and pedestrians are actually subjected to substantial long-term exposure, are also minimal. It should be noted that lead was detected in four samples at relatively high concentrations above NYSDEC guidance values: 3,810 mg/kg (Phase II ESA, TP-7 subsurface sample); 506 mg/kg (Phase II ESA, TP-19 surface sample); 5,030 mg/kg (Geotechnical Report, BH-2 sample); and 1,310 mg/kg (Geotechnical Report, BH-3 sample). However, these results indicate that lead above NYSDEC guidelines is not widespread across the property and is most likely limited to hot spots.

Considering the nature of the proposed continued use of the property as a school and park/ball field, the potential exposure of students/faculty to surface soil and workers to subsurface fill materials via the above potential exposure routes is low and will be virtually eliminated if engineering and administrative controls are instituted.

The situation at the Site is that the fill materials are typically overlain by 0.5 to 3.5 feet of topsoil. Since the levels of cPAHs and metals in subsurface soils at the Site are below the surface, chronic human contact (e.g., regular, continuous, long-term contact, the kind of exposure that forms the basis for the residential comparison values) to these contaminants is unlikely. Due to their location and that exposure is unlikely, the detected levels of cPAHs and metals in subsurface soils at the Site are not expected to pose a public health hazard. However, if these soils were brought to the surface and the constituents were made available for long-term human contact, risks for adverse health effects for exposure could increase. Consequently, the subsurface soils do not present an apparent health hazard.

3.3.2 Groundwater

There is minimal potential for groundwater contamination at the site due to the low solubility of PAHs and metals in the fill materials. Additionally, there is minimal potential for exposure of workers and/or students/faculty to groundwater, as the groundwater table is estimated to be at least 13 to 16 feet bgs in the non-quarry area of the Site. The four borings installed in the quarry area to the north of the school during the Geotechnical Program indicate groundwater levels between 19.7 and 22.3 feet bgs. Also, all water required for the development, both during and post construction, will be obtained from municipal sources. It should also be noted, that, all water used at the school is from a municipal source.

4.0 PROPOSED SITE DEVELOPMENT

The project consists of the renovation and construction of additions to School #89 and associated site work.

In general, the proposed development incorporates the following items:

- The school building additions will be supported on piles and/or piers with concrete slabs on grade;
- There will be no basements or other subgrade features, with the exception of utility lines;
- The Site will be graded such that the floor slabs of the buildings will be at or above the existing ground elevation. The remainder of the Site will be graded as shown on the bid construction drawings;
- All imported fill materials to be used on Site will be obtained from offsite sources and will be certified "clean";
- Utilities will be bundled and installed in dedicated corridors, as opposed to running them individually;
- Other site improvements include roadways, parking lots, pedestrian paved areas and landscaping;
- Possible underground storage tank replacement (Alternate Item);
- Implementation of stormwater and erosion control measures.

5.0 SOILS MANAGEMENT STRATEGIES

5.1General

This section presents a discussion of the soil management approaches that will be utilized in conjunction with the construction of the school additions at the Site. Whereas the soils at the Site pose only minimal potential risk to construction workers and/or faculty/students, this potential risk can be further reduced and/or eliminated if proper soil management strategies are employed.

As described in Section 3.3, the primary potential exposure routes associated with the PAHs, and metals in the onsite soils include:

- Dermal contact
- Ingestion
- Inhalation

Considering the nature of the proposed development (i.e., additions to the present school structure), the potential exposure of workers and/or faculty/students to fill materials at the site via the above exposure routes is low. This is primarily due to the fact that the primary chemicals of concern are some metals (lead) at hot spots and cPAHs. These compounds are typically bound up in the soil/fill materials and are not very mobile. They have low solubilities and do not leach readily to groundwater, even at relatively high concentrations. In general, potential for exposure to the fill materials at the site will be limited to onsite excavations (i.e., utilities, foundations, gardens, etc.) and/or fugitive dust generated at the Site.

Consequently, the soils management/handling procedures need to focus on reducing or eliminating the potential for workers and faculty/students to come in contact with the contaminated site soils. Based on a review of the investigation data and the proposed Site development plans, it has been determined that the following general approach will be utilized in managing contaminated soils at the site.

Existing areas of the Site which are covered with asphalt/concrete or have well
established grass should be maintained to the maximum extent practicable. Wellestablished and maintained grass cover usually minimizes human exposures to soil by
acting as a barrier to direct contact with the soil.

- All soil materials excavated at the Site (during and post construction) should be managed as if they are contaminated. This means that any fill materials excavated at the Site should be disposed off-site at a facility permitted to accept non-hazardous contaminated soils or should be utilized in regrading the site in accordance with 6 NYCRR Part 360-1.15 (b)(8) and capped with clean soils and/or concrete asphalt. An exception would be identified hot spots of lead which should be disposed of off-site as discussed above.
- All imported fill materials should be obtained from "virgin" sources and/or be tested to
 ensure they are clean and free of contaminants.
- No basements or other unnecessary excavations should be incorporated in the development, if possible. Utilities should be "bundled" and run in dedicated corridors to minimize soil excavation. All utility trenches should be backfilled with clean soils.
- Covenants for the school property should incorporate this Soils Management Plan.
 Additionally, language prohibiting the school from performing any subsurface excavations without managing soils in accordance with the SMP following completion of construction should be included.
- Dust control measures with full-time air monitoring (work areas and site perimeter) should be implemented during all intrusive activities to minimize inhalation exposures and create a public record.
- Full-time oversight should be provided during all intrusive activities to provide air
 monitoring and to document compliance with the SMP. A final construction monitoring
 report should be prepared upon project completion.
- Where possible, the existing site grade should be raised rather than lowered. Clean soils from off-site sources should be utilized (approximately twelve inches) in all areas where soil will be left exposed (i.e., not capped with asphalt/concrete) at the surface.

5.2 Soil Management/Handling Procedures

Specific soil management/handling procedures to be implemented at the site are described below. Additionally, prior to the commencement of any construction activities, the Contractor shall develop a Site Health and Safety Plan that meets the requirements outlined in Appendix B.

5.2.1 Building Addition Foundations

The materials to be excavated for the piers/footings will consist of existing fill materials. The fill materials will be managed as if they are non-hazardous contaminated soils. Consequently, the fill materials will be transported and disposed offsite in a permitted disposal facility. Alternatively, the fill materials may be utilized onsite (subsurface only) to re-grade the site. If the fill materials are retained onsite, placement during regrading will be limited to those areas of the site that will be capped with a minimum of 12-inches of clean soil, and/or concrete/asphalt, in order to limit potential exposure to future workers/faculty/students.

5.2.2 <u>Utility Trenches</u>

To ensure worker safety during installation and for future repair of buried Utility services, the following procedures have been established to ensure proper management of the soils:

- Fill/native materials will be excavated to create a minimum two foot wide trench and
 one foot below the proposed invert elevation of the deepest utility. The fill materials
 will be utilized onsite for backfilling and/or regrading as applicable and/or disposed
 offsite;
- The resultant trench will be backfilled and compacted with clean soils imported from offsite;
- The utilities may be installed prior to backfilling and/or through the clean compacted soils, as necessary.

5.2.3 Site Grading

In areas to be re-graded, the existing soils/fill will be excavated and repositioned as necessary to achieve the desired subgrade. The subgrade elevation will be maintained 12-inches below the final design elevations except in areas that will be capped with asphalt and/or concrete. In these areas the subgrade and final grade elevations will be the same. The upper 12-inches in the remaining areas will be filled to final grade with clean soils/topsoil imported from offsite sources.

Under no circumstances will the fill materials occupy the final elevation at the end of construction in any area of the site, except under the asphalt driveways and/or parking lots or concrete building slabs.

5.2.4 <u>Construction Observation</u>

An on-site, independent Environmental Inspector will be provided throughout the excavation and grading activities to evaluate the soil/fill materials encountered, and verify compliance with this SMP. This individual will be experienced with identification and screening of non-hazardous contaminated soils. The primary role will be to examine the fill and soils continuously during the footer installation, utility trench excavation and site grading operations to ensure that conditions are not substantially different than what has been anticipated. Additionally, this individual or a second individual will monitor, air quality to document conditions during construction activities involving movement of soils.

Implementation of a perimeter air quality monitoring program will be required. Perimeter air quality will be measured at upwind and downwind locations to determine the potential offsite impact from onsite construction activities. At a minimum, monitoring for fugitive dust will be required. Real-time fugitive dust monitors should be used continuously throughout the work day. If downwind levels exceed 15.00 mg/m³ above ambient levels, dust suppression measures shall be implemented.

Throughout the construction, the observer will prepare daily field reports that document activities performed, equipment and manpower onsite, screening and/or testing results, weather conditions, progress, changes or variances from the SMP, etc.

Following completion of the site activities related to the SMP, a brief Engineering Certification Report will be prepared. This report will summarize the construction activities and certify that the work was performed in accordance with the approved SMP. The field reports and other supporting documentation will be appended as necessary. The report will be signed and sealed by an engineer licensed to practice in New York State.

5.2.5 Clean Fill Requirements

It is anticipated that the fill materials and topsoil to be imported from off site will be

obtained from existing commercial suppliers and will be certified "clean" by the suppliers. However, should the contractor propose to import materials from other non-certifiable sources, one representative sample of the material from each proposed source will be obtained and analyzed for TCL Volatile/Semi-Volatile organics, TCL Pesticides/PCBs, Target Analyte List (TAL) metals and Cyanide analysis.

5.2.6 Manifesting of Excavated Fill Materials

The analytical data indicates that the fill materials are slightly impacted by PAHs and metals and are non-hazardous. Consequently, the fill materials will be handled as contaminated, non-hazardous soil. Should it be determined that any of the excavated fill materials are to be disposed off site, each truck will be provided with a "bill of lading" indicating that the soil/fill is non-hazardous.

6.0 CONTRACTOR REQUIREMENTS

During construction, the Contractor will be required to provide an onsite soils manager who will be responsible for the implementation of this SMP. The responsibilities of the onsite soils manager include:

- As a requirement of the SMP, the City of Buffalo Board of Education, will provide a full-time, on-site environmental inspector to oversee the contractor's compliance with the SMP.
 To that end, the contractor will need to coordinate all soil excavation activities with the inspector.
- Prior to the start of construction, the contractor will be required to prepare a site-specific Health and Safety Plan (HASP) per Appendix D requirements for this project. The HASP must be prepared in accordance with applicable USEPA, Occupational Safety and Health Administration (OSHA), American Council of Government Industrial Hygienists (ACGIH), and National Institute of Occupational Safety and Health (NIOSH) standards. The HASP should focus on reducing or eliminating the potential for workers/residents to come in contact with contaminated soils and/or inhale fugitive dust during construction. The HASP must identify any potential hazards related to excavating, handling and working around soils contaminated with PAHs and metals. The HASP must address all the normal items related to construction activities as well as the environmental issues specific to this project. Additionally, the contractor will need to determine the appropriate level of safety training required for personnel working on this project with respect to the contaminated nature of the materials to be excavated. Although it is not expected that 40-hour HAZWOPER training will be required, it is strongly suggested that the contractor's supervisory personnel, at a minimum, be trained and experienced in working with contaminated soils. The contractor must provide a qualified Health and Safety Officer onsite during all excavation and disposal operations.
- The contractor will be responsible for conducting his own air quality monitoring, or other monitoring, as deemed necessary by the HASP. This will be independent of any monitoring performed by the onsite Environmental Inspector.

- The Contractor must also address erosion and sediment control procedures to be implemented in order to prevent runoff from contaminated areas from impacting adjacent areas.
- The Contractor must develop a work plan which details the excavation, handling, and
 procedures he will utilize to meet the objectives of this soil management plan. This plan must
 be reviewed and approved by the City of Buffalo Board of Education prior to implementation
 of the project.

APPENDIX A PHASE II ENVIRONMENTAL SITE ASSESSMENT REPORT (MINUS APPENDIX B - D)

PHASE II ENVIRONMENTAL SITE ASSESSMENT CAMPUS EAST SCHOOL #89 106 APPENHEIMER AVENUE CITY OF BUFFALO, ERIE COUNTY, NEW YORK

Prepared for:

Buffalo Public Schools
Buffalo Board Of Education

Attention:

Mr. Thaddeus J. Fyda, R.A.

Prepared by:

Panamerican Environmental, Inc. 2390 Clinton Street Buffalo, New York 14227-1735 Ph: (716) 821-1650 Fax: (716) 821-1607

> URS Corp. 282 Delaware Avenue Buffalo, New York 14202

> > April-June 2001

TABLE OF CONTENTS

Sec	tion			Page
		ces		
1.0	Introduction 1.1 1.2 1.3	on and Background Introduction and Purpose Scope Background		1 1
2.0	Field Inves 2.1 2.2 2.3 2.4	Stigations Test Pit Program Soil Sampling And Analytical Program Site Map Generation. Air Quality Assessment		
3.0	Analytical	Results		6
4.0	Conclusion	ns		10
5.0	Warrant a	nd Limitations		12
		LIST OF TABLES	5	•
Tab	ole No.	Description	Following Pag	е
1 2 3		Summary of Subsurface Condition Subsurface Soil Sampling Analy Surface Soil Sampling Analytical	ons tical Results Summary	4 6 6
		LIST OF FIGURE	S	
Fig	ure	Description	Following Page	
1		Site Location Map		1
2		Project Map/Locations of Test Pits		3
Pana	american Envi	ronmental, Inc.	Campus School #89 (April-J	lune 2001)

LIST OF APPENDICES

Appendix

- A. Test Pit Logs
- B. Soil Analytical data
- C. Photographs
- D. Air Sampling Analytical Data

LIST OF PHOTOGRAPHS

Photograph

- 1. Test Pit location TP-1, facing south west
- 2. Test Pit stratigraphy, location TP-1
- 3. Test Pit location TP-2 facing north towards building
- 4. Test Pit stratigraphy, location TP-2
- 5. Test Pit location TP-3, facing south west
- 6. Test Pit stratigraphy, location TP-3
- 7. Test Pit stratigraphy, location TP-4
- 8. Test Pit location TP-4, facing south east
- 9. Test Pit stratigraphy, location TP-5
- 10. Test Pit location TP-5, facing north east
- 11. Test Pit location TP-6, facing south west
- 12. Ash and Debris from TP-6
- 13. Test Pit location TP-8, facing south west
- 14. Test Pit location TP-9, facing north west
- 15. Test Pit stratigraphy, location TP-9
- 16. Test Pit location TP-9, facing south
- 17. Test Pit location TP-10, facing south
- 18. Test Pit location TP-11, facing south west
- 19. Test Pit stratigraphy, location TP-11
- 20. Test Pit stratigraphy, location TP-12
- 21. Test Pit location TP-12, facing west
- 22. Test Pit location TP-15, facing south west
- 23. Test Pit locations TP-14 and TP-13, facing north
- 24. Test Pit location TP-12, facing north
- 25. Test Pit location TP-16, facing east
- 26. Test Pit location TP-17, facing south east
- 27. Test Pit location TP-17, facing north east
- 28. Surface Sample location SS-18, facing west
- 29. Test Pit location TP-19, facing north west
- 30. Test Pit location TP-20, facing east

1.0 INTRODUCTION AND BACKGROUND

1.1 INTRODUCTION AND PURPOSE

A surface and subsurface environmental assessment was completed by Panamerican Environmental, Inc. (PEI) and URS Corp. (URS) at the subject property located at 106 Appenheimer Avenue in the City of Buffalo, Erie County, New York. The assessment was conducted in general accordance with the scope of work provided with the proposal dated January 2, 2001 and Project Work Plan dated February 2001. A potion of the property historically was the site of a stone quarry which was filled with incinerator ash most likely from the incineration of household trash (based on the contents of the ash - i.e., bottles, metal cans, porcelain). Currently, a portion of the property contains Campus East School (Public School 89). The northwest portion of the existing school is located over the former quarry. The purpose of the assessment was to identify potential environmental impairment at the property and the associated impacts on planned construction activities associated with additions to the existing school.

1.2 SCOPE

The scope of the assessment focused on the following tasks:

- Investigation of surface soils on school property, adjacent property including the park/ball field and playground area west of the school
- Assessing subsurface soil/fill across the property
- Assessing air quality inside the building
- Developing a report of findings and recommendations

The investigation activities included a review of the proposed school addition footprint, as well as a surface and subsurface soil sampling and analysis program to assess surface and near surface soil conditions and to determine the depth to ash across the property. All work was conducted in general accordance with a site-specific Work Plan dated February 2001. This plan was reviewed and approved by the Buffalo Board of Education and included a Site Investigation Work Plan, Site-Specific Field Sampling Plan, a Quality Assurance/Quality Control Plan, and a Health and Safety Plan. The scope also included surveying sample locations and completion of a map identifying locations on an existing base map in accordance with best engineering practice and prepared under the direct supervision of a NYS licensed land surveyor.

1.3 BACKGROUND

The Campus East School was constructed about 1959 on property that previously was utilized as a limestone quarry from at least 1919 to the 1950s. Filled prior to construction of the school, the quarry extended from near Appenheimer Avenue, north to Kensington Avenue and west almost to Fillmore Avenue.

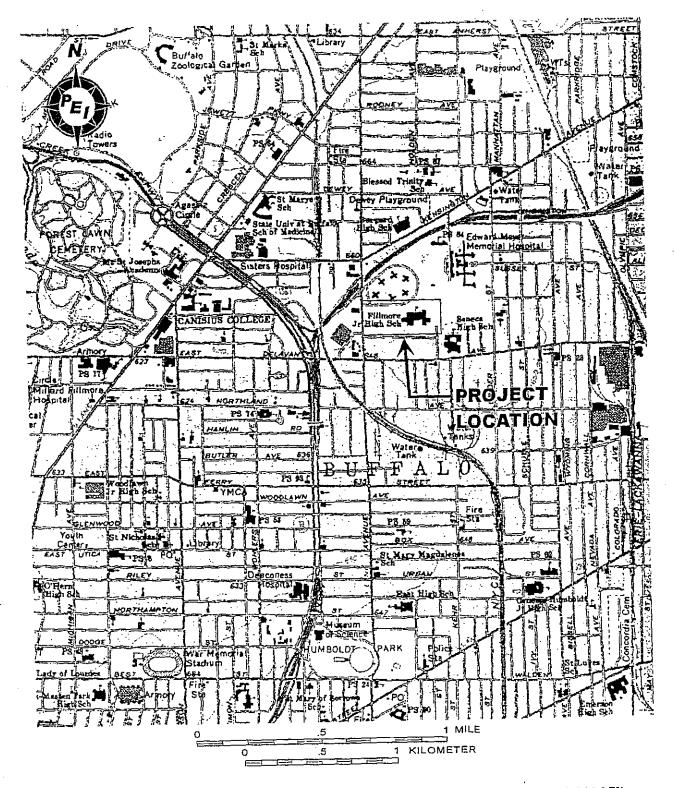


Figure 1. Project Location (USGS 7.5' Quadrangle, Buffalo SW, NY 1989 [1965]).

During recent assessments for planned additions to the school, contractors for the Buffalo Board of Education performed a Phase I Environmental Site Assessment and a series of geotechnical and engineering design studies ("Geotechnical Engineering Report, Public School 89 Additions, Buffalo, New York. Prepared for Buffalo Board of Education, Prepared by McMahon & Mann Consulting Engineers, P.C. December 2000") These studies suggested that the quarry was filled with ash and cinders that are covered by a layer of soil fill/topsoil. The topsoil varies from as much as approximately 6-7 feet to as little as less than 1 foot. The ash and cinders appear to extend from below the cover to the bottom of the quarry which was measured to be as much as 27 feet deep. Limited samples of the ash and cinder collected during these geotechnical/engineering design studies indicated elevated levels of polynuclear aromatic hydrocarbons (PAHs) and metals at concentrations, that in some cases, exceeded the New York State Department of Environmental Conservation (NYSDEC) Technical Assistance and Guidance Memorandum 4046 (TAGM 4046, revised 1994) soil cleanup value guidelines.

2.0 FIELD INVESTIGATIONS

The Phase II was designed to provide a more detailed assessment of the approximately 9-acre school property, as well as the adjoining park/ball field property, and to further investigate the preliminary findings of the geotechnical/engineering design studies.

PEI/URS performed an assessment of the surface and subsurface environment across the property with a series of subsurface test pits using a tire mounted backhoe with a I-2 foot bucket. Surface soil samples (0-2") were collected as 20 discrete samples at each test trench location. A total of nineteen (19) test trenches were advanced to the top of the bedrock layer or within the upper ash zone. One additional surface sample was collected in the middle of the field.

A soil gas screening and limited soil sampling was performed to investigate surface and subsurface conditions at the property. Excavated soils were screened using an direct reading organic vapor analyzer, as the trench was advanced the soil was placed on 6-mil plastic. Each test pit was then backfilled and compacted prior to moving to the next. During the test pit operations, the top soil fill material was segregated from observable ash fill. The trenches were then backfilled with the excavated materials in reverse order from how they were removed (i.e., ash fill placed on the bottom of the pit and covered with the top soil). Special care was made to prevent the subsurface ash material from remaining on the surface. Soil samples were sent to a laboratory and analyzed for Target Compound List/Target Analyte List (TCL/TAL) compounds including PCBs.

A summary of the field investigation methodology and findings is presented in Sections 2.1 through 2.5 below.

2.1 Soil Sampling and Test Pit Program

Sources of possible soil contamination on the property were investigated by obtaining a series of surface and subsurface soil samples. A total of nineteen (19) test pits were advanced at the approximate locations shown on Figure 2, to an average depth of 5 to 6 feet below ground surface (range between 2½ and 8 feet) using a tire mounted backhoe with a I-2 foot bucket. Additionally, twenty (20) surface soil samples were collected; one at each test pit location prior to excavation, and one in the middle of the open ball field where a test trench was not advanced (refer to Photograph 28). The locations of the test trenches were subject to accessibility and the location of underground utility lines. The final locations and sample frequencies for the soil survey points were chosen based on field conditions and in general compliance with the approved work plan. All test trenches were advanced at a minimum distance of 2.5 feet away from marked utilities, where present, to reduce the possibility of accidentally damaging an underground line.

The test pits were terminated at natural soil/bedrock, or within the top of the ash layer. Soil from each slit-trench was visually described and screened using an organic vapor analyzer (HNu PI-101 with a 10.2 eV Lamp). Stratification of material in the trenches and observations were noted on the trench logs (refer to test pit logs provided in Appendix A). Photographs of field activities and test pits are contained in Appendix C. Prior to conducting the subsurface investigation, all utilities were located and areas identified as noted above. The backhoe bucket was cleaned and decontaminated prior to excavation of each test pit.

A total of thirteen (13) surface samples and five (5) subsurface samples were submitted for laboratory analysis. Soil samples submitted for analysis were selected from the test trenches exhibiting the highest soil gas readings or based on visual appearance (i.e., stained or discolored fill material). Based on the past use of the property (limestone rock quarry filled with miscellaneous debris/ash), the samples were submitted to a laboratory for analysis of the full Target Compound List/Target Analyte List (TCL/TAL)compounds including PCBs.

The surface of the property, including the school area; area adjacent to the asphalt covered playground; and park/ball field, consists primarily of a relatively flat grass lawn with some side walks and asphalt drive areas.

Generally, the fill overburden consists of a mixture of sand and clayey silt with some gravel and miscellaneous building debris including brick, concrete, wood, and glass under a layer of topsoil. The soil fill separates the topsoil from the underlying ash fill in most locations. The ash fill extends from beneath the soil fill to the top of bedrock in the former quarry area.

Top soil covering fill material was observed at all locations across the property and a soil fill separating a ash layer was observed at most locations. However, the depth of topsoil

and the type of fill varied across the property (refer to Table 1). In general, from a soil/fill perspective, the area of property assessed included three distinct subsurface conditions as follows:

Area 1

• The area along the southeast and northeast side of the building, including the areas investigated with test pits TP-1 thru TP-6 included top soil from 0 to between 0.5 and 2 feet, a fill layer containing sandy silt and silty sand with brick and glass and a thin layer of ash from between 0.5 and 6 feet below ground surface (bgs), and bedrock at between 2.5 and 4.6 feet bgs. Some variations existed between excavations (refer to test pit logs)

Area 2

The area north of the school and central and northern park/field area, including the area investigated by test pits TP-7 thru TP-14 and TP-19 and TP-20 included topsoil from 0 to 3.5-feet bgs (mostly between 0 and 0.5-feet); a fill layer consisting of clay and silt with brick, wood, building fragments, and pipe at between 0.5 and 6.0-feet bgs; and an ash, metal and glass layer at between 6 and 8 feet bgs. Based on previous studies, this ash layer extends to the bottom of the quarry and the top of rock (at least 30-feet). Some variation existed between test pits. Test Pit TP-19, for example, contained some debris including hardened tar and tar shingles.

Area 3

 The southern park/ball field area and adjacent to the playground investigated by test pits TP-15, TP-16, and TP17 included topsoil from 0 to .5 feet bgs and a fill layer consisting of silt and sand with some clay, wood, brick, and building fragments from 0.5 to 8 feet bgs. No ash was found in this fill material.

Included in the fill materials (located below the top soil and above the incinerator ashwhen it is present) are varying amounts of the following; wood and brick fragments, metals, concrete and asphalt fragments, glass, and a fine ash material in several of the pits. The ash layer contained complete glassware, clothing items, and metal products. Groundwater was not encountered in any of these test pits.

The bedrock underlying the area is the Onondaga Formation, an undeformed limestone with black chert inclusions, dipping one to two degrees to the south, and striking approximately east-west. Underlying the Onondaga Formation in this area are, in descending order, the Akron Dolostone Formation, and the Bertie Limestone Formation.

Large snow piles were present along the northwest corner of the park/ball field, in the proximity of test pit TP-19 and adjacent to the road that services the Buffalo Municipal

Table 1
Campus School Subsurface Conditions

		Cover	Fill Thickness	Top of Ash	Top of Bedrock	Final Depth
Test Pit	Location	Thickness (ft.)	(ft.)	Layer (ft.)	Layer (ft.)	of Test Pit (ft.)
			AREA 1			
TP-1	Southeast - Front of School	1.5	2.5	1.5*	4	4
TP-2	Southeast - Front of School	0.5	2	0.5*	2.5	2.5
TP-3	East of School	2	2.5	2*	4.5	4.5
TP-4	East of School	1	2	1*	3	3
TP-5	Northeast of School	1.5	1.5	1.5*	2.5	2.5
TP-6	Northeast of School	2	2.6	2*	NA	4.6
			AREA 2			
TP-7	North of School	1	5	6	NA	8
TP-8	North of School	1	5	6	NA	7.5
TP-9	North of School	1	4	4	NA	8
TP-10	North of School	3	0.5	3.5	NA	6
TP-11	North of School	0.5	3.5	4	NA	6
TP-12	North of School	3.5	1	4.5	NA	6
TP-13	Northwest of School	2.5	0.9	3.4	NA	4.5
TP-14	West of School	0.5	5.1	5.6	NA	6.5
TP-19	Northwest corner of Park/Ball field	0.5	3.5	4	NA	5
TP-20	Middle of the Field	0.2	3.8	4	NA	6
			AREA 3			<u> </u>
TP-15	Northeast corner of playground	0.5	7.5	NA	NA	8
TP-16	Northwest of Basketball Court	0.5	3.5	NA	NA .	4
TP-17	South side of Park/Ball Field	0.5	4.5	NA	NA	5
SS-18	Middle of the Field	NA	NA	NA	NA	0.5

^{*}TP-1 thru 6 not within quarry area - different type of ash encountered

Fill includes soil, brick, wood, building fragments and other miscellaneous construction debris

TP-7 thru 14, 19 and 20 were within the former Quarry and had gray ash and debris

TP-15, 16, and 17 contained different type of fill - no ash

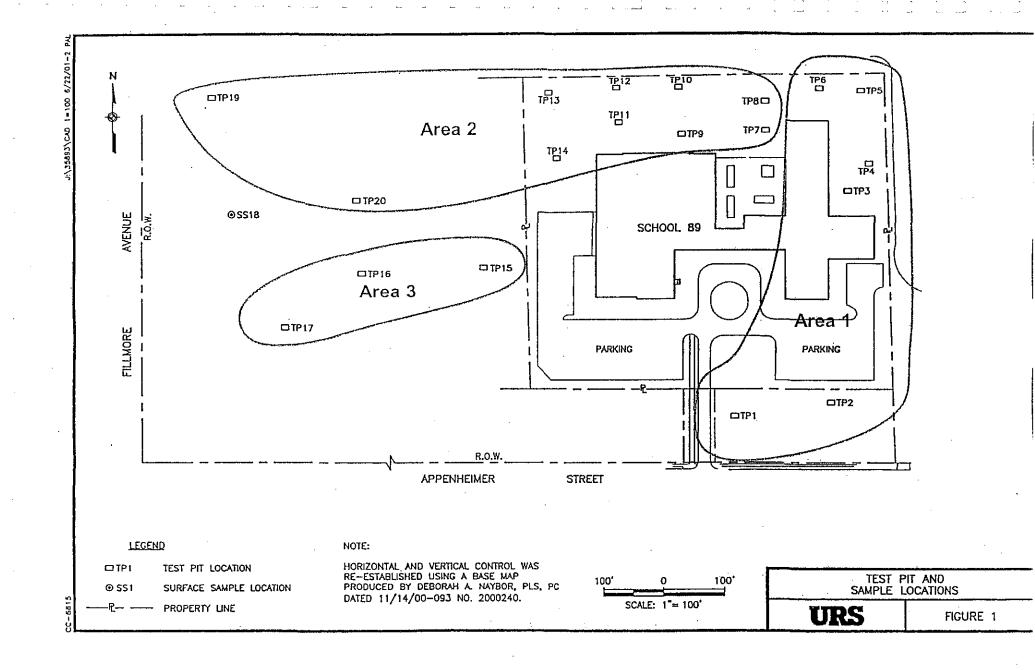
proximity of test pit TP-19 and adjacent to the road that services the Buffalo Municipal Housing Authority property. This pile was approximately 8 feet above grade and 50 feet in diameter and included a large amount of snow with dirt and rocks associated with street snow removal process.

2.2 Soil Sampling and Analytical Program

Surface and subsurface samples were collected in accordance with the approved work plan. Surface soil samples were obtained from the upper two inches at the slit trench locations. Subsurface samples were selected from ash layers.

A total of five (5) subsurface soil samples were selected from test pits indicating the highest total volatile organic vapor readings and/or based on visual appearance (i.e., stained or discolored fill material), as well as at selected locations which would provide coverage across the investigation area. Thirteen (13) surface soil samples were selected for analysis. Five of the thirteen were selected at locations which also had subsurface soil samples submitted for analysis. The remaining eight samples were selected at locations which would provide coverage across the investigation area.

Surface soil samples were collected at test pit locations TP-2, TP-3, TP-4, TP-7, TP-8, TP-9, TP-12, TP-13, TP-17, SS-18 and TP-19. Subsurface soil samples were collected from Test Pits TP-2, TP-7, TP-12, TP-13, TP-19. Samples were submitted to a New York State Laboratory for analysis for TCL Volatiles (subsurface samples only), TCL Semi-Volatiles, TCL Pesticides/PCBs, TAL metals, and Cyanide analysis. Analytical results are discussed in Section 3.0.


2.3 Site Map Generation

A site map was generated by URS Corp. (refer to Figure 2). The map was completed in accordance with best engineering practice and was prepared under the direct supervision of a NYS licensed land surveyor. All test pits and sample locations associated with the investigation were surveyed and are shown on the map. The base map was obtained from Kideney Architects. Mapping was prepared using Auto CADD release 14.

2.4 Air Quality Assessment

On March 9, 2001, an air monitoring program was carried out in the basement crawl space below the school, in accordance with the February 2001 Work Plan. The sampling protocol was modified to substitute the use of ultra low-level Summa canisters in lieu of the Tedlar bag method originally proposed. The use of Summa canisters generally allows for more reliable shipping and extremely low (< 1.0 ppb) laboratory detection limits.

Two 6-liter Summa canisters were staged at ground level at the east and west ends of the crawl space (S89-01 east, S89-02 west). At the time of sampling, the basement, which has

a soil floor, was observed to be dry. No notable odors were present except very near to the water treatment equipment for the swimming pool, where a chlorine odor was noted. The sampling collection period was approximately seven hours. Standard chain-of-custody procedures were followed, with FedEx transport of the samples to the laboratory.

During the canister sampling period, real-time sampling throughout the crawl space was also performed using a MiniRAE Model 2000 (10.6 eV) photoionization detector calibrated to a benzene-equivalent. This instrument has a detection limit of 0.1 ppm (benzene-equivalents) for a select group of volatile organic compounds. It cannot measure methane.

Following receipt of the Summa canisters by the analytical laboratory, analysis was performed using USEPA Method TO-14 which uses gas chromatography/mass spectroscopy (GC/MS) in the "full scan" mode. Up to 0.5 liters of air are concentrated, vaporized, dehumidified, and then injected into the analytical instrument. A total of 60 compounds are included in the TO-14 scan.

A second analytical run was made with each canister's contents using the American Society for Testing and Materials (ASTM) Method D-1946. This method measures for eight gases, including methane.

3.0 ANALYTICAL RESULTS

Compounds detected in the soil sampling program are summarized in Tables 2 (subsurface) and 3 (surface). These tables present data from each sample submitted for analysis and provides a comparison with the TAGM 4046 soil cleanup values. Eastern USA background values are also provided for comparison with metal results. Analytical results for background surface soil samples collected at a nearby property investigated recently by the City (Trinidad Place and Kensington Avenue) are provided for comparison purposes only. There are other recent investigations both within the City of Buffalo and other urban areas where typical levels have been established (refer to Section 4). The complete set of analytical data is provided in Appendix B. Analytical results are discussed below.

3.1 Volatile Organic Compounds

There were no volatile organic results detected above the detection limits.

3.2 Semi-Volatile Organic Compounds

Semi-Volatile organic compounds are organic compounds that will slowly and partially evaporate when exposed to the atmosphere at room temperature and pressure. These compounds tend to attach to solid surfaces. Numerous semi-volatile organic compounds (SVOC) consisting primarily of polynuclear aromatic hydrocarbons (PAHs) were detected in the surface and subsurface samples.

gas, garbage or other organic substances and are widely distributed in the environment and particularly in older urban environments where coal, gas, and petroleum were burned for heat and other energy uses. PAH compounds are common constituents of fill material found in urban environments, and are typically associated with both fill material, coal tar and asphalt based materials or ash.

In general, PAHs and metals are not very mobile in soils, in that they have low solubilities with water (these compounds are practically insoluble in water) and tend to adsorb to the soil grains. These compounds do not readily breakdown in the environment and PAHs deposited from combustion of coal or other fuels years ago would most likely still be present today. Based on the low volatility and their association with soil, the primary concern for potential human exposure to PAHs include inhalation or ingestion of contaminated dust as well as dermal contact.

The SVOC results were compared to NYSDEC guideline levels and a total carcinogenic PAH (cPAH) level and total SVOC level was calculated (refer to Tables 2 and 3). The PAH compounds identified as being carcinogenic (given a sufficient dose over a long period of time) include the following seven compounds: benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo (a)pyrene, indeno(1,2,3-cd)pyrene, and dibenzo(a,h)anthracene. As would be expected in an urban environment, results from the soils sampled (both surface and subsurface) indicated that several SVOCs were identified at concentrations above the NYSDEC TAGMs, including PAH's.

Surface Soil

Surface soil samples were collected below the grass surface and within the top two inches of soil (0-2 inch level) at each test pit excavation location prior to excavation. All surface soil samples had detectable levels of PAHs above NYSDEC TAGMs (refer to Table 3), however, only four sample locations contained levels consistently above TAGM levels including TP- 2, TP-3, TP-8, and TP-19. Total SVOCs for the surface samples from Test Trench locations TP-2, TP-3, TP-8, and TP-19 were as follows:

- 179 ppm for TP-2,
- 83.54 ppm for TP-3,
- 26.7 ppm for TP-8, and
- 19.56 ppm for TP-19

Total cPAHs for these four locations were as follows:

- 70.8 ppm for TP-2,
- 35.3 ppm for TP-3,
- 9.8 ppm for TP- 8, and
- 10.61 ppm for TP-19.

Eleven of the thirteen surface soil samples had total detectable cPAH levels above 1 ppm and three had total cPAH level above 10 ppm. Surface soil sample locations TP-2 (70.8 ppm), TP-3 (35.3 ppm), and TP-19 (10.61 ppm) had detected levels of cPAHs above 10 ppm. Surface soil sample locations TP-4 (1.9 ppm), TP-7 (3.8 ppm), TP-8 (9.8 ppm), TP-9 (2.9 ppm), TP-12 (3.1 ppm), TP-13 (4.0 ppm), TP-15 (2.4 ppm), and TP-18 (3.3 ppm) had detectable total cPAH levels above 1 ppm.

A number of unknown SVOC compounds were also detected in the surface soil samples. Samples taken at locations TP-8 and TP-19 contained unknown PAH compounds at relatively low levels. All other sample locations (except location TP-12) had low levels of unknown non PAH compounds. Levels at TP-2 were at levels a few orders of magnitude above those indicated at other locations.

<u>Subsurface</u>

All five subsurface soil samples analyzed had detectable levels of PAHs (refer to Table 2). However, only two locations, TP-12 and TP-19 contained levels consistently above TAGM levels. It should be noted that the sample collected from TP-19 at between 4 and 5-feet included tar and shingle materials within the ash material. In general, subsurface PAH levels were less than surface soil levels with the exception of the sample collected from TP-19. This sample, as noted above, contained shingle and roofing tar-like materials which typically contain PAH compounds. Total SVOC's for the subsurface samples from test pit TP-12 and TP-19 were as follows:

- 15.41 ppm for TP-12
- 1,301.1 ppm for TP-19

Total cPAH's for these locations were as follows:

- 7.36 ppm for TP-12
- 397.9 ppm for TP-19.

All other test pit samples had total SVOC's significantly below 100 ppm and total cPAHs below 10 ppm. A number of unknown compounds were also detected in test pit samples TP-2, TP 12, and TP-19. Unknown compounds in TP-19 were at levels significantly higher then the other samples and are most likely due to the tar materials.

3.3 Pesticides and PCBs

Low levels of PCB Aroclor 1260 was detected in test pits TP-16 and TP-18 at 0.027 ppm and 0.024 ppm respectively. These levels are well below the NYSDEC TAGM guidelines.

3.4 Metals

Various metals were detected in samples from all test pits. Most results were well below

Various metals were detected in samples from all test pits. Most results were well below the TAGM criteria. Similar to PAH concentrations, metal concentrations were generally higher in surface samples. The highest metal concentration was for calcium at 78300.0 mg/kg in the surface sample at test pit location TP-16. The highest metal concentration above the TAGM cleanup values was for Iron at 22700.0 mg/kg in the surface sample at test pit TP-3. Lead was detected in surface soil sample TP- 19 slightly above urban background at 506 mg/kg (this location is near a road and near snow piles created from street plowing) and in subsurface sample TP-7 at 3,810 mg/kg. The previous investigation conducted in November 2000 identified subsurface lead levels in two samples (24 to 26 feet and 14 to 18 feet bgs respectively) at 5,030 mg/kg and 1,310 mg/kg.

The concentrations of most metals were within the cited ranges for Eastern U.S. soils and TAGM values. The exceptions were zinc in test pit TP-2 (surface and subsurface); mercury (surface), nickel (surface), and zinc (surface) in test pit TP-3; mercury (surface) in test pit TP-4; copper (subsurface), mercury (subsurface), nickel (surface), and zinc (surface and subsurface) in test pit TP-7; zinc (surface) in test pit TP-8; nickel (surface) and zinc (surface) in test pit TP-9; arsenic (subsurface), mercury (subsurface), and zinc (surface and subsurface) in test pit TP-13; zinc (surface) in test pit TP-15; zinc (surface) in test pit TP-16; zinc (surface) in test pit TP-17; zinc (surface) in surface soil SS-18; arsenic (surface), copper (surface and subsurface), lead (surface), mercury (surface and subsurface), nickel (surface), and zinc (surface and subsurface) in test pit TP-19. With the exception of some specific results, the metals were not significantly higher than the eastern US range.

Most metals occur in nature and their concentrations in fill and natural soil will exhibit considerable variability both stratigraphically and spatially. This variability is related to the variable composition of the fill, natural soils' protolith, weathering processes that chemically and physically modify soil, and groundwater interactions that modify the geochemistry.

Section 3.5 Indoor Air Quality

Real-time total VOC measurements made throughout the crawl space showed the concentration to be at or below ambient background levels of 0.0 ppm (benzene equivalents). Of the sixty VOCs screened using EPA Method TO-14, most were not measurable at the detection limits of 0.21-1.0 ppb. Methane was not detectable at a detection limit of 21 ppm. Measurable VOCs were in the range 0.41-56.0 ppb, which is consistent with trace concentrations typically associated with indoor building activities. The crawl space in this building is used as the exhaust for at least one fan on the first floor, therefore activities such as use of photocopiers, office and art supplies, as well as custodial activities, could all be contributors to the observed trace concentrations. All VOC concentrations detectable above the reported detection limits were nonetheless below 10% of the current OSHA PELs or ACGIH TLV®, which is a generally accepted (though not ACGIH-endorsed) action level for the general population.

TABLE 2 SUBSURFACE SOIL SAMPLING ANALYTICAL RESULTS SUMMARY CAMPUS SCHOOL #89, BUFFALO, NEW YORK

	Sub	Súb	Sub	Sub	Sub	Eastern		NYSDEC
	Surface	Surface	Surface	Surface	Surface	ÙSA	Average	Cleanup
	TP-2	TP-7	TP-12	TP-13	TP-19	Background	Background	Values
inal Depth of TP's	2.5 ft.	8 ft.	6 ft.	4.5 ft.	5 ft.	N/A	N/A	N//
Compounds	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	. mg/kg	mg/kg	mg/kg
Metals								
Cyanide	U	U	U	U	0.764	N/A	1.52	Site Specific
Muminum	11000	5390	6200	11100	9970	_33,000	10,870	
Antimony	3,85 B	6,51 B	8	u	4 B	N/A	U	SE
Arsenic	强速通道 1	7	324414	4 9 9	治療器9,5	3 to 12	9,93	7.5 or SE
Barlum	160	116	126	169	211	15 to 600	92,56	300 or SE
Beryllium	70.529 B	0.584 B	0.4812B	列297.13	10724	0-1.75	0.573 B	0.16 or SE
Cadmium	0.907	U	1.06	U	1.85	0.1-1	0.681	10 or SE
Calcium	2390	6890	19500	18400	36000	130 to 35000	29700	SE
Chromium	12.1	15	12.9	10.2	18.4	1.5 to 40	15.3	50 or SE
Cobalt	6.69	5,81 B	5.04 B	8.85	5.51 B	2.5 to 40	7.72	30 or SE
Copper	参与,25:5	1115	31844 44	2412	建装空147	1 to 50	25.7	25 or SE
ron	21100	16600	11400	17100	20500	2000 to 550000	18100	2,000 or SE
.ead	233	3810	392	199	425	200 to 500	551.3	SB****200-500
Magnesium	1900	1940	4020	4110	9910	100 to 5000	1027.6	SE
Manganese	482	137	275		386	50 to 5000	427.3	SE
Mercury	0.1	£4.0,38			さい ない はい	0.001 to 0.2	0.145	0.
lickel	17.4	343	16.7	7 182	19:5	0.5 to 25	18.03	13 or SE
otassium	549 B	507 B	660	1080	1270	8500 to 43000	1633.3	SE
Selenium	0.38 WB	0.67	0.39 B		Ū	0.1 to 3.9	U	2 or SE
Sodium	105 B	159 B	160 B		217 B	6000 to 8000	220.3	SE
hallium	0.81 B	0.46 B	0.63 B		0.65 B	Not Available	0.51 B	SE
/anadium	21.6	23.6	18.3		22.1	1 to 300	24.83	150 or SE
Zinc	379	题。该230	88 世紀	168 m	2053	9 to 50	239.3	20 or SE
J- Not Detected	B - Analyt	Range Is e Detecte	200-500 j d in Metho	ppm in Url od or Trip	ban Areas Blank	W - Post Spike n N/A - Not Availab ene, benzo(k)fluo	ole	flimits

Table 2, continued

			iabi	e ∡, con	unuea			
						East USA	Average	
	TP-2	TP-7	TP-12	TP-13	TP-19	Background	Background	TAGM
Semi-Volatile Organics	mg/kg	mg/kg	mg/kg	mg/kg		mg/kg	mg/kg	mg/kg
4-Methylphenol	U	Ü	U	כ	5,9制	N/A	U	0.9
Naphthalene	U	U	0.079 J	U	75	N/A	U	13
2-Methylnaphthalene	U	U	U	U	26 J	N/A	U	36,4
Acenaphthylene	U	U	Ü	U	6.3 J	N/A	U	41
Acenaphthene	Ü	Ų	0.15 J	Ü	38 J	N/A	0.05 J	50
Dibenzofuran	Ü	Ü	0.098 J	Ü	1 10 28 U	N/A	Ų	6.2
Fluorene	Ü	U	0.18 J	IJ	46	N/A	U	50
Phenanthrene	0.13 J	0.17 J	1.6	0.087 J	38 1240	N/A	0.88	50
Anthracene	u	U	0.35 J	U	32.575	N/A	0.1499	50
Carbazole	U	U	0.22 J	U	27 J	′ N/A	Ü	
Fluoranthene	0.23 J	0.22 J	1.8	0.12 J	34779150	N/A	1.19	50
Pyrene	0.22 J	0.21 J	2.9	U	160	N/A	1.29	50
Benzo(a)anthracene	0.11 J		WEEK171	0,06 J	2 E 12	N/A	0,89 J	0.224 / MDL
Chrysene	0.13 J	0.12 J	常要(3)	0.063 J	15 P 66	N/A	2.183 J	0.4
Bis-2-ethylhexyl phthalate	U	U	0.067 J	Ų	υ	N/A	1.24	50
Benzo(b)fluoranthene	0.27 J	0.22 J	362 3692	0.13 J	学学域97	N/A	1.2	1.1
Benzo(k)fluoranthene	0.12 J	0.098 J	0.69	0,05 J	33.J	* N/A	0.51 J	1.1
Benzo(a)pyrene	0.187	P.16 J	50 S. 1 A	0:086.J	87	N/A	0.83 J	0.061 / MDL
Indeno(1,2,3-cd)pyrene	0.12 J	0.081 J	0.88	U	34/J	≺ N/A	0.64 J	3.2
Dibenzo(a,h)anthracene	U	U	0.19 J	Ü	38 8 9 J	→ N/A	0.055 J	0,014
Benzo(g,h,i)perylene	0.075 J	0,051 J	0.61	U	26 J	N/A	0.42 J	50
Total cPAH	0.93	0.789	7.36	0,389	397,9	N/A	6,308	*
Total SVOC	2.515	2,229	15,414	0.566	1301.1	N/A	11.5279	•
Unknown	0.15	•	0.16	0.92	16	N/A	N/A	N/A
Unknown	0.21		0.12		9.6	N/A	N/A	N/A
Unknown	0.28		0.16	*	13	N/A	N/A	N/A
Unknown	0.19	*	0.16	*	14	N/A	N/A	N/A
Unknown	0.51	*	0.25	* .	30	N/A	N/A	N/A
Unknown	0.45	*	0.29	*	32	N/A	N/A	N/A
Unknown	0.58	*	0.48	*	20	N/A	N/A	N/A
Unknown	0.59	*	0.14	*	51	N/A	N/A	N/A
Unknown	0.6	*	0.15	*	20	N/A	N/A	N/A
Unknown	0.5		1.2	*	17	N/A	N/A	N/A
Unknown	*	*	0.15	*	15	N/A	N/A	N/A
Unknown	*	*	0.16	*	10	N/A	N/A	N/A
Unknown	•	*	0.21	*	25	N/A	N/A	N/A
Unknown		*	0.16	+	17	N/A	N/A	N/A
Unknown	•		0.14	*	10	N/A	N/A	N/A
Unknown	*		0.76		9,9	N/A	N/A	N/A
Unknown	*	+	0.16		36	N/A	N/A	N/A
Unknown	+	*	0.2	*	- 30	N/A	N/A	N/A
Unknown		*	* 0.2	*		N/A	N/A	N/A
Unknown	-		*	+	-	N/A	N/A	N/A
Unknown (PAH)		•	1.9			N/A	N/A	N/A
Unknown (PAH)	-	*	2.3			N/A	N/A	N/A
Keyr.		L		· · · · · · · · · · · · · · · · · · ·		1777	IMU	CWA

Key: TP- Test Pit U- Not Detected

Rey:
TP- Test Pit

IV- Not Detected
SB- Site Background
Total cPAH value includes:

Total cPAH value includes:

* - No tests done for the sample
S20-500 ppm in Urban Areas N/A - Not Available
B - Analyte Detected in Method or Trip Blank
Total cPAH value includes:

benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo (a)pyrene, indeno(1,2,3-cd)pyrene, dibenzo(a,h)anthracene

Table 2, continued

						East USA	Average	NYSDEC
	TP-2	TP-7	TP-12	TP-13	TP-19	Background	Background	TAGM
Volatile Organics								
Methylene chloride	0.004 J	0.005 J	0.005 J	0.006 J	0.004 J	N/A	N/A	0.1
Acetone	•	0.011 J	0.006 J	0.01 J		N/A	N/A	0.2
Benzene	*	•	*		0.035	N/A	N/A	0.06
Toluene	*	*	*	•	0.12	N/A	N/A	1,5
Ethylbenzene	*	*	*	*	0.025	N/A	N/A	5.5
p-Xylene/m-Xylene	•	*	*		0.16	N/A	N/A	1.2
o-Xylene	*	*	*	•	0.088	N/A	N/A	1.2
Styrene	*	*	*	*	0.033	N/A	N/A	N/A
Unknowns								
Unknown	0.006	0.009	0.007	0.014	0.087	N/A	N/A	N/A
Unknown	0.008	0.008	0,008	0.013	0.34	N/A	N/A	N/A
Unknown	0.007	0.014	0.026	0.009	0.081	N/A	N/A	N/A
Unknown	0.028	0.013	•	0.008	0.13	N/A	N/A	N/A
Unknown	*	0.048	*	0.032	0,045	N/A	N/A	N/A
Unknown (aromatic)	*	* -	•	±	0.061	N/A	N/A	N/A
Unknown (aromatic)	*	+	•	•	0.12	N/A	N/A	N/A
Unknown (aromatic)	•	•	•	*	0.092	N/A	N/A	N/A
Unknown (aromatic)	*	•	*	*	0.05	N/A	N/A	N/A
Unknown (aromatic)	•	•	. *	*	0.056	N/A	N/A	N/A

Key:

TP- Test Pit

U- Not Detected
SB- Site Background
Total cPAH value includes:

Denote the sample

"- No tests done for the sample
S20-500 ppm in Urban Areas N/A - Not Available
B - Analyte Detected in Method or Trip Blank
Total cPAH value includes:

benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo (a)pyrene, indeno(1,2,3-cd)pyrene, dibenzo(a,h)anthracene

SURFACE SOIL SAMPLING ANALYTICAL RESULTS SUMMARY CAMPUS SCHOOL #89, BUFFALO, NEW YORK

	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Eastern		Rec. Soil
	Soils	Soils	Soils	Soils										USA	Average	: СІеапир
	TP-2	TP-3	TP-4	TP-7	TP-8	TP-9	TP-12	TP-13	TP-15		7			Background	Background	
Metals	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	+					mg/kg		
Cyanide	Ü	U	U	U	U	Ü	U	U	U	U	U	0.782		N/A		1
Aluminum	13300													33,000		
Antimony	4.26 B		U	Ū	3.39 B		7.44			4.19 B				N/A		SE
Arsenic	6.6					5.5							18	3 to 12	9.93	
Barium	72.3													15 to 600		
Beryllium	0.624 B	+					0.4 B			0.355 B				0-1.75		
Cadmium	U	Ü	U	0.655 B				U	U	U_	U	U	2.86	0.1-1	0.681	
Calcium	2080													130 to 35000		
Chromium	14.4													1,5 to 40		
Cobalt	9	1												2.5 to 40		
Copper	22.1	24000		28.8			25.2					100		1 to 50		
Iron	21800													2000 to 550000		
Lead	61.9					59,8								200 to 500		SB****200-500
Magnesium	2930													100 to 5000		SE
Manganese	497									324	341	409		50 to 5000		
Mercury	0.08		0.2									0.1		0.001 to 0.2		0.1
Nickel	24.3											18,3		0.5 to 25		
Potassium	1080													8500 to 43000		
Selenium	UW	UW	UW	U	U	UW	Ü	ÚW	U	' U	U	UW	0.66	0.1 to 3.9		2 or SE
Sodium	56.5 B								84.6 B					6000 to 8000	220.3	SE
Thallium	0.78 B													N/A	0.51 B	SE
Vanadium	23.5								17.5			20.7	24.4	1 to 300		
Zinc	\$ 118	114	78.2	學學126	456	132	108	90.4	FF 111	161	60.6	159	465	9 to 50	239.3	
		<u>'</u>	'		<u></u> '	ſ <u></u> '	'	'							,	1
PCB's	<u> </u>	<u> </u>	<u>'</u>	<u> </u>		Ĺ'	'			'		<u> </u>				
	 	 '	4'	 '	اسبا	 '	<u> </u>	<u>'</u>	لــــا	'		اا	<u> </u>			
PBB 1260	*	*	*	-	 * 	*	*	* '	*	0.027	1 *	0.024	*	N/A	N/A	1 Surface
Semi-Volatile Organics	+	 '	 '	 		 	 	 -'		 	 		 		,	
Semi-volatile Organics	 		 			 	 	 '	 		 		 		,	
Naphthalene	3 J	0.77 J	J U	- u	0.83 J	·U	- U	U	 	U	 	l l	1	N/A	1 -	1:
4-Chloroaniline	2 2 2 1	Ü	Ü	U	U	U	Ü	T U	Ü	lυ	1 0 1	Ü	l ü l	N/A	U U	0.2
2-Methylnaphthalene	1,1 J			 0	0.3 J	i u	l ü	U	l ü	Ü	l ü	l ü	 ŭ 	N/A	11	36
Acenaphthene	3.9 J			0.12 J		0.081 J	0.056 J	0.065 J	Ü	Ü	1 0 1	ű	0.1 J	N/A	0.05 J	
Dibenzofuran	2.6 J			U	0.55 J		, 0.000 U	U	i ü	l ŭ	1 ŭ 1	l ü	11	N/A	U 0.05.3	6.
Fluorene	4.2 J	1		0.1 J			1 1	l ii	1 5	 	l ü	l ü	0.13 J	N/A	Ü	5
Phenanthrene	26										1	1		N/A	0.88	
I Hendinghone			0.10 -		 ,	0,00	<u> </u>	0.00	9,010	0.0000	1 0.01	<u> </u>	<u></u>			

Key: TP- Test Pit

* - No tests done for the sample W - Post Spike recovery is out of limits ****- Lead Range is 200-500 ppm in Urban Areas N/A - Not Available

U- Not Detected

SB- Site Background

B - Analyte Detected in Method or Trip Blank

Total cPAH value includes: benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo (a)pyrene, indeno(1,2,3-cd)pyrene, dibenzo(a,h)anthracene

	TP-2	2 TP-3	3 TP-4	4 TP-7	7 TP-8	8 TP-9		2 TP-13		5 TP-16	5 TP-17	7 TP-18	3 TP-19	Eastern USA	Average	NYSDEC
Semi-Volatile Organics	mg/kg															TAGN
Anthracene	7.9		<u> </u>	0.21 J							U	0.095 J			0.1499	. 50
Carbazole	4.1 J	J 2.1 J	J U	0.13 J	J 0,7 J	J 0.087 J	J 0.045 J	J 0.071 J	J U	U	U	0.06 J	0.18 J	N/A	U	N//
Fluoranthene	24			1 1'	3.8	0.65	0.76	0.97	0.58	0.11 J	0.12 J	0.75	2.4	N/A	1.19	5(
Pyrene	25				3.1						U	0.78		N/A	1.29	5(
Benzo(a)anthracene	Tom 2012/12			J 线频0:56	幸福到57	经院0:4 "以	0.46	0.54	₩0.35 J	0.049 J	0.04 J	0.38 J	1.7	N/A	0.89 J	0.224 / MDI
Chrysene	319307411	40.4-4-144.			1.6					J 0.062 J	0.06 J	0.45 J	1.7	N/A	2.183 J	0.4
Bis-2-ethylhexyl phthalate	U	U	U	0.17 J		0.22 J	0.056 J	0.77 J			U	0.09 J	0.081 J	N/A	1.24	50
Benzo(b)fluoranthene	18	1 2 9.7	2 0.51		£ 2.6			原體或4.4			0.12 J	0.98	3.4	N/A	1.2	1.1
Benzo(k)fluoranthene	8.4				5321.2					J 0.049 J	0.06 J	0.35 J			0.51 J	1.1
Benzo(a)pyrene	14				1.9										0.83 J	0.061 / MDL
Indeno(1,2,3-cd)pyrene	7.4										0.045 J	0.26 J	1	N/A	0.64 J	3.2
Dibenzo(a,h)anthracene	Ü	U	₩0.083°J		₽0,096 J		U	U	U	U	U		0,29 J		0.055 J	0.014
Benzo(g,h,i)perylene	4.2 J										Ü	0.2 J			0.42 J	50
Total cPAH	70.8										0.404	3.289		N/A	6.308	*
Total SVOC	179													N/A	11,5279	*
Total 5400	ļ	 33.2.	 	 			1	1		 	T	 	1	(· · · · · · · · · · · · · · · · · · ·		
Unknown	1.7	7 0.2	2 0.19	0.86	0.27	0.16	 	0.11	0.35	0.14	0.25	0.19	0.21	N/A	N/A	N/A
Unknown	2.3				+			0.16							N/A	N/A
Unknown	2.8							0.16							N/A	N/A
Unknown	1,7				0.94			0.18							N/A	N/A
Unknown	4.7				1.6			0.18							N/A	N/A
Unknown	1.5				0.87			0.17							N/A	N/A
Unknown	2.1				1.3			0.64							N/A	N/A N/A
Unknown	1.6				*	0.22		0.82							N/A	N/A N/A
Unknown	1.4				*	0.22		0.02		0.25					N/A	N/A
Unknown	2.9				-	0.23		1.3		0.45					N/A	N/A
Unknown	1.7				 • 	0.23		1.4		1.4				N/A	N/A	N/A N/A
Unknown	1.1				 	0.33		 • • • • • • • • • • • • • • • • • • •	<u> </u>	0.55				N/A	N/A	N/A
Unknown	0.96					0.27		1	+	+ + + + + + + + + + + + + + + + + + + +	0.17		1	N/A	N/A N/A	N/A N/A
Unknown	1.5				*.	0.27			*	+ +	*	0.4	 	N/A N/A	N/A)	
Unknown	1.1			31	+	0.23		 _		*	+	0.29		N/A N/A	N/A N/A	N/A
	 	* 0.00	0.48	711	-	0.42				+	 					N/A
Unknown	-	*	0.48	21	-	0.42	-			<u> </u>		1.3		N/A	N/A	N/A
Unknown	 	*	0.87	/			<u>- </u>	 		 	*	0.38		N/A	N/A	N/A
Unknown	-	*	1	1		0.88		*	*	1 :	*	0.39	*	N/A	N/A	N/A
Unknown		*	0.42		*	0.92		 '				<u> </u>	*	N/A	N/A	N/A
Unknown	*	*	0.75	5 *	1	<u> * '</u>	*	*	*	*	*	*	*	N/A	N/A	N/A
Unknown (PAH)	 *	*		<u> </u>	0.36		* '	+	*	<u> </u>	*	*	0.28		N/A	N/A
Unknown (PAH)	*			<u> </u>	0.44		*	<u> </u>	*	*	*	*	0.39		N/A	N/A
Unknown (PAH)	1	*	•	*	0.63		*	*	*	<u> </u>	*	*	0.17	N/A	N/A	N/A
Unknown (PAH)	*	*	*	*	0.41		*	*	*	*	*	*	0.15		N/A	N/A
Unknown (PAH)	*	*	*	*	0.19		*	* 1	*	*	*	*	0.15		N/A	N/A
Unknown (PAH)	*	*	*	*	0.2		*	*	*	*	*	*	0.16		N/A	N/A
Unknown (PAH)	* -	*	*	*	0.22		*	*	*	*	*		0.18		N/A	N/A
Unknown (PAH)	*	*		*	0.18	<u>, </u>	*	*	*	*	*	*	0.14		N/A	N/A
Unknown (PAH)	*		*		<u> </u>	<u> </u>	* '	<u>*</u> '	 	* '			1.1	N/A	N/A	N/A

Table 3, continued

LBS#9 Key:

TP- Test Pit *- No tests done for the sample W - Post Spike recovery is out of limits
U- Not Detected ****- Lead Range is 200-500 ppm in Urban Areas
SB- Site Background B - Analyte Detected in Method or Trip Blank
Total cPAH value includes: benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo (a)pyrene, indeno(1,2,3-cd)pyrene, dibenzo(a,h)anthracene

N/A

4.0 CONCLUSIONS AND RECOMMENDATIONS

Investigations conducted at the property have indicated the presence of detectable levels of SVOCs (primarily carcinogenic PAHs) and metals in both the surface soils and the fill materials. With the exception of one location (tar-like materials in subsurface ash in TP-19), no PID readings above ambient levels were recorded on any of the samples and no volatile organic compounds were detected in samples.

Three distinct areas of subsurface conditions were observed at the property as follows (refer to Figure 2).

Area 1

The area along the southeast and northeast portion of the property appeared to be outside the former quarry area. This area consists of topsoil, fill and a thin ash layer (note, this is not the same ash found in the quarry areas), and bedrock at a shallow depth (bedrock at depths of less than 3-4 feet). Surface soils (0-2 inch) in this area indicated elevated levels of PAHs and some metals particularly in the southeast portion of the property. Subsurface soils did not appear to be significantly elevated.

Area 2

The area behind and to the north of the school and within the center and northern portions of the park/ball field is within the former quarry. This area consisted of a topsoil layer, a fill layer consisting of brick, pipe, wood and building fragments over an ash layer. Previous studies indicate that the ash fill was found to be at depths down to 26 to 30 feet to the top of bedrock. Surface and subsurface soils in this area had detectable levels of PAHs and metals above regulatory guidelines, but, generally at much lower levels then test pits in the southeast and northeast. The exception, however, was Test Pit TP-19 which had levels significantly higher and was associated with a "tar like" material.

Area 3

The area to the south west of the school and along the southern end of the park/ball field contained about ½ foot of topsoil over approximately 8 feet of fill consisting of silt and sand with some clay, wood, brick, and building fragments. No ash was encountered in the test pits in this area and only surface samples were. Although detectable levels of metals and PAHs in surface soil samples were indicated above regulatory guidelines, levels were relatively low. Total SVOCs and cPAHs were well below 10 ppm and two of the locations were below 1 ppm cPAHs.

PAHs and metals can be introduced into the environment by natural (e.g., soil chemistry, forest fires) and human (e.g., automobile, coal or other heating fuel combustion, industry, or stone quarrying) processes. In general, PAHs and metals are not very mobile in soils,

in that they have low solubilities with water and tend to adsorb to the soil grains. The primary routes of human exposure to PAHs and metals include inhalation or ingestion of contaminated dust as well as dermal contact. Because of their ubiquitous nature, studies have been performed to determine typical levels of PAHs in urban environments.

The Journal of Soil Contamination published an article entitled, "Background Levels of Polycyclic Aromatic Hydrocarbons and Selected Metals in New England Urban Soils" in which soil samples from urban locations in three New England cities were collected at a depth of 0-6 inches and analyzed for PAHs (Bradley et al.1994). The result of these three studies reported that background concentrations of total cPAHs ranged from 0.68 ppm to 78 ppm, with an average concentration of 9 ppm. Detectable levels of PAH compounds at the property fall within or below this range. Additionally, the levels of PAHs observed in surface soils are similar to concentrations found in other areas of the City of Buffalo.

With the exception of a few isolated samples (i.e. TP-19), the concentrations of the various PAHs and metal compounds detected are slightly above the NYSDEC TAGM 4046 recommended soil cleanup objectives. This would indicate that the associated health risks, assuming workers/students and pedestrians are actually subjected to substantial long-term exposure, are also minimal. Considering the nature of the proposed continued use of the property as a school and park/ball field, the potential exposure of students and residents to surface soil and workers to subsurface fill materials via the above potential exposure routes is low and will be virtually eliminated if engineering and administrative controls are instituted.

Chronic exposure to PAHs and metals in surface soils is not likely to occur under current conditions. People using or maintaining the school could be exposure to PAHs and metals in surface soils by sitting on the ground, playing, gardening, landscaping, or other improvement activities. Students or other members of the community using the play areas could be exposed to surface soils through participating in sports or by sitting on the ground. Since large areas of the school property are paved, the public would not be exposed to surface soil in these areas. The grass on most of the rest of the property was observed to be thick and well-established. Well-established and maintained grass cover usually minimizes human exposure to soil by acting as a barrier to direct contact with soil. Chronic exposure, therefore, appears to be limited.

Exposure to the PAHs and metals in the subsurface is not likely to occur under most conditions. Exposure would only occur if excavations occurred below the surface and if the subsurface soil is left at the surface. In general, potential for exposure to the fill materials at the site will be limited to onsite excavations (i.e. caissons, utilities, foundations, etc.) and/or fugitive dust generated at the site during excavations.

Even though the risk of exposure appear minimal, minor remedial activities aimed at preventing inhalation, ingestion, or dermal contact with potential contaminants can be applied to reduce the risk further. These remedial activities may include capping the elevated PAH containing soils with clean fill and re-establishing adequate grass cover

and/or paving as an acceptable means of minimizing any potential health risks. Should a higher risk reduction be required, then removal of the fill or stabilization in place are potential alternatives.

Institutional controls, consisting of deed restrictions and guidelines/restrictions pertaining to potential future construction activities on the property should also be part of the process if subsurface fill and elevated surface soils are left in place. These suggested approaches will require input from the involved agencies. A soils management program is recommended to meet these needs. The soils management/handling procedures need to focus on reducing or eliminating the potential for workers, students and park users to come in contact (chronic inhalation, ingestion, skin contact) with the impacted site soils.

In summary, whereas the surface soils and fill materials pose only a minimal potential risk to construction workers and/or students and park users in their present condition, this potential risk can be further reduced and/or eliminated if proper management strategies are employed. Based on a review of the investigation data and the proposed site development plans, the following are possible alternatives:

- Develop a detailed soils management plan for the property which would apply to future intrusive activities such as maintenance for utilities.
- All fill materials not excavated can be capped with at least six-inches of clean soil and/or covered with concrete/asphalt to prevent direct contact or generation of fugitive dust.
- All fill materials excavated at the site (during and post construction) should be managed as if they are contaminated. This means that any fill materials excavated at the site will be disposed offsite at a facility permitted to accept non-hazardous contaminated soils or will be utilized in regrading the site in accordance with 6NYCRR Part 360-1.15(b)(8) and capped with clean soils and/or concrete/asphalt.
- Covenants should incorporate the Soils Management Plan.

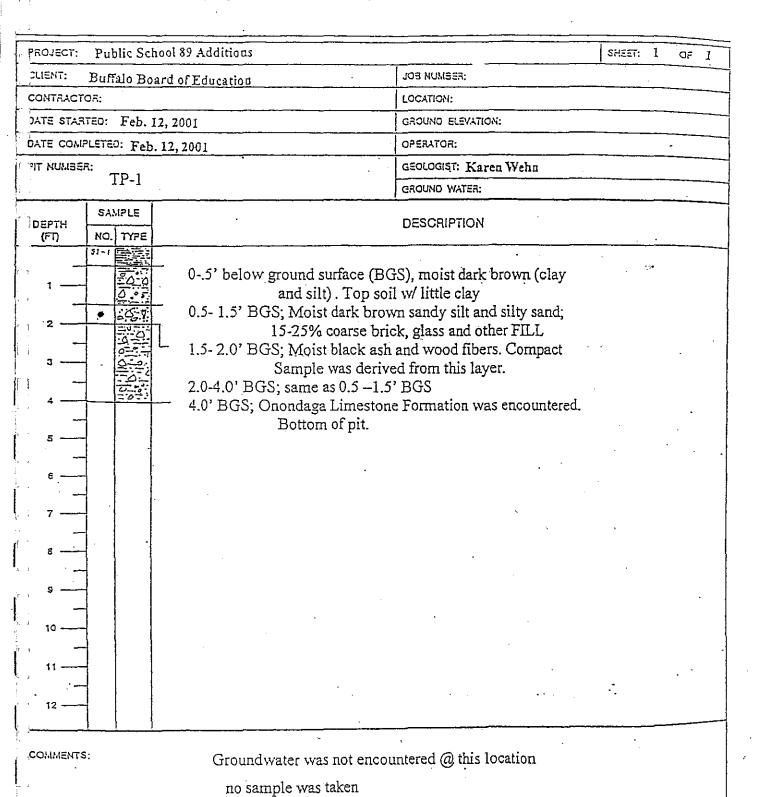
Based on the sampling program used, no significant levels of indoor air contamination was found in the crawl space area.

5.0 LIMITATIONS

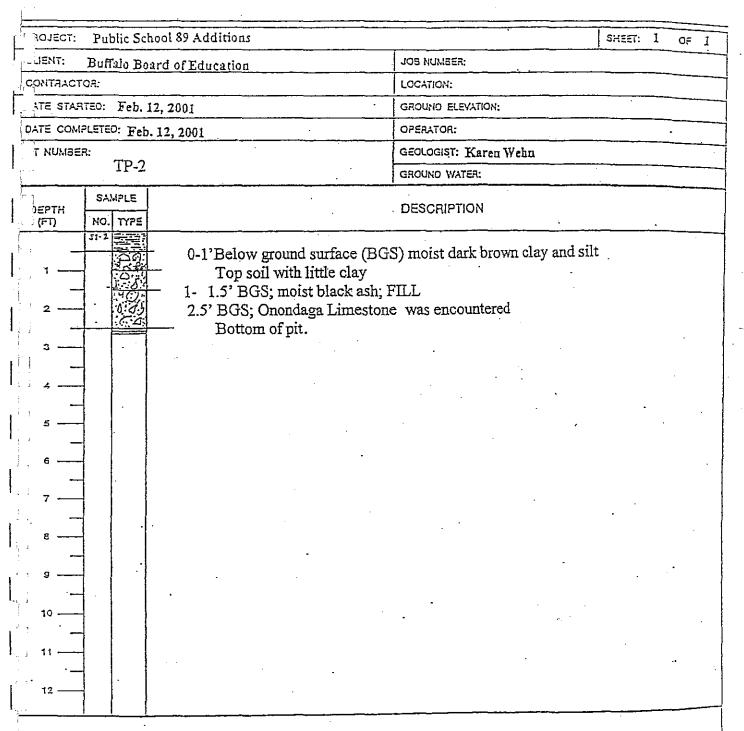
This report is based on information from a limited soil sampling investigation, organic vapor screening, and visual observations of the soils, as described within this report. This report is intended exclusively for the purpose outlined herein at the site location and project indicated. The property and this site assessment is limited to the footprint of the lot.

This report is intended for the sole use of the Buffalo Board of Education. The scope of

services performed in this assessment may not be appropriate to satisfy the needs of other users and any use or re-use of this document or the findings, conclusions, or recommendations presented, is at the sole risk of the user. The conclusions set forth in this report are based upon, and limited by, the analytical data and other information available to PEI/URS.


It should be noted that all surface and subsurface environmental assessments are inherently limited in the sense that conclusions are drawn and recommendations developed from information obtained from limited data and site evaluation at a specific time. The passage of time may result in a change in environmental circumstances at this site and surrounding properties, or hazardous materials beneath the surface may be present but undetectable during this limited Phase II assessment.

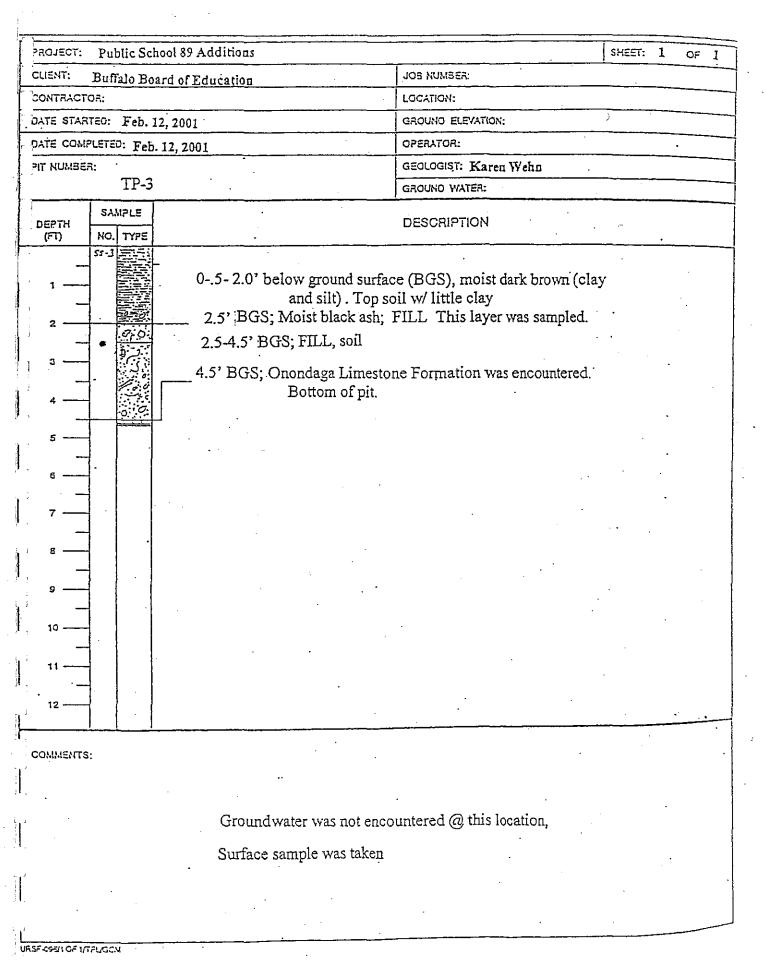
Opinions and recommendations presented herein apply to the site conditions existing at the time of the subsurface assessment and those reasonably foreseeable. They cannot necessarily apply to site changes of which PEI/URS is not aware and has not had the opportunity to evaluate.


APPENDIX A

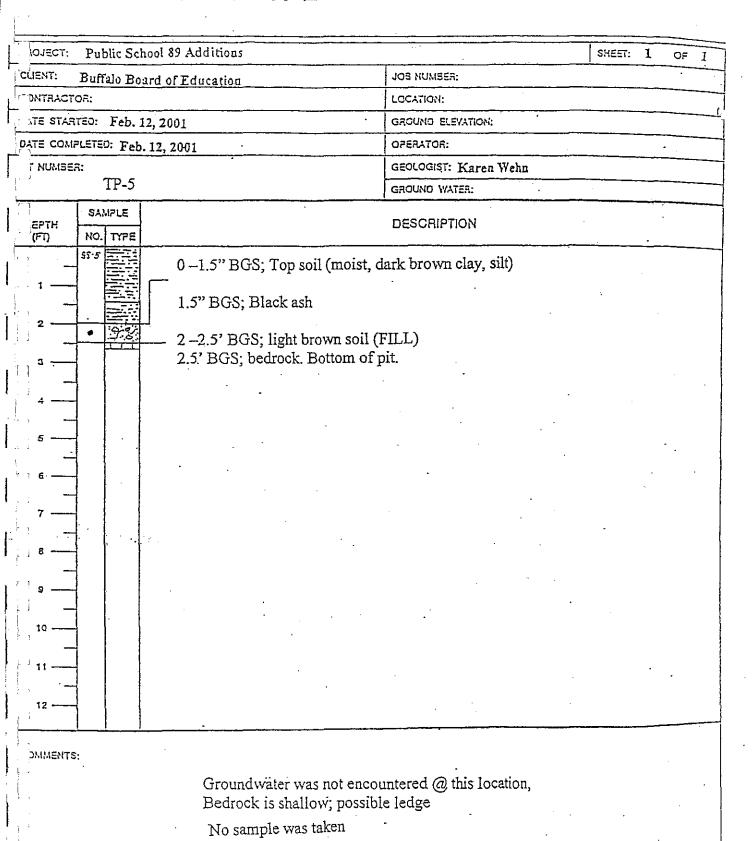
Test Pit Logs

IESI PII LUG

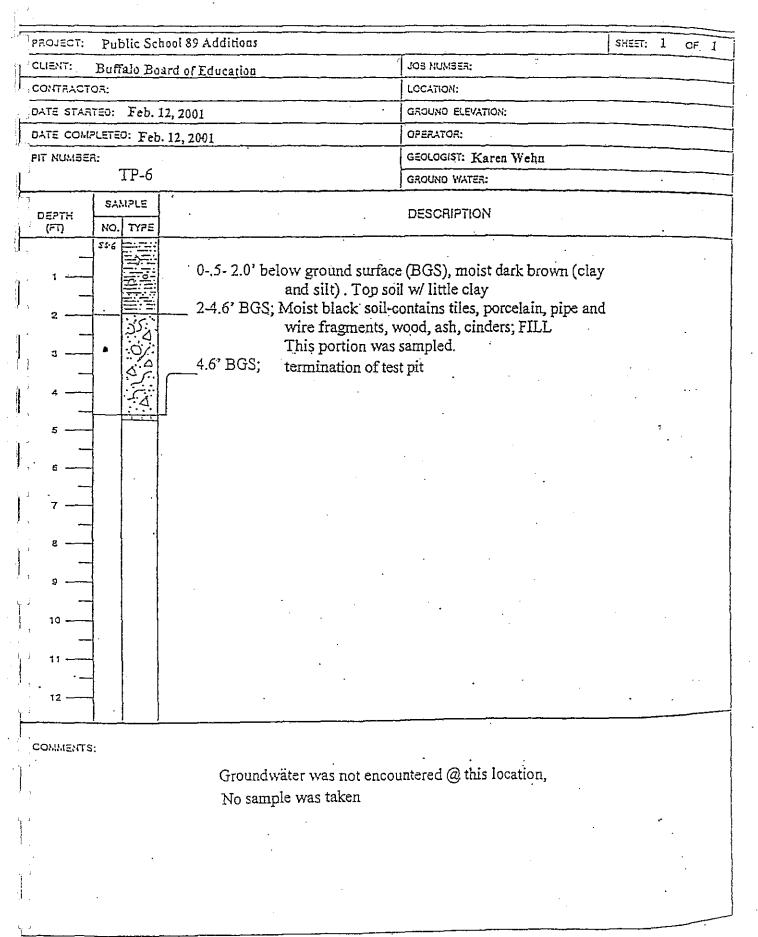
UNST-COST OF INTPLICAM

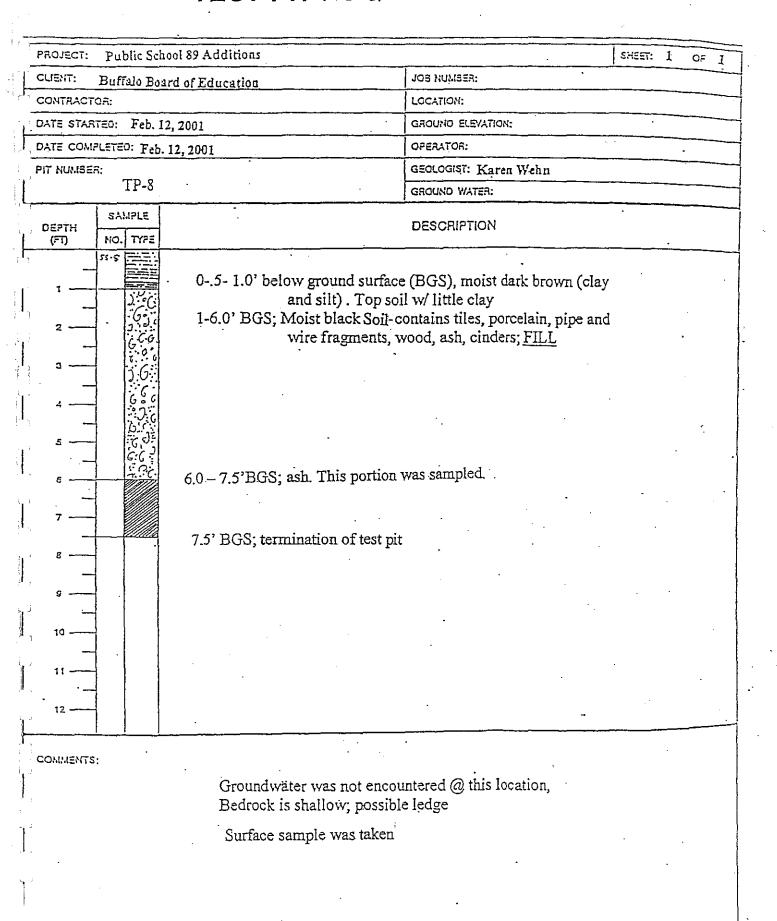


COMMENTS:


Groundwater was not encountered @ this location, Bedrock was shallow.

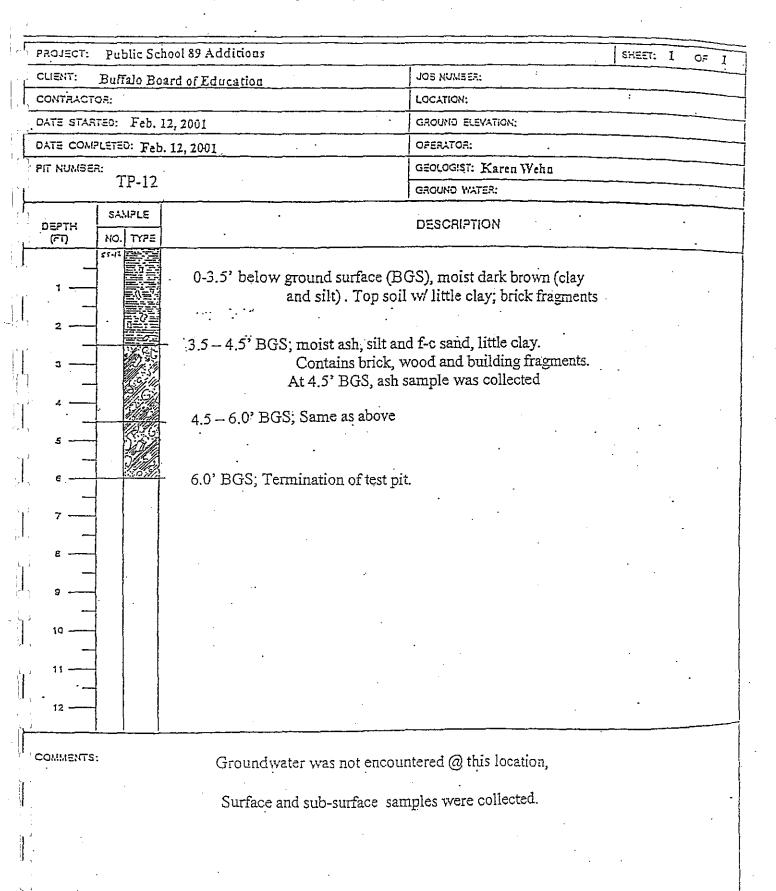
Surface and subsurface samples were taken


rsfosti of i/tpl/gcm


PROJECT: Public Sch	100l 89 Additions		SHEET:	1	OF.	
	ard of Education	JOS NUMBER:	1			
CONTRACTOR:	ard of Education	LOCATION:				
DATE STARTED: Feb. 1	12, 2001	GROUND ELEVATION:				
DATE COMPLETED: Feb.		OPERATOR:			 -	
PIT NUMBER:		GEOLOGIST: Karen Wehn				
TP-4		GROUND WATER:				
DEPTH NO. TYPE		DESCRIPTION	— <u>—</u>			
(FT) NO. TYPE 1 2 2 3 4 5 7	and silt). Top soi 1-2' BGS; Layer of black ash J 2-3' BGS; light brown soil (FI	FILL This layer was sampled.				
8 — 10 — 11 — 12 — 12 — 12 — 12 — 12 — 12						
COMMENTS:	Groundwater was not encou Surface sample was taken	untered @ this location,				-

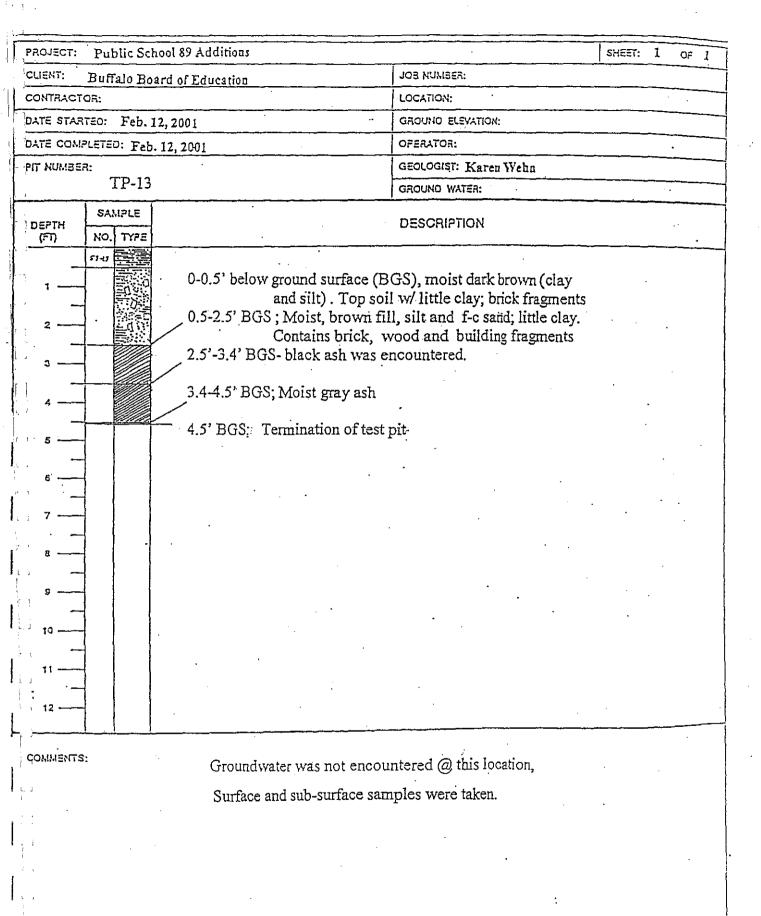
SF-09EH OF HTPUGCM


PROJECT:	Public Sc	hool 89 Additions		SHEET:	1	OF	1
CLIENT:	Buffalo Bo	oard of Education	JOS NUMBER:				
CONTRACT	OR:		LOCATION:				
DATE STAR	TEO: Feb.	12, 2001	GROUND ELEVATION:				
DATE COME	LETED: Fe	p. 12, 2001	OPERATOR:				
PIT NUMBER	i:		GEOLOGIST: Karen Wehn				
·	TP-7		GROUND WATER:				
DEPTH (FT)	SAMPLE NO. TYPE		DESCRIPTION			-	
3	55-7 (C.C.) (C.C	and silt). Top s 1-6.0' BGS; Moist black soil-	contains tiles, porcelain, pipe and wood, ash, cinders; FILL s sampled.				
11							
COMMENTS	:	Groundwater was not enco	ountered (a) this location				
		Surface and subsurface sa			-		
1 I		·)


JE35-4931 OF 1177-10CM

IESI PII LOG

PROJECT: Public Sch	ool 89 Additions		SHEST: 1 OF 1
CLIENT: Buffalo Bos	rd of Education	JOS NUMBER:	
CONTRACTOR:		LOCATION:	
DATE STARTED: Feb. 1	2, 2001	GROUND ELEVATION:	
DATE COMPLETED: Feb.	12, 2001	OPERATOR:	•
PIT NUMBER:		GEOLOGIST: Karen Wehn	<u> </u>
TP-9		GROUND WATER:	
DEPTH SAMPLE NO. TYPE		DESCRIPTION	
1 2 3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	and silt) . Top so 1-4.0' BGS; Moist, light brow 4.0 -8.0'BGS; Moist black and	gray ash. Contains wire, pipe, wood, ash, cinders (FILL)	
7 - V - O - O - O - O - O - O - O - O - O	— 8.0' BGS; Bottom of pit.		
12-			
SOMMENTS:			
	Groundwater was not enco	untered @ this location,	·
	Surface sample was taken		
!			



		<u> </u>						<u> </u>	
PROJECT:	Public Schoo	l 89 Additions				SHEET:	1	OF	1
CUENT:	Buffalo Board	i of Education		JOS NUMBER:					
CONTRACT	QR:			LOCATION:	·				
DATE STAR	750: Feb. 12,	2001		GROUNO ELEVATION:					
DATE COM	PLETEO: Feb. 1	2,2001		OPERATOR:					
PIT NUMBE	R:			GEOLOGIST: Karen Wehn		· · · · · · · · · · · · · · · · · · ·			
	TP-11	·		GROUND WATER:					
ੇ DEPTH (FI)	SAMPLE NO. TYPE			DESCRIPTION					·
	:: [A.E.]			<u> </u>					
1	9 G 200 2 G			BGS), moist dark brown oil w/ little clay	(clay				
2		0.5 – 4.0' BGS; (F	ILL) buildin	g debris, assorted rubble					
3 —			•	•			,	_	
		40 60' BGS: 0mg	v and white	ash layer. Brick, wood a	nd assorte	ed buildir	าσ		
4	100		ble was enc		ild monort		~ 5		i
			-				•		
<u> </u>	Sc	· Cornan m	.:	· · · · · · · · · · · · · · · · · · ·					•
6		6.0' BGS; Termina	ation of test	bir !					
		•							
! , 7				•		•			
) ′ 8·——				•					
, -									
9		•			•				
-		·							
10		÷							
				•					
11							•		
12					•	• .			
COMMENTS	! 	Grown-dwarten	was not anos	ountered @ this location,					
		•		univered fix titts tocenous		•			
<u> </u>		No sample wa	ıs taken.	•.		•			
ا ن									
. j .									
١, ,				•					

IEST PH LUG

CSELLOE ILLEGON

-PROJECT:	Public Sch	Public School 89 Additions							O.F	$=$ ${1}$
QUENT:	Buffalo Boa	ard of Education		JOS HUL	IBER:		··········			<u> </u>
CONTRACT			•	LOCATIO	en:					
JATE STAR	TEO: Feb. 1	2, 2001		· GROUND	ELEVATION:	··_				
DATE COM	LETEO: Feb.	12, 2001		OPERAT	OR;			٠.	·	
ובנאטא דו	₹:			G€oLog	IST: Karen We	bn	······································			
· ·	TP-14			GROUND	WATER:					
БЕРТН (FI)	SAMPLE NO. TYPE			DESC	RIPTION			•		
2 —	25-H 20-0	0.5-5.6' BGS	and silt) . T ; Moist, br	op soil w/ litt	le clay; brick nd f-c sand; l	fragments little clay.		·		
5	7.600 7.11.600	5.6 – 6.5' BGS 6.5' BGS; Term						·		
7								•		
, ,										
10			·	•.					,	
11			•	· 			***************************************	·		
DMMENTS	:	C	ha	encountered	O this location	On				
L 2		Groundwa	ici was noi	. cucountered	(fix irms rocatti	Ulla	•			

No samples were taken

550 507		t - 100 t 1374		
PROJECT:		hool 89 Additions	<u> </u>	SHEET: 1 OF 1
f · · · · · · · · · · · · · · · · · · ·		pard of Education	JOS NUNBER:	Marie
CONTRACTO		1	LOCATION:	
DATE STAR			GROUND ELEVATION:	
DATE COMP	LETEO: Feb	p. 12, 2001	OPERATOR:	•
PIT NUMBER	i: TP-1:	5	GEOLOGIST: Karen Wehn	
<u> </u>	17 - 1,	· · · · · · · · · · · · · · · · · · ·	GROUNO WATER:	
DEPTH	SAMPLE NO. TYPE		DESCRIPTION	
(FI)				•
2 -	100 0 100 0	0.5-8.0' BGS; Moist, brown fi Contains brick,	il w/ little clay; brick fragments	
5 -	0.0000000000000000000000000000000000000			
6	3 0	8.0' BGS; Natural f-c sand, sil		
7	0 ₹ II	Bottom of pit @	6.0 DG3	
10 —				
11 ————————————————————————————————————				
COMMENTS	:		·	
	·	Groundwater was not enco Surface sample was taken		

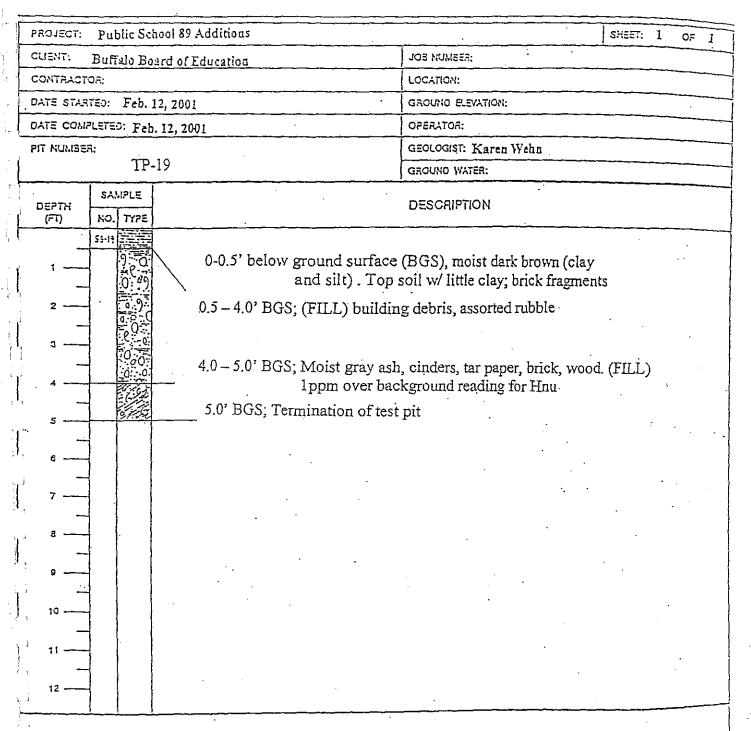
PROJECT:	Public Sc	hool 89 Additions		SHEET:	1	OF	${1}$				
CLIENT:	Buffalo Bo	erd of Education	JOS NUMBER:								
CONTRACTO			LOCATION:								
DATE STAR	TEO: Feb.	12, 2001	GROUND ELEVATION:								
DATE COMP	reteo: Fel	o. 12, 2001	OPERATOR:	" <u>-</u>							
PIT NUMBER			GEOLOGIST: Karen Wehn								
	TP-1	6	GROUND WATER:								
DEPTH (FI)	SAMPLE NO. TYPE	·	DESCRIPTION								
1 2 3 4 5 7 8 9 10 11 11 12	20-10-10-10-10-10-10-10-10-10-10-10-10-10	2.0-4.0' BGS; Moist, brown fi	oil w/ little clay; brick fragments ll, silt and f-c sand; little clay. wood and building fragments. mple was taken.								
COMMENTS	<u>. </u>					-					

Groundwater was not encountered @ this location,

Surface sample was taken

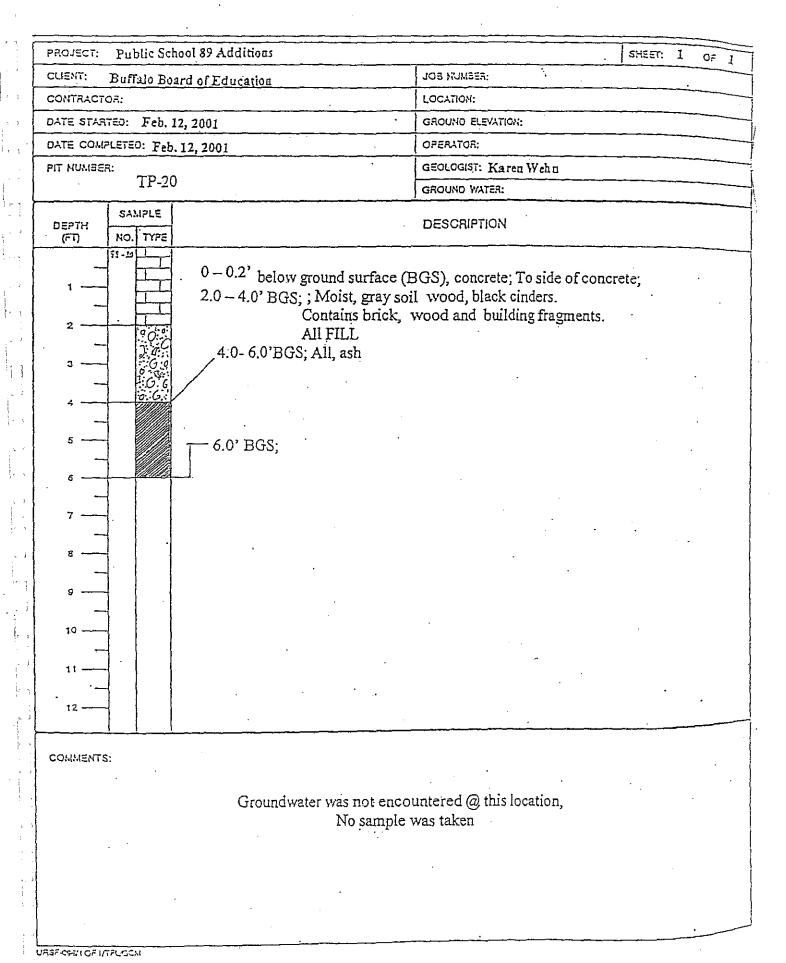
SF-C9-2/1 OF 1/TPU/GCM

PROJECT: Public School 89 Additions			SHEET: 1	OF	I	
CLIENT: Buffalo Board of Education JOS NUMBER			JOB NUMBER			
CONTRACTOR:			LOCATION:			
DATE STARTED: Feb. 12, 2001			GROUND ELEVATION:			
DATE COMPLETED: Feb. 12, 2001			OPERATOR:			
FIT NUMBER: TP-17			GEOLOGIST: Karen Wehn			
			GROUND WATER:			
DEPTH		DESCRIPTION		-		
(FT)	NO. TYPE	Becom non		- 	·	
· 1	55-17					
1	100 C		(BGS), moist dark brown (clay			
-, -			soil w/ little clay; brick fragments fill, silt and f-c sand; little clay.	•		
, 2	O. a		, wood and building fragments.			
3	<i>ō≌</i>					
-	I O					
4	0: 0: 0 = 7					
•	:0:4: :0:9:	_ 5.0' BGS; Bedrock		•	• •	
. s 	0,=	Bottom of pit (@ 5.0' BGS		•	1
			÷	•		
, , , , ,				.•		1
7						
\ <u>-</u>				•		
: / 8 		·				
9]					1
\ \ \ -						-
i , 10	1 1 1		•			}
	1 1		•			•
11	j					ł
12		·		•• •		
· · · · · · · · · · · · · · · · · · ·						
OMMENTS	- — - - -				٠	-


Groundwater was not encountered @ this location,

No sample was taken

L SECRETION NUMBER


T							
PROJECT: Public School 89 Additions				ऽभट्टा: 1	OF 1		
CLIENT: Buffalo Board of Education				JOS NUMBER:			
CONTRACTOR:				LOCATION:			
DATE STARTED: Feb. 12, 2001			GROUND ELEVATION:				
DATE COMPLETED: Feb. 12, 2001			OPERATOR:				
PIT NUMBER:			GEOLOGIST: Karen Wehn				
TP-18				GROUND WATER:			
) DEPTH (F1)	SAMPLE NO. TYPE			DESCRIPTION	,		
1	31-18	·					
2			Only a surface	sample was taken. No pit at this lo	cation.		
3					·		
5						-	
6							
7							
9 —			•		æ		
10						·	
11						·	
COMMENTS	:						
. 			<i>;</i>				

SF-09-2/1 OF I/TPL/GCM

COMMENTS:

Groundwater was not encountered @ this location,
Surface and sub-surface samples were collected

APPENDIX B SITE HEALTH AND SAFETY PLAN REQUIREMENTS

SITE HEALTH AND SAFETY PLAN TABLE OF CONTENTS

			Page No.
1.0	SCOPE	G	. 1
1.0	1.1	References	
	1.2	Definitions	
	1.3	Site Health and Safety Plan Requirements	
	1.4		
	·	Submittals	
	1.5	Compliance	6
2.0		UTION OF WORK	
	2.1	Site Health and Safety Plan Implementation	6
	2.2	Site Health and Safety Plan Elements	7
		2.2.1 Health and Safety Organization	7
		2.2.2 Hazard Assessment	7
		2.2.3 Training	8
		2.2.4 Medical Surveillance	9
	2.3	Site Control	10
	2.4	Standard Safety Practices	10
	2.5	Personal Protective Equipment	11
	2.6	Decontamination	11
	2.7	Air Monitoring	12
3.0	EMER	GENCY EQUIPMENT AND FIRST AID REQUIREMENTS	13
4.0	EMER	GENCY RESPONSE PLAN AND PROCEDURES	14
	4.1	Contingency Procedures	14
	4.2	Accident Investigation and Reporting	16

TABLE OF CONTENTS (Continued)

			Page No.
5.0	HEAT	COLD STRESS MONITORING	16
6.0	SPILI	CONTROL PLAN	16
7.0	DOCU	JMENTATION	17
	7.1	Logs, Reports and Recordkeeping	17
	7.2	Daily Safety Logs	17
	7.3	Air Monitoring Logs	17
	7.4	Close-out Safety Report	18
8.0	COMI	MUNICATIONS	18
9.0	POSTED REGULATIONS		
<u>ATTA</u>	CHME)	NTS	
C1	COM	MUNITY AIR MONITORING PLAN	

SITE HEALTH AND SAFETY PLAN

1.0 SCOPE

This section specifies the minimum requirements for health, safety, and emergency response for the project. The Contractor shall develop and implement a written Site Health and Safety Plan (SHASP) which at a minimum meets the requirements of this item and complies with applicable Federal and State regulations. The SHASP shall be submitted for review to the Engineer before any onsite work can be initiated. The SHASP, complete with all comments addressed, will be made a part of the Contract Documents.

1.1 References

The Site Health and Safety Plan shall meet applicable requirements contained in the following publications.

- 29 CFR 1910, General Industry, Occupational Safety and Health Administration
 (OSHA) Safety and Health Standards.
- 29 CFR 1926, Construction Industry, OSHA Safety and Health Standards.
- USEPA Order 1440.2, Health and Safety Requirements for Employees Engaged in Field Activities, July 12, 1981.
- NIOSH/OSHA/USCG/USEPA, Occupational Safety and Health Guidance Manual for Hazardous Waste Site Activities, October 1985.
- <u>Standard Operating Safety Guides</u>, United States Environmental Protection Agency,
 Office of Emergency and Remedial Response, November 1984.

- "Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices." American Conference of Governmental Industrial Hygienists, Cincinnati, Ohio, Current Edition.
- "Guide to Occupational Exposure Values." American Conference of Governmental Industrial Hygienists, Cincinnati, Ohio, Current Edition.
- Department of Labor, Occupational Safety and Health Administration, 29 CFR, Part
 1910, Air Contaminants; Final Rule, January 19, 1989.
- "Pocket Guide to Chemical Hazards" National Institute for Occupational Safety and Health and Occupational Safety and Health Administration, current edition.

1.2 <u>Definitions</u>

- Onsite Personnel: Onsite personnel shall include the Contractor, Subcontractor(s), the Owner and his representatives, and the local, state, and federal government representatives having jurisdiction over the work performed under this contract, as well as all employees/agents of these parties.
- Visitors: All personnel present on site not qualifying as Onsite Personnel.
- Health and Safety Manager: The Health and Safety Manager (HSM) must have a formal education and training in occupational health and safety with a minimum of three years experience in hazardous waste site operations. The HSM must have a working knowledge of State and Federal Occupational Safety and Health Regulations. He shall be responsible for the development, implementation, and oversight of the SHASP and shall provide necessary direction and supervision to the Site Health and Safety Officer. He shall also be responsible for site-specific training, review of air monitoring data, and review of any accident reports. The HSM shall be available during normal working hours.

- Site Health and Safety Officer: The Site Health and Safety Officer (SHSO) must have a minimum of two years of related experience. He must have a working knowledge of State and Federal Occupational Safety and Health Regulations and must have demonstrable experience in the proper use of air monitoring instrumentation used at the site. The SHSO shall be certified in CPR and first aid. The SHSO must be on site during active working hours. The responsibilities of the SHSO are as follows:
 - a. Implement the SHASP on site
 - b. Enforce day-to-day health and safety protocols in effect on site
 - c. Require that all workers involved in intrusive activities on the site have had appropriate waste site worker training and medical examinations, and review and maintain training and medical certifications on site
 - d. Require that all personnel entering the site understand the provisions of the SHASP
 - e. Conduct daily health and safety inspections and prepare weekly reports
 - f. Conduct periodic training sessions in proper use and maintenance of personal protective equipment and safety practices
 - g. Check the condition of all emergency equipment weekly and its availability on a daily basis
 - h. Conduct periodic emergency response drills
 - i. Conduct daily health and safety meetings each morning
 - j. Direct and advise Contractor personnel, visitors, and Subcontractor(s) on all aspects, especially changes, related to health and safety requirements at the site
 - k. Conduct necessary health and safety monitoring
 - 1. Conduct air monitoring program
 - m. Monitor site and perimeter conditions and determine all necessary changes
 in levels of personal protection and, if warranted, execute work stoppages
 - n. Report changes in site conditions and changes in personal protection requirements to the Engineer
 - o. Prepare accident/incident reports

- p. Prepare and maintain all Field Activities Forms in an orderly fashion
- Monitoring: Monitoring includes the use of real-time direct reading field instruments to provide necessary information for the selection of proper personal protective equipment for onsite personnel and visitors and for the protection of general public health and the environment during the performance of the work on site.
- Medical Consultant: The Medical Consultant must be a physician that is certified
 in occupational medicine and familiar with potential site hazards of the project. The
 Medical Consultant shall be available to consult with local emergency medical
 services and will provide medical evaluations of personnel assigned to the project.

1.3 Site Health and Safety Plan Requirements

This contract will require work which may involve exposure to physical and chemical hazards. The Contractor shall ensure adequate protection for all onsite personnel and implement a complete Site Health and Safety Plan for all personnel working on or visiting the site. The Site Health and Safety Plan shall address, as a minimum, the following subject areas in accordance with 29 CFR, 1910.120:

- Health and safety organization (responsibilities, qualifications, and chain-ofcommand).
- A health and safety risk or hazard analysis for each site task and operation to be performed.
- Provisions for employee training to assure compliance with 1910.120(e).
- Personal protective equipment (PPE) to be used by employees for each of the site tasks and operations being conducted to eliminate potential exposures as required by the personal protective equipment program in 1910.120(g)(5).

- Medical surveillance requirements in accordance with 1910.120(f).
- Real-time air monitoring to identify and monitor exposures to onsite personnel and
 offsite receptors; personnel and environmental sampling techniques and
 instrumentation to be used.
- Site control measures in accordance with 1910.120(d).
- Personnel and equipment decontamination procedures in accordance with 1910.120(k).
- Standard Operating Safety Procedures, engineering controls, and work practices.
- An Emergency Response Plan meeting the requirements of 1910.120(l) for safe and
 effective responses to emergencies, including communications, emergency rescue,
 fire protection, ambulance service, first aid, spill/release response, PPE, and other
 equipment.
- First aid requirements.
- Confined space entry procedures meeting the requirements of 1910.146.
- A spill containment program meeting the requirements of 1910.120(j).
- Heat/cold stress monitoring.
- Logs, reports, and record keeping.
- Site description and contamination evaluation.

1.4 Submittals

- The Contractor's Site Health and Safety Plan (SHASP) submitted to the Engineer prior to the startup of work.
- Written certification of hazardous waste site worker training (initial and refresher),
 site-specific health and safety training, first aid training, and medical surveillance for
 all personnel participating in intrusive construction activities.

1.5 Compliance

- Consistent disregard for the provisions of the SHASP by the Contractor or his Subcontractor(s), or employees shall be deemed just and sufficient cause for stoppage of work. Such work stoppage shall not form the basis of claim for either extra payment or extension of time for the project completion.
- The Contractor's compliance with the minimum requirements in these specifications does not relieve the Contractor from the responsibility of implementing proper health and safety procedures under unforeseen conditions.

2.0 EXECUTION OF WORK

The Contractor shall: (a) develop and submit for review a Site Health and Safety Plan; (b) employ a Health and Safety Manager, Site Health and Safety Officer, and a Medical Consultant; and (c) conduct all necessary monitoring activities to protect his onsite personnel and others in the area.

2.1 Site Health and Safety Plan Implementation

The SHASP shall be developed and implemented by the Contractor's HSM. The requirements described herein shall be used as a minimum outline description of the SHASP. The SHASP shall be site-specific and incorporate an assessment of the hazards associated with the remediation work

to be performed under this Contract. The SHASP shall address potential hazards associated with the performance of work.

2.2 Site Health and Safety Plan Elements

2.2.1 Health and Safety Organization

The Contractor shall submit a health and safety organization chart naming key project personnel, defining their duties, responsibilities, and presenting a structure to implement the SHASP as well as address problems and take corrective actions. Key project personnel will at a minimum include the Contractor's Project Manager, Health and Safety Manager, Site Health and Safety Officer, and field team personnel.

2.2.2 Hazard Assessment

The purpose of the Hazard Assessment is to provide information necessary for selecting personal protective equipment, establishing air monitoring requirements, and determining health and safety procedures necessary to protect all onsite personnel, the environment, and the public.

- Chemical Hazards: A qualitative evaluation of chemical hazards shall be based on the following:
 - a. Nature of potential contaminants
 - b. Locations of potential contaminants at the project site
 - c. Levels of contaminants
 - d. Potential for personnel/public exposure during various site activities
 - e. Effects of potential contaminants on human health
- Physical Hazards: The Contractor shall assess the potential for physical hazards affecting personnel during the performance of work.

2.2.3 Training

- General: The Contractor shall certify that all personnel assigned to or regularly entering areas of intrusive activity beyond the Support Zone for the purpose of performing or supervising work, for health, safety, security, or administrative purposes, for maintenance, or for any other site-related function, have received appropriate health and safety training in accordance with 29 CFR 1910.120 (e). Training shall consist of a minimum of 40 hours initial off-site training and three (3) days onsite experience. Twenty-four (24) hours of initial off-site training is acceptable for workers on site only occasionally for a specific limited task and who are unlikely to be exposed over Permissible Exposure Limits (PELs). In addition, the Contractor's supervisory personnel shall have a minimum of eight (8) hours additional specialized training on managing hazardous waste operations. Documentation of all such training shall be submitted to the Engineer before any employees will be allowed beyond the Support Zone.
- Site-Specific Training: All personnel assigned to or entering active intrusive work areas of the site shall complete one site-specific training session to guarantee that all such personnel are familiar with the use of health and safety, respiratory, and protective equipment and with the safety and security procedures required for the site. The initial site-specific training session shall be conducted by the HSM. The Contractor shall notify the Engineer at least five (5) days prior to the initial site-specific training session so that the Owner and Government personnel involved in the project may attend. Follow-up site-specific training sessions for new personnel or visitors shall be conducted by the SHSO. The Contractor shall provide site-specific training to all Contractor's and Subcontractor's employees and Government representatives consistent with the requirements of OSHA Standard 29 CFR 1910.120, prior to the commencement of work. The site-specific training program shall address all elements of the SHASP.
- Records: The Contractor shall keep records of all training periods, documenting date, attendance, and topics covered. Additionally, the Contractor shall be

responsible for, and shall guarantee that, only personnel successfully completing the required training are permitted to enter active intrusive work areas of the site.

2.2.4 Medical Surveillance

The Contractor shall provide the services of a Medical Consultant who is a physician board certified in occupational medicine to perform the medical examinations for all employees who perform intrusive work in the Exclusion Zone, in accordance with 29 CFR 1910.120(f). The Medical Consultant shall review the medical examination results to certify if Contractor's personnel are fit to perform assigned tasks using personal protective equipment. The medical surveillance protocol to be implemented is the Medical Consultant's responsibility but shall meet the requirements of USEPA, OSHA Standards 29 CFR 1910.134, and ANSI Z88.2-1980. The components of the Contractor's medical examination shall be included in the SHASP. The Contractor shall maintain and preserve medical records on workers permitted to enter beyond the Support Zone for 30 years after they leave employment as per 29 CFR Part 1910.20.

Onsite personnel entering the Exclusion Zone, and not employed by the Contractor or his Subcontractor shall be required to sign a declaration that he/she has undergone a physical examination of the same or similar scope and has been certified fit to enter contaminated areas requiring personal protective equipment necessary for this project.

Lost-Time Injuries: Any employee who develops a lost-time injury or illness during the period of the contract as a result of work in the Exclusion Zone must be evaluated by the Medical Consultant. The employee's supervisor shall be provided with a written statement indicating the employee's fitness (ability to return to work), signed by the Medical Consultant prior to allowing the employee to re-enter the Exclusion Zone. A copy of this written statement shall be submitted to the Engineer. An accident report describing the events leading up to and causing the injury or illness shall be submitted to the Engineer.

2.3 Site Control

The Contractor shall establish a system to control access to the site. This system shall be incorporated into the layout of the site into work zones. The work zones shall include the Support Zone, Contamination Reduction Zones, and Exclusion Zones (active intrusive work areas). The system shall assure that only authorized persons enter active intrusive work areas.

- The Contractor shall restrict access and mark the outer limits of the active intrusive work areas with high visibility barrier tape or flagging and signs warning unauthorized personnel not to enter.
- If construction is concurrent, the Contractor will be responsible for establishing a
 means of communication between the active work areas. The Contractor will also
 be responsible for establishing a means of communication between workers within
 the same work area.
- Site security shall be established and maintained.

2.4 Standard Safety Practices

The Contractor shall develop, implement, and enforce safe work practices and engineering safeguards for the work covered under these specifications. General site health and safety directives for conducting onsite work which shall be included in the SHASP and enforced during site activities include but are not limited to:

- Eating and smoking shall be prohibited except in designated areas outside the Exclusion Zone and Contamination Reduction Zone as identified by the SHSO.
- Before initiating any non-routine operation in any restricted area, all personnel shall consult the SHSO about health and safety requirements for the operations.

- A buddy system shall be implemented for all activities involving the use of respiratory protective equipment.
- The Contractor shall implement protocols for loading and unloading material on site.
 These protocols shall include DOT requirements covering such items as grounding, placarding, driver qualifications, and the use of wheel locks. Operation of other heavy construction equipment shall be in accordance with OSHA Standard 29 CFR Part 1926.

2.5 <u>Personal Protective Equipment</u>

The Contractor shall provide all onsite personnel with appropriate personal protective equipment and protective clothing as required by the SHASP. The Contractor shall ensure that all safety equipment and protective clothing is kept clean and well-maintained.

Selection of personal protective equipment is based on the potential toxicity or physical dangers associated with hazardous materials and possible routes of exposure. Based on known or anticipated hazards, personnel will be required to wear a minimum of Level D protection. The adequacy of personal protection shall be confirmed through air monitoring conducted by the Contractor's Site Health and Safety Officer (SHSO). If the need to upgrade the level of personal protection arises, the SHSO will provide his personnel with the appropriate equipment. PPE selection, evaluation, and re-evaluation is an on-going process directly related to the change in conditions as encountered at the site.

Various levels of PPE must be made available on site during construction activities. It is anticipated that Level D and Level D-Modified PPE will be required.

2.6 Decontamination

 Equipment Decontamination: The Contractor shall construct a decontamination pad within the Contamination Reduction Zone(s) for removing soil from all vehicles and equipment leaving the exclusion zone(s). The decontamination pad(s) shall include a high-pressure water wash area for equipment and vehicles. A designated clean area shall be established within the Contamination Reduction Zone(s) for performing equipment maintenance.

Any item taken into the Exclusion Zone must be assumed to be contaminated and must be carefully inspected and/or decontaminated before the item leaves the area. All contaminated vehicles, equipment, and materials shall be cleaned and decontaminated to the satisfaction of the Engineer prior to leaving the area. All construction material shall be handled and brought on site in such a way as to minimize the potential for contaminants being carried off site. Separate, clearly-marked parking and delivery areas shall be established.

- Water used for personnel and equipment decontamination will be collected and pumped into a recharge trench which will allow the water to seep into the ground within the limits of the final cover system.
- Personnel Decontamination: Personnel shall be required to go through a thorough decontamination procedure in the Contamination Reduction Zone prior to entering the Support Zone. Decontamination shall consist of soap and water washing of worker's hands, and face, and wet wiping of worker's boots or shoes.

2.7 Air Monitoring

The Contractor shall perform continuous real-time monitoring during active work at each work area and at site perimeter stations. Real-time organic vapor monitoring shall be conducted using Photoionization and/or Flame Ionization Detectors at each active work area within the breathing zone. All real-time monitoring shall be run continuously during active work. Real-time monitoring for combustibles, oxygen, hydrogen sulfide, and particulates shall also be run continuously along with the organic vapor monitoring. In addition, real-time, direct reading monitors shall be used at least hourly at one upwind and three downwind perimeter stations to monitor releases resulting from onsite activity and to provide information necessary to determine work rates and the implementation of

control measures to prevent unacceptable contaminations from leaving the site. Results of the realtime monitoring shall be logged and reported to the Engineer daily.

3.0 EMERGENCY EQUIPMENT AND FIRST AID REQUIREMENTS

- Fire Extinguishers: The type and number of fire extinguishers shall be determined by the Contractor. Inspection and maintenance shall be the responsibility of the Contractor. At least one 20-lb type ABC fire extinguisher shall be located at each entrance to each active work area with additional units located in onsite offices, and on each piece of heavy equipment. These fire extinguishers shall be utilized for putting out equipment or personnel fires and not to be employed as sole fire fighting equipment for large site fire.
- Emergency Eye Wash: Portable emergency eye wash units shall be provided by the Contractor. These portable units must be protected from freezing and shall be located close to the work area and at each equipment decontamination station. The emergency eye wash units shall meet the requirements specified in ANSI Z358.1-1981.
- First Aid Kits: The size and number of kits shall be sufficient for the maximum number of people on site at one time. The kits shall be equipped as per the recommendations of the Medical Consultant and shall be able to provide stabilization for patients requiring offsite treatment and general first aid. The first aid kit locations shall be specially marked and provided with adequate water and other supplies necessary to cleanse and decontaminate burns, wounds, or lesions.
- Onsite Emergency Vehicle: The Contractor shall provide at all times while onsite
 work proceeds, a designated emergency vehicle which will be used to transport
 injured personnel to the hospital for treatment. This vehicle shall contain a map
 showing the route and written directions to the hospital.

4.0 EMERGENCY RESPONSE PLAN AND PROCEDURES

The Contractor shall develop an Emergency Response Plan which shall be submitted as part of the SHASP. This plan shall be designed to delineate contingency procedures to be used in the event of injuries to employees or other site-related accidents. The Emergency Response Plan shall include the procedures to be used to mitigate the harmful effects of chemical exposure as well as rescue and first aid services to be rendered. The Contractor shall coordinate with local agencies (fire department, police department, emergency medical services, etc.) prior to beginning work.

Emergency response agencies and current telephone numbers shall be included in the SHASP.

4.1 <u>Contingency Procedures</u>

The Contractor shall include in the SHASP a set of contingency procedures. At a minimum, these procedures shall describe:

- a) The actions that the Contractor will take in response to a worker injury or illness, a heavy equipment related accidents, fires, explosions, or any spill of contaminated materials;
- b) The name, address, and phone number (home and office) of the person(s) designated by the Contractor to act as emergency coordinator;
- c) A list of all emergency equipment at the site;
- d) Fires: The Contractor shall develop procedures for responding to both small and large fires which shall address the following minimum actions:
 - Evacuation procedures.
 - Extinguishing methods.

- Notification of emergency response services, Engineer, and Owner.
- e) Escape routes which will be used in the event of a sudden release, explosion, fire, etc.;
- f) A map showing the route to the nearest hospital;

The Contractor shall prepare a Contingency Plan designed to prevent the spread of contaminants to adjacent areas. The plan shall incorporate a comprehensive air monitoring program which will follow NYSDEC and NYSDOH guidelines for a Community Air Monitoring Plan and shall meet the minimum requirements of the Project Contingency Plan. The Community Air Monitoring Plan particulate limits shall be modified for this project as follows:

- An action level of 150 micrograms per cubic meter (integrated over a maximum period of 15 minutes) shall be established.
- If the site particulate levels exceed the 150 micrograms/cubic meter limit, then
 particulate measurements upwind of the site will be recorded. If the waste site level
 exceeds background by more than 100 micrograms/cubic meter, then remedial site
 activities must be performed.

The NYSDEC and NYSDOH Community Air Monitoring Plan has been provided as an attachment to this section.

The Contractor shall promptly report in writing to the Engineer and Owner all accidents arising out of, or in connection with, the performance of the work, whether on or adjacent to the site, which caused death, personal injury, or property damage, giving full details and statements of witnesses.

4.2 Accident Investigation and Reporting

The Contractor shall develop a system, including forms, on which the pertinent details about accidents, damage, existing hazards, and actions taken to alleviate problems can be listed. These forms shall be appended to the Contractor's SHASP.

5.0 HEAT/COLD STRESS MONITORING

As a minimum, the Contractor shall establish work/rest schedules based on ambient conditions and the level of protection being utilized and identify necessary physiological monitoring requirements.

Procedures to monitor, avoid, and treat heat/cold stress shall be established in accordance with "Occupational Safety and Health Guidance Manual for Hazardous Waste Site Activities," NIOSH/OSHA/USCG/EPA, October 1985; U.S. Dept. of Health and Human Services, Public Health Service, Centers for Disease Control, National Institute for Occupational Safety Health; Publication No. 85-115.

Field implementation of the Heat/Cold Stress Prevention Plan shall be performed by a person with current first aid/CPR certification who is trained to recognize symptoms of heat and cold stress.

6.0 SPILL CONTROL PLAN

The Contractor shall provide spill control measures; including methods, means, and facilities required to prevent contamination by site wastes, contaminated groundwater, equipment fuels, oils, and greases, and any other potentially hazardous materials. If a spill occurs, the following actions, at a minimum, shall be taken by the Contractor.

- a. Notify the Owner and Engineer immediately.
- b. Take immediate measures to control and contain the spill within the site boundaries.
- c. Keep unnecessary people away, isolate the hazardous area, and deny entry.
- d. Stay upwind; keep out of low lying areas.

- e. Allow no flares, smoking, or flames in hazard area.
- f. For liquids, keep combustibles away from the spilled material.

7.0 DOCUMENTATION

7.1 Logs, Reports, and Recordkeeping

The Contractor shall maintain logs and reports covering the implementation of the SHASP. The format shall be developed by the Contractor to include Daily Safety Logs, Air Monitoring Logs, and a Close-Out Safety Report. These logs and reports shall be appended to the Contractor's SHASP.

7.2 <u>Daily Safety Logs</u>

Daily Safety Logs shall be completed by the SHSO and submitted to the Engineer on a daily basis. These logs shall include:

- a. Date.
- b. Work area(s) checked.
- c. Employees present in work areas.
- d. Equipment being utilized by employees.
- e. Protective clothing being worn by employees.
- f. Protective devices being used by employees.
- g. Accidents or breaches of procedure.

7.3 Air Monitoring Logs

Air Monitoring Logs shall be completed by the SHSO and submitted to the Engineer on a daily basis. These logs shall include:

- a. Date of report.
- b. Equipment utilized for air monitoring.
- c. Real-time air monitoring readings from each work location.

- d. Calibration records.
- e. Signature of individual taking readings.
- f. Specific locations of real-time readings.
- g. Exact time monitoring was conducted.
- h. Meteorological conditions.
- i. Any required equipment repair.

7.4 Close-out Safety Report

At the completion of the work, the Contractor shall submit a Close-out Safety Report. The report shall be signed and dated by the Site Health and Safety Officer and submitted to the Engineer. The report shall include procedures and techniques used to decontaminate equipment, vehicles, and decontamination facilities. The report shall include a summary of safety aspects of the entire project.

8.0 COMMUNICATIONS

A hardline or cellular telephone communications system shall be established by the Contractor. Two way radios shall be utilized for onsite communication. A map giving directions to the nearest hospital and a list of emergency numbers, including the Owner, Engineer, police, fire, ambulance, hospital, and the NYSDEC shall be prominently posted near the telephone.

9.0 POSTED REGULATIONS

The Contractor shall develop a series of posted regulations which shall address onsite protocols regarding use of personal protective equipment, personal hygiene, and provisions for smoking and eating on the site.

These protocols shall be posted at various locations on site and shall be reviewed with the Contractor's personnel.

Community Air Monitoring Plan (Ground Intrusive Activities)

Real-time air monitoring, for volatile compounds and particulate levels at the perimeter of the work area is necessary. The plan must include the following:

- Volatile organic compounds must be monitored at the downwind perimeter of the work area on a continuous basis. If total organic vapor levels exceed 5 ppm above background, work activities must be halted and monitoring continued under the provisions of a Vapor Emission Response Plan. All readings must be recorded and be available for State (DEC & DOH) personnel to review.
- Particulates should be continuously monitored upwind, downwind and within the
 work area at temporary particulate monitoring stations. If the downwind particulate
 level is 100* μg/m³ greater than the upwind particulate level, then dust suppression
 techniques must be employed. All readings must be recorded and be available for
 State (DEC & DOH) personnel to review.

(*See Section 4.1 for revised particulate requirements - a level of 150 μg/m³ is normally specified)

Vapor Emission Response Plan

If the ambient air concentration of organic vapors exceeds 5 ppm above background at the perimeter of the work area, activities will be halted and monitoring continued. If the organic vapor level decreases below 5 ppm above background, work activities can resume. If the organic vapor levels are greater than 5 ppm over background but less than 25 ppm over background at the perimeter of the work area, activities can resume provided:

 The organic vapor level 200 ft. downwind of the work area or half the distance to the nearest residential or commercial structure, whichever is less, is below 5 ppm over background.

If the organic vapor level is above 25 ppm at the perimeter of the work area, activities must be shutdown. When work shutdown occurs, downwind air monitoring as directed by the Safety Officer will be implemented to ensure that vapor emission does not impact the nearest residential or commercial structure at levels exceeding those specified in the Major Vapor Emission section.

Major Vapor Emission

If any organic levels greater than 5 ppm over background are identified 200 feet downwind from the work area or half the distance to the nearest residential or commercial property, whichever is less, all work activities must be halted.

If, following the cessation of the work activities, or as the result of an emergency, organic levels persist above 5 ppm above background 200 feet downwind or half the distance to the nearest residential or commercial property from the work area, then the air quality must be monitored within 20 feet of the perimeter of the nearest residential or commercial structure (20 Foot Zone).

If efforts to abate the emission source are unsuccessful and if the following levels persist for more than 30 minutes in the 20-Foot Zones, then the Major Vapor Emission Response Plan shall automatically be placed into effect;

• if organic vapor levels are approaching 5 ppm above background.

However, the Major Vapor Emission Response Plan shall be immediately placed into effect if organic vapor levels are greater than 10 ppm above background.

Major Vapor Emission Response Plan

Upon activation, the following activities will be undertaken:

- All Emergency Response Contacts as listed in the Health and Safety Plan of the Work Plan will go into effect.
- 2. The local police authorities will immediately be contacted by the Safety Officer and advised of the situation.

3. Frequent air monitoring will be conducted at 30 minutes intervals within the 20 Foot Zone. If two successive readings below action levels are measured, air monitoring may be halted or modified by the Safety Officer.

[]			
[]			
[; [;			
۱ : أ.			
ι ;			
L., 1			

•

APPENDIX A SUBSURFACE EXPLORATION LOGS

DRILLII	NG LO	OG OF WELL/B	ORING NO. SB-1					Page 1 of 50
_		nber: 12MS-104				Hole: 12 feet	below grad	de (ftbg)
			on Heights 1827 Fillmore Avenue, Buffalo, New York	Gro	und Elevati	ion: NA		
			t corner of property		er Encount			
		inished: Augus				of Drilling: NA		
			Development, Inc.		ipment: Po			
Drilling	Met	hod: Hydraulic	ally driven system (PowerProbe)	Tecl	nnician: Jos	eph Mecca		_
				В		Р		
				- 1		I		
E				0		D		
I) A / - II		W	I		R	
е		Well	6 1/0 1 0 1 1		n	R	е	
٧		Completion	Soil/Rock Description	С	t	е	С	
a	D	Diagram		0	е	a	0	
l :	е			u	r	d :	V	
1	p			n	V	i	e	
o n	t h			t S	a	n g	r V	Comments
- 11	<u> </u>			3	<u>'</u>	Parts Per	у	Comments
					(Feet)	Million	(Inches)	
			Ground Surface		(reet)	(PPM)	(menes)	
	1		0-0.25 ftbg: Asphalt and subbase					
			0.25-2 ftbg: gray gravelly clayey Fill Material (stiff, no plasticity					
				'l				
			dry)		0-4	6.5	20	
			2-4 ftbg: brown gravelly clayey Fill Material (med stiff, low					
			plasticity, moist)			ì		
								1
	5							
NA		NA	4-9 ftbg: dark brown gravelly clayey Fill Material (medium stiff	NA	4-8	0.7	20	
			low plasticity, moist)					
					•			
								_
			9-10 ftbg: brown clayey Fill Material (soft, medium plasticity,					
	10		moist					
					8-12	2.7	15	
			10-11 ftbg: gray gravelly Fill Material (angular, medium dense,					5itfld
			dry)					Equipment refusal encountered
			11-12 ftbg: dark brown gravelly sandy clayey Fill Material (low					at approximately 12 ftbg
			plasticity, mediu <mark>m s</mark> tiff, moist)					
i			*	MS				2
							ANAL	TICAL
l				1				
				ENVIRONMENTAL CONSULTANTS 4169 ALLINOALE PKWY: BUPFALC, NEVER (419) 42 (74) 31-28/96 II (716) 312-3092			ALO, NEW YORK 14219	
				1			W (716) 312-8296 III www.msanalyt	ical com

DRILLII	NG LC	OG OF WELL/BO	ORING NO. SB- 2					Page 2 of 50
Proiect	Num	nber: 12MS-104	1(.5)	Tota	al Depth of	Hole: 10 feet	below grad	e (ftbg)
			on Heights 1827 Fillmore Avenue, Buffalo, New York		und Elevati			- (
Boring	Locat	ion: North of b	uilding A1	Wat	er Encount	ered: NA		
Date St	tart/F	inished: August	t 7, 2012	Wat	er At End c	of Drilling: NA		
Orilling	Cont	ractor: Russo D	Development, Inc.	Equ	ipment: Po	werProbe		
Orilling	Meth	hod: Hydraulic	ally driven system (PowerProbe)	Tecl	hnician: Jos	eph Mecca		
E I e v a t	D e p	Well Completion Diagram	Soil/Rock Description	B O W C O u	I n t e r	P I D R e a d i	R e c o v	
0	t			t	a	n	r	
n	h			S	l	g	у	Comments
			Ground Surface		(Feet)	Parts Per Million (PPM)	(Inches)	
	1		0-0.5 ftbg: Asphalt and subbase 0.5-4 ftbg: brown gravelly sandy clayey Fill Material (medium stiff, no plasticity, moist)		0-4	0.9	15	
NA	5	NA	4-5 ftbg: gray Ash (soft, moist) with gravel 5-8 ftbg: brown gravelly sandy clayey Fill Material (medium stiff, low plasticity, moist)	NA	4-8	0.4	15	
	10		8-10 ftbg: brown gravelly Clay (stiff, no plasticity, moist)		8-10	0.7	15	Equipment refusal encountered at approximately 10 ftbg
				•				
						4169 ALLEND	ROMENTAL CO DALE PKWY. BUPPAI 16) 312-8296 B (7 www.msanalytica	LO, NEW YORK 14219 16) 312-8092

DRILLII	NG L	OG OF WELL/BO	DRING NO. SB- 3					Page 3 of 50
Project	Nun	nber: 12MS-104	(.5)	Tota	l Depth of	Hole: 5 feet b	elow grade	e (ftbg)
Project	Loca	ation: Kensingto	n Heights 1827 Fillmore Avenue, Buffalo, New York	Gro	und Elevati	on: NA		
_		tion: Northwest	·		er Encount			
	_	Finished: August				of Drilling: NA		
)			•		pment: Po			
Drilling	Met	hod: Hydraulica	ally driven system (PowerProbe)	Tech	nnician: Jos	eph Mecca		
E I e v a t	D e p	Well Completion Diagram	Soil/Rock Description	B I o w C o u n	I n t e r	P D R e a d i	R e c o v	
o n	t h			t s	a I	n g	r y	Comments
			Ground Surface		(Feet)	Parts Per Million (PPM)	(Inches)	
	1		0-0.5 ftbg: Asphalt and subbase		0-2	1.2	10	
NA		NA	0.5-4 ftbg: brown gravelly clayey Fill Material (stiff, no plastic, moist)	NA	2-4	1.2	10	
	5		4-5 ftbg: gray sandy gravelly Fill Material (angular, medium dense, moist)		4-5	1.2	6	Equipment refusal encountered at approximately 5 ftbg
						4169 AL	NVIRONMENTAL OLIENDALE PKWY. BUT WWW.msanily	TALO, NEW YORK 14219 (716) 312-8092

oject	Nun	nber: 12MS-104	(.5)	Tota	al Depth of	Hole: 6 feet b	elow grade	e (ftbg)
_			n Heights 1827 Fillmore Avenue, Buffalo, New York		und Elevati		8	(1198)
oring	Loca	tion: Northwest	of Building A3	Wa	ter Encount	tered: NA		
ate St	:art/F	inished: August	7, 2012	Wa	ter At End o	of Drilling: NA		
			evelopment, Inc.		ipment: Po			
rilling	Met	hod: Hydraulica	ally driven system (PowerProbe)	Tec	hnician: Jos	eph Mecca		
E I e v a t i o n	D e p t	Well Completion Diagram	Soil/Rock Description	B I O W C O U I N t S	I n t e r v a	PIDDR	R e c o v e r	Comments
11	- 11			5	<u> </u>	Parts Per	У	Comments
			Ground Surface		(Feet)	Million (PPM)	(Inches)	
NA	1	NA	0-0.5 ftbg: Asphalt and subbase 0.5-3.5 ftbg: brown gravelly clayey Fill Material (stiff, no plasticity, moist)	NA	0-4	9.9	15	
	5		3.5-4.5 ftbg: gray gravelly Sand (coarse and medium grain medium dense, dry)4.5-6 ftbg: brown gravelly Clay (stiff, low plasticity, moist		4-6	0.8	15	Equipment refusal encountered at approximately 6 ftbg
						M	MS	ICAL .

DRILLI	NG LC	OG OF WELL/BO	DRING NO. SB-5					Page 5 of 50
Project	Num	ber: 12MS-104	u(5)	Tota	al Denth of	Hole: 12.5 fe	et helow gra	ade (fthg)
			on Heights 1827 Fillmore Avenue, Buffalo, New York		und Elevati			(1126)
		ion: Northwest			er Encount			
		inished: August				of Drilling: NA		
			Development, Inc.		ipment: Po			
			ally driven system (PowerProbe)	Tecl	hnician: Jos	eph Mecca		
				В		Р		
				Ī		i		
Ε				0		D		
1				W	- 1		R	
е		Well			n	R	е	
V		Completion	Soil/Rock Description	С	t	е	С	
a	D	Diagram		0	е	a	0	
t	е			u	r	d	V	
İ	p			n	V	i	e	
o n	t h			t s	a	n	r y	Comments
				3	'	g Parts Per	у	Comments
					(Feet)	Million	(Inches)	
			Ground Surface		(1 cct)	(PPM)	(menes)	
NA	5	NA	0-0.5 ftbg: Asphalt and subbase 0.5-8 ftbg: brown gravelly sandy clayey Fill Material (medium stiff, no plasticity, moist) 8-12 ftbg: gray sandy clayey gravelly Fill Material (angular, medium dense, moist)	NA	0-4 4-8 8-12	0.9	15	Equipment refusal encountered
			12-12.5 ftbg: brown gravelly Clay (stiff, low plasticity, moist)		12-12.5	0.7	6	at approximately 12.5 ftbg
			▼			4169 ALLES	IRONMENTAL CONS IRONMENTAL CONS IRONME	SULTANTS NEW YORK 14219 3312.8092

DRILLIN	G LO	G OF WELL/BO	DRING NO. SB-6					Page 6 of 50
Project	Num	ber: 12MS-104	.(5)	Tota	al Denth of	Hole: 12 feet	helow grad	le (fthg)
			n Heights 1827 Fillmore Avenue, Buffalo, New York		und Elevati		below Brac	(1006)
		ion: Southeast			er Encount			
		nished: August	-			of Drilling: NA		
			Development, Inc.		ipment: Po			
			ally driven system (PowerProbe)			eph Mecca		
		,		В		P I		
Е				0		D		
1				W	- 1		R	
е		Well			n	R	е	
V		Completion	Soil/Rock Description	С	t	е	С	
a	D	Diagram		0	е	а	0	
t	е			u	r	d	V	
i	р			n	V	i	е	
0	t			t	a	n	r	
n	h			S	I	g	у	Comments
			Ground Surface		(Feet)	Parts Per Million (PPM)	(Inches)	
	1		0-0.5 ftbg: Asphalt and subbase			(1 1 111)		
					0-4	1.1	15	
NA	5	NA	0.5-8 ftbg: brown gravelly Clay (medium stiff, low plasticity, moist)	NA	4-8	0.8	15	
	10		8-12 ftbg: brown clayey Gravel (angular, medium dense, moist)	8-12	1.2	6	Equipment refusal encountered at approximately 12 ftbg
				ı				
						4169 Au	MS ANALYT NVIRONHENTAL CONS LEBERALE PRIVAY. BLUTERALO, E (716) 312-829 B (716) Verwer creamodytical co	

DRILLI	NG LC	OG OF WELL/BO	DRING NO. SB-7					Page 7 of 50
Project	Num	nber: 12MS-104	u(5)	Tota	al Denth of	Hole: 10 fee	et helow gra	ade (fthg)
			on Heights 1827 Fillmore Avenue, Buffalo, New York		und Elevati		et below bre	346 (1188)
		ion: Southeast				tered: NA		
		inished: August				of Drilling: N	A	
			Development, Inc.		ipment: Po			
			ally driven system (PowerProbe)			eph Mecca		
E I e v a t	D e	Well Completion Diagram	Soil/Rock Description	B I o w C o	I n t e	P I D R e a d	R e c o	
i	р			n	٧	i	е	
0	t			t	а	n	r	
n	h			S	I	g	у	Comments
			Ground Surface		(Feet)	Parts Per Million (PPM)	(Inches)	
	1		0-0.5 ftbg: Asphalt and subbase		0-4	1.3	15	
NA	5	NA	0.5-10 ftbg: brown gravelly sandy clayey Fill Material (medi stiff, no plasticity, moist)	NA	4-8	1.4	15	
	10				8-10	0.5	15	Equipment refusal encountered at approximately 10 ftbg
						4169 ALLENDA	ONMENTAL COM AMERICAN ON MENTAL COM AMERICAN OF 112-8296 TO (71 WWW.msanalytica	O, NEW YORK 14219 (6) 312-8092

ORILLII	NG LO	OG OF WELL/BO	DRING NO. SB-8					Page 8 of 50
Project	Nun	nber: 12MS-104	(5)	Tota	al Denth of	Hole: 7 feet	helow grad	le (fthg)
			n Heights 1827 Fillmore Avenue, Buffalo, New York		und Elevati		DCIOW BIAC	ic (rtbg)
		tion: South of B				tered: NA		
_		inished: August	•			of Drilling: N	Α	
			evelopment, Inc.		ipment: Po			
			ally driven system (PowerProbe)		-	seph Mecca		
E I e v a t i o n	D e p t	Well Completion Diagram	Soil/Rock Description	B I O W C O U I n t s	I n t e r v a	P I D R e a d i n g	R e c o v e r	Comments
			Ground Surface		(Feet)	Parts Per Million (PPM)	(Inches)	
	1		0-0.5 ftbg: Asphalt and subbase					
NA		NA	0.5-4 ftbg: brown sandy gravelly Clay (medium stiff, low plasticity, moist)	NA	0-4	0.3	15	
	5		4-7 ftbg: brown clayey gravel Fill Material (angular, mediur dense, moist)	n	4-7	0.4	20	Equipment refusal encountered at approximately 7 ftbg
				T				
						4169 ALLENDA	ONMENTAL COM MAR PRWY. BUFFAL 6) 312-8296 B (7/ WWW.msanalytica	.o, New York 14219 16) 312-8092

DRILLI	NG LC	OG OF WELL/BO	DRING NO. SB-9					Page 9 of 50
Project	Num	nber: 12MS-104	u(5)	Tota	al Denth of	Hole: 7 feet	helow grad	de (fthg)
			on Heights 1827 Fillmore Avenue, Buffalo, New York		und Elevati		. below Brac	20 (1108)
		tion: West of Bu				tered: NA		
		inished: August				of Drilling: N	Α	
			Development, Inc.		ipment: Po			
			ally driven system (PowerProbe)		•	seph Mecca		
E I e v a t i o	D e p t h	Well Completion Diagram	Soil/Rock Description	B I O W C O U n t s	I n t e r v a	P I D R e a d i n	R e c o v e r y	Comments
	Ground Surface				(Feet)	Parts Per Million (PPM)	(Inches)	
	1		0-0.5 ftbg: Asphalt and subbase 0.25-4 ftbg: brown/black sandy gravelly clayey Fill Material (stiff, no plasticity, moist)		0-2	2.7	15	
NA	5	NA	4-6 ftbg: black/tan gravelly clayey Sand (coarse and medium grain, dense, moist)	NA	2-4	1.3	15 15	
			6-7 ftbg: brown gravelly Clay (stiff, no plasticity, moist)		4-7	17.0	15	Equipment refusal encountered at approximately 7 ftbg
						4167 ALLEN	IRONMENTAL CO	ALO, NEW YORK 14219 (716) 312-8092

	NG LC	JG OF WELL/BC	DRING NO. SB-10					Page 10 of 5
oject	Num	nber: 12MS-104	(.5)	Tota	al Depth of	Hole: 15 fee	et below gr	ade (ftbg)
oject	Loca	tion: Kensingto	n Heights 1827 Fillmore Avenue, Buffalo, New York		und Elevati			
		tion: South East		Wat	er Encoun	tered: NA		
		inished: August		Wat	er At End o	of Drilling: N	A	
			evelopment, Inc.	Equ	ipment: Po	werProbe		
rilling	Meth	hod: Hydraulica	ally driven system (PowerProbe)	Tecl	nnician: Jos	eph Mecca		
				В		P I		
E				0		D		
ı		Well		W			R	
е		Completion	Soil/Rock Description		n	R	е	
۷			Soil/ Rock Description	С	t	е	С	
a t	D	Diagram		0 U	e r	a d	0 V	
i	e			n	V	i	e	
0	p t			t	a	n	r	
n	h			S	l l	g	y	Comments
				3		Parts Per	,	Comments
			Ground Surface		(Feet)	Million (PPM)	(Inches)	
	1		0-0.25 ftbg: Asphalt and subbase			,		
	+		0-0.23 Tug. Aspirati and subbase					
			0.25-4 ftbg: dark brown gravelly Sand (coarse, medium ar	nd	0-4	7.3	15	
			fine grain, dense, moist)		1			
			mic gram, acrise, moise,					
	5							
)				
					4-8	0.8	10	
NA		NA	4-11.5 ftbg: dark brown gravelly Sand (coarse, medium ar	nd NA				
NA		NA	fine grain, dense, moist) with white ash	INA				
				•				
					8-12	2.4	15	
	10							
								1
			11.5-15 ftbg: white/beige Ash (soft, moist)					Facilities and make and a secondary
					12-15	1.3	15	Equipment refusal encountered
								at approximately 15 ftbg
	15							
					l	ı		•
							MS	
							ANALY	TICAL
							ONMENTAL CO	NSULTANTS LO, NEW YORK 14219
				Ĩ			6) 312-8296 lh (7	

RILLII	NG LO	OG OF WELL/B	ORING NO. SB-11					Page 11 o
oject	Nun	nber: 12MS-104	1(.5)	Tota	al Depth of	Hole: 20 fee	t below gra	de (ftbg)
			on Heights 1827 Fillmore Avenue, Buffalo, New York		und Elevati			
		tion: East of Bu				tered: NA		
		inished: Augus				of Drilling: N	IA	
			Development, Inc.		ipment: Po			
illing	Met	hod: Hydraulic	ally driven system (PowerProbe)	Tecl	hnician: Jos	seph Mecca	,	T
				В		Р		
_						1		
E				0		D		
1		Well		W		D	R	
e v		Completion	Soil/Rock Description	С	n t	R e	e c	
a a	D	Diagram	gon, noon gescription	0	e	a	0	
t	e	2 iagraii		u	r	d	V	
i	р			n	V	i	е	
0	t			t	a	n	r	
n	h			S	- 1	g	у	Comments
						Parts Per		
					(Feet)	Million	(Inches)	
			Ground Surface			(PPM)		
	1		0-0.25 ftbg: Asphalt and subbase					
					0-4	2.2	15	
			0.25-4 ftbg: tan/black Sand (coarse, medium and fine grain		0-4	2.2	13	
			dense, moist)	47				
	_							1
	5				K			
			4.0 fiber black consults desire Cond. (consults desired for					
			4-8 ftbg: black gravelly clayey Sand (coarse, medium and fin	е	4-8	5.4	15	
			grain, medium dense, moist)					
			8-10 ftbg: black/tan gravelly Sand (coarse grain, medium grai	n				
			fine grain, medium dense, moist)	'',	8-10	1.7	10	
NA	10	NA	inic gram, mediam dense, moist,	NIA.				
N/A		INA		NA				
					10-12	1.2	10	
					12-16	1.1	15	
			10-20 ftbg: gray gravelly Clay (stiff, medium plasticity, mois	t)				
	1 5		with ash					
	15							
					16.20	1.1	_	
					16-20	1.1	6	
		1	ı		1			ı
				<u> </u>				
							MS	TIGH
							ANAL	YTICAL
						ENV	IRONMENTAL C	ONSULTANTS
							(716) 312-8296 lb	ALO, New York 14219 (716) 312-8092 ical com
							www.msanalyt	en-many brackets

DRILLII	NG LC	OG OF WELL/BO	DRING NO. SB-12					Page 12 of 50			
Project Number: 12MS-104(.5)						Total Depth of Hole: 10 feet below grade (ftbg)					
					Ground Elevation: NA						
		tion: West of Bu		Water Encountered: NA							
		inished: Augus		Water At End of Drilling: NA							
			Development, Inc.	Equipment: PowerProbe							
Drilling	Met	hod: Hydraulic	ally driven system (PowerProbe)	Technician: Ryan Welch							
E I e v a t i o n	D e p t	Well Completion Diagram	Soil/Rock Description	B I o w C o u n t s	I n t e r v a	P I D R e a d i n	R e c o v e r	Comments			
			Ground Surface		(Feet)	Parts Per Million (PPM)	(Inches)				
	1		0-0.5 ftbg: Asphalt and subbase		0-4	0.2	24				
NA	5	NA	0.5-7.5 ftbg: gray/dark brown gravelly sandy clayey Fill Material (stiff, medium to low Plasticity, moist) with some as 7.5-8 ftbg: gray Ash (moist)	I NA	4-8	0.3	20				
	10		8-10 ftbg: gray/dark brown gravelly sand Fill Material (coars) and medium grain, medium dense, moist) with ash and rock fragments		8-10	0.6	15	Equipment refusal encountered at approximately 10 ftbg			
						4169 ALL	IVIRONMENTAL C BHOALE PREVY. BUI (7 (4) 5)12-29 E www.msanaly	FFALO, NEW YORK 14219 (716) 312-8092			

DRILLI	NG L	OG OF WELL/BO	DRING NO. SB-13					Page 13 of 50				
Project	Nun	nber: 12MS-104	1(.5)	Tota	l Depth of	Hole: 5 feet	below grad	de (ftbg)				
Project	Project Location: Kensington Heights 1827 Fillmore Avenue, Buffalo, New York					Total Depth of Hole: 5 feet below grade (ftbg) Ground Elevation: NA						
	oring Location: North of Building B2					ered: NA						
	Date Start/Finished: August 8, 2012					of Drilling: N	A					
	Prilling Contractor: Russo Development, Inc.			Equipment: PowerProbe								
Drilling	Met	hod: Hydraulic	ally driven system (PowerProbe)	Technician: Ryan Welch								
E I e v a t i o n	D e p t	Well Completion Diagram	Soil/Rock Description	B I o w C o u n t s	I n t e r v a I	P I D R e a d i n g	R e c o v e r y	Comments				
			Ground Surface		(Feet)	Parts Per Million (PPM)	(Inches)					
NA	1	NA	0-0.5 ftbg: Asphalt and subbase 0.5-4 ftbg: gray/dark brown gravelly sandy clayey Fill Material (medium stiff, medium plasticity, moist) with some ash	NA	0-4	1.0	12					
	5		4-5 ftbg: brown/black gravelly sandy clayey Fill Material (medium stiff, low plasticity, moist) with some ash and fractured rock		4-5	0.3	12	Equipment refusal encountered at approximately 5 ftbg				
							MS	TICAL				
ENVIRONMENTAL CONSULTANTS 4169 ALLENDALS PKWY. BUFFALO, NEW YORK 14219 # (716) 312-4996 ft (716) 312-4092 www.msanilytical.com												

	nber: 12MS-104						Page 14 of 50				
	IDCI. TZIVID-TUH	(.5)	Total Depth of Hole: 13 feet below grade (ftbg)								
	tion: Kensingto	Ground Elevation: NA									
Loca		st of Building A2	Water Encountered: NA								
Date Start/Finished: August 8, 2012					Water At End of Drilling: NA						
		Development, Inc.	Equipment: PowerProbe								
illing Method: Hydraulically driven system (PowerProbe)					Technician: Ryan Welch						
			B I o		P I D						
	Wall		W	I		R					
		Sail/Pack Description									
	-	Soil/ Rock Description									
	Diagraili										
					1						
				Ĭ			Comments				
		Coound Surface		(Feet)	Parts Per Million	(Inches)					
1	ı	Ground Surface	1		(PPIVI)		1				
1		- '		0-4	1.2	20					
5		4-6 ftbg: brown/black sandy clayey Fill Material (medium stiff, low to medium plasticity, moist) with some ash and brick debris		4-6	1.2	15					
	NA	6-8 ftbg: brown Clay (medium stiff, medium plasti <mark>city, moist)</mark>	NA	6-8	0.9	15					
10		8-12 ftbg: brown/black clayey Fill Material (medium stiff, medium plasticity, moist) with gray ash		8-12	1.3	20					
		12-13 ftbg: brown sandy Clay (medium stiff, low plasticity, moist)		12-13	1.4	12	Equipment refusal encountered at approximately 13 ftbg				
	I			<u>I</u>	I						
					4169 ALLEN	DALE PKWY. BUFFA	ALO, NEW YORK 14219				
	D e p t h	Well Completion D iagram t h 1 NA	Well Completion Diagram Ground Surface 1 0-0.5 ftbg: Asphalt and subbase 0.5-4 ftbg: brown gravelly sandy clayey Fill Material (medium stiff, low to medium plasticity, moist) with some ash and brick debris NA 6-8 ftbg: brown Clay (medium stiff, medium plasticity, moist) 8-12 ftbg: brown/black clayey Fill Material (medium stiff, medium plasticity, moist) with gray ash	Well Completion Diagram e p p t h O-0.5 ftbg: Asphalt and subbase 0.5-4 ftbg: brown gravelly sandy clayey Fill Material (medium stiff, low to medium plasticity, moist) with some ash and brick debris NA 6-8 ftbg: brown Clay (medium stiff, medium plasticity, moist) with gray ash 10 8-12 ftbg: brown/black clayey. Fill Material (medium stiff, medium plasticity, moist) with gray ash 12-13 ftbg: brown/black clayey. Fill Material (medium stiff, medium plasticity, moist) with gray ash	Well Completion Diagram e p t h O-4 Ground Surface Ground Surface 1	Well Completion D Diagram	Well Completion Diagram P P R P R P R P R P R P R P R P R P R				

DRILLI	NG L	OG OF WELL/BO	DRING NO. SB-15					Page 15 of 50			
Project	t Nun	nber: 12MS-104	((.5)	Tota	l Depth of	Hole: 19 fee	et below gr	rade (ftbg)			
						Total Depth of Hole: 19 feet below grade (ftbg) Ground Elevation: NA					
						Water Encountered: 18 ftbg					
		Finished: Augus		Water At End of Drilling: NA							
			Development, Inc.	Equipment: PowerProbe							
Drilling	g Met	nod: Hydraulic	ally driven system (PowerProbe)	Technician: Ryan Welch							
_				B		P					
E I				O W	1	D	R				
е		Well			n	R	е				
V		Completion	Soil/Rock Description	С	t	e	С				
a +	D	Diagram		0	e	a d	0				
t i	e p			u n	r v	i	v e				
0	t			t	a	n	r				
n	h			S	Ī	g	y	Comments			
		•			L	Parts Per		1			
			Ground Surface		(Feet)	Million (PPM)	(Inches)				
	1		0-0.5 ftbg: Asphalt and subbase								
			0.5464								
			0.5-1 ftbg: brown sandy Clay Fill Material (medium stiff, low		0-4	2.9	20				
			plasticity, moist)								
	5										
			1-8 ftbg: dark brown sandy Fill Material (coarse, medium fine								
			grain, medium dense, moist) with some gravel	`							
			grain, mediam dense, moist, with some graver		4-8	2.8	22				
								+			
			8-10 ftbg: brown sandy clayey Fill Material (medium stiff, low								
	10		plasticity, moist)								
NA	10	NA		NA	8-12	1.7	15				
			10-12 ftbg: brown Clay (medium stiff, medium plasticity,								
			moist)								
			THO(3t)								
								7			
					12-16	2.1	15				
			12-18 ftbg: brown gravelly sandy clayey Fill material (medium								
	15		stiff, low plasticity, moist) with gray ash								
	13										
					16-19	1.1	12				
			19.10 fthat brown grouply condu Clay Fill Imadicus stiff laws		1010			Equipment refusal encountered			
			18-19 ftbg: brown gravelly sandy Clay Fill (medium stiff, low plasticity, wet) with gray ash, metal debris and fractured rock					at approximately 19 ftbg			
			plasticity, wety with gray ash, metal debris and fractured rock								
							MS	3			
							ANAL	YTICAL			
				1		0.00	opening-street				
						4169 ALL		FFALO, NEW YORK 14219			
						9	(716) 312-8296 ft www.msanaly	1 (716) 312-8092 rtical.com			
i											

roject	Num	ber: 12MS-104	(.5)	Tota	l Depth of	Hole: 7 fee	t below gra	de (ftbg)		
			n Heights 1827 Fillmore Avenue, Buffalo, New York		Ground Elevation: NA					
		ion: NE of Build		Water Encountered: NA						
		inished: August	•	Water At End of Drilling: NA						
			evelopment, Inc.	Equipment: PowerProbe						
			ally driven system (PowerProbe)	Technician: Ryan Welch						
E I e v a	D	Well Completion Diagram	Soil/Rock Description	B I o w	I n t e	P I D R e	R e c			
t i o n	e p t h			u n t	r v a I	d i n g Parts Per	v e r y	Comments		
Ground Surface					(Feet)	Million (PPM)	(Inches)			
NA	1	NA	0-0.5 ftbg: Asphalt and subbase 0.5-6 ftbg: brown gravely sandy clayey Fill Material (mediustiff, low plasticity, moist)	um NA	0-4	1.3	20			
	5		6-7 ftbg: brown gravely sandy clayey Fill Material (mediu stiff, low plasticity, moist) with fractured rock	m	4-7	1.2	20	Equipment refusal encountere at approximately 7 ftbg		
						4169 ALLEN	ROMENTAL CO DALE PROVV. BUTPA 116) 312-8296 B (7 WWW.msanahytic	Lo, New York 14219 (16) 312-8092		

DRILLI	NG L	OG OF WELL/B	ORING NO. SB-17					Page 17 of 50	
		1 42145 40	44.5)	- .		44.6		1 (61)	
		nber: 12MS-104	on Heights 1827 Fillmore Avenue, Buffalo, New York			Hole: 11 fee	et below gra	ade (ftbg)	
_			st of Building B4	Ground Elevation: NA Water Encountered: NA					
_		inished: Augus		Water Encountered: NA Water At End of Drilling: NA					
			Development, Inc.		ipment: Po		IA .		
			ally driven system (PowerProbe)	•	nnician: Rya				
ع	I	l	any anvensystem (1 owen rose)		I III CIGITI IVY	ı		-	
E I				B I o w	I	P I D	R		
e v		Well Completion	Soil/Rock Description	С	n t	R e	e c		
a	D	Diagram		0	е	а	0		
t	е			u	r	d	V		
i	р			n	V	i	е		
0	t			t	a	n	r		
n	h			S		g Parts Per	у	Comments	
			Ground Surface		(Feet)	Million (PPM)	(Inches)		
	1		0-0.5 ftbg: Asphalt and subbase		0.2	1.1	45		
			0.5-2 ftbg: brown sandy Clay (stiff, low plasticity, moist)		0-2	1.4	15		
			2-4 ftbg: brown Clay (medium stiff, medium plasticity, moist)		2-4	1.4	15		
NA	5	NA	4-8 ftbg: brown Clay (medium stiff, medium plasticity, moist)	NA	4-6	1.9	15		
			with black sand		6-8	2.3	15		
	10		8-10.5 ftbg: brown/ black mottled Clay (medium stiff, medium plasticity, moist) 10.5-11 ftbg: brown Sand (coarse, medium and fine grain,		8-11	0.9	22	Equipment refusal encountered at approximately 11 ftbg	
			medium dense, moist)			4169 ALLEN	MS ANALY	LLO, NEW YORK 14219 716) 312-8092	

ORILLII	NG LO	OG OF WELL/B	ORING NO. SB-18					Page 18 of 5	
roject	Nun	nber: 12MS-104	4(.5)	Tota	l Depth of	Hole: 11 fee	et below gra	ade (ftbg)	
			on Heights 1827 Fillmore Avenue, Buffalo, New York	Ground Elevation: NA					
		tion: North of E		Water Encountered: NA					
		Finished: Augus		Water At End of Drilling: NA Equipment: PowerProbe					
			Development, Inc. Cally driven system (PowerProbe)		nician: Ry				
E I				B I o w	ı	P I D	R		
e v a t i o n	D e p t	Well Completion Diagram	Soil/Rock Description	C o u n t	n t e r v a	R e a d i n	e c o v e r	Comments	
		1	Ground Surface		(Feet)	Parts Per Million (PPM)	(Inches)		
	1		0-0.5 ftbg: Asphalt and subbase 0.5-4 ftbg: gray/brown gravelly sandy clayey Fill Material (st no plasticity, moist)	ff,	0-4	2.9	15		
NA	5	NA	4-7 ftbg: tan/brown Sand Fill (coarse, medium and fine grai medium dense, moist)	NA	4-8	17	20		
	10		7-11 ftbg: brown sandy Clay Fill (medium stiff, low plasticit moist) with some ash	,,	8-11	4.9	18	Equipment refusal encountere at approximately 11 ftbg	
				•					
							MS	TICAL	

ENVIRONMENTAL CONSULTANTS
4169 ALLENDALE PKWY. BUFFALO, NEW YORK 14219

@ (716) 312-8296 № (716) 312-8092
www.msanalytical.com

RILLIN	IG LO	OG OF WELL/BO	DRING NO. SB-19					Page 19 of 5	
roject	Nun	nber: 12MS-104	1(.5)	Tota	l Depth of	Hole: 18 fe	et below gr	rade (ftbg)	
			n Heights 1827 Fillmore Avenue, Buffalo, New York		ınd Elevat				
oring L	Locat	tion: North East	of Building B4			tered: NA			
		inished: August		Water At End of Drilling: NA					
			Development, Inc.	Equipment: PowerProbe					
rilling	Met	hod: Hydraulic	ally driven system (PowerProbe)	Tech	ınician: Ry	an Welch	ſ		
E				B 1 0		P I D			
e v		Well Completion	Soil/Rock Description	W C	l n t	R e	R e c		
a t	D e	Diagram	·	o u	e r	a d	0 V		
i o n	p t h			n t s	v a ı	i n g	e r v	Comments	
	-!!			3	(Feet)	Parts Per Million	(Inches)	Comments	
		ſ	Ground Surface			(PPM)	1	1	
	1		0-0.5 ftbg: Asphalt and subbase 0.5-2 ftbg: brown gravelly sandy clayey Fill Material (stiff, low plasticity, moist) with ash		0-4	2.4	18		
	5		2-5 ftbg: brown/black gravelly sandy Fill Material (medium and fine grain, medium dense, moist) with ash		4-6	3.5	12		
			5-10 ftbg: black gravelly sandy Fill Material (medium and fine grain, medium dense, moist)with ash		6-8	2.0	12	_	
NA	10	NA	grain, median dense, most with asi	NA	8-10	2.5	12		
					10-12	1.7	12		
			10-15 ftbg: gray Ash (moist) 15-16 ftbg: black Clay (low plasticity, medium stiff, moist) with		12-16	2.7	15		
	15		ash					<u> </u>	
			16-18 ftbg: black sandy Clay (soft, low plasticity, moist) with wood debris		16-18	1.7	6	Equipment refusal encountere at approximately 18 ftbg	
			wood debris		20 10	ENVI	MS ANALY	TICAL	

DRILLIN	IG LC	OG OF WELL/BO	DRING NO. SB-20					Page 20 of 50		
Project	Num	ber: 12MS-104	(.5)	Tota	al Depth of	Hole: 8 fee	t below gra	de (ftbg)		
			n Heights 1827 Fillmore Avenue, Buffalo, New York	Ground Elevation: NA						
		ion: East of Bui		Water Encountered: NA						
		inished: August		Water At End of Drilling: NA						
			Development, Inc.		ipment: Po					
Drilling	Meth	hod: Hydraulica	ally driven system (PowerProbe)	Tecl	hnician: Ry	an Welch	ſ			
E I e v a t i o n	D e p t h	Well Completion Diagram	Soil/Rock Description	B I o w C o u n t s	I n t e r v a	P I D R e a d i n g	R e c o v e r y	Comments		
			Ground Surface		(Feet)	Parts Per Million (PPM)	(Inches)			
	1					(FFIVI)				
NA	1	NA	0-0.5 ftbg: Asphalt and subbase	N/A	0-4	1.2	18			
NA.	5	NA	0.5-8 ftbg: brown gravely sandy clayey Fill Material (stiff, leading plasticity, moist)	ow NA	4-8	1.8	18	Equipment refusal encountered at approximately 8 ftbg		
						4169 ALLEN	IRONMENTAL CO NOALE PKWY. BUFFI (16) 312-289 (16) www.msanalyti	aLo, New York 14219 716) 312-8092		

DRILLI	NG L	OG OF WELL/BO	DRING NO. SB-21					Page 21 of 50	
Project	t Nun	nber: 12MS-104	I(.5)	Tota	l Depth of	Hole: 19 fe	et below gr	rade (ftbg)	
Project	t Loca	ation: Kensingto	on Heights 1827 Fillmore Avenue, Buffalo, New York		und Elevati				
_		tion: East of Bu	· ·			tered: NA			
		inished: Augus		Water At End of Drilling: NA					
			Development, Inc.	Equipment: PowerProbe Technician: Ryan Welch					
שווווווע	Iviet	nou: Hyuraulic I	ally driven system (PowerProbe)				I	T	
				B I		P I			
Ε				0		D			
Ī				W	ı		R		
е		Well			n	R	е		
٧	_	Completion	Soil/Rock Description	С	t	е	С		
a +	D	Diagram		0 U	e r	a d	0		
t i	e p			u n	V	i	v e		
0	t			t	a	n n	r		
n	h			S	I	g	у	Comments	
						Parts Per			
					(Feet)	Million	(Inches)		
		1	Ground Surface			(PPM)	1		
	1		0-0.5 ftbg: Asphalt and subbase						
			0.5-3 ftbg: brown gravelly sandy Fill Material (coarse, medium		0-4	1.8	15		
			and fine grain, medium dense, moist)	4					
	_								
	5		3-9 ftbg: dark brown/black gravelly sandy Fill Material (coarse,		4-8	2.5	18		
			medium and fine grain, medium dense, moist) with brick debris		40	2.5	10		
NA		NA	9-11 ftbg: gray/brown gravelly sandy Fill Material (coarse and	NA					
INA	10	IVA	medium grain, medium dense, moist)	INA	8-12	1.5	12		
			11-12 ftbg: dark brown sandy Clay Fill (medium stiff, low						
			plasticity, moist) with ash						
								-	
	15		42.45 (1) 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
			12-16 ftbg: black sandy Clay Fill (medium stiff, low plasticity, moist) with ash		12-16	3.9	15		
			moist) with ash						
								-	
			16-19 ftbg: black sandy Clay Fill (medium stiff, low plasticity,		16-19	3.5	12		
			moist) with ash and wood debris		10-19	3.5	12	Equipment refusal encountered	
								at approximately 19 ftbg	
	1	1	I		1	l .	<u>I</u>	ı	
1									
1							MC	•	

ENVIRONMENTAL CONSULTANTS 4169 ALLENDALE PKWY. BUFFALO, NEW YORK 14219 ☎ (716) 312-8296 由 (716) 312-8092 www.msanalytical.com

DRILLII	NG L	OG OF WELL/B	ORING NO. SB-22					Page 22 of 50		
Project	Nun	nber: 12MS-104	4(.5)	Tota	al Depth of	Hole: 19 fee	et below gr	ade (ftbg)		
			on Heights 1827 Fillmore Avenue, Buffalo, New York	Ground Elevation: NA						
			t of Building A5	Water Encountered: NA						
		inished: Augus		Water At End of Drilling: NA						
			Development, Inc.	Equipment: PowerProbe Technician: Ryan Welch						
Drilling	iviet	noa: Hyaraulic	ally driven system (PowerProbe)	_	nnician: Ry		ı	T		
				В		P				
_						I				
E				O W		D	R			
e		Well		"	n	R	e			
٧		Completion	Soil/Rock Description	С	t	е	С			
а	D	Diagram		0	е	a	0			
t	е			u	r	d	V			
i	p			n	V	i	е			
o n	t h			t	a	n	r	Comments		
- 11				3	!	Parts Per	У	Comments		
					(Feet)	Million	(Inches)			
			Ground Surface		(. ect)	(PPM)	(
	1		O.O.E. fthat Acabalt and cubbaca			<u> </u>				
	1		0-0.5 ftbg: Asphalt and subbase							
			0.5-4 ftbg: brown/dark brown sandy Fill Material (medium ar	ıd	0-4	1.1	12			
			fine grain, medium dense, moist)	47	1					
								_		
	5		4-8 ftbg: dark brown gravelly sandy Fill Material (coarse,		4-8	2.1	18			
			medium and fine grain, medium dense, moist) with trace ash	1		2.1	10			
								_		
			8-12 ftbg: brown/dark brown sandy Fill Material (coarse,							
			medium and fine grain, medium dense, moist)		8-12	2.1	12			
NA	10	NA	8	NA						
								4		
			12-16 ftbg: brown/dark brown gravelly Sand Fill (coarse,		10-12	3.0	12			
	15		medium and fine grain, medium dense, moist) with trace ash	1	10 12	3.0				
			16-19 ftbg: dark brown sandy Fill Material (coarse, medium		44.5	4.5				
			and fine grain, medium dense, moist) with brick debris		14-16	1.3	10			
								Equipment refusal encountered		
								at approximately 19 ftbg		
		I	1		1	I.	<u> </u>			
							MC	1		
							MS			
1							ANALY	TICAL		
l								The second secon		
l							NMENTAL CO	DNSULTANTS NLO, NEW YORK 14219		
l						留 (716	6) 312-8296 A (716) 312-8092		
				1			, and the			

8-5 itug. dark brown graveny sandy Fili wiaterial (coarse,	DRILLI	NG L	OG OF WELL/B	ORING NO. SB-23					Page 23 of 50	
Project Location: Kensington Heights 1827 Fillmore Avenue, Buffalo, New York Boring Location: South East of Building B4 Water Rat End of Drilling: NA Drilling Contractor: Russo Development, Inc. Equipment: PowerProbe Drilling Method: Hydraulically driven system (PowerProbe) Fechnician: Ryan Welch Well Well Well Completion Dilagram Completion Dilagram Dilagram Toman Ration Completion Dilagram Round Surface Ground Surface Feet) Million Ground Surface Parts Per (Feet) Million (Inches) (PPM) A-8 ftbg: brown gravelly sandy clayey Fill Material (coarse, medium and fine grain, medium dense, moist) with brick debris and wire debris Brown At A-8 ftbg: dark brown gravelly sandy Fill Material (coarse, medium and fine grain, medium dense, moist) with brick debris Brown At A-8 ftbg: dark brown gravelly sandy Fill Material (coarse, medium and fine grain, medium dense, moist) with brick debris Brown At A-8 ftbg: dark brown gravelly sandy Fill Material (coarse, medium and fine grain, medium dense, moist) with brick debris Brown At A-8 ftbg: dark brown gravelly sandy Fill Material (coarse, medium and fine grain, medium dense, moist) with brick debris Brown At A-8 ftbg: dark brown gravelly sandy Fill Material (coarse, fine dark brown gravelly sandy Fill	Project	Nun	nher: 12MS-104	1(5)	Tota	Denth of	Hole: 9 feet	helow grade	(fthg)	
Boring Location: South East of Building B4 Date Start/Finished: August 9, 2012 Water At End of Drilling: NA Drilling Contractor: Russo Development, Inc. Equipment PowerProbe Technician: Ryan Welch Technician: Ryan Welch Well Well Completion Diagram Diagram Technician: Ryan Welch Soil/Rock Description C t e c c a a o u r d v e c a a o o u r f d v e e c a a o o u r f d v e e c a a o o u r f d v e e e a o o u r f d v e e e e a o o u r f d v e e e e e e e e e e e e e e e e e e										
Date Start/Finished: August 9, 2012 Water At End of Drilling: NA										
Drilling Method: Hydraulically driven system (PowerProbe) Technician: Ryan Welch B										
Drilling Method: Hydraulically driven system (PowerProbe) Technician: Ryan Welch B	Drilling	Con	tractor: Russo [Development, Inc.	Equi	oment: Po	werProbe			
Well Completion Soil/Rock Description C t e c c a D D Diagram t e c c d u r d d v i e c c d d v i e c c d d v i e c c d d v i e c c d d v i e c c d d v i e c c d d v i e c c d d v i e c c d d v i e c c d d v i e c c d d v i e c c d d v i e c d d v i e e c d d v i e e d d v i e d d v i e e d d v i e d v i e d d v i e d v i e					Tech	nician: Ry	an Welch			
Ground Surface 1 0-0.5 ftbg: Asphalt and subbase 0.5-4 ftbg: brown gravelly sandy clayey Fill Material (stiff, no plasticity, moist) NA 4-8 ftbg: dark brown gravelly sandy Fill Material (coarse, medium and fine grain, medium dense, moist) with brick debris and wire debris 8-9 ftbg: dark brown gravelly sandy Fill Material (coarse, Equipment refusal encount	e v a t i	e p t	Completion	Soil/Rock Description	I o w C o u n t	n t e r v	R e a d i n g	e c o v e r	Comments	
NA NA 4-8 ftbg: dark brown gravelly sandy Fill Material (coarse, medium and fine grain, medium dense, moist) NA 8-9 ftbg: dark brown gravelly sandy Fill Material (coarse, medium dense, moist) with brick debris and wire debris 8-9 ftbg: dark brown gravelly sandy Fill Material (coarse, debris and wire debris) 8-9 ftbg: dark brown gravelly sandy Fill Material (coarse, debris and wire debris)				Ground Surface		(Feet)	Million	(Inches)		
4-8 ftbg: dark brown gravelly sandy Fill Material (coarse, medium and fine grain, medium dense, moist) with brick debris and wire debris 8-9 ftbg: dark brown gravelly sandy Fill Material (coarse,		1		0.5-4 ftbg: brown gravelly sandy clayey Fill Material (stiff, n	0	0-4	2.3	15		
6-5 itug. dark brown graveny sandy rin iviaterial (coarse,	NA	5	NA	medium and fine grain, medium dense, moist) with brick deb		4-8	1.8	20		
with fractured rock				medium and fine grain, medium dense, moist) with brick deb	ris	8-9	1.6	10	Equipment refusal encountered at approximately 9 ftbg	

)	h Nive-	ab an 12040 404	(5)	Tet	al Danah -f	Hala. 2 f	balawa	do (ftha)	
		nber: 12MS-104	(.5) n Heights 1827 Fillmore Avenue, Buffalo, New York	Total Depth of Hole: 3 feet below grade (ftbg) Ground Elevation: NA					
		tion: East of Bui		Water Encountered: NA					
		Finished: August	•			of Drilling: N	Δ		
			evelopment, Inc.				, ,		
_			ally driven system (PowerProbe)	Equipment: PowerProbe Technician: Ryan Welch					
E I e v a t i o n	D e p t	Well Completion Diagram	Soil/Rock Description	B I O W C O U I n t s	I n t e r v a	P I D R e a d i n g	R e c o v e r y	Comments	
			Ground Surface		(Feet)	Parts Per Million (PPM)	(Inches)		
NA	1	NA	0-0.5 ftbg: Asphalt and subbase 0.5-3 ftbg: brown gravelly sandy clayey Fill Material (medium stiff, low plasticity, moist)	n NA	0-3	0.8	10	Equipment refusal encountere at approximately 3 ftbg	
						4169 ALLENO	RONHENTAL CON IALLE PROVY. BUFFAL 16) 312-829 B 17) www.msadytica	o, New York 14219 6) 312-8092	

	AG T(OG OF WELL/BI	ORING NO. SB-25					Page 25 of	
_		nber: 12MS-104			l Depth of		et below gr	ade (ftbg)	
_			on Heights 1827 Fillmore Avenue, Buffalo, New York t of Building A5	Ground Elevation: NA Water Encountered: NA					
_		inished: Augus		Water At End of Drilling: NA					
			Development, Inc.	Equipment: PowerProbe					
illing	Met	hod: Hydraulic	cally driven system (PowerProbe)	Tech	nician: Ry	an Welch			
E				B I o		P I D			
l e		Well	Sail/Dack Description	W	l n	R	R e		
v a t	D e	Completion Diagram	Soil/Rock Description	C o u	t e r	e a d	C O V		
i 0	p t			n t	v a	i n	e r	Community	
n	h		Count Surface	S	(Feet)	Parts Per Million	(Inches)	Comments	
			Ground Surface	ı		(PPM)			
	1		0-0.5 ftbg: Asphalt and subbase 0.5-4 ftbg: brown gravelly sandy clayey Fill Material (medium stiff, low plasticity, moist) with brick debris		0-4	1.7	15		
	5		4-7 ftbg: brown gravelly sandy clayey Fill Material (medium stiff, low plasticity, moist) 7-8 ftbg: brown Clay (medium stiff, medium plasticity, moist)		4-8	1.7	15		
NA	10	NA	8-12 ftbg: brown/dark brown gravelly sandy clayey Fill Material (stiff, low plasticity, moist)	NA	8-12	2.1	12		
	15		12-16 ftbg: brown/dark brown gravelly sandy clayey Fill Material (medium stiff, low plasticity, moist)		12-16	2.2	15		
			16-17.5 ftbg: brown/ black mottled Clay (medium stiff, medium plasticity, moist)		16-19	2.2	15		
			17.5-19 ftbg: brown/black sandy Fill Material (medium and fine grain, medium dense, moist)					Equipment refusal encounter at approximately 19 ftbg	

ENVIRONMENTAL CONSULTANTS
4169 ALLENDALE PRWY. BUFFALO, NEW YORK 14219
\$\frac{14}{2}\$ (716) 312-8296 \text{lb} (716) 312-8092

www.msanalytical.com

RILLII	NG LC	OG OF WELL/BO	DRING NO. SB-26					Page 26 of 5		
roiect	Num	ber: 12MS-104	((.5)	Tota	l Depth of	Hole: 14 feet	t below gra	ide (ftbg)		
			on Heights 1827 Fillmore Avenue, Buffalo, New York	Ground Elevation: NA						
		ion: South of b		Water Encountered: NA						
		inished: August		Water At End of Drilling: NA						
			Development, Inc.	Equipment: PowerProbe						
rilling	Metl	hod: Hydraulic	ally driven system (PowerProbe)	Tech	nician: Ry	an Welch				
				В		Р				
				1		I				
Ε				0		D				
1		NA . II		W	I		R			
е		Well	Cail/Daal, Dagarintian		n	R	е			
V		Completion	Soil/Rock Description	С	t	e	С			
a +	D	Diagram		0	e r	a d	0 V			
i	e p			u n	V	i	e e			
0	t			t	a	n	r			
n	h			s	Ĭ	g	y	Comments		
						Parts Per	, ,			
			Ground Surface		(Feet)	Million (PPM)	(Inches)			
	1		0-0.5 ftbg: Asphalt and subbase							
			0.5-3 ftbg: brown gravelly sandy clayey Fill Material (stiff, plasticity, moist)	low	0-4	1.1	18			
			3-5 ftbg: tan/brown gravelly sandy Fill Material (coarse ai medium grain, medium dense, moist)	nd						
NA	5	NA		NA	4-8	0.7	18			
	10		5-14 ftbg: brown gravelly sandy clayey Fill Material (media stiff, low plasticity, moist)	um	8-12	1.4	15	-		
					12-14	2.3	6	Equipment refusal encountered at approximately 14 ftbg		
						4169 ALL	VIRONMENTAL C. INDALE PRAYS. BUFF (786) 312.379 www.msanalyt	FALO, NEW YORK 14219 (716) 312-8092		

DRILLI	NG L	OG OF WELL/B	ORING NO. SB-27					Page 27 of 50	
Project	t Nun	nber: 12MS-104	1(.5)	Tota	l Depth of	Hole: 14 fe	et below gr	rade (ftbg)	
			on Heights 1827 Fillmore Avenue, Buffalo, New York	Ground Elevation: NA					
			t of Building B6	Water Encountered: NA					
Date St	tart/F	inished: Augus	st 9, 2012	Water At End of Drilling: NA					
			Development, Inc.	Equipment: PowerProbe					
Drilling	Met	hod: Hydraulic	ally driven system (PowerProbe)	Tech	nician: Ry	an Welch			
				В		P			
Ε				0		D.			
Ī				W	1	_	R		
е		Well			n	R	е		
V		Completion	Soil/Rock Description	С	t	е	С		
a	D	Diagram		0	е	а	0		
t	е			u	r	d	V		
i	р			n	V	i	е		
0	t			t	а	n	r		
n	h			S	I	g	у	Comments	
					(Feet)	Parts Per Million	(Inches)		
	I	ı	Ground Surface	1		(PPM)	ı	1	
1	1		0-0.5 ftbg: Asphalt and subbase						
			0.5-1.5 ftbg: gray gravely sandy clayey Fill Material (stiff, no plasticity, moist)		0-4	1.8	15		
			1.5-4 ftbg: black gravelly sandy clayey Fill Material (medium stiff, low plasticity, moist) with ash						
			4-5 ftbg: dark brown gravelly sandy Fill Material (coarse, medium and fine grain, medium dense, moist) with ash						
NA	5	NA	5-9 ftbg: dark brown gravelly sandy Fill Material (coarse, medium and fine grain, medium dense, moist)	NA	4-8	1.7	15		
	10		9-11 ftbg: brown sandy clayey Fill Material (medium stiff, low plasticity, moist) with some ash		8-12	1.9	18		
			11-13 ftbg: black sandy Fill Material (coarse, medium and fine grain, medium dense, moist) with brick debris and wood debri						
			13-14 ftbg: brown gravelly Clay Fill (medium stiff, low plasticity moist)	,	12-14	1.3	15	Equipment refusal encountered at approximately 14 ftbg	
			grain, medium dense, moist) with brick debris and wood debri 13-14 ftbg: brown gravelly Clay Fill (medium stiff, low plasticity	5	12-14	1.3	15 MS		
						4169 ALLENI	RONMENTAL CODALE PKWY. BUFF 716) 312-8296	ALO, NEW YORK 14219 (716) 312-8092	

DRILLII	NG LC	OG OF WELL/BO	DRING NO. SB-28					Page 28 of 50
		nber: 12MS-104				Hole: 8 feet	below grad	le (ftbg)
			on Heights 1827 Fillmore Avenue, Buffalo, New York st of Building B6		and Elevati	on: NA ered: NA		
		inished: August				of Drilling: N	Α	
			Development, Inc.			werProbe	, .	
ū			ally driven system (PowerProbe)	•	nician: Ry			
E I e v a t i o n	D e p t h	Well Completion Diagram	Soil/Rock Description	B I o w C o u n t s	I n t e r v a I	P I D R e a d i n	R e c o v e r y	Comments
			Ground Surface		(Feet)	Parts Per Million (PPM)	(Inches)	
NA	5	NA	0-0.5 ftbg: Asphalt and subbase 0.5-5 ftbg: brown/dark brown gravelly sandy clayey Fill Material (medium stiff, low plasticity, moist) with some ash	NA	0-4	1.6	12	
			5-8 ftbg: dark brown/black gravelly Sand Fill (coarse, mediun and fine grain, medium dense, moist)		4-8	1.8	12	Equipment refusal encountered at approximately 8 ftbg
						4169 ALLEND	CONMENTAL CO LOCALE PRWY. BUFFAL 16) 312-8296 @ (7 www.msanalytica	LO, NEW YORK 14219 16) 312-8092

		nber: 12MS-104	. ,			Hole: 1.5 fe	et below g	rade (ftbg)
			n Heights 1827 Fillmore Avenue, Buffalo, New York		und Elevati			
		tion: South Wes				tered: NA	14	
		Finished: August	evelopment, Inc.			of Drilling: NowerProbe	IA	
			ally driven system (PowerProbe)		nician: Ry			
ıııııııg	iviet	Tiou. Tryuraunca	any universystem (FowerFrobe)		IIIICIAII. Ny			
				В		P		
_						1		
E				0		D	R	
e		Well		W	n	R	e	
v		Completion	Soil/Rock Description	С	†	e	C	
a	D	Diagram		0	e	a	0	
t	e	- 100		u	r	d	v	
i	р			n	٧	i	е	
0	t			t	а	n	r	
n	h			S	- 1	g	у	Comments
						Parts Per		
					(Feet)	Million	(Inches)	
			Ground Surface			(PPM)		
	1		0-0.5 ftbg: Asphalt and subbase					
NA		NA	0.5-1.5 ftbg: gray/brown sandy Clay Fill (medium stiff, low plasticity, moist) with some ash	NA	0-1.5	1.2	12	Equipment refusal encountere at approximately 1.5 ftbg
							MS	TICAL
						4169 ALLENDA	ONMENTAL CO ALE PKWY. BUFFA 6) 312-8296 B (7	LO, NEW YORK 14219

			DRING NO. SB-30					Page 30 of 50
		mber: 12MS-104	,			Hole: 2 feet	below gra	de (ftbg)
			on Heights 1827 Fillmore Avenue, Buffalo, New York		und Elevati			
			st of Building B6			tered: NA		
		Finished: August				of Drilling: N	IA	
_			Development, Inc.			werProbe		
rilling	g ivie	tnod: Hydraulic	ally driven system (PowerProbe)	Tecr	nician: Ry	an Weich	1	
E I e v a	D	Well Completion Diagram	Soil/Rock Description	B I O W C C O	I n t e	P I D R e a	R e c	
t i o n	e p t h			u n t	r v a I	d i n g Parts Per	v e r y	Comments
			Ground Surface		(Feet)	Million (PPM)	(Inches)	
NA	1	NA	0-0.5 ftbg: Asphalt and subbase 0.5-2 ftbg: dark brown gravelly sandy clayey Fill Material (s low plasticity, moist) with some ash	tiff, NA	0-2	0.7	15	Equipment refusal encountered at approximately 2 ftbg
						4169 ALLENDALE	MSIMENTAL CONS	New York 14219

RILLING	LOG OF WELL/BO	PRING NO. SB-31					Page 31 of 5
roject Nu	umber: 12MS-104	(.5)	Tota	l Depth of	Hole: 2 feet	t below grad	de (ftbg)
		n Heights 1827 Fillmore Avenue, Buffalo, New York		ınd Elevat			
	cation: South Wes				tered: NA		
	t/Finished: August				of Drilling: N	IA	
	ontractor: Russo D				werProbe		
illing Me	ethod: Hydraulica	ılly driven system (PowerProbe)		nician: Ry	an Welch	,	1
E I e v a D t e i p o t n h	e o	Soil/Rock Description	B I O W C O U I N I t S	I n t e r v a	P I D R e a d i n g	R e c o v e r	Comments
n n	1		S	ı	g Parts Per	У	Comments
		Ground Surface		(Feet)	Million (PPM)	(Inches)	
NA 1	1 NA	No Recovery	NA	0-2	-	-	Equipment refusal encounter at approximately 2 ftbg
					4169 ALLENI	RONMENTAL CO DALE PRAWY. BUFFAR 1169 312.8296 www.msanalytica	LO, NEW YORK 14219 16) 312-8092

DRILLIN	IG LC	OG OF WELL/BO	DRING NO. SB-32					Page 32 of 50
Proiect	Num	nber: 12MS-104	(.5)	Tota	al Depth of	Hole: 5 feet	below grad	de (ftbg)
			n Heights 1827 Fillmore Avenue, Buffalo, New York		und Elevati			(110)
		tion: South East				tered: NA		
		inished: August		Wat	er At End o	of Drilling: N	A	
			Development, Inc.		ipment: Po			
Orilling	Met	hod: Hydraulica	ally driven system (PowerProbe)	Tecl	nnician: Rya	an Welch		
E I e v a t i o	D e p t	Well Completion Diagram	Soil/Rock Description	B I o w C o u n t	I n t e r v	P I D R e a d i n	R e c o v e r	
n	h			S	I	g	у	Comments
			Ground Surface		(Feet)	Parts Per Million (PPM)	(Inches)	
NA	1	NA	0-0.5 ftbg: Asphalt and subbase 0.5-3 ftbg: brown sandy clayey Fill Material (medium stiff, no plasticity, moist)	NA	0-4	1.4	15	
	5		3-5 ftbg: brown gravelly sandy clayey Fill Material (medium stiff, no plasticity, moist)		4-5	0.8	9	Equipment refusal encountered at approximately 5 ftbg
						4169 ALLEN	RONMENTAL CO DALE PKWY. BUFFA 116) 312-8296 th (7 www.msanalytic	LO, NEW YORK 14219 716) 312-8092

ORILLIN	IG LC	OG OF WELL/BO	ORING NO. SB-33					Page 33 of 5
roject	Num	nber: 12MS-104	1(.5)	Tota	al Depth of	Hole: 6 fee	t below grad	de (ftbg)
			on Heights 1827 Fillmore Avenue, Buffalo, New York		und Elevati			· 0/
			st of Building A1	Wat	er Encount	tered: NA		
ate Sta	art/F	inished: Augus	t 10, 2012	Wat	er At End o	of Drilling: N	Α	
			Development, Inc.	Equ	ipment: Po	werProbe		
rilling	Met	hod: Hydraulic	ally driven system (PowerProbe)	Tecl	nnician: Ry	an Welch		
E I e v a t	D e p	Well Completion Diagram	Soil/Rock Description	B I o w C o u	I n t e r	P I D R e a d i	R e c o v	
0	t			t	a	n	r	
n	h			S	I	g	у	Comments
			Ground Surface		(Feet)	Parts Per Million (PPM)	(Inches)	
NA	1	NA	0-0.5 ftbg: Asphalt and subbase 0.5-2 ftbg: dark brown sandy clayey Fill Material (medium stiff low plasticity, moist)	, NA	0-4	1.4	20	
	5		2-5 ftbg: brown gravelly clayey Fill Material (medium stiff, medium plasticity, moist) 5-6 ftbg: brown gravelly clayey Fill Material (stiff, low plasticity moist)		4-6	1.0	15	Equipment refusal encountere at approximately 6 ftbg
						4169 ALLEN	IRONMENTAL CO doale Pkwy. Burea (716) 312-8296 th (1 www.msanalytic	LO, NEW YORK 14219 716) 312-8092

NG LO	OG OF WELL/BO	DRING NO. SB-34					Page 1 of 50
: Nun	nber: 12MS-104	1(.5)	Tota	l Depth of	Hole: 5 feet	below grad	de (ftbg)
		•				A	
Met	hod: Hydraulic	ally driven system (PowerProbe)	Tecl	nnician: Rya	an Welch		
D e p t	Well Completion Diagram	Soil/Rock Description	B I O W C O U I N I S	I n t e r v a	P I D R e a d i n g g	R e c o v e r y	Comments
		Ground Surface		(Feet)	Million (PPM)	(Inches)	
1	NA	0-0.5 ftbg: Asphalt and subbase 0.5-4 ftbg: gray gravelly sandy clayey Fill Material (medium stiff, low plasticity, moist)	n NA	0-4	2.6	10	
5		4-5 ftbg: brown/dark brown gravelly sandy clayey Fill Mate (medium stiff, low plasticity, moist)	rial	4-5	2.2	12	Equipment refusal encountered at approximately 5 ftbg
					ENVI	MS	TICAL ONSULTANTS
	D D e p t h	Number: 12MS-104 Location: Kensingto Location: South Westert/Finished: Auguston Russo E Method: Hydraulic Well Completion D e p t h NA	Completion Diagram e p t h Ground Surface 1	Number: 12MS-104(.5) Location: Kensington Heights 1827 Fillmore Avenue, Buffalo, New York Grout Location: South West of Building A1 Wat Lart/Finished: August 10, 2012 Contractor: Russo Development, Inc. Equivalent Method: Hydraulically driven system (PowerProbe) Well Completion Diagram Equivalent Method: Soil/Rock Description Completion Diagram Output Tech Output O	Number: 12MS-104(.5) Number: 12MS-104(.5) Location: Kensington Heights 1827 Fillmore Avenue, Buffalo, New York Ground Elevati Location: South West of Building A1 Water Encount Lart/Finished: August 10, 2012 Contractor: Russo Development, Inc. Equipment: Po Method: Hydraulically driven system (PowerProbe) Well Completion Diagram Well Completion Diagram O e P Total Depth of Ground Elevati Water At End of Equipment: Po Technician: Ryst B I O W I O Fechician: Ryst O Fechician: Ryst O Fechician: Ryst O Fect) Ground Surface (Feet) Ground Surface 1 O-0.5 ftbg: Asphalt and subbase O.5-4 ftbg: gray gravelly sandy clayey Fill Material (medium stiff, low plasticity, moist) A-5 ftbg: brown/dark brown gravelly sandy clayey Fill Material (recdium stiff, low plasticity, moist) 4-5	Number: 12MS-104(.5) Total Depth of Hole: 5 feet Clocation: Kensington Heights 1827 Fillmore Avenue, Buffalo, New York Location: South West of Building A1 Water At End of Drilling: Na Location: Ryan Welch Method: Hydraulically driven system (PowerProbe) Well Completion D Diagram B P	Number: 12MS-104(.5) Total Depth of Hole: 5 feet below grad Location: Kensington Heights 1827 Fillmore Avenue, Buffalo, New York Ground Elevation: NA

DRILLII	NG LO	OG OF WELL/B	DRING NO. SB-35					Page 35 of 50
								1 (6)
_		nber: 12MS-104			und Elevati	Hole: 12 fee	et below gra	ade (ftbg)
			on Heights 1827 Fillmore Avenue, Buffalo, New York st of Building A1			tered: NA		
		inished: Augus				of Drilling: N	Δ	
			Development, Inc.		ipment: Po			
			ally driven system (PowerProbe)		hnician: Ry			
				В	,	Р		
ı				l		l 'i		
Ε				0		D		
1				W	1		R	
е		Well			n	R	е	
٧		Completion	Soil/Rock Description	С	t	е	С	
a	D	Diagram		0	е	а	0	
t	е			u	r	d	V	
İ	p			n	V	i	е	
0	t			t	a	n	r	Comments
n	h			S	l	g Parts Per	у	Comments
					(Feet)	Million	(Inches)	
			Ground Surface		(1 661)	(PPM)	(IIICIIE3)	
	1		0-0.5 ftbg: Asphalt and subbase			<u> </u>		
	1		0-0.5 Ttbg. Aspiralt and subbase					
			0.5-2 ftbg: dark brown gravelly sandy clayey Fill Material (stiff		0-2	1.8	12	
			no plasticity, moist)					
			no plasticity, moist,	47	1			
			2.461 1 511.44 11 1161					
			2-4 ftbg: brown sandy clayey Fill Material (medium stiff, low		2-4	2.4	12	
	5		plasticity, moist)					
								1
NA		NA	4-8 ftbg: brown gravelly sandy clayey Fill Material (medium	NA				
			stiff, low plasticity, moist)		4-8	2.7	12	
			stiff, low plasticity, moist					
								1
	10		8-12 ftbg: brown gravelly sandy clayey Fill Material (stiff, no		8-12	3.2	10	
			plasticity, moist)		8-12	3.2	10	
								Equipment refusal encountered
								at approximately 12 ftbg
	<u> </u>	<u>I</u>			l	ı	ı	1
				Т				
							MS	
							ANALY	TICAL
								S TO STATE OF THE
							ONMENTAL CO	DNSULTANTS ALO, NEW YORK 14219

ENVIRONMENTAL CONSULTANTS 4169 ALLENDALE PKWY. BUFFALO, NEW YORK 14219 曾 (716) 312-8296 自 (716) 312-8092 www.msanalytical.com

Project Number: 12MS-104(.5) Project Location: Kensington Heights 1827 Fillmore Avenue, Buffalo, New York Boring Location: North West of Building A1 Date Start/Finished: August 10, 2012 Water At End of Drilling: NA Drilling Contractor: Russo Development, Inc. Equipment: PowerProbe Drilling Method: Hydraulically driven system (PowerProbe) Technician: Ryan Welch Well Well Completion Soil/Rock Description Soil/Rock Description C 1 e C C E C C C C C C C C C C C C C C C C	ge 36 of 5
Project Location: Kensington Heights 1827 Fillmore Avenue, Buffalo, New York Boring Location: North West of Building A1 Water At End of Drilling: Water At End of Drilling: NA Date Start/Finished: August 10, 2012 Water At End of Drilling: Politing Contractor: Russo Development, Inc. Equipment: PowerProbe Drilling Method: Hydraulically driven system (PowerProbe) Technician: Ryan Welch B	
Boring Location: North West of Building A1 Date Start/Finished: August 10, 2012 Drilling Contractor: Russo Development, Inc. Drilling Method: Hydraulically driven system (PowerProbe) Technician: Ryan Welch Technician: Ryan Welch Well Well Well Completion Diagram To Diagram Diagram Diagram To Diagram To Diagram To Diagram Do Diagram To Diagram Do	
Date Start/Finished: August 10, 2012 Water At End of Drilling: NA Drilling Contractor: Russo Development, Inc. Equipment: PowerProbe Drilling Method: Hydraulically driven system (PowerProbe) Technician: Ryan Welch B P I I I I O D D W I R R R R R R R R R R R R R R R R R R	
Drilling Contractor: Russo Development, Inc. Equipment: PowerProbe Technician: Ryan Welch Technician: Ryan Welch B P	
Drilling Method: Hydraulically driven system (PowerProbe) Technician: Ryan Welch B	
B	
The completion Soil/Rock Description Soil/Rock Description Completion R R R R R R R R R	
Very Well Completion Soil/Rock Description C t e c c d v v l e c c d v v l e c c d v v l e c c d v v v l e c c d v v v v v v v v v	
Well Completion Soil/Rock Description W I R e C t e C C t e C C t e C C t e C C E A D Diagram Diag	
Well Completion Soil/Rock Description C t e c c c d v i e i p i p c t a n r d v i e i	
a D Diagram t e i p o t n v i e e o t a n v i e e o t a n v i e e o t a n v i e e o t a n v i e e o t a n v i e e o t a n v i e e o t a n v i e e o t a n v i e e o t a n v i e e o t a n v i e e o t a n v i e e o t a n v i e e o t a n v i e e o t a n v i e e o t a n v i e e o v i e e o t a n v i e e o v i e o v i e o v i e o	
t e i p o t n v i e e o t a n v i e e o t a n v i e e o t a n v i e e o t a n v i e e o t a n v i e e o v y Comments Ground Surface The state of t	
i p o t n v i e e t a n r c y Comments Ground Surface The state of t	
t a n r y Comments Ground Surface Ground Surface Ground Surface The state of th	
n h S I g y Comments Ground Surface Feet) Million (Inches) Ground Surface I Parts Per Million (Inches) Ground Surface I Depth I Dep	
Ground Surface 1 0-0.5 ftbg: Asphalt and subbase 0.5-3 ftbg: dark brown/black gravelly sandy clayey Fill Material (stiff, no plasticity, moist) NA NA 4-7 ftbg: brown sandy clayey Fill Material (medium stiff, low to NA) NA 4-7 ftbg: brown sandy clayey Fill Material (medium stiff, low to NA) NA NA 4-7 ftbg: brown sandy clayey Fill Material (medium stiff, low to NA) NA NA 4-7 ftbg: brown sandy clayey Fill Material (medium stiff, low to NA)	
Ground Surface 1 0-0.5 ftbg: Asphalt and subbase 0.5-3 ftbg: dark brown/black gravelly sandy clayey Fill Material (stiff, no plasticity, moist) with brick debris 3-4 ftbg: brown gravelly sandy clayey Fill Material (stiff, no plasticity, moist) NA NA 4-7 ftbg: brown sandy clayey Fill Material (medium stiff, low to NA NA NA A-7 ftbg: brown sandy clayey Fill Material (medium stiff, low to NA NA NA NA NA NA NA NA NA NA NA NA NA	
Ground Surface (PPM) 1 0-0.5 ftbg: Asphalt and subbase 0-2 1.7 12 0.5-3 ftbg: dark brown/black gravelly sandy clayey Fill Material (stiff, no plasticity, moist) with brick debris 3-4 ftbg: brown gravelly sandy clayey Fill Material (stiff, no plasticity, moist) NA NA 4-7 ftbg: brown sandy clayey Fill Material (medium stiff, low to NA)	
0.5-3 ftbg: dark brown/black gravelly sandy clayey Fill Material (stiff, no plasticity, moist) with brick debris 3-4 ftbg: brown gravelly sandy clayey Fill Material (stiff, no plasticity, moist) NA NA 4-7 ftbg: brown sandy clayey Fill Material (medium stiff, low to NA) NA NA NA NA NA NA NA NA NA	
0.5-3 ftbg: dark brown/black gravelly sandy clayey Fill Material (stiff, no plasticity, moist) with brick debris 3-4 ftbg: brown gravelly sandy clayey Fill Material (stiff, no plasticity, moist) NA NA 4-7 ftbg: brown sandy clayey Fill Material (medium stiff, low to NA) NA NA NA NA NA NA NA NA NA	
3-4 ftbg: brown gravelly sandy clayey Fill Material (stiff, no plasticity, moist) NA NA 4-7 ftbg: brown sandy clayey Fill Material (medium stiff, low to NA)	
NA NA 4-7 fthg: brown sandy clavey Fill Material (medium stiff, low to NA	
medium plasticity, moist) 4-8 2.1 15	
7-8 ftbg: brown gravelly sandy clayey Fill Material (medium stiff, no plasticity, moist)	
8-9 ftbg: brown sandy gravelly Fill Material (angular, medium dense, moist) 8-9 4.5 6 Equipment refusal enactions at approximately	

_		nber: 12MS-104				Hole: 20 fee	et below gra	ade (ftbg)
		ation: Kensingto tion: North of B	n Heights 1827 Fillmore Avenue, Buffalo, New York		und Elevati	ion: NA tered: 16 ftb	ng.	
_		inished: Augus				of Drilling: N		
			Development, Inc.		ipment: Po		,,	
			ally driven system (PowerProbe)		nician: Ry			
				В		Р		
				-1		I		
E				0		D	_	
1		Well		W		R	R	
e v		Completion	Soil/Rock Description	С	n t	e	e c	
a	D	Diagram	, , , , , , , , , , , , , , , , , , , ,	0	e	a	0	
t	е			u	r	d	V	
i	р			n	V	i	е	
0	t			t	a	n	r	C
n	h			S	l l	g Parts Per	у	Comments
					(Feet)	Million	(Inches)	
			Ground Surface		(1 cct)	(PPM)	(menes)	
	1		0-0.5 ftbg: Asphalt and subbase			<u> </u>		
	-							
			0.5-2 ftbg: gray gravelly sandy clayey Fill Material (stiff, no					
			plasticity, moist)		0-4	1.7	20	
			2-4 ftbg: dark brown gravelly sandy clayey Fill Material					
			(medium stiff, low plasticity, moist)	\langle				
	5		4-6 ftbg: dark brown gravelly sandy clayey Fill Material					
			(medium stiff, low plasticity, moist) with some ash		4-6	1.7	12	
			6-9 ftbg: dark brown gravelly sandy clayey Fill Material		6-8	1.4	12	
			(medium stiff, low plasticity, moist) with ash and brick debris					
	10		0.10 fthau arou Ash (waist)		8-10	2.2	12	
NΑ	10	NA	9-10 ftbg: gray Ash (moist)	NA				
			10-12 ftbg: brown sandy Clay (soft, medium plasticity, moist)		10-12	2.1	12	
			12-16 ftbg: brown gravelly sandy clayey Fill Material (medium		12-16	2.2	15	
			stiff, low plasticity, moist)					
	15		~					
	15							
			16-20 ftbg: gray Gravel (angular and subrounded, medium		16-20	1.2	2	Equipment refusal encounter
			dense, wet)					at approximately 20 ftbg
								<u> </u>
							MS	TICAL
							ANALY	TICAL
							NMENTAL CON	
				1		4169 ALLENDA 留 (718	LE PKWY. BUFFAL 5) 312-8296 🖹 (71	.o, New York 14219 16) 312-8092

ORILLIN	G LC	OG OF WELL/BO	ORING NO. SB-38					Page 38 of 50
roject	Nun	nber: 12MS-104	I(.5)	Tota	ıl Depth of	Hole: 4 feet	below grad	de (ftbg)
roject	Loca	tion: Kensingto	on Heights 1827 Fillmore Avenue, Buffalo, New York		und Elevati			
oring L	.ocat	tion: North East	t of Building A1	Wat	er Encount	ered: NA		
ate Sta	art/F	inished: August	t 10, 2012	Wat	er At End o	of Drilling: N	A	
			Development, Inc.	Equi	ipment: Po	werProbe		
rilling	Met	hod: Hydraulic	ally driven system (PowerProbe)	Tech	nnician: Rya	an Welch		
E I e v a t i o n	D e p t h	Well Completion Diagram	Soil/Rock Description	B I O W C O U n t s	I n t e r v a	PIDDR	R e c o v e r y	Comments
			Ground Surface		(Feet)	Parts Per Million (PPM)	(Inches)	
	1		0-0.5 ftbg: Asphalt and subbase 0.5-2 ftbg: gray/brown gravelly sandy Fill Material (coarse, medium and fine grain, medium dense, moist)		0-2	1.3	12	
NA		NA	2-3 ftbg: brown gravelly Sand Fill (coarse, medium and, fine grain, medium dense, moist) with brick debris 3-3.5 ftbg: brown gravelly sandy Fill Material (coarse grain,	NA				
			medium dense, moist) with brick debris 3.5-4 ftbg: brown sandy clayey Fill Material (stiff, no plasticity moist)	,	2-4	1.9	12	Equipment refusal encountered at approximately 4 ftbg
						4169 ALLEN	ROMENTAL COALE PKWY. BUFF	ALO, NEW YORK 14219 (716) 312-8092

DRILLIN	IG LO	OG OF WELL/B	ORING NO. SB-39					Page 39 of 50
Project	Nur	nber: 12MS-104	1(5)	Tota	al Denth of	Hole: 10 fee	et helow gr	ade (fthg)
			on Heights 1827 Fillmore Avenue, Buffalo, New York		und Elevati		ct below gri	dae (Hug)
		tion: East of Bu				tered: NA		
Ŭ		inished: Augus	·			of Drilling: N	A	
			Development, Inc.	Equ	ipment: Po	werProbe		
Drilling	Met	hod: Hydraulic	ally driven system (PowerProbe)	Tecl	nnician: Ry	an Welch		
E I e v a t i o n	D e p t	Well Completion Diagram	Soil/Rock Description	B I O W C O U n t s	I n t e r v a	P I D R e a d i n g	R e c o v e r y	Comments
			Ground Surface		(Feet)	Parts Per Million (PPM)	(Inches)	
	1		0-0.5 ftbg: Asphalt and subbase 0.5-4 ftbg: dark brown sandy Fill Material (coarse, medium and fine grain, medium dense, moist)		0-4	5.1	18	
NA	5	NA	4-6 ftbg: dark brown/black sandy Fill Material (coarse, medium and fine grain, medium dense, moist)	NA	4-6	1.5	12	
			6-8 ftbg: dark brown/black gravelly sandy Fill Material (coarse, medium and fine grain, medium dense, moist)		6-8	16.2	12	
	10		8-10 ftbg: dark brown/black gravelly sandy Fill Material (coarse, medium and fine grain, medium dense, moist) with rock fragments		8-10	2.9	6	Equipment refusal encountered at approximately 10 ftbg
							MS	TICAL

ENVIRONMENTAL CONSULTANTS
4169 ALLENDALE PKWY. BUFFALO, NEW YORK 14219

@ (716) 312-8296 \text{ \te\

DRILLI	NG L	OG OF WELL/BO	DRING NO. SB-40					Page 40 of 50		
Project	t Nur	nber: 12MS-104	(.5)	Total Depth of Hole: 3 feet below grade (ftbg)						
Project	t Loc	ation: Kensingto	n Heights 1827 Fillmore Avenue, Buffalo, New York	Ground Elevation: NA						
Boring	Loca	tion: South East	of Building A1	Water Encountered: NA						
Date S	tart/	Finished: August	10, 2012	Water At End of Drilling: NA						
Drilling	g Con	tractor: Russo D	Development, Inc.	Equ	ipment: Po	werProbe				
Drilling	g Met	thod: Hydraulica	ally driven system (PowerProbe)	Technician: Ryan Welch						
E I e v a t i o n	D e p t	Well Completion Diagram	Soil/Rock Description	B I o w W C o u u n t s	I n t e r v a	P I D R e a d i n g	R e c o v e r y	Comments		
			Ground Surface		(Feet)	Parts Per Million (PPM)	(Inches)			
NA	1	NA	0-0.5 ftbg: Asphalt and subbase 0.5-3 ftbg: gray/black gravelly sandy Clay (stiff, no plasticit moist)	y, NA	0-3	3.6	15	Equipment refusal encountered at approximately 3 ftbg		
						4169 ALLENDAL 留 (716	MS ANALYT MEPAKW. BUFFAL 312-8296 lb (71)	o, New York 14219 6) 312-8092		

Boring Location: Date Start/Finisl Drilling Contract Drilling Method E I e v Co	n: Kensingtor n: North of Bu shed: August ctor: Russo De	n Heights 1827 Fillmore Avenue, Buffalo, New York uilding B6	Grou Wat Wat Equi	und Elevati er Encount er At End c	ered: NA of Drilling: N		ade (ftbg)						
Project Location Boring Location: Date Start/Finisl Drilling Contract Drilling Method E I e v Co	n: Kensingtor n: North of Bu shed: August ctor: Russo De	n Heights 1827 Fillmore Avenue, Buffalo, New York uilding B6 10, 2012 evelopment, Inc.	Grou Wat Wat Equi	und Elevati er Encount er At End c	on: NA ered: NA of Drilling: N		ade (ftbg)						
Boring Location: Date Start/Finisl Drilling Contract Drilling Method E I e v Co	n: North of Bu shed: August ctor: Russo De	illding B6 10, 2012 evelopment, Inc.	Wat Wat Equi	er Encount er At End c	ered: NA of Drilling: N	A							
Date Start/Finisi Drilling Contract Drilling Method E I e v Co	shed: August ctor: Russo De	10, 2012 evelopment, Inc.	Wat Equi	er At End c	of Drilling: N	A							
Drilling Contract Drilling Method E I e v Co	ctor: Russo De	evelopment, Inc.	Equi			A	Water Encountered: NA Water At End of Drilling: NA						
E e v Co				Equipment: PowerProbe									
E I e v Cc	a: nyuraulica	illy driven system (PowerProbe)	Technician: Ryan Welch										
l e v Cc				mician: Rya			Т						
l e v Cc			В		P								
l e v Cc			I										
v Co			0		D	D							
v Co	Well		W	l n	R	R							
-	Completion	Soil/Rock Description	С	n t	e	e c							
a D	Diagram	Sony Nock Description	0	e	a	0							
t e	Diagram		u	r	d	V							
i p			n	v	i	e							
o t			t	a	n	r							
n h			s	Ī	g	V	Comments						
	1				Parts Per								
				(Feet)	Million	(Inches)							
		Ground Surface		(,	(PPM)	(
1		0-0.5 ftbg: Asphalt and subbase		0-2	1.5	15							
					-		-						
		0.5-6 ftbg: black sandy Fill Material (coarse, medium and fine		2-4	2.0	15							
		grain, medium dense, moist) with some brick debris					-						
5				4-6	1.7	12							
NA	NA		NA				-						
		6-8 ftbg: black sandy Fill Material (coarse, medium and fine grain, medium dense, moist) with brick debris		6-8	2.9	12							
		8-9.5 ftbg: black sandy Fill Material (coarse, medium and fine					Slight organic odor observed between approximately 9.5-11						
		grain, med <mark>ium</mark> dense, m <mark>oist)</mark>		8-11	1.8	18	ftbg						
10		9.5-11 ftbg: black sandy-clayey Fill Material (medium stiff, no plasticity, moist) with ash					Equipment refusal encountered at approximately 11 ftbg						

DRILLII	NG LO	OG OF WELL/BO	DRING NO. 5B-42					Page 42 of 50
		nber: 12MS-104				Hole: 16 fee	et below gr	ade (ftbg)
			n Heights 1827 Fillmore Avenue, Buffalo, New York		und Elevati			
		tion: North East inished: August				tered: NA of Drilling: N	Λ	
			Development, Inc.		ipment: Po		А	
			ally driven system (PowerProbe)		hnician: Ry			
Dillillig	VICE	noa. Tryaraane	any unverraystem (rowerrrobe)		Timelani. Ity			
				B		P I		
Е				0		D D		
Ī				W		D	R	
e		Well		**	n	R	e	
V		Completion	Soil/Rock Description	С	i	e	С	
a	D	Diagram	, p	0	e	a	0	
t	е			u	r	d	V	
i	р			n	V	i	е	
0	t			t	a	n	r	
n	h			S	I	g	у	Comments
						Parts Per		
			Ground Surface		(Feet)	Million (PPM)	(Inches)	
	1		0-0.5 ftbg: Asphalt and subbase		0-2	5.8	12	
			050561 1 1 1 1 1 5 1 5 1 1 1 1		0=2	5.8	12	
			0.5-2.5 ftbg: dark brown/black sandy Fill Material (coarse,					4
			medium and fine grain, medium dense, moist)					
			2.5-3 ftbg: brown clayey Fill Material (medium stiff, low plasticity, moist)		2-4	6.1	12	
	5		3-6 ftbg: dark brown/black sandy Fill Material (coarse, medium and fine grain, medium dense, moist)		4-6	2.1	12	
NA		NA	6-6.5 ftbg: brown Clay (stiff, no plasticity, moist) 6.5-8 ftbg: dark brown/black sandy Fill Material (coarse, medium and fine grain, medium dense, moist) with brick debris	NA	6-8	6.1	12	
					8-10	3.9	12	
	10		8-13 ftbg: tan sandy Fill Material (coarse, medium and fine grain, medium dense, moist) with brick debris		10-12	3.2	12	
			13-14 ftbg: brown gravelly sandy Fill Material (coarse, medium and fine grain, medium dense, moist) with some ash and brick debris		12-14	4.2	12	
	15		14-15.5 ftbg: gray/brown Ash (moist)		14-16	2.5	12	Equipment refusal encountered at approximately 16 ftbg
	1	1	15.5-16 ftbg: brown Clay (stiff, no plasticity, moist)	1		1		at approximately 10 ledg

ENVIRONMENTAL CONSULTANTS 4169 ALLENDALE PKWY. BUFFALO, NEW YORK 14219 (2) (16) 312-8296 (1) (16) 312-8092 www.msanalytical.com

Project Boring L Date Sta Drilling Drilling	Loca Locat art/F Cont	ion: East of Buil	5) n Heights 1827 Fillmore Avenue, Buffalo, New York	Tota						
Boring L Date Sta Drilling Drilling	_ocat art/F Cont	ion: East of Buil		Total Depth of Hole: 22 feet below grade (ftbg) Ground Elevation: NA						
Date Sta Drilling Drilling	art/F Cont					ered: 16 ftb	σ			
Drilling Drilling	Cont	inished: August				f Drilling: N				
Drilling			evelopment, Inc.		ipment: Po		•			
			illy driven system (PowerProbe)		•	eph Mecca				
				В		Р				
1				Ī		i				
E				0		D				
- 1				W	- 1		R			
е		Well			n	R	е			
V		Completion	Soil/Rock Description	С	t	е	С			
a	D	Diagram		0	е	a	0			
t .	е			u	r	d	٧			
i	p			n	V	i	е			
o n	t h			t s	a ı	n g	r v	Comments		
"]	- 11			3		Parts Per	У	Comments		
			Ground Surface		(Feet)	Million (PPM)	(Inches)			
	1		0-0.5 ftbg: Asphalt and subbase		0-2	2.4	15			
					2-4	6.8	15			
	5		0.5-10 ftbg: black/tan Sand (coarse, medium and fine grain, medium dense, moist) with some gravel		4-6	2.4	20			
					6-8	37.6	20			
					8-10	2.6	15			
NA	10	NA	10-12 ftbg: gray/black sandy clayey gravelly Fill Material (angular and subrounded, medium dense, moist)	NA	10-12	1.5	15			
			12-16 ftbg: gray clayey Ash (medium stiff, moist)		12-14	1.5	15			
	15		12-10 ftbg. gray clayey Ash (mediani stiff, moist)		14-16	1.7	15			
			16-20 ftbg: gray clayey Ash (medium stiff, wet)		16-20	1.6	10			
	20		20-21.5 ftbg: gray clayey silty Ash (medium stiff, wet) 21.5-22 ftbg: brown Clay (medium stiff, medium plasticity, moist)		20-22	2.1	10	Equipment refusal encountered at approximately 22 ftbg		

ENVIRONMENTAL CONSULTANTS
4169 ALLENDALE PKWY. BUFFALO, NEW YORK 14219

@ (716) 312-8296 B (716) 312-8092

www.msanalytical.com

		nber: 12MS-104	I(.5) on Heights 1827 Fillmore Avenue, Buffalo, New York		al Depth of und Elevati	Hole: 23 fee	et below gr	ade (ftbg)	
		tion: North of E				tered: 16 ftk)g		
		inished: Augus				of Drilling: N			
			Development, Inc.	Equ	ipment: Po	werProbe			
illing	Met	hod: Hydraulio	ally driven system (PowerProbe)	Technician: Joseph Mecca					
				В		Р			
E						l D			
<u> </u>				O W	1	D	R		
e		Well		"	n	R	е		
٧		Completion	Soil/Rock Description	С	t	е	С		
a	D	Diagram		0	е	a	0		
t i	e p			u n	r V	d i	v e		
0	t			t	a	n	r		
n	h			S	- 1	g	у	Comments	
						Parts Per			
			Ground Surface		(Feet)	Million (PPM)	(Inches)		
	1		0-0.5 ftbg: Asphalt and subbase			(1.1.4)			
	-		o o.s risg. rispitale and subsusc						
					0-4	1.3	15		
					0-4	1.5	13		
			0.5-7 ftbg: black/brown sandy gravelly clayey Fill Material						
	5		(stiff, low plasticity, moist)	K					
					4-8	2.0	15		
			7-8 ftbg: black/brown sandy gravelly clayey Fill Material (stiff,						
			low plasticity, moist) with ash						
	10								
			8-12 ftbg: brown sandy gravelly Clay (medium stiff, low		8-12	1.0	15		
			plasticity, moist) with some ash						
NΑ		NA		NA					
			12-16 ftbg: brown gravelly Clay (medium stiff, low plasticity,						
			moist)		12-16	1.0	6		
			mosty						
			16-20 ftbg: brown silty sandy Gravel (angular and subrounded		46.00	0 =			
			medium dense, wet)		16-20	0.7	6		
	20]	
			20-23 ftbg: gray silty Gravel (angular and subrounded, loose,		20-23	0.7	6	Equipment refusal encounter	
			wet)				-	at approximately 23 ftbg	
				1					
								_	
				1			MAG		

ENVIRONMENTAL CONSULTANTS 4169 ALLENDALE PX:WY. BUFFALO, NEW YORK 14219 量 (716) 312-8296 胎 (716) 312-8092 www.msanalytical.com

	nber: 12MS-104				Hole: 20 fee	et below gra	ade (ftbg)		
		on Heights 1827 Fillmore Avenue, Buffalo, New York		und Elevati					
	tion: South East		Water Encountered: NA Water At End of Drilling: NA						
	Finished: Augus	e 13, 2012 Development, Inc.	Water At End of Drilling: NA Equipment: PowerProbe						
		ally driven system (PowerProbe)		•	seph Mecca				
ilig iviet	liou. Hyuraulic	I		IIIICIAII. JOS					
			В		P				
					I				
			0		D	R			
	Well		W	l n	R	e			
	Completion	Soil/Rock Description	С	t "	e	C			
D	Diagram	Sony Noon Description	0	e	a	0			
e	2.08.0		l u	r	d	V			
р			n	v	i	e			
t			t	a	n	r			
h			S	I	g	у	Comments		
					Parts Per		1		
		Ground Surface		(Feet)	Million (PPM)	(Inches)			
1		0-0.5 ftbg: Asphalt and subbase			(11101)				
		0.5-4 ftbg: black/brown/tan clayey Sand (coarse, medium an	d	0-4	1.3	15			
		fine grain, medium dense, moist)	47						
		4-6 ftbg: black/tan Sand (coarse, medium and fine grain,							
		medium dense, moist)							
5		medium dense, moisty		4.0	4.6	45			
				4-8	4.6	15			
		6-10 ftbg: brown gravelly clayey Sand (coarse and medium							
Α	NA		NA				1		
		grain, dense, moist)							
10				8-10	1.6	15			
10]		
		10-12 ftbg: gray/black Ash (soft, moist)		10-12	1.2	15			
							1		
		12-20 ftbg: no recovery, boring terminated		12-20	-	-			
15							Boring terminated due to		
							obstruction in boring at		
		<u> </u>		<u></u>			approximately 20 ftbg		
15		12-20 ttbg: no recovery, boring terminated		12-20	-	-	obstruction		

ENVIRONMENTAL CONSULTANTS
4169 ALLENDALE PKWY. BUFFALO, NEW YORK 14219
曾 (716) 312-8296 章 (716) 312-8092
www.msanalytical.com

roject Number: 12MS-104(.5) roject Location: Kensington Heights 1827 Fillmore Avenue, Buffalo, New York oring Location: South East of Building B2 ata Start/Finished: August 13, 2012 water At End of Drilling: NA rilling Contractor: Russo Development, Inc. Equipment: PowerProbe rilling Method: Hydraulically driven system (PowerProbe) Completion	
wring Location: South East of Building B2 te Start/Finished: August 13, 2012 Water At End of Drilling: NA Illing Contractor: Russo Development, Inc. Equipment: PowerProbe Illing Contractor: Russo Development, Inc. Equipment: PowerProbe Illing Method: Hydraulically driven system (PowerProbe) Technician: Joseph Mecca Technician: Joseph Mecca B	og)
te Start/Finished: August 13, 2012 Water At End of Drilling: NA Illing Contractor: Russo Development, Inc. Equipment: PowerProbe Illing Method: Hydraulically driven system (PowerProbe) E	
Illing Contractor: Russo Development, Inc. Equipment: PowerProbe	
New New	
Very Series Well Well Completion Soil/Rock Description C	
Completion Note	
Well Completion Soil/Rock Description C t e c c c c c c c c c	
Well Completion Diagram Soil/Rock Description C t t e c c a a 0 o e a 0 o e a 0 o e d a 0 o e d description C c description C c description C c description C c description C c description C c description C c description C c description C c description C c description C c description C descriptio	
Diagram The property of the p	
The second surface are second su	
The state of the s	
Ground Surface Ground Surface Ground Surface 1	
Ground Surface 1 0-0.5 ftbg: Asphalt and subbase 0.5-6 ftbg: black/tan Sand (course, medium and fine grain, medium dense, moist) 4-6 1.1 15 6-9 ftbg: black sandy clayey Gravel (angular, medium dense, moist) 8-10 1.8 15	
Ground Surface 1 0-0.5 ftbg: Asphalt and subbase 0.5-6 ftbg: black/tan Sand (course, medium and fine grain, medium dense, moist) 4-6 1.1 15 6-9 ftbg: black sandy clayey Gravel (angular, medium dense, moist) 8-10 1.8 15	ments
Ground Surface 0-0.5 ftbg: Asphalt and subbase 0.5-6 ftbg: black/tan Sand (course, medium and fine grain, medium dense, moist) 4-6 1.1 15 6-9 ftbg: black sandy clayey Gravel (angular, medium dense, moist) 8-10 1.8 15	
1 0-0.5 ftbg: Asphalt and subbase 0-4 1.6 15 0.5-6 ftbg: black/tan Sand (course, medium and fine grain, medium dense, moist) 4-6 1.1 15 6-9 ftbg: black sandy clayey Gravel (angular, medium dense, moist) 8-10 1.8 15	
0.5-6 ftbg: black/tan Sand (course, medium and fine grain, medium dense, moist) 4-6 1.1 15 6-9 ftbg: black sandy clayey Gravel (angular, medium dense, moist) 8-10 1.8 15	
0.5-6 ftbg: black/tan Sand (course, medium and fine grain, medium dense, moist) 4-6 1.1 15 6-9 ftbg: black sandy clayey Gravel (angular, medium dense, moist) 8-10 1.8 15	
0.5-6 ftbg: black/tan Sand (course, medium and fine grain, medium dense, moist) 4-6 1.1 15 6-9 ftbg: black sandy clayey Gravel (angular, medium dense, moist) 8-10 1.8 15	
6-9 ftbg: black sandy clayey Gravel (angular, medium dense, moist) 8-10 1.8 15	
6-9 ftbg: black sandy clayey Gravel (angular, medium dense, moist) 8-10 1.8 15	
6-9 ftbg: black sandy clayey Gravel (angular, medium dense, moist) 8-10 1.1 15 8-10 1.8 15	
6-9 ftbg: black sandy clayey Gravel (angular, medium dense, moist) 8-10 1.8 15	
moist) 8-10 1.8 15	
moist) 8-10 1.8 15	
moist) 8-10 1.8 15	
8-10 1.8 15	
A NA NA NA 10-12 1.0 15	
9-20 ftbg: gray clayey Ash (soft, moist) with gravel	
15	
16-20 1.6 15	
	pment refusal encounte
with wood debris	t approximately 21 ftbg
ANALYTIC	AL

ENVIRONMENTAL CONSULTANTS 4169 ALLENDALE PKWY. BUFFALO, NEW YORK 14219 (716) 312-8296 (716) 312-8092 www.msanalytical.com

DRILLII	NG LO	OG OF WELL/BO	DRING NO. SB-47					Page 47 of 50	
Project	Nun	nber: 12MS-104	(5)	Tota	al Denth of	Hole: 10 fee	et helow gra	ade (fthg)	
			n Heights 1827 Fillmore Avenue, Buffalo, New York		und Elevati		30 20 0 1 B	200 (1008)	
		tion: South of B				tered: NA			
Date St	art/F	inished: August	: 12, 2012	Wat	ter At End c	of Drilling: NA	4		
)			evelopment, Inc.	Equ	ipment: Po	werProbe			
Drilling	Met	hod: Hydraulica	ally driven system (PowerProbe)	Technician: Joseph Mecca					
E I e v a	D	Well Completion Diagram	Soil/Rock Description	B I O W C	I n t	P I D R e a	R e c		
t	е			u	r	d	٧		
i	p			n	V	i	е		
o n	t h			t s	a	n g	r y	Comments	
			Ground Surface	3	(Feet)	Parts Per Million (PPM)	(Inches)	Comments	
	_					(1 1 1 1 1 1)			
	1		0-0.5 ftbg: Asphalt and subbase		0-2 2-4	2.1	15		
NA	5	NA	0.5-9.5 ftbg: black/tan Sand (coarse, medium and fine grain, medium dense, moist)	NA	4-6	2.0	15		
					6-8	2.8	15		
	10		9.5-10 ftbg: gray Ash (stiff, moist)		8-10	2.3	20	Equipment refusal encountered at approximately 10 ftbg	
						4169 ALLEND	RONMENTAL CO DALE PKWY. BUPI WWW.msanalyt	CONSULTANTS PALO, NEW YORK 14219 (716) 312-8092	

DRILLI	NG LC	OG OF WELL/BO	DRING NO. SB-48					Page 48 of 50		
Proiect	Num	nber: 12MS-104	(.5)	Tota	al Depth of	Hole: 7 feet	: below grad	de (ftbg)		
			n Heights 1827 Fillmore Avenue, Buffalo, New York		und Elevati					
			et of Building B4	Water Encountered: NA						
		inished: August		Water At End of Drilling: NA						
	_		Development, Inc.	Equipment: PowerProbe						
			ally driven system (PowerProbe)	•	•	seph Mecca				
E I e v a t i o	D e p t h	Well Completion Diagram	Soil/Rock Description	B I o w C o u n t s	I n t e r v a	P I D R e a d i n	R e c o v e r y	Comments		
			Ground Surface		(Feet)	Parts Per Million (PPM)	(Inches)			
NA	1	NA	0-0.5 ftbg: Asphalt and subbase 0.5-4 ftbg: black/tan gravelly Sand (coarse, medium and fine grain, medium dense, moist)	NA	0-4	8.8	15			
	5		4-7 ftbg: black/tan gravelly Sand (coarse, medium and fine grain, medium dense, moist) with brick in end of macrocore		4-7	4.1	15	Equipment refusal encountered at approximately 7 ftbg		
						4169 ALLENDAL 留 (716)	NMENTAL CON E PKWY. BUFFAL 312-8296 lb (71)	o, New York 14219 6) 312-8092		

DRILLI	NG L	OG OF WELL/BO	DRING NO. SB-49					Page 49 of 50		
		mber: 12MS-104	• •	Total Depth of Hole: 3.5 feet below grade (ftbg)						
			n Heights 1827 Fillmore Avenue, Buffalo, New York	Ground Elevation: NA						
		ition: South Wes	· ·	Water Encountered: NA						
		Finished: August	·	Water At End of Drilling: NA						
			Development, Inc.		ipment: Po					
Jrilling	giviet	thod: Hydraulic	ally driven system (PowerProbe)		nnician: Jos	eph Mecca	ı	1		
E I e v a t i o n	D e p t h	Well Completion Diagram	Soil/Rock Description	B I o w C o u u n t s	I n t e r v a	P I D R e a d i n g	R e c o v e r	Comments		
		1			·L	Parts Per		•		
			Ground Surface		(Feet)	Million (PPM)	(Inches)			
NA	1	NA	0-0.5 ftbg: Asphalt and subbase 0.5-3.5 ftbg: brown/tan gravelly Sand (coarse, medium and f grain, medium dense, moist)	ine NA	0-3.5	4.2	20	Equipment refusal encountere at approximately 3.5 ftbg		
						4169 ALL	WISOMENTAL COI	o, New York 14219 (6) 312-8092		

DRILLII	NG L	OG OF WELL/BO	DRING NO. SB-50					Page 50 of 50		
		nber: 12MS-104	u(.5) on Heights 1827 Fillmore Avenue, Buffalo, New York		l Depth of und Elevati	Hole: 13 fee	et below gra	ade (ftbg)		
			st of Building A5			ered: NA				
		inished: August		Water At End of Drilling: NA						
			Development, Inc.	Equipment: PowerProbe						
			ally driven system (PowerProbe)		•	eph Mecca				
2	1		l	_		Р				
i				В						
Е				0		D				
				w	ı		R			
e		Well		**	n	R	e			
٧		Completion	Soil/Rock Description	С	t	e	С			
a	D	Diagram	, ,	0	e	a	0			
t	е	, and the second		u	r	d	V			
i	р			n	V	i	е			
0	t			t	a	n	r			
n	h			S	I	g	у	Comments		
						Parts Per				
			Ground Surface		(Feet)	Million (PPM)	(Inches)			
NA	5	NA	0-0.5 ftbg: Asphalt and subbase 0.5-4.5 ftbg: brown/black gravelly Sand (coarse, medium and fine grain, medium dense, moist) 4.5-12 ftbg: black/brown Sand (coarse, medium and fine grain, medium dense, moist)	NA	0-4 4-8 8-12	5.9	15			
			12-13 ftbg: black/brown gravelly Sand (coarse, medium and fine grain, medium dense, moist) with pieces of glass		12-13	1.5	12	Equipment refusal encountered at approximately 13 ftbg		
							MS	TICAL		
						4169 ALLENDAI 量 (716	DIMENTAL CO LE PKWY. BUFFAI b) 312-8296 🗎 (7 www.msanalytica	.o, New York 14219 16) 312-8092		

APPENDIX B LABORATORY ANALYTICAL REPORTS

DATA PACKAGE

METALS GC SEMI-VOLATILES SEMI-VOLATILE ORGANICS VOLATILE ORGANICS

PROJECT NAME: 12MS104 KENSINGTON HEIGHTS

MS ANALYTICAL 4169 Allendale Parkway, Suite 200

Blasdell, NY - 14219

Phone No: 716-649-9718

ORDER ID: D3811

ATTENTION: Bryan Mayback

Table Of Contents for D3811

1) S	Signature Page	3
2) C	Case Narrative	4
	2.1) VOC-Chemtech Full -15- Case Narrative	4
	2.2) SVOC-Chemtech Full -25- Case Narrative	6
	2.3) Pesticide-TCL- Case Narrative	9
	2.4) PCB- Case Narrative	11
	2.5) Herbicide- Case Narrative	13
	2.6) Metals-AES- Case Narrative	14
3) Q	Qualifier Page	16
4) Q	QA Checklist	18
5) V	OC-Chemtech Full -15 Data	19
6) S	SVOC-Chemtech Full -25 Data	248
7) P	Pesticide-TCL Data	506
8) P	PCB Data	589
9) H	lerbicide Data	665
10)	Metals-AES Data	720
11)	Shipping Document	860
	11.1) CHAIN OF CUSTODY	861
	11.2) Air Bill	864
	11.3) ROC	866
	11.4) Lab Certificate	868
	11.5) Internal COC	869

Cover Page

Order ID: D3811

Project ID: 12MS104 Kensington Heights

Client: MS Analytical

Lab Sample Number Client Sample Number D3811-01 SB-2(4-8) D3811-02 SB-5(8-12) D3811-03 SB-9(4-7) D3811-04 SB-10(8-12) D3811-05 SB-11(12-16) D3811-06 SB-15(12-16) D3811-07 SB-18(4-8) D3811-08 SB-19(12-18) D3811-09 SB-21(12-16) D3811-10 SB-21(16-19) D3811-11 SB-22(12-19) D3811-12 SB-27(8-12) D3811-13 SB-37(8-10) D3811-14 SB-39(6-8) D3811-15 SB-41(8-11) D3811-16 SB-42(14-16) D3811-17 SB-43(6-8) D3811-18 SB-43(10-12) D3811-19 SB-43(16-20) D3811-20 SB-45(10-12) D3811-21 SB-46(12-16)

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Signature:

Date: 8/30/2012

NYDOH CERTIFICATION NO - 11376

NJDEP CERTIFICATION NO - 20012

CASE NARRATIVE

MS Analytical

Project Name: 12MS104 Kensington Heights

Project # N/A

Chemtech Project # D3811

Test Name: VOC-Chemtech Full -15

A. Number of Samples and Date of Receipt:

21 Solid samples were received on 08/15/2012.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Herbicide, Mercury, Metals ICP-TAL, METALS-TAL, PCB, Pesticide-TCL, SVOC-Chemtech Full -25 and VOC-Chemtech Full -15. This data package contains results for VOC-Chemtech Full -15.

C. Analytical Techniques:

The analysis performed on instrument MSVOA_D were done using GC column RTX-VMS which is 20 meters, 0.18 mm id, 1.0 um df, Restek Cat. #49914. The Trap was supplied by SUPELCO, K (VOACARB 3000), TEKMAR LSC-2000 Concentrator. The analysis performed on instrument MSVOA_F were done using GC column RTX-VMS, which is 20 meters, 0.18 mm id, 1.0 um df, Restek Cat. #49914. The Trap was supplied by Supelco, VOCARB 3000, Tekmar 2000 Concentrator. The analysis of VOC-Chemtech Full -15 was based on method 8260C.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria except for SB-22(12-19)

[Dibromofluoromethane - 138%], SB-39(6-8) [1 and 2-Dichloroethane - d4 - 123%].

The Internal Standards Areas met the acceptable requirements except for SB-9(4-7), SB-11(12-16), SB-18(4-8), SB-21(16-19), SB-22(12-19), SB-37(8-10), SB-39(6-8), SB-41(8-11), SB-43(6-8), SB-43(10-12), SB-43(16-20) and SB-46(12-16).

The Retention Times were acceptable for all samples.

The MS {D3814-04MS} with File ID: VF034815.D recoveries met the requirements for all compounds except for Diethyl Ether[176%].

The MSD {D3814-04MSD} with File ID: VF034816.D recoveries met the acceptable requirements except for 1,1-Dichloroethane[128%], Chloroform[126%] and Diethyl Ether[176%].

The RPD for {D3814-04MSD} with File ID: VF034816.D recoveries met criteria except for Acrolein[46%].

The Blank Spike for {VD0815SBS01} with File ID: VD036739.D met requirements for all samples except for Acetone[150%], Methacrylonitrile[125%], Naphthalene[29%] and Vinyl Acetate[140%].

The Blank Spike for {VD0816SBS01} with File ID: VD036756.D met requirements for all samples except for 2-Butanone[140%], Carbon Tetrachloride[75%], Isopropylacetate[125%], Methacrylonitrile[130%], Naphthalene[28%] and Vinyl Acetate[150%].

The Blank analysis did not indicate the presence of lab contamination.

The Initial Calibration met the requirements.

The Continuous Calibration File ID VD036737.D met the requirements except for Naphthalene and Methyl Iodide but they were not detected in any sample .The Continuous Calibration File ID VD036754.D met the requirements except for 1,2,3-Trichlorobenzene,Naphthalene,Chloroethane and Vinyl Acetate but they were not detected in any sample.The Continuous Calibration File ID VF034766.D met the requirements except for Diethyl Ether,2-Butanone and Methacrylonitrile but they were not detected in any sample.The Continuous Calibration File ID VF034789.D met the requirements except for Diethyl Ether but it was not detected in any sample. The Tuning criteria met requirements.

E. Additional Comments:

F. Manual Integration Comments:

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature		
Manatura		
112114111111		

CASE NARRATIVE

MS Analytical

Project Name: 12MS104 Kensington Heights

Project # N/A

Chemtech Project # D3811

Test Name: SVOC-Chemtech Full -25

A. Number of Samples and Date of Receipt:

21 Solid samples were received on 08/15/2012.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Herbicide, Mercury, Metals ICP-TAL, METALS-TAL, PCB, Pesticide-TCL, SVOC-Chemtech Full -25 and VOC-Chemtech Full -15. This data package contains results for SVOC-Chemtech Full -25.

C. Analytical Techniques:

The samples were analyzed on instrument BNA_F using GC Column RTX-5 SILMS which is 20 meters, 0.18 mm ID, 0.36 um df, Catalog # 42704. The samples were analyzed on instrument BNA_G using GC Column RXI-5 SILMS which is 30 meters, 0.25 mm ID, 0.50 um df, Catalog # 13638-124. The analysis of SVOC-Chemtech Full -25 was based on method 8270D and extraction was done based on method 3541.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria.

The Internal Standards Areas met the acceptable requirements.

The Retention Times were acceptable for all samples.

The MS {D3813-01MSRX} with File ID: BF058476.D recoveries met the requirements for all compounds except for 2,3,4,6-Tetrachlorophenol[38%] and Benzoic acid[0%].

The MS {D3813-01MS} with File ID: BF058265.D recoveries met the requirements for all compounds except for 1,4-Dioxane[105%], 2,3,4,6-Tetrachlorophenol[33%],

Hexachlorocyclopentadiene[2%], Phenanthrene[143%] and Pyridine[100%].

The MSD {D3813-01MSD} with File ID: BF058266.D recoveries met the acceptable requirements except for 2,3,4,6-Tetrachlorophenol[44%],

Hexachlorocyclopentadiene[7%] and Pyridine[100%] .The MSD {D3813-01MSDRX} with File ID: BF058477.D recoveries met the acceptable requirements except for 2,3,4,6-Tetrachlorophenol[34%] and Benzoic acid[0%] .

The RPD for {D3813-01MSD} with File ID: BF058266.D recoveries met criteria except for 2,3,4,6-Tetrachlorophenol[29%], 2,4,5-Trichlorophenol[27%], 2,4,6-

Trichlorophenol[29%], 2,4-Dichlorophenol[33%], 2,4-Dinitrophenol[32%], 2-

Nitrophenol[24%], 4.6-Dinitro-2-methylphenol[26%], 4-Nitrophenol[32%],

Benzo(g,h,i)perylene[31%], Benzoic acid[24%], Hexachlorocyclopentadiene[111%], Pentachlorophenol[37%] and Phenanthrene[30%].

CHEMITECH

The RPD for {D3811-02MSD} with File ID: BF058275.D recoveries met criteria except for 1,2,4-Trichlorobenzene[29%], 2,3,4,6-Tetrachlorophenol[22%], 2,4,6-Trichlorophenol[22%], 2,4-Dinitrophenol[49%], 2-Methylnaphthalene[27%], 3,3-Dichlorobenzidine[35%], 4,6-Dinitro-2-methylphenol[39%], 4-Bromophenyl-phenylether[22%], 4-Chloro-3-methylphenol[22%], 4-Nitroaniline[22%], 4-Nitrophenol[22%], Aniline[21%], Anthracene[25%], Benzoidine[32%], Benzoidanthracene[25%], Benzoidb)fluoranthene[25%], Benzoid acid[41%], Butylbenzylphthalate[22%], Caprolactam[22%], Chrysene[27%], Dimethylphthalate[22%], Di-n-butylphthalate[22%], Hexachlorobenzene[22%], Hexachlorobutadiene[22%], Hexachlorocyclopentadiene[24%], Hexachloroethane[22%], Isophorone[25%], Nitrobenzene[25%], n-Nitrosodimethylamine[21%], Pentachlorophenol[24%], Phenanthrene[27%], Pyrene[27%] and Pyridine[24%]. The RPD for {D3813-01MSDRX} with File ID: BF058477.D recoveries met criteria except for 4-Chloroaniline[83%], Aniline[47%], Benzidine[27%] and Pentachlorophenol[27%].

The Blank Spike for {PB65121BS} with File ID: BF058256.D met requirements for all samples except for 1,1-Biphenyl[55%], 2,3,4,6-Tetrachlorophenol[44%], 2,4,5-Trichlorophenol[49%], 2,4,6-Trichlorophenol[48%], 2,4-Dichlorophenol[48%], 2,4-Dimethylphenol[51%], 2,4-Dinitrotoluene[51%], 2,6-Dinitrotoluene[52%], 2-Chloronaphthalene[53%], 2-Chlorophenol[49%], 2-Nitroaniline[49%], 2-Nitrophenol[49%], 4,6-Dinitro-2-methylphenol[43%], 4-Bromophenyl-phenylether[52%], 4-Chloro-3-methylphenol[47%], 4-Chlorophenyl-phenylether[51%], 4-Nitroaniline[46%], 4-Nitrophenol[45%], Acenaphthene[55%], Acenaphthylene[55%], Azobenzene[53%], Benzaldehyde[9%], Benzo(a)anthracene[55%], Benzo(a)pyrene[55%], Benzo(b)fluoranthene[52%], Benzo(k)fluoranthene[54%], bis(2-Ethylhexyl)phthalate[46%], Butylbenzylphthalate[47%], Carbazole[51%], Chrysene[52%], Dibenzofuran[50%], Diethylphthalate[44%], Dimethylphthalate[44%], Di-n-butylphthalate[47%], Di-n-octyl phthalate[49%], Fluoranthene[52%], Fluorene[54%], Hexachlorobenzene[50%], Hexachloroethane[51%], N-Nitrosodiphenylamine[55%], Pentachlorophenol[45%], Phenanthrene[55%],

Phenol[49%] and Pyrene[55%]. The Blank Spike Duplicate met requirements for all samples .The Blank Spike for {PB65125BS} with File ID: BG006797.D met requirements for all samples except for Benzaldehyde[8%].

The Blank analysis did not indicate the presence of lab contamination.

The Initial Calibration met the requirements.

The Continuous Calibration File ID BF058255.D met the requirements except for n-Nitrosodimethylamine, Pyridine and Acetophenone but they were not detected in any sample .The Continuous Calibration File ID BF058340.D met the requirements except for n-Nitrosodimethylamine, 2,2-oxybis(1-Chloropropane) and Acetophenone but they were not detected in any sample. The Continuous Calibration File ID BF058388.D met the requirements except for n-Nitrosodimethylamine, 2,2-oxybis(1-

Chloropropane), Acetophenone, 2-Nitroaniline, Benzaldehyde, Benzoic acid and 2,4-Dinitrophenol but they were not detected in any sample. The Continuous Calibration File ID BF058464.D met the requirements except for Acetophenone and Benzoic acid but they were not detected in any sample. The Continuous Calibration File ID BG006779.D & BG006796.D met the requirements except for Acetophenone it was not detected in any

sample. The Continuous Calibration File ID BG006813. D met the requirements except for Acetophenone and 2,4-Dinitrophenol but they were not detected in any sample .

The Tuning criteria met requirements.

Samples SB-15(12-16), SB-21(16-19), SB-37(8-10) and SB-15(12-16)DL were diluted due to bad matrices.

Samples SB-15(12-16), SB-15(12-16)DL, SB-21(16-19) and SB-37(8-10) were diluted due to high concentrations.

E. Additional Comments:

Many compounds fail in PB65121BS at lower side, whole prep batch will be re-extract.SB-46(12-16), D3813-01MSMSD will be re-extracted due to LCS failed report both run in hardcopy.

File ID BG006787.D having sample ID SB-41(8-11) has a time error, sample will be run again.

F. Manual Integration Comments:

I certify that the data package is in compliance with the terms and conditions of the
contract, both technically and for completeness, for other than the conditions detailed
above. The laboratory manager or his designee, as verified by the following signature has
authorized release of the data contained in this hard copy data package.

a• .		
Signature		
Jignature		

CASE NARRATIVE

MS Analytical

Project Name: 12MS104 Kensington Heights

Project # N/A

Chemtech Project # D3811 Test Name: Pesticide-TCL

A. Number of Samples and Date of Receipt:

21 Solid samples were received on 08/15/2012.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Herbicide, Mercury, Metals ICP-TAL, METALS-TAL, PCB, Pesticide-TCL, SVOC-Chemtech Full -25 and VOC-Chemtech Full -15. This data package contains results for Pesticide-TCL.

C. Analytical Techniques:

The analyses were performed on instrument GCECD_D. The front column is ZB-MR2 which is 30 meters, 0.32 mm ID, 0.25 um df, Catalog #: 7HM-G017-11 . The rear column is ZBMR1 which is 30 meters, 0.32 mm ID, 0.5 um df, Catalog # 7HM-G016-17. The analysis of Pesticide-TCLs was based on method 8081B and extraction was done based on method 3541.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria except for SB-2(4-8)

[Decachlorobiphenyl(1) - 202%], SB-15(12-16) [Tetrachloro-m-xylene(2) - 28%] and SB-21(16-19) [Tetrachloro-m-xylene(2) - 24%].

The Retention Times were acceptable for all samples.

The MS recoveries met the requirements for all compounds.

The MSD recoveries met the acceptable requirements.

The RPD for {D3811-06MSD} with File ID: PD012367.D recoveries met criteria except for Heptachlor epoxide[21%].

The Blank Spike met requirements for all samples.

The Blank analysis did not indicate the presence of lab contamination.

The Initial Calibration met the requirements.

The Continuous Calibration File ID PD012345.D met the requirements except for Methoxychlor is failing in 2nd column but passing in 1st column. The Continuous Calibration File ID PD012358.D met the requirements except for Endosulfan I,4,4-DDE, Endrin, Endosulfan II, Endosulfan Sulfate,4,4-DDT, Endrin ketone, Endrin aldehyde, alpha-Chlordane, gamma-Chlordane and Decachlorobiphenyl are failing in 2nd column but passing in 1st column. The Continuous Calibration File ID PD012369.D met the requirements except for Endosulfan I,4,4-DDE, Endrin, Endosulfan II, Endosulfan

Sulfate,4,4-DDT,Endrin ketone,Endrin aldehyde,alpha-Chlordane,gamma-Chlordane and Decachlorobiphenyl are failing in 2nd column but passing in 1st column.

E. Additional Comments:

F.	Manual	Integration	Comments:
----	--------	-------------	------------------

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Sig	nature					

CASE NARRATIVE

MS Analytical

Project Name: 12MS104 Kensington Heights

Project # N/A

Chemtech Project # D3811

Test Name: PCB

A. Number of Samples and Date of Receipt:

21 Solid samples were received on 08/15/2012.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Herbicide, Mercury, Metals ICP-TAL, METALS-TAL, PCB, Pesticide-TCL, SVOC-Chemtech Full -25 and VOC-Chemtech Full -15. This data package contains results for PCB.

C. Analytical Techniques:

The analyses were performed on instrument GCECD_C. The front column is RTX-CLPest which is 30 meters, 0.32 mm ID, 0.5 um df, Catalog # 11139. The rear column is RTX-CLPestII which is 30 meters, 0.32 mm ID, 0.25 um df, Catalog # 11324. The analysis of PCBs was based on method 8082A and extraction was done based on method 3541.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria except for SB-15(12-16)

[Decachlorobiphenyl(2) - 59%], SB-21(16-19) [Decachlorobiphenyl(1) - 292%,

Decachlorobiphenyl(2) - 55%], SB-21(16-19)RE [Decachlorobiphenyl(1) - 326%,

Decachlorobiphenyl(2) - 50%], SB-22(12-19) [Decachlorobiphenyl(2) - 57%], SB-37(8-

 $10) \ [Decachlorobiphenyl(1) - 412\%], \ SB-41(8-11) \ [Decachlorobiphenyl(2) - 42\%], \ SB-41(8-11) \ [Decachlorobiphe$

43(10-12) [Decachlorobiphenyl(1) - 50%, Decachlorobiphenyl(2) - 33%], SB-43(10-

12)RE [Decachlorobiphenyl(1) - 50%, Decachlorobiphenyl(2) - 31%], SB-43(16-20)

[Decachlorobiphenyl(2) - 53%] and SB-46(12-16) [Decachlorobiphenyl(2) - 43%].

The Retention Times were acceptable for all samples.

The MS {D3811-01MS} with File ID: PC009906.D recoveries met the requirements for all compounds except for AR1260[131%].

The MSD recoveries met the acceptable requirements.

The RPD recoveries met criteria.

The Blank Spike met requirements for all samples.

The Blank analysis did not indicate the presence of lab contamination.

The Initial Calibration met the requirements.

The Continuous Calibration File ID PC009903.D met the requirements except for

Decachlorobiphenyl is failing in 2nd column but passing in 1st column.

F. Manual Integration Comments:

I certify that the data package is in compliance with the terms and conditions of the
contract, both technically and for completeness, for other than the conditions detailed
above. The laboratory manager or his designee, as verified by the following signature has
authorized release of the data contained in this hard copy data package.

Signature	
51g11ata1e	

CASE NARRATIVE

MS Analytical

Project Name: 12MS104 Kensington Heights

Project # N/A

Chemtech Project # D3811 Test Name: Herbicide

A. Number of Samples and Date of Receipt:

21 Solid samples were received on 08/15/2012.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Herbicide, Mercury, Metals ICP-TAL, METALS-TAL, PCB, Pesticide-TCL, SVOC-Chemtech Full -25 and VOC-Chemtech Full -15. This data package contains results for Herbicide.

C. Analytical Techniques:

The analyses were performed on instrument GCECD_E. The front column is ZB-35-HT Inferno which is 30 meters, 0.25 mm ID, 0.25 um df, Catalog # 7HG-G025-11. The rear column is ZB-XLB-HT Inferno which is 30 meters, 0.25 mm ID, 0.25 um df, Catalog # 7HG-G024-11. The analysis of Herbicides was based on method 8151A and extraction was done based on method 3541.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria.

The Retention Times were acceptable for all samples.

The MS recoveries met the requirements for all compounds.

The MSD recoveries met the acceptable requirements.

The RPD recoveries met criteria.

The Blank Spike met requirements for all samples.

The Blank analysis did not indicate the presence of lab contamination.

The Initial Calibration met the requirements.

The Continuous Calibration met the requirements .

E. Additional Comments:

F. Manual Integration Comments:

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

\sim	• .			
€.	ignature			
•	IVHAIHE			

CASE NARRATIVE

MS Analytical

Project Name: 12MS104 Kensington Heights

Project # N/A

Chemtech Project # D3811

Test Name: Mercury, Metals ICP-TAL

A. Number of Samples and Date of Receipt:

21 Solid samples were received on 08/15/2012.

B. Parameters:

According to the Chain of Custody document, the following analyses were requested: Herbicide, Mercury, Metals ICP-TAL, METALS-TAL, PCB, Pesticide-TCL, SVOC-Chemtech Full -25 and VOC-Chemtech Full -15. This data package contains results for Mercury, Metals ICP-TAL.

C. Analytical Techniques:

The analysis of Metals ICP-TAL was based on method 6010B, digestion based on method 3050 (soils). The analysis of Mercury was based on method 7471A and digestion was based on method 7471B (soils).

D. QA/ QC Samples:

The Holding Times were met for all analysis.

Samples SB-2(4-8) was diluted due to high concentrations for Mercury. Sample SB-21(12-16) was diluted due to high concentrations for Lead.

The Blank Spike met requirements for all samples.

The Duplicate analysis met criteria for all samples.

The Matrix Spike analysis met criteria for all samples except for Chromium, Copper, Potassium, Sodium and Zinc.

The Matrix Spike Duplicate analysis met criteria for all samples except for Chromium, Copper, Potassium, Sodium and Zinc.

The Blank analysis did not indicate the presence of lab contamination.

The Calibration met the requirements.

The Serial Dilution met criteria for all samples except for Aluminum, Arsenic, Barium, Calcium, Chromium, Copper, Iron, Magnesium, Manganese, Potassium, Vanadium and Zinc.

E. Additional Comments:

ICV01 is failing for Aluminum in LB62171. CRI01 is failing for Aluminum in LB62171. CRI01 is failing for Aluminum in LB62172.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature	

284 Sheffield Street Mountainside NJ 07092 Tel. 908-789-8900 Fax: 908-789-8922

DATA REPORTING QUALIFIERS- INORGANIC

For reporting results, the following "Results Qualifiers" are used:

Indicates the reported value was obtained from a reading that was less J than the Contract Required Detection Limit (CRDL), but greater than or equal to the Instrument Detection Limit (IDL). U Indicates the analyte was analyzed for, but not detected. ND Indicates the analyte was analyzed for, but not detected Ε Indicates the reported value is estimated because of the presence of interference M Indicates Duplicate injection precision not met. N Indicates the spiked sample recovery is not within control limits. S Indicates the reported value was determined by the Method of Standard Addition (MSA). Indicates that the duplicate analysis is not within control limits. + Indicates the correlation coefficient for the MSA is less than 0.995. D Indicates the reported value is from a secondary analysis with a dilution factor. The original analysis exceeded the calibration range. M Method qualifiers "P" for ICP instrument "PM" for ICP when Microwave Digestion is used "CV" for Manual Cold Vapor AA "AV" for automated Cold Vapor AA "CA" for MIDI-Distillation Spectrophotometric "AS" for Semi -Automated Spectrophotometric "C" for Manual Spectrophotometric "T" for Titrimetric "NR" for analyte not required to be analyzed OR Indicates the analyte's concentration exceeds the calibrated range of the instrument for that specific analysis.

