89 LaSalle Avenue Site ERIE, NEW YORK Periodic Review Report

NYSDEC Site Number: C915283

Prepared for:

Legacy LaSalle LLC 89 LaSalle Avenue Site Cheektowaga, New York 14225

Prepared by:

Golder Associates Inc. 2430 North Forest Road, Suite 100 Getzville, New York 14068 (716) 204-5880

APRIL 2018

TABLE OF CONTENTS

1.0	SITE OVERVIEW	
1.1 1.2 1.3	Site Location & Description Nature and Extent of Contamination Prior to Remediation Site Remedial Program	
1.4	Purpose of Periodic Review Report	
2.0	REMEDIAL SYSTEMS COMPLIANCE	4
3.0	INSTITUTIONAL CONTROL COMPLIANCE	5
3.1	Introduction	5
5	1.1 General	5
3.2	Description of Institutional Controls	
4.0	.2.1 Status of ICs	
	3.1 Introduction	
4.1	3.1 Introduction	
	1.2 Schedule	•
4.2		,
	.2.1 Surface Water and Sediment Monitoring	
4.3	Annual Site Inspection Results	
4.4	Summary of Off-Site Activities During Reporting Period	9
4.5	Conclusions and Recommendations	
5.0	OVERALL CONCLUSIONS AND RECOMMENDATIONS	10
6.0	REFERENCES	

LIST OF TABLES

- Table 4-1Monitoring/Inspection Schedule
- Table 4-2Summary of Analytical Results for Stormwater and Sediment Samples
(November 2017/April 2018)

LIST OF FIGURES

- Figure 1-1 Site Vicinity Map
- Figure 4-1 November 2017/April 2018 Stormwater and Sediment Sample Locations

LIST OF APPENDICES

- Appendix A Analytical Data Report (November 13, 2017 and April 23, 2018) Alpha Analytical
- Appendix B Site- Wide Inspection Form & Photo Log November 2017/April 2018
- Appendix C Site C915234 Site Management Plan Periodic Review Report 2017/2018 ICs-ECs Certification Form

1.0 SITE OVERVIEW

1.1 Site Location & Description

The site, comprised of three (3) separate parcels, is addressed at 67 LaSalle Ave, 89 LaSalle Ave, and portions of 71 NY L&W RR (71 Cordova Ave.), and located in the City of Buffalo, County of Erie, New York and is identified as Section 79.7, Block 2 and Lots 1.1, 11, and 16.11 on the Erie County Tax Map. The site is an approximately 9.2 acre area bounded by commercial properties and LaSalle Avenue to the north, McCarthy Park to the south, Cordova Avenue to the east, and residential properties located on William Price Parkway to the west (see Site Vicinity Map, Figure 1-1). The site was remediated in accordance with Brownfield Cleanup Agreement (BCA) Site# C915283, which was executed on June 6, 2014.

1.2 Nature and Extent of Contamination Prior to Remediation

Prior to site remediation under the Brownfields Cleanup Program (BCP), a Remedial Investigation (RI) was performed to characterize the nature and extent of contamination at the site. The RI activities conducted on the Site as preparation for remedial efforts included the installation of four (4) wells, the advancement of fifteen (15) borings, the excavation of nineteen (19) test pits, and the collection of four (4) surface soil samples. Generally, the RI determined that the historic use of the Site as a landfill was evident in analytical results from the initial RI identifying the widespread presence of low levels of heavy metals and Polycyclic Aromatic Hydrocarbons (PAHs) as the Constituents of Primary Concern (COPCs) in soil/fill across the Site, and specifically at several locations identified across the central portion of the Site where the COPC concentrations were elevated relative the rest of the Site. Previous investigations had been conducted on portions of the BCP Site referenced as the LaSalle Reservoir Site, which generally encompassed the southeastern half of the Site (the former Buffalo Crushed Stone quarry area).

Four (4) impacted locations identified during the initial RI were subject to a supplemental remedial investigation delineating the elevated COPC impacts detected in these areas of concern. Findings from the supplemental test pit investigation of the four impacted areas of interest confirmed that there was no evidence of significant lateral or vertical contamination surrounding the original soil boring locations. Levels of COPCs detected in the supplemental test pits indicated that concentrations of COPCs, where detected, were below site-specific soil cleanup objectives as proposed in the Final RI Report and consistent with observations of RI analytical results across the site. The heterogeneous nature of the soil/fill across the Site, and analytical results indicating widespread low-level concentrations of COPCs above the Restricted Residential SCOs throughout Site overburden, demonstrated that a source or sources of contamination found at the four original areas of concern was not present.

1.3 Site Remedial Program

The site was remediated in accordance with the NYSDEC-approved 89 LaSalle RI-IRM-AA Report dated January 2015.

The following is a summary of the Remedial Actions performed at the site:

- Excavation of soil/fill identified at four RI boring locations as significantly exceeding restricted residential SCOs, to a minimum depth of 5 feet or bedrock where applicable;
- Construction and maintenance of a soil cover system consisting of two feet of clean imported material, and/or impervious material (i.e, asphalt pavement, concrete sidewalks and buildings) differentiated by a demarcation layer to prevent human exposure to remaining contaminated soil/fill remaining at the site;
- Execution and recording of an Environmental Easement to restrict land use and prevent future exposure to any contamination remaining at the site.
- Development and implementation of a Site Management Plan (SMP) for long term management of remaining contamination as required by the Environmental Easement, which includes plans for: (1) Institutional and Engineering Controls, (2) monitoring, (3) maintenance and (4) reporting;

Remedial activities were completed at the site in February 2015 (hotspot soil/fill excavations), and between April and October 2015 installation of the Site's cover system was incrementally installed as the Site's development progressed through construction and final site restoration.

A total of 350 tons of contaminated soil/fill was excavated and removed from the four hotspot locations identified in the RI Report (Boring locations B-5, B-7, B-8 and B-9) and illustrated on Figure 5 in the SMP. The excavated hotspot locations were subsequently backfilled with excess soils excavated and stockpiled from other uncontaminated locations on the Site, primarily storm sewer and water line utility trenching locations. In addition, approximately 1300 tons of topsoil mixed with vegetative material was also stripped from the upper 3-6 inches of portions of the site and disposed of off-site. This material was not identified as exceeding the applicable SCOs, however it was not suitable for reuse on the Site as part of the final cover system.

After completion of the remedial work, some contamination was left in the subsurface at this site, which is hereafter referred to as "remaining contamination." A layer of geotextile fabric has been installed as a demarcation layer in those areas of the Site where two feet of clean soil cover is the component of the cover system. This geotextile was placed on top of the subgrade soil/fill prior to placement of clean soil. At other locations on the Site where the cover system consists of impervious asphalt or concrete, a layer of geotextile has also been placed between the remaining soil/fill and clean structural gravel or crushed stone fill. In areas were buildings or structures act as the final cover system, a minimum of two feet, and in most areas four feet, of clean imported material was placed prior to placement of concrete pads and the erection of structures. In the case of Building 1, clean subbase material was placed, covered with clean topsoil and seeded in the same manner as other green space on the Site, until such time the building foundations and concrete pad were poured and the topsoil and vegetative cover stripped down to the clean subbase material.

The SMP was prepared to manage remaining contamination at the site until the Environmental Easements are extinguished in accordance with ECL Article 71, Title 36. The SMP addresses the means for implementing the Institutional Controls (ICs) and Engineering Controls (ECs) that are required by the Environmental Easement for the Site.

1.4 Purpose of Periodic Review Report

This Periodic Review Report (PRR) presents information on the maintenance, monitoring and compliance activities performed at the 89 LaSalle Avenue Site No. C915283 covering the period from April 1, 2017 to March 30, 2018.

During the reporting period of this PRR, intrusive activities were performed on the BCP Site related to the final development of the Site, i.e., the construction of Building 1. Due to lack of a qualifying rain event in the first three months of 2018, the second stormwater and sediment sampling event was postponed and occurred on April 16, 2018, to be included for submission with this report.

2.0 REMEDIAL SYSTEMS COMPLIANCE

2.1.1 General

Since remaining contaminated soil and groundwater exists beneath the site, Engineering Controls and Institutional Controls (EC/ICs) are required to protect human health and the environment.

Site specific SCOs were developed and approved based on 6NYCRR Part 375 Restricted Residential SCOs. These SCOs were employed as soil cleanup goals to achieve the remedial action objectives for the Site of minimizing the potential for exposure of remaining soil contaminants to humans and the environment. The SCOs established are soil concentration limits protective of human health and surface water quality. Achievement of the site specific SCOs was confirmed through verification sampling.

The selected Engineering Control implemented at the Site (following completion of remediation activities) was the construction and maintenance of a soil cover system consisting of two feet of clean imported material and/or impervious material (i.e., asphalt pavement, concrete sidewalks and buildings), differentiated by a demarcation layer to prevent human exposure to remaining contaminated soil/fill.

The approved SMP requires the implementation of a long-term monitoring plan that incorporates monitoring and maintenance of the Site cover system to identify evidence of excessive soil erosion to soil cover systems or deterioration of asphalt or concrete structures that might indicate that off-site transport of soil/fill is likely to occur or is occurring. In addition, semi-annual stormwater and sediment monitoring and analysis is performed to further assess performance of the cover system.

The results of the required monitoring activities and annual inspection are presented in Section 4 "Monitoring Plan Compliance Report".

3.0 INSTITUTIONAL CONTROL COMPLIANCE

3.1 Introduction

3.1.1 General

Since remaining contaminated soil and groundwater exist beneath the Site, Engineering Controls and Institutional Controls (EC/ICs) are required to protect human health and the environment. The Engineering and Institutional Control Plan describes the procedures for the implementation and management of all EC/ICs at the site. The EC/IC Plan is one component of the SMP and is subject to revision by NYSDEC. The goals of the ICs are to: (1) implement, maintain and monitor Engineering Control systems; (2) prevent future exposure to remaining contamination by controlling disturbances of the subsurface contamination; and, (3) limit the use and development of the Site to Restricted Residential uses only. Adherence to these Institutional Controls is required by the Environmental Easement and will be implemented under this Site Management Plan.

3.2 Description of Institutional Controls

The Institutional Controls are:

- Compliance with the Environmental Easements and the SMP by the Grantor and the Grantor's successors and assigns;
- All Engineering Controls must be maintained as specified in the SMP;
- All Engineering Controls on the Controlled Property must be inspected at a frequency and in a manner defined in the SMP;
- Stormwater, sediment and other environmental or public health monitoring must be performed as defined in the SMP;
- Data and information pertinent to Site Management of the Controlled Property must be reported at the frequency and in a manner defined in the SMP.

The Site has a series of Institutional Controls in the form of site restrictions. Adherence to these Institutional Controls is required by the Environmental Easement. Site restrictions that apply to the Controlled Property are:

- The property may only be used for restricted residential use, provided that the long-term Engineering and Institutional Controls included in the SMP are employed;
- The property may not be used for a higher level of use, such as unrestricted residential use without additional remediation and amendment of the Environmental Easement, as approved by the NYSDEC;
- All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP;
- The use of the groundwater underlying the property is prohibited without treatment rendering it safe for intended use;
- Vegetable gardens and farming on the property are prohibited; and,
- The site owner or remedial party will submit to NYSDEC a written statement that certifies, under penalty of perjury, that: (1) controls employed at the Controlled Property are

unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC; and, (2) nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP. NYSDEC retains the right to access such Controlled Property at any time in order to evaluate the continued maintenance of any and all controls. This certification shall be submitted annually, or at an alternate frequency that NYSDEC may allow and will be made by an expert that the NYSDEC finds acceptable.

The Environmental Easement summarizing the site use restrictions and requirements for the Site was executed by the Department on December 14, 2015, and filed with the Erie County Clerk on December 15, 2015. A copy of the easement and proof of filing is provided in Appendix A of the SMP.

3.2.1 Status of ICs

During the reporting period covered by this PRR, all ICs were in place and effective in meeting their objectives. Intrusive work was performed on the BCP Site during the reporting period covered by this PRR for installation of building foundations and associated utilities. All intrusive work was conducted in accordance with the Excavation Work Plan approved by NYSDEC.

There are no corrective measures required to insure the effectiveness of ICs at this time based on the results of the monitoring and annual inspection performed.

Stormwater and sediment samples for the current PRR period were collected on November 02, 2017 and April 16, 2018, when stormwater effluent was present in sufficient quantity for sampling at the MH-1 structure. The next sampling event is tentatively scheduled for September 2018.

It should be noted that for this reporting period, the stormwater and sediment sample was collected on April 16, 2018 due to the lack of a qualifying rain event during the first three months of 2018.

4.0 MONITORING PLAN COMPLIANCE REPORT

4.1 Introduction

4.1.1 General

The Monitoring Plan describes the measures for evaluating the performance and effectiveness of the remedy to reduce or mitigate contamination at the Site, the soil cover system, and all affected site media identified below. The Monitoring Plan may only be revised with the approval of NYSDEC.

4.1.2 Schedule

Semi-annual monitoring and inspection of the performance of the remedy and overall reduction in contamination on-site will be conducted for the first 5 years. The frequency thereafter will be determined by NYSDEC. Characterizations of the quality of stormwater and sediment generated as runoff from the Site's engineered cover system have been selected as representative Site monitoring media. Trends in contaminant levels in stormwater and sediment in the affected areas will be evaluated to determine if the remedy continues to be effective in achieving remedial goals. The monitoring and inspection program are summarized in detail in Table 4-1. The results of the monitoring performed are discussed further in Section 4.2.

Table 4-1: Monitoring/Inspection Schedule

* The frequency of events will be conducted as specified until otherwise approved by NYSDEC and NYSDOH

Monitoring Program	Frequency*	Matrix	Analysis/Comments
Stormwater Discharge to City of Buffalo Storm Sewer System	Semi-annually	Stormwater runoff and sediment (when present)	TAL Metals (Method 6010C), Semi-volatile compounds (Method 8270D SIM), Total Solids [sediment only] (SM
Semiannual Site Inspection	Semi-annually	Visually inspect entire site for cover system integrity and signs of unacceptable deterioration or other damage to cover system components that may result in exposure to contaminated soil	2540) Prepare a detailed written description of the condition of all cover system components. Include a photographic record of inspection areas

4.2 Monitoring Program Results

4.2.1 Surface Water and Sediment Monitoring

On November 2, 2017, a stormwater grab sample was collected from the manhole within 6 hours of a precipitation event exceeding 0.5 inch. A stormwater and sediment sample was collected on April 16, 2018, during a precipitation event exceeding 0.5 inch. The samples were collected at one location, in accordance with the Legacy LaSalle C915283 Site SMP.

Stormwater and associated sediment (when present) samples were collected from the discharge of Manhole 1 (designated MH-1) located at the northwest corner of the BCP Site. MH-1 subsequently discharges to the City of Buffalo storm sewer system in LaSalle Ave.

Stormwater samples were analyzed for Semi-Volatiles and Total Metals. Sediment samples were analyzed for Semi-Volatiles, Total Metals and Total Solids. The analytical results from the November and April sampling events are summarized in Table 4-2. Table 4.2 presents sample detections compared to NYSDEC surface water standards (NYSDEC 1998), Class A Freshwater Sediment Guidance Values (Table 5) from the "*Screening and Assessment of Contaminated Sediments*", NYSDEC, July 2014, and Part 365 Restricted Residential SCOs.

No detections above NYSDEC surface water standards for SVOCs and Metals were found in the stormwater sample for November 2017. No sediment sample was collected for the November 2017 event due to a lack of sufficient sediment at the bottom of the manhole.

In the stormwater sample for April 2018, concentrations of benzo[a]anthracene, benzo[b]fluoranthene, bis(2-ethylhexyl) phthalate, and chrysene of 0.00004 ppm, 0.00009 ppm, 0.0054 ppm, and 0.00008 ppm, respectively, exceeded the NYSDEC surface water standards for SVOCs. Metals exceeding the NYSDEC surface water standards for SVOCs. Metals exceeding the NYSDEC surface water standards were iron at 12.1 ppm and lead at 0.06023 ppm. Concentrations of iron in the site soils can vary significantly due to a wide range of naturally occurring iron in imported cover soils and the result for iron in the stormwater is not unexpected. No detections above the Class A Freshwater Sediment Guidance Values and Restricted Residential SCOs were found in the sediment sample from April 2018.

A copy of the laboratory Analytical Reports for all stormwater and sediment analyses performed is attached in Appendix A.

4.3 Annual Site Inspection Results

Site inspections were performed on November 2, 2017 and April 16, 2018, exceeding the frequency of once per year established by the SMP Monitoring Program requirements. A Site-wide inspection form was completed (Appendix B) during each inspection. The form compiles sufficient information to assess the following:

Compliance with all ICs, including Site usage;

- General Site conditions at the time of the inspection;
- The site management activities being conducted including, where appropriate, confirmation sampling and a health and safety inspection;
- Compliance with permits and schedules included in the Operation and Maintenance Plan; and,
- Confirmation that Site records are up to date.

All areas of the Site were carefully inspected to assess the condition of surface soil, asphalt and concrete areas to determine if erosion or related deterioration is occurring that would jeopardize the integrity of soil, asphalt or concrete structures preventing the transport of soil/fill onto surrounding properties. In particular, during the November 2017 inspection, special attention was given to inspecting the condition and integrity of the soil and vegetative cover in areas where final redevelopment had not yet occurred due to the phased redevelopment of the Site (i.e., primarily the Building 1 location and adjacent areas). During the April 2018 inspection, special attention was given to the erosion control measures in place surrounding the active construction area encompassing the Building 1 footprint.

Photographic logs containing photos taken during the November and April inspections are provided in Appendix B.

4.4 Summary of Off-Site Activities During Reporting Period

No intrusive activities were performed off-site during the period covered by this PRR.

4.5 **Conclusions and Recommendations**

At the time of the annual inspection, the Site was fully compliant with the institutional controls described in the SMP. All monitoring results and inspection results were acceptable with only low-level detection of limited PAHs and metals in the stormwater at the Site outfall stormwater discharge and no evidence of erosion of the soil cover or hardscape portions of the cover on the Site.

Semi-annual stormwater and sediment sampling will continue to be scheduled for future monitoring events in the September and March timeframes to be representative of stormwater discharge events from the Site.

5.0 OVERALL CONCLUSIONS AND RECOMMENDATIONS

Based on the initial monitoring and inspection results described in Section 4 and conducted during the timeframe covered by this PRR, compliance with all relevant components of the SMP ICs was achieved. A copy of the completed and certified "Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form" is attached in Appendix C.

The stormwater and sediment sampling completed to date (i.e., four semi-annual events) cannot assess the long term performance of the remedy. However, the stormwater and sediment sample results after the first two years of development and the overall condition of the site and integrity of the final soil cover system are indicative that the remedy performed under the BCP is achieving its intended goals of minimizing, to the extent feasible, exposure of remaining contamination to the environment through stormwater runoff and associated sediment erosion.

The next Annual Inspection will be performed in March of 2019. The next semi-annual SMP sampling event will be performed in September of 2018, contingent on stormwater availability for sampling.

6.0 **REFERENCES**

- 1. Golder Associates Inc., Final Engineering Report, 89 LaSalle Ave. Site, NYSDEC Site No. C915283, December 2015.
- 2. Golder Associates Inc., Site Management Plan, 89 LaSalle Ave. Site, NYSDEC Site No. C915283, prepared for Legacy LaSalle LLC, December 2015.

TABLE 4-2

(TABLE 4-1 IN TEXT)

TABLE 4-2 SUMMARY OF ANALYTICAL RESULTS FOR STORMWATER & SEDIMENT SAMPLES 89 LASALLE AVENUE BCP SITE # C915283 LEGACY LASALLE, LLC. BUFFALO, NY

Lab ID	Water Quality Standards Surface	Class A Freshwater	Restricted	L1740169-01 Stormwater	L1813173-01 Stormwater	L1813173-02 Sediment
Sample ID	Waters and Groundwater	Sediment Guidance Values*	Residential SCOs Table 375-6.8(b)	MH-1	MH-1	MH-1
Sample Date	(6 NYCRR Part 703)			11/13/17	4/16/18	4/16/18
Units	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
Semivolatile Organics (GC/MS)						
2-Methylnapthalene	NS	NS	NS	0.0001	ND	ND
Acenaphthene	0.02	NS	100	ND	ND	0.01 J
Acenaphthylene	NS	NS	100	ND	ND	0.0072 J
Anthracene	0.05	NS	100	ND	ND	0.028 J
Benzo[a]anthracene	0.000002	NS	1	ND	0.00004 J	0.1
Benzo[a]pyrene	NS	NS	1	ND	0.00004 J	0.11
Benzo[b]fluoranthene	0.000002	NS	1	ND	0.00009 J	0.18
Benzo[g,h,i]perylene	NS	NS	100	ND	ND	0.056
Benzo[k]fluoranthene	0.000002	NS	3.9	ND	ND	0.06
Biphenyl	NS	NS	1	ND	ND	ND
Bis(2-ethylhexyl) phthalate	0.005	360	NS	ND	0.0054	0.079 J
Chrysene	0.000002	NS	3.9	ND	0.00008 J	0.15
Dibenzo(a,h)anthracine	NS	NS	0.33	ND	ND	0.016 J
Fluoranthene	0.05	NS	100	ND	0.00012	0.23
Fluorene	0.05	NS	100	0.00008 J	ND	0.014 J
Indeno[1,2,3-cd]pyrene	0.000002	NS	0.5	ND	ND	0.056
Napthalene	NS	NS	100	ND	0.00005 J	0.01 J
Phenanthrene	NS	NS	100	0.00016	0.00006 J	0.12
Pyrene	0.05	NS	100	ND	0.0001	0.21
Total Metals (SW 846 Series)						
Aluminum	NS	NS	NS	0.059	7.27	2790
Antimony	0.003	NS	NS	0.00054 J	0.00069 J	2.47 J
Arsenic	0.025	<10	16	0.00033 J	0.0041	4.03
Barium	NS	NS	400	0.00542	0.07426 J	23.8
Beryllium	0.003	NS	72	ND	0.00038 J	0.07 J
Cadmium	0.003	<1	4.3	ND	0.00034	0.12 J
Calcium	NA	NS	NS	16.1	65.9	151000
Chromium	0.05	<43	180	0.00128	0.01992	4.43
Cobalt	NS	NS	NS	ND	0.00523	2.28
Copper	0.2	<32	270	0.00102	0.0269	7.58
Iron	0.3	NS	NA	ND	12.1	7920
Lead	0.025	<36	400	ND	0.06023	9.23
Magnesium	NA	NS	NS	1.11	14.2	19900
Manganese	0.3	NS	2000	0.00291	0.2937	512
Mercury	0.0007	<0.2	0.81	ND	ND	0.023 J
Nickel	0.1	<23	310	ND	0.01694	5.24
Potassium	NS	NS	NA	1.89	4.3	399
Selenium	NS	NS	180	ND	ND	ND
Silver	NS	<1	180	ND	0.00017 J	ND
Sodium	20	NS	NS	1.19	12.9	292
Thalium	NS	NS	NS	ND	ND	ND
	NS	NS	NS	ND	0.01534	6.57
Zinc	NS	<120	10000	ND	0.1474	25

TABLE 4-2

SUMMARY OF ANALYTICAL RESULTS FOR STORMWATER & SEDIMENT SAMPLES 89 LASALLE AVENUE BCP SITE # C915283

LEGACY LASALLE, LLC.

