
Limited Subsurface Investigation Report

Former Trico Plant 791 Washington Street Buffalo, New York

July 2013 0092-013-500

Prepared For: Krog Corporation &

847 Main Street, LLC

Prepared By:

FORMER TRICO PLANT BUFFALO, NEW YORK

July 2013 0092-013-500

Prepared for:

Krog Corporation

and

847 Main Street, LLC

Former Trico Plant

Table of Contents

1.0	INT	RODUCTION	1
	1.1	Background and Site Description]
		Previous Investigations	
2.0	ME	THODS OF INVESTIGATION	3
3.0	INV	ESTIGATION FINDINGS	. 5
	3.1	Investigation Field Observations	5
		Soil Analytical Results	5
		3.2.1 PAHs	
		3.2.2 PCBs	(
		3.2.3 Metals	(
4.0	Con	NCLUSIONS AND RECOMMENDATIONS	7
Lim	ITATI	ONS	.10

Former Trico Plant

Table of Contents

LIST OF TABLES

Table 1	Summary of Investigation Locations					
Table 2	Summary of Soil Analytical Results					
LIST OF FIGURES						
Figure 1	Site Location and Vicinity Map					
Figure 2	Site Plan					
Figure 3	First Floor and Basement Plans & Sample Locations					
APPENDICES						
Appendix A	Photographic Documentation					
Appendix B	Laboratory Analytical Data Summary Package					

1.0 Introduction

1.1 Background and Site Description

TurnKey Environmental Restoration, LLC (TurnKey) performed a Limited Subsurface Investigation at the Former Trico Plant on behalf of Krog Corporation and 847 Main Street, LLC. The Former Trico Plant is located on an approximate 2.11-acre parcel identified as SBL #111.31-1-1.11 and located at 791 Washington Street in the City of Buffalo (see Figure 1 and 2). The parcel is developed with a complex of five industrial buildings totaling 617,627 square feet. The oldest of the five buildings was constructed circa 1890 as a portion of the Christian Weyand Brewery which operated at the Site until the enactment of prohibition. The building was purchased in 1920 by the Trico Products Corporation for the manufacturing of windshield wipers for the automobile industry. The remaining buildings were constructed from 1920 to 1954. The Trico Products Corporation operated at the Site until circa 1990. Operations included electroplating, smelting, die-casting, rubber extrusion, and metal fabrication.

This Limited Subsurface Investigation was conducted based on the findings of several environmental reports summarized in the following section.

1.2 Previous Investigations

The following reports were reviewed by TurnKey:

- Microbac Laboratories, Inc. Phase I Environmental Site Assessment for Softbank Office Building – 817 Washington Street, Buffalo, New York. January 12 & April 7, 1999.
- Microbac Laboratories, Inc. Phase I Environmental Site Assessment, Century Center I, Former Trico Plant I, 817 Washington Street, Buffalo, NY. May 31, 2001.
- Watts Architecture and Engineering, P.C. Pre-Renovation Survey for Lead Based Paint, Trico Building, 817 Washington Street, Buffalo, New York. December 2001.
- URS Corporation. Limited Phase II Environmental Site Assessment of the Former Trico Plant I Facility, Buffalo, NY 14203. January 2002.
- Watts Engineers. Phase I Environmental Site Assessment for the Century Centre I six-Story Trico Production Facility, 791 Washington Street, Buffalo, New York. December 2006.

- Benchmark Environmental Engineering & Science, PLLC. Former Trico Manufacturing Building, Environmental File Review. April 5, 2007.
- Watts Architecture and Engineering, P.C. Targeted Phase II Environmental Site Investigation Sampling Report for the Century Centre I, Six-Story Trico Production Facility, 791 Washington Street, Buffalo, New York. May 2007.
- Liro Engineers, Inc. Draft Generic Environmental Impact Statement for the Innovation Center Expansion Project, 791 Washington Street, Section 111.31, Block 1, & Lot 1.11, Buffalo, New York. December 2011.
- Foit Albert Associates, et als. Trico Plant 1, Trico Complex Redevelopment Feasibility Study. October 23, 2012.

Based on our review of the referenced reports, the following significant findings of previous assessments, investigations, and remediation at the Site were noted:

- Numerous recognized environmental conditions (RECs) have been identified associated with the historical manufacturing of windshield wiper blades at the facility from 1920 to 2000. These include:
 - O The historical use of PCB-containing transformers and known releases of PCBs within the Site buildings
 - O The storage, use in manufacturing processes, and known release of metals within the Site buildings
 - o The storage and use of chlorinated solvents in the buildings until 1993
 - o The presence of several hydraulic lifts within the building
 - O The operation of a #6 fuel oil-fired furnace supplied by an off-site 30,000 gallon underground storage tank (UST)
- Building materials used in the construction of the buildings included lead based paint and asbestos containing materials.
- The infiltration of groundwater and storm water into the building has resulted in the accumulation of 144,000 gallons of PCB-impacted water in the sub-basement and unknown contaminant migration within the buildings.
- Off-site gasoline USTs were noted including a 1,000-gallon storage tank located north of the Site and a UST of unknown size identified on Sanborn Fire Insurance Maps immediately west of the Site within Washington Street.

The following Limited Subsurface Investigation was performed to assess soil quality beneath the accessible portions of the Site building foundations. As specified in the following section, the investigation targeted areas of historical manufacturing operations and chemical/petroleum storage and use.

2.0 METHODS OF INVESTIGATION

On July 1, 2013, TurnKey personnel conducted a subsurface soil investigation including eleven (11) soil borings advanced through the first floor and basement foundations of the Former Trico Plant buildings (see Figure 3). Areas of concern were identified based on locations of historical use and storage of petroleum and/or chemicals and visual observations made during a pre-investigatory site visit performed on June 28, 2013. A summary of the areas of concern, sample locations, and rationale is provided below.

Sample Location	Area of Concern
SB-1	Former Hydraulic Lift Area – First Floor
SB-2	Former Foundry Area– First Floor
SB-3	Former Tool & Dye Storage – Basement
SB-4	Adjacent Standing Oil/Former Oil Storage – Basement
SB-5 & SB-6	Former Fuel Oil Pumps/Former Oil Storage – Basement
SB-7	Former Truck Repair Area/Sump – Basement
SB-8 & SB-9	Former Maintenance Area – Basement
SB-10	Former Water Tank – Basement
SB-11	Former Machine Shop – Basement

The soil borings were completed in the locations shown on Figure 3 through the Former Trico Plant building and basement floors. The Former Trico Plant is constructed with variable layers of foundation including slab-on-grade portions of the first floor, a basement, and sub-basement. Samples could not be collected through the sub-basement floor due to the presence of standing water.

A concrete core drill was used to obtain sub-slab access for sample collection via hand auger. The soil borings were advanced just below the concrete slab or until a viable soil sample could be collected. The sample depth below the concrete slab ranged from 0 to 2 feet.

The physical characteristics of all soil samples were classified using the Unified Soil Classification System (USCS) (Visual-Manual Method). TurnKey personnel scanned an aliquot of each sample for total volatile organic vapors with a Mini Rae 2000

LIMITED SUBSURFACE INVESTIGATION REPORT FORMER TRICO PLANT

Photoionization Detector (PID) equipped with a 10.6 eV lamp and noted visual and/or olfactory observations. The PID is capable of detecting the presence of contaminants that emit volatile organic compounds (VOCs) such as petroleum products and solvents with ionization potentials less than 10.6 eV.

A separate, undisturbed aliquot of each soil sample was submitted to the laboratory for analysis. A summary of the analytical program is present in Section 3.0. A summary of the field investigation findings is presented in Table 1. Soil analytical results are presented on Table 2. The soil samples were submitted under standard chain-of-custody to Alpha Analytical, an Environmental Laboratory Approval Program (ELAP)-approved laboratory, for analysis in accordance with United States Environmental Protection Agency (USEPA) SW-846 Method 8270 for polycyclic aromatic hydrocarbons (PAHs), Method 8082 for polychlorinated biphenyls (PCBs), and Method 6010 for Resource and Conservation Act (RCRA) Metals.

3.0 INVESTIGATION FINDINGS

3.1 Investigation Field Observations

Table 1 provides a summary of field activities and observations. A photograph log is provided in Appendix A. The following observations were made during field sample collection:

- Obvious oil staining was noted in numerous areas of the basement and first floor of the building.
- Open buckets/containers of oil were noted in multiple areas of the basement.
- Six in-ground lifts were noted in the western area of the building; obvious oilstaining was noted surrounding the lifts. Apparent oil was observed within the void space exposed between two layers of the first floor concrete foundation in the soil boring identified as SB-1, proximate the in-ground lifts.
- Variable depths and layers of concrete foundation were observed during the concrete coring measuring approximately three to 12 inches in total width.
- The soil borings were advanced from 0 to 2 feet below the concrete to allow the collection of soil samples.
- Underlying material ranged from cinderblocks, gravel sub base, sand, and clay.

As detailed in Table 2, one soil sample was collected for laboratory analysis from each soil boring location.

3.2 Soil Analytical Results

Eleven (11) soil samples were collected and ten (10) were submitted for laboratory analysis (see Figure 2). The sample identified as SB-5 was not submitted for laboratory analysis due to the proximity and similarity in field observations with SB-6. A copy of the laboratory report is included in Appendix B.

3.2.1 PAHs

The analytical results identified detectable concentrations of PAHs in every sample collected from beneath both the first floor and basement foundations. Concentrations of

PAHs in exceedance of the Part 375 Unrestricted, Restricted-Residential, and/or Commercial SCOs were detected in soil borings identified as SB-10 and SB-11 as depicted on Figure 3. PAHs in exceedance of the Restricted-Residential or Commercial SCOs include benzo(a)anthracene, benzo(a)pyrene, benzo(b)flouranthene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene.

3.2.2 PCBs

Five soil sample locations contained detectable concentrations of PCBs, three with elevated concentrations in exceedance of the Unrestricted and/or Commercial SCOs. The exceedances were identified in soil borings SB-1, SB-7, and SB-8. Soil boring SB-1 was advanced on the first floor adjacent to the hydraulic lifts located in the former loading dock. Soil borings SB-7 and SB-8 were advanced in the basement in a former truck repair area and in a maintenance area, respectively.

3.2.3 *Metals*

Analytical results indicate that four of the 10 sample locations analyzed for metals contained concentrations in exceedance of the Part 375 Unrestricted SCOs while three samples contained concentrations in exceedance of the Restricted-Residential and/or commercial SCOs for at least one metal. Arsenic concentrations exceeded the Part 375 Unrestricted and/or Commercial SCOs in soil borings SB-1 and SB-2 and mercury exceeded Unrestricted and/or Restricted-Residential SCOs at SB-1 and SB-7. In addition, elevated concentrations of cadmium, chromium, and lead were detected in soil boring SB-8 also in exceedance of the Unrestricted and/or Restricted-Residential SCOs. The locations of all sample locations are depicted on Figure 3.

4.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the results of this Limited Subsurface Investigation and our review of previous environmental investigation and remediation reports completed by others at the Site, TurnKey offers the following conclusions and recommendations:

From Historic Reports:

- Known/Suspect Surface Contamination within Building Residual contamination, including lead, chromium, cyanide, nickel, and/or PCBs, has been identified in previous reports on surfaces of floors 1, 2/2.5, 3, 4, 6 and basement/sub-basement. Contamination has penetrated the concrete floor on the second floor and migrated to the first floor ceilings in at least one area.
- Potential Subsurface Contamination in the Vicinity of Former USTs One 30,000-gallon fuel oil UST and one 1,000-gallon gasoline UST were located north of Burton Street, adjacent to the subject property. One soil boring/monitoring well was completed proximate the 30,000-gallon fuel oil UST, but soil sampling only extended to 4 fbgs in the vicinity of the UST. Subsurface soil and groundwater sampling was not conducted at the location of the former 1,000-gallon gasoline UST. An additional UST was located in the street in front of the subject property at 799 Washington Street.
- Potential Subsurface Contamination in the Vicinity of Hydraulic Lifts –
 Hydraulic lifts were noted in the loading dock area. Hydraulic lifts often leak
 hydraulic oil that sometimes contains PCBs.
- **PCB** Contamination in Sub-Basement Oil stained debris collected during historic investigations from the sub-basement contained PCBs. It is not known whether the contamination was addressed. Watts noted that the sub-basement was filled with water in late 2006.
- Oil Stained Floor in Waste Oil Storage Area The floor within the Waste Oil Storage Area was heavily stained with waste oil as noted during the 2006 Phase I ESA. The Waste Oil Storage Area likely stored lead-contaminated cutting oils, PCB oils, former degreasing wastes, and other wastes of concern. The visual contamination on the floors indicates past releases. PCB-contamination was confirmed during OSEA's 1994 Phase II ESA.

- Dust Within Exhaust Ductwork The dust accumulated within the ductwork was sampled and shown to contain benzene, cadmium, chromium, lead, mercury, and PCBs.
- Former 1,1,1-Trichloroethane Degreasing Unit Chlorinated solvent 1,1,1-trichloroethane was used in the degreasing unit until 1993.
- **Lead-Based Paint** Peeling and flaking paint throughout the building is likely lead-based due to the age of building.
- **Asbestos-Containing Material** A 1994 survey identified an estimated 43,298 square feet of asbestos-containing material (ACM); 2,226 square feet of the total was reported as damaged. More ACMs may have been damaged since 1994.
- **Mold** The Site was noted to contain mold growth in several areas of the building.
- Hazardous Waste Generation and Storage At least 19 drums with unknown contents and suspect PCB oil filled light ballasts were noted within this area during the 2006 Phase I ESA. The Site is listed a Resource Conservation and Recovery Act (RCRA) generator of hazardous waste, indicating hazardous waste has historically been generated on-Site and transported off-Site.

2013 Limited Subsurface Investigation:

- Obvious oil staining was noted in numerous areas of the basement and first floor of the building.
- Open buckets/containers of oil were noted in multiple areas of the basement.
- Six in-ground lifts were noted in the western area of the building; obvious oil-staining was noted surrounding the lifts. Apparent oil was observed within the void space exposed between two layers of the first floor concrete foundation in the soil boring identified as SB-1, proximate the in-ground lifts. These lifts will require removal prior to site redevelopment.
- The subbasement was filled with water at the time of the investigation; historic reports identified approximately 144,000 gallons of PCB-impacted groundwater are present in the sub-basement of the complex.
- Elevated concentrations of PAHs, PCBs, and metals have been detected in sub-slab soil samples collected from beneath the building first floor and basement foundations. Based on these findings and field observations, compounds used in association with historical industrial manufacturing activities at the Site have likely permeated the

LIMITED SUBSURFACE INVESTIGATION REPORT FORMER TRICO PLANT

concrete building foundations and impacted Site soil. Given the extent of staining noted throughout the structure, additional impacts are likely present beneath building slabs.

We understand that Krog Corporation, or a related entity, is considering redeveloping the property to be utilized for commercial and residential uses. Based on the data and conclusions from historic reports and this subsurface investigation, which includes confirmed presence of contaminated soil beneath the building, the Former Trico Plant appears to be a good candidate for the New York State Brownfield Cleanup Program (BCP). Redevelopment of the Site will require additional investigation and remediation to protect human health and the environment from contaminants present at the Site. Additional investigation is recommended to evaluate the extent of additional soil and/or groundwater impacts for the development and evaluation of potential remedial alternatives.

LIMITATIONS

This report has been prepared for the exclusive use of Krog Corporation and 847 Main Street, LLC. The contents of this report are limited to information available at the time of the site investigation activities and to data referenced herein, and assume all referenced historic information sources to be true and accurate. The findings herein may be relied upon only at the discretion of Krog Corporation and 847 Main Street, LLC. Use of or reliance on this report or its findings by any other person or entity is prohibited without written permission of TurnKey Environmental Restoration, LLC.

TABLES

TABLE 1

Summary of Sample Locations July 1, 2013

Former Trico Plant City of Buffalo Erie County, New York

Location	Total Soil Boring Depth*	Soil Sample Interval (fbgs)**	Soil Description/Field Observations/Notes	Location Description
Boring Sa	mple Locatio	ns		
SB-1	2'	1-2'	3" concrete layer with visible oil-like substance between foundation layers 9" of concrete over cinder blocks Sample collected 1-2 ft	1st floor Former loading dock Near hydraulic lifts
SB-2	2'	1-2'	12" of concrete over cinder blocks Sample collected 1-2 ft	First floor Former loading dock Near hydraulic lifts
SB-3	1'	0.5-1.0'	6" of concrete Sand grading to clay	Basement Former tool and dye storage
SB-4	1'	0.5-1.0'	6" of concrete Petroleum like odor Gravel sub-base grading to clay	Basement Near oil storage
SB-5	1'	0.5-1.0'	6" of concrete Oil on floor near borings	Basement Near fuel oil pumps
SB-6	1'	0.5-1.0'	6" of concrete Oil on floor near borings	Basement Near fuel oil pumps
SB-7	1.5'	1.0-1.5'	8" of concrete Round gravel and cobbles grading to sand and clay	Basement Former truck repair area
SB-8	1.5'	1.0-1.5'	8" of concrete No odor Slag and sand	Basement Maintenance area
SB-9	1.5'	1.0-1.5'	8" of concrete No odor Slag and sand	Basement Maintenance area
SB-10	2'	1.0-2.0'	1' of concrete Pea stone grading to clay	Basement Near water tank
SB-11	2'	1.0-2.0'	1' of concrete Sand	Basement Former machine shop

Notes:

^{* -} Total boring depth below the concrete foundation.

