89 LaSalle Avenue Site ERIE, NEW YORK Periodic Review Report

NYSDEC Site Number: C915283

Prepared for:

Legacy UPAL, L.P. 89 LaSalle Avenue Site Buffalo, New York 14225

Prepared by:

WSP USA Inc. 455 Commerce Dr., Suite 8 Buffalo, New York, USA 14228 (716) 204-5880

JUNE 22, 2023

TABLE OF CONTENTS

1.0	SITE OVERVIEW 1	
1.1 1.2 1.3 1.4	Site Location & Description	
2.0	REMEDIAL SYSTEMS COMPLIANCE 4	
2.1	General 4	
3.0	INSTITUTIONAL CONTROL COMPLIANCE	,
3.2	Introduction 5 .1.1 General 5 Description of Institutional Controls 5 .2.1 Status of ICs 6	
4.0	MONITORING PLAN COMPLIANCE REPORT	,
4.2	1.1 General 7 1.2 Schedule 7	
5.0	OVERALL CONCLUSIONS AND RECOMMENDATIONS 11	
6.0	REFERENCES	

LIST OF TABLES

Table 4-1	Monitoring/Inspection Schedule
Table 4-2	Summary of Analytical Results for Stormwater and Sediment Samples (November 2022)
Table 4-3A	Summary of Exceedances - Stormwater Analytical Results (2017-2022)
Table 4-3B	Summary of Detections – Sediment Analytical Results (2017-2022)

LIST OF FIGURES

Figure 4-1 November 2022 Stormwater and Sediment Sample Locations

LIST OF APPENDICES

- Appendix A Analytical Data Report (November 2022) Alpha Analytical
- Appendix B Site- Wide Inspection Forms & Photo Logs November 2022
- Appendix C Site C915234 Site Management Plan Periodic Review Report –2022 ICs-ECs Certification Form
- Appendix D DEC Sampling and Site Inspection Frequency Modification Letter

1.0 SITE OVERVIEW

1.1 Site Location & Description

The location of the site is comprised of two parcels, addressed at 89 LaSalle Avenue and 71 NYL & W RR located in the City of Buffalo, County of Erie, New York and identified respectively as SBL 79.70-2-5.1 and SBL 79.70-2-16.111 on the Erie County Tax Map. The owner of the 89 LaSalle parcel is Legacy UPAL, L.P and the owner of the 71 NYL & W RR parcel is the City of Buffalo. The total acreage of the two parcels is approximately 11.9 acres with a Brownfields Cleanup Program (BCP) site (hereinafter referred to as Site) boundary of 9.23 acres. The combined parcel is bordered by commercial properties and LaSalle Avenue to the north, McCarthy Park to the south, residential apartments to the east (Camelot Ct.), and residential properties located on William Price Parkway to the west (see Site Vicinity Map, Figure 1-1). The Site was remediated in accordance with Brownfield Cleanup Agreement (BCA) Site# C915283, which was executed on June 6, 2014.

1.2 Nature and Extent of Contamination Prior to Remediation

Prior to Site remediation under the BCP, a Remedial Investigation (RI) was performed to characterize the nature and extent of contamination at the Site. The RI activities conducted on the Site as preparation for remedial efforts included the installation of four (4) wells, the advancement of fifteen (15) borings, the excavation of nineteen (19) test pits, and the collection of four (4) surface soil samples. Generally, the RI determined that the historic use of the Site as a landfill was evident in analytical results from the initial RI identifying the widespread presence of low levels of heavy metals and Polycyclic Aromatic Hydrocarbons (PAHs) as the Constituents of Primary Concern (COPCs) in soil/fill across the Site, and specifically at several locations identified across the central portion of the Site where the COPC concentrations were elevated relative the rest of the Site. Previous investigations had been conducted on portions of the BCP Site referenced as the LaSalle Reservoir site, which generally encompassed the southeastern half of the Site (the former Buffalo Crushed Stone quarry area).

Four (4) impacted locations identified during the initial RI were subject to a supplemental remedial investigation delineating the elevated COPC impacts detected in these areas of concern. Findings from the supplemental test pit investigation of the four impacted areas of interest confirmed that there was no evidence of significant lateral or vertical contamination surrounding the original soil boring locations. Levels of COPCs detected in the supplemental test pits indicated that concentrations of COPCs, where detected, were below Site-specific Soil Cleanup Objectives (SCOs) as proposed in the Final RI Report and consistent with observations of RI analytical results across the Site. The heterogeneous nature of the soil/fill across the Site, and analytical results indicating widespread low-level concentrations of COPCs above the Restricted Residential SCOs throughout Site overburden, demonstrated that a source or sources of contamination found at the four original areas of concern was not present.

1.3 Site Remedial Program

The Site was remediated in accordance with the NYSDEC-approved 89 LaSalle RI-IRM-AA Report dated January 2015.

The following is a summary of the Remedial Actions performed at the Site:

- Excavation of soil/fill identified at four RI boring locations as significantly exceeding restricted residential SCOs, to a minimum depth of 5 feet or bedrock where applicable;
- Construction and maintenance of a soil cover system consisting of two feet of clean imported material, and/or impervious material (i.e., asphalt pavement, concrete sidewalks and buildings) differentiated by a demarcation layer to prevent human exposure to remaining contaminated soil/fill remaining at the Site;
- Execution and recording of an Environmental Easement to restrict land use and prevent future exposure to any contamination remaining at the Site.
- Development and implementation of a Site Management Plan (SMP) for long term management of remaining contamination as required by the Environmental Easement, which includes plans for: (1) Institutional and Engineering Controls, (2) monitoring, (3) maintenance and (4) reporting;

Remedial activities were completed at the Site in February 2015 (hotspot soil/fill excavations), and between April and October 2015 installation of the Site's cover system was incrementally installed as the Site's development progressed through construction and final Site restoration.

A total of 350 tons of contaminated soil/fill was excavated and removed from the four hotspot locations identified in the RI Report (Boring locations B-5, B-7, B-8 and B-9) and illustrated on Figure 5 in the SMP. The excavated hotspot locations were subsequently backfilled with excess soils excavated and stockpiled from other uncontaminated locations on the Site, primarily storm sewer and water line utility trenching locations. In addition, approximately 1300 tons of topsoil mixed with vegetative material was also stripped from the upper 3-6 inches of portions of the Site and disposed of off-Site. This material was not identified as exceeding the applicable SCOs, however it was not suitable for reuse on the Site as part of the final cover system.

After completion of the remedial work, some contamination was left in the subsurface at this Site, which is hereafter referred to as "remaining contamination." A layer of geotextile fabric has been installed as a demarcation layer in those areas of the Site where two feet of clean soil cover is the component of the cover system. This geotextile was placed on top of the subgrade soil/fill prior to placement of clean soil. At other locations on the Site where the cover system consists of impervious asphalt or concrete, a layer of geotextile has also been placed between the remaining soil/fill and clean structural gravel or crushed stone fill. In areas were buildings or structures act as the final cover system, a minimum of two feet, and in most areas four feet, of clean imported material was placed prior to placement of concrete pads and the erection of structures. In the case of Building 1, clean subbase material was placed, covered with clean topsoil and seeded in the same manner as other green space on the Site, until such time the building foundations and

concrete pad were poured, and the topsoil and vegetative cover stripped down to the clean subbase material.

The SMP was prepared to manage remaining contamination at the Site until the Environmental Easements are extinguished in accordance with ECL Article 71, Title 36. The SMP addresses the means for implementing the Institutional Controls (ICs) and Engineering Controls (ECs) that are required by the Environmental Easement for the Site.

1.4 Purpose of Periodic Review Report

This Periodic Review Report (PRR) presents information on the maintenance, monitoring and compliance activities performed at the 89 LaSalle Avenue Site No. C915283 covering the period from March 30, 2022, to March 30, 2023.

2.0 REMEDIAL SYSTEMS COMPLIANCE

2.1 General

Since remaining contaminated soil and groundwater exists beneath the Site, Engineering Controls and Institutional Controls (EC/ICs) are required to protect human health and the environment.

Site-specific Soil Cleanup Objectives (SCOs) were developed and approved based on 6NYCRR Part 375 Restricted Residential SCOs. These SCOs were employed as soil cleanup goals to achieve the remedial action objectives for the Site of minimizing the potential for exposure of remaining soil contaminants to humans and the environment. The SCOs established are soil concentration limits protective of human health and surface water quality. Achievement of the Site specific SCOs was confirmed through verification sampling.

The selected Engineering Control implemented at the Site (following completion of remediation activities) was the construction and maintenance of a soil cover system consisting of two feet of clean imported material and/or impervious material (i.e., asphalt pavement, concrete sidewalks and buildings), differentiated by a demarcation layer to prevent human exposure to remaining contaminated soil/fill.

The approved SMP requires the implementation of a long-term monitoring plan that incorporates monitoring and maintenance of the Site cover system to identify evidence of excessive soil erosion to soil cover systems or deterioration of asphalt or concrete structures that might indicate that off-Site transport of soil/fill is likely to occur or is occurring. In addition, annual stormwater and sediment monitoring and analysis is performed to further assess performance of the cover system.

The results of the required monitoring activities and annual inspection are presented in Section 4 "Monitoring Plan Compliance Report".

3.0 INSTITUTIONAL CONTROL COMPLIANCE

3.1 Introduction

3.1.1 General

Since remaining contaminated soil and groundwater exist beneath the Site, Engineering Controls and Institutional Controls (EC/ICs) are required to protect human health and the environment. The Engineering and Institutional Control Plan describes the procedures for the implementation and management of all EC/ICs at the Site. The EC/IC Plan is one component of the SMP and is subject to revision by NYSDEC. The goals of the ICs are to: (1) implement, maintain and monitor Engineering Control systems; (2) prevent future exposure to remaining contamination by controlling disturbances of the subsurface contamination; and (3) limit the use and development of the Site to Restricted Residential uses only. Adherence to these Institutional Controls is required by the Environmental Easement and will be implemented under this Site Management Plan.

3.2 Description of Institutional Controls

The Institutional Controls are:

- Compliance with the Environmental Easements and the SMP by the Grantor and the Grantor's successors and assigns;
- All Engineering Controls must be maintained as specified in the SMP;
- All Engineering Controls on the Controlled Property must be inspected at a frequency and in a manner defined in the SMP;
- Stormwater, sediment and other environmental or public health monitoring must be performed as defined in the SMP;
- Data and information pertinent to Site Management of the Controlled Property must be reported at the frequency and in a manner defined in the SMP.

The Site has a series of Institutional Controls in the form of site restrictions. Adherence to these Institutional Controls is required by the Environmental Easement. Site restrictions that apply to the Controlled Property are:

- The property may only be used for restricted residential use, provided that the long-term Engineering and Institutional Controls included in the SMP are employed;
- The property may not be used for a higher level of use, such as unrestricted residential use without additional remediation and amendment of the Environmental Easement, as approved by the NYSDEC;
- All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP;
- The use of the groundwater underlying the property is prohibited without treatment rendering it safe for intended use;
- Vegetable gardens and farming on the property are prohibited; and,
- The Site owner or remedial party will submit to NYSDEC a written statement that certifies, under penalty of perjury, that: (1) controls employed at the Controlled Property are

unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC; and, (2) nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP. NYSDEC retains the right to access such Controlled Property at any time in order to evaluate the continued maintenance of any and all controls. This certification shall be submitted annually, or at an alternate frequency that NYSDEC may allow and will be made by an expert that the NYSDEC finds acceptable.

The Environmental Easement summarizing the Site use restrictions and requirements for the Site was executed by the Department on December 14, 2015, and filed with the Erie County Clerk on December 15, 2015. A copy of the easement and proof of filing is provided in Appendix A of the SMP.

3.2.1 Status of ICs

During the reporting period covered by this PRR, all ICs were in place and effective in meeting their objectives. There was no intrusive work performed on the BCP Site during the reporting period covered by this PRR.

There are no corrective measures required to ensure the effectiveness of ICs at this time based on the results of the monitoring and semi-annual inspection performed.

Stormwater and sediment samples for the current PRR period were collected on November 30, 2022, when stormwater effluent was present in sufficient quantity for sampling at the MH-1 structure. The next sampling event is tentatively scheduled for October 2023.

4.0 MONITORING PLAN COMPLIANCE REPORT

4.1 Introduction

4.1.1 General

The Monitoring Plan describes the measures for evaluating the performance and effectiveness of the remedy to reduce or mitigate contamination at the Site, the soil cover system, and all affected Site media identified below. The Monitoring Plan may only be revised with the approval of NYSDEC.

4.1.2 Schedule

Semi-annual monitoring and inspection of the performance of the remedy and overall reduction in contamination on-Site was conducted for the first 5 years. On July 5, 2022, the NYSDEC approved the reduction of Site sampling and inspections from semi-annual to annual, this correspondence can be found in Appendix D. Characterizations of the quality of stormwater and sediment generated as runoff from the Site's engineered cover system have been selected as representative Site monitoring media. Trends in contaminant levels in stormwater and sediment in the affected areas will be evaluated to determine if the remedy continues to be effective in achieving remedial goals. The monitoring and inspection program is summarized in detail in Table 4-1. The results of the monitoring performed are discussed further in Section 4.2.

Table 4-1: Monitoring/Inspection Schedule

* The frequency of events will be conducted as specified until otherwise approved by NYSDEC and NYSDOH

Monitoring Program	Frequency*	Matrix	Analysis/Comments
Stormwater Discharge to City of Buffalo Storm Sewer System	Annually	Stormwater runoff and sediment (when present)	TAL Metals (Method 6020B), Semi-volatile compounds (Method 8270D SIM), Total Solids [sediment only] (SM 2540)
Annual Site Inspection	Annually	Visually inspect entire Site for cover system integrity and signs of unacceptable deterioration or other damage to cover system components that may result in exposure to contaminated soil	Prepare a detailed written description of the condition of all cover system components. Include a photographic record of inspection areas

4.2 Monitoring Program Results

4.2.1 Surface Water and Sediment Monitoring

On November 30, 2022, stormwater and sediment grab samples were collected within 6 hours of a precipitation event exceeding 0.5 inch. The stormwater sample was collected at the discharge of Manhole 1 (designated MH-1) located at the northwest corner of the BCP Site. MH-1 subsequently discharges to the City of Buffalo storm sewer system at LaSalle Ave. The sediment sample was collected at the base of the manhole, which consisted primarily of eroded asphalt and small gravel. The samples were collected at one location in accordance with the Legacy LaSalle C915283 Site SMP.

Stormwater samples were analyzed for Semi-Volatiles and Total Metals. Sediment samples were analyzed for Semi-Volatiles, Total Metals and Total Solids. The analytical results from the November 2022 sampling event are summarized in Table 4-2. Table 4.2 presents sample detections compared to NYSDEC surface water standards (NYSDEC 1998) and Technical Guidance Series (T.O.Gs) Surface Water Guidance values, Class A Freshwater Sediment Guidance Values (Table 5) from the "*Screening and Assessment of Contaminated Sediments*", NYSDEC, July 2014, and Part 375 Restricted Residential SCOs.

Detections above NYSDEC surface water standards or guidance values for the following SVOCs and metals were found in the November 2022 stormwater sample:

- benzo[a]anthracene (0.00019 ppm)
- benzo[a]pyrene (0.00018 ppm)
- benzo[b]fluoranthene (0.00021 ppm)
- benzo[k]fluoranthene (0.00005 ppm)
- chrysene (0.0002 ppm)
- Indeno [1,2,3-cd] pyrene (0.00012 ppm)
- iron (1.54 ppm)
- sodium (3220 ppm)

The SVOC PAH detections were all values above the TOGs 1.1.1 surface water guidance values. There are no 6 NYCRR Part 703 water quality standards promulgated for these compounds.

As noted above, the November 30, 2022 sampling event took place immediately after a localized rain event exceeding 0.5 inch of total precipitation, but also roughly a week after a fierce lake-effect snowstorm which dropped 14-81 inches of snow across the Western New York region from November 16-21, 2022. The

abundance of snowfall melted relatively quickly in the days following the storm, as temperatures remained above freezing and into the 50s °F from November 25-29, 2022. Due to the increased plowing and abrasion n roadways, parking lots and the high influx of snowmelt into storm drains, the elevated levels of the PAH compounds in the stormwater sample is likely traceable to motor vehicle emissions and asphalt runoff. Similarly, the increased Iron and Sodium levels in the stormwater sample is likely attributed to the migration of road salt and other ice melting products via runoff.

No exceedances of the Class A Freshwater Sediment Guidance Values were detected in the November 2022 sediment sample.

A copy of the laboratory Analytical Reports for the stormwater and sediment analyses performed is attached in Appendix A.