BUFFALO, NY

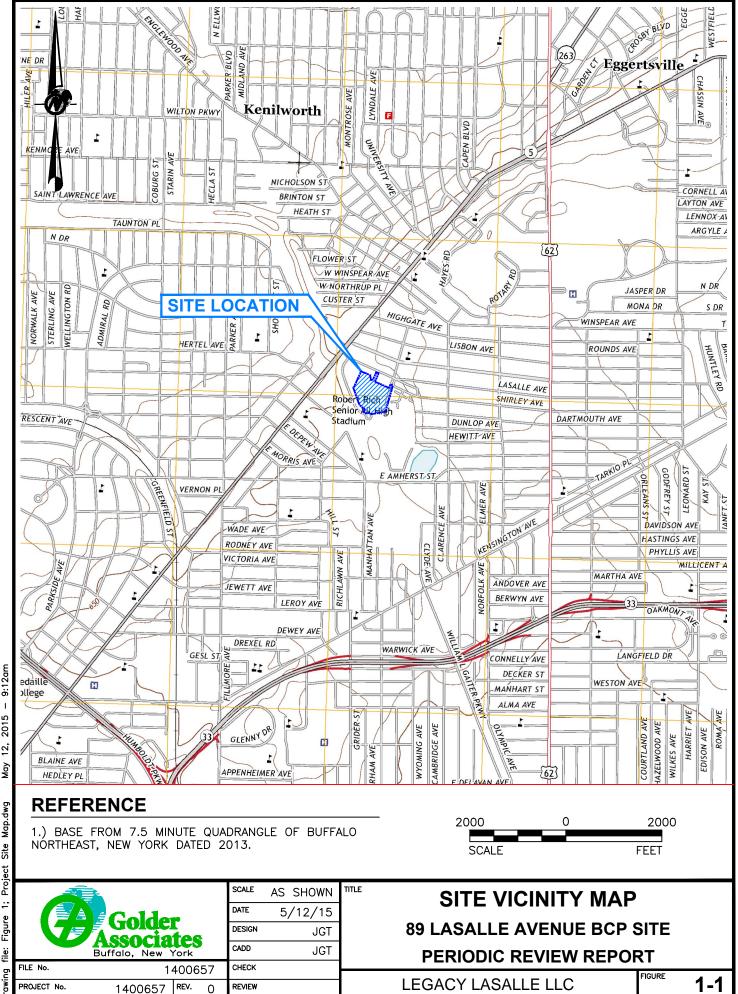
Notes & Data Qualifiers:

* Freshwater Sediment Guidance Values for Class A Sediments. "Screening & Assessment of Contaminated Sediment", NYSDEC, June 2014

B = Analyte was detected in associated method blank.

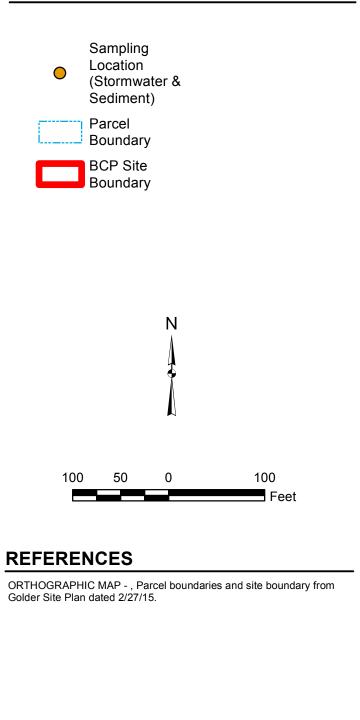
J = Analyte detected at a level less than the reporting limit (RL) and greater than or equal to the Method Detection Limit (MDL). Concentrations within this range are estimated.

Footnotes:


- 12.1 = Sample concentration exceeds NYSDEC Part 703 Water Quality Standards Surface Waters and Groundwater
- 0.34 = Sample concentration exceeds NYSDEC Part 375 Restricted Residential Use Soil Cleanup Objectives (SCOs)
- 44 = Sample concentration exceeds NYSDEC B10 Freshwater Sediment Guidance Value for Class A sediments

ND = Non detectable concentration by approved analytical methods; water quality standard.

NS = Not Specified.


Table by:	KRH/KMC
Checked by:	PTM
Reviewed by:	PTM

FIGURES

LEGEND

REV.	DATE	DES	REVISION DESCRIPTION	GIS	СНК	RVW
PROJ	ECT					

SITE MANAGEMENT PLAN LEGACY LASALLE, LLC - BUFFALO, NEW YORK

SITE PL	AN & SAMF	PLING I	LOCATIC	N
	PPR RE	PORT		
8	9 LASALLE	AVE S	SITE	
	T			

	PROJECT	۲No.	1776165	FILE No. 1	776165002
	DESIGN			SCALE: AS SHOWN	REV. 0
Golder	GIS	LBS	5/5/2017		
Associates	CHECK			FIGURI	= 4_1
Associates	REVIEW	PTM	5/5/2017		

APPENDIX A ANALYTICAL DATA REPORT – ALPHA ANALYTICAL NOVEMBER 2017 & APRIL 2018

ANALYTICAL REPORT

Lab Number:	L1740169
Client:	Golder Associates Inc.
Oliciti.	2430 North Forest Rd.
	Suite 100
	Getzville, NY 14068
ATTN:	Patrick Martin
Phone:	(716) 204-5880
Project Name:	89 LASALLE BCP SITE
Project Number:	1787491
Report Date:	11/13/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial	No:11131718:33
--------	----------------

Project Name:	89 LASALLE BCP SITE
Project Number:	1787491

 Lab Number:
 L1740169

 Report Date:
 11/13/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1740169-01	MH-1 STORMWATER	WATER	89 LASALLE AVE., BUFFALO, NY	11/02/17 11:05	11/02/17

Project Name:89 LASALLE BCP SITEProject Number:1787491

Lab Number: L1740169 Report Date: 11/13/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:89 LASALLE BCP SITEProject Number:1787491

 Lab Number:
 L1740169

 Report Date:
 11/13/17

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

At the client's request, Dissolved Metals analysis was performed instead of Total Metals analysis.

Dissolved Metals

L1740169-01: The sample has an elevated detection limit for mercury due to the prep dilution required by matrix interferences encountered during analysis.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Michelle M. Morris Michelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

Date: 11/13/17

ORGANICS

SEMIVOLATILES

	Serial_No:11131718:3		
Project Name:	89 LASALLE BCP SITE	Lab Number:	L1740169
Project Number:	1787491	Report Date:	11/13/17
	SAMPLE RESULTS		
Lab ID:	L1740169-01	Date Collected:	11/02/17 11:05
Client ID:	MH-1 STORMWATER	Date Received:	11/02/17
Sample Location:	89 LASALLE AVE., BUFFALO, NY	Field Prep:	Not Specified
		Extraction Metho	d:EPA 3510C
Matrix:	Water	Extraction Date:	11/08/17 23:42
Analytical Method:	1,8270D		
Analytical Date:	11/10/17 17:08		
Analyst:	СВ		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.67	1
3.3'-Dichlorobenzidine	ND		ug/l	5.0	1.4	1
2,4-Dinitrotoluene	ND		ug/l	5.0	0.84	1
2,6-Dinitrotoluene	ND		ug/l	5.0	1.1	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.62	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.73	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.70	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.63	1
Hexachlorocyclopentadiene	ND		ug/l	20	7.8	1
Isophorone	ND		ug/l	5.0	0.60	1
Nitrobenzene	ND		ug/l	2.0	0.75	1
NDPA/DPA	ND		ug/l	2.0	0.64	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.70	1
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	0.91	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.3	1
Di-n-butylphthalate	ND		ug/l	5.0	0.69	1
Di-n-octylphthalate	ND		ug/l	5.0	1.1	1
Diethyl phthalate	ND		ug/l	5.0	0.63	1
Dimethyl phthalate	ND		ug/l	5.0	0.65	1
Biphenyl	ND		ug/l	2.0	0.76	1
4-Chloroaniline	ND		ug/l	5.0	0.63	1
2-Nitroaniline	ND		ug/l	5.0	1.1	1
3-Nitroaniline	ND		ug/l	5.0	1.2	1
4-Nitroaniline	ND		ug/l	5.0	1.3	1
Dibenzofuran	ND		ug/l	2.0	0.66	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.67	1
Acetophenone	ND		ug/l	5.0	0.85	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.68	1
p-Chloro-m-cresol	ND		ug/l	2.0	0.62	1
2-Chlorophenol	ND		ug/l	2.0	0.63	1

					Serial_No:11131718:33			
Project Name:	89 LASALLE BCP SITE				Lab Nu	mber:	L1740169	
Project Number:	1787491				Report	Date:	11/13/17	
		SAMPI		5				
Lab ID:	L1740169-01				Date Col	llected:	11/02/17 11:05	
Client ID:	MH-1 STORMWATER	ł			Date Re	ceived:	11/02/17	
Sample Location:	89 LASALLE AVE., BU	JFFALO, NY	(Field Pre	ep:	Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Orgar	nics by GC/MS - Westbord	ough Lab						
2,4-Dichlorophenol		ND		ug/l	5.0	0.77	1	
2,4-Dimethylphenol		ND		ug/l	5.0	1.6	1	
2-Nitrophenol		ND		ug/l	10	1.5	1	
4-Nitrophenol		ND		ug/l	10	1.8	1	
2,4-Dinitrophenol		ND		ug/l	20	5.5	1	
4,6-Dinitro-o-cresol		ND		ug/l	10	2.1	1	
Phenol		ND		ug/l	5.0	1.9	1	
3-Methylphenol/4-Methyl	phenol	ND		ug/l	5.0	1.1	1	
2,4,5-Trichlorophenol		ND		ug/l	5.0	0.72	1	
Carbazole		ND		ug/l	2.0	0.63	1	
Atrazine		ND		ug/l	10	1.8	1	
Benzaldehyde		ND		ug/l	5.0	1.1	1	
Caprolactam		ND		ug/l	10	3.6	1	
2,3,4,6-Tetrachlorophenc	bl	ND		ug/l	5.0	0.93	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	53	21-120	
Phenol-d6	46	10-120	
Nitrobenzene-d5	70	23-120	
2-Fluorobiphenyl	69	15-120	
2,4,6-Tribromophenol	71	10-120	
4-Terphenyl-d14	74	41-149	
	14	41-145	

	Serial_No:11131718:33				
Project Name:	89 LASALLE BCP SITE	Lab Number:	L1740169		
Project Number:	1787491	Report Date:	11/13/17		
	SAMPLE RESULTS				
Lab ID:	L1740169-01	Date Collected:	11/02/17 11:05		
Client ID:	MH-1 STORMWATER	Date Received:	11/02/17		
Sample Location:	89 LASALLE AVE., BUFFALO, NY	Field Prep:	Not Specified		
		Extraction Metho	d:EPA 3510C		
Matrix:	Water	Extraction Date:	11/08/17 23:45		
Analytical Method:	1,8270D-SIM				
Analytical Date:	11/12/17 05:40				
Analyst:	KL				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	S-SIM - Westborough La	ab				
Acenaphthene	ND		ug/l	0.10	0.04	1
2-Chloronaphthalene	ND		ug/l	0.20	0.04	1
Fluoranthene	ND		ug/l	0.10	0.04	1
Hexachlorobutadiene	ND		ug/l	0.50	0.04	1
Naphthalene	ND		ug/l	0.10	0.04	1
Benzo(a)anthracene	ND		ug/l	0.10	0.02	1
Benzo(a)pyrene	ND		ug/l	0.10	0.04	1
Benzo(b)fluoranthene	ND		ug/l	0.10	0.02	1
Benzo(k)fluoranthene	ND		ug/l	0.10	0.04	1
Chrysene	ND		ug/l	0.10	0.04	1
Acenaphthylene	ND		ug/l	0.10	0.04	1
Anthracene	ND		ug/l	0.10	0.04	1
Benzo(ghi)perylene	ND		ug/l	0.10	0.04	1
Fluorene	0.08	J	ug/l	0.10	0.04	1
Phenanthrene	0.16		ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.04	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.04	1
Pyrene	ND		ug/l	0.10	0.04	1
2-Methylnaphthalene	0.10		ug/l	0.10	0.05	1
Pentachlorophenol	ND		ug/l	0.80	0.22	1
Hexachlorobenzene	ND		ug/l	0.80	0.03	1
Hexachloroethane	ND		ug/l	0.80	0.03	1

					Serial_No:11131718:33				
Project Name:	89 LASALLE BCP SITE				Lab Number:	L1740169			
Project Number:	1787491				Report Date:	11/13/17			
		SAMPLE	RESULTS	5					
Lab ID:	L1740169-01				Date Collected:	11/02/17 11:05			
Client ID:	MH-1 STORMWATER				Date Received:	11/02/17			
Sample Location:	89 LASALLE AVE., BUF	FALO, NY			Field Prep:	Not Specified			
Parameter		Result	Qualifier	Units	RL MDL	Dilution Factor			
Semivolatile Organ	nics by GC/MS-SIM - Westb	orough Lab							

% Recovery	Acceptance Qualifier Criteria
40	21-120
39	10-120
106	23-120
82	15-120
61	10-120
79	41-149
	40 39 106 82 61

Project Name:	89 LASALLE BCP SITE	Lab Number:	L1740169		
Project Number:	1787491	Report Date:	11/13/17		
Mathead Diank Analysia					

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8270D	
Analytical Date:	11/08/17 15:02	
Analyst:	PS	

Extraction Method: EPA 3510C Extraction Date: 11/07/17 23:54

Bis(2-chloroethyl)ether ND ug/l 2.0 0.67 3,3-Dichlorobenzidine ND ug/l 5.0 1.4 2,4-Dinitrotoluene ND ug/l 5.0 0.84 2,6-Dinitrotoluene ND ug/l 5.0 1.1 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.73 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.73 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.73 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.70 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.76 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.76 Sophorone ND ug/l 2.0 0.75 NDPA/DPA ND ug/l 2.0 0.64 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.63 Bis/2-ethylkylphthalate ND ug/l 5.0 0.63 Di-n-otylp	arameter	Result	Qualifier	Units		RL	MDL
ND ug/l 5.0 1.4 2,4-Dinitrotoluene ND ug/l 5.0 0.84 2,6-Dinitrotoluene ND ug/l 5.0 1.1 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.62 4-Bromophenyl phenyl ether ND ug/l 2.0 0.73 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.63 Hexachlorocyclopentadiene ND ug/l 5.0 0.63 Hexachlorocyclopentadiene ND ug/l 5.0 0.63 ND ug/l 5.0 0.60 0.64 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.70 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.70 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.70 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 1.3 Di-n-butylphthalate ND ug/l 5.0 1.4 Diethyl phthalate ND	emivolatile Organics by GC/M	IS - Westborough	n Lab for s	ample(s):	01	Batch:	WG1060674-1
2.4-Dinitrotoluene ND ug/l 5.0 0.84 2.6-Dinitrotoluene ND ug/l 5.0 1.1 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.62 4-Bromophenyl phenyl ether ND ug/l 2.0 0.73 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.70 Bis(2-chloroethoxy)methane ND ug/l 5.0 0.63 Hexachlorocyclopentadiene ND ug/l 5.0 0.60 Nitrobenzene ND ug/l 2.0 0.75 NDPA/DPA ND ug/l 2.0 0.64 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.63 Bit/l benzyl phthalate ND ug/l 5.0 0.70 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.64 Di-n-butylphthalate ND ug/l 5.0 0.63 Di-n-butylphthalate ND ug/l 5.0 0.63 Dimethyl phthalate ND ug/l 5.0 0.65 Biphenyl	Bis(2-chloroethyl)ether	ND		ug/l		2.0	0.67
2,6-Dinitrotoluene ND ug/l 5.0 1.1 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.62 4-Bromophenyl phenyl ether ND ug/l 2.0 0.73 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.70 Bis(2-chloroethoxy)methane ND ug/l 5.0 0.63 Hexachlorocyclopentadiene ND ug/l 5.0 0.60 Nitrobenzene ND ug/l 2.0 0.75 NDPA/DPA ND ug/l 5.0 0.60 Nitrobenzene ND ug/l 5.0 0.64 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.70 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.64 n-n-butylphthalate ND ug/l 5.0 0.63 Di-n-otylphthalate ND ug/l 5.0 0.69 Di-n-otylphthalate ND ug/l 5.0 0.63 Dimethyl phthalate ND ug/l 5.0 0.63 Dihenyl ND	3,3'-Dichlorobenzidine	ND		ug/l		5.0	1.4
A-Chlorophenyl phenyl ether ND ug/l 2.0 0.62 4-Bromophenyl phenyl ether ND ug/l 2.0 0.73 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.70 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.63 Hexachlorocyclopentadiene ND ug/l 5.0 0.60 Nitrobenzene ND ug/l 5.0 0.60 ND ug/l 2.0 0.75 NDA/DPA ND ug/l 2.0 0.64 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.70 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.70 Bis(2-ethyl hexyl)phthalate ND ug/l 5.0 0.70 Bis(2-ethyl hexyl)phthalate ND ug/l 5.0 0.63 Di-n-butyl phthalate ND ug/l 5.0 0.63 Di-n-butyl phthalate ND ug/l 5.0 0.63 Dimethyl phthalate ND ug/l 5.0 0.63 2-Nitroaniline ND	2,4-Dinitrotoluene	ND		ug/l		5.0	0.84
4-Bromophenyl phenyl ether ND ug/l 2.0 0.73 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.70 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.63 Bis(2-chloroethoxy)methane ND ug/l 5.0 0.60 Bis(2-chloroethoxy)methane ND ug/l 5.0 0.60 ND ug/l 5.0 0.60 0.75 NDhorone ND ug/l 2.0 0.75 NDPA/DPA ND ug/l 2.0 0.64 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.70 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.70 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.63 Di-n-butyl phthalate ND ug/l 5.0 0.63 Di-n-octylphthalate ND ug/l 5.0 0.63 Dimethyl phthalate ND ug/l 5.0 0.63 2-Nitroaniline <	2,6-Dinitrotoluene	ND		ug/l		5.0	1.1
Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.70 Bis(2-chloroethoxy)methane ND ug/l 5.0 0.63 Hexachlorocyclopentadiene ND ug/l 20 7.8 Isophorone ND ug/l 2.0 0.60 Nitrobenzene ND ug/l 2.0 0.75 NDPA/DPA ND ug/l 5.0 0.64 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.70 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.70 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.70 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.69 Di-n-butylphthalate ND ug/l 5.0 0.63 Di-n-octylphthalate ND ug/l 5.0 0.63 Dimethyl phthalate ND ug/l 5.0 0.63 Biphenyl ND ug/l 5.0 0.63 2-Nitroaniline ND	4-Chlorophenyl phenyl ether	ND		ug/l		2.0	0.62
Bis(2-chloroethoxy)methane ND ug/l 5.0 0.63 Hexachlorocyclopentadiene ND ug/l 20 7.8 Isophorone ND ug/l 5.0 0.60 Nitrobenzene ND ug/l 2.0 0.75 NDPA/DPA ND ug/l 2.0 0.64 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.70 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.70 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.70 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.69 Di-n-butyl phthalate ND ug/l 5.0 0.63 Di-n-octyl phthalate ND ug/l 5.0 0.65 Biphenyl ND ug/l 5.0 0.63 Dimethyl phthalate ND ug/l 5.0 0.63 Sphenyl ND ug/l 5.0 0.63 Phtroaniline ND ug/l	4-Bromophenyl phenyl ether	ND		ug/l		2.0	0.73
Hexachlorocyclopentadiene ND ug/l 20 7.8 Isophorone ND ug/l 5.0 0.60 Nitrobenzene ND ug/l 2.0 0.75 NDPA/DPA ND ug/l 2.0 0.64 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.70 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.70 Bityl benzyl phthalate ND ug/l 5.0 0.70 Bityl benzyl phthalate ND ug/l 5.0 1.3 Di-n-butylphthalate ND ug/l 5.0 0.69 Di-n-octylphthalate ND ug/l 5.0 0.63 Dimethyl phthalate ND ug/l 5.0 0.63 Dimethyl phthalate ND ug/l 5.0 0.63 Solphenyl ND ug/l 5.0 0.63 Solphenyl ND ug/l 5.0 1.1 Solphenyl ND ug/l 5.0	Bis(2-chloroisopropyl)ether	ND		ug/l		2.0	0.70
Isophorone ND ug/l 5.0 0.60 Nitrobenzene ND ug/l 2.0 0.75 NDPA/DPA ND ug/l 2.0 0.64 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.70 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.70 Bityl benzyl phthalate ND ug/l 5.0 0.69 Di-n-butylphthalate ND ug/l 5.0 0.63 Di-n-octylphthalate ND ug/l 5.0 0.63 Dimethyl phthalate ND ug/l 5.0 0.63 Dimethyl phthalate ND ug/l 5.0 0.63 Dimethyl phthalate ND ug/l 5.0 0.63 Sibhenyl ND ug/l 5.0 0.63 Sibhenyl ND ug/l 5.0 1.1 Sibhenyl ND ug/l 5.0 1.2 4-Chloroaniline ND ug/l 5.0 1.	Bis(2-chloroethoxy)methane	ND		ug/l		5.0	0.63
ND ug/l 2.0 0.75 NDPA/DPA ND ug/l 2.0 0.64 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.70 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.70 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 0.91 Butyl benzyl phthalate ND ug/l 5.0 1.3 Di-n-butylphthalate ND ug/l 5.0 0.69 Di-n-octylphthalate ND ug/l 5.0 0.63 Dimethyl phthalate ND ug/l 5.0 0.63 Dimethyl phthalate ND ug/l 5.0 0.63 Dimethyl phthalate ND ug/l 5.0 0.63 2-Nitroaniline ND ug/l 5.0 0.63 2-Nitroaniline ND ug/l 5.0 1.1 3-Nitroaniline ND ug/l 5.0 1.3 Dibenzofuran ND ug/l 5.0 1.	Hexachlorocyclopentadiene	ND		ug/l		20	7.8
NDPA/DPA ND ug/l 2.0 0.64 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.70 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 0.91 Butyl benzyl phthalate ND ug/l 5.0 1.3 Di-n-butylphthalate ND ug/l 5.0 0.69 Di-n-octylphthalate ND ug/l 5.0 1.1 Diethyl phthalate ND ug/l 5.0 0.63 Dimethyl phthalate ND ug/l 5.0 0.63 Biphenyl ND ug/l 5.0 0.63 2-Nitroaniline ND ug/l 5.0 0.63 2-Nitroaniline ND ug/l 5.0 0.63 2-Nitroaniline ND ug/l 5.0 1.1 3-Nitroaniline ND ug/l 5.0 1.2 4-Nitroaniline ND ug/l 5.0 1.3 Dibenzofuran ND ug/l 1.0	Isophorone	ND		ug/l		5.0	0.60
n-Nitrosodi-n-propylamine ND ug/l 5.0 0.70 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 0.91 Butyl benzyl phthalate ND ug/l 5.0 1.3 Di-n-butylphthalate ND ug/l 5.0 0.69 Di-n-butylphthalate ND ug/l 5.0 0.69 Di-n-octylphthalate ND ug/l 5.0 0.63 Dien-octylphthalate ND ug/l 5.0 0.63 Dienhyl phthalate ND ug/l 5.0 0.63 Dimethyl phthalate ND ug/l 5.0 0.63 Biphenyl ND ug/l 5.0 0.63 2-Nitroaniline ND ug/l 5.0 0.63 2-Nitroaniline ND ug/l 5.0 1.1 3-Nitroaniline ND ug/l 5.0 1.2 4-Nitroaniline ND ug/l 5.0 1.3 Dibenzofuran ND ug/l <td< td=""><td>Nitrobenzene</td><td>ND</td><td></td><td>ug/l</td><td></td><td>2.0</td><td>0.75</td></td<>	Nitrobenzene	ND		ug/l		2.0	0.75
Bis(2-ethylhexyl)phthalate ND ug/l 3.0 0.91 Butyl benzyl phthalate ND ug/l 5.0 1.3 Di-n-butylphthalate ND ug/l 5.0 0.69 Di-n-octylphthalate ND ug/l 5.0 1.1 Diethyl phthalate ND ug/l 5.0 0.63 Dimethyl phthalate ND ug/l 5.0 0.63 Dimethyl phthalate ND ug/l 5.0 0.63 Biphenyl ND ug/l 5.0 0.63 4-Chloroaniline ND ug/l 5.0 0.63 2-Nitroaniline ND ug/l 5.0 0.63 3-Nitroaniline ND ug/l 5.0 1.1 3-Nitroaniline ND ug/l 5.0 1.2 4-Nitroaniline ND ug/l 5.0 1.3 Dibenzofuran ND ug/l 5.0 0.66 1,2,4,5-Tetrachlorobenzene ND ug/l 1.0<	NDPA/DPA	ND		ug/l		2.0	0.64
Butyl benzyl phthalate ND ug/l 5.0 1.3 Di-n-butylphthalate ND ug/l 5.0 0.69 Di-n-octylphthalate ND ug/l 5.0 1.1 Diethyl phthalate ND ug/l 5.0 0.63 Dimethyl phthalate ND ug/l 5.0 0.63 Dimethyl phthalate ND ug/l 5.0 0.65 Biphenyl ND ug/l 5.0 0.63 4-Chloroaniline ND ug/l 5.0 0.63 2-Nitroaniline ND ug/l 5.0 0.63 3-Nitroaniline ND ug/l 5.0 1.1 3-Nitroaniline ND ug/l 5.0 1.2 4-Nitroaniline ND ug/l 5.0 1.3 Dibenzofuran ND ug/l 2.0 0.66 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.67 Acetophenone ND ug/l 5.0 <t< td=""><td>n-Nitrosodi-n-propylamine</td><td>ND</td><td></td><td>ug/l</td><td></td><td>5.0</td><td>0.70</td></t<>	n-Nitrosodi-n-propylamine	ND		ug/l		5.0	0.70
Di-n-butylphthalate ND ug/l 5.0 0.69 Di-n-octylphthalate ND ug/l 5.0 1.1 Diethyl phthalate ND ug/l 5.0 0.63 Dimethyl phthalate ND ug/l 5.0 0.63 Dimethyl phthalate ND ug/l 5.0 0.65 Biphenyl ND ug/l 2.0 0.76 4-Chloroaniline ND ug/l 5.0 0.63 2-Nitroaniline ND ug/l 5.0 0.63 3-Nitroaniline ND ug/l 5.0 1.1 4-Nitroaniline ND ug/l 5.0 1.2 4-Nitroaniline ND ug/l 5.0 1.3 Dibenzofuran ND ug/l 2.0 0.66 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.67 Acetophenone ND ug/l 5.0 0.85 2,4,6-Trichlorophenol ND ug/l 5.0 <t< td=""><td>Bis(2-ethylhexyl)phthalate</td><td>ND</td><td></td><td>ug/l</td><td></td><td>3.0</td><td>0.91</td></t<>	Bis(2-ethylhexyl)phthalate	ND		ug/l		3.0	0.91
Di-n-octylphthalate ND ug/l 5.0 1.1 Diethyl phthalate ND ug/l 5.0 0.63 Dimethyl phthalate ND ug/l 5.0 0.63 Dimethyl phthalate ND ug/l 5.0 0.65 Biphenyl ND ug/l 2.0 0.76 4-Chloroaniline ND ug/l 5.0 0.63 2-Nitroaniline ND ug/l 5.0 0.63 3-Nitroaniline ND ug/l 5.0 1.1 4-Nitroaniline ND ug/l 5.0 1.2 4-Nitroaniline ND ug/l 5.0 1.3 Dibenzofuran ND ug/l 2.0 0.66 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.67 Acetophenone ND ug/l 5.0 0.85 2,4,6-Trichlorophenol ND ug/l 5.0 0.68	Butyl benzyl phthalate	ND		ug/l		5.0	1.3
Diethyl phthalate ND ug/l 5.0 0.63 Dimethyl phthalate ND ug/l 5.0 0.65 Biphenyl ND ug/l 2.0 0.76 4-Chloroaniline ND ug/l 5.0 0.63 2-Nitroaniline ND ug/l 5.0 0.63 3-Nitroaniline ND ug/l 5.0 1.1 3-Nitroaniline ND ug/l 5.0 1.2 4-Nitroaniline ND ug/l 5.0 1.3 Dibenzofuran ND ug/l 5.0 0.66 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.67 Acetophenone ND ug/l 5.0 0.85 2,4,6-Trichlorophenol ND ug/l 5.0 0.68	Di-n-butylphthalate	ND		ug/l		5.0	0.69
Dimethyl phthalate ND ug/l 5.0 0.65 Biphenyl ND ug/l 2.0 0.76 4-Chloroaniline ND ug/l 5.0 0.63 2-Nitroaniline ND ug/l 5.0 1.1 3-Nitroaniline ND ug/l 5.0 1.2 4-Nitroaniline ND ug/l 5.0 1.3 Dibenzofuran ND ug/l 2.0 0.66 1,2,4,5-Tetrachlorobenzene ND ug/l 2.0 0.66 2,4,6-Trichlorophenol ND ug/l 5.0 0.85	Di-n-octylphthalate	ND		ug/l		5.0	1.1
Biphenyl ND ug/l 2.0 0.76 4-Chloroaniline ND ug/l 5.0 0.63 2-Nitroaniline ND ug/l 5.0 1.1 3-Nitroaniline ND ug/l 5.0 1.2 4-Nitroaniline ND ug/l 5.0 1.3 Dibenzofuran ND ug/l 2.0 0.66 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.67 Acetophenone ND ug/l 5.0 0.85 2,4,6-Trichlorophenol ND ug/l 5.0 0.68	Diethyl phthalate	ND		ug/l		5.0	0.63
A-Chloroaniline ND ug/l 5.0 0.63 2-Nitroaniline ND ug/l 5.0 1.1 3-Nitroaniline ND ug/l 5.0 1.2 4-Nitroaniline ND ug/l 5.0 1.2 4-Nitroaniline ND ug/l 5.0 1.3 Dibenzofuran ND ug/l 2.0 0.66 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.67 Acetophenone ND ug/l 5.0 0.85 2,4,6-Trichlorophenol ND ug/l 5.0 0.68	Dimethyl phthalate	ND		ug/l		5.0	0.65
2-Nitroaniline ND ug/l 5.0 1.1 3-Nitroaniline ND ug/l 5.0 1.2 4-Nitroaniline ND ug/l 5.0 1.3 Dibenzofuran ND ug/l 2.0 0.66 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.67 Acetophenone ND ug/l 5.0 0.85 2,4,6-Trichlorophenol ND ug/l 5.0 0.68	Biphenyl	ND		ug/l		2.0	0.76
3-Nitroaniline ND ug/l 5.0 1.2 4-Nitroaniline ND ug/l 5.0 1.3 Dibenzofuran ND ug/l 2.0 0.66 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.67 Acetophenone ND ug/l 5.0 0.85 2,4,6-Trichlorophenol ND ug/l 5.0 0.68	4-Chloroaniline	ND		ug/l		5.0	0.63
4-Nitroaniline ND ug/l 5.0 1.3 Dibenzofuran ND ug/l 2.0 0.66 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.67 Acetophenone ND ug/l 5.0 0.85 2,4,6-Trichlorophenol ND ug/l 5.0 0.68	2-Nitroaniline	ND		ug/l		5.0	1.1
Dibenzofuran ND ug/l 2.0 0.66 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.67 Acetophenone ND ug/l 5.0 0.85 2,4,6-Trichlorophenol ND ug/l 5.0 0.68	3-Nitroaniline	ND		ug/l		5.0	1.2
1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.67 Acetophenone ND ug/l 5.0 0.85 2,4,6-Trichlorophenol ND ug/l 5.0 0.68	4-Nitroaniline	ND		ug/l		5.0	1.3
Acetophenone ND ug/l 5.0 0.85 2,4,6-Trichlorophenol ND ug/l 5.0 0.68	Dibenzofuran	ND		ug/l		2.0	0.66
2,4,6-Trichlorophenol ND ug/l 5.0 0.68	1,2,4,5-Tetrachlorobenzene	ND		ug/l		10	0.67
	Acetophenone	ND		ug/l		5.0	0.85
p-Chloro-m-cresol ND ug/l 2.0 0.62	2,4,6-Trichlorophenol	ND		ug/l		5.0	0.68
	p-Chloro-m-cresol	ND		ug/l		2.0	0.62