 $^{^{\}star\star}$ - Interval depth of the layer of soil being sampled relative to depth below concrete slab

TABLE 2

SUMMARY OF SOIL ANALYTICAL RESULTS

FORMER TRICO BUILDING SITE

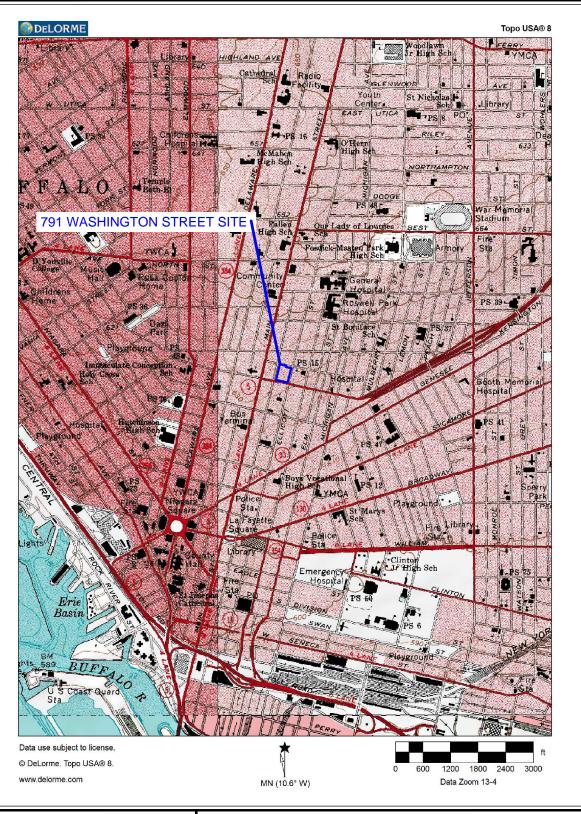
BUFFALO, NEW YORK

				Sample Locations									
Parameter ¹	Unrestricted Use SCOs ²	Restricted Residential Use SCOs ²	Commercial Use SCOs ²	SB-1 7/1/2013	SB-2 7/1/2013	SB-3 7/1/2013	SB-4 7/1/2013	SB-6 7/1/2013	SB-7	SB-8 7/1/2013	SB-9 7/1/2013	SB-10 7/1/2013	SB-11 7/1/2013
Semi-Volatile Organic Compounds (SVOCs) - mg/Kg ³													
2-Methylnaphthalene				0.0062 J	0.0084	0.029	0.0037 J	0.046	0.061	0.012 J	0.0055 J	0.19	0.037
Acenaphthene	20	100	500	0.0049 J	0.0023 J	ND	ND	0.043	0.025	0.015 J	ND	0.58	0.1
Acenaphthylene	100	100	500	ND	ND	0.0022 J	ND	ND	0.0055 J	0.23	ND	0.074 J	0.0061 J
Anthracene	100	100	500	0.0091	0.0054 J	0.0051 J	ND	0.084	0.048	0.24	0.004 J	1.5	0.27
Benzo(a)anthracene	1	1	5.6	0.036	0.017	0.024	ND	0.22	0.15	0.77	0.013	2.6	0.41
Benzo(a)pyrene	1	1	1	0.028	0.013	0.019	ND	0.17	0.12	0.59	0.011	1.8	0.29
Benzo(b)fluoranthene	1	1	5.6	0.062	0.048	0.03	ND	0.24	0.22	1	0.017	2.6	0.38
Benzo(g,h,i)perylene	100	100	500	0.013	0.0079 J	0.0078	ND	0.083	0.1	0.28	0.0051 J	0.9	0.13
Benzo(k)fluoranthene	0.8	3.9	56	0.02	0.013	0.011	ND	0.1	0.073	0.4	0.006 J	0.97	0.14
Chrysene	1	3.9	56	0.042	0.031	0.027	ND	0.2	0.16	0.69	0.015	2.1	0.31
Dibenzo(a,h)anthracene	0.33	0.33	0.56	ND	ND	0.0064 J	ND	ND	0.03	0.084	ND	0.28	0.46
Fluoranthene	100	100	500	0.081	0.065	0.037	ND	0.57	0.28	2.1	0.03	6	0.84
Fluorene	30	100	500	0.0042 J	0.0029 J	ND	ND	0.053	0.027	0.057	ND	0.51	0.1
Indeno(1,2,3-cd)pyrene	0.5	0.5	5.6	0.019	0.013	0.013	ND	ND	0.1	0.37	0.0095	1.1	0.16
Naphthalene	12	100	500	0.0047 J	0.003 J	0.013	0.0026 J	0.037	0.073	0.019 J	0.0036 J	0.25	0.046
Phenanthrene	100	100	500	0.048	0.03	0.035	ND	0.45	0.22	1	0.019	5.4	0.72
Pyrene	100	100	500	0.056	0.037	0.03	ND	ND	0.22	1.6	0.023	4.7	0.67
Total PCBs - mg/Kg 3			-	-									
Aroclor 1248	0.1	1	1	0.189	0.0852	ND	ND	ND	0.232	1.02	ND	0.023 J	ND
Aroclor 1254	0.1	1	1	0.15	0.0482	ND	ND	ND	ND	0.762	ND	ND	ND
Aroclor 1260	0.1	1	1	0.0531	0.0198 J	ND	ND	ND	ND	0.68	ND	ND	ND
Total Metals - mg/Kg													
Arsenic	13	16	16	16	22	2.5	3	2.5	9.4	2	1.2	2.4	1.9
Barium	350	400	400	200	69	26	35	70	73	530	28	57	42
Cadmium	2.5	4.3	9.3	0.82	0.55	0.29 J	0.36 J	0.38 J	0.37 J	2.6	0.32 J	0.4 J	0.31 J
Chromium	30	180	1500	24	10	5.9	8	13	9.5	110	7.8	21	8.5
Lead	63	400	1000	16	11	17	13	16	27	160	14	16	14
Selenium	3.9	180	1500	0.68 J	1.1	0.58 J	ND	ND	0.33 J	0.4 J	0.36 J	ND	0.28 J
Silver	2	180	1500	ND	ND	ND	ND	ND	ND	0.65	ND	ND	ND
Mercury	0.18	0.81	2.8	0.34	ND	ND	ND	ND	1.4	ND	ND	ND	ND

Notes:

- 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
- 2. Values per NYSDEC Part 375 Soil Cleanup Objectives (December 2006)
- 3. Sample results were reported by the laboratory in ug/kg and converted to mg/kg for comparison to SCOs.

Definitions:


- ND = Parameter not detected above laboratory detection limit.
- "--" = Sample not analyzed for parameter or no SCO available for the parameter.
- J = Estimated value; result is less than the sample quantitation limit but greater than zero.

BOLD	= Result exceeds Part 375 Unrestricted Use SCOs.
BOLD	= Result exceeds Part 375 Restricted Residential Use SCOs.
BOLD	= Result exceeds Part 375 Commercial Use SCOs.

FIGURES

FIGURE 1

2558 HAMBURG TURNPIKE SUITE 300 BUFFALO, NY 14218 (716) 856-0635

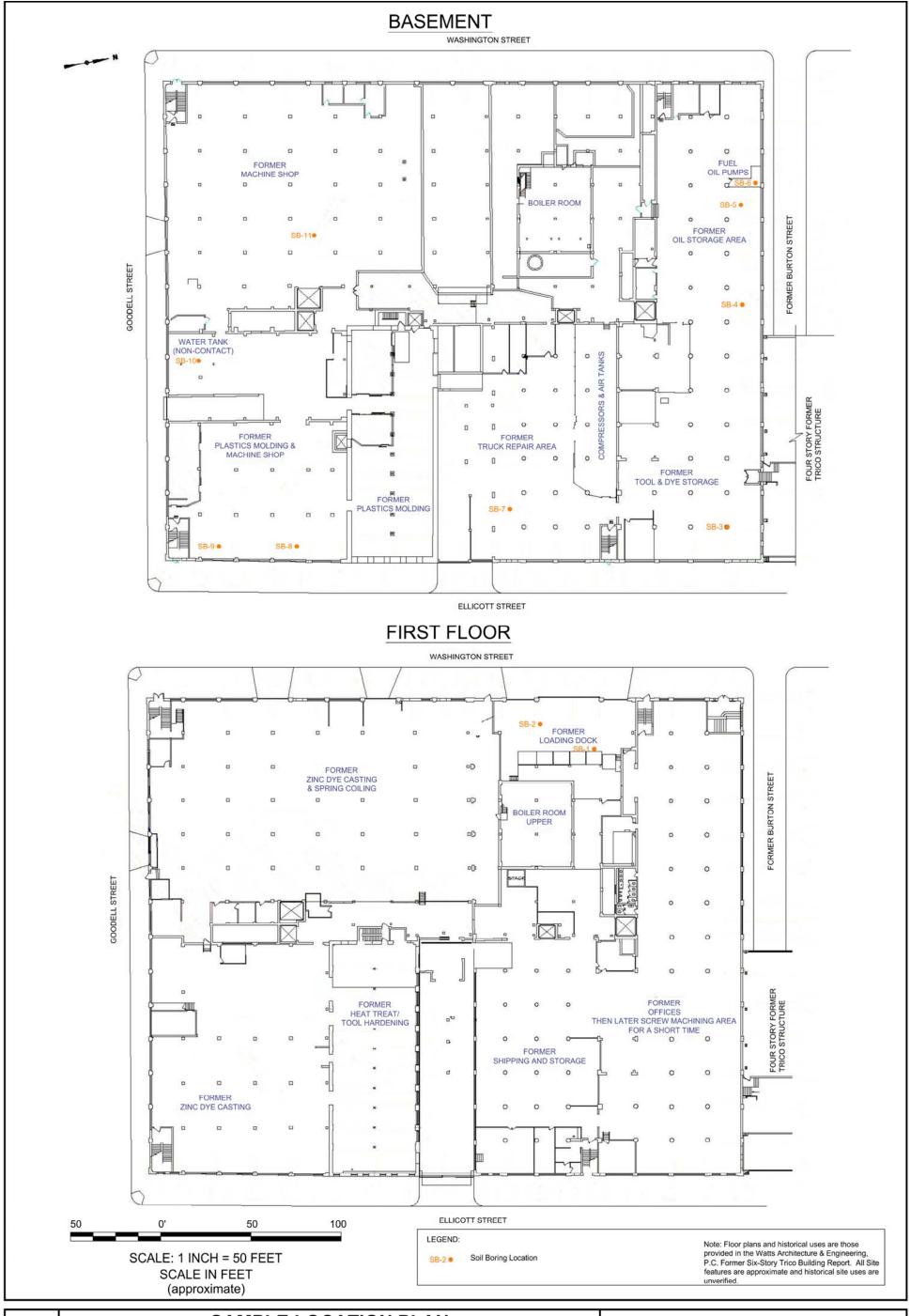
PROJECT NO.: 0092-013-500

DATE: JUNE 2013
DRAFTED BY: BLR

SITE LOCATION AND VICINITY MAP

LIMITED SUBSURFACE INVESTIGATION REPORT FORMER TRICO PLANT

BUFFALO, NEW YORK
PREPARED FOR
KROG CORPORATION



BUFFALO, NEW YORK
PREPARED FOR
KROG CORPORATION

JOB NO.: 0092-013-500

FIGURE 2

FIGURE

SAMPLE LOCATION PLAN

LIMITED SUBSURFACE INVESTIGATION REPORT

FORMER TRICO PLANT 791 WASHINGTON STREET BUFFALO, NEW YORK PREPARED FOR KROG CORPORATION

2558 HAMBURG TURNPIKE SUITE 300 BUFFALO, NY 14218 (716) 856-0635

JOB NO.: 0092-013-500

APPENDIX A

PHOTOLOG

SITE PHOTOGRAPHS

Photo 1:

Photo 2:

Photo 3:

Photo 4:

Photo 1: Typical view of the interior of the Former Trico Plant buildings

Photo 2: Typical view of standing oil (vicinity of SB-5 and SB-6).

Photo 3: View of the concrete core drill.

Photo 4: Typical view of cored sample location (SB-1).

Former Trico Plant Buffalo, New York

CTURKEY W

Photo Date: June 28 and July 1, 2013

SITE PHOTOGRAPHS (Continued)

Photo 5:

Photo 6:

Photo 7:

Photo 8:

Photo 5: Typical view of equipment remaining in the Former Trico Plant.

Photo 6: Typical view of chemical staining on the floor in the vicinity of the loading dock.

Photo 7: View of concrete block beneath the first floor foundation in the vicinity of SB-2.

Photo 8: View of sand beneath the concrete foundation (SB-11).

SITE PHOTOGRAPHS (Continued)

Photo 9:

Photo 9: View of oil-like substance between the concrete foundation layers at sample location SB-1.

Former Trico Plant Buffalo, New York

TURKKEY

Photo Date: June 28 and July 1, 2013

APPENDIX B

LABORATORY ANALYTICAL DATA SUMMARY PACKAGE

ANALYTICAL REPORT

Lab Number: L1312560

Client: Benchmark & Turnkey Companies

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Mike Lesakowski Phone: (716) 856-0599

Project Name: 391 WASHINGTON ST

Project Number: 0092-013-500

Report Date: 07/11/13

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), USDA (Permit #P-330-11-00240), NC (666), TX (T104704476), DOD (L2217), US Army Corps of Engineers.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 391 WASHINGTON ST Lab Number: L1312560

Project Number: 0092-013-500 **Report Date:** 07/11/13

Alpha Sample ID	Client ID	Sample Location	Collection Date/Time
L1312560-01	SB-1	TRICO BUILDING	07/01/13 15:20
L1312560-02	SB-2	TRICO BUILDING	07/01/13 15:40
L1312560-03	SB-3	TRICO BUILDING	07/01/13 12:00
L1312560-04	SB-4	TRICO BUILDING	07/01/13 12:20
L1312560-05	SB-5	TRICO BUILDING	07/01/13 12:35
L1312560-06	SB-6	TRICO BUILDING	07/01/13 12:40
L1312560-07	SB-7	TRICO BUILDING	07/01/13 12:50
L1312560-08	SB-8	TRICO BUILDING	07/01/13 12:55
L1312560-09	SB-9	TRICO BUILDING	07/01/13 13:05
L1312560-10	SB-10	TRICO BUILDING	07/01/13 13:15
L1312560-11	SB-11	TRICO BUILDING	07/01/13 13:25

L1312560

Lab Number:

Project Name: 391 WASHINGTON ST

Project Number: 0092-013-500 **Report Date:** 07/11/13

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet all of the requirements of NELAC, for all NELAC accredited parameters. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. Performance criteria for CAM and RCP methods allow for some LCS compound failures to occur and still be within method compliance. In these instances, the specific failures are not narrated but are noted in the associated QC table. This information is also incorporated in the Data Usability format for our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples free of charge for 30 days from the date the project is completed. After 30 days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: 391 WASHINGTON ST **Lab Number:** L1312560

Project Number: 0092-013-500 **Report Date:** 07/11/13

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 07/11/13

Cypthia fin Che. Cynthia McQueen

ALPHA

ORGANICS

SEMIVOLATILES

L1312560

07/11/13

07/03/13

EPA 3546

Not Specified

07/06/13 09:57

Lab Number:

Report Date:

Date Received:

Extraction Method:

8.0

0.95

1

ug/kg

Extraction Date:

Field Prep:

Project Name: 391 WASHINGTON ST

Project Number: 0092-013-500

SAMPLE RESULTS

Data Callantad: 07/04/42 45:20

Lab ID: Date Collected: 07/01/13 15:20

Client ID: SB-1

Sample Location: TRICO BUILDING

Matrix: Soil

Analytical Method: 1,8270D-SIM Analytical Date: 07/08/13 18:02

Analyst: AS Percent Solids: 82%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM	- Westborough Lab					
Acenaphthene	4.9	J	ug/kg	8.0	1.2	1
2-Chloronaphthalene	ND	<u> </u>	ug/kg	8.0	2.1	1
Fluoranthene	81		ug/kg	8.0	1.3	1
Naphthalene	4.7	J	ug/kg	8.0	1.1	1
Benzo(a)anthracene	36		ug/kg	8.0	1.2	1
Benzo(a)pyrene	28		ug/kg	8.0	1.8	1
Benzo(b)fluoranthene	62		ug/kg	8.0	1.9	1
Benzo(k)fluoranthene	20		ug/kg	8.0	1.9	1
Chrysene	42		ug/kg	8.0	1.9	1
Acenaphthylene	ND		ug/kg	8.0	0.89	1
Anthracene	9.1		ug/kg	8.0	0.78	1
Benzo(ghi)perylene	13		ug/kg	8.0	2.2	1
Fluorene	4.2	J	ug/kg	8.0	1.3	1
Phenanthrene	48		ug/kg	8.0	2.0	1
Dibenzo(a,h)anthracene	ND		ug/kg	8.0	2.2	1
Indeno(1,2,3-cd)Pyrene	19		ug/kg	8.0	2.2	1
Pyrene	56		ug/kg	8.0	1.0	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	84		23-120	
2-Fluorobiphenyl	102		30-120	
4-Terphenyl-d14	65		18-120	

6.2

2-Methylnaphthalene

L1312560

07/06/13 09:57

Project Name: 391 WASHINGTON ST

Project Number: 0092-013-500

SAMPLE RESULTS

Report Date: 07/11/13

Lab Number:

Extraction Date:

Lab ID: L1312560-02

Client ID: SB-2

Sample Location: TRICO BUILDING

Matrix: Soil

Analytical Method: 1,8270D-SIM Analytical Date: 07/08/13 18:32

Analyst: AS 79% Percent Solids:

Date Collected: 07/01/13 15:40 Date Received: 07/03/13 Field Prep: Not Specified EPA 3546 **Extraction Method:**

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - Westb	orough Lab					
Acenaphthene	2.3	J	ug/kg	8.2	1.3	1
2-Chloronaphthalene	ND	J		8.2	2.2	1
Fluoranthene	65		ug/kg	8.2	1.3	
			ug/kg			1
Naphthalene	3.0	J	ug/kg	8.2	1.1	1
Benzo(a)anthracene	17		ug/kg	8.2	1.3	1
Benzo(a)pyrene	13		ug/kg	8.2	1.9	1
Benzo(b)fluoranthene	48		ug/kg	8.2	2.0	1
Benzo(k)fluoranthene	13		ug/kg	8.2	2.0	1
Chrysene	31		ug/kg	8.2	2.0	1
Acenaphthylene	ND		ug/kg	8.2	0.91	1
Anthracene	5.4	J	ug/kg	8.2	0.80	1
Benzo(ghi)perylene	7.9	J	ug/kg	8.2	2.3	1
Fluorene	2.9	J	ug/kg	8.2	1.4	1
Phenanthrene	30		ug/kg	8.2	2.0	1
Dibenzo(a,h)anthracene	ND		ug/kg	8.2	2.3	1
Indeno(1,2,3-cd)Pyrene	13		ug/kg	8.2	2.3	1
Pyrene	37		ug/kg	8.2	1.1	1
2-Methylnaphthalene	8.4		ug/kg	8.2	0.98	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	61		23-120	
2-Fluorobiphenyl	91		30-120	
4-Terphenyl-d14	71		18-120	

L1312560

Project Name: 391 WASHINGTON ST

Project Number: 0092-013-500

SAMPLE RESULTS

Report Date: 07/11/13

Lab Number:

Lab ID: L1312560-03

Client ID: SB-3

Sample Location: TRICO BUILDING

Matrix: Soil

Analytical Method: 1,8270D-SIM Analytical Date: 07/08/13 19:03

Analyst: AS 86% Percent Solids:

Date Collected: 07/01/13 12:00 Date Received: 07/03/13 Field Prep: Not Specified EPA 3546 **Extraction Method:** 07/06/13 09:57 **Extraction Date:**

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - Westborough Lab						
Acenaphthene	ND		ug/kg	7.6	1.2	1
2-Chloronaphthalene	ND		ug/kg	7.6	2.0	1
Fluoranthene	37		ug/kg	7.6	1.2	1
Naphthalene	13		ug/kg	7.6	1.0	1
Benzo(a)anthracene	24		ug/kg	7.6	1.2	1
Benzo(a)pyrene	19		ug/kg	7.6	1.8	1
Benzo(b)fluoranthene	30		ug/kg	7.6	1.8	1
Benzo(k)fluoranthene	11		ug/kg	7.6	1.8	1
Chrysene	27		ug/kg	7.6	1.8	1
Acenaphthylene	2.2	J	ug/kg	7.6	0.84	1
Anthracene	5.1	J	ug/kg	7.6	0.74	1
Benzo(ghi)perylene	7.8		ug/kg	7.6	2.1	1
Fluorene	ND		ug/kg	7.6	1.3	1
Phenanthrene	35		ug/kg	7.6	1.9	1
Dibenzo(a,h)anthracene	6.4	J	ug/kg	7.6	2.1	1
Indeno(1,2,3-cd)Pyrene	13		ug/kg	7.6	2.1	1
Pyrene	30		ug/kg	7.6	1.0	1
2-Methylnaphthalene	29		ug/kg	7.6	0.90	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	95		23-120	
2-Fluorobiphenyl	86		30-120	
4-Terphenyl-d14	68		18-120	

L1312560

07/11/13

Project Name: 391 WASHINGTON ST

Project Number: 0092-013-500

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: L1312560-04 Date Collected: 07/01/13 12:20

Client ID: SB-4

Sample Location: TRICO BUILDING

Matrix: Soil

Analytical Method: 1,8270D-SIM Analytical Date: 07/08/13 18:18

Analyst: AS Percent Solids: 82% Date Received: 07/03/13
Field Prep: Not Specified
Extraction Method: EPA 3546
Extraction Date: 07/06/13 09:57

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - Westborough Lab						
Acenaphthene	ND		ug/kg	8.0	1.2	1
2-Chloronaphthalene	ND		ug/kg	8.0	2.1	1
Fluoranthene	ND		ug/kg	8.0	1.3	1
Naphthalene	2.6	J	ug/kg	8.0	1.1	1
Benzo(a)anthracene	ND		ug/kg	8.0	1.2	1
Benzo(a)pyrene	ND		ug/kg	8.0	1.8	1
Benzo(b)fluoranthene	ND		ug/kg	8.0	1.9	1
Benzo(k)fluoranthene	ND		ug/kg	8.0	1.9	1
Chrysene	ND		ug/kg	8.0	1.9	1
Acenaphthylene	ND		ug/kg	8.0	0.88	1
Anthracene	ND		ug/kg	8.0	0.78	1
Benzo(ghi)perylene	ND		ug/kg	8.0	2.2	1
Fluorene	ND		ug/kg	8.0	1.3	1
Phenanthrene	ND		ug/kg	8.0	2.0	1
Dibenzo(a,h)anthracene	ND		ug/kg	8.0	2.2	1
Indeno(1,2,3-cd)Pyrene	ND		ug/kg	8.0	2.2	1
Pyrene	ND		ug/kg	8.0	1.0	1
2-Methylnaphthalene	3.7	J	ug/kg	8.0	0.95	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	83		23-120	
2-Fluorobiphenyl	85		30-120	
4-Terphenyl-d14	81		18-120	

L1312560

07/11/13

Project Name: 391 WASHINGTON ST

Project Number: 0092-013-500

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: L1312560-06

Client ID: SB-6

TRICO BUILDING Sample Location:

Matrix: Soil

Analytical Method: 1,8270D-SIM Analytical Date: 07/08/13 18:48

Analyst: AS 84% Percent Solids:

Date Collected: 07/01/13 12:40 Date Received: 07/03/13 Field Prep: Not Specified EPA 3546 **Extraction Method:** 07/06/13 09:57 **Extraction Date:**

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS-SIM - Westborough Lab								
Acenaphthene	43	ug/kg	7.8	1.2	1			
2-Chloronaphthalene	ND	ug/kg	7.8	2.1	1			
Fluoranthene	570	ug/kg	7.8	1.2	1			
Naphthalene	37	ug/kg	7.8	1.1	1			
Benzo(a)anthracene	220	ug/kg	7.8	1.2	1			
Benzo(a)pyrene	170	ug/kg	7.8	1.8	1			
Benzo(b)fluoranthene	240	ug/kg	7.8	1.8	1			
Benzo(k)fluoranthene	100	ug/kg	7.8	1.9	1			
Chrysene	200	ug/kg	7.8	1.9	1			
Acenaphthylene	ND	ug/kg	7.8	0.87	1			
Anthracene	84	ug/kg	7.8	0.76	1			
Benzo(ghi)perylene	83	ug/kg	7.8	2.2	1			
Fluorene	53	ug/kg	7.8	1.3	1			
Phenanthrene	450	ug/kg	7.8	1.9	1			
Dibenzo(a,h)anthracene	27	ug/kg	7.8	2.2	1			
Indeno(1,2,3-cd)Pyrene	100	ug/kg	7.8	2.2	1			
Pyrene	450	ug/kg	7.8	1.0	1			
2-Methylnaphthalene	46	ug/kg	7.8	0.93	1			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	89		23-120	
2-Fluorobiphenyl	104		30-120	
4-Terphenyl-d14	122	Q	18-120	

L1312560

Project Name: 391 WASHINGTON ST

Project Number: 0092-013-500

SAMPLE RESULTS

Report Date: 07/11/13

Lab Number:

Lab ID: L1312560-07

Client ID: SB-7

Sample Location: TRICO BUILDING

Matrix: Soil

Analytical Method: 1,8270D-SIM Analytical Date: 07/09/13 09:48

Analyst: AS 83% Percent Solids:

Date Collected: 07/01/13 12:50 Date Received: 07/03/13 Field Prep: Not Specified EPA 3546 **Extraction Method:** 07/06/13 09:57 **Extraction Date:**

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS-SIM - Westborough Lab									
Acenaphthene	25		ug/kg	7.9	1.2	1			
2-Chloronaphthalene	ND		ug/kg	7.9	2.1	1			
Fluoranthene	280		ug/kg	7.9	1.2	1			
Naphthalene	73		ug/kg	7.9	1.1	1			
Benzo(a)anthracene	150		ug/kg	7.9	1.2	1			
Benzo(a)pyrene	120		ug/kg	7.9	1.8	1			
Benzo(b)fluoranthene	220		ug/kg	7.9	1.9	1			
Benzo(k)fluoranthene	73		ug/kg	7.9	1.9	1			
Chrysene	160		ug/kg	7.9	1.9	1			
Acenaphthylene	5.5	J	ug/kg	7.9	0.87	1			
Anthracene	48		ug/kg	7.9	0.77	1			
Benzo(ghi)perylene	100		ug/kg	7.9	2.2	1			
Fluorene	27		ug/kg	7.9	1.3	1			
Phenanthrene	220		ug/kg	7.9	1.9	1			
Dibenzo(a,h)anthracene	30		ug/kg	7.9	2.2	1			
Indeno(1,2,3-cd)Pyrene	100		ug/kg	7.9	2.2	1			
Pyrene	220		ug/kg	7.9	1.0	1			
2-Methylnaphthalene	61		ug/kg	7.9	0.94	1			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	77		23-120	
2-Fluorobiphenyl	107		30-120	
4-Terphenyl-d14	104		18-120	

L1312560

Project Name: 391 WASHINGTON ST

Project Number: 0092-013-500

SAMPLE RESULTS

0//1//0

Report Date: 07/11/13

Lab Number:

Lab ID: L1312560-08 D

Client ID: SB-8

Sample Location: TRICO BUILDING

Matrix: Soil

Analytical Method: 1,8270D-SIM Analytical Date: 07/09/13 10:18

Analyst: AS
Percent Solids: 88%

Date Collected: 07/01/13 12:55
Date Received: 07/03/13
Field Prep: Not Specified

Extraction Method: EPA 3546
Extraction Date: 07/06/13 09:57

Parameter Result Qualifier Units RLMDL **Dilution Factor** Semivolatile Organics by GC/MS-SIM - Westborough Lab Acenaphthene 15 J ug/kg 37 5.7 5 ND 5 2-Chloronaphthalene 37 9.8 ug/kg 2100 37 5.9 5 Fluoranthene ug/kg Naphthalene 19 J ug/kg 37 5.1 5 5 Benzo(a)anthracene 770 37 5.8 ug/kg 590 37 8.6 5 Benzo(a)pyrene ug/kg Benzo(b)fluoranthene 1000 ug/kg 37 8.8 5 Benzo(k)fluoranthene 400 37 9.0 5 ug/kg Chrysene 690 ug/kg 37 8.9 5 Acenaphthylene 230 ug/kg 37 4.1 5 Anthracene 240 37 3.6 5 ug/kg Benzo(ghi)perylene 280 ug/kg 37 10. 5 Fluorene 57 ug/kg 37 6.2 5 Phenanthrene 1000 ug/kg 37 9.2 5 Dibenzo(a,h)anthracene 84 ug/kg 37 10. 5 370 5 Indeno(1,2,3-cd)Pyrene ug/kg 37 10. 1600 37 4.9 5 Pyrene ug/kg 2-Methylnaphthalene 12 J ug/kg 37 4.4 5

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Nitrobenzene-d5	87		23-120
2-Fluorobiphenyl	79		30-120
4-Terphenyl-d14	108		18-120

L1312560

Project Name: 391 WASHINGTON ST

Project Number: 0092-013-500

SAMPLE RESULTS

Report Date: 07/11/13

Lab Number:

Lab ID: L1312560-09

Client ID: SB-9

Sample Location: TRICO BUILDING

Matrix: Soil

Analytical Method: 1,8270D-SIM Analytical Date: 07/08/13 19:34

Analyst: AS 88% Percent Solids:

Date Collected: 07/01/13 13:05 Date Received: 07/03/13 Field Prep: Not Specified EPA 3546 **Extraction Method:**

07/06/13 09:57 **Extraction Date:**

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS-SIM - Westborough Lab									
Acenaphthene	ND		ug/kg	7.5	1.2	1			
2-Chloronaphthalene	ND		ug/kg	7.5	2.0	1			
Fluoranthene	30		ug/kg	7.5	1.2	1			
Naphthalene	3.6	J	ug/kg	7.5	1.0	1			
Benzo(a)anthracene	13		ug/kg	7.5	1.2	1			
Benzo(a)pyrene	11		ug/kg	7.5	1.7	1			
Benzo(b)fluoranthene	17		ug/kg	7.5	1.8	1			
Benzo(k)fluoranthene	6.0	J	ug/kg	7.5	1.8	1			
Chrysene	15		ug/kg	7.5	1.8	1			
Acenaphthylene	ND		ug/kg	7.5	0.83	1			
Anthracene	4.0	J	ug/kg	7.5	0.73	1			
Benzo(ghi)perylene	5.1	J	ug/kg	7.5	2.1	1			
Fluorene	ND		ug/kg	7.5	1.3	1			
Phenanthrene	19		ug/kg	7.5	1.8	1			
Dibenzo(a,h)anthracene	ND		ug/kg	7.5	2.1	1			
Indeno(1,2,3-cd)Pyrene	9.5		ug/kg	7.5	2.1	1			
Pyrene	23		ug/kg	7.5	0.99	1			
2-Methylnaphthalene	5.5	J	ug/kg	7.5	0.89	1			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	90		23-120	
2-Fluorobiphenyl	92		30-120	
4-Terphenyl-d14	73		18-120	

L1312560

Project Name: 391 WASHINGTON ST

Project Number: 0092-013-500

SAMPLE RESULTS

Report Date: 07/11/13

Lab Number:

Lab ID: L1312560-10 D

Client ID: **SB-10**

Sample Location: TRICO BUILDING

Matrix: Soil

Analytical Method: 1,8270D-SIM Analytical Date: 07/09/13 12:46

Analyst: AS 83% Percent Solids:

Date Collected: 07/01/13 13:15 Date Received: 07/03/13 Field Prep: Not Specified EPA 3546 **Extraction Method:**

07/06/13 09:57 **Extraction Date:**

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIN	M - Westborough Lab					
Acenaphthene	580		ug/kg	79	12.	10
2-Chloronaphthalene	ND		ug/kg	79	21.	10
Fluoranthene	6000		ug/kg	79	12.	10
Naphthalene	250		ug/kg	79	11.	10
Benzo(a)anthracene	2600		ug/kg	79	12.	10
Benzo(a)pyrene	1800		ug/kg	79	18.	10
Benzo(b)fluoranthene	2600		ug/kg	79	19.	10
Benzo(k)fluoranthene	970		ug/kg	79	19.	10
Chrysene	2100		ug/kg	79	19.	10
Acenaphthylene	74	J	ug/kg	79	8.7	10
Anthracene	1500		ug/kg	79	7.7	10
Benzo(ghi)perylene	900		ug/kg	79	22.	10
Fluorene	510		ug/kg	79	13.	10
Phenanthrene	5400		ug/kg	79	19.	10
Dibenzo(a,h)anthracene	280		ug/kg	79	22.	10
Indeno(1,2,3-cd)Pyrene	1100		ug/kg	79	22.	10
Pyrene	4700		ug/kg	79	10.	10
2-Methylnaphthalene	190		ug/kg	79	9.4	10

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	40		23-120	
2-Fluorobiphenyl	84		30-120	
4-Terphenyl-d14	100		18-120	

L1312560

Project Name: Lab Number: 391 WASHINGTON ST

Project Number: Report Date: 0092-013-500 07/11/13

SAMPLE RESULTS

Lab ID: L1312560-11 D Date Collected: 07/01/13 13:25

Client ID: SB-11

Sample Location: TRICO BUILDING

Matrix: Soil

Analytical Method: 1,8270D-SIM Analytical Date: 07/09/13 13:16

Analyst: AS 85% Percent Solids:

Date Received: 07/03/13 Field Prep: Not Specified EPA 3546 **Extraction Method:** 07/06/13 09:57 **Extraction Date:**

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS-SIM - Westborough Lab									
Acenaphthene	100		ug/kg	15	2.4	2			
2-Chloronaphthalene	ND		ug/kg	15	4.0	2			
Fluoranthene	840		ug/kg	15	2.4	2			
Naphthalene	46		ug/kg	15	2.1	2			
Benzo(a)anthracene	410		ug/kg	15	2.4	2			
Benzo(a)pyrene	290		ug/kg	15	3.6	2			
Benzo(b)fluoranthene	380		ug/kg	15	3.6	2			
Benzo(k)fluoranthene	140		ug/kg	15	3.7	2			
Chrysene	310		ug/kg	15	3.7	2			
Acenaphthylene	6.1	J	ug/kg	15	1.7	2			
Anthracene	270		ug/kg	15	1.5	2			
Benzo(ghi)perylene	130		ug/kg	15	4.3	2			
Fluorene	100		ug/kg	15	2.6	2			
Phenanthrene	720		ug/kg	15	3.8	2			
Dibenzo(a,h)anthracene	46		ug/kg	15	4.3	2			
Indeno(1,2,3-cd)Pyrene	160		ug/kg	15	4.3	2			
Pyrene	670		ug/kg	15	2.0	2			
2-Methylnaphthalene	37		ug/kg	15	1.8	2			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	79		23-120	
2-Fluorobiphenyl	72		30-120	
4-Terphenyl-d14	89		18-120	

Project Name: 391 WASHINGTON ST

Project Number: 0092-013-500

Lab Number:

L1312560

Report Date: 07/11/13

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM Analytical Date: 07/08/13 12:50

Analyst: AS

Extraction Method: EPA 3546 Extraction Date: 07/06/13 09:57

Parameter	Result	Qualifier	Units	RL	MDL
Semivolatile Organics by GC/MS-S WG619855-1	IM - Westbor	ough Lab for	sample(s):	01-04,06-11	Batch:
Acenaphthene	ND		ug/kg	6.6	1.0
2-Chloronaphthalene	ND		ug/kg	6.6	1.8
Fluoranthene	ND		ug/kg	6.6	1.1
Naphthalene	ND		ug/kg	6.6	0.90
Benzo(a)anthracene	ND		ug/kg	6.6	1.0
Benzo(a)pyrene	ND		ug/kg	6.6	1.5
Benzo(b)fluoranthene	ND		ug/kg	6.6	1.6
Benzo(k)fluoranthene	ND		ug/kg	6.6	1.6
Chrysene	ND		ug/kg	6.6	1.6
Acenaphthylene	ND		ug/kg	6.6	0.74
Anthracene	ND		ug/kg	6.6	0.65
Benzo(ghi)perylene	ND		ug/kg	6.6	1.9
Fluorene	ND		ug/kg	6.6	1.1
Phenanthrene	ND		ug/kg	6.6	1.6
Dibenzo(a,h)anthracene	ND		ug/kg	6.6	1.8
Indeno(1,2,3-cd)Pyrene	ND		ug/kg	6.6	1.9
Pyrene	ND		ug/kg	6.6	0.88
2-Methylnaphthalene	ND		ug/kg	6.6	0.79

Surrogate	%Recovery	Qualifier	Criteria	
Nitrobenzene-d5	104		23-120	
2-Fluorobiphenyl	105		30-120	
4-Terphenyl-d14	89		18-120	

Lab Control Sample Analysis Batch Quality Control

Project Name: 391 WASHINGTON ST

Project Number: 0092-013-500

Lab Number: L1312560

Report Date: 07/11/13

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS-SIM - West	oorough Lab As	ssociated sam	nple(s): 01-04,	.06-11 Batch: WG619855-2	WG61985	5-3	
Acenaphthene	77		81	31-137	5		50
2-Chloronaphthalene	77		84	40-140	9		50
Fluoranthene	98		102	40-140	4		50
Naphthalene	73		80	40-140	9		50
Benzo(a)anthracene	98		104	40-140	6		50
Benzo(a)pyrene	85		89	40-140	5		50
Benzo(b)fluoranthene	95		102	40-140	7		50
Benzo(k)fluoranthene	95		97	40-140	2		50
Chrysene	80		84	40-140	5		50
Acenaphthylene	87		94	40-140	8		50
Anthracene	86		90	40-140	5		50
Benzo(ghi)perylene	72		78	40-140	8		50
Fluorene	90		95	40-140	5		50
Phenanthrene	90		95	40-140	5		50
Dibenzo(a,h)anthracene	76		82	40-140	8		50
Indeno(1,2,3-cd)Pyrene	76		81	40-140	6		50
Pyrene	93		98	35-142	5		50
2-Methylnaphthalene	75		83	40-140	10		50