Q

Indicates the LCS did not meet the control limits requirements

Value

DATA REPORTING QUALIFIERS- ORGANIC

If the result is a value greater than or equal to the detection limit, report the value

For reporting results, the following "Results Qualifiers" are used:

varuc	if the result is a value greater than or equal to the detection limit, report the value
U	Indicates the compound was analyzed for but was not detected. Report the minimum detection limit for the sample with the U, i.e. "10 U". This is not necessarily the instrument detection limit attainable for this particular sample based on any concentration or dilution that may have been required.
ND	Indicates the analyte was analyzed for, but not detected
J	 Indicates an estimated value. This flag is used: (1) When estimating a concentration for a tentatively identified compound (library search hits, where a 1:1 response is assumed.) (2) When the mass spectral data indicated the identification, however the result was less than the specified detection limit greater than zero. If the detection limit was 10ug/L and a concentration of 3 ug/L was calculated report as 3 J. This is flag is used when similar situation arise on any organic parameter i.e. Pest, PCB and others.
В	Indicates the analyte was found in the blank as well as the sample report as " $12\ B$ ".
E	Indicates the analyte 's concentration exceeds the calibrated range of the instrument for that specific analysis.
D	This flag identifies all compounds identified in an analysis at a secondary dilution factor.
P	This flag is used for Pesticide/PCB target analyte when there is >25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on Form 1 and flagged with a "P".
N	This flag indicates presumptive evidence of a compound. This is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It applies to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the flag is not used.
A	This flag indicates that a Tentatively Identified Compound is a suspected aldol-condensation product.
Q	Indicates the LCS did not meet the control limits requirements

APPENDIX A

QA REVIEW GENERAL DOCUMENTATION

Project #: D3	811
---------------	-----

	•	Completed
For thorough review, the report must have the following:		
GENERAL:		
Are all original paperwork present (chain of custody, record of communication, airbill, sample management lab chronicle, login page)		<u> </u>
Check chain-of-custody for proper relinquish/return of samples		<u> </u>
Is the chain of custody signed and complete		<u>'</u> <u>'</u> <u>'</u> <u>'</u> <u>'</u> <u>'</u>
Check internal chain-of-custody for proper relinquish/return of samples /sample extracts		<u> </u>
Collect information for each project id from server. Were all requirements followed		<u> </u>
COVER PAGE:		
Do numbers of samples correspond to the number of samples in the Chain of Custody on login page		<u> </u>
Do lab numbers and client Ids on cover page agree with the Chain of Custody		<u> </u>
CHAIN OF CUSTODY:		
Do requested analyses on Chain of Custody agree with form I results		<u> </u>
Do requested analyses on Chain of Custody agree with the log-in page		<u>'</u> <u>'</u> <u>'</u> <u>'</u>
Were the correct method log-in for analysis according to the Analytical Request and Chain of Castody		<u> </u>
Were the samples received within hold time		<u> </u>
Were any problems found with the samples at arrival recorded in the Sample Management Laboratory Chronicle		<u> </u>
ANALYTICAL:		
Was method requirement followed?		<u> </u>
Was client requirement followed?		<u>'</u> <u>'</u> <u>'</u> <u>'</u>
Does the case narrative summarize all QC failure?		<u> </u>
All runlogs and manual integration are reviewed for requirements		<u> </u>
All manual calculations and /or hand notations verified		<u>✓</u>
1st Level QA Review Signature: HIRAL PATEL	Date: 08/30/2012	
2nd Level QA Review Signature:	Date:	

LAB CHRONICLE

D3811 OrderID: MS Analytical Client:

Contact:

Bryan Mayback

8/15/2012 11:38:54 AM OrderDate:

12MS104 Kensington Heights Project:

Location:

LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
D3811-01	SB-2(4-8)	SOIL			08/07/12			08/15/12
			VOC-Chemtech Full -15	8260C			08/15/12	
D3811-01RE	SB-2(4-8)RE	SOIL			08/07/12			08/15/12
			VOC-Chemtech Full -15	8260C			08/15/12	
D3811-02	SB-5(8-12)	SOIL	VOC-Chemtech Full -15	8260C	08/07/12		08/15/12	08/15/12
D3811-02RE	SB-5(8-12)RE	SOIL	VOC CHEMICCH Tull 13	02000	08/07/12		00/15/12	08/15/12
D3011-02KL	3D-3(0-12)KL	3011	VOC-Chemtech Full -15	8260C	08/07/12		08/15/12	00/13/12
D3811-03	SB-9(4-7)	SOIL			08/07/12			08/15/12
			VOC-Chemtech Full -15	8260C			08/15/12	
D3811-03RE	SB-9(4-7)RE	SOIL			08/07/12			08/15/12
			VOC-Chemtech Full -15	8260C			08/15/12	
D3811-05	SB-11(12-16)	SOIL	VOC-Chemtech Full -15	8260C	08/07/12		00/15/13	08/15/12
D3811-05RE	CD 44/42 46\DE	SOIL	VOC-Chemitech Full -15	8260C	00/07/12		08/15/12	00/15/12
D3811-U5KE	SB-11(12-16)RE	SOIL	VOC-Chemtech Full -15	8260C	08/07/12		08/15/12	08/15/12
D3811-06	SB-15(12-16)	SOIL			08/08/12			08/15/12
	, ,		VOC-Chemtech Full -15	8260C			08/15/12	
D3811-06RE	SB-15(12-16)RE	SOIL			08/08/12			08/15/12
			VOC-Chemtech Full -15	8260C			08/15/12	
D3811-07	SB-18(4-8)	SOIL	V00 01	00505	08/08/12		00/45/45	08/15/12
			VOC-Chemtech Full -15	8260C			08/15/12	,
D3811-07RE	SB-18(4-8)RE	SOIL	VOC-Chemtech Full -15	8260C	08/08/12		08/15/12	08/15/12
			voo chemicon run 15	02000			50/15/12	

		NIC	
ΙДК	 R()		

D3811-10	SB-21(16-19)	SOIL			08/09/12		08/15/12
			VOC-Chemtech Full -15	8260C		08/15/12	
D3811-10RE	SB-21(16-19)RE	SOIL	VOC-Chemtech Full -15	8260C	08/09/12	08/15/12	08/15/12
D3811-11	SB-22(12-19)	SOIL	100 0.10.11100.11101	02000	08/09/12	33/ 23/ 22	08/15/12
			VOC-Chemtech Full -15	8260C		08/15/12	
D3811-11RE	SB-22(12-19)RE	SOIL			08/09/12		08/15/12
			VOC-Chemtech Full -15	8260C		08/15/12	
D3811-13	SB-37(8-10)	SOIL	VOC-Chemtech Full -15	8260C	08/10/12	08/15/12	08/15/12
D3811-13RE	SB-37(8-10)RE	SOIL	voc chemican run 13	02000	08/10/12	00, 13, 12	08/15/12
55011 15 KE	55 57 (5 10)NE	3011	VOC-Chemtech Full -15	8260C	00, 10, 12	08/15/12	00, 10, 12
D3811-14	SB-39(6-8)	SOIL			08/10/12		08/15/12
			VOC-Chemtech Full -15	8260C		08/15/12	
D3811-14RE	SB-39(6-8)RE	SOIL	VOC-Chemtech Full -15	8260C	08/10/12	00/15/13	08/15/12
D3811-15	SB-41(8-11)	SOIL	VOC-CHEIIRECH Full -13	8200C	08/10/12	08/15/12	08/15/12
D3611-13	36-41(6-11)	3011	VOC-Chemtech Full -15	8260C	08/10/12	08/16/12	08/15/12
D3811-15RE	SB-41(8-11)RE	SOIL			08/10/12		08/15/12
			VOC-Chemtech Full -15	8260C		08/16/12	
D3811-17	SB-43(6-8)	SOIL	V00 01	22525	08/13/12	00/45/40	08/15/12
D2011 17DF	CD 42/C 0\DE	COTI	VOC-Chemtech Full -15	8260C	00/12/12	08/16/12	00/15/13
D3811-17RE	SB-43(6-8)RE	SOIL	VOC-Chemtech Full -15	8260C	08/13/12	08/16/12	08/15/12
D3811-18	SB-43(10-12)	SOIL			08/13/12		08/15/12
			VOC-Chemtech Full -15	8260C		08/16/12	
D3811-18RE	SB-43(10-12)RE	SOIL			08/13/12		08/15/12
			VOC-Chemtech Full -15	8260C		08/16/12	
D3811-19	SB-43(16-20)	SOIL	VOC-Chemtech Full -15	8260C	08/13/12	08/16/12	08/15/12
			voc chemicen i un 15	02000		00/10/12	

LAB CHRONICLE

D3811-19RE	SB-43(16-20)RE	SOIL	VOC-Chemtech Full -15	08/1 : 8260C	3/12 08/16/12	08/15/12
D3811-21	SB-46(12-16)	SOIL	VOC-Chemtech Full -15	08/1 : 8260C	3/12 08/16/12	08/15/12
D3811-21RE	SB-46(12-16)RE	SOIL	VOC-Chemtech Full -15	08/1 :8260C	3/12 08/16/12	08/15/12

SDG No.:

D3811

Client:

MS Analytical

Sample ID	Client ID	Matrix	Parameter	Concent	ration	C	MDL	LOD	RDL	Units
Client ID: D3811-05	SB-11(12-16)	SOIL	Agatana		41.00		4.1	17	34	110°/V =
ט-11100	SB-11(12-16)	SOIL	Acetone Total	Voo	41.00	11	.00	1 /	34	ug/Kg
				v oc : centration:		41.				
Client ID:	SB-11(12-16)RE		1 Otal Con	เลเน สม เ ปก;		41.	.00			
D3811-05RE	SB-11(12-16)RE	SOIL	Acetone		49.00	Q	4.1	17	34	ug/Kg
			Total	Voc:		49	.00			
			Total Con	centration:		49.	.00			
Client ID: D3811-06	SB-15(12-16) SB-15(12-16)	SOIL	Acetone		20.00	J	4.1	17	34	ug/Kg
D3811-06		SOIL				J				
/3011-00	SB-15(12-16)	SOIL	Naphthalene	Vaa	44.00	<i>(</i> 4	0.62	3.45	6.9	ug/Kg
			Total Con	Voc : centration:		64.	.00			
Client ID:	SB-15(12-16)RE		10tai Con	contration;		04.	.00			
D3811-06RE	SB-15(12-16)RE	SOIL	Acetone		53.00	Q	4.2	17.5	35	ug/Kg
D3811-06RE	SB-15(12-16)RE	SOIL	Naphthalene		3.90	JQ	0.63	3.5	7.0	ug/Kg
			Total	Voc:		56	.90			
			Total Con	centration:		56.	.90			
Client ID:	SB-18(4-8)	COII	unknown2 26	*	6.10	ī	0		0	uc/V -
D3811-07	SB-18(4-8)	SOIL	unknown2.26	*	6.10	J	0		0	ug/Kg
D3811-07	SB-18(4-8)	SOIL	Pentane	*	9.70	J	0		0	ug/Kg
03811-07	SB-18(4-8)	SOIL	Hexane		15.00	J 20	0		0	ug/Kg
			Total Con				.80			
Client ID:	SB-18(4-8)RE		Total Con	centration:		30.	.80			
03811-07RE	SB-18(4-8)RE	SOIL	Acetone		45.00	Q	3.6	15	30	ug/Kg
3811-07RE	SB-18(4-8)RE	SOIL	Naphthalene		3.00	JQ	0.54	3	6.0	ug/Kg
			Total	Voc:		48	3.00			
			Total Con	centration:		48.	.00			
Client ID:	SB-2(4-8)	9011	•		12.00	-	2.5	14.5	•	
D3811-01	SB-2(4-8)	SOIL	Acetone	.,	13.00		3.5	14.5	29	ug/Kg
			Total				.00			
Client ID:	SB-2(4-8)RE		Total Con	centration:		13.	.00			
D3811-01RE	SB-2(4-8)RE	SOIL	Acetone		45.00	Q	3.5	14.5	29	ug/Kg
	. ,		Total	Voc:			5.00			5 0
				centration:			.00			
Client ID:	SB-21(16-19)	_								
3811-10	SB-21(16-19)	SOIL	Acetone		150.00		4.4	18.5	37	ug/Kg
03811-10	SB-21(16-19)	SOIL	Carbon Disulfide		10.00		1.5	3.65	7.3	ug/Kg
03811-10	SB-21(16-19)	SOIL	2-Butanone		70.00		4.5	18.5	37	ug/Kg
03811-10	SB-21(16-19)	SOIL	Methylcyclohexane		2.50	J	1.5	3.65	7.3	ug/Kg

SDG No.:

D3811

Client:

MS Analytical

Sample ID	Client ID	Matrix	Parameter Con	cent	ration	C	MDL	LOD	RDL	Units
D3811-10	SB-21(16-19)	SOIL	1,2,4-Trimethylbenzene		3.00	J	0.73	3.65	7.3	ug/Kg
3811-10	SB-21(16-19)	SOIL	p-Isopropyltoluene		3.20	J	0.42	3.65	7.3	ug/Kg
3811-10	SB-21(16-19)	SOIL	Naphthalene		19.00		0.66	3.65	7.3	ug/Kg
			Total Voc:			257	7.70			
3811-10	SB-21(16-19)	SOIL	unknown10.29	*	39.00	J	0		0	ug/Kg
3811-10	SB-21(16-19)	SOIL	unknown12.55	*	33.00	J	0		0	ug/Kg
3811-10	SB-21(16-19)	SOIL	unknown13.57	*	53.00	J	0		0	ug/Kg
3811-10	SB-21(16-19)	SOIL	Octane	*	45.00	J	0		0	ug/Kg
3811-10	SB-21(16-19)	SOIL	Benzene, 1-methyl-3-(1-methyle	*	26.00	J	0		0	ug/Kg
3811-10	SB-21(16-19)	SOIL	Cyclohexane, 1,3-dimethyl-, trar	*	24.00	J	0		0	ug/Kg
3811-10	SB-21(16-19)	SOIL	Decane, 4-methyl-	*	38.00	J	0		0	ug/Kg
3811-10	SB-21(16-19)	SOIL	Cyclohexane, 1,1,2,3-tetramethy	*	36.00	J	0		0	ug/Kg
3811-10	SB-21(16-19)	SOIL	Bicyclo[2.2.1]heptane, 2,2,3-trin	*	63.00	J	0		0	ug/Kg
			Total Tics:			357	7.00			
			Total Concentration:			614	.70			
lient ID: 3811-10RE	SB-21(16-19)RE SB-21(16-19)RE	SOIL	Acetone		150.00	Q	4.5	18.5	37	ug/Kg
8811-10RE	SB-21(16-19)RE	SOIL	Carbon Disulfide		4.60	J	1.6	3.7	7.4	ug/Kg
3811-10RE	SB-21(16-19)RE	SOIL	2-Butanone		63.00		4.6	18.5	37	ug/Kg
3811-10RE	SB-21(16-19)RE	SOIL	Naphthalene		3.90	JQ	0.67	3.7	7.4	ug/Kg
			Total Voc:			221	.50			
			Total Concentration:			221	.50			
ient ID:	SB-22(12-19)	2011					2.4		•	
811-11	SB-22(12-19)	SOIL	Acetone		74.00	_	3.4	14	28	ug/Kg
			Total Voc:				1.00			
ient ID:	SB-22(12-19)RE		Total Concentration:			74	.00			
3811-11RE	SB-22(12-19)RE	SOIL	Acetone		45.00	Q	3.4	14	28	ug/Kg
			Total Voc:			45	5.00			
			Total Concentration:			45	.00			
ient ID:	SB-37(8-10)	00**			25.00	_	4.0	1.0		.
3811-13	SB-37(8-10)	SOIL	Acetone		25.00		4.3	18	36	ug/Kg
			Total Voc:				5.00			
ient ID:	SB-37(8-10)RE		Total Concentration:			25	.00			
811-13RE	SB-37(8-10)RE SB-37(8-10)RE	SOIL	Acetone		44.00	Q	4.3	18	36	ug/Kg
	•		Total Voc:				1.00			
			Total Concentration:				.00			
ient ID:	SB-39(6-8)									
8811-14	SB-39(6-8)	SOIL	Acetone		66.00		3.2	13.5	27	ug/Kg
3811-14	SB-39(6-8)	SOIL	Toluene		2.60	J	0.69	2.7	5.4	ug/Kg

SDG No.:

D3811

Client:	MS Analytical								
Sample ID	Client ID	Matrix	Parameter	Concentr	ation	C MD	L LOD	RDL	Units
			Total Vo	oc:		68.60			
D3811-14	SB-39(6-8)	SOIL	unknown3.12	*	5.50	J 0		0	ug/Kg
D3811-14	SB-39(6-8)	SOIL	Hexane	*	11.00	J 0		0	ug/Kg
D3811-14	SB-39(6-8)	SOIL	Hexane, 2,4-dimethyl-	*	6.40	J 0		0	ug/Kg
D3811-14	SB-39(6-8)	SOIL	Furan, 2,5-dihydro-	*	7.30	J 0		0	ug/Kg
			Total Tie	cs:		30.20			
			Total Concer	ntration:		98.80			
Client ID:	SB-39(6-8)RE	COII	A		25.00	0 11	12.5	27	. /17
D3811-14RE	SB-39(6-8)RE	SOIL	Acetone		35.00	Q 3.2	13.5	27	ug/Kg
			Total Vo			35.00			
Client ID:	SB-41(8-11)		Total Concer	ntration:		35.00			
D3811-15	SB-41(8-11)	SOIL	Acetone		30.00	J 3.7	15.5	31	ug/Kg
			Total Vo	oc:		30.00			
			Total Concer	ntration:		30.00			
Client ID:	SB-41(8-11)RE	COIL	Anatons		74.00	0.37	15.5	21	/177
D3811-15RE	SB-41(8-11)RE	SOIL	Acetone		74.00	Q 3.7	15.5	31	ug/Kg
			Total Company			74.00			
Client ID:	SB-43(10-12)		Total Conce	แเรลเเอท:		74.00			
03811-18	SB-43(10-12)	SOIL	Acetone		75.00	3.7	15	30	ug/Kg
			Total Vo	oc:		75.00			
			Total Concer	ntration:		75.00			
Client ID:	SB-43(10-12)RE	COII	Acatana		60.00	0.27	15	20	115 /IZ -
D3811-18RE	SB-43(10-12)RE	SOIL	Acetone		69.00	Q 3.7	15	30	ug/Kg
			Total Consor			69.00			
Client ID:	SB-43(16-20)		Total Concer	แนวชนเปท:		69.00			
D3811-19	SB-43(16-20)	SOIL	Acetone		97.00	4.2	17.5	35	ug/Kg
D3811-19	SB-43(16-20)	SOIL	Carbon Disulfide		5.00	J 1.5	3.5	7.0	ug/Kg
			Total Vo	oc:		102.00			
			Total Concer	ntration:		102.00			
Client ID:	SB-43(16-20)RE	COII	Acatons		56.00	0.42	17 6	25	, _ /T/
D3811-19RE	SB-43(16-20)RE	SOIL	Acetone		56.00	Q 4.3	17.5	35	ug/Kg
			Total Vo			56.00			
Client ID:	SB-43(6-8)		Total Concer	ntration:		56.00			
D3811-17	SB-43(6-8)	SOIL	Acetone		37.00	3.3	13.5	27	ug/Kg
D3811-17	SB-43(6-8)	SOIL	Toluene		1.90	J 0.69	2.7	5.4	ug/Kg
			Total Vo	oc:		38.90			
			Total Concer	ntration:		38.90			
Client ID:	SB-43(6-8)RE	COII	Acatana		45.00	0 22	12.5	27	ne/II -
D3811-17RE	SB-43(6-8)RE	SOIL	Acetone		45.00	Q 3.3	13.5	27	ug/Kg

SDG No.:

D3811

			Total Voc:			45	5.00			
			Total Concentration:			45	5.00			
Client ID:	SB-46(12-16)	COIL	A		120.00		4.2	17.5	25	. /17 .
D3811-21	SB-46(12-16)	SOIL	Acetone		130.00		4.2	17.5	35	ug/Kg
D3811-21	SB-46(12-16)	SOIL	Carbon Disulfide		1.90	J	1.5	3.45	6.9	ug/Kg
			Total Voc:				1.90			
Client ID:	SB-46(12-16)RE		Total Concentration:			131	.90			
D3811-21RE	SB-46(12-16)RE	SOIL	Acetone		85.00	Q	4.2	17.5	35	ug/Kg
			Total Voc:				5.00			
			Total Concentration:			85	5.00			
Client ID:	SB-5(8-12)									
D3811-02	SB-5(8-12)	SOIL	Acetone		35.00		3.7	15.5	31	ug/Kg
D3811-02	SB-5(8-12)	SOIL	p-Isopropyltoluene		1.30	J	0.36	3.05	6.1	ug/Kg
			Total Voc:				6.30			
Client ID:	SB-5(8-12)RE		Total Concentration:			36	5.30			
D3811-02RE	SB-5(8-12)RE SB-5(8-12)RE	SOIL	Acetone		45.00	O	3.7	15.5	31	ug/Kg
			Total Voc:				5.00			
			Total Concentration:				5.00			
Client ID:	SB-9(4-7)									
D3811-03	SB-9(4-7)	SOIL	unknown1.39	*	8.10	J	0		0	ug/Kg
D3811-03	SB-9(4-7)	SOIL	Pentane, 3-methyl-	*	14.00	J	0		0	ug/Kg
D3811-03	SB-9(4-7)	SOIL	Pentane, 2-methyl-	*	9.40	J	0		0	ug/Kg
D3811-03	SB-9(4-7)	SOIL	Pentane	*	21.00	J	0		0	ug/Kg
D3811-03	SB-9(4-7)	SOIL	2-Pentene, (E)-	*	14.00	J	0		0	ug/Kg
D3811-03	SB-9(4-7)	SOIL	1-Pentene, 2-methyl-	*	9.20	J	0		0	ug/Kg
D3811-03	SB-9(4-7)	SOIL	Cyclopropane, 1,1-dimethyl-	*	14.00	J	0		0	ug/Kg
D3811-03	SB-9(4-7)	SOIL	2-[2-Hydroxyethyl]-9-[.betad-ri	*	18.00	J	0		0	ug/Kg
			Total Tics:			10′	7.70			
			Total Concentration:			107	.70			
Client ID:	SB-9(4-7)RE	COII	A 4		40.00	0	2.6	145	20	/IV
D3811-03RE	SB-9(4-7)RE	SOIL	Acetone		49.00	Q		14.5	29	ug/Kg
			Total Voc:			49	9.00			

Total Voc: 49.00
Total Concentration: 49.00

SAMPLE DATA

uL

Report of Analysis

Client: MS Analytical Date Collected: 08/07/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SDG No.: D3811 SB-2(4-8) Lab Sample ID: D3811-01 Matrix: SOIL Analytical Method: SW8260C % Moisture: 13 Sample Wt/Vol: 5 Units: g Final Vol: 5000

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034776.D 1 08/15/12 VF081512

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	2.85	U	0.75	2.85	5.7	ug/Kg
74-87-3	Chloromethane	2.85	U	0.99	2.85	5.7	ug/Kg
75-01-4	Vinyl Chloride	2.85	U	1.4	2.85	5.7	ug/Kg
141-78-6	Ethyl Acetate	2.85	U	1	2.85	5.7	ug/Kg
108-21-4	Isopropyl Acetate	2.85	U	1.4	2.85	5.7	ug/Kg
628-63-7	N-amyl acetate	2.85	U	1.1	2.85	5.7	ug/Kg
74-83-9	Bromomethane	2.85	U	2.8	2.85	5.7	ug/Kg
75-00-3	Chloroethane	2.85	U	1.6	2.85	5.7	ug/Kg
75-69-4	Trichlorofluoromethane	2.85	U	1.5	2.85	5.7	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	2.85	U	1.5	2.85	5.7	ug/Kg
75-65-0	Tert butyl alcohol	14.5	U	8.5	14.5	29	ug/Kg
60-29-7	Diethyl Ether	2.85	U	2.2	2.85	5.7	ug/Kg
75-35-4	1,1-Dichloroethene	2.85	U	1.7	2.85	5.7	ug/Kg
107-02-8	Acrolein	14.5	U	4.6	14.5	29	ug/Kg
107-13-1	Acrylonitrile	14.5	U	5.6	14.5	29	ug/Kg
67-64-1	Acetone	13	J	3.5	14.5	29	ug/Kg
75-15-0	Carbon Disulfide	2.85	U	1.2	2.85	5.7	ug/Kg
1634-04-4	Methyl tert-butyl Ether	2.85	U	1.1	2.85	5.7	ug/Kg
79-20-9	Methyl Acetate	2.85	U	1.7	2.85	5.7	ug/Kg
75-09-2	Methylene Chloride	2.85	U	1.6	2.85	5.7	ug/Kg
156-60-5	trans-1,2-Dichloroethene	2.85	U	0.79	2.85	5.7	ug/Kg
108-05-4	Vinyl Acetate	14.5	U	4	14.5	29	ug/Kg
75-34-3	1,1-Dichloroethane	2.85	U	1.1	2.85	5.7	ug/Kg
110-82-7	Cyclohexane	2.85	U	1.2	2.85	5.7	ug/Kg
78-93-3	2-Butanone	14.5	U	3.6	14.5	29	ug/Kg
56-23-5	Carbon Tetrachloride	2.85	U	1.1	2.85	5.7	ug/Kg
594-20-7	2,2-Dichloropropane	2.85	U	1.2	2.85	5.7	ug/Kg
156-59-2	cis-1,2-Dichloroethene	2.85	U	1	2.85	5.7	ug/Kg
74-97-5	Bromochloromethane	2.85	U	0.91	2.85	5.7	ug/Kg
67-66-3	Chloroform	2.85	U	0.85	2.85	5.7	ug/Kg
71-55-6	1,1,1-Trichloroethane	2.85	U	1	2.85	5.7	ug/Kg

Sample Wt/Vol:

5

Units:

Report of Analysis

Client: MS Analytical Date Collected: 08/07/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SDG No.: SB-2(4-8) D3811 Lab Sample ID: D3811-01 Matrix: SOIL Analytical Method: SW8260C % Moisture: 13

g Soil Aliquot Vol: иL Test: VOC-Chemtech Full -15

Final Vol:

5000

uL

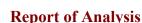
ID: 0.18 Level: GC Column: RTX-VMS LOW

File ID/Qc Batch: Dilution: Prep Batch ID Prep Date Date Analyzed VF034776.D 08/15/12 VF081512

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
108-87-2	Methylcyclohexane	2.85	U	1.2	2.85	5.7	ug/Kg
563-58-6	1,1-Dichloropropene	2.85	U	0.53	2.85	5.7	ug/Kg
71-43-2	Benzene	2.85	U	0.44	2.85	5.7	ug/Kg
107-06-2	1,2-Dichloroethane	2.85	U	0.74	2.85	5.7	ug/Kg
79-01-6	Trichloroethene	2.85	U	0.99	2.85	5.7	ug/Kg
78-87-5	1,2-Dichloropropane	2.85	U	0.3	2.85	5.7	ug/Kg
74-95-3	Dibromomethane	2.85	U	0.9	2.85	5.7	ug/Kg
75-27-4	Bromodichloromethane	2.85	U	0.71	2.85	5.7	ug/Kg
108-10-1	4-Methyl-2-Pentanone	14.5	U	3.4	14.5	29	ug/Kg
108-88-3	Toluene	2.85	U	0.74	2.85	5.7	ug/Kg
10061-02-6	t-1,3-Dichloropropene	2.85	U	0.91	2.85	5.7	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	2.85	U	0.83	2.85	5.7	ug/Kg
79-00-5	1,1,2-Trichloroethane	2.85	U	1	2.85	5.7	ug/Kg
142-28-9	1,3-Dichloropropane	2.85	U	0.85	2.85	5.7	ug/Kg
110-75-8	2-Chloroethyl Vinyl ether	14.5	U	13	14.5	29	ug/Kg
591-78-6	2-Hexanone	14.5	U	4.5	14.5	29	ug/Kg
124-48-1	Dibromochloromethane	2.85	U	0.62	2.85	5.7	ug/Kg
106-93-4	1,2-Dibromoethane	2.85	U	0.74	2.85	5.7	ug/Kg
127-18-4	Tetrachloroethene	2.85	U	1.2	2.85	5.7	ug/Kg
108-90-7	Chlorobenzene	2.85	U	0.57	2.85	5.7	ug/Kg
630-20-6	1,1,1,2-Tetrachloroethane	2.85	U	0.49	2.85	5.7	ug/Kg
67-72-1	Hexachloroethane	2.85	U	0.87	2.85	5.7	ug/Kg
100-41-4	Ethyl Benzene	2.85	U	0.71	2.85	5.7	ug/Kg
179601-23-1	m/p-Xylenes	5.5	U	0.83	5.5	11	ug/Kg
95-47-6	o-Xylene	2.85	U	0.78	2.85	5.7	ug/Kg
100-42-5	Styrene	2.85	U	0.52	2.85	5.7	ug/Kg
75-25-2	Bromoform	2.85	U	0.85	2.85	5.7	ug/Kg
98-82-8	Isopropylbenzene	2.85	U	0.55	2.85	5.7	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	2.85	U	0.53	2.85	5.7	ug/Kg
96-18-4	1,2,3-Trichloropropane	2.85	U	0.56	2.85	5.7	ug/Kg
108-86-1	Bromobenzene	2.85	U	0.6	2.85	5.7	ug/Kg
103-65-1	n-propylbenzene	2.85	U	0.41	2.85	5.7	ug/Kg

Date Collected:

Date Received:


08/07/12

08/15/12

D

uL

MS Analytical Project: 12MS104 Kensington Heights

CHEMIECH

Client:

SDG No.: Client Sample ID: D3811 SB-2(4-8) SOIL Lab Sample ID: D3811-01 Matrix: Analytical Method: SW8260C % Moisture: 13

Sample Wt/Vol: 5 Units: Final Vol: 5000 g

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Prep Batch ID Dilution: Prep Date Date Analyzed 1 VF034776.D 08/15/12 VF081512

CAS Number Parameter Conc. **Qualifier MDL** LOD LOQ / CRQL Units 95-49-8 2.85 U 0.85 ug/Kg 2-Chlorotoluene 2.85 5.7 108-67-8 1,3,5-Trimethylbenzene 2.85 U 0.52 2.85 5.7 ug/Kg 106-43-4 4-Chlorotoluene 2.85 U 0.71 2.85 5.7 ug/Kg 98-06-6 tert-Butylbenzene 2.85 U 0.68 2.85 5.7 ug/Kg 95-63-6 1,2,4-Trimethylbenzene 2.85 U 0.57 2.85 5.7 ug/Kg 135-98-8 sec-Butylbenzene 2.85 U 0.6 2.85 5.7 ug/Kg 2.85 99-87-6 p-Isopropyltoluene U 0.33 2.85 5.7 ug/Kg 2.85 U 541-73-1 1,3-Dichlorobenzene 0.43 2.85 5.7 ug/Kg 106-46-7 1,4-Dichlorobenzene 2.85 U 0.47 2.85 5.7 ug/Kg 104-51-8 2.85 U 0.53 5.7 n-Butylbenzene 2.85 ug/Kg 2.85 95-50-1 U 0.71 2.85 5.7 1,2-Dichlorobenzene ug/Kg 96-12-8 1,2-Dibromo-3-Chloropropane 2.85 U 1 2.85 5.7 ug/Kg 120-82-1 2.85 U 0.8 2.85 5.7 1,2,4-Trichlorobenzene ug/Kg 87-68-3 Hexachlorobutadiene 2.85 U 0.91 2.85 5.7 ug/Kg 2.85 91-20-3 Naphthalene U 0.52 2.85 5.7 ug/Kg 1,2,3-Trichlorobenzene 2.85 U 87-61-6 0.57 2.85 5.7 ug/Kg Methyl Iodide 5.7 U 5.7 5.7 5.7 74-88-4 ug/Kg U 107-05-1 Allyl chloride 5.7 5.7 5.7 5.7 ug/Kg U 126-98-7 Methacrylonitrile 5.7 5.7 5.7 5.7 ug/Kg 110-57-6 trans-1,4-Dichloro-2-butene 5.7 U 5.7 5.7 5.7 ug/Kg 97-63-2 Ethyl methacrylate 5.7 U 5.7 5.7 5.7 ug/Kg **SURROGATES** 1,2-Dichloroethane-d4 47.6 56 - 120 95% 17060-07-0 SPK: 50 57 - 135 1868-53-7 Dibromofluoromethane 51 102% SPK: 50 2037-26-5 Toluene-d8 49.9 67 - 123 100% SPK: 50 4-Bromofluorobenzene 33 - 141 460-00-4 50.3 101% SPK: 50 INTERNAL STANDARDS Pentafluorobenzene 179640 4.4 363-72-4 540-36-3 1,4-Difluorobenzene 341497 5.15 3114-55-4 Chlorobenzene-d5 350200 9.35 3855-82-1 1,4-Dichlorobenzene-d4 166776 12.25

Date Collected:

Date Received:

Test:

08/07/12

08/15/12

VOC-Chemtech Full -15

Soil Aliquot Vol:

Report of Analysis

Client: MS Analytical

Project: 12MS104 Kensington Heights

Client Sample ID: SB-2(4-8) SDG No.: D3811
Lab Sample ID: D3811-01 Matrix: SOIL

Analytical Method: SW8260C % Moisture: 13

uL

Sample Wt/Vol: 5 Units: g Final Vol: 5000 uL

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VF034776.D 1 08/15/12 VF081512

CAS Number Parameter Conc. Qualifier MDL LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Report of Analysis

Client: MS Analytical Date Collected: 08/07/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-2(4-8)RE SDG No.: D3811 Lab Sample ID: D3811-01RE Matrix: SOIL Analytical Method: SW8260C % Moisture: 13

Sample Wt/Vol: 5.01 Units: g Final Vol: 5000 uL
Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036743.D 1 08/15/12 VD081512

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	2.85	U	0.75	2.85	5.7	ug/Kg
74-87-3	Chloromethane	2.85	U	0.99	2.85	5.7	ug/Kg
75-01-4	Vinyl Chloride	2.85	U	1.4	2.85	5.7	ug/Kg
141-78-6	Ethyl Acetate	2.85	U	1	2.85	5.7	ug/Kg
108-21-4	Isopropyl Acetate	2.85	U	1.4	2.85	5.7	ug/Kg
628-63-7	N-amyl acetate	2.85	U	1.1	2.85	5.7	ug/Kg
74-83-9	Bromomethane	2.85	U	2.8	2.85	5.7	ug/Kg
75-00-3	Chloroethane	2.85	U	1.6	2.85	5.7	ug/Kg
75-69-4	Trichlorofluoromethane	2.85	U	1.5	2.85	5.7	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	2.85	U	1.5	2.85	5.7	ug/Kg
75-65-0	Tert butyl alcohol	14.5	U	8.5	14.5	29	ug/Kg
60-29-7	Diethyl Ether	2.85	U	2.2	2.85	5.7	ug/Kg
75-35-4	1,1-Dichloroethene	2.85	U	1.7	2.85	5.7	ug/Kg
107-02-8	Acrolein	14.5	U	4.6	14.5	29	ug/Kg
107-13-1	Acrylonitrile	14.5	U	5.6	14.5	29	ug/Kg
67-64-1	Acetone	45	Q	3.5	14.5	29	ug/Kg
75-15-0	Carbon Disulfide	2.85	U	1.2	2.85	5.7	ug/Kg
1634-04-4	Methyl tert-butyl Ether	2.85	U	1.1	2.85	5.7	ug/Kg
79-20-9	Methyl Acetate	2.85	U	1.7	2.85	5.7	ug/Kg
75-09-2	Methylene Chloride	2.85	U	1.6	2.85	5.7	ug/Kg
156-60-5	trans-1,2-Dichloroethene	2.85	U	0.79	2.85	5.7	ug/Kg
108-05-4	Vinyl Acetate	14.5	UQ	4	14.5	29	ug/Kg
75-34-3	1,1-Dichloroethane	2.85	U	1.1	2.85	5.7	ug/Kg
110-82-7	Cyclohexane	2.85	U	1.2	2.85	5.7	ug/Kg
78-93-3	2-Butanone	14.5	U	3.6	14.5	29	ug/Kg
56-23-5	Carbon Tetrachloride	2.85	U	1.1	2.85	5.7	ug/Kg
594-20-7	2,2-Dichloropropane	2.85	U	1.2	2.85	5.7	ug/Kg
156-59-2	cis-1,2-Dichloroethene	2.85	U	1	2.85	5.7	ug/Kg
74-97-5	Bromochloromethane	2.85	U	0.91	2.85	5.7	ug/Kg
67-66-3	Chloroform	2.85	U	0.85	2.85	5.7	ug/Kg
71-55-6	1,1,1-Trichloroethane	2.85	U	1	2.85	5.7	ug/Kg

uL

5.01

Units:

g

Sample Wt/Vol:

Report of Analysis

Client: MS Analytical Date Collected: 08/07/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-2(4-8)RE SDG No.: D3811 Lab Sample ID: D3811-01RE Matrix: SOIL Analytical Method: SW8260C % Moisture: 13 Final Vol: 5000

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

ID: 0.25 Level: GC Column: RTX-624 LOW

File ID/Qc Batch: Dilution: Prep Batch ID Prep Date Date Analyzed VD036743.D 08/15/12 VD081512

. =							
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
108-87-2	Methylcyclohexane	2.85	U	1.2	2.85	5.7	ug/Kg
563-58-6	1,1-Dichloropropene	2.85	U	0.53	2.85	5.7	ug/Kg
71-43-2	Benzene	2.85	U	0.44	2.85	5.7	ug/Kg
107-06-2	1,2-Dichloroethane	2.85	U	0.73	2.85	5.7	ug/Kg
79-01-6	Trichloroethene	2.85	U	0.99	2.85	5.7	ug/Kg
78-87-5	1,2-Dichloropropane	2.85	U	0.3	2.85	5.7	ug/Kg
74-95-3	Dibromomethane	2.85	U	0.89	2.85	5.7	ug/Kg
75-27-4	Bromodichloromethane	2.85	U	0.71	2.85	5.7	ug/Kg
108-10-1	4-Methyl-2-Pentanone	14.5	U	3.3	14.5	29	ug/Kg
108-88-3	Toluene	2.85	U	0.73	2.85	5.7	ug/Kg
10061-02-6	t-1,3-Dichloropropene	2.85	U	0.91	2.85	5.7	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	2.85	U	0.83	2.85	5.7	ug/Kg
79-00-5	1,1,2-Trichloroethane	2.85	U	1	2.85	5.7	ug/Kg
142-28-9	1,3-Dichloropropane	2.85	U	0.85	2.85	5.7	ug/Kg
110-75-8	2-Chloroethyl Vinyl ether	14.5	U	13	14.5	29	ug/Kg
591-78-6	2-Hexanone	14.5	U	4.5	14.5	29	ug/Kg
124-48-1	Dibromochloromethane	2.85	U	0.62	2.85	5.7	ug/Kg
106-93-4	1,2-Dibromoethane	2.85	U	0.73	2.85	5.7	ug/Kg
127-18-4	Tetrachloroethene	2.85	U	1.2	2.85	5.7	ug/Kg
108-90-7	Chlorobenzene	2.85	U	0.57	2.85	5.7	ug/Kg
630-20-6	1,1,1,2-Tetrachloroethane	2.85	U	0.49	2.85	5.7	ug/Kg
67-72-1	Hexachloroethane	2.85	U	0.87	2.85	5.7	ug/Kg
100-41-4	Ethyl Benzene	2.85	U	0.71	2.85	5.7	ug/Kg
179601-23-1	m/p-Xylenes	5.5	U	0.83	5.5	11	ug/Kg
95-47-6	o-Xylene	2.85	U	0.78	2.85	5.7	ug/Kg
100-42-5	Styrene	2.85	U	0.52	2.85	5.7	ug/Kg
75-25-2	Bromoform	2.85	U	0.85	2.85	5.7	ug/Kg
98-82-8	Isopropylbenzene	2.85	U	0.55	2.85	5.7	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	2.85	U	0.53	2.85	5.7	ug/Kg
96-18-4	1,2,3-Trichloropropane	2.85	U	0.56	2.85	5.7	ug/Kg
108-86-1	Bromobenzene	2.85	U	0.6	2.85	5.7	ug/Kg
103-65-1	n-propylbenzene	2.85	U	0.41	2.85	5.7	ug/Kg

Report of Analysis

Client: MS Analytical Date Collected: 08/07/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-2(4-8)RE SDG No.: D3811 Lab Sample ID: D3811-01RE Matrix: SOIL Analytical Method: SW8260C % Moisture: 13

Sample Wt/Vol: 5.01 Units: g Soil Aliquot Vol: Test: VOC-Chemtech Full -15 uL

Final Vol:

5000

uL

ID: 0.25 Level: GC Column: RTX-624 LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036743 D 08/15/12 VD081512

VD036743.D	1		08/15/12			VD081512	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
95-49-8	2-Chlorotoluene	2.85	U	0.85	2.85	5.7	ug/Kg
108-67-8	1,3,5-Trimethylbenzene	2.85	U	0.52	2.85	5.7	ug/Kg
106-43-4	4-Chlorotoluene	2.85	U	0.71	2.85	5.7	ug/Kg
98-06-6	tert-Butylbenzene	2.85	U	0.68	2.85	5.7	ug/Kg
95-63-6	1,2,4-Trimethylbenzene	2.85	U	0.57	2.85	5.7	ug/Kg
135-98-8	sec-Butylbenzene	2.85	U	0.6	2.85	5.7	ug/Kg
99-87-6	p-Isopropyltoluene	2.85	U	0.33	2.85	5.7	ug/Kg
541-73-1	1,3-Dichlorobenzene	2.85	U	0.42	2.85	5.7	ug/Kg
106-46-7	1,4-Dichlorobenzene	2.85	U	0.47	2.85	5.7	ug/Kg
104-51-8	n-Butylbenzene	2.85	U	0.53	2.85	5.7	ug/Kg
95-50-1	1,2-Dichlorobenzene	2.85	U	0.71	2.85	5.7	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	2.85	U	1	2.85	5.7	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	2.85	U	0.8	2.85	5.7	ug/Kg
87-68-3	Hexachlorobutadiene	2.85	U	0.91	2.85	5.7	ug/Kg
91-20-3	Naphthalene	2.85	UQ	0.52	2.85	5.7	ug/Kg
87-61-6	1,2,3-Trichlorobenzene	2.85	U	0.57	2.85	5.7	ug/Kg
74-88-4	Methyl Iodide	5.7	U	5.7	5.7	5.7	ug/Kg
107-05-1	Allyl chloride	5.7	U	5.7	5.7	5.7	ug/Kg
126-98-7	Methacrylonitrile	5.7	UQ	5.7	5.7	5.7	ug/Kg
110-57-6	trans-1,4-Dichloro-2-butene	5.7	U	5.7	5.7	5.7	ug/Kg
97-63-2	Ethyl methacrylate	5.7	U	5.7	5.7	5.7	ug/Kg
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	57.5		56 - 120	0	115%	SPK: 50
1868-53-7	Dibromofluoromethane	48.4		57 - 13:	5	97%	SPK: 50
2037-26-5	Toluene-d8	49.4		67 - 123		99%	SPK: 50
460-00-4	4-Bromofluorobenzene	58.8		33 - 14	1	118%	SPK: 50
INTERNAL STA							
363-72-4	Pentafluorobenzene	385457	4.74				
540-36-3	1,4-Difluorobenzene	689375	5.45				
3114-55-4	Chlorobenzene-d5	673224	9.58				
3855-82-1	1,4-Dichlorobenzene-d4	321813	12.48				

Date Collected:

Date Received:

08/07/12

08/15/12

D3811

Report of Analysis

Client: MS Analytical

Project: 12MS104 Kensington Heights

Client Sample ID: SB-2(4-8)RE SDG No.:

Lab Sample ID: D3811-01RE Matrix: SOIL

Analytical Method: SW8260C % Moisture: 13

Sample Wt/Vol: 5.01 Units: g Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VD036743.D 1 08/15/12 VD081512

CAS Number Parameter Conc. Qualifier MDL LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Sample Wt/Vol:

5.03

Units:

Report of Analysis

Client: MS Analytical Date Collected: 08/07/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SDG No.: D3811 SB-5(8-12) Lab Sample ID: D3811-02 Matrix: SOIL

Analytical Method: SW8260C % Moisture: 19

g Soil Aliquot Vol: иL Test: VOC-Chemtech Full -15

Final Vol:

5000

uL

ID: 0.18 Level: GC Column: RTX-VMS LOW

File ID/Qc Batch: Dilution: Prep Batch ID Prep Date Date Analyzed

VF034777.D 08/15/12 VF081512

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	3.05	U	0.8	3.05	6.1	ug/Kg
74-87-3	Chloromethane	3.05	U	1.1	3.05	6.1	ug/Kg
75-01-4	Vinyl Chloride	3.05	U	1.5	3.05	6.1	ug/Kg
141-78-6	Ethyl Acetate	3.05	U	1.1	3.05	6.1	ug/Kg
108-21-4	Isopropyl Acetate	3.05	U	1.5	3.05	6.1	ug/Kg
628-63-7	N-amyl acetate	3.05	U	1.2	3.05	6.1	ug/Kg
74-83-9	Bromomethane	3.05	U	3	3.05	6.1	ug/Kg
75-00-3	Chloroethane	3.05	U	1.7	3.05	6.1	ug/Kg
75-69-4	Trichlorofluoromethane	3.05	U	1.6	3.05	6.1	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	3.05	U	1.6	3.05	6.1	ug/Kg
75-65-0	Tert butyl alcohol	15.5	U	9.1	15.5	31	ug/Kg
60-29-7	Diethyl Ether	3.05	U	2.4	3.05	6.1	ug/Kg
75-35-4	1,1-Dichloroethene	3.05	U	1.8	3.05	6.1	ug/Kg
107-02-8	Acrolein	15.5	U	4.9	15.5	31	ug/Kg
107-13-1	Acrylonitrile	15.5	U	6	15.5	31	ug/Kg
67-64-1	Acetone	35		3.7	15.5	31	ug/Kg
75-15-0	Carbon Disulfide	3.05	U	1.3	3.05	6.1	ug/Kg
1634-04-4	Methyl tert-butyl Ether	3.05	U	1.2	3.05	6.1	ug/Kg
79-20-9	Methyl Acetate	3.05	U	1.9	3.05	6.1	ug/Kg
75-09-2	Methylene Chloride	3.05	U	1.7	3.05	6.1	ug/Kg
156-60-5	trans-1,2-Dichloroethene	3.05	U	0.85	3.05	6.1	ug/Kg
108-05-4	Vinyl Acetate	15.5	U	4.3	15.5	31	ug/Kg
75-34-3	1,1-Dichloroethane	3.05	U	1.2	3.05	6.1	ug/Kg
110-82-7	Cyclohexane	3.05	U	1.2	3.05	6.1	ug/Kg
78-93-3	2-Butanone	15.5	U	3.8	15.5	31	ug/Kg
56-23-5	Carbon Tetrachloride	3.05	U	1.2	3.05	6.1	ug/Kg
594-20-7	2,2-Dichloropropane	3.05	U	1.3	3.05	6.1	ug/Kg
156-59-2	cis-1,2-Dichloroethene	3.05	U	1.1	3.05	6.1	ug/Kg
74-97-5	Bromochloromethane	3.05	U	0.97	3.05	6.1	ug/Kg
67-66-3	Chloroform	3.05	U	0.91	3.05	6.1	ug/Kg
71-55-6	1,1,1-Trichloroethane	3.05	U	1.1	3.05	6.1	ug/Kg

Sample Wt/Vol:

5.03

Units:

g

Report of Analysis

Client: MS Analytical Date Collected: 08/07/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SDG No.: D3811 SB-5(8-12) Lab Sample ID: D3811-02 Matrix: SOIL Analytical Method: SW8260C % Moisture: 19

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

Final Vol:

5000

uL

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034777.D 1 08/15/12 VF081512

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units	
108-87-2	Methylcyclohexane	3.05	U	1.3	3.05	6.1	ug/Kg	
563-58-6	1,1-Dichloropropene	3.05	U	0.56	3.05	6.1	ug/Kg	
71-43-2	Benzene	3.05	U	0.47	3.05	6.1	ug/Kg	
107-06-2	1,2-Dichloroethane	3.05	U	0.79	3.05	6.1	ug/Kg	
79-01-6	Trichloroethene	3.05	U	1.1	3.05	6.1	ug/Kg	
78-87-5	1,2-Dichloropropane	3.05	U	0.32	3.05	6.1	ug/Kg	
74-95-3	Dibromomethane	3.05	U	0.96	3.05	6.1	ug/Kg	
75-27-4	Bromodichloromethane	3.05	U	0.76	3.05	6.1	ug/Kg	
108-10-1	4-Methyl-2-Pentanone	15.5	U	3.6	15.5	31	ug/Kg	
108-88-3	Toluene	3.05	U	0.79	3.05	6.1	ug/Kg	
10061-02-6	t-1,3-Dichloropropene	3.05	U	0.97	3.05	6.1	ug/Kg	
10061-01-5	cis-1,3-Dichloropropene	3.05	U	0.88	3.05	6.1	ug/Kg	
79-00-5	1,1,2-Trichloroethane	3.05	U	1.1	3.05	6.1	ug/Kg	
142-28-9	1,3-Dichloropropane	3.05	U	0.91	3.05	6.1	ug/Kg	
110-75-8	2-Chloroethyl Vinyl ether	15.5	U	14	15.5	31	ug/Kg	
591-78-6	2-Hexanone	15.5	U	4.8	15.5	31	ug/Kg	
124-48-1	Dibromochloromethane	3.05	U	0.66	3.05	6.1	ug/Kg	
106-93-4	1,2-Dibromoethane	3.05	U	0.79	3.05	6.1	ug/Kg	
127-18-4	Tetrachloroethene	3.05	U	1.2	3.05	6.1	ug/Kg	
108-90-7	Chlorobenzene	3.05	U	0.61	3.05	6.1	ug/Kg	
630-20-6	1,1,1,2-Tetrachloroethane	3.05	U	0.53	3.05	6.1	ug/Kg	
67-72-1	Hexachloroethane	3.05	U	0.93	3.05	6.1	ug/Kg	
100-41-4	Ethyl Benzene	3.05	U	0.76	3.05	6.1	ug/Kg	
179601-23-1	m/p-Xylenes	6	U	0.88	6	12	ug/Kg	
95-47-6	o-Xylene	3.05	U	0.83	3.05	6.1	ug/Kg	
100-42-5	Styrene	3.05	U	0.55	3.05	6.1	ug/Kg	
75-25-2	Bromoform	3.05	U	0.91	3.05	6.1	ug/Kg	
98-82-8	Isopropylbenzene	3.05	U	0.59	3.05	6.1	ug/Kg	
79-34-5	1,1,2,2-Tetrachloroethane	3.05	U	0.56	3.05	6.1	ug/Kg	
96-18-4	1,2,3-Trichloropropane	3.05	U	0.6	3.05	6.1	ug/Kg	
108-86-1	Bromobenzene	3.05	U	0.64	3.05	6.1	ug/Kg	
103-65-1	n-propylbenzene	3.05	U	0.44	3.05	6.1	ug/Kg	

SW8260C

Report of Analysis

Client: MS Analytical Date Collected: 08/07/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SDG No.: D3811 SB-5(8-12) Lab Sample ID: D3811-02 Matrix: SOIL

Analytical Method: Sample Wt/Vol: 5.03 Units: g Final Vol: 5000 uL

Soil Aliquot Vol: иL Test: VOC-Chemtech Full -15

% Moisture:

19

ID: 0.18 Level: LOW GC Column: RTX-VMS

File ID/Qc Batch: Dilution: Date Analyzed Prep Batch ID Prep Date VF034777.D 08/15/12 VF081512

VFU34///.D	1		08/13/	112		VFU81312	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
95-49-8	2-Chlorotoluene	3.05	U	0.91	3.05	6.1	ug/Kg
108-67-8	1,3,5-Trimethylbenzene	3.05	U	0.55	3.05	6.1	ug/Kg
106-43-4	4-Chlorotoluene	3.05	U	0.76	3.05	6.1	ug/Kg
98-06-6	tert-Butylbenzene	3.05	U	0.72	3.05	6.1	ug/Kg
95-63-6	1,2,4-Trimethylbenzene	3.05	U	0.61	3.05	6.1	ug/Kg
135-98-8	sec-Butylbenzene	3.05	U	0.64	3.05	6.1	ug/Kg
99-87-6	p-Isopropyltoluene	1.3	J	0.36	3.05	6.1	ug/Kg
541-73-1	1,3-Dichlorobenzene	3.05	U	0.45	3.05	6.1	ug/Kg
106-46-7	1,4-Dichlorobenzene	3.05	U	0.5	3.05	6.1	ug/Kg
104-51-8	n-Butylbenzene	3.05	U	0.56	3.05	6.1	ug/Kg
95-50-1	1,2-Dichlorobenzene	3.05	U	0.76	3.05	6.1	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	3.05	U	1.1	3.05	6.1	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	3.05	U	0.86	3.05	6.1	ug/Kg
87-68-3	Hexachlorobutadiene	3.05	U	0.97	3.05	6.1	ug/Kg
91-20-3	Naphthalene	3.05	U	0.55	3.05	6.1	ug/Kg
87-61-6	1,2,3-Trichlorobenzene	3.05	U	0.61	3.05	6.1	ug/Kg
74-88-4	Methyl Iodide	6.1	U	6.1	6.1	6.1	ug/Kg
107-05-1	Allyl chloride	6.1	U	6.1	6.1	6.1	ug/Kg
126-98-7	Methacrylonitrile	6.1	U	6.1	6.1	6.1	ug/Kg
110-57-6	trans-1,4-Dichloro-2-butene	6.1	U	6.1	6.1	6.1	ug/Kg
97-63-2	Ethyl methacrylate	6.1	U	6.1	6.1	6.1	ug/Kg
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	45.6		56 - 120		91%	SPK: 50
1868-53-7	Dibromofluoromethane	50.5		57 - 135		101%	SPK: 50
2037-26-5	Toluene-d8	47		67 - 123		94%	SPK: 50
460-00-4	4-Bromofluorobenzene	42.9		33 - 141	1	86%	SPK: 50
INTERNAL ST		4 = 40					
363-72-4	Pentafluorobenzene	174967	4.4				
540-36-3	1,4-Difluorobenzene	323673	5.14				
3114-55-4	Chlorobenzene-d5	306225	9.35				
3855-82-1	1,4-Dichlorobenzene-d4	112351	12.25				

Client: MS Analytical

Date Collected: 08/07/12

Date Received:

08/15/12

uL

Project: 12MS104 Kensington Heights

SW8260C

Client Sample ID: SDG No.: SB-5(8-12) D3811

Lab Sample ID: D3811-02 Matrix: SOIL % Moisture: 19

Analytical Method: Sample Wt/Vol: 5.03 Units: Final Vol: 5000 g

VOC-Chemtech Full -15 Soil Aliquot Vol: uL Test:

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Date Analyzed Prep Batch ID Prep Date

VF034777.D 08/15/12 VF081512

MDL **CAS Number** Parameter Conc. **Qualifier** LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Client: MS Analytical Date Collected: 08/07/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-5(8-12)RE SDG No.: D3811

Lab Sample ID: D3811-02RE Matrix: SOIL Analytical Method: SW8260C % Moisture: 19

Sample Wt/Vol: g Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

Final Vol:

5000

uL

ID: 0.25 Level: GC Column: RTX-624 LOW

5.04

Units:

File ID/Qc Batch: Dilution: Prep Batch ID Prep Date Date Analyzed VD036744.D 08/15/12 VD081512

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	3.05	U	0.8	3.05	6.1	ug/Kg
74-87-3	Chloromethane	3.05	U	1.1	3.05	6.1	ug/Kg
75-01-4	Vinyl Chloride	3.05	U	1.5	3.05	6.1	ug/Kg
141-78-6	Ethyl Acetate	3.05	U	1.1	3.05	6.1	ug/Kg
108-21-4	Isopropyl Acetate	3.05	U	1.5	3.05	6.1	ug/Kg
628-63-7	N-amyl acetate	3.05	U	1.2	3.05	6.1	ug/Kg
74-83-9	Bromomethane	3.05	U	3	3.05	6.1	ug/Kg
75-00-3	Chloroethane	3.05	U	1.7	3.05	6.1	ug/Kg
75-69-4	Trichlorofluoromethane	3.05	U	1.6	3.05	6.1	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	3.05	U	1.6	3.05	6.1	ug/Kg
75-65-0	Tert butyl alcohol	15.5	U	9.1	15.5	31	ug/Kg
60-29-7	Diethyl Ether	3.05	U	2.4	3.05	6.1	ug/Kg
75-35-4	1,1-Dichloroethene	3.05	U	1.8	3.05	6.1	ug/Kg
107-02-8	Acrolein	15.5	U	4.9	15.5	31	ug/Kg
107-13-1	Acrylonitrile	15.5	U	6	15.5	31	ug/Kg
67-64-1	Acetone	45		3.7	15.5	31	ug/Kg
75-15-0	Carbon Disulfide	3.05	U	1.3	3.05	6.1	ug/Kg
1634-04-4	Methyl tert-butyl Ether	3.05	U	1.2	3.05	6.1	ug/Kg
79-20-9	Methyl Acetate	3.05	U	1.8	3.05	6.1	ug/Kg
75-09-2	Methylene Chloride	3.05	U	1.7	3.05	6.1	ug/Kg
156-60-5	trans-1,2-Dichloroethene	3.05	U	0.85	3.05	6.1	ug/Kg
108-05-4	Vinyl Acetate	15.5	U	4.2	15.5	31	ug/Kg
75-34-3	1,1-Dichloroethane	3.05	U	1.2	3.05	6.1	ug/Kg
110-82-7	Cyclohexane	3.05	U	1.2	3.05	6.1	ug/Kg
78-93-3	2-Butanone	15.5	U	3.8	15.5	31	ug/Kg
56-23-5	Carbon Tetrachloride	3.05	U	1.2	3.05	6.1	ug/Kg
594-20-7	2,2-Dichloropropane	3.05	U	1.3	3.05	6.1	ug/Kg
156-59-2	cis-1,2-Dichloroethene	3.05	U	1.1	3.05	6.1	ug/Kg
74-97-5	Bromochloromethane	3.05	U	0.97	3.05	6.1	ug/Kg
67-66-3	Chloroform	3.05	U	0.91	3.05	6.1	ug/Kg
71-55-6	1,1,1-Trichloroethane	3.05	U	1.1	3.05	6.1	ug/Kg

Client: MS Analytical Date Collected: 08/07/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-5(8-12)RE SDG No.: D3811 Lab Sample ID: D3811-02RE Matrix: SOIL Analytical Method: SW8260C % Moisture: 19

Sample Wt/Vol: 5.04 Units: g Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036744.D 1 08/15/12 VD081512

	-						
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
108-87-2	Methylcyclohexane	3.05	U	1.3	3.05	6.1	ug/Kg
563-58-6	1,1-Dichloropropene	3.05	U	0.56	3.05	6.1	ug/Kg
71-43-2	Benzene	3.05	U	0.47	3.05	6.1	ug/Kg
107-06-2	1,2-Dichloroethane	3.05	U	0.78	3.05	6.1	ug/Kg
79-01-6	Trichloroethene	3.05	U	1.1	3.05	6.1	ug/Kg
78-87-5	1,2-Dichloropropane	3.05	U	0.32	3.05	6.1	ug/Kg
74-95-3	Dibromomethane	3.05	U	0.96	3.05	6.1	ug/Kg
75-27-4	Bromodichloromethane	3.05	U	0.76	3.05	6.1	ug/Kg
108-10-1	4-Methyl-2-Pentanone	15.5	U	3.6	15.5	31	ug/Kg
108-88-3	Toluene	3.05	U	0.78	3.05	6.1	ug/Kg
10061-02-6	t-1,3-Dichloropropene	3.05	U	0.97	3.05	6.1	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	3.05	U	0.88	3.05	6.1	ug/Kg
79-00-5	1,1,2-Trichloroethane	3.05	U	1.1	3.05	6.1	ug/Kg
142-28-9	1,3-Dichloropropane	3.05	U	0.91	3.05	6.1	ug/Kg
110-75-8	2-Chloroethyl Vinyl ether	15.5	U	14	15.5	31	ug/Kg
591-78-6	2-Hexanone	15.5	U	4.8	15.5	31	ug/Kg
124-48-1	Dibromochloromethane	3.05	U	0.66	3.05	6.1	ug/Kg
106-93-4	1,2-Dibromoethane	3.05	U	0.78	3.05	6.1	ug/Kg
127-18-4	Tetrachloroethene	3.05	U	1.2	3.05	6.1	ug/Kg
108-90-7	Chlorobenzene	3.05	U	0.61	3.05	6.1	ug/Kg
630-20-6	1,1,1,2-Tetrachloroethane	3.05	U	0.53	3.05	6.1	ug/Kg
67-72-1	Hexachloroethane	3.05	U	0.93	3.05	6.1	ug/Kg
100-41-4	Ethyl Benzene	3.05	U	0.76	3.05	6.1	ug/Kg
179601-23-1	m/p-Xylenes	6	U	0.88	6	12	ug/Kg
95-47-6	o-Xylene	3.05	U	0.83	3.05	6.1	ug/Kg
100-42-5	Styrene	3.05	U	0.55	3.05	6.1	ug/Kg
75-25-2	Bromoform	3.05	U	0.91	3.05	6.1	ug/Kg
98-82-8	Isopropylbenzene	3.05	U	0.59	3.05	6.1	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	3.05	U	0.56	3.05	6.1	ug/Kg
96-18-4	1,2,3-Trichloropropane	3.05	U	0.6	3.05	6.1	ug/Kg
108-86-1	Bromobenzene	3.05	U	0.64	3.05	6.1	ug/Kg
103-65-1	n-propylbenzene	3.05	U	0.44	3.05	6.1	ug/Kg

Units:

g

5.04

Sample Wt/Vol:

Report of Analysis

Client: MS Analytical Date Collected: 08/07/12 Date Received:

Project: 12MS104 Kensington Heights 08/15/12 Client Sample ID: SB-5(8-12)RE SDG No.: D3811 Lab Sample ID: D3811-02RE Matrix: SOIL

Analytical Method: SW8260C % Moisture: 19

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

Final Vol:

5000

uL

ID: 0.25 Level: GC Column: RTX-624 LOW

File ID/Qc Batch: Dilution: Prep Batch ID Prep Date Date Analyzed VD036744.D 08/15/12 VD081512

VD036744.D			08/15/	12		VD081512	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
95-49-8	2-Chlorotoluene	3.05	U	0.91	3.05	6.1	ug/Kg
108-67-8	1,3,5-Trimethylbenzene	3.05	U	0.55	3.05	6.1	ug/Kg
106-43-4	4-Chlorotoluene	3.05	U	0.76	3.05	6.1	ug/Kg
98-06-6	tert-Butylbenzene	3.05	U	0.72	3.05	6.1	ug/Kg
95-63-6	1,2,4-Trimethylbenzene	3.05	U	0.61	3.05	6.1	ug/Kg
135-98-8	sec-Butylbenzene	3.05	U	0.64	3.05	6.1	ug/Kg
99-87-6	p-Isopropyltoluene	3.05	U	0.36	3.05	6.1	ug/Kg
541-73-1	1,3-Dichlorobenzene	3.05	U	0.45	3.05	6.1	ug/Kg
106-46-7	1,4-Dichlorobenzene	3.05	U	0.5	3.05	6.1	ug/Kg
104-51-8	n-Butylbenzene	3.05	U	0.56	3.05	6.1	ug/Kg
95-50-1	1,2-Dichlorobenzene	3.05	U	0.76	3.05	6.1	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	3.05	U	1.1	3.05	6.1	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	3.05	U	0.86	3.05	6.1	ug/Kg
87-68-3	Hexachlorobutadiene	3.05	U	0.97	3.05	6.1	ug/Kg
91-20-3	Naphthalene	3.05	U	0.55	3.05	6.1	ug/Kg
87-61-6	1,2,3-Trichlorobenzene	3.05	U	0.61	3.05	6.1	ug/Kg
74-88-4	Methyl Iodide	6.1	U	6.1	6.1	6.1	ug/Kg
107-05-1	Allyl chloride	6.1	U	6.1	6.1	6.1	ug/Kg
126-98-7	Methacrylonitrile	6.1	U	6.1	6.1	6.1	ug/Kg
110-57-6	trans-1,4-Dichloro-2-butene	6.1	U	6.1	6.1	6.1	ug/Kg
97-63-2	Ethyl methacrylate	6.1	U	6.1	6.1	6.1	ug/Kg
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	58.6		56 - 120		117%	SPK: 50
1868-53-7	Dibromofluoromethane	48.4		57 - 135		97%	SPK: 50
2037-26-5	Toluene-d8	51.5		67 - 123		103%	SPK: 50
460-00-4	4-Bromofluorobenzene	59.9		33 - 14	1	120%	SPK: 50
INTERNAL ST		2=20=:	4.50				
363-72-4	Pentafluorobenzene	373874	4.73				
540-36-3	1,4-Difluorobenzene	659037	5.45				
3114-55-4	Chlorobenzene-d5	666922	9.57				
3855-82-1	1,4-Dichlorobenzene-d4	318263	12.47				

Date Collected:

Date Received:

08/07/12

08/15/12

Report of Analysis

Client: MS Analytical

Project: 12MS104 Kensington Heights

Client Sample ID: SB-5(8-12)RE SDG No.: D3811

Lab Sample ID: D3811-02RE Matrix: SOIL

Analytical Method: SW8260C % Moisture: 19

Sample Wt/Vol: 5.04 Units: g Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VD036744.D 1 08/15/12 VD081512

CAS Number Parameter Conc. Qualifier MDL LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

GC Column:

Report of Analysis

Client: MS Analytical Date Collected: 08/07/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-9(4-7) SDG No.: D3811 Lab Sample ID: D3811-03 Matrix: SOIL Analytical Method: SW8260C % Moisture: 16 Sample Wt/Vol: 5 Units: g Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

Level:

LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034778.D 1 08/15/12 VF081512

ID: 0.18

RTX-VMS

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	3	U	0.77	3	6	ug/Kg
74-87-3	Chloromethane	3	U	1	3	6	ug/Kg
75-01-4	Vinyl Chloride	3	U	1.5	3	6	ug/Kg
141-78-6	Ethyl Acetate	3	U	1	3	6	ug/Kg
108-21-4	Isopropyl Acetate	3	U	1.4	3	6	ug/Kg
628-63-7	N-amyl acetate	3	U	1.1	3	6	ug/Kg
74-83-9	Bromomethane	3	U	2.9	3	6	ug/Kg
75-00-3	Chloroethane	3	U	1.7	3	6	ug/Kg
75-69-4	Trichlorofluoromethane	3	U	1.6	3	6	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	3	U	1.6	3	6	ug/Kg
75-65-0	Tert butyl alcohol	15	U	8.8	15	30	ug/Kg
60-29-7	Diethyl Ether	3	U	2.3	3	6	ug/Kg
75-35-4	1,1-Dichloroethene	3	U	1.8	3	6	ug/Kg
107-02-8	Acrolein	15	U	4.7	15	30	ug/Kg
107-13-1	Acrylonitrile	15	U	5.8	15	30	ug/Kg
67-64-1	Acetone	15	U	3.6	15	30	ug/Kg
75-15-0	Carbon Disulfide	3	U	1.3	3	6	ug/Kg
1634-04-4	Methyl tert-butyl Ether	3	U	1.1	3	6	ug/Kg
79-20-9	Methyl Acetate	3	U	1.8	3	6	ug/Kg
75-09-2	Methylene Chloride	3	U	1.7	3	6	ug/Kg
156-60-5	trans-1,2-Dichloroethene	3	U	0.82	3	6	ug/Kg
108-05-4	Vinyl Acetate	15	U	4.1	15	30	ug/Kg
75-34-3	1,1-Dichloroethane	3	U	1.1	3	6	ug/Kg
110-82-7	Cyclohexane	3	U	1.2	3	6	ug/Kg
78-93-3	2-Butanone	15	U	3.7	15	30	ug/Kg
56-23-5	Carbon Tetrachloride	3	U	1.2	3	6	ug/Kg
594-20-7	2,2-Dichloropropane	3	U	1.2	3	6	ug/Kg
156-59-2	cis-1,2-Dichloroethene	3	U	1.1	3	6	ug/Kg
74-97-5	Bromochloromethane	3	U	0.94	3	6	ug/Kg
67-66-3	Chloroform	3	U	0.88	3	6	ug/Kg
71-55-6	1,1,1-Trichloroethane	3	U	1	3	6	ug/Kg

Client:MS AnalyticalDate Collected:08/07/12Project:12MS104 Kensington HeightsDate Received:08/15/12Client Sample ID:SB-9(4-7)SDG No.:D3811

Lab Sample ID: D3811-03 Matrix: SOIL

Analytical Method: SW8260C % Moisture: 16

Sample Wt/Vol: 5 Units: g Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034778.D 1 08/15/12 VF081512

V1 054770.D	1		00/13/	12		V1 001312	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
108-87-2	Methylcyclohexane	3	U	1.3	3	6	ug/Kg
563-58-6	1,1-Dichloropropene	3	U	0.55	3	6	ug/Kg
71-43-2	Benzene	3	U	0.45	3	6	ug/Kg
107-06-2	1,2-Dichloroethane	3	U	0.76	3	6	ug/Kg
79-01-6	Trichloroethene	3	U	1	3	6	ug/Kg
78-87-5	1,2-Dichloropropane	3	U	0.31	3	6	ug/Kg
74-95-3	Dibromomethane	3	U	0.93	3	6	ug/Kg
75-27-4	Bromodichloromethane	3	U	0.74	3	6	ug/Kg
108-10-1	4-Methyl-2-Pentanone	15	U	3.5	15	30	ug/Kg
108-88-3	Toluene	3	U	0.76	3	6	ug/Kg
10061-02-6	t-1,3-Dichloropropene	3	U	0.94	3	6	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	3	U	0.86	3	6	ug/Kg
79-00-5	1,1,2-Trichloroethane	3	U	1.1	3	6	ug/Kg
142-28-9	1,3-Dichloropropane	3	U	0.88	3	6	ug/Kg
110-75-8	2-Chloroethyl Vinyl ether	15	U	14	15	30	ug/Kg
591-78-6	2-Hexanone	15	U	4.7	15	30	ug/Kg
124-48-1	Dibromochloromethane	3	U	0.64	3	6	ug/Kg
106-93-4	1,2-Dibromoethane	3	U	0.76	3	6	ug/Kg
127-18-4	Tetrachloroethene	3	U	1.2	3	6	ug/Kg
108-90-7	Chlorobenzene	3	U	0.6	3	6	ug/Kg
630-20-6	1,1,1,2-Tetrachloroethane	3	U	0.51	3	6	ug/Kg
67-72-1	Hexachloroethane	3	U	0.9	3	6	ug/Kg
100-41-4	Ethyl Benzene	3	U	0.74	3	6	ug/Kg
179601-23-1	m/p-Xylenes	6	U	0.86	6	12	ug/Kg
95-47-6	o-Xylene	3	U	0.81	3	6	ug/Kg
100-42-5	Styrene	3	U	0.54	3	6	ug/Kg
75-25-2	Bromoform	3	U	0.88	3	6	ug/Kg
98-82-8	Isopropylbenzene	3	U	0.57	3	6	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	3	U	0.55	3	6	ug/Kg
96-18-4	1,2,3-Trichloropropane	3	U	0.58	3	6	ug/Kg
108-86-1	Bromobenzene	3	U	0.62	3	6	ug/Kg
103-65-1	n-propylbenzene	3	U	0.43	3	6	ug/Kg

D

VOC-Chemtech Full -15

Soil Aliquot Vol:

Report of Analysis

Client: MS Analytical Date Collected: 08/07/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 SDG No.: Client Sample ID: SB-9(4-7) D3811 SOIL Lab Sample ID: D3811-03 Matrix: Analytical Method: SW8260C % Moisture: 16

Sample Wt/Vol: 5 Units: g Final Vol: 5000 uL

Test:

GC Column: RTX-VMS ID: 0.18 Level: LOW

uL

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034778.D 1 08/15/12 VF081512

CAS Number Parameter Conc. **Qualifier MDL** LOD LOQ / CRQL Units 95-49-8 3 U 0.88 3 6 ug/Kg 2-Chlorotoluene 3 3 108-67-8 1,3,5-Trimethylbenzene U 0.54 6 ug/Kg 3 3 106-43-4 4-Chlorotoluene U 0.74 6 ug/Kg 3 3 98-06-6 tert-Butylbenzene U 0.7 6 ug/Kg 95-63-6 1,2,4-Trimethylbenzene 3 U 0.6 3 6 ug/Kg 135-98-8 3 sec-Butylbenzene U 0.62 3 6 ug/Kg 3 U 0.35 3 99-87-6 p-Isopropyltoluene 6 ug/Kg 3 U 3 541-73-1 1,3-Dichlorobenzene 0.44 6 ug/Kg 3 U 3 106-46-7 1,4-Dichlorobenzene 0.49 6 ug/Kg 3 3 104-51-8 U 0.55 n-Butylbenzene 6 ug/Kg 3 U 0.74 3 95-50-1 6 1,2-Dichlorobenzene ug/Kg 3 3 96-12-8 1,2-Dibromo-3-Chloropropane U 1 6 ug/Kg 3 3 120-82-1 U 0.83 1,2,4-Trichlorobenzene 6 ug/Kg 3 Hexachlorobutadiene U 0.94 3 87-68-3 6 ug/Kg 3 3 U 0.54 91-20-3 Naphthalene 6 ug/Kg 1,2,3-Trichlorobenzene 3 U 3 87-61-6 0.6 6 ug/Kg Methyl Iodide 6 U 6 74-88-4 6 6 ug/Kg 6 U 6 107-05-1 Allyl chloride 6 6 ug/Kg U 6 126-98-7 Methacrylonitrile 6 6 6 ug/Kg 110-57-6 trans-1,4-Dichloro-2-butene 6 U 6 6 ug/Kg 6 97-63-2 Ethyl methacrylate 6 U 6 6 6 ug/Kg **SURROGATES** 1,2-Dichloroethane-d4 50.2 100% 17060-07-0 56 - 120 SPK: 50 Dibromofluoromethane 57 - 135 1868-53-7 50.7 101% SPK: 50 2037-26-5 Toluene-d8 48.5 67 - 123 97% SPK: 50 4-Bromofluorobenzene 33 - 141 460-00-4 31.4 63% SPK: 50 INTERNAL STANDARDS Pentafluorobenzene 177303 4.39 363-72-4 540-36-3 1,4-Difluorobenzene 332082 5.14 3114-55-4 Chlorobenzene-d5 274620 9.35 3855-82-1 1,4-Dichlorobenzene-d4 71302 12.25 TENTATIVE IDENTIFIED COMPOUNDS

Client: MS Analytical Date Collected: 08/07/12 12MS104 Kensington Heights Project: Date Received: 08/15/12 Client Sample ID: SDG No.: SB-9(4-7) D3811 Lab Sample ID: Matrix: SOIL D3811-03 % Moisture: Analytical Method: SW8260C 16 Sample Wt/Vol: 5 Units: Final Vol: 5000 uL g

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034778.D 1 08/15/12 VF081512

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
110851-59-7	2-[2-Hydroxyethyl]-9-[.betad-rib	18	J			1.15	ug/Kg
000109-66-0	Pentane	21	J			1.25	ug/Kg
001630-94-0	Cyclopropane, 1,1-dimethyl-	14	J			1.33	ug/Kg
	unknown1.39	8.1	J			1.39	ug/Kg
000646-04-8	2-Pentene, (E)-	14	J			1.43	ug/Kg
000107-83-5	Pentane, 2-methyl-	9.4	J			1.77	ug/Kg
000096-14-0	Pentane, 3-methyl-	14	J			1.93	ug/Kg
000763-29-1	1-Pentene. 2-methyl-	9.2	J			2.1	ug/Kg

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Sample Wt/Vol:

5.06

Units:

g

Report of Analysis

Client: MS Analytical Date Collected: 08/07/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-9(4-7)RE SDG No.: D3811 Lab Sample ID: D3811-03RE Matrix: SOIL Analytical Method: SW8260C % Moisture: 16

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

Final Vol:

5000

uL

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036745.D 1 08/15/12 VD081512

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	2.95	U	0.76	2.95	5.9	ug/Kg
74-87-3	Chloromethane	2.95	U	1	2.95	5.9	ug/Kg
75-01-4	Vinyl Chloride	2.95	U	1.4	2.95	5.9	ug/Kg
141-78-6	Ethyl Acetate	2.95	U	1	2.95	5.9	ug/Kg
108-21-4	Isopropyl Acetate	2.95	U	1.4	2.95	5.9	ug/Kg
628-63-7	N-amyl acetate	2.95	U	1.1	2.95	5.9	ug/Kg
74-83-9	Bromomethane	2.95	U	2.9	2.95	5.9	ug/Kg
75-00-3	Chloroethane	2.95	U	1.6	2.95	5.9	ug/Kg
75-69-4	Trichlorofluoromethane	2.95	U	1.6	2.95	5.9	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	2.95	U	1.6	2.95	5.9	ug/Kg
75-65-0	Tert butyl alcohol	14.5	U	8.7	14.5	29	ug/Kg
60-29-7	Diethyl Ether	2.95	U	2.3	2.95	5.9	ug/Kg
75-35-4	1,1-Dichloroethene	2.95	U	1.7	2.95	5.9	ug/Kg
107-02-8	Acrolein	14.5	U	4.7	14.5	29	ug/Kg
107-13-1	Acrylonitrile	14.5	U	5.8	14.5	29	ug/Kg
67-64-1	Acetone	49	Q	3.6	14.5	29	ug/Kg
75-15-0	Carbon Disulfide	2.95	U	1.2	2.95	5.9	ug/Kg
1634-04-4	Methyl tert-butyl Ether	2.95	U	1.1	2.95	5.9	ug/Kg
79-20-9	Methyl Acetate	2.95	U	1.8	2.95	5.9	ug/Kg
75-09-2	Methylene Chloride	2.95	U	1.7	2.95	5.9	ug/Kg
156-60-5	trans-1,2-Dichloroethene	2.95	U	0.81	2.95	5.9	ug/Kg
108-05-4	Vinyl Acetate	14.5	UQ	4.1	14.5	29	ug/Kg
75-34-3	1,1-Dichloroethane	2.95	U	1.1	2.95	5.9	ug/Kg
110-82-7	Cyclohexane	2.95	U	1.2	2.95	5.9	ug/Kg
78-93-3	2-Butanone	14.5	U	3.7	14.5	29	ug/Kg
56-23-5	Carbon Tetrachloride	2.95	U	1.2	2.95	5.9	ug/Kg
594-20-7	2,2-Dichloropropane	2.95	U	1.2	2.95	5.9	ug/Kg
156-59-2	cis-1,2-Dichloroethene	2.95	U	1	2.95	5.9	ug/Kg
74-97-5	Bromochloromethane	2.95	U	0.93	2.95	5.9	ug/Kg
67-66-3	Chloroform	2.95	U	0.87	2.95	5.9	ug/Kg
71-55-6	1,1,1-Trichloroethane	2.95	U	1	2.95	5.9	ug/Kg

Client: MS Analytical Date Collected: 08/07/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-9(4-7)RE SDG No.: D3811 Lab Sample ID: D3811-03RE Matrix: SOIL Analytical Method: SW8260C % Moisture: 16

Sample Wt/Vol: 5.06 Units: g Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036745.D 1 08/15/12 VD081512

. =	-						
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
108-87-2	Methylcyclohexane	2.95	U	1.2	2.95	5.9	ug/Kg
563-58-6	1,1-Dichloropropene	2.95	U	0.54	2.95	5.9	ug/Kg
71-43-2	Benzene	2.95	U	0.45	2.95	5.9	ug/Kg
107-06-2	1,2-Dichloroethane	2.95	U	0.75	2.95	5.9	ug/Kg
79-01-6	Trichloroethene	2.95	U	1	2.95	5.9	ug/Kg
78-87-5	1,2-Dichloropropane	2.95	U	0.31	2.95	5.9	ug/Kg
74-95-3	Dibromomethane	2.95	U	0.92	2.95	5.9	ug/Kg
75-27-4	Bromodichloromethane	2.95	U	0.73	2.95	5.9	ug/Kg
108-10-1	4-Methyl-2-Pentanone	14.5	U	3.4	14.5	29	ug/Kg
108-88-3	Toluene	2.95	U	0.75	2.95	5.9	ug/Kg
10061-02-6	t-1,3-Dichloropropene	2.95	U	0.93	2.95	5.9	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	2.95	U	0.85	2.95	5.9	ug/Kg
79-00-5	1,1,2-Trichloroethane	2.95	U	1.1	2.95	5.9	ug/Kg
142-28-9	1,3-Dichloropropane	2.95	U	0.87	2.95	5.9	ug/Kg
110-75-8	2-Chloroethyl Vinyl ether	14.5	U	14	14.5	29	ug/Kg
591-78-6	2-Hexanone	14.5	U	4.6	14.5	29	ug/Kg
124-48-1	Dibromochloromethane	2.95	U	0.64	2.95	5.9	ug/Kg
106-93-4	1,2-Dibromoethane	2.95	U	0.75	2.95	5.9	ug/Kg
127-18-4	Tetrachloroethene	2.95	U	1.2	2.95	5.9	ug/Kg
108-90-7	Chlorobenzene	2.95	U	0.59	2.95	5.9	ug/Kg
630-20-6	1,1,1,2-Tetrachloroethane	2.95	U	0.51	2.95	5.9	ug/Kg
67-72-1	Hexachloroethane	2.95	U	0.89	2.95	5.9	ug/Kg
100-41-4	Ethyl Benzene	2.95	U	0.73	2.95	5.9	ug/Kg
179601-23-1	m/p-Xylenes	6	U	0.85	6	12	ug/Kg
95-47-6	o-Xylene	2.95	U	0.8	2.95	5.9	ug/Kg
100-42-5	Styrene	2.95	U	0.53	2.95	5.9	ug/Kg
75-25-2	Bromoform	2.95	U	0.87	2.95	5.9	ug/Kg
98-82-8	Isopropylbenzene	2.95	U	0.56	2.95	5.9	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	2.95	U	0.54	2.95	5.9	ug/Kg
96-18-4	1,2,3-Trichloropropane	2.95	U	0.58	2.95	5.9	ug/Kg
108-86-1	Bromobenzene	2.95	U	0.61	2.95	5.9	ug/Kg
103-65-1	n-propylbenzene	2.95	U	0.42	2.95	5.9	ug/Kg

VOC-Chemtech Full -15

Soil Aliquot Vol:

Report of Analysis

Client: MS Analytical Date Collected: 08/07/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-9(4-7)RE SDG No.: D3811
Lab Sample ID: D3811-03RE Matrix: SOIL
Analytical Method: SW8260C % Moisture: 16

Sample Wt/Vol: 5.06 Units: g Final Vol: 5000 uL

Test:

GC Column: RTX-624 ID: 0.25 Level: LOW

uL

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036745.D 1 08/15/12 VD081512

VD036745.D			08/15/12		VD081512		
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
95-49-8	2-Chlorotoluene	2.95	U	0.87	2.95	5.9	ug/Kg
108-67-8	1,3,5-Trimethylbenzene	2.95	U	0.53	2.95	5.9	ug/Kg
106-43-4	4-Chlorotoluene	2.95	U	0.73	2.95	5.9	ug/Kg
98-06-6	tert-Butylbenzene	2.95	U	0.69	2.95	5.9	ug/Kg
95-63-6	1,2,4-Trimethylbenzene	2.95	U	0.59	2.95	5.9	ug/Kg
135-98-8	sec-Butylbenzene	2.95	U	0.61	2.95	5.9	ug/Kg
99-87-6	p-Isopropyltoluene	2.95	U	0.34	2.95	5.9	ug/Kg
541-73-1	1,3-Dichlorobenzene	2.95	U	0.44	2.95	5.9	ug/Kg
106-46-7	1,4-Dichlorobenzene	2.95	U	0.48	2.95	5.9	ug/Kg
104-51-8	n-Butylbenzene	2.95	U	0.54	2.95	5.9	ug/Kg
95-50-1	1,2-Dichlorobenzene	2.95	U	0.73	2.95	5.9	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	2.95	U	1	2.95	5.9	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	2.95	U	0.82	2.95	5.9	ug/Kg
87-68-3	Hexachlorobutadiene	2.95	U	0.93	2.95	5.9	ug/Kg
91-20-3	Naphthalene	2.95	UQ	0.53	2.95	5.9	ug/Kg
87-61-6	1,2,3-Trichlorobenzene	2.95	U	0.59	2.95	5.9	ug/Kg
74-88-4	Methyl Iodide	5.9	U	5.9	5.9	5.9	ug/Kg
107-05-1	Allyl chloride	5.9	U	5.9	5.9	5.9	ug/Kg
126-98-7	Methacrylonitrile	5.9	UQ	5.9	5.9	5.9	ug/Kg
110-57-6	trans-1,4-Dichloro-2-butene	5.9	U	5.9	5.9	5.9	ug/Kg
97-63-2	Ethyl methacrylate	5.9	U	5.9	5.9	5.9	ug/Kg
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	58.9		56 - 120)	118%	SPK: 50
1868-53-7	Dibromofluoromethane	47.6		57 - 13:	5	95%	SPK: 50
2037-26-5	Toluene-d8	50.9		67 - 123	3	102%	SPK: 50
460-00-4	4-Bromofluorobenzene	58		33 - 14	1	116%	SPK: 50
INTERNAL ST							
363-72-4	Pentafluorobenzene	367175	4.73				
540-36-3	1,4-Difluorobenzene	663814	5.45				
3114-55-4	Chlorobenzene-d5	651235	9.57				
3855-82-1	1,4-Dichlorobenzene-d4	292898	12.47				

Date Collected:

Date Received:

08/07/12

08/15/12

uL

Report of Analysis

Client: MS Analytical

Project: 12MS104 Kensington Heights

Client Sample ID: SB-9(4-7)RE SDG No.: D3811

Lab Sample ID: D3811-03RE Matrix: SOIL

Analytical Method: SW8260C % Moisture: 16

Sample Wt/Vol: 5.06 Units: g Final Vol: 5000

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VD036745.D 1 08/15/12 VD081512

CAS Number Parameter Conc. Qualifier MDL LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

uL

Report of Analysis

Client: MS Analytical Date Collected: 08/07/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-11(12-16) SDG No.: D3811 Lab Sample ID: D3811-05 Matrix: SOIL Analytical Method: SW8260C % Moisture: 26 Sample Wt/Vol: 4.97 Units: g Final Vol: 5000

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034779.D 1 08/15/12 VF081512

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	3.4	U	0.88	3.4	6.8	ug/Kg
74-87-3	Chloromethane	3.4	U	1.2	3.4	6.8	ug/Kg
75-01-4	Vinyl Chloride	3.4	U	1.7	3.4	6.8	ug/Kg
141-78-6	Ethyl Acetate	3.4	U	1.2	3.4	6.8	ug/Kg
108-21-4	Isopropyl Acetate	3.4	U	1.6	3.4	6.8	ug/Kg
628-63-7	N-amyl acetate	3.4	U	1.3	3.4	6.8	ug/Kg
74-83-9	Bromomethane	3.4	U	3.3	3.4	6.8	ug/Kg
75-00-3	Chloroethane	3.4	U	1.9	3.4	6.8	ug/Kg
75-69-4	Trichlorofluoromethane	3.4	U	1.8	3.4	6.8	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	3.4	U	1.8	3.4	6.8	ug/Kg
75-65-0	Tert butyl alcohol	17	U	10	17	34	ug/Kg
60-29-7	Diethyl Ether	3.4	U	2.6	3.4	6.8	ug/Kg
75-35-4	1,1-Dichloroethene	3.4	U	2	3.4	6.8	ug/Kg
107-02-8	Acrolein	17	U	5.4	17	34	ug/Kg
107-13-1	Acrylonitrile	17	U	6.7	17	34	ug/Kg
67-64-1	Acetone	41		4.1	17	34	ug/Kg
75-15-0	Carbon Disulfide	3.4	U	1.4	3.4	6.8	ug/Kg
1634-04-4	Methyl tert-butyl Ether	3.4	U	1.3	3.4	6.8	ug/Kg
79-20-9	Methyl Acetate	3.4	U	2.1	3.4	6.8	ug/Kg
75-09-2	Methylene Chloride	3.4	U	1.9	3.4	6.8	ug/Kg
156-60-5	trans-1,2-Dichloroethene	3.4	U	0.94	3.4	6.8	ug/Kg
108-05-4	Vinyl Acetate	17	U	4.7	17	34	ug/Kg
75-34-3	1,1-Dichloroethane	3.4	U	1.3	3.4	6.8	ug/Kg
110-82-7	Cyclohexane	3.4	U	1.4	3.4	6.8	ug/Kg
78-93-3	2-Butanone	17	U	4.2	17	34	ug/Kg
56-23-5	Carbon Tetrachloride	3.4	U	1.3	3.4	6.8	ug/Kg
594-20-7	2,2-Dichloropropane	3.4	U	1.4	3.4	6.8	ug/Kg
156-59-2	cis-1,2-Dichloroethene	3.4	U	1.2	3.4	6.8	ug/Kg
74-97-5	Bromochloromethane	3.4	U	1.1	3.4	6.8	ug/Kg
67-66-3	Chloroform	3.4	U	1	3.4	6.8	ug/Kg
71-55-6	1,1,1-Trichloroethane	3.4	U	1.2	3.4	6.8	ug/Kg

Client:MS AnalyticalDate Collected:08/07/12Project:12MS104 Kensington HeightsDate Received:08/15/12

Client Sample ID: SB-11(12-16) SDG No.: D3811
Lab Sample ID: D3811-05 Matrix: SOIL
Analytical Method: SW8260C % Moisture: 26

Sample Wt/Vol: 4.97 Units: g Final Vol: 5000 uL

Soil Aliquot Vol: UL Test: VOC-Chemtech Full -15

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034779.D 1 08/15/12 VF081512

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
108-87-2	Methylcyclohexane	3.4	U	1.4	3.4	6.8	ug/Kg
563-58-6	1,1-Dichloropropene	3.4	U	0.63	3.4	6.8	ug/Kg
71-43-2	Benzene	3.4	U	0.52	3.4	6.8	ug/Kg
107-06-2	1,2-Dichloroethane	3.4	U	0.87	3.4	6.8	ug/Kg
79-01-6	Trichloroethene	3.4	U	1.2	3.4	6.8	ug/Kg
78-87-5	1,2-Dichloropropane	3.4	U	0.35	3.4	6.8	ug/Kg
74-95-3	Dibromomethane	3.4	U	1.1	3.4	6.8	ug/Kg
75-27-4	Bromodichloromethane	3.4	U	0.84	3.4	6.8	ug/Kg
108-10-1	4-Methyl-2-Pentanone	17	U	4	17	34	ug/Kg
108-88-3	Toluene	3.4	U	0.87	3.4	6.8	ug/Kg
10061-02-6	t-1,3-Dichloropropene	3.4	U	1.1	3.4	6.8	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	3.4	U	0.98	3.4	6.8	ug/Kg
79-00-5	1,1,2-Trichloroethane	3.4	U	1.2	3.4	6.8	ug/Kg
142-28-9	1,3-Dichloropropane	3.4	U	1	3.4	6.8	ug/Kg
110-75-8	2-Chloroethyl Vinyl ether	17	U	16	17	34	ug/Kg
591-78-6	2-Hexanone	17	U	5.3	17	34	ug/Kg
124-48-1	Dibromochloromethane	3.4	U	0.73	3.4	6.8	ug/Kg
106-93-4	1,2-Dibromoethane	3.4	U	0.87	3.4	6.8	ug/Kg
127-18-4	Tetrachloroethene	3.4	U	1.4	3.4	6.8	ug/Kg
108-90-7	Chlorobenzene	3.4	U	0.68	3.4	6.8	ug/Kg
630-20-6	1,1,1,2-Tetrachloroethane	3.4	U	0.58	3.4	6.8	ug/Kg
67-72-1	Hexachloroethane	3.4	U	1	3.4	6.8	ug/Kg
100-41-4	Ethyl Benzene	3.4	U	0.84	3.4	6.8	ug/Kg
179601-23-1	m/p-Xylenes	7	U	0.98	7	14	ug/Kg
95-47-6	o-Xylene	3.4	U	0.92	3.4	6.8	ug/Kg
100-42-5	Styrene	3.4	U	0.61	3.4	6.8	ug/Kg
75-25-2	Bromoform	3.4	U	1	3.4	6.8	ug/Kg
98-82-8	Isopropylbenzene	3.4	U	0.65	3.4	6.8	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	3.4	U	0.63	3.4	6.8	ug/Kg
96-18-4	1,2,3-Trichloropropane	3.4	U	0.67	3.4	6.8	ug/Kg
108-86-1	Bromobenzene	3.4	U	0.71	3.4	6.8	ug/Kg
103-65-1	n-propylbenzene	3.4	\mathbf{U}	0.49	3.4	6.8	ug/Kg

Client:MS AnalyticalDate Collected:08/07/12Project:12MS104 Kensington HeightsDate Received:08/15/12

Client Sample ID: SB-11(12-16) SDG No.: D3811
Lab Sample ID: D3811-05 Matrix: SOIL
Analytical Method: SW8260C % Moisture: 26

Sample Wt/Vol: 4.97 Units: g Final Vol: 5000 uL

Soil Aliquot Vol: UL Test: VOC-Chemtech Full -15

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034779.D 1 08/15/12 VF081512

VF034779.D	1		08/13/	12		VFU81312	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
95-49-8	2-Chlorotoluene	3.4	U	1	3.4	6.8	ug/Kg
108-67-8	1,3,5-Trimethylbenzene	3.4	U	0.61	3.4	6.8	ug/Kg
106-43-4	4-Chlorotoluene	3.4	U	0.84	3.4	6.8	ug/Kg
98-06-6	tert-Butylbenzene	3.4	U	0.8	3.4	6.8	ug/Kg
95-63-6	1,2,4-Trimethylbenzene	3.4	U	0.68	3.4	6.8	ug/Kg
135-98-8	sec-Butylbenzene	3.4	U	0.71	3.4	6.8	ug/Kg
99-87-6	p-Isopropyltoluene	3.4	U	0.39	3.4	6.8	ug/Kg
541-73-1	1,3-Dichlorobenzene	3.4	U	0.5	3.4	6.8	ug/Kg
106-46-7	1,4-Dichlorobenzene	3.4	U	0.56	3.4	6.8	ug/Kg
104-51-8	n-Butylbenzene	3.4	U	0.63	3.4	6.8	ug/Kg
95-50-1	1,2-Dichlorobenzene	3.4	U	0.84	3.4	6.8	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	3.4	U	1.2	3.4	6.8	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	3.4	U	0.95	3.4	6.8	ug/Kg
87-68-3	Hexachlorobutadiene	3.4	U	1.1	3.4	6.8	ug/Kg
91-20-3	Naphthalene	3.4	U	0.61	3.4	6.8	ug/Kg
87-61-6	1,2,3-Trichlorobenzene	3.4	U	0.68	3.4	6.8	ug/Kg
74-88-4	Methyl Iodide	6.8	U	6.8	6.8	6.8	ug/Kg
107-05-1	Allyl chloride	6.8	U	6.8	6.8	6.8	ug/Kg
126-98-7	Methacrylonitrile	6.8	U	6.8	6.8	6.8	ug/Kg
110-57-6	trans-1,4-Dichloro-2-butene	6.8	U	6.8	6.8	6.8	ug/Kg
97-63-2	Ethyl methacrylate	6.8	U	6.8	6.8	6.8	ug/Kg
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	53		56 - 120		106%	SPK: 50
1868-53-7	Dibromofluoromethane	54.9		57 - 135		110%	SPK: 50
2037-26-5	Toluene-d8	47.3		67 - 123		95%	SPK: 50
460-00-4	4-Bromofluorobenzene	33.4		33 - 14	1	67%	SPK: 50
INTERNAL ST		146000	4.4				
363-72-4	Pentafluorobenzene	146028	4.4				
540-36-3	1,4-Difluorobenzene	268965	5.14				
3114-55-4	Chlorobenzene-d5	229671	9.35				
3855-82-1	1,4-Dichlorobenzene-d4	68504	12.25				

Date Collected:

Date Received:

SDG No.:

% Moisture:

Final Vol:

Matrix:

08/07/12

08/15/12

D3811

SOIL

26

5000

LOW

uL

VOC-Chemtech Full -15

Project:

Report of Analysis

Client: MS Analytical

12MS104 Kensington Heights

Client Sample ID: SB-11(12-16)

Lab Sample ID: D3811-05

Analytical Method: SW8260C

Sample Wt/Vol: 4.97 Units: g

Soil Aliquot Vol: uL Test:

GC Column: RTX-VMS ID: 0.18 Level:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VF034779.D 1 08/15/12 VF081512

CAS Number Parameter Conc. Qualifier MDL LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Client: MS Analytical Date Collected: 08/07/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-11(12-16)RE SDG No.: D3811 Lab Sample ID: D3811-05RE Matrix: SOIL Analytical Method: SW8260C % Moisture: 26

Sample Wt/Vol: 5.02 Units: g Final Vol: 5000 uL

Soil Aliquot Vol: UL Test: VOC-Chemtech Full -15

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036746.D 1 08/15/12 VD081512

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	3.35	U	0.87	3.35	6.7	ug/Kg
74-87-3	Chloromethane	3.35	U	1.2	3.35	6.7	ug/Kg
75-01-4	Vinyl Chloride	3.35	U	1.7	3.35	6.7	ug/Kg
141-78-6	Ethyl Acetate	3.35	U	1.2	3.35	6.7	ug/Kg
108-21-4	Isopropyl Acetate	3.35	U	1.6	3.35	6.7	ug/Kg
628-63-7	N-amyl acetate	3.35	U	1.3	3.35	6.7	ug/Kg
74-83-9	Bromomethane	3.35	U	3.3	3.35	6.7	ug/Kg
75-00-3	Chloroethane	3.35	U	1.9	3.35	6.7	ug/Kg
75-69-4	Trichlorofluoromethane	3.35	U	1.8	3.35	6.7	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	3.35	U	1.8	3.35	6.7	ug/Kg
75-65-0	Tert butyl alcohol	17	U	10	17	34	ug/Kg
60-29-7	Diethyl Ether	3.35	U	2.6	3.35	6.7	ug/Kg
75-35-4	1,1-Dichloroethene	3.35	U	2	3.35	6.7	ug/Kg
107-02-8	Acrolein	17	U	5.4	17	34	ug/Kg
107-13-1	Acrylonitrile	17	U	6.6	17	34	ug/Kg
67-64-1	Acetone	49	Q	4.1	17	34	ug/Kg
75-15-0	Carbon Disulfide	3.35	U	1.4	3.35	6.7	ug/Kg
1634-04-4	Methyl tert-butyl Ether	3.35	U	1.3	3.35	6.7	ug/Kg
79-20-9	Methyl Acetate	3.35	U	2	3.35	6.7	ug/Kg
75-09-2	Methylene Chloride	3.35	U	1.9	3.35	6.7	ug/Kg
156-60-5	trans-1,2-Dichloroethene	3.35	U	0.93	3.35	6.7	ug/Kg
108-05-4	Vinyl Acetate	17	UQ	4.7	17	34	ug/Kg
75-34-3	1,1-Dichloroethane	3.35	U	1.3	3.35	6.7	ug/Kg
110-82-7	Cyclohexane	3.35	U	1.4	3.35	6.7	ug/Kg
78-93-3	2-Butanone	17	U	4.2	17	34	ug/Kg
56-23-5	Carbon Tetrachloride	3.35	U	1.3	3.35	6.7	ug/Kg
594-20-7	2,2-Dichloropropane	3.35	U	1.4	3.35	6.7	ug/Kg
156-59-2	cis-1,2-Dichloroethene	3.35	U	1.2	3.35	6.7	ug/Kg
74-97-5	Bromochloromethane	3.35	U	1.1	3.35	6.7	ug/Kg
67-66-3	Chloroform	3.35	U	1	3.35	6.7	ug/Kg
71-55-6	1,1,1-Trichloroethane	3.35	U	1.2	3.35	6.7	ug/Kg

Sample Wt/Vol:

5.02

Units:

g

Report of Analysis

Client: MS Analytical Date Collected: 08/07/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-11(12-16)RE SDG No.: D3811 Lab Sample ID: D3811-05RE Matrix: SOIL Analytical Method: SW8260C % Moisture: 26

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

Final Vol:

5000

uL

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036746.D 1 08/15/12 VD081512

. =	<u>-</u>						
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
108-87-2	Methylcyclohexane	3.35	U	1.4	3.35	6.7	ug/Kg
563-58-6	1,1-Dichloropropene	3.35	U	0.62	3.35	6.7	ug/Kg
71-43-2	Benzene	3.35	U	0.51	3.35	6.7	ug/Kg
107-06-2	1,2-Dichloroethane	3.35	U	0.86	3.35	6.7	ug/Kg
79-01-6	Trichloroethene	3.35	U	1.2	3.35	6.7	ug/Kg
78-87-5	1,2-Dichloropropane	3.35	U	0.35	3.35	6.7	ug/Kg
74-95-3	Dibromomethane	3.35	U	1	3.35	6.7	ug/Kg
75-27-4	Bromodichloromethane	3.35	U	0.83	3.35	6.7	ug/Kg
108-10-1	4-Methyl-2-Pentanone	17	U	3.9	17	34	ug/Kg
108-88-3	Toluene	3.35	U	0.86	3.35	6.7	ug/Kg
10061-02-6	t-1,3-Dichloropropene	3.35	U	1.1	3.35	6.7	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	3.35	U	0.97	3.35	6.7	ug/Kg
79-00-5	1,1,2-Trichloroethane	3.35	U	1.2	3.35	6.7	ug/Kg
142-28-9	1,3-Dichloropropane	3.35	U	1	3.35	6.7	ug/Kg
110-75-8	2-Chloroethyl Vinyl ether	17	U	15	17	34	ug/Kg
591-78-6	2-Hexanone	17	U	5.3	17	34	ug/Kg
124-48-1	Dibromochloromethane	3.35	U	0.73	3.35	6.7	ug/Kg
106-93-4	1,2-Dibromoethane	3.35	U	0.86	3.35	6.7	ug/Kg
127-18-4	Tetrachloroethene	3.35	U	1.4	3.35	6.7	ug/Kg
108-90-7	Chlorobenzene	3.35	U	0.67	3.35	6.7	ug/Kg
630-20-6	1,1,1,2-Tetrachloroethane	3.35	U	0.58	3.35	6.7	ug/Kg
67-72-1	Hexachloroethane	3.35	U	1	3.35	6.7	ug/Kg
100-41-4	Ethyl Benzene	3.35	U	0.83	3.35	6.7	ug/Kg
179601-23-1	m/p-Xylenes	6.5	U	0.97	6.5	13	ug/Kg
95-47-6	o-Xylene	3.35	U	0.92	3.35	6.7	ug/Kg
100-42-5	Styrene	3.35	U	0.61	3.35	6.7	ug/Kg
75-25-2	Bromoform	3.35	U	1	3.35	6.7	ug/Kg
98-82-8	Isopropylbenzene	3.35	U	0.65	3.35	6.7	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	3.35	U	0.62	3.35	6.7	ug/Kg
96-18-4	1,2,3-Trichloropropane	3.35	U	0.66	3.35	6.7	ug/Kg
108-86-1	Bromobenzene	3.35	U	0.7	3.35	6.7	ug/Kg
103-65-1	n-propylbenzene	3.35	U	0.48	3.35	6.7	ug/Kg

Client:MS AnalyticalDate Collected:08/07/12Project:12MS104 Kensington HeightsDate Received:08/15/12

Client Sample ID: SB-11(12-16)RE SDG No.: D3811
Lab Sample ID: D3811-05RE Matrix: SOIL
Analytical Method: SW8260C % Moisture: 26

Sample Wt/Vol: 5.02 Units: g Final Vol: 5000 uL

Soil Aliquot Vol: UL Test: VOC-Chemtech Full -15

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036746.D 1 08/15/12 VD081512

VD036746.D	1		08/15/	12		VD081512	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
95-49-8	2-Chlorotoluene	3.35	U	1	3.35	6.7	ug/Kg
108-67-8	1,3,5-Trimethylbenzene	3.35	U	0.61	3.35	6.7	ug/Kg
106-43-4	4-Chlorotoluene	3.35	U	0.83	3.35	6.7	ug/Kg
98-06-6	tert-Butylbenzene	3.35	U	0.79	3.35	6.7	ug/Kg
95-63-6	1,2,4-Trimethylbenzene	3.35	U	0.67	3.35	6.7	ug/Kg
135-98-8	sec-Butylbenzene	3.35	U	0.7	3.35	6.7	ug/Kg
99-87-6	p-Isopropyltoluene	3.35	U	0.39	3.35	6.7	ug/Kg
541-73-1	1,3-Dichlorobenzene	3.35	U	0.5	3.35	6.7	ug/Kg
106-46-7	1,4-Dichlorobenzene	3.35	U	0.55	3.35	6.7	ug/Kg
104-51-8	n-Butylbenzene	3.35	U	0.62	3.35	6.7	ug/Kg
95-50-1	1,2-Dichlorobenzene	3.35	U	0.83	3.35	6.7	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	3.35	U	1.2	3.35	6.7	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	3.35	U	0.94	3.35	6.7	ug/Kg
87-68-3	Hexachlorobutadiene	3.35	U	1.1	3.35	6.7	ug/Kg
91-20-3	Naphthalene	3.35	UQ	0.61	3.35	6.7	ug/Kg
87-61-6	1,2,3-Trichlorobenzene	3.35	U	0.67	3.35	6.7	ug/Kg
74-88-4	Methyl Iodide	6.7	U	6.7	6.7	6.7	ug/Kg
107-05-1	Allyl chloride	6.7	U	6.7	6.7	6.7	ug/Kg
126-98-7	Methacrylonitrile	6.7	UQ	6.7	6.7	6.7	ug/Kg
110-57-6	trans-1,4-Dichloro-2-butene	6.7	U	6.7	6.7	6.7	ug/Kg
97-63-2	Ethyl methacrylate	6.7	U	6.7	6.7	6.7	ug/Kg
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	54.7		56 - 120		109%	SPK: 50
1868-53-7	Dibromofluoromethane	48.4		57 - 13:		97%	SPK: 50
2037-26-5	Toluene-d8	51.2		67 - 12:		102%	SPK: 50
460-00-4	4-Bromofluorobenzene	59.2		33 - 14	1	119%	SPK: 50
INTERNAL ST			. = -				
363-72-4	Pentafluorobenzene	363702	4.73				
540-36-3	1,4-Difluorobenzene	642960	5.45				
3114-55-4	Chlorobenzene-d5	636362	9.57				
3855-82-1	1,4-Dichlorobenzene-d4	287340	12.48				

Client: MS Analytical

Date Collected: 08/07/12

Project:

12MS104 Kensington Heights

Client Sample ID:

SB-11(12-16)RE

08/15/12

Lab Sample ID:

D3811-05RE

Matrix: % Moisture:

Date Received:

D3811 SOIL

Analytical Method:

SW8260C

Final Vol:

SDG No.:

26

5000

Sample Wt/Vol:

5.02

Units: g

Test:

VOC-Chemtech Full -15

uL

Soil Aliquot Vol: GC Column:

RTX-624

uL ID: 0.25

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VD081512

VD036746.D

08/15/12

Units

CAS Number

Parameter

Conc.

Qualifier

MDL

LOD LOQ / CRQL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

uL

Sample Wt/Vol:

5.06

Units:

g

Report of Analysis

Client: MS Analytical Date Collected: 08/08/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-15(12-16) SDG No.: D3811 Lab Sample ID: D3811-06 Matrix: SOIL Analytical Method: SW8260C % Moisture: 28 Final Vol: 5000

Soil Aliquot Vol: иL Test: VOC-Chemtech Full -15

ID: 0.18 Level: GC Column: RTX-VMS LOW

File ID/Qc Batch: Dilution: Prep Batch ID Prep Date Date Analyzed VF034780.D 08/15/12 VF081512

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	3.45	U	0.89	3.45	6.9	ug/Kg
74-87-3	Chloromethane	3.45	U	1.2	3.45	6.9	ug/Kg
75-01-4	Vinyl Chloride	3.45	U	1.7	3.45	6.9	ug/Kg
141-78-6	Ethyl Acetate	3.45	U	1.2	3.45	6.9	ug/Kg
108-21-4	Isopropyl Acetate	3.45	U	1.6	3.45	6.9	ug/Kg
628-63-7	N-amyl acetate	3.45	U	1.3	3.45	6.9	ug/Kg
74-83-9	Bromomethane	3.45	U	3.4	3.45	6.9	ug/Kg
75-00-3	Chloroethane	3.45	U	1.9	3.45	6.9	ug/Kg
75-69-4	Trichlorofluoromethane	3.45	U	1.8	3.45	6.9	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	3.45	U	1.8	3.45	6.9	ug/Kg
75-65-0	Tert butyl alcohol	17	U	10	17	34	ug/Kg
60-29-7	Diethyl Ether	3.45	U	2.6	3.45	6.9	ug/Kg
75-35-4	1,1-Dichloroethene	3.45	U	2	3.45	6.9	ug/Kg
107-02-8	Acrolein	17	U	5.5	17	34	ug/Kg
107-13-1	Acrylonitrile	17	U	6.7	17	34	ug/Kg
67-64-1	Acetone	20	J	4.1	17	34	ug/Kg
75-15-0	Carbon Disulfide	3.45	U	1.5	3.45	6.9	ug/Kg
1634-04-4	Methyl tert-butyl Ether	3.45	U	1.3	3.45	6.9	ug/Kg
79-20-9	Methyl Acetate	3.45	U	2.1	3.45	6.9	ug/Kg
75-09-2	Methylene Chloride	3.45	U	1.9	3.45	6.9	ug/Kg
156-60-5	trans-1,2-Dichloroethene	3.45	U	0.95	3.45	6.9	ug/Kg
108-05-4	Vinyl Acetate	17	U	4.8	17	34	ug/Kg
75-34-3	1,1-Dichloroethane	3.45	U	1.3	3.45	6.9	ug/Kg
110-82-7	Cyclohexane	3.45	U	1.4	3.45	6.9	ug/Kg
78-93-3	2-Butanone	17	U	4.3	17	34	ug/Kg
56-23-5	Carbon Tetrachloride	3.45	U	1.4	3.45	6.9	ug/Kg
594-20-7	2,2-Dichloropropane	3.45	U	1.4	3.45	6.9	ug/Kg
156-59-2	cis-1,2-Dichloroethene	3.45	U	1.2	3.45	6.9	ug/Kg
74-97-5	Bromochloromethane	3.45	U	1.1	3.45	6.9	ug/Kg
67-66-3	Chloroform	3.45	U	1	3.45	6.9	ug/Kg
71-55-6	1,1,1-Trichloroethane	3.45	U	1.2	3.45	6.9	ug/Kg

Client: MS Analytical Date Collected: 08/08/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-15(12-16) SDG No.: D3811 Lab Sample ID: D3811-06 Matrix: SOIL Analytical Method: SW8260C % Moisture: 28

Sample Wt/Vol: 5.06 Units: g Final Vol: 5000 uL
Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034780.D 1 08/15/12 VF081512

V1 054700.D	1		00/13/	12		¥1 001312			
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units		
108-87-2	Methylcyclohexane	3.45	U	1.5	3.45	6.9	ug/Kg		
563-58-6	1,1-Dichloropropene	3.45	U	0.63	3.45	6.9	ug/Kg		
71-43-2	Benzene	3.45	U	0.52	3.45	6.9	ug/Kg		
107-06-2	1,2-Dichloroethane	3.45	U	0.88	3.45	6.9	ug/Kg		
79-01-6	Trichloroethene	3.45	U	1.2	3.45	6.9	ug/Kg		
78-87-5	1,2-Dichloropropane	3.45	U	0.36	3.45	6.9	ug/Kg		
74-95-3	Dibromomethane	3.45	U	1.1	3.45	6.9	ug/Kg		
75-27-4	Bromodichloromethane	3.45	U	0.85	3.45	6.9	ug/Kg		
108-10-1	4-Methyl-2-Pentanone	17	U	4	17	34	ug/Kg		
108-88-3	Toluene	3.45	U	0.88	3.45	6.9	ug/Kg		
10061-02-6	t-1,3-Dichloropropene	3.45	U	1.1	3.45	6.9	ug/Kg		
10061-01-5	cis-1,3-Dichloropropene	3.45	U	0.99	3.45	6.9	ug/Kg		
79-00-5	1,1,2-Trichloroethane	3.45	U	1.2	3.45	6.9	ug/Kg		
142-28-9	1,3-Dichloropropane	3.45	U	1	3.45	6.9	ug/Kg		
110-75-8	2-Chloroethyl Vinyl ether	17	U	16	17	34	ug/Kg		
591-78-6	2-Hexanone	17	\mathbf{U}	5.4	17	34	ug/Kg		
124-48-1	Dibromochloromethane	3.45	U	0.74	3.45	6.9	ug/Kg		
106-93-4	1,2-Dibromoethane	3.45	U	0.88	3.45	6.9	ug/Kg		
127-18-4	Tetrachloroethene	3.45	U	1.4	3.45	6.9	ug/Kg		
108-90-7	Chlorobenzene	3.45	U	0.69	3.45	6.9	ug/Kg		
630-20-6	1,1,1,2-Tetrachloroethane	3.45	U	0.59	3.45	6.9	ug/Kg		
67-72-1	Hexachloroethane	3.45	U	1	3.45	6.9	ug/Kg		
100-41-4	Ethyl Benzene	3.45	U	0.85	3.45	6.9	ug/Kg		
179601-23-1	m/p-Xylenes	7	\mathbf{U}	0.99	7	14	ug/Kg		
95-47-6	o-Xylene	3.45	U	0.93	3.45	6.9	ug/Kg		
100-42-5	Styrene	3.45	U	0.62	3.45	6.9	ug/Kg		
75-25-2	Bromoform	3.45	U	1	3.45	6.9	ug/Kg		
98-82-8	Isopropylbenzene	3.45	\mathbf{U}	0.66	3.45	6.9	ug/Kg		
79-34-5	1,1,2,2-Tetrachloroethane	3.45	\mathbf{U}	0.63	3.45	6.9	ug/Kg		
96-18-4	1,2,3-Trichloropropane	3.45	U	0.67	3.45	6.9	ug/Kg		
108-86-1	Bromobenzene	3.45	U	0.71	3.45	6.9	ug/Kg		
103-65-1	n-propylbenzene	3.45	U	0.49	3.45	6.9	ug/Kg		

Sample Wt/Vol:

5.06

Units:

g

Report of Analysis

Client:MS AnalyticalDate Collected:08/08/12Project:12MS104 Kensington HeightsDate Received:08/15/12

 Client Sample ID:
 SB-15(12-16)
 SDG No.:
 D3811

 Lab Sample ID:
 D3811-06
 Matrix:
 SOIL

Analytical Method: SW8260C % Moisture: 28

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

Final Vol:

5000

uL

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034780.D 1 08/15/12 VF081512

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
95-49-8	2-Chlorotoluene	3.45	U	1	3.45	6.9	ug/Kg
108-67-8	1,3,5-Trimethylbenzene	3.45	U	0.62	3.45	6.9	ug/Kg
106-43-4	4-Chlorotoluene	3.45	U	0.85	3.45	6.9	ug/Kg
98-06-6	tert-Butylbenzene	3.45	U	0.81	3.45	6.9	ug/Kg
95-63-6	1,2,4-Trimethylbenzene	3.45	U	0.69	3.45	6.9	ug/Kg
135-98-8	sec-Butylbenzene	3.45	U	0.71	3.45	6.9	ug/Kg
99-87-6	p-Isopropyltoluene	3.45	U	0.4	3.45	6.9	ug/Kg
541-73-1	1,3-Dichlorobenzene	3.45	U	0.51	3.45	6.9	ug/Kg
106-46-7	1,4-Dichlorobenzene	3.45	U	0.56	3.45	6.9	ug/Kg
104-51-8	n-Butylbenzene	3.45	U	0.63	3.45	6.9	ug/Kg
95-50-1	1,2-Dichlorobenzene	3.45	U	0.85	3.45	6.9	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	3.45	U	1.2	3.45	6.9	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	3.45	U	0.96	3.45	6.9	ug/Kg
87-68-3	Hexachlorobutadiene	3.45	U	1.1	3.45	6.9	ug/Kg
91-20-3	Naphthalene	44		0.62	3.45	6.9	ug/Kg
87-61-6	1,2,3-Trichlorobenzene	3.45	U	0.69	3.45	6.9	ug/Kg
74-88-4	Methyl Iodide	6.9	U	6.9	6.9	6.9	ug/Kg
107-05-1	Allyl chloride	6.9	U	6.9	6.9	6.9	ug/Kg
126-98-7	Methacrylonitrile	6.9	U	6.9	6.9	6.9	ug/Kg
110-57-6	trans-1,4-Dichloro-2-butene	6.9	U	6.9	6.9	6.9	ug/Kg
97-63-2	Ethyl methacrylate	6.9	U	6.9	6.9	6.9	ug/Kg
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	45.4		56 - 120)	91%	SPK: 50
1868-53-7	Dibromofluoromethane	48.1		57 - 135		96%	SPK: 50
2037-26-5	Toluene-d8	48.8		67 - 123		98%	SPK: 50
460-00-4	4-Bromofluorobenzene	47.7		33 - 141	[95%	SPK: 50
INTERNAL ST							
363-72-4	Pentafluorobenzene	184647	4.4				
540-36-3	1,4-Difluorobenzene	344512	5.15				
3114-55-4	Chlorobenzene-d5	331795	9.34				
3855-82-1	1,4-Dichlorobenzene-d4	153744	12.25				

Client: MS Analytical

12MS104 Kensington Heights

Client Sample ID:

SB-15(12-16)

Lab Sample ID:

Project:

D3811-06

Analytical Method:

SW8260C

5.06

Units: g

Sample Wt/Vol: Soil Aliquot Vol:

GC Column:

RTX-VMS

uL

ID: 0.18

Final Vol:

Level:

Test:

Date Collected:

Date Received:

SDG No.:

% Moisture:

Matrix:

VOC-Chemtech Full -15

08/08/12

08/15/12

D3811

SOIL

28

5000

LOW

File ID/Qc Batch:

VF034780.D

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

08/15/12

VF081512

CAS Number

Parameter

Conc.

Qualifier

MDL

LOD

LOQ / CRQL

Units

uL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Client: MS Analytical Date Collected: 08/08/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-15(12-16)RE SDG No.: D3811 Lab Sample ID: D3811-06RE Matrix: SOIL Analytical Method: SW8260C % Moisture: 28

Sample Wt/Vol: 4.98 Units: g Final Vol: 5000 uL
Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036747.D 1 08/15/12 VD081512

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	3.5	U	0.91	3.5	7	ug/Kg
74-87-3	Chloromethane	3.5	U	1.2	3.5	7	ug/Kg
75-01-4	Vinyl Chloride	3.5	U	1.7	3.5	7	ug/Kg
141-78-6	Ethyl Acetate	3.5	U	1.2	3.5	7	ug/Kg
108-21-4	Isopropyl Acetate	3.5	U	1.7	3.5	7	ug/Kg
628-63-7	N-amyl acetate	3.5	U	1.3	3.5	7	ug/Kg
74-83-9	Bromomethane	3.5	U	3.4	3.5	7	ug/Kg
75-00-3	Chloroethane	3.5	U	2	3.5	7	ug/Kg
75-69-4	Trichlorofluoromethane	3.5	U	1.8	3.5	7	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	3.5	U	1.9	3.5	7	ug/Kg
75-65-0	Tert butyl alcohol	17.5	U	10	17.5	35	ug/Kg
60-29-7	Diethyl Ether	3.5	U	2.7	3.5	7	ug/Kg
75-35-4	1,1-Dichloroethene	3.5	U	2	3.5	7	ug/Kg
107-02-8	Acrolein	17.5	U	5.5	17.5	35	ug/Kg
107-13-1	Acrylonitrile	17.5	U	6.8	17.5	35	ug/Kg
67-64-1	Acetone	53	Q	4.2	17.5	35	ug/Kg
75-15-0	Carbon Disulfide	3.5	U	1.5	3.5	7	ug/Kg
1634-04-4	Methyl tert-butyl Ether	3.5	U	1.3	3.5	7	ug/Kg
79-20-9	Methyl Acetate	3.5	U	2.1	3.5	7	ug/Kg
75-09-2	Methylene Chloride	3.5	U	2	3.5	7	ug/Kg
156-60-5	trans-1,2-Dichloroethene	3.5	U	0.96	3.5	7	ug/Kg
108-05-4	Vinyl Acetate	17.5	UQ	4.8	17.5	35	ug/Kg
75-34-3	1,1-Dichloroethane	3.5	U	1.3	3.5	7	ug/Kg
110-82-7	Cyclohexane	3.5	U	1.4	3.5	7	ug/Kg
78-93-3	2-Butanone	17.5	U	4.3	17.5	35	ug/Kg
56-23-5	Carbon Tetrachloride	3.5	U	1.4	3.5	7	ug/Kg
594-20-7	2,2-Dichloropropane	3.5	U	1.5	3.5	7	ug/Kg
156-59-2	cis-1,2-Dichloroethene	3.5	U	1.2	3.5	7	ug/Kg
74-97-5	Bromochloromethane	3.5	U	1.1	3.5	7	ug/Kg
67-66-3	Chloroform	3.5	U	1	3.5	7	ug/Kg
71-55-6	1,1,1-Trichloroethane	3.5	U	1.2	3.5	7	ug/Kg

VOC-Chemtech Full -15

Soil Aliquot Vol:

Report of Analysis

Client: MS Analytical Date Collected: 08/08/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-15(12-16)RE SDG No.: D3811 Lab Sample ID: D3811-06RE Matrix: SOIL Analytical Method: SW8260C % Moisture: 28

Sample Wt/Vol: 4.98 Units: g Final Vol: 5000 uL

Test:

GC Column: RTX-624 ID: 0.25 Level: LOW

uL

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036747.D 1 08/15/12 VD081512

. =							
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
108-87-2	Methylcyclohexane	3.5	U	1.5	3.5	7	ug/Kg
563-58-6	1,1-Dichloropropene	3.5	U	0.64	3.5	7	ug/Kg
71-43-2	Benzene	3.5	U	0.53	3.5	7	ug/Kg
107-06-2	1,2-Dichloroethane	3.5	U	0.89	3.5	7	ug/Kg
79-01-6	Trichloroethene	3.5	U	1.2	3.5	7	ug/Kg
78-87-5	1,2-Dichloropropane	3.5	U	0.36	3.5	7	ug/Kg
74-95-3	Dibromomethane	3.5	U	1.1	3.5	7	ug/Kg
75-27-4	Bromodichloromethane	3.5	U	0.86	3.5	7	ug/Kg
108-10-1	4-Methyl-2-Pentanone	17.5	U	4.1	17.5	35	ug/Kg
108-88-3	Toluene	3.5	U	0.89	3.5	7	ug/Kg
10061-02-6	t-1,3-Dichloropropene	3.5	U	1.1	3.5	7	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	3.5	U	1	3.5	7	ug/Kg
79-00-5	1,1,2-Trichloroethane	3.5	U	1.3	3.5	7	ug/Kg
142-28-9	1,3-Dichloropropane	3.5	U	1	3.5	7	ug/Kg
110-75-8	2-Chloroethyl Vinyl ether	17.5	U	16	17.5	35	ug/Kg
591-78-6	2-Hexanone	17.5	U	5.5	17.5	35	ug/Kg
124-48-1	Dibromochloromethane	3.5	U	0.75	3.5	7	ug/Kg
106-93-4	1,2-Dibromoethane	3.5	U	0.89	3.5	7	ug/Kg
127-18-4	Tetrachloroethene	3.5	U	1.4	3.5	7	ug/Kg
108-90-7	Chlorobenzene	3.5	U	0.7	3.5	7	ug/Kg
630-20-6	1,1,1,2-Tetrachloroethane	3.5	U	0.6	3.5	7	ug/Kg
67-72-1	Hexachloroethane	3.5	U	1.1	3.5	7	ug/Kg
100-41-4	Ethyl Benzene	3.5	U	0.86	3.5	7	ug/Kg
179601-23-1	m/p-Xylenes	7	U	1	7	14	ug/Kg
95-47-6	o-Xylene	3.5	U	0.95	3.5	7	ug/Kg
100-42-5	Styrene	3.5	U	0.63	3.5	7	ug/Kg
75-25-2	Bromoform	3.5	U	1	3.5	7	ug/Kg
98-82-8	Isopropylbenzene	3.5	U	0.67	3.5	7	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	3.5	U	0.64	3.5	7	ug/Kg
96-18-4	1,2,3-Trichloropropane	3.5	U	0.68	3.5	7	ug/Kg
108-86-1	Bromobenzene	3.5	U	0.73	3.5	7	ug/Kg
103-65-1	n-propylbenzene	3.5	U	0.5	3.5	7	ug/Kg

VOC-Chemtech Full -15

Soil Aliquot Vol:

Report of Analysis

Client: MS Analytical Date Collected: 08/08/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-15(12-16)RE SDG No.: D3811 Lab Sample ID: D3811-06RE Matrix: SOIL Analytical Method: SW8260C % Moisture: 28

Sample Wt/Vol: 4.98 Units: g Final Vol: 5000 uL

Test:

GC Column: RTX-624 ID: 0.25 Level: LOW

uL

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036747.D 1 08/15/12 VD081512

VD036747.D	1		08/15/	/12		VD081512	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
95-49-8	2-Chlorotoluene	3.5	U	1	3.5	7	ug/Kg
108-67-8	1,3,5-Trimethylbenzene	3.5	U	0.63	3.5	7	ug/Kg
106-43-4	4-Chlorotoluene	3.5	U	0.86	3.5	7	ug/Kg
98-06-6	tert-Butylbenzene	3.5	U	0.82	3.5	7	ug/Kg
95-63-6	1,2,4-Trimethylbenzene	3.5	U	0.7	3.5	7	ug/Kg
135-98-8	sec-Butylbenzene	3.5	U	0.73	3.5	7	ug/Kg
99-87-6	p-Isopropyltoluene	3.5	U	0.4	3.5	7	ug/Kg
541-73-1	1,3-Dichlorobenzene	3.5	U	0.52	3.5	7	ug/Kg
106-46-7	1,4-Dichlorobenzene	3.5	U	0.57	3.5	7	ug/Kg
104-51-8	n-Butylbenzene	3.5	U	0.64	3.5	7	ug/Kg
95-50-1	1,2-Dichlorobenzene	3.5	U	0.86	3.5	7	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	3.5	U	1.2	3.5	7	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	3.5	U	0.98	3.5	7	ug/Kg
87-68-3	Hexachlorobutadiene	3.5	U	1.1	3.5	7	ug/Kg
91-20-3	Naphthalene	3.9	JQ	0.63	3.5	7	ug/Kg
87-61-6	1,2,3-Trichlorobenzene	3.5	U	0.7	3.5	7	ug/Kg
74-88-4	Methyl Iodide	7	U	7	7	7	ug/Kg
107-05-1	Allyl chloride	7	U	7	7	7	ug/Kg
126-98-7	Methacrylonitrile	7	UQ	7	7	7	ug/Kg
110-57-6	trans-1,4-Dichloro-2-butene	7	U	7	7	7	ug/Kg
97-63-2	Ethyl methacrylate	7	U	7	7	7	ug/Kg
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	58.1		56 - 120	0	116%	SPK: 50
1868-53-7	Dibromofluoromethane	47.4		57 - 13:	5	95%	SPK: 50
2037-26-5	Toluene-d8	49.9		67 - 12	3	100%	SPK: 50
460-00-4	4-Bromofluorobenzene	59.9		33 - 14	1	120%	SPK: 50
INTERNAL STA							
363-72-4	Pentafluorobenzene	376372	4.73				
540-36-3	1,4-Difluorobenzene	675723	5.45				
3114-55-4	Chlorobenzene-d5	653962	9.58				
3855-82-1	1,4-Dichlorobenzene-d4	312532	12.48				

Client: MS Analytical

Project: 12MS104 Kensington Heights

Client Sample ID: SB-15(12-16)RE

Lab Sample ID: D3811-06RE

Analytical Method: SW8260C

Sample Wt/Vol: 4.98 Units: g

Soil Aliquot Vol: UL Test: VOC-Chemtech Full -15

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution:

Prep Date

Date Analyzed

Prep Batch ID

08/08/12

08/15/12

D3811

SOIL

28

5000

08/15/12

VD081512

CAS Number

VD036747.D

Parameter

Conc.

Qualifier

MDL

Date Collected:

Date Received:

SDG No.:

% Moisture:

Final Vol:

Matrix:

LOD L

LOQ / CRQL

Units

uL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Client: MS Analytical Date Collected: 08/08/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-18(4-8) SDG No.: D3811 Lab Sample ID: D3811-07 Matrix: SOIL Analytical Method: SW8260C % Moisture: 16 Sample Wt/Vol: 4.97 Units: g Final Vol: 5000 uL Soil Aliquot Vol: иL Test: VOC-Chemtech Full -15

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034781.D 1 08/15/12 VF081512

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	3	U	0.78	3	6	ug/Kg
74-87-3	Chloromethane	3	U	1	3	6	ug/Kg
75-01-4	Vinyl Chloride	3	U	1.5	3	6	ug/Kg
141-78-6	Ethyl Acetate	3	U	1	3	6	ug/Kg
108-21-4	Isopropyl Acetate	3	U	1.4	3	6	ug/Kg
628-63-7	N-amyl acetate	3	U	1.1	3	6	ug/Kg
74-83-9	Bromomethane	3	U	2.9	3	6	ug/Kg
75-00-3	Chloroethane	3	U	1.7	3	6	ug/Kg
75-69-4	Trichlorofluoromethane	3	U	1.6	3	6	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	3	U	1.6	3	6	ug/Kg
75-65-0	Tert butyl alcohol	15	U	8.9	15	30	ug/Kg
60-29-7	Diethyl Ether	3	U	2.3	3	6	ug/Kg
75-35-4	1,1-Dichloroethene	3	U	1.8	3	6	ug/Kg
107-02-8	Acrolein	15	U	4.8	15	30	ug/Kg
107-13-1	Acrylonitrile	15	U	5.9	15	30	ug/Kg
67-64-1	Acetone	15	U	3.6	15	30	ug/Kg
75-15-0	Carbon Disulfide	3	U	1.3	3	6	ug/Kg
1634-04-4	Methyl tert-butyl Ether	3	U	1.1	3	6	ug/Kg
79-20-9	Methyl Acetate	3	U	1.8	3	6	ug/Kg
75-09-2	Methylene Chloride	3	U	1.7	3	6	ug/Kg
156-60-5	trans-1,2-Dichloroethene	3	U	0.83	3	6	ug/Kg
108-05-4	Vinyl Acetate	15	U	4.2	15	30	ug/Kg
75-34-3	1,1-Dichloroethane	3	U	1.1	3	6	ug/Kg
110-82-7	Cyclohexane	3	U	1.2	3	6	ug/Kg
78-93-3	2-Butanone	15	U	3.7	15	30	ug/Kg
56-23-5	Carbon Tetrachloride	3	U	1.2	3	6	ug/Kg
594-20-7	2,2-Dichloropropane	3	U	1.2	3	6	ug/Kg
156-59-2	cis-1,2-Dichloroethene	3	U	1.1	3	6	ug/Kg
74-97-5	Bromochloromethane	3	U	0.95	3	6	ug/Kg
67-66-3	Chloroform	3	U	0.89	3	6	ug/Kg
71-55-6	1,1,1-Trichloroethane	3	U	1.1	3	6	ug/Kg

Client: MS Analytical Date Collected: 08/08/12 12MS104 Kensington Heights Project: 08/15/12 Date Received: Client Sample ID: SB-18(4-8) SDG No.: D3811 Lab Sample ID: D3811-07 Matrix: SOIL Analytical Method: SW8260C % Moisture: 16

Sample Wt/Vol: 4.97 Units: g Final Vol: 5000 uL
Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034781.D 1 08/15/12 VF081512

1		08/13/	/12		VFU81312	
Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
Methylcyclohexane	3	U	1.3	3	6	ug/Kg
1,1-Dichloropropene	3	U	0.55	3	6	ug/Kg
Benzene	3	U	0.46	3	6	ug/Kg
1,2-Dichloroethane	3	U	0.77	3	6	ug/Kg
Trichloroethene	3	U	1	3	6	ug/Kg
1,2-Dichloropropane	3	U	0.31	3	6	ug/Kg
Dibromomethane	3	U	0.93	3	6	ug/Kg
Bromodichloromethane	3	U	0.74	3	6	ug/Kg
4-Methyl-2-Pentanone	15	U	3.5	15	30	ug/Kg
Toluene	3	U	0.77	3	6	ug/Kg
t-1,3-Dichloropropene	3	U	0.95	3	6	ug/Kg
cis-1,3-Dichloropropene	3	U	0.86	3	6	ug/Kg
1,1,2-Trichloroethane	3	U	1.1	3	6	ug/Kg
1,3-Dichloropropane	3	U	0.89	3	6	ug/Kg
2-Chloroethyl Vinyl ether	15	U	14	15	30	ug/Kg
2-Hexanone	15	U	4.7	15	30	ug/Kg
Dibromochloromethane	3	U	0.65	3	6	ug/Kg
1,2-Dibromoethane	3	U	0.77	3	6	ug/Kg
Tetrachloroethene	3	U	1.2	3	6	ug/Kg
Chlorobenzene	3	U	0.6	3	6	ug/Kg
1,1,1,2-Tetrachloroethane	3	U	0.51	3	6	ug/Kg
Hexachloroethane	3	U	0.91	3	6	ug/Kg
Ethyl Benzene	3	U	0.74	3	6	ug/Kg
m/p-Xylenes	6	U	0.86	6	12	ug/Kg
o-Xylene	3	U	0.81	3	6	ug/Kg
Styrene	3	U	0.54	3	6	ug/Kg
Bromoform	3	U	0.89	3	6	ug/Kg
Isopropylbenzene	3	U	0.57	3	6	ug/Kg
1,1,2,2-Tetrachloroethane	3	U	0.55	3	6	ug/Kg
1,2,3-Trichloropropane	3	U	0.59	3	6	ug/Kg
Bromobenzene	3	U	0.62	3	6	ug/Kg
n-propylbenzene	3	U	0.43	3	6	ug/Kg
	Methylcyclohexane 1,1-Dichloropropene Benzene 1,2-Dichloroethane Trichloroethene 1,2-Dichloropropane Dibromomethane Bromodichloromethane 4-Methyl-2-Pentanone Toluene t-1,3-Dichloropropene cis-1,3-Dichloropropene tis-1,2-Trichloroethane 1,3-Dichloropropane 2-Chloroethyl Vinyl ether 2-Hexanone Dibromochloromethane 1,2-Dibromoethane Tetrachloroethene Chlorobenzene 1,1,1,2-Tetrachloroethane Hexachloroethane Ethyl Benzene m/p-Xylenes o-Xylene Styrene Bromoform Isopropylbenzene 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane Bromobenzene	Methylcyclohexane31,1-Dichloropropene3Benzene31,2-Dichloroethane3Trichloroethene31,2-Dichloropropane3Dibromomethane3Bromodichloromethane34-Methyl-2-Pentanone15Toluene3t-1,3-Dichloropropene3cis-1,3-Dichloropropene31,1,2-Trichloroethane31,3-Dichloropropane32-Chloroethyl Vinyl ether152-Hexanone15Dibromochloromethane31,2-Dibromoethane3Tetrachloroethene3Chlorobenzene31,1,1,2-Tetrachloroethane3Hexachloroethane3Ethyl Benzene3m/p-Xylenes6o-Xylene3Styrene3Bromoform3Isopropylbenzene31,1,2,2-Tetrachloroethane31,2,3-Trichloropropane3Bromobenzene3	Parameter Conc. Qualifier Methylcyclohexane 3 U 1,1-Dichloropropene 3 U Benzene 3 U 1,2-Dichloroethane 3 U Trichloroethene 3 U 1,2-Dichloropropane 3 U Dibromomethane 3 U Bromodichloromethane 3 U 4-Methyl-2-Pentanone 15 U Toluene 3 U t-1,3-Dichloropropene 3 U cis-1,3-Dichloropropene 3 U 1,1,2-Trichloroethane 3 U 1,3-Dichloropropane 3 U 2-Chloroethyl Vinyl ether 15 U 2-Hexanone 15 U Dibromochloromethane 3 U 1,2-Dibromoethane 3 U 1,1,1,2-Tetrachloroethane 3 U Hexachloroethane 3 U Ethyl Benzene 3 U	Methylcyclohexane 3 U 1.3 1,1-Dichloropropene 3 U 0.55 Benzene 3 U 0.46 1,2-Dichloroethane 3 U 0.77 Trichloroethene 3 U 1 1,2-Dichloropropane 3 U 0.31 Dibromomethane 3 U 0.93 Bromodichloromethane 3 U 0.74 4-Methyl-2-Pentanone 15 U 3.5 Toluene 3 U 0.77 t-1,3-Dichloropropene 3 U 0.95 cis-1,3-Dichloropropene 3 U 0.86 1,1,2-Trichloroethane 3 U 0.89 2-Chloroethyl Vinyl ether 15 U 1.4 2-Hexanone 15 U 4.7 Dibromochloromethane 3 U 0.65 1,2-Dibromochlane 3 U 0.77 Tetrachloroethane 3 U 0.5	Parameter Conc. Qualifier MDL LOD Methylcyclohexane 3 U 1.3 3 1,1-Dichloropropene 3 U 0.55 3 Benzene 3 U 0.46 3 1,2-Dichloroptoethane 3 U 0.77 3 Trichloroethane 3 U 0.31 3 1,2-Dichloropropane 3 U 0.93 3 Bromodichloromethane 3 U 0.93 3 Bromodichloromethane 3 U 0.93 3 4-Methyl-2-Pentanone 15 U 3.5 15 Toluene 3 U 0.74 3 4-Methyl-2-Pentanone 15 U 3.5 15 Toluene 3 U 0.97 3 cis-1,3-Dichloropropene 3 U 0.95 3 cis-1,3-Dichloropropane 3 U 0.86 3 1,3-Dichloropropane <td>Parameter Conc. Qualifier MDL LOD LOQ/CRQL Methylcyclohexane 3 U 1.3 3 6 1,1-Dichloropropene 3 U 0.55 3 6 Benzene 3 U 0.77 3 6 1,2-Dichloroethane 3 U 0.77 3 6 Trichloroethene 3 U 0.31 3 6 1,2-Dichloropropane 3 U 0.93 3 6 Dibromomethane 3 U 0.93 3 6 Bromodichloromethane 3 U 0.93 3 6 4-Methyl-2-Pentanone 15 U 3.5 15 30 Toluene 3 U 0.77 3 6 t-1,3-Dichloropropene 3 U 0.86 3 6 t-1,2-Trichloroethane 3 U 0.89 3 6 1,1-1,2-Trictachloroethane</td>	Parameter Conc. Qualifier MDL LOD LOQ/CRQL Methylcyclohexane 3 U 1.3 3 6 1,1-Dichloropropene 3 U 0.55 3 6 Benzene 3 U 0.77 3 6 1,2-Dichloroethane 3 U 0.77 3 6 Trichloroethene 3 U 0.31 3 6 1,2-Dichloropropane 3 U 0.93 3 6 Dibromomethane 3 U 0.93 3 6 Bromodichloromethane 3 U 0.93 3 6 4-Methyl-2-Pentanone 15 U 3.5 15 30 Toluene 3 U 0.77 3 6 t-1,3-Dichloropropene 3 U 0.86 3 6 t-1,2-Trichloroethane 3 U 0.89 3 6 1,1-1,2-Trictachloroethane

VOC-Chemtech Full -15

Soil Aliquot Vol:

Report of Analysis

Client:MS AnalyticalDate Collected:08/08/12Project:12MS104 Kensington HeightsDate Received:08/15/12

Client Sample ID: SB-18(4-8) SDG No.: D3811
Lab Sample ID: D3811-07 Matrix: SOIL
Analytical Method: SW8260C % Moisture: 16

Sample Wt/Vol: 4.97 Units: g Final Vol: 5000 uL

Test:

GC Column: RTX-VMS ID: 0.18 Level: LOW

uL

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VF034781 D 1 08/15/12 VF081512

VF034781.D	1		08/15/	/12		VF081512	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
95-49-8	2-Chlorotoluene	3	U	0.89	3	6	ug/Kg
108-67-8	1,3,5-Trimethylbenzene	3	U	0.54	3	6	ug/Kg
106-43-4	4-Chlorotoluene	3	U	0.74	3	6	ug/Kg
98-06-6	tert-Butylbenzene	3	U	0.71	3	6	ug/Kg
95-63-6	1,2,4-Trimethylbenzene	3	U	0.6	3	6	ug/Kg
135-98-8	sec-Butylbenzene	3	U	0.62	3	6	ug/Kg
99-87-6	p-Isopropyltoluene	3	U	0.35	3	6	ug/Kg
541-73-1	1,3-Dichlorobenzene	3	U	0.44	3	6	ug/Kg
106-46-7	1,4-Dichlorobenzene	3	U	0.49	3	6	ug/Kg
104-51-8	n-Butylbenzene	3	U	0.55	3	6	ug/Kg
95-50-1	1,2-Dichlorobenzene	3	U	0.74	3	6	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	3	U	1	3	6	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	3	U	0.84	3	6	ug/Kg
87-68-3	Hexachlorobutadiene	3	U	0.95	3	6	ug/Kg
91-20-3	Naphthalene	3	U	0.54	3	6	ug/Kg
87-61-6	1,2,3-Trichlorobenzene	3	U	0.6	3	6	ug/Kg
74-88-4	Methyl Iodide	6	U	6	6	6	ug/Kg
107-05-1	Allyl chloride	6	U	6	6	6	ug/Kg
126-98-7	Methacrylonitrile	6	U	6	6	6	ug/Kg
110-57-6	trans-1,4-Dichloro-2-butene	6	U	6	6	6	ug/Kg
97-63-2	Ethyl methacrylate	6	U	6	6	6	ug/Kg
SURROGATES	S						
17060-07-0	1,2-Dichloroethane-d4	51.2		56 - 120)	102%	SPK: 50
1868-53-7	Dibromofluoromethane	54.7		57 - 135	5	109%	SPK: 50
2037-26-5	Toluene-d8	51.8		67 - 123	3	104%	SPK: 50
460-00-4	4-Bromofluorobenzene	51.7		33 - 14	1	103%	SPK: 50
INTERNAL ST							
363-72-4	Pentafluorobenzene	78092	4.41				
540-36-3	1,4-Difluorobenzene	159364	5.15				
3114-55-4	Chlorobenzene-d5	177213	9.34				
3855-82-1	1,4-Dichlorobenzene-d4	74335	12.25				
	DENTIFIED COMPOUNDS	77333	12.23				

Client:	MS Analytical	Date Collected:	08/08/12
Project:	12MS104 Kensington Heights	Date Received:	08/15/12
Client Sample ID:	SB-18(4-8)	SDG No.:	D3811
Lab Sample ID:	D3811-07	Matrix:	SOIL
Analytical Method:	SW8260C	% Moisture:	16
Sample Wt/Vol:	4.97 Units: g	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOC-Chemtech Full -15
GC Column:	RTX-VMS ID: 0.18	Level:	LOW

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
VF034781.D	1		08/15/12	VF081512

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
000109-66-0	Pentane	9.7	J			1.26	ug/Kg
000110-54-3	Hexane	15	J			2.11	ug/Kg
	unknown2 26	6.1	Ī			2.26	11σ/Κσ

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

uL

Report of Analysis

Client: MS Analytical Date Collected: 08/08/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-18(4-8)RE SDG No.: D3811 Lab Sample ID: D3811-07RE Matrix: SOIL Analytical Method: SW8260C % Moisture: 16 Sample Wt/Vol: 4.96 Units: g Final Vol: 5000

Soil Aliquot Vol: UL Test: VOC-Chemtech Full -15

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036748.D 1 08/15/12 VD081512

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	3	U	0.78	3	6	ug/Kg
74-87-3	Chloromethane	3	U	1	3	6	ug/Kg
75-01-4	Vinyl Chloride	3	U	1.5	3	6	ug/Kg
141-78-6	Ethyl Acetate	3	U	1	3	6	ug/Kg
108-21-4	Isopropyl Acetate	3	U	1.4	3	6	ug/Kg
628-63-7	N-amyl acetate	3	U	1.1	3	6	ug/Kg
74-83-9	Bromomethane	3	U	2.9	3	6	ug/Kg
75-00-3	Chloroethane	3	U	1.7	3	6	ug/Kg
75-69-4	Trichlorofluoromethane	3	U	1.6	3	6	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	3	U	1.6	3	6	ug/Kg
75-65-0	Tert butyl alcohol	15	U	8.9	15	30	ug/Kg
60-29-7	Diethyl Ether	3	U	2.3	3	6	ug/Kg
75-35-4	1,1-Dichloroethene	3	U	1.8	3	6	ug/Kg
107-02-8	Acrolein	15	U	4.8	15	30	ug/Kg
107-13-1	Acrylonitrile	15	U	5.9	15	30	ug/Kg
67-64-1	Acetone	45	Q	3.6	15	30	ug/Kg
75-15-0	Carbon Disulfide	3	U	1.3	3	6	ug/Kg
1634-04-4	Methyl tert-butyl Ether	3	U	1.2	3	6	ug/Kg
79-20-9	Methyl Acetate	3	U	1.8	3	6	ug/Kg
75-09-2	Methylene Chloride	3	U	1.7	3	6	ug/Kg
156-60-5	trans-1,2-Dichloroethene	3	U	0.83	3	6	ug/Kg
108-05-4	Vinyl Acetate	15	UQ	4.2	15	30	ug/Kg
75-34-3	1,1-Dichloroethane	3	U	1.1	3	6	ug/Kg
110-82-7	Cyclohexane	3	U	1.2	3	6	ug/Kg
78-93-3	2-Butanone	15	U	3.7	15	30	ug/Kg
56-23-5	Carbon Tetrachloride	3	U	1.2	3	6	ug/Kg
594-20-7	2,2-Dichloropropane	3	U	1.2	3	6	ug/Kg
156-59-2	cis-1,2-Dichloroethene	3	U	1.1	3	6	ug/Kg
74-97-5	Bromochloromethane	3	U	0.95	3	6	ug/Kg
67-66-3	Chloroform	3	U	0.89	3	6	ug/Kg
71-55-6	1,1,1-Trichloroethane	3	U	1.1	3	6	ug/Kg

Client:MS AnalyticalDate Collected:08/08/12Project:12MS104 Kensington HeightsDate Received:08/15/12

Client Sample ID: SB-18(4-8)RE SDG No.: D3811

Lab Sample ID: D3811-07RE Matrix: SOIL

Analytical Method: SW8260C % Moisture: 16

Sample Wt/Vol: 4.96 Units: g Final Vol: 5000 uL

Soil Aliquot Vol: UL Test: VOC-Chemtech Full -15

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036748.D 1 08/15/12 VD081512

. =								
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units	
108-87-2	Methylcyclohexane	3	U	1.3	3	6	ug/Kg	
563-58-6	1,1-Dichloropropene	3	U	0.55	3	6	ug/Kg	
71-43-2	Benzene	3	U	0.46	3	6	ug/Kg	
107-06-2	1,2-Dichloroethane	3	U	0.77	3	6	ug/Kg	
79-01-6	Trichloroethene	3	U	1	3	6	ug/Kg	
78-87-5	1,2-Dichloropropane	3	U	0.31	3	6	ug/Kg	
74-95-3	Dibromomethane	3	U	0.94	3	6	ug/Kg	
75-27-4	Bromodichloromethane	3	U	0.74	3	6	ug/Kg	
108-10-1	4-Methyl-2-Pentanone	15	U	3.5	15	30	ug/Kg	
108-88-3	Toluene	3	U	0.77	3	6	ug/Kg	
10061-02-6	t-1,3-Dichloropropene	3	U	0.95	3	6	ug/Kg	
10061-01-5	cis-1,3-Dichloropropene	3	U	0.86	3	6	ug/Kg	
79-00-5	1,1,2-Trichloroethane	3	U	1.1	3	6	ug/Kg	
142-28-9	1,3-Dichloropropane	3	U	0.89	3	6	ug/Kg	
110-75-8	2-Chloroethyl Vinyl ether	15	U	14	15	30	ug/Kg	
591-78-6	2-Hexanone	15	U	4.7	15	30	ug/Kg	
124-48-1	Dibromochloromethane	3	U	0.65	3	6	ug/Kg	
106-93-4	1,2-Dibromoethane	3	U	0.77	3	6	ug/Kg	
127-18-4	Tetrachloroethene	3	U	1.2	3	6	ug/Kg	
108-90-7	Chlorobenzene	3	U	0.6	3	6	ug/Kg	
630-20-6	1,1,1,2-Tetrachloroethane	3	U	0.52	3	6	ug/Kg	
67-72-1	Hexachloroethane	3	U	0.91	3	6	ug/Kg	
100-41-4	Ethyl Benzene	3	U	0.74	3	6	ug/Kg	
179601-23-1	m/p-Xylenes	6	U	0.86	6	12	ug/Kg	
95-47-6	o-Xylene	3	U	0.82	3	6	ug/Kg	
100-42-5	Styrene	3	U	0.54	3	6	ug/Kg	
75-25-2	Bromoform	3	U	0.89	3	6	ug/Kg	
98-82-8	Isopropylbenzene	3	U	0.58	3	6	ug/Kg	
79-34-5	1,1,2,2-Tetrachloroethane	3	U	0.55	3	6	ug/Kg	
96-18-4	1,2,3-Trichloropropane	3	U	0.59	3	6	ug/Kg	
108-86-1	Bromobenzene	3	U	0.62	3	6	ug/Kg	
103-65-1	n-propylbenzene	3	U	0.43	3	6	ug/Kg	

Client:MS AnalyticalDate Collected:08/08/12Project:12MS104 Kensington HeightsDate Received:08/15/12

Client Sample ID:SB-18(4-8)RESDG No.:D3811Lab Sample ID:D3811-07REMatrix:SOILAnalytical Method:SW8260C% Moisture:16

Sample Wt/Vol: 4.96 Units: g Final Vol: 5000 uL

Soil Aliquot Vol: UL Test: VOC-Chemtech Full -15

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036748.D 1 08/15/12 VD081512

VD036/48.D 1			08/15/	12		VD081512	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
95-49-8	2-Chlorotoluene	3	U	0.89	3	6	ug/Kg
108-67-8	1,3,5-Trimethylbenzene	3	U	0.54	3	6	ug/Kg
106-43-4	4-Chlorotoluene	3	U	0.74	3	6	ug/Kg
98-06-6	tert-Butylbenzene	3	U	0.71	3	6	ug/Kg
95-63-6	1,2,4-Trimethylbenzene	3	U	0.6	3	6	ug/Kg
135-98-8	sec-Butylbenzene	3	U	0.62	3	6	ug/Kg
99-87-6	p-Isopropyltoluene	3	U	0.35	3	6	ug/Kg
541-73-1	1,3-Dichlorobenzene	3	U	0.44	3	6	ug/Kg
106-46-7	1,4-Dichlorobenzene	3	U	0.49	3	6	ug/Kg
104-51-8	n-Butylbenzene	3	U	0.55	3	6	ug/Kg
95-50-1	1,2-Dichlorobenzene	3	U	0.74	3	6	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	3	U	1	3	6	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	3	U	0.84	3	6	ug/Kg
87-68-3	Hexachlorobutadiene	3	U	0.95	3	6	ug/Kg
91-20-3	Naphthalene	3	JQ	0.54	3	6	ug/Kg
87-61-6	1,2,3-Trichlorobenzene	3	U	0.6	3	6	ug/Kg
74-88-4	Methyl Iodide	6	U	6	6	6	ug/Kg
107-05-1	Allyl chloride	6	U	6	6	6	ug/Kg
126-98-7	Methacrylonitrile	6	UQ	6	6	6	ug/Kg
110-57-6	trans-1,4-Dichloro-2-butene	6	U	6	6	6	ug/Kg
97-63-2	Ethyl methacrylate	6	U	6	6	6	ug/Kg
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	52.2		56 - 120)	104%	SPK: 50
1868-53-7	Dibromofluoromethane	45.8		57 - 135	5	92%	SPK: 50
2037-26-5	Toluene-d8	52.1		67 - 123	3	104%	SPK: 50
460-00-4	4-Bromofluorobenzene	56.3		33 - 141	[113%	SPK: 50
INTERNAL ST							
363-72-4	Pentafluorobenzene	367385	4.74				
540-36-3	1,4-Difluorobenzene	641257	5.45				
3114-55-4	Chlorobenzene-d5	623963	9.57				
3855-82-1	1,4-Dichlorobenzene-d4	293188	12.48				

Client: MS Analytical

Date Collected: 08/08/12

Project:

12MS104 Kensington Heights

08/15/12

Client Sample ID:

SB-18(4-8)RE

Date Received:

Lab Sample ID:

SDG No.:

D3811-07RE

Matrix:

D3811 SOIL

Analytical Method:

SW8260C

% Moisture:

Final Vol:

16

5000

uL

Sample Wt/Vol:

4.96

Units: g

Test:

VOC-Chemtech Full -15

Soil Aliquot Vol: GC Column:

RTX-624

uL ID: 0.25

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VD081512

VD036748.D

08/15/12

Units

CAS Number

Parameter

Conc.

Qualifier

MDL

LOD LOQ / CRQL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Report of Analysis

Client: MS Analytical Date Collected: 08/09/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-21(16-19) SDG No.: D3811 Lab Sample ID: D3811-10 Matrix: SOIL Analytical Method: SW8260C % Moisture: 32 Sample Wt/Vol: 5.03 Units: g Final Vol: 5000

Soil Aliquot Vol: UL Test: VOC-Chemtech Full -15

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034782.D 1 08/15/12 VF081512

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	3.65	U	0.95	3.65	7.3	ug/Kg
74-87-3	Chloromethane	3.65	U	1.3	3.65	7.3	ug/Kg
75-01-4	Vinyl Chloride	3.65	U	1.8	3.65	7.3	ug/Kg
141-78-6	Ethyl Acetate	3.65	U	1.3	3.65	7.3	ug/Kg
108-21-4	Isopropyl Acetate	3.65	U	1.7	3.65	7.3	ug/Kg
628-63-7	N-amyl acetate	3.65	U	1.4	3.65	7.3	ug/Kg
74-83-9	Bromomethane	3.65	U	3.6	3.65	7.3	ug/Kg
75-00-3	Chloroethane	3.65	U	2	3.65	7.3	ug/Kg
75-69-4	Trichlorofluoromethane	3.65	U	1.9	3.65	7.3	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	3.65	U	1.9	3.65	7.3	ug/Kg
75-65-0	Tert butyl alcohol	18.5	U	11	18.5	37	ug/Kg
60-29-7	Diethyl Ether	3.65	U	2.8	3.65	7.3	ug/Kg
75-35-4	1,1-Dichloroethene	3.65	U	2.1	3.65	7.3	ug/Kg
107-02-8	Acrolein	18.5	U	5.8	18.5	37	ug/Kg
107-13-1	Acrylonitrile	18.5	U	7.2	18.5	37	ug/Kg
67-64-1	Acetone	150		4.4	18.5	37	ug/Kg
75-15-0	Carbon Disulfide	10		1.5	3.65	7.3	ug/Kg
1634-04-4	Methyl tert-butyl Ether	3.65	U	1.4	3.65	7.3	ug/Kg
79-20-9	Methyl Acetate	3.65	U	2.2	3.65	7.3	ug/Kg
75-09-2	Methylene Chloride	3.65	U	2.1	3.65	7.3	ug/Kg
156-60-5	trans-1,2-Dichloroethene	3.65	U	1	3.65	7.3	ug/Kg
108-05-4	Vinyl Acetate	18.5	U	5.1	18.5	37	ug/Kg
75-34-3	1,1-Dichloroethane	3.65	U	1.4	3.65	7.3	ug/Kg
110-82-7	Cyclohexane	3.65	U	1.5	3.65	7.3	ug/Kg
78-93-3	2-Butanone	70		4.5	18.5	37	ug/Kg
56-23-5	Carbon Tetrachloride	3.65	U	1.4	3.65	7.3	ug/Kg
594-20-7	2,2-Dichloropropane	3.65	U	1.5	3.65	7.3	ug/Kg
156-59-2	cis-1,2-Dichloroethene	3.65	U	1.3	3.65	7.3	ug/Kg
74-97-5	Bromochloromethane	3.65	U	1.2	3.65	7.3	ug/Kg
67-66-3	Chloroform	3.65	U	1.1	3.65	7.3	ug/Kg
71-55-6	1,1,1-Trichloroethane	3.65	U	1.3	3.65	7.3	ug/Kg

Sample Wt/Vol:

5.03

Units:

g

Report of Analysis

Client: MS Analytical Date Collected: 08/09/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-21(16-19) SDG No.: D3811 Lab Sample ID: D3811-10 Matrix: SOIL Analytical Method: SW8260C % Moisture: 32

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

Final Vol:

5000

uL

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034782.D 1 08/15/12 VF081512

V1 054/02.D	1		00/13/	12		V1 001312	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
108-87-2	Methylcyclohexane	2.5	J	1.5	3.65	7.3	ug/Kg
563-58-6	1,1-Dichloropropene	3.65	U	0.67	3.65	7.3	ug/Kg
71-43-2	Benzene	3.65	U	0.56	3.65	7.3	ug/Kg
107-06-2	1,2-Dichloroethane	3.65	U	0.94	3.65	7.3	ug/Kg
79-01-6	Trichloroethene	3.65	U	1.3	3.65	7.3	ug/Kg
78-87-5	1,2-Dichloropropane	3.65	U	0.38	3.65	7.3	ug/Kg
74-95-3	Dibromomethane	3.65	U	1.1	3.65	7.3	ug/Kg
75-27-4	Bromodichloromethane	3.65	U	0.91	3.65	7.3	ug/Kg
108-10-1	4-Methyl-2-Pentanone	18.5	U	4.3	18.5	37	ug/Kg
108-88-3	Toluene	3.65	U	0.94	3.65	7.3	ug/Kg
10061-02-6	t-1,3-Dichloropropene	3.65	U	1.2	3.65	7.3	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	3.65	U	1.1	3.65	7.3	ug/Kg
79-00-5	1,1,2-Trichloroethane	3.65	U	1.3	3.65	7.3	ug/Kg
142-28-9	1,3-Dichloropropane	3.65	U	1.1	3.65	7.3	ug/Kg
110-75-8	2-Chloroethyl Vinyl ether	18.5	U	17	18.5	37	ug/Kg
591-78-6	2-Hexanone	18.5	\mathbf{U}	5.7	18.5	37	ug/Kg
124-48-1	Dibromochloromethane	3.65	U	0.79	3.65	7.3	ug/Kg
106-93-4	1,2-Dibromoethane	3.65	U	0.94	3.65	7.3	ug/Kg
127-18-4	Tetrachloroethene	3.65	U	1.5	3.65	7.3	ug/Kg
108-90-7	Chlorobenzene	3.65	U	0.73	3.65	7.3	ug/Kg
630-20-6	1,1,1,2-Tetrachloroethane	3.65	U	0.63	3.65	7.3	ug/Kg
67-72-1	Hexachloroethane	3.65	\mathbf{U}	1.1	3.65	7.3	ug/Kg
100-41-4	Ethyl Benzene	3.65	U	0.91	3.65	7.3	ug/Kg
179601-23-1	m/p-Xylenes	7.5	\mathbf{U}	1.1	7.5	15	ug/Kg
95-47-6	o-Xylene	3.65	U	0.99	3.65	7.3	ug/Kg
100-42-5	Styrene	3.65	U	0.66	3.65	7.3	ug/Kg
75-25-2	Bromoform	3.65	U	1.1	3.65	7.3	ug/Kg
98-82-8	Isopropylbenzene	3.65	\mathbf{U}	0.7	3.65	7.3	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	3.65	\mathbf{U}	0.67	3.65	7.3	ug/Kg
96-18-4	1,2,3-Trichloropropane	3.65	U	0.72	3.65	7.3	ug/Kg
108-86-1	Bromobenzene	3.65	U	0.76	3.65	7.3	ug/Kg
103-65-1	n-propylbenzene	3.65	U	0.53	3.65	7.3	ug/Kg

Client:MS AnalyticalDate Collected:08/09/12Project:12MS104 Kensington HeightsDate Received:08/15/12

Client Sample ID: SB-21(16-19) SDG No.: D3811
Lab Sample ID: D3811-10 Matrix: SOIL
Analytical Method: SW8260C % Moisture: 32

Sample Wt/Vol: 5.03 Units: g Final Vol: 5000 uL

Soil Aliquot Vol: UL Test: VOC-Chemtech Full -15

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034782.D 1 08/15/12 VF081512

VF034/82.D	1		08/15/	12		VF081512	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
95-49-8	2-Chlorotoluene	3.65	U	1.1	3.65	7.3	ug/Kg
108-67-8	1,3,5-Trimethylbenzene	3.65	U	0.66	3.65	7.3	ug/Kg
106-43-4	4-Chlorotoluene	3.65	U	0.91	3.65	7.3	ug/Kg
98-06-6	tert-Butylbenzene	3.65	U	0.86	3.65	7.3	ug/Kg
95-63-6	1,2,4-Trimethylbenzene	3	J	0.73	3.65	7.3	ug/Kg
135-98-8	sec-Butylbenzene	3.65	U	0.76	3.65	7.3	ug/Kg
99-87-6	p-Isopropyltoluene	3.2	J	0.42	3.65	7.3	ug/Kg
541-73-1	1,3-Dichlorobenzene	3.65	U	0.54	3.65	7.3	ug/Kg
106-46-7	1,4-Dichlorobenzene	3.65	U	0.6	3.65	7.3	ug/Kg
104-51-8	n-Butylbenzene	3.65	U	0.67	3.65	7.3	ug/Kg
95-50-1	1,2-Dichlorobenzene	3.65	U	0.91	3.65	7.3	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	3.65	U	1.3	3.65	7.3	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	3.65	U	1	3.65	7.3	ug/Kg
87-68-3	Hexachlorobutadiene	3.65	U	1.2	3.65	7.3	ug/Kg
91-20-3	Naphthalene	19		0.66	3.65	7.3	ug/Kg
87-61-6	1,2,3-Trichlorobenzene	3.65	U	0.73	3.65	7.3	ug/Kg
74-88-4	Methyl Iodide	7.3	U	7.3	7.3	7.3	ug/Kg
107-05-1	Allyl chloride	7.3	U	7.3	7.3	7.3	ug/Kg
126-98-7	Methacrylonitrile	7.3	U	7.3	7.3	7.3	ug/Kg
110-57-6	trans-1,4-Dichloro-2-butene	7.3	U	7.3	7.3	7.3	ug/Kg
97-63-2	Ethyl methacrylate	7.3	U	7.3	7.3	7.3	ug/Kg
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	45.9		56 - 120		92%	SPK: 50
1868-53-7	Dibromofluoromethane	52.9		57 - 135		106%	SPK: 50
2037-26-5	Toluene-d8	42.4		67 - 123		85%	SPK: 50
460-00-4	4-Bromofluorobenzene	41.4		33 - 14	1	83%	SPK: 50
INTERNAL ST.		1.44520					
363-72-4	Pentafluorobenzene	144739	4.4				
540-36-3	1,4-Difluorobenzene	252434	5.14				
3114-55-4	Chlorobenzene-d5	196090	9.35				
3855-82-1	1,4-Dichlorobenzene-d4	69856	12.25				
TENTATIVE II	DENTIFIED COMPOUNDS						

77 of 870

Matrix:

Final Vol:

SOIL

5000

uL

D3811-10

Units:

5.03

Lab Sample ID:

Report of Analysis

Client: MS Analytical Date Collected: 08/09/12 12MS104 Kensington Heights Project: Date Received: 08/15/12

Client Sample ID: SDG No.: SB-21(16-19) D3811

% Moisture: 32 Analytical Method: SW8260C

Sample Wt/Vol: g VOC-Chemtech Full -15 Soil Aliquot Vol: uL Test:

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Date Analyzed Prep Batch ID Prep Date 1 08/15/12 VF081512 VF034782.D

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
	unknown10.29	39	J			10.29	ug/Kg
006783-92-2	Cyclohexane, 1,1,2,3-tetramethyl-	36	J			10.92	ug/Kg
002207-03-6	Cyclohexane, 1,3-dimethyl-, trans-	24	J			11.24	ug/Kg
020536-40-7	Bicyclo[2.2.1]heptane, 2,2,3-trime	63	J			11.3	ug/Kg
002847-72-5	Decane, 4-methyl-	38	J			11.7	ug/Kg
	unknown12.55	33	J			12.55	ug/Kg
000535-77-3	Benzene, 1-methyl-3-(1-methylethyl	26	J			12.86	ug/Kg
000111-65-9	Octane	45	J			13.43	ug/Kg
	unknown13.57	53	J			13.57	ug/Kg

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Report of Analysis

Client: MS Analytical Date Collected: 08/09/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-21(16-19)RE SDG No.: D3811 Lab Sample ID: D3811-10RE Matrix: SOIL Analytical Method: SW8260C % Moisture: 32 Sample Wt/Vol: 4.96 Units: g Final Vol: 5000

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036749.D 1 08/15/12 VD081512

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	3.7	U	0.96	3.7	7.4	ug/Kg
74-87-3	Chloromethane	3.7	U	1.3	3.7	7.4	ug/Kg
75-01-4	Vinyl Chloride	3.7	U	1.8	3.7	7.4	ug/Kg
141-78-6	Ethyl Acetate	3.7	U	1.3	3.7	7.4	ug/Kg
108-21-4	Isopropyl Acetate	3.7	U	1.8	3.7	7.4	ug/Kg
628-63-7	N-amyl acetate	3.7	U	1.4	3.7	7.4	ug/Kg
74-83-9	Bromomethane	3.7	U	3.6	3.7	7.4	ug/Kg
75-00-3	Chloroethane	3.7	U	2.1	3.7	7.4	ug/Kg
75-69-4	Trichlorofluoromethane	3.7	U	2	3.7	7.4	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	3.7	U	2	3.7	7.4	ug/Kg
75-65-0	Tert butyl alcohol	18.5	U	11	18.5	37	ug/Kg
60-29-7	Diethyl Ether	3.7	U	2.8	3.7	7.4	ug/Kg
75-35-4	1,1-Dichloroethene	3.7	U	2.2	3.7	7.4	ug/Kg
107-02-8	Acrolein	18.5	U	5.9	18.5	37	ug/Kg
107-13-1	Acrylonitrile	18.5	U	7.3	18.5	37	ug/Kg
67-64-1	Acetone	150	Q	4.5	18.5	37	ug/Kg
75-15-0	Carbon Disulfide	4.6	J	1.6	3.7	7.4	ug/Kg
1634-04-4	Methyl tert-butyl Ether	3.7	U	1.4	3.7	7.4	ug/Kg
79-20-9	Methyl Acetate	3.7	U	2.2	3.7	7.4	ug/Kg
75-09-2	Methylene Chloride	3.7	U	2.1	3.7	7.4	ug/Kg
156-60-5	trans-1,2-Dichloroethene	3.7	U	1	3.7	7.4	ug/Kg
108-05-4	Vinyl Acetate	18.5	UQ	5.1	18.5	37	ug/Kg
75-34-3	1,1-Dichloroethane	3.7	U	1.4	3.7	7.4	ug/Kg
110-82-7	Cyclohexane	3.7	U	1.5	3.7	7.4	ug/Kg
78-93-3	2-Butanone	63		4.6	18.5	37	ug/Kg
56-23-5	Carbon Tetrachloride	3.7	U	1.5	3.7	7.4	ug/Kg
594-20-7	2,2-Dichloropropane	3.7	U	1.5	3.7	7.4	ug/Kg
156-59-2	cis-1,2-Dichloroethene	3.7	U	1.3	3.7	7.4	ug/Kg
74-97-5	Bromochloromethane	3.7	U	1.2	3.7	7.4	ug/Kg
67-66-3	Chloroform	3.7	U	1.1	3.7	7.4	ug/Kg
71-55-6	1,1,1-Trichloroethane	3.7	U	1.3	3.7	7.4	ug/Kg

Sample Wt/Vol:

4.96

Units:

g

Report of Analysis

Client: MS Analytical Date Collected: 08/09/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-21(16-19)RE SDG No.: D3811 Lab Sample ID: D3811-10RE Matrix: SOIL Analytical Method: SW8260C % Moisture: 32

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

Final Vol:

5000

uL

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036749.D 1 08/15/12 VD081512

VD030747.D	1		00/13/	12		V D001312	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
108-87-2	Methylcyclohexane	3.7	U	1.6	3.7	7.4	ug/Kg
563-58-6	1,1-Dichloropropene	3.7	U	0.68	3.7	7.4	ug/Kg
71-43-2	Benzene	3.7	U	0.56	3.7	7.4	ug/Kg
107-06-2	1,2-Dichloroethane	3.7	U	0.95	3.7	7.4	ug/Kg
79-01-6	Trichloroethene	3.7	U	1.3	3.7	7.4	ug/Kg
78-87-5	1,2-Dichloropropane	3.7	U	0.39	3.7	7.4	ug/Kg
74-95-3	Dibromomethane	3.7	U	1.2	3.7	7.4	ug/Kg
75-27-4	Bromodichloromethane	3.7	U	0.92	3.7	7.4	ug/Kg
108-10-1	4-Methyl-2-Pentanone	18.5	U	4.3	18.5	37	ug/Kg
108-88-3	Toluene	3.7	U	0.95	3.7	7.4	ug/Kg
10061-02-6	t-1,3-Dichloropropene	3.7	U	1.2	3.7	7.4	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	3.7	U	1.1	3.7	7.4	ug/Kg
79-00-5	1,1,2-Trichloroethane	3.7	U	1.3	3.7	7.4	ug/Kg
142-28-9	1,3-Dichloropropane	3.7	U	1.1	3.7	7.4	ug/Kg
110-75-8	2-Chloroethyl Vinyl ether	18.5	U	17	18.5	37	ug/Kg
591-78-6	2-Hexanone	18.5	U	5.8	18.5	37	ug/Kg
124-48-1	Dibromochloromethane	3.7	U	0.8	3.7	7.4	ug/Kg
106-93-4	1,2-Dibromoethane	3.7	U	0.95	3.7	7.4	ug/Kg
127-18-4	Tetrachloroethene	3.7	U	1.5	3.7	7.4	ug/Kg
108-90-7	Chlorobenzene	3.7	U	0.74	3.7	7.4	ug/Kg
630-20-6	1,1,1,2-Tetrachloroethane	3.7	U	0.64	3.7	7.4	ug/Kg
67-72-1	Hexachloroethane	3.7	U	1.1	3.7	7.4	ug/Kg
100-41-4	Ethyl Benzene	3.7	U	0.92	3.7	7.4	ug/Kg
179601-23-1	m/p-Xylenes	7.5	U	1.1	7.5	15	ug/Kg
95-47-6	o-Xylene	3.7	U	1	3.7	7.4	ug/Kg
100-42-5	Styrene	3.7	U	0.67	3.7	7.4	ug/Kg
75-25-2	Bromoform	3.7	U	1.1	3.7	7.4	ug/Kg
98-82-8	Isopropylbenzene	3.7	U	0.71	3.7	7.4	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	3.7	U	0.68	3.7	7.4	ug/Kg
96-18-4	1,2,3-Trichloropropane	3.7	U	0.73	3.7	7.4	ug/Kg
108-86-1	Bromobenzene	3.7	U	0.77	3.7	7.4	ug/Kg
103-65-1	n-propylbenzene	3.7	U	0.53	3.7	7.4	ug/Kg

Report of Analysis

Client:MS AnalyticalDate Collected:08/09/12Project:12MS104 Kensington HeightsDate Received:08/15/12

Client Sample ID: SB-21(16-19)RE SDG No.: D3811
Lab Sample ID: D3811-10RE Matrix: SOIL

Analytical Method: SW8260C % Moisture: 32
Sample Wt/Vol: 4.96 Units: g Final Vol: 5000

Soil Aliquot Vol: UL Test: VOC-Chemtech Full -15

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036749.D 1 08/15/12 VD081512

VD036749.D			08/15/	/12		VD081512	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
95-49-8	2-Chlorotoluene	3.7	U	1.1	3.7	7.4	ug/Kg
108-67-8	1,3,5-Trimethylbenzene	3.7	U	0.67	3.7	7.4	ug/Kg
106-43-4	4-Chlorotoluene	3.7	U	0.92	3.7	7.4	ug/Kg
98-06-6	tert-Butylbenzene	3.7	U	0.87	3.7	7.4	ug/Kg
95-63-6	1,2,4-Trimethylbenzene	3.7	U	0.74	3.7	7.4	ug/Kg
135-98-8	sec-Butylbenzene	3.7	U	0.77	3.7	7.4	ug/Kg
99-87-6	p-Isopropyltoluene	3.7	U	0.43	3.7	7.4	ug/Kg
541-73-1	1,3-Dichlorobenzene	3.7	U	0.55	3.7	7.4	ug/Kg
106-46-7	1,4-Dichlorobenzene	3.7	U	0.61	3.7	7.4	ug/Kg
104-51-8	n-Butylbenzene	3.7	U	0.68	3.7	7.4	ug/Kg
95-50-1	1,2-Dichlorobenzene	3.7	U	0.92	3.7	7.4	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	3.7	U	1.3	3.7	7.4	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	3.7	U	1	3.7	7.4	ug/Kg
87-68-3	Hexachlorobutadiene	3.7	U	1.2	3.7	7.4	ug/Kg
91-20-3	Naphthalene	3.9	JQ	0.67	3.7	7.4	ug/Kg
87-61-6	1,2,3-Trichlorobenzene	3.7	U	0.74	3.7	7.4	ug/Kg
74-88-4	Methyl Iodide	7.4	U	7.4	7.4	7.4	ug/Kg
107-05-1	Allyl chloride	7.4	U	7.4	7.4	7.4	ug/Kg
126-98-7	Methacrylonitrile	7.4	UQ	7.4	7.4	7.4	ug/Kg
110-57-6	trans-1,4-Dichloro-2-butene	7.4	U	7.4	7.4	7.4	ug/Kg
97-63-2	Ethyl methacrylate	7.4	U	7.4	7.4	7.4	ug/Kg
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	59.6		56 - 120)	119%	SPK: 50
1868-53-7	Dibromofluoromethane	48		57 - 135	5	96%	SPK: 50
2037-26-5	Toluene-d8	50.8		67 - 123	3	102%	SPK: 50
460-00-4	4-Bromofluorobenzene	59.4		33 - 141	[119%	SPK: 50
INTERNAL ST							
363-72-4	Pentafluorobenzene	347038	4.73				
540-36-3	1,4-Difluorobenzene	625041	5.45				
3114-55-4	Chlorobenzene-d5	618007	9.57				
3855-82-1	1,4-Dichlorobenzene-d4	284686	12.47				

Client: MS Analytical

Date Collected: 08/09/12

12MS104 Kensington Heights Project:

> SDG No.: D3811

Date Received:

Client Sample ID: SB-21(16-19)RE Lab Sample ID: D3811-10RE

Matrix: SOIL

Analytical Method: SW8260C % Moisture: 32

Sample Wt/Vol: 4.96 Units:

5000 uL

Soil Aliquot Vol:

g uL

Test:

VOC-Chemtech Full -15

GC Column:

RTX-624 ID: 0.25

Level:

Final Vol:

LOW

08/15/12

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VD081512

VD036749.D

08/15/12

CAS Number

Parameter

Conc.

Qualifier

MDL

LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Client: MS Analytical Date Collected: 08/09/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-22(12-19) SDG No.: D3811 Lab Sample ID: D3811-11 Matrix: SOIL Analytical Method: SW8260C % Moisture:

Sample Wt/Vol: 4.95 Units: g 5000 uL Soil Aliquot Vol: иL Test: VOC-Chemtech Full -15

Final Vol:

ID: 0.18 Level: GC Column: RTX-VMS LOW

File ID/Qc Batch: Dilution: Prep Batch ID Prep Date Date Analyzed VF034783.D 08/15/12 VF081512

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	2.8	U	0.72	2.8	5.6	ug/Kg
74-87-3	Chloromethane	2.8	U	0.95	2.8	5.6	ug/Kg
75-01-4	Vinyl Chloride	2.8	U	1.4	2.8	5.6	ug/Kg
141-78-6	Ethyl Acetate	2.8	U	0.97	2.8	5.6	ug/Kg
108-21-4	Isopropyl Acetate	2.8	U	1.3	2.8	5.6	ug/Kg
628-63-7	N-amyl acetate	2.8	U	1	2.8	5.6	ug/Kg
74-83-9	Bromomethane	2.8	U	2.7	2.8	5.6	ug/Kg
75-00-3	Chloroethane	2.8	U	1.6	2.8	5.6	ug/Kg
75-69-4	Trichlorofluoromethane	2.8	U	1.5	2.8	5.6	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	2.8	U	1.5	2.8	5.6	ug/Kg
75-65-0	Tert butyl alcohol	14	U	8.2	14	28	ug/Kg
60-29-7	Diethyl Ether	2.8	U	2.1	2.8	5.6	ug/Kg
75-35-4	1,1-Dichloroethene	2.8	U	1.6	2.8	5.6	ug/Kg
107-02-8	Acrolein	14	U	4.4	14	28	ug/Kg
107-13-1	Acrylonitrile	14	U	5.5	14	28	ug/Kg
67-64-1	Acetone	74		3.4	14	28	ug/Kg
75-15-0	Carbon Disulfide	2.8	U	1.2	2.8	5.6	ug/Kg
1634-04-4	Methyl tert-butyl Ether	2.8	U	1.1	2.8	5.6	ug/Kg
79-20-9	Methyl Acetate	2.8	U	1.7	2.8	5.6	ug/Kg
75-09-2	Methylene Chloride	2.8	U	1.6	2.8	5.6	ug/Kg
156-60-5	trans-1,2-Dichloroethene	2.8	U	0.77	2.8	5.6	ug/Kg
108-05-4	Vinyl Acetate	14	U	3.9	14	28	ug/Kg
75-34-3	1,1-Dichloroethane	2.8	U	1	2.8	5.6	ug/Kg
110-82-7	Cyclohexane	2.8	U	1.1	2.8	5.6	ug/Kg
78-93-3	2-Butanone	14	U	3.5	14	28	ug/Kg
56-23-5	Carbon Tetrachloride	2.8	U	1.1	2.8	5.6	ug/Kg
594-20-7	2,2-Dichloropropane	2.8	U	1.2	2.8	5.6	ug/Kg
156-59-2	cis-1,2-Dichloroethene	2.8	U	0.99	2.8	5.6	ug/Kg
74-97-5	Bromochloromethane	2.8	U	0.88	2.8	5.6	ug/Kg
67-66-3	Chloroform	2.8	U	0.82	2.8	5.6	ug/Kg
71-55-6	1,1,1-Trichloroethane	2.8	U	0.98	2.8	5.6	ug/Kg

Client:MS AnalyticalDate Collected:08/09/12Project:12MS104 Kensington HeightsDate Received:08/15/12Client Sample ID:SB-22(12-19)SDG No.:D3811

Lab Sample ID: SB-22(12-19) SDG No.: D3811

Lab Sample ID: Matrix: SOIL

Analytical Method: SW8260C % Moisture: 9

Sample Wt/Vol: 4.95 Units: g Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034783.D 1 08/15/12 VF081512

	<u>-</u>						
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
108-87-2	Methylcyclohexane	2.8	U	1.2	2.8	5.6	ug/Kg
563-58-6	1,1-Dichloropropene	2.8	U	0.51	2.8	5.6	ug/Kg
71-43-2	Benzene	2.8	U	0.42	2.8	5.6	ug/Kg
107-06-2	1,2-Dichloroethane	2.8	U	0.71	2.8	5.6	ug/Kg
79-01-6	Trichloroethene	2.8	U	0.95	2.8	5.6	ug/Kg
78-87-5	1,2-Dichloropropane	2.8	U	0.29	2.8	5.6	ug/Kg
74-95-3	Dibromomethane	2.8	U	0.87	2.8	5.6	ug/Kg
75-27-4	Bromodichloromethane	2.8	U	0.69	2.8	5.6	ug/Kg
108-10-1	4-Methyl-2-Pentanone	14	U	3.2	14	28	ug/Kg
108-88-3	Toluene	2.8	U	0.71	2.8	5.6	ug/Kg
10061-02-6	t-1,3-Dichloropropene	2.8	U	0.88	2.8	5.6	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	2.8	U	0.8	2.8	5.6	ug/Kg
79-00-5	1,1,2-Trichloroethane	2.8	U	1	2.8	5.6	ug/Kg
142-28-9	1,3-Dichloropropane	2.8	U	0.82	2.8	5.6	ug/Kg
110-75-8	2-Chloroethyl Vinyl ether	14	U	13	14	28	ug/Kg
591-78-6	2-Hexanone	14	U	4.4	14	28	ug/Kg
124-48-1	Dibromochloromethane	2.8	U	0.6	2.8	5.6	ug/Kg
106-93-4	1,2-Dibromoethane	2.8	U	0.71	2.8	5.6	ug/Kg
127-18-4	Tetrachloroethene	2.8	U	1.1	2.8	5.6	ug/Kg
108-90-7	Chlorobenzene	2.8	U	0.56	2.8	5.6	ug/Kg
630-20-6	1,1,1,2-Tetrachloroethane	2.8	U	0.48	2.8	5.6	ug/Kg
67-72-1	Hexachloroethane	2.8	U	0.84	2.8	5.6	ug/Kg
100-41-4	Ethyl Benzene	2.8	U	0.69	2.8	5.6	ug/Kg
179601-23-1	m/p-Xylenes	5.5	U	0.8	5.5	11	ug/Kg
95-47-6	o-Xylene	2.8	U	0.75	2.8	5.6	ug/Kg
100-42-5	Styrene	2.8	U	0.5	2.8	5.6	ug/Kg
75-25-2	Bromoform	2.8	U	0.82	2.8	5.6	ug/Kg
98-82-8	Isopropylbenzene	2.8	U	0.53	2.8	5.6	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	2.8	U	0.51	2.8	5.6	ug/Kg
96-18-4	1,2,3-Trichloropropane	2.8	U	0.54	2.8	5.6	ug/Kg
108-86-1	Bromobenzene	2.8	U	0.58	2.8	5.6	ug/Kg
103-65-1	n-propylbenzene	2.8	U	0.4	2.8	5.6	ug/Kg

Client:MS AnalyticalDate Collected:08/09/12Project:12MS104 Kensington HeightsDate Received:08/15/12

Client Sample ID: SB-22(12-19) SDG No.: D3811
Lab Sample ID: D3811-11 Matrix: SOIL
Analytical Method: SW8260C % Moisture: 9

Sample Wt/Vol: 4.95 Units: g Final Vol: 5000 uL

Soil Aliquot Vol: UL Test: VOC-Chemtech Full -15

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034783.D 1 08/15/12 VF081512

VF034783.D	1		08/13/	12		VF081312	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
95-49-8	2-Chlorotoluene	2.8	U	0.82	2.8	5.6	ug/Kg
108-67-8	1,3,5-Trimethylbenzene	2.8	U	0.5	2.8	5.6	ug/Kg
106-43-4	4-Chlorotoluene	2.8	U	0.69	2.8	5.6	ug/Kg
98-06-6	tert-Butylbenzene	2.8	U	0.65	2.8	5.6	ug/Kg
95-63-6	1,2,4-Trimethylbenzene	2.8	U	0.56	2.8	5.6	ug/Kg
135-98-8	sec-Butylbenzene	2.8	U	0.58	2.8	5.6	ug/Kg
99-87-6	p-Isopropyltoluene	2.8	U	0.32	2.8	5.6	ug/Kg
541-73-1	1,3-Dichlorobenzene	2.8	U	0.41	2.8	5.6	ug/Kg
106-46-7	1,4-Dichlorobenzene	2.8	U	0.46	2.8	5.6	ug/Kg
104-51-8	n-Butylbenzene	2.8	U	0.51	2.8	5.6	ug/Kg
95-50-1	1,2-Dichlorobenzene	2.8	U	0.69	2.8	5.6	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	2.8	U	0.97	2.8	5.6	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	2.8	U	0.78	2.8	5.6	ug/Kg
87-68-3	Hexachlorobutadiene	2.8	U	0.88	2.8	5.6	ug/Kg
91-20-3	Naphthalene	2.8	U	0.5	2.8	5.6	ug/Kg
87-61-6	1,2,3-Trichlorobenzene	2.8	U	0.56	2.8	5.6	ug/Kg
74-88-4	Methyl Iodide	5.6	U	5.6	5.6	5.6	ug/Kg
107-05-1	Allyl chloride	5.6	U	5.6	5.6	5.6	ug/Kg
126-98-7	Methacrylonitrile	5.6	U	5.6	5.6	5.6	ug/Kg
110-57-6	trans-1,4-Dichloro-2-butene	5.6	U	5.6	5.6	5.6	ug/Kg
97-63-2	Ethyl methacrylate	5.6	U	5.6	5.6	5.6	ug/Kg
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	48.5		56 - 120		97%	SPK: 50
1868-53-7	Dibromofluoromethane	69.1	*	57 - 135		138%	SPK: 50
2037-26-5	Toluene-d8	52.5		67 - 123		105%	SPK: 50
460-00-4	4-Bromofluorobenzene	38.7		33 - 14	l	77%	SPK: 50
INTERNAL ST		44.000					
363-72-4	Pentafluorobenzene	41989	4.41				
540-36-3	1,4-Difluorobenzene	70942	5.14				
3114-55-4	Chlorobenzene-d5	64882	9.35				
3855-82-1	1,4-Dichlorobenzene-d4	17979	12.25				

Date Collected:

Date Received:

SDG No.:

% Moisture:

Matrix:

08/09/12

08/15/12

D3811

SOIL

5000

uL

Report of Analysis

Client: MS Analytical

Project: 12MS104 Kensington Heights

Client Sample ID: SB-22(12-19)

Lab Sample ID: D3811-11

Analytical Method: SW8260C

Sample Wt/Vol: 4.95 Units: g Final Vol:

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VF034783.D 1 08/15/12 VF081512

CAS Number Parameter Conc. Qualifier MDL LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

GC Column:

Report of Analysis

Client: MS Analytical Date Collected: 08/09/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-22(12-19)RE SDG No.: D3811 Lab Sample ID: D3811-11RE Matrix: SOIL Analytical Method: SW8260C % Moisture:

Sample Wt/Vol: 4.95 Units: g Final Vol: 5000 uL

Level:

LOW

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

ID: 0.25

RTX-624

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036750.D 1 08/15/12 VD081512

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	2.8	U	0.72	2.8	5.6	ug/Kg
74-87-3	Chloromethane	2.8	U	0.95	2.8	5.6	ug/Kg
75-01-4	Vinyl Chloride	2.8	U	1.4	2.8	5.6	ug/Kg
141-78-6	Ethyl Acetate	2.8	U	0.97	2.8	5.6	ug/Kg
108-21-4	Isopropyl Acetate	2.8	U	1.3	2.8	5.6	ug/Kg
628-63-7	N-amyl acetate	2.8	U	1	2.8	5.6	ug/Kg
74-83-9	Bromomethane	2.8	U	2.7	2.8	5.6	ug/Kg
75-00-3	Chloroethane	2.8	U	1.6	2.8	5.6	ug/Kg
75-69-4	Trichlorofluoromethane	2.8	U	1.5	2.8	5.6	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	2.8	U	1.5	2.8	5.6	ug/Kg
75-65-0	Tert butyl alcohol	14	U	8.2	14	28	ug/Kg
60-29-7	Diethyl Ether	2.8	U	2.1	2.8	5.6	ug/Kg
75-35-4	1,1-Dichloroethene	2.8	U	1.6	2.8	5.6	ug/Kg
107-02-8	Acrolein	14	U	4.4	14	28	ug/Kg
107-13-1	Acrylonitrile	14	U	5.5	14	28	ug/Kg
67-64-1	Acetone	45	Q	3.4	14	28	ug/Kg
75-15-0	Carbon Disulfide	2.8	U	1.2	2.8	5.6	ug/Kg
1634-04-4	Methyl tert-butyl Ether	2.8	U	1.1	2.8	5.6	ug/Kg
79-20-9	Methyl Acetate	2.8	U	1.7	2.8	5.6	ug/Kg
75-09-2	Methylene Chloride	2.8	U	1.6	2.8	5.6	ug/Kg
156-60-5	trans-1,2-Dichloroethene	2.8	U	0.77	2.8	5.6	ug/Kg
108-05-4	Vinyl Acetate	14	UQ	3.9	14	28	ug/Kg
75-34-3	1,1-Dichloroethane	2.8	U	1	2.8	5.6	ug/Kg
110-82-7	Cyclohexane	2.8	U	1.1	2.8	5.6	ug/Kg
78-93-3	2-Butanone	14	U	3.5	14	28	ug/Kg
56-23-5	Carbon Tetrachloride	2.8	U	1.1	2.8	5.6	ug/Kg
594-20-7	2,2-Dichloropropane	2.8	U	1.2	2.8	5.6	ug/Kg
156-59-2	cis-1,2-Dichloroethene	2.8	U	0.99	2.8	5.6	ug/Kg
74-97-5	Bromochloromethane	2.8	U	0.88	2.8	5.6	ug/Kg
67-66-3	Chloroform	2.8	U	0.82	2.8	5.6	ug/Kg
71-55-6	1,1,1-Trichloroethane	2.8	U	0.98	2.8	5.6	ug/Kg

Client:MS AnalyticalDate Collected:08/09/12Project:12MS104 Kensington HeightsDate Received:08/15/12

Client Sample ID: SB-22(12-19)RE SDG No.: D3811

Lab Sample ID: D3811-11RE Matrix: SOIL

Analytical Method: SW8260C % Moisture: 9

Sample Wt/Vol: 4.95 Units: g Final Vol: 5000

Soil Aliquot Vol: UL Test: VOC-Chemtech Full -15

uL

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036750.D 1 08/15/12 VD081512

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
108-87-2	Methylcyclohexane	2.8	U	1.2	2.8	5.6	ug/Kg
563-58-6	1,1-Dichloropropene	2.8	U	0.51	2.8	5.6	ug/Kg
71-43-2	Benzene	2.8	U	0.42	2.8	5.6	ug/Kg
107-06-2	1,2-Dichloroethane	2.8	U	0.71	2.8	5.6	ug/Kg
79-01-6	Trichloroethene	2.8	U	0.95	2.8	5.6	ug/Kg
78-87-5	1,2-Dichloropropane	2.8	U	0.29	2.8	5.6	ug/Kg
74-95-3	Dibromomethane	2.8	U	0.87	2.8	5.6	ug/Kg
75-27-4	Bromodichloromethane	2.8	U	0.69	2.8	5.6	ug/Kg
108-10-1	4-Methyl-2-Pentanone	14	U	3.2	14	28	ug/Kg
108-88-3	Toluene	2.8	U	0.71	2.8	5.6	ug/Kg
10061-02-6	t-1,3-Dichloropropene	2.8	U	0.88	2.8	5.6	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	2.8	U	0.8	2.8	5.6	ug/Kg
79-00-5	1,1,2-Trichloroethane	2.8	U	1	2.8	5.6	ug/Kg
142-28-9	1,3-Dichloropropane	2.8	U	0.82	2.8	5.6	ug/Kg
110-75-8	2-Chloroethyl Vinyl ether	14	U	13	14	28	ug/Kg
591-78-6	2-Hexanone	14	U	4.4	14	28	ug/Kg
124-48-1	Dibromochloromethane	2.8	U	0.6	2.8	5.6	ug/Kg
106-93-4	1,2-Dibromoethane	2.8	U	0.71	2.8	5.6	ug/Kg
127-18-4	Tetrachloroethene	2.8	U	1.1	2.8	5.6	ug/Kg
108-90-7	Chlorobenzene	2.8	U	0.56	2.8	5.6	ug/Kg
630-20-6	1,1,1,2-Tetrachloroethane	2.8	U	0.48	2.8	5.6	ug/Kg
67-72-1	Hexachloroethane	2.8	U	0.84	2.8	5.6	ug/Kg
100-41-4	Ethyl Benzene	2.8	U	0.69	2.8	5.6	ug/Kg
179601-23-1	m/p-Xylenes	5.5	U	0.8	5.5	11	ug/Kg
95-47-6	o-Xylene	2.8	U	0.75	2.8	5.6	ug/Kg
100-42-5	Styrene	2.8	U	0.5	2.8	5.6	ug/Kg
75-25-2	Bromoform	2.8	U	0.82	2.8	5.6	ug/Kg
98-82-8	Isopropylbenzene	2.8	U	0.53	2.8	5.6	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	2.8	U	0.51	2.8	5.6	ug/Kg
96-18-4	1,2,3-Trichloropropane	2.8	U	0.54	2.8	5.6	ug/Kg
108-86-1	Bromobenzene	2.8	U	0.58	2.8	5.6	ug/Kg
103-65-1	n-propylbenzene	2.8	\mathbf{U}	0.4	2.8	5.6	ug/Kg

Report of Analysis

Client:MS AnalyticalDate Collected:08/09/12Project:12MS104 Kensington HeightsDate Received:08/15/12

Client Sample ID: SB-22(12-19)RE SDG No.: D3811
Lab Sample ID: D3811-11RE Matrix: SOIL

 Analytical Method:
 SW8260C
 % Moisture:
 9

 Sample Wt/Vol:
 4.95
 Units: g
 Final Vol:
 5000

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036750.D 1 08/15/12 VD081512

VD030730.D	1		08/13/	12		VD081312	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
95-49-8	2-Chlorotoluene	2.8	U	0.82	2.8	5.6	ug/Kg
108-67-8	1,3,5-Trimethylbenzene	2.8	U	0.5	2.8	5.6	ug/Kg
106-43-4	4-Chlorotoluene	2.8	U	0.69	2.8	5.6	ug/Kg
98-06-6	tert-Butylbenzene	2.8	U	0.65	2.8	5.6	ug/Kg
95-63-6	1,2,4-Trimethylbenzene	2.8	U	0.56	2.8	5.6	ug/Kg
135-98-8	sec-Butylbenzene	2.8	U	0.58	2.8	5.6	ug/Kg
99-87-6	p-Isopropyltoluene	2.8	U	0.32	2.8	5.6	ug/Kg
541-73-1	1,3-Dichlorobenzene	2.8	U	0.41	2.8	5.6	ug/Kg
106-46-7	1,4-Dichlorobenzene	2.8	U	0.46	2.8	5.6	ug/Kg
104-51-8	n-Butylbenzene	2.8	U	0.51	2.8	5.6	ug/Kg
95-50-1	1,2-Dichlorobenzene	2.8	U	0.69	2.8	5.6	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	2.8	U	0.97	2.8	5.6	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	2.8	U	0.78	2.8	5.6	ug/Kg
87-68-3	Hexachlorobutadiene	2.8	U	0.88	2.8	5.6	ug/Kg
91-20-3	Naphthalene	2.8	UQ	0.5	2.8	5.6	ug/Kg
87-61-6	1,2,3-Trichlorobenzene	2.8	U	0.56	2.8	5.6	ug/Kg
74-88-4	Methyl Iodide	5.6	U	5.6	5.6	5.6	ug/Kg
107-05-1	Allyl chloride	5.6	U	5.6	5.6	5.6	ug/Kg
126-98-7	Methacrylonitrile	5.6	UQ	5.6	5.6	5.6	ug/Kg
110-57-6	trans-1,4-Dichloro-2-butene	5.6	U	5.6	5.6	5.6	ug/Kg
97-63-2	Ethyl methacrylate	5.6	U	5.6	5.6	5.6	ug/Kg
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	57.4		56 - 120		115%	SPK: 50
1868-53-7	Dibromofluoromethane	48.2		57 - 135		96%	SPK: 50
2037-26-5	Toluene-d8	51.6		67 - 123		103%	SPK: 50
460-00-4	4-Bromofluorobenzene	58.9		33 - 14	1	118%	SPK: 50
INTERNAL ST		251602	4.7.4				
363-72-4	Pentafluorobenzene	354693	4.74				
540-36-3	1,4-Difluorobenzene	635091	5.45				
3114-55-4	Chlorobenzene-d5	638670	9.57				
3855-82-1	1,4-Dichlorobenzene-d4	290123	12.47				

Client: MS Analytical Date Collected: 08/09/12

Date Received:

Matrix:

Test:

08/15/12

VOC-Chemtech Full -15

12MS104 Kensington Heights Project:

Client Sample ID: SDG No.: SB-22(12-19)RE D3811

Lab Sample ID: D3811-11RE SOIL

uL

% Moisture: Analytical Method: SW8260C

Sample Wt/Vol: 4.95 Units: Final Vol: 5000 uL g

Soil Aliquot Vol: GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Date Analyzed Prep Batch ID Prep Date

VD036750.D 08/15/12 VD081512

MDL **CAS Number** Parameter Conc. **Qualifier** LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Report of Analysis

Client: MS Analytical Date Collected: 08/10/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-37(8-10) SDG No.: D3811 Lab Sample ID: D3811-13 Matrix: SOIL Analytical Method: SW8260C % Moisture: 30 Sample Wt/Vol: 5 Units: g Final Vol: 5000

Soil Aliquot Vol: UL Test: VOC-Chemtech Full -15

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034784.D 1 08/15/12 VF081512

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	3.55	U	0.93	3.55	7.1	ug/Kg
74-87-3	Chloromethane	3.55	U	1.2	3.55	7.1	ug/Kg
75-01-4	Vinyl Chloride	3.55	U	1.8	3.55	7.1	ug/Kg
141-78-6	Ethyl Acetate	3.55	U	1.2	3.55	7.1	ug/Kg
108-21-4	Isopropyl Acetate	3.55	U	1.7	3.55	7.1	ug/Kg
628-63-7	N-amyl acetate	3.55	U	1.3	3.55	7.1	ug/Kg
74-83-9	Bromomethane	3.55	U	3.5	3.55	7.1	ug/Kg
75-00-3	Chloroethane	3.55	U	2	3.55	7.1	ug/Kg
75-69-4	Trichlorofluoromethane	3.55	U	1.9	3.55	7.1	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	3.55	U	1.9	3.55	7.1	ug/Kg
75-65-0	Tert butyl alcohol	18	U	11	18	36	ug/Kg
60-29-7	Diethyl Ether	3.55	U	2.7	3.55	7.1	ug/Kg
75-35-4	1,1-Dichloroethene	3.55	U	2.1	3.55	7.1	ug/Kg
107-02-8	Acrolein	18	U	5.7	18	36	ug/Kg
107-13-1	Acrylonitrile	18	U	7	18	36	ug/Kg
67-64-1	Acetone	25	J	4.3	18	36	ug/Kg
75-15-0	Carbon Disulfide	3.55	U	1.5	3.55	7.1	ug/Kg
1634-04-4	Methyl tert-butyl Ether	3.55	U	1.4	3.55	7.1	ug/Kg
79-20-9	Methyl Acetate	3.55	U	2.2	3.55	7.1	ug/Kg
75-09-2	Methylene Chloride	3.55	U	2	3.55	7.1	ug/Kg
156-60-5	trans-1,2-Dichloroethene	3.55	U	0.99	3.55	7.1	ug/Kg
108-05-4	Vinyl Acetate	18	U	5	18	36	ug/Kg
75-34-3	1,1-Dichloroethane	3.55	U	1.3	3.55	7.1	ug/Kg
110-82-7	Cyclohexane	3.55	U	1.4	3.55	7.1	ug/Kg
78-93-3	2-Butanone	18	U	4.4	18	36	ug/Kg
56-23-5	Carbon Tetrachloride	3.55	U	1.4	3.55	7.1	ug/Kg
594-20-7	2,2-Dichloropropane	3.55	U	1.5	3.55	7.1	ug/Kg
156-59-2	cis-1,2-Dichloroethene	3.55	U	1.3	3.55	7.1	ug/Kg
74-97-5	Bromochloromethane	3.55	U	1.1	3.55	7.1	ug/Kg
67-66-3	Chloroform	3.55	U	1.1	3.55	7.1	ug/Kg
71-55-6	1,1,1-Trichloroethane	3.55	U	1.3	3.55	7.1	ug/Kg

Sample Wt/Vol:

5

Units:

g

Report of Analysis

Client: MS Analytical Date Collected: 08/10/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-37(8-10) SDG No.: D3811 Lab Sample ID: D3811-13 Matrix: SOIL Analytical Method: SW8260C % Moisture: 30

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

Final Vol:

5000

uL

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034784.D 1 08/15/12 VF081512

, , , , , , , , , , , ,	<u>-</u>						
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
108-87-2	Methylcyclohexane	3.55	U	1.5	3.55	7.1	ug/Kg
563-58-6	1,1-Dichloropropene	3.55	U	0.66	3.55	7.1	ug/Kg
71-43-2	Benzene	3.55	U	0.54	3.55	7.1	ug/Kg
107-06-2	1,2-Dichloroethane	3.55	U	0.91	3.55	7.1	ug/Kg
79-01-6	Trichloroethene	3.55	U	1.2	3.55	7.1	ug/Kg
78-87-5	1,2-Dichloropropane	3.55	U	0.37	3.55	7.1	ug/Kg
74-95-3	Dibromomethane	3.55	U	1.1	3.55	7.1	ug/Kg
75-27-4	Bromodichloromethane	3.55	U	0.89	3.55	7.1	ug/Kg
108-10-1	4-Methyl-2-Pentanone	18	U	4.2	18	36	ug/Kg
108-88-3	Toluene	3.55	U	0.91	3.55	7.1	ug/Kg
10061-02-6	t-1,3-Dichloropropene	3.55	U	1.1	3.55	7.1	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	3.55	U	1	3.55	7.1	ug/Kg
79-00-5	1,1,2-Trichloroethane	3.55	U	1.3	3.55	7.1	ug/Kg
142-28-9	1,3-Dichloropropane	3.55	U	1.1	3.55	7.1	ug/Kg
110-75-8	2-Chloroethyl Vinyl ether	18	U	16	18	36	ug/Kg
591-78-6	2-Hexanone	18	U	5.6	18	36	ug/Kg
124-48-1	Dibromochloromethane	3.55	U	0.77	3.55	7.1	ug/Kg
106-93-4	1,2-Dibromoethane	3.55	U	0.91	3.55	7.1	ug/Kg
127-18-4	Tetrachloroethene	3.55	U	1.4	3.55	7.1	ug/Kg
108-90-7	Chlorobenzene	3.55	U	0.71	3.55	7.1	ug/Kg
630-20-6	1,1,1,2-Tetrachloroethane	3.55	U	0.61	3.55	7.1	ug/Kg
67-72-1	Hexachloroethane	3.55	U	1.1	3.55	7.1	ug/Kg
100-41-4	Ethyl Benzene	3.55	U	0.89	3.55	7.1	ug/Kg
179601-23-1	m/p-Xylenes	7	U	1	7	14	ug/Kg
95-47-6	o-Xylene	3.55	U	0.97	3.55	7.1	ug/Kg
100-42-5	Styrene	3.55	U	0.64	3.55	7.1	ug/Kg
75-25-2	Bromoform	3.55	U	1.1	3.55	7.1	ug/Kg
98-82-8	Isopropylbenzene	3.55	U	0.69	3.55	7.1	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	3.55	U	0.66	3.55	7.1	ug/Kg
96-18-4	1,2,3-Trichloropropane	3.55	U	0.7	3.55	7.1	ug/Kg
108-86-1	Bromobenzene	3.55	U	0.74	3.55	7.1	ug/Kg
103-65-1	n-propylbenzene	3.55	U	0.51	3.55	7.1	ug/Kg

Report of Analysis

Client:MS AnalyticalDate Collected:08/10/12Project:12MS104 Kensington HeightsDate Received:08/15/12

Client Sample ID: SB-37(8-10) SDG No.: D3811
Lab Sample ID: D3811-13 Matrix: SOIL
Analytical Method: SW8260C % Moisture: 30

Sample Wt/Vol: 5 Units: g Final Vol: 5000

Soil Aliquot Vol: UL Test: VOC-Chemtech Full -15

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034784.D 1 08/15/12 VF081512

VF034/84.D 1			08/15/12		VF081512		
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
95-49-8	2-Chlorotoluene	3.55	U	1.1	3.55	7.1	ug/Kg
108-67-8	1,3,5-Trimethylbenzene	3.55	U	0.64	3.55	7.1	ug/Kg
106-43-4	4-Chlorotoluene	3.55	U	0.89	3.55	7.1	ug/Kg
98-06-6	tert-Butylbenzene	3.55	U	0.84	3.55	7.1	ug/Kg
95-63-6	1,2,4-Trimethylbenzene	3.55	U	0.71	3.55	7.1	ug/Kg
135-98-8	sec-Butylbenzene	3.55	U	0.74	3.55	7.1	ug/Kg
99-87-6	p-Isopropyltoluene	3.55	U	0.41	3.55	7.1	ug/Kg
541-73-1	1,3-Dichlorobenzene	3.55	U	0.53	3.55	7.1	ug/Kg
106-46-7	1,4-Dichlorobenzene	3.55	U	0.59	3.55	7.1	ug/Kg
104-51-8	n-Butylbenzene	3.55	U	0.66	3.55	7.1	ug/Kg
95-50-1	1,2-Dichlorobenzene	3.55	U	0.89	3.55	7.1	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	3.55	U	1.2	3.55	7.1	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	3.55	U	1	3.55	7.1	ug/Kg
87-68-3	Hexachlorobutadiene	3.55	U	1.1	3.55	7.1	ug/Kg
91-20-3	Naphthalene	3.55	U	0.64	3.55	7.1	ug/Kg
87-61-6	1,2,3-Trichlorobenzene	3.55	U	0.71	3.55	7.1	ug/Kg
74-88-4	Methyl Iodide	7.1	U	7.1	7.1	7.1	ug/Kg
107-05-1	Allyl chloride	7.1	U	7.1	7.1	7.1	ug/Kg
126-98-7	Methacrylonitrile	7.1	U	7.1	7.1	7.1	ug/Kg
110-57-6	trans-1,4-Dichloro-2-butene	7.1	U	7.1	7.1	7.1	ug/Kg
97-63-2	Ethyl methacrylate	7.1	U	7.1	7.1	7.1	ug/Kg
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	42.7		56 - 120		85%	SPK: 50
1868-53-7	Dibromofluoromethane	50.6		57 - 135		101%	SPK: 50
2037-26-5	Toluene-d8	48.1		67 - 123		96%	SPK: 50
460-00-4	4-Bromofluorobenzene	39		33 - 141	l	78%	SPK: 50
INTERNAL ST							
363-72-4	Pentafluorobenzene	175264	4.4				
540-36-3	1,4-Difluorobenzene	318607	5.14				
3114-55-4	Chlorobenzene-d5	283921	9.35				
3855-82-1	1,4-Dichlorobenzene-d4	96800	12.25				

Client: MS Analytical Date Collected: 08/10/12

Project:

12MS104 Kensington Heights

08/15/12

Client Sample ID:

SB-37(8-10)

Lab Sample ID:

SDG No.:

D3811-13

Matrix:

Date Received:

D3811 SOIL

Analytical Method:

SW8260C

% Moisture:

Final Vol:

30

5000

uL

Sample Wt/Vol:

5

Units: g

Test:

VOC-Chemtech Full -15

Soil Aliquot Vol: GC Column:

RTX-VMS

uL ID: 0.18

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VF034784.D

08/15/12

VF081512

Units

CAS Number

Parameter

Conc.

Qualifier

MDL

LOD LOQ / CRQL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Sample Wt/Vol:

5.03

Units:

Report of Analysis

Client: MS Analytical Date Collected: 08/10/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-37(8-10)RE SDG No.: D3811 Lab Sample ID: D3811-13RE Matrix: SOIL Analytical Method: SW8260C % Moisture: 30

g Soil Aliquot Vol: иL Test: VOC-Chemtech Full -15

Final Vol:

5000

uL

ID: 0.25 Level: GC Column: RTX-624 LOW

File ID/Qc Batch: Dilution: Prep Batch ID Prep Date Date Analyzed VD036751.D 08/15/12 VD081512

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	3.55	U	0.92	3.55	7.1	ug/Kg
74-87-3	Chloromethane	3.55	U	1.2	3.55	7.1	ug/Kg
75-01-4	Vinyl Chloride	3.55	U	1.7	3.55	7.1	ug/Kg
141-78-6	Ethyl Acetate	3.55	U	1.2	3.55	7.1	ug/Kg
108-21-4	Isopropyl Acetate	3.55	U	1.7	3.55	7.1	ug/Kg
628-63-7	N-amyl acetate	3.55	U	1.3	3.55	7.1	ug/Kg
74-83-9	Bromomethane	3.55	U	3.5	3.55	7.1	ug/Kg
75-00-3	Chloroethane	3.55	U	2	3.55	7.1	ug/Kg
75-69-4	Trichlorofluoromethane	3.55	U	1.9	3.55	7.1	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	3.55	U	1.9	3.55	7.1	ug/Kg
75-65-0	Tert butyl alcohol	18	U	11	18	36	ug/Kg
60-29-7	Diethyl Ether	3.55	U	2.7	3.55	7.1	ug/Kg
75-35-4	1,1-Dichloroethene	3.55	U	2.1	3.55	7.1	ug/Kg
107-02-8	Acrolein	18	U	5.7	18	36	ug/Kg
107-13-1	Acrylonitrile	18	U	7	18	36	ug/Kg
67-64-1	Acetone	44	Q	4.3	18	36	ug/Kg
75-15-0	Carbon Disulfide	3.55	U	1.5	3.55	7.1	ug/Kg
1634-04-4	Methyl tert-butyl Ether	3.55	U	1.4	3.55	7.1	ug/Kg
79-20-9	Methyl Acetate	3.55	U	2.1	3.55	7.1	ug/Kg
75-09-2	Methylene Chloride	3.55	U	2	3.55	7.1	ug/Kg
156-60-5	trans-1,2-Dichloroethene	3.55	U	0.98	3.55	7.1	ug/Kg
108-05-4	Vinyl Acetate	18	UQ	4.9	18	36	ug/Kg
75-34-3	1,1-Dichloroethane	3.55	U	1.3	3.55	7.1	ug/Kg
110-82-7	Cyclohexane	3.55	U	1.4	3.55	7.1	ug/Kg
78-93-3	2-Butanone	18	U	4.4	18	36	ug/Kg
56-23-5	Carbon Tetrachloride	3.55	U	1.4	3.55	7.1	ug/Kg
594-20-7	2,2-Dichloropropane	3.55	U	1.5	3.55	7.1	ug/Kg
156-59-2	cis-1,2-Dichloroethene	3.55	U	1.3	3.55	7.1	ug/Kg
74-97-5	Bromochloromethane	3.55	U	1.1	3.55	7.1	ug/Kg
67-66-3	Chloroform	3.55	U	1.1	3.55	7.1	ug/Kg
71-55-6	1,1,1-Trichloroethane	3.55	U	1.2	3.55	7.1	ug/Kg

Sample Wt/Vol:

5.03

Units:

g

Report of Analysis

Client: MS Analytical Date Collected: 08/10/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-37(8-10)RE SDG No.: D3811 Lab Sample ID: D3811-13RE Matrix: SOIL Analytical Method: SW8260C % Moisture: 30

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

Final Vol:

5000

uL

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036751.D 1 08/15/12 VD081512

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
108-87-2	Methylcyclohexane	3.55	U	1.5	3.55	7.1	ug/Kg
563-58-6	1,1-Dichloropropene	3.55	U	0.65	3.55	7.1	ug/Kg
71-43-2	Benzene	3.55	U	0.54	3.55	7.1	ug/Kg
107-06-2	1,2-Dichloroethane	3.55	U	0.91	3.55	7.1	ug/Kg
79-01-6	Trichloroethene	3.55	U	1.2	3.55	7.1	ug/Kg
78-87-5	1,2-Dichloropropane	3.55	U	0.37	3.55	7.1	ug/Kg
74-95-3	Dibromomethane	3.55	U	1.1	3.55	7.1	ug/Kg
75-27-4	Bromodichloromethane	3.55	U	0.88	3.55	7.1	ug/Kg
108-10-1	4-Methyl-2-Pentanone	18	U	4.1	18	36	ug/Kg
108-88-3	Toluene	3.55	U	0.91	3.55	7.1	ug/Kg
10061-02-6	t-1,3-Dichloropropene	3.55	U	1.1	3.55	7.1	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	3.55	U	1	3.55	7.1	ug/Kg
79-00-5	1,1,2-Trichloroethane	3.55	U	1.3	3.55	7.1	ug/Kg
142-28-9	1,3-Dichloropropane	3.55	U	1.1	3.55	7.1	ug/Kg
110-75-8	2-Chloroethyl Vinyl ether	18	U	16	18	36	ug/Kg
591-78-6	2-Hexanone	18	U	5.6	18	36	ug/Kg
124-48-1	Dibromochloromethane	3.55	U	0.77	3.55	7.1	ug/Kg
106-93-4	1,2-Dibromoethane	3.55	U	0.91	3.55	7.1	ug/Kg
127-18-4	Tetrachloroethene	3.55	U	1.4	3.55	7.1	ug/Kg
108-90-7	Chlorobenzene	3.55	U	0.71	3.55	7.1	ug/Kg
630-20-6	1,1,1,2-Tetrachloroethane	3.55	U	0.61	3.55	7.1	ug/Kg
67-72-1	Hexachloroethane	3.55	U	1.1	3.55	7.1	ug/Kg
100-41-4	Ethyl Benzene	3.55	U	0.88	3.55	7.1	ug/Kg
179601-23-1	m/p-Xylenes	7	U	1	7	14	ug/Kg
95-47-6	o-Xylene	3.55	U	0.97	3.55	7.1	ug/Kg
100-42-5	Styrene	3.55	U	0.64	3.55	7.1	ug/Kg
75-25-2	Bromoform	3.55	U	1.1	3.55	7.1	ug/Kg
98-82-8	Isopropylbenzene	3.55	U	0.68	3.55	7.1	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	3.55	U	0.65	3.55	7.1	ug/Kg
96-18-4	1,2,3-Trichloropropane	3.55	U	0.7	3.55	7.1	ug/Kg
108-86-1	Bromobenzene	3.55	U	0.74	3.55	7.1	ug/Kg
103-65-1	n-propylbenzene	3.55	U	0.51	3.55	7.1	ug/Kg

Client:MS AnalyticalDate Collected:08/10/12Project:12MS104 Kensington HeightsDate Received:08/15/12

Client Sample ID: SB-37(8-10)RE SDG No.: D3811
Lab Sample ID: D3811-13RE Matrix: SOIL
Analytical Method: SW8260C % Moisture: 30

Sample Wt/Vol: 5.03 Units: g Final Vol: 5000 uL

Soil Aliquot Vol: UL Test: VOC-Chemtech Full -15

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036751.D 1 08/15/12 VD081512

VD036751.D 1			08/15/	12		VD081512	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
95-49-8	2-Chlorotoluene	3.55	U	1.1	3.55	7.1	ug/Kg
108-67-8	1,3,5-Trimethylbenzene	3.55	U	0.64	3.55	7.1	ug/Kg
106-43-4	4-Chlorotoluene	3.55	U	0.88	3.55	7.1	ug/Kg
98-06-6	tert-Butylbenzene	3.55	U	0.84	3.55	7.1	ug/Kg
95-63-6	1,2,4-Trimethylbenzene	3.55	U	0.71	3.55	7.1	ug/Kg
135-98-8	sec-Butylbenzene	3.55	U	0.74	3.55	7.1	ug/Kg
99-87-6	p-Isopropyltoluene	3.55	U	0.41	3.55	7.1	ug/Kg
541-73-1	1,3-Dichlorobenzene	3.55	U	0.53	3.55	7.1	ug/Kg
106-46-7	1,4-Dichlorobenzene	3.55	U	0.58	3.55	7.1	ug/Kg
104-51-8	n-Butylbenzene	3.55	U	0.65	3.55	7.1	ug/Kg
95-50-1	1,2-Dichlorobenzene	3.55	U	0.88	3.55	7.1	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	3.55	U	1.2	3.55	7.1	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	3.55	U	0.99	3.55	7.1	ug/Kg
87-68-3	Hexachlorobutadiene	3.55	U	1.1	3.55	7.1	ug/Kg
91-20-3	Naphthalene	3.55	UQ	0.64	3.55	7.1	ug/Kg
87-61-6	1,2,3-Trichlorobenzene	3.55	U	0.71	3.55	7.1	ug/Kg
74-88-4	Methyl Iodide	7.1	U	7.1	7.1	7.1	ug/Kg
107-05-1	Allyl chloride	7.1	U	7.1	7.1	7.1	ug/Kg
126-98-7	Methacrylonitrile	7.1	UQ	7.1	7.1	7.1	ug/Kg
110-57-6	trans-1,4-Dichloro-2-butene	7.1	U	7.1	7.1	7.1	ug/Kg
97-63-2	Ethyl methacrylate	7.1	U	7.1	7.1	7.1	ug/Kg
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	57.4		56 - 120		115%	SPK: 50
1868-53-7	Dibromofluoromethane	49		57 - 13:		98%	SPK: 50
2037-26-5	Toluene-d8	51.5		67 - 12		103%	SPK: 50
460-00-4	4-Bromofluorobenzene	61		33 - 14	1	122%	SPK: 50
INTERNAL ST		25045					
363-72-4	Pentafluorobenzene	358464	4.74				
540-36-3	1,4-Difluorobenzene	636577	5.45				
3114-55-4	Chlorobenzene-d5	656307	9.58				
3855-82-1	1,4-Dichlorobenzene-d4	318833	12.47				

Date Collected:

08/10/12

uL

Report of Analysis

Client: MS Analytical

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-37(8-10)RE SDG No.: D3811

Lab Sample ID: D3811-13RE Matrix: SOIL

Analytical Method: SW8260C % Moisture: 30

Sample Wt/Vol: 5.03 Units: g Final Vol: 5000

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VD036751.D 1 08/15/12 VD081512

CAS Number Parameter Conc. Qualifier MDL LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Report of Analysis

Client: MS Analytical Date Collected: 08/10/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SDG No.: D3811 SB-39(6-8) Lab Sample ID: D3811-14 Matrix: SOIL Analytical Method: SW8260C % Moisture: 8 Sample Wt/Vol: 5.06 Units: g Final Vol: 5000

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034785.D 1 08/15/12 VF081512

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	2.7	U	0.7	2.7	5.4	ug/Kg
74-87-3	Chloromethane	2.7	U	0.92	2.7	5.4	ug/Kg
75-01-4	Vinyl Chloride	2.7	U	1.3	2.7	5.4	ug/Kg
141-78-6	Ethyl Acetate	2.7	U	0.93	2.7	5.4	ug/Kg
108-21-4	Isopropyl Acetate	2.7	U	1.3	2.7	5.4	ug/Kg
628-63-7	N-amyl acetate	2.7	U	1	2.7	5.4	ug/Kg
74-83-9	Bromomethane	2.7	U	2.6	2.7	5.4	ug/Kg
75-00-3	Chloroethane	2.7	U	1.5	2.7	5.4	ug/Kg
75-69-4	Trichlorofluoromethane	2.7	U	1.4	2.7	5.4	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	2.7	U	1.4	2.7	5.4	ug/Kg
75-65-0	Tert butyl alcohol	13.5	U	8	13.5	27	ug/Kg
60-29-7	Diethyl Ether	2.7	U	2.1	2.7	5.4	ug/Kg
75-35-4	1,1-Dichloroethene	2.7	U	1.6	2.7	5.4	ug/Kg
107-02-8	Acrolein	13.5	U	4.3	13.5	27	ug/Kg
107-13-1	Acrylonitrile	13.5	U	5.3	13.5	27	ug/Kg
67-64-1	Acetone	66		3.2	13.5	27	ug/Kg
75-15-0	Carbon Disulfide	2.7	U	1.1	2.7	5.4	ug/Kg
1634-04-4	Methyl tert-butyl Ether	2.7	U	1	2.7	5.4	ug/Kg
79-20-9	Methyl Acetate	2.7	U	1.6	2.7	5.4	ug/Kg
75-09-2	Methylene Chloride	2.7	U	1.5	2.7	5.4	ug/Kg
156-60-5	trans-1,2-Dichloroethene	2.7	U	0.74	2.7	5.4	ug/Kg
108-05-4	Vinyl Acetate	13.5	U	3.7	13.5	27	ug/Kg
75-34-3	1,1-Dichloroethane	2.7	U	1	2.7	5.4	ug/Kg
110-82-7	Cyclohexane	2.7	U	1.1	2.7	5.4	ug/Kg
78-93-3	2-Butanone	13.5	U	3.3	13.5	27	ug/Kg
56-23-5	Carbon Tetrachloride	2.7	U	1.1	2.7	5.4	ug/Kg
594-20-7	2,2-Dichloropropane	2.7	U	1.1	2.7	5.4	ug/Kg
156-59-2	cis-1,2-Dichloroethene	2.7	U	0.96	2.7	5.4	ug/Kg
74-97-5	Bromochloromethane	2.7	U	0.85	2.7	5.4	ug/Kg
67-66-3	Chloroform	2.7	U	0.79	2.7	5.4	ug/Kg
71-55-6	1,1,1-Trichloroethane	2.7	U	0.95	2.7	5.4	ug/Kg

Client: MS Analytical Date Collected: 08/10/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-39(6-8) SDG No.: D3811 Lab Sample ID: D3811-14 Matrix: SOIL Analytical Method: SW8260C % Moisture: 8

Sample Wt/Vol: 5.06 Units: g Final Vol: 5000 uL

Soil Aliquot Vol: UL Test: VOC-Chemtech Full -15

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034785.D 1 08/15/12 VF081512

V1 054705.D	•		00/13/	12	V1 001312				
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units		
108-87-2	Methylcyclohexane	2.7	U	1.1	2.7	5.4	ug/Kg		
563-58-6	1,1-Dichloropropene	2.7	U	0.49	2.7	5.4	ug/Kg		
71-43-2	Benzene	2.7	U	0.41	2.7	5.4	ug/Kg		
107-06-2	1,2-Dichloroethane	2.7	U	0.69	2.7	5.4	ug/Kg		
79-01-6	Trichloroethene	2.7	U	0.92	2.7	5.4	ug/Kg		
78-87-5	1,2-Dichloropropane	2.7	U	0.28	2.7	5.4	ug/Kg		
74-95-3	Dibromomethane	2.7	U	0.84	2.7	5.4	ug/Kg		
75-27-4	Bromodichloromethane	2.7	U	0.67	2.7	5.4	ug/Kg		
108-10-1	4-Methyl-2-Pentanone	13.5	U	3.1	13.5	27	ug/Kg		
108-88-3	Toluene	2.6	J	0.69	2.7	5.4	ug/Kg		
10061-02-6	t-1,3-Dichloropropene	2.7	U	0.85	2.7	5.4	ug/Kg		
10061-01-5	cis-1,3-Dichloropropene	2.7	U	0.77	2.7	5.4	ug/Kg		
79-00-5	1,1,2-Trichloroethane	2.7	U	0.97	2.7	5.4	ug/Kg		
142-28-9	1,3-Dichloropropane	2.7	U	0.79	2.7	5.4	ug/Kg		
110-75-8	2-Chloroethyl Vinyl ether	13.5	U	12	13.5	27	ug/Kg		
591-78-6	2-Hexanone	13.5	U	4.2	13.5	27	ug/Kg		
124-48-1	Dibromochloromethane	2.7	U	0.58	2.7	5.4	ug/Kg		
106-93-4	1,2-Dibromoethane	2.7	U	0.69	2.7	5.4	ug/Kg		
127-18-4	Tetrachloroethene	2.7	U	1.1	2.7	5.4	ug/Kg		
108-90-7	Chlorobenzene	2.7	U	0.54	2.7	5.4	ug/Kg		
630-20-6	1,1,1,2-Tetrachloroethane	2.7	U	0.46	2.7	5.4	ug/Kg		
67-72-1	Hexachloroethane	2.7	U	0.82	2.7	5.4	ug/Kg		
100-41-4	Ethyl Benzene	2.7	U	0.67	2.7	5.4	ug/Kg		
179601-23-1	m/p-Xylenes	5.5	U	0.77	5.5	11	ug/Kg		
95-47-6	o-Xylene	2.7	U	0.73	2.7	5.4	ug/Kg		
100-42-5	Styrene	2.7	U	0.48	2.7	5.4	ug/Kg		
75-25-2	Bromoform	2.7	U	0.79	2.7	5.4	ug/Kg		
98-82-8	Isopropylbenzene	2.7	U	0.52	2.7	5.4	ug/Kg		
79-34-5	1,1,2,2-Tetrachloroethane	2.7	U	0.49	2.7	5.4	ug/Kg		
96-18-4	1,2,3-Trichloropropane	2.7	U	0.53	2.7	5.4	ug/Kg		
108-86-1	Bromobenzene	2.7	U	0.56	2.7	5.4	ug/Kg		
103-65-1	n-propylbenzene	2.7	U	0.39	2.7	5.4	ug/Kg		

VOC-Chemtech Full -15

Soil Aliquot Vol:

Report of Analysis

Client: MS Analytical Date Collected: 08/10/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 SDG No.: Client Sample ID: SB-39(6-8) D3811 Lab Sample ID: D3811-14 Matrix: SOIL Analytical Method: SW8260C % Moisture:

Sample Wt/Vol: 5.06 Units: g Final Vol: 5000 uL

Test:

GC Column: RTX-VMS ID: 0.18 Level: LOW

иL

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034785.D 1 08/15/12 VF081512

			00/13/12			V1 001312		
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units	
95-49-8	2-Chlorotoluene	2.7	U	0.79	2.7	5.4	ug/Kg	
108-67-8	1,3,5-Trimethylbenzene	2.7	U	0.48	2.7	5.4	ug/Kg	
106-43-4	4-Chlorotoluene	2.7	U	0.67	2.7	5.4	ug/Kg	
98-06-6	tert-Butylbenzene	2.7	U	0.63	2.7	5.4	ug/Kg	
95-63-6	1,2,4-Trimethylbenzene	2.7	U	0.54	2.7	5.4	ug/Kg	
135-98-8	sec-Butylbenzene	2.7	U	0.56	2.7	5.4	ug/Kg	
99-87-6	p-Isopropyltoluene	2.7	U	0.31	2.7	5.4	ug/Kg	
541-73-1	1,3-Dichlorobenzene	2.7	U	0.4	2.7	5.4	ug/Kg	
106-46-7	1,4-Dichlorobenzene	2.7	U	0.44	2.7	5.4	ug/Kg	
104-51-8	n-Butylbenzene	2.7	U	0.49	2.7	5.4	ug/Kg	
95-50-1	1,2-Dichlorobenzene	2.7	U	0.67	2.7	5.4	ug/Kg	
96-12-8	1,2-Dibromo-3-Chloropropane	2.7	U	0.93	2.7	5.4	ug/Kg	
120-82-1	1,2,4-Trichlorobenzene	2.7	U	0.75	2.7	5.4	ug/Kg	
87-68-3	Hexachlorobutadiene	2.7	U	0.85	2.7	5.4	ug/Kg	
91-20-3	Naphthalene	2.7	U	0.48	2.7	5.4	ug/Kg	
87-61-6	1,2,3-Trichlorobenzene	2.7	U	0.54	2.7	5.4	ug/Kg	
74-88-4	Methyl Iodide	5.4	U	5.4	5.4	5.4	ug/Kg	
107-05-1	Allyl chloride	5.4	U	5.4	5.4	5.4	ug/Kg	
126-98-7	Methacrylonitrile	5.4	U	5.4	5.4	5.4	ug/Kg	
110-57-6	trans-1,4-Dichloro-2-butene	5.4	U	5.4	5.4	5.4	ug/Kg	
97-63-2	Ethyl methacrylate	5.4	U	5.4	5.4	5.4	ug/Kg	
SURROGATES								
17060-07-0	1,2-Dichloroethane-d4	61.5	*	56 - 120)	123%	SPK: 50	
1868-53-7	Dibromofluoromethane	55.1		57 - 135		110%	SPK: 50	
2037-26-5	Toluene-d8	55.8		67 - 123		112%	SPK: 50	
460-00-4	4-Bromofluorobenzene	42.9		33 - 141	[86%	SPK: 50	
INTERNAL STA								
363-72-4	Pentafluorobenzene	47977	4.4					
540-36-3	1,4-Difluorobenzene	94838	5.14					
3114-55-4	Chlorobenzene-d5	100429	9.35					
3855-82-1	1,4-Dichlorobenzene-d4 DENTIFIED COMPOUNDS	29408	12.25					

Client: MS Analytical Date Collected: 08/10/12 12MS104 Kensington Heights Project: Date Received: 08/15/12 Client Sample ID: SDG No.: SB-39(6-8) D3811 Lab Sample ID: D3811-14 Matrix: SOIL % Moisture: Analytical Method: SW8260C Sample Wt/Vol: 5.06 Units: Final Vol: 5000 uL g VOC-Chemtech Full -15 Soil Aliquot Vol: uL Test:

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034785.D 1 08/15/12 VF081512

CAS Number	Parameter	Conc.	Qualifier M	DL LOD	LOQ / CRQL	Units	
000110-54-3	Hexane	11	J		2.12	ug/Kg	
	unknown3.12	5.5	J		3.12	ug/Kg	
001708-29-8	Furan, 2,5-dihydro-	7.3	J		3.33	ug/Kg	
000589-43-5	Hexane, 2,4-dimethyl-	6.4	J		6.4	ug/Kg	

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

5.06

Units:

g

Report of Analysis

Client: MS Analytical Date Collected: 08/10/12 Project: 08/15/12 12MS104 Kensington Heights Date Received: Client Sample ID: SB-39(6-8)RE SDG No.: D3811 D3811-14RE Matrix: SOIL Lab Sample ID: Analytical Method: SW8260C % Moisture: Sample Wt/Vol: Final Vol: 5000

VOC-Chemtech Full -15 Soil Aliquot Vol: иL Test:

ID: 0.25 Level: GC Column: RTX-624 LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036752.D 08/15/12 VD081512

. = . = . = . = . =								
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units	
TARGETS								
75-71-8	Dichlorodifluoromethane	2.7	U	0.7	2.7	5.4	ug/Kg	
74-87-3	Chloromethane	2.7	U	0.92	2.7	5.4	ug/Kg	
75-01-4	Vinyl Chloride	2.7	U	1.3	2.7	5.4	ug/Kg	
141-78-6	Ethyl Acetate	2.7	U	0.93	2.7	5.4	ug/Kg	
108-21-4	Isopropyl Acetate	2.7	U	1.3	2.7	5.4	ug/Kg	
628-63-7	N-amyl acetate	2.7	U	1	2.7	5.4	ug/Kg	
74-83-9	Bromomethane	2.7	U	2.6	2.7	5.4	ug/Kg	
75-00-3	Chloroethane	2.7	U	1.5	2.7	5.4	ug/Kg	
75-69-4	Trichlorofluoromethane	2.7	U	1.4	2.7	5.4	ug/Kg	
76-13-1	1,1,2-Trichlorotrifluoroethane	2.7	U	1.4	2.7	5.4	ug/Kg	
75-65-0	Tert butyl alcohol	13.5	U	8	13.5	27	ug/Kg	
60-29-7	Diethyl Ether	2.7	U	2.1	2.7	5.4	ug/Kg	
75-35-4	1,1-Dichloroethene	2.7	U	1.6	2.7	5.4	ug/Kg	
107-02-8	Acrolein	13.5	U	4.3	13.5	27	ug/Kg	
107-13-1	Acrylonitrile	13.5	U	5.3	13.5	27	ug/Kg	
67-64-1	Acetone	35	Q	3.2	13.5	27	ug/Kg	
75-15-0	Carbon Disulfide	2.7	U	1.1	2.7	5.4	ug/Kg	
1634-04-4	Methyl tert-butyl Ether	2.7	U	1	2.7	5.4	ug/Kg	
79-20-9	Methyl Acetate	2.7	U	1.6	2.7	5.4	ug/Kg	
75-09-2	Methylene Chloride	2.7	U	1.5	2.7	5.4	ug/Kg	
156-60-5	trans-1,2-Dichloroethene	2.7	U	0.74	2.7	5.4	ug/Kg	
108-05-4	Vinyl Acetate	13.5	UQ	3.7	13.5	27	ug/Kg	
75-34-3	1,1-Dichloroethane	2.7	U	1	2.7	5.4	ug/Kg	
110-82-7	Cyclohexane	2.7	U	1.1	2.7	5.4	ug/Kg	
78-93-3	2-Butanone	13.5	U	3.3	13.5	27	ug/Kg	
56-23-5	Carbon Tetrachloride	2.7	U	1.1	2.7	5.4	ug/Kg	
594-20-7	2,2-Dichloropropane	2.7	U	1.1	2.7	5.4	ug/Kg	
156-59-2	cis-1,2-Dichloroethene	2.7	U	0.96	2.7	5.4	ug/Kg	
74-97-5	Bromochloromethane	2.7	U	0.85	2.7	5.4	ug/Kg	
67-66-3	Chloroform	2.7	U	0.79	2.7	5.4	ug/Kg	
71-55-6	1,1,1-Trichloroethane	2.7	U	0.95	2.7	5.4	ug/Kg	

Client: MS Analytical Date Collected: 08/10/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-39(6-8)RE SDG No.: D3811 Lab Sample ID: D3811-14RE Matrix: SOIL Analytical Method: SW8260C % Moisture: 8

Sample Wt/Vol: 5.06 Units: g Final Vol: 5000 uL

Soil Aliquot Vol: UL Test: VOC-Chemtech Full -15

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036752.D 1 08/15/12 VD081512

. =	<u>-</u>							
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units	
108-87-2	Methylcyclohexane	2.7	U	1.1	2.7	5.4	ug/Kg	
563-58-6	1,1-Dichloropropene	2.7	U	0.49	2.7	5.4	ug/Kg	
71-43-2	Benzene	2.7	U	0.41	2.7	5.4	ug/Kg	
107-06-2	1,2-Dichloroethane	2.7	U	0.69	2.7	5.4	ug/Kg	
79-01-6	Trichloroethene	2.7	U	0.92	2.7	5.4	ug/Kg	
78-87-5	1,2-Dichloropropane	2.7	U	0.28	2.7	5.4	ug/Kg	
74-95-3	Dibromomethane	2.7	U	0.84	2.7	5.4	ug/Kg	
75-27-4	Bromodichloromethane	2.7	U	0.67	2.7	5.4	ug/Kg	
108-10-1	4-Methyl-2-Pentanone	13.5	U	3.1	13.5	27	ug/Kg	
108-88-3	Toluene	2.7	U	0.69	2.7	5.4	ug/Kg	
10061-02-6	t-1,3-Dichloropropene	2.7	U	0.85	2.7	5.4	ug/Kg	
10061-01-5	cis-1,3-Dichloropropene	2.7	U	0.77	2.7	5.4	ug/Kg	
79-00-5	1,1,2-Trichloroethane	2.7	U	0.97	2.7	5.4	ug/Kg	
142-28-9	1,3-Dichloropropane	2.7	U	0.79	2.7	5.4	ug/Kg	
110-75-8	2-Chloroethyl Vinyl ether	13.5	U	12	13.5	27	ug/Kg	
591-78-6	2-Hexanone	13.5	U	4.2	13.5	27	ug/Kg	
124-48-1	Dibromochloromethane	2.7	U	0.58	2.7	5.4	ug/Kg	
106-93-4	1,2-Dibromoethane	2.7	U	0.69	2.7	5.4	ug/Kg	
127-18-4	Tetrachloroethene	2.7	U	1.1	2.7	5.4	ug/Kg	
108-90-7	Chlorobenzene	2.7	U	0.54	2.7	5.4	ug/Kg	
630-20-6	1,1,1,2-Tetrachloroethane	2.7	U	0.46	2.7	5.4	ug/Kg	
67-72-1	Hexachloroethane	2.7	U	0.82	2.7	5.4	ug/Kg	
100-41-4	Ethyl Benzene	2.7	U	0.67	2.7	5.4	ug/Kg	
179601-23-1	m/p-Xylenes	5.5	U	0.77	5.5	11	ug/Kg	
95-47-6	o-Xylene	2.7	U	0.73	2.7	5.4	ug/Kg	
100-42-5	Styrene	2.7	U	0.48	2.7	5.4	ug/Kg	
75-25-2	Bromoform	2.7	U	0.79	2.7	5.4	ug/Kg	
98-82-8	Isopropylbenzene	2.7	U	0.52	2.7	5.4	ug/Kg	
79-34-5	1,1,2,2-Tetrachloroethane	2.7	U	0.49	2.7	5.4	ug/Kg	
96-18-4	1,2,3-Trichloropropane	2.7	U	0.53	2.7	5.4	ug/Kg	
108-86-1	Bromobenzene	2.7	U	0.56	2.7	5.4	ug/Kg	
103-65-1	n-propylbenzene	2.7	U	0.39	2.7	5.4	ug/Kg	

Client: MS Analytical Date Collected: 08/10/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-39(6-8)RE SDG No.: D3811

Lab Sample ID: D3811-14RE Matrix: SOIL Analytical Method: SW8260C % Moisture: 8

Sample Wt/Vol: 5.06 Units: Final Vol: 5000 uL g

Test:

Soil Aliquot Vol: VOC-Chemtech Full -15 uL ID: 0.25 Level: GC Column: RTX-624 LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036752 D 08/15/12 VD081512

VD036752.D	1		08/15	/12		VD081512	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
95-49-8	2-Chlorotoluene	2.7	U	0.79	2.7	5.4	ug/Kg
108-67-8	1,3,5-Trimethylbenzene	2.7	U	0.48	2.7	5.4	ug/Kg
106-43-4	4-Chlorotoluene	2.7	U	0.67	2.7	5.4	ug/Kg
98-06-6	tert-Butylbenzene	2.7	U	0.63	2.7	5.4	ug/Kg
95-63-6	1,2,4-Trimethylbenzene	2.7	U	0.54	2.7	5.4	ug/Kg
135-98-8	sec-Butylbenzene	2.7	U	0.56	2.7	5.4	ug/Kg
99-87-6	p-Isopropyltoluene	2.7	U	0.31	2.7	5.4	ug/Kg
541-73-1	1,3-Dichlorobenzene	2.7	U	0.4	2.7	5.4	ug/Kg
106-46-7	1,4-Dichlorobenzene	2.7	U	0.44	2.7	5.4	ug/Kg
104-51-8	n-Butylbenzene	2.7	U	0.49	2.7	5.4	ug/Kg
95-50-1	1,2-Dichlorobenzene	2.7	U	0.67	2.7	5.4	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	2.7	U	0.93	2.7	5.4	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	2.7	U	0.75	2.7	5.4	ug/Kg
87-68-3	Hexachlorobutadiene	2.7	U	0.85	2.7	5.4	ug/Kg
91-20-3	Naphthalene	2.7	UQ	0.48	2.7	5.4	ug/Kg
87-61-6	1,2,3-Trichlorobenzene	2.7	U	0.54	2.7	5.4	ug/Kg
74-88-4	Methyl Iodide	5.4	U	5.4	5.4	5.4	ug/Kg
107-05-1	Allyl chloride	5.4	U	5.4	5.4	5.4	ug/Kg
126-98-7	Methacrylonitrile	5.4	UQ	5.4	5.4	5.4	ug/Kg
110-57-6	trans-1,4-Dichloro-2-butene	5.4	U	5.4	5.4	5.4	ug/Kg
97-63-2	Ethyl methacrylate	5.4	U	5.4	5.4	5.4	ug/Kg
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	56.6		56 - 120	0	113%	SPK: 50
1868-53-7	Dibromofluoromethane	49		57 - 13:	5	98%	SPK: 50
2037-26-5	Toluene-d8	50.7		67 - 12	3	101%	SPK: 50
460-00-4	4-Bromofluorobenzene	58.4		33 - 14	1	117%	SPK: 50
INTERNAL ST							
363-72-4	Pentafluorobenzene	350159	4.73				
540-36-3	1,4-Difluorobenzene	629857	5.44				
3114-55-4	Chlorobenzene-d5	645094	9.57				
3855-82-1	1,4-Dichlorobenzene-d4	283298	12.47				

Date Collected:

Date Received:

SDG No.:

% Moisture:

Final Vol:

Test:

Matrix:

08/10/12

08/15/12

D3811

SOIL

5000

uL

VOC-Chemtech Full -15

Lab Sample ID:

Report of Analysis

Client: MS Analytical

Project: 12MS104 Kensington Heights

D3811-14RE

Client Sample ID: SB-39(6-8)RE

Analytical Method: SW8260C

Sample Wt/Vol: 5.06 Units: g

Soil Aliquot Vol: uL

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VD036752.D 1 08/15/12 VD081512

CAS Number Parameter Conc. Qualifier MDL LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Sample Wt/Vol:

5

Units:

g

Report of Analysis

Client: MS Analytical Date Collected: 08/10/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-41(8-11) SDG No.: D3811 Lab Sample ID: D3811-15 Matrix: SOIL Analytical Method: SW8260C % Moisture: 19

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

Final Vol:

5000

uL

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034798.D 1 08/16/12 VF081612

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	3.1	U	0.8	3.1	6.2	ug/Kg
74-87-3	Chloromethane	3.1	U	1.1	3.1	6.2	ug/Kg
75-01-4	Vinyl Chloride	3.1	U	1.5	3.1	6.2	ug/Kg
141-78-6	Ethyl Acetate	3.1	U	1.1	3.1	6.2	ug/Kg
108-21-4	Isopropyl Acetate	3.1	U	1.5	3.1	6.2	ug/Kg
628-63-7	N-amyl acetate	3.1	U	1.2	3.1	6.2	ug/Kg
74-83-9	Bromomethane	3.1	U	3	3.1	6.2	ug/Kg
75-00-3	Chloroethane	3.1	U	1.7	3.1	6.2	ug/Kg
75-69-4	Trichlorofluoromethane	3.1	U	1.6	3.1	6.2	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	3.1	U	1.6	3.1	6.2	ug/Kg
75-65-0	Tert butyl alcohol	15.5	U	9.1	15.5	31	ug/Kg
60-29-7	Diethyl Ether	3.1	U	2.4	3.1	6.2	ug/Kg
75-35-4	1,1-Dichloroethene	3.1	U	1.8	3.1	6.2	ug/Kg
107-02-8	Acrolein	15.5	U	4.9	15.5	31	ug/Kg
107-13-1	Acrylonitrile	15.5	U	6.1	15.5	31	ug/Kg
67-64-1	Acetone	30	J	3.7	15.5	31	ug/Kg
75-15-0	Carbon Disulfide	3.1	U	1.3	3.1	6.2	ug/Kg
1634-04-4	Methyl tert-butyl Ether	3.1	U	1.2	3.1	6.2	ug/Kg
79-20-9	Methyl Acetate	3.1	U	1.9	3.1	6.2	ug/Kg
75-09-2	Methylene Chloride	3.1	U	1.8	3.1	6.2	ug/Kg
156-60-5	trans-1,2-Dichloroethene	3.1	U	0.85	3.1	6.2	ug/Kg
108-05-4	Vinyl Acetate	15.5	U	4.3	15.5	31	ug/Kg
75-34-3	1,1-Dichloroethane	3.1	U	1.2	3.1	6.2	ug/Kg
110-82-7	Cyclohexane	3.1	U	1.2	3.1	6.2	ug/Kg
78-93-3	2-Butanone	15.5	U	3.8	15.5	31	ug/Kg
56-23-5	Carbon Tetrachloride	3.1	U	1.2	3.1	6.2	ug/Kg
594-20-7	2,2-Dichloropropane	3.1	U	1.3	3.1	6.2	ug/Kg
156-59-2	cis-1,2-Dichloroethene	3.1	U	1.1	3.1	6.2	ug/Kg
74-97-5	Bromochloromethane	3.1	U	0.98	3.1	6.2	ug/Kg
67-66-3	Chloroform	3.1	U	0.91	3.1	6.2	ug/Kg
71-55-6	1,1,1-Trichloroethane	3.1	U	1.1	3.1	6.2	ug/Kg

D

Report of Analysis

Client: MS Analytical Date Collected: 08/10/12 12MS104 Kensington Heights Project: Date Received: 08/15/12 Client Sample ID: SB-41(8-11) SDG No.: D3811 Lab Sample ID: D3811-15 Matrix: SOIL Analytical Method: SW8260C % Moisture: 19

Sample Wt/Vol: 5 Units: g Final Vol: 5000 uL
Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034798.D 1 08/16/12 VF081612

1		00/10/	12	V1 001012			
Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units	
Methylcyclohexane	3.1	U	1.3	3.1	6.2	ug/Kg	
1,1-Dichloropropene	3.1	U	0.57	3.1	6.2	ug/Kg	
Benzene	3.1	U	0.47	3.1	6.2	ug/Kg	
1,2-Dichloroethane	3.1	U	0.79	3.1	6.2	ug/Kg	
Trichloroethene	3.1	U	1.1	3.1	6.2	ug/Kg	
1,2-Dichloropropane	3.1	U	0.32	3.1	6.2	ug/Kg	
Dibromomethane	3.1	U	0.96	3.1	6.2	ug/Kg	
Bromodichloromethane	3.1	U	0.77	3.1	6.2	ug/Kg	
4-Methyl-2-Pentanone	15.5	U	3.6	15.5	31	ug/Kg	
Toluene	3.1	U	0.79	3.1	6.2	ug/Kg	
t-1,3-Dichloropropene	3.1	U	0.98	3.1	6.2	ug/Kg	
cis-1,3-Dichloropropene	3.1	U	0.89	3.1	6.2	ug/Kg	
1,1,2-Trichloroethane	3.1	U	1.1	3.1	6.2	ug/Kg	
1,3-Dichloropropane	3.1	U	0.91	3.1	6.2	ug/Kg	
2-Chloroethyl Vinyl ether	15.5	U	14	15.5	31	ug/Kg	
2-Hexanone	15.5	U	4.8	15.5	31	ug/Kg	
Dibromochloromethane	3.1	U	0.67	3.1	6.2	ug/Kg	
1,2-Dibromoethane	3.1	U	0.79	3.1	6.2	ug/Kg	
Tetrachloroethene	3.1	U	1.2	3.1	6.2	ug/Kg	
Chlorobenzene	3.1	U	0.62	3.1	6.2	ug/Kg	
1,1,1,2-Tetrachloroethane		U	0.53	3.1	6.2	ug/Kg	
Hexachloroethane		U	0.94	3.1	6.2	ug/Kg	
Ethyl Benzene	3.1	U	0.77	3.1	6.2	ug/Kg	
m/p-Xylenes	6	U	0.89	6	12	ug/Kg	
o-Xylene	3.1	U	0.84	3.1	6.2	ug/Kg	
Styrene		\mathbf{U}	0.56	3.1		ug/Kg	
Bromoform			0.91			ug/Kg	
Isopropylbenzene		\mathbf{U}	0.59	3.1	6.2	ug/Kg	
1,1,2,2-Tetrachloroethane	3.1	U	0.57	3.1	6.2	ug/Kg	
1,2,3-Trichloropropane	3.1	U	0.6	3.1	6.2	ug/Kg	
Bromobenzene	3.1	U	0.64	3.1	6.2	ug/Kg	
n-propylbenzene	3.1	U	0.44	3.1	6.2	ug/Kg	
	Methylcyclohexane 1,1-Dichloropropene Benzene 1,2-Dichloroethane Trichloroethene 1,2-Dichloropropane Dibromomethane Bromodichloromethane 4-Methyl-2-Pentanone Toluene t-1,3-Dichloropropene cis-1,3-Dichloropropene tis-1,3-Dichloropropene 1,1,2-Trichloroethane 1,3-Dichloropropane 2-Chloroethyl Vinyl ether 2-Hexanone Dibromochloromethane 1,2-Dibromoethane Tetrachloroethene Chlorobenzene 1,1,1,2-Tetrachloroethane Hexachloroethane Ethyl Benzene m/p-Xylenes o-Xylene Styrene Bromoform Isopropylbenzene 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane Bromobenzene	Methylcyclohexane3.11,1-Dichloropropene3.1Benzene3.11,2-Dichloroethane3.1Trichloroethene3.11,2-Dichloropropane3.1Dibromomethane3.1Bromodichloromethane3.14-Methyl-2-Pentanone15.5Toluene3.1cis-1,3-Dichloropropene3.11,1,2-Trichloroethane3.11,3-Dichloropropane3.12-Chloroethyl Vinyl ether15.52-Hexanone15.5Dibromochloromethane3.11,2-Dibromoethane3.1Chlorobenzene3.11,1,1,2-Tetrachloroethane3.1Hexachloroethane3.1Ethyl Benzene3.1m/p-Xylenes6o-Xylene3.1Styrene3.1Bromoform3.1Isopropylbenzene3.11,1,2,2-Tetrachloroethane3.11,2,3-Trichloropropane3.1Bromobenzene3.1Bromobenzene3.1	Parameter Conc. Qualifier Methylcyclohexane 3.1 U 1,1-Dichloropropene 3.1 U Benzene 3.1 U 1,2-Dichloroethane 3.1 U Trichloroethene 3.1 U 1,2-Dichloropropane 3.1 U Dibromomethane 3.1 U Bromodichloromethane 3.1 U 4-Methyl-2-Pentanone 15.5 U Toluene 3.1 U t-1,3-Dichloropropene 3.1 U cis-1,3-Dichloropropene 3.1 U 1,1,2-Trichloroethane 3.1 U 1,3-Dichloropropane 3.1 U 2-Chloroethyl Vinyl ether 15.5 U 2-Hexanone 15.5 U Dibromochloromethane 3.1 U 1,2-Dibromoethane 3.1 U 1,1,1,2-Tetrachloroethane 3.1 U Hexachloroethane 3.1 U Ethyl Benzene	Methylcyclohexane 3.1 U 1.3 1,1-Dichloropropene 3.1 U 0.57 Benzene 3.1 U 0.47 1,2-Dichloroethane 3.1 U 0.79 Trichloroethene 3.1 U 0.32 Dibromomethane 3.1 U 0.96 Bromodichloromethane 3.1 U 0.97 4-Methyl-2-Pentanone 15.5 U 3.6 Toluene 3.1 U 0.79 t-1,3-Dichloropropene 3.1 U 0.99 cis-1,3-Dichloropropene 3.1 U 0.98 t,1,2-Trichloroethane 3.1 U 0.89 1,1,2-Trichloroethane 3.1 U 0.91 2-Chloroethyl Vinyl ether 15.5 U 4.8 Dibromochloromethane 3.1 U 0.67 1,2-Dibromochloromethane 3.1 U 0.79 Tetrachloroethane 3.1 U 0.79 Tetrachloroethane <	Parameter Conc. Qualifier MDL LOD Methylcyclohexane 3.1 U 1.3 3.1 1,1-Dichloropropene 3.1 U 0.57 3.1 Benzene 3.1 U 0.47 3.1 1,2-Dichloroptothane 3.1 U 0.79 3.1 Trichloroethane 3.1 U 0.32 3.1 1,2-Dichloropropane 3.1 U 0.96 3.1 Bromodichloromethane 3.1 U 0.77 3.1 4-Methyl-2-Pentanone 15.5 U 3.6 15.5 Toluene 3.1 U 0.79 3.1 t-1,3-Dichloropropene 3.1 U 0.98 3.1 t-1,3-Dichloropropene 3.1 U 0.98 3.1 1,1,2-Trichloroethane 3.1 U 0.99 3.1 1,3-Dichloropropane 3.1 U 0.91 3.1 2-Hexanone 15.5 U 4.8 15.5	Parameter Conc. Qualifier MDL LOD LOQ/CRQL Methylcyclohexane 3.1 U 1.3 3.1 6.2 1,1-Dichloropropene 3.1 U 0.57 3.1 6.2 Benzene 3.1 U 0.79 3.1 6.2 1,2-Dichloroethane 3.1 U 0.79 3.1 6.2 Trichloroethene 3.1 U 0.32 3.1 6.2 1,2-Dichloropropane 3.1 U 0.92 3.1 6.2 Dibromomethane 3.1 U 0.96 3.1 6.2 Bromodichloromethane 3.1 U 0.77 3.1 6.2 Bromodichloromethane 3.1 U 0.79 3.1 6.2 4-Methyl-2-Pentanone 15.5 U 3.6 15.5 31 Toluene 3.1 U 0.79 3.1 6.2 t-1,3-Dichloropropene 3.1 U 0.98 3.1 6.2	

Client: MS Analytical Date Collected: 08/10/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-41(8-11) SDG No.: D3811 Lab Sample ID: D3811-15 Matrix: SOIL Analytical Method: SW8260C % Moisture: 19

Sample Wt/Vol: 5 Units: g Final Vol: 5000 uL
Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034798.D 1 08/16/12 VF081612

VF034798.D	I		08/16/	12		VF081612	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
95-49-8	2-Chlorotoluene	3.1	U	0.91	3.1	6.2	ug/Kg
108-67-8	1,3,5-Trimethylbenzene	3.1	U	0.56	3.1	6.2	ug/Kg
106-43-4	4-Chlorotoluene	3.1	U	0.77	3.1	6.2	ug/Kg
98-06-6	tert-Butylbenzene	3.1	U	0.73	3.1	6.2	ug/Kg
95-63-6	1,2,4-Trimethylbenzene	3.1	U	0.62	3.1	6.2	ug/Kg
135-98-8	sec-Butylbenzene	3.1	U	0.64	3.1	6.2	ug/Kg
99-87-6	p-Isopropyltoluene	3.1	U	0.36	3.1	6.2	ug/Kg
541-73-1	1,3-Dichlorobenzene	3.1	U	0.46	3.1	6.2	ug/Kg
106-46-7	1,4-Dichlorobenzene	3.1	U	0.51	3.1	6.2	ug/Kg
104-51-8	n-Butylbenzene	3.1	U	0.57	3.1	6.2	ug/Kg
95-50-1	1,2-Dichlorobenzene	3.1	U	0.77	3.1	6.2	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	3.1	U	1.1	3.1	6.2	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	3.1	U	0.86	3.1	6.2	ug/Kg
87-68-3	Hexachlorobutadiene	3.1	U	0.98	3.1	6.2	ug/Kg
91-20-3	Naphthalene	3.1	U	0.56	3.1	6.2	ug/Kg
87-61-6	1,2,3-Trichlorobenzene	3.1	U	0.62	3.1	6.2	ug/Kg
74-88-4	Methyl Iodide	6.2	U	6.2	6.2	6.2	ug/Kg
107-05-1	Allyl chloride	6.2	U	6.2	6.2	6.2	ug/Kg
126-98-7	Methacrylonitrile	6.2	U	6.2	6.2	6.2	ug/Kg
110-57-6	trans-1,4-Dichloro-2-butene	6.2	U	6.2	6.2	6.2	ug/Kg
97-63-2	Ethyl methacrylate	6.2	U	6.2	6.2	6.2	ug/Kg
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	49.6		56 - 120		99%	SPK: 50
1868-53-7	Dibromofluoromethane	60.1		57 - 135		120%	SPK: 50
2037-26-5	Toluene-d8	45.8		67 - 123		92%	SPK: 50
460-00-4	4-Bromofluorobenzene	22.2		33 - 141	l	44%	SPK: 50
INTERNAL ST							
363-72-4	Pentafluorobenzene	133153	4.39				
540-36-3	1,4-Difluorobenzene	235559	5.14				
3114-55-4	Chlorobenzene-d5	159919	9.34				
3855-82-1	1,4-Dichlorobenzene-d4	33978	12.25				

08/10/12

08/15/12

D3811

SOIL

LOW

Date Received:

Matrix:

Level:

Lab Sample ID:

GC Column:

Report of Analysis

Client: MS Analytical

MS Analytical Date Collected:

Project: 12MS104 Kensington Heights

D3811-15

RTX-VMS

Client Sample ID: SB-41(8-11) SDG No.:

ID: 0.18

Analytical Method: SW8260C % Moisture: 19

Sample Wt/Vol: 5 Units: g Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VF034798.D 1 08/16/12 VF081612

CAS Number Parameter Conc. Qualifier MDL LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Report of Analysis

Client: MS Analytical Date Collected: 08/10/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-41(8-11)RE SDG No.: D3811 Lab Sample ID: D3811-15RE Matrix: SOIL Analytical Method: SW8260C % Moisture: 19 Sample Wt/Vol: 5.01 Units: g Final Vol: 5000

Soil Aliquot Vol: UL Test: VOC-Chemtech Full -15

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036758.D 1 08/16/12 VD081612

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	3.1	U	0.8	3.1	6.2	ug/Kg
74-87-3	Chloromethane	3.1	U	1.1	3.1	6.2	ug/Kg
75-01-4	Vinyl Chloride	3.1	U	1.5	3.1	6.2	ug/Kg
141-78-6	Ethyl Acetate	3.1	U	1.1	3.1	6.2	ug/Kg
108-21-4	Isopropyl Acetate	3.1	UQ	1.5	3.1	6.2	ug/Kg
628-63-7	N-amyl acetate	3.1	U	1.2	3.1	6.2	ug/Kg
74-83-9	Bromomethane	3.1	U	3	3.1	6.2	ug/Kg
75-00-3	Chloroethane	3.1	U	1.7	3.1	6.2	ug/Kg
75-69-4	Trichlorofluoromethane	3.1	U	1.6	3.1	6.2	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	3.1	U	1.6	3.1	6.2	ug/Kg
75-65-0	Tert butyl alcohol	15.5	U	9.1	15.5	31	ug/Kg
60-29-7	Diethyl Ether	3.1	U	2.4	3.1	6.2	ug/Kg
75-35-4	1,1-Dichloroethene	3.1	U	1.8	3.1	6.2	ug/Kg
107-02-8	Acrolein	15.5	U	4.9	15.5	31	ug/Kg
107-13-1	Acrylonitrile	15.5	U	6	15.5	31	ug/Kg
67-64-1	Acetone	74	Q	3.7	15.5	31	ug/Kg
75-15-0	Carbon Disulfide	3.1	U	1.3	3.1	6.2	ug/Kg
1634-04-4	Methyl tert-butyl Ether	3.1	U	1.2	3.1	6.2	ug/Kg
79-20-9	Methyl Acetate	3.1	U	1.9	3.1	6.2	ug/Kg
75-09-2	Methylene Chloride	3.1	U	1.7	3.1	6.2	ug/Kg
156-60-5	trans-1,2-Dichloroethene	3.1	U	0.85	3.1	6.2	ug/Kg
108-05-4	Vinyl Acetate	15.5	UQ	4.3	15.5	31	ug/Kg
75-34-3	1,1-Dichloroethane	3.1	U	1.2	3.1	6.2	ug/Kg
110-82-7	Cyclohexane	3.1	U	1.2	3.1	6.2	ug/Kg
78-93-3	2-Butanone	15.5	UQ	3.8	15.5	31	ug/Kg
56-23-5	Carbon Tetrachloride	3.1	UQ	1.2	3.1	6.2	ug/Kg
594-20-7	2,2-Dichloropropane	3.1	U	1.3	3.1	6.2	ug/Kg
156-59-2	cis-1,2-Dichloroethene	3.1	U	1.1	3.1	6.2	ug/Kg
74-97-5	Bromochloromethane	3.1	U	0.97	3.1	6.2	ug/Kg
67-66-3	Chloroform	3.1	U	0.91	3.1	6.2	ug/Kg
71-55-6	1,1,1-Trichloroethane	3.1	U	1.1	3.1	6.2	ug/Kg

Sample Wt/Vol:

5.01

Units:

g

Report of Analysis

Client: MS Analytical Date Collected: 08/10/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-41(8-11)RE SDG No.: D3811 Lab Sample ID: D3811-15RE Matrix: SOIL

Analytical Method: SW8260C % Moisture: 19

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

Final Vol:

5000

uL

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036758.D 1 08/16/12 VD081612

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
108-87-2	Methylcyclohexane	3.1	U	1.3	3.1	6.2	ug/Kg
563-58-6	1,1-Dichloropropene	3.1	U	0.57	3.1	6.2	ug/Kg
71-43-2	Benzene	3.1	U	0.47	3.1	6.2	ug/Kg
107-06-2	1,2-Dichloroethane	3.1	U	0.79	3.1	6.2	ug/Kg
79-01-6	Trichloroethene	3.1	U	1.1	3.1	6.2	ug/Kg
78-87-5	1,2-Dichloropropane	3.1	U	0.32	3.1	6.2	ug/Kg
74-95-3	Dibromomethane	3.1	U	0.96	3.1	6.2	ug/Kg
75-27-4	Bromodichloromethane	3.1	U	0.76	3.1	6.2	ug/Kg
108-10-1	4-Methyl-2-Pentanone	15.5	U	3.6	15.5	31	ug/Kg
108-88-3	Toluene	3.1	U	0.79	3.1	6.2	ug/Kg
10061-02-6	t-1,3-Dichloropropene	3.1	U	0.97	3.1	6.2	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	3.1	U	0.89	3.1	6.2	ug/Kg
79-00-5	1,1,2-Trichloroethane	3.1	U	1.1	3.1	6.2	ug/Kg
142-28-9	1,3-Dichloropropane	3.1	U	0.91	3.1	6.2	ug/Kg
110-75-8	2-Chloroethyl Vinyl ether	15.5	U	14	15.5	31	ug/Kg
591-78-6	2-Hexanone	15.5	U	4.8	15.5	31	ug/Kg
124-48-1	Dibromochloromethane	3.1	U	0.67	3.1	6.2	ug/Kg
106-93-4	1,2-Dibromoethane	3.1	U	0.79	3.1	6.2	ug/Kg
127-18-4	Tetrachloroethene	3.1	U	1.2	3.1	6.2	ug/Kg
108-90-7	Chlorobenzene	3.1	U	0.62	3.1	6.2	ug/Kg
630-20-6	1,1,1,2-Tetrachloroethane	3.1	U	0.53	3.1	6.2	ug/Kg
67-72-1	Hexachloroethane	3.1	U	0.94	3.1	6.2	ug/Kg
100-41-4	Ethyl Benzene	3.1	U	0.76	3.1	6.2	ug/Kg
179601-23-1	m/p-Xylenes	6	U	0.89	6	12	ug/Kg
95-47-6	o-Xylene	3.1	U	0.84	3.1	6.2	ug/Kg
100-42-5	Styrene	3.1	U	0.55	3.1	6.2	ug/Kg
75-25-2	Bromoform	3.1	U	0.91	3.1	6.2	ug/Kg
98-82-8	Isopropylbenzene	3.1	U	0.59	3.1	6.2	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	3.1	U	0.57	3.1	6.2	ug/Kg
96-18-4	1,2,3-Trichloropropane	3.1	U	0.6	3.1	6.2	ug/Kg
108-86-1	Bromobenzene	3.1	U	0.64	3.1	6.2	ug/Kg
103-65-1	n-propylbenzene	3.1	U	0.44	3.1	6.2	ug/Kg

Client: MS Analytical Date Collected: 08/10/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SP-41(8-11)RF SDG No: D3811

Client Sample ID:SB-41(8-11)RESDG No.:D3811Lab Sample ID:D3811-15REMatrix:SOILAnalytical Method:SW8260C% Moisture:19

Sample Wt/Vol: 5.01 Units: g Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036758.D 1 08/16/12 VD081612

VD036758.D	1		08/16/	/12		VD081612	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
95-49-8	2-Chlorotoluene	3.1	U	0.91	3.1	6.2	ug/Kg
108-67-8	1,3,5-Trimethylbenzene	3.1	U	0.55	3.1	6.2	ug/Kg
106-43-4	4-Chlorotoluene	3.1	U	0.76	3.1	6.2	ug/Kg
98-06-6	tert-Butylbenzene	3.1	U	0.73	3.1	6.2	ug/Kg
95-63-6	1,2,4-Trimethylbenzene	3.1	U	0.62	3.1	6.2	ug/Kg
135-98-8	sec-Butylbenzene	3.1	U	0.64	3.1	6.2	ug/Kg
99-87-6	p-Isopropyltoluene	3.1	U	0.36	3.1	6.2	ug/Kg
541-73-1	1,3-Dichlorobenzene	3.1	U	0.46	3.1	6.2	ug/Kg
106-46-7	1,4-Dichlorobenzene	3.1	U	0.51	3.1	6.2	ug/Kg
104-51-8	n-Butylbenzene	3.1	U	0.57	3.1	6.2	ug/Kg
95-50-1	1,2-Dichlorobenzene	3.1	U	0.76	3.1	6.2	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	3.1	U	1.1	3.1	6.2	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	3.1	U	0.86	3.1	6.2	ug/Kg
87-68-3	Hexachlorobutadiene	3.1	U	0.97	3.1	6.2	ug/Kg
91-20-3	Naphthalene	3.1	UQ	0.55	3.1	6.2	ug/Kg
87-61-6	1,2,3-Trichlorobenzene	3.1	U	0.62	3.1	6.2	ug/Kg
74-88-4	Methyl Iodide	6.2	U	6.2	6.2	6.2	ug/Kg
107-05-1	Allyl chloride	6.2	U	6.2	6.2	6.2	ug/Kg
126-98-7	Methacrylonitrile	6.2	UQ	6.2	6.2	6.2	ug/Kg
110-57-6	trans-1,4-Dichloro-2-butene	6.2	U	6.2	6.2	6.2	ug/Kg
97-63-2	Ethyl methacrylate	6.2	U	6.2	6.2	6.2	ug/Kg
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	59.9		56 - 120		120%	SPK: 50
1868-53-7	Dibromofluoromethane	47.2		57 - 135	5	95%	SPK: 50
2037-26-5	Toluene-d8	50.2		67 - 123		100%	SPK: 50
460-00-4	4-Bromofluorobenzene	52.7		33 - 141	l	105%	SPK: 50
INTERNAL ST							
363-72-4	Pentafluorobenzene	249008	4.73				
540-36-3	1,4-Difluorobenzene	452503	5.45				
3114-55-4	Chlorobenzene-d5	426686	9.57				
3855-82-1	1,4-Dichlorobenzene-d4	173799	12.48				

Matrix:

08/10/12

SOIL

Lab Sample ID:

Report of Analysis

Client: MS Analytical Date Collected:

D3811-15RE

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-41(8-11)RE SDG No.: D3811

Analytical Method: SW8260C % Moisture: 19

Sample Wt/Vol: 5.01 Units: g Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VD036758.D 1 08/16/12 VD081612

CAS Number Parameter Conc. Qualifier MDL LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Sample Wt/Vol:

5.03

Units:

g

Report of Analysis

Client: MS Analytical Date Collected: 08/13/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SDG No.: D3811 SB-43(6-8) Lab Sample ID: D3811-17 Matrix: SOIL Analytical Method: SW8260C % Moisture: 8

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

Final Vol:

5000

uL

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034799.D 1 08/16/12 VF081612

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	2.7	U	0.7	2.7	5.4	ug/Kg
74-87-3	Chloromethane	2.7	U	0.93	2.7	5.4	ug/Kg
75-01-4	Vinyl Chloride	2.7	U	1.3	2.7	5.4	ug/Kg
141-78-6	Ethyl Acetate	2.7	U	0.94	2.7	5.4	ug/Kg
108-21-4	Isopropyl Acetate	2.7	U	1.3	2.7	5.4	ug/Kg
628-63-7	N-amyl acetate	2.7	U	1	2.7	5.4	ug/Kg
74-83-9	Bromomethane	2.7	U	2.6	2.7	5.4	ug/Kg
75-00-3	Chloroethane	2.7	U	1.5	2.7	5.4	ug/Kg
75-69-4	Trichlorofluoromethane	2.7	U	1.4	2.7	5.4	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	2.7	U	1.4	2.7	5.4	ug/Kg
75-65-0	Tert butyl alcohol	13.5	U	8	13.5	27	ug/Kg
60-29-7	Diethyl Ether	2.7	U	2.1	2.7	5.4	ug/Kg
75-35-4	1,1-Dichloroethene	2.7	U	1.6	2.7	5.4	ug/Kg
107-02-8	Acrolein	13.5	U	4.3	13.5	27	ug/Kg
107-13-1	Acrylonitrile	13.5	U	5.3	13.5	27	ug/Kg
67-64-1	Acetone	37		3.3	13.5	27	ug/Kg
75-15-0	Carbon Disulfide	2.7	U	1.1	2.7	5.4	ug/Kg
1634-04-4	Methyl tert-butyl Ether	2.7	U	1	2.7	5.4	ug/Kg
79-20-9	Methyl Acetate	2.7	U	1.6	2.7	5.4	ug/Kg
75-09-2	Methylene Chloride	2.7	U	1.5	2.7	5.4	ug/Kg
156-60-5	trans-1,2-Dichloroethene	2.7	U	0.75	2.7	5.4	ug/Kg
108-05-4	Vinyl Acetate	13.5	U	3.7	13.5	27	ug/Kg
75-34-3	1,1-Dichloroethane	2.7	U	1	2.7	5.4	ug/Kg
110-82-7	Cyclohexane	2.7	U	1.1	2.7	5.4	ug/Kg
78-93-3	2-Butanone	13.5	U	3.4	13.5	27	ug/Kg
56-23-5	Carbon Tetrachloride	2.7	U	1.1	2.7	5.4	ug/Kg
594-20-7	2,2-Dichloropropane	2.7	U	1.1	2.7	5.4	ug/Kg
156-59-2	cis-1,2-Dichloroethene	2.7	U	0.96	2.7	5.4	ug/Kg
74-97-5	Bromochloromethane	2.7	U	0.85	2.7	5.4	ug/Kg
67-66-3	Chloroform	2.7	U	0.8	2.7	5.4	ug/Kg
71-55-6	1,1,1-Trichloroethane	2.7	U	0.95	2.7	5.4	ug/Kg

Client: MS Analytical Date Collected: 08/13/12 12MS104 Kensington Heights Project: 08/15/12 Date Received: Client Sample ID: SB-43(6-8) SDG No.: D3811 Lab Sample ID: D3811-17 Matrix: SOIL Analytical Method: SW8260C % Moisture:

Sample Wt/Vol: 5.03 Units: g Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034799.D 1 08/16/12 VF081612

VF034/99.D	1		08/10/	/12		VFU81012	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
108-87-2	Methylcyclohexane	2.7	U	1.1	2.7	5.4	ug/Kg
563-58-6	1,1-Dichloropropene	2.7	U	0.5	2.7	5.4	ug/Kg
71-43-2	Benzene	2.7	U	0.41	2.7	5.4	ug/Kg
107-06-2	1,2-Dichloroethane	2.7	U	0.69	2.7	5.4	ug/Kg
79-01-6	Trichloroethene	2.7	U	0.93	2.7	5.4	ug/Kg
78-87-5	1,2-Dichloropropane	2.7	U	0.28	2.7	5.4	ug/Kg
74-95-3	Dibromomethane	2.7	U	0.84	2.7	5.4	ug/Kg
75-27-4	Bromodichloromethane	2.7	U	0.67	2.7	5.4	ug/Kg
108-10-1	4-Methyl-2-Pentanone	13.5	U	3.2	13.5	27	ug/Kg
108-88-3	Toluene	1.9	J	0.69	2.7	5.4	ug/Kg
10061-02-6	t-1,3-Dichloropropene	2.7	U	0.85	2.7	5.4	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	2.7	U	0.78	2.7	5.4	ug/Kg
79-00-5	1,1,2-Trichloroethane	2.7	U	0.97	2.7	5.4	ug/Kg
142-28-9	1,3-Dichloropropane	2.7	U	0.8	2.7	5.4	ug/Kg
110-75-8	2-Chloroethyl Vinyl ether	13.5	U	12	13.5	27	ug/Kg
591-78-6	2-Hexanone	13.5	U	4.2	13.5	27	ug/Kg
124-48-1	Dibromochloromethane	2.7	U	0.58	2.7	5.4	ug/Kg
106-93-4	1,2-Dibromoethane	2.7	U	0.69	2.7	5.4	ug/Kg
127-18-4	Tetrachloroethene	2.7	U	1.1	2.7	5.4	ug/Kg
108-90-7	Chlorobenzene	2.7	U	0.54	2.7	5.4	ug/Kg
630-20-6	1,1,1,2-Tetrachloroethane	2.7	U	0.46	2.7	5.4	ug/Kg
67-72-1	Hexachloroethane	2.7	U	0.82	2.7	5.4	ug/Kg
100-41-4	Ethyl Benzene	2.7	U	0.67	2.7	5.4	ug/Kg
179601-23-1	m/p-Xylenes	5.5	U	0.78	5.5	11	ug/Kg
95-47-6	o-Xylene	2.7	U	0.73	2.7	5.4	ug/Kg
100-42-5	Styrene	2.7	U	0.49	2.7	5.4	ug/Kg
75-25-2	Bromoform	2.7	U	0.8	2.7	5.4	ug/Kg
98-82-8	Isopropylbenzene	2.7	U	0.52	2.7	5.4	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	2.7	U	0.5	2.7	5.4	ug/Kg
96-18-4	1,2,3-Trichloropropane	2.7	U	0.53	2.7	5.4	ug/Kg
108-86-1	Bromobenzene	2.7	U	0.56	2.7	5.4	ug/Kg
103-65-1	n-propylbenzene	2.7	U	0.39	2.7	5.4	ug/Kg

Client:MS AnalyticalDate Collected:08/13/12Project:12MS104 Kensington HeightsDate Received:08/15/12

Client Sample ID: SB-43(6-8) SDG No.: D3811
Lab Sample ID: D3811-17 Matrix: SOIL
Analytical Method: SW8260C % Moisture: 8

Sample Wt/Vol: 5.03 Units: g Final Vol: 5000 uL

Soil Aliquot Vol: UL Test: VOC-Chemtech Full -15

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034799.D 1 08/16/12 VF081612

VF034799.D	1		08/16/	/12		VF081612	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
95-49-8	2-Chlorotoluene	2.7	U	0.8	2.7	5.4	ug/Kg
108-67-8	1,3,5-Trimethylbenzene	2.7	U	0.49	2.7	5.4	ug/Kg
106-43-4	4-Chlorotoluene	2.7	U	0.67	2.7	5.4	ug/Kg
98-06-6	tert-Butylbenzene	2.7	U	0.64	2.7	5.4	ug/Kg
95-63-6	1,2,4-Trimethylbenzene	2.7	U	0.54	2.7	5.4	ug/Kg
135-98-8	sec-Butylbenzene	2.7	U	0.56	2.7	5.4	ug/Kg
99-87-6	p-Isopropyltoluene	2.7	U	0.31	2.7	5.4	ug/Kg
541-73-1	1,3-Dichlorobenzene	2.7	U	0.4	2.7	5.4	ug/Kg
106-46-7	1,4-Dichlorobenzene	2.7	U	0.44	2.7	5.4	ug/Kg
104-51-8	n-Butylbenzene	2.7	U	0.5	2.7	5.4	ug/Kg
95-50-1	1,2-Dichlorobenzene	2.7	U	0.67	2.7	5.4	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	2.7	U	0.94	2.7	5.4	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	2.7	U	0.76	2.7	5.4	ug/Kg
87-68-3	Hexachlorobutadiene	2.7	U	0.85	2.7	5.4	ug/Kg
91-20-3	Naphthalene	2.7	U	0.49	2.7	5.4	ug/Kg
87-61-6	1,2,3-Trichlorobenzene	2.7	U	0.54	2.7	5.4	ug/Kg
74-88-4	Methyl Iodide	5.4	U	5.4	5.4	5.4	ug/Kg
107-05-1	Allyl chloride	5.4	U	5.4	5.4	5.4	ug/Kg
126-98-7	Methacrylonitrile	5.4	U	5.4	5.4	5.4	ug/Kg
110-57-6	trans-1,4-Dichloro-2-butene	5.4	U	5.4	5.4	5.4	ug/Kg
97-63-2	Ethyl methacrylate	5.4	U	5.4	5.4	5.4	ug/Kg
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	49.7		56 - 120)	99%	SPK: 50
1868-53-7	Dibromofluoromethane	55.5		57 - 13:	5	111%	SPK: 50
2037-26-5	Toluene-d8	48.5		67 - 123		97%	SPK: 50
460-00-4	4-Bromofluorobenzene	25.2		33 - 14	1	50%	SPK: 50
INTERNAL ST							
363-72-4	Pentafluorobenzene	153180	4.4				
540-36-3	1,4-Difluorobenzene	277515	5.14				
3114-55-4	Chlorobenzene-d5	212608	9.35				
3855-82-1	1,4-Dichlorobenzene-d4	48505	12.25				

Client: MS Analytical Date Collected: 08/13/12

Project:

12MS104 Kensington Heights

08/15/12

Client Sample ID:

SB-43(6-8)

Date Received:

Lab Sample ID:

D3811-17

SDG No.:

D3811

Matrix:

Final Vol:

SOIL

Analytical Method:

SW8260C

% Moisture:

5000

uL

Sample Wt/Vol:

5.03

Units: g

Test:

VOC-Chemtech Full -15

Soil Aliquot Vol: GC Column:

uL

ID: 0.18

Level:

LOW

File ID/Qc Batch:

Dilution:

RTX-VMS

Prep Date

Date Analyzed

Prep Batch ID

VF081612

VF034799.D

08/16/12

CAS Number

Parameter

Conc.

Qualifier

MDL

LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Client: MS Analytical Date Collected: 08/13/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-43(6-8)RE SDG No.: D3811 D3811-17RE Matrix: SOIL Lab Sample ID: Analytical Method: SW8260C % Moisture:

Sample Wt/Vol: 5.01 Units: g Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036759.D 1 08/16/12 VD081612

1= 350,757.=							
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	2.7	U	0.71	2.7	5.4	ug/Kg
74-87-3	Chloromethane	2.7	U	0.93	2.7	5.4	ug/Kg
75-01-4	Vinyl Chloride	2.7	U	1.3	2.7	5.4	ug/Kg
141-78-6	Ethyl Acetate	2.7	U	0.94	2.7	5.4	ug/Kg
108-21-4	Isopropyl Acetate	2.7	UQ	1.3	2.7	5.4	ug/Kg
628-63-7	N-amyl acetate	2.7	U	1	2.7	5.4	ug/Kg
74-83-9	Bromomethane	2.7	U	2.7	2.7	5.4	ug/Kg
75-00-3	Chloroethane	2.7	U	1.5	2.7	5.4	ug/Kg
75-69-4	Trichlorofluoromethane	2.7	U	1.4	2.7	5.4	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	2.7	U	1.4	2.7	5.4	ug/Kg
75-65-0	Tert butyl alcohol	13.5	U	8	13.5	27	ug/Kg
60-29-7	Diethyl Ether	2.7	U	2.1	2.7	5.4	ug/Kg
75-35-4	1,1-Dichloroethene	2.7	U	1.6	2.7	5.4	ug/Kg
107-02-8	Acrolein	13.5	U	4.3	13.5	27	ug/Kg
107-13-1	Acrylonitrile	13.5	U	5.3	13.5	27	ug/Kg
67-64-1	Acetone	45	Q	3.3	13.5	27	ug/Kg
75-15-0	Carbon Disulfide	2.7	U	1.1	2.7	5.4	ug/Kg
1634-04-4	Methyl tert-butyl Ether	2.7	U	1	2.7	5.4	ug/Kg
79-20-9	Methyl Acetate	2.7	U	1.6	2.7	5.4	ug/Kg
75-09-2	Methylene Chloride	2.7	U	1.5	2.7	5.4	ug/Kg
156-60-5	trans-1,2-Dichloroethene	2.7	U	0.75	2.7	5.4	ug/Kg
108-05-4	Vinyl Acetate	13.5	UQ	3.8	13.5	27	ug/Kg
75-34-3	1,1-Dichloroethane	2.7	U	1	2.7	5.4	ug/Kg
110-82-7	Cyclohexane	2.7	U	1.1	2.7	5.4	ug/Kg
78-93-3	2-Butanone	13.5	UQ	3.4	13.5	27	ug/Kg
56-23-5	Carbon Tetrachloride	2.7	UQ	1.1	2.7	5.4	ug/Kg
594-20-7	2,2-Dichloropropane	2.7	U	1.1	2.7	5.4	ug/Kg
156-59-2	cis-1,2-Dichloroethene	2.7	U	0.97	2.7	5.4	ug/Kg
74-97-5	Bromochloromethane	2.7	U	0.86	2.7	5.4	ug/Kg
67-66-3	Chloroform	2.7	U	0.8	2.7	5.4	ug/Kg
71-55-6	1,1,1-Trichloroethane	2.7	U	0.95	2.7	5.4	ug/Kg

Soil Aliquot Vol:

Report of Analysis

Client:MS AnalyticalDate Collected:08/13/12Project:12MS104 Kensington HeightsDate Received:08/15/12

Client Sample ID: SB-43(6-8)RE SDG No.: D3811
Lab Sample ID: D3811-17RE Matrix: SOIL

Analytical Method: SW8260C % Moisture: 8

uL

 $Sample \ Wt/Vol: \hspace{1.5cm} 5.01 \hspace{1.5cm} Units: \hspace{1.5cm} g \hspace{1.5cm} Final \ Vol: \hspace{1.5cm} 5000 \hspace{1.5cm} uL$

Test:

VOC-Chemtech Full -15

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036759.D 1 08/16/12 VD081612

VD030737.D	1		00/10/	12		V D001012	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
108-87-2	Methylcyclohexane	2.7	U	1.1	2.7	5.4	ug/Kg
563-58-6	1,1-Dichloropropene	2.7	U	0.5	2.7	5.4	ug/Kg
71-43-2	Benzene	2.7	U	0.41	2.7	5.4	ug/Kg
107-06-2	1,2-Dichloroethane	2.7	U	0.69	2.7	5.4	ug/Kg
79-01-6	Trichloroethene	2.7	U	0.93	2.7	5.4	ug/Kg
78-87-5	1,2-Dichloropropane	2.7	U	0.28	2.7	5.4	ug/Kg
74-95-3	Dibromomethane	2.7	U	0.85	2.7	5.4	ug/Kg
75-27-4	Bromodichloromethane	2.7	U	0.67	2.7	5.4	ug/Kg
108-10-1	4-Methyl-2-Pentanone	13.5	U	3.2	13.5	27	ug/Kg
108-88-3	Toluene	2.7	U	0.69	2.7	5.4	ug/Kg
10061-02-6	t-1,3-Dichloropropene	2.7	U	0.86	2.7	5.4	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	2.7	U	0.78	2.7	5.4	ug/Kg
79-00-5	1,1,2-Trichloroethane	2.7	U	0.98	2.7	5.4	ug/Kg
142-28-9	1,3-Dichloropropane	2.7	U	0.8	2.7	5.4	ug/Kg
110-75-8	2-Chloroethyl Vinyl ether	13.5	U	12	13.5	27	ug/Kg
591-78-6	2-Hexanone	13.5	U	4.3	13.5	27	ug/Kg
124-48-1	Dibromochloromethane	2.7	U	0.59	2.7	5.4	ug/Kg
106-93-4	1,2-Dibromoethane	2.7	U	0.69	2.7	5.4	ug/Kg
127-18-4	Tetrachloroethene	2.7	U	1.1	2.7	5.4	ug/Kg
108-90-7	Chlorobenzene	2.7	U	0.54	2.7	5.4	ug/Kg
630-20-6	1,1,1,2-Tetrachloroethane	2.7	U	0.47	2.7	5.4	ug/Kg
67-72-1	Hexachloroethane	2.7	U	0.82	2.7	5.4	ug/Kg
100-41-4	Ethyl Benzene	2.7	U	0.67	2.7	5.4	ug/Kg
179601-23-1	m/p-Xylenes	5.5	U	0.78	5.5	11	ug/Kg
95-47-6	o-Xylene	2.7	U	0.74	2.7	5.4	ug/Kg
100-42-5	Styrene	2.7	U	0.49	2.7	5.4	ug/Kg
75-25-2	Bromoform	2.7	U	0.8	2.7	5.4	ug/Kg
98-82-8	Isopropylbenzene	2.7	U	0.52	2.7	5.4	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	2.7	U	0.5	2.7	5.4	ug/Kg
96-18-4	1,2,3-Trichloropropane	2.7	U	0.53	2.7	5.4	ug/Kg
108-86-1	Bromobenzene	2.7	U	0.56	2.7	5.4	ug/Kg
103-65-1	n-propylbenzene	2.7	U	0.39	2.7	5.4	ug/Kg

Client: MS Analytical Date Collected: 08/13/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-43(6-8)RE SDG No.: D3811 Lab Sample ID: D3811-17RE Matrix: SOIL Analytical Method: SW8260C % Moisture: 8

Sample Wt/Vol: 5.01 Units: g Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036759.D 1 08/16/12 VD081612

VD036759.D	1		08/16/	/12		VD081612	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
95-49-8	2-Chlorotoluene	2.7	U	0.8	2.7	5.4	ug/Kg
108-67-8	1,3,5-Trimethylbenzene	2.7	U	0.49	2.7	5.4	ug/Kg
106-43-4	4-Chlorotoluene	2.7	U	0.67	2.7	5.4	ug/Kg
98-06-6	tert-Butylbenzene	2.7	U	0.64	2.7	5.4	ug/Kg
95-63-6	1,2,4-Trimethylbenzene	2.7	U	0.54	2.7	5.4	ug/Kg
135-98-8	sec-Butylbenzene	2.7	U	0.56	2.7	5.4	ug/Kg
99-87-6	p-Isopropyltoluene	2.7	U	0.31	2.7	5.4	ug/Kg
541-73-1	1,3-Dichlorobenzene	2.7	U	0.4	2.7	5.4	ug/Kg
106-46-7	1,4-Dichlorobenzene	2.7	U	0.44	2.7	5.4	ug/Kg
104-51-8	n-Butylbenzene	2.7	U	0.5	2.7	5.4	ug/Kg
95-50-1	1,2-Dichlorobenzene	2.7	U	0.67	2.7	5.4	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	2.7	U	0.94	2.7	5.4	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	2.7	U	0.76	2.7	5.4	ug/Kg
87-68-3	Hexachlorobutadiene	2.7	U	0.86	2.7	5.4	ug/Kg
91-20-3	Naphthalene	2.7	UQ	0.49	2.7	5.4	ug/Kg
87-61-6	1,2,3-Trichlorobenzene	2.7	U	0.54	2.7	5.4	ug/Kg
74-88-4	Methyl Iodide	5.4	U	5.4	5.4	5.4	ug/Kg
107-05-1	Allyl chloride	5.4	U	5.4	5.4	5.4	ug/Kg
126-98-7	Methacrylonitrile	5.4	UQ	5.4	5.4	5.4	ug/Kg
110-57-6	trans-1,4-Dichloro-2-butene	5.4	U	5.4	5.4	5.4	ug/Kg
97-63-2	Ethyl methacrylate	5.4	U	5.4	5.4	5.4	ug/Kg
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	55.1		56 - 120	0	110%	SPK: 50
1868-53-7	Dibromofluoromethane	47.4		57 - 13:	5	95%	SPK: 50
2037-26-5	Toluene-d8	49.1		67 - 12		98%	SPK: 50
460-00-4	4-Bromofluorobenzene	53.9		33 - 14	1	108%	SPK: 50
INTERNAL STA							
363-72-4	Pentafluorobenzene	391890	4.73				
540-36-3	1,4-Difluorobenzene	703056	5.45				
3114-55-4	Chlorobenzene-d5	663769	9.57				
3855-82-1	1,4-Dichlorobenzene-d4	296903	12.47				

Date Collected:

Date Received:

SDG No.:

% Moisture:

Final Vol:

Matrix:

08/13/12

08/15/12

D3811

SOIL

5000

uL

Report of Analysis

Client: MS Analytical

Project: 12MS104 Kensington Heights

Client Sample ID: SB-43(6-8)RE

Lab Sample ID: D3811-17RE

Analytical Method: SW8260C

Sample Wt/Vol: 5.01 Units: g

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VD036759.D 1 08/16/12 VD081612

CAS Number Parameter Conc. Qualifier MDL LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Test:

uL

VOC-Chemtech Full -15

Soil Aliquot Vol:

Report of Analysis

Client: MS Analytical Date Collected: 08/13/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-43(10-12) SDG No.: D3811 Lab Sample ID: D3811-18 Matrix: SOIL Analytical Method: SW8260C % Moisture: 18 Sample Wt/Vol: 5.01 Units: g Final Vol: 5000

GC Column: RTX-VMS ID: 0.18 Level: LOW

иL

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034800.D 1 08/16/12 VF081612

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	3.05	U	0.79	3.05	6.1	ug/Kg
74-87-3	Chloromethane	3.05	U	1	3.05	6.1	ug/Kg
75-01-4	Vinyl Chloride	3.05	U	1.5	3.05	6.1	ug/Kg
141-78-6	Ethyl Acetate	3.05	U	1.1	3.05	6.1	ug/Kg
108-21-4	Isopropyl Acetate	3.05	U	1.4	3.05	6.1	ug/Kg
628-63-7	N-amyl acetate	3.05	U	1.1	3.05	6.1	ug/Kg
74-83-9	Bromomethane	3.05	U	3	3.05	6.1	ug/Kg
75-00-3	Chloroethane	3.05	U	1.7	3.05	6.1	ug/Kg
75-69-4	Trichlorofluoromethane	3.05	U	1.6	3.05	6.1	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	3.05	U	1.6	3.05	6.1	ug/Kg
75-65-0	Tert butyl alcohol	15	U	9	15	30	ug/Kg
60-29-7	Diethyl Ether	3.05	U	2.3	3.05	6.1	ug/Kg
75-35-4	1,1-Dichloroethene	3.05	U	1.8	3.05	6.1	ug/Kg
107-02-8	Acrolein	15	U	4.8	15	30	ug/Kg
107-13-1	Acrylonitrile	15	U	6	15	30	ug/Kg
67-64-1	Acetone	75		3.7	15	30	ug/Kg
75-15-0	Carbon Disulfide	3.05	U	1.3	3.05	6.1	ug/Kg
1634-04-4	Methyl tert-butyl Ether	3.05	U	1.2	3.05	6.1	ug/Kg
79-20-9	Methyl Acetate	3.05	U	1.8	3.05	6.1	ug/Kg
75-09-2	Methylene Chloride	3.05	U	1.7	3.05	6.1	ug/Kg
156-60-5	trans-1,2-Dichloroethene	3.05	U	0.84	3.05	6.1	ug/Kg
108-05-4	Vinyl Acetate	15	U	4.2	15	30	ug/Kg
75-34-3	1,1-Dichloroethane	3.05	U	1.1	3.05	6.1	ug/Kg
110-82-7	Cyclohexane	3.05	U	1.2	3.05	6.1	ug/Kg
78-93-3	2-Butanone	15	U	3.8	15	30	ug/Kg
56-23-5	Carbon Tetrachloride	3.05	U	1.2	3.05	6.1	ug/Kg
594-20-7	2,2-Dichloropropane	3.05	U	1.3	3.05	6.1	ug/Kg
156-59-2	cis-1,2-Dichloroethene	3.05	U	1.1	3.05	6.1	ug/Kg
74-97-5	Bromochloromethane	3.05	U	0.96	3.05	6.1	ug/Kg
67-66-3	Chloroform	3.05	U	0.9	3.05	6.1	ug/Kg
71-55-6	1,1,1-Trichloroethane	3.05	U	1.1	3.05	6.1	ug/Kg

Client:MS AnalyticalDate Collected:08/13/12Project:12MS104 Kensington HeightsDate Received:08/15/12

Client Sample ID: SB-43(10-12) SDG No.: D3811
Lab Sample ID: D3811-18 Matrix: SOIL
Analytical Method: SW8260C % Moisture: 18

Sample Wt/Vol: 5.01 Units: g Final Vol: 5000 uL

Soil Aliquot Vol: UL Test: VOC-Chemtech Full -15

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034800.D 1 08/16/12 VF081612

	_						
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
108-87-2	Methylcyclohexane	3.05	U	1.3	3.05	6.1	ug/Kg
563-58-6	1,1-Dichloropropene	3.05	U	0.56	3.05	6.1	ug/Kg
71-43-2	Benzene	3.05	U	0.46	3.05	6.1	ug/Kg
107-06-2	1,2-Dichloroethane	3.05	U	0.78	3.05	6.1	ug/Kg
79-01-6	Trichloroethene	3.05	U	1	3.05	6.1	ug/Kg
78-87-5	1,2-Dichloropropane	3.05	U	0.32	3.05	6.1	ug/Kg
74-95-3	Dibromomethane	3.05	U	0.95	3.05	6.1	ug/Kg
75-27-4	Bromodichloromethane	3.05	U	0.75	3.05	6.1	ug/Kg
108-10-1	4-Methyl-2-Pentanone	15	U	3.6	15	30	ug/Kg
108-88-3	Toluene	3.05	U	0.78	3.05	6.1	ug/Kg
10061-02-6	t-1,3-Dichloropropene	3.05	U	0.96	3.05	6.1	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	3.05	U	0.88	3.05	6.1	ug/Kg
79-00-5	1,1,2-Trichloroethane	3.05	U	1.1	3.05	6.1	ug/Kg
142-28-9	1,3-Dichloropropane	3.05	U	0.9	3.05	6.1	ug/Kg
110-75-8	2-Chloroethyl Vinyl ether	15	U	14	15	30	ug/Kg
591-78-6	2-Hexanone	15	U	4.8	15	30	ug/Kg
124-48-1	Dibromochloromethane	3.05	U	0.66	3.05	6.1	ug/Kg
106-93-4	1,2-Dibromoethane	3.05	U	0.78	3.05	6.1	ug/Kg
127-18-4	Tetrachloroethene	3.05	U	1.2	3.05	6.1	ug/Kg
108-90-7	Chlorobenzene	3.05	U	0.61	3.05	6.1	ug/Kg
630-20-6	1,1,1,2-Tetrachloroethane	3.05	U	0.52	3.05	6.1	ug/Kg
67-72-1	Hexachloroethane	3.05	U	0.92	3.05	6.1	ug/Kg
100-41-4	Ethyl Benzene	3.05	U	0.75	3.05	6.1	ug/Kg
179601-23-1	m/p-Xylenes	6	U	0.88	6	12	ug/Kg
95-47-6	o-Xylene	3.05	U	0.83	3.05	6.1	ug/Kg
100-42-5	Styrene	3.05	U	0.55	3.05	6.1	ug/Kg
75-25-2	Bromoform	3.05	U	0.9	3.05	6.1	ug/Kg
98-82-8	Isopropylbenzene	3.05	U	0.58	3.05	6.1	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	3.05	U	0.56	3.05	6.1	ug/Kg
96-18-4	1,2,3-Trichloropropane	3.05	U	0.6	3.05	6.1	ug/Kg
108-86-1	Bromobenzene	3.05	U	0.63	3.05	6.1	ug/Kg
103-65-1	n-propylbenzene	3.05	U	0.44	3.05	6.1	ug/Kg

Sample Wt/Vol:

5.01

Units:

g

Report of Analysis

Client: MS Analytical Date Collected: 08/13/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-43(10-12) SDG No.: D3811 Lab Sample ID: D3811-18 Matrix: SOIL Analytical Method: SW8260C % Moisture: 18

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

Final Vol:

5000

uL

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034800.D 1 08/16/12 VF081612

VF034800.D	I		08/16/	12		VF081612	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
95-49-8	2-Chlorotoluene	3.05	U	0.9	3.05	6.1	ug/Kg
108-67-8	1,3,5-Trimethylbenzene	3.05	U	0.55	3.05	6.1	ug/Kg
106-43-4	4-Chlorotoluene	3.05	U	0.75	3.05	6.1	ug/Kg
98-06-6	tert-Butylbenzene	3.05	U	0.72	3.05	6.1	ug/Kg
95-63-6	1,2,4-Trimethylbenzene	3.05	U	0.61	3.05	6.1	ug/Kg
135-98-8	sec-Butylbenzene	3.05	U	0.63	3.05	6.1	ug/Kg
99-87-6	p-Isopropyltoluene	3.05	U	0.35	3.05	6.1	ug/Kg
541-73-1	1,3-Dichlorobenzene	3.05	U	0.45	3.05	6.1	ug/Kg
106-46-7	1,4-Dichlorobenzene	3.05	U	0.5	3.05	6.1	ug/Kg
104-51-8	n-Butylbenzene	3.05	U	0.56	3.05	6.1	ug/Kg
95-50-1	1,2-Dichlorobenzene	3.05	U	0.75	3.05	6.1	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	3.05	U	1.1	3.05	6.1	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	3.05	U	0.85	3.05	6.1	ug/Kg
87-68-3	Hexachlorobutadiene	3.05	U	0.96	3.05	6.1	ug/Kg
91-20-3	Naphthalene	3.05	U	0.55	3.05	6.1	ug/Kg
87-61-6	1,2,3-Trichlorobenzene	3.05	U	0.61	3.05	6.1	ug/Kg
74-88-4	Methyl Iodide	6.1	U	6.1	6.1	6.1	ug/Kg
107-05-1	Allyl chloride	6.1	U	6.1	6.1	6.1	ug/Kg
126-98-7	Methacrylonitrile	6.1	U	6.1	6.1	6.1	ug/Kg
110-57-6	trans-1,4-Dichloro-2-butene	6.1	U	6.1	6.1	6.1	ug/Kg
97-63-2	Ethyl methacrylate	6.1	U	6.1	6.1	6.1	ug/Kg
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	49		56 - 120		98%	SPK: 50
1868-53-7	Dibromofluoromethane	52.4		57 - 135		105%	SPK: 50
2037-26-5	Toluene-d8	48.6		67 - 123		97%	SPK: 50
460-00-4	4-Bromofluorobenzene	37.5		33 - 141	l	75%	SPK: 50
INTERNAL ST							
363-72-4	Pentafluorobenzene	160123	4.4				
540-36-3	1,4-Difluorobenzene	293506	5.14				
3114-55-4	Chlorobenzene-d5	264003	9.35				
3855-82-1	1,4-Dichlorobenzene-d4	83166	12.24				

Client: MS Analytical Date Collected: 08/13/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-43(10-12) SDG No.: D3811

Lab Sample ID: D3811-18

% Moisture: 18

uL

Analytical Method: Sample Wt/Vol:

5.01 Units: g

Test:

VOC-Chemtech Full -15

Soil Aliquot Vol:

GC Column:

uL

ID: 0.18

Level:

Matrix:

Final Vol:

LOW

5000

SOIL

File ID/Qc Batch:

Dilution:

RTX-VMS

SW8260C

Prep Date

Date Analyzed

Prep Batch ID

VF081612

VF034800.D

08/16/12

CAS Number

Parameter

Conc.

Qualifier

MDL

LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Client: MS Analytical Date Collected: 08/13/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-43(10-12)RE SDG No.: D3811 SOIL Lab Sample ID: D3811-18RE Matrix: Analytical Method: SW8260C % Moisture: 18 Sample Wt/Vol: 5.04 Units: g Final Vol: 5000 uL VOC-Chemtech Full -15 Soil Aliquot Vol: uL Test:

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036760.D 1 08/16/12 VD081612

VD030700.D	1		00/10/	12	VD001012			
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units	
TARGETS								
75-71-8	Dichlorodifluoromethane	3	U	0.79	3	6	ug/Kg	
74-87-3	Chloromethane	3	U	1	3	6	ug/Kg	
75-01-4	Vinyl Chloride	3	U	1.5	3	6	ug/Kg	
141-78-6	Ethyl Acetate	3	U	1.1	3	6	ug/Kg	
108-21-4	Isopropyl Acetate	3	UQ	1.4	3	6	ug/Kg	
628-63-7	N-amyl acetate	3	U	1.1	3	6	ug/Kg	
74-83-9	Bromomethane	3	U	3	3	6	ug/Kg	
75-00-3	Chloroethane	3	U	1.7	3	6	ug/Kg	
75-69-4	Trichlorofluoromethane	3	U	1.6	3	6	ug/Kg	
76-13-1	1,1,2-Trichlorotrifluoroethane	3	U	1.6	3	6	ug/Kg	
75-65-0	Tert butyl alcohol	15	U	9	15	30	ug/Kg	
60-29-7	Diethyl Ether	3	U	2.3	3	6	ug/Kg	
75-35-4	1,1-Dichloroethene	3	U	1.8	3	6	ug/Kg	
107-02-8	Acrolein	15	U	4.8	15	30	ug/Kg	
107-13-1	Acrylonitrile	15	U	5.9	15	30	ug/Kg	
67-64-1	Acetone	69	Q	3.7	15	30	ug/Kg	
75-15-0	Carbon Disulfide	3	U	1.3	3	6	ug/Kg	
1634-04-4	Methyl tert-butyl Ether	3	U	1.2	3	6	ug/Kg	
79-20-9	Methyl Acetate	3	U	1.8	3	6	ug/Kg	
75-09-2	Methylene Chloride	3	U	1.7	3	6	ug/Kg	
156-60-5	trans-1,2-Dichloroethene	3	U	0.83	3	6	ug/Kg	
108-05-4	Vinyl Acetate	15	UQ	4.2	15	30	ug/Kg	
75-34-3	1,1-Dichloroethane	3	U	1.1	3	6	ug/Kg	
110-82-7	Cyclohexane	3	U	1.2	3	6	ug/Kg	
78-93-3	2-Butanone	15	UQ	3.8	15	30	ug/Kg	
56-23-5	Carbon Tetrachloride	3	UQ	1.2	3	6	ug/Kg	
594-20-7	2,2-Dichloropropane	3	U	1.3	3	6	ug/Kg	
156-59-2	cis-1,2-Dichloroethene	3	U	1.1	3	6	ug/Kg	
74-97-5	Bromochloromethane	3	U	0.96	3	6	ug/Kg	
67-66-3	Chloroform	3	U	0.9	3	6	ug/Kg	
71-55-6	1,1,1-Trichloroethane	3	U	1.1	3	6	ug/Kg	

Sample Wt/Vol:

5.04

Units:

Report of Analysis

Client: MS Analytical Date Collected: 08/13/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-43(10-12)RE SDG No.: D3811

Lab Sample ID: D3811-18RE Matrix: SOIL Analytical Method: SW8260C % Moisture: 18

g Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

Final Vol:

5000

uL

ID: 0.25 Level: GC Column: RTX-624 LOW

File ID/Qc Batch: Dilution: Prep Batch ID Prep Date Date Analyzed VD036760.D 08/16/12 VD081612

V D030700.D	•		00/10/	12	V D001012			
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units	
108-87-2	Methylcyclohexane	3	U	1.3	3	6	ug/Kg	
563-58-6	1,1-Dichloropropene	3	U	0.56	3	6	ug/Kg	
71-43-2	Benzene	3	U	0.46	3	6	ug/Kg	
107-06-2	1,2-Dichloroethane	3	U	0.77	3	6	ug/Kg	
79-01-6	Trichloroethene	3	U	1	3	6	ug/Kg	
78-87-5	1,2-Dichloropropane	3	U	0.31	3	6	ug/Kg	
74-95-3	Dibromomethane	3	U	0.94	3	6	ug/Kg	
75-27-4	Bromodichloromethane	3	U	0.75	3	6	ug/Kg	
108-10-1	4-Methyl-2-Pentanone	15	U	3.5	15	30	ug/Kg	
108-88-3	Toluene	3	U	0.77	3	6	ug/Kg	
10061-02-6	t-1,3-Dichloropropene	3	U	0.96	3	6	ug/Kg	
10061-01-5	cis-1,3-Dichloropropene	3	U	0.87	3	6	ug/Kg	
79-00-5	1,1,2-Trichloroethane	3	U	1.1	3	6	ug/Kg	
142-28-9	1,3-Dichloropropane	3	U	0.9	3	6	ug/Kg	
110-75-8	2-Chloroethyl Vinyl ether	15	U	14	15	30	ug/Kg	
591-78-6	2-Hexanone	15	U	4.7	15	30	ug/Kg	
124-48-1	Dibromochloromethane	3	U	0.65	3	6	ug/Kg	
106-93-4	1,2-Dibromoethane	3	U	0.77	3	6	ug/Kg	
127-18-4	Tetrachloroethene	3	U	1.2	3	6	ug/Kg	
108-90-7	Chlorobenzene	3	U	0.6	3	6	ug/Kg	
630-20-6	1,1,1,2-Tetrachloroethane	3	U	0.52	3	6	ug/Kg	
67-72-1	Hexachloroethane	3	U	0.92	3	6	ug/Kg	
100-41-4	Ethyl Benzene	3	U	0.75	3	6	ug/Kg	
179601-23-1	m/p-Xylenes	6	U	0.87	6	12	ug/Kg	
95-47-6	o-Xylene	3	U	0.82	3	6	ug/Kg	
100-42-5	Styrene	3	U	0.54	3	6	ug/Kg	
75-25-2	Bromoform	3	U	0.9	3	6	ug/Kg	
98-82-8	Isopropylbenzene	3	U	0.58	3	6	ug/Kg	
79-34-5	1,1,2,2-Tetrachloroethane	3	U	0.56	3	6	ug/Kg	
96-18-4	1,2,3-Trichloropropane	3	U	0.59	3	6	ug/Kg	
108-86-1	Bromobenzene	3	U	0.63	3	6	ug/Kg	
103-65-1	n-propylbenzene	3	U	0.44	3	6	ug/Kg	

Sample Wt/Vol:

5.04

Units:

g

Report of Analysis

Client:MS AnalyticalDate Collected:08/13/12Project:12MS104 Kensington HeightsDate Received:08/15/12Client Sample ID:SB-43(10-12)RESDG No.:D3811

Lab Sample ID: SB-43(10-12)RE SDG No.: D3811

Lab Sample ID: D3811-18RE Matrix: SOIL

Analytical Method: SW8260C % Moisture: 18

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

Final Vol:

5000

uL

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036760.D 1 08/16/12 VD081612

VD036/60.D 1			08/16/12				
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
95-49-8	2-Chlorotoluene	3	U	0.9	3	6	ug/Kg
108-67-8	1,3,5-Trimethylbenzene	3	U	0.54	3	6	ug/Kg
106-43-4	4-Chlorotoluene	3	U	0.75	3	6	ug/Kg
98-06-6	tert-Butylbenzene	3	U	0.71	3	6	ug/Kg
95-63-6	1,2,4-Trimethylbenzene	3	U	0.6	3	6	ug/Kg
135-98-8	sec-Butylbenzene	3	U	0.63	3	6	ug/Kg
99-87-6	p-Isopropyltoluene	3	U	0.35	3	6	ug/Kg
541-73-1	1,3-Dichlorobenzene	3	U	0.45	3	6	ug/Kg
106-46-7	1,4-Dichlorobenzene	3	U	0.5	3	6	ug/Kg
104-51-8	n-Butylbenzene	3	U	0.56	3	6	ug/Kg
95-50-1	1,2-Dichlorobenzene	3	U	0.75	3	6	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	3	U	1.1	3	6	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	3	U	0.85	3	6	ug/Kg
87-68-3	Hexachlorobutadiene	3	U	0.96	3	6	ug/Kg
91-20-3	Naphthalene	3	UQ	0.54	3	6	ug/Kg
87-61-6	1,2,3-Trichlorobenzene	3	U	0.6	3	6	ug/Kg
74-88-4	Methyl Iodide	6	U	6	6	6	ug/Kg
107-05-1	Allyl chloride	6	U	6	6	6	ug/Kg
126-98-7	Methacrylonitrile	6	UQ	6	6	6	ug/Kg
110-57-6	trans-1,4-Dichloro-2-butene	6	U	6	6	6	ug/Kg
97-63-2	Ethyl methacrylate	6	U	6	6	6	ug/Kg
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	53.4		56 - 120)	107%	SPK: 50
1868-53-7	Dibromofluoromethane	49		57 - 135	5	98%	SPK: 50
2037-26-5	Toluene-d8	52		67 - 123	3	104%	SPK: 50
460-00-4	4-Bromofluorobenzene	57.2		33 - 141	[114%	SPK: 50
INTERNAL ST							
363-72-4	Pentafluorobenzene	370284	4.73				
540-36-3	1,4-Difluorobenzene	641838	5.45				
3114-55-4	Chlorobenzene-d5	652286	9.57				
3855-82-1	1,4-Dichlorobenzene-d4	288042	12.48				

Client: MS Analytical Date Collected: 08/13/12

12MS104 Kensington Heights Project:

Date Received: 08/15/12

Client Sample ID: SB-43(10-12)RE SDG No.: D3811

Lab Sample ID: D3811-18RE Matrix: SOIL

Analytical Method: SW8260C % Moisture: 18

Sample Wt/Vol: 5.04 Units: g Final Vol: 5000

uL

Soil Aliquot Vol:

uL

Test:

VOC-Chemtech Full -15

GC Column:

RTX-624

ID: 0.25

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VD036760.D

08/16/12

VD081612

Units

CAS Number

Parameter

Conc.