11/07/17 23:54

Project Name:	89 LASALLE BCP SITE	Lab Number:	L1740169		
Project Number:	1787491	Report Date:	11/13/17		
Mothed Plank Analysia					

Method Blank Analysis Batch Quality Control

	/08/17 15:02	Extraction Method: Extraction Date:	EPA 3510C 11/07/17 23:5
--	--------------	--	----------------------------

arameter	Result	Qualifier	Units		RL	MDL
emivolatile Organics by GC/MS	S - Westboroug	h Lab for s	ample(s):	01	Batch:	WG1060674-1
2-Chlorophenol	ND		ug/l		2.0	0.63
2,4-Dichlorophenol	ND		ug/l		5.0	0.77
2,4-Dimethylphenol	ND		ug/l		5.0	1.6
2-Nitrophenol	ND		ug/l		10	1.5
4-Nitrophenol	ND		ug/l		10	1.8
2,4-Dinitrophenol	ND		ug/l		20	5.5
4,6-Dinitro-o-cresol	ND		ug/l		10	2.1
Phenol	ND		ug/l		5.0	1.9
3-Methylphenol/4-Methylphenol	ND		ug/l		5.0	1.1
2,4,5-Trichlorophenol	ND		ug/l		5.0	0.72
Carbazole	ND		ug/l		2.0	0.63
Atrazine	ND		ug/l		10	1.8
Benzaldehyde	ND		ug/l		5.0	1.1
Caprolactam	ND		ug/l		10	3.6
2,3,4,6-Tetrachlorophenol	ND		ug/l		5.0	0.93

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	63	21-120
Phenol-d6	47	10-120
Nitrobenzene-d5	85	23-120
2-Fluorobiphenyl	81	15-120
2,4,6-Tribromophenol	91	10-120
4-Terphenyl-d14	88	41-149

Project Name:	89 LASALLE BCP SITE	Lab Number:	L1740169
Project Number:	1787491	Report Date:	11/13/17
	Matter Direct	A	

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8270D-SIM	Extraction Method:	EPA 3510C
Analytical Date:	11/09/17 12:43	Extraction Date:	11/07/17 23:57
Analyst:	CB		

arameter	Result	Qualifier	Units	RL	MDL
emivolatile Organics by GC	/MS-SIM - Westb	orough Lab	o for sample	e(s): 01	Batch: WG1060675-
Acenaphthene	ND		ug/l	0.10	0.04
2-Chloronaphthalene	ND		ug/l	0.20	0.04
Fluoranthene	ND		ug/l	0.10	0.04
Hexachlorobutadiene	ND		ug/l	0.50	0.04
Naphthalene	0.05	J	ug/l	0.10	0.04
Benzo(a)anthracene	ND		ug/l	0.10	0.02
Benzo(a)pyrene	ND		ug/l	0.10	0.04
Benzo(b)fluoranthene	ND		ug/l	0.10	0.02
Benzo(k)fluoranthene	ND		ug/l	0.10	0.04
Chrysene	ND		ug/l	0.10	0.04
Acenaphthylene	ND		ug/l	0.10	0.04
Anthracene	ND		ug/l	0.10	0.04
Benzo(ghi)perylene	ND		ug/l	0.10	0.04
Fluorene	ND		ug/l	0.10	0.04
Phenanthrene	ND		ug/l	0.10	0.02
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.04
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.04
Pyrene	ND		ug/l	0.10	0.04
2-Methylnaphthalene	ND		ug/l	0.10	0.05
Pentachlorophenol	ND		ug/l	0.80	0.22
Hexachlorobenzene	ND		ug/l	0.80	0.03
Hexachloroethane	ND		ug/l	0.80	0.03

Project Name:	89 LASALLE BCP SITE	Lab Number:	L1740169
Project Number:	1787491	Report Date:	11/13/17
	Method Blank Analysis Batch Quality Control		
Analytical Method: Analytical Date: Analyst:	1,8270D-SIM 11/09/17 12:43 CB	Extraction Method Extraction Date:	: EPA 3510C 11/07/17 23:57

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS-S	IM - Westb	orough Lab	for samp	le(s): 01	Batch: WG1060675-1	

Surrogate	%Recovery G	Acceptance Qualifier Criteria
2-Fluorophenol	53	21-120
Phenol-d6	43	10-120
Nitrobenzene-d5	83	23-120
2-Fluorobiphenyl	79	15-120
2,4,6-Tribromophenol	81	10-120
4-Terphenyl-d14	93	41-149

Lab Control Sample Analysis

Batch Quality Control

Project Number: 1787491

Lab Number: L1740169 Report Date: 11/13/17

LCSD LCS RPD %Recovery %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1060674-2 WG1060674-3 Bis(2-chloroethyl)ether 79 85 40-140 30 7 86 3,3'-Dichlorobenzidine 77 40-140 11 30 2.4-Dinitrotoluene 94 97 48-143 3 30 2.6-Dinitrotoluene 95 40-140 30 91 4 4-Chlorophenyl phenyl ether 87 40-140 30 86 1 4-Bromophenyl phenyl ether 85 88 40-140 3 30 Bis(2-chloroisopropyl)ether 84 90 40-140 7 30 Bis(2-chloroethoxy)methane 85 88 40-140 3 30 Hexachlorocyclopentadiene 55 56 40-140 2 30 Isophorone 86 90 40-140 5 30 Nitrobenzene 83 88 40-140 6 30 NDPA/DPA 86 88 40-140 2 30 n-Nitrosodi-n-propylamine 90 95 29-132 5 30 40-140 30 Bis(2-ethylhexyl)phthalate 107 109 2 Butyl benzyl phthalate 105 108 40-140 3 30 Di-n-butylphthalate 97 100 40-140 3 30 Di-n-octylphthalate 106 109 40-140 3 30 Diethyl phthalate 92 40-140 30 90 2 Dimethyl phthalate 40-140 86 91 6 30 Biphenyl 81 83 40-140 2 30 4-Chloroaniline 51 58 40-140 13 30 97 2-Nitroaniline 95 52-143 2 30 3-Nitroaniline 70 74 25-145 6 30

Project Number: 1787491 Lab Number: L1740169 Report Date: 11/13/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westbo	rough Lab Associa	ated sample(s):	01 Batch:	WG1060674-2	2 WG1060674-3	3		
4-Nitroaniline	80		85		51-143	6		30
Dibenzofuran	83		84		40-140	1		30
1,2,4,5-Tetrachlorobenzene	78		81		2-134	4		30
Acetophenone	92		93		39-129	1		30
2,4,6-Trichlorophenol	88		93		30-130	6		30
p-Chloro-m-cresol	91		94		23-97	3		30
2-Chlorophenol	84		89		27-123	6		30
2,4-Dichlorophenol	90		93		30-130	3		30
2,4-Dimethylphenol	90		92		30-130	2		30
2-Nitrophenol	89		92		30-130	3		30
4-Nitrophenol	62		65		10-80	5		30
2,4-Dinitrophenol	76		79		20-130	4		30
4,6-Dinitro-o-cresol	84		84		20-164	0		30
Phenol	49		53		12-110	8		30
3-Methylphenol/4-Methylphenol	78		81		30-130	4		30
2,4,5-Trichlorophenol	93		95		30-130	2		30
Carbazole	89		92		55-144	3		30
Atrazine	97		99		40-140	2		30
Benzaldehyde	84		90		40-140	7		30
Caprolactam	30		33		10-130	10		30
2,3,4,6-Tetrachlorophenol	89		89		40-140	0		30

Project Name: 89 LASALLE BCP SITE

Project Number: 1787491

 Lab Number:
 L1740169

 Report Date:
 11/13/17

 LCS
 LCS
 %Recovery
 RPD

 Parameter
 %Recovery
 Qual
 %Recovery
 Qual
 Limits
 RPD
 Qual
 Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1060674-2 WG1060674-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	65	71	21-120
Phenol-d6	50	52	10-120
Nitrobenzene-d5	85	92	23-120
2-Fluorobiphenyl	81	85	15-120
2,4,6-Tribromophenol	96	100	10-120
4-Terphenyl-d14	86	92	41-149

Project Number: 1787491 Lab Number: L1740169 Report Date: 11/13/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	, RPD	RPD Qual Limits
Semivolatile Organics by GC/MS-SIM - Wes	tborough Lab As	sociated samp	le(s): 01 Bat	ch: WG1060675-2 WG	1060675-3	
Acenaphthene	86		81	40-140	6	40
2-Chloronaphthalene	86		81	40-140	6	40
Fluoranthene	95		88	40-140	8	40
Hexachlorobutadiene	74		71	40-140	4	40
Naphthalene	83		80	40-140	4	40
Benzo(a)anthracene	93		83	40-140	11	40
Benzo(a)pyrene	96		86	40-140	11	40
Benzo(b)fluoranthene	100		90	40-140	11	40
Benzo(k)fluoranthene	103		93	40-140	10	40
Chrysene	91		83	40-140	9	40
Acenaphthylene	92		86	40-140	7	40
Anthracene	95		87	40-140	9	40
Benzo(ghi)perylene	104		94	40-140	10	40
Fluorene	89		83	40-140	7	40
Phenanthrene	89		82	40-140	8	40
Dibenzo(a,h)anthracene	106		96	40-140	10	40
Indeno(1,2,3-cd)pyrene	104		94	40-140	10	40
Pyrene	93		85	40-140	9	40
2-Methylnaphthalene	82		78	40-140	5	40
Pentachlorophenol	81		74	40-140	9	40
Hexachlorobenzene	92		86	40-140	7	40
Hexachloroethane	72		70	40-140	3	40

Project Name: 89 LASALLE BCP SITE

Project Number: 1787491

 Lab Number:
 L1740169

 Report Date:
 11/13/17

 LCS
 LCSD
 %Recovery
 %Recovery
 RPD

 Parameter
 %Recovery
 Qual
 Limits
 RPD
 Qual
 Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1060675-2 WG1060675-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	59	57	21-120
Phenol-d6	48	46	10-120
Nitrobenzene-d5	88	85	23-120
2-Fluorobiphenyl	83	78	15-120
2,4,6-Tribromophenol	94	85	10-120
4-Terphenyl-d14	96	87	41-149

METALS

Serial_No:11131718:33

Project Name:	89 LASALLE BCP SITE	Lab Number:	L1740169
Project Number:	1787491	Report Date:	11/13/17
	SAMPLE RESULTS		
Lab ID:	L1740169-01	Date Collected:	11/02/17 11:05
Client ID:	MH-1 STORMWATER	Date Received:	11/02/17
Sample Location: Matrix:	89 LASALLE AVE., BUFFALO, NY Water	Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissolved Metals - N	Mansfield	Lab									
Aluminum, Dissolved	0.0590		mg/l	0.0100	0.00327	1	11/06/17 13:50	11/07/17 11:59	EPA 3005A	1,6020A	AM
Antimony, Dissolved	0.00054	J	mg/l	0.00400	0.00042	1	11/06/17 13:50	11/07/17 11:59	EPA 3005A	1,6020A	AM
Arsenic, Dissolved	0.00033	J	mg/l	0.00050	0.00016	1	11/06/17 13:50	11/07/17 11:59	EPA 3005A	1,6020A	AM
Barium, Dissolved	0.00542		mg/l	0.00050	0.00017	1	11/06/17 13:50	11/07/17 11:59	EPA 3005A	1,6020A	AM
Beryllium, Dissolved	ND		mg/l	0.00050	0.00010	1	11/06/17 13:50	11/07/17 11:59	EPA 3005A	1,6020A	AM
Cadmium, Dissolved	ND		mg/l	0.00020	0.00005	1	11/06/17 13:50	11/07/17 11:59	EPA 3005A	1,6020A	AM
Calcium, Dissolved	16.1		mg/l	0.100	0.0394	1	11/06/17 13:50	11/07/17 11:59	EPA 3005A	1,6020A	AM
Chromium, Dissolved	0.00128		mg/l	0.00100	0.00017	1	11/06/17 13:50	11/07/17 11:59	EPA 3005A	1,6020A	AM
Cobalt, Dissolved	ND		mg/l	0.00050	0.00016	1	11/06/17 13:50	11/07/17 11:59	EPA 3005A	1,6020A	AM
Copper, Dissolved	0.00102		mg/l	0.00100	0.00038	1	11/06/17 13:50	11/07/17 11:59	EPA 3005A	1,6020A	AM
Iron, Dissolved	ND		mg/l	0.0500	0.0191	1	11/06/17 13:50	11/07/17 11:59	EPA 3005A	1,6020A	AM
Lead, Dissolved	ND		mg/l	0.00100	0.00034	1	11/06/17 13:50	11/07/17 11:59	EPA 3005A	1,6020A	AM
Magnesium, Dissolved	1.11		mg/l	0.0700	0.0242	1	11/06/17 13:50	11/07/17 11:59	EPA 3005A	1,6020A	AM
Manganese, Dissolved	0.00291		mg/l	0.00100	0.00044	1	11/06/17 13:50	11/07/17 11:59	EPA 3005A	1,6020A	AM
Mercury, Dissolved	ND		mg/l	0.00040	0.00013	1	11/06/17 16:01	11/08/17 16:15	EPA 7470A	1,7470A	MG
Nickel, Dissolved	ND		mg/l	0.00200	0.00055	1	11/06/17 13:50	11/07/17 11:59	EPA 3005A	1,6020A	AM
Potassium, Dissolved	1.89		mg/l	0.100	0.0309	1	11/06/17 13:50	11/07/17 11:59	EPA 3005A	1,6020A	AM
Selenium, Dissolved	ND		mg/l	0.00500	0.00173	1	11/06/17 13:50	11/07/17 11:59	EPA 3005A	1,6020A	AM
Silver, Dissolved	ND		mg/l	0.00040	0.00016	1	11/06/17 13:50	11/07/17 11:59	EPA 3005A	1,6020A	AM
Sodium, Dissolved	1.19		mg/l	0.100	0.0293	1	11/06/17 13:50	11/07/17 11:59	EPA 3005A	1,6020A	AM
Thallium, Dissolved	ND		mg/l	0.00050	0.00014	1	11/06/17 13:50	11/07/17 11:59	EPA 3005A	1,6020A	AM
Vanadium, Dissolved	ND		mg/l	0.00500	0.00157	1	11/06/17 13:50	11/07/17 11:59	EPA 3005A	1,6020A	AM
Zinc, Dissolved	ND		mg/l	0.01000	0.00341	1	11/06/17 13:50	11/07/17 11:59	EPA 3005A	1,6020A	AM