Lab Control Sample Analysis Batch Quality Control

Project Name: 391 WASHINGTON ST

Lab Number:

L1312560

Project Number: 0092-013-500 Report Date:

07/11/13

	LCS		LCSD		%Recovery			
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	RPD Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01-04,06-11 Batch: WG619855-2 WG619855-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Nitrobenzene-d5	94	105	23-120
2-Fluorobiphenyl	94	101	30-120
4-Terphenyl-d14	85	88	18-120

PCBS

Project Name: 391 WASHINGTON ST Lab Number: L1312560

Project Number: 0092-013-500 **Report Date:** 07/11/13

SAMPLE RESULTS

Lab ID: Date Collected: 07/01/13 15:20

Client ID: SB-1 Date Received: 07/03/13

Sample Location: TRICO BUILDING Field Prep: Not Specified Matrix: Soil Extraction Method: EPA 3546

Applytical Method: 1 80834

Analytical Method: 1,8082A Extraction Date: 07/05/13 19:23
Analytical Date: 07/08/13 19:08 Cleanup Method1: EPA 3665A
Analyst: KB Cleanup Date1: 07/06/13

Percent Solids: 82% Cleanup Method2: EPA 3660B Cleanup Date2: 07/06/13

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Polychlorinated Biphenyls by G	C - Westborough Lab					
Aroclor 1016	ND		ug/kg	39.0	7.71	1
Aroclor 1221	ND		ug/kg	39.0	11.8	1
Aroclor 1232	ND		ug/kg	39.0	8.29	1
Aroclor 1242	ND		ug/kg	39.0	7.41	1
Aroclor 1248	189		ug/kg	39.0	4.72	1
Aroclor 1262	ND		ug/kg	39.0	2.89	1
Aroclor 1268	ND		ug/kg	39.0	5.66	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2,4,5,6-Tetrachloro-m-xylene	50		30-150
Decachlorobiphenyl	55		30-150
2,4,5,6-Tetrachloro-m-xylene	50		30-150
Decachlorobiphenyl	56		30-150

Project Name: 391 WASHINGTON ST Lab Number: L1312560

Project Number: 0092-013-500 **Report Date:** 07/11/13

SAMPLE RESULTS

Lab ID: Date Collected: 07/01/13 15:20

Client ID: SB-1 Date Received: 07/03/13

Sample Location: TRICO BUILDING Field Prep: Not Specified Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 1,8082A Extraction Method: EPA 3546

Analytical Date: 07/08/13 19:08 Cleanup Method1: EPA 3665A

Analyst: KB Cleanup Date1: 07/06/13
Percent Solids: 82% Cleanup Method2: EPA 3660B
Cleanup Date2: 07/06/13

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Polychlorinated Biphenyls by GC - Westborough	Lab					
Aroclor 1254	150		ug/kg	39.0	6.15	1
Aroclor 1260	53.1		ug/kg	39.0	6.78	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2,4,5,6-Tetrachloro-m-xylene	50		30-150
Decachlorobiphenyl	55		30-150
2,4,5,6-Tetrachloro-m-xylene	50		30-150
Decachlorobiphenyl	56		30-150

Project Name: 391 WASHINGTON ST Lab Number: L1312560

Project Number: 0092-013-500 **Report Date:** 07/11/13

SAMPLE RESULTS

Lab ID: Date Collected: 07/01/13 15:40

Client ID: SB-2 Date Received: 07/03/13

Sample Location: TRICO BUILDING Field Prep: Not Specified Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 1,8082A **Extraction Date:** 07/05/13 19:23 Analytical Date: 07/08/13 19:20 Cleanup Method1: EPA 3665A Analyst: KΒ Cleanup Date1: 07/06/13 79% Percent Solids: Cleanup Method2: **EPA 3660B**

Cleanup Date2: 07/06/13

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Polychlorinated Biphenyls by G	C - Westborough Lab					
Aroclor 1016	ND		ug/kg	40.5	8.00	1
Aroclor 1221	ND		ug/kg	40.5	12.2	1
Aroclor 1232	ND		ug/kg	40.5	8.61	1
Aroclor 1242	ND		ug/kg	40.5	7.69	1
Aroclor 1262	ND		ug/kg	40.5	3.00	1
Aroclor 1268	ND		ug/kg	40.5	5.88	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,4,5,6-Tetrachloro-m-xylene	69		30-150	
Decachlorobiphenyl	79		30-150	
2,4,5,6-Tetrachloro-m-xylene	67		30-150	
Decachlorobiphenyl	80		30-150	

Project Name: 391 WASHINGTON ST Lab Number: L1312560

Project Number: 0092-013-500 **Report Date:** 07/11/13

SAMPLE RESULTS

Lab ID: Date Collected: 07/01/13 15:40

Client ID: SB-2 Date Received: 07/03/13

Sample Location:TRICO BUILDINGField Prep:Not SpecifiedMatrix:SoilExtraction Method:EPA 3546Analytical Method:1,8082AExtraction Date:07/05/13 19:23

Analytical Method: 1,8082A Extraction Date: 07/05/13 19:23

Analytical Date: 07/08/13 19:20

Cleanup Method1: EPA 3665A

Cleanup Date1: 07/06/13

Percent Solids: 79%

Cleanup Method2: EPA 3660B

Cleanup Date2: 07/06/13

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Polychlorinated Biphenyls by GC - V	Vestborough Lab					
Aroclor 1248	85.2		ug/kg	40.5	4.90	1
Aroclor 1254	48.2		ug/kg	40.5	6.39	1
Aroclor 1260	19.8	J	ua/ka	40.5	7.03	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,4,5,6-Tetrachloro-m-xylene	69		30-150	
Decachlorobiphenyl	79		30-150	
2,4,5,6-Tetrachloro-m-xylene	67		30-150	
Decachlorobiphenyl	80		30-150	

Project Name: 391 WASHINGTON ST Lab Number: L1312560

Project Number: 0092-013-500 **Report Date:** 07/11/13

SAMPLE RESULTS

Lab ID: L1312560-03 Date Collected: 07/01/13 12:00

Client ID: SB-3 Date Received: 07/03/13

Sample Location:TRICO BUILDINGField Prep:Not SpecifiedMatrix:SoilExtraction Method:EPA 3546

Analytical Method: 1,8082A Extraction Date: 07/05/13 19:23
Analytical Date: 07/08/13 19:32 Cleanup Method1: EPA 3665A
Analyst: KB Cleanup Date1: 07/06/13

Percent Solids: 86% Cleanup Method2: EPA 3660B Cleanup Date2: 07/06/13

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Polychlorinated Biphenyls by G	GC - Westborough Lab					
Aroclor 1016	ND		ug/kg	37.0	7.32	1
Aroclor 1221	ND		ug/kg	37.0	11.2	1
Aroclor 1232	ND		ug/kg	37.0	7.87	1
Aroclor 1242	ND		ug/kg	37.0	7.03	1
Aroclor 1248	ND		ug/kg	37.0	4.48	1
Aroclor 1254	ND		ug/kg	37.0	5.84	1
Aroclor 1260	ND		ug/kg	37.0	6.43	1
Aroclor 1262	ND		ug/kg	37.0	2.74	1
Aroclor 1268	ND		ug/kg	37.0	5.37	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,4,5,6-Tetrachloro-m-xylene	74		30-150	
Decachlorobiphenyl	84		30-150	
2,4,5,6-Tetrachloro-m-xylene	75		30-150	
Decachlorobiphenyl	85		30-150	

Project Name: 391 WASHINGTON ST Lab Number: L1312560

Project Number: 0092-013-500 **Report Date:** 07/11/13

SAMPLE RESULTS

Lab ID: Date Collected: 07/01/13 12:20

Client ID: SB-4 Date Received: 07/03/13

Sample Location: TRICO BUILDING Field Prep: Not Specified Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 1,8082A Extraction Date: 07/05/13 19:23

Analytical Date: 07/08/13 19:44 Cleanup Method1: EPA 3665A

Analyst: KB Cleanup Date1: 07/06/13

Percent Solids: 82% Cleanup Method2: EPA 3660B Cleanup Date2: 07/06/13

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Polychlorinated Biphenyls by GC - Wes	tborough Lab					
Aroclor 1016	ND		ug/kg	39.2	7.75	1
Aroclor 1221	ND		ug/kg	39.2	11.8	1
Aroclor 1232	ND		ug/kg	39.2	8.33	1
Aroclor 1242	ND		ug/kg	39.2	7.44	1
Aroclor 1248	ND		ug/kg	39.2	4.75	1
Aroclor 1254	ND		ug/kg	39.2	6.18	1
Aroclor 1260	ND		ug/kg	39.2	6.81	1
Aroclor 1262	ND		ug/kg	39.2	2.90	1
Aroclor 1268	ND		ug/kg	39.2	5.69	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,4,5,6-Tetrachloro-m-xylene	72		30-150	
Decachlorobiphenyl	83		30-150	
2,4,5,6-Tetrachloro-m-xylene	69		30-150	
Decachlorobiphenyl	78		30-150	

Project Name: 391 WASHINGTON ST **Lab Number:** L1312560

Project Number: 0092-013-500 **Report Date:** 07/11/13

SAMPLE RESULTS

Lab ID: Date Collected: 07/01/13 12:40

Client ID: SB-6 Date Received: 07/03/13

Sample Location: TRICO BUILDING Field Prep: Not Specified Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 1,8082A Extraction Date: 07/05/13 19:23
Analytical Date: 07/08/13 19:57 Cleanup Method1: EPA 3665A
Analyst: KB Cleanup Date1: 07/06/13

Percent Solids: 84% Cleanup Method2: EPA 3660B Cleanup Date2: 07/06/13

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Polychlorinated Biphenyls by GC - Wes	stborough Lab					
Aroclor 1016	ND		ug/kg	38.8	7.67	1
Aroclor 1221	ND		ug/kg	38.8	11.7	1
Aroclor 1232	ND		ug/kg	38.8	8.25	1
Aroclor 1242	ND		ug/kg	38.8	7.37	1
Aroclor 1248	ND		ug/kg	38.8	4.70	1
Aroclor 1254	ND		ug/kg	38.8	6.12	1
Aroclor 1260	ND		ug/kg	38.8	6.74	1
Aroclor 1262	ND		ug/kg	38.8	2.87	1
Aroclor 1268	ND		ug/kg	38.8	5.63	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,4,5,6-Tetrachloro-m-xylene	37		30-150	
Decachlorobiphenyl	57		30-150	
2,4,5,6-Tetrachloro-m-xylene	40		30-150	
Decachlorobiphenyl	46		30-150	

Project Name: 391 WASHINGTON ST Lab Number: L1312560

Project Number: 0092-013-500 **Report Date:** 07/11/13

SAMPLE RESULTS

Lab ID: Date Collected: 07/01/13 12:50

Client ID: SB-7 Date Received: 07/03/13

Sample Location: TRICO BUILDING Field Prep: Not Specified Matrix: Soil Extraction Method: EPA 3546

Applytical Method: 1,80834

Analytical Method: 1,8082A Extraction Date: 07/05/13 19:23
Analytical Date: 07/08/13 20:09 Cleanup Method1: EPA 3665A
Analyst: KB Cleanup Date1: 07/06/13

Percent Solids: 83% Cleanup Method2: EPA 3660B Cleanup Date2: 07/06/13

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Polychlorinated Biphenyls by G	C - Westborough Lab					
Aroclor 1016	ND		ug/kg	38.9	7.68	1
Aroclor 1221	ND		ug/kg	38.9	11.7	1
Aroclor 1232	ND		ug/kg	38.9	8.26	1
Aroclor 1242	ND		ug/kg	38.9	7.38	1
Aroclor 1254	ND		ug/kg	38.9	6.13	1
Aroclor 1260	ND		ug/kg	38.9	6.75	1
Aroclor 1262	ND		ug/kg	38.9	2.88	1
Aroclor 1268	ND		ug/kg	38.9	5.64	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,4,5,6-Tetrachloro-m-xylene	69		30-150	
Decachlorobiphenyl	74		30-150	
2,4,5,6-Tetrachloro-m-xylene	69		30-150	
Decachlorobiphenyl	76		30-150	

Project Name: 391 WASHINGTON ST Lab Number: L1312560

Project Number: 0092-013-500 **Report Date:** 07/11/13

SAMPLE RESULTS

Lab ID: L1312560-07 Date Collected: 07/01/13 12:50

Client ID: SB-7 Date Received: 07/03/13
Sample Location: TRICO BUILDING Field Prop. Net Specific

Sample Location:TRICO BUILDINGField Prep:Not SpecifiedMatrix:SoilExtraction Method:EPA 3546Analytical Method:1,8082AExtraction Date:07/05/13 19:23

Analytical Date: 07/08/13 20:09 Cleanup Method1: EPA 3665A
Analyst: KB Cleanup Date1: 07/06/13
Percent Solids: 83% Cleanup Method2: EPA 3660B
Cleanup Date2: 07/06/13

ParameterResultQualifierUnitsRLMDLDilution FactorPolychlorinated Biphenyls by GC - Westborough LabAroclor 1248232ug/kg38.94.701

_			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
2,4,5,6-Tetrachloro-m-xylene	69		30-150	
Decachlorobiphenyl	74		30-150	
2,4,5,6-Tetrachloro-m-xylene	69		30-150	
Decachlorobiphenyl	76		30-150	

Project Name: 391 WASHINGTON ST Lab Number: L1312560

Project Number: 0092-013-500 **Report Date:** 07/11/13

SAMPLE RESULTS

Lab ID: L1312560-08 D

Client ID: SB-8

Sample Location: TRICO BUILDING

Matrix: Soil
Analytical Method: 1,8082A
Analytical Date: 07/11/13 09:31

Analyst: KB Percent Solids: 88% Date Collected: 07/01/13 12:55 Date Received: 07/03/13 Field Prep: Not Specified **Extraction Method:** EPA 3546 **Extraction Date:** 07/05/13 19:23 Cleanup Method1: EPA 3665A Cleanup Date1: 07/06/13 Cleanup Method2: EPA 3660B Cleanup Date2: 07/06/13

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Polychlorinated Biphenyls by GC - Westb	orough Lab					
Aroclor 1016	ND		ua/ka	72.5	14.3	2
			ug/kg			
Aroclor 1221	ND		ug/kg	72.5	21.9	2
Aroclor 1232	ND		ug/kg	72.5	15.4	2
Aroclor 1242	ND		ug/kg	72.5	13.8	2
Aroclor 1248	1020		ug/kg	72.5	8.77	2
Aroclor 1262	ND		ug/kg	72.5	5.36	2
Aroclor 1268	ND		ug/kg	72.5	10.5	2

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,4,5,6-Tetrachloro-m-xylene	75		30-150	
Decachlorobiphenyl	74		30-150	
2,4,5,6-Tetrachloro-m-xylene	63		30-150	
Decachlorobiphenyl	79		30-150	

Project Name: Lab Number: 391 WASHINGTON ST L1312560

Project Number: 0092-013-500 **Report Date:** 07/11/13

SAMPLE RESULTS

Lab ID: D L1312560-08

Client ID: SB-8

TRICO BUILDING Sample Location:

Matrix: Soil Analytical Method: 1,8082A Analytical Date: 07/11/13 09:31

Analyst: KΒ 88% Percent Solids:

Date Collected: 07/01/13 12:55 Date Received: 07/03/13 Field Prep: Not Specified EPA 3546 **Extraction Method: Extraction Date:** 07/05/13 19:23 Cleanup Method1: EPA 3665A Cleanup Date1: 07/06/13 Cleanup Method2: **EPA 3660B**

Dilution Factor

07/06/13

Cleanup Date2:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Polychlorinated Biphenyls by GC - Westbe	orough Lab					
Aroclor 1254	762		ug/kg	72.5	11.4	2
Aroclor 1260	680		ug/kg	72.5	12.6	2

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
			20.450	
2,4,5,6-Tetrachloro-m-xylene	75		30-150	
Decachlorobiphenyl	74		30-150	
2,4,5,6-Tetrachloro-m-xylene	63		30-150	
Decachlorobiphenyl	79		30-150	

Project Name: 391 WASHINGTON ST **Lab Number:** L1312560

Project Number: 0092-013-500 **Report Date:** 07/11/13

SAMPLE RESULTS

Lab ID: Date Collected: 07/01/13 13:05

Client ID: SB-9 Date Received: 07/03/13

Sample Location: TRICO BUILDING Field Prep: Not Specified **Extraction Method:** EPA 3546 Matrix: Soil Analytical Method: 1,8082A **Extraction Date:** 07/05/13 19:23 Analytical Date: 07/08/13 20:34 Cleanup Method1: EPA 3665A

Analyst: KB Cleanup Method1: EPA 3665A
Percent Solids: 88% Cleanup Method2: EPA 3660B
Cleanup Date2: 07/06/13

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Polychlorinated Biphenyls by GC - Westborough Lab							
Aroclor 1016	ND		ug/kg	36.3	7.17	1	
Aroclor 1221	ND		ug/kg	36.3	10.9	1	
Aroclor 1232	ND		ug/kg	36.3	7.71	1	
Aroclor 1242	ND		ug/kg	36.3	6.89	1	
Aroclor 1248	ND		ug/kg	36.3	4.39	1	
Aroclor 1254	ND		ug/kg	36.3	5.72	1	
Aroclor 1260	ND		ug/kg	36.3	6.30	1	
Aroclor 1262	ND		ug/kg	36.3	2.68	1	
Aroclor 1268	ND		ug/kg	36.3	5.26	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,4,5,6-Tetrachloro-m-xylene	72		30-150	
Decachlorobiphenyl	92		30-150	
2,4,5,6-Tetrachloro-m-xylene	77		30-150	
Decachlorobiphenyl	90		30-150	