Qualifier

MDL

LOD

LOQ / CRQL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Report of Analysis

Client: MS Analytical Date Collected: 08/13/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SDG No.: D3811 SB-43(16-20) Lab Sample ID: D3811-19 Matrix: SOIL Analytical Method: SW8260C % Moisture: 29 Sample Wt/Vol: 5.01 Units: g Final Vol: 5000

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034801.D 1 08/16/12 VF081612

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	3.5	U	0.91	3.5	7	ug/Kg
74-87-3	Chloromethane	3.5	U	1.2	3.5	7	ug/Kg
75-01-4	Vinyl Chloride	3.5	U	1.7	3.5	7	ug/Kg
141-78-6	Ethyl Acetate	3.5	U	1.2	3.5	7	ug/Kg
108-21-4	Isopropyl Acetate	3.5	U	1.7	3.5	7	ug/Kg
628-63-7	N-amyl acetate	3.5	U	1.3	3.5	7	ug/Kg
74-83-9	Bromomethane	3.5	U	3.4	3.5	7	ug/Kg
75-00-3	Chloroethane	3.5	U	2	3.5	7	ug/Kg
75-69-4	Trichlorofluoromethane	3.5	U	1.9	3.5	7	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	3.5	U	1.9	3.5	7	ug/Kg
75-65-0	Tert butyl alcohol	17.5	U	10	17.5	35	ug/Kg
60-29-7	Diethyl Ether	3.5	U	2.7	3.5	7	ug/Kg
75-35-4	1,1-Dichloroethene	3.5	U	2.1	3.5	7	ug/Kg
107-02-8	Acrolein	17.5	U	5.6	17.5	35	ug/Kg
107-13-1	Acrylonitrile	17.5	U	6.9	17.5	35	ug/Kg
67-64-1	Acetone	97		4.2	17.5	35	ug/Kg
75-15-0	Carbon Disulfide	5	J	1.5	3.5	7	ug/Kg
1634-04-4	Methyl tert-butyl Ether	3.5	U	1.3	3.5	7	ug/Kg
79-20-9	Methyl Acetate	3.5	U	2.1	3.5	7	ug/Kg
75-09-2	Methylene Chloride	3.5	U	2	3.5	7	ug/Kg
156-60-5	trans-1,2-Dichloroethene	3.5	U	0.97	3.5	7	ug/Kg
108-05-4	Vinyl Acetate	17.5	U	4.9	17.5	35	ug/Kg
75-34-3	1,1-Dichloroethane	3.5	U	1.3	3.5	7	ug/Kg
110-82-7	Cyclohexane	3.5	U	1.4	3.5	7	ug/Kg
78-93-3	2-Butanone	17.5	U	4.4	17.5	35	ug/Kg
56-23-5	Carbon Tetrachloride	3.5	U	1.4	3.5	7	ug/Kg
594-20-7	2,2-Dichloropropane	3.5	U	1.5	3.5	7	ug/Kg
156-59-2	cis-1,2-Dichloroethene	3.5	U	1.3	3.5	7	ug/Kg
74-97-5	Bromochloromethane	3.5	U	1.1	3.5	7	ug/Kg
67-66-3	Chloroform	3.5	U	1	3.5	7	ug/Kg
71-55-6	1,1,1-Trichloroethane	3.5	U	1.2	3.5	7	ug/Kg

Report of Analysis

Client: MS Analytical Date Collected: 08/13/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-43(16-20) SDG No.: D3811 Lab Sample ID: D3811-19 Matrix: SOIL Analytical Method: SW8260C % Moisture: 29 Sample Wt/Vol: 5.01 Units: g Final Vol: 5000

Soil Aliquot Vol: UL Test: VOC-Chemtech Full -15

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034801.D 1 08/16/12 VF081612

VF034801.D	1		08/16/12			VF081612	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
108-87-2	Methylcyclohexane	3.5	U	1.5	3.5	7	ug/Kg
563-58-6	1,1-Dichloropropene	3.5	U	0.65	3.5	7	ug/Kg
71-43-2	Benzene	3.5	U	0.53	3.5	7	ug/Kg
107-06-2	1,2-Dichloroethane	3.5	U	0.9	3.5	7	ug/Kg
79-01-6	Trichloroethene	3.5	U	1.2	3.5	7	ug/Kg
78-87-5	1,2-Dichloropropane	3.5	U	0.37	3.5	7	ug/Kg
74-95-3	Dibromomethane	3.5	U	1.1	3.5	7	ug/Kg
75-27-4	Bromodichloromethane	3.5	U	0.87	3.5	7	ug/Kg
108-10-1	4-Methyl-2-Pentanone	17.5	U	4.1	17.5	35	ug/Kg
108-88-3	Toluene	3.5	U	0.9	3.5	7	ug/Kg
10061-02-6	t-1,3-Dichloropropene	3.5	U	1.1	3.5	7	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	3.5	U	1	3.5	7	ug/Kg
79-00-5	1,1,2-Trichloroethane	3.5	U	1.3	3.5	7	ug/Kg
142-28-9	1,3-Dichloropropane	3.5	U	1	3.5	7	ug/Kg
110-75-8	2-Chloroethyl Vinyl ether	17.5	U	16	17.5	35	ug/Kg
591-78-6	2-Hexanone	17.5	U	5.5	17.5	35	ug/Kg
124-48-1	Dibromochloromethane	3.5	U	0.76	3.5	7	ug/Kg
106-93-4	1,2-Dibromoethane	3.5	U	0.9	3.5	7	ug/Kg
127-18-4	Tetrachloroethene	3.5	U	1.4	3.5	7	ug/Kg
108-90-7	Chlorobenzene	3.5	U	0.7	3.5	7	ug/Kg
630-20-6	1,1,1,2-Tetrachloroethane	3.5	U	0.6	3.5	7	ug/Kg
67-72-1	Hexachloroethane	3.5	U	1.1	3.5	7	ug/Kg
100-41-4	Ethyl Benzene	3.5	U	0.87	3.5	7	ug/Kg
179601-23-1	m/p-Xylenes	7	U	1	7	14	ug/Kg
95-47-6	o-Xylene	3.5	U	0.96	3.5	7	ug/Kg
100-42-5	Styrene	3.5	U	0.63	3.5	7	ug/Kg
75-25-2	Bromoform	3.5	U	1	3.5	7	ug/Kg
98-82-8	Isopropylbenzene	3.5	U	0.67	3.5	7	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	3.5	U	0.65	3.5	7	ug/Kg
96-18-4	1,2,3-Trichloropropane	3.5	U	0.69	3.5	7	ug/Kg
108-86-1	Bromobenzene	3.5	U	0.73	3.5	7	ug/Kg
103-65-1	n-propylbenzene	3.5	U	0.51	3.5	7	ug/Kg

Sample Wt/Vol:

5.01

Units:

g

Report of Analysis

Client: MS Analytical Date Collected: 08/13/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-43(16-20) SDG No.: D3811 Lab Sample ID: D3811-19 Matrix: SOIL Analytical Method: SW8260C % Moisture: 29 Final Vol: 5000

Soil Aliquot Vol: иL Test: VOC-Chemtech Full -15

ID: 0.18 Level: GC Column: RTX-VMS LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034801 D 08/16/12 VF081612

VF034801.D	1		08/16	/12		VF081612	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
95-49-8	2-Chlorotoluene	3.5	U	1	3.5	7	ug/Kg
108-67-8	1,3,5-Trimethylbenzene	3.5	U	0.63	3.5	7	ug/Kg
106-43-4	4-Chlorotoluene	3.5	U	0.87	3.5	7	ug/Kg
98-06-6	tert-Butylbenzene	3.5	U	0.83	3.5	7	ug/Kg
95-63-6	1,2,4-Trimethylbenzene	3.5	U	0.7	3.5	7	ug/Kg
135-98-8	sec-Butylbenzene	3.5	U	0.73	3.5	7	ug/Kg
99-87-6	p-Isopropyltoluene	3.5	U	0.41	3.5	7	ug/Kg
541-73-1	1,3-Dichlorobenzene	3.5	U	0.52	3.5	7	ug/Kg
106-46-7	1,4-Dichlorobenzene	3.5	U	0.58	3.5	7	ug/Kg
104-51-8	n-Butylbenzene	3.5	U	0.65	3.5	7	ug/Kg
95-50-1	1,2-Dichlorobenzene	3.5	U	0.87	3.5	7	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	3.5	U	1.2	3.5	7	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	3.5	U	0.98	3.5	7	ug/Kg
87-68-3	Hexachlorobutadiene	3.5	U	1.1	3.5	7	ug/Kg
91-20-3	Naphthalene	3.5	U	0.63	3.5	7	ug/Kg
87-61-6	1,2,3-Trichlorobenzene	3.5	U	0.7	3.5	7	ug/Kg
74-88-4	Methyl Iodide	7	U	7	7	7	ug/Kg
107-05-1	Allyl chloride	7	U	7	7	7	ug/Kg
126-98-7	Methacrylonitrile	7	U	7	7	7	ug/Kg
110-57-6	trans-1,4-Dichloro-2-butene	7	U	7	7	7	ug/Kg
97-63-2	Ethyl methacrylate	7	U	7	7	7	ug/Kg
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	52.5		56 - 120	0	105%	SPK: 50
1868-53-7	Dibromofluoromethane	56.9		57 - 13:	5	114%	SPK: 50
2037-26-5	Toluene-d8	49.7		67 - 12	3	99%	SPK: 50
460-00-4	4-Bromofluorobenzene	40.4		33 - 14	1	81%	SPK: 50
INTERNAL ST							
363-72-4	Pentafluorobenzene	146812	4.41				
540-36-3	1,4-Difluorobenzene	274296	5.15				
3114-55-4	Chlorobenzene-d5	261779	9.34				
3855-82-1	1,4-Dichlorobenzene-d4	86787	12.25				

Project:

Report of Analysis

Client: MS Analytical

12MS104 Kensington Heights

Client Sample ID: SB-43(16-20)

Lab Sample ID: D3811-19

Analytical Method: SW8260C

Sample Wt/Vol: 5.01 Units: g

Soil Aliquot Vol: uL

GC Column: RTX-VMS ID: 0.18

Date Collected: 08/13/12

Date Received: 08/15/12

Matrix: SOIL

SDG No.:

Final Vol:

% Moisture: 29

Test: VOC-Chemtech Full -15

5000

uL

D3811

Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VF034801.D 1 08/16/12 VF081612

CAS Number Parameter Conc. Qualifier MDL LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Report of Analysis

Client: MS Analytical Date Collected: 08/13/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-43(16-20)RE SDG No.: D3811 Lab Sample ID: D3811-19RE Matrix: SOIL Analytical Method: SW8260C % Moisture: 29 Sample Wt/Vol: 5 Units: Final Vol: 5000 g

Soil Aliquot Vol: UL Test: VOC-Chemtech Full -15

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036761.D 1 08/16/12 VD081612

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	3.5	U	0.92	3.5	7	ug/Kg
74-87-3	Chloromethane	3.5	U	1.2	3.5	7	ug/Kg
75-01-4	Vinyl Chloride	3.5	U	1.7	3.5	7	ug/Kg
141-78-6	Ethyl Acetate	3.5	U	1.2	3.5	7	ug/Kg
108-21-4	Isopropyl Acetate	3.5	UQ	1.7	3.5	7	ug/Kg
628-63-7	N-amyl acetate	3.5	U	1.3	3.5	7	ug/Kg
74-83-9	Bromomethane	3.5	U	3.5	3.5	7	ug/Kg
75-00-3	Chloroethane	3.5	U	2	3.5	7	ug/Kg
75-69-4	Trichlorofluoromethane	3.5	U	1.9	3.5	7	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	3.5	U	1.9	3.5	7	ug/Kg
75-65-0	Tert butyl alcohol	17.5	U	10	17.5	35	ug/Kg
60-29-7	Diethyl Ether	3.5	U	2.7	3.5	7	ug/Kg
75-35-4	1,1-Dichloroethene	3.5	U	2.1	3.5	7	ug/Kg
107-02-8	Acrolein	17.5	U	5.6	17.5	35	ug/Kg
107-13-1	Acrylonitrile	17.5	U	6.9	17.5	35	ug/Kg
67-64-1	Acetone	56	Q	4.3	17.5	35	ug/Kg
75-15-0	Carbon Disulfide	3.5	U	1.5	3.5	7	ug/Kg
1634-04-4	Methyl tert-butyl Ether	3.5	U	1.4	3.5	7	ug/Kg
79-20-9	Methyl Acetate	3.5	U	2.1	3.5	7	ug/Kg
75-09-2	Methylene Chloride	3.5	U	2	3.5	7	ug/Kg
156-60-5	trans-1,2-Dichloroethene	3.5	U	0.97	3.5	7	ug/Kg
108-05-4	Vinyl Acetate	17.5	UQ	4.9	17.5	35	ug/Kg
75-34-3	1,1-Dichloroethane	3.5	U	1.3	3.5	7	ug/Kg
110-82-7	Cyclohexane	3.5	U	1.4	3.5	7	ug/Kg
78-93-3	2-Butanone	17.5	UQ	4.4	17.5	35	ug/Kg
56-23-5	Carbon Tetrachloride	3.5	UQ	1.4	3.5	7	ug/Kg
594-20-7	2,2-Dichloropropane	3.5	U	1.5	3.5	7	ug/Kg
156-59-2	cis-1,2-Dichloroethene	3.5	U	1.3	3.5	7	ug/Kg
74-97-5	Bromochloromethane	3.5	U	1.1	3.5	7	ug/Kg
67-66-3	Chloroform	3.5	U	1	3.5	7	ug/Kg
71-55-6	1,1,1-Trichloroethane	3.5	U	1.2	3.5	7	ug/Kg

5

Report of Analysis

Client: MS Analytical Date Collected: 08/13/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-43(16-20)RE SDG No.: D3811 Lab Sample ID: D3811-19RE Matrix: SOIL Analytical Method: SW8260C % Moisture: 29

Sample Wt/Vol: Units: g Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

Final Vol:

5000

uL

ID: 0.25 Level: GC Column: RTX-624 LOW

File ID/Qc Batch: Dilution: Prep Batch ID Prep Date Date Analyzed VD036761.D 08/16/12 VD081612

VD036761.D	1		08/16/12			VD081612	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
108-87-2	Methylcyclohexane	3.5	U	1.5	3.5	7	ug/Kg
563-58-6	1,1-Dichloropropene	3.5	U	0.65	3.5	7	ug/Kg
71-43-2	Benzene	3.5	U	0.54	3.5	7	ug/Kg
107-06-2	1,2-Dichloroethane	3.5	U	0.9	3.5	7	ug/Kg
79-01-6	Trichloroethene	3.5	U	1.2	3.5	7	ug/Kg
78-87-5	1,2-Dichloropropane	3.5	U	0.37	3.5	7	ug/Kg
74-95-3	Dibromomethane	3.5	U	1.1	3.5	7	ug/Kg
75-27-4	Bromodichloromethane	3.5	U	0.87	3.5	7	ug/Kg
108-10-1	4-Methyl-2-Pentanone	17.5	U	4.1	17.5	35	ug/Kg
108-88-3	Toluene	3.5	U	0.9	3.5	7	ug/Kg
10061-02-6	t-1,3-Dichloropropene	3.5	U	1.1	3.5	7	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	3.5	U	1	3.5	7	ug/Kg
79-00-5	1,1,2-Trichloroethane	3.5	U	1.3	3.5	7	ug/Kg
142-28-9	1,3-Dichloropropane	3.5	U	1	3.5	7	ug/Kg
110-75-8	2-Chloroethyl Vinyl ether	17.5	U	16	17.5	35	ug/Kg
591-78-6	2-Hexanone	17.5	U	5.5	17.5	35	ug/Kg
124-48-1	Dibromochloromethane	3.5	U	0.76	3.5	7	ug/Kg
106-93-4	1,2-Dibromoethane	3.5	U	0.9	3.5	7	ug/Kg
127-18-4	Tetrachloroethene	3.5	U	1.4	3.5	7	ug/Kg
108-90-7	Chlorobenzene	3.5	U	0.7	3.5	7	ug/Kg
630-20-6	1,1,1,2-Tetrachloroethane	3.5	U	0.61	3.5	7	ug/Kg
67-72-1	Hexachloroethane	3.5	U	1.1	3.5	7	ug/Kg
100-41-4	Ethyl Benzene	3.5	U	0.87	3.5	7	ug/Kg
179601-23-1	m/p-Xylenes	7	U	1	7	14	ug/Kg
95-47-6	o-Xylene	3.5	U	0.96	3.5	7	ug/Kg
100-42-5	Styrene	3.5	U	0.63	3.5	7	ug/Kg
75-25-2	Bromoform	3.5	U	1	3.5	7	ug/Kg
98-82-8	Isopropylbenzene	3.5	U	0.68	3.5	7	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	3.5	U	0.65	3.5	7	ug/Kg
96-18-4	1,2,3-Trichloropropane	3.5	U	0.69	3.5	7	ug/Kg
108-86-1	Bromobenzene	3.5	U	0.73	3.5	7	ug/Kg
103-65-1	n-propylbenzene	3.5	U	0.51	3.5	7	ug/Kg

5

Units:

Report of Analysis

Client: MS Analytical Date Collected: 08/13/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-43(16-20)RE SDG No.: D3811

Lab Sample ID: D3811-19RE Matrix: SOIL Analytical Method: SW8260C % Moisture: 29

Sample Wt/Vol: g Soil Aliquot Vol: иL Test: VOC-Chemtech Full -15

Final Vol:

5000

uL

ID: 0.25 Level: GC Column: RTX-624 LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036761 D 08/16/12 VD081612

VD036761.D	1		08/16/	/12		VD081612	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
95-49-8	2-Chlorotoluene	3.5	U	1	3.5	7	ug/Kg
108-67-8	1,3,5-Trimethylbenzene	3.5	U	0.63	3.5	7	ug/Kg
106-43-4	4-Chlorotoluene	3.5	U	0.87	3.5	7	ug/Kg
98-06-6	tert-Butylbenzene	3.5	U	0.83	3.5	7	ug/Kg
95-63-6	1,2,4-Trimethylbenzene	3.5	U	0.7	3.5	7	ug/Kg
135-98-8	sec-Butylbenzene	3.5	U	0.73	3.5	7	ug/Kg
99-87-6	p-Isopropyltoluene	3.5	U	0.41	3.5	7	ug/Kg
541-73-1	1,3-Dichlorobenzene	3.5	U	0.52	3.5	7	ug/Kg
106-46-7	1,4-Dichlorobenzene	3.5	U	0.58	3.5	7	ug/Kg
104-51-8	n-Butylbenzene	3.5	U	0.65	3.5	7	ug/Kg
95-50-1	1,2-Dichlorobenzene	3.5	U	0.87	3.5	7	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	3.5	U	1.2	3.5	7	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	3.5	U	0.99	3.5	7	ug/Kg
87-68-3	Hexachlorobutadiene	3.5	U	1.1	3.5	7	ug/Kg
91-20-3	Naphthalene	3.5	UQ	0.63	3.5	7	ug/Kg
87-61-6	1,2,3-Trichlorobenzene	3.5	U	0.7	3.5	7	ug/Kg
74-88-4	Methyl Iodide	7	U	7	7	7	ug/Kg
107-05-1	Allyl chloride	7	U	7	7	7	ug/Kg
126-98-7	Methacrylonitrile	7	UQ	7	7	7	ug/Kg
110-57-6	trans-1,4-Dichloro-2-butene	7	U	7	7	7	ug/Kg
97-63-2	Ethyl methacrylate	7	U	7	7	7	ug/Kg
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	52.1		56 - 120	0	104%	SPK: 50
1868-53-7	Dibromofluoromethane	48.4		57 - 13:	5	97%	SPK: 50
2037-26-5	Toluene-d8	53.6		67 - 12	3	107%	SPK: 50
460-00-4	4-Bromofluorobenzene	59		33 - 14	1	118%	SPK: 50
INTERNAL STA							
363-72-4	Pentafluorobenzene	364806	4.73				
540-36-3	1,4-Difluorobenzene	628132	5.44				
3114-55-4	Chlorobenzene-d5	661237	9.57				
3855-82-1	1,4-Dichlorobenzene-d4	310866	12.47				

Date Collected:

Date Received:

SDG No.:

% Moisture:

Final Vol:

Matrix:

08/13/12

08/15/12

D3811

SOIL

29

5000

uL

Report of Analysis

Client: MS Analytical

Project: 12MS104 Kensington Heights

Client Sample ID: SB-43(16-20)RE

Lab Sample ID: D3811-19RE

Analytical Method: SW8260C

Sample Wt/Vol: 5 Units: g

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VD036761.D 1 08/16/12 VD081612

CAS Number Parameter Conc. Qualifier MDL LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Client: MS Analytical Date Collected: 08/13/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-46(12-16) SDG No.: D3811 Lab Sample ID: D3811-21 Matrix: SOIL Analytical Method: SW8260C % Moisture: 28 Sample Wt/Vol: 5.01 Units: g Final Vol: 5000 uL Soil Aliquot Vol: иL Test: VOC-Chemtech Full -15

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034802.D 1 08/16/12 VF081612

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	3.45	U	0.9	3.45	6.9	ug/Kg
74-87-3	Chloromethane	3.45	U	1.2	3.45	6.9	ug/Kg
75-01-4	Vinyl Chloride	3.45	U	1.7	3.45	6.9	ug/Kg
141-78-6	Ethyl Acetate	3.45	U	1.2	3.45	6.9	ug/Kg
108-21-4	Isopropyl Acetate	3.45	U	1.6	3.45	6.9	ug/Kg
628-63-7	N-amyl acetate	3.45	U	1.3	3.45	6.9	ug/Kg
74-83-9	Bromomethane	3.45	U	3.4	3.45	6.9	ug/Kg
75-00-3	Chloroethane	3.45	U	1.9	3.45	6.9	ug/Kg
75-69-4	Trichlorofluoromethane	3.45	U	1.8	3.45	6.9	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	3.45	U	1.8	3.45	6.9	ug/Kg
75-65-0	Tert butyl alcohol	17.5	U	10	17.5	35	ug/Kg
60-29-7	Diethyl Ether	3.45	U	2.7	3.45	6.9	ug/Kg
75-35-4	1,1-Dichloroethene	3.45	U	2	3.45	6.9	ug/Kg
107-02-8	Acrolein	17.5	U	5.5	17.5	35	ug/Kg
107-13-1	Acrylonitrile	17.5	U	6.8	17.5	35	ug/Kg
67-64-1	Acetone	130		4.2	17.5	35	ug/Kg
75-15-0	Carbon Disulfide	1.9	J	1.5	3.45	6.9	ug/Kg
1634-04-4	Methyl tert-butyl Ether	3.45	U	1.3	3.45	6.9	ug/Kg
79-20-9	Methyl Acetate	3.45	U	2.1	3.45	6.9	ug/Kg
75-09-2	Methylene Chloride	3.45	U	2	3.45	6.9	ug/Kg
156-60-5	trans-1,2-Dichloroethene	3.45	U	0.96	3.45	6.9	ug/Kg
108-05-4	Vinyl Acetate	17.5	U	4.8	17.5	35	ug/Kg
75-34-3	1,1-Dichloroethane	3.45	U	1.3	3.45	6.9	ug/Kg
110-82-7	Cyclohexane	3.45	U	1.4	3.45	6.9	ug/Kg
78-93-3	2-Butanone	17.5	U	4.3	17.5	35	ug/Kg
56-23-5	Carbon Tetrachloride	3.45	U	1.4	3.45	6.9	ug/Kg
594-20-7	2,2-Dichloropropane	3.45	U	1.4	3.45	6.9	ug/Kg
156-59-2	cis-1,2-Dichloroethene	3.45	U	1.2	3.45	6.9	ug/Kg
74-97-5	Bromochloromethane	3.45	U	1.1	3.45	6.9	ug/Kg
67-66-3	Chloroform	3.45	U	1	3.45	6.9	ug/Kg
71-55-6	1,1,1-Trichloroethane	3.45	U	1.2	3.45	6.9	ug/Kg

5.01

Units:

g

Report of Analysis

Client: MS Analytical Date Collected: 08/13/12 12MS104 Kensington Heights Project: 08/15/12 Date Received: Client Sample ID: SB-46(12-16) SDG No.: D3811 Lab Sample ID: D3811-21 Matrix: SOIL Analytical Method: SW8260C % Moisture: 28 Sample Wt/Vol: Final Vol: 5000

VOC-Chemtech Full -15 Soil Aliquot Vol: uL Test:

ID: 0.18 Level: GC Column: LOW RTX-VMS

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034802.D 08/16/12 VF081612

1		08/10/	/12		VFU81012	
Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
Methylcyclohexane	3.45	U	1.5	3.45	6.9	ug/Kg
1,1-Dichloropropene	3.45	U	0.64	3.45	6.9	ug/Kg
Benzene	3.45	U	0.53	3.45	6.9	ug/Kg
1,2-Dichloroethane	3.45	U	0.89	3.45	6.9	ug/Kg
Trichloroethene	3.45	U	1.2	3.45	6.9	ug/Kg
1,2-Dichloropropane	3.45	U	0.36	3.45	6.9	ug/Kg
Dibromomethane	3.45	U	1.1	3.45	6.9	ug/Kg
Bromodichloromethane	3.45	U	0.86	3.45	6.9	ug/Kg
4-Methyl-2-Pentanone	17.5	U	4	17.5	35	ug/Kg
Toluene	3.45	U	0.89	3.45	6.9	ug/Kg
t-1,3-Dichloropropene	3.45	U	1.1	3.45	6.9	ug/Kg
cis-1,3-Dichloropropene	3.45	U	1	3.45	6.9	ug/Kg
1,1,2-Trichloroethane	3.45	U	1.2	3.45	6.9	ug/Kg
1,3-Dichloropropane	3.45	U	1	3.45	6.9	ug/Kg
2-Chloroethyl Vinyl ether	17.5	U	16	17.5	35	ug/Kg
2-Hexanone	17.5	U	5.4	17.5	35	ug/Kg
Dibromochloromethane	3.45	U	0.75	3.45	6.9	ug/Kg
1,2-Dibromoethane	3.45	U	0.89	3.45	6.9	ug/Kg
Tetrachloroethene	3.45	U	1.4	3.45	6.9	ug/Kg
Chlorobenzene	3.45	U	0.69	3.45	6.9	ug/Kg
1,1,1,2-Tetrachloroethane	3.45	U	0.6	3.45	6.9	ug/Kg
Hexachloroethane	3.45	U	1.1	3.45	6.9	ug/Kg
Ethyl Benzene	3.45	U	0.86	3.45	6.9	ug/Kg
m/p-Xylenes	7	U	1	7	14	ug/Kg
o-Xylene	3.45	U	0.94	3.45	6.9	ug/Kg
Styrene	3.45	U	0.62	3.45	6.9	ug/Kg
Bromoform	3.45	U	1	3.45	6.9	ug/Kg
Isopropylbenzene	3.45	U	0.67	3.45	6.9	ug/Kg
1,1,2,2-Tetrachloroethane	3.45	U	0.64	3.45	6.9	ug/Kg
1,2,3-Trichloropropane	3.45	U	0.68	3.45	6.9	ug/Kg
Bromobenzene	3.45	U	0.72	3.45	6.9	ug/Kg
n-propylbenzene	3.45	U	0.5	3.45	6.9	ug/Kg
	Methylcyclohexane 1,1-Dichloropropene Benzene 1,2-Dichloroethane Trichloroethene 1,2-Dichloropropane Dibromomethane Bromodichloromethane 4-Methyl-2-Pentanone Toluene t-1,3-Dichloropropene cis-1,3-Dichloropropene tis-1,2-Trichloroethane 1,3-Dichloropropane 2-Chloroethyl Vinyl ether 2-Hexanone Dibromochloromethane 1,2-Dibromoethane t-1,2-Dibromoethane Tetrachloroethene Chlorobenzene 1,1,1,2-Tetrachloroethane Hexachloroethane Ethyl Benzene m/p-Xylenes o-Xylene Styrene Bromoform Isopropylbenzene 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane Bromobenzene	Methylcyclohexane 3.45 1,1-Dichloropropene 3.45 Benzene 3.45 1,2-Dichloroethane 3.45 Trichloroethene 3.45 1,2-Dichloropropane 3.45 Dibromomethane 3.45 Bromodichloromethane 3.45 4-Methyl-2-Pentanone 17.5 Toluene 3.45 t-1,3-Dichloropropene 3.45 1,1,2-Trichloroethane 3.45 1,3-Dichloropropane 3.45 2-Chloroethyl Vinyl ether 17.5 2-Hexanone 17.5 Dibromochloromethane 3.45 1,2-Dibromoethane 3.45 1,2-Dibromoethane 3.45 Chlorobenzene 3.45 1,1,1,2-Tetrachloroethane 3.45 Hexachloroethane 3.45 Ethyl Benzene 3.45 m/p-Xylenes 7 o-Xylene 3.45 Styrene 3.45 Isopropylbenzene 3.45 1,1,2,2-Tetrachloroethane 3.45 1,1,2,2-Tetrachloroethane 3.45 1,2,3-Trichlo	Parameter Conc. Qualifier Methylcyclohexane 3.45 U 1,1-Dichloropropene 3.45 U Benzene 3.45 U 1,2-Dichloroethane 3.45 U 1,2-Dichloropropane 3.45 U Dibromomethane 3.45 U Bromodichloromethane 3.45 U 4-Methyl-2-Pentanone 17.5 U Toluene 3.45 U t-1,3-Dichloropropene 3.45 U cis-1,3-Dichloropropene 3.45 U t,1,2-Trichloroethane 3.45 U 1,3-Dichloropropane 3.45 U 2-Chloroethyl Vinyl ether 17.5 U 2-Hexanone 17.5 U Dibromochloromethane 3.45 U 1,2-Dibromoethane 3.45 U 1,2-Dibromoethane 3.45 U 1,1,1,2-Tetrachloroethane 3.45 U Hexachloroethane 3.45 U Ethyl Benzen	Methylcyclohexane 3.45 U 1.5 1,1-Dichloropropene 3.45 U 0.64 Benzene 3.45 U 0.53 1,2-Dichloroethane 3.45 U 0.89 Trichloroethene 3.45 U 1.2 1,2-Dichloropropane 3.45 U 0.36 Dibromomethane 3.45 U 0.36 Dibromodichloromethane 3.45 U 0.36 4-Methyl-2-Pentanone 17.5 U 4 Toluene 3.45 U 0.89 t-1,3-Dichloropropene 3.45 U 1.1 cis-1,3-Dichloropropene 3.45 U 1 1,1,2-Trichloroethane 3.45 U 1 1,1,2-Trichloroethane 3.45 U 1 2-Hexanone 17.5 U 5.4 Dibromochloromethane 3.45 U 0.75 1,2-Dibromochlane 3.45 U 0.75 1,2-Dibromochlane 3.45	Parameter Conc. Qualifier MDL LOD Methylcyclohexane 3.45 U 1.5 3.45 1,1-Dichloropropene 3.45 U 0.64 3.45 Benzene 3.45 U 0.53 3.45 1,2-Dichloroptone 3.45 U 0.89 3.45 Trichloroethene 3.45 U 0.2 3.45 1,2-Dichloropropane 3.45 U 0.36 3.45 1,2-Dichloropropane 3.45 U 0.1 3.45 Bromodichloromethane 3.45 U 0.86 3.45 4-Methyl-2-Pentanone 17.5 U 4 17.5 Toluene 3.45 U 0.89 3.45 t-1,3-Dichloropropene 3.45 U 1.1 3.45 cis-1,3-Dichloropropene 3.45 U 1 3.45 1,1,2-Trichloroethane 3.45 U 1 3.45 2-Chloroethyl Vinyl ether 17.5 U 16<	Parameter Conc. Qualifier MDL LOD LOQ/CRQL Methylcyclohexane 3.45 U 1.5 3.45 6.9 1,1-Dichloropropene 3.45 U 0.64 3.45 6.9 Benzene 3.45 U 0.89 3.45 6.9 1,2-Dichloroethane 3.45 U 0.89 3.45 6.9 Trichloroethene 3.45 U 0.36 3.45 6.9 1,2-Dichloropropane 3.45 U 0.36 3.45 6.9 Dibromomethane 3.45 U 0.36 3.45 6.9 Bromodichloromethane 3.45 U 0.86 3.45 6.9 Bromodichloromethane 3.45 U 0.89 3.45 6.9 t-1,3-Dichloropropene 3.45 U 1.1 3.45 6.9 t-1,3-Dichloropropene 3.45 U 1 3.45 6.9 1,1,2-Trichloroethane 3.45 U 1 3

Sample Wt/Vol:

5.01

Units:

g

Report of Analysis

Client:MS AnalyticalDate Collected:08/13/12Project:12MS104 Kensington HeightsDate Received:08/15/12Client Sample ID:SB-46(12-16)SDG No.:D3811

Client Sample ID:SB-46(12-16)SDG No.:D3811Lab Sample ID:D3811-21Matrix:SOILAnalytical Method:SW8260C% Moisture:28

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

Final Vol:

5000

uL

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VF034802 D 1 08/16/12 VF081612

VF034802.D	1		08/16	/12		VF081612	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
95-49-8	2-Chlorotoluene	3.45	U	1	3.45	6.9	ug/Kg
108-67-8	1,3,5-Trimethylbenzene	3.45	U	0.62	3.45	6.9	ug/Kg
106-43-4	4-Chlorotoluene	3.45	U	0.86	3.45	6.9	ug/Kg
98-06-6	tert-Butylbenzene	3.45	U	0.82	3.45	6.9	ug/Kg
95-63-6	1,2,4-Trimethylbenzene	3.45	U	0.69	3.45	6.9	ug/Kg
135-98-8	sec-Butylbenzene	3.45	U	0.72	3.45	6.9	ug/Kg
99-87-6	p-Isopropyltoluene	3.45	U	0.4	3.45	6.9	ug/Kg
541-73-1	1,3-Dichlorobenzene	3.45	U	0.51	3.45	6.9	ug/Kg
106-46-7	1,4-Dichlorobenzene	3.45	U	0.57	3.45	6.9	ug/Kg
104-51-8	n-Butylbenzene	3.45	U	0.64	3.45	6.9	ug/Kg
95-50-1	1,2-Dichlorobenzene	3.45	U	0.86	3.45	6.9	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	3.45	U	1.2	3.45	6.9	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	3.45	U	0.97	3.45	6.9	ug/Kg
87-68-3	Hexachlorobutadiene	3.45	U	1.1	3.45	6.9	ug/Kg
91-20-3	Naphthalene	3.45	U	0.62	3.45	6.9	ug/Kg
87-61-6	1,2,3-Trichlorobenzene	3.45	U	0.69	3.45	6.9	ug/Kg
74-88-4	Methyl Iodide	6.9	U	6.9	6.9	6.9	ug/Kg
107-05-1	Allyl chloride	6.9	U	6.9	6.9	6.9	ug/Kg
126-98-7	Methacrylonitrile	6.9	U	6.9	6.9	6.9	ug/Kg
110-57-6	trans-1,4-Dichloro-2-butene	6.9	U	6.9	6.9	6.9	ug/Kg
97-63-2	Ethyl methacrylate	6.9	U	6.9	6.9	6.9	ug/Kg
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	50.2		56 - 120)	100%	SPK: 50
1868-53-7	Dibromofluoromethane	54.3		57 - 135	5	109%	SPK: 50
2037-26-5	Toluene-d8	48.2		67 - 123		97%	SPK: 50
460-00-4	4-Bromofluorobenzene	42.9		33 - 14	1	86%	SPK: 50
INTERNAL ST							
363-72-4	Pentafluorobenzene	158962	4.41				
540-36-3	1,4-Difluorobenzene	302327	5.14				
3114-55-4	Chlorobenzene-d5	286857	9.35				
3855-82-1	1,4-Dichlorobenzene-d4	103039	12.25				

Date Collected:

Date Received:

SDG No.:

% Moisture:

Matrix:

Test:

08/13/12

08/15/12

D3811

SOIL

VOC-Chemtech Full -15

28

Report of Analysis

Client: MS Analytical

Project: 12MS104 Kensington Heights

Client Sample ID: SB-46(12-16)

Lab Sample ID: D3811-21

Analytical Method: SW8260C

Soil Aliquot Vol:

Sample Wt/Vol: 5.01 Units: g Final Vol: 5000 uL

GC Column: RTX-VMS ID: 0.18 Level: LOW

uL

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VF034802.D 1 08/16/12 VF081612

CAS Number Parameter Conc. Qualifier MDL LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Sample Wt/Vol:

5

Units:

g

Report of Analysis

Client: MS Analytical Date Collected: 08/13/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID:SB-46(12-16)RESDG No.:D3811Lab Sample ID:D3811-21REMatrix:SOILAnalytical Method:SW8260C% Moisture:28

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

Final Vol:

5000

uL

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036762.D 1 08/16/12 VD081612

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	3.45	U	0.9	3.45	6.9	ug/Kg
74-87-3	Chloromethane	3.45	U	1.2	3.45	6.9	ug/Kg
75-01-4	Vinyl Chloride	3.45	U	1.7	3.45	6.9	ug/Kg
141-78-6	Ethyl Acetate	3.45	U	1.2	3.45	6.9	ug/Kg
108-21-4	Isopropyl Acetate	3.45	UQ	1.7	3.45	6.9	ug/Kg
628-63-7	N-amyl acetate	3.45	U	1.3	3.45	6.9	ug/Kg
74-83-9	Bromomethane	3.45	U	3.4	3.45	6.9	ug/Kg
75-00-3	Chloroethane	3.45	U	1.9	3.45	6.9	ug/Kg
75-69-4	Trichlorofluoromethane	3.45	U	1.8	3.45	6.9	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	3.45	U	1.8	3.45	6.9	ug/Kg
75-65-0	Tert butyl alcohol	17.5	U	10	17.5	35	ug/Kg
60-29-7	Diethyl Ether	3.45	U	2.7	3.45	6.9	ug/Kg
75-35-4	1,1-Dichloroethene	3.45	U	2	3.45	6.9	ug/Kg
107-02-8	Acrolein	17.5	U	5.5	17.5	35	ug/Kg
107-13-1	Acrylonitrile	17.5	U	6.8	17.5	35	ug/Kg
67-64-1	Acetone	85	Q	4.2	17.5	35	ug/Kg
75-15-0	Carbon Disulfide	3.45	U	1.5	3.45	6.9	ug/Kg
1634-04-4	Methyl tert-butyl Ether	3.45	U	1.3	3.45	6.9	ug/Kg
79-20-9	Methyl Acetate	3.45	U	2.1	3.45	6.9	ug/Kg
75-09-2	Methylene Chloride	3.45	U	2	3.45	6.9	ug/Kg
156-60-5	trans-1,2-Dichloroethene	3.45	U	0.96	3.45	6.9	ug/Kg
108-05-4	Vinyl Acetate	17.5	UQ	4.8	17.5	35	ug/Kg
75-34-3	1,1-Dichloroethane	3.45	U	1.3	3.45	6.9	ug/Kg
110-82-7	Cyclohexane	3.45	U	1.4	3.45	6.9	ug/Kg
78-93-3	2-Butanone	17.5	UQ	4.3	17.5	35	ug/Kg
56-23-5	Carbon Tetrachloride	3.45	UQ	1.4	3.45	6.9	ug/Kg
594-20-7	2,2-Dichloropropane	3.45	U	1.4	3.45	6.9	ug/Kg
156-59-2	cis-1,2-Dichloroethene	3.45	U	1.2	3.45	6.9	ug/Kg
74-97-5	Bromochloromethane	3.45	U	1.1	3.45	6.9	ug/Kg
67-66-3	Chloroform	3.45	U	1	3.45	6.9	ug/Kg
71-55-6	1,1,1-Trichloroethane	3.45	U	1.2	3.45	6.9	ug/Kg

Client: MS Analytical Date Collected: 08/13/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SP. 46(12, 16)PF. SDG No.: D3811

Client Sample ID:SB-46(12-16)RESDG No.:D3811Lab Sample ID:D3811-21REMatrix:SOILAnalytical Method:SW8260C% Moisture:28

Sample Wt/Vol: 5 Units: g Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036762.D 1 08/16/12 VD081612

	1		00/10/	12	V D001012			
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units	
108-87-2	Methylcyclohexane	3.45	U	1.5	3.45	6.9	ug/Kg	
563-58-6	1,1-Dichloropropene	3.45	U	0.64	3.45	6.9	ug/Kg	
71-43-2	Benzene	3.45	U	0.53	3.45	6.9	ug/Kg	
107-06-2	1,2-Dichloroethane	3.45	U	0.89	3.45	6.9	ug/Kg	
79-01-6	Trichloroethene	3.45	U	1.2	3.45	6.9	ug/Kg	
78-87-5	1,2-Dichloropropane	3.45	U	0.36	3.45	6.9	ug/Kg	
74-95-3	Dibromomethane	3.45	U	1.1	3.45	6.9	ug/Kg	
75-27-4	Bromodichloromethane	3.45	U	0.86	3.45	6.9	ug/Kg	
108-10-1	4-Methyl-2-Pentanone	17.5	U	4.1	17.5	35	ug/Kg	
108-88-3	Toluene	3.45	U	0.89	3.45	6.9	ug/Kg	
10061-02-6	t-1,3-Dichloropropene	3.45	U	1.1	3.45	6.9	ug/Kg	
10061-01-5	cis-1,3-Dichloropropene	3.45	U	1	3.45	6.9	ug/Kg	
79-00-5	1,1,2-Trichloroethane	3.45	U	1.2	3.45	6.9	ug/Kg	
142-28-9	1,3-Dichloropropane	3.45	U	1	3.45	6.9	ug/Kg	
110-75-8	2-Chloroethyl Vinyl ether	17.5	U	16	17.5	35	ug/Kg	
591-78-6	2-Hexanone	17.5	U	5.4	17.5	35	ug/Kg	
124-48-1	Dibromochloromethane	3.45	U	0.75	3.45	6.9	ug/Kg	
106-93-4	1,2-Dibromoethane	3.45	U	0.89	3.45	6.9	ug/Kg	
127-18-4	Tetrachloroethene	3.45	U	1.4	3.45	6.9	ug/Kg	
108-90-7	Chlorobenzene	3.45	U	0.69	3.45	6.9	ug/Kg	
630-20-6	1,1,1,2-Tetrachloroethane	3.45	U	0.6	3.45	6.9	ug/Kg	
67-72-1	Hexachloroethane	3.45	U	1.1	3.45	6.9	ug/Kg	
100-41-4	Ethyl Benzene	3.45	U	0.86	3.45	6.9	ug/Kg	
179601-23-1	m/p-Xylenes	7	U	1	7	14	ug/Kg	
95-47-6	o-Xylene	3.45	U	0.94	3.45	6.9	ug/Kg	
100-42-5	Styrene	3.45	U	0.62	3.45	6.9	ug/Kg	
75-25-2	Bromoform	3.45	U	1	3.45	6.9	ug/Kg	
98-82-8	Isopropylbenzene	3.45	U	0.67	3.45	6.9	ug/Kg	
79-34-5	1,1,2,2-Tetrachloroethane	3.45	U	0.64	3.45	6.9	ug/Kg	
96-18-4	1,2,3-Trichloropropane	3.45	U	0.68	3.45	6.9	ug/Kg	
108-86-1	Bromobenzene	3.45	U	0.72	3.45	6.9	ug/Kg	
103-65-1	n-propylbenzene	3.45	U	0.5	3.45	6.9	ug/Kg	

Report of Analysis

Client:MS AnalyticalDate Collected:08/13/12Project:12MS104 Kensington HeightsDate Received:08/15/12

Client Sample ID:SB-46(12-16)RESDG No.:D3811Lab Sample ID:D3811-21REMatrix:SOILAnalytical Method:SW8260C% Moisture:28

Sample Wt/Vol: 5 Units: g Final Vol: 5000 uL

Soil Aliquot Vol: UL Test: VOC-Chemtech Full -15

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036762.D 1 08/16/12 VD081612

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
95-49-8	2-Chlorotoluene	3.45	U	1	3.45	6.9	ug/Kg
108-67-8	1,3,5-Trimethylbenzene	3.45	U	0.62	3.45	6.9	ug/Kg
106-43-4	4-Chlorotoluene	3.45	U	0.86	3.45	6.9	ug/Kg
98-06-6	tert-Butylbenzene	3.45	U	0.82	3.45	6.9	ug/Kg
95-63-6	1,2,4-Trimethylbenzene	3.45	U	0.69	3.45	6.9	ug/Kg
135-98-8	sec-Butylbenzene	3.45	U	0.72	3.45	6.9	ug/Kg
99-87-6	p-Isopropyltoluene	3.45	U	0.4	3.45	6.9	ug/Kg
541-73-1	1,3-Dichlorobenzene	3.45	U	0.51	3.45	6.9	ug/Kg
106-46-7	1,4-Dichlorobenzene	3.45	U	0.57	3.45	6.9	ug/Kg
104-51-8	n-Butylbenzene	3.45	U	0.64	3.45	6.9	ug/Kg
95-50-1	1,2-Dichlorobenzene	3.45	U	0.86	3.45	6.9	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	3.45	U	1.2	3.45	6.9	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	3.45	U	0.97	3.45	6.9	ug/Kg
87-68-3	Hexachlorobutadiene	3.45	U	1.1	3.45	6.9	ug/Kg
91-20-3	Naphthalene	3.45	UQ	0.62	3.45	6.9	ug/Kg
87-61-6	1,2,3-Trichlorobenzene	3.45	U	0.69	3.45	6.9	ug/Kg
74-88-4	Methyl Iodide	6.9	U	6.9	6.9	6.9	ug/Kg
107-05-1	Allyl chloride	6.9	U	6.9	6.9	6.9	ug/Kg
126-98-7	Methacrylonitrile	6.9	UQ	6.9	6.9	6.9	ug/Kg
110-57-6	trans-1,4-Dichloro-2-butene	6.9	U	6.9	6.9	6.9	ug/Kg
97-63-2	Ethyl methacrylate	6.9	U	6.9	6.9	6.9	ug/Kg
SURROGATES	8						
17060-07-0	1,2-Dichloroethane-d4	56.6		56 - 120)	113%	SPK: 50
1868-53-7	Dibromofluoromethane	47.7		57 - 135	5	95%	SPK: 50
2037-26-5	Toluene-d8	51		67 - 123	3	102%	SPK: 50
460-00-4	4-Bromofluorobenzene	58.3		33 - 141	l	117%	SPK: 50
INTERNAL ST							
363-72-4	Pentafluorobenzene	358506	4.73				
540-36-3	1,4-Difluorobenzene	647597	5.44				
3114-55-4	Chlorobenzene-d5	643236	9.57				
3855-82-1	1,4-Dichlorobenzene-d4	300082	12.47				

Date Collected:

Date Received:

SDG No.:

% Moisture:

Final Vol:

Test:

Matrix:

08/13/12

08/15/12

D3811

SOIL

28

5000

LOW

uL

VOC-Chemtech Full -15

Report of Analysis

Client: MS Analytical

Project: 12MS104 Kensington Heights

Client Sample ID: SB-46(12-16)RE

Lab Sample ID: D3811-21RE

Analytical Method: SW8260C

Sample Wt/Vol: 5 Units: g

Soil Aliquot Vol: uL

GC Column: RTX-624 ID: 0.25 Level:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VD036762.D 1 08/16/12 VD081612

CAS Number Parameter Conc. Qualifier MDL LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

QC SUMMARY

SDG No.: D3811

Client: MS Analytical

	CIL 4 ID	Tiant ID Bayamatay Snika					mits
Lab Sample ID	Client ID	Parameter	Spike	Result	Recovery Qual	Low	High
D3811-01	SB-2(4-8)	1,2-Dichloroethane-d4	50	47.56	95	56	120
		Dibromofluoromethane	50	51.04	102	57	135
		Toluene-d8	50	49.87	100	67	123
		4-Bromofluorobenzene	50	50.28	101	33	141
D3811-01RE	SB-2(4-8)RE	1,2-Dichloroethane-d4	50	57.5	115	56	120
		Dibromofluoromethane	50	48.39	97	57	135
		Toluene-d8	50	49.36	99	67	123
		4-Bromofluorobenzene	50	58.76	118	33	141
03811-02	SB-5(8-12)	1,2-Dichloroethane-d4	50	45.57	91	56	120
		Dibromofluoromethane	50	50.46	101	57	135
		Toluene-d8	50	47.03	94	67	123
		4-Bromofluorobenzene	50	42.88	86	33	141
3811-02RE	SB-5(8-12)RE	1,2-Dichloroethane-d4	50	58.56	117	56	120
		Dibromofluoromethane	50	48.43	97	57	135
		Toluene-d8	50	51.51	103	67	123
		4-Bromofluorobenzene	50	59.92	120	33	141
3811-03	SB-9(4-7)	1,2-Dichloroethane-d4	50	50.2	100	56	120
		Dibromofluoromethane	50	50.71	101	57	135
		Toluene-d8	50	48.52	97	67	123
		4-Bromofluorobenzene	50	31.41	63	33	141
03811-03RE	SB-9(4-7)RE	1,2-Dichloroethane-d4	50	58.87	118	56	120
		Dibromofluoromethane	50	47.57	95	57	135
		Toluene-d8	50	50.87	102	67	123
		4-Bromofluorobenzene	50	57.95	116	33	141
93811-05 SB-11(12-16)	SB-11(12-16)	1,2-Dichloroethane-d4	50	52.97	106	56	120
		Dibromofluoromethane	50	54.86	110	57	135
		Toluene-d8	50	47.33	95	67	123
		4-Bromofluorobenzene	50	33.42	67	33	141
03811-05RE	SB-11(12-16)RE	1,2-Dichloroethane-d4	50	54.71	109	56	120
		Dibromofluoromethane	50	48.45	97	57	135
		Toluene-d8	50	51.17	102	67	123
		4-Bromofluorobenzene	50	59.25	119	33	141
03811-06	SB-15(12-16)	1,2-Dichloroethane-d4	50	45.42	91	56	120
		Dibromofluoromethane	50	48.1	96	57	135
		Toluene-d8	50	48.82	98	67	123
		4-Bromofluorobenzene	50	47.69	95	33	141
03811-06RE	SB-15(12-16)RE	1,2-Dichloroethane-d4	50	58.09	116	56	120
		Dibromofluoromethane	50	47.44	95	57	135
		Toluene-d8	50	49.86	100	67	123
		4-Bromofluorobenzene	50	59.92	120	33	141
03811-07	SB-18(4-8)	1,2-Dichloroethane-d4	50	51.15	102	56	120
		Dibromofluoromethane	50	54.69	109	57	135
		Toluene-d8	50	51.81	104	67	123
		4-Bromofluorobenzene	50	51.68	103	33	141
3811-07RE	SB-18(4-8)RE	1,2-Dichloroethane-d4	50	52.24	104	56	120
	•	Dibromofluoromethane	50	45.76	92	57	135
		Toluene-d8	50	52.07	104	67	123
		4-Bromofluorobenzene	50	56.32	113	33	141
03811-10	SB-21(16-19)	1,2-Dichloroethane-d4	50	45.93	92	56	120
	` '	Dibromofluoromethane	50	52.9	106	57	135
		Toluene-d8	50	42.42	85	67	123
		4-Bromofluorobenzene	50	41.39	83	33	141

SDG No.: D3811

Client: MS Analytical

							Limits	
Lab Sample ID	Client ID	Parameter	Spike	Result	Recovery	Qual	Low	High
D3811-10RE	SB-21(16-19)RE	1,2-Dichloroethane-d4	50	59.57	119		56	120
		Dibromofluoromethane	50	48.05	96		57	135
		Toluene-d8	50	50.78	102		67	123
		4-Bromofluorobenzene	50	59.37	119		33	141
D3811-11	SB-22(12-19)	1,2-Dichloroethane-d4	50	48.52	97		56	120
	,	Dibromofluoromethane	50	69.07	138	*	57	135
		Toluene-d8	50	52.46	105		67	123
		4-Bromofluorobenzene	50	38.72	77		33	141
D3811-11RE	SB-22(12-19)RE	1,2-Dichloroethane-d4	50	57.35	115		56	120
		Dibromofluoromethane	50	48.2	96		57	135
		Toluene-d8	50	51.64	103		67	123
		4-Bromofluorobenzene	50	58.92	118		33	141
D3811-13	SB-37(8-10)	1,2-Dichloroethane-d4	50	42.74	85		56	120
23011 13	SD 37(0 10)	Dibromofluoromethane	50	50.58	101		57	135
		Toluene-d8	50	48.11	96		67	123
		4-Bromofluorobenzene	50	39.05	78		33	141
D3811-13RE	SB-37(8-10)RE	1,2-Dichloroethane-d4	50	57.39	115		56	120
75011-15IXE	5D-57(0-10)ICE	Dibromofluoromethane	50	48.98	98		57	135
		Toluene-d8	50 50	48.98 51.5	103		57 67	123
								141
22011 14	SD 20((9)	4-Bromofluorobenzene	50	61.02	122	*	33	
D3811-14	SB-39(6-8)	1,2-Dichloroethane-d4	50	61.53	123		56	120
		Dibromofluoromethane	50	55.08	110		57	135
		Toluene-d8	50	55.76	112		67	123
D3811-14RE SB-39(6-8)RE	4-Bromofluorobenzene	50	42.87	86		33	141	
	SB-39(6-8)RE	1,2-Dichloroethane-d4	50	56.55	113		56	120
	Dibromofluoromethane	50	48.95	98		57	135	
		Toluene-d8	50	50.67	101		67	123
		4-Bromofluorobenzene	50	58.42	117		33	141
D3811-15	SB-41(8-11)	1,2-Dichloroethane-d4	50	49.62	99		56	120
		Dibromofluoromethane	50	60.12	120		57	135
		Toluene-d8	50	45.76	92		67	123
		4-Bromofluorobenzene	50	22.15	44		33	141
D3811-15RE	SB-41(8-11)RE	1,2-Dichloroethane-d4	50	59.87	120		56	120
		Dibromofluoromethane	50	47.25	95		57	135
		Toluene-d8	50	50.2	100		67	123
		4-Bromofluorobenzene	50	52.71	105		33	141
03811-17	SB-43(6-8)	1,2-Dichloroethane-d4	50	49.74	99		56	120
		Dibromofluoromethane	50	55.53	111		57	135
		Toluene-d8	50	48.46	97		67	123
		4-Bromofluorobenzene	50	25.23	50		33	141
D3811-17RE	SB-43(6-8)RE	1,2-Dichloroethane-d4	50	55.09	110		56	120
	. ,	Dibromofluoromethane	50	47.45	95		57	135
		Toluene-d8	50	49.06	98		67	123
		4-Bromofluorobenzene	50	53.93	108		33	141
03811-18	SB-43(10-12)	1,2-Dichloroethane-d4	50	48.96	98		56	120
	()	Dibromofluoromethane	50	52.41	105		57	135
		Toluene-d8	50	48.55	97		67	123
		4-Bromofluorobenzene	50	37.51	75		33	141
D3811-18RE	SB-43(10-12)RE	1,2-Dichloroethane-d4	50	53.35	107		56	120
22011-10IXL	5D 75(10-12)KE	Dibromofluoromethane	50	49.05	98		57	135
		Toluene-d8	50	51.97	104		67	123
		4-Bromofluorobenzene	50	57.23	114		33	141

SDG No.: D3811

Client: MS Analytical

						imits	
Lab Sample ID	Client ID	Parameter	Spike	Result	Recovery Qual	Low	High
D3811-19	SB-43(16-20)	1,2-Dichloroethane-d4	50	52.46	105	56	120
		Dibromofluoromethane	50	56.88	114	57	135
		Toluene-d8	50	49.74	99	67	123
		4-Bromofluorobenzene	50	40.35	81	33	141
D3811-19RE	SB-43(16-20)RE	1,2-Dichloroethane-d4	50	52.07	104	56	120
		Dibromofluoromethane	50	48.42	97	57	135
		Toluene-d8	50	53.63	107	67	123
		4-Bromofluorobenzene	50	58.97	118	33	141
D3811-21	SB-46(12-16)	1,2-Dichloroethane-d4	50	50.15	100	56	120
		Dibromofluoromethane	50	54.3	109	57	135
		Toluene-d8	50	48.25	97	67	123
		4-Bromofluorobenzene	50	42.89	86	33	141
03811-21RE	SB-46(12-16)RE	1,2-Dichloroethane-d4	50	56.63	113	56	120
	2_ ()	Dibromofluoromethane	50	47.69	95	57	135
		Toluene-d8	50	50.95	102	67	123
		4-Bromofluorobenzene	50	58.33	117	33	141
03814-04MS	KY030LC023-120814MS	1,2-Dichloroethane-d4	50	61.26	123	55	158
	111 05 05 0 0 0 1 2 0 0 1 1115	Dibromofluoromethane	50	55.59	111	53	156
		Toluene-d8	50	49.85	100	85	115
		4-Bromofluorobenzene	50	49.31	99	85	120
D3814-04MSD	KY030LC023-120814MSD	1,2-Dichloroethane-d4	50	55	110	55	158
)3014-04NISD	K1030EC023-120014WGD	Dibromofluoromethane	50	54.51	109	53	156
		Toluene-d8	50	49	98	85	115
		4-Bromofluorobenzene	50	48.55	98 97	85 85	120
VD0815SBL01 VD0815SBL01		50 50	58.33	117	83 56	120	
	1,2-Dichloroethane-d4						
	Dibromofluoromethane	50	53.02	106	57	135	
		Toluene-d8	50	49.13	98	67	123
ID 0.01 5 CD C.01	LIDAGI SADAGI	4-Bromofluorobenzene	50	49.07	98	33	141
/D08158BS01	VD08158BS01	1,2-Dichloroethane-d4	50	51.51	103	56	120
VD0815SBS01 VD0815SBS01		Dibromofluoromethane	50	44.92	90	57	135
		Toluene-d8	50	44.9	90	67	123
		4-Bromofluorobenzene	50	45.28	91	33	141
/D0816SBL01	VD0816SBL01	1,2-Dichloroethane-d4	50	51.84	104	56	120
		Dibromofluoromethane	50	48.66	97	57	135
		Toluene-d8	50	47.54	95	67	123
		4-Bromofluorobenzene	50	45.55	91	33	141
/D0816SBS01	VD0816SBS01	1,2-Dichloroethane-d4	50	56.68	113	56	120
		Dibromofluoromethane	50	48.87	98	57	135
		Toluene-d8	50	47.86	96	67	123
		4-Bromofluorobenzene	50	47.95	96	33	141
/F0815SBL01	VF0815SBL01	1,2-Dichloroethane-d4	50	55.42	111	56	120
		Dibromofluoromethane	50	56.43	113	57	135
		Toluene-d8	50	51.37	103	67	123
		4-Bromofluorobenzene	50	53.05	106	33	141
/F0815SBS01	VF0815SBS01	1,2-Dichloroethane-d4	50	51.02	102	56	120
		Dibromofluoromethane	50	53.75	108	57	135
		Toluene-d8	50	51.08	102	67	123
		4-Bromofluorobenzene	50	50.87	102	33	141
/F0816SBL01	VF0816SBL01	1,2-Dichloroethane-d4	50	51.9	104	55	158
		Dibromofluoromethane	50	56.37	113	53	156
		Toluene-d8	50	49.72	99	85	115
		4-Bromofluorobenzene	50	51.72	103	85	120

SDG No.: <u>D3811</u>

Client: MS Analytical

						Limits		L
Lab Sample ID	Client ID	Parameter	Spike	Result	Recovery Qual	Low	High	_ [
VF0816SBS01 VF0816SBS01	VF0816SBS01	1,2-Dichloroethane-d4	50	54.71	109	55	158	_
		Dibromofluoromethane	50	56.05	112	53	156	
		Toluene-d8	50	50.54	101	85	115	
		4-Bromofluorobenzene	50	52.65	105	85	120	

SOLID VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name:	СНЕМТЕСН			Client:	MS Analytical			
Lab Code: _	СНЕМ	Cas No:	D3811	SAS No:	D3811	SDG No:	D3811	
Client SampleID	: KY030LC023-	-120814MS	Analytical Me	ethod: EPA	SW846 8260	Data	ıfile :	VF034815.D

• —	<u> </u>		115,110,10,0200		
COMPOUND	SPIKE ADDED (ug/Kg)	SAMPLE CONCENTRATION (ug/Kg)	MS CONCENTRATION (ug/Kg)	MS % REC#	QC LIMITS REC
Dichlorodifluoromethane	68	0	73	107	(35-135)
Chloromethane	68	0	71	104	(50-130)
Vinyl Chloride	68	0	70	103	(60-125)
Ethyl Acetate	68	0	69	101	(66-138)
Isopropyl Acetate	68	0	54	79	(70-130)
N-amyl acetate	68	0	56	82	(71-131)
Bromomethane	68	0	69	101	(30-160)
Chloroethane	68	0	67	99	(40-155)
Trichlorofluoromethane	68	0	72	106	(25-185)
1,1,2-Trichlorotrifluoroethane	68	0	73	107	(63-141)
Tert butyl alcohol	342	0	410	120	(58-149)
Diethyl Ether	68	0	120	176*	(70-130)
1,1-Dichloroethene	68	0	71	104	(65-135)
Acrolein	342	0	240	70	(10-148)
Acrylonitrile	342	0	410	120	(62-147)
Acetone	342	130	460	96	(20-160)
Carbon Disulfide	68	0	65	96	(45-160)
Methyl tert-butyl Ether	68	0	80	118	(76-123)
Methyl Acetate	68	0	88	129	(44-187)
Methylene Chloride	68	0	80	118	(55-140)
trans-1,2-Dichloroethene	68	0	72	106	(65-135)
Vinyl Acetate	342	0	260	76	(10-142)
1,1-Dichloroethane	68	0	77	113	(75-125)
Cyclohexane	68	0	62	91	(66-132)
2-Butanone	342	0	400	117	(30-160)
Carbon Tetrachloride	68	0	59	87	(65-135)
2,2-Dichloropropane	68	0	65	96	(65-135)
cis-1,2-Dichloroethene	68	0	76	112	(65-125)
Bromochloromethane	68	0	83	122	(70-125)
Chloroform	68	0	79	116	(70-125)
1,1,1-Trichloroethane	68	0	74	109	(70-135)
Methylcyclohexane	68	0	54	79	(71-124)
1,1-Dichloropropene	68	0	66	97	(70-135)

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

EPA SW846 8260 Datafile: VF034815.D

Client SampleID:

KY030LC023-120814MS

SOLID VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name:	СНЕМТЕСН			Client:	MS Analytical		
Lab Code:	СНЕМ	Cas No:	D3811	SAS No:	D3811	SDG No:	D3811

Analytical Method:

	1200111.15		15 77 0 10 0200		
COMPOUND	SPIKE ADDED (ug/Kg)	SAMPLE CONCENTRATION (ug/Kg)	MS CONCENTRATION (ug/Kg)	MS % REC#	QC LIMITS REC
Benzene	68	0	70	103	(75-125)
1,2-Dichloroethane	68	0	70	103	(70-135)
Trichloroethene	68	0	66	97	(75-125)
1,2-Dichloropropane	68	0	68	100	(70-120)
Dibromomethane	68	0	74	109	(75-130)
Bromodichloromethane	68	0	69	101	(70-130)
4-Methyl-2-Pentanone	342	0	360	105	(45-145)
Toluene	68	0	66	97	(70-125)
t-1,3-Dichloropropene	68	0	63	93	(65-125)
cis-1,3-Dichloropropene	68	0	65	96	(70-125)
1,1,2-Trichloroethane	68	0	74	109	(60-125)
1,3-Dichloropropane	68	0	72	106	(75-125)
2-Chloroethyl Vinyl ether	342	0	350	102	(10-144)
2-Hexanone	342	0	380	111	(45-145)
Dibromochloromethane	68	0	69	101	(65-130)
1,2-Dibromoethane	68	0	71	104	(70-125)
Tetrachloroethene	68	0	68	100	(65-140)
Chlorobenzene	68	0	65	96	(75-125)
1,1,1,2-Tetrachloroethane	68	0	68	100	(75-125)
Hexachloroethane	68	0	60	88	(74-122)
Ethyl Benzene	68	0	64	94	(75-125)
m/p-Xylenes	137	0	130	95	(80-125)
o-Xylene	68	0	66	97	(75-125)
Styrene	68	0	64	94	(75-125)
Bromoform	68	0	72	106	(55-135)
Isopropylbenzene	68	0	64	94	(75-130)
1,1,2,2-Tetrachloroethane	68	0	79	116	(55-130)
1,2,3-Trichloropropane	68	0	73	107	(65-130)
Bromobenzene	68	0	68	100	(65-120)
n-propylbenzene	68	0	63	93	(65-135)
2-Chlorotoluene	68	0	66	97	(70-130)
1,3,5-Trimethylbenzene	68	0	65	96	(65-135)
4-Chlorotoluene	68	0	65	96	(75-125)

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

VF034815.D

Datafile:

Client SampleID:

KY030LC023-120814MS

SOLID VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name:	CHEMTECH			Client:	MS Analytical		
Lab Code:	СНЕМ	_ Cas No:	D3811	SAS No:	D3811	SDG No:	D3811

Analytical Method:

EPA SW846 8260

COMPOUND	SPIKE ADDED (ug/Kg)	SAMPLE CONCENTRATION (ug/Kg)	MS CONCENTRATION (ug/Kg)	MS % REC#	QC LIMITS REC
tert-Butylbenzene	68	0	63	93	(65-130)
1,2,4-Trimethylbenzene	68	0	64	94	(65-135)
sec-Butylbenzene	68	0	63	93	(65-130)
p-Isopropyltoluene	68	0	64	94	(75-135)
1,3-Dichlorobenzene	68	0	65	96	(70-125)
1,4-Dichlorobenzene	68	0	66	97	(70-125)
n-Butylbenzene	68	0	61	90	(65-140)
1,2-Dichlorobenzene	68	0	66	97	(75-120)
1,2-Dibromo-3-Chloropropane	68	0	65	96	(40-135)
1,2,4-Trichlorobenzene	68	0	58	85	(65-130)
Hexachlorobutadiene	68	0	55	81	(55-140)
Naphthalene	68	0	64	94	(40-125)
1,2,3-Trichlorobenzene	68	0	57	84	(60-135)
Methyl Iodide	68	0	69	101	(70-130)
Allyl chloride	68	0	64	94	(70-130)
trans-1,4-Dichloro-2-butene	68	0	63	93	(70-130)
Methacrylonitrile	68	0	81	119	(70-130)
Ethyl methacrylate	68	0	68	100	(70-130)

RPD: 0 Out of 84 outside limits

Spike Recovery: 1 Out of 84 outside limits

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

SOLID VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name:	СНЕМТЕСН			Client:	MS Analytical			
Lab Code:	СНЕМ	_ Cas No:	D3811	SAS No:	D3811	SDG No:	D3811	_
Client SampleII): KY030LC023	3-120814MSD	Analytical M	lethod: EPA	SW846 8260	Data	file: VF034816	D

Client SampleID : <u>KY030LC0</u>	23-120814MSD	Analytical Method: EP	A SW846 8260	_ Datafile :	VF034816.D
COMPOUND	SPIKE ADDED (ug/Kg)	MSD CONCENTRATION (ug/Kg)	MSD %REC %RPD (ug/Kg)	QC LII RPD	MITS REC
Dichlorodifluoromethane	68	70	103 4	20	(35-135)
Chloromethane	68	75	110 6	20	(50-130)
Vinyl Chloride	68	74	109 6	20	(60-125)
Ethyl Acetate	68	62	91 10	20	(66-138)
Isopropyl Acetate	68	52	76 4	20	(70-130)
N-amyl acetate	68	54	79 4	20	(71-131)
Bromomethane	68	73	107 6	20	(30-160)
Chloroethane	68	78	115 15	20	(40-155)
Trichlorofluoromethane	68	75	110 4	20	(25-185)
1,1,2-Trichlorotrifluoroethane	68	76	112 5	20	(63-141)
Tert butyl alcohol	342	370	108 11	20	(58-149)
Diethyl Ether	68	120	176* 0	20	(70-130)
1,1-Dichloroethene	68	78	115 10	20	(65-135)
Acrolein	342	150	44 46*	20	(10-148)
Acrylonitrile	342	380	111 8	20	(62-147)
Acetone	342	430	88 9	20	(20-160)
Carbon Disulfide	68	71	104 8	20	(45-160)
Methyl tert-butyl Ether	68	83	122 3	20	(76-123)
Methyl Acetate	68	83	122 6	20	(44-187)
Methylene Chloride	68	84	124 5	20	(55-140)
trans-1,2-Dichloroethene	68	78	115 8	20	(65-135)
Vinyl Acetate	342	240	70 8	20	(10-142)
1,1-Dichloroethane	68	87	128* 12	20	(75-125)
Cyclohexane	68	68	100 9	20	(66-132)
2-Butanone	342	380	111 5	20	(30-160)
Carbon Tetrachloride	68	64	94 8	20	(65-135)
2,2-Dichloropropane	68	74	109 13	20	(65-135)
cis-1,2-Dichloroethene	68	85	125 11	20	(65-125)
Bromochloromethane	68	80	118 3	20	(70-125)
Chloroform	68	86	126* 8	20	(70-125)
1,1,1-Trichloroethane	68	80	118 8	20	(70-135)
Methylcyclohexane	68	60	88 11	20	(71-124)
1,1-Dichloropropene	68	70	103 6	20	(70-135)

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

SOLID VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name:	СНЕМТЕСН			Client:	MS Analytical		
Lab Code:	СНЕМ	Cas No:	D3811	SAS No:	<u>D3811</u>	SDG No:	D3811

Client SampleID: KY030LC	023-120814MSD	Analytical Method: EP	A SW846 8260	_ Datafile :	VF034816.D
COMPOUND	SPIKE ADDED (ug/Kg)	MSD CONCENTRATION (ug/Kg)	MSD %REC %RPD (ug/Kg)	QC LII RPD	MITS REC
Benzene	68	76	112 8	20	(75-125)
1,2-Dichloroethane	68	74	109 6	20	(70-135)
Trichloroethene	68	71	104 7	20	(75-125)
1,2-Dichloropropane	68	75	110 10	20	(70-120)
Dibromomethane	68	77	113 4	20	(75-130)
Bromodichloromethane	68	72	106 5	20	(70-130)
4-Methyl-2-Pentanone	342	350	102 3	20	(45-145)
Toluene	68	73	107 10	20	(70-125)
t-1,3-Dichloropropene	68	66	97 4	20	(65-125)
cis-1,3-Dichloropropene	68	68	100 4	20	(70-125)
1,1,2-Trichloroethane	68	73	107 2	20	(60-125)
1,3-Dichloropropane	68	75	110 4	20	(75-125)
2-Chloroethyl Vinyl ether	342	330	96 6	20	(10-144)
2-Hexanone	342	360	105 6	20	(45-145)
Dibromochloromethane	68	69	101 0	20	(65-130)
1,2-Dibromoethane	68	71	104 0	20	(70-125)
Tetrachloroethene	68	73	107 7	20	(65-140)
Chlorobenzene	68	74	109 13	20	(75-125)
1,1,1,2-Tetrachloroethane	68	73	107 7	20	(75-125)
Hexachloroethane	68	68	100 13	20	(74-122)
Ethyl Benzene	68	73	107 13	20	(75-125)
m/p-Xylenes	137	140	102 7	20	(80-125)
o-Xylene	68	71	104 7	20	(75-125)
Styrene	68	70	103 9	20	(75-125)
Bromoform	68	71	104 2	20	(55-135)
Isopropylbenzene	68	74	109 15	20	(75-130)
1,1,2,2-Tetrachloroethane	68	75	110 5	20	(55-130)
1,2,3-Trichloropropane	68	76	112 5	20	(65-130)
Bromobenzene	68	75	110 10	20	(65-120)
n-propylbenzene	68	72	106 13	20	(65-135)
2-Chlorotoluene	68	73	107 10	20	(70-130)
1,3,5-Trimethylbenzene	68	73	107 11	20	(65-135)
4-Chlorotoluene	68	74	109 13	20	(75-125)

[#] Column to be used to flag recovery and RPD values with an asterisk

^{*} Values outside of QC limits

VF034816.D

Client SampleID:

KY030LC023-120814MSD

SOLID VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name:	CHEMIECH			Chent:	MIS Allalytical			
Lab Code:	СНЕМ	Cas No:	D3811	SAS No:	D3811	SDG No:	D3811	

Analytical Method:

EPA SW846 8260 ____ Datafile :

COMPOUND	SPIKE ADDED (ug/Kg)	MSD CONCENTRATION (ug/Kg)	MSD %REC %RPD (ug/Kg)	QC LIMITS RPD REC
tert-Butylbenzene	68	72	106 13	20 (65-130)
1,2,4-Trimethylbenzene	68	72	106 12	20 (65-135)
sec-Butylbenzene	68	71	104 11	20 (65-130)
p-Isopropyltoluene	68	71	104 10	20 (75-135)
1,3-Dichlorobenzene	68	71	104 8	20 (70-125)
1,4-Dichlorobenzene	68	72	106 9	20 (70-125)
n-Butylbenzene	68	66	97 7	20 (65-140)
1,2-Dichlorobenzene	68	72	106 9	20 (75-120)
1,2-Dibromo-3-Chloropropane	68	67	99 3	20 (40-135)
1,2,4-Trichlorobenzene	68	58	85 0	20 (65-130)
Hexachlorobutadiene	68	58	85 5	20 (55-140)
Naphthalene	68	61	90 4	20 (40-125)
1,2,3-Trichlorobenzene	68	55	81 4	20 (60-135)
Methyl Iodide	68	78	115 13	20 (70-130)
Allyl chloride	68	74	109 15	20 (70-130)
trans-1,4-Dichloro-2-butene	68	64	94 1	20 (70-130)
Methacrylonitrile	68	75	110 8	20 (70-130)
Ethyl methacrylate	68	64	94 6	20 (70-130)

RPD: 1 Out of 84 outside limits

Spike Recovery: 3 Out of 84 outside limits

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

Lab Name: CHEMTECH			Clier	nt: MS Analytical		
Lab Code: CHEM	Cas No:	D3811	SAS No:		G No: <u>D3811</u>	
Matrix Spike - EPA Sample No :	VD0815SBS01	Analytica	d Method:	EPA SW846 8260	Datafile:	VD036739.D
	SPIKE			LCS	LCS	QC
COMPOUND	ADDED	l	CENTRATION	CONCENTRATION		LIMITS
	(ug/Kg)	((ug/Kg)	(ug/Kg)	REC#	
Dichlorodifluoromethane	20			19	95	(50-142)
Chloromethane	20			24	120	(65-131)
Vinyl Chloride	20			22	110	(67-130)
Ethyl Acetate	20			24	120	(75-130)
Isopropyl Acetate	20			23	115	(79-123)
N-amyl acetate	20			21	105	(76-131)
Bromomethane	20			18	90	(64-136)
Chloroethane	20			23	115	(66-146)
Trichlorofluoromethane	20			22	110	(72-134)
1,1,2-Trichlorotrifluoroethane	20			23	115	(73-133)
Tert butyl alcohol	100			120	120	(64-139)
Diethyl Ether	20			24	120	(73-131)
1,1-Dichloroethene	20			22	110	(74-130)
Acrolein	100			91	91	(60-140)
Acrylonitrile	100			120	120	(71-130)
Acetone	100			150	150*	(57-135)
Carbon Disulfide	20			22	110	(71-130)
Methyl tert-butyl Ether	20			24	120	(76-123)
Methyl Acetate	20			25	125	(62-146)
Methylene Chloride	20			21	105	(73-134)
trans-1,2-Dichloroethene	20			21	105	(76-125)
Vinyl Acetate	100			140	140*	(68-132)
1.1-Dichloroethane	20			23	115	(78-124)
Cyclohexane	20			22	110	(72-130)
2-Butanone	100			130	130	(68-132)
Carbon Tetrachloride	20			17	85	(76-127)
2,2-Dichloropropane	20			23	115	(73-129)
2,2-Dichioropropane	. 20	l		23	113	(/3-129)

# Column to be used to flag recovery	and RPD values with an asterisk
--------------------------------------	---------------------------------

20

20

20

20

20

20

20

*	Values	outside	of	QC	limits
---	--------	---------	----	----	--------

cis-1,2-Dichloroethene

Bromochloromethane

1,1,1-Trichloroethane

Methylcyclohexane

1,1-Dichloropropene

Chloroform

Benzene

Comments:		

21

24

22

20

19

20

21

105

120

110

100

95

100

105

(78-122)

(66-133)

(79-122)

(76-126)

(75-127)

(81-124)

(79-124)

100

95

100

95

100

20

19

20

19

20

(84-118)

(81-123)

(85-118)

(81-123)

(81-122)

SOIL VOLATILE LABORATORY CONTROL SPIKE/LABORATORY CONTROL SPIKE DUPLICATE RECOVERY

Lab Name:	СНЕМТЕСН		Clien	t: MS Analytical		
Lab Code:	СНЕМ	Cas No:	D3811 SAS No:		No: <u>D3811</u>	
Matrix Spike - I	EPA Sample No :	VD0815SBS01	Analytical Method:	EPA SW846 8260	Datafile :	VD036739.D
		SPIKE		LCS	LCS	QC
СОМРО	JUND	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
COMPO	UND	(ug/Kg)	(ug/Kg)	(ug/Kg)	REC#	REC
1,2-Dichloroet	hane	20		21	105	(78-124)
Trichloroether	ne	20		19	95	(78-124)
1,2-Dichloropr	ropane	20		21	105	(76-124)
Dibromometh	ane	20		21	105	(79-122)
Bromodichlor	omethane	20		20	100	(78-122)
4-Methyl-2-Pe	ntanone	100		120	120	(73-135)
Toluene		20		20	100	(78-124)
t-1,3-Dichloro	propene	20		21	105	(77-123)
cis-1,3-Dichlor	opropene	20		21	105	(79-120)
1,1,2-Trichloro	oethane	20		20	100	(78-123)
1,3-Dichloropr	ropane	20		20	100	(79-123)
2-Chloroethyl	Vinyl ether	100		110	110	(67-143)
2-Hexanone		100		110	110	(71-134)
Dibromochlor	omethane	20		19	95	(77-121)
1,2-Dibromoet	thane	20		19	95	(78-123)
Tetrachloroeth	hene	20		19	95	(67-134)
Chlorobenzen	e	20		20	100	(80-121)
1,1,1,2-Tetracl	hloroethane	20		20	100	(81-119)
Hexachloroeth	ane	20		18	90	(73-122)
Ethyl Benzene	:	20		20	100	(80-123)
m/p-Xylenes		40		39	98	(79-126)
o-Xylene		20		20	100	(80-122)
Styrene		20		20	100	(81-121)
Bromoform		20		19	95	(73-124)
Isopropylbenz	ene	20		20	100	(79-123)
1,1,2,2-Tetracl	hloroethane	20		22	110	(79-124)
1,2,3-Trichlore	opropane	20		22	110	(81-123)
Bromobenzene	e	20		20	100	(83-116)
n-propylbenze	ene	20		20	100	(80-125)

# Column to be used to flag recovery	and RPD values with an asterisk
--------------------------------------	---------------------------------

20

20

20

20

20

*	Values	outside	of	QC	limits
---	--------	---------	----	----	--------

2-Chlorotoluene

4-Chlorotoluene

tert-Butylbenzene

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

Comments:		

Lab Name:	СНЕМТЕСН		CI	ient: MS Analytical		
Lab Code:	СНЕМ	Cas No:	D3811 SAS No	D3811	SDG No: <u>D381</u>	1
Matrix Spike -	EPA Sample No :	VD0815SBS01	Analytical Method:	EPA SW846 8260	Datafile:	VD036739.D
СОМР	OUND	SPIKE ADDED (ug/Kg)	CONCENTRATIO (ug/Kg)	LCS N CONCENTRAT	ION %	LIMITS
sec-Butylben	zene	20		20	100	(81-126)
p-Isopropylto	oluene	20		19	95	(81-124)
1,3-Dichlorol	benzene	20		19	95	(82-120)
1,4-Dichlorol	benzene	20		19	95	(81-120)
n-Butylbenze	ene	20		19	95	(75-129)
1,2-Dichlorol	benzene	20		20	100	(82-118)
1,2-Dibromo-	-3-Chloropropane	20		18	90	(72-127)
1,2,4-Trichlo	robenzene	20		16	80	(75-125)
Hexachlorob	utadiene	20		17	85	(79-124)
Naphthalene		20		5.8	29*	(71-126)
1,2,3-Trichlo	robenzene	20		17	85	(79-123)
Methyl Iodid	e	20		17	85	(79-124)
Allyl chloride	e	20		22	110	(78-131)
trans-1,4-Dic	hloro-2-butene	20		20	100	(76-118)
Methacrylon	itrile	20		25	125*	(70-123)

21

105

(83-126)

20

RPD: 0 Out of 84 outside limits

Ethyl methacrylate

Spike Recovery: 4 Out of 84 outside limits

#	Colun	ın to	be	used	to:	flag	recovery	and RP	ď	values	with	an	asterisk	K

*	Values	outside of	i QC	limits
---	--------	------------	------	--------

Comments:		

Lab Name:	СНЕМТЕСН		Cli	ient: MS Analytical		
Lab Code:	СНЕМ	Cas No:	SAS No	: <u>D3811</u> SDG	No: <u>D3811</u>	<u>l</u>
Matrix Spike	- EPA Sample No :	VD0816SBS01	Analytical Method:	EPA SW846 8260	Datafile :	VD036756.D
		SPIKE		LCS	LCS	S QC
COMF	POUND	ADDED	CONCENTRATION		%	LIMITS
		(ug/Kg)	(ug/Kg)	(ug/Kg)	REC#	-
	uoromethane	20		19	95	(50-142)
Chlorometha		20		23	115	(65-131)
Vinyl Chlori		20		24	120	(67-130)
Ethyl Acetat		20		25	125	(75-130)
Isopropyl Ac		20		25	125*	(79-123)
N-amyl aceta	i	20		22	110	(76-131)
Bromometha		20		24	120	(64-136)
Chloroethan		20		22	110	(66-146)
Trichloroflu		20		21	105	(72-134)
1,1,2-Trichlo	orotrifluoroethane	20		23	115	(73-133)
Tert butyl al		100		120	120	(64-139)
Diethyl Ethe	er	20		25	125	(73-131)
1,1-Dichloro	ethene	20		24	120	(74-130)
Acrolein		100		98	98	(60-140)
Acrylonitrile	e	100		120	120	(71-130)
Acetone		100		150	150*	(57-135)
Carbon Disu	ılfide	20		24	120	(71-130)
Methyl tert-	butyl Ether	20		24	120	(76-123)
Methyl Acet	ate	20		28	140	(62-146)
Methylene C	Chloride	20		21	105	(73-134)
trans-1,2-Die	chloroethene	20		23	115	(76-125)
Vinyl Acetat	te	100		150	150*	(68-132)
1,1-Dichloro	ethane	20		23	115	(78-124)
Cyclohexane	е	20		22	110	(72-130)
2-Butanone		100		140	140*	(68-132)
Carbon Tetr	rachloride	20		15	75*	(76-127)
2,2-Dichloro	propane	20		24	120	(73-129)
cis-1,2-Dichl	loroethene	20		21	105	(78-122)
Bromochlore	omethane	20		26	130	(66-133)
Chloroform		20		22	110	(79-122)
1,1,1-Trichlo	oroethane	20		20	100	(76-126)
Methylcyclo		20		20	100	(75-127)
1,1-Dichloro		20		21	105	(81-124)
Benzene	•	20		21	105	(79-124)

#	Column to be used to flag recovery	and RPD values with an asterisk	
*	Values outside of OC limits		

Comments:			
•			

Lab Name:	СНЕМТЕСН		Clie	ent: MS Analytical		
Lab Code:	СНЕМ	Cas No:	D3811 SAS No	: <u>D3811</u> SDC	G No: <u>D381</u>	1
Matrix Spike	- EPA Sample No :	VD0816SBS01	Analytical Method:	EPA SW846 8260	Datafile :	VD036756.D
		SPIKE		LCS	LC	s QC
COMP	POUND	ADDED	CONCENTRATION		1	LIMITS
		(ug/Kg)	(ug/Kg)	(ug/Kg)	REC	-
1,2-Dichloro		20		23	115	(78-124)
Trichloroeth		20		19	95	(78-124)
1,2-Dichloro		20		21	105	(76-124)
Dibromomet		20		22	110	(79-122)
Bromodichlo		20		21	105	(78-122)
4-Methyl-2-I	Pentanone	100		120	120	(73-135)
Toluene		20		20 22	100	(78-124) (77-123)
t-1,3-Dichlor		20		22	110	
cis-1,3-Dichl		20		20	100	(79-120) (78-123)
1,3-Dichloro		20		23	115	(79-123)
	yl Vinyl ether	100		110	110	(67-143)
2-Hexanone	yr vinyr cener	100		130	130	(71-134)
Dibromochlo	oromethane	20		20	100	(77-121)
1,2-Dibromo		20		20	100	(78-123)
Tetrachloro		20		20	100	(67-134)
Chlorobenze	-	20		19	95	(80-121)
1,1,1,2-Tetra	chloroethane	20		20	100	(81-119)
Hexachloroe	thane	20		20	100	(73-122)
Ethyl Benzer	ne	20		20	100	(80-123)
m/p-Xylenes		40		40	100	(79-126)
o-Xylene		20		19	95	(80-122)
Styrene		20		19	95	(81-121)
Bromoform		20		19	95	(73-124)
Isopropylbei	nzene	20		20	100	(79-123)
1,1,2,2-Tetra	chloroethane	20		22	110	(79-124)
1,2,3-Trichlo	oropropane	20		22	110	(81-123)
Bromobenze	ene	20		20	100	(83-116)
n-propylben	zene	20		21	105	(80-125)
2-Chlorotolu	iene	20		20	100	(84-118)
1,3,5-Trimet	hylbenzene	20		19	95	(81-123)
4-Chlorotolu	iene	20		21	105	(85-118)
tert-Butylbe	nzene	20		21	105	(81-123)
1,2,4-Trimet	hylbenzene	20		20	100	(81-122)

# Column to be used to flag recovery	and RPD values with an asterisk
--------------------------------------	---------------------------------

Comments:		

^{*} Values outside of QC limits

Lab Name: CHEMTECH		Clien	t: MS Analytical		
Lab Code: CHEM	Cas No:	D3811 SAS No:	SDG N	No: <u>D3811</u>	
Matrix Spike - EPA Sample No :	VD0816SBS01	Analytical Method: I	EPA SW846 8260	Datafile: <u>V</u>	D036756.D
COMPOUND	SPIKE ADDED (ug/Kg)	CONCENTRATION (ug/Kg)	LCS CONCENTRATION (ug/Kg)	LCS % I REC#	QC IMITS REC
sec-Butylbenzene	20		21	105	(81-126)
p-Isopropyltoluene	20		20	100	(81-124)
1,3-Dichlorobenzene	20		20	100	(82-120)
1,4-Dichlorobenzene	20		20	100	(81-120)
n-Butylbenzene	20		20	100	(75-129)
1,2-Dichlorobenzene	20		21	105	(82-118)
1,2-Dibromo-3-Chloropropane	20		20	100	(72-127)
1,2,4-Trichlorobenzene	20		18	90	(75-125)
Hexachlorobutadiene	20		20	100	(79-124)
Naphthalene	20		5.5	28*	(71-126)
1,2,3-Trichlorobenzene	20		17	85	(79-123)
Methyl Iodide	20		19	95	(79-124)
Allyl chloride	20		21	105	(78-131)
trans-1,4-Dichloro-2-butene	20		23	115	(76-118)
Methacrylonitrile	20		26	130*	(70-123)
Ethyl methacrylate	20		21	105	(83-126)

RPD: 0 Out of 84 outside limits

Spike Recovery: 7 Out of 84 outside limits

#	Colun	ın to	be	used	to:	flag	recovery	and RP	ď	values	with	an	asterisk	K

*	Values	outside	of	QC	limits
---	--------	---------	----	----	--------

Comments:			

Lab Name:	ab Name: CHEMTECH		Clie	ent: MS Analytical			
Lab Code:	СНЕМ	Cas No:	D3811 SAS No	: <u>D3811</u> SD0	G No: <u>D381</u>	1	
Matrix Spike	- EPA Sample No :	VF0815SBS01	Analytical Method:	EPA SW846 8260	Datafile :	VF034768.D	
		SPIKE		LCS	LC	s QC	
COMI	POUND	ADDED	CONCENTRATION	CONCENTRATION	V %	LIMITS	
COMI	COUND	(ug/Kg)	(ug/Kg)	(ug/Kg)	REC	# REC	
Dichlorodifl	uoromethane	20		21	105	(50-142)	
Chlorometh	ane	20		22	110	(65-131)	
Vinyl Chlori	ide	20		22	110	(67-130)	
Ethyl Acetat	te	20		20	100	(75-130)	
Isopropyl Ac	cetate	20		17	85	(79-123)	
N-amyl acet	ate	20		19	95	(76-131)	
Bromometh	ane	20		23	115	(64-136)	
Chloroethan	ie	20		22	110	(66-146)	
Trichloroflu	oromethane	20		22	110	(72-134)	
1,1,2-Trichlo	orotrifluoroethane	20		22	110	(73-133)	
Tert butyl a	lcohol	100		100	100	(64-139)	
Diethyl Ethe	er	20		18	90	(73-131)	
1,1-Dichloro	ethene	20		23	115	(74-130)	
Acrolein		100		66	66	(60-140)	
Acrylonitrile	e	100		110	110	(71-130)	
Acetone		100		95	95	(57-135)	
Carbon Disu	ılfide	20		22	110	(71-130)	
Methyl tert-	butyl Ether	20		21	105	(76-123)	
Methyl Acet	ate	20		21	105	(62-146)	
Methylene C	Chloride	20		21	105	(73-134)	
trans-1,2-Die	chloroethene	20		23	115	(76-125)	
Vinyl Acetat	te	100		100	100	(68-132)	
1,1-Dichloro	ethane	20		22	110	(78-124)	
Cyclohexano	9	20		22	110	(72-130)	
2-Butanone		100		96	96	(68-132)	
Carbon Tetr	rachloride	20		21	105	(76-127)	
2,2-Dichloro	propane	20		23	115	(73-129)	
cis-1,2-Dichl	oroethene	20		24	120	(78-122)	
Bromochlor	omethane	20		22	110	(66-133)	
Chloroform		20		23	115	(79-122)	
1,1,1-Trichlo	oroethane	20		22	110	(76-126)	
Methylcyclo	hexane	20		22	110	(75-127)	

# Column to be used to flag recovery	and RPD values with an asterisk
--------------------------------------	---------------------------------

20

20

*	Values	outside	of	QC	limits
---	--------	---------	----	----	--------

1,1-Dichloropropene

Benzene

Comments:		

22

23

110

115

(81-124)

(79-124)

Lab Name: CHEMTECH				Clie	nt: MS Analytical			
Lab Code:	СНЕМ	Cas No:	D3811	SAS No :	D3811	SDG No	o: <u>D3811</u>	
Matrix Spike -	- EPA Sample No :	VF0815SBS01	Analyti	ical Method:	EPA SW846 8260	_ [Datafile :	VF034768.D
		SPIKE			LCS		LCS	QC
COMP	POUND	ADDED	co	NCENTRATION	CONCENTRA	ΓΙΟΝ	%	LIMITS
		(ug/Kg)		(ug/Kg)	(ug/Kg)		REC#	
1,2-Dichloro		20			21		105	(78-124)
Trichloroeth	ene	20			23		115	(78-124)
1,2-Dichloro	• •	20			22		110	(76-124)
Dibromomet		20			21		105	(79-122)
Bromodichlo	oromethane	20			21		105	(78-122)
4-Methyl-2-F	Pentanone	100			10	0	100	(73-135)
Toluene		20			22	.	110	(78-124)
t-1,3-Dichlor	opropene	20			20)	100	(77-123)
cis-1,3-Dichle	oropropene	20			22	;	110	(79-120)
1,1,2-Trichlo	roethane	20			20	<u> </u>	100	(78-123)
1,3-Dichloro	propane	20			21		105	(79-123)
2-Chloroethy	yl Vinyl ether	100			81		81	(67-143)
2-Hexanone		100			11	0	110	(71-134)
Dibromochlo	oromethane	20			22		110	(77-121)
1,2-Dibromo	ethane	20			21		105	(78-123)
Tetrachloroe	ethene	20			22		110	(67-134)
Chlorobenze	ene	20			22		110	(80-121)
1,1,1,2-Tetra	chloroethane	20			23	; T	115	(81-119)
Hexachloroe	thane	20			22	:	110	(73-122)
Ethyl Benzer	ne	20			22	:	110	(80-123)
m/p-Xylenes		40			45	;	113	(79-126)
o-Xylene		20			22	: [110	(80-122)
Styrene		20			22	:	110	(81-121)
Bromoform		20			21		105	(73-124)
Isopropylber	ızene	20			22	;	110	(79-123)
	chloroethane	20			20)	100	(79-124)
1,2,3-Trichlo	ropropane	20			19	,	95	(81-123)
Bromobenze	ne	20			23	,	115	(83-116)
n-propylbenz		20			22		110	(80-125)
2-Chlorotolu		20			22		110	(84-118)
1,3,5-Trimet		20			22		110	(81-123)
4-Chlorotolu	'	20			22		110	(85-118)
tert-Butylber		20			22		110	(81-123)
1,2,4-Trimet		20			22		110	(81-122)

#	Co	lumn	to	be	used	to	flag	recovery	and	RPD	values	with	an	asteri	isk

Comments:		

^{*} Values outside of QC limits

Lab Name: CHEMT	ЕСН	Client: MS Analytical									
Lab Code: CHEM	Cas No:	D3811 SAS No:		No: <u>D3811</u>							
Matrix Spike - EPA Sampl	VF0815SBS01	Analytical Method:	EPA SW846 8260	Datafile:	VF034768.D						
COMPOUND	SPIKE ADDED (ug/Kg)	CONCENTRATION (ug/Kg)	LCS CONCENTRATION (ug/Kg)	LCS % REC#	QC LIMITS REC						
sec-Butylbenzene	20		23	115	(81-126)						
p-Isopropyltoluene	20		23	115	(81-124)						
1,3-Dichlorobenzene	20		23	115	(82-120)						
1,4-Dichlorobenzene	20		22	110	(81-120)						
n-Butylbenzene	20		23	115	(75-129)						
1,2-Dichlorobenzene	20		22	110	(82-118)						
1,2-Dibromo-3-Chloropro	opane 20		20	100	(72-127)						
1,2,4-Trichlorobenzene	20		21	105	(75-125)						
Hexachlorobutadiene	20		23	115	(79-124)						
Naphthalene	20		20	100	(71-126)						
1,2,3-Trichlorobenzene	20		20	100	(79-123)						
Methyl Iodide	20		23	115	(79-124)						
Allyl chloride	20		24	120	(78-131)						
trans-1,4-Dichloro-2-bute	ene 20		20	100	(76-118)						
Methacrylonitrile	20		21	105	(70-123)						

20

100

(83-126)

20

RPD: 0 Out of 84 outside limits

Ethyl methacrylate

Spike Recovery: 0 Out of 84 outside limits

#	Colun	ın to	be	used	to:	flag	recovery	and RP	ď	values	with	an	asterisk	K

*	Values	outside	of	QC	limits
---	--------	---------	----	----	--------

Comments:	

Lab Name:	CHEMITECH			Cilei	nt: MS Analytical			
Lab Code:	СНЕМ	Cas No:	D3811	SAS No:	D3811	SDG No:	<u>D3811</u>	
Matrix Spike	- EPA Sample No :	VF0816SBS01	Analytical	Method:	EPA SW846 8260	_ Da	tafile :	VF034791.D
		SPIKE			LCS		LCS	QC
COM	POUND	ADDED	CONC	ENTRATION	CONCENTRA	TION	%	LIMITS
COMI	TOUND	(ug/Kg)	(1	ug/Kg)	(ug/Kg)		REC#	REC
Dichlorodifl	uoromethane	20			20	0	100	(35-135)
Chlorometh	ane	20			22	2	110	(50-130)
Vinyl Chlor	ide	20			22	2	110	(60-125)
Ethyl Acetat	te	20			23	3	115	(66-138)
Isopropyl A	cetate	20			19	9	95	(70-130)
N-amyl acet	ate	20			2	1	105	(71-131)
Bromometh	ane	20			2:	1	105	(30-160)
Chloroethar	ie	20			20	0	100	(40-155)
Trichloroflu	oromethane	20			22	2	110	(25-185)
1,1,2-Trichle	orotrifluoroethane	20			23	3	115	(73-133)
Tert butyl a	lcohol	100			12	:0	120	(58-149)
Diethyl Ethe	er	20			20	0	100	(70-130)
1,1-Dichloro	ethene	20			23	3	115	(65-135)
Acrolein		100			8′	7	87	(10-148)
Acrylonitril	e	100			12	20	120	(62-147)
Acetone		100	İ		10	0	100	(20-160)
Carbon Dist	ılfide	20			23	3	115	(45-160)
Methyl tert-	butyl Ether	20			24	4	120	(76-123)
Methyl Acet	-	20			24	4	120	(44-187)
Methylene (20	İ		23	3	115	(55-140)
trans-1,2-Di	chloroethene	20	İ		23	3	115	(65-135)
Vinyl Aceta	te	100	İ		12	20	120	(10-142)
1,1-Dichloro		20			24	4	120	(75-125)
Cyclohexan	e	20			23	3	115	(66-132)
2-Butanone		100	İ		12	20	120	(30-160)
Carbon Teti	rachloride	20	İ		22	2	110	(65-135)
2,2-Dichloro	propane	20	İ		22	2	110	(65-135)
cis-1,2-Dich		20			24		120	(65-125)
Bromochlor		20			25	5	125	(70-125)
Chloroform		20			24		120	(70-125)
1,1,1-Trichle		20			22		110	(70-135)
Methylcyclo		20			23		115	(71-124)
1,1-Dichloro		20			22		110	(70-135)
Benzene	• •	20			2.3		115	(75-125)

# Column to	be used to	flag recovery	and RPD	values wit	h an asterisk
	De asea to	11115 1 000 1 01 3			

Comments:		

^{*} Values outside of QC limits

		Client: MS Analytical						
Lab Code: CHEM Cas No: D3811 SAS No: D3811 SDG No:	D3811							
Matrix Spike - EPA Sample No : VF0816SBS01 Analytical Method: EPA SW846 8260 Da	eatafile :	VF034791.D						
SPIKE LCS	LCS	QC						
COMPOUND ADDED CONCENTRATION CONCENTRATION		LIMITS						
(ug/Kg) (ug/Kg) (ug/Kg)	REC#							
1,2-Dichloroethane 20 22	110	(70-135)						
Trichloroethene 20 22	110	(75-125)						
1,2-Dichloropropane 20 22	110	(70-120)						
Dibromomethane 20 21	105	(75-130)						
Bromodichloromethane 20 21	105	(70-130)						
4-Methyl-2-Pentanone 100 120	120	(45-145)						
Toluene 20 21	105	(70-125)						
t-1,3-Dichloropropene 20 22	110	(65-125)						
cis-1,3-Dichloropropene 20 22	110	(70-125)						
1,1,2-Trichloroethane 20 21	105	(60-125)						
1,3-Dichloropropane 20 22	110	(75-125)						
2-Chloroethyl Vinyl ether 100 120	120	(10-144)						
2-Hexanone 100 110	110	(45-145)						
Dibromochloromethane 20 22	110	(65-130)						
1,2-Dibromoethane 20 21	105	(70-125)						
Tetrachloroethene 20 21	105	(65-140)						
Chlorobenzene 20 22	110	(75-125)						
1,1,1,2-Tetrachloroethane 20 21	105	(75-125)						
Hexachloroethane 20 22	110	(74-122)						
Ethyl Benzene 20 22	110	(75-125)						
m/p-Xylenes 40 44	110	(80-125)						
o-Xylene 20 22	110	(75-125)						
Styrene 20 22	110	(75-125)						
Bromoform 20 23	115	(55-135)						
Isopropylbenzene 20 22	110	(75-130)						
1,1,2,2-Tetrachloroethane 20 24	120	(55-130)						
1,2,3-Trichloropropane 20 23	115	(65-130)						
Bromobenzene 20 21	105	(65-120)						
n-propylbenzene 20 22	110	(65-135)						
2-Chlorotoluene 20 23	115	(70-130)						
1,3,5-Trimethylbenzene 20 22	110	(65-135)						
4-Chlorotoluene 20 22	110	(75-125)						
tert-Butylbenzene 20 22	110	(65-130)						
1,2,4-Trimethylbenzene 20 21	105	(65-135)						

# Column to be used to flag recovery	and RPD values with an asterisk
--------------------------------------	---------------------------------

*	Values	outside	of	QC	limits
---	--------	---------	----	----	--------

Comments:		

Lab Name: CHEMTECH		Client:	MS Analytical		
Lab Code: CHEM	Cas No:	D3811 SAS No:	SDG N	No: <u>D3811</u>	
Matrix Spike - EPA Sample No :	VF0816SBS01	Analytical Method: El	PA SW846 8260	Datafile : <u>V</u>	F034791.D
COMPOUND	SPIKE ADDED (ug/Kg)	CONCENTRATION (ug/Kg)	LCS CONCENTRATION (ug/Kg)	LCS % I REC#	QC LIMITS REC
sec-Butylbenzene	20		23	115	(65-130)
p-Isopropyltoluene	20		23	115	(75-135)
1,3-Dichlorobenzene	20		22	110	(70-125)
1,4-Dichlorobenzene	20		22	110	(70-125)
n-Butylbenzene	20		23	115	(65-140)
1,2-Dichlorobenzene	20		22	110	(75-120)
1,2-Dibromo-3-Chloropropane	20		18	90	(40-135)
1,2,4-Trichlorobenzene	20		21	105	(65-130)
Hexachlorobutadiene	20		22		(55-140)
Naphthalene	20		20	100	(40-125)
1,2,3-Trichlorobenzene	20		22	110	(60-135)
Methyl Iodide	20		23	115	(70-130)
Allyl chloride	20		23	115	(70-130)
trans-1,4-Dichloro-2-butene	20		20	100	(70-130)
Methacrylonitrile	20		24	120	(70-130)

22

110

(70-130)

20

RPD: 0 Out of 84 outside limits

Ethyl methacrylate

Spike Recovery: 0 Out of 84 outside limits

#	Column	to b	e used	to flag	recovery	and RPD	values	with an	asterisk

*	Val	ues	outside	e of	QC	limits
---	-----	-----	---------	------	----	--------

Comments:			

EPA SAMPLE NO.

VD0815SBL01

Lab Name: CHEMTECH Contract: MSAN01

Lab File ID: VD036738.D Lab Sample ID: VD0815SBL01

Date Analyzed: 08/15/2012 Time Analyzed: 14:09

GC Column: RTX-624 ID: 0.25 (mm) Heated Purge: (Y/N) Y

Instrument ID: MSVOA_D

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED
VD0815SBS01	VD0815SBS01	VD036739.D	08/15/2012
SB-2 (4-8) RE	D3811-01RE	VD036743.D	08/15/2012
SB-5 (18-12) RE	D3811-02RE	VD036744.D	08/15/2012
SB-9(4-7)RE	D3811-03RE	VD036745.D	08/15/2012
SB-11 (12-16) RE	D3811-05RE	VD036746.D	08/15/2012
SB-15 (12-16) RE	D3811-06RE	VD036747.D	08/15/2012
SB-18 (4-8) RE	D3811-07RE	VD036748.D	08/15/2012
SB-21 (16-19) RE	D3811-10RE	VD036749.D	08/15/2012
SB-22 (12-19) RE	D3811-11RE	VD036750.D	08/15/2012
SB-37 (8-10) RE	D3811-13RE	VD036751.D	08/15/2012
SB-39(6-8)RE	D3811-14RE	VD036752.D	08/15/2012

COMMENTS:			

EPA SAMPLE NO.

VD0816SBL01

Lab Name: CHEMTECH Contract: MSAN01

Lab File ID: VD036755.D Lab Sample ID: VD0816SBL01

Date Analyzed: 08/16/2012 Time Analyzed: 14:33

GC Column: RTX-624 ID: 0.25 (mm) Heated Purge: (Y/N) Y

Instrument ID: MSVOA_D

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED
VD0816SBS01	VD0816SBS01	VD036756.D	08/16/2012
SB-41 (8-11) RE	D3811-15RE	VD036758.D	08/16/2012
SB-43 (6-8) RE	D3811-17RE	VD036759.D	08/16/2012
SB-43 (10-12) RE	D3811-18RE	VD036760.D	08/16/2012
SB-43 (16-20) RE	D3811-19RE	VD036761.D	08/16/2012
SB-46 (12-16) RE	D3811-21RE	VD036762.D	08/16/2012

COMMENTS:			

EPA SAMPLE NO.

VF0815SBL01

Lab Name: CHEMTECH Contract: MSAN01

Lab File ID: VF034767.D Lab Sample ID: VF0815SBL01

Date Analyzed: 08/15/2012 Time Analyzed: 13:03

GC Column: RTX-VMS ID: 0.18 (mm) Heated Purge: (Y/N) Y

Instrument ID: MSVOA_F

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED
VF0815SBS01	VF0815SBS01	VF034768.D	08/15/2012
SB-2 (4-8)	D3811-01	VF034776.D	08/15/2012
SB-5 (18-12)	D3811-02	VF034777.D	08/15/2012
SB-9(4-7)	D3811-03	VF034778.D	08/15/2012
SB-11(12-16)	D3811-05	VF034779.D	08/15/2012
SB-15 (12-16)	D3811-06	VF034780.D	08/15/2012
SB-18(4-8)	D3811-07	VF034781.D	08/15/2012
SB-21(16-19)	D3811-10	VF034782.D	08/15/2012
SB-22 (12-19)	D3811-11	VF034783.D	08/15/2012
SB-37(8-10)	D3811-13	VF034784.D	08/15/2012
SB-39(6-8)	D3811-14	VF034785.D	08/15/2012

COMMENTS:			

EPA SAMPLE NO.

VF0816SBL01

Lab Name: CHEMTECH Contract: MSAN01

Lab File ID: VF034790.D Lab Sample ID: VF0816SBL01

Date Analyzed: 08/16/2012 Time Analyzed: 13:18

GC Column: RTX-VMS ID: 0.18 (mm) Heated Purge: (Y/N) Y

Instrument ID: MSVOA_F

· · · · · · · · · · · · · · · · · · ·				
EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	
VF0816SBS01	VF0816SBS01	VF034791.D	08/16/2012	
SB-41 (8-11)	D3811-15	VF034798.D	08/16/2012	
SB-43(6-8)	D3811-17	VF034799.D	08/16/2012	
SB-43 (10-12)	D3811-18	VF034800.D	08/16/2012	
SB-43 (16-20)	D3811-19	VF034801.D	08/16/2012	
SB-46(12-16)	D3811-21	VF034802.D	08/16/2012	
KY030LC023-120814MS	D3814-04MS	VF034815.D	08/16/2012	
KY030LC023-120814MSD	D3814-04MSD	VF034816.D	08/16/2012	

COMMENTS:	

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name:	CHEMTECH			Contract:	MSAN01		
Lab Code:	СНЕМ	Case No.:	D3811	SAS No.:	D3811	SDG NO.:	D3811
Lab File ID:	VD036715.D			BFB Injection	on Date:	08/09/2012	
Instrument ID	: MSVOA_D			BFB Injection	on Time:	10:07	
GC Column: F	RTX-624 ID: 0.2	25 (mm)		Heated Purge	e: Y/N	Y	

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50	15.0 - 40.0% of mass 95	26.2
75	30.0 - 60.0% of mass 95	48.5
95	Base Peak, 100% relative abundance	100
96	5.0 - 9.0% of mass 95	6.9
173	Less than 2.0% of mass 174	0.0 (0.0) 1
174	50.0 - 100.0% of mass 95	89
175	5.0 - 9.0% of mass 174	7 (7.8) 1
176	95.0 - 101.0% of mass 174	88.8 (99.7) 1
177	5.0 - 9.0% of mass 176	4.7 (5.3) 2

1-Value is % mass 69

2-Value is % mass 442

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
VSTDICC005	VSTDICC005	VD036716.D	08/09/2012	10:50
VSTDICC020	VSTDICC020	VD036717.D	08/09/2012	11:18
VSTDICC050	VSTDICC050	VD036718.D	08/09/2012	11:46
VSTDICC100	VSTDICC100	VD036719.D	08/09/2012	12:29
VSTDICC150	VSTDICC150	VD036720.D	08/09/2012	13:12
VSTDICC200	VSTDICC200	VD036721.D	08/09/2012	13:55

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name:	СНЕМТЕСН			Contract: _	MSAN01		
Lab Code:	СНЕМ	Case No.:	D3811	SAS No.:	D3811	SDG NO.:	D3811
Lab File ID:	VD036736.D			BFB Injection	Date:	08/15/2012	
Instrument ID	: MSVOA_D			BFB Injection	Time:	11:35	
GC Column: I	RTX-624 ID: 0.2	5 (mm)		Heated Purge:	Y/N	Y	

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50	15.0 - 40.0% of mass 95	23.3
75	30.0 - 60.0% of mass 95	48.6
95	Base Peak, 100% relative abundance	100
96	5.0 - 9.0% of mass 95	7.2
173	Less than 2.0% of mass 174	0.0 (0.0) 1
174	50.0 - 100.0% of mass 95	79.6
175	5.0 - 9.0% of mass 174	6.2 (7.8) 1
176	95.0 - 101.0% of mass 174	77.8 (97.8) 1
177	5.0 - 9.0% of mass 176	4.2 (5.3) 2

1-Value is % mass 69

2-Value is % mass 442

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
VSTDCCC050	VSTDCCC050	VD036737.D	08/15/2012	13:05
VD0815SBL01	VD0815SBL01	VD036738.D	08/15/2012	14:09
VD0815SBS01	VD0815SBS01	VD036739.D	08/15/2012	14:44
SB-2 (4-8) RE	D3811-01RE	VD036743.D	08/15/2012	16:37
SB-5 (8-12) RE	D3811-02RE	VD036744.D	08/15/2012	17:06
SB-9(4-7)RE	D3811-03RE	VD036745.D	08/15/2012	17:34
SB-11 (12-16) RE	D3811-05RE	VD036746.D	08/15/2012	18:03
SB-15 (12-16) RE	D3811-06RE	VD036747.D	08/15/2012	18:31
SB-18 (4-8) RE	D3811-07RE	VD036748.D	08/15/2012	18:59
SB-21 (16-19) RE	D3811-10RE	VD036749.D	08/15/2012	19:28
SB-22 (12-19) RE	D3811-11RE	VD036750.D	08/15/2012	19:57
SB-37 (8-10) RE	D3811-13RE	VD036751.D	08/15/2012	20:25
SB-39(6-8)RE	D3811-14RE	VD036752.D	08/15/2012	20:54

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Na	me: _	СНЕМТЕСН			Contract: _	MSAN01		
Lab Co	de:	СНЕМ	Case No.:	D3811	SAS No.:	D3811	SDG NO.:	D3811
Lab Fi	le ID:	VD036753.D			BFB Injection	Date:	08/16/2012	
Instru	ment ID	MSVOA_D			BFB Injection	Time:	11:10	
GC Coli	ıımn· R	TX-624 TD: 0.2	5 (mm)		Heated Purge:	Y/N	Y	

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50	15.0 - 40.0% of mass 95	24.3
75	30.0 - 60.0% of mass 95	47.3
95	Base Peak, 100% relative abundance	100
96	5.0 - 9.0% of mass 95	7.2
173	Less than 2.0% of mass 174	0.0 (0.0) 1
174	50.0 - 100.0% of mass 95	78.8
175	5.0 - 9.0% of mass 174	6.4 (8.1) 1
176	95.0 - 101.0% of mass 174	78 (99) 1
177	5.0 - 9.0% of mass 176	5.2 (6.7) 2

1-Value is % mass 69

2-Value is % mass 442

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
VSTDCCC050	VSTDCCC050	VD036754.D	08/16/2012	13:29
VD0816SBL01	VD0816SBL01	VD036755.D	08/16/2012	14:33
VD0816SBS01	VD0816SBS01	VD036756.D	08/16/2012	15:07
SB-41 (8-11) RE	D3811-15RE	VD036758.D	08/16/2012	16:04
SB-43 (6-8) RE	D3811-17RE	VD036759.D	08/16/2012	16:32
SB-43 (10-12) RE	D3811-18RE	VD036760.D	08/16/2012	17:01
SB-43 (16-20) RE	D3811-19RE	VD036761.D	08/16/2012	17:29
SB-46(12-16)RE	D3811-21RE	VD036762.D	08/16/2012	17:58

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name:	СНЕМТЕСН			Contract:	MSAN01		
Lab Code:	СНЕМ	Case No.:	D3811	SAS No.:	D3811	SDG NO.:	D3811
Lab File ID:	VF034675.D			BFB Injectio	n Date:	08/06/2012	
Instrument ID	: MSVOA_F			BFB Injectio	n Time:	10:15	
GC Column: I	RTX-VMS ID: 0.1	8 (mm)		Heated Purge	: Y/N	Y	

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50	15.0 - 40.0% of mass 95	18.5
75	30.0 - 60.0% of mass 95	42.8
95	Base Peak, 100% relative abundance	100
96	5.0 - 9.0% of mass 95	6.9
173	Less than 2.0% of mass 174	0.0 (0.0) 1
174	50.0 - 100.0% of mass 95	61.7
175	5.0 - 9.0% of mass 174	5.3 (8.6) 1
176	95.0 - 101.0% of mass 174	60.3 (97.7) 1
177	5.0 - 9.0% of mass 176	4.1 (6.8) 2

1-Value is % mass 69

2-Value is % mass 442

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
VSTDICC005	VSTDICC005	VF034676.D	08/06/2012	10:56
VSTDICC020	VSTDICC020	VF034677.D	08/06/2012	11:19
VSTDICC050	VSTDICC050	VF034678.D	08/06/2012	11:42
VSTDICC075	VSTDICC075	VF034679.D	08/06/2012	12:04
VSTDICC100	VSTDICC100	VF034680.D	08/06/2012	12:27
VSTDICC150	VSTDICC150	VF034681.D	08/06/2012	12:50

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name:	СНЕМТЕСН			Contract: _	MSAN01		
Lab Code: _	СНЕМ	Case No.:	D3811	SAS No.:	D3811	SDG NO.:	D3811
Lab File ID:	VF034765.D			BFB Injection	Date:	08/15/2012	
Instrument ID	: MSVOA_F			BFB Injection	Time:	10:15	
GC Column: I	RTX-VMS ID: 0.1	8 (mm)		Heated Purge:	Y/N	Y	

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50	15.0 - 40.0% of mass 95	17.6
75	30.0 - 60.0% of mass 95	43.1
95	Base Peak, 100% relative abundance	100
96	5.0 - 9.0% of mass 95	7
173	Less than 2.0% of mass 174	0.4 (0.6) 1
174	50.0 - 100.0% of mass 95	63.2
175	5.0 - 9.0% of mass 174	5.2 (8.3) 1
176	95.0 - 101.0% of mass 174	62.3 (98.6) 1
177	5.0 - 9.0% of mass 176	4.4 (7) 2

1-Value is % mass 69

2-Value is % mass 442

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
VSTDCCC050	VSTDCCC050	VF034766.D	08/15/2012	12:17
VF0815SBL01	VF0815SBL01	VF034767.D	08/15/2012	13:03
VF0815SBS01	VF0815SBS01	VF034768.D	08/15/2012	13:38
SB-2 (4-8)	D3811-01	VF034776.D	08/15/2012	17:42
SB-5 (8-12)	D3811-02	VF034777.D	08/15/2012	18:06
SB-9(4-7)	D3811-03	VF034778.D	08/15/2012	18:30
SB-11 (12-16)	D3811-05	VF034779.D	08/15/2012	18:53
SB-15 (12-16)	D3811-06	VF034780.D	08/15/2012	19:17
SB-18 (4-8)	D3811-07	VF034781.D	08/15/2012	19:40
SB-21 (16-19)	D3811-10	VF034782.D	08/15/2012	20:03
SB-22 (12-19)	D3811-11	VF034783.D	08/15/2012	20:26
SB-37(8-10)	D3811-13	VF034784.D	08/15/2012	20:49
SB-39(6-8)	D3811-14	VF034785.D	08/15/2012	21:13

VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name:	СНЕМТЕСН			Contract:	MSAN01		
Lab Code: _	CHEM	Case No.:	D3811	SAS No.:	D3811	SDG NO.:	D3811
Lab File ID:	VF034788.D			BFB Injection	on Date:	08/16/2012	
Instrument ID	: MSVOA_F			BFB Injection	on Time:	11:56	
C Column: I	RTX-VMS ID: 0.1	L8 (mm)		Heated Purg	e: Y/N	Y	

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
50	15.0 - 40.0% of mass 95	16.4	
75	30.0 - 60.0% of mass 95	43.3	
95	Base Peak, 100% relative abundance	100	
96	5.0 - 9.0% of mass 95	7.2	
173	Less than 2.0% of mass 174	0.5 (0.8) 1	
174	50.0 - 100.0% of mass 95	67	
175	5.0 - 9.0% of mass 174	5.6 (8.4) 1	
176	95.0 - 101.0% of mass 174	64.8 (96.7) 1	
177	5.0 - 9.0% of mass 176	4 (6.1) 2	

1-Value is % mass 69

2-Value is % mass 442

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
VSTDCCC050	VSTDCCC050	VF034789.D	08/16/2012	12:37
VF0816SBL01	VF0816SBL01	VF034790.D	08/16/2012	13:18
VF0816SBS01	VF0816SBS01	VF034791.D	08/16/2012	13:51
SB-41(8-11)	D3811-15	VF034798.D	08/16/2012	16:33
SB-43(6-8)	D3811-17	VF034799.D	08/16/2012	16:56
SB-43 (10-12)	D3811-18	VF034800.D	08/16/2012	17:19
SB-43(16-20)	D3811-19	VF034801.D	08/16/2012	17:42
SB-46(12-16)	D3811-21	VF034802.D	08/16/2012	18:05
KY030LC023-120814MS	D3814-04MS	VF034815.D	08/16/2012	23:04
KY030LC023-120814MSD	D3814-04MSD	VF034816.D	08/16/2012	23:26

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: CHEMTECH Contract: MSAN01

Lab File ID: VD036737.D Date Analyzed: 08/15/2012

Instrument ID: MSVOA_D Time Analyzed: 13:05

GC Column: RTX-624 ID: 0.25 (mm) Heated Purge: (Y/N) Y

	IS1 AREA #	RT #	IS2 AREA #	RT #	IS3 AREA #	RT #
12 HOUR STD	449815	4.74	748202	5.45	611270	9.57
UPPER LIMIT	899630	5.24	1496404	5.95	1222540	10.07
LOWER LIMIT	224907.5	4.24	374101	4.95	305635	9.07
EPA SAMPLE NO.						
SB-2 (4-8) RE	385457	4.74	689375	5.45	673224	9.58
SB-5 (8-12) RE	373874	4.73	659037	5.45	666922	9.57
SB-9(4-7)RE	367175	4.73	663814	5.45	651235	9.57
SB-11 (12-16) RE	363702	4.73	642960	5.45	636362	9.57
SB-15 (12-16) RE	376372	4.73	675723	5.45	653962	9.58
SB-18 (4-8) RE	367385	4.74	641257	5.45	623963	9.57
SB-21 (16-19) RE	347038	4.73	625041	5.45	618007	9.57
SB-22 (12-19) RE	354693	4.74	635091	5.45	638670	9.57
SB-37(8-10)RE	358464	4.74	636577	5.45	656307	9.58
SB-39(6-8)RE	350159	4.73	629857	5.44	645094	9.57
VD0815SBL01	469528	4.74	774465	5.45	668882	9.57
VD0815SBS01	458902	4.73	778112	5.45	635909	9.57

IS1 = Pentafluorobenzene

IS2 = 1,4-Difluorobenzene

IS3 = Chlorobenzene-d5

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT UPPER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.

Lab Name: CHEMTECH Contract: MSAN01

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

Lab File ID: VD036737.D Date Analyzed: 08/15/2012

Instrument ID: MSVOA_D Time Analyzed: 13:05

GC Column: RTX-624 ID: 0.25 (mm) Heated Purge: (Y/N) Y

	IS4 AREA #	RT #		
12 HOUR STD	278633	12.48		
UPPER LIMIT	557266	12.98		
LOWER LIMIT	139316.5	11.98		
EPA SAMPLE NO.				
SB-2 (4-8) RE	321813	12.48		
SB-5 (8-12) RE	318263	12.47		
SB-9(4-7)RE	292898	12.47		
SB-11 (12-16) RE	287340	12.48		
SB-15 (12-16) RE	312532	12.48		
SB-18 (4-8) RE	293188	12.48		
SB-21 (16-19) RE	284686	12.47		
SB-22 (12-19) RE	290123	12.47		
SB-37 (8-10) RE	318833	12.47		
SB-39(6-8)RE	283298	12.47		
VD0815SBL01	288690	12.47		
VD0815SBS01	300829	12.47		

IS4 = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT UPPER LIMIT = -0.50 minutes of internal standard RT

- # Column used to flag values outside QC limits with an asterisk.
- * Values outside of QC limits.

Lab Name: CHEMTECH Contract: MSAN01

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

Lab File ID: VD036754.D Date Analyzed: 08/16/2012

Instrument ID: MSVOA_D Time Analyzed: 13:29

GC Column: RTX-624 ID: 0.25 (mm) Heated Purge: (Y/N) Y

	IS1 AREA #	RT #	IS2 AREA #	RT #	IS3 AREA #	RT #
12 HOUR STD	461923	4.73	747947	5.45	601726	9.57
UPPER LIMIT	923846	5.23	1495894	5.95	1203452	10.07
LOWER LIMIT	230961.5	4.23	373973.5	4.95	300863	9.07
EPA SAMPLE NO.						
SB-41 (8-11) RE	249008	4.73	452503	5.45	426686	9.57
SB-43 (6-8) RE	391890	4.73	703056	5.45	663769	9.57
SB-43 (10-12) RE	370284	4.73	641838	5.45	652286	9.57
SB-43 (16-20) RE	364806	4.73	628132	5.44	661237	9.57
SB-46 (12-16) RE	358506	4.73	647597	5.44	643236	9.57
VD0816SBL01	476003	4.74	773667	5.45	626036	9.59
VD0816SBS01	449816	4.73	741186	5.45	620078	9.57

IS1 = Pentafluorobenzene

IS2 = 1,4-Difluorobenzene

IS3 = Chlorobenzene-d5

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT UPPER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.

Lab Name: CHEMTECH Contract: MSAN01

Lab File ID: VD036754.D Date Analyzed: 08/16/2012

Instrument ID: MSVOA_D Time Analyzed: 13:29

GC Column: RTX-624 ID: 0.25 (mm) Heated Purge: (Y/N) Y

	IS4 AREA #	RT #		
12 HOUR STD	266485	12.47		
UPPER LIMIT	532970	12.97		
LOWER LIMIT	133242.5	11.97		
EPA SAMPLE NO.				
SB-41 (8-11) RE	173799	12.48		
SB-43 (6-8) RE	296903	12.47		
SB-43(10-12)RE	288042	12.48		
SB-43(16-20)RE	310866	12.47		
SB-46 (12-16) RE	300082	12.47		
VD0816SBL01	268180	12.49		
VD0816SBS01	288558	12.47		

IS4 = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT UPPER LIMIT = -0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

Lab Name: CHEMTECH Contract: MSAN01

Lab File ID: VF034766.D Date Analyzed: 08/15/2012

Instrument ID: MSVOA_F Time Analyzed: 12:17

GC Column: RTX-VMS ID: 0.18 (mm) Heated Purge: (Y/N) Y

			,			
	IS1 AREA #	RT #	IS2 AREA #	RT #	IS3 AREA #	RT #
12 HOUR STD	245328	4.40	447560	5.14	428731	9.35
UPPER LIMIT	490656	4.9	895120	5.64	857462	9.85
LOWER LIMIT	122664	3.9	223780	4.64	214365.5	8.85
EPA SAMPLE NO.						
SB-2(4-8)	179640	4.40	341497	5.15	350200	9.35
SB-5(8-12)	174967	4.40	323673	5.14	306225	9.35
SB-9(4-7)	177303	4.39	332082	5.14	274620	9.35
SB-11 (12-16)	146028	4.40	268965	5.14	229671	9.35
SB-15 (12-16)	184647	4.40	344512	5.15	331795	9.34
SB-18(4-8)	78092 *	4.41	159364 *	5.15	177213 *	9.34
SB-21 (16-19)	144739	4.40	252434	5.14	196090 *	9.35
SB-22 (12-19)	41989 *	4.41	70942 *	5.14	64882 *	9.35
SB-37(8-10)	175264	4.40	318607	5.14	283921	9.35
SB-39(6-8)	47977 *	4.40	94838 *	5.14	100429 *	9.35
VF0815SBL01	228021	4.41	419406	5.15	416710	9.34
VF0815SBS01	233329	4.40	433274	5.15	406809	9.34

IS1 = Pentafluorobenzene

IS2 = 1,4-Difluorobenzene

IS3 = Chlorobenzene-d5

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT UPPER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.

Lab Name: CHEMTECH Contract: MSAN01

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

Lab File ID: VF034766.D Date Analyzed: 08/15/2012

Instrument ID: MSVOA_F Time Analyzed: 12:17

GC Column: RTX-VMS ID: 0.18 (mm) Heated Purge: (Y/N) Y

	IS4 AREA #	RT #		
12 HOUR STD	219316	12.25		
UPPER LIMIT	438632	12.75		
LOWER LIMIT	109658	11.75		
EPA SAMPLE NO.				
SB-2(4-8)	166776	12.25		
SB-5 (8-12)	112351	12.25		
SB-9(4-7)	71302 *	12.25		
SB-11 (12-16)	68504 *	12.25		
SB-15 (12-16)	153744	12.25		
SB-18(4-8)	74335 *	12.25		
SB-21 (16-19)	69856 *	12.25		
SB-22 (12-19)	17979 *	12.25		
SB-37(8-10)	96800 *	12.25		
SB-39(6-8)	29408 *	12.25		
VF0815SBL01	210665	12.25		
VF0815SBS01	208848	12.25		

IS4 = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT RT UPPER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits.

Lab Name: CHEMTECH Contract: MSAN01

Lab File ID: VF034789.D Date Analyzed: 08/16/2012

Instrument ID: MSVOA_F Time Analyzed: 12:37

GC Column: RTX-VMS ID: 0.18 (mm) Heated Purge: (Y/N) Y

	IS1 AREA #	RT #	IS2 AREA #	RT #	IS3 AREA #	RT #
12 HOUR STD	237442	4.40	450754	5.14	405481	9.35
UPPER LIMIT	474884	4.9	901508	5.64	810962	9.85
LOWER LIMIT	118721	3.9	225377	4.64	202740.5	8.85
EPA SAMPLE NO.						
SB-41(8-11)	133153	4.39	235559	5.14	159919 *	9.34
SB-43 (6-8)	153180	4.40	277515	5.14	212608	9.35
SB-43 (10-12)	160123	4.40	293506	5.14	264003	9.35
SB-43 (16-20)	146812	4.41	274296	5.15	261779	9.34
SB-46(12-16)	158962	4.41	302327	5.14	286857	9.35
KY030LC023-120814MS	165469	4.40	330655	5.15	310828	9.34
KY030LC023-120814MSD	159209	4.40	320742	5.14	299179	9.34
VF0816SBL01	238586	4.40	430342	5.14	414933	9.34
VF0816SBS01	216622	4.40	415438	5.14	390302	9.34

IS1 = Pentafluorobenzene

IS2 = 1,4-Difluorobenzene

IS3 = Chlorobenzene-d5

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT UPPER LIMIT = -0.50 minutes of internal standard RT

- $\ensuremath{\text{\#}}$ Column used to flag values outside QC limits with an asterisk.
- * Values outside of QC limits.

Lab Name: CHEMTECH Contract: MSAN01

Lab File ID: VF034789.D Date Analyzed: 08/16/2012

Instrument ID: MSVOA_F Time Analyzed: 12:37

GC Column: RTX-VMS ID: 0.18 (mm) Heated Purge: (Y/N) Y

	IS4 AREA #	RT #		
12 HOUR STD	208213	12.24		
UPPER LIMIT	416426	12.74		
LOWER LIMIT	104106.5	11.74		
EPA SAMPLE NO.				
SB-41(8-11)	33978 *	12.25		
SB-43 (6-8)	48505 *	12.25		
SB-43(10-12)	83166 *	12.24		
SB-43(16-20)	86787 *	12.25		
SB-46(12-16)	103039 *	12.25		
KY030LC023-120814MS	151954	12.25		
KY030LC023-120814MSD	144790	12.25		
VF0816SBL01	214467	12.24		
VF0816SBS01	196062	12.25		

IS4 = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT UPPER LIMIT = -0.50 minutes of internal standard RT

- # Column used to flag values outside QC limits with an asterisk.
- * Values outside of QC limits.

ď

QC SAMPLE DATA

Soil Aliquot Vol:

Report of Analysis

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

uL

Client Sample ID: VD0815SBL01 SDG No.: D3811 SOIL Lab Sample ID: VD0815SBL01 Matrix:

Analytical Method: SW8260C % Moisture:

Sample Wt/Vol: 5 Units: g Final Vol: 5000 uL VOC-Chemtech Full -15

Test:

ID: 0.25 Level: GC Column: RTX-624 LOW

File ID/Qc Batch: Dilution: Date Analyzed Prep Batch ID Prep Date VD036738.D 08/15/12 VD081512

VD030730.D	1		00/13/	112		V D001312	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	2.5	U	0.65	2.5	5	ug/Kg
74-87-3	Chloromethane	2.5	U	0.86	2.5	5	ug/Kg
75-01-4	Vinyl Chloride	2.5	U	1.2	2.5	5	ug/Kg
141-78-6	Ethyl Acetate	2.5	U	0.87	2.5	5	ug/Kg
108-21-4	Isopropyl Acetate	2.5	U	1.2	2.5	5	ug/Kg
628-63-7	N-amyl acetate	2.5	U	0.94	2.5	5	ug/Kg
74-83-9	Bromomethane	2.5	U	2.4	2.5	5	ug/Kg
75-00-3	Chloroethane	2.5	U	1.4	2.5	5	ug/Kg
75-69-4	Trichlorofluoromethane	2.5	U	1.3	2.5	5	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	2.5	U	1.3	2.5	5	ug/Kg
75-65-0	Tert butyl alcohol	12.5	U	7.4	12.5	25	ug/Kg
60-29-7	Diethyl Ether	2.5	U	1.9	2.5	5	ug/Kg
75-35-4	1,1-Dichloroethene	2.5	U	1.5	2.5	5	ug/Kg
107-02-8	Acrolein	12.5	U	4	12.5	25	ug/Kg
107-13-1	Acrylonitrile	12.5	U	4.9	12.5	25	ug/Kg
67-64-1	Acetone	12.5	U	3	12.5	25	ug/Kg
75-15-0	Carbon Disulfide	2.5	U	1.1	2.5	5	ug/Kg
1634-04-4	Methyl tert-butyl Ether	2.5	U	0.96	2.5	5	ug/Kg
79-20-9	Methyl Acetate	2.5	U	1.5	2.5	5	ug/Kg
75-09-2	Methylene Chloride	2.5	U	1.4	2.5	5	ug/Kg
156-60-5	trans-1,2-Dichloroethene	2.5	U	0.69	2.5	5	ug/Kg
108-05-4	Vinyl Acetate	12.5	U	3.5	12.5	25	ug/Kg
75-34-3	1,1-Dichloroethane	2.5	U	0.94	2.5	5	ug/Kg
110-82-7	Cyclohexane	2.5	U	1	2.5	5	ug/Kg
78-93-3	2-Butanone	12.5	U	3.1	12.5	25	ug/Kg
56-23-5	Carbon Tetrachloride	2.5	U	0.99	2.5	5	ug/Kg
594-20-7	2,2-Dichloropropane	2.5	U	1	2.5	5	ug/Kg
156-59-2	cis-1,2-Dichloroethene	2.5	U	0.89	2.5	5	ug/Kg
74-97-5	Bromochloromethane	2.5	U	0.79	2.5	5	ug/Kg
67-66-3	Chloroform	2.5	U	0.74	2.5	5	ug/Kg
71-55-6	1,1,1-Trichloroethane	2.5	U	0.88	2.5	5	ug/Kg

Sample Wt/Vol:

5

Units:

Report of Analysis

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

g

Client Sample ID: VD0815SBL01 SDG No.: D3811
Lab Sample ID: VD0815SBL01 Matrix: SOIL

Analytical Method: SW8260C % Moisture: 0

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

Final Vol:

5000

uL

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036738.D 1 08/15/12 VD081512

VD030730.D	1		00/13/	12		V D001312	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
108-87-2	Methylcyclohexane	2.5	U	1.1	2.5	5	ug/Kg
563-58-6	1,1-Dichloropropene	2.5	U	0.46	2.5	5	ug/Kg
71-43-2	Benzene	2.5	U	0.38	2.5	5	ug/Kg
107-06-2	1,2-Dichloroethane	2.5	U	0.64	2.5	5	ug/Kg
79-01-6	Trichloroethene	2.5	U	0.86	2.5	5	ug/Kg
78-87-5	1,2-Dichloropropane	2.5	U	0.26	2.5	5	ug/Kg
74-95-3	Dibromomethane	2.5	U	0.78	2.5	5	ug/Kg
75-27-4	Bromodichloromethane	2.5	U	0.62	2.5	5	ug/Kg
108-10-1	4-Methyl-2-Pentanone	12.5	U	2.9	12.5	25	ug/Kg
108-88-3	Toluene	2.5	U	0.64	2.5	5	ug/Kg
10061-02-6	t-1,3-Dichloropropene	2.5	U	0.79	2.5	5	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	2.5	U	0.72	2.5	5	ug/Kg
79-00-5	1,1,2-Trichloroethane	2.5	U	0.9	2.5	5	ug/Kg
142-28-9	1,3-Dichloropropane	2.5	U	0.74	2.5	5	ug/Kg
110-75-8	2-Chloroethyl Vinyl ether	12.5	U	12	12.5	25	ug/Kg
591-78-6	2-Hexanone	12.5	U	3.9	12.5	25	ug/Kg
124-48-1	Dibromochloromethane	2.5	U	0.54	2.5	5	ug/Kg
106-93-4	1,2-Dibromoethane	2.5	U	0.64	2.5	5	ug/Kg
127-18-4	Tetrachloroethene	2.5	U	1	2.5	5	ug/Kg
108-90-7	Chlorobenzene	2.5	U	0.5	2.5	5	ug/Kg
630-20-6	1,1,1,2-Tetrachloroethane	2.5	U	0.43	2.5	5	ug/Kg
67-72-1	Hexachloroethane	2.5	U	0.76	2.5	5	ug/Kg
100-41-4	Ethyl Benzene	2.5	U	0.62	2.5	5	ug/Kg
179601-23-1	m/p-Xylenes	5	U	0.72	5	10	ug/Kg
95-47-6	o-Xylene	2.5	U	0.68	2.5	5	ug/Kg
100-42-5	Styrene	2.5	U	0.45	2.5	5	ug/Kg
75-25-2	Bromoform	2.5	U	0.74	2.5	5	ug/Kg
98-82-8	Isopropylbenzene	2.5	U	0.48	2.5	5	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	2.5	U	0.46	2.5	5	ug/Kg
96-18-4	1,2,3-Trichloropropane	2.5	U	0.49	2.5	5	ug/Kg
108-86-1	Bromobenzene	2.5	U	0.52	2.5	5	ug/Kg
103-65-1	n-propylbenzene	2.5	U	0.36	2.5	5	ug/Kg

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

Client Sample ID: VD0815SBL01 SDG No.: D3811

Lab Sample ID: VD0815SBL01 Matrix: SOIL

Analytical Method: SW8260C % Moisture: 0

Sample Wt/Vol: 5 Units: g Final Vol: 5000 uL

Soil Aliquot Vol: UL Test: VOC-Chemtech Full -15

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036738.D 1 08/15/12 VD081512

VD036738.D	1		08/15/	/12		VD081512	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
95-49-8	2-Chlorotoluene	2.5	U	0.74	2.5	5	ug/Kg
108-67-8	1,3,5-Trimethylbenzene	2.5	U	0.45	2.5	5	ug/Kg
106-43-4	4-Chlorotoluene	2.5	U	0.62	2.5	5	ug/Kg
98-06-6	tert-Butylbenzene	2.5	U	0.59	2.5	5	ug/Kg
95-63-6	1,2,4-Trimethylbenzene	2.5	U	0.5	2.5	5	ug/Kg
135-98-8	sec-Butylbenzene	2.5	U	0.52	2.5	5	ug/Kg
99-87-6	p-Isopropyltoluene	2.5	U	0.29	2.5	5	ug/Kg
541-73-1	1,3-Dichlorobenzene	2.5	U	0.37	2.5	5	ug/Kg
106-46-7	1,4-Dichlorobenzene	2.5	U	0.41	2.5	5	ug/Kg
104-51-8	n-Butylbenzene	2.5	U	0.46	2.5	5	ug/Kg
95-50-1	1,2-Dichlorobenzene	2.5	U	0.62	2.5	5	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	2.5	U	0.87	2.5	5	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	2.5	U	0.7	2.5	5	ug/Kg
87-68-3	Hexachlorobutadiene	2.5	U	0.79	2.5	5	ug/Kg
91-20-3	Naphthalene	2.5	U	0.45	2.5	5	ug/Kg
87-61-6	1,2,3-Trichlorobenzene	2.5	U	0.5	2.5	5	ug/Kg
74-88-4	Methyl Iodide	5	U	5	5	5	ug/Kg
107-05-1	Allyl chloride	5	U	5	5	5	ug/Kg
126-98-7	Methacrylonitrile	5	U	5	5	5	ug/Kg
110-57-6	trans-1,4-Dichloro-2-butene	5	U	5	5	5	ug/Kg
97-63-2	Ethyl methacrylate	5	U	5	5	5	ug/Kg
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	58.3		56 - 120		117%	SPK: 50
1868-53-7	Dibromofluoromethane	53		57 - 13:	5	106%	SPK: 50
2037-26-5	Toluene-d8	49.1		67 - 123		98%	SPK: 50
460-00-4	4-Bromofluorobenzene	49.1		33 - 14	1	98%	SPK: 50
INTERNAL ST		460.550					
363-72-4	Pentafluorobenzene	469528	4.74				
540-36-3	1,4-Difluorobenzene	774465	5.45				
3114-55-4	Chlorobenzene-d5	668882	9.57				
3855-82-1	1,4-Dichlorobenzene-d4	288690	12.47				

Soil Aliquot Vol:

Report of Analysis

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

uL

Client Sample ID: VD0815SBL01 SDG No.: D3811
Lab Sample ID: VD0815SBL01 Matrix: SOIL

Analytical Method: SW8260C % Moisture: 0

Sample Wt/Vol: 5 Units: g Final Vol: 5000 uL

Test:

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VD036738.D 1 08/15/12 VD081512

CAS Number Parameter Conc. Qualifier MDL LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

VOC-Chemtech Full -15

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

5

Report of Analysis

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

Client Sample ID: VD0816SBL01 SDG No.: D3811 Lab Sample ID: VD0816SBL01 Matrix: SOIL

Analytical Method: SW8260C % Moisture: 0

Sample Wt/Vol: Units: g Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

Final Vol:

5000

uL

ID: 0.25 Level: LOW GC Column: RTX-624

File ID/Qc Batch: Dilution: Date Analyzed Prep Batch ID Prep Date VD036755.D 08/16/12 VD081612

VD030733.D	1		08/10/	08/10/12		VD081012		
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units	
TARGETS								
75-71-8	Dichlorodifluoromethane	2.5	U	0.65	2.5	5	ug/Kg	
74-87-3	Chloromethane	2.5	U	0.86	2.5	5	ug/Kg	
75-01-4	Vinyl Chloride	2.5	U	1.2	2.5	5	ug/Kg	
141-78-6	Ethyl Acetate	2.5	U	0.87	2.5	5	ug/Kg	
108-21-4	Isopropyl Acetate	2.5	U	1.2	2.5	5	ug/Kg	
628-63-7	N-amyl acetate	2.5	U	0.94	2.5	5	ug/Kg	
74-83-9	Bromomethane	2.5	U	2.4	2.5	5	ug/Kg	
75-00-3	Chloroethane	2.5	U	1.4	2.5	5	ug/Kg	
75-69-4	Trichlorofluoromethane	2.5	U	1.3	2.5	5	ug/Kg	
76-13-1	1,1,2-Trichlorotrifluoroethane	2.5	U	1.3	2.5	5	ug/Kg	
75-65-0	Tert butyl alcohol	12.5	U	7.4	12.5	25	ug/Kg	
60-29-7	Diethyl Ether	2.5	U	1.9	2.5	5	ug/Kg	
75-35-4	1,1-Dichloroethene	2.5	U	1.5	2.5	5	ug/Kg	
107-02-8	Acrolein	12.5	U	4	12.5	25	ug/Kg	
107-13-1	Acrylonitrile	12.5	U	4.9	12.5	25	ug/Kg	
67-64-1	Acetone	12.5	U	3	12.5	25	ug/Kg	
75-15-0	Carbon Disulfide	2.5	U	1.1	2.5	5	ug/Kg	
1634-04-4	Methyl tert-butyl Ether	2.5	U	0.96	2.5	5	ug/Kg	
79-20-9	Methyl Acetate	2.5	U	1.5	2.5	5	ug/Kg	
75-09-2	Methylene Chloride	2.5	U	1.4	2.5	5	ug/Kg	
156-60-5	trans-1,2-Dichloroethene	2.5	U	0.69	2.5	5	ug/Kg	
108-05-4	Vinyl Acetate	12.5	U	3.5	12.5	25	ug/Kg	
75-34-3	1,1-Dichloroethane	2.5	U	0.94	2.5	5	ug/Kg	
110-82-7	Cyclohexane	2.5	U	1	2.5	5	ug/Kg	
78-93-3	2-Butanone	12.5	U	3.1	12.5	25	ug/Kg	
56-23-5	Carbon Tetrachloride	2.5	U	0.99	2.5	5	ug/Kg	
594-20-7	2,2-Dichloropropane	2.5	U	1	2.5	5	ug/Kg	
156-59-2	cis-1,2-Dichloroethene	2.5	U	0.89	2.5	5	ug/Kg	
74-97-5	Bromochloromethane	2.5	U	0.79	2.5	5	ug/Kg	
67-66-3	Chloroform	2.5	U	0.74	2.5	5	ug/Kg	
71-55-6	1,1,1-Trichloroethane	2.5	U	0.88	2.5	5	ug/Kg	

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

Client Sample ID: VD0816SBL01 SDG No.: D3811

Lab Sample ID: VD0816SBL01 Matrix: SOIL

Analytical Method: SW8260C % Moisture: 0

Sample Wt/Vol: 5 Units: g Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036755.D 1 08/16/12 VD081612

VD036755.D	I		08/16/	/12		VD081612	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
108-87-2	Methylcyclohexane	2.5	U	1.1	2.5	5	ug/Kg
563-58-6	1,1-Dichloropropene	2.5	U	0.46	2.5	5	ug/Kg
71-43-2	Benzene	2.5	U	0.38	2.5	5	ug/Kg
107-06-2	1,2-Dichloroethane	2.5	U	0.64	2.5	5	ug/Kg
79-01-6	Trichloroethene	2.5	U	0.86	2.5	5	ug/Kg
78-87-5	1,2-Dichloropropane	2.5	U	0.26	2.5	5	ug/Kg
74-95-3	Dibromomethane	2.5	U	0.78	2.5	5	ug/Kg
75-27-4	Bromodichloromethane	2.5	U	0.62	2.5	5	ug/Kg
108-10-1	4-Methyl-2-Pentanone	12.5	U	2.9	12.5	25	ug/Kg
108-88-3	Toluene	2.5	U	0.64	2.5	5	ug/Kg
10061-02-6	t-1,3-Dichloropropene	2.5	U	0.79	2.5	5	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	2.5	U	0.72	2.5	5	ug/Kg
79-00-5	1,1,2-Trichloroethane	2.5	U	0.9	2.5	5	ug/Kg
142-28-9	1,3-Dichloropropane	2.5	U	0.74	2.5	5	ug/Kg
110-75-8	2-Chloroethyl Vinyl ether	12.5	U	12	12.5	25	ug/Kg
591-78-6	2-Hexanone	12.5	U	3.9	12.5	25	ug/Kg
124-48-1	Dibromochloromethane	2.5	U	0.54	2.5	5	ug/Kg
106-93-4	1,2-Dibromoethane	2.5	U	0.64	2.5	5	ug/Kg
127-18-4	Tetrachloroethene	2.5	U	1	2.5	5	ug/Kg
108-90-7	Chlorobenzene	2.5	U	0.5	2.5	5	ug/Kg
630-20-6	1,1,1,2-Tetrachloroethane	2.5	U	0.43	2.5	5	ug/Kg
67-72-1	Hexachloroethane	2.5	U	0.76	2.5	5	ug/Kg
100-41-4	Ethyl Benzene	2.5	U	0.62	2.5	5	ug/Kg
179601-23-1	m/p-Xylenes	5	U	0.72	5	10	ug/Kg
95-47-6	o-Xylene	2.5	U	0.68	2.5	5	ug/Kg
100-42-5	Styrene	2.5	U	0.45	2.5	5	ug/Kg
75-25-2	Bromoform	2.5	U	0.74	2.5	5	ug/Kg
98-82-8	Isopropylbenzene	2.5	U	0.48	2.5	5	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	2.5	U	0.46	2.5	5	ug/Kg
96-18-4	1,2,3-Trichloropropane	2.5	U	0.49	2.5	5	ug/Kg
108-86-1	Bromobenzene	2.5	U	0.52	2.5	5	ug/Kg
103-65-1	n-propylbenzene	2.5	U	0.36	2.5	5	ug/Kg

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

Client Sample ID: VD0816SBL01 SDG No.: D3811

Lab Sample ID: VD0816SBL01 Matrix: SOIL

Analytical Method: SW8260C % Moisture: 0

Sample Wt/Vol: 5 Units: g Final Vol: 5000 uL

Soil Aliquot Vol: UL Test: VOC-Chemtech Full -15

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036755.D 1 08/16/12 VD081612

VD036/55.D	I		08/16/	/12		VD081612	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
95-49-8	2-Chlorotoluene	2.5	U	0.74	2.5	5	ug/Kg
108-67-8	1,3,5-Trimethylbenzene	2.5	U	0.45	2.5	5	ug/Kg
106-43-4	4-Chlorotoluene	2.5	U	0.62	2.5	5	ug/Kg
98-06-6	tert-Butylbenzene	2.5	U	0.59	2.5	5	ug/Kg
95-63-6	1,2,4-Trimethylbenzene	2.5	U	0.5	2.5	5	ug/Kg
135-98-8	sec-Butylbenzene	2.5	U	0.52	2.5	5	ug/Kg
99-87-6	p-Isopropyltoluene	2.5	U	0.29	2.5	5	ug/Kg
541-73-1	1,3-Dichlorobenzene	2.5	U	0.37	2.5	5	ug/Kg
106-46-7	1,4-Dichlorobenzene	2.5	U	0.41	2.5	5	ug/Kg
104-51-8	n-Butylbenzene	2.5	U	0.46	2.5	5	ug/Kg
95-50-1	1,2-Dichlorobenzene	2.5	U	0.62	2.5	5	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	2.5	U	0.87	2.5	5	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	2.5	U	0.7	2.5	5	ug/Kg
87-68-3	Hexachlorobutadiene	2.5	U	0.79	2.5	5	ug/Kg
91-20-3	Naphthalene	2.5	U	0.45	2.5	5	ug/Kg
87-61-6	1,2,3-Trichlorobenzene	2.5	U	0.5	2.5	5	ug/Kg
74-88-4	Methyl Iodide	5	U	5	5	5	ug/Kg
107-05-1	Allyl chloride	5	U	5	5	5	ug/Kg
126-98-7	Methacrylonitrile	5	U	5	5	5	ug/Kg
110-57-6	trans-1,4-Dichloro-2-butene	5	U	5	5	5	ug/Kg
97-63-2	Ethyl methacrylate	5	U	5	5	5	ug/Kg
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	51.8		56 - 120)	104%	SPK: 50
1868-53-7	Dibromofluoromethane	48.7		57 - 135	5	97%	SPK: 50
2037-26-5	Toluene-d8	47.5		67 - 123	3	95%	SPK: 50
460-00-4	4-Bromofluorobenzene	45.6		33 - 141	[91%	SPK: 50
INTERNAL ST							
363-72-4	Pentafluorobenzene	476003	4.74				
540-36-3	1,4-Difluorobenzene	773667	5.45				
3114-55-4	Chlorobenzene-d5	626036	9.59				
3855-82-1	1,4-Dichlorobenzene-d4	268180	12.49				

Soil Aliquot Vol:

Report of Analysis

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

uL

Client Sample ID: VD0816SBL01 SDG No.: D3811

Lab Sample ID: VD0816SBL01 Matrix: SOIL

Analytical Method: SW8260C % Moisture: 0

Sample Wt/Vol: 5 Units: g Final Vol: 5000 uL

Test:

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VD036755.D 1 08/16/12 VD081612

CAS Number Parameter Conc. Qualifier MDL LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

VOC-Chemtech Full -15

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

VOC-Chemtech Full -15

Soil Aliquot Vol:

Report of Analysis

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

иL

Client Sample ID: VF0815SBL01 SDG No.: D3811

Lab Sample ID: VF0815SBL01 Matrix: SOIL

Analytical Method: SW8260C % Moisture: 0

Sample Wt/Vol: 5 Units: g Final Vol: 5000 uL

Test:

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034767.D 1 08/15/12 VF081512

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	2.5	U	0.65	2.5	5	ug/Kg
74-87-3	Chloromethane	2.5	U	0.86	2.5	5	ug/Kg
75-01-4	Vinyl Chloride	2.5	U	1.2	2.5	5	ug/Kg
141-78-6	Ethyl Acetate	2.5	U	0.87	2.5	5	ug/Kg
108-21-4	Isopropyl Acetate	2.5	U	1.2	2.5	5	ug/Kg
628-63-7	N-amyl acetate	2.5	U	0.94	2.5	5	ug/Kg
74-83-9	Bromomethane	2.5	U	2.4	2.5	5	ug/Kg
75-00-3	Chloroethane	2.5	U	1.4	2.5	5	ug/Kg
75-69-4	Trichlorofluoromethane	2.5	U	1.3	2.5	5	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	2.5	U	1.3	2.5	5	ug/Kg
75-65-0	Tert butyl alcohol	12.5	U	7.4	12.5	25	ug/Kg
60-29-7	Diethyl Ether	2.5	U	1.9	2.5	5	ug/Kg
75-35-4	1,1-Dichloroethene	2.5	U	1.5	2.5	5	ug/Kg
107-02-8	Acrolein	12.5	U	4	12.5	25	ug/Kg
107-13-1	Acrylonitrile	12.5	U	4.9	12.5	25	ug/Kg
67-64-1	Acetone	12.5	U	3	12.5	25	ug/Kg
75-15-0	Carbon Disulfide	2.5	U	1.1	2.5	5	ug/Kg
1634-04-4	Methyl tert-butyl Ether	2.5	U	0.96	2.5	5	ug/Kg
79-20-9	Methyl Acetate	2.5	U	1.5	2.5	5	ug/Kg
75-09-2	Methylene Chloride	2.5	U	1.4	2.5	5	ug/Kg
156-60-5	trans-1,2-Dichloroethene	2.5	U	0.69	2.5	5	ug/Kg
108-05-4	Vinyl Acetate	12.5	U	3.5	12.5	25	ug/Kg
75-34-3	1,1-Dichloroethane	2.5	U	0.94	2.5	5	ug/Kg
110-82-7	Cyclohexane	2.5	U	1	2.5	5	ug/Kg
78-93-3	2-Butanone	12.5	U	3.1	12.5	25	ug/Kg
56-23-5	Carbon Tetrachloride	2.5	U	0.99	2.5	5	ug/Kg
594-20-7	2,2-Dichloropropane	2.5	U	1	2.5	5	ug/Kg
156-59-2	cis-1,2-Dichloroethene	2.5	U	0.89	2.5	5	ug/Kg
74-97-5	Bromochloromethane	2.5	U	0.79	2.5	5	ug/Kg
67-66-3	Chloroform	2.5	U	0.74	2.5	5	ug/Kg
71-55-6	1,1,1-Trichloroethane	2.5	U	0.88	2.5	5	ug/Kg

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

Client Sample ID: VF0815SBL01 SDG No.: D3811

Lab Sample ID: VF0815SBL01 Matrix: SOIL

Analytical Method: SW8260C % Moisture: 0

Sample Wt/Vol: 5 Units: g Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034767.D 1 08/15/12 VF081512

VF034767.D	I		08/15/	/12		VF081512	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
108-87-2	Methylcyclohexane	2.5	U	1.1	2.5	5	ug/Kg
563-58-6	1,1-Dichloropropene	2.5	U	0.46	2.5	5	ug/Kg
71-43-2	Benzene	2.5	U	0.38	2.5	5	ug/Kg
107-06-2	1,2-Dichloroethane	2.5	U	0.64	2.5	5	ug/Kg
79-01-6	Trichloroethene	2.5	U	0.86	2.5	5	ug/Kg
78-87-5	1,2-Dichloropropane	2.5	U	0.26	2.5	5	ug/Kg
74-95-3	Dibromomethane	2.5	U	0.78	2.5	5	ug/Kg
75-27-4	Bromodichloromethane	2.5	U	0.62	2.5	5	ug/Kg
108-10-1	4-Methyl-2-Pentanone	12.5	U	2.9	12.5	25	ug/Kg
108-88-3	Toluene	2.5	U	0.64	2.5	5	ug/Kg
10061-02-6	t-1,3-Dichloropropene	2.5	U	0.79	2.5	5	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	2.5	U	0.72	2.5	5	ug/Kg
79-00-5	1,1,2-Trichloroethane	2.5	U	0.9	2.5	5	ug/Kg
142-28-9	1,3-Dichloropropane	2.5	U	0.74	2.5	5	ug/Kg
110-75-8	2-Chloroethyl Vinyl ether	12.5	U	12	12.5	25	ug/Kg
591-78-6	2-Hexanone	12.5	U	3.9	12.5	25	ug/Kg
124-48-1	Dibromochloromethane	2.5	U	0.54	2.5	5	ug/Kg
106-93-4	1,2-Dibromoethane	2.5	U	0.64	2.5	5	ug/Kg
127-18-4	Tetrachloroethene	2.5	U	1	2.5	5	ug/Kg
108-90-7	Chlorobenzene	2.5	U	0.5	2.5	5	ug/Kg
630-20-6	1,1,1,2-Tetrachloroethane	2.5	U	0.43	2.5	5	ug/Kg
67-72-1	Hexachloroethane	2.5	U	0.76	2.5	5	ug/Kg
100-41-4	Ethyl Benzene	2.5	U	0.62	2.5	5	ug/Kg
179601-23-1	m/p-Xylenes	5	U	0.72	5	10	ug/Kg
95-47-6	o-Xylene	2.5	U	0.68	2.5	5	ug/Kg
100-42-5	Styrene	2.5	U	0.45	2.5	5	ug/Kg
75-25-2	Bromoform	2.5	U	0.74	2.5	5	ug/Kg
98-82-8	Isopropylbenzene	2.5	U	0.48	2.5	5	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	2.5	U	0.46	2.5	5	ug/Kg
96-18-4	1,2,3-Trichloropropane	2.5	U	0.49	2.5	5	ug/Kg
108-86-1	Bromobenzene	2.5	U	0.52	2.5	5	ug/Kg
103-65-1	n-propylbenzene	2.5	U	0.36	2.5	5	ug/Kg

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

Client Sample ID: VF0815SBL01 SDG No.: D3811

Lab Sample ID: VF0815SBL01 Matrix: SOIL

Analytical Method: SW8260C % Moisture: 0

Sample Wt/Vol: 5 Units: g Final Vol: 5000 uL

Soil Aliquot Vol: UL Test: VOC-Chemtech Full -15

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VF034767 D 1 08/15/12 VF081512

VF034767.D	1		08/15/	/12		VF081512	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
95-49-8	2-Chlorotoluene	2.5	U	0.74	2.5	5	ug/Kg
108-67-8	1,3,5-Trimethylbenzene	2.5	U	0.45	2.5	5	ug/Kg
106-43-4	4-Chlorotoluene	2.5	U	0.62	2.5	5	ug/Kg
98-06-6	tert-Butylbenzene	2.5	U	0.59	2.5	5	ug/Kg
95-63-6	1,2,4-Trimethylbenzene	2.5	U	0.5	2.5	5	ug/Kg
135-98-8	sec-Butylbenzene	2.5	U	0.52	2.5	5	ug/Kg
99-87-6	p-Isopropyltoluene	2.5	U	0.29	2.5	5	ug/Kg
541-73-1	1,3-Dichlorobenzene	2.5	U	0.37	2.5	5	ug/Kg
106-46-7	1,4-Dichlorobenzene	2.5	U	0.41	2.5	5	ug/Kg
104-51-8	n-Butylbenzene	2.5	U	0.46	2.5	5	ug/Kg
95-50-1	1,2-Dichlorobenzene	2.5	U	0.62	2.5	5	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	2.5	U	0.87	2.5	5	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	2.5	U	0.7	2.5	5	ug/Kg
87-68-3	Hexachlorobutadiene	2.5	U	0.79	2.5	5	ug/Kg
91-20-3	Naphthalene	2.5	U	0.45	2.5	5	ug/Kg
87-61-6	1,2,3-Trichlorobenzene	2.5	U	0.5	2.5	5	ug/Kg
74-88-4	Methyl Iodide	5	U	5	5	5	ug/Kg
107-05-1	Allyl chloride	5	U	5	5	5	ug/Kg
126-98-7	Methacrylonitrile	5	U	5	5	5	ug/Kg
110-57-6	trans-1,4-Dichloro-2-butene	5	U	5	5	5	ug/Kg
97-63-2	Ethyl methacrylate	5	U	5	5	5	ug/Kg
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	55.4		56 - 120	0	111%	SPK: 50
1868-53-7	Dibromofluoromethane	56.4		57 - 135	5	113%	SPK: 50
2037-26-5	Toluene-d8	51.4		67 - 123		103%	SPK: 50
460-00-4	4-Bromofluorobenzene	53		33 - 14	1	106%	SPK: 50
INTERNAL ST							
363-72-4	Pentafluorobenzene	228021	4.41				
540-36-3	1,4-Difluorobenzene	419406	5.15				
3114-55-4	Chlorobenzene-d5	416710	9.34				
3855-82-1	1,4-Dichlorobenzene-d4	210665	12.25				

Date Collected:

Date Received:

Test:

VOC-Chemtech Full -15

Soil Aliquot Vol:

Report of Analysis

Client: MS Analytical

Project: 12MS104 Kensington Heights

Client Sample ID: VF0815SBL01 SDG No.: D3811
Lab Sample ID: VF0815SBL01 Matrix: SOIL

Analytical Method: SW8260C % Moisture: 0

uL

Sample Wt/Vol: 5 Units: g Final Vol: 5000 uL

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VF034767.D 1 08/15/12 VF081512

CAS Number Parameter Conc. Qualifier MDL LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

VOC-Chemtech Full -15

Soil Aliquot Vol:

Report of Analysis

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

иL

Client Sample ID: VF0816SBL01 SDG No.: D3811
Lab Sample ID: VF0816SBL01 Matrix: SOIL

Analytical Method: SW8260C % Moisture: 0

Sample Wt/Vol: 5 Units: g Final Vol: 5000 uL

Test:

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034790.D 1 08/16/12 VF081612

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	2.5	U	0.65	2.5	5	ug/Kg
74-87-3	Chloromethane	2.5	U	0.86	2.5	5	ug/Kg
75-01-4	Vinyl Chloride	2.5	U	1.2	2.5	5	ug/Kg
141-78-6	Ethyl Acetate	2.5	U	0.87	2.5	5	ug/Kg
108-21-4	Isopropyl Acetate	2.5	U	1.2	2.5	5	ug/Kg
628-63-7	N-amyl acetate	2.5	U	0.94	2.5	5	ug/Kg
74-83-9	Bromomethane	2.5	U	2.4	2.5	5	ug/Kg
75-00-3	Chloroethane	2.5	U	1.4	2.5	5	ug/Kg
75-69-4	Trichlorofluoromethane	2.5	U	1.3	2.5	5	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	2.5	U	1.3	2.5	5	ug/Kg
75-65-0	Tert butyl alcohol	12.5	U	7.4	12.5	25	ug/Kg
60-29-7	Diethyl Ether	2.5	U	1.9	2.5	5	ug/Kg
75-35-4	1,1-Dichloroethene	2.5	U	1.5	2.5	5	ug/Kg
107-02-8	Acrolein	12.5	U	4	12.5	25	ug/Kg
107-13-1	Acrylonitrile	12.5	U	4.9	12.5	25	ug/Kg
67-64-1	Acetone	12.5	U	3	12.5	25	ug/Kg
75-15-0	Carbon Disulfide	2.5	U	1.1	2.5	5	ug/Kg
1634-04-4	Methyl tert-butyl Ether	2.5	U	0.96	2.5	5	ug/Kg
79-20-9	Methyl Acetate	2.5	U	1.5	2.5	5	ug/Kg
75-09-2	Methylene Chloride	2.5	U	1.4	2.5	5	ug/Kg
156-60-5	trans-1,2-Dichloroethene	2.5	U	0.69	2.5	5	ug/Kg
108-05-4	Vinyl Acetate	12.5	U	3.5	12.5	25	ug/Kg
75-34-3	1,1-Dichloroethane	2.5	U	0.94	2.5	5	ug/Kg
110-82-7	Cyclohexane	2.5	U	1	2.5	5	ug/Kg
78-93-3	2-Butanone	12.5	U	3.1	12.5	25	ug/Kg
56-23-5	Carbon Tetrachloride	2.5	U	0.99	2.5	5	ug/Kg
594-20-7	2,2-Dichloropropane	2.5	U	1	2.5	5	ug/Kg
156-59-2	cis-1,2-Dichloroethene	2.5	U	0.89	2.5	5	ug/Kg
74-97-5	Bromochloromethane	2.5	U	0.79	2.5	5	ug/Kg
67-66-3	Chloroform	2.5	U	0.74	2.5	5	ug/Kg
71-55-6	1,1,1-Trichloroethane	2.5	U	0.88	2.5	5	ug/Kg

Sample Wt/Vol:

5

Units:

Report of Analysis

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

g

Client Sample ID: VF0816SBL01 SDG No.: D3811
Lab Sample ID: VF0816SBL01 Matrix: SOIL

Analytical Method: SW8260C % Moisture: 0

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

Final Vol:

5000

uL

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034790.D 1 08/16/12 VF081612

V1 054770.D	1		00/10/	12		V1 001012	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
108-87-2	Methylcyclohexane	2.5	U	1.1	2.5	5	ug/Kg
563-58-6	1,1-Dichloropropene	2.5	U	0.46	2.5	5	ug/Kg
71-43-2	Benzene	2.5	U	0.38	2.5	5	ug/Kg
107-06-2	1,2-Dichloroethane	2.5	U	0.64	2.5	5	ug/Kg
79-01-6	Trichloroethene	2.5	U	0.86	2.5	5	ug/Kg
78-87-5	1,2-Dichloropropane	2.5	U	0.26	2.5	5	ug/Kg
74-95-3	Dibromomethane	2.5	U	0.78	2.5	5	ug/Kg
75-27-4	Bromodichloromethane	2.5	U	0.62	2.5	5	ug/Kg
108-10-1	4-Methyl-2-Pentanone	12.5	U	2.9	12.5	25	ug/Kg
108-88-3	Toluene	2.5	U	0.64	2.5	5	ug/Kg
10061-02-6	t-1,3-Dichloropropene	2.5	U	0.79	2.5	5	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	2.5	U	0.72	2.5	5	ug/Kg
79-00-5	1,1,2-Trichloroethane	2.5	U	0.9	2.5	5	ug/Kg
142-28-9	1,3-Dichloropropane	2.5	U	0.74	2.5	5	ug/Kg
110-75-8	2-Chloroethyl Vinyl ether	12.5	U	12	12.5	25	ug/Kg
591-78-6	2-Hexanone	12.5	U	3.9	12.5	25	ug/Kg
124-48-1	Dibromochloromethane	2.5	U	0.54	2.5	5	ug/Kg
106-93-4	1,2-Dibromoethane	2.5	U	0.64	2.5	5	ug/Kg
127-18-4	Tetrachloroethene	2.5	U	1	2.5	5	ug/Kg
108-90-7	Chlorobenzene	2.5	U	0.5	2.5	5	ug/Kg
630-20-6	1,1,1,2-Tetrachloroethane	2.5	U	0.43	2.5	5	ug/Kg
67-72-1	Hexachloroethane	2.5	U	0.76	2.5	5	ug/Kg
100-41-4	Ethyl Benzene	2.5	U	0.62	2.5	5	ug/Kg
179601-23-1	m/p-Xylenes	5	U	0.72	5	10	ug/Kg
95-47-6	o-Xylene	2.5	U	0.68	2.5	5	ug/Kg
100-42-5	Styrene	2.5	U	0.45	2.5	5	ug/Kg
75-25-2	Bromoform	2.5	U	0.74	2.5	5	ug/Kg
98-82-8	Isopropylbenzene	2.5	U	0.48	2.5	5	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	2.5	U	0.46	2.5	5	ug/Kg
96-18-4	1,2,3-Trichloropropane	2.5	U	0.49	2.5	5	ug/Kg
108-86-1	Bromobenzene	2.5	U	0.52	2.5	5	ug/Kg
103-65-1	n-propylbenzene	2.5	U	0.36	2.5	5	ug/Kg

uL

Report of Analysis

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

Client Sample ID: VF0816SBL01 SDG No.: D3811 Lab Sample ID: VF0816SBL01 Matrix: SOIL

Analytical Method: SW8260C 0 Sample Wt/Vol: 5 Units: Final Vol: 5000 g

Soil Aliquot Vol: Test: VOC-Chemtech Full -15 uL

% Moisture:

ID: 0.18 Level: GC Column: RTX-VMS LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034790 D 08/16/12 VF081612

VF034790.D	1		08/16/	/12		VF081612	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
95-49-8	2-Chlorotoluene	2.5	U	0.74	2.5	5	ug/Kg
108-67-8	1,3,5-Trimethylbenzene	2.5	U	0.45	2.5	5	ug/Kg
106-43-4	4-Chlorotoluene	2.5	U	0.62	2.5	5	ug/Kg
98-06-6	tert-Butylbenzene	2.5	U	0.59	2.5	5	ug/Kg
95-63-6	1,2,4-Trimethylbenzene	2.5	U	0.5	2.5	5	ug/Kg
135-98-8	sec-Butylbenzene	2.5	U	0.52	2.5	5	ug/Kg
99-87-6	p-Isopropyltoluene	2.5	U	0.29	2.5	5	ug/Kg
541-73-1	1,3-Dichlorobenzene	2.5	U	0.37	2.5	5	ug/Kg
106-46-7	1,4-Dichlorobenzene	2.5	U	0.41	2.5	5	ug/Kg
104-51-8	n-Butylbenzene	2.5	U	0.46	2.5	5	ug/Kg
95-50-1	1,2-Dichlorobenzene	2.5	U	0.62	2.5	5	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	2.5	U	0.87	2.5	5	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	2.5	U	0.7	2.5	5	ug/Kg
87-68-3	Hexachlorobutadiene	2.5	U	0.79	2.5	5	ug/Kg
91-20-3	Naphthalene	2.5	U	0.45	2.5	5	ug/Kg
87-61-6	1,2,3-Trichlorobenzene	2.5	U	0.5	2.5	5	ug/Kg
74-88-4	Methyl Iodide	5	U	5	5	5	ug/Kg
107-05-1	Allyl chloride	5	U	5	5	5	ug/Kg
126-98-7	Methacrylonitrile	5	U	5	5	5	ug/Kg
110-57-6	trans-1,4-Dichloro-2-butene	5	U	5	5	5	ug/Kg
97-63-2	Ethyl methacrylate	5	U	5	5	5	ug/Kg
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	51.9		55 - 158	8	104%	SPK: 50
1868-53-7	Dibromofluoromethane	56.4		53 - 150	5	113%	SPK: 50
2037-26-5	Toluene-d8	49.7		85 - 115	5	99%	SPK: 50
460-00-4	4-Bromofluorobenzene	51.7		85 - 120	0	103%	SPK: 50
INTERNAL ST							
363-72-4	Pentafluorobenzene	238586	4.4				
540-36-3	1,4-Difluorobenzene	430342	5.14				
3114-55-4	Chlorobenzene-d5	414933	9.34				
3855-82-1	1,4-Dichlorobenzene-d4	214467	12.24				

Date Collected:

Date Received:

D3811

SOIL

5000

uL

SDG No.:

% Moisture:

Final Vol:

Matrix:

Lab Sample ID:

Report of Analysis

Client: MS Analytical

Project: 12MS104 Kensington Heights

Client Sample ID: VF0816SBL01

Analytical Method: SW8260C

Sample Wt/Vol: 5 Units: g

VF0816SBL01

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VF034790.D 1 08/16/12 VF081612

CAS Number Parameter Conc. Qualifier MDL LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

5

Report of Analysis

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

Client Sample ID: VD0815SBS01 SDG No.: D3811 Lab Sample ID: VD0815SBS01 Matrix: SOIL

Analytical Method: SW8260C % Moisture: 0

Sample Wt/Vol: Units: g Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

Final Vol:

5000

uL

ID: 0.25 Level: LOW GC Column: RTX-624

File ID/Qc Batch: Dilution: Prep Batch ID Prep Date Date Analyzed VD036739.D 08/15/12 VD081512

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	19		0.65	2.5	5	ug/Kg
74-87-3	Chloromethane	24		0.86	2.5	5	ug/Kg
75-01-4	Vinyl Chloride	22		1.2	2.5	5	ug/Kg
141-78-6	Ethyl Acetate	24		0.87	2.5	5	ug/Kg
108-21-4	Isopropyl Acetate	23		1.2	2.5	5	ug/Kg
628-63-7	N-amyl acetate	21		0.94	2.5	5	ug/Kg
74-83-9	Bromomethane	18		2.4	2.5	5	ug/Kg
75-00-3	Chloroethane	23		1.4	2.5	5	ug/Kg
75-69-4	Trichlorofluoromethane	22		1.3	2.5	5	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	23		1.3	2.5	5	ug/Kg
75-65-0	Tert butyl alcohol	120		7.4	12.5	25	ug/Kg
60-29-7	Diethyl Ether	24		1.9	2.5	5	ug/Kg
75-35-4	1,1-Dichloroethene	22		1.5	2.5	5	ug/Kg
107-02-8	Acrolein	91		4	12.5	25	ug/Kg
107-13-1	Acrylonitrile	120		4.9	12.5	25	ug/Kg
67-64-1	Acetone	150		3	12.5	25	ug/Kg
75-15-0	Carbon Disulfide	22		1.1	2.5	5	ug/Kg
1634-04-4	Methyl tert-butyl Ether	24		0.96	2.5	5	ug/Kg
79-20-9	Methyl Acetate	25		1.5	2.5	5	ug/Kg
75-09-2	Methylene Chloride	21		1.4	2.5	5	ug/Kg
156-60-5	trans-1,2-Dichloroethene	21		0.69	2.5	5	ug/Kg
108-05-4	Vinyl Acetate	140		3.5	12.5	25	ug/Kg
75-34-3	1,1-Dichloroethane	23		0.94	2.5	5	ug/Kg
110-82-7	Cyclohexane	22		1	2.5	5	ug/Kg
78-93-3	2-Butanone	130		3.1	12.5	25	ug/Kg
56-23-5	Carbon Tetrachloride	17		0.99	2.5	5	ug/Kg
594-20-7	2,2-Dichloropropane	23		1	2.5	5	ug/Kg
156-59-2	cis-1,2-Dichloroethene	21		0.89	2.5	5	ug/Kg
74-97-5	Bromochloromethane	24		0.79	2.5	5	ug/Kg
67-66-3	Chloroform	22		0.74	2.5	5	ug/Kg
71-55-6	1,1,1-Trichloroethane	20		0.88	2.5	5	ug/Kg

VOC-Chemtech Full -15

Soil Aliquot Vol:

Report of Analysis

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

uL

Client Sample ID: VD0815SBS01 SDG No.: D3811
Lab Sample ID: VD0815SBS01 Matrix: SOIL

Analytical Method: SW8260C % Moisture: 0

Sample Wt/Vol: 5 Units: g Final Vol: 5000 uL

Test:

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036739.D 1 08/15/12 VD081512

VD030737.D	1		00/13/	12		V D001312	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
108-87-2	Methylcyclohexane	19		1.1	2.5	5	ug/Kg
563-58-6	1,1-Dichloropropene	20		0.46	2.5	5	ug/Kg
71-43-2	Benzene	21		0.38	2.5	5	ug/Kg
107-06-2	1,2-Dichloroethane	21		0.64	2.5	5	ug/Kg
79-01-6	Trichloroethene	19		0.86	2.5	5	ug/Kg
78-87-5	1,2-Dichloropropane	21		0.26	2.5	5	ug/Kg
74-95-3	Dibromomethane	21		0.78	2.5	5	ug/Kg
75-27-4	Bromodichloromethane	20		0.62	2.5	5	ug/Kg
108-10-1	4-Methyl-2-Pentanone	120		2.9	12.5	25	ug/Kg
108-88-3	Toluene	20		0.64	2.5	5	ug/Kg
10061-02-6	t-1,3-Dichloropropene	21		0.79	2.5	5	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	21		0.72	2.5	5	ug/Kg
79-00-5	1,1,2-Trichloroethane	20		0.9	2.5	5	ug/Kg
142-28-9	1,3-Dichloropropane	20		0.74	2.5	5	ug/Kg
110-75-8	2-Chloroethyl Vinyl ether	110		12	12.5	25	ug/Kg
591-78-6	2-Hexanone	110		3.9	12.5	25	ug/Kg
124-48-1	Dibromochloromethane	19		0.54	2.5	5	ug/Kg
106-93-4	1,2-Dibromoethane	19		0.64	2.5	5	ug/Kg
127-18-4	Tetrachloroethene	19		1	2.5	5	ug/Kg
108-90-7	Chlorobenzene	20		0.5	2.5	5	ug/Kg
630-20-6	1,1,1,2-Tetrachloroethane	20		0.43	2.5	5	ug/Kg
67-72-1	Hexachloroethane	18		0.76	2.5	5	ug/Kg
100-41-4	Ethyl Benzene	20		0.62	2.5	5	ug/Kg
179601-23-1	m/p-Xylenes	39		0.72	5	10	ug/Kg
95-47-6	o-Xylene	20		0.68	2.5	5	ug/Kg
100-42-5	Styrene	20		0.45	2.5	5	ug/Kg
75-25-2	Bromoform	19		0.74	2.5	5	ug/Kg
98-82-8	Isopropylbenzene	20		0.48	2.5	5	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	22		0.46	2.5	5	ug/Kg
96-18-4	1,2,3-Trichloropropane	22		0.49	2.5	5	ug/Kg
108-86-1	Bromobenzene	20		0.52	2.5	5	ug/Kg
103-65-1	n-propylbenzene	20		0.36	2.5	5	ug/Kg

uL

Report of Analysis

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

Client Sample ID: VD0815SBS01 SDG No.: D3811

Lab Sample ID: VD0815SBS01 Matrix: SOIL

Analytical Method: SW8260C % Moisture: 0

Analytical Method: SW8260C % Moisture: 0 Sample Wt/Vol: 5 Units: g Final Vol: 5000

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036739.D 1 08/15/12 VD081512

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
95-49-8	2-Chlorotoluene	20		0.74	2.5	5	ug/Kg
108-67-8	1,3,5-Trimethylbenzene	19		0.45	2.5	5	ug/Kg
106-43-4	4-Chlorotoluene	20		0.62	2.5	5	ug/Kg
98-06-6	tert-Butylbenzene	19		0.59	2.5	5	ug/Kg
95-63-6	1,2,4-Trimethylbenzene	20		0.5	2.5	5	ug/Kg
135-98-8	sec-Butylbenzene	20		0.52	2.5	5	ug/Kg
99-87-6	p-Isopropyltoluene	19		0.29	2.5	5	ug/Kg
541-73-1	1,3-Dichlorobenzene	19		0.37	2.5	5	ug/Kg
106-46-7	1,4-Dichlorobenzene	19		0.41	2.5	5	ug/Kg
104-51-8	n-Butylbenzene	19		0.46	2.5	5	ug/Kg
95-50-1	1,2-Dichlorobenzene	20		0.62	2.5	5	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	18		0.87	2.5	5	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	16		0.7	2.5	5	ug/Kg
87-68-3	Hexachlorobutadiene	17		0.79	2.5	5	ug/Kg
91-20-3	Naphthalene	5.8		0.45	2.5	5	ug/Kg
87-61-6	1,2,3-Trichlorobenzene	17		0.5	2.5	5	ug/Kg
74-88-4	Methyl Iodide	17		5	5	5	ug/Kg
107-05-1	Allyl chloride	22		5	5	5	ug/Kg
126-98-7	Methacrylonitrile	25		5	5	5	ug/Kg
110-57-6	trans-1,4-Dichloro-2-butene	20		5	5	5	ug/Kg
97-63-2	Ethyl methacrylate	21		5	5	5	ug/Kg
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	51.5		56 - 120		103%	SPK: 50
1868-53-7	Dibromofluoromethane	44.9		57 - 135		90%	SPK: 50
2037-26-5	Toluene-d8	44.9		67 - 123		90%	SPK: 50
460-00-4	4-Bromofluorobenzene	45.3		33 - 141		91%	SPK: 50
INTERNAL ST							
363-72-4	Pentafluorobenzene	458902	4.73				
540-36-3	1,4-Difluorobenzene	778112	5.45				
3114-55-4	Chlorobenzene-d5	635909	9.57				
3855-82-1	1,4-Dichlorobenzene-d4	300829	12.47				

Analytical Method:

Report of Analysis

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

SW8260C

Client Sample ID: VD0815SBS01 SDG No.: D3811
Lab Sample ID: VD0815SBS01 Matrix: SOIL

Sample Wt/Vol: 5 Units: g Final Vol: 5000

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

% Moisture:

uL

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VD036739.D 1 08/15/12 VD081512

CAS Number Parameter Conc. Qualifier MDL LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

VOC-Chemtech Full -15

Soil Aliquot Vol:

Report of Analysis

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

uL

Client Sample ID: VD0816SBS01 SDG No.: D3811
Lab Sample ID: VD0816SBS01 Matrix: SOIL

Analytical Method: SW8260C % Moisture: 0

Sample Wt/Vol: 5 Units: g Final Vol: 5000 uL

Test:

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036756.D 1 08/16/12 VD081612

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	19		0.65	2.5	5	ug/Kg
74-87-3	Chloromethane	23		0.86	2.5	5	ug/Kg
75-01-4	Vinyl Chloride	24		1.2	2.5	5	ug/Kg
141-78-6	Ethyl Acetate	25		0.87	2.5	5	ug/Kg
108-21-4	Isopropyl Acetate	25		1.2	2.5	5	ug/Kg
628-63-7	N-amyl acetate	22		0.94	2.5	5	ug/Kg
74-83-9	Bromomethane	24		2.4	2.5	5	ug/Kg
75-00-3	Chloroethane	22		1.4	2.5	5	ug/Kg
75-69-4	Trichlorofluoromethane	21		1.3	2.5	5	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	23		1.3	2.5	5	ug/Kg
75-65-0	Tert butyl alcohol	120		7.4	12.5	25	ug/Kg
60-29-7	Diethyl Ether	25		1.9	2.5	5	ug/Kg
75-35-4	1,1-Dichloroethene	24		1.5	2.5	5	ug/Kg
107-02-8	Acrolein	98		4	12.5	25	ug/Kg
107-13-1	Acrylonitrile	120		4.9	12.5	25	ug/Kg
67-64-1	Acetone	150		3	12.5	25	ug/Kg
75-15-0	Carbon Disulfide	24		1.1	2.5	5	ug/Kg
1634-04-4	Methyl tert-butyl Ether	24		0.96	2.5	5	ug/Kg
79-20-9	Methyl Acetate	28		1.5	2.5	5	ug/Kg
75-09-2	Methylene Chloride	21		1.4	2.5	5	ug/Kg
156-60-5	trans-1,2-Dichloroethene	23		0.69	2.5	5	ug/Kg
108-05-4	Vinyl Acetate	150		3.5	12.5	25	ug/Kg
75-34-3	1,1-Dichloroethane	23		0.94	2.5	5	ug/Kg
110-82-7	Cyclohexane	22		1	2.5	5	ug/Kg
78-93-3	2-Butanone	140		3.1	12.5	25	ug/Kg
56-23-5	Carbon Tetrachloride	15		0.99	2.5	5	ug/Kg
594-20-7	2,2-Dichloropropane	24		1	2.5	5	ug/Kg
156-59-2	cis-1,2-Dichloroethene	21		0.89	2.5	5	ug/Kg
74-97-5	Bromochloromethane	26		0.79	2.5	5	ug/Kg
67-66-3	Chloroform	22		0.74	2.5	5	ug/Kg
71-55-6	1,1,1-Trichloroethane	20		0.88	2.5	5	ug/Kg

Sample Wt/Vol:

5

Units:

Report of Analysis

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

g

Client Sample ID: VD0816SBS01 SDG No.: D3811
Lab Sample ID: VD0816SBS01 Matrix: SOIL

Analytical Method: SW8260C % Moisture: 0

Soil Aliquot Vol: UL Test: VOC-Chemtech Full -15

Final Vol:

5000

uL

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036756.D 1 08/16/12 VD081612

. = 000,001							
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
108-87-2	Methylcyclohexane	20		1.1	2.5	5	ug/Kg
563-58-6	1,1-Dichloropropene	21		0.46	2.5	5	ug/Kg
71-43-2	Benzene	21		0.38	2.5	5	ug/Kg
107-06-2	1,2-Dichloroethane	23		0.64	2.5	5	ug/Kg
79-01-6	Trichloroethene	19		0.86	2.5	5	ug/Kg
78-87-5	1,2-Dichloropropane	21		0.26	2.5	5	ug/Kg
74-95-3	Dibromomethane	22		0.78	2.5	5	ug/Kg
75-27-4	Bromodichloromethane	21		0.62	2.5	5	ug/Kg
108-10-1	4-Methyl-2-Pentanone	120		2.9	12.5	25	ug/Kg
108-88-3	Toluene	20		0.64	2.5	5	ug/Kg
10061-02-6	t-1,3-Dichloropropene	22		0.79	2.5	5	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	22		0.72	2.5	5	ug/Kg
79-00-5	1,1,2-Trichloroethane	20		0.9	2.5	5	ug/Kg
142-28-9	1,3-Dichloropropane	23		0.74	2.5	5	ug/Kg
110-75-8	2-Chloroethyl Vinyl ether	110		12	12.5	25	ug/Kg
591-78-6	2-Hexanone	130		3.9	12.5	25	ug/Kg
124-48-1	Dibromochloromethane	20		0.54	2.5	5	ug/Kg
106-93-4	1,2-Dibromoethane	20		0.64	2.5	5	ug/Kg
127-18-4	Tetrachloroethene	20		1	2.5	5	ug/Kg
108-90-7	Chlorobenzene	19		0.5	2.5	5	ug/Kg
630-20-6	1,1,1,2-Tetrachloroethane	20		0.43	2.5	5	ug/Kg
67-72-1	Hexachloroethane	20		0.76	2.5	5	ug/Kg
100-41-4	Ethyl Benzene	20		0.62	2.5	5	ug/Kg
179601-23-1	m/p-Xylenes	40		0.72	5	10	ug/Kg
95-47-6	o-Xylene	19		0.68	2.5	5	ug/Kg
100-42-5	Styrene	19		0.45	2.5	5	ug/Kg
75-25-2	Bromoform	19		0.74	2.5	5	ug/Kg
98-82-8	Isopropylbenzene	20		0.48	2.5	5	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	22		0.46	2.5	5	ug/Kg
96-18-4	1,2,3-Trichloropropane	22		0.49	2.5	5	ug/Kg
108-86-1	Bromobenzene	20		0.52	2.5	5	ug/Kg
103-65-1	n-propylbenzene	21		0.36	2.5	5	ug/Kg

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

Client Sample ID: VD0816SBS01 SDG No.: D3811

Lab Sample ID: VD0816SBS01 Matrix: SOIL

Analytical Method: SW8260C % Moisture: 0

Sample Wt/Vol: 5 Units: g Final Vol: 5000 uL

Soil Aliquot Vol: UL Test: VOC-Chemtech Full -15

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VD036756.D 1 08/16/12 VD081612

VD036/56.D	I		08/16/12			VD081612	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
95-49-8	2-Chlorotoluene	20		0.74	2.5	5	ug/Kg
108-67-8	1,3,5-Trimethylbenzene	19		0.45	2.5	5	ug/Kg
106-43-4	4-Chlorotoluene	21		0.62	2.5	5	ug/Kg
98-06-6	tert-Butylbenzene	21		0.59	2.5	5	ug/Kg
95-63-6	1,2,4-Trimethylbenzene	20		0.5	2.5	5	ug/Kg
135-98-8	sec-Butylbenzene	21		0.52	2.5	5	ug/Kg
99-87-6	p-Isopropyltoluene	20		0.29	2.5	5	ug/Kg
541-73-1	1,3-Dichlorobenzene	20		0.37	2.5	5	ug/Kg
106-46-7	1,4-Dichlorobenzene	20		0.41	2.5	5	ug/Kg
104-51-8	n-Butylbenzene	20		0.46	2.5	5	ug/Kg
95-50-1	1,2-Dichlorobenzene	21		0.62	2.5	5	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	20		0.87	2.5	5	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	18		0.7	2.5	5	ug/Kg
87-68-3	Hexachlorobutadiene	20		0.79	2.5	5	ug/Kg
91-20-3	Naphthalene	5.5		0.45	2.5	5	ug/Kg
87-61-6	1,2,3-Trichlorobenzene	17		0.5	2.5	5	ug/Kg
74-88-4	Methyl Iodide	19		5	5	5	ug/Kg
107-05-1	Allyl chloride	21		5	5	5	ug/Kg
126-98-7	Methacrylonitrile	26		5	5	5	ug/Kg
110-57-6	trans-1,4-Dichloro-2-butene	23		5	5	5	ug/Kg
97-63-2	Ethyl methacrylate	21		5	5	5	ug/Kg
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	56.7		56 - 120)	113%	SPK: 50
1868-53-7	Dibromofluoromethane	48.9		57 - 135	5	98%	SPK: 50
2037-26-5	Toluene-d8	47.9		67 - 123	3	96%	SPK: 50
460-00-4	4-Bromofluorobenzene	48		33 - 141	_	96%	SPK: 50
INTERNAL ST							
363-72-4	Pentafluorobenzene	449816	4.73				
540-36-3	1,4-Difluorobenzene	741186	5.45				
3114-55-4	Chlorobenzene-d5	620078	9.57				
3855-82-1	1,4-Dichlorobenzene-d4	288558	12.47				

Client: MS Analytical Date Collected:

12MS104 Kensington Heights Project: Date Received:

g

SW8260C

Client Sample ID: VD0816SBS01 SDG No.: D3811 Lab Sample ID: Matrix: SOIL VD0816SBS01

Analytical Method: Sample Wt/Vol: 5 Units: Final Vol: 5000

VOC-Chemtech Full -15 Soil Aliquot Vol: uL Test:

GC Column: RTX-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Date Analyzed Prep Batch ID Prep Date

VD036756.D 08/16/12 VD081612

MDL **CAS Number** Parameter Conc. Qualifier LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

% Moisture:

uL

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Sample Wt/Vol:

5

Units:

Report of Analysis

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

g

Client Sample ID: VF0815SBS01 SDG No.: D3811

Lab Sample ID: VF0815SBS01 Matrix: SOIL

Analytical Method: SW8260C % Moisture: 0

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

Final Vol:

5000

uL

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VF034768.D 1 08/15/12 VF081512

V1 054700.D	1	06/13/12			V1 001312			
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units	
TARGETS								
75-71-8	Dichlorodifluoromethane	21		0.65	2.5	5	ug/Kg	
74-87-3	Chloromethane	22		0.86	2.5	5	ug/Kg	
75-01-4	Vinyl Chloride	22		1.2	2.5	5	ug/Kg	
141-78-6	Ethyl Acetate	20		0.87	2.5	5	ug/Kg	
108-21-4	Isopropyl Acetate	17		1.2	2.5	5	ug/Kg	
628-63-7	N-amyl acetate	19		0.94	2.5	5	ug/Kg	
74-83-9	Bromomethane	23		2.4	2.5	5	ug/Kg	
75-00-3	Chloroethane	22		1.4	2.5	5	ug/Kg	
75-69-4	Trichlorofluoromethane	22		1.3	2.5	5	ug/Kg	
76-13-1	1,1,2-Trichlorotrifluoroethane	22		1.3	2.5	5	ug/Kg	
75-65-0	Tert butyl alcohol	100		7.4	12.5	25	ug/Kg	
60-29-7	Diethyl Ether	18		1.9	2.5	5	ug/Kg	
75-35-4	1,1-Dichloroethene	23		1.5	2.5	5	ug/Kg	
107-02-8	Acrolein	66		4	12.5	25	ug/Kg	
107-13-1	Acrylonitrile	110		4.9	12.5	25	ug/Kg	
67-64-1	Acetone	95		3	12.5	25	ug/Kg	
75-15-0	Carbon Disulfide	22		1.1	2.5	5	ug/Kg	
1634-04-4	Methyl tert-butyl Ether	21		0.96	2.5	5	ug/Kg	
79-20-9	Methyl Acetate	21		1.5	2.5	5	ug/Kg	
75-09-2	Methylene Chloride	21		1.4	2.5	5	ug/Kg	
156-60-5	trans-1,2-Dichloroethene	23		0.69	2.5	5	ug/Kg	
108-05-4	Vinyl Acetate	100		3.5	12.5	25	ug/Kg	
75-34-3	1,1-Dichloroethane	22		0.94	2.5	5	ug/Kg	
110-82-7	Cyclohexane	22		1	2.5	5	ug/Kg	
78-93-3	2-Butanone	96		3.1	12.5	25	ug/Kg	
56-23-5	Carbon Tetrachloride	21		0.99	2.5	5	ug/Kg	
594-20-7	2,2-Dichloropropane	23		1	2.5	5	ug/Kg	
156-59-2	cis-1,2-Dichloroethene	24		0.89	2.5	5	ug/Kg	
74-97-5	Bromochloromethane	22		0.79	2.5	5	ug/Kg	
67-66-3	Chloroform	23		0.74	2.5	5	ug/Kg	
71-55-6	1,1,1-Trichloroethane	22		0.88	2.5	5	ug/Kg	

VOC-Chemtech Full -15

Soil Aliquot Vol:

Report of Analysis

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

иL

Client Sample ID: VF0815SBS01 SDG No.: D3811
Lab Sample ID: VF0815SBS01 Matrix: SOIL

Analytical Method: SW8260C % Moisture: 0

Sample Wt/Vol: 5 Units: g Final Vol: 5000 uL

Test:

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034768.D 1 08/15/12 VF081512

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units	
108-87-2	Methylcyclohexane	22		1.1	2.5	5	ug/Kg	
563-58-6	1,1-Dichloropropene	22		0.46	2.5	5	ug/Kg	
71-43-2	Benzene	23		0.38	2.5	5	ug/Kg	
107-06-2	1,2-Dichloroethane	21		0.64	2.5	5	ug/Kg	
79-01-6	Trichloroethene	23		0.86	2.5	5	ug/Kg	
78-87-5	1,2-Dichloropropane	22		0.26	2.5	5	ug/Kg	
74-95-3	Dibromomethane	21		0.78	2.5	5	ug/Kg	
75-27-4	Bromodichloromethane	21		0.62	2.5	5	ug/Kg	
108-10-1	4-Methyl-2-Pentanone	100		2.9	12.5	25	ug/Kg	
108-88-3	Toluene	22		0.64	2.5	5	ug/Kg	
10061-02-6	t-1,3-Dichloropropene	20		0.79	2.5	5	ug/Kg	
10061-01-5	cis-1,3-Dichloropropene	22		0.72	2.5	5	ug/Kg	
79-00-5	1,1,2-Trichloroethane	20		0.9	2.5	5	ug/Kg	
142-28-9	1,3-Dichloropropane	21		0.74	2.5	5	ug/Kg	
110-75-8	2-Chloroethyl Vinyl ether	81		12	12.5	25	ug/Kg	
591-78-6	2-Hexanone	110		3.9	12.5	25	ug/Kg	
124-48-1	Dibromochloromethane	22		0.54	2.5	5	ug/Kg	
106-93-4	1,2-Dibromoethane	21		0.64	2.5	5	ug/Kg	
127-18-4	Tetrachloroethene	22		1	2.5	5	ug/Kg	
108-90-7	Chlorobenzene	22		0.5	2.5	5	ug/Kg	
630-20-6	1,1,1,2-Tetrachloroethane	23		0.43	2.5	5	ug/Kg	
67-72-1	Hexachloroethane	22		0.76	2.5	5	ug/Kg	
100-41-4	Ethyl Benzene	22		0.62	2.5	5	ug/Kg	
179601-23-1	m/p-Xylenes	45		0.72	5	10	ug/Kg	
95-47-6	o-Xylene	22		0.68	2.5	5	ug/Kg	
100-42-5	Styrene	22		0.45	2.5	5	ug/Kg	
75-25-2	Bromoform	21		0.74	2.5	5	ug/Kg	
98-82-8	Isopropylbenzene	22		0.48	2.5	5	ug/Kg	
79-34-5	1,1,2,2-Tetrachloroethane	20		0.46	2.5	5	ug/Kg	
96-18-4	1,2,3-Trichloropropane	19		0.49	2.5	5	ug/Kg	
108-86-1	Bromobenzene	23		0.52	2.5	5	ug/Kg	
103-65-1	n-propylbenzene	22		0.36	2.5	5	ug/Kg	

uL

Analytical Method:

Report of Analysis

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

SW8260C

Client Sample ID: VF0815SBS01 SDG No.: D3811

Lab Sample ID: VF0815SBS01 Matrix: SOIL

Sample Wt/Vol: 5 Units: g Final Vol: 5000

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

% Moisture:

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
VF034768.D 1 08/15/12 VF081512

CAS Number Parameter Conc. **Qualifier MDL** LOD LOQ / CRQL Units 95-49-8 22 0.74 2.5 5 ug/Kg 2-Chlorotoluene 22 5 108-67-8 1,3,5-Trimethylbenzene 0.45 2.5 ug/Kg 106-43-4 4-Chlorotoluene 22 0.62 2.5 5 ug/Kg 22 98-06-6 tert-Butylbenzene 0.59 2.5 5 ug/Kg 95-63-6 1,2,4-Trimethylbenzene 22 0.5 2.5 5 ug/Kg 135-98-8 sec-Butylbenzene 23 0.52 2.5 5 ug/Kg 23 0.29 2.5 5 99-87-6 p-Isopropyltoluene ug/Kg 23 0.37 2.5 5 541-73-1 1,3-Dichlorobenzene ug/Kg 22 2.5 106-46-7 1,4-Dichlorobenzene 0.41 5 ug/Kg 23 104-51-8 0.46 2.5 5 n-Butylbenzene ug/Kg 22 2.5 95-50-1 0.62 5 1,2-Dichlorobenzene ug/Kg 96-12-8 1,2-Dibromo-3-Chloropropane 20 0.87 2.5 5 ug/Kg 21 2.5 120-82-1 0.7 5 1,2,4-Trichlorobenzene ug/Kg 87-68-3 Hexachlorobutadiene 23 0.79 2.5 5 ug/Kg 20 2.5 5 91-20-3 Naphthalene 0.45 ug/Kg 1,2,3-Trichlorobenzene 20 0.5 2.5 5 87-61-6 ug/Kg Methyl Iodide 23 5 5 5 74-88-4 ug/Kg 5 5 5 107-05-1 Allyl chloride 24 ug/Kg 5 21 5 5 126-98-7 Methacrylonitrile ug/Kg 5 110-57-6 trans-1,4-Dichloro-2-butene 20 5 5 ug/Kg 5 5 97-63-2 Ethyl methacrylate 20 5 ug/Kg **SURROGATES** 1,2-Dichloroethane-d4 51 102% 17060-07-0 56 - 120 SPK: 50 Dibromofluoromethane 57 - 135 1868-53-7 53.8 108% SPK: 50 2037-26-5 Toluene-d8 51.1 67 - 123 102% SPK: 50 4-Bromofluorobenzene 460-00-4 50.9 33 - 141 102% SPK: 50 INTERNAL STANDARDS Pentafluorobenzene 233329 4.4 363-72-4 540-36-3 1,4-Difluorobenzene 433274 5.15 3114-55-4 Chlorobenzene-d5 406809 9.34 3855-82-1 1,4-Dichlorobenzene-d4 208848 12.25

Client: MS Analytical

12MS104 Kensington Heights

Client Sample ID: VF0815SBS01

Lab Sample ID: VF0815SBS01

Analytical Method: SW8260C

Sample Wt/Vol: 5 Units: g

Soil Aliquot Vol: uL

GC Column: RTX-VMS ID: 0.18

Date Collected:

Date Received:

SDG No.: D3811

Matrix: SOIL

% Moisture:

Final Vol: 5000

uL

VOC-Chemtech Full -15

Level: LOW

File ID/Qc Batch:

VF034768.D

Dilution:

Prep Date

Date Analyzed

Test:

Prep Batch ID

08/15/12

VF081512

CAS Number

Project:

Parameter

Conc.

Qualifier

MDL

LOD LOQ/CRQL

Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

VOC-Chemtech Full -15

Soil Aliquot Vol:

Report of Analysis

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

иL

Client Sample ID: VF0816SBS01 SDG No.: D3811

Lab Sample ID: VF0816SBS01 Matrix: SOIL

Analytical Method: SW8260C % Moisture: 0

Sample Wt/Vol: 5 Units: g Final Vol: 5000 uL

Test:

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VF034791.D 1 08/16/12 VF081612

VF034791.D	I		08/16/	/12		VF081612	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	20		0.65	2.5	5	ug/Kg
74-87-3	Chloromethane	22		0.86	2.5	5	ug/Kg
75-01-4	Vinyl Chloride	22		1.2	2.5	5	ug/Kg
141-78-6	Ethyl Acetate	23		0.87	2.5	5	ug/Kg
108-21-4	Isopropyl Acetate	19		1.2	2.5	5	ug/Kg
628-63-7	N-amyl acetate	21		0.94	2.5	5	ug/Kg
74-83-9	Bromomethane	21		2.4	2.5	5	ug/Kg
75-00-3	Chloroethane	20		1.4	2.5	5	ug/Kg
75-69-4	Trichlorofluoromethane	22		1.3	2.5	5	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	23		1.3	2.5	5	ug/Kg
75-65-0	Tert butyl alcohol	120		7.4	12.5	25	ug/Kg
60-29-7	Diethyl Ether	20		1.9	2.5	5	ug/Kg
75-35-4	1,1-Dichloroethene	23		1.5	2.5	5	ug/Kg
107-02-8	Acrolein	87		4	12.5	25	ug/Kg
107-13-1	Acrylonitrile	120		4.9	12.5	25	ug/Kg
67-64-1	Acetone	100		3	12.5	25	ug/Kg
75-15-0	Carbon Disulfide	23		1.1	2.5	5	ug/Kg
1634-04-4	Methyl tert-butyl Ether	24		0.96	2.5	5	ug/Kg
79-20-9	Methyl Acetate	24		1.5	2.5	5	ug/Kg
75-09-2	Methylene Chloride	23		1.4	2.5	5	ug/Kg
156-60-5	trans-1,2-Dichloroethene	23		0.69	2.5	5	ug/Kg
108-05-4	Vinyl Acetate	120		3.5	12.5	25	ug/Kg
75-34-3	1,1-Dichloroethane	24		0.94	2.5	5	ug/Kg
110-82-7	Cyclohexane	23		1	2.5	5	ug/Kg
78-93-3	2-Butanone	120		3.1	12.5	25	ug/Kg
56-23-5	Carbon Tetrachloride	22		0.99	2.5	5	ug/Kg
594-20-7	2,2-Dichloropropane	22		1	2.5	5	ug/Kg
156-59-2	cis-1,2-Dichloroethene	24		0.89	2.5	5	ug/Kg
74-97-5	Bromochloromethane	25		0.79	2.5	5	ug/Kg
67-66-3	Chloroform	24		0.74	2.5	5	ug/Kg
71-55-6	1,1,1-Trichloroethane	22		0.88	2.5	5	ug/Kg

VOC-Chemtech Full -15

Soil Aliquot Vol:

Report of Analysis

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

uL

Client Sample ID: VF0816SBS01 SDG No.: D3811

Lab Sample ID: VF0816SBS01 Matrix: SOIL

Analytical Method: SW8260C % Moisture: 0

Sample Wt/Vol: 5 Units: g Final Vol: 5000 uL

Test:

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034791.D 1 08/16/12 VF081612

VF034/91.D	1		08/10/	12		VFU81012	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
108-87-2	Methylcyclohexane	23		1.1	2.5	5	ug/Kg
563-58-6	1,1-Dichloropropene	22		0.46	2.5	5	ug/Kg
71-43-2	Benzene	23		0.38	2.5	5	ug/Kg
107-06-2	1,2-Dichloroethane	22		0.64	2.5	5	ug/Kg
79-01-6	Trichloroethene	22		0.86	2.5	5	ug/Kg
78-87-5	1,2-Dichloropropane	22		0.26	2.5	5	ug/Kg
74-95-3	Dibromomethane	21		0.78	2.5	5	ug/Kg
75-27-4	Bromodichloromethane	21		0.62	2.5	5	ug/Kg
108-10-1	4-Methyl-2-Pentanone	120		2.9	12.5	25	ug/Kg
108-88-3	Toluene	21		0.64	2.5	5	ug/Kg
10061-02-6	t-1,3-Dichloropropene	22		0.79	2.5	5	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	22		0.72	2.5	5	ug/Kg
79-00-5	1,1,2-Trichloroethane	21		0.9	2.5	5	ug/Kg
142-28-9	1,3-Dichloropropane	22		0.74	2.5	5	ug/Kg
110-75-8	2-Chloroethyl Vinyl ether	120		12	12.5	25	ug/Kg
591-78-6	2-Hexanone	110		3.9	12.5	25	ug/Kg
124-48-1	Dibromochloromethane	22		0.54	2.5	5	ug/Kg
106-93-4	1,2-Dibromoethane	21		0.64	2.5	5	ug/Kg
127-18-4	Tetrachloroethene	21		1	2.5	5	ug/Kg
108-90-7	Chlorobenzene	22		0.5	2.5	5	ug/Kg
630-20-6	1,1,1,2-Tetrachloroethane	21		0.43	2.5	5	ug/Kg
67-72-1	Hexachloroethane	22		0.76	2.5	5	ug/Kg
100-41-4	Ethyl Benzene	22		0.62	2.5	5	ug/Kg
179601-23-1	m/p-Xylenes	44		0.72	5	10	ug/Kg
95-47-6	o-Xylene	22		0.68	2.5	5	ug/Kg
100-42-5	Styrene	22		0.45	2.5	5	ug/Kg
75-25-2	Bromoform	23		0.74	2.5	5	ug/Kg
98-82-8	Isopropylbenzene	22		0.48	2.5	5	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	24		0.46	2.5	5	ug/Kg
96-18-4	1,2,3-Trichloropropane	23		0.49	2.5	5	ug/Kg
108-86-1	Bromobenzene	21		0.52	2.5	5	ug/Kg
103-65-1	n-propylbenzene	22		0.36	2.5	5	ug/Kg

Analytical Method:

Report of Analysis

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

SW8260C

Client Sample ID: VF0816SBS01 SDG No.: D3811

Lab Sample ID: VF0816SBS01 Matrix: SOIL

Sample Wt/Vol: 5 Units: g Final Vol: 5000

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

% Moisture:

0

uL

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034791.D 1 08/16/12 VF081612

VF034791.D	1		08/16/	12		VF081612	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
95-49-8	2-Chlorotoluene	23		0.74	2.5	5	ug/Kg
108-67-8	1,3,5-Trimethylbenzene	22		0.45	2.5	5	ug/Kg
106-43-4	4-Chlorotoluene	22		0.62	2.5	5	ug/Kg
98-06-6	tert-Butylbenzene	22		0.59	2.5	5	ug/Kg
95-63-6	1,2,4-Trimethylbenzene	21		0.5	2.5	5	ug/Kg
135-98-8	sec-Butylbenzene	23		0.52	2.5	5	ug/Kg
99-87-6	p-Isopropyltoluene	23		0.29	2.5	5	ug/Kg
541-73-1	1,3-Dichlorobenzene	22		0.37	2.5	5	ug/Kg
106-46-7	1,4-Dichlorobenzene	22		0.41	2.5	5	ug/Kg
104-51-8	n-Butylbenzene	23		0.46	2.5	5	ug/Kg
95-50-1	1,2-Dichlorobenzene	22		0.62	2.5	5	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	18		0.87	2.5	5	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	21		0.7	2.5	5	ug/Kg
87-68-3	Hexachlorobutadiene	22		0.79	2.5	5	ug/Kg
91-20-3	Naphthalene	20		0.45	2.5	5	ug/Kg
87-61-6	1,2,3-Trichlorobenzene	22		0.5	2.5	5	ug/Kg
74-88-4	Methyl Iodide	23		5	5	5	ug/Kg
107-05-1	Allyl chloride	23		5	5	5	ug/Kg
126-98-7	Methacrylonitrile	24		5	5	5	ug/Kg
110-57-6	trans-1,4-Dichloro-2-butene	20		5	5	5	ug/Kg
97-63-2	Ethyl methacrylate	22		5	5	5	ug/Kg
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	54.7		55 - 158		109%	SPK: 50
1868-53-7	Dibromofluoromethane	56		53 - 156		112%	SPK: 50
2037-26-5	Toluene-d8	50.5		85 - 115		101%	SPK: 50
460-00-4	4-Bromofluorobenzene	52.6		85 - 120)	105%	SPK: 50
INTERNAL ST		٠					
363-72-4	Pentafluorobenzene	216622	4.4				
540-36-3	1,4-Difluorobenzene	415438	5.14				
3114-55-4	Chlorobenzene-d5	390302	9.34				
3855-82-1	1,4-Dichlorobenzene-d4	196062	12.25				

Soil Aliquot Vol:

Report of Analysis

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

uL

Client Sample ID: VF0816SBS01 SDG No.: D3811
Lab Sample ID: VF0816SBS01 Matrix: SOIL

Analytical Method: SW8260C % Moisture: 0

Sample Wt/Vol: 5 Units: g Final Vol: 5000 uL

Test:

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VF034791.D 1 08/16/12 VF081612

CAS Number Parameter Conc. Qualifier MDL LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

VOC-Chemtech Full -15

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Test:

uL

Report of Analysis

Client: MS Analytical Date Collected: 08/14/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: KY030LC023-120814MS SDG No.: D3811 Lab Sample ID: D3814-04MS Matrix: SOIL Analytical Method: SW8260C % Moisture: 27 Sample Wt/Vol: 5 Units: Final Vol: 5000 g

Soil Aliquot Vol: иL VOC-Chemtech Full -15 ID: 0.18 Level:

GC Column: RTX-VMS LOW

File ID/Qc Batch: Dilution: Prep Batch ID Prep Date Date Analyzed VF034815.D 08/16/12 VF081612

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	73		0.89	3.4	6.8	ug/Kg
74-87-3	Chloromethane	71		1.2	3.4	6.8	ug/Kg
75-01-4	Vinyl Chloride	70		1.7	3.4	6.8	ug/Kg
141-78-6	Ethyl Acetate	69		1.2	3.4	6.8	ug/Kg
108-21-4	Isopropyl Acetate	54		1.6	3.4	6.8	ug/Kg
628-63-7	N-amyl acetate	56		1.3	3.4	6.8	ug/Kg
74-83-9	Bromomethane	69		3.4	3.4	6.8	ug/Kg
75-00-3	Chloroethane	67		1.9	3.4	6.8	ug/Kg
75-69-4	Trichlorofluoromethane	72		1.8	3.4	6.8	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	73		1.8	3.4	6.8	ug/Kg
75-65-0	Tert butyl alcohol	410		10	17	34	ug/Kg
60-29-7	Diethyl Ether	120		2.6	3.4	6.8	ug/Kg
75-35-4	1,1-Dichloroethene	71		2	3.4	6.8	ug/Kg
107-02-8	Acrolein	240		5.5	17	34	ug/Kg
107-13-1	Acrylonitrile	410		6.7	17	34	ug/Kg
67-64-1	Acetone	460		4.1	17	34	ug/Kg
75-15-0	Carbon Disulfide	65		1.5	3.4	6.8	ug/Kg
1634-04-4	Methyl tert-butyl Ether	80		1.3	3.4	6.8	ug/Kg
79-20-9	Methyl Acetate	88		2.1	3.4	6.8	ug/Kg
75-09-2	Methylene Chloride	80		1.9	3.4	6.8	ug/Kg
156-60-5	trans-1,2-Dichloroethene	72		0.95	3.4	6.8	ug/Kg
108-05-4	Vinyl Acetate	260		4.8	17	34	ug/Kg
75-34-3	1,1-Dichloroethane	77		1.3	3.4	6.8	ug/Kg
110-82-7	Cyclohexane	62		1.4	3.4	6.8	ug/Kg
78-93-3	2-Butanone	400		4.3	17	34	ug/Kg
56-23-5	Carbon Tetrachloride	59		1.4	3.4	6.8	ug/Kg
594-20-7	2,2-Dichloropropane	65		1.4	3.4	6.8	ug/Kg
156-59-2	cis-1,2-Dichloroethene	76		1.2	3.4	6.8	ug/Kg
74-97-5	Bromochloromethane	83		1.1	3.4	6.8	ug/Kg
67-66-3	Chloroform	79		1	3.4	6.8	ug/Kg
71-55-6	1,1,1-Trichloroethane	74		1.2	3.4	6.8	ug/Kg

Analytical Method:

SW8260C

Report of Analysis

Client: MS Analytical Date Collected: 08/14/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: KY030LC023-120814MS SDG No.: D3811 Lab Sample ID: D3814-04MS Matrix: SOIL

Sample Wt/Vol: 5 Units: g Final Vol: 5000 uL

Soil Aliquot Vol: UL Test: VOC-Chemtech Full -15

% Moisture:

27

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034815.D 1 08/16/12 VF081612

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
108-87-2	Methylcyclohexane	54		1.5	3.4	6.8	ug/Kg
563-58-6	1,1-Dichloropropene	66		0.63	3.4	6.8	ug/Kg
71-43-2	Benzene	70		0.52	3.4	6.8	ug/Kg
107-06-2	1,2-Dichloroethane	70		0.88	3.4	6.8	ug/Kg
79-01-6	Trichloroethene	66		1.2	3.4	6.8	ug/Kg
78-87-5	1,2-Dichloropropane	68		0.36	3.4	6.8	ug/Kg
74-95-3	Dibromomethane	74		1.1	3.4	6.8	ug/Kg
75-27-4	Bromodichloromethane	69		0.85	3.4	6.8	ug/Kg
108-10-1	4-Methyl-2-Pentanone	360		4	17	34	ug/Kg
108-88-3	Toluene	66		0.88	3.4	6.8	ug/Kg
10061-02-6	t-1,3-Dichloropropene	63		1.1	3.4	6.8	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	65		0.99	3.4	6.8	ug/Kg
79-00-5	1,1,2-Trichloroethane	74		1.2	3.4	6.8	ug/Kg
142-28-9	1,3-Dichloropropane	72		1	3.4	6.8	ug/Kg
110-75-8	2-Chloroethyl Vinyl ether	350		16	17	34	ug/Kg
591-78-6	2-Hexanone	380		5.4	17	34	ug/Kg
124-48-1	Dibromochloromethane	69		0.74	3.4	6.8	ug/Kg
106-93-4	1,2-Dibromoethane	71		0.88	3.4	6.8	ug/Kg
127-18-4	Tetrachloroethene	68		1.4	3.4	6.8	ug/Kg
108-90-7	Chlorobenzene	65		0.68	3.4	6.8	ug/Kg
630-20-6	1,1,1,2-Tetrachloroethane	68		0.59	3.4	6.8	ug/Kg
67-72-1	Hexachloroethane	60		1	3.4	6.8	ug/Kg
100-41-4	Ethyl Benzene	64		0.85	3.4	6.8	ug/Kg
179601-23-1	m/p-Xylenes	130		0.99	7	14	ug/Kg
95-47-6	o-Xylene	66		0.93	3.4	6.8	ug/Kg
100-42-5	Styrene	64		0.62	3.4	6.8	ug/Kg
75-25-2	Bromoform	72		1	3.4	6.8	ug/Kg
98-82-8	Isopropylbenzene	64		0.66	3.4	6.8	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	79		0.63	3.4	6.8	ug/Kg
96-18-4	1,2,3-Trichloropropane	73		0.67	3.4	6.8	ug/Kg
108-86-1	Bromobenzene	68		0.71	3.4	6.8	ug/Kg
103-65-1	n-propylbenzene	63		0.49	3.4	6.8	ug/Kg

Date Collected:

08/14/12

Report of Analysis

Client: MS Analytical

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: KY030LC023-120814MS SDG No.: D3811
Lab Sample ID: D3814-04MS Matrix: SOIL

 Analytical Method:
 SW8260C
 % Moisture:
 27

 Sample Wt/Vol:
 5
 Units: g
 Final Vol:
 5000
 uL

Soil Aliquot Vol: UL Test: VOC-Chemtech Full -15

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034815.D 1 08/16/12 VF081612

VFU34813.D	1		08/10/	/12		VFU81012	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
95-49-8	2-Chlorotoluene	66		1	3.4	6.8	ug/Kg
108-67-8	1,3,5-Trimethylbenzene	65		0.62	3.4	6.8	ug/Kg
106-43-4	4-Chlorotoluene	65		0.85	3.4	6.8	ug/Kg
98-06-6	tert-Butylbenzene	63		0.81	3.4	6.8	ug/Kg
95-63-6	1,2,4-Trimethylbenzene	64		0.68	3.4	6.8	ug/Kg
135-98-8	sec-Butylbenzene	63		0.71	3.4	6.8	ug/Kg
99-87-6	p-Isopropyltoluene	64		0.4	3.4	6.8	ug/Kg
541-73-1	1,3-Dichlorobenzene	65		0.51	3.4	6.8	ug/Kg
106-46-7	1,4-Dichlorobenzene	66		0.56	3.4	6.8	ug/Kg
104-51-8	n-Butylbenzene	61		0.63	3.4	6.8	ug/Kg
95-50-1	1,2-Dichlorobenzene	66		0.85	3.4	6.8	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	65		1.2	3.4	6.8	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	58		0.96	3.4	6.8	ug/Kg
87-68-3	Hexachlorobutadiene	55		1.1	3.4	6.8	ug/Kg
91-20-3	Naphthalene	64		0.62	3.4	6.8	ug/Kg
87-61-6	1,2,3-Trichlorobenzene	57		0.68	3.4	6.8	ug/Kg
74-88-4	Methyl Iodide	69		6.8	6.8	6.8	ug/Kg
107-05-1	Allyl chloride	64		6.8	6.8	6.8	ug/Kg
126-98-7	Methacrylonitrile	81		6.8	6.8	6.8	ug/Kg
110-57-6	trans-1,4-Dichloro-2-butene	63		6.8	6.8	6.8	ug/Kg
97-63-2	Ethyl methacrylate	68		6.8	6.8	6.8	ug/Kg
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	61.3		55 - 158		123%	SPK: 50
1868-53-7	Dibromofluoromethane	55.6		53 - 156		111%	SPK: 50
2037-26-5	Toluene-d8	49.8		85 - 115		100%	SPK: 50
460-00-4	4-Bromofluorobenzene	49.3		85 - 120)	99%	SPK: 50
INTERNAL ST							
363-72-4	Pentafluorobenzene	165469	4.4				
540-36-3	1,4-Difluorobenzene	330655	5.15				
3114-55-4	Chlorobenzene-d5	310828	9.34				
3855-82-1	1,4-Dichlorobenzene-d4	151954	12.25				

Soil Aliquot Vol:

Report of Analysis

Client: MS Analytical

Date Collected: 08/14/12

Date Received:

Matrix:

Test:

08/15/12

SOIL

VOC-Chemtech Full -15

Project: 12MS104 Kensington Heights

Client Sample ID: KY030LC023-120814MS SDG No.: D3811

Lab Sample ID: D3814-04MS

Analytical Method: SW8260C % Moisture: 27

uL

Sample Wt/Vol: 5 Units: g Final Vol: 5000 uL

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VF034815.D 1 08/16/12 VF081612

CAS Number Parameter Conc. Qualifier MDL LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

uL

Report of Analysis

Client: MS Analytical Date Collected: 08/14/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: KY030LC023-120814MSD SDG No.: D3811 Lab Sample ID: Matrix: SOIL D3814-04MSD Analytical Method: SW8260C % Moisture: 27 Sample Wt/Vol: 5 Units: Final Vol: 5000 g

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034816.D 1 08/16/12 VF081612

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	70		0.89	3.4	6.8	ug/Kg
74-87-3	Chloromethane	75		1.2	3.4	6.8	ug/Kg
75-01-4	Vinyl Chloride	74		1.7	3.4	6.8	ug/Kg
141-78-6	Ethyl Acetate	62		1.2	3.4	6.8	ug/Kg
108-21-4	Isopropyl Acetate	52		1.6	3.4	6.8	ug/Kg
628-63-7	N-amyl acetate	54		1.3	3.4	6.8	ug/Kg
74-83-9	Bromomethane	73		3.4	3.4	6.8	ug/Kg
75-00-3	Chloroethane	78		1.9	3.4	6.8	ug/Kg
75-69-4	Trichlorofluoromethane	75		1.8	3.4	6.8	ug/Kg
76-13-1	1,1,2-Trichlorotrifluoroethane	76		1.8	3.4	6.8	ug/Kg
75-65-0	Tert butyl alcohol	370		10	17	34	ug/Kg
60-29-7	Diethyl Ether	120		2.6	3.4	6.8	ug/Kg
75-35-4	1,1-Dichloroethene	78		2	3.4	6.8	ug/Kg
107-02-8	Acrolein	150		5.5	17	34	ug/Kg
107-13-1	Acrylonitrile	380		6.7	17	34	ug/Kg
67-64-1	Acetone	430		4.1	17	34	ug/Kg
75-15-0	Carbon Disulfide	71		1.5	3.4	6.8	ug/Kg
1634-04-4	Methyl tert-butyl Ether	83		1.3	3.4	6.8	ug/Kg
79-20-9	Methyl Acetate	83		2.1	3.4	6.8	ug/Kg
75-09-2	Methylene Chloride	84		1.9	3.4	6.8	ug/Kg
156-60-5	trans-1,2-Dichloroethene	78		0.95	3.4	6.8	ug/Kg
108-05-4	Vinyl Acetate	240		4.8	17	34	ug/Kg
75-34-3	1,1-Dichloroethane	87		1.3	3.4	6.8	ug/Kg
110-82-7	Cyclohexane	68		1.4	3.4	6.8	ug/Kg
78-93-3	2-Butanone	380		4.3	17	34	ug/Kg
56-23-5	Carbon Tetrachloride	64		1.4	3.4	6.8	ug/Kg
594-20-7	2,2-Dichloropropane	74		1.4	3.4	6.8	ug/Kg
156-59-2	cis-1,2-Dichloroethene	85		1.2	3.4	6.8	ug/Kg
74-97-5	Bromochloromethane	80		1.1	3.4	6.8	ug/Kg
67-66-3	Chloroform	86		1	3.4	6.8	ug/Kg
71-55-6	1,1,1-Trichloroethane	80		1.2	3.4	6.8	ug/Kg

Analytical Method:

Soil Aliquot Vol:

SW8260C

Report of Analysis

Client: MS Analytical Date Collected: 08/14/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: KY030LC023-120814MSD SDG No.: D3811 Lab Sample ID: Matrix: SOIL D3814-04MSD

Sample Wt/Vol: 5 Units: g Final Vol: 5000 uL

% Moisture:

Test:

27

VOC-Chemtech Full -15

GC Column: RTX-VMS ID: 0.18 Level: LOW

иL

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034816.D 1 08/16/12 VF081612

	<u>-</u>						
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
108-87-2	Methylcyclohexane	60		1.5	3.4	6.8	ug/Kg
563-58-6	1,1-Dichloropropene	70		0.63	3.4	6.8	ug/Kg
71-43-2	Benzene	76		0.52	3.4	6.8	ug/Kg
107-06-2	1,2-Dichloroethane	74		0.88	3.4	6.8	ug/Kg
79-01-6	Trichloroethene	71		1.2	3.4	6.8	ug/Kg
78-87-5	1,2-Dichloropropane	75		0.36	3.4	6.8	ug/Kg
74-95-3	Dibromomethane	77		1.1	3.4	6.8	ug/Kg
75-27-4	Bromodichloromethane	72		0.85	3.4	6.8	ug/Kg
108-10-1	4-Methyl-2-Pentanone	350		4	17	34	ug/Kg
108-88-3	Toluene	73		0.88	3.4	6.8	ug/Kg
10061-02-6	t-1,3-Dichloropropene	66		1.1	3.4	6.8	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	68		0.99	3.4	6.8	ug/Kg
79-00-5	1,1,2-Trichloroethane	73		1.2	3.4	6.8	ug/Kg
142-28-9	1,3-Dichloropropane	75		1	3.4	6.8	ug/Kg
110-75-8	2-Chloroethyl Vinyl ether	330		16	17	34	ug/Kg
591-78-6	2-Hexanone	360		5.4	17	34	ug/Kg
124-48-1	Dibromochloromethane	69		0.74	3.4	6.8	ug/Kg
106-93-4	1,2-Dibromoethane	71		0.88	3.4	6.8	ug/Kg
127-18-4	Tetrachloroethene	73		1.4	3.4	6.8	ug/Kg
108-90-7	Chlorobenzene	74		0.68	3.4	6.8	ug/Kg
630-20-6	1,1,1,2-Tetrachloroethane	73		0.59	3.4	6.8	ug/Kg
67-72-1	Hexachloroethane	68		1	3.4	6.8	ug/Kg
100-41-4	Ethyl Benzene	73		0.85	3.4	6.8	ug/Kg
179601-23-1	m/p-Xylenes	140		0.99	7	14	ug/Kg
95-47-6	o-Xylene	71		0.93	3.4	6.8	ug/Kg
100-42-5	Styrene	70		0.62	3.4	6.8	ug/Kg
75-25-2	Bromoform	71		1	3.4	6.8	ug/Kg
98-82-8	Isopropylbenzene	74		0.66	3.4	6.8	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	75		0.63	3.4	6.8	ug/Kg
96-18-4	1,2,3-Trichloropropane	76		0.67	3.4	6.8	ug/Kg
108-86-1	Bromobenzene	75		0.71	3.4	6.8	ug/Kg
103-65-1	n-propylbenzene	72		0.49	3.4	6.8	ug/Kg

Report of Analysis

Client: MS Analytical Date Collected: 08/14/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: KY030LC023-120814MSD SDG No.: D3811 Lab Sample ID: Matrix: SOIL D3814-04MSD

Analytical Method: SW8260C % Moisture: 27
Sample Wt/Vol: 5 Units: g Final Vol: 5000

Soil Aliquot Vol: uL Test: VOC-Chemtech Full -15

uL

GC Column: RTX-VMS ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VF034816.D 1 08/16/12 VF081612

VF054810.D			08/10/	112		VFU81012	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
95-49-8	2-Chlorotoluene	73		1	3.4	6.8	ug/Kg
108-67-8	1,3,5-Trimethylbenzene	73		0.62	3.4	6.8	ug/Kg
106-43-4	4-Chlorotoluene	74		0.85	3.4	6.8	ug/Kg
98-06-6	tert-Butylbenzene	72		0.81	3.4	6.8	ug/Kg
95-63-6	1,2,4-Trimethylbenzene	72		0.68	3.4	6.8	ug/Kg
135-98-8	sec-Butylbenzene	71		0.71	3.4	6.8	ug/Kg
99-87-6	p-Isopropyltoluene	71		0.4	3.4	6.8	ug/Kg
541-73-1	1,3-Dichlorobenzene	71		0.51	3.4	6.8	ug/Kg
106-46-7	1,4-Dichlorobenzene	72		0.56	3.4	6.8	ug/Kg
104-51-8	n-Butylbenzene	66		0.63	3.4	6.8	ug/Kg
95-50-1	1,2-Dichlorobenzene	72		0.85	3.4	6.8	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	67		1.2	3.4	6.8	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	58		0.96	3.4	6.8	ug/Kg
87-68-3	Hexachlorobutadiene	58		1.1	3.4	6.8	ug/Kg
91-20-3	Naphthalene	61		0.62	3.4	6.8	ug/Kg
87-61-6	1,2,3-Trichlorobenzene	55		0.68	3.4	6.8	ug/Kg
74-88-4	Methyl Iodide	78		6.8	6.8	6.8	ug/Kg
107-05-1	Allyl chloride	74		6.8	6.8	6.8	ug/Kg
126-98-7	Methacrylonitrile	75		6.8	6.8	6.8	ug/Kg
110-57-6	trans-1,4-Dichloro-2-butene	64		6.8	6.8	6.8	ug/Kg
97-63-2	Ethyl methacrylate	64		6.8	6.8	6.8	ug/Kg
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	55		55 - 158		110%	SPK: 50
1868-53-7	Dibromofluoromethane	54.5		53 - 156		109%	SPK: 50
2037-26-5	Toluene-d8	49		85 - 115		98%	SPK: 50
460-00-4	4-Bromofluorobenzene	48.6		85 - 120)	97%	SPK: 50
INTERNAL ST		4 = 0 =					
363-72-4	Pentafluorobenzene	159209	4.4				
540-36-3	1,4-Difluorobenzene	320742	5.14				
3114-55-4	Chlorobenzene-d5	299179	9.34				
3855-82-1	1,4-Dichlorobenzene-d4	144790	12.25				

Report of Analysis

Client: MS Analytical Date Collected: 08/14/12

Project: 12MS104 Kensington Heights

Date Received: 08/15/12

Client Sample ID:

KY030LC023-120814MSD SDG No.: D3811

Lab Sample ID: D3814-04MSD Matrix: SOIL

Analytical Method: SW8260C % Moisture: 27

Sample Wt/Vol:

Units: g

uL

Soil Aliquot Vol:

uL

Test:

VOC-Chemtech Full -15

GC Column:

RTX-VMS

5

ID: 0.18

Level:

Final Vol:

LOW

5000

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VF034816.D

08/16/12

VF081612

Units

CAS Number

Parameter

Conc.

Qualifier

MDL

LOD LOQ / CRQL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

CALIBRATION SUMMURY

Lab Name: CHEMTECH Contract: MSAN01

Instrument ID: MSVOAD Calibration Date(s): 08/09/2012 08/09/2012

Heated Purge: (Y/N) Y Calibration Time(s): 10:50 13:55

	= VD03671 = VD03671		RRF020 RRF150			RRF050 = RRF200 =		
COMPOUND	RRF005	RRF020	RRF050	RRF100	RRF150	RRF200	RRF	% RSD
Dichlorodifluoromethane	0.624	0.567	0.655	0.645	0.634	0.600	0.621	5.2
Chloromethane	1.162	0.987	1.031	1.066	1.053	1.014	1.052	5.8
Vinyl Chloride	0.609	0.643	0.663	0.707	0.687	0.660	0.661	5.2
Ethyl Acetate	0.188	0.159	0.205	0.171	0.182	0.182	0.181	8.5
Isopropyl Acetate	0.326	0.274	0.379	0.302	0.302	0.338	0.32	11.4
N-amyl acetate	1.091	0.898	1.199	1.043	1.057	1.115	1.067	9.3
Bromomethane	0.226	0.211	0.235	0.232	0.238	0.217	0.226	4.7
Chloroethane	0.224	0.204	0.218	0.195	0.175	0.159	0.196	12.8
Trichlorofluoromethane	0.722	0.814	0.868	0.854	0.831	0.615	0.784	12.4
1,1,2-Trichlorotrifluoroethane	0.551	0.569	0.569	0.621	0.550	0.493	0.559	7.4
Tert butyl alcohol	0.026	0.023	0.033	0.023	0.024	0.025	0.026	14.9
Diethyl Ether	0.191	0.170	0.194	0.176	0.173	0.168	0.179	6.2
1,1-Dichloroethene	0.559	0.470	0.492	0.509	0.459	0.426	0.486	9.5
Acrolein	0.028	0.020	0.017	0.014	0.015	0.015	0.018	29.5
Acrylonitrile	0.089	0.081	0.106	0.086	0.085	0.088	0.089	9.7
Acetone	0.133	0.105	0.139	0.104	0.103	0.103	0.115	14.6
Carbon Disulfide	1.683	1.655	1.659	1.894	1.640	1.470	1.667	8.1
Methyl tert-butyl Ether	0.949	0.863	1.161	0.957	0.970	0.969	0.978	10
Methyl Acetate	0.529	0.504	0.672	0.544	0.589	0.609	0.575	10.7
Methylene Chloride	0.649	0.496	0.555	0.521	0.509	0.500	0.538	10.8
trans-1,2-Dichloroethene	0.640	0.614	0.663	0.619	0.613	0.575	0.621	4.8
Vinyl Acetate	0.230	0.243	0.352	0.314	0.326	0.335	0.3	17
1,1-Dichloroethane	1.060	0.980	1.096	1.044	1.014	0.965	1.026	4.9
Cyclohexane	1.079	1.016	1.060	1.034	1.026	0.939	1.026	4.7
2-Butanone	0.142	0.127	0.168	0.129	0.139	0.138	0.14	10.5
Carbon Tetrachloride	0.308	0.353	0.420	0.433	0.421	0.428	0.394	13
2,2-Dichloropropane	0.527	0.607	0.741	0.756	0.747	0.727	0.684	13.8
cis-1,2-Dichloroethene	0.664	0.589	0.670	0.625	0.618	0.608	0.629	5.1
Bromochloromethane	0.321	0.256	0.275	0.242	0.253	0.226	0.262	12.6
Chloroform	1.001	0.935	0.996	0.950	0.921	0.896	0.95	4.4
1,1,1-Trichloroethane	0.837	0.827	0.893	0.878	0.830	0.796	0.844	4.2
Methylcyclohexane	0.622	0.636	0.632	0.635	0.613	0.604	0.624	2.1
1,1-Dichloropropene	0.551	0.517	0.523	0.537	0.506	0.507	0.523	3.4

^{*} Compounds with required minimum RRF and maximum %RSD values. All other compounds must meet a minimum RRF of 0.010.

Lab Name: CHEMTECH Contract: MSAN01

Instrument ID: MSVOAD Calibration Date(s): 08/09/2012 08/09/2012

Heated Purge: (Y/N) Y Calibration Time(s): 10:50 13:55

	= VD03671 = VD03671		RRF020 RRF150			RRF050 = RRF200 =		
COMPOUND	RRF005	RRF020	RRF050	RRF100	RRF150	RRF200	RRF	% RSD
Benzene	1.316	1.300	1.338	1.338	1.268	1.243	1.3	3
1,2-Dichloroethane	0.340	0.326	0.362	0.334	0.324	0.333	0.337	4
Trichloroethene	0.436	0.426	0.441	0.425	0.421	0.412	0.427	2.4
1,2-Dichloropropane	0.329	0.333	0.365	0.343	0.333	0.336	0.34	3.9
Dibromomethane	0.157	0.155	0.179	0.157	0.156	0.163	0.161	5.7
Bromodichloromethane	0.428	0.413	0.453	0.433	0.411	0.425	0.427	3.6
4-Methyl-2-Pentanone	0.212	0.190	0.260	0.196	0.202	0.211	0.212	11.7
Toluene	0.879	0.869	0.919	0.843	0.824	0.816	0.858	4.5
t-1,3-Dichloropropene	0.368	0.380	0.447	0.389	0.385	0.386	0.392	7.1
cis-1,3-Dichloropropene	0.499	0.497	0.586	0.510	0.507	0.535	0.522	6.5
1,1,2-Trichloroethane	0.244	0.209	0.245	0.213	0.207	0.217	0.222	7.9
1,3-Dichloropropane	0.386	0.371	0.441	0.386	0.380	0.387	0.392	6.3
2-Chloroethyl Vinyl ether	0.066	0.067	0.073	0.069	0.067	0.067	0.068	3.9
2-Hexanone	0.164	0.137	0.195	0.154	0.143	0.150	0.157	13.2
Dibromochloromethane	0.284	0.272	0.330	0.288	0.288	0.299	0.294	6.8
1,2-Dibromoethane	0.208	0.204	0.244	0.204	0.212	0.217	0.215	7.1
Tetrachloroethene	0.492	0.481	0.459	0.471	0.439	0.443	0.464	4.6
Chlorobenzene	1.108	1.118	1.129	1.156	1.097	1.100	1.118	2
1,1,1,2-Tetrachloroethane	0.356	0.361	0.383	0.390	0.360	0.363	0.369	3.9
Hexachloroethane	0.705	0.795	0.896	0.888	0.859	0.841	0.831	8.6
Ethyl Benzene	2.009	1.984	1.914	2.006	1.824	1.796	1.922	4.9
m/p-Xylenes	0.766	0.796	0.762	0.772	0.749	0.714	0.76	3.6
o-Xylene	0.702	0.731	0.745	0.761	0.731	0.701	0.728	3.3
Styrene	1.084	1.116	1.126	1.123	1.045	1.056	1.092	3.2
Bromoform	0.166	0.182	0.209	0.194	0.189	0.199	0.19	7.9
Isopropylbenzene	4.302	4.244	4.320	4.503	4.270	4.165	4.301	2.6
1,1,2,2-Tetrachloroethane	0.678	0.546	0.675	0.600	0.571	0.617	0.614	8.7
1,2,3-Trichloropropane	0.241	0.187	0.240	0.206	0.216	0.217	0.218	9.5
Bromobenzene	0.969	0.893	0.963	0.945	0.903	0.945	0.936	3.3
n-propylbenzene	5.052	5.123	4.964	5.223	4.764	4.816	4.99	3.6
2-Chlorotoluene	2.799	2.810	2.811	2.803	2.629	2.629	2.747	3.3
1,3,5-Trimethylbenzene	3.236	3.251	3.231	3.384	3.061	3.103	3.211	3.6
4-Chlorotoluene	2.825	2.713	2.766	2.772	2.536	2.536	2.691	4.7

^{*} Compounds with required minimum RRF and maximum %RSD values. All other compounds must meet a minimum RRF of 0.010.

Lab Name: CHEMTECH Contract: MSAN01

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG No.: D3811

Instrument ID: MSVOAD Calibration Date(s): 08/09/2012 08/09/2012

Heated Purge: (Y/N) Y Calibration Time(s): 10:50 13:55

	= VD03671 = VD03671		RRF020 RRF150			RRF050 = RRF200 =		
COMPOUND	RRF005	RRF020	RRF050	RRF100	RRF150	RRF200	RRF	% RSD
tert-Butylbenzene	3.353	3.316	3.455	3.577	3.274	3.223	3.366	3.9
1,2,4-Trimethylbenzene	3.073	3.086	3.149	3.173	2.951	2.934	3.061	3.2
sec-Butylbenzene	4.530	4.573	4.486	4.641	4.280	4.239	4.458	3.6
p-Isopropyltoluene	3.645	3.683	3.683	3.895	3.380	3.405	3.615	5.4
1,3-Dichlorobenzene	1.861	1.840	1.843	1.887	1.711	1.780	1.82	3.5
1,4-Dichlorobenzene	1.757	1.713	1.811	1.728	1.671	1.723	1.734	2.7
n-Butylbenzene	3.002	3.305	3.244	3.527	3.334	3.148	3.26	5.5
1,2-Dichlorobenzene	1.426	1.436	1.502	1.485	1.389	1.414	1.442	3
1,2-Dibromo-3-Chloropropane	0.054	0.075	0.100	0.078	0.079	0.084	0.078	19.2
1,2,4-Trichlorobenzene	0.310	0.660	0.862	0.857	0.869	0.886	0.741	30.7
Hexachlorobutadiene	0.504	0.559	0.586	0.578	0.566	0.571	0.561	5.2
Naphthalene	0.258	0.334	0.578	0.788	0.917	1.117	0.665	50.6
1,2,3-Trichlorobenzene	0.157	0.440	0.620	0.601	0.634	0.664	0.519	37.4
1,2-Dichloroethane-d4	0.392	0.363	0.464	0.403	0.411	0.394	0.404	8.3
Dibromofluoromethane	0.308	0.308	0.352	0.325	0.323	0.315	0.322	5.1
Toluene-d8	1.063	1.115	1.231	1.147	1.134	1.108	1.133	4.9
4-Bromofluorobenzene	0.404	0.395	0.433	0.378	0.388	0.378	0.396	5.3
Methyl Iodide	0.706	0.654	0.593	0.593	0.567	0.475	0.598	13.1
Allyl chloride	0.851	0.818	0.872	0.829	0.790	0.719	0.813	6.7
trans-1,4-Dichloro-2-butene	0.345	0.322	0.360	0.338	0.325	0.339	0.338	4.1
Methacrylonitrile	0.125	0.120	0.137	0.115	0.117	0.118	0.122	6.8
Ethyl methacrylate	0.152	0.128	0.166	0.131	0.129	0.142	0.142	10.7

^{*} Compounds with required minimum RRF and maximum %RSD values.

All other compounds must meet a minimum RRF of 0.010.

Lab Name: CHEMTECH Contract: MSAN01

Instrument ID: MSVOA_F Calibration Date(s): 08/06/2012 08/06/2012

Heated Purge: (Y/N) Y Calibration Time(s): 10:56 12:50

	= VF03467 = VF03467		RRF020 RRF100			RRF050 = RRF150 =		
COMPOUND	RRF005	RRF020	RRF050	RRF075	RRF100	RRF150	RRF	% RSD
Dichlorodifluoromethane	0.781	0.895	0.947	0.898	0.907	0.902	0.888	6.3
Chloromethane	0.893	0.907	0.873	0.816	0.807	0.784	0.847	6
Vinyl Chloride	0.554	0.552	0.584	0.535	0.560	0.575	0.56	3.1
Ethyl Acetate	0.245	0.246	0.215	0.209	0.209	0.212	0.223	7.9
Isopropyl Acetate	0.292	0.296	0.266	0.286	0.258	0.279	0.279	5.4
N-amyl acetate	1.070	1.174	1.053	1.079	1.007	1.013	1.066	5.7
Bromomethane	0.405	0.362	0.356	0.320	0.327	0.346	0.353	8.6
Chloroethane	0.224	0.239	0.253	0.226	0.236	0.242	0.237	4.7
Trichlorofluoromethane	1.009	1.041	1.002	0.973	0.957	0.955	0.989	3.4
1,1,2-Trichlorotrifluoroethane	0.706	0.791	0.732	0.700	0.692	0.667	0.715	6
Tert butyl alcohol	0.045	0.044	0.039	0.039	0.040	0.043	0.042	6.1
Diethyl Ether	0.191	0.203	0.183	0.296	0.310	0.181	0.228	26
1,1-Dichloroethene	0.733	0.709	0.663	0.626	0.613	0.584	0.655	8.9
Acrolein	0.047	0.041	0.029	0.028	0.028	0.028	0.033	25.4
Acrylonitrile	0.118	0.120	0.106	0.108	0.102	0.102	0.109	7.4
Acetone	0.199	0.146	0.136	0.135	0.130	0.138	0.147	17.5
Carbon Disulfide	2.433	2.439	2.290	2.033	1.996	1.870	2.177	11.2
Methyl tert-butyl Ether	1.570	1.667	1.461	1.475	1.430	1.454	1.51	6
Methyl Acetate	0.876	0.867	0.684	0.709	0.683	0.737	0.759	11.7
Methylene Chloride	0.904	0.837	0.735	0.706	0.688	0.670	0.757	12.3
trans-1,2-Dichloroethene	0.789	0.810	0.756	0.711	0.717	0.704	0.748	5.9
Vinyl Acetate	0.413	0.473	0.407	0.413	0.404	0.407	0.419	6.3
1,1-Dichloroethane	1.183	1.357	1.253	1.204	1.199	1.182	1.23	5.5
Cyclohexane	0.998	1.087	1.005	0.963	0.951	0.919	0.987	5.9
2-Butanone	0.163	0.158	0.141	0.151	0.141	0.140	0.149	6.6
Carbon Tetrachloride	0.450	0.473	0.462	0.451	0.434	0.457	0.455	2.9
2,2-Dichloropropane	0.857	1.010	0.903	0.863	0.863	0.852	0.891	6.8
cis-1,2-Dichloroethene	0.804	0.814	0.761	0.734	0.706	0.704	0.754	6.3
Bromochloromethane	0.512	0.447	0.358	0.339	0.345	0.340	0.39	18.5
Chloroform	1.264	1.427	1.292	1.233	1.210	1.221	1.274	6.3
1,1,1-Trichloroethane	1.053	1.095	1.034	0.985	0.979	0.989	1.022	4.5
Methylcyclohexane	0.585	0.658	0.590	0.568	0.544	0.532	0.579	7.7
1,1-Dichloropropene	0.520	0.571	0.527	0.518	0.487	0.485	0.518	6

^{*} Compounds with required minimum RRF and maximum %RSD values. All other compounds must meet a minimum RRF of 0.010.

Lab Name: CHEMTECH Contract: MSAN01

Instrument ID: MSVOA_F Calibration Date(s): 08/06/2012 08/06/2012

Heated Purge: (Y/N) Y Calibration Time(s): 10:56 12:50

	= VF03467 = VF03467		RRF020 RRF100			RRF050 = RRF150 =		
COMPOUND	RRF005	RRF020	RRF050	RRF075	RRF100	RRF150	RRF	% RSD
Benzene	1.258	1.330	1.259	1.184	1.101	1.129	1.21	7.2
1,2-Dichloroethane	0.434	0.444	0.398	0.406	0.400	0.410	0.415	4.5
Trichloroethene	0.373	0.389	0.361	0.350	0.329	0.344	0.358	6
1,2-Dichloropropane	0.293	0.345	0.317	0.314	0.300	0.301	0.312	6.1
Dibromomethane	0.189	0.190	0.186	0.183	0.172	0.187	0.184	3.6
Bromodichloromethane	0.462	0.515	0.465	0.469	0.457	0.472	0.473	4.4
4-Methyl-2-Pentanone	0.232	0.230	0.197	0.199	0.185	0.192	0.206	9.7
Toluene	0.887	0.970	0.909	0.862	0.821	0.834	0.881	6.2
t-1,3-Dichloropropene	0.487	0.514	0.467	0.457	0.445	0.459	0.472	5.3
cis-1,3-Dichloropropene	0.582	0.592	0.551	0.552	0.514	0.512	0.551	6
1,1,2-Trichloroethane	0.257	0.273	0.250	0.252	0.237	0.242	0.252	5
1,3-Dichloropropane	0.462	0.501	0.457	0.471	0.436	0.449	0.463	4.8
2-Chloroethyl Vinyl ether	0.148	0.140	0.126	0.119	0.113	0.115	0.127	11.1
2-Hexanone	0.170	0.162	0.155	0.150	0.151	0.150	0.156	5.3
Dibromochloromethane	0.289	0.330	0.289	0.306	0.291	0.305	0.301	5.3
1,2-Dibromoethane	0.284	0.285	0.254	0.259	0.248	0.252	0.264	6.3
Tetrachloroethene	0.273	0.314	0.305	0.323	0.301	0.309	0.304	5.7
Chlorobenzene	1.088	1.130	1.045	1.082	1.002	1.024	1.062	4.4
1,1,1,2-Tetrachloroethane	0.345	0.363	0.340	0.356	0.331	0.350	0.347	3.3
Hexachloroethane	0.743	0.803	0.765	0.751	0.732	0.714	0.752	4.1
Ethyl Benzene	1.884	2.021	1.879	1.864	1.729	1.735	1.852	5.9
m/p-Xylenes	0.763	0.770	0.723	0.725	0.667	0.666	0.719	6.3
o-Xylene	0.778	0.819	0.758	0.748	0.705	0.714	0.754	5.6
Styrene	1.172	1.241	1.150	1.179	1.077	1.111	1.155	4.9
Bromoform	0.159	0.189	0.160	0.174	0.163	0.179	0.171	7
Isopropylbenzene	3.937	4.046	3.964	3.984	3.709	3.700	3.89	3.8
1,1,2,2-Tetrachloroethane	0.774	0.801	0.731	0.744	0.680	0.692	0.737	6.3
1,2,3-Trichloropropane	0.629	0.551	0.545	0.541	0.504	0.498	0.545	8.6
Bromobenzene	0.819	0.838	0.831	0.868	0.792	0.830	0.83	3
n-propylbenzene	5.101	5.344	5.132	5.040	4.731	4.602	4.992	5.5
2-Chlorotoluene	2.982	3.085	2.939	2.953	2.785	2.730	2.912	4.5
1,3,5-Trimethylbenzene	3.228	3.476	3.250	3.295	3.029	3.017	3.216	5.4
4-Chlorotoluene	2.972	3.069	2.999	2.998	2.840	2.825	2.95	3.3

^{*} Compounds with required minimum RRF and maximum %RSD values. All other compounds must meet a minimum RRF of 0.010.

Lab Name: CHEMTECH Contract: MSAN01

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG No.: D3811

Instrument ID: MSVOA_F Calibration Date(s): 08/06/2012 08/06/2012

Heated Purge: (Y/N) Y Calibration Time(s): 10:56 12:50

	<pre>= VF03467 = VF03467</pre>		RRF020 RRF100			RRF050 = RRF150 =		
RREU/5	= VF03467	ע.פּי	RRF100	= VF0346	U. D	RRF150 =	VFU3466	ע. בי
COMPOUND	RRF005	RRF020	RRF050	RRF075	RRF100	RRF150	RRF	% RSD
tert-Butylbenzene	3.240	3.271	3.140	3.170	2.931	2.919	3.112	4.9
1,2,4-Trimethylbenzene	3.373	3.570	3.366	3.333	3.150	3.064	3.309	5.4
sec-Butylbenzene	4.522	4.918	4.635	4.566	4.281	4.212	4.522	5.6
p-Isopropyltoluene	3.484	3.793	3.546	3.450	3.251	3.116	3.44	6.9
1,3-Dichlorobenzene	1.690	1.814	1.676	1.708	1.586	1.523	1.666	6.1
1,4-Dichlorobenzene	1.598	1.756	1.731	1.741	1.639	1.607	1.679	4.3
n-Butylbenzene	3.767	4.074	3.732	3.771	3.516	3.336	3.699	6.8
1,2-Dichlorobenzene	1.542	1.607	1.473	1.504	1.425	1.408	1.493	5
1,2-Dibromo-3-Chloropropane	0.112	0.088	0.091	0.102	0.087	0.094	0.096	10.1
1,2,4-Trichlorobenzene	0.783	0.849	0.762	0.789	0.759	0.724	0.778	5.4
Hexachlorobutadiene	0.464	0.506	0.462	0.475	0.447	0.435	0.465	5.3
Naphthalene	1.398	1.468	1.378	1.384	1.375	1.336	1.39	3.1
1,2,3-Trichlorobenzene	0.524	0.643	0.565	0.581	0.571	0.533	0.57	7.4
1,2-Dichloroethane-d4	0.565	0.612	0.648	0.659	0.645	0.643	0.629	5.5
Dibromofluoromethane	0.351	0.369	0.352	0.373	0.347	0.356	0.358	2.9
Toluene-d8	1.194	1.213	1.213	1.183	1.107	1.081	1.165	4.9
4-Bromofluorobenzene	0.569	0.584	0.572	0.527	0.499	0.499	0.542	7.1
Methyl Iodide	1.288	1.337	1.285	1.243	1.222	1.194	1.261	4.1
Allyl chloride	1.106	1.169	1.046	0.998	1.009	0.993	1.053	6.7
trans-1,4-Dichloro-2-butene	0.384	0.381	0.360	0.395	0.375	0.380	0.379	3.1
Methacrylonitrile	0.105	0.120	0.113	0.106	0.105	0.104	0.109	5.9
Ethyl methacrylate	0.313	0.361	0.335	0.339	0.326	0.328	0.334	4.8

^{*} Compounds with required minimum RRF and maximum %RSD values.

All other compounds must meet a minimum RRF of 0.010.

Lab Name: CHEMTECH Contract: MSAN01

Instrument ID: MSVOA_D Calibration Date/Time: 08/15/2012 13:05

Lab File ID: VD036737.D Init. Calib. Date(s): 08/09/2012 08/09/2012

Heated Purge: (Y/N) Y Init. Calib. Time(s): 10:50 13:55

GC Column: RTX-624 ID: 0.25 (mm)

GC Column: RTX-624 ID: 0.25	(mm)				
COMPOUND	RRF	RRF050	MIN RRF	%D	MAX%D
Dichlorodifluoromethane	0.621	0.630		1.45	
Chloromethane	1.052	1.193	0.1	13.4	
Vinyl Chloride	0.661	0.717		8.47	20
Ethyl Acetate	0.181	0.190		4.97	
Isopropyl Acetate	0.32	0.336		5	
N-amyl acetate	1.067	1.149		7.69	
Bromomethane	0.226	0.209		-7.52	
Chloroethane	0.196	0.274		39.8	
Trichlorofluoromethane	0.784	0.847		8.04	
1,1,2-Trichlorotrifluoroethane	0.559	0.663		18.6	
Tert butyl alcohol	0.026	0.024		-7.69	
Diethyl Ether	0.179	0.194		8.38	
1,1-Dichloroethene	0.486	0.546		12.35	20
Acrolein	0.018	0.014		-22.22	
Acrylonitrile	0.089	0.094		5.62	
Acetone	0.115	0.137		19.13	
Carbon Disulfide	1.667	1.940		16.38	
Methyl tert-butyl Ether	0.978	1.049		7.26	
Methyl Acetate	0.575	0.576		0.17	
Methylene Chloride	0.538	0.528		-1.86	
trans-1,2-Dichloroethene	0.621	0.628		1.13	
Vinyl Acetate	0.3	0.381		27	
1,1-Dichloroethane	1.026	1.107	0.1	7.89	
Cyclohexane	1.026	1.096		6.82	
2-Butanone	0.14	0.160		14.29	
Carbon Tetrachloride	0.394	0.372		-5.58	
2,2-Dichloropropane	0.684	0.784		14.62	
cis-1,2-Dichloroethene	0.629	0.646		2.7	
Bromochloromethane	0.262	0.287		9.54	
Chloroform	0.95	1.000		5.26	20
1,1,1-Trichloroethane	0.844	0.852		0.95	
Methylcyclohexane	0.624	0.585		-6.25	
1,1-Dichloropropene	0.523	0.530		1.34	
Benzene	1.3	1.265		-2.69	
1,2-Dichloroethane	0.337	0.340		0.89	
Trichloroethene	0.427	0.394		-7.73	
1,2-Dichloropropane	0.34	0.344		1.18	20
Dibromomethane	0.161	0.158		-1.86	
Bromodichloromethane	0.427	0.423		-0.94	
4-Methyl-2-Pentanone	0.212	0.216		1.89	
Toluene	0.858	0.819		-4.55	20
t-1,3-Dichloropropene	0.392	0.397		1.28	

Lab Name: CHEMTECH Contract: MSAN01

Instrument ID: MSVOA_D Calibration Date/Time: 08/15/2012 13:05

Lab File ID: VD036737.D Init. Calib. Date(s): 08/09/2012 08/09/2012

Heated Purge: (Y/N) Y Init. Calib. Time(s): 10:50 13:55

GC Column: RTX-624 ID: 0.25 (mm)

GC Column: <u>RTX-624</u> ID: <u>0.2</u>	5 (mm)				
COMPOUND	RRF	RRF050	MIN RRF	%D	MAX%D
cis-1,3-Dichloropropene	0.522	0.523		0.19	
1,1,2-Trichloroethane	0.222	0.201		-9.46	
1,3-Dichloropropane	0.392	0.385		-1.79	
2-Chloroethyl Vinyl ether	0.068	0.069		1.47	
2-Hexanone	0.157	0.166		5.73	
Dibromochloromethane	0.294	0.270		-8.16	
1,2-Dibromoethane	0.215	0.199		-7.44	
Tetrachloroethene	0.464	0.417		-10.13	
Chlorobenzene	1.118	1.076	0.3	-3.76	
1,1,1,2-Tetrachloroethane	0.369	0.356		-3.52	
Hexachloroethane	0.831	0.795		-4.33	
Ethyl Benzene	1.922	1.918		-0.21	20
m/p-Xylenes	0.76	0.715		-5.92	
o-Xylene	0.728	0.680		-6.59	
Styrene	1.092	1.040		-4.76	
Bromoform	0.19	0.173	0.1	-8.95	
Isopropylbenzene	4.301	4.228		-1.7	
1,1,2,2-Tetrachloroethane	0.614	0.607	0.3	-1.14	
1,2,3-Trichloropropane	0.218	0.206		-5.5	
Bromobenzene	0.936	0.922		-1.5	
n-propylbenzene	4.99	5.028		0.76	
2-Chlorotoluene	2.747	2.762		0.55	
1,3,5-Trimethylbenzene	3.211	3.081		-4.05	
4-Chlorotoluene	2.691	2.750		2.19	
tert-Butylbenzene	3.366	3.303		-1.87	
1,2,4-Trimethylbenzene	3.061	3.019		-1.37	
sec-Butylbenzene	4.458	4.287		-3.84	
p-Isopropyltoluene	3.615	3.439		-4.87	
1,3-Dichlorobenzene	1.82	1.689		-7.2	
1,4-Dichlorobenzene	1.734	1.656		-4.5	
n-Butylbenzene	3.26	3.257		-0.09	
1,2-Dichlorobenzene	1.442	1.396		-3.19	
1,2-Dibromo-3-Chloropropane	0.078	0.071		-8.97	
1,2,4-Trichlorobenzene	0.741	0.748		0.94	
Hexachlorobutadiene	0.561	0.500		-10.87	
Naphthalene	0.665	0.922		38.65	
1,2,3-Trichlorobenzene	0.519	0.508		-2.12	
1,2-Dichloroethane-d4	0.404	0.409		1.24	
Dibromofluoromethane	0.322	0.304		-5.59	
Toluene-d8	1.133	1.057		-6.71	
4-Bromofluorobenzene	0.396	0.366		-7.58	
Methyl Iodide	0.598	0.468		-21.74	

Lab Name: CHEMTECH Contract: MSAN01

Instrument ID: MSVOA_D Calibration Date/Time: 08/15/2012 13:05

Lab File ID: VD036737.D Init. Calib. Date(s): 08/09/2012 08/09/2012

Heated Purge: (Y/N) Y Init. Calib. Time(s): 10:50 13:55

GC Column: RTX-624 ID: 0.25 (mm)

COMPOUND	RRF	RRF050	MIN RRF	%D	MAX%D
Allyl chloride	0.813	0.829		1.97	
trans-1,4-Dichloro-2-butene	0.338	0.339		0.3	
Methacrylonitrile	0.122	0.120		-1.64	
Ethyl methacrylate	0.142	0.132		-7.04	

All other compounds must meet a minimum RRF of 0.010.

Lab Name: CHEMTECH Contract: MSAN01

Instrument ID: MSVOA_D Calibration Date/Time: 08/16/2012 13:29

Lab File ID: VD036754.D Init. Calib. Date(s): 08/09/2012 08/09/2012

Heated Purge: (Y/N) Y Init. Calib. Time(s): 10:50 13:55

COMPOUND	RRF	RRF050	MIN RRF	%D	MAX%D
Dichlorodifluoromethane	0.621	0.599		-3.54	
Chloromethane	1.052	1.121	0.1	6.56	
Vinyl Chloride	0.661	0.749		13.31	20
Ethyl Acetate	0.181	0.182		0.55	
Isopropyl Acetate	0.32	0.296		-7.5	
N-amyl acetate	1.067	1.089		2.06	
Bromomethane	0.226	0.238		5.31	
Chloroethane	0.196	0.269		37.24	
Trichlorofluoromethane	0.784	0.800		2.04	
1,1,2-Trichlorotrifluoroethane	0.559	0.614		9.84	
Tert butyl alcohol	0.026	0.022		-15.38	
Diethyl Ether	0.179	0.194		8.38	
1,1-Dichloroethene	0.486	0.535		10.08	20
Acrolein	0.018	0.017		-5.56	
Acrylonitrile	0.089	0.088		-1.12	
Acetone	0.115	0.127		10.43	
Carbon Disulfide	1.667	1.901		14.04	
Methyl tert-butyl Ether	0.978	0.984		0.61	
Methyl Acetate	0.575	0.552		-4	
Methylene Chloride	0.538	0.520		-3.35	
trans-1,2-Dichloroethene	0.621	0.631		1.61	
Vinyl Acetate	0.3	0.364		21.33	
1,1-Dichloroethane	1.026	1.130	0.1	10.14	
Cyclohexane	1.026	1.078		5.07	
2-Butanone	0.14	0.149		6.43	
Carbon Tetrachloride	0.394	0.357		-9.39	
2,2-Dichloropropane	0.684	0.802		17.25	
cis-1,2-Dichloroethene	0.629	0.608		-3.34	
Bromochloromethane	0.262	0.261		-0.38	
Chloroform	0.95	0.966		1.68	20
1,1,1-Trichloroethane	0.844	0.806		-4.5	
Methylcyclohexane	0.624	0.593		-4.97	
1,1-Dichloropropene	0.523	0.513		-1.91	
Benzene	1.3	1.295		-0.38	
1,2-Dichloroethane	0.337	0.316		-6.23	1
Trichloroethene	0.427	0.405		-5.15	
1,2-Dichloropropane	0.34	0.347		2.06	20
Dibromomethane	0.161	0.149		-7.45	
Bromodichloromethane	0.427	0.399		-6.56	1
4-Methyl-2-Pentanone	0.212	0.210		-0.94	1
Toluene	0.858	0.804		-6.29	20
t-1,3-Dichloropropene	0.392	0.396		1.02	

Lab Name: CHEMTECH Contract: MSAN01

Instrument ID: MSVOA_D Calibration Date/Time: 08/16/2012 13:29

Lab File ID: VD036754.D Init. Calib. Date(s): 08/09/2012 08/09/2012

Heated Purge: (Y/N) Y Init. Calib. Time(s): 10:50 13:55

GC Column: RTX-624 ID: 0.25 (mm)

GC Column: <u>RTX-624</u> ID: <u>0.2</u>	5 (mm)				
COMPOUND	RRF	RRF050	MIN RRF	%D	MAX%D
cis-1,3-Dichloropropene	0.522	0.511		-2.11	
1,1,2-Trichloroethane	0.222	0.197		-11.26	
1,3-Dichloropropane	0.392	0.362		-7.65	
2-Chloroethyl Vinyl ether	0.068	0.069		1.47	
2-Hexanone	0.157	0.147		-6.37	
Dibromochloromethane	0.294	0.244		-17.01	
1,2-Dibromoethane	0.215	0.178		-17.21	
Tetrachloroethene	0.464	0.414		-10.78	
Chlorobenzene	1.118	1.051	0.3	-5.99	
1,1,1,2-Tetrachloroethane	0.369	0.350		-5.15	
Hexachloroethane	0.831	0.851		2.41	
Ethyl Benzene	1.922	1.880		-2.19	20
m/p-Xylenes	0.76	0.727		-4.34	
o-Xylene	0.728	0.688		-5.49	
Styrene	1.092	1.016		-6.96	
Bromoform	0.19	0.160	0.1	-15.79	
Isopropylbenzene	4.301	4.373		1.67	
1,1,2,2-Tetrachloroethane	0.614	0.584	0.3	-4.89	
1,2,3-Trichloropropane	0.218	0.203		-6.88	
Bromobenzene	0.936	0.891		-4.81	
n-propylbenzene	4.99	5.207		4.35	
2-Chlorotoluene	2.747	2.848		3.68	
1,3,5-Trimethylbenzene	3.211	3.138		-2.27	
4-Chlorotoluene	2.691	2.700		0.33	
tert-Butylbenzene	3.366	3.439		2.17	
1,2,4-Trimethylbenzene	3.061	3.028		-1.08	
sec-Butylbenzene	4.458	4.538		1.79	
p-Isopropyltoluene	3.615	3.516		-2.74	
1,3-Dichlorobenzene	1.82	1.710		-6.04	
1,4-Dichlorobenzene	1.734	1.643		-5.25	
n-Butylbenzene	3.26	3.248		-0.37	
1,2-Dichlorobenzene	1.442	1.402		-2.77	
1,2-Dibromo-3-Chloropropane	0.078	0.068		-12.82	
1,2,4-Trichlorobenzene	0.741	0.686		-7.42	
Hexachlorobutadiene	0.561	0.470	1	-16.22	1
Naphthalene	0.665	0.883	1	32.78	1
1,2,3-Trichlorobenzene	0.519	0.439	†	-15.41	1
1,2-Dichloroethane-d4	0.404	0.384	†	-4.95	1
Dibromofluoromethane	0.322	0.295		-8.39	
Toluene-d8	1.133	1.010		-10.86	
4-Bromofluorobenzene	0.396	0.345	 	-12.88	+
Methyl Iodide	0.598	0.520	1	-13.04	1

Lab Name: CHEMTECH Contract: MSAN01

Instrument ID: MSVOA_D Calibration Date/Time: 08/16/2012 13:29

Lab File ID: VD036754.D Init. Calib. Date(s): 08/09/2012 08/09/2012

Heated Purge: (Y/N) Y Init. Calib. Time(s): 10:50 13:55

GC Column: RTX-624 ID: 0.25 (mm)

COMPOUND	RRF	RRF050	MIN RRF	%D	MAX%D
Allyl chloride	0.813	0.802		-1.35	
trans-1,4-Dichloro-2-butene	0.338	0.332		-1.78	
Methacrylonitrile	0.122	0.128		4.92	
Ethyl methacrylate	0.142	0.120		-15.49	

All other compounds must meet a minimum RRF of 0.010.

Lab Name: CHEMTECH Contract: MSAN01

Instrument ID: MSVOA_F Calibration Date/Time: 08/15/2012 12:17

Lab File ID: VF034766.D Init. Calib. Date(s): 08/06/2012 08/06/2012

Heated Purge: (Y/N) Y Init. Calib. Time(s): 10:56 12:50

COMPOUND	RRF	RRF050	MIN RRF	%D	MAX%D
Dichlorodifluoromethane	0.888	0.792		-10.81	
Chloromethane	0.847	0.731	0.1	-13.7	
Vinyl Chloride	0.56	0.528		-5.71	20
Ethyl Acetate	0.223	0.248		11.21	
Isopropyl Acetate	0.279	0.295		5.73	
N-amyl acetate	1.066	1.111		4.22	
Bromomethane	0.353	0.331		-6.23	
Chloroethane	0.237	0.230		-2.95	
Trichlorofluoromethane	0.989	0.929		-6.07	
1,1,2-Trichlorotrifluoroethane	0.715	0.668		-6.57	
Tert butyl alcohol	0.042	0.050		19.05	
Diethyl Ether	0.228	0.331		45.18	
1,1-Dichloroethene	0.655	0.612		-6.56	20
Acrolein	0.033	0.034		3.03	
Acrylonitrile	0.109	0.122		11.93	
Acetone	0.147	0.146		-0.68	
Carbon Disulfide	2.177	1.890		-13.18	
Methyl tert-butyl Ether	1.51	1.666		10.33	
Methyl Acetate	0.759	0.837		10.28	
Methylene Chloride	0.757	0.725		-4.23	
trans-1,2-Dichloroethene	0.748	0.704		-5.88	
Vinyl Acetate	0.419	0.451		7.64	
1,1-Dichloroethane	1.23	1.221	0.1	-0.73	
Cyclohexane	0.987	0.892		-9.63	
2-Butanone	0.149	0.187		25.5	
Carbon Tetrachloride	0.455	0.438		-3.74	
2,2-Dichloropropane	0.891	0.859		-3.59	
cis-1,2-Dichloroethene	0.754	0.739		-1.99	
Bromochloromethane	0.39	0.350		-10.26	
Chloroform	1.274	1.223		-4	20
1,1,1-Trichloroethane	1.022	0.951		-6.95	
Methylcyclohexane	0.579	0.540		-6.74	
1,1-Dichloropropene	0.518	0.499		-3.67	
Benzene	1.21	1.161		-4.05	
1,2-Dichloroethane	0.415	0.430		3.61	
Trichloroethene	0.358	0.346		-3.35	
1,2-Dichloropropane	0.312	0.308		-1.28	20
Dibromomethane	0.184	0.201		9.24	
Bromodichloromethane	0.473	0.474		0.21	
4-Methyl-2-Pentanone	0.206	0.232		12.62	
Toluene	0.881	0.814		-7.6	20
t-1,3-Dichloropropene	0.472	0.472		0	

Lab Name: CHEMTECH Contract: MSAN01

Instrument ID: MSVOA_F Calibration Date/Time: 08/15/2012 12:17

Lab File ID: VF034766.D Init. Calib. Date(s): 08/06/2012 08/06/2012

Heated Purge: (Y/N) Y Init. Calib. Time(s): 10:56 12:50

GC Column: RTX-VMS ID: 0.1	8 (mm)				
COMPOUND	RRF	RRF050	MIN RRF	%D	MAX%D
cis-1,3-Dichloropropene	0.551	0.549		-0.36	
1,1,2-Trichloroethane	0.252	0.259		2.78	
1,3-Dichloropropane	0.463	0.470		1.51	
2-Chloroethyl Vinyl ether	0.127	0.125		-1.57	
2-Hexanone	0.156	0.185		18.59	
Dibromochloromethane	0.301	0.322		6.98	
1,2-Dibromoethane	0.264	0.277		4.92	
Tetrachloroethene	0.304	0.292		-3.95	
Chlorobenzene	1.062	1.016	0.3	-4.33	
1,1,1,2-Tetrachloroethane	0.347	0.343		-1.15	
Hexachloroethane	0.752	0.688		-8.51	
Ethyl Benzene	1.852	1.680		-9.29	20
m/p-Xylenes	0.719	0.666		-7.37	
o-Xylene	0.754	0.700		-7.16	
Styrene	1.155	1.112		-3.72	
Bromoform	0.171	0.177	0.1	3.51	
Isopropylbenzene	3.89	3.613		-7.12	
1,1,2,2-Tetrachloroethane	0.737	0.794	0.3	7.73	
1,2,3-Trichloropropane	0.545	0.543		-0.37	
Bromobenzene	0.83	0.794		-4.34	
n-propylbenzene	4.992	4.507		-9.72	
2-Chlorotoluene	2.912	2.672		-8.24	
1,3,5-Trimethylbenzene	3.216	2.938		-8.64	
4-Chlorotoluene	2.95	2.755		-6.61	
tert-Butylbenzene	3.112	2.887		-7.23	
1,2,4-Trimethylbenzene	3.309	2.996		-9.46	
sec-Butylbenzene	4.522	4.097		-9.4	
p-Isopropyltoluene	3.44	3.102		-9.83	
1,3-Dichlorobenzene	1.666	1.548		-7.08	
1,4-Dichlorobenzene	1.679	1.594		-5.06	
n-Butylbenzene	3.699	3.274		-11.49	
1,2-Dichlorobenzene	1.493	1.441		-3.48	
1,2-Dibromo-3-Chloropropane	0.096	0.098		2.08	
1,2,4-Trichlorobenzene	0.778	0.728		-6.43	
Hexachlorobutadiene	0.465	0.393		-15.48	
Naphthalene	1.39	1.371		-1.37	
1,2,3-Trichlorobenzene	0.57	0.505		-11.4	
1,2-Dichloroethane-d4	0.629	0.695		10.49	
Dibromofluoromethane	0.358	0.395		10.34	
Toluene-d8	1.165	1.215		4.29	
4-Bromofluorobenzene	0.542	0.572		5.54	
Methyl Iodide	1.261	1.248		-1.03	

Lab Name: CHEMTECH Contract: MSAN01

Instrument ID: MSVOA_F Calibration Date/Time: 08/15/2012 12:17

Lab File ID: VF034766.D Init. Calib. Date(s): 08/06/2012 08/06/2012

Heated Purge: (Y/N) Y Init. Calib. Time(s): 10:56 12:50

GC Column: RTX-VMS ID: 0.18 (mm)

COMPOUND	RRF	RRF050	MIN RRF	%D	MAX%D
Allyl chloride	1.053	1.004		-4.65	
trans-1,4-Dichloro-2-butene	0.379	0.422		11.35	
Methacrylonitrile	0.109	0.131		20.18	
Ethyl methacrylate	0.334	0.371		11.08	

All other compounds must meet a minimum RRF of 0.010.

Lab Name: CHEMTECH Contract: MSAN01

Instrument ID: MSVOA_F Calibration Date/Time: 08/16/2012 12:37

Lab File ID: VF034789.D Init. Calib. Date(s): 08/06/2012 08/06/2012

Heated Purge: (Y/N) Y Init. Calib. Time(s): 10:56 12:50

COMPOUND	RRF	RRF050	MIN RRF	%D	MAX%D
Dichlorodifluoromethane	0.888	0.904		1.8	
Chloromethane	0.847	0.836	0.1	-1.3	
Vinyl Chloride	0.56	0.578		3.21	20
Ethyl Acetate	0.223	0.210		-5.83	
Isopropyl Acetate	0.279	0.248		-11.11	
N-amyl acetate	1.066	1.002		-6	
Bromomethane	0.353	0.316		-10.48	
Chloroethane	0.237	0.243		2.53	
Trichlorofluoromethane	0.989	1.020		3.13	
1,1,2-Trichlorotrifluoroethane	0.715	0.769		7.55	
Tert butyl alcohol	0.042	0.043		2.38	
Diethyl Ether	0.228	0.329		44.3	
1,1-Dichloroethene	0.655	0.696		6.26	20
Acrolein	0.033	0.026		-21.21	
Acrylonitrile	0.109	0.114		4.59	
Acetone	0.147	0.126		-14.29	
Carbon Disulfide	2.177	2.154		-1.06	
Methyl tert-butyl Ether	1.51	1.553		2.85	
Methyl Acetate	0.759	0.748		-1.45	
Methylene Chloride	0.757	0.746		-1.45	
trans-1,2-Dichloroethene	0.748	0.764		2.14	
Vinyl Acetate	0.419	0.421		0.48	
1,1-Dichloroethane	1.23	1.289	0.1	4.8	
Cyclohexane	0.987	1.029		4.26	
2-Butanone	0.149	0.158		6.04	
Carbon Tetrachloride	0.455	0.446		-1.98	
2,2-Dichloropropane	0.891	0.934		4.83	
cis-1,2-Dichloroethene	0.754	0.807		7.03	
Bromochloromethane	0.39	0.376		-3.59	
Chloroform	1.274	1.294		1.57	20
1,1,1-Trichloroethane	1.022	1.032		0.98	
Methylcyclohexane	0.579	0.582		0.52	
1,1-Dichloropropene	0.518	0.510		-1.54	
Benzene	1.21	1.203		-0.58	
1,2-Dichloroethane	0.415	0.399		-3.86	
Trichloroethene	0.358	0.359		0.28	
1,2-Dichloropropane	0.312	0.296		-5.13	20
Dibromomethane	0.184	0.187		1.63	
Bromodichloromethane	0.473	0.455		-3.81	
4-Methy1-2-Pentanone	0.206	0.194		-5.83	
Toluene	0.881	0.849		-3.63	20
t-1,3-Dichloropropene	0.472	0.440		-6.78	

Lab Name: CHEMTECH Contract: MSAN01

Instrument ID: MSVOA_F Calibration Date/Time: 08/16/2012 12:37

Lab File ID: VF034789.D Init. Calib. Date(s): 08/06/2012 08/06/2012

Heated Purge: (Y/N) Y Init. Calib. Time(s): 10:56 12:50

GC Column: RTX-VMS ID: 0.1	8 (mm)				
COMPOUND	RRF	RRF050	MIN RRF	%D	MAX%D
cis-1,3-Dichloropropene	0.551	0.518		-5.99	
1,1,2-Trichloroethane	0.252	0.240		-4.76	
1,3-Dichloropropane	0.463	0.442		-4.54	
2-Chloroethyl Vinyl ether	0.127	0.113		-11.02	
2-Hexanone	0.156	0.148		-5.13	
Dibromochloromethane	0.301	0.296		-1.66	
1,2-Dibromoethane	0.264	0.244		-7.58	
Tetrachloroethene	0.304	0.305		0.33	
Chlorobenzene	1.062	1.072	0.3	0.94	
1,1,1,2-Tetrachloroethane	0.347	0.374		7.78	
Hexachloroethane	0.752	0.732		-2.66	
Ethyl Benzene	1.852	1.835		-0.92	20
m/p-Xylenes	0.719	0.711		-1.11	
o-Xylene	0.754	0.746		-1.06	
Styrene	1.155	1.126		-2.51	
Bromoform	0.171	0.169	0.1	-1.17	
Isopropylbenzene	3.89	3.898		0.21	
1,1,2,2-Tetrachloroethane	0.737	0.718	0.3	-2.58	
1,2,3-Trichloropropane	0.545	0.514		-5.69	
Bromobenzene	0.83	0.803		-3.25	
n-propylbenzene	4.992	4.885		-2.14	
2-Chlorotoluene	2.912	2.843		-2.37	
1,3,5-Trimethylbenzene	3.216	3.136		-2.49	
4-Chlorotoluene	2.95	2.873		-2.61	
tert-Butylbenzene	3.112	3.091		-0.67	
1,2,4-Trimethylbenzene	3.309	3.199		-3.32	
sec-Butylbenzene	4.522	4.447		-1.66	
p-Isopropyltoluene	3.44	3.373		-1.95	
1,3-Dichlorobenzene	1.666	1.625		-2.46	
1,4-Dichlorobenzene	1.679	1.638		-2.44	
n-Butylbenzene	3.699	3.599		-2.7	
1,2-Dichlorobenzene	1.493	1.438		-3.68	
1,2-Dibromo-3-Chloropropane	0.096	0.078		-18.75	
1,2,4-Trichlorobenzene	0.778	0.699		-10.15	
Hexachlorobutadiene	0.465	0.436		-6.24	
Naphthalene	1.39	1.194		-14.1	
1,2,3-Trichlorobenzene	0.57	0.474		-16.84	
1,2-Dichloroethane-d4	0.629	0.603		-4.13	
Dibromofluoromethane	0.358	0.365		1.96	
Toluene-d8	1.165	1.092		-6.27	
4-Bromofluorobenzene	0.542	0.506		-6.64	
Methyl Iodide	1.261	1.303		3.33	

Lab Name: CHEMTECH Contract: MSAN01

Instrument ID: MSVOA_F Calibration Date/Time: 08/16/2012 12:37

Lab File ID: VF034789.D Init. Calib. Date(s): 08/06/2012 08/06/2012

Heated Purge: (Y/N) Y Init. Calib. Time(s): 10:56 12:50

GC Column: RTX-VMS ID: 0.18 (mm)

COMPOUND	RRF	RRF050	MIN RRF	%D	MAX%D
Allyl chloride	1.053	1.067		1.33	
trans-1,4-Dichloro-2-butene	0.379	0.355		-6.33	
Methacrylonitrile	0.109	0.111		1.83	
Ethyl methacrylate	0.334	0.302		-9.58	

All other compounds must meet a minimum RRF of 0.010.

LAB CHRONICLE

OrderID: D3811

Client: MS Analytical

Contact: Bryan Mayback

OrderDate:

Project:

8/15/2012 11:38:54 AM

12MS104 Kensington Heights

Location: 123

LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
D3811-01	SB-2(4-8)	SOIL			08/07/12			08/15/12
			SVOC-Chemtech Full -25	8270D		08/15/12	08/16/12	
D3811-02	SB-5(8-12)	SOIL	CVOC Character F. II. 25	02700	08/07/12	00/45/40	00/16/12	08/15/12
D2011 02	CD 0/4 7)	SOIL	SVOC-Chemtech Full -25	8270D	00/07/12	08/15/12	08/16/12	00/15/12
D3811-03	SB-9(4-7)	SOIL	SVOC-Chemtech Full -25	8270D	08/07/12	08/15/12	08/16/12	08/15/12
D3811-04	SB-10(8-12)	SOIL			08/07/12			08/15/12
			SVOC-Chemtech Full -25	8270D		08/15/12	08/21/12	
D3811-05	SB-11(12-16)	SOIL			08/07/12			08/15/12
	65 4 5 (45 46)		SVOC-Chemtech Full -25	8270D		08/15/12	08/20/12	
D3811-06	SB-15(12-16)	SOIL	SVOC-Chemtech Full -25	8270D	08/08/12	08/15/12	08/21/12	08/15/12
D3811-06DL	SB-15(12-16)DL	SOIL			08/08/12			08/15/12
			SVOC-Chemtech Full -25	8270D		08/15/12	08/22/12	
D3811-06DL	SB-15(12-16)DL2	SOIL			08/08/12			08/15/12
2			SVOC-Chemtech Full -25	8270D		08/15/12	08/22/12	
D3811-07	SB-18(4-8)	SOIL			08/08/12			08/15/12
			SVOC-Chemtech Full -25	8270D		08/15/12	08/20/12	
D3811-08	SB-19(12-18)	SOIL	CVOC Charatesh Full 25	02700	08/08/12	00/15/12	00/20/12	08/15/12
D2911 00	SP 21/12 16\	COTI	SVOC-Chemtech Full -25	8270D	09/00/13	08/15/12	08/20/12	00/15/13
D3811-09	SB-21(12-16)	SOIL	SVOC-Chemtech Full -25	8270D	08/09/12	08/15/12	08/20/12	08/15/12
D3811-10	SB-21(16-19)	SOIL			08/09/12			08/15/12

LAB CHRONICLE

			SVOC-Chemtech Full -25	8270D		08/15/12	08/21/12	
D3811-10DL	SB-21(16-19)DL	SOIL	CVOC Chambach Full 25	02705	08/09/12	00/15/12	00/22/12	08/15/12
D3811-11	SB-22(12-19)	SOIL	SVOC-Chemtech Full -25	8270D	08/09/12	08/15/12	08/22/12	08/15/12
55011 11	35 22(12 13)	3012	SVOC-Chemtech Full -25	8270D	00,03,12	08/15/12	08/20/12	00/15/12
D3811-12	SB-27(8-12)	SOIL			08/09/12			08/15/12
D3811-13	SB-37(8-10)	SOIL	SVOC-Chemtech Full -25	8270D	08/10/12	08/15/12	08/20/12	08/15/12
D3611-13	36-37(6-10)	SOIL	SVOC-Chemtech Full -25	8270D	08/10/12	08/15/12	08/21/12	08/15/12
D3811-13DL	SB-37(8-10)DL	SOIL			08/10/12			08/15/12
			SVOC-Chemtech Full -25	8270D		08/15/12	08/23/12	
D3811-14	SB-39(6-8)	SOIL	SVOC-Chemtech Full -25	8270D	08/10/12	08/15/12	08/20/12	08/15/12
D3811-15	SB-41(8-11)	SOIL			08/10/12			08/15/12
			SVOC-Chemtech Full -25	8270D		08/15/12	08/24/12	
D3811-16	SB-42(14-16)	SOIL	SVOC-Chemtech Full -25	8270D	08/13/12	08/15/12	08/21/12	08/15/12
D3811-17	SB-43(6-8)	SOIL			08/13/12			08/15/12
			SVOC-Chemtech Full -25	8270D		08/15/12	08/21/12	
D3811-18	SB-43(10-12)	SOIL	SVOC-Chemtech Full -25	8270D	08/13/12	08/15/12	08/21/12	08/15/12
D3811-19	SB-43(16-20)	SOIL		52. 22	08/13/12	,,	,,	08/15/12
			SVOC-Chemtech Full -25	8270D		08/15/12	08/21/12	
D3811-20	SB-45(10-12)	SOIL	SVOC-Chemtech Full -25	8270D	08/13/12	08/15/12	08/21/12	08/15/12
D3811-21	SB-46(12-16)	SOIL	3VOC-Chemitech Full -23	02700	08/13/12	00/13/12	00/21/12	08/15/12
			SVOC-Chemtech Full -25	8270D	, -,	08/15/12	08/16/12	, ·- ,
D3811-21RX	SB-46(12-16)RX	SOIL	CVOC Chamba-la Full 35	02700	08/13/12	00/20/42	00/20/42	08/15/12
			SVOC-Chemtech Full -25	8270D		08/28/12	08/28/12	

Hit Summary Sheet SW-846

SDG No.: D3811

Client:	MS Analytical									
Sample ID	Client ID	Matrix	Parameter	Con	centration	C	MDL	LOD	RDL	Units
Client ID:	SB-10(8-12)									
D3811-04	SB-10(8-12)	SOIL	unknown5.92	*	490.000	J	0		0	ug/Kg
			Total Tics :			490				
			Total Concentration:			490	0.00			
Client ID:	SB-11(12-16)									
D3811-05	SB-11(12-16)	SOIL	Dimethylphthalate		380.000	J	12	220	440	ug/Kg
			Total Svoc:			380				
D3811-05	SB-11(12-16)	SOIL	unknown5.91	*	360.000	J	0		0	ug/Kg
D3811-05	SB-11(12-16)	SOIL	3-Octadecene, (E)-	*	100.000	J	0		0	ug/Kg
D3811-05	SB-11(12-16)	SOIL	Cyclopentasiloxane, decamethyl-	*	130.000	J	0		0	ug/Kg
			Total Tics : Total Concentration:			590 970				
Client ID :	SB-15(12-16)									
D3811-06	SB-15(12-16)	SOIL	Naphthalene		23,000.000	Е	80	1150	2300	ug/Kg
D3811-06	SB-15(12-16)	SOIL	2-Methylnaphthalene		8,700.000		58	1150	2300	ug/Kg
D3811-06	SB-15(12-16)	SOIL	1,1-Biphenyl		2,300.000	J	87	1150	2300	ug/Kg
D3811-06	SB-15(12-16)	SOIL	Acenaphthylene		2,900.000		58	1150	2300	ug/Kg
D3811-06	SB-15(12-16)	SOIL	Acenaphthene		8,600.000		65	1150	2300	ug/Kg
D3811-06	SB-15(12-16)	SOIL	Dibenzofuran		14,000.000		90	1150	2300	ug/Kg
D3811-06	SB-15(12-16)	SOIL	Fluorene		20,000.000	Е	87	1150	2300	ug/Kg
D3811-06	SB-15(12-16)	SOIL	Phenanthrene		54,000.000	Е	62	1150	2300	ug/Kg
D3811-06	SB-15(12-16)	SOIL	Anthracene		24,000.000	Е	47	1150	2300	ug/Kg
D3811-06	SB-15(12-16)	SOIL	Carbazole		12,000.000		51	1150	2300	ug/Kg
D3811-06	SB-15(12-16)	SOIL	Fluoranthene		43,000.000	Е	46	1150	2300	ug/Kg
D3811-06	SB-15(12-16)	SOIL	Pyrene		40,000.000	Е	55	1150	2300	ug/Kg
D3811-06	SB-15(12-16)	SOIL	Benzo(a)anthracene		29,000.000	Е	110	1150	2300	ug/Kg
D3811-06	SB-15(12-16)	SOIL	Chrysene		27,000.000	Е	100	1150	2300	ug/Kg
D3811-06	SB-15(12-16)	SOIL	Benzo(b)fluoranthene		29,000.000	Е	75	1150	2300	ug/Kg
D3811-06	SB-15(12-16)	SOIL	Benzo(k)fluoranthene		11,000.000		110	1150	2300	ug/Kg
D3811-06	SB-15(12-16)	SOIL	Benzo(a)pyrene		24,000.000	Е	50	1150	2300	ug/Kg
D3811-06	SB-15(12-16)	SOIL	Indeno(1,2,3-cd)pyrene		13,000.000		77	1150	2300	ug/Kg
D3811-06	SB-15(12-16)	SOIL	Dibenz(a,h)anthracene		4,400.000		66	1150	2300	ug/Kg
D3811-06	SB-15(12-16)	SOIL	Benzo(g,h,i)perylene		12,000.000		93	1150	2300	ug/Kg
			Total Svoc :		•	,900				
D3811-06	SB-15(12-16)	SOIL	Benzo[e]pyrene	*	5,000.000	J	0		0	ug/Kg
D3811-06	SB-15(12-16)	SOIL	Benzo[j]fluoranthene	*	4,700.000	J	0		0	ug/Kg
D3811-06	SB-15(12-16)	SOIL	Anthracene, 2-methyl-	*	6,100.000	J	0		0	ug/Kg
D3811-06	SB-15(12-16)	SOIL	2-Phenylnaphthalene	*	6,600.000	J	0		0	ug/Kg
D3811-06	SB-15(12-16)	SOIL	4H-Cyclopenta[def]phenanthrene	*	18,000.000	J	0		0	ug/Kg
D3811-06	SB-15(12-16)	SOIL	8-Dimethylaminonaphthalene-1-c		2,500.000	J	0		0	ug/Kg

Hit Summary Sheet SW-846

SDG No.: D3811

Client: MS Analytical

Chent:	Wis Allarytical									
Sample ID	Client ID	Matrix	Parameter	Con	centration	C	MDL	LOD	RDL	Units
D3811-06	SB-15(12-16)	SOIL	9-(Cyanomethylene)fluorene	*	2,000.000	J	0		0	ug/Kg
D3811-06	SB-15(12-16)	SOIL	9,10-Anthracenedione	*	2,100.000	J	0		0	ug/Kg
D3811-06	SB-15(12-16)	SOIL	9,10-Dimethylanthracene	*	3,000.000	J	0		0	ug/Kg
D3811-06	SB-15(12-16)	SOIL	9H-Fluoren-9-one	*	2,200.000	J	0		0	ug/Kg
D3811-06	SB-15(12-16)	SOIL	9H-Fluorene, 1-methyl-	*	4,700.000	J	0		0	ug/Kg
D3811-06	SB-15(12-16)	SOIL	Naphthalene, 1,6-dimethyl-	*	3,200.000	J	0		0	ug/Kg
D3811-06	SB-15(12-16)	SOIL	Naphthalene, 2,6-dimethyl-	*	1,700.000	J	0		0	ug/Kg
D3811-06	SB-15(12-16)	SOIL	Naphthalene, 2,7-dimethyl-	*	3,600.000	J	0		0	ug/Kg
D3811-06	SB-15(12-16)	SOIL	Naphtho[2,1-b]furan, 1,2-dimeth	yl- *	1,800.000	J	0		0	ug/Kg
D3811-06	SB-15(12-16)	SOIL	Naphtho[2,3-b]thiophene	*	5,900.000	J	0		0	ug/Kg
D3811-06	SB-15(12-16)	SOIL	Perylene	*	16,000.000	J	0		0	ug/Kg
D3811-06	SB-15(12-16)	SOIL	unknown18.20	*	3,500.000	J	0		0	ug/Kg
D3811-06	SB-15(12-16)	SOIL	Phenanthrene, 1-methyl-	*	10,000.000	J	0		0	ug/Kg
D3811-06	SB-15(12-16)	SOIL	Phenanthrene, 2,5-dimethyl-	*	5,300.000	J	0		0	ug/Kg
D3811-06	SB-15(12-16)	SOIL	Phenanthrene, 2-methyl-	*	13,000.000	J	0		0	ug/Kg
D3811-06	SB-15(12-16)	SOIL	1H-Cyclopropa[1]phenanthrene,1	a,: *	4,000.000	J	0		0	ug/Kg
D3811-06	SB-15(12-16)	SOIL	2,4,6-Cycloheptatrien-1-one, 2-p	he *	4,400.000	J	0		0	ug/Kg
D3811-06	SB-15(12-16)	SOIL	[14]Annulene, 1,6:8,13-bis(meth	an *	1,600.000	J	0		0	ug/Kg
			Total Tics:		130	,900.	00			
			Total Concentration:		532	2,800.	.00			
Client ID:	SB-15(12-16)DL									
D3811-06DL	SB-15(12-16)DL	SOIL	Naphthalene		25,000.000	D	400	5500	11000	ug/Kg
D3811-06DL	SB-15(12-16)DL	SOIL	2-Methylnaphthalene		9,400.000	JD	290	5500	11000	ug/Kg
D3811-06DL	SB-15(12-16)DL	SOIL	Acenaphthene		8,700.000	JD	330	5500	11000	ug/Kg
D3811-06DL	SB-15(12-16)DL	SOIL	Dibenzofuran		14,000.000	D	450	5500	11000	ug/Kg
D3811-06DL	SB-15(12-16)DL	SOIL	Fluorene		21,000.000	D	440	5500	11000	ug/Kg
D3811-06DL	SB-15(12-16)DL	SOIL	Phenanthrene		95,000.000	ED	310	5500	11000	ug/Kg
D3811-06DL	SB-15(12-16)DL	SOIL	Anthracene		28,000.000	D	240	5500	11000	ug/Kg
D3811-06DL	SB-15(12-16)DL	SOIL	Carbazole		13,000.000	D	250	5500	11000	ug/Kg
D3811-06DL	SB-15(12-16)DL	SOIL	Fluoranthene		74,000.000	D	230	5500	11000	ug/Kg
D3811-06DL	SB-15(12-16)DL	SOIL	Pyrene		57,000.000	D	280	5500	11000	ug/Kg
D3811-06DL	SB-15(12-16)DL	SOIL	Benzo(a)anthracene		32,000.000	D	550	5500	11000	ug/Kg
D3811-06DL	SB-15(12-16)DL	SOIL	Chrysene		30,000.000	D	520	5500	11000	ug/Kg
D3811-06DL	SB-15(12-16)DL	SOIL	Benzo(b)fluoranthene		32,000.000	D	380	5500	11000	ug/Kg
D3811-06DL	SB-15(12-16)DL	SOIL	Benzo(k)fluoranthene		11,000.000	JD	540	5500	11000	ug/Kg
D3811-06DL	SB-15(12-16)DL	SOIL	Benzo(a)pyrene		25,000.000	D	250	5500	11000	ug/Kg
D3811-06DL	SB-15(12-16)DL	SOIL	Indeno(1,2,3-cd)pyrene		11,000.000	JD	380	5500	11000	ug/Kg
D3811-06DL	SB-15(12-16)DL	SOIL	Benzo(g,h,i)perylene		12,000.000	D	470	5500	11000	ug/Kg
			Total Svoc:		498	,100.	00			
			Total Concentration:		498	8,100.	.00			
Client ID:	SB-15(12-16)DL2									
D3811-06DL2	SB-15(12-16)DL2	SOIL	Naphthalene		25,000.000	D	800	11500	23000	ug/Kg

Hit Summary Sheet SW-846

SDG No.: D3811

Client: MS Analytical

Client:	MS Analytical									
Sample ID	Client ID	Matrix	Parameter	Conc	entration	C	MDL	LOD	RDL	Units
D3811-06DL2	SB-15(12-16)DL2	SOIL	Dibenzofuran		13,000.000	JD	900	11500	23000	ug/Kg
D3811-06DL2	SB-15(12-16)DL2	SOIL	Fluorene		20,000.000	JD	870	11500	23000	ug/Kg
D3811-06DL2	SB-15(12-16)DL2	SOIL	Phenanthrene		100,000.000	D	620	11500	23000	ug/Kg
D3811-06DL2	SB-15(12-16)DL2	SOIL	Anthracene		28,000.000	D	470	11500	23000	ug/Kg
D3811-06DL2	SB-15(12-16)DL2	SOIL	Carbazole		13,000.000	JD	510	11500	23000	ug/Kg
D3811-06DL2	SB-15(12-16)DL2	SOIL	Fluoranthene		75,000.000	D	460	11500	23000	ug/Kg
D3811-06DL2	SB-15(12-16)DL2	SOIL	Pyrene		59,000.000	D	550	11500	23000	ug/Kg
D3811-06DL2	SB-15(12-16)DL2	SOIL	Benzo(a)anthracene		32,000.000	D	1100	11500	23000	ug/Kg
D3811-06DL2	SB-15(12-16)DL2	SOIL	Chrysene		30,000.000	D	1000	11500	23000	ug/Kg
D3811-06DL2	SB-15(12-16)DL2	SOIL	Benzo(b)fluoranthene		30,000.000	D	750	11500	23000	ug/Kg
D3811-06DL2	SB-15(12-16)DL2	SOIL	Benzo(k)fluoranthene		12,000.000	JD	1100	11500	23000	ug/Kg
D3811-06DL2	SB-15(12-16)DL2	SOIL	Benzo(a)pyrene		25,000.000	D	500	11500	23000	ug/Kg
D3811-06DL2	SB-15(12-16)DL2	SOIL	Indeno(1,2,3-cd)pyrene		11,000.000	JD	770	11500	23000	ug/Kg
D3811-06DL2	SB-15(12-16)DL2	SOIL	Benzo(g,h,i)perylene		12,000.000	JD	930	11500	23000	ug/Kg
			Total Svoc:		485	,000.	00			
			Total Concentration:		485	5,000	.00			
Client ID:	SB-18(4-8)									
D3811-07	SB-18(4-8)	SOIL	Dimethylphthalate		370.000	J	11	195	390	ug/Kg
			Total Svoc:			370.	00			
D3811-07	SB-18(4-8)	SOIL	Dodecane, 2-methyl-	*	87.000	J	0		0	ug/Kg
D3811-07	SB-18(4-8)	SOIL	Isotridecanol-	*	110.000	J	0		0	ug/Kg
D3811-07	SB-18(4-8)	SOIL	unknown17.21	*	110.000	J	0		0	ug/Kg
D3811-07	SB-18(4-8)	SOIL	unknown18.51	*	140.000	J	0		0	ug/Kg
D3811-07	SB-18(4-8)	SOIL	unknown5.91	*	340.000	J	0		0	ug/Kg
D3811-07	SB-18(4-8)	SOIL	Cyclopentasiloxane, decamethyl-	*	160.000	J	0		0	ug/Kg
			Total Tics:		_	947.				
			Total Concentration:		1	1,317	.00			
Client ID:	SB-19(12-18)									
D3811-08	SB-19(12-18)	SOIL	Dimethylphthalate		490.000	J	15	265	530	ug/Kg
			Total Svoc:			490.				
D3811-08	SB-19(12-18)	SOIL	Docosane	*	640.000	J	0		0	ug/Kg
D3811-08	SB-19(12-18)	SOIL	Heneicosane, 11-decyl-	*	840.000	J	0		0	ug/Kg
D3811-08	SB-19(12-18)	SOIL	Hentriacontane	*	2,100.000	J	0		0	ug/Kg
D3811-08	SB-19(12-18)	SOIL	Heptacosane	*	150.000	J	0		0	ug/Kg
D3811-08	SB-19(12-18)	SOIL	Hexadecane	*	1,600.000	J	0		0	ug/Kg
D3811-08	SB-19(12-18)	SOIL	Octacosane	*	1,800.000	J	0		0	ug/Kg
D3811-08	SB-19(12-18)	SOIL	Pentacosane	*	2,300.000	J	0		0	ug/Kg
D3811-08	SB-19(12-18)	SOIL	Pentadecane	*	1,300.000	J	0		0	ug/Kg
D3811-08	SB-19(12-18)	SOIL	Phenanthrene, 1-methyl-7-(1-meth	-	280.000	J	0		0	ug/Kg
D3811-08	SB-19(12-18)	SOIL	Tetracosane	*	1,800.000	J	0		0	ug/Kg
D3811-08	SB-19(12-18)	SOIL	Tetradecane, 2,6,10-trimethyl-	*	540.000	J	0		0	ug/Kg
D3811-08	SB-19(12-18)	SOIL	Tetradecanoic acid	*	320.000	J	0		0	ug/Kg

SDG No.: D3811

Client:	MS Analytical									
Sample ID	Client ID	Matrix	Parameter	Conc	centration	C	MDL	LOD	RDL	Units
D3811-08	SB-19(12-18)	SOIL	Tetratetracontane	*	120.000	J	0		0	ug/Kg
D3811-08	SB-19(12-18)	SOIL	Tetratriacontane	*	2,200.000	J	0		0	ug/Kg
D3811-08	SB-19(12-18)	SOIL	Triacontane	*	170.000	J	0		0	ug/Kg
D3811-08	SB-19(12-18)	SOIL	unknown17.21	*	280.000	J	0		0	ug/Kg
D3811-08	SB-19(12-18)	SOIL	unknown5.90	*	470.000	J	0		0	ug/Kg
D3811-08	SB-19(12-18)	SOIL	10,18-Bisnorabieta-5,7,9(10),1	1,13 *	370.000	J	0		0	ug/Kg
D3811-08	SB-19(12-18)	SOIL	18-Norabietane	*	320.000	J	0		0	ug/Kg
D3811-08	SB-19(12-18)	SOIL	1H-Phenanthro[9,10-d]imidazo	ol-2-; *	330.000	J	0		0	ug/Kg
D3811-08	SB-19(12-18)	SOIL	1-Iodo-2-methylundecane	*	1,200.000	J	0		0	ug/Kg
D3811-08	SB-19(12-18)	SOIL	4b,8-Dimethyl-2-isopropylphe	nantl *	310.000	J	0		0	ug/Kg
D3811-08	SB-19(12-18)	SOIL	Benzene, 1,1-(1,3-butadiyne-1,	,4-d *	200.000	J	0		0	ug/Kg
D3811-08	SB-19(12-18)	SOIL	Cyclopentasiloxane, decameth	yl- *	200.000	J	0		0	ug/Kg
			Total Tics:		19	,840	.00			
			Total Concentration:		20	0,330	0.00			
Client ID:	SB-2(4-8)									
D3811-01	SB-2(4-8)	SOIL	Dimethylphthalate		230.000	J	10	190	380	ug/Kg
			Total Svoc:			230				
D3811-01	SB-2(4-8)	SOIL	n-Hexadecanoic acid	*	97.000	J	0		0	ug/Kg
D3811-01	SB-2(4-8)	SOIL	Tetracosane	*	160.000	J	0		0	ug/Kg
D3811-01	SB-2(4-8)	SOIL	unknown15.69	*	130.000	J	0		0	ug/Kg
D3811-01	SB-2(4-8)	SOIL	unknown9.95	*	77.000	J	0		0	ug/Kg
D3811-01	SB-2(4-8)	SOIL	1-Docosene	*	130.000	J	0		0	ug/Kg
D3811-01	SB-2(4-8)	SOIL	2-Naphthalenol, 1-[(2,4-dimeth		160.000	J	0		0	ug/Kg
D3811-01	SB-2(4-8)	SOIL	2-Pentanone, 4-hydroxy-4-met	hyl- *	1,100.000	A	0		0	ug/Kg
D3811-01	SB-2(4-8)	SOIL	Benzoic acid, 2,5-dinitro-	*	440.000	J	0		0	ug/Kg
D3811-01	SB-2(4-8)	SOIL	Cyclopentasiloxane, decamethy	yl- *	180.000	J	0		0	ug/Kg
			Total Tics:			,474				
			Total Concentration:		2	2,704	4.00			
Client ID:	SB-21(12-16)									
D3811-09	SB-21(12-16)	SOIL	Naphthalene		900.000		16	235	470	ug/Kg
D3811-09	SB-21(12-16)	SOIL	2-Methylnaphthalene		260.000	J	12	235	470	ug/Kg
D3811-09	SB-21(12-16)	SOIL	Dimethylphthalate		490.000		13	235	470	ug/Kg
D3811-09	SB-21(12-16)	SOIL	Acenaphthene		240.000	J	13	235	470	ug/Kg
D3811-09	SB-21(12-16)	SOIL	Dibenzofuran		360.000	J	19	235	470	ug/Kg
D3811-09	SB-21(12-16)	SOIL	Fluorene		550.000		18	235	470	ug/Kg
D3811-09	SB-21(12-16)	SOIL	Phenanthrene		3,200.000		13	235	470	ug/Kg
D3811-09	SB-21(12-16)	SOIL	Anthracene		460.000	J	9.7	235	470	ug/Kg
D3811-09	SB-21(12-16)	SOIL	Carbazole		360.000	J	10	235	470	ug/Kg
D3811-09	SB-21(12-16)	SOIL	Fluoranthene		2,400.000		9.6	235	470	ug/Kg
D3811-09	SB-21(12-16)	SOIL	Pyrene		2,000.000		11	235	470	ug/Kg
D3811-09	SB-21(12-16)	SOIL	Benzo(a)anthracene		890.000		23	235	470	ug/Kg
D3811-09	SB-21(12-16)	SOIL	Chrysene		1,000.000		22	235	470	ug/Kg

SDG No.: D3811

Client:	MS Analytical									
Sample ID	Client ID	Matrix	Parameter	Con	centration	C	MDL	LOD	RDL	Units
D3811-09	SB-21(12-16)	SOIL	Benzo(b)fluoranthene		1,000.000		16	235	470	ug/Kg
D3811-09	SB-21(12-16)	SOIL	Benzo(k)fluoranthene		360.000	J	22	235	470	ug/Kg
D3811-09	SB-21(12-16)	SOIL	Benzo(a)pyrene		840.000		10	235	470	ug/Kg
D3811-09	SB-21(12-16)	SOIL	Indeno(1,2,3-cd)pyrene		460.000	J	16	235	470	ug/Kg
D3811-09	SB-21(12-16)	SOIL	Benzo(g,h,i)perylene		460.000	J	19	235	470	ug/Kg
			Total Svoc:		16	,230	.00			
D3811-09	SB-21(12-16)	SOIL	Bicyclo[2.2.1]heptan-2-one, 1,7,	7- *	2,100.000	J	0		0	ug/Kg
D3811-09	SB-21(12-16)	SOIL	Eicosane	*	860.000	J	0		0	ug/Kg
D3811-09	SB-21(12-16)	SOIL	Heneicosane	*	460.000	J	0		0	ug/Kg
D3811-09	SB-21(12-16)	SOIL	Heptacosane	*	360.000	J	0		0	ug/Kg
D3811-09	SB-21(12-16)	SOIL	Heptadecane, 9-octyl-	*	430.000	J	0		0	ug/Kg
D3811-09	SB-21(12-16)	SOIL	Hexadecane	*	520.000	J	0		0	ug/Kg
D3811-09	SB-21(12-16)	SOIL	Tetracosane	*	360.000	J	0		0	ug/Kg
D3811-09	SB-21(12-16)	SOIL	Tetradecanoic acid	*	560.000	J	0		0	ug/Kg
D3811-09	SB-21(12-16)	SOIL	unknown17.46	*	900.000	J	0		0	ug/Kg
D3811-09	SB-21(12-16)	SOIL	unknown5.91	*	460.000	J	0		0	ug/Kg
D3811-09	SB-21(12-16)	SOIL	Phenanthrene, 1-methyl-	*	680.000	J	0		0	ug/Kg
D3811-09	SB-21(12-16)	SOIL	Phenanthrene, 1-methyl-7-(1-me	thy *	330.000	J	0		0	ug/Kg
D3811-09	SB-21(12-16)	SOIL	Phenanthrene, 2-methyl-	*	980.000	J	0		0	ug/Kg
D3811-09	SB-21(12-16)	SOIL	Octacosane	*	320.000	J	0		0	ug/Kg
D3811-09	SB-21(12-16)	SOIL	Octadecane	*	270.000	J	0		0	ug/Kg
D3811-09	SB-21(12-16)	SOIL	Pentadecane	*	850.000	J	0		0	ug/Kg
D3811-09	SB-21(12-16)	SOIL	Benzene, 1-methyl-2-(1-methyle	thy *	340.000	J	0		0	ug/Kg
D3811-09	SB-21(12-16)	SOIL	4b,8-Dimethyl-2-isopropylphena	ntl *	330.000	J	0		0	ug/Kg
D3811-09	SB-21(12-16)	SOIL	4H-Cyclopenta[def]phenanthrend	e *	700.000	J	0		0	ug/Kg
D3811-09	SB-21(12-16)	SOIL	9,10-Anthracenedione	*	350.000	J	0		0	ug/Kg
D3811-09	SB-21(12-16)	SOIL	10,18-Bisnorabieta-5,7,9(10),11,	,13 *	320.000	J	0		0	ug/Kg
D3811-09	SB-21(12-16)	SOIL	18-Norabietane	*	770.000	J	0		0	ug/Kg
D3811-09	SB-21(12-16)	SOIL	1H-Phenanthro[9,10-d]imidazol-	-2-: *	1,600.000	J	0		0	ug/Kg
D3811-09	SB-21(12-16)	SOIL	2(1H)Naphthalenone, 3,5,6,7,8,8	8a-1 *	570.000	J	0		0	ug/Kg
			Total Tics:		15	,420	.00			
			Total Concentration:		3′	1,650	0.00			
Client ID:	SB-21(16-19)									
D3811-10	SB-21(16-19)	SOIL	Acenaphthylene		2,000.000	J	62	1200	2400	ug/Kg
D3811-10	SB-21(16-19)	SOIL	Fluorene		3,600.000		92	1200	2400	ug/Kg
D3811-10	SB-21(16-19)	SOIL	Phenanthrene		27,000.000	Е	66	1200	2400	ug/Kg
D3811-10	SB-21(16-19)	SOIL	Anthracene		11,000.000		50	1200	2400	ug/Kg
D3811-10	SB-21(16-19)	SOIL	Carbazole		1,300.000	J	54	1200	2400	ug/Kg
D3811-10	SB-21(16-19)	SOIL	Fluoranthene		26,000.000	E	49	1200	2400	ug/Kg
D3811-10	SB-21(16-19)	SOIL	Pyrene		20,000.000	E	59	1200	2400	ug/Kg
D3811-10	SB-21(16-19)	SOIL	Benzo(a)anthracene		13,000.000	_	120	1200	2400	ug/Kg
D3811-10	SB-21(16-19)	SOIL	Chrysene		12,000.000		110	1200	2400	ug/Kg
25011 10	55 21(10 17)	SOIL	Cinguent		12,000.000		110	1200	2.00	45/115

SDG No.: D3811

Client:	MS Analytical								
Sample ID	Client ID	Matrix	Parameter	Concentration	C	MDL	LOD	RDL	Units
D3811-10	SB-21(16-19)	SOIL	Benzo(b)fluoranthene	13,000.00	O	80	1200	2400	ug/Kg
D3811-10	SB-21(16-19)	SOIL	Benzo(k)fluoranthene	5,400.00	C	120	1200	2400	ug/Kg
D3811-10	SB-21(16-19)	SOIL	Benzo(a)pyrene	11,000.00	C	53	1200	2400	ug/Kg
D3811-10	SB-21(16-19)	SOIL	Indeno(1,2,3-cd)pyrene	5,700.00	C	81	1200	2400	ug/Kg
D3811-10	SB-21(16-19)	SOIL	Dibenz(a,h)anthracene	1,800.00) J	70	1200	2400	ug/Kg
D3811-10	SB-21(16-19)	SOIL	Benzo(g,h,i)perylene	5,500.00	C	99	1200	2400	ug/Kg
			Total Svoc:	15	8,300.	.00			
D3811-10	SB-21(16-19)	SOIL	Anthracene, 2-methyl-	* 3,900.00) J	0		0	ug/Kg
D3811-10	SB-21(16-19)	SOIL	Azuleno(2,1-b)thiophene	* 1,400.00) J	0		0	ug/Kg
D3811-10	SB-21(16-19)	SOIL	Diphenylmethane	* 570.00) J	0		0	ug/Kg
D3811-10	SB-21(16-19)	SOIL	Heptadecane, 2,6,10,14-tetrame	thyl * 570.00) J	0		0	ug/Kg
D3811-10	SB-21(16-19)	SOIL	Benzo[h]quinoline	* 1,100.00) J	0		0	ug/Kg
D3811-10	SB-21(16-19)	SOIL	Cyclohexane, hexaethylidene-	* 690.00) J	0		0	ug/Kg
D3811-10	SB-21(16-19)	SOIL	Naphthalene, 2-phenyl-	* 2,000.00) J	0		0	ug/Kg
D3811-10	SB-21(16-19)	SOIL	Phenanthrene, 2,5-dimethyl-	* 1,300.00) J	0		0	ug/Kg
D3811-10	SB-21(16-19)	SOIL	Phenanthrene, 2-methyl-	* 2,800.00) J	0		0	ug/Kg
D3811-10	SB-21(16-19)	SOIL	Pyrene, 1-methyl-	* 1,400.00) J	0		0	ug/Kg
D3811-10	SB-21(16-19)	SOIL	Pyridine, 4,4-(1,2-ethenediyl)bis	s * 800.00) J	0		0	ug/Kg
D3811-10	SB-21(16-19)	SOIL	10,18-Bisnorabieta-5,7,9(10),11	,13 * 2,000.00) J	0		0	ug/Kg
D3811-10	SB-21(16-19)	SOIL	11H-Benzo[b]fluorene	* 1,400.00) J	0		0	ug/Kg
D3811-10	SB-21(16-19)	SOIL	1H-Cyclopropa[l]phenanthrene,	1a, * 1,700.00) J	0		0	ug/Kg
D3811-10	SB-21(16-19)	SOIL	2,4,6-Trimethoxybenzaldehyde	* 540.00) J	0		0	ug/Kg
D3811-10	SB-21(16-19)	SOIL	4b,8-Dimethyl-2-isopropylphen	antl * 970.00) J	0		0	ug/Kg
D3811-10	SB-21(16-19)	SOIL	4H-Cyclopenta[def]phenanthren	e * 6,700.00) J	0		0	ug/Kg
D3811-10	SB-21(16-19)	SOIL	7H-Benz[de]anthracen-7-one	* 570.00) J	0		0	ug/Kg
D3811-10	SB-21(16-19)	SOIL	9H-Fluorene, 2-methyl-	* 1,200.00) J	0		0	ug/Kg
			Total Tics:	3	31,610.	.00			
			Total Concentration:	1	89,910	.00			
Client ID:	SB-21(16-19)DL								
D3811-10DL	SB-21(16-19)DL	SOIL	Fluorene	3,600.00) JD	180	2400	4800	ug/Kg
D3811-10DL	SB-21(16-19)DL	SOIL	Phenanthrene	29,000.00	D D	130	2400	4800	ug/Kg
D3811-10DL	SB-21(16-19)DL	SOIL	Anthracene	11,000.00) D	100	2400	4800	ug/Kg
D3811-10DL	SB-21(16-19)DL	SOIL	Fluoranthene	28,000.00) D	98	2400	4800	ug/Kg
D3811-10DL	SB-21(16-19)DL	SOIL	Pyrene	21,000.00	D D	120	2400	4800	ug/Kg
D3811-10DL	SB-21(16-19)DL	SOIL	Benzo(a)anthracene	13,000.00) D	230	2400	4800	ug/Kg
D3811-10DL	SB-21(16-19)DL	SOIL	Chrysene	12,000.00		220	2400	4800	ug/Kg
D3811-10DL	SB-21(16-19)DL	SOIL	Benzo(b)fluoranthene	13,000.00		160	2400	4800	ug/Kg
D3811-10DL	SB-21(16-19)DL	SOIL	Benzo(k)fluoranthene	5,100.00	D D	230	2400	4800	ug/Kg
D3811-10DL	SB-21(16-19)DL	SOIL	Benzo(a)pyrene	11,000.00		110	2400	4800	ug/Kg
D3811-10DL	SB-21(16-19)DL	SOIL	Indeno(1,2,3-cd)pyrene	5,000.00) D	160	2400	4800	ug/Kg
D3811-10DL	SB-21(16-19)DL	SOIL	Benzo(g,h,i)perylene	5,000.00) D	200	2400	4800	ug/Kg
			Total Svoc:	15	6,700	.00			

SDG No.: D3811

Sample ID	Client ID	Matrix	Parameter	Conc	entration	С	MDL	LOD	RDL	Units
•			Total Concentration:		150	6,700	0.00			
Client ID:	SB-22(12-19)									
D3811-11	SB-22(12-19)	SOIL	Dimethylphthalate		350.000	J	9.9	180	360	ug/Kg
D3811-11	SB-22(12-19)	SOIL	Phenanthrene		190.000	J	9.9	180	360	ug/Kg
D3811-11	SB-22(12-19)	SOIL	Fluoranthene		210.000	J	7.3	180	360	ug/Kg
D3811-11	SB-22(12-19)	SOIL	Pyrene		180.000	J	8.8	180	360	ug/Kg
D3811-11	SB-22(12-19)	SOIL	Benzo(b)fluoranthene		150.000	J	12	180	360	ug/Kg
			Total Svoc:		1	,080	.00			
D3811-11	SB-22(12-19)	SOIL	Cyclopentasiloxane, decamethyl-	*	160.000	J	0		0	ug/Kg
D3811-11	SB-22(12-19)	SOIL	Octadecane	*	93.000	J	0		0	ug/Kg
D3811-11	SB-22(12-19)	SOIL	Tridecanoic acid	*	210.000	J	0		0	ug/Kg
D3811-11	SB-22(12-19)	SOIL	unknown18.51	*	240.000	J	0		0	ug/Kg
D3811-11	SB-22(12-19)	SOIL	unknown20.50	*	120.000	J	0		0	ug/Kg
D3811-11	SB-22(12-19)	SOIL	unknown5.91	*	370.000	J	0		0	ug/Kg
D3811-11	SB-22(12-19)	SOIL	13-Docosenamide, (Z)-	*	140.000	J	0		0	ug/Kg
D3811-11	SB-22(12-19)	SOIL	1H-Indene, 1-ethylidene-	*	78.000	J	0		0	ug/Kg
			Total Tics:		1	,411	.00			
			Total Concentration:		2	2,49′	1.00			
Client ID:	SB-27(8-12)									
D3811-12	SB-27(8-12)	SOIL	Dimethylphthalate		460.000		11	205	410	ug/Kg
D3811-12	SB-27(8-12)	SOIL	Fluoranthene		590.000		8.3	205	410	ug/Kg
D3811-12	SB-27(8-12)	SOIL	Pyrene		550.000		9.9	205	410	ug/Kg
D3811-12	SB-27(8-12)	SOIL	Benzo(a)anthracene		530.000		20	205	410	ug/Kg
D3811-12	SB-27(8-12)	SOIL	Chrysene		640.000		19	205	410	ug/Kg
D3811-12	SB-27(8-12)	SOIL	Benzo(b)fluoranthene		1,100.000		13	205	410	ug/Kg
D3811-12	SB-27(8-12)	SOIL	Benzo(k)fluoranthene		280.000	J	19	205	410	ug/Kg
D3811-12	SB-27(8-12)	SOIL	Benzo(a)pyrene		720.000		8.9	205	410	ug/Kg
D3811-12	SB-27(8-12)	SOIL	Indeno(1,2,3-cd)pyrene		560.000		14	205	410	ug/Kg
D3811-12	SB-27(8-12)	SOIL	Dibenz(a,h)anthracene		190.000	J	12	205	410	ug/Kg
D3811-12	SB-27(8-12)	SOIL	Benzo(g,h,i)perylene		580.000		17	205	410	ug/Kg
			Total Svoc:			,200				
D3811-12	SB-27(8-12)	SOIL	Cyclohexane, 1,3,5-trimethyl-2-o		95.000	J	0		0	ug/Kg
D3811-12	SB-27(8-12)	SOIL	Cyclopentasiloxane, decamethyl-		96.000	J	0		0	ug/Kg
D3811-12	SB-27(8-12)	SOIL	Decahydro-4,4,8,9,10-pentamethy		210.000	J	0		0	ug/Kg
D3811-12	SB-27(8-12)	SOIL	Squalane	*	110.000	J	0		0	ug/Kg
D3811-12	SB-27(8-12)	SOIL	unknown13.49	*	96.000	J	0		0	ug/Kg
D3811-12	SB-27(8-12)	SOIL	unknown13.66	*	84.000	J	0		0	ug/Kg
D3811-12	SB-27(8-12)	SOIL	unknown14.46	*	83.000	J	0		0	ug/Kg
D3811-12	SB-27(8-12)	SOIL	unknown5.91	*	330.000	J	0		0	ug/Kg
D3811-12	SB-27(8-12)	SOIL	unknown8.56	*	84.000	J	0		0	ug/Kg
D3811-12	SB-27(8-12)	SOIL	1-Trimethylsilylpent-1-en-4-yne	*	260.000	J	0		0	ug/Kg
			Total Tics:		1	,448	.00			

SDG No.: D3811

Sample ID	Client ID	Matrix	Parameter	Concentration	C	MDL	LOD	RDL	Units
			Total Concentration:		7,64	8.00			
Client ID :	SB-37(8-10)								
D3811-13	SB-37(8-10)	SOIL	Acenaphthylene	4,700.0	00	60	1200	2400	ug/Kg
D3811-13	SB-37(8-10)	SOIL	Fluorene	1,400.0		90	1200	2400	ug/Kg
D3811-13	SB-37(8-10)	SOIL	Phenanthrene	10,000.0		64	1200	2400	ug/Kg
D3811-13	SB-37(8-10)	SOIL	Anthracene	4,100.0		48	1200	2400	ug/Kg
D3811-13	SB-37(8-10)	SOIL	Fluoranthene	23,000.0			1200	2400	ug/Kg
D3811-13	SB-37(8-10)	SOIL	Pyrene	22,000.0			1200	2400	ug/Kg
D3811-13	SB-37(8-10)	SOIL	Benzo(a)anthracene	15,000.0		110	1200	2400	ug/Kg
D3811-13	SB-37(8-10)	SOIL	Chrysene	17,000.0		110	1200	2400	ug/Kg
D3811-13	SB-37(8-10)	SOIL	Benzo(b)fluoranthene	22,000.0	00 E	78	1200	2400	ug/Kg
D3811-13	SB-37(8-10)	SOIL	Benzo(k)fluoranthene	7,900.0		110	1200	2400	ug/Kg
D3811-13	SB-37(8-10)	SOIL	Benzo(a)pyrene	18,000.0		51	1200	2400	ug/Kg
D3811-13	SB-37(8-10)	SOIL	Indeno(1,2,3-cd)pyrene	12,000.0	00	79	1200	2400	ug/Kg
D3811-13	SB-37(8-10)	SOIL	Dibenz(a,h)anthracene	3,600.0	00	68	1200	2400	ug/Kg
D3811-13	SB-37(8-10)	SOIL	Benzo(g,h,i)perylene	12,000.0	00	96	1200	2400	ug/Kg
			Total Svoc:	,	172,700	0.00			
D3811-13	SB-37(8-10)	SOIL	Benzo[e]pyrene	* 18,000.0	00 J	0		0	ug/Kg
D3811-13	SB-37(8-10)	SOIL	Chrysene, 6-methyl-	* 1,000.0	00 J	0		0	ug/Kg
D3811-13	SB-37(8-10)	SOIL	Cyclopenta(def)phenanthrenone	* 1,700.0	00 J	0		0	ug/Kg
D3811-13	SB-37(8-10)	SOIL	Anthracene, 9-methyl-	* 1,600.0	00 J	0		0	ug/Kg
D3811-13	SB-37(8-10)	SOIL	11H-Benzo[a]fluorene	* 1,000.0	00 J	0		0	ug/Kg
D3811-13	SB-37(8-10)	SOIL	11H-Benzo[b]fluorene	* 1,800.0	00 J	0		0	ug/Kg
D3811-13	SB-37(8-10)	SOIL	2,9-Dimethyl-2,3,4,5,6,7-hexahyd	r(* 810.0	00 J	0		0	ug/Kg
D3811-13	SB-37(8-10)	SOIL	4H-Cyclopenta[def]phenanthrene	* 7,200.0	00 J	0		0	ug/Kg
D3811-13	SB-37(8-10)	SOIL	9,10-Anthracenedione	* 1,100.0	00 J	0		0	ug/Kg
D3811-13	SB-37(8-10)	SOIL	9H-Fluorene, 2-methyl-	* 860.0	00 J	0		0	ug/Kg
D3811-13	SB-37(8-10)	SOIL	Naphthalene, 2-phenyl-	* 1,900.0	00 J	0		0	ug/Kg
D3811-13	SB-37(8-10)	SOIL	Naphtho[2,3-b]thiophene	* 1,000.0	00 J	0		0	ug/Kg
D3811-13	SB-37(8-10)	SOIL	Perylene	* 5,600.0	00 J	0		0	ug/Kg
D3811-13	SB-37(8-10)	SOIL	Phenanthrene, 1,7-dimethyl-	* 820.0	00 J	0		0	ug/Kg
D3811-13	SB-37(8-10)	SOIL	Phenanthrene, 1-methyl-	* 3,600.0	00 J	0		0	ug/Kg
D3811-13	SB-37(8-10)	SOIL	Phenanthrene, 2,3-dimethyl-	* 2,500.0	00 J	0		0	ug/Kg
D3811-13	SB-37(8-10)	SOIL	Phenanthrene, 2-methyl-	* 3,000.0	00 J	0		0	ug/Kg
D3811-13	SB-37(8-10)	SOIL	Phenanthrene, 3-methyl-	* 1,600.0		0		0	ug/Kg
D3811-13	SB-37(8-10)	SOIL	Pyrene, 1-methyl-	* 770.0	00 J	0		0	ug/Kg
D3811-13	SB-37(8-10)	SOIL	unknown16.55	* 960.0		0		0	ug/Kg
D3811-13	SB-37(8-10)	SOIL	unknown18.19	* 1,700.0		0		0	ug/Kg
			Total Tics:		58,520				
			Total Concentration:		231,22	0.00			
Client ID:	SB-37(8-10)DL								
D3811-13DL	SB-37(8-10)DL	SOIL	Acenaphthylene	3,200.0	00 Л	D 120	2350	4700	ug/Kg
	\ -	-	1 2	- , - • • •					2 2

SDG No.: D3811

Sample ID	Client ID	Matrix	Parameter	Concentration	C	MDL	LOD	RDL	Units
D3811-13DL	SB-37(8-10)DL	SOIL	Phenanthrene	11,000.000	D	130	2350	4700	ug/Kg
D3811-13DL	SB-37(8-10)DL	SOIL	Anthracene	3,500.000	JD	97	2350	4700	ug/Kg
D3811-13DL	SB-37(8-10)DL	SOIL	Fluoranthene	24,000.000	D	96	2350	4700	ug/Kg
D3811-13DL	SB-37(8-10)DL	SOIL	Pyrene	24,000.000	D	110	2350	4700	ug/Kg
D3811-13DL	SB-37(8-10)DL	SOIL	Benzo(a)anthracene	15,000.000	D	230	2350	4700	ug/Kg
D3811-13DL	SB-37(8-10)DL	SOIL	Chrysene	17,000.000	D	220	2350	4700	ug/Kg
D3811-13DL	SB-37(8-10)DL	SOIL	Benzo(b)fluoranthene	22,000.000	D	160	2350	4700	ug/Kg
D3811-13DL	SB-37(8-10)DL	SOIL	Benzo(k)fluoranthene	8,900.000	D	220	2350	4700	ug/Kg
D3811-13DL	SB-37(8-10)DL	SOIL	Benzo(a)pyrene	18,000.000	D	100	2350	4700	ug/Kg
D3811-13DL	SB-37(8-10)DL	SOIL	Indeno(1,2,3-cd)pyrene	10,000.000	D	160	2350	4700	ug/Kg
D3811-13DL	SB-37(8-10)DL	SOIL	Dibenz(a,h)anthracene	2,300.000	JD	140	2350	4700	ug/Kg
D3811-13DL	SB-37(8-10)DL	SOIL	Benzo(g,h,i)perylene	11,000.000	D	190	2350	4700	ug/Kg
			Total Svoc:	16	9,900.	00			
			Total Concentration:	16	9,900	.00			
Client ID:	SB-39(6-8)								
D3811-14	SB-39(6-8)	SOIL	Dimethylphthalate	360.000)	9.8	180	360	ug/Kg
	(1 1)		Total Svoc:		360.				
D3811-14	SB-39(6-8)	SOIL	Heptadecane	* 87.000		0		0	ug/Kg
D3811-14	SB-39(6-8)	SOIL	Tridecanoic acid	* 120.000	J	0		0	ug/Kg
D3811-14	SB-39(6-8)	SOIL	2-Pentanone, 4-hydroxy-4-methy	l- * 310.000	A	0		0	ug/Kg
D3811-14	SB-39(6-8)	SOIL	Benzene, 1,1-(1,3-butadiyne-1,4-	d * 92.000	J	0		0	ug/Kg
D3811-14	SB-39(6-8)	SOIL	Cyclopentasiloxane, decamethyl-		J	0		0	ug/Kg
			Total Tics :		700.	00			
			Total Concentration:		1,060	.00			
Client ID:	SB-41(8-11)								
D3811-15	SB-41(8-11)	SOIL	Benzoic acid	710.000	J	81	495	990	ug/Kg
D3811-15	SB-41(8-11)	SOIL	Naphthalene	290.000	J	14	205	410	ug/Kg
D3811-15	SB-41(8-11)	SOIL	Dimethylphthalate	360.000	J	11	205	410	ug/Kg
D3811-15	SB-41(8-11)	SOIL	Acenaphthene	190.000	J	12	205	410	ug/Kg
D3811-15	SB-41(8-11)	SOIL	Phenanthrene	1,300.000)	11	205	410	ug/Kg
D3811-15	SB-41(8-11)	SOIL	Anthracene	380.000	J	8.4	205	410	ug/Kg
D3811-15	SB-41(8-11)	SOIL	Fluoranthene	1,700.000)	8.3	205	410	ug/Kg
D3811-15	SB-41(8-11)	SOIL	Pyrene	1,400.000)	9.9	205	410	ug/Kg
D3811-15	SB-41(8-11)	SOIL	Benzo(a)anthracene	880.000)	20	205	410	ug/Kg
D3811-15	SB-41(8-11)	SOIL	Chrysene	890.000)	19	205	410	ug/Kg
D3811-15	SB-41(8-11)	SOIL	Benzo(b)fluoranthene	1,100.000)	13	205	410	ug/Kg
D3811-15	SB-41(8-11)	SOIL	Benzo(k)fluoranthene	370.000	J	19	205	410	ug/Kg
D3811-15	SB-41(8-11)	SOIL	Benzo(a)pyrene	910.000)	8.9	205	410	ug/Kg
D3811-15	SB-41(8-11)	SOIL	Indeno(1,2,3-cd)pyrene	500.000)	14	205	410	ug/Kg
D3811-15	SB-41(8-11)	SOIL	Benzo(g,h,i)perylene	470.000)	17	205	410	ug/Kg
			Total Svoc:	1	1,450.	00			
D3811-15	SB-41(8-11)	SOIL	Benzo[c]phenanthrene	* 86.000	J	0		0	ug/Kg