Project Name:89 LASALLE BCP SITEProject Number:1787491

 Lab Number:
 L1740169

 Report Date:
 11/13/17

Method Blank Analysis Batch Quality Control

Parameter	Result Q	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals - Ma	nsfield Lab fo	or sample	e(s): 01	Batch: V	VG10600)39-1				
Aluminum, Dissolved	ND		mg/l	0.0100	0.00327	1	11/06/17 13:50	11/07/17 11:44	1,6020A	AM
Antimony, Dissolved	ND		mg/l	0.00400	0.00042	1	11/06/17 13:50	11/07/17 11:44	1,6020A	AM
Arsenic, Dissolved	ND		mg/l	0.00050	0.00016	1	11/06/17 13:50	11/07/17 11:44	1,6020A	AM
Barium, Dissolved	ND		mg/l	0.00050	0.00017	1	11/06/17 13:50	11/07/17 11:44	1,6020A	AM
Beryllium, Dissolved	ND		mg/l	0.00050	0.00010	1	11/06/17 13:50	11/07/17 11:44	1,6020A	AM
Cadmium, Dissolved	ND		mg/l	0.00020	0.00005	1	11/06/17 13:50	11/07/17 11:44	1,6020A	AM
Calcium, Dissolved	ND		mg/l	0.100	0.0394	1	11/06/17 13:50	11/07/17 11:44	1,6020A	AM
Chromium, Dissolved	ND		mg/l	0.00100	0.00017	1	11/06/17 13:50	11/07/17 11:44	1,6020A	AM
Cobalt, Dissolved	ND		mg/l	0.00050	0.00016	1	11/06/17 13:50	11/07/17 11:44	1,6020A	AM
Copper, Dissolved	ND		mg/l	0.00100	0.00038	1	11/06/17 13:50	11/07/17 11:44	1,6020A	AM
Iron, Dissolved	ND		mg/l	0.0500	0.0191	1	11/06/17 13:50	11/07/17 11:44	1,6020A	AM
Lead, Dissolved	ND		mg/l	0.00100	0.00034	1	11/06/17 13:50	11/07/17 11:44	1,6020A	AM
Magnesium, Dissolved	ND		mg/l	0.0700	0.0242	1	11/06/17 13:50	11/07/17 11:44	1,6020A	AM
Manganese, Dissolved	ND		mg/l	0.00100	0.00044	1	11/06/17 13:50	11/07/17 11:44	1,6020A	AM
Nickel, Dissolved	ND		mg/l	0.00200	0.00055	1	11/06/17 13:50	11/07/17 11:44	1,6020A	AM
Potassium, Dissolved	0.0978	J	mg/l	0.100	0.0309	1	11/06/17 13:50	11/07/17 11:44	1,6020A	AM
Selenium, Dissolved	ND		mg/l	0.00500	0.00173	1	11/06/17 13:50	11/07/17 11:44	1,6020A	AM
Silver, Dissolved	ND		mg/l	0.00040	0.00016	1	11/06/17 13:50	11/07/17 11:44	1,6020A	AM
Sodium, Dissolved	0.0402	J	mg/l	0.100	0.0293	1	11/06/17 13:50	11/07/17 11:44	1,6020A	AM
Thallium, Dissolved	ND		mg/l	0.00050	0.00014	1	11/06/17 13:50	11/07/17 11:44	1,6020A	AM
Vanadium, Dissolved	ND		mg/l	0.00500	0.00157	1	11/06/17 13:50	11/07/17 11:44	1,6020A	AM
Zinc, Dissolved	ND		mg/l	0.01000	0.00341	1	11/06/17 13:50	11/07/17 11:44	1,6020A	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result (Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Dissolved Metals - N	lansfield Lab	for sample	e(s): 01	Batch: V	VG1060	086-1				
Mercury, Dissolved	ND		mg/l	0.00020	0.0000	6 1	11/06/17 16:01	11/08/17 16:12	2 1,7470A	MG

Project Name: 89 LASALLE BCP SITE

 Lab Number:
 L1740169

 Report Date:
 11/13/17

Project Number: 1787491

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 7470A

Project Name: 89 LASALLE BCP SITE

Project Number: 1787491

Lab Number: L1740169 Report Date: 11/13/17

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Dissolved Metals - Mansfield Lab Associated sa	mple(s): 01 Ba	atch: WG1060039-2				
Aluminum, Dissolved	111	-	80-120	-		
Antimony, Dissolved	101	-	80-120	-		
Arsenic, Dissolved	108	-	80-120	-		
Barium, Dissolved	104	-	80-120	-		
Beryllium, Dissolved	99	-	80-120	-		
Cadmium, Dissolved	113	-	80-120	-		
Calcium, Dissolved	111	-	80-120	-		
Chromium, Dissolved	102	-	80-120	-		
Cobalt, Dissolved	100	-	80-120	-		
Copper, Dissolved	99	-	80-120	-		
Iron, Dissolved	106	-	80-120	-		
Lead, Dissolved	108	-	80-120	-		
Magnesium, Dissolved	112	-	80-120	-		
Manganese, Dissolved	104	-	80-120	-		
Nickel, Dissolved	101	-	80-120	-		
Potassium, Dissolved	107	-	80-120	-		
Selenium, Dissolved	115	-	80-120	-		
Silver, Dissolved	103	-	80-120	-		
Sodium, Dissolved	107	-	80-120	-		
Thallium, Dissolved	104	-	80-120	-		
Vanadium, Dissolved	103	-	80-120	-		

Project Name: 89 LASALLE BCP SITE

Project Number: 1787491

 Lab Number:
 L1740169

 Report Date:
 11/13/17

Parameter	LCS %Recover	LCSD y %Recovery	%Recovery Limits	RPD	RPD Limits
Dissolved Metals - Mansfield Lab	Associated sample(s): 01	Batch: WG1060039-2			
Zinc, Dissolved	108		80-120	-	
Dissolved Metals - Mansfield Lab	Associated sample(s): 01	Batch: WG1060086-2			
Mercury, Dissolved	88	-	80-120	-	

Matrix Spike Analysis

Batch Quality Control

Project Name: 89 LASALLE BCP SITE

Project Number: 1787491

Lab Number: L1740169 Report Date: 11/13/17

MS RPD Native MS MS MSD MSD Recovery Sample Limits Added Found %Recovery Found Qual %Recovery Qual Limits **RPD** Qual Parameter Dissolved Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1060039-3 QC Sample: L1740169-01 Client ID: MH-1 STORMWATER Aluminum, Dissolved 0.0590 2 2.36 115 75-125 20 --Antimony, Dissolved 0.00054J 0.5 0.5249 105 75-125 20 ---Arsenic. Dissolved 0.00033J 0.12 0.1230 102 75-125 20 _ --Barium. Dissolved 0.00542 2 2.075 103 75-125 20 -_ _ Beryllium, Dissolved ND 0.05 0.05052 101 -75-125 20 --Cadmium, Dissolved ND 0.051 0.05753 113 75-125 20 ---Calcium, Dissolved 16.1 10 26.3 102 75-125 20 ---Chromium, Dissolved 0.00128 0.2 0.2060 102 75-125 20 _ --Cobalt, Dissolved ND 0.5 0.4974 99 75-125 20 -_ -Copper, Dissolved 0.00102 0.25 0.2543 101 -75-125 20 --Iron, Dissolved ND 1 1.01 101 75-125 20 -_ -Lead, Dissolved ND 0.51 0.5501 108 -75-125 20 _ -Magnesium, Dissolved 12.4 113 1.11 10 --75-125 _ 20 Manganese, Dissolved 0.00291 0.5 0.5198 103 -75-125 20 --Nickel, Dissolved ND 0.5 0.4996 100 -75-125 20 --10 13.0 Potassium, Dissolved 1.89 111 -75-125 _ 20 _ Selenium, Dissolved 0.12 0.122 102 75-125 ND -_ 20 _ Silver, Dissolved ND 0.05 0.05174 103 --75-125 -20 Sodium, Dissolved 10 11.7 20 1.19 105 -75-125 _ -Thallium, Dissolved ND 0.12 0.1242 104 -75-125 _ 20 _ Vanadium, Dissolved 0.5 0.5249 105 75-125 20 ND _ --

Matrix Spike Analysis

Project Name:	89 LASALLE BCP SITE	Batch Quality Control	Lab Number:	L1740169
Project Number:	1787491		Report Date:	11/13/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Dissolved Metals - Mansfield	d Lab Associated	l sample(s): (01 QC B	atch ID: WG1060039-	3 QC Sa	mple: L1740169-01	Client ID: I	MH-1 STOP	RMWATER
Zinc, Dissolved	ND	0.5	0.5382	108	-	-	75-125	-	20
Dissolved Metals - Mansfield	d Lab Associated	I sample(s): ()1 QC B	atch ID: WG1060086-	3 QC Sa	mple: L1740169-01	Client ID: I	MH-1 STOP	RMWATER
Mercury, Dissolved	ND	0.01	0.00984	98	-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: 89 LASALLE BCP SITE

Project Number: 1787491

Lab Number:

 Lab Number:
 L1740169

 Report Date:
 11/13/17

arameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD Limits
ssolved Metals - Mansfield Lab Associated sample(s):	01 QC Batch ID:	WG1060039-4 QC Sample:	L1740169-01	Client ID:	MH-1 STORMWATER
Aluminum, Dissolved	0.0590	0.0602	mg/l	2	20
Antimony, Dissolved	0.00054J	0.00141J	mg/l	NC	20
Arsenic, Dissolved	0.00033J	0.00031J	mg/l	NC	20
Barium, Dissolved	0.00542	0.00487	mg/l	11	20
Beryllium, Dissolved	ND	ND	mg/l	NC	20
Cadmium, Dissolved	ND	ND	mg/l	NC	20
Calcium, Dissolved	16.1	15.8	mg/l	2	20
Chromium, Dissolved	0.00128	0.00131	mg/l	3	20
Cobalt, Dissolved	ND	ND	mg/l	NC	20
Copper, Dissolved	0.00102	0.00105	mg/l	3	20
Iron, Dissolved	ND	ND	mg/l	NC	20
Lead, Dissolved	ND	ND	mg/l	NC	20
Magnesium, Dissolved	1.11	1.11	mg/l	0	20
Manganese, Dissolved	0.00291	0.00248	mg/l	16	20
Nickel, Dissolved	ND	ND	mg/l	NC	20
Potassium, Dissolved	1.89	1.85	mg/l	2	20
Selenium, Dissolved	ND	ND	mg/l	NC	20
Silver, Dissolved	ND	ND	mg/l	NC	20
Sodium, Dissolved	1.19	1.17	mg/l	2	20

Lab Duplicate Analysis Batch Quality Control

Project Name:89 LASALLE BCP SITEProject Number:1787491

 Lab Number:
 L1740169

 Report Date:
 11/13/17

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Dissolved Metals - Mansfield Lab Associated sample(s): (01 QC Batch ID:	WG1060039-4 QC Sample:	L1740169-01	Client ID	: MH-1 STORMWATER
Thallium, Dissolved	ND	ND	mg/l	NC	20
Vanadium, Dissolved	ND	ND	mg/l	NC	20
Zinc, Dissolved	ND	ND	mg/l	NC	20
Dissolved Metals - Mansfield Lab Associated sample(s): (01 QC Batch ID:	WG1060086-4 QC Sample:	L1740169-01	Client ID:	: MH-1 STORMWATER
Mercury, Dissolved	ND	ND	mg/l	NC	20

Project Name: 89 LASALLE BCP SITE Project Number: 1787491

Serial_No:11131718:33 *Lab Number:* L1740169 *Report Date:* 11/13/17

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal				
A	Absent				

Container Information

Container Information		Initial	Final	Temp			Frozen			
	Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
	L1740169-01A	Plastic 250ml HNO3 preserved	А	<2	<2	5.1	Y	Absent		HOLD-METAL(180)
	L1740169-01B	Amber 1000ml unpreserved	А	7	7	5.1	Y	Absent		NYTCL-8270(7),NYTCL-8270-SIM(7)
	L1740169-01C	Amber 1000ml unpreserved	А	7	7	5.1	Y	Absent		NYTCL-8270(7),NYTCL-8270-SIM(7)
	L1740169-01D	Plastic 250ml unpreserved split	А	7	7	5.1	Y	Absent		-
	L1740169-01X	Plastic 250ml HNO3 preserved Filtrates	А	NA		5.1	Y	Absent		CU-6020S(180),K-6020S(180),SE- 6020S(180),V-6020S(180),MN-6020S(180),BE-

CU-6020S(180),K-6020S(180),SE-6020S(180),V-6020S(180),MN-6020S(180),BE-6020S(180),CO-6020S(180),MG-6020S(180),ZN-6020S(180),CA-6020S(180),CR-6020S(180),FE-6020S(180),BA-6020S(180),NA-6020S(180),AG-6020S(180),PB-6020S(180),TL-6020S(180),AG-6020S(180),AS-6020S(180),SB-6020S(180),AL-6020S(180),CD-6020S(180),HG-S(28)

Project Name: 89 LASALLE BCP SITE

Project Number: 1787491

Lab Number: L1740169

Report Date: 11/13/17

GLOSSARY

Acronyms

EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EPA	- Environmental Protection Agency.
LCS	 Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	 Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum. Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after

adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH. Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- **B** The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: DU Report with 'J' Qualifiers

Project Name: 89 LASALLE BCP SITE

Project Number: 1787491

Lab Number:	L1740169
Report Date:	11/13/17

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte which was detected above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Project Name: 89 LASALLE BCP SITE Project Number: 1787491
 Lab Number:
 L1740169

 Report Date:
 11/13/17

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270D: <u>NPW</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. EPA 300: <u>DW</u>: Bromide EPA 6860: <u>NPW and SCM</u>: Perchlorate EPA 9010: <u>NPW and SCM</u>: Amenable Cyanide Distillation EPA 9012B: <u>NPW</u>: Total Cyanide EPA 9050A: <u>NPW</u>: Specific Conductance SM3500: <u>NPW</u>: Ferrous Iron SM4500: <u>NPW</u>: Amenable Cyanide, Dissolved Oxygen; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3. SM5310C: <u>DW</u>: Dissolved Organic Carbon

SM 2540D: TSS EPA 3005A NPW EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 628: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 EAX: 508-898-102	320 Forbes Blvd TEL: 508-822-9300	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 Co Project Information Project Name: 3 7	Nay Soper Ave, Suite 1	BCP SIT	Page 1 o	1		Date Rec in Lab crables ASP-A	975	13) XASP	and the second	ALPHA Job # L1140169 Billing Information
FAX: 506-898-9193	FAX: 508-822-3288	Project Location: 89	casacite.	AVE, BO	Amo.	N		EQuIS (1	File)	EQu	IS (4 File)	PO#
Client Information		Project # 1/8/	491					Other				
Client: GULDER		(Use Project name as P			,		Regu	latory Req	uirement			Disposal Site Information
Address: 2430 M	V. Focking 10	Project Manager:	THICK 1	YANTIN	·		+	NY TOGS AWQ Stand	ards		art 375 P-51	Please identify below location of applicable disposal facilities.
Phone: 716-20	4-5880	Turn-Around Time	Sector Sector	2613 E 112	1000	The second s	IН	NY Restrict		C Other		Disposal Facility:
Fax:	1	Standar	X	Due Date	a+		h	NY Unrestri				
	adgelder. com			# of Days				NYC Sewer	S	,		Other:
	been previously analyz		2 hand				ANA	LYSIS				Sample Filtration
Please specify Metal	ic requirements/comr Is or TAL.	nents:					1- 8270	the Hay BOR				Done Lab to do Preservation Lab to do (Please Specify below)
ALPHA Lab ID	S	ample ID	-	ection	Sample	Sampler's	NYTC	Tophe				
(Lab Use Only)			Date	Time	Matrix	Initials	<			_		Sample Specific Comments
40169-01	MH-1 STOR	MUMER	11/02/17	11:05	WMER	PTM	X	×		_		PLS FILTER THE METHES
	HHT JES	urriewj	11/02/11	-						+		
Preservative Code:	Container Code	Westboro: Certification N	lo: MA935							+		
A = None B = HCl C = HNO ₃ D = H ₂ SO ₄ E = NaOH F = MeOH 3 = NaHSO ₄ H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH D = Other	P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup C = Cube O = Other E = Encore D = BOD Bottle	Mansfield: Certification M	No: MA015	Date 11/02/17 11/02/17		tainer Type Preservative	Beceiv	red By: AAC		192/17	/Time 15:50 01:20	Please print clearly, legibly and completely. Samples ca not be logged in and turnaround time clock will no start until any ambiguities an resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS.
orm No: 01-25 HC (rev.	30-Sept-2013)	<u> </u>			,	ſ		0	-			(See reverse side.)

Serial_No:11131718:33

ANALYTICAL REPORT

Lab Number:	L1813173
Client:	Golder Associates Inc.
Chern.	
	2430 North Forest Rd.
	Suite 100
	Getzville, NY 14068
ATTN:	Patrick Martin
Phone:	(716) 204-5880
Project Name:	89 LASALLE AVE. BCP SITE
Project Number:	1787491
Report Date:	04/23/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:04231812:24

Project Name:89 LASALLE AVE. BCP SITEProject Number:1787491

 Lab Number:
 L1813173

 Report Date:
 04/23/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1813173-01	MH-1 STORMWATER	WATER	89 LASALLE AVE., BUFFALO, NY	04/16/18 13:45	04/16/18
L1813173-02	MH-1 SEDIMENT	SOIL	89 LASALLE AVE., BUFFALO, NY	04/16/18 13:50	04/16/18

Project Name:89 LASALLE AVE. BCP SITEProject Number:1787491

 Lab Number:
 L1813173

 Report Date:
 04/23/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: 89 LASALLE AVE. BCP SITE Project Number: 1787491
 Lab Number:
 L1813173

 Report Date:
 04/23/18

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Semivolatile Organics by SIM

L1813173-02: The sample has elevated detection limits due to the dilution required by the sample matrix.

Total Metals

L1813173-02: The sample has elevated detection limits for all elements, with the exception of mercury, due to the dilution required by matrix interferences encountered during analysis.

The WG1107593-3 MS recoveries, performed on L1813173-01, are outside the acceptance criteria for aluminum (172%) and thallium (49%). A post digestion spike was performed and yielded unacceptable recoveries for aluminum (438%) and thallium (50%). This has been attributed to sample matrix. The WG1107593-3 MS recoveries for calcium (64%) and iron (40%), performed on L1813173-01, do not apply because the sample concentrations are greater than four times the spike amounts added.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Custen Walker Cristin Walker

Title: Technical Director/Representative

Date: 04/23/18

ORGANICS

SEMIVOLATILES

		Serial_No	0:04231812:24
Project Name:	89 LASALLE AVE. BCP SITE	Lab Number:	L1813173
Project Number:	1787491	Report Date:	04/23/18
	SAMPLE RESULTS		
Lab ID:	L1813173-01	Date Collected:	04/16/18 13:45
Client ID:	MH-1 STORMWATER	Date Received:	04/16/18
Sample Location:	89 LASALLE AVE., BUFFALO, NY	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Water	Extraction Method	I: EPA 3510C
Analytical Method:	1,8270D	Extraction Date:	04/18/18 04:36
Analytical Date:	04/19/18 02:27		
Analyst:	RC		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS - Westborough Lab									
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.67	1			
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.4	1			
2,4-Dinitrotoluene	ND		ug/l	5.0	0.84	1			
2,6-Dinitrotoluene	ND		ug/l	5.0	1.1	1			
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.62	1			
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.73	1			
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.70	1			
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.63	1			
Hexachlorocyclopentadiene	ND		ug/l	20	7.8	1			
Isophorone	ND		ug/l	5.0	0.60	1			
Nitrobenzene	ND		ug/l	2.0	0.75	1			
NDPA/DPA	ND		ug/l	2.0	0.64	1			
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.70	1			
Bis(2-ethylhexyl)phthalate	5.4		ug/l	3.0	0.91	1			
Butyl benzyl phthalate	ND		ug/l	5.0	1.3	1			
Di-n-butylphthalate	ND		ug/l	5.0	0.69	1			
Di-n-octylphthalate	ND		ug/l	5.0	1.1	1			
Diethyl phthalate	ND		ug/l	5.0	0.63	1			
Dimethyl phthalate	ND		ug/l	5.0	0.65	1			
Biphenyl	ND		ug/l	2.0	0.76	1			
4-Chloroaniline	ND		ug/l	5.0	0.63	1			
2-Nitroaniline	ND		ug/l	5.0	1.1	1			
3-Nitroaniline	ND		ug/l	5.0	1.2	1			
4-Nitroaniline	ND		ug/l	5.0	1.3	1			
Dibenzofuran	ND		ug/l	2.0	0.66	1			
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.67	1			
Acetophenone	ND		ug/l	5.0	0.85	1			
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.68	1			

		Serial_No:04231812:24				
Project Name:	89 LASALLE AVE. BCP SITE	Lab Number:	L1813173			
Project Number:	1787491	Report Date:	04/23/18			
	SAMPLE RESULTS					
Lab ID:	L1813173-01	Date Collected:	04/16/18 13:45			
Client ID:	MH-1 STORMWATER	Date Received:	04/16/18			
Sample Location:	89 LASALLE AVE., BUFFALO, NY	Field Prep:	Not Specified			

Sample Depth:

Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Westborough Lab						
ND			2.0	0.62	1	
		-				
					1	
ND		ug/l	5.0	0.77	1	
ND		ug/l	5.0	1.6	1	
ND		ug/l	10	1.5	1	
ND		ug/l	10	1.8	1	
ND		ug/l	20	5.5	1	
ND		ug/l	10	2.1	1	
ND		ug/l	5.0	1.9	1	
ND		ug/l	5.0	1.1	1	
ND		ug/l	5.0	0.72	1	
ND		ug/l	2.0	0.63	1	
ND		ug/l	10	1.8	1	
ND		ug/l	5.0	1.1	1	
ND		ug/l	10	3.6	1	
ND		ug/l	5.0	0.93	1	
	ND ND	ND ND	ND ug/l ND	ND ug/l 2.0 ND ug/l 2.0 ND ug/l 5.0 ND ug/l 5.0 ND ug/l 10 ND ug/l 10 ND ug/l 10 ND ug/l 10 ND ug/l 20 ND ug/l 10 ND ug/l 5.0 ND ug/l 5.0 ND ug/l 5.0 ND ug/l 5.0 ND ug/l 10 ND ug/l 10 ND ug/l 5.0 ND ug/l 10 ND ug/l 10 ND ug/l 5.0 ND ug/l 5.0 ND ug/l 10 ND ug/l 5.0 ND ug/l 5.0 ND ug/l 10 <td>ND ug/l 2.0 0.62 ND ug/l 2.0 0.63 ND ug/l 5.0 0.77 ND ug/l 5.0 1.6 ND ug/l 10 1.5 ND ug/l 10 1.5 ND ug/l 10 1.8 ND ug/l 20 5.5 ND ug/l 10 1.1 ND ug/l 5.0 1.1 ND ug/l 5.0 1.1 ND ug/l 5.0 1.1 ND ug/l 5.0 1.1 ND ug/l 10 1.8 ND ug/l 5.0 1.1 ND ug/l 5.0 1.1 ND ug/l 10 1.8 ND ug/l 10 1.8 ND ug/l 10 1.8 ND ug/l 5.0 1.1</td>	ND ug/l 2.0 0.62 ND ug/l 2.0 0.63 ND ug/l 5.0 0.77 ND ug/l 5.0 1.6 ND ug/l 10 1.5 ND ug/l 10 1.5 ND ug/l 10 1.8 ND ug/l 20 5.5 ND ug/l 10 1.1 ND ug/l 5.0 1.1 ND ug/l 5.0 1.1 ND ug/l 5.0 1.1 ND ug/l 5.0 1.1 ND ug/l 10 1.8 ND ug/l 5.0 1.1 ND ug/l 5.0 1.1 ND ug/l 10 1.8 ND ug/l 10 1.8 ND ug/l 10 1.8 ND ug/l 5.0 1.1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	37	21-120
Phenol-d6	40	10-120
Nitrobenzene-d5	79	23-120
2-Fluorobiphenyl	81	15-120
2,4,6-Tribromophenol	101	10-120
4-Terphenyl-d14	91	41-149

