PERIODIC REVIEW REPORT

DECEMBER 26, 2019 TO APRIL 26, 2021 FORMER TRICO PLANT (BCP SITE NO. C915281)

BUFFALO, NEW YORK

May 2021

0092-016-001

Prepared for: 845 Main Street, LLC and 791 Washington Street, LLC

Prepared By:

Benchmark Environmental Engineering & Science, PLLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716)856-0599

In association with:

TurnKey Environmental Restoration, LLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716)856-0635

PERIODIC REVIEW REPORT

May 26, 2020 to May 26, 2021 Former Trico Plant (C915281) Table of Contents

1.0	INT	RODUCTION	1
	1.1	Site Background	1
	1.2	Remedial History	
	1.3	Compliance	
	1.4	Recommendations	
2.0	SITE	E OVERVIEW	6
3.0	Ren	MEDY PERFORMANCE	7
4.0	Site	E MANAGEMENT PLAN	8
	4.1	Institutional and Engineering Control (IC/EC) Plan	8
		4.1.1 Institutional Controls (ICs)	
		4.1.2 Engineering Controls (ECs)	9
	4.2	Excavation Work Plan	10
		4.2.1 Site Redevelopment Activities	10
		4.2.2 Exported Materials	
		4.2.3 Imported Materials	
	4.3	Post-Remediation Media Monitoring and Sampling	
	4.4	Annual Inspection and Certification Program	12
	4.5	Operation, Monitoring and Maintenance Plan	
		4.5.1 Active Sub-slab Depressurization System	
		4.5.2 Ventilation System	14
5.0	CON	NCLUSIONS AND RECOMMENDATIONS	. 15
6.0	DEC	CLARATION/LIMITATION	. 16
7.0	Ref	ERENCES	. 17

PERIODIC REVIEW REPORT

May 26, 2020 to May 26, 2021 Former Trico Plant (C915281) Table of Contents

TABLES

Table 1 Groundwater Sample Results Summary

FIGURES

Figure 1	Site Location and Vicinity Map
Figure 2	Site Plan
Figure 3	Site Cover System Map
Figure 4	Future Interior Parking Area Cover System Map
Figure 5	Post Remedial Sampling Locations and cVOC Groundwater Quality Exceedances

APPENDICIES

- Appendix A Institutional & Engineering Controls Certification Form
- Appendix B Photographic Log

- Appendix C Demolition Debris Sampling and Correspondence Information
- Appendix D Groundwater Sampling Information

1.0 INTRODUCTION

Benchmark Environmental Engineering and Science, PLLC, in association with TurnKey Environmental Restoration, LLC (Benchmark-TurnKey) has prepared this Periodic Review Report (PRR) to summarize the post-remedial status of the New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) Former Trico Plant Site (BCP Site No. C915281), located in the City of Buffalo, Erie County, New York (see Figures 1 and 2).

This PRR has been prepared in accordance with the NYSDEC DER-10 *Technical Guidance for Site Investigation and Remediation* (May 2010; Ref. 1) and the NYSDEC's Institutional and Engineering Controls (IC/EC) Certification Form has been prepared for the Site. This PRR and the associated IC/EC Form (see Appendix A) have been completed for the post-remedial period from May 26, 2020 to May 26, 2021.

1.1 Site Background

847 Main Street, LLC entered into a Brownfield Cleanup Agreement (BCA) with the NYSDEC in October 2013, to investigate and remediate the approximate ±2.11-acre Site located at 791 Washington Street, in the City of Buffalo, Erie County, New York . The BCA was amended in January 2017 to add the entity 791 Washington Street, LLC and amended again in July 2019 to identify 791 Washington Street, LLC as the property owner. BCP activities were performed in accordance with BCA Index #C915281-10-13.

The Site is identified as Section 111.31, Block 1, Lot 1.11 on the Erie County Tax Map. The Site is an approximately ± 2.11 -acres and is bounded by a parking lot and building associated with the Innovation Center of the Buffalo Niagara Medical Campus to the north, Goodell Street to the south, Ellicott Street to the east, and Washington Street to the west (see Figure 2).

The property consists of a complex of five (5) adjoining buildings totaling 617,627 square feet. The oldest of the five buildings was constructed circa 1890 as a portion of the Christian Weyand Brewery that operated at the Site until the enactment of prohibition. The building was purchased in 1920 by the Trico Products Corporation for the manufacturing of windshield wiper blades for the automobile industry. The remaining buildings were constructed from 1920 to 1954. The Trico Products Corporation operated at the Site until

approximately 1993. Historic operations included electroplating, smelting, die-casting, rubber extrusion, and metal fabrication. The building complex was idle since at least 2000. The Site was purchased by 791 Washington Street, LLC in May 2017 from the Buffalo Brownfield Restoration Corporation who acquired the property in 2007.

1.2 Remedial History

A Remedial Investigation (RI) was completed by Benchmark-TurnKey in accordance with a NYSDEC-approved Remedial Investigation & Alternative Analysis Work Plan (RI/AA WP, Ref. 2). RI activities were completed between May and June 2016 with supplemental investigation activities being completed in November and December 2016. The RI included the completion of soil borings and installation of monitoring wells/piezometers to assess soil and groundwater conditions, soil vapor intrusion (SVI) sampling (indoor, outdoor, and sub-slab air), interior utility observations, and basement surface water sampling at the Site. Results of the RI were summarized in the NYSDECapproved Remedial Investigation/Alternatives Analysis (RI/AA, Ref. 3)

Select chlorinated volatile organic compounds (cVOCs) were detected exceeding 6NYCRR Part 375 Protection of Groundwater Soil Cleanup Objectives (PGWSCOs, Ref. 4), and select semi-volatile organic compounds (SVOCs), polychlorinated biphenyls (PCBs), and metals (arsenic, mercury, and barium) were detected exceeding Restricted-Residential SCOs (RRSCOs) in subsurface soil samples.

cVOCs were detected exceeding TOGS 1.1.1 Groundwater Quality Standards/Guidance Values (GWQS, Ref. 5) at multiple groundwater sampling locations in the central portion of the Site. Two (2) individual SVOCs and certain naturally occurring metals were identified exceeding GWQS. VOCs were not detected above their respective GWQS in the two (2) off-site wells.

Results of the SVI sampling identified that the building requires soil vapor mitigation due to the elevated concentrations of trichloroethene (TCE) and cis-1,2-dichlorethene (cis-DCE) that were detected based on the New York State Department of Health (NYSDOH) SVI Guidance decision matrices (Ref. 6).

0092-016-001

The results of the basement surface water sampling indicate that low levels of metals and pesticides are present in the water. No VOCs, PCBs, or herbicides were detected above method detection limits (MDLs).

Based on the findings of the RI, an Alternatives Analysis (AA) was completed. The AA outlined the Remedial Action Objectives (RAOs) and required remedial activities to be completed to achieve a Track 4 Restricted-Residential Use cleanup. The remedial actions described in the AAR, Decision Document (Ref. 7) and Remedial Action Work Plan (RAWP, Ref. 8) were as follows:

- Removal of hydraulic lifts, associated infrastructure and associated impacted soil/fill.
- In-Situ direct injection of biological amendments to address areas of the Site impacted with chlorinated VOCs in groundwater.
- Installation of an active sub-slab depressurization (ASD) system within the existing building.
- Cleaning accessible utility and/or sewer structures with evidence of potential impacts.
- Sub-basement water removal, treatment, and discharge.
- Removing and properly disposing off-site miscellaneous abandoned regulated waste materials; and abating building components for lead, asbestos, oil staining, and PCBs as required during redevelopment.
- Maintenance and replacement of site cover system within areas of the building footprint that will undergo demolition/redevelopment.
- Development of a Site Management Plan (SMP) for post-certificate of completion (COC) operation, maintenance, and monitoring.
- Filing an Environmental Easement (EE) with Erie County, which was done on October 31, 2019.

Benchmark-TurnKey prepared an ASD System Design Work Plan to present the results of the sub-slab communication testing that was completed in the basement of the building and to provide the ASD system design requirements (Ref. 9). The ASD system will be installed prior to building occupancy.

Benchmark-TurnKey prepared an RAWP Addendum Work Plan (RAWP Addendum) on behalf of 847 Main Street, LLC and 791 Washington Street, LLC (Ref. 10).

Benchmark GTURNKEY

The RAWP Addendum provided the scope of work to address PCB contamination that was identified in the former interior loading area and certain limited areas of the building basement that formerly contained oil-filled electrical equipment (referred to as electrical equipment areas, or EEAs). The sampling of the loading dock area and EEAs were completed in accordance with NYSDEC-approved work plans: Loading Dock Concrete & Soil Sampling Work Plan (Ref. 11) and Concrete-Slab Sampling Work Plan for Areas Formerly Containing Oil-Filled Electrical Equipment (Ref. 12), respectively. PCBs were identified above 1 mg/kg in a limited area of the existing concrete Site cover system (approximately 8,000 square feet). The PCB impacts greater than 1 mg/kg were addressed by removal, off-site disposal, and cover system replacement.

The Site was remediated to a 6NYCRR Part 375 Track 4 Restricted-Residential use cleanup. Materials removed from the Site included: friable and non-friable ACM; paint debris; hydraulic lifts/oil; water, sediment, and sludge present within the building; miscellaneous drums and oils from former equipment/machinery left within the building; RI derived soil and water drums; oil-filled electrical equipment (TSCA and non-TSCA); PCB-impacted concrete (TSCA and non-TSCA regulated); and decontamination water/supplies. A summary of contaminated materials removed from the Site is included in the NYSDEC-approved Final Engineering Report (FER, Ref. 13).

In May and June 2019, groundwater amendment injections were completed to address the cVOCs detected in the groundwater within the central portion of the Site. The groundwater injections consisted of 89 injection locations within the central portion of the building and in the sidewalk along Ellicott street east of the building. The injections consisted of three (3) amendments manufactured by Regenesis: 3-D Microemulsion (3DME, also known as HRC Advanced®); Chemical Reducing Solution (CRS®); and Bio-Dechlor Inoculum Plus (BDI), which were mixed together with water in the field prior to injection. In total, 16,000 pounds (lbs) of 3DME, 6,400 lbs of CRS, and 96 lbs of BDI were injected into the subsurface groundwater. The depth of the injections ranged from 3.5 to 13.5 feet below the lower basement area and 11 to 21 fbgs in the upper basement. Groundwater sampling completed in July, August, and September 2019, to monitor the effects of the groundwater injections indicated that the groundwater amendment injections were effective

4

in reducing the concentrations of cVOCs in the monitoring wells, as further discussed in Section 4.3.

The Site is primarily covered by a hardscape cover system in the form of the concrete building footprint and asphalt roadway of former Burton Street in the northwest corner of the Site. A 2-foot-thick crushed stone cover (2-inch crusher run) was placed in select areas of the Site (e.g., the former subbasement area and former EEAs where the concrete floors were removed due to PCB contamination). Exposure to remaining contamination in the soil/fill at the Site is prevented by the hardscape cover system and/or 2-foot-thick stone cover system in place over the Site. Figure 3 identities the current cover system for the Site. In accordance with the NYSDEC-approved Site Management Plan (SMP; Ref. 14) the following remedial actions need to be completed prior to building occupancy.

- Removal of PCB contamination greater than 50 mg/kg in the suspended concrete slab on the 1st of the building (future parking area) and installation of a 6-inch concrete cap over areas with less 50 mg/kg PCBs;
- Installation of the ASD system within the building in accordance with the ASD System Work Plan; and
- Remediation of PCBs detected above 50 mg/kg on a small area of the wall in the western portion of the former loading dock area, in consultation with NYSDEC/NYSDOH.

The remedial action and cover system installation work was documented in the NYSDEC-approved FER.

1.3 Compliance

The Site is in compliance as the cover system is in place.

1.4 Recommendations

Any future redevelopment activities to be conducted will be completed in accordance with the NYSDEC-approved SMP and documented in the associated PRR reporting period. The SMP will be updated to include the redevelopment/cover system changes once they are completed.

2.0 SITE OVERVIEW

The Site was remediated under the BCP to a Track 4 Restricted Residential cleanup. The remediated property is subject to a comprehensive, site-wide SMP which identifies requirements for monitoring and maintenance of engineering and institutional controls, post-remedial media (groundwater and building material) monitoring and sampling, operation and maintenance of the ASD system, which will be installed prior to occupancy, and procedures for post-remedial excavation, demolition, and related activities.

No significant redevelopment activities have occurred at the Site within the December 26, 2019 to April 26, 2021 reporting period. The Site is currently vacant and secured from public access by a 6-foot chain link fence. Some building demolition debris was generated (concrete, brick, and limestone foundation walls) was generated as part of redevelopment activities after the COC was issued and prior to the COVID-19 pandemic which halted the project. The Site was secured with perimeter fencing and is visited weekly to inspect the premises for vandals, trespassers, and maintain the perimeter fencing. The project team is currently assessing the project financing to restart the redevelopment in late 2021.

The areas surrounding the Site have not changed.

0092-016-001

3.0 **Remedy Performance**

A post-remedial site inspection and two (2) groundwater monitoring events (July 2020 and November 2020) were completed at the Site as required by the SMP during this reporting period. The site inspection involving a walk-over of the Site covered by this PRR was performed to visually observe and document the use of the Site for restricted residential, commercial, and/or industrial use, confirm absence of site groundwater use, inspect the cover system integrity, and verify conformance with other requirements under the SMP. The groundwater monitoring events involved sample collection for VOC analysis, as further discussed in Sections 4.2.4 and 4.3.

The Site is current vacant and secured from public access by a chain link fence. The Site is in compliance and functioning as intended in accordance with the SMP.

The results of the groundwater sampling, as further discussed in Section 4.3, generally indicate a decrease in cVOC concentrations compared to concentrations observed prior to remedial activities. Further monitoring will be completed as required by the SMP.

The completed IC/EC Certification forms and site photographs are included in Appendices A and B, respectively.

4.0 SITE MANAGEMENT PLAN

A site-wide SMP was prepared for the Site and approved by the Department in December 2019. Key components of the SMP are described below.

4.1 Institutional and Engineering Control (IC/EC) Plan

Since contaminated soil, groundwater, and soil vapor remains beneath the site, Institutional Controls and Engineering Controls (IC/ECs) are required to protect human health and the environment. The Engineering and Institutional Control Plan describes the procedures for the implementation and management of all IC/ECs at the Site. At the time of the site inspection, the Site is compliant with all institutional and engineering control requirements.

4.1.1 Institutional Controls (ICs)

The Site has a series of Institutional Controls in the form of site restrictions. Adherence to these Institutional Controls is required by the Environmental Easement. Site restrictions that apply to the Controlled Property are:

- The property may be used for: restricted residential; commercial, industrial use;
- The future parking area on the 1st floor will be restricted to use as a low occupancy area as defined in 40 CFR 761.3 prior to occupancy;
- All ECs must be operated and maintained as specified in this SMP;
- All ECs must be inspected at a frequency and in a manner defined in the SMP;
- The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Erie County Department of Health for industrial purposes, and the user must first notify and obtain written approval to do so from the Department;
- Groundwater and other environmental or public health monitoring must be performed as defined in this SMP;
- Data and information pertinent to site management must be reported at the frequency and in a manner as defined in this SMP;

- All future activities that will disturb remaining contaminated material must be conducted in accordance with this SMP;
- Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in this SMP;
- Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical component of the remedy shall be performed as defined in this SMP;
- Access to the Site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by the Environmental Easement;
- The potential for vapor intrusion must be evaluated for any buildings developed in the area within the IC boundaries noted on Figure 3, and any potential impacts that are identified must be monitored or mitigated; and
- Vegetable gardens and farming on the Site are prohibited.

4.1.2 Engineering Controls (ECs)

Engineering controls at the Site include:

- Cover System Exposure to remaining contamination in soil/fill at the Site is
 prevented by a final cover system placed over the site. This cover system is
 comprised of a minimum of 6-inches of existing asphalt pavement and
 subbase (northeastern exterior portion of the Site along former Burton Street),
 concrete-covered sidewalks, concrete building slabs, and 2-feet of crushed
 stone underlain by a demarcation layer (former sub-basement area and three
 (3) former oil-filled electrical equipment areas). The cover system must be
 maintained in compliance with the SMP.
- Suspended Concrete Slab Cap A concrete cap consisting of a minimum of 6-inches of concrete will be installed over the PCB-impacted suspended concrete slab in the future parking area prior to occupancy to prevent exposure to residual PCB-impacts in the suspended slab on the 1st floor. The cap must be maintained in compliance with the SMP.
- Active Sub-Slab Depressurization System An ASD system will be installed at the Site prior to building occupancy. The ASD system will be installed as outlined in the NYSDEC-approved ASD System Design Work Plan included as Appendix L of the SMP. NYSDEC will be notified prior to the start of

work activities related to the ASD system installation. Once installed, the ASD system must be operated and maintained in compliance with the Operation and Maintenance Plan, included in the SMP.

• The interior parking areas of the building, basement, and southwestern portion of the 1st floor will be outfitted with a dedicated ventilation system. The system will remove vapors/fumes associated with vehicle traffic generated inside the building and bring in outdoor ambient air. The ventilation system will be operated and maintained in accordance with the manufacturer's specifications while the interior areas are utilized for parking. Although considered an EC, this is not a remedial element under the BCP.

4.2 Excavation Work Plan

An Excavation Work Plan (EWP) was included in the NYSDEC-approved SMP for the Site. The EWP provides guidelines for the management of soil/fill material during intrusive actives. Future intrusive work that will penetrate the cover and/or cap, or encounter or disturb the remaining contamination, including any modifications or repairs to the existing cover system, will be performed in compliance with the EWP.

4.2.1 Site Redevelopment Activities

No significant redevelopment activities occurred during the past reporting period and the Site is currently vacant and secured by a chain-link fence.

Building debris was generated during the reporting period prior to the COVID-19 pandemic. The building debris remains on-site and was sampled by Benchmark-TurnKey, in accordance with the SMP, for off-site recycling. The data was sent to NYSDEC on March 17, 2020 and approved by NYSDEC for off-site recycling on March 20, 2020. The analytical data and correspondence are included in Appendix C. The material will be addressed once Site redevelopment activities resume.

4.2.2 Exported Materials

No materials were exported from the Site during the past reporting period.

4.2.3 Imported Materials

No materials were imported to the Site during the past reporting period.

4.3 Post-Remediation Media Monitoring and Sampling

Five (5) accessible on-site monitoring wells (RIMW-2, RIMW-4, RIMW-6, RIMW-9, and RIMW-10) and two (2) off-site monitoring wells (RIMW-11 and RIMW-12) were sampled in July 2020. In November 2020, only the five (5) accessible on-site monitoring wells were samples as RIMW-11 and RIMW-12 were removed from the SMP sampling program with NYSDEC permission (see correspondence in Appendix D) RIMW-7 was not sampled during either 2020 events due to the presence of building debris over the well location. RIMW-7 will be sampled during future events once this debris has been moved. The groundwater was sampled for Target Compound List (TCL) VOCs during both sampling events. The results of the groundwater sampling are summarized on Table 1 and Figure 5, and the laboratory reports are included in Appendix D. Table 1 includes the historic sample results from 2016 for MW-1 through MW-12, which represent pre-remedial conditions, and from 2019 for MWRI-2, RIMW-4, RIMW-6, RIMW-7, RIMW-9, RIMW-10, RIMW-11, and RIMW-12, which represent conditions immediately following groundwater injections, for comparative purposes. The results of the sampling are discussed below by location.

- RIMW-2: TCE was the only compound detected above its respective above its GWQS prior to remedial actions (11 ug/L) and has shown an approximate 44% decrease based on the average concentrations (6.1 ug/L) of the five (5) sample rounds completed since the remedial injections which have fluctuated from 4.8 to 7.8 ug/l.
- RIMW-4: cVOCs (cis-DCE, TCE, trans-DCE and VC) were detected above their respective GWQS. The total concentration of cVOCS prior to the remedial injections was 425 ug/L. The post-injection monitoring have generally shown a downward trend in total cVOC concentrations. The November 2020 results were 105 ug/L which is a 75% decrease in the total cVOC concentrations. Benzene was detected above its GWQS immediately after

groundwater injections at concentrations up to 32 ug/L but has been nondetect in the subsequent four (4) sampling events.

- RIMW-6: No VOCs were detected above GWQS before or after remedial actions.
- RIMW-7: This well was not sampled in 2020 due to demolition debris present over the well location. Four (4) cVOCs were detected above their respective GWQS in the last sample event in September 2019 (cis-DCE, trans-DCE, TCE, and VC). The total cVOC concentrations at this monitoring well, has not yet shown a decrease in concentration since the injections were completed. The total cVOCs concentrations pre-injection were 225.5 ug/l and the total cVOC concentrations from September 2019 were 253 ug/l.
- RIMW-9: There were no exceedances of the GWQS for the 3rd straight sampling event (September 2019, July 2020 and November 202) at this location.
- RIMW-10: No VOCs were detected above GWQS before or after remedial actions.
- RIMW-11: No parameters were detected above GWQS before or after remedial actions. RIMW-11 was not sampled during the November 2020 sampling event and will not be sampled during future monitoring events, per NYSDEC approval. See NYSDEC correspondence in Appendix D.
- RIMW-12: No parameters were detected above GWQS before or after remedial actions. RIMW-12 was not sampled during the November 2020 sampling event and will not be sampled during future monitoring events, per NYSDEC approval. See NYSDEC correspondence in Appendix D.

The results of the 2020 post-remediation groundwater sampling indicate there has been improvement in the groundwater quality at the Site since the remedial action have been completed. Groundwater monitoring will continue to be completed as required by the SMP.

4.4 Annual Inspection and Certification Program

The Annual Inspection and Certification Program outlines requirements for certifying and attesting that the institutional controls and engineering controls employed on the Site are unchanged from the original design and/or previous certification. The Annual

Certification includes a Site Inspection and completion of the NYSDEC's IC/EC Certification Form. The Site inspection is intended to verify that:

- the IC/ECs are in place, effective, performing as designed,
- nothing has occurred that would impair the ability of the controls to protect the public health and environment,
- nothing has occurred that would constitute a violation or failure to comply with any operation and maintenance plan for such controls, and
- access is available to the Site to evaluate continued maintenance of such controls.

Inspection of the Site was conducted by Mr. Christopher Boron. P.G. of TurnKey Environmental Restoration, LLC, a Qualified Environmental Professional (QEP) per 6NYCRR Part 375.12, on May 7, 2021. At the time of the inspection, no redevelopment activities were occurring, and the Site was vacant. The cover system was in place and functioning as designed. Any future redevelopment activities that disturb the existing cover system are subject to the NYSDEC-approved SMP.

As discussed in Section 4.2.1, building demolition debris is present on top of the cover system. This material, generated prior to the COVID-19 pandemic, has been approved by NYSDEC for off-site recycling and will be addressed when redevelopment activities restart at the Site (see Appendix D).

The completed Site Management Periodic Review Report Notice – Institutional and Engineering Controls Certification Form is included in Appendix A.

4.5 Operation, Monitoring and Maintenance Plan

4.5.1 Active Sub-slab Depressurization System

An ASD system will be installed within the building prior to occupancy. The ASD System will be installed in accordance with the NYSDEC-approved ASD System Design Work Plan on a design-build approach that will allow the ASD system to be built using performance-based testing during the installation. The NYSDEC-approved SMP will be revised after the ASD system is installed to add required information and the Operation and Maintenance Manual will be provided in Appendix J of the SMP. As required by the

Department-approved SMP, once installed and in operation, the ASD system must: (1) be operated continuously to maintain a negative pressure (below ambient atmospheric) under the floor slab; (2) be visually inspected periodically to verify proper operation; and (3) annually inspected and certified that the system is performing properly and remains an effective engineering control (EC).

4.5.2 Ventilation System

Although not a remedial element under the BCP, a dedicated ventilation system will be installed within the interior parking areas of the building, basement, and southwestern portion of the first floor. The ventilation system will be installed, operated, and maintained to meet design air change criteria.

5.0 CONCLUSIONS AND RECOMMENDATIONS

Conclusions for this reporting period and recommendations for the next reporting period are as follows:

- No significant redevelopment activities occurred during the past reporting period and the Site is currently vacant. The existing cover systems are intact and are performing as intended.
- Future redevelopment activities involving cover system modification or import/export of soil or stone materials will be subject to the SMP. In areas subject to redevelopment, Site access will be restricted via construction fencing and will be limited to authorized construction personnel.
- Groundwater sampling performed during the reporting period, as required by the SMP, indicates that there has been some improvement in the groundwater quality at the Site since remedial actions have been completed. Off-Site monitoring wells, MW-11 and MW-12 were approved by NYSDEC to be removed from the sampling program. Groundwater sampling will be continued as outlined in the SMP, except for off-site well modification.

6.0 DECLARATION/LIMITATION

Personnel under direct supervision of Benchmark-TurnKey conducted the annual site inspection for BCP Site No. C915281, located in Buffalo, New York, according to generally accepted practices. This report complied with the scope of work provided to 847 Main Street, LLC and 791 Washington Street, LLC by Benchmark-TurnKey.

This report has been prepared for the exclusive use of the 847 Main Street, LLC and 791 Washington Street, LLC. The contents of this report are limited to information available at the time of the site inspection. The findings herein may be relied upon only at the discretion of 847 Main Street, LLC and 791 Washington Street, LLC. Use of or reliance upon this report or its findings by any other person or entity is prohibited without written permission of Benchmark-TurnKey.

7.0 **References**

- 1. New York State Department of Environmental Conservation. DER-10; Technical Guidance for Site Investigation and Remediation. May 2010.
- 2. TurnKey Environmental Restoration, LLC. Remedial Investigation & Alternatives Analysis Work Plan, Former Trico Plant, 791 Washington Street, Buffalo, New York. August 2013, Revised October 2013.
- 3. Benchmark Environmental Engineering & Science, PLLC in association with TurnKey Environmental Restoration, LLC. *Remedial Investigation/Alternatives Analysis (RI/AA)* Report. Former Trico Plant, BCP Site No. C915281, Buffalo, New York. January 2017.
- 4. New York State Department of Environmental Conservation Division of Environmental Remediation. 6 NYCRR Part 375 Environmental Remediation Programs. December 2006.
- 5. New York State Department of Environmental Conservation Division of Water Technical and Operation Guidance. *Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.* June 1998.
- 6. New York State Department of Health. *Guidance for Evaluating Soil Vapor Intrusion in the State of New York*. October 2006 (and subsequent updates).
- 7. New York State Department of Environmental Conservation Division of Environmental Remediation. *Decision Document, Former Trico Plant, Brownfield Cleanup Program, Buffalo, Erie County, Site No. C915281.* July 2017.
- 8. Benchmark Environmental Engineering & Science, PLLC in association with TurnKey Environmental Restoration, LLC. *Remedial Action Work Plan, Former Trico Plant, BCP Site No. 915281, Buffalo, New York.* July 2017.
- 9. Benchmark Environmental Engineering & Science, PLLC. ASD System Design Work Plan, Former Trico Plant, 791 Washington Street, Buffalo, New York. November 2017.
- 10. Benchmark Environmental Engineering & Science, PLLC. Remedial Action Work Plan Addendum, Former Trico Plant, BCP Site C915281. December 2019.
- 11. Benchmark Environmental Engineering & Science, PLLC. Loading Dock Concrete & Soil Sampling Work Plan, Former Trico Plant (BCP Site No. C9152811). November 18, 2019.
- 12. Benchmark Environmental Engineering & Science, PLLC. Concrete-Slab Sampling Work Plan for Areas Formerly Containing Oil-filled Electrical Equipment, Former Trico Plant (BCP Site No. C915281). November 2019.
- 13. Benchmark Environmental Engineering & Science, PLLC in association with TurnKey Environmental Restoration, LLC. *Final Engineering Report, Former Trico Plant, BCP Site No. C915281, Buffalo, New York.* December 2019.

14. Benchmark Environmental Engineering & Science, PLLC in association with TurnKey Environmental Restoration, LLC. *Site Management Plan, Former Trico Plant, NYSDEC Site Number: C915281, Buffalo, New York.* December 2019.

TABLES

TABLE 1 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

GROUNDWATER MONITORING FORMER TRICO PLANT BUFFALO, NEW YORK

PARAMETER ¹	GWQS ²	RI MW-1			RI MW	-2			RI MW-3			RIM	IW-4			RI MW-5			RIN	/W-6			
		06/14/16	06/14/16	07/01/19	08/09/19	09/13/19	07/21/20	11/20/20	06/14/16	06/14/16	07/01/19	08/09/19	09/14/19	07/21/20	11/20/20	06/14/16	06/14/16	07/01/19	08/09/19	09/13/19	07/21/20	11/20/20	0
olatile Organic Compounds (\	/OCs) - ug/l	L																					
1,1-Dichloroethene	5	ND	0.6 J	ND																			
2-Butanone (MEK)	50	ND	ND	ND	11	ND	ND	ND	ND	ND	ND	14	ND	ND	ND	ND	ND	ND	10	ND	ND	ND	
Acetone	50	ND	44	ND	5.8 J	ND	ND	ND	3 J	3.2 J	ND	12	12	8.8 J	13 J	ND	3.8 J	ND	4.4 J	ND	ND	ND	
Benzene	1	ND	ND	1.0	ND	ND	ND	ND	0.73 J	ND	32	ND											
Carbon disulfide	120	ND	0.96 J	ND	0.56 J	0.98 J	3	ND	ND	0.38 J	ND	ND	ND	ND	ND	(
Chlorobenzene	5	ND	0.93 J	ND																			
Chloroethane	5	ND																					
Chloroform	7	ND																					
cis-1,2-Dichloroethene	5	ND	140	110	ND	120	180	34	ND	1.9	2.2	3.1	2.8	3.6	3.5	1							
Cyclohexane		ND																					
Methylcyclohexane		0.64 J	ND																				
Methyl tert butyl ether (MTBE)	10	ND	2 J	ND	ND	ND	ND	2.1 J	ND														
Methylene chloride	5	ND	2.7 J	ND																			
Styrene	5	ND																					
Tetrachloroethene	5	ND	C																				
Toluene	5	ND																					
trans-1,2-Dichloroethene	5	ND	200	160	ND	89	230 D	54	ND	1.3	1.5	2.2	ND	1.8 J	ND	- 1							
Trichloroethene	5	ND	11	4.4	6.1	5.3	6.8	7.8	ND	82	78	1.3	32	1.1 J	ND								
Vinyl chloride	2	ND	2.1	8.7	ND	9.3	73	17	ND														
Total cVOCs		0	11	4.4	6.1	5.3	6.8	7.8	0	424.7 J	356.7	1.3	250.3	484.1	105	0	3.2	3.7	5.3	2.8	5.4 J	3.5	2
Total VOCs		0.64	55.96	5.4	22.9	5.3	6.8	7.8	4.66	429.9 J	391.4	27.86	263.28	495.9	120.1	0	7.38	3.7	19.7	2.8	5.4 J	3.5	2
ield Measurements (Units as l	ndicated)																						
pH (units)	6.5 - 8.5	7.6	7.2	NA	7.39	7.33	7.3	7.04	7.5	7.5	NA	7.08	6.9	7.07	7.17	7.8	7.4	NA	7.74	7.53	7.55	7.49	
Temperature (oC)		11.3	8.9	NA	12.5	12.4	13.1	11.8	9.5	9.5	NA	12.9	13.7	15.5	11.7	10.2	9.4	NA	14.7	13.2	12.2	11.6	
Specific Conductance (uS)		1340	5180	NA	5199	5093	6784	5412	4762	3870	NA	3776	3889	3741	5831	3282	2350	NA	1643	2038	1914	2048	
Turbidity		>1000	131	NA	85.2	111	60.5	34.4	>1000	>1000	NA	>1000	>1000	>1000	>1000	>1000	47.9	NA	352	92.8	143	109	
DO (ppm)		2.61	5.24	NA	1.3	4.05	1.48	1.91	4.34	2.75	NA	2.01	1.11	1.48	3.15	3.44	4.98	NA	2.82	2.35	1.71	1.95	\square
ORP (mV)		-25	-248	NA	-63	-163	196	190	41	-58	NA	-200	-280	-125	-76	-34	-209	NA	-152	-106	-111	-57	

PARAMETER ¹ GWQS ²					RI	MW-9								RI MW-10	D					RI MI	W-11 ³		
		06/14/16	11/28/16	11/28/2016 - DUP	12/09/16	07/01/19	08/09/19	09/13/19	07/21/20	11/20/20	06/14/16	/14/2016 DUI	7/1/19	8/9/19	9/919	7/21/20	11/20/20	11/28/16	7/1/19	8/9/19	9/13/19	7/21/20	11/2
Volatile Organic Compounds (VOCs) - ug	/L																					
1,1-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NL
2-Butanone (MEK)	50	ND	ND	ND	ND	ND	11	23	4.1 J	ND	ND	2.4 J	ND	9.6 J	ND	ND	ND	ND	ND	8.6 J	ND	ND	NL
Acetone	50	16 J	6.7	5.8	ND	ND	5.5 J	20	26	28 J	20	19	ND	4.6 J	ND	ND	ND	3 J	ND	5.2 J	ND	ND	NL
Benzene	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.54	ND	ND	0.7	ND	N
Carbon disulfide	120	1.4 J	ND	ND	ND	0.23 J	0.22 J	ND	1.5	ND	1.9	1.9	ND	ND	ND	ND	ND	ND	0.27 J	0.65 J	ND	ND	N
Chlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N
Chloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.43 J	ND	ND	ND	ND	ND	ND	N
Chloroform	7	ND	ND	ND	ND	0.99 J	ND	ND	ND	ND	ND	ND	0.45 J	0.65 J	0.4 J	ND	ND	ND	ND	ND	ND	ND	N
cis-1,2-Dichloroethene	5	1.8 J	3.1	2.2 J	ND	ND	ND	ND	2.8	4.1	ND	ND	ND	ND	ND	ND	ND	2.8	1.1	1.4	2.7	2.2	N
Cyclohexane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N
Methylcyclohexane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N
Methyl tert butyl ether (MTBE)	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N
Methylene chloride	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.93 J	N
Styrene	5	3.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N
Tetrachloroethene	5	4,200	8.5	7.2	4.9	ND	0.38 J	1	0.68 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N
Toluene	5	ND	ND	ND	ND	0.71 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NL
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	N
Trichloroethene	5	7	1	0.74	0.45 J	11	7.8	4.2	3.7	ND	2.5	2.8	1.9	2.4	3.4	2	3.2	ND	ND	ND	ND	ND	N
Vinyl chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NL
Total cVOCs		4208.8	12.6	10.14	5.35	11.71	8.18	5.2	7.18 J	4.1 J	2.5	2.8	1.9	2.4	3.4	2	3.2	2.8	1.1	1.4	2.7	2.2	NL
Total VOCs		4229.5	19.3	15.94	5.35	12.93	24.9	48.2	38.78 J	32.1 J	24.4	26.1	2.35	17.25	3.8	2.43 J	3.2 J	6.34	1.37	15.85	3.4	3.13 J	NL
Field Measurements (Units as I	Indicated)	_																					
pH (units)	6.5 - 8.5	7.2	7.36	7.36	7.27	NA	6.49	6.99	7.24	7.44	7.1	7.1	NA	7.47	7.47	7.44	7.38	7.46	NA	7.4	7.5	7.44	NL
Temperature (oC)		10.5	10.1	10.1	10.8	NA	12.8	13	16	13.4	10.4	10.4	NA	13.6	13.6	13	12.6	8.4	NA	14.3	15.1	18.1	NL
Specific Conductance (uS)		1293	2503	2503	2407	NA	1568	2280	1840	1472	1016	1016	NA	1038	1043	1262	1193	2507	NA	2029	1976	2002	N
Turbidity		122	10	10	25.8	NA	57	422	401	92	41	41	NA	6.22	25.7	34.5	32.9	21.7	NA	43.1	73.1	69.6	NL
DO (ppm)		8.48	1.99	1.99	3.26	NA	0.96	0.67	0.91	1.39	7.39	7.39	NA	1.19	4.89	1.1	2.07	2.29	NA	1.54	1.63	0.49	NL
ORP (mV)		47	-88	-88	-12	NA	-135	-208	-174	-92	167	167	NA	-89	127	176	181	-92	NA	-230	-126	-143	NI
Notes:																							

Notes: 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds or analytes were reported as non-detect. 2. GWQS Values per NYSDEC Division of Water Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations - Class GA (TOGS 1.1.1) 3. Monitoring wells MW-11 and MW-12 no longer require monitoring per SMP Pg. 15 Section 3.2.3, 2nd bullet and NYSDEC e-mail acknowledgment on 11/16/20.