Table 4-3A provide a summary of the compounds in the surface water that have exceeded either a regulatory standard or guidance value (for stormwater) from 2017 through the November 2022 annual sampling events since monitoring began under the SMP. The table indicates that low levels of six (6) PAHs have consistently been present in concentrations exceeding their respective NYSDEC T.O.G.S 1.1.1 Surface Water Guidance Values. The concentrations of these compounds over five of the past six sampling events had previously remained unchanged and consistent with background detections of PAHs in run-off found in urban settings due to depositional contributions from fossil fuel combustion, vehicle emissions and asphalt parking areas. Exceedances of Part 703 Surface Water Quality Standards for iron and sodium have been detected in the stormwater samples for the majority of the sampling events, these compounds are associated with naturally occurring background soil concentrations and the use of road salt in the winter months on Site roads and sidewalks. Only one exceedance of Part 703 Surface Water Quality Standards for iron and solid soft for semi-volatile compounds [bis(2-tethylhexyl) phthalate] occurred in 2018, with none since.

Table 4-3B provides a summary of the compounds in the sediment samples that have been detected from 2017 through the November 2022 annual sampling events since monitoring began under the SMP. No exceedances of the Class A Freshwater Sediment Guidance Values have been detected since the March 2017 monitoring event.

4.3 Annual Site Inspection Results

Site inspection was performed on November 30, 2022, to address the reduced frequency of once per year established by the letter of approval from the NYDEC on July 5, 2022. A Site-wide inspection form was completed (Appendix B) during the inspection. The form compiles sufficient information to assess the following:

- Compliance with all ICs, including Site usage;
- General Site conditions at the time of the inspection;
- The Site management activities being conducted including, where appropriate, confirmation sampling and a health and safety inspection;

- Compliance with permits and schedules included in the Operation and Maintenance Plan; and,
- Confirmation that Site records are up to date.

All areas of the Site were carefully inspected to assess the condition of surface soil, asphalt and concrete areas to determine if erosion or related deterioration is occurring that would jeopardize the integrity of soil, asphalt or concrete structures preventing the transport of soil/fill onto surrounding properties. During the inspection event, the integrity of the cover materials were found to be in excellent condition with no integrity issues observed.

A photographic log containing photos taken during the November 2022 inspections are provided in Appendix B.

4.4 Summary of Off-Site Activities During Reporting Period

No intrusive activities were performed off-Site during the period covered by this PRR.

4.5 **Conclusions and Recommendations**

At the time of the annual inspection, the Site was fully compliant with the institutional controls described in the SMP. All monitoring results and inspection results were acceptable with only low-level detection of SVOC PAHs and metals in the stormwater consistent with past findings at the Site outfall stormwater discharge and no evidence of erosion of the soil cover or hardscape portions of the cover on the Site.

5.0 OVERALL CONCLUSIONS AND RECOMMENDATIONS

Based on the monitoring and inspection results described in Section 4 and conducted during the timeframe covered by this PRR, compliance with all relevant components of the SMP ICs was achieved. A copy of the completed and certified "Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form" is attached in Appendix C.

The results of the stormwater and sediment sample results after six years of development and the overall condition of the Site and integrity of the final soil cover system are indicative that the remedy performed under the BCP is achieving its intended goals of minimizing, to the extent feasible, exposure of remaining contamination to the environment through stormwater runoff and associated sediment erosion.

Legacy has received a reduction in the Site Management Plan sampling frequency and Site inspection from semi-annual to annual starting with the 2022-2023 reporting period and that the annual sampling/inspection event occur in the fall each year when weather conditions are more conducive to collecting a representative stormwater sample. This request is based on a review of the long-term monitoring results (summarized in Table 4-3) indicating that the Site remedy and ongoing institutional controls have been successful in controlling off-Site impacts and the concentrations of compounds of concern have remained low and stable since monitoring was initiated in 2017. The approval letter is attached in Appendix D.

6.0 **REFERENCES**

- 1. Golder Associates Inc., Final Engineering Report, 89 LaSalle Ave. Site, NYSDEC Site No. C915283, December 2015.
- 2. Golder Associates Inc., Site Management Plan, 89 LaSalle Ave. Site, NYSDEC Site No. C915283, prepared for Legacy LaSalle LLC, December 2015.

TABLE 4-2

SUMMARY OF ANALYTICAL RESULTS FOR STORMWATER AND SEDIMENT SAMPLES (NOVEMBER 2022)

(TABLE 4-1 IN TEXT)

March 2023

TABLE 4-2 SUMMARY OF ANALYTICAL RESULTS FOR STORMWATER & SEDIMENT SAMPLES 89 LASALLE AVENUE BCP SITE # C915283 LEGACY LASALLE, LLC. BUFFALO, NY

		1	,					
Lab ID	Water Quality Standards Surface	NYS T.O.G.S	Class A Freshwater Sediment Guidance Values*	Restricted	L22184 Stormwa		L2218 Sedim	
Sample ID	Waters and Groundwater	1.1.1 Surface Water Guidance		Residential SCOs Table 375-6.8(b)	MH-1		MH-1	
Sample Date	(6 NYCRR Part 703)	Values+	Values		11/30/2	22	11/30/22	
Units	(ppm)	(ppm)	(ppm)	(ppm)	(ppm		(ppi	
Semivolatile Organics (Method 8270D-SIM)	(PP)	(PP)	(PP)	(PP)	(PP	/	(PP-	,
2-Methylnapthalene	NV	NV	NV	NV	0.00013		ND	
Acetophenone	NV	NV	NV	NV	ND		0.0001	J
Acenaphthene	0.02	0.0053	NV	100	0.00008	J	ND	
Acenaphthylene	NV	NV	NV	100	0.00006	J	ND	
Anthracene	NV	0.0038	NV	100	0.00012	J	ND	
Benzaldehyde	NV	NV	NV	NV	ND		ND	
Benzo[a]anthracene	NV	0.000002	NV	1	0.00019		0.048	J
Benzo[a]pyrene	NV	0.0000012	NV	1	0.00018		0.062	J
Benzo[b]fluoranthene	NV	0.000002	NV	1	0.00021		0.1	
Benzo[g,h,i]perylene	NV	NV	NV	100	0.14	J	ND	
Benzo[k]fluoranthene	NV	0.000002	NV	3.9	0.00005	J	ND	
Biphenyl	NV	0.005	NV	1	ND		ND	
Bis(2-ethylhexyl) phthalate	0.005	NV	<360	NV	ND		ND	
Butyl benzyl phthalate	NV	0.05	NV	NV	ND		2.1	
Caprolactam	NV	NV	NV	NV	ND		ND	
Carbazole	NV	NV	NV	NV	ND		ND	
Chrysene	NV	0.000002	NV	3.9	0.0002		0.084	J
Dibenzo(a,h)anthracene	NV	NV	NV	0.33	0.00003	J	ND	
Dibenzofuran	NV	NV	NV	NV	ND		ND	
Di-n-butyl phthalate	NV	0.05	NV	NV	ND		ND	
Di-n-octyl phthalate	NV	0.05	NV	NV	ND		ND	
Diethyl phthalate	NV	0.05	NV	NV	ND		ND	
Fluoranthene	NV	0.05	NV	100	0.00027	J	0.11	J
Fluorene	NV	0.00054	NV	100	0.00007	J	ND	
Hexachlorobenzene	0.00004 NV	NV 0.000002	NV NV	NV 0.5	ND 0.00012	J	ND 0.051	J
Indeno[1,2,3-cd]pyrene	0.01	0.00002 NV	NV	100		J	ND	J
Naphthalene Phenanthrene	NV	0.005	NV	100	0.00014 0.00038		0.074	J
Pyrene	NV	0.005	NV	100	0.00037		0.074	J
Pentachlorophenol	0.001	0.05 NV	< 14	6.7	0.00037 ND		ND	
3-Methylphenol/4-Methylphenol	NV	NV	NV	NV	ND		ND	
Total Metals (SW 846 Method 6020 B)	140	140	INV	INV	ND			
Aluminum	NV	NV	NV	NV	1.22		1190	
Antimony	0.003	NV	NV	NV	0.00068	J	ND	
Arsenic	0.05	NV	<10	16	0.00082	5	1.85	
Barium	1	NV	NV	400	0.02763		7.25	
Beryllium	0.011	0.003	NV	72	0.00012	J	0.107	J
Cadmium	0.005	NV	<1	4.3	ND		0.122	J
Calcium	NV	NV	NV	NV	78.6		184,000	
Chromium	0.05	NV	<43	180	0.00137		5.72	
Cobalt	0.005	NV	NV	NV	0.00041	J	1.18	J
Copper	0.2	NV	<32	270	0.00463		8.55	
Iron	0.3	NV	NV	NV	1.54		7770	
Lead	0.05	NV	<36	400	0.00601		8.47	
Magnesium	35	NV	NV	NV	5.46	-	11200	-
Manganese	0.3	NV	NV	2000	0.05372		160	
Mercury	0.0007	NV	<0.2	0.81	0.00019	J	ND	
Nickel	0.1	NV	<23	310	0.00152	J	4.6	
Potassium	NV	NV	NV	NV	1.59		239	J
Selenium	0.0046	NV	NV	180	ND		ND	
Silver	0.05	NV	<1	180	ND		ND	
Sodium	20	NV	NV	NV	3220		5530	
Thallium	0.008	0.0005	NV	NV	0.00044	J	ND	
Vanadium	0.014	NV	NV 1100	NV	ND		5.00	
Zinc	NV	2	<120	10000	0.04684		33.6	

TABLES 4-2 & 4-3

SUMMARY OF ANALYTICAL RESULTS FOR STORMWATER & SEDIMENT SAMPLES 89 LASALLE AVENUE BCP SITE # C915283 LEGACY LASALLE, LLC. BUFFALO, NY

.

Notes & Data Qualifiers:

- 1 Stormwater analysis results for semi-volatiles are reported for Method 8270D-SIM
- + The most stringent surface water limitation for either Source of Drinking Water H(WS) or Human Consumption of Fish H(FC) is listed
- * Freshwater Sediment Guidance Values for Class A Sediments. "Screening & Assessment of Contaminated Sediment", NYSDEC, June 2014
- B = Analyte was detected in associated method blank.
- J = Analyte detected at a level less than the reporting limit (RL) and greater than or equal to the Method Detection Limit (MDL). Concentrations within this range are estimated.

Footnotes:

- **12.1** = Sample concentration exceeds NYSDEC Part 703 Water Quality Standards Surface Waters and Groundwater
- **BOLD** = Sample concentration exceeds the TOGS 1.1.1 Surface Water Guidance values
- 0.34 = Sample concentration exceeds NYSDEC Part 375 Restricted Residential Use Soil Cleanup Objectives (SCOs)
- 44 = Sample concentration exceeds NYSDEC B10 Freshwater Sediment Guidance Value for Class A sediments
- ND = Non detectable concentration by approved analytical methods; water quality standard.
- NV = No Standard or Guidance Value Specified
- NA = Not Analyzed

Table by:	TG
Checked by:	PTM
Reviewed by:	PTM

January 2023

TABLES 4-3A and 4-3B

SUMMARY OF EXCEEDANCES OR DETECTIONS - STORMWATER AND SEDIMENT ANALYTICAL RESULTS (2017-2022)

MARCH 2023 TABLE 4-3A SUMMARY OF STORMWATER - COMPOUNDS WITH EXCEEDANCES (2017 - 2022) 89 LASALLE AVENUE BCP LEGACY LASALLE, LLC. BUFFALO, NY

Lab ID	Water Quality Standards	NYS T.O.G.S	Class A Freshwater	Restricted Residential	L1710024-01 Stormwater	L1740169-01 Stormwater ¹	L1813173-01 Stormwater ¹	L1915294-01 Stormwater ¹	L1952404-01 Stormwater ¹	L2013833 Stormwater ¹	L1952404-01 Stormwater ¹	L2115550-01 Stormwater ¹	L2158753 Stormwater ¹	L2218463 Stormwater ¹	L2267425-02 Stormwater ¹
Sample ID	Surface Waters and Groundwater	1.1.1 Surface Water Guidance	Sediment Guidance	SCOs Table 375-	MH-1	MH-1	MH-1	MH-1	MH-1	MH-1	MH-1	MH-1	MH-1	MH-1	MH-1
Sample Date	(6 NYCRR Part 703)	Values+	Values*	6.8(b)	3/31/17	11/13/17	4/16/18	4/15/19	11/5/19	3/30/20	11/30/20	3/28/21	10/26/21	4/7/22	11/30/22
Units	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
Semivolatile Organics (Method 8270D-SIM)															
Benzo[a]anthracene	NV	0.000002	NV	1	ND	ND	0.00004 J	ND	0.00004 J	ND	0.00004 J	0.00002 J	0.00003 J	0.00004 J	0.00019
Benzo[a]pyrene	NV	0.0000012	NV	1	ND	ND	0.00004 J	ND	0.00002 J	ND	0.00002 J	0.00005 J	0.00003 J	0.00002 J	0.00018
Benzo[b]fluoranthene	NV	0.000002	NV	1	ND	ND	0.00009 J	0.00003 J	0.00003 J	0.00003 J	0.00003 J	0.00009 J	0.00005 J, B	0.00004 J	0.00021
Benzo[k]fluoranthene	NV	0.000002	NV	3.9	ND	ND	ND	0.00002 J	0.00001 J	ND	0.00001 J	0.00002 J	0.00002 J, B	0.00001 J	0.00005 J
Bis(2-ethylhexyl) phthalate	0.005	NV	<360	NV	ND	ND	0.0054	ND	0.002 J	ND	0.002 J	0.0039 J	0.0017 J	ND	ND
Chrysene	NV	0.000002	NV	3.9	ND	ND	0.00008 J	0.00004 J	0.00002 J	0.00001 J	0.00002 J	0.00007 J	0.00003 J	0.00003 J	0.0002
Indeno[1,2,3-cd]pyrene	NV	0.000002	NV	0.5	ND	ND	ND	0.00002 J	0.00002 J	0.00002 J	0.00002 J	0.00008 J	0.00003 J	0.00003 J	0.00012 J
Total Metals (SW 846 Series)															
Antimony	0.003	NV	NV	NV	0.00044 J	0.0005 J	0.00069 J	0.00489 J	ND	ND	0.00224 J	0.00082 J	0.00087 J	0.00138 J	0.00068 J
Cadmium	0.005	NV	<1	4.3	0.00215	ND	0.06023	ND	0.00081	0.0001 J	0.00011 J	0.00009 J	0.00015 J	0.00042	ND
Iron	0.3	NV	NV	NA	0.798	ND	12.1	0.0663	0.387	0.746	0.625	0.464	0.244	0.458	1.54
Lead	0.05	NV	<36	400	0.00215	ND	0.06023	ND	0.00316	0.00383	0.00307	0.00307	0.00065 J	0.00139	0.00601
Sodium	20	NV	NV	NV	14	1.19	12.9	65.7	1.24	27.2	3.08	34.2	1.23	8910	3220

MARCH 2023 TABLE 4-3B SUMMARY OF SEDIMENT SAMPLES - COMPOUNDS WITH DETECTIONS (2017 - 2022) 89 LASALLE AVENUE BCP SITE # C915283 LEGACY LASALLE, LLC. BUFFALO, NY