		Serial_No	0:04231812:24
Project Name:	89 LASALLE AVE. BCP SITE	Lab Number:	L1813173
Project Number:	1787491	Report Date:	04/23/18
	SAMPLE RESULTS		
Lab ID:	L1813173-01	Date Collected:	04/16/18 13:45
Client ID:	MH-1 STORMWATER	Date Received:	04/16/18
Sample Location:	89 LASALLE AVE., BUFFALO, NY	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Water	Extraction Method	d: EPA 3510C
Analytical Method:	1,8270D-SIM	Extraction Date:	04/18/18 04:34
Analytical Date:	04/19/18 19:15		
Analyst:	DV		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS	Semivolatile Organics by GC/MS-SIM - Westborough Lab							
Acenaphthene	ND			0.10	0.04	1		
· · · · · · · · · · · · · · · · · · ·			ug/l					
2-Chloronaphthalene	ND		ug/l	0.20	0.04	1		
Fluoranthene	0.12		ug/l	0.10	0.04	1		
Hexachlorobutadiene	ND		ug/l	0.50	0.04	1		
Naphthalene	0.05	J	ug/l	0.10	0.04	1		
Benzo(a)anthracene	0.04	J	ug/l	0.10	0.02	1		
Benzo(a)pyrene	0.04	J	ug/l	0.10	0.04	1		
Benzo(b)fluoranthene	0.09	J	ug/l	0.10	0.02	1		
Benzo(k)fluoranthene	ND		ug/l	0.10	0.04	1		
Chrysene	0.08	J	ug/l	0.10	0.04	1		
Acenaphthylene	ND		ug/l	0.10	0.04	1		
Anthracene	ND		ug/l	0.10	0.04	1		
Benzo(ghi)perylene	ND		ug/l	0.10	0.04	1		
Fluorene	ND		ug/l	0.10	0.04	1		
Phenanthrene	0.06	J	ug/l	0.10	0.02	1		
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.04	1		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.04	1		
Pyrene	0.10		ug/l	0.10	0.04	1		
2-Methylnaphthalene	ND		ug/l	0.10	0.05	1		
Pentachlorophenol	ND		ug/l	0.80	0.22	1		
Hexachlorobenzene	ND		ug/l	0.80	0.03	1		
Hexachloroethane	ND		ug/l	0.80	0.03	1		

		Serial_N	0:04231812:24
Project Name:	89 LASALLE AVE. BCP SITE	Lab Number:	L1813173
Project Number:	1787491	Report Date:	04/23/18
	SAMPLE RESULTS		
Lab ID:	L1813173-01	Date Collected:	04/16/18 13:45
Client ID:	MH-1 STORMWATER	Date Received:	04/16/18
Sample Location:	89 LASALLE AVE., BUFFALO, NY	Field Prep:	Not Specified
Sample Depth:			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Somivolatile Organics by CC/MS SIM West	borough Lak	2				

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	37	21-120
Phenol-d6	29	10-120
Nitrobenzene-d5	58	23-120
2-Fluorobiphenyl	71	15-120
2,4,6-Tribromophenol	62	10-120
4-Terphenyl-d14	70	41-149

		Serial_No	0:04231812:24
Project Name:	89 LASALLE AVE. BCP SITE	Lab Number:	L1813173
Project Number:	1787491	Report Date:	04/23/18
	SAMPLE RESULTS		
Lab ID:	L1813173-02	Date Collected:	04/16/18 13:50
Client ID:	MH-1 SEDIMENT	Date Received:	04/16/18
Sample Location:	89 LASALLE AVE., BUFFALO, NY	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil	Extraction Method	d: EPA 3546
Analytical Method:	1,8270D	Extraction Date:	04/17/18 10:41
Analytical Date:	04/18/18 15:39		
Analyst:	ALS		
Percent Solids:	76%		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Westborough Lab							
Bis(2-chloroethyl)ether	ND		ug/kg	190	29.	1	
3,3'-Dichlorobenzidine	ND		ug/kg	220	57.	1	
2,4-Dinitrotoluene	ND		ug/kg	220	43.	1	
2,6-Dinitrotoluene	ND		ug/kg	220	37.	1	
4-Chlorophenyl phenyl ether	ND		ug/kg	220	23.	1	
4-Bromophenyl phenyl ether	ND		ug/kg	220	33.	1	
Bis(2-chloroisopropyl)ether	ND		ug/kg	260	37.	1	
Bis(2-chloroethoxy)methane	ND		ug/kg	230	22.	1	
Hexachlorocyclopentadiene	ND		ug/kg	610	190	1	
Isophorone	ND		ug/kg	190	28.	1	
Nitrobenzene	ND		ug/kg	190	32.	1	
NDPA/DPA	ND		ug/kg	170	24.	1	
n-Nitrosodi-n-propylamine	ND		ug/kg	220	33.	1	
Bis(2-ethylhexyl)phthalate	79	J	ug/kg	220	74.	1	
Butyl benzyl phthalate	ND		ug/kg	220	54.	1	
Di-n-butylphthalate	ND		ug/kg	220	41.	1	
Di-n-octylphthalate	ND		ug/kg	220	73.	1	
Diethyl phthalate	ND		ug/kg	220	20.	1	
Dimethyl phthalate	ND		ug/kg	220	45.	1	
Biphenyl	ND		ug/kg	490	50.	1	
4-Chloroaniline	ND		ug/kg	220	39.	1	
2-Nitroaniline	ND		ug/kg	220	41.	1	
3-Nitroaniline	ND		ug/kg	220	40.	1	
4-Nitroaniline	ND		ug/kg	220	89.	1	
Dibenzofuran	ND		ug/kg	220	20.	1	
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	220	22.	1	
Acetophenone	ND		ug/kg	220	27.	1	
2,4,6-Trichlorophenol	ND		ug/kg	130	41.	1	

		Serial_No	0:04231812:24
Project Name:	89 LASALLE AVE. BCP SITE	Lab Number:	L1813173
Project Number:	1787491	Report Date:	04/23/18
	SAMPLE RESULTS		
Lab ID:	L1813173-02	Date Collected:	04/16/18 13:50
Client ID:	MH-1 SEDIMENT	Date Received:	04/16/18
Sample Location:	89 LASALLE AVE., BUFFALO, NY	Field Prep:	Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Westborough Lab							
p-Chloro-m-cresol	ND		ug/kg	220	32.	1	
2-Chlorophenol	ND		ug/kg	220	25.	1	
2,4-Dichlorophenol	ND		ug/kg	190	34.	1	
2,4-Dimethylphenol	ND		ug/kg	220	71.	1	
2-Nitrophenol	ND		ug/kg	460	81.	1	
4-Nitrophenol	ND		ug/kg	300	88.	1	
2,4-Dinitrophenol	ND		ug/kg	1000	100	1	
4,6-Dinitro-o-cresol	ND		ug/kg	560	100	1	
Phenol	ND		ug/kg	220	32.	1	
3-Methylphenol/4-Methylphenol	ND		ug/kg	310	34.	1	
2,4,5-Trichlorophenol	ND		ug/kg	220	41.	1	
Carbazole	ND		ug/kg	220	21.	1	
Atrazine	ND		ug/kg	170	75.	1	
Benzaldehyde	ND		ug/kg	280	58.	1	
Caprolactam	ND		ug/kg	220	65.	1	
2,3,4,6-Tetrachlorophenol	ND		ug/kg	220	43.	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	64	25-120
Phenol-d6	69	10-120
Nitrobenzene-d5	75	23-120
2-Fluorobiphenyl	64	30-120
2,4,6-Tribromophenol	66	10-136
4-Terphenyl-d14	45	18-120

		Serial_No:04231812:24
Project Name:	89 LASALLE AVE. BCP SITE	Lab Number: L1813173
Project Number:	1787491	Report Date: 04/23/18
	SAMPLE RESULTS	
Lab ID:	L1813173-02 D	Date Collected: 04/16/18 13:50
Client ID:	MH-1 SEDIMENT	Date Received: 04/16/18
Sample Location:	89 LASALLE AVE., BUFFALO, NY	Field Prep: Not Specified
Sample Depth:		
Matrix:	Soil	Extraction Method: EPA 3546
Analytical Method:	1,8270D-SIM	Extraction Date: 04/18/18 11:15
Analytical Date:	04/19/18 23:00	
Analyst:	DV	
Percent Solids:	76%	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-SIM - Westborough Lab							
Acenaphthene	10	J	ug/kg	44	9.2	5	
2-Chloronaphthalene	ND		ug/kg	44	5.7	5	
Fluoranthene	230		ug/kg	44	3.0	5	
Hexachlorobutadiene	ND		ug/kg	44	6.1	5	
Naphthalene	10	J	ug/kg	44	7.8	5	
Benzo(a)anthracene	100		ug/kg	44	4.1	5	
Benzo(a)pyrene	110		ug/kg	44	5.2	5	
Benzo(b)fluoranthene	180		ug/kg	44	4.1	5	
Benzo(k)fluoranthene	60		ug/kg	44	3.9	5	
Chrysene	150		ug/kg	44	3.3	5	
Acenaphthylene	7.2	J	ug/kg	44	5.4	5	
Anthracene	28	J	ug/kg	44	3.5	5	
Benzo(ghi)perylene	56		ug/kg	44	3.7	5	
Fluorene	14	J	ug/kg	44	5.2	5	
Phenanthrene	120		ug/kg	44	3.7	5	
Dibenzo(a,h)anthracene	16	J	ug/kg	44	4.4	5	
Indeno(1,2,3-cd)pyrene	56		ug/kg	44	5.2	5	
Pyrene	210		ug/kg	44	3.0	5	
2-Methylnaphthalene	ND		ug/kg	44	12.	5	
Pentachlorophenol	ND		ug/kg	170	19.	5	
Hexachlorobenzene	ND		ug/kg	44	4.6	5	
Hexachloroethane	ND		ug/kg	44	8.1	5	

		Serial_N	0:04231812:24
Project Name:	89 LASALLE AVE. BCP SITE	Lab Number:	L1813173
Project Number:	1787491	Report Date:	04/23/18
	SAMPLE RI	ESULTS	
Lab ID:	L1813173-02 D	Date Collected:	04/16/18 13:50
Client ID:	MH-1 SEDIMENT	Date Received:	04/16/18
Sample Location:	89 LASALLE AVE., BUFFALO, NY	Field Prep:	Not Specified
Sample Depth:			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - Wes	thorough Lat	n				

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	62	25-120
Phenol-d6	72	10-120
Nitrobenzene-d5	80	23-120
2-Fluorobiphenyl	60	30-120
2,4,6-Tribromophenol	49	0-136
4-Terphenyl-d14	43	18-120

Project Name:	89 LASALLE AVE. BCP SITE	Lab Number:	L1813173
Project Number:	1787491	Report Date:	04/23/18
	Method Blank Analysis		

Batch Quality Control

Analytical Method:	1,8270D	Extraction Method:	EPA 3546
Analytical Date:	04/18/18 08:01	Extraction Date:	04/17/18 10:41
Analyst:	SZ		

rameter	Result	Qualifier Units	R	L	MDL
mivolatile Organics by GC/MS	- Westborough	Lab for sample(s):	02	Batch:	WG1107149-1
Bis(2-chloroethyl)ether	ND	ug/kg	15	50	22.
3,3'-Dichlorobenzidine	ND	ug/kg	16	60	44.
2,4-Dinitrotoluene	ND	ug/kg	16	60	33.
2,6-Dinitrotoluene	ND	ug/kg	16	60	28.
4-Chlorophenyl phenyl ether	ND	ug/kg	16	60	18.
4-Bromophenyl phenyl ether	ND	ug/kg	16	60	25.
Bis(2-chloroisopropyl)ether	ND	ug/kg	20	00	28.
Bis(2-chloroethoxy)methane	ND	ug/kg	18	80	16.
Hexachlorocyclopentadiene	ND	ug/kg	47	0	150
Isophorone	ND	ug/kg	15	60	21.
Nitrobenzene	ND	ug/kg	15	60	24.
NDPA/DPA	ND	ug/kg	13	80	19.
n-Nitrosodi-n-propylamine	ND	ug/kg	16	60	25.
Bis(2-ethylhexyl)phthalate	ND	ug/kg	16	60	57.
Butyl benzyl phthalate	ND	ug/kg	16	60	42.
Di-n-butylphthalate	ND	ug/kg	16	60	31.
Di-n-octylphthalate	ND	ug/kg	16	60	56.
Diethyl phthalate	ND	ug/kg	16	60	15.
Dimethyl phthalate	ND	ug/kg	16	60	34.
Biphenyl	ND	ug/kg	38	80	38.
4-Chloroaniline	ND	ug/kg	16	60	30.
2-Nitroaniline	ND	ug/kg	16	60	32.
3-Nitroaniline	ND	ug/kg	16	60	31.
4-Nitroaniline	ND	ug/kg	16	60	68.
Dibenzofuran	ND	ug/kg	16	60	16.
1,2,4,5-Tetrachlorobenzene	ND	ug/kg	16	60	17.
Acetophenone	ND	ug/kg	16	60	20.
2,4,6-Trichlorophenol	ND	ug/kg	9	9	31.
p-Chloro-m-cresol	ND	ug/kg	16	60	24.

Project Name:	89 LASALLE AVE. BCP SITE	Lab Number:	L1813173
Project Number:	1787491	Report Date:	04/23/18
	Method Blank Analysis		

Batch Quality Control

Analytical Method:	1,8270D	Extraction Method:	EPA 3546
Analytical Date:	04/18/18 08:01	Extraction Date:	04/17/18 10:41
Analyst:	SZ		

arameter	Result	Qualifier Units	RL	MDL
emivolatile Organics by GC/MS	S - Westboroug	h Lab for sample(s):	02 Batch:	WG1107149-1
2-Chlorophenol	ND	ug/kg	160	19.
2,4-Dichlorophenol	ND	ug/kg	150	26.
2,4-Dimethylphenol	ND	ug/kg	160	54.
2-Nitrophenol	ND	ug/kg	360	62.
4-Nitrophenol	ND	ug/kg	230	67.
2,4-Dinitrophenol	ND	ug/kg	790	77.
4,6-Dinitro-o-cresol	ND	ug/kg	430	79.
Phenol	ND	ug/kg	160	25.
3-Methylphenol/4-Methylphenol	ND	ug/kg	240	26.
2,4,5-Trichlorophenol	ND	ug/kg	160	32.
Carbazole	ND	ug/kg	160	16.
Atrazine	ND	ug/kg	130	58.
Benzaldehyde	ND	ug/kg	220	44.
Caprolactam	ND	ug/kg	160	50.
2,3,4,6-Tetrachlorophenol	ND	ug/kg	160	33.

Tentatively Identified Compounds

No Tentatively Identified Compounds

ND

ug/kg

Project Name:	89 LASALLE AVE. BCP SITE	Lab Number:	L1813173
Project Number:	1787491	Report Date:	04/23/18
	Method Blank Analysis Batch Quality Control		

Analytical Method:	1,8270D	Extraction Method:	EPA 3546
Analytical Date:	04/18/18 08:01	Extraction Date:	04/17/18 10:41
Analyst:	SZ		

Parameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS -	Westborou	gh Lab for s	ample(s):	02	Batch:	WG1107149-1	

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	79	25-120
Phenol-d6	85	10-120
Nitrobenzene-d5	85	23-120
2-Fluorobiphenyl	85	30-120
2,4,6-Tribromophenol	103	10-136
4-Terphenyl-d14	104	18-120

Project Name:	89 LASALLE AVE. BCP SITE	Lab Number:	L1813173
Project Number:	1787491	Report Date:	04/23/18
	Method Blank Analysis		

Analytical Method:	1,8270D	
Analytical Date:	04/18/18 20:29	
Analyst:	RC	

Extraction Method: EPA 3510C Extraction Date: 04/18/18 04:36

arameter	Result	Qualifier	Units		RL	MDL
emivolatile Organics by GC/MS	- Westborough	h Lab for s	ample(s):	01	Batch:	WG1107401-1
Bis(2-chloroethyl)ether	ND		ug/l		2.0	0.67
3,3'-Dichlorobenzidine	ND		ug/l		5.0	1.4
2,4-Dinitrotoluene	ND		ug/l		5.0	0.84
2,6-Dinitrotoluene	ND		ug/l		5.0	1.1
4-Chlorophenyl phenyl ether	ND		ug/l		2.0	0.62
4-Bromophenyl phenyl ether	ND		ug/l		2.0	0.73
Bis(2-chloroisopropyl)ether	ND		ug/l		2.0	0.70
Bis(2-chloroethoxy)methane	ND		ug/l		5.0	0.63
Hexachlorocyclopentadiene	ND		ug/l		20	7.8
Isophorone	ND		ug/l		5.0	0.60
Nitrobenzene	ND		ug/l		2.0	0.75
NDPA/DPA	ND		ug/l		2.0	0.64
n-Nitrosodi-n-propylamine	ND		ug/l		5.0	0.70
Bis(2-ethylhexyl)phthalate	2.3	J	ug/l		3.0	0.91
Butyl benzyl phthalate	ND		ug/l		5.0	1.3
Di-n-butylphthalate	ND		ug/l		5.0	0.69
Di-n-octylphthalate	ND		ug/l		5.0	1.1
Diethyl phthalate	ND		ug/l		5.0	0.63
Dimethyl phthalate	ND		ug/l		5.0	0.65
Biphenyl	ND		ug/l		2.0	0.76
4-Chloroaniline	ND		ug/l		5.0	0.63
2-Nitroaniline	ND		ug/l		5.0	1.1
3-Nitroaniline	ND		ug/l		5.0	1.2
4-Nitroaniline	ND		ug/l		5.0	1.3
Dibenzofuran	ND		ug/l		2.0	0.66
1,2,4,5-Tetrachlorobenzene	ND		ug/l		10	0.67
Acetophenone	ND		ug/l		5.0	0.85
2,4,6-Trichlorophenol	ND		ug/l		5.0	0.68
p-Chloro-m-cresol	ND		ug/l		2.0	0.62

Project Name:	89 LASALLE AVE. BCP SITE	Lab Number:	L1813173
Project Number:	1787491	Report Date:	04/23/18
	Method Blank Analysis		

Analytical Method:	1,8270D	Extraction Method:	EPA 3510C
Analytical Date:	04/18/18 20:29	Extraction Date:	04/18/18 04:36
Analyst:	RC		

arameter	Result	Qualifier L	Inits		RL	MDL
emivolatile Organics by GC/MS	S - Westboroug	h Lab for sam	nple(s):	01	Batch:	WG1107401-1
2-Chlorophenol	ND		ug/l		2.0	0.63
2,4-Dichlorophenol	ND		ug/l		5.0	0.77
2,4-Dimethylphenol	ND		ug/l		5.0	1.6
2-Nitrophenol	ND		ug/l		10	1.5
4-Nitrophenol	ND		ug/l		10	1.8
2,4-Dinitrophenol	ND		ug/l		20	5.5
4,6-Dinitro-o-cresol	ND		ug/l		10	2.1
Phenol	ND		ug/l		5.0	1.9
3-Methylphenol/4-Methylphenol	ND		ug/l		5.0	1.1
2,4,5-Trichlorophenol	ND		ug/l		5.0	0.72
Carbazole	ND		ug/l		2.0	0.63
Atrazine	ND		ug/l		10	1.8
Benzaldehyde	ND		ug/l		5.0	1.1
Caprolactam	ND		ug/l		10	3.6
2,3,4,6-Tetrachlorophenol	ND		ug/l		5.0	0.93

Tentatively Identified Compounds

No Tentatively Identified Compounds

ND

ug/l

Project Name:	89 LASALLE AVE. BCP SITE	Lab Number:	L1813173
Project Number:	1787491	Report Date:	04/23/18
	Method Blank Analysis Batch Quality Control		

Analytical Method:	1,8270D	Extraction Method:	EPA 3510C
Analytical Date:	04/18/18 20:29	Extraction Date:	04/18/18 04:36
Analyst:	RC		

Parameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS -	Westborough	n Lab for s	ample(s):	01	Batch:	WG1107401-1	

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	60	21-120
Phenol-d6	43	10-120
Nitrobenzene-d5	87	23-120
2-Fluorobiphenyl	90	15-120
2,4,6-Tribromophenol	108	10-120
4-Terphenyl-d14	104	41-149

Project Name:	89 LASALLE AVE. BCP SITE	Lab Number:	L1813173
Project Number:	1787491	Report Date:	04/23/18
	Method Blank Analysis		

Analytical Method:	1,8270D-SIM	Extraction Method:	EPA 3510C
Analytical Date:	04/19/18 16:37	Extraction Date:	04/18/18 04:34
Analyst:	DV		

arameter	Result	Qualifier Units	RL	MDL
emivolatile Organics by GC/	MS-SIM - Westb	prough Lab for sampl	e(s): 01	Batch: WG1107402-1
Acenaphthene	ND	ug/l	0.10	0.04
2-Chloronaphthalene	ND	ug/l	0.20	0.04
Fluoranthene	ND	ug/l	0.10	0.04
Hexachlorobutadiene	ND	ug/l	0.50	0.04
Naphthalene	ND	ug/l	0.10	0.04
Benzo(a)anthracene	ND	ug/l	0.10	0.02
Benzo(a)pyrene	ND	ug/l	0.10	0.04
Benzo(b)fluoranthene	ND	ug/l	0.10	0.02
Benzo(k)fluoranthene	ND	ug/l	0.10	0.04
Chrysene	ND	ug/l	0.10	0.04
Acenaphthylene	ND	ug/l	0.10	0.04
Anthracene	ND	ug/l	0.10	0.04
Benzo(ghi)perylene	ND	ug/l	0.10	0.04
Fluorene	ND	ug/l	0.10	0.04
Phenanthrene	ND	ug/l	0.10	0.02
Dibenzo(a,h)anthracene	ND	ug/l	0.10	0.04
Indeno(1,2,3-cd)pyrene	ND	ug/l	0.10	0.04
Pyrene	ND	ug/l	0.10	0.04
2-Methylnaphthalene	ND	ug/l	0.10	0.05
Pentachlorophenol	ND	ug/l	0.80	0.22
Hexachlorobenzene	ND	ug/l	0.80	0.03
Hexachloroethane	ND	ug/l	0.80	0.03

Project Name:	89 LASALLE AVE. BCP SITE	Lab Number:	L1813173
Project Number:	1787491	Report Date:	04/23/18
	Method Blank Analysis Batch Quality Control		
Analytical Method:	1,8270D-SIM	Extraction Method	: EPA 3510C

Analytical Method:	1,8270D-SIM	Extraction Method:	EPA 3510C
Analytical Date:	04/19/18 16:37	Extraction Date:	04/18/18 04:34
Analyst:	DV		

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS-S	IM - Westl	oorough Lab	for samp	e(s): 01	Batch: WG1107402-1	

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	40	21-120
Phenol-d6	32	10-120
Nitrobenzene-d5	65	23-120
2-Fluorobiphenyl	77	15-120
2,4,6-Tribromophenol	63	10-120
4-Terphenyl-d14	80	41-149

Project Name:	89 LASALLE AVE. BCP SITE	Lab Number:	L1813173
Project Number:	1787491	Report Date:	04/23/18
	Method Blank Analysis		