 Definitions:

 GWQS - Groundwater Quality Standard

 ND = Parameter not detected above laboratory detection limit.

 *--- * No value available for the parameter; Parameter not analysed for.

 NLS = No Longer Sampled per NYSDEC approval.

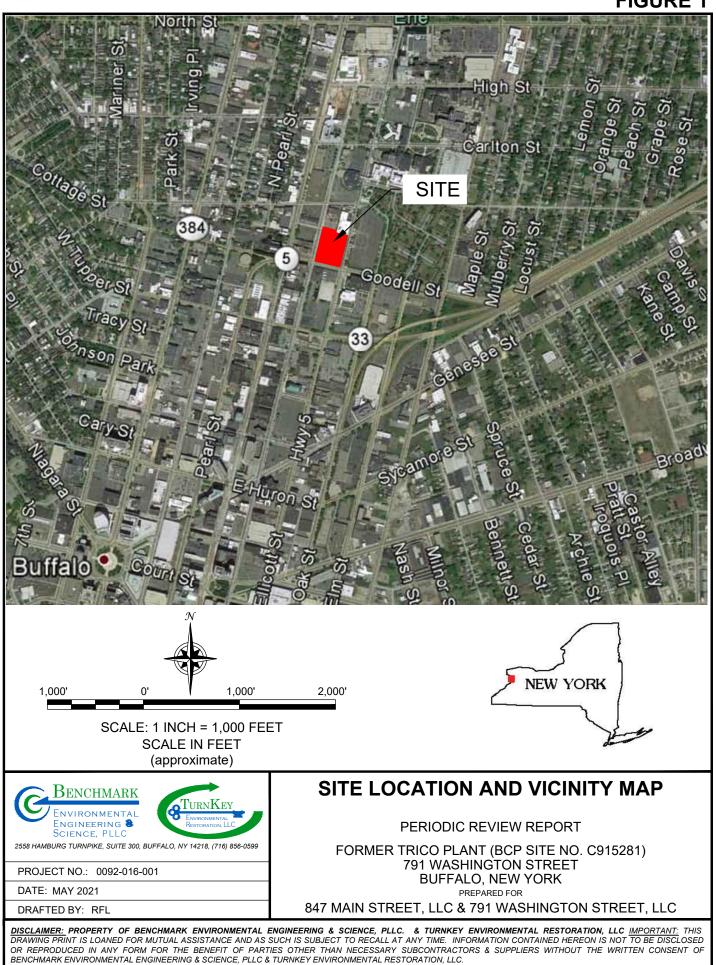
 B = Compound was found in the blank and the sample.

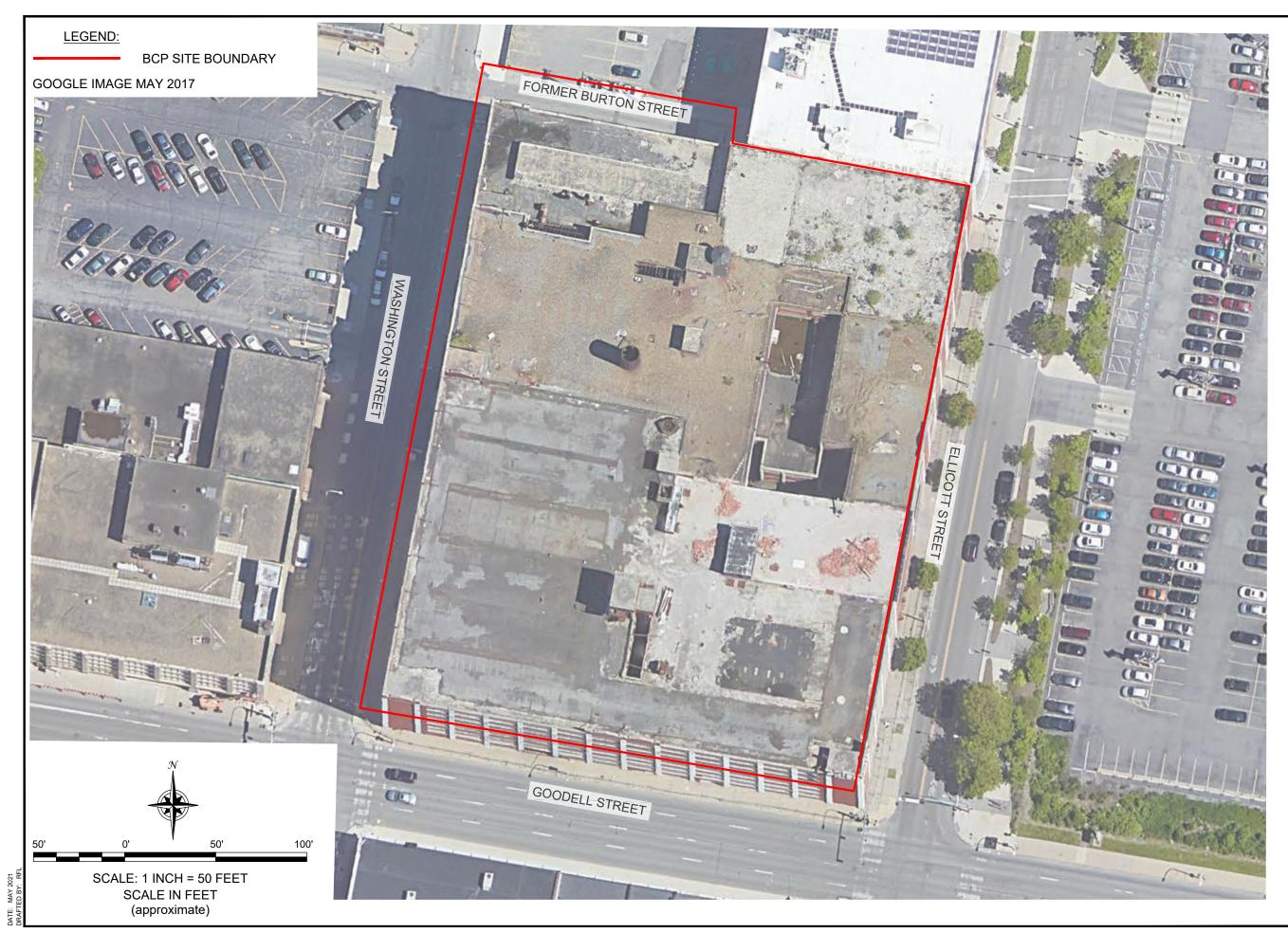
 F1 = MS and/or MSD Recovery is outside acceptance limits.

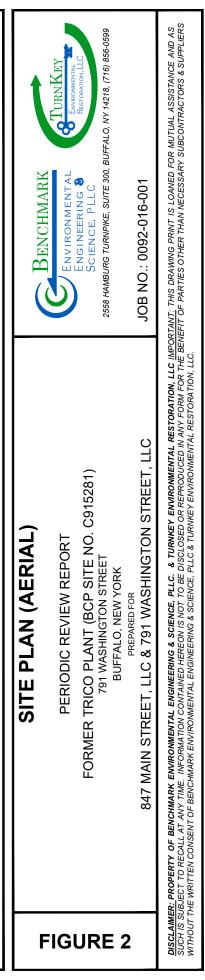
 F2 = MS/MSD RPD exceeds control limits.

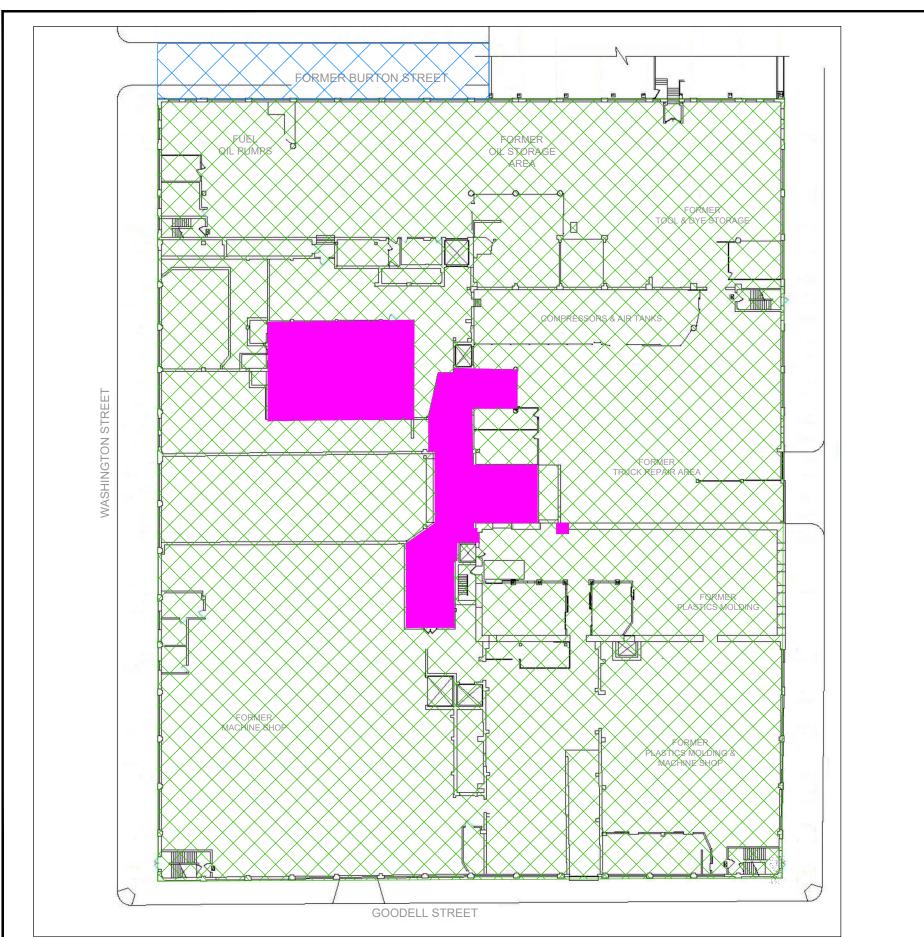
J = Estimated value; result is less than the reporting limit but greater than zero.
BOLD = Result exceeds GWQS.

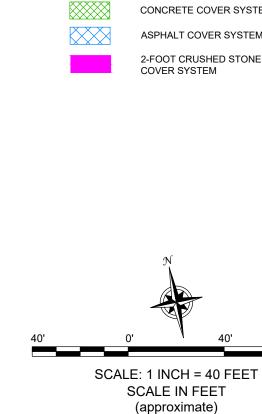
= Monitoring well location not included in the Site Management Plan monitoring program.



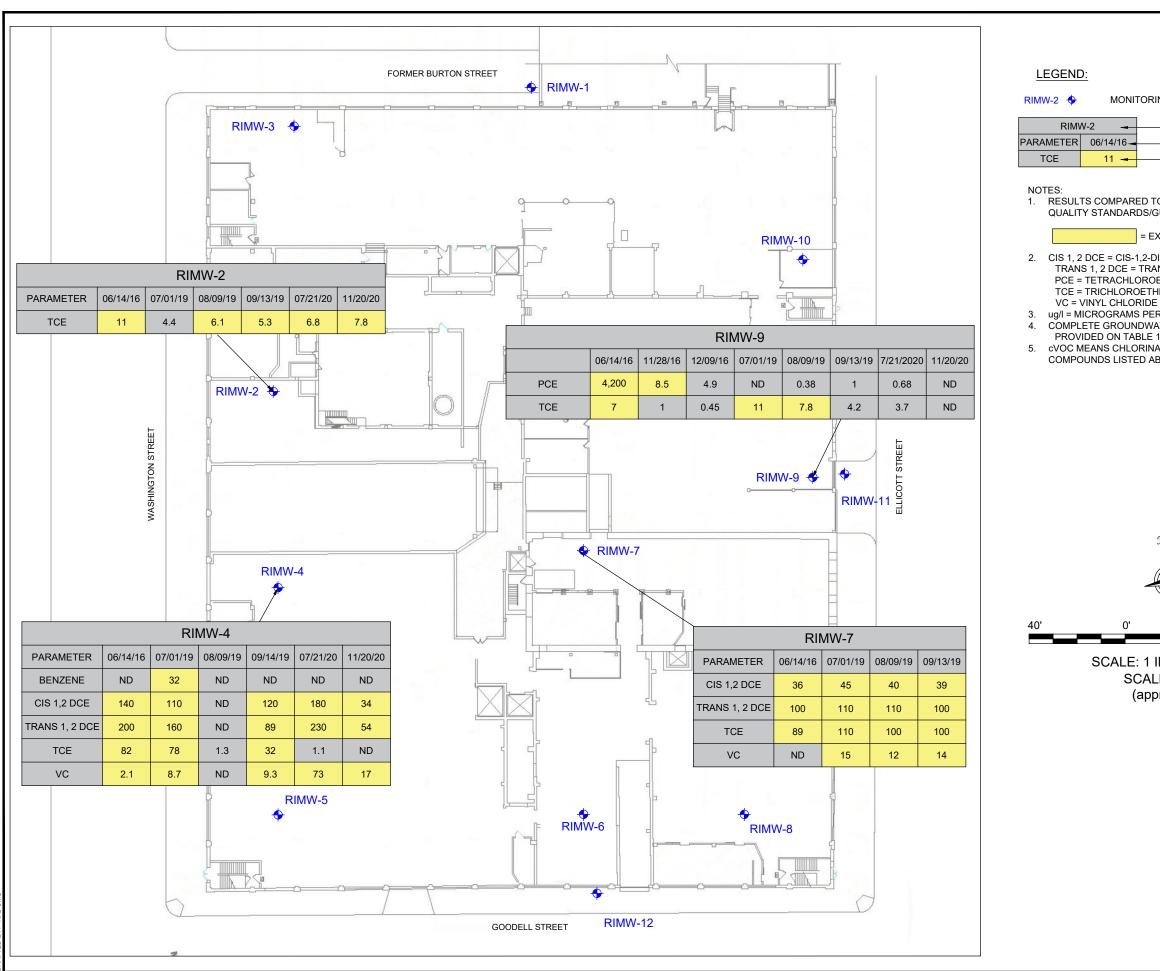

		RIM	IW-7			RI MW-8
06/14/16	07/01/19	08/09/19	09/13/19	07/21/20	11/20/20	06/14/16
		1		1		
ND	0.57 J	ND	ND			ND
ND 14	ND ND	12 J	ND ND			ND 4.3 J
14 ND	ND	6.8 J	ND			4.3 J ND
0.42 J	0.33	ND	ND			ND
ND	ND	ND	ND			ND
ND	ND	ND	ND			ND
ND	ND	ND	ND	Was Not	Was Not	ND
36 F1	45	40	39	Sampled Due to	Sampled Due to	ND
ND	ND	ND	ND	Bldg	Bldg	ND
ND	ND	ND	ND	Debris	Debris	ND
ND	ND	ND	ND	Over Well	Over Well	ND
ND ND	ND ND	ND ND	ND ND			ND ND
0.54 J	ND	ND	ND			ND
ND	0.53 J	ND	ND			ND
100 J	110 D	110	100			ND
89 J	110 D	100	100			ND
ND	15	12	14			ND
225.54	280.57	262	253			0
239.96	281.43	280.8 J	253			4.3
		1		1		
7.2	NA	6.72	6.63	NS	NS	7.5
9.5	NA	12.3	12.2	NS	NS	9.8
1793 113	NA	1797 57.3	1960 15.4	NS NS	NS NS	2184 172
5.34	NA	0.46	1.33	NS	NS	3.66
-70	NA	-251	-245	NS	NS	-204
10		201	240	110		204
			RI	MW-12 ³		
11/20/20	11/28/16	7/1/19	RI I 8/9/19	MW-12³ 9/13/19	7/21/20	11/20/20
			8/9/19	9/13/19		
NLS	ND	ND	8/9/19 ND	9/13/19 ND	ND	NLS
NLS NLS	ND ND	ND ND	8/9/19 ND 8.1 J	9/13/19 ND ND	ND ND	NLS NLS
NLS NLS NLS	ND ND 8.5	ND ND ND	8/9/19 ND 8.1 J 6.6 J	9/13/19 ND	ND ND ND	NLS NLS NLS
NLS NLS NLS NLS	ND ND 8.5 0.34 J	ND ND ND ND	8/9/19 ND 8.1 J 6.6 J 0.42 J	9/13/19 ND ND ND ND	ND ND ND ND	NLS NLS NLS NLS
NLS NLS NLS NLS NLS	ND ND 8.5	ND ND ND	8/9/19 ND 8.1 J 6.6 J	9/13/19 ND ND ND	ND ND ND ND ND	NLS NLS NLS NLS NLS
NLS NLS NLS NLS	ND ND 8.5 0.34 J ND	ND ND ND ND	8/9/19 ND 8.1 J 6.6 J 0.42 J ND	9/13/19 ND ND ND ND ND	ND ND ND ND	NLS NLS NLS NLS NLS NLS
NLS NLS NLS NLS NLS NLS	ND ND 8.5 0.34 J ND ND	ND ND ND ND ND ND	8/9/19 ND 8.1 J 6.6 J 0.42 J ND ND	9/13/19 ND ND ND ND ND ND	ND ND ND ND ND ND	NLS NLS NLS NLS NLS
NLS NLS NLS NLS NLS NLS NLS NLS NLS	ND ND 8.5 0.34 J ND ND ND ND ND	ND ND ND ND ND ND ND ND ND	8/9/19 ND 8.1 J 6.6 J 0.42 J ND ND ND	9/13/19 ND ND ND ND ND ND 1.6 F2	ND ND ND ND ND ND ND ND ND	NLS NLS NLS NLS NLS NLS NLS NLS NLS
NLS NLS NLS NLS NLS NLS NLS NLS NLS NLS	ND ND 8.5 0.34 J ND ND ND ND ND 0.28 J	ND ND ND ND ND ND ND ND ND ND	8/9/19 ND 8.1 J 6.6 J 0.42 J ND ND ND ND 2.5 ND	9/13/19 ND 1.6 F2 ND	ND ND ND ND ND ND ND ND ND ND	NLS NLS NLS NLS NLS NLS NLS NLS NLS NLS
NLS NLS NLS NLS NLS NLS NLS NLS NLS NLS	ND ND 8.5 0.34 J ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	8/9/19 ND 8.1 J 6.6 J 0.42 J ND ND ND ND 2.5 ND ND	9/13/19 ND 1.6 F2 ND ND	ND ND ND ND ND ND ND ND ND ND ND	NLS NLS NLS NLS NLS NLS NLS NLS NLS NLS
NLS NLS NLS NLS NLS NLS NLS NLS NLS NLS	ND ND 8.5 0.34 J ND ND ND ND ND 0.28 J ND ND	ND ND ND ND ND ND ND ND ND ND ND ND	8/9/19 ND 8.1 J 6.6 J 0.42 J ND ND ND 2.5 ND ND ND ND	9/13/19 ND ND ND ND ND ND ND ND ND 1.6 F2 ND	ND ND ND ND ND ND ND ND ND ND ND ND	NLS NLS NLS NLS NLS NLS NLS NLS NLS NLS
NLS NLS NLS NLS NLS NLS NLS NLS NLS NLS	ND ND 8.5 0.34 J ND ND ND 0.28 J ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND	8/9/19 ND 8.1 J 6.6 J 0.42 J ND ND ND ND ND ND ND ND ND ND	9/13/19 ND	ND ND ND ND ND ND ND ND ND ND ND ND ND	NLS NLS NLS NLS NLS NLS NLS NLS NLS NLS
NLS NLS NLS NLS NLS NLS NLS NLS NLS NLS	ND ND 8.5 0.34 J ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	8/9/19 ND 8.1 J 6.6 J 0.42 J ND ND ND ND ND ND ND ND ND ND	9/13/19 ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	NLS NLS NLS NLS NLS NLS NLS NLS NLS NLS
NLS NLS NLS NLS NLS NLS NLS NLS NLS NLS	ND ND 8.5 0.34 J ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	8/9/19 ND 8.1 J 6.6 J ND ND ND ND ND ND ND ND ND ND	9/13/19 ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	NLS NLS NLS NLS NLS NLS NLS NLS NLS NLS
NLS NLS NLS NLS NLS NLS NLS NLS NLS NLS	ND ND 8.5 0.34 J ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	8/9/19 ND 8.1 J 6.6 J 0.42 J ND ND ND ND ND ND ND ND ND ND	9/13/19 ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	NLS NLS NLS NLS NLS NLS NLS NLS NLS NLS
NLS NLS NLS NLS NLS NLS NLS NLS NLS NLS	ND ND 8.5 0.34 J ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	8/9/19 ND 8.1 J 6.6 J 0.42 J ND ND ND ND ND ND ND ND ND ND	9/13/19 PD PJ13/19 PD	ND ND ND ND ND ND ND ND ND ND ND ND ND N	NLS NLS NLS NLS NLS NLS NLS NLS NLS NLS
NLS NLS NLS NLS NLS NLS NLS NLS NLS NLS	ND ND 8.5 0.34 J ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	8/9/19 ND 8.1 J 6.6 J 0.42 J ND ND 2.5 ND ND ND ND ND ND ND ND ND N	9/13/19 PD	ND ND ND ND ND ND ND ND ND ND ND ND ND N	NLS NLS NLS NLS NLS NLS NLS NLS NLS NLS
NLS NLS NLS NLS NLS NLS NLS NLS NLS NLS	ND ND 8.5 0.34 J ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	8/9/19 ND R.1 J 6.6 J ND ND ND ND ND ND ND ND ND N	9/13/19 ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	NLS NLS NLS NLS NLS NLS NLS NLS NLS NLS
NLS NLS NLS NLS NLS NLS NLS NLS NLS NLS	ND ND 8.5 0.34 J ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	8/9/19 ND 8.1 J 6.6 J ND ND ND ND ND ND ND ND ND ND	9/13/19 ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	NLS NLS NLS NLS NLS NLS NLS NLS NLS NLS
NLS NLS NLS NLS NLS NLS NLS NLS NLS NLS	ND ND 8.5 0.34 J ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	8/9/19 ND R.1 J 6.6 J ND ND ND ND ND ND ND ND ND N	9/13/19 ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	NLS NLS NLS NLS NLS NLS NLS NLS NLS NLS
NLS NLS NLS NLS NLS NLS NLS NLS NLS NLS	ND ND 8.5 0.34 J ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	8/9/19 ND 8.1 J 6.6 J ND ND ND ND ND ND ND ND ND ND	9/13/19 ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	NLS NLS NLS NLS NLS NLS NLS NLS NLS NLS
NLS NLS NLS NLS NLS NLS NLS NLS NLS NLS	ND ND 8.5 0.34 J ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	8/9/19 ND 8.1 J 6.6 J 0.42 J ND ND ND ND ND ND ND ND ND ND	9/13/19 P)/13/19 P)/13/19 P)/10 P	ND ND ND ND ND ND ND ND ND ND ND ND ND N	NLS NLS NLS NLS NLS NLS NLS NLS NLS NLS
NLS NLS NLS NLS NLS NLS NLS NLS NLS NLS	ND ND 8.5 0.34 J ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	8/9/19 ND 8.1 J 6.6 J 0.42 J ND ND ND ND ND ND ND ND ND ND	9/13/19 ND ND ND ND ND ND ND ND ND ND	ND ND	NLS NLS NLS NLS NLS NLS NLS NLS NLS NLS
NLS NLS NLS NLS NLS NLS NLS NLS NLS NLS	ND ND 8.5 0.34 J ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	8/9/19 ND 8.1 J 6.6 J 0.42 J ND ND ND ND ND ND ND ND ND ND	9/13/19 P)13/19 P)13/19 P)2 P)2 P)2 P)2 P)2 P)2 P)2 P)2 P)2 P)	ND ND ND ND ND ND ND ND ND ND ND ND ND N	NLS NLS NLS NLS NLS NLS NLS NLS NLS NLS
NLS NLS NLS NLS NLS NLS NLS NLS NLS NLS	ND ND 8.5 0.34 J ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	8/9/19 ND 8.1 J 6.6 J 0.42 J ND ND ND ND ND ND ND ND ND ND	9/13/19 ND ND ND ND ND ND ND ND ND ND	ND ND	NLS NLS NLS NLS NLS NLS NLS NLS NLS NLS


FIGURES

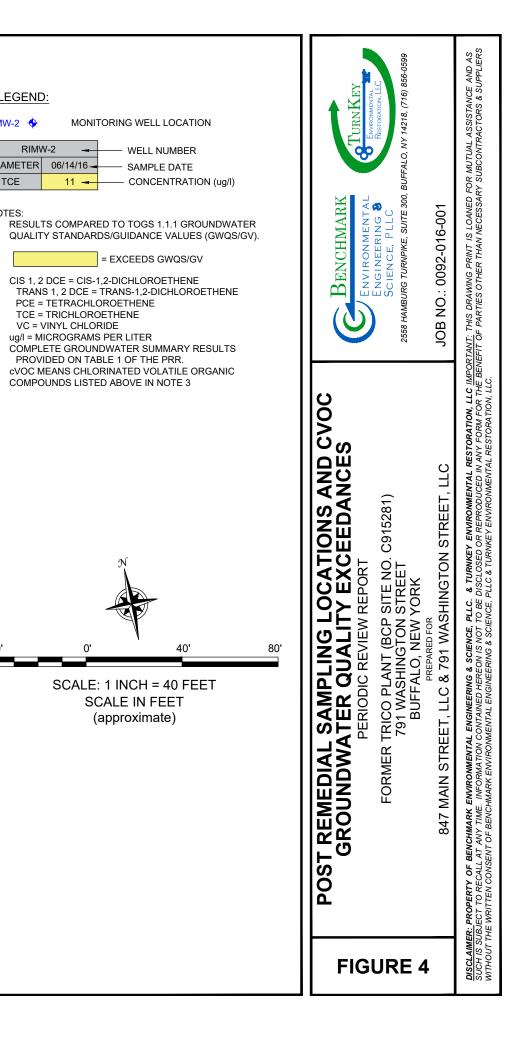



FIGURE 1

LEGEND:



ASPHALT COVER SYSTEM


2-FOOT CRUSHED STONE COVER SYSTEM

SCALE IN FEET (approximate)

F	SITE COVER SYSTEM MAP	BENCHMARK
-IG	SITE MANAGEMENT PLAN	
URE	FORMER TRICO PLANT (BCP SITE NO. C915281) 791 WASHINGTON STREET BUFFALO, NEW YORK	ENGINEERING S RESTORATION.LLC SCIENCE, PLLC 2558 HAMBURG TURNPIKE, SUITE 300, BUFFALO, NY 14218, (716) 856-0599
3	PREPARED FOR 847 MAIN STREET, LLC & 791 WASHINGTON STREET, LLC	JOB NO.: 0092-016-001
DISCLAIM SUCH IS S WITHOUT	DISCLAIMER: PROPERTY OF BENCHMARK ENVIRONMENTAL ENGINEERING & SCIENCE, PLLC. & TURNKEY ENVIRONMENTAL RESTORATION, LLC IMPORTANT: THIS DRAWING PRINT IS LOANED FOR MUTUAL ASSISTANCE AND AS SUCH IS SUBJECT TO RECALL AT ANY TIME. INFORMATION CONTAINED HEREON IS NOT TO BE DISCLOSED OR REPRODUCED IN ANY FORM FOR THE BENEFIT OF PARTIES OTHER THAN NECESSARY SUBCONTRACTORS & SUPPLIERS WITHOUT THE WRITTEN CONSENT OF BENCHMARK ENVIRONMENTAL ENGINEERING & SCIENCE, PLLC & TURNKEY ENVIRONMENTAL RESTORATION, LLC.	PLLC. & TURVKEY ENVIRONMENTAL RESTORATION, LLC IMPORTANT [.] THIS DRAWING PRINT IS LOANED FOR MUTUAL ASSISTANCE AND AS TO BE DISCLOSED OR REPRODUCED IN ANY FORM FOR THE <u>BENEFIT OF</u> PARTIES OTHER THAN NECESSARY SUBCONTRACTORS & SUPPLIERS ENCE, PLLC & TURNKEY ENVIRONMENTAL RESTORATION, LLC.

DATE: MAY 2021 DRAFTED BY: REI

PERIODIC REVIEW REPORT FORMER TRICO PLANT BCP SITE NO. C915281

APPENDIX A

INSTITUTIONAL & ENGINEERING CONTROLS CERTIFICATION FORMS

0092-016-001

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site	e No. C915281	Site Details	Box 1	
Site	e Name Former Trico Plant			
City Co	e Address: 791 Washington Street y/Town: Buffalo unty:Erie e Acreage: 2.110	Zip Code: 14203		
Re	porting Period: December 26, 2019 t	o April 26, 2021		
			YES	NO
1.	Is the information above correct?		Х	
	If NO, include handwritten above or	on a separate sheet.		
2.	Has some or all of the site property tax map amendment during this Rep	been sold, subdivided, merged, or undergone a porting Period?		X
3.	Has there been any change of use a (see 6NYCRR 375-1.11(d))?	at the site during this Reporting Period		х
4.	Have any federal, state, and/or local for or at the property during this Rep	I permits (e.g., building, discharge) been issued porting Period?		Х
		s 2 thru 4, include documentation or evidence viously submitted with this certification form.		
5.	Is the site currently undergoing deve	elopment?	Х	
			Box 2	
			YES	NO
6.	Is the current site use consistent wit Restricted-Residential, Commercial,		Х	
7.	Are all ICs in place and functioning a	as designed? X		
		QUESTION 6 OR 7 IS NO, sign and date below a IE REST OF THIS FORM. Otherwise continue.	and	
A C	Corrective Measures Work Plan must	t be submitted along with this form to address t	hese iss	ues.
Sia	nature of Owner, Remedial Party or De	esignated Representative Date		

		Box 2	Α
		YES	NO
8.	Has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid?		Х
	If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.		
9.	Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years)	Х	
	If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.		
SITE	NO. C915281	Box	x 3
	Description of Institutional Controls		
Parce 111.3	Owner Institutional Control 1-1-1.11 791 Washington Street, LLC	<u>bl</u>	
	Ground Water Use Soil Management I Landuse Restrictio Site Management O&M Plan IC/EC Plan	Plan n	tion
Droh	ibition of upp of groundwater		
. Res . Soil	ibition of use of groundwater. tricted Residential Use. Vapor Intrusion Evaluation for any future structures. Management or Excavation Work Plan for any future intrusive work.		
		Box	x 4
	Description of Engineering Controls		
Parce	Engineering Control		
	1-1-1.11 Vapor Mitigation Cover System		
. Ope	ration and Maintenance Plan for the Sub-slab Depressurization System.		

			Box 5
	Periodic Review Report (PRR) Certification Statements		
	I certify by checking "YES" below that:		
	a) the Periodic Review report and all attachments were prepared under the direction reviewed by, the party making the Engineering Control certification;	of,	and
	b) to the best of my knowledge and belief, the work and conclusions described in thi are in accordance with the requirements of the site remedial program, and generally		
	engineering practices; and the information presented is accurate and compete. YE	S	NO
	X		
	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of th following statements are true:	e	
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Departr	nen	İ;
	(b) nothing has occurred that would impair the ability of such Control, to protect publ the environment;	ic h	ealth an
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;		
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and	9	
	(e) if a financial assurance mechanism is required by the oversight document for the mechanism remains valid and sufficient for its intended purpose established in the do		
	YE	S	NO
	X		
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.		
/	A Corrective Measures Work Plan must be submitted along with this form to address these	iss	ues.
-	Signature of Owner, Remedial Party or Designated Representative Date	-	

Γ

IC CERTIFICATIONS SITE NO. C915281	Box 6
SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATUR I certify that all information and statements in Boxes 1,2, and 3 are true. I understan statement made herein is punishable as a Class "A" misdemeanor, pursuant to Secti Penal Law.	d that a false
I <u>PETER KROG</u> at <u>4 CENTRE DRIVE, orch</u> print name print business address	HARD PARK, MY
am certifying as OWNER (Owner	or Remedial Party)
for the Site named in the Site Details Section of this form. Signature of Owner, Remedial Party, or Designated Representative Date Rendering Certification	5/21

EC CERT	TIFICATIONS
Professional	Box 7 I Engineer Signature
I certify that all information in Boxes 4 and 5 are t punishable as a Class "A" misdemeanor, pursuar	true. I understand that a false statement made herein is nt to Section 210.45 of the Penal Law.
Thomas H. Forbes, P.E.	2558 Hamburg Turnpike, Suite 300, Buffalo NY 14218
print name	print business address
am certifying as a Professional Engineer for the _	Owner
Signature of Professional Engineer, for the Owne Remedial Party, Rendering Certification	er or Stamp (Required for PE)

F

APPENDIX B

PHOTOGRAPHIC LOG

SITE PHOTOGRAPHS

<image>

Photo 3:

- Photo 1: Asphalt cover system (Former Burton Street) on north side of building looking east.
- Photo 2: 2-foot crushed stone cover system over former subbasement in central portion of the building looking north.
- Photo 3: Concrete cover system (covered with plywood) in former loading dock area.
- Photo 4: 2-foot crushed stone cover system in former transformer room in central portion of the building, looking southwest.

SITE PHOTOGRAPHS

Photo 5:

Photo 6:

Photo 7:

Photo 8:

- Photo 5: Concrete cover system in norther portion of the building, looking west.
- Photo 6: Concrete cover system in southwestern portion of the building, looking northwest.
- Photo 7: Concrete cover system in the southeastern portion of the building, looking southeast.
- Photo 8: Concrete cover system in the southern central portion of the building, looking south. Location of MW-6 under 1 to 2inches of water due to rain.

PERIODIC REVIEW REPORT FORMER TRICO PLANT BCP SITE NO. C915281

APPENDIX C

DEMOLITION DEBRIS SAMPLING AND CORRESPONDENCE INFORMATION

0092-016-001

From:	Walia, Jaspal (DEC)
То:	Chris Z. Boron
Cc:	Tom H. Forbes; Michael McGuigan; Tom A. Behrendt
Subject:	RE: Former Trico Plant Demolition Debris
Date:	Friday, March 20, 2020 10:36:36 AM
Attachments:	image001.png

Chris,

I have reviewed the materials data. Based upon our conversation today and review of the data, the materials can be removed from the site to an acceptable facility.

Thanks,

Jaspal

From: Chris Z. Boron <cboron@bm-tk.com>
Sent: Tuesday, March 17, 2020 10:18 AM
To: Walia, Jaspal (DEC) <jaspal.walia@dec.ny.gov>
Cc: Tom H. Forbes <TForbes@bm-tk.com>; Michael McGuigan <mmcguigan@kroggrp.com>; Tom A.
Behrendt <TBehrendt@bm-tk.com>
Subject: Former Trico Plant Demolition Debris

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Hello Jaspal,

Hope all is well.