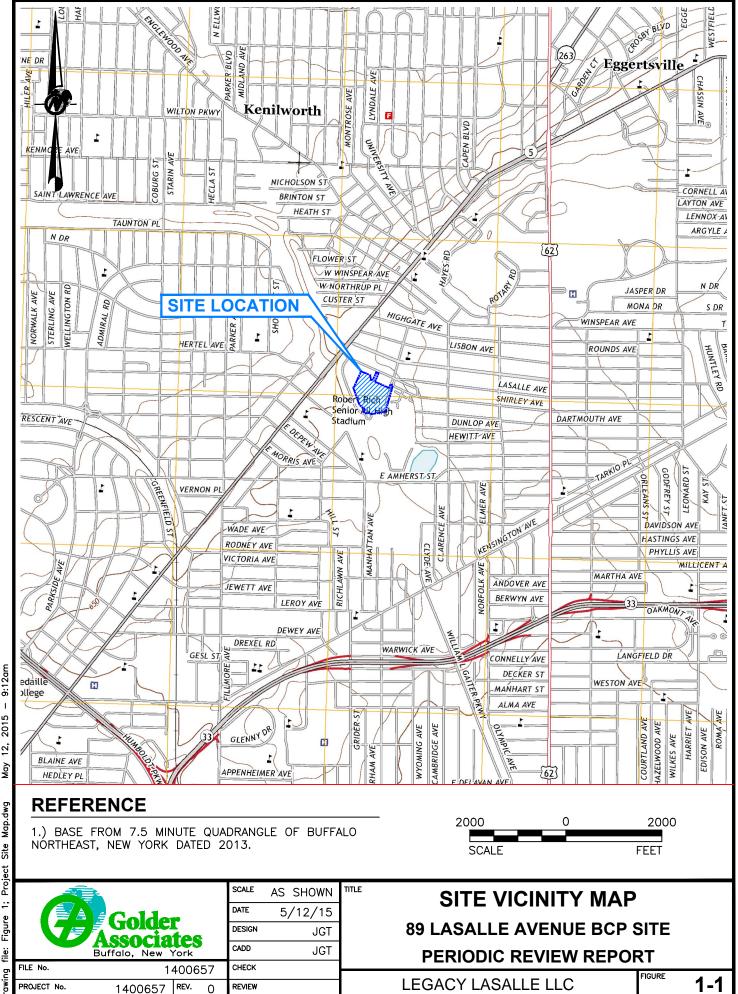
Water Quality Standards Surface	NYS T.O.G.S	Class A Freshwater	Restricted Residential	L1710024-02 Sediment	L1813173-02 Sediment	L1915294-02 Sediment	L1952404-02 Sediment	L2115550-02 Sediment	L2218463 Sediment	L226742 Sedim	
Waters and Groundwater	Water Guidance	Sediment Guidance	Table 375-	MH-1	MH-1	MH-1	MH-1	MH-1	MH-1	MH-	-1
(6 NYCRR Part 703)	values+	Values*	0.0(D)	3/31/17	4/16/18	4/15/19	11/5/19	3/28/21	4/7/22	11/30/	/22
(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppn	n)
NV	0.000002	NV	1	2.7	0.1	0.27	0.22	ND	0.11 J	0.048	J
NV	0.0000012	NV	1	2.1	0.11	0.28	0.21	ND	0.12 J	0.062	J
NV	0.000002	NV	1	2.9	0.18	0.39	0.3	ND	0.2	0.1	
NV	0.000002	NV	3.9	1.1	0.06	0.12 J	0.073 J	ND	0.069 J	ND	
0.005	NV	<360	NV	0.49	0.079 J	0.24 J	ND	ND	0.098 J	ND	
NV	0.000002	NV	3.9	2.6	0.15	0.28	0.22	ND	0.16	0.084	J
NV	0.000002	NV	0.5	1.2	0.056	0.16 J	0.15 J	ND	0.12 J	0.051	J
0.003	NV	NV	NV	ND	2.47 J	1.34 J	0.742 J	ND	ND	ND	
0.005	NV	<1	4.3	44	9.23	59.7	14.2	0.098 J	ND	0.107	J
0.3	NV	NV	NA	9200	7920	23000	17300	3650	3460	7770	-
0.05	NV	<36	400	44	9.23	59.7	14.2	5.98	3.48 J	8.47	-
20	NV	NV	NV	250	292	2760	78.9	217	2460	5530	-
	Waters and Groundwater (6 NYCRR Part 703) (ppm) NV NV NV NV NV 0.005 0.005 0.005 0.3 0.05	Standards Surrace Waters and Groundwater (6 NYCRR Part 703) 1.1.1 Surface Water Guidance Values+ (ppm) (ppm) NV 0.000002 NV 0.000002	Standards Surface Waters and Groundwater (6 NYCRR Part 703) 1.1.1 Surface Water Guidance Values* Sediment Guidance Values* (ppm) (ppm) (ppm) NV 0.000002 NV 0.005 NV <360	Standards Sulfrace Waters and Groundwater (6 NYCRR Part 703) 1.1.1 Surface Water Guidance Values+ Freshwater Sediment Guidance Values* SCOs Table 375- 6.8(b) (ppm) (ppm) (ppm) (ppm) NV 0.000002 NV 1 NV 0.000002 NV 1 NV 0.000002 NV 1 NV 0.000002 NV 1 NV 0.000002 NV 3.9 0.005 NV	Standards Surrace Waters and Groundwater (6 NYCRR Part 703) 1.1.1 Surface Water Guidance Values+ Freshwater Sediment Guidance Values* SCOs Table 375- 6.8(b) MH-1 (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) NV 0.000002 NV 1 2.7 NV 0.000002 NV 1 2.9 NV 0.000002 NV 1 2.9 NV 0.000002 NV 3.9 1.1 NV 0.000002 NV 3.9 1.6 NV 0.000002 NV 3.9 2.6 NV 0.000002 NV 0.5 1.2 NV 0.00002 NV NU ND 0.003 NV NV NA 9200 0.05 NV <36	Standards Surrace Waters and Groundwater (6 NYCRR Part 703) 1.1.1 Surface Water Guidance Values+ Freshwäter Sediment Guidance Values* SCOs Table 375- 6.8(b) MH-1 MH-1 (ppm) (ppm)	Standards Surrace Waters and Groundwater (6 NYCRR Part 703) 1.1.1 Surface Water Guidance Values+ Presiwater Sediment Guidance Values+ SCOs Table 375- 6.8(b) MH-1 MH-1 MH-1 (ppm) 0.27 0.1 0.27 0.1 0.28 0.39 0.00 0.12 0.28 0.12 0.12 0.28 0.12 0.28 0.12 0.24 0.24 0.28 0.28 0.16 0.28 0.16 0.28 0.16 0.28 0.16 0.28 0.16 0.28 0.16 0.28 0.16 0.28 0.16 0.28 0.16 0.28 0.16 0.28 0.16 0.28 0.16 0.28 0.16 0.28 0.16 0.28 0.0005 0.0005 0.16 0.16	Standards Surface Groundwater (6 NYCRR Part 703) 1.1.1 Surface Water Guidance Values+ Freshwater Sediment Guidance Values* SCOs Table 375- 6.8(b) MH-1 MH-1 MH-1 MH-1 (ppm) (ppm)	Standards Surrace Waters and Groundwater (6 NYCRR Part 703) 1.1.1 Surface Water Guidance Values+ Presnwater Sediment Guidance Values+ SCOs Table 375- 6.8(b) MH-1 MH-1 MH-1 MH-1 MH-1 MH-1 (ppm) (ppm)	Standards Surface Waters and Groundwater (6 NYCRR Part 703) 1.1.1 Surface Water Guidance Values+ Freshwater Sedment Guidance Values+ SCOs Table 375- 6.8(b) Gedment Table 375- 6.8(b) Octament MH-1 Octament MH-1 Octament MH-1 Octament MH-1 Octament MH-1 Octament MH-1 MH-1 MH<1 M10 M100 M10	Standards Surface Groundwater (6 NYCRR Part 703) 1.1.1 Surface Water Guidance Values* 1.1.1 Surface Sediment Guidance Values* SCOs Table 375- 6.8(b) SCOs Table 375- 6.8(b) MH-1 M1 M1 M1

TABLES 4-2 & 4-3

SUMMARY OF ANALYTICAL RESULTS FOR STORMWATER & SEDIMENT SAMPLES 89 LASALLE AVENUE BCP SITE # C915283 LEGACY LASALLE, LLC. BUFFALO, NY

Notes & Data Qualifiers:

- 1 Stormwater analysis results for semi-volatiles are reported for Method 8270D-SIM
- + The most stringent surface water limitation for either Source of Drinking Water H(WS) or Human Consumption of Fish H(FC) is listed
- * Freshwater Sediment Guidance Values for Class A Sediments. "Screening & Assessment of Contaminated Sediment", NYSDEC, June 2014
- B = Analyte was detected in associated method blank.
- J = Analyte detected at a level less than the reporting limit (RL) and greater than or equal to the Method Detection Limit (MDL). Concentrations within this range are estimated.


Footnotes:

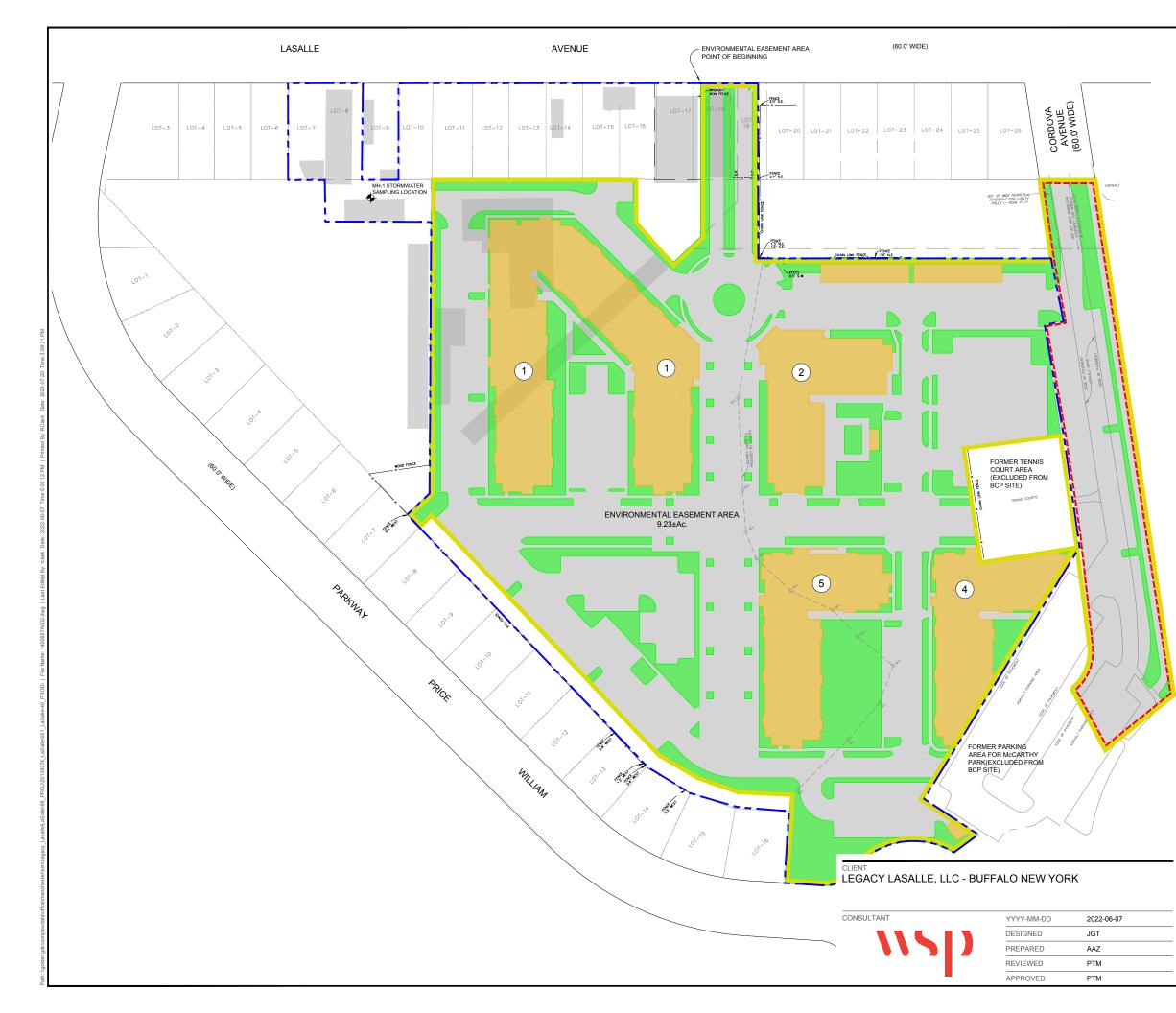
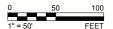

- **12.1** = Sample concentration exceeds NYSDEC Part 703 Water Quality Standards Surface Waters and Groundwater
- **BOLD** = Sample concentration exceeds the TOGS 1.1.1 Surface Water Guidance values
- 0.34 = Sample concentration exceeds NYSDEC Part 375 Restricted Residential Use Soil Cleanup Objectives (SCOs)
 - 44 = Sample concentration exceeds NYSDEC B10 Freshwater Sediment Guidance Value for Class A sediments
- ND = Non detectable concentration by approved analytical methods; water quality standard.
- NV = No Standard or Guidance Value Specified
- NA = Not Analyzed

Table by:	TG
Checked by:	PTM
Reviewed by:	PTM

MArch 2023

FIGURES



LEGEND	
	BCP SITE BOUNDARY
	PARCEL BOUNDARY UPAL; LP PARCEL (SBL 79.70-2-5.1) (10.83 Ac.)
	CITY OF BUFFALO PARCEL (SBL 79.70-2-16.111) (1.04 Ac.)
	QUARRY LIMIT
	COVER SYSTEM - IMPERVIOUS SURFACES
	COVER SYSTEM - BUILDINGS AND STRUCTURES
	COVER SYSTEM - SOIL COVER
1	BUILDING NO.

REFERENCE

1.) BASE MAP FROM DIGITAL FILE PROVIDED BY McINTOSH & McINTOSH, P.C., LOCKPORT, NEW YORK, ENTITLED "SURVEY OF PART OF LOT-46, TWP.-11, R.-8, HOLLAND PURCHASE," DATED MARCH 20, 2012.

PERIODIC REVIEW REPORT

TITLE 89 LASALLE AVENUE SITE PLAN

PROJECT NO. 20139374	control 001	REV. 0	FIGUF
			2
20133374	001	0	

APPENDIX A ANALYTICAL DATA REPORTS – ALPHA ANALYTICAL NOVEMBER 2022

ANALYTICAL REPORT

Lab Number:	L2267425
Client:	WSP
	40 La Riviere Drive
	Suite 320
	Buffalo, NY 14202
ATTN:	Patrick Martin
Phone:	(716) 204-5880
Project Name:	89 LASALLE BCP SITE
Project Number:	GL21502976
Report Date:	12/18/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:12182216:37

Project Name:89 LASALLE BCP SITEProject Number:GL21502976

 Lab Number:
 L2267425

 Report Date:
 12/18/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2267425-01	MH-1 STORMWATER	WATER	89 LASALLE AVE, BUFFALO, NY	11/30/22 13:40	12/01/22
L2267425-02	MH-1 SEDIMENT	SEDIMENT	89 LASALLE AVE, BUFFALO, NY	11/30/22 13:45	12/01/22

Project Name:89 LASALLE BCP SITEProject Number:GL21502976

Lab Number: L2267425 Report Date: 12/18/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name:89 LASALLE BCP SITEProject Number:GL21502976

 Lab Number:
 L2267425

 Report Date:
 12/18/22

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Total Metals

L2267425-02: The sample has elevated detection limits for all elements, with the exception of mercury, due to the dilution required by matrix interferences encountered during analysis.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Cattlin Wallen Caitlin Walukevich

Title: Technical Director/Representative

Date: 12/18/22

ORGANICS

SEMIVOLATILES

		Serial_No	0:12182216:37
Project Name:	89 LASALLE BCP SITE	Lab Number:	L2267425
Project Number:	GL21502976	Report Date:	12/18/22
	SAMPLE RESULTS		
Lab ID:	L2267425-01	Date Collected:	11/30/22 13:40
Client ID:	MH-1 STORMWATER	Date Received:	12/01/22
Sample Location:	89 LASALLE AVE, BUFFALO, NY	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Water	Extraction Method	d: EPA 3510C
Analytical Method:	1,8270E	Extraction Date:	12/04/22 10:33
Analytical Date:	12/06/22 12:17		
Analyst:	SZ		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - V	Vestborough Lab					
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1
2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1
Isophorone	ND		ug/l	5.0	1.2	1
Nitrobenzene	ND		ug/l	2.0	0.77	1
NDPA/DPA	ND		ug/l	2.0	0.42	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.5	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1
Di-n-butylphthalate	ND		ug/l	5.0	0.39	1
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1
Diethyl phthalate	ND		ug/l	5.0	0.38	1
Dimethyl phthalate	ND		ug/l	5.0	1.8	1
Biphenyl	ND		ug/l	2.0	0.46	1
4-Chloroaniline	ND		ug/l	5.0	1.1	1
2-Nitroaniline	ND		ug/l	5.0	0.50	1
3-Nitroaniline	ND		ug/l	5.0	0.81	1
4-Nitroaniline	ND		ug/l	5.0	0.80	1
Dibenzofuran	ND		ug/l	2.0	0.50	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1
Acetophenone	ND		ug/l	5.0	0.53	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1

Project Name:	89 LASALLE BCP SITE	Lab Number:	L2267425	
Project Number:	GL21502976	Report Date:	12/18/22	
	SAMPLE RESULTS			
Lab ID:	L2267425-01	Date Collected:	11/30/22 13:40	
Client ID:	MH-1 STORMWATER	Date Received:	12/01/22	
Sample Location:	89 LASALLE AVE, BUFFALO, NY	Field Prep:	Not Specified	