SDG No.: D3811

Chent:	Wis Allarytical									
Sample ID	Client ID	Matrix	Parameter	Conce	entration	C	MDL	LOD	RDL	Units
D3811-15	SB-41(8-11)	SOIL	Benzo[e]pyrene	*	740.000	J	0		0	ug/Kg
D3811-15	SB-41(8-11)	SOIL	Anthracene, 9-methyl-	*	110.000	J	0		0	ug/Kg
D3811-15	SB-41(8-11)	SOIL	11H-Benzo[a]fluorene	*	120.000	J	0		0	ug/Kg
D3811-15	SB-41(8-11)	SOIL	11H-Benzo[b]fluorene	*	130.000	J	0		0	ug/Kg
D3811-15	SB-41(8-11)	SOIL	1H-Cyclopropa[l]phenanthrene,la	l,(*	220.000	J	0		0	ug/Kg
D3811-15	SB-41(8-11)	SOIL	2-Pentanone, 4-hydroxy-4-methyl	- *	860.000	A	0		0	ug/Kg
D3811-15	SB-41(8-11)	SOIL	4H-Cyclopenta[def]phenanthrene	*	270.000	J	0		0	ug/Kg
D3811-15	SB-41(8-11)	SOIL	5H-Indeno[1,2-b]pyridine	*	150.000	J	0		0	ug/Kg
D3811-15	SB-41(8-11)	SOIL	Phenanthrene, 2-methyl-	*	150.000	J	0		0	ug/Kg
D3811-15	SB-41(8-11)	SOIL	Phenanthrene, 4,5-dimethyl-	*	100.000	J	0		0	ug/Kg
D3811-15	SB-41(8-11)	SOIL	unknown11.16	*	100.000	J	0		0	ug/Kg
D3811-15	SB-41(8-11)	SOIL	unknown11.42	*	190.000	J	0		0	ug/Kg
D3811-15	SB-41(8-11)	SOIL	Hexadecanoic acid, butyl ester	*	130.000	J	0		0	ug/Kg
D3811-15	SB-41(8-11)	SOIL	Naphthalene, 1-methyl-	*	88.000	J	0		0	ug/Kg
D3811-15	SB-41(8-11)	SOIL	Octadecanoic acid, butyl ester	*	150.000	J	0		0	ug/Kg
D3811-15	SB-41(8-11)	SOIL	Pentadecane	*	120.000	J	0		0	ug/Kg
			Total Tics:		3	,714	.00			
			Total Concentration:		19	5,164	4.00			
Client ID:	SB-42(14-16)									
D3811-16	SB-42(14-16)	SOIL	Dimethylphthalate		310.000	J	11	200	400	ug/Kg
D3811-16	SB-42(14-16)	SOIL	Fluoranthene		270.000	J	8.1	200	400	ug/Kg
D3811-16	SB-42(14-16)	SOIL	Pyrene		220.000	J	9.6	200	400	ug/Kg
D3811-16	SB-42(14-16)	SOIL	Benzo(a)anthracene		160.000	J	19	200	400	ug/Kg
D3811-16	SB-42(14-16)	SOIL	Chrysene		170.000	J	18	200	400	ug/Kg
D3811-16	SB-42(14-16)	SOIL	Benzo(b)fluoranthene		200.000	J	13	200	400	ug/Kg
D3811-16	SB-42(14-16)	SOIL	Benzo(a)pyrene		170.000	J	8.7	200	400	ug/Kg
			Total Svoc :		1	,500	.00			
D3811-16	SB-42(14-16)	SOIL	Cyclopentasiloxane, decamethyl-	*	120.000	J	0		0	ug/Kg
D3811-16	SB-42(14-16)	SOIL	Octadecane	*	92.000	J	0		0	ug/Kg
D3811-16	SB-42(14-16)	SOIL	Tridecanoic acid	*	190.000	J	0		0	ug/Kg
D3811-16	SB-42(14-16)	SOIL	10,18-Bisnorabieta-5,7,9(10),11,1	3 *	510.000	J	0		0	ug/Kg
D3811-16	SB-42(14-16)	SOIL	2-Pentanone, 4-hydroxy-4-methyl	- *	290.000	A	0		0	ug/Kg
D3811-16	SB-42(14-16)	SOIL	4b,8-Dimethyl-2-isopropylphenan	tl *	170.000	J	0		0	ug/Kg
D3811-16	SB-42(14-16)	SOIL	4-Methoxy-2-hydroxystilbene	*	97.000	J	0		0	ug/Kg
			Total Tics:		1	,469	.00			
			Total Concentration:		2	2,969	9.00			
Client ID:	SB-43(10-12)									
D3811-18	SB-43(10-12)	SOIL	10,18-Bisnorabieta-5,7,9(10),11,1	3 *	920.000	J	0		0	ug/Kg
			Total Tics:			920	.00			
			Total Concentration:			920	0.00			
Client ID:	SB-43(16-20)									
D3811-19	SB-43(16-20)	SOIL	Dimethylphthalate		420.000	J	13	230	460	ug/Kg
	. ,		* *							2 2

SDG No.: D3811

Client:	MS Analytical									
Sample ID	Client ID	Matrix	Parameter	Conc	entration	C	MDL	LOD	RDL	Units
			Total Svoc:			420.0	00			
D3811-19	SB-43(16-20)	SOIL	Squalene	*	190.000	J	0		0	ug/Kg
D3811-19	SB-43(16-20)	SOIL	Sulfur	*	260.000	J	0		0	ug/Kg
D3811-19	SB-43(16-20)	SOIL	2-Pentanone, 4-hydroxy-4-methyl-	- *	1,100.000	A	0		0	ug/Kg
D3811-19	SB-43(16-20)	SOIL	CAPS	*	170.000	J	0		0	ug/Kg
D3811-19	SB-43(16-20)	SOIL	Cyclic octaatomic sulfur	*	3,200.000	J	0		0	ug/Kg
			Total Tics:		4	l,920.0	00			
			Total Concentration:			5,340.	00			
Client ID:	SB-43(6-8)									
D3811-17	SB-43(6-8)	SOIL	Dimethylphthalate		360.000		9.8	180	360	ug/Kg
			Total Svoc :			360.0	00			
D3811-17	SB-43(6-8)	SOIL	Dodecane	*	120.000	J	0		0	ug/Kg
D3811-17	SB-43(6-8)	SOIL	Heptacosane, 1-chloro-	*	180.000	J	0		0	ug/Kg
D3811-17	SB-43(6-8)	SOIL	Octadecane, 5,14-dibutyl-	*	150.000	J	0		0	ug/Kg
D3811-17	SB-43(6-8)	SOIL	Pentadecanoic acid	*	110.000	J	0		0	ug/Kg
D3811-17	SB-43(6-8)	SOIL	Sulfur	*	80.000	J	0		0	ug/Kg
D3811-17	SB-43(6-8)	SOIL	Tridecane, 1-iodo-	*	97.000	J	0		0	ug/Kg
D3811-17	SB-43(6-8)	SOIL	unknown10.48	*	89.000	J	0		0	ug/Kg
D3811-17	SB-43(6-8)	SOIL	unknown15.91	*	92.000	J	0		0	ug/Kg
D3811-17	SB-43(6-8)	SOIL	1-Bromodocosane	*	130.000	J	0		0	ug/Kg
D3811-17	SB-43(6-8)	SOIL	2-Pentanone, 4-hydroxy-4-methyl-	- *	870.000	A	0		0	ug/Kg
D3811-17	SB-43(6-8)	SOIL	Cyclic octaatomic sulfur	*	640.000	J	0		0	ug/Kg
D3811-17	SB-43(6-8)	SOIL	Cyclopentasiloxane, decamethyl-	*	98.000	J	0		0	ug/Kg
			Total Tics :		2	2,656.0	00			
			Total Concentration:		;	3,016.	00			
Client ID:	SB-45(10-12)									
D3811-20	SB-45(10-12)	SOIL	p-Amidinobenzamide	*	470.000	J	0		0	ug/Kg
			Total Tics:			470.0	00			
			Total Concentration:			470.	00			
Client ID:	SB-46(12-16)									
D3811-21	SB-46(12-16)	SOIL	Dimethylphthalate		420.000	JQ	12	230	460	ug/Kg
D3811-21	SB-46(12-16)	SOIL	Fluoranthene		200.000	JQ	9.3	230	460	ug/Kg
			Total Svoc :			620.	00			
D3811-21	SB-46(12-16)	SOIL	n-Hexadecanoic acid	*	220.000	J	0		0	ug/Kg
D3811-21	SB-46(12-16)	SOIL	Nonadecane	*	110.000	J	0		0	ug/Kg
D3811-21	SB-46(12-16)	SOIL	Octadecane	*	190.000	J	0		0	ug/Kg
D3811-21	SB-46(12-16)	SOIL	Sulfur	*	140.000	J	0		0	ug/Kg
D3811-21	SB-46(12-16)	SOIL	2-Pentanone, 4-hydroxy-4-methyl-	- *	1,300.000	AB	0		0	ug/Kg
D3811-21	SB-46(12-16)	SOIL	4-((1E)-3-Hydroxy-1-propenyl)-2-	-r *	260.000	J	0		0	ug/Kg
D3811-21	SB-46(12-16)	SOIL	Cyclic octaatomic sulfur	*	2,600.000	J	0		0	ug/Kg
D3811-21	SB-46(12-16)	SOIL	Cyclopentasiloxane, decamethyl-	*	120.000	J	0		0	ug/Kg
D3811-21	SB-46(12-16)	SOIL	Ethyl Chloride	*	210.000	J	0		0	ug/Kg

SDG No.: D3811

Sample ID	Client ID	Matrix	Parameter	Conc	entration	C	MDL	LOD	RDL	Units
			Total Tics : Total Concentration:			5,150 5,770				
			Total Conceller MUUII.		•	-,11				
Client ID:	SB-46(12-16)RX	9011	2:434 4 1 1 1		240.000	-	2.1	222	460	/TE
D3811-21RX	SB-46(12-16)RX	SOIL	3+4-Methylphenols		340.000	J	24	230	460	ug/Kg
D3811-21RX	SB-46(12-16)RX	SOIL	Dimethylphthalate		580.000		12	230	460	ug/Kg
D3811-21RX	SB-46(12-16)RX	SOIL	Phenanthrene		360.000	J	12	230	460	ug/Kg
D3811-21RX	SB-46(12-16)RX	SOIL	Fluoranthene		690.000		9.3	230	460	ug/Kg
D3811-21RX	SB-46(12-16)RX	SOIL	Pyrene		650.000		11	230	460	ug/Kg
D3811-21RX	SB-46(12-16)RX	SOIL	Benzo(a)anthracene		320.000	J	22	230	460	ug/Kg
D3811-21RX	SB-46(12-16)RX	SOIL	Chrysene		420.000	J	21	230	460	ug/Kg
D3811-21RX	SB-46(12-16)RX	SOIL	Benzo(b)fluoranthene		530.000	-	15	230	460	ug/Kg
D3811-21RX	SB-46(12-16)RX	SOIL	Benzo(k)fluoranthene		220.000	J	22	230	460	ug/Kg
D3811-21RX	SB-46(12-16)RX	SOIL	Benzo(a)pyrene		390.000	J	10	230	460	ug/Kg
D3811-21RX	SB-46(12-16)RX	SOIL	Indeno(1,2,3-cd)pyrene		190.000	J	15	230	460	ug/Kg
D3811-21RX	SB-46(12-16)RX	SOIL	Benzo(g,h,i)perylene		210.000	J	19	230	460	ug/Kg
			Total Svoc:			,900 4 000				
			Total Concentration:		•	4,900	.00			
Client ID:	SB-5(8-12)									
D3811-02	SB-5(8-12)	SOIL	Dimethylphthalate		290.000	J	11	205	410	ug/Kg
			Total Svoc:			290	.00			
D3811-02	SB-5(8-12)	SOIL	Eicosane	*	85.000	J	0		0	ug/Kg
D3811-02	SB-5(8-12)	SOIL	Heptadecane	*	140.000	J	0		0	ug/Kg
D3811-02	SB-5(8-12)	SOIL	Heptadecane, 9-hexyl-	*	250.000	J	0		0	ug/Kg
D3811-02	SB-5(8-12)	SOIL	Hexadecane	*	130.000	J	0		0	ug/Kg
D3811-02	SB-5(8-12)	SOIL	n-Hexadecanoic acid	*	1,000.000	J	0		0	ug/Kg
D3811-02	SB-5(8-12)	SOIL	Octadecanoic acid	*	110.000	J	0		0	ug/Kg
D3811-02	SB-5(8-12)	SOIL	Oleic Acid	*	750.000	J	0		0	ug/Kg
D3811-02	SB-5(8-12)	SOIL	Pentadecane, 4-methyl-	*	100.000	J	0		0	ug/Kg
D3811-02	SB-5(8-12)	SOIL	Pentadecane, 7-methyl-	*	110.000	J	0		0	ug/Kg
D3811-02	SB-5(8-12)	SOIL	Tridecane	*	130.000	J	0		0	ug/Kg
D3811-02	SB-5(8-12)	SOIL	Tritetracontane	*	110.000	J	0		0	ug/Kg
D3811-02	SB-5(8-12)	SOIL	Z-14-Nonacosane	*	110.000	J	0		0	ug/Kg
D3811-02	SB-5(8-12)	SOIL	.alphaPinene	*	110.000	J	0		0	ug/Kg
D3811-02	SB-5(8-12)	SOIL	2,6,10,14,18-Pentamethyl-2,6,10	,14 *	100.000	J	0		0	ug/Kg
D3811-02	SB-5(8-12)	SOIL	2-Pentanone, 4-hydroxy-4-methy	/l- *	1,300.000	J	0		0	ug/Kg
D3811-02	SB-5(8-12)	SOIL	Benzene, 1-methyl-2-(1-methylet	thy *	150.000	J	0		0	ug/Kg
D3811-02	SB-5(8-12)	SOIL	Cyclopentasiloxane, decamethyl-	*	190.000	J	0		0	ug/Kg
			Total Tics:		4	,875	.00			
			Total Concentration:		ŧ	5,165	5.00			
Client ID:	SB-9(4-7)									
D3811-03	SB-9(4-7)	SOIL	Dimethylphthalate		530.000		11	195	390	ug/Kg
D3811-03	SB-9(4-7)	SOIL	Indeno(1,2,3-cd)pyrene		190.000	J	13	195	390	ug/Kg
20011 00	22)(. /)	JOIL			1,0.000			1,,,	2,0	~~ · · · ·

SDG No.: D3811

Client: MS Analytical

Sample ID	Client ID	Matrix	Parameter	Conc	entration	C	MDL	LOD	RDL	Units
D3811-03	SB-9(4-7)	SOIL	Dibenz(a,h)anthracene		200.000	J	11	195	390	ug/Kg
D3811-03	SB-9(4-7)	SOIL	Benzo(g,h,i)perylene		280.000	J	16	195	390	ug/Kg
			Total Svoc:		1	,200	.00			
D3811-03	SB-9(4-7)	SOIL	2-Pentanone, 4-hydroxy-4-meth	nyl- *	1,100.000	A	0		0	ug/Kg
D3811-03	SB-9(4-7)	SOIL	3-Penten-2-one, 4-methyl-	*	86.000	J	0		0	ug/Kg
D3811-03	SB-9(4-7)	SOIL	n-Hexadecanoic acid	*	200.000	J	0		0	ug/Kg
D3811-03	SB-9(4-7)	SOIL	Pentacosane	*	170.000	J	0		0	ug/Kg
D3811-03	SB-9(4-7)	SOIL	Tetradecane	*	97.000	J	0		0	ug/Kg
D3811-03	SB-9(4-7)	SOIL	unknown16.03	*	85.000	J	0		0	ug/Kg
D3811-03	SB-9(4-7)	SOIL	Ethanol, 2-(tetradecyloxy)-	*	100.000	J	0		0	ug/Kg

Total Tics: 1,838.00
Total Concentration: 3,038.00

SAMPLE DATA

Soil Aliquot Vol:

Report of Analysis

Client: MS Analytical Date Collected: 08/07/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SDG No.: SB-2(4-8) D3811 Lab Sample ID: D3811-01 Matrix: SOIL Analytical Method: SW8270D % Moisture: 13 Sample Wt/Vol: 30.06 Units: g Final Vol: 1000 uL

Extraction Type: SOXH Decanted: N Level: LOW

иL

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

Test:

SVOC-Chemtech Full -25

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID BF058272.D 1 08/15/12 08/16/12 PB65125

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
62-75-9	n-Nitrosodimethylamine	190	U	20	190	380	ug/Kg
110-86-1	Pyridine	190	U	76	190	380	ug/Kg
100-52-7	Benzaldehyde	190	UQ	20	190	380	ug/Kg
62-53-3	Aniline	190	U	33	190	380	ug/Kg
108-95-2	Phenol	190	U	8.8	190	380	ug/Kg
111-44-4	bis(2-Chloroethyl)ether	190	U	18	190	380	ug/Kg
95-57-8	2-Chlorophenol	190	U	20	190	380	ug/Kg
95-50-1	1,2-Dichlorobenzene	190	U	15	190	380	ug/Kg
541-73-1	1,3-Dichlorobenzene	190	U	6.8	190	380	ug/Kg
106-46-7	1,4-Dichlorobenzene	190	U	13	190	380	ug/Kg
100-51-6	Benzyl Alcohol	190	U	14	190	380	ug/Kg
95-48-7	2-Methylphenol	190	U	21	190	380	ug/Kg
108-60-1	2,2-oxybis(1-Chloropropane)	190	U	16	190	380	ug/Kg
98-86-2	Acetophenone	190	U	12	190	380	ug/Kg
65794-96-9	3+4-Methylphenols	190	U	20	190	380	ug/Kg
621-64-7	N-Nitroso-di-n-propylamine	190	U	19	190	380	ug/Kg
67-72-1	Hexachloroethane	190	U	17	190	380	ug/Kg
98-95-3	Nitrobenzene	190	U	14	190	380	ug/Kg
78-59-1	Isophorone	190	U	13	190	380	ug/Kg
88-75-5	2-Nitrophenol	190	U	18	190	380	ug/Kg
105-67-9	2,4-Dimethylphenol	190	U	22	190	380	ug/Kg
111-91-1	bis(2-Chloroethoxy)methane	190	U	22	190	380	ug/Kg
120-83-2	2,4-Dichlorophenol	190	U	15	190	380	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	190	U	15	190	380	ug/Kg
65-85-0	Benzoic acid	460	U	76	460	920	ug/Kg
91-20-3	Naphthalene	190	U	13	190	380	ug/Kg
106-47-8	4-Chloroaniline	190	U	27	190	380	ug/Kg
87-68-3	Hexachlorobutadiene	190	U	14	190	380	ug/Kg
105-60-2	Caprolactam	190	U	18	190	380	ug/Kg
59-50-7	4-Chloro-3-methylphenol	190	U	17	190	380	ug/Kg
91-57-6	2-Methylnaphthalene	190	U	9.6	190	380	ug/Kg

uL

Report of Analysis

Client: MS Analytical Date Collected: 08/07/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SDG No.: D3811 SB-2(4-8) Lab Sample ID: D3811-01 Matrix: SOIL Analytical Method: SW8270D % Moisture: 13

Sample Wt/Vol: 30.06 Units: g Final Vol: 1000

Soil Aliquot Vol: иL Test: SVOC-Chemtech Full -25

Extraction Type: Level: SOXH Decanted: N LOW

GPC Factor: 1.0 GPC Cleanup: Ν PH: Injection Volume: N/A

File ID/Qc Batch: Prep Batch ID Dilution: Prep Date Date Analyzed

BF058272.D	1	08/15/12		08/16/12			PB65125		
CAS Number	Parameter	(Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units	
77-47-4	Hexachlorocyclopentadiene	1	190	U	9.3	190	380	ug/Kg	
88-06-2	2,4,6-Trichlorophenol	1	190	U	12	190	380	ug/Kg	
95-95-4	2,4,5-Trichlorophenol	1	190	U	27	190	380	ug/Kg	
92-52-4	1,1-Biphenyl	1	190	U	14	190	380	ug/Kg	
91-58-7	2-Chloronaphthalene	1	190	U	8.7	190	380	ug/Kg	
88-74-4	2-Nitroaniline	1	190	U	17	190	380	ug/Kg	
131-11-3	Dimethylphthalate	2	230	J	10	190	380	ug/Kg	
208-96-8	Acenaphthylene	1	190	U	9.6	190	380	ug/Kg	
606-20-2	2,6-Dinitrotoluene	1	190	U	16	190	380	ug/Kg	
99-09-2	3-Nitroaniline	1	190	U	25	190	380	ug/Kg	
83-32-9	Acenaphthene	1	190	U	11	190	380	ug/Kg	
51-28-5	2,4-Dinitrophenol	1	190	U	39	190	380	ug/Kg	
100-02-7	4-Nitrophenol	1	190	U	71	190	380	ug/Kg	
132-64-9	Dibenzofuran	1	190	U	15	190	380	ug/Kg	
121-14-2	2,4-Dinitrotoluene	1	190	U	12	190	380	ug/Kg	
84-66-2	Diethylphthalate	1	190	U	6	190	380	ug/Kg	
7005-72-3	4-Chlorophenyl-phenylether	1	190	U	21	190	380	ug/Kg	
86-73-7	Fluorene	1	190	U	14	190	380	ug/Kg	
100-01-6	4-Nitroaniline	1	190	U	50	190	380	ug/Kg	
534-52-1	4,6-Dinitro-2-methylphenol	1	190	U	22	190	380	ug/Kg	
86-30-6	N-Nitrosodiphenylamine	1	190	U	9.2	190	380	ug/Kg	
103-33-3	Azobenzene	1	190	U	8.9	190	380	ug/Kg	
101-55-3	4-Bromophenyl-phenylether	1	190	U	7.5	190	380	ug/Kg	
118-74-1	Hexachlorobenzene	1	190	U	16	190	380	ug/Kg	
1912-24-9	Atrazine	1	190	U	20	190	380	ug/Kg	
87-86-5	Pentachlorophenol	1	190	U	26	190	380	ug/Kg	
85-01-8	Phenanthrene	1	190	U	10	190	380	ug/Kg	
120-12-7	Anthracene	1	190	U	7.8	190	380	ug/Kg	
86-74-8	Carbazole	1	190	U	8.4	190	380	ug/Kg	
84-74-2	Di-n-butylphthalate	1	190	U	30	190	380	ug/Kg	
206-44-0	Fluoranthene		190	U	7.7	190	380	ug/Kg	
92-87-5	Benzidine		190	U	38	190	380	ug/Kg	
129-00-0	Pyrene		190	U	9.2	190	380	ug/Kg	
	•		965 o						

Client:MS AnalyticalDate Collected:08/07/12Project:12MS104 Kensington HeightsDate Received:08/15/12

Client Sample ID: SB-2(4-8) SDG No.: D3811
Lab Sample ID: D3811-01 Matrix: SOIL
Analytical Method: SW8270D % Moisture: 13

Analytical Method: SW8270D % Moisture: 13 Sample Wt/Vol: 30.06 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BE058272 D 1 08/15/12 08/16/12 PB65125

BF058272.D	1	08/15/12	08.	/16/12		PB65125	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
85-68-7	Butylbenzylphthalate	190	U	18	190	380	ug/Kg
91-94-1	3,3-Dichlorobenzidine	190	U	25	190	380	ug/Kg
56-55-3	Benzo(a)anthracene	190	U	18	190	380	ug/Kg
218-01-9	Chrysene	190	U	17	190	380	ug/Kg
117-81-7	bis(2-Ethylhexyl)phthalate	190	U	14	190	380	ug/Kg
117-84-0	Di-n-octyl phthalate	190	U	4.4	190	380	ug/Kg
205-99-2	Benzo(b)fluoranthene	190	U	13	190	380	ug/Kg
207-08-9	Benzo(k)fluoranthene	190	U	18	190	380	ug/Kg
50-32-8	Benzo(a)pyrene	190	U	8.3	190	380	ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene	190	U	13	190	380	ug/Kg
53-70-3	Dibenz(a,h)anthracene	190	U	11	190	380	ug/Kg
191-24-2	Benzo(g,h,i)perylene	190	U	15	190	380	ug/Kg
95-94-3	1,2,4,5-Tetrachlorobenzene	190	U	15	190	380	ug/Kg
123-91-1	1,4-Dioxane	190	U	15	190	380	ug/Kg
58-90-2	2,3,4,6-Tetrachlorophenol	190	U	15	190	380	ug/Kg
SURROGATES							
367-12-4	2-Fluorophenol	147		28 - 12		98%	SPK: 150
13127-88-3	Phenol-d5	152		34 - 12		102%	SPK: 150
4165-60-0	Nitrobenzene-d5	94.1		31 - 13		94%	SPK: 100
321-60-8	2-Fluorobiphenyl	88.6		39 - 12		89%	SPK: 100
118-79-6	2,4,6-Tribromophenol	120		30 - 13		80%	SPK: 150
1718-51-0	Terphenyl-d14	81.1		37 - 11	5	81%	SPK: 100
INTERNAL STA							
3855-82-1	1,4-Dichlorobenzene-d4	105965					
1146-65-2	Naphthalene-d8	374203					
15067-26-2	Acenaphthene-d10	178799					
1517-22-2	Phenanthrene-d10	291394					
1719-03-5	Chrysene-d12	245070					
1520-96-3	Perylene-d12	200014	16.57	,			
	DENTIFIED COMPOUNDS						
123-42-2	2-Pentanone, 4-hydroxy-4-methyl		A			3.18	ug/Kg
541-02-6	Cyclopentasiloxane, decamethyl-	180	J			6.17	ug/Kg

Injection Volume:

Report of Analysis

Client: MS Analytical Date Collected: 08/07/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SDG No.: SB-2(4-8) D3811 Lab Sample ID: D3811-01 Matrix: SOIL % Moisture: 13 Analytical Method: SW8270D Sample Wt/Vol: 30.06 Units: Final Vol: 1000 uL g Test: SVOC-Chemtech Full -25 Soil Aliquot Vol: uL Extraction Type: SOXH Decanted: Level: LOW Ν

1.0

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID BF058272.D 1 08/15/12 08/16/12 PB65125

GPC Factor:

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
	unknown9.95	77	J			9.95	ug/Kg
646-31-1	Tetracosane	160	J			10.32	ug/Kg
57-10-3	n-Hexadecanoic acid	97	J			11.33	ug/Kg
610-28-6	Benzoic acid, 2,5-dinitro-	440	J			12.23	ug/Kg
1599-67-3	1-Docosene	130	J			15.46	ug/Kg
3118-97-6	2-Naphthalenol, 1-[(2,4-dimethylph	160	J			15.58	ug/Kg
	unknown15.69	130	J			15.69	ug/Kg

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

GPC Cleanup:

Ν

PH:

N/A

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Client: MS Analytical Date Collected: 08/07/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SDG No.: SB-5(8-12) D3811 Lab Sample ID: D3811-02 Matrix: SOIL Analytical Method: SW8270D % Moisture: 19 Sample Wt/Vol: 30.03 Units: g Final Vol: 1000 uL Soil Aliquot Vol: иL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BF058273.D 1 08/15/12 08/16/12 PB65125

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
62-75-9	n-Nitrosodimethylamine	205	U	21	205	410	ug/Kg
110-86-1	Pyridine	205	U	81	205	410	ug/Kg
100-52-7	Benzaldehyde	205	UQ	21	205	410	ug/Kg
62-53-3	Aniline	205	U	35	205	410	ug/Kg
108-95-2	Phenol	205	U	9.5	205	410	ug/Kg
111-44-4	bis(2-Chloroethyl)ether	205	U	20	205	410	ug/Kg
95-57-8	2-Chlorophenol	205	U	22	205	410	ug/Kg
95-50-1	1,2-Dichlorobenzene	205	U	16	205	410	ug/Kg
541-73-1	1,3-Dichlorobenzene	205	U	7.3	205	410	ug/Kg
106-46-7	1,4-Dichlorobenzene	205	U	14	205	410	ug/Kg
100-51-6	Benzyl Alcohol	205	U	15	205	410	ug/Kg
95-48-7	2-Methylphenol	205	U	22	205	410	ug/Kg
108-60-1	2,2-oxybis(1-Chloropropane)	205	U	17	205	410	ug/Kg
98-86-2	Acetophenone	205	U	13	205	410	ug/Kg
65794-96-9	3+4-Methylphenols	205	U	21	205	410	ug/Kg
621-64-7	N-Nitroso-di-n-propylamine	205	U	21	205	410	ug/Kg
67-72-1	Hexachloroethane	205	U	18	205	410	ug/Kg
98-95-3	Nitrobenzene	205	U	16	205	410	ug/Kg
78-59-1	Isophorone	205	U	14	205	410	ug/Kg
88-75-5	2-Nitrophenol	205	U	20	205	410	ug/Kg
105-67-9	2,4-Dimethylphenol	205	U	23	205	410	ug/Kg
111-91-1	bis(2-Chloroethoxy)methane	205	U	24	205	410	ug/Kg
120-83-2	2,4-Dichlorophenol	205	U	16	205	410	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	205	U	16	205	410	ug/Kg
65-85-0	Benzoic acid	495	U	81	495	990	ug/Kg
91-20-3	Naphthalene	205	U	14	205	410	ug/Kg
106-47-8	4-Chloroaniline	205	U	29	205	410	ug/Kg
87-68-3	Hexachlorobutadiene	205	U	15	205	410	ug/Kg
105-60-2	Caprolactam	205	U	19	205	410	ug/Kg
59-50-7	4-Chloro-3-methylphenol	205	U	18	205	410	ug/Kg
91-57-6	2-Methylnaphthalene	205	U	10	205	410	ug/Kg

Soil Aliquot Vol:

Report of Analysis

Client: MS Analytical Date Collected: 08/07/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-5(8-12) SDG No.: D3811

Lab Sample ID: D3811-02 Matrix: SOIL

Analytical Method: SW8270D % Moisture: 19

uL

Sample Wt/Vol: 30.03 Units: g Final Vol: 1000 uL

Test:

SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF058273.D 1 08/15/12 08/16/12 PB65125

BF058273.D	1	08/15/12	08	/16/12		PB65125	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
77-47-4	Hexachlorocyclopentadiene	205	U	10	205	410	ug/Kg
88-06-2	2,4,6-Trichlorophenol	205	U	13	205	410	ug/Kg
95-95-4	2,4,5-Trichlorophenol	205	U	29	205	410	ug/Kg
92-52-4	1,1-Biphenyl	205	U	16	205	410	ug/Kg
91-58-7	2-Chloronaphthalene	205	U	9.4	205	410	ug/Kg
88-74-4	2-Nitroaniline	205	U	18	205	410	ug/Kg
131-11-3	Dimethylphthalate	290	J	11	205	410	ug/Kg
208-96-8	Acenaphthylene	205	U	10	205	410	ug/Kg
606-20-2	2,6-Dinitrotoluene	205	U	17	205	410	ug/Kg
99-09-2	3-Nitroaniline	205	U	26	205	410	ug/Kg
83-32-9	Acenaphthene	205	U	12	205	410	ug/Kg
51-28-5	2,4-Dinitrophenol	205	U	42	205	410	ug/Kg
100-02-7	4-Nitrophenol	205	U	76	205	410	ug/Kg
132-64-9	Dibenzofuran	205	U	16	205	410	ug/Kg
121-14-2	2,4-Dinitrotoluene	205	U	12	205	410	ug/Kg
84-66-2	Diethylphthalate	205	U	6.4	205	410	ug/Kg
7005-72-3	4-Chlorophenyl-phenylether	205	U	22	205	410	ug/Kg
86-73-7	Fluorene	205	U	16	205	410	ug/Kg
100-01-6	4-Nitroaniline	205	U	54	205	410	ug/Kg
534-52-1	4,6-Dinitro-2-methylphenol	205	U	24	205	410	ug/Kg
86-30-6	N-Nitrosodiphenylamine	205	U	9.9	205	410	ug/Kg
103-33-3	Azobenzene	205	U	9.6	205	410	ug/Kg
101-55-3	4-Bromophenyl-phenylether	205	U	8	205	410	ug/Kg
118-74-1	Hexachlorobenzene	205	U	17	205	410	ug/Kg
1912-24-9	Atrazine	205	U	22	205	410	ug/Kg
87-86-5	Pentachlorophenol	205	U	28	205	410	ug/Kg
85-01-8	Phenanthrene	205	U	11	205	410	ug/Kg
120-12-7	Anthracene	205	U	8.4	205	410	ug/Kg
86-74-8	Carbazole	205	U	9	205	410	ug/Kg
84-74-2	Di-n-butylphthalate	205	U	32	205	410	ug/Kg
206-44-0	Fluoranthene	205	U	8.3	205	410	ug/Kg
92-87-5	Benzidine	205	U	41	205	410	ug/Kg
129-00-0	Pyrene	205	U	9.9	205	410	ug/Kg
		269	of 870				

Client: MS Analytical Date Collected: 08/07/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SDG No.: D3811 SB-5(8-12) Lab Sample ID: D3811-02 Matrix: SOIL Analytical Method: SW8270D % Moisture: 19 Sample Wt/Vol: 30.03 Units: g Final Vol: 1000 uL Soil Aliquot Vol: иL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BE058273 D 1 08/15/12 08/16/12 PB65125

BF058273.D	1	08/15/12	08	/16/12		PB65125	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
85-68-7	Butylbenzylphthalate	205	U	20	205	410	ug/Kg
91-94-1	3,3-Dichlorobenzidine	205	U	26	205	410	ug/Kg
56-55-3	Benzo(a)anthracene	205	U	20	205	410	ug/Kg
218-01-9	Chrysene	205	U	19	205	410	ug/Kg
117-81-7	bis(2-Ethylhexyl)phthalate	205	U	15	205	410	ug/Kg
117-84-0	Di-n-octyl phthalate	205	U	4.7	205	410	ug/Kg
205-99-2	Benzo(b)fluoranthene	205	U	13	205	410	ug/Kg
207-08-9	Benzo(k)fluoranthene	205	U	19	205	410	ug/Kg
50-32-8	Benzo(a)pyrene	205	U	8.9	205	410	ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene	205	U	14	205	410	ug/Kg
53-70-3	Dibenz(a,h)anthracene	205	U	12	205	410	ug/Kg
191-24-2	Benzo(g,h,i)perylene	205	U	17	205	410	ug/Kg
95-94-3	1,2,4,5-Tetrachlorobenzene	205	U	16	205	410	ug/Kg
123-91-1	1,4-Dioxane	205	U	16	205	410	ug/Kg
58-90-2	2,3,4,6-Tetrachlorophenol	205	U	16	205	410	ug/Kg
SURROGATES	S						
367-12-4	2-Fluorophenol	152		28 - 12	7	102%	SPK: 150
13127-88-3	Phenol-d5	141		34 - 12	7	94%	SPK: 150
4165-60-0	Nitrobenzene-d5	97		31 - 13	2	97%	SPK: 100
321-60-8	2-Fluorobiphenyl	87.8		39 - 12	3	88%	SPK: 100
118-79-6	2,4,6-Tribromophenol	123		30 - 13	3	82%	SPK: 150
1718-51-0	Terphenyl-d14	79.6		37 - 11	5	80%	SPK: 100
INTERNAL ST	TANDARDS						
3855-82-1	1,4-Dichlorobenzene-d4	10596	5.2				
1146-65-2	Naphthalene-d8	37292					
15067-26-2	Acenaphthene-d10	17747	70 8.42				
1517-22-2	Phenanthrene-d10	29221	2 10.38	}			
1719-03-5	Chrysene-d12	24655	33 14.45	;			
1520-96-3	Perylene-d12	19360	9 16.57	,			
TENTATIVE I	DENTIFIED COMPOUNDS						
123-42-2	2-Pentanone, 4-hydroxy-4-methyl	- 1300	J			3.19	ug/Kg
80-56-8	.alphaPinene	110	J			4.3	ug/Kg
		270	of 970				

CHEMITECH

Report of Analysis

Client: MS Analytical Date Collected: 08/07/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SDG No.: SB-5(8-12) D3811 Lab Sample ID: D3811-02 Matrix: SOIL % Moisture: 19 Analytical Method: SW8270D Sample Wt/Vol: 30.03 Units: Final Vol: 1000 uL g Test: SVOC-Chemtech Full -25 Soil Aliquot Vol: uL Extraction Type: SOXH Level: LOW Decanted: Ν

Extraction Type: SOATI Decanted: IN Level: Low

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID BF058273.D 1 08/15/12 08/16/12 PB65125

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
527-84-4	Benzene, 1-methyl-2-(1-methylethyl	150	J			5.32	ug/Kg
112-95-8	Eicosane	85	J			5.95	ug/Kg
541-02-6	Cyclopentasiloxane, decamethyl-	190	J			6.17	ug/Kg
544-76-3	Hexadecane	130	J			7.22	ug/Kg
629-50-5	Tridecane	130	J			7.79	ug/Kg
6165-40-8	Pentadecane, 7-methyl-	110	J			9.02	ug/Kg
629-78-7	Heptadecane	140	J			9.67	ug/Kg
55124-79-3	Heptadecane, 9-hexyl-	250	J			10.32	ug/Kg
2801-87-8	Pentadecane, 4-methyl-	100	J			10.58	ug/Kg
7098-21-7	Tritetracontane	110	J			10.96	ug/Kg
57-10-3	n-Hexadecanoic acid	1000	J			11.34	ug/Kg
112-80-1	Oleic Acid	750	J			12.45	ug/Kg
57-11-4	Octadecanoic acid	110	J			12.57	ug/Kg
1000131-18-9	Z-14-Nonacosane	110	J			15.46	ug/Kg
75581-03-2	2,6,10,14,18-Pentamethyl-2,6,10,14	100	J			16.03	ug/Kg

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Client: MS Analytical Date Collected: 08/07/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SDG No.: SB-9(4-7) D3811 Lab Sample ID: D3811-03 Matrix: SOIL Analytical Method: SW8270D % Moisture: 16 Sample Wt/Vol: 30.05 Units: g Final Vol: 1000 uL Soil Aliquot Vol: иL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID BF058276.D 1 08/15/12 08/16/12 PB65125

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
62-75-9	n-Nitrosodimethylamine	195	U	20	195	390	ug/Kg
110-86-1	Pyridine	195	U	78	195	390	ug/Kg
100-52-7	Benzaldehyde	195	UQ	21	195	390	ug/Kg
62-53-3	Aniline	195	U	34	195	390	ug/Kg
108-95-2	Phenol	195	U	9.2	195	390	ug/Kg
111-44-4	bis(2-Chloroethyl)ether	195	U	19	195	390	ug/Kg
95-57-8	2-Chlorophenol	195	U	21	195	390	ug/Kg
95-50-1	1,2-Dichlorobenzene	195	U	15	195	390	ug/Kg
541-73-1	1,3-Dichlorobenzene	195	U	7	195	390	ug/Kg
106-46-7	1,4-Dichlorobenzene	195	U	14	195	390	ug/Kg
100-51-6	Benzyl Alcohol	195	U	15	195	390	ug/Kg
95-48-7	2-Methylphenol	195	U	22	195	390	ug/Kg
108-60-1	2,2-oxybis(1-Chloropropane)	195	U	16	195	390	ug/Kg
98-86-2	Acetophenone	195	U	12	195	390	ug/Kg
65794-96-9	3+4-Methylphenols	195	U	21	195	390	ug/Kg
621-64-7	N-Nitroso-di-n-propylamine	195	U	20	195	390	ug/Kg
67-72-1	Hexachloroethane	195	U	18	195	390	ug/Kg
98-95-3	Nitrobenzene	195	U	15	195	390	ug/Kg
78-59-1	Isophorone	195	U	13	195	390	ug/Kg
88-75-5	2-Nitrophenol	195	U	19	195	390	ug/Kg
105-67-9	2,4-Dimethylphenol	195	U	22	195	390	ug/Kg
111-91-1	bis(2-Chloroethoxy)methane	195	U	23	195	390	ug/Kg
120-83-2	2,4-Dichlorophenol	195	U	15	195	390	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	195	U	15	195	390	ug/Kg
65-85-0	Benzoic acid	475	U	78	475	950	ug/Kg
91-20-3	Naphthalene	195	U	14	195	390	ug/Kg
106-47-8	4-Chloroaniline	195	U	28	195	390	ug/Kg
87-68-3	Hexachlorobutadiene	195	U	14	195	390	ug/Kg
105-60-2	Caprolactam	195	U	18	195	390	ug/Kg
59-50-7	4-Chloro-3-methylphenol	195	U	18	195	390	ug/Kg
91-57-6	2-Methylnaphthalene	195	U	10	195	390	ug/Kg

Injection Volume:

Report of Analysis

Client: MS Analytical Date Collected: 08/07/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-9(4-7) SDG No.: D3811 Lab Sample ID: D3811-03 Matrix: SOIL Analytical Method: SW8270D % Moisture: 16

Sample Wt/Vol: 30.05 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: иL Test: SVOC-Chemtech Full -25

1.0

GPC Cleanup:

Ν

PH:

N/A

Extraction Type: Level: SOXH Decanted: N LOW

GPC Factor:

Prep Batch ID File ID/Qc Batch: Dilution: Prep Date Date Analyzed

BF058276.D	1	08/15/12		08/	/16/12		PB65125	
CAS Number	Parameter	Co	onc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
77-47-4	Hexachlorocyclopentadiene	19	95	U	9.6	195	390	ug/Kg
88-06-2	2,4,6-Trichlorophenol	19	95	U	12	195	390	ug/Kg
95-95-4	2,4,5-Trichlorophenol	19	95	U	28	195	390	ug/Kg
92-52-4	1,1-Biphenyl	19	95	U	15	195	390	ug/Kg
91-58-7	2-Chloronaphthalene	19	95	U	9	195	390	ug/Kg
88-74-4	2-Nitroaniline	19	95	U	18	195	390	ug/Kg
131-11-3	Dimethylphthalate	53	30		11	195	390	ug/Kg
208-96-8	Acenaphthylene	19	95	U	10	195	390	ug/Kg
606-20-2	2,6-Dinitrotoluene	19	95	U	16	195	390	ug/Kg
99-09-2	3-Nitroaniline	19	95	U	25	195	390	ug/Kg
83-32-9	Acenaphthene	19	95	U	11	195	390	ug/Kg
51-28-5	2,4-Dinitrophenol	19	95	U	40	195	390	ug/Kg
100-02-7	4-Nitrophenol	19	95	U	74	195	390	ug/Kg
132-64-9	Dibenzofuran	19	95	U	15	195	390	ug/Kg
121-14-2	2,4-Dinitrotoluene	19	95	U	12	195	390	ug/Kg
84-66-2	Diethylphthalate	19	95	U	6.2	195	390	ug/Kg
7005-72-3	4-Chlorophenyl-phenylether	19	95	U	22	195	390	ug/Kg
86-73-7	Fluorene	19	95	U	15	195	390	ug/Kg
100-01-6	4-Nitroaniline	19	95	U	52	195	390	ug/Kg
534-52-1	4,6-Dinitro-2-methylphenol	19	95	U	23	195	390	ug/Kg
86-30-6	N-Nitrosodiphenylamine	19	95	U	9.5	195	390	ug/Kg
103-33-3	Azobenzene	19	95	U	9.3	195	390	ug/Kg
101-55-3	4-Bromophenyl-phenylether	19	95	U	7.7	195	390	ug/Kg
118-74-1	Hexachlorobenzene	19	95	U	16	195	390	ug/Kg
1912-24-9	Atrazine	19	95	U	21	195	390	ug/Kg
87-86-5	Pentachlorophenol	19	95	U	27	195	390	ug/Kg
85-01-8	Phenanthrene	19	95	U	11	195	390	ug/Kg
120-12-7	Anthracene	19	95	U	8.1	195	390	ug/Kg
86-74-8	Carbazole	19	95	U	8.7	195	390	ug/Kg
84-74-2	Di-n-butylphthalate	19	95	U	31	195	390	ug/Kg
206-44-0	Fluoranthene	19	95	U	8	195	390	ug/Kg
92-87-5	Benzidine	19	95	U	40	195	390	ug/Kg
129-00-0	Pyrene	19	95	U	9.5	195	390	ug/Kg
		27	73 of	870				

Client:MS AnalyticalDate Collected:08/07/12Project:12MS104 Kensington HeightsDate Received:08/15/12

Client Sample ID: SB-9(4-7) SDG No.: D3811
Lab Sample ID: D3811-03 Matrix: SOIL
Analytical Method: SW8270D % Moisture: 16

Sample Wt/Vol: 30.05 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BF058276 D 1 08/15/12 08/16/12 PB65125

CAS Number Parameter 85-68-7 Butylbenzylphthalate 91-94-1 3,3-Dichlorobenzidine 56-55-3 Benzo(a)anthracene 218-01-9 Chrysene 117-81-7 bis(2-Ethylhexyl)phthalate 117-84-0 Di-n-octyl phthalate 205-99-2 Benzo(b)fluoranthene 207-08-9 Benzo(a)pyrene 50-32-8 Benzo(a)pyrene 193-39-5 Indeno(1,2,3-cd)pyrene 53-70-3 Dibenz(a,h)anthracene 191-24-2 Benzo(g,h,i)perylene 95-94-3 1,2,4,5-Tetrachlorobenzene 123-91-1 1,4-Dioxane 58-90-2 2,3,4,6-Tetrachlorophenol SURROGATES 367-12-4 2-Fluorophenol 13127-88-3 Phenol-d5 4165-60-0 Nitrobenzene-d5 321-60-8 2-Fluorobiphenyl 118-79-6 2,4,6-Tribromophenol 1718-51-0 Terphenyl-d14 INTERNAL STANDARDS 3855-82-1 1,4-Dichlorobenzene-d4 1146-65-2 Naphthalene-d8 15067-26-2	08/15/12	08/	/16/12		PB65125	
91-94-1 56-55-3 Benzo(a)anthracene 218-01-9 Chrysene 117-81-7 bis(2-Ethylhexyl)phthalate 117-84-0 Di-n-octyl phthalate 205-99-2 Benzo(b)fluoranthene 207-08-9 Benzo(k)fluoranthene 50-32-8 Benzo(a)pyrene 193-39-5 Indeno(1,2,3-cd)pyrene 53-70-3 Dibenz(a,h)anthracene 191-24-2 Benzo(g,h,i)perylene 95-94-3 1,2,4,5-Tetrachlorobenzene 123-91-1 1,4-Dioxane 58-90-2 2,3,4,6-Tetrachlorophenol SURROGATES 367-12-4 2-Fluorophenol 13127-88-3 Phenol-d5 4165-60-0 Nitrobenzene-d5 321-60-8 2-Fluorobiphenyl 118-79-6 2,4,6-Tribromophenol 1718-51-0 Terphenyl-d14 INTERNAL STANDARDS 3855-82-1 1,4-Dichlorobenzene-d4 1146-65-2 Naphthalene-d8 15067-26-2 Acenaphthene-d10 1517-22-2 Phenanthrene-d10 1719-03-5 Chrysene-d12 1520-96-3 Perylene-d12	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
56-55-3 Benzo(a)anthracene 218-01-9 Chrysene 117-81-7 bis(2-Ethylhexyl)phthalate 117-84-0 Di-n-octyl phthalate 205-99-2 Benzo(b)fluoranthene 207-08-9 Benzo(k)fluoranthene 50-32-8 Benzo(a)pyrene 193-39-5 Indeno(1,2,3-cd)pyrene 53-70-3 Dibenz(a,h)anthracene 191-24-2 Benzo(g,h,i)perylene 95-94-3 1,2,4,5-Tetrachlorobenzene 123-91-1 1,4-Dioxane 58-90-2 2,3,4,6-Tetrachlorophenol SURROGATES 367-12-4 2-Fluorophenol 13127-88-3 Phenol-d5 4165-60-0 Nitrobenzene-d5 321-60-8 2-Fluorobiphenyl 118-79-6 2,4,6-Tribromophenol 1718-51-0 Terphenyl-d14 INTERNAL STANDARDS 3855-82-1 1,4-Dichlorobenzene-d4 1146-65-2 Naphthalene-d8 15067-26-2 Acenaphthene-d10 1517-22-2 Phenanthrene-d10 1719-03-5 Chrysene-d1	195	U	19	195	390	ug/Kg
218-01-9 Chrysene 117-81-7 bis(2-Ethylhexyl)phthalate 117-84-0 Di-n-octyl phthalate 205-99-2 Benzo(b)fluoranthene 207-08-9 Benzo(a)pyrene 50-32-8 Benzo(a)pyrene 193-39-5 Indeno(1,2,3-cd)pyrene 53-70-3 Dibenz(a,h)anthracene 191-24-2 Benzo(g,h,i)perylene 95-94-3 1,2,4,5-Tetrachlorobenzene 123-91-1 1,4-Dioxane 58-90-2 2,3,4,6-Tetrachlorophenol SURROGATES 367-12-4 2-Fluorophenol 13127-88-3 Phenol-d5 4165-60-0 Nitrobenzene-d5 321-60-8 2-Fluorobiphenyl 118-79-6 2,4,6-Tribromophenol 1718-51-0 Terphenyl-d14 INTERNAL STANDARDS 3855-82-1 1,4-Dichlorobenzene-d4 1146-65-2 Naphthalene-d8 15067-26-2 Acenaphthene-d10 1517-22-2 Phenanthrene-d10 1719-03-5 Chrysene-d12 1520-96-3 Perylene-d12	195	U	25	195	390	ug/Kg
117-81-7 bis(2-Ethylhexyl)phthalate 117-84-0 Di-n-octyl phthalate 205-99-2 Benzo(b)fluoranthene 207-08-9 Benzo(k)fluoranthene 50-32-8 Benzo(a)pyrene 193-39-5 Indeno(1,2,3-cd)pyrene 53-70-3 Dibenz(a,h)anthracene 191-24-2 Benzo(g,h,i)perylene 95-94-3 1,2,4,5-Tetrachlorobenzene 123-91-1 1,4-Dioxane 58-90-2 2,3,4,6-Tetrachlorophenol SURROGATES 367-12-4 2-Fluorophenol 13127-88-3 Phenol-d5 4165-60-0 Nitrobenzene-d5 321-60-8 2-Fluorobiphenyl 118-79-6 2,4,6-Tribromophenol 1718-51-0 Terphenyl-d14 INTERNAL STANDARDS 3855-82-1 1,4-Dichlorobenzene-d4 1146-65-2 Naphthalene-d8 15067-26-2 Acenaphthene-d10 1517-22-2 Phenanthrene-d10 1719-03-5 Chrysene-d12 1520-96-3 Perylene-d12	195	U	19	195	390	ug/Kg
117-84-0 Di-n-octyl phthalate 205-99-2 Benzo(b)fluoranthene 207-08-9 Benzo(k)fluoranthene 50-32-8 Benzo(a)pyrene 193-39-5 Indeno(1,2,3-cd)pyrene 53-70-3 Dibenz(a,h)anthracene 191-24-2 Benzo(g,h,i)perylene 95-94-3 1,2,4,5-Tetrachlorobenzene 123-91-1 1,4-Dioxane 58-90-2 2,3,4,6-Tetrachlorophenol SURROGATES 367-12-4 2-Fluorophenol 13127-88-3 Phenol-d5 4165-60-0 Nitrobenzene-d5 321-60-8 2-Fluorobiphenyl 118-79-6 2,4,6-Tribromophenol 1718-51-0 Terphenyl-d14 INTERNAL STANDARDS 3855-82-1 1,4-Dichlorobenzene-d4 1146-65-2 Naphthalene-d8 15067-26-2 Acenaphthene-d10 1517-22-2 Phenanthrene-d10 1719-03-5 Chrysene-d12 1520-96-3 Perylene-d12	195	U	18	195	390	ug/Kg
205-99-2 Benzo(b)fluoranthene 207-08-9 Benzo(k)fluoranthene 50-32-8 Benzo(a)pyrene 193-39-5 Indeno(1,2,3-cd)pyrene 53-70-3 Dibenz(a,h)anthracene 191-24-2 Benzo(g,h,i)perylene 95-94-3 1,2,4,5-Tetrachlorobenzene 123-91-1 1,4-Dioxane 58-90-2 2,3,4,6-Tetrachlorophenol SURROGATES 367-12-4 2-Fluorophenol 13127-88-3 Phenol-d5 4165-60-0 Nitrobenzene-d5 321-60-8 2-Fluorobiphenyl 118-79-6 2,4,6-Tribromophenol 1718-51-0 Terphenyl-d14 INTERNAL STANDARDS 3855-82-1 1,4-Dichlorobenzene-d4 1146-65-2 Naphthalene-d8 15067-26-2 Acenaphthene-d10 1517-22-2 Phenanthrene-d10 1719-03-5 Chrysene-d12 1520-96-3 Perylene-d12	195	U	14	195	390	ug/Kg
207-08-9 Benzo(k)fluoranthene 50-32-8 Benzo(a)pyrene 193-39-5 Indeno(1,2,3-cd)pyrene 53-70-3 Dibenz(a,h)anthracene 191-24-2 Benzo(g,h,i)perylene 95-94-3 1,2,4,5-Tetrachlorobenzene 123-91-1 1,4-Dioxane 58-90-2 2,3,4,6-Tetrachlorophenol SURROGATES 367-12-4 2-Fluorophenol 13127-88-3 Phenol-d5 4165-60-0 Nitrobenzene-d5 321-60-8 2-Fluorobiphenyl 118-79-6 2,4,6-Tribromophenol 1718-51-0 Terphenyl-d14 INTERNAL STANDARDS 3855-82-1 1,4-Dichlorobenzene-d4 1146-65-2 Naphthalene-d8 15067-26-2 Acenaphthene-d10 1517-22-2 Phenanthrene-d10 1719-03-5 Chrysene-d12 1520-96-3 Perylene-d12	195	U	4.5	195	390	ug/Kg
50-32-8 Benzo(a)pyrene 193-39-5 Indeno(1,2,3-cd)pyrene 53-70-3 Dibenz(a,h)anthracene 191-24-2 Benzo(g,h,i)perylene 95-94-3 1,2,4,5-Tetrachlorobenzene 123-91-1 1,4-Dioxane 58-90-2 2,3,4,6-Tetrachlorophenol SURROGATES 367-12-4 2-Fluorophenol 13127-88-3 Phenol-d5 4165-60-0 Nitrobenzene-d5 321-60-8 2-Fluorobiphenyl 118-79-6 2,4,6-Tribromophenol 1718-51-0 Terphenyl-d14 INTERNAL STANDARDS 3855-82-1 1,4-Dichlorobenzene-d4 1146-65-2 Naphthalene-d8 15067-26-2 Acenaphthene-d10 1517-22-2 Phenanthrene-d10 1719-03-5 Chrysene-d12 1520-96-3 Perylene-d12	195	U	13	195	390	ug/Kg
193-39-5 Indeno(1,2,3-cd)pyrene 53-70-3 Dibenz(a,h)anthracene 191-24-2 Benzo(g,h,i)perylene 95-94-3 1,2,4,5-Tetrachlorobenzene 123-91-1 1,4-Dioxane 58-90-2 2,3,4,6-Tetrachlorophenol SURROGATES 367-12-4 2-Fluorophenol 13127-88-3 Phenol-d5 4165-60-0 Nitrobenzene-d5 321-60-8 2-Fluorobiphenyl 118-79-6 2,4,6-Tribromophenol 1718-51-0 Terphenyl-d14 INTERNAL STANDARDS 3855-82-1 1,4-Dichlorobenzene-d4 1146-65-2 Naphthalene-d8 15067-26-2 Acenaphthene-d10 1517-22-2 Phenanthrene-d10 1719-03-5 Chrysene-d12 1520-96-3 Perylene-d12	195	U	19	195	390	ug/Kg
53-70-3 Dibenz(a,h)anthracene 191-24-2 Benzo(g,h,i)perylene 95-94-3 1,2,4,5-Tetrachlorobenzene 123-91-1 1,4-Dioxane 58-90-2 2,3,4,6-Tetrachlorophenol SURROGATES 367-12-4 2-Fluorophenol 13127-88-3 Phenol-d5 4165-60-0 Nitrobenzene-d5 321-60-8 2-Fluorobiphenyl 118-79-6 2,4,6-Tribromophenol 1718-51-0 Terphenyl-d14 INTERNAL STANDARDS 3855-82-1 1,4-Dichlorobenzene-d4 1146-65-2 Naphthalene-d8 15067-26-2 Acenaphthene-d10 1517-22-2 Phenanthrene-d10 1719-03-5 Chrysene-d12 1520-96-3 Perylene-d12	195	U	8.6	195	390	ug/Kg
191-24-2 Benzo(g,h,i)perylene 95-94-3 1,2,4,5-Tetrachlorobenzene 123-91-1 1,4-Dioxane 58-90-2 2,3,4,6-Tetrachlorophenol SURROGATES 367-12-4 2-Fluorophenol 13127-88-3 Phenol-d5 4165-60-0 Nitrobenzene-d5 321-60-8 2-Fluorobiphenyl 118-79-6 2,4,6-Tribromophenol 1718-51-0 Terphenyl-d14 INTERNAL STANDARDS 3855-82-1 1,4-Dichlorobenzene-d4 1146-65-2 Naphthalene-d8 15067-26-2 Acenaphthene-d10 1517-22-2 Phenanthrene-d10 1719-03-5 Chrysene-d12 1520-96-3 Perylene-d12	190	J	13	195	390	ug/Kg
95-94-3	200	J	11	195	390	ug/Kg
123-91-1 1,4-Dioxane 58-90-2 2,3,4,6-Tetrachlorophenol SURROGATES 367-12-4 2-Fluorophenol 13127-88-3 Phenol-d5 4165-60-0 Nitrobenzene-d5 321-60-8 2-Fluorobiphenyl 118-79-6 2,4,6-Tribromophenol 1718-51-0 Terphenyl-d14 INTERNAL STANDARDS 3855-82-1 1,4-Dichlorobenzene-d4 1146-65-2 Naphthalene-d8 15067-26-2 Acenaphthene-d10 1517-22-2 Phenanthrene-d10 1719-03-5 Chrysene-d12 1520-96-3 Perylene-d12	280	J	16	195	390	ug/Kg
58-90-2 2,3,4,6-Tetrachlorophenol SURROGATES 367-12-4 2-Fluorophenol 13127-88-3 Phenol-d5 4165-60-0 Nitrobenzene-d5 321-60-8 2-Fluorobiphenyl 118-79-6 2,4,6-Tribromophenol 1718-51-0 Terphenyl-d14 INTERNAL STANDARDS 3855-82-1 1,4-Dichlorobenzene-d4 1146-65-2 Naphthalene-d8 15067-26-2 Acenaphthene-d10 1517-22-2 Phenanthrene-d10 1719-03-5 Chrysene-d12 1520-96-3 Perylene-d12	195	U	16	195	390	ug/Kg
SURROGATES 367-12-4 2-Fluorophenol 13127-88-3 Phenol-d5 4165-60-0 Nitrobenzene-d5 321-60-8 2-Fluorobiphenyl 118-79-6 2,4,6-Tribromophenol 1718-51-0 Terphenyl-d14 INTERNAL STANDARDS 3855-82-1 1,4-Dichlorobenzene-d4 1146-65-2 Naphthalene-d8 15067-26-2 Acenaphthene-d10 1517-22-2 Phenanthrene-d10 1719-03-5 Chrysene-d12 1520-96-3 Perylene-d12	195	U	16	195	390	ug/Kg
367-12-4 2-Fluorophenol 13127-88-3 Phenol-d5 4165-60-0 Nitrobenzene-d5 321-60-8 2-Fluorobiphenyl 118-79-6 2,4,6-Tribromophenol 1718-51-0 Terphenyl-d14 INTERNAL STANDARDS 3855-82-1 1,4-Dichlorobenzene-d4 1146-65-2 Naphthalene-d8 15067-26-2 Acenaphthene-d10 1517-22-2 Phenanthrene-d10 1719-03-5 Chrysene-d12 1520-96-3 Perylene-d12	195	U	16	195	390	ug/Kg
13127-88-3 Phenol-d5 4165-60-0 Nitrobenzene-d5 321-60-8 2-Fluorobiphenyl 118-79-6 2,4,6-Tribromophenol 1718-51-0 Terphenyl-d14 INTERNAL STANDARDS 3855-82-1 1,4-Dichlorobenzene-d4 1146-65-2 Naphthalene-d8 15067-26-2 Acenaphthene-d10 1517-22-2 Phenanthrene-d10 1719-03-5 Chrysene-d12 1520-96-3 Perylene-d12						
4165-60-0 Nitrobenzene-d5 321-60-8 2-Fluorobiphenyl 118-79-6 2,4,6-Tribromophenol 1718-51-0 Terphenyl-d14 INTERNAL STANDARDS 3855-82-1 1,4-Dichlorobenzene-d4 1146-65-2 Naphthalene-d8 15067-26-2 Acenaphthene-d10 1517-22-2 Phenanthrene-d10 1719-03-5 Chrysene-d12 1520-96-3 Perylene-d12	140		28 - 127	7	93%	SPK: 150
321-60-8 2-Fluorobiphenyl 118-79-6 2,4,6-Tribromophenol 1718-51-0 Terphenyl-d14 INTERNAL STANDARDS 3855-82-1 1,4-Dichlorobenzene-d4 1146-65-2 Naphthalene-d8 15067-26-2 Acenaphthene-d10 1517-22-2 Phenanthrene-d10 1719-03-5 Chrysene-d12 1520-96-3 Perylene-d12	148		34 - 127	7	99%	SPK: 150
118-79-6 2,4,6-Tribromophenol 1718-51-0 Terphenyl-d14 INTERNAL STANDARDS 3855-82-1 1,4-Dichlorobenzene-d4 1146-65-2 Naphthalene-d8 15067-26-2 Acenaphthene-d10 1517-22-2 Phenanthrene-d10 1719-03-5 Chrysene-d12 1520-96-3 Perylene-d12	94.5		31 - 132	2	95%	SPK: 100
1718-51-0 Terphenyl-d14 INTERNAL STANDARDS 3855-82-1 1,4-Dichlorobenzene-d4 1146-65-2 Naphthalene-d8 15067-26-2 Acenaphthene-d10 1517-22-2 Phenanthrene-d10 1719-03-5 Chrysene-d12 1520-96-3 Perylene-d12	89.8		39 - 123	3	90%	SPK: 100
INTERNAL STANDARDS 3855-82-1 1,4-Dichlorobenzene-d4 1146-65-2 Naphthalene-d8 15067-26-2 Acenaphthene-d10 1517-22-2 Phenanthrene-d10 1719-03-5 Chrysene-d12 1520-96-3 Perylene-d12	127		30 - 133	3	85%	SPK: 150
3855-82-1 1,4-Dichlorobenzene-d4 1146-65-2 Naphthalene-d8 15067-26-2 Acenaphthene-d10 1517-22-2 Phenanthrene-d10 1719-03-5 Chrysene-d12 1520-96-3 Perylene-d12	82.5		37 - 115	5	83%	SPK: 100
1146-65-2 Naphthalene-d8 15067-26-2 Acenaphthene-d10 1517-22-2 Phenanthrene-d10 1719-03-5 Chrysene-d12 1520-96-3 Perylene-d12						
15067-26-2 Acenaphthene-d10 1517-22-2 Phenanthrene-d10 1719-03-5 Chrysene-d12 1520-96-3 Perylene-d12	118395					
1517-22-2 Phenanthrene-d10 1719-03-5 Chrysene-d12 1520-96-3 Perylene-d12	377764					
1719-03-5 Chrysene-d12 1520-96-3 Perylene-d12	176645					
1520-96-3 Perylene-d12	292602					
•	247751					
TENTATIVE IDENTIFIED COMPOUNDS	207543	16.57	,			
141-79-7 3-Penten-2-one, 4-methyl-	86	J			2.71	ug/Kg
123-42-2 2-Pentanone, 4-hydroxy-4-methyl-	1100	A			3.18	ug/Kg

Client: MS Analytical Date Collected: 08/07/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SDG No.: SB-9(4-7) D3811 Lab Sample ID: Matrix: SOIL D3811-03 % Moisture: Analytical Method: SW8270D 16 Sample Wt/Vol: 30.05 Units: Final Vol: 1000 uL g Test: SVOC-Chemtech Full -25 Soil Aliquot Vol: uL

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BF058276.D 1 08/15/12 08/16/12 PB65125

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
629-99-2	Pentacosane	170	J			10.32	ug/Kg
629-59-4	Tetradecane	97	J			10.96	ug/Kg
57-10-3	n-Hexadecanoic acid	200	J			11.33	ug/Kg
	unknown16.03	85	J			16.03	ug/Kg
2136-70-1	Ethanol, 2-(tetradecyloxy)-	100	J			17.53	ug/Kg

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Client:MS AnalyticalDate Collected:08/07/12Project:12MS104 Kensington HeightsDate Received:08/15/12

Client Sample ID: SB-10(8-12) SDG No.: D3811
Lab Sample ID: D3811-04 Matrix: SOIL
Analytical Method: SW8270D % Moisture: 26

Sample Wt/Vol: 30.06 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BG006789.D 5 08/15/12 08/21/12 PB65125

BG006/89.D	5	08/15/12	08/	/21/12		PB65125	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
62-75-9	n-Nitrosodimethylamine	1100	U	120	1100	2200	ug/Kg
110-86-1	Pyridine	1100	U	450	1100	2200	ug/Kg
100-52-7	Benzaldehyde	1100	UQ	120	1100	2200	ug/Kg
62-53-3	Aniline	1100	U	190	1100	2200	ug/Kg
108-95-2	Phenol	1100	U	52	1100	2200	ug/Kg
111-44-4	bis(2-Chloroethyl)ether	1100	U	110	1100	2200	ug/Kg
95-57-8	2-Chlorophenol	1100	U	120	1100	2200	ug/Kg
95-50-1	1,2-Dichlorobenzene	1100	U	86	1100	2200	ug/Kg
541-73-1	1,3-Dichlorobenzene	1100	U	40	1100	2200	ug/Kg
106-46-7	1,4-Dichlorobenzene	1100	U	77	1100	2200	ug/Kg
100-51-6	Benzyl Alcohol	1100	U	84	1100	2200	ug/Kg
95-48-7	2-Methylphenol	1100	U	120	1100	2200	ug/Kg
108-60-1	2,2-oxybis(1-Chloropropane)	1100	U	93	1100	2200	ug/Kg
98-86-2	Acetophenone	1100	U	69	1100	2200	ug/Kg
65794-96-9	3+4-Methylphenols	1100	U	120	1100	2200	ug/Kg
621-64-7	N-Nitroso-di-n-propylamine	1100	U	110	1100	2200	ug/Kg
67-72-1	Hexachloroethane	1100	U	100	1100	2200	ug/Kg
98-95-3	Nitrobenzene	1100	U	85	1100	2200	ug/Kg
78-59-1	Isophorone	1100	U	74	1100	2200	ug/Kg
88-75-5	2-Nitrophenol	1100	U	110	1100	2200	ug/Kg
105-67-9	2,4-Dimethylphenol	1100	U	130	1100	2200	ug/Kg
111-91-1	bis(2-Chloroethoxy)methane	1100	U	130	1100	2200	ug/Kg
120-83-2	2,4-Dichlorophenol	1100	U	86	1100	2200	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	1100	U	86	1100	2200	ug/Kg
65-85-0	Benzoic acid	2700	U	450	2700	5400	ug/Kg
91-20-3	Naphthalene	1100	U	78	1100	2200	ug/Kg
106-47-8	4-Chloroaniline	1100	U	160	1100	2200	ug/Kg
87-68-3	Hexachlorobutadiene	1100	U	82	1100	2200	ug/Kg
105-60-2	Caprolactam	1100	U	100	1100	2200	ug/Kg
59-50-7	4-Chloro-3-methylphenol	1100	U	100	1100	2200	ug/Kg
91-57-6	2-Methylnaphthalene	1100	U	57	1100	2200	ug/Kg

Client: MS Analytical Date Collected: 08/07/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-10(8-12) SDG No.: D3811

Lab Sample ID: D3811-04 Matrix: SOIL

Analytical Method: SW8270D % Moisture: 26

Sample Wt/Vol: 30.06 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

 $\label{eq:continuous} Injection\ Volume: \qquad \qquad 1 \qquad \qquad GPC\ Factor: \qquad \textbf{1.0} \qquad \qquad GPC\ Cleanup: \qquad \textbf{N} \qquad \qquad PH: \qquad N/A$

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BG006789.D 5 08/15/12 08/21/12 PB65125

BG006789.D	5	08/15/12	08	/21/12		PB65125	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
77-47-4	Hexachlorocyclopentadiene	1100	U	55	1100	2200	ug/Kg
88-06-2	2,4,6-Trichlorophenol	1100	U	69	1100	2200	ug/Kg
95-95-4	2,4,5-Trichlorophenol	1100	U	160	1100	2200	ug/Kg
92-52-4	1,1-Biphenyl	1100	U	85	1100	2200	ug/Kg
91-58-7	2-Chloronaphthalene	1100	U	51	1100	2200	ug/Kg
88-74-4	2-Nitroaniline	1100	U	100	1100	2200	ug/Kg
131-11-3	Dimethylphthalate	1100	U	61	1100	2200	ug/Kg
208-96-8	Acenaphthylene	1100	U	57	1100	2200	ug/Kg
606-20-2	2,6-Dinitrotoluene	1100	U	92	1100	2200	ug/Kg
99-09-2	3-Nitroaniline	1100	U	140	1100	2200	ug/Kg
83-32-9	Acenaphthene	1100	U	63	1100	2200	ug/Kg
51-28-5	2,4-Dinitrophenol	1100	U	230	1100	2200	ug/Kg
100-02-7	4-Nitrophenol	1100	U	420	1100	2200	ug/Kg
132-64-9	Dibenzofuran	1100	U	88	1100	2200	ug/Kg
121-14-2	2,4-Dinitrotoluene	1100	U	68	1100	2200	ug/Kg
84-66-2	Diethylphthalate	1100	U	35	1100	2200	ug/Kg
7005-72-3	4-Chlorophenyl-phenylether	1100	U	120	1100	2200	ug/Kg
86-73-7	Fluorene	1100	U	85	1100	2200	ug/Kg
100-01-6	4-Nitroaniline	1100	U	290	1100	2200	ug/Kg
534-52-1	4,6-Dinitro-2-methylphenol	1100	U	130	1100	2200	ug/Kg
86-30-6	N-Nitrosodiphenylamine	1100	U	54	1100	2200	ug/Kg
103-33-3	Azobenzene	1100	U	53	1100	2200	ug/Kg
101-55-3	4-Bromophenyl-phenylether	1100	U	44	1100	2200	ug/Kg
118-74-1	Hexachlorobenzene	1100	U	92	1100	2200	ug/Kg
1912-24-9	Atrazine	1100	U	120	1100	2200	ug/Kg
87-86-5	Pentachlorophenol	1100	U	150	1100	2200	ug/Kg
85-01-8	Phenanthrene	1100	U	61	1100	2200	ug/Kg
120-12-7	Anthracene	1100	U	46	1100	2200	ug/Kg
86-74-8	Carbazole	1100	U	49	1100	2200	ug/Kg
84-74-2	Di-n-butylphthalate	1100	U	180	1100	2200	ug/Kg
206-44-0	Fluoranthene	1100	U	45	1100	2200	ug/Kg
92-87-5	Benzidine	1100	U	230	1100	2200	ug/Kg
129-00-0	Pyrene	1100	U	54	1100	2200	ug/Kg
		277 c	of 870				

Client: MS Analytical Date Collected: 08/07/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-10(8-12) SDG No.: D3811 Lab Sample ID: D3811-04 Matrix: SOIL Analytical Method: SW8270D % Moisture: 26 Sample Wt/Vol: 30.06 Units: g Final Vol: 1000 uL Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BG006789.D 5 08/15/12 08/21/12 PB65125

BG006789.D	5	08/15/12	08	/21/12		PB65125	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
85-68-7	Butylbenzylphthalate	1100	U	110	1100	2200	ug/Kg
91-94-1	3,3-Dichlorobenzidine	1100	U	140	1100	2200	ug/Kg
56-55-3	Benzo(a)anthracene	1100	U	110	1100	2200	ug/Kg
218-01-9	Chrysene	1100	U	100	1100	2200	ug/Kg
117-81-7	bis(2-Ethylhexyl)phthalate	1100	U	80	1100	2200	ug/Kg
117-84-0	Di-n-octyl phthalate	1100	U	26	1100	2200	ug/Kg
205-99-2	Benzo(b)fluoranthene	1100	U	74	1100	2200	ug/Kg
207-08-9	Benzo(k)fluoranthene	1100	U	110	1100	2200	ug/Kg
50-32-8	Benzo(a)pyrene	1100	U	49	1100	2200	ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene	1100	U	75	1100	2200	ug/Kg
53-70-3	Dibenz(a,h)anthracene	1100	U	65	1100	2200	ug/Kg
191-24-2	Benzo(g,h,i)perylene	1100	U	91	1100	2200	ug/Kg
95-94-3	1,2,4,5-Tetrachlorobenzene	1100	U	88	1100	2200	ug/Kg
123-91-1	1,4-Dioxane	1100	U	88	1100	2200	ug/Kg
58-90-2	2,3,4,6-Tetrachlorophenol	1100	U	88	1100	2200	ug/Kg
SURROGATES	5						
367-12-4	2-Fluorophenol	128		28 - 127	7	86%	SPK: 150
13127-88-3	Phenol-d5	137		34 - 127	7	92%	SPK: 150
4165-60-0	Nitrobenzene-d5	83.1		31 - 132	2	83%	SPK: 100
321-60-8	2-Fluorobiphenyl	73.4		39 - 123	3	73%	SPK: 100
118-79-6	2,4,6-Tribromophenol	120		30 - 133	3	80%	SPK: 150
1718-51-0	Terphenyl-d14	67.8		37 - 115	5	68%	SPK: 100
INTERNAL ST	CANDARDS						
3855-82-1	1,4-Dichlorobenzene-d4	149700	8.69				
1146-65-2	Naphthalene-d8	555485	5 10.89)			
15067-26-2	Acenaphthene-d10	368138	3 13.88	}			
1517-22-2	Phenanthrene-d10	697534	16.37	,			
1719-03-5	Chrysene-d12	745934	20.88	;			
1520-96-3	Perylene-d12	703209	24.77	,			
TENTATIVE I	DENTIFIED COMPOUNDS						
	unknown5.92	490	J			5.92	ug/Kg

Client: MS Analytical Date

Date Collected: 08/07/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-10(8-12) SDG No.: D3811

Lab Sample ID: D3811-04 Matrix: SOIL

Analytical Method: SW8270D % Moisture: 26

Sample Wt/Vol: 30.06 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BG006789.D 5 08/15/12 08/21/12 PB65125

CAS Number Parameter Conc. Qualifier MDL LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Soil Aliquot Vol:

Report of Analysis

Client: MS Analytical Date Collected: 08/07/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SDG No.: SB-11(12-16) D3811 Lab Sample ID: D3811-05 Matrix: SOIL Analytical Method: SW8270D % Moisture: 26 Sample Wt/Vol: 30.11 Units: g Final Vol: 1000 uL

Extraction Type: SOXH Decanted: N Level: LOW

иL

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

Test:

SVOC-Chemtech Full -25

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID BG006780.D 1 08/15/12 08/20/12 PB65125

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
62-75-9	n-Nitrosodimethylamine	220	U	23	220	440	ug/Kg
110-86-1	Pyridine	220	U	89	220	440	ug/Kg
100-52-7	Benzaldehyde	220	UQ	23	220	440	ug/Kg
62-53-3	Aniline	220	U	38	220	440	ug/Kg
108-95-2	Phenol	220	U	10	220	440	ug/Kg
111-44-4	bis(2-Chloroethyl)ether	220	U	22	220	440	ug/Kg
95-57-8	2-Chlorophenol	220	U	24	220	440	ug/Kg
95-50-1	1,2-Dichlorobenzene	220	U	17	220	440	ug/Kg
541-73-1	1,3-Dichlorobenzene	220	U	7.9	220	440	ug/Kg
106-46-7	1,4-Dichlorobenzene	220	U	15	220	440	ug/Kg
100-51-6	Benzyl Alcohol	220	U	17	220	440	ug/Kg
95-48-7	2-Methylphenol	220	U	24	220	440	ug/Kg
108-60-1	2,2-oxybis(1-Chloropropane)	220	U	19	220	440	ug/Kg
98-86-2	Acetophenone	220	U	14	220	440	ug/Kg
65794-96-9	3+4-Methylphenols	220	U	23	220	440	ug/Kg
621-64-7	N-Nitroso-di-n-propylamine	220	U	23	220	440	ug/Kg
67-72-1	Hexachloroethane	220	U	20	220	440	ug/Kg
98-95-3	Nitrobenzene	220	U	17	220	440	ug/Kg
78-59-1	Isophorone	220	U	15	220	440	ug/Kg
88-75-5	2-Nitrophenol	220	U	22	220	440	ug/Kg
105-67-9	2,4-Dimethylphenol	220	U	25	220	440	ug/Kg
111-91-1	bis(2-Chloroethoxy)methane	220	U	26	220	440	ug/Kg
120-83-2	2,4-Dichlorophenol	220	U	17	220	440	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	220	U	17	220	440	ug/Kg
65-85-0	Benzoic acid	550	U	89	550	1100	ug/Kg
91-20-3	Naphthalene	220	U	15	220	440	ug/Kg
106-47-8	4-Chloroaniline	220	U	32	220	440	ug/Kg
87-68-3	Hexachlorobutadiene	220	U	16	220	440	ug/Kg
105-60-2	Caprolactam	220	U	21	220	440	ug/Kg
59-50-7	4-Chloro-3-methylphenol	220	U	20	220	440	ug/Kg
91-57-6	2-Methylnaphthalene	220	U	11	220	440	ug/Kg

Analytical Method:

SW8270D

Report of Analysis

Client:MS AnalyticalDate Collected:08/07/12Project:12MS104 Kensington HeightsDate Received:08/15/12

 Client Sample ID:
 SB-11(12-16)
 SDG No.:
 D3811

 Lab Sample ID:
 D3811-05
 Matrix:
 SOIL

Sample Wt/Vol: 30.11 Units: g Final Vol: 1000

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

% Moisture:

26

uL

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BG006780 D 1 08/15/12 08/20/12 PB65125

BG006780.D	1	08/15/12	08	/20/12		PB65125	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
77-47-4	Hexachlorocyclopentadiene	220	U	11	220	440	ug/Kg
88-06-2	2,4,6-Trichlorophenol	220	U	14	220	440	ug/Kg
95-95-4	2,4,5-Trichlorophenol	220	U	32	220	440	ug/Kg
92-52-4	1,1-Biphenyl	220	U	17	220	440	ug/Kg
91-58-7	2-Chloronaphthalene	220	U	10	220	440	ug/Kg
88-74-4	2-Nitroaniline	220	U	20	220	440	ug/Kg
131-11-3	Dimethylphthalate	380	J	12	220	440	ug/Kg
208-96-8	Acenaphthylene	220	U	11	220	440	ug/Kg
606-20-2	2,6-Dinitrotoluene	220	U	18	220	440	ug/Kg
99-09-2	3-Nitroaniline	220	U	29	220	440	ug/Kg
83-32-9	Acenaphthene	220	U	13	220	440	ug/Kg
51-28-5	2,4-Dinitrophenol	220	U	46	220	440	ug/Kg
100-02-7	4-Nitrophenol	220	U	83	220	440	ug/Kg
132-64-9	Dibenzofuran	220	U	18	220	440	ug/Kg
121-14-2	2,4-Dinitrotoluene	220	U	14	220	440	ug/Kg
84-66-2	Diethylphthalate	220	U	7	220	440	ug/Kg
7005-72-3	4-Chlorophenyl-phenylether	220	U	24	220	440	ug/Kg
86-73-7	Fluorene	220	U	17	220	440	ug/Kg
100-01-6	4-Nitroaniline	220	U	58	220	440	ug/Kg
534-52-1	4,6-Dinitro-2-methylphenol	220	U	26	220	440	ug/Kg
86-30-6	N-Nitrosodiphenylamine	220	U	11	220	440	ug/Kg
103-33-3	Azobenzene	220	U	11	220	440	ug/Kg
101-55-3	4-Bromophenyl-phenylether	220	U	8.8	220	440	ug/Kg
118-74-1	Hexachlorobenzene	220	U	18	220	440	ug/Kg
1912-24-9	Atrazine	220	U	24	220	440	ug/Kg
87-86-5	Pentachlorophenol	220	U	31	220	440	ug/Kg
85-01-8	Phenanthrene	220	U	12	220	440	ug/Kg
120-12-7	Anthracene	220	U	9.2	220	440	ug/Kg
86-74-8	Carbazole	220	U	9.8	220	440	ug/Kg
84-74-2	Di-n-butylphthalate	220	U	35	220	440	ug/Kg
206-44-0	Fluoranthene	220	U	9	220	440	ug/Kg
92-87-5	Benzidine	220	U	45	220	440	ug/Kg
129-00-0	Pyrene	220	U	11	220	440	ug/Kg
		281	of 870				

Client: MS Analytical Date Collected: 08/07/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-11(12-16) SDG No.: D3811

Lab Sample ID: D3811-05 Matrix: SOIL

Analytical Method: SW8270D % Moisture: 26

Sample Wt/Vol: 30.11 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BG006780 D 1 08/15/12 08/20/12 PB65125

BG006780.D	1	08/15/12		08/	20/12		PB65125	
CAS Number	Parameter		Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
85-68-7	Butylbenzylphthalate		220	U	22	220	440	ug/Kg
91-94-1	3,3-Dichlorobenzidine		220	U	29	220	440	ug/Kg
56-55-3	Benzo(a)anthracene		220	U	21	220	440	ug/Kg
218-01-9	Chrysene		220	U	20	220	440	ug/Kg
117-81-7	bis(2-Ethylhexyl)phthalate		220	U	16	220	440	ug/Kg
117-84-0	Di-n-octyl phthalate		220	U	5.1	220	440	ug/Kg
205-99-2	Benzo(b)fluoranthene		220	U	15	220	440	ug/Kg
207-08-9	Benzo(k)fluoranthene		220	U	21	220	440	ug/Kg
50-32-8	Benzo(a)pyrene		220	U	9.7	220	440	ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene		220	U	15	220	440	ug/Kg
53-70-3	Dibenz(a,h)anthracene		220	U	13	220	440	ug/Kg
191-24-2	Benzo(g,h,i)perylene		220	U	18	220	440	ug/Kg
95-94-3	1,2,4,5-Tetrachlorobenzene		220	U	18	220	440	ug/Kg
123-91-1	1,4-Dioxane		220	U	18	220	440	ug/Kg
58-90-2	2,3,4,6-Tetrachlorophenol		220	U	18	220	440	ug/Kg
SURROGATES								
367-12-4	2-Fluorophenol		118		28 - 127		79%	SPK: 150
13127-88-3	Phenol-d5		120		34 - 127		80%	SPK: 150
4165-60-0	Nitrobenzene-d5		75.2		31 - 132		75%	SPK: 100
321-60-8	2-Fluorobiphenyl		70.1		39 - 123		70%	SPK: 100
118-79-6	2,4,6-Tribromophenol		107		30 - 133		71%	SPK: 150
1718-51-0	Terphenyl-d14		62.7		37 - 115		63%	SPK: 100
INTERNAL ST								
3855-82-1	1,4-Dichlorobenzene-d4		133492	8.69				
1146-65-2	Naphthalene-d8		486870	10.89				
15067-26-2	Acenaphthene-d10		337919	13.88				
1517-22-2	Phenanthrene-d10		647790	16.37				
1719-03-5	Chrysene-d12		735697	20.88				
1520-96-3	Perylene-d12		669999	24.76				
TENTATIVE I	DENTIFIED COMPOUNDS							
	unknown5.91		360	J			5.91	ug/Kg
541-02-6	Cyclopentasiloxane, decamethyl-		130	J			9.99	ug/Kg
		4	282 of	870				

Injection Volume:

Report of Analysis

Client:	MS Analytical	Date Collected:	08/07/12
Project:	12MS104 Kensington Heights	Date Received:	08/15/12
Client Sample ID:	SB-11(12-16)	SDG No.:	D3811
Lab Sample ID:	D3811-05	Matrix:	SOIL
Analytical Method:	SW8270D	% Moisture:	26
Sample Wt/Vol:	30.11 Units: g	Final Vol:	1000 uL
Soil Aliquot Vol:	uL	Test:	SVOC-Chemtech Full -25
Extraction Type:	SOXH Decanted:	N Level:	LOW

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
BG006780.D	1	08/15/12	08/20/12	PB65125

GPC Factor: 1.0

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
7206-19-1	3-Octadecene. (E)-	100	J			20.49	ug/Kg

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

GPC Cleanup:

Ν

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

PH:

N/A

Sample Wt/Vol:

30.1

Units:

g

Report of Analysis

Client: MS Analytical Date Collected: 08/08/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-15(12-16) SDG No.: D3811 Lab Sample ID: D3811-06 Matrix: SOIL

Analytical Method: SW8270D % Moisture: 28

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Final Vol:

1000

uL

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BG006790.D 5 08/15/12 08/21/12 PB65125

BG006/90.D	5	08/15/12	08/	/21/12		PB65125	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
62-75-9	n-Nitrosodimethylamine	1150	U	120	1150	2300	ug/Kg
110-86-1	Pyridine	1150	U	460	1150	2300	ug/Kg
100-52-7	Benzaldehyde	1150	UQ	120	1150	2300	ug/Kg
62-53-3	Aniline	1150	U	200	1150	2300	ug/Kg
108-95-2	Phenol	1150	U	53	1150	2300	ug/Kg
111-44-4	bis(2-Chloroethyl)ether	1150	U	110	1150	2300	ug/Kg
95-57-8	2-Chlorophenol	1150	U	120	1150	2300	ug/Kg
95-50-1	1,2-Dichlorobenzene	1150	U	88	1150	2300	ug/Kg
541-73-1	1,3-Dichlorobenzene	1150	U	41	1150	2300	ug/Kg
106-46-7	1,4-Dichlorobenzene	1150	U	79	1150	2300	ug/Kg
100-51-6	Benzyl Alcohol	1150	U	87	1150	2300	ug/Kg
95-48-7	2-Methylphenol	1150	U	130	1150	2300	ug/Kg
108-60-1	2,2-oxybis(1-Chloropropane)	1150	U	96	1150	2300	ug/Kg
98-86-2	Acetophenone	1150	U	71	1150	2300	ug/Kg
65794-96-9	3+4-Methylphenols	1150	U	120	1150	2300	ug/Kg
621-64-7	N-Nitroso-di-n-propylamine	1150	U	120	1150	2300	ug/Kg
67-72-1	Hexachloroethane	1150	U	100	1150	2300	ug/Kg
98-95-3	Nitrobenzene	1150	U	87	1150	2300	ug/Kg
78-59-1	Isophorone	1150	U	76	1150	2300	ug/Kg
88-75-5	2-Nitrophenol	1150	U	110	1150	2300	ug/Kg
105-67-9	2,4-Dimethylphenol	1150	U	130	1150	2300	ug/Kg
111-91-1	bis(2-Chloroethoxy)methane	1150	U	130	1150	2300	ug/Kg
120-83-2	2,4-Dichlorophenol	1150	U	88	1150	2300	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	1150	U	88	1150	2300	ug/Kg
65-85-0	Benzoic acid	2750	U	460	2750	5500	ug/Kg
91-20-3	Naphthalene	23000	E	80	1150	2300	ug/Kg
106-47-8	4-Chloroaniline	1150	U	160	1150	2300	ug/Kg
87-68-3	Hexachlorobutadiene	1150	U	84	1150	2300	ug/Kg
105-60-2	Caprolactam	1150	U	110	1150	2300	ug/Kg
59-50-7	4-Chloro-3-methylphenol	1150	U	100	1150	2300	ug/Kg
91-57-6	2-Methylnaphthalene	8700		58	1150	2300	ug/Kg

uL

CHEMITECH

Report of Analysis

Client: MS Analytical Date Collected: 08/08/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-15(12-16) SDG No.: D3811 Lab Sample ID: D3811-06 Matrix: SOIL SW8270D % Moisture: 28

Analytical Method: Sample Wt/Vol: 30.1 Units: g Final Vol: 1000

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Level: LOW Decanted: N

Injection Volume: GPC Factor: 1.0 GPC Cleanup: Ν PH: N/A

File ID/Qc Batch: Dilution: Date Analyzed Prep Batch ID Prep Date

BG006790.D	5	08/15/12	08	/21/12		PB65125	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
77-47-4	Hexachlorocyclopentadiene	1150	U	56	1150	2300	ug/Kg
88-06-2	2,4,6-Trichlorophenol	1150	U	71	1150	2300	ug/Kg
95-95-4	2,4,5-Trichlorophenol	1150	U	160	1150	2300	ug/Kg
92-52-4	1,1-Biphenyl	2300	J	87	1150	2300	ug/Kg
91-58-7	2-Chloronaphthalene	1150	U	53	1150	2300	ug/Kg
88-74-4	2-Nitroaniline	1150	U	100	1150	2300	ug/Kg
131-11-3	Dimethylphthalate	1150	U	62	1150	2300	ug/Kg
208-96-8	Acenaphthylene	2900		58	1150	2300	ug/Kg
606-20-2	2,6-Dinitrotoluene	1150	U	94	1150	2300	ug/Kg
99-09-2	3-Nitroaniline	1150	U	150	1150	2300	ug/Kg
83-32-9	Acenaphthene	8600		65	1150	2300	ug/Kg
51-28-5	2,4-Dinitrophenol	1150	U	230	1150	2300	ug/Kg
100-02-7	4-Nitrophenol	1150	U	430	1150	2300	ug/Kg
132-64-9	Dibenzofuran	14000		90	1150	2300	ug/Kg
121-14-2	2,4-Dinitrotoluene	1150	U	70	1150	2300	ug/Kg
84-66-2	Diethylphthalate	1150	U	36	1150	2300	ug/Kg
7005-72-3	4-Chlorophenyl-phenylether	1150	U	130	1150	2300	ug/Kg
86-73-7	Fluorene	20000	E	87	1150	2300	ug/Kg
100-01-6	4-Nitroaniline	1150	U	300	1150	2300	ug/Kg
534-52-1	4,6-Dinitro-2-methylphenol	1150	U	130	1150	2300	ug/Kg
86-30-6	N-Nitrosodiphenylamine	1150	U	55	1150	2300	ug/Kg
103-33-3	Azobenzene	1150	U	54	1150	2300	ug/Kg
101-55-3	4-Bromophenyl-phenylether	1150	U	45	1150	2300	ug/Kg
118-74-1	Hexachlorobenzene	1150	U	94	1150	2300	ug/Kg
1912-24-9	Atrazine	1150	U	120	1150	2300	ug/Kg
87-86-5	Pentachlorophenol	1150	U	160	1150	2300	ug/Kg
85-01-8	Phenanthrene	54000	E	62	1150	2300	ug/Kg
120-12-7	Anthracene	24000	E	47	1150	2300	ug/Kg
86-74-8	Carbazole	12000		51	1150	2300	ug/Kg
84-74-2	Di-n-butylphthalate	1150	U	180	1150	2300	ug/Kg
206-44-0	Fluoranthene	43000	E	46	1150	2300	ug/Kg
92-87-5	Benzidine	1150	U	230	1150	2300	ug/Kg
129-00-0	Pyrene	40000	E	55	1150	2300	ug/Kg
		285 c	of 870				

Client: MS Analytical Date Collected: 08/08/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-15(12-16) SDG No.: D3811 Lab Sample ID: D3811-06 Matrix: SOIL Analytical Method: SW8270D % Moisture: 28

Sample Wt/Vol: 30.1 Units: g Final Vol: 1000

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

uL

Extraction Type: SOXH Level: LOW Decanted: N

Injection Volume: GPC Factor: 1.0 GPC Cleanup: Ν PH: N/A

File ID/Qc Batch: Dilution: Prep Batch ID Prep Date Date Analyzed

BG006790.D	5	08/15/12		08/2	21/12		PB65125	
CAS Number	Parameter	Cor	nc. Ç	Qualifier	MDL	LOD	LOQ / CRQL	Units
85-68-7	Butylbenzylphthalate	115	50	U	110	1150	2300	ug/Kg
91-94-1	3,3-Dichlorobenzidine	115	50	U	150	1150	2300	ug/Kg
56-55-3	Benzo(a)anthracene	290	000	E	110	1150	2300	ug/Kg
218-01-9	Chrysene	270	000	E	100	1150	2300	ug/Kg
117-81-7	bis(2-Ethylhexyl)phthalate	115	50	U	82	1150	2300	ug/Kg
117-84-0	Di-n-octyl phthalate	115	50	U	26	1150	2300	ug/Kg
205-99-2	Benzo(b)fluoranthene	290	000	E	75	1150	2300	ug/Kg
207-08-9	Benzo(k)fluoranthene	110	000		110	1150	2300	ug/Kg
50-32-8	Benzo(a)pyrene	240	000	E	50	1150	2300	ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene	130	000		77	1150	2300	ug/Kg
53-70-3	Dibenz(a,h)anthracene	440	00		66	1150	2300	ug/Kg
191-24-2	Benzo(g,h,i)perylene	120	000		93	1150	2300	ug/Kg
95-94-3	1,2,4,5-Tetrachlorobenzene	115	50	U	91	1150	2300	ug/Kg
123-91-1	1,4-Dioxane	115	50	U	91	1150	2300	ug/Kg
58-90-2	2,3,4,6-Tetrachlorophenol	115	50	U	91	1150	2300	ug/Kg
SURROGATES								
367-12-4	2-Fluorophenol	123			28 - 127		82%	SPK: 150
13127-88-3	Phenol-d5	132			34 - 127		89%	SPK: 150
4165-60-0	Nitrobenzene-d5	83.0			31 - 132	2	84%	SPK: 100
321-60-8	2-Fluorobiphenyl	72.2			39 - 123	}	72%	SPK: 100
118-79-6	2,4,6-Tribromophenol	106			30 - 133	3	71%	SPK: 150
1718-51-0	Terphenyl-d14	66.3	8		37 - 115	5	67%	SPK: 100
INTERNAL ST								
3855-82-1	1,4-Dichlorobenzene-d4		3052	8.68				
1146-65-2	Naphthalene-d8		9574	10.89				
15067-26-2	Acenaphthene-d10		2130	13.87				
1517-22-2	Phenanthrene-d10		6200	16.37				
1719-03-5	Chrysene-d12		0611	20.89				
1520-96-3	Perylene-d12	720)256	24.78				
	DENTIFIED COMPOUNDS							
575-43-9	Naphthalene, 1,6-dimethyl-	320		J			13.16	ug/Kg
582-16-1	Naphthalene, 2,7-dimethyl-	360	00	J			13.29	ug/Kg
		280	6 of 8	370				

Injection Volume:

Report of Analysis

Client: MS Analytical Date Collected: 08/08/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SDG No.: SB-15(12-16) D3811 Lab Sample ID: D3811-06 Matrix: SOIL % Moisture: Analytical Method: SW8270D 28 Sample Wt/Vol: 30.1 Units: Final Vol: 1000 uL g Test: SVOC-Chemtech Full -25 Soil Aliquot Vol: uL Extraction Type: SOXH Level: LOW Decanted: Ν

1.0

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BG006790.D 5 08/15/12 08/21/12 PB65125

GPC Factor:

								J
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units	
581-42-0	Naphthalene, 2,6-dimethyl-	1700	J			13.34	ug/Kg	
14562-09-5	2,4,6-Cycloheptatrien-1-one, 2-phe	4400	J			15.06	ug/Kg	
1730-37-6	9H-Fluorene, 1-methyl-	4700	J			15.71	ug/Kg	
129812-23-3	Naphtho[2,1-b]furan, 1,2-dimethyl-	1800	J			15.93	ug/Kg	
486-25-9	9H-Fluoren-9-one	2200	J			16.04	ug/Kg	
128644-69-9	8-Dimethylaminonaphthalene-1-carbo	2500	J			16.11	ug/Kg	
268-77-9	Naphtho[2,3-b]thiophene	5900	J			16.2	ug/Kg	
832-69-9	Phenanthrene, 1-methyl-	10000	J			17.21	ug/Kg	
2531-84-2	Phenanthrene, 2-methyl-	13000	J			17.26	ug/Kg	
613-12-7	Anthracene, 2-methyl-	6100	J			17.33	ug/Kg	
203-64-5	4H-Cyclopenta[def]phenanthrene	18000	J			17.41	ug/Kg	
949-41-7	1H-Cyclopropa[l]phenanthrene,1a,9b	4000	J			17.43	ug/Kg	
35465-71-5	2-Phenylnaphthalene	6600	J			17.69	ug/Kg	
84-65-1	9,10-Anthracenedione	2100	J			17.73	ug/Kg	
85385-68-8	[14]Annulene, 1,6:8,13-bis(methano	1600	J			18.04	ug/Kg	
3674-66-6	Phenanthrene, 2,5-dimethyl-	5300	J			18.13	ug/Kg	
	unknown18.20	3500	J			18.2	ug/Kg	
781-43-1	9,10-Dimethylanthracene	3000	J			18.27	ug/Kg	
4425-74-5	9-(Cyanomethylene)fluorene	2000	J			18.5	ug/Kg	
192-97-2	Benzo[e]pyrene	5000	J			23.85	ug/Kg	
198-55-0	Perylene	16000	J			24.42	ug/Kg	
205-82-3	Benzo[i]fluoranthene	4700	J			24.87	ug/Kg	

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

GPC Cleanup:

Ν

PH:

N/A

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Client: MS Analytical Date Collected: 08/08/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-15(12-16)DL SDG No.: D3811

Lab Sample ID: D3811-06DL Matrix: SOIL

Analytical Method: SW8270D % Moisture: 28

Sample Wt/Vol: 30.1 Units: g Final Vol: 1000

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

uL

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BG006817.D 25 08/15/12 08/22/12 PB65125

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
62-75-9	n-Nitrosodimethylamine	5500	UD	590	5500	11000	ug/Kg
110-86-1	Pyridine	5500	UD	2300	5500	11000	ug/Kg
100-52-7	Benzaldehyde	5500	UDQ	600	5500	11000	ug/Kg
62-53-3	Aniline	5500	UD	980	5500	11000	ug/Kg
108-95-2	Phenol	5500	UD	270	5500	11000	ug/Kg
111-44-4	bis(2-Chloroethyl)ether	5500	UD	550	5500	11000	ug/Kg
95-57-8	2-Chlorophenol	5500	UD	610	5500	11000	ug/Kg
95-50-1	1,2-Dichlorobenzene	5500	UD	440	5500	11000	ug/Kg
541-73-1	1,3-Dichlorobenzene	5500	UD	200	5500	11000	ug/Kg
106-46-7	1,4-Dichlorobenzene	5500	UD	390	5500	11000	ug/Kg
100-51-6	Benzyl Alcohol	5500	UD	430	5500	11000	ug/Kg
95-48-7	2-Methylphenol	5500	UD	630	5500	11000	ug/Kg
108-60-1	2,2-oxybis(1-Chloropropane)	5500	UD	480	5500	11000	ug/Kg
98-86-2	Acetophenone	5500	UD	350	5500	11000	ug/Kg
65794-96-9	3+4-Methylphenols	5500	UD	600	5500	11000	ug/Kg
621-64-7	N-Nitroso-di-n-propylamine	5500	UD	580	5500	11000	ug/Kg
67-72-1	Hexachloroethane	5500	UD	520	5500	11000	ug/Kg
98-95-3	Nitrobenzene	5500	UD	440	5500	11000	ug/Kg
78-59-1	Isophorone	5500	UD	380	5500	11000	ug/Kg
88-75-5	2-Nitrophenol	5500	UD	560	5500	11000	ug/Kg
105-67-9	2,4-Dimethylphenol	5500	UD	650	5500	11000	ug/Kg
111-91-1	bis(2-Chloroethoxy)methane	5500	UD	660	5500	11000	ug/Kg
120-83-2	2,4-Dichlorophenol	5500	UD	440	5500	11000	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	5500	UD	440	5500	11000	ug/Kg
65-85-0	Benzoic acid	14000	UD	2300	14000	28000	ug/Kg
91-20-3	Naphthalene	25000) D	400	5500	11000	ug/Kg
106-47-8	4-Chloroaniline	5500	UD	810	5500	11000	ug/Kg
87-68-3	Hexachlorobutadiene	5500	UD	420	5500	11000	ug/Kg
105-60-2	Caprolactam	5500	UD	540	5500	11000	ug/Kg
59-50-7	4-Chloro-3-methylphenol	5500	UD	510	5500	11000	ug/Kg
91-57-6	2-Methylnaphthalene	9400	JD	290	5500	11000	ug/Kg

Client: MS Analytical Date Collected: 08/08/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-15(12-16)DL SDG No.: D3811

Lab Sample ID: D3811-06DL Matrix: SOIL

Analytical Method: SW8270D % Moisture: 28

Sample Wt/Vol: 30.1 Units: g Final Vol: 1000 uL Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Level: LOW Decanted: N

Injection Volume: GPC Factor: 1.0 GPC Cleanup: Ν PH: N/A

File ID/Qc Batch: Dilution: Prep Batch ID Prep Date Date Analyzed

BG006817.D	25	08/15/12	08	/22/12		PB65125	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
77-47-4	Hexachlorocyclopentadiene	5500	UD	280	5500	11000	ug/Kg
88-06-2	2,4,6-Trichlorophenol	5500	UD	350	5500	11000	ug/Kg
95-95-4	2,4,5-Trichlorophenol	5500	UD	810	5500	11000	ug/Kg
92-52-4	1,1-Biphenyl	5500	UD	440	5500	11000	ug/Kg
91-58-7	2-Chloronaphthalene	5500	UD	260	5500	11000	ug/Kg
88-74-4	2-Nitroaniline	5500	UD	510	5500	11000	ug/Kg
131-11-3	Dimethylphthalate	5500	UD	310	5500	11000	ug/Kg
208-96-8	Acenaphthylene	5500	UD	290	5500	11000	ug/Kg
606-20-2	2,6-Dinitrotoluene	5500	UD	470	5500	11000	ug/Kg
99-09-2	3-Nitroaniline	5500	UD	740	5500	11000	ug/Kg
83-32-9	Acenaphthene	8700	JD	330	5500	11000	ug/Kg
51-28-5	2,4-Dinitrophenol	5500	UD	1200	5500	11000	ug/Kg
100-02-7	4-Nitrophenol	5500	UD	2100	5500	11000	ug/Kg
132-64-9	Dibenzofuran	14000	D	450	5500	11000	ug/Kg
121-14-2	2,4-Dinitrotoluene	5500	UD	350	5500	11000	ug/Kg
84-66-2	Diethylphthalate	5500	UD	180	5500	11000	ug/Kg
7005-72-3	4-Chlorophenyl-phenylether	5500	UD	630	5500	11000	ug/Kg
86-73-7	Fluorene	21000	D	440	5500	11000	ug/Kg
100-01-6	4-Nitroaniline	5500	UD	1500	5500	11000	ug/Kg
534-52-1	4,6-Dinitro-2-methylphenol	5500	UD	660	5500	11000	ug/Kg
86-30-6	N-Nitrosodiphenylamine	5500	UD	280	5500	11000	ug/Kg
103-33-3	Azobenzene	5500	UD	270	5500	11000	ug/Kg
101-55-3	4-Bromophenyl-phenylether	5500	UD	220	5500	11000	ug/Kg
118-74-1	Hexachlorobenzene	5500	UD	470	5500	11000	ug/Kg
1912-24-9	Atrazine	5500	UD	610	5500	11000	ug/Kg
87-86-5	Pentachlorophenol	5500	UD	790	5500	11000	ug/Kg
85-01-8	Phenanthrene	95000	ED	310	5500	11000	ug/Kg
120-12-7	Anthracene	28000	D	240	5500	11000	ug/Kg
86-74-8	Carbazole	13000	D	250	5500	11000	ug/Kg
84-74-2	Di-n-butylphthalate	5500	UD	910	5500	11000	ug/Kg
206-44-0	Fluoranthene	74000	D	230	5500	11000	ug/Kg
92-87-5	Benzidine	5500	UD	1200	5500	11000	ug/Kg
129-00-0	Pyrene	57000	D	280	5500	11000	ug/Kg
		289 (of 870				

Client: MS Analytical Date Collected: 08/08/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-15(12-16)DL SDG No.: D3811 Lab Sample ID: D3811-06DL Matrix: SOIL Analytical Method: SW8270D % Moisture: 28 Sample Wt/Vol: 30.1 Units: g Final Vol: 1000 uL Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BG006817 D 25 08/15/12 08/22/12 PB65125

BG006817.D	25	08/15/12		08/	22/12		PB65125	
CAS Number	Parameter		Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
85-68-7	Butylbenzylphthalate		5500	UD	550	5500	11000	ug/Kg
91-94-1	3,3-Dichlorobenzidine		5500	UD	740	5500	11000	ug/Kg
56-55-3	Benzo(a)anthracene		32000	D	550	5500	11000	ug/Kg
218-01-9	Chrysene		30000	D	520	5500	11000	ug/Kg
117-81-7	bis(2-Ethylhexyl)phthalate		5500	UD	410	5500	11000	ug/Kg
117-84-0	Di-n-octyl phthalate		5500	UD	130	5500	11000	ug/Kg
205-99-2	Benzo(b)fluoranthene		32000	D	380	5500	11000	ug/Kg
207-08-9	Benzo(k)fluoranthene		11000	JD	540	5500	11000	ug/Kg
50-32-8	Benzo(a)pyrene		25000	D	250	5500	11000	ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene		11000	JD	380	5500	11000	ug/Kg
53-70-3	Dibenz(a,h)anthracene		5500	UD	330	5500	11000	ug/Kg
191-24-2	Benzo(g,h,i)perylene		12000	D	470	5500	11000	ug/Kg
95-94-3	1,2,4,5-Tetrachlorobenzene		5500	UD	450	5500	11000	ug/Kg
123-91-1	1,4-Dioxane		5500	UD	450	5500	11000	ug/Kg
58-90-2	2,3,4,6-Tetrachlorophenol		5500	UD	450	5500	11000	ug/Kg
SURROGATES	5							
367-12-4	2-Fluorophenol		118		28 - 12	7	79%	SPK: 150
13127-88-3	Phenol-d5		124		34 - 12	7	83%	SPK: 150
4165-60-0	Nitrobenzene-d5		81.2		31 - 132	2	81%	SPK: 100
321-60-8	2-Fluorobiphenyl		68.2		39 - 12	3	68%	SPK: 100
118-79-6	2,4,6-Tribromophenol		97.8		30 - 13	3	65%	SPK: 150
1718-51-0	Terphenyl-d14		70		37 - 11:	5	70%	SPK: 100
INTERNAL ST	ANDARDS							
3855-82-1	1,4-Dichlorobenzene-d4		138234	8.68				
1146-65-2	Naphthalene-d8		540363	10.88				
15067-26-2	Acenaphthene-d10		376946	13.87				
1517-22-2	Phenanthrene-d10		704555	16.37				
1719-03-5	Chrysene-d12		766472	20.87				
1520-96-3	Perylene-d12		680312	24.76				

Client: MS Analytical

Date Collected: 08/08/12

Project:

12MS104 Kensington Heights

08/15/12

Client Sample ID:

SB-15(12-16)DL

06/13/12

28

1000

Lab Sample ID:

, ,

SDG No.:

Date Received:

D3811

Analytical Method:

D3811-06DL

Matrix:

Final Vol:

SOIL

0 1 177/77 1

SW8270D

% Moisture:

uL

N/A

Sample Wt/Vol: Soil Aliquot Vol: 30.1

Units: g uL

Test:

GPC Cleanup:

SVOC-Chemtech Full -25

PH:

Extraction Type:

SOXH

Decanted:

1.0

N

Level: LOW

File ID/Qc Batch:

Injection Volume:

Dilution:

Prep Date

GPC Factor:

Date Analyzed

Prep Batch ID

BG006817.D

25

08/15/12

08/22/12

PB65125

Ν

LOQ / CRQL Un

Units

CAS Number

Parameter

Conc.

Qualifier

MDL

LOD

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Sample Wt/Vol:

30.1

Units:

g

Report of Analysis

Client: MS Analytical Date Collected: 08/08/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-15(12-16)DL2 SDG No.: D3811 Lab Sample ID: D3811-06DL2 Matrix: SOIL SW8270D % Moisture: 28

Analytical Method: Final Vol: 1000

Soil Aliquot Vol: иL Test: SVOC-Chemtech Full -25

uL

Level: Extraction Type: SOXH Decanted: N LOW

GPC Cleanup: GPC Factor: Ν PH: Injection Volume: 1.0 N/A

File ID/Qc Batch: Dilution: Prep Batch ID Prep Date Date Analyzed

BG006827.D 50 08/15/12 08/22/12 PB65125

BG006827.D	50	08/15/12		08/2	22/12		PB65125	
CAS Number	Parameter		Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS								
62-75-9	n-Nitrosodimethylamine		11500	UD	1200	11500	23000	ug/Kg
110-86-1	Pyridine		11500	UD	4600	11500	23000	ug/Kg
100-52-7	Benzaldehyde		11500	UDQ	1200	11500	23000	ug/Kg
62-53-3	Aniline		11500	UD	2000	11500	23000	ug/Kg
108-95-2	Phenol		11500	UD	530	11500	23000	ug/Kg
111-44-4	bis(2-Chloroethyl)ether		11500	UD	1100	11500	23000	ug/Kg
95-57-8	2-Chlorophenol		11500	UD	1200	11500	23000	ug/Kg
95-50-1	1,2-Dichlorobenzene		11500	UD	880	11500	23000	ug/Kg
541-73-1	1,3-Dichlorobenzene		11500	UD	410	11500	23000	ug/Kg
106-46-7	1,4-Dichlorobenzene		11500	UD	790	11500	23000	ug/Kg
100-51-6	Benzyl Alcohol		11500	UD	870	11500	23000	ug/Kg
95-48-7	2-Methylphenol		11500	UD	1300	11500	23000	ug/Kg
108-60-1	2,2-oxybis(1-Chloropropane)		11500	UD	960	11500	23000	ug/Kg
98-86-2	Acetophenone		11500	UD	710	11500	23000	ug/Kg
65794-96-9	3+4-Methylphenols		11500	UD	1200	11500	23000	ug/Kg
621-64-7	N-Nitroso-di-n-propylamine		11500	UD	1200	11500	23000	ug/Kg
67-72-1	Hexachloroethane		11500	UD	1000	11500	23000	ug/Kg
98-95-3	Nitrobenzene		11500	UD	870	11500	23000	ug/Kg
78-59-1	Isophorone		11500	UD	760	11500	23000	ug/Kg
88-75-5	2-Nitrophenol		11500	UD	1100	11500	23000	ug/Kg
105-67-9	2,4-Dimethylphenol		11500	UD	1300	11500	23000	ug/Kg
111-91-1	bis(2-Chloroethoxy)methane		11500	UD	1300	11500	23000	ug/Kg
120-83-2	2,4-Dichlorophenol		11500	UD	880	11500	23000	ug/Kg
120-82-1	1,2,4-Trichlorobenzene		11500	UD	880	11500	23000	ug/Kg
65-85-0	Benzoic acid	:	27500	UD	4600	27500	55000	ug/Kg
91-20-3	Naphthalene	:	25000	D	800	11500	23000	ug/Kg
106-47-8	4-Chloroaniline		11500	UD	1600	11500	23000	ug/Kg
87-68-3	Hexachlorobutadiene		11500	UD	840	11500	23000	ug/Kg
105-60-2	Caprolactam		11500	UD	1100	11500	23000	ug/Kg
59-50-7	4-Chloro-3-methylphenol		11500	UD	1000	11500	23000	ug/Kg
91-57-6	2-Methylnaphthalene		11500	UD	580	11500	23000	ug/Kg

Client: MS Analytical Date Collected: 08/08/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-15(12-16)DL2 SDG No.: D3811
Lab Sample ID: D3811-06DL2 Matrix: SOIL

Analytical Method: SW8270D % Moisture: 28

Sample Wt/Vol: 30.1 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Extraction Type : SOXH Decanted : N Level : LOW

 $\label{eq:continuous} Injection\ Volume: \qquad \qquad 1 \qquad \qquad GPC\ Factor: \qquad 1.0 \qquad \qquad GPC\ Cleanup: \qquad N \qquad \qquad PH: \quad N/A$

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BG006827.D 50 08/15/12 08/22/12 PB65125

BG006827.D	50	08/15/12	08	3/22/12		PB65125	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
77-47-4	Hexachlorocyclopentadiene	11500	UD	560	11500	23000	ug/Kg
88-06-2	2,4,6-Trichlorophenol	11500	UD	710	11500	23000	ug/Kg
95-95-4	2,4,5-Trichlorophenol	11500	UD	1600	11500	23000	ug/Kg
92-52-4	1,1-Biphenyl	11500	UD	870	11500	23000	ug/Kg
91-58-7	2-Chloronaphthalene	11500	UD	530	11500	23000	ug/Kg
88-74-4	2-Nitroaniline	11500	UD	1000	11500	23000	ug/Kg
131-11-3	Dimethylphthalate	11500	UD	620	11500	23000	ug/Kg
208-96-8	Acenaphthylene	11500	UD	580	11500	23000	ug/Kg
606-20-2	2,6-Dinitrotoluene	11500	UD	940	11500	23000	ug/Kg
99-09-2	3-Nitroaniline	11500	UD	1500	11500	23000	ug/Kg
83-32-9	Acenaphthene	11500	UD	650	11500	23000	ug/Kg
51-28-5	2,4-Dinitrophenol	11500	UD	2300	11500	23000	ug/Kg
100-02-7	4-Nitrophenol	11500	UD	4300	11500	23000	ug/Kg
132-64-9	Dibenzofuran	13000	JD	900	11500	23000	ug/Kg
121-14-2	2,4-Dinitrotoluene	11500	UD	700	11500	23000	ug/Kg
84-66-2	Diethylphthalate	11500	UD	360	11500	23000	ug/Kg
7005-72-3	4-Chlorophenyl-phenylether	11500	UD	1300	11500	23000	ug/Kg
86-73-7	Fluorene	20000	JD	870	11500	23000	ug/Kg
100-01-6	4-Nitroaniline	11500	UD	3000	11500	23000	ug/Kg
534-52-1	4,6-Dinitro-2-methylphenol	11500	UD	1300	11500	23000	ug/Kg
86-30-6	N-Nitrosodiphenylamine	11500	UD	550	11500	23000	ug/Kg
103-33-3	Azobenzene	11500	UD	540	11500	23000	ug/Kg
101-55-3	4-Bromophenyl-phenylether	11500	UD	450	11500	23000	ug/Kg
118-74-1	Hexachlorobenzene	11500	UD	940	11500	23000	ug/Kg
1912-24-9	Atrazine	11500	UD	1200	11500	23000	ug/Kg
87-86-5	Pentachlorophenol	11500	UD	1600	11500	23000	ug/Kg
85-01-8	Phenanthrene	10000	0 D	620	11500	23000	ug/Kg
120-12-7	Anthracene	28000	D	470	11500	23000	ug/Kg
86-74-8	Carbazole	13000	JD	510	11500	23000	ug/Kg
84-74-2	Di-n-butylphthalate	11500	UD	1800	11500	23000	ug/Kg
206-44-0	Fluoranthene	75000	D	460	11500	23000	ug/Kg
92-87-5	Benzidine	11500	UD	2300	11500	23000	ug/Kg
129-00-0	Pyrene	59000	D	550	11500	23000	ug/Kg
		293 (of 870				

Extraction Type:

SOXH

Report of Analysis

Client: MS Analytical Date Collected: 08/08/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-15(12-16)DL2 SDG No.: D3811 Lab Sample ID: D3811-06DL2 Matrix: SOIL Analytical Method: SW8270D % Moisture: 28

Sample Wt/Vol: 30.1 Units: g Final Vol: 1000 uL

N

Level:

LOW

N/A

иL Test: SVOC-Chemtech Full -25 Soil Aliquot Vol:

Decanted: GPC Cleanup: GPC Factor: Ν Injection Volume: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

09/15/12 09/22/12 DD65125

BG006827.D	50	08/15/12		08/	22/12		PB65125	
CAS Number	Parameter		Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
85-68-7	Butylbenzylphthalate		11500	UD	1100	11500	23000	ug/Kg
91-94-1	3,3-Dichlorobenzidine		11500	UD	1500	11500	23000	ug/Kg
56-55-3	Benzo(a)anthracene		32000	D	1100	11500	23000	ug/Kg
218-01-9	Chrysene		30000	D	1000	11500	23000	ug/Kg
117-81-7	bis(2-Ethylhexyl)phthalate		11500	UD	820	11500	23000	ug/Kg
117-84-0	Di-n-octyl phthalate		11500	UD	260	11500	23000	ug/Kg
205-99-2	Benzo(b)fluoranthene		30000	D	750	11500	23000	ug/Kg
207-08-9	Benzo(k)fluoranthene		12000	JD	1100	11500	23000	ug/Kg
50-32-8	Benzo(a)pyrene		25000	D	500	11500	23000	ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene		11000	JD	770	11500	23000	ug/Kg
53-70-3	Dibenz(a,h)anthracene		11500	UD	660	11500	23000	ug/Kg
191-24-2	Benzo(g,h,i)perylene		12000	JD	930	11500	23000	ug/Kg
95-94-3	1,2,4,5-Tetrachlorobenzene		11500	UD	910	11500	23000	ug/Kg
123-91-1	1,4-Dioxane		11500	UD	910	11500	23000	ug/Kg
58-90-2	2,3,4,6-Tetrachlorophenol		11500	UD	910	11500	23000	ug/Kg
SURROGATES								
367-12-4	2-Fluorophenol		111		28 - 127	7	74%	SPK: 150
13127-88-3	Phenol-d5		115		34 - 127	7	77%	SPK: 150
4165-60-0	Nitrobenzene-d5		69.5		31 - 132	2	70%	SPK: 100
321-60-8	2-Fluorobiphenyl		66		39 - 123	3	66%	SPK: 100
118-79-6	2,4,6-Tribromophenol		86.5		30 - 133	3	58%	SPK: 150
1718-51-0	Terphenyl-d14		75.5		37 - 115	5	76%	SPK: 100
INTERNAL STA	ANDARDS							
3855-82-1	1,4-Dichlorobenzene-d4		140787	8.68				
1146-65-2	Naphthalene-d8		576119	10.88				
15067-26-2	Acenaphthene-d10		394091	13.87				
1517-22-2	Phenanthrene-d10		688062	16.37				
1719-03-5	Chrysene-d12		715046	20.87				
1520-96-3	Perylene-d12		668735	24.76				

Client: MS Analytical

Date Collected: 08/08/12

Project: 12MS104 Kensington Heights

08/15/12

SOIL

1000

Client Sample ID: SB-15(12-16)DL2

SDG No.: D3811

Lab Sample ID: D3811-06DL2

Matrix:

Date Received:

Analytical Method: SW8270D

% Moisture: 28

uL

Sample Wt/Vol:

Units: g uL

Test:

SVOC-Chemtech Full -25

Soil Aliquot Vol: Extraction Type:

Decanted: N

Level:

GPC Cleanup:

Final Vol:

LOW

PH: N/A

Injection Volume:

SOXH

30.1

GPC Factor: 1.0

. .

08/22/12

N

File ID/Qc Batch:

Dilution:

50

Prep Date 08/15/12

Date Analyzed

Prep Batch ID

PB65125

BG006827.D

CAS Number

Parameter

Conc.

Qualifier

MDL

LOD

LOQ / CRQL

Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D

uL

Units

Sample Wt/Vol:

CAS Number

120-82-1

65-85-0

91-20-3

87-68-3

106-47-8

105-60-2

59-50-7

91-57-6

30.07

1.2.4-Trichlorobenzene

Benzoic acid

Naphthalene

Caprolactam

4-Chloroaniline

Hexachlorobutadiene

2-Methylnaphthalene

4-Chloro-3-methylphenol

Parameter

Units:

g

Report of Analysis

Client: MS Analytical Date Collected: 08/08/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 SDG No.: Client Sample ID: D3811 SB-18(4-8) D3811-07 SOIL Lab Sample ID: Matrix: Analytical Method: SW8270D % Moisture: 16

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Final Vol:

1000

LOQ / CRQL

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

Conc.

Qualifier

MDL

LOD

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BG006781.D 1 08/15/12 08/20/12 PB65125

TARGETS 62-75-9 n-Nitrosodimethylamine 195 U 20 195 390 ug/Kg Pyridine 195 U 78 195 390 110-86-1 ug/Kg Benzaldehyde 195 UO 21 195 100-52-7 390 ug/Kg 62-53-3 Aniline 195 U 34 195 390 ug/Kg 9.1 108-95-2 Phenol 195 U 195 390 ug/Kg 111-44-4 bis(2-Chloroethyl)ether 195 U 19 195 390 ug/Kg 95-57-8 2-Chlorophenol 195 U 21 195 390 ug/Kg 95-50-1 1,2-Dichlorobenzene 195 U 15 195 390 ug/Kg 541-73-1 1,3-Dichlorobenzene 195 U 7 195 390 ug/Kg 106-46-7 1,4-Dichlorobenzene 195 U 14 195 390 ug/Kg 195 U 195 100-51-6 Benzyl Alcohol 15 390 ug/Kg 95-48-7 2-Methylphenol 195 U 21 195 390 ug/Kg 108-60-1 2,2-oxybis(1-Chloropropane) 195 IJ 16 195 390 ug/Kg 98-86-2 Acetophenone 195 U 12 195 390 ug/Kg 65794-96-9 195 U 21 195 390 ug/Kg 3+4-Methylphenols 621-64-7 N-Nitroso-di-n-propylamine 195 U 20 195 390 ug/Kg Hexachloroethane 195 IJ 18 195 390 67-72-1 ug/Kg 98-95-3 Nitrobenzene 195 U 15 195 390 ug/Kg 195 U 195 390 78-59-1 Isophorone 13 ug/Kg 195 U 19 195 88-75-5 2-Nitrophenol 390 ug/Kg 195 22 195 105-67-9 2,4-Dimethylphenol U 390 ug/Kg 195 U 23 195 390 111-91-1 bis(2-Chloroethoxy)methane ug/Kg 120-83-2 2,4-Dichlorophenol 195 U 15 195 390 ug/Kg

195

475

195

195

195

195

195

195

U

U

U

U

U

U

U

U

15

78

14

28

14

18

18

10

195

475

195

195

195

195

195

195

390

950

390

390

390

390

390

390

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

Client: MS Analytical Date Collected: 08/08/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SDG No.: SB-18(4-8) D3811 Lab Sample ID: D3811-07 Matrix: SOIL SW8270D % Moisture: 16

Analytical Method: Sample Wt/Vol: 30.07 Units: g Final Vol: 1000

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

uL

Level: Extraction Type: SOXH Decanted: N LOW

GPC Cleanup: GPC Factor: Ν PH: Injection Volume: 1.0 N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID 09/15/12 09/20/12

DC006791 D DD65125

BG006781.D	1	08/15/12	08	/20/12		PB65125	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
77-47-4	Hexachlorocyclopentadiene	195	U	9.6	195	390	ug/Kg
88-06-2	2,4,6-Trichlorophenol	195	U	12	195	390	ug/Kg
95-95-4	2,4,5-Trichlorophenol	195	U	28	195	390	ug/Kg
92-52-4	1,1-Biphenyl	195	U	15	195	390	ug/Kg
91-58-7	2-Chloronaphthalene	195	U	9	195	390	ug/Kg
88-74-4	2-Nitroaniline	195	U	18	195	390	ug/Kg
131-11-3	Dimethylphthalate	370	J	11	195	390	ug/Kg
208-96-8	Acenaphthylene	195	U	10	195	390	ug/Kg
606-20-2	2,6-Dinitrotoluene	195	U	16	195	390	ug/Kg
99-09-2	3-Nitroaniline	195	U	25	195	390	ug/Kg
83-32-9	Acenaphthene	195	U	11	195	390	ug/Kg
51-28-5	2,4-Dinitrophenol	195	U	40	195	390	ug/Kg
100-02-7	4-Nitrophenol	195	U	74	195	390	ug/Kg
132-64-9	Dibenzofuran	195	U	15	195	390	ug/Kg
121-14-2	2,4-Dinitrotoluene	195	U	12	195	390	ug/Kg
84-66-2	Diethylphthalate	195	U	6.2	195	390	ug/Kg
7005-72-3	4-Chlorophenyl-phenylether	195	U	21	195	390	ug/Kg
86-73-7	Fluorene	195	U	15	195	390	ug/Kg
100-01-6	4-Nitroaniline	195	U	52	195	390	ug/Kg
534-52-1	4,6-Dinitro-2-methylphenol	195	U	23	195	390	ug/Kg
86-30-6	N-Nitrosodiphenylamine	195	U	9.5	195	390	ug/Kg
103-33-3	Azobenzene	195	U	9.3	195	390	ug/Kg
101-55-3	4-Bromophenyl-phenylether	195	U	7.7	195	390	ug/Kg
118-74-1	Hexachlorobenzene	195	U	16	195	390	ug/Kg
1912-24-9	Atrazine	195	U	21	195	390	ug/Kg
87-86-5	Pentachlorophenol	195	U	27	195	390	ug/Kg
85-01-8	Phenanthrene	195	U	11	195	390	ug/Kg
120-12-7	Anthracene	195	U	8.1	195	390	ug/Kg
86-74-8	Carbazole	195	U	8.7	195	390	ug/Kg
84-74-2	Di-n-butylphthalate	195	U	31	195	390	ug/Kg
206-44-0	Fluoranthene	195	U	8	195	390	ug/Kg
92-87-5	Benzidine	195	U	40	195	390	ug/Kg
129-00-0	Pyrene	195	U	9.5	195	390	ug/Kg
		297	of 870				

Sample Wt/Vol:

30.07

Units:

g

Report of Analysis

Client: MS Analytical Date Collected: 08/08/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SDG No.: D3811 SB-18(4-8) Lab Sample ID: D3811-07 Matrix: SOIL

Analytical Method: SW8270D % Moisture: 16

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Final Vol:

1000

uL

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BG006781.D 1 08/15/12 08/20/12 PB65125

QV Daven.		r - wv	_			P Buttin 1B	
BG006781.D	1	08/15/12	08	8/20/12		PB65125	
CAS Number	Parameter	Сол	ıc. Qualifier	MDL	LOD	LOQ / CRQL	Units
85-68-7	Butylbenzylphthalate	195	5 U	19	195	390	ug/Kg
91-94-1	3,3-Dichlorobenzidine	195	5 U	25	195	390	ug/Kg
56-55-3	Benzo(a)anthracene	195	5 U	19	195	390	ug/Kg
218-01-9	Chrysene	195	5 U	18	195	390	ug/Kg
117-81-7	bis(2-Ethylhexyl)phthalate	195	5 U	14	195	390	ug/Kg
117-84-0	Di-n-octyl phthalate	195	5 U	4.5	195	390	ug/Kg
205-99-2	Benzo(b)fluoranthene	195	5 U	13	195	390	ug/Kg
207-08-9	Benzo(k)fluoranthene	195	5 U	19	195	390	ug/Kg
50-32-8	Benzo(a)pyrene	195	5 U	8.6	195	390	ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene	195	5 U	13	195	390	ug/Kg
53-70-3	Dibenz(a,h)anthracene	195	5 U	11	195	390	ug/Kg
191-24-2	Benzo(g,h,i)perylene	195	5 U	16	195	390	ug/Kg
95-94-3	1,2,4,5-Tetrachlorobenzene	195	5 U	16	195	390	ug/Kg
123-91-1	1,4-Dioxane	195	5 U	16	195	390	ug/Kg
58-90-2	2,3,4,6-Tetrachlorophenol	195	5 U	16	195	390	ug/Kg
SURROGATES							
367-12-4	2-Fluorophenol	128	3	28 - 12	7	86%	SPK: 150
13127-88-3	Phenol-d5	130)	34 - 12	7	87%	SPK: 150
4165-60-0	Nitrobenzene-d5	88		31 - 132	2	88%	SPK: 100
321-60-8	2-Fluorobiphenyl	79.		39 - 12		79%	SPK: 100
118-79-6	2,4,6-Tribromophenol	125	5	30 - 13	3	84%	SPK: 150
1718-51-0	Terphenyl-d14	73		37 - 11:	5	73%	SPK: 100
INTERNAL STA							
3855-82-1	1,4-Dichlorobenzene-d4		8413 8.69				
1146-65-2	Naphthalene-d8		5146 10.89				
15067-26-2	Acenaphthene-d10		13.8				
1517-22-2	Phenanthrene-d10		5910 16.3				
1719-03-5	Chrysene-d12		0414 20.8				
1520-96-3	Perylene-d12	678	3801 24.7	7			
TENTATIVE ID	ENTIFIED COMPOUNDS						
	unknown5.91	340				5.91	ug/Kg
541-02-6	Cyclopentasiloxane, decamethyl-	160) J			10	ug/Kg
		209	8 of 870				

Injection Volume:

File ID/Qc Batch:

Dilution:

Report of Analysis

Client: MS Analytical Date Collected: 08/08/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SDG No.: SB-18(4-8) D3811 Lab Sample ID: D3811-07 Matrix: SOIL % Moisture: Analytical Method: SW8270D 16 Sample Wt/Vol: 30.07 Units: Final Vol: 1000 uL g Test: SVOC-Chemtech Full -25 Soil Aliquot Vol: uL Extraction Type: SOXH Decanted: Level: LOW Ν

1.0

Prep Date BG006781.D 1 08/15/12 08/20/12 PB65125

GPC Factor:

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
1560-97-0	Dodecane, 2-methyl-	87	J			16.11	ug/Kg
	unknown17.21	110	J			17.21	ug/Kg
	unknown18.51	140	J			18.51	ug/Kg
27458-92-0	Isotridecanol-	110	J			20.49	ug/Kg

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

GPC Cleanup:

Date Analyzed

Ν

Prep Batch ID

PH:

N/A

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Client: MS Analytical Date Collected: 08/08/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-19(12-18) SDG No.: D3811 Lab Sample ID: D3811-08 Matrix: SOIL Analytical Method: SW8270D % Moisture: 38 Sample Wt/Vol: 30.02 Units: g Final Vol: 1000 uL Soil Aliquot Vol: иL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID BG006782.D 1 08/15/12 08/20/12 PB65125

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
62-75-9	n-Nitrosodimethylamine	265	U	28	265	530	ug/Kg
110-86-1	Pyridine	265	U	110	265	530	ug/Kg
100-52-7	Benzaldehyde	265	UQ	28	265	530	ug/Kg
62-53-3	Aniline	265	U	46	265	530	ug/Kg
108-95-2	Phenol	265	U	12	265	530	ug/Kg
111-44-4	bis(2-Chloroethyl)ether	265	U	26	265	530	ug/Kg
95-57-8	2-Chlorophenol	265	U	28	265	530	ug/Kg
95-50-1	1,2-Dichlorobenzene	265	U	20	265	530	ug/Kg
541-73-1	1,3-Dichlorobenzene	265	U	9.5	265	530	ug/Kg
106-46-7	1,4-Dichlorobenzene	265	U	18	265	530	ug/Kg
100-51-6	Benzyl Alcohol	265	U	20	265	530	ug/Kg
95-48-7	2-Methylphenol	265	U	29	265	530	ug/Kg
108-60-1	2,2-oxybis(1-Chloropropane)	265	U	22	265	530	ug/Kg
98-86-2	Acetophenone	265	U	16	265	530	ug/Kg
65794-96-9	3+4-Methylphenols	265	U	28	265	530	ug/Kg
621-64-7	N-Nitroso-di-n-propylamine	265	U	27	265	530	ug/Kg
67-72-1	Hexachloroethane	265	U	24	265	530	ug/Kg
98-95-3	Nitrobenzene	265	U	20	265	530	ug/Kg
78-59-1	Isophorone	265	U	18	265	530	ug/Kg
88-75-5	2-Nitrophenol	265	U	26	265	530	ug/Kg
105-67-9	2,4-Dimethylphenol	265	U	30	265	530	ug/Kg
111-91-1	bis(2-Chloroethoxy)methane	265	U	31	265	530	ug/Kg
120-83-2	2,4-Dichlorophenol	265	U	20	265	530	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	265	U	20	265	530	ug/Kg
65-85-0	Benzoic acid	650	U	110	650	1300	ug/Kg
91-20-3	Naphthalene	265	U	19	265	530	ug/Kg
106-47-8	4-Chloroaniline	265	U	38	265	530	ug/Kg
87-68-3	Hexachlorobutadiene	265	U	20	265	530	ug/Kg
105-60-2	Caprolactam	265	U	25	265	530	ug/Kg
59-50-7	4-Chloro-3-methylphenol	265	U	24	265	530	ug/Kg
91-57-6	2-Methylnaphthalene	265	U	14	265	530	ug/Kg

Client:MS AnalyticalDate Collected:08/08/12Project:12MS104 Kensington HeightsDate Received:08/15/12Client Sample ID:SB-19(12-18)SDG No.:D3811

Client Sample ID: SB-19(12-18) SDG No.: D3811

Lab Sample ID: D3811-08 Matrix: SOIL

Analytical Method: SW8270D % Moisture: 38

Sample Wt/Vol: 30.02 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID BG006782.D 1 08/15/12 08/20/12 PB65125

BG006782.D	I	08/15/12	08	/20/12		PB65125	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
77-47-4	Hexachlorocyclopentadiene	265	U	13	265	530	ug/Kg
88-06-2	2,4,6-Trichlorophenol	265	U	16	265	530	ug/Kg
95-95-4	2,4,5-Trichlorophenol	265	U	38	265	530	ug/Kg
92-52-4	1,1-Biphenyl	265	U	20	265	530	ug/Kg
91-58-7	2-Chloronaphthalene	265	U	12	265	530	ug/Kg
88-74-4	2-Nitroaniline	265	U	24	265	530	ug/Kg
131-11-3	Dimethylphthalate	490	J	15	265	530	ug/Kg
208-96-8	Acenaphthylene	265	U	14	265	530	ug/Kg
606-20-2	2,6-Dinitrotoluene	265	U	22	265	530	ug/Kg
99-09-2	3-Nitroaniline	265	U	34	265	530	ug/Kg
83-32-9	Acenaphthene	265	U	15	265	530	ug/Kg
51-28-5	2,4-Dinitrophenol	265	U	55	265	530	ug/Kg
100-02-7	4-Nitrophenol	265	U	100	265	530	ug/Kg
132-64-9	Dibenzofuran	265	U	21	265	530	ug/Kg
121-14-2	2,4-Dinitrotoluene	265	U	16	265	530	ug/Kg
84-66-2	Diethylphthalate	265	U	8.4	265	530	ug/Kg
7005-72-3	4-Chlorophenyl-phenylether	265	U	29	265	530	ug/Kg
86-73-7	Fluorene	265	U	20	265	530	ug/Kg
100-01-6	4-Nitroaniline	265	U	70	265	530	ug/Kg
534-52-1	4,6-Dinitro-2-methylphenol	265	U	31	265	530	ug/Kg
86-30-6	N-Nitrosodiphenylamine	265	U	13	265	530	ug/Kg
103-33-3	Azobenzene	265	U	13	265	530	ug/Kg
101-55-3	4-Bromophenyl-phenylether	265	U	10	265	530	ug/Kg
118-74-1	Hexachlorobenzene	265	U	22	265	530	ug/Kg
1912-24-9	Atrazine	265	U	28	265	530	ug/Kg
87-86-5	Pentachlorophenol	265	U	37	265	530	ug/Kg
85-01-8	Phenanthrene	265	U	15	265	530	ug/Kg
120-12-7	Anthracene	265	U	11	265	530	ug/Kg
86-74-8	Carbazole	265	U	12	265	530	ug/Kg
84-74-2	Di-n-butylphthalate	265	U	42	265	530	ug/Kg
206-44-0	Fluoranthene	265	U	11	265	530	ug/Kg
92-87-5	Benzidine	265	U	54	265	530	ug/Kg
129-00-0	Pyrene	265	U	13	265	530	ug/Kg
		204	of 070				

Client: MS Analytical Date Collected: 08/08/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-19(12-18) SDG No.: D3811 Lab Sample ID: D3811-08 Matrix: SOIL

 Analytical Method:
 SW8270D
 % Moisture:
 38

 Sample Wt/Vol:
 30.02
 Units: g
 Final Vol:
 1000

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

uL

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BG006782.D 1 08/15/12 08/20/12 PB65125

BG006782.D	1	08/15/12		08/	20/12		PB65125	
CAS Number	Parameter	Co	onc. (Qualifier	MDL	LOD	LOQ / CRQL	Units
85-68-7	Butylbenzylphthalate	26	65	U	26	265	530	ug/Kg
91-94-1	3,3-Dichlorobenzidine	26	55	U	34	265	530	ug/Kg
56-55-3	Benzo(a)anthracene	26	55	U	26	265	530	ug/Kg
218-01-9	Chrysene	26	55	U	24	265	530	ug/Kg
117-81-7	bis(2-Ethylhexyl)phthalate	26	55	U	19	265	530	ug/Kg
117-84-0	Di-n-octyl phthalate	26	55	U	6.1	265	530	ug/Kg
205-99-2	Benzo(b)fluoranthene	26	55	U	18	265	530	ug/Kg
207-08-9	Benzo(k)fluoranthene	26	55	U	25	265	530	ug/Kg
50-32-8	Benzo(a)pyrene	26	55	U	12	265	530	ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene	26	65	U	18	265	530	ug/Kg
53-70-3	Dibenz(a,h)anthracene	26	65	U	15	265	530	ug/Kg
191-24-2	Benzo(g,h,i)perylene	26	55	U	22	265	530	ug/Kg
95-94-3	1,2,4,5-Tetrachlorobenzene	26	65	U	21	265	530	ug/Kg
123-91-1	1,4-Dioxane	26	55	U	21	265	530	ug/Kg
58-90-2	2,3,4,6-Tetrachlorophenol	26	65	U	21	265	530	ug/Kg
SURROGATES	S							
367-12-4	2-Fluorophenol	12	24		28 - 127		83%	SPK: 150
13127-88-3	Phenol-d5	12			34 - 127		84%	SPK: 150
4165-60-0	Nitrobenzene-d5	86	5.7		31 - 132		87%	SPK: 100
321-60-8	2-Fluorobiphenyl	80	0.3		39 - 123		80%	SPK: 100
118-79-6	2,4,6-Tribromophenol	11	18		30 - 133		79%	SPK: 150
1718-51-0	Terphenyl-d14	75	5.8		37 - 115		76%	SPK: 100
INTERNAL ST								
3855-82-1	1,4-Dichlorobenzene-d4		39140	8.69				
1146-65-2	Naphthalene-d8		34974	10.88				
15067-26-2	Acenaphthene-d10		35318	13.88				
1517-22-2	Phenanthrene-d10)7229	16.37				
1719-03-5	Chrysene-d12		11798	20.88				
1520-96-3	Perylene-d12	68	35422	24.77				
TENTATIVE I	DENTIFIED COMPOUNDS							
	unknown5.90	47		J			5.9	ug/Kg
541-02-6	Cyclopentasiloxane, decamethyl-	20	00	J			9.99	ug/Kg
		20	22 -4 (270				

Sample Wt/Vol:

30.02

Units:

g

Report of Analysis

Client: MS Analytical Date Collected: 08/08/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SDG No.: SB-19(12-18) D3811 Lab Sample ID: D3811-08 Matrix: SOIL % Moisture: 38 Analytical Method: SW8270D

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Final Vol:

1000

uL

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID BG006782.D 1 08/15/12 08/20/12 PB65125

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
	unknown17.21	280	J			17.21	ug/Kg
37052-13-4	1H-Phenanthro[9,10-d]imidazol-2-am	330	J			17.63	ug/Kg
1000293-16-6	18-Norabietane	320	J			17.81	ug/Kg
1000197-14-1	4b,8-Dimethyl-2-isopropylphenanthr	310	J			17.94	ug/Kg
7098-22-8	Tetratetracontane	120	J			18.14	ug/Kg
886-66-8	Benzene, 1,1-(1,3-butadiyne-1,4-d	200	J			18.4	ug/Kg
6566-19-4	10,18-Bisnorabieta-5,7,9(10),11,13	370	J			18.46	ug/Kg
544-63-8	Tetradecanoic acid	320	J			18.51	ug/Kg
629-97-0	Docosane	640	J			18.76	ug/Kg
483-65-8	Phenanthrene, 1-methyl-7-(1-methyl	280	J			19.24	ug/Kg
629-62-9	Pentadecane	1300	J			19.35	ug/Kg
646-31-1	Tetracosane	1800	J			19.92	ug/Kg
629-99-2	Pentacosane	2300	J			20.51	ug/Kg
14167-59-0	Tetratriacontane	2200	J			21.17	ug/Kg
593-49-7	Heptacosane	150	J			21.63	ug/Kg
630-04-6	Hentriacontane	2100	J			21.92	ug/Kg
630-02-4	Octacosane	1800	J			22.79	ug/Kg
544-76-3	Hexadecane	1600	J			23.81	ug/Kg
73105-67-6	1-Iodo-2-methylundecane	1200	J			25.04	ug/Kg
55320-06-4	Heneicosane, 11-decyl-	840	J			26.53	ug/Kg
14905-56-7	Tetradecane, 2,6,10-trimethyl-	540	J			28.33	ug/Kg
638-68-6	Triacontane	170	J			30.52	ug/Kg

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Client: MS Analytical Date Collected: 08/09/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SDG No.: SB-21(12-16) D3811 Lab Sample ID: D3811-09 Matrix: SOIL Analytical Method: SW8270D % Moisture: 30 Sample Wt/Vol: 30.06 Units: g Final Vol: 1000 uL Soil Aliquot Vol: иL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID BG006783.D 1 08/15/12 08/20/12 PB65125

BG000703.B	•	00/13/12		720/12		1 B03123	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
62-75-9	n-Nitrosodimethylamine	235	U	24	235	470	ug/Kg
110-86-1	Pyridine	235	U	94	235	470	ug/Kg
100-52-7	Benzaldehyde	235	UQ	25	235	470	ug/Kg
62-53-3	Aniline	235	U	40	235	470	ug/Kg
108-95-2	Phenol	235	U	11	235	470	ug/Kg
111-44-4	bis(2-Chloroethyl)ether	235	U	23	235	470	ug/Kg
95-57-8	2-Chlorophenol	235	U	25	235	470	ug/Kg
95-50-1	1,2-Dichlorobenzene	235	U	18	235	470	ug/Kg
541-73-1	1,3-Dichlorobenzene	235	U	8.4	235	470	ug/Kg
106-46-7	1,4-Dichlorobenzene	235	U	16	235	470	ug/Kg
100-51-6	Benzyl Alcohol	235	U	18	235	470	ug/Kg
95-48-7	2-Methylphenol	235	U	26	235	470	ug/Kg
108-60-1	2,2-oxybis(1-Chloropropane)	235	U	20	235	470	ug/Kg
98-86-2	Acetophenone	235	U	15	235	470	ug/Kg
65794-96-9	3+4-Methylphenols	235	U	25	235	470	ug/Kg
621-64-7	N-Nitroso-di-n-propylamine	235	U	24	235	470	ug/Kg
67-72-1	Hexachloroethane	235	U	21	235	470	ug/Kg
98-95-3	Nitrobenzene	235	U	18	235	470	ug/Kg
78-59-1	Isophorone	235	U	16	235	470	ug/Kg
88-75-5	2-Nitrophenol	235	U	23	235	470	ug/Kg
105-67-9	2,4-Dimethylphenol	235	U	27	235	470	ug/Kg
111-91-1	bis(2-Chloroethoxy)methane	235	U	27	235	470	ug/Kg
120-83-2	2,4-Dichlorophenol	235	U	18	235	470	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	235	U	18	235	470	ug/Kg
65-85-0	Benzoic acid	550	U	94	550	1100	ug/Kg
91-20-3	Naphthalene	900		16	235	470	ug/Kg
106-47-8	4-Chloroaniline	235	U	34	235	470	ug/Kg
87-68-3	Hexachlorobutadiene	235	U	17	235	470	ug/Kg
105-60-2	Caprolactam	235	U	22	235	470	ug/Kg
59-50-7	4-Chloro-3-methylphenol	235	U	21	235	470	ug/Kg
91-57-6	2-Methylnaphthalene	260	J	12	235	470	ug/Kg

Client:MS AnalyticalDate Collected:08/09/12Project:12MS104 Kensington HeightsDate Received:08/15/12Client Sample ID:SB-21(12-16)SDG No.:D3811

Client Sample ID: SB-21(12-16) SDG No.: D3811

Lab Sample ID: D3811-09 Matrix: SOIL

Analytical Method: SW8270D % Moisture: 30

Sample Wt/Vol: 30.06 Units: g Final Vol: 1000 uL
Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID BG006783.D 1 08/15/12 08/20/12 PB65125

BG006/83.D	I	08/15/12		08/	20/12		PB65125	
CAS Number	Parameter	C	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
77-47-4	Hexachlorocyclopentadiene	2	35	U	12	235	470	ug/Kg
88-06-2	2,4,6-Trichlorophenol	2	35	U	15	235	470	ug/Kg
95-95-4	2,4,5-Trichlorophenol	2	35	U	33	235	470	ug/Kg
92-52-4	1,1-Biphenyl	2	35	U	18	235	470	ug/Kg
91-58-7	2-Chloronaphthalene	2	35	U	11	235	470	ug/Kg
88-74-4	2-Nitroaniline	2	35	U	21	235	470	ug/Kg
131-11-3	Dimethylphthalate	4	90		13	235	470	ug/Kg
208-96-8	Acenaphthylene	2	35	U	12	235	470	ug/Kg
606-20-2	2,6-Dinitrotoluene	2	35	U	19	235	470	ug/Kg
99-09-2	3-Nitroaniline	2	35	U	31	235	470	ug/Kg
83-32-9	Acenaphthene	2	40	J	13	235	470	ug/Kg
51-28-5	2,4-Dinitrophenol	2	35	U	48	235	470	ug/Kg
100-02-7	4-Nitrophenol	2	35	U	88	235	470	ug/Kg
132-64-9	Dibenzofuran	3	60	J	19	235	470	ug/Kg
121-14-2	2,4-Dinitrotoluene	2	35	U	14	235	470	ug/Kg
84-66-2	Diethylphthalate	2	35	U	7.4	235	470	ug/Kg
7005-72-3	4-Chlorophenyl-phenylether	2	35	U	26	235	470	ug/Kg
86-73-7	Fluorene	5	50		18	235	470	ug/Kg
100-01-6	4-Nitroaniline	2	35	U	62	235	470	ug/Kg
534-52-1	4,6-Dinitro-2-methylphenol	2	35	U	27	235	470	ug/Kg
86-30-6	N-Nitrosodiphenylamine	2	35	U	11	235	470	ug/Kg
103-33-3	Azobenzene	2	35	U	11	235	470	ug/Kg
101-55-3	4-Bromophenyl-phenylether	2	35	U	9.3	235	470	ug/Kg
118-74-1	Hexachlorobenzene	2	35	U	19	235	470	ug/Kg
1912-24-9	Atrazine	2	35	U	25	235	470	ug/Kg
87-86-5	Pentachlorophenol	2	35	U	33	235	470	ug/Kg
85-01-8	Phenanthrene	3	200		13	235	470	ug/Kg
120-12-7	Anthracene	4	60	J	9.7	235	470	ug/Kg
86-74-8	Carbazole	3	60	J	10	235	470	ug/Kg
84-74-2	Di-n-butylphthalate	2	35	U	37	235	470	ug/Kg
206-44-0	Fluoranthene	2	400		9.6	235	470	ug/Kg
92-87-5	Benzidine	2	35	U	48	235	470	ug/Kg
129-00-0	Pyrene	2	000		11	235	470	ug/Kg
		3	05 of	f 870				

Client: MS Analytical Date Collected: 08/09/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-21(12-16) SDG No.: D3811

Lab Sample ID: D3811-09 Matrix: SOIL

Analytical Method: SW8270D % Moisture: 30

Sample Wt/Vol: 30.06 Units: g Final Vol: 1000 uL
Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BG006783.D 1 08/15/12 08/20/12 PB65125

BG006783.D	1	08/15/12	08	/20/12		PB65125		
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units	
85-68-7	Butylbenzylphthalate	235	U	23	235	470	ug/Kg	
91-94-1	3,3-Dichlorobenzidine	235	U	31	235	470	ug/Kg	
56-55-3	Benzo(a)anthracene	890		23	235	470	ug/Kg	
218-01-9	Chrysene	1000		22	235	470	ug/Kg	
117-81-7	bis(2-Ethylhexyl)phthalate	235	U	17	235	470	ug/Kg	
117-84-0	Di-n-octyl phthalate	235	U	5.4	235	470	ug/Kg	
205-99-2	Benzo(b)fluoranthene	1000		16	235	470	ug/Kg	
207-08-9	Benzo(k)fluoranthene	360	J	22	235	470	ug/Kg	
50-32-8	Benzo(a)pyrene	840		10	235	470	ug/Kg	
193-39-5	Indeno(1,2,3-cd)pyrene	460	J	16	235	470	ug/Kg	
53-70-3	Dibenz(a,h)anthracene	235	U	14	235	470	ug/Kg	
191-24-2	Benzo(g,h,i)perylene	460	J	19	235	470	ug/Kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	235	U	19	235	470	ug/Kg	
123-91-1	1,4-Dioxane	235	U	19	235	470	ug/Kg	
58-90-2	2,3,4,6-Tetrachlorophenol	235	U	19	235	470	ug/Kg	
SURROGATES								
367-12-4	2-Fluorophenol	137		28 - 12		92%	SPK: 150	
13127-88-3	Phenol-d5	139		34 - 12		93%	SPK: 150	
4165-60-0	Nitrobenzene-d5	89.9		31 - 13		90%	SPK: 100	
321-60-8	2-Fluorobiphenyl	53		39 - 12		53%	SPK: 100	
118-79-6	2,4,6-Tribromophenol	124		30 - 13		83%	SPK: 150	
1718-51-0	Terphenyl-d14	49.8		37 - 11	5	50%	SPK: 100	
INTERNAL ST								
3855-82-1	1,4-Dichlorobenzene-d4	13839						
1146-65-2	Naphthalene-d8	49347						
15067-26-2	Acenaphthene-d10	33244						
1517-22-2	Phenanthrene-d10	64775						
1719-03-5	Chrysene-d12	71292						
1520-96-3	Perylene-d12	69339	24.77	•				
TENTATIVE I	DENTIFIED COMPOUNDS							
	unknown5.91	460	J			5.91	ug/Kg	
527-84-4	Benzene, 1-methyl-2-(1-methyleth	yl 340	J			8.81	ug/Kg	
		306	of 970					

Client: MS Analytical Date Collected: 08/09/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SDG No.: SB-21(12-16) D3811 Lab Sample ID: D3811-09 Matrix: SOIL % Moisture: 30 Analytical Method: SW8270D Sample Wt/Vol: 30.06 Units: Final Vol: 1000 uL g Test: SVOC-Chemtech Full -25 Soil Aliquot Vol: uL

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID BG006783.D 1 08/15/12 08/20/12 PB65125

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
464-49-3	Bicyclo[2.2.1]heptan-2-one, 1,7,7-	2100	J			10.44	ug/Kg
593-45-3	Octadecane	270	J			16.12	ug/Kg
2531-84-2	Phenanthrene, 2-methyl-	980	J			17.21	ug/Kg
832-69-9	Phenanthrene, 1-methyl-	680	J			17.26	ug/Kg
203-64-5	4H-Cyclopenta[def]phenanthrene	700	J			17.4	ug/Kg
	unknown17.46	900	J			17.46	ug/Kg
37052-13-4	1H-Phenanthro[9,10-d]imidazol-2-am	1600	J			17.63	ug/Kg
84-65-1	9,10-Anthracenedione	350	J			17.73	ug/Kg
1000293-16-6	18-Norabietane	770	J			17.81	ug/Kg
1000197-14-1	4b,8-Dimethyl-2-isopropylphenanthr	330	J			17.95	ug/Kg
629-94-7	Heneicosane	460	J			18.14	ug/Kg
6566-19-4	10,18-Bisnorabieta-5,7,9(10),11,13	320	J			18.46	ug/Kg
544-63-8	Tetradecanoic acid	560	J			18.51	ug/Kg
483-65-8	Phenanthrene, 1-methyl-7-(1-methyl	330	J			19.25	ug/Kg
593-49-7	Heptacosane	360	J			19.35	ug/Kg
646-31-1	Tetracosane	360	J			19.92	ug/Kg
544-76-3	Hexadecane	520	J			20.51	ug/Kg
7225-64-1	Heptadecane, 9-octyl-	430	J			21.17	ug/Kg
629-62-9	Pentadecane	850	J			21.92	ug/Kg
1000188-66-5	2(1H)Naphthalenone, 3,5,6,7,8,8a-h	570	J			22.14	ug/Kg
630-02-4	Octacosane	320	J			22.79	ug/Kg
112-95-8	Eicosane	860	J			23.82	ug/Kg

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution

Client:MS AnalyticalDate Collected:08/09/12Project:12MS104 Kensington HeightsDate Received:08/15/12

Client Sample ID: SB-21(16-19) SDG No.: D3811
Lab Sample ID: D3811-10 Matrix: SOIL
Analytical Method: SW8270D % Moisture: 32

Sample Wt/Vol: 30.08 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BG006791.D 5 08/15/12 08/21/12 PB65125

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
62-75-9	n-Nitrosodimethylamine	1200	U	130	1200	2400	ug/Kg
110-86-1	Pyridine	1200	U	480	1200	2400	ug/Kg
100-52-7	Benzaldehyde	1200	UQ	130	1200	2400	ug/Kg
62-53-3	Aniline	1200	U	210	1200	2400	ug/Kg
108-95-2	Phenol	1200	U	56	1200	2400	ug/Kg
111-44-4	bis(2-Chloroethyl)ether	1200	U	120	1200	2400	ug/Kg
95-57-8	2-Chlorophenol	1200	U	130	1200	2400	ug/Kg
95-50-1	1,2-Dichlorobenzene	1200	U	93	1200	2400	ug/Kg
541-73-1	1,3-Dichlorobenzene	1200	U	43	1200	2400	ug/Kg
106-46-7	1,4-Dichlorobenzene	1200	U	84	1200	2400	ug/Kg
100-51-6	Benzyl Alcohol	1200	U	92	1200	2400	ug/Kg
95-48-7	2-Methylphenol	1200	U	130	1200	2400	ug/Kg
108-60-1	2,2-oxybis(1-Chloropropane)	1200	U	100	1200	2400	ug/Kg
98-86-2	Acetophenone	1200	U	75	1200	2400	ug/Kg
65794-96-9	3+4-Methylphenols	1200	U	130	1200	2400	ug/Kg
621-64-7	N-Nitroso-di-n-propylamine	1200	U	120	1200	2400	ug/Kg
67-72-1	Hexachloroethane	1200	U	110	1200	2400	ug/Kg
98-95-3	Nitrobenzene	1200	U	92	1200	2400	ug/Kg
78-59-1	Isophorone	1200	U	81	1200	2400	ug/Kg
88-75-5	2-Nitrophenol	1200	U	120	1200	2400	ug/Kg
105-67-9	2,4-Dimethylphenol	1200	U	140	1200	2400	ug/Kg
111-91-1	bis(2-Chloroethoxy)methane	1200	U	140	1200	2400	ug/Kg
120-83-2	2,4-Dichlorophenol	1200	U	93	1200	2400	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	1200	U	93	1200	2400	ug/Kg
65-85-0	Benzoic acid	2950	U	480	2950	5900	ug/Kg
91-20-3	Naphthalene	1200	U	84	1200	2400	ug/Kg
106-47-8	4-Chloroaniline	1200	U	170	1200	2400	ug/Kg
87-68-3	Hexachlorobutadiene	1200	U	89	1200	2400	ug/Kg
105-60-2	Caprolactam	1200	U	110	1200	2400	ug/Kg
59-50-7	4-Chloro-3-methylphenol	1200	U	110	1200	2400	ug/Kg
91-57-6	2-Methylnaphthalene	1200	U	62	1200	2400	ug/Kg

SVOC-Chemtech Full -25

Soil Aliquot Vol:

Report of Analysis

Client: MS Analytical Date Collected: 08/09/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-21(16-19) SDG No.: D3811

Lab Sample ID: D3811-10 Matrix: SOIL

Analytical Method: SW8270D % Moisture: 32

uL

Sample Wt/Vol: 30.08 Units: g Final Vol: 1000 uL

Test:

Extraction Type: SOXH Decanted: N Level: LOW

 $\label{eq:continuous} Injection\ Volume: \qquad \qquad 1 \qquad \qquad GPC\ Factor: \qquad 1.0 \qquad \qquad GPC\ Cleanup: \qquad N \qquad \qquad PH: \quad N/A$

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BG006791.D 5 08/15/12 08/21/12 PB65125

BG006791.D	5	08/15/12	08	/21/12		PB65125	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
77-47-4	Hexachlorocyclopentadiene	1200	U	59	1200	2400	ug/Kg
88-06-2	2,4,6-Trichlorophenol	1200	U	75	1200	2400	ug/Kg
95-95-4	2,4,5-Trichlorophenol	1200	U	170	1200	2400	ug/Kg
92-52-4	1,1-Biphenyl	1200	U	92	1200	2400	ug/Kg
91-58-7	2-Chloronaphthalene	1200	U	56	1200	2400	ug/Kg
88-74-4	2-Nitroaniline	1200	U	110	1200	2400	ug/Kg
131-11-3	Dimethylphthalate	1200	U	66	1200	2400	ug/Kg
208-96-8	Acenaphthylene	2000	J	62	1200	2400	ug/Kg
606-20-2	2,6-Dinitrotoluene	1200	U	100	1200	2400	ug/Kg
99-09-2	3-Nitroaniline	1200	U	160	1200	2400	ug/Kg
83-32-9	Acenaphthene	1200	U	69	1200	2400	ug/Kg
51-28-5	2,4-Dinitrophenol	1200	U	250	1200	2400	ug/Kg
100-02-7	4-Nitrophenol	1200	U	450	1200	2400	ug/Kg
132-64-9	Dibenzofuran	1200	U	95	1200	2400	ug/Kg
121-14-2	2,4-Dinitrotoluene	1200	U	74	1200	2400	ug/Kg
84-66-2	Diethylphthalate	1200	U	38	1200	2400	ug/Kg
7005-72-3	4-Chlorophenyl-phenylether	1200	U	130	1200	2400	ug/Kg
86-73-7	Fluorene	3600		92	1200	2400	ug/Kg
100-01-6	4-Nitroaniline	1200	U	320	1200	2400	ug/Kg
534-52-1	4,6-Dinitro-2-methylphenol	1200	U	140	1200	2400	ug/Kg
86-30-6	N-Nitrosodiphenylamine	1200	U	59	1200	2400	ug/Kg
103-33-3	Azobenzene	1200	U	57	1200	2400	ug/Kg
101-55-3	4-Bromophenyl-phenylether	1200	U	48	1200	2400	ug/Kg
118-74-1	Hexachlorobenzene	1200	U	100	1200	2400	ug/Kg
1912-24-9	Atrazine	1200	U	130	1200	2400	ug/Kg
87-86-5	Pentachlorophenol	1200	U	170	1200	2400	ug/Kg
85-01-8	Phenanthrene	27000	E	66	1200	2400	ug/Kg
120-12-7	Anthracene	11000		50	1200	2400	ug/Kg
86-74-8	Carbazole	1300	J	54	1200	2400	ug/Kg
84-74-2	Di-n-butylphthalate	1200	U	190	1200	2400	ug/Kg
206-44-0	Fluoranthene	26000	E	49	1200	2400	ug/Kg
92-87-5	Benzidine	1200	U	250	1200	2400	ug/Kg
129-00-0	Pyrene	20000	E	59	1200	2400	ug/Kg
		309 o	f 870				

Sample Wt/Vol:

30.08

Units:

g

Report of Analysis

Client: MS Analytical Date Collected: 08/09/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-21(16-19) SDG No.: D3811

Lab Sample ID: D3811-10 Matrix: SOIL

Analytical Method: SW8270D % Moisture: 32

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Final Vol:

1000

uL

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BG006791.D	5	08/15/12		08/2	21/12		PB65125	
CAS Number	Parameter	Со	nc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
85-68-7	Butylbenzylphthalate	120	00	U	120	1200	2400	ug/Kg
91-94-1	3,3-Dichlorobenzidine	120	00	U	160	1200	2400	ug/Kg
56-55-3	Benzo(a)anthracene	130	000		120	1200	2400	ug/Kg
218-01-9	Chrysene	120	000		110	1200	2400	ug/Kg
117-81-7	bis(2-Ethylhexyl)phthalate	120	00	U	87	1200	2400	ug/Kg
117-84-0	Di-n-octyl phthalate	120	00	U	28	1200	2400	ug/Kg
205-99-2	Benzo(b)fluoranthene	130	000		80	1200	2400	ug/Kg
207-08-9	Benzo(k)fluoranthene	540	00		120	1200	2400	ug/Kg
50-32-8	Benzo(a)pyrene	110	000		53	1200	2400	ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene	570	00		81	1200	2400	ug/Kg
53-70-3	Dibenz(a,h)anthracene	180	00	J	70	1200	2400	ug/Kg
191-24-2	Benzo(g,h,i)perylene	550	00		99	1200	2400	ug/Kg
95-94-3	1,2,4,5-Tetrachlorobenzene	120	00	U	96	1200	2400	ug/Kg
123-91-1	1,4-Dioxane	120	00	U	96	1200	2400	ug/Kg
58-90-2	2,3,4,6-Tetrachlorophenol	120	00	U	96	1200	2400	ug/Kg
SURROGATES	S							
367-12-4	2-Fluorophenol	133			28 - 12		89%	SPK: 150
13127-88-3	Phenol-d5	142			34 - 12		95%	SPK: 150
4165-60-0	Nitrobenzene-d5	90			31 - 132	2	90%	SPK: 100
321-60-8	2-Fluorobiphenyl	73.	.9		39 - 12	3	74%	SPK: 100
118-79-6	2,4,6-Tribromophenol	113	3		30 - 13	3	75%	SPK: 150
1718-51-0	Terphenyl-d14	67.	.7		37 - 11:	5	68%	SPK: 100
INTERNAL ST								
3855-82-1	1,4-Dichlorobenzene-d4		1638	8.69				
1146-65-2	Naphthalene-d8		6360	10.88				
15067-26-2	Acenaphthene-d10		0879	13.87				
1517-22-2	Phenanthrene-d10		9988	16.37				
1719-03-5	Chrysene-d12	710	0337	20.89				
1520-96-3	Perylene-d12	690	6037	24.78				
	DENTIFIED COMPOUNDS							
101-81-5	Diphenylmethane	570		J			14.94	ug/Kg
1135-32-6	Pyridine, 4,4-(1,2-ethenediyl)bis	800	0	J			15.06	ug/Kg
		31	0 of	870				

Client: MS Analytical Date Collected: 08/09/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SDG No.: SB-21(16-19) D3811 Lab Sample ID: D3811-10 Matrix: SOIL % Moisture: 32 Analytical Method: SW8270D Sample Wt/Vol: 30.08 Units: Final Vol: 1000 uL g Test: SVOC-Chemtech Full -25 Soil Aliquot Vol: uL

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BG006791.D 5 08/15/12 08/21/12 PB65125

		_					
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
18344-37-1	Heptadecane, 2,6,10,14-tetramethyl	570	J			15.4	ug/Kg
1430-97-3	9H-Fluorene, 2-methyl-	1200	J			15.71	ug/Kg
830-79-5	2,4,6-Trimethoxybenzaldehyde	540	J			16.11	ug/Kg
248-13-5	Azuleno(2,1-b)thiophene	1400	J			16.2	ug/Kg
230-27-3	Benzo[h]quinoline	1100	J			16.55	ug/Kg
2531-84-2	Phenanthrene, 2-methyl-	2800	J			17.21	ug/Kg
613-12-7	Anthracene, 2-methyl-	3900	J			17.26	ug/Kg
949-41-7	1H-Cyclopropa[1]phenanthrene,1a,9b	1700	J			17.34	ug/Kg
203-64-5	4H-Cyclopenta[def]phenanthrene	6700	J			17.41	ug/Kg
612-94-2	Naphthalene, 2-phenyl-	2000	J			17.69	ug/Kg
1000197-14-1	4b,8-Dimethyl-2-isopropylphenanthr	970	J			17.95	ug/Kg
3674-66-6	Phenanthrene, 2,5-dimethyl-	1300	J			18.14	ug/Kg
6566-19-4	10,18-Bisnorabieta-5,7,9(10),11,13	2000	J			18.46	ug/Kg
243-17-4	11H-Benzo[b]fluorene	1400	J			19.33	ug/Kg
2381-21-7	Pyrene, 1-methyl-	1400	J			19.44	ug/Kg
82-05-3	7H-Benz[de]anthracen-7-one	570	J			21.18	ug/Kg
1482-93-5	Cyclohexane, hexaethylidene-	690	J			22.14	ug/Kg

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Client:MS AnalyticalDate Collected:08/09/12Project:12MS104 Kensington HeightsDate Received:08/15/12

Client Sample ID: SB-21(16-19)DL SDG No.: D3811
Lab Sample ID: D3811-10DL Matrix: SOIL
Analytical Method: SW8270D % Moisture: 32

Sample Wt/Vol: 30.08 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BG006818.D 10 08/15/12 08/22/12 PB65125

BG006818.D	10	08/15/12	08/	22/12		PB65125	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
62-75-9	n-Nitrosodimethylamine	2400	UD	250	2400	4800	ug/Kg
110-86-1	Pyridine	2400	UD	970	2400	4800	ug/Kg
100-52-7	Benzaldehyde	2400	UDQ	260	2400	4800	ug/Kg
62-53-3	Aniline	2400	UD	420	2400	4800	ug/Kg
108-95-2	Phenol	2400	UD	110	2400	4800	ug/Kg
111-44-4	bis(2-Chloroethyl)ether	2400	UD	230	2400	4800	ug/Kg
95-57-8	2-Chlorophenol	2400	UD	260	2400	4800	ug/Kg
95-50-1	1,2-Dichlorobenzene	2400	UD	190	2400	4800	ug/Kg
541-73-1	1,3-Dichlorobenzene	2400	UD	87	2400	4800	ug/Kg
106-46-7	1,4-Dichlorobenzene	2400	UD	170	2400	4800	ug/Kg
100-51-6	Benzyl Alcohol	2400	UD	180	2400	4800	ug/Kg
95-48-7	2-Methylphenol	2400	UD	270	2400	4800	ug/Kg
108-60-1	2,2-oxybis(1-Chloropropane)	2400	UD	200	2400	4800	ug/Kg
98-86-2	Acetophenone	2400	UD	150	2400	4800	ug/Kg
65794-96-9	3+4-Methylphenols	2400	UD	250	2400	4800	ug/Kg
621-64-7	N-Nitroso-di-n-propylamine	2400	UD	250	2400	4800	ug/Kg
67-72-1	Hexachloroethane	2400	UD	220	2400	4800	ug/Kg
98-95-3	Nitrobenzene	2400	UD	180	2400	4800	ug/Kg
78-59-1	Isophorone	2400	UD	160	2400	4800	ug/Kg
88-75-5	2-Nitrophenol	2400	UD	240	2400	4800	ug/Kg
105-67-9	2,4-Dimethylphenol	2400	UD	280	2400	4800	ug/Kg
111-91-1	bis(2-Chloroethoxy)methane	2400	UD	280	2400	4800	ug/Kg
120-83-2	2,4-Dichlorophenol	2400	UD	190	2400	4800	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	2400	UD	190	2400	4800	ug/Kg
65-85-0	Benzoic acid	6000	UD	970	6000	12000	ug/Kg
91-20-3	Naphthalene	2400	UD	170	2400	4800	ug/Kg
106-47-8	4-Chloroaniline	2400	UD	340	2400	4800	ug/Kg
87-68-3	Hexachlorobutadiene	2400	UD	180	2400	4800	ug/Kg
105-60-2	Caprolactam	2400	UD	230	2400	4800	ug/Kg
59-50-7	4-Chloro-3-methylphenol	2400	UD	220	2400	4800	ug/Kg
91-57-6	2-Methylnaphthalene	2400	UD	120	2400	4800	ug/Kg

Sample Wt/Vol:

30.08

Units:

g

Report of Analysis

Client: MS Analytical Date Collected: 08/09/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-21(16-19)DL SDG No.: D3811

Lab Sample ID: D3811-10DL Matrix: SOIL

Analytical Method: SW8270D % Moisture: 32

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Final Vol:

1000

uL

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BG006818.D	10	08/15/12	08/22/12 PB65125				
CAS Number	Parameter	Conc	. Qualifier	MDL	LOD	LOQ / CRQL	Units
77-47-4	Hexachlorocyclopentadiene	2400	UD	120	2400	4800	ug/Kg
88-06-2	2,4,6-Trichlorophenol	2400	UD	150	2400	4800	ug/Kg
95-95-4	2,4,5-Trichlorophenol	2400	UD	340	2400	4800	ug/Kg
92-52-4	1,1-Biphenyl	2400	UD	180	2400	4800	ug/Kg
91-58-7	2-Chloronaphthalene	2400	UD	110	2400	4800	ug/Kg
88-74-4	2-Nitroaniline	2400	UD	220	2400	4800	ug/Kg
131-11-3	Dimethylphthalate	2400	UD	130	2400	4800	ug/Kg
208-96-8	Acenaphthylene	2400	UD	120	2400	4800	ug/Kg
606-20-2	2,6-Dinitrotoluene	2400	UD	200	2400	4800	ug/Kg
99-09-2	3-Nitroaniline	2400	UD	310	2400	4800	ug/Kg
83-32-9	Acenaphthene	2400	UD	140	2400	4800	ug/Kg
51-28-5	2,4-Dinitrophenol	2400	UD	500	2400	4800	ug/Kg
100-02-7	4-Nitrophenol	2400	UD	910	2400	4800	ug/Kg
132-64-9	Dibenzofuran	2400	UD	190	2400	4800	ug/Kg
121-14-2	2,4-Dinitrotoluene	2400	UD	150	2400	4800	ug/Kg
84-66-2	Diethylphthalate	2400	UD	76	2400	4800	ug/Kg
7005-72-3	4-Chlorophenyl-phenylether	2400	UD	270	2400	4800	ug/Kg
86-73-7	Fluorene	3600	JD	180	2400	4800	ug/Kg
100-01-6	4-Nitroaniline	2400	UD	640	2400	4800	ug/Kg
534-52-1	4,6-Dinitro-2-methylphenol	2400	UD	280	2400	4800	ug/Kg
86-30-6	N-Nitrosodiphenylamine	2400	UD	120	2400	4800	ug/Kg
103-33-3	Azobenzene	2400	UD	110	2400	4800	ug/Kg
101-55-3	4-Bromophenyl-phenylether	2400	UD	95	2400	4800	ug/Kg
118-74-1	Hexachlorobenzene	2400	UD	200	2400	4800	ug/Kg
1912-24-9	Atrazine	2400	UD	260	2400	4800	ug/Kg
87-86-5	Pentachlorophenol	2400	UD	330	2400	4800	ug/Kg
85-01-8	Phenanthrene	2900	0 D	130	2400	4800	ug/Kg
120-12-7	Anthracene	1100	0 D	100	2400	4800	ug/Kg
86-74-8	Carbazole	2400	UD	110	2400	4800	ug/Kg
84-74-2	Di-n-butylphthalate	2400	UD	380	2400	4800	ug/Kg
206-44-0	Fluoranthene	2800		98	2400	4800	ug/Kg
92-87-5	Benzidine	2400		490	2400	4800	ug/Kg
129-00-0	Pyrene	2100		120	2400	4800	ug/Kg
	•		of 870				• • • •

Client: MS Analytical Date Collected: 08/09/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-21(16-19)DL SDG No.: D3811 Lab Sample ID: D3811-10DL Matrix: SOIL Analytical Method: SW8270D % Moisture: 32 Sample Wt/Vol: 30.08 Units: g Final Vol: 1000 uL иL Test: SVOC-Chemtech Full -25 Soil Aliquot Vol:

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BG006818.D 10 08/15/12 08/22/12 PB65125

BG006818.D	10	08/15/12		08/	22/12		PB65125		
CAS Number	Parameter		Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units	
85-68-7	Butylbenzylphthalate		2400	UD	230	2400	4800	ug/Kg	
91-94-1	3,3-Dichlorobenzidine		2400	UD	310	2400	4800	ug/Kg	
56-55-3	Benzo(a)anthracene		13000	D	230	2400	4800	ug/Kg	
218-01-9	Chrysene		12000	D	220	2400	4800	ug/Kg	
117-81-7	bis(2-Ethylhexyl)phthalate		2400	UD	170	2400	4800	ug/Kg	
117-84-0	Di-n-octyl phthalate		2400	UD	56	2400	4800	ug/Kg	
205-99-2	Benzo(b)fluoranthene		13000	D	160	2400	4800	ug/Kg	
207-08-9	Benzo(k)fluoranthene		5100	D	230	2400	4800	ug/Kg	
50-32-8	Benzo(a)pyrene		11000	D	110	2400	4800	ug/Kg	
193-39-5	Indeno(1,2,3-cd)pyrene		5000	D	160	2400	4800	ug/Kg	
53-70-3	Dibenz(a,h)anthracene		2400	UD	140	2400	4800	ug/Kg	
191-24-2	Benzo(g,h,i)perylene		5000	D	200	2400	4800	ug/Kg	
95-94-3	1,2,4,5-Tetrachlorobenzene		2400	UD	190	2400	4800	ug/Kg	
123-91-1	1,4-Dioxane		2400	UD	190	2400	4800	ug/Kg	
58-90-2	2,3,4,6-Tetrachlorophenol		2400	UD	190	2400	4800	ug/Kg	
SURROGATES									
367-12-4	2-Fluorophenol		120		28 - 12	7	80%	SPK: 150	
13127-88-3	Phenol-d5		131		34 - 12	7	87%	SPK: 150	
4165-60-0	Nitrobenzene-d5		82.7		31 - 132	2	83%	SPK: 100	
321-60-8	2-Fluorobiphenyl		70.6		39 - 123	3	71%	SPK: 100	
118-79-6	2,4,6-Tribromophenol		96.9		30 - 133	3	65%	SPK: 150	
1718-51-0	Terphenyl-d14		69.5		37 - 11:	5	70%	SPK: 100	
INTERNAL STA	ANDARDS								
3855-82-1	1,4-Dichlorobenzene-d4		151382	8.68					
1146-65-2	Naphthalene-d8		555212	10.88					
15067-26-2	Acenaphthene-d10		394214	13.87					
1517-22-2	Phenanthrene-d10		740477	16.36					
1719-03-5	Chrysene-d12		761113	20.88					
1520-96-3	Perylene-d12		691274	24.76					

Client: MS Analytical

Date Collected: 08/09/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-21(16-19)DL SDG No.: D3811

Lab Sample ID: D3811-10DL Matrix: SOIL

Analytical Method: SW8270D % Moisture: 32

Sample Wt/Vol: 30.08 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BG006818.D 10 08/15/12 08/22/12 PB65125

CAS Number Parameter Conc. Qualifier MDL LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Soil Aliquot Vol:

Report of Analysis

Client:MS AnalyticalDate Collected:08/09/12Project:12MS104 Kensington HeightsDate Received:08/15/12Client Sample ID:SB-22(12-19)SDG No.:D3811

Client Sample ID: SB-22(12-19) SDG No.: D3811

Lab Sample ID: D3811-11 Matrix: SOIL

Analytical Method: SW8270D % Moisture: 9

Sample Wt/Vol: 30.11 Units: g Final Vol: 1000 uL

Test:

SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

иL

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BG006784.D 1 08/15/12 08/20/12 PB65125

CAS Number	Parameter	Con					
		Con	c. Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
62-75-9	n-Nitrosodimethylamine	180	U	19	180	360	ug/Kg
110-86-1	Pyridine	180	U	72	180	360	ug/Kg
100-52-7	Benzaldehyde	180	UQ	19	180	360	ug/Kg
62-53-3	Aniline	180	U	31	180	360	ug/Kg
108-95-2	Phenol	180	U	8.4	180	360	ug/Kg
111-44-4	bis(2-Chloroethyl)ether	180	U	18	180	360	ug/Kg
95-57-8	2-Chlorophenol	180	U	19	180	360	ug/Kg
95-50-1	1,2-Dichlorobenzene	180	U	14	180	360	ug/Kg
541-73-1	1,3-Dichlorobenzene	180	U	6.5	180	360	ug/Kg
106-46-7	1,4-Dichlorobenzene	180	U	12	180	360	ug/Kg
100-51-6	Benzyl Alcohol	180	U	14	180	360	ug/Kg
95-48-7	2-Methylphenol	180	U	20	180	360	ug/Kg
108-60-1	2,2-oxybis(1-Chloropropane)	180	U	15	180	360	ug/Kg
98-86-2	Acetophenone	180	U	11	180	360	ug/Kg
65794-96-9	3+4-Methylphenols	180	U	19	180	360	ug/Kg
621-64-7	N-Nitroso-di-n-propylamine	180	U	18	180	360	ug/Kg
67-72-1	Hexachloroethane	180	U	16	180	360	ug/Kg
98-95-3	Nitrobenzene	180	U	14	180	360	ug/Kg
78-59-1	Isophorone	180	U	12	180	360	ug/Kg
88-75-5	2-Nitrophenol	180	U	18	180	360	ug/Kg
105-67-9	2,4-Dimethylphenol	180	U	21	180	360	ug/Kg
111-91-1	bis(2-Chloroethoxy)methane	180	U	21	180	360	ug/Kg
120-83-2	2,4-Dichlorophenol	180	U	14	180	360	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	180	U	14	180	360	ug/Kg
65-85-0	Benzoic acid	440	U	72	440	880	ug/Kg
91-20-3	Naphthalene	180	U	13	180	360	ug/Kg
106-47-8	4-Chloroaniline	180	U	26	180	360	ug/Kg
87-68-3	Hexachlorobutadiene	180	U	13	180	360	ug/Kg
105-60-2	Caprolactam	180	U	17	180	360	ug/Kg
59-50-7	4-Chloro-3-methylphenol	180	U	16	180	360	ug/Kg
91-57-6	2-Methylnaphthalene	180	U	9.2	180	360	ug/Kg

Client: MS Analytical Date Collected: 08/09/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

 Client Sample ID:
 SB-22(12-19)
 SDG No.:
 D3811

 Lab Sample ID:
 D3811-11
 Matrix:
 SOIL

Analytical Method: SW8270D % Moisture: 9

Sample Wt/Vol: 30.11 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume : 1 GPC Factor : 1.0 GPC Cleanup : N PH : N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BG006784.D 1 08/15/12 08/20/12 PB65125

BG006784.D	1	08/15/12	08	/20/12			
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
77-47-4	Hexachlorocyclopentadiene	180	U	8.9	180	360	ug/Kg
88-06-2	2,4,6-Trichlorophenol	180	U	11	180	360	ug/Kg
95-95-4	2,4,5-Trichlorophenol	180	U	26	180	360	ug/Kg
92-52-4	1,1-Biphenyl	180	U	14	180	360	ug/Kg
91-58-7	2-Chloronaphthalene	180	U	8.3	180	360	ug/Kg
88-74-4	2-Nitroaniline	180	U	16	180	360	ug/Kg
131-11-3	Dimethylphthalate	350	J	9.9	180	360	ug/Kg
208-96-8	Acenaphthylene	180	U	9.2	180	360	ug/Kg
606-20-2	2,6-Dinitrotoluene	180	U	15	180	360	ug/Kg
99-09-2	3-Nitroaniline	180	U	23	180	360	ug/Kg
83-32-9	Acenaphthene	180	U	10	180	360	ug/Kg
51-28-5	2,4-Dinitrophenol	180	U	37	180	360	ug/Kg
100-02-7	4-Nitrophenol	180	U	68	180	360	ug/Kg
132-64-9	Dibenzofuran	180	U	14	180	360	ug/Kg
121-14-2	2,4-Dinitrotoluene	180	U	11	180	360	ug/Kg
84-66-2	Diethylphthalate	180	U	5.7	180	360	ug/Kg
7005-72-3	4-Chlorophenyl-phenylether	180	U	20	180	360	ug/Kg
86-73-7	Fluorene	180	U	14	180	360	ug/Kg
100-01-6	4-Nitroaniline	180	U	48	180	360	ug/Kg
534-52-1	4,6-Dinitro-2-methylphenol	180	U	21	180	360	ug/Kg
86-30-6	N-Nitrosodiphenylamine	180	U	8.8	180	360	ug/Kg
103-33-3	Azobenzene	180	U	8.5	180	360	ug/Kg
101-55-3	4-Bromophenyl-phenylether	180	U	7.1	180	360	ug/Kg
118-74-1	Hexachlorobenzene	180	U	15	180	360	ug/Kg
1912-24-9	Atrazine	180	U	19	180	360	ug/Kg
87-86-5	Pentachlorophenol	180	U	25	180	360	ug/Kg
85-01-8	Phenanthrene	190	J	9.9	180	360	ug/Kg
120-12-7	Anthracene	180	U	7.4	180	360	ug/Kg
86-74-8	Carbazole	180	U	8	180	360	ug/Kg
84-74-2	Di-n-butylphthalate	180	U	29	180	360	ug/Kg
206-44-0	Fluoranthene	210	J	7.3	180	360	ug/Kg
92-87-5	Benzidine	180	U	37	180	360	ug/Kg
129-00-0	Pyrene	180	J	8.8	180	360	ug/Kg
		317	of 870				

Client:MS AnalyticalDate Collected:08/09/12Project:12MS104 Kensington HeightsDate Received:08/15/12

Client Sample ID: SB-22(12-19) SDG No.: D3811

Lab Sample ID: D3811-11 Matrix: SOIL

Analytical Method: SW8270D % Moisture: 9

Sample Wt/Vol: 30.11 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Extraction Type : SOXH Decanted : N Level : LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BG006784.D 1 08/15/12 08/20/12 PB65125

BG006784.D	1	08/15/12		08/20/12			PB65125	
CAS Number	Parameter	C	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
85-68-7	Butylbenzylphthalate	1	80	U	18	180	360	ug/Kg
91-94-1	3,3-Dichlorobenzidine	1	80	U	23	180	360	ug/Kg
56-55-3	Benzo(a)anthracene	1	80	U	17	180	360	ug/Kg
218-01-9	Chrysene	1	80	U	17	180	360	ug/Kg
117-81-7	bis(2-Ethylhexyl)phthalate	1	80	U	13	180	360	ug/Kg
117-84-0	Di-n-octyl phthalate	1	80	U	4.2	180	360	ug/Kg
205-99-2	Benzo(b)fluoranthene	1	50	J	12	180	360	ug/Kg
207-08-9	Benzo(k)fluoranthene	1	80	U	17	180	360	ug/Kg
50-32-8	Benzo(a)pyrene	1	80	U	7.9	180	360	ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene	1	80	U	12	180	360	ug/Kg
53-70-3	Dibenz(a,h)anthracene	1	80	U	11	180	360	ug/Kg
191-24-2	Benzo(g,h,i)perylene	1	80	U	15	180	360	ug/Kg
95-94-3	1,2,4,5-Tetrachlorobenzene	1	80	U	14	180	360	ug/Kg
123-91-1	1,4-Dioxane	1	80	U	14	180	360	ug/Kg
58-90-2	2,3,4,6-Tetrachlorophenol	1	80	U	14	180	360	ug/Kg
SURROGATES								
367-12-4	2-Fluorophenol	1	33		28 - 127	7	89%	SPK: 150
13127-88-3	Phenol-d5	1	39		34 - 127	7	93%	SPK: 150
4165-60-0	Nitrobenzene-d5	9	7.8		31 - 132	2	98%	SPK: 100
321-60-8	2-Fluorobiphenyl	9	0.7		39 - 123	3	91%	SPK: 100
118-79-6	2,4,6-Tribromophenol	1	29		30 - 133	3	86%	SPK: 150
1718-51-0	Terphenyl-d14	8	4.4		37 - 115	5	84%	SPK: 100
INTERNAL ST								
3855-82-1	1,4-Dichlorobenzene-d4		48008	8.69				
1146-65-2	Naphthalene-d8	5	36530	10.89				
15067-26-2	Acenaphthene-d10	3	75240	13.88				
1517-22-2	Phenanthrene-d10	6	91343	16.37				
1719-03-5	Chrysene-d12	7	58066	20.88				
1520-96-3	Perylene-d12	7	28013	24.76				
TENTATIVE I	DENTIFIED COMPOUNDS							
	unknown5.91		70	J			5.91	ug/Kg
541-02-6	Cyclopentasiloxane, decamethyl-	1	60	J			10	ug/Kg
		3	18 of	870				

Injection Volume:

1

BG006784.D

Report of Analysis

Client: MS Analytical Date Collected: 08/09/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SDG No.: SB-22(12-19) D3811 Lab Sample ID: Matrix: SOIL D3811-11 % Moisture: Analytical Method: SW8270D Sample Wt/Vol: 30.11 Units: Final Vol: 1000 uL g SVOC-Chemtech Full -25 Soil Aliquot Vol: uL Test: Extraction Type: SOXH Decanted: Level: LOW Ν

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

1.0

GPC Factor:

08/15/12

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
2471-83-2	1H-Indene, 1-ethylidene-	78	J			12.11	ug/Kg
593-45-3	Octadecane	93	J			16.11	ug/Kg
638-53-9	Tridecanoic acid	210	J			17.21	ug/Kg
	unknown18.51	240	J			18.51	ug/Kg
	unknown20.50	120	J			20.5	ug/Kg
112-84-5	13-Docosenamide, (Z)-	140	J			22.71	ug/Kg

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

GPC Cleanup:

08/20/12

Ν

PB65125

PH:

N/A

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Soil Aliquot Vol:

Report of Analysis

Client: MS Analytical Date Collected: 08/09/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SDG No.: SB-27(8-12) D3811 Lab Sample ID: D3811-12 Matrix: SOIL Analytical Method: SW8270D % Moisture: 19

Sample Wt/Vol: 30.03 Units: g Final Vol: 1000 uL

Test:

SVOC-Chemtech Full -25

Level: Extraction Type: SOXH Decanted: N LOW

иL

GPC Cleanup: GPC Factor: Ν Injection Volume: 1.0 PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID BG006785.D 08/15/12 08/20/12 PB65125

BG006785.D	1	08/15/12	08/	/20/12		PB65125	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
62-75-9	n-Nitrosodimethylamine	205	U	21	205	410	ug/Kg
110-86-1	Pyridine	205	U	81	205	410	ug/Kg
100-52-7	Benzaldehyde	205	UQ	21	205	410	ug/Kg
62-53-3	Aniline	205	U	35	205	410	ug/Kg
108-95-2	Phenol	205	U	9.5	205	410	ug/Kg
111-44-4	bis(2-Chloroethyl)ether	205	U	20	205	410	ug/Kg
95-57-8	2-Chlorophenol	205	U	22	205	410	ug/Kg
95-50-1	1,2-Dichlorobenzene	205	U	16	205	410	ug/Kg
541-73-1	1,3-Dichlorobenzene	205	U	7.3	205	410	ug/Kg
106-46-7	1,4-Dichlorobenzene	205	U	14	205	410	ug/Kg
100-51-6	Benzyl Alcohol	205	U	15	205	410	ug/Kg
95-48-7	2-Methylphenol	205	U	22	205	410	ug/Kg
108-60-1	2,2-oxybis(1-Chloropropane)	205	U	17	205	410	ug/Kg
98-86-2	Acetophenone	205	U	13	205	410	ug/Kg
65794-96-9	3+4-Methylphenols	205	U	21	205	410	ug/Kg
621-64-7	N-Nitroso-di-n-propylamine	205	U	21	205	410	ug/Kg
67-72-1	Hexachloroethane	205	U	18	205	410	ug/Kg
98-95-3	Nitrobenzene	205	U	16	205	410	ug/Kg
78-59-1	Isophorone	205	U	14	205	410	ug/Kg
88-75-5	2-Nitrophenol	205	U	20	205	410	ug/Kg
105-67-9	2,4-Dimethylphenol	205	U	23	205	410	ug/Kg
111-91-1	bis(2-Chloroethoxy)methane	205	U	24	205	410	ug/Kg
120-83-2	2,4-Dichlorophenol	205	U	16	205	410	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	205	U	16	205	410	ug/Kg
65-85-0	Benzoic acid	495	U	81	495	990	ug/Kg
91-20-3	Naphthalene	205	U	14	205	410	ug/Kg
106-47-8	4-Chloroaniline	205	U	29	205	410	ug/Kg
87-68-3	Hexachlorobutadiene	205	U	15	205	410	ug/Kg
105-60-2	Caprolactam	205	U	19	205	410	ug/Kg
59-50-7	4-Chloro-3-methylphenol	205	U	18	205	410	ug/Kg
91-57-6	2-Methylnaphthalene	205	Ü	10	205	410	ug/Kg

Client: MS Analytical Date Collected: 08/09/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SDG No.: SB-27(8-12) D3811 Lab Sample ID: D3811-12 Matrix: SOIL

Analytical Method: SW8270D % Moisture: 19

Sample Wt/Vol: 30.03 Units: g 1000 uL Soil Aliquot Vol: иL Test: SVOC-Chemtech Full -25

Final Vol:

Level: Extraction Type: SOXH Decanted: N LOW

GPC Cleanup: GPC Factor: Ν PH: Injection Volume: 1.0 N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

09/15/12 09/20/12 DC006795 D DD65125

BG006785.D	1	08/15/12	08	/20/12			
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
77-47-4	Hexachlorocyclopentadiene	205	U	10	205	410	ug/Kg
88-06-2	2,4,6-Trichlorophenol	205	U	13	205	410	ug/Kg
95-95-4	2,4,5-Trichlorophenol	205	U	29	205	410	ug/Kg
92-52-4	1,1-Biphenyl	205	U	16	205	410	ug/Kg
91-58-7	2-Chloronaphthalene	205	U	9.4	205	410	ug/Kg
88-74-4	2-Nitroaniline	205	U	18	205	410	ug/Kg
131-11-3	Dimethylphthalate	460		11	205	410	ug/Kg
208-96-8	Acenaphthylene	205	U	10	205	410	ug/Kg
606-20-2	2,6-Dinitrotoluene	205	U	17	205	410	ug/Kg
99-09-2	3-Nitroaniline	205	U	26	205	410	ug/Kg
83-32-9	Acenaphthene	205	U	12	205	410	ug/Kg
51-28-5	2,4-Dinitrophenol	205	U	42	205	410	ug/Kg
100-02-7	4-Nitrophenol	205	U	76	205	410	ug/Kg
132-64-9	Dibenzofuran	205	U	16	205	410	ug/Kg
121-14-2	2,4-Dinitrotoluene	205	U	12	205	410	ug/Kg
84-66-2	Diethylphthalate	205	U	6.4	205	410	ug/Kg
7005-72-3	4-Chlorophenyl-phenylether	205	U	22	205	410	ug/Kg
86-73-7	Fluorene	205	U	16	205	410	ug/Kg
100-01-6	4-Nitroaniline	205	U	54	205	410	ug/Kg
534-52-1	4,6-Dinitro-2-methylphenol	205	U	24	205	410	ug/Kg
86-30-6	N-Nitrosodiphenylamine	205	U	9.9	205	410	ug/Kg
103-33-3	Azobenzene	205	U	9.6	205	410	ug/Kg
101-55-3	4-Bromophenyl-phenylether	205	U	8	205	410	ug/Kg
118-74-1	Hexachlorobenzene	205	U	17	205	410	ug/Kg
1912-24-9	Atrazine	205	U	22	205	410	ug/Kg
87-86-5	Pentachlorophenol	205	U	28	205	410	ug/Kg
85-01-8	Phenanthrene	205	U	11	205	410	ug/Kg
120-12-7	Anthracene	205	U	8.4	205	410	ug/Kg
86-74-8	Carbazole	205	U	9	205	410	ug/Kg
84-74-2	Di-n-butylphthalate	205	U	32	205	410	ug/Kg
206-44-0	Fluoranthene	590		8.3	205	410	ug/Kg
92-87-5	Benzidine	205	U	41	205	410	ug/Kg
129-00-0	Pyrene	550		9.9	205	410	ug/Kg
		321	of 870				

% Moisture:

19

Analytical Method:

SW8270D

Report of Analysis

Client: MS Analytical Date Collected: 08/09/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-27(8-12) SDG No.: D3811

Lab Sample ID: D3811-12 Matrix: SOIL

Sample Wt/Vol: 30.03 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BG006785.D	1	08/15/12	08/20/12			PB65125		
CAS Number	Parameter	Conc	. Qualifier	MDL	LOD	LOQ / CRQL	Units	
85-68-7	Butylbenzylphthalate	205	U	20	205	410	ug/Kg	
91-94-1	3,3-Dichlorobenzidine	205	U	26	205	410	ug/Kg	
56-55-3	Benzo(a)anthracene	530		20	205	410	ug/Kg	
218-01-9	Chrysene	640		19	205	410	ug/Kg	
117-81-7	bis(2-Ethylhexyl)phthalate	205	U	15	205	410	ug/Kg	
117-84-0	Di-n-octyl phthalate	205	U	4.7	205	410	ug/Kg	
205-99-2	Benzo(b)fluoranthene	1100		13	205	410	ug/Kg	
207-08-9	Benzo(k)fluoranthene	280	J	19	205	410	ug/Kg	
50-32-8	Benzo(a)pyrene	720		8.9	205	410	ug/Kg	
193-39-5	Indeno(1,2,3-cd)pyrene	560		14	205	410	ug/Kg	
53-70-3	Dibenz(a,h)anthracene	190	J	12	205	410	ug/Kg	
191-24-2	Benzo(g,h,i)perylene	580		17	205	410	ug/Kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	205	U	16	205	410	ug/Kg	
123-91-1	1,4-Dioxane	205	U	16	205	410	ug/Kg	
58-90-2	2,3,4,6-Tetrachlorophenol	205	U	16	205	410	ug/Kg	
SURROGATES								
367-12-4	2-Fluorophenol	121		28 - 12		81%	SPK: 150	
13127-88-3	Phenol-d5	128		34 - 12	7	86%	SPK: 150	
4165-60-0	Nitrobenzene-d5	81		31 - 13	2	81%	SPK: 100	
321-60-8	2-Fluorobiphenyl	67.9		39 - 12	3	68%	SPK: 100	
118-79-6	2,4,6-Tribromophenol	107		30 - 13	3	72%	SPK: 150	
1718-51-0	Terphenyl-d14	62.4		37 - 11	5	62%	SPK: 100	
INTERNAL ST								
3855-82-1	1,4-Dichlorobenzene-d4	1595						
1146-65-2	Naphthalene-d8	5879						
15067-26-2	Acenaphthene-d10	4069						
1517-22-2	Phenanthrene-d10	7054						
1719-03-5	Chrysene-d12	7480						
1520-96-3	Perylene-d12	7471	88 24.79)				
TENTATIVE I	DENTIFIED COMPOUNDS							
	unknown5.91	330	J			5.91	ug/Kg	
55282-34-3	Cyclohexane, 1,3,5-trimethyl-2-oc	et 95	J			7.95	ug/Kg	
		322	of 970					

Injection Volume:

Report of Analysis

Client: MS Analytical Date Collected: 08/09/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SDG No.: SB-27(8-12) D3811 Lab Sample ID: Matrix: SOIL D3811-12 % Moisture: 19 Analytical Method: SW8270D Sample Wt/Vol: 30.03 Units: Final Vol: 1000 uL g Test: SVOC-Chemtech Full -25 Soil Aliquot Vol: uL Extraction Type: SOXH Level: LOW Decanted: Ν

1.0

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BG006785.D 1 08/15/12 08/20/12 PB65125

GPC Factor:

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
	unknown8.56	84	J			8.56	ug/Kg
111-01-3	Squalane	110	J			8.88	ug/Kg
541-02-6	Cyclopentasiloxane, decamethyl-	96	J			10	ug/Kg
	unknown13.49	96	J			13.49	ug/Kg
	unknown13.66	84	J			13.66	ug/Kg
80655-44-3	Decahydro-4,4,8,9,10-pentamethylna	210	J			13.74	ug/Kg
	unknown14.46	83	J			14.46	ug/Kg
79516-25-9	1-Trimethylsilylpent-1-en-4-yne	260	J			14.57	ug/Kg

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

GPC Cleanup:

Ν

PH:

N/A

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Client:MS AnalyticalDate Collected:08/10/12Project:12MS104 Kensington HeightsDate Received:08/15/12

Client Sample ID: SB-37(8-10) SDG No.: D3811
Lab Sample ID: D3811-13 Matrix: SOIL
Analytical Method: SW8270D % Moisture: 30

Sample Wt/Vol: 30.05 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BG006792.D 5 08/15/12 08/21/12 PB65125

BG006792.D	5	08/15/12	08.	/21/12			
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
62-75-9	n-Nitrosodimethylamine	1200	U	120	1200	2400	ug/Kg
110-86-1	Pyridine	1200	U	470	1200	2400	ug/Kg
100-52-7	Benzaldehyde	1200	UQ	120	1200	2400	ug/Kg
62-53-3	Aniline	1200	U	200	1200	2400	ug/Kg
108-95-2	Phenol	1200	U	55	1200	2400	ug/Kg
111-44-4	bis(2-Chloroethyl)ether	1200	U	110	1200	2400	ug/Kg
95-57-8	2-Chlorophenol	1200	U	130	1200	2400	ug/Kg
95-50-1	1,2-Dichlorobenzene	1200	U	91	1200	2400	ug/Kg
541-73-1	1,3-Dichlorobenzene	1200	U	42	1200	2400	ug/Kg
106-46-7	1,4-Dichlorobenzene	1200	U	81	1200	2400	ug/Kg
100-51-6	Benzyl Alcohol	1200	U	89	1200	2400	ug/Kg
95-48-7	2-Methylphenol	1200	U	130	1200	2400	ug/Kg
108-60-1	2,2-oxybis(1-Chloropropane)	1200	U	98	1200	2400	ug/Kg
98-86-2	Acetophenone	1200	U	73	1200	2400	ug/Kg
65794-96-9	3+4-Methylphenols	1200	U	120	1200	2400	ug/Kg
621-64-7	N-Nitroso-di-n-propylamine	1200	U	120	1200	2400	ug/Kg
67-72-1	Hexachloroethane	1200	U	110	1200	2400	ug/Kg
98-95-3	Nitrobenzene	1200	U	90	1200	2400	ug/Kg
78-59-1	Isophorone	1200	U	78	1200	2400	ug/Kg
88-75-5	2-Nitrophenol	1200	U	110	1200	2400	ug/Kg
105-67-9	2,4-Dimethylphenol	1200	U	130	1200	2400	ug/Kg
111-91-1	bis(2-Chloroethoxy)methane	1200	U	140	1200	2400	ug/Kg
120-83-2	2,4-Dichlorophenol	1200	U	91	1200	2400	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	1200	U	91	1200	2400	ug/Kg
65-85-0	Benzoic acid	2850	U	470	2850	5700	ug/Kg
91-20-3	Naphthalene	1200	U	82	1200	2400	ug/Kg
106-47-8	4-Chloroaniline	1200	U	170	1200	2400	ug/Kg
87-68-3	Hexachlorobutadiene	1200	U	86	1200	2400	ug/Kg
105-60-2	Caprolactam	1200	U	110	1200	2400	ug/Kg
59-50-7	4-Chloro-3-methylphenol	1200	U	110	1200	2400	ug/Kg
91-57-6	2-Methylnaphthalene	1200	U	60	1200	2400	ug/Kg

Matrix:

SOIL

uL

D3811-13

Lab Sample ID:

Report of Analysis

Client: MS Analytical Date Collected: 08/10/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-37(8-10) SDG No.: D3811

Analytical Method: SW8270D % Moisture: 30

Sample Wt/Vol: 30.05 Units: g Final Vol: 1000

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

 $\label{eq:continuous} Injection\ Volume: \qquad \qquad 1 \qquad \qquad GPC\ Factor: \qquad 1.0 \qquad \qquad GPC\ Cleanup: \qquad N \qquad \qquad PH: \quad N/A$

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BG006792.D 5 08/15/12 08/21/12 PB65125

BG006792.D	5	08/15/12	08	/21/12		PB65125	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
77-47-4	Hexachlorocyclopentadiene	1200	U	58	1200	2400	ug/Kg
88-06-2	2,4,6-Trichlorophenol	1200	U	73	1200	2400	ug/Kg
95-95-4	2,4,5-Trichlorophenol	1200	U	170	1200	2400	ug/Kg
92-52-4	1,1-Biphenyl	1200	U	90	1200	2400	ug/Kg
91-58-7	2-Chloronaphthalene	1200	U	54	1200	2400	ug/Kg
88-74-4	2-Nitroaniline	1200	U	110	1200	2400	ug/Kg
131-11-3	Dimethylphthalate	1200	U	64	1200	2400	ug/Kg
208-96-8	Acenaphthylene	4700		60	1200	2400	ug/Kg
606-20-2	2,6-Dinitrotoluene	1200	U	97	1200	2400	ug/Kg
99-09-2	3-Nitroaniline	1200	U	150	1200	2400	ug/Kg
83-32-9	Acenaphthene	1200	U	67	1200	2400	ug/Kg
51-28-5	2,4-Dinitrophenol	1200	U	240	1200	2400	ug/Kg
100-02-7	4-Nitrophenol	1200	U	440	1200	2400	ug/Kg
132-64-9	Dibenzofuran	1200	U	93	1200	2400	ug/Kg
121-14-2	2,4-Dinitrotoluene	1200	U	72	1200	2400	ug/Kg
84-66-2	Diethylphthalate	1200	U	37	1200	2400	ug/Kg
7005-72-3	4-Chlorophenyl-phenylether	1200	U	130	1200	2400	ug/Kg
86-73-7	Fluorene	1400	J	90	1200	2400	ug/Kg
100-01-6	4-Nitroaniline	1200	U	310	1200	2400	ug/Kg
534-52-1	4,6-Dinitro-2-methylphenol	1200	U	140	1200	2400	ug/Kg
86-30-6	N-Nitrosodiphenylamine	1200	U	57	1200	2400	ug/Kg
103-33-3	Azobenzene	1200	U	56	1200	2400	ug/Kg
101-55-3	4-Bromophenyl-phenylether	1200	U	46	1200	2400	ug/Kg
118-74-1	Hexachlorobenzene	1200	U	97	1200	2400	ug/Kg
1912-24-9	Atrazine	1200	U	130	1200	2400	ug/Kg
87-86-5	Pentachlorophenol	1200	U	160	1200	2400	ug/Kg
85-01-8	Phenanthrene	10000		64	1200	2400	ug/Kg
120-12-7	Anthracene	4100		48	1200	2400	ug/Kg
86-74-8	Carbazole	1200	U	52	1200	2400	ug/Kg
84-74-2	Di-n-butylphthalate	1200	U	190	1200	2400	ug/Kg
206-44-0	Fluoranthene	23000	E	48	1200	2400	ug/Kg
92-87-5	Benzidine	1200	U	240	1200	2400	ug/Kg
129-00-0	Pyrene	22000	E	57	1200	2400	ug/Kg
		325 o	f 870				

Client: MS Analytical Date Collected: 08/10/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-37(8-10) SDG No.: D3811 Lab Sample ID: D3811-13 Matrix: SOIL

Analytical Method: SW8270D % Moisture: 30

Sample Wt/Vol: 30.05 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: иL Test: SVOC-Chemtech Full -25

Extraction Type: Level: SOXH Decanted: N LOW

GPC Factor: 1.0 GPC Cleanup: Ν PH: Injection Volume: N/A

Prep Batch ID File ID/Qc Batch: Dilution: Prep Date Date Analyzed

BG006792.D	5	08/15/12		08/	21/12		PB65125	
CAS Number	Parameter		Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
85-68-7	Butylbenzylphthalate		1200	U	110	1200	2400	ug/Kg
91-94-1	3,3-Dichlorobenzidine		1200	U	150	1200	2400	ug/Kg
56-55-3	Benzo(a)anthracene		15000		110	1200	2400	ug/Kg
218-01-9	Chrysene		17000		110	1200	2400	ug/Kg
117-81-7	bis(2-Ethylhexyl)phthalate		1200	U	84	1200	2400	ug/Kg
117-84-0	Di-n-octyl phthalate		1200	U	27	1200	2400	ug/Kg
205-99-2	Benzo(b)fluoranthene		22000	E	78	1200	2400	ug/Kg
207-08-9	Benzo(k)fluoranthene		7900		110	1200	2400	ug/Kg
50-32-8	Benzo(a)pyrene		18000		51	1200	2400	ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene		12000		79	1200	2400	ug/Kg
53-70-3	Dibenz(a,h)anthracene		3600		68	1200	2400	ug/Kg
191-24-2	Benzo(g,h,i)perylene		12000		96	1200	2400	ug/Kg
95-94-3	1,2,4,5-Tetrachlorobenzene		1200	U	93	1200	2400	ug/Kg
123-91-1	1,4-Dioxane		1200	U	93	1200	2400	ug/Kg
58-90-2	2,3,4,6-Tetrachlorophenol		1200	U	93	1200	2400	ug/Kg
SURROGATES								
367-12-4	2-Fluorophenol		147		28 - 127		98%	SPK: 150
13127-88-3	Phenol-d5		151		34 - 127		101%	SPK: 150
4165-60-0	Nitrobenzene-d5		94.9		31 - 132		95%	SPK: 100
321-60-8	2-Fluorobiphenyl		76.6		39 - 123		77%	SPK: 100
118-79-6	2,4,6-Tribromophenol		125		30 - 133		84%	SPK: 150
1718-51-0	Terphenyl-d14		74.6		37 - 115		75%	SPK: 100
INTERNAL ST								
3855-82-1	1,4-Dichlorobenzene-d4		142291	8.69				
1146-65-2	Naphthalene-d8		534762	10.88				
15067-26-2	Acenaphthene-d10		371061	13.87				
1517-22-2	Phenanthrene-d10		700652	16.37				
1719-03-5	Chrysene-d12		732896	20.88				
1520-96-3	Perylene-d12		731810	24.77				
	DENTIFIED COMPOUNDS							
1430-97-3	9H-Fluorene, 2-methyl-		860	J			15.71	ug/Kg
268-77-9	Naphtho[2,3-b]thiophene		1000	J			16.2	ug/Kg
			326 of	F 870				

Injection Volume:

Report of Analysis

Client: MS Analytical Date Collected: 08/10/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SDG No.: SB-37(8-10) D3811 Lab Sample ID: Matrix: SOIL D3811-13 % Moisture: 30 Analytical Method: SW8270D Sample Wt/Vol: 30.05 Units: Final Vol: 1000 uL g Test: SVOC-Chemtech Full -25 Soil Aliquot Vol: uL Extraction Type: SOXH Decanted: Level: LOW Ν

1.0

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BG006792.D 5 08/15/12 08/21/12 PB65125

GPC Factor:

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
	unknown16.55	960	J			16.55	ug/Kg
2531-84-2	Phenanthrene, 2-methyl-	3000	J			17.21	ug/Kg
832-69-9	Phenanthrene, 1-methyl-	3600	J			17.25	ug/Kg
779-02-2	Anthracene, 9-methyl-	1600	J			17.33	ug/Kg
203-64-5	4H-Cyclopenta[def]phenanthrene	7200	J			17.41	ug/Kg
000832-71-3	Phenanthrene, 3-methyl-	1600	J			17.44	ug/Kg
612-94-2	Naphthalene, 2-phenyl-	1900	J			17.69	ug/Kg
84-65-1	9,10-Anthracenedione	1100	J			17.73	ug/Kg
483-87-4	Phenanthrene, 1,7-dimethyl-	820	J			18	ug/Kg
3674-65-5	Phenanthrene, 2,3-dimethyl-	2500	J			18.13	ug/Kg
	unknown18.19	1700	J			18.19	ug/Kg
5737-13-3	Cyclopenta(def)phenanthrenone	1700	J			18.27	ug/Kg
77581-11-4	2,9-Dimethyl-2,3,4,5,6,7-hexahydro	810	J			18.5	ug/Kg
2381-21-7	Pyrene, 1-methyl-	770	J			19.15	ug/Kg
243-17-4	11H-Benzo[b]fluorene	1800	J			19.33	ug/Kg
238-84-6	11H-Benzo[a]fluorene	1000	J			19.44	ug/Kg
3697-24-3	Chrysene, 6-methyl-	1000	J			21.75	ug/Kg
192-97-2	Benzo[e]pyrene	18000	J			24.41	ug/Kg
198-55-0	Perylene	5600	J			24.87	ug/Kg

GPC Cleanup:

Ν

PH:

N/A

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution

Soil Aliquot Vol:

Report of Analysis

Client:MS AnalyticalDate Collected:08/10/12Project:12MS104 Kensington HeightsDate Received:08/15/12

Client Sample ID: SB-37(8-10)DL SDG No.: D3811
Lab Sample ID: D3811-13DL Matrix: SOIL

Analytical Method: SW8270D % Moisture: 30

иL

Sample Wt/Vol: 30.05 Units: g Final Vol: 1000 uL

Test:

SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF058393.D 10 08/15/12 08/23/12 PB65125

BF058393.D	10	08/15/12	08/	23/12		PB65125	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
62-75-9	n-Nitrosodimethylamine	2350	UD	240	2350	4700	ug/Kg
110-86-1	Pyridine	2350	UD	940	2350	4700	ug/Kg
100-52-7	Benzaldehyde	2350	UDQ	250	2350	4700	ug/Kg
62-53-3	Aniline	2350	UD	410	2350	4700	ug/Kg
108-95-2	Phenol	2350	UD	110	2350	4700	ug/Kg
111-44-4	bis(2-Chloroethyl)ether	2350	UD	230	2350	4700	ug/Kg
95-57-8	2-Chlorophenol	2350	UD	250	2350	4700	ug/Kg
95-50-1	1,2-Dichlorobenzene	2350	UD	180	2350	4700	ug/Kg
541-73-1	1,3-Dichlorobenzene	2350	UD	84	2350	4700	ug/Kg
106-46-7	1,4-Dichlorobenzene	2350	UD	160	2350	4700	ug/Kg
100-51-6	Benzyl Alcohol	2350	UD	180	2350	4700	ug/Kg
95-48-7	2-Methylphenol	2350	UD	260	2350	4700	ug/Kg
108-60-1	2,2-oxybis(1-Chloropropane)	2350	UD	200	2350	4700	ug/Kg
98-86-2	Acetophenone	2350	UD	150	2350	4700	ug/Kg
65794-96-9	3+4-Methylphenols	2350	UD	250	2350	4700	ug/Kg
621-64-7	N-Nitroso-di-n-propylamine	2350	UD	240	2350	4700	ug/Kg
67-72-1	Hexachloroethane	2350	UD	210	2350	4700	ug/Kg
98-95-3	Nitrobenzene	2350	UD	180	2350	4700	ug/Kg
78-59-1	Isophorone	2350	UD	160	2350	4700	ug/Kg
88-75-5	2-Nitrophenol	2350	UD	230	2350	4700	ug/Kg
105-67-9	2,4-Dimethylphenol	2350	UD	270	2350	4700	ug/Kg
111-91-1	bis(2-Chloroethoxy)methane	2350	UD	270	2350	4700	ug/Kg
120-83-2	2,4-Dichlorophenol	2350	UD	180	2350	4700	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	2350	UD	180	2350	4700	ug/Kg
65-85-0	Benzoic acid	5500	UD	940	5500	11000	ug/Kg
91-20-3	Naphthalene	2350	UD	160	2350	4700	ug/Kg
106-47-8	4-Chloroaniline	2350	UD	340	2350	4700	ug/Kg
87-68-3	Hexachlorobutadiene	2350	UD	170	2350	4700	ug/Kg
105-60-2	Caprolactam	2350	UD	220	2350	4700	ug/Kg
59-50-7	4-Chloro-3-methylphenol	2350	UD	210	2350	4700	ug/Kg
91-57-6	2-Methylnaphthalene	2350	UD	120	2350	4700	ug/Kg

Extraction Type:

SOXH

Report of Analysis

Client: MS Analytical Date Collected: 08/10/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-37(8-10)DL SDG No.: D3811 Lab Sample ID: D3811-13DL Matrix: SOIL

Analytical Method: SW8270D % Moisture: 30

Sample Wt/Vol: 30.05 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25 Decanted:

Injection Volume: GPC Factor: 1.0 GPC Cleanup: Ν PH: N/A

N

Level:

LOW

File ID/Qc Batch: Dilution: Prep Batch ID Prep Date Date Analyzed

BF058393.D	10	08/15/12	08	/23/12		PB65125	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
77-47-4	Hexachlorocyclopentadiene	2350	UD	120	2350	4700	ug/Kg
88-06-2	2,4,6-Trichlorophenol	2350	UD	150	2350	4700	ug/Kg
95-95-4	2,4,5-Trichlorophenol	2350	UD	330	2350	4700	ug/Kg
92-52-4	1,1-Biphenyl	2350	UD	180	2350	4700	ug/Kg
91-58-7	2-Chloronaphthalene	2350	UD	110	2350	4700	ug/Kg
88-74-4	2-Nitroaniline	2350	UD	210	2350	4700	ug/Kg
131-11-3	Dimethylphthalate	2350	UD	130	2350	4700	ug/Kg
208-96-8	Acenaphthylene	3200	JD	120	2350	4700	ug/Kg
606-20-2	2,6-Dinitrotoluene	2350	UD	190	2350	4700	ug/Kg
99-09-2	3-Nitroaniline	2350	UD	310	2350	4700	ug/Kg
83-32-9	Acenaphthene	2350	UD	130	2350	4700	ug/Kg
51-28-5	2,4-Dinitrophenol	2350	UD	480	2350	4700	ug/Kg
100-02-7	4-Nitrophenol	2350	UD	880	2350	4700	ug/Kg
132-64-9	Dibenzofuran	2350	UD	190	2350	4700	ug/Kg
121-14-2	2,4-Dinitrotoluene	2350	UD	140	2350	4700	ug/Kg
84-66-2	Diethylphthalate	2350	UD	74	2350	4700	ug/Kg
7005-72-3	4-Chlorophenyl-phenylether	2350	UD	260	2350	4700	ug/Kg
86-73-7	Fluorene	2350	UD	180	2350	4700	ug/Kg
100-01-6	4-Nitroaniline	2350	UD	620	2350	4700	ug/Kg
534-52-1	4,6-Dinitro-2-methylphenol	2350	UD	270	2350	4700	ug/Kg
86-30-6	N-Nitrosodiphenylamine	2350	UD	110	2350	4700	ug/Kg
103-33-3	Azobenzene	2350	UD	110	2350	4700	ug/Kg
101-55-3	4-Bromophenyl-phenylether	2350	UD	93	2350	4700	ug/Kg
118-74-1	Hexachlorobenzene	2350	UD	190	2350	4700	ug/Kg
1912-24-9	Atrazine	2350	UD	250	2350	4700	ug/Kg
87-86-5	Pentachlorophenol	2350	UD	330	2350	4700	ug/Kg
85-01-8	Phenanthrene	11000) D	130	2350	4700	ug/Kg
120-12-7	Anthracene	3500	JD	97	2350	4700	ug/Kg
86-74-8	Carbazole	2350	UD	100	2350	4700	ug/Kg
84-74-2	Di-n-butylphthalate	2350	UD	370	2350	4700	ug/Kg
206-44-0	Fluoranthene	24000) D	96	2350	4700	ug/Kg
92-87-5	Benzidine	2350	UD	480	2350	4700	ug/Kg
129-00-0	Pyrene	24000) D	110	2350	4700	ug/Kg
		329	of 870				

Client: MS Analytical Date Collected: 08/10/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-37(8-10)DL SDG No.: D3811 Lab Sample ID: D3811-13DL Matrix: SOIL Analytical Method: SW8270D % Moisture: 30

Sample Wt/Vol: 30.05 Units: g Final Vol: 1000 uL

Test:

SVOC-Chemtech Full -25

Soil Aliquot Vol: Level: Extraction Type: SOXH Decanted: N LOW

иL

GPC Cleanup: GPC Factor: Ν Injection Volume: 1.0 PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID 10 08/15/12 08/23/12 PR65125 BE058303 D

BF058393.D	10	08/15/12		08/	23/12		PB65125	
CAS Number	Parameter		Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
85-68-7	Butylbenzylphthalate		2350	UD	230	2350	4700	ug/Kg
91-94-1	3,3-Dichlorobenzidine		2350	UD	310	2350	4700	ug/Kg
56-55-3	Benzo(a)anthracene		15000	D	230	2350	4700	ug/Kg
218-01-9	Chrysene		17000	D	220	2350	4700	ug/Kg
117-81-7	bis(2-Ethylhexyl)phthalate		2350	UD	170	2350	4700	ug/Kg
117-84-0	Di-n-octyl phthalate		2350	UD	54	2350	4700	ug/Kg
205-99-2	Benzo(b)fluoranthene		22000	D	160	2350	4700	ug/Kg
207-08-9	Benzo(k)fluoranthene		8900	D	220	2350	4700	ug/Kg
50-32-8	Benzo(a)pyrene		18000	D	100	2350	4700	ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene		10000	D	160	2350	4700	ug/Kg
53-70-3	Dibenz(a,h)anthracene		2300	JD	140	2350	4700	ug/Kg
191-24-2	Benzo(g,h,i)perylene		11000	D	190	2350	4700	ug/Kg
95-94-3	1,2,4,5-Tetrachlorobenzene		2350	UD	190	2350	4700	ug/Kg
123-91-1	1,4-Dioxane		2350	UD	190	2350	4700	ug/Kg
58-90-2	2,3,4,6-Tetrachlorophenol		2350	UD	190	2350	4700	ug/Kg
SURROGATES	5							
367-12-4	2-Fluorophenol		137		28 - 12	7	92%	SPK: 150
13127-88-3	Phenol-d5		150		34 - 12	7	100%	SPK: 150
4165-60-0	Nitrobenzene-d5		97.5		31 - 132	2	98%	SPK: 100
321-60-8	2-Fluorobiphenyl		83		39 - 12	3	83%	SPK: 100
118-79-6	2,4,6-Tribromophenol		107		30 - 13	3	72%	SPK: 150
1718-51-0	Terphenyl-d14		64.5		37 - 11:	5	65%	SPK: 100
INTERNAL ST	ANDARDS							
3855-82-1	1,4-Dichlorobenzene-d4		254050	5.09				
1146-65-2	Naphthalene-d8		933580	6.52				
15067-26-2	Acenaphthene-d10		444781	8.3				
1517-22-2	Phenanthrene-d10		677144	10.24				
1719-03-5	Chrysene-d12		513726	14.3				
1520-96-3	Perylene-d12		441644	16.4				

Client: MS Analytical

Date Collected: 08/10/12

Date Received:

Project: 12MS104 Kensington Heights

08/15/12

Client Sample ID: SB-37(8-10)DL

SDG No.: D3811

Lab Sample ID: D3811-13DL

Matrix: SOIL

Analytical Method: SW8270D

% Moisture: 30

1000

uL

Sample Wt/Vol:

30.05 Units: g

uL

Test:

Final Vol:

GPC Cleanup:

SVOC-Chemtech Full -25

Soil Aliquot Vol: Extraction Type :

SOXH

Decanted: N

1.0

Level:

LOW

Ν

PH: N/A

Injection Volume:

Dilution:

Prep Date

GPC Factor:

Date Analyzed

Prep Batch ID

LOQ / CRQL

BF058393.D

File ID/Qc Batch:

10

08/15/12

08/23/12

PB65125

CAS Number

Parameter

Conc.

Qualifier

MDL

LOD

Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Client:MS AnalyticalDate Collected:08/10/12Project:12MS104 Kensington HeightsDate Received:08/15/12

Client Sample ID: SB-39(6-8) SDG No.: D3811
Lab Sample ID: D3811-14 Matrix: SOIL
Analytical Method: SW8270D % Moisture: 8

Sample Wt/Vol: 30.1 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BG006786.D 1 08/15/12 08/20/12 PB65125

CAS Number Parameter Conc. Qualifier MDL LOD LOQ/CRQ TARGETS 62-75-9 n-Nitrosodimethylamine 180 U 19 180 360 110-86-1 Pyridine 180 U 72 180 360 100-52-7 Benzaldehyde 180 UQ 19 180 360 62-53-3 Aniline 180 U 31 180 360 108-95-2 Phenol 180 U 8.3 180 360 111-44-4 bis(2-Chloroethyl)ether 180 U 17 180 360 95-57-8 2-Chlorophenol 180 U 19 180 360 95-50-1 1,2-Dichlorobenzene 180 U 14 180 360 541-73-1 1,3-Dichlorobenzene 180 U 6.4 180 360 106-46-7 1,4-Dichlorobenzene 180 U 12 180 360 100-51-6<	T TI
62-75-9 n-Nitrosodimethylamine 180 U 19 180 360 110-86-1 Pyridine 180 U 72 180 360 100-52-7 Benzaldehyde 180 UQ 19 180 360 62-53-3 Aniline 180 U 31 180 360 108-95-2 Phenol 180 U 8.3 180 360 111-44-4 bis(2-Chloroethyl)ether 180 U 17 180 360 95-57-8 2-Chlorophenol 180 U 19 180 360 95-50-1 1,2-Dichlorobenzene 180 U 14 180 360 541-73-1 1,3-Dichlorobenzene 180 U 6.4 180 360 106-46-7 1,4-Dichlorobenzene 180 U 12 180 360 100-51-6 Benzyl Alcohol 180 U 14 180 360	L Units
110-86-1 Pyridine 180 U 72 180 360 100-52-7 Benzaldehyde 180 UQ 19 180 360 62-53-3 Aniline 180 U 31 180 360 108-95-2 Phenol 180 U 8.3 180 360 111-44-4 bis(2-Chloroethyl)ether 180 U 17 180 360 95-57-8 2-Chlorophenol 180 U 19 180 360 95-50-1 1,2-Dichlorobenzene 180 U 14 180 360 541-73-1 1,3-Dichlorobenzene 180 U 6.4 180 360 106-46-7 1,4-Dichlorobenzene 180 U 12 180 360 100-51-6 Benzyl Alcohol 180 U 14 180 360	
100-52-7 Benzaldehyde 180 UQ 19 180 360 62-53-3 Aniline 180 U 31 180 360 108-95-2 Phenol 180 U 8.3 180 360 111-44-4 bis(2-Chloroethyl)ether 180 U 17 180 360 95-57-8 2-Chlorophenol 180 U 19 180 360 95-50-1 1,2-Dichlorobenzene 180 U 14 180 360 541-73-1 1,3-Dichlorobenzene 180 U 6.4 180 360 106-46-7 1,4-Dichlorobenzene 180 U 12 180 360 100-51-6 Benzyl Alcohol 180 U 14 180 360	ug/Kg
62-53-3 Aniline 180 U 31 180 360 108-95-2 Phenol 180 U 8.3 180 360 111-44-4 bis(2-Chloroethyl)ether 180 U 17 180 360 95-57-8 2-Chlorophenol 180 U 19 180 360 95-50-1 1,2-Dichlorobenzene 180 U 14 180 360 541-73-1 1,3-Dichlorobenzene 180 U 6.4 180 360 106-46-7 1,4-Dichlorobenzene 180 U 12 180 360 100-51-6 Benzyl Alcohol 180 U 14 180 360	ug/Kg
108-95-2 Phenol 180 U 8.3 180 360 111-44-4 bis(2-Chloroethyl)ether 180 U 17 180 360 95-57-8 2-Chlorophenol 180 U 19 180 360 95-50-1 1,2-Dichlorobenzene 180 U 14 180 360 541-73-1 1,3-Dichlorobenzene 180 U 6.4 180 360 106-46-7 1,4-Dichlorobenzene 180 U 12 180 360 100-51-6 Benzyl Alcohol 180 U 14 180 360	ug/Kg
111-44-4 bis(2-Chloroethyl)ether 180 U 17 180 360 95-57-8 2-Chlorophenol 180 U 19 180 360 95-50-1 1,2-Dichlorobenzene 180 U 14 180 360 541-73-1 1,3-Dichlorobenzene 180 U 6.4 180 360 106-46-7 1,4-Dichlorobenzene 180 U 12 180 360 100-51-6 Benzyl Alcohol 180 U 14 180 360	ug/Kg
95-57-8 2-Chlorophenol 180 U 19 180 360 95-50-1 1,2-Dichlorobenzene 180 U 14 180 360 541-73-1 1,3-Dichlorobenzene 180 U 6.4 180 360 106-46-7 1,4-Dichlorobenzene 180 U 12 180 360 100-51-6 Benzyl Alcohol 180 U 14 180 360	ug/Kg
95-50-1 1,2-Dichlorobenzene 180 U 14 180 360 541-73-1 1,3-Dichlorobenzene 180 U 6.4 180 360 106-46-7 1,4-Dichlorobenzene 180 U 12 180 360 100-51-6 Benzyl Alcohol 180 U 14 180 360	ug/Kg
541-73-1 1,3-Dichlorobenzene 180 U 6.4 180 360 106-46-7 1,4-Dichlorobenzene 180 U 12 180 360 100-51-6 Benzyl Alcohol 180 U 14 180 360	ug/Kg
106-46-7 1,4-Dichlorobenzene 180 U 12 180 360 100-51-6 Benzyl Alcohol 180 U 14 180 360	ug/Kg
100-51-6 Benzyl Alcohol 180 U 14 180 360	ug/Kg
· ·	ug/Kg
95-48-7 2-Methylphenol 180 U 20 180 360	ug/Kg
	ug/Kg
108-60-1 2,2-oxybis(1-Chloropropane) 180 U 15 180 360	ug/Kg
98-86-2 Acetophenone 180 U 11 180 360	ug/Kg
65794-96-9 3+4-Methylphenols 180 U 19 180 360	ug/Kg
621-64-7 N-Nitroso-di-n-propylamine 180 U 18 180 360	ug/Kg
67-72-1 Hexachloroethane 180 U 16 180 360	ug/Kg
98-95-3 Nitrobenzene 180 U 14 180 360	ug/Kg
78-59-1 Isophorone 180 U 12 180 360	ug/Kg
88-75-5 2-Nitrophenol 180 U 17 180 360	ug/Kg
105-67-9 2,4-Dimethylphenol 180 U 20 180 360	ug/Kg
111-91-1 bis(2-Chloroethoxy)methane 180 U 21 180 360	ug/Kg
120-83-2 2,4-Dichlorophenol 180 U 14 180 360	ug/Kg
120-82-1 1,2,4-Trichlorobenzene 180 U 14 180 360	ug/Kg
65-85-0 Benzoic acid 435 U 72 435 870	ug/Kg
91-20-3 Naphthalene 180 U 12 180 360	ug/Kg
106-47-8 4-Chloroaniline 180 U 25 180 360	ug/Kg
87-68-3 Hexachlorobutadiene 180 U 13 180 360	ug/Kg
105-60-2 Caprolactam 180 U 17 180 360	ug/Kg
59-50-7 4-Chloro-3-methylphenol 180 U 16 180 360	ug/Kg
91-57-6 2-Methylnaphthalene 180 U 9.1 180 360	ug/Kg

Client: MS Analytical Date Collected: 08/10/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SDG No.: SB-39(6-8) D3811 Lab Sample ID: D3811-14 Matrix: SOIL

Analytical Method: SW8270D 8 Sample Wt/Vol: 30.1 Units: g Final Vol: 1000

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

% Moisture:

uL

Level: Extraction Type: SOXH Decanted: N LOW

GPC Factor: 1.0 GPC Cleanup: Ν PH: Injection Volume: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

09/15/12 09/20/12 DD65125

BG006786.D	1	08/15/12	08	/20/12		PB65125	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
77-47-4	Hexachlorocyclopentadiene	180	U	8.8	180	360	ug/Kg
88-06-2	2,4,6-Trichlorophenol	180	U	11	180	360	ug/Kg
95-95-4	2,4,5-Trichlorophenol	180	U	25	180	360	ug/Kg
92-52-4	1,1-Biphenyl	180	U	14	180	360	ug/Kg
91-58-7	2-Chloronaphthalene	180	U	8.2	180	360	ug/Kg
88-74-4	2-Nitroaniline	180	U	16	180	360	ug/Kg
131-11-3	Dimethylphthalate	360		9.8	180	360	ug/Kg
208-96-8	Acenaphthylene	180	U	9.1	180	360	ug/Kg
606-20-2	2,6-Dinitrotoluene	180	U	15	180	360	ug/Kg
99-09-2	3-Nitroaniline	180	U	23	180	360	ug/Kg
83-32-9	Acenaphthene	180	U	10	180	360	ug/Kg
51-28-5	2,4-Dinitrophenol	180	U	37	180	360	ug/Kg
100-02-7	4-Nitrophenol	180	U	67	180	360	ug/Kg
132-64-9	Dibenzofuran	180	U	14	180	360	ug/Kg
121-14-2	2,4-Dinitrotoluene	180	U	11	180	360	ug/Kg
84-66-2	Diethylphthalate	180	U	5.6	180	360	ug/Kg
7005-72-3	4-Chlorophenyl-phenylether	180	U	20	180	360	ug/Kg
86-73-7	Fluorene	180	U	14	180	360	ug/Kg
100-01-6	4-Nitroaniline	180	U	47	180	360	ug/Kg
534-52-1	4,6-Dinitro-2-methylphenol	180	U	21	180	360	ug/Kg
86-30-6	N-Nitrosodiphenylamine	180	U	8.7	180	360	ug/Kg
103-33-3	Azobenzene	180	U	8.5	180	360	ug/Kg
101-55-3	4-Bromophenyl-phenylether	180	U	7	180	360	ug/Kg
118-74-1	Hexachlorobenzene	180	U	15	180	360	ug/Kg
1912-24-9	Atrazine	180	U	19	180	360	ug/Kg
87-86-5	Pentachlorophenol	180	U	25	180	360	ug/Kg
85-01-8	Phenanthrene	180	U	9.8	180	360	ug/Kg
120-12-7	Anthracene	180	U	7.4	180	360	ug/Kg
86-74-8	Carbazole	180	U	7.9	180	360	ug/Kg
84-74-2	Di-n-butylphthalate	180	U	28	180	360	ug/Kg
206-44-0	Fluoranthene	180	U	7.3	180	360	ug/Kg
92-87-5	Benzidine	180	U	36	180	360	ug/Kg
129-00-0	Pyrene	180	U	8.7	180	360	ug/Kg
		333	of 870				

Soil Aliquot Vol:

Report of Analysis

Client: MS Analytical Date Collected: 08/10/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-39(6-8) SDG No.: D3811
Lab Sample ID: D3811-14 Matrix: SOIL

Analytical Method: SW8270D % Moisture: 8

иL

Sample Wt/Vol: 30.1 Units: g Final Vol: 1000 uL

Test:

SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PC006786 D 1 08/15/12 08/20/12 PR65125

BG006786.D	1	08/15/12	08.	/20/12		PB65125	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
85-68-7	Butylbenzylphthalate	180	U	17	180	360	ug/Kg
91-94-1	3,3-Dichlorobenzidine	180	U	23	180	360	ug/Kg
56-55-3	Benzo(a)anthracene	180	U	17	180	360	ug/Kg
218-01-9	Chrysene	180	U	16	180	360	ug/Kg
117-81-7	bis(2-Ethylhexyl)phthalate	180	U	13	180	360	ug/Kg
117-84-0	Di-n-octyl phthalate	180	U	4.1	180	360	ug/Kg
205-99-2	Benzo(b)fluoranthene	180	U	12	180	360	ug/Kg
207-08-9	Benzo(k)fluoranthene	180	U	17	180	360	ug/Kg
50-32-8	Benzo(a)pyrene	180	U	7.8	180	360	ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene	180	U	12	180	360	ug/Kg
53-70-3	Dibenz(a,h)anthracene	180	U	10	180	360	ug/Kg
191-24-2	Benzo(g,h,i)perylene	180	U	15	180	360	ug/Kg
95-94-3	1,2,4,5-Tetrachlorobenzene	180	U	14	180	360	ug/Kg
123-91-1	1,4-Dioxane	180	U	14	180	360	ug/Kg
58-90-2	2,3,4,6-Tetrachlorophenol	180	U	14	180	360	ug/Kg
SURROGATES							
367-12-4	2-Fluorophenol	134		28 - 127		89%	SPK: 150
13127-88-3	Phenol-d5	138		34 - 127		92%	SPK: 150
4165-60-0	Nitrobenzene-d5	94.5		31 - 132		95%	SPK: 100
321-60-8	2-Fluorobiphenyl	91.3		39 - 123		91%	SPK: 100
118-79-6	2,4,6-Tribromophenol	130		30 - 133	}	87%	SPK: 150
1718-51-0	Terphenyl-d14	83.2		37 - 115	;	83%	SPK: 100
INTERNAL ST							
3855-82-1	1,4-Dichlorobenzene-d4	139547					
1146-65-2	Naphthalene-d8	509127					
15067-26-2	Acenaphthene-d10	348075					
1517-22-2	Phenanthrene-d10	669688					
1719-03-5	Chrysene-d12	719022					
1520-96-3	Perylene-d12	697943	24.76	i			
	DENTIFIED COMPOUNDS						
123-42-2	2-Pentanone, 4-hydroxy-4-methyl		A			5.91	ug/Kg
541-02-6	Cyclopentasiloxane, decamethyl-	91	J			10	ug/Kg

Injection Volume:

Report of Analysis

Client: MS Analytical Date Collected: 08/10/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SDG No.: SB-39(6-8) D3811 Lab Sample ID: Matrix: SOIL D3811-14 % Moisture: Analytical Method: SW8270D Sample Wt/Vol: 30.1 Units: Final Vol: 1000 uL g Test: SVOC-Chemtech Full -25 Soil Aliquot Vol: uL Extraction Type: SOXH Level: LOW Decanted: Ν

1.0

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BG006786.D 1 08/15/12 08/20/12 PB65125

GPC Factor:

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
629-78-7	Heptadecane	87	J			16.11	ug/Kg
638-53-9	Tridecanoic acid	120	J			17.21	ug/Kg
886-66-8	Benzene, 1,1-(1,3-butadiyne-1,4-d	92	J			18.4	ug/Kg

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

GPC Cleanup:

Ν

PH:

N/A

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Client: MS Analytical Date Collected: 08/10/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-41(8-11) SDG No.: D3811 Lab Sample ID: D3811-15 Matrix: SOIL Analytical Method: SW8270D % Moisture: 19 Sample Wt/Vol: 30.05 Units: g Final Vol: 1000 uL Soil Aliquot Vol: иL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID BF058438.D 1 08/15/12 08/24/12 PB65125

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units	
TARGETS								
62-75-9	n-Nitrosodimethylamine	205	U	21	205	410	ug/Kg	
110-86-1	Pyridine	205	U	81	205	410	ug/Kg	
100-52-7	Benzaldehyde	205	UQ	21	205	410	ug/Kg	
62-53-3	Aniline	205	U	35	205	410	ug/Kg	
108-95-2	Phenol	205	U	9.5	205	410	ug/Kg	
111-44-4	bis(2-Chloroethyl)ether	205	U	20	205	410	ug/Kg	
95-57-8	2-Chlorophenol	205	U	22	205	410	ug/Kg	
95-50-1	1,2-Dichlorobenzene	205	U	16	205	410	ug/Kg	
541-73-1	1,3-Dichlorobenzene	205	U	7.3	205	410	ug/Kg	
106-46-7	1,4-Dichlorobenzene	205	U	14	205	410	ug/Kg	
100-51-6	Benzyl Alcohol	205	U	15	205	410	ug/Kg	
95-48-7	2-Methylphenol	205	U	22	205	410	ug/Kg	
108-60-1	2,2-oxybis(1-Chloropropane)	205	U	17	205	410	ug/Kg	
98-86-2	Acetophenone	205	U	13	205	410	ug/Kg	
65794-96-9	3+4-Methylphenols	205	U	21	205	410	ug/Kg	
621-64-7	N-Nitroso-di-n-propylamine	205	U	21	205	410	ug/Kg	
67-72-1	Hexachloroethane	205	U	18	205	410	ug/Kg	
98-95-3	Nitrobenzene	205	U	16	205	410	ug/Kg	
78-59-1	Isophorone	205	U	14	205	410	ug/Kg	
88-75-5	2-Nitrophenol	205	U	20	205	410	ug/Kg	
105-67-9	2,4-Dimethylphenol	205	U	23	205	410	ug/Kg	
111-91-1	bis(2-Chloroethoxy)methane	205	U	24	205	410	ug/Kg	
120-83-2	2,4-Dichlorophenol	205	U	16	205	410	ug/Kg	
120-82-1	1,2,4-Trichlorobenzene	205	U	16	205	410	ug/Kg	
65-85-0	Benzoic acid	710	J	81	495	990	ug/Kg	
91-20-3	Naphthalene	290	J	14	205	410	ug/Kg	
106-47-8	4-Chloroaniline	205	U	29	205	410	ug/Kg	
87-68-3	Hexachlorobutadiene	205	U	15	205	410	ug/Kg	
105-60-2	Caprolactam	205	U	19	205	410	ug/Kg	
59-50-7	4-Chloro-3-methylphenol	205	U	18	205	410	ug/Kg	
91-57-6	2-Methylnaphthalene	205	U	10	205	410	ug/Kg	

SW8270D

Report of Analysis

Client: MS Analytical Date Collected: 08/10/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-41(8-11) SDG No.: D3811 Lab Sample ID: D3811-15 Matrix: SOIL

Analytical Method: Sample Wt/Vol: 30.05 Units: g Final Vol: 1000

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

% Moisture:

19

uL

Extraction Type: SOXH Level: LOW Decanted: N

Injection Volume: GPC Factor: 1.0 GPC Cleanup: Ν PH: N/A

File ID/Qc Batch: Dilution: Date Analyzed Prep Batch ID Prep Date

BF058438.D	1	08/15/12		08/	/24/12		PB65125	
CAS Number	Parameter	C	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
77-47-4	Hexachlorocyclopentadiene	2	05	U	10	205	410	ug/Kg
88-06-2	2,4,6-Trichlorophenol	2	05	U	13	205	410	ug/Kg
95-95-4	2,4,5-Trichlorophenol	2	05	U	29	205	410	ug/Kg
92-52-4	1,1-Biphenyl	2	05	U	16	205	410	ug/Kg
91-58-7	2-Chloronaphthalene	2	05	U	9.4	205	410	ug/Kg
88-74-4	2-Nitroaniline	2	05	U	18	205	410	ug/Kg
131-11-3	Dimethylphthalate	3	60	J	11	205	410	ug/Kg
208-96-8	Acenaphthylene	2	05	U	10	205	410	ug/Kg
606-20-2	2,6-Dinitrotoluene	2	05	U	17	205	410	ug/Kg
99-09-2	3-Nitroaniline	2	05	U	26	205	410	ug/Kg
83-32-9	Acenaphthene	1	90	J	12	205	410	ug/Kg
51-28-5	2,4-Dinitrophenol	2	05	U	42	205	410	ug/Kg
100-02-7	4-Nitrophenol	2	05	U	76	205	410	ug/Kg
132-64-9	Dibenzofuran	2	05	U	16	205	410	ug/Kg
121-14-2	2,4-Dinitrotoluene	2	05	U	12	205	410	ug/Kg
84-66-2	Diethylphthalate	2	05	U	6.4	205	410	ug/Kg
7005-72-3	4-Chlorophenyl-phenylether	2	05	U	22	205	410	ug/Kg
86-73-7	Fluorene	2	05	U	16	205	410	ug/Kg
100-01-6	4-Nitroaniline	2	05	U	53	205	410	ug/Kg
534-52-1	4,6-Dinitro-2-methylphenol	2	05	U	24	205	410	ug/Kg
86-30-6	N-Nitrosodiphenylamine	2	05	U	9.9	205	410	ug/Kg
103-33-3	Azobenzene	2	05	U	9.6	205	410	ug/Kg
101-55-3	4-Bromophenyl-phenylether	2	05	U	8	205	410	ug/Kg
118-74-1	Hexachlorobenzene	2	05	U	17	205	410	ug/Kg
1912-24-9	Atrazine	2	05	U	22	205	410	ug/Kg
87-86-5	Pentachlorophenol	2	05	U	28	205	410	ug/Kg
85-01-8	Phenanthrene	1	300		11	205	410	ug/Kg
120-12-7	Anthracene	3	80	J	8.4	205	410	ug/Kg
86-74-8	Carbazole	2	05	U	9	205	410	ug/Kg
84-74-2	Di-n-butylphthalate	2	.05	U	32	205	410	ug/Kg
206-44-0	Fluoranthene	1	700		8.3	205	410	ug/Kg
92-87-5	Benzidine	2	.05	U	41	205	410	ug/Kg
129-00-0	Pyrene	1	400		9.9	205	410	ug/Kg
		3	37 of	f 870				

Client: MS Analytical Date Collected: 08/10/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-41(8-11) SDG No.: D3811 Lab Sample ID: D3811-15 Matrix: SOIL Analytical Method: SW8270D % Moisture: 19 Sample Wt/Vol: 30.05 Units: g Final Vol: 1000 uL Soil Aliquot Vol: иL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BE058438 D 1 08/15/12 08/24/12 PB65125

BF058438.D	1	08/15/12	08/	/24/12		PB65125	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
85-68-7	Butylbenzylphthalate	205	U	20	205	410	ug/Kg
91-94-1	3,3-Dichlorobenzidine	205	U	26	205	410	ug/Kg
56-55-3	Benzo(a)anthracene	880		20	205	410	ug/Kg
218-01-9	Chrysene	890		19	205	410	ug/Kg
117-81-7	bis(2-Ethylhexyl)phthalate	205	U	15	205	410	ug/Kg
117-84-0	Di-n-octyl phthalate	205	U	4.7	205	410	ug/Kg
205-99-2	Benzo(b)fluoranthene	1100		13	205	410	ug/Kg
207-08-9	Benzo(k)fluoranthene	370	J	19	205	410	ug/Kg
50-32-8	Benzo(a)pyrene	910		8.9	205	410	ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene	500		14	205	410	ug/Kg
53-70-3	Dibenz(a,h)anthracene	205	U	12	205	410	ug/Kg
191-24-2	Benzo(g,h,i)perylene	470		17	205	410	ug/Kg
95-94-3	1,2,4,5-Tetrachlorobenzene	205	U	16	205	410	ug/Kg
123-91-1	1,4-Dioxane	205	U	16	205	410	ug/Kg
58-90-2	2,3,4,6-Tetrachlorophenol	205	U	16	205	410	ug/Kg
SURROGATES							
367-12-4	2-Fluorophenol	117		28 - 12		79%	SPK: 150
13127-88-3	Phenol-d5	125		34 - 12	7	84%	SPK: 150
4165-60-0	Nitrobenzene-d5	83		31 - 13	2	83%	SPK: 100
321-60-8	2-Fluorobiphenyl	80.6		39 - 12	3	81%	SPK: 100
118-79-6	2,4,6-Tribromophenol	120		30 - 13	3	80%	SPK: 150
1718-51-0	Terphenyl-d14	67.2		37 - 11	5	67%	SPK: 100
INTERNAL STA							
3855-82-1	1,4-Dichlorobenzene-d4	12389					
1146-65-2	Naphthalene-d8	46410					
15067-26-2	Acenaphthene-d10	21437					
1517-22-2	Phenanthrene-d10	34446					
1719-03-5	Chrysene-d12	26673					
1520-96-3	Perylene-d12	22360	8 16.36				
	ENTIFIED COMPOUNDS						
123-42-2	2-Pentanone, 4-hydroxy-4-methyl-		A			3.05	ug/Kg
90-12-0	Naphthalene, 1-methyl-	88	J			7.27	ug/Kg

Injection Volume:

File ID/Qc Batch:

Dilution:

Report of Analysis

Client: MS Analytical Date Collected: 08/10/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SDG No.: SB-41(8-11) D3811 Lab Sample ID: D3811-15 Matrix: SOIL % Moisture: 19 Analytical Method: SW8270D Sample Wt/Vol: 30.05 Units: Final Vol: 1000 uL g Test: SVOC-Chemtech Full -25 Soil Aliquot Vol: uL Extraction Type: SOXH Level: LOW Decanted: Ν

1.0

Prep Date BF058438.D 1 08/15/12 08/24/12 PB65125

GPC Factor:

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
244-99-5	5H-Indeno[1,2-b]pyridine	150	J			10.56	ug/Kg
629-62-9	Pentadecane	120	J			10.8	ug/Kg
2531-84-2	Phenanthrene, 2-methyl-	150	J			10.95	ug/Kg
949-41-7	1H-Cyclopropa[l]phenanthrene,1a,9b	220	J			10.99	ug/Kg
779-02-2	Anthracene, 9-methyl-	110	J			11.05	ug/Kg
203-64-5	4H-Cyclopenta[def]phenanthrene	270	J			11.1	ug/Kg
	unknown11.16	100	J			11.16	ug/Kg
	unknown11.42	190	J			11.42	ug/Kg
3674-69-9	Phenanthrene, 4,5-dimethyl-	100	J			11.79	ug/Kg
111-06-8	Hexadecanoic acid, butyl ester	130	J			12.54	ug/Kg
243-17-4	11H-Benzo[b]fluorene	130	J			12.88	ug/Kg
238-84-6	11H-Benzo[a]fluorene	120	J			13	ug/Kg
123-95-5	Octadecanoic acid, butyl ester	150	J			13.67	ug/Kg
195-19-7	Benzo[c]phenanthrene	86	J			14.41	ug/Kg
192-97-2	Benzo[e]pyrene	740	J			16.22	ug/Kg

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

GPC Cleanup:

Date Analyzed

Ν

Prep Batch ID

PH:

N/A

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Client:MS AnalyticalDate Collected:08/13/12Project:12MS104 Kensington HeightsDate Received:08/15/12

Client Sample ID: SB-42(14-16) SDG No.: D3811
Lab Sample ID: D3811-16 Matrix: SOIL
Analytical Method: SW8270D % Moisture: 17

Sample Wt/Vol: 30.07 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BG006788.D 1 08/15/12 08/21/12 PB65125

BG006/88.D	I	08/15/12	08	721/12		PB65125	
CAS Number	Parameter	Con	c. Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
62-75-9	n-Nitrosodimethylamine	200	U	21	200	400	ug/Kg
110-86-1	Pyridine	200	U	79	200	400	ug/Kg
100-52-7	Benzaldehyde	200	UQ	21	200	400	ug/Kg
62-53-3	Aniline	200	U	34	200	400	ug/Kg
108-95-2	Phenol	200	U	9.3	200	400	ug/Kg
111-44-4	bis(2-Chloroethyl)ether	200	U	19	200	400	ug/Kg
95-57-8	2-Chlorophenol	200	U	21	200	400	ug/Kg
95-50-1	1,2-Dichlorobenzene	200	U	15	200	400	ug/Kg
541-73-1	1,3-Dichlorobenzene	200	U	7.1	200	400	ug/Kg
106-46-7	1,4-Dichlorobenzene	200	U	14	200	400	ug/Kg
100-51-6	Benzyl Alcohol	200	U	15	200	400	ug/Kg
95-48-7	2-Methylphenol	200	U	22	200	400	ug/Kg
108-60-1	2,2-oxybis(1-Chloropropane)	200	U	17	200	400	ug/Kg
98-86-2	Acetophenone	200	U	12	200	400	ug/Kg
65794-96-9	3+4-Methylphenols	200	U	21	200	400	ug/Kg
621-64-7	N-Nitroso-di-n-propylamine	200	U	20	200	400	ug/Kg
67-72-1	Hexachloroethane	200	U	18	200	400	ug/Kg
98-95-3	Nitrobenzene	200	U	15	200	400	ug/Kg
78-59-1	Isophorone	200	U	13	200	400	ug/Kg
88-75-5	2-Nitrophenol	200	U	19	200	400	ug/Kg
105-67-9	2,4-Dimethylphenol	200	U	23	200	400	ug/Kg
111-91-1	bis(2-Chloroethoxy)methane	200	U	23	200	400	ug/Kg
120-83-2	2,4-Dichlorophenol	200	U	15	200	400	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	200	U	15	200	400	ug/Kg
65-85-0	Benzoic acid	480	U	79	480	960	ug/Kg
91-20-3	Naphthalene	200	U	14	200	400	ug/Kg
106-47-8	4-Chloroaniline	200	U	28	200	400	ug/Kg
87-68-3	Hexachlorobutadiene	200	U	15	200	400	ug/Kg
105-60-2	Caprolactam	200	U	19	200	400	ug/Kg
59-50-7	4-Chloro-3-methylphenol	200	U	18	200	400	ug/Kg
91-57-6	2-Methylnaphthalene	200	U	10	200	400	ug/Kg

Client:MS AnalyticalDate Collected:08/13/12Project:12MS104 Kensington HeightsDate Received:08/15/12

Client Sample ID: SB-42(14-16) SDG No.: D3811
Lab Sample ID: D3811-16 Matrix: SOIL
Analytical Method: SW8270D % Moisture: 17

Sample Wt/Vol: 30.07 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume : 1 GPC Factor : 1.0 GPC Cleanup : N PH : N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BG006788 D 1 08/15/12 08/21/12 PB65125

BG006788.D	1	08/15/12	08	/21/12		PB65125	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
77-47-4	Hexachlorocyclopentadiene	200	U	9.7	200	400	ug/Kg
88-06-2	2,4,6-Trichlorophenol	200	U	12	200	400	ug/Kg
95-95-4	2,4,5-Trichlorophenol	200	U	28	200	400	ug/Kg
92-52-4	1,1-Biphenyl	200	U	15	200	400	ug/Kg
91-58-7	2-Chloronaphthalene	200	U	9.1	200	400	ug/Kg
88-74-4	2-Nitroaniline	200	U	18	200	400	ug/Kg
131-11-3	Dimethylphthalate	310	J	11	200	400	ug/Kg
208-96-8	Acenaphthylene	200	U	10	200	400	ug/Kg
606-20-2	2,6-Dinitrotoluene	200	U	16	200	400	ug/Kg
99-09-2	3-Nitroaniline	200	U	26	200	400	ug/Kg
83-32-9	Acenaphthene	200	U	11	200	400	ug/Kg
51-28-5	2,4-Dinitrophenol	200	U	41	200	400	ug/Kg
100-02-7	4-Nitrophenol	200	U	74	200	400	ug/Kg
132-64-9	Dibenzofuran	200	U	16	200	400	ug/Kg
121-14-2	2,4-Dinitrotoluene	200	U	12	200	400	ug/Kg
84-66-2	Diethylphthalate	200	U	6.3	200	400	ug/Kg
7005-72-3	4-Chlorophenyl-phenylether	200	U	22	200	400	ug/Kg
86-73-7	Fluorene	200	U	15	200	400	ug/Kg
100-01-6	4-Nitroaniline	200	U	52	200	400	ug/Kg
534-52-1	4,6-Dinitro-2-methylphenol	200	U	23	200	400	ug/Kg
86-30-6	N-Nitrosodiphenylamine	200	U	9.6	200	400	ug/Kg
103-33-3	Azobenzene	200	U	9.4	200	400	ug/Kg
101-55-3	4-Bromophenyl-phenylether	200	U	7.8	200	400	ug/Kg
118-74-1	Hexachlorobenzene	200	U	16	200	400	ug/Kg
1912-24-9	Atrazine	200	U	21	200	400	ug/Kg
87-86-5	Pentachlorophenol	200	U	27	200	400	ug/Kg
85-01-8	Phenanthrene	200	U	11	200	400	ug/Kg
120-12-7	Anthracene	200	U	8.2	200	400	ug/Kg
86-74-8	Carbazole	200	U	8.8	200	400	ug/Kg
84-74-2	Di-n-butylphthalate	200	U	31	200	400	ug/Kg
206-44-0	Fluoranthene	270	J	8.1	200	400	ug/Kg
92-87-5	Benzidine	200	U	40	200	400	ug/Kg
129-00-0	Pyrene	220	J	9.6	200	400	ug/Kg
		3/1/	of 870				

Sample Wt/Vol:

30.07

Units:

g

Report of Analysis

Client:MS AnalyticalDate Collected:08/13/12Project:12MS104 Kensington HeightsDate Received:08/15/12

 Client Sample ID:
 SB-42(14-16)
 SDG No.:
 D3811

 Lab Sample ID:
 D3811-16
 Matrix:
 SOIL

Analytical Method: SW8270D % Moisture: 17

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Final Vol:

1000

uL

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BG006788 D 1 08/15/12 08/21/12 PB65125

BG006788.D	1	08/15/12	08	/21/12		PB65125	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
85-68-7	Butylbenzylphthalate	200	U	19	200	400	ug/Kg
91-94-1	3,3-Dichlorobenzidine	200	U	26	200	400	ug/Kg
56-55-3	Benzo(a)anthracene	160	J	19	200	400	ug/Kg
218-01-9	Chrysene	170	J	18	200	400	ug/Kg
117-81-7	bis(2-Ethylhexyl)phthalate	200	U	14	200	400	ug/Kg
117-84-0	Di-n-octyl phthalate	200	U	4.6	200	400	ug/Kg
205-99-2	Benzo(b)fluoranthene	200	J	13	200	400	ug/Kg
207-08-9	Benzo(k)fluoranthene	200	U	19	200	400	ug/Kg
50-32-8	Benzo(a)pyrene	170	J	8.7	200	400	ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene	200	U	13	200	400	ug/Kg
53-70-3	Dibenz(a,h)anthracene	200	U	12	200	400	ug/Kg
191-24-2	Benzo(g,h,i)perylene	200	U	16	200	400	ug/Kg
95-94-3	1,2,4,5-Tetrachlorobenzene	200	U	16	200	400	ug/Kg
123-91-1	1,4-Dioxane	200	U	16	200	400	ug/Kg
58-90-2	2,3,4,6-Tetrachlorophenol	200	U	16	200	400	ug/Kg
SURROGATES							
367-12-4	2-Fluorophenol	105		28 - 12		71%	SPK: 150
13127-88-3	Phenol-d5	108		34 - 12		72%	SPK: 150
4165-60-0	Nitrobenzene-d5	71.3		31 - 13		71%	SPK: 100
321-60-8	2-Fluorobiphenyl	62.1		39 - 12		62%	SPK: 100
118-79-6	2,4,6-Tribromophenol	98.1		30 - 13	3	65%	SPK: 150
1718-51-0	Terphenyl-d14	59.8		37 - 11	5	60%	SPK: 100
INTERNAL ST							
3855-82-1	1,4-Dichlorobenzene-d4	147029					
1146-65-2	Naphthalene-d8	534925					
15067-26-2	Acenaphthene-d10	377023					
1517-22-2	Phenanthrene-d10	705074					
1719-03-5	Chrysene-d12	758154					
1520-96-3	Perylene-d12	732319	9 24.77	•			
	DENTIFIED COMPOUNDS						
123-42-2	2-Pentanone, 4-hydroxy-4-methyl		A			5.91	ug/Kg
541-02-6	Cyclopentasiloxane, decamethyl-	120	J			10	ug/Kg
		0.40 -	£ 070				

Soil Aliquot Vol:

Report of Analysis

Client: MS Analytical Date Collected: 08/13/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SDG No.: SB-42(14-16) D3811 Lab Sample ID: D3811-16 Matrix: SOIL % Moisture: Analytical Method: SW8270D 17 Sample Wt/Vol: 30.07 Units: Final Vol: 1000 g

Extraction Type: SOXH Decanted: N Level: LOW

uL

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

Test:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID BG006788.D 1 08/15/12 08/21/12 PB65125

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
593-45-3	Octadecane	92	J			16.12	ug/Kg
638-53-9	Tridecanoic acid	190	J			17.21	ug/Kg
1000197-14-1	4b,8-Dimethyl-2-isopropylphenanthr	170	J			17.95	ug/Kg
6566-19-4	10,18-Bisnorabieta-5,7,9(10),11,13	510	J			18.46	ug/Kg
1000147-93-1	4-Methoxy-2-hydroxystilbene	97	J			20.5	ug/Kg

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

uL

SVOC-Chemtech Full -25

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Client:MS AnalyticalDate Collected:08/13/12Project:12MS104 Kensington HeightsDate Received:08/15/12

Client Sample ID: SB-43(6-8) SDG No.: D3811
Lab Sample ID: D3811-17 Matrix: SOIL
Analytical Method: SW8270D % Moisture: 8

Sample Wt/Vol: 30.04 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF058358.D 1 08/15/12 08/21/12 PB65125

TARGETS Carbon	BF058358.D	1	08/15/12	08	/21/12		PB65125	
10-86-1 Pyridine 180 U 19 180 360 ug/Kg 110-86-1 Pyridine 180 U 72 180 360 ug/Kg 100-52-7 Benzaldehyde 180 UQ 19 180 360 ug/Kg 62-53-3 Aniline 180 U 31 180 360 ug/Kg 108-95-2 Phenol 180 U 8.4 180 360 ug/Kg 111-44-4 bis(2-Chloroethyl)ether 180 U 17 180 360 ug/Kg 95-57-8 2-Chlorophenol 180 U 19 180 360 ug/Kg 95-50-1 1.2-Dichlorobenzene 180 U 14 180 360 ug/Kg 541-73-1 1,3-Dichlorobenzene 180 U 14 180 360 ug/Kg 106-46-7 1,4-Dichlorobenzene 180 U 14 180 360 ug/Kg 100-51-6 Benzyl Alcohol 180 U 14 180 360 ug/Kg 108-60-1 2,2-oxybis(1-Chloropropane) 180 U 15 180 360 ug/Kg 188-60-1 2,2-oxybis(1-Chloropropane) 180 U 15 180 360 ug/Kg 188-60-1 2,2-oxybis(1-horopropane) 180 U 11 180 360 ug/Kg 189-95-3 Nitrobenzene 180 U 11 180 360 ug/Kg 189-95-3 Nitrobenzene 180 U 14 180 360 ug/Kg 189-95-3 Nitrobenzene 180 U 16 180 360 ug/Kg 189-95-3 Nitrobenzene 180 U 14 180 360 ug/Kg 189-55-7 2,4-Dimethylphenol 180 U 17 180 360 ug/Kg 195-67-9 2,4-Dimethylphenol 180 U 17 180 360 ug/Kg 195-67-9 2,4-Dimethylphenol 180 U 17 180 360 ug/Kg 195-67-9 2,4-Dimethylphenol 180 U 17 180 360 ug/Kg 195-67-9 2,4-Dimethylphenol 180 U 17 180 360 ug/Kg 192-03 Naphthalene 180 U 14 180 360 ug/Kg 192-03 Naphthalene 180 U 14 180 360 ug/Kg 192-03 Naphthalene 180 U 17 180 360 ug/Kg 192-03 Naphthalene 180 U 17 180 360 ug/Kg 192-03 Naphthalene 180 U 17 180 360 ug/Kg 192-03 Naphthalene 180 U 17 180 360 ug/Kg 192-03 Naphthalene 180 U 17 180 360 ug/Kg 192-03 Naphthalene 180 U 17 180 360 ug/Kg 192-03 Naphthalene 180 U 17 180 360 ug/Kg 192-03 Naphthalene 180 U	CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
110-86-1	TARGETS							
100-52-7 Benzaldehyde		.,						
C2-53-3		Pyridine						ug/Kg
108-95-2 Phenol 180 U 8.4 180 360 ug/Kg 111-44-4 bis(2-Chloroethyl)ether 180 U 17 180 360 ug/Kg 95-57-8 2-Chlorophenol 180 U 19 180 360 ug/Kg 95-50-1 1,2-Dichlorobenzene 180 U 14 180 360 ug/Kg 541-73-1 1,3-Dichlorobenzene 180 U 14 180 360 ug/Kg 106-46-7 1,4-Dichlorobenzene 180 U 12 180 360 ug/Kg 100-51-6 Benzyl Alcohol 180 U 14 180 360 ug/Kg 108-60-1 2,2-oxybis(1-Chloropropane) 180 U 15 180 360 ug/Kg 108-60-1 2,2-oxybis(1-Chloropropane) 180 U 15 180 360 ug/Kg 108-60-1 2,2-oxybis(1-Chloropropane) 180 U 11 180 360 ug/Kg 65794-96-9 3+4-Methylphenols 180 U 19 180 360 ug/Kg 65794-96-9 3+4-Methylphenols 180 U 19 180 360 ug/Kg 621-64-7 N-Nitroso-di-n-propylamine 180 U 18 180 360 ug/Kg 98-95-3 Nitrobenzene 180 U 14 180 360 ug/Kg 98-95-3 Nitrobenzene 180 U 14 180 360 ug/Kg 98-95-3 Nitrobenzene 180 U 14 180 360 ug/Kg 98-95-1 Isophorone 180 U 17 180 360 ug/Kg 105-67-9 2,4-Dimethylphenol 180 U 17 180 360 ug/Kg 105-68-2 2,4-Dichlorophenol 180 U 14 180 360 ug/Kg 120-83-2 2,4-Dichlorophenol 180 U 14 180 360 ug/Kg 120-83-2 2,4-Dichlorobenzene 180 U 14 180 360 ug/Kg 120-83-3 Napthalene 180 U 14 180 360 ug/Kg 19-20-3 Napthalene 180 U 12 180 360 ug/Kg 19-20-3 Napthalene 180 U 17 180 360 ug/Kg 19-50-7 4-Chloro-3-methylphenol 180 U 17 180 360 ug/Kg 19-50-7 4-Chloro-3-methylphenol 180 U 17 180 360 ug/Kg 19-50-7 4-Chloro-3-methylphenol 180 U 17 180 360 ug/Kg 19-50-7 4-Chloro-3-methylphenol 180 U 17 180 360 ug/Kg 19-50-7 4-Chloro-3-methylphenol 180 U 16 180 360 ug/Kg 19-50-7 4-Chloro-3-methylphenol 180 U 16 180	100-52-7	Benzaldehyde		UQ		180		ug/Kg
111-44-4 bis(2-Chloroethyl)ether 180 U 17 180 360 ug/Kg 95-57-8 2-Chlorophenol 180 U 19 180 360 ug/Kg 95-50-1 1,2-Dichlorobenzene 180 U 14 180 360 ug/Kg 541-73-1 1,3-Dichlorobenzene 180 U 6.4 180 360 ug/Kg 106-46-7 1,4-Dichlorobenzene 180 U 12 180 360 ug/Kg 100-51-6 Benzyl Alcohol 180 U 14 180 360 ug/Kg 100-51-6 Benzyl Alcohol 180 U 20 180 360 ug/Kg 108-60-1 2,2-oxybis(1-Chloropropane) 180 U 15 180 360 ug/Kg 108-60-1 2,2-oxybis(1-Chloropropane) 180 U 15 180 360 ug/Kg 108-60-1 2,2-oxybis(1-Chloropropane) 180 U 11 180 360 ug/Kg 108-60-1 2,2-oxybis(1-Chloropropane) 180 U 11 180 360 ug/Kg 108-60-1 2,2-oxybis(1-Chloropropane) 180 U 11 180 360 ug/Kg 108-60-1 3+4-Methylphenols 180 U 11 180 360 ug/Kg 108-60-1 3+4-Methylphenols 180 U 19 180 360 ug/Kg 108-67-9 3+4-Methylphenols 180 U 18 180 360 ug/Kg 108-67-9 3+4-Methylphenol 180 U 16 180 360 ug/Kg 108-67-9 2,4-Dimethylphenol 180 U 14 180 360 ug/Kg 108-67-9 2,4-Dimethylphenol 180 U 17 180 360 ug/Kg 111-91-1 bis(2-Chloroethoxy)methane 180 U 14 180 360 ug/Kg 120-83-2 2,4-Dichlorophenol 180 U 14 180 360 ug/Kg 120-83-2 2,4-Dichlorophenol 180 U 14 180 360 ug/Kg 120-83-1 1,2,4-Trichlorobenzene 180 U 14 180 360 ug/Kg 120-83-1 1,2,4-Trichlorobenzene 180 U 14 180 360 ug/Kg 120-83-3 Naphthalene 180 U 12 180 360 ug/Kg 120-83-3 Naphthalene 180 U 13 180 360 ug/Kg 106-47-8 4-Chloroailline 180 U 17 180 360 ug/Kg 106-47-8 4-Chloroailline 180 U 17 180 360 ug/Kg 106-47-8 4-Chloroailline 180 U 17 180 360 ug/Kg 106-47-8 4-Chloroa-1line 180 U 17 180 360 ug/Kg 106-47-8 4-Chloroa-1line 180 U 17 180 360 ug/Kg 106-47-8 4	62-53-3	Aniline	180	U	31	180		ug/Kg
95-57-8 2-Chlorophenol 180 U 19 180 360 ug/Kg 95-50-1 1,2-Dichlorobenzene 180 U 14 180 360 ug/Kg 541-73-1 1,3-Dichlorobenzene 180 U 6.4 180 360 ug/Kg 106-46-7 1,4-Dichlorobenzene 180 U 12 180 360 ug/Kg 100-51-6 Benzyl Alcohol 180 U 14 180 360 ug/Kg 95-48-7 2-Methylphenol 180 U 20 180 360 ug/Kg 108-60-1 2,2-oxybis(1-Chloropropane) 180 U 15 180 360 ug/Kg 98-86-2 Acetophenone 180 U 11 180 360 ug/Kg 65794-96-9 3+4-Methylphenols 180 U 18 180 360 ug/Kg 617-72-1 Hexachloroethane 180 U 16 180 360 ug/Kg	108-95-2	Phenol	180	U	8.4	180	360	ug/Kg
95-50-1 1,2-Dichlorobenzene 180 U 14 180 360 ug/Kg 541-73-1 1,3-Dichlorobenzene 180 U 6.4 180 360 ug/Kg 106-46-7 1,4-Dichlorobenzene 180 U 12 180 360 ug/Kg 106-46-7 1,4-Dichlorobenzene 180 U 12 180 360 ug/Kg 100-51-6 Benzyl Alcohol 180 U 14 180 360 ug/Kg 95-48-7 2-Methylphenol 180 U 14 180 360 ug/Kg 108-60-1 2,2-oxybis(1-Chloropropane) 180 U 15 180 360 ug/Kg 98-86-2 Acetophenone 180 U 11 180 360 ug/Kg 65794-96-9 3+4-Methylphenols 180 U 19 180 360 ug/Kg 621-64-7 N-Nitroso-di-n-propylamine 180 U 18 180 360 ug/Kg 67-72-1 Hexachloroethane 180 U 18 180 360 ug/Kg 98-95-3 Nitrobenzene 180 U 16 180 360 ug/Kg 78-59-1 Isophorone 180 U 14 180 360 ug/Kg 88-75-5 2-Nitrophenol 180 U 12 180 360 ug/Kg 105-67-9 2,4-Dimethylphenol 180 U 17 180 360 ug/Kg 111-91-1 bis(2-Chloroethoxy)methane 180 U 14 180 360 ug/Kg 120-83-2 2,4-Dichlorophenol 180 U 14 180 360 ug/Kg 120-83-2 2,4-Dichlorophenol 180 U 14 180 360 ug/Kg 120-83-2 1,2,4-Trichlorobenzene 180 U 14 180 360 ug/Kg 120-83-1 Naphthalene 180 U 14 180 360 ug/Kg 120-83-1 Naphthalene 180 U 14 180 360 ug/Kg 120-83-1 Naphthalene 180 U 14 180 360 ug/Kg 120-83-2 A-Chloroailine 180 U 14 180 360 ug/Kg 120-83-2 A-Dichlorophenol 180 U 14 180 360 ug/Kg 120-83-2 A-Dichlorophenol 180 U 14 180 360 ug/Kg 120-83-2 A-Dichlorophenol 180 U 14 180 360 ug/Kg 120-83-4 Hexachlorobutadiene 180 U 12 180 360 ug/Kg 130-60-2 Caprolactam 180 U 13 180 360 ug/Kg 106-60-2 Caprolactam 180 U 17 180 360 ug/Kg 106-60-2 Caprolactam 180 U 17 180 360 ug/Kg 105-60-2 Caprolactam 180 U 17 180 360 ug/Kg 105-60-2 Caprolactam 180 U 17 180 360 ug/Kg 105-60-2 Caprolactam 180 U 17 180 360 ug/Kg 105-60-2 Caprolactam 180 U 17 180 360 ug/Kg 105-60-2 Caprolactam 180 U 16 180 360 ug/Kg 105-60-2 Caprolactam 180 U 16 180 360 ug/Kg 105-60-2 Caprolactam 180 U 16 180 360 ug/Kg 105-60-2 Caprolactam 180 U 16 180 360 ug/Kg 105-60-2 Caprolactam 180 U 16 180 360 ug/Kg 105-60-2 Caprolactam 180 U 16 180 360 ug/Kg 105-60-2 Caprolactam 180 U 16 180 360 ug/Kg 105-60-2	111-44-4	bis(2-Chloroethyl)ether	180	U	17	180	360	ug/Kg
541-73-1 1,3-Dichlorobenzene 180 U 6.4 180 360 ug/kg 106-46-7 1,4-Dichlorobenzene 180 U 12 180 360 ug/kg 100-51-6 Benzyl Alcohol 180 U 14 180 360 ug/kg 95-48-7 2-Methylphenol 180 U 20 180 360 ug/kg 108-60-1 2,2-oxybis(1-Chloropropane) 180 U 15 180 360 ug/kg 98-86-2 Acetophenone 180 U 11 180 360 ug/kg 65794-96-9 3+4-Methylphenols 180 U 19 180 360 ug/kg 621-64-7 N-Nitroso-di-n-propylamine 180 U 18 180 360 ug/kg 67-72-1 Hexachloroethane 180 U 16 180 360 ug/kg 78-59-1 Isophorone 180 U 12 180 360 ug/kg	95-57-8	2-Chlorophenol	180	U	19	180	360	ug/Kg
106-46-7	95-50-1	1,2-Dichlorobenzene	180	U	14	180	360	ug/Kg
100-51-6 Benzyl Alcohol 180 U 14 180 360 ug/Kg	541-73-1	1,3-Dichlorobenzene	180	U	6.4	180	360	ug/Kg
95-48-7 2-Methylphenol 180 U 20 180 360 ug/Kg 108-60-1 2,2-oxybis(1-Chloropropane) 180 U 15 180 360 ug/Kg 98-86-2 Acetophenone 180 U 11 180 360 ug/Kg 65794-96-9 3+4-Methylphenols 180 U 19 180 360 ug/Kg 621-64-7 N-Nitroso-di-n-propylamine 180 U 18 180 360 ug/Kg 67-72-1 Hexachloroethane 180 U 16 180 360 ug/Kg 98-95-3 Nitrobenzene 180 U 14 180 360 ug/Kg 98-95-1 Isophorone 180 U 12 180 360 ug/Kg 88-75-5 2-Nitrophenol 180 U 17 180 360 ug/Kg 11-9-1 bis(2-Chloroethoxy)methane 180 U 21 180 360 ug/Kg <td>106-46-7</td> <td>1,4-Dichlorobenzene</td> <td>180</td> <td>U</td> <td>12</td> <td>180</td> <td>360</td> <td>ug/Kg</td>	106-46-7	1,4-Dichlorobenzene	180	U	12	180	360	ug/Kg
108-60-1 2,2-oxybis(1-Chloropropane) 180 U 15 180 360 ug/Kg 98-86-2 Acetophenone 180 U 11 180 360 ug/Kg 65794-96-9 3+4-Methylphenols 180 U 19 180 360 ug/Kg 621-64-7 N-Nitroso-di-n-propylamine 180 U 18 180 360 ug/Kg 67-72-1 Hexachloroethane 180 U 16 180 360 ug/Kg 98-95-3 Nitrobenzene 180 U 14 180 360 ug/Kg 98-95-3 Nitrobenzene 180 U 12 180 360 ug/Kg 98-95-3 Nitrobenzene 180 U 12 180 360 ug/Kg 98-95-1 Isophorone 180 U 12 180 360 ug/Kg 88-75-5 2-Nitrophenol 180 U 17 180 360 ug/Kg	100-51-6	Benzyl Alcohol	180	U	14	180	360	ug/Kg
98-86-2 Acetophenone 180 U 11 180 360 ug/Kg 65794-96-9 3+4-Methylphenols 180 U 19 180 360 ug/Kg 621-64-7 N-Nitroso-di-n-propylamine 180 U 18 180 360 ug/Kg 67-72-1 Hexachloroethane 180 U 16 180 360 ug/Kg 98-95-3 Nitrobenzene 180 U 14 180 360 ug/Kg 78-59-1 Isophorone 180 U 12 180 360 ug/Kg 88-75-5 2-Nitrophenol 180 U 17 180 360 ug/Kg 105-67-9 2,4-Dimethylphenol 180 U 21 180 360 ug/Kg 11-91-1 bis(2-Chloroethoxy)methane 180 U 21 180 360 ug/Kg 120-83-2 2,4-Dichlorophenol 180 U 14 180 360 ug/Kg	95-48-7	2-Methylphenol	180	U	20	180	360	ug/Kg
65794-96-9 3+4-Methylphenols 180 U 19 180 360 ug/Kg 621-64-7 N-Nitroso-di-n-propylamine 180 U 18 180 360 ug/Kg 67-72-1 Hexachloroethane 180 U 16 180 360 ug/Kg 98-95-3 Nitrobenzene 180 U 14 180 360 ug/Kg 78-59-1 Isophorone 180 U 12 180 360 ug/Kg 88-75-5 2-Nitrophenol 180 U 17 180 360 ug/Kg 105-67-9 2,4-Dimethylphenol 180 U 21 180 360 ug/Kg 11-91-1 bis(2-Chloroethoxy)methane 180 U 21 180 360 ug/Kg 120-83-2 2,4-Dichlorophenol 180 U 14 180 360 ug/Kg 120-82-1 1,2,4-Trichlorobenzene 180 U 14 180 360 ug/Kg	108-60-1	2,2-oxybis(1-Chloropropane)	180	U	15	180	360	ug/Kg
621-64-7 N-Nitroso-di-n-propylamine 180 U 18 180 360 ug/Kg 67-72-1 Hexachloroethane 180 U 16 180 360 ug/Kg 98-95-3 Nitrobenzene 180 U 14 180 360 ug/Kg 78-59-1 Isophorone 180 U 12 180 360 ug/Kg 88-75-5 2-Nitrophenol 180 U 17 180 360 ug/Kg 105-67-9 2,4-Dimethylphenol 180 U 21 180 360 ug/Kg 11-91-1 bis(2-Chloroethoxy)methane 180 U 21 180 360 ug/Kg 120-83-2 2,4-Dichlorophenol 180 U 14 180 360 ug/Kg 120-82-1 1,2,4-Trichlorobenzene 180 U 14 180 360 ug/Kg 91-20-3 Naphthalene 180 U 12 180 360 ug/Kg <td>98-86-2</td> <td>Acetophenone</td> <td>180</td> <td>U</td> <td>11</td> <td>180</td> <td>360</td> <td>ug/Kg</td>	98-86-2	Acetophenone	180	U	11	180	360	ug/Kg
67-72-1 Hexachloroethane 180 U 16 180 360 ug/Kg 98-95-3 Nitrobenzene 180 U 14 180 360 ug/Kg 78-59-1 Isophorone 180 U 12 180 360 ug/Kg 88-75-5 2-Nitrophenol 180 U 17 180 360 ug/Kg 105-67-9 2,4-Dimethylphenol 180 U 21 180 360 ug/Kg 111-91-1 bis(2-Chloroethoxy)methane 180 U 21 180 360 ug/Kg 120-83-2 2,4-Dichlorophenol 180 U 14 180 360 ug/Kg 120-82-1 1,2,4-Trichlorobenzene 180 U 14 180 360 ug/Kg 65-85-0 Benzoic acid 435 U 72 435 870 ug/Kg 91-20-3 Naphthalene 180 U 12 180 360 ug/Kg	65794-96-9	3+4-Methylphenols	180	U	19	180	360	ug/Kg
98-95-3 Nitrobenzene 180 U 14 180 360 ug/Kg 78-59-1 Isophorone 180 U 12 180 360 ug/Kg 88-75-5 2-Nitrophenol 180 U 17 180 360 ug/Kg 105-67-9 2,4-Dimethylphenol 180 U 21 180 360 ug/Kg 111-91-1 bis(2-Chloroethoxy)methane 180 U 21 180 360 ug/Kg 120-83-2 2,4-Dichlorophenol 180 U 14 180 360 ug/Kg 120-82-1 1,2,4-Trichlorobenzene 180 U 14 180 360 ug/Kg 65-85-0 Benzoic acid 435 U 72 435 870 ug/Kg 91-20-3 Naphthalene 180 U 12 180 360 ug/Kg 87-68-3 Hexachlorobutadiene 180 U 13 180 360 ug/Kg	621-64-7	N-Nitroso-di-n-propylamine	180	U	18	180	360	ug/Kg
78-59-1 Isophorone 180 U 12 180 360 ug/Kg 88-75-5 2-Nitrophenol 180 U 17 180 360 ug/Kg 105-67-9 2,4-Dimethylphenol 180 U 21 180 360 ug/Kg 111-91-1 bis(2-Chloroethoxy)methane 180 U 21 180 360 ug/Kg 120-83-2 2,4-Dichlorophenol 180 U 14 180 360 ug/Kg 120-82-1 1,2,4-Trichlorobenzene 180 U 14 180 360 ug/Kg 65-85-0 Benzoic acid 435 U 72 435 870 ug/Kg 91-20-3 Naphthalene 180 U 12 180 360 ug/Kg 106-47-8 4-Chloroaniline 180 U 26 180 360 ug/Kg 87-68-3 Hexachlorobutadiene 180 U 17 180 360 ug/Kg <	67-72-1	Hexachloroethane	180	U	16	180	360	ug/Kg
88-75-5 2-Nitrophenol 180 U 17 180 360 ug/Kg 105-67-9 2,4-Dimethylphenol 180 U 21 180 360 ug/Kg 111-91-1 bis(2-Chloroethoxy)methane 180 U 21 180 360 ug/Kg 120-83-2 2,4-Dichlorophenol 180 U 14 180 360 ug/Kg 120-82-1 1,2,4-Trichlorobenzene 180 U 14 180 360 ug/Kg 65-85-0 Benzoic acid 435 U 72 435 870 ug/Kg 91-20-3 Naphthalene 180 U 12 180 360 ug/Kg 106-47-8 4-Chloroaniline 180 U 26 180 360 ug/Kg 87-68-3 Hexachlorobutadiene 180 U 13 180 360 ug/Kg 59-50-7 4-Chloro-3-methylphenol 180 U 16 180 360 ug/Kg	98-95-3	Nitrobenzene	180	U	14	180	360	ug/Kg
105-67-9 2,4-Dimethylphenol 180 U 21 180 360 ug/Kg 111-91-1 bis(2-Chloroethoxy)methane 180 U 21 180 360 ug/Kg 120-83-2 2,4-Dichlorophenol 180 U 14 180 360 ug/Kg 120-82-1 1,2,4-Trichlorobenzene 180 U 14 180 360 ug/Kg 65-85-0 Benzoic acid 435 U 72 435 870 ug/Kg 91-20-3 Naphthalene 180 U 12 180 360 ug/Kg 106-47-8 4-Chloroaniline 180 U 26 180 360 ug/Kg 87-68-3 Hexachlorobutadiene 180 U 13 180 360 ug/Kg 105-60-2 Caprolactam 180 U 17 180 360 ug/Kg 59-50-7 4-Chloro-3-methylphenol 180 U 16 180 360 ug/Kg	78-59-1	Isophorone	180	U	12	180	360	ug/Kg
111-91-1 bis(2-Chloroethoxy)methane 180 U 21 180 360 ug/Kg 120-83-2 2,4-Dichlorophenol 180 U 14 180 360 ug/Kg 120-82-1 1,2,4-Trichlorobenzene 180 U 14 180 360 ug/Kg 65-85-0 Benzoic acid 435 U 72 435 870 ug/Kg 91-20-3 Naphthalene 180 U 12 180 360 ug/Kg 106-47-8 4-Chloroaniline 180 U 26 180 360 ug/Kg 87-68-3 Hexachlorobutadiene 180 U 13 180 360 ug/Kg 105-60-2 Caprolactam 180 U 17 180 360 ug/Kg 59-50-7 4-Chloro-3-methylphenol 180 U 16 180 360 ug/Kg	88-75-5	2-Nitrophenol	180	U	17	180	360	ug/Kg
120-83-2 2,4-Dichlorophenol 180 U 14 180 360 ug/Kg 120-82-1 1,2,4-Trichlorobenzene 180 U 14 180 360 ug/Kg 65-85-0 Benzoic acid 435 U 72 435 870 ug/Kg 91-20-3 Naphthalene 180 U 12 180 360 ug/Kg 106-47-8 4-Chloroaniline 180 U 26 180 360 ug/Kg 87-68-3 Hexachlorobutadiene 180 U 13 180 360 ug/Kg 105-60-2 Caprolactam 180 U 17 180 360 ug/Kg 59-50-7 4-Chloro-3-methylphenol 180 U 16 180 360 ug/Kg	105-67-9	2,4-Dimethylphenol	180	U	21	180	360	ug/Kg
120-82-1 1,2,4-Trichlorobenzene 180 U 14 180 360 ug/Kg 65-85-0 Benzoic acid 435 U 72 435 870 ug/Kg 91-20-3 Naphthalene 180 U 12 180 360 ug/Kg 106-47-8 4-Chloroaniline 180 U 26 180 360 ug/Kg 87-68-3 Hexachlorobutadiene 180 U 13 180 360 ug/Kg 105-60-2 Caprolactam 180 U 17 180 360 ug/Kg 59-50-7 4-Chloro-3-methylphenol 180 U 16 180 360 ug/Kg	111-91-1	bis(2-Chloroethoxy)methane	180	U	21	180	360	ug/Kg
65-85-0 Benzoic acid 435 U 72 435 870 ug/Kg 91-20-3 Naphthalene 180 U 12 180 360 ug/Kg 106-47-8 4-Chloroaniline 180 U 26 180 360 ug/Kg 87-68-3 Hexachlorobutadiene 180 U 13 180 360 ug/Kg 105-60-2 Caprolactam 180 U 17 180 360 ug/Kg 59-50-7 4-Chloro-3-methylphenol 180 U 16 180 360 ug/Kg	120-83-2	2,4-Dichlorophenol	180	U	14	180	360	ug/Kg
91-20-3 Naphthalene 180 U 12 180 360 ug/Kg 106-47-8 4-Chloroaniline 180 U 26 180 360 ug/Kg 87-68-3 Hexachlorobutadiene 180 U 13 180 360 ug/Kg 105-60-2 Caprolactam 180 U 17 180 360 ug/Kg 59-50-7 4-Chloro-3-methylphenol 180 U 16 180 360 ug/Kg	120-82-1	1,2,4-Trichlorobenzene	180	U	14	180	360	ug/Kg
106-47-8 4-Chloroaniline 180 U 26 180 360 ug/Kg 87-68-3 Hexachlorobutadiene 180 U 13 180 360 ug/Kg 105-60-2 Caprolactam 180 U 17 180 360 ug/Kg 59-50-7 4-Chloro-3-methylphenol 180 U 16 180 360 ug/Kg	65-85-0	Benzoic acid	435	U	72	435	870	ug/Kg
87-68-3 Hexachlorobutadiene 180 U 13 180 360 ug/Kg 105-60-2 Caprolactam 180 U 17 180 360 ug/Kg 59-50-7 4-Chloro-3-methylphenol 180 U 16 180 360 ug/Kg	91-20-3	Naphthalene	180	U	12	180	360	ug/Kg
105-60-2 Caprolactam 180 U 17 180 360 ug/Kg 59-50-7 4-Chloro-3-methylphenol 180 U 16 180 360 ug/Kg	106-47-8	4-Chloroaniline	180	U	26	180	360	ug/Kg
59-50-7 4-Chloro-3-methylphenol 180 U 16 180 360 ug/Kg	87-68-3	Hexachlorobutadiene	180	U	13	180	360	ug/Kg
	105-60-2	Caprolactam	180	U	17	180	360	ug/Kg
91-57-6 2-Methylnaphthalene 180 U 9.1 180 360 ug/Kg	59-50-7	4-Chloro-3-methylphenol	180	U	16	180	360	ug/Kg
	91-57-6	2-Methylnaphthalene	180	U	9.1	180	360	ug/Kg

Extraction Type:

SOXH

Report of Analysis

Client: MS Analytical Date Collected: 08/13/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-43(6-8) SDG No.: D3811
Lab Sample ID: D3811-17 Matrix: SOIL

Analytical Method: SW8270D % Moisture: 8

Sample Wt/Vol: 30.04 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Decanted:

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

N

Level:

LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF058358.D 1 08/15/12 08/21/12 PB65125

BF058358.D	1	08/15/12	08	/21/12		PB65125	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
77-47-4	Hexachlorocyclopentadiene	180	U	8.8	180	360	ug/Kg
88-06-2	2,4,6-Trichlorophenol	180	U	11	180	360	ug/Kg
95-95-4	2,4,5-Trichlorophenol	180	U	25	180	360	ug/Kg
92-52-4	1,1-Biphenyl	180	U	14	180	360	ug/Kg
91-58-7	2-Chloronaphthalene	180	U	8.2	180	360	ug/Kg
88-74-4	2-Nitroaniline	180	U	16	180	360	ug/Kg
131-11-3	Dimethylphthalate	360		9.8	180	360	ug/Kg
208-96-8	Acenaphthylene	180	U	9.1	180	360	ug/Kg
606-20-2	2,6-Dinitrotoluene	180	U	15	180	360	ug/Kg
99-09-2	3-Nitroaniline	180	U	23	180	360	ug/Kg
83-32-9	Acenaphthene	180	U	10	180	360	ug/Kg
51-28-5	2,4-Dinitrophenol	180	U	37	180	360	ug/Kg
100-02-7	4-Nitrophenol	180	U	67	180	360	ug/Kg
132-64-9	Dibenzofuran	180	U	14	180	360	ug/Kg
121-14-2	2,4-Dinitrotoluene	180	U	11	180	360	ug/Kg
84-66-2	Diethylphthalate	180	U	5.6	180	360	ug/Kg
7005-72-3	4-Chlorophenyl-phenylether	180	U	20	180	360	ug/Kg
86-73-7	Fluorene	180	U	14	180	360	ug/Kg
100-01-6	4-Nitroaniline	180	U	47	180	360	ug/Kg
534-52-1	4,6-Dinitro-2-methylphenol	180	U	21	180	360	ug/Kg
86-30-6	N-Nitrosodiphenylamine	180	U	8.7	180	360	ug/Kg
103-33-3	Azobenzene	180	U	8.5	180	360	ug/Kg
101-55-3	4-Bromophenyl-phenylether	180	U	7.1	180	360	ug/Kg
118-74-1	Hexachlorobenzene	180	U	15	180	360	ug/Kg
1912-24-9	Atrazine	180	U	19	180	360	ug/Kg
87-86-5	Pentachlorophenol	180	U	25	180	360	ug/Kg
85-01-8	Phenanthrene	180	U	9.8	180	360	ug/Kg
120-12-7	Anthracene	180	U	7.4	180	360	ug/Kg
86-74-8	Carbazole	180	U	7.9	180	360	ug/Kg
84-74-2	Di-n-butylphthalate	180	U	28	180	360	ug/Kg
206-44-0	Fluoranthene	180	U	7.3	180	360	ug/Kg
92-87-5	Benzidine	180	U	36	180	360	ug/Kg
129-00-0	Pyrene	180	U	8.7	180	360	ug/Kg
		345	of 870				

Client:MS AnalyticalDate Collected:08/13/12Project:12MS104 Kensington HeightsDate Received:08/15/12

Client Sample ID:SB-43(6-8)SDG No.:D3811Lab Sample ID:D3811-17Matrix:SOILAnalytical Method:SW8270D% Moisture:8

Sample Wt/Vol: 30.04 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BF058358.D 1 08/15/12 08/21/12 PB65125

BF058358.D	1	08/15/12	08	/21/12		PB65125	
CAS Number	Parameter	Conc	Qualifier	MDL	LOD	LOQ / CRQL	Units
85-68-7	Butylbenzylphthalate	180	U	17	180	360	ug/Kg
91-94-1	3,3-Dichlorobenzidine	180	U	23	180	360	ug/Kg
56-55-3	Benzo(a)anthracene	180	U	17	180	360	ug/Kg
218-01-9	Chrysene	180	U	16	180	360	ug/Kg
117-81-7	bis(2-Ethylhexyl)phthalate	180	U	13	180	360	ug/Kg
117-84-0	Di-n-octyl phthalate	180	U	4.1	180	360	ug/Kg
205-99-2	Benzo(b)fluoranthene	180	U	12	180	360	ug/Kg
207-08-9	Benzo(k)fluoranthene	180	U	17	180	360	ug/Kg
50-32-8	Benzo(a)pyrene	180	U	7.8	180	360	ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene	180	U	12	180	360	ug/Kg
53-70-3	Dibenz(a,h)anthracene	180	U	10	180	360	ug/Kg
191-24-2	Benzo(g,h,i)perylene	180	U	15	180	360	ug/Kg
95-94-3	1,2,4,5-Tetrachlorobenzene	180	U	14	180	360	ug/Kg
123-91-1	1,4-Dioxane	180	U	14	180	360	ug/Kg
58-90-2	2,3,4,6-Tetrachlorophenol	180	U	14	180	360	ug/Kg
SURROGATES							
367-12-4	2-Fluorophenol	119		28 - 12	7	80%	SPK: 150
13127-88-3	Phenol-d5	131		34 - 12	7	88%	SPK: 150
4165-60-0	Nitrobenzene-d5	94.8		31 - 13	2	95%	SPK: 100
321-60-8	2-Fluorobiphenyl	86.6		39 - 12	3	87%	SPK: 100
118-79-6	2,4,6-Tribromophenol	126		30 - 13	3	85%	SPK: 150
1718-51-0	Terphenyl-d14	82		37 - 11	5	82%	SPK: 100
INTERNAL STA							
3855-82-1	1,4-Dichlorobenzene-d4	21072					
1146-65-2	Naphthalene-d8	8195					
15067-26-2	Acenaphthene-d10	42082					
1517-22-2	Phenanthrene-d10	66463					
1719-03-5	Chrysene-d12	54314					
1520-96-3	Perylene-d12	4396	16.44				
TENTATIVE ID	ENTIFIED COMPOUNDS						
123-42-2	2-Pentanone, 4-hydroxy-4-methyl-		A			3.1	ug/Kg
541-02-6	Cyclopentasiloxane, decamethyl-	98	J			6.11	ug/Kg

Soil Aliquot Vol:

Report of Analysis

Client:MS AnalyticalDate Collected:08/13/12Project:12MS104 Kensington HeightsDate Received:08/15/12

Client Sample ID: SB-43(6-8) SDG No.: D3811

Lab Sample ID: D3811-17 Matrix: SOIL

Analytical Method: SW8270D % Moisture: 8

Sample Wt/Vol: 30.04 Units: g Final Vol: 1000 uL

Test:

SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

uL

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BF058358.D 1 08/15/12 08/21/12 PB65125

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
13798-23-7	Sulfur	80	J			8.62	ug/Kg
	unknown10.48	89	J			10.48	ug/Kg
112-40-3	Dodecane	120	J			10.86	ug/Kg
1002-84-2	Pentadecanoic acid	110	J			11.22	ug/Kg
10544-50-0	Cyclic octaatomic sulfur	640	J			12.11	ug/Kg
35599-77-0	Tridecane, 1-iodo-	97	J			14.86	ug/Kg
55282-13-8	Octadecane, 5,14-dibutyl-	150	J			15.36	ug/Kg
6938-66-5	1-Bromodocosane	130	J			15.84	ug/Kg
	unknown15.91	92	J			15.91	ug/Kg
62016-79-9	Hentacosane, 1-chloro-	180	J			16.3	ug/Kg

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Client: MS Analytical Date Collected: 08/13/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-43(10-12) SDG No.: D3811 Lab Sample ID: D3811-18 Matrix: SOIL

Analytical Method: SW8270D % Moisture: 18

Sample Wt/Vol: 30.02 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BG006793.D 5 08/15/12 08/21/12 PB65125

BG006/93.D	5	08/15/12	08/	/21/12		PB65125	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
62-75-9	n-Nitrosodimethylamine	1000	U	100	1000	2000	ug/Kg
110-86-1	Pyridine	1000	U	400	1000	2000	ug/Kg
100-52-7	Benzaldehyde	1000	UQ	110	1000	2000	ug/Kg
62-53-3	Aniline	1000	U	170	1000	2000	ug/Kg
108-95-2	Phenol	1000	U	47	1000	2000	ug/Kg
111-44-4	bis(2-Chloroethyl)ether	1000	U	97	1000	2000	ug/Kg
95-57-8	2-Chlorophenol	1000	U	110	1000	2000	ug/Kg
95-50-1	1,2-Dichlorobenzene	1000	U	77	1000	2000	ug/Kg
541-73-1	1,3-Dichlorobenzene	1000	U	36	1000	2000	ug/Kg
106-46-7	1,4-Dichlorobenzene	1000	U	69	1000	2000	ug/Kg
100-51-6	Benzyl Alcohol	1000	U	76	1000	2000	ug/Kg
95-48-7	2-Methylphenol	1000	U	110	1000	2000	ug/Kg
108-60-1	2,2-oxybis(1-Chloropropane)	1000	U	84	1000	2000	ug/Kg
98-86-2	Acetophenone	1000	U	62	1000	2000	ug/Kg
65794-96-9	3+4-Methylphenols	1000	U	110	1000	2000	ug/Kg
621-64-7	N-Nitroso-di-n-propylamine	1000	U	100	1000	2000	ug/Kg
67-72-1	Hexachloroethane	1000	U	91	1000	2000	ug/Kg
98-95-3	Nitrobenzene	1000	U	77	1000	2000	ug/Kg
78-59-1	Isophorone	1000	U	67	1000	2000	ug/Kg
88-75-5	2-Nitrophenol	1000	U	98	1000	2000	ug/Kg
105-67-9	2,4-Dimethylphenol	1000	U	120	1000	2000	ug/Kg
111-91-1	bis(2-Chloroethoxy)methane	1000	U	120	1000	2000	ug/Kg
120-83-2	2,4-Dichlorophenol	1000	U	77	1000	2000	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	1000	U	77	1000	2000	ug/Kg
65-85-0	Benzoic acid	2450	U	400	2450	4900	ug/Kg
91-20-3	Naphthalene	1000	U	70	1000	2000	ug/Kg
106-47-8	4-Chloroaniline	1000	U	140	1000	2000	ug/Kg
87-68-3	Hexachlorobutadiene	1000	U	74	1000	2000	ug/Kg
105-60-2	Caprolactam	1000	U	94	1000	2000	ug/Kg
59-50-7	4-Chloro-3-methylphenol	1000	U	90	1000	2000	ug/Kg
91-57-6	2-Methylnaphthalene	1000	U	51	1000	2000	ug/Kg

Sample Wt/Vol:

30.02

Units:

g

Report of Analysis

Client: MS Analytical Date Collected: 08/13/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-43(10-12) SDG No.: D3811
Lab Sample ID: D3811-18 Matrix: SOIL

Analytical Method: SW8270D % Moisture: 18

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Final Vol:

1000

uL

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BG006793.D 5 08/15/12 08/21/12 PB65125

BG006793.D	5	08/15/12	08	/21/12		PB65125	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
77-47-4	Hexachlorocyclopentadiene	1000	U	49	1000	2000	ug/Kg
88-06-2	2,4,6-Trichlorophenol	1000	U	62	1000	2000	ug/Kg
95-95-4	2,4,5-Trichlorophenol	1000	U	140	1000	2000	ug/Kg
92-52-4	1,1-Biphenyl	1000	U	77	1000	2000	ug/Kg
91-58-7	2-Chloronaphthalene	1000	U	46	1000	2000	ug/Kg
88-74-4	2-Nitroaniline	1000	U	90	1000	2000	ug/Kg
131-11-3	Dimethylphthalate	1000	U	55	1000	2000	ug/Kg
208-96-8	Acenaphthylene	1000	U	51	1000	2000	ug/Kg
606-20-2	2,6-Dinitrotoluene	1000	U	83	1000	2000	ug/Kg
99-09-2	3-Nitroaniline	1000	U	130	1000	2000	ug/Kg
83-32-9	Acenaphthene	1000	U	57	1000	2000	ug/Kg
51-28-5	2,4-Dinitrophenol	1000	U	210	1000	2000	ug/Kg
100-02-7	4-Nitrophenol	1000	U	380	1000	2000	ug/Kg
132-64-9	Dibenzofuran	1000	U	79	1000	2000	ug/Kg
121-14-2	2,4-Dinitrotoluene	1000	U	62	1000	2000	ug/Kg
84-66-2	Diethylphthalate	1000	U	32	1000	2000	ug/Kg
7005-72-3	4-Chlorophenyl-phenylether	1000	U	110	1000	2000	ug/Kg
86-73-7	Fluorene	1000	U	77	1000	2000	ug/Kg
100-01-6	4-Nitroaniline	1000	U	260	1000	2000	ug/Kg
534-52-1	4,6-Dinitro-2-methylphenol	1000	U	120	1000	2000	ug/Kg
86-30-6	N-Nitrosodiphenylamine	1000	U	49	1000	2000	ug/Kg
103-33-3	Azobenzene	1000	U	48	1000	2000	ug/Kg
101-55-3	4-Bromophenyl-phenylether	1000	U	40	1000	2000	ug/Kg
118-74-1	Hexachlorobenzene	1000	U	83	1000	2000	ug/Kg
1912-24-9	Atrazine	1000	U	110	1000	2000	ug/Kg
87-86-5	Pentachlorophenol	1000	U	140	1000	2000	ug/Kg
85-01-8	Phenanthrene	1000	U	55	1000	2000	ug/Kg
120-12-7	Anthracene	1000	U	41	1000	2000	ug/Kg
86-74-8	Carbazole	1000	U	44	1000	2000	ug/Kg
84-74-2	Di-n-butylphthalate	1000	U	160	1000	2000	ug/Kg
206-44-0	Fluoranthene	1000	U	41	1000	2000	ug/Kg
92-87-5	Benzidine	1000	U	200	1000	2000	ug/Kg
129-00-0	Pyrene	1000	U	49	1000	2000	ug/Kg
		349 0	f 870				

Client: MS Analytical Date Collected: 08/13/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-43(10-12) SDG No.: D3811 Lab Sample ID: D3811-18 Matrix: SOIL Analytical Method: SW8270D % Moisture: 18 Sample Wt/Vol: 30.02 Units: g Final Vol: 1000 uL Soil Aliquot Vol: иL Test: SVOC-Chemtech Full -25 Level: Extraction Type: SOXH Decanted: N LOW

GPC Cleanup: GPC Factor: Ν Injection Volume: 1.0 PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID BG006793.D 5 08/15/12 08/21/12 PB65125

BG006793.D	5	08/15/12	08/	/21/12		PB65125	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
85-68-7	Butylbenzylphthalate	1000	U	97	1000	2000	ug/Kg
91-94-1	3,3-Dichlorobenzidine	1000	U	130	1000	2000	ug/Kg
56-55-3	Benzo(a)anthracene	1000	U	97	1000	2000	ug/Kg
218-01-9	Chrysene	1000	U	92	1000	2000	ug/Kg
117-81-7	bis(2-Ethylhexyl)phthalate	1000	U	72	1000	2000	ug/Kg
117-84-0	Di-n-octyl phthalate	1000	U	23	1000	2000	ug/Kg
205-99-2	Benzo(b)fluoranthene	1000	U	66	1000	2000	ug/Kg
207-08-9	Benzo(k)fluoranthene	1000	U	96	1000	2000	ug/Kg
50-32-8	Benzo(a)pyrene	1000	U	44	1000	2000	ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene	1000	U	68	1000	2000	ug/Kg
53-70-3	Dibenz(a,h)anthracene	1000	U	58	1000	2000	ug/Kg
191-24-2	Benzo(g,h,i)perylene	1000	U	82	1000	2000	ug/Kg
95-94-3	1,2,4,5-Tetrachlorobenzene	1000	U	80	1000	2000	ug/Kg
123-91-1	1,4-Dioxane	1000	U	80	1000	2000	ug/Kg
58-90-2	2,3,4,6-Tetrachlorophenol	1000	U	80	1000	2000	ug/Kg
SURROGATES	5						
367-12-4	2-Fluorophenol	114		28 - 127	7	77%	SPK: 150
13127-88-3	Phenol-d5	117		34 - 127	7	78%	SPK: 150
4165-60-0	Nitrobenzene-d5	81.3		31 - 132	2	81%	SPK: 100
321-60-8	2-Fluorobiphenyl	65.2		39 - 123	3	65%	SPK: 100
118-79-6	2,4,6-Tribromophenol	101		30 - 133	3	68%	SPK: 150
1718-51-0	Terphenyl-d14	56.4		37 - 115	5	56%	SPK: 100
INTERNAL ST	ANDARDS						
3855-82-1	1,4-Dichlorobenzene-d4	152640	8.69				
1146-65-2	Naphthalene-d8	550478	10.88				
15067-26-2	Acenaphthene-d10	371702	13.88				
1517-22-2	Phenanthrene-d10	693045	16.37				
1719-03-5	Chrysene-d12	732996	20.88				
1520-96-3	Perylene-d12	715546	24.77				
TENTATIVE II	DENTIFIED COMPOUNDS						
6566-19-4	10,18-Bisnorabieta-5,7,9(10),11,1	3 920	J			18.46	ug/Kg

Client: MS Analytical I

Date Collected: 08/13/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-43(10-12) SDG No.: D3811

Lab Sample ID: D3811-18 Matrix: SOIL

Analytical Method: SW8270D % Moisture: 18

Sample Wt/Vol: 30.02 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BG006793.D 5 08/15/12 08/21/12 PB65125

CAS Number Parameter Conc. Qualifier MDL LOD LOQ/CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Client: MS Analytical Date Collected: 08/13/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SDG No.: SB-43(16-20) D3811 Lab Sample ID: D3811-19 Matrix: SOIL Analytical Method: SW8270D % Moisture: 29 Sample Wt/Vol: 30.07 Units: g Final Vol: 1000 uL Soil Aliquot Vol: иL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID BF058359.D 1 08/15/12 08/21/12 PB65125

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units	
TARGETS								
62-75-9	n-Nitrosodimethylamine	230	U	24	230	460	ug/Kg	
110-86-1	Pyridine	230	U	93	230	460	ug/Kg	
100-52-7	Benzaldehyde	230	UQ	24	230	460	ug/Kg	
62-53-3	Aniline	230	U	40	230	460	ug/Kg	
108-95-2	Phenol	230	U	11	230	460	ug/Kg	
111-44-4	bis(2-Chloroethyl)ether	230	U	22	230	460	ug/Kg	
95-57-8	2-Chlorophenol	230	U	25	230	460	ug/Kg	
95-50-1	1,2-Dichlorobenzene	230	U	18	230	460	ug/Kg	
541-73-1	1,3-Dichlorobenzene	230	U	8.3	230	460	ug/Kg	
106-46-7	1,4-Dichlorobenzene	230	U	16	230	460	ug/Kg	
100-51-6	Benzyl Alcohol	230	U	18	230	460	ug/Kg	
95-48-7	2-Methylphenol	230	U	25	230	460	ug/Kg	
108-60-1	2,2-oxybis(1-Chloropropane)	230	U	19	230	460	ug/Kg	
98-86-2	Acetophenone	230	U	14	230	460	ug/Kg	
65794-96-9	3+4-Methylphenols	230	U	24	230	460	ug/Kg	
621-64-7	N-Nitroso-di-n-propylamine	230	U	24	230	460	ug/Kg	
67-72-1	Hexachloroethane	230	U	21	230	460	ug/Kg	
98-95-3	Nitrobenzene	230	U	18	230	460	ug/Kg	
78-59-1	Isophorone	230	U	15	230	460	ug/Kg	
88-75-5	2-Nitrophenol	230	U	23	230	460	ug/Kg	
105-67-9	2,4-Dimethylphenol	230	U	27	230	460	ug/Kg	
111-91-1	bis(2-Chloroethoxy)methane	230	U	27	230	460	ug/Kg	
120-83-2	2,4-Dichlorophenol	230	U	18	230	460	ug/Kg	
120-82-1	1,2,4-Trichlorobenzene	230	U	18	230	460	ug/Kg	
65-85-0	Benzoic acid	550	U	93	550	1100	ug/Kg	
91-20-3	Naphthalene	230	U	16	230	460	ug/Kg	
106-47-8	4-Chloroaniline	230	U	33	230	460	ug/Kg	
87-68-3	Hexachlorobutadiene	230	U	17	230	460	ug/Kg	
105-60-2	Caprolactam	230	U	22	230	460	ug/Kg	
59-50-7	4-Chloro-3-methylphenol	230	U	21	230	460	ug/Kg	
91-57-6	2-Methylnaphthalene	230	U	12	230	460	ug/Kg	

D

SVOC-Chemtech Full -25

Units

LOQ / CRQL

Soil Aliquot Vol:

CAS Number

129-00-0

Pyrene

Parameter

Report of Analysis

Client:MS AnalyticalDate Collected:08/13/12Project:12MS104 Kensington HeightsDate Received:08/15/12Client Sample ID:SB-43(16-20)SDG No.:D3811

Lab Sample ID: D3811-19 Matrix: SOIL
Analytical Method: SW8270D % Moisture: 29

Sample Wt/Vol: 30.07 Units: g Final Vol: 1000 uL

Test:

MDL

LOD

Extraction Type: SOXH Decanted: N Level: LOW

uL

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

Conc.