Analytical Method:	1,8270D-SIM	Extraction Method:	EPA 3546
Analytical Date:	04/19/18 21:35	Extraction Date:	04/18/18 11:15
Analyst:	DV		

arameter	Result	Qualifier	Units	RL	MDL
emivolatile Organics by GC	/MS-SIM - Westb	orough Lab	for sample(s	s): 02	Batch: WG1107531-1
Acenaphthene	ND		ug/kg	6.6	1.4
2-Chloronaphthalene	ND		ug/kg	6.6	0.86
Fluoranthene	ND		ug/kg	6.6	0.46
Hexachlorobutadiene	ND		ug/kg	6.6	0.92
Naphthalene	2.1	J	ug/kg	6.6	1.2
Benzo(a)anthracene	ND		ug/kg	6.6	0.62
Benzo(a)pyrene	ND		ug/kg	6.6	0.79
Benzo(b)fluoranthene	ND		ug/kg	6.6	0.62
Benzo(k)fluoranthene	ND		ug/kg	6.6	0.59
Chrysene	ND		ug/kg	6.6	0.49
Acenaphthylene	ND		ug/kg	6.6	0.82
Anthracene	ND		ug/kg	6.6	0.53
Benzo(ghi)perylene	ND		ug/kg	6.6	0.56
Fluorene	ND		ug/kg	6.6	0.79
Phenanthrene	ND		ug/kg	6.6	0.56
Dibenzo(a,h)anthracene	ND		ug/kg	6.6	0.66
Indeno(1,2,3-cd)pyrene	ND		ug/kg	6.6	0.79
Pyrene	ND		ug/kg	6.6	0.46
2-Methylnaphthalene	ND		ug/kg	6.6	1.9
Pentachlorophenol	ND		ug/kg	26	2.9
Hexachlorobenzene	ND		ug/kg	6.6	0.69
Hexachloroethane	ND		ug/kg	6.6	1.2

Project Name:	89 LASALLE AVE. BCP SITE	Lab Number:	L1813173
Project Number:	1787491	Report Date:	04/23/18
	Method Blank Analysis Batch Quality Control		
Analytical Method:	1,8270D-SIM	Extraction Method	l: EPA 3546

Analytical Method:	1,8270D-SIM	Extraction Method:	EPA 3546
Analytical Date:	04/19/18 21:35	Extraction Date:	04/18/18 11:15
Analyst:	DV		

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS-S	IM - West	oorough Lab	for sampl	e(s): 02	Batch: WG1107531-1	

Surrogate	%Recovery 0	Acceptance Qualifier Criteria
2-Fluorophenol	58	25-120
Phenol-d6	64	10-120
Nitrobenzene-d5	80	23-120
2-Fluorobiphenyl	71	30-120
2,4,6-Tribromophenol	51	0-136
4-Terphenyl-d14	87	18-120

Project Number: 1787491

Lab Number: L1813173

Parameter	LCS %Recovery	Qual	LCS %Reco		%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westb	orough Lab Associ	ated sample(s):	02 B	atch: WG1107149	9-2 WG1107149-	3			
Bis(2-chloroethyl)ether	76		90		40-140	17		50	
3,3'-Dichlorobenzidine	69		73		40-140	6		50	
2,4-Dinitrotoluene	107		108	8	40-132	1		50	
2,6-Dinitrotoluene	107		106	6	40-140	1		50	
4-Chlorophenyl phenyl ether	86		87		40-140	1		50	
4-Bromophenyl phenyl ether	92		94		40-140	2		50	
Bis(2-chloroisopropyl)ether	83		80	l i i i i i i i i i i i i i i i i i i i	40-140	4		50	
Bis(2-chloroethoxy)methane	84		86		40-117	2		50	
Hexachlorocyclopentadiene	82		87		40-140	6		50	
Isophorone	88		91		40-140	3		50	
Nitrobenzene	88		89	l l	40-140	1		50	
NDPA/DPA	89		91		36-157	2		50	
n-Nitrosodi-n-propylamine	90		90	l l	32-121	0		50	
Bis(2-ethylhexyl)phthalate	105		104	4	40-140	1		50	
Butyl benzyl phthalate	105		102	2	40-140	3		50	
Di-n-butylphthalate	108		108	8	40-140	0		50	
Di-n-octylphthalate	107		107	7	40-140	0		50	
Diethyl phthalate	93		93		40-140	0		50	
Dimethyl phthalate	91		95		40-140	4		50	
Biphenyl	89		90		54-104	1		50	
4-Chloroaniline	48		63		40-140	27		50	
2-Nitroaniline	107		107	7	47-134	0		50	
3-Nitroaniline	64		69		26-129	8		50	

Project Number: 1787491

Lab Number: L1813173

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - West	borough Lab Associa	ated sample(s):	02 Batch:	WG1107149-2	2 WG1107149-3	3		
4-Nitroaniline	89		90		41-125	1		50
Dibenzofuran	84		84		40-140	0		50
1,2,4,5-Tetrachlorobenzene	84		87		40-117	4		50
Acetophenone	89		89		14-144	0		50
2,4,6-Trichlorophenol	105		108		30-130	3		50
p-Chloro-m-cresol	101		104	Q	26-103	3		50
2-Chlorophenol	86		101		25-102	16		50
2,4-Dichlorophenol	95		98		30-130	3		50
2,4-Dimethylphenol	92		99		30-130	7		50
2-Nitrophenol	101		104		30-130	3		50
4-Nitrophenol	105		104		11-114	1		50
2,4-Dinitrophenol	96		86		4-130	11		50
4,6-Dinitro-o-cresol	108		108		10-130	0		50
Phenol	78		94	Q	26-90	19		50
3-Methylphenol/4-Methylphenol	90		93		30-130	3		50
2,4,5-Trichlorophenol	105		107		30-130	2		50
Carbazole	90		89		54-128	1		50
Atrazine	100		99		40-140	1		50
Benzaldehyde	76		89		40-140	16		50
Caprolactam	109		109		15-130	0		50
2,3,4,6-Tetrachlorophenol	98		98		40-140	0		50

Project Name: 89 LASALLE AVE. BCP SITE

Project Number: 1787491 Lab Number: L1813173

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Semivolatile Organics by GC/MS - Westb	orough Lab Associa	ated sample	(s): 02 Batch:	WG1107149	-2 WG1107149-3				

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qual	Acceptance Criteria
2-Fluorophenol	86	103	25-120
Phenol-d6	87	106	10-120
Nitrobenzene-d5	91	93	23-120
2-Fluorobiphenyl	87	90	30-120
2,4,6-Tribromophenol	105	107	10-136
4-Terphenyl-d14	101	100	18-120

Project Number: 1787491

Lab Number: L1813173

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westbord	ough Lab Associ	ated sample(s):	01 Batch:	WG1107401-2	2 WG1107401-3			
Bis(2-chloroethyl)ether	74		80		40-140	8		30
3,3'-Dichlorobenzidine	79		76		40-140	4		30
2,4-Dinitrotoluene	118		111		48-143	6		30
2,6-Dinitrotoluene	111		103		40-140	7		30
4-Chlorophenyl phenyl ether	94		90		40-140	4		30
4-Bromophenyl phenyl ether	100		96		40-140	4		30
Bis(2-chloroisopropyl)ether	73		75		40-140	3		30
Bis(2-chloroethoxy)methane	80		83		40-140	4		30
Hexachlorocyclopentadiene	89		84		40-140	6		30
Isophorone	84		86		40-140	2		30
Nitrobenzene	86		89		40-140	3		30
NDPA/DPA	97		92		40-140	5		30
n-Nitrosodi-n-propylamine	83		83		29-132	0		30
Bis(2-ethylhexyl)phthalate	118		112		40-140	5		30
Butyl benzyl phthalate	108		102		40-140	6		30
Di-n-butylphthalate	104		98		40-140	6		30
Di-n-octylphthalate	107		99		40-140	8		30
Diethyl phthalate	100		95		40-140	5		30
Dimethyl phthalate	94		91		40-140	3		30
Biphenyl	90		87		40-140	3		30
4-Chloroaniline	70		71		40-140	1		30
2-Nitroaniline	110		109		52-143	1		30
3-Nitroaniline	81		76		25-145	6		30

Project Number: 1787491 Lab Number: L1813173 Report Date: 04/23/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westbo	orough Lab Assoc	ated sample(s)	: 01 Batch:	WG110740	1-2 WG1107401-3	3		
4-Nitroaniline	99		91		51-143	8		30
Dibenzofuran	94		89		40-140	5		30
1,2,4,5-Tetrachlorobenzene	90		89		2-134	1		30
Acetophenone	84		88		39-129	5		30
2,4,6-Trichlorophenol	102		102		30-130	0		30
p-Chloro-m-cresol	101	Q	99	Q	23-97	2		30
2-Chlorophenol	84		89		27-123	6		30
2,4-Dichlorophenol	93		94		30-130	1		30
2,4-Dimethylphenol	94		92		30-130	2		30
2-Nitrophenol	106		110		30-130	4		30
4-Nitrophenol	86	Q	79		10-80	8		30
2,4-Dinitrophenol	122		117		20-130	4		30
4,6-Dinitro-o-cresol	129		120		20-164	7		30
Phenol	48		51		12-110	6		30
3-Methylphenol/4-Methylphenol	80		85		30-130	6		30
2,4,5-Trichlorophenol	107		104		30-130	3		30
Carbazole	98		93		55-144	5		30
Atrazine	103		96		40-140	7		30
Benzaldehyde	72		78		40-140	8		30
Caprolactam	28		28		10-130	0		30
2,3,4,6-Tetrachlorophenol	110		102		40-140	8		30

Project Name: 89 LASALLE AVE. BCP SITE

Project Number: 1787491 Lab Number: L1813173

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Semivolatile Organics by GC/MS - Westbo	brough Lab Associa	ated sample	(s): 01 Batch:	WG1107401	-2 WG1107401-3				

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	59	61	21-120
Phenol-d6	49	51	10-120
Nitrobenzene-d5	90	94	23-120
2-Fluorobiphenyl	94	95	15-120
2,4,6-Tribromophenol	115	114	10-120
4-Terphenyl-d14	108	105	41-149

Project Number: 1787491 Lab Number: L1813173 Report Date: 04/23/18

%Recovery RPD

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS-SIM - W	/estborough Lab As	ssociated samp	ole(s): 01 Bat	ch: WG110)7402-2 WG11074	402-3	
Acenaphthene	55		62		40-140	12	40
2-Chloronaphthalene	52		58		40-140	11	40
Fluoranthene	60		70		40-140	15	40
Hexachlorobutadiene	53		60		40-140	12	40
Naphthalene	53		60		40-140	12	40
Benzo(a)anthracene	61		73		40-140	18	40
Benzo(a)pyrene	60		71		40-140	17	40
Benzo(b)fluoranthene	61		75		40-140	21	40
Benzo(k)fluoranthene	59		71		40-140	18	40
Chrysene	63		74		40-140	16	40
Acenaphthylene	57		65		40-140	13	40
Anthracene	60		69		40-140	14	40
Benzo(ghi)perylene	45		53		40-140	16	40
Fluorene	59		67		40-140	13	40
Phenanthrene	58		67		40-140	14	40
Dibenzo(a,h)anthracene	54		64		40-140	17	40
Indeno(1,2,3-cd)pyrene	51		61		40-140	18	40
Pyrene	61		70		40-140	14	40
2-Methylnaphthalene	54		60		40-140	11	40
Pentachlorophenol	75		88		40-140	16	40
Hexachlorobenzene	64		74		40-140	14	40
Hexachloroethane	30	Q	35	Q	40-140	15	40

Project Name: 89 LASALLE AVE. BCP SITE

Project Number: 1787491

 Lab Number:
 L1813173

 Report Date:
 04/23/18

 LCS
 LCSD
 %Recovery
 RPD

 Parameter
 %Recovery
 Qual
 Limits
 RPD

 Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s):
 01
 Batch:
 WG1107402-2
 WG1107402-3

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qual	Acceptance Criteria
2-Fluorophenol	34	37	21-120
Phenol-d6	27	30	10-120
Nitrobenzene-d5	53	59	23-120
2-Fluorobiphenyl	65	72	15-120
2,4,6-Tribromophenol	57	65	10-120
4-Terphenyl-d14	71	83	41-149

Project Number: 1787491 Lab Number: L1813173 Report Date: 04/23/18

		Qual	%Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Semivolatile Organics by GC/MS-SIM - Wes	stborough Lab As	sociated samp	ele(s): 02 Bat	ch: WG110	7531-2 WG11075	31-3		
Acenaphthene	65		71		40-140	9	50	
2-Chloronaphthalene	60		67		40-140	11	50	
Fluoranthene	64		69		40-140	8	50	
Hexachlorobutadiene	52		60		34-107	14	50	
Naphthalene	58		66		40-140	13	50	
Benzo(a)anthracene	64		68		40-140	6	50	
Benzo(a)pyrene	67		71		40-140	6	50	
Benzo(b)fluoranthene	66		70		40-140	6	50	
Benzo(k)fluoranthene	68		71		40-140	4	50	
Chrysene	65		70		40-140	7	50	
Acenaphthylene	62		70		40-140	12	50	
Anthracene	64		69		40-140	8	50	
Benzo(ghi)perylene	65		67		40-140	3	50	
Fluorene	67		71		40-140	6	50	
Phenanthrene	62		67		40-140	8	50	
Dibenzo(a,h)anthracene	70		73		40-140	4	50	
Indeno(1,2,3-cd)pyrene	69		71		40-140	3	50	
Pyrene	63		68		35-142	8	50	
2-Methylnaphthalene	63		70		40-140	11	50	
Pentachlorophenol	55		58		17-109	5	50	
Hexachlorobenzene	51		55		40-140	8	50	
Hexachloroethane	66		76		29-106	14	50	

Project Name: 89 LASALLE AVE. BCP SITE

Project Number: 1787491

 Lab Number:
 L1813173

 Report Date:
 04/23/18

 LCS
 LCSD
 %Recovery
 RPD

 Parameter
 %Recovery
 Qual
 Value
 Limits
 RPD

 Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s):
 02
 Batch:
 WG1107531-2
 WG1107531-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	53	57	25-120
Phenol-d6	55	56	10-120
Nitrobenzene-d5	74	81	23-120
2-Fluorobiphenyl	69	74	30-120
2,4,6-Tribromophenol	50	52	0-136
4-Terphenyl-d14	75	79	18-120

METALS

Serial_No:04231812:24

L1813173

04/23/18

04/16/18

04/16/18 13:45

Not Specified

Project Name:	89 LASALLE AVE. BCP SITE
Project Number:	1787491

Report Date:

Date Collected:

Date Received:

Field Prep:

Lab Number:

SAMPLE RESULTS

Lab ID: L1813173-01 Client ID: **MH-1 STORMWATER** Sample Location: 89 LASALLE AVE., BUFFALO, NY

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mar	nsfield Lab										
Aluminum, Total	7.27		mg/l	0.0100	0.00327	1	04/18/18 14:35	04/19/18 13:48	EPA 3005A	1,6020A	AM
Antimony, Total	0.00069	J	mg/l	0.00400	0.00042	1	04/18/18 14:35	04/19/18 13:48	EPA 3005A	1,6020A	AM
Arsenic, Total	0.00410		mg/l	0.00050	0.00016	1	04/18/18 14:35	04/19/18 13:48	EPA 3005A	1,6020A	AM
Barium, Total	0.07426		mg/l	0.00050	0.00017	1	04/18/18 14:35	04/19/18 13:48	EPA 3005A	1,6020A	AM
Beryllium, Total	0.00038	J	mg/l	0.00050	0.00010	1	04/18/18 14:35	04/19/18 13:48	EPA 3005A	1,6020A	AM
Cadmium, Total	0.00034		mg/l	0.00020	0.00005	1	04/18/18 14:35	04/19/18 13:48	EPA 3005A	1,6020A	AM
Calcium, Total	65.9		mg/l	0.100	0.0394	1	04/18/18 14:35	04/19/18 13:48	EPA 3005A	1,6020A	AM
Chromium, Total	0.01992		mg/l	0.00100	0.00017	1	04/18/18 14:35	04/19/18 13:48	EPA 3005A	1,6020A	AM
Cobalt, Total	0.00523		mg/l	0.00050	0.00016	1	04/18/18 14:35	04/19/18 13:48	EPA 3005A	1,6020A	AM
Copper, Total	0.02690		mg/l	0.00100	0.00038	1	04/18/18 14:35	04/19/18 13:48	EPA 3005A	1,6020A	AM
Iron, Total	12.1		mg/l	0.0500	0.0191	1	04/18/18 14:35	04/19/18 13:48	EPA 3005A	1,6020A	AM
Lead, Total	0.06023		mg/l	0.00100	0.00034	1	04/18/18 14:35	04/19/18 13:48	EPA 3005A	1,6020A	AM
Magnesium, Total	14.2		mg/l	0.0700	0.0242	1	04/18/18 14:35	04/19/18 13:48	EPA 3005A	1,6020A	AM
Manganese, Total	0.2937		mg/l	0.00100	0.00044	1	04/18/18 14:35	04/19/18 13:48	EPA 3005A	1,6020A	AM
Mercury, Total	ND		mg/l	0.00020	0.00006	1	04/17/18 14:40	04/17/18 22:14	EPA 7470A	1,7470A	EA
Nickel, Total	0.01694		mg/l	0.00200	0.00055	1	04/18/18 14:35	04/19/18 13:48	EPA 3005A	1,6020A	AM
Potassium, Total	4.30		mg/l	0.100	0.0309	1	04/18/18 14:35	04/19/18 13:48	EPA 3005A	1,6020A	AM
Selenium, Total	ND		mg/l	0.00500	0.00173	1	04/18/18 14:35	04/19/18 13:48	EPA 3005A	1,6020A	AM
Silver, Total	0.00017	J	mg/l	0.00040	0.00016	1	04/18/18 14:35	04/19/18 13:48	EPA 3005A	1,6020A	AM
Sodium, Total	12.9		mg/l	0.100	0.0293	1	04/18/18 14:35	04/19/18 13:48	EPA 3005A	1,6020A	AM
Thallium, Total	ND		mg/l	0.00050	0.00014	1	04/18/18 14:35	04/19/18 13:48	EPA 3005A	1,6020A	AM
Vanadium, Total	0.01534		mg/l	0.00500	0.00157	1	04/18/18 14:35	04/19/18 13:48	EPA 3005A	1,6020A	AM
Zinc, Total	0.1474		mg/l	0.01000	0.00341	1	04/18/18 14:35	04/19/18 13:48	EPA 3005A	1,6020A	AM
			<u>.</u>								

Serial_No:04231812:24

Project Name:	89 LASALLE AVE. BCP SITE	Lab Number:	L1813173
Project Number:	1787491	Report Date:	04/23/18
	SAMPLE RESULTS		
Lab ID:	L1813173-02	Date Collected:	04/16/18 13:50
Client ID:	MH-1 SEDIMENT	Date Received:	04/16/18
Sample Location:	89 LASALLE AVE., BUFFALO, NY	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Soil		
Percent Solids:	76%		

Percent Solids: Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analys
Total Metals - Man	sfield Lab										
Aluminum, Total	2790		mg/kg	9.96	2.69	2	04/18/18 06:4	0 04/18/18 14:07	EPA 3050B	1,6010C	LC
Antimony, Total	2.47	J	mg/kg	4.98	0.378	2	04/18/18 06:4	0 04/18/18 14:07	EPA 3050B	1,6010C	LC
Arsenic, Total	4.03		mg/kg	0.996	0.207	2	04/18/18 06:4	0 04/18/18 14:07	EPA 3050B	1,6010C	LC
Barium, Total	23.8		mg/kg	0.996	0.173	2	04/18/18 06:4	0 04/18/18 14:07	EPA 3050B	1,6010C	LC
Beryllium, Total	0.070	J	mg/kg	0.498	0.033	2	04/18/18 06:4	0 04/18/18 14:07	EPA 3050B	1,6010C	LC
Cadmium, Total	0.120	J	mg/kg	0.996	0.098	2	04/18/18 06:4	0 04/18/18 14:07	EPA 3050B	1,6010C	LC
Calcium, Total	151000		mg/kg	9.96	3.48	2	04/18/18 06:4	0 04/18/18 14:07	EPA 3050B	1,6010C	LC
Chromium, Total	4.43		mg/kg	0.996	0.096	2	04/18/18 06:4	0 04/18/18 14:07	EPA 3050B	1,6010C	LC
Cobalt, Total	2.28		mg/kg	1.99	0.165	2	04/18/18 06:4	0 04/18/18 14:07	EPA 3050B	1,6010C	LC
Copper, Total	7.58		mg/kg	0.996	0.257	2	04/18/18 06:4	0 04/18/18 14:07	EPA 3050B	1,6010C	LC
Iron, Total	7920		mg/kg	4.98	0.899	2	04/18/18 06:4	0 04/18/18 14:07	EPA 3050B	1,6010C	LC
Lead, Total	9.23		mg/kg	4.98	0.267	2	04/18/18 06:4	0 04/18/18 14:07	EPA 3050B	1,6010C	LC
Magnesium, Total	19900		mg/kg	9.96	1.53	2	04/18/18 06:4	0 04/18/18 14:07	EPA 3050B	1,6010C	LC
Manganese, Total	512		mg/kg	0.996	0.158	2	04/18/18 06:4	0 04/18/18 14:07	EPA 3050B	1,6010C	LC
Mercury, Total	0.023	J	mg/kg	0.083	0.018	1	04/18/18 08:0	0 04/18/18 13:04	EPA 7471B	1,7471B	MG
Nickel, Total	5.24		mg/kg	2.49	0.241	2	04/18/18 06:4	0 04/18/18 14:07	EPA 3050B	1,6010C	LC
Potassium, Total	399		mg/kg	249	14.3	2	04/18/18 06:4	0 04/18/18 14:07	EPA 3050B	1,6010C	LC
Selenium, Total	ND		mg/kg	1.99	0.257	2	04/18/18 06:4	0 04/18/18 14:07	EPA 3050B	1,6010C	LC
Silver, Total	ND		mg/kg	0.996	0.282	2	04/18/18 06:4	0 04/18/18 14:07	EPA 3050B	1,6010C	LC
Sodium, Total	292		mg/kg	199	3.14	2	04/18/18 06:4	0 04/18/18 14:07	EPA 3050B	1,6010C	LC
Thallium, Total	ND		mg/kg	1.99	0.314	2	04/18/18 06:4	0 04/18/18 14:07	EPA 3050B	1,6010C	LC
Vanadium, Total	6.57		mg/kg	0.996	0.202	2	04/18/18 06:4	0 04/18/18 14:07	EPA 3050B	1,6010C	LC
Zinc, Total	25.0		mg/kg	4.98	0.292	2	04/18/18 06:4	0 04/18/18 14:07	EPA 3050B	1,6010C	LC

Project Name:89 LASALLE AVE. BCP SITEProject Number:1787491

 Lab Number:
 L1813173

 Report Date:
 04/23/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mansfield	d Lab for sample(s):	01 Batc	h: WG11	07223-7	1				
Mercury, Total	ND	mg/l	0.00020	0.00006	5 1	04/17/18 14:40	04/17/18 22:10	1,7470A	EA