Project Name: 391 WASHINGTON ST Lab Number: L1312560

Project Number: 0092-013-500 **Report Date:** 07/11/13

SAMPLE RESULTS

Lab ID: Date Collected: 07/01/13 13:15

Client ID: SB-10 Date Received: 07/03/13

Sample Location: TRICO BUILDING Field Prep: Not Specified Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 1,8082A Extraction Date: 07/05/13 19:23
Analytical Date: 07/08/13 20:46 Cleanup Method1: EPA 3665A
Analyst: KB Cleanup Date1: 07/06/13

Percent Solids: 83% Cleanup Method2: EPA 3660B Cleanup Date2: 07/06/13

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Polychlorinated Biphenyls by G	C - Westborough Lab					
Aroclor 1016	ND		ug/kg	38.3	7.57	1
Aroclor 1221	ND		ug/kg	38.3	11.6	1
Aroclor 1232	ND		ug/kg	38.3	8.14	1
Aroclor 1242	ND		ug/kg	38.3	7.27	1
Aroclor 1254	ND		ug/kg	38.3	6.04	1
Aroclor 1260	ND		ug/kg	38.3	6.65	1
Aroclor 1262	ND		ug/kg	38.3	2.83	1
Aroclor 1268	ND		ua/ka	38.3	5 56	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,4,5,6-Tetrachloro-m-xylene	69		30-150	
Decachlorobiphenyl	83		30-150	
2,4,5,6-Tetrachloro-m-xylene	66		30-150	
Decachlorobiphenyl	80		30-150	

Project Name: 391 WASHINGTON ST Lab Number: L1312560

Project Number: 0092-013-500 **Report Date:** 07/11/13

SAMPLE RESULTS

Lab ID: Date Collected: 07/01/13 13:15

Client ID: SB-10 Date Received: 07/03/13

Sample Location:TRICO BUILDINGField Prep:Not SpecifiedMatrix:SoilExtraction Method:EPA 3546Analytical Method:1,8082AExtraction Date:07/05/13 19:23Analytical Date:07/08/13 20:46Cleanup Method1:EPA 3665A

Analytical Date: 07/08/13 20:46 Cleanup Method1: EPA 3665A
Analyst: KB Cleanup Date1: 07/06/13
Percent Solids: 83% Cleanup Method2: EPA 3660B
Cleanup Date2: 07/06/13

ParameterResultQualifierUnitsRLMDLDilution FactorPolychlorinated Biphenyls by GC - Westborough LabAroclor 124823.0Jug/kg38.34.631

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,4,5,6-Tetrachloro-m-xylene	69		30-150	
Decachlorobiphenyl	83		30-150	
2,4,5,6-Tetrachloro-m-xylene	66		30-150	
Decachlorobiphenyl	80		30-150	

Project Name: 391 WASHINGTON ST Lab Number: L1312560

Project Number: 0092-013-500 **Report Date:** 07/11/13

SAMPLE RESULTS

Lab ID: Date Collected: 07/01/13 13:25

Client ID: SB-11 Date Received: 07/03/13

Sample Location: TRICO BUILDING Field Prep: Not Specified Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 1,8082A Extraction Date: 07/05/13 19:23

Analytical Date: 07/08/13 20:58 Cleanup Method1: EPA 3665A
Analyst: KB Cleanup Date1: 07/06/13
Percent Solids: 85% Cleanup Method2: EPA 3660B
Cleanup Date2: 07/06/13

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Polychlorinated Biphenyls by GC - Westborough Lab								
Aroclor 1016	ND		ug/kg	37.7	7.45	1		
Aroclor 1221	ND		ug/kg	37.7	11.4	1		
Aroclor 1232	ND		ug/kg	37.7	8.02	1		
Aroclor 1242	ND		ug/kg	37.7	7.16	1		
Aroclor 1248	ND		ug/kg	37.7	4.56	1		
Aroclor 1254	ND		ug/kg	37.7	5.95	1		
Aroclor 1260	ND		ug/kg	37.7	6.55	1		
Aroclor 1262	ND		ug/kg	37.7	2.79	1		
Aroclor 1268	ND		ug/kg	37.7	5.47	1		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,4,5,6-Tetrachloro-m-xylene	71		30-150	
Decachlorobiphenyl	80		30-150	
2,4,5,6-Tetrachloro-m-xylene	73		30-150	
Decachlorobiphenyl	84		30-150	

Project Name: 391 WASHINGTON ST

Project Number: 0092-013-500

Lab Number: L1312560

Report Date: 07/11/13

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8082A Analytical Date: 07/08/13 21:10

Analyst: KB

Extraction Method: EPA 3546
Extraction Date: 07/05/13 19:23
Cleanup Method1: EPA 3665A
Cleanup Date1: 07/06/13
Cleanup Method2: EPA 3660B
Cleanup Date2: 07/06/13

Parameter	Result	Qualifier Units	RL	MDL
Polychlorinated Biphenyls by GC - \u00bb 1	Vestborough	Lab for sample(s):	01-04,06-11	Batch: WG619811-
Aroclor 1016	ND	ug/kg	33.1	6.54
Aroclor 1221	ND	ug/kg	33.1	9.99
Aroclor 1232	ND	ug/kg	33.1	7.04
Aroclor 1242	ND	ug/kg	33.1	6.29
Aroclor 1248	ND	ug/kg	33.1	4.01
Aroclor 1254	ND	ug/kg	33.1	5.22
Aroclor 1260	ND	ug/kg	33.1	5.75
Aroclor 1262	ND	ug/kg	33.1	2.45
Aroclor 1268	ND	ug/kg	33.1	4.81

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
2,4,5,6-Tetrachloro-m-xylene	75	30-150
Decachlorobiphenyl	81	30-150
2,4,5,6-Tetrachloro-m-xylene	75	30-150
Decachlorobiphenyl	82	30-150

Lab Control Sample Analysis Batch Quality Control

Project Name: 391 WASHINGTON ST

Project Number: 0092-013-500

Lab Number: L1312560

Report Date: 07/11/13

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Polychlorinated Biphenyls by GC - Westboro	ugh Lab Associa	ated sample(s)	: 01-04,06-11	Batch:	WG619811-2	WG619811-3		
Aroclor 1016	97		94		40-140	3		50
Aroclor 1260	95		93		40-140	2		50

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
2,4,5,6-Tetrachloro-m-xylene	78		65		30-150	
Decachlorobiphenyl	88		84		30-150	
2,4,5,6-Tetrachloro-m-xylene	76		62		30-150	
Decachlorobiphenyl	104		91		30-150	

METALS

07/01/13 15:20

Date Collected:

Project Name: 391 WASHINGTON ST Lab Number: L1312560

Project Number: 0092-013-500 **Report Date:** 07/11/13

SAMPLE RESULTS

Lab ID: L1312560-01

Client ID: SB-1 Date Received: 07/03/13

Sample Location: TRICO BUILDING Field Prep: Not Specified

Matrix: Soil Percent Solids: 82%

Dilution Date Date Prep Analytical Method Factor Prepared Method **Analyzed Parameter** Result Qualifier Units RL MDL **Analyst** Total Metals - Westborough Lab Arsenic, Total 16 mg/kg 0.46 0.09 1 07/05/13 12:08 07/06/13 11:02 EPA 3050B 1,6010C TT Barium, Total 200 0.46 0.14 1 07/05/13 12:08 07/06/13 11:02 EPA 3050B 1,6010C TT mg/kg 0.82 0.03 1 1,6010C Cadmium, Total 0.46 07/05/13 12:08 07/06/13 11:02 EPA 3050B TT mg/kg 1,6010C Chromium, Total 24 mg/kg 0.46 0.09 1 07/05/13 12:08 07/06/13 11:02 EPA 3050B TT 16 2.3 0.09 1 07/05/13 12:08 07/06/13 11:02 EPA 3050B 1,6010C TT Lead, Total mg/kg Mercury, Total 0.34 0.08 0.02 1 07/09/13 09:31 07/09/13 12:48 EPA 7471B 1,7471B MC mg/kg J 07/05/13 12:08 07/06/13 11:02 EPA 3050B 1,6010C Selenium, Total 0.68 mg/kg 0.91 0.14 1 TT 0.46 Silver, Total ND mg/kg 0.09 1 07/05/13 12:08 07/06/13 11:02 EPA 3050B 1,6010C TT

07/01/13 15:40

Project Name: 391 WASHINGTON ST Lab Number: L1312560

Project Number: Report Date: 0092-013-500 07/11/13

SAMPLE RESULTS

Lab ID: L1312560-02

Client ID: SB-2

Sample Location: TRICO BUILDING

Matrix:

Date Received: 07/03/13 Field Prep: Not Specified

Date Collected:

Soil Percent Solids: 79% **Dilution** Date Date Prep Analytical

Method Factor Prepared Method **Analyzed Parameter** Result Qualifier Units RL MDL **Analyst** Total Metals - Westborough Lab Arsenic, Total 22 mg/kg 0.48 0.10 1 07/05/13 12:08 07/06/13 11:06 EPA 3050B 1,6010C TT Barium, Total 69 0.48 0.14 1 07/05/13 12:08 07/06/13 11:06 EPA 3050B 1,6010C TT mg/kg 0.55 0.03 1 1,6010C Cadmium, Total 0.48 07/05/13 12:08 07/06/13 11:06 EPA 3050B TT mg/kg 1,6010C Chromium, Total 10 mg/kg 0.48 0.10 1 07/05/13 12:08 07/06/13 11:06 EPA 3050B TT 11 2.4 0.10 1 07/05/13 12:08 07/06/13 11:06 EPA 3050B 1,6010C TT Lead, Total mg/kg Mercury, Total ND 0.08 0.02 1 07/09/13 09:31 07/09/13 12:53 EPA 7471B 1,7471B MC mg/kg 1,6010C Selenium, Total 1.1 mg/kg 0.95 0.14 1 07/05/13 12:08 07/06/13 11:06 EPA 3050B TT Silver, Total ND mg/kg 0.48 0.10 1 07/05/13 12:08 07/06/13 11:06 EPA 3050B 1,6010C TT

Project Name:391 WASHINGTON STLab Number:L1312560

Project Number: 0092-013-500 **Report Date:** 07/11/13

SAMPLE RESULTS

Lab ID: L1312560-03

Client ID: SB-3

Sample Location: TRICO BUILDING

Matrix: Soil
Percent Solids: 86%

Date Collected: 07/01/13 12:00
Date Received: 07/03/13

Field Prep: Not Specified

Parameter	00 /0				MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
	Result	Qualifier	Units	RL							
Total Metals - West	borough l	_ab									
Arsenic, Total	2.5		mg/kg	0.45	0.09	1	07/05/13 12:08	3 07/06/13 11:10	EPA 3050B	1,6010C	TT
Barium, Total	26		mg/kg	0.45	0.13	1	07/05/13 12:08	3 07/06/13 11:10	EPA 3050B	1,6010C	TT
Cadmium, Total	0.29	J	mg/kg	0.45	0.03	1	07/05/13 12:08	3 07/06/13 11:10	EPA 3050B	1,6010C	TT
Chromium, Total	5.9		mg/kg	0.45	0.09	1	07/05/13 12:08	3 07/06/13 11:10	EPA 3050B	1,6010C	TT
Lead, Total	17		mg/kg	2.2	0.09	1	07/05/13 12:08	3 07/06/13 11:10	EPA 3050B	1,6010C	TT
Mercury, Total	ND		mg/kg	0.09	0.02	1	07/09/13 09:31	1 07/09/13 12:55	EPA 7471B	1,7471B	MC
Selenium, Total	0.58	J	mg/kg	0.90	0.13	1	07/05/13 12:08	3 07/06/13 11:10	EPA 3050B	1,6010C	TT
Silver, Total	ND		mg/kg	0.45	0.09	1	07/05/13 12:08	3 07/06/13 11:10	EPA 3050B	1,6010C	TT

Project Name: 391 WASHINGTON ST Lab Number: L1312560

Project Number: 0092-013-500 **Report Date:** 07/11/13

SAMPLE RESULTS

Lab ID: L1312560-04

Client ID: SB-4

Sample Location: TRICO BUILDING

Matrix: Soil
Percent Solids: 82%

Date Received: 07/03/13
Field Prep: Not Specified

Date Collected:

Field Prep: Not Specified

Parameter	02 /0			RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
	Result	Qualifier	Units								
Total Metals - West	horough I	ah									
Total Metals - West	bolougili	_ab									
Arsenic, Total	3.0		mg/kg	0.46	0.09	1	07/05/13 12:08	8 07/06/13 11:14	EPA 3050B	1,6010C	TT
Barium, Total	35		mg/kg	0.46	0.14	1	07/05/13 12:08	8 07/06/13 11:14	EPA 3050B	1,6010C	TT
Cadmium, Total	0.36	J	mg/kg	0.46	0.03	1	07/05/13 12:08	8 07/06/13 11:14	EPA 3050B	1,6010C	TT
Chromium, Total	8.0		mg/kg	0.46	0.09	1	07/05/13 12:08	8 07/06/13 11:14	EPA 3050B	1,6010C	TT
Lead, Total	13		mg/kg	2.3	0.09	1	07/05/13 12:08	8 07/06/13 11:14	EPA 3050B	1,6010C	TT
Mercury, Total	ND		mg/kg	0.09	0.02	1	07/09/13 09:3	1 07/09/13 12:57	EPA 7471B	1,7471B	МС
Selenium, Total	ND		mg/kg	0.93	0.14	1	07/05/13 12:08	8 07/06/13 11:14	EPA 3050B	1,6010C	TT
Silver, Total	ND		mg/kg	0.46	0.09	1	07/05/13 12:08	8 07/06/13 11:14	EPA 3050B	1,6010C	TT

1,7471B

1,6010C

1,6010C

MC

 TT

TT

07/03/13

Project Name: 391 WASHINGTON ST Lab Number: L1312560

0.10

0.90

0.45

mg/kg

mg/kg

mg/kg

Project Number: 0092-013-500 **Report Date:** 07/11/13

SAMPLE RESULTS

Lab ID: L1312560-06

Client ID: SB-6

Sample Location: TRICO BUILDING

ND

ND

ND

Matrix: Soil

Mercury, Total

Selenium, Total

Silver, Total

Field Prep: Not Specified

07/09/13 09:31 07/09/13 13:00 EPA 7471B

07/05/13 12:08 07/06/13 11:18 EPA 3050B

07/05/13 12:08 07/06/13 11:18 EPA 3050B

Date Collected:

Date Received:

Percent Solids: 84% **Dilution** Date Date Prep Analytical Method Factor Prepared Method **Analyzed Parameter** Result Qualifier Units RL MDL **Analyst** Total Metals - Westborough Lab Arsenic, Total 2.5 mg/kg 0.45 0.09 1 07/05/13 12:08 07/06/13 11:18 EPA 3050B 1,6010C TT Barium, Total 70 0.45 0.14 1 07/05/13 12:08 07/06/13 11:18 EPA 3050B 1,6010C TT mg/kg J 0.03 1 1,6010C Cadmium, Total 0.38 mg/kg 0.45 07/05/13 12:08 07/06/13 11:18 EPA 3050B TT 1,6010C Chromium, Total 13 mg/kg 0.45 0.09 1 07/05/13 12:08 07/06/13 11:18 EPA 3050B TT 16 2.3 0.09 1 07/05/13 12:08 07/06/13 11:18 EPA 3050B 1,6010C TT Lead, Total mg/kg

0.02

0.14

0.09

1

1

1

Not Specified

07/03/13

Date Collected:

Date Received:

Field Prep:

Project Name: 391 WASHINGTON ST Lab Number: L1312560

Project Number: 0092-013-500 **Report Date:** 07/11/13

SAMPLE RESULTS

Lab ID: L1312560-07

Client ID: SB-7

Sample Location: TRICO BUILDING

Matrix: Soil

Percent Solids: 83% Analytical Dilution Date Date Prep

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - We	stborough l	_ab									
Arsenic, Total	9.4		mg/kg	0.48	0.10	1	07/05/13 12:0	8 07/06/13 11:22	EPA 3050B	1,6010C	TT
Barium, Total	73		mg/kg	0.48	0.14	1	07/05/13 12:0	8 07/06/13 11:22	EPA 3050B	1,6010C	TT
Cadmium, Total	0.37	J	mg/kg	0.48	0.03	1	07/05/13 12:0	8 07/06/13 11:22	EPA 3050B	1,6010C	TT
Chromium, Total	9.5		mg/kg	0.48	0.10	1	07/05/13 12:0	8 07/06/13 11:22	EPA 3050B	1,6010C	TT
Lead, Total	27		mg/kg	2.4	0.10	1	07/05/13 12:0	8 07/06/13 11:22	EPA 3050B	1,6010C	TT
Mercury, Total	1.4		mg/kg	0.08	0.02	1	07/09/13 09:3	1 07/09/13 13:02	EPA 7471B	1,7471B	МС
Selenium, Total	0.33	J	mg/kg	0.96	0.14	1	07/05/13 12:0	8 07/06/13 11:22	EPA 3050B	1,6010C	TT
Silver, Total	ND		mg/kg	0.48	0.10	1	07/05/13 12:0	8 07/06/13 11:22	EPA 3050B	1,6010C	TT

Date Collected:

Project Name: 391 WASHINGTON ST Lab Number: L1312560

Project Number: 0092-013-500 **Report Date:** 07/11/13

SAMPLE RESULTS

Lab ID: L1312560-08

Client ID: SB-8 Date Received: 07/03/13

Sample Location: TRICO BUILDING Field Prep: Not Specified

Matrix: Soil Percent Solids: 88%

Dilution Date Date Prep Analytical Method Factor Prepared Method **Analyzed Parameter** Result Qualifier Units RL MDL **Analyst** Total Metals - Westborough Lab 2.0 1,6010C Arsenic, Total mg/kg 0.43 0.09 1 07/05/13 12:08 07/06/13 11:27 EPA 3050B TT Barium, Total 530 0.43 0.13 1 07/05/13 12:08 07/06/13 11:27 EPA 3050B 1,6010C TT mg/kg 2.6 0.03 1 1,6010C Cadmium, Total 0.43 07/05/13 12:08 07/06/13 11:27 EPA 3050B TT mg/kg 1,6010C Chromium, Total 110 mg/kg 0.43 0.09 1 07/05/13 12:08 07/06/13 11:27 EPA 3050B TT Lead, Total 160 2.2 0.09 1 07/05/13 12:08 07/06/13 11:27 EPA 3050B 1,6010C TT mg/kg Mercury, Total ND 0.09 0.02 1 07/09/13 09:31 07/09/13 13:04 EPA 7471B 1,7471B MC mg/kg J 07/05/13 12:08 07/06/13 11:27 EPA 3050B 1,6010C Selenium, Total 0.40 mg/kg 0.87 0.13 1 TT Silver, Total 0.65 mg/kg 0.43 0.09 1 07/05/13 12:08 07/06/13 11:27 EPA 3050B 1,6010C TT