Qualifier

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BF058359.D 1 08/15/12 08/21/12 PB65125

U 77-47-4 Hexachlorocyclopentadiene 230 11 230 460 ug/Kg 88-06-2 2,4,6-Trichlorophenol 230 U 14 230 460 ug/Kg 95-95-4 230 U 33 230 460 2,4,5-Trichlorophenol ug/Kg 92-52-4 1,1-Biphenyl 230 U 18 230 460 ug/Kg 230 U 91-58-7 2-Chloronaphthalene 11 230 460 ug/Kg 230 U 230 88-74-4 2-Nitroaniline 21 460 ug/Kg J 420 13 230 460 131-11-3 Dimethylphthalate ug/Kg U 208-96-8 230 12 230 460 Acenaphthylene ug/Kg 230 U 19 230 606-20-2 2,6-Dinitrotoluene 460 ug/Kg 230 U 30 230 99-09-2 3-Nitroaniline 460 ug/Kg 83-32-9 Acenaphthene 230 U 13 230 460 ug/Kg 230 2,4-Dinitrophenol 230 U 48 460 51-28-5 ug/Kg 4-Nitrophenol 230 U 87 230 460 100-02-7 ug/Kg Dibenzofuran 230 U 18 230 460 132-64-9 ug/Kg 230 U 14 230 121-14-2 2,4-Dinitrotoluene 460 ug/Kg 7.3 84-66-2 Diethylphthalate 230 U 230 460 ug/Kg U 7005-72-3 4-Chlorophenyl-phenylether 230 25 230 460 ug/Kg 86-73-7 Fluorene 230 U 18 230 460 ug/Kg 100-01-6 4-Nitroaniline 230 U 61 230 460 ug/Kg 534-52-1 4,6-Dinitro-2-methylphenol 230 U 27 230 460 ug/Kg N-Nitrosodiphenylamine 230 U 11 230 460 86-30-6 ug/Kg 103-33-3 Azobenzene 230 IJ 11 230 460 ug/Kg 101-55-3 4-Bromophenyl-phenylether 230 U 9.1 230 460 ug/Kg 118-74-1 Hexachlorobenzene 230 U 19 230 460 ug/Kg 1912-24-9 Atrazine 230 U 25 230 460 ug/Kg 87-86-5 Pentachlorophenol 230 U 32 230 460 ug/Kg 85-01-8 Phenanthrene 230 U 13 230 460 ug/Kg 120-12-7 Anthracene 230 U 9.6 230 460 ug/Kg 86-74-8 230 U 10 230 460 Carbazole ug/Kg Di-n-butylphthalate 460 84-74-2 230 U 37 230 ug/Kg Fluoranthene 230 U 9.4 230 460 206-44-0 ug/Kg 230 U 47 230 92-87-5 Benzidine 460 ug/Kg

353 of 870

U

11

230

460

ug/Kg

230

Client: MS Analytical Date Collected: 08/13/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-43(16-20) SDG No.: D3811 Lab Sample ID: D3811-19 Matrix: SOIL Analytical Method: SW8270D % Moisture: 29 Sample Wt/Vol: 30.07 Units: g Final Vol: 1000 uL Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BE058359 D 1 08/15/12 08/21/12 PB65125

BF058359.D	1	08/15/12	08.	/21/12		PB65125	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
85-68-7	Butylbenzylphthalate	230	U	22	230	460	ug/Kg
91-94-1	3,3-Dichlorobenzidine	230	U	30	230	460	ug/Kg
56-55-3	Benzo(a)anthracene	230	U	22	230	460	ug/Kg
218-01-9	Chrysene	230	U	21	230	460	ug/Kg
117-81-7	bis(2-Ethylhexyl)phthalate	230	U	17	230	460	ug/Kg
117-84-0	Di-n-octyl phthalate	230	U	5.3	230	460	ug/Kg
205-99-2	Benzo(b)fluoranthene	230	U	15	230	460	ug/Kg
207-08-9	Benzo(k)fluoranthene	230	U	22	230	460	ug/Kg
50-32-8	Benzo(a)pyrene	230	U	10	230	460	ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene	230	U	16	230	460	ug/Kg
53-70-3	Dibenz(a,h)anthracene	230	U	13	230	460	ug/Kg
191-24-2	Benzo(g,h,i)perylene	230	U	19	230	460	ug/Kg
95-94-3	1,2,4,5-Tetrachlorobenzene	230	U	18	230	460	ug/Kg
123-91-1	1,4-Dioxane	230	U	18	230	460	ug/Kg
58-90-2	2,3,4,6-Tetrachlorophenol	230	U	18	230	460	ug/Kg
SURROGATES							
367-12-4	2-Fluorophenol	114		28 - 12		76%	SPK: 150
13127-88-3	Phenol-d5	125		34 - 12		84%	SPK: 150
4165-60-0	Nitrobenzene-d5	80.6		31 - 13	2	81%	SPK: 100
321-60-8	2-Fluorobiphenyl	58.9		39 - 12	3	59%	SPK: 100
118-79-6	2,4,6-Tribromophenol	117		30 - 13	3	78%	SPK: 150
1718-51-0	Terphenyl-d14	54.1		37 - 11	5	54%	SPK: 100
INTERNAL ST							
3855-82-1	1,4-Dichlorobenzene-d4	209791					
1146-65-2	Naphthalene-d8	808679					
15067-26-2	Acenaphthene-d10	421313					
1517-22-2	Phenanthrene-d10	657582					
1719-03-5	Chrysene-d12	551333					
1520-96-3	Perylene-d12	467408	16.44				
	DENTIFIED COMPOUNDS						
123-42-2	2-Pentanone, 4-hydroxy-4-methyl		A			3.1	ug/Kg
13798-23-7	Sulfur	260	J			8.63	ug/Kg
		354 o	f 870				

Injection Volume:

1

Report of Analysis

Client:	MS Analy	tical				Date Collected:	08/13/12	
Project:	12MS104	Kensingto	n Heights			Date Received:	08/15/12	
Client Sample ID:	SB-43(16-	20)				SDG No.:	D3811	
Lab Sample ID:	D3811-19					Matrix:	SOIL	
Analytical Method:	SW8270D	ı				% Moisture:	29	
Sample Wt/Vol:	30.07	Units:	g			Final Vol:	1000	uL
Soil Aliquot Vol:			uL			Test:	SVOC-Chemted	h Full -25
Extraction Type:	SOXH			Decanted:	N	Level:	LOW	

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
BF058359.D	1	08/15/12	08/21/12	PB65125

GPC Factor: 1.0

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
1135-40-6	CAPS	170	J			10.48	ug/Kg
10544-50-0	Cyclic octaatomic sulfur	3200	J			12.13	ug/Kg
7683-64-9	Squalene	190	J			15.92	ug/Kg

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

GPC Cleanup:

Ν

PH:

N/A

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Client: MS Analytical Date Collected: 08/13/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-45(10-12) SDG No.: D3811 Lab Sample ID: D3811-20 Matrix: SOIL Analytical Method: SW8270D % Moisture: 28 Sample Wt/Vol: 30.05 Units: g Final Vol: 1000 uL Soil Aliquot Vol: иL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID BG006794.D 5 08/15/12 08/21/12 PB65125

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
62-75-9	n-Nitrosodimethylamine	1150	U	120	1150	2300	ug/Kg
110-86-1	Pyridine	1150	U	460	1150	2300	ug/Kg
100-52-7	Benzaldehyde	1150	UQ	120	1150	2300	ug/Kg
62-53-3	Aniline	1150	U	200	1150	2300	ug/Kg
108-95-2	Phenol	1150	U	53	1150	2300	ug/Kg
111-44-4	bis(2-Chloroethyl)ether	1150	U	110	1150	2300	ug/Kg
95-57-8	2-Chlorophenol	1150	U	120	1150	2300	ug/Kg
95-50-1	1,2-Dichlorobenzene	1150	U	88	1150	2300	ug/Kg
541-73-1	1,3-Dichlorobenzene	1150	U	41	1150	2300	ug/Kg
106-46-7	1,4-Dichlorobenzene	1150	U	79	1150	2300	ug/Kg
100-51-6	Benzyl Alcohol	1150	U	87	1150	2300	ug/Kg
95-48-7	2-Methylphenol	1150	U	130	1150	2300	ug/Kg
108-60-1	2,2-oxybis(1-Chloropropane)	1150	U	96	1150	2300	ug/Kg
98-86-2	Acetophenone	1150	U	71	1150	2300	ug/Kg
65794-96-9	3+4-Methylphenols	1150	U	120	1150	2300	ug/Kg
621-64-7	N-Nitroso-di-n-propylamine	1150	U	120	1150	2300	ug/Kg
67-72-1	Hexachloroethane	1150	U	100	1150	2300	ug/Kg
98-95-3	Nitrobenzene	1150	U	87	1150	2300	ug/Kg
78-59-1	Isophorone	1150	U	76	1150	2300	ug/Kg
88-75-5	2-Nitrophenol	1150	U	110	1150	2300	ug/Kg
105-67-9	2,4-Dimethylphenol	1150	U	130	1150	2300	ug/Kg
111-91-1	bis(2-Chloroethoxy)methane	1150	U	130	1150	2300	ug/Kg
120-83-2	2,4-Dichlorophenol	1150	U	88	1150	2300	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	1150	U	88	1150	2300	ug/Kg
65-85-0	Benzoic acid	2750	U	460	2750	5500	ug/Kg
91-20-3	Naphthalene	1150	U	80	1150	2300	ug/Kg
106-47-8	4-Chloroaniline	1150	U	160	1150	2300	ug/Kg
87-68-3	Hexachlorobutadiene	1150	U	84	1150	2300	ug/Kg
105-60-2	Caprolactam	1150	U	110	1150	2300	ug/Kg
59-50-7	4-Chloro-3-methylphenol	1150	U	100	1150	2300	ug/Kg
91-57-6	2-Methylnaphthalene	1150	U	58	1150	2300	ug/Kg

D

129-00-0

Pyrene

Report of Analysis

Client: MS Analytical Date Collected: 08/13/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-45(10-12) SDG No.: D3811

Lab Sample ID: D3811-20 Matrix: SOIL

Analytical Method: SW8270D % Moisture: 28

Sample Wt/Vol: 30.05 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BG006794.D 5 08/15/12 08/21/12 PB65125

CAS Number Parameter Conc. Qualifier **MDL** LOD LOQ / CRQL Units 77-47-4 Hexachlorocyclopentadiene 1150 U 56 1150 2300 ug/Kg 88-06-2 2,4,6-Trichlorophenol 1150 U 71 1150 2300 ug/Kg 95-95-4 U 160 2,4,5-Trichlorophenol 1150 1150 2300 ug/Kg 92-52-4 1,1-Biphenyl 1150 U 87 1150 2300 ug/Kg U 91-58-7 2-Chloronaphthalene 1150 53 1150 2300 ug/Kg 100 88-74-4 2-Nitroaniline 1150 U 1150 2300 ug/Kg U 62 131-11-3 Dimethylphthalate 1150 1150 2300 ug/Kg 208-96-8 U 58 2300 Acenaphthylene 1150 1150 ug/Kg U 94 606-20-2 2,6-Dinitrotoluene 1150 1150 2300 ug/Kg U 150 99-09-2 3-Nitroaniline 1150 1150 2300 ug/Kg 83-32-9 Acenaphthene 1150 U 65 1150 2300 ug/Kg 2,4-Dinitrophenol U 240 2300 51-28-5 1150 1150 ug/Kg 4-Nitrophenol 1150 U 430 100-02-7 1150 2300 ug/Kg Dibenzofuran U 90 132-64-9 1150 1150 2300 ug/Kg U 70 121-14-2 2,4-Dinitrotoluene 1150 1150 2300 ug/Kg 84-66-2 Diethylphthalate 1150 U 36 1150 2300 ug/Kg 7005-72-3 4-Chlorophenyl-phenylether 1150 U 130 1150 2300 ug/Kg 86-73-7 Fluorene 1150 U 87 1150 2300 ug/Kg 100-01-6 4-Nitroaniline 1150 U 300 1150 2300 ug/Kg 534-52-1 4,6-Dinitro-2-methylphenol 1150 U 130 1150 2300 ug/Kg N-Nitrosodiphenylamine U 55 1150 2300 86-30-6 1150 ug/Kg 103-33-3 Azobenzene 1150 IJ 54 1150 2300 ug/Kg 101-55-3 4-Bromophenyl-phenylether 1150 U 45 1150 2300 ug/Kg 118-74-1 Hexachlorobenzene 1150 U 94 1150 2300 ug/Kg 1912-24-9 Atrazine 1150 IJ 120 1150 2300 ug/Kg 87-86-5 Pentachlorophenol 1150 U 160 1150 2300 ug/Kg 85-01-8 Phenanthrene U 62 1150 2300 ug/Kg 1150 120-12-7 Anthracene 1150 U 47 1150 2300 ug/Kg 86-74-8 1150 U 51 2300 Carbazole 1150 ug/Kg 84-74-2 Di-n-butylphthalate 1150 U 180 1150 2300 ug/Kg Fluoranthene U 2300 206-44-0 1150 46 1150 ug/Kg U 230 92-87-5 Benzidine 1150 1150 2300 ug/Kg

357 of 870

U

55

1150

2300

ug/Kg

1150

Soil Aliquot Vol:

Report of Analysis

Client: MS Analytical Date Collected: 08/13/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-45(10-12) SDG No.: D3811 Lab Sample ID: D3811-20 Matrix: SOIL Analytical Method: SW8270D % Moisture: 28 Sample Wt/Vol: 30.05 Units: g Final Vol: 1000 uL

Extraction Type: SOXH Decanted: N Level: LOW

иL

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

Test:

SVOC-Chemtech Full -25

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BG006794.D 5 08/15/12 08/21/12 PB65125

BG006794.D	5	08/15/12	08	/21/12		PB65125	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
85-68-7	Butylbenzylphthalate	1150	U	110	1150	2300	ug/Kg
91-94-1	3,3-Dichlorobenzidine	1150	U	150	1150	2300	ug/Kg
56-55-3	Benzo(a)anthracene	1150	U	110	1150	2300	ug/Kg
218-01-9	Chrysene	1150	U	100	1150	2300	ug/Kg
117-81-7	bis(2-Ethylhexyl)phthalate	1150	U	82	1150	2300	ug/Kg
117-84-0	Di-n-octyl phthalate	1150	U	26	1150	2300	ug/Kg
205-99-2	Benzo(b)fluoranthene	1150	U	76	1150	2300	ug/Kg
207-08-9	Benzo(k)fluoranthene	1150	U	110	1150	2300	ug/Kg
50-32-8	Benzo(a)pyrene	1150	U	50	1150	2300	ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene	1150	U	77	1150	2300	ug/Kg
53-70-3	Dibenz(a,h)anthracene	1150	U	67	1150	2300	ug/Kg
191-24-2	Benzo(g,h,i)perylene	1150	U	94	1150	2300	ug/Kg
95-94-3	1,2,4,5-Tetrachlorobenzene	1150	U	91	1150	2300	ug/Kg
123-91-1	1,4-Dioxane	1150	U	91	1150	2300	ug/Kg
58-90-2	2,3,4,6-Tetrachlorophenol	1150	U	91	1150	2300	ug/Kg
SURROGATES	S						
367-12-4	2-Fluorophenol	132		28 - 12	7	88%	SPK: 150
13127-88-3	Phenol-d5	140		34 - 12	7	94%	SPK: 150
4165-60-0	Nitrobenzene-d5	91.6		31 - 132	2	92%	SPK: 100
321-60-8	2-Fluorobiphenyl	85.8		39 - 123	3	86%	SPK: 100
118-79-6	2,4,6-Tribromophenol	116		30 - 133	3	78%	SPK: 150
1718-51-0	Terphenyl-d14	78.8		37 - 11:	5	79%	SPK: 100
INTERNAL ST							
3855-82-1	1,4-Dichlorobenzene-d4	15013:					
1146-65-2	Naphthalene-d8	552773	3 10.89)			
15067-26-2	Acenaphthene-d10	376100	0 13.88	}			
1517-22-2	Phenanthrene-d10	708834	4 16.37	,			
1719-03-5	Chrysene-d12	76190	6 20.88	}			
1520-96-3	Perylene-d12	724108	8 24.77	•			
	DENTIFIED COMPOUNDS						
54050-86-1	p-Amidinobenzamide	470	J			13.37	ug/Kg

Client: MS Analytical

Date Collected: 08/13/12

Project:

12MS104 Kensington Heights

Units:

08/15/12

Client Sample ID:

SB-45(10-12)

Date Received:

SDG No.:

Lab Sample ID:

D3811-20

Final Vol:

D3811

Analytical Method:

Matrix:

SOIL

SW8270D

% Moisture:

28 1000

Sample Wt/Vol: Soil Aliquot Vol: 30.05

g uL

Test:

SVOC-Chemtech Full -25

Extraction Type:

Injection Volume:

SOXH

Decanted:

1.0

Ν

Level: GPC Cleanup: LOW

Ν

PH: N/A

uL

File ID/Qc Batch:

Dilution:

Prep Date

GPC Factor:

Date Analyzed

08/21/12

Prep Batch ID

PB65125

BG006794.D **CAS Number**

5

Parameter

08/15/12

Conc. Qualifier

MDL

LOD

LOQ / CRQL

Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Soil Aliquot Vol:

Report of Analysis

Client: MS Analytical Date Collected: 08/13/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-46(12-16) SDG No.: D3811 Lab Sample ID: D3811-21 Matrix: SOIL Analytical Method: SW8270D % Moisture: 28 Sample Wt/Vol: 30.04 Units: g Final Vol: 1000 uL

Extraction Type: SOXH Decanted: N Level: LOW

иL

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

Test:

SVOC-Chemtech Full -25

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID BF058263.D 1 08/15/12 08/16/12 PB65121

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
62-75-9	n-Nitrosodimethylamine	230	U	24	230	460	ug/Kg
110-86-1	Pyridine	230	U	92	230	460	ug/Kg
100-52-7	Benzaldehyde	230	UQ	24	230	460	ug/Kg
62-53-3	Aniline	230	U	39	230	460	ug/Kg
108-95-2	Phenol	230	UQ	11	230	460	ug/Kg
111-44-4	bis(2-Chloroethyl)ether	230	U	22	230	460	ug/Kg
95-57-8	2-Chlorophenol	230	UQ	24	230	460	ug/Kg
95-50-1	1,2-Dichlorobenzene	230	U	18	230	460	ug/Kg
541-73-1	1,3-Dichlorobenzene	230	U	8.2	230	460	ug/Kg
106-46-7	1,4-Dichlorobenzene	230	U	16	230	460	ug/Kg
100-51-6	Benzyl Alcohol	230	U	17	230	460	ug/Kg
95-48-7	2-Methylphenol	230	U	25	230	460	ug/Kg
108-60-1	2,2-oxybis(1-Chloropropane)	230	U	19	230	460	ug/Kg
98-86-2	Acetophenone	230	U	14	230	460	ug/Kg
65794-96-9	3+4-Methylphenols	230	U	24	230	460	ug/Kg
621-64-7	N-Nitroso-di-n-propylamine	230	U	23	230	460	ug/Kg
67-72-1	Hexachloroethane	230	UQ	21	230	460	ug/Kg
98-95-3	Nitrobenzene	230	U	17	230	460	ug/Kg
78-59-1	Isophorone	230	U	15	230	460	ug/Kg
88-75-5	2-Nitrophenol	230	UQ	22	230	460	ug/Kg
105-67-9	2,4-Dimethylphenol	230	UQ	26	230	460	ug/Kg
111-91-1	bis(2-Chloroethoxy)methane	230	U	27	230	460	ug/Kg
120-83-2	2,4-Dichlorophenol	230	UQ	18	230	460	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	230	U	18	230	460	ug/Kg
65-85-0	Benzoic acid	550	U	92	550	1100	ug/Kg
91-20-3	Naphthalene	230	U	16	230	460	ug/Kg
106-47-8	4-Chloroaniline	230	U	33	230	460	ug/Kg
87-68-3	Hexachlorobutadiene	230	U	17	230	460	ug/Kg
105-60-2	Caprolactam	230	U	21	230	460	ug/Kg
59-50-7	4-Chloro-3-methylphenol	230	UQ	21	230	460	ug/Kg
91-57-6	2-Methylnaphthalene	230	U	12	230	460	ug/Kg

Client:MS AnalyticalDate Collected:08/13/12Project:12MS104 Kensington HeightsDate Received:08/15/12

Client Sample ID: SB-46(12-16) SDG No.: D3811
Lab Sample ID: D3811-21 Matrix: SOIL
Analytical Method: SW8270D % Moisture: 28

Sample Wt/Vol: 30.04 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BE058263 D 1 08/15/12 08/16/12 PB65121

BF058263.D	1	08/15/12	08	/16/12		PB65121	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
77-47-4	Hexachlorocyclopentadiene	230	U	11	230	460	ug/Kg
88-06-2	2,4,6-Trichlorophenol	230	UQ	14	230	460	ug/Kg
95-95-4	2,4,5-Trichlorophenol	230	UQ	32	230	460	ug/Kg
92-52-4	1,1-Biphenyl	230	UQ	17	230	460	ug/Kg
91-58-7	2-Chloronaphthalene	230	UQ	11	230	460	ug/Kg
88-74-4	2-Nitroaniline	230	UQ	21	230	460	ug/Kg
131-11-3	Dimethylphthalate	420	JQ	12	230	460	ug/Kg
208-96-8	Acenaphthylene	230	UQ	12	230	460	ug/Kg
606-20-2	2,6-Dinitrotoluene	230	UQ	19	230	460	ug/Kg
99-09-2	3-Nitroaniline	230	U	30	230	460	ug/Kg
83-32-9	Acenaphthene	230	UQ	13	230	460	ug/Kg
51-28-5	2,4-Dinitrophenol	230	U	47	230	460	ug/Kg
100-02-7	4-Nitrophenol	230	UQ	86	230	460	ug/Kg
132-64-9	Dibenzofuran	230	UQ	18	230	460	ug/Kg
121-14-2	2,4-Dinitrotoluene	230	UQ	14	230	460	ug/Kg
84-66-2	Diethylphthalate	230	UQ	7.2	230	460	ug/Kg
7005-72-3	4-Chlorophenyl-phenylether	230	UQ	25	230	460	ug/Kg
86-73-7	Fluorene	230	UQ	17	230	460	ug/Kg
100-01-6	4-Nitroaniline	230	UQ	60	230	460	ug/Kg
534-52-1	4,6-Dinitro-2-methylphenol	230	UQ	26	230	460	ug/Kg
86-30-6	N-Nitrosodiphenylamine	230	UQ	11	230	460	ug/Kg
103-33-3	Azobenzene	230	UQ	11	230	460	ug/Kg
101-55-3	4-Bromophenyl-phenylether	230	UQ	9	230	460	ug/Kg
118-74-1	Hexachlorobenzene	230	UQ	19	230	460	ug/Kg
1912-24-9	Atrazine	230	U	24	230	460	ug/Kg
87-86-5	Pentachlorophenol	230	UQ	32	230	460	ug/Kg
85-01-8	Phenanthrene	230	UQ	12	230	460	ug/Kg
120-12-7	Anthracene	230	U	9.4	230	460	ug/Kg
86-74-8	Carbazole	230	UQ	10	230	460	ug/Kg
84-74-2	Di-n-butylphthalate	230	UQ	36	230	460	ug/Kg
206-44-0	Fluoranthene	200	JQ	9.3	230	460	ug/Kg
92-87-5	Benzidine	230	U	46	230	460	ug/Kg
129-00-0	Pyrene	230	UQ	11	230	460	ug/Kg
		361 (of 870				

361 of 870

Soil Aliquot Vol:

Report of Analysis

Client:MS AnalyticalDate Collected:08/13/12Project:12MS104 Kensington HeightsDate Received:08/15/12

Client Sample ID: SB-46(12-16) SDG No.: D3811

Lab Sample ID: D3811-21 Matrix: SOIL

Analytical Method: SW8270D % Moisture: 28

иL

Sample Wt/Vol: 30.04 Units: g Final Vol: 1000 uL

Test:

SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PEOS 263 D 1 08/15/12 08/16/12 PR65 121

BF058263.D	1	08/15/12		08/16/12		PB65121	
CAS Number	Parameter	Coi	ıc. Qualifi	er MDL	LOD	LOQ / CRQL	Units
85-68-7	Butylbenzylphthalate	230) U(22	230	460	ug/Kg
91-94-1	3,3-Dichlorobenzidine	230	U	30	230	460	ug/Kg
56-55-3	Benzo(a)anthracene	230) U(22	230	460	ug/Kg
218-01-9	Chrysene	230) U(Q 21	230	460	ug/Kg
117-81-7	bis(2-Ethylhexyl)phthalate	230) U(Q 16	230	460	ug/Kg
117-84-0	Di-n-octyl phthalate	230) U(Q 5.3	230	460	ug/Kg
205-99-2	Benzo(b)fluoranthene	230) U(Q 15	230	460	ug/Kg
207-08-9	Benzo(k)fluoranthene	230) U(Q 22	230	460	ug/Kg
50-32-8	Benzo(a)pyrene	230) U() 10	230	460	ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene	230	U	15	230	460	ug/Kg
53-70-3	Dibenz(a,h)anthracene	230	U	13	230	460	ug/Kg
191-24-2	Benzo(g,h,i)perylene	230	U	19	230	460	ug/Kg
95-94-3	1,2,4,5-Tetrachlorobenzene	230	U	18	230	460	ug/Kg
123-91-1	1,4-Dioxane	230	U	18	230	460	ug/Kg
58-90-2	2,3,4,6-Tetrachlorophenol	230) U(Q 18	230	460	ug/Kg
SURROGATES	s						
367-12-4	2-Fluorophenol	145		28 - 1	.27	97%	SPK: 150
13127-88-3	Phenol-d5	128		34 - 1	.27	85%	SPK: 150
4165-60-0	Nitrobenzene-d5	84.	4	31 - 1	.32	84%	SPK: 100
321-60-8	2-Fluorobiphenyl	76.	6	39 - 1	.23	77%	SPK: 100
118-79-6	2,4,6-Tribromophenol	112	2	30 - 1	.33	75%	SPK: 150
1718-51-0	Terphenyl-d14	69.	8	37 - 1	.15	70%	SPK: 100
INTERNAL ST							
3855-82-1	1,4-Dichlorobenzene-d4		1188 5.2				
1146-65-2	Naphthalene-d8	430)283 6.6				
15067-26-2	Acenaphthene-d10		6623 8.4				
1517-22-2	Phenanthrene-d10			.38			
1719-03-5	Chrysene-d12			.45			
1520-96-3	Perylene-d12	241	713 16	.57			
	DENTIFIED COMPOUNDS						
123-42-2	2-Pentanone, 4-hydroxy-4-methyl			3		3.18	ug/Kg
541-02-6	Cyclopentasiloxane, decamethyl-	120) J			6.17	ug/Kg
		26	2 of 970				

362 of 870

Client: MS Analytical Date Collected: 08/13/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SDG No.: SB-46(12-16) D3811 Lab Sample ID: D3811-21 Matrix: SOIL % Moisture: Analytical Method: SW8270D 28 Sample Wt/Vol: 30.04 Units: Final Vol: 1000 uL g Test: SVOC-Chemtech Full -25 Soil Aliquot Vol: uL

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BF058263.D 1 08/15/12 08/16/12 PB65121

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units	
13798-23-7	Sulfur	140	J			8.73	ug/Kg	
1000297-95-5	4-((1E)-3-Hydroxy-1-propenyl)-2-me	260	J			9.95	ug/Kg	
593-45-3	Octadecane	190	J			10.32	ug/Kg	
75-00-3	Ethyl Chloride	210	J			10.6	ug/Kg	
629-92-5	Nonadecane	110	J			10.97	ug/Kg	
57-10-3	n-Hexadecanoic acid	220	J			11.33	ug/Kg	
10544-50-0	Cyclic octaatomic sulfur	2600	J			12.25	ug/Kg	

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Soil Aliquot Vol:

Report of Analysis

Client: MS Analytical Date Collected: 08/13/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-46(12-16)RX SDG No.: D3811 Lab Sample ID: D3811-21RX Matrix: SOIL Analytical Method: SW8270D % Moisture: 28 Sample Wt/Vol: 30.04 Units: g Final Vol: 1000 uL

Extraction Type: SOXH Decanted: N Level: LOW

иL

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

Test:

SVOC-Chemtech Full -25

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BF058474.D 1 08/28/12 08/28/12 PB65419

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
62-75-9	n-Nitrosodimethylamine	230	U	24	230	460	ug/Kg
110-86-1	Pyridine	230	U	92	230	460	ug/Kg
100-52-7	Benzaldehyde	230	U	24	230	460	ug/Kg
62-53-3	Aniline	230	U	39	230	460	ug/Kg
108-95-2	Phenol	230	U	11	230	460	ug/Kg
111-44-4	bis(2-Chloroethyl)ether	230	U	22	230	460	ug/Kg
95-57-8	2-Chlorophenol	230	U	24	230	460	ug/Kg
95-50-1	1,2-Dichlorobenzene	230	U	18	230	460	ug/Kg
541-73-1	1,3-Dichlorobenzene	230	U	8.2	230	460	ug/Kg
106-46-7	1,4-Dichlorobenzene	230	U	16	230	460	ug/Kg
100-51-6	Benzyl Alcohol	230	U	17	230	460	ug/Kg
95-48-7	2-Methylphenol	230	U	25	230	460	ug/Kg
108-60-1	2,2-oxybis(1-Chloropropane)	230	U	19	230	460	ug/Kg
98-86-2	Acetophenone	230	U	14	230	460	ug/Kg
65794-96-9	3+4-Methylphenols	340	J	24	230	460	ug/Kg
621-64-7	N-Nitroso-di-n-propylamine	230	U	23	230	460	ug/Kg
67-72-1	Hexachloroethane	230	U	21	230	460	ug/Kg
98-95-3	Nitrobenzene	230	U	17	230	460	ug/Kg
78-59-1	Isophorone	230	U	15	230	460	ug/Kg
88-75-5	2-Nitrophenol	230	U	22	230	460	ug/Kg
105-67-9	2,4-Dimethylphenol	230	U	26	230	460	ug/Kg
111-91-1	bis(2-Chloroethoxy)methane	230	U	27	230	460	ug/Kg
120-83-2	2,4-Dichlorophenol	230	U	18	230	460	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	230	U	18	230	460	ug/Kg
65-85-0	Benzoic acid	550	U	92	550	1100	ug/Kg
91-20-3	Naphthalene	230	U	16	230	460	ug/Kg
106-47-8	4-Chloroaniline	230	U	33	230	460	ug/Kg
87-68-3	Hexachlorobutadiene	230	U	17	230	460	ug/Kg
105-60-2	Caprolactam	230	U	21	230	460	ug/Kg
59-50-7	4-Chloro-3-methylphenol	230	U	21	230	460	ug/Kg
91-57-6	2-Methylnaphthalene	230	U	12	230	460	ug/Kg

Client: MS Analytical Date Collected: 08/13/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-46(12-16)RX SDG No.: D3811 Lab Sample ID: D3811-21RX Matrix: SOIL

Analytical Method: SW8270D % Moisture: 28

Sample Wt/Vol: 30.04 Units: g Final Vol: 1000 uL

Test:

Soil Aliquot Vol: иL SVOC-Chemtech Full -25 Level: Extraction Type: SOXH Decanted: N LOW

GPC Factor: 1.0 GPC Cleanup: Ν PH: Injection Volume: N/A

Prep Batch ID File ID/Qc Batch: Dilution: Prep Date Date Analyzed

BF058474.D	1	08/28/12		08/	28/12		PB65419	
CAS Number	Parameter	C	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
77-47-4	Hexachlorocyclopentadiene	2	30	U	11	230	460	ug/Kg
88-06-2	2,4,6-Trichlorophenol	2	30	U	14	230	460	ug/Kg
95-95-4	2,4,5-Trichlorophenol	2	30	U	32	230	460	ug/Kg
92-52-4	1,1-Biphenyl	2	30	U	17	230	460	ug/Kg
91-58-7	2-Chloronaphthalene	2	30	U	11	230	460	ug/Kg
88-74-4	2-Nitroaniline	2	30	U	21	230	460	ug/Kg
131-11-3	Dimethylphthalate	5	80		12	230	460	ug/Kg
208-96-8	Acenaphthylene	2	30	U	12	230	460	ug/Kg
606-20-2	2,6-Dinitrotoluene	2	30	U	19	230	460	ug/Kg
99-09-2	3-Nitroaniline	2	30	U	30	230	460	ug/Kg
83-32-9	Acenaphthene	2	30	U	13	230	460	ug/Kg
51-28-5	2,4-Dinitrophenol	2	30	U	47	230	460	ug/Kg
100-02-7	4-Nitrophenol	2	30	U	86	230	460	ug/Kg
132-64-9	Dibenzofuran	2	30	U	18	230	460	ug/Kg
121-14-2	2,4-Dinitrotoluene	2	30	U	14	230	460	ug/Kg
84-66-2	Diethylphthalate	2	30	U	7.2	230	460	ug/Kg
7005-72-3	4-Chlorophenyl-phenylether	2	30	U	25	230	460	ug/Kg
86-73-7	Fluorene	2	30	U	17	230	460	ug/Kg
100-01-6	4-Nitroaniline	2	30	U	60	230	460	ug/Kg
534-52-1	4,6-Dinitro-2-methylphenol	2	30	U	26	230	460	ug/Kg
86-30-6	N-Nitrosodiphenylamine	2	30	U	11	230	460	ug/Kg
103-33-3	Azobenzene	2	30	U	11	230	460	ug/Kg
101-55-3	4-Bromophenyl-phenylether	2	30	U	9	230	460	ug/Kg
118-74-1	Hexachlorobenzene	2	30	U	19	230	460	ug/Kg
1912-24-9	Atrazine	2	30	U	24	230	460	ug/Kg
87-86-5	Pentachlorophenol	2	30	U	32	230	460	ug/Kg
85-01-8	Phenanthrene	3	60	J	12	230	460	ug/Kg
120-12-7	Anthracene	2	30	U	9.4	230	460	ug/Kg
86-74-8	Carbazole	2	30	U	10	230	460	ug/Kg
84-74-2	Di-n-butylphthalate	2	30	U	36	230	460	ug/Kg
206-44-0	Fluoranthene	6	90		9.3	230	460	ug/Kg
92-87-5	Benzidine	2	30	U	46	230	460	ug/Kg
129-00-0	Pyrene	6	50		11	230	460	ug/Kg
		3	65 of	870				

365 of 870

Client: MS Analytical Date Collected: 08/13/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-46(12-16)RX SDG No.: D3811 Lab Sample ID: D3811-21RX Matrix: SOIL Analytical Method: SW8270D % Moisture: 28 Sample Wt/Vol: 30.04 Units: g Final Vol: 1000 uL иL Test: SVOC-Chemtech Full -25 Soil Aliquot Vol: Extraction Type: SOXH Decanted: N Level: LOW

GPC Cleanup: GPC Factor: Ν Injection Volume: 1.0 PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID DD65/110 00/20/12 00/20/12

BF058474.D	1	08/28/12		08/	28/12		PB65419	
CAS Number	Parameter		Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
85-68-7	Butylbenzylphthalate		230	U	22	230	460	ug/Kg
91-94-1	3,3-Dichlorobenzidine		230	U	30	230	460	ug/Kg
56-55-3	Benzo(a)anthracene		320	J	22	230	460	ug/Kg
218-01-9	Chrysene		420	J	21	230	460	ug/Kg
117-81-7	bis(2-Ethylhexyl)phthalate		230	U	16	230	460	ug/Kg
117-84-0	Di-n-octyl phthalate		230	U	5.3	230	460	ug/Kg
205-99-2	Benzo(b)fluoranthene		530		15	230	460	ug/Kg
207-08-9	Benzo(k)fluoranthene		220	J	22	230	460	ug/Kg
50-32-8	Benzo(a)pyrene		390	J	10	230	460	ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene		190	J	15	230	460	ug/Kg
53-70-3	Dibenz(a,h)anthracene		230	U	13	230	460	ug/Kg
191-24-2	Benzo(g,h,i)perylene		210	J	19	230	460	ug/Kg
95-94-3	1,2,4,5-Tetrachlorobenzene		230	U	18	230	460	ug/Kg
123-91-1	1,4-Dioxane		230	U	18	230	460	ug/Kg
58-90-2	2,3,4,6-Tetrachlorophenol		230	U	18	230	460	ug/Kg
SURROGATES	5							
367-12-4	2-Fluorophenol		132		28 - 127	7	88%	SPK: 150
13127-88-3	Phenol-d5		137		34 - 127	7	92%	SPK: 150
4165-60-0	Nitrobenzene-d5		95.9		31 - 132	2	96%	SPK: 100
321-60-8	2-Fluorobiphenyl		99.5		39 - 123	3	100%	SPK: 100
118-79-6	2,4,6-Tribromophenol		159		30 - 133	3	106%	SPK: 150
1718-51-0	Terphenyl-d14		88		37 - 115	5	88%	SPK: 100
INTERNAL ST	ANDARDS							
3855-82-1	1,4-Dichlorobenzene-d4		111304	5.03				
1146-65-2	Naphthalene-d8		399381	6.48				
15067-26-2	Acenaphthene-d10		196089	8.26				
1517-22-2	Phenanthrene-d10		329153	10.18				
1719-03-5	Chrysene-d12		262705	14.24				
1520-96-3	Perylene-d12		220089	16.35				

Client: MS Analytical

Date Collected: 08/13/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-46(12-16)RX SDG No.: D3811

Lab Sample ID: D3811-21RX Matrix: SOIL

SW8270D Analytical Method:

% Moisture: 28

uL

Sample Wt/Vol: Soil Aliquot Vol:

uL

g

Units:

Test:

Final Vol:

GPC Cleanup:

SVOC-Chemtech Full -25

Extraction Type:

SOXH

30.04

Decanted: Ν 1.0

Level:

LOW

Ν

1000

PH: N/A

Injection Volume:

Dilution:

Prep Date

GPC Factor:

Date Analyzed

Prep Batch ID

PB65419

BF058474.D

File ID/Qc Batch:

1

08/28/12

08/28/12

Units

CAS Number

Parameter

Conc.

Qualifier

MDL

LOD

LOQ / CRQL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

<u>QC</u> SUMMARY

SW-846

SDG No.: D3811

MS Analytical Client:

						Limits (%)	
Lab Sample ID	Client ID	Parameter	Spike (PPM)	Result (PPM)	Recovery (%) Qual	Low	High
D3811-21	SB-46(12-16)	2-Fluorophenol	150	145.22	97	28	127
		Phenol-d5	150	128.03	85	34	127
		Nitrobenzene-d5	100	84.36	84	31	132
		2-Fluorobiphenyl	100	76.65	77	39	123
		2,4,6-Tribromophenol	150	112.69	75	30	133
		Terphenyl-d14	100	69.76	70	37	115
03813-01MS	SS-01AMS	2-Fluorophenol	150	129.83	87	28	127
		Phenol-d5	150	139.13	93	34	127
		Nitrobenzene-d5	100	87.49	87	31	132
		2-Fluorobiphenyl	100	92.94	93	39	123
		2,4,6-Tribromophenol	150	68.14	45	30	133
		Terphenyl-d14	100	92.59	93	37	115
03813-01MSD	SS-01AMSD	2-Fluorophenol	150	143.30	96	28	127
		Phenol-d5	150	157.88	105	34	127
		Nitrobenzene-d5	100	99.71	100	31	132
		2-Fluorobiphenyl	100	93.99	94	39	123
		2,4,6-Tribromophenol	150	86.98	58	30	133
		Terphenyl-d14	100	94.74	95	37	115
B65121BL	PB65121BL	2-Fluorophenol	150	116.28	78	28	127
		Phenol-d5	150	109.05	73	34	127
		Nitrobenzene-d5	100	74.04	74	31	132
		2-Fluorobiphenyl	100	72.59	73	39	123
		2,4,6-Tribromophenol	150	89.60	60	30	133
		Terphenyl-d14	100	78.02	78	37	115
B65121BS	PB65121BS	2-Fluorophenol	150	108.39	72	28	127
		Phenol-d5	150	98.81	66	34	127
		Nitrobenzene-d5	100	67.80	68	31	132
		2-Fluorobiphenyl	100	67.24	67	39	123
		2,4,6-Tribromophenol	150	82.39	55	30	133
		Terphenyl-d14	100	65.60	66	37	115

SW-846

SDG No.: D3811

Client: MS	Analytical		_				
Analytical Metho	d: EPA SW-846	8270					C
						Lin	nits (%)
Lab Sample ID	Client ID	Parameter	Spike (PPM)	Result (PPM)	Recovery (%) Qual	Low	High E
D3811-01	SB-2(4-8)	2-Fluorophenol	150	147.59	98	28	127 F
		Phenol-d5	150	152.69	102	34	127
		Nitrobenzene-d5	100	94.07	94	31	132 G
		2-Fluorobiphenyl	100	88.62	89	39	123
		2,4,6-Tribromophenol	150	120.44	80	30	133
		Terphenyl-d14	100	81.06	81	37	115
D3811-02	SB-5(8-12)	2-Fluorophenol	150	152.64	102	28	127
		Phenol-d5	150	141.38	94	34	127
		Nitrobenzene-d5	100	97.05	97	31	132
		2-Fluorobiphenyl	100	87.78	88	39	123
		2,4,6-Tribromophenol	150	123.19	82	30	133
		Terphenyl-d14	100	79.62	80	37	115
D3811-02MS	SB-5(8-12)MS	2-Fluorophenol	150	137.24	91	28	127
	,	Phenol-d5	150	137.39	92	34	127
		Nitrobenzene-d5	100	99.18	99	31	132
		2-Fluorobiphenyl	100	92.25	92	39	123
		2,4,6-Tribromophenol	150	123.85	83	30	133
		Terphenyl-d14	100	88.66	89	37	115
D3811-02MSD	SB-5(8-12)MSD	2-Fluorophenol	150	111.24	74	28	127
20011 0211102	55 0(0 12)11155	Phenol-d5	150	115.99	77	34	127
		Nitrobenzene-d5	100	78.59	79	31	132
		2-Fluorobiphenyl	100	73.53	74	39	123
		2,4,6-Tribromophenol	150	99.53	66	30	133
		Terphenyl-d14	100	66.79	67	37	115
D3811-03	SB-9(4-7)	2-Fluorophenol	150	140.14	93	28	127
D3011-03	3D-7(4- 7)	Phenol-d5	150	148.00	99	34	127
		Nitrobenzene-d5	100	94.53	95	31	132
		2-Fluorobiphenyl	100	89.78	90	39	123
		2,4,6-Tribromophenol	150	127.41	90 85	39	133
					83		
D2011 04	CD 10(0 12)	Terphenyl-d14	100	82.51 128.65		37	115
D3811-04	SB-10(8-12)	2-Fluorophenol	150		86	28	127
		Phenol-d5	150	137.60	92	34	127
		Nitrobenzene-d5	100	83.10	83	31	132
		2-Fluorobiphenyl	100	73.40	73	39	123
		2,4,6-Tribromophenol	150	120.15	80	30	133
D2011.05	CD 11/10 10	Terphenyl-d14	100	67.75	68	37	115
D3811-05	SB-11(12-16)	2-Fluorophenol	150	118.75	79	28	127
		Phenol-d5	150	120.61	80	34	127
		Nitrobenzene-d5	100	75.21	75 - 0	31	132
		2-Fluorobiphenyl	100	70.09	70	39	123
		2,4,6-Tribromophenol	150	107.21	71	30	133
		Terphenyl-d14	100	62.69	63	37	115
D3811-06	SB-15(12-16)	2-Fluorophenol	150	123.60	82	28	127
		Phenol-d5	150	132.80	89	34	127
		Nitrobenzene-d5	100	83.65	84	31	132
		2-Fluorobiphenyl	100	72.25	72	39	123
		2,4,6-Tribromophenol	150	106.50	71	30	133
		Terphenyl-d14	100	66.85	67	37	115
D3811-06DL	SB-15(12-16)DL	2-Fluorophenol	150	118.00	79	28	127
		Phenol-d5	150	124.00	83	34	127
		Nitrobenzene-d5	100	81.25	81	31	132
		2-Fluorobiphenyl	100	68.25	68	39	123
		r - J				-	

SW-846

SDG No.: D3811

ab Sample ID	Client ID	Parameter	Spike (PPM)	Result (PPM)	Recovery (%) Qual	Lin Low	nits (%) High
3811-06DL	SB-15(12-16)DL	2,4,6-Tribromophenol	150	97.75	65	30	133
3811-00DL	SB-13(12-10)DL	Terphenyl-d14	100	70.00	70	37	115
3811-06DL2	SB-15(12-16)DL2	2-Fluorophenol	150	111.00	74	28	127
3011-00DL2	3D-13(12-10)DL2	Phenol-d5	150	115.00	77	34	127
		Nitrobenzene-d5	100	69.50	70	31	132
		2-Fluorobiphenyl	100	66.00	66	39	123
		2,4,6-Tribromophenol	150	86.50	58	39	133
		Terphenyl-d14	100	75.50	76	37	115
3811-07	SB-18(4-8)		150	128.55	86	28	113
3811-07	SD-10(4-0)	2-Fluorophenol Phenol-d5			80 87	28 34	
			150	130.45			127
		Nitrobenzene-d5	100	88.04	88	31	132
		2-Fluorobiphenyl	100	79.23	79	39	123
		2,4,6-Tribromophenol	150	125.62	84	30	133
2011 00	GD 10/10 10	Terphenyl-d14	100	73.03	73	37	115
3811-08	SB-19(12-18)	2-Fluorophenol	150	124.42	83	28	127
		Phenol-d5	150	125.89	84	34	127
		Nitrobenzene-d5	100	86.73	87	31	132
		2-Fluorobiphenyl	100	80.34	80	39	123
		2,4,6-Tribromophenol	150	118.22	79	30	133
		Terphenyl-d14	100	75.80	76	37	115
811-09	SB-21(12-16)	2-Fluorophenol	150	137.26	92	28	127
		Phenol-d5	150	139.34	93	34	127
		Nitrobenzene-d5	100	89.92	90	31	132
		2-Fluorobiphenyl	100	53.05	53	39	123
		2,4,6-Tribromophenol	150	124.58	83	30	133
		Terphenyl-d14	100	49.82	50	37	115
8811-10	SB-21(16-19)	2-Fluorophenol	150	133.10	89	28	127
	,	Phenol-d5	150	142.85	95	34	127
		Nitrobenzene-d5	100	90.05	90	31	132
		2-Fluorobiphenyl	100	73.90	74	39	123
		2,4,6-Tribromophenol	150	113.20	75	30	133
		Terphenyl-d14	100	67.70	68	37	115
8811-10DL	SB-21(16-19)DL	2-Fluorophenol	150	120.50	80	28	127
	22 21(10 17)22	Phenol-d5	150	131.10	87	34	127
		Nitrobenzene-d5	100	82.70	83	31	132
		2-Fluorobiphenyl	100	70.60	71	39	123
		2,4,6-Tribromophenol	150	96.90	65	39	133
		Terphenyl-d14	100	69.50	70	37	115
811-11	SB-22(12-19)	2-Fluorophenol	150	133.07	89	28	127
011-11	SD-22(12-19)	Phenol-d5	150	139.59	93	28 34	127
		Nitrobenzene-d5	100	97.78	93 98	34	132
		2-Fluorobiphenyl	100	90.73	91	39	123
		2,4,6-Tribromophenol	150	129.72	86	30	133
.11.12	GD 45(0.14)	Terphenyl-d14	100	84.39	84	37	115
311-12	SB-27(8-12)	2-Fluorophenol	150	121.96	81	28	127
		Phenol-d5	150	128.74	86	34	127
		Nitrobenzene-d5	100	81.02	81	31	132
		2-Fluorobiphenyl	100	67.90	68	39	123
		2,4,6-Tribromophenol	150	107.60	72	30	133
		Terphenyl-d14	100	62.36	62	37	115
811-13	SB-37(8-10)	2-Fluorophenol	150	147.10	98	28	127
		Phenol-d5	150	151.60	101	34	127

SW-846

SDG No.: D3811

Client: MS	Analytical		_				
Analytical Metho	od: EPA SW-840	6 8270					
- 1 C 1 ID	~ · · · · · · · · · · · · · · · · · · ·	<u>.</u>	~ " (BB) 6	~	5 (0/) O 1		nits (%)
Lab Sample ID	Client ID	Parameter	Spike (PPNI)	Result (PPM)	Recovery (%) Qual	Low	High
D3811-13	SB-37(8-10)	Nitrobenzene-d5	100	94.90	95	31	132
		2-Fluorobiphenyl	100	76.55	77	39	123
		2,4,6-Tribromophenol	150	125.55	84	30	133
		Terphenyl-d14	100	74.55	75	37	115
D3811-13DL	SB-37(8-10)DL	2-Fluorophenol	150	137.80	92	28	127
33011	02 0 / (0 - 0 /	Phenol-d5	150	150.10	100	34	127
		Nitrobenzene-d5	100	97.50	98	31	132
		2-Fluorobiphenyl	100	83.00	83	39	123
		2,4,6-Tribromophenol	150	107.30	72	30	133
		Terphenyl-d14	100	64.50	65	37	115
D2011 14	CD 20((0)				89	28	
D3811-14	SB-39(6-8)	2-Fluorophenol	150	134.10			127
		Phenol-d5	150	138.32	92	34	127
		Nitrobenzene-d5	100	94.50	95	31	132
		2-Fluorobiphenyl	100	91.26	91	39	123
		2,4,6-Tribromophenol	150	130.85	87	30	133
		Terphenyl-d14	100	83.22	83	37	115
D3811-15	SB-41(8-11)	2-Fluorophenol	150	117.77	79	28	127
		Phenol-d5	150	125.62	84	34	127
		Nitrobenzene-d5	100	82.99	83	31	132
		2-Fluorobiphenyl	100	80.65	81	39	123
		2,4,6-Tribromophenol	150	120.16	80	30	133
		Terphenyl-d14	100	67.21	67	37	115
D3811-16	SB-42(14-16)	2-Fluorophenol	150	105.84	71	28	127
J3611-10	3D-42(14-10)	Phenol-d5	150	108.63	72	34	127
		Nitrobenzene-d5	100	71.32	71	31	132
		2-Fluorobiphenyl	100	62.11	62	39	123
		2,4,6-Tribromophenol	150	98.14	65	30	133
		Terphenyl-d14	100	59.76	60	37	115
D3811-17	SB-43(6-8)	2-Fluorophenol	150	119.95	80	28	127
		Phenol-d5	150	131.63	88	34	127
		Nitrobenzene-d5	100	94.84	95	31	132
		2-Fluorobiphenyl	100	86.63	87	39	123
		2,4,6-Tribromophenol	150	126.77	85	30	133
		Terphenyl-d14	100	82.00	82	37	115
D3811-18	SB-43(10-12)	2-Fluorophenol	150	114.85	77	28	127
	22 .5(10 12)	Phenol-d5	150	117.45	78	34	127
		Nitrobenzene-d5	100	81.30	81	31	132
		2-Fluorobiphenyl	100	65.20	65	39	123
		2,4,6-Tribromophenol	150	101.60	68	30	133
2011 10	CD 42/17/200	Terphenyl-d14	100	56.35	56	37	115
03811-19	SB-43(16-20)	2-Fluorophenol	150	114.18	76	28	127
		Phenol-d5	150	125.92	84	34	127
		Nitrobenzene-d5	100	80.65	81	31	132
		2-Fluorobiphenyl	100	58.87	59	39	123
		2,4,6-Tribromophenol	150	117.13	78	30	133
		Terphenyl-d14	100	54.08	54	37	115
03811-20	SB-45(10-12)	2-Fluorophenol	150	132.30	88	28	127
	` /	Phenol-d5	150	140.45	94	34	127
		Nitrobenzene-d5	100	91.65	92	31	132
		2-Fluorobiphenyl	100	85.80	86	39	123
		2,4,6-Tribromophenol	150	116.50	78	30	133
		Terphenyl-d14	100	78.75	79	37	115

SW-846

SDG No.: D3811

Client: MS Analytical

Lab Sample ID	Client ID	Parameter	Spike (PPM)	Result (PPM)	Recovery (%) Qual	Lin Low	nits (%) High
PB65125BL	PB65125BL	2-Fluorophenol	150	135.56	90	28	127
		Phenol-d5	150	134.99	90	34	127
		Nitrobenzene-d5	100	91.74	92	31	132
		2-Fluorobiphenyl	100	94.52	95	39	123
		2,4,6-Tribromophenol	150	130.75	87	30	133
		Terphenyl-d14	100	85.60	86	37	115
PB65125BS	PB65125BS	2-Fluorophenol	150	143.51	96	28	127
		Phenol-d5	150	144.69	96	34	127
		Nitrobenzene-d5	100	92.16	92	31	132
		2-Fluorobiphenyl	100	94.77	95	39	123
		2,4,6-Tribromophenol	150	134.78	90	30	133
		Terphenyl-d14	100	84.70	85	37	115

SW-846

SDG No.: D3811

MS Analytical Client:

Lab Sample ID	Client ID	Parameter	Spike (PPM)	Result (PPM)	Recovery (%) Qual	Lin Low	nits (%) High
D3811-21RX	SB-46(12-16)RX	2-Fluorophenol	150	132.10	88	28	127
		Phenol-d5	150	137.88	92	34	127
		Nitrobenzene-d5	100	95.89	96	31	132
		2-Fluorobiphenyl	100	99.53	100	39	123
		2,4,6-Tribromophenol	150	159.59	106	30	133
		Terphenyl-d14	100	87.97	88	37	115
D3813-01MSDRX	SS-01AMSDRX	2-Fluorophenol	150	124.61	83	28	127
		Phenol-d5	150	138.88	93	34	127
		Nitrobenzene-d5	100	93.53	94	31	132
		2-Fluorobiphenyl	100	95.84	96	39	123
		2,4,6-Tribromophenol	150	112.40	75	30	133
		Terphenyl-d14	100	93.77	94	37	115
03813-01MSRX	SS-01AMSRX	2-Fluorophenol	150	124.28	83	28	127
		Phenol-d5	150	138.96	93	34	127
		Nitrobenzene-d5	100	99.48	99	31	132
		2-Fluorobiphenyl	100	97.60	98	39	123
		2,4,6-Tribromophenol	150	107.08	71	30	133
		Terphenyl-d14	100	94.16	94	37	115
B65419BL	PB65419BL	2-Fluorophenol	150	128.86	86	28	127
		Phenol-d5	150	133.33	89	34	127
		Nitrobenzene-d5	100	92.73	93	31	132
		2-Fluorobiphenyl	100	99.35	99	39	123
		2,4,6-Tribromophenol	150	144.60	96	30	133
		Terphenyl-d14	100	98.70	99	37	115
B65419BS	PB65419BS	2-Fluorophenol	150	125.75	84	28	127
		Phenol-d5	150	129.23	86	34	127
		Nitrobenzene-d5	100	91.28	91	31	132
		2-Fluorobiphenyl	100	94.45	94	39	123
		2,4,6-Tribromophenol	150	146.89	98	30	133
		Terphenyl-d14	100	89.84	90	37	115

		Sample				Rec		RPD		Limits	
Parameter	Spike	Result	Result	Units	Rec	Qual	RPD	Qual	Low	High	RPD
Lab Sample ID: D3813-01MS	Client S	ample ID:	SS-01AMS								
n-Nitrosodimethylamine	1900	0	2000		105				44	108	
Pyridine	1900	0	1900		100	*			27	94	
Benzaldehyde	1900	0	260		14				10	105	
Aniline	1900	0	1000		53				10	90	
Phenol	1900	450	1900		75				40	115	
bis(2-Chloroethyl)ether	1900	0	1700		89				48	110	
2-Chlorophenol	1900	0	1300		68				39	115	
1,2-Dichlorobenzene	1900	0	1500		79				57	98	
1,3-Dichlorobenzene	1900	20	1500		79				54	97	
1,4-Dichlorobenzene	1900	0	1500		79				55	97	
Benzyl Alcohol	1900	0	1700		89				53	109	
2-Methylphenol	1900	0	1600		84				48	111	
2,2-oxybis(1-Chloropropane)	1900	0	1600		84				43	116	
Acetophenone	1900	0	1500		79				46	122	
3+4-Methylphenols	1900	1600	3000		68				46	115	
N-Nitroso-di-n-propylamine	1900	0	1700		89				37	128	
Hexachloroethane	1900	0	1400		74				37	117	
Nitrobenzene	1900	0	1400		74				45	117	
Isophorone	1900	0	1500		79				44	121	
2-Nitrophenol	1900	0	1100		58				32	123	
2,4-Dimethylphenol	1900	0	1400		74				45	118	
bis(2-Chloroethoxy)methane	1900	0	1700		89				47	117	
2,4-Dichlorophenol	1900	0	1000		53				37	122	
1,2,4-Trichlorobenzene	1900	0	1400		74				57	103	
Benzoic acid	1900	0	350		18				10	131	
Naphthalene	1900	290	2000		91				42	121	
4-Chloroaniline	1900	0	820		43				10	130	
Hexachlorobutadiene	1900	0	1400		74				49	111	
Caprolactam	1900	0	2000		105				26	133	
4-Chloro-3-methylphenol	1900	0	1400		74				46	115	
2-Methylnaphthalene	1900	0	1600		84				45	118	
Hexachlorocyclopentadiene	3800	0	62		2	*			10	127	
2,4,6-Trichlorophenol	1900	0	740		39				36	122	
2,4,5-Trichlorophenol	1900	0	990		52				33	125	
1,1-Biphenyl	1900	0	1600		84				47	119	
2-Chloronaphthalene	1900	0	1400		74				52	110	
2-Nitroaniline	1900	0	1500		79				45	121	
Dimethylphthalate	1900	220	1700		78				39	127	
Acenaphthylene	1900	0	1500		79				45	117	
2,6-Dinitrotoluene	1900	0	1500		79				50	114	
3-Nitroaniline	1900	0	1400		74				12	108	
Acenaphthene	1900	0	1800		95				45	118	
2,4-Dinitrophenol	3800	0	490		13				10	126	
4-Nitrophenol	3800	0	1300		34				18	141	
Dibenzofuran	1900	0	1600		84				45	118	
2,4-Dinitrotoluene	1900	0	1500		79				44	120	
Diethylphthalate	1900	0	1300		68				50	113	
4-Chlorophenyl-phenylether	1900	0	1400		74				51	111	

SDG No.: <u>D3811</u>

Client: MS Analytical

		Sample			Rec		RPD		Limits		
Parameter	Spike	Result	Result	Units Rec	Qual	RPD	Qual	Low	High	RPD	
Fluorene	1900	0	1800	95				41	121		
4-Nitroaniline	1900	0	1600	84				38	113		
4,6-Dinitro-2-methylphenol	1900	0	430	23				10	142		
N-Nitrosodiphenylamine	1900	0	1500	79				45	122		
Azobenzene	1900	0	1500	79				52	111		
4-Bromophenyl-phenylether	1900	0	1400	74				51	114		
Hexachlorobenzene	1900	0	1300	68				48	114		
Atrazine	1900	0	1300	68				40	129		
Pentachlorophenol	3800	0	1100	29				15	145		
Phenanthrene	1900	710	3400	143	*			29	138		
Anthracene	1900	160	2000	97				45	120		
Carbazole	1900	0	1700	89				43	122		
Di-n-butylphthalate	1900	0	1300	68				51	115		
Fluoranthene	1900	720	2900	115				33	133		
Benzidine	3800	0	1700	45				10	130		
Pyrene	1900	640	2800	114				31	135		
Butylbenzylphthalate	1900	0	1500	79				49	121		
3,3-Dichlorobenzidine	1900	0	1500	79				10	105		
Benzo(a)anthracene	1900	350	2200	98				35	132		
Chrysene	1900	340	2200	98				34	131		
bis(2-Ethylhexyl)phthalate	1900	150	1600	84				42	127		
Di-n-octyl phthalate	1900	0	1600	84				50	123		
Benzo(b)fluoranthene	1900	390	2200	96				35	128		
Benzo(k)fluoranthene	1900	0	1900	100				39	117		
Benzo(a)pyrene	1900	280	2100	95				35	129		
Indeno(1,2,3-cd)pyrene	1900	0	1300	68				30	140		
Dibenz(a,h)anthracene	1900	0	1100	58				18	147		
Benzo(g,h,i)perylene	1900	160	1100	58				31	132		
1,2,4,5-Tetrachlorobenzene	1900	0	1500	79				52	122		
1,4-Dioxane	1900	0	2000	105	*			26	104		
2,3,4,6-Tetrachlorophenol	1900	0	620	33	*			52	109		

SDG No.: D3811
Client: MS Analytical

		Sample				Rec		RPD		Limits	
Parameter	Spike	Result	Result	Units	Rec	Qual	RPD	Qual	Low	High	RPD
Lab Sample ID: D3813-01MSD	Client Sa	ample ID:	SS-01AMSD								
n-Nitrosodimethylamine	1900	0	2000		105		0		44	108	20
Pyridine	1900	0	1900		100	*	0		27	94	20
Benzaldehyde	1900	0	290		15		7		10	105	20
Aniline	1900	0	1200		63		17		10	90	20
Phenol	1900	450	2100		86		14		40	115	20
bis(2-Chloroethyl)ether	1900	0	1900		100		12		48	110	20
2-Chlorophenol	1900	0	1500		79		15		39	115	20
1,2-Dichlorobenzene	1900	0	1500		79		0		57	98	20
1,3-Dichlorobenzene	1900	20	1500		79		0		54	97	20
1,4-Dichlorobenzene	1900	0	1500		79		0		55	97	20
Benzyl Alcohol	1900	0	1600		84		6		53	109	20
2-Methylphenol	1900	0	1600		84		0		48	111	20
2,2-oxybis(1-Chloropropane)	1900	0	1600		84		0		43	116	20
Acetophenone	1900	0	1800		95		18		46	122	20
3+4-Methylphenols	1900	1600	3100		74		8		46	115	20
N-Nitroso-di-n-propylamine	1900	0	1700		89		0		37	128	20
Hexachloroethane	1900	0	1400		74		0		37	117	20
Nitrobenzene	1900	0	1700		89		18		45	117	20
Isophorone	1900	0	1700		89		12		44	121	20
2-Nitrophenol	1900	0	1400		74		24	*	32	123	20
2,4-Dimethylphenol	1900	0	1600		84		13		45	118	20
bis(2-Chloroethoxy)methane	1900	0	1700		89		0		47	117	20
2,4-Dichlorophenol	1900	0	1400		74		33	*	37	122	20
1,2,4-Trichlorobenzene	1900	0	1400		74		0		57	103	20
Benzoic acid	1900	0	440		23		24	*	10	131	20
Naphthalene	1900	290	1900		85		7		42	121	20
4-Chloroaniline	1900	0	690		36		18		10	130	20
Hexachlorobutadiene	1900	0	1400		74		0		49	111	20
Caprolactam	1900	0	2100		111		6		26	133	20
4-Chloro-3-methylphenol	1900	0	1500		79		7		46	115	20
2-Methylnaphthalene	1900	0	1800		95		12		45	118	20
Hexachlorocyclopentadiene	3800	0	250		7	*	111	*	10	127	20
2,4,6-Trichlorophenol	1900	0	980		52		29	*	36	122	20
2,4,5-Trichlorophenol	1900	0	1300		68		27	*	33	125	20
1,1-Biphenyl	1900	0	1600		84		0		47	119	20
2-Chloronaphthalene	1900	0	1500		79		7		52	110	20
2-Nitroaniline	1900	0	1600		84		6		45	121	20
Dimethylphthalate	1900	220	1700		78		0		39	127	20
Acenaphthylene	1900	0	1600		84		6		45	117	20
2,6-Dinitrotoluene	1900	0	1600		84		6		50	114	20
3-Nitroaniline	1900	0	1400		74		0		12	108	20
Acenaphthene	1900	0	1700		89		7		45	118	20
2,4-Dinitrophenol	3800	0	680		18		32	*	10	126	20
4-Nitrophenol	3800	0	1800		47		32	*	18	141	20
Dibenzofuran	1900	0	1600		84		0		45	118	20
2,4-Dinitrotoluene	1900	0	1600		84		6		44	120	20
Diethylphthalate	1900	0	1400		74		8		50	113	20
4-Chlorophenyl-phenylether	1900	0	1500		79		7		51	111	20

SDG No.: <u>D3811</u>

Client: MS Analytical

Parameter	Spike	Sample Result	Result	Units Re		Rec Jual RP	RPD D Oual	Low	Limits High	RPD
							o Quai			
Fluorene	1900	0	1700	89		7		41	121	20
4-Nitroaniline	1900	0	1600	84		0		38	113	20
4,6-Dinitro-2-methylphenol	1900	0	570	30		26	*	10	142	20
N-Nitrosodiphenylamine	1900	0	1600	84		6		45	122	20
Azobenzene	1900	0	1600	84		6		52	111	20
4-Bromophenyl-phenylether	1900	0	1500	79		7		51	114	20
Hexachlorobenzene	1900	0	1300	68		0		48	114	20
Atrazine	1900	0	1400	74		8		40	129	20
Pentachlorophenol	3800	0	1600	42		37	*	15	145	20
Phenanthrene	1900	710	2700	106		30	*	29	138	20
Anthracene	1900	160	1900	92		5		45	120	20
Carbazole	1900	0	1600	84		6		43	122	20
Di-n-butylphthalate	1900	0	1400	74		8		51	115	20
Fluoranthene	1900	720	2600	99		15		33	133	20
Benzidine	3800	0	2100	55		20		10	130	20
Pyrene	1900	640	2800	114		0		31	135	20
Butylbenzylphthalate	1900	0	1600	84		6		49	121	20
3,3-Dichlorobenzidine	1900	0	1600	84		6		10	105	20
Benzo(a)anthracene	1900	350	2300	103		5		35	132	20
Chrysene	1900	340	2300	103		5		34	131	20
bis(2-Ethylhexyl)phthalate	1900	150	1700	89		6		42	127	20
Di-n-octyl phthalate	1900	0	1700	89		6		50	123	20
Benzo(b)fluoranthene	1900	390	2300	101		5		35	128	20
Benzo(k)fluoranthene	1900	0	1900	100		0		39	117	20
Benzo(a)pyrene	1900	280	2200	100		5		35	129	20
Indeno(1,2,3-cd)pyrene	1900	0	1500	79		15		30	140	20
Dibenz(a,h)anthracene	1900	0	1300	68		16		18	147	20
Benzo(g,h,i)perylene	1900	160	1500	79		31	*	31	132	20
1,2,4,5-Tetrachlorobenzene	1900	0	1500	79		0		52	122	20
1,4-Dioxane	1900	0	1900	100		5		26	104	20
2,3,4,6-Tetrachlorophenol	1900	0	830	44	*	29	*	52	109	20

SDG No.:	D3811	
Client:	MS Analytical	

		Sample	:			Rec		RPD		Limits	
Parameter	Spike	Result	Result	Units	Rec	Qual	RPD	Qual	Low	High	RPD
Lab Sample ID: D3811-02MS	Client San	nple ID:	SB-5(8-12)MS								
n-Nitrosodimethylamine	2100	0	2100		100				44	108	
Pyridine	2100	0	1900		90				27	94	
Benzaldehyde	2100	0	250		12				10	105	
Aniline	2100	0	1100		52				10	90	
Phenol	2100	0	1500		71				40	115	
bis(2-Chloroethyl)ether	2100	0	1800		86				48	110	
2-Chlorophenol	2100	0	1500		71				39	115	
1,2-Dichlorobenzene	2100	0	1600		76				57	98	
1,3-Dichlorobenzene	2100	0	1600		76				54	97	
1,4-Dichlorobenzene	2100	0	1600		76				55	97	
Benzyl Alcohol	2100	0	1600		76				53	109	
2-Methylphenol	2100	0	1700		81				48	111	
2,2-oxybis(1-Chloropropane)	2100	0	1700		81				43	116	
Acetophenone	2100	0	1800		86				46	122	
3+4-Methylphenols	2100	0	1700		81				46	115	
N-Nitroso-di-n-propylamine	2100	0	1800		86				37	128	
Hexachloroethane	2100	0	1500		71				37	117	
Nitrobenzene	2100	0	1800		86				45	117	
Isophorone	2100	0	1800		86				44	121	
2-Nitrophenol	2100	0	1600		76				32	123	
2,4-Dimethylphenol	2100	0	1600		76				45	118	
bis(2-Chloroethoxy)methane	2100	0	1800		86				47	117	
2,4-Dichlorophenol	2100	0	1500		71				37	122	
1,2,4-Trichlorobenzene	2100	0	1600		76				57	103	
Benzoic acid	2100	0	1500		71				10	131	
Naphthalene	2100	0	1700		81				42	121	
4-Chloroaniline	2100	0	690		33				10	130	
Hexachlorobutadiene	2100	0	1500		71				49	111	
Caprolactam	2100	0	2000		95				26	133	
4-Chloro-3-methylphenol	2100	0	1500		71				46	115	
2-Methylnaphthalene	2100	0	1700		81				45	118	
Hexachlorocyclopentadiene	4100	0	1500		37				10	127	
2,4,6-Trichlorophenol	2100	0	1500		71				36	122	
2,4,5-Trichlorophenol	2100	0	1500		71				33	125	
1,1-Biphenyl	2100	0	1700		81				47	119	
2-Chloronaphthalene	2100	0	1600		76				52	110	
2-Nitroaniline	2100	0	1600		76				45	121	
Dimethylphthalate	2100	290	1800		72				39	127	
Acenaphthylene	2100	0	1700		81				45	117	
2,6-Dinitrotoluene	2100	0	1700		81				50	114	
3-Nitroaniline	2100	0	1400		67				12	108	
Acenaphthene	2100	0	1700		81				45	118	
2,4-Dinitrophenol	4100	0	2300		56				10	126	
4-Nitrophenol	4100	0	3100		76				18	141	
Dibenzofuran	2100	0	1500		71				45	118	
2,4-Dinitrotoluene	2100	0	1600		76				44	120	
Diethylphthalate	2100	0	1400		67				50	113	
4-Chlorophenyl-phenylether	2100	0	1500		71				51	111	

SDG No.: <u>D3811</u>

Client: MS Analytical

Analytical Method:

EPA SW-846 8270

Parameter	Spike	Sample Result	Result	Units Rec	Rec Qual RPD	RPD Qual	Low	Limits High	RPD
Fluorene	2100	0	1700	81			41	121	
4-Nitroaniline	2100	0	1500	71			38	113	
4,6-Dinitro-2-methylphenol	2100	0	1400	67			10	142	
N-Nitrosodiphenylamine	2100	0	1600	76			45	122	
Azobenzene	2100	0	1700	81			52	111	
4-Bromophenyl-phenylether	2100	0	1500	71			51	114	
Hexachlorobenzene	2100	0	1500	71			48	114	
Atrazine	2100	0	1600	76			40	129	
Pentachlorophenol	4100	0	3200	78			15	145	
Phenanthrene	2100	0	1700	81			29	138	
Anthracene	2100	0	1800	86			45	120	
Carbazole	2100	0	1600	76			43	122	
Di-n-butylphthalate	2100	0	1500	71			51	115	
Fluoranthene	2100	0	1700	81			33	133	
Benzidine	4100	0	2200	54			10	130	
Pyrene	2100	0	1700	81			31	135	
Butylbenzylphthalate	2100	0	1500	71			49	121	
3,3-Dichlorobenzidine	2100	0	1400	67			10	105	
Benzo(a)anthracene	2100	0	1800	86			35	132	
Chrysene	2100	0	1700	81			34	131	
bis(2-Ethylhexyl)phthalate	2100	0	1600	76			42	127	
Di-n-octyl phthalate	2100	0	1700	81			50	123	
Benzo(b)fluoranthene	2100	0	1800	86			35	128	
Benzo(k)fluoranthene	2100	0	1700	81			39	117	
Benzo(a)pyrene	2100	0	1700	81			35	129	
Indeno(1,2,3-cd)pyrene	2100	0	1100	52			30	140	
Dibenz(a,h)anthracene	2100	0	1200	57			18	147	
Benzo(g,h,i)perylene	2100	0	930	44			31	132	
1,2,4,5-Tetrachlorobenzene	2100	0	1600	76			52	122	
1,4-Dioxane	2100	0	2000	95			26	104	
2,3,4,6-Tetrachlorophenol	2100	0	1500	71			52	109	

SDG No.: D3811

Client: MS Analytical

		Sample				Rec		RPD		Limits	
Parameter	Spike	Result	Result U	J nits	Rec	Qual	RPD	Qual	Low	High	RPD
Lab Sample ID: D3811-02MSD	Client Sa	ımple ID:	SB-5(8-12)MSD								
n-Nitrosodimethylamine	2100	0	1700		81	2	1	*	44	108	20
Pyridine	2100	0	1500		71	24	4	*	27	94	20
Benzaldehyde	2100	0	210		10	18	3		10	105	20
Aniline	2100	0	880		42	2	1	*	10	90	20
Phenol	2100	0	1300		62	14	4		40	115	20
bis(2-Chloroethyl)ether	2100	0	1500		71	19	9		48	110	20
2-Chlorophenol	2100	0	1300		62	14	4		39	115	20
1,2-Dichlorobenzene	2100	0	1300		62	20)		57	98	20
1,3-Dichlorobenzene	2100	0	1300		62	20)		54	97	20
1,4-Dichlorobenzene	2100	0	1300		62	20)		55	97	20
Benzyl Alcohol	2100	0	1300		62	20)		53	109	20
2-Methylphenol	2100	0	1400		67	19)		48	111	20
2,2-oxybis(1-Chloropropane)	2100	0	1500		71	13	3		43	116	20
Acetophenone	2100	0	1500		71	19)		46	122	20
3+4-Methylphenols	2100	0	1400		67	19)		46	115	20
N-Nitroso-di-n-propylamine	2100	0	1500		71	19)		37	128	20
Hexachloroethane	2100	0	1200		57	22	2	*	37	117	20
Nitrobenzene	2100	0	1400		67	25	5	*	45	117	20
Isophorone	2100	0	1400		67	25	5	*	44	121	20
2-Nitrophenol	2100	0	1300		62	20)		32	123	20
2,4-Dimethylphenol	2100	0	1300		62	20)		45	118	20
bis(2-Chloroethoxy)methane	2100	0	1500		71	19	9		47	117	20
2,4-Dichlorophenol	2100	0	1200		57	22	2	*	37	122	20
1,2,4-Trichlorobenzene	2100	0	1200		57	29	9	*	57	103	20
Benzoic acid	2100	0	980		47	4	1	*	10	131	20
Naphthalene	2100	0	1400		67	19)		42	121	20
4-Chloroaniline	2100	0	670		32	3			10	130	20
Hexachlorobutadiene	2100	0	1200		57	22	2	*	49	111	20
Caprolactam	2100	0	1600		76	22	2	*	26	133	20
4-Chloro-3-methylphenol	2100	0	1200		57	22	2	*	46	115	20
2-Methylnaphthalene	2100	0	1300		62	27	7	*	45	118	20
Hexachlorocyclopentadiene	4100	0	1200		29	24	4	*	10	127	20
2,4,6-Trichlorophenol	2100	0	1200		57	22	2	*	36	122	20
2,4,5-Trichlorophenol	2100	0	1300		62	14	4		33	125	20
1,1-Biphenyl	2100	0	1400		67	19)		47	119	20
2-Chloronaphthalene	2100	0	1300		62	20)		52	110	20
2-Nitroaniline	2100	0	1400		67	13	3		45	121	20
Dimethylphthalate	2100	290	1500		58	22	2	*	39	127	20
Acenaphthylene	2100	0	1400		67	19	9		45	117	20
2,6-Dinitrotoluene	2100	0	1400		67	19			50	114	20
3-Nitroaniline	2100	0	1200		57	10			12	108	20
Acenaphthene	2100	0	1400		67	19			45	118	20
2,4-Dinitrophenol	4100	0	1400		34	49		*	10	126	20
4-Nitrophenol	4100	0	2500		61	22		*	18	141	20
Dibenzofuran	2100	0	1300		62	14			45	118	20
2,4-Dinitrotoluene	2100	0	1300		62	20			44	120	20
Diethylphthalate	2100	0	1200		57	10			50	113	20
4-Chlorophenyl-phenylether	2100	0	1300		62	14			51	111	20
1 - J r											-

SDG No.: <u>D3811</u>

Client: MS Analytical

Analytical Method:

EPA SW-846 8270

Parameter	Spike	Sample Result	Result	Units I	Rec	Rec Qual RPD	RPD Qual	Low	Limits High	RPD
Fluorene	2100	0	1400		67	19		41	121	20
4-Nitroaniline	2100	0	1200		57	22	*	38	113	20
4,6-Dinitro-2-methylphenol	2100	0	950		45	39	*	10	142	20
N-Nitrosodiphenylamine	2100	0	1300		62	20		45	122	20
Azobenzene	2100	0	1400		67	19		52	111	20
4-Bromophenyl-phenylether	2100	0	1200		57	22	*	51	114	20
Hexachlorobenzene	2100	0	1200		57	22	*	48	114	20
Atrazine	2100	0	1300		62	20		40	129	20
Pentachlorophenol	4100	0	2500		61	24	*	15	145	20
Phenanthrene	2100	0	1300		62	27	*	29	138	20
Anthracene	2100	0	1400		67	25	*	45	120	20
Carbazole	2100	0	1300		62	20		43	122	20
Di-n-butylphthalate	2100	0	1200		57	22	*	51	115	20
Fluoranthene	2100	0	1400		67	19		33	133	20
Benzidine	4100	0	1600		39	32	*	10	130	20
Pyrene	2100	0	1300		62	27	*	31	135	20
Butylbenzylphthalate	2100	0	1200		57	22	*	49	121	20
3,3-Dichlorobenzidine	2100	0	990		47	35	*	10	105	20
Benzo(a)anthracene	2100	0	1400		67	25	*	35	132	20
Chrysene	2100	0	1300		62	27	*	34	131	20
bis(2-Ethylhexyl)phthalate	2100	0	1300		62	20		42	127	20
Di-n-octyl phthalate	2100	0	1400		67	19		50	123	20
Benzo(b)fluoranthene	2100	0	1400		67	25	*	35	128	20
Benzo(k)fluoranthene	2100	0	1400		67	19		39	117	20
Benzo(a)pyrene	2100	0	1400		67	19		35	129	20
Indeno(1,2,3-cd)pyrene	2100	0	1000		48	8		30	140	20
Dibenz(a,h)anthracene	2100	0	1200		57	0		18	147	20
Benzo(g,h,i)perylene	2100	0	1000		48	9		31	132	20
1,2,4,5-Tetrachlorobenzene	2100	0	1300		62	20		52	122	20
1,4-Dioxane	2100	0	1700		81	16		26	104	20
2,3,4,6-Tetrachlorophenol	2100	0	1200		57	22	*	52	109	20

	Sample					Rec		RPD		Limits	
Parameter	Spike	Result	Result	Units	Rec	Qual	RPD	Qual	Low	High	RPD
Lab Sample ID: D3813-01MSRX	Client Sa	ample ID:	SS-01AMSRX								
n-Nitrosodimethylamine	1900	. 0	1500		79				44	108	
Pyridine	1900	0	1300		68				27	94	
Benzaldehyde	1900	0	760		40				10	105	
Aniline	1900	0	1200		63				10	90	
Phenol	1900	580	2000		75				40	115	
bis(2-Chloroethyl)ether	1900	0	1500		79				48	110	
2-Chlorophenol	1900	0	1300		68				39	115	
1,2-Dichlorobenzene	1900	0	1500		79				57	98	
1,3-Dichlorobenzene	1900	0	1500		79				54	97	
1,4-Dichlorobenzene	1900	0	1500		79				55	97	
Benzyl Alcohol	1900	0	1600		84				53	109	
2-Methylphenol	1900	0	1600		84				48	111	
2,2-oxybis(1-Chloropropane)	1900	0	1500		79				43	116	
Acetophenone	1900	0	1600		84				46	122	
3+4-Methylphenols	1900	2400	4300		100				46	115	
N-Nitroso-di-n-propylamine	1900	0	1600		84				37	128	
Hexachloroethane	1900	0	1400		74				37	117	
Nitrobenzene	1900	0	1600		84				45	117	
Isophorone	1900	0	1600		84				44	121	
2-Nitrophenol	1900	0	1300		68				32	123	
2,4-Dimethylphenol	1900	0	1600		84				45	118	
bis(2-Chloroethoxy)methane	1900	0	1600		84				47	117	
2,4-Dichlorophenol	1900	0	1400		74				37	122	
1,2,4-Trichlorobenzene	1900	0	1500		79 79				57	103	
Benzoic acid	1900	0	0		0	*			10	131	
Naphthalene	1900	440	2000		82				42	121	
4-Chloroaniline	1900	0	1200		63				10	130	
Hexachlorobutadiene	1900	0	1600		84				49	111	
Caprolactam	1900	0	2000		105				26	133	
4-Chloro-3-methylphenol	1900	0	1500		79				46	115	
2-Methylnaphthalene	1900	210	1900		89				45	118	
Hexachlorocyclopentadiene	3800	0	510		13				10	127	
2,4,6-Trichlorophenol	1900	0	940		49				36	122	
2,4,5-Trichlorophenol	1900	0	1200		63				33	125	
1,1-Biphenyl	1900	0	1600		84				47	119	
2-Chloronaphthalene	1900	0	1500		79				52	110	
2-Nitroaniline	1900	0	1500		79 79				45	121	
Dimethylphthalate	1900	380	1800		75				39	127	
Acenaphthylene	1900	0	1600		84				45	117	
2,6-Dinitrotoluene	1900	0	1600		84				50	114	
3-Nitroaniline	1900	0	1400		74				12	108	
Acenaphthene	1900	190	1700		7 4 79				45	118	
2,4-Dinitrophenol	3800	0	400		11				10	126	
4-Nitrophenol	3800	0	1600		42				18	141	
Dibenzofuran	1900		1600		42 84				45	1118	
2,4-Dinitrotoluene	1900	0	1600		84 84				45 44	120	
		0	1400		84 74						
Diethylphthalate	1900	0							50	113	
4-Chlorophenyl-phenylether	1900	0	1600		84				51	111	

SDG No.: <u>D3811</u>

Client: MS Analytical

Analytical Method:

EPA SW-846 8270

Parameter	Spike	Sample Result	Result	Units	Rec	Rec Qual	RPD	RPD Qual	Low	Limits	RPD
rarameter	Spike	Result	Resuit	Units	Nec	Quai	KΓD	Quai	LUW	nıgıı	KID
Fluorene	1900	200	1800		84				41	121	
4-Nitroaniline	1900	0	1500		79				38	113	
4,6-Dinitro-2-methylphenol	1900	0	260		14				10	142	
N-Nitrosodiphenylamine	1900	0	1500		79				45	122	
Azobenzene	1900	0	1500		79				52	111	
4-Bromophenyl-phenylether	1900	0	1500		79				51	114	
Hexachlorobenzene	1900	0	1500		79				48	114	
Atrazine	1900	0	1700		89				40	129	
Pentachlorophenol	3800	0	1100		29				15	145	
Phenanthrene	1900	1400	2700		68				29	138	
Anthracene	1900	330	1900		83				45	120	
Carbazole	1900	0	1600		84				43	122	
Di-n-butylphthalate	1900	0	1400		74				51	115	
Fluoranthene	1900	1300	2800		79				33	133	
Benzidine	3800	0	2100		55				10	130	
Pyrene	1900	1100	2600		79				31	135	
Butylbenzylphthalate	1900	0	1400		74				49	121	
3,3-Dichlorobenzidine	1900	0	1700		89				10	105	
Benzo(a)anthracene	1900	520	2200		88				35	132	
Chrysene	1900	540	2000		77				34	131	
bis(2-Ethylhexyl)phthalate	1900	0	1500		79				42	127	
Di-n-octyl phthalate	1900	0	1500		79				50	123	
Benzo(b)fluoranthene	1900	620	2400		94				35	128	
Benzo(k)fluoranthene	1900	240	1700		77				39	117	
Benzo(a)pyrene	1900	490	2200		90				35	129	
Indeno(1,2,3-cd)pyrene	1900	200	1500		68				30	140	
Dibenz(a,h)anthracene	1900	0	1200		63				18	147	
Benzo(g,h,i)perylene	1900	260	1300		55				31	132	
1,2,4,5-Tetrachlorobenzene	1900	0	1600		84				52	122	
1,4-Dioxane	1900	0	1300		68				26	104	
2,3,4,6-Tetrachlorophenol	1900	0	720		38	*			52	109	

SDG No.: D3811
Client: MS Analytical

		Sample				Rec	RPD		Limits	
Parameter	Spike	Result	Result	Units	Rec	Qual RPD	Qual	Low	High	RPD
Lab Sample ID: D3813-01MSDRX	Client S	Sample ID:	SS-01AMSDR	X						
n-Nitrosodimethylamine	1900	0	1600		84	6		44	108	20
Pyridine	1900	0	1400		74	8		27	94	20
Benzaldehyde	1900	0	790		42	5		10	105	20
Aniline	1900	0	740		39	47	*	10	90	20
Phenol	1900	580	2000		75	0		40	115	20
bis(2-Chloroethyl)ether	1900	0	1600		84	6		48	110	20
2-Chlorophenol	1900	0	1400		74	8		39	115	20
1,2-Dichlorobenzene	1900	0	1500		79	0		57	98	20
1,3-Dichlorobenzene	1900	0	1500		79	0		54	97	20
1,4-Dichlorobenzene	1900	0	1500		79	0		55	97	20
Benzyl Alcohol	1900	0	1700		89	6		53	109	20
2-Methylphenol	1900	0	1600		84	0		48	111	20
2,2-oxybis(1-Chloropropane)	1900	0	1500		79	0		43	116	20
Acetophenone	1900	0	1600		84	0		46	122	20
3+4-Methylphenols	1900	2400	4200		95	5		46	115	20
N-Nitroso-di-n-propylamine	1900	0	1600		84	0		37	128	20
Hexachloroethane	1900	0	1400		74	0		37	117	20
Nitrobenzene	1900	0	1500		79	6		45	117	20
Isophorone	1900	0	1600		84	0		44	121	20
2-Nitrophenol	1900	0	1300		68	0		32	123	20
2,4-Dimethylphenol	1900	0	1500		79	6		45	118	20
bis(2-Chloroethoxy)methane	1900	0	1600		84	0		47	117	20
2,4-Dichlorophenol	1900	0	1400		74	0		37	122	20
1,2,4-Trichlorobenzene	1900	0	1500		79	0		57	103	20
Benzoic acid	1900	0	0		0	* 0		10	131	20
Naphthalene	1900	440	1900		77	6		42	121	20
4-Chloroaniline	1900	0	500		26	83	*	10	130	20
Hexachlorobutadiene	1900	0	1600		84	0		49	111	20
Caprolactam	1900	0	2000		105	0		26	133	20
4-Chloro-3-methylphenol	1900	0	1500		79	0		46	115	20
2-Methylnaphthalene	1900	210	1800		84	6		45	118	20
Hexachlorocyclopentadiene	3800	0	470		12	8		10	127	20
2,4,6-Trichlorophenol	1900	0	950		50	2		36	122	20
2,4,5-Trichlorophenol	1900	0	1300		68	8		33	125	20
1,1-Biphenyl	1900	0	1600		84	0		47	119	20
2-Chloronaphthalene	1900	0	1500		79	0		52	110	20
2-Nitroaniline	1900	0	1600		84	6		45	121	20
Dimethylphthalate	1900	380	1600		64	16		39	127	20
Acenaphthylene	1900	0	1600		84	0		45	117	20
2,6-Dinitrotoluene	1900	0	1600		84	0		50	114	20
3-Nitroaniline	1900	0	1400		74	0		12	108	20
Acenaphthene	1900	190	1800		85	7		45	118	20
2,4-Dinitrophenol	3800	0	380		10	10		10	126	20
4-Nitrophenol	3800	0	1500		39	7		18	141	20
Dibenzofuran	1900	0	1600		84	Ó		45	118	20
2,4-Dinitrotoluene	1900	0	1600		84	0		44	120	20
Diethylphthalate	1900	0	1400		74	0		50	113	20
4-Chlorophenyl-phenylether	1900	0	1600		84	0		51	111	20
	1700	V	1000		07	J		<i>J</i> 1	111	20

SDG No.: <u>D3811</u>

Client: MS Analytical

Parameter	Spike	Sample Result	Result	Units	Rec	Rec Oual	RPD	RPD Oual	Low	Limits	RPD
rarameter	Spike	Resuit	Resuit	Units	Kec	Quai	KPD	Quai	LOW	High	KPD
Fluorene	1900	200	1800		84		0		41	121	20
4-Nitroaniline	1900	0	1600		84		6		38	113	20
4,6-Dinitro-2-methylphenol	1900	0	250		13		7		10	142	20
N-Nitrosodiphenylamine	1900	0	1500		79		0		45	122	20
Azobenzene	1900	0	1500		79		0		52	111	20
4-Bromophenyl-phenylether	1900	0	1500		79		0		51	114	20
Hexachlorobenzene	1900	0	1500		79		0		48	114	20
Atrazine	1900	0	1600		84		6		40	129	20
Pentachlorophenol	3800	0	840		22		27	*	15	145	20
Phenanthrene	1900	1400	2600		63		8		29	138	20
Anthracene	1900	330	1900		83		0		45	120	20
Carbazole	1900	0	1600		84		0		43	122	20
Di-n-butylphthalate	1900	0	1300		68		8		51	115	20
Fluoranthene	1900	1300	2600		68		15		33	133	20
Benzidine	3800	0	1600		42		27	*	10	130	20
Pyrene	1900	1100	2600		79		0		31	135	20
Butylbenzylphthalate	1900	0	1400		74		0		49	121	20
3,3-Dichlorobenzidine	1900	0	1500		79		12		10	105	20
Benzo(a)anthracene	1900	520	2200		88		0		35	132	20
Chrysene	1900	540	2000		77		0		34	131	20
bis(2-Ethylhexyl)phthalate	1900	0	1500		79		0		42	127	20
Di-n-octyl phthalate	1900	0	1500		79		0		50	123	20
Benzo(b)fluoranthene	1900	620	2300		88		7		35	128	20
Benzo(k)fluoranthene	1900	240	1800		82		6		39	117	20
Benzo(a)pyrene	1900	490	2100		85		6		35	129	20
Indeno(1,2,3-cd)pyrene	1900	200	1500		68		0		30	140	20
Dibenz(a,h)anthracene	1900	0	1200		63		0		18	147	20
Benzo(g,h,i)perylene	1900	260	1300		55		0		31	132	20
1,2,4,5-Tetrachlorobenzene	1900	0	1600		84		0		52	122	20
1,4-Dioxane	1900	0	1400		74		8		26	104	20
2,3,4,6-Tetrachlorophenol	1900	0	650		34		11		52	109	20

SDG No.: D3811

Client: MS Analytical

	_						_	RPD		Limits		
Lab Sample ID	Parameter	Spike	Result	Unit	Rec	RPD	Qual	Qual	Low	High	RPD	-6
PB65121BS	n-Nitrosodimethylamine	1700	1200	ug/Kg	71				45	105		
	Pyridine	1700	1100	ug/Kg	65				28	98		
	Benzaldehyde	1700	150	ug/Kg	9		*		10	95		
	Aniline	1700	420	ug/Kg	25		*		10	92		(
	Phenol	1700	840	ug/Kg	49		*		51	101		
	bis(2-Chloroethyl)ether	1700	990	ug/Kg	58				55	99		
	2-Chlorophenol	1700	840	ug/Kg	49		*		53	100		
	1,2-Dichlorobenzene	1700	930	ug/Kg	55				51	102		
	1,3-Dichlorobenzene	1700	890	ug/Kg	52				52	99		
	1,4-Dichlorobenzene	1700	910	ug/Kg	54				52	100		
	Benzyl Alcohol	1700	900	ug/Kg	53				42	116		
	2-Methylphenol	1700	950	ug/Kg	56				49	105		
	2,2-oxybis(1-Chloropropan	1700	970	ug/Kg	57				52	104		
	Acetophenone	1700	1000	ug/Kg	59				50	111		
	3+4-Methylphenols	1700	960	ug/Kg	56				52	102		
	N-Nitroso-di-n-propylamine	1700	980	ug/Kg	58				51	104		
	Hexachloroethane	1700	870	ug/Kg	51		*		54	97		
	Nitrobenzene	1700	950	ug/Kg	56				51	104		
	Isophorone	1700	950	ug/Kg	56				55	101		
	2-Nitrophenol	1700	840	ug/Kg	49		*		52	105		
	2,4-Dimethylphenol	1700	870	ug/Kg	51		*		53	103		
	bis(2-Chloroethoxy)methar	1700	950	ug/Kg	56				55	101		
	2,4-Dichlorophenol	1700	810	ug/Kg	48		*		54	103		
	1,2,4-Trichlorobenzene	1700	880	ug/Kg	52				44	110		
	Benzoic acid	1700	690	ug/Kg	41				10	140		
	Naphthalene	1700	970	ug/Kg	57				53	103		
	4-Chloroaniline	1700	280	ug/Kg	16				10	130		
	Hexachlorobutadiene	1700	850	ug/Kg	50				50	106		
	Caprolactam	1700	910	ug/Kg	54				49	106		
	4-Chloro-3-methylphenol	1700	800	ug/Kg	47		*		55	101		
	2-Methylnaphthalene	1700	930	ug/Kg	55				55	102		
	Hexachlorocyclopentadien	3300	2100	ug/Kg	64				38	122		
	2,4,6-Trichlorophenol	1700	810	ug/Kg	48		*		56	103		
	2,4,5-Trichlorophenol	1700	840	ug/Kg	49		*		56	103		
	1,1-Biphenyl	1700	930	ug/Kg	55		*		56	107		
	2-Chloronaphthalene	1700	900	ug/Kg	53		*		56	102		
	2-Nitroaniline	1700	840	ug/Kg	49		*		54	103		
	Dimethylphthalate	1700	750	ug/Kg	44		*		61	111		
	Acenaphthylene	1700	940	ug/Kg	55		*		57	101		
	2,6-Dinitrotoluene	1700	890	ug/Kg	52		*		59	100		
	3-Nitroaniline	1700	500	ug/Kg	29				10	130		
	Acenaphthene	1700	930	ug/Kg	55		*		57	102		
	2,4-Dinitrophenol	3300	1200	ug/Kg	36				32	114		
	4-Nitrophenol	3300	1500	ug/Kg	45		*		48	114		
	Dibenzofuran	1700	850	ug/Kg	50		*		57	100		
	2,4-Dinitrotoluene	1700	870	ug/Kg	51		*		58	102		

SDG No.: D3811

Client: MS Analytical

								RPD		Limits	
Lab Sample ID	Parameter	Spike	Result	Unit	Rec	RPD	Qual	Qual	Low	High	RPD
PB65121BS	Diethylphthalate	1700	740	ug/Kg	44		*		56	101	
	4-Chlorophenyl-phenylethε	1700	860	ug/Kg	51		*		57	101	
	Fluorene	1700	920	ug/Kg	54		*		57	101	
	4-Nitroaniline	1700	780	ug/Kg	46		*		49	99	
	4,6-Dinitro-2-methylphenol	1700	730	ug/Kg	43		*		44	119	
	N-Nitrosodiphenylamine	1700	930	ug/Kg	55		*		57	103	
	Azobenzene	1700	900	ug/Kg	53		*		58	100	
	4-Bromophenyl-phenylethε	1700	880	ug/Kg	52		*		57	105	
	Hexachlorobenzene	1700	850	ug/Kg	50		*		54	106	
	Atrazine	1700	890	ug/Kg	52				50	113	
	Pentachlorophenol	3300	1500	ug/Kg	45		*		49	116	
	Phenanthrene	1700	940	ug/Kg	55		*		58	101	
	Anthracene	1700	970	ug/Kg	57				57	102	
	Carbazole	1700	860	ug/Kg	51		*		57	102	
	Di-n-butylphthalate	1700	800	ug/Kg	47		*		57	103	
	Fluoranthene	1700	890	ug/Kg	52		*		56	102	
	Benzidine	3300	850	ug/Kg	26				10	130	
	Pyrene	1700	940	ug/Kg	55		*		56	106	
	Butylbenzylphthalate	1700	800	ug/Kg	47		*		57	106	
	3,3-Dichlorobenzidine	1700	310	ug/Kg	18				10	92	
	Benzo(a)anthracene	1700	930	ug/Kg	55		*		56	103	
	Chrysene	1700	890	ug/Kg	52		*		58	102	
	bis(2-Ethylhexyl)phthalate	1700	790	ug/Kg	46		*		57	106	
	Di-n-octyl phthalate	1700	830	ug/Kg	49		*		56	107	
	Benzo(b)fluoranthene	1700	890	ug/Kg	52		*		56	103	
	Benzo(k)fluoranthene	1700	920	ug/Kg	54		*		55	102	
	Benzo(a)pyrene	1700	940	ug/Kg	55		*		57	103	
	Indeno(1,2,3-cd)pyrene	1700	930	ug/Kg	55				50	113	
	Dibenz(a,h)anthracene	1700	940	ug/Kg	55				52	119	
	Benzo(g,h,i)perylene	1700	950	ug/Kg	56				56	105	
	1,2,4,5-Tetrachlorobenzen	1700	900	ug/Kg	53				33	136	
	1,4-Dioxane	1700	1200	ug/Kg	71				15	117	
	2,3,4,6-Tetrachlorophenol	1700	750	ug/Kg	44		*		47	120	

SDG No.: D3811

Client: MS Analytical

		a	_		_	.	-	RPD	_	Limits	 -	
Lab Sample ID	Parameter	Spike	Result	Unit	Rec	RPD	Qual	Qual	Low	High	RPD	
PB65419BS	n-Nitrosodimethylamine	1700	1300	ug/Kg	76				45	105		
	Pyridine	1700	1200	ug/Kg	71				28	98		
	Benzaldehyde	1700	560	ug/Kg	33				10	95		
	Aniline	1700	800	ug/Kg	47				10	92		
	Phenol	1700	1100	ug/Kg	65 70				51 55	101		
	bis(2-Chloroethyl)ether	1700	1300	ug/Kg	76				55	99		
	2-Chlorophenol	1700	1100	ug/Kg	65 70				53	100		
	1,2-Dichlorobenzene	1700	1300	ug/Kg	76				51 50	102		
	1,3-Dichlorobenzene	1700	1300	ug/Kg	76				52	99		
	1,4-Dichlorobenzene	1700	1300	ug/Kg	76				52	100		
	Benzyl Alcohol	1700	1200	ug/Kg	71 70				42	116		
	2-Methylphenol	1700	1300	ug/Kg	76				49	105		
	2,2-oxybis(1-Chloropropan	1700	1300	ug/Kg	76				52	104		
	Acetophenone	1700	1300	ug/Kg	76				50	111		
	3+4-Methylphenols	1700	1300	ug/Kg	76 70				52	102		
	N-Nitroso-di-n-propylamine	1700	1300	ug/Kg	76				51	104		
	Hexachloroethane	1700	1300	ug/Kg	76				54	97		
	Nitrobenzene	1700	1300	ug/Kg	76				51	104		
	Isophorone	1700	1300	ug/Kg	76				55	101		
	2-Nitrophenol	1700	1200	ug/Kg	71				52	105		
	2,4-Dimethylphenol	1700	1200	ug/Kg	71				53	103		
	bis(2-Chloroethoxy)methar	1700	1300	ug/Kg	76				55	101		
	2,4-Dichlorophenol	1700	1200	ug/Kg	71				54	103		
	1,2,4-Trichlorobenzene	1700	1300	ug/Kg	76				44	110		
	Benzoic acid	1700	1300	ug/Kg	76				10	140		
	Naphthalene	1700	1300	ug/Kg	76				53	103		
	4-Chloroaniline	1700	450	ug/Kg	26				10	130		
	Hexachlorobutadiene	1700	1300	ug/Kg	76				50	106		
	Caprolactam	1700	1300	ug/Kg	76				49	106		
	4-Chloro-3-methylphenol	1700	1100	ug/Kg	65				55	101		
	2-Methylnaphthalene	1700	1300	ug/Kg	76				55	102		
	Hexachlorocyclopentadien	3300	3300	ug/Kg	100				38	122		
	2,4,6-Trichlorophenol	1700	1200	ug/Kg	71				56	103		
	2,4,5-Trichlorophenol	1700	1200	ug/Kg	71				56	103		
	1,1-Biphenyl	1700	1300	ug/Kg	76				56	107		
	2-Chloronaphthalene	1700	1300	ug/Kg	76				56	102		
	2-Nitroaniline	1700	1200	ug/Kg	71				54	103		
	Dimethylphthalate	1700	1100	ug/Kg	65				61	111		
	Acenaphthylene	1700	1300	ug/Kg	76				57	101		
	2,6-Dinitrotoluene	1700	1300	ug/Kg	76				59	100		
	3-Nitroaniline	1700	700	ug/Kg	41				10	130		
	Acenaphthene	1700	1300	ug/Kg	76				57	102		
	2,4-Dinitrophenol	3300	2000	ug/Kg	61				32	114		
	4-Nitrophenol	3300	2200	ug/Kg	67				48	114		
	Dibenzofuran	1700	1300	ug/Kg	76				57	100		
	2,4-Dinitrotoluene	1700	1300	ug/Kg	76				58	102		

SDG No.: D3811

Client: MS Analytical

								RPD		Limits	
Lab Sample ID	Parameter	Spike	Result	Unit	Rec	RPD	Qual	Qual	Low	High	RPD
PB65419BS	Diethylphthalate	1700	1100	ug/Kg	65				56	101	
	4-Chlorophenyl-phenyleth€	1700	1300	ug/Kg	76				57	101	
	Fluorene	1700	1300	ug/Kg	76				57	101	
	4-Nitroaniline	1700	1100	ug/Kg	65				49	99	
	4,6-Dinitro-2-methylphenol	1700	1100	ug/Kg	65				44	119	
	N-Nitrosodiphenylamine	1700	1300	ug/Kg	76				57	103	
	Azobenzene	1700	1200	ug/Kg	71				58	100	
	4-Bromophenyl-phenylethε	1700	1300	ug/Kg	76				57	105	
	Hexachlorobenzene	1700	1300	ug/Kg	76				54	106	
	Atrazine	1700	1400	ug/Kg	82				50	113	
	Pentachlorophenol	3300	2500	ug/Kg	76				49	116	
	Phenanthrene	1700	1300	ug/Kg	76				58	101	
	Anthracene	1700	1400	ug/Kg	82				57	102	
	Carbazole	1700	1200	ug/Kg	71				57	102	
	Di-n-butylphthalate	1700	1100	ug/Kg	65				57	103	
	Fluoranthene	1700	1300	ug/Kg	76				56	102	
	Benzidine	3300	1000	ug/Kg	30				10	130	
	Pyrene	1700	1300	ug/Kg	76				56	106	
	Butylbenzylphthalate	1700	1100	ug/Kg	65				57	106	
	3,3-Dichlorobenzidine	1700	620	ug/Kg	36				10	92	
	Benzo(a)anthracene	1700	1300	ug/Kg	76				56	103	
	Chrysene	1700	1300	ug/Kg	76				58	102	
	bis(2-Ethylhexyl)phthalate	1700	1000	ug/Kg	59				57	106	
	Di-n-octyl phthalate	1700	1000	ug/Kg	59				56	107	
	Benzo(b)fluoranthene	1700	1300	ug/Kg	76				56	103	
	Benzo(k)fluoranthene	1700	1400	ug/Kg	82				55	102	
	Benzo(a)pyrene	1700	1400	ug/Kg	82				57	103	
	Indeno(1,2,3-cd)pyrene	1700	1400	ug/Kg	82				50	113	
	Dibenz(a,h)anthracene	1700	1400	ug/Kg	82				52	119	
	Benzo(g,h,i)perylene	1700	1300	ug/Kg	76				56	105	
	1,2,4,5-Tetrachlorobenzen	1700	1300	ug/Kg	76				33	136	
	1,4-Dioxane	1700	1300	ug/Kg	76				15	117	
	2,3,4,6-Tetrachlorophenol	1700	1200	ug/Kg	71				47	120	

SDG No.: D3811

Client: MS Analytical

	_		_			_	_	RPD	_	Limits	_	
Lab Sample ID	Parameter	Spike	Result	Unit	Rec	RPD	Qual	Qual	Low	High	RPD	-1
PB65125BS	n-Nitrosodimethylamine	1700	1400	ug/Kg	82				45	105		
	Pyridine	1700	1300	ug/Kg	76				28	98		
	Benzaldehyde	1700	140	ug/Kg	8		*		10	95		
	Aniline	1700	930	ug/Kg	55				10	92		
	Phenol	1700	1300	ug/Kg	76				51	101		
	bis(2-Chloroethyl)ether	1700	1300	ug/Kg	76				55	99		
	2-Chlorophenol	1700	1300	ug/Kg	76				53	100		
	1,2-Dichlorobenzene	1700	1300	ug/Kg	76				51	102		
	1,3-Dichlorobenzene	1700	1300	ug/Kg	76				52	99		
	1,4-Dichlorobenzene	1700	1300	ug/Kg	76				52	100		
	Benzyl Alcohol	1700	1400	ug/Kg	82				42	116		
	2-Methylphenol	1700	1400	ug/Kg	82				49	105		
	2,2-oxybis(1-Chloropropan	1700	1300	ug/Kg	76				52	104		
	Acetophenone	1700	1400	ug/Kg	82				50	111		
	3+4-Methylphenols	1700	1400	ug/Kg	82				52	102		
	N-Nitroso-di-n-propylamine	1700	1300	ug/Kg	76				51	104		
	Hexachloroethane	1700	1300	ug/Kg	76				54	97		
	Nitrobenzene	1700	1300	ug/Kg	76				51	104		
	Isophorone	1700	1400	ug/Kg	82				55	101		
	2-Nitrophenol	1700	1300	ug/Kg	76				52	105		
	2,4-Dimethylphenol	1700	1300	ug/Kg	76				53	103		
	bis(2-Chloroethoxy)methar	1700	1400	ug/Kg	82				55	101		
	2,4-Dichlorophenol	1700	1300	ug/Kg	76				54	103		
	1,2,4-Trichlorobenzene	1700	1300	ug/Kg	76				44	110		
	Benzoic acid	1700	1100	ug/Kg	65				10	140		
	Naphthalene	1700	1300	ug/Kg	76				53	103		
	4-Chloroaniline	1700	420	ug/Kg	25				10	130		
	Hexachlorobutadiene	1700	1300	ug/Kg	76				50	106		
	Caprolactam	1700	1500	ug/Kg	88				49	106		
	4-Chloro-3-methylphenol	1700	1300	ug/Kg	76				55	101		
	2-Methylnaphthalene	1700	1400	ug/Kg	82				55	102		
	Hexachlorocyclopentadien	3300	3200	ug/Kg	97				38	122		
	2,4,6-Trichlorophenol	1700	1200	ug/Kg	71				56	103		
	2,4,5-Trichlorophenol	1700	1300	ug/Kg	76				56	103		
	1,1-Biphenyl	1700	1300	ug/Kg	76				56	107		
	2-Chloronaphthalene	1700	1300	ug/Kg	76				56	102		
	2-Nitroaniline	1700	1200	ug/Kg	71				54	103		
	Dimethylphthalate	1700	1100	ug/Kg	65				61	111		
	Acenaphthylene	1700	1400	ug/Kg	82				57	101		
	2,6-Dinitrotoluene	1700	1300	ug/Kg	76				59	100		
	3-Nitroaniline	1700	770	ug/Kg	45				10	130		
	Acenaphthene	1700	1400	ug/Kg	82				57	102		
	2,4-Dinitrophenol	3300	2100	ug/Kg	64				32	114		
	4-Nitrophenol	3300	2500	ug/Kg	76				48	114		
	Dibenzofuran	1700	1300	ug/Kg ug/Kg	76				57	100		
	2,4-Dinitrotoluene	1700	1300	ug/Kg ug/Kg	76				58	102		
	4, - الماليان الماليان عن ماليان المال	1700	1300	ug/itg	70				50	102		

SDG No.: D3811

Client: MS Analytical

								RPD		Limits		D
Lab Sample ID	Parameter	Spike	Result	Unit	Rec	RPD	Qual	Qual	Low	High	RPD	Е
PB65125BS	Diethylphthalate	1700	1100	ug/Kg	65				56	101		
	4-Chlorophenyl-phenyleth€	1700	1300	ug/Kg	76				57	101		F
	Fluorene	1700	1400	ug/Kg	82				57	101		
	4-Nitroaniline	1700	1200	ug/Kg	71				49	99		G
	4,6-Dinitro-2-methylphenol	1700	1200	ug/Kg	71				44	119		
	N-Nitrosodiphenylamine	1700	1300	ug/Kg	76				57	103		
	Azobenzene	1700	1300	ug/Kg	76				58	100		
	4-Bromophenyl-phenylethε	1700	1300	ug/Kg	76				57	105		
	Hexachlorobenzene	1700	1300	ug/Kg	76				54	106		
	Atrazine	1700	1400	ug/Kg	82				50	113		
	Pentachlorophenol	3300	2300	ug/Kg	70				49	116		
	Phenanthrene	1700	1400	ug/Kg	82				58	101		
	Anthracene	1700	1400	ug/Kg	82				57	102		
	Carbazole	1700	1300	ug/Kg	76				57	102		
	Di-n-butylphthalate	1700	1100	ug/Kg	65				57	103		
	Fluoranthene	1700	1400	ug/Kg	82				56	102		
	Benzidine	3300	1800	ug/Kg	55				10	130		
	Pyrene	1700	1300	ug/Kg	76				56	106		
	Butylbenzylphthalate	1700	1100	ug/Kg	65				57	106		
	3,3-Dichlorobenzidine	1700	720	ug/Kg	42				10	92		
	Benzo(a)anthracene	1700	1300	ug/Kg	76				56	103		
	Chrysene	1700	1300	ug/Kg	76				58	102		
	bis(2-Ethylhexyl)phthalate	1700	1100	ug/Kg	65				57	106		
	Di-n-octyl phthalate	1700	1200	ug/Kg	71				56	107		
	Benzo(b)fluoranthene	1700	1400	ug/Kg	82				56	103		
	Benzo(k)fluoranthene	1700	1400	ug/Kg	82				55	102		
	Benzo(a)pyrene	1700	1400	ug/Kg	82				57	103		
	Indeno(1,2,3-cd)pyrene	1700	1200	ug/Kg	71				50	113		
	Dibenz(a,h)anthracene	1700	1300	ug/Kg	76				52	119		
	Benzo(g,h,i)perylene	1700	1300	ug/Kg	76				56	105		
	1,2,4,5-Tetrachlorobenzen	1700	1300	ug/Kg	76				33	136		
	1,4-Dioxane	1700	1300	ug/Kg	76				15	117		
	2,3,4,6-Tetrachlorophenol	1700	1200	ug/Kg	71				47	120		
	,			5 5								

4B

SEMIVOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

Lab Name: CHEMTECH	Contract:	MSAN01
--------------------	-----------	--------

Lab File ID: BF058258.D Lab Sample ID: PB65121BL

Instrument ID: BNA_F Date Extracted: 08/15/2012

Matrix: (soil/water) SOIL Date Analyzed: 08/16/2012

Level: (low/med) LOW Time Analyzed: 14:47

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED
SS-01AMSD	D3813-01MSD	BF058266.D	08/16/2012
SS-01AMS	D3813-01MS	BF058265.D	08/16/2012
SB-46(12-16)	D3811-21	BF058263.D	08/16/2012
PB65121BS	PB65121BS	BF058256.D	08/16/2012

COMMENTS:			

4B

SEMIVOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

PB65125BL

Lab Name: CHEMTECH Contract: MSAN01

Lab File ID: BG006798.D Lab Sample ID: PB65125BL

Instrument ID: BNA_G Date Extracted: 08/15/2012

Matrix: (soil/water) SOIL Date Analyzed: 08/21/2012

Level: (low/med) LOW Time Analyzed: 14:40

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:						
EPA	LAB	LAB	DATE			
SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED			
SB-45(10-12)	D3811-20	BG006794.D	08/21/2012			
SB-43(10-12)	D3811-18	BG006793.D	08/21/2012			
SB-37(8-10)	D3811-13	BG006792.D	08/21/2012			
SB-9(4-7)	D3811-03	BF058276.D	08/16/2012			
SB-5(8-12)MSD	D3811-02MSD	BF058275.D	08/16/2012			
SB-21(16-19)	D3811-10	BG006791.D	08/21/2012			
SB-15 (12-16)	D3811-06	BG006790.D	08/21/2012			
SB-43 (16-20)	D3811-19	BF058359.D	08/21/2012			
SB-5(8-12)MS	D3811-02MS	BF058274.D	08/16/2012			
SB-5 (8-12)	D3811-02	BF058273.D	08/16/2012			
SB-43 (6-8)	D3811-17	BF058358.D	08/21/2012			
SB-10(8-12)	D3811-04	BG006789.D	08/21/2012			
SB-42 (14-16)	D3811-16	BG006788.D	08/21/2012			
SB-2(4-8)	D3811-01	BF058272.D	08/16/2012			
SB-39(6-8)	D3811-14	BG006786.D	08/20/2012			
SB-27(8-12)	D3811-12	BG006785.D	08/20/2012			
SB-22 (12-19)	D3811-11	BG006784.D	08/20/2012			
SB-21 (12-16)	D3811-09	BG006783.D	08/20/2012			
SB-19 (12-18)	D3811-08	BG006782.D	08/20/2012			
SB-18(4-8)	D3811-07	BG006781.D	08/20/2012			
SB-11 (12-16)	D3811-05	BG006780.D	08/20/2012			
SB-41(8-11)	D3811-15	BF058438.D	08/24/2012			
PB65125BS	PB65125BS	BG006797.D	08/21/2012			

COMMENTS:			

4B

SEMIVOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.	
----------------	--

Lab Name: CHEMTECH Contract: MSAN01

Lab File ID: BF058471.D Lab Sample ID: PB65419BL

Instrument ID: BNA_F Date Extracted: 08/28/2012

Matrix: (soil/water) SOIL Date Analyzed: 08/28/2012

Level: (low/med) LOW Time Analyzed: 17:16

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

EPA	LAB	LAB	DATE ANALYZED	
SAMPLE NO.	SAMPLE ID	FILE ID		
SS-01AMSDRX	D3813-01MSDRX	BF058477.D	08/28/2012	
SS-01AMSRX	D3813-01MSRX	BF058476.D	08/28/2012	
SB-46 (12-16) RX	D3811-21RX	BF058474.D	08/28/2012	
PB65419BS	PB65419BS	BF058470.D	08/28/2012	

COMMENTS:			

5в

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: CHEMTECH Contract: MSAN01

Lab Code: CHEM SAS No.: D3811 SDG NO.: D3811

Lab File ID: BF057871.D DFTPP Injection Date: 08/02/2012

Instrument ID: BNA_F DFTPP Injection Time: 12:54

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51 68 69 70 127 197 198 199 275 365 441 442	10.0 - 80.0% of mass 198 Less than 2.0% of mass 69 Mass 69 relative abundance Less than 2.0% of mass 69 10.0 - 80.0% of mass 198 Less than 2.0% of mass 198 Base Peak, 100% relative abundance 5.0 to 9.0% of mass 198 10.0 - 60.0% of mass 198 Greater than 1% of mass 198 Present, but less than mass 443 Greater than 50% of mass 198	57.8 0.2 (0.4) 1 47.4 0.1 (0.3) 1 54.4 0.4 100 6.3 23.6 2.4 9.5 56.5
443	15.0 - 24.0% of mass 442	12.1 (21.5) 2

1-Value is % mass 69

2-Value is % mass 442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01	SSTDICC010	SSTDICC010	BF057873.D	08/02/2012	14:10
02	SSTDICC025	SSTDICC025	BF057874.D	08/02/2012	14:43
03	SSTDICC040	SSTDICC040	BF057875.D	08/02/2012	15:24
04	SSTDICC050	SSTDICC050	BF057876.D	08/02/2012	15:57
05	SSTDICC060	SSTDICC060	BF057877.D	08/02/2012	16:30
06	SSTDICC080	SSTDICC080	BF057878.D	08/02/2012	17:03

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: CHEMTECH Contract: MSAN01

Lab Code: CHEM SAS No.: D3811 SDG NO.: D3811

Lab File ID: BF058254.D DFTPP Injection Date: 08/16/2012

Instrument ID: BNA_F DFTPP Injection Time: 12:48

E

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
51	10.0 - 80.0% of mass 198	58.9	
68	Less than 2.0% of mass 69	0.9 (1.8)	1
69	Mass 69 relative abundance	50	
70	Less than 2.0% of mass 69	0.0 (0.0) 1	
127	10.0 - 80.0% of mass 198	54.2	
197	Less than 2.0% of mass 198	0.9	
198	Base Peak, 100% relative abundance	100	
199	5.0 to 9.0% of mass 198	7.1	
275	10.0 - 60.0% of mass 198	20.3	
365	Greater than 1% of mass 198	2.8	
441	Present, but less than mass 443	9.2	
442	Greater than 50% of mass 198	54.9	
443	15.0 - 24.0% of mass 442	10.9 (19.9)	2

1-Value is % mass 69

2-Value is % mass 442

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01	SSTDCCC040	SSTDCCC040	BF058255.D	08/16/2012	13:17
02	PB65121BS	PB65121BS	BF058256.D	08/16/2012	13:48
03	PB65121BL	PB65121BL	BF058258.D	08/16/2012	14:47
04	SB-46(12-16)	D3811-21	BF058263.D	08/16/2012	17:17
05	SS-01AMS	D3813-01MS	BF058265.D	08/16/2012	18:17
06	SS-01AMSD	D3813-01MSD	BF058266.D	08/16/2012	18:47
07	SB-2 (4-8)	D3811-01	BF058272.D	08/16/2012	21:47
80	SB-5 (8-12)	D3811-02	BF058273.D	08/16/2012	22:17
09	SB-5(8-12)MS	D3811-02MS	BF058274.D	08/16/2012	22:47
10	SB-5(8-12)MSD	D3811-02MSD	BF058275.D	08/16/2012	23:17
11	SB-9(4-7)	D3811-03	BF058276.D	08/16/2012	23:47

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: CHEMTECH Contract: MSAN01

Lab Code: CHEM SAS No.: D3811 SDG NO.: D3811

Lab File ID: BF058325.D DFTPP Injection Date: 08/20/2012

Instrument ID: BNA_F DFTPP Injection Time: 12:47

i i

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51 68 69	10.0 - 80.0% of mass 198 Less than 2.0% of mass 69 Mass 69 relative abundance	44.3 0.6 (1.1) 1 53.7
70 127	Less than 2.0% of mass 69 10.0 - 80.0% of mass 198	0.1 (0.1) 1
197 198 199	Less than 2.0% of mass 198 Base Peak, 100% relative abundance 5.0 to 9.0% of mass 198	0.7 100 7.4
275 365	10.0 - 60.0% of mass 198 Greater than 1% of mass 198	22.5
441 442	Present, but less than mass 443 Greater than 50% of mass 198	8.1 51.7
443	15.0 - 24.0% of mass 442	10 (19.4) 2

1-Value is % mass 69

2-Value is % mass 442

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01	SSTDICC010	SSTDICC010	BF058326.D	08/20/2012	13:17
02	SSTDICC025	SSTDICC025	BF058327.D	08/20/2012	13:47
03	SSTDICCC040	SSTDICCC040	BF058328.D	08/20/2012	14:17
04	SSTDICC050	SSTDICC050	BF058329.D	08/20/2012	14:47
05	SSTDICC060	SSTDICC060	BF058330.D	08/20/2012	15:17
06	SSTDICC080	SSTDICC080	BF058331.D	08/20/2012	15:47

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

ab Name:	CHEMTECH	Contract:	MSAN01
----------	----------	-----------	--------

Lab Code: CHEM SAS No.: D3811 SDG NO.: D3811

Lab File ID: BF058339.D DFTPP Injection Date: 08/21/2012

Instrument ID: BNA_F DFTPP Injection Time: 13:09

Ε

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51 68 69 70 127 197 198 199 275 365 441 442	10.0 - 80.0% of mass 198 Less than 2.0% of mass 69 Mass 69 relative abundance Less than 2.0% of mass 69 10.0 - 80.0% of mass 198 Less than 2.0% of mass 198 Base Peak, 100% relative abundance 5.0 to 9.0% of mass 198 10.0 - 60.0% of mass 198 Greater than 1% of mass 198 Present, but less than mass 443 Greater than 50% of mass 198	52.8 1.1 (2) 1 56.1 0.1 (0.2) 1 60.5 0.1 100 7.2 24.2 3 6.6 54.1
443	15.0 - 24.0% of mass 442	10.3 (19) 2

1-Value is % mass 69

2-Value is % mass 442

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01	SSTDCCC040	SSTDCCC040	BF058340.D	08/21/2012	13:39
02	SB-43 (6-8)	D3811-17	BF058358.D	08/21/2012	22:37
03	SB-43(16-20)	D3811-19	BF058359.D	08/21/2012	23:07

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

ab Name:	CHEMTECH	Contract:	MSAN01
	<u></u>		

Lab Code: CHEM SAS No.: D3811 SDG NO.: D3811

Lab File ID: BF058387.D DFTPP Injection Date: 08/23/2012

Instrument ID: BNA_F DFTPP Injection Time: 09:03

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51	10.0 - 80.0% of mass 198	55
68	Less than 2.0% of mass 69	1.1 (1.9) 1
69	Mass 69 relative abundance	58.6
70	Less than 2.0% of mass 69	0.4 (0.6) 1
127	10.0 - 80.0% of mass 198	63.2
197	Less than 2.0% of mass 198	0.1
198	Base Peak, 100% relative abundance	100
199	5.0 to 9.0% of mass 198	6.2
275	10.0 - 60.0% of mass 198	20.8
365	Greater than 1% of mass 198	3.1
441	Present, but less than mass 443	8.1
442	Greater than 50% of mass 198	52.8
443	15.0 - 24.0% of mass 442	9.5 (18.1) 2

1-Value is % mass 69

2-Value is % mass 442

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01	SSTDCCC040	SSTDCCC040	BF058388.D	08/23/2012	09:33
02	SB-37(8-10)DL	D3811-13DL	BF058393.D	08/23/2012	12:02

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

ab Name: CHEMTECH	Contract:	MSAN01
ab Name: CHEMTECH	Contract:	MSANUI

Lab Code: CHEM SAS No.: D3811 SDG NO.: D3811

Lab File ID: BF058427.D DFTPP Injection Date: 08/24/2012

Instrument ID: BNA_F DFTPP Injection Time: 13:53

i

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51 68 69 70 127 197 198 199 275 365 441 442	10.0 - 80.0% of mass 198 Less than 2.0% of mass 69 Mass 69 relative abundance Less than 2.0% of mass 69 10.0 - 80.0% of mass 198 Less than 2.0% of mass 198 Base Peak, 100% relative abundance 5.0 to 9.0% of mass 198 10.0 - 60.0% of mass 198 Greater than 1% of mass 198 Present, but less than mass 443 Greater than 50% of mass 198	54.7 0.4 (0.8) 1 56 0.2 (0.3) 1 64.7 0.5 100 6.8 19.9 3.6 8.3 53.4
443	15.0 - 24.0% of mass 442	9.9 (18.6) 2

1-Value is % mass 69

2-Value is % mass 442

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01	SSTDICCC040	SSTDICCC040	BF058428.D	08/24/2012	14:25
02	SSTDICC010	SSTDICC010	BF058429.D	08/24/2012	14:55
03	SSTDICC025	SSTDICC025	BF058430.D	08/24/2012	15:25
04	SSTDICC050	SSTDICC050	BF058431.D	08/24/2012	15:56
05	SSTDICC060	SSTDICC060	BF058432.D	08/24/2012	16:26
06	SSTDICC080	SSTDICC080	BF058433.D	08/24/2012	16:57
07	SB-41(8-11)	D3811-15	BF058438.D	08/24/2012	19:42

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

ab Name	: CHEMTECH	Contract:	MSAN01
ab Name	. CHEMIECH	Concract.	110111101

Lab Code: CHEM SAS No.: D3811 SDG NO.: D3811

BF058463.D 08/28/2012 Lab File ID: DFTPP Injection Date:

Instrument ID: BNA F DFTPP Injection Time: 12:56

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51 68	10.0 - 80.0% of mass 198 Less than 2.0% of mass 69	56.7 0.6 (1.1) 1
69	Mass 69 relative abundance	56.5
70	Less than 2.0% of mass 69	0.2 (0.3) 1
127	10.0 - 80.0% of mass 198	62.8
197	Less than 2.0% of mass 198	0.5
198	Base Peak, 100% relative abundance	100
199	5.0 to 9.0% of mass 198	7.5
275	10.0 - 60.0% of mass 198	21.8
365	Greater than 1% of mass 198	3.6
441	Present, but less than mass 443	9.4
442	Greater than 50% of mass 198	54.8
443	15.0 - 24.0% of mass 442	11.5 (21) 2

1-Value is % mass 69

2-Value is % mass 442

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01	SSTDCCC040	SSTDCCC040	BF058464.D	08/28/2012	13:26
02	PB65419BS	PB65419BS	BF058470.D	08/28/2012	16:46
03	PB65419BL	PB65419BL	BF058471.D	08/28/2012	17:16
04	SB-46 (12-16) RX	D3811-21RX	BF058474.D	08/28/2012	18:47
05	SS-01AMSRX	D3813-01MSRX	BF058476.D	08/28/2012	19:47
06	SS-01AMSDRX	D3813-01MSDRX	BF058477.D	08/28/2012	20:17

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

ab Name:	CHEMTECH	Contract:	MSAN01	

Lab Code: CHEM SAS No.: D3811 SDG NO.: D3811

Lab File ID: BG006770.D DFTPP Injection Date: 08/20/2012

Instrument ID: BNA_G DFTPP Injection Time: 11:58

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51	10.0 - 80.0% of mass 198	15.6
68	Less than 2.0% of mass 69	0.3 (0.8) 1
69	Mass 69 relative abundance	36
70	Less than 2.0% of mass 69	0.3 (0.7) 1
127	10.0 - 80.0% of mass 198	40.2
197	Less than 2.0% of mass 198	0.7
198	Base Peak, 100% relative abundance	100
199	5.0 to 9.0% of mass 198	6.5
275	10.0 - 60.0% of mass 198	27.7
365	Greater than 1% of mass 198	1.8
441	Present, but less than mass 443	9.6
442	Greater than 50% of mass 198	56.8
443	15.0 - 24.0% of mass 442	10.3 (18.1) 2

1-Value is % mass 69

2-Value is % mass 442

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01	SSTDICC010	SSTDICC010	BG006771.D	08/20/2012	12:43
02	SSTDICC025	SSTDICC025	BG006772.D	08/20/2012	13:25
03	SSTDICCC040	SSTDICCC040	BG006773.D	08/20/2012	14:06
04	SSTDICC050	SSTDICC050	BG006774.D	08/20/2012	14:55
05	SSTDICC060	SSTDICC060	BG006775.D	08/20/2012	15:36
06	SSTDICC080	SSTDICC080	BG006776.D	08/20/2012	16:18

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

ab Name: CHEMTECH	Contract:	MSAN01	
-------------------	-----------	--------	--

Lab Code: CHEM SAS No.: D3811 SDG NO.: D3811

Lab File ID: BG006778.D DFTPP Injection Date: 08/20/2012

Instrument ID: BNA_G DFTPP Injection Time: 17:41

E

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51 68	10.0 - 80.0% of mass 198 Less than 2.0% of mass 69	14.1 0.1 (0.2) 1
69	Mass 69 relative abundance	32.9
70	Less than 2.0% of mass 69	0.0 (0.4) 1
127	10.0 - 80.0% of mass 198	40.9
197	Less than 2.0% of mass 198	1
198	Base Peak, 100% relative abundance	100
199	5.0 to 9.0% of mass 198	7.8
275	10.0 - 60.0% of mass 198	28.4
365	Greater than 1% of mass 198	2.6
441	Present, but less than mass 443	10.8
442	Greater than 50% of mass 198	66.1
443	15.0 - 24.0% of mass 442	12.9 (19.5) 2

1-Value is % mass 69

2-Value is % mass 442

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01	SSTDCCC040	SSTDCCC040	BG006779.D	08/20/2012	18:27
02	SB-11 (12-16)	D3811-05	BG006780.D	08/20/2012	19:08
03	SB-18 (4-8)	D3811-07	BG006781.D	08/20/2012	19:50
04	SB-19(12-18)	D3811-08	BG006782.D	08/20/2012	20:32
05	SB-21 (12-16)	D3811-09	BG006783.D	08/20/2012	21:13
06	SB-22 (12-19)	D3811-11	BG006784.D	08/20/2012	21:55
07	SB-27 (8-12)	D3811-12	BG006785.D	08/20/2012	22:36
08	SB-39(6-8)	D3811-14	BG006786.D	08/20/2012	23:18
09	SB-42 (14-16)	D3811-16	BG006788.D	08/21/2012	00:41
10	SB-10 (8-12)	D3811-04	BG006789.D	08/21/2012	01:23
11	SB-15 (12-16)	D3811-06	BG006790.D	08/21/2012	02:04
12	SB-21 (16-19)	D3811-10	BG006791.D	08/21/2012	02:46
13	SB-37(8-10)	D3811-13	BG006792.D	08/21/2012	03:27
14	SB-43 (10-12)	D3811-18	BG006793.D	08/21/2012	04:09
15	SB-45 (10-12)	D3811-20	BG006794.D	08/21/2012	04:51

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

ab Name: CHEMTECH Contract: MSAN01	e: CHEMTECH Contract: MSAN01	
------------------------------------	------------------------------	--

Lab Code: CHEM SAS No.: D3811 SDG NO.: D3811

Lab File ID: BG006795.D DFTPP Injection Date: 08/21/2012

Instrument ID: BNA_G DFTPP Injection Time: 12:36

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51 68 69 70 127 197 198 199 275 365 441 442	10.0 - 80.0% of mass 198 Less than 2.0% of mass 69 Mass 69 relative abundance Less than 2.0% of mass 69 10.0 - 80.0% of mass 198 Less than 2.0% of mass 198 Base Peak, 100% relative abundance 5.0 to 9.0% of mass 198 10.0 - 60.0% of mass 198 Greater than 1% of mass 198 Present, but less than mass 443 Greater than 50% of mass 198	14.6 0.3 (0.8) 1 37.6 0.0 (0.5) 1 42 0.7 100 7.3 28 2.9 8.4 54.8
443	15.0 - 24.0% of mass 442	11.3 (20.6) 2

1-Value is % mass 69

2-Value is % mass 442

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01	SSTDCCC040	SSTDCCC040	BG006796.D	08/21/2012	13:17
02	PB65125BS	PB65125BS	BG006797.D	08/21/2012	13:59
03	PB65125BL	PB65125BL	BG006798.D	08/21/2012	14:40

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

ab Name: CHEMTECH	Contract:	MSAN01	
-------------------	-----------	--------	--

Lab Code: CHEM SAS No.: D3811 SDG NO.: D3811

Lab File ID: BG006812.D DFTPP Injection Date: 08/22/2012

Instrument ID: BNA_G DFTPP Injection Time: 00:22

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51 68	10.0 - 80.0% of mass 198 Less than 2.0% of mass 69	14.4 0.0 (0.0) 1
69	Mass 69 relative abundance	30
70	Less than 2.0% of mass 69	0.1 (0.4) 1
127	10.0 - 80.0% of mass 198	40.3
197	Less than 2.0% of mass 198	0.0
198	Base Peak, 100% relative abundance	100
199	5.0 to 9.0% of mass 198	6.3
275	10.0 - 60.0% of mass 198	25.8
365	Greater than 1% of mass 198	2.9
441	Present, but less than mass 443	11
442	Greater than 50% of mass 198	61
443	15.0 - 24.0% of mass 442	11.1 (18.3) 2

1-Value is % mass 69

2-Value is % mass 442

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01	SSTDCCC040	SSTDCCC040	BG006813.D	08/22/2012	01:04
02	SB-15 (12-16) DL	D3811-06DL	BG006817.D	08/22/2012	03:50
03	SB-21 (16-19) DL	D3811-10DL	BG006818.D	08/22/2012	04:32
04	SB-15 (12-16) DL2	D3811-06DL2	BG006827.D	08/22/2012	10:45

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: CHEMTECH

EPA Sample No.: SSTDCCC040 Date Analyzed: 08/16/2012

Lab File ID: BF058255.D Time Analyzed: 13:17

Instrument ID: BNA F GC Column: RTX-5 ID: 0.18 (mm)

		IS1 (DCB) AREA #	RT #	IS2 (NPT) AREA #	RT #	IS3 (ANT) AREA #	RT #
	12 HOUR STD	135344	5.2	472152	6.61	225647	8.42
	UPPER LIMIT	270688	5.7	944304	7.11	451294	8.92
	LOWER LIMIT	67672	4.7	236076	6.11	112823.5	7.92
	EPA SAMPLE NO.						
1	PB65121BS	135385	5.20	481621	6.61	229357	8.42
2	PB65121BL	143738	5.20	520595	6.61	265208	8.42
3	SB-46(12-16)	120188	5.20	430283	6.61	206623	8.42
4	SS-01AMS	114880	5.20	445263	6.61	194584	8.42
5	SS-01AMSD	120791	5.20	401074	6.61	196771	8.42
6	SB-2(4-8)	105965	5.20	374203	6.61	178799	8.42
7	SB-5 (8-12)	105968	5.20	372921	6.61	177470	8.42
3	SB-5(8-12)MS	109569	5.20	367686	6.61	179275	8.42
•	SB-5(8-12)MSD	108550	5.20	377340	6.61	175117	8.42
0	SB-9(4-7)	118395	5.20	377764	6.61	176645	8.42

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8

IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT RT UPPER LIMIT = -0.50 minutes of internal standard RT

 $[\]ensuremath{\text{\#}}$ Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: CHEMTECH

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

EPA Sample No.: SSTDCCC040 Date Analyzed: 08/16/2012

Lab File ID: BF058255.D Time Analyzed: 13:17

Instrument ID: BNA_F GC Column: RTX-5 ID: 0.18 (mm)

		IS4 (PHN) AREA #	RT #	IS5 (CRY) AREA #	RT #	IS6 (PRY) AREA #	RT #
	12 HOUR STD	369342	10.38	283189	14.46	263205	16.57
	UPPER LIMIT	738684	10.88	566378	14.96	526410	17.07
	LOWER LIMIT	184671	9.88	141594.5	13.96	131602.5	16.07
	EPA SAMPLE NO.						
01	PB65121BS	356138	10.38	272610	14.46	246003	16.57
02	PB65121BL	403032	10.38	283551	14.45	255674	16.57
03	SB-46 (12-16)	341731	10.38	282150	14.45	241713	16.57
04	SS-01AMS	320628	10.38	250753	14.47	219806	16.58
05	SS-01AMSD	324920	10.38	243989	14.47	208775	16.59
06	SB-2(4-8)	291394	10.38	245070	14.45	200014	16.57
07	SB-5 (8-12)	292212	10.38	246553	14.45	193609	16.57
80	SB-5 (8-12) MS	292502	10.38	244655	14.46	210031	16.57
09	SB-5(8-12)MSD	290273	10.38	244395	14.46	206353	16.57
10	SB-9(4-7)	292602	10.38	247751	14.45	207543	16.57

IS4 (PHN) = Phenanthrene-d10

IS5 (CRY) = Chrysene-d12

IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT UPPER LIMIT = -0.50 minutes of internal standard RT

 $\mbox{\tt\#}$ Column used to flag values outside QC limits with an asterisk.

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: CHEMTECH

EPA Sample No.: SSTDCCC040 Date Analyzed: 08/21/2012

Lab File ID: BF058340.D Time Analyzed: 13:39

Instrument ID: BNA_F GC Column: RTX-5 ID: 0.18 (mm)

		IS1 (DCB) AREA #	RT #	IS2 (NPT) AREA #	RT #	IS3 (ANT) AREA #	RT #
	12 HOUR STD	206336	5.12	755896	6.54	402302	8.33
	UPPER LIMIT	412672	5.62	1511792	7.04	804604	8.83
	LOWER LIMIT	103168	4.62	377948	6.04	201151	7.83
	EPA SAMPLE NO.						_
01	SB-43(6-8)	210726	5.11	819552	6.54	420829	8.33
02	SB-43 (16-20)	209791	5.11	808679	6.54	421313	8.33

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8

IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: CHEMTECH

EPA Sample No.: SSTDCCC040 Date Analyzed: 08/21/2012

Lab File ID: BF058340.D Time Analyzed: 13:39

Instrument ID: BNA_F GC Column: RTX-5 ID: 0.18 (mm)

		IS4 (PHN) AREA #	RT #	IS5 (CRY) AREA #	RT #	IS6 (PRY) AREA #	RT #
	12 HOUR STD	677322	10.27	554153	14.34	488292	16.44
	UPPER LIMIT	1354644	10.77	1108306	14.84	976584	16.94
	LOWER LIMIT	338661	9.77	277076.5	13.84	244146	15.94
	EPA SAMPLE NO.						
01	SB-43 (6-8)	664638	10.27	543144	14.33	439619	16.44
02	SB-43 (16-20)	657582	10.27	551333	14.33	467408	16.44

IS4 (PHN) = Phenanthrene-d10

IS5 (CRY) = Chrysene-d12

IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: CHEMTECH

EPA Sample No.: SSTDCCC040 Date Analyzed: 08/23/2012

Lab File ID: BF058388.D Time Analyzed: 09:33

Instrument ID: BNA_F GC Column: RTX-5 ID: 0.18 (mm)

		IS1 (DCB) AREA #	RT #	IS2 (NPT) AREA #	RT #	IS3 (ANT) AREA #	RT #
	12 HOUR STD	254180	5.09	915842	6.52	433607	8.31
	UPPER LIMIT	508360	5.59	1831684	7.02	867214	8.81
	LOWER LIMIT	127090	4.59	457921	6.02	216803.5	7.81
	EPA SAMPLE NO.						
01	SB-37(8-10)DL	254050	5.09	933580	6.52	444781	8.30

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8

IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

- # Column used to flag values outside QC limits with an asterisk.
- * Values outside of QC limits.

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: CHEMTECH

EPA Sample No.: SSTDCCC040 Date Analyzed: 08/23/2012

Lab File ID: BF058388.D Time Analyzed: 09:33

Instrument ID: BNA F GC Column: RTX-5 ID: 0.18 (mm)

	IS4 (PHN) AREA #	RT #	IS5 (CRY) AREA #	RT #	IS6 (PRY) AREA #	RT #
12 HOUR STD	684378	10.24	539261	14.3	434962	16.4
UPPER LIMIT	1368756	10.74	1078522	14.8	869924	16.9
LOWER LIMIT	342189	9.74	269630.5	13.8	217481	15.9
EPA SAMPLE NO.						
SB-37(8-10)DL	677144	10.24	513726	14.30	441644	16.40

IS4 (PHN) = Phenanthrene-d10

IS5 (CRY) = Chrysene-d12

01

IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT UPPER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: CHEMTECH

EPA Sample No.: SSTDICCC040 Date Analyzed: 08/24/2012

Lab File ID: BF058428.D Time Analyzed: 14:25

Instrument ID: BNA_F GC Column: RTX-5 ID: 0.18 (mm)

		IS1 (DCB) AREA #	RT #	IS2 (NPT) AREA #	RT #	IS3 (ANT) AREA #	RT #
	12 HOUR STD	123210	5.06	436348	6.5	213363	8.28
	UPPER LIMIT	246420	5.56	872696	7	426726	8.78
	LOWER LIMIT	61605	4.56	218174	6	106681.5	7.78
	EPA SAMPLE NO.						
01	SB-41(8-11)	123893	5.06	464102	6.49	214377	8.28

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8

IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT UPPER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: CHEMTECH

EPA Sample No.: SSTDICCC040 Date Analyzed: 08/24/2012

Lab File ID: BF058428.D Time Analyzed: 14:25

Instrument ID: BNA F GC Column: RTX-5 ID: 0.18 (mm)

	IS4 (PHN) AREA #	RT #	IS5 (CRY) AREA #	RT #	IS6 (PRY) AREA #	RT #
12 HOUR STD	357366	10.2	270047	14.26	222685	16.36
UPPER LIMIT	714732	10.7	540094	14.76	445370	16.86
LOWER LIMIT	178683	9.7	135023.5	13.76	111342.5	15.86
EPA SAMPLE NO.						
SB-41(8-11)	344467	10.20	266733	14.26	223608	16.36

IS4 (PHN) = Phenanthrene-d10

IS5 (CRY) = Chrysene-d12

01

IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT UPPER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: CHEMTECH

EPA Sample No.: SSTDCCC040 Date Analyzed: 08/28/2012

Lab File ID: BF058464.D Time Analyzed: 13:26

Instrument ID: BNA_F GC Column: RTX-5 ID: 0.18 (mm)

		IS1 (DCB) AREA #	RT #	IS2 (NPT) AREA #	RT #	IS3 (ANT) AREA #	RT #
	12 HOUR STD	134554	5.03	456354	6.48	225953	8.26
	UPPER LIMIT	269108	5.53	912708	6.98	451906	8.76
	LOWER LIMIT	67277	4.53	228177	5.98	112976.5	7.76
	EPA SAMPLE NO.						-
01	PB65419BS	129958	5.03	457694	6.48	219241	8.26
02	PB65419BL	125724	5.03	460380	6.48	226117	8.25
03	SB-46 (12-16) RX	111304	5.03	399381	6.48	196089	8.26
04	SS-01AMSRX	102788	5.03	352575	6.48	185682	8.26
05	SS-01AMSDRX	106084	5.03	384423	6.48	196612	8.26

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8

IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

 $[\]ensuremath{\text{\#}}$ Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: CHEMTECH

EPA Sample No.: SSTDCCC040 Date Analyzed: 08/28/2012

Lab File ID: BF058464.D Time Analyzed: 13:26

Instrument ID: BNA_F GC Column: RTX-5 ID: 0.18 (mm)

		IS4 (PHN) AREA #	RT #	IS5 (CRY) AREA #	RT #	IS6 (PRY) AREA #	RT #
	12 HOUR STD	378210	10.18	302350	14.24	244825	16.34
	UPPER LIMIT	756420	10.68	604700	14.74	489650	16.84
	LOWER LIMIT	189105	9.68	151175	13.74	122412.5	15.84
	EPA SAMPLE NO.						-
01	PB65419BS	354154	10.18	277407	14.23	226745	16.33
02	PB65419BL	360782	10.18	262067	14.23	217168	16.33
03	SB-46 (12-16) RX	329153	10.18	262705	14.24	220089	16.35
04	SS-01AMSRX	313540	10.18	251354	14.24	206620	16.34
05	SS-01AMSDRX	340314	10.18	265814	14.24	220210	16.34

IS4 (PHN) = Phenanthrene-d10

IS5 (CRY) = Chrysene-d12

IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT UPPER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: CHEMTECH

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

EPA Sample No.: SSTDCCC040 Date Analyzed: 08/20/2012

Lab File ID: BG006779.D Time Analyzed: 18:27

Instrument ID: BNA_G GC Column: RXI-5 ID: 0.25 (mm)

		IS1 (DCB) AREA #	RT #	IS2 (NPT) AREA #	RT #	IS3 (ANT) AREA #	RT #
	12 HOUR STD	158443	8.7	596999	10.89	401047	13.88
	UPPER LIMIT	316886	9.2	1193998	11.39	802094	14.38
	LOWER LIMIT	79221.5	8.2	298499.5	10.39	200523.5	13.38
	EPA SAMPLE NO.						
01	SB-11(12-16)	133492	8.69	486870	10.89	337919	13.88
02	SB-18(4-8)	138413	8.69	485146	10.89	330147	13.88
03	SB-19(12-18)	139140	8.69	484974	10.88	335318	13.88
04	SB-21(12-16)	138397	8.69	493472	10.88	332442	13.87
05	SB-22 (12-19)	148008	8.69	536530	10.89	375240	13.88
06	SB-27(8-12)	159547	8.69	587998	10.88	406970	13.88
07	SB-39(6-8)	139547	8.69	509127	10.88	348075	13.88
08	SB-42 (14-16)	147029	8.69	534925	10.88	377023	13.88
09	SB-10(8-12)	149700	8.69	555485	10.89	368138	13.88
10	SB-15 (12-16)	143052	8.68	549574	10.89	372130	13.87
11	SB-21 (16-19)	141638	8.69	526360	10.88	370879	13.87
12	SB-37 (8-10)	142291	8.69	534762	10.88	371061	13.87
13	SB-43 (10-12)	152640	8.69	550478	10.88	371702	13.88
14	SB-45 (10-12)	150135	8.69	552773	10.89	376100	13.88

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8

IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

 $[\]ensuremath{\text{\#}}$ Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: CHEMTECH

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

EPA Sample No.: SSTDCCC040 Date Analyzed: 08/20/2012

Lab File ID: BG006779.D Time Analyzed: 18:27

Instrument ID: BNA_G GC Column: RXI-5 ID: 0.25 (mm)

		IS4 (PHN) AREA #	RT #	IS5 (CRY) AREA #	RT #	IS6 (PRY) AREA #	RT #
	12 HOUR STD	745723	16.37	809720	20.88	768950	24.77
	UPPER LIMIT	1491446	16.87	1619440	21.38	1537900	25.27
	LOWER LIMIT	372861.5	15.87	404860	20.38	384475	24.27
	EPA SAMPLE NO.						-
01	SB-11 (12-16)	647790	16.37	735697	20.88	669999	24.76
02	SB-18(4-8)	616910	16.37	750414	20.88	678801	24.77
03	SB-19(12-18)	607229	16.37	711798	20.88	685422	24.77
04	SB-21 (12-16)	647750	16.37	712921	20.88	693395	24.77
05	SB-22 (12-19)	691343	16.37	758066	20.88	728013	24.76
06	SB-27 (8-12)	705432	16.37	748064	20.88	747188	24.79
07	SB-39(6-8)	669688	16.37	719022	20.88	697943	24.76
08	SB-42(14-16)	705074	16.37	758154	20.88	732319	24.77
09	SB-10(8-12)	697534	16.37	745934	20.88	703209	24.77
10	SB-15 (12-16)	696200	16.37	740611	20.89	720256	24.78
11	SB-21 (16-19)	679988	16.37	710337	20.89	696037	24.78
12	SB-37(8-10)	700652	16.37	732896	20.88	731810	24.77
13	SB-43 (10-12)	693045	16.37	732996	20.88	715546	24.77
14	SB-45 (10-12)	708834	16.37	761906	20.88	724108	24.77

IS4 (PHN) = Phenanthrene-d10

IS5 (CRY) = Chrysene-d12

IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT UPPER LIMIT = -0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: CHEMTECH

EPA Sample No.: SSTDCCC040 Date Analyzed: 08/21/2012

Lab File ID: BG006796.D Time Analyzed: 13:17

Instrument ID: BNA_G GC Column: RXI-5 ID: 0.25 (mm)

		IS1 (DCB) AREA #	RT #	IS2 (NPT) AREA #	RT #	IS3 (ANT) AREA #	RT #
	12 HOUR STD	160380	8.68	617802	10.89	439623	13.88
	UPPER LIMIT	320760	9.18	1235604	11.39	879246	14.38
	LOWER LIMIT	80190	8.18	308901	10.39	219811.5	13.38
	EPA SAMPLE NO.						
01	PB65125BS	132350	8.69	504044	10.88	356010	13.87
02	PB65125BL	138552	8.68	507764	10.89	359899	13.88

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8

IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: CHEMTECH

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

EPA Sample No.: SSTDCCC040 Date Analyzed: 08/21/2012

Lab File ID: BG006796.D Time Analyzed: 13:17

Instrument ID: BNA_G GC Column: RXI-5 ID: 0.25 (mm)

		IS4 (PHN) AREA #	RT #	IS5 (CRY) AREA #	RT #	IS6 (PRY) AREA #	RT #
	12 HOUR STD	829531	16.37	918038	20.89	810133	24.77
	UPPER LIMIT	1659062	16.87	1836076	21.39	1620266	25.27
	LOWER LIMIT	414765.5	15.87	459019	20.39	405066.5	24.27
	EPA SAMPLE NO.						-
01	PB65125BS	659128	16.37	781981	20.88	694347	24.77
02	PB65125BL	692853	16.37	831107	20.88	736559	24.76

IS4 (PHN) = Phenanthrene-d10

IS5 (CRY) = Chrysene-d12

IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: CHEMTECH

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

EPA Sample No.: SSTDCCC040 Date Analyzed: 08/22/2012

Lab File ID: BG006813.D Time Analyzed: 01:04

Instrument ID: BNA_G GC Column: RXI-5 ID: 0.25 (mm)

		IS1 (DCB) AREA #	RT #	IS2 (NPT) AREA #	RT #	IS3 (ANT) AREA #	RT #
	12 HOUR STD	150396	8.68	593721	10.88	425155	13.87
	UPPER LIMIT	300792	9.18	1187442	11.38	850310	14.37
	LOWER LIMIT	75198	8.18	296860.5	10.38	212577.5	13.37
	EPA SAMPLE NO.						
01	SB-15 (12-16) DL	138234	8.68	540363	10.88	376946	13.87
02	SB-21(16-19)DL	151382	8.68	555212	10.88	394214	13.87
03	SB-15 (12-16) DL2	140787	8.68	576119	10.88	394091	13.87

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8

IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT UPPER LIMIT = -0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: CHEMTECH

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

EPA Sample No.: SSTDCCC040 Date Analyzed: 08/22/2012

Lab File ID: BG006813.D Time Analyzed: 01:04

Instrument ID: BNA_G GC Column: RXI-5 ID: 0.25 (mm)

		IS4 (PHN) AREA #	RT #	IS5 (CRY) AREA #	RT #	IS6 (PRY) AREA #	RT #
	12 HOUR STD	806441	16.36	914894	20.88	807515	24.75
	UPPER LIMIT	1612882	16.86	1829788	21.38	1615030	25.25
	LOWER LIMIT	403220.5	15.86	457447	20.38	403757.5	24.25
	EPA SAMPLE NO.						
01	SB-15(12-16)DL	704555	16.37	766472	20.87	680312	24.76
02	SB-21(16-19)DL	740477	16.36	761113	20.88	691274	24.76
03	SB-15 (12-16) DL2	688062	16.37	715046	20.87	668735	24.76

IS4 (PHN) = Phenanthrene-d10

IS5 (CRY) = Chrysene-d12

IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

li

QC SAMPLE DATA

Report of Analysis

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

иL

Client Sample ID: PB65121BL SDG No.: D3811
Lab Sample ID: PB65121BL Matrix: SOIL

Analytical Method: SW8270D % Moisture: 0

Sample Wt/Vol: 30 Units: g Final Vol: 1000 uL

Test:

SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF058258.D 1 08/15/12 08/16/12 PB65121

BF058258.D	1	08/15/12	08/	/16/12		PB65121	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
62-75-9	n-Nitrosodimethylamine	165	U	17	165	330	ug/Kg
110-86-1	Pyridine	165	U	66	165	330	ug/Kg
100-52-7	Benzaldehyde	165	U	17	165	330	ug/Kg
62-53-3	Aniline	165	U	28	165	330	ug/Kg
108-95-2	Phenol	165	U	7.7	165	330	ug/Kg
111-44-4	bis(2-Chloroethyl)ether	165	U	16	165	330	ug/Kg
95-57-8	2-Chlorophenol	165	U	18	165	330	ug/Kg
95-50-1	1,2-Dichlorobenzene	165	U	13	165	330	ug/Kg
541-73-1	1,3-Dichlorobenzene	165	U	5.9	165	330	ug/Kg
106-46-7	1,4-Dichlorobenzene	165	U	11	165	330	ug/Kg
100-51-6	Benzyl Alcohol	165	U	12	165	330	ug/Kg
95-48-7	2-Methylphenol	165	U	18	165	330	ug/Kg
108-60-1	2,2-oxybis(1-Chloropropane)	165	U	14	165	330	ug/Kg
98-86-2	Acetophenone	165	U	10	165	330	ug/Kg
65794-96-9	3+4-Methylphenols	165	U	17	165	330	ug/Kg
621-64-7	N-Nitroso-di-n-propylamine	165	U	17	165	330	ug/Kg
67-72-1	Hexachloroethane	165	U	15	165	330	ug/Kg
98-95-3	Nitrobenzene	165	U	13	165	330	ug/Kg
78-59-1	Isophorone	165	U	11	165	330	ug/Kg
88-75-5	2-Nitrophenol	165	U	16	165	330	ug/Kg
105-67-9	2,4-Dimethylphenol	165	U	19	165	330	ug/Kg
111-91-1	bis(2-Chloroethoxy)methane	165	U	19	165	330	ug/Kg
120-83-2	2,4-Dichlorophenol	165	U	13	165	330	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	165	U	13	165	330	ug/Kg
65-85-0	Benzoic acid	400	U	66	400	800	ug/Kg
91-20-3	Naphthalene	165	U	12	165	330	ug/Kg
106-47-8	4-Chloroaniline	165	U	24	165	330	ug/Kg
87-68-3	Hexachlorobutadiene	165	U	12	165	330	ug/Kg
105-60-2	Caprolactam	165	U	16	165	330	ug/Kg
59-50-7	4-Chloro-3-methylphenol	165	U	15	165	330	ug/Kg
91-57-6	2-Methylnaphthalene	165	U	8.4	165	330	ug/Kg

Report of Analysis

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

Client Sample ID: PB65121BL SDG No.: D3811 Lab Sample ID: PB65121BL Matrix: SOIL

Analytical Method: SW8270D % Moisture: 0

Sample Wt/Vol: 30 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: иL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Level: LOW Decanted: N

Injection Volume: GPC Factor: 1.0 GPC Cleanup: Ν PH:

File ID/Qc Batch: Dilution: Prep Batch ID Prep Date Date Analyzed

BF058258.D	1	08/15/12		08/	/16/12		PB65121	
CAS Number	Parameter		Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
77-47-4	Hexachlorocyclopentadiene		165	U	8.1	165	330	ug/Kg
88-06-2	2,4,6-Trichlorophenol		165	U	10	165	330	ug/Kg
95-95-4	2,4,5-Trichlorophenol		165	U	23	165	330	ug/Kg
92-52-4	1,1-Biphenyl		165	U	13	165	330	ug/Kg
91-58-7	2-Chloronaphthalene		165	U	7.6	165	330	ug/Kg
88-74-4	2-Nitroaniline		165	U	15	165	330	ug/Kg
131-11-3	Dimethylphthalate		165	U	9	165	330	ug/Kg
208-96-8	Acenaphthylene		165	U	8.4	165	330	ug/Kg
606-20-2	2,6-Dinitrotoluene		165	U	14	165	330	ug/Kg
99-09-2	3-Nitroaniline		165	U	21	165	330	ug/Kg
83-32-9	Acenaphthene		165	U	9.4	165	330	ug/Kg
51-28-5	2,4-Dinitrophenol		165	U	34	165	330	ug/Kg
100-02-7	4-Nitrophenol		165	U	62	165	330	ug/Kg
132-64-9	Dibenzofuran		165	U	13	165	330	ug/Kg
121-14-2	2,4-Dinitrotoluene		165	U	10	165	330	ug/Kg
84-66-2	Diethylphthalate		165	U	5.2	165	330	ug/Kg
7005-72-3	4-Chlorophenyl-phenylether		165	U	18	165	330	ug/Kg
86-73-7	Fluorene		165	U	13	165	330	ug/Kg
100-01-6	4-Nitroaniline		165	U	43	165	330	ug/Kg
534-52-1	4,6-Dinitro-2-methylphenol		165	U	19	165	330	ug/Kg
86-30-6	N-Nitrosodiphenylamine		165	U	8	165	330	ug/Kg
103-33-3	Azobenzene		165	U	7.8	165	330	ug/Kg
101-55-3	4-Bromophenyl-phenylether		165	U	6.5	165	330	ug/Kg
118-74-1	Hexachlorobenzene		165	U	14	165	330	ug/Kg
1912-24-9	Atrazine		165	U	18	165	330	ug/Kg
87-86-5	Pentachlorophenol		165	U	23	165	330	ug/Kg
85-01-8	Phenanthrene		165	U	9	165	330	ug/Kg
120-12-7	Anthracene		165	U	6.8	165	330	ug/Kg
86-74-8	Carbazole		165	U	7.3	165	330	ug/Kg
84-74-2	Di-n-butylphthalate		165	U	26	165	330	ug/Kg
206-44-0	Fluoranthene		165	U	6.7	165	330	ug/Kg
92-87-5	Benzidine		165	U	34	165	330	ug/Kg
129-00-0	Pyrene		165	U	8	165	330	ug/Kg
			425 o	f 870				

425 of 870

Report of Analysis

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

uL

Client Sample ID: PB65121BL SDG No.: D3811
Lab Sample ID: PB65121BL Matrix: SOIL

Analytical Method: SW8270D % Moisture: 0

Sample Wt/Vol: 30 Units: g Final Vol: 1000 uL

Test:

SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BE058258 D 1 08/15/12 08/16/12 PB65121

BF058258.D	1	08/15/12	08.	/16/12		PB65121	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
85-68-7	Butylbenzylphthalate	165	U	16	165	330	ug/Kg
91-94-1	3,3-Dichlorobenzidine	165	U	21	165	330	ug/Kg
56-55-3	Benzo(a)anthracene	165	U	16	165	330	ug/Kg
218-01-9	Chrysene	165	U	15	165	330	ug/Kg
117-81-7	bis(2-Ethylhexyl)phthalate	165	U	12	165	330	ug/Kg
117-84-0	Di-n-octyl phthalate	165	U	3.8	165	330	ug/Kg
205-99-2	Benzo(b)fluoranthene	165	U	11	165	330	ug/Kg
207-08-9	Benzo(k)fluoranthene	165	U	16	165	330	ug/Kg
50-32-8	Benzo(a)pyrene	165	U	7.2	165	330	ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene	165	U	11	165	330	ug/Kg
53-70-3	Dibenz(a,h)anthracene	165	U	9.6	165	330	ug/Kg
191-24-2	Benzo(g,h,i)perylene	165	U	14	165	330	ug/Kg
95-94-3	1,2,4,5-Tetrachlorobenzene	165	U	13	165	330	ug/Kg
123-91-1	1,4-Dioxane	165	U	13	165	330	ug/Kg
58-90-2	2,3,4,6-Tetrachlorophenol	165	U	13	165	330	ug/Kg
SURROGATES	S						
367-12-4	2-Fluorophenol	116		28 - 12	7	78%	SPK: 150
13127-88-3	Phenol-d5	109		34 - 12	7	73%	SPK: 150
4165-60-0	Nitrobenzene-d5	74		31 - 132	2	74%	SPK: 100
321-60-8	2-Fluorobiphenyl	72.6		39 - 12	3	73%	SPK: 100
118-79-6	2,4,6-Tribromophenol	89.6		30 - 13	3	60%	SPK: 150
1718-51-0	Terphenyl-d14	78		37 - 11:	5	78%	SPK: 100
INTERNAL ST	CANDARDS						
3855-82-1	1,4-Dichlorobenzene-d4	143738	5.2				
1146-65-2	Naphthalene-d8	520595	6.61				
15067-26-2	Acenaphthene-d10	265208	8.42				
1517-22-2	Phenanthrene-d10	403032	2 10.38				
1719-03-5	Chrysene-d12	283551	14.45				
1520-96-3	Perylene-d12	255674	16.57				
TENTATIVE I	DENTIFIED COMPOUNDS						
123-42-2	2-Pentanone, 4-hydroxy-4-methyl	l- 720	A			3.19	ug/Kg

Report of Analysis

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

uL

Client Sample ID: PB65121BL SDG No.: D3811
Lab Sample ID: PB65121BL Matrix: SOIL

Analytical Method: SW8270D % Moisture: 0

Sample Wt/Vol: 30 Units: g Final Vol: 1000 uL

Test:

SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF058258.D 1 08/15/12 08/16/12 PB65121

CAS Number Parameter Conc. Qualifier MDL LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Report of Analysis

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

иL

Client Sample ID: PB65125BL SDG No.: D3811
Lab Sample ID: PB65125BL Matrix: SOIL

Analytical Method: SW8270D % Moisture: 0

Sample Wt/Vol: 30.01 Units: g Final Vol: 1000 uL

Test:

SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BG006798.D 1 08/15/12 08/21/12 PB65125

BG006798.D	1	08/15/12	08.	/21/12		PB65125	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
62-75-9	n-Nitrosodimethylamine	165	U	17	165	330	ug/Kg
110-86-1	Pyridine	165	U	66	165	330	ug/Kg
100-52-7	Benzaldehyde	165	U	17	165	330	ug/Kg
62-53-3	Aniline	165	U	28	165	330	ug/Kg
108-95-2	Phenol	165	U	7.7	165	330	ug/Kg
111-44-4	bis(2-Chloroethyl)ether	165	U	16	165	330	ug/Kg
95-57-8	2-Chlorophenol	165	U	18	165	330	ug/Kg
95-50-1	1,2-Dichlorobenzene	165	U	13	165	330	ug/Kg
541-73-1	1,3-Dichlorobenzene	165	U	5.9	165	330	ug/Kg
106-46-7	1,4-Dichlorobenzene	165	U	11	165	330	ug/Kg
100-51-6	Benzyl Alcohol	165	U	12	165	330	ug/Kg
95-48-7	2-Methylphenol	165	U	18	165	330	ug/Kg
108-60-1	2,2-oxybis(1-Chloropropane)	165	U	14	165	330	ug/Kg
98-86-2	Acetophenone	165	U	10	165	330	ug/Kg
65794-96-9	3+4-Methylphenols	165	U	17	165	330	ug/Kg
621-64-7	N-Nitroso-di-n-propylamine	165	U	17	165	330	ug/Kg
67-72-1	Hexachloroethane	165	U	15	165	330	ug/Kg
98-95-3	Nitrobenzene	165	U	13	165	330	ug/Kg
78-59-1	Isophorone	165	U	11	165	330	ug/Kg
88-75-5	2-Nitrophenol	165	U	16	165	330	ug/Kg
105-67-9	2,4-Dimethylphenol	165	U	19	165	330	ug/Kg
111-91-1	bis(2-Chloroethoxy)methane	165	U	19	165	330	ug/Kg
120-83-2	2,4-Dichlorophenol	165	U	13	165	330	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	165	U	13	165	330	ug/Kg
65-85-0	Benzoic acid	400	U	66	400	800	ug/Kg
91-20-3	Naphthalene	165	U	11	165	330	ug/Kg
106-47-8	4-Chloroaniline	165	U	23	165	330	ug/Kg
87-68-3	Hexachlorobutadiene	165	U	12	165	330	ug/Kg
105-60-2	Caprolactam	165	U	15	165	330	ug/Kg
59-50-7	4-Chloro-3-methylphenol	165	U	15	165	330	ug/Kg
91-57-6	2-Methylnaphthalene	165	U	8.4	165	330	ug/Kg

Report of Analysis

Date Collected:

Project: 12MS104 Kensington Heights Date Received:

MS Analytical

Client:

Client Sample ID: PB65125BL SDG No.: D3811
Lab Sample ID: PB65125BL Matrix: SOIL

Analytical Method: SW8270D % Moisture: 0

Sample Wt/Vol: 30.01 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BG006798.D	1	08/15/12		08/21/12			PB65125			
CAS Number	Parameter	C	onc.	Qualifier	MDL	LOD	LOQ / CRQL	Units		
77-47-4	Hexachlorocyclopentadiene	16	65	U	8.1	165	330	ug/Kg		
88-06-2	2,4,6-Trichlorophenol	16	65	U	10	165	330	ug/Kg		
95-95-4	2,4,5-Trichlorophenol	16	65	U	23	165	330	ug/Kg		
92-52-4	1,1-Biphenyl	16	65	U	13	165	330	ug/Kg		
91-58-7	2-Chloronaphthalene	16	65	U	7.6	165	330	ug/Kg		
88-74-4	2-Nitroaniline	16	65	U	15	165	330	ug/Kg		
131-11-3	Dimethylphthalate	16	65	U	9	165	330	ug/Kg		
208-96-8	Acenaphthylene	16	65	U	8.4	165	330	ug/Kg		
606-20-2	2,6-Dinitrotoluene	16	65	U	14	165	330	ug/Kg		
99-09-2	3-Nitroaniline	16	65	U	21	165	330	ug/Kg		
83-32-9	Acenaphthene	16	65	U	9.4	165	330	ug/Kg		
51-28-5	2,4-Dinitrophenol	16	65	U	34	165	330	ug/Kg		
100-02-7	4-Nitrophenol	16	65	U	62	165	330	ug/Kg		
132-64-9	Dibenzofuran	16	65	U	13	165	330	ug/Kg		
121-14-2	2,4-Dinitrotoluene	16	65	U	10	165	330	ug/Kg		
84-66-2	Diethylphthalate	16	65	U	5.2	165	330	ug/Kg		
7005-72-3	4-Chlorophenyl-phenylether	16	65	U	18	165	330	ug/Kg		
86-73-7	Fluorene	16	65	U	13	165	330	ug/Kg		
100-01-6	4-Nitroaniline	16	65	U	43	165	330	ug/Kg		
534-52-1	4,6-Dinitro-2-methylphenol	16	65	U	19	165	330	ug/Kg		
86-30-6	N-Nitrosodiphenylamine	16	65	U	8	165	330	ug/Kg		
103-33-3	Azobenzene	16	65	U	7.8	165	330	ug/Kg		
101-55-3	4-Bromophenyl-phenylether	16	65	U	6.5	165	330	ug/Kg		
118-74-1	Hexachlorobenzene	16	65	U	14	165	330	ug/Kg		
1912-24-9	Atrazine	16	65	U	18	165	330	ug/Kg		
87-86-5	Pentachlorophenol	16	65	U	23	165	330	ug/Kg		
85-01-8	Phenanthrene	16	65	U	9	165	330	ug/Kg		
120-12-7	Anthracene	16	65	U	6.8	165	330	ug/Kg		
86-74-8	Carbazole	16	65	U	7.3	165	330	ug/Kg		
84-74-2	Di-n-butylphthalate	16	65	U	26	165	330	ug/Kg		
206-44-0	Fluoranthene	16	65	U	6.7	165	330	ug/Kg		
92-87-5	Benzidine	16	65	U	33	165	330	ug/Kg		
129-00-0	Pyrene		65	U	8	165	330	ug/Kg		
			429 of 870							

429 of 870

Report of Analysis

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

SOXH

Client Sample ID: PB65125BL SDG No.: D3811 Lab Sample ID: PB65125BL Matrix: SOIL

Analytical Method: SW8270D % Moisture: 0

Sample Wt/Vol: 30.01 Units: g Final Vol: 1000 uL

N

Level:

LOW

Soil Aliquot Vol: иL Test: SVOC-Chemtech Full -25 Decanted:

Extraction Type: Injection Volume: GPC Factor: 1.0 GPC Cleanup: Ν PH:

File ID/Qc Batch: Dilution: Prep Batch ID Prep Date Date Analyzed

BG006798.D	1	08/15/12		08/21/12			PB65125	
CAS Number	Parameter		Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
85-68-7	Butylbenzylphthalate		165	U	16	165	330	ug/Kg
91-94-1	3,3-Dichlorobenzidine		165	U	21	165	330	ug/Kg
56-55-3	Benzo(a)anthracene		165	U	16	165	330	ug/Kg
218-01-9	Chrysene		165	U	15	165	330	ug/Kg
117-81-7	bis(2-Ethylhexyl)phthalate		165	U	12	165	330	ug/Kg
117-84-0	Di-n-octyl phthalate		165	U	3.8	165	330	ug/Kg
205-99-2	Benzo(b)fluoranthene		165	U	11	165	330	ug/Kg
207-08-9	Benzo(k)fluoranthene		165	U	16	165	330	ug/Kg
50-32-8	Benzo(a)pyrene		165	U	7.2	165	330	ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene		165	U	11	165	330	ug/Kg
53-70-3	Dibenz(a,h)anthracene		165	U	9.6	165	330	ug/Kg
191-24-2	Benzo(g,h,i)perylene		165	U	13	165	330	ug/Kg
95-94-3	1,2,4,5-Tetrachlorobenzene		165	U	13	165	330	ug/Kg
123-91-1	1,4-Dioxane		165	U	13	165	330	ug/Kg
58-90-2	2,3,4,6-Tetrachlorophenol		165	U	13	165	330	ug/Kg
SURROGATES	3							
367-12-4	2-Fluorophenol		135		28 - 127	7	90%	SPK: 150
13127-88-3	Phenol-d5		134		34 - 127	7	90%	SPK: 150
4165-60-0	Nitrobenzene-d5		91.7		31 - 132	2	92%	SPK: 100
321-60-8	2-Fluorobiphenyl		94.5		39 - 123	}	95%	SPK: 100
118-79-6	2,4,6-Tribromophenol		130		30 - 133	}	87%	SPK: 150
1718-51-0	Terphenyl-d14		85.6		37 - 115	5	86%	SPK: 100
INTERNAL ST	ANDARDS							
3855-82-1	1,4-Dichlorobenzene-d4		138552	8.68				
1146-65-2	Naphthalene-d8		507764	10.89				
15067-26-2	Acenaphthene-d10		359899	13.88				
1517-22-2	Phenanthrene-d10		692853	16.37				
1719-03-5	Chrysene-d12		831107	20.88				
1520-96-3	Perylene-d12		736559	24.76				
TENTATIVE II	DENTIFIED COMPOUNDS							
	unknown5.90		290	J			5.9	ug/Kg

File ID/Qc Batch:

Report of Analysis

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

uL

Dilution:

Client Sample ID: SDG No.: D3811 PB65125BL Lab Sample ID: Matrix: SOIL PB65125BL

% Moisture: Analytical Method: SW8270D

Sample Wt/Vol: 30.01 Units: Final Vol: 1000 uL g

Test:

Date Analyzed

Soil Aliquot Vol: Extraction Type: SOXH Decanted: Level: LOW Ν

Injection Volume: GPC Factor: 1.0 GPC Cleanup: Ν PH:

BG006798.D 1 08/15/12 08/21/12 PB65125

Prep Date

CAS Number Parameter Conc. Qualifier **MDL** LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

SVOC-Chemtech Full -25

Prep Batch ID

Report of Analysis

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

иL

Client Sample ID: PB65419BL SDG No.: D3811
Lab Sample ID: PB65419BL Matrix: SOIL

Analytical Method: SW8270D % Moisture: 0

Sample Wt/Vol: 30 Units: g Final Vol: 1000 uL

Test:

SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF058471.D 1 08/28/12 08/28/12 PB65419

BF058471.D	1	08/28/12	08/	/28/12	PB65419		
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
62-75-9	n-Nitrosodimethylamine	165	U	17	165	330	ug/Kg
110-86-1	Pyridine	165	U	66	165	330	ug/Kg
100-52-7	Benzaldehyde	165	U	17	165	330	ug/Kg
62-53-3	Aniline	165	U	28	165	330	ug/Kg
108-95-2	Phenol	165	U	7.7	165	330	ug/Kg
111-44-4	bis(2-Chloroethyl)ether	165	U	16	165	330	ug/Kg
95-57-8	2-Chlorophenol	165	U	18	165	330	ug/Kg
95-50-1	1,2-Dichlorobenzene	165	U	13	165	330	ug/Kg
541-73-1	1,3-Dichlorobenzene	165	U	5.9	165	330	ug/Kg
106-46-7	1,4-Dichlorobenzene	165	U	11	165	330	ug/Kg
100-51-6	Benzyl Alcohol	165	U	12	165	330	ug/Kg
95-48-7	2-Methylphenol	165	U	18	165	330	ug/Kg
108-60-1	2,2-oxybis(1-Chloropropane)	165	U	14	165	330	ug/Kg
98-86-2	Acetophenone	165	U	10	165	330	ug/Kg
65794-96-9	3+4-Methylphenols	165	U	17	165	330	ug/Kg
621-64-7	N-Nitroso-di-n-propylamine	165	U	17	165	330	ug/Kg
67-72-1	Hexachloroethane	165	U	15	165	330	ug/Kg
98-95-3	Nitrobenzene	165	U	13	165	330	ug/Kg
78-59-1	Isophorone	165	U	11	165	330	ug/Kg
88-75-5	2-Nitrophenol	165	U	16	165	330	ug/Kg
105-67-9	2,4-Dimethylphenol	165	U	19	165	330	ug/Kg
111-91-1	bis(2-Chloroethoxy)methane	165	U	19	165	330	ug/Kg
120-83-2	2,4-Dichlorophenol	165	U	13	165	330	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	165	U	13	165	330	ug/Kg
65-85-0	Benzoic acid	400	U	66	400	800	ug/Kg
91-20-3	Naphthalene	165	U	12	165	330	ug/Kg
106-47-8	4-Chloroaniline	165	U	24	165	330	ug/Kg
87-68-3	Hexachlorobutadiene	165	U	12	165	330	ug/Kg
105-60-2	Caprolactam	165	U	16	165	330	ug/Kg
59-50-7	4-Chloro-3-methylphenol	165	U	15	165	330	ug/Kg
91-57-6	2-Methylnaphthalene	165	U	8.4	165	330	ug/Kg

SVOC-Chemtech Full -25

Soil Aliquot Vol:

Report of Analysis

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

иL

Client Sample ID: PB65419BL SDG No.: D3811
Lab Sample ID: PB65419BL Matrix: SOIL

Analytical Method: SW8270D % Moisture: 0

Sample Wt/Vol: 30 Units: g Final Vol: 1000 uL

Test:

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF058471.D	1	08/28/12		08/28/12			PB65419	
CAS Number	Parameter	Со	nc. Q	ualifier	MDL	LOD	LOQ / CRQL	Units
77-47-4	Hexachlorocyclopentadiene	16:	5	U	8.1	165	330	ug/Kg
88-06-2	2,4,6-Trichlorophenol	16:	5	U	10	165	330	ug/Kg
95-95-4	2,4,5-Trichlorophenol	163	5	U	23	165	330	ug/Kg
92-52-4	1,1-Biphenyl	165	5	U	13	165	330	ug/Kg
91-58-7	2-Chloronaphthalene	163	5	U	7.6	165	330	ug/Kg
88-74-4	2-Nitroaniline	163	5	U	15	165	330	ug/Kg
131-11-3	Dimethylphthalate	16:	5	U	9	165	330	ug/Kg
208-96-8	Acenaphthylene	16:	5	U	8.4	165	330	ug/Kg
606-20-2	2,6-Dinitrotoluene	16:	5	U	14	165	330	ug/Kg
99-09-2	3-Nitroaniline	16:	5	U	21	165	330	ug/Kg
83-32-9	Acenaphthene	16:	5	U	9.4	165	330	ug/Kg
51-28-5	2,4-Dinitrophenol	16:	5	U	34	165	330	ug/Kg
100-02-7	4-Nitrophenol	16:	5	U	62	165	330	ug/Kg
132-64-9	Dibenzofuran	16:	5	U	13	165	330	ug/Kg
121-14-2	2,4-Dinitrotoluene	16:	5	U	10	165	330	ug/Kg
84-66-2	Diethylphthalate	16:	5	U	5.2	165	330	ug/Kg
7005-72-3	4-Chlorophenyl-phenylether	16:	5	U	18	165	330	ug/Kg
86-73-7	Fluorene	16:	5	U	13	165	330	ug/Kg
100-01-6	4-Nitroaniline	16:	5	U	43	165	330	ug/Kg
534-52-1	4,6-Dinitro-2-methylphenol	16:	5	U	19	165	330	ug/Kg
86-30-6	N-Nitrosodiphenylamine	16:	5	U	8	165	330	ug/Kg
103-33-3	Azobenzene	16:	5	U	7.8	165	330	ug/Kg
101-55-3	4-Bromophenyl-phenylether	16:	5	U	6.5	165	330	ug/Kg
118-74-1	Hexachlorobenzene	16:	5	U	14	165	330	ug/Kg
1912-24-9	Atrazine	16:	5	U	18	165	330	ug/Kg
87-86-5	Pentachlorophenol	16:	5	U	23	165	330	ug/Kg
85-01-8	Phenanthrene	16:	5	U	9	165	330	ug/Kg
120-12-7	Anthracene	16:	5	U	6.8	165	330	ug/Kg
86-74-8	Carbazole	16:	5	U	7.3	165	330	ug/Kg
84-74-2	Di-n-butylphthalate	16:	5	U	26	165	330	ug/Kg
206-44-0	Fluoranthene	16:	5	U	6.7	165	330	ug/Kg
92-87-5	Benzidine	16:	5	U	34	165	330	ug/Kg
129-00-0	Pyrene	16:		U	8	165	330	ug/Kg
			3 of 8	70				

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

Client Sample ID: PB65419BL SDG No.: D3811
Lab Sample ID: PB65419BL Matrix: SOIL

Analytical Method: SW8270D % Moisture: 0

Sample Wt/Vol: 30 Units: g Final Vol: 1000 uL
Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF058471.D	1	08/28/12		08/28/12			PB65419	
CAS Number	Parameter		Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
85-68-7	Butylbenzylphthalate		165	U	16	165	330	ug/Kg
91-94-1	3,3-Dichlorobenzidine		165	U	21	165	330	ug/Kg
56-55-3	Benzo(a)anthracene		165	U	16	165	330	ug/Kg
218-01-9	Chrysene		165	U	15	165	330	ug/Kg
117-81-7	bis(2-Ethylhexyl)phthalate		165	U	12	165	330	ug/Kg
117-84-0	Di-n-octyl phthalate		165	U	3.8	165	330	ug/Kg
205-99-2	Benzo(b)fluoranthene		165	U	11	165	330	ug/Kg
207-08-9	Benzo(k)fluoranthene		165	U	16	165	330	ug/Kg
50-32-8	Benzo(a)pyrene		165	U	7.2	165	330	ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene		165	U	11	165	330	ug/Kg
53-70-3	Dibenz(a,h)anthracene		165	U	9.6	165	330	ug/Kg
191-24-2	Benzo(g,h,i)perylene		165	U	14	165	330	ug/Kg
95-94-3	1,2,4,5-Tetrachlorobenzene		165	U	13	165	330	ug/Kg
123-91-1	1,4-Dioxane		165	U	13	165	330	ug/Kg
58-90-2	2,3,4,6-Tetrachlorophenol		165	U	13	165	330	ug/Kg
SURROGATES	S							
367-12-4	2-Fluorophenol		128		28 - 127	1	86%	SPK: 150
13127-88-3	Phenol-d5		133		34 - 127	1	89%	SPK: 150
4165-60-0	Nitrobenzene-d5		92.7		31 - 132		93%	SPK: 100
321-60-8	2-Fluorobiphenyl		99.4		39 - 123	}	99%	SPK: 100
118-79-6	2,4,6-Tribromophenol		144		30 - 133	}	96%	SPK: 150
1718-51-0	Terphenyl-d14		98.7		37 - 115	;	99%	SPK: 100
INTERNAL ST	ANDARDS							
3855-82-1	1,4-Dichlorobenzene-d4		125724	5.03				
1146-65-2	Naphthalene-d8		460380	6.48				
15067-26-2	Acenaphthene-d10		226117	8.25				
1517-22-2	Phenanthrene-d10		360782	10.18				
1719-03-5	Chrysene-d12		262067	14.23				
1520-96-3	Perylene-d12		217168	16.33				
TENTATIVE II	DENTIFIED COMPOUNDS							
123-42-2	2-Pentanone, 4-hydroxy-4-methyl	-	730	A			3.03	ug/Kg

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

uL

Client Sample ID: SDG No.: D3811 PB65419BL Lab Sample ID: PB65419BL Matrix: SOIL

% Moisture: Analytical Method: SW8270D

Sample Wt/Vol: 30 Units: Final Vol: 1000 uL g

Test:

Soil Aliquot Vol: Extraction Type: SOXH Decanted: Level: LOW Ν

Injection Volume: GPC Factor: 1.0 GPC Cleanup: Ν PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF058471.D 1 08/28/12 08/28/12 PB65419

CAS Number Parameter Conc. Qualifier **MDL** LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

SVOC-Chemtech Full -25

Soil Aliquot Vol:

Report of Analysis

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

иL

Client Sample ID: PB65121BS SDG No.: D3811
Lab Sample ID: PB65121BS Matrix: SOIL

Analytical Method: SW8270D % Moisture: 0

Sample Wt/Vol: 30.01 Units: g Final Vol: 1000 uL

Test:

SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF058256.D 1 08/15/12 08/16/12 PB65121

BF058256.D	ı	08/15/12	08/	/16/12		PB65121	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
62-75-9	n-Nitrosodimethylamine	1200		17	165	330	ug/Kg
110-86-1	Pyridine	1100		66	165	330	ug/Kg
100-52-7	Benzaldehyde	150	J	17	165	330	ug/Kg
62-53-3	Aniline	420		28	165	330	ug/Kg
108-95-2	Phenol	840		7.7	165	330	ug/Kg
111-44-4	bis(2-Chloroethyl)ether	990		16	165	330	ug/Kg
95-57-8	2-Chlorophenol	840		18	165	330	ug/Kg
95-50-1	1,2-Dichlorobenzene	930		13	165	330	ug/Kg
541-73-1	1,3-Dichlorobenzene	890		5.9	165	330	ug/Kg
106-46-7	1,4-Dichlorobenzene	910		11	165	330	ug/Kg
100-51-6	Benzyl Alcohol	900		12	165	330	ug/Kg
95-48-7	2-Methylphenol	950		18	165	330	ug/Kg
108-60-1	2,2-oxybis(1-Chloropropane)	970		14	165	330	ug/Kg
98-86-2	Acetophenone	1000		10	165	330	ug/Kg
65794-96-9	3+4-Methylphenols	960		17	165	330	ug/Kg
621-64-7	N-Nitroso-di-n-propylamine	980		17	165	330	ug/Kg
67-72-1	Hexachloroethane	870		15	165	330	ug/Kg
98-95-3	Nitrobenzene	950		13	165	330	ug/Kg
78-59-1	Isophorone	950		11	165	330	ug/Kg
88-75-5	2-Nitrophenol	840		16	165	330	ug/Kg
105-67-9	2,4-Dimethylphenol	870		19	165	330	ug/Kg
111-91-1	bis(2-Chloroethoxy)methane	950		19	165	330	ug/Kg
120-83-2	2,4-Dichlorophenol	810		13	165	330	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	880		13	165	330	ug/Kg
65-85-0	Benzoic acid	690	J	66	400	800	ug/Kg
91-20-3	Naphthalene	970		11	165	330	ug/Kg
106-47-8	4-Chloroaniline	280	J	23	165	330	ug/Kg
87-68-3	Hexachlorobutadiene	850		12	165	330	ug/Kg
105-60-2	Caprolactam	910		15	165	330	ug/Kg
59-50-7	4-Chloro-3-methylphenol	800		15	165	330	ug/Kg
91-57-6	2-Methylnaphthalene	930		8.4	165	330	ug/Kg

Extraction Type:

SOXH

Report of Analysis

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

Client Sample ID: PB65121BS SDG No.: D3811 Lab Sample ID: PB65121BS Matrix: SOIL

Analytical Method: SW8270D % Moisture: 0

Sample Wt/Vol: 30.01 Units: g Final Vol: 1000 uL

N

Level:

LOW

Soil Aliquot Vol: иL Test: SVOC-Chemtech Full -25

Decanted: Injection Volume: GPC Factor: 1.0 GPC Cleanup: Ν PH:

File ID/Qc Batch: Dilution: Prep Batch ID Prep Date Date Analyzed

Q		r - ww	20		-			
BF058256.D	1	08/15/12	08	08/16/12		PB65121		
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units	
77-47-4	Hexachlorocyclopentadiene	2100		8.1	165	330	ug/Kg	
88-06-2	2,4,6-Trichlorophenol	810		10	165	330	ug/Kg	
95-95-4	2,4,5-Trichlorophenol	840		23	165	330	ug/Kg	
92-52-4	1,1-Biphenyl	930		13	165	330	ug/Kg	
91-58-7	2-Chloronaphthalene	900		7.6	165	330	ug/Kg	
88-74-4	2-Nitroaniline	840		15	165	330	ug/Kg	
131-11-3	Dimethylphthalate	750		9	165	330	ug/Kg	
208-96-8	Acenaphthylene	940		8.4	165	330	ug/Kg	
606-20-2	2,6-Dinitrotoluene	890		14	165	330	ug/Kg	
99-09-2	3-Nitroaniline	500		21	165	330	ug/Kg	
83-32-9	Acenaphthene	930		9.4	165	330	ug/Kg	
51-28-5	2,4-Dinitrophenol	1200		34	165	330	ug/Kg	
100-02-7	4-Nitrophenol	1500		62	165	330	ug/Kg	
132-64-9	Dibenzofuran	850		13	165	330	ug/Kg	
121-14-2	2,4-Dinitrotoluene	870		10	165	330	ug/Kg	
84-66-2	Diethylphthalate	740		5.2	165	330	ug/Kg	
7005-72-3	4-Chlorophenyl-phenylether	860		18	165	330	ug/Kg	
86-73-7	Fluorene	920		13	165	330	ug/Kg	
100-01-6	4-Nitroaniline	780		43	165	330	ug/Kg	
534-52-1	4,6-Dinitro-2-methylphenol	730		19	165	330	ug/Kg	
86-30-6	N-Nitrosodiphenylamine	930		8	165	330	ug/Kg	
103-33-3	Azobenzene	900		7.8	165	330	ug/Kg	
101-55-3	4-Bromophenyl-phenylether	880		6.5	165	330	ug/Kg	
118-74-1	Hexachlorobenzene	850		14	165	330	ug/Kg	
1912-24-9	Atrazine	890		18	165	330	ug/Kg	
87-86-5	Pentachlorophenol	1500		23	165	330	ug/Kg	
85-01-8	Phenanthrene	940		9	165	330	ug/Kg	
120-12-7	Anthracene	970		6.8	165	330	ug/Kg	
86-74-8	Carbazole	860		7.3	165	330	ug/Kg	
84-74-2	Di-n-butylphthalate	800		26	165	330	ug/Kg	
206-44-0	Fluoranthene	890		6.7	165	330	ug/Kg	
92-87-5	Benzidine	850		33	165	330	ug/Kg	
129-00-0	Pyrene	940		8	165	330	ug/Kg	
-	•		of 970		-			

Client: MS Analytical Date Collected:
Project: 12MS104 Kensington Heights Date Received:

Client Sample ID:PB65121BSSDG No.:D3811Lab Sample ID:PB65121BSMatrix:SOILAnalytical Method:SW8270D% Moisture:0

Sample Wt/Vol: 30.01 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BF058256.D 1 08/15/12 08/16/12 PB65121

BF058256.D	1	08/15/12		08.	/16/12		PB65121	
CAS Number	Parameter	00/13/12	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
				Quanner				
85-68-7	Butylbenzylphthalate		800		16	165	330	ug/Kg
91-94-1	3,3-Dichlorobenzidine		310	J	21	165	330	ug/Kg
56-55-3	Benzo(a)anthracene		930		16	165	330	ug/Kg
218-01-9	Chrysene		890		15	165	330	ug/Kg
117-81-7	bis(2-Ethylhexyl)phthalate		790		12	165	330	ug/Kg
117-84-0	Di-n-octyl phthalate		830		3.8	165	330	ug/Kg
205-99-2	Benzo(b)fluoranthene		890		11	165	330	ug/Kg
207-08-9	Benzo(k)fluoranthene		920		16	165	330	ug/Kg
50-32-8	Benzo(a)pyrene		940		7.2	165	330	ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene		930		11	165	330	ug/Kg
53-70-3	Dibenz(a,h)anthracene		940		9.6	165	330	ug/Kg
191-24-2	Benzo(g,h,i)perylene		950		13	165	330	ug/Kg
95-94-3	1,2,4,5-Tetrachlorobenzene		900		13	165	330	ug/Kg
123-91-1	1,4-Dioxane		1200		13	165	330	ug/Kg
58-90-2	2,3,4,6-Tetrachlorophenol		750		13	165	330	ug/Kg
SURROGATES								
367-12-4	2-Fluorophenol		108		28 - 127	7	72%	SPK: 150
13127-88-3	Phenol-d5		98.8		34 - 127	7	66%	SPK: 150
4165-60-0	Nitrobenzene-d5		67.8		31 - 132	2	68%	SPK: 100
321-60-8	2-Fluorobiphenyl		67.2		39 - 123	3	67%	SPK: 100
118-79-6	2,4,6-Tribromophenol		82.4		30 - 133	3	55%	SPK: 150
1718-51-0	Terphenyl-d14		65.6		37 - 115	5	66%	SPK: 100
INTERNAL STA	NDARDS							
3855-82-1	1,4-Dichlorobenzene-d4		135385	5.2				
1146-65-2	Naphthalene-d8		481621	6.61				
15067-26-2	Acenaphthene-d10		229357	8.42				
1517-22-2	Phenanthrene-d10		356138	10.38				
1719-03-5	Chrysene-d12		272610	14.46				
1520-96-3	Perylene-d12		246003	16.57				

Date Collected:

Report of Analysis

Client: MS Analytical

Project: 12MS104 Kensington Heights Date Received:

Client Sample ID: PB65121BS SDG No.: D3811
Lab Sample ID: PB65121BS Matrix: SOIL

Analytical Method: SW8270D % Moisture: 0

Sample Wt/Vol: 30.01 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF058256.D 1 08/15/12 08/16/12 PB65121

CAS Number Parameter Conc. Qualifier MDL LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Soil Aliquot Vol:

Report of Analysis

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

иL

Client Sample ID: PB65125BS SDG No.: D3811
Lab Sample ID: PB65125BS Matrix: SOIL

Analytical Method: SW8270D % Moisture: 0

Sample Wt/Vol: 30.03 Units: g Final Vol: 1000 uL

Test:

SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BG006797.D 1 08/15/12 08/21/12 PB65125

BG006797.D	1	08/15/12	08/	/21/12		PB65125	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
62-75-9	n-Nitrosodimethylamine	1400		17	165	330	ug/Kg
110-86-1	Pyridine	1300		66	165	330	ug/Kg
100-52-7	Benzaldehyde	140	J	17	165	330	ug/Kg
62-53-3	Aniline	930		28	165	330	ug/Kg
108-95-2	Phenol	1300		7.7	165	330	ug/Kg
111-44-4	bis(2-Chloroethyl)ether	1300		16	165	330	ug/Kg
95-57-8	2-Chlorophenol	1300		18	165	330	ug/Kg
95-50-1	1,2-Dichlorobenzene	1300		13	165	330	ug/Kg
541-73-1	1,3-Dichlorobenzene	1300		5.9	165	330	ug/Kg
106-46-7	1,4-Dichlorobenzene	1300		11	165	330	ug/Kg
100-51-6	Benzyl Alcohol	1400		12	165	330	ug/Kg
95-48-7	2-Methylphenol	1400		18	165	330	ug/Kg
108-60-1	2,2-oxybis(1-Chloropropane)	1300		14	165	330	ug/Kg
98-86-2	Acetophenone	1400		10	165	330	ug/Kg
65794-96-9	3+4-Methylphenols	1400		17	165	330	ug/Kg
621-64-7	N-Nitroso-di-n-propylamine	1300		17	165	330	ug/Kg
67-72-1	Hexachloroethane	1300		15	165	330	ug/Kg
98-95-3	Nitrobenzene	1300		13	165	330	ug/Kg
78-59-1	Isophorone	1400		11	165	330	ug/Kg
88-75-5	2-Nitrophenol	1300		16	165	330	ug/Kg
105-67-9	2,4-Dimethylphenol	1300		19	165	330	ug/Kg
111-91-1	bis(2-Chloroethoxy)methane	1400		19	165	330	ug/Kg
120-83-2	2,4-Dichlorophenol	1300		13	165	330	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	1300		13	165	330	ug/Kg
65-85-0	Benzoic acid	1100		66	400	800	ug/Kg
91-20-3	Naphthalene	1300		11	165	330	ug/Kg
106-47-8	4-Chloroaniline	420		23	165	330	ug/Kg
87-68-3	Hexachlorobutadiene	1300		12	165	330	ug/Kg
105-60-2	Caprolactam	1500		15	165	330	ug/Kg
59-50-7	4-Chloro-3-methylphenol	1300		15	165	330	ug/Kg
91-57-6	2-Methylnaphthalene	1400		8.4	165	330	ug/Kg

SVOC-Chemtech Full -25

Soil Aliquot Vol:

Report of Analysis

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

иL

Client Sample ID: PB65125BS SDG No.: D3811
Lab Sample ID: PB65125BS Matrix: SOIL

Analytical Method: SW8270D % Moisture: 0

Sample Wt/Vol: 30.03 Units: g Final Vol: 1000 uL

Test:

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

, QU DUIU		rv	24					
BG006797.D	1	08/15/12	08/	/21/12		PB65125		
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units	
77-47-4	Hexachlorocyclopentadiene	3200	Е	8.1	165	330	ug/Kg	
88-06-2	2,4,6-Trichlorophenol	1200		10	165	330	ug/Kg	
95-95-4	2,4,5-Trichlorophenol	1300		23	165	330	ug/Kg	
92-52-4	1,1-Biphenyl	1300		13	165	330	ug/Kg	
91-58-7	2-Chloronaphthalene	1300		7.6	165	330	ug/Kg	
88-74-4	2-Nitroaniline	1200		15	165	330	ug/Kg	
131-11-3	Dimethylphthalate	1100		9	165	330	ug/Kg	
208-96-8	Acenaphthylene	1400		8.4	165	330	ug/Kg	
606-20-2	2,6-Dinitrotoluene	1300		14	165	330	ug/Kg	
99-09-2	3-Nitroaniline	770		21	165	330	ug/Kg	
83-32-9	Acenaphthene	1400		9.4	165	330	ug/Kg	
51-28-5	2,4-Dinitrophenol	2100		34	165	330	ug/Kg	
100-02-7	4-Nitrophenol	2500		62	165	330	ug/Kg	
132-64-9	Dibenzofuran	1300		13	165	330	ug/Kg	
121-14-2	2,4-Dinitrotoluene	1300		10	165	330	ug/Kg	
84-66-2	Diethylphthalate	1100		5.2	165	330	ug/Kg	
7005-72-3	4-Chlorophenyl-phenylether	1300		18	165	330	ug/Kg	
86-73-7	Fluorene	1400		13	165	330	ug/Kg	
100-01-6	4-Nitroaniline	1200		43	165	330	ug/Kg	
534-52-1	4,6-Dinitro-2-methylphenol	1200		19	165	330	ug/Kg	
86-30-6	N-Nitrosodiphenylamine	1300		8	165	330	ug/Kg	
103-33-3	Azobenzene	1300		7.8	165	330	ug/Kg	
101-55-3	4-Bromophenyl-phenylether	1300		6.5	165	330	ug/Kg	
118-74-1	Hexachlorobenzene	1300		14	165	330	ug/Kg	
1912-24-9	Atrazine	1400		18	165	330	ug/Kg	
87-86-5	Pentachlorophenol	2300		23	165	330	ug/Kg	
85-01-8	Phenanthrene	1400		9	165	330	ug/Kg	
120-12-7	Anthracene	1400		6.8	165	330	ug/Kg	
86-74-8	Carbazole	1300		7.3	165	330	ug/Kg	
84-74-2	Di-n-butylphthalate	1100		26	165	330	ug/Kg	
206-44-0	Fluoranthene	1400		6.7	165	330	ug/Kg	
92-87-5	Benzidine	1800		33	165	330	ug/Kg	
129-00-0	Pyrene	1300		8	165	330	ug/Kg	
	·	441 0	f 970	-	- -			

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

Client Sample ID: PB65125BS SDG No.: D3811

Lab Sample ID: PB65125BS Matrix: SOIL

Analytical Method: SW8270D % Moisture: 0

Sample Wt/Vol: 30.03 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BG006797.D 1 08/15/12 08/21/12 PB65125

BG006797.D	1	08/15/12	08	/21/12		PB65125	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
85-68-7	Butylbenzylphthalate	1100		16	165	330	ug/Kg
91-94-1	3,3-Dichlorobenzidine	720		21	165	330	ug/Kg
56-55-3	Benzo(a)anthracene	1300		16	165	330	ug/Kg
218-01-9	Chrysene	1300		15	165	330	ug/Kg
117-81-7	bis(2-Ethylhexyl)phthalate	1100		12	165	330	ug/Kg
117-84-0	Di-n-octyl phthalate	1200		3.8	165	330	ug/Kg
205-99-2	Benzo(b)fluoranthene	1400		11	165	330	ug/Kg
207-08-9	Benzo(k)fluoranthene	1400		16	165	330	ug/Kg
50-32-8	Benzo(a)pyrene	1400		7.2	165	330	ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene	1200		11	165	330	ug/Kg
53-70-3	Dibenz(a,h)anthracene	1300		9.6	165	330	ug/Kg
191-24-2	Benzo(g,h,i)perylene	1300		13	165	330	ug/Kg
95-94-3	1,2,4,5-Tetrachlorobenzene	1300		13	165	330	ug/Kg
123-91-1	1,4-Dioxane	1300		13	165	330	ug/Kg
58-90-2	2,3,4,6-Tetrachlorophenol	1200		13	165	330	ug/Kg
SURROGATES							
367-12-4	2-Fluorophenol	143		28 - 12	7	96%	SPK: 150
13127-88-3	Phenol-d5	144		34 - 12	7	96%	SPK: 150
4165-60-0	Nitrobenzene-d5	92.2		31 - 132	2	92%	SPK: 100
321-60-8	2-Fluorobiphenyl	94.8		39 - 123	3	95%	SPK: 100
118-79-6	2,4,6-Tribromophenol	134		30 - 133	3	90%	SPK: 150
1718-51-0	Terphenyl-d14	84.7		37 - 11:	5	85%	SPK: 100
INTERNAL STA	ANDARDS						
3855-82-1	1,4-Dichlorobenzene-d4	13235	0 8.69				
1146-65-2	Naphthalene-d8	50404	4 10.88				
15067-26-2	Acenaphthene-d10	35601	0 13.87				
1517-22-2	Phenanthrene-d10	65912	8 16.37				
1719-03-5	Chrysene-d12	78198	1 20.88				
1520-96-3	Perylene-d12	69434	7 24.77				

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

uL

Client Sample ID: SDG No.: D3811 PB65125BS Lab Sample ID: PB65125BS Matrix: SOIL

SW8270D % Moisture: Analytical Method:

Sample Wt/Vol: 30.03 Units: Final Vol: 1000 uL g

Test:

Soil Aliquot Vol: Extraction Type: SOXH Decanted: Level: LOW Ν

Injection Volume: GPC Factor: 1.0 GPC Cleanup: Ν

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BG006797.D 1 08/15/12 08/21/12 PB65125

CAS Number Parameter Conc. Qualifier **MDL** LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

SVOC-Chemtech Full -25

PH:

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Soil Aliquot Vol:

Report of Analysis

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

иL

Client Sample ID: PB65419BS SDG No.: D3811
Lab Sample ID: PB65419BS Matrix: SOIL

Analytical Method: SW8270D % Moisture: 0

Sample Wt/Vol: 30.01 Units: g Final Vol: 1000 uL

Test:

SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF058470.D 1 08/28/12 08/28/12 PB65419

BF058470.D	1	08/28/12	08/	/28/12		PB65419	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
62-75-9	n-Nitrosodimethylamine	1300		17	165	330	ug/Kg
110-86-1	Pyridine	1200		66	165	330	ug/Kg
100-52-7	Benzaldehyde	560		17	165	330	ug/Kg
62-53-3	Aniline	800		28	165	330	ug/Kg
108-95-2	Phenol	1100		7.7	165	330	ug/Kg
111-44-4	bis(2-Chloroethyl)ether	1300		16	165	330	ug/Kg
95-57-8	2-Chlorophenol	1100		18	165	330	ug/Kg
95-50-1	1,2-Dichlorobenzene	1300		13	165	330	ug/Kg
541-73-1	1,3-Dichlorobenzene	1300		5.9	165	330	ug/Kg
106-46-7	1,4-Dichlorobenzene	1300		11	165	330	ug/Kg
100-51-6	Benzyl Alcohol	1200		12	165	330	ug/Kg
95-48-7	2-Methylphenol	1300		18	165	330	ug/Kg
108-60-1	2,2-oxybis(1-Chloropropane)	1300		14	165	330	ug/Kg
98-86-2	Acetophenone	1300		10	165	330	ug/Kg
65794-96-9	3+4-Methylphenols	1300		17	165	330	ug/Kg
621-64-7	N-Nitroso-di-n-propylamine	1300		17	165	330	ug/Kg
67-72-1	Hexachloroethane	1300		15	165	330	ug/Kg
98-95-3	Nitrobenzene	1300		13	165	330	ug/Kg
78-59-1	Isophorone	1300		11	165	330	ug/Kg
88-75-5	2-Nitrophenol	1200		16	165	330	ug/Kg
105-67-9	2,4-Dimethylphenol	1200		19	165	330	ug/Kg
111-91-1	bis(2-Chloroethoxy)methane	1300		19	165	330	ug/Kg
120-83-2	2,4-Dichlorophenol	1200		13	165	330	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	1300		13	165	330	ug/Kg
65-85-0	Benzoic acid	1300		66	400	800	ug/Kg
91-20-3	Naphthalene	1300		11	165	330	ug/Kg
106-47-8	4-Chloroaniline	450		23	165	330	ug/Kg
87-68-3	Hexachlorobutadiene	1300		12	165	330	ug/Kg
105-60-2	Caprolactam	1300		15	165	330	ug/Kg
59-50-7	4-Chloro-3-methylphenol	1100		15	165	330	ug/Kg
91-57-6	2-Methylnaphthalene	1300		8.4	165	330	ug/Kg

SVOC-Chemtech Full -25

Soil Aliquot Vol:

Report of Analysis

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

иL

Client Sample ID: PB65419BS SDG No.: D3811
Lab Sample ID: PB65419BS Matrix: SOIL

Analytical Method: SW8270D % Moisture: 0

Sample Wt/Vol: 30.01 Units: g Final Vol: 1000 uL

Test:

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF058470.D	1	08/28/12	08/28/12			PB65419	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
77-47-4	Hexachlorocyclopentadiene	3300	Е	8.1	165	330	ug/Kg
88-06-2	2,4,6-Trichlorophenol	1200		10	165	330	ug/Kg
95-95-4	2,4,5-Trichlorophenol	1200		23	165	330	ug/Kg
92-52-4	1,1-Biphenyl	1300		13	165	330	ug/Kg
91-58-7	2-Chloronaphthalene	1300		7.6	165	330	ug/Kg
88-74-4	2-Nitroaniline	1200		15	165	330	ug/Kg
131-11-3	Dimethylphthalate	1100		9	165	330	ug/Kg
208-96-8	Acenaphthylene	1300		8.4	165	330	ug/Kg
606-20-2	2,6-Dinitrotoluene	1300		14	165	330	ug/Kg
99-09-2	3-Nitroaniline	700		21	165	330	ug/Kg
83-32-9	Acenaphthene	1300		9.4	165	330	ug/Kg
51-28-5	2,4-Dinitrophenol	2000		34	165	330	ug/Kg
100-02-7	4-Nitrophenol	2200		62	165	330	ug/Kg
132-64-9	Dibenzofuran	1300		13	165	330	ug/Kg
121-14-2	2,4-Dinitrotoluene	1300		10	165	330	ug/Kg
84-66-2	Diethylphthalate	1100		5.2	165	330	ug/Kg
7005-72-3	4-Chlorophenyl-phenylether	1300		18	165	330	ug/Kg
86-73-7	Fluorene	1300		13	165	330	ug/Kg
100-01-6	4-Nitroaniline	1100		43	165	330	ug/Kg
534-52-1	4,6-Dinitro-2-methylphenol	1100		19	165	330	ug/Kg
86-30-6	N-Nitrosodiphenylamine	1300		8	165	330	ug/Kg
103-33-3	Azobenzene	1200		7.8	165	330	ug/Kg
101-55-3	4-Bromophenyl-phenylether	1300		6.5	165	330	ug/Kg
118-74-1	Hexachlorobenzene	1300		14	165	330	ug/Kg
1912-24-9	Atrazine	1400		18	165	330	ug/Kg
87-86-5	Pentachlorophenol	2500		23	165	330	ug/Kg
85-01-8	Phenanthrene	1300		9	165	330	ug/Kg
120-12-7	Anthracene	1400		6.8	165	330	ug/Kg
86-74-8	Carbazole	1200		7.3	165	330	ug/Kg
84-74-2	Di-n-butylphthalate	1100		26	165	330	ug/Kg
206-44-0	Fluoranthene	1300		6.7	165	330	ug/Kg
92-87-5	Benzidine	1000		33	165	330	ug/Kg
129-00-0	Pyrene	1300		8	165	330	ug/Kg
		445 c	of 870				

SVOC-Chemtech Full -25

Soil Aliquot Vol:

Report of Analysis

Client: MS Analytical Date Collected: Project: 12MS104 Kensington Heights Date Received: Client Sample ID: PB65419BS SDG No.: D3811 Lab Sample ID: PB65419BS Matrix: SOIL Analytical Method: SW8270D % Moisture: 0

Sample Wt/Vol: 30.01 Units: g Final Vol: 1000 uL

Test:

Extraction Type: SOXH Decanted: N Level: LOW

uL

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BF058470.D 1 08/28/12 08/28/12 PB65419

BF058470.D	1	08/28/12	08/	/28/12		PB65419	J
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
85-68-7	Butylbenzylphthalate	1100		16	165	330	ug/Kg
91-94-1	3,3-Dichlorobenzidine	620		21	165	330	ug/Kg
56-55-3	Benzo(a)anthracene	1300		16	165	330	ug/Kg
218-01-9	Chrysene	1300		15	165	330	ug/Kg
117-81-7	bis(2-Ethylhexyl)phthalate	1000		12	165	330	ug/Kg
117-84-0	Di-n-octyl phthalate	1000		3.8	165	330	ug/Kg
205-99-2	Benzo(b)fluoranthene	1300		11	165	330	ug/Kg
207-08-9	Benzo(k)fluoranthene	1400		16	165	330	ug/Kg
50-32-8	Benzo(a)pyrene	1400		7.2	165	330	ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene	1400		11	165	330	ug/Kg
53-70-3	Dibenz(a,h)anthracene	1400		9.6	165	330	ug/Kg
191-24-2	Benzo(g,h,i)perylene	1300		13	165	330	ug/Kg
95-94-3	1,2,4,5-Tetrachlorobenzene	1300		13	165	330	ug/Kg
123-91-1	1,4-Dioxane	1300		13	165	330	ug/Kg
58-90-2	2,3,4,6-Tetrachlorophenol	1200		13	165	330	ug/Kg
SURROGATES							
367-12-4	2-Fluorophenol	125		28 - 127	7	84%	SPK: 150
13127-88-3	Phenol-d5	129		34 - 127	7	86%	SPK: 150
4165-60-0	Nitrobenzene-d5	91.3		31 - 132	2	91%	SPK: 100
321-60-8	2-Fluorobiphenyl	94.4		39 - 123	3	94%	SPK: 100
118-79-6	2,4,6-Tribromophenol	146		30 - 133	3	98%	SPK: 150
1718-51-0	Terphenyl-d14	89.8		37 - 115	5	90%	SPK: 100
INTERNAL STA	ANDARDS						
3855-82-1	1,4-Dichlorobenzene-d4	12995	8 5.03				
1146-65-2	Naphthalene-d8	45769	4 6.48				
15067-26-2	Acenaphthene-d10	21924	1 8.26				
1517-22-2	Phenanthrene-d10	35415	4 10.18				
1719-03-5	Chrysene-d12	27740	7 14.23				
1520-96-3	Perylene-d12	22674	5 16.33				

File ID/Qc Batch:

Report of Analysis

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

uL

Dilution:

Client Sample ID: SDG No.: D3811 PB65419BS Lab Sample ID: PB65419BS Matrix: SOIL

SW8270D % Moisture: Analytical Method:

Sample Wt/Vol: 30.01 Units: Final Vol: 1000 uL g

Test:

Date Analyzed

SVOC-Chemtech Full -25

PH:

Prep Batch ID

Soil Aliquot Vol: Extraction Type: SOXH Decanted: Level: LOW Ν

Injection Volume: GPC Factor: 1.0 GPC Cleanup: Ν

Prep Date BF058470.D 1 08/28/12 08/28/12 PB65419

CAS Number Parameter Conc. Qualifier **MDL** LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Client: MS Analytical Date Collected: 08/07/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-5(8-12)MS SDG No.: D3811 Lab Sample ID: D3811-02MS Matrix: SOIL Analytical Method: SW8270D % Moisture: 19 Sample Wt/Vol: 30.05 Units: g Final Vol: 1000 uL Soil Aliquot Vol: иL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BF058274.D 1 08/15/12 08/16/12 PB65125

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
62-75-9	n-Nitrosodimethylamine	2100		21	205	410	ug/Kg
110-86-1	Pyridine	1900		81	205	410	ug/Kg
100-52-7	Benzaldehyde	250	J	21	205	410	ug/Kg
62-53-3	Aniline	1100		35	205	410	ug/Kg
108-95-2	Phenol	1500		9.5	205	410	ug/Kg
111-44-4	bis(2-Chloroethyl)ether	1800		20	205	410	ug/Kg
95-57-8	2-Chlorophenol	1500		22	205	410	ug/Kg
95-50-1	1,2-Dichlorobenzene	1600		16	205	410	ug/Kg
541-73-1	1,3-Dichlorobenzene	1600		7.3	205	410	ug/Kg
106-46-7	1,4-Dichlorobenzene	1600		14	205	410	ug/Kg
100-51-6	Benzyl Alcohol	1600		15	205	410	ug/Kg
95-48-7	2-Methylphenol	1700		22	205	410	ug/Kg
108-60-1	2,2-oxybis(1-Chloropropane)	1700		17	205	410	ug/Kg
98-86-2	Acetophenone	1800		13	205	410	ug/Kg
65794-96-9	3+4-Methylphenols	1700		21	205	410	ug/Kg
621-64-7	N-Nitroso-di-n-propylamine	1800		21	205	410	ug/Kg
67-72-1	Hexachloroethane	1500		18	205	410	ug/Kg
98-95-3	Nitrobenzene	1800		16	205	410	ug/Kg
78-59-1	Isophorone	1800		14	205	410	ug/Kg
88-75-5	2-Nitrophenol	1600		20	205	410	ug/Kg
105-67-9	2,4-Dimethylphenol	1600		23	205	410	ug/Kg
111-91-1	bis(2-Chloroethoxy)methane	1800		24	205	410	ug/Kg
120-83-2	2,4-Dichlorophenol	1500		16	205	410	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	1600		16	205	410	ug/Kg
65-85-0	Benzoic acid	1500		81	495	990	ug/Kg
91-20-3	Naphthalene	1700		14	205	410	ug/Kg
106-47-8	4-Chloroaniline	690		29	205	410	ug/Kg
87-68-3	Hexachlorobutadiene	1500		15	205	410	ug/Kg
105-60-2	Caprolactam	2000		19	205	410	ug/Kg
59-50-7	4-Chloro-3-methylphenol	1500		18	205	410	ug/Kg
91-57-6	2-Methylnaphthalene	1700		10	205	410	ug/Kg

Client: MS Analytical Date Collected: 08/07/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-5(8-12)MS SDG No.: D3811

Lab Sample ID: D3811-02MS Matrix: SOIL

Analytical Method: SW8270D % Moisture: 19

Sample Wt/Vol: 30.05 Units: g Final Vol: 1000

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

uL

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF058274.D 1 08/15/12 08/16/12 PB65125

BF058274.D	1	08/15/12	08	/16/12		PB65125	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
77-47-4	Hexachlorocyclopentadiene	1500		10	205	410	ug/Kg
88-06-2	2,4,6-Trichlorophenol	1500		13	205	410	ug/Kg
95-95-4	2,4,5-Trichlorophenol	1500		29	205	410	ug/Kg
92-52-4	1,1-Biphenyl	1700		16	205	410	ug/Kg
91-58-7	2-Chloronaphthalene	1600		9.4	205	410	ug/Kg
88-74-4	2-Nitroaniline	1600		18	205	410	ug/Kg
131-11-3	Dimethylphthalate	1800		11	205	410	ug/Kg
208-96-8	Acenaphthylene	1700		10	205	410	ug/Kg
606-20-2	2,6-Dinitrotoluene	1700		17	205	410	ug/Kg
99-09-2	3-Nitroaniline	1400		26	205	410	ug/Kg
83-32-9	Acenaphthene	1700		12	205	410	ug/Kg
51-28-5	2,4-Dinitrophenol	2300		42	205	410	ug/Kg
100-02-7	4-Nitrophenol	3100		76	205	410	ug/Kg
132-64-9	Dibenzofuran	1500		16	205	410	ug/Kg
121-14-2	2,4-Dinitrotoluene	1600		12	205	410	ug/Kg
84-66-2	Diethylphthalate	1400		6.4	205	410	ug/Kg
7005-72-3	4-Chlorophenyl-phenylether	1500		22	205	410	ug/Kg
86-73-7	Fluorene	1700		16	205	410	ug/Kg
100-01-6	4-Nitroaniline	1500		53	205	410	ug/Kg
534-52-1	4,6-Dinitro-2-methylphenol	1400		24	205	410	ug/Kg
86-30-6	N-Nitrosodiphenylamine	1600		9.9	205	410	ug/Kg
103-33-3	Azobenzene	1700		9.6	205	410	ug/Kg
101-55-3	4-Bromophenyl-phenylether	1500		8	205	410	ug/Kg
118-74-1	Hexachlorobenzene	1500		17	205	410	ug/Kg
1912-24-9	Atrazine	1600		22	205	410	ug/Kg
87-86-5	Pentachlorophenol	3200		28	205	410	ug/Kg
85-01-8	Phenanthrene	1700		11	205	410	ug/Kg
120-12-7	Anthracene	1800		8.4	205	410	ug/Kg
86-74-8	Carbazole	1600		9	205	410	ug/Kg
84-74-2	Di-n-butylphthalate	1500		32	205	410	ug/Kg
206-44-0	Fluoranthene	1700		8.3	205	410	ug/Kg
92-87-5	Benzidine	2200		41	205	410	ug/Kg
129-00-0	Pyrene	1700		9.9	205	410	ug/Kg
		449 o	f 870				

Injection Volume:

Report of Analysis

Client: MS Analytical Date Collected: 08/07/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-5(8-12)MS SDG No.: D3811 Lab Sample ID: D3811-02MS Matrix: SOIL Analytical Method: SW8270D % Moisture: 19 Sample Wt/Vol: 30.05 Units: g Final Vol: 1000 uL Soil Aliquot Vol: иL Test: SVOC-Chemtech Full -25 Level: Extraction Type: SOXH Decanted: N LOW

1.0

GPC Cleanup:

Ν

PH:

N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BF058274.D 1 08/15/12 08/16/12 PB65125

GPC Factor:

BF058274.D	1	08/15/12	08/	/16/12		PB65125	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
85-68-7	Butylbenzylphthalate	1500		20	205	410	ug/Kg
91-94-1	3,3-Dichlorobenzidine	1400		26	205	410	ug/Kg
56-55-3	Benzo(a)anthracene	1800		20	205	410	ug/Kg
218-01-9	Chrysene	1700		19	205	410	ug/Kg
117-81-7	bis(2-Ethylhexyl)phthalate	1600		15	205	410	ug/Kg
117-84-0	Di-n-octyl phthalate	1700		4.7	205	410	ug/Kg
205-99-2	Benzo(b)fluoranthene	1800		13	205	410	ug/Kg
207-08-9	Benzo(k)fluoranthene	1700		19	205	410	ug/Kg
50-32-8	Benzo(a)pyrene	1700		8.9	205	410	ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene	1100		14	205	410	ug/Kg
53-70-3	Dibenz(a,h)anthracene	1200		12	205	410	ug/Kg
191-24-2	Benzo(g,h,i)perylene	930		17	205	410	ug/Kg
95-94-3	1,2,4,5-Tetrachlorobenzene	1600		16	205	410	ug/Kg
123-91-1	1,4-Dioxane	2000		16	205	410	ug/Kg
58-90-2	2,3,4,6-Tetrachlorophenol	1500		16	205	410	ug/Kg
SURROGATES	5						
367-12-4	2-Fluorophenol	137		28 - 12	7	91%	SPK: 150
13127-88-3	Phenol-d5	137		34 - 12	7	92%	SPK: 150
4165-60-0	Nitrobenzene-d5	99.2		31 - 132	2	99%	SPK: 100
321-60-8	2-Fluorobiphenyl	92.2		39 - 123	3	92%	SPK: 100
118-79-6	2,4,6-Tribromophenol	123		30 - 133	3	83%	SPK: 150
1718-51-0	Terphenyl-d14	88.7		37 - 11:	5	89%	SPK: 100
INTERNAL ST	CANDARDS						
3855-82-1	1,4-Dichlorobenzene-d4	109569	5.2				
1146-65-2	Naphthalene-d8	367686	6.61				
15067-26-2	Acenaphthene-d10	179275	8.42				
1517-22-2	Phenanthrene-d10	292502	10.38				
1719-03-5	Chrysene-d12	244655	14.46				
1520-96-3	Perylene-d12	210031	16.57				

Client: MS Analytical

Date Collected: 08/07/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-5(8-12)MS SDG No.: D3811

Lab Sample ID: D3811-02MS Matrix: SOIL

Analytical Method: Sample Wt/Vol:

30.05 Units: % Moisture: 19

uL

Soil Aliquot Vol:

g

uL

Test:

Final Vol:

GPC Cleanup:

SVOC-Chemtech Full -25

Extraction Type:

Injection Volume:

SOXH

SW8270D

Decanted: Ν 1.0

Level:

LOW

Ν

1000

PH: N/A

File ID/Qc Batch:

Dilution:

Prep Date

GPC Factor:

Date Analyzed

Prep Batch ID

BF058274.D

1

08/15/12

08/16/12

CAS Number

Parameter

Conc.

Qualifier

MDL

LOD

LOQ / CRQL

PB65125

Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Client: MS Analytical Date Collected: 08/15/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SDG No.: D3811 SS-01AMS Lab Sample ID: D3813-01MS Matrix: SOIL Analytical Method: SW8270D % Moisture: 13

Sample Wt/Vol: 30.03 Units: g Final Vol: 1000 uL
Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF058265.D 1 08/15/12 08/16/12 PB65121

BF058265.D	ı	08/15/12	08/	/16/12		PB65121	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
62-75-9	n-Nitrosodimethylamine	2000		20	190	380	ug/Kg
110-86-1	Pyridine	1900		76	190	380	ug/Kg
100-52-7	Benzaldehyde	260	J	20	190	380	ug/Kg
62-53-3	Aniline	1000		33	190	380	ug/Kg
108-95-2	Phenol	1900		8.8	190	380	ug/Kg
111-44-4	bis(2-Chloroethyl)ether	1700		18	190	380	ug/Kg
95-57-8	2-Chlorophenol	1300		20	190	380	ug/Kg
95-50-1	1,2-Dichlorobenzene	1500		15	190	380	ug/Kg
541-73-1	1,3-Dichlorobenzene	1500		6.8	190	380	ug/Kg
106-46-7	1,4-Dichlorobenzene	1500		13	190	380	ug/Kg
100-51-6	Benzyl Alcohol	1700		14	190	380	ug/Kg
95-48-7	2-Methylphenol	1600		21	190	380	ug/Kg
108-60-1	2,2-oxybis(1-Chloropropane)	1600		16	190	380	ug/Kg
98-86-2	Acetophenone	1500		12	190	380	ug/Kg
65794-96-9	3+4-Methylphenols	3000		20	190	380	ug/Kg
621-64-7	N-Nitroso-di-n-propylamine	1700		19	190	380	ug/Kg
67-72-1	Hexachloroethane	1400		17	190	380	ug/Kg
98-95-3	Nitrobenzene	1400		14	190	380	ug/Kg
78-59-1	Isophorone	1500		13	190	380	ug/Kg
88-75-5	2-Nitrophenol	1100		18	190	380	ug/Kg
105-67-9	2,4-Dimethylphenol	1400		22	190	380	ug/Kg
111-91-1	bis(2-Chloroethoxy)methane	1700		22	190	380	ug/Kg
120-83-2	2,4-Dichlorophenol	1000		15	190	380	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	1400		15	190	380	ug/Kg
65-85-0	Benzoic acid	350	J	76	460	920	ug/Kg
91-20-3	Naphthalene	2000		13	190	380	ug/Kg
106-47-8	4-Chloroaniline	820		27	190	380	ug/Kg
87-68-3	Hexachlorobutadiene	1400		14	190	380	ug/Kg
105-60-2	Caprolactam	2000		18	190	380	ug/Kg
59-50-7	4-Chloro-3-methylphenol	1400		17	190	380	ug/Kg
91-57-6	2-Methylnaphthalene	1600		9.6	190	380	ug/Kg

SVOC-Chemtech Full -25

CHEMITECH

Soil Aliquot Vol:

Report of Analysis

Client: MS Analytical Date Collected: 08/15/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SS-01AMS SDG No.: D3811 Lab Sample ID: D3813-01MS Matrix: SOIL

Analytical Method: SW8270D % Moisture: 13

иL

Sample Wt/Vol: 30.03 Units: g Final Vol: 1000 uL

Test:

Extraction Type: SOXH Level: Decanted: N LOW

Injection Volume: GPC Factor: 1.0 GPC Cleanup: Ν PH: N/A

File ID/Qc Batch: Dilution: Prep Batch ID Prep Date Date Analyzed

BF058265.D	1	08/15/12		08/	/16/12		PB65121	
CAS Number	Parameter		Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
77-47-4	Hexachlorocyclopentadiene		62	J	9.3	190	380	ug/Kg
88-06-2	2,4,6-Trichlorophenol		740		12	190	380	ug/Kg
95-95-4	2,4,5-Trichlorophenol		990		27	190	380	ug/Kg
92-52-4	1,1-Biphenyl		1600		14	190	380	ug/Kg
91-58-7	2-Chloronaphthalene		1400		8.7	190	380	ug/Kg
88-74-4	2-Nitroaniline		1500		17	190	380	ug/Kg
131-11-3	Dimethylphthalate		1700		10	190	380	ug/Kg
208-96-8	Acenaphthylene		1500		9.6	190	380	ug/Kg
606-20-2	2,6-Dinitrotoluene		1500		16	190	380	ug/Kg
99-09-2	3-Nitroaniline		1400		25	190	380	ug/Kg
83-32-9	Acenaphthene		1800		11	190	380	ug/Kg
51-28-5	2,4-Dinitrophenol		490		39	190	380	ug/Kg
100-02-7	4-Nitrophenol		1300		71	190	380	ug/Kg
132-64-9	Dibenzofuran		1600		15	190	380	ug/Kg
121-14-2	2,4-Dinitrotoluene		1500		12	190	380	ug/Kg
84-66-2	Diethylphthalate		1300		6	190	380	ug/Kg
7005-72-3	4-Chlorophenyl-phenylether		1400		21	190	380	ug/Kg
86-73-7	Fluorene		1800		14	190	380	ug/Kg
100-01-6	4-Nitroaniline		1600		50	190	380	ug/Kg
534-52-1	4,6-Dinitro-2-methylphenol		430		22	190	380	ug/Kg
86-30-6	N-Nitrosodiphenylamine		1500		9.2	190	380	ug/Kg
103-33-3	Azobenzene		1500		9	190	380	ug/Kg
101-55-3	4-Bromophenyl-phenylether		1400		7.5	190	380	ug/Kg
118-74-1	Hexachlorobenzene		1300		16	190	380	ug/Kg
1912-24-9	Atrazine		1300		20	190	380	ug/Kg
87-86-5	Pentachlorophenol		1100		26	190	380	ug/Kg
85-01-8	Phenanthrene		3400	E	10	190	380	ug/Kg
120-12-7	Anthracene		2000		7.8	190	380	ug/Kg
86-74-8	Carbazole		1700		8.4	190	380	ug/Kg
84-74-2	Di-n-butylphthalate		1300		30	190	380	ug/Kg
206-44-0	Fluoranthene		2900		7.7	190	380	ug/Kg
92-87-5	Benzidine		1700		38	190	380	ug/Kg
129-00-0	Pyrene		2800		9.2	190	380	ug/Kg
			453 o	f 870				

Injection Volume:

Report of Analysis

Client: MS Analytical Date Collected: 08/15/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SDG No.: SS-01AMS D3811 Lab Sample ID: D3813-01MS Matrix: SOIL Analytical Method: SW8270D % Moisture: 13 Sample Wt/Vol: 30.03 Units: g Final Vol: 1000 uL Soil Aliquot Vol: иL Test: SVOC-Chemtech Full -25 Level: Extraction Type: SOXH Decanted: N LOW

1.0

GPC Cleanup:

Ν

PH:

N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BE058265 D 1 08/15/12 08/16/12 PB65121

GPC Factor:

BF058265.D	1	08/15/12	08/	/16/12		PB65121	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
85-68-7	Butylbenzylphthalate	1500		18	190	380	ug/Kg
91-94-1	3,3-Dichlorobenzidine	1500		25	190	380	ug/Kg
56-55-3	Benzo(a)anthracene	2200		18	190	380	ug/Kg
218-01-9	Chrysene	2200		17	190	380	ug/Kg
117-81-7	bis(2-Ethylhexyl)phthalate	1600		14	190	380	ug/Kg
117-84-0	Di-n-octyl phthalate	1600		4.4	190	380	ug/Kg
205-99-2	Benzo(b)fluoranthene	2200		13	190	380	ug/Kg
207-08-9	Benzo(k)fluoranthene	1900		18	190	380	ug/Kg
50-32-8	Benzo(a)pyrene	2100		8.3	190	380	ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene	1300		13	190	380	ug/Kg
53-70-3	Dibenz(a,h)anthracene	1100		11	190	380	ug/Kg
191-24-2	Benzo(g,h,i)perylene	1100		16	190	380	ug/Kg
95-94-3	1,2,4,5-Tetrachlorobenzene	1500		15	190	380	ug/Kg
123-91-1	1,4-Dioxane	2000		15	190	380	ug/Kg
58-90-2	2,3,4,6-Tetrachlorophenol	620		15	190	380	ug/Kg
SURROGATES	S						
367-12-4	2-Fluorophenol	129		28 - 12	7	87%	SPK: 150
13127-88-3	Phenol-d5	139		34 - 12	7	93%	SPK: 150
4165-60-0	Nitrobenzene-d5	87.5		31 - 132	2	87%	SPK: 100
321-60-8	2-Fluorobiphenyl	92.9		39 - 123	3	93%	SPK: 100
118-79-6	2,4,6-Tribromophenol	68.1		30 - 133	3	45%	SPK: 150
1718-51-0	Terphenyl-d14	92.6		37 - 11:	5	93%	SPK: 100
INTERNAL ST.	ANDARDS						
3855-82-1	1,4-Dichlorobenzene-d4	114880	5.2				
1146-65-2	Naphthalene-d8	445263	6.61				
15067-26-2	Acenaphthene-d10	194584	8.42				
1517-22-2	Phenanthrene-d10	320628	10.38				
1719-03-5	Chrysene-d12	250753	14.47				
1520-96-3	Perylene-d12	219806	16.58				

Client: MS Analytical

Date Collected: 08/15/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SS-01AMS D3811

Lab Sample ID: D3813-01MS

Matrix:

% Moisture:

SOIL 13

1000

Analytical Method: Sample Wt/Vol:

30.03 Units:

Final Vol: Test:

SDG No.:

Soil Aliquot Vol:

uL

g

uL SVOC-Chemtech Full -25

Extraction Type:

Injection Volume:

SOXH

SW8270D

Decanted: Ν 1.0

Conc.

Level:

GPC Cleanup:

LOW

Ν

PH: N/A

File ID/Qc Batch:

Dilution:

Prep Date

GPC Factor:

Date Analyzed

MDL

Prep Batch ID

BF058265.D

CAS Number

1

Parameter

08/15/12

08/16/12

Qualifier

LOD

LOQ / CRQL

PB65121

Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Client:MS AnalyticalDate Collected:08/15/12Project:12MS104 Kensington HeightsDate Received:08/15/12

Client Sample ID:SS-01AMSRXSDG No.:D3811Lab Sample ID:D3813-01MSRXMatrix:SOILAnalytical Method:SW8270D% Moisture:13

Sample Wt/Vol: 30.02 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF058476.D 1 08/28/12 08/28/12 PB65419

BF0584/6.D	1	08/28/12	08/	/28/12		PB65419	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
62-75-9	n-Nitrosodimethylamine	1500		20	190	380	ug/Kg
110-86-1	Pyridine	1300		76	190	380	ug/Kg
100-52-7	Benzaldehyde	760		20	190	380	ug/Kg
62-53-3	Aniline	1200		33	190	380	ug/Kg
108-95-2	Phenol	2000		8.8	190	380	ug/Kg
111-44-4	bis(2-Chloroethyl)ether	1500		18	190	380	ug/Kg
95-57-8	2-Chlorophenol	1300		20	190	380	ug/Kg
95-50-1	1,2-Dichlorobenzene	1500		15	190	380	ug/Kg
541-73-1	1,3-Dichlorobenzene	1500		6.8	190	380	ug/Kg
106-46-7	1,4-Dichlorobenzene	1500		13	190	380	ug/Kg
100-51-6	Benzyl Alcohol	1600		14	190	380	ug/Kg
95-48-7	2-Methylphenol	1600		21	190	380	ug/Kg
108-60-1	2,2-oxybis(1-Chloropropane)	1500		16	190	380	ug/Kg
98-86-2	Acetophenone	1600		12	190	380	ug/Kg
65794-96-9	3+4-Methylphenols	4300	E	20	190	380	ug/Kg
621-64-7	N-Nitroso-di-n-propylamine	1600		19	190	380	ug/Kg
67-72-1	Hexachloroethane	1400		17	190	380	ug/Kg
98-95-3	Nitrobenzene	1600		14	190	380	ug/Kg
78-59-1	Isophorone	1600		13	190	380	ug/Kg
88-75-5	2-Nitrophenol	1300		18	190	380	ug/Kg
105-67-9	2,4-Dimethylphenol	1600		22	190	380	ug/Kg
111-91-1	bis(2-Chloroethoxy)methane	1600		22	190	380	ug/Kg
120-83-2	2,4-Dichlorophenol	1400		15	190	380	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	1500		15	190	380	ug/Kg
65-85-0	Benzoic acid	460	U	76	460	920	ug/Kg
91-20-3	Naphthalene	2000		13	190	380	ug/Kg
106-47-8	4-Chloroaniline	1200		27	190	380	ug/Kg
87-68-3	Hexachlorobutadiene	1600		14	190	380	ug/Kg
105-60-2	Caprolactam	2000		18	190	380	ug/Kg
59-50-7	4-Chloro-3-methylphenol	1500		17	190	380	ug/Kg
91-57-6	2-Methylnaphthalene	1900		9.6	190	380	ug/Kg

SVOC-Chemtech Full -25

Soil Aliquot Vol:

Report of Analysis

Client:MS AnalyticalDate Collected:08/15/12Project:12MS104 Kensington HeightsDate Received:08/15/12

Client Sample ID: SS-01AMSRX SDG No.: D3811

Lab Sample ID: D3813-01MSRX Matrix: SOIL

Analytical Method: SW8270D % Moisture: 13

uL

Sample Wt/Vol: 30.02 Units: g Final Vol: 1000 uL

Test:

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF058476.D	1	08/28/12		08/	/28/12		PB65419	
CAS Number	Parameter	C	onc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
77-47-4	Hexachlorocyclopentadiene	5	10		9.3	190	380	ug/Kg
88-06-2	2,4,6-Trichlorophenol	9.	40		12	190	380	ug/Kg
95-95-4	2,4,5-Trichlorophenol	12	200		27	190	380	ug/Kg
92-52-4	1,1-Biphenyl	10	600		14	190	380	ug/Kg
91-58-7	2-Chloronaphthalene	1:	500		8.7	190	380	ug/Kg
88-74-4	2-Nitroaniline	1:	500		17	190	380	ug/Kg
131-11-3	Dimethylphthalate	13	800		10	190	380	ug/Kg
208-96-8	Acenaphthylene	10	600		9.6	190	380	ug/Kg
606-20-2	2,6-Dinitrotoluene	10	600		16	190	380	ug/Kg
99-09-2	3-Nitroaniline	14	400		25	190	380	ug/Kg
83-32-9	Acenaphthene	1	700		11	190	380	ug/Kg
51-28-5	2,4-Dinitrophenol	40	00		39	190	380	ug/Kg
100-02-7	4-Nitrophenol	10	600		71	190	380	ug/Kg
132-64-9	Dibenzofuran	10	600		15	190	380	ug/Kg
121-14-2	2,4-Dinitrotoluene	10	600		12	190	380	ug/Kg
84-66-2	Diethylphthalate	14	400		6	190	380	ug/Kg
7005-72-3	4-Chlorophenyl-phenylether	10	600		21	190	380	ug/Kg
86-73-7	Fluorene	13	800		14	190	380	ug/Kg
100-01-6	4-Nitroaniline	1:	500		50	190	380	ug/Kg
534-52-1	4,6-Dinitro-2-methylphenol	20	60	J	22	190	380	ug/Kg
86-30-6	N-Nitrosodiphenylamine	1:	500		9.2	190	380	ug/Kg
103-33-3	Azobenzene	1:	500		9	190	380	ug/Kg
101-55-3	4-Bromophenyl-phenylether	1:	500		7.5	190	380	ug/Kg
118-74-1	Hexachlorobenzene	1:	500		16	190	380	ug/Kg
1912-24-9	Atrazine	1	700		20	190	380	ug/Kg
87-86-5	Pentachlorophenol	1	100		26	190	380	ug/Kg
85-01-8	Phenanthrene	2	700		10	190	380	ug/Kg
120-12-7	Anthracene	19	900		7.8	190	380	ug/Kg
86-74-8	Carbazole	10	600		8.4	190	380	ug/Kg
84-74-2	Di-n-butylphthalate	14	400		30	190	380	ug/Kg
206-44-0	Fluoranthene		800		7.7	190	380	ug/Kg
92-87-5	Benzidine		100		38	190	380	ug/Kg
129-00-0	Pyrene		600		9.2	190	380	ug/Kg
	•			f 870				

Injection Volume:

Report of Analysis

Date Collected: Client: MS Analytical 08/15/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SS-01AMSRX SDG No.: D3811 Lab Sample ID: D3813-01MSRX Matrix: SOIL Analytical Method: SW8270D % Moisture: 13 Sample Wt/Vol: 30.02 Units: g Final Vol: 1000 uL Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25 Level: Extraction Type: SOXH Decanted: N LOW

1.0

GPC Cleanup:

Ν

PH:

N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BF058476.D 1 08/28/12 08/28/12 PB65419

GPC Factor:

BF058476.D	1	08/28/12	08/	28/12		PB65419	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
85-68-7	Butylbenzylphthalate	1400		18	190	380	ug/Kg
91-94-1	3,3-Dichlorobenzidine	1700		25	190	380	ug/Kg
56-55-3	Benzo(a)anthracene	2200		18	190	380	ug/Kg
218-01-9	Chrysene	2000		17	190	380	ug/Kg
117-81-7	bis(2-Ethylhexyl)phthalate	1500		14	190	380	ug/Kg
117-84-0	Di-n-octyl phthalate	1500		4.4	190	380	ug/Kg
205-99-2	Benzo(b)fluoranthene	2400		13	190	380	ug/Kg
207-08-9	Benzo(k)fluoranthene	1700		18	190	380	ug/Kg
50-32-8	Benzo(a)pyrene	2200		8.3	190	380	ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene	1500		13	190	380	ug/Kg
53-70-3	Dibenz(a,h)anthracene	1200		11	190	380	ug/Kg
191-24-2	Benzo(g,h,i)perylene	1300		16	190	380	ug/Kg
95-94-3	1,2,4,5-Tetrachlorobenzene	1600		15	190	380	ug/Kg
123-91-1	1,4-Dioxane	1300		15	190	380	ug/Kg
58-90-2	2,3,4,6-Tetrachlorophenol	720		15	190	380	ug/Kg
SURROGATES							
367-12-4	2-Fluorophenol	124		28 - 127	7	83%	SPK: 150
13127-88-3	Phenol-d5	138		34 - 127	7	93%	SPK: 150
4165-60-0	Nitrobenzene-d5	99.5		31 - 132	2	99%	SPK: 100
321-60-8	2-Fluorobiphenyl	97.6		39 - 123	3	98%	SPK: 100
118-79-6	2,4,6-Tribromophenol	107		30 - 133	3	71%	SPK: 150
1718-51-0	Terphenyl-d14	94.2		37 - 115	5	94%	SPK: 100
INTERNAL STA	ANDARDS						
3855-82-1	1,4-Dichlorobenzene-d4	102788	5.03				
1146-65-2	Naphthalene-d8	352575	6.48				
15067-26-2	Acenaphthene-d10	185682	8.26				
1517-22-2	Phenanthrene-d10	313540	10.18				
1719-03-5	Chrysene-d12	251354	14.24				
1520-96-3	Perylene-d12	206620	16.34				

Client: MS Analytical Date Collected: 08/15/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SS-01AMSRX SDG No.: D3811

Lab Sample ID: D3813-01MSRX Matrix: SOIL

Analytical Method: SW8270D % Moisture: 13

uL

Sample Wt/Vol: Soil Aliquot Vol: Units: uL

g

Test:

SVOC-Chemtech Full -25

Extraction Type:

SOXH

Decanted: Ν Level:

Final Vol:

LOW

1000

Injection Volume:

30.02

GPC Factor: 1.0

GPC Cleanup:

Ν

PH: N/A

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

PB65419

BF058476.D

1

08/28/12

08/28/12

LOQ / CRQL

CAS Number

Parameter

Conc.

Qualifier

MDL

LOD

Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Client: MS Analytical Date Collected: 08/07/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-5(8-12)MSD SDG No.: D3811 Lab Sample ID: D3811-02MSD Matrix: SOIL Analytical Method: SW8270D % Moisture: 19 Sample Wt/Vol: 30.06 Units: g Final Vol: 1000 uL Soil Aliquot Vol: иL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID BF058275.D 1 08/15/12 08/16/12 PB65125

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
62-75-9	n-Nitrosodimethylamine	1700		21	205	410	ug/Kg
110-86-1	Pyridine	1500		81	205	410	ug/Kg
100-52-7	Benzaldehyde	210	J	21	205	410	ug/Kg
62-53-3	Aniline	880		35	205	410	ug/Kg
108-95-2	Phenol	1300		9.5	205	410	ug/Kg
111-44-4	bis(2-Chloroethyl)ether	1500		20	205	410	ug/Kg
95-57-8	2-Chlorophenol	1300		22	205	410	ug/Kg
95-50-1	1,2-Dichlorobenzene	1300		16	205	410	ug/Kg
541-73-1	1,3-Dichlorobenzene	1300		7.3	205	410	ug/Kg
106-46-7	1,4-Dichlorobenzene	1300		14	205	410	ug/Kg
100-51-6	Benzyl Alcohol	1300		15	205	410	ug/Kg
95-48-7	2-Methylphenol	1400		22	205	410	ug/Kg
108-60-1	2,2-oxybis(1-Chloropropane)	1500		17	205	410	ug/Kg
98-86-2	Acetophenone	1500		13	205	410	ug/Kg
65794-96-9	3+4-Methylphenols	1400		21	205	410	ug/Kg
621-64-7	N-Nitroso-di-n-propylamine	1500		21	205	410	ug/Kg
67-72-1	Hexachloroethane	1200		18	205	410	ug/Kg
98-95-3	Nitrobenzene	1400		16	205	410	ug/Kg
78-59-1	Isophorone	1400		14	205	410	ug/Kg
88-75-5	2-Nitrophenol	1300		20	205	410	ug/Kg
105-67-9	2,4-Dimethylphenol	1300		23	205	410	ug/Kg
111-91-1	bis(2-Chloroethoxy)methane	1500		24	205	410	ug/Kg
120-83-2	2,4-Dichlorophenol	1200		16	205	410	ug/Kg
120-82-1	1,2,4-Trichlorobenzene	1200		16	205	410	ug/Kg
65-85-0	Benzoic acid	980	J	81	495	990	ug/Kg
91-20-3	Naphthalene	1400		14	205	410	ug/Kg
106-47-8	4-Chloroaniline	670		29	205	410	ug/Kg
87-68-3	Hexachlorobutadiene	1200		15	205	410	ug/Kg
105-60-2	Caprolactam	1600		19	205	410	ug/Kg
59-50-7	4-Chloro-3-methylphenol	1200		18	205	410	ug/Kg
91-57-6	2-Methylnaphthalene	1300		10	205	410	ug/Kg

D

Report of Analysis

Client:MS AnalyticalDate Collected:08/07/12Project:12MS104 Kensington HeightsDate Received:08/15/12

Client Sample ID: SB-5(8-12)MSD SDG No.: D3811

Lab Sample ID: D3811-02MSD Matrix: SOIL

Analytical Method: SW8270D % Moisture: 19

Sample Wt/Vol: 30.06 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BF058275.D 1 08/15/12 08/16/12 PB65125

MDL **CAS Number** Parameter Conc. Qualifier LOD LOQ / CRQL Units 77-47-4 Hexachlorocyclopentadiene 1200 10 205 410 ug/Kg 88-06-2 2,4,6-Trichlorophenol 1200 13 205 410 ug/Kg 95-95-4 1300 29 205 410 2,4,5-Trichlorophenol ug/Kg 92-52-4 1,1-Biphenyl 1400 16 205 410 ug/Kg 9.4 91-58-7 2-Chloronaphthalene 1300 205 410 ug/Kg 205 410 88-74-4 2-Nitroaniline 1400 18 ug/Kg 11 205 410 131-11-3 Dimethylphthalate 1500 ug/Kg 208-96-8 1400 10 205 410 Acenaphthylene ug/Kg 606-20-2 2,6-Dinitrotoluene 1400 17 205 410 ug/Kg 26 205 410 99-09-2 3-Nitroaniline 1200 ug/Kg 83-32-9 Acenaphthene 1400 12 205 410 ug/Kg 42 205 2,4-Dinitrophenol 1400 410 51-28-5 ug/Kg 100-02-7 4-Nitrophenol 2500 76 205 410 ug/Kg Dibenzofuran 205 410 132-64-9 1300 16 ug/Kg 205 410 121-14-2 2,4-Dinitrotoluene 1300 12 ug/Kg 84-66-2 Diethylphthalate 1200 6.4 205 410 ug/Kg 22 7005-72-3 4-Chlorophenyl-phenylether 1300 205 410 ug/Kg 86-73-7 Fluorene 1400 16 205 410 ug/Kg 100-01-6 4-Nitroaniline 1200 53 205 410 ug/Kg 534-52-1 4,6-Dinitro-2-methylphenol 950 24 205 410 ug/Kg 86-30-6 N-Nitrosodiphenylamine 1300 9.9 205 410 ug/Kg 103-33-3 Azobenzene 1400 96 205 410 ug/Kg 101-55-3 4-Bromophenyl-phenylether 1200 8 205 410 ug/Kg 118-74-1 Hexachlorobenzene 1200 17 205 410 ug/Kg 1912-24-9 Atrazine 1300 22 205 410 ug/Kg 87-86-5 Pentachlorophenol 2500 28 205 410 ug/Kg 85-01-8 Phenanthrene 1300 11 205 410 ug/Kg 120-12-7 Anthracene 1400 8.4 205 410 ug/Kg 86-74-8 1300 9 205 410 Carbazole ug/Kg Di-n-butylphthalate 84-74-2 1200 32 205 410 ug/Kg Fluoranthene 1400 8.3 205 410 206-44-0 ug/Kg 205 92-87-5 Benzidine 1600 41 410 ug/Kg 129-00-0 Pyrene 1300 9.9 205 410 ug/Kg

Injection Volume:

Report of Analysis

Client: MS Analytical Date Collected: 08/07/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-5(8-12)MSD SDG No.: D3811 Lab Sample ID: D3811-02MSD Matrix: SOIL Analytical Method: SW8270D % Moisture: 19 Sample Wt/Vol: 30.06 Units: g Final Vol: 1000 uL Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25 Level: Extraction Type: SOXH Decanted: N LOW

1.0

GPC Cleanup:

Ν

PH:

N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BF058275.D 1 08/15/12 08/16/12 PB65125

GPC Factor:

BF058275.D	1	08/15/12	08/	/16/12		PB65125	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
85-68-7	Butylbenzylphthalate	1200		20	205	410	ug/Kg
91-94-1	3,3-Dichlorobenzidine	990		26	205	410	ug/Kg
56-55-3	Benzo(a)anthracene	1400		20	205	410	ug/Kg
218-01-9	Chrysene	1300		19	205	410	ug/Kg
117-81-7	bis(2-Ethylhexyl)phthalate	1300		15	205	410	ug/Kg
117-84-0	Di-n-octyl phthalate	1400		4.7	205	410	ug/Kg
205-99-2	Benzo(b)fluoranthene	1400		13	205	410	ug/Kg
207-08-9	Benzo(k)fluoranthene	1400		19	205	410	ug/Kg
50-32-8	Benzo(a)pyrene	1400		8.9	205	410	ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene	1000		14	205	410	ug/Kg
53-70-3	Dibenz(a,h)anthracene	1200		12	205	410	ug/Kg
191-24-2	Benzo(g,h,i)perylene	1000		17	205	410	ug/Kg
95-94-3	1,2,4,5-Tetrachlorobenzene	1300		16	205	410	ug/Kg
123-91-1	1,4-Dioxane	1700		16	205	410	ug/Kg
58-90-2	2,3,4,6-Tetrachlorophenol	1200		16	205	410	ug/Kg
SURROGATES	S						
367-12-4	2-Fluorophenol	111		28 - 127	7	74%	SPK: 150
13127-88-3	Phenol-d5	115		34 - 127	7	77%	SPK: 150
4165-60-0	Nitrobenzene-d5	78.6		31 - 132	2	79%	SPK: 100
321-60-8	2-Fluorobiphenyl	73.5		39 - 123	3	74%	SPK: 100
118-79-6	2,4,6-Tribromophenol	99.5		30 - 133	3	66%	SPK: 150
1718-51-0	Terphenyl-d14	66.8		37 - 115	5	67%	SPK: 100
INTERNAL ST	TANDARDS						
3855-82-1	1,4-Dichlorobenzene-d4	108550	5.2				
1146-65-2	Naphthalene-d8	377340	6.61				
15067-26-2	Acenaphthene-d10	175117	8.42				
1517-22-2	Phenanthrene-d10	290273	10.38				
1719-03-5	Chrysene-d12	244395	14.46	I			
1520-96-3	Perylene-d12	206353	16.57				

08/07/12

uL

Report of Analysis

Client: MS Analytical Date Collected:

g

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SDG No.: SB-5(8-12)MSD D3811

Lab Sample ID: Matrix: SOIL D3811-02MSD % Moisture: 19 Analytical Method: SW8270D

Sample Wt/Vol: 30.06 Units: Final Vol: 1000

SVOC-Chemtech Full -25 Soil Aliquot Vol: uL Test:

Extraction Type: SOXH Level: LOW Decanted: Ν

Injection Volume: GPC Factor: 1.0 GPC Cleanup: Ν PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF058275.D 1 08/15/12 08/16/12 PB65125

CAS Number Parameter Conc. Qualifier **MDL** LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Client:MS AnalyticalDate Collected:08/15/12Project:12MS104 Kensington HeightsDate Received:08/15/12

Client Sample ID:SS-01AMSDSDG No.:D3811Lab Sample ID:D3813-01MSDMatrix:SOILAnalytical Method:SW8270D% Moisture:13

Sample Wt/Vol: 30.09 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF058266.D 1 08/15/12 08/16/12 PB65121

TARGETS	BF058266.D	I	08/15/12	08/	/16/12		PB65121	
62-75-9 n-Nitrosodimethylamine 2000 20 190 380 ug/Kg 110-86-1 Pyridine 1900 76 190 380 ug/Kg 110-52-7 Benzaldehyde 290 J 20 190 380 ug/Kg 62-53-3 Aniline 1200 33 190 380 ug/Kg 108-95-2 Phenol 2100 8.8 190 380 ug/Kg 95-57-8 2-Chlorophenol 1500 20 190 380 ug/Kg 95-57-8 2-Chlorobenorene 1500 15 190 380 ug/Kg 95-57-8 1.2-Dichlorobenzene 1500 15 190 380 ug/Kg 95-50-1 1.2-Dichlorobenzene 1500 13 190 380 ug/Kg 541-73-1 1,3-Dichlorobenzene 1500 13 190 380 ug/Kg 100-51-6 Benzyl Alcohol 1600 16 190 380 ug/Kg <	CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
110-86-1 Pyridine 1900 76 190 380 ug/Kg 100-52-7 Benzaldehyde 290 J 20 190 380 ug/Kg 62-53-3 Aniline 1200 33 190 380 ug/Kg 108-95-2 Phenol 2100 8 190 380 ug/Kg 111-44-4 bis(2-Chloroethyl)ether 1900 18 190 380 ug/Kg 95-57-8 2-Chlorophenol 1500 20 190 380 ug/Kg 95-50-1 1,2-Dichlorobenzene 1500 6.8 190 380 ug/Kg 164-47-1 1,3-Dichlorobenzene 1500 6.8 190 380 ug/Kg 106-46-7 1,4-Dichlorobenzene 1500 13 190 380 ug/Kg 105-46-7 1,4-Dichlorobenzene 1500 14 190 380 ug/Kg 105-46-7 1,4-Dichlorobenzene 1600 14 190 380 ug/Kg	TARGETS							
100-52-7 Benzaldehyde 290 J 20 190 380 ug/Kg 62-53-3 Aniline 1200 33 190 380 ug/Kg 108-95-2 Phenol 2100 8.8 190 380 ug/Kg 111-44-4 bis(2-Chloroethyl)ether 1900 18 190 380 ug/Kg 95-57-8 2-Chlorophenol 1500 20 190 380 ug/Kg 95-50-1 1,2-Dichlorobenzene 1500 15 190 380 ug/Kg 541-73-1 1,3-Dichlorobenzene 1500 6.8 190 380 ug/Kg 106-46-7 1,4-Dichlorobenzene 1500 13 190 380 ug/Kg 100-51-6 Benzyl Alcohol 1600 14 190 380 ug/Kg 95-48-7 2-Methylphenol 1600 16 190 380 ug/Kg 108-60-1 2,2-oxybis(1-Chloropropane) 1600 12 190 380 ug/Kg	62-75-9	n-Nitrosodimethylamine	2000		20	190		ug/Kg
62-53-3 Aniline 1200 33 190 380 ug/Kg 108-95-2 Phenol 2100 8.8 190 380 ug/Kg 111-44-4 bis(2-Chloroethyl)ether 1900 18 190 380 ug/Kg 95-57-8 2-Chlorophenol 1500 20 190 380 ug/Kg 95-50-1 1,2-Dichlorobenzene 1500 15 190 380 ug/Kg 541-73-1 1,3-Dichlorobenzene 1500 13 190 380 ug/Kg 106-66-7 1,4-Dichlorobenzene 1500 13 190 380 ug/Kg 100-51-6 Benzyl Alcohol 1600 14 190 380 ug/Kg 95-48-7 2-Methylphenol 1600 21 190 380 ug/Kg 108-60-1 2,2-oxybis(1-Chloropropane) 1600 16 190 380 ug/Kg 98-86-2 Acetophenone 1800 12 190 380 ug/Kg		Pyridine						ug/Kg
108-95-2 Phenol 2100 8.8 190 380 ug/Kg 111-44-4 bis(2-Chloroethyl)ether 1900 18 190 380 ug/Kg 95-57-8 2-Chlorophenol 1500 20 190 380 ug/Kg 95-50-1 1,2-Dichlorobenzene 1500 15 190 380 ug/Kg 95-41-73-1 1,3-Dichlorobenzene 1500 6.8 190 380 ug/Kg 106-46-7 1,4-Dichlorobenzene 1500 13 190 380 ug/Kg 100-51-6 Benzyl Alcohol 1600 14 190 380 ug/Kg 95-48-7 2-Methylphenol 1600 21 190 380 ug/Kg 98-86-2 Acetophenone 1800 12 190 380 ug/Kg 65794-96-9 3+4-Methylphenols 3100 E 20 190 380 ug/Kg 67-72-1 Hexachloroethane 1400 17 190 380 ug	100-52-7	Benzaldehyde		J		190		ug/Kg
111-44-4 bis(2-Chloroethyl)ether 1900 18 190 380 ug/Kg 95-57-8 2-Chlorophenol 1500 20 190 380 ug/Kg 95-50-1 1.2-Dichlorobenzene 1500 15 190 380 ug/Kg 541-73-1 1,3-Dichlorobenzene 1500 6.8 190 380 ug/Kg 106-46-7 1,4-Dichlorobenzene 1500 13 190 380 ug/Kg 106-46-7 1,4-Dichlorobenzene 1500 14 190 380 ug/Kg 106-46-7 1,4-Dichlorobenzene 1500 14 190 380 ug/Kg 95-48-7 2-Methylphenol 1600 16 190 380 ug/Kg 98-86-2 Acetophenone 1800 12 190 380 ug/Kg 65794-96-9 3+4-Methylphenols 3100 E 20 190 380 ug/Kg 67-72-1 Hexachloroethane 1400 17 190 380	62-53-3	Aniline	1200		33	190		ug/Kg
95-57-8 2-Chlorophenol 1500 20 190 380 ug/kg 95-50-1 1,2-Dichlorobenzene 1500 15 190 380 ug/kg 541-73-1 1,3-Dichlorobenzene 1500 6.8 190 380 ug/kg 106-46-7 1,4-Dichlorobenzene 1500 13 190 380 ug/kg 100-51-6 Benzyl Alcohol 1600 14 190 380 ug/kg 95-48-7 2-Methylphenol 1600 21 190 380 ug/kg 108-60-1 2,2-oxybis(1-Chloropropane) 1600 16 190 380 ug/kg 98-86-2 Acetophenone 1800 12 190 380 ug/kg 621-64-7 N-Nitroso-di-n-propylamine 1700 19 190 380 ug/kg 67-72-1 Hexachloroethane 1400 17 190 380 ug/kg 88-75-3 Nitrobenzene 1700 14 190 380 ug/kg <td>108-95-2</td> <td>Phenol</td> <td>2100</td> <td></td> <td>8.8</td> <td>190</td> <td>380</td> <td>ug/Kg</td>	108-95-2	Phenol	2100		8.8	190	380	ug/Kg
95-50-1 1,2-Dichlorobenzene 1500 15 190 380 ug/Kg 541-73-1 1,3-Dichlorobenzene 1500 6.8 190 380 ug/Kg 106-46-7 1,4-Dichlorobenzene 1500 13 190 380 ug/Kg 100-51-6 Benzyl Alcohol 1600 14 190 380 ug/Kg 95-48-7 2-Methylphenol 1600 21 190 380 ug/Kg 98-86-2 2-Methylphenol 1600 16 190 380 ug/Kg 98-86-2 Acetophenone 1800 12 190 380 ug/Kg 65794-96-9 3+4-Methylphenols 3100 E 20 190 380 ug/Kg 67-72-1 Hexachloroethane 1700 19 190 380 ug/Kg 98-95-3 Nitrobenzene 1700 14 190 380 ug/Kg 78-59-1 Isophorone 1700 13 190 380 ug/Kg	111-44-4	bis(2-Chloroethyl)ether	1900		18	190	380	ug/Kg
541-73-1 1,3-Dichlorobenzene 1500 6.8 190 380 ug/Kg 106-46-7 1,4-Dichlorobenzene 1500 13 190 380 ug/Kg 100-51-6 Benzyl Alcohol 1600 14 190 380 ug/Kg 95-48-7 2-Methylphenol 1600 21 190 380 ug/Kg 108-60-1 2,2-oxybis(1-Chloropropane) 1600 16 190 380 ug/Kg 98-86-2 Acetophenone 1800 12 190 380 ug/Kg 65794-96-9 3+4-Methylphenols 3100 E 20 190 380 ug/Kg 621-64-7 N-Nitroso-di-n-propylamine 1700 19 190 380 ug/Kg 67-72-1 Hexachloroethane 1400 17 190 380 ug/Kg 98-95-3 Nitrobenzene 1700 14 190 380 ug/Kg 78-59-1 Isophorone 1700 13 190 380	95-57-8	2-Chlorophenol	1500		20	190	380	ug/Kg
106-46-7 1,4-Dichlorobenzene 1500 13 190 380 ug/Kg 100-51-6 Benzyl Alcohol 1600 14 190 380 ug/Kg 95-48-7 2-Methylphenol 1600 21 190 380 ug/Kg 108-60-1 2,2-oxybis(1-Chloropropane) 1600 16 190 380 ug/Kg 98-86-2 Acetophenone 1800 12 190 380 ug/Kg 65794-96-9 3+4-Methylphenols 3100 E 20 190 380 ug/Kg 621-64-7 N-Nitroso-di-n-propylamine 1700 19 190 380 ug/Kg 67-72-1 Hexachloroethane 1400 17 190 380 ug/Kg 98-95-3 Nitrobenzene 1700 14 190 380 ug/Kg 88-75-5 2-Nitrophenol 1400 18 190 380 ug/Kg 11-91-1 bis(2-Chloroethoxy)methane 1700 22 190 380 </td <td>95-50-1</td> <td>1,2-Dichlorobenzene</td> <td>1500</td> <td></td> <td>15</td> <td>190</td> <td>380</td> <td>ug/Kg</td>	95-50-1	1,2-Dichlorobenzene	1500		15	190	380	ug/Kg
100-51-6 Benzyl Alcohol 1600 14 190 380 ug/Kg 95-48-7 2-Methylphenol 1600 21 190 380 ug/Kg 108-60-1 2,2-oxybis(1-Chloropropane) 1600 16 190 380 ug/Kg 98-86-2 Acetophenone 1800 12 190 380 ug/Kg 65794-96-9 3+4-Methylphenols 3100 E 20 190 380 ug/Kg 621-64-7 N-Nitroso-di-n-propylamine 1700 19 190 380 ug/Kg 67-72-1 Hexachloroethane 1400 17 190 380 ug/Kg 98-95-3 Nitrobenzene 1700 14 190 380 ug/Kg 88-75-1 Isophorone 1700 13 190 380 ug/Kg 88-75-5 2-Nitrophenol 1400 18 190 380 ug/Kg 111-91-1 bis(2-Chloroethoxy)methane 1700 22 190 380	541-73-1	1,3-Dichlorobenzene	1500		6.8	190	380	ug/Kg
95-48-7 2-Methylphenol 1600 21 190 380 ug/Kg 108-60-1 2,2-oxybis(1-Chloropropane) 1600 16 190 380 ug/Kg 98-86-2 Acetophenone 1800 12 190 380 ug/Kg 65794-96-9 3+4-Methylphenols 3100 E 20 190 380 ug/Kg 621-64-7 N-Nitroso-di-n-propylamine 1700 19 190 380 ug/Kg 67-72-1 Hexachloroethane 1400 17 190 380 ug/Kg 98-95-3 Nitrobenzene 1700 14 190 380 ug/Kg 78-59-1 Isophorone 1700 13 190 380 ug/Kg 88-75-5 2-Nitrophenol 1400 18 190 380 ug/Kg 105-67-9 2,4-Dimethylphenol 1600 22 190 380 ug/Kg 111-91-1 bis(2-Chloroethoxy)methane 1700 15 190 380	106-46-7	1,4-Dichlorobenzene	1500		13	190	380	ug/Kg
108-60-1 2,2-oxybis(1-Chloropropane) 1600 16 190 380 ug/Kg 98-86-2 Acetophenone 1800 12 190 380 ug/Kg 65794-96-9 3+4-Methylphenols 3100 E 20 190 380 ug/Kg 621-64-7 N-Nitroso-di-n-propylamine 1700 19 190 380 ug/Kg 67-72-1 Hexachloroethane 1400 17 190 380 ug/Kg 98-95-3 Nitrobenzene 1700 14 190 380 ug/Kg 78-59-1 Isophorone 1700 13 190 380 ug/Kg 88-75-5 2-Nitrophenol 1400 18 190 380 ug/Kg 105-67-9 2,4-Dimethylphenol 1600 22 190 380 ug/Kg 111-91-1 bis(2-Chloroethoxy)methane 1700 22 190 380 ug/Kg 120-83-2 2,4-Dichlorophenol 1400 15 190 380 </td <td>100-51-6</td> <td>Benzyl Alcohol</td> <td>1600</td> <td></td> <td>14</td> <td>190</td> <td>380</td> <td>ug/Kg</td>	100-51-6	Benzyl Alcohol	1600		14	190	380	ug/Kg
98-86-2 Acetophenone 1800 12 190 380 ug/Kg 65794-96-9 3+4-Methylphenols 3100 E 20 190 380 ug/Kg 621-64-7 N-Nitroso-di-n-propylamine 1700 19 190 380 ug/Kg 67-72-1 Hexachloroethane 1400 17 190 380 ug/Kg 98-95-3 Nitrobenzene 1700 14 190 380 ug/Kg 78-59-1 Isophorone 1700 13 190 380 ug/Kg 88-75-5 2-Nitrophenol 1400 18 190 380 ug/Kg 105-67-9 2,4-Dimethylphenol 1600 22 190 380 ug/Kg 111-91-1 bis(2-Chloroethoxy)methane 1700 22 190 380 ug/Kg 120-83-2 2,4-Dichlorophenol 1400 15 190 380 ug/Kg 65-85-0 Benzoic acid 440 J 76 460 920	95-48-7	2-Methylphenol	1600		21	190	380	ug/Kg
65794-96-9 3+4-Methylphenols 3100 E 20 190 380 ug/Kg 621-64-7 N-Nitroso-di-n-propylamine 1700 19 190 380 ug/Kg 67-72-1 Hexachloroethane 1400 17 190 380 ug/Kg 98-95-3 Nitrobenzene 1700 14 190 380 ug/Kg 78-59-1 Isophorone 1700 13 190 380 ug/Kg 88-75-5 2-Nitrophenol 1400 18 190 380 ug/Kg 105-67-9 2,4-Dimethylphenol 1600 22 190 380 ug/Kg 111-91-1 bis(2-Chloroethoxy)methane 1700 22 190 380 ug/Kg 120-83-2 2,4-Dichlorophenol 1400 15 190 380 ug/Kg 120-82-1 1,2,4-Trichlorobenzene 1400 15 190 380 ug/Kg 65-85-0 Benzoic acid 440 J 76 460	108-60-1	2,2-oxybis(1-Chloropropane)	1600		16	190	380	ug/Kg
621-64-7 N-Nitroso-di-n-propylamine 1700 19 190 380 ug/Kg 67-72-1 Hexachloroethane 1400 17 190 380 ug/Kg 98-95-3 Nitrobenzene 1700 14 190 380 ug/Kg 78-59-1 Isophorone 1700 13 190 380 ug/Kg 88-75-5 2-Nitrophenol 1400 18 190 380 ug/Kg 105-67-9 2,4-Dimethylphenol 1600 22 190 380 ug/Kg 111-91-1 bis(2-Chloroethoxy)methane 1700 22 190 380 ug/Kg 120-83-2 2,4-Dichlorophenol 1400 15 190 380 ug/Kg 120-82-1 1,2,4-Trichlorobenzene 1400 15 190 380 ug/Kg 65-85-0 Benzoic acid 440 J 76 460 920 ug/Kg 91-20-3 Naphthalene 1900 13 190 380 <td< td=""><td>98-86-2</td><td>Acetophenone</td><td>1800</td><td></td><td>12</td><td>190</td><td>380</td><td>ug/Kg</td></td<>	98-86-2	Acetophenone	1800		12	190	380	ug/Kg
67-72-1 Hexachloroethane 1400 17 190 380 ug/Kg 98-95-3 Nitrobenzene 1700 14 190 380 ug/Kg 78-59-1 Isophorone 1700 13 190 380 ug/Kg 88-75-5 2-Nitrophenol 1400 18 190 380 ug/Kg 105-67-9 2,4-Dimethylphenol 1600 22 190 380 ug/Kg 111-91-1 bis(2-Chloroethoxy)methane 1700 22 190 380 ug/Kg 120-83-2 2,4-Dichlorophenol 1400 15 190 380 ug/Kg 120-82-1 1,2,4-Trichlorobenzene 1400 15 190 380 ug/Kg 65-85-0 Benzoic acid 440 J 76 460 920 ug/Kg 91-20-3 Naphthalene 1900 13 190 380 ug/Kg 87-68-3 Hexachlorobutadiene 1400 14 190 380 ug/Kg </td <td>65794-96-9</td> <td>3+4-Methylphenols</td> <td>3100</td> <td>E</td> <td>20</td> <td>190</td> <td>380</td> <td>ug/Kg</td>	65794-96-9	3+4-Methylphenols	3100	E	20	190	380	ug/Kg
98-95-3 Nitrobenzene 1700 14 190 380 ug/Kg 78-59-1 Isophorone 1700 13 190 380 ug/Kg 88-75-5 2-Nitrophenol 1400 18 190 380 ug/Kg 105-67-9 2,4-Dimethylphenol 1600 22 190 380 ug/Kg 111-91-1 bis(2-Chloroethoxy)methane 1700 22 190 380 ug/Kg 120-83-2 2,4-Dichlorophenol 1400 15 190 380 ug/Kg 120-82-1 1,2,4-Trichlorobenzene 1400 15 190 380 ug/Kg 65-85-0 Benzoic acid 440 J 76 460 920 ug/Kg 91-20-3 Naphthalene 1900 13 190 380 ug/Kg 87-68-3 Hexachlorobutadiene 1400 14 190 380 ug/Kg 105-60-2 Caprolactam 2100 18 190 380 ug/Kg	621-64-7	N-Nitroso-di-n-propylamine	1700		19	190	380	ug/Kg
78-59-1 Isophorone 1700 13 190 380 ug/Kg 88-75-5 2-Nitrophenol 1400 18 190 380 ug/Kg 105-67-9 2,4-Dimethylphenol 1600 22 190 380 ug/Kg 111-91-1 bis(2-Chloroethoxy)methane 1700 22 190 380 ug/Kg 120-83-2 2,4-Dichlorophenol 1400 15 190 380 ug/Kg 120-82-1 1,2,4-Trichlorobenzene 1400 15 190 380 ug/Kg 65-85-0 Benzoic acid 440 J 76 460 920 ug/Kg 91-20-3 Naphthalene 1900 13 190 380 ug/Kg 106-47-8 4-Chloroaniline 690 27 190 380 ug/Kg 87-68-3 Hexachlorobutadiene 1400 14 190 380 ug/Kg 105-60-2 Caprolactam 2100 18 190 380 ug/Kg <td>67-72-1</td> <td>Hexachloroethane</td> <td>1400</td> <td></td> <td>17</td> <td>190</td> <td>380</td> <td>ug/Kg</td>	67-72-1	Hexachloroethane	1400		17	190	380	ug/Kg
88-75-5 2-Nitrophenol 1400 18 190 380 ug/Kg 105-67-9 2,4-Dimethylphenol 1600 22 190 380 ug/Kg 111-91-1 bis(2-Chloroethoxy)methane 1700 22 190 380 ug/Kg 120-83-2 2,4-Dichlorophenol 1400 15 190 380 ug/Kg 120-82-1 1,2,4-Trichlorobenzene 1400 15 190 380 ug/Kg 65-85-0 Benzoic acid 440 J 76 460 920 ug/Kg 91-20-3 Naphthalene 1900 13 190 380 ug/Kg 106-47-8 4-Chloroaniline 690 27 190 380 ug/Kg 87-68-3 Hexachlorobutadiene 1400 14 190 380 ug/Kg 105-60-2 Caprolactam 2100 18 190 380 ug/Kg 59-50-7 4-Chloro-3-methylphenol 1500 17 190 380 ug/Kg	98-95-3	Nitrobenzene	1700		14	190	380	ug/Kg
105-67-9 2,4-Dimethylphenol 1600 22 190 380 ug/Kg 111-91-1 bis(2-Chloroethoxy)methane 1700 22 190 380 ug/Kg 120-83-2 2,4-Dichlorophenol 1400 15 190 380 ug/Kg 120-82-1 1,2,4-Trichlorobenzene 1400 15 190 380 ug/Kg 65-85-0 Benzoic acid 440 J 76 460 920 ug/Kg 91-20-3 Naphthalene 1900 13 190 380 ug/Kg 106-47-8 4-Chloroaniline 690 27 190 380 ug/Kg 87-68-3 Hexachlorobutadiene 1400 14 190 380 ug/Kg 105-60-2 Caprolactam 2100 18 190 380 ug/Kg 59-50-7 4-Chloro-3-methylphenol 1500 17 190 380 ug/Kg	78-59-1	Isophorone	1700		13	190	380	ug/Kg
111-91-1 bis(2-Chloroethoxy)methane 1700 22 190 380 ug/Kg 120-83-2 2,4-Dichlorophenol 1400 15 190 380 ug/Kg 120-82-1 1,2,4-Trichlorobenzene 1400 15 190 380 ug/Kg 65-85-0 Benzoic acid 440 J 76 460 920 ug/Kg 91-20-3 Naphthalene 1900 13 190 380 ug/Kg 106-47-8 4-Chloroaniline 690 27 190 380 ug/Kg 87-68-3 Hexachlorobutadiene 1400 14 190 380 ug/Kg 105-60-2 Caprolactam 2100 18 190 380 ug/Kg 59-50-7 4-Chloro-3-methylphenol 1500 17 190 380 ug/Kg	88-75-5	2-Nitrophenol	1400		18	190	380	ug/Kg
120-83-2 2,4-Dichlorophenol 1400 15 190 380 ug/Kg 120-82-1 1,2,4-Trichlorobenzene 1400 15 190 380 ug/Kg 65-85-0 Benzoic acid 440 J 76 460 920 ug/Kg 91-20-3 Naphthalene 1900 13 190 380 ug/Kg 106-47-8 4-Chloroaniline 690 27 190 380 ug/Kg 87-68-3 Hexachlorobutadiene 1400 14 190 380 ug/Kg 105-60-2 Caprolactam 2100 18 190 380 ug/Kg 59-50-7 4-Chloro-3-methylphenol 1500 17 190 380 ug/Kg	105-67-9	2,4-Dimethylphenol	1600		22	190	380	ug/Kg
120-82-1 1,2,4-Trichlorobenzene 1400 15 190 380 ug/Kg 65-85-0 Benzoic acid 440 J 76 460 920 ug/Kg 91-20-3 Naphthalene 1900 13 190 380 ug/Kg 106-47-8 4-Chloroaniline 690 27 190 380 ug/Kg 87-68-3 Hexachlorobutadiene 1400 14 190 380 ug/Kg 105-60-2 Caprolactam 2100 18 190 380 ug/Kg 59-50-7 4-Chloro-3-methylphenol 1500 17 190 380 ug/Kg	111-91-1	bis(2-Chloroethoxy)methane	1700		22	190	380	ug/Kg
65-85-0 Benzoic acid 440 J 76 460 920 ug/Kg 91-20-3 Naphthalene 1900 13 190 380 ug/Kg 106-47-8 4-Chloroaniline 690 27 190 380 ug/Kg 87-68-3 Hexachlorobutadiene 1400 14 190 380 ug/Kg 105-60-2 Caprolactam 2100 18 190 380 ug/Kg 59-50-7 4-Chloro-3-methylphenol 1500 17 190 380 ug/Kg	120-83-2	2,4-Dichlorophenol	1400		15	190	380	ug/Kg
91-20-3 Naphthalene 1900 13 190 380 ug/Kg 106-47-8 4-Chloroaniline 690 27 190 380 ug/Kg 87-68-3 Hexachlorobutadiene 1400 14 190 380 ug/Kg 105-60-2 Caprolactam 2100 18 190 380 ug/Kg 59-50-7 4-Chloro-3-methylphenol 1500 17 190 380 ug/Kg	120-82-1	1,2,4-Trichlorobenzene	1400		15	190	380	ug/Kg
106-47-8 4-Chloroaniline 690 27 190 380 ug/Kg 87-68-3 Hexachlorobutadiene 1400 14 190 380 ug/Kg 105-60-2 Caprolactam 2100 18 190 380 ug/Kg 59-50-7 4-Chloro-3-methylphenol 1500 17 190 380 ug/Kg	65-85-0	Benzoic acid	440	J	76	460	920	ug/Kg
87-68-3 Hexachlorobutadiene 1400 14 190 380 ug/Kg 105-60-2 Caprolactam 2100 18 190 380 ug/Kg 59-50-7 4-Chloro-3-methylphenol 1500 17 190 380 ug/Kg	91-20-3	Naphthalene	1900		13	190	380	ug/Kg
105-60-2 Caprolactam 2100 18 190 380 ug/Kg 59-50-7 4-Chloro-3-methylphenol 1500 17 190 380 ug/Kg	106-47-8	4-Chloroaniline	690		27	190	380	ug/Kg
59-50-7 4-Chloro-3-methylphenol 1500 17 190 380 ug/Kg	87-68-3	Hexachlorobutadiene	1400		14	190	380	ug/Kg
	105-60-2	Caprolactam	2100		18	190	380	ug/Kg
91-57-6 2-Methylnaphthalene 1800 9.6 190 380 ug/Kg	59-50-7	4-Chloro-3-methylphenol	1500		17	190	380	ug/Kg
	91-57-6	2-Methylnaphthalene	1800		9.6	190	380	ug/Kg

Client:MS AnalyticalDate Collected:08/15/12Project:12MS104 Kensington HeightsDate Received:08/15/12

Client Sample ID: SS-01AMSD SDG No.: D3811
Lab Sample ID: D3813-01MSD Matrix: SOIL
Analytical Method: SW8270D % Moisture: 13

Sample Wt/Vol: 30.09 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Decanted: N Level: LOW

 $\label{eq:continuous} Injection\ Volume: \qquad \qquad 1 \qquad \qquad GPC\ Factor: \qquad 1.0 \qquad \qquad GPC\ Cleanup: \qquad N \qquad \qquad PH: \quad N/A$

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF058266.D 1 08/15/12 08/16/12 PB65121

BF058266.D	1	08/15/12	08.	/16/12		PB65121	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
77-47-4	Hexachlorocyclopentadiene	250	J	9.3	190	380	ug/Kg
88-06-2	2,4,6-Trichlorophenol	980		12	190	380	ug/Kg
95-95-4	2,4,5-Trichlorophenol	1300		27	190	380	ug/Kg
92-52-4	1,1-Biphenyl	1600		14	190	380	ug/Kg
91-58-7	2-Chloronaphthalene	1500		8.7	190	380	ug/Kg
88-74-4	2-Nitroaniline	1600		17	190	380	ug/Kg
131-11-3	Dimethylphthalate	1700		10	190	380	ug/Kg
208-96-8	Acenaphthylene	1600		9.6	190	380	ug/Kg
606-20-2	2,6-Dinitrotoluene	1600		16	190	380	ug/Kg
99-09-2	3-Nitroaniline	1400		25	190	380	ug/Kg
83-32-9	Acenaphthene	1700		11	190	380	ug/Kg
51-28-5	2,4-Dinitrophenol	680		39	190	380	ug/Kg
100-02-7	4-Nitrophenol	1800		71	190	380	ug/Kg
132-64-9	Dibenzofuran	1600		15	190	380	ug/Kg
121-14-2	2,4-Dinitrotoluene	1600		12	190	380	ug/Kg
84-66-2	Diethylphthalate	1400		6	190	380	ug/Kg
7005-72-3	4-Chlorophenyl-phenylether	1500		21	190	380	ug/Kg
86-73-7	Fluorene	1700		14	190	380	ug/Kg
100-01-6	4-Nitroaniline	1600		50	190	380	ug/Kg
534-52-1	4,6-Dinitro-2-methylphenol	570		22	190	380	ug/Kg
86-30-6	N-Nitrosodiphenylamine	1600		9.2	190	380	ug/Kg
103-33-3	Azobenzene	1600		8.9	190	380	ug/Kg
101-55-3	4-Bromophenyl-phenylether	1500		7.4	190	380	ug/Kg
118-74-1	Hexachlorobenzene	1300		16	190	380	ug/Kg
1912-24-9	Atrazine	1400		20	190	380	ug/Kg
87-86-5	Pentachlorophenol	1600		26	190	380	ug/Kg
85-01-8	Phenanthrene	2700		10	190	380	ug/Kg
120-12-7	Anthracene	1900		7.8	190	380	ug/Kg
86-74-8	Carbazole	1600		8.4	190	380	ug/Kg
84-74-2	Di-n-butylphthalate	1400		30	190	380	ug/Kg
206-44-0	Fluoranthene	2600		7.7	190	380	ug/Kg
92-87-5	Benzidine	2100		38	190	380	ug/Kg
129-00-0	Pyrene	2800		9.2	190	380	ug/Kg
		465 o	f 870				

Injection Volume:

Report of Analysis

Client: MS Analytical Date Collected: 08/15/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SDG No.: D3811 SS-01AMSD Lab Sample ID: D3813-01MSD Matrix: SOIL Analytical Method: SW8270D % Moisture: 13 Sample Wt/Vol: 30.09 Units: g Final Vol: 1000 uL Soil Aliquot Vol: иL Test: SVOC-Chemtech Full -25 Level: Extraction Type: SOXH Decanted: N LOW

Prep Batch ID File ID/Qc Batch: Dilution: Prep Date Date Analyzed

1.0

GPC Cleanup:

Ν

PH:

N/A

GPC Factor:

BF058266.D	1	08/15/12	08	08/16/12 PB65121			
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
85-68-7	Butylbenzylphthalate	1600		18	190	380	ug/Kg
91-94-1	3,3-Dichlorobenzidine	1600		25	190	380	ug/Kg
56-55-3	Benzo(a)anthracene	2300		18	190	380	ug/Kg
218-01-9	Chrysene	2300		17	190	380	ug/Kg
117-81-7	bis(2-Ethylhexyl)phthalate	1700		14	190	380	ug/Kg
117-84-0	Di-n-octyl phthalate	1700		4.4	190	380	ug/Kg
205-99-2	Benzo(b)fluoranthene	2300		12	190	380	ug/Kg
207-08-9	Benzo(k)fluoranthene	1900		18	190	380	ug/Kg
50-32-8	Benzo(a)pyrene	2200		8.3	190	380	ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene	1500		13	190	380	ug/Kg
53-70-3	Dibenz(a,h)anthracene	1300		11	190	380	ug/Kg
191-24-2	Benzo(g,h,i)perylene	1500		15	190	380	ug/Kg
95-94-3	1,2,4,5-Tetrachlorobenzene	1500		15	190	380	ug/Kg
123-91-1	1,4-Dioxane	1900		15	190	380	ug/Kg
58-90-2	2,3,4,6-Tetrachlorophenol	830		15	190	380	ug/Kg
SURROGATES							
367-12-4	2-Fluorophenol	143		28 - 127	7	96%	SPK: 150
13127-88-3	Phenol-d5	157		34 - 127	7	105%	SPK: 150
4165-60-0	Nitrobenzene-d5	99.7		31 - 132	2	100%	SPK: 100
321-60-8	2-Fluorobiphenyl	94		39 - 123	3	94%	SPK: 100
118-79-6	2,4,6-Tribromophenol	87		30 - 133	3	58%	SPK: 150
1718-51-0	Terphenyl-d14	94.7		37 - 115	5	95%	SPK: 100
INTERNAL STA	ANDARDS						
3855-82-1	1,4-Dichlorobenzene-d4	12079	1 5.2				
1146-65-2	Naphthalene-d8	401074	4 6.61				
15067-26-2	Acenaphthene-d10	19677	1 8.42				
1517-22-2	Phenanthrene-d10	324920	0 10.38				
1719-03-5	Chrysene-d12	243989	9 14.47				
1520-96-3	Perylene-d12	208775	5 16.59				

Client: MS Analytical Date Collected: 08/15/12

Project: 12MS104 Kensington Heights

08/15/12

Client Sample ID: SS-01AMSD SDG No.: D3811

Lab Sample ID: D3813-01MSD Matrix: SOIL

Date Received:

Analytical Method: SW8270D % Moisture: 13

uL

Sample Wt/Vol:

g uL

Test:

SVOC-Chemtech Full -25

PH:

Soil Aliquot Vol: Extraction Type:

SOXH

Units:

Decanted: Ν Level:

Final Vol:

LOW

1000

N/A

Injection Volume:

30.09

GPC Factor:

1.0

Ν

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID PB65121

BF058266.D

1

08/15/12

08/16/12

GPC Cleanup:

CAS Number

Parameter

Conc.

Qualifier

MDL

LOD

LOQ / CRQL

Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Sample Wt/Vol:

30.02

Units:

Report of Analysis

Client: MS Analytical Date Collected: 08/15/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SS-01AMSDRX SDG No.: D3811 Lab Sample ID: D3813-01MSDRX Matrix: SOIL

Analytical Method: SW8270D % Moisture: 13

g Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Final Vol:

1000

uL

Level: Extraction Type: SOXH Decanted: N LOW

GPC Cleanup: GPC Factor: Ν Injection Volume: 1.0 PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF058477.D 08/28/12 08/28/12 PB65419

BF058477.D	1	08/28/12	08/	/28/12		PB65419		
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units	
TARGETS								
62-75-9	n-Nitrosodimethylamine	1600		20	190	380	ug/Kg	
110-86-1	Pyridine	1400		76	190	380	ug/Kg	
100-52-7	Benzaldehyde	790		20	190	380	ug/Kg	
62-53-3	Aniline	740		33	190	380	ug/Kg	
108-95-2	Phenol	2000		8.8	190	380	ug/Kg	
111-44-4	bis(2-Chloroethyl)ether	1600		18	190	380	ug/Kg	
95-57-8	2-Chlorophenol	1400		20	190	380	ug/Kg	
95-50-1	1,2-Dichlorobenzene	1500		15	190	380	ug/Kg	
541-73-1	1,3-Dichlorobenzene	1500		6.8	190	380	ug/Kg	
106-46-7	1,4-Dichlorobenzene	1500		13	190	380	ug/Kg	
100-51-6	Benzyl Alcohol	1700		14	190	380	ug/Kg	
95-48-7	2-Methylphenol	1600		21	190	380	ug/Kg	
108-60-1	2,2-oxybis(1-Chloropropane)	1500		16	190	380	ug/Kg	
98-86-2	Acetophenone	1600		12	190	380	ug/Kg	
65794-96-9	3+4-Methylphenols	4200	E	20	190	380	ug/Kg	
621-64-7	N-Nitroso-di-n-propylamine	1600		19	190	380	ug/Kg	
67-72-1	Hexachloroethane	1400		17	190	380	ug/Kg	
98-95-3	Nitrobenzene	1500		14	190	380	ug/Kg	
78-59-1	Isophorone	1600		13	190	380	ug/Kg	
88-75-5	2-Nitrophenol	1300		18	190	380	ug/Kg	
105-67-9	2,4-Dimethylphenol	1500		22	190	380	ug/Kg	
111-91-1	bis(2-Chloroethoxy)methane	1600		22	190	380	ug/Kg	
120-83-2	2,4-Dichlorophenol	1400		15	190	380	ug/Kg	
120-82-1	1,2,4-Trichlorobenzene	1500		15	190	380	ug/Kg	
65-85-0	Benzoic acid	460	U	76	460	920	ug/Kg	
91-20-3	Naphthalene	1900		13	190	380	ug/Kg	
106-47-8	4-Chloroaniline	500		27	190	380	ug/Kg	
87-68-3	Hexachlorobutadiene	1600		14	190	380	ug/Kg	
105-60-2	Caprolactam	2000		18	190	380	ug/Kg	
59-50-7	4-Chloro-3-methylphenol	1500		17	190	380	ug/Kg	
91-57-6	2-Methylnaphthalene	1800		9.6	190	380	ug/Kg	

Client: MS Analytical Date Collected: 08/15/12

CHEMITECH

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SS-01AMSDRX SDG No.: D3811 Lab Sample ID: D3813-01MSDRX Matrix: SOIL

Analytical Method: SW8270D % Moisture: 13

Sample Wt/Vol: 30.02 Units: g Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25

Extraction Type: SOXH Level: Decanted: N LOW

GPC Factor: 1.0 GPC Cleanup: Ν PH: Injection Volume: N/A

Dilution: Prep Batch ID File ID/Qc Batch: Prep Date Date Analyzed

BF058477.D	1	08/28/12		08/28/12	2	PB65419	
CAS Number	Parameter	Coi	nc. Quali	fier MI	DL LOD	LOQ / CRQL	Units
77-47-4	Hexachlorocyclopentadiene	470)	9.3	190	380	ug/Kg
88-06-2	2,4,6-Trichlorophenol	950)	12	190	380	ug/Kg
95-95-4	2,4,5-Trichlorophenol	130	00	27	190	380	ug/Kg
92-52-4	1,1-Biphenyl	160	00	14	190	380	ug/Kg
91-58-7	2-Chloronaphthalene	150	00	8.7	190	380	ug/Kg
88-74-4	2-Nitroaniline	160	00	17	190	380	ug/Kg
131-11-3	Dimethylphthalate	160	00	10	190	380	ug/Kg
208-96-8	Acenaphthylene	160	00	9.6	190	380	ug/Kg
606-20-2	2,6-Dinitrotoluene	160	00	16	190	380	ug/Kg
99-09-2	3-Nitroaniline	140	00	25	190	380	ug/Kg
83-32-9	Acenaphthene	180	00	11	190	380	ug/Kg
51-28-5	2,4-Dinitrophenol	380) J	39	190	380	ug/Kg
100-02-7	4-Nitrophenol	150	00	71	190	380	ug/Kg
132-64-9	Dibenzofuran	160	00	15	190	380	ug/Kg
121-14-2	2,4-Dinitrotoluene	160	00	12	190	380	ug/Kg
84-66-2	Diethylphthalate	140	00	6	190	380	ug/Kg
7005-72-3	4-Chlorophenyl-phenylether	160	00	21	190	380	ug/Kg
86-73-7	Fluorene	180	00	14	190	380	ug/Kg
100-01-6	4-Nitroaniline	160	00	50	190	380	ug/Kg
534-52-1	4,6-Dinitro-2-methylphenol	250) J	22	190	380	ug/Kg
86-30-6	N-Nitrosodiphenylamine	150	00	9.2	2 190	380	ug/Kg
103-33-3	Azobenzene	150	00	9	190	380	ug/Kg
101-55-3	4-Bromophenyl-phenylether	150	00	7.5	190	380	ug/Kg
118-74-1	Hexachlorobenzene	150	00	16	190	380	ug/Kg
1912-24-9	Atrazine	160	00	20	190	380	ug/Kg
87-86-5	Pentachlorophenol	840)	26	190	380	ug/Kg
85-01-8	Phenanthrene	260	00	10	190	380	ug/Kg
120-12-7	Anthracene	190	00	7.8	3 190	380	ug/Kg
86-74-8	Carbazole	160	00	8.4	190	380	ug/Kg
84-74-2	Di-n-butylphthalate	130	00	30	190	380	ug/Kg
206-44-0	Fluoranthene	260		7.7		380	ug/Kg
92-87-5	Benzidine	160		38		380	ug/Kg
129-00-0	Pyrene	260		9.2		380	ug/Kg
		46	9 of 870				

469 of 870

N/A

Report of Analysis

Client: MS Analytical Date Collected: 08/15/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SS-01AMSDRX SDG No.: D3811 Lab Sample ID: D3813-01MSDRX Matrix: SOIL Analytical Method: SW8270D % Moisture: 13 Sample Wt/Vol: 30.02 Units: Final Vol: 1000 uL g Soil Aliquot Vol: uL Test: SVOC-Chemtech Full -25 Level: Extraction Type: SOXH Decanted: N LOW

Injection Volume: 1 GPC Factor: 1.0 GPC Cleanup: N PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BE058477 D 1 08/28/12 08/28/12 PB65419

BF058477.D	1	08/28/12	08/	/28/12		PB65419	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
85-68-7	Butylbenzylphthalate	1400		18	190	380	ug/Kg
91-94-1	3,3-Dichlorobenzidine	1500		25	190	380	ug/Kg
56-55-3	Benzo(a)anthracene	2200		18	190	380	ug/Kg
218-01-9	Chrysene	2000		17	190	380	ug/Kg
117-81-7	bis(2-Ethylhexyl)phthalate	1500		14	190	380	ug/Kg
117-84-0	Di-n-octyl phthalate	1500		4.4	190	380	ug/Kg
205-99-2	Benzo(b)fluoranthene	2300		13	190	380	ug/Kg
207-08-9	Benzo(k)fluoranthene	1800		18	190	380	ug/Kg
50-32-8	Benzo(a)pyrene	2100		8.3	190	380	ug/Kg
193-39-5	Indeno(1,2,3-cd)pyrene	1500		13	190	380	ug/Kg
53-70-3	Dibenz(a,h)anthracene	1200		11	190	380	ug/Kg
191-24-2	Benzo(g,h,i)perylene	1300		16	190	380	ug/Kg
95-94-3	1,2,4,5-Tetrachlorobenzene	1600		15	190	380	ug/Kg
123-91-1	1,4-Dioxane	1400		15	190	380	ug/Kg
58-90-2	2,3,4,6-Tetrachlorophenol	650		15	190	380	ug/Kg
SURROGATES	S						
367-12-4	2-Fluorophenol	124		28 - 12	7	83%	SPK: 150
13127-88-3	Phenol-d5	138		34 - 12	7	93%	SPK: 150
4165-60-0	Nitrobenzene-d5	93.5		31 - 132	2	94%	SPK: 100
321-60-8	2-Fluorobiphenyl	95.8		39 - 123	3	96%	SPK: 100
118-79-6	2,4,6-Tribromophenol	112		30 - 133	3	75%	SPK: 150
1718-51-0	Terphenyl-d14	93.8		37 - 11:	5	94%	SPK: 100
INTERNAL ST	TANDARDS						
3855-82-1	1,4-Dichlorobenzene-d4	106084	5.03				
1146-65-2	Naphthalene-d8	384423					
15067-26-2	Acenaphthene-d10	196612	8.26				
1517-22-2	Phenanthrene-d10	340314	10.18				
1719-03-5	Chrysene-d12	265814	14.24				
1520-96-3	Perylene-d12	220210	16.34				

Report of Analysis

Client: MS Analytical Date Collected: 08/15/12

Project:

12MS104 Kensington Heights

08/15/12

Client Sample ID:

SS-01AMSDRX

Date Received:

Lab Sample ID:

SDG No.:

D3813-01MSDRX

Matrix:

D3811 SOIL

Analytical Method:

SW8270D

% Moisture:

13

Sample Wt/Vol:

30.02

Units: g

uL

Final Vol: Test:

1000 SVOC-Chemtech Full -25

PH:

uL

N/A

Soil Aliquot Vol: Extraction Type:

Injection Volume:

SOXH

Decanted:

Ν

Level:

GPC Cleanup:

LOW

Ν

File ID/Qc Batch:

Dilution:

Prep Date

GPC Factor:

Date Analyzed

Prep Batch ID

BF058477.D

1

08/28/12

08/28/12

PB65419

CAS Number

Parameter

Conc.