Some demolition debris has been generated at Trico from the on-going redevelopment activities. The concrete, brick, and block are from areas outside the former mass demolition area. As required by the Site Management Plan, representative composite samples were collected from the material and analyzed for PCBs. Benchmark collected the samples on February 21st. Wargo provided an excavator to dig into the piles and generate the 5-point composite samples. The attached photos show the three (3) areas of debris that were sampled. No material has been added to these piles since the sampling was completed.

We estimated that approximately 715 cubic yards of demo debris are present in the three (3) areas sampled. The analytical results are in the report titled L2007958. Demo Debris (DD) Comp #1 was collected from an estimated volume of 220 cyd, DD Comp #2 from an estimated volume of 215 cyds and DD Comp #3 from an estimated volume of 280 cyds. The PCB sample results were 0.319 mg/kg, 0.382 mg/kg, and 0.162 mg/kg, respectively, and the material is acceptable to be taken off-site for recycling. Similar to the mass demolition debris that had PCB concentration less than 1 mg/kg, the material will be taken to Iron City for recycling.

In addition to the demo debris, we also collected two (2) composite samples from the limestone blocks that was used to construct the wall in the old icehouse that will be removed. The analytical results are in the report titled L2009474. Sample LS-North had a PCB result of 0.32 mg/kg and LS-

South had a PCB result of 0.0165 mg/kg. The PCB concentrations are less than 1 mg/kg and the material is acceptable to be taken off-site for recycling (Iron City).

We would like to Department's approval to remove these materials from the Site. Please let us know if you have any questions or would like to discuss.

Regards,

Christopher Boron, P.G.

Sr. Project Manager

BENCHMARK TURNKEY

Strong Advocates | Effective Solutions | Integrated Implementation 2558 Hamburg Turnpike, Suite 300, Buffalo, NY 14218 Phone: (716) 856-0599, Cell Phone: (716) 864-2726 www.benchmarkturnkey.com

DISCLAIMERS:

<u>Confidentiality Notice</u>: The information contained in this message is intended only for the use of the addressee, and may be confidential and/or privileged. If the reader of this message is not the intended recipient, or the employee or agent responsible to deliver it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in error, please notify the sender immediately.


<u>Virus Warning</u>: While reasonable precautions have been taken to protect against viruses in this message, we accept no responsibility for any damages arising from the potential presence of such viruses.

<u>Contracts:</u> Nothing in this message shall be construed as legally binding upon Benchmark or TurnKey.

<u>Professional Opinions</u>: Views expressed in this message may only be relied upon as professional opinion if and when provided by principals of the Companies to authorized representatives of the organization with which we have an active client-engineer relationship and when directly pertaining to a binding contract scope of work. <u>DISCLAIMERS</u>:

<u>Confidentiality Notice</u>: The information contained in this message is intended only for the use of the addressee, and may be confidential and/or privileged. If the reader of this message is not the intended recipient, or the employee or agent responsible to deliver it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in error, please notify the sender immediately.

Virus Warning: While reasonable precautions have been taken to protect against viruses in

ANALYTICAL REPORT

Lab Number:	L2007958
Client:	Benchmark & Turnkey Companies
	2558 Hamburg Turnpike
	Suite 300
	Buffalo, NY 14218
ATTN:	Chris Boron
Phone:	(716) 856-0599
Project Name:	FORMER TRICO PLANT
Project Number:	0092-016-001-006-06B
Report Date:	02/28/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:02282010:44

Project Name:	FORMER TRICO PLANT
Project Number:	0092-016-001-006-06B

 Lab Number:
 L2007958

 Report Date:
 02/28/20

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2007958-01	DD COMP #1 2/21/20	BRICK	BUFFALO	02/21/20 12:10	02/21/20
L2007958-02	DD COMP #2 2/21/20	BRICK	BUFFALO	02/21/20 12:15	02/21/20
L2007958-03	DD COMP #3 2/21/20	BRICK	BUFFALO	02/21/20 12:20	02/21/20

Project Name:FORMER TRICO PLANTProject Number:0092-016-001-006-06B

Lab Number: L2007958 Report Date: 02/28/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name:FORMER TRICO PLANTProject Number:0092-016-001-006-06B

 Lab Number:
 L2007958

 Report Date:
 02/28/20

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Curlen Walker Cristin Walker

Title: Technical Director/Representative

Date: 02/28/20

ORGANICS

PCBS

			Serial_No	:02282010:44
Project Name:	FORMER TRICO PLANT		Lab Number:	L2007958
Project Number:	0092-016-001-006-06B		Report Date:	02/28/20
		SAMPLE RESULTS		
Lab ID:	L2007958-01		Date Collected:	02/21/20 12:10
Client ID:	DD COMP #1 2/21/20		Date Received:	02/21/20
Sample Location:	BUFFALO		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Brick		Extraction Method	: EPA 3540C
Analytical Method:	1,8082A		Extraction Date:	02/24/20 08:35
Analytical Date:	02/25/20 13:32		Cleanup Method:	EPA 3665A
Analyst:	AWS		Cleanup Date:	02/25/20
Percent Solids:	96%		Cleanup Method:	EPA 3660B
			Cleanup Date:	02/25/20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column				
Polychlorinated Biphenyls by GC - W	Polychlorinated Biphenyls by GC - Westborough Lab										
Aroclor 1016	ND		ug/kg	91.0	8.08	1	A				
Aroclor 1221	ND		ug/kg	91.0	9.12	1	А				
Aroclor 1232	ND		ug/kg	91.0	19.3	1	А				
Aroclor 1242	ND		ug/kg	91.0	12.3	1	А				
Aroclor 1248	286		ug/kg	91.0	13.6	1	А				
Aroclor 1254	ND		ug/kg	91.0	9.96	1	А				
Aroclor 1260	32.6	J	ug/kg	91.0	16.8	1	В				
Aroclor 1262	ND		ug/kg	91.0	11.6	1	А				
Aroclor 1268	ND		ug/kg	91.0	9.43	1	А				
PCBs, Total	319	J	ug/kg	91.0	8.08	1	В				

Surregete	0/ D	0	Acceptance	<u>.</u>
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	55		30-150	А
Decachlorobiphenyl	47		30-150	А
2,4,5,6-Tetrachloro-m-xylene	55		30-150	В
Decachlorobiphenyl	48		30-150	В

			Serial_No	:02282010:44
Project Name:	FORMER TRICO PLANT		Lab Number:	L2007958
Project Number:	0092-016-001-006-06B		Report Date:	02/28/20
		SAMPLE RESULTS		
Lab ID:	L2007958-02		Date Collected:	02/21/20 12:15
Client ID:	DD COMP #2 2/21/20		Date Received:	02/21/20
Sample Location:	BUFFALO		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Brick		Extraction Method	: EPA 3540C
Analytical Method:	1,8082A		Extraction Date:	02/24/20 08:35
Analytical Date:	02/25/20 13:44		Cleanup Method:	EPA 3665A
Analyst:	AWS		Cleanup Date:	02/25/20
Percent Solids:	95%		Cleanup Method:	EPA 3660B
			Cleanup Date:	02/25/20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - W	estborough Lab						
Aroclor 1016	ND		ug/kg	88.9	7.90	1	А
Aroclor 1221	ND		ug/kg	88.9	8.91	1	A
Aroclor 1232	ND		ug/kg	88.9	18.8	1	A
Aroclor 1242	ND		ug/kg	88.9	12.0	1	А
Aroclor 1248	183		ug/kg	88.9	13.3	1	А
Aroclor 1254	154		ug/kg	88.9	9.73	1	В
Aroclor 1260	44.6	J	ug/kg	88.9	16.4	1	А
Aroclor 1262	ND		ug/kg	88.9	11.3	1	А
Aroclor 1268	ND		ug/kg	88.9	9.21	1	А
PCBs, Total	382	J	ug/kg	88.9	7.90	1	В

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	71		30-150	A
Decachlorobiphenyl	61		30-150	A
2,4,5,6-Tetrachloro-m-xylene	70		30-150	В
Decachlorobiphenyl	59		30-150	В

			Serial_No	0:02282010:44
Project Name:	FORMER TRICO PLANT		Lab Number:	L2007958
Project Number:	0092-016-001-006-06B		Report Date:	02/28/20
		SAMPLE RESULTS		
Lab ID:	L2007958-03		Date Collected:	02/21/20 12:20
Client ID:	DD COMP #3 2/21/20		Date Received:	02/21/20
Sample Location:	BUFFALO		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Brick		Extraction Method	I: EPA 3540C
Analytical Method:	1,8082A		Extraction Date:	02/24/20 08:35
Analytical Date:	02/25/20 13:56		Cleanup Method:	EPA 3665A
Analyst:	AWS		Cleanup Date:	02/25/20
Percent Solids:	95%		Cleanup Method:	EPA 3660B
			Cleanup Date:	02/25/20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - W	estborough Lab						
Aroclor 1016	ND			90.8	8.06	1	А
			ug/kg			1	
Aroclor 1221	ND		ug/kg	90.8	9.10	1	A
Aroclor 1232	ND		ug/kg	90.8	19.2	1	A
Aroclor 1242	ND		ug/kg	90.8	12.2	1	А
Aroclor 1248	162		ug/kg	90.8	13.6	1	А
Aroclor 1254	ND		ug/kg	90.8	9.93	1	А
Aroclor 1260	ND		ug/kg	90.8	16.8	1	А
Aroclor 1262	ND		ug/kg	90.8	11.5	1	А
Aroclor 1268	ND		ug/kg	90.8	9.41	1	А
PCBs, Total	162		ug/kg	90.8	8.06	1	А

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	55		30-150	А
Decachlorobiphenyl	49		30-150	А
2,4,5,6-Tetrachloro-m-xylene	55		30-150	В
Decachlorobiphenyl	49		30-150	В

L2007958

02/28/20

Lab Number:

Report Date:

Project Name:	FORMER TRICO PLANT

Project Number: 0092-016-001-006-06B

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst: 1,8082A 02/25/20 12:57 AWS Extraction Method:EPA 3540CExtraction Date:02/24/20 08:35Cleanup Method:EPA 3665ACleanup Date:02/25/20Cleanup Method:EPA 3660BCleanup Date:02/25/20

Parameter	Result	Qualifier	Units	RL		MDL	Column
Polychlorinated Biphenyls by GC -	Westborough	Lab for s	ample(s):	01-03	Batch:	WG134	13716-1
Aroclor 1016	ND		ug/kg	96.3		8.55	A
Aroclor 1221	ND		ug/kg	96.3		9.65	A
Aroclor 1232	ND		ug/kg	96.3		20.4	А
Aroclor 1242	ND		ug/kg	96.3		13.0	А
Aroclor 1248	ND		ug/kg	96.3		14.4	А
Aroclor 1254	ND		ug/kg	96.3		10.5	А
Aroclor 1260	ND		ug/kg	96.3		17.8	А
Aroclor 1262	ND		ug/kg	96.3		12.2	А
Aroclor 1268	ND		ug/kg	96.3		9.98	А
PCBs, Total	ND		ug/kg	96.3		8.55	А

		Acceptance				
Surrogate	%Recovery Q	ualifier	Criteria	Column		
2,4,5,6-Tetrachloro-m-xylene	61		30-150	٨		
	-			A		
Decachlorobiphenyl	51		30-150	A		
2,4,5,6-Tetrachloro-m-xylene	61		30-150	В		
Decachlorobiphenyl	51		30-150	В		

Lab Control Sample Analysis Batch Quality Control

Project Name: FORMER TRICO PLANT

 Lab Number:
 L2007958

 Report Date:
 02/28/20

Project Number: 0092-016-001-006-06B

LCS LCSD %Recovery RPD %Recovery %Recovery Limits Parameter Qual Qual Limits RPD Qual Column Polychlorinated Biphenyls by GC - Westborough Lab Associated sample(s): 01-03 Batch: WG1343716-2 WG1343716-3 Aroclor 1016 68 64 40-140 6 50 А 59 54 40-140 Aroclor 1260 9 50 А

	LCS	LCSD	Acceptance
Surrogate	%Recovery	Qual %Recovery Qual	Criteria Column
2,4,5,6-Tetrachloro-m-xylene	67	58	30-150 A
Decachlorobiphenyl	57	51	30-150 A
2,4,5,6-Tetrachloro-m-xylene	65	57	30-150 B
Decachlorobiphenyl	57	50	30-150 B

INORGANICS & MISCELLANEOUS

Project Name: Project Number:	FORMER TRI 0092-016-001							lumber: rt Date:	L2007958 02/28/20	
				SAMPLE	RESUL	rs				
Lab ID:	L2007958-01						Date	Collected:	02/21/20 12:10)
Client ID:	DD COMP #1 2/21/20				Date I	Received:	02/21/20			
Sample Location:	BUFFALO						Field	Prep:	Not Specified	
Sample Depth:										
Matrix:	Brick									
Parameter	Result G	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analys
eneral Chemistry - We	stborough Lab									
lids, Total	95.7		%	0.100	NA	1	-	02/22/20 12:4	45 121,2540G	RI

Project Name: Project Number:	FORMER TRICO 0092-016-001-006						lumber: rt Date:	L2007958 02/28/20	
			SAMPLE	RESUL	TS				
Lab ID:	L2007958-02					Date	Collected:	02/21/20 12:15	5
Client ID:	DD COMP #2 2/21/20					Date	Date Received: (
Sample Location:	BUFFALO					Field	Prep:	Not Specified	
Sample Depth:									
Matrix:	Brick								
Parameter	Result Quali	ier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analys
eneral Chemistry - We	stborough Lab								
lids, Total	94.8	%	0.100	NA	1	-	02/22/20 12:	45 121,2540G	RI

Project Name:	FORMER TRICO	PLANT				Lab N	lumber:	L2007958	
Project Number:	0092-016-001-006	-06B				Repo	rt Date:	02/28/20	
			SAMPLE	RESUL	TS				
Lab ID:	L2007958-03					Date	Collected:	02/21/20 12:20)
Client ID:	DD COMP #3 2/21/20					Date	Received:	02/21/20	
Sample Location:	BUFFALO					Field	Prep:	Not Specified	
Sample Depth:									
Matrix:	Brick								
Parameter	Result Qualif	ier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
eneral Chemistry - We	stborough Lab								
lids, Total	95.1	%	0.100	NA	1	_	02/22/20 12:4	5 121,2540G	RI

Project Name: Project Number:	FORMER TRICO PLANT 0092-016-001-006-06B	Lab Duplicate Analysis Batch Quality Control				ab Numbe eport Date	22007330	
Parameter		Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits	

. .

. .

- -

. .

		Duplicate Gumple			
General Chemistry - Westborough Lab Associated sa	ample(s): 01-03 QC Bat	ch ID: WG1343446-1	QC Sample: I	L2007965-01	Client ID: DUP Sample
Solids, Total	96.7	96.9	%	0	20

Project Name:FORMER TRICO PLANTProject Number:0092-016-001-006-06B

Serial_No:02282010:44 *Lab Number:* L2007958 *Report Date:* 02/28/20

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
A	Absent

Container Information

Container Info	rmation		Initial	Final	Temp			Frozen			
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)		
L2007958-01A	Glass 120ml/4oz unpreserved	А	NA		5.3	Y	Absent		TS(7),NYTCL-8082-CNCRT(14)		
L2007958-02A	Glass 120ml/4oz unpreserved	А	NA		5.3	Y	Absent		TS(7),NYTCL-8082-CNCRT(14)		
L2007958-03A	Glass 120ml/4oz unpreserved	А	NA		5.3	Y	Absent		TS(7),NYTCL-8082-CNCRT(14)		

Project Name: FORMER TRICO PLANT

Project Number: 0092-016-001-006-06B

Lab Number: L2007958

Report Date: 02/28/20

GLOSSARY

Acronyms

Acronyms	
DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.
Footnotes	

Footnotes

Report Format: DU Report with 'J' Qualifiers

Project Name: FORMER TRICO PLANT

Project Number: 0092-016-001-006-06B

Lab Number: L2007958 Report Date: 02/28/20

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum. Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte applies to associated field samples that have detectable concentrations of the analyte applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration

Report Format: DU Report with 'J' Qualifiers

Project Name: FORMER TRICO PLANT

Project Number: 0092-016-001-006-06B

Lab Number: L2007958 Report Date: 02/28/20

Data Qualifiers

Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)

- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Project Name: FORMER TRICO PLANT Project Number: 0092-016-001-006-06B
 Lab Number:
 L2007958

 Report Date:
 02/28/20

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene
EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.
EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.
SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.
Mansfield Facility
SM 2540D: TSS
EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.
EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.
EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Westborough, MA 01561 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Farbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Service Centers Mahwah, NJ 07430: 35 White Albany, NY 12205: 14 Walke Tonawanda, NY 14150: 275 (Project Information Project Name:	r Way			ge of /	Deliv	Date Re in La /erables ASP-A		-	120	Billing Information	8
Client Information	En	Project Location:	-016-00					EQuIS (Other			чв uIS (4 File)	Same as Client Info	
Address: 2558 H Luden N Phone: (7/6) 81 Fax: (7/6) 850 Email: These samples have be	V 14218 8-8358 6-0583	Project Manager: ALPHAQuote #: Turn-Around Time Standar Rush (only if pre approve	Aris t	Due Dat # of Day	23			NY TOGS AWQ Star NY Restric NY Unrest NYC Sewe	ndards	NY F	1985.M	Disposal Site Information Please identify below location applicable disposal facilities. Disposal Facility: NJ NY Other:	of
Other project specific	requirements/commo	ents:					ANAL	1515				Sample Filtration	
Please specify Metals of ALPHA Lab ID	or TAL.	CAT B	1				2Bs					Lab to do Preservation Lab to do (Please Specify below)	I a l B o
(Lab Use Only)		ple ID	Date	ection Time	Sample Matrix	Sampler's Initials	1-						1
-02 -02	DD Compt DD Compt DD Compt	12 2/21/20	2/21/20	1210	+Brick +Brick +Brick +Brick	TA3	XX					Sample Specific Comments	0 1
	115 			1220	+ Orick	4	×		\square				i
													F
Preservative Code: Co	ntainer Code							_					
A = None P = B = HCI A = C = HNO ₃ V = D = H ₂ SO ₄ G =	= Plastic V	/estboro: Certification No lansfield: Certification No				ainer Type eservative	A					Please print clearly, legibly and completely. Samples of not be logged in and	can
F = MeOH C = G = NaHSO ₄ O = H = Na ₂ S ₂ O ₃ E =	Cube Other Encore BOD Bottle	Relinquished By: Date/Tin Thy Action 2/21/20 14 Do 2/21/20				A Received By:		100	Date/	Time 1545 c) 00`[0	not be logged in and turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING THIS COC, THE CLIENT		

ANALYTICAL REPORT

Lab Number:	L2009474
Client:	Benchmark & Turnkey Companies
	2558 Hamburg Turnpike
	Suite 300
	Buffalo, NY 14218
ATTN:	Chris Boron
Phone:	(716) 856-0599
Project Name:	FORMER TRICO PLANT
Project Number:	B0092-016-001-006-06
Report Date:	03/10/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:03102010:28

Project Name:	FORMER TRICO PLANT
Project Number:	B0092-016-001-006-06

 Lab Number:
 L2009474

 Report Date:
 03/10/20

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2009474-01	LS-NORTH 3/3/20	SOLID	BUFFALO	03/03/20 10:50	03/03/20
L2009474-02	LS-SOUTH 3/3/20	SOLID	BUFFALO	03/03/20 11:00	03/03/20

Project Name:FORMER TRICO PLANTProject Number:B0092-016-001-006-06

Lab Number: L2009474 Report Date: 03/10/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name:FORMER TRICO PLANTProject Number:B0092-016-001-006-06

 Lab Number:
 L2009474

 Report Date:
 03/10/20

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Melissa Sturgis Melissa Sturgis

Authorized Signature:

Title: Technical Director/Representative

Date: 03/10/20

ORGANICS

PCBS

			Serial_No	:03102010:28
Project Name:	FORMER TRICO PLANT		Lab Number:	L2009474
Project Number:	B0092-016-001-006-06		Report Date:	03/10/20
		SAMPLE RESULTS		
Lab ID:	L2009474-01		Date Collected:	03/03/20 10:50
Client ID:	LS-NORTH 3/3/20		Date Received:	03/03/20
Sample Location:	BUFFALO		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Solid		Extraction Method	: EPA 3540C
Analytical Method:	1,8082A		Extraction Date:	03/07/20 11:40
Analytical Date:	03/08/20 23:46		Cleanup Method:	EPA 3665A
Analyst:	CW		Cleanup Date:	03/08/20
Percent Solids:	98%		Cleanup Method:	EPA 3660B
			Cleanup Date:	03/08/20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column		
Polychlorinated Biphenyls by GC - Westborough Lab									
						_			
Aroclor 1016	ND		ug/kg	93.2	8.28	1	A		
Aroclor 1221	ND		ug/kg	93.2	9.34	1	А		
Aroclor 1232	ND		ug/kg	93.2	19.8	1	А		
Aroclor 1242	ND		ug/kg	93.2	12.6	1	А		
Aroclor 1248	280		ug/kg	93.2	14.0	1	В		
Aroclor 1254	ND		ug/kg	93.2	10.2	1	А		
Aroclor 1260	39.9	J	ug/kg	93.2	17.2	1	В		
Aroclor 1262	ND		ug/kg	93.2	11.8	1	А		
Aroclor 1268	ND		ug/kg	93.2	9.66	1	А		
PCBs, Total	320	J	ug/kg	93.2	8.28	1	В		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	60		30-150	Α
Decachlorobiphenyl	67		30-150	A
2,4,5,6-Tetrachloro-m-xylene	63		30-150	В
Decachlorobiphenyl	72		30-150	В

			Serial_No	:03102010:28
Project Name:	FORMER TRICO PLANT		Lab Number:	L2009474
Project Number:	B0092-016-001-006-06		Report Date:	03/10/20
		SAMPLE RESULTS		
Lab ID:	L2009474-02		Date Collected:	03/03/20 11:00
Client ID:	LS-SOUTH 3/3/20		Date Received:	03/03/20
Sample Location:	BUFFALO		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Solid		Extraction Method	I: EPA 3540C
Analytical Method:	1,8082A		Extraction Date:	03/07/20 11:40
Analytical Date:	03/08/20 23:58		Cleanup Method:	EPA 3665A
Analyst:	CW		Cleanup Date:	03/08/20
Percent Solids:	98%		Cleanup Method:	EPA 3660B
			Cleanup Date:	03/08/20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - V	Vestborough Lab						
Aroclor 1016	ND		ug/kg	99.8	8.87	1	A
Aroclor 1221	ND		ug/kg	99.8	10.0	1	А
Aroclor 1232	ND		ug/kg	99.8	21.2	1	А
Aroclor 1242	ND		ug/kg	99.8	13.5	1	А
Aroclor 1248	16.5	J	ug/kg	99.8	15.0	1	В
Aroclor 1254	ND		ug/kg	99.8	10.9	1	А
Aroclor 1260	ND		ug/kg	99.8	18.4	1	А
Aroclor 1262	ND		ug/kg	99.8	12.7	1	А
Aroclor 1268	ND		ug/kg	99.8	10.3	1	А
PCBs, Total	16.5	J	ug/kg	99.8	8.87	1	В

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	57		30-150	А
Decachlorobiphenyl	57		30-150	А
2,4,5,6-Tetrachloro-m-xylene	62		30-150	В
Decachlorobiphenyl	63		30-150	В

L2009474

03/10/20

Lab Number:

Report Date:

Project Name:	FORMER TRICO PLANT

Project Number: B0092-016-001-006-06

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst: 1,8082A 03/09/20 00:10 CW Extraction Method:EPA 3540CExtraction Date:03/07/20 11:40Cleanup Method:EPA 3665ACleanup Date:03/08/20Cleanup Method:EPA 3660BCleanup Date:03/08/20

Parameter	Result	Qualifier	Units	RL		MDL	Column
Polychlorinated Biphenyls by GC -	Westborough	h Lab for s	ample(s):	01-02	Batch:	WG134	18389-1
Aroclor 1016	ND		ug/kg	96.7		8.59	А
Aroclor 1221	ND		ug/kg	96.7		9.69	А
Aroclor 1232	ND		ug/kg	96.7		20.5	А
Aroclor 1242	ND		ug/kg	96.7		13.0	A
Aroclor 1248	ND		ug/kg	96.7		14.5	A
Aroclor 1254	ND		ug/kg	96.7		10.6	A
Aroclor 1260	ND		ug/kg	96.7		17.9	А
Aroclor 1262	ND		ug/kg	96.7		12.3	А
Aroclor 1268	ND		ug/kg	96.7		10.0	А
PCBs, Total	ND		ug/kg	96.7		8.59	А

			Acceptanc	e
Surrogate	%Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	62		30-150	А
Decachlorobiphenyl	60		30-150	А
2,4,5,6-Tetrachloro-m-xylene	63		30-150	В
Decachlorobiphenyl	63		30-150	В

Lab Control Sample Analysis Batch Quality Control

Project Name: FORMER TRICO PLANT

Project Number: B0092-016-001-006-06

 Lab Number:
 L2009474

 Report Date:
 03/10/20

	LCS		LCSD		RPD				
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - Westbo	orough Lab Associa	ted sample(s)	· 01-02 Batch:	WG134838	39-2 WG134838	9-3			
			. 01 02 Daton.	10104000	002 00104000				
Aroclor 1016	71		73		40-140	3		50	А
Aroclor 1260	64		69		40-140	8		50	А

	LCS	LCSD		Acceptance		
Surrogate	%Recovery	Qual %Recovery	Qual	Criteria	Column	
2,4,5,6-Tetrachloro-m-xylene	65	68		30-150	А	
Decachlorobiphenyl	65	69		30-150	А	
2,4,5,6-Tetrachloro-m-xylene	67	67		30-150	В	
Decachlorobiphenyl	69	70		30-150	В	

INORGANICS & MISCELLANEOUS

Serial No:0	3102010:28
-------------	------------

Project Name: Project Number:	FORMER TRICC B0092-016-001-0						lumber: rt Date:	L2009474 03/10/20	
			SAMPLE	RESUL	rs				
Lab ID: Client ID: Sample Location:	L2009474-01 LS-NORTH 3/3/2 BUFFALO	0				2 0.10	Received:	03/03/20 10:50 03/03/20 Not Specified)
Sample Depth: Matrix: Parameter	Solid Result Qua	lifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
eneral Chemistry - We	stborough Lab								
olids, Total	97.5	%	0.100	NA	1	-	03/05/20 04:5	1 121,2540G	PR

Serial No:0	3102010:28
-------------	------------

Project Number:	B0092-016-0	RICO PL/ 001-006-0					lumber: rt Date:	L2009474 03/10/20	
			SAMPLE	RESUL	TS				
Lab ID: Client ID: Sample Location:	L2009474-02 LS-SOUTH 3 BUFFALO	_				20110	Received:	03/03/20 11:00 03/03/20 Not Specified)
Sample Depth: Matrix:	Solid				Dilution Factor	Date Prepared	Date	Analytical Method	

Project Name: Project Number:	FORMER TRICO PLANT B0092-016-001-006-06	Li	ab Duplicate Analy Batch Quality Control			ab Numbe eport Date	L2009474 03/10/20	
arameter		Native Sample	Dunlicate Sample	Unite	RDU	Qual	imite	

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associat	ed sample(s): 01-02 QC Batcl	h ID: WG1347385-1	QC Sample:	L2009796-03	Client ID:	DUP Sample
Solids, Total	82.0	81.7	%	0		20

Project Name:FORMER TRICO PLANTProject Number:B0092-016-001-006-06

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler	Custody Seal
А	Absent

Container Information

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2009474-01A	Glass 120ml/4oz unpreserved	А	NA		5.3	Y	Absent		TS(7),NYTCL-8082-3540C(14)
L2009474-02A	Glass 120ml/4oz unpreserved	А	NA		5.3	Y	Absent		TS(7),NYTCL-8082-3540C(14)

YES

Project Name: FORMER TRICO PLANT

Project Number: B0092-016-001-006-06

Lab Number: L2009474

Report Date: 03/10/20

GLOSSARY

Acronyms	
DL	 Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	 Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.
Footnotes	

Report Format: DU Report with 'J' Qualifiers

Project Name: FORMER TRICO PLANT

Project Number: B0092-016-001-006-06

Lab Number: L2009474 Report Date: 03/10/20

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum. Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte applies to associated field samples that have detectable concentrations of the analyte applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration

Report Format: DU Report with 'J' Qualifiers

Project Name: FORMER TRICO PLANT

Project Number: B0092-016-001-006-06

Lab Number: L2009474 Report Date: 03/10/20

Data Qualifiers

Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)

- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Project Name:FORMER TRICO PLANTProject Number:B0092-016-001-006-06

 Lab Number:
 L2009474

 Report Date:
 03/10/20

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene
EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.
EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.
SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.
Mansfield Facility
SM 2540D: TSS
EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.
EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.
EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Coo	ay	05	Page L of		D	ate Rec'd in Lab		20		ALPHA Job #	
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information			518 2 To	an File	Deliver	rables	1	Alter		Billing Information	
TEL: 508-898-9220	TEL: 508-822-9300	Project Name:	forme ?	Trice.	Plank			ASP-A		ASP	-В	Same as Client In	fo
FAX: 508-898-9193	FAX: 508-822-3288	Project Location:	Bulk				E	EQuIS (1 Fi	le)	EQu	IS (4 File)	PO #	
Client Information		Project # 'BOO'	92-011	Trice.	00-06	Ą		Other					
Client: Benchman	KEN	(Use Project name as Pro	oject #)				Regula	atory Requi	rement		112300	Disposal Site Informati	on
Address: 2558 He	montingk	Project Manager:	1	Russ				NY TOGS		NY P	art 375	Please identify below locat	tion of
Leden NY	14218	ALPHAQuote #:		GUN				AWQ Standar	ds	NYC	P-51	applicable disposal facilitie	
Phone: (76) 81	8-8358	Turn-Around Time	A COLOR		In Act			VY Restricted	Use	Other	r.	Disposal Facility:	**************
	6-0583	Standard	X	Due Date				NY Unrestrict	ed Use				Y
	ETnlylle.cm	Rush (only if pre approved)		# of Days	-			NYC Sewer D	ischarge	e		Other:	
These samples have be		ed by Aloha					ANAL			0		Sample Filtration	т
Other project specific	the second se						T					-	•
Please specify Metals			s -				PCBs					Done Lab to do Preservation Lab to do (Please Specify below	t a I B o t
ALPHA Lab ID	Sa	imple ID	Coll	ection	Sample	Sampler's	F						1
(Lab Use Only)		<u>6</u>	Date	Time	Matrix	Initials	F					Sample Specific Comme	ints e
0947A-d	Ls - Nort	h 3/3/20	3/3/20	1050	Linestone	T43	\times						1
-02	LS - Sou	th 313/20	1	11003	1	1	x						(
		18 C											
								1					
Preservative Code: A = None B = HCl C = HNO ₃ D = H ₂ SO ₄	Container Code P = Plastic A = Amber Glass V = Vial G = Glass	Westboro: Certification N Mansfield: Certification N				tainer Type	AA					Please print clearly, and completely. San not be logged in and turnaround time cloo	nples can
E = NaOH	B = Bacteria Cup						<u> </u>					start until any ambig	
F = MeOH G = NaHSO ₄	C = Cube O = Other	Relinquished I	By:	and the second design of the s	/Time		Receive	ed By:			e/Time	resolved. BY EXECU	UTING
$H = Na_2S_2O_3$	E = Encore	thulfit	-	3/3/2	12 10	Am/	the	AAC		3/03/20	15:48	THIS COC, THE CL HAS READ AND AG	
K/E = Zn Ac/NaOH O = Other	D = BOD Bottle	In AL A	AL	3/3/20	1719	A	Ŋ	net			01:15	TO BE BOUND BY TERMS & CONDITI	ALPHA'S
Form No: 01-25 HC (rev. 3)	0-Sept-2013)					1		-				(See reverse side.)	

PERIODIC REVIEW REPORT FORMER TRICO PLANT BCP SITE NO. C915281

APPENDIX D

GROUNDWATER SAMPLING INFORMATION

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-172679-1

Client Project/Site: Benchmark-791 Washington St.(Trico site)

For:

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, New York 14218

Attn: Mr. Christopher Z Boron

Authorized for release by: 7/28/2020 11:38:36 AM Rebecca Jones, Project Management Assistant I Rebecca.Jones@Eurofinset.com

Designee for

LINKS

Review your project results through

Total Access

Have a Question?

Ask-

The

www.eurofinsus.com/Env

Visit us at:

Expert

Brian Fischer, Manager of Project Management (716)504-9835 Brian.Fischer@Eurofinset.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	23
QC Sample Results	24
QC Association Summary	33
Lab Chronicle	34
Certification Summary	36
Method Summary	37
Sample Summary	38
Chain of Custody	39
Receipt Checklists	40

Definitions/Glossary

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark-791 Washington St.(Trico site)

Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count

Job ID: 480-172679-1

Qualifiers

TEQ TNTC

Qualifiers		- 3
GC/MS VOA		
Qualifier	Qualifier Description	_ 4
E	Result exceeded calibration range.	
F1	MS and/or MSD recovery exceeds control limits.	5
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Glossary		0
Abbreviation	These commonly used abbreviations may or may not be present in this report.	_ 7
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	8
CFL	Contains Free Liquid	0
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	9
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	13
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	

Job ID: 480-172679-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-172679-1

Case Narrative

Comments

No additional comments.

Receipt

The samples were received on 7/22/2020 11:40 AM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.2° C.

GC/MS VOA

Method 8260C: The following sample was collected in a properly preserved vial; however, the pH was outside the required criteria when verified by the laboratory. The sample was analyzed within the 7-day holding time specified for unpreserved samples: RI-MW-4 (480-172679-2). pH is 6.

Method 8260C: The following sample was diluted to bring the concentration of target analytes within the calibration range: RI-MW-4 (480-172679-2). Elevated reporting limits (RLs) are provided.

Method 8260C: The following volatile samples were diluted due to foaming at the time of purging during the original sample analysis: RI-MW-2 (480-172679-1), RI-MW-6 (480-172679-3), RI-MW-11 (480-172679-6), RI-MW-12 (480-172679-7), (480-172679-A-1 MS) and (480-172679-A-1 MSD). Elevated reporting limits (RLs) are provided.

Method 8260C: The following sample was collected in a properly preserved vial; however, the pH was outside the required criteria when verified by the laboratory. The sample was analyzed within the 7-day holding time specified for unpreserved samples: RI-MW-4 (480-172679-2). pH is 4.