Prep Information

Digestion Method: EPA 7470A

Parameter	Result Qu	alifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	Lab for sam	nple(s):	02 Batch	n: WG1′	107409-	1				
Aluminum, Total	ND		mg/kg	4.00	1.08	1	04/18/18 06:40	04/18/18 09:53	1,6010C	LC
Antimony, Total	ND		mg/kg	2.00	0.152	1	04/18/18 06:40	04/18/18 09:53	1,6010C	LC
Arsenic, Total	ND		mg/kg	0.400	0.083	1	04/18/18 06:40	04/18/18 09:53	1,6010C	LC
Barium, Total	ND		mg/kg	0.400	0.070	1	04/18/18 06:40	04/18/18 09:53	1,6010C	LC
Beryllium, Total	ND		mg/kg	0.200	0.013	1	04/18/18 06:40	04/18/18 09:53	1,6010C	LC
Cadmium, Total	ND		mg/kg	0.400	0.039	1	04/18/18 06:40	04/18/18 09:53	1,6010C	LC
Calcium, Total	ND		mg/kg	4.00	1.40	1	04/18/18 06:40	04/18/18 09:53	1,6010C	LC
Chromium, Total	ND		mg/kg	0.400	0.038	1	04/18/18 06:40	04/18/18 09:53	1,6010C	LC
Cobalt, Total	ND		mg/kg	0.800	0.066	1	04/18/18 06:40	04/18/18 09:53	1,6010C	LC
Copper, Total	ND		mg/kg	0.400	0.103	1	04/18/18 06:40	04/18/18 09:53	1,6010C	LC
Iron, Total	0.376	J	mg/kg	2.00	0.361	1	04/18/18 06:40	04/18/18 09:53	1,6010C	LC
Lead, Total	ND		mg/kg	2.00	0.107	1	04/18/18 06:40	04/18/18 09:53	1,6010C	LC
Magnesium, Total	ND		mg/kg	4.00	0.616	1	04/18/18 06:40	04/18/18 09:53	1,6010C	LC
Manganese, Total	0.172	J	mg/kg	0.400	0.064	1	04/18/18 06:40	04/18/18 09:53	1,6010C	LC
Nickel, Total	ND		mg/kg	1.00	0.097	1	04/18/18 06:40	04/18/18 09:53	1,6010C	LC
Potassium, Total	ND		mg/kg	100	5.76	1	04/18/18 06:40	04/18/18 09:53	1,6010C	LC
Selenium, Total	ND		mg/kg	0.800	0.103	1	04/18/18 06:40	04/18/18 09:53	1,6010C	LC
Silver, Total	ND		mg/kg	0.400	0.113	1	04/18/18 06:40	04/18/18 09:53	1,6010C	LC
Sodium, Total	3.48	J	mg/kg	80.0	1.26	1	04/18/18 06:40	04/18/18 09:53	1,6010C	LC
Thallium, Total	ND		mg/kg	0.800	0.126	1	04/18/18 06:40	04/18/18 09:53	1,6010C	LC
Vanadium, Total	ND		mg/kg	0.400	0.081	1	04/18/18 06:40	04/18/18 09:53	1,6010C	LC
Zinc, Total	ND		mg/kg	2.00	0.117	1	04/18/18 06:40	04/18/18 09:53	1,6010C	LC

Project Name:89 LASALLE AVE. BCP SITEProject Number:1787491

 Lab Number:
 L1813173

 Report Date:
 04/23/18

Method Blank Analysis Batch Quality Control

Prep Informatio	n
-----------------	---

Digestion Method: EPA 3050B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mansfield	Lab for sample(s):	02 Batch	: WG11	07411-1	1				
Mercury, Total	ND	mg/kg	0.083	0.018	1	04/18/18 08:00	04/18/18 12:53	1,7471B	MG

Prep Information

Digestion Method: EPA 7471B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfiel	d Lab for sample(s):	01 Batc	h: WG11	07593-1					
Aluminum, Total	ND	mg/l	0.0100	0.00327	1	04/18/18 14:35	04/19/18 12:39	1,6020A	AM
Antimony, Total	ND	mg/l	0.00400	0.00042	1	04/18/18 14:35	04/19/18 12:39	1,6020A	AM
Arsenic, Total	ND	mg/l	0.00050	0.00016	1	04/18/18 14:35	04/19/18 12:39	1,6020A	AM
Barium, Total	ND	mg/l	0.00050	0.00017	1	04/18/18 14:35	04/19/18 12:39	1,6020A	AM
Beryllium, Total	ND	mg/l	0.00050	0.00010	1	04/18/18 14:35	04/19/18 12:39	1,6020A	AM
Cadmium, Total	ND	mg/l	0.00020	0.00005	1	04/18/18 14:35	04/19/18 12:39	1,6020A	AM
Calcium, Total	ND	mg/l	0.100	0.0394	1	04/18/18 14:35	04/19/18 12:39	1,6020A	AM
Chromium, Total	ND	mg/l	0.00100	0.00017	1	04/18/18 14:35	04/19/18 12:39	1,6020A	AM
Cobalt, Total	ND	mg/l	0.00050	0.00016	1	04/18/18 14:35	04/19/18 12:39	1,6020A	AM
Copper, Total	ND	mg/l	0.00100	0.00038	1	04/18/18 14:35	04/19/18 12:39	1,6020A	AM
Iron, Total	ND	mg/l	0.0500	0.0191	1	04/18/18 14:35	04/19/18 12:39	1,6020A	AM
Lead, Total	ND	mg/l	0.00100	0.00034	1	04/18/18 14:35	04/19/18 12:39	1,6020A	AM
Magnesium, Total	ND	mg/l	0.0700	0.0242	1	04/18/18 14:35	04/19/18 12:39	1,6020A	AM
Manganese, Total	ND	mg/l	0.00100	0.00044	1	04/18/18 14:35	04/19/18 12:39	1,6020A	AM
Nickel, Total	ND	mg/l	0.00200	0.00055	1	04/18/18 14:35	04/19/18 12:39	1,6020A	AM
Potassium, Total	ND	mg/l	0.100	0.0309	1	04/18/18 14:35	04/19/18 12:39	1,6020A	AM
Selenium, Total	ND	mg/l	0.00500	0.00173	1	04/18/18 14:35	04/19/18 12:39	1,6020A	AM
Silver, Total	ND	mg/l	0.00040	0.00016	1	04/18/18 14:35	04/19/18 12:39	1,6020A	AM
Sodium, Total	ND	mg/l	0.100	0.0293	1	04/18/18 14:35	04/19/18 12:39	1,6020A	AM
Thallium, Total	ND	mg/l	0.00050	0.00014	1	04/18/18 14:35	04/19/18 12:39	1,6020A	AM
Vanadium, Total	ND	mg/l	0.00500	0.00157	1	04/18/18 14:35	04/19/18 12:39	1,6020A	AM

Serial_No	:04231812:24
-----------	--------------

Project Name:	89 LASALLE AV	'E. BCP SITE	Ē			Lab Nun	nber: L	1813173	
Project Number:	1787491					Report D	Date: 0	4/23/18	
				ank An ality Co		5			
Zinc, Total	ND	mg/l	0.01000	0.00341	1	04/18/18 14:35	04/19/18 12:39	1,6020A	AM
			Prep Info	ormation					

Digestion Method: EPA 3005A

Project Name: 89 LASALLE AVE. BCP SITE

Project Number: 1787491

 Lab Number:
 L1813173

 Report Date:
 04/23/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch: V	WG11072	23-2					
Mercury, Total	90		-		80-120	-		

Lab Control Sample Analysis

Batch Quality Control

Project Name: 89 LASALLE AVE. BCP SITE

Project Number: 1787491

 Lab Number:
 L1813173

 Report Date:
 04/23/18

LCS LCSD %Recovery Limits %Recovery %Recovery RPD **RPD** Limits Parameter Total Metals - Mansfield Lab Associated sample(s): 02 Batch: WG1107409-2 SRM Lot Number: D098-540 Aluminum, Total 74 -47-153 -Antimony, Total 155 6-194 --Arsenic, Total 105 83-117 --Barium, Total 82-118 86 --Beryllium, Total 93 83-117 --Cadmium, Total 95 82-117 --Calcium, Total 84 81-118 --Chromium, Total 83-119 92 --Cobalt, Total 84-116 97 --Copper, Total 101 84-116 --Iron, Total 91 60-140 --Lead. Total 96 82-117 --Magnesium, Total 82 76-124 --Manganese, Total 82-118 84 -Nickel, Total 96 82-117 --Potassium, Total 86 69-131 --Selenium, Total 104 78-121 --Silver, Total 101 80-120 --Sodium, Total 88 74-126 --80-119 Thallium, Total 100 --Vanadium, Total 97 79-121 -

Project Name: 89 LASALLE AVE. BCP SITE

Project Number: 1787491

 Lab Number:
 L1813173

 Report Date:
 04/23/18

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sar	mple(s): 02 Batch: WG110	7409-2 SRM Lot Numbe	r: D098-540		
Zinc, Total	95	-	81-119	-	
Total Metals - Mansfield Lab Associated sar	mple(s): 02 Batch: WG110	7411-2 SRM Lot Numbe	r: D098-540		
Mercury, Total	114	-	50-149	-	

Lab Control Sample Analysis

Batch Quality Control

Project Name: 89 LASALLE AVE. BCP SITE

Project Number: 1787491

 Lab Number:
 L1813173

 Report Date:
 04/23/18

LCS LCSD %Recovery %Recovery %Recovery Limits RPD **RPD** Limits Parameter Total Metals - Mansfield Lab Associated sample(s): 01 Batch: WG1107593-2 Aluminum, Total 100 80-120 -Antimony, Total 99 80-120 --Arsenic, Total 106 80-120 --Barium, Total 80-120 97 --Beryllium, Total 107 80-120 --Cadmium, Total 111 80-120 --Calcium, Total 89 80-120 --Chromium, Total 80-120 96 --Cobalt, Total 80-120 98 --Copper, Total 103 80-120 --Iron, Total 104 80-120 --Lead. Total 105 80-120 --Magnesium, Total 98 80-120 --Manganese, Total 80-120 96 -Nickel, Total 102 80-120 --Potassium, Total 97 80-120 --Selenium, Total 105 80-120 --Silver, Total 98 80-120 --Sodium, Total 100 80-120 --Thallium, Total 114 80-120 --Vanadium, Total 97 80-120 -

Lab Control Sample Analysis

Project Name:	89 LASALLE AVE. I	3CP SITE	Batch Quality C	Lab Number:	L1813173	
Project Number:	1787491				Report Date:	04/23/18
		LCS	LCSD	%Recovery		
Parameter		%Recovery	%Recovery	Limits	RPD	RPD Limits

Zinc, Total 104 - 80-120 -

		Matrix Spike Analysis Batch Quality Control		
Project Name:	89 LASALLE AVE. BCP SITE		Lab Number:	L1813173
Project Number:	1787491		Report Date:	04/23/18

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qua	MSD al Found	MSD %Recovery	Recove Qual Limits	,	RPD Qual Limits
Total Metals - Mansfield Lab	Associated sam	nple(s): 01	QC Batch	ID: WG110722	3-3	QC Sample	: L1813173-01	Client ID: MF	I-1 STOR	MWATER
Mercury, Total	ND	0.005	0.00523	105		-	-	75-125	-	20

Matrix Spike Analysis Batch Quality Control

Lab Number: L1813173

04/23/18

Report Date:

arameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
otal Metals - Mansfield	Lab Associated sar	nple(s): 02	QC Batch	ID: WG110740	9-3	QC Sample	: L1813333-01	Client ID: MS Sa	ample	
Aluminum, Total	16900	171	17200	176	Q	-	-	75-125	-	20
Antimony, Total	ND	42.7	28.7	67	Q	-	-	75-125	-	20
Arsenic, Total	0.582J	10.2	9.02	88		-	-	75-125	-	20
Barium, Total	69.8	171	195	73	Q	-	-	75-125	-	20
Beryllium, Total	1.40	4.27	4.49	72	Q	-	-	75-125	-	20
Cadmium, Total	ND	4.36	3.21	74	Q	-	-	75-125	-	20
Calcium, Total	158.	855	794	74	Q	-	-	75-125	-	20
Chromium, Total	14.6	17.1	27.4	75		-	-	75-125	-	20
Cobalt, Total	13.5	42.7	42.6	68	Q	-	-	75-125	-	20
Copper, Total	9.77	21.4	29.6	93		-	-	75-125	-	20
Iron, Total	18400	85.5	18400	0	Q	-	-	75-125	-	20
Lead, Total	7.47	43.6	36.0	65	Q	-	-	75-125	-	20
Magnesium, Total	3330	855	4000	78		-	-	75-125	-	20
Manganese, Total	141.	42.7	134	0	Q	-	-	75-125	-	20
Nickel, Total	25.0	42.7	53.5	67	Q	-	-	75-125	-	20
Potassium, Total	5200	855	6170	113		-	-	75-125	-	20
Selenium, Total	ND	10.2	8.62	84		-	-	75-125	-	20
Silver, Total	ND	25.6	21.2	83		-	-	75-125	-	20
Sodium, Total	163.J	855	853	100		-	-	75-125	-	20
Thallium, Total	ND	10.2	6.81	66	Q	-	-	75-125	-	20
Vanadium, Total	18.2	42.7	52.3	80		-	-	75-125	-	20

Project Name:

Project Number:

89 LASALLE AVE. BCP SITE

1787491

Matrix Spike Analysis

,	Native	MS	MS	MS	MSD	MSD	Recovery	RPD
Project Name: Project Number:	89 LASALLE AVE 1787491	. BCP SITE			•		Lab Number: Report Date:	L1813173 04/23/18

Total Metals - Mansfield Lab	Associated sam	ole(s): 02	QC Batch ID:	: WG110740)9-3	QC Sample: I	L1813333-01	Client ID: MS S	ample	
Zinc, Total	54.9	42.7	86.7	74	Q	-	-	75-125	-	20
Total Metals - Mansfield Lab Associated sample(s): 02			QC Batch ID: WG1107411-3 QC Sample: L1813341-0			L1813341-01	Client ID: MS S	ample		
Mercury, Total	0.046J	0.162	0.249	153	Q	-	-	80-120	-	20

Matrix Spike Analysis

Batch Quality Control

Lab Number: L1813173 **Report Date:** 04/23/18

Project Number: 1787491

89 LASALLE AVE. BCP SITE

Project Name:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield	Lab Associated san	nple(s): 01	QC Batch	ID: WG110759	3-3	QC Sample	: L1813173-01	Client ID: MH-1	STORMW	ATER
Aluminum, Total	7.27	2	10.7	172	Q	-	-	75-125	-	20
Antimony, Total	0.00069J	0.5	0.4491	90		-	-	75-125	-	20
Arsenic, Total	0.00410	0.12	0.1237	100		-	-	75-125	-	20
Barium, Total	0.07426	2	1.964	94		-	-	75-125	-	20
Beryllium, Total	0.00038J	0.05	0.05307	106		-	-	75-125	-	20
Cadmium, Total	0.00034	0.051	0.05389	105		-	-	75-125	-	20
Calcium, Total	65.9	10	72.3	64	Q	-	-	75-125	-	20
Chromium, Total	0.01992	0.2	0.2197	100		-	-	75-125	-	20
Cobalt, Total	0.00523	0.5	0.4920	97		-	-	75-125	-	20
Copper, Total	0.02690	0.25	0.2784	101		-	-	75-125	-	20
Iron, Total	12.1	1	12.5	40	Q	-	-	75-125	-	20
Lead, Total	0.06023	0.51	0.5742	101		-	-	75-125	-	20
Magnesium, Total	14.2	10	24.0	98		-	-	75-125	-	20
Manganese, Total	0.2937	0.5	0.7603	93		-	-	75-125	-	20
Nickel, Total	0.01694	0.5	0.5172	100		-	-	75-125	-	20
Potassium, Total	4.30	10	14.6	103		-	-	75-125	-	20
Selenium, Total	ND	0.12	0.117	98		-	-	75-125	-	20
Silver, Total	0.00017J	0.05	0.04615	92		-	-	75-125	-	20
Sodium, Total	12.9	10	23.2	103		-	-	75-125	-	20
Thallium, Total	ND	0.12	0.05894	49	Q	-	-	75-125	-	20
Vanadium, Total	0.01534	0.5	0.5054	98		-	-	75-125	-	20

Matrix Spike Analysis

Project Name:	89 LASALLE AVE. BCP SITE	Batch Quality Control	Lab Number:	L1813173
Project Number:	1787491		Report Date:	04/23/18

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Man	sfield Lab Associated sar	mple(s): 01	QC Batch	ID: WG1107593-3	3 QC Sample	e: L1813173-01	Client ID: MH-1	STORMV	VATER
Zinc, Total	0.1474	0.5	0.6599	102	-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name:89 LASALLE AVE. BCP SITEProject Number:1787491

 Lab Number:
 L1813173

 Report Date:
 04/23/18

Parameter	Native Sample D	Ouplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1107223	-4 QC Sample:	L1813173-01	Client ID:	MH-1 STORM	/WATER
Mercury, Total	ND	ND	mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s): 02	QC Batch ID: WG1107409	-4 QC Sample:	L1813333-01	Client ID:	DUP Sample	
Lead, Total	7.47	6.31	mg/kg	17		20
Total Metals - Mansfield Lab Associated sample(s): 02	QC Batch ID: WG1107411	-4 QC Sample:	L1813341-01	Client ID:	DUP Sample	
Mercury, Total	0.046J	0.049J	mg/kg	NC		20

Lab Duplicate Analysis Batch Quality Control

Project Name: 89 LASALLE AVE. BCP SITE

Project Number: 1787491

Lab Number:

L1813173 Report Date: 04/23/18

arameter	Native Sample Du	plicate Sample	Units	RPD	RPD Limits
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1107593-4	QC Sample:	L1813173-01	Client ID: N	MH-1 STORMWATER
Aluminum, Total	7.27	7.24	mg/l	0	20
Antimony, Total	0.00069J	0.00079J	mg/l	NC	20
Arsenic, Total	0.00410	0.00397	mg/l	3	20
Barium, Total	0.07426	0.07658	mg/l	3	20
Beryllium, Total	0.00038J	0.00046J	mg/l	NC	20
Cadmium, Total	0.00034	0.00033	mg/l	3	20
Calcium, Total	65.9	68.6	mg/l	4	20
Chromium, Total	0.01992	0.02049	mg/l	3	20
Cobalt, Total	0.00523	0.00536	mg/l	3	20
Copper, Total	0.02690	0.02635	mg/l	2	20
Iron, Total	12.1	12.3	mg/l	2	20
Lead, Total	0.06023	0.05794	mg/l	4	20
Magnesium, Total	14.2	14.6	mg/l	3	20
Manganese, Total	0.2937	0.3140	mg/l	7	20
Nickel, Total	0.01694	0.01666	mg/l	2	20
Potassium, Total	4.30	4.48	mg/l	4	20
Selenium, Total	ND	ND	mg/l	NC	20
Silver, Total	0.00017J	0.00020J	mg/l	NC	20
Sodium, Total	12.9	13.3	mg/l	3	20

Lab Duplicate Analysis Batch Quality Control

Project Name: 89 LASALLE AVE. BCP SITE Project Number: 1787491

Lab Number: Report Date:

L1813173 04/23/18

Parameter Native Sample **Duplicate Sample** Units RPD **RPD Limits** Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1107593-4 QC Sample: L1813173-01 Client ID: MH-1 STORMWATER Thallium, Total ND 0.00015J NC 20 mg/l Vanadium, Total 0.01534 0.01444 mg/l 6 20 Zinc, Total 0.1474 0.1429 20 mg/l 3

INORGANICS & MISCELLANEOUS

Project Name: Project Number:	89 LASALLE 1787491	E AVE. BO	CP SITE						L1813173 04/23/18	
				SAMPLE	RESUL	TS				
Lab ID:	L1813173-0	2					Date	Collected:	04/16/18 13:50)
Client ID:	MH-1 SEDIN	JENT					Date	Received:	04/16/18	
Sample Location:	89 LASALLE	E AVE., B	UFFALC), NY			Field	Prep:	Not Specified	
Sample Depth:										
Matrix:	Soil									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analys
eneral Chemistry - Wes	stborough Lab)								
lids, Total	75.5		%	0.100	NA	1	-	04/17/18 09:3	6 121,2540G	RI

20

Project Name: Project Number:		AVE. BCP SITE	L	.ab Duplicate A Batch Quality C			Lab Number: Report Date:	
Parameter		Na	ative Sample	Duplicate Sam	ple Units	RPD	Qual	RPD Limits
General Chemistry - Wes	stborough Lab	Associated sample(s): 02 QC Batch	ID: WG1107114-1	QC Sample: L	1813163-01	Client ID: DU	P Sample

35.5

• •

36.3

%

2

Solids, Total

Project Name: 89 LASALLE AVE. BCP SITE Project Number: 1787491

Serial_No:04231812:24 Lab Number: L1813173 Report Date: 04/23/18

Sample Receipt and Container Information

YES

Were project specific reporting limits specified?

Cooler Information

Cooler	Custody Seal
А	Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1813173-01A	Plastic 250ml HNO3 preserved	A	<2	<2	2.7	Y	Absent		BA-6020T(180),FE-6020T(180),SE- 6020T(180),TL-6020T(180),CA-6020T(180),CR- 6020T(180),K-6020T(180),NI-6020T(180),CU- 6020T(180),NA-6020T(180),ZN-6020T(180),PB- 6020T(180),BE-6020T(180),MN- 6020T(180),AS-6020T(180),SB-6020T(180),V- 6020T(180),AG-6020T(180),AL-6020T(180),CD- 6020T(180),HG-T(28),MG-6020T(180),CO- 6020T(180)
L1813173-01B	Amber 1000ml unpreserved	А	7	7	2.7	Y	Absent		NYTCL-8270(7),NYTCL-8270-SIM(7)
L1813173-01C	Amber 1000ml unpreserved	А	7	7	2.7	Y	Absent		NYTCL-8270(7),NYTCL-8270-SIM(7)
L1813173-02A	Plastic 2oz unpreserved for TS	А	NA		2.7	Y	Absent		TS(7)
L1813173-02B	Metals Only-Glass 60mL/2oz unpreserved	A	NA		2.7	Y	Absent		BE-TI(180),AS-TI(180),BA-TI(180),AG- TI(180),AL-TI(180),CR-TI(180),NI-TI(180),TL- TI(180),CU-TI(180),PB-TI(180),SB-TI(180),SE- TI(180),ZN-TI(180),CO-TI(180),V-TI(180),FE- TI(180),HG-T(28),MG-TI(180),MN-TI(180),CA- TI(180),CD-TI(180),K-TI(180),NA-TI(180)
L1813173-02C	Glass 120ml/4oz unpreserved	А	NA		2.7	Y	Absent		NYTCL-8270(14)

Serial_No:04231812:24

Project Name: 89 LASALLE AVE. BCP SITE

Project Number: 1787491

Lab Number: L1813173

Report Date: 04/23/18

GLOSSARY

Acronyms

EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	 Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the 1 original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum. Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after

adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH. Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A - Spectra identified as "Aldol Condensation Product".
- В - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: DU Report with 'J' Qualifiers

Serial_No:04231812:24

Project Name: 89 LASALLE AVE. BCP SITE

Project Number: 1787491

Lab Number:	L1813173
Report Date:	04/23/18

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Project Name:89 LASALLE AVE. BCP SITEProject Number:1787491

 Lab Number:
 L1813173

 Report Date:
 04/23/18

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270D: <u>NPW</u>: Dimethylnaphthalene, 1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene, 1,4-Diphenylhydrazine. EPA 300: DW: Bromide EPA 6860: SCM: Perchlorate EPA 9010: <u>NPW</u> and SCM: Amenable Cyanide Distillation SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3. **Mansfield Facility**

SM 2540D: TSS EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water EPA 200.7: AI, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. SM2340B

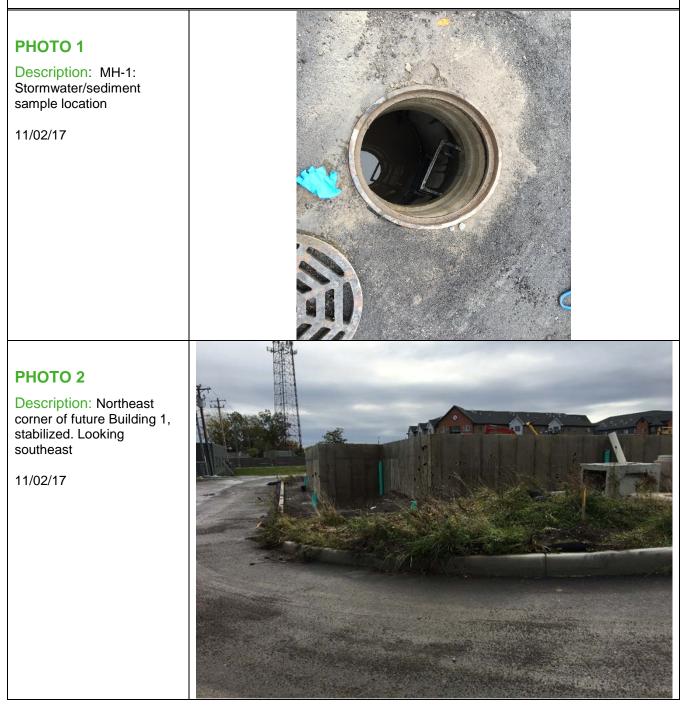
For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:04231812:24

Westborough, MA 01581	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	Vay	05	Pag	of /		in	Rec'd Lab	ulr	118		ALPHA Job # L1813173	
8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Project Information Project Name: 89 L Project Location: 89 L	asalle B	4 Buffal	O, NY			ASP- EQui			KASP-	B S (4 File)	Billing Information	
Client Information	in the second	Project # 1787	491					Othe	r				1	
Client: Golden	Associato	(Use Project name as Pr	roject#)				Regi	ulatory	Require	ement		12/20	Disposal Site Information	
Address: 2430 N	1. Forest Kd.	Project Manager: P	atrick N	Jakhn				NY TO	GS	[NY Pa	ert 375	Please identify below location of	-
SUIR 10	00	ALPHAQuote #:						AWQ	Standard	s	NY CF	2-51	applicable disposal facilities.	
Phone: 716 20	4 5880	Turn-Around Time	Contraction of the	330 2	The Carl			NY Re	stricted I	Jse [Other		Disposal Facility:	
Fax:		Standard	1 Ska	Due Date	1			NY Ur	restricter	1 Use			YN LI LA	
Email: ptmaxtn	10 goider.com	Rush (only if pre approved	D.	# of Days:	ti			NYC S	Sewer Dis	charge			Other:	
These samples have t	been previously analyze	ed by Alpha					ANA	LYSIS			-		Sample Filtration	F
Other project specifi	c requirements/comm	ents:					0	6020					Done ZLab to do	0 a
Please specify Metal	s or TAL.						NYTCL-8270	tet. metet						Bol
ALPHA Lab ID (Lab Use Only)	Sa	mple ID		action	Sample	Sampler's	3	5.2	2					1
			Date	Time	Matrix	Initials		R	100				Sample Specific Comments	e
13173-01		nwater	4/16/18		write	PTM	2	1						
-62	MH-1 Sedi	ment	4/16/18	1350	Suil	PTM	1	1	1					_
Preservative Code:	Container Code					×4.								_
A = None B = HCl C = HNO ₃ D = H ₂ SO ₄	P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification No Mansfield: Certification No				tainer Type Preservative				-			Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are	ot
		Relinquished E Kupta M. Cu John AL AA	ne	Date/ 4/16/18 4/16/18	Time 16:16 16:40	Receiv	AA			Date/ 6/18 1714	16:14	start until any ambiguities are resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS. (See reverse side.)		