1.0

Qualifier

MDL

LOD

LOQ / CRQL

Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

CALIBRATION SUMMURY

SEMIVOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: CHEMTECH Contract: MSAN01

Instrument ID: BNA_F Calibration Date(s): 08/02/2012 08/02/2012

Calibration Time(s): 14:10 17:03

			Calibia	tion Time (s	3): 14:10	17:03		
	010 = BF				BF057874.D BF057877.D)40 = BF05')80 = BF05'	
COMPOUND	RRF010	RRF025	RRF040	RRF050	RRF060	RRF080	RRF	% RSD
n-Nitrosodimethylamine	0.892	0.880	0.886	0.824	0.820	0.816	0.853	4.2
Pyridine	1.687	1.883	1.876	1.761	1.730	1.662	1.767	5.3
Benzaldehyde	1.076	1.062	0.949	0.850	0.832	0.676	0.907	16.8
Aniline	2.318	2.230	2.072	1.961	1.965	1.810	2.059	9.1
Phenol	2.345	2.235	2.097	1.953	1.950	1.790	2.062	9.9
bis(2-Chloroethyl)ether	1.512	1.548	1.421	1.354	1.380	1.280	1.416	7.1
2-Chlorophenol	1.670	1.650	1.511	1.423	1.442	1.328	1.504	8.9
1,2-Dichlorobenzene	1.554	1.536	1.409	1.302	1.305	1.211	1.386	10.0
1,3-Dichlorobenzene	1.734	1.632	1.577	1.493	1.504	1.399	1.556	7.6
1,4-Dichlorobenzene	1.677	1.663	1.569	1.485	1.477	1.372	1.541	7.7
Benzyl Alcohol	1.324	1.326	1.215	1.155	1.149	1.083	1.208	8.2
2-Methylphenol	1.169	1.158	1.087	1.024	1.037	0.972	1.075	7.3
2,2-oxybis(1-Chloropropane)	2.829	2.800	2.576	2.463	2.474	2.272	2.569	8.3
Acetophenone	0.538	0.519	0.492	0.489	0.498	0.466	0.500	5.0
3+4-Methylphenols	1.537	1.493	1.362	1.316	1.295	1.186	1.365	9.6
n-Nitroso-di-n-propylamine	1.118	1.111	1.022	0.990	0.979	0.901	1.020	8.2
Hexachloroethane	0.663	0.652	0.600	0.569	0.586	0.547	0.603	7.6
Nitrobenzene	0.456	0.445	0.419	0.419	0.420	0.394	0.426	5.1
Isophorone	0.783	0.760	0.699	0.700	0.718	0.675	0.722	5.7
2-Nitrophenol	0.222	0.230	0.224	0.223	0.225	0.210	0.222	2.9
2,4-Dimethylphenol	0.379	0.367	0.352	0.345	0.353	0.329	0.354	4.9
bis(2-Chloroethoxy)methane	0.467	0.457	0.433	0.427	0.431	0.408	0.437	5.0
2,4-Dichlorophenol	0.332	0.327	0.305	0.311	0.316	0.287	0.313	5.2
1,2,4-Trichlorobenzene	0.328	0.319	0.301	0.300	0.308	0.287	0.307	4.8
Benzoic acid	0.084	0.119	0.147	0.163	0.194	0.205	0.152	29.9
Naphthalene	1.142	1.088	0.989	0.973	0.978	0.890	1.010	8.9
4-Chloroaniline	0.429	0.433	0.412	0.414	0.413	0.387	0.415	3.9
Hexachlorobutadiene	0.175	0.178	0.169	0.170	0.173	0.160	0.171	3.6
Caprolactam	0.103	0.105	0.100	0.101	0.104	0.101	0.102	2.2
4-Chloro-3-methylphenol	0.351	0.353	0.332	0.337	0.336	0.321	0.339	3.5
2-Methylnaphthalene	0.733	0.714	0.668	0.666	0.671	0.620	0.679	5.9
Hexachlorocyclopentadiene	0.277	0.280	0.298	0.290	0.304	0.283	0.289	3.7
2,4,6-Trichlorophenol	0.425	0.419	0.410	0.404	0.416	0.386	0.410	3.4
2,4,5-Trichlorophenol	0.415	0.410	0.406	0.391	0.407	0.371	0.400	4.1
1,1-Biphenyl	1.790	1.669	1.596	1.552	1.568	1.420	1.599	7.7
2-Chloronaphthalene	1.336	1.275	1.221	1.183	1.179	1.085	1.213	7.1

SEMIVOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: CHEMTECH Contract: MSAN01

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG No.: D3811

Instrument ID: BNA_F Calibration Date(s): 08/02/2012 08/02/2012

Calibration Time(s): 14:10 17:03

			Calibia	tion Time (s	3): 14:10	17:03	<u>, </u>	
	7010 = BF 7050 = BF				BF057874.D BF057877.D		040 = BF057	
acurornin .	DD=010	DDE00E	DDE0.40	DDEGEO	DDE0.60	RRF080	222	0 202
COMPOUND 2-Nitroaniline	0.427	0.435	0.429	0.431	RRF060 0.438	0.415	0.429	% RSD 1.9
Dimethylphthalate	1.664	1.606	1.536	1.507	1.528	1.398	1.540	5.9
Acenaphthylene	2.183	2.028	1.955	1.893	1.904	1.734	1.950	7.7
_		0.301		<u> </u>				
2,6-Dinitrotoluene	0.311		0.306	0.305	0.312	0.294	0.305	2.2
3-Nitroaniline	0.373	0.388	0.381	0.379	0.385	0.369	0.379	1.9
Acenaphthene	1.264	1.226	1.185	1.157	1.163	1.085	1.180	5.2
2,4-Dinitrophenol	0.116	0.143	0.171	0.183	0.195	0.197	0.167	19.1
4-Nitrophenol	0.318	0.327	0.330	0.322	0.335	0.322	0.326	2.0
Dibenzofuran	1.966	1.864	1.765	1.713	1.707	1.571	1.765	7.8
2,4-Dinitrotoluene	0.385	0.391	0.389	0.386	0.393	0.367	0.385	2.4
Diethylphthalate	1.696	1.647	1.572	1.567	1.584	1.478	1.591	4.7
4-Chlorophenyl-phenylether	0.741	0.664	0.632	0.624	0.637	0.580	0.646	8.3
Fluorene	1.508	1.427	1.366	1.319	1.334	1.227	1.363	7.1
4-Nitroaniline	0.343	0.349	0.351	0.357	0.373	0.349	0.354	3.0
${\tt 4,6-Dinitro-2-methylphenol}$	0.096	0.124	0.137	0.140	0.148	0.145	0.132	14.5
n-Nitrosodiphenylamine	0.751	0.741	0.690	0.691	0.683	0.641	0.700	5.8
Azobenzene	1.720	1.620	1.579	1.533	1.564	1.446	1.577	5.8
4-Bromophenyl-phenylether	0.197	0.202	0.200	0.195	0.198	0.187	0.196	2.7
Hexachlorobenzene	0.218	0.214	0.211	0.205	0.209	0.194	0.209	4.0
Atrazine	0.199	0.200	0.194	0.186	0.194	0.172	0.191	5.4
Pentachlorophenol	0.117	0.143	0.143	0.143	0.156	0.149	0.142	9.4
Phenanthrene	1.189	1.140	1.075	1.055	1.055	0.991	1.084	6.5
Anthracene	1.112	1.109	1.050	1.027	1.051	0.960	1.051	5.4
Carbazole	1.199	1.196	1.142	1.117	1.129	1.056	1.140	4.7
Di-n-butylphthalate	1.588	1.631	1.545	1.508	1.519	1.410	1.533	4.9
Fluoranthene	1.198	1.187	1.142	1.125	1.130	1.053	1.139	4.6
Benzidine	0.498	0.549	0.562	0.572	0.577	0.552	0.552	5.2
Pyrene	1.502	1.423	1.423	1.406	1.416	1.329	1.416	3.9
Butylbenzylphthalate	0.779	0.797	0.832	0.814	0.834	0.799	0.809	2.6
3,3-Dichlorobenzidine	0.773	0.351	0.353	0.356	0.351	0.330	0.346	3.1
Benzo (a) anthracene	1.185	1.152	1.142	1.148	1.145	1.097	1.145	2.5
Chrysene	1.176	1.119	1.110	1.146	1.110	1.035	1.143	4.1
=								
Bis (2-ethylhexyl) phthalate		1.058	1.078	1.074	1.082	1.034	1.064	1.7
Di-n-octyl phthalate	1.616	1.727	1.764	1.751	1.789	1.723	1.728	3.5
Benzo(b) fluoranthene	1.118	1.085	1.099	1.091	1.132	1.124	1.108	1.8
Benzo(k)fluoranthene	1.283	1.278	1.188	1.201	1.188	1.115	1.209	5.3

SEMIVOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: CHEMTECH Contract: MSAN01

Instrument ID: BNA_F Calibration Date(s): 08/02/2012 08/02/2012

Calibration Time(s): 14:10 17:03

				•	· —			
		057873.D 057876.D			BF057874.D BF057877.D	RRF(7875.D 7878.D
COMPOUND	RRF010	RRF025	RRF040	RRF050	RRF060	RRF080	RRF	% RSD
Benzo(a)pyrene	1.067	1.085	1.033	1.068	1.084	1.062	1.066	1.8
Indeno(1,2,3-cd)pyrene	1.039	1.088	1.134	1.130	1.173	1.150	1.119	4.3
Dibenzo(a,h)anthracene	0.949	1.013	0.960	1.018	1.037	0.994	0.995	3.5
Benzo(g,h,i)perylene	1.052	1.021	1.026	1.050	1.093	1.057	1.050	2.5
1,2,4,5-Tetrachlorobenzene	0.559	0.535	0.513	0.499	0.508	0.464	0.513	6.3
1,4-Dioxane	0.708	0.656	0.651	0.624	0.611	0.584	0.639	6.7
2,3,4,6-Tetrachlorophenol	0.335	0.325	0.323	0.325	0.328	0.310	0.325	2.5
2-Fluorophenol	1.530	1.488	1.401	1.312	1.304	1.222	1.376	8.6
Phenol-d5	1.911	1.874	1.731	1.646	1.653	1.521	1.722	8.6
Nitrobenzene-d5	0.429	0.417	0.391	0.387	0.396	0.369	0.398	5.4
2-Fluorobiphenyl	1.486	1.343	1.261	1.213	1.210	1.072	1.264	11.1
2,4,6-Tribromophenol	0.159	0.153	0.146	0.143	0.147	0.138	0.148	4.9
Terphenyl-d14	0.879	0.842	0.834	0.818	0.820	0.766	0.826	4.5

SEMIVOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: CHEMTECH Contract: MSAN01

Instrument ID: BNA_F Calibration Date(s): 08/20/2012 08/20/2012

Calibration Time(s): 13:17 15:47

	010 = BF				BF058327.D)40 = BF058	
RRF	050 = BF	058329.D		RRF060 =	BF058330.D	RRF	080 = BF058	331.D
COMPOUND	RRF010	RRF025	RRF040	RRF050	RRF060	RRF080	RRF	% RSD
n-Nitrosodimethylamine	0.711	0.747	0.697	0.711	0.712	0.678	0.709	3.2
Pyridine	2.120	2.192	2.065	2.107	2.184	2.044	2.119	2.9
Benzaldehyde	1.208	1.154	0.992	0.935	0.894	0.786	0.995	16.1
Aniline	2.536	2.473	2.261	2.301	2.236	2.094	2.317	7.0
Phenol	2.667	2.550	2.315	2.338	2.284	2.121	2.379	8.3
bis(2-Chloroethyl)ether	1.782	1.740	1.656	1.674	1.649	1.559	1.677	4.6
2-Chlorophenol	1.784	1.684	1.578	1.588	1.565	1.461	1.610	6.9
1,2-Dichlorobenzene	1.662	1.567	1.418	1.438	1.409	1.295	1.465	8.9
1,3-Dichlorobenzene	1.764	1.726	1.592	1.626	1.599	1.505	1.635	5.8
1,4-Dichlorobenzene	1.791	1.694	1.594	1.617	1.579	1.476	1.625	6.6
Benzyl Alcohol	1.387	1.330	1.238	1.246	1.225	1.133	1.260	7.0
2-Methylphenol	1.303	1.267	1.179	1.198	1.191	1.118	1.210	5.5
2,2-oxybis(1-Chloropropane)	2.007	1.896	1.766	1.768	1.732	1.615	1.797	7.6
Acetophenone	0.595	0.566	0.584	0.533	0.528	0.499	0.551	6.7
3+4-Methylphenols	1.693	1.621	1.515	1.533	1.529	1.424	1.552	6.0
n-Nitroso-di-n-propylamine	1.263	1.227	1.138	1.163	1.150	1.086	1.171	5.5
Hexachloroethane	0.683	0.653	0.620	0.640	0.637	0.600	0.639	4.4
Nitrobenzene	0.499	0.481	0.465	0.456	0.447	0.416	0.461	6.2
Isophorone	0.851	0.827	0.798	0.785	0.783	0.738	0.797	4.9
2-Nitrophenol	0.228	0.237	0.233	0.227	0.231	0.222	0.230	2.3
2,4-Dimethylphenol	0.390	0.385	0.372	0.368	0.365	0.345	0.371	4.3
bis(2-Chloroethoxy)methane	0.544	0.524	0.501	0.493	0.485	0.458	0.501	6.0
2,4-Dichlorophenol	0.328	0.329	0.320	0.311	0.311	0.291	0.315	4.5
1,2,4-Trichlorobenzene	0.334	0.321	0.310	0.304	0.301	0.281	0.309	5.9
Benzoic acid	0.009	0.048	0.063	0.094	0.122	0.165	0.083	67.1
Naphthalene	1.197	1.123	1.038	1.002	0.971	0.877	1.035	10.9
4-Chloroaniline	0.467	0.459	0.447	0.444	0.436	0.408	0.444	4.6
Hexachlorobutadiene	0.169	0.163	0.160	0.156	0.156	0.147	0.158	4.8
Caprolactam	0.109	0.113	0.115	0.116	0.115	0.115	0.114	2.2
4-Chloro-3-methylphenol	0.373	0.374	0.363	0.360	0.360	0.341	0.362	3.3
2-Methylnaphthalene	0.760	0.720	0.681	0.670	0.657	0.611	0.683	7.5
Hexachlorocyclopentadiene	0.230	0.254	0.252	0.251	0.256	0.248	0.248	3.8
2,4,6-Trichlorophenol	0.407	0.403	0.393	0.393	0.389	0.369	0.392	3.4
2,4,5-Trichlorophenol	0.375	0.397	0.373	0.368	0.381	0.357	0.375	3.5
1,1-Biphenyl	1.693	1.589	1.491	1.449	1.426	1.311	1.493	8.9
2-Chloronaphthalene	1.358	1.271	1.202	1.172	1.152	1.065	1.203	8.4

SEMIVOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: CHEMTECH Contract: MSAN01

Instrument ID: BNA_F Calibration Date(s): 08/20/2012 08/20/2012

Calibration Time(s): 13:17 15:47

				cion iime(s	s). <u>13.1</u> 7			
	'010 = BF				BF058327.D		040 = BF058	
RRF	050 = BF	058329.D		RRF060 =	BF058330.D	RRF	080 = BF058	331.D
COMPOUND	RRF010	RRF025	RRF040	RRF050	RRF060	RRF080	RRF	% RSD
2-Nitroaniline	0.403	0.412	0.407	0.410	0.413	0.393	0.406	1.8
Dimethylphthalate	1.676	1.598	1.516	1.488	1.483	1.379	1.523	6.7
Acenaphthylene	2.095	1.949	1.830	1.782	1.760	1.619	1.839	8.9
2,6-Dinitrotoluene	0.319	0.319	0.314	0.315	0.322	0.302	0.315	2.2
3-Nitroaniline	0.379	0.396	0.386	0.388	0.403	0.382	0.389	2.3
Acenaphthene	1.225	1.164	1.111	1.093	1.097	1.030	1.120	6.0
2,4-Dinitrophenol	0.040	0.092	0.110	0.127	0.139	0.163	0.112	38.2
4-Nitrophenol	0.290	0.327	0.331	0.334	0.351	0.334	0.328	6.2
Dibenzofuran	1.848	1.740	1.648	1.606	1.595	1.463	1.650	8.0
2,4-Dinitrotoluene	0.393	0.407	0.398	0.391	0.402	0.379	0.395	2.5
Diethylphthalate	1.672	1.605	1.555	1.524	1.535	1.430	1.553	5.2
4-Chlorophenyl-phenylether	0.627	0.620	0.589	0.586	0.576	0.543	0.590	5.2
Fluorene	1.416	1.366	1.287	1.261	1.268	1.174	1.295	6.6
4-Nitroaniline	0.352	0.366	0.362	0.363	0.378	0.367	0.365	2.4
4,6-Dinitro-2-methylphenol	0.051	0.116	0.122	0.130	0.140	0.140	0.117	28.7
n-Nitrosodiphenylamine	0.745	0.718	0.685	0.675	0.683	0.639	0.691	5.3
Azobenzene	1.819	1.746	1.665	1.646	1.628	1.520	1.671	6.2
4-Bromophenyl-phenylether	0.204	0.207	0.196	0.199	0.204	0.194	0.201	2.5
Hexachlorobenzene	0.212	0.211	0.208	0.205	0.204	0.194	0.206	3.1
Atrazine	0.197	0.200	0.190	0.182	0.186	0.155	0.185	8.8
Pentachlorophenol	0.099	0.135	0.131	0.134	0.142	0.143	0.130	12.5
Phenanthrene	1.200	1.151	1.102	1.080	1.074	1.000	1.101	6.3
Anthracene	1.148	1.116	1.051	1.056	1.054	0.978	1.067	5.5
Carbazole	1.214	1.218	1.157	1.144	1.134	1.056	1.154	5.2
Di-n-butylphthalate	1.660	1.682	1.613	1.578	1.574	1.458	1.594	5.0
Fluoranthene	1.148	1.136	1.106	1.087	1.092	1.010	1.096	4.4
Benzidine	0.473	0.483	0.496	0.489	0.513	0.469	0.487	3.3
Pyrene	1.402	1.363	1.314	1.317	1.324	1.254	1.329	3.8
Butylbenzylphthalate	0.814	0.842	0.844	0.843	0.862	0.838	0.841	1.8
3,3-Dichlorobenzidine	0.347	0.359	0.351	0.352	0.356	0.346	0.352	1.4
Benzo(a)anthracene	1.140	1.162	1.135	1.141	1.149	1.117	1.141	1.3
Chrysene	1.153	1.137	1.099	1.090	1.102	1.046	1.104	3.4
Bis(2-ethylhexyl)phthalate	1.081	1.120	1.111	1.102	1.117	1.087	1.103	1.5
Di-n-octyl phthalate	1.664	1.796	1.807	1.812	1.860	1.802	1.790	3.7
Benzo(b)fluoranthene	1.104	1.163	1.156	1.146	1.143	1.080	1.132	2.9
Benzo(k)fluoranthene	1.307	1.295	1.282	1.258	1.199	1.137	1.247	5.3
				8				

SEMIVOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: CHEMTECH Contract: MSAN01

Instrument ID: BNA_F Calibration Date(s): 08/20/2012 08/20/2012

Calibration Time(s): 13:17 15:47

	RRF010 = BF058326.D RRF025 = BF058327.D RRF040 = BF05832 RRF050 = BF058329.D RRF060 = BF058330.D RRF080 = BF05833							
COMPOUND	RRF010	RRF025	RRF040	RRF050	RRF060	RRF080	RRF	% RSD
Benzo(a)pyrene	1.049	1.138	1.119	1.118	1.111	1.050	1.097	3.5
Indeno(1,2,3-cd)pyrene	0.981	1.074	1.105	1.142	1.146	1.162	1.102	6.1
Dibenzo(a,h)anthracene	0.958	1.045	1.023	1.059	1.023	0.970	1.013	4.0
Benzo(g,h,i)perylene	0.986	1.070	1.057	1.077	1.075	1.047	1.052	3.3
1,2,4,5-Tetrachlorobenzene	0.531	0.498	0.473	0.463	0.469	0.431	0.478	7.2
1,4-Dioxane	0.862	0.836	0.789	0.805	0.792	0.738	0.804	5.3
2,3,4,6-Tetrachlorophenol	0.291	0.314	0.309	0.304	0.313	0.295	0.304	3.2
2-Fluorophenol	1.677	1.638	1.526	1.531	1.505	1.411	1.548	6.2
Phenol-d5	2.109	2.016	1.868	1.884	1.849	1.726	1.909	7.1
Nitrobenzene-d5	0.470	0.443	0.423	0.416	0.412	0.382	0.424	7.0
2-Fluorobiphenyl	1.384	1.261	1.158	1.112	1.086	0.975	1.163	12.3
2,4,6-Tribromophenol	0.144	0.147	0.146	0.145	0.148	0.141	0.145	1.8
Terphenyl-d14	0.912	0.882	0.831	0.834	0.826	0.776	0.844	5.7

SEMIVOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: CHEMTECH Contract: MSAN01

Instrument ID: BNA_F Calibration Date(s): 08/24/2012 08/24/2012

Calibration Time(s): 14:25 16:57

				cion iime (s	14.25			
LAB FILE ID: RRF	010 = BF	058429.D		RRF025 =	BF058430.D	RRF0	40 = BF058	3428.D
RRF	050 = BF	058431.D		RRF060 =	BF058432.D	RRF(80 = BF058	3433.D
COMPOUND	RRF010	RRF025	RRF040	RRF050	RRF060	RRF080	RRF	% RSD
n-Nitrosodimethylamine	0.882	0.899	0.895	0.854	0.885	0.847	0.877	2.5
Pyridine	1.810	1.977	1.918	1.951	1.960	1.794	1.902	4.2
Benzaldehyde	1.206	1.153	1.052	0.945	0.928	0.810	1.016	14.7
Aniline	2.394	2.302	2.146	2.118	2.098	1.971	2.172	7.0
Phenol	2.454	2.367	2.297	2.180	2.148	2.020	2.244	7.1
bis(2-Chloroethyl)ether	1.712	1.625	1.599	1.547	1.533	1.453	1.578	5.6
2-Chlorophenol	1.749	1.638	1.605	1.545	1.539	1.422	1.583	6.9
1,2-Dichlorobenzene	1.572	1.455	1.411	1.347	1.331	1.229	1.391	8.4
1,3-Dichlorobenzene	1.664	1.605	1.604	1.557	1.533	1.424	1.564	5.3
1,4-Dichlorobenzene	1.740	1.613	1.569	1.513	1.518	1.425	1.563	6.9
Benzyl Alcohol	1.480	1.468	1.396	1.345	1.327	1.219	1.373	7.1
2-Methylphenol	1.262	1.222	1.210	1.167	1.146	1.074	1.180	5.6
2,2-oxybis(1-Chloropropane)	2.381	2.280	2.188	2.075	2.043	1.921	2.148	7.8
Acetophenone	0.584	0.606	0.752	0.554	0.569	0.538	0.601	12.9
3+4-Methylphenols	1.670	1.573	1.575	1.486	1.473	1.376	1.525	6.7
n-Nitroso-di-n-propylamine	1.313	1.251	1.233	1.177	1.192	1.119	1.214	5.5
Hexachloroethane	0.693	0.671	0.659	0.652	0.643	0.612	0.655	4.2
Nitrobenzene	0.540	0.531	0.504	0.496	0.501	0.471	0.507	4.9
Isophorone	0.861	0.865	0.852	0.820	0.841	0.811	0.842	2.6
2-Nitrophenol	0.221	0.234	0.224	0.225	0.228	0.218	0.225	2.4
2,4-Dimethylphenol	0.389	0.385	0.360	0.360	0.366	0.346	0.368	4.5
bis(2-Chloroethoxy)methane	0.518	0.512	0.484	0.469	0.484	0.457	0.487	4.9
2,4-Dichlorophenol	0.325	0.322	0.317	0.307	0.314	0.294	0.313	3.5
1,2,4-Trichlorobenzene	0.336	0.328	0.311	0.306	0.308	0.288	0.313	5.5
Benzoic acid	0.052	0.080	0.106	0.125	0.156	0.163	0.114	38.0
Naphthalene	1.182	1.146	1.059	1.032	1.036	0.958	1.069	7.7
4-Chloroaniline	0.460	0.455	0.438	0.432	0.440	0.419	0.441	3.4
Hexachlorobutadiene	0.189	0.184	0.175	0.177	0.180	0.169	0.179	4.0
Caprolactam	0.095	0.104	0.106	0.105	0.110	0.104	0.104	4.7
4-Chloro-3-methylphenol	0.382	0.397	0.390	0.377	0.387	0.367	0.383	2.8
2-Methylnaphthalene	0.721	0.708	0.668	0.650	0.653	0.621	0.670	5.6
Hexachlorocyclopentadiene	0.252	0.294	0.282	0.284	0.298	0.282	0.282	5.7
2,4,6-Trichlorophenol	0.401	0.432	0.412	0.392	0.412	0.383	0.405	4.2
2,4,5-Trichlorophenol	0.391	0.415	0.404	0.384	0.400	0.373	0.395	3.7
1,1-Biphenyl	1.685	1.686	1.554	1.504	1.527	1.421	1.563	6.7
2-Chloronaphthalene	1.320	1.298	1.222	1.149	1.199	1.116	1.217	6.6

SEMIVOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: CHEMTECH Contract: MSAN01

Instrument ID: BNA_F Calibration Date(s): 08/24/2012 08/24/2012

Calibration Time(s): 14:25 16:57

			Calibia	tion Time (s	3): 14:25	16:5	<u></u>	
	010 = BF				BF058430.D BF058432.D		040 = BF058	
COMPOUND	RRF010	RRF025	RRF040	RRF050	RRF060	RRF080	RRF	% RSD
2-Nitroaniline	0.445	0.503	0.492	0.487	0.509	0.471	0.485	4.9
Dimethylphthalate	1.614	1.675	1.592	1.527	1.588	1.468	1.577	4.5
Acenaphthylene	2.057	2.058	1.897	1.848	1.883	1.760	1.917	6.2
2,6-Dinitrotoluene	0.311	0.321	0.315	0.305	0.320	0.301	0.312	2.5
3-Nitroaniline	0.348	0.384	0.384	0.369	0.391	0.373	0.375	4.2
Acenaphthene	1.214	1.218	1.155	1.114	1.153	1.085	1.157	4.6
2,4-Dinitrophenol	0.054	0.129	0.165	0.167	0.189	0.197	0.150	35.2
4-Nitrophenol	0.266	0.325	0.320	0.325	0.337	0.323	0.316	8.0
Dibenzofuran	1.860	1.858	1.749	1.677	1.701	1.592	1.740	6.1
2,4-Dinitrotoluene	0.387	0.415	0.395	0.393	0.396	0.377	0.394	3.2
Diethylphthalate	1.697	1.780	1.698	1.660	1.702	1.604	1.690	3.4
4-Chlorophenyl-phenylether	0.640	0.681	0.629	0.610	0.619	0.582	0.627	5.3
Fluorene	1.427	1.450	1.375	1.316	1.339	1.256	1.360	5.3
4-Nitroaniline	0.318	0.355	0.350	0.355	0.372	0.360	0.352	5.2
4,6-Dinitro-2-methylphenol	0.086	0.129	0.139	0.141	0.152	0.150	0.133	18.2
n-Nitrosodiphenylamine	0.735	0.714	0.680	0.677	0.690	0.654	0.692	4.1
Azobenzene	1.928	1.947	1.865	1.815	1.850	1.732	1.856	4.2
4-Bromophenyl-phenylether	0.191	0.195	0.198	0.191	0.195	0.188	0.193	1.9
Hexachlorobenzene	0.223	0.206	0.202	0.199	0.204	0.192	0.204	5.2
Atrazine	0.197	0.197	0.180	0.172	0.180	0.143	0.178	11.3
Pentachlorophenol	0.104	0.124	0.138	0.129	0.135	0.128	0.126	9.4
Phenanthrene	1.174	1.132	1.077	1.055	1.070	1.007	1.086	5.4
Anthracene	1.122	1.097	0.985	1.046	1.048	1.000	1.049	5.1
Carbazole	1.193	1.196	1.155	1.132	1.157	1.092	1.154	3.4
Di-n-butylphthalate	1.696	1.683	1.643	1.614	1.646	1.544	1.638	3.3
Fluoranthene	1.158	1.163	1.118	1.117	1.127	1.060	1.124	3.3
Benzidine	0.435	0.473	0.445	0.502	0.531	0.508	0.482	7.9
Pyrene	1.504	1.490	1.461	1.441	1.441	1.373	1.452	3.2
Butylbenzylphthalate	0.845	0.878	0.920	0.903	0.917	0.878	0.890	3.2
3,3-Dichlorobenzidine	0.303	0.343	0.336	0.336	0.339	0.335	0.332	4.3
Benzo(a)anthracene	1.154	1.162	1.182	1.182	1.199	1.155	1.172	1.6
Chrysene	1.201	1.177	1.167	1.151	1.165	1.116	1.163	2.4
Bis(2-ethylhexyl)phthalate	1.133	1.170	1.220	1.188	1.193	1.156	1.177	2.6
Di-n-octyl phthalate	1.676	1.843	1.976	1.927	1.976	1.902	1.883	6.0
Benzo(b)fluoranthene	1.043	1.189	1.172	1.192	1.253	1.204	1.175	6.0
Benzo(k)fluoranthene	1.412	1.401	1.340	1.386	1.395	1.293	1.371	3.3

SEMIVOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: CHEMTECH Contract: MSAN01

Instrument ID: BNA_F Calibration Date(s): 08/24/2012 08/24/2012

Calibration Time(s): 14:25 16:57

		058429.D 058431.D			BF058430.D BF058432.D		RRF040 = BF058428.D RRF080 = BF058433.D			
COMPOUND	RRF010	RRF025	RRF040	RRF050	RRF060	RRF080	RRF	% RSD		
Benzo(a)pyrene	1.057	1.152	1.141	1.159	1.213	1.153	1.146	4.4		
Indeno(1,2,3-cd)pyrene	0.891	1.007	1.070	1.060	1.118	1.099	1.041	7.9		
Dibenzo(a,h)anthracene	0.806	0.967	1.012	1.002	1.075	1.031	0.982	9.5		
Benzo(g,h,i)perylene	0.992	1.055	1.095	1.080	1.130	1.069	1.070	4.3		
1,2,4,5-Tetrachlorobenzene	0.549	0.544	0.519	0.503	0.511	0.481	0.518	4.9		
1,4-Dioxane	0.772	0.776	0.762	0.746	0.748	0.718	0.754	2.8		
2,3,4,6-Tetrachlorophenol	0.304	0.329	0.323	0.311	0.323	0.301	0.315	3.6		
2-Fluorophenol	1.592	1.527	1.481	1.429	1.422	1.312	1.461	6.6		
Phenol-d5	2.058	1.939	1.880	1.794	1.757	1.627	1.843	8.2		
Nitrobenzene-d5	0.493	0.492	0.466	0.458	0.464	0.436	0.468	4.7		
2-Fluorobiphenyl	1.420	1.375	1.255	1.199	1.194	1.101	1.257	9.6		
2,4,6-Tribromophenol	0.125	0.139	0.134	0.134	0.135	0.130	0.133	3.5		
Terphenyl-d14	0.916	0.895	0.869	0.865	0.867	0.823	0.873	3.6		

SEMIVOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: CHEMTECH Contract: MSAN01

Instrument ID: BNA_G Calibration Date(s): 08/20/2012 08/20/2012

Calibration Time(s): 12:43 16:18

			Calibia	tion Time (s	3): 12:43	16:18	<u> </u>	
	'010 = BG				BG006772.D BG006775.D		040 = BG006 080 = BG006	
COMPOUND	RRF010	RRF025	RRF040	RRF050	RRF060	RRF080	RRF	% RSD
n-Nitrosodimethylamine	0.330	0.317	0.321	0.319	0.324	0.309	0.320	2.2
Pyridine	1.129	1.286	1.232	1.269	1.307	1.258	1.247	5.1
Benzaldehyde	0.855	0.795	0.695	0.633	0.615	0.543	0.689	17.0
Aniline	1.911	1.817	1.751	1.738	1.786	1.671	1.779	4.6
Phenol	1.810	1.695	1.632	1.656	1.677	1.605	1.679	4.3
bis(2-Chloroethyl)ether	1.200	1.180	1.165	1.111	1.156	1.115	1.155	3.1
2-Chlorophenol	1.603	1.496	1.481	1.443	1.477	1.404	1.484	4.5
1,2-Dichlorobenzene	1.634	1.593	1.472	1.473	1.530	1.436	1.523	5.1
1,3-Dichlorobenzene	1.728	1.672	1.577	1.583	1.617	1.553	1.622	4.1
1,4-Dichlorobenzene	1.750	1.733	1.596	1.581	1.620	1.560	1.640	4.9
Benzyl Alcohol	1.104	1.165	1.111	1.113	1.131	1.096	1.120	2.2
2-Methylphenol	1.104	1.112	1.040	1.053	1.076	1.011	1.066	3.6
2,2-oxybis(1-Chloropropane)	0.338	0.343	0.319	0.323	0.314	0.315	0.325	3.8
Acetophenone	0.505	0.475	0.567	0.467	0.475	0.447	0.490	8.6
3+4-Methylphenols	1.423	1.446	1.419	1.389	1.442	1.352	1.412	2.5
n-Nitroso-di-n-propylamine	0.976	0.894	0.868	0.870	0.887	0.843	0.890	5.2
Hexachloroethane	0.593	0.595	0.555	0.552	0.558	0.560	0.569	3.4
Nitrobenzene	0.372	0.390	0.379	0.384	0.378	0.363	0.378	2.5
Isophorone	0.675	0.643	0.604	0.639	0.630	0.585	0.629	5.0
2-Nitrophenol	0.245	0.250	0.237	0.245	0.246	0.236	0.243	2.3
2,4-Dimethylphenol	0.359	0.334	0.326	0.346	0.332	0.319	0.336	4.3
bis(2-Chloroethoxy)methane	0.384	0.371	0.358	0.379	0.368	0.355	0.369	3.1
2,4-Dichlorophenol	0.399	0.394	0.387	0.398	0.402	0.376	0.393	2.4
1,2,4-Trichlorobenzene	0.424	0.422	0.404	0.417	0.408	0.389	0.411	3.3
Benzoic acid	0.048	0.080	0.122	0.151	0.170	0.179	0.125	41.9
Naphthalene	1.109	1.064	1.023	1.028	1.024	0.953	1.034	5.0
4-Chloroaniline	0.471	0.452	0.438	0.459	0.446	0.428	0.449	3.4
Hexachlorobutadiene	0.299	0.279	0.271	0.280	0.275	0.261	0.277	4.5
Caprolactam	0.115	0.119	0.115	0.111	0.118	0.111	0.115	2.7
4-Chloro-3-methylphenol	0.356	0.366	0.358	0.361	0.360	0.342	0.357	2.3
2-Methylnaphthalene	0.804	0.762	0.744	0.761	0.746	0.705	0.754	4.3
Hexachlorocyclopentadiene	0.294	0.311	0.351	0.352	0.366	0.361	0.339	8.7
2,4,6-Trichlorophenol	0.509	0.475	0.478	0.489	0.491	0.474	0.486	2.7
2,4,5-Trichlorophenol	0.482	0.496	0.475	0.470	0.482	0.471	0.479	2.0
1,1-Biphenyl	1.441	1.353	1.362	1.331	1.340	1.310	1.356	3.3
2-Chloronaphthalene	1.228	1.186	1.211	1.183	1.176	1.164	1.191	2.0

SEMIVOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: CHEMTECH Contract: MSAN01

Instrument ID: BNA_G Calibration Date(s): 08/20/2012 08/20/2012

Calibration Time(s): 12:43 16:18

			Calibia	tion Time (s	3): 12:43		<u>, </u>	
	010 = BG				BG006772.D BG006775.D		040 = BG006 080 = BG006	
COMPONING	RRF010	RRF025	RRF040	RRF050	RRF060	RRF080	222	° Dan
COMPOUND 2-Nitroaniline	0.254	0.230	0.244	0.240	0.252	0.249	0.245	% RSD 3.7
Dimethylphthalate	1.703	1.643	1.652	1.562	1.602	1.567	1.622	3.4
Acenaphthylene	1.810	1.689	1.684	1.659	1.665	1.600	1.684	4.1
2,6-Dinitrotoluene	0.323	0.331	0.346	0.343	0.346	0.352	0.340	3.1
3-Nitroaniline	0.344	0.325	0.341	0.335	0.343	0.347	0.339	2.4
Acenaphthene	1.098	1.084	1.096	1.075	1.091	1.072	1.086	1.0
2,4-Dinitrophenol	0.028	0.073	0.106	0.127	0.160	0.175	0.112	49.0
4-Nitrophenol	0.264	0.279	0.305	0.308	0.315	0.311	0.297	7.0
Dibenzofuran	1.843	1.784	1.789	1.719	1.767	1.665	1.761	3.5
2,4-Dinitrotoluene	0.449	0.462	0.464	0.448	0.461	0.457	0.457	1.5
Diethylphthalate	1.559	1.519	1.517	1.470	1.527	1.490	1.514	2.0
4-Chlorophenyl-phenylether	0.804	0.784	0.803	0.769	0.780	0.776	0.786	1.8
Fluorene	1.464	1.383	1.404	1.342	1.383	1.348	1.387	3.2
4-Nitroaniline	0.335	0.351	0.355	0.350	0.362	0.363	0.353	2.9
4,6-Dinitro-2-methylphenol	0.072	0.112	0.136	0.140	0.158	0.167	0.131	26.4
n-Nitrosodiphenylamine	0.691	0.667	0.653	0.655	0.652	0.643	0.660	2.6
Azobenzene	1.217	1.141	1.138	1.109	1.141	1.104	1.142	3.6
4-Bromophenyl-phenylether	0.274	0.255	0.254	0.251	0.254	0.253	0.257	3.3
Hexachlorobenzene	0.296	0.284	0.280	0.281	0.288	0.280	0.285	2.2
Atrazine	0.268	0.242	0.236	0.228	0.230	0.199	0.234	9.6
Pentachlorophenol	0.118	0.143	0.154	0.164	0.181	0.183	0.157	15.7
Phenanthrene	1.166	1.090	1.063	1.065	1.068	1.027	1.080	4.3
Anthracene	1.134	1.092	1.069	1.063	1.067	1.042	1.078	2.9
Carbazole	1.159	1.146	1.097	1.083	1.073	1.039	1.099	4.2
Di-n-butylphthalate	1.459	1.385	1.340	1.325	1.307	1.256	1.345	5.2
Fluoranthene	1.372	1.337	1.286	1.248	1.228	1.182	1.275	5.5
Benzidine	0.347	0.428	0.422	0.431	0.430	0.406	0.411	8.0
Pyrene	1.272	1.251	1.204	1.170	1.160	1.108	1.194	5.1
Butylbenzylphthalate	0.580	0.572	0.546	0.548	0.551	0.534	0.555	3.1
3,3-Dichlorobenzidine	0.364	0.406	0.408	0.402	0.400	0.391	0.395	4.2
Benzo(a)anthracene	1.156	1.117	1.080	1.083	1.068	1.034	1.090	3.9
Chrysene	1.085	1.085	1.051	1.023	1.029	0.979	1.042	3.9
Bis(2-ethylhexyl)phthalate	0.770	0.784	0.768	0.762	0.760	0.738	0.764	2.0
Di-n-octyl phthalate	1.251	1.257	1.228	1.237	1.234	1.196	1.234	1.7
Benzo(b) fluoranthene	1.203	1.164	1.100	1.114	1.123	1.093	1.133	3.7
Benzo(k)fluoranthene	1.194	1.198	1.127	1.125	1.108	1.079	1.138	4.2

SEMIVOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: CHEMTECH Contract: MSAN01

Instrument ID: BNA_G Calibration Date(s): 08/20/2012 08/20/2012

Calibration Time(s): 12:43 16:18

LAB FILE ID: RRE			BG006772.D BG006775.D	RRF040 = BG006773.D RRF080 = BG006776.D				
COMPOUND	RRF010	RRF025	RRF040	RRF050	RRF060	RRF080	RRF	% RSD
Benzo(a)pyrene	1.129	1.102	1.051	1.056	1.078	1.031	1.075	3.4
Indeno(1,2,3-cd)pyrene	1.247	1.238	1.218	1.247	1.262	1.261	1.245	1.3
Dibenzo(a,h)anthracene	1.127	1.121	1.077	1.096	1.112	1.088	1.103	1.8
Benzo(g,h,i)perylene	1.145	1.116	1.073	1.075	1.108	1.080	1.099	2.6
1,2,4,5-Tetrachlorobenzene	0.669	0.633	0.641	0.628	0.646	0.627	0.641	2.4
1,4-Dioxane	0.501	0.474	0.457	0.449	0.468	0.454	0.467	4.0
2,3,4,6-Tetrachlorophenol	0.429	0.414	0.452	0.429	0.450	0.446	0.437	3.4
2-Fluorophenol	1.283	1.228	1.167	1.169	1.190	1.127	1.194	4.6
Phenol-d5	1.653	1.622	1.528	1.521	1.538	1.475	1.556	4.3
Nitrobenzene-d5	0.372	0.358	0.351	0.357	0.355	0.334	0.354	3.5
2-Fluorobiphenyl	1.378	1.275	1.274	1.223	1.240	1.165	1.259	5.6
2,4,6-Tribromophenol	0.261	0.245	0.253	0.248	0.256	0.251	0.252	2.3
Terphenyl-d14	0.919	0.869	0.821	0.807	0.784	0.737	0.823	7.8

7C

SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: CHEMTECH Contract: MSAN01

Instrument ID: BNA_F Calibration Date/Time: 08/16/2012 13:17

Lab File ID: BF058255.D Init. Calib. Date(s): 08/02/2012 08/02/2012

EPA Sample No.: SSTDCCC040 Init. Calib. Time(s): 14:10 17:03

GC Column: RTX-5 ID: 0.18 (mm)

COMPOUND	RRF	RRF040	MIN RRF	%D	MAX%D
n-Nitrosodimethylamine	0.853	1.052		23.4	
Pyridine	1.767	2.140		21.1	
Benzaldehyde	0.907	0.928		2.3	
Aniline	2.059	2.082		1.1	
Phenol	2.062	2.158		4.7	20.0
bis(2-Chloroethyl)ether	1.416	1.497		5.7	
2-Chlorophenol	1.504	1.525		1.4	
1,2-Dichlorobenzene	1.386	1.386		0.0	
1,3-Dichlorobenzene	1.556	1.542		0.9	
1,4-Dichlorobenzene	1.541	1.531		0.6	20.0
Benzyl Alcohol	1.208	1.209		0.0	
2-Methylphenol	1.075	1.119		4.1	
2,2-oxybis(1-Chloropropane)	2.569	2.671		4.0	
Acetophenone	0.500	0.649		29.9	
3+4-Methylphenols	1.365	1.436		5.2	
n-Nitroso-di-n-propylamine	1.020	1.095	0.050	7.3	
Hexachloroethane	0.603	0.589		2.3	
Nitrobenzene	0.426	0.443		3.9	
Isophorone	0.722	0.747		3.4	
2-Nitrophenol	0.222	0.229		3.1	20.0
2,4-Dimethylphenol	0.354	0.355		0.2	
bis(2-Chloroethoxy)methane	0.437	0.445		1.7	
2,4-Dichlorophenol	0.313	0.308		1.4	20.0
1,2,4-Trichlorobenzene	0.307	0.302		1.7	
Benzoic acid	0.152	0.141		7.4	
Naphthalene	1.010	1.006		0.4	
4-Chloroaniline	0.415	0.417		0.6	
Hexachlorobutadiene	0.171	0.160		6.3	20.0
Caprolactam	0.102	0.099		3.0	
4-Chloro-3-methylphenol	0.339	0.334		1.5	20.0
2-Methylnaphthalene	0.679	0.667		1.7	
Hexachlorocyclopentadiene	0.289	0.271	0.050	6.1	
2,4,6-Trichlorophenol	0.410	0.404		1.6	20.0
2,4,5-Trichlorophenol	0.400	0.400		0.1	
1,1-Biphenyl	1.599	1.574		1.6	1
2-Chloronaphthalene	1.213	1.215		0.2	
2-Nitroaniline	0.429	0.447		4.3	
Dimethylphthalate	1.540	1.507		2.1	
Acenaphthylene	1.950	1.899		2.6	
2,6-Dinitrotoluene	0.305	0.303		0.6	
3-Nitroaniline	0.379	0.386		1.8	1

7C

SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: CHEMTECH Contract: MSAN01

Instrument ID: BNA_F Calibration Date/Time: 08/16/2012 13:17

Lab File ID: BF058255.D Init. Calib. Date(s): 08/02/2012 08/02/2012

EPA Sample No.: SSTDCCC040 Init. Calib. Time(s): 14:10 17:03

GC Column: RTX-5 ID: 0.18 (mm)

COMPOUND	RRF	RRF040	MIN RRF	%D	MAX%D
Acenaphthene	1.180	1.166		1.2	20.0
2,4-Dinitrophenol	0.167	0.173	0.050	3.7	
4-Nitrophenol	0.326	0.327	0.050	0.3	
Dibenzofuran	1.765	1.703		3.5	
2,4-Dinitrotoluene	0.385	0.375		2.5	
Diethylphthalate	1.591	1.562		1.8	
4-Chlorophenyl-phenylether	0.646	0.627		3.0	
Fluorene	1.363	1.350		0.9	
4-Nitroaniline	0.354	0.365		3.1	
4,6-Dinitro-2-methylphenol	0.132	0.132		0.3	
n-Nitrosodiphenylamine	0.700	0.703		0.5	20.0
Azobenzene	1.577	1.615		2.4	
4-Bromophenyl-phenylether	0.196	0.192		2.1	
Hexachlorobenzene	0.209	0.198		5.2	
Atrazine	0.191	0.177		7.4	
Pentachlorophenol	0.142	0.146		2.8	20.0
Phenanthrene	1.084	1.057		2.5	
Anthracene	1.051	1.003		4.6	
Carbazole	1.140	1.146		0.5	
Di-n-butylphthalate	1.533	1.559		1.7	
Fluoranthene	1.139	1.104		3.1	20.0
Benzidine	0.552	0.562		1.8	
Pyrene	1.416	1.440		1.7	
Butylbenzylphthalate	0.809	0.869		7.4	
3,3-Dichlorobenzidine	0.346	0.361		4.4	
Benzo(a)anthracene	1.145	1.175		2.6	
Chrysene	1.109	1.108		0.1	
Bis(2-ethylhexyl)phthalate	1.064	1.179		10.8	
Di-n-octyl phthalate	1.728	1.945		12.6	20.0
Benzo(b)fluoranthene	1.108	1.085		2.1	
Benzo(k)fluoranthene	1.209	1.154		4.6	
Benzo(a)pyrene	1.066	1.042		2.3	20.0
Indeno(1,2,3-cd)pyrene	1.119	1.144		2.2	
Dibenzo(a,h)anthracene	0.995	1.010		1.6	
Benzo(g,h,i)perylene	1.050	1.041		0.9	
1,2,4,5-Tetrachlorobenzene	0.513	0.501		2.4	
1,4-Dioxane	0.639	0.823		28.8	20.0
2,3,4,6-Tetrachlorophenol	0.325	0.313		3.6	
2-Fluorophenol	1.376	1.603		16.5	
Phenol-d5	1.722	1.782		3.5	
Nitrobenzene-d5	0.398	0.404		1.5	

SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: CHEMTECH Contract: MSAN01

Instrument ID: BNA_F Calibration Date/Time: 08/16/2012 13:17

Lab File ID: BF058255.D Init. Calib. Date(s): 08/02/2012 08/02/2012

EPA Sample No.: SSTDCCC040 Init. Calib. Time(s): 14:10 17:03

GC Column: RTX-5 ID: 0.18 (mm)

COMPOUND	RRF	RRF040	MIN RRF	%D	MAX%D
2-Fluorobiphenyl	1.264	1.226		3.0	
2,4,6-Tribromophenol	0.148	0.133		10.1	
Terphenyl-d14	0.826	0.820		0.7	

All other compounds must meet a minimum RRF of 0.010.

SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: CHEMTECH Contract: MSAN01

Instrument ID: BNA_F Calibration Date/Time: 08/21/2012 13:39

Lab File ID: BF058340.D Init. Calib. Date(s): 08/20/2012 08/20/2012

EPA Sample No.: SSTDCCC040 Init. Calib. Time(s): 13:17 15:47

GC Column: RTX-5 ID: 0.18 (mm)

COMPOUND	RRF	RRF040	MIN RRF	%D	MAX%D
n-Nitrosodimethylamine	0.709	0.860		21.3	
Pyridine	2.119	1.973		6.9	
Benzaldehyde	0.995	1.073		7.8	
Aniline	2.317	2.254		2.7	
Phenol	2.379	2.354		1.1	20.0
bis(2-Chloroethyl)ether	1.677	1.724		2.8	
2-Chlorophenol	1.610	1.671		3.8	
1,2-Dichlorobenzene	1.465	1.465		0.0	
1,3-Dichlorobenzene	1.635	1.633		0.1	
1,4-Dichlorobenzene	1.625	1.627		0.1	20.0
Benzyl Alcohol	1.260	1.388		10.2	
2-Methylphenol	1.210	1.255		3.7	
2,2-oxybis(1-Chloropropane)	1.797	2.346		30.5	
Acetophenone	0.551	0.754		36.9	
3+4-Methylphenols	1.552	1.596		2.9	
n-Nitroso-di-n-propylamine	1.171	1.282	0.050	9.4	
Hexachloroethane	0.639	0.686		7.4	
Nitrobenzene	0.461	0.482		4.7	
Isophorone	0.797	0.828		3.9	
2-Nitrophenol	0.230	0.234		1.8	20.0
2,4-Dimethylphenol	0.371	0.358		3.5	
bis(2-Chloroethoxy)methane	0.501	0.506		0.9	
2,4-Dichlorophenol	0.315	0.325		3.2	20.0
1,2,4-Trichlorobenzene	0.309	0.326		5.4	
Benzoic acid	0.083	0.068		17.7	
Naphthalene	1.035	1.027		0.8	
4-Chloroaniline	0.444	0.451		1.5	
Hexachlorobutadiene	0.158	0.181		14.6	20.0
Caprolactam	0.114	0.118		3.4	
4-Chloro-3-methylphenol	0.362	0.388		7.1	20.0
2-Methylnaphthalene	0.683	0.678		0.7	
Hexachlorocyclopentadiene	0.248	0.264	0.050	6.3	
2,4,6-Trichlorophenol	0.392	0.397		1.3	20.0
2,4,5-Trichlorophenol	0.375	0.397		5.8	
1,1-Biphenyl	1.493	1.494		0.0	
2-Chloronaphthalene	1.203	1.196		0.6	
2-Nitroaniline	0.406	0.479	1	18.1	1
Dimethylphthalate	1.523	1.596	1	4.8	1
Acenaphthylene	1.839	1.710	1	7.0	1
2,6-Dinitrotoluene	0.315	0.322	1	2.3	1
3-Nitroaniline	0.389	0.393		1.1	

7C

SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: CHEMTECH Contract: MSAN01

CHEM Case No.: D3811 SAS No.: D3811 D3811 Lab Code: SDG No.:

Instrument ID: BNA_F Calibration Date/Time: 08/21/2012 13:39

Lab File ID: BF058340.D Init. Calib. Date(s): 08/20/2012 08/20/2012

EPA Sample No.: SSTDCCC040 Init. Calib. Time(s): 13:17 15:47

COMPOUND	RRF	RRF040	MIN RRF	%D	MAX%D
Acenaphthene	1.120	1.125		0.4	20.0
2,4-Dinitrophenol	0.112	0.145	0.050	29.3	
4-Nitrophenol	0.328	0.333	0.050	1.5	
Dibenzofuran	1.650	1.627		1.4	
2,4-Dinitrotoluene	0.395	0.405		2.6	
Diethylphthalate	1.553	1.616		4.1	
4-Chlorophenyl-phenylether	0.590	0.621		5.3	
Fluorene	1.295	1.288		0.6	
4-Nitroaniline	0.365	0.365		0.1	
4,6-Dinitro-2-methylphenol	0.117	0.140		19.5	
n-Nitrosodiphenylamine	0.691	0.670		3.0	20.0
Azobenzene	1.671	1.746		4.5	
4-Bromophenyl-phenylether	0.201	0.198		1.5	
Hexachlorobenzene	0.206	0.210		2.1	
Atrazine	0.185	0.198		7.1	
Pentachlorophenol	0.130	0.140		7.3	20.0
Phenanthrene	1.101	1.090		1.0	
Anthracene	1.067	1.001		6.2	
Carbazole	1.154	1.133		1.8	
Di-n-butylphthalate	1.594	1.578		1.0	
Fluoranthene	1.096	1.119		2.1	20.0
Benzidine	0.487	0.553		13.6	
Pyrene	1.329	1.381		3.9	
Butylbenzylphthalate	0.841	0.863		2.6	
3,3-Dichlorobenzidine	0.352	0.356		1.2	
Benzo(a)anthracene	1.141	1.186		4.0	
Chrysene	1.104	1.135		2.8	
Bis(2-ethylhexyl)phthalate	1.103	1.158		5.0	
Di-n-octyl phthalate	1.790	1.881		5.1	20.0
Benzo(b) fluoranthene	1.132	1.164		2.8	
Benzo(k)fluoranthene	1.247	1.277		2.4	
Benzo(a)pyrene	1.097	1.131		3.1	20.0
Indeno(1,2,3-cd)pyrene	1.102	1.228		11.4	
Dibenzo(a,h)anthracene	1.013	1.097		8.3	
Benzo(g,h,i)perylene	1.052	1.183		12.5	
1,2,4,5-Tetrachlorobenzene	0.478	0.502		5.0	
1,4-Dioxane	0.804	0.751		6.6	20.0
2,3,4,6-Tetrachlorophenol	0.304	0.327		7.5	
2-Fluorophenol	1.548	1.540		0.5	
Phenol-d5	1.909	1.957		2.5	
Nitrobenzene-d5	0.424	0.446		5.1	

SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: CHEMTECH Contract: MSAN01

Instrument ID: BNA_F Calibration Date/Time: 08/21/2012 13:39

Lab File ID: BF058340.D Init. Calib. Date(s): 08/20/2012 08/20/2012

EPA Sample No.: SSTDCCC040 Init. Calib. Time(s): 13:17 15:47

GC Column: RTX-5 ID: 0.18 (mm)

COMPOUND	RRF	RRF040	MIN RRF	%D	MAX%D
2-Fluorobiphenyl	1.163	1.140		2.0	
2,4,6-Tribromophenol	0.145	0.157		8.6	
Terphenyl-d14	0.844	0.841		0.4	

All other compounds must meet a minimum RRF of 0.010.

7C

SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: CHEMTECH Contract: MSAN01

Instrument ID: BNA_F Calibration Date/Time: 08/23/2012 09:33

Lab File ID: BF058388.D Init. Calib. Date(s): 08/20/2012 08/20/2012

EPA Sample No.: SSTDCCC040 Init. Calib. Time(s): 13:17 15:47

GC Column: RTX-5 ID: 0.18 (mm)

COMPOUND	RRF	RRF040	MIN RRF	%D	MAX%D
n-Nitrosodimethylamine	0.709	0.914		28.9	
Pyridine	2.119	2.110		0.4	
Benzaldehyde	0.995	1.157		16.3	
Aniline	2.317	2.281		1.6	
Phenol	2.379	2.366		0.6	20.0
bis(2-Chloroethyl)ether	1.677	1.717		2.4	
2-Chlorophenol	1.610	1.637		1.7	
1,2-Dichlorobenzene	1.465	1.418		3.2	
1,3-Dichlorobenzene	1.635	1.639		0.2	
1,4-Dichlorobenzene	1.625	1.612		0.8	20.0
Benzyl Alcohol	1.260	1.387		10.0	
2-Methylphenol	1.210	1.253		3.5	
2,2-oxybis(1-Chloropropane)	1.797	2.445		36.1	
Acetophenone	0.551	0.747		35.7	
3+4-Methylphenols	1.552	1.595		2.7	
n-Nitroso-di-n-propylamine	1.171	1.296	0.050	10.7	
Hexachloroethane	0.639	0.704		10.2	
Nitrobenzene	0.461	0.504		9.3	
Isophorone	0.797	0.842		5.6	
2-Nitrophenol	0.230	0.230		0.1	20.0
2,4-Dimethylphenol	0.371	0.356		4.1	
bis(2-Chloroethoxy)methane	0.501	0.503		0.4	
2,4-Dichlorophenol	0.315	0.307		2.4	20.0
1,2,4-Trichlorobenzene	0.309	0.310		0.4	1
Benzoic acid	0.083	0.169		104.1	1
Naphthalene	1.035	1.001		3.3	1
4-Chloroaniline	0.444	0.420		5.4	
Hexachlorobutadiene	0.158	0.171		8.0	20.0
Caprolactam	0.114	0.108		4.9	1
4-Chloro-3-methylphenol	0.362	0.368		1.7	20.0
2-Methylnaphthalene	0.683	0.645		5.5	1
Hexachlorocyclopentadiene	0.248	0.268	0.050	7.9	
2,4,6-Trichlorophenol	0.392	0.400	1	2.1	20.0
2,4,5-Trichlorophenol	0.375	0.390		4.0	
1,1-Biphenyl	1.493	1.562		4.7	
2-Chloronaphthalene	1.203	1.227		2.0	
2-Nitroaniline	0.406	0.508		25.1	
Dimethylphthalate	1.523	1.574	†	3.4	1
Acenaphthylene	1.839	1.757	1	4.5	1
2,6-Dinitrotoluene	0.315	0.322	1	2.2	1
3-Nitroaniline	0.389	0.372	+	4.5	

7C

SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: CHEMTECH Contract: MSAN01

CHEM Case No.: D3811 SAS No.: D3811 D3811 Lab Code: SDG No.:

Instrument ID: BNA_F Calibration Date/Time: 08/23/2012 09:33

Lab File ID: BF058388.D Init. Calib. Date(s): 08/20/2012 08/20/2012

EPA Sample No.: SSTDCCC040 Init. Calib. Time(s): 13:17 15:47

COMPOUND	RRF	RRF040	MIN RRF	%D	MAX%D
Acenaphthene	1.120	1.154		3.0	20.0
2,4-Dinitrophenol	0.112	0.149	0.050	32.9	
4-Nitrophenol	0.328	0.318	0.050	3.2	
Dibenzofuran	1.650	1.647		0.2	
2,4-Dinitrotoluene	0.395	0.403		1.9	
Diethylphthalate	1.553	1.610		3.6	
4-Chlorophenyl-phenylether	0.590	0.611		3.5	
Fluorene	1.295	1.281		1.1	
4-Nitroaniline	0.365	0.351		3.8	
4,6-Dinitro-2-methylphenol	0.117	0.140		19.7	
n-Nitrosodiphenylamine	0.691	0.692		0.2	20.0
Azobenzene	1.671	1.859		11.2	
4-Bromophenyl-phenylether	0.201	0.201		0.0	
Hexachlorobenzene	0.206	0.204		1.2	
Atrazine	0.185	0.189		2.3	
Pentachlorophenol	0.130	0.126		2.9	20.0
Phenanthrene	1.101	1.104		0.3	
Anthracene	1.067	1.022		4.3	
Carbazole	1.154	1.114		3.4	
Di-n-butylphthalate	1.594	1.604		0.6	
Fluoranthene	1.096	1.106		0.9	20.0
Benzidine	0.487	0.406		16.6	
Pyrene	1.329	1.384		4.1	
Butylbenzylphthalate	0.841	0.884		5.1	
3,3-Dichlorobenzidine	0.352	0.321		8.7	
Benzo(a)anthracene	1.141	1.150		0.8	
Chrysene	1.104	1.134		2.7	
Bis(2-ethylhexyl)phthalate	1.103	1.160		5.1	
Di-n-octyl phthalate	1.790	1.830		2.2	20.0
Benzo(b)fluoranthene	1.132	1.177		4.0	
Benzo(k)fluoranthene	1.247	1.353		8.5	
Benzo(a)pyrene	1.097	1.160		5.7	20.0
Indeno(1,2,3-cd)pyrene	1.102	1.112		0.9	
Dibenzo(a,h)anthracene	1.013	1.069		5.5	
Benzo(g,h,i)perylene	1.052	1.112		5.7	
1,2,4,5-Tetrachlorobenzene	0.478	0.520		8.9	
1,4-Dioxane	0.804	0.818		1.8	20.0
2,3,4,6-Tetrachlorophenol	0.304	0.303		0.4	
2-Fluorophenol	1.548	1.547		0.1	
Phenol-d5	1.909	1.947		2.0	
Nitrobenzene-d5	0.424	0.452		6.7	i

SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: CHEMTECH Contract: MSAN01

Instrument ID: BNA_F Calibration Date/Time: 08/23/2012 09:33

Lab File ID: BF058388.D Init. Calib. Date(s): 08/20/2012 08/20/2012

EPA Sample No.: SSTDCCC040 Init. Calib. Time(s): 13:17 15:47

GC Column: RTX-5 ID: 0.18 (mm)

COMPOUND	RRF	RRF040	MIN RRF	%D	MAX%D
2-Fluorobiphenyl	1.163	1.171		0.7	
2,4,6-Tribromophenol	0.145	0.139		4.4	
Terphenyl-d14	0.844	0.836		0.9	

All other compounds must meet a minimum RRF of 0.010.

SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: CHEMTECH Contract: MSAN01

Instrument ID: BNA_F Calibration Date/Time: 08/28/2012 13:26

Lab File ID: BF058464.D Init. Calib. Date(s): 08/24/2012 08/24/2012

EPA Sample No.: SSTDCCC040 Init. Calib. Time(s): 14:25 16:57

GC Column: RTX-5 ID: 0.18 (mm)

COMPOUND	RRF	RRF040	MIN RRF	%D	MAX%D
n-Nitrosodimethylamine	0.877	0.911		3.9	
Pyridine	1.902	1.800		5.4	
Benzaldehyde	1.016	1.033		1.7	
Aniline	2.172	2.082		4.1	
Phenol	2.244	2.187		2.5	20.0
bis(2-Chloroethyl)ether	1.578	1.527		3.2	
2-Chlorophenol	1.583	1.569		0.9	
1,2-Dichlorobenzene	1.391	1.350		2.9	
1,3-Dichlorobenzene	1.564	1.536		1.8	
1,4-Dichlorobenzene	1.563	1.541		1.4	20.0
Benzyl Alcohol	1.373	1.346		2.0	
2-Methylphenol	1.180	1.162		1.6	
2,2-oxybis(1-Chloropropane)	2.148	2.039		5.1	
Acetophenone	0.601	0.769		28.0	
3+4-Methylphenols	1.525	1.498		1.8	
n-Nitroso-di-n-propylamine	1.214	1.175	0.050	3.2	
Hexachloroethane	0.655	0.647		1.2	
Nitrobenzene	0.507	0.509		0.4	
Isophorone	0.842	0.862		2.4	
2-Nitrophenol	0.225	0.224		0.6	20.0
2,4-Dimethylphenol	0.368	0.365		0.9	
bis(2-Chloroethoxy)methane	0.487	0.483		0.7	
2,4-Dichlorophenol	0.313	0.319		2.0	20.0
1,2,4-Trichlorobenzene	0.313	0.314		0.2	
Benzoic acid	0.114	0.167		46.4	
Naphthalene	1.069	1.060		0.8	
4-Chloroaniline	0.441	0.429		2.7	
Hexachlorobutadiene	0.179	0.189		5.5	20.0
Caprolactam	0.104	0.105		1.1	
4-Chloro-3-methylphenol	0.383	0.389		1.6	20.0
2-Methylnaphthalene	0.670	0.677		1.0	
Hexachlorocyclopentadiene	0.282	0.294	0.050	4.2	
2,4,6-Trichlorophenol	0.405	0.411		1.5	20.0
2,4,5-Trichlorophenol	0.395	0.394		0.3	
1,1-Biphenyl	1.563	1.585		1.4	
2-Chloronaphthalene	1.217	1.212		0.4	
2-Nitroaniline	0.485	0.485		0.0	
Dimethylphthalate	1.577	1.582		0.3	
Acenaphthylene	1.917	1.868		2.6	
2,6-Dinitrotoluene	0.312	0.316		1.3	
3-Nitroaniline	0.375	0.370		1.3	1

7C

SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: CHEMTECH Contract: MSAN01

CHEM Case No.: D3811 SAS No.: D3811 D3811 Lab Code: SDG No.:

Instrument ID: BNA_F Calibration Date/Time: 08/28/2012 13:26

Lab File ID: BF058464.D Init. Calib. Date(s): 08/24/2012 08/24/2012

EPA Sample No.: SSTDCCC040 Init. Calib. Time(s): 14:25 16:57

COMPOUND	RRF	RRF040	MIN RRF	%D	MAX%D
Acenaphthene	1.157	1.162		0.4	20.0
2,4-Dinitrophenol	0.150	0.180	0.050	20.3	
4-Nitrophenol	0.316	0.304	0.050	3.7	
Dibenzofuran	1.740	1.745		0.3	
2,4-Dinitrotoluene	0.394	0.395		0.2	
Diethylphthalate	1.690	1.713		1.3	
4-Chlorophenyl-phenylether	0.627	0.647		3.2	
Fluorene	1.360	1.367		0.5	
4-Nitroaniline	0.352	0.339		3.8	
4,6-Dinitro-2-methylphenol	0.133	0.143		7.3	
n-Nitrosodiphenylamine	0.692	0.681		1.7	20.0
Azobenzene	1.856	1.845		0.6	
4-Bromophenyl-phenylether	0.193	0.198		2.8	
Hexachlorobenzene	0.204	0.205		0.4	
Atrazine	0.178	0.182		2.0	
Pentachlorophenol	0.126	0.143		13.7	20.0
Phenanthrene	1.086	1.086		0.0	
Anthracene	1.049	0.980		6.6	
Carbazole	1.154	1.141		1.1	
Di-n-butylphthalate	1.638	1.637		0.1	
Fluoranthene	1.124	1.135		1.0	20.0
Benzidine	0.482	0.405		15.9	
Pyrene	1.452	1.414		2.6	
Butylbenzylphthalate	0.890	0.864		2.9	
3,3-Dichlorobenzidine	0.332	0.311		6.3	
Benzo(a)anthracene	1.172	1.173		0.0	
Chrysene	1.163	1.136		2.3	
Bis(2-ethylhexyl)phthalate	1.177	1.162		1.3	
Di-n-octyl phthalate	1.883	1.825		3.1	20.0
Benzo(b) fluoranthene	1.175	1.131		3.7	
Benzo(k)fluoranthene	1.371	1.372		0.1	
Benzo(a)pyrene	1.146	1.130		1.4	20.0
Indeno(1,2,3-cd)pyrene	1.041	1.056		1.4	
Dibenzo(a,h)anthracene	0.982	0.997		1.5	
Benzo(g,h,i)perylene	1.070	1.067		0.3	
1,2,4,5-Tetrachlorobenzene	0.518	0.525		1.4	
1,4-Dioxane	0.754	0.745		1.1	20.0
2,3,4,6-Tetrachlorophenol	0.315	0.325		3.3	
2-Fluorophenol	1.461	1.417		3.0	
Phenol-d5	1.843	1.810		1.8	
Nitrobenzene-d5	0.468	0.471		0.6	

SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: CHEMTECH Contract: MSAN01

Instrument ID: BNA_F Calibration Date/Time: 08/28/2012 13:26

Lab File ID: BF058464.D Init. Calib. Date(s): 08/24/2012 08/24/2012

EPA Sample No.: SSTDCCC040 Init. Calib. Time(s): 14:25 16:57

GC Column: RTX-5 ID: 0.18 (mm)

COMPOUND	RRF	RRF040	MIN RRF	%D	MAX%D
2-Fluorobiphenyl	1.257	1.272		1.2	
2,4,6-Tribromophenol	0.133	0.143		7.8	
Terphenyl-d14	0.873	0.860		1.5	

All other compounds must meet a minimum RRF of 0.010.

SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: CHEMTECH Contract: MSAN01

CHEM Case No.: D3811 SAS No.: D3811 D3811 Lab Code: SDG No.:

Instrument ID: BNA_G Calibration Date/Time: 08/20/2012 18:27

Lab File ID: BG006779.D Init. Calib. Date(s): 08/20/2012 08/20/2012

EPA Sample No.: SSTDCCC040 Init. Calib. Time(s): 12:43 16:18

COMPOUND	RRF	RRF040	MIN RRF	%D	MAX%D
n-Nitrosodimethylamine	0.320	0.310		3.0	
Pyridine	1.247	1.168		6.4	
Benzaldehyde	0.689	0.708		2.8	
Aniline	1.779	1.715		3.6	
Phenol	1.679	1.637		2.5	20.0
bis(2-Chloroethyl)ether	1.155	1.129		2.2	
2-Chlorophenol	1.484	1.447		2.5	
1,2-Dichlorobenzene	1.523	1.476		3.1	
1,3-Dichlorobenzene	1.622	1.536		5.3	
1,4-Dichlorobenzene	1.640	1.569		4.3	20.0
Benzyl Alcohol	1.120	1.101		1.7	
2-Methylphenol	1.066	1.047		1.8	
2,2-oxybis(1-Chloropropane)	0.325	0.302		7.0	
Acetophenone	0.490	0.862		75.8	
3+4-Methylphenols	1.412	1.397		1.0	
n-Nitroso-di-n-propylamine	0.890	0.880	0.050	1.2	
Hexachloroethane	0.569	0.550		3.3	
Nitrobenzene	0.378	0.368		2.6	
Isophorone	0.629	0.608		3.4	
2-Nitrophenol	0.243	0.229		5.8	20.0
2,4-Dimethylphenol	0.336	0.317		5.6	
bis(2-Chloroethoxy)methane	0.369	0.349		5.5	
2,4-Dichlorophenol	0.393	0.388		1.2	20.0
1,2,4-Trichlorobenzene	0.411	0.395		3.8	
Benzoic acid	0.125	0.142		13.2	
Naphthalene	1.034	0.999		3.4	
4-Chloroaniline	0.449	0.423		5.7	
Hexachlorobutadiene	0.277	0.267		3.8	20.0
Caprolactam	0.115	0.115		0.1	
4-Chloro-3-methylphenol	0.357	0.355		0.7	20.0
2-Methylnaphthalene	0.754	0.734		2.6	
Hexachlorocyclopentadiene	0.339	0.340	0.050	0.4	
2,4,6-Trichlorophenol	0.486	0.478		1.6	20.0
2,4,5-Trichlorophenol	0.479	0.468		2.2	
1,1-Biphenyl	1.356	1.352		0.3	
2-Chloronaphthalene	1.191	1.191		0.0	
2-Nitroaniline	0.245	0.243		0.8	
Dimethylphthalate	1.622	1.650		1.7	
Acenaphthylene	1.684	1.642		2.5	
2,6-Dinitrotoluene	0.340	0.343		0.9	
3-Nitroaniline	0.339	0.338		0.3	

7C

SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: CHEMTECH Contract: MSAN01

Instrument ID: BNA_G Calibration Date/Time: 08/20/2012 18:27

Lab File ID: BG006779.D Init. Calib. Date(s): 08/20/2012 08/20/2012

EPA Sample No.: SSTDCCC040 Init. Calib. Time(s): 12:43 16:18

GC Column: RXI-5 ID: 0.25 (mm)

COMPOUND	RRF	RRF040	MIN RRF	%D	MAX%D
Acenaphthene	1.086	1.083		0.3	20.0
2,4-Dinitrophenol	0.112	0.143	0.050	27.8	
4-Nitrophenol	0.297	0.298	0.050	0.5	
Dibenzofuran	1.761	1.764		0.1	
2,4-Dinitrotoluene	0.457	0.458		0.2	
Diethylphthalate	1.514	1.523		0.6	
4-Chlorophenyl-phenylether	0.786	0.798		1.5	
Fluorene	1.387	1.390		0.2	
4-Nitroaniline	0.353	0.348		1.3	
4,6-Dinitro-2-methylphenol	0.131	0.147		12.1	
n-Nitrosodiphenylamine	0.660	0.665		0.7	20.0
Azobenzene	1.142	1.132		0.9	
4-Bromophenyl-phenylether	0.257	0.257		0.1	
Hexachlorobenzene	0.285	0.288		1.0	
Atrazine	0.234	0.238		1.8	
Pentachlorophenol	0.157	0.177		12.9	20.0
Phenanthrene	1.080	1.074		0.5	
Anthracene	1.078	1.048		2.8	
Carbazole	1.099	1.099		0.0	
Di-n-butylphthalate	1.345	1.338		0.5	
Fluoranthene	1.275	1.269		0.4	20.0
Benzidine	0.411	0.442		7.5	
Pyrene	1.194	1.175		1.6	
Butylbenzylphthalate	0.555	0.543		2.2	
3,3-Dichlorobenzidine	0.395	0.398		0.7	
Benzo(a)anthracene	1.090	1.069		1.9	
Chrysene	1.042	1.024		1.7	
Bis(2-ethylhexyl)phthalate	0.764	0.774		1.3	
Di-n-octyl phthalate	1.234	1.222		1.0	20.0
Benzo(b)fluoranthene	1.133	1.130		0.2	
Benzo(k)fluoranthene	1.138	1.114		2.2	
Benzo(a)pyrene	1.075	1.066		0.9	20.0
Indeno(1,2,3-cd)pyrene	1.245	1.252		0.5	
Dibenzo(a,h)anthracene	1.103	1.112		0.9	
Benzo(g,h,i)perylene	1.099	1.096		0.2	
1,2,4,5-Tetrachlorobenzene	0.641	0.633		1.2	
1,4-Dioxane	0.467	0.431		7.6	20.0
2,3,4,6-Tetrachlorophenol	0.437	0.435		0.3	
2-Fluorophenol	1.194	1.125		5.8	
Phenol-d5	1.556	1.480		4.9	
Nitrobenzene-d5	0.354	0.336		5.2	

SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: CHEMTECH Contract: MSAN01

Instrument ID: BNA_G Calibration Date/Time: 08/20/2012 18:27

Lab File ID: BG006779.D Init. Calib. Date(s): 08/20/2012 08/20/2012

EPA Sample No.: SSTDCCC040 Init. Calib. Time(s): 12:43 16:18

GC Column: RXI-5 ID: 0.25 (mm)

COMPOUND	RRF	RRF040	MIN RRF	%D	MAX%D
2-Fluorobiphenyl	1.259	1.269		0.8	
2,4,6-Tribromophenol	0.252	0.248		1.5	
Terphenyl-d14	0.823	0.797		3.2	

All other compounds must meet a minimum RRF of 0.010.

SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: CHEMTECH Contract: MSAN01

Instrument ID: BNA_G Calibration Date/Time: 08/21/2012 13:17

Lab File ID: BG006796.D Init. Calib. Date(s): 08/20/2012 08/20/2012

EPA Sample No.: SSTDCCC040 Init. Calib. Time(s): 12:43 16:18

GC Column: RXI-5 ID: 0.25	(mm)		1		
COMPOUND	RRF	RRF040	MIN RRF	%D	MAX%D
n-Nitrosodimethylamine	0.320	0.302		5.5	
Pyridine	1.247	1.213		2.8	
Benzaldehyde	0.689	0.714		3.6	
Aniline	1.779	1.806		1.5	
Phenol	1.679	1.724		2.7	20.0
bis(2-Chloroethyl)ether	1.155	1.169		1.2	
2-Chlorophenol	1.484	1.495		0.8	
1,2-Dichlorobenzene	1.523	1.496		1.8	
1,3-Dichlorobenzene	1.622	1.553		4.3	
1,4-Dichlorobenzene	1.640	1.579		3.7	20.0
Benzyl Alcohol	1.120	1.141		1.9	
2-Methylphenol	1.066	1.079		1.3	
2,2-oxybis(1-Chloropropane)	0.325	0.319		1.7	
Acetophenone	0.490	0.879		79.4	
3+4-Methylphenols	1.412	1.469		4.0	
n-Nitroso-di-n-propylamine	0.890	0.953	0.050	7.1	
Hexachloroethane	0.569	0.566		0.5	
Nitrobenzene	0.378	0.367		2.9	
Isophorone	0.629	0.642		2.1	
2-Nitrophenol	0.243	0.243		0.1	20.0
2,4-Dimethylphenol	0.336	0.332		1.1	
bis (2-Chloroethoxy) methane	0.369	0.370		0.3	
2,4-Dichlorophenol	0.393	0.386		1.7	20.0
1,2,4-Trichlorobenzene	0.411	0.403		2.1	
Benzoic acid	0.125	0.107		14.6	
Naphthalene	1.034	1.020		1.3	
4-Chloroaniline	0.449	0.444		1.0	
Hexachlorobutadiene	0.277	0.275		0.8	20.0
Caprolactam	0.115	0.119		3.4	
4-Chloro-3-methylphenol	0.357	0.367		2.8	20.0
2-Methylnaphthalene	0.754	0.761		1.0	
Hexachlorocyclopentadiene	0.339	0.319	0.050	5.9	
2,4,6-Trichlorophenol	0.486	0.471		3.1	20.0
2,4,5-Trichlorophenol	0.479	0.480		0.2	
1,1-Biphenyl	1.356	1.314		3.1	
2-Chloronaphthalene	1.191	1.168		1.9	
2-Nitroaniline	0.245	0.251		2.6	
Dimethylphthalate	1.622	1.593		1.8	
Acenaphthylene	1.684	1.624		3.6	
2,6-Dinitrotoluene	0.340	0.343		1.0	
3-Nitroaniline	0.339	0.341		0.5	

7C

SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: CHEMTECH Contract: MSAN01

Instrument ID: BNA_G Calibration Date/Time: 08/21/2012 13:17

Lab File ID: BG006796.D Init. Calib. Date(s): 08/20/2012 08/20/2012

EPA Sample No.: SSTDCCC040 Init. Calib. Time(s): 12:43 16:18

GC Column: RXI-5 ID: 0.25 (mm)

COMPOUND	RRF	RRF040	MIN RRF	%D	MAX%D
Acenaphthene	1.086	1.079		0.6	20.0
2,4-Dinitrophenol	0.112	0.145	0.050	29.4	
4-Nitrophenol	0.297	0.289	0.050	2.8	
Dibenzofuran	1.761	1.722		2.2	
2,4-Dinitrotoluene	0.457	0.457		0.0	
Diethylphthalate	1.514	1.526		0.8	
4-Chlorophenyl-phenylether	0.786	0.780		0.8	
Fluorene	1.387	1.370		1.3	
4-Nitroaniline	0.353	0.367		4.0	
4,6-Dinitro-2-methylphenol	0.131	0.158		20.3	
n-Nitrosodiphenylamine	0.660	0.647		1.9	20.0
Azobenzene	1.142	1.129		1.2	
4-Bromophenyl-phenylether	0.257	0.251		2.3	
Hexachlorobenzene	0.285	0.284		0.4	
Atrazine	0.234	0.230		1.6	
Pentachlorophenol	0.157	0.159		1.4	20.0
Phenanthrene	1.080	1.063		1.6	
Anthracene	1.078	1.014		5.9	
Carbazole	1.099	1.083		1.5	
Di-n-butylphthalate	1.345	1.332		1.0	
Fluoranthene	1.275	1.253		1.7	20.0
Benzidine	0.411	0.406		1.1	
Pyrene	1.194	1.150		3.7	
Butylbenzylphthalate	0.555	0.565		1.8	
3,3-Dichlorobenzidine	0.395	0.408		3.2	
Benzo(a)anthracene	1.090	1.068		2.1	
Chrysene	1.042	1.035		0.6	
Bis(2-ethylhexyl)phthalate	0.764	0.780		2.2	
Di-n-octyl phthalate	1.234	1.236		0.2	20.0
Benzo(b)fluoranthene	1.133	1.146		1.2	
Benzo(k)fluoranthene	1.138	1.120		1.6	
Benzo(a)pyrene	1.075	1.068		0.7	20.0
Indeno(1,2,3-cd)pyrene	1.245	1.107		11.1	
Dibenzo(a,h)anthracene	1.103	1.032		6.5	
Benzo(g,h,i)perylene	1.099	1.032		6.1	
1,2,4,5-Tetrachlorobenzene	0.641	0.614		4.1	
1,4-Dioxane	0.467	0.422		9.6	20.0
2,3,4,6-Tetrachlorophenol	0.437	0.424		2.9	
2-Fluorophenol	1.194	1.142		4.3	
Phenol-d5	1.556	1.544		0.8	
Nitrobenzene-d5	0.354	0.348		1.7	

SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: CHEMTECH Contract: MSAN01

Instrument ID: BNA_G Calibration Date/Time: 08/21/2012 13:17

Lab File ID: BG006796.D Init. Calib. Date(s): 08/20/2012 08/20/2012

EPA Sample No.: SSTDCCC040 Init. Calib. Time(s): 12:43 16:18

GC Column: RXI-5 ID: 0.25 (mm)

COMPOUND	RRF	RRF040	MIN RRF	%D	MAX%D
2-Fluorobiphenyl	1.259	1.224		2.8	
2,4,6-Tribromophenol	0.252	0.251		0.6	
Terphenyl-d14	0.823	0.788		4.3	

All other compounds must meet a minimum RRF of 0.010.

SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: CHEMTECH Contract: MSAN01

Instrument ID: BNA_G Calibration Date/Time: 08/22/2012 01:04

Lab File ID: BG006813.D Init. Calib. Date(s): 08/20/2012 08/20/2012

EPA Sample No.: SSTDCCC040 Init. Calib. Time(s): 12:43 16:18

GC Column: RXI-5 ID: 0.25 (mm)

COMPOUND	RRF	RRF040	MIN RRF	%D	MAX%D
n-Nitrosodimethylamine	0.320	0.323		1.0	
Pyridine	1.247	1.211		2.9	
Benzaldehyde	0.689	0.734		6.6	
Aniline	1.779	1.893		6.4	
Phenol	1.679	1.723		2.6	20.0
bis(2-Chloroethyl)ether	1.155	1.187		2.8	
2-Chlorophenol	1.484	1.514		2.0	
1,2-Dichlorobenzene	1.523	1.500		1.5	
1,3-Dichlorobenzene	1.622	1.607		0.9	
1,4-Dichlorobenzene	1.640	1.585		3.3	20.0
Benzyl Alcohol	1.120	1.192		6.4	
2-Methylphenol	1.066	1.089		2.1	
2,2-oxybis(1-Chloropropane)	0.325	0.318		2.0	
Acetophenone	0.490	0.886		80.8	
3+4-Methylphenols	1.412	1.529		8.3	
n-Nitroso-di-n-propylamine	0.890	0.928	0.050	4.3	
Hexachloroethane	0.569	0.567		0.4	
Nitrobenzene	0.378	0.379		0.4	
Isophorone	0.629	0.644		2.4	
2-Nitrophenol	0.243	0.245		0.8	20.0
2,4-Dimethylphenol	0.336	0.337		0.2	
bis(2-Chloroethoxy)methane	0.369	0.373		1.0	
2,4-Dichlorophenol	0.393	0.404		2.8	20.0
1,2,4-Trichlorobenzene	0.411	0.410		0.3	
Benzoic acid	0.125	0.143		14.5	
Naphthalene	1.034	1.027		0.7	
4-Chloroaniline	0.449	0.435		3.1	
Hexachlorobutadiene	0.277	0.265		4.5	20.0
Caprolactam	0.115	0.116		0.5	
4-Chloro-3-methylphenol	0.357	0.380		6.3	20.0
2-Methylnaphthalene	0.754	0.761		1.0	
Hexachlorocyclopentadiene	0.339	0.313	0.050	7.5	
2,4,6-Trichlorophenol	0.486	0.471		3.2	20.0
2,4,5-Trichlorophenol	0.479	0.464		3.1	
1,1-Biphenyl	1.356	1.347		0.7	
2-Chloronaphthalene	1.191	1.179		1.0	
2-Nitroaniline	0.245	0.241		1.5	
Dimethylphthalate	1.622	1.611		0.7	
Acenaphthylene	1.684	1.618		3.9	
2,6-Dinitrotoluene	0.340	0.342		0.7	
3-Nitroaniline	0.339	0.342		0.8	

SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: CHEMTECH Contract: MSAN01

CHEM Case No.: D3811 SAS No.: D3811 D3811 Lab Code: SDG No.:

Instrument ID: BNA_G Calibration Date/Time: 08/22/2012 01:04

Lab File ID: BG006813.D Init. Calib. Date(s): 08/20/2012 08/20/2012

EPA Sample No.: SSTDCCC040 Init. Calib. Time(s): 12:43 16:18

COMPOUND	RRF	RRF040	MIN RRF	%D	MAX%D
Acenaphthene	1.086	1.090		0.4	20.0
2,4-Dinitrophenol	0.112	0.163	0.050	45.8	
4-Nitrophenol	0.297	0.288	0.050	3.1	
Dibenzofuran	1.761	1.738		1.3	
2,4-Dinitrotoluene	0.457	0.462		1.2	
Diethylphthalate	1.514	1.524		0.6	
4-Chlorophenyl-phenylether	0.786	0.782		0.6	
Fluorene	1.387	1.394		0.5	
4-Nitroaniline	0.353	0.364		3.2	
4,6-Dinitro-2-methylphenol	0.131	0.165		26.1	
n-Nitrosodiphenylamine	0.660	0.641		2.9	20.0
Azobenzene	1.142	1.136		0.5	
4-Bromophenyl-phenylether	0.257	0.256		0.6	
Hexachlorobenzene	0.285	0.281		1.3	
Atrazine	0.234	0.231		1.1	
Pentachlorophenol	0.157	0.169		7.5	20.0
Phenanthrene	1.080	1.054		2.4	
Anthracene	1.078	1.033		4.2	
Carbazole	1.099	1.095		0.4	
Di-n-butylphthalate	1.345	1.336		0.7	
Fluoranthene	1.275	1.276		0.0	20.0
Benzidine	0.411	0.481		16.9	
Pyrene	1.194	1.141		4.5	
Butylbenzylphthalate	0.555	0.554		0.2	
3,3-Dichlorobenzidine	0.395	0.399		1.0	
Benzo(a)anthracene	1.090	1.062		2.6	
Chrysene	1.042	1.025		1.6	
Bis(2-ethylhexyl)phthalate	0.764	0.777		1.7	
Di-n-octyl phthalate	1.234	1.225		0.7	20.0
Benzo(b) fluoranthene	1.133	1.168		3.1	
Benzo(k)fluoranthene	1.138	1.141		0.3	
Benzo(a)pyrene	1.075	1.069		0.5	20.0
Indeno(1,2,3-cd)pyrene	1.245	1.115		10.4	
Dibenzo(a,h)anthracene	1.103	1.048		5.0	
Benzo(g,h,i)perylene	1.099	1.032		6.1	
1,2,4,5-Tetrachlorobenzene	0.641	0.617		3.8	
1,4-Dioxane	0.467	0.454		2.8	20.0
2,3,4,6-Tetrachlorophenol	0.437	0.425		2.7	
2-Fluorophenol	1.194	1.172		1.8	
Phenol-d5	1.556	1.578		1.4	
Nitrobenzene-d5	0.354	0.354		0.1	

7C

SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: CHEMTECH Contract: MSAN01

Instrument ID: BNA_G Calibration Date/Time: 08/22/2012 01:04

Lab File ID: BG006813.D Init. Calib. Date(s): 08/20/2012 08/20/2012

EPA Sample No.: SSTDCCC040 Init. Calib. Time(s): 12:43 16:18

GC Column: RXI-5 ID: 0.25 (mm)

COMPOUND	RRF	RRF040	MIN RRF	%D	MAX%D
2-Fluorobiphenyl	1.259	1.235		1.9	
2,4,6-Tribromophenol	0.252	0.243		3.5	
Terphenyl-d14	0.823	0.795		3.5	

All other compounds must meet a minimum RRF of 0.010.

LAB CHRONICLE

OrderID: D3811 **OrderDate:** 8/15/2012 11:38:54 AM

Client: MS Analytical Project: 12MS104 Kensington Heights

Contact: Bryan Mayback Location:

LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
D3811-01	SB-2(4-8)	SOIL			08/07/12			08/15/12
			Herbicide	8151A		08/15/12	08/23/12	
			PCB	8082A		08/15/12	08/21/12	
			Pesticide-TCL	8081B		08/15/12	08/17/12	
D3811-02	SB-5(8-12)	SOIL			08/07/12			08/15/12
			Herbicide	8151A		08/15/12	08/23/12	
			PCB	8082A		08/15/12	08/21/12	
			Pesticide-TCL	8081B		08/15/12	08/17/12	
D3811-03	SB-9(4-7)	SOIL			08/07/12			08/15/12
			Herbicide	8151A		08/15/12	08/23/12	
			РСВ	8082A		08/15/12	08/21/12	
			Pesticide-TCL	8081B		08/15/12	08/17/12	
D3811-05	SB-11(12-16)	SOIL			08/07/12			08/15/12
	- (-,		Herbicide	8151A		08/15/12	08/23/12	
			РСВ	8082A		08/15/12	08/21/12	
			Pesticide-TCL	8081B		08/15/12	08/17/12	
D3811-06	SB-15(12-16)	SOIL			08/08/12			08/15/12
	, ,		Herbicide	8151A		08/15/12	08/23/12	
			РСВ	8082A		08/15/12	08/21/12	
			Pesticide-TCL	8081B		08/15/12	08/17/12	
D3811-07	SB-18(4-8)	SOIL			08/08/12			08/15/12
			Herbicide	8151A		08/15/12	08/23/12	
			РСВ	8082A		08/15/12	08/21/12	
			Pesticide-TCL	8081B		08/15/12	08/17/12	
D3811-10	SB-21(16-19)	SOIL			08/09/12			08/15/12
	•		Herbicide	8151A		08/15/12	08/23/12	
			РСВ	8082A		08/15/12	08/21/12	

			LAB CHRON	ICLE				
			Pesticide-TCL	8081B		08/15/12	08/17/12	
D3811-10RE	SB-21(16-19)RE	SOIL			08/09/12			08/15/12
			PCB	8082A		08/15/12	08/21/12	
D3811-11	SB-22(12-19)	SOIL			08/09/12			08/15/12
20011 11	35 ==(1= 15)	5012	Herbicide	8151A	00,00,11	08/15/12	08/23/12	00, 10, 11
			PCB	8082A		08/15/12	08/21/12	
			Pesticide-TCL	8081B		08/15/12	08/17/12	
D3811-13	SB-37(8-10)	SOIL			08/10/12			08/15/12
20022 20	02 07 (0 20)		Herbicide	8151A	00, 10, 11	08/15/12	08/23/12	00, 10, 11
			PCB	8082A		08/15/12	08/21/12	
			Pesticide-TCL	8081B		08/15/12	08/17/12	
D2011 14	CD 20/6 9)	SOIL			08/10/12			08/15/12
D3811-14	SB-39(6-8)	SUIL	l la ubiai da	01514	08/10/12	00/15/12	00/22/12	08/15/12
			Herbicide PCB	8151A 8082A		08/15/12 08/15/12	08/23/12 08/21/12	
			Pesticide-TCL	8081B		08/15/12	08/21/12	
			resticide rec	00015		00/13/12	00/17/12	
D3811-15	SB-41(8-11)	SOIL			08/10/12			08/15/12
			Herbicide	8151A		08/15/12	08/23/12	
			PCB	8082A		08/15/12	08/21/12	
			Pesticide-TCL	8081B		08/15/12	08/17/12	
D3811-17	SB-43(6-8)	SOIL			08/13/12			08/15/12
			Herbicide	8151A		08/15/12	08/23/12	
			PCB	8082A		08/15/12	08/21/12	
			Pesticide-TCL	8081B		08/15/12	08/17/12	
D3811-18	SB-43(10-12)	SOIL			08/13/12			08/15/12
			Herbicide	8151A		08/15/12	08/23/12	
			PCB	8082A		08/15/12	08/21/12	
			Pesticide-TCL	8081B		08/15/12	08/17/12	
D3811-18RE	SB-43(10-12)RE	SOIL			08/13/12			08/15/12
			PCB	8082A		08/15/12	08/21/12	
D3811-19	SB-43(16-20)	SOIL			08/13/12			08/15/12
			Herbicide	8151A		08/15/12	08/23/12	
			РСВ	8082A		08/15/12	08/21/12	
			Pesticide-TCL	8081B		08/15/12	08/18/12	

LAB CHRONICLE

D3811-21	SB-46(12-16)	SOIL		08/13			08/15/12
			Herbicide	8151A	08/15/12	08/23/12	

 Herbicide
 8151A
 08/15/12
 08/23/12

 PCB
 8082A
 08/15/12
 08/21/12

 Pesticide-TCL
 8081B
 08/15/12
 08/18/12

Ľ

C

D

F

Hit Summary Sheet SW-846

SDG No.:
Client:

Project ID:

Client ID

Client ID

Parameter

Concentration

C MDL

LOD

RDL

Units

Client ID:

Total Concentration:

F

D

SAMPLE DATA

Client: MS Analytical Date Collected: 08/07/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SDG No.: D3811 SB-2(4-8) Lab Sample ID: D3811-01 Matrix: SOIL Analytical Method: SW8081B % Moisture: 13.4 Decanted: Sample Wt/Vol: Final Vol: 10000 30.05 Units: g uL Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume

GPC Factor: 1.0 PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID PD012349.D 1 08/15/12 08/17/12 PB65124

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
319-84-6	alpha-BHC	1	U	0.15	1	2	ug/Kg
319-85-7	beta-BHC	1	U	0.21	1	2	ug/Kg
319-86-8	delta-BHC	1	U	0.12	1	2	ug/Kg
58-89-9	gamma-BHC	1	U	0.17	1	2	ug/Kg
76-44-8	Heptachlor	1	U	0.16	1	2	ug/Kg
309-00-2	Aldrin	1	U	0.12	1	2	ug/Kg
1024-57-3	Heptachlor epoxide	1	U	0.18	1	2	ug/Kg
959-98-8	Endosulfan I	1	U	0.17	1	2	ug/Kg
60-57-1	Dieldrin	1	U	0.15	1	2	ug/Kg
72-55-9	4,4-DDE	1	U	0.23	1	2	ug/Kg
72-20-8	Endrin	1	U	0.21	1	2	ug/Kg
33213-65-9	Endosulfan II	1	U	0.16	1	2	ug/Kg
72-54-8	4,4-DDD	1	U	0.2	1	2	ug/Kg
1031-07-8	Endosulfan Sulfate	1	U	0.17	1	2	ug/Kg
50-29-3	4,4-DDT	1	U	0.16	1	2	ug/Kg
72-43-5	Methoxychlor	1	U	0.2	1	2	ug/Kg
53494-70-5	Endrin ketone	1	U	0.15	1	2	ug/Kg
7421-93-4	Endrin aldehyde	1	U	0.17	1	2	ug/Kg
5103-71-9	alpha-Chlordane	1	U	0.16	1	2	ug/Kg
5103-74-2	gamma-Chlordane	1	U	0.15	1	2	ug/Kg
8001-35-2	Toxaphene	10	U	3.9	10	20	ug/Kg
SURROGATES							
2051-24-3	Decachlorobiphenyl	40.4	*	10 - 169)	202%	SPK: 2
877-09-8	Tetrachloro-m-xylene	22.3		31 - 15	1	112%	SPK: 2

08/07/12

13.4

Decanted:

% Moisture:

Analytical Method:

Report of Analysis

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-2(4-8) SDG No.: D3811

Lab Sample ID: D3811-01 Matrix: SOIL

Sample Wt/Vol: 30.05 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume 1

GPC Factor: 1.0 PH: N/A

SW8081B

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PD012349.D 1 08/15/12 08/17/12 PB65124

CAS Number Parameter Conc. Qualifier MDL LOD LOQ/CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

18.7

Decanted:

Report of Analysis

Client: MS Analytical Date Collected: 08/07/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-5(8-12) SDG No.: D3811 Lab Sample ID: D3811-02 Matrix: SOIL Analytical Method: SW8081B % Moisture:

Sample Wt/Vol: Units: Final Vol: 10000 30.04 g uL

Soil Aliquot Vol: uL Test: Pesticide-TCL

Injection Volume Extraction Type:

GPC Factor: 1.0 PH: N/A

Date Analyzed Prep Batch ID File ID/Qc Batch: Dilution: Prep Date PD012350.D 1 08/15/12 08/17/12 PB65124

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
319-84-6	alpha-BHC	1.05	U	0.16	1.05	2.1	ug/Kg
319-85-7	beta-BHC	1.05	U	0.22	1.05	2.1	ug/Kg
319-86-8	delta-BHC	1.05	U	0.12	1.05	2.1	ug/Kg
58-89-9	gamma-BHC	1.05	U	0.18	1.05	2.1	ug/Kg
76-44-8	Heptachlor	1.05	U	0.17	1.05	2.1	ug/Kg
309-00-2	Aldrin	1.05	U	0.12	1.05	2.1	ug/Kg
1024-57-3	Heptachlor epoxide	1.05	U	0.2	1.05	2.1	ug/Kg
959-98-8	Endosulfan I	1.05	U	0.18	1.05	2.1	ug/Kg
60-57-1	Dieldrin	1.05	U	0.16	1.05	2.1	ug/Kg
72-55-9	4,4-DDE	1.05	U	0.25	1.05	2.1	ug/Kg
72-20-8	Endrin	1.05	U	0.22	1.05	2.1	ug/Kg
33213-65-9	Endosulfan II	1.05	U	0.17	1.05	2.1	ug/Kg
72-54-8	4,4-DDD	1.05	U	0.21	1.05	2.1	ug/Kg
1031-07-8	Endosulfan Sulfate	1.05	U	0.18	1.05	2.1	ug/Kg
50-29-3	4,4-DDT	1.05	U	0.17	1.05	2.1	ug/Kg
72-43-5	Methoxychlor	1.05	U	0.21	1.05	2.1	ug/Kg
53494-70-5	Endrin ketone	1.05	U	0.16	1.05	2.1	ug/Kg
7421-93-4	Endrin aldehyde	1.05	U	0.18	1.05	2.1	ug/Kg
5103-71-9	alpha-Chlordane	1.05	U	0.17	1.05	2.1	ug/Kg
5103-74-2	gamma-Chlordane	1.05	U	0.16	1.05	2.1	ug/Kg
8001-35-2	Toxaphene	10.5	U	4.2	10.5	21	ug/Kg
SURROGATES							
2051-24-3	Decachlorobiphenyl	19.5		10 - 169)	97%	SPK: 2
877-09-8	Tetrachloro-m-xylene	21		31 - 15	l	105%	SPK: 2

Client: MS Analytical Date Collected: 08/07/12

Project:

12MS104 Kensington Heights

08/15/12

Client Sample ID:

SB-5(8-12)

Lab Sample ID:

D3811-02

SDG No.:

Date Received:

D3811

Matrix:

Final Vol:

SOIL

Analytical Method:

SW8081B

% Moisture:

18.7

Decanted: иL

Sample Wt/Vol: Soil Aliquot Vol: 30.04

Units: g

иL

10000

Extraction Type:

Pesticide-TCL Test:

GPC Factor:

1.0

1

PH: N/A

Injection Volume

Prep Batch ID

File ID/Qc Batch: PD012350.D

Dilution:

Prep Date 08/15/12

Date Analyzed 08/17/12

PB65124

Parameter

Conc.

Qualifier

MDL

LOD LOQ / CRQL Units

CAS Number

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

uL

Report of Analysis

Client: MS Analytical Date Collected: 08/07/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-9(4-7) SDG No.: D3811 Lab Sample ID: D3811-03 Matrix: SOIL Analytical Method: SW8081B % Moisture: 16.1 Decanted: Sample Wt/Vol: Units: Final Vol: 10000 30.03 g

Soil Aliquot Vol: uL Test: Pesticide-TCL

Injection Volume Extraction Type:

GPC Factor: 1.0 PH: N/A

Date Analyzed Prep Batch ID File ID/Qc Batch: Dilution: Prep Date PD012351.D 1 08/15/12 08/17/12 PB65124

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
319-84-6	alpha-BHC	1	U	0.15	1	2	ug/Kg
319-85-7	beta-BHC	1	U	0.21	1	2	ug/Kg
319-86-8	delta-BHC	1	U	0.12	1	2	ug/Kg
58-89-9	gamma-BHC	1	U	0.18	1	2	ug/Kg
76-44-8	Heptachlor	1	U	0.17	1	2	ug/Kg
309-00-2	Aldrin	1	U	0.12	1	2	ug/Kg
1024-57-3	Heptachlor epoxide	1	U	0.19	1	2	ug/Kg
959-98-8	Endosulfan I	1	U	0.18	1	2	ug/Kg
60-57-1	Dieldrin	1	U	0.15	1	2	ug/Kg
72-55-9	4,4-DDE	1	U	0.24	1	2	ug/Kg
72-20-8	Endrin	1	U	0.21	1	2	ug/Kg
33213-65-9	Endosulfan II	1	U	0.17	1	2	ug/Kg
72-54-8	4,4-DDD	1	U	0.2	1	2	ug/Kg
1031-07-8	Endosulfan Sulfate	1	U	0.18	1	2	ug/Kg
50-29-3	4,4-DDT	1	U	0.17	1	2	ug/Kg
72-43-5	Methoxychlor	1	U	0.2	1	2	ug/Kg
53494-70-5	Endrin ketone	1	U	0.15	1	2	ug/Kg
7421-93-4	Endrin aldehyde	1	U	0.18	1	2	ug/Kg
5103-71-9	alpha-Chlordane	1	U	0.17	1	2	ug/Kg
5103-74-2	gamma-Chlordane	1	U	0.15	1	2	ug/Kg
8001-35-2	Toxaphene	10	U	4	10	20	ug/Kg
SURROGATES							
2051-24-3	Decachlorobiphenyl	20.9		10 - 169)	105%	SPK: 2
877-09-8	Tetrachloro-m-xylene	23.3		31 - 15	1	117%	SPK: 2

Client: MS Analytical

Date Collected: 08/07/12

Project: 12MS104 Kensington Heights 08/15/12

Client Sample ID: SB-9(4-7) SDG No.: D3811

Lab Sample ID: D3811-03 Matrix: **SOIL**

Analytical Method: SW8081B

% Moisture: 16.1 Decanted:

Sample Wt/Vol: Soil Aliquot Vol: g иL

Units:

Final Vol: 10000 иL

Test:

Pesticide-TCL

Extraction Type:

File ID/Qc Batch:

1.0

1

30.03

PH: N/A

Injection Volume

Date Analyzed

Date Received:

Prep Batch ID

PB65124

PD012351.D

GPC Factor:

Dilution:

Prep Date 08/15/12

08/17/12

CAS Number Parameter Conc. **Qualifier MDL** LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Decanted:

Report of Analysis

Client: MS Analytical Date Collected: 08/07/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-11(12-16) SDG No.: D3811 Lab Sample ID: D3811-05 Matrix: SOIL Analytical Method: SW8081B % Moisture: 25.6

Sample Wt/Vol: 30.05 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume 1

GPC Factor: 1.0 PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID PD012352.D 1 08/15/12 08/17/12 PB65124

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
319-84-6	alpha-BHC	1.15	U	0.17	1.15	2.3	ug/Kg
319-85-7	beta-BHC	1.15	U	0.24	1.15	2.3	ug/Kg
319-86-8	delta-BHC	1.15	U	0.13	1.15	2.3	ug/Kg
58-89-9	gamma-BHC	1.15	U	0.2	1.15	2.3	ug/Kg
76-44-8	Heptachlor	1.15	U	0.19	1.15	2.3	ug/Kg
309-00-2	Aldrin	1.15	U	0.13	1.15	2.3	ug/Kg
1024-57-3	Heptachlor epoxide	1.15	U	0.21	1.15	2.3	ug/Kg
959-98-8	Endosulfan I	1.15	U	0.2	1.15	2.3	ug/Kg
60-57-1	Dieldrin	1.15	U	0.17	1.15	2.3	ug/Kg
72-55-9	4,4-DDE	1.15	U	0.27	1.15	2.3	ug/Kg
72-20-8	Endrin	1.15	U	0.24	1.15	2.3	ug/Kg
33213-65-9	Endosulfan II	1.15	U	0.19	1.15	2.3	ug/Kg
72-54-8	4,4-DDD	1.15	U	0.23	1.15	2.3	ug/Kg
1031-07-8	Endosulfan Sulfate	1.15	U	0.2	1.15	2.3	ug/Kg
50-29-3	4,4-DDT	1.15	U	0.19	1.15	2.3	ug/Kg
72-43-5	Methoxychlor	1.15	U	0.23	1.15	2.3	ug/Kg
53494-70-5	Endrin ketone	1.15	U	0.17	1.15	2.3	ug/Kg
7421-93-4	Endrin aldehyde	1.15	U	0.2	1.15	2.3	ug/Kg
5103-71-9	alpha-Chlordane	1.15	U	0.19	1.15	2.3	ug/Kg
5103-74-2	gamma-Chlordane	1.15	U	0.17	1.15	2.3	ug/Kg
8001-35-2	Toxaphene	11.5	U	4.6	11.5	23	ug/Kg
SURROGATES							
2051-24-3	Decachlorobiphenyl	18.6		10 - 169)	93%	SPK: 2
877-09-8	Tetrachloro-m-xylene	18.7		31 - 15	l	94%	SPK: 2

Project:

Report of Analysis

Client: MS Analytical

12MS104 Kensington Heights Date Received: 08/15/12

Date Collected:

08/07/12

Client Sample ID: SB-11(12-16) SDG No.: D3811

Lab Sample ID: D3811-05 Matrix: SOIL

Analytical Method: SW8081B % Moisture: 25.6 Decanted:

Sample Wt/Vol: 30.05 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume 1

GPC Factor: 1.0 PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PD012352.D 1 08/15/12 08/17/12 PB65124

CAS Number Parameter Conc. Qualifier MDL LOD LOQ/CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Final Vol:

Decanted:

uL

10000

Sample Wt/Vol:

Report of Analysis

Client: MS Analytical Date Collected: 08/08/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-15(12-16) SDG No.: D3811 Lab Sample ID: D3811-06 Matrix: SOIL Analytical Method: SW8081B % Moisture: 28.4

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume 1

g

GPC Factor: 1.0 PH: N/A

30.07

Units:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID PD012353.D 1 08/15/12 08/17/12 PB65124

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
319-84-6	alpha-BHC	1.2	U	0.18	1.2	2.4	ug/Kg
319-85-7	beta-BHC	1.2	U	0.25	1.2	2.4	ug/Kg
319-86-8	delta-BHC	1.2	U	0.14	1.2	2.4	ug/Kg
58-89-9	gamma-BHC	1.2	U	0.21	1.2	2.4	ug/Kg
76-44-8	Heptachlor	1.2	U	0.2	1.2	2.4	ug/Kg
309-00-2	Aldrin	1.2	U	0.14	1.2	2.4	ug/Kg
1024-57-3	Heptachlor epoxide	1.2	U	0.22	1.2	2.4	ug/Kg
959-98-8	Endosulfan I	1.2	U	0.21	1.2	2.4	ug/Kg
60-57-1	Dieldrin	1.2	U	0.18	1.2	2.4	ug/Kg
72-55-9	4,4-DDE	1.2	U	0.28	1.2	2.4	ug/Kg
72-20-8	Endrin	1.2	U	0.25	1.2	2.4	ug/Kg
33213-65-9	Endosulfan II	1.2	U	0.2	1.2	2.4	ug/Kg
72-54-8	4,4-DDD	1.2	U	0.24	1.2	2.4	ug/Kg
1031-07-8	Endosulfan Sulfate	1.2	U	0.21	1.2	2.4	ug/Kg
50-29-3	4,4-DDT	1.2	U	0.2	1.2	2.4	ug/Kg
72-43-5	Methoxychlor	1.2	U	0.24	1.2	2.4	ug/Kg
53494-70-5	Endrin ketone	1.2	U	0.18	1.2	2.4	ug/Kg
7421-93-4	Endrin aldehyde	1.2	U	0.21	1.2	2.4	ug/Kg
5103-71-9	alpha-Chlordane	1.2	U	0.2	1.2	2.4	ug/Kg
5103-74-2	gamma-Chlordane	1.2	U	0.18	1.2	2.4	ug/Kg
8001-35-2	Toxaphene	12	U	4.7	12	24	ug/Kg
SURROGATES							
2051-24-3	Decachlorobiphenyl	18.4		10 - 169)	92%	SPK: 2
877-09-8	Tetrachloro-m-xylene	12.7		31 - 151	l	63%	SPK: 2

Client: MS Analytical

Date Collected: 08/08/12

Project: 12MS104 Kensington Heights 08/15/12

Client Sample ID: SB-15(12-16) SDG No.: D3811

Lab Sample ID: D3811-06 Matrix:

Date Received:

Analytical Method:

SW8081B

SOIL

Decanted:

Sample Wt/Vol:

30.07 Units: % Moisture: Final Vol:

10000 иL

Soil Aliquot Vol:

g иL

Test:

Pesticide-TCL

28.4

Extraction Type:

Injection Volume

GPC Factor:

File ID/Qc Batch:

1.0

1

PH: N/A

Date Analyzed

Prep Batch ID

PD012353.D

Dilution:

Prep Date 08/15/12

08/17/12

PB65124

CAS Number

Parameter

Conc.

Qualifier

LOQ / CRQL Units

MDL

LOD

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Decanted:

uL

Report of Analysis

Client: MS Analytical Date Collected: 08/08/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SDG No.: D3811 SB-18(4-8) Lab Sample ID: D3811-07 Matrix: SOIL Analytical Method: SW8081B % Moisture: 16.2 Sample Wt/Vol: Final Vol: 10000 30.07 Units: g

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume 1

GPC Factor: 1.0 PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
PD012354.D 1 08/15/12 08/17/12 PB65124

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
319-84-6	alpha-BHC	1	U	0.15	1	2	ug/Kg
319-85-7	beta-BHC	1	U	0.21	1	2	ug/Kg
319-86-8	delta-BHC	1	U	0.12	1	2	ug/Kg
58-89-9	gamma-BHC	1	U	0.18	1	2	ug/Kg
76-44-8	Heptachlor	1	U	0.17	1	2	ug/Kg
309-00-2	Aldrin	1	U	0.12	1	2	ug/Kg
1024-57-3	Heptachlor epoxide	1	U	0.19	1	2	ug/Kg
959-98-8	Endosulfan I	1	U	0.18	1	2	ug/Kg
60-57-1	Dieldrin	1	U	0.15	1	2	ug/Kg
72-55-9	4,4-DDE	1	U	0.24	1	2	ug/Kg
72-20-8	Endrin	1	U	0.21	1	2	ug/Kg
33213-65-9	Endosulfan II	1	U	0.17	1	2	ug/Kg
72-54-8	4,4-DDD	1	U	0.2	1	2	ug/Kg
1031-07-8	Endosulfan Sulfate	1	U	0.18	1	2	ug/Kg
50-29-3	4,4-DDT	1	U	0.17	1	2	ug/Kg
72-43-5	Methoxychlor	1	U	0.2	1	2	ug/Kg
53494-70-5	Endrin ketone	1	U	0.15	1	2	ug/Kg
7421-93-4	Endrin aldehyde	1	U	0.18	1	2	ug/Kg
5103-71-9	alpha-Chlordane	1	U	0.17	1	2	ug/Kg
5103-74-2	gamma-Chlordane	1	U	0.15	1	2	ug/Kg
8001-35-2	Toxaphene	10	U	4	10	20	ug/Kg
SURROGATES							
2051-24-3	Decachlorobiphenyl	21.8		10 - 169		109%	SPK: 2
877-09-8	Tetrachloro-m-xylene	25		31 - 15	l	125%	SPK:

Client: MS Analytical Date Collected: 08/08/12

Project:

12MS104 Kensington Heights

08/15/12

Client Sample ID:

SB-18(4-8)

Date Received:

Lab Sample ID:

D3811-07

SDG No.:

D3811

SW8081B

Matrix:

SOIL

Analytical Method:

Units: g % Moisture: Final Vol:

16.2 10000 Decanted: иL

Sample Wt/Vol: Soil Aliquot Vol: 30.07

иL

Test:

Pesticide-TCL

Extraction Type:

GPC Factor:

Injection Volume

File ID/Qc Batch:

1.0

1

PH: N/A

Prep Date

Date Analyzed

Prep Batch ID

PD012354.D

Dilution:

08/15/12

08/17/12

CAS Number

Parameter

Conc.

Qualifier

MDL

LOD

PB65124

LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Final Vol:

Decanted:

uL

10000

Sample Wt/Vol:

Report of Analysis

Client: MS Analytical Date Collected: 08/09/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-21(16-19) SDG No.: D3811 Lab Sample ID: D3811-10 Matrix: SOIL Analytical Method: SW8081B % Moisture: 31.9

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume 1

g

GPC Factor: 1.0 PH: N/A

30.09

Units:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID PD012355.D 1 08/15/12 08/17/12 PB65124

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
319-84-6	alpha-BHC	1.25	U	0.19	1.25	2.5	ug/Kg
319-85-7	beta-BHC	1.25	U	0.26	1.25	2.5	ug/Kg
319-86-8	delta-BHC	1.25	U	0.15	1.25	2.5	ug/Kg
58-89-9	gamma-BHC	1.25	U	0.22	1.25	2.5	ug/Kg
76-44-8	Heptachlor	1.25	U	0.2	1.25	2.5	ug/Kg
309-00-2	Aldrin	1.25	U	0.15	1.25	2.5	ug/Kg
1024-57-3	Heptachlor epoxide	1.25	U	0.23	1.25	2.5	ug/Kg
959-98-8	Endosulfan I	1.25	U	0.22	1.25	2.5	ug/Kg
60-57-1	Dieldrin	1.25	U	0.19	1.25	2.5	ug/Kg
72-55-9	4,4-DDE	1.25	U	0.29	1.25	2.5	ug/Kg
72-20-8	Endrin	1.25	U	0.26	1.25	2.5	ug/Kg
33213-65-9	Endosulfan II	1.25	U	0.2	1.25	2.5	ug/Kg
72-54-8	4,4-DDD	1.25	U	0.25	1.25	2.5	ug/Kg
1031-07-8	Endosulfan Sulfate	1.25	U	0.22	1.25	2.5	ug/Kg
50-29-3	4,4-DDT	1.25	U	0.2	1.25	2.5	ug/Kg
72-43-5	Methoxychlor	1.25	U	0.25	1.25	2.5	ug/Kg
53494-70-5	Endrin ketone	1.25	U	0.19	1.25	2.5	ug/Kg
7421-93-4	Endrin aldehyde	1.25	U	0.22	1.25	2.5	ug/Kg
5103-71-9	alpha-Chlordane	1.25	U	0.2	1.25	2.5	ug/Kg
5103-74-2	gamma-Chlordane	1.25	U	0.19	1.25	2.5	ug/Kg
8001-35-2	Toxaphene	12.5	U	5	12.5	25	ug/Kg
SURROGATES							
2051-24-3	Decachlorobiphenyl	9.11		10 - 169)	46%	SPK:
877-09-8	Tetrachloro-m-xylene	14.1		31 - 15	l	71%	SPK:

Client: MS Analytical

Date Collected: 08/09/12

Project: 12MS104 Kensington Heights

Date Received: 08/15/12

Client Sample ID: SB-21(16-19)

SDG No.: D3811

Lab Sample ID: D3811-10

Matrix: SOIL

Analytical Method: SW8081B % Moisture:

31.9 Decanted:

Sample Wt/Vol: 30.09 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume

GPC Factor: 1.0 PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PD012355.D 1 08/15/12 08/17/12 PB65124

CAS Number Parameter Conc. Qualifier MDL LOD LOQ/CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Client: MS Analytical Date Collected: 08/09/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-22(12-19) SDG No.: D3811 Lab Sample ID: D3811-11 Matrix: SOIL

Analytical Method: SW8081B % Moisture: 8.9 Decanted: Sample Wt/Vol: 30.04 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume

GPC Factor: 1.0 PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID PD012356.D 1 08/15/12 08/17/12 PB65124

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
319-84-6	alpha-BHC	0.95	U	0.14	0.95	1.9	ug/Kg
319-85-7	beta-BHC	0.95	U	0.2	0.95	1.9	ug/Kg
319-86-8	delta-BHC	0.95	U	0.11	0.95	1.9	ug/Kg
58-89-9	gamma-BHC	0.95	U	0.16	0.95	1.9	ug/Kg
76-44-8	Heptachlor	0.95	U	0.15	0.95	1.9	ug/Kg
309-00-2	Aldrin	0.95	U	0.11	0.95	1.9	ug/Kg
1024-57-3	Heptachlor epoxide	0.95	U	0.18	0.95	1.9	ug/Kg
959-98-8	Endosulfan I	0.95	U	0.16	0.95	1.9	ug/Kg
60-57-1	Dieldrin	0.95	U	0.14	0.95	1.9	ug/Kg
72-55-9	4,4-DDE	0.95	U	0.22	0.95	1.9	ug/Kg
72-20-8	Endrin	0.95	U	0.2	0.95	1.9	ug/Kg
33213-65-9	Endosulfan II	0.95	U	0.15	0.95	1.9	ug/Kg
72-54-8	4,4-DDD	0.95	U	0.19	0.95	1.9	ug/Kg
1031-07-8	Endosulfan Sulfate	0.95	U	0.16	0.95	1.9	ug/Kg
50-29-3	4,4-DDT	0.95	U	0.15	0.95	1.9	ug/Kg
72-43-5	Methoxychlor	0.95	U	0.19	0.95	1.9	ug/Kg
53494-70-5	Endrin ketone	0.95	U	0.14	0.95	1.9	ug/Kg
7421-93-4	Endrin aldehyde	0.95	U	0.16	0.95	1.9	ug/Kg
5103-71-9	alpha-Chlordane	0.95	U	0.15	0.95	1.9	ug/Kg
5103-74-2	gamma-Chlordane	0.95	U	0.14	0.95	1.9	ug/Kg
8001-35-2	Toxaphene	9.5	U	3.7	9.5	19	ug/Kg
SURROGATES							
2051-24-3	Decachlorobiphenyl	18		10 - 169)	90%	SPK: 20
877-09-8	Tetrachloro-m-xylene	20		31 - 151	1	100%	SPK: 20

Client: MS Analytical Date Collected: 08/09/12

Project:

12MS104 Kensington Heights

08/15/12

Client Sample ID:

SB-22(12-19)

SDG No.:

Lab Sample ID:

D3811-11

D3811

Analytical Method:

Matrix:

Date Received:

SOIL

10000

SW8081B

% Moisture: Final Vol:

8.9

Decanted:

иL

Sample Wt/Vol: Soil Aliquot Vol: 30.04 Units:

Test:

Pesticide-TCL

Extraction Type:

1.0

PH: N/A

g

иL

Injection Volume

File ID/Qc Batch:

Dilution:

Date Analyzed Prep Date

Prep Batch ID PB65124

PD012356.D

CAS Number

GPC Factor:

1

08/15/12

08/17/12

Parameter

Conc.

Qualifier

MDL

LOD

LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Injection Volume

Decanted:

uL

Extraction Type:

Report of Analysis

Client: MS Analytical Date Collected: 08/10/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-37(8-10) SDG No.: D3811 Lab Sample ID: D3811-13 Matrix: SOIL Analytical Method: SW8081B % Moisture: 29.6

Sample Wt/Vol: 30.06 Units: g Final Vol: 10000

Soil Aliquot Vol: uL Test: Pesticide-TCL

GPC Factor: 1.0 PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
PD012359.D 1 08/15/12 08/17/12 PB65124

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
319-84-6	alpha-BHC	1.2	U	0.18	1.2	2.4	ug/Kg
319-85-7	beta-BHC	1.2	U	0.26	1.2	2.4	ug/Kg
319-86-8	delta-BHC	1.2	U	0.14	1.2	2.4	ug/Kg
58-89-9	gamma-BHC	1.2	U	0.21	1.2	2.4	ug/Kg
76-44-8	Heptachlor	1.2	U	0.2	1.2	2.4	ug/Kg
309-00-2	Aldrin	1.2	U	0.14	1.2	2.4	ug/Kg
1024-57-3	Heptachlor epoxide	1.2	U	0.23	1.2	2.4	ug/Kg
959-98-8	Endosulfan I	1.2	U	0.21	1.2	2.4	ug/Kg
60-57-1	Dieldrin	1.2	U	0.18	1.2	2.4	ug/Kg
72-55-9	4,4-DDE	1.2	U	0.28	1.2	2.4	ug/Kg
72-20-8	Endrin	1.2	U	0.26	1.2	2.4	ug/Kg
33213-65-9	Endosulfan II	1.2	U	0.2	1.2	2.4	ug/Kg
72-54-8	4,4-DDD	1.2	U	0.24	1.2	2.4	ug/Kg
1031-07-8	Endosulfan Sulfate	1.2	U	0.21	1.2	2.4	ug/Kg
50-29-3	4,4-DDT	1.2	U	0.2	1.2	2.4	ug/Kg
72-43-5	Methoxychlor	1.2	U	0.24	1.2	2.4	ug/Kg
53494-70-5	Endrin ketone	1.2	U	0.18	1.2	2.4	ug/Kg
7421-93-4	Endrin aldehyde	1.2	U	0.21	1.2	2.4	ug/Kg
5103-71-9	alpha-Chlordane	1.2	U	0.2	1.2	2.4	ug/Kg
5103-74-2	gamma-Chlordane	1.2	U	0.18	1.2	2.4	ug/Kg
8001-35-2	Toxaphene	12	U	4.8	12	24	ug/Kg
SURROGATES							
2051-24-3	Decachlorobiphenyl	4.89		10 - 169)	24%	SPK: 2
877-09-8	Tetrachloro-m-xylene	16		31 - 151	1	80%	SPK: 2

Client: MS Analytical

Date Collected: 08/10/12

Project:

12MS104 Kensington Heights

Date Received:

08/15/12

Client Sample ID:

SB-37(8-10)

SDG No.:

D3811

Lab Sample ID:

D3811-13

Matrix:

SOIL

Analytical Method:

SW8081B

% Moisture:

29.6

Sample Wt/Vol:

30.06

Units: g Final Vol:

10000

Soil Aliquot Vol:

иL

Test:

Pesticide-TCL

Extraction Type:

Injection Volume

GPC Factor:

1.0

1

PH: N/A

Date Analyzed

Prep Batch ID

Decanted:

иL

PD012359.D

File ID/Qc Batch:

Dilution:

Prep Date 08/15/12

08/17/12

PB65124

CAS Number

Parameter

Conc.

Qualifier

MDL

LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Final Vol:

Decanted:

uL

10000

Sample Wt/Vol:

Report of Analysis

Client: MS Analytical Date Collected: 08/10/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-39(6-8) SDG No.: D3811 Lab Sample ID: D3811-14 Matrix: SOIL 8.1 Analytical Method: % Moisture: SW8081B

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume 1

g

GPC Factor: 1.0 PH: N/A

30.11

Units:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
PD012360.D 1 08/15/12 08/17/12 PB65124

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
319-84-6	alpha-BHC	0.9	U	0.14	0.9	1.8	ug/Kg
319-85-7	beta-BHC	0.9	U	0.2	0.9	1.8	ug/Kg
319-86-8	delta-BHC	0.9	U	0.11	0.9	1.8	ug/Kg
58-89-9	gamma-BHC	0.9	U	0.16	0.9	1.8	ug/Kg
76-44-8	Heptachlor	0.9	U	0.15	0.9	1.8	ug/Kg
309-00-2	Aldrin	0.9	U	0.11	0.9	1.8	ug/Kg
1024-57-3	Heptachlor epoxide	0.9	U	0.17	0.9	1.8	ug/Kg
959-98-8	Endosulfan I	0.9	U	0.16	0.9	1.8	ug/Kg
60-57-1	Dieldrin	0.9	U	0.14	0.9	1.8	ug/Kg
72-55-9	4,4-DDE	0.9	U	0.22	0.9	1.8	ug/Kg
72-20-8	Endrin	0.9	U	0.2	0.9	1.8	ug/Kg
33213-65-9	Endosulfan II	0.9	U	0.15	0.9	1.8	ug/Kg
72-54-8	4,4-DDD	0.9	U	0.18	0.9	1.8	ug/Kg
1031-07-8	Endosulfan Sulfate	0.9	U	0.16	0.9	1.8	ug/Kg
50-29-3	4,4-DDT	0.9	U	0.15	0.9	1.8	ug/Kg
72-43-5	Methoxychlor	0.9	U	0.18	0.9	1.8	ug/Kg
53494-70-5	Endrin ketone	0.9	U	0.14	0.9	1.8	ug/Kg
7421-93-4	Endrin aldehyde	0.9	U	0.16	0.9	1.8	ug/Kg
5103-71-9	alpha-Chlordane	0.9	U	0.15	0.9	1.8	ug/Kg
5103-74-2	gamma-Chlordane	0.9	U	0.14	0.9	1.8	ug/Kg
8001-35-2	Toxaphene	9	U	3.7	9	18	ug/Kg
SURROGATES							
2051-24-3	Decachlorobiphenyl	15.6		10 - 169)	78%	SPK: 2
877-09-8	Tetrachloro-m-xylene	19.1		31 - 151	[96%	SPK: 2

Date Collected:

Final Vol:

08/10/12

10000

иL

Project:

Sample Wt/Vol:

Report of Analysis

Client: MS Analytical

Units:

12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-39(6-8) SDG No.: D3811

Lab Sample ID: D3811-14 Matrix: SOIL

Analytical Method: SW8081B % Moisture: 8.1 Decanted:

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume 1

g

GPC Factor: 1.0 PH: N/A

30.11

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PD012360.D 1 08/15/12 08/17/12 PB65124

CAS Number Parameter Conc. Qualifier MDL LOD LOQ/CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Decanted:

Report of Analysis

Client: MS Analytical Date Collected: 08/10/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SDG No.: D3811 SB-41(8-11) Lab Sample ID: D3811-15 Matrix: SOIL Analytical Method: SW8081B % Moisture: 18.8

Sample Wt/Vol: 30.07 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume 1

GPC Factor: 1.0 PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
PD012361.D 1 08/15/12 08/17/12 PB65124

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRO	QL Units
TARGETS							
319-84-6	alpha-BHC	1.05	U	0.16	1.05	2.1	ug/Kg
319-85-7	beta-BHC	1.05	U	0.22	1.05	2.1	ug/Kg
319-86-8	delta-BHC	1.05	U	0.12	1.05	2.1	ug/Kg
58-89-9	gamma-BHC	1.05	U	0.18	1.05	2.1	ug/Kg
76-44-8	Heptachlor	1.05	U	0.17	1.05	2.1	ug/Kg
309-00-2	Aldrin	1.05	U	0.12	1.05	2.1	ug/Kg
1024-57-3	Heptachlor epoxide	1.05	U	0.2	1.05	2.1	ug/Kg
959-98-8	Endosulfan I	1.05	U	0.18	1.05	2.1	ug/Kg
60-57-1	Dieldrin	1.05	U	0.16	1.05	2.1	ug/Kg
72-55-9	4,4-DDE	1.05	U	0.25	1.05	2.1	ug/Kg
72-20-8	Endrin	1.05	U	0.22	1.05	2.1	ug/Kg
33213-65-9	Endosulfan II	1.05	U	0.17	1.05	2.1	ug/Kg
72-54-8	4,4-DDD	1.05	U	0.21	1.05	2.1	ug/Kg
1031-07-8	Endosulfan Sulfate	1.05	U	0.18	1.05	2.1	ug/Kg
50-29-3	4,4-DDT	1.05	U	0.17	1.05	2.1	ug/Kg
72-43-5	Methoxychlor	1.05	U	0.21	1.05	2.1	ug/Kg
53494-70-5	Endrin ketone	1.05	U	0.16	1.05	2.1	ug/Kg
7421-93-4	Endrin aldehyde	1.05	U	0.18	1.05	2.1	ug/Kg
5103-71-9	alpha-Chlordane	1.05	U	0.17	1.05	2.1	ug/Kg
5103-74-2	gamma-Chlordane	1.05	U	0.16	1.05	2.1	ug/Kg
8001-35-2	Toxaphene	10.5	U	4.2	10.5	21	ug/Kg
SURROGATES							
2051-24-3	Decachlorobiphenyl	20.6		10 - 169)	103%	SPK: 20
877-09-8	Tetrachloro-m-xylene	21.7		31 - 151	l	109%	SPK: 20

Client: MS Analytical

Date Collected: 08/10/12

Project: 12MS104 Kensington Heights 08/15/12

Decanted:

Client Sample ID: SB-41(8-11)

Extraction Type:

SDG No.: D3811

Date Received:

Lab Sample ID: D3811-15

Analytical Method: SW8081B Matrix: **SOIL** % Moisture: 18.8

Sample Wt/Vol: 30.07 Units: g

Final Vol: 10000 иL

Pesticide-TCL Soil Aliquot Vol: иL Test:

Injection Volume

1.0 PH: N/A GPC Factor:

File ID/Qc Batch: Dilution: Date Analyzed Prep Batch ID Prep Date

08/17/12 PD012361.D 1 08/15/12 PB65124

CAS Number Parameter Conc. **Qualifier MDL** LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Final Vol:

Decanted:

uL

10000

Sample Wt/Vol:

Report of Analysis

Client: MS Analytical Date Collected: 08/13/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SDG No.: D3811 SB-43(6-8) Lab Sample ID: D3811-17 Matrix: SOIL Analytical Method: SW8081B % Moisture: 8.2

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume 1

g

GPC Factor: 1.0 PH: N/A

30.02

Units:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID PD012362.D 1 08/15/12 08/17/12 PB65124

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
319-84-6	alpha-BHC	0.95	U	0.14	0.95	1.9	ug/Kg
319-85-7	beta-BHC	0.95	U	0.2	0.95	1.9	ug/Kg
319-86-8	delta-BHC	0.95	U	0.11	0.95	1.9	ug/Kg
58-89-9	gamma-BHC	0.95	U	0.16	0.95	1.9	ug/Kg
76-44-8	Heptachlor	0.95	U	0.15	0.95	1.9	ug/Kg
309-00-2	Aldrin	0.95	U	0.11	0.95	1.9	ug/Kg
1024-57-3	Heptachlor epoxide	0.95	U	0.17	0.95	1.9	ug/Kg
959-98-8	Endosulfan I	0.95	U	0.16	0.95	1.9	ug/Kg
60-57-1	Dieldrin	0.95	U	0.14	0.95	1.9	ug/Kg
72-55-9	4,4-DDE	0.95	U	0.22	0.95	1.9	ug/Kg
72-20-8	Endrin	0.95	U	0.2	0.95	1.9	ug/Kg
33213-65-9	Endosulfan II	0.95	U	0.15	0.95	1.9	ug/Kg
72-54-8	4,4-DDD	0.95	U	0.19	0.95	1.9	ug/Kg
1031-07-8	Endosulfan Sulfate	0.95	U	0.16	0.95	1.9	ug/Kg
50-29-3	4,4-DDT	0.95	U	0.15	0.95	1.9	ug/Kg
72-43-5	Methoxychlor	0.95	U	0.19	0.95	1.9	ug/Kg
53494-70-5	Endrin ketone	0.95	U	0.14	0.95	1.9	ug/Kg
7421-93-4	Endrin aldehyde	0.95	U	0.16	0.95	1.9	ug/Kg
5103-71-9	alpha-Chlordane	0.95	U	0.15	0.95	1.9	ug/Kg
5103-74-2	gamma-Chlordane	0.95	U	0.14	0.95	1.9	ug/Kg
8001-35-2	Toxaphene	9.5	U	3.7	9.5	19	ug/Kg
SURROGATES							
2051-24-3	Decachlorobiphenyl	17.1		10 - 169)	86%	SPK: 2
877-09-8	Tetrachloro-m-xylene	20.9		31 - 15	1	104%	SPK: 2

Date Collected:

Final Vol:

08/13/12

10000

иL

Sample Wt/Vol:

Report of Analysis

Client: MS Analytical

Units:

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-43(6-8) SDG No.: D3811

Lab Sample ID: D3811-17 Matrix: SOIL

Analytical Method: SW8081B % Moisture: 8.2 Decanted:

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume 1

g

GPC Factor: 1.0 PH: N/A

30.02

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PD012362.D 1 08/15/12 08/17/12 PB65124

CAS Number Parameter Conc. Qualifier MDL LOD LOQ/CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Decanted:

Report of Analysis

Client: MS Analytical Date Collected: 08/13/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-43(10-12) SDG No.: D3811 Lab Sample ID: D3811-18 Matrix: SOIL Analytical Method: SW8081B % Moisture: 17.9

Sample Wt/Vol: 30.04 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume 1

GPC Factor: 1.0 PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID PD012363.D 1 08/15/12 08/17/12 PB65124

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
319-84-6	alpha-BHC	1.05	U	0.16	1.05	2.1	ug/Kg
319-85-7	beta-BHC	1.05	U	0.22	1.05	2.1	ug/Kg
319-86-8	delta-BHC	1.05	U	0.12	1.05	2.1	ug/Kg
58-89-9	gamma-BHC	1.05	U	0.18	1.05	2.1	ug/Kg
76-44-8	Heptachlor	1.05	U	0.17	1.05	2.1	ug/Kg
309-00-2	Aldrin	1.05	U	0.12	1.05	2.1	ug/Kg
1024-57-3	Heptachlor epoxide	1.05	U	0.19	1.05	2.1	ug/Kg
959-98-8	Endosulfan I	1.05	U	0.18	1.05	2.1	ug/Kg
60-57-1	Dieldrin	1.05	U	0.16	1.05	2.1	ug/Kg
72-55-9	4,4-DDE	1.05	U	0.24	1.05	2.1	ug/Kg
72-20-8	Endrin	1.05	U	0.22	1.05	2.1	ug/Kg
33213-65-9	Endosulfan II	1.05	U	0.17	1.05	2.1	ug/Kg
72-54-8	4,4-DDD	1.05	U	0.21	1.05	2.1	ug/Kg
1031-07-8	Endosulfan Sulfate	1.05	U	0.18	1.05	2.1	ug/Kg
50-29-3	4,4-DDT	1.05	U	0.17	1.05	2.1	ug/Kg
72-43-5	Methoxychlor	1.05	U	0.21	1.05	2.1	ug/Kg
53494-70-5	Endrin ketone	1.05	U	0.16	1.05	2.1	ug/Kg
7421-93-4	Endrin aldehyde	1.05	U	0.18	1.05	2.1	ug/Kg
5103-71-9	alpha-Chlordane	1.05	U	0.17	1.05	2.1	ug/Kg
5103-74-2	gamma-Chlordane	1.05	U	0.16	1.05	2.1	ug/Kg
8001-35-2	Toxaphene	10.5	U	4.1	10.5	21	ug/Kg
SURROGATES							
2051-24-3	Decachlorobiphenyl	15.5		10 - 169)	78%	SPK: 2
877-09-8	Tetrachloro-m-xylene	19.3		31 - 151	1	96%	SPK: 2

Client: MS Analytical Date Collected: 08/13/12

Project:

12MS104 Kensington Heights

08/15/12

Client Sample ID:

SB-43(10-12)

SDG No.:

Lab Sample ID:

D3811-18

Date Received:

D3811

17.9

SW8081B

Matrix:

SOIL

Decanted:

иL

Analytical Method: Sample Wt/Vol:

Units: g

иL

% Moisture: Final Vol:

10000

Soil Aliquot Vol:

30.04

Test:

Pesticide-TCL

Extraction Type:

GPC Factor:

1.0

1

PH: N/A

Injection Volume

Prep Batch ID

File ID/Qc Batch: PD012363.D

Dilution:

Prep Date 08/15/12

08/17/12

PB65124

CAS Number

Parameter

Conc.

Date Analyzed

LOD LOQ / CRQL Units

Qualifier

MDL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Decanted:

uL

Report of Analysis

Client: MS Analytical Date Collected: 08/13/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-43(16-20) SDG No.: D3811 Lab Sample ID: D3811-19 Matrix: SOIL Analytical Method: SW8081B % Moisture: 29.3 Sample Wt/Vol: Final Vol: 10000 30.08 Units: g

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume

GPC Factor: 1.0 PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
PD012364.D 1 08/15/12 08/18/12 PB65124

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
319-84-6	alpha-BHC	1.2	U	0.18	1.2	2.4	ug/Kg
319-85-7	beta-BHC	1.2	U	0.25	1.2	2.4	ug/Kg
319-86-8	delta-BHC	1.2	U	0.14	1.2	2.4	ug/Kg
58-89-9	gamma-BHC	1.2	U	0.21	1.2	2.4	ug/Kg
76-44-8	Heptachlor	1.2	U	0.2	1.2	2.4	ug/Kg
309-00-2	Aldrin	1.2	U	0.14	1.2	2.4	ug/Kg
1024-57-3	Heptachlor epoxide	1.2	U	0.23	1.2	2.4	ug/Kg
959-98-8	Endosulfan I	1.2	U	0.21	1.2	2.4	ug/Kg
60-57-1	Dieldrin	1.2	U	0.18	1.2	2.4	ug/Kg
72-55-9	4,4-DDE	1.2	U	0.28	1.2	2.4	ug/Kg
72-20-8	Endrin	1.2	U	0.25	1.2	2.4	ug/Kg
33213-65-9	Endosulfan II	1.2	U	0.2	1.2	2.4	ug/Kg
72-54-8	4,4-DDD	1.2	U	0.24	1.2	2.4	ug/Kg
1031-07-8	Endosulfan Sulfate	1.2	U	0.21	1.2	2.4	ug/Kg
50-29-3	4,4-DDT	1.2	U	0.2	1.2	2.4	ug/Kg
72-43-5	Methoxychlor	1.2	U	0.24	1.2	2.4	ug/Kg
53494-70-5	Endrin ketone	1.2	U	0.18	1.2	2.4	ug/Kg
7421-93-4	Endrin aldehyde	1.2	U	0.21	1.2	2.4	ug/Kg
5103-71-9	alpha-Chlordane	1.2	U	0.2	1.2	2.4	ug/Kg
5103-74-2	gamma-Chlordane	1.2	U	0.18	1.2	2.4	ug/Kg
8001-35-2	Toxaphene	12	U	4.8	12	24	ug/Kg
SURROGATES							
2051-24-3	Decachlorobiphenyl	13.1		10 - 169)	65%	SPK: 2
877-09-8	Tetrachloro-m-xylene	14.5		31 - 15	[72%	SPK: 2

Client: MS Analytical

Units:

Date Collected: 08/13/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-43(16-20) SDG No.: D3811

Lab Sample ID: D3811-19 Matrix: **SOIL**

Analytical Method: SW8081B % Moisture: 29.3 Decanted:

Pesticide-TCL

Sample Wt/Vol:

Final Vol: 10000 иL

Soil Aliquot Vol: Extraction Type:

Injection Volume

GPC Factor:

1.0

1

30.08

PH: N/A

g

иL

Date Analyzed

Prep Batch ID

PB65124

PD012364.D

File ID/Qc Batch:

Dilution:

Prep Date 08/15/12

08/18/12

Test:

CAS Number

Parameter

Conc.

Qualifier

MDL

LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Decanted:

Report of Analysis

Client: MS Analytical Date Collected: 08/13/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SDG No.: D3811 SB-46(12-16) Lab Sample ID: D3811-21 Matrix: SOIL Analytical Method: SW8081B % Moisture: 28.2

Sample Wt/Vol: 30.07 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume 1

GPC Factor: 1.0 PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
PD012365.D 1 08/15/12 08/18/12 PB65124

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
319-84-6	alpha-BHC	1.2	U	0.18	1.2	2.4	ug/Kg
319-85-7	beta-BHC	1.2	U	0.25	1.2	2.4	ug/Kg
319-86-8	delta-BHC	1.2	U	0.14	1.2	2.4	ug/Kg
58-89-9	gamma-BHC	1.2	U	0.21	1.2	2.4	ug/Kg
76-44-8	Heptachlor	1.2	U	0.19	1.2	2.4	ug/Kg
309-00-2	Aldrin	1.2	U	0.14	1.2	2.4	ug/Kg
1024-57-3	Heptachlor epoxide	1.2	U	0.22	1.2	2.4	ug/Kg
959-98-8	Endosulfan I	1.2	U	0.21	1.2	2.4	ug/Kg
60-57-1	Dieldrin	1.2	U	0.18	1.2	2.4	ug/Kg
72-55-9	4,4-DDE	1.2	U	0.28	1.2	2.4	ug/Kg
72-20-8	Endrin	1.2	U	0.25	1.2	2.4	ug/Kg
33213-65-9	Endosulfan II	1.2	U	0.19	1.2	2.4	ug/Kg
72-54-8	4,4-DDD	1.2	U	0.24	1.2	2.4	ug/Kg
1031-07-8	Endosulfan Sulfate	1.2	U	0.21	1.2	2.4	ug/Kg
50-29-3	4,4-DDT	1.2	U	0.19	1.2	2.4	ug/Kg
72-43-5	Methoxychlor	1.2	U	0.24	1.2	2.4	ug/Kg
53494-70-5	Endrin ketone	1.2	U	0.18	1.2	2.4	ug/Kg
7421-93-4	Endrin aldehyde	1.2	U	0.21	1.2	2.4	ug/Kg
5103-71-9	alpha-Chlordane	1.2	U	0.19	1.2	2.4	ug/Kg
5103-74-2	gamma-Chlordane	1.2	U	0.18	1.2	2.4	ug/Kg
8001-35-2	Toxaphene	12	U	4.7	12	24	ug/Kg
SURROGATES							
2051-24-3	Decachlorobiphenyl	14.9		10 - 169)	75%	SPK: 2
877-09-8	Tetrachloro-m-xylene	16.4		31 - 151	l	82%	SPK: 2

Client: MS Analytical Date Collected: 08/13/12

Project:

12MS104 Kensington Heights

Units:

08/15/12

Client Sample ID:

SB-46(12-16)

Lab Sample ID:

D3811-21

SDG No.:

Date Received:

D3811

Matrix:

SOIL

Analytical Method:

SW8081B

% Moisture: Final Vol:

28.2

Decanted:

Sample Wt/Vol: Soil Aliquot Vol: 30.07

g

10000 иL

иL

Test:

Pesticide-TCL

Extraction Type:

GPC Factor:

PD012365.D

1.0

1

PH: N/A

Injection Volume

Prep Batch ID

File ID/Qc Batch:

Dilution:

Prep Date 08/15/12

08/18/12

PB65124

CAS Number

Parameter

Conc.

Qualifier

Date Analyzed

MDL

LOD

LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

QC SUMMARY

Surrogate Summary

SDG No.: <u>D3811</u>

Client: MS Analytical

Analytical Method:

EPA SW-846 8081

								Li	mits
Lab Sample ID	Client ID	Parameter	Column	Spike	Result	Recovery	Qual	Low	Hig
.BLK-PD012269.D	PIBLK-PD012269.D	Decachlorobiphenyl	1	20	21.67	108		10	192
		Tetrachloro-m-xylene	1	20	21.92	110		10	172
		Decachlorobiphenyl	2	20	22.56	113		10	192
		Tetrachloro-m-xylene	2	20	24.05	120		10	172
.BLK-PD012344.D	PIBLK-PD012344.D	Decachlorobiphenyl	1	20	20.06	100		10	192
		Tetrachloro-m-xylene	1	20	21.64	108		10	172
		Decachlorobiphenyl	2	20	16.28	81		10	192
		Tetrachloro-m-xylene	2	20	22.88	114		10	172
B65124BL	PB65124BL	Decachlorobiphenyl	1	20	18.61	93		10	169
		Tetrachloro-m-xylene	1	20	19.59	98		31	151
		Decachlorobiphenyl	2	20	15.13	76		10	169
		Tetrachloro-m-xylene	2	20	21.06	105		31	151
PB65124BS	PB65124BS	Decachlorobiphenyl	1	20	18.86	94		10	169
		Tetrachloro-m-xylene	1	20	20.16	101		31	151
		Decachlorobiphenyl	2	20	15.48	77		10	169
		Tetrachloro-m-xylene	2	20	20.07	100		31	151
03811-01	SB-2(4-8)	Decachlorobiphenyl	1	20	40.45	202	*	10	169
	,	Tetrachloro-m-xylene	1	20	22.31	112		31	151
		Decachlorobiphenyl	2	20	13.61	68		10	169
		Tetrachloro-m-xylene		20	16.94	85		31	151
03811-02	SB-5(8-12)	Decachlorobiphenyl	1	20	19.49	97		10	169
		Tetrachloro-m-xylene		20	20.97	105		31	151
		Decachlorobiphenyl	2	20	12.1	61		10	169
		Tetrachloro-m-xylene		20	16.37	82		31	151
03811-03	SB-9(4-7)	Decachlorobiphenyl	1	20	20.93	105		10	169
55011 05	32)(. 7)	Tetrachloro-m-xylene		20	23.34	117		31	151
		Decachlorobiphenyl	2	20	14.63	73		10	169
		Tetrachloro-m-xylene		20	22.23	111		31	151
03811-05	SB-11(12-16)	Decachlorobiphenyl	1	20	18.6	93		10	169
JJ011-0J	ор-11(12-10)	Tetrachloro-m-xylene	1	20	18.71	93		31	151
		Decachlorobiphenyl	2	20	13.18	94 66		10	169
		Tetrachloro-m-xylene		20	14.17	71		31	151
03811-06	SB-15(12-16)	Decachlorobiphenyl	1	20	18.36	92		10	169
75011-00	о р- 13(12 - 10)	Tetrachloro-m-xylene		20	12.67	63		31	151
					10.9				
		Decachlorobiphenyl	2	20		55 28	*	10	169
22011 07	CD 10(4.0)	Tetrachloro-m-xylene		20	5.58	28	·r	31	151
03811-07	SB-18(4-8)	Decachlorobiphenyl	1	20	21.81	109		10	169
		Tetrachloro-m-xylene		20	25.04	125		31	151
		Decachlorobiphenyl	2	20	13.1	66		10	169
		Tetrachloro-m-xylene		20	22.72	114		31	151
D3811-10	SB-21(16-19)	Decachlorobiphenyl	1	20	9.11	46		10	169
		Tetrachloro-m-xylene		20	14.14	71		31	151
		Decachlorobiphenyl	2	20	8.05	40		10	169
		Tetrachloro-m-xylene	2	20	4.76	24	*	31	151

Surrogate Summary

SDG No.: D3811

Client: MS Analytical

								Li	mits
Lab Sample ID	Client ID	Parameter	Column	Spike	Result	Recovery	Qual	Low	Higl
03811-11	SB-22(12-19)	Decachlorobiphenyl	1	20	18.04	90		10	169
		Tetrachloro-m-xylene	1	20	20.03	100		31	151
		Decachlorobiphenyl	2	20	10.61	53		10	169
		Tetrachloro-m-xylene	2	20	12.78	64		31	151
.BLK-PD012357.D	PIBLK-PD012357.D	Decachlorobiphenyl	1	20	24.85	124		10	192
		Tetrachloro-m-xylene	1	20	22.19	111		10	172
		Decachlorobiphenyl	2	20	9.93	50		10	192
		Tetrachloro-m-xylene	2	20	20.23	101		10	172
03811-13	SB-37(8-10)	Decachlorobiphenyl	1	20	4.89	24		10	169
		Tetrachloro-m-xylene	1	20	15.95	80		31	151
		Decachlorobiphenyl	2	20	12.56	63		10	169
		Tetrachloro-m-xylene	2	20	15.73	79		31	151
03811-14	SB-39(6-8)	Decachlorobiphenyl	1	20	15.6	78		10	169
		Tetrachloro-m-xylene	1	20	19.12	96		31	151
		Decachlorobiphenyl	2	20	10	50		10	169
		Tetrachloro-m-xylene	2	20	13.83	69		31	151
D3811-15	SB-41(8-11)	Decachlorobiphenyl	1	20	20.6	103		10	169
		Tetrachloro-m-xylene	1	20	21.71	109		31	151
		Decachlorobiphenyl	2	20	11.23	56		10	169
		Tetrachloro-m-xylene	2	20	15.05	75		31	151
D3811-17	SB-43(6-8)	Decachlorobiphenyl	1	20	17.11	86		10	169
		Tetrachloro-m-xylene	1	20	20.88	104		31	151
		Decachlorobiphenyl	2	20	16.67	83		10	169
		Tetrachloro-m-xylene		20	13.56	68		31	151
03811-18	SB-43(10-12)	Decachlorobiphenyl	1	20	15.54	78		10	169
	,	Tetrachloro-m-xylene	1	20	19.27	96		31	151
		Decachlorobiphenyl	2	20	7.63	38		10	169
		Tetrachloro-m-xylene		20	13.33	67		31	151
03811-19	SB-43(16-20)	Decachlorobiphenyl	1	20	13.06	65		10	169
	2_ ((((((((((((((((((((Tetrachloro-m-xylene	1	20	14.48	72		31	151
		Decachlorobiphenyl	2	20	5.1	26		10	169
		Tetrachloro-m-xylene	2	20	8.61	43		31	151
03811-21	SB-46(12-16)	Decachlorobiphenyl	1	20	14.91	.5 75		10	169
2011 21	35 10(12 10)	Tetrachloro-m-xylene	1	20	16.43	82		31	151
		Decachlorobiphenyl	2	20	8.47	42		10	169
		Tetrachloro-m-xylene	2	20	12.99	65		31	151
03811-06MS	SB-15(12-16)MS	Decachlorobiphenyl	1	20	18.91	95		10	169
2011 001110	55 13(12 10)IVIO	Tetrachloro-m-xylene	1	20	16.11	81		31	151
		Decachlorobiphenyl	2	20	6.74	34		10	169
		Tetrachloro-m-xylene	2	20	17.15	86		31	151
03811-06MSD	SB-15(12-16)MSD	Decachlorobiphenyl		20	19.52	98		10	169
23011-00MSD	5D-13(12-10)MSD	Tetrachloro-m-xylene	1 1	20	19.52	98 80		31	151
		Decachlorobiphenyl	2	20	12.46	62		10	169
		Tetrachloro-m-xylene		20	13.11	66		31	151

Surrogate Summary

SDG No.: D3811

Client: MS Analytical

							Limi		mits
Lab Sample ID	Client ID	Parameter	Column	Spike	Result	Recovery	Qual	Low	High
I.BLK-PD012368.D	PIBLK-PD012368.D	Decachlorobiphenyl	1	20	20.46	102		10	192
		Tetrachloro-m-xylene	1	20	21.61	108		10	172
		Decachlorobiphenyl	2	20	9.59	48		10	192
		Tetrachloro-m-xylene	2	20	21.24	106		10	172

Matrix Spike/Matrix Spike Duplicate Summary

SW-846

SDG No.: D3821

Client: Creamer Environmental, Inc.

			Sample			Rec		RPD		Limits	
Lab Sample ID:	Parameter	Spike	Result	Result	Rec	Qual	RPD	Qual	Low	High	RPD
Client Sample ID:	SB-15(12-16)MS										
D3811-06MS	alpha-BHC	23.2	0	23	99				16	147	
	beta-BHC	23.2	0	24	103				25	146	
	delta-BHC	23.2	0	19	82				11	146	
	gamma-BHC (Lindane)	23.2	0	24	103				21	147	
	Heptachlor	23.2	0	27	116				23	143	
	Aldrin	23.2	0	22	95				11	152	
	Heptachlor epoxide	23.2	0	21	91				22	147	
	Endosulfan I	23.2	0	24	103				10	164	
	Dieldrin	23.2	0	21	91				10	162	
	4,4-DDE	23.2	0	17	73				10	174	
	Endrin	23.2	0	22	95				10	171	
	Endosulfan II	23.2	0	19	82				11	146	
	4,4-DDD	23.2	0	26	112				10	150	
	Endosulfan sulfate	23.2	0	18	78				10	152	
	4,4-DDT	23.2	0	22	95				10	192	
	Methoxychlor	23.2	0	23	99				10	200	
	Endrin ketone	23.2	0	21	91				12	145	
	Endrin aldehyde	23.2	0	22	95				10	146	
	alpha-Chlordane	23.2	0	24	103				10	157	
	gamma-Chlordane	23.2	0	24	103				10	161	

Matrix Spike/Matrix Spike Duplicate Summary

SW-846

SDG No.: D3821

Client: Creamer Environmental, Inc.

			Sample			Rec		RPD		Limits	
Lab Sample ID:	Parameter	Spike	Result	Result	Rec	Qual	RPD	Qual	Low	High	RPD
Client Sample ID:	SB-15(12-16)MSD										
D3811-06MSD	alpha-BHC	23.3	0	23	99		0		16	147	20
	beta-BHC	23.3	0	24	103		0		25	146	20
	delta-BHC	23.3	0	21	90		9		11	146	20
	gamma-BHC (Lindane)	23.3	0	25	107		4		21	147	20
	Heptachlor	23.3	0	28	120		3		23	143	20
	Aldrin	23.3	0	22	94		1		11	152	20
	Heptachlor epoxide	23.3	0	26	112		21	*	22	147	20
	Endosulfan I	23.3	0	26	112		8		10	164	20
	Dieldrin	23.3	0	24	103		12		10	162	20
	4,4-DDE	23.3	0	20	86		16		10	174	20
	Endrin	23.3	0	25	107		12		10	171	20
	Endosulfan II	23.3	0	21	90		9		11	146	20
	4,4-DDD	23.3	0	27	116		4		10	150	20
	Endosulfan sulfate	23.3	0	19	82		5		10	152	20
	4,4-DDT	23.3	0	22	94		1		10	192	20
	Methoxychlor	23.3	0	28	120		19		10	200	20
	Endrin ketone	23.3	0	22	94		3		12	145	20
	Endrin aldehyde	23.3	0	20	86		10		10	146	20
	alpha-Chlordane	23.3	0	26	112		8		10	157	20
	gamma-Chlordane	23.3	0	25	107		4		10	161	20

Laboratory Control Sample/Laboratory Control Sample Duplicate Summary SW-846

SDG No.: D3811

Client: MS Analytical

Analytical Method:

EPA SW-846 8081

							RPD		Limits	
Lab Sample ID	Parameter	Spike	Result	Rec	RPD	Qual	Qual	Low	High	RPD
PB65124BS	alpha-BHC	16.7	16	96				84	123	
	beta-BHC	16.7	15	90				82	123	
	delta-BHC	16.7	15	90				83	126	
	gamma-BHC (Lindane)	16.7	16	96				83	125	
	Heptachlor	16.7	17	102				83	122	
	Aldrin	16.7	16	96				82	124	
	Heptachlor epoxide	16.7	15	90				83	120	
	Endosulfan I	16.7	15	90				81	124	
	Dieldrin	16.7	16	96				85	121	
	4,4-DDE	16.7	16	96				81	123	
	Endrin	16.7	16	96				76	130	
	Endosulfan II	16.7	14	84				80	125	
	4,4-DDD	16.7	17	102				80	131	
	Endosulfan sulfate	16.7	14	84				81	122	
	4,4-DDT	16.7	14	84				70	129	
	Methoxychlor	16.7	19	114				78	129	
	Endrin ketone	16.7	16	96				77	132	
	Endrin aldehyde	16.7	14	84				79	124	
	alpha-Chlordane	16.7	15	90				84	120	
	gamma-Chlordane	16.7	15	90				83	122	

4C

PESTICIDE METHOD BLANK SUMMARY

EPA SAMPLE NO.

PB65124BL

Lab Name: CHEMTECH Contract: MSAN01

Lab Sample ID: PB65124BL Lab File ID: PD012347.D

Matrix: (soil/water) SOIL Extraction: (Type) SOXH

Sulfur Cleanup: (Y/N) N Date Extracted: 08/15/2012

Date Analyzed (1): 08/17/2012 Date Analyzed (2): 08/17/2012

Time Analyzed (1): 20:18 Time Analyzed (2): 20:18

Instrument ID (1): ECD D Instrument ID (2): ECD D

GC Column (1): ZB-MR2 ID: 0.32 (mm) GC Column (2): ZB-MR1 ID: 0.32 (mm)

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED 1	DATE ANALYZED 2
PB65124BS	PB65124BS	PD012348.D	08/17/2012	08/17/2012
SB-2 (4-8)	D3811-01	PD012349.D	08/17/2012	08/17/2012
SB-5(8-12)	D3811-02	PD012350.D	08/17/2012	08/17/2012
SB-9(4-7)	D3811-03	PD012351.D	08/17/2012	08/17/2012
SB-11 (12-16)	D3811-05	PD012352.D	08/17/2012	08/17/2012
SB-15 (12-16)	D3811-06	PD012353.D	08/17/2012	08/17/2012
SB-18(4-8)	D3811-07	PD012354.D	08/17/2012	08/17/2012
SB-21 (16-19)	D3811-10	PD012355.D	08/17/2012	08/17/2012
SB-22 (12-19)	D3811-11	PD012356.D	08/17/2012	08/17/2012
SB-37(8-10)	D3811-13	PD012359.D	08/17/2012	08/17/2012
SB-39(6-8)	D3811-14	PD012360.D	08/17/2012	08/17/2012
SB-41(8-11)	D3811-15	PD012361.D	08/17/2012	08/17/2012
SB-43 (6-8)	D3811-17	PD012362.D	08/17/2012	08/17/2012
SB-43 (10-12)	D3811-18	PD012363.D	08/17/2012	08/17/2012
SB-43 (16-20)	D3811-19	PD012364.D	08/18/2012	08/18/2012
SB-46(12-16)	D3811-21	PD012365.D	08/18/2012	08/18/2012
SB-15 (12-16) MS	D3811-06MS	PD012366.D	08/18/2012	08/18/2012
SB-15 (12-16) MSD	D3811-06MSD	PD012367.D	08/18/2012	08/18/2012

COMMENTS:			

QC SAMPLE DATA

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

Client Sample ID: PB65124BL SDG No.: D3811
Lab Sample ID: PB65124BL Matrix: SOIL

Analytical Method: SW8081B % Moisture: 0 Decanted:

Sample Wt/Vol: 30.01 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PD012347.D 1 08/15/12 08/17/12 PB65124

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
319-84-6	alpha-BHC	0.85	U	0.13	0.85	1.7	ug/Kg
319-85-7	beta-BHC	0.85	U	0.18	0.85	1.7	ug/Kg
319-86-8	delta-BHC	0.85	U	0.1	0.85	1.7	ug/Kg
58-89-9	gamma-BHC	0.85	U	0.15	0.85	1.7	ug/Kg
76-44-8	Heptachlor	0.85	U	0.14	0.85	1.7	ug/Kg
309-00-2	Aldrin	0.85	U	0.1	0.85	1.7	ug/Kg
1024-57-3	Heptachlor epoxide	0.85	U	0.16	0.85	1.7	ug/Kg
959-98-8	Endosulfan I	0.85	U	0.15	0.85	1.7	ug/Kg
60-57-1	Dieldrin	0.85	U	0.13	0.85	1.7	ug/Kg
72-55-9	4,4-DDE	0.85	U	0.2	0.85	1.7	ug/Kg
72-20-8	Endrin	0.85	U	0.18	0.85	1.7	ug/Kg
33213-65-9	Endosulfan II	0.85	U	0.14	0.85	1.7	ug/Kg
72-54-8	4,4-DDD	0.85	U	0.17	0.85	1.7	ug/Kg
1031-07-8	Endosulfan Sulfate	0.85	U	0.15	0.85	1.7	ug/Kg
50-29-3	4,4-DDT	0.85	U	0.14	0.85	1.7	ug/Kg
72-43-5	Methoxychlor	0.85	U	0.17	0.85	1.7	ug/Kg
53494-70-5	Endrin ketone	0.85	U	0.13	0.85	1.7	ug/Kg
7421-93-4	Endrin aldehyde	0.85	U	0.15	0.85	1.7	ug/Kg
5103-71-9	alpha-Chlordane	0.85	U	0.14	0.85	1.7	ug/Kg
5103-74-2	gamma-Chlordane	0.85	U	0.13	0.85	1.7	ug/Kg
8001-35-2	Toxaphene	8.5	U	3.4	8.5	17	ug/Kg
SURROGATES							
2051-24-3	Decachlorobiphenyl	18.6		10 - 169)	93%	SPK: 2
877-09-8	Tetrachloro-m-xylene	19.6		31 - 15	l	98%	SPK: 2

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

Client Sample ID: PB65124BL SDG No.: D3811
Lab Sample ID: PB65124BL Matrix: SOIL

Analytical Method: SW8081B % Moisture: 0 Decanted:

Sample Wt/Vol: 30.01 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PD012347.D 1 08/15/12 08/17/12 PB65124

CAS Number Parameter Conc. Qualifier MDL LOD LOQ/CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

uL

Report of Analysis

Client: MS Analytical Date Collected: 08/16/12 Project: 12MS104 Kensington Heights Date Received: 08/16/12 Client Sample ID: PIBLK-PD012269.D SDG No.: D3811 Lab Sample ID: I.BLK-PD012269.D Matrix: WATER Analytical Method: SW8081B % Moisture: 100 Decanted: Sample Wt/Vol: 1000 Units: Final Vol: 10000 mL

Soil Aliquot Vol: uL Test: Pesticide-TCL

Injection Volume Extraction Type:

GPC Factor: 1.0 PH:

Date Analyzed Prep Batch ID File ID/Qc Batch: Dilution: Prep Date PD012269.D 1 08/16/12 PD081612

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
319-84-6	alpha-BHC	0.025	U	0.0051	0.025	0.05	ug/L
319-85-7	beta-BHC	0.025	U	0.0086	0.025	0.05	ug/L
319-86-8	delta-BHC	0.025	U	0.0056	0.025	0.05	ug/L
58-89-9	gamma-BHC	0.025	U	0.0055	0.025	0.05	ug/L
76-44-8	Heptachlor	0.025	U	0.0069	0.025	0.05	ug/L
309-00-2	Aldrin	0.025	U	0.0062	0.025	0.05	ug/L
1024-57-3	Heptachlor epoxide	0.025	U	0.0067	0.025	0.05	ug/L
959-98-8	Endosulfan I	0.025	U	0.0061	0.025	0.05	ug/L
60-57-1	Dieldrin	0.025	U	0.0047	0.025	0.05	ug/L
72-55-9	4,4-DDE	0.025	U	0.004	0.025	0.05	ug/L
72-20-8	Endrin	0.025	U	0.0058	0.025	0.05	ug/L
33213-65-9	Endosulfan II	0.025	U	0.0055	0.025	0.05	ug/L
72-54-8	4,4-DDD	0.025	U	0.0071	0.025	0.05	ug/L
1031-07-8	Endosulfan Sulfate	0.025	U	0.006	0.025	0.05	ug/L
50-29-3	4,4-DDT	0.025	U	0.0059	0.025	0.05	ug/L
72-43-5	Methoxychlor	0.025	U	0.0042	0.025	0.05	ug/L
53494-70-5	Endrin ketone	0.025	U	0.0057	0.025	0.05	ug/L
7421-93-4	Endrin aldehyde	0.025	U	0.0045	0.025	0.05	ug/L
5103-71-9	alpha-Chlordane	0.025	U	0.0049	0.025	0.05	ug/L
5103-74-2	gamma-Chlordane	0.025	U	0.005	0.025	0.05	ug/L
8001-35-2	Toxaphene	0.25	U	0.1	0.25	0.5	ug/L
SURROGATES							
2051-24-3	Decachlorobiphenyl	21.7		10 - 192		108%	SPK: 2
877-09-8	Tetrachloro-m-xylene	21.9		10 - 172		110%	SPK: 2

Client: MS Analytical Date Collected: 08/16/12

Project:

12MS104 Kensington Heights

08/16/12

Client Sample ID:

PIBLK-PD012269.D

Lab Sample ID:

I.BLK-PD012269.D

SDG No.:

Date Received:

D3811

Matrix:

WATER

Analytical Method:

SW8081B

% Moisture: Final Vol:

100 10000 Decanted:

иL

Sample Wt/Vol: Soil Aliquot Vol: 1000 Units: mL

Test:

Extraction Type:

uL

Injection Volume

Pesticide-TCL

GPC Factor:

File ID/Qc Batch:

1.0

1

PH:

Prep Batch ID

PD012269.D

Dilution:

Prep Date

Date Analyzed 08/16/12

PD081612

MDL

LOD

CAS Number Parameter Conc.

Qualifier

LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Decanted:

uL

Report of Analysis

Client: MS Analytical Date Collected: 08/17/12 Project: 12MS104 Kensington Heights Date Received: 08/17/12 Client Sample ID: PIBLK-PD012344.D SDG No.: D3811 Lab Sample ID: I.BLK-PD012344.D Matrix: WATER Analytical Method: SW8081B % Moisture: 100 Sample Wt/Vol: 1000 Units: Final Vol: 10000 mL

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
PD012344.D 1 08/17/12 PD081712

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
319-84-6	alpha-BHC	0.025	U	0.0051	0.025	0.05	ug/L
319-85-7	beta-BHC	0.025	U	0.0086	0.025	0.05	ug/L
319-86-8	delta-BHC	0.025	U	0.0056	0.025	0.05	ug/L
58-89-9	gamma-BHC	0.025	U	0.0055	0.025	0.05	ug/L
76-44-8	Heptachlor	0.025	U	0.0069	0.025	0.05	ug/L
309-00-2	Aldrin	0.025	U	0.0062	0.025	0.05	ug/L
1024-57-3	Heptachlor epoxide	0.025	U	0.0067	0.025	0.05	ug/L
959-98-8	Endosulfan I	0.025	U	0.0061	0.025	0.05	ug/L
60-57-1	Dieldrin	0.025	U	0.0047	0.025	0.05	ug/L
72-55-9	4,4-DDE	0.025	U	0.004	0.025	0.05	ug/L
72-20-8	Endrin	0.025	U	0.0058	0.025	0.05	ug/L
33213-65-9	Endosulfan II	0.025	U	0.0055	0.025	0.05	ug/L
72-54-8	4,4-DDD	0.025	U	0.0071	0.025	0.05	ug/L
1031-07-8	Endosulfan Sulfate	0.025	U	0.006	0.025	0.05	ug/L
50-29-3	4,4-DDT	0.025	U	0.0059	0.025	0.05	ug/L
72-43-5	Methoxychlor	0.025	U	0.0042	0.025	0.05	ug/L
53494-70-5	Endrin ketone	0.025	U	0.0057	0.025	0.05	ug/L
7421-93-4	Endrin aldehyde	0.025	U	0.0045	0.025	0.05	ug/L
5103-71-9	alpha-Chlordane	0.025	U	0.0049	0.025	0.05	ug/L
5103-74-2	gamma-Chlordane	0.025	U	0.005	0.025	0.05	ug/L
8001-35-2	Toxaphene	0.25	U	0.1	0.25	0.5	ug/L
SURROGATES							
2051-24-3	Decachlorobiphenyl	20.1		10 - 192		100%	SPK: 2
877-09-8	Tetrachloro-m-xylene	21.6		10 - 172		108%	SPK: 2

Client: MS Analytical Date Collected: 08/17/12

Project:

12MS104 Kensington Heights

08/17/12

Client Sample ID:

PIBLK-PD012344.D

D3811

Lab Sample ID:

I.BLK-PD012344.D

WATER

Analytical Method:

SW8081B

Matrix:

Date Received:

Sample Wt/Vol:

% Moisture: Final Vol:

SDG No.:

100

10000

Decanted: иL

Soil Aliquot Vol:

1000 Units: mL

Test:

Pesticide-TCL

Extraction Type:

1.0

PH:

uL

Injection Volume

Prep Batch ID

PD012344.D

File ID/Qc Batch:

GPC Factor:

Dilution:

1

Prep Date

Date Analyzed

08/17/12

PD081712

Conc.

MDL

LOD

LOQ / CRQL Units

CAS Number

Parameter

Qualifier

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Decanted:

uL

Report of Analysis

Client: MS Analytical Date Collected: 08/17/12 Project: 12MS104 Kensington Heights Date Received: 08/17/12 Client Sample ID: PIBLK-PD012357.D SDG No.: D3811 Lab Sample ID: I.BLK-PD012357.D Matrix: WATER Analytical Method: SW8081B % Moisture: 100 Sample Wt/Vol: 1000 Final Vol: 10000 Units: mL

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID PD012357.D 1 08/17/12 PD081712

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
319-84-6	alpha-BHC	0.025	U	0.0051	0.025	0.05	ug/L
319-85-7	beta-BHC	0.025	U	0.0086	0.025	0.05	ug/L
319-86-8	delta-BHC	0.025	U	0.0056	0.025	0.05	ug/L
58-89-9	gamma-BHC	0.025	U	0.0055	0.025	0.05	ug/L
76-44-8	Heptachlor	0.025	U	0.0069	0.025	0.05	ug/L
309-00-2	Aldrin	0.025	U	0.0062	0.025	0.05	ug/L
1024-57-3	Heptachlor epoxide	0.025	U	0.0067	0.025	0.05	ug/L
959-98-8	Endosulfan I	0.025	U	0.0061	0.025	0.05	ug/L
60-57-1	Dieldrin	0.025	U	0.0047	0.025	0.05	ug/L
72-55-9	4,4-DDE	0.025	U	0.004	0.025	0.05	ug/L
72-20-8	Endrin	0.025	U	0.0058	0.025	0.05	ug/L
33213-65-9	Endosulfan II	0.025	U	0.0055	0.025	0.05	ug/L
72-54-8	4,4-DDD	0.025	U	0.0071	0.025	0.05	ug/L
1031-07-8	Endosulfan Sulfate	0.025	U	0.006	0.025	0.05	ug/L
50-29-3	4,4-DDT	0.025	U	0.0059	0.025	0.05	ug/L
72-43-5	Methoxychlor	0.025	U	0.0042	0.025	0.05	ug/L
53494-70-5	Endrin ketone	0.025	U	0.0057	0.025	0.05	ug/L
7421-93-4	Endrin aldehyde	0.025	U	0.0045	0.025	0.05	ug/L
5103-71-9	alpha-Chlordane	0.025	U	0.0049	0.025	0.05	ug/L
5103-74-2	gamma-Chlordane	0.025	U	0.005	0.025	0.05	ug/L
8001-35-2	Toxaphene	0.25	U	0.1	0.25	0.5	ug/L
SURROGATES							
2051-24-3	Decachlorobiphenyl	24.8		10 - 192		124%	SPK: 2
877-09-8	Tetrachloro-m-xylene	22.2		10 - 172		111%	SPK: 2

Client: MS Analytical Date Collected: 08/17/12

Project:

12MS104 Kensington Heights

Units:

08/17/12

Client Sample ID:

PIBLK-PD012357.D

D3811

Lab Sample ID:

I.BLK-PD012357.D

Analytical Method:

Matrix:

Date Received:

SDG No.:

WATER

SW8081B

% Moisture:

100 10000 Decanted: иL

Sample Wt/Vol: Soil Aliquot Vol: 1000

mL

Test:

Extraction Type:

uL

Injection Volume

Final Vol:

Pesticide-TCL

GPC Factor:

File ID/Qc Batch:

1.0

1

PH:

Date Analyzed

Prep Batch ID

PD012357.D

Dilution:

Prep Date

08/17/12

PD081712

CAS Number

Parameter

Conc.

Qualifier

MDL

LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Decanted:

uL

Report of Analysis

Client: MS Analytical Date Collected: 08/18/12 Project: 12MS104 Kensington Heights Date Received: 08/18/12 Client Sample ID: PIBLK-PD012368.D SDG No.: D3811 Lab Sample ID: I.BLK-PD012368.D Matrix: WATER Analytical Method: SW8081B % Moisture: 100 Sample Wt/Vol: 1000 Final Vol: 10000 Units: mL

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume 1

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID PD012368.D 1 08/18/12 PD081712

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
319-84-6	alpha-BHC	0.025	U	0.0051	0.025	0.05	ug/L
319-85-7	beta-BHC	0.025	U	0.0086	0.025	0.05	ug/L
319-86-8	delta-BHC	0.025	U	0.0056	0.025	0.05	ug/L
58-89-9	gamma-BHC	0.025	U	0.0055	0.025	0.05	ug/L
76-44-8	Heptachlor	0.025	U	0.0069	0.025	0.05	ug/L
309-00-2	Aldrin	0.025	U	0.0062	0.025	0.05	ug/L
1024-57-3	Heptachlor epoxide	0.025	U	0.0067	0.025	0.05	ug/L
959-98-8	Endosulfan I	0.025	U	0.0061	0.025	0.05	ug/L
60-57-1	Dieldrin	0.025	U	0.0047	0.025	0.05	ug/L
72-55-9	4,4-DDE	0.025	U	0.004	0.025	0.05	ug/L
72-20-8	Endrin	0.025	U	0.0058	0.025	0.05	ug/L
33213-65-9	Endosulfan II	0.025	U	0.0055	0.025	0.05	ug/L
72-54-8	4,4-DDD	0.025	U	0.0071	0.025	0.05	ug/L
1031-07-8	Endosulfan Sulfate	0.025	U	0.006	0.025	0.05	ug/L
50-29-3	4,4-DDT	0.025	U	0.0059	0.025	0.05	ug/L
72-43-5	Methoxychlor	0.025	U	0.0042	0.025	0.05	ug/L
53494-70-5	Endrin ketone	0.025	U	0.0057	0.025	0.05	ug/L
7421-93-4	Endrin aldehyde	0.025	U	0.0045	0.025	0.05	ug/L
5103-71-9	alpha-Chlordane	0.025	U	0.0049	0.025	0.05	ug/L
5103-74-2	gamma-Chlordane	0.025	U	0.005	0.025	0.05	ug/L
8001-35-2	Toxaphene	0.25	U	0.1	0.25	0.5	ug/L
SURROGATES							
2051-24-3	Decachlorobiphenyl	20.5		10 - 192		102%	SPK: 2
877-09-8	Tetrachloro-m-xylene	21.6		10 - 172		108%	SPK: 2

Client: MS Analytical Date Collected: 08/18/12

Project:

12MS104 Kensington Heights

Date Received: 08/18/12

Client Sample ID:

PIBLK-PD012368.D

D3811

Lab Sample ID:

I.BLK-PD012368.D

WATER Matrix:

Analytical Method:

SW8081B

Final Vol:

SDG No.:

10000

% Moisture:

100 Decanted:

Sample Wt/Vol: Soil Aliquot Vol: 1000 Units: mL

Test:

Extraction Type:

uL

Injection Volume

Pesticide-TCL

GPC Factor:

1.0

1

PH:

Prep Batch ID

иL

PD012368.D

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed 08/18/12

PD081712

CAS Number

Parameter

Conc.

Qualifier

MDL

LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

Client Sample ID: PB65124BS SDG No.: D3811
Lab Sample ID: PB65124BS Matrix: SOIL

Analytical Method: SW8081B % Moisture: 0 Decanted:

Sample Wt/Vol: 30.03 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume 1

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PD012348.D 1 08/15/12 08/17/12 PB65124

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
319-84-6	alpha-BHC	16		0.13	0.85	1.7	ug/Kg
319-85-7	beta-BHC	15		0.18	0.85	1.7	ug/Kg
319-86-8	delta-BHC	15		0.1	0.85	1.7	ug/Kg
58-89-9	gamma-BHC	16		0.15	0.85	1.7	ug/Kg
76-44-8	Heptachlor	17		0.14	0.85	1.7	ug/Kg
309-00-2	Aldrin	16		0.1	0.85	1.7	ug/Kg
1024-57-3	Heptachlor epoxide	15		0.16	0.85	1.7	ug/Kg
959-98-8	Endosulfan I	15		0.15	0.85	1.7	ug/Kg
60-57-1	Dieldrin	16		0.13	0.85	1.7	ug/Kg
72-55-9	4,4-DDE	16		0.2	0.85	1.7	ug/Kg
72-20-8	Endrin	16		0.18	0.85	1.7	ug/Kg
33213-65-9	Endosulfan II	14		0.14	0.85	1.7	ug/Kg
72-54-8	4,4-DDD	17		0.17	0.85	1.7	ug/Kg
1031-07-8	Endosulfan Sulfate	14		0.15	0.85	1.7	ug/Kg
50-29-3	4,4-DDT	14		0.14	0.85	1.7	ug/Kg
72-43-5	Methoxychlor	19	P	0.17	0.85	1.7	ug/Kg
53494-70-5	Endrin ketone	16		0.13	0.85	1.7	ug/Kg
7421-93-4	Endrin aldehyde	14		0.15	0.85	1.7	ug/Kg
5103-71-9	alpha-Chlordane	15		0.14	0.85	1.7	ug/Kg
5103-74-2	gamma-Chlordane	15		0.13	0.85	1.7	ug/Kg
8001-35-2	Toxaphene	8.5	U	3.4	8.5	17	ug/Kg
SURROGATES							
2051-24-3	Decachlorobiphenyl	18.9		10 - 169)	94%	SPK: 2
877-09-8	Tetrachloro-m-xylene	20.2		31 - 15	1	101%	SPK: 2

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

Client Sample ID: PB65124BS SDG No.: D3811
Lab Sample ID: PB65124BS Matrix: SOIL

Analytical Method: SW8081B % Moisture: 0 Decanted:

Sample Wt/Vol: 30.03 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume 1

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PD012348.D 1 08/15/12 08/17/12 PB65124

CAS Number Parameter Conc. Qualifier MDL LOD LOQ/CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Decanted:

uL

Report of Analysis

Client: MS Analytical Date Collected: 08/08/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-15(12-16)MS SDG No.: D3811 Lab Sample ID: D3811-06MS Matrix: SOIL Analytical Method: SW8081B % Moisture: 28.4 Sample Wt/Vol: Units: Final Vol: 10000 30.09 g

Soil Aliquot Vol: uL Test: Pesticide-TCL

Extraction Type: Injection Volume 1

GPC Factor: 1.0 PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID PD012366.D 1 08/15/12 08/18/12 PB65124

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
319-84-6	alpha-BHC	23	P	0.18	1.2	2.4	ug/Kg
319-85-7	beta-BHC	24	P	0.25	1.2	2.4	ug/Kg
319-86-8	delta-BHC	19	P	0.14	1.2	2.4	ug/Kg
58-89-9	gamma-BHC	24	P	0.21	1.2	2.4	ug/Kg
76-44-8	Heptachlor	27	P	0.19	1.2	2.4	ug/Kg
309-00-2	Aldrin	22	P	0.14	1.2	2.4	ug/Kg
1024-57-3	Heptachlor epoxide	21	P	0.22	1.2	2.4	ug/Kg
959-98-8	Endosulfan I	24	P	0.21	1.2	2.4	ug/Kg
60-57-1	Dieldrin	21	P	0.18	1.2	2.4	ug/Kg
72-55-9	4,4-DDE	17	P	0.28	1.2	2.4	ug/Kg
72-20-8	Endrin	22	P	0.25	1.2	2.4	ug/Kg
33213-65-9	Endosulfan II	19	P	0.19	1.2	2.4	ug/Kg
72-54-8	4,4-DDD	26	P	0.24	1.2	2.4	ug/Kg
1031-07-8	Endosulfan Sulfate	18	P	0.21	1.2	2.4	ug/Kg
50-29-3	4,4-DDT	22	P	0.19	1.2	2.4	ug/Kg
72-43-5	Methoxychlor	23		0.24	1.2	2.4	ug/Kg
53494-70-5	Endrin ketone	21	P	0.18	1.2	2.4	ug/Kg
7421-93-4	Endrin aldehyde	22	P	0.21	1.2	2.4	ug/Kg
5103-71-9	alpha-Chlordane	24	P	0.19	1.2	2.4	ug/Kg
5103-74-2	gamma-Chlordane	24	P	0.18	1.2	2.4	ug/Kg
8001-35-2	Toxaphene	12	U	4.7	12	24	ug/Kg
SURROGATES							
2051-24-3	Decachlorobiphenyl	18.9		10 - 169)	95%	SPK: 2
877-09-8	Tetrachloro-m-xylene	16.1		31 - 151		81%	SPK: 2

Client: MS Analytical Date Collected: 08/08/12

Project:

12MS104 Kensington Heights

Units:

08/15/12

Client Sample ID:

SB-15(12-16)MS

Lab Sample ID:

D3811-06MS

D3811

Matrix:

Final Vol:

SDG No.:

Date Received:

SOIL

Analytical Method:

SW8081B

% Moisture:

28.4

Decanted:

Sample Wt/Vol: Soil Aliquot Vol: 30.09

g иL

Test:

10000 иL Pesticide-TCL

Extraction Type:

File ID/Qc Batch:

Injection Volume

GPC Factor:

1.0

PH: N/A

Prep Date

Date Analyzed

Prep Batch ID

PB65124

PD012366.D

Dilution: 1

08/15/12

08/18/12

CAS Number

Parameter

Conc.

Qualifier

MDL

LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

Decanted:

uL

Report of Analysis

Client: MS Analytical Date Collected: 08/08/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 Client Sample ID: SB-15(12-16)MSD SDG No.: D3811 Lab Sample ID: D3811-06MSD Matrix: SOIL Analytical Method: SW8081B % Moisture: 28.4 Sample Wt/Vol: Units: Final Vol: 10000

Soil Aliquot Vol: uL Test: Pesticide-TCL

Injection Volume Extraction Type:

g

GPC Factor: 1.0 PH: N/A

30.03

Prep Batch ID File ID/Qc Batch: Dilution: Prep Date Date Analyzed 1 08/15/12 08/18/12 PB65124 PD012367.D

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
319-84-6	alpha-BHC	23	P	0.18	1.2	2.4	ug/Kg
319-85-7	beta-BHC	24	P	0.25	1.2	2.4	ug/Kg
319-86-8	delta-BHC	21	P	0.14	1.2	2.4	ug/Kg
58-89-9	gamma-BHC	25	P	0.21	1.2	2.4	ug/Kg
76-44-8	Heptachlor	28	P	0.2	1.2	2.4	ug/Kg
309-00-2	Aldrin	22	P	0.14	1.2	2.4	ug/Kg
1024-57-3	Heptachlor epoxide	26	P	0.22	1.2	2.4	ug/Kg
959-98-8	Endosulfan I	26	P	0.21	1.2	2.4	ug/Kg
60-57-1	Dieldrin	24	P	0.18	1.2	2.4	ug/Kg
72-55-9	4,4-DDE	20	P	0.28	1.2	2.4	ug/Kg
72-20-8	Endrin	25	P	0.25	1.2	2.4	ug/Kg
33213-65-9	Endosulfan II	21	P	0.2	1.2	2.4	ug/Kg
72-54-8	4,4-DDD	27	P	0.24	1.2	2.4	ug/Kg
1031-07-8	Endosulfan Sulfate	19	P	0.21	1.2	2.4	ug/Kg
50-29-3	4,4-DDT	22	P	0.2	1.2	2.4	ug/Kg
72-43-5	Methoxychlor	28	P	0.24	1.2	2.4	ug/Kg
53494-70-5	Endrin ketone	22	P	0.18	1.2	2.4	ug/Kg
7421-93-4	Endrin aldehyde	20	P	0.21	1.2	2.4	ug/Kg
5103-71-9	alpha-Chlordane	26	P	0.2	1.2	2.4	ug/Kg
5103-74-2	gamma-Chlordane	25	P	0.18	1.2	2.4	ug/Kg
8001-35-2	Toxaphene	12	U	4.7	12	24	ug/Kg
SURROGATES							
2051-24-3	Decachlorobiphenyl	19.5		10 - 169)	98%	SPK: 2
877-09-8	Tetrachloro-m-xylene	16.1		31 - 151	l	80%	SPK: 2

Client: MS Analytical Date Collected: 08/08/12

Project:

12MS104 Kensington Heights

08/15/12

Client Sample ID:

SB-15(12-16)MSD

Lab Sample ID:

D3811-06MSD

D3811

Matrix:

Date Received:

SOIL

Analytical Method:

SW8081B

% Moisture:

SDG No.:

28.4

Decanted:

Sample Wt/Vol:

30.03

Units: g Final Vol:

10000 иL

Soil Aliquot Vol:

uL

Test:

Pesticide-TCL

Extraction Type:

GPC Factor:

1.0

1

PH: N/A

Injection Volume

Prep Batch ID

PD012367.D

File ID/Qc Batch:

Dilution:

Prep Date 08/15/12

Date Analyzed 08/18/12

PB65124

CAS Number

Parameter

Conc.

MDL

Qualifier

LOD LOQ / CRQL Units

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

В

E

G

CALIBRATION SUMMURY

G

RETENTION TIMES OF INITIAL CALIBRATION

Contract: MSAN01

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

Instrument ID: ECD_D Calibration Date(s): 08/16/2012 08/16/2012

Calibration Times: 12:02 12:56

GC Column: ZB-MR2 ID: 0.32 (mm)

LAB FILE ID: RT 005 = PD012276.D RT 025 = PD012275.D RT 050 = PD012274.D RT 075 = PD012273.D RT 100 = PD012272.D

$RT 050 = \underline{PD0}$	12274.D	RT 075 =	PD012273.D		RT 100 =	PD012272.D		
COMPOUND	RT 005	RT 025	RT 050	RT 075	RT 100	MEAN	RT WI	
						RT	FROM	ТО
Decachlorobiphenyl	8.91	8.91	8.91	8.91	8.91	8.91	8.81	9.01
Tetrachloro-m-xylene	3.90	3.90	3.90	3.90	3.90	3.90	3.80	4.00
alpha-BHC	4.28	4.28	4.28	4.28	4.28	4.28	4.23	4.33
beta-BHC	4.73	4.73	4.73	4.73	4.73	4.73	4.68	4.78
delta-BHC	4.94	4.94	4.94	4.94	4.94	4.94	4.89	4.99
gamma-BHC (Lindane)	4.56	4.56	4.56	4.56	4.56	4.56	4.51	4.61
Heptachlor	5.07	5.07	5.07	5.07	5.07	5.07	5.02	5.12
Aldrin	5.37	5.37	5.37	5.37	5.37	5.37	5.32	5.42
Heptachlor epoxide	5.75	5.75	5.75	5.75	5.75	5.75	5.68	5.82
Endosulfan I	6.10	6.10	6.10	6.10	6.10	6.10	6.03	6.17
Dieldrin	6.36	6.36	6.36	6.36	6.36	6.36	6.29	6.43
4,4-DDE	6.22	6.22	6.22	6.22	6.22	6.22	6.15	6.29
Endrin	6.57	6.57	6.57	6.57	6.57	6.57	6.50	6.64
Endosulfan II	6.78	6.78	6.78	6.78	6.78	6.78	6.71	6.85
4,4-DDD	6.70	6.70	6.70	6.70	6.70	6.70	6.63	6.77
Endosulfan sulfate	7.12	7.12	7.12	7.12	7.12	7.12	7.05	7.19
4,4-DDT	7.00	7.00	7.00	7.00	7.00	7.00	6.93	7.07
Methoxychlor	7.46	7.46	7.46	7.46	7.46	7.46	7.39	7.53
Endrin ketone	7.59	7.59	7.59	7.59	7.59	7.58	7.51	7.65
Endrin aldehyde	6.90	6.90	6.90	6.90	6.90	6.90	6.83	6.97
alpha-Chlordane	6.06	6.06	6.06	6.06	6.06	6.06	5.99	6.13
gamma-Chlordane	5.98	5.99	5.99	5.99	5.99	5.98	5.91	6.05

G

RETENTION TIMES OF INITIAL CALIBRATION

Contract: MSAN01

 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811
 SDG NO.:
 D3811

Instrument ID: ECD_D Calibration Date(s): 08/16/2012 08/16/2012

Calibration Times: 12:02 12:56

GC Column: ZB-MR1 ID: 0.32 (mm)

LAB FILE ID: RT 005 = PD012276.D RT 025 = PD012275.D RT 050 = PD012274.D RT 075 = PD012273.D RT 100 = PD012272.D

$RT 050 = \underline{PD0}$	12274.D	RT 075 =	PD012273.D		RT 100 =	PD012272.D		
COMPOUND	RT 005	RT 025	RT 050	RT 075	RT 100	MEAN RT	RT WII	NDOW TO
Decachlorobiphenyl	8.20	8.20	8.20	8.21	8.21	8.20	8.10	8.30
Tetrachloro-m-xylene	3.43	3.43	3.43	3.43	3.43	3.43	3.33	3.53
alpha-BHC	3.87	3.87	3.88	3.88	3.88	3.87	3.82	3.92
beta-BHC	4.41	4.41	4.41	4.41	4.41	4.41	4.36	4.46
delta-BHC	4.61	4.62	4.62	4.62	4.62	4.62	4.57	4.67
gamma-BHC (Lindane)	4.16	4.16	4.16	4.16	4.16	4.16	4.11	4.21
Heptachlor	4.45	4.46	4.46	4.46	4.46	4.46	4.41	4.51
Aldrin	4.70	4.71	4.71	4.71	4.71	4.71	4.66	4.76
Heptachlor epoxide	5.15	5.15	5.15	5.15	5.15	5.15	5.08	5.22
Endosulfan I	5.49	5.49	5.49	5.49	5.49	5.49	5.42	5.56
Dieldrin	5.73	5.74	5.74	5.74	5.74	5.73	5.66	5.80
4,4-DDE	5.60	5.61	5.61	5.61	5.61	5.61	5.54	5.68
Endrin	5.99	5.99	5.99	6.00	6.00	5.99	5.92	6.06
Endosulfan II	6.27	6.27	6.27	6.27	6.27	6.27	6.20	6.34
4,4-DDD	6.12	6.12	6.12	6.12	6.13	6.12	6.05	6.19
Endosulfan sulfate	6.65	6.65	6.65	6.65	6.65	6.65	6.58	6.72
4,4-DDT	6.36	6.36	6.36	6.37	6.37	6.36	6.29	6.43
Methoxychlor	6.92	6.92	6.92	6.92	6.92	6.92	6.85	6.99
Endrin ketone	7.15	7.15	7.15	7.15	7.15	7.15	7.08	7.22
Endrin aldehyde	6.44	6.44	6.44	6.44	6.44	6.44	6.37	6.51
alpha-Chlordane	5.43	5.44	5.44	5.44	5.44	5.44	5.37	5.51
gamma-Chlordane	5.38	5.38	5.38	5.38	5.38	5.38	5.31	5.45

D

CALIBRATION FACTOR OF INITIAL CALIBRATION

Contract: MSAN01

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

 Instrument ID:
 ECD_D
 Calibration Date(s):
 08/16/2012
 08/16/2012

Calibration Times: 12:02 12:56

GC Column: ZB-MR2 ID: 0.32 (mm)

LAB FILE ID: CF 050 = PD0122			12276.D 12273.D	CF 025 = CF 100 =	PD012275.D PD012272.D		
COMPOUND	CF 005	CF 025	CF 050	CF 075	CF 100	CF	% RSD
Decachlorobiphenyl	60086380	55305996	53039068	50200043	50346255	53795548	8
Tetrachloro-m-xylene	55252180	55999912	55535758	52668044	56291472	55149473	3
alpha-BHC	780495600	738997880	794879140	809014093	865533800	797784103	6
beta-BHC	379628400	355760880	340608420	329381707	337515530	348578987	6
delta-BHC	745304400	712768920	742438940	747000213	793026060	748107707	4
gamma-BHC (Lindane)	716175400	712226240	746353880	749251893	792064890	743214461	4
Heptachlor	753551400	713597600	730941960	727208200	761640230	737387878	3
Aldrin	692156200	677764440	697264340	692919880	731161540	698253280	3
Heptachlor epoxide	690155800	652075480	655398760	646674907	672437210	663348431	3
Endosulfan I	642065000	611655120	611523160	598188693	622267030	617139801	3
Dieldrin	654866600	639383440	654810500	638405813	670421870	651577645	2
4,4-DDE	592824400	589765880	604702180	599679253	629816510	603357645	3
Endrin	547733600	547590600	546933760	535273067	532429160	541992037	1
Endosulfan II	594253200	553025160	566501500	547128853	572681410	566718025	3
4,4-DDD	512019600	521005840	517949620	508701107	527171760	517369585	1
Endosulfan sulfate	588741600	546878560	539445580	517567613	532118720	544950415	5
4,4-DDT	558549000	546600080	551214080	536469293	559360660	550438623	2
Methoxychlor	322440800	307940600	301475140	284454907	288307330	300923755	5
Endrin ketone	664896000	631188480	624397500	599945333	615501660	627185795	4
Endrin aldehyde	514864800	485508960	478834940	460327000	470388130	481984766	4
alpha-Chlordane	700338800	664429120	663519240	650027440	673937440	670450408	3
gamma-Chlordane	694003000	661932400	670004140	655481760	686282470	673540754	2

D

CALIBRATION FACTOR OF INITIAL CALIBRATION

Contract: MSAN01

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

 Instrument ID:
 ECD_D
 Calibration Date(s):
 08/16/2012
 08/16/2012

Calibration Times: 12:02 12:56

GC Column: ZB-MR1 ID: 0.32 (mm)

LAB FILE ID: CF 050 = <u>PD012</u>			12276.D 12273.D	CF 025 = CF 100 =	PD012275.D PD012272.D		
COMPOUND	CF 005	CF 025	CF 050	CF 075	CF 100	CF	% RSD
Decachlorobiphenyl	15941954500	14883701856	14817147496	14152280571	14153479608	14789712806	5
Tetrachloro-m-xylene	15136497080	15804047596	15397742930	14435987509	14503496567	15055554336	4
alpha-BHC	171826202600	186444873320	166290180820	153132208387	152397546130	166018202251	9
beta-BHC	65909622800	59238303040	53919656720	49484785827	48547378380	55419949353	13
delta-BHC	155781081800	135686769800	128322417280	117603629173	116227641020	130724307815	12
gamma-BHC (Lindane)	158875838600	160324704680	146013487400	134687407267	133748943930	146730076375	9
Heptachlor	159694962200	135369020960	132934799680	121794959080	121603490000	134279446384	12
Aldrin	205873150000	200867667520	189624981520	176044619387	175490775860	189580238857	7
Heptachlor epoxide	166293468000	156717547080	141795530340	130698532960	128272823920	144755580460	11
Endosulfan I	193356868200	184486863240	169164151100	156557867893	154700297940	171653209675	10
Dieldrin	137953385600	134107131200	122452900380	112074142613	109704952690	123258502497	10
4,4-DDE	185916171200	184422672800	170577696780	158198690240	157135020520	171250050308	8
Endrin	99444070600	94047367120	86778086560	78632324880	76449832700	87070336372	11
Endosulfan II	128286323200	117690524120	108901110820	100000529133	98113287810	110598355017	11
4,4-DDD	102167924000	94510610080	84816294820	76761113813	74113891490	86473966841	14
Endosulfan sulfate	125128821000	129342946640	115153570800	105831448160	104603517810	116012060882	10
4,4-DDT	116707900200	109856495600	101002665900	92629681920	90920481180	102223444960	11
Methoxychlor	26120901200	29591432800	26726701680	23464572520	21846425830	25550006806	12
Endrin ketone	98710871000	95031310080	87705411860	79654947907	77403306080	87701169385	11
Endrin aldehyde	103752845000	101783136320	94270610220	85853244427	83545658900	93841098973	10
alpha-Chlordane	179648357200	167983593880	154336104860	142987139200	143129555280	157616950084	10
gamma-Chlordane	181114079400	154701405040	140704268540	130938335947	130395496250	147570717035	14

INITIAL CALIBRATION OF MULTICOMPONENT ANALYTES

Contract: MSAN01

 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811
 SDG NO.:
 D3811

Instrument ID: <u>ECD_D</u> Date(s) Analyzed: <u>08/16/2012</u> <u>08/16/2012</u>

GC Column: ZB-MR2 ID: 0.32 (mm)

COMPOUND	AMOUNT			RT W	INDOW	CALIBRATION
	(ng)	PEAK	RT	FROM	TO	FACTOR
Toxaphene	0.5000	1	6.26	6.21	6.31	4672854
Toxaphene		2	6.63	6.58	6.68	7826036
		3	7.03	6.98	7.08	26206500
		4	7.12	7.07	7.17	24520910
		5	7.21	7.16	7.26	18725140

INITIAL CALIBRATION OF MULTICOMPONENT ANALYTES

Contract:	MSAN01		

 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811
 SDG NO.:
 D3811

Instrument ID: <u>ECD_D</u> Date(s) Analyzed: <u>08/16/2012</u> <u>08/16/2012</u>

GC Column: ZB-MR1 ID: 0.32 (mm)

COMPOUND	AMOUNT			RT W	INDOW	CALIBRATION
	(ng)	PEAK	RT	FROM	TO	FACTOR
Toyonhono	0.5000	1	6.81	6.76	6.86	4193449000
Toxaphene		2	6.91	6.86	6.96	4633805000
		3	7.05	7.00	7.10	6681304000
		4	7.34	7.29	7.39	3560648000
		- 5	7.47	7.42	7.52	2695540000

CALIBRATION VERIFICATION SUMMARY

Contract: MSAN01

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

Continuing Calib Date: 08/17/2012 Initial Calibration Date(s): 08/16/2012 08/16/2012

Continuing Calib Time: 19:51 Initial Calibration Time(s): 12:02 12:56

GC Column: ZB-MR2 ID: 0.32 (mm)

COMPOUND	CCAL	AVG	RT WIN	DOW	DIFF
COMPOUND	RT	RT	FROM	TO	RT
Decachlorobiphenyl	8.91	8.91	8.81	9.01	0.00
Tetrachloro-m-xylene	3.90	3.90	3.80	4.00	0.00
alpha-BHC	4.28	4.28	4.23	4.33	0.00
beta-BHC	4.73	4.73	4.68	4.78	0.00
delta-BHC	4.94	4.94	4.89	4.99	0.00
gamma-BHC (Lindane)	4.56	4.56	4.51	4.61	0.00
Heptachlor	5.07	5.07	5.02	5.12	0.00
Aldrin	5.37	5.37	5.32	5.42	0.00
Heptachlor epoxide	5.75	5.75	5.68	5.82	0.00
Endosulfan I	6.10	6.10	6.03	6.17	0.00
Dieldrin	6.36	6.36	6.29	6.43	0.00
4,4-DDE	6.22	6.22	6.15	6.29	0.00
Endrin	6.57	6.57	6.50	6.64	0.00
Endosulfan II	6.78	6.78	6.71	6.85	0.00
4,4-DDD	6.70	6.70	6.63	6.77	0.00
Endosulfan sulfate	7.12	7.12	7.05	7.19	0.00
4,4-DDT	7.00	7.00	6.93	7.07	0.00
Methoxychlor	7.46	7.46	7.39	7.53	0.00
Endrin ketone	7.59	7.58	7.51	7.65	-0.01
Endrin aldehyde	6.90	6.90	6.83	6.97	0.00
alpha-Chlordane	6.06	6.06	5.99	6.13	0.00
gamma-Chlordane	5.98	5.98	5.91	6.05	0.00

E

CALIBRATION VERIFICATION SUMMARY

Contract: MSAN01

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

Continuing Calib Date: 08/17/2012 Initial Calibration Date(s): 08/16/2012 08/16/2012

Continuing Calib Time: 19:51 Initial Calibration Time(s): 12:02 12:56

GC Column: ZB-MR1 ID: 0.32 (mm)

COMPOUND	CCAL	AVG	RT WINDOW		DIFF	
	RT	RT	FROM	TO	RT	
Decachlorobiphenyl	8.20	8.20	8.10	8.30	0.00	
Tetrachloro-m-xylene	3.43	3.43	3.33	3.53	0.00	
alpha-BHC	3.87	3.87	3.82	3.92	0.00	
beta-BHC	4.41	4.41	4.36	4.46	0.00	
delta-BHC	4.62	4.62	4.57	4.67	0.01	
gamma-BHC (Lindane)	4.16	4.16	4.11	4.21	0.00	
Heptachlor	4.46	4.46	4.41	4.51	0.00	
Aldrin	4.70	4.71	4.66	4.76	0.01	
Heptachlor epoxide	5.15	5.15	5.08	5.22	0.00	
Endosulfan I	5.49	5.49	5.42	5.56	0.00	
Dieldrin	5.73	5.73	5.66	5.80	0.00	
4,4-DDE	5.61	5.61	5.54	5.68	0.00	
Endrin	5.99	5.99	5.92	6.06	0.00	
Endosulfan II	6.27	6.27	6.20	6.34	0.00	
4,4-DDD	6.12	6.12	6.05	6.19	0.00	
Endosulfan sulfate	6.65	6.65	6.58	6.72	0.00	
4,4-DDT	6.36	6.36	6.29	6.43	0.00	
Methoxychlor	6.92	6.92	6.85	6.99	0.00	
Endrin ketone	7.15	7.15	7.08	7.22	0.00	
Endrin aldehyde	6.44	6.44	6.37	6.51	0.00	
alpha-Chlordane	5.44	5.44	5.37	5.51	0.00	
gamma-Chlordane	5.38	5.38	5.31	5.45	0.00	

E

D

D

CALIBRATION VERIFICATION SUMMARY

Contract:	MSAN01				

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

GC Column: ZB-MR2 ID: 0.32 (mm) Initi. Calib. Date(s): 08/16/2012 08/16/2012

Client Sample No.: CCAL01 Date Analyzed: 08/17/2012

Lab Sample No.: PSTDCCC050 Data File: PD012345.D Time Analyzed: 19:51

Lab Sample No.: PSTDCC	Data File : PD012345.D			Time Analyzed: 19:51		
COMPOUND	RT	RT WINDOW FROM TO		CALC AMOUNT(ng)	NOM AMOUNT(ng)	%D
alpha-BHC	4.281	4.230	4.330	0.058	0.050	16.0
beta-BHC	4.728	4.680	4.780	0.051	0.050	2.0
delta-BHC	4.940	4.890	4.990	0.055	0.050	10.0
gamma-BHC (Lindane)	4.561	4.510	4.610	0.056	0.050	12.0
Heptachlor	5.069	5.020	5.120	0.055	0.050	10.0
Aldrin	5.370	5.320	5.420	0.055	0.050	10.0
Heptachlor epoxide	5.751	5.680	5.820	0.052	0.050	4.0
Endosulfan I	6.103	6.030	6.170	0.052	0.050	4.0
Dieldrin	6.357	6.290	6.430	0.052	0.050	4.0
4,4-DDE	6.218	6.150	6.290	0.054	0.050	8.0
Endrin	6.571	6.500	6.640	0.059	0.050	18.0
Endosulfan II	6.777	6.710	6.850	0.052	0.050	4.0
4,4-DDD	6.700	6.630	6.770	0.053	0.050	6.0
Endosulfan sulfate	7.123	7.050	7.190	0.050	0.050	0.0
4,4-DDT	6.999	6.930	7.070	0.050	0.050	0.0
Methoxychlor	7.458	7.390	7.530	0.046	0.050	8.0
Endrin ketone	7.585	7.510	7.650	0.050	0.050	0.0
Endrin aldehyde	6.900	6.830	6.970	0.050	0.050	0.0
alpha-Chlordane	6.057	5.990	6.130	0.052	0.050	4.0
gamma-Chlordane	5.984	5.910	6.050	0.052	0.050	4.0
Decachlorobiphenyl	8.913	8.810	9.010	0.050	0.050	0.0
Tetrachloro-m-xylene	3.899	3.800	4.000	0.055	0.050	10.0

D

CALIBRATION VERIFICATION SUMMARY

Contract:	MSAN01

 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811
 SDG NO.:
 D3811

GC Column: ZB-MR1 ID: 0.32 (mm) Initi. Calib. Date(s): 08/16/2012 08/16/2012

Client Sample No.: CCAL01 Date Analyzed: 08/17/2012

Lab Sample No.: PSTDCCC050 Data File: PD012345.D Time Analyzed: 19:51

Lab Sample No.: PSTE	OCCC050 Data File	: PD012345	5.D	Time Analyze	d: <u>19:51</u>	19:51	
COMPOUND	RT	RT WINDOW FROM TO		CALC AMOUNT(ng)	NOM AMOUNT(ng)	%D	
alpha-BHC	3.874	3.820	3.920	0.052	0.050	4.0	
beta-BHC	4.410	4.360	4.460	0.049	0.050	2.0	
delta-BHC	4.615	4.570	4.670	0.050	0.050	0.0	
gamma-BHC (Lindane)	4.160	4.110	4.210	0.053	0.050	6.0	
Heptachlor	4.456	4.410	4.510	0.055	0.050	10.0	
Aldrin	4.704	4.660	4.760	0.049	0.050	2.0	
Heptachlor epoxide	5.151	5.080	5.220	0.050	0.050	0.0	
Endosulfan I	5.489	5.420	5.560	0.049	0.050	2.0	
Dieldrin	5.734	5.660	5.800	0.052	0.050	4.0	
4,4-DDE	5.606	5.540	5.680	0.049	0.050	2.0	
Endrin	5.993	5.920	6.060	0.049	0.050	2.0	
Endosulfan II	6.268	6.200	6.340	0.048	0.050	4.0	
4,4-DDD	6.123	6.050	6.190	0.058	0.050	16.0	
Endosulfan sulfate	6.651	6.580	6.720	0.046	0.050	8.0	
4,4-DDT	6.363	6.290	6.430	0.047	0.050	6.0	
Methoxychlor	6.917	6.850	6.990	0.062	0.050	24.0	
Endrin ketone	7.146	7.080	7.220	0.048	0.050	4.0	
Endrin aldehyde	6.439	6.370	6.510	0.049	0.050	2.0	
alpha-Chlordane	5.436	5.370	5.510	0.047	0.050	6.0	
gamma-Chlordane	5.377	5.310	5.450	0.046	0.050	8.0	
Decachlorobiphenyl	8.203	8.100	8.300	0.041	0.050	18.0	
Tetrachloro-m-xylene	3.428	3.330	3.530	0.055	0.050	10.0	

CALIBRATION VERIFICATION SUMMARY

Contract: MSAN01

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

Continuing Calib Date: 08/17/2012 Initial Calibration Date(s): 08/16/2012 08/16/2012

Continuing Calib Time: 22:47 Initial Calibration Time(s): 12:02 12:56

GC Column: ZB-MR2 ID: 0.32 (mm)

COMPOUND	CCAL	AVG	RT WIN	DOW	DIFF
COMPOUND	RT	RT	FROM	TO	RT
Decachlorobiphenyl	8.91	8.91	8.81	9.01	0.00
Tetrachloro-m-xylene	3.90	3.90	3.80	4.00	0.00
alpha-BHC	4.28	4.28	4.23	4.33	0.00
beta-BHC	4.73	4.73	4.68	4.78	0.00
delta-BHC	4.94	4.94	4.89	4.99	0.00
gamma-BHC (Lindane)	4.56	4.56	4.51	4.61	0.00
Heptachlor	5.07	5.07	5.02	5.12	0.00
Aldrin	5.37	5.37	5.32	5.42	0.00
Heptachlor epoxide	5.75	5.75	5.68	5.82	0.00
Endosulfan I	6.10	6.10	6.03	6.17	0.00
Dieldrin	6.36	6.36	6.29	6.43	0.00
4,4-DDE	6.22	6.22	6.15	6.29	0.00
Endrin	6.57	6.57	6.50	6.64	0.00
Endosulfan II	6.78	6.78	6.71	6.85	0.00
4,4-DDD	6.70	6.70	6.63	6.77	0.00
Endosulfan sulfate	7.12	7.12	7.05	7.19	0.00
4,4-DDT	7.00	7.00	6.93	7.07	0.00
Methoxychlor	7.46	7.46	7.39	7.53	0.00
Endrin ketone	7.59	7.58	7.51	7.65	-0.01
Endrin aldehyde	6.90	6.90	6.83	6.97	0.00
alpha-Chlordane	6.06	6.06	5.99	6.13	0.00
gamma-Chlordane	5.98	5.98	5.91	6.05	0.00

Е

CALIBRATION VERIFICATION SUMMARY

Contract: MSAN01

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

Continuing Calib Time: 22:47 Initial Calibration Time(s): 12:02 12:56

GC Column: ZB-MR1 ID: 0.32 (mm)

COMPOUND	CCAL	AVG	RT WINI	oow	DIFF
COMPOUND	RT	RT	FROM	TO	RT
Decachlorobiphenyl	8.20	8.20	8.10	8.30	0.00
Tetrachloro-m-xylene	3.43	3.43	3.33	3.53	0.00
alpha-BHC	3.88	3.87	3.82	3.92	-0.01
beta-BHC	4.41	4.41	4.36	4.46	0.00
delta-BHC	4.61	4.62	4.57	4.67	0.01
gamma-BHC (Lindane)	4.16	4.16	4.11	4.21	0.00
Heptachlor	4.46	4.46	4.41	4.51	0.01
Aldrin	4.70	4.71	4.66	4.76	0.01
Heptachlor epoxide	5.15	5.15	5.08	5.22	0.00
Endosulfan I	5.49	5.49	5.42	5.56	0.00
Dieldrin	5.73	5.73	5.66	5.80	0.00
4,4-DDE	5.61	5.61	5.54	5.68	0.00
Endrin	5.99	5.99	5.92	6.06	0.00
Endosulfan II	6.27	6.27	6.20	6.34	0.00
4,4-DDD	6.12	6.12	6.05	6.19	0.00
Endosulfan sulfate	6.65	6.65	6.58	6.72	0.00
4,4-DDT	6.36	6.36	6.29	6.43	0.00
Methoxychlor	6.92	6.92	6.85	6.99	0.00
Endrin ketone	7.15	7.15	7.08	7.22	0.00
Endrin aldehyde	6.44	6.44	6.37	6.51	0.00
alpha-Chlordane	5.44	5.44	5.37	5.51	0.00
gamma-Chlordane	5.38	5.38	5.31	5.45	0.00

E

D

CALIBRATION VERIFICATION SUMMARY

Contract:	MSAN01	

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

GC Column: ZB-MR2 ID: 0.32 (mm) Initi. Calib. Date(s): 08/16/2012 08/16/2012

Client Sample No.: CCAL02 Date Analyzed: 08/17/2012

Lab Sample No.: PSTDCCC050 Data File: PD012358.D Time Analyzed: 22:47

Lab Sample No.: PSTDCC	C050 Data File	: PD012358	58.D Time Analyzed:			22:47	
COMPOUND	RT	RT WINI FROM	OOW TO	CALC AMOUNT(ng)	NOM AMOUNT(ng)	%D	
alpha-BHC	4.281	4.230	4.330	0.051	0.050	2.0	
beta-BHC	4.729	4.680	4.780	0.046	0.050	8.0	
delta-BHC	4.940	4.890	4.990	0.049	0.050	2.0	
gamma-BHC (Lindane)	4.561	4.510	4.610	0.050	0.050	0.0	
Heptachlor	5.069	5.020	5.120	0.048	0.050	4.0	
Aldrin	5.370	5.320	5.420	0.049	0.050	2.0	
Heptachlor epoxide	5.751	5.680	5.820	0.047	0.050	6.0	
Endosulfan I	6.103	6.030	6.170	0.050	0.050	0.0	
Dieldrin	6.358	6.290	6.430	0.051	0.050	2.0	
4,4-DDE	6.219	6.150	6.290	0.053	0.050	6.0	
Endrin	6.570	6.500	6.640	0.049	0.050	2.0	
Endosulfan II	6.778	6.710	6.850	0.046	0.050	8.0	
4,4-DDD	6.700	6.630	6.770	0.048	0.050	4.0	
Endosulfan sulfate	7.123	7.050	7.190	0.045	0.050	10.0	
4,4-DDT	7.000	6.930	7.070	0.042	0.050	16.0	
Methoxychlor	7.456	7.390	7.530	0.042	0.050	16.0	
Endrin ketone	7.585	7.510	7.650	0.045	0.050	10.0	
Endrin aldehyde	6.900	6.830	6.970	0.044	0.050	12.0	
alpha-Chlordane	6.057	5.990	6.130	0.049	0.050	2.0	
gamma-Chlordane	5.984	5.910	6.050	0.048	0.050	4.0	
Decachlorobiphenyl	8.913	8.810	9.010	0.049	0.050	2.0	
Tetrachloro-m-xylene	3.899	3.800	4.000	0.051	0.050	2.0	

D

CALIBRATION VERIFICATION SUMMARY

Contract:	MSAN01

 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811
 SDG NO.:
 D3811

GC Column: ZB-MR1 ID: 0.32 (mm) Initi. Calib. Date(s): 08/16/2012 08/16/2012

Client Sample No.: CCAL02 Date Analyzed: 08/17/2012

Lab Sample No.: PSTDCCC050 Data File: PD012358.D Time Analyzed: 22:47

Lab Sample No.: PSTDO	CCC050 Data File	ata File : PD012358.D		Time Analyzed: 22		:47	
COMPOUND	RT	RT WINI FROM	OOW TO	CALC AMOUNT(ng)	NOM AMOUNT(ng)	%D	
alpha-BHC	3.875	3.820	3.920	0.046	0.050	8.0	
beta-BHC	4.410	4.360	4.460	0.040	0.050	20.0	
delta-BHC	4.613	4.570	4.670	0.042	0.050	16.0	
gamma-BHC (Lindane)	4.160	4.110	4.210	0.045	0.050	10.0	
Heptachlor	4.455	4.410	4.510	0.045	0.050	10.0	
Aldrin	4.704	4.660	4.760	0.041	0.050	18.0	
Heptachlor epoxide	5.151	5.080	5.220	0.040	0.050	20.0	
Endosulfan I	5.489	5.420	5.560	0.039	0.050	22.0	
Dieldrin	5.734	5.660	5.800	0.041	0.050	18.0	
4,4-DDE	5.606	5.540	5.680	0.038	0.050	24.0	
Endrin	5.993	5.920	6.060	0.038	0.050	24.0	
Endosulfan II	6.268	6.200	6.340	0.035	0.050	30.0	
4,4-DDD	6.123	6.050	6.190	0.046	0.050	8.0	
Endosulfan sulfate	6.651	6.580	6.720	0.034	0.050	32.0	
4,4-DDT	6.363	6.290	6.430	0.033	0.050	34.0	
Methoxychlor	6.917	6.850	6.990	0.046	0.050	8.0	
Endrin ketone	7.146	7.080	7.220	0.038	0.050	24.0	
Endrin aldehyde	6.439	6.370	6.510	0.036	0.050	28.0	
alpha-Chlordane	5.436	5.370	5.510	0.037	0.050	26.0	
gamma-Chlordane	5.377	5.310	5.450	0.036	0.050	28.0	
Decachlorobiphenyl	8.202	8.100	8.300	0.033	0.050	34.0	
Tetrachloro-m-xylene	3.428	3.330	3.530	0.049	0.050	2.0	

CALIBRATION VERIFICATION SUMMARY

Contract: MSAN01

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

Continuing Calib Date: 08/18/2012 Initial Calibration Date(s): 08/16/2012 08/16/2012

Continuing Calib Time: 01:17 Initial Calibration Time(s): 12:02 12:56

GC Column: ZB-MR2 ID: 0.32 (mm)

COMPOUND	CCAL	AVG	RT WIN	DOW	DIFF
COMPOUND	RT	RT	FROM	TO	RT
Decachlorobiphenyl	8.91	8.91	8.81	9.01	0.00
Tetrachloro-m-xylene	3.90	3.90	3.80	4.00	0.00
alpha-BHC	4.28	4.28	4.23	4.33	0.00
beta-BHC	4.73	4.73	4.68	4.78	0.00
delta-BHC	4.94	4.94	4.89	4.99	0.00
gamma-BHC (Lindane)	4.56	4.56	4.51	4.61	0.00
Heptachlor	5.07	5.07	5.02	5.12	0.00
Aldrin	5.37	5.37	5.32	5.42	0.00
Heptachlor epoxide	5.75	5.75	5.68	5.82	0.00
Endosulfan I	6.10	6.10	6.03	6.17	0.00
Dieldrin	6.36	6.36	6.29	6.43	0.00
4,4-DDE	6.22	6.22	6.15	6.29	0.00
Endrin	6.57	6.57	6.50	6.64	0.00
Endosulfan II	6.78	6.78	6.71	6.85	0.00
4,4-DDD	6.70	6.70	6.63	6.77	0.00
Endosulfan sulfate	7.12	7.12	7.05	7.19	0.00
4,4-DDT	7.00	7.00	6.93	7.07	0.00
Methoxychlor	7.46	7.46	7.39	7.53	0.00
Endrin ketone	7.59	7.58	7.51	7.65	-0.01
Endrin aldehyde	6.90	6.90	6.83	6.97	0.00
alpha-Chlordane	6.06	6.06	5.99	6.13	0.00
gamma-Chlordane	5.98	5.98	5.91	6.05	0.00

E

CALIBRATION VERIFICATION SUMMARY

Contract: MSAN01

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

 Continuing Calib Date:
 08/18/2012
 Initial Calibration Date(s):
 08/16/2012
 08/16/2012

Continuing Calib Time: 01:17 Initial Calibration Time(s): 12:02 12:56

GC Column: ZB-MR1 ID: 0.32 (mm)

COMPOUND	CCAL	AVG	RT WIN	oow	DIFF
COMPOUND	RT	RT	FROM	TO	RT
Decachlorobiphenyl	8.20	8.20	8.10	8.30	0.00
Tetrachloro-m-xylene	3.43	3.43	3.33	3.53	0.00
alpha-BHC	3.87	3.87	3.82	3.92	0.00
beta-BHC	4.41	4.41	4.36	4.46	0.00
delta-BHC	4.62	4.62	4.57	4.67	0.01
gamma-BHC (Lindane)	4.16	4.16	4.11	4.21	0.00
Heptachlor	4.46	4.46	4.41	4.51	0.00
Aldrin	4.70	4.71	4.66	4.76	0.01
Heptachlor epoxide	5.15	5.15	5.08	5.22	0.00
Endosulfan I	5.49	5.49	5.42	5.56	0.00
Dieldrin	5.74	5.73	5.66	5.80	-0.01
4,4-DDE	5.61	5.61	5.54	5.68	0.00
Endrin	5.99	5.99	5.92	6.06	0.00
Endosulfan II	6.27	6.27	6.20	6.34	0.00
4,4-DDD	6.12	6.12	6.05	6.19	0.00
Endosulfan sulfate	6.65	6.65	6.58	6.72	0.00
4,4-DDT	6.36	6.36	6.29	6.43	0.00
Methoxychlor	6.92	6.92	6.85	6.99	0.00
Endrin ketone	7.15	7.15	7.08	7.22	0.00
Endrin aldehyde	6.44	6.44	6.37	6.51	0.00
alpha-Chlordane	5.44	5.44	5.37	5.51	0.00
gamma-Chlordane	5.38	5.38	5.31	5.45	0.00

D

CALIBRATION VERIFICATION SUMMARY

Contract:	MSAN01				

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

GC Column: ZB-MR2 ID: 0.32 (mm) Initi. Calib. Date(s): 08/16/2012 08/16/2012

Client Sample No.: CCAL03 Date Analyzed: 08/18/2012

Lab Sample No.: PSTDCCC050 Data File: PD012369.D Time Analyzed: 01:17

Lab Sample No 151DCC	Coso Data File	. 1 D012305	<u>,,D</u>	Time Analyzeu.		
COMPOUND	RT	RT WINI FROM	oow TO	CALC AMOUNT(ng)	NOM AMOUNT(ng)	%D
alpha-BHC	4.281	4.230	4.330	0.053	0.050	6.0
beta-BHC	4.729	4.680	4.780	0.047	0.050	6.0
delta-BHC	4.940	4.890	4.990	0.050	0.050	0.0
gamma-BHC (Lindane)	4.561	4.510	4.610	0.051	0.050	2.0
Heptachlor	5.069	5.020	5.120	0.049	0.050	2.0
Aldrin	5.370	5.320	5.420	0.050	0.050	0.0
Heptachlor epoxide	5.751	5.680	5.820	0.048	0.050	4.0
Endosulfan I	6.103	6.030	6.170	0.047	0.050	6.0
Dieldrin	6.357	6.290	6.430	0.047	0.050	6.0
4,4-DDE	6.218	6.150	6.290	0.048	0.050	4.0
Endrin	6.571	6.500	6.640	0.049	0.050	2.0
Endosulfan II	6.778	6.710	6.850	0.046	0.050	8.0
4,4-DDD	6.702	6.630	6.770	0.056	0.050	12.0
Endosulfan sulfate	7.123	7.050	7.190	0.045	0.050	10.0
4,4-DDT	6.999	6.930	7.070	0.041	0.050	18.0
Methoxychlor	7.458	7.390	7.530	0.040	0.050	20.0
Endrin ketone	7.585	7.510	7.650	0.045	0.050	10.0
Endrin aldehyde	6.900	6.830	6.970	0.045	0.050	10.0
alpha-Chlordane	6.057	5.990	6.130	0.047	0.050	6.0
gamma-Chlordane	5.984	5.910	6.050	0.047	0.050	6.0
Decachlorobiphenyl	8.913	8.810	9.010	0.047	0.050	6.0
Tetrachloro-m-xylene	3.899	3.800	4.000	0.052	0.050	4.0

D

CALIBRATION VERIFICATION SUMMARY

Contract:	MSAN01

 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811
 SDG NO.:
 D3811

GC Column: ZB-MR1 ID: 0.32 (mm) Initi. Calib. Date(s): 08/16/2012 08/16/2012

Client Sample No.: CCAL03 Date Analyzed: 08/18/2012

Lab Sample No.: PSTDCCC050 Data File: PD012369.D Time Analyzed: 01:17

Lab Sample No.: PST	DCCC050 Data File	Data File : <u>PD012369.D</u>		Time Analyzed:		01:17	
COMPOUND	RT	RT WINI FROM	DOW TO	CALC AMOUNT(ng)	NOM AMOUNT(ng)	%D	
alpha-BHC	3.874	3.820	3.920	0.049	0.050	2.0	
beta-BHC	4.410	4.360	4.460	0.044	0.050	12.0	
delta-BHC	4.615	4.570	4.670	0.046	0.050	8.0	
gamma-BHC (Lindane)	4.160	4.110	4.210	0.049	0.050	2.0	
Heptachlor	4.456	4.410	4.510	0.049	0.050	2.0	
Aldrin	4.704	4.660	4.760	0.046	0.050	8.0	
Heptachlor epoxide	5.151	5.080	5.220	0.041	0.050	18.0	
Endosulfan I	5.489	5.420	5.560	0.038	0.050	24.0	
Dieldrin	5.735	5.660	5.800	0.041	0.050	18.0	
4,4-DDE	5.606	5.540	5.680	0.038	0.050	24.0	
Endrin	5.993	5.920	6.060	0.036	0.050	28.0	
Endosulfan II	6.268	6.200	6.340	0.035	0.050	30.0	
4,4-DDD	6.123	6.050	6.190	0.047	0.050	6.0	
Endosulfan sulfate	6.651	6.580	6.720	0.033	0.050	34.0	
4,4-DDT	6.363	6.290	6.430	0.030	0.050	40.0	
Methoxychlor	6.918	6.850	6.990	0.041	0.050	18.0	
Endrin ketone	7.146	7.080	7.220	0.033	0.050	34.0	
Endrin aldehyde	6.439	6.370	6.510	0.033	0.050	34.0	
alpha-Chlordane	5.436	5.370	5.510	0.036	0.050	28.0	
gamma-Chlordane	5.377	5.310	5.450	0.035	0.050	30.0	
Decachlorobiphenyl	8.203	8.100	8.300	0.031	0.050	38.0	
Tetrachloro-m-xylene	3.428	3.330	3.530	0.051	0.050	2.0	

PESTICIDE CALIBRATION VERIFICATION SUMMARY

Contract: MSAN01

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

GC Column: ZB-MR2 ID: 0.32 (mm) Initi. Calib. Date(s): 08/16/2012 08/16/2012

Client Sample No. (PEM): PEM - PD012270.D Date Analyzed: 08/16/2012

Lab Sample No.(PEM): PEM Time Analyzed: 11:34

PEM COMPOUND	RT	RT WINI		CALC	NOM	%D
		FROM	TO	AMOUNT(ng)	AMOUNT(ng)	
Decachlorobiphenyl	8.912	8.810	9.010	0.025	0.020	25.
Tetrachloro-m-xylene	3.899	3.800	4.000	0.026	0.020	30.
alpha-BHC	4.281	4.230	4.330	0.011	0.010	10.
beta-BHC	4.729	4.680	4.780	0.012	0.010	20.
gamma-BHC (Lindane)	4.562	4.510	4.610	0.012	0.010	20.
Endrin	6.572	6.500	6.640	0.057	0.050	14.
4,4-DDT	7.000	6.930	7.070	0.126	0.100	26.
Methoxychlor	7.459	7.390	7.530	0.291	0.250	16

GC Column: ZB-MR1 ID: 0.32 (mm) Initi. Calib. Date(s): 08/16/2012 08/16/2012

Client Sample No. (PEM): PEM - PD012270.D Date Analyzed: 08/16/2012

Lab Sample No.(PEM): PEM Time Analyzed: 11:34

PEM COMPOUND	RT	RT WINI FROM	WINDOW CALC TO AMOUNT(ng)		NOM AMOUNT(ng)	%D
Decachlorobiphenyl	8.203	8.100	8.300	0.024	0.020	20.0
Tetrachloro-m-xylene	3.428	3.330	3.530	0.028	0.020	40.0
alpha-BHC	3.874	3.820	3.920	0.016	0.010	60.0
beta-BHC	4.410	4.360	4.460	0.021	0.010	110.0
gamma-BHC (Lindane)	4.158	4.110	4.210	0.014	0.010	40.0
Endrin	5.994	5.920	6.060	0.056	0.050	12.0
4,4-DDT	6.365	6.290	6.430	0.118	0.100	18.0
Methoxychlor	6.918	6.850	6.990	0.211	0.250	15.6

PESTICIDE CALIBRATION VERIFICATION SUMMARY

Contract: MSAN01

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

GC Column: ZB-MR2 ID: 0.32 (mm) Initi. Calib. Date(s): 08/16/2012 08/16/2012

Client Sample No. (PEM): PEM - PD012346.D Date Analyzed: 08/17/2012

Lab Sample No.(PEM): PEM Time Analyzed: 20:04

PEM COMPOUND	RT	RT WINDOW		CALC AMOUNT(ng)	NOM AMOUNT(ng)	%D
		FROM	ТО		(8)	<u> </u>
Decachlorobiphenyl	8.913	8.810	9.010	0.025	0.020	25.
Tetrachloro-m-xylene	3.897	3.800	4.000	0.026	0.020	30.
alpha-BHC	4.281	4.230	4.330	0.012	0.010	20.
beta-BHC	4.728	4.680	4.780	0.012	0.010	20.
gamma-BHC (Lindane)	4.561	4.510	4.610	0.013	0.010	30
Endrin	6.571	6.500	6.640	0.063	0.050	26
4,4-DDT	7.000	6.930	7.070	0.131	0.100	31
Methoxychlor	7.459	7.390	7.530	0.302	0.250	20

GC Column: ZB-MR1 ID: 0.32 (mm) Initi. Calib. Date(s): 08/16/2012 08/16/2012

Client Sample No. (PEM): PEM - PD012346.D Date Analyzed: 08/17/2012

Lab Sample No.(PEM): PEM Time Analyzed: 20:04

PEM COMPOUND	RT	RT WINI FROM	DOW TO	CALC AMOUNT(ng)	NOM AMOUNT(ng)	%D
Decachlorobiphenyl	8.203	8.100	8.300	0.021	0.020	5.0
Tetrachloro-m-xylene	3.426	3.330	3.530	0.026	0.020	30.0
alpha-BHC	3.872	3.820	3.920	0.015	0.010	50.0
beta-BHC	4.410	4.360	4.460	0.020	0.010	100.0
gamma-BHC (Lindane)	4.157	4.110	4.210	0.015	0.010	50.0
Endrin	5.993	5.920	6.060	0.061	0.050	22.0
4,4-DDT	6.364	6.290	6.430	0.120	0.100	20.0
Methoxychlor	6.919	6.850	6.990	0.317	0.250	26.8

Analytical Sequence

Client: MS Analytical SDG No.: D3811

Project: 12MS104 Kensington Heights Instrument ID: ECD_D

GC Column: ZB-MR2 ID: 0.32 (mm) Inst. Calib. Date(s): 08/16/2012 08/16/2012

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

EPA	LAB SAMPLE ID	DATE ANALYZED	TIME ANALYZED	DATAFILE	DCB	TCX
SAMPLE NO.			<u> </u>		RT#	RT#
PIBLK01	I.BLK01	08/16/2012	11:21	PD012269.D	8.91	3.90
PEM01	PEM01	08/16/2012	11:34	PD012270.D	8.91	3.90
RESC01	RESCHK	08/16/2012	11:48	PD012271.D	8.91	3.90
PSTDICC100	PSTDICC100	08/16/2012	12:02	PD012272.D	8.91	3.90
PSTDICC075	PSTDICC075	08/16/2012	12:15	PD012273.D	8.91	3.90
PSTDICC050	PSTDICC050	08/16/2012	12:29	PD012274.D	8.91	3.90
PSTDICC025	PSTDICC025	08/16/2012	12:42	PD012275.D	8.91	3.90
PSTDICC005	PSTDICC005	08/16/2012	12:56	PD012276.D	8.91	3.90
PTOXICC500	PTOXICC500	08/16/2012	13:23	PD012278.D	8.91	3.90
PCHLORICC500	PCHLORICC500	08/16/2012	13:37	PD012279.D	8.91	3.90
PIBLK02	I.BLK02	08/17/2012	19:37	PD012344.D	8.91	3.90
CCAL01	PSTDCCC050	08/17/2012	19:51	PD012345.D	8.91	3.90
PEM02	PEM02	08/17/2012	20:04	PD012346.D	8.91	3.90
PB65124BL	PB65124BL	08/17/2012	20:18	PD012347.D	8.91	3.90
PB65124BS	PB65124BS	08/17/2012	20:32	PD012348.D	8.91	3.90
SB-2(4-8)	D3811-01	08/17/2012	20:45	PD012349.D	8.92	3.90
SB-5(8-12)	D3811-02	08/17/2012	20:59	PD012350.D	8.91	3.90
SB-9(4-7)	D3811-03	08/17/2012	21:12	PD012351.D	8.91	3.90
SB-11(12-16)	D3811-05	08/17/2012	21:26	PD012352.D	8.91	3.90
SB-15(12-16)	D3811-06	08/17/2012	21:39	PD012353.D	8.92	3.90
SB-18(4-8)	D3811-07	08/17/2012	21:53	PD012354.D	8.91	3.90
SB-21(16-19)	D3811-10	08/17/2012	22:06	PD012355.D	8.92	3.90
SB-22(12-19)	D3811-11	08/17/2012	22:20	PD012356.D	8.91	3.90
PIBLK03	I.BLK03	08/17/2012	22:34	PD012357.D	8.91	3.90
CCAL02	PSTDCCC050	08/17/2012	22:47	PD012358.D	8.91	3.90
SB-37(8-10)	D3811-13	08/17/2012	23:01	PD012359.D	8.92	3.90
SB-39(6-8)	D3811-14	08/17/2012	23:15	PD012360.D	8.91	3.90
SB-41(8-11)	D3811-15	08/17/2012	23:28	PD012361.D	8.91	3.90
SB-43(6-8)	D3811-17	08/17/2012	23:42	PD012362.D	8.91	3.90
SB-43(10-12)	D3811-18	08/17/2012	23:55	PD012363.D	8.91	3.90
SB-43(16-20)	D3811-19	08/18/2012	00:09	PD012364.D	8.91	3.90
SB-46(12-16)	D3811-21	08/18/2012	00:22	PD012365.D	8.91	3.90
SB-15(12-16)MS	D3811-06MS	08/18/2012	00:36	PD012366.D	8.91	3.90
SB-15(12-16)MSD	D3811-06MSD	08/18/2012	00:50	PD012367.D	8.91	3.90
PIBLK04	I.BLK04	08/18/2012	01:03	PD012368.D	8.91	3.90
CCAL03	PSTDCCC050	08/18/2012	01:17	PD012369.D	8.91	3.90

Analytical Sequence

Client: MS Analytical SDG No.: D3811

Project: 12MS104 Kensington Heights Instrument ID: ECD_D

GC Column: ZB-MR1 ID: 0.32 (mm) Inst. Calib. Date(s): 08/16/2012 08/16/2012

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

EPA SAMPLE NO.	LAB SAMPLE ID	DATE ANALYZED	TIME ANALYZED	DATAFILE	DCB RT#	TCX RT#
PIBLK01	I.BLK01	08/16/2012	11:21	PD012269.D	8.20	3.43
PEM01	PEM01	08/16/2012	11:34	PD012270.D	8.20	3.43
RESC01	RESCHK	08/16/2012	11:48	PD012271.D	8.20	3.43
PSTDICC100	PSTDICC100	08/16/2012	12:02	PD012272.D	8.21	3.43
PSTDICC075	PSTDICC075	08/16/2012	12:15	PD012273.D	8.21	3.43
PSTDICC050	PSTDICC050	08/16/2012	12:29	PD012274.D	8.20	3.43
PSTDICC025	PSTDICC025	08/16/2012	12:42	PD012275.D	8.20	3.43
PSTDICC005	PSTDICC005	08/16/2012	12:56	PD012276.D	8.20	3.43
PTOXICC500	PTOXICC500	08/16/2012	13:23	PD012278.D	8.20	3.43
PCHLORICC500	PCHLORICC500	08/16/2012	13:37	PD012279.D	8.20	3.43
PIBLK02	I.BLK02	08/17/2012	19:37	PD012344.D	8.20	3.43
CCAL01	PSTDCCC050	08/17/2012	19:51	PD012345.D	8.20	3.43
PEM02	PEM02	08/17/2012	20:04	PD012346.D	8.20	3.43
PB65124BL	PB65124BL	08/17/2012	20:18	PD012347.D	8.20	3.43
PB65124BS	PB65124BS	08/17/2012	20:32	PD012348.D	8.20	3.43
SB-2(4-8)	D3811-01	08/17/2012	20:45	PD012349.D	8.20	3.43
SB-5(8-12)	D3811-02	08/17/2012	20:59	PD012350.D	8.20	3.43
SB-9(4-7)	D3811-03	08/17/2012	21:12	PD012351.D	8.20	3.43
SB-11(12-16)	D3811-05	08/17/2012	21:26	PD012352.D	8.20	3.43
SB-15(12-16)	D3811-06	08/17/2012	21:39	PD012353.D	8.20	3.43
SB-18(4-8)	D3811-07	08/17/2012	21:53	PD012354.D	8.20	3.43
SB-21(16-19)	D3811-10	08/17/2012	22:06	PD012355.D	8.20	3.43
SB-22(12-19)	D3811-11	08/17/2012	22:20	PD012356.D	8.20	3.43
PIBLK03	I.BLK03	08/17/2012	22:34	PD012357.D	8.20	3.43
CCAL02	PSTDCCC050	08/17/2012	22:47	PD012358.D	8.20	3.43
SB-37(8-10)	D3811-13	08/17/2012	23:01	PD012359.D	8.20	3.43
SB-39(6-8)	D3811-14	08/17/2012	23:15	PD012360.D	8.20	3.43
SB-41(8-11)	D3811-15	08/17/2012	23:28	PD012361.D	8.20	3.43
SB-43(6-8)	D3811-17	08/17/2012	23:42	PD012362.D	8.20	3.43
SB-43(10-12)	D3811-18	08/17/2012	23:55	PD012363.D	8.20	3.43
SB-43(16-20)	D3811-19	08/18/2012	00:09	PD012364.D	8.20	3.43
SB-46(12-16)	D3811-21	08/18/2012	00:22	PD012365.D	8.20	3.43
SB-15(12-16)MS	D3811-06MS	08/18/2012	00:36	PD012366.D	8.20	3.43
SB-15(12-16)MSD	D3811-06MSD	08/18/2012	00:50	PD012367.D	8.20	3.43
PIBLK04	I.BLK04	08/18/2012	01:03	PD012368.D	8.20	3.43
CCAL03	PSTDCCC050	08/18/2012	01:17	PD012369.D	8.20	3.43

LAB CHRONICLE

OrderID: D3811 **OrderDate:** 8/15/2012 11:38:54 AM

Client: MS Analytical Project: 12MS104 Kensington Heights

Contact: Bryan Mayback Location:

LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
D3811-01	SB-2(4-8)	SOIL			08/07/12			08/15/12
			Herbicide	8151A		08/15/12	08/23/12	
			PCB	8082A		08/15/12	08/21/12	
			Pesticide-TCL	8081B		08/15/12	08/17/12	
D3811-02	SB-5(8-12)	SOIL			08/07/12			08/15/12
			Herbicide	8151A		08/15/12	08/23/12	
			PCB	8082A		08/15/12	08/21/12	
			Pesticide-TCL	8081B		08/15/12	08/17/12	
D3811-03	SB-9(4-7)	SOIL			08/07/12			08/15/12
			Herbicide	8151A		08/15/12	08/23/12	
			PCB	8082A		08/15/12	08/21/12	
			Pesticide-TCL	8081B		08/15/12	08/17/12	
D3811-05	SB-11(12-16)	SOIL			08/07/12			08/15/12
			Herbicide	8151A		08/15/12	08/23/12	
			PCB	8082A		08/15/12	08/21/12	
			Pesticide-TCL	8081B		08/15/12	08/17/12	
D3811-06	SB-15(12-16)	SOIL			08/08/12			08/15/12
			Herbicide	8151A		08/15/12	08/23/12	
			PCB	8082A		08/15/12	08/21/12	
			Pesticide-TCL	8081B		08/15/12	08/17/12	
D3811-07	SB-18(4-8)	SOIL			08/08/12			08/15/12
			Herbicide	8151A		08/15/12	08/23/12	
			PCB	8082A		08/15/12	08/21/12	
			Pesticide-TCL	8081B		08/15/12	08/17/12	
D3811-10	SB-21(16-19)	SOIL			08/09/12			08/15/12
			Herbicide	8151A		08/15/12	08/23/12	
			PCB	8082A		08/15/12	08/21/12	

			LAB CHRON	ICLE				
			Pesticide-TCL	8081B		08/15/12	08/17/12	
D3811-10RE	SB-21(16-19)RE	SOIL			08/09/12			08/15/12
			PCB	8082A		08/15/12	08/21/12	
D3811-11	SB-22(12-19)	SOIL			08/09/12			08/15/12
20011 11	00 ==(== =0)		Herbicide	8151A	00,00, ==	08/15/12	08/23/12	33, 23, 22
			PCB	8082A		08/15/12	08/21/12	
			Pesticide-TCL	8081B		08/15/12	08/17/12	
D3811-13	SB-37(8-10)	SOIL			08/10/12			08/15/12
			Herbicide	8151A		08/15/12	08/23/12	
			РСВ	8082A		08/15/12	08/21/12	
			Pesticide-TCL	8081B		08/15/12	08/17/12	
D3811-14	SB-39(6-8)	SOIL			08/10/12			08/15/12
			Herbicide	8151A		08/15/12	08/23/12	
			PCB	8082A		08/15/12	08/21/12	
			Pesticide-TCL	8081B		08/15/12	08/17/12	
D3811-15	SB-41(8-11)	SOIL			08/10/12			08/15/12
			Herbicide	8151A		08/15/12	08/23/12	
			PCB	8082A		08/15/12	08/21/12	
			Pesticide-TCL	8081B		08/15/12	08/17/12	
D3811-17	SB-43(6-8)	SOIL			08/13/12			08/15/12
			Herbicide	8151A		08/15/12	08/23/12	
			PCB	8082A		08/15/12	08/21/12	
			Pesticide-TCL	8081B		08/15/12	08/17/12	
D3811-18	SB-43(10-12)	SOIL			08/13/12			08/15/12
			Herbicide	8151A		08/15/12	08/23/12	
			PCB	8082A		08/15/12	08/21/12	
			Pesticide-TCL	8081B		08/15/12	08/17/12	
D3811-18RE	SB-43(10-12)RE	SOIL			08/13/12			08/15/12
			PCB	8082A		08/15/12	08/21/12	
D3811-19	SB-43(16-20)	SOIL			08/13/12			08/15/12
			Herbicide	8151A		08/15/12	08/23/12	
			PCB	8082A		08/15/12	08/21/12	
			Pesticide-TCL	8081B		08/15/12	08/18/12	

LAB CHRONICLE

D3811-21	SB-46(12-16)	SOIL		3/12		08/15/12	
			Herbicide	8151A	08/15/12	08/23/12	

 Herbicide
 8151A
 08/15/12
 08/23/12

 PCB
 8082A
 08/15/12
 08/21/12

 Pesticide-TCL
 8081B
 08/15/12
 08/18/12

В

C

D

ī

Hit Summary Sheet SW-846

SDG No.:			Order ID:					
Client:			Project ID:					
Sample ID Client ID:	Client ID	Parameter	Concentration	C	MDL	LOD	RDL	Units

SAMPLE DATA

Client: Date Collected: MS Analytical 08/07/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 SDG No.: Client Sample ID: SB-2(4-8) D3811 Lab Sample ID: D3811-01 Matrix: **SOIL** % Moisture: Analytical Method: SW8082A 13 Decanted: Sample Wt/Vol: 30.05 Units: Final Vol: 10000 иL g Test: PCB Soil Aliquot Vol: иL Extraction Type: Injection Volume 1.0 PH: N/A GPC Factor:

File ID/Qc Batch:	Dilution:	Prep Date		Date Analyzed	Pr	ep Batch ID
PC009887.D	1	08/15/12		08/21/12	PI	365123
CAS Number	Parameter		Conc.	Qualifier MDL	LOD	LOQ / CRQL Units
TARGETS						

CAS Number	1 ai ainetei	Conc.	Quanner	MIDL	LOD	LOQ/CK	QL UIIIS
TARGETS							
12674-11-2	Aroclor-1016	10	U	4	10	20	ug/Kg
11104-28-2	Aroclor-1221	10	U	3.9	10	20	ug/Kg
11141-16-5	Aroclor-1232	10	U	8.6	10	20	ug/Kg
53469-21-9	Aroclor-1242	10	U	3.9	10	20	ug/Kg
12672-29-6	Aroclor-1248	10	U	7.6	10	20	ug/Kg
11097-69-1	Aroclor-1254	10	U	1.7	10	20	ug/Kg
11096-82-5	Aroclor-1260	10	U	4.7	10	20	ug/Kg
SURROGATES							
877-09-8	Tetrachloro-m-xylene	18.8		10 - 166	6	94%	SPK: 20
2051-24-3	Decachlorobiphenyl	16.5		60 - 125	5	83%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Client: Date Collected: MS Analytical 08/07/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 SDG No.: Client Sample ID: SB-5(8-12) D3811 Lab Sample ID: D3811-02 Matrix: **SOIL** % Moisture: 19 Analytical Method: SW8082A Decanted: Sample Wt/Vol: 30.04 Units: Final Vol: 10000 иL g Test: PCB Soil Aliquot Vol: иL Extraction Type: Injection Volume

GPC Factor: 1.0 PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
PC009888.D 1 08/15/12 08/21/12 PB65123

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
12674-11-2	Aroclor-1016	10.5	U	4.3	10.5	21	ug/Kg
11104-28-2	Aroclor-1221	10.5	U	4.2	10.5	21	ug/Kg
11141-16-5	Aroclor-1232	10.5	U	9.2	10.5	21	ug/Kg
53469-21-9	Aroclor-1242	10.5	U	4.2	10.5	21	ug/Kg
12672-29-6	Aroclor-1248	10.5	U	8.1	10.5	21	ug/Kg
11097-69-1	Aroclor-1254	10.5	U	1.8	10.5	21	ug/Kg
11096-82-5	Aroclor-1260	10.5	U	5.1	10.5	21	ug/Kg
SURROGATES							
877-09-8	Tetrachloro-m-xylene	18.2		10 - 166	6	91%	SPK: 20
2051-24-3	Decachlorobiphenyl	15.6		60 - 125	5	78%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

File ID/Qc Batch:

12672-29-6

11097-69-1

11096-82-5

2051-24-3

SURROGATES 877-09-8

Dilution:

Aroclor-1248

Aroclor-1254

Aroclor-1260

Tetrachloro-m-xylene

Decachlorobiphenyl

Report of Analysis

Client: Date Collected: MS Analytical 08/07/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 SDG No.: Client Sample ID: SB-9(4-7) D3811 Lab Sample ID: D3811-03 Matrix: **SOIL** % Moisture: 16 Analytical Method: SW8082A Decanted: Sample Wt/Vol: 30.03 Units: Final Vol: 10000 иL g PCB Soil Aliquot Vol: иL Test: Extraction Type: Injection Volume 1.0 PH: N/A GPC Factor:

PC009889.D	1	08/15/12		08/21/12		PE	365123	
CAS Number	Parameter		Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS								
12674-11-2	Aroclor-1016		10	U	4.1	10	20	ug/Kg
11104-28-2	Aroclor-1221		10	U	4	10	20	ug/Kg
11141-16-5	Aroclor-1232		10	U	8.9	10	20	ug/Kg
53469-21-9	Aroclor-1242		10	U	4	10	20	ug/Kg

10

10

10

21.3

20.8

Prep Date

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Date Analyzed

U

U

U

7.8

1.8

4.9

10 - 166

60 - 125

10

10

10

Prep Batch ID

20

20

20

107%

104%

ug/Kg

ug/Kg

ug/Kg

SPK: 20

SPK: 20

D = Dilution

Extraction Type:

Report of Analysis

Client: Date Collected: MS Analytical 08/07/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 SDG No.: Client Sample ID: SB-11(12-16) D3811 Lab Sample ID: D3811-05 Matrix: **SOIL** % Moisture: 26 Analytical Method: SW8082A Decanted: Sample Wt/Vol: Units: 30.05 Final Vol: 10000 иL g Test: PCB Soil Aliquot Vol: иL

GPC Factor: 1.0 PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID PC009890.D 1 08/15/12 08/21/12 PB65123

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
12674-11-2	Aroclor-1016	11.5	U	4.7	11.5	23	ug/Kg
11104-28-2	Aroclor-1221	11.5	U	4.6	11.5	23	ug/Kg
11141-16-5	Aroclor-1232	11.5	U	10	11.5	23	ug/Kg
53469-21-9	Aroclor-1242	11.5	U	4.6	11.5	23	ug/Kg
12672-29-6	Aroclor-1248	11.5	U	8.9	11.5	23	ug/Kg
11097-69-1	Aroclor-1254	11.5	U	2	11.5	23	ug/Kg
11096-82-5	Aroclor-1260	11.5	U	5.5	11.5	23	ug/Kg
SURROGATES							
877-09-8	Tetrachloro-m-xylene	16.3		10 - 166	5	82%	SPK: 20
2051-24-3	Decachlorobiphenyl	15.6		60 - 125	5	78%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Injection Volume

* = Values outside of QC limits

D = Dilution

PC009893.D

Report of Analysis

Client: Date Collected: 08/08/12 MS Analytical Project: 12MS104 Kensington Heights Date Received: 08/15/12 SDG No.: Client Sample ID: SB-15(12-16) D3811 Lab Sample ID: D3811-06 Matrix: **SOIL** % Moisture: Analytical Method: SW8082A 28 Decanted: Sample Wt/Vol: Units: 30.07 Final Vol: 10000 иL g

Soil Aliquot Vol: uL Test: PCB

Extraction Type: Injection Volume 1

GPC Factor: 1.0 PH: N/A

1

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

08/15/12

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
12674-11-2	Aroclor-1016	12	U	4.8	12	24	ug/Kg
11104-28-2	Aroclor-1221	12	U	4.7	12	24	ug/Kg
11141-16-5	Aroclor-1232	12	U	10	12	24	ug/Kg
53469-21-9	Aroclor-1242	12	U	4.7	12	24	ug/Kg
12672-29-6	Aroclor-1248	12	U	9.1	12	24	ug/Kg
11097-69-1	Aroclor-1254	12	U	2.1	12	24	ug/Kg
11096-82-5	Aroclor-1260	12	U	5.7	12	24	ug/Kg
SURROGATES							
877-09-8	Tetrachloro-m-xylene	12.8		10 - 166	6	64%	SPK: 20
2051-24-3	Decachlorobiphenyl	13.4		60 - 125	5	67%	SPK: 20

08/21/12

PB65123

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Client: Date Collected: MS Analytical 08/08/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 SDG No.: Client Sample ID: SB-18(4-8) D3811 Lab Sample ID: D3811-07 Matrix: **SOIL** % Moisture: Analytical Method: SW8082A 16 Decanted: Sample Wt/Vol: 30.07 Units: Final Vol: 10000 иL g Test: PCB Soil Aliquot Vol: иL Extraction Type: Injection Volume

GPC Factor: 1.0 PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID PC009894.D 1 08/15/12 08/21/12 PB65123

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
12674-11-2	Aroclor-1016	10	U	4.1	10	20	ug/Kg
11104-28-2	Aroclor-1221	10	U	4	10	20	ug/Kg
11141-16-5	Aroclor-1232	10	U	8.9	10	20	ug/Kg
53469-21-9	Aroclor-1242	10	U	4	10	20	ug/Kg
12672-29-6	Aroclor-1248	10	U	7.8	10	20	ug/Kg
11097-69-1	Aroclor-1254	10	U	1.8	10	20	ug/Kg
11096-82-5	Aroclor-1260	10	U	4.9	10	20	ug/Kg
SURROGATES							
877-09-8	Tetrachloro-m-xylene	20.9		10 - 166	6	105%	SPK: 20
2051-24-3	Decachlorobiphenyl	16.5		60 - 125	5	83%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Client: Date Collected: MS Analytical 08/09/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 SDG No.: Client Sample ID: SB-21(16-19) D3811 Lab Sample ID: D3811-10 Matrix: **SOIL** % Moisture: Analytical Method: SW8082A 32 Decanted: Sample Wt/Vol: Units: 30.09 Final Vol: 10000 иL g Test: PCB Soil Aliquot Vol: иL Extraction Type: Injection Volume

GPC Factor: 1.0 PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID PC009895.D 1 08/15/12 08/21/12 PB65123

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
12674-11-2	Aroclor-1016	12.5	U	5.1	12.5	25	ug/Kg
11104-28-2	Aroclor-1221	12.5	U	5	12.5	25	ug/Kg
11141-16-5	Aroclor-1232	12.5	U	11	12.5	25	ug/Kg
53469-21-9	Aroclor-1242	12.5	U	5	12.5	25	ug/Kg
12672-29-6	Aroclor-1248	12.5	U	9.7	12.5	25	ug/Kg
11097-69-1	Aroclor-1254	12.5	U	2.2	12.5	25	ug/Kg
11096-82-5	Aroclor-1260	12.5	U	6	12.5	25	ug/Kg
SURROGATES							
877-09-8	Tetrachloro-m-xylene	10.1		10 - 160	5	51%	SPK: 20
2051-24-3	Decachlorobiphenyl	58.4	*	60 - 123	5	292%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Client: Date Collected: MS Analytical 08/09/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 SDG No.: Client Sample ID: SB-21(16-19)RE D3811 Lab Sample ID: D3811-10RE Matrix: **SOIL** Analytical Method: SW8082A % Moisture: 32 Decanted: Sample Wt/Vol: 30.09 Units: Final Vol: 10000 иL g Test: PCB Soil Aliquot Vol: иL Extraction Type: Injection Volume

GPC Factor: 1.0 PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
PC009914.D 1 08/15/12 08/21/12 PB65123

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
12674-11-2	Aroclor-1016	12.5	U	5.1	12.5	25	ug/Kg
11104-28-2	Aroclor-1221	12.5	U	5	12.5	25	ug/Kg
11141-16-5	Aroclor-1232	12.5	U	11	12.5	25	ug/Kg
53469-21-9	Aroclor-1242	12.5	U	5	12.5	25	ug/Kg
12672-29-6	Aroclor-1248	12.5	U	9.7	12.5	25	ug/Kg
11097-69-1	Aroclor-1254	12.5	U	2.2	12.5	25	ug/Kg
11096-82-5	Aroclor-1260	12.5	U	6	12.5	25	ug/Kg
SURROGATES							
877-09-8	Tetrachloro-m-xylene	11.6		10 - 166	5	58%	SPK: 20
2051-24-3	Decachlorobiphenyl	65.2	*	60 - 125	5	326%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Client: Date Collected: MS Analytical 08/09/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 SDG No.: Client Sample ID: SB-22(12-19) D3811 Lab Sample ID: D3811-11 Matrix: **SOIL** % Moisture: Analytical Method: SW8082A Decanted: Sample Wt/Vol: Units: 30.04 Final Vol: 10000 иL g Test: PCB Soil Aliquot Vol: иL Extraction Type: Injection Volume

GPC Factor: 1.0 PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID PC009896.D 1 08/15/12 08/21/12 PB65123

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
12674-11-2	Aroclor-1016	9.5	U	3.8	9.5	19	ug/Kg
11104-28-2	Aroclor-1221	9.5	U	3.7	9.5	19	ug/Kg
11141-16-5	Aroclor-1232	9.5	U	8.2	9.5	19	ug/Kg
53469-21-9	Aroclor-1242	9.5	U	3.7	9.5	19	ug/Kg
12672-29-6	Aroclor-1248	9.5	U	7.2	9.5	19	ug/Kg
11097-69-1	Aroclor-1254	9.5	U	1.6	9.5	19	ug/Kg
11096-82-5	Aroclor-1260	9.5	U	4.5	9.5	19	ug/Kg
SURROGATES							
877-09-8	Tetrachloro-m-xylene	15.1		10 - 160	5	76%	SPK: 20
2051-24-3	Decachlorobiphenyl	14.4		60 - 123	5	72%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

File ID/Qc Batch:

Report of Analysis

Client: Date Collected: 08/10/12 MS Analytical Project: 12MS104 Kensington Heights Date Received: 08/15/12 SDG No.: Client Sample ID: SB-37(8-10) D3811 Lab Sample ID: D3811-13 Matrix: **SOIL** % Moisture: Analytical Method: SW8082A 30 Decanted: Sample Wt/Vol: 30.06 Units: Final Vol: 10000 иL g Test: PCB Soil Aliquot Vol: иL Extraction Type: Injection Volume

1.0 PH: N/A GPC Factor:

Dilution:

Prep Date 1 08/15/12 08/21/12 PC009897.D PB65123

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
12674-11-2	Aroclor-1016	12	U	4.9	12	24	ug/Kg
11104-28-2	Aroclor-1221	12	U	4.8	12	24	ug/Kg
11141-16-5	Aroclor-1232	12	U	11	12	24	ug/Kg
53469-21-9	Aroclor-1242	12	U	4.8	12	24	ug/Kg
12672-29-6	Aroclor-1248	12	U	9.4	12	24	ug/Kg
11097-69-1	Aroclor-1254	12	U	2.1	12	24	ug/Kg
11096-82-5	Aroclor-1260	12	U	5.9	12	24	ug/Kg
SURROGATES							
877-09-8	Tetrachloro-m-xylene	10.4		10 - 166	6	52%	SPK: 20
2051-24-3	Decachlorobiphenyl	82.4	*	60 - 125	5	412%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Date Analyzed

Prep Batch ID

File ID/Qc Batch:

PC009898.D

Dilution:

Report of Analysis

Client: Date Collected: 08/10/12 MS Analytical Project: 12MS104 Kensington Heights Date Received: 08/15/12 SDG No.: Client Sample ID: SB-39(6-8) D3811 Lab Sample ID: D3811-14 Matrix: **SOIL** % Moisture: Analytical Method: SW8082A Decanted: Sample Wt/Vol: 30.11 Units: Final Vol: 10000 иL g Test: PCB Soil Aliquot Vol: иL Extraction Type: Injection Volume 1.0 PH: N/A GPC Factor:

Prep Date 08/15/12

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CR	QL Units
TARGETS							
12674-11-2	Aroclor-1016	9	U	3.8	9	18	ug/Kg
11104-28-2	Aroclor-1221	9	U	3.7	9	18	ug/Kg
11141-16-5	Aroclor-1232	9	U	8.1	9	18	ug/Kg
53469-21-9	Aroclor-1242	9	U	3.7	9	18	ug/Kg
12672-29-6	Aroclor-1248	9	U	7.1	9	18	ug/Kg
11097-69-1	Aroclor-1254	9	U	1.6	9	18	ug/Kg
11096-82-5	Aroclor-1260	9	U	4.5	9	18	ug/Kg
SURROGATES							
877-09-8	Tetrachloro-m-xylene	16.6		10 - 166	5	83%	SPK: 20
2051-24-3	Decachlorobiphenyl	14.9		60 - 125	5	74%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Date Analyzed

08/21/12

Prep Batch ID

PB65123

D = Dilution

Extraction Type:

Report of Analysis

Client: Date Collected: 08/10/12 MS Analytical Project: 12MS104 Kensington Heights Date Received: 08/15/12 SDG No.: Client Sample ID: SB-41(8-11) D3811 Lab Sample ID: D3811-15 Matrix: **SOIL** % Moisture: 19 Analytical Method: SW8082A Decanted: Sample Wt/Vol: 30.07 Units: Final Vol: 10000 иL g Test: PCB Soil Aliquot Vol: иL

GPC Factor: 1.0 PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID PC009899.D 1 08/15/12 08/21/12 PB65123

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
12674-11-2	Aroclor-1016	10.5	U	4.3	10.5	21	ug/Kg
11104-28-2	Aroclor-1221	10.5	U	4.2	10.5	21	ug/Kg
11141-16-5	Aroclor-1232	10.5	U	9.2	10.5	21	ug/Kg
53469-21-9	Aroclor-1242	10.5	U	4.2	10.5	21	ug/Kg
12672-29-6	Aroclor-1248	10.5	U	8.1	10.5	21	ug/Kg
11097-69-1	Aroclor-1254	10.5	U	1.8	10.5	21	ug/Kg
11096-82-5	Aroclor-1260	10.5	U	5.1	10.5	21	ug/Kg
SURROGATES							
877-09-8	Tetrachloro-m-xylene	13.8		10 - 166	6	69%	SPK: 20
2051-24-3	Decachlorobiphenyl	14.3		60 - 125	5	72%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Injection Volume

* = Values outside of QC limits

D = Dilution

File ID/Qc Batch:

PC009900.D

Dilution:

1

Report of Analysis

Client: Date Collected: MS Analytical 08/13/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 SDG No.: Client Sample ID: SB-43(6-8) D3811 Lab Sample ID: D3811-17 Matrix: **SOIL** % Moisture: Analytical Method: SW8082A Decanted: Sample Wt/Vol: 30.02 Units: Final Vol: 10000 иL g Test: PCB Soil Aliquot Vol: иL Extraction Type: Injection Volume 1.0 PH: N/A GPC Factor:

Prep Date

08/15/12

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRO	QL Units
TARGETS							
12674-11-2	Aroclor-1016	9	U	3.8	9	18	ug/Kg
11104-28-2	Aroclor-1221	9	U	3.7	9	18	ug/Kg
11141-16-5	Aroclor-1232	9	U	8.1	9	18	ug/Kg
53469-21-9	Aroclor-1242	9	U	3.7	9	18	ug/Kg
12672-29-6	Aroclor-1248	9	U	7.2	9	18	ug/Kg
11097-69-1	Aroclor-1254	9	U	1.6	9	18	ug/Kg
11096-82-5	Aroclor-1260	9	U	4.5	9	18	ug/Kg
SURROGATES							
877-09-8	Tetrachloro-m-xylene	17		10 - 166	5	85%	SPK: 20
2051-24-3	Decachlorobiphenyl	15.1		60 - 125	5	76%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Date Analyzed

08/21/12

Prep Batch ID

PB65123

D = Dilution

Client: Date Collected: MS Analytical 08/13/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 SDG No.: Client Sample ID: SB-43(10-12) D3811 Lab Sample ID: D3811-18 Matrix: **SOIL** % Moisture: Analytical Method: SW8082A 18 Decanted: Sample Wt/Vol: Units: 30.04 Final Vol: 10000 иL g Test: PCB Soil Aliquot Vol: иL Extraction Type: Injection Volume

GPC Factor: 1.0 PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID PC009901.D 1 08/15/12 08/21/12 PB65123

CAS Number	Parameter	Conc.	Qualifier	er MDL LOD		LOQ / CRQL	Units	
TARGETS								
12674-11-2	Aroclor-1016	10.5	U	4.2	10.5	21	ug/Kg	
11104-28-2	Aroclor-1221	10.5	U	4.1	10.5	21	ug/Kg	
11141-16-5	Aroclor-1232	10.5	U	9.1	10.5	21	ug/Kg	
53469-21-9	Aroclor-1242	10.5	U	4.1	10.5	21	ug/Kg	
12672-29-6	Aroclor-1248	10.5	U	8	10.5	21	ug/Kg	
11097-69-1	Aroclor-1254	10.5	U	1.8	10.5	21	ug/Kg	
11096-82-5	Aroclor-1260	10.5	U	5	10.5	21	ug/Kg	
SURROGATES								
877-09-8	Tetrachloro-m-xylene	14.9		10 - 166	5	75%	SPK: 20	
2051-24-3	Decachlorobiphenyl	10	*	60 - 125		50%	SPK: 20	

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Extraction Type:

Report of Analysis

Client: Date Collected: MS Analytical 08/13/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 SDG No.: Client Sample ID: SB-43(10-12)RE D3811 Lab Sample ID: D3811-18RE Matrix: **SOIL** % Moisture: Analytical Method: SW8082A 18 Decanted: Sample Wt/Vol: 30.04 Units: Final Vol: 10000 иL g Test: PCB Soil Aliquot Vol: иL

GPC Factor: 1.0 PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID PC009915.D 1 08/15/12 08/21/12 PB65123

CAS Number	Parameter	Conc.	Qualifier	fier MDL LOD		LOQ / CRQL	Units	
TARGETS								
12674-11-2	Aroclor-1016	10.5	U	4.2	10.5	21	ug/Kg	
11104-28-2	Aroclor-1221	10.5	U	4.1	10.5	21	ug/Kg	
11141-16-5	Aroclor-1232	10.5	U	9.1	10.5	21	ug/Kg	
53469-21-9	Aroclor-1242	10.5	U	4.1	10.5	21	ug/Kg	
12672-29-6	Aroclor-1248	10.5	U	8	10.5	21	ug/Kg	
11097-69-1	Aroclor-1254	10.5	U	1.8	10.5	21	ug/Kg	
11096-82-5	Aroclor-1260	10.5	U	5	10.5	21	ug/Kg	
SURROGATES								
877-09-8	Tetrachloro-m-xylene	16.1		10 - 166	5	80%	SPK: 20	
2051-24-3	Decachlorobiphenyl	9.95	*	60 - 125	5	50%	SPK: 20	

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Injection Volume

* = Values outside of QC limits

D = Dilution

Extraction Type:

Report of Analysis

Client: Date Collected: MS Analytical 08/13/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 SDG No.: Client Sample ID: SB-43(16-20) D3811 Lab Sample ID: D3811-19 Matrix: **SOIL** % Moisture: 29 Analytical Method: SW8082A Decanted: Sample Wt/Vol: Units: 30.08 Final Vol: 10000 иL g Test: PCB Soil Aliquot Vol: иL

GPC Factor: 1.0 PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID PC009904.D 1 08/15/12 08/21/12 PB65123

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units	
TARGETS								
12674-11-2	Aroclor-1016	12	U	4.9	12	24	ug/Kg	
11104-28-2	Aroclor-1221	12	U	4.8	12	24	ug/Kg	
11141-16-5	Aroclor-1232	12	U	10	12	24	ug/Kg	
53469-21-9	Aroclor-1242	12	U	4.8	12	24	ug/Kg	
12672-29-6	Aroclor-1248	12	U	9.3	12	24	ug/Kg	
11097-69-1	Aroclor-1254	12	U	2.1	12	24	ug/Kg	
11096-82-5	Aroclor-1260	12	U	5.8	12	24	ug/Kg	
SURROGATES								
877-09-8	Tetrachloro-m-xylene	14.2		10 - 166	6	71%	SPK: 20	
2051-24-3	Decachlorobiphenyl	12.7		60 - 125		64%	SPK: 20	

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Injection Volume

* = Values outside of QC limits

D = Dilution

Client: Date Collected: MS Analytical 08/13/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 SDG No.: Client Sample ID: SB-46(12-16) D3811 Lab Sample ID: D3811-21 Matrix: **SOIL** % Moisture: Analytical Method: SW8082A 28 Decanted: Sample Wt/Vol: 30.07 Units: Final Vol: 10000 иL g Test: PCB Soil Aliquot Vol: иL Extraction Type: Injection Volume

GPC Factor: 1.0 PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID PC009905.D 1 08/15/12 08/21/12 PB65123

CAS Number	Parameter	Conc. Qualifier		MDL	LOD	LOQ / CRQL	Units
TARGETS							
12674-11-2	Aroclor-1016	12	U	4.8	12	24	ug/Kg
11104-28-2	Aroclor-1221	12	U	4.7	12	24	ug/Kg
11141-16-5	Aroclor-1232	12	U	10	12	24	ug/Kg
53469-21-9	Aroclor-1242	12	U	4.7	12	24	ug/Kg
12672-29-6	Aroclor-1248	12	U	9.1	12	24	ug/Kg
11097-69-1	Aroclor-1254	12	U	2.1	12	24	ug/Kg
11096-82-5	Aroclor-1260	12	U	5.7	12	24	ug/Kg
SURROGATES							
877-09-8	Tetrachloro-m-xylene	15.8		10 - 166	6	79%	SPK: 20
2051-24-3	Decachlorobiphenyl	12.7		60 - 125		63%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

0

QC SUMMARY

Surrogate Summary

SDG No.: <u>D3811</u>

Client: MS Analytical

Analytical Method: EPA SW-846 8082

								Li	mits
Lab Sample ID	Client ID	Parameter	Column	Spike	Result	Recovery	Qual	Low	High
I.BLK-PC009843.D	PIBLK-PC009843.D	Tetrachloro-m-xylene	1	20	21.57	108		35	137
		Decachlorobiphenyl	1	20	19.54	98		40	135
		Tetrachloro-m-xylene	2	20	21.85	109		35	137
		Decachlorobiphenyl	2	20	19.82	99		40	135
I.BLK-PC009879.D	PIBLK-PC009879.D	Tetrachloro-m-xylene	1	20	22.04	110		35	137
		Decachlorobiphenyl	1	20	22.29	111		40	135
		Tetrachloro-m-xylene	2	20	23.3	117		35	137
		Decachlorobiphenyl	2	20	22.47	112		40	135
PB65123BL	PB65123BL	Tetrachloro-m-xylene	1	20	20.83	104		10	166
		Decachlorobiphenyl	1	20	21.18	106		60	125
		Tetrachloro-m-xylene	2	20	22.17	111		10	166
		Decachlorobiphenyl	2	20	21.52	108		60	125
PB65123BS	PB65123BS	Tetrachloro-m-xylene	1	20	20.69	103		10	166
		Decachlorobiphenyl	1	20	21.33	107		60	125
		Tetrachloro-m-xylene	2	20	21.47	107		10	166
		Decachlorobiphenyl	2	20	22.19	111		60	125
D3811-01	SB-2(4-8)	Tetrachloro-m-xylene	1	20	18.85	94		10	166
	55 2(: 0)	Decachlorobiphenyl	1	20	16.54	83		60	125
		Tetrachloro-m-xylene		20	20.09	100		10	166
		Decachlorobiphenyl	2	20	16.51	83		60	125
03811-02	SB-5(8-12)	Tetrachloro-m-xylene	1	20	18.22	91		10	166
D3811-02	5B-5(6-12)	Decachlorobiphenyl	1	20	15.56	78		60	125
		Tetrachloro-m-xylene		20	19.51	98		10	166
		Decachlorobiphenyl	2	20	14.5	73		60	125
03811-03	SD 0(4.7)	Tetrachloro-m-xylene			21.34	107		10	166
73811-03	SB-9(4-7)	-		20					
		Decachlorobiphenyl	1	20	20.76	104		60	125
		Tetrachloro-m-xylene	2	20	22.72	114		10	166
2011 05	CD 11/12 10	Decachlorobiphenyl	2	20	20.88	104		60	125
D3811-05	SB-11(12-16)	Tetrachloro-m-xylene	1	20	16.32	82		10	166
		Decachlorobiphenyl	1	20	15.55	78		60	125
		Tetrachloro-m-xylene		20	17.38	87		10	166
		Decachlorobiphenyl	2	20	14.75	74		60	125
.BLK-PC009891.D	PIBLK-PC009891.D	Tetrachloro-m-xylene	1	20	21.88	109		35	137
		Decachlorobiphenyl	1	20	21.96	110		40	135
		Tetrachloro-m-xylene		20	23.38	117		35	137
		Decachlorobiphenyl	2	20	21.95	110		40	135
03811-06	SB-15(12-16)	Tetrachloro-m-xylene	1	20	12.76	64		10	166
		Decachlorobiphenyl	1	20	13.36	67		60	125
		Tetrachloro-m-xylene	2	20	13.09	65		10	166
		Decachlorobiphenyl	2	20	11.84	59	*	60	125
03811-07	SB-18(4-8)	Tetrachloro-m-xylene	1	20	20.92	105		10	166
		Decachlorobiphenyl	1	20	16.5	83		60	125
		Tetrachloro-m-xylene	2	20	22.25	111		10	166
		Decachlorobiphenyl	2	20	14.8	74		60	125

Surrogate Summary

SDG No.: <u>D3811</u>

Client: MS Analytical

								Li	mits
Lab Sample ID	Client ID	Parameter	Column	Spike	Result	Recovery	Qual	Low	High
D3811-10	SB-21(16-19)	Tetrachloro-m-xylene	1	20	10.14	51		10	166
		Decachlorobiphenyl	1	20	58.43	292	*	60	125
		Tetrachloro-m-xylene	2	20	13.67	68		10	166
		Decachlorobiphenyl	2	20	11.09	55	*	60	125
D3811-11	SB-22(12-19)	Tetrachloro-m-xylene	1	20	15.1	76		10	166
		Decachlorobiphenyl	1	20	14.35	72		60	125
		Tetrachloro-m-xylene	2	20	17.32	87		10	166
		Decachlorobiphenyl	2	20	11.46	57	*	60	125
D3811-13	SB-37(8-10)	Tetrachloro-m-xylene	1	20	10.38	52		10	166
		Decachlorobiphenyl	1	20	82.43	412	*	60	125
		Tetrachloro-m-xylene	2	20	10.57	53		10	166
		Decachlorobiphenyl	2	20	13.81	69		60	125
03811-14	SB-39(6-8)	Tetrachloro-m-xylene		20	16.63	83		10	166
	,	Decachlorobiphenyl	1	20	14.88	74		60	125
		Tetrachloro-m-xylene		20	18.07	90		10	166
		Decachlorobiphenyl	2	20	12.79	64		60	125
03811-15	SB-41(8-11)	Tetrachloro-m-xylene		20	13.75	69		10	166
55011 15	55 11(0 11)	Decachlorobiphenyl	1	20	14.32	72		60	125
		Tetrachloro-m-xylene		20	14.25	71		10	166
		Decachlorobiphenyl	2	20	8.48	42	*	60	125
3811-17	SB-43(6-8)	Tetrachloro-m-xylene		20	17.01	85		10	166
23011-17	5D-45(0-0)	Decachlorobiphenyl	1	20	15.12	76		60	125
		Tetrachloro-m-xylene		20	18.8	94		10	166
		Decachlorobiphenyl	2	20	12.66	63		60	125
03811-18	SB-43(10-12)	Tetrachloro-m-xylene		20	14.92	75		10	166
73611-16	SB-43(10-12)					50	*		
		Decachlorobiphenyl	1	20	10.02		*	60	125
		Tetrachloro-m-xylene		20	15.21	76 22	*	10	166
DI I/ DC000000 D	DIDLIZ DOMANA D	Decachlorobiphenyl	2	20	6.68	33	*	60	125
.BLK-PC009902.D	PIBLK-PC009902.D	Tetrachloro-m-xylene		20	21.63	108		35	137
		Decachlorobiphenyl	1	20	17.11	86		40	135
		Tetrachloro-m-xylene		20	23.05	115		35	137
		Decachlorobiphenyl	2	20	11.56	58		40	135
03811-19	SB-43(16-20)	Tetrachloro-m-xylene		20	14.21	71		10	166
		Decachlorobiphenyl	1	20	12.73	64		60	125
		Tetrachloro-m-xylene		20	15.45	77		10	166
		Decachlorobiphenyl	2	20	10.62	53	*	60	125
03811-21	SB-46(12-16)	Tetrachloro-m-xylene	1	20	15.78	79		10	166
		Decachlorobiphenyl	1	20	12.67	63		60	125
		Tetrachloro-m-xylene	2	20	15.48	77		10	166
		Decachlorobiphenyl	2	20	8.69	43	*	60	125
D3811-01MS	SB-2(4-8)MS	Tetrachloro-m-xylene	1	20	20.13	101		10	166
		Decachlorobiphenyl	1	20	17.11	86		60	125
		Tetrachloro-m-xylene	2	20	20.76	104		10	166
		Decachlorobiphenyl	2	20	14.75	74		60	125

Surrogate Summary

SDG No.: D3811

Client: MS Analytical

								Li	mits
Lab Sample ID	Client ID	Parameter	Column	Spike	Result	Recovery	Qual	Low	High
D3811-01MSD	SB-2(4-8)MSD	Tetrachloro-m-xylene	1	20	20.78	104		10	166
		Decachlorobiphenyl	1	20	19.3	97		60	125
		Tetrachloro-m-xylene	2	20	19.2	96		10	166
		Decachlorobiphenyl	2	20	16.3	81		60	125
I.BLK-PC009910.D	PIBLK-PC009910.D	Tetrachloro-m-xylene	1	20	21.95	110		35	137
		Decachlorobiphenyl	1	20	21.42	107		40	135
		Tetrachloro-m-xylene	2	20	23.13	116		35	137
		Decachlorobiphenyl	2	20	20.83	104		40	135
I.BLK-PC009912.D	PIBLK-PC009912.D	Tetrachloro-m-xylene	1	20	21.74	109		35	137
		Decachlorobiphenyl	1	20	19.83	99		40	135
		Tetrachloro-m-xylene	2	20	20.09	100		35	137
		Decachlorobiphenyl	2	20	16.97	85		40	135
D3811-10RE	SB-21(16-19)RE	Tetrachloro-m-xylene	1	20	11.57	58		10	166
		Decachlorobiphenyl	1	20	65.23	326	*	60	125
		Tetrachloro-m-xylene	2	20	19.16	96		10	166
		Decachlorobiphenyl	2	20	9.93	50	*	60	125
D3811-18RE	SB-43(10-12)RE	Tetrachloro-m-xylene	1	20	16.06	80		10	166
		Decachlorobiphenyl	1	20	9.95	50	*	60	125
		Tetrachloro-m-xylene	2	20	13.95	70		10	166
		Decachlorobiphenyl	2	20	6.21	31	*	60	125
.BLK-PC009925.D	PIBLK-PC009925.D	Tetrachloro-m-xylene	1	20	22.66	113		35	137
		Decachlorobiphenyl	1	20	21.06	105		40	135
		Tetrachloro-m-xylene	2	20	20.92	105		35	137
		Decachlorobiphenyl	2	20	18.52	93		40	135

Matrix Spike/Matrix Spike Duplicate Summary

SW-846

SDG No.: D3811

Client: MS Analytical

-			Sample			Rec		RPD		Limits	——I
Lab Sample ID:	Parameter	Spike	Result	Result	Rec	Qual	RPD	Qual	Low	High	RPD
Client Sample ID:	SB-2(4-8)MS										
D3811-01MS	AR1016	76.4	0	92	120				40	140	
	AR1260	76.4	0	100	131	*			60	130	

Matrix Spike/Matrix Spike Duplicate Summary

SW-846

SDG No.: D3811

Client: MS Analytical

			Sample	:		Rec		RPD		Limits	
Lab Sample ID:	Parameter	Spike	Result	Result	Rec	Qual	RPD	Qual	Low	High	RPD
Client Sample ID:	SB-2(4-8)MSD										
D3811-01MSD	AR1016	76.5	0	94	123		2		40	140	20
	AR1260	76.5	0	82	107		20		60	130	20

Laboratory Control Sample/Laboratory Control Sample Duplicate Summary

SW-846

SDG No.: D3811

Client: MS Analytical

Analytical Method:

EPA SW-846 8082

Ê

RPD Limits Lab Sample ID RPD Parameter Spike Result Rec RPD Qual Qual Low High PB65123BS AR1016 66.7 80 120 53 140 AR1260 66.7 75 65 130 112

4C

PESTICIDE METHOD BLANK SUMMARY

EPA SAMPLE NO.