Method 8260C: The following sample was diluted to bring the concentration of target analytes within the calibration range: RI-MW-4 (480-172679-2). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Job ID: 480-172679-1

Client Sample ID: RI-MW-2						Lat) 5	ample ID:	480-172679-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Trichloroethene	6.8		4.0	1.8	ug/L	4	_	8260C	Total/NA
Client Sample ID: RI-MW-4						Lat) S	ample ID:	480-172679-
– Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	8.8	J	20	6.0	ug/L	2	_	8260C	Total/NA
Carbon disulfide	3.0		2.0	0.38	ug/L	2		8260C	Total/NA
cis-1,2-Dichloroethene	180		2.0	1.6	ug/L	2		8260C	Total/NA
trans-1,2-Dichloroethene	210	E	2.0	1.8	ug/L	2		8260C	Total/NA
Trichloroethene	1.1	J	2.0	0.92	ug/L	2		8260C	Total/NA
Vinyl chloride	73		2.0	1.8	ug/L	2		8260C	Total/NA
Carbon disulfide - DL	1.9	J	4.0	0.76	ug/L	4		8260C	Total/NA
cis-1,2-Dichloroethene - DL	190		4.0	3.2	ug/L	4		8260C	Total/NA
Methyl tert-butyl ether - DL	2.2	J	4.0	0.64	ug/L	4		8260C	Total/NA
trans-1,2-Dichloroethene - DL	230		4.0	3.6	ug/L	4		8260C	Total/NA
Vinyl chloride - DL	84		4.0		ug/L	4		8260C	Total/NA
Client Sample ID: RI-MW-6						Lab) S	ample ID:	480-172679-
 Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	3.6		2.0	1.6	ug/L	2	-	8260C	Total/NA
trans-1,2-Dichloroethene	1.8	J	2.0		ug/L	2		8260C	Total/NA
Client Sample ID: RI-MW-9						Lab) S	ample ID:	480-172679-4
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
2-Butanone (MEK)	4.1	J	10	1.3	ug/L	1	_	8260C	Total/NA
Acetone	26		10	3.0	ug/L	1		8260C	Total/NA
Carbon disulfide	1.5		1.0	0.19	ug/L	1		8260C	Total/NA
cis-1,2-Dichloroethene	2.8		1.0	0.81	ug/L	1		8260C	Total/NA
Tetrachloroethene	0.68	J	1.0	0.36	ug/L	1		8260C	Total/NA
Trichloroethene	3.7		1.0	0.46	ug/L	1		8260C	Total/NA
Client Sample ID: RI-MW-10						Lat) S	ample ID:	480-172679-
 Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloromethane	0.43	J	1.0	0.35	ug/L	1	_	8260C	Total/NA
Trichloroethene	2.0		1.0	0.46	ug/L	1		8260C	Total/NA
Client Sample ID: RI-MW-11						Lab) S	ample ID:	480-172679-
 Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	2.2		2.0		ug/L	2	-	8260C	Total/NA
Methylene Chloride	0.93	J	2.0		ug/L	2		8260C	Total/NA
Client Sample ID: RI-MW-12						Lat) S	ample ID:	480-172679-
No Detections.									
Client Sample ID: TRIP BLANK						Lat) S	ample ID:	480-172679-
– Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type

This Detection Summary does not include radiochemical test results.

Client Sample ID: RI-MW-2

Date Collected: 07/21/20 09:05 Date Received: 07/22/20 11:40

Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
ND	4.0	3.3	ug/L			07/24/20 02:59	
ND	4.0	0.84	ug/L			07/24/20 02:59	
ND	4.0	1.2	ug/L			07/24/20 02:59	
ND	4.0	0.92	ug/L			07/24/20 02:59	
ND	4.0	1.5	ug/L			07/24/20 02:59	
ND	4.0	1.2	ug/L			07/24/20 02:59	
ND	4.0	1.6	ug/L			07/24/20 02:59	
ND	4.0	3.0	ug/L			07/24/20 02:59	
ND	4.0	1.6	ug/L			07/24/20 02:59	
ND	4.0	2.9	ug/L			07/24/20 02:59	
ND	4.0	3.2	ug/L			07/24/20 02:59	
ND	4.0					07/24/20 02:59	
ND	4.0	2.9	uq/L			07/24/20 02:59	
ND	4.0		-			07/24/20 02:59	
ND	4.0		-			07/24/20 02:59	
ND	4.0					07/24/20 02:59	
			-				
			•				
			-				
			-				
			-				
			-				
			-				
			-				
			-				
			-				
			-				
ND	4.0		-			07/24/20 02:59	
ND	4.0					07/24/20 02:59	
ND	8.0		•			07/24/20 02:59	
ND	10	5.2	ug/L			07/24/20 02:59	
ND	4.0	0.64	ug/L			07/24/20 02:59	
ND	4.0	0.64	ug/L			07/24/20 02:59	
ND	4.0	1.8	ug/L			07/24/20 02:59	
ND	4.0	2.6	ug/L			07/24/20 02:59	
ND	4.0	2.8	ug/L			07/24/20 02:59	
ND	4.0	3.0	ug/L			07/24/20 02:59	
ND	4.0	3.0	ug/L			07/24/20 02:59	
ND	4 0	29	ua/l			07/24/20 02:59	
	ND ND	ND 4.0 ND 4.0	ND 4.0 3.3 ND 4.0 0.84 ND 4.0 1.2 ND 4.0 0.92 ND 4.0 1.5 ND 4.0 1.2 ND 4.0 1.6 ND 4.0 3.0 ND 4.0 3.0 ND 4.0 3.2 ND 4.0 3.2 ND 4.0 3.2 ND 4.0 3.2 ND 4.0 3.4 ND 4.0 3.1 ND 4.0 3.1 ND 4.0 3.4 ND 20 5.0 ND 20 5.0 ND 4.0 1.2 ND 20 8.4 ND 4.0 1.2 ND 4.0 1.2 ND 4.0 1.2 ND 4.0 1.2 <tr< td=""><td>ND 4.0 3.3 ug/L ND 4.0 0.84 ug/L ND 4.0 1.2 ug/L ND 4.0 0.92 ug/L ND 4.0 1.5 ug/L ND 4.0 1.5 ug/L ND 4.0 1.6 ug/L ND 4.0 1.6 ug/L ND 4.0 3.1 ug/L ND 4.0 1.6 ug/L ND 4.0 2.9 ug/L ND 4.0 3.2 ug/L ND 4.0 3.2 ug/L ND 4.0 3.4 ug/L ND 4.0 3.4 ug/L ND 4.0 3.4 ug/L ND 4.0 3.4 ug/L ND 4.0 1.2 ug/L ND 4.0 1.2 ug/L ND 4.0 1.2 ug</td><td>ND 4.0 3.3 ug/L ND 4.0 0.84 ug/L ND 4.0 0.92 ug/L ND 4.0 1.2 ug/L ND 4.0 1.5 ug/L ND 4.0 1.6 ug/L ND 4.0 1.6 ug/L ND 4.0 1.6 ug/L ND 4.0 3.0 ug/L ND 4.0 3.1 ug/L ND 4.0 3.0 ug/L ND 4.0 1.6 ug/L ND 4.0 1.6 ug/L ND 4.0 1.6 ug</td><td>ND 4.0 3.3 ugL n ND 4.0 0.84 ugL ND 4.0 0.2 ugL ND 4.0 0.2 ugL ND 4.0 1.5 ugL ND 4.0 1.5 ugL ND 4.0 1.6 ugL ND 4.0 3.0 ugL ND 4.0 3.0 ugL ND 4.0 3.0 ugL ND 4.0 3.2 ugL ND 4.0 3.1 ugL ND 4.0 3.1 ugL ND 4.0 3.1 ugL ND 4.0 3.4 ugL ND 4.0 3.1 ugL ND 4.0 1.6 ugL ND 4.0 1.6 ugL ND 4.0 1.6 ugL ND 4.0 1.6 ugL</td><td>ND 4.0 3.3 ug/L 072420 02:59 ND 4.0 0.84 ug/L 0772420 02:59 ND 4.0 0.92 ug/L 0772420 02:59 ND 4.0 1.5 ug/L 0772420 02:59 ND 4.0 1.5 ug/L 0772420 02:59 ND 4.0 1.6 ug/L 0772420 02:59 ND 4.0 3.0 ug/L 0772420 02:59 ND 4.0 3.0 ug/L 0772420 02:59 ND 4.0 2.9 ug/L 0772420 02:59 ND 4.0 3.4 ug/L 0772420 02:59 ND 4.0 3.1 ug/L 0772420 02:59 ND 4.0 3.1 ug/L 0772420 02:59 ND 4.0 3.1 ug/L 0772420 02:59 ND 4.0 3.4 <</td></tr<>	ND 4.0 3.3 ug/L ND 4.0 0.84 ug/L ND 4.0 1.2 ug/L ND 4.0 0.92 ug/L ND 4.0 1.5 ug/L ND 4.0 1.5 ug/L ND 4.0 1.6 ug/L ND 4.0 1.6 ug/L ND 4.0 3.1 ug/L ND 4.0 1.6 ug/L ND 4.0 2.9 ug/L ND 4.0 3.2 ug/L ND 4.0 3.2 ug/L ND 4.0 3.4 ug/L ND 4.0 3.4 ug/L ND 4.0 3.4 ug/L ND 4.0 3.4 ug/L ND 4.0 1.2 ug/L ND 4.0 1.2 ug/L ND 4.0 1.2 ug	ND 4.0 3.3 ug/L ND 4.0 0.84 ug/L ND 4.0 0.92 ug/L ND 4.0 1.2 ug/L ND 4.0 1.5 ug/L ND 4.0 1.6 ug/L ND 4.0 1.6 ug/L ND 4.0 1.6 ug/L ND 4.0 3.0 ug/L ND 4.0 3.1 ug/L ND 4.0 3.0 ug/L ND 4.0 1.6 ug/L ND 4.0 1.6 ug/L ND 4.0 1.6 ug	ND 4.0 3.3 ugL n ND 4.0 0.84 ugL ND 4.0 0.2 ugL ND 4.0 0.2 ugL ND 4.0 1.5 ugL ND 4.0 1.5 ugL ND 4.0 1.6 ugL ND 4.0 3.0 ugL ND 4.0 3.0 ugL ND 4.0 3.0 ugL ND 4.0 3.2 ugL ND 4.0 3.1 ugL ND 4.0 3.1 ugL ND 4.0 3.1 ugL ND 4.0 3.4 ugL ND 4.0 3.1 ugL ND 4.0 1.6 ugL ND 4.0 1.6 ugL ND 4.0 1.6 ugL ND 4.0 1.6 ugL	ND 4.0 3.3 ug/L 072420 02:59 ND 4.0 0.84 ug/L 0772420 02:59 ND 4.0 0.92 ug/L 0772420 02:59 ND 4.0 1.5 ug/L 0772420 02:59 ND 4.0 1.5 ug/L 0772420 02:59 ND 4.0 1.6 ug/L 0772420 02:59 ND 4.0 3.0 ug/L 0772420 02:59 ND 4.0 3.0 ug/L 0772420 02:59 ND 4.0 2.9 ug/L 0772420 02:59 ND 4.0 3.4 ug/L 0772420 02:59 ND 4.0 3.1 ug/L 0772420 02:59 ND 4.0 3.1 ug/L 0772420 02:59 ND 4.0 3.1 ug/L 0772420 02:59 ND 4.0 3.4 <

Job ID: 480-172679-1

Lab Sample ID: 480-172679-1

Matrix: Water

5

6

Client Sample ID: RI-MW-2

Date Collected: 07/21/20 09:05 Date Received: 07/22/20 11:40

Job ID: 480-172679-1

Lab Sample ID: 480-172679-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	ND		4.0	1.4	ug/L			07/24/20 02:59	4
Toluene	ND		4.0	2.0	ug/L			07/24/20 02:59	4
trans-1,2-Dichloroethene	ND		4.0	3.6	ug/L			07/24/20 02:59	4
trans-1,3-Dichloropropene	ND	F1	4.0	1.5	ug/L			07/24/20 02:59	4
Trichloroethene	6.8		4.0	1.8	ug/L			07/24/20 02:59	4
Trichlorofluoromethane	ND		4.0	3.5	ug/L			07/24/20 02:59	4
Vinyl chloride	ND		4.0	3.6	ug/L			07/24/20 02:59	4
Xylenes, Total	ND		8.0	2.6	ug/L			07/24/20 02:59	4
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		77 - 120			-		07/24/20 02:59	4
4-Bromofluorobenzene (Surr)	98		73 - 120					07/24/20 02:59	4
Toluene-d8 (Surr)	101		80 - 120					07/24/20 02:59	4

Client Sample ID: RI-MW-4

Date Collected: 07/21/20 13:14 Date Received: 07/22/20 11:40

_ Method: 8260C - Volatile Organic (Compounds by GC/MS						
Analyte	Result Qualifier	RL	MDL	Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	2.0	1.6	ug/L		07/24/20 03:22	2
1,1,2,2-Tetrachloroethane	ND	2.0	0.42	ug/L		07/24/20 03:22	2
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	2.0	0.62	ug/L		07/24/20 03:22	2
1,1,2-Trichloroethane	ND	2.0	0.46	ug/L		07/24/20 03:22	2
1,1-Dichloroethane	ND	2.0	0.76	ug/L		07/24/20 03:22	2
1,1-Dichloroethene	ND	2.0	0.58	ug/L		07/24/20 03:22	2
1,2,4-Trichlorobenzene	ND	2.0	0.82	ug/L		07/24/20 03:22	2
1,2,4-Trimethylbenzene	ND	2.0	1.5	ug/L		07/24/20 03:22	2
1,2-Dibromo-3-Chloropropane	ND	2.0	0.78	ug/L		07/24/20 03:22	2
1,2-Dibromoethane	ND	2.0	1.5	ug/L		07/24/20 03:22	2
1,2-Dichlorobenzene	ND	2.0	1.6	ug/L		07/24/20 03:22	2
1,2-Dichloroethane	ND	2.0	0.42	ug/L		07/24/20 03:22	2
1,2-Dichloropropane	ND	2.0	1.4	ug/L		07/24/20 03:22	2
1,3,5-Trimethylbenzene	ND	2.0	1.5	ug/L		07/24/20 03:22	2
1,3-Dichlorobenzene	ND	2.0	1.6	ug/L		07/24/20 03:22	2
1,4-Dichlorobenzene	ND	2.0	1.7	ug/L		07/24/20 03:22	2
2-Butanone (MEK)	ND	20		ug/L		07/24/20 03:22	2
2-Hexanone	ND	10	2.5	ug/L		07/24/20 03:22	2
4-Isopropyltoluene	ND	2.0	0.62			07/24/20 03:22	2
4-Methyl-2-pentanone (MIBK)	ND	10		ug/L		07/24/20 03:22	2
Acetone	8.8 J	20		ug/L		07/24/20 03:22	2
Benzene	ND	2.0	0.82			07/24/20 03:22	2
Bromodichloromethane	ND	2.0	0.78			07/24/20 03:22	2
Bromoform	ND	2.0	0.52	-		07/24/20 03:22	2
Bromomethane	ND	2.0		ug/L		07/24/20 03:22	2
Carbon disulfide	3.0	2.0	0.38	-		07/24/20 03:22	2
Carbon tetrachloride	ND	2.0	0.54	-		07/24/20 03:22	2
Chlorobenzene	ND	2.0		ug/L		07/24/20 03:22	2
Chloroethane	ND	2.0	0.64			07/24/20 03:22	2
Chloroform	ND	2.0	0.68	-		07/24/20 03:22	2
Chloromethane	ND	2.0		ug/L		07/24/20 03:22	2
cis-1,2-Dichloroethene	180	2.0		ug/L		07/24/20 03:22	2
cis-1,3-Dichloropropene	ND	2.0	0.72	-		07/24/20 03:22	2
Cyclohexane	ND	2.0	0.36			07/24/20 03:22	2
Dibromochloromethane	ND	2.0	0.64			07/24/20 03:22	2
Dichlorodifluoromethane	ND	2.0		ug/L		07/24/20 03:22	2
Ethylbenzene	ND	2.0		ug/L		07/24/20 03:22	2
Isopropylbenzene	ND	2.0		ug/L		07/24/20 03:22	2
m,p-Xylene	ND	4.0		ug/L		07/24/20 03:22	2
Methyl acetate	ND	5.0		ug/L		07/24/20 03:22	2
Methyl tert-butyl ether	ND	2.0	0.32	-		07/24/20 03:22	2
Methylcyclohexane	ND	2.0	0.32			07/24/20 03:22	2
Methylene Chloride	ND	2.0	0.32			07/24/20 03:22	2
n-Butylbenzene	ND	2.0		ug/L ug/L		07/24/20 03:22	2
N-Propylbenzene	ND	2.0		ug/L ug/L		07/24/20 03:22	2
		2.0		ug/L			2
o-Xylene	ND					07/24/20 03:22	
sec-Butylbenzene	ND	2.0		ug/L		07/24/20 03:22	2
Styrene	ND	2.0		ug/L		07/24/20 03:22	2
tert-Butylbenzene	ND	2.0	1.6	ug/L		07/24/20 03:22	2

Job ID: 480-172679-1

Lab Sample ID: 480-172679-2

Matrix: Water

5

6

Client Sample ID: RI-MW-4

Date Collected: 07/21/20 13:14 Date Received: 07/22/20 11:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	ND		2.0	0.72	ug/L			07/24/20 03:22	2
Toluene	ND		2.0	1.0	ug/L			07/24/20 03:22	2
trans-1,2-Dichloroethene	210	E	2.0	1.8	ug/L			07/24/20 03:22	2
trans-1,3-Dichloropropene	ND		2.0	0.74	ug/L			07/24/20 03:22	2
Trichloroethene	1.1	J	2.0	0.92	ug/L			07/24/20 03:22	2
Trichlorofluoromethane	ND		2.0	1.8	ug/L			07/24/20 03:22	2
Vinyl chloride	73		2.0	1.8	ug/L			07/24/20 03:22	2
Xylenes, Total	ND		4.0	1.3	ug/L			07/24/20 03:22	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1 2-Dichloroethane-d4 (Surr)	97		77 120			-		07/24/20 03.22	2

Surrogate	%Recovery	Qualifier	Limits	Prepare	d Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		77 - 120		07/24/20 03:22	2
4-Bromofluorobenzene (Surr)	101		73 _ 120		07/24/20 03:22	2
Toluene-d8 (Surr)	100		80 - 120		07/24/20 03:22	2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		4.0	3.3	ug/L			07/24/20 13:19	4
1,1,2,2-Tetrachloroethane	ND		4.0	0.84	ug/L			07/24/20 13:19	4
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.0	1.2	ug/L			07/24/20 13:19	4
1,1,2-Trichloroethane	ND		4.0	0.92	ug/L			07/24/20 13:19	4
1,1-Dichloroethane	ND		4.0	1.5	ug/L			07/24/20 13:19	4
1,1-Dichloroethene	ND		4.0	1.2	ug/L			07/24/20 13:19	4
1,2,4-Trichlorobenzene	ND		4.0	1.6	ug/L			07/24/20 13:19	4
1,2,4-Trimethylbenzene	ND		4.0	3.0	ug/L			07/24/20 13:19	4
1,2-Dibromo-3-Chloropropane	ND		4.0	1.6	ug/L			07/24/20 13:19	4
1,2-Dibromoethane	ND		4.0	2.9	ug/L			07/24/20 13:19	4
1,2-Dichlorobenzene	ND		4.0	3.2	ug/L			07/24/20 13:19	4
1,2-Dichloroethane	ND		4.0	0.84	ug/L			07/24/20 13:19	4
1,2-Dichloropropane	ND		4.0	2.9	ug/L			07/24/20 13:19	4
1,3,5-Trimethylbenzene	ND		4.0	3.1	ug/L			07/24/20 13:19	4
1,3-Dichlorobenzene	ND		4.0	3.1	ug/L			07/24/20 13:19	4
1,4-Dichlorobenzene	ND		4.0	3.4	ug/L			07/24/20 13:19	4
2-Butanone (MEK)	ND		40	5.3	ug/L			07/24/20 13:19	4
2-Hexanone	ND		20	5.0	ug/L			07/24/20 13:19	4
4-Isopropyltoluene	ND		4.0	1.2	ug/L			07/24/20 13:19	4
4-Methyl-2-pentanone (MIBK)	ND		20	8.4	ug/L			07/24/20 13:19	4
Acetone	ND		40	12	ug/L			07/24/20 13:19	4
Benzene	ND		4.0	1.6	ug/L			07/24/20 13:19	4
Bromodichloromethane	ND		4.0	1.6	ug/L			07/24/20 13:19	4
Bromoform	ND		4.0	1.0	ug/L			07/24/20 13:19	4
Bromomethane	ND		4.0	2.8	ug/L			07/24/20 13:19	4
Carbon disulfide	1.9	J	4.0	0.76	ug/L			07/24/20 13:19	4
Carbon tetrachloride	ND		4.0	1.1	ug/L			07/24/20 13:19	4
Chlorobenzene	ND		4.0	3.0	ug/L			07/24/20 13:19	4
Chloroethane	ND		4.0	1.3	ug/L			07/24/20 13:19	4
Chloroform	ND		4.0	1.4	ug/L			07/24/20 13:19	4
Chloromethane	ND		4.0	1.4	ug/L			07/24/20 13:19	4
cis-1,2-Dichloroethene	190		4.0	3.2	ug/L			07/24/20 13:19	4
cis-1,3-Dichloropropene	ND		4.0	1.4	ug/L			07/24/20 13:19	4
Cyclohexane	ND		4.0	0.72	ug/L			07/24/20 13:19	4

5

6

Lab Sample ID: 480-172679-2 Matrix: Water

Client Sample ID: RI-MW-4 Date Collected: 07/21/20 13:14

Date Received: 07/22/20 11:40

Job ID: 480-172679-1

Lab Sample ID: 480-172679-2

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Dibromochloromethane	ND		4.0	1.3	ug/L			07/24/20 13:19	4	
Dichlorodifluoromethane	ND		4.0	2.7	ug/L			07/24/20 13:19	4	
Ethylbenzene	ND		4.0	3.0	ug/L			07/24/20 13:19	4	
Isopropylbenzene	ND		4.0	3.2	ug/L			07/24/20 13:19	4	
m,p-Xylene	ND		8.0	2.6	ug/L			07/24/20 13:19	4	
Methyl acetate	ND		10	5.2	ug/L			07/24/20 13:19	4	
Methyl tert-butyl ether	2.2	J	4.0	0.64	ug/L			07/24/20 13:19	4	
Methylcyclohexane	ND		4.0	0.64	ug/L			07/24/20 13:19	4	
Methylene Chloride	ND		4.0	1.8	ug/L			07/24/20 13:19	4	
n-Butylbenzene	ND		4.0	2.6	ug/L			07/24/20 13:19	4	
N-Propylbenzene	ND		4.0	2.8	ug/L			07/24/20 13:19	4	
o-Xylene	ND		4.0		ug/L			07/24/20 13:19	4	
sec-Butylbenzene	ND		4.0		ug/L			07/24/20 13:19	4	
Styrene	ND		4.0	2.9	ug/L			07/24/20 13:19	4	
tert-Butylbenzene	ND		4.0	3.2	ug/L			07/24/20 13:19	4	
Tetrachloroethene	ND		4.0		ug/L			07/24/20 13:19	4	
Toluene	ND		4.0		ug/L			07/24/20 13:19	4	
trans-1,2-Dichloroethene	230		4.0		ug/L			07/24/20 13:19	4	
trans-1,3-Dichloropropene	ND		4.0		ug/L			07/24/20 13:19	4	
Trichloroethene	ND		4.0		ug/L			07/24/20 13:19	4	
Trichlorofluoromethane	ND		4.0	3.5	ug/L			07/24/20 13:19	4	
Vinyl chloride	84		4.0		ug/L			07/24/20 13:19	4	
Xylenes, Total	ND		8.0		ug/L			07/24/20 13:19	4	
Surrogate	%Recovery	Qualifier	Limits			_	Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	97		77 - 120			-		07/24/20 13:19	4	
4-Bromofluorobenzene (Surr)	103		73 - 120					07/24/20 13:19	4	
Toluene-d8 (Surr)	103		80 - 120					07/24/20 13:19	4	

Client Sample ID: RI-MW-6

Date Collected: 07/21/20 14:09 Date Received: 07/22/20 11:40

Method: 8260C - Volatile Organic C	Compounds by GC/MS						
Analyte	Result Qualifier	RL	MDL	Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	2.0	1.6	ug/L		07/24/20 03:45	2
1,1,2,2-Tetrachloroethane	ND	2.0	0.42	ug/L		07/24/20 03:45	2
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	2.0	0.62	ug/L		07/24/20 03:45	2
1,1,2-Trichloroethane	ND	2.0	0.46	ug/L		07/24/20 03:45	2
1,1-Dichloroethane	ND	2.0	0.76	ug/L		07/24/20 03:45	2
1,1-Dichloroethene	ND	2.0	0.58	ug/L		07/24/20 03:45	2
1,2,4-Trichlorobenzene	ND	2.0	0.82	ug/L		07/24/20 03:45	2
1,2,4-Trimethylbenzene	ND	2.0	1.5	ug/L		07/24/20 03:45	2
1,2-Dibromo-3-Chloropropane	ND	2.0	0.78	ug/L		07/24/20 03:45	2
1,2-Dibromoethane	ND	2.0	1.5	ug/L		07/24/20 03:45	2
1,2-Dichlorobenzene	ND	2.0	1.6	ug/L		07/24/20 03:45	2
1,2-Dichloroethane	ND	2.0	0.42	ug/L		07/24/20 03:45	2
1,2-Dichloropropane	ND	2.0	1.4	ug/L		07/24/20 03:45	2
1,3,5-Trimethylbenzene	ND	2.0	1.5	ug/L		07/24/20 03:45	2
1,3-Dichlorobenzene	ND	2.0	1.6	ug/L		07/24/20 03:45	2
1,4-Dichlorobenzene	ND	2.0	1.7	ug/L		07/24/20 03:45	2
2-Butanone (MEK)	ND	20	2.6	ug/L		07/24/20 03:45	2
2-Hexanone	ND	10	2.5	ug/L		07/24/20 03:45	2
4-Isopropyltoluene	ND	2.0	0.62	ug/L		07/24/20 03:45	2
4-Methyl-2-pentanone (MIBK)	ND	10	4.2	ug/L		07/24/20 03:45	2
Acetone	ND	20	6.0	ug/L		07/24/20 03:45	2
Benzene	ND	2.0	0.82	ug/L		07/24/20 03:45	2
Bromodichloromethane	ND	2.0	0.78			07/24/20 03:45	2
Bromoform	ND	2.0	0.52			07/24/20 03:45	2
Bromomethane	ND	2.0		ug/L		07/24/20 03:45	2
Carbon disulfide	ND	2.0	0.38	-		07/24/20 03:45	2
Carbon tetrachloride	ND	2.0	0.54			07/24/20 03:45	2
Chlorobenzene	ND	2.0		ug/L		07/24/20 03:45	2
Chloroethane	ND	2.0	0.64			07/24/20 03:45	2
Chloroform	ND	2.0	0.68	-		07/24/20 03:45	2
Chloromethane	ND	2.0	0.70	ug/L		07/24/20 03:45	2
cis-1,2-Dichloroethene	3.6	2.0		ug/L		07/24/20 03:45	2
cis-1,3-Dichloropropene	ND	2.0	0.72	-		07/24/20 03:45	2
Cyclohexane	ND	2.0	0.36			07/24/20 03:45	2
Dibromochloromethane	ND	2.0	0.64			07/24/20 03:45	2
Dichlorodifluoromethane	ND	2.0		ug/L		07/24/20 03:45	2
Ethylbenzene	ND	2.0		ug/L		07/24/20 03:45	2
Isopropylbenzene	ND	2.0		ug/L		07/24/20 03:45	2
m,p-Xylene	ND	4.0		ug/L		07/24/20 03:45	2
Methyl acetate	ND	5.0		ug/L		07/24/20 03:45	2
Methyl tert-butyl ether	ND	2.0	0.32			07/24/20 03:45	2
Methylcyclohexane	ND	2.0		ug/L		07/24/20 03:45	2
Methylene Chloride	ND	2.0		ug/L		07/24/20 03:45	2
n-Butylbenzene	ND	2.0		ug/L		07/24/20 03:45	2
N-Propylbenzene	ND	2.0		ug/L		07/24/20 03:45	2
o-Xylene	ND	2.0		ug/L		07/24/20 03:45	2
sec-Butylbenzene	ND	2.0		ug/L		07/24/20 03:45	2
Styrene	ND	2.0		ug/L ug/L		07/24/20 03:45	2
tert-Butylbenzene	ND	2.0 2.0		ug/L ug/L		07/24/20 03:45	2

Eurofins TestAmerica, Buffalo

Matrix: Water

5

6

Lab Sample ID: 480-172679-3

Client Sample ID: RI-MW-6

Date Collected: 07/21/20 14:09 Date Received: 07/22/20 11:40

Job ID: 480-172679-1

Lab Sample ID: 480-172679-3

Matrix: Water

5 6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	ND		2.0	0.72	ug/L			07/24/20 03:45	2
Toluene	ND		2.0	1.0	ug/L			07/24/20 03:45	2
trans-1,2-Dichloroethene	1.8	J	2.0	1.8	ug/L			07/24/20 03:45	2
trans-1,3-Dichloropropene	ND		2.0	0.74	ug/L			07/24/20 03:45	2
Trichloroethene	ND		2.0	0.92	ug/L			07/24/20 03:45	2
Trichlorofluoromethane	ND		2.0	1.8	ug/L			07/24/20 03:45	2
Vinyl chloride	ND		2.0	1.8	ug/L			07/24/20 03:45	2
Xylenes, Total	ND		4.0	1.3	ug/L			07/24/20 03:45	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		77 _ 120			-		07/24/20 03:45	2
4-Bromofluorobenzene (Surr)	99		73 - 120					07/24/20 03:45	2
Toluene-d8 (Surr)	101		80 - 120					07/24/20 03:45	2

Client Sample ID: RI-MW-9

Date Collected: 07/21/20 11:33 Date Received: 07/22/20 11:40

Analyte	Result Qualifier	RL	MDL	Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L		07/24/20 04:08	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L		07/24/20 04:08	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L		07/24/20 04:08	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L		07/24/20 04:08	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L		07/24/20 04:08	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L		07/24/20 04:08	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L		07/24/20 04:08	1
1,2,4-Trimethylbenzene	ND	1.0	0.75	ug/L		07/24/20 04:08	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L		07/24/20 04:08	1
1,2-Dibromoethane	ND	1.0	0.73	ug/L		07/24/20 04:08	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L		07/24/20 04:08	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L		07/24/20 04:08	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L		07/24/20 04:08	1
1,3,5-Trimethylbenzene	ND	1.0	0.77	ug/L		07/24/20 04:08	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L		07/24/20 04:08	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L		07/24/20 04:08	1
2-Butanone (MEK)	4.1 J	10	1.3	ug/L		07/24/20 04:08	1
2-Hexanone	ND	5.0	1.2	ug/L		07/24/20 04:08	1
4-Isopropyltoluene	ND	1.0	0.31	ug/L		07/24/20 04:08	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L		07/24/20 04:08	1
Acetone	26	10	3.0	ug/L		07/24/20 04:08	1
Benzene	ND	1.0	0.41	ug/L		07/24/20 04:08	1
Bromodichloromethane	ND	1.0	0.39	ug/L		07/24/20 04:08	1
Bromoform	ND	1.0	0.26	ug/L		07/24/20 04:08	1
Bromomethane	ND	1.0	0.69	ug/L		07/24/20 04:08	1
Carbon disulfide	1.5	1.0	0.19	ug/L		07/24/20 04:08	1
Carbon tetrachloride	ND	1.0	0.27	ug/L		07/24/20 04:08	1
Chlorobenzene	ND	1.0	0.75	ug/L		07/24/20 04:08	1
Chloroethane	ND	1.0	0.32	ug/L		07/24/20 04:08	1
Chloroform	ND	1.0	0.34	ug/L		07/24/20 04:08	1
Chloromethane	ND	1.0	0.35	ug/L		07/24/20 04:08	1
cis-1,2-Dichloroethene	2.8	1.0	0.81	ug/L		07/24/20 04:08	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L		07/24/20 04:08	1
Cyclohexane	ND	1.0	0.18	ug/L		07/24/20 04:08	1
Dibromochloromethane	ND	1.0	0.32	ug/L		07/24/20 04:08	1
Dichlorodifluoromethane	ND	1.0	0.68	ug/L		07/24/20 04:08	1
Ethylbenzene	ND	1.0	0.74	ug/L		07/24/20 04:08	1
Isopropylbenzene	ND	1.0	0.79	ug/L		07/24/20 04:08	1
m,p-Xylene	ND	2.0	0.66	ug/L		07/24/20 04:08	1
Methyl acetate	ND	2.5	1.3	ug/L		07/24/20 04:08	1
Methyl tert-butyl ether	ND	1.0	0.16	ug/L		07/24/20 04:08	1
Methylcyclohexane	ND	1.0	0.16	ug/L		07/24/20 04:08	1
Methylene Chloride	ND	1.0	0.44	ug/L		07/24/20 04:08	1
n-Butylbenzene	ND	1.0	0.64	ug/L		07/24/20 04:08	1
N-Propylbenzene	ND	1.0	0.69	ug/L		07/24/20 04:08	1
o-Xylene	ND	1.0	0.76	ug/L		07/24/20 04:08	1
sec-Butylbenzene	ND	1.0	0.75	ug/L		07/24/20 04:08	1
Styrene	ND	1.0	0.73	ug/L		07/24/20 04:08	1
tert-Butylbenzene	ND	1.0	0.81	ua/L		07/24/20 04:08	1

Job ID: 480-172679-1

Lab Sample ID: 480-172679-4

Matrix: Water

5

6

1.0

1.0

2.0

Limits

77 - 120

73 - 120

80 - 120

0.88 ug/L

0.90 ug/L

0.66 ug/L

Client Sample ID: RI-MW-9

Date Collected: 07/21/20 11:33 Date Received: 07/22/20 11:40

Trichlorofluoromethane

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Vinyl chloride

Xylenes, Total

Toluene-d8 (Surr)

Surrogate

Job ID: 480-172679-1

Lab Sample ID: 480-172679-4 Matrix: Water

Analyzed

07/24/20 04:08

07/24/20 04:08

07/24/20 04:08

07/24/20 04:08

07/24/20 04:08

07/24/20 04:08

07/24/20 04:08

07/24/20 04:08

Analyzed

07/24/20 04:08

07/24/20 04:08

07/24/20 04:08

Prepared

Dil Fac

1

1

1

1

1

1

1

1

1

1

1

Dil Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared
Tetrachloroethene	0.68	J	1.0	0.36	ug/L		
Toluene	ND		1.0	0.51	ug/L		
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L		
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L		
Trichloroethene	3.7		1.0	0.46	ug/L		