APPENDIX B ANNUAL SITE INSPECTION FORMS & PHOTO LOG DOCUMENTATION

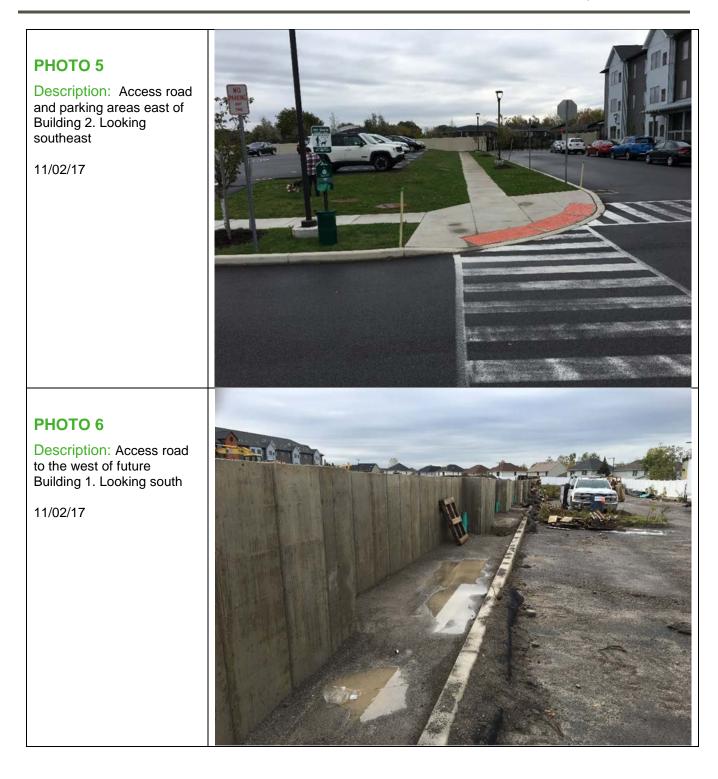
89 LaSalle Avenue BUFFALO, NEW YORK Site Management Plan


NYSDEC Site Number: C915283

SEMI-ANNUAL INSPECTION FORM

NOV. 2, 2017

Inspection Item Description	Frequency	Comments	Corrective Action (If Required)
Site Cover Systems: - Soil Cover	Semi- Annually	SOIL CONER IS IN GOOD CONDITION, FOOTPAINT OF FUTURE BLOG I IS UNDER CONSTRUCTION AND DISTURGED W/ PROPER ENSION CONTROL MEASURGS IN PURCE	LANDOSCAPINE : FINAR ALESTONATION OF SAL ATRAS ANOUND BLAL I WILL BE COMPLETED IN SPRING 2018
- Asphalt Paved Areas		MEASURAS IN PLACE > EXCLURAT CONDITIONS TOP CONT HAS BEEN INSTRILLES ON 90% of ANESS	
- Concrete Sidewalks and other concrete structures		Exclusion consisting on - NO 15EVES	
- Other (if applicable)		Exclusion Consortions - NO 15506 5	
Document specific locations and nature of condition issue if any observed.			
Stormwater – Manhole Discharge Sampling Location General Condition	Semi- Annually	Completed 2 MH-1 ON 11/2/17 AFTER NO. 4" RAINFALL NO SEDIMENT	NIA
Excavation Work Locations – General Conditions	Per Occurrence	SEE SOIL COVER DISCUSSION M3+NE FOR BLDG I CONSTRUCT AREA	HAVE REMINDED LECACY TO MANTA Tan' MARTINE SOIL EASSO CONTROL MEASURAS THA WINTEN MONTHS


PROJECT TITLE: SITE MANAGEMENT PLAN: 89 LA SALLE AVE SITE – PRR SITE INSPECTION

https://golderassociates.sharepoint.com/sites/19058g/Deliverables/Draft/Photos - Nov 2017 & April 2018 Inspect/Nov 2017 Photos/LaSalle Ave site PRR inspection photo log (11-02-17).docx Error! Unknown document property name.

PHOTO 7

Description: Building 2 courtyard area, stabilized. Looking northeast

11/02/17

РНОТО 8

Description:

11/02/17 Traffic circle at main entrance. Looking northwest

https://golderassociates.sharepoint.com/sites/19058g/Deliverables/Draft/Photos - Nov 2017 & April 2018 Inspect/Nov 2017 Photos/LaSalle Ave site PRR inspection photo log (11-02-17).docx Error! Unknown document property name.

PHOTO 9

Description: Building 5 courtyard area, stabilized. Looking northeast

11/02/17

Description: Access road and parking areas north of Building 2. Looking eastnortheast

11/02/17

https://golderassociates.sharepoint.com/sites/19058g/Deliverables/Draft/Photos - Nov 2017 & April 2018 Inspect/Nov 2017 Photos/LaSalle Ave site PRR inspection photo log (11-02-17).docxError! Unknown document property name.

89 LaSalle Avenue BUFFALO, NEW YORK Site Management Plan

NYSDEC Site Number: C915283

SEMI-ANNUAL INSPECTION FORM

			TICIO
Inspection Item Description	Frequency	Comments	Corrective Action (If Required)
	Semi-	SUIL COVER IN DEVErgho	
Site Cover Systems: - Soil Cover	Annually	PORTONS OF SITE IS IN BOOD CONDITION, BLOG 1 IS UNDER CONSTRUCTION : PISTURAES ON PROPER' Sposion Constructs IN PROE	LAWDSCAPING + FINAL RESTURTION OF SINC ANEAS AMUJNO BLOG I IS SCHEDULED FON COM- PLETION IN JUNE (JOLY - BEDENDENT ON BUILDING
- Asphalt Paved			PROGRESS.
Areas		= EXCELLENT CUNDITION,	· · · ·
 Concrete Sidewalks and other concrete structures Other (if applicable) 		TOP CONT ON PANED ANENS NOTICENT TO BLOC 1 WILL BE COMPLETED IN JUNE 2018. NO 1550/ES, EXCELLENT CONDITION	
Document specific locations and nature of condition issue if any observed.		8	
Stormwater –	Semi-	Camputo a MH-1	SAMPLE EVENT COULD
Manhole Discharge Sampling Location General Condition	Annually	Campletes WMH.1 on 4/16/18 APTER 1"+ RAINFALL EVENT	NOT BE CONDUCTED IN MARCH DUE TO CULD WEATHER & ASSEME OF QUALIFYING EMM ENENT
Excavation Work	Per	REFER TO SOIL CONER	LEGACY CONTINUES
Locations – General Conditions	Occurrence	DISCUSSION ABOUT FOR BLOC 1 CONSTRUCTION AREA	TO MAINTAIN EACSION CONTROL MEASURES AROUND CONSTRUCTION AMER

Pater 1. Martin 4/16/18

4/16/18

PROJECT TITLE: SITE MANAGEMENT PLAN: 89 LA SALLE AVE SITE – PRR SITE INSPECTION

PHOTO 1

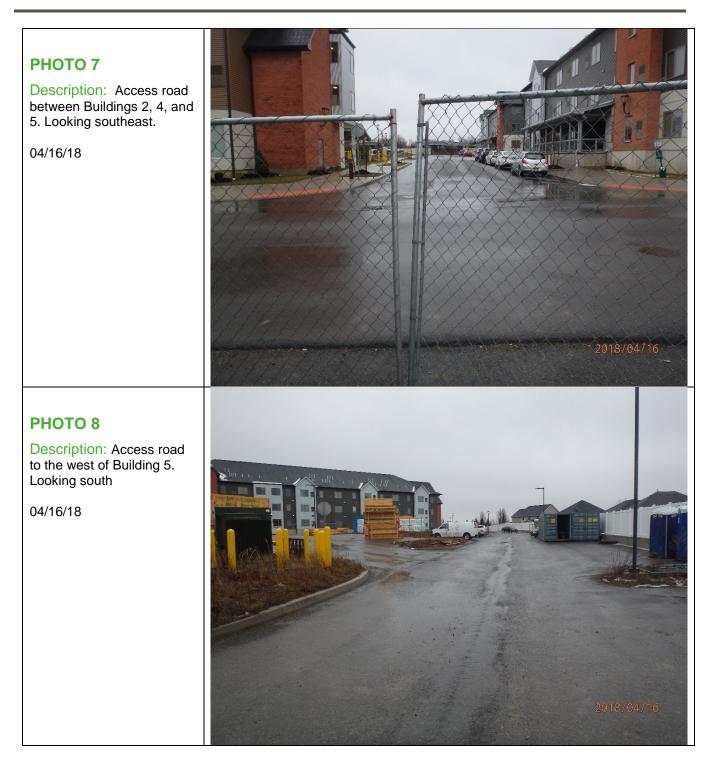
Description: MH-1: Stormwater/sediment sample location

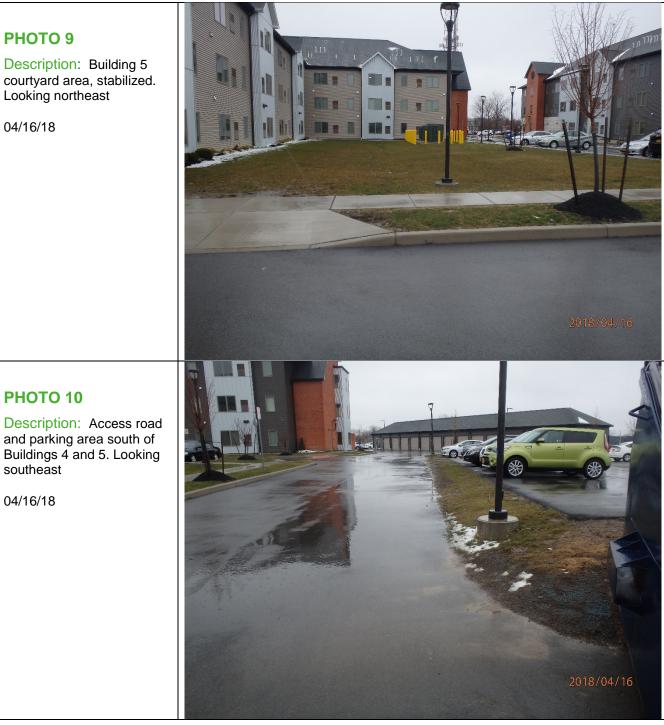
04/16/18

РНОТО 2

Description: Northeast corner of Building 1, under construction. Looking southeast

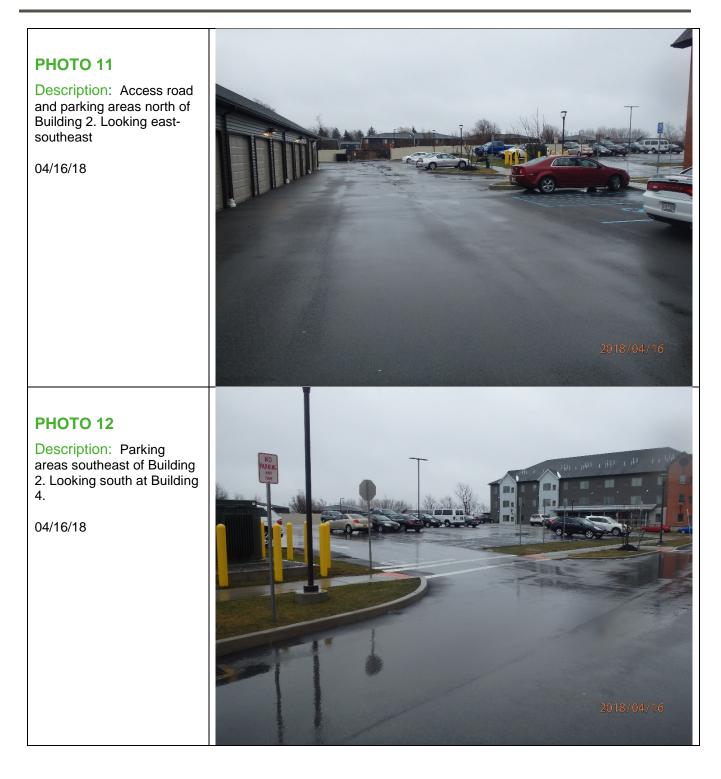
04/16/18


https://golderassociates.sharepoint.com/sites/19058g/Deliverables/Draft/Photos - Nov 2017 & April 2018 Inspect/April 2018 Photos/LaSalle Ave site PRR inspection photo log (04-16-18).docxError! Unknown document property name.



https://golderassociates.sharepoint.com/sites/19058g/Deliverables/Draft/Photos - Nov 2017 & April 2018 Inspect/April 2018 Photos/LaSalle Ave site PRR inspection photo log (04-16-18).docxError! Unknown document property name.

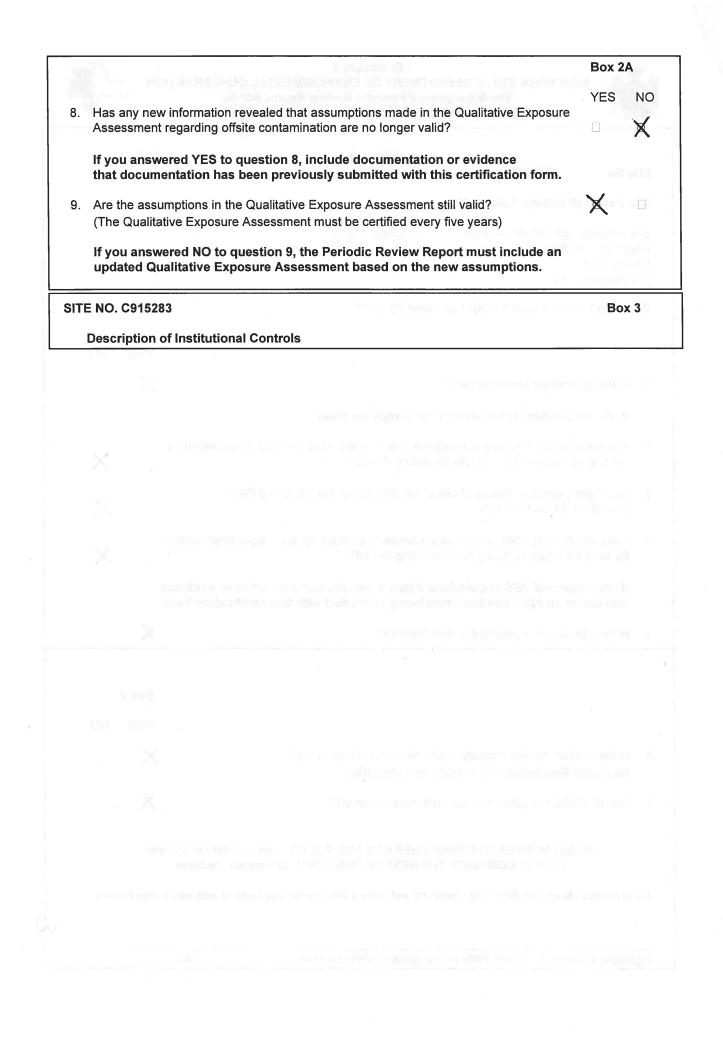
ら GOLDER


https://golderassociates.sharepoint.com/sites/19058g/Deliverables/Draft/Photos - Nov 2017 & April 2018 Inspect/April 2018 Photos/LaSalle Ave site PRR inspection photo log (04-16-18).docxError! Unknown document property name.

Description: Access road and parking area south of Buildings 4 and 5. Looking southeast

04/16/18

APPENDIX C


SITE C915283 SITE MANAGEMENT PLAN PERIODIC REVIEW REPORT – 2017/2018 ICS-ECS CERTIFICATION FORM

	795	W.	
3	A	<u>.</u>	A.
1	$\mathcal{C}_{\mathcal{C}}$		D .
1	1, B.	-	ils.

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

TORK

12	A second s		
	Site Details	Box 1	
Site			
Site	Name 89 LaSalle Avenue Site		
City/ Cour	Address: 89 LaSalle Avenue Zip Code: 14212 Town: Buffalo nty: Erie Acreage: 9.2		
Repo	orting Period: March 30, 2017 to March 30, 2018		
		YES	NO
1. I	s the information above correct?	×	
I	f NO, include handwritten above or on a separate sheet.		
	Has some or all of the site property been sold, subdivided, merged, or undergone a ax map amendment during this Reporting Period?		×
	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?		X
	Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?		X
	f you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form.		
5. I	s the site currently undergoing development?	×	
		2	
		Box 2	
		YES	NO
	Is the current site use consistent with the use(s) listed below? Restricted-Residential, Commercial, and Industrial	×	
7. /	Are all ICs/ECs in place and functioning as designed?	X	
	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below a DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	and	
A Co	prrective Measures Work Plan must be submitted along with this form to address t	hese is	sues.
Sign	ature of Owner, Remedial Party or Designated Representative Date		

Parcel	Owner	Institutional Control
79.70-2-11	Legacy LaSalle, LLC	
in particular		Ground Water Use Restriction
		Soil Management Plan
		Landuse Restriction
		Monitoring Plan
		Site Management Plan
		IC/EC Plan
	10634	
1. Prohibition of grou		
	d to Restricted Residential, Commercial or for any future intrusive work.	industrial purposes.
79.70-2-17.1	Legacy LaSalle, LLC	Landura Destriction
		Landuse Restriction Ground Water Use Restriction
		Soil Management Plan Monitoring Plan
		Site Management Plan
		IC/EC Plan
1. Prohibition of grou	ndwater use.	
	d to Restricted Residential, Commercial or	Industrial purposes.
	for any future intrusive work.	Service of a stand water and decimient mon
79.70-2-18	Legacy LaSalle, LLC	
	Malaria w	Ground Water Use Restriction
		Soil Management Plan
		Landuse Restriction
		Monitoring Plan
		Site Management Plan
		IC/EC Plan
portion of 79.70-2-1	6.11 Legacy LaSalle, LLC	Ground Water Use Restriction Soil Management Plan Landuse Restriction Monitoring Plan Site Management Plan IC/EC Plan Ground Water Use Restriction Soil Management Plan
		Landuse Restriction
		Monitoring Plan
		Site Management Plan IC/EC Plan
1. Prohibition of grou		
	d to Restricted Residential, Commercial or for any future intrusive work. 7.2 Legacy LaSalle, LLC	
		Ground Water Use Restriction Soil Management Plan Landuse Restriction Monitoring Plan Site Management Plan IC/EC Plan
 Prohibition of grou Land use restricte 	ndwater use. d to Restricted Residential, Commercial or	Industrial purposes.

3. Soil Management for any future intrusive work.

Box 4

Description of Engineering Controls Engineering Control Parcel 79.70-2-11 Cover System 1. Monitoring and maintenance of the cover system. 2. Semi-annual storm water and sediment monitoring. 79.70-2-17.1 Cover System 1. Monitoring and maintenance of the cover system. 2. Semi-annual storm water and sediment monitoring. 79.70-2-18 Cover System 1. Monitoring and maintenance of the cover system. 2. Semi-annual storm water and sediment monitoring. portion of 79.70-2-16.11 Cover System Cover System 1. Monitoring and maintenance of the cover system. 2. Semi-annual storm water and sediment monitoring. portion of 79.70-2-17.2 Cover System 1. Monitoring and maintenance of the cover system. 2. Semi-annual storm water and sediment monitoring.

Ginard Wieter Ute Answenen Sint Margehammeres Lannes Ramfatea Marwong Kilan Sterkareganed Plan IC/BC Fue

Gaalmit Natur Las de de tentenne Sei Naturae Fealle Ho Nanten of Fealle Ho Manten of Plan Stie M. angâment Plan Joch C. Pure

Beat is the second of the real second

 Long use multiples to Lestroies des vernal. C. Screenuler: note: "http://purposes. : 3.32 Manuseinsphifer.acy with supervisione work."

Ground Mater Dae Realifetter Seit Meringement Plan Landone Richtefon Manuar heitigteten Olle Managemetr Phan Dick Managemetr Phan

the allege to the sector of the

Description of Restriction of Restriction (Communication) and the Restriction of Restriction of Restriction (Restriction)

	Periodic Review Report (PRR) Certification Statements
1.	I certify by checking "YES" below that:
	 a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;
	 b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.
	YES NO
2.	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true:
	(a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.
	YES NO
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.

Signature of Owner, Remedial Party or Designated Representative

Date

IC CERTIFICATIONS SITE NO. C915283 Box 6 SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. at <u>2430 N. fones</u> AVE print business address print name am certifying as ______ _____(Owner or Remedial Party) for the Site named in the Site Details Section of this form. Signature of Owner, Remedial Party, or Designated Representatives Rendering Certification

IC/EC CERTIFICATIONS

Professional Engineer Signature

Box 7

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I PATRICK T. MANTIN at 2430 N. FOMST RD., 64720144 am certifying as a Professional Engineer for the _____OWNER

Signature of Professional Engineer, for the Owner or Remedial Party, Rendering Certification

(Owner or Remedial Party) ME 0 Date (Required for PE)