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - V	Vestborough Lab					
p-Chloro-m-cresol	ND			2.0	0.35	1
2-Chlorophenol	ND		ug/l ug/l	2.0	0.33	1
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1
2-Nitrophenol	ND		ug/l	10	0.85	1
4-Nitrophenol	ND		ug/l	10	0.67	1
2,4-Dinitrophenol	ND		ug/l	20	6.6	1
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1
Phenol	ND		ug/l	5.0	0.57	1
2-Methylphenol	ND		ug/l	5.0	0.49	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1
Carbazole	ND		ug/l	2.0	0.49	1
Atrazine	ND		ug/l	10	0.76	1
Benzaldehyde	ND		ug/l	5.0	0.53	1
Caprolactam	ND		ug/l	10	3.3	1
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	40	21-120
Phenol-d6	43	10-120
Nitrobenzene-d5	86	23-120
2-Fluorobiphenyl	61	15-120
2,4,6-Tribromophenol	30	10-120
4-Terphenyl-d14	58	41-149

Serial_No:12182216:37

		Serial_No	0:12182216:37
Project Name:	89 LASALLE BCP SITE	Lab Number:	L2267425
Project Number:	GL21502976	Report Date:	12/18/22
	SAMPLE RESULTS		
Lab ID:	L2267425-01	Date Collected:	11/30/22 13:40
Client ID:	MH-1 STORMWATER	Date Received:	12/01/22
Sample Location:	89 LASALLE AVE, BUFFALO, NY	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Water	Extraction Method	d: EPA 3510C
Analytical Method:	1,8270E-SIM	Extraction Date:	12/04/22 11:03
Analytical Date:	12/05/22 12:02		
Analyst:	WR		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	-SIM - Westborough L	ab				
Acenaphthene	0.08	J	ug/l	0.10	0.01	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	0.27		ug/l	0.10	0.02	1
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1
Naphthalene	0.14		ug/l	0.10	0.05	1
Benzo(a)anthracene	0.19		ug/l	0.10	0.02	1
Benzo(a)pyrene	0.18		ug/l	0.10	0.02	1
Benzo(b)fluoranthene	0.21		ug/l	0.10	0.01	1
Benzo(k)fluoranthene	0.05	J	ug/l	0.10	0.01	1
Chrysene	0.20		ug/l	0.10	0.01	1
Acenaphthylene	0.06	J	ug/l	0.10	0.01	1
Anthracene	0.12		ug/l	0.10	0.01	1
Benzo(ghi)perylene	0.14		ug/l	0.10	0.01	1
Fluorene	0.07	J	ug/l	0.10	0.01	1
Phenanthrene	0.38		ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	0.03	J	ug/l	0.10	0.01	1
Indeno(1,2,3-cd)pyrene	0.12		ug/l	0.10	0.01	1
Pyrene	0.37		ug/l	0.10	0.02	1
2-Methylnaphthalene	0.13		ug/l	0.10	0.02	1
Pentachlorophenol	ND		ug/l	0.80	0.01	1
Hexachlorobenzene	ND		ug/l	0.80	0.01	1
Hexachloroethane	ND		ug/l	0.80	0.06	1

		Serial_N	o:12182216:37
Project Name:	89 LASALLE BCP SITE	Lab Number:	L2267425
Project Number:	GL21502976	Report Date:	12/18/22
	SAMPLE RESULTS		
Lab ID:	L2267425-01	Date Collected:	11/30/22 13:40
Client ID:	MH-1 STORMWATER	Date Received:	12/01/22
Sample Location:	89 LASALLE AVE, BUFFALO, NY	Field Prep:	Not Specified
Sample Depth:			
Sample Depth.			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Somivolatile Organics by CC/MS SIM - Was	thorough La	h				

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	61		21-120	
Phenol-d6	55		10-120	
Nitrobenzene-d5	125	Q	23-120	
2-Fluorobiphenyl	77		15-120	
2,4,6-Tribromophenol	102		10-120	
4-Terphenyl-d14	73		41-149	

		Serial_No:	12182216:37
Project Name:	89 LASALLE BCP SITE	Lab Number:	L2267425
Project Number:	GL21502976	Report Date:	12/18/22
	SAMPLE RESULTS		
Lab ID:	L2267425-02	Date Collected:	11/30/22 13:45
Client ID:	MH-1 SEDIMENT	Date Received:	12/01/22
Sample Location:	89 LASALLE AVE, BUFFALO, NY	Field Prep:	Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Sediment 1,8270E 12/15/22 14:03 JG 75%	Extraction Method: Extraction Date:	EPA 3546 12/04/22 13:18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - W	estborough Lab					
Acenaphthene	ND		ug/kg	170	22.	1
Hexachlorobenzene	ND		ug/kg	130	24.	1
Bis(2-chloroethyl)ether	ND		ug/kg	190	29.	1
2-Chloronaphthalene	ND		ug/kg	220	20.	1
3,3'-Dichlorobenzidine	ND		ug/kg	220	57.	1
2,4-Dinitrotoluene	ND		ug/kg	220	43.	1
2,6-Dinitrotoluene	ND		ug/kg	220	37.	1
Fluoranthene	110	J	ug/kg	130	25.	1
4-Chlorophenyl phenyl ether	ND		ug/kg	220	23.	1
4-Bromophenyl phenyl ether	ND		ug/kg	220	33.	1
Bis(2-chloroisopropyl)ether	ND		ug/kg	260	37.	1
Bis(2-chloroethoxy)methane	ND		ug/kg	230	22.	1
Hexachlorobutadiene	ND		ug/kg	220	32.	1
Hexachlorocyclopentadiene	ND		ug/kg	620	200	1
Hexachloroethane	ND		ug/kg	170	35.	1
Isophorone	ND		ug/kg	190	28.	1
Naphthalene	ND		ug/kg	220	26.	1
Nitrobenzene	ND		ug/kg	190	32.	1
NDPA/DPA	ND		ug/kg	170	24.	1
n-Nitrosodi-n-propylamine	ND		ug/kg	220	33.	1
Bis(2-ethylhexyl)phthalate	ND		ug/kg	220	75.	1
Butyl benzyl phthalate	2100		ug/kg	220	54.	1
Di-n-butylphthalate	ND		ug/kg	220	41.	1
Di-n-octylphthalate	ND		ug/kg	220	73.	1
Diethyl phthalate	ND		ug/kg	220	20.	1
Dimethyl phthalate	ND		ug/kg	220	45.	1
Benzo(a)anthracene	48	J	ug/kg	130	24.	1
Benzo(a)pyrene	62	J	ug/kg	170	53.	1

_						_	0.12182210.37
Project Name:	89 LASALLE BCP SITE				Lab Nu	umber:	L2267425
Project Number:	GL21502976				Report	Date:	12/18/22
		SAMPL		S			
Lab ID:	L2267425-02				Date Co	llected:	11/30/22 13:45
Client ID:	MH-1 SEDIMENT				Date Re		12/01/22
Sample Location:	89 LASALLE AVE, BUF	FALO, NY			Field Pre		Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Orgar	nics by GC/MS - Westboro	ugh Lab					
Benzo(b)fluoranthene		100	J	ug/kg	130	36.	1
Benzo(k)fluoranthene		ND		ug/kg	130	34.	1
Chrysene		84	J	ug/kg	130	22.	1
Acenaphthylene		ND		ug/kg	170	33.	1
Anthracene		ND		ug/kg	130	42.	1
Benzo(ghi)perylene		ND		ug/kg	170	25.	1
Fluorene		ND		ug/kg	220	21.	1
Phenanthrene		74	J	ug/kg	130	26.	1
Dibenzo(a,h)anthracene		ND	-	ug/kg	130	25.	1
Indeno(1,2,3-cd)pyrene		51	J	ug/kg	170	30.	1
Pyrene		110	J	ug/kg	130	21.	1
Biphenyl		ND	5		490	21.	1
4-Chloroaniline		ND		ug/kg		39.	
		ND		ug/kg	220		1
2-Nitroaniline				ug/kg	220	42.	1
3-Nitroaniline		ND		ug/kg	220	41.	1
4-Nitroaniline		ND		ug/kg	220	89.	1
Dibenzofuran		ND		ug/kg	220	20.	1
2-Methylnaphthalene		ND		ug/kg	260	26.	1
1,2,4,5-Tetrachlorobenze	ene	ND		ug/kg	220	22.	1
Acetophenone		ND		ug/kg	220	27.	1
2,4,6-Trichlorophenol		ND		ug/kg	130	41.	1
p-Chloro-m-cresol		ND		ug/kg	220	32.	1
2-Chlorophenol		ND		ug/kg	220	26.	1
2,4-Dichlorophenol		ND		ug/kg	190	35.	1
2,4-Dimethylphenol		ND		ug/kg	220	71.	1
2-Nitrophenol		ND		ug/kg	470	81.	1
4-Nitrophenol		ND		ug/kg	300	88.	1
2,4-Dinitrophenol		ND		ug/kg	1000	100	1
4,6-Dinitro-o-cresol		ND		ug/kg	560	100	1
Pentachlorophenol		ND		ug/kg	170	48.	1
Phenol		ND		ug/kg	220	33.	1
2-Methylphenol		ND		ug/kg	220	33.	1
3-Methylphenol/4-Methyl	phenol	ND		ug/kg	310	34.	1
2,4,5-Trichlorophenol		ND		ug/kg	220	41.	1
Carbazole		ND		ug/kg	220	21.	1
Atrazine		ND		ug/kg	170	76.	1
Benzaldehyde		ND		ug/kg	280	58.	1

Serial_No:12182216:37

Serial_No:12182216:37						
Project Name:	89 LASALLE BCP SITE			Lab Nu	mber:	L2267425
Project Number:	GL21502976			Report	Date:	12/18/22
	SAM		S			
Lab ID:	L2267425-02			Date Col	llected:	11/30/22 13:45
Client ID:	MH-1 SEDIMENT			Date Re	ceived:	12/01/22
Sample Location:	89 LASALLE AVE, BUFFALO,	NY		Field Pre	ep:	Not Specified
Sample Depth:						
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organ	ics by GC/MS - Westborough Lab					
Caprolactam	ND		ug/kg	220	66.	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	37	25-120
Phenol-d6	37	10-120
Nitrobenzene-d5	31	23-120
2-Fluorobiphenyl	35	30-120
2,4,6-Tribromophenol	39	10-136
4-Terphenyl-d14	32	18-120

220

ug/kg

44.

1

ND

2,3,4,6-Tetrachlorophenol

Project Name:	89 LASALLE BCP SITE	Lab Number:	L2267425
Project Number:	GL21502976	Report Date:	12/18/22

Analytical Method: Analytical Date: Analyst: 1,8270E 12/05/22 11:40 CMM Extraction Method: EPA 3510C Extraction Date: 12/04/22 07:41

arameter	Result Qu	alifier Units	RL	MDL
emivolatile Organics by GC/MS	- Westborough La	b for sample(s):	01 Batch:	WG1719075-1
Bis(2-chloroethyl)ether	ND	ug/l	2.0	0.50
3,3'-Dichlorobenzidine	ND	ug/l	5.0	1.6
2,4-Dinitrotoluene	ND	ug/l	5.0	1.2
2,6-Dinitrotoluene	ND	ug/l	5.0	0.93
4-Chlorophenyl phenyl ether	ND	ug/l	2.0	0.49
4-Bromophenyl phenyl ether	ND	ug/l	2.0	0.38
Bis(2-chloroisopropyl)ether	ND	ug/l	2.0	0.53
Bis(2-chloroethoxy)methane	ND	ug/l	5.0	0.50
Hexachlorocyclopentadiene	ND	ug/l	20	0.69
Isophorone	ND	ug/l	5.0	1.2
Nitrobenzene	ND	ug/l	2.0	0.77
NDPA/DPA	ND	ug/l	2.0	0.42
n-Nitrosodi-n-propylamine	ND	ug/l	5.0	0.64
Bis(2-ethylhexyl)phthalate	ND	ug/l	3.0	1.5
Butyl benzyl phthalate	ND	ug/l	5.0	1.2
Di-n-butylphthalate	ND	ug/l	5.0	0.39
Di-n-octylphthalate	ND	ug/l	5.0	1.3
Diethyl phthalate	ND	ug/l	5.0	0.38
Dimethyl phthalate	ND	ug/l	5.0	1.8
Biphenyl	ND	ug/l	2.0	0.46
4-Chloroaniline	ND	ug/l	5.0	1.1
2-Nitroaniline	ND	ug/l	5.0	0.50
3-Nitroaniline	ND	ug/l	5.0	0.81
4-Nitroaniline	ND	ug/l	5.0	0.80
Dibenzofuran	ND	ug/l	2.0	0.50
1,2,4,5-Tetrachlorobenzene	ND	ug/l	10	0.44
Acetophenone	ND	ug/l	5.0	0.53
2,4,6-Trichlorophenol	ND	ug/l	5.0	0.61
p-Chloro-m-cresol	ND	ug/l	2.0	0.35

Project Name:	89 LASALLE BCP SITE	Lab Number:	L2267425
Project Number:	GL21502976	Report Date:	12/18/22

Analytical Method:	
Analytical Date:	
Analyst:	

1,8270E 12/05/22 11:40 CMM Extraction Method: EPA 3510C Extraction Date: 12/04/22 07:41

arameter	Result	Qualifier	Units		RL	MDL
emivolatile Organics by GC/MS	- Westboroug	h Lab for s	ample(s):	01	Batch:	WG1719075-1
2-Chlorophenol	ND		ug/l		2.0	0.48
2,4-Dichlorophenol	ND		ug/l		5.0	0.41
2,4-Dimethylphenol	ND		ug/l		5.0	1.8
2-Nitrophenol	ND		ug/l		10	0.85
4-Nitrophenol	ND		ug/l		10	0.67
2,4-Dinitrophenol	ND		ug/l		20	6.6
4,6-Dinitro-o-cresol	ND		ug/l		10	1.8
Phenol	ND		ug/l		5.0	0.57
2-Methylphenol	ND		ug/l		5.0	0.49
3-Methylphenol/4-Methylphenol	ND		ug/l		5.0	0.48
2,4,5-Trichlorophenol	ND		ug/l		5.0	0.77
Carbazole	ND		ug/l		2.0	0.49
Atrazine	ND		ug/l		10	0.76
Benzaldehyde	ND		ug/l		5.0	0.53
Caprolactam	ND		ug/l		10	3.3
2,3,4,6-Tetrachlorophenol	ND		ug/l		5.0	0.84

Surrogate	%Recovery Quali	Acceptance fier Criteria
	,, Quan	
2-Fluorophenol	53	21-120
Phenol-d6	41	10-120
Nitrobenzene-d5	63	23-120
2-Fluorobiphenyl	77	15-120
2,4,6-Tribromophenol	81	10-120
4-Terphenyl-d14	77	41-149

Project Name:	89 LASALLE BCP SITE	Lab Number:	L2267425
Project Number:	GL21502976	Report Date:	12/18/22

Analytical Method:	1,8270E-SIM
Analytical Date:	12/05/22 10:07
Analyst:	AH

Extraction Method: EPA 3510C Extraction Date: 12/04/22 07:44

arameter	Result	Qualifier	Units	RL	MDL
emivolatile Organics by GC	/MS-SIM - Westbo	rough Lat	o for sample	e(s): 01	Batch: WG1719076-1
Acenaphthene	0.02	J	ug/l	0.10	0.01
2-Chloronaphthalene	ND		ug/l	0.20	0.02
Fluoranthene	0.02	J	ug/l	0.10	0.02
Hexachlorobutadiene	ND		ug/l	0.50	0.05
Naphthalene	ND		ug/l	0.10	0.05
Benzo(a)anthracene	0.02	J	ug/l	0.10	0.02
Benzo(a)pyrene	ND		ug/l	0.10	0.02
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01
Chrysene	ND		ug/l	0.10	0.01
Acenaphthylene	0.02	J	ug/l	0.10	0.01
Anthracene	0.02	J	ug/l	0.10	0.01
Benzo(ghi)perylene	ND		ug/l	0.10	0.01
Fluorene	0.03	J	ug/l	0.10	0.01
Phenanthrene	0.03	J	ug/l	0.10	0.02
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01
Pyrene	ND		ug/l	0.10	0.02
2-Methylnaphthalene	0.04	J	ug/l	0.10	0.02
Pentachlorophenol	0.20	J	ug/l	0.80	0.01
Hexachlorobenzene	0.03	J	ug/l	0.80	0.01
Hexachloroethane	ND		ug/l	0.80	0.06

Serial_No:12182216:37

Project Name:	89 LASALLE BCP SITE	Lab Number:	L2267425
Project Number:	GL21502976	Report Date:	12/18/22
	Method Blank Analysis Batch Quality Control		

Analytical Method:	1,8270E-SIM	Extraction Method:	EPA 3510C
Analytical Date:	12/05/22 10:07	Extraction Date:	12/04/22 07:44
Analyst:	АН		

Parameter	Result	Qualifier	Units	RL	MDL
Semivolatile Organics by GC/MS-S	SIM - Westb	orough Lab	for sampl	e(s): 01	Batch: WG1719076-1