Qualifier

ND

ND

ND

104

100

101

%Recovery

Client Sample ID: RI-MW-10

Date Collected: 07/21/20 10:02 Date Received: 07/22/20 11:40

Method: 8260C - Volatile Organic	Compounds by GC/MS							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			07/24/20 04:31	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			07/24/20 04:31	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			07/24/20 04:31	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			07/24/20 04:31	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			07/24/20 04:31	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			07/24/20 04:31	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			07/24/20 04:31	1
1,2,4-Trimethylbenzene	ND	1.0	0.75	ug/L			07/24/20 04:31	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			07/24/20 04:31	1
1,2-Dibromoethane	ND	1.0	0.73	ug/L			07/24/20 04:31	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			07/24/20 04:31	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			07/24/20 04:31	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			07/24/20 04:31	1
1,3,5-Trimethylbenzene	ND	1.0	0.77	-			07/24/20 04:31	1
1,3-Dichlorobenzene	ND	1.0	0.78				07/24/20 04:31	1
1,4-Dichlorobenzene	ND	1.0	0.84				07/24/20 04:31	1
2-Butanone (MEK)	ND	10		ug/L			07/24/20 04:31	1
2-Hexanone	ND	5.0		ug/L			07/24/20 04:31	1
4-Isopropyltoluene	ND	1.0	0.31				07/24/20 04:31	
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			07/24/20 04:31	1
Acetone	ND	0.0 10		ug/L			07/24/20 04:31	1
Benzene	ND	1.0	0.41				07/24/20 04:31	· · · · · · · · · · · · · · · · · · ·
				-				1
Bromodichloromethane	ND	1.0	0.39				07/24/20 04:31	
Bromoform	ND	1.0	0.26				07/24/20 04:31	1
Bromomethane	ND	1.0	0.69	-			07/24/20 04:31	1
Carbon disulfide	ND	1.0	0.19	-			07/24/20 04:31	1
Carbon tetrachloride	ND	1.0	0.27				07/24/20 04:31	1
Chlorobenzene	ND	1.0	0.75				07/24/20 04:31	1
Chloroethane	ND	1.0	0.32				07/24/20 04:31	1
Chloroform	ND	1.0	0.34				07/24/20 04:31	1
Chloromethane	0.43 J	1.0	0.35	-			07/24/20 04:31	1
cis-1,2-Dichloroethene	ND	1.0	0.81	-			07/24/20 04:31	1
cis-1,3-Dichloropropene	ND	1.0	0.36				07/24/20 04:31	1
Cyclohexane	ND	1.0	0.18				07/24/20 04:31	1
Dibromochloromethane	ND	1.0	0.32				07/24/20 04:31	1
Dichlorodifluoromethane	ND	1.0	0.68				07/24/20 04:31	1
Ethylbenzene	ND	1.0	0.74	ug/L			07/24/20 04:31	1
Isopropylbenzene	ND	1.0	0.79	ug/L			07/24/20 04:31	1
m,p-Xylene	ND	2.0	0.66	ug/L			07/24/20 04:31	1
Methyl acetate	ND	2.5	1.3	ug/L			07/24/20 04:31	1
Methyl tert-butyl ether	ND	1.0	0.16	ug/L			07/24/20 04:31	1
Methylcyclohexane	ND	1.0	0.16	ug/L			07/24/20 04:31	1
Methylene Chloride	ND	1.0	0.44	ug/L			07/24/20 04:31	1
n-Butylbenzene	ND	1.0	0.64	ug/L			07/24/20 04:31	1
N-Propylbenzene	ND	1.0	0.69	ug/L			07/24/20 04:31	1
o-Xylene	ND	1.0	0.76	ug/L			07/24/20 04:31	1
sec-Butylbenzene	ND	1.0	0.75	ug/L			07/24/20 04:31	1
Styrene	ND	1.0	0.73	-			07/24/20 04:31	1
tert-Butylbenzene	ND	1.0	0.81				07/24/20 04:31	1

Job ID: 480-172679-1

Lab Sample ID: 480-172679-5

Matrix: Water

5

6

Client Sample ID: RI-MW-10 Date Collected: 07/21/20 10:02

Date Received: 07/22/20 11:40

Job ID: 480-172679-1

Lab Sample ID: 480-172679-5 Matrix: Water

Method: 8260C - Volatile Orga	nic Compounds I	by GC/MS (Continued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	ND		1.0	0.36	ug/L			07/24/20 04:31	1
Toluene	ND		1.0	0.51	ug/L			07/24/20 04:31	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			07/24/20 04:31	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			07/24/20 04:31	1
Trichloroethene	2.0		1.0	0.46	ug/L			07/24/20 04:31	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			07/24/20 04:31	1
Vinyl chloride	ND		1.0	0.90	ug/L			07/24/20 04:31	1
Xylenes, Total	ND		2.0	0.66	ug/L			07/24/20 04:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		77 _ 120			-		07/24/20 04:31	1
4-Bromofluorobenzene (Surr)	101		73 - 120					07/24/20 04:31	1
Toluene-d8 (Surr)	102		80 - 120					07/24/20 04:31	1

Client Sample ID: RI-MW-11 Date Collected: 07/21/20 11:52

Date Received: 07/22/20 11:40

Analyte	Result Qualifier	RL	MDL	Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	2.0	1.6	ug/L		07/24/20 04:54	2
1,1,2,2-Tetrachloroethane	ND	2.0	0.42	ug/L		07/24/20 04:54	2
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	2.0	0.62	ug/L		07/24/20 04:54	2
1,1,2-Trichloroethane	ND	2.0	0.46	ug/L		07/24/20 04:54	2
1,1-Dichloroethane	ND	2.0	0.76	ug/L		07/24/20 04:54	2
1,1-Dichloroethene	ND	2.0	0.58	ug/L		07/24/20 04:54	2
1,2,4-Trichlorobenzene	ND	2.0	0.82	ug/L		07/24/20 04:54	2
1,2,4-Trimethylbenzene	ND	2.0	1.5	ug/L		07/24/20 04:54	2
1,2-Dibromo-3-Chloropropane	ND	2.0	0.78	ug/L		07/24/20 04:54	2
1,2-Dibromoethane	ND	2.0	1.5	ug/L		07/24/20 04:54	2
1,2-Dichlorobenzene	ND	2.0	1.6	ug/L		07/24/20 04:54	2
1,2-Dichloroethane	ND	2.0	0.42	ug/L		07/24/20 04:54	2
1,2-Dichloropropane	ND	2.0	1.4	ug/L		07/24/20 04:54	2
1,3,5-Trimethylbenzene	ND	2.0	1.5	ug/L		07/24/20 04:54	2
1,3-Dichlorobenzene	ND	2.0		ug/L		07/24/20 04:54	2
1,4-Dichlorobenzene	ND	2.0		ug/L		07/24/20 04:54	2
2-Butanone (MEK)	ND	20		ug/L		07/24/20 04:54	2
2-Hexanone	ND	10		ug/L		07/24/20 04:54	2
4-Isopropyltoluene	ND	2.0	0.62			07/24/20 04:54	2
4-Methyl-2-pentanone (MIBK)	ND	10		ug/L		07/24/20 04:54	2
Acetone	ND	20		ug/L		07/24/20 04:54	2
Benzene	ND	2.0	0.82			07/24/20 04:54	2
Bromodichloromethane	ND	2.0	0.78			07/24/20 04:54	2
Bromoform	ND	2.0	0.52			07/24/20 04:54	2
Bromomethane	ND	2.0		ug/L		07/24/20 04:54	2
Carbon disulfide	ND	2.0	0.38	-		07/24/20 04:54	2
Carbon tetrachloride	ND	2.0	0.54			07/24/20 04:54	2
Chlorobenzene	ND	2.0		ug/L		07/24/20 04:54	2
Chloroethane	ND	2.0	0.64			07/24/20 04:54	2
Chloroform	ND	2.0	0.68	-		07/24/20 04:54	2
Chloromethane	ND	2.0	0.70			07/24/20 04:54	2
cis-1,2-Dichloroethene	2.2	2.0		ug/L ug/L		07/24/20 04:54	2
cis-1,3-Dichloropropene	ND	2.0	0.72			07/24/20 04:54	2
Cyclohexane	ND	2.0	0.72			07/24/20 04:54	2
Dibromochloromethane	ND	2.0	0.50			07/24/20 04:54	2
	ND	2.0		ug/L ug/L		07/24/20 04:54	
Dichlorodifluoromethane							2
Ethylbenzene	ND	2.0		ug/L		07/24/20 04:54	2
Isopropylbenzene	ND	2.0		ug/L		07/24/20 04:54	2
m,p-Xylene	ND	4.0		ug/L		07/24/20 04:54	2
Methyl acetate	ND	5.0		ug/L		07/24/20 04:54	2
Methyl tert-butyl ether	ND	2.0	0.32			07/24/20 04:54	2
Methylcyclohexane	ND	2.0	0.32			07/24/20 04:54	2
Methylene Chloride	0.93 J	2.0	0.88	-		07/24/20 04:54	2
n-Butylbenzene	ND	2.0		ug/L		07/24/20 04:54	2
N-Propylbenzene	ND	2.0		ug/L		07/24/20 04:54	2
o-Xylene	ND	2.0		ug/L		07/24/20 04:54	2
sec-Butylbenzene	ND	2.0		ug/L		07/24/20 04:54	2
Styrene	ND	2.0	1.5	ug/L		07/24/20 04:54	2

Lab Sample ID: 480-172679-6

Matrix: Water

5

6

RL

2.0

2.0

2.0

2.0

2.0

2.0

2.0

4.0

Limits

77 - 120

73 - 120

80 - 120

MDL Unit

0.72 ug/L

1.0 ug/L

1.8 ug/L

0.74 ug/L

0.92 ug/L

1.8 ug/L

1.8 ug/L

1.3 ug/L

D

Prepared

Prepared

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Result Qualifier

ND

ND

ND

ND

ND

ND

ND

ND

104

99

100

%Recovery

Qualifier

Client Sample ID: RI-MW-11 Date Collected: 07/21/20 11:52

Date Received: 07/22/20 11:40

Analyte

Toluene

Tetrachloroethene

Trichloroethene

Vinyl chloride

Xylenes, Total

Toluene-d8 (Surr)

Surrogate

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Trichlorofluoromethane

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Job ID: 480-172679-1

Lab Sample ID: 480-172679-6 Matrix: Water

Analyzed

07/24/20 04:54

07/24/20 04:54

07/24/20 04:54

07/24/20 04:54

07/24/20 04:54

07/24/20 04:54

07/24/20 04:54

07/24/20 04:54

Analyzed

07/24/20 04:54

07/24/20 04:54

07/24/20 04:54

2

2

2

2 2

2

Dil Fac

Client Sample ID: RI-MW-12 Date Collected: 07/21/20 15:25

Date Received: 07/22/20 11:40

Method: 8260C - Volatile Organic (Analyte	Result Qualifier	RL	MDL	Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND	2.0		ug/L		07/24/20 05:17	2
1,1,2,2-Tetrachloroethane	ND	2.0	0.42	-		07/24/20 05:17	2
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	2.0	0.62			07/24/20 05:17	2
1,1,2-Trichloroethane	ND	2.0	0.46			07/24/20 05:17	2
1,1-Dichloroethane	ND	2.0	0.76	-		07/24/20 05:17	2
1,1-Dichloroethene	ND	2.0	0.78	-		07/24/20 05:17	2
1,2,4-Trichlorobenzene	ND	2.0	0.82			07/24/20 05:17	2
1,2,4-Trimethylbenzene	ND	2.0		ug/L ug/L		07/24/20 05:17	2
-	ND	2.0	0.78			07/24/20 05:17	2
1,2-Dibromo-3-Chloropropane 1,2-Dibromoethane	ND	2.0		ug/L ug/L		07/24/20 05:17	2
				-			
1,2-Dichlorobenzene	ND	2.0		ug/L		07/24/20 05:17	2
1,2-Dichloroethane	ND	2.0	0.42			07/24/20 05:17	2
1,2-Dichloropropane	ND	2.0		ug/L		07/24/20 05:17	2
1,3,5-Trimethylbenzene 1.3-Dichlorobenzene	ND	2.0		ug/L		07/24/20 05:17	2
,	ND	2.0		ug/L		07/24/20 05:17	2
1,4-Dichlorobenzene	ND	2.0		ug/L		07/24/20 05:17	2
2-Butanone (MEK)	ND	20		ug/L		07/24/20 05:17	2
2-Hexanone	ND	10		ug/L		07/24/20 05:17	2
4-Isopropyltoluene	ND	2.0	0.62			07/24/20 05:17	2
4-Methyl-2-pentanone (MIBK)	ND	10		ug/L		07/24/20 05:17	2
Acetone	ND	20		ug/L		07/24/20 05:17	2
Benzene	ND	2.0	0.82			07/24/20 05:17	2
Bromodichloromethane	ND	2.0	0.78	-		07/24/20 05:17	2
Bromoform	ND	2.0	0.52			07/24/20 05:17	2
Bromomethane	ND	2.0	1.4	ug/L		07/24/20 05:17	2
Carbon disulfide	ND	2.0	0.38	-		07/24/20 05:17	2
Carbon tetrachloride	ND	2.0	0.54			07/24/20 05:17	2
Chlorobenzene	ND	2.0	1.5	ug/L		07/24/20 05:17	2
Chloroethane	ND	2.0	0.64	ug/L		07/24/20 05:17	2
Chloroform	ND	2.0	0.68	ug/L		07/24/20 05:17	2
Chloromethane	ND	2.0	0.70	-		07/24/20 05:17	2
cis-1,2-Dichloroethene	ND	2.0	1.6	ug/L		07/24/20 05:17	2
cis-1,3-Dichloropropene	ND	2.0	0.72			07/24/20 05:17	2
Cyclohexane	ND	2.0	0.36			07/24/20 05:17	2
Dibromochloromethane	ND	2.0	0.64	ug/L		07/24/20 05:17	2
Dichlorodifluoromethane	ND	2.0		ug/L		07/24/20 05:17	2
Ethylbenzene	ND	2.0		ug/L		07/24/20 05:17	2
Isopropylbenzene	ND	2.0	1.6	ug/L		07/24/20 05:17	2
m,p-Xylene	ND	4.0	1.3	ug/L		07/24/20 05:17	2
Methyl acetate	ND	5.0	2.6	ug/L		07/24/20 05:17	2
Methyl tert-butyl ether	ND	2.0	0.32	ug/L		07/24/20 05:17	2
Methylcyclohexane	ND	2.0	0.32	ug/L		07/24/20 05:17	2
Methylene Chloride	ND	2.0	0.88	ug/L		07/24/20 05:17	2
n-Butylbenzene	ND	2.0	1.3	ug/L		07/24/20 05:17	2
N-Propylbenzene	ND	2.0	1.4	ug/L		07/24/20 05:17	2
o-Xylene	ND	2.0	1.5	ug/L		07/24/20 05:17	2
sec-Butylbenzene	ND	2.0	1.5	ug/L		07/24/20 05:17	2
Styrene	ND	2.0	1.5	ug/L		07/24/20 05:17	2
tert-Butylbenzene	ND	2.0	1.6	ug/L		07/24/20 05:17	2

Eurofins TestAmerica, Buffalo

7/28/2020

Matrix: Water

Lab Sample ID: 480-172679-7

5 6

RL

2.0

2.0

2.0

2.0

2.0

2.0

2.0

4.0

Limits

77 - 120

73 - 120

80 - 120

MDL Unit

0.72 ug/L

1.0 ug/L

1.8 ug/L

0.74 ug/L

0.92 ug/L

1.8 ug/L

1.8 ug/L

1.3 ug/L

D

Prepared

Prepared

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Result Qualifier

ND

ND

ND

ND

ND

ND

ND

ND

100

98

100

%Recovery

Qualifier

Client Sample ID: RI-MW-12 Date Collected: 07/21/20 15:25

Date Received: 07/22/20 11:40

Analyte

Toluene

Tetrachloroethene

Trichloroethene

Vinyl chloride

Xylenes, Total

Toluene-d8 (Surr)

Surrogate

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Trichlorofluoromethane

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Job ID: 480-172679-1

Lab Sample ID: 480-172679-7 Matrix: Water

Analyzed

07/24/20 05:17

07/24/20 05:17

07/24/20 05:17

07/24/20 05:17

07/24/20 05:17

07/24/20 05:17

07/24/20 05:17

07/24/20 05:17

Analyzed

07/24/20 05:17

07/24/20 05:17

07/24/20 05:17

Dil Fac

2

2

2

2 2

2

2

2

2 2

2

Dil Fac

Client Sample ID: TRIP BLANK

Date Collected: 07/21/20 00:00 Date Received: 07/22/20 11:40

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			07/24/20 05:40	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			07/24/20 05:40	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			07/24/20 05:40	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			07/24/20 05:40	1
I,1-Dichloroethane	ND	1.0	0.38	ug/L			07/24/20 05:40	1
I,1-Dichloroethene	ND	1.0	0.29	ug/L			07/24/20 05:40	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			07/24/20 05:40	1
,2,4-Trimethylbenzene	ND	1.0	0.75	ug/L			07/24/20 05:40	1
,2-Dibromo-3-Chloropropane	ND	1.0	0.39				07/24/20 05:40	1
,2-Dibromoethane	ND	1.0	0.73	ug/L			07/24/20 05:40	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			07/24/20 05:40	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			07/24/20 05:40	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			07/24/20 05:40	
1,3,5-Trimethylbenzene	ND	1.0	0.77	-			07/24/20 05:40	1
1,3-Dichlorobenzene	ND	1.0	0.78				07/24/20 05:40	1
I,4-Dichlorobenzene	ND	1.0	0.84				07/24/20 05:40	1
2-Butanone (MEK)	ND	10		ug/L			07/24/20 05:40	1
2-Hexanone	ND	5.0		ug/L			07/24/20 05:40	1
1-Isopropyltoluene	ND	1.0	0.31				07/24/20 05:40	
I-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			07/24/20 05:40	1
Acetone	ND	10		ug/L			07/24/20 05:40	1
Benzene	ND	1.0	0.41				07/24/20 05:40	
Bromodichloromethane	ND	1.0	0.39	-			07/24/20 05:40	1
Bromoform	ND	1.0	0.26				07/24/20 05:40	1
Bromomethane	ND	1.0	0.69				07/24/20 05:40	
Carbon disulfide	ND	1.0	0.19	-			07/24/20 05:40	1
Carbon tetrachloride	ND	1.0	0.13	-			07/24/20 05:40	1
Chlorobenzene	ND	1.0	0.27				07/24/20 05:40	
Chloroethane	ND	1.0	0.73	-			07/24/20 05:40	1
Chloroform	ND	1.0	0.32				07/24/20 05:40	1
Chloromethane	ND	1.0	0.35				07/24/20 05:40	
cis-1,2-Dichloroethene	ND	1.0	0.33	-			07/24/20 05:40	1
cis-1,3-Dichloropropene	ND	1.0		-			07/24/20 05:40	1
	ND	1.0	0.36 0.18				07/24/20 05:40	
Cyclohexane Dibromochloromethane	ND	1.0	0.10	•			07/24/20 05:40	1
Dichlorodifluoromethane	ND							
		1.0	0.68				07/24/20 05:40	
Ethylbenzene	ND	1.0	0.74				07/24/20 05:40	1
sopropylbenzene	ND	1.0	0.79	•			07/24/20 05:40	1
n,p-Xylene	ND	2.0		ug/L			07/24/20 05:40	
Methyl acetate	ND	2.5		ug/L			07/24/20 05:40	1
Aethyl tert-butyl ether	ND	1.0	0.16				07/24/20 05:40	1
<i>Methylcyclohexane</i>	ND	1.0	0.16				07/24/20 05:40	1
Methylene Chloride	ND	1.0	0.44				07/24/20 05:40	1
n-Butylbenzene	ND	1.0		ug/L			07/24/20 05:40	1
I-Propylbenzene	ND	1.0		ug/L			07/24/20 05:40	1
p-Xylene	ND	1.0		ug/L			07/24/20 05:40	1
sec-Butylbenzene	ND	1.0	0.75	ug/L			07/24/20 05:40	1
Styrene	ND	1.0	0.73	ug/L			07/24/20 05:40	1
tert-Butylbenzene	ND	1.0	0.81	ug/L			07/24/20 05:40	1

Eurofins TestAmerica, Buffalo

Job ID: 480-172679-1

Lab Sample ID: 480-172679-8

Matrix: Water

RL

1.0

1.0

1.0

1.0

1.0

1.0

1.0

2.0

Limits

77 - 120

73 - 120

80 - 120

MDL Unit

0.36 ug/L

0.51 ug/L

0.90 ug/L

0.37 ug/L

0.46 ug/L

0.88 ug/L

0.90 ug/L

0.66 ug/L

D

Prepared

Prepared

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Result Qualifier

ND

1.2

ND

ND

ND

ND

ND

ND

100

101

100

%Recovery

Qualifier

Client Sample ID: TRIP BLANK

Date Collected: 07/21/20 00:00 Date Received: 07/22/20 11:40

Analyte

Toluene

Tetrachloroethene

Trichloroethene

Vinyl chloride

Xylenes, Total

Toluene-d8 (Surr)

Surrogate

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Trichlorofluoromethane

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Job ID: 480-172679-1

Lab Sample ID: 480-172679-8 Matrix: Water

Analyzed

07/24/20 05:40

07/24/20 05:40

07/24/20 05:40

07/24/20 05:40

07/24/20 05:40

07/24/20 05:40

07/24/20 05:40

07/24/20 05:40

Analyzed

07/24/20 05:40

07/24/20 05:40

07/24/20 05:40

aτr	IX:	VV a	ate	r	

Dil Fac

1

1

1

1

1

1

1

1

1

1

1

Dil Fac

Eurofins TestAmerica, Buffalo

Method: 8260C - Volatile Organic Compounds by GC/MS Matrix: Water

				Percent Surroga	te Recovery (Acceptance Limits)
		DCA	BFB	TOL	
Lab Sample ID	Client Sample ID	(77-120)	(73-120)	(80-120)	
480-172679-1	RI-MW-2	99	98	101	
480-172679-1 MS	RI-MW-2	100	99	101	
480-172679-1 MSD	RI-MW-2	102	99	100	
480-172679-2	RI-MW-4	97	101	100	
480-172679-2 - DL	RI-MW-4	97	103	103	
480-172679-3	RI-MW-6	99	99	101	
480-172679-4	RI-MW-9	104	100	101	
480-172679-5	RI-MW-10	100	101	102	
480-172679-6	RI-MW-11	104	99	100	
480-172679-7	RI-MW-12	100	98	100	
480-172679-8	TRIP BLANK	100	101	100	
LCS 480-541833/6	Lab Control Sample	98	99	101	
_CS 480-541939/5	Lab Control Sample	99	100	98	
MB 480-541833/9	Method Blank	99	101	101	
VB 480-541939/7	Method Blank	101	99	102	

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-541833/9 Matrix: Water

Analysis Batch: 541833

Analysis Batch: 541833	MB	МВ						
Analyte	Result	Qualifier	RL	MDL	Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L		07/24/20 02:13	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L		07/24/20 02:13	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L		07/24/20 02:13	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L		07/24/20 02:13	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L		07/24/20 02:13	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L		07/24/20 02:13	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L		07/24/20 02:13	1
1,2,4-Trimethylbenzene	ND		1.0	0.75	ug/L		07/24/20 02:13	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L		07/24/20 02:13	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L		07/24/20 02:13	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L		07/24/20 02:13	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L		07/24/20 02:13	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L		07/24/20 02:13	1
1,3,5-Trimethylbenzene	ND		1.0	0.77	-		07/24/20 02:13	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L		07/24/20 02:13	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L		07/24/20 02:13	1
2-Butanone (MEK)	ND		10	1.3	ug/L		07/24/20 02:13	1
2-Hexanone	ND		5.0	1.2	ug/L		07/24/20 02:13	1
4-Isopropyltoluene	ND		1.0	0.31			07/24/20 02:13	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L		07/24/20 02:13	1
Acetone	ND		10	3.0	ug/L		07/24/20 02:13	1
Benzene	ND		1.0	0.41	ug/L		07/24/20 02:13	1
Bromodichloromethane	ND		1.0	0.39	ug/L		07/24/20 02:13	1
Bromoform	ND		1.0	0.26	ug/L		07/24/20 02:13	1
Bromomethane	ND		1.0	0.69	ug/L		07/24/20 02:13	1
Carbon disulfide	ND		1.0	0.19	ug/L		07/24/20 02:13	1
Carbon tetrachloride	ND		1.0	0.27	ug/L		07/24/20 02:13	1
Chlorobenzene	ND		1.0	0.75	ug/L		07/24/20 02:13	1
Chloroethane	ND		1.0	0.32	ug/L		07/24/20 02:13	1
Chloroform	ND		1.0	0.34	ug/L		07/24/20 02:13	1
Chloromethane	ND		1.0	0.35	ug/L		07/24/20 02:13	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L		07/24/20 02:13	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L		07/24/20 02:13	1
Cyclohexane	ND		1.0	0.18	ug/L		07/24/20 02:13	1
Dibromochloromethane	ND		1.0	0.32	ug/L		07/24/20 02:13	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L		07/24/20 02:13	1
Ethylbenzene	ND		1.0	0.74	ug/L		07/24/20 02:13	1
Isopropylbenzene	ND		1.0	0.79	ug/L		07/24/20 02:13	1
m,p-Xylene	ND		2.0	0.66	ug/L		07/24/20 02:13	1
Methyl acetate	ND		2.5	1.3	ug/L		07/24/20 02:13	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L		07/24/20 02:13	1
Methylcyclohexane	ND		1.0	0.16			07/24/20 02:13	1
Methylene Chloride	ND		1.0	0.44	ug/L		07/24/20 02:13	1
n-Butylbenzene	ND		1.0	0.64			07/24/20 02:13	1
N-Propylbenzene	ND		1.0	0.69	ug/L		07/24/20 02:13	1
o-Xylene	ND		1.0	0.76	ug/L		07/24/20 02:13	1
sec-Butylbenzene	ND		1.0	0.75			07/24/20 02:13	1
Styrene	ND		1.0	0.73			07/24/20 02:13	1

Eurofins TestAmerica, Buffalo

Prep Type: Total/NA

Client Sample ID: Method Blank

1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

101

Lab Sample ID: MB 480-541833/9 Matrix: Water

Analysis Batch: 541833

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 1.0 0.81 ug/L 07/24/20 02:13 tert-Butylbenzene ND 1 Tetrachloroethene ND 1.0 0.36 ug/L 07/24/20 02:13 1 Toluene ND 1.0 0.51 ug/L 07/24/20 02:13 1 trans-1,2-Dichloroethene ND 1.0 07/24/20 02:13 0.90 ug/L 1 ND trans-1,3-Dichloropropene 1.0 0.37 ug/L 07/24/20 02:13 1 Trichloroethene ND 0.46 ug/L 1.0 07/24/20 02:13 1 Trichlorofluoromethane ND 1.0 0.88 ug/L 07/24/20 02:13 1 Vinyl chloride ND 1.0 0.90 ug/L 07/24/20 02:13 1 Xylenes, Total ND 2.0 0.66 ug/L 07/24/20 02:13 1 MB MB Qualifier Surrogate %Recovery Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 99 77 - 120 07/24/20 02:13 1 4-Bromofluorobenzene (Surr) 101 73 - 120 07/24/20 02:13 1

80 - 120

Lab	Sample	ID:	LCS	480-541	833/6

Matrix: Water Analysis Batch: 541833

Toluene-d8 (Surr)

Analysis Batch: 541833	Spike	LCS	LCS			%Rec.
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits
1,1,1-Trichloroethane	25.0	24.6	ug/L		98	73 - 126
1,1,2,2-Tetrachloroethane	25.0	23.1	ug/L		92	76 _ 120
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	23.3	ug/L		93	61 - 148
ne						
1,1,2-Trichloroethane	25.0	22.2	ug/L		89	76 - 122
1,1-Dichloroethane	25.0	24.7	ug/L		99	77 - 120
1,1-Dichloroethene	25.0	24.1	ug/L		96	66 - 127
1,2,4-Trichlorobenzene	25.0	23.2	ug/L		93	79 - 122
1,2,4-Trimethylbenzene	25.0	24.3	ug/L		97	76 ₋ 121
1,2-Dibromo-3-Chloropropane	25.0	23.2	ug/L		93	56 ₋ 134
1,2-Dibromoethane	25.0	23.8	ug/L		95	77 - 120
1,2-Dichlorobenzene	25.0	24.0	ug/L		96	80 - 124
1,2-Dichloroethane	25.0	22.8	ug/L		91	75 - 120
1,2-Dichloropropane	25.0	24.7	ug/L		99	76 - 120
1,3,5-Trimethylbenzene	25.0	25.1	ug/L		100	77 _ 121
1,3-Dichlorobenzene	25.0	23.7	ug/L		95	77 - 120
1,4-Dichlorobenzene	25.0	23.4	ug/L		94	80 - 120
2-Butanone (MEK)	125	112	ug/L		89	57 _ 140
2-Hexanone	125	116	ug/L		93	65 _ 127
4-Isopropyltoluene	25.0	24.3	ug/L		97	73 ₋ 120
4-Methyl-2-pentanone (MIBK)	125	118	ug/L		94	71 - 125
Acetone	125	116	ug/L		93	56 - 142
Benzene	25.0	24.2	ug/L		97	71 ₋ 124
Bromodichloromethane	25.0	24.0	ug/L		96	80 - 122
Bromoform	25.0	22.8	ug/L		91	61 - 132
Bromomethane	25.0	22.0	ug/L		88	55 - 144
Carbon disulfide	25.0	23.7	ug/L		95	59 - 134
Carbon tetrachloride	25.0	23.9	ug/L		96	72 - 134
Chlorobenzene	25.0	23.5	ug/L		94	80 ₋ 120

Eurofins TestAmerica, Buffalo

07/24/20 02:13

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-541833/6

Matrix: Water Analysis Batch: 541833

Analysis Batch. 541655	Spike	LCS	LCS				%Rec.	
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	
Chloroethane		24.4		ug/L		97	69 - 136	
Chloroform	25.0	22.6		ug/L		90	73 ₋ 127	
Chloromethane	25.0	21.4		ug/L		86	68 - 124	
cis-1,2-Dichloroethene	25.0	23.8		ug/L		95	74 - 124	
cis-1,3-Dichloropropene	25.0	22.9		ug/L		92	74 - 124	
Cyclohexane	25.0	23.9		ug/L		96	59 ₋ 135	
Dibromochloromethane	25.0	24.0		ug/L		96	75 - 125	
Dichlorodifluoromethane	25.0	23.8		ug/L		95	59 ₋ 135	
Ethylbenzene	25.0	24.0		ug/L		96	77 _ 123	
Isopropylbenzene	25.0	24.5		ug/L		98	77 - 122	
m,p-Xylene	25.0	24.2		ug/L		97	76 ₋ 122	
Methyl acetate	50.0	45.9		ug/L		92	74 - 133	
Methyl tert-butyl ether	25.0	24.2		ug/L		97	77 _ 120	
Methylcyclohexane	25.0	24.0		ug/L		96	68 - 134	
Methylene Chloride	25.0	22.9		ug/L		92	75 ₋ 124	
n-Butylbenzene	25.0	23.5		ug/L		94	71 ₋ 128	
N-Propylbenzene	25.0	24.0		ug/L		96	75 - 127	
o-Xylene	25.0	24.0		ug/L		96	76 ₋ 122	
sec-Butylbenzene	25.0	24.4		ug/L		97	74 ₋ 127	
Styrene	25.0	23.7		ug/L		95	80 - 120	
tert-Butylbenzene	25.0	25.0		ug/L		100	75 ₋ 123	
Tetrachloroethene	25.0	23.9		ug/L		96	74 - 122	
Toluene	25.0	23.8		ug/L		95	80 - 122	
trans-1,2-Dichloroethene	25.0	23.7		ug/L		95	73 - 127	
trans-1,3-Dichloropropene	25.0	23.6		ug/L		94	80 - 120	
Trichloroethene	25.0	24.3		ug/L		97	74 - 123	
Trichlorofluoromethane	25.0	24.5		ug/L		98	62 - 150	
Vinyl chloride	25.0	24.3		ug/L		97	65 - 133	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	98		77 _ 120
4-Bromofluorobenzene (Surr)	99		73 - 120
Toluene-d8 (Surr)	101		80 - 120

Lab Sample ID: 480-172679-1 MS Matrix: Water Analysis Batch: 541833

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	ND		100	92.5		ug/L		93	73 - 126
1,1,2,2-Tetrachloroethane	ND		100	84.6		ug/L		85	76 _ 120
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		100	84.1		ug/L		84	61 _ 148
ne									
1,1,2-Trichloroethane	ND		100	88.2		ug/L		88	76 - 122
1,1-Dichloroethane	ND		100	89.7		ug/L		90	77 _ 120
1,1-Dichloroethene	ND		100	87.9		ug/L		88	66 - 127
1,2,4-Trichlorobenzene	ND		100	85.9		ug/L		86	79 - 122
1,2,4-Trimethylbenzene	ND		100	88.7		ug/L		89	76 - 121
1,2-Dibromo-3-Chloropropane	ND		100	82.6		ug/L		83	56 - 134

Eurofins TestAmerica, Buffalo

Client Sample ID: RI-MW-2

Prep Type: Total/NA

Client Sample ID: RI-MW-2 Prep Type: Total/NA

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-172679-1 MS Matrix: Water

Analysis Batch: 541833

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2-Dibromoethane	ND		100	92.2		ug/L		92	77 - 120	6
1,2-Dichlorobenzene	ND		100	87.6		ug/L		88	80 - 124	
1,2-Dichloroethane	ND		100	84.5		ug/L		84	75 ₋ 120	
1,2-Dichloropropane	ND		100	94.0		ug/L		94	76 ₋ 120	
1,3,5-Trimethylbenzene	ND		100	89.7		ug/L		90	77 ₋ 121	
1,3-Dichlorobenzene	ND		100	86.1		ug/L		86	77 _ 120	8
1,4-Dichlorobenzene	ND		100	87.0		ug/L		87	78 - 124	
2-Butanone (MEK)	ND		500	420		ug/L		84	57 ₋ 140	÷.
2-Hexanone	ND		500	428		ug/L		86	65 ₋ 127	
4-Isopropyltoluene	ND		100	87.5		ug/L		88	73 ₋ 120	
4-Methyl-2-pentanone (MIBK)	ND		500	440		ug/L		88	71 - 125	
Acetone	ND		500	426		ug/L		85	56 - 142	
Benzene	ND		100	91.0		ug/L		91	71 ₋ 124	
Bromodichloromethane	ND		100	88.4		ug/L		88	80 - 122	
Bromoform	ND		100	77.1		ug/L		77	61 - 132	
Bromomethane	ND		100	82.7		ug/L		83	55 ₋ 144	
Carbon disulfide	ND		100	78.1		ug/L		78	59 - 134	
Carbon tetrachloride	ND		100	88.3		ug/L		88	72 - 134	
Chlorobenzene	ND		100	90.7		ug/L		91	80 - 120	
Chloroethane	ND		100	93.9		ug/L		94	69 - 136	
Chloroform	ND		100	84.5		ug/L		85	73 - 127	
Chloromethane	ND		100	85.5		ug/L		85	68 - 124	
cis-1,2-Dichloroethene	ND		100	88.3		ug/L		88	74 ₋ 124	
cis-1,3-Dichloropropene	ND		100	81.3		ug/L		81	74 - 124 74 - 124	
Cyclohexane	ND		100	86.7		ug/L		87	59 ₋ 135	
Dibromochloromethane	ND		100	85.6		ug/L ug/L		86	59 - 135 75 - 125	
Dichlorodifluoromethane	ND		100	98.4		ug/L ug/L		00 98	75 - 125 59 - 135	
Ethylbenzene	ND		100	98.4 90.5		ug/L ug/L		98 91	59 - 135 77 - 123	
Isopropylbenzene	ND		100	90.5 89.1				89	77 - 123 77 - 122	
m,p-Xylene	ND ND		100	89.1 91.0		ug/L		89 91	77 - 122 76 - 122	
						ug/L				
Methyl acetate	ND		200	165		ug/L		82 01	74 ₋ 133 77 120	
Methyl tert-butyl ether	ND		100	90.6 87.5		ug/L		91 87	77 - 120 68 134	
Methylcyclohexane	ND		100	87.5		ug/L		87	68 - 134	
Methylene Chloride	ND		100	84.4		ug/L		84	75 - 124	
n-Butylbenzene	ND		100	85.6		ug/L		86	71 - 128	
N-Propylbenzene	ND		100	86.6		ug/L		87	75 - 127	
o-Xylene	ND		100	89.6		ug/L		90	76 - 122	
sec-Butylbenzene	ND		100	88.2		ug/L		88	74 - 127	
Styrene	ND		100	88.9		ug/L		89	80 - 120	
tert-Butylbenzene	ND		100	90.8		ug/L		91	75 - 123	
Tetrachloroethene	ND		100	91.5		ug/L		92	74 - 122	
Toluene	ND		100	90.7		ug/L		91	80 - 122	
trans-1,2-Dichloroethene	ND		100	88.5		ug/L		88	73 ₋ 127	
trans-1,3-Dichloropropene	ND	F1	100	80.5		ug/L		80	80 - 120	
Trichloroethene	6.8		100	97.5		ug/L		91	74 - 123	
Trichlorofluoromethane	ND		100	93.4		ug/L		93	62 - 150	
Vinyl chloride	ND		100	95.3		ug/L		95	65 - 133	