Project Name: 391 WASHINGTON ST Lab Number: L1312560

Project Number: 0092-013-500 **Report Date:** 07/11/13

SAMPLE RESULTS

Lab ID: L1312560-09

Client ID: SB-9

Sample Location: TRICO BUILDING

Matrix: Soil
Percent Solids: 88%

Date Collected: 07/01/13 13:05 Date Received: 07/03/13

Field Prep: Not Specified

Parameter	00 /6					Dilution	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
	Result	Qualifier	Units	RL	MDL	Factor					
Total Metals - West	horough l	ah									
Total Metals - West	borougiri	Lau									
Arsenic, Total	1.2		mg/kg	0.43	0.09	1	07/05/13 12:08	8 07/06/13 12:04	EPA 3050B	1,6010C	TT
Barium, Total	28		mg/kg	0.43	0.13	1	07/05/13 12:08	8 07/06/13 12:04	EPA 3050B	1,6010C	TT
Cadmium, Total	0.32	J	mg/kg	0.43	0.03	1	07/05/13 12:08	8 07/06/13 12:04	EPA 3050B	1,6010C	TT
Chromium, Total	7.8		mg/kg	0.43	0.09	1	07/05/13 12:08	8 07/06/13 12:04	EPA 3050B	1,6010C	TT
Lead, Total	14		mg/kg	2.2	0.09	1	07/05/13 12:08	8 07/06/13 12:04	EPA 3050B	1,6010C	TT
Mercury, Total	ND		mg/kg	0.09	0.02	1	07/09/13 09:3	1 07/09/13 13:06	EPA 7471B	1,7471B	MC
Selenium, Total	0.36	J	mg/kg	0.87	0.13	1	07/05/13 12:08	8 07/06/13 12:04	EPA 3050B	1,6010C	TT
Silver, Total	ND		mg/kg	0.43	0.09	1	07/05/13 12:08	8 07/06/13 12:04	EPA 3050B	1,6010C	TT

07/01/13 13:15

07/03/13

Project Name:391 WASHINGTON STLab Number:L1312560

Project Number: 0092-013-500 **Report Date:** 07/11/13

SAMPLE RESULTS

Lab ID: L1312560-10

Client ID: SB-10

Sample Location: TRICO BUILDING

Matrix: Soil
Percent Solids: 83%

Field Prep: Not Specified

Date Collected:

Date Received:

Percent Solids:	83%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - West	borough L	_ab									
Arsenic, Total	2.4		mg/kg	0.47	0.09	1	07/05/13 12:08	8 07/06/13 12:08	EPA 3050B	1,6010C	TT
Barium, Total	57		mg/kg	0.47	0.14	1	07/05/13 12:08	3 07/06/13 12:08	EPA 3050B	1,6010C	TT
Cadmium, Total	0.40	J	mg/kg	0.47	0.03	1	07/05/13 12:08	3 07/06/13 12:08	EPA 3050B	1,6010C	TT
Chromium, Total	21		mg/kg	0.47	0.09	1	07/05/13 12:08	3 07/06/13 12:08	EPA 3050B	1,6010C	TT
Lead, Total	16		mg/kg	2.3	0.09	1	07/05/13 12:08	3 07/06/13 12:08	EPA 3050B	1,6010C	TT
Mercury, Total	ND		mg/kg	0.09	0.02	1	07/09/13 09:3	1 07/09/13 13:07	EPA 7471B	1,7471B	МС
Selenium, Total	ND		mg/kg	0.93	0.14	1	07/05/13 12:08	3 07/06/13 12:08	EPA 3050B	1,6010C	TT
Silver, Total	ND		mg/kg	0.47	0.09	1	07/05/13 12:08	3 07/06/13 12:08	EPA 3050B	1,6010C	TT

07/01/13 13:25

1,7471B

1,6010C

1,6010C

MC

 TT

TT

Project Name: 391 WASHINGTON ST Lab Number: L1312560

Project Number: 0092-013-500 **Report Date:** 07/11/13

0.08

0.90

0.45

mg/kg

mg/kg

mg/kg

J

SAMPLE RESULTS

Lab ID: L1312560-11

Client ID: SB-11

Sample Location: TRICO BUILDING

ND

0.28

ND

Matrix: Soil

Mercury, Total

Selenium, Total

Silver, Total

Date Received: 07/03/13
Field Prep: Not Specified

Date Collected:

07/09/13 09:31 07/09/13 13:09 EPA 7471B

07/05/13 12:08 07/06/13 12:12 EPA 3050B

07/05/13 12:08 07/06/13 12:12 EPA 3050B

Percent Solids: 85% **Dilution** Date Date Prep **Analytical** Method Factor Prepared Method **Analyzed Parameter** Result Qualifier Units RL MDL **Analyst** Total Metals - Westborough Lab 1,6010C Arsenic, Total 1.9 mg/kg 0.45 0.09 1 07/05/13 12:08 07/06/13 12:12 EPA 3050B TT Barium, Total 42 0.45 0.13 1 07/05/13 12:08 07/06/13 12:12 EPA 3050B 1,6010C TT mg/kg J 0.03 1 1,6010C Cadmium, Total 0.31 mg/kg 0.45 07/05/13 12:08 07/06/13 12:12 EPA 3050B TT 1 07/05/13 12:08 07/06/13 12:12 EPA 3050B 1,6010C Chromium, Total 8.5 mg/kg 0.45 0.09 TT Lead, Total 14 2.2 0.09 1 07/05/13 12:08 07/06/13 12:12 EPA 3050B 1,6010C TT mg/kg

0.02

0.13

0.09

1

1

1

Project Name: 391 WASHINGTON ST

Project Number: 0092-013-500

Lab Number:

L1312560

Report Date: 07/11/13

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Westbo	rough Lab for sample	(s): 01-04	,06-11	Batch:	WG619731-	-1			
Arsenic, Total	ND	mg/kg	0.40	0.08	1	07/05/13 12:08	07/06/13 09:26	1,6010C	TT
Barium, Total	ND	mg/kg	0.40	0.12	1	07/05/13 12:08	07/06/13 09:26	1,6010C	TT
Cadmium, Total	ND	mg/kg	0.40	0.03	1	07/05/13 12:08	07/06/13 09:26	1,6010C	TT
Chromium, Total	ND	mg/kg	0.40	0.08	1	07/05/13 12:08	07/06/13 09:26	1,6010C	TT
Lead, Total	ND	mg/kg	2.0	0.08	1	07/05/13 12:08	07/06/13 09:26	1,6010C	TT
Selenium, Total	ND	mg/kg	0.80	0.12	1	07/05/13 12:08	07/06/13 09:26	1,6010C	TT
Silver, Total	ND	mg/kg	0.40	0.08	1	07/05/13 12:08	07/06/13 09:26	1,6010C	TT

Prep Information

Digestion Method: EPA 3050B

Parameter	Result Qua	alifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - V	Vestborough Lab for s	sample(s): 01-04	1,06-11	Batch:	WG620051	-1			
Mercury, Total	ND	mg/kg	0.08	0.02	1	07/09/13 09:31	07/09/13 12:31	1,7471B	MC

Prep Information

Digestion Method: EPA 7471B

Lab Control Sample Analysis Batch Quality Control

Project Name: 391 WASHINGTON ST

Project Number: 0092-013-500

Lab Number: L1312560

Report Date: 07/11/13

Parameter	LCS %Recovery Q	LCSD ual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Total Metals - Westborough Lab Associated sa	mple(s): 01-04,06-11	Batch: WG619731-2	SRM Lot Number: 0518-10-02			
Arsenic, Total	109	-	81-119	-		
Barium, Total	104	-	83-118	-		
Cadmium, Total	98	-	82-117	-		
Chromium, Total	97	-	80-119	-		
Lead, Total	95	-	80-120	-		
Selenium, Total	109	-	80-120	-		
Silver, Total	104	-	66-134	-		
Total Metals - Westborough Lab Associated sa	mple(s): 01-04,06-11	Batch: WG620051-2	SRM Lot Number: 0518-10-02			
Mercury, Total	121	-	67-133	-		

Matrix Spike Analysis Batch Quality Control

Project Name: 391 WASHINGTON ST

Project Number: 0092-013-500

Lab Number: L1312560

Report Date: 07/11/13

Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Qu			RPD Qual Limits
b Associated	sample(s): (01-04,06-11	QC Batch II	D: WG61	19731-4	QC Sample: L131:	2411-20 Cli	ent ID: MS	S Sample
5.2	10.8	17	110		-	-	75-125	-	35
490	179	720	128	Q	-	-	75-125	-	35
0.54J	4.58	5.0	109		-	-	75-125	-	35
11.	17.9	30	106		-	-	75-125	-	35
270	45.8	290	44	Q	-	-	75-125	-	35
0.65J	10.8	12	111		-	-	75-125	-	35
ND	26.9	29	108		-	-	75-125	-	35
b Associated	sample(s): (01-04,06-11	QC Batch II	D: WG62	20051-4	QC Sample: L131	2557-13 Cli	ent ID: MS	S Sample
0.04J	0.158	0.22	139	Q	-	-	70-130	-	35
	Sample D Associated 5.2 490 0.54J 11. 270 0.65J ND D Associated	Sample Added b Associated sample(s): 0 5.2 10.8 490 179 0.54J 4.58 11. 17.9 270 45.8 0.65J 10.8 ND 26.9 b Associated sample(s): 0	Sample Added Found b Associated sample(s): 01-04,06-11 5.2 10.8 17 490 179 720 0.54J 4.58 5.0 11. 17.9 30 270 45.8 290 0.65J 10.8 12 ND 26.9 29 b Associated sample(s): 01-04,06-11 10.8 10.8	Sample Added Found %Recovery b Associated sample(s): 01-04,06-11 QC Batch II 5.2 10.8 17 110 490 179 720 128 0.54J 4.58 5.0 109 11. 17.9 30 106 270 45.8 290 44 0.65J 10.8 12 111 ND 26.9 29 108 b Associated sample(s): 01-04,06-11 QC Batch II	Sample Added Found %Recovery Qual b Associated sample(s): 01-04,06-11 QC Batch ID: WG61 5.2 10.8 17 110 490 179 720 128 Q 0.54J 4.58 5.0 109 11. 17.9 30 106 270 45.8 290 44 Q 0.65J 10.8 12 111 ND 26.9 29 108 b Associated sample(s): 01-04,06-11 QC Batch ID: WG62	Sample Added Found %Recovery Qual Found b Associated sample(s): 01-04,06-11 QC Batch ID: WG619731-4 5.2 10.8 17 110 - 490 179 720 128 Q - 0.54J 4.58 5.0 109 - 11. 17.9 30 106 - 270 45.8 290 44 Q - 0.65J 10.8 12 111 - ND 26.9 29 108 - Associated sample(s): 01-04,06-11 QC Batch ID: WG620051-4	Sample Added Found %Recovery Qual Found %Recovery Qual b Associated sample(s): 01-04,06-11 QC Batch ID: WG619731-4 QC Sample: L131 5.2 10.8 17 110 - - - 490 179 720 128 Q - - 0.54J 4.58 5.0 109 - - - 11. 17.9 30 106 - - - 270 45.8 290 44 Q - - 0.65J 10.8 12 111 - - - D Associated sample(s): 01-04,06-11 QC Batch ID: WG620051-4 QC Sample: L131 QC Sample: L131	Sample Added Found %Recovery Qual Found %Recovery Qual Limits b Associated sample(s): 01-04,06-11 QC Batch ID: WG619731-4 QC Sample: L1312411-20 Cli 5.2 10.8 17 110 - - 75-125 490 179 720 128 Q - - 75-125 0.54J 4.58 5.0 109 - - - 75-125 11. 17.9 30 106 - - - 75-125 270 45.8 290 44 Q - - 75-125 ND 26.9 29 108 - - - 75-125 Deal Associated sample(s): 01-04,06-11 QC Batch ID: WG620051-4 QC Sample: L1312557-13 Cli	Sample Added Found %Recovery Qual Found %Recovery Qual Limits RPD Control 5 Associated sample(s): 01-04,06-11 QC Batch ID: WG619731-4 QC Sample: L1312411-20 Client ID: MS 5.2 10.8 17 110 - - 75-125 - 490 179 720 128 Q - - 75-125 - 0.54J 4.58 5.0 109 - - 75-125 - 11. 17.9 30 106 - - 75-125 - 270 45.8 290 44 Q - - 75-125 - 0.65J 10.8 12 111 - - 75-125 - ND 26.9 29 108 - - 75-125 - Associated sample(s): 01-04,06-11 QC Batch ID: WG620051-4 QC Sample: L1312557-13 Client ID: MS

Lab Duplicate Analysis Batch Quality Control

Project Name: 391 WASHINGTON ST

Project Number: 0092-013-500

Lab Number: L1312560 **Report Date:** 07/11/13

arameter	Native San	nple Duplicate Samp	le Units	RPD	Qual	RPD Limits
otal Metals - Westborough Lab Associated sample(s)	: 01-04,06-11	QC Batch ID: WG619731-3	QC Sample: L1	312411-20	Client ID:	DUP Sample
Arsenic, Total	5.2	4.6	mg/kg	12		35
Barium, Total	490	550	mg/kg	12		35
Cadmium, Total	0.54J	0.46J	mg/kg	NC		35
Chromium, Total	11.	13	mg/kg	17		35
Lead, Total	270	250	mg/kg	8		35
Selenium, Total	0.65J	ND	mg/kg	NC		35
Silver, Total	ND	ND	mg/kg	NC		35
otal Metals - Westborough Lab Associated sample(s):	: 01-04,06-11	QC Batch ID: WG620051-3	QC Sample: L1	312557-13	Client ID:	DUP Sample
Mercury, Total	0.04J	0.07J	mg/kg	NC		35

INORGANICS & MISCELLANEOUS

L1312560

Project Name: 391 WASHINGTON ST

Project Number: 0092-013-500

Report Date: 07/11/13

Lab Number:

SAMPLE RESULTS

Lab ID: L1312560-01

SB-1 Client ID:

Sample Location: TRICO BUILDING

Matrix: Soil Date Collected: 07/01/13 15:20

Date Received: 07/03/13

Not Specified Field Prep:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	82.1		%	0.100	NA	1	-	07/09/13 20:08	30,2540G	RT

Project Name: 391 WASHINGTON ST

Lab Number:

L1312560

Project Number: 0092-013-500

Report Date: 07/11/13

SAMPLE RESULTS

Lab ID: L1312560-02

SB-2 Client ID:

Sample Location: TRICO BUILDING

Matrix: Soil Date Collected:

07/01/13 15:40

Date Received:

07/03/13

Field Prep:

Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	79.2		%	0.100	NA	1	-	07/05/13 10:32	30,2540G	МО

Project Name: 391 WASHINGTON ST

Project Number: 0092-013-500

Lab Number:

L1312560

Report Date:

07/11/13

SAMPLE RESULTS

Lab ID: L1312560-03

Client ID: SB-3

Sample Location: TRICO BUILDING

Matrix: Soil

Date Collected:

07/01/13 12:00

Date Received:

07/03/13

Field Prep:

Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab)								
Solids, Total	85.6		%	0.100	NA	1	-	07/05/13 10:32	30,2540G	MO

L1312560

Project Name: 391 WASHINGTON ST

1 WASHINGTON ST Lab Number:

Project Number: 0092-013-500 **Report Date:** 07/11/13

SAMPLE RESULTS

Lab ID: L1312560-04

Client ID: SB-4

Sample Location: TRICO BUILDING

Matrix: Soil

Date Collected: 07/01/13 12:20

Date Received: 07/03/13

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	81.8		%	0.100	NA	1	-	07/05/13 10:32	30,2540G	MO

Project Name: 391 WASHINGTON ST

2000 240 500

Lab Number: Report Date:

L1312560

Project Number: 0092-013-500

Report Date: 07/11/13

SAMPLE RESULTS

Lab ID: L1312560-06

Client ID: SB-6

Sample Location: TRICO BUILDING

Matrix: Soil

Date Collected:

07/01/13 12:40

Date Received:

07/03/13

Field Prep:

Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	83.6		%	0.100	NA	1	-	07/05/13 10:32	30,2540G	MO

Project Name: 391 WASHINGTON ST

1 WASHINGTON ST Lab Number: L1312560

Project Number: 0092-013-500 **Report Date:** 07/11/13

SAMPLE RESULTS

Lab ID: L1312560-07

Client ID: SB-7

Sample Location: TRICO BUILDING

Matrix: Soil

Date Collected: 07/01/13 12:50

Date Received: 07/03/13

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	83.1		%	0.100	NA	1	-	07/05/13 10:32	30,2540G	MO

Project Name: 391 WASHINGTON ST

Project Number: 0092-013-500

Lab Number:

L1312560

Report Date:

07/11/13

SAMPLE RESULTS

Lab ID:

L1312560-08

Client ID:

SB-8

Sample Location:

TRICO BUILDING

Matrix:

Soil

Date Collected:

07/01/13 12:55

Date Received:

07/03/13

Field Prep:

Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lab)								
Solids, Total	88.0		%	0.100	NA	1	-	07/05/13 10:32	30,2540G	MO

Project Name: 391 WASHINGTON ST

Project Number: 0092-013-500

Lab Number:

L1312560

Report Date:

07/11/13

SAMPLE RESULTS

Lab ID:

L1312560-09

Client ID:

SB-9

Sample Location:

TRICO BUILDING

Matrix:

Soil

Date Collected:

07/01/13 13:05

Date Received:

07/03/13

Field Prep:

Not Specified

30,2540G

МО

Dilution Date Date Analytical
Parameter Result Qualifier Units RL MDL Factor Prepared Analyzed Method Analyst

General Chemistry - Westborough Lab Solids, Total 87.7

0.100

%

NA 1

07/05/13 10:32

ALPHA

Lab Number:

Project Name: 391 WASHINGTON ST

L1312560

Project Number: 0092-013-500 Report Date: 07/11/13

SAMPLE RESULTS

Lab ID: L1312560-10

SB-10 Client ID:

Sample Location: TRICO BUILDING

Matrix: Soil Date Collected: 07/01/13 13:15

Date Received: 07/03/13

Not Specified Field Prep:

Parameter	Result (Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	82.6		%	0.100	NA	1	-	07/05/13 10:32	30,2540G	MO