PB65123BL

Lab Name: CHEMTECH Contract: MSAN01

Lab Sample ID: PB65123BL Lab File ID: PC009885.D

Matrix: (soil/water) SOIL Extraction: (Type) SOXH

Sulfur Cleanup: (Y/N) N Date Extracted: 08/15/2012

Date Analyzed (1): 08/20/2012 Date Analyzed (2): 08/20/2012

Time Analyzed (1): 23:41 Time Analyzed (2): 23:41

Instrument ID (1): ECD C Instrument ID (2): ECD C

GC Column (1): RTX-CLPest ID: 0.32 (mm) GC Column (2): RTX-CLPest II ID: 0.32 (mm)

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED 1	DATE ANALYZED 2
PB65123BS	PB65123BS	PC009886.D	08/20/2012	08/20/2012
SB-2 (4-8)	D3811-01	PC009887.D	08/21/2012	08/21/2012
SB-5 (8-12)	D3811-02	PC009888.D	08/21/2012	08/21/2012
SB-9(4-7)	D3811-03	PC009889.D	08/21/2012	08/21/2012
SB-11(12-16)	D3811-05	PC009890.D	08/21/2012	08/21/2012
SB-15(12-16)	D3811-06	PC009893.D	08/21/2012	08/21/2012
SB-18(4-8)	D3811-07	PC009894.D	08/21/2012	08/21/2012
SB-21(16-19)	D3811-10	PC009895.D	08/21/2012	08/21/2012
SB-22 (12-19)	D3811-11	PC009896.D	08/21/2012	08/21/2012
SB-37(8-10)	D3811-13	PC009897.D	08/21/2012	08/21/2012
SB-39(6-8)	D3811-14	PC009898.D	08/21/2012	08/21/2012
SB-41(8-11)	D3811-15	PC009899.D	08/21/2012	08/21/2012
SB-43(6-8)	D3811-17	PC009900.D	08/21/2012	08/21/2012
SB-43 (10-12)	D3811-18	PC009901.D	08/21/2012	08/21/2012
SB-43(16-20)	D3811-19	PC009904.D	08/21/2012	08/21/2012
SB-46(12-16)	D3811-21	PC009905.D	08/21/2012	08/21/2012
SB-2 (4-8) MS	D3811-01MS	PC009906.D	08/21/2012	08/21/2012
SB-2 (4-8) MSD	D3811-01MSD	PC009907.D	08/21/2012	08/21/2012

COMMENTS:			

E

D

6

CALIBRATION SUMMURY

RETENTION TIMES OF INITIAL CALIBRATION

Contract: MSAN01

 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811
 SDG NO.:
 D3811

Instrument ID: ECD_C Calibration Date(s): 08/20/2012 08/20/2012

Calibration Times: 10:04 11:09

LAB FILE ID:	RT 50 =	PC009848.D	RT 250 =	PC009847.D	
RT 500 = PC009846.I	$\mathbf{RT} 750 =$	PC009845.D	RT 1000 =	PC009844.D	

RT 500 =	PC009846	<u>).D</u>	R1750 = 1	2C009845.D		R1 1000 =	PC009844.D		
COMPOUND		RT 50	RT 250	RT 500	RT 750	RT 1000	MEAN RT	RT WII	NDOW TO
Tetrachloro-m-xylene		1.49	1.49	1.48	1.49	1.49	1.49	1.44	1.54
Decachlorobiphenyl		8.24	8.24	8.24	8.24	8.24	8.24	8.14	8.34
AR1016	(1)	2.14	2.14	2.13	2.13	2.13	2.13	2.08	2.18
AR1016	(2)	2.63	2.62	2.61	2.61	2.61	2.61	2.56	2.66
AR1016	(3)	2.77	2.77	2.76	2.76	2.76	2.76	2.71	2.81
AR1016	(4)	3.23	3.23	3.22	3.22	3.22	3.22	3.17	3.27
AR1016	(5)	3.68	3.67	3.67	3.67	3.67	3.67	3.62	3.72
AR1260	(1)	4.74	4.73	4.73	4.73	4.73	4.73	4.68	4.78
AR1260	(2)	5.11	5.10	5.10	5.10	5.10	5.10	5.05	5.15
AR1260	(3)	5.47	5.46	5.46	5.46	5.46	5.46	5.41	5.51
AR1260	(4)	6.37	6.37	6.37	6.37	6.36	6.37	6.32	6.42
AR1260	(5)	6.74	6.74	6.74	6.73	6.73	6.74	6.69	6.79

RETENTION TIMES OF INITIAL CALIBRATION

Contract: MSAN01

 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811
 SDG NO.:
 D3811

Instrument ID: ECD_C Calibration Date(s): 08/20/2012 08/20/2012

Calibration Times: 10:04 11:09

LAB FILE ID:		RT 50 =	PC009848.D	RT 250 =	PC009847.D
RT 500 =	PC009846.D	RT 750 =	PC009845.D	RT 1000 =	PC009844.D

K1 500 =	PC009846	<u>.υ</u>	R1/50 = 1	C009845.D		K1 1000 =	PC009844.D		
COMPOUND		RT 50	RT 250	RT 500	RT 750	RT 1000	MEAN RT	RT WII	NDOW TO
Tetrachloro-m-xylene		1.93	1.93	1.92	1.93	1.93	1.93	1.88	1.98
Decachlorobiphenyl		9.79	9.80	9.79	9.79	9.79	9.79	9.69	9.89
AR1016	(1)	2.95	2.95	2.94	2.95	2.95	2.95	2.90	3.00
AR1016	(2)	3.51	3.51	3.50	3.51	3.51	3.51	3.46	3.56
AR1016	(3)	3.68	3.68	3.68	3.68	3.68	3.68	3.63	3.73
AR1016	(4)	3.81	3.81	3.81	3.81	3.81	3.81	3.76	3.86
AR1016	(5)	4.45	4.45	4.45	4.45	4.45	4.45	4.40	4.50
AR1260	(1)	6.00	6.00	6.00	6.00	6.00	6.00	5.95	6.05
AR1260	(2)	6.31	6.31	6.31	6.31	6.31	6.31	6.26	6.36
AR1260	(3)	6.78	6.78	6.78	6.78	6.78	6.78	6.73	6.83
AR1260	(4)	7.68	7.68	7.68	7.68	7.68	7.68	7.63	7.73
AR1260	(5)	8.18	8.18	8.18	8.18	8.17	8.18	8.13	8.23

D

CALIBRATION FACTOR OF INITIAL CALIBRATION

Contract: MSAN01

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

Instrument ID: <u>ECD_C</u> Calibration Date(s): 08/20/2012 08/20/2012

Calibration Times: 10:04 11:09

LAB FILE ID: CF 500 = PC009846.	<u>D</u> (09848.D 09845.D	CF 250 = CF 1000 =	PC009847.D PC009844.D		
COMPOUND	CF 50	CF 250	CF 500	CF 750	CF 1000	CF	% RSD
Tetrachloro-m-xylene	1999980	1821808	1863568	1754097	1598540	1807599	8
Decachlorobiphenyl	2996560	2433216	2326362	2103856	1891341	2350267	18
AR1016 (1)	82006	69174	67840	61502	55705	67245	15
AR1016 (2)	172424	164411	169370	156459	143438	161220	7
AR1016 (3)	63392	65041	65667	60457	54692	61850	7
AR1016 (4)	67274	59658	63508	58977	53948	60673	8
AR1016 (5)	44542	42726	43773	40811	37416	41854	7
AR1260 (1)	109870	96182	95101	93030	81609	95158	11
AR1260 (2)	203380	194033	190797	181178	157002	185278	10
AR1260 (3)	186660	181858	182372	173925	152889	175541	8
AR1260 (4)	230944	215778	216789	200536	182502	209310	9
AR1260 (5)	106548	110676	114090	106962	97641	107184	6

CALIBRATION FACTOR OF INITIAL CALIBRATION

Contract: MSAN01

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

Instrument ID: <u>ECD_C</u> Calibration Date(s): 08/20/2012 08/20/2012

Calibration Times: 10:04 11:09

LAB FILE ID: CF 500 = PC009846.	<u>D</u> (09848.D 09845.D	CF 250 = CF 1000 =	PC009847.D PC009844.D		
COMPOUND	CF 50	CF 250	CF 500	CF 750	CF 1000	CF	% RSD
Tetrachloro-m-xylene	7336580	6499292	6400238	5887619	5274995	6279745	12
Decachlorobiphenyl	11188220	9080824	8661108	7847315	7096657	8774825	18
AR1016 (1)	269650	238773	232445	211117	195607	229518	12
AR1016 (2)	550802	501720	486858	443678	405109	477633	12
AR1016 (3)	216758	236138	234534	216182	200697	220862	7
AR1016 (4)	161336	187995	192819	180436	169085	178334	7
AR1016 (5)	218348	216289	221868	206674	191578	210951	6
AR1260 (1)	485854	395200	383977	347895	314217	385428	17
AR1260 (2)	523152	475017	462715	417932	375411	450845	13
AR1260 (3)	730800	688552	683057	620293	560492	656639	10
AR1260 (4)	952914	850021	856136	779729	704564	828673	11
AR1260 (5)	678218	642149	650126	590469	536404	619473	9

INITIAL CALIBRATION OF MULTICOMPONENT ANALYTES

Contract: MSAN01

D3811 SDG NO.: Lab Code: CHEM Case No.: D3811 SAS No.: D3811

08/20/2012 08/20/2012 **Instrument ID:** ECD_C Date(s) Analyzed:

GC Column: RTX-CL	Pest ID: 0.	32 (mm)				
COMPOUND	AMOUNT			PT W	INDOW	CALIBRATION
COMITOUND	(ng)	PEAK	RT	FROM TO		FACTOR
AD 1001	0.5000	1	1.13	1.08	1.18	11269
AR1221		2	1.65	1.60	1.70	18381
		3	1.81	1.76	1.86	56585
		4	0.00			0
		5	0.00			0
AD 1222	0.5000	1	1.81	1.76	1.86	45904
AR1232		2	2.14	2.09	2.19	30960
		3	2.62	2.57	2.67	75521
		4	2.99	2.94	3.04	39442
		5	3.76	3.71	3.81	38974
AR1242	0.5000	1	2.13	2.08	2.18	65926
AK1242		2	2.61	2.56	2.66	164601
		3	2.76	2.71	2.81	63848
		4	3.22	3.17	3.27	63485
		5	3.32	3.27	3.37	67011
AD 1240	0.5000	1	2.61	2.56	2.66	91980
AR1248		2	2.98	2.93	3.03	134579
		3	3.22	3.17	3.27	86657
		4	3.74	3.69	3.79	159757
		5	4.50	4.45	4.55	46945
AR1254	0.5000	1	3.67	3.62	3.72	79117
AN1234		2	4.49	4.44	4.54	153563
		3	4.86	4.81	4.91	124115
		4	5.10	5.05	5.15	118049
		5	5.46	5.41	5.51	148368

INITIAL CALIBRATION OF MULTICOMPONENT ANALYTES

Contract: MSAN01

 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811
 SDG NO.:
 D3811

Instrument ID: <u>ECD_C</u> Date(s) Analyzed: <u>08/20/2012</u> <u>08/20/2012</u>

COMPOUND	AMOUNT			RT WI	NDOW	CALIBRATION
	(ng)	PEAK	RT	FROM	TO	FACTOR
AR1221	0.5000	1	2.25	2.20	2.30	63776
AK1221		2	2.40	2.35	2.45	36953
		3	2.47	2.42	2.52	161733
		4	0.00			0
		5	0.00			0
A D 1000	0.5000	1	2.47	2.42	2.52	150211
AR1232		2	2.95	2.90	3.00	128828
		3	3.51	3.46	3.56	234283
		4	3.68	3.63	3.73	110216
		5	3.81	3.76	3.86	86537
A D 10 40	0.5000	1	2.95	2.90	3.00	237567
AR1242		2	3.51	3.46	3.56	480540
		3	3.68	3.63	3.73	230640
		4	4.81	4.76	4.86	163557
		5	4.86	4.81	4.91	245001
A D 10 40	0.5000	1	3.51	3.46	3.56	278523
AR1248		2	4.29	4.24	4.34	329834
		3	4.45	4.40	4.50	285819
		4	4.80	4.75	4.85	250235
		5	4.85	4.80	4.90	332979
A D 1054	0.5000	1	5.12	5.07	5.17	350062
AR1254		2	5.20	5.15	5.25	306728
		3	5.73	5.68	5.78	550611
		4	6.05	6.00	6.10	419680
		5	6.78	6.73	6.83	595304

Contract: MSAN01

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

Continuing Calib Date: 08/20/2012 Initial Calibration Date(s): 08/20/2012 08/20/2012

Continuing Calib Time: 22:20 Initial Calibration Time(s): 10:04 11:09

COMPOUND		CCAL	AVG	RT WIN		DIFF
		RT	RT	FROM	TO	RT
Tetrachloro-m-xylene		1.49	1.49	1.44	1.54	0.00
Decachlorobiphenyl		8.24	8.24	8.14	8.34	0.00
AR1016	(1)	2.14	2.13	2.08	2.18	-0.01
AR1016	(2)	2.61	2.61	2.56	2.66	0.00
AR1016	(3)	2.76	2.76	2.71	2.81	0.00
AR1016	(4)	3.22	3.22	3.17	3.27	0.00
AR1016	(5)	3.67	3.67	3.62	3.72	0.00
AR1260	(1)	4.73	4.73	4.68	4.78	0.00
AR1260	(2)	5.10	5.10	5.05	5.15	0.00
AR1260	(3)	5.46	5.46	5.41	5.51	0.00
AR1260	(4)	6.36	6.37	6.32	6.42	0.01
AR1260	(5)	6.73	6.74	6.69	6.79	0.01

Contract: MSAN01

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

Continuing Calib Time: 22:20 Initial Calibration Time(s): 10:04 11:09

COMPOUND		CCAL	AVG	RT WIN	DOW	DIFF
COMITOUND		RT	RT	FROM	TO	RT
Tetrachloro-m-xylene		1.93	1.93	1.88	1.98	0.00
Decachlorobiphenyl		9.79	9.79	9.69	9.89	0.00
AR1016	(1)	2.95	2.95	2.90	3.00	0.00
AR1016	(2)	3.51	3.51	3.46	3.56	0.00
AR1016	(3)	3.68	3.68	3.63	3.73	0.00
AR1016	(4)	3.81	3.81	3.76	3.86	0.00
AR1016	(5)	4.45	4.45	4.40	4.50	0.00
AR1260	(1)	6.00	6.00	5.95	6.05	0.00
AR1260	(2)	6.31	6.31	6.26	6.36	0.00
AR1260	(3)	6.78	6.78	6.73	6.83	0.00
AR1260	(4)	7.68	7.68	7.63	7.73	0.00
AR1260	(5)	8.17	8.18	8.13	8.23	0.01

Contract:	MSAN01

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

GC Column: RTX-CLPest ID: 0.32 (mm) Initi. Calib. Date(s): 08/20/2012 08/20/2012

Client Sample No.: CCAL01 Date Analyzed: 08/20/2012

Lab Sample No.: AR1660CCC250 Data File: PC009880.D Time Analyzed: 22:20

Eab Sample 110	Data 1 is	1 200700	Э0.Б	1 mic / mary 2 cd			
COMPOUND	RT	RT WIN FROM	DOW TO	CALC AMOUNT(ng)	NOM AMOUNT(ng)	%D	
AR1016 (1)	2.136	2.080	2.180	0.264	0.250	5.6	
AR1016 (2)	2.613	2.560	2.660	0.265	0.250	6.0	
AR1016 (3)	2.761	2.710	2.810	0.261	0.250	4.4	
AR1016 (4)	3.223	3.170	3.270	0.240	0.250	4.0	
AR1016 (5)	3.671	3.620	3.720	0.270	0.250	8.0	
AR1260 (1)	4.731	4.680	4.780	0.286	0.250	14.4	
AR1260 (2)	5.098	5.050	5.150	0.249	0.250	0.4	
AR1260 (3)	5.458	5.410	5.510	0.255	0.250	2.0	
AR1260 (4)	6.363	6.320	6.420	0.242	0.250	3.2	
AR1260 (5)	6.733	6.690	6.790	0.258	0.250	3.2	
Tetrachloro-m-xylene	1.490	1.440	1.540	0.026	0.025	4.0	
Decachlorobiphenyl	8.240	8.140	8.340	0.026	0.025	4.0	

D

CALIBRATION VERIFICATION SUMMARY

Contract:	MSAN01

 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811
 SDG NO.:
 D3811

GC Column: RTX-CLPest II ID: 0.32 (mm) Initi. Calib. Date(s): 08/20/2012 08/20/2012

Client Sample No.: CCAL01 Date Analyzed: 08/20/2012

Lab Sample No.: AR1660CCC250 Data File: PC009880.D Time Analyzed: 22:20

Lab Sample No.: AR1000	CCC250 Data Fil	e: <u>PC00988</u>	00.D	Time Analyzed: 22:20			
COMPOUND	RT	RT WIN	DOW TO	CALC AMOUNT(ng)	NOM AMOUNT(ng)	%D	
AR1016 (1)	2.946	2.900	3.000	0.281	0.250	12.4	
AR1016 (2)	3.505	3.460	3.560	0.278	0.250	11.2	
AR1016 (3)	3.676	3.630	3.730	0.285	0.250	14.0	
AR1016 (4)	3.807	3.760	3.860	0.279	0.250	11.6	
AR1016 (5)	4.447	4.400	4.500	0.277	0.250	10.8	
AR1260 (1)	6.000	5.950	6.050	0.291	0.250	16.4	
AR1260 (2)	6.306	6.260	6.360	0.292	0.250	16.8	
AR1260 (3)	6.778	6.730	6.830	0.283	0.250	13.2	
AR1260 (4)	7.681	7.630	7.730	0.272	0.250	8.8	
AR1260 (5)	8.174	8.130	8.230	0.274	0.250	9.6	
Tetrachloro-m-xylene	1.930	1.880	1.980	0.026	0.025	4.0	
Decachlorobiphenyl	9.793	9.690	9.890	0.026	0.025	4.0	

Contract: MSAN01

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

Continuing Calib Time: 01:34 Initial Calibration Time(s): 10:04 11:09

COMPOUND		CCAL	AVG	RT WIN	DOW	DIFF
COMPOUND		RT	RT	FROM	TO	RT
Tetrachloro-m-xylene		1.49	1.49	1.44	1.54	0.00
Decachlorobiphenyl		8.24	8.24	8.14	8.34	0.00
AR1016	(1)	2.13	2.13	2.08	2.18	0.00
AR1016	(2)	2.61	2.61	2.56	2.66	0.00
AR1016	(3)	2.76	2.76	2.71	2.81	0.00
AR1016	(4)	3.22	3.22	3.17	3.27	0.00
AR1016	(5)	3.67	3.67	3.62	3.72	0.00
AR1260	(1)	4.73	4.73	4.68	4.78	0.00
AR1260	(2)	5.10	5.10	5.05	5.15	0.00
AR1260	(3)	5.46	5.46	5.41	5.51	0.00
AR1260	(4)	6.36	6.37	6.32	6.42	0.01
AR1260	(5)	6.73	6.74	6.69	6.79	0.01

Contract: MSAN01

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

Continuing Calib Date: 08/21/2012 Initial Calibration Date(s): 08/20/2012 08/20/2012

Continuing Calib Time: 01:34 Initial Calibration Time(s): 10:04 11:09

COMPOUND		CCAL	AVG	RT WINI	DOW	DIFF
COMPOUND		RT	RT	FROM	TO	RT
Tetrachloro-m-xylene		1.93	1.93	1.88	1.98	0.00
Decachlorobiphenyl		9.79	9.79	9.69	9.89	0.00
AR1016	(1)	2.94	2.95	2.90	3.00	0.01
AR1016	(2)	3.51	3.51	3.46	3.56	0.00
AR1016	(3)	3.68	3.68	3.63	3.73	0.00
AR1016	(4)	3.81	3.81	3.76	3.86	0.00
AR1016	(5)	4.45	4.45	4.40	4.50	0.00
AR1260	(1)	6.00	6.00	5.95	6.05	0.00
AR1260	(2)	6.30	6.31	6.26	6.36	0.01
AR1260	(3)	6.78	6.78	6.73	6.83	0.00
AR1260	(4)	7.68	7.68	7.63	7.73	0.00
AR1260	(5)	8.17	8.18	8.13	8.23	0.01

Contract:	MSAN01

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

GC Column: RTX-CLPest ID: 0.32 (mm) Initi. Calib. Date(s): 08/20/2012 08/20/2012

Client Sample No.: CCAL02 Date Analyzed: 08/21/2012

Lab Sample No.: AR1660CCC250 Data File: PC009892.D Time Analyzed: 01:34

Eab Sample 110	<u> </u>	1 00070		111110 1111111111111111111111111111111			
COMPOUND	RT	RT WIN FROM	DOW TO	CALC AMOUNT(ng)	NOM AMOUNT(ng)	%D	
AR1016 (1)	2.134	2.080	2.180	0.262	0.250	4.8	
AR1016 (2)	2.610	2.560	2.660	0.262	0.250	4.8	
AR1016 (3)	2.759	2.710	2.810	0.258	0.250	3.2	
AR1016 (4)	3.221	3.170	3.270	0.238	0.250	4.8	
AR1016 (5)	3.670	3.620	3.720	0.268	0.250	7.2	
AR1260 (1)	4.728	4.680	4.780	0.263	0.250	5.2	
AR1260 (2)	5.096	5.050	5.150	0.245	0.250	2.0	
AR1260 (3)	5.456	5.410	5.510	0.254	0.250	1.6	
AR1260 (4)	6.361	6.320	6.420	0.239	0.250	4.4	
AR1260 (5)	6.732	6.690	6.790	0.257	0.250	2.8	
Tetrachloro-m-xylene	1.488	1.440	1.540	0.025	0.025	0.0	
Decachlorobiphenyl	8.240	8.140	8.340	0.025	0.025	0.0	

D

CALIBRATION VERIFICATION SUMMARY

Contract:	MSAN01

 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811
 SDG NO.:
 D3811

GC Column: RTX-CLPest II ID: 0.32 (mm) Initi. Calib. Date(s): 08/20/2012 08/20/2012

Client Sample No.: CCAL02 Date Analyzed: 08/21/2012

Lab Sample No.: AR1660CCC250 Data File: PC009892.D Time Analyzed: 01:34

Lab Sample No.: ARTOOUCCC250	Data Fil	le: PC00985	<u> </u>	Time Analyzed: 01:34		
COMPOUND	RT	RT WIN FROM	DOW TO	CALC AMOUNT(ng)	NOM AMOUNT(ng)	%D
AR1016 (1)	2.944	2.900	3.000	0.285	0.250	14.0
AR1016 (2)	3.505	3.460	3.560	0.280	0.250	12.0
AR1016 (3)	3.676	3.630	3.730	0.286	0.250	14.4
AR1016 (4)	3.806	3.760	3.860	0.280	0.250	12.0
AR1016 (5)	4.446	4.400	4.500	0.275	0.250	10.0
AR1260 (1)	6.000	5.950	6.050	0.293	0.250	17.2
AR1260 (2)	6.304	6.260	6.360	0.292	0.250	16.8
AR1260 (3)	6.778	6.730	6.830	0.287	0.250	14.8
AR1260 (4)	7.681	7.630	7.730	0.271	0.250	8.4
AR1260 (5)	8.174	8.130	8.230	0.270	0.250	8.0
Tetrachloro-m-xylene	1.928	1.880	1.980	0.025	0.025	0.0
Decachlorobiphenyl	9.792	9.690	9.890	0.026	0.025	4.0

Contract: MSAN01

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

Continuing Calib Date: 08/21/2012 Initial Calibration Date(s): 08/20/2012 08/20/2012

Continuing Calib Time: 04:33 Initial Calibration Time(s): 10:04 11:09

COMPOUND		CCAL RT	AVG RT	RT WIN	DOW TO	DIFF RT
Tetrachloro-m-xylene		1.49	1.49	1.44	1.54	0.00
Decachlorobiphenyl		8.24	8.24	8.14	8.34	0.00
AR1016	(1)	2.13	2.13	2.08	2.18	0.00
AR1016	(2)	2.61	2.61	2.56	2.66	0.00
AR1016	(3)	2.76	2.76	2.71	2.81	0.00
AR1016	(4)	3.22	3.22	3.17	3.27	0.00
AR1016	(5)	3.67	3.67	3.62	3.72	0.00
AR1260	(1)	4.73	4.73	4.68	4.78	0.00
AR1260	(2)	5.10	5.10	5.05	5.15	0.01
AR1260	(3)	5.45	5.46	5.41	5.51	0.01
AR1260	(4)	6.36	6.37	6.32	6.42	0.01
AR1260	(5)	6.73	6.74	6.69	6.79	0.01

Contract: MSAN01

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

Continuing Calib Date: 08/21/2012 Initial Calibration Date(s): 08/20/2012 08/20/2012

Continuing Calib Time: 04:33 Initial Calibration Time(s): 10:04 11:09

COMPOUND		CCAL	AVG	RT WIN		DIFF
		RT	RT	FROM	TO	RT
Tetrachloro-m-xylene		1.93	1.93	1.88	1.98	0.00
Decachlorobiphenyl		9.79	9.79	9.69	9.89	0.00
AR1016	(1)	2.94	2.95	2.90	3.00	0.01
AR1016	(2)	3.50	3.51	3.46	3.56	0.01
AR1016	(3)	3.67	3.68	3.63	3.73	0.01
AR1016	(4)	3.80	3.81	3.76	3.86	0.01
AR1016	(5)	4.44	4.45	4.40	4.50	0.01
AR1260	(1)	6.00	6.00	5.95	6.05	0.00
AR1260	(2)	6.30	6.31	6.26	6.36	0.01
AR1260	(3)	6.78	6.78	6.73	6.83	0.00
AR1260	(4)	7.68	7.68	7.63	7.73	0.00
AR1260	(5)	8.17	8.18	8.13	8.23	0.01

Contract:	MSAN01

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

GC Column: RTX-CLPest ID: 0.32 (mm) Initi. Calib. Date(s): 08/20/2012 08/20/2012

Client Sample No.: CCAL03 Date Analyzed: 08/21/2012

Lab Sample No.: AR1660CCC250 Data File: PC009903.D Time Analyzed: 04:33

Lab Sample No.:	AR1660CCC250	Data File : <u>PC009903.D</u>			Time Analyzed: 04:33		
COMPOUND		RT	RT WIN FROM	DOW TO	CALC AMOUNT(ng)	NOM AMOUNT(ng)	%D
AR1016 (1)		2.133	2.080	2.180	0.264	0.250	5.6
AR1016 (2)		2.607	2.560	2.660	0.264	0.250	5.6
AR1016 (3)		2.756	2.710	2.810	0.257	0.250	2.8
AR1016 (4)		3.220	3.170	3.270	0.245	0.250	2.0
AR1016 (5)		3.669	3.620	3.720	0.273	0.250	9.2
AR1260 (1)		4.727	4.680	4.780	0.262	0.250	4.8
AR1260 (2)		5.095	5.050	5.150	0.240	0.250	4.0
AR1260 (3)		5.454	5.410	5.510	0.250	0.250	0.0
AR1260 (4)		6.362	6.320	6.420	0.245	0.250	2.0
AR1260 (5)		6.730	6.690	6.790	0.246	0.250	1.6
Tetrachloro-m-xylene		1.487	1.440	1.540	0.025	0.025	0.0
Decachlorobiphenyl		8.240	8.140	8.340	0.023	0.025	8.0

D

CALIBRATION VERIFICATION SUMMARY

Contract: MSAN01

 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811
 SDG NO.:
 D3811

GC Column: RTX-CLPest II ID: 0.32 (mm) Initi. Calib. Date(s): 08/20/2012 08/20/2012

Client Sample No.: CCAL03 Date Analyzed: 08/21/2012

Lab Sample No.: AR1660CCC250 Data File: PC009903.D Time Analyzed: 04:33

Lab Sample No.: AR1660CC	CC250 Data Fil	e: <u>PC00990</u>	13.D	Time Analyzed: 04:33		
COMPOUND	RT	RT WIN FROM	DOW TO	CALC AMOUNT(ng)	NOM AMOUNT(ng)	%D
AR1016 (1)	2.943	2.900	3.000	0.290	0.250	16.0
AR1016 (2)	3.503	3.460	3.560	0.289	0.250	15.6
AR1016 (3)	3.674	3.630	3.730	0.293	0.250	17.2
AR1016 (4)	3.804	3.760	3.860	0.287	0.250	14.8
AR1016 (5)	4.443	4.400	4.500	0.248	0.250	0.8
AR1260 (1)	5.998	5.950	6.050	0.280	0.250	12.0
AR1260 (2)	6.304	6.260	6.360	0.281	0.250	12.4
AR1260 (3)	6.777	6.730	6.830	0.263	0.250	5.2
AR1260 (4)	7.678	7.630	7.730	0.221	0.250	11.6
AR1260 (5)	8.172	8.130	8.230	0.213	0.250	14.8
Tetrachloro-m-xylene	1.928	1.880	1.980	0.027	0.025	8.0
Decachlorobiphenyl	9.792	9.690	9.890	0.018	0.025	28.0

Contract: MSAN01

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

Continuing Calib Date: 08/21/2012 Initial Calibration Date(s): 08/20/2012 08/20/2012

Continuing Calib Time: 06:42 Initial Calibration Time(s): 10:04 11:09

COMPOUND		CCAL	AVG	RT WIN	DOW	DIFF
COMPOUND		RT	RT	FROM	TO	RT
Tetrachloro-m-xylene		1.49	1.49	1.44	1.54	0.00
Decachlorobiphenyl		8.24	8.24	8.14	8.34	0.00
AR1016	(1)	2.13	2.13	2.08	2.18	0.00
AR1016	(2)	2.61	2.61	2.56	2.66	0.00
AR1016	(3)	2.76	2.76	2.71	2.81	0.00
AR1016	(4)	3.22	3.22	3.17	3.27	0.00
AR1016	(5)	3.67	3.67	3.62	3.72	0.00
AR1260	(1)	4.73	4.73	4.68	4.78	0.00
AR1260	(2)	5.09	5.10	5.05	5.15	0.01
AR1260	(3)	5.45	5.46	5.41	5.51	0.01
AR1260	(4)	6.36	6.37	6.32	6.42	0.01
AR1260	(5)	6.73	6.74	6.69	6.79	0.01

Contract: MSAN01

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

Continuing Calib Time: 06:42 Initial Calibration Time(s): 10:04 11:09

COMPOUND		CCAL	AVG	RT WIN	DOW	DIFF
COMPOUND		RT	RT	FROM	TO	RT
Tetrachloro-m-xylene		1.93	1.93	1.88	1.98	0.00
Decachlorobiphenyl		9.79	9.79	9.69	9.89	0.00
AR1016	(1)	2.94	2.95	2.90	3.00	0.01
AR1016	(2)	3.50	3.51	3.46	3.56	0.01
AR1016	(3)	3.67	3.68	3.63	3.73	0.01
AR1016	(4)	3.81	3.81	3.76	3.86	0.00
AR1016	(5)	4.45	4.45	4.40	4.50	0.00
AR1260	(1)	6.00	6.00	5.95	6.05	0.00
AR1260	(2)	6.30	6.31	6.26	6.36	0.01
AR1260	(3)	6.78	6.78	6.73	6.83	0.00
AR1260	(4)	7.68	7.68	7.63	7.73	0.00
AR1260	(5)	8.17	8.18	8.13	8.23	0.01

Contract:	MSAN01

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

GC Column: RTX-CLPest ID: 0.32 (mm) Initi. Calib. Date(s): 08/20/2012 08/20/2012

Client Sample No.: CCAL04 Date Analyzed: 08/21/2012

Lab Sample No.: AR1660CCC250 Data File: PC009911.D Time Analyzed: 06:42

Lab Sample No.: AKTO	OUCCC250 Data File	e: <u>reuuyyi</u>	1,0	Time Analyzeu: 00:42		
COMPOUND	RT	RT WIN FROM	DOW TO	CALC AMOUNT(ng)	NOM AMOUNT(ng)	%D
AR1016 (1)	2.134	2.080	2.180	0.265	0.250	6.0
AR1016 (2)	2.608	2.560	2.660	0.266	0.250	6.4
AR1016 (3)	2.757	2.710	2.810	0.261	0.250	4.4
AR1016 (4)	3.220	3.170	3.270	0.250	0.250	0.0
AR1016 (5)	3.669	3.620	3.720	0.277	0.250	10.8
AR1260 (1)	4.728	4.680	4.780	0.285	0.250	14.0
AR1260 (2)	5.094	5.050	5.150	0.254	0.250	1.6
AR1260 (3)	5.454	5.410	5.510	0.264	0.250	5.6
AR1260 (4)	6.360	6.320	6.420	0.236	0.250	5.6
AR1260 (5)	6.730	6.690	6.790	0.254	0.250	1.6
Tetrachloro-m-xylene	1.489	1.440	1.540	0.025	0.025	0.0
Decachlorobiphenyl	8.239	8.140	8.340	0.024	0.025	4.0

D

CALIBRATION VERIFICATION SUMMARY

Contract:	MSAN01
-----------	--------

 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811
 SDG NO.:
 D3811

GC Column: RTX-CLPest II ID: 0.32 (mm) Initi. Calib. Date(s): 08/20/2012 08/20/2012

Client Sample No.: CCAL04 Date Analyzed: 08/21/2012

Lab Sample No.: AR1660CCC250 Data File: PC009911.D Time Analyzed: 06:42

Lab Sample No.: AR166	UCCC250 Data Fil	le: <u>PC00991</u>	1.D	Time Analyzo	ed: <u>06:42</u>	
COMPOUND	RT	RT WIN FROM	DOW TO	CALC AMOUNT(ng)	NOM AMOUNT(ng)	%D
AR1016 (1)	2.944	2.900	3.000	0.286	0.250	14.4
AR1016 (2)	3.503	3.460	3.560	0.286	0.250	14.4
AR1016 (3)	3.674	3.630	3.730	0.291	0.250	16.4
AR1016 (4)	3.805	3.760	3.860	0.286	0.250	14.4
AR1016 (5)	4.445	4.400	4.500	0.277	0.250	10.8
AR1260 (1)	5.997	5.950	6.050	0.275	0.250	10.0
AR1260 (2)	6.303	6.260	6.360	0.283	0.250	13.2
AR1260 (3)	6.776	6.730	6.830	0.271	0.250	8.4
AR1260 (4)	7.680	7.630	7.730	0.272	0.250	8.8
AR1260 (5)	8.172	8.130	8.230	0.269	0.250	7.6
Tetrachloro-m-xylene	1.929	1.880	1.980	0.026	0.025	4.0
Decachlorobiphenyl	9.791	9,690	9.890	0.024	0.025	4.0

Contract: MSAN01

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

Continuing Calib Date: 08/21/2012 Initial Calibration Date(s): 08/20/2012 08/20/2012

Continuing Calib Time: 14:27 Initial Calibration Time(s): 10:04 11:09

COMPOUND		CCAL	AVG	RT WIN	DOW	DIFF
COMPOUND		RT	RT	FROM	TO	RT
Tetrachloro-m-xylene		1.49	1.49	1.44	1.54	0.00
Decachlorobiphenyl		8.24	8.24	8.14	8.34	0.00
AR1016	(1)	2.13	2.13	2.08	2.18	0.00
AR1016	(2)	2.61	2.61	2.56	2.66	0.00
AR1016	(3)	2.76	2.76	2.71	2.81	0.00
AR1016	(4)	3.22	3.22	3.17	3.27	0.00
AR1016	(5)	3.67	3.67	3.62	3.72	0.00
AR1260	(1)	4.73	4.73	4.68	4.78	0.00
AR1260	(2)	5.10	5.10	5.05	5.15	0.01
AR1260	(3)	5.46	5.46	5.41	5.51	0.01
AR1260	(4)	6.36	6.37	6.32	6.42	0.01
AR1260	(5)	6.73	6.74	6.69	6.79	0.01

Contract: MSAN01

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

Continuing Calib Time: 14:27 Initial Calibration Time(s): 10:04 11:09

COMPOUND		CCAL	AVG	RT WIN	DOW	DIFF
COMITOUND		RT	RT	FROM	TO	RT
Tetrachloro-m-xylene		1.93	1.93	1.88	1.98	0.00
Decachlorobiphenyl		9.79	9.79	9.69	9.89	0.00
AR1016	(1)	2.94	2.95	2.90	3.00	0.01
AR1016	(2)	3.50	3.51	3.46	3.56	0.01
AR1016	(3)	3.68	3.68	3.63	3.73	0.01
AR1016	(4)	3.81	3.81	3.76	3.86	0.00
AR1016	(5)	4.45	4.45	4.40	4.50	0.00
AR1260	(1)	6.00	6.00	5.95	6.05	0.00
AR1260	(2)	6.30	6.31	6.26	6.36	0.01
AR1260	(3)	6.78	6.78	6.73	6.83	0.00
AR1260	(4)	7.68	7.68	7.63	7.73	0.00
AR1260	(5)	8.17	8.18	8.13	8.23	0.01

D

Ε

CALIBRATION VERIFICATION SUMMARY

Contract:	MSAN01

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

GC Column: RTX-CLPest ID: 0.32 (mm) Initi. Calib. Date(s): 08/20/2012 08/20/2012

Client Sample No.: CCAL05 Date Analyzed: 08/21/2012

Lab Sample No.: AR1660CCC250 Data File: PC009913.D Time Analyzed: 14:27

COMPOUND	RT	RT WINI FROM	OOW TO	CALC AMOUNT(ng)	NOM AMOUNT(ng)	%D
AR1016 (1)	2.133	2.080	2.180	0.248	0.250	0.8
AR1016 (2)	2.608	2.560	2.660	0.256	0.250	2.4
AR1016 (3)	2.756	2.710	2.810	0.247	0.250	1.2
AR1016 (4)	3.220	3.170	3.270	0.245	0.250	2.0
AR1016 (5)	3.669	3.620	3.720	0.253	0.250	1.2
AR1260 (1)	4.727	4.680	4.780	0.257	0.250	2.8
AR1260 (2)	5.095	5.050	5.150	0.247	0.250	1.2
AR1260 (3)	5.455	5.410	5.510	0.252	0.250	0.8
AR1260 (4)	6.360	6.320	6.420	0.227	0.250	9.2
AR1260 (5)	6.730	6.690	6.790	0.257	0.250	2.8
Tetrachloro-m-xylene	1.488	1.440	1.540	0.026	0.025	4.0
Decachlorobiphenyl	8.239	8.140	8.340	0.024	0.025	4.0

D

CALIBRATION VERIFICATION SUMMARY

Contract:	MSAN01
-----------	--------

 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811
 SDG NO.:
 D3811

GC Column: RTX-CLPest II ID: 0.32 (mm) Initi. Calib. Date(s): 08/20/2012 08/20/2012

Client Sample No.: CCAL05 Date Analyzed: 08/21/2012

Lab Sample No.: AR1660CCC250 Data File: PC009913.D Time Analyzed: 14:27

Lab Sample No.: AR1660	CCC250 Data Fil	le: <u>PC00991</u>	13.D	Time Analyz	ed: <u>14:27</u>	
COMPOUND	RT	RT WIN	DOW TO	CALC AMOUNT(ng)	NOM AMOUNT(ng)	%D
AR1016 (1)	2.944	2.900	3.000	0.219	0.250	12.4
AR1016 (2)	3.504	3.460	3.560	0.237	0.250	5.2
AR1016 (3)	3.675	3.630	3.730	0.223	0.250	10.8
AR1016 (4)	3.805	3.760	3.860	0.226	0.250	9.6
AR1016 (5)	4.446	4.400	4.500	0.224	0.250	10.4
AR1260 (1)	5.997	5.950	6.050	0.237	0.250	5.2
AR1260 (2)	6.303	6.260	6.360	0.237	0.250	5.2
AR1260 (3)	6.776	6.730	6.830	0.233	0.250	6.8
AR1260 (4)	7.678	7.630	7.730	0.237	0.250	5.2
AR1260 (5)	8.173	8.130	8.230	0.236	0.250	5.6
Tetrachloro-m-xylene	1.929	1.880	1.980	0.023	0.025	8.0
Decachlorobiphenyl	9.792	9.690	9.890	0.021	0.025	16.0

Contract: MSAN01

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

Continuing Calib Date: 08/21/2012 Initial Calibration Date(s): 08/20/2012 08/20/2012

Continuing Calib Time: 20:38 Initial Calibration Time(s): 10:04 11:09

COMPOUND		CCAL	AVG	RT WIN		DIFF
		RT	RT	FROM	TO	RT
Tetrachloro-m-xylene		1.49	1.49	1.44	1.54	0.00
Decachlorobiphenyl		8.24	8.24	8.14	8.34	0.00
AR1016	(1)	2.13	2.13	2.08	2.18	0.00
AR1016	(2)	2.61	2.61	2.56	2.66	0.00
AR1016	(3)	2.76	2.76	2.71	2.81	0.00
AR1016	(4)	3.22	3.22	3.17	3.27	0.00
AR1016	(5)	3.67	3.67	3.62	3.72	0.00
AR1260	(1)	4.73	4.73	4.68	4.78	0.00
AR1260	(2)	5.09	5.10	5.05	5.15	0.01
AR1260	(3)	5.45	5.46	5.41	5.51	0.01
AR1260	(4)	6.36	6.37	6.32	6.42	0.01
AR1260	(5)	6.73	6.74	6.69	6.79	0.01

Contract: MSAN01

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

Continuing Calib Date: 08/21/2012 Initial Calibration Date(s): 08/20/2012 08/20/2012

Continuing Calib Time: 20:38 Initial Calibration Time(s): 10:04 11:09

COMPOUND		CCAL	AVG	RT WIN		DIFF
		RT	RT	FROM	TO	RT
Tetrachloro-m-xylene		1.93	1.93	1.88	1.98	0.00
Decachlorobiphenyl		9.79	9.79	9.69	9.89	0.00
AR1016	(1)	2.95	2.95	2.90	3.00	0.01
AR1016	(2)	3.50	3.51	3.46	3.56	0.01
AR1016	(3)	3.68	3.68	3.63	3.73	0.00
AR1016	(4)	3.81	3.81	3.76	3.86	0.00
AR1016	(5)	4.45	4.45	4.40	4.50	0.00
AR1260	(1)	6.00	6.00	5.95	6.05	0.00
AR1260	(2)	6.30	6.31	6.26	6.36	0.01
AR1260	(3)	6.78	6.78	6.73	6.83	0.00
AR1260	(4)	7.68	7.68	7.63	7.73	0.00
AR1260	(5)	8.17	8.18	8.13	8.23	0.01

Contract:	MSAN01

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

GC Column: RTX-CLPest ID: 0.32 (mm) Initi. Calib. Date(s): 08/20/2012 08/20/2012

Client Sample No.: CCAL06 Date Analyzed: 08/21/2012

Lab Sample No.: AR1660CCC250 Data File: PC009926.D Time Analyzed: 20:38

AKTO	Data File	1 (00))20	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	Time Analyze	u. <u>20.36</u>	
COMPOUND	RT	RT WINI FROM	OOW TO	CALC AMOUNT(ng)	NOM AMOUNT(ng)	%D
AR1016 (1)	2.134	2.080	2.180	0.253	0.250	1.2
AR1016 (2)	2.608	2.560	2.660	0.259	0.250	3.6
AR1016 (3)	2.756	2.710	2.810	0.251	0.250	0.4
AR1016 (4)	3.219	3.170	3.270	0.244	0.250	2.4
AR1016 (5)	3.669	3.620	3.720	0.262	0.250	4.8
AR1260 (1)	4.727	4.680	4.780	0.265	0.250	6.0
AR1260 (2)	5.094	5.050	5.150	0.257	0.250	2.8
AR1260 (3)	5.454	5.410	5.510	0.260	0.250	4.0
AR1260 (4)	6.360	6.320	6.420	0.239	0.250	4.4
AR1260 (5)	6.730	6.690	6.790	0.262	0.250	4.8
Tetrachloro-m-xylene	1.488	1.440	1.540	0.027	0.025	8.0
Decachlorobiphenyl	8.239	8.140	8.340	0.024	0.025	4.0

D

CALIBRATION VERIFICATION SUMMARY

Contract:	MSAN01

 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811
 SDG NO.:
 D3811

GC Column: RTX-CLPest II ID: 0.32 (mm) Initi. Calib. Date(s): 08/20/2012 08/20/2012

Client Sample No.: CCAL06 Date Analyzed: 08/21/2012

Lab Sample No.: AR1660CCC250 Data File: PC009926.D Time Analyzed: 20:38

Lab Sample No.: AR166	AR1660CCC250 Data File: PC009926.D Time Analyz			ed: <u>20:38</u>		
COMPOUND	RT	RT WIN FROM	DOW TO	CALC AMOUNT(ng)	NOM AMOUNT(ng)	%D
AR1016 (1)	2.945	2.900	3.000	0.221	0.250	11.6
AR1016 (2)	3.504	3.460	3.560	0.242	0.250	3.2
AR1016 (3)	3.676	3.630	3.730	0.224	0.250	10.4
AR1016 (4)	3.805	3.760	3.860	0.229	0.250	8.4
AR1016 (5)	4.446	4.400	4.500	0.225	0.250	10.0
AR1260 (1)	5.998	5.950	6.050	0.237	0.250	5.2
AR1260 (2)	6.304	6.260	6.360	0.233	0.250	6.8
AR1260 (3)	6.776	6.730	6.830	0.236	0.250	5.6
AR1260 (4)	7.679	7.630	7.730	0.237	0.250	5.2
AR1260 (5)	8.173	8.130	8.230	0.246	0.250	1.6
Tetrachloro-m-xylene	1.929	1.880	1.980	0.024	0.025	4.0
Decachlorobiphenyl	9.792	9.690	9.890	0.022	0.025	12.0

Client: MS Analytical SDG No.: D3811

Project: 12MS104 Kensington Heights Instrument ID: ECD_C

GC Column: RTX-CLPest ID: 0.32 (mm) Inst. Calib. Date(s): 08/20/2012 08/20/2012

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

EPA SAMPLE NO.	LAB SAMPLE ID	DATE ANALYZED	TIME ANALYZED	DATAFILE	TCX RT#	DCB RT#
PIBLK01	I.BLK01	08/20/2012	09:48	PC009843.D	1.49	8.24
AR166001	AR1660ICC1000	08/20/2012	10:04	PC009844.D	1.49	8.2
AR166002	AR1660ICC750	08/20/2012	10:21	PC009845.D	1.49	8.2
AR166003	AR1660ICC500	08/20/2012	10:37	PC009846.D	1.48	8.2
AR166004	AR1660ICC250	08/20/2012	10:53	PC009847.D	1.49	8.2
AR166005	AR1660ICC50	08/20/2012	11:09	PC009848.D	1.49	8.2
AR122101	AR1221ICC500	08/20/2012	11:53	PC009849.D	1.49	8.2
AR123201	AR1232ICC500	08/20/2012	12:09	PC009850.D	1.49	8.2
AR124201	AR1242ICC500	08/20/2012	12:25	PC009851.D	1.49	8.2
AR124801	AR1248ICC500	08/20/2012	12:42	PC009852.D	1.49	8.2
AR125401	AR1254ICC500	08/20/2012	12:58	PC009853.D	1.49	8.2
PIBLK02	I.BLK02	08/20/2012	22:03	PC009879.D	1.49	8.2
CCAL01	AR1660CCC250	08/20/2012	22:20	PC009880.D	1.49	8.2
PB65123BL	PB65123BL	08/20/2012	23:41	PC009885.D	1.49	8.2
PB65123BS	PB65123BS	08/20/2012	23:57	PC009886.D	1.49	8.2
SB-2(4-8)	D3811-01	08/21/2012	00:13	PC009887.D	1.49	8.2
SB-5(8-12)	D3811-01		00:13	PC009888.D	1.49	8.2
		08/21/2012				-
SB-9(4-7)	D3811-03	08/21/2012	00:46	PC009889.D	1.49	8.2
SB-11(12-16)	D3811-05	08/21/2012	01:02	PC009890.D	1.49	8.2
PIBLK03	I.BLK03	08/21/2012	01:18	PC009891.D	1.49	8.2
CCAL02	AR1660CCC250	08/21/2012	01:34	PC009892.D	1.49	8.2
SB-15(12-16)	D3811-06	08/21/2012	01:50	PC009893.D	1.49	8.2
SB-18(4-8)	D3811-07	08/21/2012	02:07	PC009894.D	1.49	8.2
SB-21(16-19)	D3811-10	08/21/2012	02:23	PC009895.D	1.49	8.1
SB-22(12-19)	D3811-11	08/21/2012	02:39	PC009896.D	1.49	8.2
SB-37(8-10)	D3811-13	08/21/2012	02:55	PC009897.D	1.49	8.1
SB-39(6-8)	D3811-14	08/21/2012	03:11	PC009898.D	1.49	8.2
SB-41(8-11)	D3811-15	08/21/2012	03:28	PC009899.D	1.49	8.2
SB-43(6-8)	D3811-17	08/21/2012	03:44	PC009900.D	1.49	8.2
SB-43(10-12)	D3811-18	08/21/2012	04:00	PC009901.D	1.49	8.2
PIBLK04	I.BLK04	08/21/2012	04:16	PC009902.D	1.49	8.2
CCAL03	AR1660CCC250	08/21/2012	04:33	PC009903.D	1.49	8.2
SB-43(16-20)	D3811-19	08/21/2012	04:49	PC009904.D	1.49	8.2
SB-46(12-16)	D3811-21	08/21/2012	05:05	PC009905.D	1.48	8.2
SB-2(4-8)MS	D3811-01MS	08/21/2012	05:21	PC009906.D	1.49	8.2
SB-2(4-8)MSD	D3811-01MSD	08/21/2012	05:38	PC009907.D	1.49	8.2
PIBLK05	I.BLK05	08/21/2012	06:26	PC009910.D	1.49	8.2
CCAL04	AR1660CCC250	08/21/2012	06:42	PC009911.D	1.49	8.2
PIBLK06	I.BLK06	08/21/2012	14:10	PC009912.D	1.49	8.2
CCAL05	AR1660CCC250	08/21/2012	14:27	PC009913.D	1.49	8.2
SB-21(16-19)RE	D3811-10RE	08/21/2012	17:23	PC009914.D	1.49	8.2
SB-43(10-12)RE	D3811-18RE	08/21/2012	17:39	PC009915.D	1.49	8.2
PIBLK07	I.BLK07	08/21/2012	20:21	PC009925.D	1.49	8.2
CCAL06	AR1660CCC250	08/21/2012	20:38	PC009926.D	1.49	8.2

C

Client: MS Analytical SDG No.: D3811

Project: 12MS104 Kensington Heights Instrument ID: ECD_C

GC Column: RTX-CLPest II ID: 0.32 (mm) Inst. Calib. Date(s): 08/20/2012 08/20/2012

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

EPA SAMPLE NO.	LAB SAMPLE ID	DATE ANALYZED	TIME ANALYZED	DATAFILE	TCX RT#	DCB RT#
PIBLK01	I.BLK01	08/20/2012	09:48	PC009843.D	1.93	9.79
AR166001	AR1660ICC1000	08/20/2012	10:04	PC009844.D	1.93	9.79
AR166002	AR1660ICC750	08/20/2012	10:21	PC009845.D	1.93	9.79
AR166003	AR1660ICC500	08/20/2012	10:37	PC009846.D	1.92	9.7
AR166004	AR1660ICC250	08/20/2012	10:53	PC009847.D	1.93	9.8
AR166005	AR1660ICC50	08/20/2012	11:09	PC009848.D	1.93	9.7
AR122101	AR1221ICC500	08/20/2012	11:53	PC009849.D	1.93	9.8
AR123201	AR1232ICC500	08/20/2012	12:09	PC009850.D	1.93	9.7
AR124201	AR1242ICC500	08/20/2012	12:25	PC009851.D	1.93	9.7
AR124801	AR1248ICC500	08/20/2012	12:42	PC009852.D	1.93	9.7
AR125401	AR1254ICC500	08/20/2012	12:58	PC009853.D	1.93	9.7
PIBLK02	I.BLK02	08/20/2012	22:03	PC009879.D	1.93	9.7
CCAL01	AR1660CCC250	08/20/2012	22:20	PC009880.D	1.93	9.7
PB65123BL	PB65123BL	08/20/2012	23:41	PC009885.D	1.93	9.7
PB65123BS	PB65123BS	08/20/2012	23:57	PC009886.D	1.93	9.7
SB-2(4-8)	D3811-01	08/21/2012	00:13	PC009887.D	1.92	9.7
SB-5(8-12)	D3811-02	08/21/2012	00:29	PC009888.D	1.93	9.7
SB-9(4-7)	D3811-03	08/21/2012	00:46	PC009889.D	1.93	9.7
SB-11(12-16)	D3811-05	08/21/2012	01:02	PC009890.D	1.93	9.7
PIBLK03	I.BLK03	08/21/2012	01:18	PC009891.D	1.93	9.7
CCAL02	AR1660CCC250	08/21/2012	01:34	PC009892.D	1.93	9.7
SB-15(12-16)	D3811-06	08/21/2012	01:50	PC009893.D	1.93	9.7
SB-18(4-8)	D3811-07	08/21/2012	02:07	PC009894.D	1.93	9.7
SB-21(16-19)	D3811-10	08/21/2012	02:23	PC009895.D	1.93	9.7
SB-22(12-19)	D3811-11	08/21/2012	02:39	PC009896.D	1.93	9.7
SB-37(8-10)	D3811-13	08/21/2012	02:55	PC009897.D	1.93	9.7
SB-39(6-8)	D3811-14	08/21/2012	03:11	PC009898.D	1.93	9.7
SB-41(8-11)	D3811-15	08/21/2012	03:28	PC009899.D	1.93	9.7
SB-43(6-8)	D3811-17	08/21/2012	03:44	PC009900.D	1.93	9.7
SB-43(10-12)	D3811-18	08/21/2012	04:00	PC009901.D	1.93	9.8
PIBLK04	I.BLK04	08/21/2012	04:16	PC009902.D	1.93	9.7
CCAL03	AR1660CCC250	08/21/2012	04:33	PC009903.D	1.93	9.7
SB-43(16-20)	D3811-19	08/21/2012	04:49	PC009904.D	1.93	9.7
SB-46(12-16)	D3811-21	08/21/2012	05:05	PC009905.D	1.92	9.7
SB-2(4-8)MS	D3811-01MS	08/21/2012	05:21	PC009906.D	1.93	9.7
SB-2(4-8)MSD	D3811-01MSD	08/21/2012	05:38	PC009907.D	1.93	9.7
PIBLK05	I.BLK05	08/21/2012	06:26	PC009910.D	1.93	9.7
CCAL04	AR1660CCC250	08/21/2012	06:42	PC009911.D	1.93	9.7
PIBLK06	I.BLK06	08/21/2012	14:10	PC009912.D	1.93	9.8
CCAL05	AR1660CCC250	08/21/2012	14:27	PC009913.D	1.93	9.7
SB-21(16-19)RE	D3811-10RE	08/21/2012	17:23	PC009914.D	1.93	9.7
SB-43(10-12)RE	D3811-18RE	08/21/2012	17:39	PC009915.D	1.93	9.8
PIBLK07	I.BLK07	08/21/2012	20:21	PC009925.D	1.93	9.7
CCAL06	AR1660CCC250	08/21/2012	20:38	PC009926.D	1.93	9.7

A

В

D

D

F

QC SAMPLE DATA

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

Client Sample ID: PB65123BL SDG No.: D3811
Lab Sample ID: PB65123BL Matrix: SOIL

Analytical Method: SW8082A % Moisture: 0 Decanted:

Sample Wt/Vol: 30.01 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: PCB

Extraction Type: Injection Volume 1

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PC009885.D 1 08/15/12 08/20/12 PB65123

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
12674-11-2	Aroclor-1016	8.5	U	3.5	8.5	17	ug/Kg
11104-28-2	Aroclor-1221	8.5	U	3.4	8.5	17	ug/Kg
11141-16-5	Aroclor-1232	8.5	U	7.5	8.5	17	ug/Kg
53469-21-9	Aroclor-1242	8.5	U	3.4	8.5	17	ug/Kg
12672-29-6	Aroclor-1248	8.5	U	6.6	8.5	17	ug/Kg
11097-69-1	Aroclor-1254	8.5	U	1.5	8.5	17	ug/Kg
11096-82-5	Aroclor-1260	8.5	U	4.1	8.5	17	ug/Kg
SURROGATES							
877-09-8	Tetrachloro-m-xylene	20.8		10 - 166	5	104%	SPK: 20
2051-24-3	Decachlorobiphenyl	21.2		60 - 125	5	106%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Client: Date Collected: MS Analytical 08/20/12 Project: 12MS104 Kensington Heights Date Received: 08/20/12 SDG No.: Client Sample ID: PIBLK-PC009879.D D3811 Lab Sample ID: I.BLK-PC009879.D Matrix: WATER % Moisture: Analytical Method: SW8082A 100 Decanted: Sample Wt/Vol: 1000 Units: mLFinal Vol: 10000 иL Test: PCB Soil Aliquot Vol: иL Extraction Type: Injection Volume GPC Factor: 1.0 PH:

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID
PC009879.D	1		08/20/12	PC082012

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
12674-11-2	Aroclor-1016	0.25	U	0.096	0.25	0.5	ug/L
11104-28-2	Aroclor-1221	0.25	U	0.19	0.25	0.5	ug/L
11141-16-5	Aroclor-1232	0.25	U	0.15	0.25	0.5	ug/L
53469-21-9	Aroclor-1242	0.25	U	0.089	0.25	0.5	ug/L
12672-29-6	Aroclor-1248	0.25	U	0.24	0.25	0.5	ug/L
11097-69-1	Aroclor-1254	0.25	U	0.044	0.25	0.5	ug/L
11096-82-5	Aroclor-1260	0.25	U	0.081	0.25	0.5	ug/L
SURROGATES							
877-09-8	Tetrachloro-m-xylene	22		35 - 137	1	110%	SPK: 20
2051-24-3	Decachlorobiphenyl	22.3		40 - 135	;	111%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

GPC Factor:

1.0

Report of Analysis

Client: Date Collected: MS Analytical 08/21/12 Project: 12MS104 Kensington Heights Date Received: 08/21/12 SDG No.: Client Sample ID: PIBLK-PC009891.D D3811 Lab Sample ID: Matrix: WATER I.BLK-PC009891.D % Moisture: Analytical Method: SW8082A 100 Decanted: Sample Wt/Vol: 1000 Units: mLFinal Vol: 10000 иL Test: PCB Soil Aliquot Vol: иL Extraction Type: Injection Volume

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PC009891.D 1 08/21/12 PC082012

PH:

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
12674-11-2	Aroclor-1016	0.25	U	0.096	0.25	0.5	ug/L
11104-28-2	Aroclor-1221	0.25	U	0.19	0.25	0.5	ug/L
11141-16-5	Aroclor-1232	0.25	U	0.15	0.25	0.5	ug/L
53469-21-9	Aroclor-1242	0.25	U	0.089	0.25	0.5	ug/L
12672-29-6	Aroclor-1248	0.25	U	0.24	0.25	0.5	ug/L
11097-69-1	Aroclor-1254	0.25	U	0.044	0.25	0.5	ug/L
11096-82-5	Aroclor-1260	0.25	U	0.081	0.25	0.5	ug/L
SURROGATES							
877-09-8	Tetrachloro-m-xylene	21.9		35 - 137	7	109%	SPK: 20
2051-24-3	Decachlorobiphenyl	22		40 - 135	;	110%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

GPC Factor:

PC009902.D

1.0

1

Report of Analysis

Client: Date Collected: MS Analytical 08/21/12 Project: 12MS104 Kensington Heights Date Received: 08/21/12 SDG No.: Client Sample ID: PIBLK-PC009902.D D3811 Lab Sample ID: Matrix: WATER I.BLK-PC009902.D % Moisture: Analytical Method: SW8082A 100 Decanted: Sample Wt/Vol: Units: 1000 mLFinal Vol: 10000 иL Test: PCB Soil Aliquot Vol: иL Extraction Type: Injection Volume

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PH:

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
12674-11-2	Aroclor-1016	0.25	U	0.096	0.25	0.5	ug/L
11104-28-2	Aroclor-1221	0.25	U	0.19	0.25	0.5	ug/L
11141-16-5	Aroclor-1232	0.25	U	0.15	0.25	0.5	ug/L
53469-21-9	Aroclor-1242	0.25	U	0.089	0.25	0.5	ug/L
12672-29-6	Aroclor-1248	0.25	U	0.24	0.25	0.5	ug/L
11097-69-1	Aroclor-1254	0.25	U	0.044	0.25	0.5	ug/L
11096-82-5	Aroclor-1260	0.25	U	0.081	0.25	0.5	ug/L
SURROGATES							
877-09-8	Tetrachloro-m-xylene	21.6		35 - 137	7	108%	SPK: 20
2051-24-3	Decachlorobiphenyl	17.1		40 - 135	5	86%	SPK: 20

08/21/12

PC082012

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Client: Date Collected: MS Analytical 08/21/12 Project: 12MS104 Kensington Heights Date Received: 08/21/12 SDG No.: Client Sample ID: PIBLK-PC009910.D D3811 Lab Sample ID: Matrix: WATER I.BLK-PC009910.D % Moisture: Analytical Method: SW8082A 100 Decanted: Sample Wt/Vol: 1000 Units: mLFinal Vol: 10000 иL Test: PCB Soil Aliquot Vol: иL Extraction Type: Injection Volume 1.0 PH: GPC Factor:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
PC009910.D 1 08/21/12 PC082012

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
12674-11-2	Aroclor-1016	0.25	U	0.096	0.25	0.5	ug/L
11104-28-2	Aroclor-1221	0.25	U	0.19	0.25	0.5	ug/L
11141-16-5	Aroclor-1232	0.25	U	0.15	0.25	0.5	ug/L
53469-21-9	Aroclor-1242	0.25	U	0.089	0.25	0.5	ug/L
12672-29-6	Aroclor-1248	0.25	U	0.24	0.25	0.5	ug/L
11097-69-1	Aroclor-1254	0.25	U	0.044	0.25	0.5	ug/L
11096-82-5	Aroclor-1260	0.25	U	0.081	0.25	0.5	ug/L
SURROGATES							
877-09-8	Tetrachloro-m-xylene	22		35 - 137	7	110%	SPK: 20
2051-24-3	Decachlorobiphenyl	21.4		40 - 135	5	107%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

GPC Factor:

1.0

Report of Analysis

Client: Date Collected: MS Analytical 08/21/12 Project: 12MS104 Kensington Heights Date Received: 08/21/12 SDG No.: Client Sample ID: PIBLK-PC009912.D D3811 Lab Sample ID: Matrix: WATER I.BLK-PC009912.D % Moisture: Analytical Method: SW8082A 100 Decanted: Sample Wt/Vol: 1000 Units: mLFinal Vol: 10000 иL Test: PCB Soil Aliquot Vol: иL Extraction Type: Injection Volume

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID PC009912.D 1 08/21/12 PC082112

PH:

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
12674-11-2	Aroclor-1016	0.25	U	0.096	0.25	0.5	ug/L
11104-28-2	Aroclor-1221	0.25	U	0.19	0.25	0.5	ug/L
11141-16-5	Aroclor-1232	0.25	U	0.15	0.25	0.5	ug/L
53469-21-9	Aroclor-1242	0.25	U	0.089	0.25	0.5	ug/L
12672-29-6	Aroclor-1248	0.25	U	0.24	0.25	0.5	ug/L
11097-69-1	Aroclor-1254	0.25	U	0.044	0.25	0.5	ug/L
11096-82-5	Aroclor-1260	0.25	U	0.081	0.25	0.5	ug/L
SURROGATES							
877-09-8	Tetrachloro-m-xylene	21.7		35 - 137	7	109%	SPK: 20
2051-24-3	Decachlorobiphenyl	19.8		40 - 135	5	99%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Client: Date Collected: MS Analytical 08/21/12 Project: 12MS104 Kensington Heights Date Received: 08/21/12 SDG No.: Client Sample ID: PIBLK-PC009925.D D3811 Lab Sample ID: Matrix: WATER I.BLK-PC009925.D % Moisture: Analytical Method: SW8082A 100 Decanted: Sample Wt/Vol: Units: 1000 mLFinal Vol: 10000 иL Test: PCB Soil Aliquot Vol: иL Extraction Type: Injection Volume 1.0 PH: GPC Factor:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID PC009925.D 1 08/21/12 PC082112

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
12674-11-2	Aroclor-1016	0.25	U	0.096	0.25	0.5	ug/L
11104-28-2	Aroclor-1221	0.25	U	0.19	0.25	0.5	ug/L
11141-16-5	Aroclor-1232	0.25	U	0.15	0.25	0.5	ug/L
53469-21-9	Aroclor-1242	0.25	U	0.089	0.25	0.5	ug/L
12672-29-6	Aroclor-1248	0.25	U	0.24	0.25	0.5	ug/L
11097-69-1	Aroclor-1254	0.25	U	0.044	0.25	0.5	ug/L
11096-82-5	Aroclor-1260	0.25	U	0.081	0.25	0.5	ug/L
SURROGATES							
877-09-8	Tetrachloro-m-xylene	22.7		35 - 137	7	113%	SPK: 20
2051-24-3	Decachlorobiphenyl	21.1		40 - 135	5	105%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

Client Sample ID: PB65123BS SDG No.: D3811
Lab Sample ID: PB65123BS Matrix: SOIL

Analytical Method: SW8082A % Moisture: 0 Decanted:

Sample Wt/Vol: 30 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: PCB

Extraction Type: Injection Volume 1

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PC009886.D 1 08/15/12 08/20/12 PB65123

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
12674-11-2	Aroclor-1016	80		3.5	8.5	17	ug/Kg
11104-28-2	Aroclor-1221	8.5	U	3.4	8.5	17	ug/Kg
11141-16-5	Aroclor-1232	8.5	U	7.5	8.5	17	ug/Kg
53469-21-9	Aroclor-1242	8.5	U	3.4	8.5	17	ug/Kg
12672-29-6	Aroclor-1248	8.5	U	6.6	8.5	17	ug/Kg
11097-69-1	Aroclor-1254	8.5	U	1.5	8.5	17	ug/Kg
11096-82-5	Aroclor-1260	75		4.1	8.5	17	ug/Kg
SURROGATES							
877-09-8	Tetrachloro-m-xylene	20.7		10 - 166	5	103%	SPK: 20
2051-24-3	Decachlorobiphenyl	21.3		60 - 125	5	107%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Client: Date Collected: MS Analytical 08/07/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 SDG No.: Client Sample ID: SB-2(4-8)MS D3811 Lab Sample ID: D3811-01MS Matrix: **SOIL** % Moisture: Analytical Method: SW8082A 13 Decanted: Sample Wt/Vol: 30.09 Units: Final Vol: 10000 иL g Test: PCB Soil Aliquot Vol: иL Extraction Type: Injection Volume 1.0 GPC Factor: PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID PC009906.D 1 08/15/12 08/21/12 PB65123

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
12674-11-2	Aroclor-1016	92		4	9.5	19	ug/Kg
11104-28-2	Aroclor-1221	9.5	U	3.9	9.5	19	ug/Kg
11141-16-5	Aroclor-1232	9.5	U	8.6	9.5	19	ug/Kg
53469-21-9	Aroclor-1242	9.5	U	3.9	9.5	19	ug/Kg
12672-29-6	Aroclor-1248	9.5	U	7.6	9.5	19	ug/Kg
11097-69-1	Aroclor-1254	9.5	\mathbf{U}	1.7	9.5	19	ug/Kg
11096-82-5	Aroclor-1260	100		4.7	9.5	19	ug/Kg
SURROGATES							
877-09-8	Tetrachloro-m-xylene	20.1		10 - 166	6	101%	SPK: 20
2051-24-3	Decachlorobiphenyl	17.1		60 - 125	5	86%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

File ID/Qc Batch:

PC009907.D

Dilution:

1

Report of Analysis

Client: Date Collected: MS Analytical 08/07/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 SDG No.: Client Sample ID: SB-2(4-8)MSD D3811 Lab Sample ID: D3811-01MSD Matrix: **SOIL** % Moisture: Analytical Method: SW8082A 13 Decanted: Sample Wt/Vol: 30.06 Units: Final Vol: 10000 иL g Test: PCB Soil Aliquot Vol: иL Extraction Type: Injection Volume 1.0 PH: N/A GPC Factor:

Prep Date

08/15/12

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRO	QL Units
TARGETS							
12674-11-2	Aroclor-1016	94		4	10	20	ug/Kg
11104-28-2	Aroclor-1221	10	U	3.9	10	20	ug/Kg
11141-16-5	Aroclor-1232	10	U	8.6	10	20	ug/Kg
53469-21-9	Aroclor-1242	10	U	3.9	10	20	ug/Kg
12672-29-6	Aroclor-1248	10	U	7.6	10	20	ug/Kg
11097-69-1	Aroclor-1254	10	U	1.7	10	20	ug/Kg
11096-82-5	Aroclor-1260	82		4.7	10	20	ug/Kg
SURROGATES							
877-09-8	Tetrachloro-m-xylene	20.8		10 - 166	5	104%	SPK: 20
2051-24-3	Decachlorobiphenyl	19.3		60 - 125	5	97%	SPK: 20

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Date Analyzed

08/21/12

Prep Batch ID

PB65123

S = Indicates estimated value where valid five-point calibration was not performed prior to analyte detection in sample.

LAB CHRONICLE

OrderID: D3811 **OrderDate:** 8/15/2012 11:38:54 AM

Client: MS Analytical Project: 12MS104 Kensington Heights

Contact: Bryan Mayback Location:

LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
D3811-01	SB-2(4-8)	SOIL			08/07/12			08/15/12
			Herbicide	8151A		08/15/12	08/23/12	
			PCB	8082A		08/15/12	08/21/12	
			Pesticide-TCL	8081B		08/15/12	08/17/12	
D3811-02	SB-5(8-12)	SOIL			08/07/12			08/15/12
			Herbicide	8151A		08/15/12	08/23/12	
			PCB	8082A		08/15/12	08/21/12	
			Pesticide-TCL	8081B		08/15/12	08/17/12	
D3811-03	SB-9(4-7)	SOIL			08/07/12			08/15/12
			Herbicide	8151A		08/15/12	08/23/12	
			PCB	8082A		08/15/12	08/21/12	
			Pesticide-TCL	8081B		08/15/12	08/17/12	
D3811-05	SB-11(12-16)	SOIL			08/07/12			08/15/12
	, ,		Herbicide	8151A		08/15/12	08/23/12	
			РСВ	8082A		08/15/12	08/21/12	
			Pesticide-TCL	8081B		08/15/12	08/17/12	
D3811-06	SB-15(12-16)	SOIL			08/08/12			08/15/12
			Herbicide	8151A		08/15/12	08/23/12	
			PCB	8082A		08/15/12	08/21/12	
			Pesticide-TCL	8081B		08/15/12	08/17/12	
D3811-07	SB-18(4-8)	SOIL			08/08/12			08/15/12
			Herbicide	8151A		08/15/12	08/23/12	
			PCB	8082A		08/15/12	08/21/12	
			Pesticide-TCL	8081B		08/15/12	08/17/12	
D3811-10	SB-21(16-19)	SOIL			08/09/12			08/15/12
			Herbicide	8151A		08/15/12	08/23/12	
			PCB	8082A		08/15/12	08/21/12	

			LAB CHRON	ICLE				
			Pesticide-TCL	8081B		08/15/12	08/17/12	
D3811-10RE	SB-21(16-19)RE	SOIL			08/09/12			08/15/12
			PCB	8082A		08/15/12	08/21/12	
D3811-11	SB-22(12-19)	SOIL			08/09/12			08/15/12
	. ,		Herbicide	8151A		08/15/12	08/23/12	
			РСВ	8082A		08/15/12	08/21/12	
			Pesticide-TCL	8081B		08/15/12	08/17/12	
D3811-13	SB-37(8-10)	SOIL			08/10/12			08/15/12
	•		Herbicide	8151A		08/15/12	08/23/12	
			РСВ	8082A		08/15/12	08/21/12	
			Pesticide-TCL	8081B		08/15/12	08/17/12	
D3811-14	SB-39(6-8)	SOIL			08/10/12			08/15/12
			Herbicide	8151A		08/15/12	08/23/12	
			РСВ	8082A		08/15/12	08/21/12	
			Pesticide-TCL	8081B		08/15/12	08/17/12	
D3811-15	SB-41(8-11)	SOIL			08/10/12			08/15/12
			Herbicide	8151A		08/15/12	08/23/12	
			РСВ	8082A		08/15/12	08/21/12	
			Pesticide-TCL	8081B		08/15/12	08/17/12	
D3811-17	SB-43(6-8)	SOIL			08/13/12			08/15/12
			Herbicide	8151A		08/15/12	08/23/12	
			PCB	8082A		08/15/12	08/21/12	
			Pesticide-TCL	8081B		08/15/12	08/17/12	
D3811-18	SB-43(10-12)	SOIL			08/13/12			08/15/12
			Herbicide	8151A		08/15/12	08/23/12	
			PCB	8082A		08/15/12	08/21/12	
			Pesticide-TCL	8081B		08/15/12	08/17/12	
D3811-18RE	SB-43(10-12)RE	SOIL			08/13/12			08/15/12
			PCB	8082A		08/15/12	08/21/12	
D3811-19	SB-43(16-20)	SOIL			08/13/12			08/15/12
			Herbicide	8151A		08/15/12	08/23/12	
			PCB	8082A		08/15/12	08/21/12	
			Pesticide-TCL	8081B		08/15/12	08/18/12	

В

Ē

_

LAB CHRONICLE

D3811-21	SB-46(12-16)	SOIL	08/13/12	08/15/12
D J J J J J J J J J J	35 .0(0)	JU12	00, 10, 12	00, 10, 11

Herbicide	8151A	08/15/12	08/23/12
PCB	8082A	08/15/12	08/21/12
Pesticide-TCL	8081B	08/15/12	08/18/12

В

C

D

Hit Summary Sheet SW-846

SDG No.:
Client:

Project ID:

Client ID

Client ID

Parameter

Concentration

C MDL

LOD

RDL

Units

Client ID:

D

Total Concentration:

•

SAMPLE DATA

Client: Date Collected: MS Analytical 08/07/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 SDG No.: Client Sample ID: SB-2(4-8) D3811 Lab Sample ID: D3811-01 Matrix: **SOIL** % Moisture: Analytical Method: SW8151A 13.4 Decanted: Sample Wt/Vol: 30.06 Units: Final Vol: 10000 иL g Test: Herbicide Soil Aliquot Vol: иL Extraction Type: Injection Volume

GPC Factor: 1.0 PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
PE005722.D 1 08/15/12 08/23/12 PB65122

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRO	QL Units
TARGETS							
1918-00-9	DICAMBA	43	U	15.3	43	86	ug/Kg
120-36-5	DICHLORPROP	38.5	U	14.2	38.5	77	ug/Kg
94-75-7	2,4-D	43	U	37.7	43	86	ug/Kg
93-72-1	2,4,5-TP (SILVEX)	38.5	U	12.6	38.5	77	ug/Kg
93-76-5	2,4,5-T	38.5	U	11.8	38.5	77	ug/Kg
94-82-6	2,4-DB	38.5	U	34.1	38.5	77	ug/Kg
88-85-7	DINOSEB	38.5	U	28.2	38.5	77	ug/Kg
SURROGATES							
19719-28-9	2,4-DCAA	235		12 - 189)	47%	SPK: 500

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

GPC Factor:

PE005723.D

1.0

1

Report of Analysis

Client: Date Collected: MS Analytical 08/07/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 SDG No.: Client Sample ID: SB-5(8-12) D3811 D3811-02 **SOIL** Lab Sample ID: Matrix: Analytical Method: SW8151A % Moisture: 18.7 Decanted: Sample Wt/Vol: 30.04 Units: Final Vol: 10000 uL g Herbicide Soil Aliquot Vol: иL Test: Extraction Type: Injection Volume

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

08/15/12

PH: N/A

CAS Number Parameter Conc. **Qualifier** MDL LOD LOQ / CRQL Units **TARGETS** 1918-00-9 **DICAMBA** 46 U 16.3 46 92 ug/Kg 120-36-5 **DICHLORPROP** 41 U 15.2 41 82 ug/Kg 94-75-7 2,4-D 46 U 40.2 46 92 ug/Kg 93-72-1 2,4,5-TP (SILVEX) 41 U 13.4 41 82 ug/Kg 93-76-5 2,4,5-T 41 U 12.6 41 82 ug/Kg 94-82-6 41 363 41 82 2,4-DB U ug/Kg 88-85-7 DINOSEB 30.1 82 41 U 41 ug/Kg **SURROGATES** 19719-28-9 2,4-DCAA 264 12 - 189 53% SPK: 500

08/23/12

PB65122

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Client: Date Collected: MS Analytical 08/07/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 SDG No.: Client Sample ID: SB-9(4-7) D3811 Lab Sample ID: D3811-03 Matrix: **SOIL** % Moisture: Analytical Method: SW8151A 16.1 Decanted: 10000 Sample Wt/Vol: 30.05 Units: Final Vol: иL g Test: Herbicide Soil Aliquot Vol: иL Extraction Type: Injection Volume 1.0 PH: N/A GPC Factor:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID PE005724.D 1 08/15/12 08/23/12 PB65122

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQ	L Units
TARGETS							
1918-00-9	DICAMBA	44.5	U	15.8	44.5	89	ug/Kg
120-36-5	DICHLORPROP	40	U	14.7	40	80	ug/Kg
94-75-7	2,4-D	44.5	U	38.9	44.5	89	ug/Kg
93-72-1	2,4,5-TP (SILVEX)	40	U	13	40	80	ug/Kg
93-76-5	2,4,5-T	40	U	12.2	40	80	ug/Kg
94-82-6	2,4-DB	40	U	35.2	40	80	ug/Kg
88-85-7	DINOSEB	40	U	29.1	40	80	ug/Kg
SURROGATES							
19719-28-9	2,4-DCAA	311		12 - 189)	62%	SPK: 500

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Client: Date Collected: MS Analytical 08/07/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 SDG No.: Client Sample ID: SB-11(12-16) D3811 Lab Sample ID: D3811-05 Matrix: **SOIL** % Moisture: Analytical Method: SW8151A 25.6 Decanted: 10000 Sample Wt/Vol: 30.1 Units: Final Vol: иL g Test: Herbicide Soil Aliquot Vol: иL Extraction Type: Injection Volume

GPC Factor: 1.0 PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
PE005725.D 1 08/15/12 08/23/12 PB65122

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
1918-00-9	DICAMBA	50	U	17.8	50	100	ug/Kg
120-36-5	DICHLORPROP	45	U	16.5	45	90	ug/Kg
94-75-7	2,4-D	50	U	43.8	50	100	ug/Kg
93-72-1	2,4,5-TP (SILVEX)	45	U	14.6	45	90	ug/Kg
93-76-5	2,4,5-T	45	U	13.7	45	90	ug/Kg
94-82-6	2,4-DB	45	U	39.6	45	90	ug/Kg
88-85-7	DINOSEB	45	U	32.8	45	90	ug/Kg
SURROGATES							
19719-28-9	2,4-DCAA	316		12 - 189)	63%	SPK: 500

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Client: Date Collected: MS Analytical 08/08/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 SDG No.: Client Sample ID: SB-15(12-16) D3811 Lab Sample ID: D3811-06 Matrix: **SOIL** % Moisture: Analytical Method: SW8151A 28.4 Decanted: Sample Wt/Vol: 30.07 Units: Final Vol: 10000 иL g Test: Herbicide Soil Aliquot Vol: иL Extraction Type: Injection Volume

GPC Factor: 1.0 PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
PE005726.D 1 08/15/12 08/23/12 PB65122

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
1918-00-9	DICAMBA	50	U	18.5	50	100	ug/Kg
120-36-5	DICHLORPROP	46.5	U	17.2	46.5	93	ug/Kg
94-75-7	2,4-D	50	U	45.6	50	100	ug/Kg
93-72-1	2,4,5-TP (SILVEX)	46.5	U	15.2	46.5	93	ug/Kg
93-76-5	2,4,5-T	46.5	U	14.3	46.5	93	ug/Kg
94-82-6	2,4-DB	46.5	U	41.2	46.5	93	ug/Kg
88-85-7	DINOSEB	46.5	U	34.1	46.5	93	ug/Kg
SURROGATES							
19719-28-9	2,4-DCAA	216		12 - 189)	43%	SPK: 500

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

GPC Factor:

1.0

Report of Analysis

Client: Date Collected: MS Analytical 08/08/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 SDG No.: Client Sample ID: SB-18(4-8) D3811 Lab Sample ID: D3811-07 Matrix: **SOIL** % Moisture: Analytical Method: SW8151A 16.2 Decanted: 10000 Sample Wt/Vol: 30.03 Units: Final Vol: иL g Test: Herbicide Soil Aliquot Vol: иL Extraction Type: Injection Volume

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
PE005727.D 1 08/15/12 08/23/12 PB65122

PH: N/A

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQI	Units
TARGETS							
1918-00-9	DICAMBA	44.5	U	15.8	44.5	89	ug/Kg
120-36-5	DICHLORPROP	40	U	14.7	40	80	ug/Kg
94-75-7	2,4-D	44.5	U	39	44.5	89	ug/Kg
93-72-1	2,4,5-TP (SILVEX)	40	U	13	40	80	ug/Kg
93-76-5	2,4,5-T	40	U	12.2	40	80	ug/Kg
94-82-6	2,4-DB	40	U	35.3	40	80	ug/Kg
88-85-7	DINOSEB	40	U	29.2	40	80	ug/Kg
SURROGATES							
19719-28-9	2,4-DCAA	358		12 - 189)	72%	SPK: 500

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Client: Date Collected: MS Analytical 08/09/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 SDG No.: Client Sample ID: SB-21(16-19) D3811 Lab Sample ID: D3811-10 Matrix: **SOIL** % Moisture: Analytical Method: SW8151A 31.9 Decanted: Sample Wt/Vol: 30.07 Units: Final Vol: 10000 иL g Test: Herbicide Soil Aliquot Vol: иL Extraction Type: Injection Volume

GPC Factor: 1.0 PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
PE005728.D 1 08/15/12 08/23/12 PB65122

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
1918-00-9	DICAMBA	55	U	19.4	55	110	ug/Kg
120-36-5	DICHLORPROP	49	\mathbf{U}	18.1	49	98	ug/Kg
94-75-7	2,4-D	55	\mathbf{U}	47.9	55	110	ug/Kg
93-72-1	2,4,5-TP (SILVEX)	49	U	16	49	98	ug/Kg
93-76-5	2,4,5-T	49	U	15	49	98	ug/Kg
94-82-6	2,4-DB	49	U	43.3	49	98	ug/Kg
88-85-7	DINOSEB	49	U	35.9	49	98	ug/Kg
SURROGATES							
19719-28-9	2,4-DCAA	331		12 - 189)	66%	SPK: 500

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Client: Date Collected: MS Analytical 08/09/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 SDG No.: Client Sample ID: SB-22(12-19) D3811 Lab Sample ID: D3811-11 Matrix: **SOIL** % Moisture: Analytical Method: SW8151A 8.9 Decanted: Final Vol: Sample Wt/Vol: 30.06 Units: 10000 иL g Test: Herbicide Soil Aliquot Vol: иL Extraction Type: Injection Volume 1.0 PH: N/A GPC Factor:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
PE005729.D 1 08/15/12 08/23/12 PB65122

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQ	QL Units
TARGETS							
1918-00-9	DICAMBA	41	U	14.5	41	82	ug/Kg
120-36-5	DICHLORPROP	36.5	U	13.5	36.5	73	ug/Kg
94-75-7	2,4-D	41	U	35.8	41	82	ug/Kg
93-72-1	2,4,5-TP (SILVEX)	36.5	U	12	36.5	73	ug/Kg
93-76-5	2,4,5-T	36.5	U	11.2	36.5	73	ug/Kg
94-82-6	2,4-DB	36.5	U	32.4	36.5	73	ug/Kg
88-85-7	DINOSEB	36.5	U	26.8	36.5	73	ug/Kg
SURROGATES							
19719-28-9	2,4-DCAA	377		12 - 189)	75%	SPK: 500

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

File ID/Qc Batch:

Report of Analysis

Client: Date Collected: 08/10/12 MS Analytical Project: 12MS104 Kensington Heights Date Received: 08/15/12 SDG No.: Client Sample ID: SB-37(8-10) D3811 Lab Sample ID: D3811-13 Matrix: **SOIL** % Moisture: Analytical Method: SW8151A 29.6 Decanted: Sample Wt/Vol: 30.08 Units: Final Vol: 10000 иL g Test: Herbicide Soil Aliquot Vol: иL Extraction Type: Injection Volume

GPC Factor: 1.0 PH: N/A

Dilution:

PE005732.D 1 08/15/12 08/23/12 PB65122

Prep Date

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
1918-00-9	DICAMBA	55	U	18.8	55	110	ug/Kg
120-36-5	DICHLORPROP	47.5	U	17.5	47.5	95	ug/Kg
94-75-7	2,4-D	55	U	46.3	55	110	ug/Kg
93-72-1	2,4,5-TP (SILVEX)	47.5	U	15.5	47.5	95	ug/Kg
93-76-5	2,4,5-T	47.5	U	14.5	47.5	95	ug/Kg
94-82-6	2,4-DB	47.5	U	41.9	47.5	95	ug/Kg
88-85-7	DINOSEB	47.5	U	34.7	47.5	95	ug/Kg
SURROGATES							
19719-28-9	2,4-DCAA	339		12 - 189)	68%	SPK: 500

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Date Analyzed

Prep Batch ID

D = Dilution

Client: Date Collected: 08/10/12 MS Analytical Project: 12MS104 Kensington Heights Date Received: 08/15/12 SDG No.: Client Sample ID: SB-39(6-8) D3811 Lab Sample ID: D3811-14 Matrix: **SOIL** % Moisture: Analytical Method: SW8151A 8.1 Decanted: Sample Wt/Vol: 30.05 Units: Final Vol: 10000 иL g Test: Herbicide Soil Aliquot Vol: иL Extraction Type: Injection Volume

GPC Factor: 1.0 PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
PE005733.D 1 08/15/12 08/23/12 PB65122

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
1918-00-9	DICAMBA	40.5	U	14.4	40.5	81	ug/Kg
120-36-5	DICHLORPROP	36.5	U	13.4	36.5	73	ug/Kg
94-75-7	2,4-D	40.5	U	35.5	40.5	81	ug/Kg
93-72-1	2,4,5-TP (SILVEX)	36.5	U	11.9	36.5	73	ug/Kg
93-76-5	2,4,5-T	36.5	U	11.1	36.5	73	ug/Kg
94-82-6	2,4-DB	36.5	U	32.1	36.5	73	ug/Kg
88-85-7	DINOSEB	36.5	U	26.6	36.5	73	ug/Kg
SURROGATES							
19719-28-9	2,4-DCAA	230		12 - 189)	46%	SPK: 500

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

File ID/Qc Batch:

93-76-5

Dilution:

2,4,5-T

Report of Analysis

Client: Date Collected: 08/10/12 MS Analytical Project: 12MS104 Kensington Heights Date Received: 08/15/12 SDG No.: Client Sample ID: SB-41(8-11) D3811 Lab Sample ID: D3811-15 Matrix: **SOIL** % Moisture: Analytical Method: SW8151A 18.8 Decanted: Sample Wt/Vol: 30 Units: Final Vol: 10000 uL g Test: Herbicide Soil Aliquot Vol: иL Extraction Type: Injection Volume 1.0 PH: N/A GPC Factor:

PE005734.D	1	08/15/12		08/23/12		PE		
CAS Number	Parameter		Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS								
1918-00-9	DICAMBA		46	U	16.3	46	92	ug/Kg
120-36-5	DICHLORPROP		41.5	U	15.2	41.5	83	ug/Kg
94-75-7	2,4-D		46	U	40.3	46	92	ug/Kg
93-72-1	2,4,5-TP (SILVEX)		41.5	U	13.4	41.5	83	ug/Kg

Prep Date

94-82-6 2,4-DB 41.5 U 36.4 41.5 83 ug/Kg 88-85-7 DINOSEB 41.5 30.1 41.5 U 83 ug/Kg **SURROGATES** 19719-28-9 2,4-DCAA 392 12 - 189 78% SPK: 500

41.5

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Date Analyzed

U

12.6

41.5

Prep Batch ID

83

ug/Kg

D = Dilution

Client: Date Collected: MS Analytical 08/13/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 SDG No.: Client Sample ID: SB-43(6-8) D3811 Lab Sample ID: D3811-17 Matrix: **SOIL** % Moisture: Analytical Method: SW8151A 8.2 Decanted: Sample Wt/Vol: 30.07 Units: Final Vol: 10000 иL g Test: Herbicide Soil Aliquot Vol: иL Extraction Type: Injection Volume

GPC Factor: 1.0 PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
PE005735.D 1 08/15/12 08/23/12 PB65122

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQI	Units
TARGETS							
1918-00-9	DICAMBA	41	U	14.4	41	82	ug/Kg
120-36-5	DICHLORPROP	36.5	U	13.4	36.5	73	ug/Kg
94-75-7	2,4-D	41	U	35.5	41	82	ug/Kg
93-72-1	2,4,5-TP (SILVEX)	36.5	U	11.9	36.5	73	ug/Kg
93-76-5	2,4,5-T	36.5	U	11.1	36.5	73	ug/Kg
94-82-6	2,4-DB	36.5	U	32.1	36.5	73	ug/Kg
88-85-7	DINOSEB	36.5	U	26.6	36.5	73	ug/Kg
SURROGATES							
19719-28-9	2,4-DCAA	337		12 - 189)	67%	SPK: 500

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Client: Date Collected: MS Analytical 08/13/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 SDG No.: Client Sample ID: SB-43(10-12) D3811 Lab Sample ID: D3811-18 Matrix: **SOIL** % Moisture: Analytical Method: SW8151A 17.9 Decanted: Sample Wt/Vol: 30.05 Units: Final Vol: 10000 иL g Test: Herbicide Soil Aliquot Vol: иL Extraction Type: Injection Volume

GPC Factor: 1.0 PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
PE005736.D 1 08/15/12 08/23/12 PB65122

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQ	L Units
TARGETS							
1918-00-9	DICAMBA	45.5	U	16.1	45.5	91	ug/Kg
120-36-5	DICHLORPROP	40.5	U	15	40.5	81	ug/Kg
94-75-7	2,4-D	45.5	U	39.8	45.5	91	ug/Kg
93-72-1	2,4,5-TP (SILVEX)	40.5	U	13.3	40.5	81	ug/Kg
93-76-5	2,4,5-T	40.5	U	12.5	40.5	81	ug/Kg
94-82-6	2,4-DB	40.5	U	36	40.5	81	ug/Kg
88-85-7	DINOSEB	40.5	U	29.8	40.5	81	ug/Kg
SURROGATES							
19719-28-9	2,4-DCAA	290		12 - 189)	58%	SPK: 500

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Extraction Type:

Report of Analysis

Client: Date Collected: MS Analytical 08/13/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 SDG No.: Client Sample ID: SB-43(16-20) D3811 Lab Sample ID: D3811-19 Matrix: **SOIL** % Moisture: Analytical Method: SW8151A 29.3 Decanted: Sample Wt/Vol: 30.04 Units: Final Vol: 10000 иL g Test: Herbicide Soil Aliquot Vol: иL

GPC Factor: 1.0 PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
PE005737.D 1 08/15/12 08/23/12 PB65122

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQ	L Units
TARGETS							
1918-00-9	DICAMBA	55	U	18.7	55	110	ug/Kg
120-36-5	DICHLORPROP	47.5	U	17.4	47.5	95	ug/Kg
94-75-7	2,4-D	55	U	46.2	55	110	ug/Kg
93-72-1	2,4,5-TP (SILVEX)	47.5	U	15.4	47.5	95	ug/Kg
93-76-5	2,4,5-T	47.5	U	14.5	47.5	95	ug/Kg
94-82-6	2,4-DB	47.5	U	41.8	47.5	95	ug/Kg
88-85-7	DINOSEB	47.5	U	34.6	47.5	95	ug/Kg
SURROGATES							
19719-28-9	2,4-DCAA	255		12 - 189)	51%	SPK: 500

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Injection Volume

* = Values outside of QC limits

D = Dilution

Client: Date Collected: MS Analytical 08/13/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 SDG No.: Client Sample ID: SB-46(12-16) D3811 Lab Sample ID: D3811-21 Matrix: **SOIL** % Moisture: Analytical Method: SW8151A 28.2 Decanted: Sample Wt/Vol: 30.11 Units: Final Vol: 10000 иL g Test: Herbicide Soil Aliquot Vol: иL Extraction Type: Injection Volume

GPC Factor: 1.0 PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
PE005738.D 1 08/15/12 08/23/12 PB65122

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
1918-00-9	DICAMBA	50	U	18.4	50	100	ug/Kg
120-36-5	DICHLORPROP	46.5	U	17.1	46.5	93	ug/Kg
94-75-7	2,4-D	50	U	45.4	50	100	ug/Kg
93-72-1	2,4,5-TP (SILVEX)	46.5	U	15.1	46.5	93	ug/Kg
93-76-5	2,4,5-T	46.5	U	14.2	46.5	93	ug/Kg
94-82-6	2,4-DB	46.5	U	41	46.5	93	ug/Kg
88-85-7	DINOSEB	46.5	U	34	46.5	93	ug/Kg
SURROGATES							
19719-28-9	2,4-DCAA	401		12 - 189)	80%	SPK: 500

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Surrogate Summary

SDG No.: D3811

Client: MS Analytical

Analytical Method:

EPA SW-846 8151

									imits
Lab Sample ID	Client ID	Parameter	Column	Spike	Result	Recovery	Qual	Low	Hig
BLK-PE005674.D	PIBLK-PE005674.D	2,4-DCAA	1	500	566.33	113		43	172
		2,4-DCAA	2	500	575.57	115		43	172
.BLK-PE005718.D	PIBLK-PE005718.D	2,4-DCAA	1	500	562.69	113		43	172
		2,4-DCAA	2	500	610.09	122		43	172
PB65122BL	PB65122BL	2,4-DCAA	1	500	379.82	76		12	189
		2,4-DCAA	2	500	389.9	78		12	189
PB65122BS	PB65122BS	2,4-DCAA	1	500	542.92	109		12	189
		2,4-DCAA	2	500	537.43	107		12	189
3811-01	SB-2(4-8)	2,4-DCAA	1	500	235.58	47		12	189
		2,4-DCAA	2	500	245.2	49		12	189
3811-02	SB-5(8-12)	2,4-DCAA	1	500	264.58	53		12	189
		2,4-DCAA	2	500	274.07	55		12	189
3811-03	SB-9(4-7)	2,4-DCAA	1	500	311.1	62		12	189
		2,4-DCAA	2	500	336.23	67		12	189
3811-05	SB-11(12-16)	2,4-DCAA	1	500	316.03	63		12	189
		2,4-DCAA	2	500	329.39	66		12	189
3811-06	SB-15(12-16)	2,4-DCAA	1	500	216.91	43		12	189
		2,4-DCAA	2	500	229.42	46		12	189
3811-07	SB-18(4-8)	2,4-DCAA	1	500	358.63	72		12	189
		2,4-DCAA	2	500	384.71	77		12	189
3811-10	SB-21(16-19)	2,4-DCAA	1	500	331	66		12	189
	,	2,4-DCAA	2	500	364.88	73		12	189
3811-11	SB-22(12-19)	2,4-DCAA	1	500	377.07	75		12	189
	,	2,4-DCAA	2	500	387.72	78		12	189
BLK-PE005730.D	PIBLK-PE005730.D	2,4-DCAA	1	500	634.47	127		43	172
		2,4-DCAA	2	500	613.9	123		43	172
3811-13	SB-37(8-10)	2,4-DCAA	1	500	339.49	68		12	189
	22 27(0 20)	2,4-DCAA	2	500	345.6	69		12	189
3811-14	SB-39(6-8)	2,4-DCAA	1	500	230.24	46		12	189
3011 11	52 37(0 0)	2,4-DCAA	2	500	247.99	50		12	189
3811-15	SB-41(8-11)	2,4-DCAA	1	500	392.42	78		12	189
3011 13	52 11(0 11)	2,4-DCAA	2	500	415.35	83		12	189
3811-17	SB-43(6-8)	2,4-DCAA	1	500	337.46	67		12	189
3011 17	SB 13(0 0)	2,4-DCAA	2	500	356.56	71		12	189
03811-18	SB-43(10-12)	2,4-DCAA	1	500	290.2	58		12	189
3011-10	3D-43(10-12)	2,4-DCAA	2	500	295.37	59		12	189
3811-19	SB-43(16-20)	2,4-DCAA	1	500	255.71	51		12	189
3011-19	SB-43(10-20)								
2011 21	SD 46(12-16)	2,4-DCAA	2	500	284.98	57		12	189
3811-21	SB-46(12-16)	2,4-DCAA	1	500	401.67	80		12	189
2011 103 50	OD 42/1/ 20\\ 40	2,4-DCAA	2	500	411.97	82		12	189
3811-19MS	SB-43(16-20)MS	2,4-DCAA	1	500	300.46	60		12	189
2011 101 (27	OD 40/1/ 00/2707	2,4-DCAA	2	500	322.12	64		12	189
03811-19MSD	SB-43(16-20)MSD	2,4-DCAA	1	500	286.99	57		12	189 189
		2,4-DCAA	2	500	309.05	62		12	

Surrogate Summary

SDG No.: <u>D3811</u>

Client: MS Analytical

Analytical Method: EPA SW-846 8151

								Li	imits	
Lab Sample ID	Client ID	Parameter	Column	Spike	Result	Recovery	Qual	Low	High	D
I.BLK-PE005741.D	PIBLK-PE005741.D	2,4-DCAA	1	500	747.17	149		43	172	E
		2,4-DCAA	2	500	681.96	136		43	172	F
										G

Matrix Spike/Matrix Spike Duplicate Summary

SW-846

SDG No.: D3811

Client: MS Analytical

Analytical Method: EPA SW-846 8151

			Sample			Rec		RPD		Limits	
Lab Sample ID:	Parameter	Spike	Result	Result	Rec	Qual	RPD	Qual	Low	High	RPD
Client Sample ID:	SB-43(16-20)MS										
D3811-19MS	DICAMBA	235	0	150	64				34	148	
	DICHLORPROP	235	0	230	98				10	224	
	2,4-D	235	0	150	64				11	196	
	2,4,5-TP(Silvex)	235	0	140	60				13	154	
	2,4,5-T	235	0	140	60				15	147	
	2,4-DB	235	0	140	60				10	155	
	Dinoseb	235	0	160	68				10	161	

Matrix Spike/Matrix Spike Duplicate Summary

SW-846

SDG No.: D3811

Client: MS Analytical

Analytical Method: EPA SW-846 8151

			Sample	!		Rec		RPD		Limits	
Lab Sample ID:	Parameter	Spike	Result	Result	Rec	Qual	RPD	Qual	Low	High	RPD
Client Sample ID:	SB-43(16-20)MSD										
D3811-19MSD	DICAMBA	235	0	140	60		6		34	148	20
	DICHLORPROP	235	0	210	89		10		10	224	20
	2,4-D	235	0	150	64		0		11	196	20
	2,4,5-TP(Silvex)	235	0	140	60		0		13	154	20
	2,4,5-T	235	0	140	60		0		15	147	20
	2,4-DB	235	0	140	60		0		10	155	20
	Dinoseb	235	0	150	64		6		10	161	20

${\bf Laboratory\ Control\ Sample/Laboratory\ Control\ Sample\ Duplicate\ Summary\ }$

SW-846

SDG No.: D3811

Client: MS Analytical

Analytical Method:

EPA SW-846 8151

							RPD		Limits	
Lab Sample ID	Parameter	Spike	Result	Rec	RPD	Qual	Qual	Low	High	RPD
PB65122BS	DICAMBA	167	180	108				78	123	
	DICHLORPROP	167	180	108				78	126	
	2,4-D	167	190	114				68	134	
	2,4,5-TP(Silvex)	167	180	108				63	134	
	2,4,5-T	167	180	108				59	140	
	2,4-DB	167	180	108				51	141	
	Dinoseb	167	170	102				57	152	

4C

PESTICIDE METHOD BLANK SUMMARY

EPA SAMPLE NO.

PB65122BL

Lab Name: CHEMTECH Contract: MSAN01

Lab Sample ID: PB65122BL Lab File ID: PE005720.D

Matrix: (soil/water) SOIL Extraction: (Type) SOXH

Sulfur Cleanup: (Y/N) N Date Extracted: 08/15/2012

Date Analyzed (1): 08/23/2012 Date Analyzed (2): 08/23/2012

Time Analyzed (1): 12:15 Time Analyzed (2): 12:15

Instrument ID (1): ECD E Instrument ID (2): ECD E

GC Column (1): ZB-35-HT INFERNO ID: 0.25 (mm) GC Column (2): ZB-XLB-HT INFERNO ID: 0.25 (mm)

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED 1	DATE ANALYZED 2
PB65122BS	PB65122BS	PE005721.D	08/23/2012	08/23/2012
SB-2 (4-8)	D3811-01	PE005722.D	08/23/2012	08/23/2012
SB-5(8-12)	D3811-02	PE005723.D	08/23/2012	08/23/2012
SB-9(4-7)	D3811-03	PE005724.D	08/23/2012	08/23/2012
SB-11(12-16)	D3811-05	PE005725.D	08/23/2012	08/23/2012
SB-15(12-16)	D3811-06	PE005726.D	08/23/2012	08/23/2012
SB-18(4-8)	D3811-07	PE005727.D	08/23/2012	08/23/2012
SB-21(16-19)	D3811-10	PE005728.D	08/23/2012	08/23/2012
SB-22 (12-19)	D3811-11	PE005729.D	08/23/2012	08/23/2012
SB-37(8-10)	D3811-13	PE005732.D	08/23/2012	08/23/2012
SB-39(6-8)	D3811-14	PE005733.D	08/23/2012	08/23/2012
SB-41(8-11)	D3811-15	PE005734.D	08/23/2012	08/23/2012
SB-43(6-8)	D3811-17	PE005735.D	08/23/2012	08/23/2012
SB-43(10-12)	D3811-18	PE005736.D	08/23/2012	08/23/2012
SB-43(16-20)	D3811-19	PE005737.D	08/23/2012	08/23/2012
SB-46(12-16)	D3811-21	PE005738.D	08/23/2012	08/23/2012
SB-43 (16-20) MS	D3811-19MS	PE005739.D	08/23/2012	08/23/2012
SB-43 (16-20) MSD	D3811-19MSD	PE005740.D	08/23/2012	08/23/2012

COMMENTS:			

F

QC SAMPLE DATA

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

Client Sample ID: PB65122BL SDG No.: D3811
Lab Sample ID: PB65122BL Matrix: SOIL

Analytical Method: SW8151A % Moisture: 0 Decanted:

Sample Wt/Vol: 30 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Herbicide

Extraction Type: Injection Volume 1

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PE005720.D 1 08/15/12 08/23/12 PB65122

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
1918-00-9	DICAMBA	37.5	U	13.3	37.5	75	ug/Kg
120-36-5	DICHLORPROP	33.5	U	12.4	33.5	67	ug/Kg
94-75-7	2,4-D	37.5	U	32.7	37.5	75	ug/Kg
93-72-1	2,4,5-TP (SILVEX)	33.5	U	10.9	33.5	67	ug/Kg
93-76-5	2,4,5-T	33.5	U	10.2	33.5	67	ug/Kg
94-82-6	2,4-DB	33.5	U	29.6	33.5	67	ug/Kg
88-85-7	DINOSEB	33.5	U	24.5	33.5	67	ug/Kg
SURROGATES							
19719-28-9	2,4-DCAA	379		12 - 189	9	76%	SPK: 500

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Client: Date Collected: MS Analytical 08/22/12 Project: 12MS104 Kensington Heights Date Received: 08/22/12 SDG No.: Client Sample ID: PIBLK-PE005674.D D3811 Lab Sample ID: Matrix: WATER I.BLK-PE005674.D % Moisture: Analytical Method: SW8151A 100 Decanted: Sample Wt/Vol: Final Vol: 10000 1000 Units: mLиL Test: Herbicide Soil Aliquot Vol: иL Extraction Type: Injection Volume 1.0 PH: GPC Factor:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
PE005674.D 1 08/22/12 PE082212

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
1918-00-9	DICAMBA	1	U	0.163	1	2	ug/L
120-36-5	DICHLORPROP	1	U	0.263	1	2	ug/L
94-75-7	2,4-D	1	U	0.348	1	2	ug/L
93-72-1	2,4,5-TP (SILVEX)	1	U	0.151	1	2	ug/L
93-76-5	2,4,5-T	1	U	0.172	1	2	ug/L
94-82-6	2,4-DB	1	U	0.631	1	2	ug/L
88-85-7	DINOSEB	1	U	0.179	1	2	ug/L
SURROGATES							
19719-28-9	2,4-DCAA	566		43 - 172	2	113%	SPK: 50

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Client: Date Collected: MS Analytical 08/23/12 Project: 12MS104 Kensington Heights Date Received: 08/23/12 SDG No.: Client Sample ID: PIBLK-PE005718.D D3811 Lab Sample ID: Matrix: WATER I.BLK-PE005718.D % Moisture: Analytical Method: SW8151A 100 Decanted: Sample Wt/Vol: 10000 1000 Units: mLFinal Vol: иL Test: Herbicide Soil Aliquot Vol: иL Extraction Type: Injection Volume 1.0 PH: GPC Factor:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
PE005718.D 1 08/23/12 PE082312

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRO	QL Units
TARGETS							
1918-00-9	DICAMBA	1	U	0.163	1	2	ug/L
120-36-5	DICHLORPROP	1	U	0.263	1	2	ug/L
94-75-7	2,4-D	1	U	0.348	1	2	ug/L
93-72-1	2,4,5-TP (SILVEX)	1	U	0.151	1	2	ug/L
93-76-5	2,4,5-T	1	U	0.172	1	2	ug/L
94-82-6	2,4-DB	1	U	0.631	1	2	ug/L
88-85-7	DINOSEB	1	U	0.179	1	2	ug/L
SURROGATES							
19719-28-9	2,4-DCAA	562		43 - 172	2	113%	SPK: 500

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Client: Date Collected: MS Analytical 08/23/12 Project: 12MS104 Kensington Heights Date Received: 08/23/12 SDG No.: Client Sample ID: PIBLK-PE005730.D D3811 Lab Sample ID: Matrix: WATER I.BLK-PE005730.D % Moisture: Analytical Method: SW8151A 100 Decanted: Sample Wt/Vol: Final Vol: 10000 1000 Units: mLиL Test: Herbicide Soil Aliquot Vol: иL Extraction Type: Injection Volume 1.0 PH: GPC Factor:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
PE005730.D 1 08/23/12 PE082312

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQ	L Units
TARGETS							
1918-00-9	DICAMBA	1	U	0.163	1	2	ug/L
120-36-5	DICHLORPROP	1	U	0.263	1	2	ug/L
94-75-7	2,4-D	1	\mathbf{U}	0.348	1	2	ug/L
93-72-1	2,4,5-TP (SILVEX)	1	\mathbf{U}	0.151	1	2	ug/L
93-76-5	2,4,5-T	1	\mathbf{U}	0.172	1	2	ug/L
94-82-6	2,4-DB	1	U	0.631	1	2	ug/L
88-85-7	DINOSEB	1	U	0.179	1	2	ug/L
SURROGATES							
19719-28-9	2,4-DCAA	634		43 - 172	2	127%	SPK: 50

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

File ID/Qc Batch:

Dilution:

Report of Analysis

Client: Date Collected: MS Analytical 08/23/12 Project: 12MS104 Kensington Heights Date Received: 08/23/12 SDG No.: Client Sample ID: PIBLK-PE005741.D D3811 Lab Sample ID: Matrix: WATER I.BLK-PE005741.D % Moisture: Analytical Method: SW8151A 100 Decanted: 10000 Sample Wt/Vol: 1000 Units: mLFinal Vol: иL Test: Herbicide Soil Aliquot Vol: иL Extraction Type: Injection Volume 1.0 PH: GPC Factor:

1		08/23/12		PE		
Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
DICAMBA	1	U	0.163	1	2	ug/L
DICHLORPROP	1	U	0.263	1	2	ug/L
2,4-D	1	U	0.348	1	2	ug/L
2,4,5-TP (SILVEX)	1	U	0.151	1	2	ug/L
	DICAMBA DICHLORPROP 2,4-D	DICAMBA 1 DICHLORPROP 1 2,4-D 1	Parameter Conc. Qualifier DICAMBA 1 U DICHLORPROP 1 U 2,4-D 1 U	Parameter Conc. Qualifier MDL DICAMBA 1 U 0.163 DICHLORPROP 1 U 0.263 2,4-D 1 U 0.348	Parameter Conc. Qualifier MDL LOD DICAMBA 1 U 0.163 1 DICHLORPROP 1 U 0.263 1 2,4-D 1 U 0.348 1	Parameter Conc. Qualifier MDL LOD LOQ/CRQL DICAMBA 1 U 0.163 1 2 DICHLORPROP 1 U 0.263 1 2 2,4-D 1 U 0.348 1 2

Prep Date

93-76-5	2,4,5-T	1	U	0.172	1	2	ug/L
94-82-6	2,4-DB	1	U	0.631	1	2	ug/L
88-85-7	DINOSEB	1	U	0.179	1	2	ug/L
CHIPD O C A TIPO							
SURROGATES							
19719-28-9	2,4-DCAA	747		43 - 172		149%	SPK: 500

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

Date Analyzed

Prep Batch ID

D = Dilution

Client: MS Analytical Date Collected:

Project: 12MS104 Kensington Heights Date Received:

Client Sample ID: PB65122BS SDG No.: D3811
Lab Sample ID: PB65122BS Matrix: SOIL

Analytical Method: SW8151A % Moisture: 0 Decanted:

Sample Wt/Vol: 30.02 Units: g Final Vol: 10000 uL

Soil Aliquot Vol: uL Test: Herbicide

Extraction Type: Injection Volume 1

GPC Factor: 1.0 PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

PE005721.D 1 08/15/12 08/23/12 PB65122

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
1918-00-9	DICAMBA	180		13.3	37.5	75	ug/Kg
120-36-5	DICHLORPROP	180		12.3	33.5	67	ug/Kg
94-75-7	2,4-D	190		32.7	37.5	75	ug/Kg
93-72-1	2,4,5-TP (SILVEX)	180		10.9	33.5	67	ug/Kg
93-76-5	2,4,5-T	180		10.2	33.5	67	ug/Kg
94-82-6	2,4-DB	180		29.6	33.5	67	ug/Kg
88-85-7	DINOSEB	170		24.5	33.5	67	ug/Kg
SURROGATES							
19719-28-9	2,4-DCAA	542		12 - 189)	109%	SPK: 500

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Client: Date Collected: MS Analytical 08/13/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 SDG No.: Client Sample ID: SB-43(16-20)MS D3811 Lab Sample ID: D3811-19MS Matrix: **SOIL** % Moisture: Analytical Method: SW8151A 29.3 Decanted: Sample Wt/Vol: 30.08 Units: Final Vol: 10000 иL g Test: Herbicide Soil Aliquot Vol: иL Extraction Type: Injection Volume 1.0 PH: N/A GPC Factor:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID PE005739.D 1 08/15/12 08/23/12 PB65122

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
1918-00-9	DICAMBA	150		18.7	55	110	ug/Kg
120-36-5	DICHLORPROP	230	P	17.4	47.5	95	ug/Kg
94-75-7	2,4-D	150		46.1	55	110	ug/Kg
93-72-1	2,4,5-TP (SILVEX)	140		15.4	47.5	95	ug/Kg
93-76-5	2,4,5-T	140		14.5	47.5	95	ug/Kg
94-82-6	2,4-DB	140		41.7	47.5	95	ug/Kg
88-85-7	DINOSEB	160	P	34.5	47.5	95	ug/Kg
SURROGATES							
19719-28-9	2,4-DCAA	300		12 - 189)	60%	SPK: 500

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

Client: Date Collected: MS Analytical 08/13/12 Project: 12MS104 Kensington Heights Date Received: 08/15/12 SDG No.: Client Sample ID: SB-43(16-20)MSD D3811 Lab Sample ID: Matrix: **SOIL** D3811-19MSD % Moisture: Analytical Method: SW8151A 29.3 Decanted: Sample Wt/Vol: 30.1 Units: Final Vol: 10000 иL g Test: Herbicide Soil Aliquot Vol: uL Extraction Type: Injection Volume

GPC Factor: 1.0 PH: N/A

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
PE005740.D 1 08/15/12 08/23/12 PB65122

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
1918-00-9	DICAMBA	140		18.7	55	110	ug/Kg
120-36-5	DICHLORPROP	210	P	17.4	47	94	ug/Kg
94-75-7	2,4-D	150		46.1	55	110	ug/Kg
93-72-1	2,4,5-TP (SILVEX)	140		15.4	47	94	ug/Kg
93-76-5	2,4,5-T	140		14.4	47	94	ug/Kg
94-82-6	2,4-DB	140		41.7	47	94	ug/Kg
88-85-7	DINOSEB	150		34.5	47	94	ug/Kg
SURROGATES							
19719-28-9	2,4-DCAA	286		12 - 189)	57%	SPK: 500

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

P = Indicates >25% difference for detected concentrations between the two GC columns

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

ď

CALIBRATION SUMMURY

G

RETENTION TIMES OF INITIAL CALIBRATION

Contract: MSAN01

 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811
 SDG NO.:
 D3811

Instrument ID: ECD_E Calibration Date(s): 08/22/2012 08/22/2012

Calibration Times: 11:33 13:34

GC Column: ZB-35-HT INFERNO ID: 0.25 (mm)

LAB FILE ID:		RT 200 =	PE005675.D	RT 500 =	PE005676.D	
RT 750 =	PE005677.D	RT 1000 =	PE005678.D	RT 1500 =	PE005679.D	

COMPONIN	DT 200	DT 500	DT 550	DT 1000	DT 1500	MEAN	RT WI	NDOW
COMPOUND	RT 200	RT 500	RT 750	RT 1000	RT 1500	RT	FROM	то
DICAMBA	12.25	12.25	12.25	12.25	12.25	12.25	12.05	12.45
2,4-DCAA	12.09	12.08	12.08	12.08	12.08	12.08	11.88	12.28
DICHLORPROP	13.22	13.22	13.21	13.21	13.21	13.21	13.01	13.41
2,4-D	13.85	13.82	13.81	13.81	13.80	13.82	13.62	14.02
2,4,5-TP(Silvex)	14.69	14.68	14.67	14.67	14.67	14.68	14.48	14.88
2,4,5-T	15.35	15.34	15.33	15.33	15.32	15.33	15.13	15.53
2,4-DB	15.75	15.74	15.74	15.74	15.73	15.74	15.54	15.94
Dinoseb	15.95	15.94	15.94	15.93	15.92	15.94	15.74	16.14

G

RETENTION TIMES OF INITIAL CALIBRATION

Contract: MSAN01

 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811
 SDG NO.:
 D3811

Instrument ID: ECD_E Calibration Date(s): 08/22/2012 08/22/2012

Calibration Times: 11:33 13:34

GC Column: ZB-XLB-HT INFERNO ID: 0.25 (mm)

LAB FILE ID:	RT 200 =	PE005675.D	RT 500 =	PE005676.D
RT 750 = PE005677.D	RT 1000 =	PE005678.D	RT 1500 =	PE005679.D

COMPOUND	RT 200	RT 500	RT 750	RT 1000	RT 1500	MEAN	RT WI	NDOW
COMPOUND	K1 200	K1 500	K1 /50	K1 1000	K1 1500	RT	FROM	то
DICAMBA	12.25	12.24	12.24	12.24	12.24	12.24	12.04	12.44
2,4-DCAA	12.13	12.12	12.12	12.12	12.12	12.12	11.92	12.32
DICHLORPROP	13.31	13.30	13.30	13.30	13.30	13.30	13.10	13.50
2,4-D	13.74	13.71	13.70	13.70	13.69	13.71	13.51	13.91
2,4,5-TP(Silvex)	14.87	14.86	14.85	14.85	14.84	14.86	14.66	15.06
2,4,5-T	15.32	15.31	15.30	15.30	15.29	15.30	15.10	15.50
2,4-DB	16.10	16.09	16.09	16.09	16.08	16.09	15.89	16.29
Dinoseb	15.98	15.98	15.97	15.97	15.96	15.97	15.77	16.17

CALIBRATION FACTOR OF INITIAL CALIBRATION

Contract: MSAN01

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

Instrument ID: <u>ECD_E</u> Calibration Date(s): 08/22/2012 08/22/2012

Calibration Times: 11:33 13:34

GC Column: ZB-35-HT INFERNO ID: 0.25 (mm)

LAB FILE ID: CF 750 = PE005677.			05675.D 05678.D	CF 500 = CF 1500 =	PE005676.D PE005679.D		
COMPOUND	CF 200	CF 500	CF 750	CF 1000	CF 1500	CF	% RSD
DICAMBA	3913795	3616068	3672295	3317699	3103525	3524676	9
2,4-DCAA	1070445	977524	999853	895821	836585	956046	10
DICHLORPROP	1204475	1161046	1207787	1088292	995940	1131508	8
2,4-D	1407785	1408806	1464967	1313845	1246293	1368339	6
2,4,5-TP(Silvex)	7061145	6566348	6723785	6080112	5648435	6415965	9
2,4,5-T	5979850	5938362	6211925	5655306	5324405	5821970	6
2,4-DB	5438175	5045506	5115037	4672125	4374155	4929000	8
Dinoseb	678535	744470	801208	778067	754099	751276	6

CALIBRATION FACTOR OF INITIAL CALIBRATION

Contract: MSAN01

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

Instrument ID: <u>ECD_E</u> Calibration Date(s): 08/22/2012 08/22/2012

Calibration Times: 11:33 13:34

GC Column: ZB-XLB-HT INFERNO ID: 0.25 (mm)

LAB FILE ID: CF 750 =	PE005677.I			05675.D 05678.D	CF 500 = CF 1500 =	PE005676.D PE005679.D		
COMPOUND		CF 200	CF 500	CF 750	CF 1000	CF 1500	CF	% RSD
DICAMBA		3227240	2980668	3028235	2752522	2608101	2919353	8
2,4-DCAA		857460	782126	794537	716225	678267	765723	9
DICHLORPROP		1116510	1020782	1026551	927952	863402	991039	10
2,4-D		968995	1152922	1197280	1085531	1040581	1089062	8
2,4,5-TP(Silvex)		6035630	5666470	5616528	5320462	4862711	5500360	8
2,4,5-T		5553430	5910026	6059688	5425128	5106157	5610886	7
2,4-DB		3907655	3688396	3818985	3512311	3357393	3656948	6
Dinoseb		545585	545272	631184	598439	614567	587009	7

CALIBRATION VERIFICATION SUMMARY

Contract: MSAN01

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

Continuing Calib Date: 08/23/2012 Initial Calibration Date(s): 08/22/2012 08/22/2012

Continuing Calib Time: 11:28 Initial Calibration Time(s): 11:33 13:34

GC Column: ZB-35-HT INFERNO ID: 0.25 (mm)

COMPOUND	CCAL RT	AVG RT	RT WINDOW FROM TO		DIFF RT
DICAMBA	12.25	12.25	12.05	12.45	0.00
2,4-DCAA	12.08	12.08	11.88	12.28	0.00
DICHLORPROP	13.22	13.21	13.01	13.41	-0.01
2,4-D	13.80	13.82	13.62	14.02	0.02
2,4,5-TP(Silvex)	14.67	14.68	14.48	14.88	0.01
2,4,5-T	15.32	15.33	15.13	15.53	0.01
2,4-DB	15.73	15.74	15.54	15.94	0.01
Dinoseb	15.92	15.94	15.74	16.14	0.02

CALIBRATION VERIFICATION SUMMARY

Contract: MSAN01

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

Continuing Calib Date: 08/23/2012 Initial Calibration Date(s): 08/22/2012 08/22/2012

Continuing Calib Time: 11:28 Initial Calibration Time(s): 11:33 13:34

GC Column: ZB-XLB-HT INFERNO ID: 0.25 (mm)

COMPOUND	CCAL RT	AVG RT	RT WIN FROM	RT WINDOW FROM TO	
DICAMBA	12.24	12.24	12.04	12.44	0.00
2,4-DCAA	12.12	12.12	11.92	12.32	0.00
DICHLORPROP	13.30	13.30	13.10	13.50	0.00
2,4-D	13.70	13.71	13.51	13.91	0.02
2,4,5-TP(Silvex)	14.85	14.86	14.66	15.06	0.01
2,4,5-T	15.29	15.30	15.10	15.50	0.01
2,4-DB	16.09	16.09	15.89	16.29	0.00
Dinoseb	15.95	15.97	15.77	16.17	0.02

D

CALIBRATION VERIFICATION SUMMARY

Contract:	MSAN01

 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811
 SDG NO.:
 D3811

GC Column: ZB-35-HT INFERNO ID: 0.25 (mm) Initi. Calib. Date(s): 08/22/2012 08/22/2012

Client Sample No.: CCAL01 Date Analyzed: 08/23/2012

Lab Sample No.: HSTDCCC1000 Data File: PE005719.D Time Analyzed: 11:28

Lab Sample No.: HSTDCCC1000	Data Fi	ie: <u>PE005/1</u>	9.0	Time Analyz	ea: <u>11:28</u>	
COMPOUND	RT	RT WIN FROM	DOW TO	CALC AMOUNT(ng)	NOM AMOUNT(ng)	%D
DICAMBA	12.250	12.050	12.450	0.946	1.000	5.4
DICHLORPROP	13.216	13.010	13.410	0.953	1.000	4.7
2,4-D	13.804	13.620	14.020	0.988	1.000	1.2
2,4,5-TP(Silvex)	14.671	14.480	14.880	0.946	1.000	5.4
2,4,5-T	15.320	15.130	15.530	0.967	1.000	3.3
2,4-DB	15.734	15.540	15.940	0.916	1.000	8.4
Dinoseb	15.916	15.740	16.140	1.054	1.000	5.4
2,4-DCAA	12.081	11.880	12.280	0.953	1.000	4.7

D

CALIBRATION VERIFICATION SUMMARY

Contract:	MSAN01

 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811
 SDG NO.:
 D3811

GC Column: ZB-XLB-HT INFERNO ID: 0.25 (mm) Initi. Calib. Date(s): 08/22/2012 08/22/2012

Client Sample No.: CCAL01 Date Analyzed: 08/23/2012

Lab Sample No.: HSTDCCC1000 Data File: PE005719.D Time Analyzed: 11:28

Lab Sample No.: HS1D	CCC1000 Data Fil	le: PE005/1	19.D	1 ime Anaiyz	ea: <u>11:28</u>	
COMPOUND	RT	RT WIN	DOW TO	CALC AMOUNT(ng)	NOM AMOUNT(ng)	%D
DICAMBA	12.243	12.040	12.440	0.947	1.000	5.3
DICHLORPROP	13.303	13.100	13.500	0.935	1.000	6.5
2,4-D	13.695	13.510	13.910	1.003	1.000	0.3
2,4,5-TP(Silvex)	14.848	14.660	15.060	0.945	1.000	5.5
2,4,5-T	15.293	15.100	15.500	0.927	1.000	7.3
2,4-DB	16.086	15.890	16.290	0.962	1.000	3.8
Dinoseb	15.953	15.770	16.170	1.083	1.000	8.3
2,4-DCAA	12.121	11.920	12.320	0.948	1.000	5.2

CALIBRATION VERIFICATION SUMMARY

Contract: MSAN01

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

Continuing Calib Date: 08/23/2012 Initial Calibration Date(s): 08/22/2012 08/22/2012

Continuing Calib Time: 18:02 Initial Calibration Time(s): 11:33 13:34

GC Column: ZB-35-HT INFERNO ID: 0.25 (mm)

COMPOUND	CCAL RT	AVG RT	RT WIN	NDOW TO	DIFF RT
DICAMBA	12.24	12.25	12.05	12.45	0.01
2,4-DCAA	12.08	12.08	11.88	12.28	0.00
DICHLORPROP	13.21	13.21	13.01	13.41	0.00
2,4-D	13.81	13.82	13.62	14.02	0.01
2,4,5-TP(Silvex)	14.67	14.68	14.48	14.88	0.01
2,4,5-T	15.33	15.33	15.13	15.53	0.00
2,4-DB	15.74	15.74	15.54	15.94	0.01
Dinoseb	15.94	15.94	15.74	16.14	0.00

CALIBRATION VERIFICATION SUMMARY

Contract: MSAN01

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

Continuing Calib Date: 08/23/2012 Initial Calibration Date(s): 08/22/2012 08/22/2012

Continuing Calib Time: 18:02 Initial Calibration Time(s): 11:33 13:34

GC Column: ZB-XLB-HT INFERNO ID: 0.25 (mm)

COMPOUND	CCAL RT	AVG RT	RT WIN FROM	DOW TO	DIFF RT
DICAMBA	12.24	12.24	12.04	12.44	0.00
2,4-DCAA	12.12	12.12	11.92	12.32	0.00
DICHLORPROP	13.30	13.30	13.10	13.50	0.00
2,4-D	13.70	13.71	13.51	13.91	0.01
2,4,5-TP(Silvex)	14.85	14.86	14.66	15.06	0.01
2,4,5-T	15.30	15.30	15.10	15.50	0.00
2,4-DB	16.09	16.09	15.89	16.29	0.00
Dinoseb	15.98	15.97	15.77	16.17	-0.01

D

CALIBRATION VERIFICATION SUMMARY

Contract:	MSAN01
-----------	--------

 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811
 SDG NO.:
 D3811

GC Column: ZB-35-HT INFERNO ID: 0.25 (mm) Initi. Calib. Date(s): 08/22/2012 08/22/2012

Client Sample No.: CCAL02 Date Analyzed: 08/23/2012

Lab Sample No.: HSTDCCC1000 Data File: PE005731.D Time Analyzed: 18:02

Lab Sample No.:	HSTDCCC1000 Data Fi	le: <u>PE00573</u>	91.D	Time Analyz	ed: <u>18:02</u>	
COMPOUND	RT	RT WIN FROM	DOW TO	CALC AMOUNT(ng)	NOM AMOUNT(ng)	%D
DICAMBA	12.244	12.050	12.450	0.981	1.000	1.9
DICHLORPROP	13.210	13.010	13.410	1.021	1.000	2.1
2,4-D	13.805	13.620	14.020	1.023	1.000	2.3
2,4,5-TP(Silvex)	14.672	14.480	14.880	0.989	1.000	1.1
2,4,5-T	15.326	15.130	15.530	1.024	1.000	2.4
2,4-DB	15.735	15.540	15.940	1.004	1.000	0.4
Dinoseb	15.941	15.740	16.140	1.046	1.000	4.6
2,4-DCAA	12.076	11.880	12.280	1.010	1.000	1.0

D

CALIBRATION VERIFICATION SUMMARY

Contract:	MSAN01

 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811
 SDG NO.:
 D3811

GC Column: ZB-XLB-HT INFERNO ID: 0.25 (mm) Initi. Calib. Date(s): 08/22/2012 08/22/2012

Client Sample No.: CCAL02 Date Analyzed: 08/23/2012

Lab Sample No.: HSTDCCC1000 Data File: PE005731.D Time Analyzed: 18:02

Lab Sample No.: HS11	DCCC1000 Data Fil	le: PE005/3	<u> </u>	1 ime Anaiyz	ea: <u>18:02</u>	
COMPOUND	RT	RT WIN	DOW TO	CALC AMOUNT(ng)	NOM AMOUNT(ng)	%D
DICAMBA	12.237	12.040	12.440	0.975	1.000	2.5
DICHLORPROP	13.298	13.100	13.500	0.974	1.000	2.6
2,4-D	13.699	13.510	13.910	1.032	1.000	3.2
2,4,5-TP(Silvex)	14.852	14.660	15.060	0.973	1.000	2.7
2,4,5-T	15.300	15.100	15.500	1.057	1.000	5.7
2,4-DB	16.088	15.890	16.290	1.002	1.000	0.2
Dinoseb	15.982	15.770	16.170	1.002	1.000	0.2
2,4-DCAA	12.116	11.920	12.320	0.977	1.000	2.3

CALIBRATION VERIFICATION SUMMARY

Contract: MSAN01

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

Continuing Calib Date: 08/23/2012 Initial Calibration Date(s): 08/22/2012 08/22/2012

Continuing Calib Time: 23:43 Initial Calibration Time(s): 11:33 13:34

GC Column: ZB-35-HT INFERNO ID: 0.25 (mm)

COMPOUND	CCAL RT	AVG RT	RT WIN	NDOW TO	DIFF RT
DICAMBA	12.24	12.25	12.05	12.45	0.01
2,4-DCAA	12.07	12.08	11.88	12.28	0.01
DICHLORPROP	13.21	13.21	13.01	13.41	0.00
2,4-D	13.81	13.82	13.62	14.02	0.01
2,4,5-TP(Silvex)	14.67	14.68	14.48	14.88	0.01
2,4,5-T	15.33	15.33	15.13	15.53	0.00
2,4-DB	15.74	15.74	15.54	15.94	0.01
Dinoseb	15.95	15.94	15.74	16.14	-0.01

CALIBRATION VERIFICATION SUMMARY

Contract: MSAN01

Lab Code: CHEM Case No.: D3811 SAS No.: D3811 SDG NO.: D3811

Continuing Calib Date: 08/23/2012 Initial Calibration Date(s): 08/22/2012 08/22/2012

Continuing Calib Time: 23:43 Initial Calibration Time(s): 11:33 13:34

GC Column: ZB-XLB-HT INFERNO ID: 0.25 (mm)

COMPOUND	CCAL RT	AVG RT	RT WIN FROM	DOW TO	DIFF RT
DICAMBA	12.24	12.24	12.04	12.44	0.00
2,4-DCAA	12.12	12.12	11.92	12.32	0.01
DICHLORPROP	13.30	13.30	13.10	13.50	0.00
2,4-D	13.70	13.71	13.51	13.91	0.01
2,4,5-TP(Silvex)	14.85	14.86	14.66	15.06	0.01
2,4,5-T	15.30	15.30	15.10	15.50	0.00
2,4-DB	16.09	16.09	15.89	16.29	0.00
Dinoseb	15.99	15.97	15.77	16.17	-0.02

D

CALIBRATION VERIFICATION SUMMARY

Contract: MSAN01

 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811
 SDG NO.:
 D3811

GC Column: ZB-35-HT INFERNO ID: 0.25 (mm) Initi. Calib. Date(s): 08/22/2012 08/22/2012

Client Sample No.: CCAL03 Date Analyzed: 08/23/2012

Lab Sample No.: HSTDCCC1000 Data File: PE005742.D Time Analyzed: 23:43

Lab Sample No.: HS11	DCCC1000 Data Fil	ie: <u>PE005/4</u>	+2.D	Time Analyzed: 25:45			
COMPOUND	RT	RT RT WINDOW FROM TO		CALC AMOUNT(ng)	%D		
DICAMBA	12.242	12.050	12.450	0.985	1.000	1.5	
DICHLORPROP	13.208	13.010	13.410	1.020	1.000	2.0	
2,4-D	13.807	13.620	14.020	1.031	1.000	3.1	
2,4,5-TP(Silvex)	14.672	14.480	14.880	0.994	1.000	0.6	
2,4,5-T	15.327	15.130	15.530	1.026	1.000	2.6	
2,4-DB	15.735	15.540	15.940	1.037	1.000	3.7	
Dinoseb	15.951	15.740	16.140	1.009	1.000	0.9	
2,4-DCAA	12.074	11.880	12.280	1.003	1.000	0.3	

D

CALIBRATION VERIFICATION SUMMARY

Contract:	MSAN01

Lab Code: <u>CHEM</u> Case No.: <u>D3811</u> SAS No.: <u>D3811</u> SDG NO.: <u>D3811</u>

GC Column: ZB-XLB-HT INFERNO ID: 0.25 (mm) Initi. Calib. Date(s): 08/22/2012 08/22/2012

Client Sample No.: CCAL03 Date Analyzed: 08/23/2012

Lab Sample No.: HSTDCCC1000 Data File: PE005742.D Time Analyzed: 23:43

Lab Sample No	Data File . I E003/42.D			Time Analyzed.			
COMPOUND	RT RT WINDOW FROM TO		CALC AMOUNT(ng)	NOM AMOUNT(ng)	%D		
DICAMBA	12.236	12.040	12.440	0.984	1.000	1.6	
DICHLORPROP	13.296	13.100	13.500	0.988	1.000	1.2	
2,4-D	13.699	13.510	13.910	1.032	1.000	3.2	
2,4,5-TP(Silvex)	14.853	14.660	15.060	1.007	1.000	0.7	
2,4,5-T	15.301	15.100	15.500	1.101	1.000	10.1	
2,4-DB	16.089	15.890	16.290	1.030	1.000	3.0	
Dinoseb	15.993	15.770	16.170	0.920	1.000	8.0	
2,4-DCAA	12.115	11.920	12.320	0.984	1.000	1.6	

Analytical Sequence

Client: MS Analytical SDG No.: D3811

Project: 12MS104 Kensington Heights Instrument ID: ECD_E

GC Column: ZB-35-HT INFERNO ID: 0.25 (mm) Inst. Calib. Date(s): 08/22/2012 08/22/2012

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

EPA SAMPLE NO.	LAB SAMPLE ID	DATE ANALYZED	TIME ANALYZED	DATAFILE	DCAA RT#	RT#
PIBLK01	I.BLK01	08/22/2012	11:02	PE005674.D	12.12	0.00
HSTDICC200	HSTDICC200	08/22/2012	11:33	PE005675.D	12.09	0.00
HSTDICC500	HSTDICC500	08/22/2012	12:03	PE005676.D	12.08	0.00
HSTDICC750	HSTDICC750	08/22/2012	12:33	PE005677.D	12.08	0.00
HSTDICC1000	HSTDICC1000	08/22/2012	13:03	PE005678.D	12.08	0.00
HSTDICC1500	HSTDICC1500	08/22/2012	13:34	PE005679.D	12.08	0.00
PIBLK02	I.BLK02	08/23/2012	10:58	PE005718.D	12.11	0.00
CCAL01	HSTDCCC1000	08/23/2012	11:28	PE005719.D	12.08	0.00
PB65122BL	PB65122BL	08/23/2012	12:15	PE005720.D	12.12	0.00
PB65122BS	PB65122BS	08/23/2012	12:45	PE005721.D	12.09	0.00
SB-2(4-8)	D3811-01	08/23/2012	13:16	PE005722.D	12.12	0.00
SB-5(8-12)	D3811-02	08/23/2012	13:46	PE005723.D	12.10	0.00
SB-9(4-7)	D3811-03	08/23/2012	14:17	PE005724.D	12.10	0.00
SB-11(12-16)	D3811-05	08/23/2012	14:47	PE005725.D	12.12	0.00
SB-15(12-16)	D3811-06	08/23/2012	15:18	PE005726.D	12.12	0.00
SB-18(4-8)	D3811-07	08/23/2012	15:49	PE005727.D	12.11	0.00
SB-21(16-19)	D3811-10	08/23/2012	16:29	PE005728.D	12.11	0.00
SB-22(12-19)	D3811-11	08/23/2012	17:00	PE005729.D	12.11	0.00
PIBLK03	I.BLK03	08/23/2012	17:31	PE005730.D	12.21	0.00
CCAL02	HSTDCCC1000	08/23/2012	18:02	PE005731.D	12.08	0.00
SB-37(8-10)	D3811-13	08/23/2012	18:33	PE005732.D	12.11	0.00
SB-39(6-8)	D3811-14	08/23/2012	19:04	PE005733.D	12.11	0.00
SB-41(8-11)	D3811-15	08/23/2012	19:35	PE005734.D	12.10	0.00
SB-43(6-8)	D3811-17	08/23/2012	20:06	PE005735.D	12.09	0.00
SB-43(10-12)	D3811-18	08/23/2012	20:37	PE005736.D	12.09	0.00
SB-43(16-20)	D3811-19	08/23/2012	21:08	PE005737.D	12.11	0.00
SB-46(12-16)	D3811-21	08/23/2012	21:39	PE005738.D	12.10	0.00
SB-43(16-20)MS	D3811-19MS	08/23/2012	22:10	PE005739.D	12.08	0.00
SB-43(16-20)MSD	D3811-19MSD	08/23/2012	22:41	PE005740.D	12.08	0.00
PIBLK04	I.BLK04	08/23/2012	23:12	PE005741.D	12.22	0.00
CCAL03	HSTDCCC1000	08/23/2012	23:43	PE005742.D	12.07	0.00

Analytical Sequence

Client: MS Analytical SDG No.: D3811

Project: 12MS104 Kensington Heights Instrument ID: ECD_E

GC Column: ZB-XLB-HT INFERNO ID: 0.25 (mm) Inst. Calib. Date(s): 08/22/2012 08/22/2012

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

EPA SAMPLE NO.	LAB SAMPLE ID	DATE ANALYZED	TIME ANALYZED	DATAFILE	DCAA RT#	RT#
PIBLK01	I.BLK01	08/22/2012	11:02	PE005674.D	12.16	0.00
HSTDICC200	HSTDICC200	08/22/2012	11:33	PE005675.D	12.13	0.00
HSTDICC500	HSTDICC500	08/22/2012	12:03	PE005676.D	12.12	0.00
HSTDICC750	HSTDICC750	08/22/2012	12:33	PE005677.D	12.12	0.00
HSTDICC1000	HSTDICC1000	08/22/2012	13:03	PE005678.D	12.12	0.00
HSTDICC1500	HSTDICC1500	08/22/2012	13:34	PE005679.D	12.12	0.00
PIBLK02	I.BLK02	08/23/2012	10:58	PE005718.D	12.16	0.00
CCAL01	HSTDCCC1000	08/23/2012	11:28	PE005719.D	12.12	0.00
PB65122BL	PB65122BL	08/23/2012	12:15	PE005720.D	12.16	0.00
PB65122BS	PB65122BS	08/23/2012	12:45	PE005721.D	12.13	0.00
SB-2(4-8)	D3811-01	08/23/2012	13:16	PE005722.D	12.16	0.00
SB-5(8-12)	D3811-02	08/23/2012	13:46	PE005723.D	12.15	0.00
SB-9(4-7)	D3811-03	08/23/2012	14:17	PE005724.D	12.14	0.00
SB-11(12-16)	D3811-05	08/23/2012	14:47	PE005725.D	12.16	0.00
SB-15(12-16)	D3811-06	08/23/2012	15:18	PE005726.D	12.17	0.00
SB-18(4-8)	D3811-07	08/23/2012	15:49	PE005727.D	12.15	0.00
SB-21(16-19)	D3811-10	08/23/2012	16:29	PE005728.D	12.16	0.00
SB-22(12-19)	D3811-11	08/23/2012	17:00	PE005729.D	12.16	0.00
PIBLK03	I.BLK03	08/23/2012	17:31	PE005730.D	12.27	0.00
CCAL02	HSTDCCC1000	08/23/2012	18:02	PE005731.D	12.12	0.00
SB-37(8-10)	D3811-13	08/23/2012	18:33	PE005732.D	12.15	0.00
SB-39(6-8)	D3811-14	08/23/2012	19:04	PE005733.D	12.16	0.00
SB-41(8-11)	D3811-15	08/23/2012	19:35	PE005734.D	12.15	0.00
SB-43(6-8)	D3811-17	08/23/2012	20:06	PE005735.D	12.13	0.00
SB-43(10-12)	D3811-18	08/23/2012	20:37	PE005736.D	12.14	0.00
SB-43(16-20)	D3811-19	08/23/2012	21:08	PE005737.D	12.16	0.00
SB-46(12-16)	D3811-21	08/23/2012	21:39	PE005738.D	12.15	0.00
SB-43(16-20)MS	D3811-19MS	08/23/2012	22:10	PE005739.D	12.12	0.00
SB-43(16-20)MSD	D3811-19MSD	08/23/2012	22:41	PE005740.D	12.12	0.00
PIBLK04	I.BLK04	08/23/2012	23:12	PE005741.D	12.28	0.00
CCAL03	HSTDCCC1000	08/23/2012	23:43	PE005742.D	12.12	0.00

LAB CHRONICLE

OrderID: D3811

Client: MS Analytical

Contact: Bryan Mayback

OrderDate: 8/15/2012 11:38:54 AM

Project: 12MS104 Kensington Heights

Location: 123

LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
D3811-01	SB-2(4-8)	SOIL			08/07/12			08/15/12
	, ,		Mercury	7471A	, ,	08/16/12	08/17/12	
			Metals ICP-TAL	6010B		08/16/12	08/16/12	
D2011 02	CD E(0.43)	COTI			00/07/12			00/15/12
D3811-02	SB-5(8-12)	SOIL		74744	08/07/12	00/16/10	00/47/40	08/15/12
			Mercury	7471A		08/16/12	08/17/12	
			Metals ICP-TAL	6010B		08/16/12	08/16/12	
D3811-03	SB-9(4-7)	SOIL			08/07/12			08/15/12
			Mercury	7471A		08/16/12	08/17/12	
			Metals ICP-TAL	6010B		08/16/12	08/16/12	
D3811-04	SB-10(8-12)	SOIL			08/07/12			08/15/12
D3011-04	35 10(0 12)	3012	Mercury	7471A	00/07/12	08/16/12	08/17/12	00/15/12
			Metals ICP-TAL	6010B		08/16/12	08/17/12	
			Metals ICF-TAL	00100		06/10/12	06/10/12	
D3811-05	SB-11(12-16)	SOIL			08/07/12			08/15/12
			Mercury	7471A		08/16/12	08/17/12	
			Metals ICP-TAL	6010B		08/16/12	08/16/12	
D3811-06	SB-15(12-16)	SOIL			08/08/12			08/15/12
23011 00	00 10(12 10)	3011	Mercury	7471A	00,00,11	08/16/12	08/17/12	00, 10, 11
			Metals ICP-TAL	6010B		08/16/12	08/16/12	
			rictals for the	00100		00/10/12	00/10/12	
D3811-07	SB-18(4-8)	SOIL			08/08/12			08/15/12
			Mercury	7471A		08/16/12	08/17/12	
			Metals ICP-TAL	6010B		08/16/12	08/16/12	
D3811-08	SB-19(12-18)	SOIL			08/08/12			08/15/12
	(,		Mercury	7471A	,,	08/16/12	08/17/12	,,
			Metals ICP-TAL	6010B		08/16/12	08/16/12	
				-		· -, -, -	· -, -, <u>-</u>	
D3811-09	SB-21(12-16)	SOIL			08/09/12			08/15/12
			Mercury	7471A		08/16/12	08/17/12	

LAB CHRONICLE										
			Metals ICP-TAL	6010B		08/16/12	08/16/12			
D3811-09DL	SB-21(12-16)DL	SOIL			08/09/12			08/15/12		
			Metals ICP-TAL	6010B		08/16/12	08/17/12			
D3811-10	SB-21(16-19)	SOIL			08/09/12			08/15/12		
	, ,		Mercury	7471A	. ,	08/16/12	08/17/12			
			Metals ICP-TAL	6010B		08/16/12	08/16/12			
D3811-11	SB-22(12-19)	SOIL			08/09/12			08/15/12		
			Mercury	7471A		08/16/12	08/17/12			
			Metals ICP-TAL	6010B		08/16/12	08/16/12			
D3811-12	SB-27(8-12)	SOIL			08/09/12			08/15/12		
			Mercury	7471A		08/16/12	08/17/12			
			Metals ICP-TAL	6010B		08/16/12	08/16/12			
D3811-13	SB-37(8-10)	SOIL			08/10/12			08/15/12		
			Mercury	7471A		08/16/12	08/17/12			
			Metals ICP-TAL	6010B		08/16/12	08/16/12			
D3811-14	SB-39(6-8)	SOIL			08/10/12			08/15/12		
			Mercury	7471A		08/16/12	08/17/12			
			Metals ICP-TAL	6010B		08/16/12	08/16/12			
D3811-15	SB-41(8-11)	SOIL			08/10/12			08/15/12		
			Mercury	7471A		08/16/12	08/17/12			
			Metals ICP-TAL	6010B		08/16/12	08/16/12			
D3811-16	SB-42(14-16)	SOIL			08/13/12			08/15/12		
			Mercury	7471A		08/16/12	08/17/12			
			Metals ICP-TAL	6010B		08/16/12	08/16/12			
D3811-17	SB-43(6-8)	SOIL			08/13/12			08/15/12		
			Mercury	7471A		08/16/12	08/17/12			
			Metals ICP-TAL	6010B		08/16/12	08/16/12			
D3811-18	SB-43(10-12)	SOIL			08/13/12			08/15/12		
			Mercury	7471A		08/16/12	08/17/12			
			Metals ICP-TAL	6010B		08/16/12	08/16/12			
D3811-19	SB-43(16-20)	SOIL			08/13/12			08/15/12		
			Mercury	7471A		08/16/12	08/17/12			

LAB CHRONICLE											
			Metals ICP-TAL	6010B		08/16/12	08/16/12				
D3811-20	SB-45(10-12)	SOIL			08/13/12			08/15/12			
			Mercury	7471A		08/16/12	08/17/12				
			Metals ICP-TAL	6010B		08/16/12	08/16/12				
D3811-21	SB-46(12-16)	SOIL			08/13/12			08/15/12			
			Mercury	7471A		08/16/12	08/17/12				
			Metals ICP-TAL	6010B		08/16/12	08/16/12				

Hit Summary Sheet SW-846

SDG No.: D3811 **Order ID:** D3811

Client:	MS Analytical			Projec	et ID:	12MS104 K	Kensington He	eights	
Sample ID	Client ID	Matrix	Parameter	Concentration	С	MDL	LOD	RDL	Units
Client ID :	SB-2(4-8)	Matrix	1 at affecter	Concenti ation	C	WIDL	LOD	KDL	Cints
D3811-01	SB-2(4-8)	SOIL	Aluminum	6,300.000		0.693	2.06	4.120	mg/Kg
D3811-01	SB-2(4-8)	SOIL	Antimony	1.170	J	0.462	1.03	2.060	mg/Kg
D3811-01	SB-2(4-8)	SOIL	Arsenic	10.200		0.272	0.4125	0.825	mg/Kg
D3811-01	SB-2(4-8)	SOIL	Barium	84.400		0.330	2.06	4.120	mg/Kg
D3811-01	SB-2(4-8)	SOIL	Beryllium	0.207	J	0.049	0.1235	0.247	mg/Kg
D3811-01	SB-2(4-8)	SOIL	Cadmium	0.432		0.049	0.1235	0.247	mg/Kg
D3811-01	SB-2(4-8)	SOIL	Calcium	5,970.000		0.883	41.25	82.5	mg/Kg
D3811-01	SB-2(4-8)	SOIL	Chromium	8.950		0.107	0.206	0.412	mg/Kg
D3811-01	SB-2(4-8)	SOIL	Cobalt	6.540		0.470	0.62	1.240	mg/Kg
D3811-01	SB-2(4-8)	SOIL	Copper	40.200		0.264	0.4125	0.825	mg/Kg
D3811-01	SB-2(4-8)	SOIL	Iron	21,600.000		1.100	2.06	4.120	mg/Kg
D3811-01	SB-2(4-8)	SOIL	Lead	1,040.000		0.099	0.2475	0.495	mg/Kg
D3811-01	SB-2(4-8)	SOIL	Magnesium	921.000		3.780	41.25	82.5	mg/Kg
D3811-01	SB-2(4-8)	SOIL	Manganese	379.000		0.157	0.4125	0.825	mg/Kg
D3811-01	SB-2(4-8)	SOIL	Mercury	1.540	D	0.021	0.0515	0.103	mg/Kg
D3811-01	SB-2(4-8)	SOIL	Nickel	13.700		0.379	0.825	1.650	mg/Kg
D3811-01	SB-2(4-8)	SOIL	Potassium	488.000		2.890	41.25	82.5	mg/Kg
D3811-01	SB-2(4-8)	SOIL	Silver	0.561		0.124	0.206	0.412	mg/Kg
D3811-01	SB-2(4-8)	SOIL	Sodium	301.000		2.080	41.25	82.5	mg/Kg
D3811-01	SB-2(4-8)	SOIL	Thallium	0.562	J	0.223	0.825	1.650	mg/Kg
D3811-01	SB-2(4-8)	SOIL	Vanadium	18.900		0.487	0.825	1.650	mg/Kg
D3811-01	SB-2(4-8)	SOIL	Zinc	97.100		0.577	0.825	1.650	mg/Kg
Client ID:	SB-5(18-12)								
D3811-02	SB-5(18-12)	SOIL	Aluminum	4,290.000		0.743	2.21	4.420	mg/Kg
D3811-02	SB-5(18-12)	SOIL	Antimony	1.200	J	0.496	1.105	2.210	mg/Kg
D3811-02	SB-5(18-12)	SOIL	Arsenic	9.000		0.292	0.4425	0.885	mg/Kg
D3811-02	SB-5(18-12)	SOIL	Barium	190.000		0.354	2.21	4.420	mg/Kg
D3811-02	SB-5(18-12)	SOIL	Beryllium	0.283		0.053	0.1325	0.265	mg/Kg
D3811-02	SB-5(18-12)	SOIL	Cadmium	1.310		0.053	0.1325	0.265	mg/Kg
D3811-02	SB-5(18-12)	SOIL	Calcium	87,400.000		0.947	44.25	88.5	mg/Kg
D3811-02	SB-5(18-12)	SOIL	Chromium	10.300		0.115	0.221	0.442	mg/Kg
D3811-02	SB-5(18-12)	SOIL	Cobalt	5.590		0.504	0.665	1.330	mg/Kg
D3811-02	SB-5(18-12)	SOIL	Copper	46.700		0.283	0.4425	0.885	mg/Kg
D3811-02	SB-5(18-12)	SOIL	Iron	9,790.000		1.180	2.21	4.420	mg/Kg
D3811-02	SB-5(18-12)	SOIL	Lead	628.000		0.106	0.2655	0.531	mg/Kg
D3811-02	SB-5(18-12)	SOIL	Magnesium	2,580.000		4.050	44.25	88.5	mg/Kg
D3811-02	SB-5(18-12)	SOIL	Manganese	143.000		0.168	0.4425	0.885	mg/Kg
D3811-02	SB-5(18-12)	SOIL	Mercury	0.132		0.002	0.006	0.012	mg/Kg
D3811-02	SB-5(18-12)	SOIL	Nickel	39.800		0.407	0.885	1.770	mg/Kg

Hit Summary Sheet SW-846

SDG No.: D3811 Order ID: D3811 **Client:** MS Analytical **Project ID:** 12MS104 Kensington Heights C Client ID Matrix Parameter Concentration **MDL** LOD RDL Units Sample ID D3811-02 SB-5(18-12) SOIL Potassium 576.000 3.100 44.25 88.5 mg/Kg SOIL Silver 0.213 J D3811-02 SB-5(18-12) 0.133 0.221 0.442mg/Kg D3811-02 SB-5(18-12) SOIL Sodium 83.600 J 2.230 44.25 88.5 mg/Kg SOIL mg/Kg D3811-02 SB-5(18-12) Vanadium 15.400 0.522 0.885 1.770 D3811-02 SB-5(18-12) SOIL Zinc 273.000 0.619 0.885 1.770 mg/Kg Client ID: SB-9(4-7) SOIL 4,550.000 0.705 2.1 4.200 D3811-03 SB-9(4-7)Aluminum mg/Kg D3811-03 SB-9(4-7) SOIL Arsenic 4.950 0.277 0.4195 0.839 mg/Kg SOIL Barium 36.500 4.200 D3811-03 SB-9(4-7)0.336 2.1 mg/Kg SOIL 0.067 0.252 SB-9(4-7) Beryllium J 0.050 0.126 D3811-03 mg/Kg D3811-03 SB-9(4-7) SOIL Cadmium 0.345 0.050 0.126 0.252 mg/Kg SOIL 18,900.000 D3811-03 SB-9(4-7) Calcium 0.898 41.95 83.9 mg/Kg SOIL Chromium 8.680 0.420 D3811-03 SB-9(4-7) 0.109 0.21 mg/Kg SOIL Cobalt 8.470 D3811-03 SB-9(4-7)0.478 0.63 1.260 mg/Kg SOIL 19.000 0.4195 0.839 D3811-03 SB-9(4-7) Copper 0.269 mg/Kg SOIL D3811-03 SB-9(4-7) Iron 26,400.000 2.1 4.200 1.120 mg/Kg SOIL Lead 22.700 0.252 0.504 D3811-03 SB-9(4-7)0.101 mg/Kg SOIL 10,700.000 41.95 83.9 D3811-03 SB-9(4-7)Magnesium 3.840 mg/Kg SOIL 416.000 0.159 0.4195 0.839 D3811-03 SB-9(4-7) Manganese mg/Kg SOIL 0.0055 0.011 D3811-03 SB-9(4-7)Mercury 0.111 0.002 mg/Kg D3811-03 SB-9(4-7) SOIL Nickel 11.200 0.386 0.84 1.680 mg/Kg D3811-03 SB-9(4-7) SOIL Potassium 774.000 2.940 41.95 83.9 mg/Kg SOIL D3811-03 Silver 0.592 0.21 0.420 SB-9(4-7)0.126 mg/Kg SOIL 1.390 D3811-03 SB-9(4-7) Thallium J 0.227 0.84 1.680 mg/Kg SOIL 8.980 0.495 D3811-03 SB-9(4-7) Vanadium 0.84 1.680 mg/Kg SOIL Zinc 33.000 0.588 1.680 D3811-03 SB-9(4-7) 0.84 mg/Kg Client ID: SB-10(8-12) D3811-04 SB-10(8-12) SOIL Aluminum 2,730.000 0.812 2.415 4.830 mg/Kg D3811-04 SB-10(8-12) SOIL Antimony 4.450 0.5421.21 2.420 mg/Kg D3811-04 SB-10(8-12) SOIL Arsenic 13.300 0.319 0.4835 0.967 mg/Kg SOIL Barium 252.000 2.415 4.830 D3811-04 SB-10(8-12) 0.387 mg/Kg SOIL 0.126 0.290 D3811-04 SB-10(8-12) Beryllium J 0.058 0.145 mg/Kg D3811-04 SB-10(8-12) SOIL Cadmium 0.948 0.058 0.145 0.290 mg/Kg SOIL 20,400.000 D3811-04 SB-10(8-12) Calcium 1.030 48.35 96.7 mg/Kg SOIL Chromium 7.850 0.483 D3811-04 SB-10(8-12) 0.126 0.2415 mg/Kg D3811-04 SB-10(8-12) SOIL Cobalt 4.910 0.551 0.725 1.450 mg/Kg SOIL 120.000 0.309 0.4835 0.967 D3811-04 SB-10(8-12) Copper mg/Kg SOIL 24,900.000 D3811-04 SB-10(8-12) Iron 1.290 2.415 4.830 mg/Kg D3811-04 SB-10(8-12) SOIL Lead 263.000 0.116 0.29 0.580 mg/Kg SOIL D3811-04 SB-10(8-12) 884.000 4.430 48.35 96.7 Magnesium mg/Kg SOIL 159.000 0.4835 0.967 D3811-04 SB-10(8-12) Manganese 0.184 mg/Kg

Hit Summary Sheet SW-846

SDG No.: D3811 Order ID: D3811 **Client:** MS Analytical **Project ID:** 12MS104 Kensington Heights \mathbf{C} Client ID Matrix Parameter Concentration **MDL** LOD RDL Units Sample ID D3811-04 SB-10(8-12) SOIL 0.150 0.002 0.006 0.012 Mercury mg/Kg SOIL 12.200 0.965 D3811-04 SB-10(8-12) Nickel 0.445 1.930 mg/Kg D3811-04 SB-10(8-12) SOIL Potassium 397.000 3.380 48.35 96.7 mg/Kg SOIL mg/Kg D3811-04 SB-10(8-12) Selenium 1.780 0.396 0.4835 0.967 D3811-04 SB-10(8-12) SOIL Silver 0.715 0.145 0.2415 0.483mg/Kg SOIL Sodium D3811-04 SB-10(8-12) 4,930.000 2.440 48.35 96.7 mg/Kg SOIL Thallium 0.804 0.965 D3811-04 SB-10(8-12) J 0.261 1.930 mg/Kg SOIL Vanadium 14.900 0.571 0.965 1.930 D3811-04 SB-10(8-12) mg/Kg D3811-04 SB-10(8-12) SOIL Zinc 341.000 0.677 0.965 1.930 mg/Kg Client ID: SB-11(12-16) D3811-05 SB-11(12-16) SOIL Aluminum 3,370.000 0.824 2.455 4.910 mg/Kg SOIL 13.700 D3811-05 Arsenic 0.324 0.4905 0.981 SB-11(12-16) mg/Kg SOIL Barium 62.800 0.392 4.910 D3811-05 SB-11(12-16) 2.455 mg/Kg SOIL 0.146 J D3811-05 SB-11(12-16) Beryllium 0.059 0.147 0.294 mg/Kg SOIL 0.480 D3811-05 SB-11(12-16) Cadmium 0.059 0.147 0.294 mg/Kg SOIL 98.1 D3811-05 Calcium 10,500.000 1.050 49.05 SB-11(12-16) mg/Kg SOIL Chromium 7.050 0.491 D3811-05 SB-11(12-16) 0.128 0.2455 mg/Kg SOIL Cobalt 6.260 1.470 D3811-05 SB-11(12-16) 0.559 0.735 mg/Kg SOIL 51.500 0.314 0.4905 0.981 D3811-05 SB-11(12-16) Copper mg/Kg SOIL 37,300.000 D3811-05 SB-11(12-16) Iron 1.300 2.455 4.910 mg/Kg D3811-05 SB-11(12-16) SOIL Lead 59.000 0.118 0.2945 0.589 mg/Kg D3811-05 SB-11(12-16) SOIL Magnesium 1,280.000 4.490 49.05 98.1 mg/Kg SOIL D3811-05 255.000 0.4905 0.981 SB-11(12-16) Manganese 0.186 mg/Kg SOIL D3811-05 SB-11(12-16) Mercury 0.130 0.002 0.006 0.012 mg/Kg SOIL 11.000 D3811-05 SB-11(12-16) Nickel 0.451 0.98 1.960 mg/Kg SOIL 526.000 98.1 D3811-05 SB-11(12-16) Potassium 3.430 49.05 mg/Kg SOIL Silver 0.808 D3811-05 SB-11(12-16) 0.147 0.2455 0.491 mg/Kg SOIL Sodium 13.700 2.470 49.05 98.1 D3811-05 SB-11(12-16) J mg/Kg SOIL Thallium 1.520 J 0.265 0.98 1.960 D3811-05 SB-11(12-16) mg/Kg SOIL 19.800 D3811-05 SB-11(12-16) Vanadium 0.579 0.98 1.960 mg/Kg D3811-05 SB-11(12-16) SOIL Zinc 101.000 0.687 0.98 1.960 mg/Kg Client ID: SB-15(12-16) SOIL Aluminum 5.640.000 0.844 2.51 5.020 D3811-06 SB-15(12-16) mg/Kg SOIL 2.490 J D3811-06 Antimony 0.563 1.255 2.510 SB-15(12-16) mg/Kg SOIL 15.400 0.332 0.5 1.000 D3811-06 SB-15(12-16) Arsenic mg/Kg D3811-06 SB-15(12-16) SOIL Barium 128.000 0.402 2.51 5.020 mg/Kg SOIL Beryllium 0.180 J 0.060 0.301 D3811-06 SB-15(12-16) 0.1505 mg/Kg SOIL 0.878 D3811-06 Cadmium 0.060 0.1505 0.301 SB-15(12-16) mg/Kg D3811-06 SB-15(12-16) SOIL Calcium 5,340.000 1.080 50 100 mg/Kg SOIL D3811-06 SB-15(12-16) Chromium 13.000 0.131 0.251 0.502 mg/Kg SOIL Cobalt 7.830 0.573 0.755 1.510 D3811-06 SB-15(12-16) mg/Kg

Hit Summary Sheet SW-846

SDG No.: D3811 Order ID: D3811 **Client:** MS Analytical **Project ID:** 12MS104 Kensington Heights Client ID Matrix Parameter Concentration \mathbf{C} **MDL** LOD RDL Units Sample ID D3811-06 SB-15(12-16) SOIL Copper 42.900 0.322 0.5 1.000 mg/Kg SOIL 44,400.000 2.51 D3811-06 SB-15(12-16) Iron 1.340 5.020 mg/Kg D3811-06 SB-15(12-16) SOIL Lead 236.000 0.121 0.3015 0.603 mg/Kg SOIL mg/Kg D3811-06 SB-15(12-16) 954.000 4.600 50 100 Magnesium D3811-06 SB-15(12-16) SOIL Manganese 190.000 0.191 0.5 1.000 mg/Kg D3811-06 SB-15(12-16) SOIL Mercury 0.054 0.003 0.0065 0.013 mg/Kg SOIL Nickel 15.200 1.005 2.010 D3811-06 SB-15(12-16) 0.462 mg/Kg SOIL 724.000 100 D3811-06 Potassium 3.520 50 mg/Kg SB-15(12-16) D3811-06 SB-15(12-16) SOIL Silver 2.450 0.151 0.251 0.502 mg/Kg SOIL Thallium 1.810 J 0.271 1.005 2.010 D3811-06 SB-15(12-16) mg/Kg SOIL Vanadium 26.000 0.593 1.005 2.010 D3811-06 SB-15(12-16) mg/Kg SOIL D3811-06 Zinc 308.000 0.703 1.005 2.010 SB-15(12-16) mg/Kg SB-18(4-8) Client ID: SOIL 4,890.000 2.1 D3811-07 SB-18(4-8) Aluminum 0.706 4.200 mg/Kg SOIL 1.960 2.100 D3811-07 SB-18(4-8) Antimony J 0.471 1.05 mg/Kg SOIL D3811-07 Arsenic 7.350 0.277 0.42 0.840 SB-18(4-8) mg/Kg SOIL 97.100 Barium 2.1 4.200 D3811-07 SB-18(4-8) 0.336 mg/Kg SOIL Cadmium 0.849 0.050 0.126 0.252 D3811-07 SB-18(4-8) mg/Kg SOIL Calcium 14,800.000 0.899 42 84.0 D3811-07 SB-18(4-8) mg/Kg SOIL Chromium 25.400 D3811-07 SB-18(4-8) 0.109 0.21 0.420 mg/Kg D3811-07 SB-18(4-8) SOIL Cobalt 6.210 0.479 0.63 1.260 mg/Kg D3811-07 SB-18(4-8) SOIL Copper 54.000 0.269 0.42 0.840 mg/Kg SOIL Iron 61,200.000 2.1 4.200 D3811-07 SB-18(4-8) 1.120 mg/Kg SOIL 96.100 D3811-07 SB-18(4-8) Lead 0.101 0.252 0.504 mg/Kg SOIL 3,580.000 D3811-07 SB-18(4-8) Magnesium 3.850 42 84.0 mg/Kg SOIL 793.000 D3811-07 SB-18(4-8) Manganese 0.160 0.42 0.840 mg/Kg SOIL 0.022 D3811-07 SB-18(4-8) Mercury 0.002 0.0055 0.011 mg/Kg SOIL Nickel 17.200 0.387 0.84 1.680 D3811-07 SB-18(4-8) mg/Kg SOIL Potassium 733.000 2.940 42 84.0 D3811-07 SB-18(4-8) mg/Kg SOIL D3811-07 SB-18(4-8) Silver 1.330 0.126 0.21 0.420 mg/Kg D3811-07 SB-18(4-8) SOIL Thallium 3.280 0.227 0.84 1.680 mg/Kg SOIL D3811-07 SB-18(4-8) Vanadium 22.000 0.496 0.84 1.680 mg/Kg D3811-07 SB-18(4-8) SOIL Zinc 101.000 0.588 0.84 1.680 mg/Kg Client ID: SB-19(12-18) SOIL 5,650.000 0.903 2.69 5.380 D3811-08 SB-19(12-18) Aluminum mg/Kg D3811-08 SB-19(12-18) SOIL Antimony 0.891 J 0.602 1.345 2.690 mg/Kg SOIL Arsenic 31.600 1.080 D3811-08 SB-19(12-18) 0.355 0.54 mg/Kg SOIL 597.000 D3811-08 Barium 0.430 5.380 SB-19(12-18) 2.69 mg/Kg D3811-08 SB-19(12-18) SOIL Cadmium 0.814 0.065 0.1615 0.323 mg/Kg SOIL D3811-08 SB-19(12-18) Calcium 11,900.000 1.150 54 108 mg/Kg SOIL Chromium 12.800 0.538 D3811-08 SB-19(12-18) 0.1400.269 mg/Kg

Client ID:

SB-21(16-19)

Hit Summary Sheet SW-846

SDG No.: D3811 Order ID: D3811 **Client:** MS Analytical **Project ID:** 12MS104 Kensington Heights Client ID Matrix Parameter Concentration \mathbf{C} **MDL** LOD RDL Units Sample ID D3811-08 SB-19(12-18) SOIL Cobalt 8.590 0.613 0.805 1.610 mg/Kg SOIL 110.000 D3811-08 SB-19(12-18) Copper 0.344 0.54 1.080 mg/Kg D3811-08 SB-19(12-18) SOIL Iron 20,500.000 1.430 2.69 5.380 mg/Kg SOIL mg/Kg D3811-08 SB-19(12-18) Lead 410.000 0.129 0.3225 0.645 D3811-08 SB-19(12-18) SOIL Magnesium 1,080.000 4.930 54 108 mg/Kg D3811-08 SB-19(12-18) SOIL Manganese 6,770.000 0.204 0.54 1.080 mg/Kg SOIL 0.219 0.016 D3811-08 SB-19(12-18) Mercury 0.003 0.008 mg/Kg SOIL 28.100 1.075 D3811-08 SB-19(12-18) Nickel 0.495 2.150 mg/Kg D3811-08 SB-19(12-18) SOIL Potassium 834.000 3.760 54 108 mg/Kg SOIL Selenium 1.450 0.441 1.080 D3811-08 SB-19(12-18) 0.54 mg/Kg SOIL Silver 1.510 0.269 0.538 D3811-08 SB-19(12-18) 0.161 mg/Kg SOIL Sodium 240.000 2.710 54 108 D3811-08 SB-19(12-18) mg/Kg D3811-08 SB-19(12-18) SOIL Thallium 7.020 0.290 1.075 2.150 mg/Kg SOIL D3811-08 SB-19(12-18) Vanadium 28.100 0.635 1.075 2.150 mg/Kg SOIL Zinc D3811-08 SB-19(12-18) 790.000 0.753 1.075 2.150 mg/Kg Client ID: SB-21(12-16) SOIL 3,700.000 0.829 2.465 4.930 D3811-09 SB-21(12-16) Aluminum mg/Kg SOIL 174.000 0.552 1.235 2.470 D3811-09 SB-21(12-16) Antimony mg/Kg SOIL 23.800 0.326 0.493 0.986 D3811-09 SB-21(12-16) Arsenic mg/Kg SOIL 461.000 4.930 D3811-09 SB-21(12-16) Barium 0.395 2.465 mg/Kg D3811-09 SB-21(12-16) SOIL Beryllium 0.130 J 0.059 0.148 0.296 mg/Kg D3811-09 SB-21(12-16) SOIL Cadmium 2.720 0.059 0.148 0.296 mg/Kg SOIL Calcium 20,800.000 1.060 49.3 98.6 D3811-09 SB-21(12-16) mg/Kg SOIL 14.200 D3811-09 SB-21(12-16) Chromium 0.128 0.2465 0.493 mg/Kg SOIL Cobalt 4.250 D3811-09 SB-21(12-16) 0.562 0.74 1.480 mg/Kg SOIL 425.000 0.986 D3811-09 SB-21(12-16) Copper 0.316 0.493 mg/Kg SOIL Iron 27,600.000 D3811-09 SB-21(12-16) 1.310 2.465 4.930 mg/Kg SOIL 20,500.000 OR 0.592 D3811-09 SB-21(12-16) Lead 0.118 0.296 mg/Kg SOIL 3,880.000 49.3 98.6 D3811-09 SB-21(12-16) Magnesium 4.520 mg/Kg SOIL D3811-09 SB-21(12-16) Manganese 238.000 0.187 0.493 0.986 mg/Kg D3811-09 SB-21(12-16) SOIL Mercury 0.125 0.003 0.0065 0.013 mg/Kg SOIL D3811-09 SB-21(12-16) Nickel 12.400 0.454 0.985 1.970 mg/Kg SOIL Potassium 477.000 3.450 49.3 98.6 D3811-09 SB-21(12-16) mg/Kg SOIL D3811-09 SB-21(12-16) Selenium 2.150 0.404 0.493 0.986 mg/Kg D3811-09 SB-21(12-16) SOIL Silver 3.110 0.148 0.2465 0.493 mg/Kg SOIL 0.897 Thallium J 0.985 1.970 D3811-09 SB-21(12-16) 0.266 mg/Kg D3811-09 SB-21(12-16) SOIL Vanadium 15.500 0.5820.985 1.970 mg/Kg D3811-09 SOIL Zinc 941.000 0.690 0.985 1.970 SB-21(12-16) mg/Kg Client ID: SB-21(12-16)DL SOIL D3811-09DL SB-21(12-16)DL Lead 21,800.000 D 1.180 2.96 5.920 mg/Kg

727 of 870

Hit Summary Sheet SW-846

SDG No.: D3811 Order ID: D3811 **Client:** MS Analytical **Project ID:** 12MS104 Kensington Heights C Sample ID **Client ID** Matrix Parameter Concentration **MDL** LOD RDL Units D3811-10 SB-21(16-19) SOIL 3.920.000 0.863 2.565 5.130 Aluminum mg/Kg SOIL 146.000 0.575 D3811-10 SB-21(16-19) Antimony 1.285 2.570 mg/Kg D3811-10 SB-21(16-19) SOIL Arsenic 27.400 0.339 0.515 1.030 mg/Kg SOIL mg/Kg D3811-10 SB-21(16-19) Barium 977.000 0.411 2.565 5.130 D3811-10 SB-21(16-19) SOIL Cadmium 2.550 0.062 0.154 0.308 mg/Kg SOIL Calcium D3811-10 SB-21(16-19) 56,100.000 1.100 51.5 103 mg/Kg SOIL Chromium 29.900 D3811-10 SB-21(16-19) 0.133 0.2565 0.513 mg/Kg SOIL Cobalt 9.980 0.585 D3811-10 0.77 1.540 mg/Kg SB-21(16-19) D3811-10 SB-21(16-19) SOIL Copper 130.000 0.329 0.515 1.030 mg/Kg SOIL Iron 74.700.000 2.565 5.130 D3811-10 SB-21(16-19) 1.370 mg/Kg D3811-10 SOIL 6,540.000 0.123 0.308 0.616 SB-21(16-19) Lead mg/Kg SOIL D3811-10 7,890.000 4.700 103 SB-21(16-19) Magnesium 51.5 mg/Kg D3811-10 SB-21(16-19) SOIL Manganese 583.000 0.195 0.515 1.030 mg/Kg SOIL D3811-10 SB-21(16-19) Mercury 0.598 0.003 0.007 0.014 mg/Kg SOIL 22.100 2.050 D3811-10 SB-21(16-19) Nickel 0.472 1.025 mg/Kg D3811-10 SB-21(16-19) SOIL Potassium 865.000 3.590 51.5 103 mg/Kg SOIL Silver 2.330 D3811-10 SB-21(16-19) 0.154 0.2565 0.513 mg/Kg D3811-10 SOIL Thallium 4.540 0.277 1.025 2.050 SB-21(16-19) mg/Kg SOIL Vanadium 10.900 2.050 D3811-10 SB-21(16-19) 0.606 1.025 mg/Kg D3811-10 SB-21(16-19) SOIL Zinc 1,120.000 0.719 1.025 2.050 mg/Kg Client ID: SB-22(12-19) D3811-11 SB-22(12-19) SOIL Aluminum 5,180.000 0.668 1.99 3.980 mg/Kg SOIL J D3811-11 1.610 0.445 0.995 1.990 SB-22(12-19) Antimony mg/Kg SOIL 5.240 D3811-11 SB-22(12-19) Arsenic 0.262 0.3975 0.795 mg/Kg SOIL 65.900 D3811-11 SB-22(12-19) Barium 0.318 1.99 3.980 mg/Kg SOIL Cadmium 0.315 0.239 D3811-11 SB-22(12-19) 0.048 0.1195 mg/Kg SOIL 79.5 Calcium 26,500.000 D3811-11 SB-22(12-19) 0.851 39.75 mg/Kg D3811-11 SOIL Chromium 9.530 0.199 0.398 SB-22(12-19) 0.103 mg/Kg D3811-11 SOIL Cobalt 4.760 0.453 0.595 1.190 SB-22(12-19) mg/Kg SOIL 89.200 D3811-11 SB-22(12-19) Copper 0.255 0.3975 0.795 mg/Kg D3811-11 SB-22(12-19) SOIL Iron 28,900.000 1.060 1.99 3.980 mg/Kg SOIL 68.100 D3811-11 SB-22(12-19) Lead 0.095 0.2385 0.477 mg/Kg D3811-11 SB-22(12-19) SOIL Magnesium 2,200.000 3.640 39.75 79.5 mg/Kg SOIL 776.000 D3811-11 SB-22(12-19) Manganese 0.151 0.3975 0.795 mg/Kg D3811-11 SB-22(12-19) SOIL Mercury 0.014 0.002 0.005 0.010 mg/Kg SOIL 14.000 Nickel 0.795 1.590 D3811-11 SB-22(12-19) 0.366 mg/Kg D3811-11 SB-22(12-19) SOIL Potassium 624.000 2.780 39.75 79.5 mg/Kg D3811-11 SOIL Silver 0.692 0.119 0.199 0.398 SB-22(12-19) mg/Kg Thallium SOIL 1.240 D3811-11 SB-22(12-19) J 0.215 0.795 1.590 mg/Kg SOIL D3811-11 Vanadium 11.900 0.795 1.590 SB-22(12-19) 0.469 mg/Kg D3811-11 SB-22(12-19) SOIL Zinc 339.000 0.557 0.795 1.590 mg/Kg

Hit Summary Sheet SW-846

SDG No.: D3811 **Order ID:** D3811

Client: MS Analytical Project ID: 12MS104 Kensington Heights

Client:	MS Analytical			Projec	t ID:	12MS104 Kensington Heights			
Sample ID	Client ID	Matrix	Parameter	Concentration	С	MDL	LOD	RDL	Units
Client ID:	SB-27(8-12)								
D3811-12	SB-27(8-12)	SOIL	Aluminum	2,420.000		0.761	2.265	4.530	mg/Kg
D3811-12	SB-27(8-12)	SOIL	Antimony	3.710		0.507	1.13	2.260	mg/Kg
D3811-12	SB-27(8-12)	SOIL	Arsenic	11.700		0.299	0.453	0.906	mg/Kg
D3811-12	SB-27(8-12)	SOIL	Barium	675.000		0.362	2.265	4.530	mg/Kg
D3811-12	SB-27(8-12)	SOIL	Cadmium	2.040		0.054	0.136	0.272	mg/Kg
D3811-12	SB-27(8-12)	SOIL	Calcium	9,710.000		0.969	45.3	90.6	mg/Kg
D3811-12	SB-27(8-12)	SOIL	Chromium	46.400		0.118	0.2265	0.453	mg/Kg
D3811-12	SB-27(8-12)	SOIL	Cobalt	5.270		0.516	0.68	1.360	mg/Kg
D3811-12	SB-27(8-12)	SOIL	Copper	407.000		0.290	0.453	0.906	mg/Kg
D3811-12	SB-27(8-12)	SOIL	Iron	56,600.000		1.200	2.265	4.530	mg/Kg
D3811-12	SB-27(8-12)	SOIL	Lead	1,910.000		0.109	0.2715	0.543	mg/Kg
D3811-12	SB-27(8-12)	SOIL	Magnesium	1,240.000		4.150	45.3	90.6	mg/Kg
D3811-12	SB-27(8-12)	SOIL	Manganese	452.000		0.172	0.453	0.906	mg/Kg
D3811-12	SB-27(8-12)	SOIL	Mercury	0.464		0.002	0.0055	0.011	mg/Kg
D3811-12	SB-27(8-12)	SOIL	Nickel	29.400		0.417	0.905	1.810	mg/Kg
D3811-12	SB-27(8-12)	SOIL	Potassium	254.000		3.170	45.3	90.6	mg/Kg
D3811-12	SB-27(8-12)	SOIL	Silver	1.360		0.136	0.2265	0.453	mg/Kg
D3811-12	SB-27(8-12)	SOIL	Thallium	3.300		0.245	0.905	1.810	mg/Kg
D3811-12	SB-27(8-12)	SOIL	Vanadium	6.920		0.534	0.905	1.810	mg/Kg
D3811-12	SB-27(8-12)	SOIL	Zinc	712.000		0.634	0.905	1.810	mg/Kg
Client ID:	SB-37(8-10)								
D3811-13	SB-37(8-10)	SOIL	Aluminum	5,290.000		0.897	2.67	5.340	mg/Kg
D3811-13	SB-37(8-10)	SOIL	Antimony	0.904	J	0.598	1.335	2.670	mg/Kg
D3811-13	SB-37(8-10)	SOIL	Arsenic	12.000	•	0.352	0.535	1.070	mg/Kg
D3811-13	SB-37(8-10)	SOIL	Barium	71.400		0.427	2.67	5.340	mg/Kg
D3811-13	SB-37(8-10)	SOIL	Beryllium	0.356		0.064	0.16	0.320	mg/Kg
D3811-13	SB-37(8-10)	SOIL	Cadmium	0.452		0.064	0.16	0.320	mg/Kg
D3811-13	SB-37(8-10)	SOIL	Calcium	54,000.000		1.140	53.5	107	mg/Kg
D3811-13	SB-37(8-10)	SOIL	Chromium	7.420		0.139	0.267	0.534	mg/Kg
D3811-13	SB-37(8-10)	SOIL	Cobalt	5.410		0.609	0.8	1.600	mg/Kg
D3811-13	SB-37(8-10)	SOIL	Copper	39.500		0.342	0.535	1.070	mg/Kg
D3811-13	SB-37(8-10)	SOIL	Iron	8,300.000		1.420	2.67	5.340	mg/Kg
D3811-13	SB-37(8-10)	SOIL	Lead	290.000		0.128	0.3205	0.641	mg/Kg
D3811-13	SB-37(8-10)	SOIL	Magnesium	3,610.000		4.890	53.5	107	mg/Kg
D3811-13	SB-37(8-10)	SOIL	Manganese	121.000		0.203	0.535	1.070	mg/Kg
D3811-13	SB-37(8-10)	SOIL	Mercury	0.091		0.003	0.007	0.014	mg/Kg
D3811-13	SB-37(8-10)	SOIL	Nickel	12.700		0.491	1.07	2.140	mg/Kg
D3811-13	SB-37(8-10)	SOIL	Potassium	593.000		3.740	53.5	107	mg/Kg
D3811-13	SB-37(8-10)	SOIL	Silver	0.214	J	0.160	0.267	0.534	mg/Kg
D3811-13	SB-37(8-10)	SOIL	Sodium	118.000		2.690	53.5	107	mg/Kg
D3811-13	SB-37(8-10)	SOIL	Vanadium	18.700		0.630	1.07	2.140	mg/Kg
									-

Hit Summary Sheet SW-846

SDG No.: D3811 Order ID: D3811 **Client:** MS Analytical **Project ID:** 12MS104 Kensington Heights C Matrix Parameter Concentration **MDL** LOD RDL Units Sample ID Client ID D3811-13 SB-37(8-10) SOIL Zinc 165.000 0.748 1.07 2.140 mg/Kg Client ID: SB-39(6-8) D3811-14 SOIL 7,000.000 1.955 3.910 mg/Kg SB-39(6-8) Aluminum 0.658 SOIL mg/Kg D3811-14 SB-39(6-8) Antimony 1.630 J 0.438 0.98 1.960 D3811-14 SOIL Arsenic 5.370 0.3915 0.783 SB-39(6-8) 0.258 mg/Kg SOIL 85.900 D3811-14 Barium 0.313 1.955 3.910 SB-39(6-8) mg/Kg SOIL Cadmium 0.459 0.235 D3811-14 SB-39(6-8) 0.047 0.1175 mg/Kg D3811-14 SB-39(6-8) SOIL Calcium 14,200.000 0.838 39.15 78.3 mg/Kg SOIL Chromium 9.250 0.102 0.1955 0.391 D3811-14 SB-39(6-8) mg/Kg SOIL Cobalt 11.800 0.446 0.585 1.170 D3811-14 SB-39(6-8) mg/Kg D3811-14 SB-39(6-8) SOIL Copper 59.200 0.251 0.3915 0.783 mg/Kg SOIL 35,700.000 D3811-14 Iron 1.040 1.955 3.910 SB-39(6-8) mg/Kg SOIL 27.400 0.094 0.470 D3811-14 SB-39(6-8) Lead 0.235 mg/Kg SOIL 78.3 D3811-14 SB-39(6-8) Magnesium 1,150.000 3.590 39.15 mg/Kg SOIL 1,500.000 D3811-14 SB-39(6-8) Manganese 0.149 0.3915 0.783 mg/Kg SOIL D3811-14 SB-39(6-8) Mercury 0.024 0.002 0.005 0.010 mg/Kg SOIL 7.790 Nickel 0.785 1.570 D3811-14 SB-39(6-8) 0.360 mg/Kg SOIL Potassium 830.000 2.740 78.3 D3811-14 SB-39(6-8) 39.15 mg/Kg SOIL Silver 0.920 0.117 0.1955 0.391 D3811-14 SB-39(6-8) mg/Kg SOIL SB-39(6-8) Thallium D3811-14 2.160 0.211 0.785 1.570 mg/Kg SOIL D3811-14 SB-39(6-8) Vanadium 15.100 0.462 0.785 1.570 mg/Kg D3811-14 SB-39(6-8) SOIL Zinc 50.300 0.548 0.785 1.570 mg/Kg Client ID: SB-41(8-11) SOIL D3811-15 SB-41(8-11) Aluminum 8.490.000 0.699 2.08 4.160 mg/Kg SOIL 42.000 1.04 2.080 D3811-15 SB-41(8-11) Antimony 0.466 mg/Kg D3811-15 SOIL Arsenic 73.000 0.275 0.416 0.832 SB-41(8-11) mg/Kg D3811-15 SB-41(8-11) SOIL Barium 113.000 0.333 2.08 4.160 mg/Kg SOIL D3811-15 SB-41(8-11) Beryllium 16.000 0.050 0.125 0.250 mg/Kg 0.250 D3811-15 SB-41(8-11) SOIL Cadmium 17.000 0.050 0.125 mg/Kg D3811-15 SB-41(8-11) SOIL Calcium 6,530.000 0.890 41.6 83.2 mg/Kg D3811-15 SOIL Chromium 41.100 0.208 0.416 SB-41(8-11) 0.108 mg/Kg Cobalt SOIL 1.250 D3811-15 SB-41(8-11) 24.700 0.474 0.625 mg/Kg D3811-15 SOIL Copper 62.300 0.266 0.416 0.832 SB-41(8-11) mg/Kg SOIL 34,600.000 D3811-15 Iron 1.110 2.08 4.160 SB-41(8-11) mg/Kg SOIL Lead 527.000 0.499 D3811-15 SB-41(8-11) 0.100 0.2495 mg/Kg D3811-15 SB-41(8-11) SOIL 1,360.000 3.810 41.6 83.2 Magnesium mg/Kg SOIL 498.000 0.416 0.832 D3811-15 SB-41(8-11) Manganese 0.158 mg/Kg SOIL 0.0055 D3811-15 0.145 0.002 0.011 SB-41(8-11) Mercury mg/Kg D3811-15 SB-41(8-11) SOIL Nickel 56.400 0.383 0.83 1.660 mg/Kg SOIL D3811-15 SB-41(8-11) Potassium 1,430.000 2.910 41.6 83.2 mg/Kg SOIL 149.000 0.341 D3811-15 SB-41(8-11) Selenium 0.416 0.832mg/Kg

Hit Summary Sheet SW-846

SDG No.: D3811 Order ID: D3811 **Client:** MS Analytical **Project ID:** 12MS104 Kensington Heights C Client ID Matrix Parameter Concentration **MDL** LOD RDL Units Sample ID D3811-15 SB-41(8-11) SOIL Silver 6.330 0.125 0.208 0.416 mg/Kg SOIL Sodium 432.000 D3811-15 SB-41(8-11) 2.100 41.6 83.2 mg/Kg D3811-15 SB-41(8-11) SOIL Thallium 158.000 0.225 0.83 1.660 mg/Kg SOIL mg/Kg D3811-15 SB-41(8-11) Vanadium 47.700 0.491 0.83 1.660 D3811-15 SB-41(8-11) SOIL Zinc 121.000 0.582 0.83 1.660 mg/Kg Client ID: SB-42(14-16) SOIL 3,910.000 0.709 4.220 D3811-16 SB-42(14-16) Aluminum 2.11 mg/Kg D3811-16 SB-42(14-16) SOIL Antimony 0.712 J 0.473 1.055 2.110 mg/Kg SOIL 8.790 0.279 0.4225 0.845 D3811-16 SB-42(14-16) Arsenic mg/Kg SOIL D3811-16 Barium 90.200 0.338 2.11 4.220 mg/Kg SB-42(14-16) D3811-16 SB-42(14-16) SOIL Beryllium 0.338 0.051 0.1265 0.253 mg/Kg SOIL 0.398 D3811-16 SB-42(14-16) Cadmium 0.051 0.1265 0.253 mg/Kg SOIL Calcium 4,420.000 0.904 42.25 84.5 D3811-16 SB-42(14-16) mg/Kg SOIL Chromium 8.630 0.211 D3811-16 SB-42(14-16) 0.110 0.422 mg/Kg SOIL 7.890 D3811-16 SB-42(14-16) Cobalt 0.481 0.635 1.270 mg/Kg SOIL 0.4225 D3811-16 Copper 33.100 0.270 0.845 SB-42(14-16) mg/Kg SOIL Iron 11,200.000 2.11 4.220 D3811-16 SB-42(14-16) 1.120 mg/Kg SOIL 99.500 0.101 0.2535 0.507 D3811-16 SB-42(14-16) Lead mg/Kg SOIL 517.000 3.870 42.25 84.5 D3811-16 SB-42(14-16) Magnesium mg/Kg SOIL 140.000 D3811-16 SB-42(14-16) Manganese 0.160 0.4225 0.845 mg/Kg D3811-16 SB-42(14-16) SOIL Mercury 0.155 0.002 0.0055 0.011 mg/Kg D3811-16 SB-42(14-16) SOIL Nickel 13.500 0.389 0.845 1.690 mg/Kg SOIL D3811-16 Potassium 553.000 2.960 42.25 84.5 SB-42(14-16) mg/Kg SOIL 0.294 D3811-16 SB-42(14-16) Silver J 0.127 0.211 0.422 mg/Kg SOIL Sodium 90.400 D3811-16 SB-42(14-16) 2.130 42.25 84.5 mg/Kg SOIL 19.900 1.690 D3811-16 SB-42(14-16) Vanadium 0.498 0.845 mg/Kg SOIL Zinc 128.000 1.690 D3811-16 SB-42(14-16) 0.591 0.845 mg/Kg Client ID: SB-43(6-8) SOIL mg/Kg D3811-17 SB-43(6-8) Aluminum 5,650.000 0.688 2.05 4.100 D3811-17 SB-43(6-8) SOIL Antimony 7.640 0.459 1.025 2.050 mg/Kg SOIL Arsenic 6.910 0.4095 0.819 D3811-17 SB-43(6-8) 0.270 mg/Kg SOIL Barium D3811-17 SB-43(6-8) 36.300 0.328 2.05 4.100 mg/Kg D3811-17 SOIL Cadmium 1.470 0.049 0.123 0.246 SB-43(6-8) mg/Kg SOIL 30,300.000 40.95 81.9 D3811-17 Calcium 0.876 SB-43(6-8) mg/Kg SOIL Chromium 7.900 0.410 D3811-17 SB-43(6-8) 0.106 0.205 mg/Kg D3811-17 SB-43(6-8) SOIL Cobalt 4.240 0.467 0.615 1.230 mg/Kg SOIL 34.100 0.262 0.4095 0.819 D3811-17 SB-43(6-8) Copper mg/Kg SOIL D3811-17 Iron 22,400.000 1.090 2.05 4.100 mg/Kg SB-43(6-8) D3811-17 SB-43(6-8) SOIL Lead 63.500 0.098 0.2455 0.491 mg/Kg SOIL D3811-17 SB-43(6-8) 3,190.000 3.750 40.95 81.9 Magnesium mg/Kg SOIL 1,390.000 0.4095 0.819 D3811-17 SB-43(6-8) Manganese 0.156mg/Kg

Hit Summary Sheet SW-846

SDG No.: D3811 Order ID: D3811 **Client:** MS Analytical **Project ID:** 12MS104 Kensington Heights Client ID Matrix Parameter Concentration \mathbf{C} **MDL** LOD RDL Units Sample ID D3811-17 SB-43(6-8) SOIL 0.007 J 0.002 0.0055 0.011 Mercury mg/Kg SOIL 8.750 D3811-17 SB-43(6-8) Nickel 0.377 0.82 1.640 mg/Kg D3811-17 SB-43(6-8) SOIL Potassium 621.000 2.870 40.95 81.9 mg/Kg SOIL mg/Kg D3811-17 SB-43(6-8) Silver 0.659 0.123 0.205 0.410 D3811-17 SB-43(6-8) SOIL Thallium 1.460 J 0.221 0.82 1.640 mg/Kg SOIL 12.200 D3811-17 SB-43(6-8) Vanadium 0.483 0.82 1.640 mg/Kg SOIL Zinc 1,610.000 1.640 mg/Kg D3811-17 SB-43(6-8) 0.573 0.82 Client ID: SB-43(10-12) SOIL D3811-18 Aluminum 4,210.000 0.747 2.225 4.450 SB-43(10-12) mg/Kg SOIL D3811-18 Antimony 2.110 J 0.4981.11 2.220 mg/Kg SB-43(10-12) D3811-18 SB-43(10-12) SOIL Arsenic 18.700 0.293 0.4445 0.889 mg/Kg SOIL 973.000 D3811-18 SB-43(10-12) Barium 0.356 2.225 4.450 mg/Kg SOIL 0.315 0.053 0.1335 D3811-18 SB-43(10-12) Beryllium 0.267 mg/Kg SOIL Cadmium 1.140 D3811-18 SB-43(10-12) 0.053 0.1335 0.267 mg/Kg SOIL Calcium 20,600.000 88.9 D3811-18 SB-43(10-12) 0.951 44.45 mg/Kg SOIL 6.870 D3811-18 SB-43(10-12) Chromium 0.116 0.2225 0.445 mg/Kg SOIL Cobalt 6.070 0.507 0.665 1.330 D3811-18 SB-43(10-12) mg/Kg SOIL Copper 38.400 0.4445 0.889 D3811-18 SB-43(10-12) 0.285 mg/Kg SOIL 26,200.000 2.225 4.450 D3811-18 SB-43(10-12) Iron 1.180 mg/Kg SOIL 1,100.000 D3811-18 SB-43(10-12) Lead 0.107 0.2665 0.533 mg/Kg D3811-18 SB-43(10-12) SOIL Magnesium 536.000 4.070 44.45 88.9 mg/Kg D3811-18 SB-43(10-12) SOIL Manganese 135.000 0.169 0.4445 0.889 mg/Kg SOIL D3811-18 0.157 0.002 0.006 0.012 SB-43(10-12) Mercury mg/Kg SOIL 15.600 D3811-18 SB-43(10-12) Nickel 0.409 0.89 1.780 mg/Kg SOIL 446.000 D3811-18 SB-43(10-12) Potassium 3.110 44.45 88.9 mg/Kg SOIL Silver 0.604 D3811-18 SB-43(10-12) 0.133 0.2225 0.445 mg/Kg SOIL Sodium 49.700 88.9 D3811-18 SB-43(10-12) J 2.240 44.45 mg/Kg D3811-18 SOIL Thallium 0.693 0.240 1.780 SB-43(10-12) 0.89 mg/Kg SOIL Vanadium 22.100 0.525 0.89 1.780 D3811-18 SB-43(10-12) mg/Kg SOIL 935.000 D3811-18 SB-43(10-12) Zinc 0.622 0.89 1.780 mg/Kg Client ID: SB-43(16-20) SOIL 0.880 5.240 D3811-19 SB-43(16-20) Aluminum 4,020.000 2.62 mg/Kg D3811-19 SOIL Antimony 1.050 J 0.587 1.31 2.620 SB-43(16-20) mg/Kg SOIL 14.400 0.525 1.050 D3811-19 SB-43(16-20) Arsenic 0.346 mg/Kg SOIL Barium 174.000 5.240 D3811-19 SB-43(16-20) 0.419 2.62 mg/Kg D3811-19 SB-43(16-20) SOIL Beryllium 0.537 0.063 0.157 0.314 mg/Kg SOIL Cadmium 0.284 J 0.314 D3811-19 SB-43(16-20) 0.063 0.157 mg/Kg SOIL 105 D3811-19 SB-43(16-20) Calcium 2,300.000 1.120 52.5 mg/Kg D3811-19 SB-43(16-20) SOIL Chromium 7.060 0.136 0.262 0.524 mg/Kg SOIL D3811-19 SB-43(16-20) Cobalt 6.400 0.597 0.785 1.570 mg/Kg SOIL 43.100 0.335 0.525 1.050 D3811-19 SB-43(16-20) Copper mg/Kg

Hit Summary Sheet SW-846

SDG No.: D3811 Order ID: D3811 **Client:** MS Analytical **Project ID:** 12MS104 Kensington Heights \mathbf{C} Matrix Parameter Concentration **MDL** LOD RDL Units Sample ID Client ID D3811-19 SB-43(16-20) SOIL Iron 8.690.000 1.390 2.62 5.240 mg/Kg SOIL 606.000 0.629 D3811-19 SB-43(16-20) Lead 0.126 0.3145 mg/Kg D3811-19 SB-43(16-20) SOIL Magnesium 317.000 4.800 52.5 105 mg/Kg SOIL mg/Kg D3811-19 SB-43(16-20) 80.900 0.199 0.525 1.050 Manganese D3811-19 SB-43(16-20) SOIL Mercury 0.040 0.003 0.007 0.014 mg/Kg SOIL D3811-19 SB-43(16-20) Nickel 12.800 0.482 1.05 2.100 mg/Kg SOIL 497.000 105 D3811-19 SB-43(16-20) Potassium 3.670 52.5 mg/Kg SOIL 1.580 0.525 D3811-19 Selenium 0.430 1.050 mg/Kg SB-43(16-20) D3811-19 SB-43(16-20) SOIL Silver 0.328 J 0.157 0.262 0.524 mg/Kg SOIL Sodium 988.000 2.640 52.5 105 D3811-19 SB-43(16-20) mg/Kg SOIL Vanadium 25.800 0.618 1.05 2.100 D3811-19 SB-43(16-20) mg/Kg SOIL D3811-19 Zinc 109.000 0.733 1.05 2.100 SB-43(16-20) mg/Kg SB-45(10-12) Client ID: SOIL 5,350.000 2.52 D3811-20 SB-45(10-12) Aluminum 0.847 5.040 mg/Kg SOIL 1.110 J D3811-20 SB-45(10-12) Antimony 0.564 1.26 2.520 mg/Kg SOIL 23.300 0.505 D3811-20 Arsenic 0.333 1.010 mg/Kg SB-45(10-12) SOIL 266.000 Barium 0.403 2.52 5.040 D3811-20 SB-45(10-12) mg/Kg SOIL Beryllium 0.422 0.060 0.302 D3811-20 SB-45(10-12) 0.151 mg/Kg SOIL Cadmium 82.300 0.060 0.151 0.302 D3811-20 SB-45(10-12) mg/Kg SOIL 16,200.000 50.5 101 D3811-20 SB-45(10-12) Calcium 1.080 mg/Kg D3811-20 SB-45(10-12) SOIL Chromium 15.200 0.131 0.252 0.504 mg/Kg D3811-20 SB-45(10-12) SOIL Cobalt 7.800 0.574 0.755 1.510 mg/Kg SOIL Copper 139.000 0.505 1.010 D3811-20 SB-45(10-12) 0.323 mg/Kg SOIL 20,700.000 D3811-20 SB-45(10-12) Iron 1.340 2.52 5.040 mg/Kg SOIL 481.000 0.605 D3811-20 SB-45(10-12) Lead 0.121 0.3025 mg/Kg SOIL 473.000 101 D3811-20 SB-45(10-12) Magnesium 4.620 50.5 mg/Kg SOIL 208.000 D3811-20 SB-45(10-12) Manganese 0.191 0.505 1.010 mg/Kg SOIL 0.119 0.002 0.006 0.012 D3811-20 SB-45(10-12) Mercury mg/Kg SOIL Nickel 18.100 0.464 1.01 2.020 D3811-20 SB-45(10-12) mg/Kg SOIL D3811-20 SB-45(10-12) Potassium 494.000 3.530 50.5 101 mg/Kg D3811-20 SB-45(10-12) SOIL Silver 0.607 0.151 0.252 0.504 mg/Kg SOIL D3811-20 SB-45(10-12) Sodium 78.200 J 2.540 50.5 101 mg/Kg D3811-20 SB-45(10-12) SOIL Vanadium 29.700 0.595 1.01 2.020 mg/Kg Client ID: SB-46(12-16) SOIL 3,460.000 0.818 2.435 4.870 D3811-21 SB-46(12-16) Aluminum mg/Kg D3811-21 SB-46(12-16) SOIL Antimony 2.090 J 0.545 1.215 2.430 mg/Kg SOIL Arsenic 12.200 0.487 0.974 D3811-21 SB-46(12-16) 0.321 mg/Kg SB-46(12-16) SOIL Barium 113.000 0.390 2.435 4.870 mg/Kg D3811-21 D3811-21 SB-46(12-16) SOIL Beryllium 0.294 0.058 0.146 0.292 mg/Kg SOIL D3811-21 SB-46(12-16) Cadmium 0.392 0.058 0.146 0.292 mg/Kg SOIL Calcium 1.040 48.7 97.4 D3811-21 SB-46(12-16) 12,100.000 mg/Kg

Hit Summary Sheet SW-846

SDG No.:	D3811			Order	ID:	D3811			
Client:	MS Analytical			Project	t ID:	12MS104 k	Kensington He	ights	
Sample ID	Client ID	Matrix	Parameter	Concentration	C	MDL	LOD	RDL	Units
D3811-21	SB-46(12-16)	SOIL	Chromium	8.070		0.127	0.2435	0.487	mg/Kg
D3811-21	SB-46(12-16)	SOIL	Cobalt	6.470		0.555	0.73	1.460	mg/Kg
D3811-21	SB-46(12-16)	SOIL	Copper	47.400		0.312	0.487	0.974	mg/Kg
D3811-21	SB-46(12-16)	SOIL	Iron	8,440.000		1.300	2.435	4.870	mg/Kg
D3811-21	SB-46(12-16)	SOIL	Lead	246.000		0.117	0.292	0.584	mg/Kg
D3811-21	SB-46(12-16)	SOIL	Magnesium	1,560.000		4.460	48.7	97.4	mg/Kg
D3811-21	SB-46(12-16)	SOIL	Manganese	142.000		0.185	0.487	0.974	mg/Kg
D3811-21	SB-46(12-16)	SOIL	Mercury	0.044		0.003	0.0065	0.013	mg/Kg
D3811-21	SB-46(12-16)	SOIL	Nickel	14.400		0.448	0.975	1.950	mg/Kg
D3811-21	SB-46(12-16)	SOIL	Potassium	359.000		3.410	48.7	97.4	mg/Kg
D3811-21	SB-46(12-16)	SOIL	Selenium	1.420		0.399	0.487	0.974	mg/Kg
D3811-21	SB-46(12-16)	SOIL	Silver	0.312	J	0.146	0.2435	0.487	mg/Kg
D3811-21	SB-46(12-16)	SOIL	Sodium	82.000	J	2.450	48.7	97.4	mg/Kg
D3811-21	SB-46(12-16)	SOIL	Vanadium	20.500		0.575	0.975	1.950	mg/Kg
D3811-21	SB-46(12-16)	SOIL	Zinc	169.000		0.682	0.975	1.950	mg/Kg

Ē

G

T.

SAMPLE DATA

Report of Analysis

Client: MS Analytical Date Collected: 08/07/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-2(4-8) SDG No.: D3811

Lab Sample ID: D3811-01 Matrix: SOIL

Level (low/med): low % Solid: 86.6

Cas	Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units Prep Date	Date Ana.	Ana Met.
7429-90-5	Aluminum	6300		1	0.693	2.06	4.12 n	ng/Kg 08/16/12	08/16/12	6010B
7440-36-0	Antimony	1.17	J	1	0.462	1.03	2.06 n	ng/Kg 08/16/12	08/16/12	6010B
7440-38-2	Arsenic	10.2		1	0.272	0.413	0.825 n	ng/Kg 08/16/12	08/16/12	6010B
7440-39-3	Barium	84.4		1	0.33	2.06	4.12 n	ng/Kg 08/16/12	08/16/12	6010B
7440-41-7	Beryllium	0.207	J	1	0.049	0.124	0.247 n	ng/Kg 08/16/12	08/16/12	6010B
7440-43-9	Cadmium	0.432		1	0.049	0.124	0.247 n	ng/Kg 08/16/12	08/16/12	6010B
7440-70-2	Calcium	5970		1	0.883	41.25	82.5 n	ng/Kg 08/16/12	08/16/12	6010B
7440-47-3	Chromium	8.95	N	1	0.107	0.206	0.412 n	ng/Kg 08/16/12	08/16/12	6010B
7440-48-4	Cobalt	6.54		1	0.47	0.62	1.24 n	ng/Kg 08/16/12	08/16/12	6010B
7440-50-8	Copper	40.2	N	1	0.264	0.413	0.825 n	ng/Kg 08/16/12	08/16/12	6010B
7439-89-6	Iron	21600		1	1.1	2.06	4.12 n	ng/Kg 08/16/12	08/16/12	6010B
7439-92-1	Lead	1040		1	0.099	0.248	0.495 n	ng/Kg 08/16/12	08/16/12	6010B
7439-95-4	Magnesium	921		1	3.78	41.25	82.5 n	ng/Kg 08/16/12	08/16/12	6010B
7439-96-5	Manganese	379		1	0.157	0.413	0.825 n	ng/Kg 08/16/12	08/16/12	6010B
7439-97-6	Mercury	1.54	D	10	0.021	0.052	0.103 n	ng/Kg 08/16/12	08/17/12	SW7471A
7440-02-0	Nickel	13.7		1	0.379	0.825	1.65 n	ng/Kg 08/16/12	08/16/12	6010B
7440-09-7	Potassium	488	N	1	2.89	41.25	82.5 n	ng/Kg 08/16/12	08/16/12	6010B
7782-49-2	Selenium	0.413	U	1	0.338	0.413	0.825 n	ng/Kg 08/16/12	08/16/12	6010B
7440-22-4	Silver	0.561		1	0.124	0.206	0.412 n	ng/Kg 08/16/12	08/16/12	6010B
7440-23-5	Sodium	301	N	1	2.08	41.25	82.5 n	ng/Kg 08/16/12	08/16/12	6010B
7440-28-0	Thallium	0.562	J	1	0.223	0.825	1.65 n	ng/Kg 08/16/12	08/16/12	6010B
7440-62-2	Vanadium	18.9		1	0.487	0.825		ng/Kg 08/16/12	08/16/12	6010B
7440-66-6	Zinc	97.1		1	0.577	0.825	1.65 n	ng/Kg 08/16/12	08/16/12	6010B

Color Before: Brown Clarity Before: Texture: Medium

Color After: Yellow Clarity After: Artifacts: No

Comments: METALS-TAL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

Report of Analysis

Client: MS Analytical Date Collected: 08/07/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-5(8-12) SDG No.: D3811

Lab Sample ID: D3811-02 Matrix: SOIL

Level (low/med): low % Solid: 81.3

	_		_							
Cas	Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQ	L Units Prep Date	Date Ana.	Ana Met.
7429-90-5	Aluminum	4290		1	0.743	2.21	4.42	mg/Kg 08/16/12	08/16/12	6010B
7440-36-0	Antimony	1.2	J	1	0.496	1.105	2.21	mg/Kg 08/16/12	08/16/12	6010B
7440-38-2	Arsenic	9		1	0.292	0.443	0.885	mg/Kg 08/16/12	08/16/12	6010B
7440-39-3	Barium	190		1	0.354	2.21	4.42	mg/Kg 08/16/12	08/16/12	6010B
7440-41-7	Beryllium	0.283		1	0.053	0.133	0.265	mg/Kg 08/16/12	08/16/12	6010B
7440-43-9	Cadmium	1.31		1	0.053	0.133	0.265	mg/Kg 08/16/12	08/16/12	6010B
7440-70-2	Calcium	87400		1	0.947	44.25	88.5	mg/Kg 08/16/12	08/16/12	6010B
7440-47-3	Chromium	10.3	N	1	0.115	0.221	0.442	mg/Kg 08/16/12	08/16/12	6010B
7440-48-4	Cobalt	5.59		1	0.504	0.665	1.33	mg/Kg 08/16/12	08/16/12	6010B
7440-50-8	Copper	46.7	N	1	0.283	0.443	0.885	mg/Kg 08/16/12	08/16/12	6010B
7439-89-6	Iron	9790		1	1.18	2.21	4.42	mg/Kg 08/16/12	08/16/12	6010B
7439-92-1	Lead	628		1	0.106	0.266	0.531	mg/Kg 08/16/12	08/16/12	6010B
7439-95-4	Magnesium	2580		1	4.05	44.25	88.5	mg/Kg 08/16/12	08/16/12	6010B
7439-96-5	Manganese	143		1	0.168	0.443	0.885	mg/Kg 08/16/12	08/16/12	6010B
7439-97-6	Mercury	0.132		1	0.002	0.006	0.012	mg/Kg 08/16/12	08/17/12	SW7471A
7440-02-0	Nickel	39.8		1	0.407	0.885	1.77	mg/Kg 08/16/12	08/16/12	6010B
7440-09-7	Potassium	576	N	1	3.1	44.25	88.5	mg/Kg 08/16/12	08/16/12	6010B
7782-49-2	Selenium	0.443	U	1	0.363	0.443	0.885	mg/Kg 08/16/12	08/16/12	6010B
7440-22-4	Silver	0.213	J	1	0.133	0.221	0.442	mg/Kg 08/16/12	08/16/12	6010B
7440-23-5	Sodium	83.6	JN	1	2.23	44.25	88.5	mg/Kg 08/16/12	08/16/12	6010B
7440-28-0	Thallium	0.885	U	1	0.239	0.885	1.77	mg/Kg 08/16/12	08/16/12	6010B
7440-62-2	Vanadium	15.4		1	0.522	0.885	1.77	mg/Kg 08/16/12	08/16/12	6010B
7440-66-6	Zinc	273		1	0.619	0.885	1.77	mg/Kg 08/16/12	08/16/12	6010B

Color Before: Brown Clarity Before: Texture: Medium

Color After: Yellow Clarity After: Artifacts: No

Comments: METALS-TAL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

Report of Analysis

Client: MS Analytical Date Collected: 08/07/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-9(4-7) SDG No.: D3811

Lab Sample ID: D3811-03 Matrix: SOIL

Level (low/med): low % Solid: 83.9

Cas	Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CF	RQL Units Prep Date	Date Ana.	Ana Met.
7429-90-5	Aluminum	4550		1	0.705	2.1	4.2	mg/Kg 08/16/12	08/16/12	6010B
7440-36-0	Antimony	1.05	U	1	0.47	1.05	2.1	mg/Kg 08/16/12	08/16/12	6010B
7440-38-2	Arsenic	4.95		1	0.277	0.42	0.839	mg/Kg 08/16/12	08/16/12	6010B
7440-39-3	Barium	36.5		1	0.336	2.1	4.2	mg/Kg 08/16/12	08/16/12	6010B
7440-41-7	Beryllium	0.067	J	1	0.05	0.126	0.252	mg/Kg 08/16/12	08/16/12	6010B
7440-43-9	Cadmium	0.345		1	0.05	0.126	0.252	mg/Kg 08/16/12	08/16/12	6010B
7440-70-2	Calcium	18900		1	0.898	41.95	83.9	mg/Kg 08/16/12	08/16/12	6010B
7440-47-3	Chromium	8.68	N	1	0.109	0.21	0.42	mg/Kg 08/16/12	08/16/12	6010B
7440-48-4	Cobalt	8.47		1	0.478	0.63	1.26	mg/Kg 08/16/12	08/16/12	6010B
7440-50-8	Copper	19	N	1	0.269	0.42	0.839	mg/Kg 08/16/12	08/16/12	6010B
7439-89-6	Iron	26400		1	1.12	2.1	4.2	mg/Kg 08/16/12	08/16/12	6010B
7439-92-1	Lead	22.7		1	0.101	0.252	0.504	mg/Kg 08/16/12	08/16/12	6010B
7439-95-4	Magnesium	10700		1	3.84	41.95	83.9	mg/Kg 08/16/12	08/16/12	6010B
7439-96-5	Manganese	416		1	0.159	0.42	0.839	mg/Kg 08/16/12	08/16/12	6010B
7439-97-6	Mercury	0.111		1	0.002	0.006	0.011	mg/Kg 08/16/12	08/17/12	SW7471A
7440-02-0	Nickel	11.2		1	0.386	0.84	1.68	mg/Kg 08/16/12	08/16/12	6010B
7440-09-7	Potassium	774	N	1	2.94	41.95	83.9	mg/Kg 08/16/12	08/16/12	6010B
7782-49-2	Selenium	0.42	U	1	0.344	0.42	0.839	mg/Kg 08/16/12	08/16/12	6010B
7440-22-4	Silver	0.592		1	0.126	0.21	0.42	mg/Kg 08/16/12	08/16/12	6010B
7440-23-5	Sodium	41.95	UN	1	2.12	41.95	83.9	mg/Kg 08/16/12	08/16/12	6010B
7440-28-0	Thallium	1.39	J	1	0.227	0.84	1.68	mg/Kg 08/16/12	08/16/12	6010B
7440-62-2	Vanadium	8.98		1	0.495	0.84	1.68	mg/Kg 08/16/12	08/16/12	6010B
7440-66-6	Zinc	33		1	0.588	0.84	1.68	mg/Kg 08/16/12	08/16/12	6010B

Color Before: Brown Clarity Before: Texture: Medium

Color After: Yellow Clarity After: Artifacts: No

Comments: METALS-TAL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

Report of Analysis

Client: MS Analytical Date Collected: 08/07/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-10(8-12) SDG No.: D3811

Lab Sample ID: D3811-04 Matrix: SOIL

Level (low/med): low % Solid: 74.4

Cas	Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQI	Units Prep Date	Date Ana.	Ana Met.
7429-90-5	Aluminum	2730		1	0.812	2.415	4.83	ng/Kg 08/16/12	08/16/12	6010B
7440-36-0	Antimony	4.45		1	0.542	1.21	2.42	ng/Kg 08/16/12	08/16/12	6010B
7440-38-2	Arsenic	13.3		1	0.319	0.484	0.967	ng/Kg 08/16/12	08/16/12	6010B
7440-39-3	Barium	252		1	0.387	2.415	4.83	mg/Kg 08/16/12	08/16/12	6010B
7440-41-7	Beryllium	0.126	J	1	0.058	0.145	0.29	ng/Kg 08/16/12	08/16/12	6010B
7440-43-9	Cadmium	0.948		1	0.058	0.145	0.29	mg/Kg 08/16/12	08/16/12	6010B
7440-70-2	Calcium	20400		1	1.03	48.35	96.7	ng/Kg 08/16/12	08/16/12	6010B
7440-47-3	Chromium	7.85	N	1	0.126	0.242	0.483	ng/Kg 08/16/12	08/16/12	6010B
7440-48-4	Cobalt	4.91		1	0.551	0.725	1.45	mg/Kg 08/16/12	08/16/12	6010B
7440-50-8	Copper	120	N	1	0.309	0.484	0.967	ng/Kg 08/16/12	08/16/12	6010B
7439-89-6	Iron	24900		1	1.29	2.415	4.83	mg/Kg 08/16/12	08/16/12	6010B
7439-92-1	Lead	263		1	0.116	0.29	0.58	ng/Kg 08/16/12	08/16/12	6010B
7439-95-4	Magnesium	884		1	4.43	48.35	96.7	ng/Kg 08/16/12	08/16/12	6010B
7439-96-5	Manganese	159		1	0.184	0.484	0.967	ng/Kg 08/16/12	08/16/12	6010B
7439-97-6	Mercury	0.15		1	0.002	0.006	0.012	ng/Kg 08/16/12	08/17/12	SW7471A
7440-02-0	Nickel	12.2		1	0.445	0.965	1.93	ng/Kg 08/16/12	08/16/12	6010B
7440-09-7	Potassium	397	N	1	3.38	48.35	96.7	ng/Kg 08/16/12	08/16/12	6010B
7782-49-2	Selenium	1.78		1	0.396	0.484	0.967	ng/Kg 08/16/12	08/16/12	6010B
7440-22-4	Silver	0.715		1	0.145	0.242	0.483	ng/Kg 08/16/12	08/16/12	6010B
7440-23-5	Sodium	4930	N	1	2.44	48.35	96.7	ng/Kg 08/16/12	08/16/12	6010B
7440-28-0	Thallium	0.804	J	1	0.261	0.965	1.93	mg/Kg 08/16/12	08/16/12	6010B
7440-62-2	Vanadium	14.9		1	0.571	0.965	1.93	mg/Kg 08/16/12	08/16/12	6010B
7440-66-6	Zinc	341		1	0.677	0.965	1.93	ng/Kg 08/16/12	08/16/12	6010B

Color Before: Brown Clarity Before: Texture: Medium

Color After: Yellow Clarity After: Artifacts: No

Comments: METALS-TAL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

Report of Analysis

Client: MS Analytical Date Collected: 08/07/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-11(12-16) SDG No.: D3811

Lab Sample ID: D3811-05 Matrix: SOIL

Level (low/med): low % Solid: 74.4

Cas	Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units Prep Date	Date Ana.	Ana Met.
7429-90-5	Aluminum	3370		1	0.824	2.455	4.91 r	ng/Kg 08/16/12	08/16/12	6010B
7440-36-0	Antimony	1.225	U	1	0.549	1.225	2.45 r	ng/Kg 08/16/12	08/16/12	6010B
7440-38-2	Arsenic	13.7		1	0.324	0.491	0.981 r	ng/Kg 08/16/12	08/16/12	6010B
7440-39-3	Barium	62.8		1	0.392	2.455	4.91 r	ng/Kg 08/16/12	08/16/12	6010B
7440-41-7	Beryllium	0.146	J	1	0.059	0.147	0.294 r	ng/Kg 08/16/12	08/16/12	6010B
7440-43-9	Cadmium	0.48		1	0.059	0.147	0.294 r	ng/Kg 08/16/12	08/16/12	6010B
7440-70-2	Calcium	10500		1	1.05	49.05	98.1 r	ng/Kg 08/16/12	08/16/12	6010B
7440-47-3	Chromium	7.05	N	1	0.128	0.246	0.491 r	ng/Kg 08/16/12	08/16/12	6010B
7440-48-4	Cobalt	6.26		1	0.559	0.735	1.47 r	ng/Kg 08/16/12	08/16/12	6010B
7440-50-8	Copper	51.5	N	1	0.314	0.491	0.981 r	ng/Kg 08/16/12	08/16/12	6010B
7439-89-6	Iron	37300		1	1.3	2.455	4.91 r	ng/Kg 08/16/12	08/16/12	6010B
7439-92-1	Lead	59		1	0.118	0.295	0.589 r	ng/Kg 08/16/12	08/16/12	6010B
7439-95-4	Magnesium	1280		1	4.49	49.05	98.1 r	ng/Kg 08/16/12	08/16/12	6010B
7439-96-5	Manganese	255		1	0.186	0.491	0.981 r	ng/Kg 08/16/12	08/16/12	6010B
7439-97-6	Mercury	0.13		1	0.002	0.006	0.012 r	ng/Kg 08/16/12	08/17/12	SW7471A
7440-02-0	Nickel	11		1	0.451	0.98	1.96 r	ng/Kg 08/16/12	08/16/12	6010B
7440-09-7	Potassium	526	N	1	3.43	49.05	98.1 r	ng/Kg 08/16/12	08/16/12	6010B
7782-49-2	Selenium	0.491	U	1	0.402	0.491	0.981 r	ng/Kg 08/16/12	08/16/12	6010B
7440-22-4	Silver	0.808		1	0.147	0.246	0.491 r	ng/Kg 08/16/12	08/16/12	6010B
7440-23-5	Sodium	13.7	JN	1	2.47	49.05	98.1 r	ng/Kg 08/16/12	08/16/12	6010B
7440-28-0	Thallium	1.52	J	1	0.265	0.98		ng/Kg 08/16/12	08/16/12	6010B
7440-62-2	Vanadium	19.8		1	0.579	0.98	1.96 r	ng/Kg 08/16/12	08/16/12	6010B
7440-66-6	Zinc	101		1	0.687	0.98		ng/Kg 08/16/12	08/16/12	6010B

Color Before: Brown Clarity Before: Texture: Medium

Color After: Yellow Clarity After: Artifacts: No

Comments: METALS-TAL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

Report of Analysis

Client: MS Analytical Date Collected: 08/08/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-15(12-16) SDG No.: D3811

Lab Sample ID: D3811-06 Matrix: SOIL

Level (low/med): low % Solid: 71.6

Cas	Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQ	L Units Prep Date	Date Ana.	Ana Met.
7429-90-5	Aluminum	5640		1	0.844	2.51	5.02	mg/Kg 08/16/12	08/16/12	6010B
7440-36-0	Antimony	2.49	J	1	0.563	1.255	2.51	mg/Kg 08/16/12	08/16/12	6010B
7440-38-2	Arsenic	15.4		1	0.332	0.5	1	mg/Kg 08/16/12	08/16/12	6010B
7440-39-3	Barium	128		1	0.402	2.51	5.02	mg/Kg 08/16/12	08/16/12	6010B
7440-41-7	Beryllium	0.18	J	1	0.06	0.151	0.301	mg/Kg 08/16/12	08/16/12	6010B
7440-43-9	Cadmium	0.878		1	0.06	0.151	0.301	mg/Kg 08/16/12	08/16/12	6010B
7440-70-2	Calcium	5340		1	1.08	50	100	mg/Kg 08/16/12	08/16/12	6010B
7440-47-3	Chromium	13	N	1	0.131	0.251	0.502	mg/Kg 08/16/12	08/16/12	6010B
7440-48-4	Cobalt	7.83		1	0.573	0.755	1.51	mg/Kg 08/16/12	08/16/12	6010B
7440-50-8	Copper	42.9	N	1	0.322	0.5	1	mg/Kg 08/16/12	08/16/12	6010B
7439-89-6	Iron	44400		1	1.34	2.51	5.02	mg/Kg 08/16/12	08/16/12	6010B
7439-92-1	Lead	236		1	0.121	0.302	0.603	mg/Kg 08/16/12	08/16/12	6010B
7439-95-4	Magnesium	954		1	4.6	50	100	mg/Kg 08/16/12	08/16/12	6010B
7439-96-5	Manganese	190		1	0.191	0.5	1	mg/Kg 08/16/12	08/16/12	6010B
7439-97-6	Mercury	0.054		1	0.003	0.007	0.013	mg/Kg 08/16/12	08/17/12	SW7471A
7440-02-0	Nickel	15.2		1	0.462	1.005	2.01	mg/Kg 08/16/12	08/16/12	6010B
7440-09-7	Potassium	724	N	1	3.52	50	100	mg/Kg 08/16/12	08/16/12	6010B
7782-49-2	Selenium	0.5	U	1	0.412	0.5	1	mg/Kg 08/16/12	08/16/12	6010B
7440-22-4	Silver	2.45		1	0.151	0.251	0.502	mg/Kg 08/16/12	08/16/12	6010B
7440-23-5	Sodium	50	UN	1	2.53	50	100	mg/Kg 08/16/12	08/16/12	6010B
7440-28-0	Thallium	1.81	J	1	0.271	1.005	2.01	mg/Kg 08/16/12	08/16/12	6010B
7440-62-2	Vanadium	26		1	0.593	1.005	2.01	mg/Kg 08/16/12	08/16/12	6010B
7440-66-6	Zinc	308		1	0.703	1.005	2.01	mg/Kg 08/16/12	08/16/12	6010B

Color Before: Brown Clarity Before: Texture: Medium

Color After: Yellow Clarity After: Artifacts: No

Comments: METALS-TAL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

Report of Analysis

Client: MS Analytical Date Collected: 08/08/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-18(4-8) SDG No.: D3811

Lab Sample ID: D3811-07 Matrix: SOIL

Level (low/med): low % Solid: 83.8

Cas	Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQ	L Units Prep Date	Date Ana.	Ana Met.
7429-90-5	Aluminum	4890		1	0.706	2.1	4.2	mg/Kg 08/16/12	08/16/12	6010B
7440-36-0	Antimony	1.96	J	1	0.471	1.05	2.1	mg/Kg 08/16/12	08/16/12	6010B
7440-38-2	Arsenic	7.35		1	0.277	0.42	0.84	mg/Kg 08/16/12	08/16/12	6010B
7440-39-3	Barium	97.1		1	0.336	2.1	4.2	mg/Kg 08/16/12	08/16/12	6010B
7440-41-7	Beryllium	0.126	U	1	0.05	0.126	0.252	mg/Kg 08/16/12	08/16/12	6010B
7440-43-9	Cadmium	0.849		1	0.05	0.126	0.252	mg/Kg 08/16/12	08/16/12	6010B
7440-70-2	Calcium	14800		1	0.899	42	84	mg/Kg 08/16/12	08/16/12	6010B
7440-47-3	Chromium	25.4	N	1	0.109	0.21	0.42	mg/Kg 08/16/12	08/16/12	6010B
7440-48-4	Cobalt	6.21		1	0.479	0.63	1.26	mg/Kg 08/16/12	08/16/12	6010B
7440-50-8	Copper	54	N	1	0.269	0.42	0.84	mg/Kg 08/16/12	08/16/12	6010B
7439-89-6	Iron	61200		1	1.12	2.1	4.2	mg/Kg 08/16/12	08/16/12	6010B
7439-92-1	Lead	96.1		1	0.101	0.252	0.504	mg/Kg 08/16/12	08/16/12	6010B
7439-95-4	Magnesium	3580		1	3.85	42	84	mg/Kg 08/16/12	08/16/12	6010B
7439-96-5	Manganese	793		1	0.16	0.42	0.84	mg/Kg 08/16/12	08/16/12	6010B
7439-97-6	Mercury	0.022		1	0.002	0.006	0.011	mg/Kg 08/16/12	08/17/12	SW7471A
7440-02-0	Nickel	17.2		1	0.387	0.84	1.68	mg/Kg 08/16/12	08/16/12	6010B
7440-09-7	Potassium	733	N	1	2.94	42	84	mg/Kg 08/16/12	08/16/12	6010B
7782-49-2	Selenium	0.42	U	1	0.345	0.42	0.84	mg/Kg 08/16/12	08/16/12	6010B
7440-22-4	Silver	1.33		1	0.126	0.21	0.42	mg/Kg 08/16/12	08/16/12	6010B
7440-23-5	Sodium	42	UN	1	2.12	42	84	mg/Kg 08/16/12	08/16/12	6010B
7440-28-0	Thallium	3.28		1	0.227	0.84	1.68	mg/Kg 08/16/12	08/16/12	6010B
7440-62-2	Vanadium	22		1	0.496	0.84	1.68	mg/Kg 08/16/12	08/16/12	6010B
7440-66-6	Zinc	101		1	0.588	0.84	1.68	mg/Kg 08/16/12	08/16/12	6010B

Color Before: Brown Clarity Before: Texture: Medium

Color After: Yellow Clarity After: Artifacts: No

Comments: METALS-TAL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

Report of Analysis

Client: MS Analytical Date Collected: 08/08/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-19(12-18) SDG No.: D3811

Lab Sample ID: D3811-08 Matrix: SOIL

Level (low/med): low % Solid: 62.4

Cas	Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQI	Units Prep Date	Date Ana.	Ana Met.
7429-90-5	Aluminum	5650		1	0.903	2.69	5.38	mg/Kg 08/16/12	08/16/12	6010B
7440-36-0	Antimony	0.891	J	1	0.602	1.345	2.69	mg/Kg 08/16/12	08/16/12	6010B
7440-38-2	Arsenic	31.6		1	0.355	0.54	1.08	mg/Kg 08/16/12	08/16/12	6010B
7440-39-3	Barium	597		1	0.43	2.69	5.38	mg/Kg 08/16/12	08/16/12	6010B
7440-41-7	Beryllium	0.162	U	1	0.065	0.162	0.323	mg/Kg 08/16/12	08/16/12	6010B
7440-43-9	Cadmium	0.814		1	0.065	0.162	0.323	mg/Kg 08/16/12	08/16/12	6010B
7440-70-2	Calcium	11900		1	1.15	54	108	mg/Kg 08/16/12	08/16/12	6010B
7440-47-3	Chromium	12.8	N	1	0.14	0.269	0.538	mg/Kg 08/16/12	08/16/12	6010B
7440-48-4	Cobalt	8.59		1	0.613	0.805	1.61	mg/Kg 08/16/12	08/16/12	6010B
7440-50-8	Copper	110	N	1	0.344	0.54	1.08	mg/Kg 08/16/12	08/16/12	6010B
7439-89-6	Iron	20500		1	1.43	2.69	5.38	mg/Kg 08/16/12	08/16/12	6010B
7439-92-1	Lead	410		1	0.129	0.323	0.645	mg/Kg 08/16/12	08/16/12	6010B
7439-95-4	Magnesium	1080		1	4.93	54	108	mg/Kg 08/16/12	08/16/12	6010B
7439-96-5	Manganese	6770		1	0.204	0.54	1.08	mg/Kg 08/16/12	08/16/12	6010B
7439-97-6	Mercury	0.219		1	0.003	0.008	0.016	mg/Kg 08/16/12	08/17/12	SW7471A
7440-02-0	Nickel	28.1		1	0.495	1.075	2.15	mg/Kg 08/16/12	08/16/12	6010B
7440-09-7	Potassium	834	N	1	3.76	54	108	mg/Kg 08/16/12	08/16/12	6010B
7782-49-2	Selenium	1.45		1	0.441	0.54	1.08	mg/Kg 08/16/12	08/16/12	6010B
7440-22-4	Silver	1.51		1	0.161	0.269	0.538	mg/Kg 08/16/12	08/16/12	6010B
7440-23-5	Sodium	240	N	1	2.71	54	108	mg/Kg 08/16/12	08/16/12	6010B
7440-28-0	Thallium	7.02		1	0.29	1.075	2.15	mg/Kg 08/16/12	08/16/12	6010B
7440-62-2	Vanadium	28.1		1	0.635	1.075	2.15	mg/Kg 08/16/12	08/16/12	6010B
7440-66-6	Zinc	790		1	0.753	1.075	2.15	mg/Kg 08/16/12	08/16/12	6010B

Color Before: Brown Clarity Before: Texture: Medium

Color After: Yellow Clarity After: Artifacts: No

Comments: METALS-TAL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

Report of Analysis

Client: MS Analytical Date Collected: 08/09/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-21(12-16) SDG No.: D3811

Lab Sample ID: D3811-09 Matrix: SOIL

Level (low/med): low % Solid: 70.4

C	D	C	0	DE	MDI	LOD	LOO/CD	OI U D	D-4- A	A M.4
Cas	Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ/CR	QL Units Prep Date	Date Ana.	Ana Met.
7429-90-5	Aluminum	3700		1	0.829	2.465	4.93	mg/Kg 08/16/12	08/16/12	6010B
7440-36-0	Antimony	174		1	0.552	1.235	2.47	mg/Kg 08/16/12	08/16/12	6010B
7440-38-2	Arsenic	23.8		1	0.326	0.493	0.986	mg/Kg 08/16/12	08/16/12	6010B
7440-39-3	Barium	461		1	0.395	2.465	4.93	mg/Kg 08/16/12	08/16/12	6010B
7440-41-7	Beryllium	0.13	J	1	0.059	0.148	0.296	mg/Kg 08/16/12	08/16/12	6010B
7440-43-9	Cadmium	2.72		1	0.059	0.148	0.296	mg/Kg 08/16/12	08/16/12	6010B
7440-70-2	Calcium	20800		1	1.06	49.3	98.6	mg/Kg 08/16/12	08/16/12	6010B
7440-47-3	Chromium	14.2	N	1	0.128	0.247	0.493	mg/Kg 08/16/12	08/16/12	6010B
7440-48-4	Cobalt	4.25		1	0.562	0.74	1.48	mg/Kg 08/16/12	08/16/12	6010B
7440-50-8	Copper	425	N	1	0.316	0.493	0.986	mg/Kg 08/16/12	08/16/12	6010B
7439-89-6	Iron	27600		1	1.31	2.465	4.93	mg/Kg 08/16/12	08/16/12	6010B
7439-92-1	Lead	20500	OR	1	0.118	0.296	0.592	mg/Kg 08/16/12	08/16/12	6010B
7439-95-4	Magnesium	3880		1	4.52	49.3	98.6	mg/Kg 08/16/12	08/16/12	6010B
7439-96-5	Manganese	238		1	0.187	0.493	0.986	mg/Kg 08/16/12	08/16/12	6010B
7439-97-6	Mercury	0.125		1	0.003	0.007	0.013	mg/Kg 08/16/12	08/17/12	SW7471A
7440-02-0	Nickel	12.4		1	0.454	0.985	1.97	mg/Kg 08/16/12	08/16/12	6010B
7440-09-7	Potassium	477	N	1	3.45	49.3	98.6	mg/Kg 08/16/12	08/16/12	6010B
7782-49-2	Selenium	2.15		1	0.404	0.493	0.986	mg/Kg 08/16/12	08/16/12	6010B
7440-22-4	Silver	3.11		1	0.148	0.247	0.493	mg/Kg 08/16/12	08/16/12	6010B
7440-23-5	Sodium	49.3	UN	1	2.49	49.3	98.6	mg/Kg 08/16/12	08/16/12	6010B
7440-28-0	Thallium	0.897	J	1	0.266	0.985	1.97	mg/Kg 08/16/12	08/16/12	6010B
7440-62-2	Vanadium	15.5		1	0.582	0.985	1.97	mg/Kg 08/16/12	08/16/12	6010B
7440-66-6	Zinc	941		1	0.69	0.985	1.97	mg/Kg 08/16/12	08/16/12	6010B

Color Before: Brown Clarity Before: Texture: Medium

Color After: Yellow Clarity After: Artifacts: No

Comments: METALS-TAL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

Report of Analysis

Client: Date Collected: 08/09/12 MS Analytical Project: 12MS104 Kensington Heights Date Received: 08/15/12 SDG No.: Client Sample ID: SB-21(12-16)DL D3811 Lab Sample ID: D3811-09DL Matrix: **SOIL** % Solid: 70.4 Level (low/med): low

Cas	Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQ	Units Prep Date	Date Ana.	Ana Met.
7439-92-1	Lead	21800	D	10	1.18	2.96	5.92	mg/Kg 08/16/12	08/17/12	SW6010B

Color Before:

Brown

Clarity Before:

Texture:

Medium

10

Color After:

Yellow

Clarity After:

Artifacts:

No

Comments:

METALS-TAL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

Report of Analysis

Client: MS Analytical Date Collected: 08/09/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-21(16-19) SDG No.: D3811

Lab Sample ID: D3811-10 Matrix: SOIL

Level (low/med): low % Solid: 68.1

Cas	Parameter	Conc.	Qua.	DF	MDL	LOD	LOO/CRO	L Units Prep Date	Date Ana.	Ana Met.
			Qua.	DI						
7429-90-5	Aluminum	3920		1	0.863	2.565	5.13	mg/Kg 08/16/12	08/16/12	6010B
7440-36-0	Antimony	146		1	0.575	1.285	2.57	mg/Kg 08/16/12	08/16/12	6010B
7440-38-2	Arsenic	27.4		1	0.339	0.515	1.03	mg/Kg 08/16/12	08/16/12	6010B
7440-39-3	Barium	977		1	0.411	2.565	5.13	mg/Kg 08/16/12	08/16/12	6010B
7440-41-7	Beryllium	0.154	U	1	0.062	0.154	0.308	mg/Kg 08/16/12	08/16/12	6010B
7440-43-9	Cadmium	2.55		1	0.062	0.154	0.308	mg/Kg 08/16/12	08/16/12	6010B
7440-70-2	Calcium	56100		1	1.1	51.5	103	mg/Kg 08/16/12	08/16/12	6010B
7440-47-3	Chromium	29.9	N	1	0.133	0.257	0.513	mg/Kg 08/16/12	08/16/12	6010B
7440-48-4	Cobalt	9.98		1	0.585	0.77	1.54	mg/Kg 08/16/12	08/16/12	6010B
7440-50-8	Copper	130	N	1	0.329	0.515	1.03	mg/Kg 08/16/12	08/16/12	6010B
7439-89-6	Iron	74700		1	1.37	2.565	5.13	mg/Kg 08/16/12	08/16/12	6010B
7439-92-1	Lead	6540		1	0.123	0.308	0.616	mg/Kg 08/16/12	08/16/12	6010B
7439-95-4	Magnesium	7890		1	4.7	51.5	103	mg/Kg 08/16/12	08/16/12	6010B
7439-96-5	Manganese	583		1	0.195	0.515	1.03	mg/Kg 08/16/12	08/16/12	6010B
7439-97-6	Mercury	0.598		1	0.003	0.007	0.014	mg/Kg 08/16/12	08/17/12	SW7471A
7440-02-0	Nickel	22.1		1	0.472	1.025	2.05	mg/Kg 08/16/12	08/16/12	6010B
7440-09-7	Potassium	865	N	1	3.59	51.5	103	mg/Kg 08/16/12	08/16/12	6010B
7782-49-2	Selenium	0.515	U	1	0.421	0.515	1.03	mg/Kg 08/16/12	08/16/12	6010B
7440-22-4	Silver	2.33		1	0.154	0.257	0.513	mg/Kg 08/16/12	08/16/12	6010B
7440-23-5	Sodium	51.5	UN	1	2.59	51.5	103	mg/Kg 08/16/12	08/16/12	6010B
7440-28-0	Thallium	4.54		1	0.277	1.025	2.05	mg/Kg 08/16/12	08/16/12	6010B
7440-62-2	Vanadium	10.9		1	0.606	1.025	2.05	mg/Kg 08/16/12	08/16/12	6010B
7440-66-6	Zinc	1120		1	0.719	1.025	2.05	mg/Kg 08/16/12	08/16/12	6010B

Color Before: Brown Clarity Before: Texture: Medium

Color After: Yellow Clarity After: Artifacts: No

Comments: METALS-TAL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

Report of Analysis

Client: MS Analytical Date Collected: 08/09/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-22(12-19) SDG No.: D3811

Lab Sample ID: D3811-11 Matrix: SOIL

Level (low/med): low % Solid: 91.1

Cas	Parameter	Conc.	Qua.	DF	MDL	LOD	LOO / CRO	L Units Prep Date	Date Ana.	Ana Met.
7429-90-5	Aluminum	5180	~	1	0.668	1.99		mg/Kg 08/16/12	08/16/12	6010B
7440-36-0			J	1						6010B
	Antimony	1.61	J	1	0.445	0.995		mg/Kg 08/16/12	08/16/12	
7440-38-2	Arsenic	5.24		1	0.262	0.398		mg/Kg 08/16/12	08/16/12	6010B
7440-39-3	Barium	65.9		1	0.318	1.99		mg/Kg 08/16/12	08/16/12	6010B
7440-41-7	Beryllium	0.12	U	1	0.048	0.12	0.239	mg/Kg 08/16/12	08/16/12	6010B
7440-43-9	Cadmium	0.315		1	0.048	0.12	0.239	mg/Kg 08/16/12	08/16/12	6010B
7440-70-2	Calcium	26500		1	0.851	39.75	79.5	mg/Kg 08/16/12	08/16/12	6010B
7440-47-3	Chromium	9.53	N	1	0.103	0.199	0.398	mg/Kg 08/16/12	08/16/12	6010B
7440-48-4	Cobalt	4.76		1	0.453	0.595	1.19	mg/Kg 08/16/12	08/16/12	6010B
7440-50-8	Copper	89.2	N	1	0.255	0.398	0.795	mg/Kg 08/16/12	08/16/12	6010B
7439-89-6	Iron	28900		1	1.06	1.99	3.98	mg/Kg 08/16/12	08/16/12	6010B
7439-92-1	Lead	68.1		1	0.095	0.239	0.477	mg/Kg 08/16/12	08/16/12	6010B
7439-95-4	Magnesium	2200		1	3.64	39.75	79.5	mg/Kg 08/16/12	08/16/12	6010B
7439-96-5	Manganese	776		1	0.151	0.398	0.795	mg/Kg 08/16/12	08/16/12	6010B
7439-97-6	Mercury	0.014		1	0.002	0.005	0.01	mg/Kg 08/16/12	08/17/12	SW7471A
7440-02-0	Nickel	14		1	0.366	0.795	1.59	mg/Kg 08/16/12	08/16/12	6010B
7440-09-7	Potassium	624	N	1	2.78	39.75	79.5	mg/Kg 08/16/12	08/16/12	6010B
7782-49-2	Selenium	0.398	U	1	0.326	0.398	0.795	mg/Kg 08/16/12	08/16/12	6010B
7440-22-4	Silver	0.692		1	0.119	0.199	0.398	mg/Kg 08/16/12	08/16/12	6010B
7440-23-5	Sodium	39.75	UN	1	2	39.75		mg/Kg 08/16/12	08/16/12	6010B
7440-28-0	Thallium	1.24	J	1	0.215	0.795	1.59	mg/Kg 08/16/12	08/16/12	6010B
7440-62-2	Vanadium	11.9		1	0.469	0.795		mg/Kg 08/16/12	08/16/12	6010B
7440-66-6	Zinc	339		1	0.557	0.795		mg/Kg 08/16/12	08/16/12	6010B

Color Before: Brown Clarity Before: Texture: Medium

Color After: Yellow Clarity After: Artifacts: No

Comments: METALS-TAL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

Report of Analysis

Client: MS Analytical Date Collected: 08/09/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-27(8-12) SDG No.: D3811

Lab Sample ID: D3811-12 Matrix: SOIL

Level (low/med): low % Solid: 80.6

Cas	Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQI	Units Prep Date	Date Ana.	Ana Met.
7429-90-5	Aluminum	2420		1	0.761	2.265	4.53	mg/Kg 08/16/12	08/16/12	6010B
7440-36-0	Antimony	3.71		1	0.507	1.13	2.26	mg/Kg 08/16/12	08/16/12	6010B
7440-38-2	Arsenic	11.7		1	0.299	0.453	0.906	mg/Kg 08/16/12	08/16/12	6010B
7440-39-3	Barium	675		1	0.362	2.265	4.53	mg/Kg 08/16/12	08/16/12	6010B
7440-41-7	Beryllium	0.136	U	1	0.054	0.136	0.272	mg/Kg 08/16/12	08/16/12	6010B
7440-43-9	Cadmium	2.04		1	0.054	0.136	0.272	mg/Kg 08/16/12	08/16/12	6010B
7440-70-2	Calcium	9710		1	0.969	45.3	90.6	mg/Kg 08/16/12	08/16/12	6010B
7440-47-3	Chromium	46.4	N	1	0.118	0.227	0.453	mg/Kg 08/16/12	08/16/12	6010B
7440-48-4	Cobalt	5.27		1	0.516	0.68	1.36	mg/Kg 08/16/12	08/16/12	6010B
7440-50-8	Copper	407	N	1	0.29	0.453	0.906	mg/Kg 08/16/12	08/16/12	6010B
7439-89-6	Iron	56600		1	1.2	2.265	4.53	mg/Kg 08/16/12	08/16/12	6010B
7439-92-1	Lead	1910		1	0.109	0.272	0.543	mg/Kg 08/16/12	08/16/12	6010B
7439-95-4	Magnesium	1240		1	4.15	45.3	90.6	mg/Kg 08/16/12	08/16/12	6010B
7439-96-5	Manganese	452		1	0.172	0.453	0.906	mg/Kg 08/16/12	08/16/12	6010B
7439-97-6	Mercury	0.464		1	0.002	0.006	0.011	mg/Kg 08/16/12	08/17/12	SW7471A
7440-02-0	Nickel	29.4		1	0.417	0.905	1.81	mg/Kg 08/16/12	08/16/12	6010B
7440-09-7	Potassium	254	N	1	3.17	45.3	90.6	mg/Kg 08/16/12	08/16/12	6010B
7782-49-2	Selenium	0.453	U	1	0.371	0.453	0.906	mg/Kg 08/16/12	08/16/12	6010B
7440-22-4	Silver	1.36		1	0.136	0.227	0.453	mg/Kg 08/16/12	08/16/12	6010B
7440-23-5	Sodium	45.3	UN	1	2.28	45.3	90.6	mg/Kg 08/16/12	08/16/12	6010B
7440-28-0	Thallium	3.3		1	0.245	0.905	1.81	mg/Kg 08/16/12	08/16/12	6010B
7440-62-2	Vanadium	6.92		1	0.534	0.905	1.81	mg/Kg 08/16/12	08/16/12	6010B
7440-66-6	Zinc	712		1	0.634	0.905	1.81	mg/Kg 08/16/12	08/16/12	6010B

Color Before: Brown Clarity Before: Texture: Medium

Color After: Yellow Clarity After: Artifacts: No

Comments: METALS-TAL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

Matrix:

SOIL

10

D3811-13

Lab Sample ID:

Report of Analysis

Client: MS Analytical Date Collected: 08/10/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-37(8-10) SDG No.: D3811

Level (low/med): low % Solid: 70.4

Cas	Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQI	L Units Prep Date	Date Ana.	Ana Met.
7429-90-5	Aluminum	5290		1	0.897	2.67	5.34	mg/Kg 08/16/12	08/16/12	6010B
7440-36-0	Antimony	0.904	J	1	0.598	1.335	2.67	mg/Kg 08/16/12	08/16/12	6010B
7440-38-2	Arsenic	12		1	0.352	0.535		mg/Kg 08/16/12	08/16/12	6010B
7440-39-3	Barium	71.4		1	0.427	2.67	5.34	mg/Kg 08/16/12	08/16/12	6010B
7440-41-7	Beryllium	0.356		1	0.064	0.16	0.32	mg/Kg 08/16/12	08/16/12	6010B
7440-43-9	Cadmium	0.452		1	0.064	0.16	0.32	mg/Kg 08/16/12	08/16/12	6010B
7440-70-2	Calcium	54000		1	1.14	53.5	107	mg/Kg 08/16/12	08/16/12	6010B
7440-47-3	Chromium	7.42	N	1	0.139	0.267	0.534	mg/Kg 08/16/12	08/16/12	6010B
7440-48-4	Cobalt	5.41		1	0.609	0.8	1.6	mg/Kg 08/16/12	08/16/12	6010B
7440-50-8	Copper	39.5	N	1	0.342	0.535	1.07	mg/Kg 08/16/12	08/16/12	6010B
7439-89-6	Iron	8300		1	1.42	2.67	5.34	mg/Kg 08/16/12	08/16/12	6010B
7439-92-1	Lead	290		1	0.128	0.321	0.641	mg/Kg 08/16/12	08/16/12	6010B
7439-95-4	Magnesium	3610		1	4.89	53.5	107	mg/Kg 08/16/12	08/16/12	6010B
7439-96-5	Manganese	121		1	0.203	0.535	1.07	mg/Kg 08/16/12	08/16/12	6010B
7439-97-6	Mercury	0.091		1	0.003	0.007	0.014	mg/Kg 08/16/12	08/17/12	SW7471A
7440-02-0	Nickel	12.7		1	0.491	1.07	2.14	mg/Kg 08/16/12	08/16/12	6010B
7440-09-7	Potassium	593	N	1	3.74	53.5	107	mg/Kg 08/16/12	08/16/12	6010B
7782-49-2	Selenium	0.535	U	1	0.438	0.535	1.07	mg/Kg 08/16/12	08/16/12	6010B
7440-22-4	Silver	0.214	J	1	0.16	0.267	0.534	mg/Kg 08/16/12	08/16/12	6010B
7440-23-5	Sodium	118	N	1	2.69	53.5	107	mg/Kg 08/16/12	08/16/12	6010B
7440-28-0	Thallium	1.07	U	1	0.288	1.07		mg/Kg 08/16/12	08/16/12	6010B
7440-62-2	Vanadium	18.7		1	0.63	1.07		mg/Kg 08/16/12	08/16/12	6010B
7440-66-6	Zinc	165		1	0.748	1.07		mg/Kg 08/16/12	08/16/12	6010B

Color Before: Brown Clarity Before: Texture: Medium

Color After: Yellow Clarity After: Artifacts: No

Comments: METALS-TAL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

Report of Analysis

Client: MS Analytical Date Collected: 08/10/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-39(6-8) SDG No.: D3811

Lab Sample ID: D3811-14 Matrix: SOIL

Level (low/med): low % Solid: 91.9

G	.	G		D.E.	MAN		100/CDC		D	
Cas	Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQ	L Units Prep Date	Date Ana.	Ana Met.
7429-90-5	Aluminum	7000		1	0.658	1.955	3.91	mg/Kg 08/16/12	08/16/12	6010B
7440-36-0	Antimony	1.63	J	1	0.438	0.98	1.96	mg/Kg 08/16/12	08/16/12	6010B
7440-38-2	Arsenic	5.37		1	0.258	0.392	0.783	mg/Kg 08/16/12	08/16/12	6010B
7440-39-3	Barium	85.9		1	0.313	1.955	3.91	mg/Kg 08/16/12	08/16/12	6010B
7440-41-7	Beryllium	0.118	U	1	0.047	0.118	0.235	mg/Kg 08/16/12	08/16/12	6010B
7440-43-9	Cadmium	0.459		1	0.047	0.118	0.235	mg/Kg 08/16/12	08/16/12	6010B
7440-70-2	Calcium	14200		1	0.838	39.15	78.3	mg/Kg 08/16/12	08/16/12	6010B
7440-47-3	Chromium	9.25	N	1	0.102	0.196	0.391	mg/Kg 08/16/12	08/16/12	6010B
7440-48-4	Cobalt	11.8		1	0.446	0.585	1.17	mg/Kg 08/16/12	08/16/12	6010B
7440-50-8	Copper	59.2	N	1	0.251	0.392	0.783	mg/Kg 08/16/12	08/16/12	6010B
7439-89-6	Iron	35700		1	1.04	1.955	3.91	mg/Kg 08/16/12	08/16/12	6010B
7439-92-1	Lead	27.4		1	0.094	0.235	0.47	mg/Kg 08/16/12	08/16/12	6010B
7439-95-4	Magnesium	1150		1	3.59	39.15	78.3	mg/Kg 08/16/12	08/16/12	6010B
7439-96-5	Manganese	1500		1	0.149	0.392	0.783	mg/Kg 08/16/12	08/16/12	6010B
7439-97-6	Mercury	0.024		1	0.002	0.005	0.01	mg/Kg 08/16/12	08/17/12	SW7471A
7440-02-0	Nickel	7.79		1	0.36	0.785	1.57	mg/Kg 08/16/12	08/16/12	6010B
7440-09-7	Potassium	830	N	1	2.74	39.15	78.3	mg/Kg 08/16/12	08/16/12	6010B
7782-49-2	Selenium	0.392	U	1	0.321	0.392	0.783	mg/Kg 08/16/12	08/16/12	6010B
7440-22-4	Silver	0.92		1	0.117	0.196	0.391	mg/Kg 08/16/12	08/16/12	6010B
7440-23-5	Sodium	39.15	UN	1	1.97	39.15	78.3	mg/Kg 08/16/12	08/16/12	6010B
7440-28-0	Thallium	2.16		1	0.211	0.785	1.57	mg/Kg 08/16/12	08/16/12	6010B
7440-62-2	Vanadium	15.1		1	0.462	0.785	1.57	mg/Kg 08/16/12	08/16/12	6010B
7440-66-6	Zinc	50.3		1	0.548	0.785	1.57	mg/Kg 08/16/12	08/16/12	6010B

Color Before: Brown Clarity Before: Texture: Medium

Color After: Yellow Clarity After: Artifacts: No

Comments: METALS-TAL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

Report of Analysis

Client: MS Analytical Date Collected: 08/10/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-41(8-11) SDG No.: D3811

Lab Sample ID: D3811-15 Matrix: SOIL

Level (low/med): low % Solid: 81.2

Cas	Parameter	Conc.	Qua.	DF	MDL	LOD	LOO / CROL	Units Prep Date	Date Ana.	Ana Met.
			Qui							
7429-90-5	Aluminum	8490		1	0.699	2.08		ng/Kg 08/16/12	08/16/12	6010B
7440-36-0	Antimony	42		1	0.466	1.04		ng/Kg 08/16/12	08/16/12	6010B
7440-38-2	Arsenic	73		1	0.275	0.416	0.832	ng/Kg 08/16/12	08/16/12	6010B
7440-39-3	Barium	113		1	0.333	2.08	4.16 n	ng/Kg 08/16/12	08/16/12	6010B
7440-41-7	Beryllium	16		1	0.05	0.125	0.25	ng/Kg 08/16/12	08/16/12	6010B
7440-43-9	Cadmium	17		1	0.05	0.125	0.25	ng/Kg 08/16/12	08/16/12	6010B
7440-70-2	Calcium	6530		1	0.89	41.6	83.2	ng/Kg 08/16/12	08/16/12	6010B
7440-47-3	Chromium	41.1	N	1	0.108	0.208	0.416 ı	ng/Kg 08/16/12	08/16/12	6010B
7440-48-4	Cobalt	24.7		1	0.474	0.625		ng/Kg 08/16/12	08/16/12	6010B
7440-50-8	Copper	62.3	N	1	0.266	0.416		ng/Kg 08/16/12	08/16/12	6010B
7439-89-6	Iron	34600		1	1.11	2.08	4.16 n	ng/Kg 08/16/12	08/16/12	6010B
7439-92-1	Lead	527		1	0.1	0.25		ng/Kg 08/16/12	08/16/12	6010B
7439-95-4	Magnesium	1360		1	3.81	41.6	83.2	ng/Kg 08/16/12	08/16/12	6010B
7439-96-5	Manganese	498		1	0.158	0.416	0.832	ng/Kg 08/16/12	08/16/12	6010B
7439-97-6	Mercury	0.145		1	0.002	0.006		ng/Kg 08/16/12	08/17/12	SW7471A
7440-02-0	Nickel	56.4		1	0.383	0.83		ng/Kg 08/16/12	08/16/12	6010B
7440-09-7	Potassium	1430	N	1	2.91	41.6		ng/Kg 08/16/12	08/16/12	6010B
7782-49-2	Selenium	149		1	0.341	0.416		ng/Kg 08/16/12	08/16/12	6010B
7440-22-4	Silver	6.33		1	0.125	0.208		mg/Kg 08/16/12	08/16/12	6010B
7440-23-5	Sodium	432	N	1	2.1	41.6		mg/Kg 08/16/12	08/16/12	6010B
7440-28-0	Thallium	158		1	0.225	0.83		mg/Kg 08/16/12	08/16/12	6010B
7440-62-2	Vanadium	47.7		1	0.491	0.83		ng/Kg 08/16/12	08/16/12	6010B
7440-66-6	Zinc	121		1	0.582	0.83		ng/Kg 08/16/12	08/16/12	6010B

Color Before: Brown Clarity Before: Texture: Medium

Color After: Yellow Clarity After: Artifacts: No

Comments: METALS-TAL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

Report of Analysis

Client: MS Analytical Date Collected: 08/13/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-42(14-16) SDG No.: D3811

Lab Sample ID: D3811-16 Matrix: SOIL

Level (low/med): low % Solid: 82.8

_	_	_	_							
Cas	Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQ	Units Prep Date	Date Ana.	Ana Met.
7429-90-5	Aluminum	3910		1	0.709	2.11	4.22	mg/Kg 08/16/12	08/16/12	6010B
7440-36-0	Antimony	0.712	J	1	0.473	1.055	2.11	mg/Kg 08/16/12	08/16/12	6010B
7440-38-2	Arsenic	8.79		1	0.279	0.423	0.845	mg/Kg 08/16/12	08/16/12	6010B
7440-39-3	Barium	90.2		1	0.338	2.11	4.22	mg/Kg 08/16/12	08/16/12	6010B
7440-41-7	Beryllium	0.338		1	0.051	0.127	0.253	mg/Kg 08/16/12	08/16/12	6010B
7440-43-9	Cadmium	0.398		1	0.051	0.127	0.253	mg/Kg 08/16/12	08/16/12	6010B
7440-70-2	Calcium	4420		1	0.904	42.25	84.5	mg/Kg 08/16/12	08/16/12	6010B
7440-47-3	Chromium	8.63	N	1	0.11	0.211	0.422	mg/Kg 08/16/12	08/16/12	6010B
7440-48-4	Cobalt	7.89		1	0.481	0.635	1.27	mg/Kg 08/16/12	08/16/12	6010B
7440-50-8	Copper	33.1	N	1	0.27	0.423	0.845	mg/Kg 08/16/12	08/16/12	6010B
7439-89-6	Iron	11200		1	1.12	2.11	4.22	mg/Kg 08/16/12	08/16/12	6010B
7439-92-1	Lead	99.5		1	0.101	0.254	0.507	mg/Kg 08/16/12	08/16/12	6010B
7439-95-4	Magnesium	517		1	3.87	42.25	84.5	mg/Kg 08/16/12	08/16/12	6010B
7439-96-5	Manganese	140		1	0.16	0.423	0.845	mg/Kg 08/16/12	08/16/12	6010B
7439-97-6	Mercury	0.155		1	0.002	0.006	0.011	mg/Kg 08/16/12	08/17/12	SW7471A
7440-02-0	Nickel	13.5		1	0.389	0.845	1.69	mg/Kg 08/16/12	08/16/12	6010B
7440-09-7	Potassium	553	N	1	2.96	42.25	84.5	mg/Kg 08/16/12	08/16/12	6010B
7782-49-2	Selenium	0.423	U	1	0.346	0.423	0.845	mg/Kg 08/16/12	08/16/12	6010B
7440-22-4	Silver	0.294	J	1	0.127	0.211	0.422	mg/Kg 08/16/12	08/16/12	6010B
7440-23-5	Sodium	90.4	N	1	2.13	42.25	84.5	mg/Kg 08/16/12	08/16/12	6010B
7440-28-0	Thallium	0.845	U	1	0.228	0.845	1.69	mg/Kg 08/16/12	08/16/12	6010B
7440-62-2	Vanadium	19.9		1	0.498	0.845	1.69	mg/Kg 08/16/12	08/16/12	6010B
7440-66-6	Zinc	128		1	0.591	0.845	1.69	mg/Kg 08/16/12	08/16/12	6010B

Color Before: Brown Clarity Before: Texture: Medium

Color After: Yellow Clarity After: Artifacts: No

Comments: METALS-TAL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

Report of Analysis

Client: MS Analytical Date Collected: 08/13/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-43(6-8) SDG No.: D3811

Lab Sample ID: D3811-17 Matrix: SOIL

Level (low/med): low % Solid: 91.8

G	.	G		D.E.	MA		100 / CDO		D	
Cas	Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQ	L Units Prep Date	Date Ana.	Ana Met.
7429-90-5	Aluminum	5650		1	0.688	2.05	4.1	mg/Kg 08/16/12	08/16/12	6010B
7440-36-0	Antimony	7.64		1	0.459	1.025	2.05	mg/Kg 08/16/12	08/16/12	6010B
7440-38-2	Arsenic	6.91		1	0.27	0.41	0.819	mg/Kg 08/16/12	08/16/12	6010B
7440-39-3	Barium	36.3		1	0.328	2.05	4.1	mg/Kg 08/16/12	08/16/12	6010B
7440-41-7	Beryllium	0.123	U	1	0.049	0.123	0.246	mg/Kg 08/16/12	08/16/12	6010B
7440-43-9	Cadmium	1.47		1	0.049	0.123	0.246	mg/Kg 08/16/12	08/16/12	6010B
7440-70-2	Calcium	30300		1	0.876	40.95	81.9	mg/Kg 08/16/12	08/16/12	6010B
7440-47-3	Chromium	7.9	N	1	0.106	0.205	0.41	mg/Kg 08/16/12	08/16/12	6010B
7440-48-4	Cobalt	4.24		1	0.467	0.615	1.23	mg/Kg 08/16/12	08/16/12	6010B
7440-50-8	Copper	34.1	N	1	0.262	0.41	0.819	mg/Kg 08/16/12	08/16/12	6010B
7439-89-6	Iron	22400		1	1.09	2.05	4.1	mg/Kg 08/16/12	08/16/12	6010B
7439-92-1	Lead	63.5		1	0.098	0.246	0.491	mg/Kg 08/16/12	08/16/12	6010B
7439-95-4	Magnesium	3190		1	3.75	40.95	81.9	mg/Kg 08/16/12	08/16/12	6010B
7439-96-5	Manganese	1390		1	0.156	0.41	0.819	mg/Kg 08/16/12	08/16/12	6010B
7439-97-6	Mercury	0.007	J	1	0.002	0.006	0.011	mg/Kg 08/16/12	08/17/12	SW7471A
7440-02-0	Nickel	8.75		1	0.377	0.82	1.64	mg/Kg 08/16/12	08/16/12	6010B
7440-09-7	Potassium	621	N	1	2.87	40.95	81.9	mg/Kg 08/16/12	08/16/12	6010B
7782-49-2	Selenium	0.41	U	1	0.336	0.41	0.819	mg/Kg 08/16/12	08/16/12	6010B
7440-22-4	Silver	0.659		1	0.123	0.205	0.41	mg/Kg 08/16/12	08/16/12	6010B
7440-23-5	Sodium	40.95	UN	1	2.06	40.95	81.9	mg/Kg 08/16/12	08/16/12	6010B
7440-28-0	Thallium	1.46	J	1	0.221	0.82	1.64	mg/Kg 08/16/12	08/16/12	6010B
7440-62-2	Vanadium	12.2		1	0.483	0.82	1.64	mg/Kg 08/16/12	08/16/12	6010B
7440-66-6	Zinc	1610		1	0.573	0.82		mg/Kg 08/16/12	08/16/12	6010B

Color Before: Brown Clarity Before: Texture: Medium

Color After: Yellow Clarity After: Artifacts: No

Comments: METALS-TAL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

Level (low/med):

low

Report of Analysis

Client: Date Collected: MS Analytical 08/13/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

SDG No.: Client Sample ID: SB-43(10-12) D3811

Lab Sample ID: D3811-18 Matrix: **SOIL** % Solid: 82.1

Cas	Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQ	QL Units Prep Date	Date Ana.	Ana Met.
7429-90-5	Aluminum	4210		1	0.747	2.225	4.45	mg/Kg 08/16/12	08/16/12	6010B
7440-36-0	Antimony	2.11	J	1	0.498	1.11	2.22	mg/Kg 08/16/12	08/16/12	6010B
7440-38-2	Arsenic	18.7		1	0.293	0.445	0.889	mg/Kg 08/16/12	08/16/12	6010B
7440-39-3	Barium	973		1	0.356	2.225	4.45	mg/Kg 08/16/12	08/16/12	6010B
7440-41-7	Beryllium	0.315		1	0.053	0.134	0.267	mg/Kg 08/16/12	08/16/12	6010B
7440-43-9	Cadmium	1.14		1	0.053	0.134	0.267	mg/Kg 08/16/12	08/16/12	6010B
7440-70-2	Calcium	20600		1	0.951	44.45	88.9	mg/Kg 08/16/12	08/16/12	6010B
7440-47-3	Chromium	6.87	N	1	0.116	0.223	0.445	mg/Kg 08/16/12	08/16/12	6010B
7440-48-4	Cobalt	6.07		1	0.507	0.665	1.33	mg/Kg 08/16/12	08/16/12	6010B
7440-50-8	Copper	38.4	N	1	0.285	0.445	0.889	mg/Kg 08/16/12	08/16/12	6010B
7439-89-6	Iron	26200		1	1.18	2.225	4.45	mg/Kg 08/16/12	08/16/12	6010B
7439-92-1	Lead	1100		1	0.107	0.267	0.533	mg/Kg 08/16/12	08/16/12	6010B
7439-95-4	Magnesium	536		1	4.07	44.45	88.9	mg/Kg 08/16/12	08/16/12	6010B
7439-96-5	Manganese	135		1	0.169	0.445	0.889	mg/Kg 08/16/12	08/16/12	6010B
7439-97-6	Mercury	0.157		1	0.002	0.006	0.012	mg/Kg 08/16/12	08/17/12	SW7471A
7440-02-0	Nickel	15.6		1	0.409	0.89	1.78	mg/Kg 08/16/12	08/16/12	6010B
7440-09-7	Potassium	446	N	1	3.11	44.45	88.9	mg/Kg 08/16/12	08/16/12	6010B
7782-49-2	Selenium	0.445	U	1	0.365	0.445	0.889	mg/Kg 08/16/12	08/16/12	6010B
7440-22-4	Silver	0.604		1	0.133	0.223	0.445	mg/Kg 08/16/12	08/16/12	6010B
7440-23-5	Sodium	49.7	JN	1	2.24	44.45	88.9	mg/Kg 08/16/12	08/16/12	6010B
7440-28-0	Thallium	0.693	J	1	0.24	0.89	1.78	mg/Kg 08/16/12	08/16/12	6010B
7440-62-2	Vanadium	22.1		1	0.525	0.89	1.78	mg/Kg 08/16/12	08/16/12	6010B
7440-66-6	Zinc	935		1	0.622	0.89	1.78	mg/Kg 08/16/12	08/16/12	6010B

Color Before: Brown Clarity Before: Texture: Medium

Color After: Yellow Clarity After: Artifacts: No

METALS-TAL Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

Report of Analysis

Client: MS Analytical Date Collected: 08/13/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-43(16-20) SDG No.: D3811

Lab Sample ID: D3811-19 Matrix: SOIL

Level (low/med): low % Solid: 70.7

C	D	C	0	DE	MDI	LOD	I OO / CDO	I II ' D D	D 4 4	A 307.4
Cas	Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ/CRQ	L Units Prep Date	Date Ana.	Ana Met.
7429-90-5	Aluminum	4020		1	0.88	2.62	5.24	mg/Kg 08/16/12	08/16/12	6010B
7440-36-0	Antimony	1.05	J	1	0.587	1.31	2.62	mg/Kg 08/16/12	08/16/12	6010B
7440-38-2	Arsenic	14.4		1	0.346	0.525	1.05	mg/Kg 08/16/12	08/16/12	6010B
7440-39-3	Barium	174		1	0.419	2.62	5.24	mg/Kg 08/16/12	08/16/12	6010B
7440-41-7	Beryllium	0.537		1	0.063	0.157	0.314	mg/Kg 08/16/12	08/16/12	6010B
7440-43-9	Cadmium	0.284	J	1	0.063	0.157	0.314	mg/Kg 08/16/12	08/16/12	6010B
7440-70-2	Calcium	2300		1	1.12	52.5	105	mg/Kg 08/16/12	08/16/12	6010B
7440-47-3	Chromium	7.06	N	1	0.136	0.262	0.524	mg/Kg 08/16/12	08/16/12	6010B
7440-48-4	Cobalt	6.4		1	0.597	0.785	1.57	mg/Kg 08/16/12	08/16/12	6010B
7440-50-8	Copper	43.1	N	1	0.335	0.525	1.05	mg/Kg 08/16/12	08/16/12	6010B
7439-89-6	Iron	8690		1	1.39	2.62	5.24	mg/Kg 08/16/12	08/16/12	6010B
7439-92-1	Lead	606		1	0.126	0.315	0.629	mg/Kg 08/16/12	08/16/12	6010B
7439-95-4	Magnesium	317		1	4.8	52.5	105	mg/Kg 08/16/12	08/16/12	6010B
7439-96-5	Manganese	80.9		1	0.199	0.525	1.05	mg/Kg 08/16/12	08/16/12	6010B
7439-97-6	Mercury	0.04		1	0.003	0.007	0.014	mg/Kg 08/16/12	08/17/12	SW7471A
7440-02-0	Nickel	12.8		1	0.482	1.05	2.1	mg/Kg 08/16/12	08/16/12	6010B
7440-09-7	Potassium	497	N	1	3.67	52.5	105	mg/Kg 08/16/12	08/16/12	6010B
7782-49-2	Selenium	1.58		1	0.43	0.525	1.05	mg/Kg 08/16/12	08/16/12	6010B
7440-22-4	Silver	0.328	J	1	0.157	0.262	0.524	mg/Kg 08/16/12	08/16/12	6010B
7440-23-5	Sodium	988	N	1	2.64	52.5	105	mg/Kg 08/16/12	08/16/12	6010B
7440-28-0	Thallium	1.05	U	1	0.283	1.05	2.1	mg/Kg 08/16/12	08/16/12	6010B
7440-62-2	Vanadium	25.8		1	0.618	1.05	2.1	mg/Kg 08/16/12	08/16/12	6010B
7440-66-6	Zinc	109		1	0.733	1.05	2.1	mg/Kg 08/16/12	08/16/12	6010B

Color Before: Brown Clarity Before: Texture: Medium

Color After: Yellow Clarity After: Artifacts: No

Comments: METALS-TAL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

Report of Analysis

Client: MS Analytical Date Collected: 08/13/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-45(10-12) SDG No.: D3811

Lab Sample ID: D3811-20 Matrix: SOIL

Level (low/med): low % Solid: 71.9

C	D	•	0	DE	MDI	LOD	LOO / CDO	. II.'. B. B.	D 4 4	. 35.
Cas	Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQ	L Units Prep Date	Date Ana.	Ana Met.
7429-90-5	Aluminum	5350		1	0.847	2.52	5.04	mg/Kg 08/16/12	08/16/12	6010B
7440-36-0	Antimony	1.11	J	1	0.564	1.26	2.52	mg/Kg 08/16/12	08/16/12	6010B
7440-38-2	Arsenic	23.3		1	0.333	0.505	1.01	mg/Kg 08/16/12	08/16/12	6010B
7440-39-3	Barium	266		1	0.403	2.52	5.04	mg/Kg 08/16/12	08/16/12	6010B
7440-41-7	Beryllium	0.422		1	0.06	0.151	0.302	mg/Kg 08/16/12	08/16/12	6010B
7440-43-9	Cadmium	82.3		1	0.06	0.151	0.302	mg/Kg 08/16/12	08/16/12	6010B
7440-70-2	Calcium	16200		1	1.08	50.5	101	mg/Kg 08/16/12	08/16/12	6010B
7440-47-3	Chromium	15.2	N	1	0.131	0.252	0.504	mg/Kg 08/16/12	08/16/12	6010B
7440-48-4	Cobalt	7.8		1	0.574	0.755	1.51	mg/Kg 08/16/12	08/16/12	6010B
7440-50-8	Copper	139	N	1	0.323	0.505	1.01	mg/Kg 08/16/12	08/16/12	6010B
7439-89-6	Iron	20700		1	1.34	2.52	5.04	mg/Kg 08/16/12	08/16/12	6010B
7439-92-1	Lead	481		1	0.121	0.303	0.605	mg/Kg 08/16/12	08/16/12	6010B
7439-95-4	Magnesium	473		1	4.62	50.5	101	mg/Kg 08/16/12	08/16/12	6010B
7439-96-5	Manganese	208		1	0.191	0.505	1.01	mg/Kg 08/16/12	08/16/12	6010B
7439-97-6	Mercury	0.119		1	0.002	0.006	0.012	mg/Kg 08/16/12	08/17/12	SW7471A
7440-02-0	Nickel	18.1		1	0.464	1.01	2.02	mg/Kg 08/16/12	08/16/12	6010B
7440-09-7	Potassium	494	N	1	3.53	50.5	101	mg/Kg 08/16/12	08/16/12	6010B
7782-49-2	Selenium	0.505	U	1	0.413	0.505	1.01	mg/Kg 08/16/12	08/16/12	6010B
7440-22-4	Silver	0.607		1	0.151	0.252	0.504	mg/Kg 08/16/12	08/16/12	6010B
7440-23-5	Sodium	78.2	JN	1	2.54	50.5	101	mg/Kg 08/16/12	08/16/12	6010B
7440-28-0	Thallium	1.01	U	1	0.272	1.01	2.02	mg/Kg 08/16/12	08/16/12	6010B
7440-62-2	Vanadium	29.7		1	0.595	1.01	2.02	mg/Kg 08/16/12	08/16/12	6010B

Color Before: Brown Clarity Before: Texture: Medium

Color After: Yellow Clarity After: Artifacts: No

Comments: METALS-TAL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

10

Report of Analysis

Client: MS Analytical Date Collected: 08/13/12

Project: 12MS104 Kensington Heights Date Received: 08/15/12

Client Sample ID: SB-46(12-16) SDG No.: D3811

Lab Sample ID: D3811-21 Matrix: SOIL

Level (low/med): low % Solid: 71.8

C	D	C	0	DE	MDI	LOD	LOO/CD	OI IIta D Data	D-4- A	A 3M-4
Cas	Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ/CR	QL Units Prep Date	Date Ana.	Ana Met.
7429-90-5	Aluminum	3460		1	0.818	2.435	4.87	mg/Kg 08/16/12	08/16/12	6010B
7440-36-0	Antimony	2.09	J	1	0.545	1.215	2.43	mg/Kg 08/16/12	08/16/12	6010B
7440-38-2	Arsenic	12.2		1	0.321	0.487	0.974	mg/Kg 08/16/12	08/16/12	6010B
7440-39-3	Barium	113		1	0.39	2.435	4.87	mg/Kg 08/16/12	08/16/12	6010B
7440-41-7	Beryllium	0.294		1	0.058	0.146	0.292	mg/Kg 08/16/12	08/16/12	6010B
7440-43-9	Cadmium	0.392		1	0.058	0.146	0.292	mg/Kg 08/16/12	08/16/12	6010B
7440-70-2	Calcium	12100		1	1.04	48.7	97.4	mg/Kg 08/16/12	08/16/12	6010B
7440-47-3	Chromium	8.07		1	0.127	0.244	0.487	mg/Kg 08/16/12	08/16/12	6010B
7440-48-4	Cobalt	6.47		1	0.555	0.73	1.46	mg/Kg 08/16/12	08/16/12	6010B
7440-50-8	Copper	47.4		1	0.312	0.487	0.974	mg/Kg 08/16/12	08/16/12	6010B
7439-89-6	Iron	8440		1	1.3	2.435	4.87	mg/Kg 08/16/12	08/16/12	6010B
7439-92-1	Lead	246		1	0.117	0.292	0.584	mg/Kg 08/16/12	08/16/12	6010B
7439-95-4	Magnesium	1560		1	4.46	48.7	97.4	mg/Kg 08/16/12	08/16/12	6010B
7439-96-5	Manganese	142		1	0.185	0.487	0.974	mg/Kg 08/16/12	08/16/12	6010B
7439-97-6	Mercury	0.044		1	0.003	0.007	0.013	mg/Kg 08/16/12	08/17/12	SW7471A
7440-02-0	Nickel	14.4		1	0.448	0.975	1.95	mg/Kg 08/16/12	08/16/12	6010B
7440-09-7	Potassium	359		1	3.41	48.7	97.4	mg/Kg 08/16/12	08/16/12	6010B
7782-49-2	Selenium	1.42		1	0.399	0.487	0.974	mg/Kg 08/16/12	08/16/12	6010B
7440-22-4	Silver	0.312	J	1	0.146	0.244	0.487	mg/Kg 08/16/12	08/16/12	6010B
7440-23-5	Sodium	82	JN	1	2.45	48.7	97.4	mg/Kg 08/16/12	08/16/12	6010B
7440-28-0	Thallium	0.975	U	1	0.263	0.975	1.95	mg/Kg 08/16/12	08/16/12	6010B
7440-62-2	Vanadium	20.5		1	0.575	0.975	1.95	mg/Kg 08/16/12	08/16/12	6010B
7440-66-6	Zinc	169	N	1	0.682	0.975	1.95	mg/Kg 08/16/12	08/16/12	6010B

Color Before: Gray Clarity Before: Texture: Medium

Color After: Yellow Clarity After: Artifacts: No

Comments: METALS-TAL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits

METAL CALIBRATION DATA

10

D

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: MS Analytical SDG No.: D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

Initial Calibration Source: EPA

		Result	True Value	%	Acceptance		Analysis	Analysis	Run
Sample ID	Analyte	ug/L		Recovery	Window (%R)	M	Date	Time	Number
ICV01	Aluminum	2670.03	2521.0	105.9	95 - 105	P	08/16/2012	14:01	LB62171
	Antimony	975.35	994.0	98.1	95 - 105	P	08/16/2012	14:01	LB62171
	Arsenic	972.83	999.0	97.4	95 - 105	P	08/16/2012	14:01	LB62171
	Barium	520.91	503.0	103.6	95 - 105	P	08/16/2012	14:01	LB62171
	Beryllium	490.24	495.0	99.0	95 - 105	P	08/16/2012	14:01	LB62171
	Cadmium	482.25	496.0	97.2	95 - 105	P	08/16/2012	14:01	LB62171
	Calcium	10181.45	10026.0	101.6	95 - 105	P	08/16/2012	14:01	LB62171
	Chromium	490.59	490.0	100.1	95 - 105	P	08/16/2012	14:01	LB62171
	Cobalt	493.19	499.0	98.8	95 - 105	P	08/16/2012	14:01	LB62171
	Copper	509.73	492.0	103.6	95 - 105	P	08/16/2012	14:01	LB62171
	Iron	5029.37	5082.0	99.0	95 - 105	P	08/16/2012	14:01	LB62171
	Lead	973.11	1002.0	97.1	95 - 105	P	08/16/2012	14:01	LB62171
	Magnesium	5997.23	6074.0	98.7	95 - 105	P	08/16/2012	14:01	LB62171
	Manganese	501.65	499.0	100.5	95 - 105	P	08/16/2012	14:01	LB62171
	Nickel	490.64	503.0	97.5	95 - 105	P	08/16/2012	14:01	LB62171
	Potassium	9903.44	10021.0	98.8	95 - 105	P	08/16/2012	14:01	LB62171
	Selenium	976.17	1029.0	94.9	95 - 105	P	08/16/2012	14:01	LB62171
	Silver	477.09	501.0	95.2	95 - 105	P	08/16/2012	14:01	LB62171
	Sodium	10230.22	10097.0	101.3	95 - 105	P	08/16/2012	14:01	LB62171
	Thallium	994.08	1028.0	96.7	95 - 105	P	08/16/2012	14:01	LB62171
	Vanadium	503.60	501.0	100.5	95 - 105	P	08/16/2012	14:01	LB62171
	Zinc	1004.36	1025.0	98.0	95 - 105	P	08/16/2012	14:01	LB62171
CCV01	Aluminum	10115.14	10000.0	101.2	90 - 110	P	08/16/2012	14:21	LB62171
00.01	Antimony	4994.19	5000.0	99.9	90 - 110	P	08/16/2012	14:21	LB62171
	Arsenic	4989.97	5000.0	99.8	90 - 110	P	08/16/2012	14:21	LB62171
	Barium	9824.41	10000.0	98.2	90 - 110	P	08/16/2012	14:21	LB62171
	Beryllium	249.06	250.0	99.6	90 - 110	P	08/16/2012	14:21	LB62171
	Cadmium	2492.21	2500.0	99.7	90 - 110	P	08/16/2012	14:21	LB62171
	Calcium	25092.04	25000.0	100.4	90 - 110	P	08/16/2012	14:21	LB62171
	Chromium	986.91	1000.0	98.7	90 - 110	P	08/16/2012	14:21	LB62171
	Cobalt	2481.49	2500.0	99.3	90 - 110	P	08/16/2012	14:21	LB62171
	Copper	1256.05	1250.0	100.5	90 - 110	P	08/16/2012	14:21	LB62171
	Iron	5078.36	5000.0	101.6	90 - 110	P	08/16/2012	14:21	LB62171
	Lead	4943.70	5000.0	98.9	90 - 110	P	08/16/2012	14:21	LB62171
	Magnesium	25177.89	25000.0	100.7	90 - 110	P	08/16/2012	14:21	LB62171

- 2a -

10

D

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: MS Analytical SDG No.: D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

Initial Calibration Source: EPA

		Result	True Value	%	Acceptance		Analysis	Analysis	Run
Sample ID	Analyte	ug/L		Recovery	Window (%R)	M	Date	Time	Number
	•				,				
CCV01	Manganese	2491.85	2500.0	99.7	90 - 110	P	08/16/2012	14:21	LB62171
	Nickel	2483.10	2500.0	99.3	90 - 110	P	08/16/2012	14:21	LB62171
	Potassium	25243.50	25000.0	101.0	90 - 110	P	08/16/2012	14:21	LB62171
	Selenium	5010.43	5000.0	100.2	90 - 110	P	08/16/2012	14:21	LB62171
	Silver	1226.30	1250.0	98.1	90 - 110	P	08/16/2012	14:21	LB62171
	Sodium	24886.30	25000.0	99.5	90 - 110	P	08/16/2012	14:21	LB62171
	Thallium	4983.32	5000.0	99.7	90 - 110	P	08/16/2012	14:21	LB62171
	Vanadium	2511.70	2500.0	100.5	90 - 110	P	08/16/2012	14:21	LB62171
	Zinc	2496.94	2500.0	99.9	90 - 110	P	08/16/2012	14:21	LB62171
CCV02	Aluminum	10311.88	10000.0	103.1	90 - 110	P	08/16/2012	15:02	LB62171
	Antimony	4965.16	5000.0	99.3	90 - 110	P	08/16/2012	15:02	LB62171
	Arsenic	4944.53	5000.0	98.9	90 - 110	P	08/16/2012	15:02	LB62171
	Barium	10236.82	10000.0	102.4	90 - 110	P	08/16/2012	15:02	LB62171
	Beryllium	257.16	250.0	102.9	90 - 110	P	08/16/2012	15:02	LB62171
	Cadmium	2472.88	2500.0	98.9	90 - 110	P	08/16/2012	15:02	LB62171
	Calcium	26036.03	25000.0	104.1	90 - 110	P	08/16/2012	15:02	LB62171
	Chromium	991.38	1000.0	99.1	90 - 110	P	08/16/2012	15:02	LB62171
	Cobalt	2465.98	2500.0	98.6	90 - 110	P	08/16/2012	15:02	LB62171
	Copper	1287.73	1250.0	103.0	90 - 110	P	08/16/2012	15:02	LB62171
	Iron	5222.78	5000.0	104.5	90 - 110	P	08/16/2012	15:02	LB62171
	Lead	4907.87	5000.0	98.2	90 - 110	P	08/16/2012	15:02	LB62171
	Magnesium	25862.31	25000.0	103.4	90 - 110	P	08/16/2012	15:02	LB62171 LB62171
	Manganese	2582.50	2500.0	103.4	90 - 110	P	08/16/2012	15:02	LB62171 LB62171
	Nickel	2466.36	2500.0	98.7	90 - 110	P	08/16/2012	15:02	LB62171 LB62171
	Potassium	25867.09	25000.0 5000.0	103.5	90 - 110	P	08/16/2012	15:02	LB62171
	Selenium	4962.71		99.3	90 - 110	P	08/16/2012	15:02	LB62171
	Silver	1240.05	1250.0	99.2	90 - 110	P	08/16/2012	15:02	LB62171
	Sodium	25823.99	25000.0	103.3	90 - 110	P	08/16/2012	15:02	LB62171
	Thallium	4971.96	5000.0	99.4	90 - 110	P	08/16/2012	15:02	LB62171
	Vanadium	2583.97	2500.0	103.4	90 - 110	P	08/16/2012	15:02	LB62171
	Zinc	2539.86	2500.0	101.6	90 - 110	P	08/16/2012	15:02	LB62171
CCV03	Aluminum	9803.00	10000.0	98.0	90 - 110	P	08/16/2012	15:42	LB62171
	Antimony	4927.75	5000.0	98.6	90 - 110	P	08/16/2012	15:42	LB62171
	Arsenic	4968.80	5000.0	99.4	90 - 110	P	08/16/2012	15:42	LB62171
	Barium	9857.43	10000.0	98.6	90 - 110	P	08/16/2012	15:42	LB62171

10

D

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: MS Analytical SDG No.: D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

Initial Calibration Source: EPA

		Result	True Value	%	Acceptance		Analysis	Analysis	Run
Sample ID	Analyte	ug/L		Recovery	Window (%R)	M	Date	Time	Number
CCV03	Beryllium	246.36	250.0	98.5	90 - 110	P	08/16/2012	15:42	LB62171
	Cadmium	2504.02	2500.0	100.2	90 - 110	P	08/16/2012	15:42	LB62171
	Calcium	24359.26	25000.0	97.4	90 - 110	P	08/16/2012	15:42	LB62171
	Chromium	1006.83	1000.0	100.7	90 - 110	P	08/16/2012	15:42	LB62171
	Cobalt	2475.89	2500.0	99.0	90 - 110	P	08/16/2012	15:42	LB62171
	Copper	1227.61	1250.0	98.2	90 - 110	P	08/16/2012	15:42	LB62171
	Iron	4884.50	5000.0	97.7	90 - 110	P	08/16/2012	15:42	LB62171
	Lead	4958.36	5000.0	99.2	90 - 110	P	08/16/2012	15:42	LB62171
	Magnesium	24477.15	25000.0	97.9	90 - 110	P	08/16/2012	15:42	LB62171
	Manganese	2453.27	2500.0	98.1	90 - 110	P	08/16/2012	15:42	LB62171
	Nickel	2489.92	2500.0	99.6	90 - 110	P	08/16/2012	15:42	LB62171
	Potassium	24707.73	25000.0	98.8	90 - 110	P	08/16/2012	15:42	LB62171
	Selenium	4971.64	5000.0	99.4	90 - 110	P	08/16/2012	15:42	LB62171
	Silver	1234.56	1250.0	98.8	90 - 110	P	08/16/2012	15:42	LB62171
	Sodium	24970.42	25000.0	99.9	90 - 110	P	08/16/2012	15:42	LB62171
	Thallium	4998.11	5000.0	100.0	90 - 110	P	08/16/2012	15:42	LB62171
	Vanadium	2488.59	2500.0	99.5	90 - 110	P	08/16/2012	15:42	LB62171
	Zinc	2487.99	2500.0	99.5	90 - 110	P	08/16/2012	15:42	LB62171
CCV04	Aluminum	9867.94	10000.0	98.7	90 - 110	P	08/16/2012	16:22	LB62171
	Antimony	4946.69	5000.0	98.9	90 - 110	P	08/16/2012	16:22	LB62171
	Arsenic	4964.73	5000.0	99.3	90 - 110	P	08/16/2012	16:22	LB62171
	Barium	10013.22	10000.0	100.1	90 - 110	P	08/16/2012	16:22	LB62171
	Beryllium	246.50	250.0	98.6	90 - 110	P	08/16/2012	16:22	LB62171
	Cadmium	2479.70	2500.0	99.2	90 - 110	P	08/16/2012	16:22	LB62171
	Calcium	24624.86	25000.0	98.5	90 - 110	P	08/16/2012	16:22	LB62171
	Chromium	1004.23	1000.0	100.4	90 - 110	P	08/16/2012	16:22	LB62171
	Cobalt	2461.34	2500.0	98.5	90 - 110	P	08/16/2012	16:22	LB62171
	Copper	1236.41	1250.0	98.9	90 - 110	P	08/16/2012	16:22	LB62171
	Iron	4926.48	5000.0	98.5	90 - 110	P	08/16/2012	16:22	LB62171
	Lead	4942.79	5000.0	98.9	90 - 110	P	08/16/2012	16:22	LB62171
	Magnesium	24478.73	25000.0	97.9	90 - 110	P	08/16/2012	16:22	LB62171
	Manganese	2475.46	2500.0	99.0	90 - 110	P	08/16/2012	16:22	LB62171
	Nickel	2477.35	2500.0	99.1	90 - 110	P	08/16/2012	16:22	LB62171
	Potassium	24812.55	25000.0	99.3	90 - 110	P	08/16/2012	16:22	LB62171
	Selenium	4982.56	5000.0	99.7	90 - 110	P	08/16/2012	16:22	LB62171

10

D

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: MS Analytical SDG No.: D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

Initial Calibration Source: EPA

		Result	True Value	%	Acceptance		Analysis	Analysis	Run
Sample ID	Analyte	ug/L	True value	Recovery	Window (%R)	M	Date	Time	Number
	, , , , , , , , , , , , , , , , , , ,			J	,				
CCV04	Silver	1249.99	1250.0	100.0	90 - 110	P	08/16/2012	16:22	LB62171
	Sodium	25601.34	25000.0	102.4	90 - 110	P	08/16/2012	16:22	LB62171
	Thallium	5000.63	5000.0	100.0	90 - 110	P	08/16/2012	16:22	LB62171
	Vanadium	2475.75	2500.0	99.0	90 - 110	P	08/16/2012	16:22	LB62171
	Zinc	2457.09	2500.0	98.3	90 - 110	P	08/16/2012	16:22	LB62171
CCV05	Aluminum	9775.90	10000.0	97.8	90 - 110	P	08/16/2012	17:03	LB62171
	Antimony	4926.44	5000.0	98.5	90 - 110	P	08/16/2012	17:03	LB62171
	Arsenic	4967.63	5000.0	99.4	90 - 110	P	08/16/2012	17:03	LB62171
	Barium	9866.37	10000.0	98.7	90 - 110	P	08/16/2012	17:03	LB62171
	Beryllium	243.00	250.0	97.2	90 - 110	P	08/16/2012	17:03	LB62171
	Cadmium	2491.80	2500.0	99.7	90 - 110	P	08/16/2012	17:03	LB62171
	Calcium	24092.20	25000.0	96.4	90 - 110	P	08/16/2012	17:03	LB62171
	Chromium	1009.43	1000.0	100.9	90 - 110	P	08/16/2012	17:03	LB62171
	Cobalt	2464.21	2500.0	98.6	90 - 110	P	08/16/2012	17:03	LB62171
	Copper	1231.18	1250.0	98.5	90 - 110	P	08/16/2012	17:03	LB62171
	Iron	4829.47	5000.0	96.6	90 - 110	P	08/16/2012	17:03	LB62171
	Lead	4953.59	5000.0	99.1	90 - 110	P	08/16/2012	17:03	LB62171
	Magnesium	24004.45	25000.0	96.0	90 - 110	P	08/16/2012	17:03	LB62171
	Manganese	2433.03	2500.0	97.3	90 - 110	P	08/16/2012	17:03	LB62171
	Nickel	2487.05	2500.0	99.5	90 - 110	P	08/16/2012	17:03	LB62171
	Potassium	24657.83	25000.0	98.6	90 - 110	P	08/16/2012	17:03	LB62171
	Selenium	4984.95	5000.0	99.7	90 - 110	P	08/16/2012	17:03	LB62171
	Silver	1242.38	1250.0	99.4	90 - 110	P	08/16/2012	17:03	LB62171
	Sodium	25162.31	25000.0	100.6	90 - 110	P	08/16/2012	17:03	LB62171
	Thallium	5010.51	5000.0	100.2	90 - 110	P	08/16/2012	17:03	LB62171
	Vanadium	2464.31	2500.0	98.6	90 - 110	P	08/16/2012	17:03	LB62171
	Zinc	2447.37	2500.0	97.9	90 - 110	P	08/16/2012	17:03	LB62171
CCV06	Aluminum	9776.59	10000.0	97.8	90 - 110	P	08/16/2012	17:43	LB62171
	Antimony	4915.72	5000.0	98.3	90 - 110	P	08/16/2012	17:43	LB62171
	Arsenic	4957.54	5000.0	99.2	90 - 110	P	08/16/2012	17:43	LB62171
	Barium	9810.47	10000.0	98.1	90 - 110	P	08/16/2012	17:43	LB62171
	Beryllium	242.90	250.0	97.2	90 - 110	P	08/16/2012	17:43	LB62171
	Cadmium	2496.20	2500.0	99.8	90 - 110	P	08/16/2012	17:43	LB62171
	Calcium	24143.77	25000.0	96.6	90 - 110	P	08/16/2012	17:43	LB62171
	Chromium	1012.89	1000.0	101.3	90 - 110	P	08/16/2012	17:43	LB62171

10

D

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: MS Analytical SDG No.: D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

Initial Calibration Source: EPA

		Result	True Value	%	Acceptance		Analysis	Analysis	Run
Sample ID	Analyte	ug/L		Recovery	Window (%R)	M	Date	Time	Number
CCV06	Cobalt	2464.92	2500.0	98.6	90 - 110	P	08/16/2012	17:43	LB62171
	Copper	1230.84	1250.0	98.5	90 - 110	P	08/16/2012	17:43	LB62171
	Iron	4836.94	5000.0	96.7	90 - 110	P	08/16/2012	17:43	LB62171
	Lead	4957.83	5000.0	99.2	90 - 110	P	08/16/2012	17:43	LB62171
	Magnesium	24094.11	25000.0	96.4	90 - 110	P	08/16/2012	17:43	LB62171
	Manganese	2436.99	2500.0	97.5	90 - 110	P	08/16/2012	17:43	LB62171
	Nickel	2487.64	2500.0	99.5	90 - 110	P	08/16/2012	17:43	LB62171
	Potassium	24718.40	25000.0	98.9	90 - 110	P	08/16/2012	17:43	LB62171
	Selenium	4972.32	5000.0	99.4	90 - 110	P	08/16/2012	17:43	LB62171
	Silver	1243.31	1250.0	99.5	90 - 110	P	08/16/2012	17:43	LB62171
	Sodium	25145.72	25000.0	100.6	90 - 110	P	08/16/2012	17:43	LB62171
	Thallium	5004.53	5000.0	100.1	90 - 110	P	08/16/2012	17:43	LB62171
	Vanadium	2475.51	2500.0	99.0	90 - 110	P	08/16/2012	17:43	LB62171
	Zinc	2447.32	2500.0	97.9	90 - 110	P	08/16/2012	17:43	LB62171
CCV07	Aluminum	9771.55	10000.0	97.7	90 - 110	P	08/16/2012	18:22	LB62171
	Antimony	4975.46	5000.0	99.5	90 - 110	P	08/16/2012	18:22	LB62171
	Arsenic	4988.24	5000.0	99.8	90 - 110	P	08/16/2012	18:22	LB62171
	Barium	9874.43	10000.0	98.7	90 - 110	P	08/16/2012	18:22	LB62171
	Beryllium	242.39	250.0	97.0	90 - 110	P	08/16/2012	18:22	LB62171
	Cadmium	2461.42	2500.0	98.5	90 - 110	P	08/16/2012	18:22	LB62171
	Calcium	24085.98	25000.0	96.3	90 - 110	P	08/16/2012	18:22	LB62171
	Chromium	998.43	1000.0	99.8	90 - 110	P	08/16/2012	18:22	LB62171
	Cobalt	2454.07	2500.0	98.2	90 - 110	P	08/16/2012	18:22	LB62171
	Copper	1233.16	1250.0	98.7	90 - 110	P	08/16/2012	18:22	LB62171
	Iron	4854.35	5000.0	97.1	90 - 110	P	08/16/2012	18:22	LB62171
	Lead	4916.25	5000.0	98.3	90 - 110	P	08/16/2012	18:22	LB62171
	Magnesium	23889.62	25000.0	95.6	90 - 110	P	08/16/2012	18:22	LB62171
	Manganese	2423.74	2500.0	96.9	90 - 110	P	08/16/2012	18:22	LB62171
	Nickel	2460.00	2500.0	98.4	90 - 110	P	08/16/2012	18:22	LB62171
	Potassium	24852.92	25000.0	99.4	90 - 110	P	08/16/2012	18:22	LB62171
	Selenium	5006.79	5000.0	100.1	90 - 110	P	08/16/2012	18:22	LB62171
	Silver	1229.77	1250.0	98.4	90 - 110	P	08/16/2012	18:22	LB62171
	Sodium	25189.62	25000.0	100.8	90 - 110	P	08/16/2012	18:22	LB62171
	Thallium	5003.93	5000.0	100.1	90 - 110	P	08/16/2012	18:22	LB62171
	Vanadium	2470.30	2500.0	98.8	90 - 110	P	08/16/2012	18:22	LB62171

10

D

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: MS Analytical SDG No.: D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

Initial Calibration Source: EPA

		Result	True Value	%	Acceptance		Analysis	Analysis	Run
Sample ID	Analyte	ug/L		Recovery	Window (%R)	M	Date	Time	Number
CCV07	Zinc	2411.58	2500.0	96.5	90 - 110	P	08/16/2012	18:22	LB62171
CCV08	Aluminum	9814.26	10000.0	98.1	90 - 110	P	08/16/2012	19:02	LB62171
	Antimony	4946.23	5000.0	98.9	90 - 110	P	08/16/2012	19:02	LB62171
	Arsenic	4948.53	5000.0	99.0	90 - 110	P	08/16/2012	19:02	LB62171
	Barium	9785.50	10000.0	97.9	90 - 110	P	08/16/2012	19:02	LB62171
	Beryllium	241.13	250.0	96.5	90 - 110	P	08/16/2012	19:02	LB62171
	Cadmium	2437.30	2500.0	97.5	90 - 110	P	08/16/2012	19:02	LB62171
	Calcium	24366.99	25000.0	97.5	90 - 110	P	08/16/2012	19:02	LB62171
	Chromium	975.10	1000.0	97.5	90 - 110	P	08/16/2012	19:02	LB62171
	Cobalt	2435.12	2500.0	97.4	90 - 110	P	08/16/2012	19:02	LB62171
	Copper	1231.90	1250.0	98.6	90 - 110	P	08/16/2012	19:02	LB62171
	Iron	4910.65	5000.0	98.2	90 - 110	P	08/16/2012	19:02	LB62171
	Lead	4856.29	5000.0	97.1	90 - 110	P	08/16/2012	19:02	LB62171
	Magnesium	24257.83	25000.0	97.0	90 - 110	P	08/16/2012	19:02	LB62171
	Manganese	2423.60	2500.0	96.9	90 - 110	P	08/16/2012	19:02	LB62171
	Nickel	2433.20	2500.0	97.3	90 - 110	P	08/16/2012	19:02	LB62171
	Potassium	25085.50	25000.0	100.3	90 - 110	P	08/16/2012	19:02	LB62171
	Selenium	4969.00	5000.0	99.4	90 - 110	P	08/16/2012	19:02	LB62171
	Silver	1212.23	1250.0	97.0	90 - 110	P	08/16/2012	19:02	LB62171
	Sodium	25039.19	25000.0	100.2	90 - 110	P	08/16/2012	19:02	LB62171
	Thallium	4926.60	5000.0	98.5	90 - 110	P	08/16/2012	19:02	LB62171
	Vanadium	2456.71	2500.0	98.3	90 - 110	P	08/16/2012	19:02	LB62171
	Zinc	2359.46	2500.0	94.4	90 - 110	P	08/16/2012	19:02	LB62171
CCV09	Aluminum	9946.49	10000.0	99.5	90 - 110	P	08/16/2012	19:43	LB62171
	Antimony	4972.02	5000.0	99.4	90 - 110	P	08/16/2012	19:43	LB62171
	Arsenic	4962.72	5000.0	99.3	90 - 110	P	08/16/2012	19:43	LB62171
	Barium	9864.77	10000.0	98.6	90 - 110	P	08/16/2012	19:43	LB62171
	Beryllium	245.94	250.0	98.4	90 - 110	P	08/16/2012	19:43	LB62171
	Cadmium	2465.70	2500.0	98.6	90 - 110	P	08/16/2012	19:43	LB62171
	Calcium	25006.31	25000.0	100.0	90 - 110	P	08/16/2012	19:43	LB62171
	Chromium	984.03	1000.0	98.4	90 - 110	P	08/16/2012	19:43	LB62171
	Cobalt	2460.24	2500.0	98.4	90 - 110	P	08/16/2012	19:43	LB62171
	Copper	1245.93	1250.0	99.7	90 - 110	P	08/16/2012	19:43	LB62171
	Iron	5033.98	5000.0	100.7	90 - 110	P	08/16/2012	19:43	LB62171
	Lead	4900.07	5000.0	98.0	90 - 110	P	08/16/2012	19:43	LB62171

10

D

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: MS Analytical SDG No.: D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

Initial Calibration Source: EPA

		Result	True Value	%	Acceptance		Analysis	Analysis	Run
Sample ID	Analyte	ug/L		Recovery	Window (%R)	M	Date	Time	Number
CCV09	Magnesium	24942.90	25000.0	99.8	90 - 110	P	08/16/2012	19:43	LB62171
	Manganese	2473.09	2500.0	98.9	90 - 110	P	08/16/2012	19:43	LB62171
	Nickel	2454.42	2500.0	98.2	90 - 110	P	08/16/2012	19:43	LB62171
	Potassium	25581.83	25000.0	102.3	90 - 110	P	08/16/2012	19:43	LB62171
	Selenium	4975.34	5000.0	99.5	90 - 110	P	08/16/2012	19:43	LB62171
	Silver	1226.25	1250.0	98.1	90 - 110	P	08/16/2012	19:43	LB62171
	Sodium	25318.47	25000.0	101.3	90 - 110	P	08/16/2012	19:43	LB62171
	Thallium	4941.01	5000.0	98.8	90 - 110	P	08/16/2012	19:43	LB62171
	Vanadium	2550.78	2500.0	102.0	90 - 110	P	08/16/2012	19:43	LB62171
	Zinc	2401.02	2500.0	96.0	90 - 110	P	08/16/2012	19:43	LB62171
CCV10	Aluminum	10064.88	10000.0	100.6	90 - 110	P	08/16/2012	20:23	LB62171
	Antimony	5010.13	5000.0	100.2	90 - 110	P	08/16/2012	20:23	LB62171
	Arsenic	4939.60	5000.0	98.8	90 - 110	P	08/16/2012	20:23	LB62171
	Barium	10053.37	10000.0	100.5	90 - 110	P	08/16/2012	20:23	LB62171
	Beryllium	245.73	250.0	98.3	90 - 110	P	08/16/2012	20:23	LB62171
	Cadmium	2442.43	2500.0	97.7	90 - 110	P	08/16/2012	20:23	LB62171
	Calcium	25448.85	25000.0	101.8	90 - 110	P	08/16/2012	20:23	LB62171
	Chromium	966.43	1000.0	96.6	90 - 110	P	08/16/2012	20:23	LB62171
	Cobalt	2457.94	2500.0	98.3	90 - 110	P	08/16/2012	20:23	LB62171
	Copper	1258.50	1250.0	100.7	90 - 110	P	08/16/2012	20:23	LB62171
	Iron	5097.07	5000.0	101.9	90 - 110	P	08/16/2012	20:23	LB62171
	Lead	4862.75	5000.0	97.3	90 - 110	P	08/16/2012	20:23	LB62171
	Magnesium	25242.33	25000.0	101.0	90 - 110	P	08/16/2012	20:23	LB62171
	Manganese	2491.77	2500.0	99.7	90 - 110	P	08/16/2012	20:23	LB62171
	Nickel	2433.10	2500.0	97.3	90 - 110	P	08/16/2012	20:23	LB62171
	Potassium	26059.05	25000.0	104.2	90 - 110	P	08/16/2012	20:23	LB62171
	Selenium	4963.91	5000.0	99.3	90 - 110	P	08/16/2012	20:23	LB62171
	Silver	1207.41	1250.0	96.6	90 - 110	P	08/16/2012	20:23	LB62171
	Sodium	25537.61	25000.0	102.2	90 - 110	P	08/16/2012	20:23	LB62171
	Thallium	4912.62	5000.0	98.3	90 - 110	P	08/16/2012	20:23	LB62171
	Vanadium	2576.13	2500.0	103.0	90 - 110	P	08/16/2012	20:23	LB62171
	Zinc	2385.63	2500.0	95.4	90 - 110	P	08/16/2012	20:23	LB62171
CCV11	Aluminum	10291.64	10000.0	102.9	90 - 110	P	08/16/2012	21:05	LB62171
	Antimony	5008.18	5000.0	100.2	90 - 110	P	08/16/2012	21:05	LB62171
	Arsenic	4954.81	5000.0	99.1	90 - 110	P	08/16/2012	21:05	LB62171

10

D

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: MS Analytical SDG No.: D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

Initial Calibration Source: EPA

		Result	True Value	%	Acceptance		Analysis	Analysis	Run
Sample ID	Analyte	ug/L		Recovery	Window (%R)	M	Date	Time	Number
CCV11	Barium	10082.09	10000.0	100.8	90 - 110	P	08/16/2012	21:05	LB62171
	Beryllium	248.40	250.0	99.4	90 - 110	P	08/16/2012	21:05	LB62171
	Cadmium	2450.27	2500.0	98.0	90 - 110	P	08/16/2012	21:05	LB62171
	Calcium	25951.43	25000.0	103.8	90 - 110	P	08/16/2012	21:05	LB62171
	Chromium	967.50	1000.0	96.8	90 - 110	P	08/16/2012	21:05	LB62171
	Cobalt	2463.09	2500.0	98.5	90 - 110	P	08/16/2012	21:05	LB62171
	Copper	1280.80	1250.0	102.5	90 - 110	P	08/16/2012	21:05	LB62171
	Iron	5211.34	5000.0	104.2	90 - 110	P	08/16/2012	21:05	LB62171
	Lead	4873.63	5000.0	97.5	90 - 110	P	08/16/2012	21:05	LB62171
	Magnesium	25736.24	25000.0	102.9	90 - 110	P	08/16/2012	21:05	LB62171
	Manganese	2522.58	2500.0	100.9	90 - 110	P	08/16/2012	21:05	LB62171
	Nickel	2439.14	2500.0	97.6	90 - 110	P	08/16/2012	21:05	LB62171
	Potassium	26702.73	25000.0	106.8	90 - 110	P	08/16/2012	21:05	LB62171
	Selenium	4968.48	5000.0	99.4	90 - 110	P	08/16/2012	21:05	LB62171
	Silver	1204.46	1250.0	96.4	90 - 110	P	08/16/2012	21:05	LB62171
	Sodium	25789.86	25000.0	103.2	90 - 110	P	08/16/2012	21:05	LB62171
	Thallium	4918.20	5000.0	98.4	90 - 110	P	08/16/2012	21:05	LB62171
	Vanadium	2614.92	2500.0	104.6	90 - 110	P	08/16/2012	21:05	LB62171
	Zinc	2403.58	2500.0	96.1	90 - 110	P	08/16/2012	21:05	LB62171
CCV12	Aluminum	10059.67	10000.0	100.6	90 - 110	P	08/16/2012	21:46	LB62171
	Antimony	4984.82	5000.0	99.7	90 - 110	P	08/16/2012	21:46	LB62171
	Arsenic	4945.28	5000.0	98.9	90 - 110	P	08/16/2012	21:46	LB62171
	Barium	9933.34	10000.0	99.3	90 - 110	P	08/16/2012	21:46	LB62171
	Beryllium	243.52	250.0	97.4	90 - 110	P	08/16/2012	21:46	LB62171
	Cadmium	2467.22	2500.0	98.7	90 - 110	P	08/16/2012	21:46	LB62171
	Calcium	25422.36	25000.0	101.7	90 - 110	P	08/16/2012	21:46	LB62171
	Chromium	976.08	1000.0	97.6	90 - 110	P	08/16/2012	21:46	LB62171
	Cobalt	2465.92	2500.0	98.6	90 - 110	P	08/16/2012	21:46	LB62171
	Copper	1247.32	1250.0	99.8	90 - 110	P	08/16/2012	21:46	LB62171
	Iron	5038.94	5000.0	100.8	90 - 110	P	08/16/2012	21:46	LB62171
	Lead	4879.09	5000.0	97.6	90 - 110	P	08/16/2012	21:46	LB62171
	Magnesium	25198.17	25000.0	100.8	90 - 110	P	08/16/2012	21:46	LB62171
	Manganese	2477.55	2500.0	99.1	90 - 110	P	08/16/2012	21:46	LB62171
	Nickel	2452.06	2500.0	98.1	90 - 110	P	08/16/2012	21:46	LB62171
	Potassium	25859.27	25000.0	103.4	90 - 110	P	08/16/2012	21:46	LB62171

- 2a -

10

D

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: MS Analytical SDG No.: D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

Initial Calibration Source: EPA

		Result	True Value	%	Acceptance		Analysis	Analysis	Run
Sample ID	Analyte	ug/L		Recovery	Window (%R)	M	Date	Time	Number
CCV12	Selenium	4965.54	5000.0	99.3	90 - 110	P	08/16/2012	21:46	LB62171
	Silver	1213.79	1250.0	97.1	90 - 110	P	08/16/2012	21:46	LB62171
	Sodium	25575.82	25000.0	102.3	90 - 110	P	08/16/2012	21:46	LB62171
	Thallium	4927.74	5000.0	98.6	90 - 110	P	08/16/2012	21:46	LB62171
	Vanadium	2567.31	2500.0	102.7	90 - 110	P	08/16/2012	21:46	LB62171
	Zinc	2389.90	2500.0	95.6	90 - 110	P	08/16/2012	21:46	LB62171
CCV13	Aluminum	10064.18	10000.0	100.6	90 - 110	P	08/16/2012	22:29	LB62171
	Antimony	4997.01	5000.0	99.9	90 - 110	P	08/16/2012	22:29	LB62171
	Arsenic	4928.96	5000.0	98.6	90 - 110	P	08/16/2012	22:29	LB62171
	Barium	10139.30	10000.0	101.4	90 - 110	P	08/16/2012	22:29	LB62171
	Beryllium	242.87	250.0	97.1	90 - 110	P	08/16/2012	22:29	LB62171
	Cadmium	2453.98	2500.0	98.2	90 - 110	P	08/16/2012	22:29	LB62171
	Calcium	25351.29	25000.0	101.4	90 - 110	P	08/16/2012	22:29	LB62171
	Chromium	971.65	1000.0	97.2	90 - 110	P	08/16/2012	22:29	LB62171
	Cobalt	2459.98	2500.0	98.4	90 - 110	P	08/16/2012	22:29	LB62171
	Copper	1249.93	1250.0	100.0	90 - 110	P	08/16/2012	22:29	LB62171
	Iron	5090.88	5000.0	101.8	90 - 110	P	08/16/2012	22:29	LB62171
	Lead	4874.45	5000.0	97.5	90 - 110	P	08/16/2012	22:29	LB62171
	Magnesium	25041.40	25000.0	100.2	90 - 110	P	08/16/2012	22:29	LB62171
	Manganese	2472.74	2500.0	98.9	90 - 110	P	08/16/2012	22:29	LB62171
	Nickel	2447.77	2500.0	97.9	90 - 110	P	08/16/2012	22:29	LB62171
	Potassium	25824.72	25000.0	103.3	90 - 110	P	08/16/2012	22:29	LB62171
	Selenium	4963.74	5000.0	99.3	90 - 110	P	08/16/2012	22:29	LB62171
	Silver	1217.55	1250.0	97.4	90 - 110	P	08/16/2012	22:29	LB62171
	Sodium	25655.42	25000.0	102.6	90 - 110	P	08/16/2012	22:29	LB62171
	Thallium	4936.07	5000.0	98.7	90 - 110	P	08/16/2012	22:29	LB62171
	Vanadium	2584.63	2500.0	103.4	90 - 110	P	08/16/2012	22:29	LB62171
	Zinc	2389.66	2500.0	95.6	90 - 110	P	08/16/2012	22:29	LB62171
CCV14	Aluminum	10036.27	10000.0	100.4	90 - 110	P	08/16/2012	22:53	LB62171
	Antimony	4986.81	5000.0	99.7	90 - 110	P	08/16/2012	22:53	LB62171
	Arsenic	4939.92	5000.0	98.8	90 - 110	P	08/16/2012	22:53	LB62171
	Barium	10030.71	10000.0	100.3	90 - 110	P	08/16/2012	22:53	LB62171
	Beryllium	241.83	250.0	96.7	90 - 110	P	08/16/2012	22:53	LB62171
	Cadmium	2451.94	2500.0	98.1	90 - 110	P	08/16/2012	22:53	LB62171
	Calcium	25233.84	25000.0	100.9	90 - 110	P	08/16/2012	22:53	LB62171

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: MS Analytical SDG No.: D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

Initial Calibration Source: EPA

Continuing Calibration Source: INORGANIC VENTURES

Sample ID	Analyte	Result ug/L	True Value	% Recovery	Acceptance Window (%R)	M	Analysis Date	Analysis Time	Run Number
CCV14	Chromium	973.20	1000.0	97.3	90 - 110	P	08/16/2012	22:53	LB62171
CCV14	Cobalt	2457.78	2500.0	98.3	90 - 110	P	08/16/2012	22:53	LB62171 LB62171
		1245.42	1250.0	99.6	90 - 110	P	08/16/2012	22:53	LB62171 LB62171
	Copper								
	Iron	5037.77	5000.0	100.8	90 - 110	P	08/16/2012	22:53	LB62171
	Lead	4873.52	5000.0	97.5	90 - 110	P	08/16/2012	22:53	LB62171
	Magnesium	24954.43	25000.0	99.8	90 - 110	P	08/16/2012	22:53	LB62171
	Manganese	2459.27	2500.0	98.4	90 - 110	P	08/16/2012	22:53	LB62171
	Nickel	2444.62	2500.0	97.8	90 - 110	P	08/16/2012	22:53	LB62171
	Potassium	25977.96	25000.0	103.9	90 - 110	P	08/16/2012	22:53	LB62171
	Selenium	4961.48	5000.0	99.2	90 - 110	P	08/16/2012	22:53	LB62171
	Silver	1214.78	1250.0	97.2	90 - 110	P	08/16/2012	22:53	LB62171
	Sodium	25532.13	25000.0	102.1	90 - 110	P	08/16/2012	22:53	LB62171
	Thallium	4922.09	5000.0	98.4	90 - 110	P	08/16/2012	22:53	LB62171
	Vanadium	2591.05	2500.0	103.6	90 - 110	P	08/16/2012	22:53	LB62171
	Zinc	2368.05	2500.0	94.7	90 - 110	P	08/16/2012	22:53	LB62171

10

B

D

10

D

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: MS Analytical SDG No.: D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

Initial Calibration Source: EPA

		Result	True Value	%	Acceptance		Analysis	Analysis	Run
Sample ID	Analyte	ug/L		Recovery	Window (%R)	M	Date	Time	Number
ICV01	Aluminum	2590	2520	102.7	90 - 110	P	08/17/2012	12:00	LB62199
	Antimony	971	994	97.7	90 - 110	P	08/17/2012	12:00	LB62199
	Arsenic	961	999	96.2	90 - 110	P	08/17/2012	12:00	LB62199
	Barium	511	503	101.5	90 - 110	P	08/17/2012	12:00	LB62199
	Beryllium	485	495	97.9	90 - 110	P	08/17/2012	12:00	LB62199
	Cadmium	485	496	97.8	90 - 110	P	08/17/2012	12:00	LB62199
	Calcium	10100	10000	100.8	90 - 110	P	08/17/2012	12:00	LB62199
	Chromium	502	490	102.5	90 - 110	P	08/17/2012	12:00	LB62199
	Cobalt	488	499	97.7	90 - 110	P	08/17/2012	12:00	LB62199
	Copper	504	492	102.5	90 - 110	P	08/17/2012	12:00	LB62199
	Iron	5090	5080	100.1	90 - 110	P	08/17/2012	12:00	LB62199
	Lead	984	1000	98.3	90 - 110	P	08/17/2012	12:00	LB62199
	Magnesium	5980	6070	98.4	90 - 110	P	08/17/2012	12:00	LB62199
	Manganese	509	499	102.0	90 - 110	P	08/17/2012	12:00	LB62199
	Nickel	491	503	97.6	90 - 110	P	08/17/2012	12:00	LB62199
	Potassium	10100	10000	100.6	90 - 110	P	08/17/2012	12:00	LB62199
	Selenium	980	1000	97.7	90 - 110	P	08/17/2012	12:00	LB62199
	Silver	489	501	97.5	90 - 110	P	08/17/2012	12:00	LB62199
	Sodium	10400	10100	103.3	90 - 110	P	08/17/2012	12:00	LB62199
	Thallium	992	1000	98.9	90 - 110	P	08/17/2012	12:00	LB62199
	Vanadium	498	501	99.4	90 - 110	P	08/17/2012	12:00	LB62199
	Zinc	1020	1020	99.8	90 - 110	P	08/17/2012	12:00	LB62199
CCV01	Aluminum	9750	10000	97.5	90 - 110	P	08/17/2012	12:34	LB62199
	Antimony	4930	5000	98.7	90 - 110	P	08/17/2012	12:34	LB62199
	Arsenic	4950	5000	99.0	90 - 110	P	08/17/2012	12:34	LB62199
	Barium	9890	10000	98.9	90 - 110	P	08/17/2012	12:34	LB62199
	Beryllium	245	250	98.1	90 - 110	P	08/17/2012	12:34	LB62199
	Cadmium	2470	2500	98.8	90 - 110	P	08/17/2012	12:34	LB62199
	Calcium	24900	25000	99.6	90 - 110	P	08/17/2012	12:34	LB62199
	Chromium	995	1000	99.5	90 - 110	P	08/17/2012	12:34	LB62199
	Cobalt	2460	2500	98.3	90 - 110	P	08/17/2012	12:34	LB62199
	Copper	1240	1250	99.3	90 - 110	P	08/17/2012	12:34	LB62199
	Iron	4960	5000	99.1	90 - 110	P	08/17/2012	12:34	LB62199
	Lead	4940	5000	98.8	90 - 110	P	08/17/2012	12:34	LB62199
	Magnesium	24400	25000	97.8	90 - 110	P	08/17/2012	12:34	LB62199

10

D

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: MS Analytical SDG No.: D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

Initial Calibration Source: EPA

		Result	True Value	%	Acceptance		Analysis	Analysis	Run
Sample ID	Analyte	ug/L		Recovery	Window (%R)	M	Date	Time	Number
CCV01	Manganese	2480	2500	99.0	90 - 110	P	08/17/2012	12:34	LB62199
	Nickel	2480	2500	99.2	90 - 110	P	08/17/2012	12:34	LB62199
	Potassium	24800	25000	99.1	90 - 110	P	08/17/2012	12:34	LB62199
	Selenium	4980	5000	99.7	90 - 110	P	08/17/2012	12:34	LB62199
	Silver	1240	1250	99.6	90 - 110	P	08/17/2012	12:34	LB62199
	Sodium	25100	25000	100.3	90 - 110	P	08/17/2012	12:34	LB62199
	Thallium	4970	5000	99.4	90 - 110	P	08/17/2012	12:34	LB62199
	Vanadium	2460	2500	98.6	90 - 110	P	08/17/2012	12:34	LB62199
	Zinc	2450	2500	98.0	90 - 110	P	08/17/2012	12:34	LB62199
CCV02	Aluminum	9680	10000	96.8	90 - 110	P	08/17/2012	13:19	LB62199
	Antimony	4850	5000	96.9	90 - 110	P	08/17/2012	13:19	LB62199
	Arsenic	4870	5000	97.4	90 - 110	P	08/17/2012	13:19	LB62199
	Barium	9840	10000	98.4	90 - 110	P	08/17/2012	13:19	LB62199
	Beryllium	243	250	97.2	90 - 110	P	08/17/2012	13:19	LB62199
	Cadmium	2440	2500	97.7	90 - 110	P	08/17/2012	13:19	LB62199
	Calcium	25000	25000	100.0	90 - 110	P	08/17/2012	13:19	LB62199
	Chromium	994	1000	99.4	90 - 110	P	08/17/2012	13:19	LB62199
	Cobalt	2420	2500	96.7	90 - 110	P	08/17/2012	13:19	LB62199
	Copper	1220	1250	97.8	90 - 110	P	08/17/2012	13:19	LB62199
	Iron	4910	5000	98.1	90 - 110	P	08/17/2012	13:19	LB62199
	Lead	4880	5000	97.6	90 - 110	P	08/17/2012	13:19	LB62199
	Magnesium	24100	25000	96.5	90 - 110	P	08/17/2012	13:19	LB62199
	Manganese	2460	2500	98.3	90 - 110	P	08/17/2012	13:19	LB62199
	Nickel	2460	2500	98.6	90 - 110	P	08/17/2012	13:19	LB62199
	Potassium	24500	25000	98.2	90 - 110	P	08/17/2012	13:19	LB62199
	Selenium	4940	5000	98.9	90 - 110	P	08/17/2012	13:19	LB62199
	Silver	1240	1250	99.3	90 - 110	P	08/17/2012	13:19	LB62199
	Sodium	24700	25000	98.8	90 - 110	P	08/17/2012	13:19	LB62199
	Thallium	4920	5000	98.3	90 - 110	P	08/17/2012	13:19	LB62199
	Vanadium	2450	2500	98.1	90 - 110	P	08/17/2012	13:19	LB62199
	Zinc	2460	2500	98.3	90 - 110	P	08/17/2012	13:19	LB62199
CCV03	Aluminum	9680	10000	96.8	90 - 110	P	08/17/2012	14:05	LB62199
22,00	Antimony	4820	5000	96.4	90 - 110	P	08/17/2012	14:05	LB62199
	Arsenic	4860	5000	97.1	90 - 110	P	08/17/2012	14:05	LB62199
	Barium	9510	10000	95.1	90 - 110	P	08/17/2012	14:05	LB62199