% Pacavary		Acceptance Criteria
%Recovery	Quaimer	Cillena
67		21-120
55		10-120
121	Q	23-120
75		15-120
131	Q	10-120
75		41-149
	55 121 75 131	%Recovery Qualifier 67 55 121 Q 75 131

Project Name:	89 LASALLE BCP SITE	Lab Number:	L2267425
Project Number:	GL21502976	Report Date:	12/18/22

Analytical Method: Analytical Date: Analyst: 1,8270E 12/06/22 06:45 IM Extraction Method: EPA 3546 Extraction Date: 12/04/22 13:18

arameter	Result	Qualifier Units	RL	MDL
emivolatile Organics by GC/MS	- Westborough	Lab for sample(s):	02 B	atch: WG1719126-1
Acenaphthene	ND	ug/kg	130	17.
Hexachlorobenzene	ND	ug/kg	99	18.
Bis(2-chloroethyl)ether	ND	ug/kg	150	22.
2-Chloronaphthalene	ND	ug/kg	160	16.
3,3'-Dichlorobenzidine	ND	ug/kg	160	44.
2,4-Dinitrotoluene	ND	ug/kg	160	33.
2,6-Dinitrotoluene	ND	ug/kg	160	28.
Fluoranthene	ND	ug/kg	99	19.
4-Chlorophenyl phenyl ether	ND	ug/kg	160	18.
4-Bromophenyl phenyl ether	ND	ug/kg	160	25.
Bis(2-chloroisopropyl)ether	ND	ug/kg	200	28.
Bis(2-chloroethoxy)methane	ND	ug/kg	180	17.
Hexachlorobutadiene	ND	ug/kg	160	24.
Hexachlorocyclopentadiene	ND	ug/kg	470	150
Hexachloroethane	ND	ug/kg	130	27.
Isophorone	ND	ug/kg	150	22.
Naphthalene	ND	ug/kg	160	20.
Nitrobenzene	ND	ug/kg	150	24.
NDPA/DPA	ND	ug/kg	130	19.
n-Nitrosodi-n-propylamine	ND	ug/kg	160	26.
Bis(2-ethylhexyl)phthalate	ND	ug/kg	160	57.
Butyl benzyl phthalate	ND	ug/kg	160	42.
Di-n-butylphthalate	ND	ug/kg	160	31.
Di-n-octylphthalate	ND	ug/kg	160	56.
Diethyl phthalate	ND	ug/kg	160	15.
Dimethyl phthalate	ND	ug/kg	160	35.
Benzo(a)anthracene	ND	ug/kg	99	19.
Benzo(a)pyrene	ND	ug/kg	130	40.
Benzo(b)fluoranthene	ND	ug/kg	99	28.

Project Name:	89 LASALLE BCP SITE	Lab Number:	L2267425
Project Number:	GL21502976	Report Date:	12/18/22

Analytical Method: Analytical Date: Analyst: 1,8270E 12/06/22 06:45 IM Extraction Method: EPA 3546 Extraction Date: 12/04/22 13:18

arameter	Result	Qualifier Units		RL	MDL
emivolatile Organics by GC/MS	· Westborough	Lab for sample(s):	02	Batch:	WG1719126-1
Benzo(k)fluoranthene	ND	ug/kg		99	26.
Chrysene	ND	ug/kg		99	17.
Acenaphthylene	ND	ug/kg		130	26.
Anthracene	ND	ug/kg		99	32.
Benzo(ghi)perylene	ND	ug/kg		130	19.
Fluorene	ND	ug/kg		160	16.
Phenanthrene	ND	ug/kg		99	20.
Dibenzo(a,h)anthracene	ND	ug/kg		99	19.
Indeno(1,2,3-cd)pyrene	ND	ug/kg		130	23.
Pyrene	ND	ug/kg		99	16.
Biphenyl	ND	ug/kg		380	22.
4-Chloroaniline	ND	ug/kg		160	30.
2-Nitroaniline	ND	ug/kg		160	32.
3-Nitroaniline	ND	ug/kg		160	31.
4-Nitroaniline	ND	ug/kg		160	68.
Dibenzofuran	ND	ug/kg		160	16.
2-Methylnaphthalene	ND	ug/kg		200	20.
1,2,4,5-Tetrachlorobenzene	ND	ug/kg		160	17.
Acetophenone	ND	ug/kg		160	20.
2,4,6-Trichlorophenol	ND	ug/kg		99	31.
p-Chloro-m-cresol	ND	ug/kg		160	25.
2-Chlorophenol	ND	ug/kg		160	20.
2,4-Dichlorophenol	ND	ug/kg		150	27.
2,4-Dimethylphenol	ND	ug/kg		160	55.
2-Nitrophenol	ND	ug/kg		360	62.
4-Nitrophenol	ND	ug/kg		230	68.
2,4-Dinitrophenol	ND	ug/kg		800	77.
4,6-Dinitro-o-cresol	ND	ug/kg		430	80.
Pentachlorophenol	ND	ug/kg		130	36.

Project Name:	89 LASALLE BCP SITE	Lab Number:	L2267425
Project Number:	GL21502976	Report Date:	12/18/22

Analytical Method:	1
Analytical Date:	1
Analyst:	I

1,8270E 12/06/22 06:45 IM Extraction Method: EPA 3546 Extraction Date: 12/04/22 13:18

arameter	Result 0	Qualifier Units	RL	MDL
Semivolatile Organics by GC/MS	- Westborough I	_ab for sample(s):	02 Batch:	WG1719126-1
Phenol	ND	ug/kg	160	25.
2-Methylphenol	ND	ug/kg	160	26.
3-Methylphenol/4-Methylphenol	ND	ug/kg	240	26.
2,4,5-Trichlorophenol	ND	ug/kg	160	32.
Carbazole	ND	ug/kg	160	16.
Atrazine	ND	ug/kg	130	58.
Benzaldehyde	ND	ug/kg	220	45.
Caprolactam	ND	ug/kg	160	50.
2,3,4,6-Tetrachlorophenol	ND	ug/kg	160	33.

Surrogate	%Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	65		25-120	
Phenol-d6	69		10-120	
Nitrobenzene-d5	67		23-120	
2-Fluorobiphenyl	70		30-120	
2,4,6-Tribromophenol	74		10-136	
4-Terphenyl-d14	76		18-120	

Project Name: 89 LASALLE BCP SITE

Project Number: GL21502976

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
emivolatile Organics by GC/MS - West	borough Lab Associ	ated sample(s):	01 Batch:	WG1719075-2	2 WG1719075-3			
Bis(2-chloroethyl)ether	53		45		40-140	16	30	
3,3'-Dichlorobenzidine	47		42		40-140	11	30	
2,4-Dinitrotoluene	58		50		48-143	15	30	
2,6-Dinitrotoluene	56		49		40-140	13	30	
4-Chlorophenyl phenyl ether	62		51		40-140	19	30	
4-Bromophenyl phenyl ether	71		60		40-140	17	30	
Bis(2-chloroisopropyl)ether	52		46		40-140	12	30	
Bis(2-chloroethoxy)methane	50		44		40-140	13	30	
Hexachlorocyclopentadiene	56		50		40-140	11	30	
Isophorone	51		45		40-140	13	30	
Nitrobenzene	54		45		40-140	18	30	
NDPA/DPA	58		49		40-140	17	30	
n-Nitrosodi-n-propylamine	53		45		29-132	16	30	
Bis(2-ethylhexyl)phthalate	60		56		40-140	7	30	
Butyl benzyl phthalate	59		53		40-140	11	30	
Di-n-butylphthalate	59		54		40-140	9	30	
Di-n-octylphthalate	60		56		40-140	7	30	
Diethyl phthalate	57		48		40-140	17	30	
Dimethyl phthalate	57		50		40-140	13	30	
Biphenyl	62		54		40-140	14	30	
4-Chloroaniline	50		42		40-140	17	30	
2-Nitroaniline	59		50	Q	52-143	17	30	
3-Nitroaniline	50		42		25-145	17	30	

Project Name: 89 LASALLE BCP SITE

Project Number: GL21502976

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - West	borough Lab Associ	ated sample(s):	01 Batch:	WG1719075-2	2 WG1719075-3	3		
4-Nitroaniline	56		49	Q	51-143	13		30
Dibenzofuran	62		50		40-140	21		30
1,2,4,5-Tetrachlorobenzene	67		57		2-134	16		30
Acetophenone	58		50		39-129	15		30
2,4,6-Trichlorophenol	63		55		30-130	14		30
p-Chloro-m-cresol	56		47		23-97	17		30
2-Chlorophenol	56		46		27-123	20		30
2,4-Dichlorophenol	60		53		30-130	12		30
2,4-Dimethylphenol	27	Q	40		30-130	39	Q	30
2-Nitrophenol	61		52		30-130	16		30
4-Nitrophenol	45		37		10-80	20		30
2,4-Dinitrophenol	56		48		20-130	15		30
4,6-Dinitro-o-cresol	58		51		20-164	13		30
Phenol	40		33		12-110	19		30
2-Methylphenol	47		44		30-130	7		30
3-Methylphenol/4-Methylphenol	52		48		30-130	8		30
2,4,5-Trichlorophenol	64		54		30-130	17		30
Carbazole	60		50	Q	55-144	18		30
Atrazine	78		68		40-140	14		30
Benzaldehyde	57		49		40-140	15		30
Caprolactam	28		24		10-130	15		30
2,3,4,6-Tetrachlorophenol	65		56		40-140	15		30

Project Name: 89 LASALLE BCP SITE

Project Number: GL21502976

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Semivolatile Organics by GC/MS - Westboro	ugh Lab Associa	ted sample(s): 01 Batch:	WG1719075-2	2 WG1719075-3				

Surrogate	LCS %Recovery Qua	LCSD nl %Recovery Qual	Acceptance Criteria
2-Fluorophenol	48	40	21-120
Phenol-d6	38	32	10-120
Nitrobenzene-d5	54	45	23-120
2-Fluorobiphenyl	62	51	15-120
2,4,6-Tribromophenol	73	63	10-120
4-Terphenyl-d14	67	58	41-149

Project Name: 89 LASALLE BCP SITE

Project Number: GL21502976

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS-S	IM - Westborough Lab Asso	ciated sample(s): 01 Bat	ch: WG1719076-2 WG1719	076-3	
Acenaphthene	60	78	40-140	26	40
2-Chloronaphthalene	60	78	40-140	26	40
Fluoranthene	62	79	40-140	24	40
Hexachlorobutadiene	56	72	40-140	25	40
Naphthalene	60	78	40-140	26	40
Benzo(a)anthracene	63	83	40-140	27	40
Benzo(a)pyrene	67	86	40-140	25	40
Benzo(b)fluoranthene	73	90	40-140	21	40
Benzo(k)fluoranthene	67	92	40-140	31	40
Chrysene	68	86	40-140	23	40
Acenaphthylene	60	80	40-140	29	40
Anthracene	65	82	40-140	23	40
Benzo(ghi)perylene	66	83	40-140	23	40
Fluorene	62	81	40-140	27	40
Phenanthrene	64	80	40-140	22	40
Dibenzo(a,h)anthracene	69	87	40-140	23	40
Indeno(1,2,3-cd)pyrene	68	88	40-140	26	40
Pyrene	63	80	40-140	24	40
2-Methylnaphthalene	60	78	40-140	26	40
Pentachlorophenol	89	116	40-140	26	40
Hexachlorobenzene	70	85	40-140	19	40
Hexachloroethane	64	82	40-140	25	40

Project Name: 89 LASALLE BCP SITE

Project Number: GL21502976

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Semivolatile Organics by GC/MS-SIM - Wes	tborough Lab As	sociated sa	mple(s): 01 Batc	h: WG17	19076-2 WG1719	076-3			

Surrogate	LCS %Recovery Qual	LCSD %Recovery	Qual	Acceptance Criteria		
2-Fluorophenol	59	74		21-120		
Phenol-d6	50	63		10-120		
Nitrobenzene-d5	99	126	Q	23-120		
2-Fluorobiphenyl	61	78		15-120		
2,4,6-Tribromophenol	104	132	Q	10-120		
4-Terphenyl-d14	61	77		41-149		

Project Name: 89 LASALLE BCP SITE

Project Number: GL21502976

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	PD mits
Semivolatile Organics by GC/MS - Westbor	ough Lab Assoc	ated sample(s):	02 Batch:	WG1719126-2	2 WG1719126-3		
Acenaphthene	67		58		31-137	14	50
Hexachlorobenzene	73		63		40-140	15	50
Bis(2-chloroethyl)ether	64		59		40-140	8	50
2-Chloronaphthalene	69		63		40-140	9	50
3,3'-Dichlorobenzidine	49		47		40-140	4	50
2,4-Dinitrotoluene	85		73		40-132	15	50
2,6-Dinitrotoluene	80		75		40-140	6	50
Fluoranthene	69		63		40-140	9	50
4-Chlorophenyl phenyl ether	70		62		40-140	12	50
4-Bromophenyl phenyl ether	72		65		40-140	10	50
Bis(2-chloroisopropyl)ether	68		62		40-140	9	50
Bis(2-chloroethoxy)methane	75		65		40-117	14	50
Hexachlorobutadiene	62		56		40-140	10	50
Hexachlorocyclopentadiene	50		44		40-140	13	50
Hexachloroethane	62		57		40-140	8	50
Isophorone	70		63		40-140	11	 50
Naphthalene	65		58		40-140	11	50
Nitrobenzene	71		64		40-140	10	 50
NDPA/DPA	71		62		36-157	14	 50
n-Nitrosodi-n-propylamine	74		66		32-121	11	 50
Bis(2-ethylhexyl)phthalate	76		67		40-140	13	50
Butyl benzyl phthalate	76		68		40-140	11	 50
Di-n-butylphthalate	72		65		40-140	10	 50

Project Name: 89 LASALLE BCP SITE

Project Number: GL21502976

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westbo	rough Lab Assoc	ated sample(s):	02 Batch:	WG1719126-2	WG1719126-3			
Di-n-octylphthalate	78		68		40-140	14		50
Diethyl phthalate	74		62		40-140	18		50
Dimethyl phthalate	75		67		40-140	11		50
Benzo(a)anthracene	68		61		40-140	11		50
Benzo(a)pyrene	70		62		40-140	12		50
Benzo(b)fluoranthene	69		62		40-140	11		50
Benzo(k)fluoranthene	70		59		40-140	17		50
Chrysene	68		60		40-140	13		50
Acenaphthylene	76		68		40-140	11		50
Anthracene	68		61		40-140	11		50
Benzo(ghi)perylene	69		61		40-140	12		50
Fluorene	69		61		40-140	12		50
Phenanthrene	67		61		40-140	9		50
Dibenzo(a,h)anthracene	70		62		40-140	12		50
Indeno(1,2,3-cd)pyrene	74		65		40-140	13		50
Pyrene	69		63		35-142	9		50
Biphenyl	70		62		37-127	12		50
4-Chloroaniline	59		56		40-140	5		50
2-Nitroaniline	84		75		47-134	11		50
3-Nitroaniline	58		58		26-129	0		50
4-Nitroaniline	75		66		41-125	13		50
Dibenzofuran	71		62		40-140	14		50
2-Methylnaphthalene	69		61		40-140	12		50

Project Name: 89 LASALLE BCP SITE

Project Number: GL21502976

Parameter	LCS %Recovery	Qual %	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westbo	orough Lab Associa	ated sample(s):	02 Batch:	WG1719126-2	2 WG1719126-3	3		
1,2,4,5-Tetrachlorobenzene	68		62		40-117	9		50
Acetophenone	67		61		14-144	9		50
2,4,6-Trichlorophenol	81		71		30-130	13		50
p-Chloro-m-cresol	81		69		26-103	16		50
2-Chlorophenol	70		63		25-102	11		50
2,4-Dichlorophenol	79		69		30-130	14		50
2,4-Dimethylphenol	66		58		30-130	13		50
2-Nitrophenol	85		75		30-130	13		50
4-Nitrophenol	86		76		11-114	12		50
2,4-Dinitrophenol	56		49		4-130	13		50
4,6-Dinitro-o-cresol	82		72		10-130	13		50
Pentachlorophenol	69		58		17-109	17		50
Phenol	71		64		26-90	10		50
2-Methylphenol	74		67		30-130.	10		50
3-Methylphenol/4-Methylphenol	85		76		30-130	11		50
2,4,5-Trichlorophenol	82		73		30-130	12		50
Carbazole	70		62		54-128	12		50
Atrazine	70		63		40-140	11		50
Benzaldehyde	58		55		40-140	5		50
Caprolactam	75		65		15-130	14		50
2,3,4,6-Tetrachlorophenol	80		70		40-140	13		50