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-172679-1 MS Matrix: Water Analysis Batch: 541833

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100		77 - 120
4-Bromofluorobenzene (Surr)	99		73 - 120
Toluene-d8 (Surr)	101		80 - 120

Lab Sample ID: 480-172679-1 MSD

Matrix: Water

Analysis Batch: 541833											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	ND		100	94.7		ug/L		95	73 - 126	2	15
1,1,2,2-Tetrachloroethane	ND		100	88.0		ug/L		88	76 _ 120	4	15
1,1,2-Trichloro-1,2,2-trifluoroetha	ND		100	83.1		ug/L		83	61 - 148	1	20
ne 1,1,2-Trichloroethane	ND		100	85.1		ug/L		85	76 ₋ 122	4	15
1,1-Dichloroethane	ND		100	92.9		ug/L ug/L		93	70 - 122 77 - 120	4	20
1,1-Dichloroethene	ND		100	87.4		ug/L		95 87	66 - 127	1	16
1,2,4-Trichlorobenzene	ND		100	85.7		ug/L		86	79 ₋ 122	0	20
1,2,4-Trimethylbenzene	ND		100	89.2		ug/L		89	76 <u>-</u> 121	1	20
1,2-Dibromo-3-Chloropropane	ND		100	84.9		ug/L		85	56 - 134	3	_0 15
1.2-Dibromoethane	ND		100	87.9		ug/L		88	77 - 120	5	15
1,2-Dichlorobenzene	ND		100	88.4		ug/L		88	80 - 124	1	20
1,2-Dichloroethane	ND		100	84.8		ug/L		85	75 ₋ 120	0	20
1,2-Dichloropropane	ND		100	93.9		ug/L		94	76 - 120	0	20
1,3,5-Trimethylbenzene	ND		100	91.7		ug/L		92	77 _ 121	2	20
1,3-Dichlorobenzene	ND		100	89.1		ug/L		89	77 _ 120	3	20
1,4-Dichlorobenzene	ND		100	87.0		ug/L		87	78 - 124	0	20
2-Butanone (MEK)	ND		500	419		ug/L		84	57 _ 140	0	20
2-Hexanone	ND		500	431		ug/L		86	65 _ 127	1	15
4-Isopropyltoluene	ND		100	88.1		ug/L		88	73 _ 120	1	20
4-Methyl-2-pentanone (MIBK)	ND		500	435		ug/L		87	71 - 125	1	35
Acetone	ND		500	426		ug/L		85	56 - 142	0	15
Benzene	ND		100	93.8		ug/L		94	71 _ 124	3	13
Bromodichloromethane	ND		100	89.3		ug/L		89	80 - 122	1	15
Bromoform	ND		100	78.5		ug/L		78	61 - 132	2	15
Bromomethane	ND		100	86.4		ug/L		86	55 _ 144	4	15
Carbon disulfide	ND		100	79.1		ug/L		79	59 - 134	1	15
Carbon tetrachloride	ND		100	91.6		ug/L		92	72 _ 134	4	15
Chlorobenzene	ND		100	90.2		ug/L		90	80 - 120	0	25
Chloroethane	ND		100	98.3		ug/L		98	69 - 136	5	15
Chloroform	ND		100	84.8		ug/L		85	73 - 127	0	20
Chloromethane	ND		100	84.9		ug/L		85	68 - 124	1	15
cis-1,2-Dichloroethene	ND		100	93.1		ug/L		93	74 - 124	5	15
cis-1,3-Dichloropropene	ND		100	81.1		ug/L		81	74 _ 124	0	15
Cyclohexane	ND		100	87.6		ug/L		88	59 _ 135	1	20
Dibromochloromethane	ND		100	86.4		ug/L		86	75 - 125	1	15
Dichlorodifluoromethane	ND		100	96.1		ug/L		96	59 - 135	2	20
Ethylbenzene	ND		100	89.6		ug/L		90	77 - 123	1	15
Isopropylbenzene	ND		100	91.3		ug/L		91	77 - 122	2	20
m,p-Xylene	ND		100	90.4		ug/L		90	76 - 122	1	16

Client Sample ID: RI-MW-2 Prep Type: Total/NA

Client Sample ID: RI-MW-2

Prep Type: Total/NA

Eurofins TestAmerica, Buffalo

8

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-172679-1 MSD Matrix: Water

Analysis Batch: 541833

Analysis Batch. 041000	Comula	Comula	Cuilto	MOD	MSD				%Rec.		RPD
		Sample	Spike				_				
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Methyl acetate	ND		200	168		ug/L		84	74 - 133	2	20
Methyl tert-butyl ether	ND		100	92.9		ug/L		93	77 - 120	3	37
Methylcyclohexane	ND		100	86.2		ug/L		86	68 - 134	1	20
Methylene Chloride	ND		100	86.5		ug/L		86	75 _ 124	2	15
n-Butylbenzene	ND		100	84.6		ug/L		85	71 - 128	1	15
N-Propylbenzene	ND		100	89.1		ug/L		89	75 ₋ 127	3	15
o-Xylene	ND		100	91.0		ug/L		91	76 - 122	2	16
sec-Butylbenzene	ND		100	89.1		ug/L		89	74 ₋ 127	1	15
Styrene	ND		100	87.9		ug/L		88	80 _ 120	1	20
tert-Butylbenzene	ND		100	91.8		ug/L		92	75 _ 123	1	15
Tetrachloroethene	ND		100	87.3		ug/L		87	74 _ 122	5	20
Toluene	ND		100	90.8		ug/L		91	80 - 122	0	15
trans-1,2-Dichloroethene	ND		100	88.9		ug/L		89	73 ₋ 127	0	20
trans-1,3-Dichloropropene	ND	F1	100	78.3	F1	ug/L		78	80 - 120	3	15
Trichloroethene	6.8		100	94.4		ug/L		88	74 - 123	3	16
Trichlorofluoromethane	ND		100	96.0		ug/L		96	62 - 150	3	20
Vinyl chloride	ND		100	99.0		ug/L		99	65 - 133	4	15
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	102		77 _ 120
4-Bromofluorobenzene (Surr)	99		73 - 120
Toluene-d8 (Surr)	100		80 - 120

Lab Sample ID: MB 480-541939/7 Matrix: Water Analysis Batch: 541939

Analysis Baton. 041000	МВ	мв							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			07/24/20 12:07	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			07/24/20 12:07	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			07/24/20 12:07	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			07/24/20 12:07	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			07/24/20 12:07	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			07/24/20 12:07	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			07/24/20 12:07	1
1,2,4-Trimethylbenzene	ND		1.0	0.75	ug/L			07/24/20 12:07	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			07/24/20 12:07	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			07/24/20 12:07	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			07/24/20 12:07	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			07/24/20 12:07	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			07/24/20 12:07	1
1,3,5-Trimethylbenzene	ND		1.0	0.77	ug/L			07/24/20 12:07	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			07/24/20 12:07	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			07/24/20 12:07	1
2-Butanone (MEK)	ND		10	1.3	ug/L			07/24/20 12:07	1
2-Hexanone	ND		5.0	1.2	ug/L			07/24/20 12:07	1
4-Isopropyltoluene	ND		1.0	0.31	ug/L			07/24/20 12:07	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			07/24/20 12:07	1

Eurofins TestAmerica, Buffalo

Client Sample ID: Method Blank Prep Type: Total/NA

8 9

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

....

Lab Sample ID: MB 480-541939/7 Matrix: Water

Analysis Batch: 541939

	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		10	3.0	ug/L			07/24/20 12:07	1
Benzene	ND		1.0	0.41	ug/L			07/24/20 12:07	1
Bromodichloromethane	ND		1.0	0.39	ug/L			07/24/20 12:07	1
Bromoform	ND		1.0	0.26	ug/L			07/24/20 12:07	1
Bromomethane	ND		1.0	0.69	ug/L			07/24/20 12:07	1
Carbon disulfide	ND		1.0	0.19	ug/L			07/24/20 12:07	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			07/24/20 12:07	1
Chlorobenzene	ND		1.0	0.75	ug/L			07/24/20 12:07	1
Chloroethane	ND		1.0	0.32	ug/L			07/24/20 12:07	1
Chloroform	ND		1.0	0.34	ug/L			07/24/20 12:07	1
Chloromethane	ND		1.0	0.35	ug/L			07/24/20 12:07	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			07/24/20 12:07	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			07/24/20 12:07	1
Cyclohexane	ND		1.0	0.18	ug/L			07/24/20 12:07	1
Dibromochloromethane	ND		1.0	0.32	ug/L			07/24/20 12:07	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			07/24/20 12:07	1
Ethylbenzene	ND		1.0	0.74	ug/L			07/24/20 12:07	1
Isopropylbenzene	ND		1.0	0.79	ug/L			07/24/20 12:07	1
m,p-Xylene	ND		2.0	0.66	ug/L			07/24/20 12:07	1
Methyl acetate	ND		2.5	1.3	ug/L			07/24/20 12:07	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			07/24/20 12:07	1
Methylcyclohexane	ND		1.0	0.16	ug/L			07/24/20 12:07	1
Methylene Chloride	ND		1.0	0.44	ug/L			07/24/20 12:07	1
n-Butylbenzene	ND		1.0	0.64	ug/L			07/24/20 12:07	1
N-Propylbenzene	ND		1.0	0.69	ug/L			07/24/20 12:07	1
o-Xylene	ND		1.0	0.76	ug/L			07/24/20 12:07	1
sec-Butylbenzene	ND		1.0	0.75	ug/L			07/24/20 12:07	1
Styrene	ND		1.0	0.73	ug/L			07/24/20 12:07	1
tert-Butylbenzene	ND		1.0	0.81	ug/L			07/24/20 12:07	1
Tetrachloroethene	ND		1.0	0.36	ug/L			07/24/20 12:07	1
Toluene	ND		1.0	0.51	ug/L			07/24/20 12:07	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			07/24/20 12:07	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			07/24/20 12:07	1
Trichloroethene	ND		1.0	0.46	ug/L			07/24/20 12:07	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			07/24/20 12:07	1
Vinyl chloride	ND		1.0	0.90	ug/L			07/24/20 12:07	1
Xylenes, Total	ND		2.0	0.66	ug/L			07/24/20 12:07	1
	MD	МВ							
Surrogate	мв %Recovery		Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		77 _ 120			_		07/24/20 12:07	1
4-Bromofluorobenzene (Surr)	99		73 - 120					07/24/20 12:07	1
Toluene-d8 (Surr)	102		80 - 120					07/24/20 12:07	1

8

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-541939/5 Matrix: Water

matrix. T	atter	
Analysis	Batch:	541939

	Spike	LCS	LCS			%Rec.
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits
1,1,1-Trichloroethane	25.0	26.0	ug/L		104	73 - 126
1,1,2,2-Tetrachloroethane	25.0	24.2	ug/L		97	76 - 120
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	23.7	ug/L		95	61 - 148
ne 1,1,2-Trichloroethane	25.0	23.4	ug/L		94	76 ₋ 122
1,1-Dichloroethane	25.0	25.0	ug/L		100	77 ₋ 120
1,1-Dichloroethene	25.0	23.6	ug/L		95	66 - 127
1,2,4-Trichlorobenzene	25.0	25.4	ug/L		102	79 - 122
1,2,4-Trimethylbenzene	25.0	25.2	ug/L		101	76 - 121
1,2-Dibromo-3-Chloropropane	25.0	23.6	ug/L		94	56 - 134
I,2-Dibromoethane	25.0	25.5	ug/L		102	77 _ 120
1,2-Dichlorobenzene	25.0	24.8	ug/L		99	80 - 124
,2-Dichloroethane	25.0	24.3	ug/L		97	75 - 120
,2-Dichloropropane	25.0	26.2	ug/L		105	76 - 120
I,3,5-Trimethylbenzene	25.0	25.8	ug/L		103	77 _ 121
I,3-Dichlorobenzene	25.0	25.3	ug/L		101	77 - 120
,4-Dichlorobenzene	25.0	24.6	ug/L		98	80 - 120
2-Butanone (MEK)	125	114	ug/L		91	57 - 140
2-Hexanone	125	119	ug/L		95	65 ₋ 127
l-Isopropyltoluene	25.0	25.4	ug/L		102	73 - 120
-Methyl-2-pentanone (MIBK)	125	119	ug/L		95	71 ₋ 125
cetone	125	114	ug/L		91	56 ₋ 142
Benzene	25.0	25.4	ug/L		102	71 - 124
Bromodichloromethane	25.0	25.6	ug/L		103	80 - 122
Bromoform	25.0	23.7	ug/L		95	61 - 132
Bromomethane	25.0	22.0	ug/L		88	55 ₋ 144
Carbon disulfide	25.0	23.1	ug/L		92	59 ₋ 134
Carbon tetrachloride	25.0	25.4	ug/L		102	72 - 134
Chlorobenzene	25.0	24.4	ug/L		97	80 - 120
Chloroethane	25.0	23.7	ug/L		95	69 - 136
Chloroform	25.0	23.5	ug/L		94	73 - 127
Chloromethane	25.0	22.3	ug/L		89	68 - 124
is-1,2-Dichloroethene	25.0	24.0	ug/L		96	74 - 124
sis-1,3-Dichloropropene	25.0	25.6	ug/L		102	74 ₋ 124
Cyclohexane	25.0	24.3	ug/L		97	59 - 135
Dibromochloromethane	25.0	25.3	ug/L		101	75 ₋ 125
Dichlorodifluoromethane	25.0	23.5	ug/L		94	59 ₋ 135
thylbenzene	25.0	24.6	ug/L		98	77 ₋ 123
sopropylbenzene	25.0	25.4	ug/L		102	77 ₋ 122
n,p-Xylene	25.0	24.7	ug/L		99	76 - 122
Aethyl acetate	50.0	47.8	ug/L		96	74 ₋ 133
Aethyl tert-butyl ether	25.0	25.7	ug/L		103	77 - 120
/lethylcyclohexane	25.0	25.5	ug/L		102	68 - 134
Aethylene Chloride	25.0	22.7	ug/L		91	75 ₋ 124
-Butylbenzene	25.0	25.1	ug/L		100	71 - 128
N-Propylbenzene	25.0	25.1	ug/L		100	75 ₋ 127
p-Xylene	25.0	24.8	ug/L		99	76 ₋ 122
sec-Butylbenzene	25.0	25.2	ug/L		101	74 - 127
Styrene	25.0	24.5	ug/L		98	80 - 120

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Eurofins TestAmerica, Buffalo

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-541939/5 Matrix: Water

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 541939

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
tert-Butylbenzene		26.4		ug/L		105	75 - 123
Tetrachloroethene	25.0	25.2		ug/L		101	74 - 122
Toluene	25.0	24.4		ug/L		97	80 - 122
trans-1,2-Dichloroethene	25.0	24.0		ug/L		96	73 - 127
trans-1,3-Dichloropropene	25.0	24.9		ug/L		100	80 - 120
Trichloroethene	25.0	25.0		ug/L		100	74 ₋ 123
Trichlorofluoromethane	25.0	24.7		ug/L		99	62 - 150
Vinyl chloride	25.0	23.8		ug/L		95	65 - 133

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99		77 - 120
4-Bromofluorobenzene (Surr)	100		73 - 120
Toluene-d8 (Surr)	98		80 - 120

Eurofins TestAmerica, Buffalo

Prep Type

Total/NA

Matrix

Water

Method

8260C

Method

8260C

8260C

8260C

Client Sample ID

RI-MW-2

RI-MW-4

RI-MW-6

RI-MW-9

RI-MW-10

RI-MW-11

RI-MW-12

RI-MW-2

RI-MW-2

TRIP BLANK

Method Blank

Lab Control Sample

Lab Control Sample

GC/MS VOA

Lab Sample ID

480-172679-1

480-172679-2

480-172679-3

480-172679-4

480-172679-5

480-172679-6

480-172679-7

480-172679-8

MB 480-541833/9

LCS 480-541833/6

480-172679-1 MS

480-172679-1 MSD

LCS 480-541939/5

Analysis Batch: 541833

Prep Batch

Prep Batch

Analysis Batch: 541939 Prep Type Lab Sample ID **Client Sample ID** Matrix 480-172679-2 - DL RI-MW-4 Total/NA Water MB 480-541939/7 Total/NA Water Method Blank

Eurofins TestAmerica, Buffalo

-		Vashington St.(T							
	le ID: RI-MW						Lat	Sample ID	: 480-172679-1
	: 07/21/20 09:0 : 07/22/20 11:4	-							Matrix: Water
-		Batch		Dilution	Batab	Bronorod			
Prep Type	Batch Type	Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C		4	541833	07/24/20 02:59	CRL	TAL BUF	
liont Samn	le ID: RI-MW							Sample ID	: 480-172679-2
	: 07/21/20 13:1						Lui	oumpie ib	Matrix: Water
	: 07/22/20 11:4								Matrix. Water
-	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C		2	541833	07/24/20 03:22	CRL	TAL BUF	
Total/NA	Analysis	8260C	DL	4	541939	07/24/20 13:19	CRL	TAL BUF	
- Client Some		16					1.04	Sample ID	. 490 172670 3
	le ID: RI-MW : 07/21/20 14:0						Lai	o Sample ID	: 480-172679-3 Matrix: Water
	: 07/21/20 14:0 : 07/22/20 11:4	-							Matrix: Water
-	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C		2	541833	07/24/20 03:45	CRL	TAL BUF	
Date Received	: 07/22/20 11:4	0							
	Batch	Batch		Dilution	Batch	Prepared			
Drop Tupo									
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Type Analysis	Method 8260C	Run	1	Number 541833	or Analyzed	Analyst CRL	TAL BUF	
Total/NA	Analysis	8260C	Run				CRL	TAL BUF	: 480-172679-5
Total/NA Client Samp Date Collected	Analysis le ID: RI-MW : 07/21/20 10:0	8260C /-10 2	Run				CRL	TAL BUF	: 480-172679-5 Matrix: Water
Total/NA 	Analysis le ID: RI-MW : 07/21/20 10:0	8260C /-10 2	Run				CRL	TAL BUF	
Total/NA Client Samp Date Collected	Analysis le ID: RI-MW : 07/21/20 10:0	8260C /-10 2	Run				CRL	TAL BUF	
Total/NA Client Samp Date Collected Date Received Prep Type	Analysis le ID: RI-MW : 07/21/20 10:0 : 07/22/20 11:4 Batch Type	8260C /-10 2 0 Batch Method	Run	1 Dilution Factor	541833 Batch Number	07/24/20 04:08 Prepared or Analyzed	CRL	TAL BUF	
Total/NA Client Samp Date Collected Date Received	Analysis le ID: RI-MW : 07/21/20 10:0 : 07/22/20 11:4 Batch	8260C /-10 2 0 Batch		Dilution	541833 Batch	07/24/20 04:08	CRL	Sample ID	
Total/NA Client Samp Date Collected Date Received: Prep Type Total/NA	Analysis Ie ID: RI-MW : 07/21/20 10:0 : 07/22/20 11:4 Batch Type Analysis	8260C /-10 2 0 Batch <u>Method</u> 8260C		1 Dilution Factor	541833 Batch Number	07/24/20 04:08 Prepared or Analyzed	CRL Lat Analyst CRL	TAL BUF	
Total/NA Client Samp Date Collected Date Received: Prep Type Total/NA Client Samp Date Collected	Analysis le ID: RI-MW : 07/21/20 10:0 : 07/22/20 11:4 Batch Type Analysis le ID: RI-MW : 07/21/20 11:5	8260C /-10 2 0 Batch Method 8260C		1 Dilution Factor	541833 Batch Number	07/24/20 04:08 Prepared or Analyzed	CRL Lat Analyst CRL	TAL BUF	Matrix: Water
Total/NA Client Samp Date Collected Date Received: Prep Type Total/NA Client Samp Date Collected	Analysis le ID: RI-MW : 07/21/20 10:0 : 07/22/20 11:4 Batch Type Analysis le ID: RI-MW : 07/21/20 11:5	8260C /-10 2 0 Batch Method 8260C		1 Dilution Factor	541833 Batch Number	07/24/20 04:08 Prepared or Analyzed	CRL Lat Analyst CRL	TAL BUF	Matrix: Water
Total/NA Client Samp Date Collected Date Received: Prep Type Total/NA Client Samp Date Collected	Analysis le ID: RI-MW : 07/21/20 10:0 : 07/22/20 11:4 Batch Type Analysis le ID: RI-MW : 07/21/20 11:5	8260C /-10 2 0 Batch Method 8260C		1 Dilution Factor	541833 Batch Number	07/24/20 04:08 Prepared or Analyzed 07/24/20 04:31 Prepared	CRL Lat Analyst CRL	TAL BUF	Matrix: Water
Total/NA Client Samp Date Collected Date Received: Prep Type Total/NA Client Samp Date Collected Date Received: Prep Type	Analysis le ID: RI-MW : 07/21/20 10:0 : 07/22/20 11:4 Batch Type Analysis le ID: RI-MW : 07/21/20 11:5 : 07/22/20 11:4 Batch Type	8260C /-10 2 0 Batch Method 8260C /-11 2 0 Batch Method 8260C		Dilution Factor 1 Dilution Factor	541833 Batch Number 541833 Batch Number	Prepared or Analyzed 07/24/20 04:08	CRL Lat CRL Lat Analyst	Lab Cample ID TAL BUF TAL BUF	Matrix: Water
Total/NA Client Samp Date Collected Date Received: Prep Type Total/NA Client Samp Date Collected Date Received:	Analysis le ID: RI-MW : 07/21/20 10:0 : 07/22/20 11:4 Batch Type Analysis le ID: RI-MW : 07/21/20 11:5 : 07/22/20 11:4 Batch	8260C /-10 2 0 Batch Method 8260C /-11 2 0 Batch	Run	Dilution Factor 1	541833 Batch Number 541833 Batch	07/24/20 04:08 Prepared or Analyzed 07/24/20 04:31 Prepared	CRL Lat Analyst CRL Lat	TAL BUF	Matrix: Water
Total/NA Client Samp Date Collected Date Received: Prep Type Total/NA Client Samp Date Collected Date Received: Prep Type Total/NA	Analysis le ID: RI-MW : 07/21/20 10:0 : 07/22/20 11:44 Batch Type Analysis le ID: RI-MW : 07/21/20 11:5 : 07/22/20 11:44 Batch Type Analysis	8260C /-10 2 0 Batch Method 8260C /-11 2 0 Batch Method 8260C /-11 2 0 Batch Method 8260C	Run	Dilution Factor 1 Dilution Factor	541833 Batch Number 541833 Batch Number	Prepared or Analyzed 07/24/20 04:08	CRL Lat CRL Lat Analyst CRL	TAL BUF Sample ID Lab TAL BUF Sample ID Sample ID TAL BUF	Matrix: Water
Total/NA Client Samp Date Collected Date Received: Prep Type Total/NA Client Samp Date Collected Date Received:	Analysis le ID: RI-MW : 07/21/20 10:0 : 07/22/20 11:4 Batch Type Analysis le ID: RI-MW : 07/21/20 11:5 : 07/22/20 11:4 Batch	8260C /-10 2 0 Batch Method 8260C /-11 2 0 Batch	Run	Dilution Factor 1	541833 Batch Number 541833 Batch	07/24/20 04:08 Prepared or Analyzed 07/24/20 04:31 Prepared	CRL Lat Analyst CRL Lat	TAL BUF	Matrix: Water
Total/NA Client Samp Date Collected Date Received: Prep Type Total/NA Client Samp Date Collected Date Received: Prep Type Total/NA Client Samp	Analysis le ID: RI-MW : 07/21/20 10:0 : 07/22/20 11:44 Batch Type Analysis le ID: RI-MW : 07/21/20 11:5 : 07/22/20 11:44 Batch Type Analysis le ID: RI-MW	8260C /-10 2 0 Batch Method 8260C /-11 2 0 Batch Method 8260C /-11 2 0 Batch Method 8260C /-12	Run	Dilution Factor 1 Dilution Factor	541833 Batch Number 541833 Batch Number	Prepared or Analyzed 07/24/20 04:08	CRL Lat CRL Lat Analyst CRL	TAL BUF Sample ID Lab TAL BUF Sample ID Sample ID TAL BUF	Matrix: Water : 480-172679-6 Matrix: Water : 480-172679-7
Total/NA Client Samp Date Collected Date Received: Prep Type Total/NA Client Samp Date Collected Date Received: Prep Type Total/NA Client Samp Date Collected	Analysis Ie ID: RI-MW : 07/21/20 10:0 : 07/22/20 11:4/ Batch Type Analysis Ie ID: RI-MW : 07/21/20 11:5 : 07/22/20 11:4/ Batch Type Analysis Ie ID: RI-MW : 07/21/20 15:2	8260C /-10 2 0 Batch Method 8260C /-11 2 0 Batch Method 8260C /-11 2 0 Batch Method 8260C /-12 5	Run	Dilution Factor 1 Dilution Factor	541833 Batch Number 541833 Batch Number	Prepared or Analyzed 07/24/20 04:08	CRL Lat CRL Lat Analyst CRL	TAL BUF Sample ID Lab TAL BUF Sample ID Sample ID TAL BUF	Matrix: Water : 480-172679-6 Matrix: Water
Total/NA Client Samp Date Collected Date Received: Prep Type Total/NA Client Samp Date Collected Date Received: Prep Type Total/NA Client Samp Date Collected	Analysis le ID: RI-MW : 07/21/20 10:0 : 07/22/20 11:44 Batch Type Analysis le ID: RI-MW : 07/21/20 11:5 : 07/22/20 11:44 Batch Type Analysis le ID: RI-MW	8260C /-10 2 0 Batch Method 8260C /-11 2 0 Batch Method 8260C /-11 2 0 /-11 2 0 /-112 5 0	Run	Dilution Factor 1 Dilution Factor 2	541833 Batch Number 541833 Batch Number 541833	07/24/20 04:08 Prepared or Analyzed 07/24/20 04:31 Prepared or Analyzed 07/24/20 04:54	CRL Lat CRL Lat Analyst CRL	TAL BUF Sample ID Lab TAL BUF Sample ID Sample ID TAL BUF	Matrix: Water : 480-172679-6 Matrix: Water : 480-172679-7
Total/NA Client Samp Date Collected Date Received: Prep Type Total/NA Client Samp Date Collected Date Received: Prep Type Total/NA Client Samp Date Collected	Analysis Ie ID: RI-MW : 07/21/20 10:0 : 07/22/20 11:4/ Batch Type Analysis Ie ID: RI-MW : 07/21/20 11:5 : 07/22/20 11:4/ Batch Type Analysis Ie ID: RI-MW : 07/21/20 15:2	8260C /-10 2 0 Batch Method 8260C /-11 2 0 Batch Method 8260C /-11 2 0 Batch Method 8260C /-12 5	Run	Dilution Factor 1 Dilution Factor	541833 Batch Number 541833 Batch Number	Prepared or Analyzed 07/24/20 04:08	CRL Lat CRL Lat Analyst CRL	TAL BUF TAL BUF Contract of the second sec	Matrix: Water : 480-172679-6 Matrix: Water : 480-172679-7

Matrix: Water

Lab Sample ID: 480-172679-8

Client Sample ID: TRIP BLANK Date Collected: 07/21/20 00:00 Date Received: 07/22/20 11:40

_								
	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	541833	07/24/20 05:40	CRL	TAL BUF

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Eurofins TestAmerica, Buffalo

	91 Washington St.(Trico site)			
	TestAmerica, Buffalo sted below are applicable to this report.			
Authority	Program	Identification Number	Expiration Date	
New York	NELAP	10026	04-02-21	5
				6
				8
				9
				1
				1
				1
				1
				1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
5030C	Purge and Trap	SW846	TAL BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Sample Summary

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark-791 Washington St.(Trico site)

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-172679-1	RI-MW-2	Water	07/21/20 09:05	07/22/20 11:40
480-172679-2	RI-MW-4	Water	07/21/20 13:14	07/22/20 11:40
480-172679-3	RI-MW-6	Water	07/21/20 14:09	07/22/20 11:40
480-172679-4	RI-MW-9	Water	07/21/20 11:33	07/22/20 11:40
480-172679-5	RI-MW-10	Water	07/21/20 10:02	07/22/20 11:40
480-172679-6	RI-MW-11	Water	07/21/20 11:52	07/22/20 11:40
480-172679-7	RI-MW-12	Water	07/21/20 15:25	07/22/20 11:40
480-172679-8	TRIP BLANK	Water	07/21/20 00:00	07/22/20 11:40

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298

Chain of Custody Record

Control Environment Testing America

Phone: 716-691-2600 Fax: 716-691-7991	- 1							
Client Information	Thur Br	Guren	4	Fische	Lab PM: Fischer, Brian J	<u>.</u>	Carrier Tracking No(s):	COC No: 480-148237-32966.1
Client Contact: Mr. Christopher Boron	Phone:			E-Mail: Brian.	E-Mail: Brian.Fischer@Eurofinset.com	ofinset.com		Page: Page 1 of 1
Company: Turnkey Environmental Restoration, LLC				T		alysis	Requested	Job #.
Address: 2558 Hamburg Turnoike	Due Date Requested:	÷						bo
City. Lackawanna	TAT Requested (days):	ys):						A - HCL M - Hexane B - NaOH N - None C - Zn Acetate O - AsNaO2
State, Zip: NY, 14218	Studed	7						
Phone: 716-856-0635(Tel) 716-856-0583(Fax)	P0#: B0092-016-002				10.00			
Email: cboron@benchmarkturnkey.com	:# OM				(oN			
Project Name: Benchmark-791 Washington St. (Trico site)	Project #: 48013685				10 89)			
Site:	SSOW#:) asi			77679 Chain of Custody
Same o Internetion	Cample Date	Sample	Sample Type (C=comp,	Matrix (w=water, S=solid, O=wasteloli,	seid Filtered erform MS/M		480-1/2	Otal Nu Consist Instructions (Note:
sample identification				BT=Tissue, A=Air) tion Code:				
QT-MW-2	7/2120	296	gras	Water	X			e c
P-WM-79	-	13.14	-	Water	X			R
RT-MW-6		1409		Water	×			3
RE-MW-9.		1133		Water	Х.			3
RF-MW-10		2001		Water	X			3
RT-MW-11		1152		Water	X			3
R.T-MW-12	+	1529	+	Water	X			3
Torn Rhard				Water	X			2
				Water				
				Water				
Possible Hazard Identification					Sample I	Disposal (A fee may be a	ssessed if samples are ret	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)
ble Skin Irritant	Poison B Muhhown	nown	Radiological		Concise I	Return To Client Disp	Disposal By Lab	Archive For Months
Deliverable Requested: 1, 11, 111, 1V, Other (specify)							. 1	
Empty Kit Relinquished by:		Date:			Time:	N M N	Method of Shipment:	
Reinquisided by Thomas M. McWice M.	7 2 20	850	0	Company	Received by:	ed by: Und Willen	2	20 9:50 COMPANY
1	Date/Time:	11	40	Company	S Received by	Received by: MMHR	Date/Time:	2/20 1140 Company
Custody Seals Intact: Custody/Seal No.:	_				Cooler	Cooler Temperature(s) °C and Other Remarks:	marks:	4(3,2
								Ver: 01/16/2019

7/28/2020

Client: Turnkey Environmental Restoration, LLC

Login Number: 172679 List Number: 1

Creator: Wallace, Cameron

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	TURNKEY
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

```
Job Number: 480-172679-1
```

List Source: Eurofins TestAmerica, Buffalo

EQUIPMENT CALIBRATION LOG

PROJECT INFORMATION Project Name: Fusing Project No.: BDO12- Client: Buffelo M	1510		Plant			Date: 7/21/20 Instrument Source: BM Rental			
METER TYPE	UNITS	тіме	MAKE/MODEL	SERIAL NUMBER	CAL. I	вү	STANDARD	POST CAL. READING	SETTINGS
				6213516 6243084			4.00	4.01	4
pH meter	units	830	Myron L Company Ultra Meter 6P	6212375	SH	3	7.00	702	7
		800		6243003 🗌 6223973 🗌	300		10.01	10.01	10
					_		10 NTU verification	10.3	10.0
		0.1	Hach 2100P or	06120C020523 (P)			< 0.4		
Turbidity meter	NTU	89	2100Q Turbidimeter	13120C030432 (Q)	TAI	5	20		
				17110C062619 (Q)			800		
Sp. Cond. meter	uS mS		Myron L Company Ultra Meter 6P	6213516 6243084 6212375 6243003 6223973	JX-	3	<u>7 10 ms@</u> 25 ℃	7,006	7,000
 □ PID	ppm		MinRAE 2000				open air zero		MIBK response factor = 1.0
Dissolved Oxygen	ppm	830	HACH Model HQ30d	080700023281 [] 100500041867 [] 140200100319 []	JAR	3	ppm Iso. Gas		102,4% slop
Particulate meter	mg/m ³						zero air		
Radiation Meter	uR/H						background area		
ADDITIONAL REMARKS	ifo	~		DATE: 7/21	20				

 \mathbf{r}_{i}^{\prime}

ENVIE	CHMARK					G	ROUND	WATER	FIELD FOR
	NEERING &	ner	rico T	Project	No.:30092	- 016-002	Date: Field Te	7/21/2 pam: 703	
Well No Product De	pth (fbTOR):	W-4	Diameter (in Water Colun		755	Sample Date	sampled:	21/20	1514 Purge & Sample
DTW (statio	areas a	.28	One Well Vo	olume (gal): e Purged (gal):	0.3	Purpose:	Development	San Li	Purge & Sample
Total Depth	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
101.1	o Initial		2.4	-	0101	-1600		24	Jas sign
1246	1 4.10 2 DR44	0,30	7.09	15.0	362.6	1000	1.66	-129 -125	11
	3						1		
	5								
	6 7								
	8			5					
	9		- 4	1					
Sample	Information:		7.07	15.5	3741	14	1.48	-1007	n
1	S2						10		

Well No	RI-M	W-6	Diameter (in	ches): 2"	ł	Sample Date	e / Time: 🏹	21/20	1409
Product Der	oth (fbTOR):	·	Water Colur	nn (ft): 14	. 5	DTW when a	sampled:	11.21	1
DTW (static		1.42	One Well Vo	olume (gal):	1.36	Purpose:	Developmen	t 🗌 Sample	Purge & Sample
Total Depth		. 93		e Purged (gal):		Purge Metho	od:	Low ?	Flow
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp₊ (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
1333	o Initial	20.28	7.20	0.18	1538	654	146	-11 Y	Brutic
1344	17,52	2.25	7.53	14.5	1891	264	1.12	-10%	41
13.54	29.95	4.50	7.51	12.8	1738	63	1.61	F 106	81
1405	11.51	1:0	7.52	12.4.	20032	65.3	1.97	ma Mg	
	4		200		14				
	5		2 10						
	6								
	7							-	
	8								1.5
	9	1							
	10					1			
Sample	Information	:						14	
V409	S1 11, 2 1		7.55	12,2	1414	143	1,71	-111	61
1-1-1-	82								
								Sta	bilization Criteria

REMARKS:

Volume (Calculation	Parameter	Criteria
Diam.	Vol. (g/ft)	рН	± 0.1 unit
15	0.041	SC	± 3%
2"	0.163	Turbidity	± 10%
4"	0.653	DO	± 0.3 mg/L
6"	1.469	ORP	± 10 mV

Note: All water level measurements are in feet, distance from top of riser.