10

D

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: MS Analytical SDG No.: D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

Initial Calibration Source: EPA

		Result	True Value	%	Acceptance		Analysis	Analysis	Run
Sample ID	Analyte	ug/L		Recovery	Window (%R)	M	Date	Time	Number
CCV03	Beryllium	242	250	96.7	90 - 110	P	08/17/2012	14:05	LB62199
	Cadmium	2430	2500	97.4	90 - 110	P	08/17/2012	14:05	LB62199
	Calcium	24500	25000	98.2	90 - 110	P	08/17/2012	14:05	LB62199
	Chromium	1010	1000	101.0	90 - 110	P	08/17/2012	14:05	LB62199
	Cobalt	2410	2500	96.4	90 - 110	P	08/17/2012	14:05	LB62199
	Copper	1220	1250	97.6	90 - 110	P	08/17/2012	14:05	LB62199
	Iron	5000	5000	100.1	90 - 110	P	08/17/2012	14:05	LB62199
	Lead	4880	5000	97.6	90 - 110	P	08/17/2012	14:05	LB62199
	Magnesium	23000	25000	92.1	90 - 110	P	08/17/2012	14:05	LB62199
	Manganese	2450	2500	98.2	90 - 110	P	08/17/2012	14:05	LB62199
	Nickel	2470	2500	98.7	90 - 110	P	08/17/2012	14:05	LB62199
	Potassium	23900	25000	95.7	90 - 110	P	08/17/2012	14:05	LB62199
	Selenium	5000	5000	100.1	90 - 110	P	08/17/2012	14:05	LB62199
	Silver	1260	1250	100.9	90 - 110	P	08/17/2012	14:05	LB62199
	Sodium	24300	25000	97.4	90 - 110	P	08/17/2012	14:05	LB62199
	Thallium	4910	5000	98.1	90 - 110	P	08/17/2012	14:05	LB62199
	Vanadium	2440	2500	97.7	90 - 110	P	08/17/2012	14:05	LB62199
	Zinc	2440	2500	97.5	90 - 110	P	08/17/2012	14:05	LB62199
CCV04	Aluminum	9600	10000	96.0	90 - 110	P	08/17/2012	14:51	LB62199
	Antimony	4840	5000	96.8	90 - 110	P	08/17/2012	14:51	LB62199
	Arsenic	4860	5000	97.2	90 - 110	P	08/17/2012	14:51	LB62199
	Barium	9680	10000	96.8	90 - 110	P	08/17/2012	14:51	LB62199
	Beryllium	241	250	96.4	90 - 110	P	08/17/2012	14:51	LB62199
	Cadmium	2430	2500	97.0	90 - 110	P	08/17/2012	14:51	LB62199
	Calcium	24600	25000	98.2	90 - 110	P	08/17/2012	14:51	LB62199
	Chromium	991	1000	99.1	90 - 110	P	08/17/2012	14:51	LB62199
	Cobalt	2410	2500	96.3	90 - 110	P	08/17/2012	14:51	LB62199
	Copper	1220	1250	97.3	90 - 110	P	08/17/2012	14:51	LB62199
	Iron	4870	5000	97.4	90 - 110	P	08/17/2012	14:51	LB62199
	Lead	4860	5000	97.1	90 - 110	P	08/17/2012	14:51	LB62199
	Magnesium	23500	25000	94.0	90 - 110	P	08/17/2012	14:51	LB62199
	Manganese	2440	2500	97.7	90 - 110	P	08/17/2012	14:51	LB62199
	Nickel	2460	2500	98.2	90 - 110	P	08/17/2012	14:51	LB62199
	Potassium	24100	25000	96.5	90 - 110	P	08/17/2012	14:51	LB62199
	Selenium	4960	5000	99.1	90 - 110	P	08/17/2012	14:51	LB62199

- 2a -

10

D

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: MS Analytical SDG No.: D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

Initial Calibration Source: EPA

		Result	True Value	%	Acceptance		Analysis	Analysis	Run
Sample ID	Analyte	ug/L		Recovery	Window (%R)	M	Date	Time	Number
CCV04	Silver	1240	1250	99.2	90 - 110	P	08/17/2012	14:51	LB62199
	Sodium	24400	25000	97.7	90 - 110	P	08/17/2012	14:51	LB62199
	Thallium	4890	5000	97.8	90 - 110	P	08/17/2012	14:51	LB62199
	Vanadium	2430	2500	97.4	90 - 110	P	08/17/2012	14:51	LB62199
	Zinc	2380	2500	95.1	90 - 110	P	08/17/2012	14:51	LB62199
CCV05	Aluminum	9600	10000	96.0	90 - 110	P	08/17/2012	15:37	LB62199
	Antimony	4790	5000	95.8	90 - 110	P	08/17/2012	15:37	LB62199
	Arsenic	4840	5000	96.9	90 - 110	P	08/17/2012	15:37	LB62199
	Barium	9470	10000	94.7	90 - 110	P	08/17/2012	15:37	LB62199
	Beryllium	242	250	96.6	90 - 110	P	08/17/2012	15:37	LB62199
	Cadmium	2430	2500	97.2	90 - 110	P	08/17/2012	15:37	LB62199
	Calcium	24700	25000	98.9	90 - 110	P	08/17/2012	15:37	LB62199
	Chromium	1000	1000	100.0	90 - 110	P	08/17/2012	15:37	LB62199
	Cobalt	2410	2500	96.3	90 - 110	P	08/17/2012	15:37	LB62199
	Copper	1210	1250	97.0	90 - 110	P	08/17/2012	15:37	LB62199
	Iron	4940	5000	98.8	90 - 110	P	08/17/2012	15:37	LB62199
	Lead	4860	5000	97.3	90 - 110	P	08/17/2012	15:37	LB62199
	Magnesium	23100	25000	92.5	90 - 110	P	08/17/2012	15:37	LB62199
	Manganese	2450	2500	98.0	90 - 110	P	08/17/2012	15:37	LB62199
	Nickel	2470	2500	98.6	90 - 110	P	08/17/2012	15:37	LB62199
	Potassium	23600	25000	94.5	90 - 110	P	08/17/2012	15:37	LB62199
	Selenium	4990	5000	99.9	90 - 110	P	08/17/2012	15:37	LB62199
	Silver	1250	1250	99.8	90 - 110	P	08/17/2012	15:37	LB62199
	Sodium	24000	25000	96.1	90 - 110	P	08/17/2012	15:37	LB62199
	Thallium	4910	5000	98.1	90 - 110	P	08/17/2012	15:37	LB62199
	Vanadium	2440	2500	97.6	90 - 110	P	08/17/2012	15:37	LB62199
	Zinc	2520	2500	100.7	90 - 110	P	08/17/2012	15:37	LB62199
CCV06	Aluminum	9570	10000	95.7	90 - 110	P	08/17/2012	16:23	LB62199
	Antimony	4800	5000	96.0	90 - 110	P	08/17/2012	16:23	LB62199
	Arsenic	4850	5000	97.0	90 - 110	P	08/17/2012	16:23	LB62199
	Barium	9600	10000	96.0	90 - 110	P	08/17/2012	16:23	LB62199
	Beryllium	240	250	96.2	90 - 110	P	08/17/2012	16:23	LB62199
	Cadmium	2430	2500	97.1	90 - 110	P	08/17/2012	16:23	LB62199
	Calcium	25100	25000	100.2	90 - 110	P	08/17/2012	16:23	LB62199
	Chromium	993	1000	99.3	90 - 110	P	08/17/2012	16:23	LB62199

10

D

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: MS Analytical SDG No.: D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

Initial Calibration Source: EPA

		Result	True Value	%	Acceptance		Analysis	Analysis	Run
Sample ID	Analyte	ug/L		Recovery	Window (%R)	M	Date	Time	Number
CCV06	Cobalt	2400	2500	96.2	90 - 110	P	08/17/2012	16:23	LB62199
	Copper	1210	1250	96.8	90 - 110	P	08/17/2012	16:23	LB62199
	Iron	4950	5000	98.9	90 - 110	P	08/17/2012	16:23	LB62199
	Lead	4850	5000	97.1	90 - 110	P	08/17/2012	16:23	LB62199
	Magnesium	23400	25000	93.5	90 - 110	P	08/17/2012	16:23	LB62199
	Manganese	2440	2500	97.7	90 - 110	P	08/17/2012	16:23	LB62199
	Nickel	2460	2500	98.4	90 - 110	P	08/17/2012	16:23	LB62199
	Potassium	23800	25000	95.0	90 - 110	P	08/17/2012	16:23	LB62199
	Selenium	4980	5000	99.7	90 - 110	P	08/17/2012	16:23	LB62199
	Silver	1240	1250	99.0	90 - 110	P	08/17/2012	16:23	LB62199
	Sodium	24000	25000	96.1	90 - 110	P	08/17/2012	16:23	LB62199
	Thallium	4890	5000	97.7	90 - 110	P	08/17/2012	16:23	LB62199
	Vanadium	2440	2500	97.5	90 - 110	P	08/17/2012	16:23	LB62199
	Zinc	2560	2500	102.2	90 - 110	P	08/17/2012	16:23	LB62199
CCV07	Aluminum	9580	10000	95.8	90 - 110	P	08/17/2012	17:02	LB62199
	Antimony	4780	5000	95.6	90 - 110	P	08/17/2012	17:02	LB62199
	Arsenic	4840	5000	96.8	90 - 110	P	08/17/2012	17:02	LB62199
	Barium	9560	10000	95.5	90 - 110	P	08/17/2012	17:02	LB62199
	Beryllium	241	250	96.3	90 - 110	P	08/17/2012	17:02	LB62199
	Cadmium	2450	2500	98.0	90 - 110	P	08/17/2012	17:02	LB62199
	Calcium	25200	25000	100.7	90 - 110	P	08/17/2012	17:02	LB62199
	Chromium	1000	1000	100.4	90 - 110	P	08/17/2012	17:02	LB62199
	Cobalt	2420	2500	96.6	90 - 110	P	08/17/2012	17:02	LB62199
	Copper	1210	1250	96.7	90 - 110	P	08/17/2012	17:02	LB62199
	Iron	4850	5000	97.1	90 - 110	P	08/17/2012	17:02	LB62199
	Lead	4910	5000	98.1	90 - 110	P	08/17/2012	17:02	LB62199
	Magnesium	23700	25000	94.8	90 - 110	P	08/17/2012	17:02	LB62199
	Manganese	2450	2500	98.1	90 - 110	P	08/17/2012	17:02	LB62199
	Nickel	2480	2500	99.0	90 - 110	P	08/17/2012	17:02	LB62199
	Potassium	23700	25000	94.7	90 - 110	P	08/17/2012	17:02	LB62199
	Selenium	4990	5000	99.8	90 - 110	P	08/17/2012	17:02	LB62199
	Silver	1250	1250	100.1	90 - 110	P	08/17/2012	17:02	LB62199
	Sodium	24000	25000	96.0	90 - 110	P	08/17/2012	17:02	LB62199
	Thallium	4930	5000	98.6	90 - 110	P	08/17/2012	17:02	LB62199
	Vanadium	2440	2500	97.7	90 - 110	P	08/17/2012	17:02	LB62199

10

D

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: MS Analytical SDG No.: D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

Initial Calibration Source: EPA

		Result	True Value	%	Acceptance		Analysis	Analysis	Run
Sample ID	Analyte	ug/L		Recovery	Window (%R)	M	Date	Time	Number
CCV07	Zinc	2510	2500	100.2	90 - 110	P	08/17/2012	17:02	LB62199
CCV08	Aluminum	9530	10000	95.3	90 - 110	P	08/17/2012	18:13	LB62199
	Antimony	4820	5000	96.3	90 - 110	P	08/17/2012	18:13	LB62199
	Arsenic	4870	5000	97.3	90 - 110	P	08/17/2012	18:13	LB62199
	Barium	9550	10000	95.5	90 - 110	P	08/17/2012	18:13	LB62199
	Beryllium	242	250	96.8	90 - 110	P	08/17/2012	18:13	LB62199
	Cadmium	2450	2500	98.0	90 - 110	P	08/17/2012	18:13	LB62199
	Calcium	25300	25000	101.2	90 - 110	P	08/17/2012	18:13	LB62199
	Chromium	992	1000	99.2	90 - 110	P	08/17/2012	18:13	LB62199
	Cobalt	2420	2500	96.9	90 - 110	P	08/17/2012	18:13	LB62199
	Copper	1210	1250	96.8	90 - 110	P	08/17/2012	18:13	LB62199
	Iron	5000	5000	99.9	90 - 110	P	08/17/2012	18:13	LB62199
	Lead	4890	5000	97.7	90 - 110	P	08/17/2012	18:13	LB62199
	Magnesium	24200	25000	96.9	90 - 110	P	08/17/2012	18:13	LB62199
	Manganese	2450	2500	97.9	90 - 110	P	08/17/2012	18:13	LB62199
	Nickel	2460	2500	98.5	90 - 110	P	08/17/2012	18:13	LB62199
	Potassium	23700	25000	94.9	90 - 110	P	08/17/2012	18:13	LB62199
	Selenium	4930	5000	98.7	90 - 110	P	08/17/2012	18:13	LB62199
	Silver	1230	1250	98.2	90 - 110	P	08/17/2012	18:13	LB62199
	Sodium	24100	25000	96.4	90 - 110	P	08/17/2012	18:13	LB62199
	Thallium	4900	5000	98.1	90 - 110	P	08/17/2012	18:13	LB62199
	Vanadium	2420	2500	97.0	90 - 110	P	08/17/2012	18:13	LB62199
	Zinc	2590	2500	103.6	90 - 110	P	08/17/2012	18:13	LB62199
CCV09	Aluminum	9510	10000	95.1	90 - 110	P	08/17/2012	19:00	LB62199
	Antimony	4740	5000	94.7	90 - 110	P	08/17/2012	19:00	LB62199
	Arsenic	4800	5000	96.1	90 - 110	P	08/17/2012	19:00	LB62199
	Barium	9510	10000	95.1	90 - 110	P	08/17/2012	19:00	LB62199
	Beryllium	241	250	96.6	90 - 110	P	08/17/2012	19:00	LB62199
	Cadmium	2440	2500	97.8	90 - 110	P	08/17/2012	19:00	LB62199
	Calcium	25500	25000	101.8	90 - 110	P	08/17/2012	19:00	LB62199
	Chromium	994	1000	99.4	90 - 110	P	08/17/2012	19:00	LB62199
	Cobalt	2410	2500	96.5	90 - 110	P	08/17/2012	19:00	LB62199
	Copper	1200	1250	96.0	90 - 110	P	08/17/2012	19:00	LB62199
	Iron	4920	5000	98.5	90 - 110	P	08/17/2012	19:00	LB62199
	Lead	4880	5000	97.6	90 - 110	P	08/17/2012	19:00	LB62199

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: MS Analytical SDG No.: D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

Initial Calibration Source: EPA

Continuing Calibration Source: INORGANIC-VENTURES

		Result	True Value	%	Acceptance		Analysis	Analysis	Run
Sample ID	Analyte	ug/L		Recovery	Window (%R)	M	Date	Time	Number
CCV09	Magnesium	24100	25000	96.4	90 - 110	P	08/17/2012	19:00	LB62199
	Manganese	2450	2500	97.9	90 - 110	P	08/17/2012	19:00	LB62199
	Nickel	2470	2500	98.6	90 - 110	P	08/17/2012	19:00	LB62199
	Potassium	23700	25000	94.8	90 - 110	P	08/17/2012	19:00	LB62199
	Selenium	4920	5000	98.4	90 - 110	P	08/17/2012	19:00	LB62199
	Silver	1220	1250	97.9	90 - 110	P	08/17/2012	19:00	LB62199
	Sodium	23700	25000	94.8	90 - 110	P	08/17/2012	19:00	LB62199
	Thallium	4890	5000	97.8	90 - 110	P	08/17/2012	19:00	LB62199
	Vanadium	2440	2500	97.4	90 - 110	P	08/17/2012	19:00	LB62199
	Zinc	2610	2500	104.6	90 - 110	P	08/17/2012	19:00	LB62199
CCV10	Aluminum	9540	10000	95.4	90 - 110	P	08/17/2012	19:47	LB62199
	Antimony	4720	5000	94.4	90 - 110	P	08/17/2012	19:47	LB62199
	Arsenic	4780	5000	95.7	90 - 110	P	08/17/2012	19:47	LB62199
	Barium	9370	10000	93.7	90 - 110	P	08/17/2012	19:47	LB62199
	Beryllium	243	250	97.2	90 - 110	P	08/17/2012	19:47	LB62199
	Cadmium	2410	2500	96.5	90 - 110	P	08/17/2012	19:47	LB62199
	Calcium	24900	25000	99.8	90 - 110	P	08/17/2012	19:47	LB62199
	Chromium	993	1000	99.3	90 - 110	P	08/17/2012	19:47	LB62199
	Cobalt	2400	2500	95.9	90 - 110	P	08/17/2012	19:47	LB62199
	Copper	1190	1250	95.2	90 - 110	P	08/17/2012	19:47	LB62199
	Iron	5010	5000	100.1	90 - 110	P	08/17/2012	19:47	LB62199
	Lead	4830	5000	96.6	90 - 110	P	08/17/2012	19:47	LB62199
	Magnesium	23700	25000	94.8	90 - 110	P	08/17/2012	19:47	LB62199
	Manganese	2430	2500	97.3	90 - 110	P	08/17/2012	19:47	LB62199
	Nickel	2440	2500	97.5	90 - 110	P	08/17/2012	19:47	LB62199
	Potassium	23300	25000	93.1	90 - 110	P	08/17/2012	19:47	LB62199
	Selenium	4890	5000	97.9	90 - 110	P	08/17/2012	19:47	LB62199
	Silver	1240	1250	98.9	90 - 110	P	08/17/2012	19:47	LB62199
	Sodium	23600	25000	94.3	90 - 110	P	08/17/2012	19:47	LB62199
	Thallium	4840	5000	96.9	90 - 110	P	08/17/2012	19:47	LB62199
	Vanadium	2420	2500	96.6	90 - 110	P	08/17/2012	19:47	LB62199
	Zinc	2560	2500	102.6	90 - 110	P	08/17/2012	19:47	LB62199

10

D

10

D

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: MS Analytical SDG No.: D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

Initial Calibration Source: EPA

		Result	True Value	%	Acceptance		Analysis	Analysis	Run
Sample ID	Analyte	ug/L		Recovery	Window (%R)	M	Date	Time	Number
ICV01	Aluminum	2670.03	2521.0	105.9	90 - 110	P	08/16/2012	14:01	LB62172
	Antimony	975.35	994.0	98.1	90 - 110	P	08/16/2012	14:01	LB62172
	Arsenic	972.83	999.0	97.4	90 - 110	P	08/16/2012	14:01	LB62172
	Barium	520.91	503.0	103.6	90 - 110	P	08/16/2012	14:01	LB62172
	Beryllium	490.24	495.0	99.0	90 - 110	P	08/16/2012	14:01	LB62172
	Cadmium	482.25	496.0	97.2	90 - 110	P	08/16/2012	14:01	LB62172
	Calcium	10181.45	10026.0	101.6	90 - 110	P	08/16/2012	14:01	LB62172
	Chromium	490.59	490.0	100.1	90 - 110	P	08/16/2012	14:01	LB62172
	Cobalt	493.19	499.0	98.8	90 - 110	P	08/16/2012	14:01	LB62172
	Copper	509.73	492.0	103.6	90 - 110	P	08/16/2012	14:01	LB62172
	Iron	5029.37	5082.0	99.0	90 - 110	P	08/16/2012	14:01	LB62172
	Lead	973.11	1002.0	97.1	90 - 110	P	08/16/2012	14:01	LB62172
	Magnesium	5997.23	6074.0	98.7	90 - 110	P	08/16/2012	14:01	LB62172
	Manganese	501.65	499.0	100.5	90 - 110	P	08/16/2012	14:01	LB62172
	Nickel	490.64	503.0	97.5	90 - 110	P	08/16/2012	14:01	LB62172
	Potassium	9903.44	10021.0	98.8	90 - 110	P	08/16/2012	14:01	LB62172
	Selenium	976.17	1003.0	97.3	90 - 110	P	08/16/2012	14:01	LB62172
	Silver	477.09	501.0	95.2	90 - 110	P	08/16/2012	14:01	LB62172
	Sodium	10230.22	10097.0	101.3	90 - 110	P	08/16/2012	14:01	LB62172
	Thallium	994.08	1003.0	99.1	90 - 110	P	08/16/2012	14:01	LB62172
	Vanadium	503.60	501.0	100.5	90 - 110	P	08/16/2012	14:01	LB62172
	Zinc	1004.36	1025.0	98.0	90 - 110	P	08/16/2012	14:01	LB62172
CCV01	Aluminum	10115.14	10000.0	101.2	90 - 110	P	08/16/2012	14:21	LB62172
	Antimony	4994.19	5000.0	99.9	90 - 110	P	08/16/2012	14:21	LB62172
	Arsenic	4989.97	5000.0	99.8	90 - 110	P	08/16/2012	14:21	LB62172
	Barium	9824.41	10000.0	98.2	90 - 110	P	08/16/2012	14:21	LB62172
	Beryllium	249.06	250.0	99.6	90 - 110	P	08/16/2012	14:21	LB62172
	Cadmium	2492.21	2500.0	99.7	90 - 110	P	08/16/2012	14:21	LB62172
	Calcium	25092.04	25000.0	100.4	90 - 110	P	08/16/2012	14:21	LB62172
	Chromium	986.91	1000.0	98.7	90 - 110	P	08/16/2012	14:21	LB62172
	Cobalt	2481.49	2500.0	99.3	90 - 110	P	08/16/2012	14:21	LB62172
	Copper	1256.05	1250.0	100.5	90 - 110	P	08/16/2012	14:21	LB62172
	Iron	5078.36	5000.0	101.6	90 - 110	P	08/16/2012	14:21	LB62172
	Lead	4943.70	5000.0	98.9	90 - 110	P	08/16/2012	14:21	LB62172
	Magnesium	25177.89	25000.0	100.7	90 - 110	P	08/16/2012	14:21	LB62172

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: MS Analytical SDG No.: D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

Initial Calibration Source: EPA

Continuing Calibration Source: INORGANIC VENTURES

		Result	True Value	%	Acceptance		Analysis	Analysis	Run
Sample ID	Analyte	ug/L		Recovery	Window (%R)	M	Date	Time	Number
CCV01	Manganese	2491.85	2500.0	99.7	90 - 110	P	08/16/2012	14:21	LB62172
	Nickel	2483.10	2500.0	99.3	90 - 110	P	08/16/2012	14:21	LB62172
	Potassium	25243.50	25000.0	101.0	90 - 110	P	08/16/2012	14:21	LB62172
	Selenium	5010.43	5000.0	100.2	90 - 110	P	08/16/2012	14:21	LB62172
	Silver	1226.30	1250.0	98.1	90 - 110	P	08/16/2012	14:21	LB62172
	Sodium	24886.30	25000.0	99.5	90 - 110	P	08/16/2012	14:21	LB62172
	Thallium	4983.32	5000.0	99.7	90 - 110	P	08/16/2012	14:21	LB62172
	Vanadium	2511.70	2500.0	100.5	90 - 110	P	08/16/2012	14:21	LB62172
	Zinc	2496.94	2500.0	99.9	90 - 110	P	08/16/2012	14:21	LB62172
CCV02	Aluminum	10311.88	10000.0	103.1	90 - 110	P	08/16/2012	15:02	LB62172
00,02	Antimony	4965.16	5000.0	99.3	90 - 110	P	08/16/2012	15:02	LB62172
	Arsenic	4944.53	5000.0	98.9	90 - 110	P	08/16/2012	15:02	LB62172
	Barium	10236.82	10000.0	102.4	90 - 110	P	08/16/2012	15:02	LB62172
	Beryllium	257.16	250.0	102.9	90 - 110	P	08/16/2012	15:02	LB62172
	Cadmium	2472.88	2500.0	98.9	90 - 110	P	08/16/2012	15:02	LB62172
	Calcium	26036.03	25000.0	104.1	90 - 110	P	08/16/2012	15:02	LB62172
	Chromium	991.38	1000.0	99.1	90 - 110	P	08/16/2012	15:02	LB62172
	Cobalt	2465.98	2500.0	98.6	90 - 110	P	08/16/2012	15:02	LB62172
	Copper	1287.73	1250.0	103.0	90 - 110	P	08/16/2012	15:02	LB62172
	Iron	5222.78	5000.0	104.5	90 - 110	P	08/16/2012	15:02	LB62172
	Lead	4907.87	5000.0	98.2	90 - 110	P	08/16/2012	15:02	LB62172
	Magnesium	25862.31	25000.0	103.4	90 - 110	P	08/16/2012	15:02	LB62172
	Manganese	2582.50	2500.0	103.3	90 - 110	P	08/16/2012	15:02	LB62172
	Nickel	2466.36	2500.0	98.7	90 - 110	P	08/16/2012	15:02	LB62172
	Potassium	25867.09	25000.0	103.5	90 - 110	P	08/16/2012	15:02	LB62172
	Selenium	4962.71	5000.0	99.3	90 - 110	P	08/16/2012	15:02	LB62172
	Silver	1240.05	1250.0	99.2	90 - 110	P	08/16/2012	15:02	LB62172
	Sodium	25823.99	25000.0	103.3	90 - 110	P	08/16/2012	15:02	LB62172
	Thallium	4971.96	5000.0	99.4	90 - 110	P	08/16/2012	15:02	LB62172
	Vanadium	2583.97	2500.0	103.4	90 - 110	P	08/16/2012	15:02	LB62172
	Zinc	2539.86	2500.0	101.6	90 - 110	P	08/16/2012	15:02	LB62172
CCV03	Aluminum	9803.00	10000.0	98.0	90 - 110	P	08/16/2012	15:42	LB62172
CC V 03	Antimony	4927.75	5000.0	98.6	90 - 110	P	08/16/2012	15:42	LB62172
	Arsenic	4968.80	5000.0	99.4	90 - 110	P	08/16/2012	15:42	LB62172
	Barium	9857.43	10000.0	98.6	90 - 110	P	08/16/2012	15:42	LB62172
	Durrum	7057. 1 5	10000.0	70.0	70 - 110	1	00/10/2012	13.72	DD021/2

D

10

D

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: MS Analytical SDG No.: D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

Initial Calibration Source: EPA

		Result	True Value	%	Acceptance		Analysis	Analysis	Run
Sample ID	Analyte	ug/L		Recovery	Window (%R)	M	Date	Time	Number
CCV03	Beryllium	246.36	250.0	98.5	90 - 110	P	08/16/2012	15:42	LB62172
	Cadmium	2504.02	2500.0	100.2	90 - 110	P	08/16/2012	15:42	LB62172
	Calcium	24359.26	25000.0	97.4	90 - 110	P	08/16/2012	15:42	LB62172
	Chromium	1006.83	1000.0	100.7	90 - 110	P	08/16/2012	15:42	LB62172
	Cobalt	2475.89	2500.0	99.0	90 - 110	P	08/16/2012	15:42	LB62172
	Copper	1227.61	1250.0	98.2	90 - 110	P	08/16/2012	15:42	LB62172
	Iron	4884.50	5000.0	97.7	90 - 110	P	08/16/2012	15:42	LB62172
	Lead	4958.36	5000.0	99.2	90 - 110	P	08/16/2012	15:42	LB62172
	Magnesium	24477.15	25000.0	97.9	90 - 110	P	08/16/2012	15:42	LB62172
	Manganese	2453.27	2500.0	98.1	90 - 110	P	08/16/2012	15:42	LB62172
	Nickel	2489.92	2500.0	99.6	90 - 110	P	08/16/2012	15:42	LB62172
	Potassium	24707.73	25000.0	98.8	90 - 110	P	08/16/2012	15:42	LB62172
	Selenium	4971.64	5000.0	99.4	90 - 110	P	08/16/2012	15:42	LB62172
	Silver	1234.56	1250.0	98.8	90 - 110	P	08/16/2012	15:42	LB62172
	Sodium	24970.42	25000.0	99.9	90 - 110	P	08/16/2012	15:42	LB62172
	Thallium	4998.11	5000.0	100.0	90 - 110	P	08/16/2012	15:42	LB62172
	Vanadium	2488.59	2500.0	99.5	90 - 110	P	08/16/2012	15:42	LB62172
	Zinc	2487.99	2500.0	99.5	90 - 110	P	08/16/2012	15:42	LB62172
CCV04	Aluminum	9867.94	10000.0	98.7	90 - 110	P	08/16/2012	16:22	LB62172
	Antimony	4946.69	5000.0	98.9	90 - 110	P	08/16/2012	16:22	LB62172
	Arsenic	4964.73	5000.0	99.3	90 - 110	P	08/16/2012	16:22	LB62172
	Barium	10013.22	10000.0	100.1	90 - 110	P	08/16/2012	16:22	LB62172
	Beryllium	246.50	250.0	98.6	90 - 110	P	08/16/2012	16:22	LB62172
	Cadmium	2479.70	2500.0	99.2	90 - 110	P	08/16/2012	16:22	LB62172
	Calcium	24624.86	25000.0	98.5	90 - 110	P	08/16/2012	16:22	LB62172
	Chromium	1004.23	1000.0	100.4	90 - 110	P	08/16/2012	16:22	LB62172
	Cobalt	2461.34	2500.0	98.5	90 - 110	P	08/16/2012	16:22	LB62172
	Copper	1236.41	1250.0	98.9	90 - 110	P	08/16/2012	16:22	LB62172
	Iron	4926.48	5000.0	98.5	90 - 110	P	08/16/2012	16:22	LB62172
	Lead	4942.79	5000.0	98.9	90 - 110	P	08/16/2012	16:22	LB62172
	Magnesium	24478.73	25000.0	97.9	90 - 110	P	08/16/2012	16:22	LB62172
	Manganese	2475.46	2500.0	99.0	90 - 110	P	08/16/2012	16:22	LB62172
	Nickel	2477.35	2500.0	99.1	90 - 110	P	08/16/2012	16:22	LB62172
	Potassium	24812.55	25000.0	99.3	90 - 110	P	08/16/2012	16:22	LB62172
	Selenium	4982.56	5000.0	99.7	90 - 110	P	08/16/2012	16:22	LB62172

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: MS Analytical SDG No.: D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

Initial Calibration Source: EPA

Continuing Calibration Source: INORGANIC VENTURES

		Result	True Value	%	Acceptance		Analysis	Analysis	Run
Sample ID	Analyte	ug/L	True value	Recovery	Window (%R)	M	Date	Time	Number
<u> </u>	,								
CCV04	Silver	1249.99	1250.0	100.0	90 - 110	P	08/16/2012	16:22	LB62172
	Sodium	25601.34	25000.0	102.4	90 - 110	P	08/16/2012	16:22	LB62172
	Thallium	5000.63	5000.0	100.0	90 - 110	P	08/16/2012	16:22	LB62172
	Vanadium	2475.75	2500.0	99.0	90 - 110	P	08/16/2012	16:22	LB62172
	Zinc	2457.09	2500.0	98.3	90 - 110	P	08/16/2012	16:22	LB62172
CCV05	Aluminum	9775.90	10000.0	97.8	90 - 110	P	08/16/2012	17:03	LB62172
	Antimony	4926.44	5000.0	98.5	90 - 110	P	08/16/2012	17:03	LB62172
	Arsenic	4967.63	5000.0	99.4	90 - 110	P	08/16/2012	17:03	LB62172
	Barium	9866.37	10000.0	98.7	90 - 110	P	08/16/2012	17:03	LB62172
	Beryllium	243.00	250.0	97.2	90 - 110	P	08/16/2012	17:03	LB62172
	Cadmium	2491.80	2500.0	99.7	90 - 110	P	08/16/2012	17:03	LB62172
	Calcium	24092.20	25000.0	96.4	90 - 110	P	08/16/2012	17:03	LB62172
	Chromium	1009.43	1000.0	100.9	90 - 110	P	08/16/2012	17:03	LB62172
	Cobalt	2464.21	2500.0	98.6	90 - 110	P	08/16/2012	17:03	LB62172
	Copper	1231.18	1250.0	98.5	90 - 110	P	08/16/2012	17:03	LB62172
	Iron	4829.47	5000.0	96.6	90 - 110	P	08/16/2012	17:03	LB62172
	Lead	4953.59	5000.0	99.1	90 - 110	P	08/16/2012	17:03	LB62172
	Magnesium	24004.45	25000.0	96.0	90 - 110	P	08/16/2012	17:03	LB62172
	Manganese	2433.03	2500.0	97.3	90 - 110	P	08/16/2012	17:03	LB62172
	Nickel	2487.05	2500.0	99.5	90 - 110	P	08/16/2012	17:03	LB62172
	Potassium	24657.83	25000.0	98.6	90 - 110	P	08/16/2012	17:03	LB62172
	Selenium	4984.95	5000.0	99.7	90 - 110	P	08/16/2012	17:03	LB62172
	Silver	1242.38	1250.0	99.4	90 - 110	P	08/16/2012	17:03	LB62172
	Sodium	25162.31	25000.0	100.6	90 - 110	P	08/16/2012	17:03	LB62172
	Thallium	5010.51	5000.0	100.2	90 - 110	P	08/16/2012	17:03	LB62172
	Vanadium	2464.31	2500.0	98.6	90 - 110	P	08/16/2012	17:03	LB62172
	Zinc	2447.37	2500.0	97.9	90 - 110	P	08/16/2012	17:03	LB62172
CCV06	Aluminum	9776.59	10000.0	97.8	90 - 110	P	08/16/2012	17:43	LB62172
	Antimony	4915.72	5000.0	98.3	90 - 110	P	08/16/2012	17:43	LB62172
	Arsenic	4957.54	5000.0	99.2	90 - 110	P	08/16/2012	17:43	LB62172
	Barium	9810.47	10000.0	98.1	90 - 110	P	08/16/2012	17:43	LB62172
	Beryllium	242.90	250.0	97.2	90 - 110	P	08/16/2012	17:43	LB62172
	Cadmium	2496.20	2500.0	99.8	90 - 110	P	08/16/2012	17:43	LB62172
	Calcium	24143.77	25000.0	96.6	90 - 110	P	08/16/2012	17:43	LB62172
	Chromium	1012.89	1000.0	101.3	90 - 110	P	08/16/2012	17:43	LB62172

10

D

- 2a -

10

D

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: MS Analytical SDG No.: D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

Initial Calibration Source: EPA

		Result	True Value	%	Acceptance		Analysis	Analysis	Run
Sample ID	Analyte	ug/L		Recovery	Window (%R)	M	Date	Time	Number
CCV06	Cobalt	2464.92	2500.0	98.6	90 - 110	P	08/16/2012	17:43	LB62172
	Copper	1230.84	1250.0	98.5	90 - 110	P	08/16/2012	17:43	LB62172
	Iron	4836.94	5000.0	96.7	90 - 110	P	08/16/2012	17:43	LB62172
	Lead	4957.83	5000.0	99.2	90 - 110	P	08/16/2012	17:43	LB62172
	Magnesium	24094.11	25000.0	96.4	90 - 110	P	08/16/2012	17:43	LB62172
	Manganese	2436.99	2500.0	97.5	90 - 110	P	08/16/2012	17:43	LB62172
	Nickel	2487.64	2500.0	99.5	90 - 110	P	08/16/2012	17:43	LB62172
	Potassium	24718.40	25000.0	98.9	90 - 110	P	08/16/2012	17:43	LB62172
	Selenium	4972.32	5000.0	99.4	90 - 110	P	08/16/2012	17:43	LB62172
	Silver	1243.31	1250.0	99.5	90 - 110	P	08/16/2012	17:43	LB62172
	Sodium	25145.72	25000.0	100.6	90 - 110	P	08/16/2012	17:43	LB62172
	Thallium	5004.53	5000.0	100.1	90 - 110	P	08/16/2012	17:43	LB62172
	Vanadium	2475.51	2500.0	99.0	90 - 110	P	08/16/2012	17:43	LB62172
	Zinc	2447.32	2500.0	97.9	90 - 110	P	08/16/2012	17:43	LB62172
CCV07	Aluminum	9771.55	10000.0	97.7	90 - 110	P	08/16/2012	18:22	LB62172
	Antimony	4975.46	5000.0	99.5	90 - 110	P	08/16/2012	18:22	LB62172
	Arsenic	4988.24	5000.0	99.8	90 - 110	P	08/16/2012	18:22	LB62172
	Barium	9874.43	10000.0	98.7	90 - 110	P	08/16/2012	18:22	LB62172
	Beryllium	242.39	250.0	97.0	90 - 110	P	08/16/2012	18:22	LB62172
	Cadmium	2461.42	2500.0	98.5	90 - 110	P	08/16/2012	18:22	LB62172
	Calcium	24085.98	25000.0	96.3	90 - 110	P	08/16/2012	18:22	LB62172
	Chromium	998.43	1000.0	99.8	90 - 110	P	08/16/2012	18:22	LB62172
	Cobalt	2454.07	2500.0	98.2	90 - 110	P	08/16/2012	18:22	LB62172
	Copper	1233.16	1250.0	98.7	90 - 110	P	08/16/2012	18:22	LB62172
	Iron	4854.35	5000.0	97.1	90 - 110	P	08/16/2012	18:22	LB62172
	Lead	4916.25	5000.0	98.3	90 - 110	P	08/16/2012	18:22	LB62172
	Magnesium	23889.62	25000.0	95.6	90 - 110	P	08/16/2012	18:22	LB62172
	Manganese	2423.74	2500.0	96.9	90 - 110	P	08/16/2012	18:22	LB62172
	Nickel	2460.00	2500.0	98.4	90 - 110	P	08/16/2012	18:22	LB62172
	Potassium	24852.92	25000.0	99.4	90 - 110	P	08/16/2012	18:22	LB62172
	Selenium	5006.79	5000.0	100.1	90 - 110	P	08/16/2012	18:22	LB62172
	Silver	1229.77	1250.0	98.4	90 - 110	P	08/16/2012	18:22	LB62172
	Sodium	25189.62	25000.0	100.8	90 - 110	P	08/16/2012	18:22	LB62172
	Thallium	5003.93	5000.0	100.1	90 - 110	P	08/16/2012	18:22	LB62172
	Vanadium	2470.30	2500.0	98.8	90 - 110	P	08/16/2012	18:22	LB62172

- 2a -

10

D

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: MS Analytical SDG No.: D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

Initial Calibration Source: EPA

		Result	True Value	%	Acceptance		Analysis	Analysis	Run
Sample ID	Analyte	ug/L		Recovery	Window (%R)	M	Date	Time	Number
CCV07	Zinc	2411.58	2500.0	96.5	90 - 110	P	08/16/2012	18:22	LB62172
CCV08	Aluminum	9814.26	10000.0	98.1	90 - 110	P	08/16/2012	19:02	LB62172
	Antimony	4946.23	5000.0	98.9	90 - 110	P	08/16/2012	19:02	LB62172
	Arsenic	4948.53	5000.0	99.0	90 - 110	P	08/16/2012	19:02	LB62172
	Barium	9785.50	10000.0	97.9	90 - 110	P	08/16/2012	19:02	LB62172
	Beryllium	241.13	250.0	96.5	90 - 110	P	08/16/2012	19:02	LB62172
	Cadmium	2437.30	2500.0	97.5	90 - 110	P	08/16/2012	19:02	LB62172
	Calcium	24366.99	25000.0	97.5	90 - 110	P	08/16/2012	19:02	LB62172
	Chromium	975.10	1000.0	97.5	90 - 110	P	08/16/2012	19:02	LB62172
	Cobalt	2435.12	2500.0	97.4	90 - 110	P	08/16/2012	19:02	LB62172
	Copper	1231.90	1250.0	98.6	90 - 110	P	08/16/2012	19:02	LB62172
	Iron	4910.65	5000.0	98.2	90 - 110	P	08/16/2012	19:02	LB62172
	Lead	4856.29	5000.0	97.1	90 - 110	P	08/16/2012	19:02	LB62172
	Magnesium	24257.83	25000.0	97.0	90 - 110	P	08/16/2012	19:02	LB62172
	Manganese	2423.60	2500.0	96.9	90 - 110	P	08/16/2012	19:02	LB62172
	Nickel	2433.20	2500.0	97.3	90 - 110	P	08/16/2012	19:02	LB62172
	Potassium	25085.50	25000.0	100.3	90 - 110	P	08/16/2012	19:02	LB62172
	Selenium	4969.00	5000.0	99.4	90 - 110	P	08/16/2012	19:02	LB62172
	Silver	1212.23	1250.0	97.0	90 - 110	P	08/16/2012	19:02	LB62172
	Sodium	25039.19	25000.0	100.2	90 - 110	P	08/16/2012	19:02	LB62172
	Thallium	4926.60	5000.0	98.5	90 - 110	P	08/16/2012	19:02	LB62172
	Vanadium	2456.71	2500.0	98.3	90 - 110	P	08/16/2012	19:02	LB62172
	Zinc	2359.46	2500.0	94.4	90 - 110	P	08/16/2012	19:02	LB62172
CCV09	Aluminum	9946.49	10000.0	99.5	90 - 110	P	08/16/2012	19:43	LB62172
	Antimony	4972.02	5000.0	99.4	90 - 110	P	08/16/2012	19:43	LB62172
	Arsenic	4962.72	5000.0	99.3	90 - 110	P	08/16/2012	19:43	LB62172
	Barium	9864.77	10000.0	98.6	90 - 110	P	08/16/2012	19:43	LB62172
	Beryllium	245.94	250.0	98.4	90 - 110	P	08/16/2012	19:43	LB62172
	Cadmium	2465.70	2500.0	98.6	90 - 110	P	08/16/2012	19:43	LB62172
	Calcium	25006.31	25000.0	100.0	90 - 110	P	08/16/2012	19:43	LB62172
	Chromium	984.03	1000.0	98.4	90 - 110	P	08/16/2012	19:43	LB62172
	Cobalt	2460.24	2500.0	98.4	90 - 110	P	08/16/2012	19:43	LB62172
	Copper	1245.93	1250.0	99.7	90 - 110	P	08/16/2012	19:43	LB62172
	Iron	5033.98	5000.0	100.7	90 - 110	P	08/16/2012	19:43	LB62172
	Lead	4900.07	5000.0	98.0	90 - 110	P	08/16/2012	19:43	LB62172

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: MS Analytical SDG No.: D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

Initial Calibration Source: EPA

Continuing Calibration Source: INORGANIC VENTURES

		Result	True Value	%	Acceptance		Analysis	Analysis	Run
Sample ID	Analyte	ug/L		Recovery	Window (%R)	M	Date	Time	Number
CCV09	Magnesium	24942.90	25000.0	99.8	90 - 110	P	08/16/2012	19:43	LB62172
	Manganese	2473.09	2500.0	98.9	90 - 110	P	08/16/2012	19:43	LB62172
	Nickel	2454.42	2500.0	98.2	90 - 110	P	08/16/2012	19:43	LB62172
	Potassium	25581.83	25000.0	102.3	90 - 110	P	08/16/2012	19:43	LB62172
	Selenium	4975.34	5000.0	99.5	90 - 110	P	08/16/2012	19:43	LB62172
	Silver	1226.25	1250.0	98.1	90 - 110	P	08/16/2012	19:43	LB62172
	Sodium	25318.47	25000.0	101.3	90 - 110	P	08/16/2012	19:43	LB62172
	Thallium	4941.01	5000.0	98.8	90 - 110	P	08/16/2012	19:43	LB62172
	Vanadium	2550.78	2500.0	102.0	90 - 110	P	08/16/2012	19:43	LB62172
	Zinc	2401.02	2500.0	96.0	90 - 110	P	08/16/2012	19:43	LB62172
CCV10	Aluminum	10064.88	10000.0	100.6	90 - 110	P	08/16/2012	20:23	LB62172
	Antimony	5010.13	5000.0	100.2	90 - 110	P	08/16/2012	20:23	LB62172
	Arsenic	4939.60	5000.0	98.8	90 - 110	P	08/16/2012	20:23	LB62172
	Barium	10053.37	10000.0	100.5	90 - 110	P	08/16/2012	20:23	LB62172
	Beryllium	245.73	250.0	98.3	90 - 110	P	08/16/2012	20:23	LB62172
	Cadmium	2442.43	2500.0	97.7	90 - 110	P	08/16/2012	20:23	LB62172
	Calcium	25448.85	25000.0	101.8	90 - 110	P	08/16/2012	20:23	LB62172
	Chromium	966.43	1000.0	96.6	90 - 110	P	08/16/2012	20:23	LB62172
	Cobalt	2457.94	2500.0	98.3	90 - 110	P	08/16/2012	20:23	LB62172
	Copper	1258.50	1250.0	100.7	90 - 110	P	08/16/2012	20:23	LB62172
	Iron	5097.07	5000.0	101.9	90 - 110	P	08/16/2012	20:23	LB62172
	Lead	4862.75	5000.0	97.3	90 - 110	P	08/16/2012	20:23	LB62172
	Magnesium	25242.33	25000.0	101.0	90 - 110	P	08/16/2012	20:23	LB62172
	Manganese	2491.77	2500.0	99.7	90 - 110	P	08/16/2012	20:23	LB62172
	Nickel	2433.10	2500.0	97.3	90 - 110	P	08/16/2012	20:23	LB62172
	Potassium	26059.05	25000.0	104.2	90 - 110	P	08/16/2012	20:23	LB62172
	Selenium	4963.91	5000.0	99.3	90 - 110	P	08/16/2012	20:23	LB62172
	Silver	1207.41	1250.0	96.6	90 - 110	P	08/16/2012	20:23	LB62172
	Sodium	25537.61	25000.0	102.2	90 - 110	P	08/16/2012	20:23	LB62172
	Thallium	4912.62	5000.0	98.3	90 - 110	P	08/16/2012	20:23	LB62172
	Vanadium	2576.13	2500.0	103.0	90 - 110	P	08/16/2012	20:23	LB62172
	Zinc	2385.63	2500.0	95.4	90 - 110	P	08/16/2012	20:23	LB62172
CCV11	Aluminum	10291.64	10000.0	102.9	90 - 110	P	08/16/2012	21:05	LB62172
CCV11	Antimony	5008.18	5000.0	102.9	90 - 110 90 - 110	P P	08/16/2012	21:05	LB62172 LB62172
	•	4954.81		99.1	90 - 110 90 - 110	P P	08/16/2012	21:05	
	Arsenic	4754.01	5000.0	99.1	70 - 110	r	00/10/2012	21.03	LB62172

10

D

- 2a -

10

D

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: MS Analytical SDG No.: D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

Initial Calibration Source: EPA

		Result	True Value	%	Acceptance		Analysis	Analysis	Run
Sample ID	Analyte	ug/L		Recovery	Window (%R)	M	Date	Time	Number
CCV11	Barium	10082.09	10000.0	100.8	90 - 110	P	08/16/2012	21:05	LB62172
	Beryllium	248.40	250.0	99.4	90 - 110	P	08/16/2012	21:05	LB62172
	Cadmium	2450.27	2500.0	98.0	90 - 110	P	08/16/2012	21:05	LB62172
	Calcium	25951.43	25000.0	103.8	90 - 110	P	08/16/2012	21:05	LB62172
	Chromium	967.50	1000.0	96.8	90 - 110	P	08/16/2012	21:05	LB62172
	Cobalt	2463.09	2500.0	98.5	90 - 110	P	08/16/2012	21:05	LB62172
	Copper	1280.80	1250.0	102.5	90 - 110	P	08/16/2012	21:05	LB62172
	Iron	5211.34	5000.0	104.2	90 - 110	P	08/16/2012	21:05	LB62172
	Lead	4873.63	5000.0	97.5	90 - 110	P	08/16/2012	21:05	LB62172
	Magnesium	25736.24	25000.0	102.9	90 - 110	P	08/16/2012	21:05	LB62172
	Manganese	2522.58	2500.0	100.9	90 - 110	P	08/16/2012	21:05	LB62172
	Nickel	2439.14	2500.0	97.6	90 - 110	P	08/16/2012	21:05	LB62172
	Potassium	26702.73	25000.0	106.8	90 - 110	P	08/16/2012	21:05	LB62172
	Selenium	4968.48	5000.0	99.4	90 - 110	P	08/16/2012	21:05	LB62172
	Silver	1204.46	1250.0	96.4	90 - 110	P	08/16/2012	21:05	LB62172
	Sodium	25789.86	25000.0	103.2	90 - 110	P	08/16/2012	21:05	LB62172
	Thallium	4918.20	5000.0	98.4	90 - 110	P	08/16/2012	21:05	LB62172
	Vanadium	2614.92	2500.0	104.6	90 - 110	P	08/16/2012	21:05	LB62172
	Zinc	2403.58	2500.0	96.1	90 - 110	P	08/16/2012	21:05	LB62172
CCV12	Aluminum	10059.67	10000.0	100.6	90 - 110	P	08/16/2012	21:46	LB62172
	Antimony	4984.82	5000.0	99.7	90 - 110	P	08/16/2012	21:46	LB62172
	Arsenic	4945.28	5000.0	98.9	90 - 110	P	08/16/2012	21:46	LB62172
	Barium	9933.34	10000.0	99.3	90 - 110	P	08/16/2012	21:46	LB62172
	Beryllium	243.52	250.0	97.4	90 - 110	P	08/16/2012	21:46	LB62172
	Cadmium	2467.22	2500.0	98.7	90 - 110	P	08/16/2012	21:46	LB62172
	Calcium	25422.36	25000.0	101.7	90 - 110	P	08/16/2012	21:46	LB62172
	Chromium	976.08	1000.0	97.6	90 - 110	P	08/16/2012	21:46	LB62172
	Cobalt	2465.92	2500.0	98.6	90 - 110	P	08/16/2012	21:46	LB62172
	Copper	1247.32	1250.0	99.8	90 - 110	P	08/16/2012	21:46	LB62172
	Iron	5038.94	5000.0	100.8	90 - 110	P	08/16/2012	21:46	LB62172
	Lead	4879.09	5000.0	97.6	90 - 110	P	08/16/2012	21:46	LB62172
	Magnesium	25198.17	25000.0	100.8	90 - 110	P	08/16/2012	21:46	LB62172
	Manganese	2477.55	2500.0	99.1	90 - 110	P	08/16/2012		LB62172
	Nickel	2452.06	2500.0	98.1	90 - 110	P	08/16/2012	21:46	LB62172
	Potassium	25859.27	25000.0	103.4	90 - 110	P	08/16/2012	21:46	LB62172

- 2a -

10

D

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: MS Analytical SDG No.: D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

Initial Calibration Source: EPA

		Result	True Value	%	Acceptance		Analysis	Analysis	Run
Sample ID	Analyte	ug/L		Recovery	Window (%R)	M	Date	Time	Number
CCV12	Selenium	4965.54	5000.0	99.3	90 - 110	P	08/16/2012	21:46	LB62172
	Silver	1213.79	1250.0	97.1	90 - 110	P	08/16/2012	21:46	LB62172
	Sodium	25575.82	25000.0	102.3	90 - 110	P	08/16/2012	21:46	LB62172
	Thallium	4927.74	5000.0	98.6	90 - 110	P	08/16/2012	21:46	LB62172
	Vanadium	2567.31	2500.0	102.7	90 - 110	P	08/16/2012	21:46	LB62172
	Zinc	2389.90	2500.0	95.6	90 - 110	P	08/16/2012	21:46	LB62172
CCV13	Aluminum	10064.18	10000.0	100.6	90 - 110	P	08/16/2012	22:29	LB62172
	Antimony	4997.01	5000.0	99.9	90 - 110	P	08/16/2012	22:29	LB62172
	Arsenic	4928.96	5000.0	98.6	90 - 110	P	08/16/2012	22:29	LB62172
	Barium	10139.30	10000.0	101.4	90 - 110	P	08/16/2012	22:29	LB62172
	Beryllium	242.87	250.0	97.1	90 - 110	P	08/16/2012	22:29	LB62172
	Cadmium	2453.98	2500.0	98.2	90 - 110	P	08/16/2012	22:29	LB62172
	Calcium	25351.29	25000.0	101.4	90 - 110	P	08/16/2012	22:29	LB62172
	Chromium	971.65	1000.0	97.2	90 - 110	P	08/16/2012	22:29	LB62172
	Cobalt	2459.98	2500.0	98.4	90 - 110	P	08/16/2012	22:29	LB62172
	Copper	1249.93	1250.0	100.0	90 - 110	P	08/16/2012	22:29	LB62172
	Iron	5090.88	5000.0	101.8	90 - 110	P	08/16/2012	22:29	LB62172
	Lead	4874.45	5000.0	97.5	90 - 110	P	08/16/2012	22:29	LB62172
	Magnesium	25041.40	25000.0	100.2	90 - 110	P	08/16/2012	22:29	LB62172
	Manganese	2472.74	2500.0	98.9	90 - 110	P	08/16/2012	22:29	LB62172
	Nickel	2447.77	2500.0	97.9	90 - 110	P	08/16/2012	22:29	LB62172
	Potassium	25824.72	25000.0	103.3	90 - 110	P	08/16/2012	22:29	LB62172
	Selenium	4963.74	5000.0	99.3	90 - 110	P	08/16/2012	22:29	LB62172
	Silver	1217.55	1250.0	97.4	90 - 110	P	08/16/2012	22:29	LB62172
	Sodium	25655.42	25000.0	102.6	90 - 110	P	08/16/2012	22:29	LB62172
	Thallium	4936.07	5000.0	98.7	90 - 110	P	08/16/2012	22:29	LB62172
	Vanadium	2584.63	2500.0	103.4	90 - 110	P	08/16/2012	22:29	LB62172
	Zinc	2389.66	2500.0	95.6	90 - 110	P	08/16/2012	22:29	LB62172
CCV14	Aluminum	10036.27	10000.0	100.4	90 - 110	P	08/16/2012	22:53	LB62172
	Antimony	4986.81	5000.0	99.7	90 - 110	P	08/16/2012	22:53	LB62172
	Arsenic	4939.92	5000.0	98.8	90 - 110	P	08/16/2012	22:53	LB62172
	Barium	10030.71	10000.0	100.3	90 - 110	P	08/16/2012	22:53	LB62172
	Beryllium	241.83	250.0	96.7	90 - 110	P	08/16/2012	22:53	LB62172
	Cadmium	2451.94	2500.0	98.1	90 - 110	P	08/16/2012	22:53	LB62172
	Calcium	25233.84	25000.0	100.9	90 - 110	P	08/16/2012	22:53	LB62172

10

D

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: MS Analytical SDG No.: D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

Initial Calibration Source: EPA

		Result	True Value	%	Acceptance		Analysis	Analysis	Run
Sample ID	Analyte	ug/L		Recovery	Window (%R)	M	Date	Time	Number
CCV14	Chromium	973.20	1000.0	97.3	90 - 110	P	08/16/2012	22:53	LB62172
	Cobalt	2457.78	2500.0	98.3	90 - 110	P	08/16/2012	22:53	LB62172
	Copper	1245.42	1250.0	99.6	90 - 110	P	08/16/2012	22:53	LB62172
	Iron	5037.77	5000.0	100.8	90 - 110	P	08/16/2012	22:53	LB62172
	Lead	4873.52	5000.0	97.5	90 - 110	P	08/16/2012	22:53	LB62172
	Magnesium	24954.43	25000.0	99.8	90 - 110	P	08/16/2012	22:53	LB62172
	Manganese	2459.27	2500.0	98.4	90 - 110	P	08/16/2012	22:53	LB62172
	Nickel	2444.62	2500.0	97.8	90 - 110	P	08/16/2012	22:53	LB62172
	Potassium	25977.96	25000.0	103.9	90 - 110	P	08/16/2012	22:53	LB62172
	Selenium	4961.48	5000.0	99.2	90 - 110	P	08/16/2012	22:53	LB62172
	Silver	1214.78	1250.0	97.2	90 - 110	P	08/16/2012	22:53	LB62172
	Sodium	25532.13	25000.0	102.1	90 - 110	P	08/16/2012	22:53	LB62172
	Thallium	4922.09	5000.0	98.4	90 - 110	P	08/16/2012	22:53	LB62172
	Vanadium	2591.05	2500.0	103.6	90 - 110	P	08/16/2012	22:53	LB62172
	Zinc	2368.05	2500.0	94.7	90 - 110	P	08/16/2012	22:53	LB62172

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: MS Analytical SDG No.: D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

Initial Calibration Source: EPA

Continuing Calibration Source: PLASMA-PURE

		Result	True Value	%	Acceptance		Analysis	Analysis	Run
Sample ID	Analyte	ug/L		Recovery	Window (%R)	M	Date	Time	Number
ICV01	Mercury	3.80	4	95.0	90 - 110	CV	08/17/2012	15:23	LB62194
CCV01	Mercury	4.75	5	95.0	90 - 110	CV	08/17/2012	15:28	LB62194
CCV02	Mercury	4.78	5	95.6	90 - 110	CV	08/17/2012	15:57	LB62194
CCV03	Mercury	4.85	5	97.0	90 - 110	CV	08/17/2012	16:04	LB62194
CCV04	Mercury	4.84	5	96.8	90 - 110	CV	08/17/2012	16:28	LB62194
CCV05	Mercury	4.79	5	95.8	90 - 110	CV	08/17/2012	16:51	LB62194
CCV06	Mercury	4.81	5	96.2	90 - 110	CV	08/17/2012	17:33	LB62194
CCV07	Mercury	4.91	5	98.2	90 - 110	CV	08/17/2012	18:03	LB62194
CCV08	Mercury	4.85	5	97.0	90 - 110	CV	08/17/2012	18:26	LB62194
CCV09	Mercury	4.85	5	97.0	90 - 110	CV	08/17/2012	18:52	LB62194

D

- 3a - INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: MS Analytical SDG No.: D3811

Contract: MSAN01 Lab Code: CHEM Case No.: D3811 SAS No.: D3811

Contract:	MSAN01			СНЕМ	Case No.: D3811			SAS No.: <u>D3811</u>			
Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run Number	
-	•										
CB01	Aluminum	4.8	+/-50.0	U	4.8	50.0	P	08/16/2012	14:04	LB62171	
СВОТ	Antimony	5.5	+/-25.0	U	5.5	25.0	P	08/16/2012	14:04	LB62171	
	Arsenic	4.0	+/-10.0	U	4.0	10.0	P	08/16/2012	14:04	LB62171	
	Barium	3.7	+/-50.0	U	3.7	50.0	P	08/16/2012	14:04	LB62171	
	Beryllium	0.3	+/-3.0	U	0.3	3.0	P	08/16/2012	14:04	LB62171	
	Cadmium	0.4	+/-3.0	J	0.4	3.0	P	08/16/2012	14:04	LB62171	
	Calcium	21.7	+/-1000.0	U	21.7	1000.0	P	08/16/2012	14:04	LB62171	
	Chromium	1.7	+/-5.0	U	1.7	5.0	P	08/16/2012	14:04	LB62171	
	Cobalt	4.9	+/-15.0	U	4.9	15.0	P	08/16/2012	14:04	LB62171	
	Copper	2.6	+/-10.0	U	2.6	10.0	P	08/16/2012	14:04	LB62171	
	Iron	10.1	+/-50.0	U	10.1	50.0	P	08/16/2012	14:04	LB62171	
	Lead	1.8	+/-6.0	U	1.8	6.0	P	08/16/2012	14:04	LB62171	
	Magnesium	23.8	+/-1000.0	U	23.8	1000.0	P	08/16/2012	14:04	LB62171	
	Manganese	1.3	+/-10.0	U	1.3	10.0	P	08/16/2012	14:04	LB62171	
	Nickel	3.7	+/-20.0	U	3.7	20.0	P	08/16/2012	14:04	LB62171	
	Potassium	17.4	+/-1000.0	U	17.4	1000.0	P	08/16/2012	14:04	LB62171	
	Selenium	4.9	+/-10.0	U	4.9	10.0	P	08/16/2012	14:04	LB62171	
	Silver	1.3	+/-5.0	U	1.3	5.0	P	08/16/2012	14:04	LB62171	
	Sodium	45.2	+/-1000.0	J	10.9	1000.0	P	08/16/2012	14:04	LB62171	
	Thallium	4.3	+/-20.0	J	2.2	20.0	P	08/16/2012	14:04	LB62171	
	Vanadium	4.0	+/-20.0	U	4.0	20.0	P	08/16/2012	14:04	LB62171	
	Zinc	5.6	+/-20.0	U	5.6	20.0	P	08/16/2012	14:04	LB62171	
CD04											
CCB01	Aluminum	4.8	+/-50.0	U	4.8	50.0	P	08/16/2012	14:25	LB62171	
	Antimony	5.5	+/-25.0	U	5.5	25.0	P	08/16/2012	14:25	LB62171	
	Arsenic	4.0	+/-10.0	U	4.0	10.0	P	08/16/2012	14:25	LB62171	
	Barium	3.7	+/-50.0	U	3.7	50.0	P	08/16/2012 08/16/2012	14:25	LB62171	
	Beryllium	0.3	+/-3.0	U	0.3	3.0	P		14:25	LB62171	
	Calmium	0.4	+/-3.0	J	0.4	3.0	P	08/16/2012	14:25	LB62171	
	Claracione	21.7	+/-1000.0	U	21.7	1000.0	P	08/16/2012 08/16/2012	14:25	LB62171	
	Chromium	1.7	+/-5.0	U	1.7	5.0	P		14:25	LB62171	
	Cobalt	4.9	+/-15.0	U	4.9	15.0	P D	08/16/2012	14:25	LB62171	
	Copper	2.6	+/-10.0	U	2.6	10.0	P D	08/16/2012	14:25	LB62171	
	Iron	10.1	+/-50.0	U	10.1	50.0	P	08/16/2012	14:25	LB62171	
	Lead	1.8	+/-6.0	U	1.8	6.0	P	08/16/2012	14:25	LB62171	
	Magnesium	23.8	+/-1000.0	U	23.8	1000.0	P	08/16/2012	14:25	LB62171	
	Manganese	1.3	+/-10.0	U	1.3	10.0	P	08/16/2012	14:25	LB62171	
	Nickel	3.7	+/-20.0	U	3.7	20.0	P	08/16/2012	14:25	LB62171	
	Potassium	17.4	+/-1000.0	U	17.4	1000.0	P	08/16/2012	14:25	LB62171	
	Selenium	4.9	+/-10.0	U	4.9	10.0	P	08/16/2012	14:25	LB62171	

- 3a - INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: MS Analytical SDG No.: D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

Contract:	MSAN01		Lab Code:	CHEM	Case No.: D3811			SAS No.: <u>D3811</u>			
Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run Number	
CCB01	Silver	1.3	+/-5.0	U	1.3	5.0	P	08/16/2012	14:25	LB62171	
	Sodium	197.0	+/-1000.0	J	10.9	1000.0	P	08/16/2012	14:25	LB62171	
	Thallium	2.2	+/-20.0	U	2.2	20.0	P	08/16/2012	14:25	LB62171	
	Vanadium	4.0	+/-20.0	U	4.0	20.0	P	08/16/2012	14:25	LB62171	
	Zinc	5.6	+/-20.0	U	5.6	20.0	P	08/16/2012	14:25	LB62171	
CCB02	Aluminum	4.8	+/-50.0	U	4.8	50.0	P	08/16/2012	15:05	LB62171	
	Antimony	5.5	+/-25.0	U	5.5	25.0	P	08/16/2012	15:05	LB62171	
	Arsenic	4.0	+/-10.0	U	4.0	10.0	P	08/16/2012	15:05	LB62171	
	Barium	3.7	+/-50.0	U	3.7	50.0	P	08/16/2012	15:05	LB62171	
	Beryllium	0.3	+/-3.0	U	0.3	3.0	P	08/16/2012	15:05	LB62171	
	Cadmium	0.4	+/-3.0	U	0.4	3.0	P	08/16/2012	15:05	LB62171	
	Calcium	22.9	+/-1000.0	J	21.7	1000.0	P	08/16/2012	15:05	LB62171	
	Chromium	1.7	+/-5.0	U	1.7	5.0	P	08/16/2012	15:05	LB62171	
	Cobalt	4.9	+/-15.0	U	4.9	15.0	P	08/16/2012	15:05	LB62171	
	Copper	2.6	+/-10.0	U	2.6	10.0	P	08/16/2012	15:05	LB62171	
	Iron	10.1	+/-50.0	U	10.1	50.0	P	08/16/2012	15:05	LB62171	
	Lead	1.8	+/-6.0	U	1.8	6.0	P	08/16/2012	15:05	LB62171	
	Magnesium	23.8	+/-1000.0	U	23.8	1000.0	P	08/16/2012	15:05	LB62171	
	Manganese	1.3	+/-10.0	U	1.3	10.0	P	08/16/2012	15:05	LB62171	
	Nickel	3.7	+/-20.0	U	3.7	20.0	P	08/16/2012	15:05	LB62171	
	Potassium	17.4	+/-1000.0	U	17.4	1000.0	P	08/16/2012	15:05	LB62171	
	Selenium	4.9	+/-10.0	U	4.9	10.0	P	08/16/2012	15:05	LB62171	
	Silver	1.3	+/-5.0	U	1.3	5.0	P	08/16/2012	15:05	LB62171	
	Sodium	153.8	+/-1000.0	J	10.9	1000.0	P	08/16/2012	15:05	LB62171	
	Thallium	2.2	+/-20.0	U	2.2	20.0	P	08/16/2012	15:05	LB62171	
	Vanadium	4.0	+/-20.0	U	4.0	20.0	P	08/16/2012	15:05	LB62171	
	Zinc	5.6	+/-20.0	U	5.6	20.0	P	08/16/2012	15:05	LB62171	
CB03	Aluminum	4.8	+/-50.0	U	4.8	50.0	P	08/16/2012	15:45	LB62171	
СВОС	Antimony	5.5	+/-25.0	U	5.5	25.0	P	08/16/2012	15:45	LB62171	
	Arsenic	4.0	+/-10.0	U	4.0	10.0	P	08/16/2012	15:45	LB62171	
	Barium	3.7	+/-50.0	U	3.7	50.0	P	08/16/2012	15:45	LB62171	
	Beryllium	0.3	+/-3.0	U	0.3	3.0	P	08/16/2012	15:45	LB62171	
	Cadmium	0.4	+/-3.0	U	0.4	3.0	P	08/16/2012	15:45	LB62171	
	Calcium	21.7	+/-1000.0	U	21.7	1000.0	P	08/16/2012	15:45	LB62171	
	Chromium	1.7	+/-5.0	U	1.7	5.0	P	08/16/2012	15:45	LB62171	
	Cobalt	4.9	+/-15.0	U	4.9	15.0	P	08/16/2012	15:45	LB62171	
	Copper	2.6	+/-10.0	U	2.6	10.0	P	08/16/2012	15:45	LB62171	
	Iron	10.1	+/-50.0	U	10.1	50.0	P	08/16/2012	15:45	LB62171	
	Lead	1.8	+/-6.0	U	1.8	6.0	P	08/16/2012	15:45	LB62171	
	Magnesium	23.8	+/-1000.0	U	23.8	1000.0	P	08/16/2012	15:45	LB62171	
	Manganese	1.3	+/-10.0	U	1.3	10.0	P	08/16/2012	15:45	LB62171	
	Nickel	3.7	+/-20.0	U	3.7	20.0	P	08/16/2012	15:45	LB62171	

D E F

Metals

- 3a -INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

MS Analytical **SDG No.:** D3811 Client:

MSAN01 D3811

	MSAN01		Lab Code:	CHEM	_ Cas	e No.: <u>D38</u>	511	SA	S No.: <u>D3</u>	811
Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run Number
CCB03	Potassium	96.8	+/-1000.0	J	17.4	1000.0	P	08/16/2012	15:45	LB62171
	Selenium	4.9	+/-10.0	U	4.9	10.0	P	08/16/2012	15:45	LB62171
	Silver	1.3	+/-5.0	U	1.3	5.0	P	08/16/2012	15:45	LB62171
	Sodium	118.9	+/-1000.0	J	10.9	1000.0	P	08/16/2012	15:45	LB62171
	Thallium	2.2	+/-20.0	U	2.2	20.0	P	08/16/2012	15:45	LB62171
	Vanadium	4.0	+/-20.0	U	4.0	20.0	P	08/16/2012	15:45	LB62171
	Zinc	5.6	+/-20.0	U	5.6	20.0	P	08/16/2012	15:45	LB62171
CCB04	Aluminum	4.8	+/-50.0	U	4.8	50.0	P	08/16/2012	16:26	LB62171
	Antimony	5.5	+/-25.0	U	5.5	25.0	P	08/16/2012	16:26	LB62171
	Arsenic	4.0	+/-10.0	U	4.0	10.0	P	08/16/2012	16:26	LB62171
	Barium	3.8	+/-50.0	J	3.7	50.0	P	08/16/2012	16:26	LB62171
	Beryllium	0.3	+/-3.0	U	0.3	3.0	P	08/16/2012	16:26	LB62171
	Cadmium	0.5	+/-3.0	J	0.4	3.0	P	08/16/2012	16:26	LB62171
	Calcium	21.7	+/-1000.0	U	21.7	1000.0	P	08/16/2012	16:26	LB62171
	Chromium	1.7	+/-5.0	U	1.7	5.0	P	08/16/2012	16:26	LB62171
	Cobalt	4.9	+/-15.0	U	4.9	15.0	P	08/16/2012	16:26	LB62171
	Copper	2.6	+/-10.0	U	2.6	10.0	P	08/16/2012	16:26	LB62171
	Iron	10.1	+/-50.0	U	10.1	50.0	P	08/16/2012	16:26	LB62171
	Lead	1.8	+/-6.0	U	1.8	6.0	P	08/16/2012	16:26	LB62171
	Magnesium	23.8	+/-1000.0	U	23.8	1000.0	P	08/16/2012	16:26	LB62171
	Manganese	1.3	+/-10.0	U	1.3	10.0	P	08/16/2012	16:26	LB62171
	Nickel	3.7	+/-20.0	U	3.7	20.0	P	08/16/2012	16:26	LB62171
	Potassium	17.4	+/-1000.0	U	17.4	1000.0	P	08/16/2012	16:26	LB62171
	Selenium	4.9	+/-10.0	U	4.9	10.0	P	08/16/2012	16:26	LB62171
	Silver	1.3	+/-5.0	U	1.3	5.0	P	08/16/2012	16:26	LB62171
	Sodium	484.7	+/-1000.0	J	10.9	1000.0	P	08/16/2012	16:26	LB62171
	Thallium	3.8	+/-20.0	J	2.2	20.0	P	08/16/2012	16:26	LB62171
	Vanadium	4.0	+/-20.0	U	4.0	20.0	P	08/16/2012	16:26	LB62171
	Zinc	5.6	+/-20.0	U	5.6	20.0	P	08/16/2012	16:26	LB62171
CCB05	Aluminum	4.8	+/-50.0	U	4.8	50.0	P	08/16/2012	17:06	LB62171
	Antimony	5.5	+/-25.0	U	5.5	25.0	P	08/16/2012	17:06	LB62171
	Arsenic	4.0	+/-10.0	U	4.0	10.0	P	08/16/2012	17:06	LB62171
	Barium	3.7	+/-50.0	U	3.7	50.0	P	08/16/2012	17:06	LB62171
	Beryllium	0.3	+/-3.0	U	0.3	3.0	P	08/16/2012	17:06	LB62171
	Cadmium	0.4	+/-3.0	U	0.4	3.0	P	08/16/2012	17:06	LB62171
	Calcium	21.7	+/-1000.0	U	21.7	1000.0	P	08/16/2012	17:06	LB62171
	Chromium	1.7	+/-5.0	U	1.7	5.0	P	08/16/2012	17:06	LB62171
	Cobalt	4.9	+/-15.0	U	4.9	15.0	P	08/16/2012	17:06	LB62171
	Copper	2.6	+/-10.0	U	2.6	10.0	P	08/16/2012	17:06	LB62171
	Iron	10.1	+/-50.0	U	10.1	50.0	P	08/16/2012	17:06	LB62171
	Lead	1.8	+/-6.0	U	1.8	6.0	P	08/16/2012	17:06	LB62171
	Magnesium	23.8	+/-1000.0	U	23.8	1000.0	P	08/16/2012	17:06	LB62171

- 3a INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: MS Analytical SDG No.: D3811

Contract: MSAN01 Lab Code: CHEM Case No.: D3811 SAS No.: D3811

Contract:	MSAN01		Lab Code:	СНЕМ	Case No.: <u>D3811</u>			SAS No.: <u>D3811</u>			
Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run Number	
CCB05	Manganese	1.3	+/-10.0	U	1.3	10.0	P	08/16/2012	17:06	LB62171	
	Nickel	3.7	+/-20.0	U	3.7	20.0	P	08/16/2012	17:06	LB62171	
	Potassium	93.7	+/-1000.0	J	17.4	1000.0	P	08/16/2012	17:06	LB62171	
	Selenium	4.9	+/-10.0	U	4.9	10.0	P	08/16/2012	17:06	LB62171	
	Silver	1.3	+/-5.0	U	1.3	5.0	P	08/16/2012	17:06	LB62171	
	Sodium	79.1	+/-1000.0	J	10.9	1000.0	P	08/16/2012	17:06	LB62171	
	Thallium	2.6	+/-20.0	J	2.2	20.0	P	08/16/2012	17:06	LB62171	
	Vanadium	4.0	+/-20.0	U	4.0	20.0	P	08/16/2012	17:06	LB62171	
	Zinc	5.6	+/-20.0	U	5.6	20.0	P	08/16/2012	17:06	LB62171	
CCB06	Aluminum	4.8	+/-50.0	U	4.8	50.0	P	08/16/2012	17:46	LB62171	
	Antimony	5.5	+/-25.0	U	5.5	25.0	P	08/16/2012	17:46	LB62171	
	Arsenic	4.0	+/-10.0	U	4.0	10.0	P	08/16/2012	17:46	LB62171	
	Barium	3.7	+/-50.0	U	3.7	50.0	P	08/16/2012	17:46	LB62171	
	Beryllium	0.3	+/-3.0	U	0.3	3.0	P	08/16/2012	17:46	LB62171	
	Cadmium	0.4	+/-3.0	U	0.4	3.0	P	08/16/2012	17:46	LB62171	
	Calcium	21.7	+/-1000.0	U	21.7	1000.0	P	08/16/2012	17:46	LB62171	
	Chromium	1.7	+/-5.0	U	1.7	5.0	P	08/16/2012	17:46	LB62171	
	Cobalt	4.9	+/-15.0	U	4.9	15.0	P	08/16/2012	17:46	LB62171	
	Copper	2.6	+/-10.0	U	2.6	10.0	P	08/16/2012	17:46	LB62171	
	Iron	10.2	+/-50.0	J	10.1	50.0	P	08/16/2012	17:46	LB62171	
	Lead	1.8	+/-6.0	U	1.8	6.0	P	08/16/2012	17:46	LB62171	
	Magnesium	23.8	+/-1000.0	U	23.8	1000.0	P	08/16/2012	17:46	LB62171	
	Manganese	1.3	+/-10.0	U	1.3	10.0	P	08/16/2012	17:46	LB62171	
	Nickel	3.7	+/-20.0	U	3.7	20.0	P	08/16/2012	17:46	LB62171	
	Potassium	43.8	+/-1000.0	J	17.4	1000.0	P	08/16/2012	17:46	LB62171	
	Selenium	4.9	+/-10.0	U	4.9	10.0	P	08/16/2012	17:46	LB62171	
	Silver	1.3	+/-5.0	U	1.3	5.0	P	08/16/2012	17:46	LB62171	
	Sodium	10.9	+/-1000.0	U	10.9	1000.0	P	08/16/2012	17:46	LB62171	
	Thallium	2.5	+/-20.0	J	2.2	20.0	P	08/16/2012	17:46	LB62171	
	Vanadium	4.0	+/-20.0	U	4.0	20.0	P	08/16/2012	17:46	LB62171	
	Zinc	5.6	+/-20.0	U	5.6	20.0	P	08/16/2012	17:46	LB62171	
CCB07	Aluminum	6.5	+/-50.0	J	4.8	50.0	P	08/16/2012	18:26	LB62171	
	Antimony	5.5	+/-25.0	U	5.5	25.0	P	08/16/2012	18:26	LB62171	
	Arsenic	4.0	+/-10.0	U	4.0	10.0	P	08/16/2012	18:26	LB62171	
	Barium	3.7	+/-50.0	U	3.7	50.0	P	08/16/2012	18:26	LB62171	
	Beryllium	0.3	+/-3.0	U	0.3	3.0	P	08/16/2012	18:26	LB62171	
	Cadmium	0.4	+/-3.0	U	0.4	3.0	P	08/16/2012	18:26	LB62171	
	Calcium	21.7	+/-1000.0	U	21.7	1000.0	P	08/16/2012	18:26	LB62171	
	Chromium	1.7	+/-5.0	U	1.7	5.0	P	08/16/2012	18:26	LB62171	
	Cobalt	4.9	+/-15.0	U	4.9	15.0	P	08/16/2012	18:26	LB62171	
	Copper	2.6	+/-10.0	U	2.6	10.0	P	08/16/2012	18:26	LB62171	
	Iron	10.1	+/-50.0	U	10.1	50.0	P	08/16/2012	18:26	LB62171	

- 3a -INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

MS Analytical **SDG No.:** D3811 **Client:**

MSAN01 D3811

Contract:	MSAN01		Lab Code:	CHEM	Cas	se No.: <u>D38</u>	311	SA	S No.: <u>D3</u>	811
Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run Number
CCB07	Lead	1.8	+/-6.0	U	1.8	6.0	P	08/16/2012	18:26	LB62171
	Magnesium	23.8	+/-1000.0	U	23.8	1000.0	P	08/16/2012	18:26	LB62171
	Manganese	1.3	+/-10.0	J	1.3	10.0	P	08/16/2012	18:26	LB62171
	Nickel	3.7	+/-20.0	U	3.7	20.0	P	08/16/2012	18:26	LB62171
	Potassium	75.3	+/-1000.0	J	17.4	1000.0	P	08/16/2012	18:26	LB62171
	Selenium	4.9	+/-10.0	U	4.9	10.0	P	08/16/2012	18:26	LB62171
	Silver	1.3	+/-5.0	U	1.3	5.0	P	08/16/2012	18:26	LB62171
	Sodium	400.4	+/-1000.0	J	10.9	1000.0	P	08/16/2012	18:26	LB62171
	Thallium	5.9	+/-20.0	J	2.2	20.0	P	08/16/2012	18:26	LB62171
	Vanadium	4.0	+/-20.0	U	4.0	20.0	P	08/16/2012	18:26	LB62171
	Zinc	5.6	+/-20.0	U	5.6	20.0	P	08/16/2012	18:26	LB62171
CCB08	Aluminum	4.8	+/-50.0	U	4.8	50.0	P	08/16/2012	19:06	LB62171
00200	Antimony	5.5	+/-25.0	U	5.5	25.0	P	08/16/2012	19:06	LB62171
	Arsenic	4.0	+/-10.0	U	4.0	10.0	P	08/16/2012	19:06	LB62171
	Barium	3.7	+/-50.0	U	3.7	50.0	P	08/16/2012	19:06	LB62171
	Beryllium	0.3	+/-3.0	U	0.3	3.0	P	08/16/2012	19:06	LB62171
	Cadmium	0.4	+/-3.0	U	0.4	3.0	P	08/16/2012	19:06	LB62171
	Calcium	21.7	+/-1000.0	U	21.7	1000.0	P	08/16/2012	19:06	LB62171
	Chromium	1.7	+/-5.0	U	1.7	5.0	P	08/16/2012	19:06	LB62171
	Cobalt	4.9	+/-15.0	U	4.9	15.0	P	08/16/2012	19:06	LB62171
	Copper	2.6	+/-10.0	U	2.6	10.0	P	08/16/2012	19:06	LB62171
	Iron	22.8	+/-50.0	J	10.1	50.0	P	08/16/2012	19:06	LB62171
	Lead	1.8	+/-6.0	U	1.8	6.0	P	08/16/2012	19:06	LB62171
	Magnesium	23.8	+/-1000.0	U	23.8	1000.0	P	08/16/2012	19:06	LB62171
	Manganese	1.3	+/-10.0	U	1.3	10.0	P	08/16/2012	19:06	LB62171
	Nickel	3.7	+/-20.0	U	3.7	20.0	P	08/16/2012	19:06	LB62171
	Potassium	45.3	+/-1000.0	J	17.4	1000.0	P	08/16/2012	19:06	LB62171
	Selenium	4.9	+/-10.0	U	4.9	10.0	P	08/16/2012	19:06	LB62171
	Silver	1.3	+/-5.0	U	1.3	5.0	P	08/16/2012	19:06	LB62171
	Sodium	313.7	+/-1000.0	J	10.9	1000.0	P	08/16/2012	19:06	LB62171
	Thallium	2.2	+/-20.0	U	2.2	20.0	P	08/16/2012	19:06	LB62171
	Vanadium	4.0	+/-20.0	U	4.0	20.0	P	08/16/2012	19:06	LB62171
	Zinc	5.6	+/-20.0	U	5.6	20.0	P	08/16/2012	19:06	LB62171
CCD00										
CCB09	Aluminum	4.8	+/-50.0	U	4.8	50.0	P	08/16/2012	19:46	LB62171
	Antimony	5.5	+/-25.0	U	5.5	25.0	P	08/16/2012	19:46	LB62171
	Arsenic	4.0	+/-10.0	U	4.0	10.0	P	08/16/2012	19:46	LB62171
	Barium	3.7	+/-50.0	U	3.7	50.0	P	08/16/2012	19:46	LB62171
	Beryllium	0.3	+/-3.0	U	0.3	3.0	P	08/16/2012	19:46	LB62171
	Cadmium	0.4	+/-3.0	U	0.4	3.0	P	08/16/2012	19:46	LB62171
	Calcium	21.7	+/-1000.0	U	21.7	1000.0	P	08/16/2012	19:46	LB62171
	Chromium	1.7	+/-5.0	U	1.7	5.0	P	08/16/2012	19:46	LB62171
	Cobalt	4.9	+/-15.0	U	4.9	15.0	P	08/16/2012	19:46	LB62171

D

Metals

- 3a - INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: MS Analytical SDG No.: D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

Contract:	MSAN01		Lab Code:	Case No.: <u>D3811</u>			SAS No.: D3811			
Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run Number
CCB09	Copper	2.6	+/-10.0	U	2.6	10.0	P	08/16/2012	19:46	LB62171
	Iron	20.0	+/-50.0	J	10.1	50.0	P	08/16/2012	19:46	LB62171
	Lead	1.8	+/-6.0	U	1.8	6.0	P	08/16/2012	19:46	LB62171
	Magnesium	23.8	+/-1000.0	U	23.8	1000.0	P	08/16/2012	19:46	LB62171
	Manganese	1.3	+/-10.0	U	1.3	10.0	P	08/16/2012	19:46	LB62171
	Nickel	3.7	+/-20.0	U	3.7	20.0	P	08/16/2012	19:46	LB62171
	Potassium	17.4	+/-1000.0	U	17.4	1000.0	P	08/16/2012	19:46	LB62171
	Selenium	4.9	+/-10.0	U	4.9	10.0	P	08/16/2012	19:46	LB62171
	Silver	1.3	+/-5.0	U	1.3	5.0	P	08/16/2012	19:46	LB62171
	Sodium	332.6	+/-1000.0	J	10.9	1000.0	P	08/16/2012	19:46	LB62171
	Thallium	3.0	+/-20.0	J	2.2	20.0	P	08/16/2012	19:46	LB62171
	Vanadium	4.0	+/-20.0	U	4.0	20.0	P	08/16/2012	19:46	LB62171
	Zinc	5.6	+/-20.0	U	5.6	20.0	P	08/16/2012	19:46	LB62171
CCB10	Aluminum	4.8	+/-50.0	U	4.8	50.0	P	08/16/2012	20:27	LB62171
CCDIO	Antimony	5.5	+/-25.0	U	5.5	25.0	P	08/16/2012	20:27	LB62171
	Arsenic	4.0	+/-10.0	U	4.0	10.0	P	08/16/2012	20:27	LB62171
	Barium	3.7	+/-50.0	U	3.7	50.0	P	08/16/2012	20:27	LB62171
	Beryllium	0.3	+/-3.0	U	0.3	3.0	P	08/16/2012	20:27	LB62171
	Cadmium	0.4	+/-3.0	U	0.4	3.0	P	08/16/2012	20:27	LB62171
	Calcium	21.7	+/-1000.0	U	21.7	1000.0	P	08/16/2012	20:27	LB62171
	Chromium	1.7	+/-5.0	U	1.7	5.0	P	08/16/2012	20:27	LB62171
	Cobalt	4.9	+/-15.0	U	4.9	15.0	P	08/16/2012	20:27	LB62171
	Copper	2.6	+/-10.0	U	2.6	10.0	P	08/16/2012	20:27	LB62171
	Iron	36.5	+/-50.0	J	10.1	50.0	P	08/16/2012	20:27	LB62171
	Lead	1.8	+/-6.0	U	1.8	6.0	P	08/16/2012	20:27	LB62171
	Magnesium	23.8	+/-1000.0	U	23.8	1000.0	P	08/16/2012	20:27	LB62171
	Manganese	3.5	+/-10.0	J	1.3	10.0	P	08/16/2012	20:27	LB62171
	Nickel	3.7	+/-20.0	U	3.7	20.0	P	08/16/2012	20:27	LB62171
	Potassium	17.4	+/-1000.0	U	17.4	1000.0	P	08/16/2012	20:27	LB62171
	Selenium	4.9	+/-10.0	U	4.9	10.0	P	08/16/2012	20:27	LB62171
	Silver	1.3	+/-5.0	U	1.3	5.0	P	08/16/2012	20:27	LB62171
	Sodium	307.7	+/-1000.0	J	10.9	1000.0	P	08/16/2012	20:27	LB62171
	Thallium	2.2	+/-20.0	U	2.2	20.0	P	08/16/2012	20:27	LB62171
	Vanadium	4.0	+/-20.0	U	4.0	20.0	P	08/16/2012	20:27	LB62171 LB62171
	Zinc	5.6	+/-20.0	U	5.6	20.0	P	08/16/2012	20:27	LB62171 LB62171
CCB11	Aluminum	4.8	+/-50.0	U	4.8	50.0	P	08/16/2012	21:08	LB62171
	Antimony	5.5	+/-25.0	U	5.5	25.0	P	08/16/2012	21:08	LB62171
	Arsenic	4.0	+/-10.0	U	4.0	10.0	P	08/16/2012	21:08	LB62171
	Barium	3.7	+/-50.0	U	3.7	50.0	P	08/16/2012	21:08	LB62171
	Beryllium	0.3	+/-3.0	U	0.3	3.0	P	08/16/2012	21:08	LB62171
	Cadmium	0.4	+/-3.0	U	0.4	3.0	P	08/16/2012	21:08	LB62171
	Calcium	21.7	+/-1000.0	U	21.7	1000.0	P	08/16/2012	21:08	LB62171

Metals

- 3a - INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: MS Analytical SDG No.: D3811

	MSAN01		Lab Code:	CHEM	_	se No.: <u>D38</u>	,	_	S No.: <u>D3</u>	
Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run Number
CCB11	Chromium	1.7	+/-5.0	U	1.7	5.0	P	08/16/2012	21:08	LB62171
	Cobalt	4.9	+/-15.0	U	4.9	15.0	P	08/16/2012	21:08	LB62171
	Copper	2.6	+/-10.0	U	2.6	10.0	P	08/16/2012	21:08	LB62171
	Iron	24.7	+/-50.0	J	10.1	50.0	P	08/16/2012	21:08	LB62171
	Lead	1.8	+/-6.0	U	1.8	6.0	P	08/16/2012	21:08	LB62171
	Magnesium	23.8	+/-1000.0	U	23.8	1000.0	P	08/16/2012	21:08	LB62171
	Manganese	1.3	+/-10.0	U	1.3	10.0	P	08/16/2012	21:08	LB62171
	Nickel	3.7	+/-20.0	U	3.7	20.0	P	08/16/2012	21:08	LB62171
	Potassium	53.4	+/-1000.0	J	17.4	1000.0	P	08/16/2012	21:08	LB62171
	Selenium	4.9	+/-10.0	U	4.9	10.0	P	08/16/2012	21:08	LB62171
	Silver	1.3	+/-5.0	U	1.3	5.0	P	08/16/2012	21:08	LB62171
	Sodium	250.6	+/-1000.0	J	10.9	1000.0	P	08/16/2012	21:08	LB62171
	Thallium	2.7	+/-20.0	J	2.2	20.0	P	08/16/2012	21:08	LB62171
	Vanadium	4.0	+/-20.0	U	4.0	20.0	P	08/16/2012	21:08	LB62171
	Zinc	5.6	+/-20.0	U	5.6	20.0	P	08/16/2012	21:08	LB62171
CCB12	Aluminum	4.8	+/-50.0	U	4.8	50.0	P	08/16/2012	21:49	LB62171
CD12	Antimony	5.5	+/-25.0	U	5.5	25.0	P	08/16/2012	21:49	LB62171
	Arsenic	4.0	+/-10.0	U	4.0	10.0	P	08/16/2012	21:49	LB62171
	Barium	3.7	+/-50.0	U	3.7	50.0	P	08/16/2012	21:49	LB62171
	Beryllium	0.3	+/-3.0	U	0.3	3.0	P	08/16/2012	21:49	LB62171
	Cadmium	0.4	+/-3.0	U	0.4	3.0	P	08/16/2012	21:49	LB62171
	Calcium	21.7	+/-1000.0	U	21.7	1000.0	P	08/16/2012	21:49	LB62171
	Chromium	1.7	+/-5.0	U	1.7	5.0	P	08/16/2012	21:49	LB62171
	Cobalt	4.9	+/-15.0	U	4.9	15.0	P	08/16/2012	21:49	LB62171
	Copper	2.6	+/-10.0	U	2.6	10.0	P	08/16/2012	21:49	LB62171
	Iron	32.4	+/-50.0	J	10.1	50.0	P	08/16/2012	21:49	LB62171
	Lead	1.8	+/-6.0	U	1.8	6.0	P	08/16/2012	21:49	LB62171
	Magnesium	23.8	+/-1000.0	U	23.8	1000.0	P	08/16/2012	21:49	LB62171
	Manganese	1.3	+/-10.0	U	1.3	10.0	P	08/16/2012	21:49	LB62171
	Nickel	3.7	+/-20.0	U	3.7	20.0	P	08/16/2012	21:49	LB62171
	Potassium	104.5	+/-1000.0	J	17.4	1000.0	P	08/16/2012	21:49	LB62171
	Selenium	4.9	+/-10.0	U	4.9	10.0	P	08/16/2012	21:49	LB62171
	Silver	1.3	+/-5.0	U	1.3	5.0	P	08/16/2012	21:49	LB62171
	Sodium	230.4	+/-1000.0	J	10.9	1000.0	P	08/16/2012	21:49	LB62171
	Thallium	2.4	+/-20.0	J	2.2	20.0	P	08/16/2012	21:49	LB62171
	Vanadium	4.0	+/-20.0	U	4.0	20.0	P	08/16/2012	21:49	LB62171
	Zinc	5.6	+/-20.0	U	5.6	20.0	P	08/16/2012	21:49	LB62171
CB13	Aluminum	4.8	+/-50.0	U	4.8	50.0	P	08/16/2012	22:32	LB62171
CDIS	Antimony	5.5	+/-25.0	U	5.5	25.0	P	08/16/2012	22:32	LB62171
	Arsenic	4.0	+/-10.0	U	4.0	10.0	P	08/16/2012	22:32	LB62171
	Barium	3.7	+/-50.0	U	3.7	50.0	P	08/16/2012	22:32	LB62171
	Beryllium	0.3	+/-3.0	U	0.3	3.0	P	08/16/2012	22:32	LB62171

Metals

- 3a - INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: MS Analytical SDG No.: D3811

Contract:	MSAN01		Lab Code:	CHEM	Cas	se No.: <u>D38</u>)11		S No.: <u>D3</u>	611
Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run Number
CCB13	Cadmium	0.4	+/-3.0	U	0.4	3.0	P	08/16/2012	22:32	LB62171
	Calcium	21.7	+/-1000.0	U	21.7	1000.0	P	08/16/2012	22:32	LB62171
	Chromium	1.7	+/-5.0	U	1.7	5.0	P	08/16/2012	22:32	LB62171
	Cobalt	4.9	+/-15.0	U	4.9	15.0	P	08/16/2012	22:32	LB62171
	Copper	2.6	+/-10.0	U	2.6	10.0	P	08/16/2012	22:32	LB62171
	Iron	45.1	+/-50.0	J	10.1	50.0	P	08/16/2012	22:32	LB62171
	Lead	1.8	+/-6.0	U	1.8	6.0	P	08/16/2012	22:32	LB62171
	Magnesium	23.8	+/-1000.0	U	23.8	1000.0	P	08/16/2012	22:32	LB62171
	Manganese	1.3	+/-10.0	U	1.3	10.0	P	08/16/2012	22:32	LB62171
	Nickel	3.7	+/-20.0	U	3.7	20.0	P	08/16/2012	22:32	LB62171
	Potassium	17.4	+/-1000.0	U	17.4	1000.0	P	08/16/2012	22:32	LB62171
	Selenium	4.9	+/-10.0	U	4.9	10.0	P	08/16/2012	22:32	LB62171
	Silver	1.3	+/-5.0	U	1.3	5.0	P	08/16/2012	22:32	LB62171
	Sodium	65.6	+/-1000.0	J	10.9	1000.0	P	08/16/2012	22:32	LB62171
	Thallium	2.2	+/-20.0	U	2.2	20.0	P	08/16/2012	22:32	LB62171
	Vanadium	4.0	+/-20.0	U	4.0	20.0	P	08/16/2012	22:32	LB62171
	Zinc	5.6	+/-20.0	U	5.6	20.0	P	08/16/2012	22:32	LB62171
CCB14	Aluminum	4.8	+/-50.0	U	4.8	50.0	P	08/16/2012	22:57	LB62171
	Antimony	5.5	+/-25.0	U	5.5	25.0	P	08/16/2012	22:57	LB62171
	Arsenic	4.0	+/-10.0	U	4.0	10.0	P	08/16/2012	22:57	LB62171
	Barium	3.7	+/-50.0	U	3.7	50.0	P	08/16/2012	22:57	LB62171
	Beryllium	0.3	+/-3.0	U	0.3	3.0	P	08/16/2012	22:57	LB62171
	Cadmium	0.4	+/-3.0	U	0.4	3.0	P	08/16/2012	22:57	LB62171
	Calcium	21.7	+/-1000.0	U	21.7	1000.0	P	08/16/2012	22:57	LB62171
	Chromium	1.7	+/-5.0	U	1.7	5.0	P	08/16/2012	22:57	LB62171
	Cobalt	4.9	+/-15.0	U	4.9	15.0	P	08/16/2012	22:57	LB62171
	Copper	2.6	+/-10.0	U	2.6	10.0	P	08/16/2012	22:57	LB62171
	Iron	30.4	+/-50.0	J	10.1	50.0	P	08/16/2012	22:57	LB62171
	Lead	1.8	+/-6.0	U	1.8	6.0	P	08/16/2012	22:57	LB62171
	Magnesium	23.8	+/-1000.0	U	23.8	1000.0	P	08/16/2012	22:57	LB62171
	Manganese	1.3	+/-10.0	U	1.3	10.0	P	08/16/2012	22:57	LB62171
	Nickel	3.7	+/-20.0	U	3.7	20.0	P	08/16/2012	22:57	LB62171
	Potassium	62.1	+/-1000.0	J	17.4	1000.0	P	08/16/2012	22:57	LB62171
	Selenium	4.9	+/-10.0	U	4.9	10.0	P	08/16/2012	22:57	LB62171
	Silver	1.3	+/-5.0	U	1.3	5.0	P	08/16/2012	22:57	LB62171
	Sodium	172.5	+/-1000.0	J	10.9	1000.0	P	08/16/2012	22:57	LB62171
	Thallium	2.2	+/-20.0	U	2.2	20.0	P	08/16/2012	22:57	LB62171
	Vanadium	4.0	+/-20.0	U	4.0	20.0	P	08/16/2012	22:57	LB62171
	Zinc	5.6	+/-20.0	U	5.6	20.0	P	08/16/2012	22:57	LB62171
ICB01	Aluminum	6.5	+/-50.0	U	6.5	50.0	P	08/16/2012	14:04	LB62172
	Antimony	8.0	+/-25.0	U	8.0	25.0	P	08/16/2012	14:04	LB62172
	Arsenic	4.2	+/-10.0	U	4.2	10.0	P	08/16/2012	14:04	LB62172

Metals

- 3a - INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: MS Analytical SDG No.: D3811

Contract:	MSANUI		Lab Code:	СНЕМ	Cas	se No.: D38	011	SA	S No.: <u>D3</u>	011
Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run Number
ICB01	Barium	4.0	+/-50.0	U	4.0	50.0	P	08/16/2012	14:04	LB62172
10201	Beryllium	0.7	+/-3.0	U	0.7	3.0	P	08/16/2012	14:04	LB62172
	Cadmium	0.5	+/-3.0	U	0.5	3.0	P	08/16/2012	14:04	LB62172
	Calcium	31.8	+/-1000.0	U	31.8	1000.0	P	08/16/2012	14:04	LB62172
	Chromium	1.1	+/-5.0	U	1.1	5.0	P	08/16/2012	14:04	LB62172
	Cobalt	5.8	+/-15.0	U	5.8	15.0	P	08/16/2012	14:04	LB62172
	Copper	2.0	+/-10.0	U	2.0	10.0	P	08/16/2012	14:04	LB62172
	Iron	20.4	+/-50.0	U	20.4	50.0	P	08/16/2012	14:04	LB62172
	Lead	2.6	+/-6.0	U	2.6	6.0	P	08/16/2012	14:04	LB62172
	Magnesium	32.5	+/-1000.0	U	32.5	1000.0	P	08/16/2012	14:04	LB62172
	Manganese	1.7	+/-10.0	U	1.7	10.0	P	08/16/2012	14:04	LB62172
	Nickel	4.2	+/-20.0	U	4.2	20.0	P	08/16/2012	14:04	LB62172
	Potassium	38.8	+/-1000.0	U	38.8	1000.0	P	08/16/2012	14:04	LB62172
	Selenium	4.8	+/-10.0	U	4.8	10.0	P	08/16/2012	14:04	LB62172
	Silver	1.5	+/-5.0	U	1.5	5.0	P	08/16/2012	14:04	LB62172
	Sodium	45.2	+/-1000.0	J	13.9	1000.0	P	08/16/2012	14:04	LB62172
	Thallium	4.3	+/-20.0	J	2.4	20.0	P	08/16/2012	14:04	LB62172
	Vanadium	6.1	+/-20.0	U	6.1	20.0	P	08/16/2012	14:04	LB62172
	Zinc	6.5	+/-20.0	U	6.5	20.0	P	08/16/2012	14:04	LB62172
CCB01	Aluminum	6.5	+/-50.0	U	6.5	50.0	P	08/16/2012	14:25	LB62172
	Antimony	8.0	+/-25.0	U	8.0	25.0	P	08/16/2012	14:25	LB62172
	Arsenic	4.2	+/-10.0	U	4.2	10.0	P	08/16/2012	14:25	LB62172
	Barium	4.0	+/-50.0	U	4.0	50.0	P	08/16/2012	14:25	LB62172
	Beryllium	0.7	+/-3.0	U	0.7	3.0	P	08/16/2012	14:25	LB62172
	Cadmium	0.5	+/-3.0	U	0.5	3.0	P	08/16/2012	14:25	LB62172
	Calcium	31.8	+/-1000.0	U	31.8	1000.0	P	08/16/2012	14:25	LB62172
	Chromium	1.1	+/-5.0	U	1.1	5.0	P	08/16/2012	14:25	LB62172
	Cobalt	5.8	+/-15.0	U	5.8	15.0	P	08/16/2012	14:25	LB62172
	Copper	2.0	+/-10.0	U	2.0	10.0	P	08/16/2012	14:25	LB62172
	Iron	20.4	+/-50.0	U	20.4	50.0	P	08/16/2012	14:25	LB62172
	Lead	2.6	+/-6.0	U	2.6	6.0	P	08/16/2012	14:25	LB62172
	Magnesium	32.5	+/-1000.0	U	32.5	1000.0	P	08/16/2012	14:25	LB62172
	Manganese	1.7	+/-10.0	U	1.7	10.0	P	08/16/2012	14:25	LB62172
	Nickel	4.2	+/-20.0	U	4.2	20.0	P	08/16/2012	14:25	LB62172
	Potassium	38.8	+/-1000.0	U	38.8	1000.0	P	08/16/2012	14:25	LB62172
	Selenium	4.8	+/-10.0	U	4.8	10.0	P	08/16/2012	14:25	LB62172
	Silver	1.5	+/-5.0	U	1.5	5.0	P	08/16/2012	14:25	LB62172
	Sodium	197.0	+/-1000.0	J	13.9	1000.0	P	08/16/2012	14:25	LB62172
	Thallium	2.4	+/-20.0	U	2.4	20.0	P	08/16/2012	14:25	LB62172
	Vanadium	6.1	+/-20.0	U	6.1	20.0	P	08/16/2012	14:25	LB62172
	Zinc	6.5	+/-20.0	U	6.5	20.0	P	08/16/2012	14:25	LB62172
CCB02	Aluminum	6.5	+/-50.0	U	6.5	50.0	P	08/16/2012	15:05	LB62172

D E F G

Metals

- 3a - INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: MS Analytical SDG No.: D3811

Contract:	MSAN01		Lab Code:	СНЕМ	Cas	se No.: <u>D38</u>	311	SA	S No.: <u>D3</u>	811
Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run Number
CCB02	Antimony	8.0	+/-25.0	U	8.0	25.0	P	08/16/2012	15:05	LB62172
	Arsenic	4.2	+/-10.0	U	4.2	10.0	P	08/16/2012	15:05	LB62172
	Barium	4.0	+/-50.0	U	4.0	50.0	P	08/16/2012	15:05	LB62172
	Beryllium	0.7	+/-3.0	U	0.7	3.0	P	08/16/2012	15:05	LB62172
	Cadmium	0.5	+/-3.0	U	0.5	3.0	P	08/16/2012	15:05	LB62172
	Calcium	31.8	+/-1000.0	U	31.8	1000.0	P	08/16/2012	15:05	LB62172
	Chromium	1.1	+/-5.0	U	1.1	5.0	P	08/16/2012	15:05	LB62172
	Cobalt	5.8	+/-15.0	U	5.8	15.0	P	08/16/2012	15:05	LB62172
	Copper	2.0	+/-10.0	U	2.0	10.0	P	08/16/2012	15:05	LB62172
	Iron	20.4	+/-50.0	U	20.4	50.0	P	08/16/2012	15:05	LB62172
	Lead	2.6	+/-6.0	U	2.6	6.0	P	08/16/2012	15:05	LB62172
	Magnesium	32.5	+/-1000.0	U	32.5	1000.0	P	08/16/2012	15:05	LB62172
	Manganese	1.7	+/-10.0	U	1.7	10.0	P	08/16/2012	15:05	LB62172
	Nickel	4.2	+/-20.0	U	4.2	20.0	P	08/16/2012	15:05	LB62172
	Potassium	38.8	+/-1000.0	U	38.8	1000.0	P	08/16/2012	15:05	LB62172
	Selenium	4.8	+/-10.0	U	4.8	10.0	P	08/16/2012	15:05	LB62172
	Silver	1.5	+/-5.0	U	1.5	5.0	P	08/16/2012	15:05	LB62172
	Sodium	153.8	+/-1000.0	J	13.9	1000.0	P	08/16/2012	15:05	LB62172
	Thallium	2.4	+/-20.0	U	2.4	20.0	P	08/16/2012	15:05	LB62172
	Vanadium	6.1	+/-20.0	U	6.1	20.0	P	08/16/2012	15:05	LB62172
	Zinc	6.5	+/-20.0	U	6.5	20.0	P	08/16/2012	15:05	LB62172
CCB03	Aluminum	6.5	+/-50.0	U	6.5	50.0	P	08/16/2012	15:45	LB62172
	Antimony	8.0	+/-25.0	U	8.0	25.0	P	08/16/2012	15:45	LB62172
	Arsenic	4.2	+/-10.0	U	4.2	10.0	P	08/16/2012	15:45	LB62172
	Barium	4.0	+/-50.0	U	4.0	50.0	P	08/16/2012	15:45	LB62172
	Beryllium	0.7	+/-3.0	U	0.7	3.0	P	08/16/2012	15:45	LB62172
	Cadmium	0.5	+/-3.0	U	0.5	3.0	P	08/16/2012	15:45	LB62172
	Calcium	31.8	+/-1000.0	U	31.8	1000.0	P	08/16/2012	15:45	LB62172
	Chromium	1.1	+/-5.0	U	1.1	5.0	P	08/16/2012	15:45	LB62172
	Cobalt	5.8	+/-15.0	U	5.8	15.0	P	08/16/2012	15:45	LB62172
	Copper	2.0	+/-10.0	U	2.0	10.0	P	08/16/2012	15:45	LB62172
	Iron	20.4	+/-50.0	U	20.4	50.0	P	08/16/2012	15:45	LB62172
	Lead	2.6	+/-6.0	U	2.6	6.0	P	08/16/2012	15:45	LB62172
	Magnesium	32.5	+/-1000.0	U	32.5	1000.0	P	08/16/2012	15:45	LB62172
	Manganese	1.7	+/-10.0	U	1.7	10.0	P	08/16/2012	15:45	LB62172
	Nickel	4.2	+/-20.0	U	4.2	20.0	P	08/16/2012	15:45	LB62172
	Potassium	96.8	+/-1000.0	J	38.8	1000.0	P	08/16/2012	15:45	LB62172
	Selenium	4.8	+/-10.0	U	4.8	10.0	P	08/16/2012	15:45	LB62172
	Silver	1.5	+/-5.0	U	1.5	5.0	P	08/16/2012	15:45	LB62172
	Sodium	118.9	+/-1000.0	J	13.9	1000.0	P	08/16/2012	15:45	LB62172
	Thallium	2.4	+/-20.0	U	2.4	20.0	P	08/16/2012	15:45	LB62172
	Vanadium	6.1	+/-20.0	U	6.1	20.0	P	08/16/2012	15:45	LB62172

Metals

- 3a - INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: MS Analytical SDG No.: D3811

Contract:	MSAN01		Lab Code:	CHEM	— Cas	se No.: <u>D38</u>	511	SA	S No.: <u>D3</u>	811
Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run Number
CCB03	Zinc	6.5	+/-20.0	U	6.5	20.0	P	08/16/2012	15:45	LB62172
CCB04	Aluminum	6.5	+/-50.0	U	6.5	50.0	P	08/16/2012	16:26	LB62172
	Antimony	8.0	+/-25.0	U	8.0	25.0	P	08/16/2012	16:26	LB62172
	Arsenic	4.2	+/-10.0	U	4.2	10.0	P	08/16/2012	16:26	LB62172
	Barium	4.0 0.7	+/-50.0 +/-3.0	U U	4.0 0.7	50.0 3.0	P P	08/16/2012 08/16/2012	16:26 16:26	LB62172 LB62172
	Beryllium Cadmium	0.7	+/-3.0	U	0.7	3.0	P P	08/16/2012	16:26	LB62172 LB62172
	Calcium	31.8	+/-1000.0	U	31.8	1000.0	P P	08/16/2012	16:26	LB62172 LB62172
	Chromium	1.1	+/-5.0	U	1.1	5.0	P	08/16/2012	16:26	LB62172 LB62172
	Cobalt	5.8	+/-15.0	U	5.8	15.0	P	08/16/2012	16:26	LB62172 LB62172
	Copper	2.0	+/-10.0	U	2.0	10.0	P	08/16/2012	16:26	LB62172 LB62172
	Iron	20.4	+/-50.0	U	20.4	50.0	P	08/16/2012	16:26	LB62172 LB62172
	Lead	2.6	+/-6.0	U	2.6	6.0	P	08/16/2012	16:26	LB62172
	Magnesium	32.5	+/-1000.0	U	32.5	1000.0	P	08/16/2012	16:26	LB62172
	Manganese	1.7	+/-10.0	U	1.7	10.0	P	08/16/2012	16:26	LB62172
	Nickel	4.2	+/-20.0	U	4.2	20.0	P	08/16/2012	16:26	LB62172
	Potassium	38.8	+/-1000.0	U	38.8	1000.0	P	08/16/2012	16:26	LB62172
	Selenium	4.8	+/-10.0	U	4.8	10.0	P	08/16/2012	16:26	LB62172
	Silver	1.5	+/-5.0	U	1.5	5.0	P	08/16/2012	16:26	LB62172
	Sodium	484.7	+/-1000.0	J	13.9	1000.0	P	08/16/2012	16:26	LB62172
	Thallium	3.8	+/-20.0	J	2.4	20.0	P	08/16/2012	16:26	LB62172
	Vanadium	6.1	+/-20.0	U	6.1	20.0	P	08/16/2012	16:26	LB62172
	Zinc	6.5	+/-20.0	U	6.5	20.0	P	08/16/2012	16:26	LB62172
CCD05	Aluminum	6.5	+/-50.0	U	6.5	50.0	P	08/16/2012	17:06	LB62172
CCB05	Antimony	8.0	+/-25.0	U	8.0	25.0	P	08/16/2012	17:06	LB62172 LB62172
	Arsenic	4.2	+/-10.0	U	4.2	10.0	P	08/16/2012	17:06	LB62172 LB62172
	Barium	4.2	+/-50.0	U	4.2	50.0	P	08/16/2012	17:06	LB62172 LB62172
	Beryllium	0.7	+/-3.0	U	0.7	3.0	P	08/16/2012	17:06	LB62172 LB62172
	Cadmium	0.7	+/-3.0	U	0.7	3.0	P	08/16/2012	17:06	LB62172 LB62172
	Calcium	31.8	+/-1000.0	U	31.8	1000.0	P	08/16/2012	17:06	LB62172 LB62172
	Chromium	1.1	+/-5.0	U	1.1	5.0	P	08/16/2012	17:06	LB62172
	Cobalt	5.8	+/-15.0	U	5.8	15.0	P	08/16/2012	17:06	LB62172 LB62172
	Copper	2.0	+/-10.0	U	2.0	10.0	P	08/16/2012	17:06	LB62172
	Iron	20.4	+/-50.0	U	20.4	50.0	P	08/16/2012	17:06	LB62172
	Lead	2.6	+/-6.0	U	2.6	6.0	P	08/16/2012	17:06	LB62172
	Magnesium	32.5	+/-1000.0	U	32.5	1000.0	P	08/16/2012	17:06	LB62172
	Manganese	1.7	+/-10.0	U	1.7	10.0	P	08/16/2012	17:06	LB62172 LB62172
	Nickel	4.2	+/-20.0	U	4.2	20.0	P	08/16/2012	17:06	LB62172 LB62172
	Potassium	93.7	+/-1000.0	J	38.8	1000.0	P	08/16/2012	17:06	LB62172
	Selenium	4.8	+/-10.0	U	4.8	10.0	P	08/16/2012	17:06	LB62172
	Silver	1.5	+/-5.0	U	1.5	5.0	P	08/16/2012	17:06	LB62172
	Sodium	79.1	+/-1000.0	J	13.9	1000.0	P	08/16/2012	17:06	LB62172

- 3a - INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: MS Analytical SDG No.: D3811

Contract:	MSAN01		Lab Code:	СНЕМ		se No.: <u>D38</u>	,11		S No.: <u>D3</u>	611
Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run Number
~~~~	TT U	2.6	. / 20.0		2.4	20.0	D	00/16/2012	17.06	I D (2172
CCB05	Thallium	2.6	+/-20.0	J	2.4	20.0	P	08/16/2012	17:06	LB62172
	Vanadium Zinc	6.1 6.5	+/-20.0 +/-20.0	U U	6.1 6.5	20.0 20.0	P P	08/16/2012 08/16/2012	17:06 17:06	LB62172 LB62172
CCB06	Aluminum	6.5	+/-50.0	U	6.5	50.0	P	08/16/2012	17:46	LB62172
	Antimony	8.0	+/-25.0	U	8.0	25.0	P	08/16/2012	17:46	LB62172
	Arsenic	4.2	+/-10.0	U	4.2	10.0	P	08/16/2012	17:46	LB62172
	Barium	4.0	+/-50.0	U	4.0	50.0	P	08/16/2012	17:46	LB62172
	Beryllium	0.7	+/-3.0	U	0.7	3.0	P	08/16/2012	17:46	LB62172
	Cadmium	0.5	+/-3.0	U	0.5	3.0	P	08/16/2012	17:46	LB62172
	Calcium Chromium	31.8 1.1	+/-1000.0 +/-5.0	U U	31.8 1.1	1000.0 5.0	P D	08/16/2012 08/16/2012	17:46 17:46	LB62172 LB62172
	Cobalt	5.8	+/-15.0	U	5.8	15.0	P P	08/16/2012	17:46	LB62172 LB62172
		2.0	+/-13.0	U	2.0	10.0	P	08/16/2012	17:46	LB62172 LB62172
	Copper Iron	20.4	+/-50.0	U	20.4	50.0	P	08/16/2012	17:46	LB62172 LB62172
	Lead	20.4	+/-6.0	U	2.6	6.0	P	08/16/2012	17:46	LB62172 LB62172
	Magnesium	32.5	+/-1000.0	U	32.5	1000.0	r P	08/16/2012	17:46	LB62172 LB62172
	Manganese	1.7	+/-1000.0	U	1.7	10.0	P	08/16/2012	17:46	LB62172 LB62172
	Nickel	4.2	+/-20.0	U	4.2	20.0	P	08/16/2012	17:46	LB62172 LB62172
	Potassium	43.8	+/-1000.0	J	38.8	1000.0	r P	08/16/2012	17:46	LB62172 LB62172
	Selenium	43.8	+/-10.0	U	4.8	10.0	P	08/16/2012	17:46	LB62172 LB62172
	Silver	1.5	+/-5.0	U	1.5	5.0	P	08/16/2012	17:46	LB62172 LB62172
	Sodium	13.9	+/-1000.0	U	13.9	1000.0	P	08/16/2012	17:46	LB62172
	Thallium	2.5	+/-20.0	J	2.4	20.0	P	08/16/2012	17:46	LB62172
	Vanadium	6.1	+/-20.0	U	6.1	20.0	P	08/16/2012	17:46	LB62172
	Zinc	6.5	+/-20.0	U	6.5	20.0	P	08/16/2012	17:46	LB62172
CDA.										
CCB07	Aluminum	6.5	+/-50.0	U	6.5	50.0	P	08/16/2012	18:26	LB62172
	Antimony	8.0	+/-25.0	U	8.0	25.0	P	08/16/2012	18:26	LB62172
	Arsenic	4.2	+/-10.0	U	4.2	10.0	P	08/16/2012	18:26	LB62172
	Barium Beryllium	4.0 0.7	+/-50.0 +/-3.0	U U	4.0 0.7	50.0 3.0	P P	08/16/2012 08/16/2012	18:26 18:26	LB62172 LB62172
	Cadmium		+/-3.0					08/16/2012		
	Calcium	0.5 31.8	+/-3.0	U U	0.5 31.8	3.0 1000.0	P P	08/16/2012	18:26 18:26	LB62172 LB62172
	Chromium	1.1	+/-5.0	U	1.1	5.0	P P	08/16/2012	18:26	LB62172 LB62172
	Cobalt	5.8	+/-15.0	U	5.8	15.0	r P	08/16/2012	18:26	LB62172 LB62172
	Copper	2.0	+/-13.0	U	2.0	10.0	P	08/16/2012	18:26	LB62172 LB62172
	**	20.4	+/-50.0	U	20.4	50.0		08/16/2012	18:26	LB62172 LB62172
	Iron Lead	20.4	+/-50.0	U	20.4	6.0	P P	08/16/2012	18:26	LB62172 LB62172
	Magnesium	32.5	+/-0.0	U	32.5	1000.0	P P	08/16/2012	18:26	LB62172 LB62172
	Manganese	32.3 1.7	+/-1000.0	U	1.7	10.0	P P	08/16/2012	18:26	LB62172 LB62172
	Nickel	4.2	+/-10.0	U	4.2	20.0	P P	08/16/2012	18:26	LB62172 LB62172
	Potassium	75.3	+/-1000.0	J	38.8	1000.0	P	08/16/2012	18:26	LB62172 LB62172
	Selenium	4.8	+/-1000.0	U	4.8	10.0	P P	08/16/2012	18:26	LB62172 LB62172





## Metals

# - 3a - INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: MS Analytical SDG No.: D3811

Contract:	MSAN01		Lab Code:	CHEM	Cas	se No.: <u>D38</u>	511	SA	S No.: <u>D3</u>	811
Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run Number
GGD0=	0.1	1.5	. / 5.0	**	1.5	5.0	D	00/16/2012	10.26	1.0/2172
CCB07	Silver	1.5	+/-5.0	U	1.5	5.0	P D	08/16/2012 08/16/2012	18:26	LB62172
	Sodium Thallium	400.4 5.9	+/-1000.0 +/-20.0	J J	13.9 2.4	1000.0 20.0	P P	08/16/2012	18:26 18:26	LB62172 LB62172
	Vanadium	6.1	+/-20.0	U	6.1	20.0	P	08/16/2012	18:26	LB62172 LB62172
	Zinc	6.5	+/-20.0	U	6.5	20.0	P	08/16/2012	18:26	LB62172 LB62172
CCDAA	Aluminum									
CCB08		6.5	+/-50.0	U	6.5	50.0	P	08/16/2012	19:06	LB62172
	Antimony	8.0	+/-25.0	U	8.0	25.0	P	08/16/2012	19:06	LB62172
	Arsenic Barium	4.2 4.0	+/-10.0 +/-50.0	U U	4.2 4.0	10.0 50.0	P P	08/16/2012 08/16/2012	19:06 19:06	LB62172 LB62172
	Beryllium	0.7	+/-3.0	U	0.7	3.0	P	08/16/2012	19:06	LB62172 LB62172
	Cadmium	0.7	+/-3.0	U	0.7	3.0	P	08/16/2012	19:06	LB62172 LB62172
	Calcium	31.8	+/-1000.0	U	31.8	1000.0	P	08/16/2012	19:06	LB62172 LB62172
	Chromium	1.1	+/-5.0	U	1.1	5.0	P	08/16/2012	19:06	LB62172 LB62172
	Cobalt	5.8	+/-15.0	U	5.8	15.0	P	08/16/2012	19:06	LB62172 LB62172
	Copper	2.0	+/-10.0	U	2.0	10.0	P	08/16/2012	19:06	LB62172
	Iron	22.8	+/-50.0	J	20.4	50.0	P	08/16/2012	19:06	LB62172
	Lead	2.6	+/-6.0	U	2.6	6.0	P	08/16/2012	19:06	LB62172
	Magnesium	32.5	+/-1000.0	U	32.5	1000.0	P	08/16/2012	19:06	LB62172
	Manganese	1.7	+/-10.0	U	1.7	10.0	P	08/16/2012	19:06	LB62172
	Nickel	4.2	+/-20.0	U	4.2	20.0	P	08/16/2012	19:06	LB62172
	Potassium	45.3	+/-1000.0	J	38.8	1000.0	P	08/16/2012	19:06	LB62172
	Selenium	4.8	+/-10.0	U	4.8	10.0	P	08/16/2012	19:06	LB62172
	Silver	1.5	+/-5.0	U	1.5	5.0	P	08/16/2012	19:06	LB62172
	Sodium	313.7	+/-1000.0	J	13.9	1000.0	P	08/16/2012	19:06	LB62172
	Thallium	2.4	+/-20.0	U	2.4	20.0	P	08/16/2012	19:06	LB62172
	Vanadium	6.1	+/-20.0	U	6.1	20.0	P	08/16/2012	19:06	LB62172
	Zinc	6.5	+/-20.0	U	6.5	20.0	P	08/16/2012	19:06	LB62172
CCB09	Aluminum	6.5	+/-50.0	U	6.5	50.0	P	08/16/2012	19:46	LB62172
ССБО	Antimony	8.0	+/-25.0	U	8.0	25.0	P	08/16/2012	19:46	LB62172
	Arsenic	4.2	+/-10.0	U	4.2	10.0	P	08/16/2012	19:46	LB62172
	Barium	4.0	+/-50.0	U	4.0	50.0	P	08/16/2012	19:46	LB62172
	Beryllium	0.7	+/-3.0	U	0.7	3.0	P	08/16/2012	19:46	LB62172
	Cadmium	0.5	+/-3.0	U	0.5	3.0	P	08/16/2012	19:46	LB62172
	Calcium	31.8	+/-1000.0	U	31.8	1000.0	P	08/16/2012	19:46	LB62172
	Chromium	1.1	+/-5.0	U	1.1	5.0	P	08/16/2012	19:46	LB62172
	Cobalt	5.8	+/-15.0	U	5.8	15.0	P	08/16/2012	19:46	LB62172
	Copper	2.0	+/-10.0	U	2.0	10.0	P	08/16/2012	19:46	LB62172
	Iron	20.4	+/-50.0	U	20.4	50.0	P	08/16/2012	19:46	LB62172
	Lead	2.6	+/-6.0	U	2.6	6.0	P	08/16/2012	19:46	LB62172
	Magnesium	32.5	+/-1000.0	U	32.5	1000.0	P	08/16/2012	19:46	LB62172
	Manganese	1.7	+/-10.0	U	1.7	10.0	P	08/16/2012	19:46	LB62172
	Nickel	4.2	+/-20.0	U	4.2	20.0	P	08/16/2012	19:46	LB62172





## Metals

## - 3a -INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

MS Analytical **SDG No.:** D3811 Client:

MSAN01 Lah Code Case No.: D3811 CHEM SAS No. D3811 Contract

Contract:	MSAN01		Lab Code:	СНЕМ	Cas	e No.: <u>D38</u>	311	SA	S No.: <u>D3</u>	811
Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run Number
CCB09	Potassium	38.8	+/-1000.0	U	38.8	1000.0	P	08/16/2012	19:46	LB62172
	Selenium	4.8	+/-10.0	U	4.8	10.0	P	08/16/2012	19:46	LB62172
	Silver	1.5	+/-5.0	U	1.5	5.0	P	08/16/2012	19:46	LB62172
	Sodium	332.6	+/-1000.0	J	13.9	1000.0	P	08/16/2012	19:46	LB62172
	Thallium	3.0	+/-20.0	J	2.4	20.0	P	08/16/2012	19:46	LB62172
	Vanadium	6.1	+/-20.0	U	6.1	20.0	P	08/16/2012	19:46	LB62172
	Zinc	6.5	+/-20.0	U	6.5	20.0	P	08/16/2012	19:46	LB62172
CCB10	Aluminum	6.5	+/-50.0	U	6.5	50.0	P	08/16/2012	20:27	LB62172
00210	Antimony	8.0	+/-25.0	U	8.0	25.0	P	08/16/2012	20:27	LB62172
	Arsenic	4.2	+/-10.0	U	4.2	10.0	P	08/16/2012	20:27	LB62172
	Barium	4.0	+/-50.0	U	4.0	50.0	P	08/16/2012	20:27	LB62172
	Beryllium	0.7	+/-3.0	U	0.7	3.0	P	08/16/2012	20:27	LB62172
	Cadmium	0.5	+/-3.0	U	0.5	3.0	P	08/16/2012	20:27	LB62172
	Calcium	31.8	+/-1000.0	U	31.8	1000.0	P	08/16/2012	20:27	LB62172
	Chromium	1.1	+/-5.0	U	1.1	5.0	P	08/16/2012	20:27	LB62172
	Cobalt	5.8	+/-15.0	U	5.8	15.0	P	08/16/2012	20:27	LB62172
	Copper	2.0	+/-10.0	U	2.0	10.0	P	08/16/2012	20:27	LB62172
	Iron	36.5	+/-50.0	J	20.4	50.0	P	08/16/2012	20:27	LB62172
	Lead	2.6	+/-6.0	U	2.6	6.0	P	08/16/2012	20:27	LB62172
	Magnesium	32.5	+/-1000.0	U	32.5	1000.0	P	08/16/2012	20:27	LB62172
	Manganese	3.5	+/-10.0	J	1.7	10.0	P	08/16/2012	20:27	LB62172
	Nickel	4.2	+/-20.0	U	4.2	20.0	P	08/16/2012	20:27	LB62172
	Potassium	38.8	+/-1000.0	U	38.8	1000.0	P	08/16/2012	20:27	LB62172
	Selenium	4.8	+/-10.0	U	4.8	10.0	P	08/16/2012	20:27	LB62172
	Silver	1.5	+/-5.0	U	1.5	5.0	P	08/16/2012	20:27	LB62172
	Sodium	307.7	+/-1000.0	J	13.9	1000.0	P	08/16/2012	20:27	LB62172
	Thallium	2.4	+/-20.0	U	2.4	20.0	P	08/16/2012	20:27	LB62172
	Vanadium	6.1	+/-20.0	U	6.1	20.0	P	08/16/2012	20:27	LB62172
	Zinc	6.5	+/-20.0	U	6.5	20.0	P	08/16/2012	20:27	LB62172
CCB11	Aluminum	6.5	+/-50.0	U	6.5	50.0	P	08/16/2012	21:08	LB62172
	Antimony	8.0	+/-25.0	U	8.0	25.0	P	08/16/2012	21:08	LB62172
	Arsenic	4.2	+/-10.0	U	4.2	10.0	P	08/16/2012	21:08	LB62172
	Barium	4.0	+/-50.0	U	4.0	50.0	P	08/16/2012	21:08	LB62172
	Beryllium	0.7	+/-3.0	U	0.7	3.0	P	08/16/2012	21:08	LB62172
	Cadmium	0.5	+/-3.0	U	0.5	3.0	P	08/16/2012	21:08	LB62172
	Calcium	31.8	+/-1000.0	U	31.8	1000.0	P	08/16/2012	21:08	LB62172
	Chromium	1.1	+/-5.0	U	1.1	5.0	P	08/16/2012	21:08	LB62172
	Cobalt	5.8	+/-15.0	U	5.8	15.0	P	08/16/2012	21:08	LB62172
	Copper	2.0	+/-10.0	U	2.0	10.0	P	08/16/2012	21:08	LB62172
	Iron	24.7	+/-50.0	J	20.4	50.0	P	08/16/2012	21:08	LB62172
	Lead	2.6	+/-6.0	U	2.6	6.0	P	08/16/2012	21:08	LB62172
	Magnesium	32.5	+/-1000.0	U	32.5	1000.0	P	08/16/2012	21:08	LB62172



# CHEMITECH

#### Metals

# - 3a - INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: MS Analytical SDG No.: D3811

Contract:	MSAN01		Lab Code:	CHEM	_ Cas	se No.: <u>D38</u>	511	SA	S No.: <u>D3</u>	811
Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run Number
CCD44	M	1.7	./.10.0	**	1.7	10.0	D	00/17/2012	21.00	LD(2172
CCB11	Manganese Nickel	1.7 4.2	+/-10.0 +/-20.0	U U	1.7 4.2	10.0 20.0	P P	08/16/2012 08/16/2012	21:08 21:08	LB62172 LB62172
	Potassium	53.4	+/-20.0 +/-1000.0	J	38.8	1000.0	P P	08/16/2012	21:08	LB62172 LB62172
	Selenium	4.8	+/-1000.0	U	4.8	10.0	P P	08/16/2012	21:08	LB62172 LB62172
	Silver	1.5	+/-10.0	U	1.5	5.0	P	08/16/2012	21:08	LB62172 LB62172
	Sodium	250.6	+/-1000.0	J	13.9	1000.0	P	08/16/2012	21:08	LB62172 LB62172
	Thallium	2.7	+/-20.0	J	2.4	20.0	P	08/16/2012	21:08	LB62172
	Vanadium	6.1	+/-20.0	U	6.1	20.0	P	08/16/2012	21:08	LB62172
	Zinc	6.5	+/-20.0	U	6.5	20.0	P	08/16/2012	21:08	LB62172
CCD12	Aluminum	6.5	+/-50.0	U	6.5	50.0	P	08/16/2012	21:49	LB62172
CCB12	Antimony	8.0	+/-30.0	U	8.0	25.0	P P	08/16/2012	21:49	LB62172 LB62172
	Arsenic	4.2	+/-23.0	U	4.2	10.0	P	08/16/2012	21:49	LB62172 LB62172
	Barium	4.2	+/-50.0	U	4.0	50.0	P	08/16/2012	21:49	LB62172
	Beryllium	0.7	+/-30.0	U	0.7	3.0	P	08/16/2012	21:49	LB62172 LB62172
	Cadmium	0.7	+/-3.0	U	0.7	3.0	P	08/16/2012	21:49	LB62172 LB62172
	Calcium	31.8	+/-1000.0	U	31.8	1000.0	P	08/16/2012	21:49	LB62172
	Chromium	1.1	+/-5.0	U	1.1	5.0	P	08/16/2012	21:49	LB62172
	Cobalt	5.8	+/-15.0	U	5.8	15.0	P	08/16/2012	21:49	LB62172
	Copper	2.0	+/-10.0	U	2.0	10.0	P	08/16/2012	21:49	LB62172
	Iron	32.4	+/-50.0	J	20.4	50.0	P	08/16/2012	21:49	LB62172
	Lead	2.6	+/-6.0	U	2.6	6.0	P	08/16/2012	21:49	LB62172
	Magnesium	32.5	+/-1000.0	U	32.5	1000.0	P	08/16/2012	21:49	LB62172
	Manganese	1.7	+/-10.0	U	1.7	10.0	P	08/16/2012	21:49	LB62172
	Nickel	4.2	+/-20.0	U	4.2	20.0	P	08/16/2012	21:49	LB62172
	Potassium	104.5	+/-1000.0	J	38.8	1000.0	P	08/16/2012	21:49	LB62172
	Selenium	4.8	+/-10.0	U	4.8	10.0	P	08/16/2012	21:49	LB62172
	Silver	1.5	+/-5.0	U	1.5	5.0	P	08/16/2012	21:49	LB62172
	Sodium	230.4	+/-1000.0	J	13.9	1000.0	P	08/16/2012	21:49	LB62172
	Thallium	2.4	+/-20.0	J	2.4	20.0	P	08/16/2012	21:49	LB62172
	Vanadium	6.1	+/-20.0	U	6.1	20.0	P	08/16/2012	21:49	LB62172
	Zinc	6.5	+/-20.0	U	6.5	20.0	P	08/16/2012	21:49	LB62172
CCB13	Aluminum	6.5	+/-50.0	U	6.5	50.0	P	08/16/2012	22:32	LB62172
CDIS	Antimony	8.0	+/-25.0	U	8.0	25.0	P	08/16/2012	22:32	LB62172 LB62172
	Arsenic	4.2	+/-10.0	U	4.2	10.0	P	08/16/2012	22:32	LB62172 LB62172
	Barium	4.2	+/-50.0	U	4.0	50.0	P	08/16/2012	22:32	LB62172
	Beryllium	0.7	+/-30.0	U	0.7	3.0	P	08/16/2012	22:32	LB62172 LB62172
	Cadmium	0.7	+/-3.0	U	0.7	3.0	P	08/16/2012	22:32	LB62172 LB62172
	Calcium	31.8	+/-1000.0	U	31.8	1000.0	P P	08/16/2012	22:32	LB62172 LB62172
	Chromium	1.1	+/-5.0	U	1.1	5.0	P	08/16/2012	22:32	LB62172 LB62172
	Cobalt	5.8	+/-15.0	U	5.8	15.0	P	08/16/2012	22:32	LB62172
	Copper	2.0	+/-10.0	U	2.0	10.0	P	08/16/2012	22:32	LB62172 LB62172
	Iron	45.1	+/-50.0	J	20.4	50.0	P	08/16/2012	22:32	LB62172





## Metals

# - 3a - INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

 Client:
 MS Analytical
 SDG No.:
 D3811

Contract:	MSAN01		Lab Code:	CHEM	Cas	se No.: <u>D38</u>	311	SA	S No.: <u>D3</u>	811
Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run Number
			,				_	001/12/2017		
CCB13	Lead	2.6	+/-6.0	U	2.6	6.0	P	08/16/2012	22:32	LB62172
	Magnesium	32.5	+/-1000.0	U	32.5	1000.0	P	08/16/2012	22:32	LB62172
	Manganese	1.7	+/-10.0	U	1.7	10.0	P	08/16/2012	22:32	LB62172
	Nickel	4.2	+/-20.0	U	4.2	20.0	P	08/16/2012	22:32	LB62172
	Potassium	38.8	+/-1000.0	U	38.8	1000.0	P	08/16/2012	22:32	LB62172
	Selenium	4.8	+/-10.0 +/-5.0	U	4.8	10.0	P	08/16/2012	22:32	LB62172
	Silver Sodium	1.5 65.6	+/-3.0 +/-1000.0	U J	1.5 13.9	5.0 1000.0	P P	08/16/2012 08/16/2012	22:32 22:32	LB62172 LB62172
	Thallium	2.4	+/-20.0	J U	2.4	20.0	P P	08/16/2012	22:32	LB62172 LB62172
	Vanadium	6.1	+/-20.0		6.1	20.0	P P	08/16/2012	22:32	LB62172 LB62172
	Zinc	6.5	+/-20.0	U U	6.5	20.0	P P	08/16/2012	22:32	LB62172 LB62172
CCB14	Aluminum	6.5	+/-50.0	U	6.5	50.0	P	08/16/2012	22:57	LB62172
	Antimony	8.0	+/-25.0	U	8.0	25.0	P	08/16/2012	22:57	LB62172
	Arsenic	4.2	+/-10.0	U	4.2	10.0	P	08/16/2012	22:57	LB62172
	Barium	4.0	+/-50.0	U	4.0	50.0	P	08/16/2012	22:57	LB62172
	Beryllium	0.7	+/-3.0	U	0.7	3.0	P	08/16/2012	22:57	LB62172
	Cadmium	0.5	+/-3.0	U	0.5	3.0	P	08/16/2012	22:57	LB62172
	Calcium	31.8	+/-1000.0	U	31.8	1000.0	P	08/16/2012	22:57	LB62172
	Chromium	1.1	+/-5.0	U	1.1	5.0	P	08/16/2012	22:57	LB62172
	Cobalt	5.8	+/-15.0	U	5.8	15.0	P	08/16/2012	22:57	LB62172
	Copper	2.0	+/-10.0	U	2.0	10.0	P	08/16/2012	22:57	LB62172
	Iron	30.4	+/-50.0	J	20.4	50.0	P	08/16/2012	22:57	LB62172
	Lead	2.6	+/-6.0	U	2.6	6.0	P	08/16/2012	22:57	LB62172
	Magnesium	32.5	+/-1000.0	U	32.5	1000.0	P	08/16/2012	22:57	LB62172
	Manganese Nickel	1.7	+/-10.0	U	1.7	10.0	P	08/16/2012	22:57	LB62172
	Potassium	4.2 62.1	+/-20.0 +/-1000.0	U	4.2 38.8	20.0 1000.0	P	08/16/2012 08/16/2012	22:57	LB62172 LB62172
	Selenium	4.8	+/-1000.0	J U	4.8	10.0	P P	08/16/2012	22:57 22:57	LB62172 LB62172
	Silver	1.5	+/-5.0		1.5	5.0	P P	08/16/2012		
	Sodium	172.5	+/-1000.0	U J	1.3	1000.0	P P	08/16/2012	22:57 22:57	LB62172 LB62172
	Thallium						_	08/16/2012		LB62172 LB62172
	Vanadium	2.4 6.1	+/-20.0 +/-20.0	U U	2.4 6.1	20.0 20.0	P P	08/16/2012	22:57 22:57	LB62172 LB62172
	Zinc	6.5	+/-20.0	U	6.5	20.0	P	08/16/2012	22:57	LB62172
ICD04										
ICB01	Mercury	0.092	+/-0.200	U	0.092	0.200	CV	08/17/2012	15:24	LB62194
CCB01	Mercury	0.092	+/-0.200	U	0.092	0.200	CV	08/17/2012	15:30	LB62194
CCB02	Mercury	0.092	+/-0.200	U	0.092	0.200	CV	08/17/2012	15:59	LB62194
CCB03	Mercury	0.092	+/-0.200	U	0.092	0.200	CV	08/17/2012	16:06	LB62194
CCB04	Mercury	0.092	+/-0.200	U	0.092	0.200	CV	08/17/2012	16:30	LB62194
CCB05	Mercury	0.092	+/-0.200	U	0.092	0.200	CV	08/17/2012	16:53	LB62194
CCB06	Mercury	0.092	+/-0.200	U	0.092	0.200	CV	08/17/2012	17:35	LB62194
	-									
CCB07	Mercury	0.092	+/-0.200	U	0.092	0.200	CV	08/17/2012	18:05	LB62194



# **CHEMITECH**

## Metals

# - 3a - INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: MS Analytical SDG No.: D3811

Contract:	MSAN01		Lab Code:	CHEM	Cas	e No.: <u>D38</u>	311	SA	S No.: <u>D3</u>	811
Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run Number
SSPAA	V.	0.002		**	0.002	0.200	CIV.	00/17/2012	10.20	1.002104
CCB08	Mercury	0.092	+/-0.200	U	0.092	0.200	CV	08/17/2012	18:28	LB62194
CCB09	Mercury	0.092	+/-0.200	U	0.092	0.200	CV	08/17/2012	18:53	LB62194
ICB01	Aluminum	6.5	+/-50.0	U	6.5	50.0	P	08/17/2012	12:08	LB62199
	Antimony	8.0	+/-25.0	U	8.0	25.0	P	08/17/2012	12:08	LB62199
	Arsenic	4.2	+/-10.0	U	4.2	10.0	P	08/17/2012	12:08	LB62199
	Barium	4.0	+/-50.0	U	4.0	50.0	P	08/17/2012	12:08	LB62199
	Beryllium	0.70	+/-3.0	U	0.70	3.0	P	08/17/2012	12:08	LB62199
	Cadmium	0.50	+/-3.0	U	0.50	3.0	P	08/17/2012	12:08	LB62199
	Calcium	31.8	+/-1000	U	31.8	1000	P	08/17/2012	12:08	LB62199
	Chromium	1.1	+/-5.0	U	1.1	5.0	P	08/17/2012	12:08	LB62199
	Cobalt	5.8	+/-15.0	U	5.8	15.0	P	08/17/2012	12:08	LB62199
	Copper	2.0	+/-10.0	U	2.0	10.0	P	08/17/2012	12:08	LB62199
	Iron	20.4	+/-50.0	U	20.4	50.0	P	08/17/2012	12:08	LB62199
	Lead	2.6	+/-6.0	U	2.6	6.0	P	08/17/2012	12:08	LB62199
	Magnesium	32.5	+/-1000	U	32.5	1000	P	08/17/2012	12:08	LB62199
	Manganese	1.7	+/-10.0	U	1.7	10.0	P	08/17/2012	12:08	LB62199
	Nickel	4.2	+/-20.0	U	4.2	20.0	P	08/17/2012	12:08	LB62199
	Potassium	38.8	+/-1000	U	38.8	1000	P	08/17/2012	12:08	LB62199
	Selenium	4.8	+/-10.0	U	4.8	10.0	P	08/17/2012	12:08	LB62199
	Silver	1.5	+/-5.0	U	1.5	5.0	P	08/17/2012	12:08	LB62199
	Sodium	13.9	+/-1000	U	13.9	1000	P	08/17/2012	12:08	LB62199
	Thallium	2.4	+/-20.0	U	2.4	20.0	P	08/17/2012	12:08	LB62199
	Vanadium	6.1	+/-20.0	U	6.1	20.0	P	08/17/2012	12:08	LB62199
	Zinc	6.5	+/-20.0	U	6.5	20.0	P	08/17/2012	12:08	LB62199
CCB01	Aluminum	6.5	+/-50.0	U	6.5	50.0	P	08/17/2012	12:37	LB62199
	Antimony	8.0	+/-25.0	U	8.0	25.0	P	08/17/2012	12:37	LB62199
	Arsenic	4.2	+/-10.0	U	4.2	10.0	P	08/17/2012	12:37	LB62199
	Barium	4.0	+/-50.0	U	4.0	50.0	P	08/17/2012	12:37	LB62199
	Beryllium	0.70	+/-3.0	U	0.70	3.0	P	08/17/2012	12:37	LB62199
	Cadmium	0.60	+/-3.0	J	0.50	3.0	P	08/17/2012	12:37	LB62199
	Calcium	31.8	+/-1000	U	31.8	1000	P	08/17/2012	12:37	LB62199
	Chromium	1.1	+/-5.0	U	1.1	5.0	P	08/17/2012	12:37	LB62199
	Cobalt	5.8	+/-15.0	U	5.8	15.0	P	08/17/2012	12:37	LB62199
	Copper	2.0	+/-10.0	U	2.0	10.0	P	08/17/2012	12:37	LB62199
	Iron	20.4	+/-50.0	U	20.4	50.0	P	08/17/2012	12:37	LB62199
	Lead	2.6	+/-6.0	U	2.6	6.0	P	08/17/2012	12:37	LB62199
	Magnesium	32.5	+/-1000	U	32.5	1000	P	08/17/2012	12:37	LB62199
	Manganese	1.7	+/-10.0	U	1.7	10.0	P	08/17/2012	12:37	LB62199
	Nickel	4.2	+/-20.0	U	4.2	20.0	P	08/17/2012	12:37	LB62199
	Potassium	38.8	+/-1000	U	38.8	1000	P	08/17/2012	12:37	LB62199
	Selenium	4.8	+/-10.0	U	4.8	10.0	P	08/17/2012	12:37	LB62199
	Silver	1.5	+/-5.0	U	1.5	5.0	P	08/17/2012	12:37	LB62199





# - 3a - INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: MS Analytical SDG No.: D3811

Contract:	MSAN01		Lab Code:	CHEM	_ Cas	e No.: <u>D38</u>	11	SA	S No.: <u>D3</u>	811
Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run Number
CCB01	Sodium	13.9	+/-1000	U	13.9	1000	P	08/17/2012	12:37	LB62199
	Thallium	2.4	+/-20.0	U	2.4	20.0	P	08/17/2012	12:37	LB62199
	Vanadium	6.1	+/-20.0	U	6.1	20.0	P	08/17/2012	12:37	LB62199
	Zinc	6.5	+/-20.0	U	6.5	20.0	P	08/17/2012	12:37	LB62199
CCB02	Aluminum	6.5	+/-50.0	U	6.5	50.0	P	08/17/2012	13:23	LB62199
	Antimony	8.0	+/-25.0	U	8.0	25.0	P	08/17/2012	13:23	LB62199
	Arsenic	4.2	+/-10.0	U	4.2	10.0	P	08/17/2012	13:23	LB62199
	Barium	4.2	+/-50.0	J	4.0	50.0	P	08/17/2012	13:23	LB62199
	Beryllium	0.70	+/-3.0	U	0.70	3.0	P	08/17/2012	13:23	LB62199
	Cadmium	0.50	+/-3.0	U	0.50	3.0	P	08/17/2012	13:23	LB62199
	Calcium	51.6	+/-1000	J	31.8	1000	P	08/17/2012	13:23	LB62199
	Chromium	1.1	+/-5.0	U	1.1	5.0	P	08/17/2012	13:23	LB62199
	Cobalt	5.8	+/-15.0	U	5.8	15.0	P	08/17/2012	13:23	LB62199
	Copper	2.0	+/-10.0	U	2.0	10.0	P	08/17/2012	13:23	LB62199
	Iron	20.4	+/-50.0	U	20.4	50.0	P	08/17/2012	13:23	LB62199
	Lead	2.6	+/-6.0	U	2.6	6.0	P	08/17/2012	13:23	LB62199
	Magnesium	32.5	+/-1000	U	32.5	1000	P	08/17/2012	13:23	LB62199
	Manganese	1.7	+/-10.0	U	1.7	10.0	P	08/17/2012	13:23	LB62199
	Nickel	4.2	+/-20.0	U	4.2	20.0	P	08/17/2012	13:23	LB62199
	Potassium	38.8	+/-1000	U	38.8	1000	P	08/17/2012	13:23	LB62199
	Selenium	4.8	+/-10.0	U	4.8	10.0	P	08/17/2012	13:23	LB62199
	Silver	1.5	+/-5.0	U	1.5	5.0	P	08/17/2012	13:23	LB62199
	Sodium	13.9	+/-1000	U	13.9	1000	P	08/17/2012	13:23	LB62199
	Thallium	2.4	+/-20.0	U	2.4	20.0	P	08/17/2012	13:23	LB62199
	Vanadium	6.1	+/-20.0	U	6.1	20.0	P	08/17/2012	13:23	LB62199
	Zinc	6.5	+/-20.0	U	6.5	20.0	P	08/17/2012	13:23	LB62199
CB03	Aluminum	6.5	+/-50.0	U	6.5	50.0	P	08/17/2012	14:09	LB62199
	Antimony	8.0	+/-25.0	U	8.0	25.0	P	08/17/2012	14:09	LB62199
	Arsenic	4.2	+/-10.0	U	4.2	10.0	P	08/17/2012	14:09	LB62199
	Barium	4.0	+/-50.0	U	4.0	50.0	P	08/17/2012	14:09	LB62199
	Beryllium	0.70	+/-3.0	U	0.70	3.0	P	08/17/2012	14:09	LB62199
	Cadmium	0.50	+/-3.0	U	0.50	3.0	P	08/17/2012	14:09	LB62199
	Calcium	31.8	+/-1000	U	31.8	1000	P	08/17/2012	14:09	LB62199
	Chromium	1.1	+/-5.0	U	1.1	5.0	P	08/17/2012	14:09	LB62199
	Cobalt	5.8	+/-15.0	U	5.8	15.0	P	08/17/2012	14:09	LB62199
	Copper	2.0	+/-10.0	U	2.0	10.0	P	08/17/2012	14:09	LB62199
	Iron	20.4	+/-50.0	U	20.4	50.0	P	08/17/2012	14:09	LB62199
	Lead	2.6	+/-6.0	U	2.6	6.0	P	08/17/2012	14:09	LB62199
	Magnesium	32.5	+/-1000	U	32.5	1000	P	08/17/2012	14:09	LB62199
	Manganese	1.7	+/-10.0	U	1.7	10.0	P	08/17/2012	14:09	LB62199
	Nickel	4.2	+/-20.0	U	4.2	20.0	P	08/17/2012	14:09	LB62199
	Potassium	38.8	+/-1000	U	38.8	1000	P	08/17/2012	14:09	LB62199





# - 3a - INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: MS Analytical SDG No.: D3811

Contract:	MSAN01		Lab Code:	CHEM	Cas	e No.: <u>D38</u>	311	SA	S No.: <u>D3</u>	811
Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run Number
CCB03	Selenium	4.8	+/-10.0	U	4.8	10.0	P	08/17/2012	14:09	LB62199
ССВОЗ	Silver	1.5	+/-5.0	U	1.5	5.0	P	08/17/2012	14:09	LB62199
	Sodium	13.9	+/-1000	U	13.9	1000	P	08/17/2012	14:09	LB62199
	Thallium	2.4	+/-20.0	U	2.4	20.0	P	08/17/2012	14:09	LB62199
	Vanadium	6.1	+/-20.0	U	6.1	20.0	P	08/17/2012	14:09	LB62199
	Zinc	6.5	+/-20.0	U	6.5	20.0	P	08/17/2012	14:09	LB62199
CCB04	Aluminum	6.5	+/-50.0	U	6.5	50.0	P	08/17/2012	14:55	LB62199
ССВОЧ	Antimony	8.0	+/-25.0	U	8.0	25.0	P	08/17/2012	14:55	LB62199
	Arsenic	4.2	+/-10.0	U	4.2	10.0	P	08/17/2012	14:55	LB62199
	Barium	4.0	+/-50.0	U	4.0	50.0	P	08/17/2012	14:55	LB62199
	Beryllium	0.70	+/-3.0	U	0.70	3.0	P	08/17/2012	14:55	LB62199
	Cadmium	0.50	+/-3.0	U	0.50	3.0	P	08/17/2012	14:55	LB62199
	Calcium	31.8	+/-1000	U	31.8	1000	P	08/17/2012	14:55	LB62199
	Chromium	1.1	+/-5.0	U	1.1	5.0	P	08/17/2012	14:55	LB62199
	Cobalt	5.8	+/-15.0	U	5.8	15.0	P	08/17/2012	14:55	LB62199
	Copper	2.0	+/-10.0	U	2.0	10.0	P	08/17/2012	14:55	LB62199
	Iron	20.4	+/-50.0	U	20.4	50.0	P	08/17/2012	14:55	LB62199
	Lead	2.6	+/-6.0	U	2.6	6.0	P	08/17/2012	14:55	LB62199
	Magnesium	32.5	+/-1000	U	32.5	1000	P	08/17/2012	14:55	LB62199
	Manganese	1.7	+/-10.0	U	1.7	10.0	P	08/17/2012	14:55	LB62199
	Nickel	4.2	+/-20.0	U	4.2	20.0	P	08/17/2012	14:55	LB62199
	Potassium	38.8	+/-1000	U	38.8	1000	P	08/17/2012	14:55	LB62199
	Selenium	4.8	+/-10.0	U	4.8	10.0	P	08/17/2012	14:55	LB62199
	Silver	1.5	+/-5.0	U	1.5	5.0	P	08/17/2012	14:55	LB62199
	Sodium	13.9	+/-1000	U	13.9	1000	P	08/17/2012	14:55	LB62199
	Thallium	2.4	+/-20.0	U	2.4	20.0	P	08/17/2012	14:55	LB62199
	Vanadium	6.1	+/-20.0	U	6.1	20.0	P	08/17/2012	14:55	LB62199
	Zinc	6.5	+/-20.0	U	6.5	20.0	P	08/17/2012	14:55	LB62199
CCB05	Aluminum	6.5	+/-50.0	U	6.5	50.0	P	08/17/2012	15:40	LB62199
	Antimony	8.0	+/-25.0	U	8.0	25.0	P	08/17/2012	15:40	LB62199
	Arsenic	4.2	+/-10.0	U	4.2	10.0	P	08/17/2012	15:40	LB62199
	Barium	4.0	+/-50.0	U	4.0	50.0	P	08/17/2012	15:40	LB62199
	Beryllium	0.70	+/-3.0	U	0.70	3.0	P	08/17/2012	15:40	LB62199
	Cadmium	0.50	+/-3.0	U	0.50	3.0	P	08/17/2012	15:40	LB62199
	Calcium	31.8	+/-1000	U	31.8	1000	P	08/17/2012	15:40	LB62199
	Chromium	1.1	+/-5.0	U	1.1	5.0	P	08/17/2012	15:40	LB62199
	Cobalt	5.8	+/-15.0	U	5.8	15.0	P	08/17/2012	15:40	LB62199
	Copper	2.0	+/-10.0	U	2.0	10.0	P	08/17/2012	15:40	LB62199
	Iron	20.4	+/-50.0	U	20.4	50.0	P	08/17/2012	15:40	LB62199
	Lead	2.6	+/-6.0	U	2.6	6.0	P	08/17/2012	15:40	LB62199
	Magnesium	32.5	+/-1000	U	32.5	1000	P	08/17/2012	15:40	LB62199
	Manganese	1.7	+/-10.0	U	1.7	10.0	P	08/17/2012	15:40	LB62199





# - 3a - INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: MS Analytical SDG No.: D3811

Sample ID										
	Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run Number
CCB05	Nickel	4.2	+/-20.0	U	4.2	20.0	P	08/17/2012	15:40	LB62199
ССВО	Potassium	38.8	+/-1000	U	38.8	1000	P	08/17/2012	15:40	LB62199
	Selenium	4.8	+/-10.0	U	4.8	10.0	P	08/17/2012	15:40	LB62199
	Silver	1.5	+/-5.0	U	1.5	5.0	P	08/17/2012	15:40	LB62199
	Sodium	13.9	+/-1000	U	13.9	1000	P	08/17/2012	15:40	LB62199
	Thallium	2.4	+/-20.0	U	2.4	20.0	P	08/17/2012	15:40	LB62199
	Vanadium	6.1	+/-20.0	U	6.1	20.0	P	08/17/2012	15:40	LB62199
	Zinc	6.5	+/-20.0	U	6.5	20.0	P	08/17/2012	15:40	LB62199
CCB06	Aluminum	6.5	+/-50.0	U	6.5	50.0	P	08/17/2012	16:27	LB62199
,0200	Antimony	8.0	+/-25.0	U	8.0	25.0	P	08/17/2012	16:27	LB62199
	Arsenic	4.2	+/-10.0	U	4.2	10.0	P	08/17/2012	16:27	LB62199
	Barium	4.0	+/-50.0	U	4.0	50.0	P	08/17/2012	16:27	LB62199
	Beryllium	0.70	+/-3.0	U	0.70	3.0	P	08/17/2012	16:27	LB62199
	Cadmium	0.50	+/-3.0	U	0.50	3.0	P	08/17/2012	16:27	LB62199
	Calcium	31.8	+/-1000	U	31.8	1000	P	08/17/2012	16:27	LB62199
	Chromium	1.1	+/-5.0	U	1.1	5.0	P	08/17/2012	16:27	LB62199
	Cobalt	5.8	+/-15.0	U	5.8	15.0	P	08/17/2012	16:27	LB62199
	Copper	2.0	+/-10.0	U	2.0	10.0	P	08/17/2012	16:27	LB62199
	Iron	20.4	+/-50.0	U	20.4	50.0	P	08/17/2012	16:27	LB62199
	Lead	2.6	+/-6.0	U	2.6	6.0	P	08/17/2012	16:27	LB62199
	Magnesium	32.5	+/-1000	U	32.5	1000	P	08/17/2012	16:27	LB62199
	Manganese	1.7	+/-10.0	U	1.7	10.0	P	08/17/2012	16:27	LB62199
	Nickel	4.2	+/-20.0	U	4.2	20.0	P	08/17/2012	16:27	LB62199
	Potassium	38.8	+/-1000	U	38.8	1000	P	08/17/2012	16:27	LB62199
	Selenium	4.8	+/-10.0	U	4.8	10.0	P	08/17/2012	16:27	LB62199
	Silver	1.5	+/-5.0	U	1.5	5.0	P	08/17/2012	16:27	LB62199
	Sodium	13.9	+/-1000	U	13.9	1000	P	08/17/2012	16:27	LB62199
	Thallium	2.4	+/-20.0	U	2.4	20.0	P	08/17/2012	16:27	LB62199
	Vanadium	6.1	+/-20.0	U	6.1	20.0	P	08/17/2012	16:27	LB62199
	Zinc	6.5	+/-20.0	U	6.5	20.0	P	08/17/2012	16:27	LB62199
CCB07	Aluminum	6.5	+/-50.0	U	6.5	50.0	P	08/17/2012	17:05	LB62199
СВОТ	Antimony	8.0	+/-25.0	U	8.0	25.0	P	08/17/2012	17:05	LB62199
	Arsenic	4.2	+/-10.0	U	4.2	10.0	P	08/17/2012	17:05	LB62199
	Barium	4.0	+/-50.0	U	4.0	50.0	P	08/17/2012	17:05	LB62199
	Beryllium	0.70	+/-3.0	U	0.70	3.0	P	08/17/2012	17:05	LB62199
	Cadmium	0.50	+/-3.0	U	0.50	3.0	P	08/17/2012	17:05	LB62199
	Calcium	31.8	+/-1000	U	31.8	1000	P	08/17/2012	17:05	LB62199
	Chromium	1.1	+/-5.0	U	1.1	5.0	P	08/17/2012	17:05	LB62199
	Cobalt	5.8	+/-15.0	U	5.8	15.0	P	08/17/2012	17:05	LB62199
	Copper	2.0	+/-10.0	U	2.0	10.0	P	08/17/2012	17:05	LB62199
	Iron	20.4	+/-50.0	U	20.4	50.0	P	08/17/2012	17:05	LB62199
	Lead	2.6	+/-6.0	U	2.6	6.0	P	08/17/2012	17:05	LB62199





# - 3a INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: MS Analytical SDG No.: D3811

Contract:	MSAN01		Lab Code:	CHEM	Cas	e No.: <u>D38</u>	311	SA	S No.: <u>D3</u>	811
Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run Number
CCB07	Magnesium	32.5	+/-1000	U	32.5	1000	P	08/17/2012	17:05	LB62199
	Manganese	1.7	+/-10.0	U	1.7	10.0	P	08/17/2012	17:05	LB62199
	Nickel	4.2	+/-20.0	U	4.2	20.0	P	08/17/2012	17:05	LB62199
	Potassium	38.8	+/-1000	U	38.8	1000	P	08/17/2012	17:05	LB62199
	Selenium	4.8	+/-10.0	U	4.8	10.0	P	08/17/2012	17:05	LB62199
	Silver	1.5	+/-5.0	U	1.5	5.0	P	08/17/2012	17:05	LB62199
	Sodium	13.9	+/-1000	U	13.9	1000	P	08/17/2012	17:05	LB62199
	Thallium	2.4	+/-20.0	U	2.4	20.0	P	08/17/2012	17:05	LB62199
	Vanadium	6.1	+/-20.0	U	6.1	20.0	P	08/17/2012	17:05	LB62199
	Zinc	6.5	+/-20.0	U	6.5	20.0	P	08/17/2012	17:05	LB62199
CCB08	Aluminum	6.5	+/-50.0	U	6.5	50.0	P	08/17/2012	18:17	LB62199
	Antimony	8.0	+/-25.0	U	8.0	25.0	P	08/17/2012	18:17	LB62199
	Arsenic	4.3	+/-10.0	J	4.2	10.0	P	08/17/2012	18:17	LB62199
	Barium	4.0	+/-50.0	U	4.0	50.0	P	08/17/2012	18:17	LB62199
	Beryllium	0.70	+/-3.0	U	0.70	3.0	P	08/17/2012	18:17	LB62199
	Cadmium	1.0	+/-3.0	J	0.50	3.0	P	08/17/2012	18:17	LB62199
	Calcium	31.8	+/-1000	U	31.8	1000	P	08/17/2012	18:17	LB62199
	Chromium	1.1	+/-5.0	U	1.1	5.0	P	08/17/2012	18:17	LB62199
	Cobalt	5.8	+/-15.0	U	5.8	15.0	P	08/17/2012	18:17	LB62199
	Copper	2.0	+/-10.0	U	2.0	10.0	P	08/17/2012	18:17	LB62199
	Iron	20.4	+/-50.0	U	20.4	50.0	P	08/17/2012	18:17	LB62199
	Lead	2.6	+/-6.0	U	2.6	6.0	P	08/17/2012	18:17	LB62199
	Magnesium	32.5	+/-1000	U	32.5	1000	P	08/17/2012	18:17	LB62199
	Manganese	1.7	+/-10.0	U	1.7	10.0	P	08/17/2012	18:17	LB62199
	Nickel	4.2	+/-20.0	U	4.2	20.0	P	08/17/2012	18:17	LB62199
	Potassium	38.8	+/-1000	U	38.8	1000	P	08/17/2012	18:17	LB62199
	Selenium	4.8	+/-10.0	U	4.8	10.0	P	08/17/2012	18:17	LB62199
	Silver	1.5	+/-5.0	U	1.5	5.0	P	08/17/2012	18:17	LB62199
	Sodium	13.9	+/-1000	U	13.9	1000	P	08/17/2012	18:17	LB62199
	Thallium	2.9	+/-20.0	J	2.4	20.0	P	08/17/2012	18:17	LB62199
	Vanadium	6.1	+/-20.0	U	6.1	20.0	P	08/17/2012	18:17	LB62199
	Zinc	6.5	+/-20.0	U	6.5	20.0	P	08/17/2012	18:17	LB62199
CCB09	Aluminum	6.5	+/-50.0	U	6.5	50.0	P	08/17/2012	19:04	LB62199
	Antimony	8.0	+/-25.0	U	8.0	25.0	P	08/17/2012	19:04	LB62199
	Arsenic	4.2	+/-10.0	U	4.2	10.0	P	08/17/2012	19:04	LB62199
	Barium	8.1	+/-50.0	J	4.0	50.0	P	08/17/2012	19:04	LB62199
	Beryllium	0.70	+/-3.0	U	0.70	3.0	P	08/17/2012	19:04	LB62199
	Cadmium	1.5	+/-3.0	J	0.50	3.0	P	08/17/2012	19:04	LB62199
	Calcium	31.8	+/-1000	U	31.8	1000	P	08/17/2012	19:04	LB62199
	Chromium	1.1	+/-5.0	U	1.1	5.0	P	08/17/2012	19:04	LB62199
	Cobalt	5.8	+/-15.0	U	5.8	15.0	P	08/17/2012	19:04	LB62199
	Copper	2.0	+/-10.0	U	2.0	10.0	P	08/17/2012	19:04	LB62199





## Metals

# - 3a - INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: MS Analytical SDG No.: D3811

Contract:	MSANOI		Lab Code:	CHEWI	Cas	se No.: <u>D3</u>	311	SA	13 No.: <u>D3</u>	011
Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run Number
CCB09	Iron	20.4	+/-50.0	U	20.4	50.0	P	08/17/2012	19:04	LB62199
	Lead	2.6	+/-6.0	U	2.6	6.0	P	08/17/2012	19:04	LB62199
	Magnesium	32.5	+/-1000	U	32.5	1000	P	08/17/2012	19:04	LB62199
	Manganese	1.7	+/-10.0	U	1.7	10.0	P	08/17/2012	19:04	LB62199
	Nickel	4.2	+/-20.0	U	4.2	20.0	P	08/17/2012	19:04	LB62199
	Potassium	43.6	+/-1000	J	38.8	1000	P	08/17/2012	19:04	LB62199
	Selenium	4.8	+/-10.0	U	4.8	10.0	P	08/17/2012	19:04	LB62199
	Silver	1.5	+/-5.0	U	1.5	5.0	P	08/17/2012	19:04	LB62199
	Sodium	83.2	+/-1000	J	13.9	1000	P	08/17/2012	19:04	LB62199
	Thallium	3.3	+/-20.0	J	2.4	20.0	P	08/17/2012	19:04	LB62199
	Vanadium	6.1	+/-20.0	U	6.1	20.0	P	08/17/2012	19:04	LB62199
	Zinc	6.5	+/-20.0	U	6.5	20.0	P	08/17/2012	19:04	LB62199
CCB10	Aluminum	6.5	+/-50.0	U	6.5	50.0	P	08/17/2012	19:50	LB62199
	Antimony	8.0	+/-25.0	U	8.0	25.0	P	08/17/2012	19:50	LB62199
	Arsenic	4.2	+/-10.0	U	4.2	10.0	P	08/17/2012	19:50	LB62199
	Barium	4.0	+/-50.0	U	4.0	50.0	P	08/17/2012	19:50	LB62199
	Beryllium	0.70	+/-3.0	U	0.70	3.0	P	08/17/2012	19:50	LB62199
	Cadmium	0.50	+/-3.0	U	0.50	3.0	P	08/17/2012	19:50	LB62199
	Calcium	31.8	+/-1000	U	31.8	1000	P	08/17/2012	19:50	LB62199
	Chromium	1.1	+/-5.0	U	1.1	5.0	P	08/17/2012	19:50	LB62199
	Cobalt	5.8	+/-15.0	U	5.8	15.0	P	08/17/2012	19:50	LB62199
	Copper	2.0	+/-10.0	U	2.0	10.0	P	08/17/2012	19:50	LB62199
	Iron	20.4	+/-50.0	U	20.4	50.0	P	08/17/2012	19:50	LB62199
	Lead	2.6	+/-6.0	U	2.6	6.0	P	08/17/2012	19:50	LB62199
	Magnesium	33.4	+/-1000	J	32.5	1000	P	08/17/2012	19:50	LB62199
	Manganese	1.7	+/-10.0	U	1.7	10.0	P	08/17/2012	19:50	LB62199
	Nickel	4.2	+/-20.0	U	4.2	20.0	P	08/17/2012	19:50	LB62199
	Potassium	38.8	+/-1000	U	38.8	1000	P	08/17/2012	19:50	LB62199
	Selenium	4.8	+/-10.0	U	4.8	10.0	P	08/17/2012	19:50	LB62199
	Silver	1.5	+/-5.0	U	1.5	5.0	P	08/17/2012	19:50	LB62199
	Sodium	13.9	+/-1000	U	13.9	1000	P	08/17/2012	19:50	LB62199
	Thallium	2.4	+/-20.0	U	2.4	20.0	P	08/17/2012	19:50	LB62199
	Vanadium	6.1	+/-20.0	U	6.1	20.0	P	08/17/2012	19:50	LB62199
	Zinc	6.5	+/-20.0	U	6.5	20.0	P	08/17/2012	19:50	LB62199





# Metals - 3b -PREPARATION BLANK SUMMARY

Client: MS Analytical SDG No.: D3811

**Instrument:** P5

Sample ID	Analyte	Result (mg/Kg)	Acceptance Limit	Conc Qual	MDL mg/Kg	CRQL mg/Kg	M	Analysis Date	Analysis Time	Run
Sample 1D	Tinaryte	(mg/mg)	Ziiiit	Quai	mg/1tg	mg/1tg		Date	Time	Kun
B65134BL		SOIL		Batch Number	r: P	B65134		<b>Prep Date:</b>	08/16/20	12
	Aluminum	0.840	< 5.000	U	0.840	5.000	P	08/16/2012	14:41	LB62172
	Antimony	0.560	<2.500	U	0.560	2.500	P	08/16/2012	14:41	LB62172
	Arsenic	0.330	<1.000	U	0.330	1.000	P	08/16/2012	14:41	LB62172
	Barium	0.400	< 5.000	U	0.400	5.000	P	08/16/2012	14:41	LB62172
	Beryllium	0.060	< 0.300	U	0.060	0.300	P	08/16/2012	14:41	LB62172
	Cadmium	0.060	< 0.300	U	0.060	0.300	P	08/16/2012	14:41	LB62172
	Calcium	1.070	<100.000	U	1.070	100.000	P	08/16/2012	14:41	LB62172
	Chromium	0.130	< 0.500	U	0.130	0.500	P	08/16/2012	14:41	LB62172
	Cobalt	0.570	<1.500	U	0.570	1.500	P	08/16/2012	14:41	LB62172
	Copper	0.320	<1.000	U	0.320	1.000	P	08/16/2012	14:41	LB62172
	Iron	1.330	< 5.000	U	1.330	5.000	P	08/16/2012	14:41	LB62172
	Lead	0.120	< 0.600	U	0.120	0.600	P	08/16/2012	14:41	LB62172
	Magnesium	4.580	<100.000	U	4.580	100.000	P	08/16/2012	14:41	LB62172
	Manganese	0.190	<1.000	U	0.190	1.000	P	08/16/2012	14:41	LB62172
	Nickel	0.460	< 2.000	U	0.460	2.000	P	08/16/2012	14:41	LB62172
	Potassium	6.720	<100.000	J	3.500	100.000	P	08/16/2012	14:41	LB62172
	Selenium	0.410	<1.000	U	0.410	1.000	P	08/16/2012	14:41	LB62172
	Silver	0.150	< 0.500	U	0.150	0.500	P	08/16/2012	14:41	LB62172
	Sodium	19.942	<100.000	J	2.520	100.000	P	08/16/2012	14:41	LB62172
	Thallium	0.270	< 2.000	U	0.270	2.000	P	08/16/2012	14:41	LB62172
	Vanadium	0.590	< 2.000	U	0.590	2.000	P	08/16/2012	14:41	LB62172
	Zinc	0.700	<2.000	U	0.700	2.000	P	08/16/2012	14:41	LB62172
B65135BL		SOIL		Batch Number	r: Pi	B65135		Prep Date:	08/16/20	)12
	Aluminum	0.840	< 5.000	U	0.840	5.000	P	08/16/2012	19:26	LB62172
	Antimony	0.560	< 2.500	U	0.560	2.500	P	08/16/2012	19:26	LB62172
	Arsenic	0.330	<1.000	U	0.330	1.000	P	08/16/2012	19:26	LB62172
	Barium	0.400	< 5.000	U	0.400	5.000	P	08/16/2012	19:26	LB62172
	Beryllium	0.060	< 0.300	U	0.060	0.300	P	08/16/2012	19:26	LB62172
	Cadmium	0.060	< 0.300	U	0.060	0.300	P	08/16/2012	19:26	LB62172
	Calcium	1.070	<100.000	U	1.070	100.000	P	08/16/2012	19:26	LB62172
	Chromium	0.130	< 0.500	U	0.130	0.500	P	08/16/2012	19:26	LB62172
	Cobalt	0.570	<1.500	U	0.570	1.500	P	08/16/2012	19:26	LB62172
	Copper	0.320	<1.000	U	0.320	1.000	P	08/16/2012	19:26	LB62172
	Iron	2.644	< 5.000	J	1.330	5.000	P	08/16/2012	19:26	LB62172
	Lead	0.120	< 0.600	U	0.120	0.600	P	08/16/2012	19:26	LB62172
	Magnesium	4.580	<100.000	U	4.580	100.000	P	08/16/2012	19:26	LB62172
	Manganese	0.190	<1.000	U	0.190	1.000	P	08/16/2012	19:26	LB62172
	Nickel	0.460	< 2.000	U	0.460	2.000	P	08/16/2012	19:26	LB62172
	Potassium	10.923	<100.000	J	3.500	100.000	P	08/16/2012	19:26	LB62172
	Selenium	0.410	<1.000	U	0.410	1.000	P	08/16/2012	19:26	LB62172



# Metals - 3b -PREPARATION BLANK SUMMARY

**Client:** MS Analytical D3811 SDG No.:

**Instrument:** P5

Cample ID	A I4-	Result	Acceptance	Conc	MDL	CRQL	M	Analysis	Analysis	D
Sample ID	Analyte	(mg/Kg)	Limit	Qual	mg/Kg	mg/Kg	M	Date	Time	Run
	Silver	0.150	< 0.500	U	0.150	0.500	P	08/16/2012	19:26	LB62172
	Sodium	25.280	<100.000	J	2.520	100.000	P	08/16/2012	19:26	LB62172
	Thallium	0.270	< 2.000	U	0.270	2.000	P	08/16/2012	19:26	LB62172
	Vanadium	0.590	< 2.000	U	0.590	2.000	P	08/16/2012	19:26	LB62172
	Zinc	0.700	< 2.000	U	0.700	2.000	P	08/16/2012	19:26	LB62172
PB65160BL		SOIL		Batch Number	: P	B65160		Prep Date:	08/16/20	12
	Mercury	0.002	< 0.010	U	0.002	0.010	CV	08/17/2012	16:14	LB62194
PB65166BL		SOIL		Batch Number	: P	B65166		Prep Date:	08/16/20	12
	Mercury	0.002	< 0.010	U	0.002	0.010	CV	08/17/2012	15:38	LB62194



D







# Metals - 4 -INTERFERENCE CHECK SAMPLE

Client: MS Analytical SDG No.: D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

ICS Source: EPA Instrument ID: P5

		Result	True Value	%	Acceptance	Analysis	Analysis	Run
Sample ID	Analyte	ug/L	ug/L	Recovery	Window	Date	Time	Number
CSA01	Aluminum	247000	244100	101.2	80 - 120%	08/16/2012	14:14	LB62171
	Antimony	1.8				08/16/2012	14:14	LB62171
	Arsenic	1.5				08/16/2012	14:14	LB62171
	Barium	4.3				08/16/2012	14:14	LB62171
	Beryllium	-0.13				08/16/2012	14:14	LB62171
	Cadmium	0.46				08/16/2012	14:14	LB62171
	Calcium	247000	234900	105.2	80 - 120%	08/16/2012	14:14	LB62171
	Chromium	43.3	43	100.7	80 - 120%	08/16/2012	14:14	LB62171
	Cobalt	4.4	4	110.0	80 - 120%	08/16/2012	14:14	LB62171
	Copper	22.5	•	110.0	00 12070	08/16/2012	14:14	LB62171
	Iron	95400	95600	99.8	80 - 120%	08/16/2012	14:14	LB62171
	Lead	8.0	70000	77.0	00 12070	08/16/2012	14:14	LB62171
	Magnesium	252000	247500	101.8	80 - 120%	08/16/2012	14:14	LB62171
	Manganese	22.6	19	118.9	80 - 120%	08/16/2012	14:14	LB62171
	Nickel	17.1	17	110.9	00 12070	08/16/2012	14:14	LB62171
	Potassium	-198				08/16/2012	14:14	LB62171
	Selenium	-6.9				08/16/2012	14:14	LB62171
	Silver	1.5				08/16/2012	14:14	LB62171
	Sodium	-650				08/16/2012	14:14	LB62171 LB62171
	Thallium	8.8				08/16/2012	14:14	LB62171
	Vanadium	-2.9				08/16/2012	14.14	LB62171 LB62171
	Zinc	24.7				08/16/2012	14:14	LB62171
CSAB01	Aluminum	246000	241100	102.0	80 - 120%	08/16/2012	14:18	LB62171
COLIDOI	Antimony	616	589	104.6	80 - 120%	08/16/2012	14:18	LB62171
	Arsenic	96.6	101	95.6	80 - 120%	08/16/2012	14:18	LB62171
	Barium	515	495	104.0	80 - 120%	08/16/2012	14:18	LB62171
	Beryllium	510	475	107.4	80 - 120%	08/16/2012	14:18	LB62171
	Cadmium	994	940	105.7	80 - 120%	08/16/2012	14:18	LB62171
	Calcium	244000	231100	105.6	80 - 120%	08/16/2012	14:18	LB62171
	Chromium	531	511	103.9	80 - 120%	08/16/2012	14:18	LB62171
	Cobalt	496	461	107.6	80 - 120%	08/16/2012	14:18	LB62171
	Copper	527	548	96.2	80 - 120%	08/16/2012	14:18	LB62171
	Iron	95400	94800	100.6	80 - 120%	08/16/2012	14:18	LB62171
	Lead	58.4	61	95.7	80 - 120%	08/16/2012	14:18	LB62171
	Magnesium	251000	251100	100.0	80 - 120%	08/16/2012	14:18	LB62171
	Manganese	518	502	103.2	80 - 120%	08/16/2012	14:18	LB62171
	Nickel	1000	984	101.6	80 - 120%	08/16/2012	14:18	LB62171
	Potassium	-382	904	101.0	80 - 120/6	08/16/2012	14:18	LB62171 LB62171
			52	90.1	90 1200/			LB62171 LB62171
	Selenium	47.2	53	89.1	80 - 120%	08/16/2012	14:18	
	Silver	209	206	101.5	80 - 120%	08/16/2012	14:18	LB62171
	Sodium	-570	102	00.0	00 1200/	08/16/2012	14:18	LB62171
	Thallium	91.5	103	88.8	80 - 120%	08/16/2012	14:18	LB62171
	Vanadium	481	494	97.4	80 - 120%	08/16/2012	14:18	LB62171
	Zinc	1040	1028	101.2	80 - 120%	08/16/2012	14:18	LB62171
CSA01	Aluminum	247000	244100	101.2	80 - 120%	08/16/2012	14:14	LB62172
	Antimony	1.8				08/16/2012	14:14	LB62172





# Metals - 4 -INTERFERENCE CHECK SAMPLE

Client: MS Analytical SDG No.: D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

ICS Source: EPA Instrument ID: P5

		Result	True Value	<b>%</b>	Acceptance	Analysis	Analysis	Run
Sample ID	Analyte	ug/L	ug/L	Recovery	Window	Date	Time	Number
CSA01	Arsenic	1.5				08/16/2012	14:14	LB62172
	Barium	4.3				08/16/2012	14:14	LB62172
	Beryllium	-0.13				08/16/2012	14:14	LB62172
	Cadmium	0.46				08/16/2012	14:14	LB62172
	Calcium	247000	234900	105.2	80 - 120%	08/16/2012	14:14	LB62172
	Chromium	43.3	43	100.7	77 - 123%	08/16/2012	14:14	LB62172
	Cobalt	4.4	4	110.0	-1150 - 1350%	08/16/2012	14:14	LB62172
	Copper	22.5				08/16/2012	14:14	LB62172
	Iron	95400	95600	99.8	80 - 120%	08/16/2012	14:14	LB62172
	Lead	8.0				08/16/2012	14:14	LB62172
	Magnesium	252000	247500	101.8	80 - 120%	08/16/2012	14:14	LB62172
	Manganese	22.6	19	118.9	21 - 179%	08/16/2012	14:14	LB62172
	Nickel	17.1				08/16/2012	14:14	LB62172
	Potassium	-198				08/16/2012	14:14	LB62172
	Selenium	-6.9				08/16/2012	14:14	LB62172
	Silver	1.5				08/16/2012	14:14	LB62172
	Sodium	-650				08/16/2012	14:14	LB62172
	Thallium	8.8				08/16/2012	14:14	LB62172
	Vanadium	-2.9				08/16/2012	14:14	LB62172
	Zinc	24.7				08/16/2012	14:14	LB62172
CC A DO1			241100	102.0	90 1200/			
CSAB01	Aluminum	246000	241100	102.0	80 - 120%	08/16/2012	14:18	LB62172
	Antimony	616	589	104.6	80 - 120%	08/16/2012	14:18	LB62172
	Arsenic	96.6	101	95.6	80 - 120%	08/16/2012	14:18	LB62172
	Barium	515	495	104.0	60 - 140%	08/16/2012	14:18	LB62172
	Beryllium	510	475	107.4	80 - 120%	08/16/2012	14:18	LB62172
	Cadmium	994	940	105.7	80 - 120%	08/16/2012	14:18	LB62172
	Calcium	244000	231100	105.6	80 - 120%	08/16/2012	14:18	LB62172
	Chromium	531	511	103.9	80 - 120%	08/16/2012	14:18	LB62172
	Cobalt	496	461	107.6	80 - 120%	08/16/2012	14:18	LB62172
	Copper	527	548	96.2	80 - 120%	08/16/2012	14:18	LB62172
	Iron	95400	94800	100.6	80 - 120%	08/16/2012	14:18	LB62172
	Lead	58.4				08/16/2012	14:18	LB62172
	Magnesium	251000	251100	100.0	80 - 120%	08/16/2012	14:18	LB62172
	Manganese	518	502	103.2	80 - 120%	08/16/2012	14:18	LB62172
	Nickel	1000	984	101.6	80 - 120%	08/16/2012	14:18	LB62172
	Potassium	-382				08/16/2012	14:18	LB62172
	Selenium	47.2	53	89.1	34 - 166%	08/16/2012	14:18	LB62172
	Silver	209	206	101.5	80 - 120%	08/16/2012	14:18	LB62172
	Sodium	-570				08/16/2012	14:18	LB62172
	Thallium	91.5	103	88.8	76 - 124%	08/16/2012	14:18	LB62172
	Vanadium	481	494	97.4	80 - 120%	08/16/2012	14:18	LB62172
	Zinc	1040	1028	101.2	80 - 120%	08/16/2012	14:18	LB62172
CSA01	Aluminum	246000	244000	100.8	80 - 120%	08/17/2012	12:19	LB62199
	Antimony	-18.6				08/17/2012	12:19	LB62199
	Arsenic	4.3				08/17/2012	12:19	LB62199
	Barium	6.9	2.0	345.0	-9900 - 10100%	08/17/2012	12:19	LB62199



E



# Metals - 4 -INTERFERENCE CHECK SAMPLE

Client: MS Analytical SDG No.: D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

ICS Source: EPA Instrument ID: P4

		Result	True Value	%	Acceptance	Analysis	Analysis	Run
Sample ID	Analyte	ug/L	ug/L	Recovery	Window	Date	Time	Number
ICSA01	Beryllium	0.38				08/17/2012	12:19	LB62199
	Cadmium	-1.9				08/17/2012	12:19	LB62199
	Calcium	242000	235000	103.0	80 - 120%	08/17/2012	12:19	LB62199
	Chromium	47.0	43.0	109.3	77 - 123%	08/17/2012	12:19	LB62199
	Cobalt	4.7	4.0	117.5	-1150 - 1350%	08/17/2012	12:19	LB62199
	Copper	21.9	23.0	95.2	-9 - 209%	08/17/2012	12:19	LB62199
	Iron	95800	95600	100.2	80 - 120%	08/17/2012	12:19	LB62199
	Lead	8.1	10.0	81.0	0 - 200%	08/17/2012	12:19	LB62199
	Magnesium	248000	248000	100.2	80 - 120%	08/17/2012	12:19	LB62199
	Manganese	21.8	19.0	114.7	21 - 179%	08/17/2012	12:19	LB62199
	Nickel	19.2	21.0	91.4	-90 - 290%	08/17/2012	12:19	LB62199
	Potassium	-44.6				08/17/2012	12:19	LB62199
	Selenium	2.2				08/17/2012	12:19	LB62199
	Silver	1.8				08/17/2012	12:19	LB62199
	Sodium	786				08/17/2012	12:19	LB62199
	Thallium	2.1				08/17/2012	12:19	LB62199
	Vanadium	-3.1				08/17/2012	12:19	LB62199
	Zinc	23.8				08/17/2012	12:19	LB62199
ICSAB01	Aluminum	246000	241000	102.0	80 - 120%	08/17/2012	12:22	LB62199
	Antimony	575	589	97.6	80 - 120%	08/17/2012	12:22	LB62199
	Arsenic	92.6	101	91.7	80 - 120%	08/17/2012	12:22	LB62199
	Barium	499	495	100.8	60 - 140%	08/17/2012	12:22	LB62199
	Beryllium	507	475	106.7	80 - 120%	08/17/2012	12:22	LB62199
	Cadmium	980	940	104.3	80 - 120%	08/17/2012	12:22	LB62199
	Calcium	244000	231000	105.6	80 - 120%	08/17/2012	12:22	LB62199
	Chromium	529	511	103.5	80 - 120%	08/17/2012	12:22	LB62199
	Cobalt	496	461	107.6	80 - 120%	08/17/2012	12:22	LB62199
	Copper	503	548	91.8	80 - 120%	08/17/2012	12:22	LB62199
	Iron	99600	94800	105.1	80 - 120%	08/17/2012	12:22	LB62199
	Lead	58.9	61.0	96.6	80 - 120%	08/17/2012	12:22	LB62199
	Magnesium	247000	251000	98.4	80 - 120%	08/17/2012	12:22	LB62199
	Manganese	514	502	102.4	80 - 120%	08/17/2012	12:22	LB62199
	Nickel	1010	984	102.6	80 - 120%	08/17/2012	12:22	LB62199
	Potassium	-81.2	, , ,			08/17/2012	12:22	LB62199
	Selenium	57.3	53.0	108.1	34 - 166%	08/17/2012	12:22	LB62199
	Silver	209	206	101.5	80 - 120%	08/17/2012	12:22	LB62199
	Sodium	791	200	101.5	00 120/0	08/17/2012	12:22	LB62199
	Thallium	98.9	103	96.0	76 - 124%	08/17/2012	12:22	LB62199
	Vanadium	484	494	98.0	80 - 120%	08/17/2012	12:22	LB62199 LB62199
	Zinc	998	1030	98.0 97.1	80 - 120% 80 - 120%	08/17/2012	12:22	LB62199 LB62199
	ZINC	998	1030	9/.1	80 - 120%	08/1//2012	12:22	LB02199



10

A

B

D

E

G

ŀ

# METAL QC DATA





## Metals - 5a -MATRIX SPIKE SUMMARY

Client: MS Analytical Level: LOW SDG No.: D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

Matrix: SOIL Sample ID: D3811-01 Client ID: SB-2(4-8)S

Percent Solids	for Sample:	86.6	Spiked	ID:	D3811-01S	Percent Sol	ids for Spike Sa	ımple:	86.6
Analyte	Units	Acceptance Limit %R	Spiked Result	C	Sample Result C	Spike Added	% Recovery	Qual	M
Aluminum	mg/Kg	10 - 240	9362.8270		6299.6780	164.96	1856.9		P
Antimony	mg/Kg	47 - 131	51.4600		1.1748 J	65.98	76.2		P
Arsenic	mg/Kg	73 - 114	66.9064		10.1960	65.98	86.0		P
Barium	mg/Kg	39 - 158	93.0753		84.4384	16.50	52.3		P
Beryllium	mg/Kg	79 - 112	15.5768		0.2069 J	16.50	93.2		P
Cadmium	mg/Kg	73 - 114	16.2263		0.4315	16.50	95.7		P
Calcium	mg/Kg	10 - 194	52083.0600		5965.5740	82.48	55913.5		P
Chromium	mg/Kg	68 - 122	50.2075		8.9484	32.99	125.1	N	P
Cobalt	mg/Kg	68 - 119	23.2218		6.5354	16.50	101.1		P
Copper	mg/Kg	59 - 132	41.7447		40.2076	24.74	6.2	N	P
Iron	mg/Kg	10 - 289	12115.2400		21564.0400	247.44	-3818.6		P
Lead	mg/Kg	66 - 125	126.0251		1039.8010	82.48	-1107.9		P
Magnesium	mg/Kg	10 - 208	5212.2320		920.6121	164.96	2601.6		P
Manganese	mg/Kg	10 - 205	232.8049		378.7031	16.50	-884.2		P
Nickel	mg/Kg	64 - 129	56.4908		13.7374	41.24	103.7		P
Potassium	mg/Kg	37 - 158	3075.7250		488.2649	824.81	313.7	N	P
Selenium	mg/Kg	69 - 105	150.3467		0.3382 U	164.96	91.1		P
Silver	mg/Kg	54 - 131	5.8237		0.5607	6.19	85.0		P
Sodium	mg/Kg	10 - 139	964.7964		301.1857	247.44	268.2	N	P
Thallium	mg/Kg	74 - 116	149.2782		0.5620 J	164.96	90.2		P
Vanadium	mg/Kg	67 - 127	42.6980		18.8957	24.74	96.2		P
Zinc	mg/Kg	67 - 127	93.5100		97.0502	16.50	-21.5		P





#### Metals - 5a -MATRIX SPIKE DUPLICATE SUMMARY

MS Analytical Level: LOW **SDG No.:** D3811 **Client:** 

**Contract:** Lab Code: CHEM Case No.: D3811 SAS No.: MSAN01 D3811

SOIL **Sample ID:** D3811-01 Client ID: SB-2(4-8)SD Matrix:

Percent Solids	for Sample:	86.6	Spiked	ID:	D3811-01SD	Percent Sol	ids for Spike Sa	ımple:	86.6
Analyte	Units	Acceptance Limit %R	MSD Result	C	Sample Result C	Spike Added	% Recovery	Qual	M
Aluminum	mg/Kg	10 - 240	9368.8800		6299.6780	164.96	1860.6		P
Antimony	mg/Kg	47 - 131	51.5150		1.1748 J	65.98	76.3		P
Arsenic	mg/Kg	73 - 114	67.1141		10.1960	65.98	86.3		P
Barium	mg/Kg	39 - 158	93.0915		84.4384	16.50	52.4		P
Beryllium	mg/Kg	79 - 112	15.5928		0.2069 J	16.50	93.2		P
Cadmium	mg/Kg	73 - 114	16.2978		0.4315	16.50	96.2		P
Calcium	mg/Kg	10 - 194	52238.5800		5965.5740	82.48	56102.1		P
Chromium	mg/Kg	68 - 122	50.0404		8.9484	32.99	124.6	N	P
Cobalt	mg/Kg	68 - 119	23.2520		6.5354	16.50	101.3		P
Copper	mg/Kg	59 - 132	41.8272		40.2076	24.74	6.5	N	P
Iron	mg/Kg	10 - 289	12131.5400		21564.0400	247.44	-3812.0		P
Lead	mg/Kg	66 - 125	126.8558		1039.8010	82.48	-1106.9		P
Magnesium	mg/Kg	10 - 208	5224.2840		920.6121	164.96	2608.9		P
Manganese	mg/Kg	10 - 205	233.2493		378.7031	16.50	-881.5		P
Nickel	mg/Kg	64 - 129	56.6947		13.7374	41.24	104.2		P
Potassium	mg/Kg	37 - 158	3079.0140		488.2649	824.81	314.1	N	P
Selenium	mg/Kg	69 - 105	150.5097		0.3382 U	164.96	91.2		P
Silver	mg/Kg	54 - 131	5.8248		0.5607	6.19	85.0		P
Sodium	mg/Kg	10 - 139	962.8027		301.1857	247.44	267.4	N	P
Thallium	mg/Kg	74 - 116	149.8904		0.5620 J	164.96	90.5		P
Vanadium	mg/Kg	67 - 127	42.5927		18.8957	24.74	95.8		P
Zinc	mg/Kg	67 - 127	92.9042		97.0502	16.50	-25.1		P



mg/Kg

Mercury

#### Metals - 5a -MATRIX SPIKE SUMMARY

LOW MS Analytical D3811 **Client:** Level: SDG No.: Case No.: <u>D3811</u> **Contract:** MSAN01 Lab Code: CHEM SAS No.: D3811 SOIL D3811-18 **Client ID:** SB-43(10-12)S Matrix: Sample ID: 82.1 D3811-18S **Percent Solids for Sample:** Spiked ID: Percent Solids for Spike Sample: 82.1 **%** Acceptance Spiked Sample Spike Analyte Units Limit %R Result  $\mathbf{C}$ Result  $\mathbf{C}$ Added Recovery Qual  $\mathbf{M}$ 34 - 153 0.3959 0.1568 0.24 99.6 CV

10



# Metals - 5a -

#### MATRIX SPIKE DUPLICATE SUMMARY

LOW MS Analytical D3811 **Client:** Level: SDG No.: Case No.: <u>D3811</u> **Contract:** MSAN01 Lab Code: CHEM SAS No.: D3811 SOIL D3811-18 **Client ID:** SB-43(10-12)SD Matrix: Sample ID: 82.1 **Percent Solids for Sample:** Spiked ID: D3811-18SD Percent Solids for Spike Sample: 82.1 MSD **%** Acceptance Sample Spike Analyte Units Limit %R Result  $\mathbf{C}$ Result  $\mathbf{C}$ Added Recovery Qual  $\mathbf{M}$ 34 - 153 0.4017 0.1568 0.24 102.0 CVMercury mg/Kg

D

Ε



Zinc

mg/Kg

67 - 127

Metals - 5a -MATRIX SPIKE SUMMARY

Client: MS Analytical Level: LOW SDG No.: D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

Matrix: SOIL Sample ID: D3813-01 Client ID: SS-01AS

96.4971

Percent Solid	s for Sample:	87.2	Spiked l	D:	D3813-01S	Percent Sol	ids for Spike Sa	mple:	87.2
Analyte	Units	Acceptance Limit %R	Spiked Result	C	Sample Result C	Spike Added	% Recovery	Qual	M
Aluminum	mg/Kg	10 - 240	9478.8560		7491.5230	167.41	1187.1		P
Antimony	mg/Kg	47 - 131	52.2263		1.2258 J	66.97	76.2		P
Arsenic	mg/Kg	73 - 114	67.9115		4.1927	66.97	95.1		P
Barium	mg/Kg	39 - 158	94.1485		71.2883	16.74	136.6		P
Beryllium	mg/Kg	79 - 112	16.0017		0.3584	16.74	93.4		P
Cadmium	mg/Kg	73 - 114	16.5899		0.2878	16.74	97.4		P
Calcium	mg/Kg	10 - 194	53037.2800		42490.9000	83.71	12598.7		P
Chromium	mg/Kg	68 - 122	52.3907		16.3340	33.48	107.7		P
Cobalt	mg/Kg	68 - 119	23.6511		6.5302	16.74	102.3		P
Copper	mg/Kg	59 - 132	42.2778		13.1985	25.11	115.8		P
Iron	mg/Kg	10 - 289	12306.4600		10909.6600	251.12	556.2		P
Lead	mg/Kg	66 - 125	128.8565		47.0920	83.71	97.7		P
Magnesium	mg/Kg	10 - 208	5302.8910		4807.4970	167.41	295.9		P
Manganese	mg/Kg	10 - 205	237.8367		191.2354	16.74	278.4		P
Nickel	mg/Kg	64 - 129	57.7459		14.1791	41.85	104.1		P
Potassium	mg/Kg	37 - 158	3073.7810		2455.9030	837.07	73.8		P
Selenium	mg/Kg	69 - 105	152.8813		0.3432 U	167.41	91.3		P
Silver	mg/Kg	54 - 131	6.0840		0.2490 J	6.28	92.9		P
Sodium	mg/Kg	10 - 139	936.1742		442.9517	251.12	196.4	N	P
Thallium	mg/Kg	74 - 116	152.7404		0.2260 U	167.41	91.2		P
Vanadium	mg/Kg	67 - 127	42.9485		17.3126	25.11	102.1		P

61.0666

16.74

211.7

P





Zinc

mg/Kg

67 - 127

#### Metals - 5a -MATRIX SPIKE DUPLICATE SUMMARY

Client: MS Analytical Level: LOW SDG No.: D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

Matrix: SOIL Sample ID: D3813-01 Client ID: SS-01ASD

97.0333

<b>Percent Solids</b>	for Sample:	87.2	Spiked	ID:	D3813-01SD	Percent Sol	ids for Spike Sa	mple:	87.2	
Analyte	Units	Acceptance Limit %R	MSD Result	C	Sample Result C	Spike Added	% Recovery	Qual	M	
Aluminum	mg/Kg	10 - 240	9412.6090		7491.5230	167.41	1147.5		P	
Antimony	mg/Kg	47 - 131	52.1597		1.2258 J	66.97	76.1		P	
Arsenic	mg/Kg	73 - 114	68.1792		4.1927	66.97	95.5		P	
Barium	mg/Kg	39 - 158	94.5654		71.2883	16.74	139.1		P	
Beryllium	mg/Kg	79 - 112	16.0085		0.3584	16.74	93.5		P	
Cadmium	mg/Kg	73 - 114	16.6638		0.2878	16.74	97.8		P	
Calcium	mg/Kg	10 - 194	52764.4900		42490.9000	83.71	12272.8		P	
Chromium	mg/Kg	68 - 122	52.1854		16.3340	33.48	107.1		P	
Cobalt	mg/Kg	68 - 119	23.7246		6.5302	16.74	102.7		P	
Copper	mg/Kg	59 - 132	42.0249		13.1985	25.11	114.8		P	
Iron	mg/Kg	10 - 289	12176.8700		10909.6600	251.12	504.6		P	
Lead	mg/Kg	66 - 125	129.4615		47.0920	83.71	98.4		P	
Magnesium	mg/Kg	10 - 208	5241.4530		4807.4970	167.41	259.2		P	
Manganese	mg/Kg	10 - 205	236.9077		191.2354	16.74	272.8		P	
Nickel	mg/Kg	64 - 129	58.0834		14.1791	41.85	104.9		P	
Potassium	mg/Kg	37 - 158	3038.4660		2455.9030	837.07	69.6		P	
Selenium	mg/Kg	69 - 105	153.0385		0.3432 U	167.41	91.4		P	
Silver	mg/Kg	54 - 131	6.0430		0.2490 J	6.28	92.3		P	
Sodium	mg/Kg	10 - 139	957.8644		442.9517	251.12	205.0	N	P	
Thallium	mg/Kg	74 - 116	153.5570		0.2260 U	167.41	91.7		P	
Vanadium	mg/Kg	67 - 127	42.7400		17.3126	25.11	101.3		P	

61.0666

16.74

214.9

P

N



#### Metals - 5a -MATRIX SPIKE SUMMARY

LOW MS Analytical D3811 **Client:** Level: SDG No.: Lab Code: Case No.: <u>D3811</u> **Contract:** MSAN01 CHEM SAS No.: D3811 SOIL D3841-03 **Client ID:** STOCKPILE081512S Matrix: Sample ID: 83.9 **Percent Solids for Sample:** Spiked ID: D3841-03S Percent Solids for Spike Sample: 83.9 **%** Acceptance Spiked Sample Spike Analyte Units Limit %R Result  $\mathbf{C}$ Result C Added Recovery Qual  $\mathbf{M}$ 34 - 153 0.2707 0.0296 0.24 100.5 CV Mercury mg/Kg

D

Ε

10



## Metals - 5a -

# MATRIX SPIKE DUPLICATE SUMMARY

10

Client: M	S Analytical		Le	vel:	LOW	SDG No.:	<u>D3811</u>		_
Contract:	MSAN01		La	b Cod	e: <u>CHEM</u>	Case No.:	: <u>D3811</u>	<b>S</b> A	AS No.: <u>D3811</u>
Matrix:	SOIL		Sample	ID:	D3841-03	Client ID:	STOCKPII	LE081512	<u>es</u> D
Percent Solid	s for Sample:	83.9	Spiked	ID:	D3841-03SD	Percent Soli	ds for Spike Sa	ample:	83.9
		Acceptance	MSD		Sample	Spike	%		
Analyte	Units	Limit %R	Result	C	Result C	Added	Recovery	Qual	M



MS Analytical

**Client:** 

#### Metals - 5b -POST DIGEST SPIKE SUMMARY

**SDG No.:** D3811

10

D

Ε

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

Matrix: WATER Level: LOW Client ID: SB-2(4-8)A

**Sample ID:** D3811-01 **Spiked ID:** D3811-01A

		Acceptance	Spiked		Sample		Spike	%		
Analyte	Units	Limit %R	Result	С	Result	C	Added	Recovery	Qual	M
Chromium	ug/L	68 - 122	771.00		108.49		400.0	165.6		P
Copper	ug/L	59 - 132	1004.87		487.48		300.0	172.5		P
Potassium	ug/L	37 - 158	23578.84		5919.72		10000.0	176.6		P
Sodium	ug/L	10 - 139	8875.95		3651.58		3000.0	174.1		P

823 of 870



# Metals - 5b -

## POST DIGEST SPIKE SUMMARY

 Client:
 MS Analytical
 SDG No.:
 D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

Matrix: WATER Level: LOW Client ID: SS-01AA

**Sample ID:** D3813-01 **Spiked ID:** D3813-01A

Analyte	Units	Acceptance Limit %R	Spiked Result	C	Sample Result	C	Spike Added	% Recovery	Qual	M
Sodium	ug/L	10 - 139	8080.58		5291.68		3000.0	93.0		P
Zinc	ug/L	67 - 127	920.11		729.53		200.0	95.3		P

10

С

D E

F



Zinc

mg/Kg

20

97.0502

## Metals

10

P

0.3

# - 6 -DUPLICATE SAMPLE SUMMARY

Client: MS Analytical Level: LOW SDG No.: D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

Matrix: SOIL Sample ID: D3811-01 Client ID: SB-2(4-8)D

Percent Solids fo	r Sample:	86.6	<b>Duplicate ID</b> D3	811-01D	Perce	nt Solids	for Spike S	ample:	86.6	
Analyte	Units	Acceptance Limit	Sample Result	C	Duplicate Result	C	RPD	Qual	M	
Aluminum	mg/Kg	20	6299.6780		6230.7500		1.1		P	
Antimony	mg/Kg	20	1.1748	J	1.1868	J	1.0		P	
Arsenic	mg/Kg	20	10.1960		10.1827		0.1		P	
Barium	mg/Kg	20	84.4384		82.8266		1.9		P	
Beryllium	mg/Kg	20	0.2069	J	0.2269	J	9.2		P	
Cadmium	mg/Kg	20	0.4315		0.4493		4.0		P	
Calcium	mg/Kg	20	5965.5740		5867.4830		1.7		P	
Chromium	mg/Kg	20	8.9484		8.9481		0.0		P	
Cobalt	mg/Kg	20	6.5354		6.5038		0.5		P	
Copper	mg/Kg	20	40.2076		39.6008		1.5		P	
Iron	mg/Kg	20	21564.0400		20957.0700		2.9		P	
Lead	mg/Kg	20	1039.8010		1045.0980		0.5		P	
Magnesium	mg/Kg	20	920.6121		909.3460		1.2		P	
Manganese	mg/Kg	20	378.7031		373.4995		1.4		P	
Nickel	mg/Kg	20	13.7374		13.8641		0.9		P	
Potassium	mg/Kg	20	488.2649		478.0315		2.1		P	
Selenium	mg/Kg	20	0.3382	U	0.3382	U			P	
Silver	mg/Kg	20	0.5607		0.5250		6.6		P	
Sodium	mg/Kg	20	301.1857		305.3980		1.4		P	
Thallium	mg/Kg	20	0.5620	J	0.6207	J	9.9		P	
Vanadium	mg/Kg	20	18.8957		18.7993		0.5		P	

96.7456

[&]quot;A control limit of ±20% RPD for each matrix applies for sample values greater than 10 times Detection Limit"



## Metals

10

Ε

# - 6 -

# **DUPLICATE SAMPLE SUMMARY**

MS Analytical LOW **Client:** SDG No.: D3811 Level:

CHEM Case No.: <u>D3811</u> **Contract:** MSAN01 Lab Code: ____ SAS No.: D3811

SOIL **Sample ID:** <u>D38</u>11-01 **Client ID:** SB-2(4-8)SD Matrix:

Percent Solids f	for Sample:	86.6	<b>Duplicate ID</b> D3	811-01SD	Percei	nt Solids	for Spike S	ample:	86.6	
Analyte	Units	Acceptance Limit	Sample Result	C	Duplicate Result	C	RPD	Qual	M	
Aluminum	mg/Kg	20	9362.8260		9368.8800		0.1		P	
Antimony	mg/Kg	20	51.4600		51.5150		0.1		P	
Arsenic	mg/Kg	20	66.9064		67.1141		0.3		P	
Barium	mg/Kg	20	93.0753		93.0915		0.0		P	
Beryllium	mg/Kg	20	15.5768		15.5928		0.1		P	
Cadmium	mg/Kg	20	16.2263		16.2978		0.4		P	
Calcium	mg/Kg	20	52083.0600	:	52238.5800		0.3		P	
Chromium	mg/Kg	20	50.2075		50.0404		0.3		P	
Cobalt	mg/Kg	20	23.2218		23.2520		0.1		P	
Copper	mg/Kg	20	41.7447		41.8272		0.2		P	
Iron	mg/Kg	20	12115.2400		12131.5400		0.1		P	
Lead	mg/Kg	20	126.0251		126.8558		0.7		P	
Magnesium	mg/Kg	20	5212.2320		5224.2840		0.2		P	
Manganese	mg/Kg	20	232.8049		233.2493		0.2		P	
Nickel	mg/Kg	20	56.4908		56.6947		0.4		P	
Potassium	mg/Kg	20	3075.7250		3079.0140		0.1		P	
Selenium	mg/Kg	20	150.3467		150.5097		0.1		P	
Silver	mg/Kg	20	5.8237		5.8248		0.0		P	
Sodium	mg/Kg	20	964.7964		962.8027		0.2		P	
Thallium	mg/Kg	20	149.2782		149.8904		0.4		P	
Vanadium	mg/Kg	20	42.6980		42.5927		0.2		P	
Zinc	mg/Kg	20	93.5100		92.9042		0.6		P	



10

- 6 -

# DUPLICATE SAMPLE SUMMARY

 Client:
 MS Analytical
 Level:
 LOW
 SDG No.:
 D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

 Matrix:
 SOIL
 Sample ID:
 D3811-18
 Client ID:
 SB-43(10-12)D

Percent Solids for Sample: 82.1 Duplicate ID D3811-18D Percent Solids for Spike Sample: 82.1

		Acceptance	Sample		Duplicate				
Analyte	Units	Limit	Result	C	Result	C	RPD	Qual	M
Mercury	mg/Kg	20			0.15				CV

"A control limit of ±20% RPD for each matrix applies for sample values greater than 10 times Detection Limit"



10

D

Ε

- 6 -

# DUPLICATE SAMPLE SUMMARY

 Client:
 MS Analytical
 Level:
 LOW
 SDG No.:
 D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

Matrix: SOIL Sample ID: D3811-18 Client ID: SB-43(10-12)SD

Percent Solids for Sample: 82.1 Duplicate ID D3811-18SD Percent Solids for Spike Sample: 82.1

		Acceptance	Sample		Duplicate				
Analyte	Units	Limit	Result	C	Result	C	RPD	Qual	M
Mercury	mg/Kg	20			0.40				CV

"A control limit of ±20% RPD for each matrix applies for sample values greater than 10 times Detection Limit"



Zinc

mg/Kg

20

61.0666

#### Metals

10

#### - 6 -DUPLICATE SAMPLE SUMMARY

Client: MS Analytical Level: LOW SDG No.: D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

Matrix: SOIL Sample ID: D3813-01 Client ID: SS-01AD

Percent Solids fo	r Sample:	87.2	<b>Duplicate ID</b> D3	813-01D	Perce	nt Solids 1	for Spike S	ample:	87.2	
Analyte	Units	Acceptance Limit	Sample Result	C	Duplicate Result	C	RPD	Qual	M	
Aluminum	mg/Kg	20	7491.5230		7446.7500		0.6		P	
Antimony	mg/Kg	20	1.2258	J	1.4661	J	17.9		P	
Arsenic	mg/Kg	20	4.1927		4.2224		0.7		P	
Barium	mg/Kg	20	71.2883		71.9703		1.0		P	
Beryllium	mg/Kg	20	0.3584		0.3456		3.6		P	
Cadmium	mg/Kg	20	0.2878		0.2991		3.9		P	
Calcium	mg/Kg	20	42490.9000		42541.2200		0.1		P	
Chromium	mg/Kg	20	16.3340		16.4861		0.9		P	
Cobalt	mg/Kg	20	6.5302		6.4764		0.8		P	
Copper	mg/Kg	20	13.1985		13.0773		0.9		P	
Iron	mg/Kg	20	10909.6600		10799.5400		1.0		P	
Lead	mg/Kg	20	47.0920		46.9350		0.3		P	
Magnesium	mg/Kg	20	4807.4970		4761.3400		1.0		P	
Manganese	mg/Kg	20	191.2354		191.3441		0.1		P	
Nickel	mg/Kg	20	14.1791		14.0710		0.8		P	
Potassium	mg/Kg	20	2455.9030		2409.7270		1.9		P	
Selenium	mg/Kg	20	0.3432	U	0.3432	U			P	
Silver	mg/Kg	20	0.2490	J	0.2816	J	12.3		P	
Sodium	mg/Kg	20	442.9517		431.3171		2.7		P	
Thallium	mg/Kg	20	0.2260	U	0.2260	U			P	
Vanadium	mg/Kg	20	17.3126		17.2652		0.3		P	

61.5403

0.8

P

[&]quot;A control limit of ±20% RPD for each matrix applies for sample values greater than 10 times Detection Limit"



**Client:** 

#### Metals

**DUPLICATE SAMPLE SUMMARY** 

10

#### - 6 -

MS Analytical LOW SDG No.: D3811 Level:

CHEM **Contract:** MSAN01 Lab Code: Case No.: D3811 SAS No.: D3811

SOIL **Sample ID:** <u>D3813-01</u> SS-01ASD Matrix: **Client ID:** 

**Percent Solids for Sample:** 87.2 **Duplicate ID** D3813-01SD **Percent Solids for Spike Sample:** 87.2

1 creent sonus ior	Sample.	07.2	Duplicate ID B3	015 0150	1 61 661	it Solius	ioi spike s	ampic.	07.2
Analyte	Units	Acceptance Limit	Sample Result	C	Duplicate Result	C	RPD	Qual	M
Aluminum	mg/Kg	20	9478.8560		9412.6090		0.7		P
Antimony	mg/Kg	20	52.2263		52.1597		0.1		P
Arsenic	mg/Kg	20	67.9115		68.1792		0.4		P
Barium	mg/Kg	20	94.1485		94.5654		0.4		P
Beryllium	mg/Kg	20	16.0017		16.0085		0.0		P
Cadmium	mg/Kg	20	16.5899		16.6638		0.4		P
Calcium	mg/Kg	20	53037.2800		52764.4900		0.5		P
Chromium	mg/Kg	20	52.3907		52.1854		0.4		P
Cobalt	mg/Kg	20	23.6511		23.7246		0.3		P
Copper	mg/Kg	20	42.2778		42.0249		0.6		P
Iron	mg/Kg	20	12306.4600		12176.8700		1.1		P
Lead	mg/Kg	20	128.8565		129.4615		0.5		P
Magnesium	mg/Kg	20	5302.8920		5241.4530		1.2		P
Manganese	mg/Kg	20	237.8367		236.9077		0.4		P
Nickel	mg/Kg	20	57.7459		58.0834		0.6		P
Potassium	mg/Kg	20	3073.7810		3038.4660		1.2		P
Selenium	mg/Kg	20	152.8813		153.0385		0.1		P
Silver	mg/Kg	20	6.0840		6.0430		0.7		P
Sodium	mg/Kg	20	936.1743		957.8644		2.3		P
Thallium	mg/Kg	20	152.7404		153.5570		0.5		P
Vanadium	mg/Kg	20	42.9486		42.7400		0.5		P
Zinc	mg/Kg	20	96.4971		97.0333		0.6		P



10

D

Ε

- 6 -

#### **DUPLICATE SAMPLE SUMMARY**

 Client:
 MS Analytical
 Level:
 LOW
 SDG No.:
 D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

Matrix: SOIL Sample ID: D3841-03 Client ID: STOCKPILE081512D

Percent Solids for Sample: 83.9 Duplicate ID D3841-03D Percent Solids for Spike Sample: 83.9

Analyta	Units	Acceptance Limit	Sample Result	C	Duplicate Result	C	RPD	Oual	М
Analyte	Units	Limit	Result	C	Resuit	C	KPD	Quai	IVI
Mercury	mg/Kg	20	0.0296		0.0267		10.3		CV



10

D

Ε

- 6 -

#### **DUPLICATE SAMPLE SUMMARY**

 Client:
 MS Analytical
 Level:
 LOW
 SDG No.:
 D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

Matrix: SOIL Sample ID: D3841-03 Client ID: STOCKPILE081512SD

Percent Solids for Sample: 83.9 Duplicate ID D3841-03SD Percent Solids for Spike Sample: 83.9

Analyte	Units	Acceptance Limit	Sample Result	C	Duplicate Result	C	RPD	Qual	M
Mercury	mg/Kg	20	0.2707		0.2813		3.8		CV

"A control limit of  $\pm 20\%$  RPD for each matrix applies for sample values greater than 10 times Detection Limit"



#### LABORATORY CONTROL SAMPLE SUMMARY

Client: MS Analytical SDG No.: D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

				%	Acceptance	
Analyte	Units	True Value	Result C	Recovery	Limits	M
PB65134BS						
Aluminum	mg/Kg	200.0	196.7	98.4	76 - 118	P
Antimony	mg/Kg	80.0	76.7	95.9	81 - 112	P
Arsenic	mg/Kg	80.0	75.2	94.0	82 - 112	P
Barium	mg/Kg	20.0	19.9	99.5	83 - 118	P
Beryllium	mg/Kg	20.0	19.7	98.5	84 - 113	P
Cadmium	mg/Kg	20.0	18.9	94.5	82 - 117	P
Calcium	mg/Kg	100.0	104.2	104.2	78 - 138	P
Chromium	mg/Kg	40.0	38.6	96.5	84 - 115	P
Cobalt	mg/Kg	20.0	19.2	96.0	84 - 114	P
Copper	mg/Kg	30.0	30.5	101.7	80 - 115	P
Iron	mg/Kg	300.0	305.7	101.9	78 - 109	P
Lead	mg/Kg	100.0	93.6	93.6	82 - 117	P
Magnesium	mg/Kg	200.0	202.4	101.2	80 - 121	P
Manganese	mg/Kg	20.0	20.1	100.5	84 - 114	P
Nickel	mg/Kg	50.0	47.8	95.6	85 - 118	P
Potassium	mg/Kg	1000.0	1019.3	101.9	67 - 116	P
Selenium	mg/Kg	200.0	192.0	96.0	74 - 110	P
Silver	mg/Kg	7.5	6.7	89.3	81 - 123	P
Sodium	mg/Kg	300.0	299.0	99.7	70 - 135	P
Thallium	mg/Kg	200.0	190.3	95.2	86 - 119	P
Vanadium	mg/Kg	30.0	30.5	101.7	84 - 113	P
Zinc	mg/Kg	20.0	19.6	98.0	88 - 127	P







#### LABORATORY CONTROL SAMPLE SUMMARY

Client: MS Analytical SDG No.: D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

					%	Acceptance	
Analyte	Units	True Value	Result	C	Recovery	Limits	M
PB65135BS							
Aluminum	mg/Kg	200.0	200.9		100.4	76 - 118	P
Antimony	mg/Kg	80.0	79.8		99.8	81 - 112	P
Arsenic	mg/Kg	80.0	77.7		97.1	82 - 112	P
Barium	mg/Kg	20.0	20.6		103.0	83 - 118	P
Beryllium	mg/Kg	20.0	20.1		100.5	84 - 113	P
Cadmium	mg/Kg	20.0	19.5		97.5	82 - 117	P
Calcium	mg/Kg	100.0	109.0		109.0	78 - 138	P
Chromium	mg/Kg	40.0	40.1		100.2	84 - 115	P
Cobalt	mg/Kg	20.0	19.9		99.5	84 - 114	P
Copper	mg/Kg	30.0	31.3		104.3	80 - 115	P
Iron	mg/Kg	300.0	308.9		103.0	78 - 109	P
Lead	mg/Kg	100.0	97.0		97.0	82 - 117	P
Magnesium	mg/Kg	200.0	203.2		101.6	80 - 121	P
Manganese	mg/Kg	20.0	20.5		102.5	84 - 114	P
Nickel	mg/Kg	50.0	49.5		99.0	85 - 118	P
Potassium	mg/Kg	1000.0	1035.8		103.6	67 - 116	P
Selenium	mg/Kg	200.0	198.5		99.2	74 - 110	P
Silver	mg/Kg	7.5	7.0		93.3	81 - 123	P
Sodium	mg/Kg	300.0	345.4		115.1	70 - 135	P
Thallium	mg/Kg	200.0	197.3		98.6	86 - 119	P
Vanadium	mg/Kg	30.0	31.6		105.3	84 - 113	P
Zinc	mg/Kg	20.0	20.7		103.5	88 - 127	P

D E



#### LABORATORY CONTROL SAMPLE SUMMARY

Client: MS Analytical SDG No.: D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

Analyte	Units	True Value	Result C	% Recovery	Acceptance Limits	M
PB65160BS Mercury	mg/Kg	.2	0.188	94.0	73 - 121	CV





#### LABORATORY CONTROL SAMPLE SUMMARY

Client: MS Analytical SDG No.: D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

Analyte	Units	True Value	Result	C	% Recovery	Acceptance Limits	M
PB65166BS Mercury	mg/Kg	.2	0.183		91.5	73 - 121	CV

D E



#### -9 -

#### ICP SERIAL DILUTIONS

CD 2/	(4-8)L	
3D-2(	(4-0)L	

 Lab Name:
 Chemtech Consulting Group

 Contract:
 MSAN01

 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811
 SDG No.:
 D3811

Matrix (soil/water): WATER Level (low/med): LOW

Concentration Units: ug/L

	Concentration U	mus.	ug/L				
Analyte	Initial Sample Result (I)	C	Serial Dilution Result (S)	5	% Differ- ence	Q	М
Aluminum	76377.29		81498.95		6.7	•	P
Antimony	14.24	J	40.00	U	100.0		P
Arsenic	123.62		143.60		16.2		P
Barium	1023.73		1095.48		7.0		P
Beryllium	2.51	J	3.50	U	100.0		P
Cadmium	5.23		5.20	J	0.6		P
Calcium	72326.61		78277.70	İ	8.2	1	P
Chromium	108.49		118.42	İ	9.2	1	P
Cobalt	79.23		81.05	İ	2.3	1	P
Copper	487.48		522.41	İ	7.2	1	P
Iron	261442.40		284926.80	İ	9.0	1	P
Lead	12606.55		13054.33	İ	3.6	1	P
Magnesium	11161.50		12332.23	İ	10.5	1	P
Manganese	4591.40		5020.27	İ	9.3	1	P
Nickel	166.55		167.15	İ	0.4	1	P
Potassium	5919.72		6543.81		10.5	1	P
Selenium	4.80	U	24.00	U			P
Silver	6.80		7.50	U	100.0		P
Sodium	3651.58		5264.31		44.2		P
Thallium	6.81	J	12.00	U	100.0		P
Vanadium	229.09		252.07		10.0		P
Zinc	1176.64		1253.51		6.5		P

10

В









-9 -

#### ICP SERIAL DILUTIONS

SAMPLE	NO.
SB-43(10	)-12)L

 Lab Name:
 Chemtech Consulting Group

 Contract:
 MSAN01

 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811
 SDG No.:
 D3811

Matrix (soil/water): WATER Level (low/med): LOW

Concentration Units: ug/L

Analyte	Initial Sample Result (I)	C	Serial Dilution Result (S)	C	% Differ- ence	Q	M
Mercury	0.	00		0.11			CV











#### -9 -

#### ICP SERIAL DILUTIONS

SAMPLE	NO.	

Lab Name: Chemtech Consulting Group **Contract:** MSAN01 Lab Code: CHEMCase No.: D3811 SAS No.: D3811 SDG No.: D3811

Matrix (soil/water):

WATER LOW Level (low/med):

ug/L **Concentration Units:** 

Analyte	Initial Sample Result (I)	C	Serial Dilution Result (S)	C	% Differ- ence	Q	M
Aluminum	89496.72		99813.80		11.5		P
Antimony	14.64	J	40.00	U	100.0		P
Arsenic	50.09		69.09		37.9		P
Barium	851.64		952.39		11.8		P
Beryllium	4.28		4.32	J	0.9		P
Cadmium	3.44		3.99	J	16.0		P
Calcium	507613.20		603280.50		18.8		P
Chromium	195.13		224.72		15.2		P
Cobalt	78.01		77.84		0.2		P
Copper	157.67		178.13		13.0		P
Iron	130331.10		152047.30		16.7		P
Lead	562.58		595.89		5.9		P
Magnesium	57432.27		67504.75		17.5		P
Manganese	2284.57		2674.18		17.1		P
Nickel	169.39		170.89		0.9		P
Potassium	29339.19		33297.48		13.5		P
Selenium	4.80	U	24.00	U			P
Silver	2.97	J	7.50	U	100.0		P
Sodium	5291.68		6920.44		30.8		P
Thallium	2.40	U	12.00	U			P
Vanadium	206.82		245.89		18.9		P
Zinc	729.53		832.84		14.2		P

10



-9 -

#### ICP SERIAL DILUTIONS

SAMPLE NO.

STOCKPILE081512L

 Lab Name:
 Chemtech Consulting Group

 Contract:
 MSAN01

 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811
 SDG No.:
 D3811

Matrix (soil/water): WATER Level (low/med): LOW

**Concentration Units:** ug/L

Analyte	Initial Sample Result (I)	C	Serial Dilution Result (S)	C	% Differ- ence	Q	М
Mercury	0.03			0.01 J	66.7		CV

10

C

D

F

H



# METAL PREPARATION & INSTRUMENT DATA







G

ŀ





#### - 10 -METHOD DETECTION LIMITS

**Client:** MS Analytical **SDG No.:** D3811

MSAN01 Case No.: D3811 SAS No.: D3811 **Contract:** Lab Code: CHEM

nstrument ID:	<u>P5</u>	Date:	02/14/2009	Preparation Method:	
		MDL	CRQL		
Analyte	Wave- length (nm)	ug/L	ug/L	<b>Date:</b> 02/14/2009	
Matrix Category:	LIQUID				
Aluminum	396.10	6.50	50.0		
Antimony	206.83	8.00	25.0		
Arsenic	189.00	4.20	10.0		
Barium	493.41	4.00	50.0		
Beryllium	234.86	0.70	3.0		
Cadmium	214.40	0.50	3.0		
Calcium	373.69	31.80	1000.0		
Chromium	267.72	1.10	5.0		
Cobalt	228.62	5.80	15.0		
Copper	324.70	2.00	10.0		
Iron	259.83	20.40	50.0		
Lead	220.35	2.60	6.0		
Magnesium	279.08	32.50	1000.0		
Manganese	257.61	1.70	10.0		
Nickel	231.60	4.20	20.0		
Potassium	769.80	38.80	1000.0		
Selenium	196.02	4.80	10.0		
Silver	328.07	1.50	5.0		
Sodium	818.30	13.90	1000.0		
Thallium	190.86	2.40	20.0		
Vanadium	292.40	6.10	20.0		
		6.50			
Zinc	213.8		20.0		
Mercury	253.70	0.0915	0.2000		
Matrix Category:	SOLIDS				
Aluminum	396.10	0.84	5.00		
Antimony	206.83	0.56	2.50		
Arsenic	189.00	0.33	1.00		
Barium	493.41	0.40	5.00		
Beryllium	234.86	0.06	0.30		
Cadmium	214.40	0.06	0.30		
Calcium	373.69	1.07	100.00		
Chromium	267.72	0.13	0.50		
Cobalt	228.62	0.57	1.50		
Copper	324.70	0.32	1.00		
Iron	259.83	1.33	5.00		
Lead	220.35	0.12	0.60		
Magnesium	279.08	4.58	100.00		
Manganese	257.61	0.19	1.00		
Nickel	231.60	0.46	2.00		
Potassium	769.80	3.50	100.00		
Selenium	196.02	0.41	1.00		
Silver	328.07	0.15	0.50		
Sodium	818.30	2.52	100.00		
Thallium	190.86	0.27	2.00		
Vanadium	292.40	0.27	2.00		
· anadium	213.8	0.39	2.00		
Zinc					





#### Metals - 11 -ICP INTERELEMENT CORRECTION FACTORS

Client:	MS Analytical			SDG No.:	D3811		
Contract:	MSAN01	Lab Code:	CHEM	Case No.:	D3811	SAS No.:	D3811
nstrument I	<b>D</b> : P5			<b>Date:</b> <u>0</u> 1	1/03/2012		

Interelement Correction Factors (apparent ppb analyte/ppm interferent )

	Wave-	Wave- ICP Interelement Correction Factors For:									
Analyte	Length (nm)	Al	Ca	Fe	Mg	Ag					
Aluminum	396.152	0.0000000	0.0000000	0.0000000	0.0000000	0.000000					
Antimony	206.833	0.0000000	0.0000360	0.0000000	0.0000000	0.000000					
Arsenic	193.759	-0.0001500	0.0000000	-0.0000610	0.0000000	0.000000					
Barium	493.409	0.0000000	0.0000000	0.0000000	0.0000000	0.000000					
Beryllium	234.861	0.0000000	0.0000000	0.0000060	0.0000000	0.000000					
Cadmium	226.502	0.0000000	0.0000000	0.0000720	0.0000000	0.000000					
Calcium	373.690	0.0000000	0.0000000	0.0000000	0.0000000	0.000000					
Chromium	267.716	0.0000000	0.0000160	0.0000000	0.0000000	0.000000					
Cobalt	228.616	0.0000000	0.0000000	0.0000000	0.0000000	0.000000					
Copper	324.754	0.0000000	0.0000000	-0.0001000	0.0000000	0.000000					
Iron	259.837	0.0000000	0.0000000	0.0000000	0.0000000	0.000000					
Lead	220.353	-0.0001080	0.0000160	0.0000290	-0.0000100	0.000000					
Magnesium	279.079	0.0000000	0.0000000	0.0000000	0.0000000	0.000000					
Manganese	257.610	0.0000000	0.0000000	0.0000000	0.0000000	0.000000					
Nickel	231.604	0.0000000	0.0000000	0.0000000	0.0000000	0.000000					
Potassium	766.490	0.0000000	0.0000000	0.0000000	0.0000000	0.000000					
Selenium	196.090	0.0000000	0.0000000	-0.0003100	0.0000000	0.000000					
Silver	328.068	0.0000000	0.0000000	-0.0001330	0.0000000	0.000000					
Sodium	589.592	0.0000000	0.0000000	0.0000000	0.0000000	0.000000					
Thallium	190.856	0.0000000	0.0000000	0.0000000	0.0000000	0.000000					
Vanadium	292.402	0.0000000	0.0000000	0.0000260	0.0000000	0.000000					
Zinc	213.856	0.0000000	0.0000000	0.0000680	0.0000000	0.000000					

10







D



# **Metals** - 11 -

#### ICP INTERELEMENT CORRECTION FACTORS

Client:	MS Ana	lytical				SDG No.:	D3811		
Contract:	MSAN	V01		Lab Code:	СНЕМ	Case No.:	D3811	SAS No.:	D3811
Instrument	ID:	P5				Date:	01/03/2012		
Interelement	t Correctio	n Factors (appar	ent ppb analyte/pp	m interferent )					

	Wave-	ICP In	terelement Corre	ction Factors For	:	
Analyte	Length (nm)	As	Ba	Be	Cd	Co
Aluminum	308.215	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Antimony	206.833	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Arsenic	193.759	0.0000000	0.0000000	0.0000000	0.0000000	0.000206
Barium	493.409	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Beryllium	234.861	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Cadmium	226.502	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Calcium	373.690	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Chromium	267.716	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Cobalt	228.616	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Copper	324.754	0.0000000	0.0000000	0.0000000	0.0000000	-0.000638
Iron	259.837	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Lead	220.353	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Magnesium	279.079	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Manganese	257.610	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Nickel	231.604	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Potassium	766.490	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Selenium	196.090	0.0000000	0.0000000	0.0000000	0.0000000	-0.000625
Silver	328.068	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Sodium	589.592	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Thallium	190.856	0.0000000	0.0000000	0.0000000	0.0000000	0.003030
Vanadium	292.402	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Zinc	206.200	0.0000000	0.0000000	0.0000000	0.0000000	0.000000



D



#### **Metals** - 11 -

#### ICP INTERELEMENT CORRECTION FACTORS

Client:	MS Ana	ılytıcal				SDG No.:	D3811			
Contract:	MSAN	NO1		Lab Code:	CHEM	Case No.:	D3811	SAS No.:	D3811	
Instrument	ID:	P5	_			Date:	01/03/2012			
Interelemen	t Correctio	on Factors (appare	nt ppb analyte/ppn	n interferent )						

	Wave-	ICP In	terelement Corre	ction Factors For	:	
Analyte	Length (nm)	Cr	Cu	K	Mn	Mo
Aluminum	308.215	0.0000000	0.0000000	0.0000000	0.0029760	0.010050
Antimony	206.833	0.0067600	0.0000000	0.0000000	0.0000000	-0.001788
Arsenic	189.042	-0.0020280	0.0000000	0.0000000	0.0000000	0.000000
Barium	493.409	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Beryllium	234.861	0.0000000	0.0000000	0.0000000	-0.0000530	-0.000367
Cadmium	226.502	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Calcium	373.690	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Chromium	267.716	0.0000000	0.0000000	0.0000000	0.0003130	0.000000
Cobalt	228.616	0.0000000	0.0000000	0.0000000	0.0000000	-0.002155
Copper	324.754	0.0000000	0.0000000	0.0000000	0.0000000	0.000319
Iron	259.837	0.0000000	0.0000000	0.0000000	0.0019120	0.000000
Lead	220.353	0.0000000	0.0002700	0.0000000	0.0000630	-0.001323
Magnesium	279.079	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Manganese	257.610	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Nickel	231.604	0.0000000	0.0000000	0.0000000	0.0001570	0.000354
Potassium	766.490	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Selenium	196.090	0.0000000	0.0000000	0.0000000	0.0003760	0.000116
Silver	328.068	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Sodium	818.326	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Thallium	190.856	0.0002910	0.0000000	0.0000000	0.0007730	0.000000
Vanadium	292.402	-0.0052870	0.0000000	0.0000000	-0.0003620	0.000000
Zinc	206.200	-0.0007800	0.0000000	0.0000000	0.0000000	-0.000160





#### **Metals** - 11 -

#### ICP INTERELEMENT CORRECTION FACTORS

Client:	MS Ana	lytical				SDG No.:	D3811			
Contract:	MSAN	NO1		Lab Code:	СНЕМ	Case No.:	D3811	SAS No.:	D3811	
Instrument	ID:	P5				Date:	01/03/2012			
Interelement	t Correctio	n Factors (annar	ent nnh analyte/nnn	n interferent )						

	Wave-	ICP In	terelement Corre	ction Factors For	:		
Analyte	Length (nm)	Na	Na Ni Pb Sb				
Aluminum	396.152	0.0000000	0.0000000	0.0000000	0.0000000	0.000000	
Antimony	206.833	0.0000000	0.0000000	0.0000000	0.0000000	0.000000	
Arsenic	189.042	0.0000000	0.0000880	0.0000000	0.0000000	0.000000	
Barium	493.409	0.0000000	0.0000000	0.0000000	0.0000000	0.000000	
Beryllium	234.861	0.0000000	0.0000000	0.0000000	0.0000000	0.000000	
Cadmium	214.438	0.0000000	0.0000000	0.0000000	0.0000000	0.000000	
Calcium	373.690	0.0000000	0.0000000	0.0000000	0.0000000	0.000000	
Chromium	267.716	0.0000000	0.0000000	0.0000000	0.0004160	0.000000	
Cobalt	228.616	0.0000000	0.0001510	0.0000000	0.0000000	0.000000	
Copper	224.700	0.0000000	-0.0042280	0.0027390	0.0000000	0.000000	
Iron	259.837	0.0000000	0.0000000	0.0000000	0.0030850	0.000000	
Lead	220.353	0.0000000	0.0001900	0.0000000	0.0000000	0.000000	
Magnesium	279.079	0.0000000	0.0000000	0.0000000	0.0000000	0.000000	
Manganese	257.610	0.0000000	0.0000000	0.0000000	0.0000000	0.000000	
Nickel	231.604	0.0000000	0.0000000	0.0000000	0.0000000	0.000000	
Potassium	769.896	0.0000000	0.0000000	0.0000000	0.0000000	0.000000	
Selenium	196.090	0.0000000	0.0000000	0.0000000	0.0000000	0.000000	
Silver	328.068	0.0000000	0.0000000	0.0000000	0.0000000	0.000000	
Sodium	589.592	0.0000000	0.0000000	0.0000000	0.0000000	0.000000	
Thallium	190.856	0.0000000	0.0000000	0.0000000	0.0000000	0.000000	
Vanadium	292.402	0.0000000	0.0000000	0.0000000	0.0000000	0.000000	
Zinc	213.856	0.0000000	0.0037520	0.0000000	0.0000000	0.000000	





#### Metals - 11 -ICP INTERELEMENT CORRECTION FACTORS

Client:	MS Analytical			SDG No.:	D3811		
Contract:	MSAN01	Lab Code:	СНЕМ	Case No.:	D3811	SAS No.:	D3811
Instrument	<b>ID:</b> P5			Date: 0	01/03/2012		
Interelemen	t Correction Factors (apparent ppb analyte/ppn	n interferent )					

	Wave-	ICP In	terelement Corre	ction Factors For	:	
Analyte	Length (nm)	Sn	Ti	Tl	V	Zn
Aluminum	396.152	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Antimony	206.833	-0.0105520	0.0000000	0.0000000	-0.0011770	0.000000
Arsenic	193.759	0.0000000	0.0000000	0.0000000	-0.0034790	0.000000
Barium	493.409	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Beryllium	234.861	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Cadmium	226.502	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Calcium	373.690	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Chromium	267.716	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Cobalt	228.616	0.0000000	0.0015730	0.0000000	0.0000000	0.000000
Copper	324.754	0.0000000	-0.0009590	0.0000000	-0.0001540	0.000000
Iron	259.837	0.0034480	0.0000000	0.0000000	0.0000000	0.000000
Lead	220.353	0.0000000	-0.0002710	0.0000000	-0.0001150	0.000000
Magnesium	279.079	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Manganese	257.610	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Nickel	231.604	0.0004130	0.0000000	0.0000000	0.0000000	0.000000
Potassium	766.490	0.0000000	0.0000000	0.0000000	0.0035820	0.000000
Selenium	196.090	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Silver	328.068	0.0000000	0.0000000	0.0000000	-0.0007660	0.000000
Sodium	818.326	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Thallium	190.856	0.0000000	-0.0011920	0.0000000	-0.0265550	0.000000
Vanadium	292.402	0.0000000	0.0008050	0.0000000	0.0000000	0.000000
Zinc	213.856	0.0000000	-0.0002440	0.0000000	0.0000000	0.000000



10

D

#### - 12 -LINEAR RANGES

Client: MS Analytical SDG No.: D3811

 Contract:
 MSAN01
 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811

**Instrument ID:** P4 Date: 07/19/2011

Analyte	Integration Time	LDR
	(sec)	ug/L
Aluminum	10	1500000
Antimony	10	50000
Arsenic	10	85000
Barium	10	55000
Beryllium	10	10000
Cadmium	10	11000
Calcium	10	3500000
Chromium	10	100000
Cobalt	10	50000
Copper	10	100000
Iron	10	2300000
Lead	10	200000
Magnesium	10	3500000
Manganese	10	200000
Nickel	10	100000
Potassium	10	2000000
Selenium	10	50000
Silver	10	11000
Sodium	10	2000000
Thallium	10	20000
Vanadium	10	100000
Zinc	10	50000



# METAL PREPARATION & ANALYICAL SUMMARY







# **Metals** - 13 -

#### SAMPLE PREPARATION SUMMARY

 Client:
 MS Analytical
 SDG No.:
 D3811

Contract: MSAN01 Lab Code: CHEM Method: P

Case No.: D3811 SAS No.: D3811

				Cuse 110	20011	5115110	711	
								D
					Initial	Final Sample	Ī	Е
		Sample			Sample	Volume	Percent	F
Sample ID	Client ID	Type	Matrix	Prep Date	Size(g)	(mL)	Solids	
Batch Number	r: PB65134							G
D3811-21	SB-46(12-16)	SAM	SOIL	08/16/2012	1.43	100.0	71.80	Н
D3813-01D	SS-01AD	DUP	SOIL	08/16/2012	1.48	100.0	87.20	
D3813-01S	SS-01AS	MS	SOIL	08/16/2012	1.40	100.0	87.20	
D3813-01SD	SS-01ASD	MSD	SOIL	08/16/2012	1.39	100.0	87.20	
PB65134BL	PB65134BL	MB	SOIL	08/16/2012	1.00	100.0	100.00	
PB65134BS	PB65134BS	LCS	SOIL	08/16/2012	1.00	100.0	100.00	



10



#### Metals - 13 -SAMPLE PREPARATION SUMMARY

 Client:
 MS Analytical

 SDG No.:
 D3811

Contract: MSAN01 Lab Code: CHEM Method: P

Case No.: D3811 SAS No.: D3811

				Case No.:	<u>D3811</u>	SAS No.: <u>D30</u>	<u> </u>
Sample ID	Client ID	Sample Type	Matrix	Prep Date	Initial Sample Size(g)	Final Sample Volume (mL)	Percent Solids
Batch Number	:: PB65135						
D3811-01	SB-2(4-8)	SAM	SOIL	08/16/2012	1.40	100.0	86.60
D3811-01D	SB-2(4-8)D	DUP	SOIL	08/16/2012	1.33	100.0	86.60
D3811-01S	SB-2(4-8)S	MS	SOIL	08/16/2012	1.37	100.0	86.60
D3811-01SD	SB-2(4-8)SD	MSD	SOIL	08/16/2012	1.38	100.0	86.60
D3811-02	SB-5(18-12)	SAM	SOIL	08/16/2012	1.39	100.0	81.30
D3811-03	SB-9(4-7)	SAM	SOIL	08/16/2012	1.42	100.0	83.90
D3811-04	SB-10(8-12)	SAM	SOIL	08/16/2012	1.39	100.0	74.40
D3811-05	SB-11(12-16)	SAM	SOIL	08/16/2012	1.37	100.0	74.40
D3811-06	SB-15(12-16)	SAM	SOIL	08/16/2012	1.39	100.0	71.60
D3811-07	SB-18(4-8)	SAM	SOIL	08/16/2012	1.42	100.0	83.80
D3811-08	SB-19(12-18)	SAM	SOIL	08/16/2012	1.49	100.0	62.40
D3811-09	SB-21(12-16)	SAM	SOIL	08/16/2012	1.44	100.0	70.40
D3811-09DL	SB-21(12-16)DL	SAM	SOIL	08/16/2012	1.44	100.0	70.40
D3811-10	SB-21(16-19)	SAM	SOIL	08/16/2012	1.43	100.0	68.10
D3811-11	SB-22(12-19)	SAM	SOIL	08/16/2012	1.38	100.0	91.10
D3811-12	SB-27(8-12)	SAM	SOIL	08/16/2012	1.37	100.0	80.60
D3811-13	SB-37(8-10)	SAM	SOIL	08/16/2012	1.33	100.0	70.40
D3811-14	SB-39(6-8)	SAM	SOIL	08/16/2012	1.39	100.0	91.90
D3811-15	SB-41(8-11)	SAM	SOIL	08/16/2012	1.48	100.0	81.20
D3811-16	SB-42(14-16)	SAM	SOIL	08/16/2012	1.43	100.0	82.80
D3811-17	SB-43(6-8)	SAM	SOIL	08/16/2012	1.33	100.0	91.80
D3811-18	SB-43(10-12)	SAM	SOIL	08/16/2012	1.37	100.0	82.10
D3811-19	SB-43(16-20)	SAM	SOIL	08/16/2012	1.35	100.0	70.70
D3811-20	SB-45(10-12)	SAM	SOIL	08/16/2012	1.38	100.0	71.90
PB65135BL	PB65135BL	MB	SOIL	08/16/2012	1.00	100.0	100.00
PB65135BS	PB65135BS	LCS	SOIL	08/16/2012	1.00	100.0	100.00



#### Metals - 13 -SAMPLE PREPARATION SUMMARY

 Client:
 MS Analytical
 SDG No.:
 D3811

Contract: MSAN01 Lab Code: CHEM Method: CV

Case No.: D3811 SAS No.: D3811

Sample ID	Client ID	Sample Type	Matrix	Prep Date	Initial Sample Size(g)	Final Sample Volume (mL)	Percent Solids
Batch Number	r: PB65160						
D3811-01	SB-2(4-8)	SAM	SOIL	08/16/2012	0.67	30.0	86.60
D3811-02	SB-5(12-18)	SAM	SOIL	08/16/2012	0.63	30.0	81.30
D3811-03	SB-9(4-7)	SAM	SOIL	08/16/2012	0.64	30.0	83.90
D3811-04	SB-10(8-12)	SAM	SOIL	08/16/2012	0.69	30.0	74.40
D3811-05	SB-11(12-16)	SAM	SOIL	08/16/2012	0.67	30.0	74.40
D3811-06	SB-15(12-16)	SAM	SOIL	08/16/2012	0.63	30.0	71.60
D3811-07	SB-18(4-8)	SAM	SOIL	08/16/2012	0.65	30.0	83.80
D3811-08	SB-19(12-18)	SAM	SOIL	08/16/2012	0.62	30.0	62.40
D3811-09	SB-21(12-16)	SAM	SOIL	08/16/2012	0.65	30.0	70.40
D3811-10	SB-21(16-19)	SAM	SOIL	08/16/2012	0.65	30.0	68.10
D3811-11	SB-22(12-19)	SAM	SOIL	08/16/2012	0.63	30.0	91.10
D3811-12	SB-27(8-12)	SAM	SOIL	08/16/2012	0.69	30.0	80.60
D3811-13	SB-37(8-10)	SAM	SOIL	08/16/2012	0.63	30.0	70.40
D3811-14	SB-39(6-8)	SAM	SOIL	08/16/2012	0.66	30.0	91.90
D3811-15	SB-41(8-11)	SAM	SOIL	08/16/2012	0.65	30.0	81.20
D3811-16	SB-42(14-16)	SAM	SOIL	08/16/2012	0.66	30.0	82.80
D3811-17	SB-43(6-8)	SAM	SOIL	08/16/2012	0.62	30.0	91.80
D3811-18	SB-43(10-12)	SAM	SOIL	08/16/2012	0.60	30.0	82.10
D3811-18D	SB-43(10-12)D	DUP	SOIL	08/16/2012	0.60	30.0	82.10
D3811-18S	SB-43(10-12)S	MS	SOIL	08/16/2012	0.60	30.0	82.10
D3811-18SD	SB-43(10-12)SD	MSD	SOIL	08/16/2012	0.60	30.0	82.10
D3811-19	SB-43(16-20)	SAM	SOIL	08/16/2012	0.61	30.0	70.70
D3811-20	SB-45(10-12)	SAM	SOIL	08/16/2012	0.67	30.0	71.90
PB65160BL	PB65160BL	MB	SOIL	08/16/2012	0.60	30.0	100.00
PB65160BS	PB65160BS	LCS	SOIL	08/16/2012	0.60	30.0	100.00



10











# **Metals** - 13 -

#### SAMPLE PREPARATION SUMMARY

 Client:
 MS Analytical
 SDG No.:
 D3811

Contract: MSAN01 Lab Code: CHEM Method: CV

Case No.: D3811 SAS No.: D3811

Sample ID	Client ID	Sample Type	Matrix	Prep Date	Initial Sample Size(g)	Final Sample Volume (mL)	Percent Solids
Batch Number:	: PB65166						
D3811-21	SB-46(12-16)	SAM	SOIL	08/16/2012	0.65	30.0	71.80
D3841-03D	STOCKPILE081512D	DUP	SOIL	08/16/2012	0.60	30.0	83.90
D3841-03S	STOCKPILE081512S	MS	SOIL	08/16/2012	0.60	30.0	83.90
D3841-03SD	STOCKPILE081512SD	MSD	SOIL	08/16/2012	0.60	30.0	83.90
PB65166BL	PB65166BL	MB	SOIL	08/16/2012	0.60	30.0	100.00
PB65166BS	PB65166BS	LCS	SOIL	08/16/2012	0.60	30.0	100.00













#### Metals - 14 -ANALYSIS RUN LOG

Client:	MS Analytical	Contract:	MSAN01

 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811
 SDG No.:
 D3811

Instrument ID Number: P5 Method: P Run Number: LB62171

**Start Date:** 08/16/2012 **End Date:** 08/16/2012

EPA	D/F	Time	% R									A	na]	Lyt	es												
Sample	D/F	Time	/0 K	A	S	A	В	В	C	C	С		C			M			ŀ			A I		T			C
No.				L	В	S	A	E	D	A	R	0	U	E	В	G I	V	<b>G</b> 1		1	E   •	G A	1	L	$\sqcup$	N	N
S0	1	1341	ĺ	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	. X	( X	( )	χX		$\mathbf{x}$	Χ	Х	
S1	1	1344		X	Х	Х	X	X	X		Х	X	Χ	X	X		X	Х	1	Х	( )	ζ .	T	X :	X	X	╗
S2	1	1347				П				X						X			Х	1	T	Х		寸	ヿ	T	コ
S3	1	1351		X	Х	Х	X	X	X	X	X	Х	Χ	Χ	X	X	X	Х	. X	X	( )	X		Χ .	X	X	コ
S4	1	1354		Х	Х	Х	X	X	Х	X	Х	X	X	X	X	X	X	Х	. X	X	( )	X		X I	X	X	$\exists$
S5	1	1357		X	Х	Х	X	X	X	X	Х	X	X	X	X	X	X	Х	Σ	X	7	X		Χ .	X	X	╗
ICV01	1	1401		Х	Χ	Х	X	X	Х	X	Х	Х	Χ	X	X	X	X	Х	. X	( X	( )	X		X I	X	X	╗
ICB01	1	1404		Х	Х	Х	X	X	Х	X	Х	X	X	X	X	X	X	Х	. X	X	( )	X		X I	X	X	$\exists$
CRI01	1	1407		Х	Χ	Х	X	X	Х		Χ	Х	X	X	X		X	Х		Х	7	ζ .	T	X :	X	X	コ
CRI02	1	1411				П				X						X			Х	1	T	Х		寸	ヿ	ヿ	コ
ICSA01	1	1414		X	Х	Х	X	X	X	X	Х	X	X	X	X	X	X	Х	Σ	( X	( )	X		X :	X	X	╗
ICSAB01	1	1418		X	Χ	Х	X	X	X	X	Χ	Х	X	X	X	X	X	Х	Σ	X	( )	XΧ		X :	X	X	╗
CCV01	1	1421		X	Χ	Х	X	X	X	X	Х	Х	Χ	Χ	X	X	X	Х	Σ	( X	7	X		X I	$\mathbf{x}$	Х	╛
CCB01	1	1425		X	Х	Х	X	X	Х	X	Х	X	X	Χ	X	X	X	Х	. X	: X	( )	X		X :	X	Х	コ
CCV02	1	1502		X	Х	Х	X	X	Х	X	Х	Х	Χ	X	X	X	X	Х	Σ	: X	7	X		X I	x T	Х	╛
CCB02	1	1505		Х	Х	Х	X	X	Х	X	Х	X	Χ	Χ	X	Х	X	Х	<u> </u>	: X	( )	<i>χ</i> χ		X :	X	Х	┨
CCV03	1	1542		X	Х	Х	X	X	Х	X	Х	X	Χ	Χ	X	X	X	Х	. X	: X	( )	XΧ		X :	X	Х	コ
CCB03	1	1545		X	Х	Х	X	X	Х	X	Х	X	Χ	Χ	X	X	X	Х	. X	: X	( )	XΧ		X :	X	Х	╛
CCV04	1	1622		Х	Х	Х	X	X	Х	X	Х	X	Χ	Χ	X	X	X	Х	<u> </u>	: X	( )	<i>χ</i> χ		X :	X	Х	ヿ
CCB04	1	1626		X	Х	Х	X	X	X	X	Х	X	Χ	X	X	X	X	Х	Σ	( X	( )	X		X :	X	X	ヿ
CCV05	1	1703		X	Χ	Х	X	X	Х	X	Χ		X	X	X	X	X	Х	. X	X	7	X X		X :	X	X	コ
CCB05	1	1706		X	Х	Х	X	X	X	X	X	Х	Χ	Χ	X	X	X	Х	. X	X	( )	X		Χ .	X	X	コ
CCV06	1	1743		X	Χ	Х	X	X	X	X	Х	X	Χ	X	X	X	X	Х	Σ	( X	( )	X		X :	X	X	ヿ
CCB06	1	1746		X	Χ	Х	X	X	Х	X	Χ	Х	X	X	X	X	X	Х	. X	X	7	X X		X :	X	X	コ
CCV07	1	1822		Х	Х	Х	X	X	Х	X	X	Х	Χ	Χ	X	X	X	Х	. X	( X	7	<b>Χ</b>		X I	x	X	コ
CCB07	1	1826		X	Х	Х	X	X	X	X	Х	Х	X	X	X	X	X	Х	. X	X	( )	XΧ		Χ .	X	X	コ
CCV08	1	1902		X	Χ	Х	X	X	Х	X	Х	Х	X	X	X	X	X	Х	. X	X	( )	X		X I	X	X	٦
CCB08	1	1906		Х	Х	Х	X	X	Х	X	X	X	Χ	Χ	X	X	X	Х	. X	( X	7	<b>Χ</b>		X I	x	X	コ
CCV09	1	1943		X	Х	Х	X	X	Х	X	Х	X	X	X	X	X	X	Х	. X	X	( )	X		X I	X	X	$\exists$
CCB09	1	1946		X	Х	Х	X	X	X	X	Х	Χ	X	X	X	X	X	Х	Σ	X	7	X		Χ .	X	X	╗
CCV10	1	2023		Х	Х	Х	X	X	Х	X	X	X	Χ	Χ	X	X	X	Х	. X	( X	7	<b>Χ</b>		X I	X	X	コ
CCB10	1	2027		X	Х	Х	X	X	Х	X	Х	X	X	X	X	X	X	Х	. X	X	( )	X		X :	X	Х	$\exists$
CCV11	1	2105		X	Χ	Х	X	X	Х	X	Χ	X	X	X	X	X	X	Х	. X	X	7	X X		X :	X	X	コ
CCB11	1	2108		X	Х	X	X	X	X	X	X	Х	Χ	Χ	X	X	X	Х	. X	X	( )	X		Χ .	X	X	コ
CCV12	1	2146		X	Х	Х	X	X	X	X	X	X	X	X	X	X	X	Х	Σ	( X	( )	X X		X I	X	X	ヿ
CCB12	1	2149		X	Х	X	X	X	X	X	_	_		_	_	_	_	Х	Σ	X	( )	X X		X I	X	x	ᅦ
CCV13	1	2229		X	Х	X	X	X	Х	X	Х	Х	X	X	X	X	X	X	X	( X	7	<i>χ</i> χ		X I	X	$\mathbf{x}$	$\dashv$
CCB13	1	2232		X	Х	Х	X	X	Х	X	Х	Х	X	X	X	Х	X	Х	Σ	( X	( )	<i>χ</i> χ		x :	X	$\mathbf{x}$	ᅵ
CCV14	1	2253		X	Х	X	X	X	X	X	X	Χ	X	X	X	X	X	Х	Σ	X	( )	X X		X I	X	x	ᅦ
CCB14	1	2257		_	Х	-	X	X	Х	X	_	_		Χ	_	_	X	_	_	_	_	XΧ	_	_	Х	_	ヿ



LB62172

**Run Number:** 



**Instrument ID Number:** 

P5

#### Metals - 14 -ANALYSIS RUN LOG

Client:	MS Analytical	Contract:	MSAN01

 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811
 SDG No.:
 D3811

**Start Date:** 08/16/2012 **End Date:** 08/16/2012

Method:

EPA	D/F	Time	% R									A	na:	Lyt	es												_
Sample No.	D/1	Time	/0 K	A L	S B	A S	B A	B E	C D	C A	C R		C U	F E	P B	M G	M N		N I	K	S E	A G	N A	T L	V	Z N	C N
S0	1	1341		Х	Х	X	X	X	Х	X	Х	Χ	X	Χ	X	Х	X	П	X	X	X	X	Х	Х	Х	Х	Γ
S1	1	1344		X	X	X	X	X	Х		Х	Х	X	Χ	X		X	П	X		X	X		Х	Х	Х	
S2	1	1347				П				X	T	П				X		П		X			Χ			T	
S3	1	1351		Х	Х	X	X	X	Х	X	Х	X	Χ	Χ	Χ	X	X	П	X	X	X	X	X	Х	X	X	Г
S4	1	1354		Х	X	X	X	X	Х	X	Х	X	Χ	X	Χ	X	X	П	X	X	X	X	X	Х	X	Х	
S5	1	1357		X	Х	X	X	X	Х	X	Х	X	Χ	X	Χ	X	X	П	X	X	X	X	X	X	X	X	
ICV01	1	1401		X	X	Χ	X	X	Х	X	Х	Х	X	Χ	Χ	Х	X	П	X	Χ	X	X	Х	Х	X	Х	Г
ICB01	1	1404		Х	X	X	X	X	Х	X	Х	X	Χ	X	Χ	X	X	П	X	X	X	X	X	Х	X	Х	
CRI01	1	1407		X	X	X	X	X	Х		Х	Х	X	Χ	Χ	T	X	П	X		X	X		Х	Х	Х	Г
CRI02	1	1411			Г	П			П	X	Г	П				Х		П		Χ			Х	Г		Г	Г
ICSA01	1	1414		X	X	X	X	X	Х	X	Х	Χ	X	X	X	X	X	П	X	X	X	X	Х	Х	X	Х	Г
ICSAB01	1	1418		X	Χ	Χ	X	X	Х	X	Х	X	X	X	X	Х	X	П	X	X	_	X	X	X	X	Х	Г
CCV01	1	1421		X	Х	Χ	X	X	Х	X	Х	X	X	X	X	Х	X	П	X	X	X	X	X	Х	X	Х	Г
CCB01	1	1425		X	X	Χ	X	X	Х	X	Х	Х	X	Χ	Χ	X	X	П	X	X	X	X	Х	Х	Х	Х	Г
PB65134BL	1	1441		X	Х	Χ	X	X	Х	X	Х	Х	X	Χ	Χ	X	X	П	X	Χ	X	X	Х	X	Х	Х	Г
PB65134BS	1	1445		X	X	Χ	X	X	Х	X	Х	Х	X	Χ	Χ	Х	X	П	X	Χ	X	X	Х	Х	X	Х	Г
SS-01AD	1	1458		X	X	Χ	X	X	Х	X	Х	Х	X	Χ	Χ	X	X	П	X	X	X	X	Х	Х	Х	Х	Г
CCV02	1	1502		X	Х	Χ	X	X	Х	X	Х	Х	X	Χ	Χ	X	X	П	X	Χ	X	X	Х	X	Х	Х	Г
CCB02	1	1505		X	Х	Χ	X	X	Х	X	Х	Х	X	Χ	Χ	X	X	П	X	Χ	X	X	Χ	X	Χ	Х	Г
SS-01AL	5	1509		X	X	Χ	X	X	Х	X	Х	Х	X	Χ	Χ	X	X	П	X	X	X	X	Х	Х	Х	Х	Г
SS-01AS	1	1512		X	Х	Χ	X	X	Х	X	Х	X	Χ	X	X	X	X		X	X	X	X	Χ	Х	X	Х	
SS-01ASD	1	1515		X	X	X	X	X	X	X	X	X	Χ	Χ	X	X	X	П	X	X	X	X	X	X	X	Х	Г
SS-01AA	1	1519										П											Х			Х	
CCV03	1	1542		X	Х	X	X	X	Х	X	Х	Х	X	Χ	X	X	X		X	Χ	X	X	Χ	Х	Χ	Х	
CCB03	1	1545		X	Х	X	X	X	Х	X	Х	X	Χ	Χ	Χ	X	X	П	X	X	X	X	X	Х	X	Х	Г
CCV04	1	1622		Х	Х	X	X	X	Х	X	Х	X	X	X	Χ	X	X	П	X	X	X	X	X	Х	X	Х	
CCB04	1	1626		X	Х	X	X	X	Х	X	Х	Х	X	Χ	X	X	X		X	Χ	X	X	Χ	Х	Χ	Х	
CCV05	1	1703		X	Х	X	X	X	Х	X	Х	X	X	Χ	Χ	X	X	П	X	Χ	Χ	X	X	Х	X	X	Г
CCB05	1	1706		Х	X	X	X	X	Х	X	Х	X	X	Χ	Χ	X	X	П	X	X	X	X	X	Х	X	X	
CCV06	1	1743		X	Х	X	X	X	Х	X	Х	Х	X	_		X	X		X	Χ	X	X	Χ	Х	Χ	Х	
CCB06	1	1746		X	Х	X	X	X	Х	X	Х	X	X	Χ	Χ	X	X	П	X	Χ	Χ	X	X	Х	X	X	Г
CCV07	1	1822		Х	X	X	X	X	Х	X	Х	X	X	Χ	Χ	X	X									X	
CCB07	1	1826		X	Х	X	X	X	Х	X	Х	Х	X	Χ	X	X	X		X	Χ	X	X	Χ	Х	Χ	Х	
CCV08	1	1902		X	Х	Χ	X	X	Х	X	Х	X	Χ	Χ	Χ	X	X	П	X	X	X	X	X	Х	X	Х	Г
CCB08	1	1906		X	X	X	X	X	Χ	X	X	Χ	X	Χ	X	Χ	X							Х			Г
SB-46(12-16)	1	1916		X	X	X	X	X	Χ	X	X	Χ	X	X	X	Χ	X	_	_		_		_	_	_	Х	Г
PB65135BL	1	1926		X	X	X	X	X	Х	X	X	Χ	Χ	Χ	X	X	X	П	X	X	X	X	X	Х	X	X	Г
PB65135BS	1	1929		X	Χ	Χ	X	X	Х	X	X	Χ	X	X	X	Χ	X	П	X	X	X	X	Χ	X	X	Х	Г
SB-2(4-8)	1	1933		X	Χ	X	X	X	Х							Χ										Х	
SB-2(4-8)D	1	1936		_	Х	-	X	X	Х							Х		_	_	-	_	-	_	Х	_	_	Г
SB-2(4-8)L	5	1939		_	Χ	-	X	X	Х		_	Х				_	Χ	_	_	X	_		_	_	Х	-	Г



#### Metals - 14 -ANALYSIS RUN LOG

Client:	MS Analytical	Contract:	MSAN01

 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811
 SDG No.:
 D3811

Instrument ID Number: P5 Method: P Run Number: LB62172

**Start Date:** 08/16/2012 **End Date:** 08/16/2012

EPA	D/F	Time	% R	L								_A	na.	lyt	es												
Sample No.	D/1	Time	/	A L	S B	A S	B A	B E	C D	C A	C R		C U	F E		M G		H G		K	S E	A G	N A	T L	V	Z N	C N
CCV09	1	1943	†	X	Х	Х	X	X	X	X	Х	Х	X	Х	X	Х	X		X	Х	X	Х	Х	X	Х	Х	Г
CCB09	1	1946		Х	Х	Х	X	X	Х	X	Х	Х	X	X		$\rightarrow$	X		X	Х	X	Х	Х	X	Х	Х	Г
SB-2(4-8)S	1	1949		X	Х	Х	X	X	Х	X	Х	X	X	X	X	X	X		X	Х	X	Х	Х	Х	Х	Х	Г
SB-2(4-8)SD	1	1953		X	Х	Х	X	X	Х	X	Х	Х	X	Х	X	X	X		X	Х	X	Х	Х	Х	Х	Х	Г
SB-2(4-8)A	1	1956				П					Х		X							Х			Х			П	Γ
SB-5(18-12)	1	1959		Х	Х	Х	X	X	Х	X	Х	Χ	X	Χ	X	Χ	X		X	Х	X	Х	Х	X	Х	Х	Г
SB-9(4-7)	1	2003		Х	Х	Х	X	X	Х	X	Х	_	X	Χ	X	Χ	X		X	Х	X	Х	Х	X	Х	Х	Г
SB-10(8-12)	1	2006		Х	Х	Х	X	X	Х	X	Х	X	X	Χ	X	Χ	X		X	Х	X	Х	Х	Х	Х	Х	Г
SB-11(12-16)	1	2010		X	Х	Х	X	X	X	X	Х	X	X	X	X	X	X		X	Х	X	Х	X	Х	Х	X	Г
SB-15(12-16)	1	2013		X	X	Х	X	X	X	X	Х	X	X	Χ	X	X	X		X	X	X	Х	X	X	Х	X	Г
SB-18(4-8)	1	2016		X	Х	Х	X	X	X	X	Х	X	X	X	X	X	X		X	Χ	X	Х	Х	X	Х	X	Г
SB-19(12-18)	1	2020		X	Χ	Х	X	X	Х	X	Х	Х	X	Χ	X	X	X		Χ	Χ	X	Х	Х	Х	Х	Х	Г
CCV10	1	2023		X	Х	Х	X	X	Х	X	Х	Х	X	Χ	X	X	X		Χ	Х	X	Х	Х	Х	Х	Х	Γ
CCB10	1	2027		X	Х	Х	X	X	X	X	Х	X	X	Χ	X	X	X		X	Х	X	Х	Х	X	Х	X	Г
SB-21(12-16)	1	2030		X	Χ	Х	X	X	Х	X	Х	Х	X	Χ	X	X	X		Χ	Χ	X	Х	Х	Х	Χ	Х	Г
SB-21(16-19)	1	2034		X	Х	Х	X	X	Х	X	Х	Х	X	Χ	X	X	X		Χ	Х	X	Х	Х	Х	Х	Х	Γ
SB-22(12-19)	1	2037		Х	Х	Х	X	X	Х	X	Х	X	X	X	X	X	X		X	Х	X	Х	Х	Х	Х	X	
SB-27(8-12)	1	2041		X	Х	Х	X	X	X	X	Х	X	X	X	X	X	X		X	Х	Χ	Х	Х	X	Х	X	Г
SB-37(8-10)	1	2044		X	Х	Х	X	X	X	X	Х	X	X	Χ	X	X	Χ		X	Х	Χ	Х	X	X	Х	X	Γ
SB-39(6-8)	1	2048		X	Х	Х	X	X	X	X	Х	X	X	X	X	X	X		X	Χ	Χ	Х	X	X	Χ	X	Γ
SB-41(8-11)	1	2051		X	X	Х	X	X	X	X	Х	X	X	X	X	X	X		Χ	X	X	Х	X	X	X	X	Г
SB-42(14-16)	1	2054		X	X	Х	X	X	X	X	X	X	X	X	X	X	X		Χ	X	X	Х	X	X	X	X	Γ
SB-43(6-8)	1	2058		X	X	X	X	X	X	X	Х	X	X	X	X	X	X		X	X	X	Х	X	X	X	X	Г
SB-43(10-12)	1	2101		X	X	X	X	X	X	X	X	X	X	X	X	X	X		X	X	X	Х	X	X	X	X	
CCV11	1	2105		X	X	X	X	X	X	X	X	X	X	X	X	X	X		X	X	X	X	X	X	Х	X	
CCB11	1	2108		X	X	X	X	X	X	X	X	X	X	X	X	X	X		X	X	X	X	X	X	X	X	
SB-43(16-20)	1	2111		X	X	X	X	X	X	X	X	X	X	X	X	X	X		X	X	X	X	X	X	X	X	
SB-45(10-12)	1	2115		X	X	X	X	X	X	X	X	X	X	X	X	X	X		X	X	X	X	X	X	X		
CCV12	1	2146		X	_	X	X	X	X	X	Х	-	X	X	X	X	X		X	Χ	X	X	X	_	X	X	
CCB12	1	2149		X	X	X	X	X	X	X	X	X	X	X	X	X	X		X	X	X	X	X	X	X	X	
CCV13	1	2229		X	X	X	X	X	X	X	X	X	X	X	X	X	X		X	Χ	X	X	X	X	Х	X	
CCB13	1	2232		X	X	X	X	X	X	X	X	X	X	X	X	X	X		X	X	X	X	X	X	X	X	
CCV14	1	2253		X			X	X	X	X	X		X	X	X	X	X		X		X		X	X	Х	X	
CCB14	1	2257		X	X	Х	X	X	X	X	X	X	X	Х	X	X	X		X	X	X	Х	X	X	X	X	Γ

10















LB62194

Run Number:



**Instrument ID Number:** 

CV1

#### Metals - 14 -ANALYSIS RUN LOG

Client:	MS Analytical	Contract:	MSAN01

 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811
 SDG No.:
 D3811

CV

**Start Date:** 08/17/2012 **End Date:** 08/17/2012

Method:

EPA		m.	0/ 5								An	al.	vte	s												
Sample No.	D/F	Time	% R	A L	S B	A S	B A	C D		C R	C C	: []		?	M M G N			1		S E	A G	N A	T L	V	Z N	C
Std01Rep1	1	1505	<del>                                     </del>					П	ì		П	Ť	T			)									T	T
Std02Rep1	1	1507									$\Box$	Ť	T	1		12	(	1						T	T	$\top$
Std03Rep1	1	1509				П					Ħ	T	十	1	$\top$	_		1						H	T	T
Std04Rep1	1	1511				П				T	$\Box$	十	十	┪	$\top$	12		┪	┪			T		T	T	$\top$
Std05Rep1	1	1513				П				T	$\Box$	Ť	1	1		12	_	1						T	T	$\top$
Std06Rep1	1	1517				П					$\Box$	Ť	T	7		7	_	7						T	Τ	$\top$
ICV01	1	1523				П					$\vdash$	T	十	┪		12		┪						T	T	$\top$
ICB01	1	1524				П					$\sqcap$	Ť	1	1		2	ζ	1						T	T	T
CCV01	1	1528				П					$\Box$	T	十			2	(							T	T	$\top$
CCB01	1	1530				П		Г		Г	$\Box$	十	十	┪		2		┪	$\neg$					T	T	$\top$
CRI01	1	1532									Ħ	T	十	1		2	(	1						T	T	Τ
PB65166BL	1	1538				П					$\Box$	T	十			2	(							T	T	$\top$
PB65166BS	1	1540				П		Г		Г	$\Box$	十	十	┪		2		┪	$\neg$					T	T	$\top$
SB-46(12-16)	1	1542									Ħ	T	T	1		2	ζ	1						T	T	Т
STOCKPILE081512D	1	1551									Ħ	T	十	7		2	(	7							Т	Т
STOCKPILE081512S	1	1553				П		Г		Г	$\Box$	十	十	┪		2		┪	$\neg$					T	T	$\top$
STOCKPILE081512SD	1	1555									Ħ	T	T	1		2	ζ	1						T	T	Т
CCV02	1	1557									Ħ	T	十	7		2	(	7							Т	Т
CCB02	1	1559				П					Ħ	T	十	┪		7		┪						Γ	Г	Τ
STOCKPILE081512A	1	1601									П	T	T												Г	П
STOCKPILE081512L	5	1602									П	T	T	T		7	(	T							Г	Т
CCV03	1	1604									П	T	T	T		2	ζ	T						Γ	Г	Т
CCB03	1	1606									П	T	T	٦		2	ζ	٦							Γ	Т
PB65160BL	1	1614									П	T	T			2	ζ								Г	Т
PB65160BS	1	1616									П	T	T	╗		2	<	╗						Γ	Г	П
SB-2(4-8)	1	1618									П	T	T	٦		Т	T	٦							Γ	Т
SB-5(18-12)	1	1620									П	T	T			2	ζ								Г	Т
SB-9(4-7)	1	1622										Т	Т	T		2	ζ	T							Г	Т
SB-10(8-12)	1	1624										T				2	ζ								Γ	П
SB-11(12-16)	1	1626															ζ								Γ	$\Box$
CCV04	1	1628											Т			2									$\Box$	
CCB04	1	1630														2	ζ								Γ	
SB-15(12-16)	1	1632														2	ζ								Г	$\Box$
SB-18(4-8)	1	1634											Т			2	ζ								$\Box$	
SB-19(12-18)	1	1636														_	ζ .								$\prod$	
SB-21(12-16)	1	1637										$oxed{\int}$				_	ζ								Ĺ	
SB-21(16-19)	1	1639										$oldsymbol{\mathbb{I}}$				_	ζ								$\prod$	
SB-22(12-19)	1	1641								L		$oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{ol}}}}}}}}}}}}}}} $	$oxed{oxed}$				ζ.								L	
SB-27(8-12)	1	1643										$oxed{\int}$				_	ζ								Ĺ	
SB-37(8-10)	1	1645								L	$\coprod$					_	ζ							L	L	$oxedsymbol{oxedsymbol{oxed}}$
SB-39(6-8)	1	1647								_	$\prod$	Γ	Τ	Ţ			ζ	Ţ			L	L	L	$\lfloor$	$\prod_{i=1}^{n}$	



**Instrument ID Number:** 

CV1

#### Metals - 14 -ANALYSIS RUN LOG

Client:	MS Analytical	Contract:	MSAN01
,			

 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811
 SDG No.:
 D3811

CV

**Start Date:** 08/17/2012 **End Date:** 08/17/2012

Method:

EPA	D/F	Time	% R							A	na:	Lyt	es								
Sample No.	<i>D</i> /F	Time	/0 K	A L	S B	A S	B A	C D	C R	C O				M G	H G	K		T L	V	Z N	
SB-41(8-11)	1	1649													X					П	Γ
CCV05	1	1651								П					X					П	
CCB05	1	1653													X					П	Г
SB-42(14-16)	1	1655								П					X					П	Г
SB-43(6-8)	1	1657								П					X					П	Г
SB-43(10-12)D	1	1701													X					П	Г
SB-43(10-12)S	1	1706								П					X					П	Г
SB-43(10-12)SD	1	1717								П					X					П	
SB-43(10-12)A	1	1718								П										П	Г
SB-43(10-12)L	5	1720								П					X					П	Г
SB-43(16-20)	1	1723								П					X					П	
SB-45(10-12)	1	1731								П					X					П	Г
CCV06	1	1733								П					X					П	Γ
CCB06	1	1735								П					X					П	
CCV07	1	1803								П					X					П	Г
CCB07	1	1805								П					X					П	Γ
CCV08	1	1826								П					X					П	Γ
CCB08	1	1828								П					X					П	Г
SB-2(4-8)	1	1843								П					X					П	Г
SB-43(10-12)	1	1850								П					X					П	Г
CCV09	1	1852								П					X					П	Г
CCB09	1	1853								П					X					П	Г





LB62194

Run Number:











#### Metals - 14 -ANALYSIS RUN LOG

Client:	MS Analytical	Contract:	MSAN01
-			

 Lab Code:
 CHEM
 Case No.:
 D3811
 SAS No.:
 D3811
 SDG No.:
 D3811

Instrument ID Number:P4Method:PRun Number:LB62199

**Start Date:** 08/17/2012 **End Date:** 08/17/2012

EPA	D/E	т:	0/ D									A	na:	Lyt	es	<u> </u>											$\neg$
Sample	D/F	Time	% R	A	S	A	В	В	С	С	С	_	C	F		M	M	Н	N	K	S	A	N	Т	V	Z	C
No.				L	В	S	A	E	D	A	R	0	U	E	В	G	N	G	I		E	G	A	L	L	N	N
SO	1	1138	ĺ	X	X	X	X	X	X	X	X	X	X	X	X	X	X		X	X	Х	X	X	X	X	X	
S1	1	1141		X	Χ	Х	X	X	Х		Х	X	X	Χ	X	П	X		X		Х	Х	Γ	Х	Х	Х	П
S2	1	1146				П			П	X		П				X				X		Γ	Х		Г	Г	П
S3	1	1150		X	Х	X	X	X	X	X	Х	Х	X	Χ	X	Х	X		X	Х	Х	Х	Х	Х	Х	Х	П
S4	1	1153		X	Χ	Х	X	X	Х	X	Χ	Χ	X	X	X	Х	X		Χ	Χ	Х	Х	Х	Х	Х	Х	П
S5	1	1157		X	Х	X	X	X	Х	X	Х	X	X	Χ	X	X	X		X	Х	Х	Х	Х	Х	Х	Х	П
ICV01	1	1200		Х	Х	Х	X	X	Х	X	X	Х	X	Χ	X	X	X		Χ	Х	Х	Х	Х	Х	X	Х	П
LLICV01	1	1204		X	Х	X	X	X	Х	X	Х	Х	X	X	X	X	X		X	X	Х	Х	Х	Х	Х	X	П
ICB01	1	1208		Х	Χ	Х	X	X	Х	X	Χ	Х		X	X	Х	X		X	Χ	Х	Х	Х	Х	X	Х	П
CRI01	1	1211		Х	Х	Х	X	X	Х		X	Х	X	Χ	X	П	X		Χ		Х	Х	T	Х	X	Х	П
CRI02	1	1215				П				X		П				X				X		Ī	Х		Г	Т	П
ICSA01	1	1219		Х	Χ	Х	X	X	Х	X	Χ	Х	X	X	X	Х	X		X	Χ	Х	Х	Х	Х	X	Х	П
ICSAB01	1	1222		Х	Х	X	X	X	Х	X	Х	Х	X	X	X	X	X		X	X	Х	Х	Х	Х	Х	X	П
LLCCV01	1	1226				П				X						Х				Х		T	Х		Г	T	П
LLCCV01	1	1230		X	Χ	X	X	X	Х		Х	Х	X	X	X		X		X		Х	Х	T	Х	Х	Х	П
CCV01	1	1234		X	X	X	X	X	X	X	Х	Х	X	Χ	X	X	X		X	X	Х	Х	Х	Х	Х	X	П
CCB01	1	1237		X	Х	Х	X	X	Х	X	Х	Х	X	X	X	Х	X		X	Х	Х	Х	Х	Х	Х	Х	П
SB-21(12-16)DL	10	1304				П									X							T			Г	T	П
CCV02	1	1319		X	X	X	X	X	X	X	Х	Х	X	Χ	X	X	X		X	X	Х	Х	Х	Х	Х	X	П
CCB02	1	1323		X	Х	Х	X	X	Х	X	Х	Х	X	X	X	Х	X		X	Х	Х	Х	Х	Х	Х	Х	П
CCV03	1	1405		X	Х	X	X	X	Х	X	Х	X	X	X	X	X	X		X	Х	Х	Х	Х	Х	Х	Х	П
CCB03	1	1409		X	X	X	X	X	X	X	Х	Х	X	Χ	X	X	X		X	X	Х	Х	Х	Х	Х	X	П
CCV04	1	1451		X	Х	Х	X	X	Х	X	Х	Х	X	Χ	X	Х	X		X	Х	Х	Х	Х	Х	Х	Х	П
CCB04	1	1455		X	Х	Х	X	X	Х	X	Х	Х	X	X	X	Х	X	Г	X	Х	Х	Х	Х	Х	Х	Х	П
CCV05	1	1537		X	Х	Х	X	X	Х	X	Х	Х	X	Χ	X	Х	X	Г	X	Х	Х	Х	Х	Х	Х	Х	П
CCB05	1	1540		X	Х	Х	X	X	Х	X	Х	Х	X	X	X	Х	X		X	Х	Х	Х	Х	Х	Х	Х	П
CCV06	1	1623		X	Х	Х	X	X	Х	X	Х	Х	X	Χ	X	Х	X		X	Х	Х	Х	Х	Х	Х	Х	П
CCB06	1	1627		X	Х	Х	X	X	Х	X	Х	Х	X	X	X	Х	X	Г	X	Х	Х	Х	Х	Х	Х	Х	П
CCV07	1	1702		X	Х	Х	X	X	Х	X	Х	Х	X	Χ	X	X	X		X	Х	Х	Х	Х	Х	Х	Х	П
CCB07	1	1705		X	Х	Х	X	X	Х	X	Х	Х	X	X	X	Х	X		X	Х	Х	Х	Х	Х	Х	Х	П
CCV08	1	1813		Х	X	X	X	X	Х	X	Х	Х	X	X	X	Х	X	T	X	Х	Х	Х	Х	Х	Х	X	П
CCB08	1	1817			Х		X	X		X															Х		Н
CCV09	1	1900			X		X	X		X															Х		Н
CCB09	1	1904			Х	-	X	X	Х	X						-										Х	Н
CCV10	1	1947			X		X	X	Х																	Х	
CCB10	1	1950			Х	_	X	X	Х	X	_							Г				_			Х	_	Н





# SHIPPING DOCUMENTS



#### 284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 Fax (908) 789-8922 www.chemtech.net

CHEWITECH	AUJEUT N	o. 1 Y <
QUOTE NO.		
COC Number	02/12	20

U 2 4 2 0 U

	CLIENT INFO	ORMATION		e de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la c La compansión de la compansión de la compansión de la compansión de la compansión de la compansión de la compa			CLIENT P	ROJECT IN	IFORM/	TION				4		CLIENT	BILLI	NG INFO	RMATION		
COMPANY:	NS Analyt			PROJEC	CT NA	ME:	12 MS	104 1	Lens	inchon	Here	hts	BILL TO	<b>D</b> :	A				PO#:		
	1169 Allondel	le PKny.	Sait 200					4 LOCA		. <i>.)</i> 		2	ADDRE	SS:		, ,		,			
CITY: B/a	sdell	STATE: NY	ZIP: 14219	PROJEC	CT MA	NAG	ER: B	yan,	May	back	<u></u>	N.	CITY:					STATI	E: 2	ZIP:	
ATTENTION:	Bryan Ma	ubade		ı	1			rjsei					ATTEN	TION:			2	PHON	IE:		
	)-649-9718	FAX:					49-97	-	AX:					رسس			ANA	LYSIS			
	DATA TURNAROUN	A ANNOUNCE AND ADDRESS OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE P	N					RABLE IN	THE RESERVE OF THE PARTY OF THE PARTY.	ATION			W		0/	/_,	/ (J)	1	//	//	
FAX:	70		DAYS *	□ LEVE			-		Others_			O	the state of	7	Dest.		10°	9		/ /	
HARD COPY:	10		DAYS * DAYS *	□ LEVE				sults raw	data) +	OC .	AND THE RESERVE OF	3X C		phon		· · ·	ilus				
PREAPPROV	ED TAT: Q YES	⊒ NO		O LEVE	L 4: R	esults		I raw data		A STATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PAR			Z. K.	200	300	July)	//	//			
* STANDARD T	FURNAROUND TIME	IS 10 BUSINESS	S DAYS	□ EDD I	SAM		CAR	APLE	S				PRES	ERVA	TIVES	<i>Y</i>		9	C	OMMENT	rs ,
CHEMTECH SAMPLE		PROJECT		SAMPLE	TY	PE		ECTION	BOTTLES										← Spec		
ID	SAMPI	LE IDENTIFICAT	ION	MATRIX	COMP	GRAB	DATE	TIME	# OF B	1	2	3	4	5	6	7	8	9	C−H₂S E−ICE	I B− SO ₄ D− F−	NaOH Other
1.	5B-2 (4	1-8)		SO			8/7/12	0900	3	X	X	X	X	X	X						
2.	5B-5 18	-12)		So			8/7/12	1015	3	X	X	X	X	X	X						
3.	SB-9(4	1-7)		SO			8/7/12	1330	2	X	X	X	X	Χ	X						
4.	53-10 18	-12)		50			8/7/12	1415	2		X	X		,							
5.	SB-1/ (12	16)		So			8/7/14	15/5	2	X	X	Ý.	X	X	X						
6.	50-15 (	12-16)		50			8/8/12	1110	3	X	X	4	X	X	X						
7.	SB-18 (	4-8)		SU			8/8/12	1330	3	X	X	X	X	X	X						
8.	513-19 H	2 /8/12	18) Kjm	50			8/8/12	1400	3		X	4									
9.	SB-21 (1.	2-16)		50			8/11/2	0880	2		4	4									
10.	SB-21 (1	6-19)	**************************************	50			8/9/14	0830	3	X	<u>X</u>	7-1	$\times$	X	X						
BELLMAN IISHED BY		MPLE CUSTODY	RECEIVED BY:	UMENTE	D BEI	LOW			-	-		<del></del>			-		-				
RELINQUISHED BY:  1  RELINQUISHED BY:	0/	1	1. FED (	Ex-	$\Rightarrow$	/	MeO	ions of bott H extraction ments:					Compli jar for p			ion Con	npliant		oler Temp. in Cooler?	6°	ES
2.			2.												en Paris de l'Angelogia de la Francisco		· · · · · · · · · · · · · · · · · · ·		·		
RELINQUISHED BY:		15/12 920	RECEIVED FOR LAB	BY:			Page		of	3	SH	IPPED V						OVERNI		hipment C	- 1



#### 284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 Fax (908) 789-8922 www.chemtech.net

		_	-	
UOTE NO.				_
HEMTECH PROJEC	TNO	Э.		_

COC Number 024281

CLIENT INFORMATION				CLIENT PROJECT INFORMATION						CLIENT BILLING INFORMATION										
COMPANY: MS Andly treal			PROJECT NAME: 12MS 104 Kensington Hery lits						lits	BILL TO	0:			· No.		PO#:				
ADDRESS: 4	169 Allend	ele Pkwy S	uit 200	PROJECT NO.: 12MS 10 YLOCATION:								ADDRE	ESS:							
CITY: Blase		STATE: NY	ZIP: 14219	PROJEC	CT MA	NAC	BER: B	yan	May	bac	k		CITY:		The State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the State of the S	diameter volume		STAT	E: ZI	P:
ATTENTION:	Bryan A	lay back		e-mail:	bm	aus	back	@ris	envi	n. co.	Ŋ		ATTEN	ITION:				PHO	NE:	
/ ;	-649-971	X		PHONE:	/ 1	/	649-9	9	AX:								ANA	LYSIS		
		OUND INFORMATIO	ON .	PHONE		<del>/</del>	A DELIVER	and an arrangement		ATION			ولد	0/21				/1	V /	
FAX: DAYS * HARD COPY: DAYS * EDD: DAYS * PREAPPROVED TAT: □ YES □ NO * STANDARD TURNAROUND TIME IS 10 BUSINESS DAYS				L 2: R L 3: R L 4: R	esult esult esult		sults raw o		QC 1	will 2	3 1 July 3	1000 2000	Nutro	808 808	July 7	804 8	9			
011545501				<u>}</u>	SAM	IPLE		IPLE	ES.			i i	PRES	ERVA	TIVES				CO	MENTS
CHEMTECH SAMPLE ID	SA	PROJECT MPLE IDENTIFICAT	<b>FION</b>	SAMPLE MATRIX	COMP	GRAB TO	DATE	TIME	# OF BOTTLES	1	2	3	4	5	6	7	8	9	A-HCI	Preservatives B-HNO₃ D-NaOH F-Other
[1.	512-22	- (12-16) (1.	L-19)*jm	50			8/9/12	0935	3	$\sim$	X	X	X	· 😾	X					
<b>1</b> 2.	53-27	(8-12)		50		2	8/9/12	1340	2		X	X								
13.	53-37	(8-10)		50			8/10/11	12/5	3	X	X	X.	X	X	X					
<b>4</b> .	53-39	(6-8)		50			8/10/14	1330	3	X	K	X	X	<b>Y</b>	X				ı	
5.	SB-41	(8-11)		SO			8/10/12	10.11	2	X	X	X	+	X	4					# 1
6.	5/3-42	(14-16)		SD			8/10/12	1450	3		X	X								
7.	53-43	(6-8)		50			8/13/12	0850	3	X	X	<b>'</b> ×	X	X,	ナ					18
<b>/</b> 8.	SB-43	(10-12)		50			8/13/12	0850	3	X	X	4	X	X	X				w 1	
19.	50-43	(16-20)		50			8/13/12	0820	2	X	X	4	X	X	"Х					
<b>2</b> 0.	53-45	(10-12)		50			8/13/14	1155	3	Č.	<u>/</u> ()	1				anne mellinik cip on versye billini				
DELINOUSCUED BY		DATE/TIME:	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	UMENTE	D BEI	LOW	T.			***************************************		$-\gamma$		***************************************		***************************************	***********	-		707
RELINQUISHED BY SAMPLER:  DATE/TIME:  RECEIVED BY:  1. P. D. C.  RELINQUISHED BY:  RECEIVED BY:  RECEIVED BY:			EX	Conditions of bottles or coolers at receipt: Compliant Non Compliant Cooler Temp.  MeOH extraction requires an additional 4 oz jar for percent solid.  Comments: Ice in Cooler?:							YES									
2												***************************************	A SAN ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSESSMENT ASSES			·		<u> </u>		
RELINQUISHED BY: DATE/TIME: RECEIVED FOR LAB  3. EDEX 8/15/12 9203.				BY:			Page	2	of	3	SI	(IPPED \	/IA: CLI CHI	ENT: ( EMTECI	HAND	DELIV	ERED UP	DOVEI OVERN	maiorii 4	pment Complete:



#### 284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 Fax (908) 789-8922 www.chemtech.net

CHEMTECH F	RO	).			<b>L1</b>	1		
QUOTE NO.					L	)3	0 1	1
COC Number	0	24	2	8	2			

	CLIENT INFORMATION	14			CLIENT PI	ROJECT IN	FORMA	TION						CLIENT	BILLI	NG INFO	RMATION	
COMPANY:	PROJECT NAME: 12MS/04 Kensington Heights							カ	BILL TO: PO#:									
ADDRESS: 7	PROJECT NO.: DAS 164 LOCATION:								ADDRESS:									
CITY: Blas.	1/69 Allendele Pkuy Suite 200	99			BER: B			back	6		CITY:					STAT	E: ZIP:	
ATTENTION:	Byan Mayback		2		back	/					ATTEN	ITION:				PHON	IE:	
	-649-9718 FAX:	督	1	. /	49-9		AX:					, ,		,		LYSIS		
Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Contro	DATA TURNAROUND INFORMATION	THORE			DELIVE			ATION			5876	270	//	/	25)		///	
FAX:	DAYS *	O LEVE					Others_		-	10	50.5	You	5/00	3//15	800	3/5/		
HARD COPY: _ EDD:	DAYS*	□ LEVE			:s + QC :s (plus re:	sults raw o	data) +	QC	AND THE REAL PROPERTY.	35/4		NU C	2 X	املاک	Wille			
<b>8</b>	ED TAT:   YES   NO URNAROUND TIME IS 10 BUSINESS DAYS	□ LEVE			s + QC (al	l raw data	a)	1		July 3	5/4	QU 5	9/6	Levy	8	9		
	CHINALICOND TIME IS TO BOSINESS DATS		CONTRACTOR OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE	APLE	SAN	<b>APLE</b>	ES		•		PRESERVATIVES				COMMENTS			
CHEMTECH SAMPLE	PROJECT SAMPLE IDENTIFICATION	SAMPLE MATRIX	-	PE	<b>—</b>	ECTION	# OF BOTTLES										Specify Preserv A - HCI B - H C - H₂SO₄ D - N	INO₃
ID			COMP	GRAB	DATE	TIME	CONTRACTOR OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE	1	2	3	4	5	6	7	8	9	E-ICE F-O	)ther
21.	513-46 (12-16)	50			8/13/12	1230	>	X	X	入	X	X	1					
<u> </u>			ļ				ļ											
										-			-					
			-							-								
₹ <b>.</b>										-								
₿·																		<u> </u>
<u>.</u>					· · · · · ·					-					ļ			
1			-										-			-		
N.	SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION INCLUDING COURIER DELIVERY																	
RECEIVED BY:  DATE/TIME: RECEIVED BY:  1. FFD EX  RECEIVED BY:  2. 2.						ions of bott H extraction ments:	des or c	oolers a	receipt	: <i>[</i>	Compl	liant	0 1	Non Con	****	Co	oler Temp. 4	B
RELINQUISHED BY:  3. FOR X DATE/TIME RECEIVED FOR LAB BY:  3. STORY 3.					Page	_3_	of_	3	sı	HIPPED						OVERN		- 18

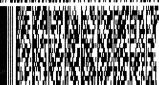
NEW Package Foots DODI 3310 3350		<b>,</b>	
ress US Airbill Tracking 8996 1219 1358	Form. 0215	Recipient's Copy	•
tion can be removed for Recipient's records.  FedEx B99612191358  Tracking Number	4 Express Package Service • To mos NOTE: Service order has changed. Please select ca	For anakanae over 150 lbe, use the now	
	Next Business Day	Zors Business Days	
Sept Mecca Phone 716 649-9718	FedEx First Overnight Earliest next business morning delivery to select locations. Friday shipments will be delivered on Monday unless SATURDAY Delivery is selected.	NEW Fed Ex 2Day A.M. Second business morning.* Saturday Delivery NOT available.	
S ENVIRONMENTAL	FedEx Priority Overnight Next business morning.* Friday shipments will be delivered on Monday unless SATURDAY Delivery is selected.	FedEx 2Day Second business afternoon.* Thursday shipments will be delivered on Monday unless SATURDAY Delivery is selected.	<b>A</b>
49 ALLENDALE PAWY STE 200  Dept/Roor/Suite/Room	FedEx Standard Overnight Next business afternoon.* Saturday Delivery NOT available.	FedEx Express Saver Third business day.* Saturday Delivery NOT available.	
DELL . State NV ZIP 14219-2941	5 Packaging *Declared value limit \$500.		fede
Billing Reference NS104	FedEx Envelope* FedEx Pak*	FedEx FedEx Tube Other	fedex.com
	6 Special Handling and Delivery Si	gnature Options	1 1.800
Phone Goy 754-860	SATURDAY Delivery NOT available for FedEx Standard Overnight, FedEx 2Day A	.M., or FedEx Express Saver.	GoFe
heartech	Package may be left without Someon	t Signature Le at recipient's address for delivery. Fee applies.  Indirect Signature If no one is available at recipient's address, someone at a neighboring address may sign for delivery. For	1800.GoFedEx 1800.463.3339
Month Street Page Fig. 19 Street Page Fig. 19 Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Stree	Does this shipment contain dangerous goo	residentiel dellveries only. Fée applles.	463.333
D. boxes or P.O. ZIP codes.  Dept/Floor/Sulte/Room HOLD Saturday	No Yes Yes Shipper's Declaration. Shipper's De not required	pry Ice	
FedEx location address REQUIRED. Available DMY for FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overright and FedEx Priority Overrigh	Dangerous goods (including dry ice) cannot be shipped in FedEx pac or placed in a FedEx Express Drop Box.	kaging Cargo Aircraft Only	
State V ZIP 07/242		No. or Credit Card No. below	The second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of th
	Sender Acct No. in Section Recipient Recipient	Third Party Credit Card Cash/Check	
0447217476			
	Total Packages Total Weight	Credit Card Auth.	10.00
$\varphi$	bs.		ANE
8996 1219 1358	[†] Our liability is limited to \$100 unless you declare a higher value. See th	e current Fedex Service Guide for details.	1
470	Rev. Date 11/10 • Part #163134 • ©1994–2010 FedEx • PRINTED IN U	J.S.A. SRS	anne de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya d

# Fec Ex.

ORIGIN ID: BUFA (716) 312-8296 RJS ENVIRONMENTAL

4169 ALLENDALE PKWY STE 200

BLASDELL, NY 142192941 UNITED STATES US


SHIP DATE: 14AUG12 ACTWGT: 47.0 LB CAD: /POS1321 DIMS: 25x14x14 IN BILL SENDER

TO SAMPLE **CHEMTECK** 284 SHEFFIELD ST

#### **MOUNTAINSIDE NJ 07092**

(908) 728-3149 INU: PO:

press



2582 08.15

WED - 15 AUG A1

PRIORITY OVERNIGHT

FZ

2,of 2 MPS# 7957 6495 2582

Mstr# 8996 1219 1358

0215

**EB CDWA** 

07092 NJ-US EWR



D3811

From: Joe Mecca-RJS < j mecca@rj senvi ro.com> Sent: Wednesday, August 15, 2012 2:47 PM

khumml er@chemtech. net To:

RE: Samples for 12MS104 Subject:

8/13/2012 is the correct date.

Joseph S Mecca Environmental Analyst RJS Environmental 4169 Allendale Parkway Blasdell, New York 14219 (716) 649-9718 Offi ce (716) 912-1172 (716) 312-8297 Cell Fax E-Mail j mecca@rj senvi ro. com

Specializing in Real Estate Due Diligence, including

AŠTM Phase I & II Investigătions

Remedial Investigations

Lender Policy Design and Implementation Asbestos Surveys and Abatement

Lead-based Paint, PCB's & Microbial Contamination Services

From: Kurt Hummler [mailto:kurt@chemtech.net] Sent: Wednesday, August 15, 2012 2:23 PM

To: Joe Mecca-RJS

Subject: RE: Samples for 12MS104

Joe,

Can you confirm the collection date for sample SB-42(14-16). The date on the chain of custody is 8/10/12 and the date on the sample jar is 8/13/12.

Thanks,

Kurt

From: Joe Mecca-RJS [mailto:jmecca@rjsenviro.com]

Sent: Wednesday, August 15, 2012 9:27 AM To: Kurt Hummler (khummler@chemtech.net)

Subject: Samples for 12MS104

Kurt,

We overnighted 21 soil samples yesterday. The samples should be delivered this morning to the NJ lab.

Also, last week on the phone you mentioned a form for the online data portal. Can you please forward the form to me?

Thank you,

Joseph S Mecca Environmental Analyst RJS Environmental 4169 Allendale Parkway Blasdell, New York 14219 Offi ce (716) 649-9718 Cell (716) 912-1172

Page 1

#### D3811

(716) 312-8297 j mecca@rj senvi ro. com Fax E-Mail

Specializing in Real Estate Due Diligence, including

* ASTM Phase I & II Investigations

* Remedial Investigations

* Lender Policy Design and Implementation

* Asbestos Surveys and Abatement

* Lead-based Paint, PCB's & Microbial Contamination Services



### **Laboratory Certification**

State	License No.
New Jersey	20012
New York	11376
Connecticut	PH-0649
Florida	E87935
Maryland	296
Massachusetts	M-NJ503
Oklahoma	9705
Pennsylvania	68-548
Rhode Island	LAO00259
Virginia	460220
5	
Texas	T10470448-10-1

#### Other:

DOD ELAP	L2219
Soil Permit	P330-11-00012
CLP Inorganic Contract	EPW09038
CLP Organic Contract	EPW11030

QA Control Code: A2070148



Invoice Contact Bryan Mayback

#### LOGIN REPORT/SAMPLE TRANSFER

Order ID: Client Name:

**Client Contact:** 

Invoice Name:

D3811

MS Analytical

MS Analytical

Bryan Mayback

MSAN01

Order Date:

8/15/2012

12MS104

<u>Nikul</u>

0/13/2012

12MS104 Kensington Heights

Project Name:
Rec DateTime
Purchase Order:

Login Tech:

8/15/2012 9:20:00 AM

ED

NYS ASP A

<u>snehal</u>

EDD:

**EXCEL NOCLEANUP** 

Hard Copy Date:

Project Mgr:

Report Type:

Date Signoff:

8/15/2012 2:22:35 PM

LAB ID CLIENT ID	MATRIX SAMPL DATE		TEST GROUP METHOD	COMMENT FAX Due DATE Dates
D3811-01 SB-2(4-8)	Solid 8/7/2012	2 9:00 3		
		VOC-Chemtech Full -15	8260C	10 Bus. 8/21/2012 8/21/20
D3811-02 SB-5(18-12)	Solid 8/7/2012	2 10:15 3		
		VOC-Chemtech Full -15	8260C	10 Bus. 8/21/2012 8/21/20
D3811-03 SB-9(4-7)	Solid 8/7/2012	2 13:30 2	1 de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la consta	
		VOC-Chemtech Full -15	8260C	10 Bus. 8/21/2012 8/21/20
D3811-05 SB-11(12-16)	Solid 8/7/2012			
	,	VOC-Chemtech Full -15	8260C	10 Bus. 8/21/2012 8/21/20
D3811-06 SB-15(12-16)	Solid 8/8/2012			
		VOC-Chemtech Full -15	8260C	10 Bus. 8/22/2012 8/22/20
D3811-07 SB-18(4-8)	Solid 8/8/2012			
	35	VOC-Chemtech Full -15	8260C	10 Bus. 8/22/2012 8/22/20
D3811-10 SB-21(16-19)	Solid 8/9/2012		2000	40 Dec 10/00/0040 00/00/00
	ál Grande a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a chair a ch	VOC-Chemtech Full -15	8260C	10 Bus. 8/23/2012 8/23/20
D3811-11 SB-22(12-19)	Solid 8/9/2012		93000	10 Bus. 8/23/2012 8/23/20
D0044 40 0D 07(0 40)	0 111 0440100	VOC-Chemtech Full -15	8260C	10 Bus. 6/23/2012 6/23/20
D3811-13 SB-37(8-10)	Solid 8/10/20	12 12:15 3 VOC-Chemtech Full -15	8260C	10 Bus. 8/24/2012 8/24/20
D2044 44 CD 20(C 0)	0-15-1 0/40/00		820UC	10 Bus. 8/24/2012 8/24/20
D3811-14 SB-39(6-8)	Solid 8/10/201	12 13:30 3 VOC-Chemtech Full -15	8260C	10 Bus. 8/24/2012 8/24/20
D3811-15 SB-41(8-11)	Solid 8/10/20	12 14:15 3	02000	10 843. 0/24/2012 0/24/20
D3011-10 3D-41(0-11)	Solia 6/10/20	VOC-Chemtech Full -15	8260C	10 Bus. 8/24/2012 8/24/20
		VOO-OHOHROCH I dil - 10	02000	10 000. 0/2-1/2012 0/24/20

Invoice Contact Bryan Mayback

#### LOGIN REPORT/SAMPLE TRANSFER

Order ID:

D3811

MSAN01

Order Date:

8/15/2012

Project Mgr:

snehal

ORDER COMMENT

**Client Name:** 

MS Analytical

**Project Name:** 

Login Tech:

12MS104 Kensington Heights

Report Type:

**NYS ASP A** 

**Client Contact:** 

Bryan Mayback

Rec DateTime

8/15/2012 9:20:00 AM

EDD:

**EXCEL NOCLEANUP** 

Invoice Name:

MS Analytical

Purchase Order:

12MS104

<u>Nikul</u>

Hard Copy Date: Date Signoff:

8/15/2012 2:22:35 PM

LAB ID CLIENT ID	MATRIX SAMPLE DATE	SAMPLE QTY TEST TEST TIME	GROUP METHOD COMMENT	FAX Due DATE Dates
D3811-17 SB-43(6-8)	Solid 8/13/2012	8:50 3		A Grantin Kir Wayn
		VOC-Chemtech Full -15	8260C	10 Bus. 8/27/2012 8/27/20
D3811-18 SB-43(10-12)	Solid 8/13/2012	8:50 3		
<u>.</u>		VOC-Chemtech Full -15	8260C	10 Bus. 8/27/2012 8/27/20
D3811-19 SB-43(16-20)	Solid 8/13/2012	8:50 2	4 N	
		VOC-Chemtech Full -15	8260C	10 Bus. 8/27/2012 8/27/20
D3811-21 SB-46(12-16)	Solid 8/13/2012	12:30 3		
		VOC-Chemtech Full -15	8260C	10 Bus. 8/27/2012 8/27/20

#### SAMPLE CONDITION RECORD

Are samples submitted with a chain of custody? Yes

Are the number of samples the same as stated on the chain of custody? Yes

Are bottle caps tight and securely in place? Yes

Were all containers intact when received? Yes

Were samples submitted in an ice chest? Yes

Were samples received cold? Yes

Were samples within the holding time for the requested test(s)? Yes

Is the volume of sample submitted sufficient for the requested test(s)? Yes

Are all samples for volatile organic analyses free of headspace? NA

Relinguished By:

Date / Time:

Received By:

Date / Time:

Storage Area:

**VOA Refridgerator Room** 

Page 2 of 2

870 of 870