Project Name: 391 WASHINGTON ST

1 WASHINGTON ST Lab Number: L1312560

Project Number: 0092-013-500 **Report Date:** 07/11/13

SAMPLE RESULTS

Lab ID: L1312560-11

Client ID: SB-11

Sample Location: TRICO BUILDING

Matrix: Soil

Date Collected: 07/01/13 13:25

Date Received: 07/03/13

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	85.2		%	0.100	NA	1	-	07/05/13 10:32	30,2540G	MO

Lab Duplicate Analysis Batch Quality Control

Project Name: 391 WASHINGTON ST

Project Number: 0092-013-500

Lab Number:

L1312560

Report Date:

07/11/13

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associate	ed sample(s): 02-04,06-11	QC Batch ID: WG619705-1	QC Sample:	L131248	9-01 Clien	t ID: DUP Sample
Solids, Total	27.1	26.6	%	2		20
General Chemistry - Westborough Lab Associate	ed sample(s): 01 QC Batch	ID: WG620515-1 QC San	nple: L131256	4-01 Clie	nt ID: DUF	⁹ Sample
Solids, Total	37.8	38.4	%	2		20

Project Name: 391 WASHINGTON ST

Lab Number: L1312560 **Report Date:** 07/11/13 **Project Number:** 0092-013-500

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Reagent H2O Preserved Vials Frozen on: NA

Cooler Information Custody Seal

Cooler

Α Absent

Container Info	ormation		Temp				
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1312560-01A	Amber 120ml unpreserved	Α	N/A	2.7	Υ	Absent	AS-TI(180),BA-TI(180),AG- TI(180),NYTCL-8270- SIM(14),CR-TI(180),TS(7),PB- TI(180),SE-TI(180),HG- T(28),NYTCL-8082(14),CD- TI(180)
L1312560-01B	Amber 120ml unpreserved	Α	N/A	2.7	Y	Absent	AS-TI(180),BA-TI(180),AG- TI(180),NYTCL-8270- SIM(14),CR-TI(180),TS(7),PB- TI(180),SE-TI(180),HG- T(28),NYTCL-8082(14),CD- TI(180)
L1312560-01C	Amber 120ml unpreserved	А	N/A	2.7	Y	Absent	AS-TI(180),BA-TI(180),AG- TI(180),NYTCL-8270- SIM(14),CR-TI(180),TS(7),PB- TI(180),SE-TI(180),HG- T(28),NYTCL-8082(14),CD- TI(180)
L1312560-02A	Amber 120ml unpreserved	А	N/A	2.7	Y	Absent	AS-TI(180),BA-TI(180),AG- TI(180),NYTCL-8270- SIM(14),CR-TI(180),TS(7),PB- TI(180),SE-TI(180),HG- T(28),NYTCL-8082(14),CD- TI(180)
L1312560-02B	Amber 120ml unpreserved	А	N/A	2.7	Y	Absent	AS-TI(180),BA-TI(180),AG- TI(180),NYTCL-8270- SIM(14),CR-TI(180),TS(7),PB- TI(180),SE-TI(180),HG- T(28),NYTCL-8082(14),CD- TI(180)
L1312560-02C	Amber 120ml unpreserved	А	N/A	2.7	Y	Absent	AS-TI(180),BA-TI(180),AG- TI(180),NYTCL-8270- SIM(14),CR-TI(180),TS(7),PB- TI(180),SE-TI(180),HG- T(28),NYTCL-8082(14),CD- TI(180)
L1312560-03A	Amber 120ml unpreserved	Α	N/A	2.7	Y	Absent	AS-TI(180),BA-TI(180),AG- TI(180),NYTCL-8270- SIM(14),CR-TI(180),TS(7),PB- TI(180),SE-TI(180),HG- T(28),NYTCL-8082(14),CD- TI(180)

Project Name: 391 WASHINGTON ST

Project Number: 0092-013-500

Lab Number: L1312560 **Report Date:** 07/11/13

Container Info	ormation		Temp				
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1312560-03B	Amber 120ml unpreserved	Α	N/A	2.7	Y	Absent	AS-TI(180),BA-TI(180),AG- TI(180),NYTCL-8270- SIM(14),CR-TI(180),TS(7),PB- TI(180),SE-TI(180),HG- T(28),NYTCL-8082(14),CD- TI(180)
L1312560-03C	Amber 120ml unpreserved	Α	N/A	2.7	Y	Absent	AS-TI(180),BA-TI(180),AG- TI(180),NYTCL-8270- SIM(14),CR-TI(180),TS(7),PB- TI(180),SE-TI(180),HG- T(28),NYTCL-8082(14),CD- TI(180)
L1312560-04A	Amber 120ml unpreserved	Α	N/A	2.7	Y	Absent	AS-TI(180),BA-TI(180),AG- TI(180),NYTCL-8270- SIM(14),CR-TI(180),TS(7),PB- TI(180),SE-TI(180),HG- T(28),NYTCL-8082(14),CD- TI(180)
L1312560-04B	Amber 120ml unpreserved	А	N/A	2.7	Y	Absent	AS-TI(180),BA-TI(180),AG- TI(180),NYTCL-8270- SIM(14),CR-TI(180),TS(7),PB- TI(180),SE-TI(180),HG- T(28),NYTCL-8082(14),CD- TI(180)
L1312560-04C	Amber 120ml unpreserved	А	N/A	2.7	Y	Absent	AS-TI(180),BA-TI(180),AG- TI(180),NYTCL-8270- SIM(14),CR-TI(180),TS(7),PB- TI(180),SE-TI(180),HG- T(28),NYTCL-8082(14),CD- TI(180)
L1312560-05A	Amber 120ml unpreserved	Α	N/A	2.7	Υ	Absent	HOLD()
L1312560-05B	Amber 120ml unpreserved	Α	N/A	2.7	Υ	Absent	HOLD()
L1312560-05C	Amber 120ml unpreserved	Α	N/A	2.7	Υ	Absent	HOLD()
L1312560-06A	Amber 120ml unpreserved	Α	N/A	2.7	Y	Absent	AS-TI(180),BA-TI(180),AG- TI(180),NYTCL-8270- SIM(14),CR-TI(180),TS(7),PB- TI(180),SE-TI(180),HG- T(28),NYTCL-8082(14),CD- TI(180)
L1312560-06B	Amber 120ml unpreserved	Α	N/A	2.7	Y	Absent	AS-TI(180),BA-TI(180),AG- TI(180),NYTCL-8270- SIM(14),CR-TI(180),TS(7),PB- TI(180),SE-TI(180),HG- T(28),NYTCL-8082(14),CD- TI(180)
L1312560-06C	Amber 120ml unpreserved	A	N/A	2.7	Y	Absent	AS-TI(180),BA-TI(180),AG- TI(180),NYTCL-8270- SIM(14),CR-TI(180),TS(7),PB- TI(180),SE-TI(180),HG- T(28),NYTCL-8082(14),CD- TI(180)

Project Name: 391 WASHINGTON ST

Project Number: 0092-013-500

Lab Number: L1312560 **Report Date:** 07/11/13

Container Info	ormation						
Container ID	Container Type	Cooler	рН	Temp deg C	Pres	Seal	Analysis(*)
L1312560-07A	Amber 120ml unpreserved	Α	N/A	2.7	Y	Absent	AS-TI(180),BA-TI(180),AG- TI(180),NYTCL-8270- SIM(14),CR-TI(180),TS(7),PB- TI(180),SE-TI(180),HG- T(28),NYTCL-8082(14),CD- TI(180)
L1312560-07B	Amber 120ml unpreserved	Α	N/A	2.7	Y	Absent	AS-TI(180),BA-TI(180),AG- TI(180),NYTCL-8270- SIM(14),CR-TI(180),TS(7),PB- TI(180),SE-TI(180),HG- T(28),NYTCL-8082(14),CD- TI(180)
L1312560-07C	Amber 120ml unpreserved	Α	N/A	2.7	Y	Absent	AS-TI(180),BA-TI(180),AG- TI(180),NYTCL-8270- SIM(14),CR-TI(180),TS(7),PB- TI(180),SE-TI(180),HG- T(28),NYTCL-8082(14),CD- TI(180)
L1312560-08A	Amber 120ml unpreserved	Α	N/A	2.7	Y	Absent	AS-TI(180),BA-TI(180),AG- TI(180),NYTCL-8270- SIM(14),CR-TI(180),TS(7),PB- TI(180),SE-TI(180),HG- T(28),NYTCL-8082(14),CD- TI(180)
L1312560-08B	Amber 120ml unpreserved	Α	N/A	2.7	Y	Absent	AS-TI(180),BA-TI(180),AG- TI(180),NYTCL-8270- SIM(14),CR-TI(180),TS(7),PB- TI(180),SE-TI(180),HG- T(28),NYTCL-8082(14),CD- TI(180)
L1312560-08C	Amber 120ml unpreserved	Α	N/A	2.7	Y	Absent	AS-TI(180),BA-TI(180),AG- TI(180),NYTCL-8270- SIM(14),CR-TI(180),TS(7),PB- TI(180),SE-TI(180),HG- T(28),NYTCL-8082(14),CD- TI(180)
L1312560-09A	Amber 120ml unpreserved	Α	N/A	2.7	Y	Absent	AS-TI(180),BA-TI(180),AG- TI(180),NYTCL-8270- SIM(14),CR-TI(180),TS(7),PB- TI(180),SE-TI(180),HG- T(28),NYTCL-8082(14),CD- TI(180)
L1312560-09B	Amber 120ml unpreserved	А	N/A	2.7	Y	Absent	AS-TI(180),BA-TI(180),AG- TI(180),NYTCL-8270- SIM(14),CR-TI(180),TS(7),PB- TI(180),SE-TI(180),HG- T(28),NYTCL-8082(14),CD- TI(180)
L1312560-09C	Amber 120ml unpreserved	A	N/A	2.7	Y	Absent	AS-TI(180),BA-TI(180),AG- TI(180),NYTCL-8270- SIM(14),CR-TI(180),TS(7),PB- TI(180),SE-TI(180),HG- T(28),NYTCL-8082(14),CD- TI(180)

Project Name: 391 WASHINGTON ST

Project Number: 0092-013-500

Lab Number: L1312560 **Report Date:** 07/11/13

Container Info	rmation		Temp				
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1312560-10A	Amber 120ml unpreserved	A	N/A	2.7	Υ	Absent	AS-TI(180),BA-TI(180),AG- TI(180),NYTCL-8270- SIM(14),CR-TI(180),TS(7),PB- TI(180),SE-TI(180),HG- T(28),NYTCL-8082(14),CD- TI(180)
L1312560-10B	Amber 120ml unpreserved	А	N/A	2.7	Y	Absent	AS-TI(180),BA-TI(180),AG- TI(180),NYTCL-8270- SIM(14),CR-TI(180),TS(7),PB- TI(180),SE-TI(180),HG- T(28),NYTCL-8082(14),CD- TI(180)
L1312560-10C	Amber 120ml unpreserved	А	N/A	2.7	Y	Absent	AS-TI(180),BA-TI(180),AG- TI(180),NYTCL-8270- SIM(14),CR-TI(180),TS(7),PB- TI(180),SE-TI(180),HG- T(28),NYTCL-8082(14),CD- TI(180)
L1312560-11A	Amber 120ml unpreserved	А	N/A	2.7	Y	Absent	AS-TI(180),BA-TI(180),AG- TI(180),NYTCL-8270- SIM(14),CR-TI(180),TS(7),PB- TI(180),SE-TI(180),HG- T(28),NYTCL-8082(14),CD- TI(180)
L1312560-11B	Amber 120ml unpreserved	А	N/A	2.7	Y	Absent	AS-TI(180),BA-TI(180),AG- TI(180),NYTCL-8270- SIM(14),CR-TI(180),TS(7),PB- TI(180),SE-TI(180),HG- T(28),NYTCL-8082(14),CD- TI(180)
L1312560-11C	Amber 120ml unpreserved	A	N/A	2.7	Y	Absent	AS-TI(180),BA-TI(180),AG- TI(180),NYTCL-8270- SIM(14),CR-TI(180),TS(7),PB- TI(180),SE-TI(180),HG- T(28),NYTCL-8082(14),CD- TI(180)

Container Comments

L1312560-02C

L1312560-05A

Project Name:391 WASHINGTON STLab Number:L1312560Project Number:0092-013-500Report Date:07/11/13

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes
or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

 Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

 Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

Footnotes

SRM

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than five times (5x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit.
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The RPD between the results for the two columns exceeds the method-specified criteria; however, the lower value has been reported

Report Format: DU Report with "J" Qualifiers

Project Name:391 WASHINGTON STLab Number:L1312560Project Number:0092-013-500Report Date:07/11/13

Data Qualifiers

due to obvious interference.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- -Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with "J" Qualifiers

Project Name:391 WASHINGTON STLab Number:L1312560Project Number:0092-013-500Report Date:07/11/13

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

30 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certificate/Approval Program Summary

Last revised July 2, 2013 - Westboro Facility

The following list includes only those analytes/methods for which certification/approval is currently held. For a complete listing of analytes for the referenced methods, please contact your Alpha Customer Service Representative.

Connecticut Department of Public Health Certificate/Lab ID: PH-0574. NELAP Accredited Solid Waste/Soil.

Drinking Water (Inorganic Parameters: Color, pH, Turbidity, Conductivity, Alkalinity, Chloride, Free Residual Chlorine, Fluoride, Calcium Hardness, Sulfate, Nitrate, Nitrite, Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Nickel, Selenium, Silver, Sodium, Thallium, Zinc, Total Dissolved Solids, Total Organic Carbon, Total Cyanide, Perchlorate, Organic Parameters: Volatile Organics 524.2, Total Trihalomethanes 524.2, 1,2-Dibromo-3-chloropropane (DBCP) 504.1, Ethylene Dibromide (EDB) 504.1, 1,4-Dioxane (Mod 8270). Microbiology Parameters: Total Coliform-MF mEndo (SM9222B), Total Coliform - Colilert (SM9223, Enumeration and P/A), E. Coli. - Colilert (SM9223, Enumeration and P/A), HPC - Pour Plate (SM9215B), Fecal Coliform – MF m-FC (SM9222D), Fecal Coliform-EC Medium (SM 9221E).

Wastewater/Non-Potable Water (Inorganic Parameters: Color, pH, Conductivity, Acidity, Alkalinity, Chloride, Total Residual Chlorine, Fluoride, Total Hardness, Silica, Sulfate, Sulfide, Ammonia, Kjeldahl Nitrogen, Nitrate, Nitrite, O-Phosphate, Total Phosphorus, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Titanium, Vanadium, Zinc, Total Residue (Solids), Total Dissolved Solids, Total Suspended Solids (non-filterable), BOD, CBOD, COD, TOC, Total Cyanide, Phenolics, Foaming Agents (MBAS), Bromide, Oil and Grease. Organic Parameters: PCBs, Organochlorine Pesticides, Technical Chlordane, Toxaphene, Acid Extractables (Phenols), Benzidines, Phthalate Esters, Nitrosamines, Nitroaromatics & Isophorone, Polynuclear Aromatic Hydrocarbons, Haloethers, Chlorinated Hydrocarbons, Volatile Organics, TPH (HEM/SGT), CT-Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH. Microbiology Parameters: Total Coliform – MF mEndo (SM9222B), Total Coliform – MTF (SM9221B), E. Coli – Colilert (SM9223 Enumeration), HPC – Pour Plate (SM9215B), Fecal Coliform - MF m-FC (SM9222D), Fecal Coliform - A-1 Broth (SM9221E), Enterococcus - Enterolert.

Solid Waste/Soil (Inorganic Parameters: pH, Sulfide, Aluminum, Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Hexavalent Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Thallium, Tin, Vanadium, Zinc, Total Cyanide, Ignitability, Phenolics, Corrosivity, TCLP Leach (1311), SPLP Leach (1312 metals only), Reactivity, Organic Parameters; PCBs, PCBs in Oil, Organochlorine Pesticides, Technical Chlordane, Toxaphene, CT-Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA-VPH, Dicamba, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Dalapon, Volatile Organics (SW 8260), Acid Extractables (Phenols) (SW 8270), Benzidines (SW 8270), Phthalates (SW 8270), Nitrosamines (SW 8270), Nitroaromatics & Cyclic Ketones (SW 8270), PAHs (SW 8270), Haloethers (SW 8270), Chlorinated Hydrocarbons (SW 8270).)

State of Illinois Certificate/Lab ID: 003155. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM2120B, 2320B, 2510B, 2540C, SM4500CN-CE, 4500F-C, 4500H-B, 4500NO3-F, 5310C, EPA 200.7, 200.8, 245.1, 300.0. Organic Parameters: EPA 504.1, 524.2.)

Wastewater/Non-Potable Water (Inorganic Parameters: SM2120B, 2310B, 2320B, 2340B, 2510B, 2540B, 2540C, 2540D, SM4500CL-E, 4500CN-E, 4500F-C, 4500H-B, 4500NH3-H, 4500NO2-B, 4500NO3-F, 4500P-E, 4500S-D, 4500SO3-B, 5210B, 5220D, 5310C, 5540C, EPA 120.1, 1664A, 200.7, 200.8, 245.1, 300.0, 350.1, 351.1, 353.2, 410.4, 420.1. Organic Parameters: EPA 608, 624, 625.)

Hazardous and Solid Waste (Inorganic Parameters: EPA 1010A, 1030, 1311, 1312, 6010C, 6020A, 7196A, 7470A, 7471B, 9012B, 9014, 9038, 9040C, 9045D, 9050A, 9065, 9251. Organic Parameters: 8011 (NPW only), 8015C, 8081B, 8082A, 8151A, 8260C, 8270D, 8315A, 8330.)

Maine Department of Human Services Certificate/Lab ID: 2009024.

Drinking Water (Inorganic Parameters: SM9215B, 9222D, 9223B, EPA 180.1, 353.2, SM2120B, 2130B, 2320B, 2510C, 2540C, 4500CI-D, 4500CN-C, 4500CN-E, 4500F-C, 4500H+B, 4500NO3-F, 5310C, EPA 200.7, EPA 200.8, 245.1, EPA 300.0. Organic Parameters: 504.1, 524.2.)