PREPARED BY:

IUS

	CHMARK					C	GROUNE		
Project Nan Location:	ne: Forme Bulleb	NY	Plant	Project	No.:1800 92	- 016- 60'	Date: z Field Te	7/21 Bam: 70	20
Well No	AT-M	W-9	Diameter (in	ches):	, u	Sample Date	e / Time: 🛛 🦩	21/20	1133
Product Dep	1.1	-	Water Colur	nn (ft):	12,67	DTW when	sampled:	1421	
DTW (static) (fbTOR):	3.50	One Well Vo	olume (gai):	20	Purpose:	Development	Sample	Vurge & Sample
Total Depth	(fbTOR): 10	.17	Total Volum	e Purged (gal):	5.0	Purge Metho	od:	Low Fl	ه است
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
1629	o Initial	20.25	7.25	15.2	1724	182	0.18	-245	9 Sulfer aler
1032	19,60	2.0	TIF	18.1	1609	129	0.14	-287	11
1047	2 1295	4.0	7.26	172	1718	55.2	0,18	-276	n
1100	B DKY	50	220	19.1	1934	64.8	0.52	-232	1. A.
	4 /								
	5								
	6							-	
	7								
	8								
	9								
	10								
Sample I	nformation								
1133	S1 1421	-	7.24	16.0	1840	401	0.91	-174	11

Well No	o. RT-1	4W-11	Diameter (in	iches): Z	11	Sample Dat	te / Time: 孝	21 2.6	1152
Product De	pth (fbTOR):	-	Water Colur	mn (ft): 2	3.02	DTW when	sampled:		
DTW (statio	c) (fbTOR):	12,68	One Well Vo	olume (gal):	375	Purpose:	Development	t 🗌 Sample	Purge & Sample
Total Depth	n (fbTOR): 🤇	5.70	Total Volum	e Purged (gal):	4.0	Purge Meth	od:	Lour #1	منها
Time	Water Level (fbTOR)	Acc. Volume (gallons)	рН (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
1112	o Initial	26.25	7.53	17.0	2021	32.5	0.09	-212	JL Jud salfon
1174	128,0	3.75	7.56	18.7	1996	83.4	0.37	-188	
1129	2 PRY	4.0	7.58	17.2	1991	25.8	0.52	-183	p f.
	4		- 41						
	5	-							
	6								
	7								×
	в								
	9								
	10								
Sample	Information	·							18 88
1152	61 26.81		7.44	18.1	2002	69.6	0.49	-143	"
	192 192		I				I	LStak	I

REMARKS:

31

S2

Volume (Calculation
Diam.	Vol. (g/ft)
1"	0.041
2"	0.163
4"	0.653
6"	1.469

Stabilizati	on Criteria				
Parameter	Criteria				
pН	± 0.1 unit				
SC	± 3%				
Turbidity	± 10%				
DO	± 0.3 mg/L				
ORP	± 10 mV				

10

Note: All water level measurements are in feet, distance from top of riser.

ENGIN	CONMENTAL REERING & CE, PLLC					(GROUNE	WATER	FIELD FORM
Project Nan	ne: Form	Mr Tri	Lo MA	1.			Date:	7/21	20
Location:	Buffela	NY		Project	No.: 3009	2-016-002	Field Te		HARE
Well No	». RF-M	16-2	Diameter (ir	nches): 2	1/	Sample Dat	e / Time: 🧎	21/20	901
Product Dep	oth (fbTOR):	-	Water Colu	mn (ft): 👌	5.15	DTW when	sampled:	14.40	
DTW (static) (fbTOR):	.13	One Well V	olume (gal):	0.83	Purpose:	Development	Sample	🔟 Purge & Sample
Total Depth	(fbTOR):	128	Total Volum	e Purged (gal):	2.50	Purge Meth	od: L	ew - Flui	~
Time	Water Level (fbTOR)	Acc Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
848	o Initial	00.25	6.73	13-5-	6617	SEV	2.07	242	sc work
850	1 13.78	6.75	7,32	12.5	SrIT	48,6	2,44	214	21
856	2 14.09	1.25	7.37	129	6009	32.9	2,21	708	10.3511
900	3 14.29	2,50	7.31	11. C	6803	37.8	1.25	204	"
	4								
	5				·		·		
	6								
	7				1				
	8				10				
	9					í			
	10								
Sample I	nformation:								
905	51121,40		7:30	13.1	6789	60.5	1.48	146	11
	S2								

Well No	. KI-MI	v-10	Diameter (in	ches):	Zet	Sample Dat	e / Time: 7	21/20	100 200
Product Dep	oth (fbTOR):	3-00	Water Colur	nn (ft): 🛛 🛔	2.87	DTW when	sampled:	11.60	
DTW (static) (fbTOR):	3.30	One Well Vo	olume (gal):	1.75	Purpose:	Development	Sample	Purge & Sample
Total Depth	(fbTOR):	6.17	Total Volum	e Purged (gal):	5.25	Purge Meth	od: La	e Flow	
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
942	o Initial	70.25	7.53	14.2	1259	51.0	1,72	185	Nobie
944	16.60	1.0	2,56	114.3	10961	47.0	1.48	175	11
949	27,32	1.75	7,50	14.2	1142	23.3	1.28	168	11
953	38,80	3.5	7.46	13.8	1200	31.3	1.07	182	1
1000	+ 1020	5.25	7.49	13,0	1225	87.7	1.02	191	
	5		1.6				×	<i>'</i>	
	6								
	7								
-	8								
	9								
	10								
Sample I	nformation:								
1002	51/1.60	(7.44	13.0	1262	3415	1.10	176	
	82							04.10 D	G_{i} .
DEMADIZ	5							Stab	ilization Criteria

REMARKS:

Benchmark

Diam.	Vol. (g/ft)
1"	0.041
2"	0.163
4"	0.653
6"	1.469

TAB

Parameter	Criteria
рН	± 0,1 unit
SC	± 3%
Turbidity	± 10%
DO	± 0.3 mg/L
ORP	± 10 mV

Note: All water level measurements are in feet, distance from top of riser.

G	Benchmark
G	Environmental Engineering 🕹 Science, PLLC

GROUNDWATER FIELD FORM

Project Na	me:
Location:	Be

Former Trize Plant Date: 74 Date: 74 Project No. 80092 016-002 Field Team:

20 ZI

Well No	MAI-	12	Diameter (in	iches): ⋧	s *	Sample Date	e / Time:			
Product De	pth (fbTOR):	-	Water Colur	mn (ft):	8.92	DTW when sampled:				
DTW (static) (fbTOR):	One Well Volume (gal):			3.0%	Purpose:	Purge & Sample			
Total Depth	pth (fbTOR): 37.63 Total Volume Purged (gal):				Purge Metho	od:		9		
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
1431	Initial	40.25	7.40	14.8	5776	278	1.39	-92	See No oda	
1436	124.0	1,25	741	14.2	5791	108	1.24	-96	11	
1445	231,82	3.25	744	14,9	5291	79.1	1.02	-101	11	
453	DR7	4,50	7.41	15.9	5942	71.2	1.45	-2.5	16	
	4		1.0.0							
	5									
	16									
	7									
	в									
	19									
	10			·						
Sample I	nformation:					///	1			
1529	58D.91	-	7.41	15.4	6106	93.0	1.69	-85	11	
	Land I a		and the second	the second				~~~		

Well N	0.		Diameter (i	nches):		Sample	e Date / T	ime:			
Product De	epth (fbTOR):		Water Colu	mn (ft):		DTW when sampled:					
DTW (stat	ic) (fbTOR):		One Well V	olume (gal):		Purpos	Purpose: Development Sample Purge &				
Total Dept	th (fbTOR):			ne Purged (gal):		Purge	Method:				
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidi (NTU		DO (mg/L)	ORP (mV)	Appearance & Odor	
	o Initial										
	1										
	2										
	3										
-	4										
	5										
	16										
	7										
	B										
	9										
	10										
Sample	Information										
	S1					1					
	S2										
									Stabili	zation Criteria	
REMARI	KS:						Volume	Calculation	Paramete	er Criteria	
							Diam,	Vol. (g/ft)	pН	± 0.1 unit	
							1.	0.041	SC	± 3%	

Note: All water level measurements are in feet, distance from top of riser.

Parameter	
pН	
SC	
Turbidity	
DO	
ORP	
	pH SC Turbidity DO

2" 4" 6"

AB

Parameter	Criteria
pН	± 0.1 unit
SC	± 3%
Turbidity	± 10%
DO	± 0.3 mg/L
ORP	± 10 mV

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-178540-1

Client Project/Site: Benchmark-791 Washington St.(Trico site)

For:

Turnkey Environmental Restoration, LLC 2558 Hamburg Turnpike Lackawanna, New York 14218

Attn: Mr. Christopher Z Boron

Authorized for release by: 11/27/2020 12:20:44 PM Rebecca Jones, Project Management Assistant I Rebecca.Jones@Eurofinset.com

Designee for

Brian Fischer, Manager of Project Management (716)504-9835 Brian.Fischer@Eurofinset.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	18
QC Sample Results	19
QC Association Summary	22
Lab Chronicle	23
Certification Summary	24
Method Summary	25
Sample Summary	26
Chain of Custody	27
Receipt Checklists	28

Qualifiers

Qualifiers		3
GC/MS VOA		
Qualifier	Qualifier Description	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Glossary		5
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	0
CNF	Contains No Free Liquid	0
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	9
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	13
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

Job ID: 480-178540-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-178540-1

Comments

No additional comments.

Receipt

The samples were received on 11/20/2020 3:26 PM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.0° C.

GC/MS VOA

Method 8260C: The following volatiles samples were diluted due to foaming at the time of purging during the original sample analysis: RI-MW-2 (480-178540-1), RI-MW-4 (480-178540-2), RI-MW-6 (480-178540-3) and RI-MW-9 (480-178540-4). Elevated reporting limits (RLs) are provided.

Method 8260C: The following sample was collected in a properly preserved vial; however, the pH was outside the required criteria when verified by the laboratory. The sample was analyzed within the 7-day holding time specified for unpreserved samples: RI-MW-4 (480-178540-2). Sample pH is 7.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark-791 Washington St.(Trico site) Job ID: 480-178540-1

Client Sample ID: RI-MW-2						Lal	b S	ample ID:	480-178540-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Trichloroethene	7.8		4.0	1.8	ug/L	4	_	8260C	Total/NA
Client Sample ID: RI-MW-4						Lal	b S	ample ID:	480-178540-2
_ Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	13	J	40	12	ug/L	4	_	8260C	Total/NA
cis-1,2-Dichloroethene	34		4.0	3.2	ug/L	4		8260C	Total/NA
Methyl tert-butyl ether	2.1	J	4.0	0.64	ug/L	4		8260C	Total/NA
trans-1,2-Dichloroethene	54		4.0	3.6	ug/L	4		8260C	Total/NA
Vinyl chloride	17		4.0	3.6	ug/L	4		8260C	Total/NA
Client Sample ID: RI-MW-6						Lal	b S	ample ID:	480-178540-
- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	3.5		2.0	1.6	ug/L	2	_	8260C	Total/NA
Client Sample ID: RI-MW-9						Lal	b S	ample ID:	480-178540-
 Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	28		40	12	ug/L	4	_	8260C	Total/NA
cis-1,2-Dichloroethene	4.1		4.0	3.2	ug/L	4		8260C	Total/NA
Client Sample ID: RI-MW-1	0					Lal	b S	ample ID:	480-178540-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Trichloroethene	3.2		1.0	0.46	ug/L	1	_	8260C	Total/NA
Client Sample ID: Trip Blar	nk					Lal	b S	ample ID:	480-178540-
-							_		
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type

Client Sample ID: RI-MW-2

Date Collected: 11/20/20 08:52 Date Received: 11/20/20 15:26

Analyte	Result Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND	4.0	3.3	ug/L			11/24/20 14:02	
1,1,2,2-Tetrachloroethane	ND	4.0	0.84	ug/L			11/24/20 14:02	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.0	1.2	ug/L			11/24/20 14:02	
I,1,2-Trichloroethane	ND	4.0	0.92	ug/L			11/24/20 14:02	
I,1-Dichloroethane	ND	4.0	1.5	ug/L			11/24/20 14:02	
I,1-Dichloroethene	ND	4.0	1.2	ug/L			11/24/20 14:02	
1,2,4-Trichlorobenzene	ND	4.0		ug/L			11/24/20 14:02	
,2,4-Trimethylbenzene	ND	4.0	3.0	ug/L			11/24/20 14:02	
,2-Dibromo-3-Chloropropane	ND	4.0	1.6	ug/L			11/24/20 14:02	
,2-Dibromoethane	ND	4.0		ug/L			11/24/20 14:02	
,2-Dichlorobenzene	ND	4.0		ug/L			11/24/20 14:02	
,2-Dichloroethane	ND	4.0		ug/L			11/24/20 14:02	
,2-Dichloropropane	ND	4.0		ug/L			11/24/20 14:02	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ND	4.0		ug/L			11/24/20 14:02	
,3-Dichlorobenzene	ND	4.0		ug/L			11/24/20 14:02	
,4-Dichlorobenzene	ND	4.0		ug/L			11/24/20 14:02	
-Butanone (MEK)	ND	40		ug/L			11/24/20 14:02	
-Hexanone	ND	20		ug/L			11/24/20 14:02	
Isopropyltoluene	ND	4.0		ug/L			11/24/20 14:02	
-Methyl-2-pentanone (MIBK)	ND	4.0		ug/L			11/24/20 14:02	
cetone	ND	40		-			11/24/20 14:02	
				ug/L				
enzene	ND	4.0		ug/L			11/24/20 14:02	
romodichloromethane	ND	4.0		ug/L			11/24/20 14:02	
romoform	ND	4.0		ug/L			11/24/20 14:02	
romomethane	ND	4.0		ug/L			11/24/20 14:02	
arbon disulfide	ND	4.0		ug/L			11/24/20 14:02	
arbon tetrachloride	ND	4.0		ug/L			11/24/20 14:02	
hlorobenzene	ND	4.0		ug/L			11/24/20 14:02	
Chloroethane	ND	4.0		ug/L			11/24/20 14:02	
hloroform	ND	4.0	1.4	ug/L			11/24/20 14:02	
Chloromethane	ND	4.0		ug/L			11/24/20 14:02	
is-1,2-Dichloroethene	ND	4.0		ug/L			11/24/20 14:02	
is-1,3-Dichloropropene	ND	4.0	1.4	ug/L			11/24/20 14:02	
Cyclohexane	ND	4.0		ug/L			11/24/20 14:02	
bibromochloromethane	ND	4.0		ug/L			11/24/20 14:02	
lichlorodifluoromethane	ND	4.0	2.7	ug/L			11/24/20 14:02	
thylbenzene	ND	4.0	3.0	ug/L			11/24/20 14:02	
opropylbenzene	ND	4.0	3.2	ug/L			11/24/20 14:02	
ı,p-Xylene	ND	8.0	2.6	ug/L			11/24/20 14:02	
lethyl acetate	ND	10	5.2	ug/L			11/24/20 14:02	
lethyl tert-butyl ether	ND	4.0	0.64	ug/L			11/24/20 14:02	
lethylcyclohexane	ND	4.0	0.64	ug/L			11/24/20 14:02	
lethylene Chloride	ND	4.0	1.8	ug/L			11/24/20 14:02	
Butylbenzene	ND	4.0	2.6	ug/L			11/24/20 14:02	
-Propylbenzene	ND	4.0		ug/L			11/24/20 14:02	
-Xylene	ND	4.0		ug/L			11/24/20 14:02	
ec-Butylbenzene	ND	4.0		ug/L			11/24/20 14:02	
Styrene	ND	4.0		ug/L			11/24/20 14:02	
ert-Butylbenzene	ND	4.0		ug/L			11/24/20 14:02	

Eurofins TestAmerica, Buffalo

Lab Sample ID: 480-178540-1

Matrix: Water

5

Client Sample ID: RI-MW-2 Date Collected: 11/20/20 08:52

Date Received: 11/20/20 15:26

Job ID: 480-178540-1

Lab Sample ID: 480-178540-1

Matrix: Water

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	ND		4.0	1.4	ug/L			11/24/20 14:02	4
Toluene	ND		4.0	2.0	ug/L			11/24/20 14:02	4
trans-1,2-Dichloroethene	ND		4.0	3.6	ug/L			11/24/20 14:02	4
trans-1,3-Dichloropropene	ND		4.0	1.5	ug/L			11/24/20 14:02	4
Trichloroethene	7.8		4.0	1.8	ug/L			11/24/20 14:02	4
Trichlorofluoromethane	ND		4.0	3.5	ug/L			11/24/20 14:02	4
Vinyl chloride	ND		4.0	3.6	ug/L			11/24/20 14:02	4
Xylenes, Total	ND		8.0	2.6	ug/L			11/24/20 14:02	4
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		77 - 120			-		11/24/20 14:02	4
4-Bromofluorobenzene (Surr)	102		73 - 120					11/24/20 14:02	4
Toluene-d8 (Surr)	101		80 - 120					11/24/20 14:02	4

Client Sample ID: RI-MW-4

Date Collected: 11/20/20 12:12 Date Received: 11/20/20 15:26

Method: 8260C - Volatile Organic C	Compounds by GC/MS							
Analyte	Result Qualifier	RL	MDL	Unit	D F	repared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	4.0	3.3	ug/L			11/24/20 14:25	4
1,1,2,2-Tetrachloroethane	ND	4.0	0.84	ug/L			11/24/20 14:25	4
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.0	1.2	ug/L			11/24/20 14:25	4
1,1,2-Trichloroethane	ND	4.0	0.92	ug/L			11/24/20 14:25	4
1,1-Dichloroethane	ND	4.0	1.5	ug/L			11/24/20 14:25	4
1,1-Dichloroethene	ND	4.0	1.2	ug/L			11/24/20 14:25	4
1,2,4-Trichlorobenzene	ND	4.0	1.6	ug/L			11/24/20 14:25	4
1,2,4-Trimethylbenzene	ND	4.0	3.0	ug/L			11/24/20 14:25	4
1,2-Dibromo-3-Chloropropane	ND	4.0	1.6	ug/L			11/24/20 14:25	4
1,2-Dibromoethane	ND	4.0	2.9	ug/L			11/24/20 14:25	4
1,2-Dichlorobenzene	ND	4.0	3.2	ug/L			11/24/20 14:25	4
1,2-Dichloroethane	ND	4.0	0.84				11/24/20 14:25	4
1,2-Dichloropropane	ND	4.0	2.9	ug/L			11/24/20 14:25	4
1,3,5-Trimethylbenzene	ND	4.0		ug/L			11/24/20 14:25	4
1,3-Dichlorobenzene	ND	4.0		ug/L			11/24/20 14:25	4
1,4-Dichlorobenzene	ND	4.0		ug/L			11/24/20 14:25	4
2-Butanone (MEK)	ND	40		ug/L			11/24/20 14:25	4
2-Hexanone	ND	20		ug/L			11/24/20 14:25	4
4-Isopropyltoluene	ND	4.0		ug/L			11/24/20 14:25	4
4-Methyl-2-pentanone (MIBK)	ND	20		ug/L			11/24/20 14:25	4
Acetone	13 J	40		ug/L			11/24/20 14:25	4
Benzene	ND	4.0		ug/L			11/24/20 14:25	4
Bromodichloromethane	ND	4.0		ug/L			11/24/20 14:25	4
Bromoform	ND	4.0		ug/L			11/24/20 14:25	4
Bromomethane	ND	4.0		ug/L			11/24/20 14:25	4
Carbon disulfide	ND	4.0	0.76	-			11/24/20 14:25	4
Carbon tetrachloride	ND	4.0		ug/L			11/24/20 14:25	4
Chlorobenzene	ND	4.0		ug/L			11/24/20 14:25	
Chloroethane	ND	4.0		ug/L			11/24/20 14:25	4
Chloroform	ND	4.0		ug/L			11/24/20 14:25	4
Chloromethane	ND	4.0		ug/L			11/24/20 14:25	
cis-1,2-Dichloroethene	34	4.0		ug/L			11/24/20 14:25	4
cis-1,3-Dichloropropene	ND	4.0		ug/L			11/24/20 14:25	4
Cyclohexane	ND	4.0	0.72				11/24/20 14:25	4
Dibromochloromethane	ND	4.0		ug/L			11/24/20 14:25	4
Dichlorodifluoromethane	ND	4.0		ug/L			11/24/20 14:25	-
Ethylbenzene	ND	4.0		ug/L			11/24/20 14:25	4
-	ND	4.0		ug/L			11/24/20 14:25	4
Isopropylbenzene m,p-Xylene	ND	4.0 8.0		ug/L ug/L			11/24/20 14:25	4
	ND	10		ug/L			11/24/20 14:25	4
Methyl acetate								
Methyl tert-butyl ether	2.1 J	4.0 4.0	0.64	-			11/24/20 14:25	4
Methylcyclohexane	ND		0.64	ug/L ug/L			11/24/20 14:25	
Methylene Chloride	ND	4.0		•			11/24/20 14:25	4
n-Butylbenzene	ND	4.0		ug/L			11/24/20 14:25	4
N-Propylbenzene	ND	4.0		ug/L			11/24/20 14:25	4
o-Xylene	ND	4.0		ug/L			11/24/20 14:25	4
sec-Butylbenzene	ND	4.0		ug/L			11/24/20 14:25	4
Styrene	ND	4.0		ug/L			11/24/20 14:25	
tert-Butylbenzene	ND	4.0	3.2	ug/L			11/24/20 14:25	4

Job ID: 480-178540-1

Lab Sample ID: 480-178540-2

Matrix: Water

5

6

Eurofins TestAmerica, Buffalo

RL

4.0

4.0

4.0

4.0

4.0

4.0

4.0

8.0

Limits

77 - 120

73 - 120

80 - 120

MDL Unit

3.6 ug/L

1.5 ug/L

1.8 ug/L

3.5 ug/L

3.6 ug/L

2.6 ug/L

1.4 ug/L

2.0 ug/L D

Prepared

Prepared

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Result Qualifier

ND

ND

54

ND

ND

ND

17

ND

107

92

97

Qualifier

%Recovery

Client Sample ID: RI-MW-4

Date Collected: 11/20/20 12:12 Date Received: 11/20/20 15:26

Analyte

Toluene

Tetrachloroethene

Trichloroethene

Vinyl chloride

Xylenes, Total

Toluene-d8 (Surr)

Surrogate

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Trichlorofluoromethane

Lab Sample ID: 480-178540-2

Analyzed

Analyzed

Matrix: Water

Job ID: 480-178540-1

Eurofins TestAmerica, Bu	ffalo
--------------------------	-------

Client Sample ID: RI-MW-6

Date Collected: 11/20/20 13:36 Date Received: 11/20/20 15:26

Analyte	Result Qualifier	RL		Unit	<u>D</u>	Prepared	Analyzed	Dil F
,1,1-Trichloroethane	ND	2.0	1.6	ug/L			11/24/20 14:48	
1,1,2,2-Tetrachloroethane	ND	2.0	0.42	ug/L			11/24/20 14:48	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	2.0	0.62	ug/L			11/24/20 14:48	
1,1,2-Trichloroethane	ND	2.0	0.46	ug/L			11/24/20 14:48	
,1-Dichloroethane	ND	2.0	0.76	ug/L			11/24/20 14:48	
,1-Dichloroethene	ND	2.0	0.58	ug/L			11/24/20 14:48	
1,2,4-Trichlorobenzene	ND	2.0	0.82	ug/L			11/24/20 14:48	
,2,4-Trimethylbenzene	ND	2.0	1.5	ug/L			11/24/20 14:48	
,2-Dibromo-3-Chloropropane	ND	2.0	0.78	ug/L			11/24/20 14:48	
,2-Dibromoethane	ND	2.0	1.5	ug/L			11/24/20 14:48	
,2-Dichlorobenzene	ND	2.0	1.6	ug/L			11/24/20 14:48	
,2-Dichloroethane	ND	2.0	0.42	ug/L			11/24/20 14:48	
,2-Dichloropropane	ND	2.0	1.4	ug/L			11/24/20 14:48	
,3,5-Trimethylbenzene	ND	2.0	1.5	ug/L			11/24/20 14:48	
,3-Dichlorobenzene	ND	2.0		ug/L			11/24/20 14:48	
,4-Dichlorobenzene	ND	2.0		ug/L			11/24/20 14:48	
-Butanone (MEK)	ND	20		ug/L			11/24/20 14:48	
-Hexanone	ND	10		ug/L			11/24/20 14:48	
-Isopropyltoluene	ND	2.0		ug/L			11/24/20 14:48	
-Methyl-2-pentanone (MIBK)	ND	10		ug/L			11/24/20 14:48	
cetone	ND	20		ug/L			11/24/20 14:48	
enzene	ND	2.0		ug/L			11/24/20 14:48	
romodichloromethane	ND	2.0		ug/L			11/24/20 14:48	
romoform	ND	2.0		ug/L			11/24/20 14:48	
romomethane	ND	2.0		ug/L			11/24/20 14:48	
arbon disulfide	ND	2.0		ug/L			11/24/20 14:48	
Carbon tetrachloride	ND	2.0		ug/L			11/24/20 14:48	
hlorobenzene	ND	2.0		ug/L			11/24/20 14:48	
Chloroethane	ND	2.0		ug/L			11/24/20 14:48	
Chloroform	ND	2.0		ug/L			11/24/20 14:48	
Chloromethane	ND	2.0		ug/L			11/24/20 14:48	
is-1,2-Dichloroethene	3.5	2.0		ug/L			11/24/20 14:48	
is-1,3-Dichloropropene	ND	2.0		ug/L			11/24/20 14:48	
Cyclohexane	ND	2.0		ug/L			11/24/20 14:48	
Dibromochloromethane	ND	2.0		ug/L			11/24/20 14:48	
Dichlorodifluoromethane	ND	2.0		ug/L			11/24/20 14:48	
thylbenzene	ND ND	2.0 2.0		ug/L			11/24/20 14:48	
				ug/L			11/24/20 14:48	
n,p-Xylene	ND	4.0		ug/L ug/L			11/24/20 14:48 11/24/20 14:48	
lethyl acetate	ND	5.0						
lethyl tert-butyl ether	ND	2.0	0.32	ug/L ug/L			11/24/20 14:48	
Aethylcyclohexane	ND	2.0					11/24/20 14:48	
Aethylene Chloride	ND	2.0		ug/L			11/24/20 14:48	
	ND	2.0		ug/L			11/24/20 14:48	
-Propylbenzene	ND	2.0		ug/L			11/24/20 14:48	
-Xylene	ND	2.0		ug/L			11/24/20 14:48	
ec-Butylbenzene	ND	2.0		ug/L			11/24/20 14:48	
Styrene ert-Butylbenzene	ND	2.0	1.5	ug/L			11/24/20 14:48	

Eurofins TestAmerica, Buffalo

5

6

Lab Sample ID: 480-178540-3 Matrix: Water

Page 10 of 28

Client Sample ID: RI-MW-6

Date Collected: 11/20/20 13:36 Date Received: 11/20/20 15:26

Job ID: 480-178540-1

Lab Sample ID: 480-178540-3

Matrix: Water

Method: 8260C - Volatile Organ	nic Compounds I	by GC/MS (Continued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	ND		2.0	0.72	ug/L			11/24/20 14:48	2
Toluene	ND		2.0	1.0	ug/L			11/24/20 14:48	2
trans-1,2-Dichloroethene	ND		2.0	1.8	ug/L			11/24/20 14:48	2
trans-1,3-Dichloropropene	ND		2.0	0.74	ug/L			11/24/20 14:48	2
Trichloroethene	ND		2.0	0.92	ug/L			11/24/20 14:48	2
Trichlorofluoromethane	ND		2.0	1.8	ug/L			11/24/20 14:48	2
Vinyl chloride	ND		2.0	1.8	ug/L			11/24/20 14:48	2
Xylenes, Total	ND		4.0	1.3	ug/L			11/24/20 14:48	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	115		77 - 120			_		11/24/20 14:48	2
4-Bromofluorobenzene (Surr)	95		73 - 120					11/24/20 14:48	2
Toluene-d8 (Surr)	98		80 - 120					11/24/20 14:48	2

11/27/2020

Client Sample ID: RI-MW-9

Date Collected: 11/20/20 13:15 Date Received: 11/20/20 15:26

- Method: 8260C - Volatile Organic C	compounds by GC/MS						
Analyte	Result Qualifier	RL	MDL	Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	4.0	3.3	ug/L		11/24/20 15:11	4
1,1,2,2-Tetrachloroethane	ND	4.0	0.84	ug/L		11/24/20 15:11	4
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.0	1.2	ug/L		11/24/20 15:11	4
1,1,2-Trichloroethane	ND	4.0	0.92	ug/L		11/24/20 15:11	4
1,1-Dichloroethane	ND	4.0	1.5	ug/L		11/24/20 15:11	4
1,1-Dichloroethene	ND	4.0	1.2	ug/L		11/24/20 15:11	4
1,2,4-Trichlorobenzene	ND	4.0		ug/L		11/24/20 15:11	4
1,2,4-Trimethylbenzene	ND	4.0	3.0	ug/L		11/24/20 15:11	4
1,2-Dibromo-3-Chloropropane	ND	4.0	1.6	ug/L		11/24/20 15:11	4
1,2-Dibromoethane	ND	4.0		ug/L		11/24/20 15:11	4
1,2-Dichlorobenzene	ND	4.0		ug/L		11/24/20 15:11	4
1,2-Dichloroethane	ND	4.0	0.84			11/24/20 15:11	4
1,2-Dichloropropane	ND	4.0		ug/L		11/24/20 15:11	4
1,3,5-Trimethylbenzene	ND	4.0		ug/L		11/24/20 15:11	4
1,3-Dichlorobenzene	ND	4.0		ug/L		11/24/20 15:11	4
1,4-Dichlorobenzene	ND	4.0		ug/L		11/24/20 15:11	4
2-Butanone (MEK)	ND	40		ug/L		11/24/20 15:11	4
2-Hexanone	ND	20		ug/L		11/24/20 15:11	4
4-Isopropyltoluene	ND	4.0		ug/L		11/24/20 15:11	
4-Methyl-2-pentanone (MIBK)	ND	20		ug/L		11/24/20 15:11	4
		40		ug/L		11/24/20 15:11	4
Acetone Benzene	28 J ND	4.0				11/24/20 15:11	4
				ug/L			
Bromodichloromethane Bromoform	ND	4.0 4.0		ug/L		11/24/20 15:11	4
	ND			ug/L		11/24/20 15:11	
Bromomethane	ND	4.0		ug/L		11/24/20 15:11	4
Carbon disulfide	ND	4.0	0.76			11/24/20 15:11	4
Carbon tetrachloride	ND	4.0		ug/L		11/24/20 15:11	4
Chlorobenzene	ND	4.0		ug/L		11/24/20 15:11	4
Chloroethane	ND	4.0		ug/L		11/24/20 15:11	4
Chloroform	ND	4.0		ug/L		11/24/20 15:11	
Chloromethane	ND	4.0		ug/L		11/24/20 15:11	4
cis-1,2-Dichloroethene	4.1	4.0		ug/L		11/24/20 15:11	4
cis-1,3-Dichloropropene	ND	4.0		ug/L		11/24/20 15:11	4
Cyclohexane	ND	4.0	0.72	-		11/24/20 15:11	4
Dibromochloromethane	ND	4.0		ug/L		11/24/20 15:11	4
Dichlorodifluoromethane	ND	4.0		ug/L		11/24/20 15:11	4
Ethylbenzene	ND	4.0		ug/L		11/24/20 15:11	4
Isopropylbenzene	ND	4.0		ug/L		11/24/20 15:11	4
m,p-Xylene	ND	8.0		ug/L		11/24/20 15:11	4
Methyl acetate	ND	10	5.2	ug/L		11/24/20 15:11	4
Methyl tert-butyl ether	ND	4.0	0.64	ug/L		11/24/20 15:11	4
Methylcyclohexane	ND	4.0	0.64			11/24/20 15:11	4
Methylene Chloride	ND	4.0	1.8	ug/L		11/24/20 15:11	4
n-Butylbenzene	ND	4.0	2.6	ug/L		11/24/20 15:11	4
N-Propylbenzene	ND	4.0	2.8	ug/L		11/24/20 15:11	4
o-Xylene	ND	4.0	3.0	ug/L		11/24/20 15:11	4
sec-Butylbenzene	ND	4.0	3.0	ug/L		11/24/20 15:11	4
Styrene	ND	4.0	2.9	ug/L		11/24/20 15:11	4
tert-Butylbenzene	ND	4.0	3.2	ug/L		11/24/20 15:11	4

Eurofins TestAmerica, Buffalo

Job ID: 480-178540-1

Matrix: Water

Lab Sample ID: 480-178540-4

Client Sample ID: RI-MW-9

Date Collected: 11/20/20 13:15 Date Received: 11/20/20 15:26

Lab Sample ID: 480-178540-4

Matrix: Water

Job ID: 480-178540-1

Method: 8260C - Volatile Organic	Compounds t	by GC/MS (C	Continued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	ND		4.0	1.4	ug/L			11/24/20 15:11	4
Toluene	ND		4.0	2.0	ug/L			11/24/20 15:11	4
trans-1,2-Dichloroethene	ND		4.0	3.6	ug/L			11/24/20 15:11	4
trans-1,3-Dichloropropene	ND		4.0	1.5	ug/L			11/24/20 15:11	4
Trichloroethene	ND		4.0	1.8	ug/L			11/24/20 15:11	4
Trichlorofluoromethane	ND		4.0	3.5	ug/L			11/24/20 15:11	4
Vinyl chloride	ND		4.0	3.6	ug/L			11/24/20 15:11	4
Xylenes, Total	ND		8.0	2.6	ug/L			11/24/20 15:11	4
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		77 _ 120			-		11/24/20 15:11	4
4-Bromofluorobenzene (Surr)	97		73 _ 120					11/24/20 15:11	4
Toluene-d8 (Surr)	99		80 - 120					11/24/20 15:11	4