Project Name: 89 LASALLE BCP SITE

Project Number: GL21502976

	LCS		LCSD	c	%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Semivolatile Organics by GC/MS - Westboro	ugh Lab Associa	ated sample(s): 02 Batch:	WG1719126-2	2 WG1719126-3				

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	69	62	25-120
Phenol-d6	71	63	10-120
Nitrobenzene-d5	71	61	23-120
2-Fluorobiphenyl	71	62	30-120
2,4,6-Tribromophenol	84	71	10-136
4-Terphenyl-d14	70	63	18-120

METALS

Serial_No:12182216:37

L2267425

12/18/22

12/01/22

11/30/22 13:40

Not Specified

Lab Number:

Report Date:

Date Collected:

Date Received:

Field Prep:

Project Name:	89 LASALLE BCP SITE
Project Number:	GL21502976

SAMPLE RESULTS

Lab ID:	L2267425-01
Client ID:	MH-1 STORMWATER
Sample Location:	89 LASALLE AVE, BUFFALO, NY

Sample Depth:

Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mar	sfield Lab										
Aluminum, Total	1.22		mg/l	0.0100	0.00327	1	12/06/22 13:05	12/16/22 18:06	EPA 3005A	1,6020B	SV
Antimony, Total	0.00068	J	mg/l	0.00400	0.00042	1	12/06/22 13:05	12/16/22 18:06	EPA 3005A	1,6020B	SV
Arsenic, Total	0.00082		mg/l	0.00050	0.00016	1	12/06/22 13:05	12/16/22 18:06	EPA 3005A	1,6020B	SV
Barium, Total	0.02763		mg/l	0.00050	0.00017	1	12/06/22 13:05	12/16/22 18:06	EPA 3005A	1,6020B	SV
Beryllium, Total	0.00012	J	mg/l	0.00050	0.00010	1	12/06/22 13:05	12/16/22 18:06	EPA 3005A	1,6020B	SV
Cadmium, Total	ND		mg/l	0.00020	0.00005	1	12/06/22 13:05	12/16/22 18:06	EPA 3005A	1,6020B	SV
Calcium, Total	78.6		mg/l	0.100	0.0394	1	12/06/22 13:05	12/16/22 18:06	EPA 3005A	1,6020B	SV
Chromium, Total	0.00137		mg/l	0.00100	0.00017	1	12/06/22 13:05	12/16/22 18:06	EPA 3005A	1,6020B	SV
Cobalt, Total	0.00041	J	mg/l	0.00050	0.00016	1	12/06/22 13:05	12/16/22 18:06	EPA 3005A	1,6020B	SV
Copper, Total	0.00463		mg/l	0.00100	0.00038	1	12/06/22 13:05	12/16/22 18:06	EPA 3005A	1,6020B	SV
Iron, Total	1.54		mg/l	0.0500	0.0191	1	12/06/22 13:05	12/16/22 18:06	EPA 3005A	1,6020B	SV
Lead, Total	0.00601		mg/l	0.00100	0.00034	1	12/06/22 13:05	12/16/22 18:06	EPA 3005A	1,6020B	SV
Magnesium, Total	5.46		mg/l	0.0700	0.0242	1	12/06/22 13:05	12/16/22 18:06	EPA 3005A	1,6020B	SV
Manganese, Total	0.05372		mg/l	0.00100	0.00044	1	12/06/22 13:05	12/16/22 18:06	EPA 3005A	1,6020B	SV
Mercury, Total	0.00019	J	mg/l	0.00020	0.00009	1	12/06/22 14:55	12/08/22 12:13	EPA 7470A	1,7470A	DMB
Nickel, Total	0.00152	J	mg/l	0.00200	0.00055	1	12/06/22 13:05	12/16/22 18:06	EPA 3005A	1,6020B	SV
Potassium, Total	1.59		mg/l	0.100	0.0309	1	12/06/22 13:05	12/16/22 18:06	EPA 3005A	1,6020B	SV
Selenium, Total	ND		mg/l	0.00500	0.00173	1	12/06/22 13:05	12/16/22 18:06	EPA 3005A	1,6020B	SV
Silver, Total	ND		mg/l	0.00040	0.00016	1	12/06/22 13:05	12/16/22 18:06	EPA 3005A	1,6020B	SV
Sodium, Total	3220		mg/l	7.00	0.586	20	12/06/22 13:05	12/16/22 19:47	EPA 3005A	1,6020B	SV
Thallium, Total	0.00044	J	mg/l	0.00200	0.00014	1	12/06/22 13:05	12/16/22 18:06	EPA 3005A	1,6020B	SV
Vanadium, Total	ND		mg/l	0.00500	0.00157	1	12/06/22 13:05	12/16/22 18:06	EPA 3005A	1,6020B	SV
Zinc, Total	0.04684		mg/l	0.01000	0.00341	1	12/06/22 13:05	12/16/22 18:06	EPA 3005A	1,6020B	SV

Serial_No:12182216:37

89 LASALLE BCP SITE	Lab Number:	L2267425
GL21502976	Report Date:	12/18/22
SAMPLE RESULTS		
L2267425-02	Date Collected:	11/30/22 13:45
MH-1 SEDIMENT	Date Received:	12/01/22
89 LASALLE AVE, BUFFALO, NY	Field Prep:	Not Specified

Sample Depth:

Sample Location:

Project Name: **Project Number:**

Lab ID: Client ID:

Sediment Matrix: 75% Percent Solids

Percent Solids:	75%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield Lab										
Aluminum, Total	1190		mg/kg	10.1	2.73	2	12/06/22 00:40	12/07/22 13:00	EPA 3050B	1,6010D	EGW
Antimony, Total	ND		mg/kg	5.05	0.384	2	12/06/22 00:40	12/07/22 13:00	EPA 3050B	1,6010D	EGW
Arsenic, Total	1.85		mg/kg	1.01	0.210	2	12/06/22 00:40	12/07/22 13:00	EPA 3050B	1,6010D	EGW
Barium, Total	7.25		mg/kg	1.01	0.176	2	12/06/22 00:40	12/07/22 13:00	EPA 3050B	1,6010D	EGW
Beryllium, Total	0.107	J	mg/kg	0.505	0.033	2	12/06/22 00:40	12/07/22 13:00	EPA 3050B	1,6010D	EGW
Cadmium, Total	0.122	J	mg/kg	1.01	0.099	2	12/06/22 00:40	12/07/22 13:00	EPA 3050B	1,6010D	EGW
Calcium, Total	184000		mg/kg	101	35.4	20	12/06/22 00:40	12/07/22 13:45	EPA 3050B	1,6010D	EGW
Chromium, Total	5.72		mg/kg	1.01	0.097	2	12/06/22 00:40	12/07/22 13:00	EPA 3050B	1,6010D	EGW
Cobalt, Total	1.18	J	mg/kg	2.02	0.168	2	12/06/22 00:40	12/07/22 13:00	EPA 3050B	1,6010D	EGW
Copper, Total	8.55		mg/kg	1.01	0.261	2	12/06/22 00:40	12/07/22 13:00	EPA 3050B	1,6010D	EGW
Iron, Total	7770		mg/kg	5.05	0.913	2	12/06/22 00:40	12/07/22 13:00	EPA 3050B	1,6010D	EGW
Lead, Total	8.47		mg/kg	5.05	0.271	2	12/06/22 00:40	12/07/22 13:00	EPA 3050B	1,6010D	EGW
Magnesium, Total	11200		mg/kg	10.1	1.56	2	12/06/22 00:40	12/07/22 13:00	EPA 3050B	1,6010D	EGW
Manganese, Total	160		mg/kg	1.01	0.161	2	12/06/22 00:40	12/07/22 13:00	EPA 3050B	1,6010D	EGW
Mercury, Total	ND		mg/kg	0.093	0.060	1	12/13/22 02:35	12/13/22 12:28	EPA 7471B	1,7471B	DMB
Nickel, Total	4.60		mg/kg	2.53	0.245	2	12/06/22 00:40	12/07/22 13:00	EPA 3050B	1,6010D	EGW
Potassium, Total	239	J	mg/kg	253	14.6	2	12/06/22 00:40	12/07/22 13:00	EPA 3050B	1,6010D	EGW
Selenium, Total	ND		mg/kg	2.02	0.261	2	12/06/22 00:40	12/07/22 13:00	EPA 3050B	1,6010D	EGW
Silver, Total	ND		mg/kg	0.505	0.286	2	12/06/22 00:40	12/07/22 13:00	EPA 3050B	1,6010D	EGW
Sodium, Total	5530		mg/kg	202	3.18	2	12/06/22 00:40	12/07/22 13:00	EPA 3050B	1,6010D	EGW
Thallium, Total	ND		mg/kg	2.02	0.318	2	12/06/22 00:40	12/07/22 13:00	EPA 3050B	1,6010D	EGW
Vanadium, Total	5.00		mg/kg	1.01	0.205	2	12/06/22 00:40	12/07/22 13:00	EPA 3050B	1,6010D	EGW
Zinc, Total	33.6		mg/kg	5.05	0.296	2	12/06/22 00:40	12/07/22 13:00	EPA 3050B	1,6010D	EGW

Project Name:89 LASALLE BCP SITEProject Number:GL21502976

 Lab Number:
 L2267425

 Report Date:
 12/18/22

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfie	eld Lab for sample(s):	01 Batc	h: WG17	19325-1					
Aluminum, Total	ND	mg/l	0.0100	0.00327	1	12/06/22 13:05	12/14/22 12:14	1,6020B	EGW
Antimony, Total	ND	mg/l	0.00400	0.00042	1	12/06/22 13:05	12/14/22 12:14	1,6020B	EGW
Arsenic, Total	ND	mg/l	0.00050	0.00016	1	12/06/22 13:05	12/14/22 12:14	1,6020B	EGW
Barium, Total	ND	mg/l	0.00050	0.00017	1	12/06/22 13:05	12/14/22 12:14	1,6020B	EGW
Beryllium, Total	ND	mg/l	0.00050	0.00010	1	12/06/22 13:05	12/14/22 12:14	1,6020B	EGW
Cadmium, Total	ND	mg/l	0.00020	0.00005	1	12/06/22 13:05	12/14/22 12:14	1,6020B	EGW
Calcium, Total	ND	mg/l	0.100	0.0394	1	12/06/22 13:05	12/14/22 12:14	1,6020B	EGW
Chromium, Total	ND	mg/l	0.00100	0.00017	1	12/06/22 13:05	12/14/22 12:14	1,6020B	EGW
Cobalt, Total	ND	mg/l	0.00050	0.00016	1	12/06/22 13:05	12/14/22 12:14	1,6020B	EGW
Copper, Total	ND	mg/l	0.00100	0.00038	1	12/06/22 13:05	12/14/22 12:14	1,6020B	EGW
Iron, Total	ND	mg/l	0.0500	0.0191	1	12/06/22 13:05	12/14/22 12:14	1,6020B	EGW
Lead, Total	ND	mg/l	0.00100	0.00034	1	12/06/22 13:05	12/14/22 12:14	1,6020B	EGW
Magnesium, Total	ND	mg/l	0.0700	0.0242	1	12/06/22 13:05	12/14/22 12:14	1,6020B	EGW
Manganese, Total	ND	mg/l	0.00100	0.00044	1	12/06/22 13:05	12/14/22 12:14	1,6020B	EGW
Nickel, Total	ND	mg/l	0.00200	0.00055	1	12/06/22 13:05	12/14/22 12:14	1,6020B	EGW
Potassium, Total	ND	mg/l	0.100	0.0309	1	12/06/22 13:05	12/14/22 12:14	1,6020B	EGW
Selenium, Total	ND	mg/l	0.00500	0.00173	1	12/06/22 13:05	12/14/22 12:14	1,6020B	EGW
Silver, Total	ND	mg/l	0.00040	0.00016	1	12/06/22 13:05	12/14/22 12:14	1,6020B	EGW
Sodium, Total	ND	mg/l	0.200	0.0293	1	12/06/22 13:05	12/14/22 12:14	1,6020B	EGW
Thallium, Total	ND	mg/l	0.00100	0.00014	1	12/06/22 13:05	12/14/22 12:14	1,6020B	EGW
Vanadium, Total	ND	mg/l	0.00500	0.00157	1	12/06/22 13:05	12/14/22 12:14	1,6020B	EGW
Zinc, Total	ND	mg/l	0.01000	0.00341	1	12/06/22 13:05	12/14/22 12:14	1,6020B	EGW

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Q	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sar	nple(s):	01 Batch	h: WG17	719330-7	1				
Mercury, Total	0.00014	J	mg/l	0.00020	0.00009) 1	12/06/22 14:55	12/08/22 11:56	1,7470A	DMB

Serial_No:12182216:37

Project Name: 89 LASALLE BCP SITE Project Number: GL21502976

Lab Number: L2267425 **Report Date:** 12/18/22

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 7470A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	d Lab for sample(s):	02 Batch	n: WG1 ⁻	719424-′	1				
Aluminum, Total	ND	mg/kg	4.00	1.08	1	12/06/22 00:40	12/06/22 10:14	1,6010D	DMB
Antimony, Total	ND	mg/kg	2.00	0.152	1	12/06/22 00:40	12/06/22 10:14	1,6010D	DMB
Arsenic, Total	ND	mg/kg	0.400	0.083	1	12/06/22 00:40	12/06/22 10:14	1,6010D	DMB
Barium, Total	ND	mg/kg	0.400	0.070	1	12/06/22 00:40	12/06/22 10:14	1,6010D	DMB
Beryllium, Total	ND	mg/kg	0.200	0.013	1	12/06/22 00:40	12/06/22 10:14	1,6010D	DMB
Cadmium, Total	ND	mg/kg	0.400	0.039	1	12/06/22 00:40	12/06/22 10:14	1,6010D	DMB
Calcium, Total	ND	mg/kg	4.00	1.40	1	12/06/22 00:40	12/06/22 10:14	1,6010D	DMB
Chromium, Total	ND	mg/kg	0.400	0.038	1	12/06/22 00:40	12/06/22 10:14	1,6010D	DMB
Cobalt, Total	ND	mg/kg	0.800	0.066	1	12/06/22 00:40	12/06/22 10:14	1,6010D	DMB
Copper, Total	ND	mg/kg	0.400	0.103	1	12/06/22 00:40	12/06/22 10:14	1,6010D	DMB
Iron, Total	ND	mg/kg	2.00	0.361	1	12/06/22 00:40	12/06/22 10:14	1,6010D	DMB
Lead, Total	ND	mg/kg	2.00	0.107	1	12/06/22 00:40	12/06/22 10:14	1,6010D	DMB
Magnesium, Total	ND	mg/kg	4.00	0.616	1	12/06/22 00:40	12/06/22 10:14	1,6010D	DMB
Manganese, Total	ND	mg/kg	0.400	0.064	1	12/06/22 00:40	12/06/22 10:14	1,6010D	DMB
Nickel, Total	ND	mg/kg	1.00	0.097	1	12/06/22 00:40	12/06/22 10:14	1,6010D	DMB
Potassium, Total	ND	mg/kg	100	5.76	1	12/06/22 00:40	12/06/22 10:14	1,6010D	DMB
Selenium, Total	ND	mg/kg	0.800	0.103	1	12/06/22 00:40	12/06/22 10:14	1,6010D	DMB
Silver, Total	ND	mg/kg	0.200	0.113	1	12/06/22 00:40	12/06/22 10:14	1,6010D	DMB
Sodium, Total	2.69 J	mg/kg	80.0	1.26	1	12/06/22 00:40	12/06/22 10:14	1,6010D	DMB
Thallium, Total	ND	mg/kg	0.800	0.126	1	12/06/22 00:40	12/06/22 10:14	1,6010D	DMB
Vanadium, Total	ND	mg/kg	0.400	0.081	1	12/06/22 00:40	12/06/22 10:14	1,6010D	DMB
Zinc, Total	ND	mg/kg	2.00	0.117	1	12/06/22 00:40	12/06/22 10:14	1,6010D	DMB

Prep Information

Digestion Method:

EPA 3050B

Project Name:89 LASALLE BCP SITEProject Number:GL21502976

 Lab Number:
 L2267425

 Report Date:
 12/18/22

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	Analyst
Total Metals - Man	sfield Lab for sample(s):	02 Batch	n: WG17	722319-	1				
Mercury, Total	ND	mg/kg	0.083	0.054	1	12/13/22 02:35	12/13/22 12:15	1,7471B	DMB