Wastewater/Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664A, 300.0, 350.1, 351.1, 353.2, 410.4, 420.1, 8315A, 9010C, SM2120B, 2310B, 2320B, 2510B, 2540B, 2540C, 2540D, 426C, 4500Cl-E, 4500CN-C, 4500CN-E, 4500F-B, 4500F-C, 4500H+B, 4500Norg-C, 4500NH3-B, 4500NH3-H, 4500NO2-B, 4500NO3-F, 4500P-B, 4500P-E, 4500S2-D, 4500SO3-B, 5540C, 5210B, 5220D, 5310C, 9010B, 9030B, 9040C, 7470A, 7196A, 2340B, EPA 200.7, 6010C, 200.8, 6020A, 245.1, 1311, 1312, 3005A, Enterolert, 9223B, 9222D. Organic Parameters: 608, 624, 625, 8011, 8081B, 8082A, 8330, 8151A, 8260C, 8270D, 3510C, 3630C, 5030B, ME-DRO, ME-GRO, MA-EPH, MA-VPH.)

Solid Waste/Soil (Inorganic Parameters: 9010B, 9012A, 9014, 9040B, 9045C, 6010C, 6020A, 7471B, 7196A, 9050A, 1010, 1030, 9065, 1311, 1312, 3005A, 3050B, 9038, 9251. Organic Parameters: ME-DRO, ME-GRO, MA-EPH, MA-VPH, 8260C, 8270D, 8330, 8151A, 8081B, 8082A, 3540C, 3546, 3580A, 3620C, 3630C, 5030B, 5035.)

Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA086.

Drinking Water (Inorganic Parameters: (EPA 200.8 for: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl) (EPA 200.7 for: Ba,Be,Ca,Cd,Cr,Cu,Na,Ni) 245.1, (300.0 for: Nitrate-N, Fluoride, Sulfate); (EPA 353.2 for: Nitrate-N, Nitrite-N); (SM4500NO3-F for: Nitrate-N and Nitrite-N); 4500F-C, 4500CN-CE, EPA 180.1, SM2130B, SM4500Cl-D, 2320B, SM2540C, SM4500H-B. Organic Parameters: (EPA 524.2 for: Trihalomethanes, Volatile Organics); (504.1 for: 1,2-Dibromoethane, 1,2-Dibromo-3-Chloropropane), EPA 332. Microbiology Parameters: SM9215B; ENZ. SUB. SM9223; ColilertQT SM9223B; MF-SM9222D.)

Non-Potable Water (Inorganic Parameters:, (EPA 200.8 for: AI,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,TI,Zn); (EPA 200.7 for: AI,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,TI,V,Zn); 245.1, SM4500H,B, EPA 120.1, SM2510B, 2540C, 2340B, 2320B, 4500CL-E, 4500F-BC, 426C, SM4500NH3-BH, (EPA 350.1 for: Ammonia-N), LACHAT 10-107-06-1-B for Ammonia-N, SM4500NO3-F, 353.2 for Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, 4500P-B,E, 5220D, EPA 410.4, SM 5210B, 5310C, 4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

Organic Parameters: (EPA 624 for Volatile Halocarbons, Volatile Aromatics),(608 for: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs-Water), (EPA 625 for SVOC Acid Extractables and SVOC Base/Neutral Extractables), 600/4-81-045-PCB-Oil. Microbiology Parameters: (ColilertQT SM9223B; Enterolert-QT: SM9222D-MF.)

New Hampshire Department of Environmental Services Certificate/Lab ID: 200307. *NELAP Accredited.*Drinking Water (Inorganic Parameters: SM 9222B, 9223B, 9215B, EPA 200.7, 200.8, 300.0, SM4500CN-E, 4500H+B, 4500NO3-F, 2320B, 2510B, 2540C, 4500F-C, 5310C, 2120B, EPA 332.0. Organic Parameters: 504.1, 524.2.)

Non-Potable Water (Inorganic Parameters: SM9222D, 9221B, 9222B, 9221E-EC, EPA 3005A, 200.7, 200.8, 245.1, SW-846 6010C, 6020A, 7196A, 7470A, SM3500-CR-D, EPA 120.1, 300.0, 350.1, 350.2, 351.1, 353.2, 410.4, 420.1, 426C, 1664A, SW-846 9010B, 9010C, 9030, 9040B, 9040C, SM2120B, 2310B, 2320B, 2340B, 2540B, 2540D, 4500H+B, 4500CL-E, 4500CN-E, 4500NH3-H, 4500NO3-F, 4500NO2-B, 4500P-E, 4500-S2-D, 4500SO3-B, 5210B, 5220D, 2510B, 2540C, 4500F-C, 5310C, 5540C, LACHAT 10-204-00-1-A, LACHAT 10-107-06-2-D, 3060A. Organic Parameters: SW-846 3510C, 3630C, 5030B, 8260C, 8270D, 8330, EPA 624, 625, 608, SW-846 8082A, 8081B, 8015C, 8151A, 8330, 8270D-SIM.)

Solid & Chemical Materials (Inorganic Parameters: SW-846 6010C, 6020A, 7196A, 7471B, 1010, 1010A, 1030, 9010C, 9012B, 9014, 9030B, 9040C, 9045C, 9045D, 9050, 9065, 9251, 1311, 1312, 3005A, 3050B, 3060A. Organic Parameters: SW-846 3540C, 3546, 3050B, 3580A, 3620D, 3630C, 5030B, 5035, 8260C, 8270D, 8270D-SIM, 8330, 8151A, 8015B, 8015C, 8082A, 8081B.)

New Hampshire Department of Environmental Services <u>Certificate/Lab ID</u>: 2064. *NELAP Accredited. Drinking Water* (<u>Organic Parameters</u>: **EPA 524.2**: Di-isopropyl ether (DIPE), Ethyl-t-butyl ether (ETBE), Tert-amyl methyl ether (TAME)).

Non-Potable Water (Organic Parameters: EPA 8260C: 1,3,5-Trichlorobenzene. EPA 8015C(M): TPH.)

Solid & Chemical Materials (Organic Parameters: EPA 8260C: 1,3,5-Trichlorobenzene.)

New Jersey Department of Environmental Protection Certificate/Lab ID: MA935. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM9222B, 9221E, 9223B, 9215B, 4500CN-CE, 4500NO3-F, 4500F-C, EPA 300.0, 200.7, 200.8, 245.1, 2540C, SM2120B, 2320B, 2510B, 5310C, SM4500H-B. Organic Parameters: EPA 332, 504.1, 524.2.)

Non-Potable Water (Inorganic Parameters: SM5210B, EPA 410.4, SM5220D, 4500Cl-E, EPA 300.0, SM2120B, 2340B, SM4500F-BC, EPA 200.7, 200.8, 351.1, LACHAT 10-107-06-2-D, EPA 353.2, SM4500NO3-F, 4500NO2-B, EPA 1664A, SM5310B, C or D, 4500-PE, EPA 420.1, SM510ABC, SM4500P-B5+E, 2540B, 2540C, 2540D, EPA 120.1, SM2510B, SM15 426C, 9222D, 9221B, 9221C, 9221E, 9222B, 9215B, 2310B, 2320B, 4500NH3-H, 4500-S D, EPA 350.1, 350.2, SW-846 1312, 7470A, 5540C, SM4500H-B, 4500SO3-B, SM3500Cr-D, 4500CN-CE, EPA 245.1, SW-846 9040B, 9040C, 3005A, 3015, EPA 6010B, 6010C, 6020, 6020A, 7196A, 3060A, SW-846 9010C, 9030B. Organic Parameters: SW-846 8260B, 8260C, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 3510C, EPA 608, 624, 625, SW-846 3630C, 5030B, 8011, 8015C, 8081A, 8081B, 8082, 8082A, 8151A, 8330, 1,4-Dioxane by NJ Modified 8270, 8015B, NJ EPH.)

Page 59lid & Chemical Materials (Inorganic Parameters: SW-846, 6010B, 6010C, 6020, 6020A, 7196A, 3060A, 9030B, 1010, 1010A, 61030, 1311, 1312, 3005A, 3050B, 7471A, 7471B, 9010C, 9012B, 9014, 9038, 9040B, 9040C, 9045C, 9045D,

9050A, 9065, 9251. Organic Parameters: SW-846 8015B, 8015C, 8081A, 8081B, 8082, 8082A, 8151A, 8330, 8260B, 8260C, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 3540C, 3546, 3580A, 3620C, 3630C, 5030B, 5035L, 5035H, NJ EPH.)

New York Department of Health Certificate/Lab ID: 11148. NELAP Accredited.

Drinking Water (Inorganic Parameters: SM9223B, 9222B, 9215B, EPA 200.8, 200.7, 245.1, SM5310C, EPA 332.0, SM2320B, EPA 300.0, SM2120B, 4500CN-E, 4500F-C, 4500NO3-F, 2540C, SM 2510B. Organic Parameters: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: SM9221E, 9222D, 9221B, 9222B, 9215B, 5210B, 5310C, EPA 410.4, SM5220D, 2310B, 2320B, EPA 200.7, 300.0, SM4500CL-E, 4500F-C, SM15 426C, EPA 350.1, SM4500NH3-BH, EPA 351.1, LACHAT 10-107-06-2, EPA 353.2, SM4500-NO3-F, 4500-NO2-B, 4500P-E, 2340B, 2540C, 2540B, 2540D, EPA 200.8, EPA 6010C, 6020A, EPA 7196A, SM3500Cr-D, EPA 245.1, 7470A, SM2120B, 4500CN-CE, EPA 1664A, EPA 420.1, SM14 510C, EPA 120.1, SM2510B, SM4500S-D, SM5540C, EPA 8315A, 3005A, 3015, 9010C, 9030B. Organic Parameters: EPA 624, 8260C, 8270D, 8270D-SIM, 625, 608, 8081B, 8151A, 8330, 8082A, EPA 3510C, 5030B, 8015C, 8011.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1010A, 1030, EPA 6010C, 6020A, 7196A, 7471B, 8315A, 9012B, 9014, 9065, 9050A, 9038, 9251, EPA 1311, 1312, 3005A, 3050B, 9010C, 9030B, 9040C, 9045D. Organic Parameters: EPA 8260C, 8270D, 8270D-SIM, 8015C, 8081B, 8151A, 8330, 8082A, 3540C, 3546, 3580A, 5035A-H, 5035A-L.)

North Carolina Department of the Environment and Natural Resources <u>Certificate/Lab ID</u>: 666. (<u>Inorganic Parameters</u>: SM2310B, 2320B, 4500Cl-E, 4500Cn-E, 9012B, 9014, Lachat 10-204-00-1-X, 1010A, 1030, 4500NO3-F, 353.2, 4500P-E, 4500SO4-E, 300.0, 4500S-D, 5310B, 5310C, 6010C, 6020A, 200.7, 200.8, 3500Cr-B, 7196A, 245.1, 7470A, 7471B, 1311,1312. <u>Organic Parameters</u>: 608, 8081B, 8082A, 624, 8260B, 625, 8270D, 8151A, 8015C, 504.1, MA-EPH, MA-VPH.)

Drinking Water Program Certificate/Lab ID: 25700. (Inorganic Parameters: Chloride EPA 300.0. Organic Parameters: 524.2)

Pennsylvania Department of Environmental Protection Certificate/Lab ID: 68-03671. *NELAP Accredited.*Drinking Water (Inorganic Parameters: 200.7, 200.8, 300.0, 332.0, 2120B, 2320B, 2510B, 2540C, 4500-CN-CE, 4500F-C, 4500H+-B, 4500NO3-F, 5310C. Organic Parameters: EPA 524.2, 504.1)

Non-Potable Water (Inorganic Parameters: EPA 120.1, 1312, 3005A,3015, 3060A, 200.7, 200.8, 410.4, 1664A, SM2540D, 5210B, 5220D, 4500-P,BE, 245.1, 300.0, 350.1, 350.2, 351.1, 353.2, 420.1, 6010C, 6020A, 7196A, 7470A, 9030B, 2120B, 2310B, 2320B, 2510B, 2540B, 2540C, 3500Cr-D, 426C, 4500CN-CE, 4500Cl-E, 4500F-B, 4500F-C, 4500H+-B, 4500NH3-H, 4500NO2-B, 4500NO3-F, 4500S-D, 4500SO3-B, 5310BCD, 5540C, 9010C, 9040C. Organic Parameters: EPA 3510C, 3630C, 5030B, 625, 624, 608, 8081B, 8082A, 8151A, 8260C, 8270D, 8270D-SIM, 8330, 8015C, NJ-EPH.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 350.1, 1010, 1030, 1311, 1312, 3005A, 3050B, 3060A, 6010C, 6020A, 7196A, 7471B, 9010C, 9012B, 9014, 9040B, 9045D, 9050A, 9065, SM 4500NH3-BH, 9030B, 9038, 9251. Organic Parameters: 3540C, 3546, 3580A, 3620C, 3630C, 5035, 8015C, 8081B, 8082A, 8151A, 8260C, 8270D, 8270D-SIM, 8330, NJ-EPH.)

Rhode Island Department of Health Certificate/Lab ID: LAO00065. *NELAP Accredited via NJ-DEP*. Refer to MA-DEP Certificate for Potable and Non-Potable Water. Refer to NJ-DEP Certificate for Potable and Non-Potable Water.

Texas Commisson on Environmental Quality <u>Certificate/Lab ID</u>: T104704476. *NELAP Accredited. Non-Potable Water* (<u>Inorganic Parameters</u>: EPA 120.1, 1664, 200.7, 200.8, 245.1, 245.2, 300.0, 350.1, 351.1, 353.2, 410.4, 420.1, 6010, 6020, 7196, 7470, 9040, SM 2120B, 2310B, 2320B, 2510B, 2540B, 2540C, 2540D, 426C, 4500CL-E, 4500CN-E, 4500F-C, 4500H+B, 4500NH3-H, 4500NO2B, 4500P-E, 4500 S2⁻ D, 510C, 5210B, 5220D, 5310C, 5540C. Organic Parameters: EPA 608, 624, 625, 8081, 8082, 8151, 8260, 8270, 8330.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1311, 1312, 9012, 9014, 9040, 9045, 9050, 9065.)

Virginia Division of Consolidated Laboratory Services Certificate/Lab ID: 460195. *NELAP Accredited.*Drinking Water (Inorganic Parameters: EPA 200.7, 200.8, 300.0, 2510B, 2120B, 2540C, 4500CN-CE, 245.1, 2320B, 4500F-C, 4500NO3-F, 4500H+B, 5310C. Organic Parameters: EPA 504.1, 524.2.)

Non-Potable Water (Inorganic Parameters: EPA 120.1, 1664A, 200.7, 200.8, 245.1, 300.0, 350.1, 351.1, 351.2, 3005A, 3015, 1312, 6010B, 6010C, 3060A, 353.2, 420.1, 2340B, 6020, 6020A, SM4500S-D, SM4500-CN-CE, Lachat 10-204-09-1-X, 7196A, 7470A, 2310B, 2320B, 2510B, 2540B, 2540C, 2540D, 3500Cr-D, 426C, 4500Cl-E, 4500F-B, 4500F-C, 4500NH3-H, 4500NO2-B, 4500NO3-F, 4500 SO3-B, 4500H-B, 4500PE, 510AC, 5210B, 5310B 5310C, 5540C, 9010Cm

9030B, 9040C. Organic Parameters: EPA 3510C, 3630C, 5030B, 8260B, 608, 624, 625, 8011, 8015C, 8081A, 8081B, 8082, 8082A, 8151A, 8260C, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 8330,)

Solid & Hazardous Waste (Inorganic Parameters: EPA 1010A, 1030, 3060A, 3050B, 1311, 1312, 6010B, 6010C, 6020, 7196A, 7471A, 7471B, 6020A, 9010C, 9012B, 9030B, 9014, 9038, 9040C, 9045D, 9251, 9050A, 9065. Organic Parameters: EPA 5030B, 5035, 3540C, 3546, 3550B, 3580A, 3620C, 3630C, 6020A, 8260B, 8260C, 8015B, 8015C, 8081A, 8081B, 8082, 8082A, 8151A, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 8330.)

Department of Defense, L-A-B Certificate/Lab ID: L2217.

Drinking Water (Inorganic Parameters: SM 4500H-B. Organic Parameters: EPA 524.2, 504.1.)

Non-Potable Water (Inorganic Parameters: EPA 200.7, 200.8, 6010B, 6010C, 6020, 6020A, 245.1, 245.2, 7470A, 9040B, 9010B, 180.1. 300.0, 332.0, 6860, 353.2, 410.4, 9060, 1664A, SM 4500CN-E, 4500H-B, 4500NO3-F, 4500CL-D, 5220D, 5310C, 2130B, 2320B, 2540C, 3005A, 3015, 9010B, 9056, 7196A, 3500-Cr-D. Organic Parameters: EPA 8260B, 8260C, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 8330A, 8082, 8082A, 8081A, 8081B, 3510C, 5030B, MassDEP EPH, MassDEP VPH.)

Solid & Hazardous Waste (Inorganic Parameters: EPA 200.7, 6010B, 6010C, 7471A, 6860, 1311, 1312, 3050B, 7196A, 9010B, 9012A, 9040B, 9045C, 3500-CR-D, 4500CN-CE, 2540G, Organic Parameters: EPA 8260B, 8260C, 8270C, 8270D, 8270C-SIM, 8270D-SIM, 8330A/B-prep, 8082, 8082A, 8081A, 8081B, 3540C, 3546, 3580A, 5035A, MassDEP EPH, MassDEP VPH.)

The following analytes are not included in our current NELAP/TNI Scope of Accreditation:

EPA 524.2: Acetone, 2-Butanone (Methyl ethyl ketone (MEK)), Tert-butyl alcohol, 2-Hexanone, Tetrahydrofuran, 1,3,5-Trichlorobenzene, 4-Methyl-2-pentanone (MIBK), Carbon disulfide, Diethyl ether. **EPA 8260B:** 1,2,4,5-Tetramethylbenzene, 4-Ethyltoluene. **EPA 8260 Non-potable water matrix:** Iodomethane (methyl iodide), Methyl methacrylate. **EPA 8260 Soil matrix:** Tert-amyl methyl ether (TAME), Diisopropyl ether (DIPE), Azobenzene. **EPA 8330A:** PETN, Picric Acid, Nitroglycerine, 2,6-DANT, 2,4-DANT. **EPA 8270C:** Methyl naphthalene, Dimethyl naphthalene, Total Methylnapthalenes, Total Dimethylnaphthalenes, 1,4-Diphenylhydrazine. **EPA 625:** 4-Chloroaniline, 4-Methylphenol. Total Phosphorus in a soil matrix, TKN in a soil matrix, NO2 in a soil matrix, NO3 in a soil matrix. **EPA 9071:** Total Petroleum Hydrocarbons, Oil & Grease.