Client Sample ID: RI-MW-10

Date Collected: 11/20/20 10:06 Date Received: 11/20/20 15:26

Analyte	Result Qualifier	RL	MDL	Unit	D Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L		11/24/20 15:34	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L		11/24/20 15:34	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L		11/24/20 15:34	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L		11/24/20 15:34	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L		11/24/20 15:34	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L		11/24/20 15:34	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L		11/24/20 15:34	1
1,2,4-Trimethylbenzene	ND	1.0	0.75	ug/L		11/24/20 15:34	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L		11/24/20 15:34	1
1,2-Dibromoethane	ND	1.0	0.73	ug/L		11/24/20 15:34	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L		11/24/20 15:34	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L		11/24/20 15:34	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L		11/24/20 15:34	1
1,3,5-Trimethylbenzene	ND	1.0	0.77	ug/L		11/24/20 15:34	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L		11/24/20 15:34	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L		11/24/20 15:34	1
2-Butanone (MEK)	ND	10	1.3	ug/L		11/24/20 15:34	1
2-Hexanone	ND	5.0	1.2	ug/L		11/24/20 15:34	1
4-Isopropyltoluene	ND	1.0	0.31	ug/L		11/24/20 15:34	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L		11/24/20 15:34	1
Acetone	ND	10	3.0	ug/L		11/24/20 15:34	1
Benzene	ND	1.0	0.41	ug/L		11/24/20 15:34	1
Bromodichloromethane	ND	1.0	0.39	ug/L		11/24/20 15:34	1
Bromoform	ND	1.0	0.26	ug/L		11/24/20 15:34	1
Bromomethane	ND	1.0	0.69	ug/L		11/24/20 15:34	1
Carbon disulfide	ND	1.0	0.19	ug/L		11/24/20 15:34	1
Carbon tetrachloride	ND	1.0	0.27	ug/L		11/24/20 15:34	1
Chlorobenzene	ND	1.0	0.75	ug/L		11/24/20 15:34	1
Chloroethane	ND	1.0	0.32	ug/L		11/24/20 15:34	1
Chloroform	ND	1.0	0.34	ug/L		11/24/20 15:34	1
Chloromethane	ND	1.0	0.35	ug/L		11/24/20 15:34	1
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L		11/24/20 15:34	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L		11/24/20 15:34	1
Cyclohexane	ND	1.0	0.18	ug/L		11/24/20 15:34	1
Dibromochloromethane	ND	1.0	0.32	ug/L		11/24/20 15:34	1
Dichlorodifluoromethane	ND	1.0	0.68	ug/L		11/24/20 15:34	1
Ethylbenzene	ND	1.0		ug/L		11/24/20 15:34	1
sopropylbenzene	ND	1.0	0.79	ug/L		11/24/20 15:34	1
m,p-Xylene	ND	2.0	0.66	ug/L		11/24/20 15:34	1
Methyl acetate	ND	2.5		ug/L		11/24/20 15:34	1
Methyl tert-butyl ether	ND	1.0		ug/L		11/24/20 15:34	1
Methylcyclohexane	ND	1.0		ug/L		11/24/20 15:34	1
Methylene Chloride	ND	1.0		ug/L		11/24/20 15:34	
n-Butylbenzene	ND	1.0		ug/L		11/24/20 15:34	1
N-Propylbenzene	ND	1.0		ug/L		11/24/20 15:34	1
p-Xylene	ND	1.0		ug/L		11/24/20 15:34	
sec-Butylbenzene	ND	1.0		ug/L		11/24/20 15:34	1
Styrene	ND	1.0		ug/L		11/24/20 15:34	1
tert-Butylbenzene	ND	1.0		ug/L		11/24/20 15:34	

Eurofins TestAmerica, Buffalo

Job ID: 480-178540-1 Lab Sample ID: 480-178540-5 Matrix: Water 5

Client Sample ID: RI-MW-10 Date Collected: 11/20/20 10:06

Date Received: 11/20/20 15:26

Job ID: 480-178540-1

Lab Sample ID: 480-178540-5

Matrix: Water

Method: 8260C - Volatile Orga	nic Compounds I	by GC/MS (Continued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	ND		1.0	0.36	ug/L			11/24/20 15:34	1
Toluene	ND		1.0	0.51	ug/L			11/24/20 15:34	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			11/24/20 15:34	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			11/24/20 15:34	1
Trichloroethene	3.2		1.0	0.46	ug/L			11/24/20 15:34	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			11/24/20 15:34	1
Vinyl chloride	ND		1.0	0.90	ug/L			11/24/20 15:34	1
Xylenes, Total	ND		2.0	0.66	ug/L			11/24/20 15:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	111		77 - 120			-		11/24/20 15:34	1
4-Bromofluorobenzene (Surr)	101		73 - 120					11/24/20 15:34	1
Toluene-d8 (Surr)	103		80 - 120					11/24/20 15:34	1

Client Sample ID: Trip Blank Date Collected: 11/20/20 00:00

Date Received: 11/20/20 15:26

Analyte	Result Qualifier	RL	MDL	Unit	D Prepar	ed Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L		11/24/20 15:58	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L		11/24/20 15:58	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L		11/24/20 15:58	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L		11/24/20 15:58	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L		11/24/20 15:58	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L		11/24/20 15:58	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L		11/24/20 15:58	1
1,2,4-Trimethylbenzene	ND	1.0	0.75	ug/L		11/24/20 15:58	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L		11/24/20 15:58	1
1,2-Dibromoethane	ND	1.0	0.73	ug/L		11/24/20 15:58	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L		11/24/20 15:58	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L		11/24/20 15:58	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L		11/24/20 15:58	1
1,3,5-Trimethylbenzene	ND	1.0	0.77	-		11/24/20 15:58	1
1,3-Dichlorobenzene	ND	1.0	0.78	-		11/24/20 15:58	1
1,4-Dichlorobenzene	ND	1.0	0.84			11/24/20 15:58	1
2-Butanone (MEK)	ND	10		ug/L		11/24/20 15:58	1
2-Hexanone	ND	5.0		ug/L		11/24/20 15:58	1
1-Isopropyltoluene	ND	1.0	0.31			11/24/20 15:58	1
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L		11/24/20 15:58	1
Acetone	ND	10		ug/L		11/24/20 15:58	1
Benzene	ND	1.0	0.41			11/24/20 15:58	
Bromodichloromethane	ND	1.0	0.39	-		11/24/20 15:58	1
Bromoform	ND	1.0	0.26	-		11/24/20 15:58	1
Bromomethane	ND	1.0		ug/L		11/24/20 15:58	
Carbon disulfide	ND	1.0		ug/L		11/24/20 15:58	1
Carbon tetrachloride	ND	1.0	0.13	-		11/24/20 15:58	1
Chlorobenzene	ND	1.0		ug/L		11/24/20 15:58	
Chloroethane	ND	1.0	0.32	-		11/24/20 15:58	1
Chloroform	1.5	1.0	0.34	-		11/24/20 15:58	1
Chloromethane	ND	1.0		ug/L		11/24/20 15:58	
cis-1,2-Dichloroethene	ND	1.0	0.33	-		11/24/20 15:58	1
	ND	1.0		-			1
cis-1,3-Dichloropropene			0.36			11/24/20 15:58	
	ND ND	1.0 1.0	0.18	-		11/24/20 15:58	1
Dibromochloromethane			0.32	-		11/24/20 15:58	
Dichlorodifluoromethane	ND	1.0	0.68			11/24/20 15:58	۱ ۲۰۰۰۰۰۰
Ethylbenzene	ND	1.0		ug/L		11/24/20 15:58	1
sopropylbenzene	ND	1.0	0.79	-		11/24/20 15:58	1
n,p-Xylene	ND	2.0	0.66			11/24/20 15:58	1
Aethyl acetate	ND	2.5		ug/L		11/24/20 15:58	1
Aethyl tert-butyl ether	ND	1.0	0.16	-		11/24/20 15:58	1
<i>A</i> ethylcyclohexane	ND	1.0	0.16			11/24/20 15:58	1
Methylene Chloride	ND	1.0	0.44			11/24/20 15:58	1
n-Butylbenzene	ND	1.0	0.64			11/24/20 15:58	1
I-Propylbenzene	ND	1.0	0.69			11/24/20 15:58	
p-Xylene	ND	1.0	0.76	•		11/24/20 15:58	1
sec-Butylbenzene	ND	1.0	0.75	-		11/24/20 15:58	1
Styrene	ND	1.0	0.73	ug/L		11/24/20 15:58	1

Lab Sample ID: 480-178540-6

Matrix: Water

5

6

Client Sample ID: Trip Blank Date Collected: 11/20/20 00:00

Date Received: 11/20/20 15:26

Job ID: 480-178540-1

Lab Sample ID: 480-178540-6

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	ND		1.0	0.36	ug/L			11/24/20 15:58	1
Toluene	ND		1.0	0.51	ug/L			11/24/20 15:58	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			11/24/20 15:58	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			11/24/20 15:58	1
Trichloroethene	ND		1.0	0.46	ug/L			11/24/20 15:58	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			11/24/20 15:58	1
Vinyl chloride	ND		1.0	0.90	ug/L			11/24/20 15:58	1
Xylenes, Total	ND		2.0	0.66	ug/L			11/24/20 15:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	115		77 - 120			-		11/24/20 15:58	1
4-Bromofluorobenzene (Surr)	94		73 - 120					11/24/20 15:58	1
Toluene-d8 (Surr)	96		80 - 120					11/24/20 15:58	1

Method: 8260C - Volatile Organic Compounds by GC/MS Matrix: Water

Prep Type: Total/NA Percent Surrogate Recovery (Acceptance Limits) BFB DCA TOL Lab Sample ID Client Sample ID (77-120) (73-120) (80-120) 480-178540-1 RI-MW-2 100 102 101 480-178540-2 RI-MW-4 107 92 97 480-178540-3 RI-MW-6 115 95 98 RI-MW-9 480-178540-4 106 97 99 480-178540-5 **RI-MW-10** 111 101 103 480-178540-6 Trip Blank 115 94 96 LCS 480-560615/5 Lab Control Sample 100 100 100 MB 480-560615/7 Method Blank 107 96 98

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

Lab Sample ID: MB 480-560615/7

Matrix: Water

Analysis Batch: 560615

Method: 8260C - Volatile Organic Compounds by GC/MS

MB MB

Client Sample ID: Method Blank Prep Type: Total/NA

8

	MD	INID							
Analyte	Result	Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			11/24/20 09:00	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			11/24/20 09:00	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			11/24/20 09:00	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			11/24/20 09:00	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			11/24/20 09:00	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			11/24/20 09:00	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			11/24/20 09:00	1
1,2,4-Trimethylbenzene	ND		1.0	0.75	ug/L			11/24/20 09:00	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			11/24/20 09:00	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			11/24/20 09:00	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			11/24/20 09:00	1
1,2-Dichloroethane	ND		1.0	0.21	-			11/24/20 09:00	1
1,2-Dichloropropane	ND		1.0		ug/L			11/24/20 09:00	
1,3,5-Trimethylbenzene	ND		1.0	0.77	-			11/24/20 09:00	1
1,3-Dichlorobenzene	ND		1.0	0.78	-			11/24/20 09:00	1
1,4-Dichlorobenzene	ND		1.0		ug/L			11/24/20 09:00	
2-Butanone (MEK)	ND		10		ug/L			11/24/20 09:00	1
2-Hexanone	ND		5.0		ug/L			11/24/20 09:00	1
4-Isopropyltoluene	ND		1.0					11/24/20 09:00	
4-Nethyl-2-pentanone (MIBK)	ND		5.0		ug/L ug/L			11/24/20 09:00	1
					•				
Acetone	ND		10		ug/L			11/24/20 09:00	1
Benzene	ND		1.0	0.41	•			11/24/20 09:00	1
Bromodichloromethane	ND		1.0	0.39	-			11/24/20 09:00	1
Bromoform	ND		1.0	0.26				11/24/20 09:00	1
Bromomethane	ND		1.0		ug/L			11/24/20 09:00	1
Carbon disulfide	ND		1.0	0.19				11/24/20 09:00	1
Carbon tetrachloride	ND		1.0	0.27				11/24/20 09:00	1
Chlorobenzene	ND		1.0		ug/L			11/24/20 09:00	1
Chloroethane	ND		1.0	0.32	ug/L			11/24/20 09:00	1
Chloroform	ND		1.0	0.34	ug/L			11/24/20 09:00	1
Chloromethane	ND		1.0	0.35	ug/L			11/24/20 09:00	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			11/24/20 09:00	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			11/24/20 09:00	1
Cyclohexane	ND		1.0	0.18	ug/L			11/24/20 09:00	1
Dibromochloromethane	ND		1.0	0.32	ug/L			11/24/20 09:00	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			11/24/20 09:00	1
Ethylbenzene	ND		1.0	0.74	ug/L			11/24/20 09:00	1
Isopropylbenzene	ND		1.0	0.79	ug/L			11/24/20 09:00	1
m,p-Xylene	ND		2.0	0.66	ug/L			11/24/20 09:00	1
Methyl acetate	ND		2.5	1.3	ug/L			11/24/20 09:00	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			11/24/20 09:00	1
Methylcyclohexane	ND		1.0		ug/L			11/24/20 09:00	1
Methylene Chloride	ND		1.0		ug/L			11/24/20 09:00	1
n-Butylbenzene	ND		1.0	0.64				11/24/20 09:00	1
N-Propylbenzene	ND		1.0	0.69				11/24/20 09:00	1
o-Xylene	ND		1.0		ug/L			11/24/20 09:00	1
sec-Butylbenzene	ND		1.0	0.75	-			11/24/20 09:00	1
Styrene	ND		1.0	0.73				11/24/20 09:00	1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-560615/7 Matrix: Water

Analysis Batch: 560615

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

МВ МВ Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac ND 1.0 11/24/20 09:00 tert-Butylbenzene 0.81 ug/L 1 Tetrachloroethene ND 1.0 0.36 ug/L 11/24/20 09:00 1 Toluene ND 11/24/20 09:00 1.0 0.51 ug/L 1 trans-1,2-Dichloroethene ND 1.0 0.90 ug/L 11/24/20 09:00 1 trans-1,3-Dichloropropene ND 1.0 0.37 ug/L 11/24/20 09:00 1 Trichloroethene ND 1.0 0.46 ug/L 11/24/20 09:00 1 Trichlorofluoromethane ND 1.0 0.88 ug/L 11/24/20 09:00 1 Vinyl chloride ND 1.0 0.90 ug/L 11/24/20 09:00 1 11/24/20 09:00 Xylenes, Total ND 2.0 0.66 ug/L 1 MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	107		77 - 120		11/24/20 09:00	1	
4-Bromofluorobenzene (Surr)	96		73 - 120		11/24/20 09:00	1	
Toluene-d8 (Surr)	98		80 - 120		11/24/20 09:00	1	

Lab Sample ID: LCS 480-560615/5

Matrix: Water Analysis Batch: 560615

Analysis Batch: 560615	Spike	LCS	LCS			%Rec.
Analyte	Added		Qualifier Uni	t D	%Rec	Limits
1,1,1-Trichloroethane	25.0	24.9	ug/		100	73 - 126
1,1,2,2-Tetrachloroethane	25.0	24.2	ug/	_	97	76 ₋ 120
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	23.9	ug/	_	96	61 ₋ 148
ne						
1,1,2-Trichloroethane	25.0	24.8	ug/	_	99	76 - 122
1,1-Dichloroethane	25.0	24.0	ug/	-	96	77 - 120
1,1-Dichloroethene	25.0	23.9	ug/	-	96	66 - 127
,2,4-Trichlorobenzene	25.0	23.7	ug/	-	95	79 ₋ 122
,2,4-Trimethylbenzene	25.0	25.2	ug/	-	101	76 - 121
,2-Dibromo-3-Chloropropane	25.0	22.7	ug/	-	91	56 ₋ 134
,2-Dibromoethane	25.0	23.7	ug/		95	77 - 120
,2-Dichlorobenzene	25.0	24.7	ug/	-	99	80 - 124
,2-Dichloroethane	25.0	25.7	ug/	-	103	75 - 120
,2-Dichloropropane	25.0	25.4	ug/	_	101	76 - 120
,3,5-Trimethylbenzene	25.0	24.8	ug/	_	99	77 _ 121
,3-Dichlorobenzene	25.0	24.2	ug/	_	97	77 - 120
,4-Dichlorobenzene	25.0	24.6	ug/		98	80 - 120
-Butanone (MEK)	125	148	ug/	_	119	57 ₋ 140
-Hexanone	125	134	ug/	_	107	65 - 127
-lsopropyltoluene	25.0	24.4	ug/		98	73 - 120
-Methyl-2-pentanone (MIBK)	125	132	ug/	_	105	71 - 125
cetone	125	137	ug/	_	110	56 ₋ 142
Benzene	25.0	25.2	ug/		101	71 ₋ 124
Bromodichloromethane	25.0	25.7	ug/	_	103	80 - 122
romoform	25.0	24.0	ug/	_	96	61 ₋ 132
romomethane	25.0	24.8	ug/		99	55 - 144
Carbon disulfide	25.0	25.3	ug/		101	59 ₋ 134
Carbon tetrachloride	25.0	24.9	ug/		99	72 ₋ 134
Chlorobenzene	25.0	25.1	ug/		100	80 - 120

Eurofins TestAmerica, Buffalo

5

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-560615/5

Matrix: Water Analysis Batch: 560615

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloroethane		24.2		ug/L		97	69 - 136	
Chloroform	25.0	24.2		ug/L		97	73 ₋ 127	
Chloromethane	25.0	27.0		ug/L		108	68 ₋ 124	
cis-1,2-Dichloroethene	25.0	23.1		ug/L		92	74 ₋ 124	
cis-1,3-Dichloropropene	25.0	25.9		ug/L		104	74 - 124	
Cyclohexane	25.0	23.8		ug/L		95	59 ₋ 135	
Dibromochloromethane	25.0	25.5		ug/L		102	75 - 125	
Dichlorodifluoromethane	25.0	32.4		ug/L		130	59 ₋ 135	
Ethylbenzene	25.0	24.8		ug/L		99	77 _ 123	
Isopropylbenzene	25.0	25.3		ug/L		101	77 - 122	
m,p-Xylene	25.0	25.4		ug/L		102	76 ₋ 122	
Methyl acetate	50.0	54.0		ug/L		108	74 - 133	
Methyl tert-butyl ether	25.0	25.1		ug/L		100	77 ₋ 120	
Methylcyclohexane	25.0	24.1		ug/L		97	68 ₋ 134	
Methylene Chloride	25.0	24.3		ug/L		97	75 ₋ 124	
n-Butylbenzene	25.0	24.4		ug/L		98	71 ₋ 128	
N-Propylbenzene	25.0	24.9		ug/L		100	75 ₋ 127	
o-Xylene	25.0	24.9		ug/L		100	76 ₋ 122	
sec-Butylbenzene	25.0	24.1		ug/L		96	74 ₋ 127	
Styrene	25.0	25.3		ug/L		101	80 - 120	
tert-Butylbenzene	25.0	24.4		ug/L		97	75 ₋ 123	
Tetrachloroethene	25.0	25.3		ug/L		101	74 - 122	
Toluene	25.0	24.2		ug/L		97	80 - 122	
trans-1,2-Dichloroethene	25.0	23.0		ug/L		92	73 ₋ 127	
trans-1,3-Dichloropropene	25.0	24.7		ug/L		99	80 - 120	
Trichloroethene	25.0	25.3		ug/L		101	74 ₋ 123	
Trichlorofluoromethane	25.0	28.7		ug/L		115	62 - 150	
Vinyl chloride	25.0	26.2		ug/L		105	65 - 133	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100		77 - 120
4-Bromofluorobenzene (Surr)	100		73 _ 120
Toluene-d8 (Surr)	100		80 - 120

QC Association Summary

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark-791 Washington St.(Trico site) Job ID: 480-178540-1

GC/MS VOA

Analysis Batch: 560615

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
480-178540-1	RI-MW-2	Total/NA	Water	8260C	
480-178540-2	RI-MW-4	Total/NA	Water	8260C	
480-178540-3	RI-MW-6	Total/NA	Water	8260C	
480-178540-4	RI-MW-9	Total/NA	Water	8260C	
480-178540-5	RI-MW-10	Total/NA	Water	8260C	
480-178540-6	Trip Blank	Total/NA	Water	8260C	
MB 480-560615/7	Method Blank	Total/NA	Water	8260C	
LCS 480-560615/5	Lab Control Sample	Total/NA	Water	8260C	

lient Samp	le ID: RI-MW	1-2					Lat	o Sample ID): 480-178540-1
	: 11/20/20 08:5								Matrix: Water
Date Received:	11/20/20 15:20	6							
_	Batch	Batch		Dilution	Batch	Prepared			
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C		4	560615	11/24/20 14:02	AMM	TAL BUF	
Client Samp	le ID: RI-MW	/-4					Lat	o Sample ID): 480-178540-2
Date Collected	: 11/20/20 12:1	2							Matrix: Water
Date Received:	11/20/20 15:20	6							
_	Batch	Batch		Dilution	Batch	Prepared			
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C		4	560615	11/24/20 14:25	AMM	TAL BUF	
Client Samp	le ID: RI-MW	/-6					Lat	o Sample ID): 480-178540-3
Date Collected									Matrix: Water
Date Received:	11/20/20 15:20	6							
_	Batch	Batch		Dilution	Batch	Prepared			
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C		2	560615	11/24/20 14:48	AMM	TAL BUF	
Client Samp	le ID: RI-MW	/-9					Lat	o Sample IE): 480-178540-4
Date Collected	: 11/20/20 13:1	5						-	Matrix: Water
Date Received:	11/20/20 15:20	6							
_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C		4	560615	11/24/20 15:11	AMM	TAL BUF	
Client Samp	le ID: RI-MW	/-10					Lat	o Sample ID): 480-178540-5
Date Collected								-	Matrix: Water
Date Received:	11/20/20 15:20	6							
_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C		1	560615	11/24/20 15:34	AMM	TAL BUF	
Client Samp	le ID: Trip B	lank					Lat	o Sample ID): 480-178540-6
Date Collected:									Matrix: Water
Date Received:	11/20/20 15:20	6							
_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
	<u>Analysis</u>	 			560615	11/24/20 15:59			

Laboratory References:

Total/NA

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

8260C

Analysis

TAL BUF

1

560615

11/24/20 15:58

AMM

Authority Program Identification Number Expiration Date New York NELAP 10026 04-01-21	

Method	Method Description	Protocol	Laboratory
3260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
5030C	Purge and Trap	SW846	TAL BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Sample Summary

Client: Turnkey Environmental Restoration, LLC Project/Site: Benchmark-791 Washington St.(Trico site)

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-178540-1	RI-MW-2	Water	11/20/20 08:52	11/20/20 15:26
480-178540-2	RI-MW-4	Water	11/20/20 12:12	11/20/20 15:26
480-178540-3	RI-MW-6	Water	11/20/20 13:36	11/20/20 15:26
480-178540-4	RI-MW-9	Water	11/20/20 13:15	11/20/20 15:26
480-178540-5	RI-MW-10	Water	11/20/20 10:06	11/20/20 15:26
480-178540-6	Trip Blank	Water	11/20/20 00:00	11/20/20 15:26

Phone: 716-691-2600 Fax: 716-691-7991									
Client Information	UAN T	Rehred	Z	Fisch	Lab PM Fischer, Brian J		Carrier Tracking No(s)	~	COC No. 480-153286-32966.2
Client Contact: Mr. Christopher Boron	Phone Hb)		358	E-Mai Brian	Fischer@E	E-Mail: Brian Fischer@Eurofinset.com		<u>a</u> a	Page Page 2 of 2
Company Turnkey Environmental Restoration, LLC						Analysi	Analysis Requested	JC	Job #:
Address 2558 Hambura Turnpike	Due Date Requested:	;pa							ation Codes:
Gity Lackawanna	TAT Requested (days):	iys):							A - HCL M - Hexane B - NaOH N - None C - Z0 Acetate 0 - AsNa02
State: 200 NY: 14218 NY: 14218	SCK	SCANDACO	0					, ם ש נ	SO4
Phone 716-856-0635(Tel) 716-856-0583(Fax)	PO# B0092-016-002				0.5			101	Acid
Email: cboron@benchmarkturnkey.com	#OM				(ON				Ice - DI Water
Project Name Benchmark-791 Washington St. (Trico site)	Project #: 48013685				10 50			and the second second	
sile Tormer 1470 flut	#MOSS				N) as				Other:
		Sample		Matrix (w=water, S=solid. O=waste/oil.	serectil Filtered M/SM mone (00M) - 2095			redmuN Isto	
Sample Identification	Sample Date	IIII	Preserval	Preservation Code:		12.1 300 100 100 100	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		Special Instructions/Note:
RE-MW-7	W 20120	852	906	Water	X			8	
RT-MW-4		1212	-	Water	X			3	
RE-MW-6		1336	-	+	×			3	
RE-MW-9		1315			X			3	
RF- MU - 16	+	1006	+		X			2	
Traduck				7				200	
					1205.0				
				<u>+</u>	1 1 1	400-1/8040 Chain of Custody			
ant	Daison B. Mitheoun		Padiological		Sample	le Disposal (A fee ma Return To Client	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Detrim To Client Discoved RU I ab	oles are retained long	I longer than 1 month) a For Months
Other (specify)			na format		Special	Special Instructions/QC Requirements	lirements:		
Empty Kit Relinguished by:		Date:			Time:	1	Method of Shipment	ment	-
Reinquished by WK	Date/Time	152	e	Company Company	Rece	Received by	Mow Cludban	Date/Time: 11/20	124 15 20 Company
Relinquished by:	Date/Time:			Company	Recei	Received by	Dat	Date/Time	Company
Custody Seals Intact: Custody Seal No.:					Coole	Cooler Temperature(s) °C and Other Remarks.	Other Remarks.	HW	1 +15

Login Number: 178540 List Number: 1

Creator: Sabuda, Brendan D

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	2.0 #1 ICe
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	True	

List Source: Eurofins TestAmerica, Buffalo

BENCH	MARK
ENVIRONI ENGINEER Science,	ING 🕹

EQUIPMENT CALIBRATION LOG

PROJECT INFORMATION Project Name: Foscillar Project No.:	1000	Pla	Date:	11/20/20				
Client: Kroy					Instrumer	nt Source:	вм 🗌	Rental
	UNITS	тіме	MAKE/MODEL	SERIAL NUMBER	CAL. BY	STANDARD	POST CAL. READING	SETTINGS
			Myron L Company	6213516		4.00	4.02	4
pH meter	units	080D	Ultra Meter 6P	6243084 6212375	TAJ	7.00	7.03	7
				6243003 C 6223973 D	3/179	10.01	9.57	10
						10 NTU verification	10,4	10.0
Turbidity meter	NTU	aa	Hach 2100P or 2100Q	06120C020523 (P) 13120C030432 (Q)	+.3	< 0.4		
		NU	Turbidimeter	17110C062619 (Q)	743	100		
						800		
Sp. Cond. meter	uS mS	orou	Myron L Company Ultra Meter 6P	6213516 6243084 6212375 6243003 6223973	Mr-3	<u>4000</u> mS@25℃	6,976	7,00
PID	ppm		MinRAE 2000			open air zero		MIBK response
						ppm Iso. Gas		factor = 1.0
Dissolved Oxygen	ppm		HACH Model HQ30d	080700023281			100%	107.2
X.		ora		100500041867	TAB	100% Satuartion	Slope	01.
				140200100319				
Particulate meter	mg/m ³					zero air		
Radiation Meter	uR/H					background area		
ADDITIONAL REMARKS: PREPARED BY:		-	1 Electron	DATE: 1/20/	20	1		

	ICHMARK Ronmental Neering & Ice. PLLC						GROUNE		FIELD FORM	
Project Nar Location:	ne: Fasn Billio	NY	w 744	Project	No.:		Date: Field Te	11/201 eam:	20	
Well No		W-Z	Diameter (in		<i>ii</i> 25		te / Time: $\frac{1}{2}$	0/20	852	
	pth (fbTOR):	. 02	Water Colur	and the second second		DTW when Purpose:	Development		Purge & Sample	
DTW (statio		28		olume (gal): 2		Purpose. L		mersible	pump	
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
8.32	o Initial	Ö	5.82	12.3	5825	[19	2.10	215	SLT-1.L No	oden
835	12.30	0.25	6.56	12,6	4826	55.6	237	206	41	
839	213.45	1,25	6.80	11.9	4532	411	2.13	200	10	
844	314,51	2,0	6.92	12:0	4925	36,5	1.80	196	1/	
846	14,83	2.5	6,94	12.0	5404	32,2	1.54	194	10	
	5	1 A	1					- 19- C		
	6									
	7	-								
	8									
	10									
									1	
	Information			11.1	5412	0.11	Lai	10-	r	-
852	\$1/5.63	-3, 0	7.04	11.8	5412	34.4.	1.91	190		-
	32									1

à

Well No	o. KI-N	W-lo	Diameter (ir	nches): 2	1	Sample Da	ate / Time: W/2	0/20	1006
		30	Water Colur	mn (ft):	1.50	DTW when	n sampled:		
DTW (stati	c) (fbTOR):	5.18	One Well V	olume (gal)	774 93	Purpose:	Development	Sample	Purge & Sample
Total Dept	n (fbTOR):	SCI2011	Total Volum	e Purged (gal):	6.50	Purge Met	hod:		
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor
927	o Initial	0	7.46	121	1182	40,1	2.97	1.86	SC TALL NO C
930	15.83	0.50	7.47	12.6	1056	35.0	3.79	125	11
933	26.43	1.0	7.43	12.6	1149	49.4	2.78	186	"
940	37,93	3.0	7.40	126	1145	24.1	182	185	11
954	19.03	4.0	7.40	122	1158	40.9	1.85	183	
1000	512,10	6.0	7.37	123	1189	52.3	196	182	11
	7								
	8								
	9								- 19 C - 14
	10								
Sample	Information								
10.06	5112.46	6.50	7,38	12,6	1193	32,9	2.07	181	10
	52							Ctab	ilization Criteria
REMAR	(e.					Ve	lume Calculation	Parame	
	13:						Diam. Vol. (g/ft)	pH	± 0.1 unit
							1" 0.041	SC	± 3%

0.163

0.653 1.469

2"

4" 6"

Hr3

Turbidity

DO

ORP

± 10%

± 0.3 mg/L

± 10 mV

Note: All water level measurements are in feet, distance from top of riser.	Note: All water	level measurements	are in feet,	distance f	from top of	riser.
---	-----------------	--------------------	--------------	------------	-------------	--------

Groundwater Field Form.xls GWFF - BM PREPARED BY:

	ICHMARK Ronmental Neering &						GROUNI	OWATER	
Project Nar Location:	ne: Furw Billeto	Write	o Plan	Project	No.:		Date: Field T	(1/2.0/. eam: -7245	Z0 3
Well No	. KI-MI	N-9	Diameter (i	nches): 🤈	P	Sample Da	te / Time: ///	20/20	Commission of the second se
Product Dep	oth (fbTOR):	-1	Water Colu	mn (ft): 💦 👔	212	DTW when	sampled:	3.67	
DTW (static		1.0	One Well V	olume (gal):	1.97	Purpose:	Development	t 🔲 Sample	e 🔨 Purge & Sample
Total Depth	(fbTOR):	.13	Total Volum	ne Purged (gal):		Purge Meth	od: Supr	washle 1	Ruin
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTŲ)	DO (mg/L)	ORP (mV)	Appearance & Odor
	o Initial	0	7.06	13.0	1481	247	1.11	-16	Suke od
1027	1 8.01	1.5	7.00	13.8	920.6	401	1.32	-66	11
LORX	29.94	2.0	6.89	13.9	894.6	142	6.76	-85	^u
1043	3 14.93	4.0	6.84	13.9	1609	41.0	0.78	-86	4
1087	· DRy	5.0	7.13	14.0	1610	69.0	349	-82	50
	6								
	7							1	
	8								
	9							-	
	10								
Sample I	nformation:				2.1		,		
	513.67	~	7.44	13.4	1472	92.0	1.39	-92	6
	S2					-10			

Well No	o. KT-	-MW-Y	Diameter (ir	nches):	6	Samp	le Date / "	Time: 🚺	1/20/2	0 1212		
Product Depth (fbTOR):			Water Column (ft): 7,03			DTW when sampled: 4.6.7-						
DTW (statio	c) (fbTOR):	0.25	One Well V	olume (gal):	O.LX	Purpo		Development		1-1-1		
Total Depth (fbTOR):		Total Volume Purged (gal):			Purge Method: Min Bala							
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbid (NTU		DO (mg/L)	ORP (mV)	Appearance & Odor		
1120	Initial	-	7.20	12.1	3828	206	á	130	~53	Tubl N. 6 L		
1130	1 5.0	0.25	7.14	12.0	3835	21000		1-94	-68	or sulla		
1138	2 5.30	0.50	7.65	12.0	3917	71000		1.92	-71	"sulf		
1200	3 6.50	10	7.13	121	3862	2100	6 1	.67	-74	1 guy sel		
	4		19	-		0			100			
	5					4			38 5 35			
	6							1.16		2 A 2		
	7									124		
	8											
	9		4°	-		147						
1	10											
	nformation:											
1212	514.67	~	7.17	11.7	5831	7(000		3.15	.76	11		
	52		-					_				
REMARK	ç.		× _2				Malaine	Calculation		ilization Criteria		
							Diam.		Parame			
							1"	Vol. (g/ft) 0.041	pH SC	± 0.1 unit ± 3%		
							2"	0.163	Turbidi	and the second s		
							4"	0.653	DO	± 0.3 mg/L		
Note: All wa	ter level mea	surements a	are in feet. di	stance from	top of riser		6**	1.469	ORP	the second		
Groundwater Field F		19. C		PREPARE		P	4B	1				

1033

GWFF - BM

BENCHMAR Environment Engineering Science, PLLC	AL 3		,			GROUNI	OWATER		I
Project Name: To Location: B	the True	co Rluv	Project	No.:		Date: Field Te		0/20 TH3	.
Product Depth (fbTOR DTW (static) (fbTOR): Total Depth (fbTOR):	1,14 15,94	Diameter (in Water Colun One Well Vo Total Volume	nn (ft):	2" 14.50 2.41 7-25	Sample Da DTW when Purpose: [Purge Meth	sampled:	2 <i>0</i> /20	(336	-
Time Leve (fbTO)	Volume	pH (units)	Temp. (deg. C)	SC (µS)	Turbidity (NTU)	DO (mg/L)	ORP (mV)	Appearance & Odor	
$1257 \circ$ Initia $1300 \cdot 14.50$ $1308 \cdot 27.3$	0.75	7.62	11.6	1653 1557 1576	222	159 1.69 1.38	-78 -37	Third No 0	En
1318 10.43		7.46 7.47	11.6	1593	179	1.39	-54	10 ((- Marine M
7 8 9						X	4		
10 Sample Informati		7.49	11.6	2048	109	1.95	52	i"	

Well No.		Diameter (inches):			Sample Date / Time: DTW when sampled:					
Product Depth (fbTOR): DTW (static) (fbTOR):			Water Colu							
			One Well V	Purpose:	Purge & Sampl					
Total Depth (fbTOR):		Total Volume Purged (gal):			Purpose: Development Sample Purge Method:					
Time	Water Level (fbTOR)	Acc. Volume (gallons)	pH (units)	Temp. (deg. C)	SC (uS)	Turbidity (NTU)		DO (mg/L)	ORP (mV)	Appearance & Odor
	o Initial						_			
	1						-			
	2							12A		
	3						-			
	4						-			1 1 2
	5								18.1	1
	6						-		1	5
	7						-			
	8									
	9				de la				4.1	
	10				1 . Tax		-			
Sample	Information:						-			
	S1		No.				T			
	S2				1		-			
							-		Stabili	zation Criteria
EMARKS:					Volume Calculation		Calculation	Paramete	and the second se	
							Diam∈	Vol. (g/ft)	pН	± 0.1 unit
							1"	0.041	SC	± 3%
						-	2"	0.163	Turbidity	
nte: All we	ter level mor	suromonto (otonoo fu	ton of i		4"	0.653	DO	± 0.3 mg/L	
lote: All water level measurements are in feet, distance fro					top of riser.	. 6" 1.		1.469	ORP	± 10 mV

14

1000

Groundwater Field Form xis GWFF - BM

1°