Prep Information

Digestion Method: EPA 7471B

Lab Number: L2267425

Project Name: 89 LASALLE BCP SITE Project Number: GL21502976

Report Date: 12/18/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch:	WG1719325-	2					
Aluminum, Total	102		-		80-120	-		
Antimony, Total	91		-		80-120	-		
Arsenic, Total	98		-		80-120	-		
Barium, Total	93		-		80-120	-		
Beryllium, Total	110		-		80-120	-		
Cadmium, Total	96		-		80-120	-		
Calcium, Total	96		-		80-120	-		
Chromium, Total	92		-		80-120	-		
Cobalt, Total	92		-		80-120	-		
Copper, Total	95		-		80-120	-		
Iron, Total	96		-		80-120	-		
Lead, Total	96		-		80-120	-		
Magnesium, Total	96		-		80-120	-		
Manganese, Total	95		-		80-120	-		
Nickel, Total	94		-		80-120	-		
Potassium, Total	97		-		80-120	-		
Selenium, Total	99		-		80-120	-		
Silver, Total	102		-		80-120	-		
Sodium, Total	92		-		80-120	-		
Thallium, Total	104		-		80-120	-		
Vanadium, Total	94		-		80-120	-		

Project Name: 89 LASALLE BCP SITE

Project Number: GL21502976

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sa	ample(s): 01 Batch: WG17	719325-2			
Zinc, Total	92	-	80-120	-	
Total Metals - Mansfield Lab Associated s	ample(s): 01 Batch: WG17	719330-2			
Mercury, Total	97	-	80-120	-	

Project Name: 89 LASALLE BCP SITE

Project Number: GL21502976

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sample	•				
Aluminum, Total	79	-	45-155	-	
Antimony, Total	161	-	2-205	-	
Arsenic, Total	103	-	82-119	-	
Barium, Total	90	-	82-118	-	
Beryllium, Total	101	-	82-118	-	
Cadmium, Total	100	-	82-118	-	
Calcium, Total	94	-	81-119	-	
Chromium, Total	97	-	81-118	-	
Cobalt, Total	98	-	83-117	-	
Copper, Total	95	-	83-117	-	
Iron, Total	101	-	58-142	-	
Lead, Total	98	-	83-117	-	
Magnesium, Total	88	-	75-125	-	
Manganese, Total	101	-	82-118	-	
Nickel, Total	98	-	82-118	-	
Potassium, Total	91	-	68-131	-	
Selenium, Total	103	-	78-122	-	
Silver, Total	96	-	79-121	-	
Sodium, Total	105	-	71-130	-	
Thallium, Total	104	-	80-120	-	
Vanadium, Total	97	-	78-122	-	

Project Name: 89 LASALLE BCP SITE

Project Number: GL21502976

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associated s	ample(s): 02 Batch: WG171	9424-2 SRM Lot Numbe	r: D116-540		
Zinc, Total	99	-	80-120	-	
Total Metals - Mansfield Lab Associated s	ample(s): 02 Batch: WG172	2319-2 SRM Lot Numbe	r: D116-540		
Mercury, Total	86	-	58-142	-	

Matrix Spike Analysis

Batch Quality Control

Project Name: 89 LASALLE BCP SITE

Project Number: GL21502976

Lab Number: L2267425 Report Date: 12/18/22

MS RPD Native MS MS MSD MSD Recovery Sample Qual Found Limits Added Found %Recovery %Recovery Qual **RPD** Qual Limits Parameter Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1719325-3 WG1719325-4 QC Sample: L2267896-01 Client ID: MS Sample 0.00520J 2 2.08 106 2 Aluminum. Total 104 2.12 75-125 20 ND 0.5 0.4724 94 0.4776 96 75-125 Antimony, Total 1 20 Arsenic. Total 0.00338 0.12 0.1228 100 0.1227 0 99 75-125 20 Barium. Total 0.02214 2 1.886 93 1.957 97 75-125 4 20 Beryllium, Total ND 0.05 0.03730 75 0.03841 77 75-125 3 20 Cadmium, Total ND 0.053 0.04675 88 0.04903 92 75-125 5 20 Calcium, Total 328. 10 785 Q 802 4740 Q 75-125 2 20 4570 Chromium, Total ND 0.2 0.1488 Q 0.1540 77 75-125 3 20 74 Cobalt, Total 0.00061 0.5 0.4457 89 0.4560 91 75-125 2 20 Copper, Total ND 0.25 0.2231 89 0.2359 94 75-125 6 20 Iron, Total 2.48 1 4.74 Q 5.11 Q 75-125 8 20 226 263 ND 0.53 0.5019 Lead, Total 95 0.5225 98 75-125 4 20 118 Q Magnesium, Total 82.2 10 358 118 358 Q 75-125 0 20 Manganese, Total 0.2213 0.5 0.7450 105 0.7428 104 75-125 0 20 Nickel, Total 0.00069J 0.5 0.4534 91 0.4657 93 75-125 3 20 25.7 10 51.8 Q Q 2 Potassium, Total 261 52.6 269 75-125 20 0.12 0.105 85 3 Selenium, Total ND 88 0.102 75-125 20 ND 0.05 0.04913 0.05039 3 Silver. Total 98 101 75-125 20 10 9530 Q Q Sodium, Total 9460 700 9620 1600 75-125 1 20 Thallium, Total 0.00044J 0.12 0.1109 92 0.1246 104 75-125 12 20 Vanadium, Total ND 0.5 0.4142 0.4106 82 75-125 20 83 1

Project Name:	89 LASALLE BCP SITE	Matrix Spike Analysis	Lab Number:	L2267425
Project Number:	GL21502976	Batch Quality Control	Report Date:	12/18/22
	GL21502976		Report Date.	12/10/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recover Limits		RPD Limits
Total Metals - Mansfield La	ab Associated sam	ole(s): 01	QC Batch I	ID: WG1719325-3	WG1719325-4	QC Sample:	L2267896-01	Client ID:	MS Sample
Zinc, Total	0.01217	0.5	0.4274	83	0.4449	86	75-125	4	20
Total Metals - Mansfield La	ab Associated sam	ole(s): 01	QC Batch I	ID: WG1719330-3	WG1719330-4	QC Sample:	L2267896-01	Client ID:	MS Sample
Mercury, Total	0.00036	0.005	0.00525	98	0.00494	92	75-125	6	20

Matrix Spike Analysis Batch Quality Control

Project Name: 89 LASALLE BCP SITE

Project Number: GL21502976 Lab Number: L2267425

Report Date: 12/18/22

rameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
otal Metals - Mansfield La	ab Associated sar	nple(s): 02	QC Batch	ID: WG1719424	I-3	QC Sample	: L2267472-08	Client ID: MS Sa	ample	
Aluminum, Total	2760	176	4180	808	Q	-	-	75-125	-	20
Antimony, Total	2.86J	43.9	46.4	106		-	-	75-125	-	20
Arsenic, Total	36.0	10.5	53.6	167	Q	-	-	75-125	-	20
Barium, Total	266	176	366	57	Q	-	-	75-125	-	20
Beryllium, Total	0.411J	4.39	5.25	119		-	-	75-125	-	20
Cadmium, Total	0.582J	4.66	5.34	115		-	-	75-125	-	20
Calcium, Total	1230	879	4220	340	Q	-	-	75-125	-	20
Chromium, Total	23.7	17.6	38.0	81		-	-	75-125	-	20
Cobalt, Total	4.32	43.9	47.2	98		-	-	75-125	-	20
Copper, Total	93.2	22	205	509	Q	-	-	75-125	-	20
Iron, Total	18000	87.9	17700	0	Q	-	-	75-125	-	20
Lead, Total	871	46.6	698	0	Q	-	-	75-125	-	20
Magnesium, Total	502	879	2210	194	Q	-	-	75-125	-	20
Manganese, Total	198	43.9	229	70	Q	-	-	75-125	-	20
Nickel, Total	21.2	43.9	65.3	100		-	-	75-125	-	20
Potassium, Total	302	879	1510	137	Q	-	-	75-125	-	20
Selenium, Total	0.565J	10.5	11.5	109		-	-	75-125	-	20
Silver, Total	ND	26.4	26.8	102		-	-	75-125	-	20
Sodium, Total	22.8J	879	992	113		-	-	75-125	-	20
Thallium, Total	0.524J	10.5	10.1	96		-	-	75-125	-	20
Vanadium, Total	16.7	43.9	65.6	111		-	-	75-125	-	20

Project Name:	89 LASALLE BCP SITE	Matrix Spike Analysis Batch Quality Control	Lab Number:	L2267425
Project Number:	GL21502976		Report Date:	12/18/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield La	ab Associated sam	ple(s): 02	QC Batch	ID: WG1719424-3	QC Sample	: L2267472-08	Client ID: MS Sa	ample	
Zinc, Total	566	43.9	639	166	Q -	-	75-125	-	20
Total Metals - Mansfield La	ab Associated sam	ple(s): 02	QC Batch	ID: WG1722319-3	QC Sample	: L2267425-02	Client ID: MH-1	SEDIMENT	
Mercury, Total	ND	2.06	1.92	93	-	-	80-120	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: 89 LASALLE BCP SITE

Project Number: GL21502976

,

arameter	Native Sample [Duplicate Sample	Units	RPD	Qual	RPD Limits
otal Metals - Mansfield Lab Associated sample(s): 02	QC Batch ID: WG1719424	I-4 QC Sample:	L2267472-08	Client ID: D	UP Sample	
Aluminum, Total	2760	2920	mg/kg	6		20
Antimony, Total	2.86J	3.21J	mg/kg	NC		20
Arsenic, Total	36.0	33.7	mg/kg	7		20
Barium, Total	266	195	mg/kg	31	Q	20
Beryllium, Total	0.411J	0.422J	mg/kg	NC		20
Cadmium, Total	0.582J	0.690J	mg/kg	NC		20
Calcium, Total	1230	1320	mg/kg	7		20
Chromium, Total	23.7	23.2	mg/kg	2		20
Cobalt, Total	4.32	4.67	mg/kg	8		20
Copper, Total	93.2	102	mg/kg	9		20
Iron, Total	18000	27400	mg/kg	41	Q	20
Lead, Total	871	769	mg/kg	12		20
Magnesium, Total	502	553	mg/kg	10		20
Manganese, Total	198	342	mg/kg	53	Q	20
Nickel, Total	21.2	20.2	mg/kg	5		20
Potassium, Total	302	348	mg/kg	14		20
Selenium, Total	0.565J	0.530J	mg/kg	NC		20
Silver, Total	ND	ND	mg/kg	NC		20
Sodium, Total	22.8J	25.9J	mg/kg	NC		20

Lab Duplicate Analysis Batch Quality Control

Project Name:89 LASALLE BCP SITEProject Number:GL21502976

Parameter	Native Sample	Duplicate Sample	Units	RPD	R	PD Limits
Total Metals - Mansfield Lab Associated sample(s): 02	QC Batch ID: WG171942	24-4 QC Sample:	L2267472-08	Client ID:	DUP Sample	
Thallium, Total	0.524J	0.598J	mg/kg	NC		20
Vanadium, Total	16.7	22.1	mg/kg	28	Q	20
Zinc, Total	566	596	mg/kg	5		20
Total Metals - Mansfield Lab Associated sample(s): 02	QC Batch ID: WG172231	9-4 QC Sample:	L2267425-02	Client ID:	MH-1 SEDIMEN	Т
Mercury, Total	ND	ND	mg/kg	NC		20

		Lab Serial Dilution		
Project Name:	89 LASALLE BCP SITE	Analysis	Lab Number:	L2267425
Project Number:	GL21502976	Batch Quality Control	Report Date:	12/18/22

Parameter	Native Sample S	Serial Dilution	Units	% D	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1719325-6	6 QC Sample:	L2267896-01	Client ID:	DUP Sample	
Sodium, Total	9460	9660	mg/l	2		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1719325-	6 QC Sample:	L2267896-01	Client ID:	DUP Sample	
Barium, Total	0.02214	0.02335	mg/l	5		20
Calcium, Total	328.	776.	mg/l	137	Q	20
Iron, Total	2.48	4.06	mg/l	64	Q	20
Magnesium, Total	82.2	113.	mg/l	37	Q	20
Manganese, Total	0.2213	0.3522	mg/l	59	Q	20
Potassium, Total	25.7	42.0	mg/l	63	Q	20

Project Name:89 LASALLE BCP SITELab Serial Dilution
AnalysisLab Number:L2267425Project Number:GL21502976Batch Quality ControlReport Date:12/18/22

Parameter	Native Sample	Serial Dilution	Units	% D	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 02	QC Batch ID: WG1719424-	6 QC Sample:	L2267472-08	Client ID:	DUP Sample
Aluminum, Total	2760	2930	mg/kg	6	20
Arsenic, Total	36.0	36.8	mg/kg	2	20
Barium, Total	266	276	mg/kg	4	20
Calcium, Total	1230	1300	mg/kg	6	20
Chromium, Total	23.7	24.3	mg/kg	3	20
Copper, Total	93.2	95.2	mg/kg	2	20
Iron, Total	18000	19200	mg/kg	7	20
Lead, Total	871	926	mg/kg	6	20
Magnesium, Total	502	528	mg/kg	5	20
Manganese, Total	198	211	mg/kg	7	20
Zinc, Total	566	593	mg/kg	5	20

INORGANICS & MISCELLANEOUS

Serial	No:121	82216:37
oona.		02210.01

Project Name: Project Number:	89 LASALLE BCP S GL21502976	SITE					umber: rt Date:	L2267425 12/18/22	
			SAMPLE	RESUL	rs				
Lab ID:	L2267425-02					Date (Collected:	11/30/22 13:45	i
Client ID:	MH-1 SEDIMENT					Date F	Received:	12/01/22	
Sample Location:	89 LASALLE AVE,	BUFFALC), NY			Field F	Prep:	Not Specified	
Sample Depth: Matrix:	Sediment								
Parameter	Result Qualifie	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
eneral Chemistry - We	stborough Lab								
olids, Total	75.4	%	0.100	NA	1	-	12/04/22 19:3	2 121,2540G	MF

20

Project Name: Project Number:	89 LASALLE BCP SITE GL21502976	La	b Duplicate Analy Batch Quality Control	sis		ab Numbei eport Date	
Parameter		Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - We	stborough Lab Associated sa	mple(s): 02 QC Batch II	D: WG1719187-1 QC Sa	ample: L226	7902-21 CI	ient ID: Dl	JP Sample

94.7

94.2

%

1

Solids, Total

Project Name:89 LASALLE BCP SITEProject Number:GL21502976

Serial_No:12182216:37 *Lab Number:* L2267425 *Report Date:* 12/18/22

Sample Receipt and Container Information

YES

Were project specific reporting limits specified?

Cooler Information

Cooler	Custody Seal					
A	Absent					

Container Information		Initial	Final	Temp			Frozen			
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)	
L2267425-01A	Plastic 250ml HNO3 preserved	A	<2	<2	3.2	Y	Absent		TL-6020T(180),BA-6020T(180),SE- 6020T(180),FE-6020T(180),CA-6020T(180),CR- 6020T(180),NI-6020T(180),K-6020T(180),CU- 6020T(180),ZN-6020T(180),NA-6020T(180),PB- 6020T(180),MN-6020T(180),BE-6020T(180),V- 6020T(180),AS-6020T(180),AL- 6020T(180),HG-T(28),MG-6020T(180),CO- 6020T(180)	
L2267425-01B	Amber 250ml unpreserved	А	7	7	3.2	Y	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)	
L2267425-01C	Amber 250ml unpreserved	А	7	7	3.2	Y	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)	
L2267425-02A	Plastic 2oz unpreserved for TS	А	NA		3.2	Y	Absent		TS(7)	
L2267425-02B	Metals Only-Glass 60mL/2oz unpreserved	A	NA		3.2	Y	Absent		BE-TI(180),BA-TI(180),AS-TI(180),AG- TI(180),AL-TI(180),CR-TI(180),NI-TI(180),TL- TI(180),CU-TI(180),ZN-TI(180),PB-TI(180),SB- TI(180),SE-TI(180),CO-TI(180),V-TI(180),FE- TI(180),HG-T(28),MG-TI(180),MN-TI(180),CA- TI(180),CD-TI(180),K-TI(180),NA-TI(180)	
L2267425-02C	Glass 120ml/4oz unpreserved	A	NA		3.2	Y	Absent		NYTCL-8270(14)	

Serial_No:12182216:37

Project Name: 89 LASALLE BCP SITE

Project Number: GL21502976

Lab Number: L2267425

Report Date: 12/18/22

GLOSSARY

Acronyms

Acronyms	
DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	 Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	 No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name: 89 LASALLE BCP SITE

Project Number: GL21502976

Lab Number: L2267425 Report Date: 12/18/22

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

¹

Serial_No:12182216:37

Project Name: 89 LASALLE BCP SITE

Project Number: GL21502976

Lab Number: L2267425

Report Date: 12/18/22

Data Qualifiers

Identified Compounds (TICs).

M - Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.

- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Project Name: 89 LASALLE BCP SITE Project Number: GL21502976
 Lab Number:
 L2267425

 Report Date:
 12/18/22

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D/8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

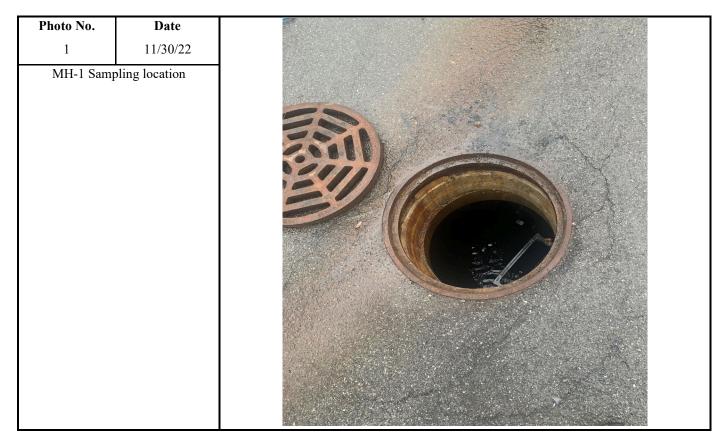
EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Westborough, MA 01581	the state of the state	Service Centers Mahwah, NJ 07430: 35 Whitn Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 C	Way	105	Pag			in	Rec' Lab	d	9/2	12	}	ALPHA JOB # 742	氏
8 Walkup Dr. TEL: 508-698-9220	320 Forbes Blvd TEL: 508-822-9300	Project Information Project Name:	9 1 NEAU	6 21			Deli	verable		1.1.1	-	SUIS	1	Billing Information	
FAX: 508-898-9193	FAX: 508-822-3288	Project Name: 7	9 LASALL	L DCP	SITE			ASP				ASP-B		Same as Client Infe	0
Client Information		Project Location: 59	LASMUE	AUL, IS	offer	O NY		200	IS (1 F	ile)		EQuIS (4 File)	PO#	
Client: WSP	USA INC.	Project # GL Z	14 55	372	1502	976		Othe	-				_		
and the second se	RIVIERE DR.	(Use Project name as F		44.			Reg	ulatory	Requ	ireme	nt			Disposal Site Informatio	n
STE 320, By	HALI AN	Project Manager:	PATRICK 142.6	MANT	N			NY T	OGS			NY Part 3	75	Please identify below location	on of
	367-2860		4203	5	-			10.515	Standa			NY CP-51		applicable disposal facilities	i.,
Fax:	001-2000	Turn-Around Time	-					NYR	estricte	d Use		Other		Disposal Facility:	
	matingural	Standar Rush (only if pre approve	d 📉	Due Date				NY U	nrestric	ted Use				и Ци	
Those complex house	11/12 1110 0051.00	Rush (only if pre approve	d)	# of Days	:			NYC	Sewer I	Dischar	ge			Other:	
Other project specific	been previously analyze c requirements/comm	d by Alpha					ANA	LYSIS	í.,					Sample Filtration	T
Please specify Metals		ents.					CI 01 28 10 D	ofthe s		10 Bucs				Done Lab to do Preservation Lab to do	o t a I B o
ALPHA Lab ID		11 J. 18	Colle	ection	Dennel		Kh	1	N.	10				(Please Specify below)	t.
(Lab Use Only)	Sar	nple ID	Date	Time	Sample Matrix	Sampler's Initials	3	20	K	6					
175425-01	MH-1 STOP	MUMBA	11/30/22		100000000000000000000000000000000000000		\mathbf{i}	125		~		_	_	Sample Specific Comment	s e
-64-	MH-1 SEDI	MENT	11/30/22	13:45	sho	PTM	X	X		1	-		-		
		. /	1190120	12013	2450	PIII	~	-	X	X	_	_	-		
Annability of the second							-	-				_	-		
							-			_	-	_	_		
Note: Seater and								-		_	-	_	-		
							-		_	-	-	_	-		
A State of the state								-	_		-	_	-		
								-	-	_	-	-	-		
Service and the service of the servi								_	_	_	_	_	-		
	Container Code	Vestboro: Certification N	LIA005					_	_	_		_			
					Cont	tainer Type								Please print clearly, leg	gibly
C = HNO ₃	V = Vial	Mansfield: Certification N	o: MA015						-			-		and completely. Sampl	
	G = Glass B = Bacteria Cup				P	reservative							1 1	not be logged in and turnaround time clock v	will not
	C = Cube													start until any ambiguiti	ies are
	D = Other E = Encore	Relinquished E	11 1-1	Date/1			and the second second	ed By:			, P	ate/Tim		resolved. BY EXECUT	ING
	D = BOD Bottle	they have		12/1/22 1		Sente	MA	2			2/1/2	21	435	THIS COC, THE CLIEN HAS READ AND AGRE	T
= Other	-	Santis MA		12/1/22	100	~~~	-	_	-	-	12/21	laa a	030	TO BE BOUND BY ALI	
0mm No: 01 25 UC /mm 20 1	Part 2012	0		1				_						TERMS & CONDITION	IS.
orm No: 01-25 HC (rev. 30-	Sept-2013)													(See reverse side.)	

APPENDIX B ANNUAL SITE INSPECTION FORM & PHOTO LOG DOCUMENTATION

89 LaSalle Avenue BUFFALO, NEW YORK Site Management Plan


NYSDEC Site Number: C915283

SEMI-ANNUAL INSPECTION FORM

Inspection Item Description	Frequency	Comments	Corrective Action (If Required)
Site Cover Systems: - Soil Cover	-Semi- Annually	> Exclutery Cont.	N/A
- Asphalt Paved Areas		-> ExcEctent Contr. -> ExcEctent Contr.	
 Concrete Sidewalks and other concrete structures Other (if applicable) 		= EXCELLENT COND. - N/A	
Document specific locations and nature of condition issue if any observed.			
Stormwater – Manhole Discharge Sampling Location General Condition	Semi- Annually	COMPLETED D MH-1 ON 11/30/22 AFTER >0.5" RAIN EVENT	N/A
Excavation Work Locations – General Conditions	Per Occurrence	NO INTRUSINE WORK BEING PERFERMED	N/A
		Tata	il 1. Muntu 11/30/22

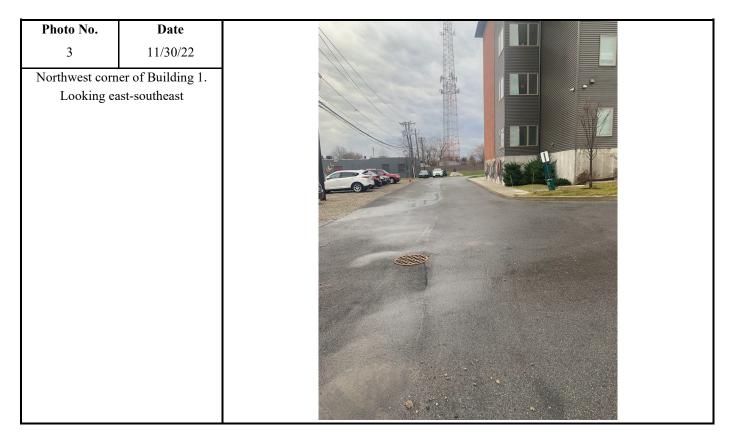

PHOTOGRAPHIC LOG 2023 PERIODIC 89 LA SALLE AVENUE REVIEW REPORT PRR SITE INSPECTION

Photo No.	Date	
2	11/30/22	
Former location	n of block service	
building on	LaSalle Ave	THE P
(demolished)). Looking east	
		Contraction of the second s
		and the second
		The second se

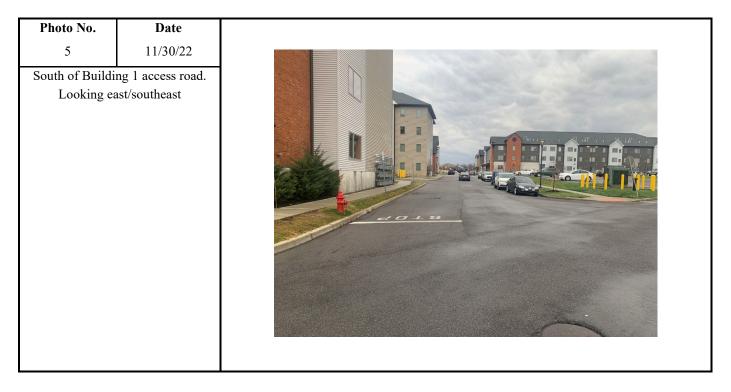

	PHOTOGRAPHIC LOG	
2023 PERIODIC	89 LA SALLE AVENUE	
REVIEW REPORT	PRR SITE INSPECTION	

Photo No.	Date	
4	11/30/22	
	ilding 1. Looking	
nort	iheast	

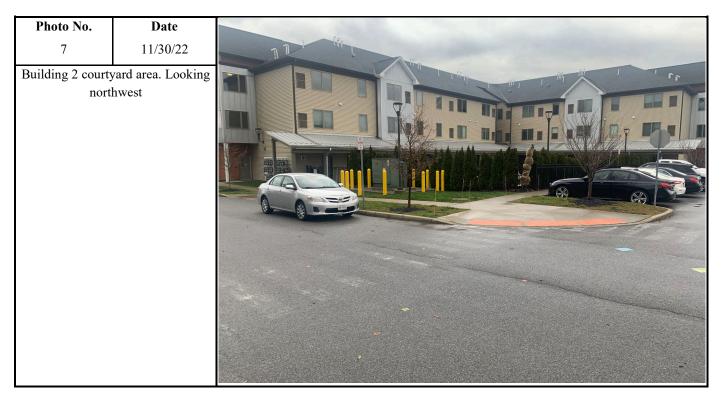

	PHOTOGRAPHIC LOG	
2023 PERIODIC	89 LA SALLE AVENUE	
REVIEW REPORT	PRR SITE INSPECTION	

Photo No.	Date	
6	11/30/22	
	cover south of oking northeast	

	PHOTOGRAPHIC LOG	
2023 PERIODIC	89 LA SALLE AVENUE	
REVIEW REPORT	PRR SITE INSPECTION	

PHOTOGRAPHIC LOG		
2023 PERIODIC	89 LA SALLE AVENUE	
REVIEW REPORT	PRR SITE INSPECTION	

Photo No.	Date	The second se
9	11/30/22	
9 Access road and J of Building 2.		

Photo No.	Date	
10	11/30/22	
Traffic circle a	at main entrance	
(Building 1 in bac	kground). Looking	
	orthwest	

APPENDIX C

SITE C915283 SITE MANAGEMENT PLAN PERIODIC REVIEW REPORT – 2022/2023 ICS-ECS CERTIFICATION FORM

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site Details Site No. C915283	Box 1		
Site Name 89 LaSalle Avenue Site			
Site Address: 89 LaSalle Avenue Zip Code: 14212 City/Town: Buffalo County: Erie Site Acreage: 9.230			
Reporting Period: March 30, 2022 to March 30, 2023			
	YES	NO	
1. Is the information above correct?	X		
If NO, include handwritten above or on a separate sheet.			
2. Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?		×	
3. Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?		×	
4. Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?		×	
If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form.			
5. Is the site currently undergoing development?		×	
	Box 2		
	YES	NO	
 Is the current site use consistent with the use(s) listed below? Restricted-Residential, Commercial, and Industrial 	×		
7. Are all ICs in place and functioning as designed?			
IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below as DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	nd		
A Corrective Measures Work Plan must be submitted along with this form to address th	ese iss	sues.	

		Box 2A	
		YES	NO
	ion revealed that assumptions mad g offsite contamination are no longe		×
	S to question 8, include documen has been previously submitted v		
	n the Qualitative Exposure Assess sure Assessment must be certified		
	to question 9, the Periodic Revie Exposure Assessment based on		
SITE NO. C915283		Вох	3
Description of Institu	tional Controls		
Parcel	Owner	Institutional Control	
Portion of 79.70-2-16.111	City of Buffalo DPW	Ground Water Use Restriction Soil Management Plan Landuse Restriction Monitoring Plan Site Management Plan IC/EC Plan	on
3. Soil Management for any	stricted Residential, Commercial or future intrusive work.	r Industrial purposes.	
Portion of 79.70-2-5.1	Legacy UPAL, L.P.	Ground Water Use Restriction Soil Management Plan Landuse Restriction Monitoring Plan Site Management Plan IC/EC Plan	on
 Prohibition of groundwate Land use restricted to Re Soil Management for any 	stricted Residential, Commercial of	r Industrial purposes.	
		Box	4
Dependention of Frank	aring Controlo		
Description of Engine	-		
Parcel Portion of 79.70-2-16.111	Engineering Control		
	Cover System		
1. Monitoring and maintenar 2 Semi-a nnual storm water Portion of 79.70-2-5.1	nce of the cover system.		
	Cover System		
1. Monitoring and maintenar 2. Semi annual storm water	nce of the cover system. and sediment monitoring.		

			Box 5
	Periodic Review Report (PRR) Certification Statements		
1.	I certify by checking "YES" below that:		
	a) the Periodic Review report and all attachments were prepared under the dire reviewed by, the party making the Engineering Control certification;	ction of,	and
	b) to the best of my knowledge and belief, the work and conclusions described i are in accordance with the requirements of the site remedial program, and gener engineering practices; and the information presented is accurate and compete.		
		YES	NO
		X	
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all following statements are true:	of the	
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Dep	partmen	ıt;
	(b) nothing has occurred that would impair the ability of such Control, to protect the environment;	public h	ealth and
	(c) access to the site will continue to be provided to the Department, to evaluate remedy, including access to evaluate the continued maintenance of this Control;		
	(d) nothing has occurred that would constitute a violation or failure to comply with Site Management Plan for this Control; and	th the	
	(e) if a financial assurance mechanism is required by the oversight document fo mechanism remains valid and sufficient for its intended purpose established in the		
		YES	NO
		\times	
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.		
	A Corrective Measures Work Plan must be submitted along with this form to address t	hese iss	sues.
	Signature of Owner, Remedial Party or Designated Representative Date		

IC CERTIFICATIONS SITE NO. C915283 Box 6	
SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.	
I TATRICK T. MANTIN at <u>40 LA RIVIENE DR. STE 320, BUFFINO, NY</u> , print name print business address	
am certifying as(Owner or Remedial Party	y)
for the Site named in the Site Details Section of this form.	
Signature of Owner, Remedial Party, or Designated Representative	

Rendering Certification

EC CERTIFICATIONS

Box 7

Qualified Environmental Professional Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I <u>BATRICK T. MANTIN</u> at <u>40 LA R</u> print name pr	NIME DR., 57E 320, BUFFALO, NY ¹ ,
am certifying as a Qualified Environmental Professiona	I for the OWNER (Owner or Remedial Party)
Signature of Qualified Environmental Professional, for the Owner or Remedial Party, Rendering Certification	Stamp Date (Required for PE)

APPENDIX D

CORRESPONDENCE C915283.2022-07-05 REDUCTION OF INSEPCTION AND SAMPLING FREQUENCY FROM SEMI-ANNUAL TO ANNUAL

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Region 9 700 Delaware Avenue, Buffalo, NY 14209 P: (716) 851-7220 | F: (716) 851-7226 www.dec.ny.gov

July 5, 2022

Frank Chinnici Legacy UPAL, L.P. 250 Ramsdell Avenue Buffalo, NY 14216

> Re: Site Management (SM) – Periodic Review Report (PRR) Response Letter 89 LaSalle Avenue, Buffalo Erie County, Site No.: **C915283**

Dear Frank Chinnici (as the Certifying Party):

The Department has reviewed your Periodic Review Report (PRR) and IC/EC Certification for following period: March 30, 2021 to March 30, 2022. The Department hereby accepts the PRR and IC/EC Certification.

The frequency of Periodic Reviews for this site is 1 year, your next PRR is due on April 30, 2023. You will receive a reminder letter and updated certification form 75-days prior to the due date. Regardless of receipt or not, of the reminder notice, the next PRR including the signed certification form, is still due on the date specified above.

The NYSDEC and NYSDOH have assessed the surface water and sediment sampling data and concur the frequency of the sampling and site inspections be modified from semi-annual to annual.

If you have any questions, or need additional forms, please contact me at (716) 851-7220 or e-mail: taylor.monnin@dec.ny.gov.

Sincerely,

Taylor Mein

Taylor Monnin Assistant Engineer

ec: Andrea Caprio - NYSDEC Gregory Rys – NYSDOH

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Region 9 700 Delaware Avenue, Buffalo, NY 14209 P: (716) 851-7220 | F: (716) 851-7226 www.dec.ny.gov

> Charlotte Bethoney - NYSDOH Patrick Martin – WSP USA Inc. Michael Finn – City of Buffalo Jason Paannen – City of Buffalo

Department of Environmental Conservation