

89 LaSalle Avenue Site Buffalo, New York

PERIODIC REVIEW REPORT

NYSDEC SITE NUMBER: C915283

Revision 1

PREPARED FOR:

LEGACY UPAL, L.P. 89 LASALLE AVENUE SITE BUFFALO, NEW YORK 14225

PREPARED BY:

WSP USA INC. 40 LA RIVIERE DR, SUITE 320 BUFFALO, NEW YORK 14202 (716) 853-1220 WSP.COM

PROJECT NO.: US0030223.6099 DATE: DECEMBER 5, 2024

TABLE OF CONTENTS

1	SITE OVERVIEW	1
1.1	SITE LOCATION AND DESCRIPTION	1
1.2	NATURE AND EXTENT OF CONTAMINATION PRIOR TO REMEDIATION	1
1.3	SITE REMEDIAL PROGRAM	2
1.4	PURPOSE OF PERIODIC REVIEW REPORT	3
2	REMEDIAL SYSTEMS COMPLIANCE	4
3	INSTITUTIONAL CONTROL COMPLIANCE	5
3.1	INTRODUCTION	5
3.1.1	GENERAL	5
3.2	DESCRIPTION OF INSTITUTIONAL CONTROLS	5
3.2.1	STATUS OF ICs	6
4	MONITORING PLAN COMPLIANCE REPORT	6
4.1	INTRODUCTION	7
4.1.1	GENERAL	7
4.1.2	SCHEDULE	7
4.2	MONITORING PROGRAM RESULTS	8
4.2.1	SURFACE WATER AND SEDIMENT MONITORING	8
4.3	ANNUAL SITE INSPECTION RESULTS	10
4.4	SUMMARY OF OFF-SITE ACTIVITES DURING REPORTING PERIOD	10
4.5	CONCLUSIONS AND RECOMMENDATIONS	10

TABLE OF CONTENTS

5		RALL CONCLUSIONS AND OMMENDATIONS11
6	REFE	RENCES12
TABL	ES	
Table	4-1	Monitoring/Inspection Schedule
Table	4-2	Summary of Analytical Results for Stormwater and
		Sediment Samples (October 2023)
Table	4-3	Summary of Exceedances - Stormwater and Sediment
		Analytical Results (2017-2023)
FIGU	RES	
Figure	: 1-1	Site Vicinity Map
Figure	e 4- 1	October 2023 Stormwater and Sediment Sample Locations
APPE	ENDICI	ES
Apper	ndix A	Analytical Data Report (October 2023) –Alpha Analytical
Apper	ndix B	Site- Wide Inspection Forms & Photo Logs – October 2023
Apper	ndix C	Site C915234 Site Management Plan Periodic Review
		Report – 2023 ICs-ECs Certification Form
Apper	ndix D	NYSDEC Sampling and Site Inspection Frequency

Modification Letter

1 SITE OVERVIEW

1.1 SITE LOCATION AND DESCRIPTION

The location of the site is comprised of two parcels, addressed at 89 LaSalle Avenue and 71 NYL & W RR located in the City of Buffalo, County of Erie, New York and identified respectively as SBL 79.70-2-5.1 and SBL 79.70-2-16.111 on the Erie County Tax Map. The owner of the 89 LaSalle parcel is Legacy UPAL, L.P and the owner of the 71 NYL & W RR parcel is the City of Buffalo. The total acreage of the two parcels is approximately 11.9 acres with a Brownfields Cleanup Program (BCP) site (hereinafter referred to as Site) boundary of 9.23 acres. The combined parcel is bordered by commercial properties and LaSalle Avenue to the north, McCarthy Park to the south, residential apartments to the east (Camelot Ct.), and residential properties located on William Price Parkway to the west (see Site Vicinity Map, Figure 1-1). The Site was remediated in accordance with Brownfield Cleanup Agreement (BCA) Site# C915283, which was executed on June 6, 2014.

1.2 NATURE AND EXTENT OF CONTAMINATION PRIOR TO REMEDIATION

Prior to site remediation under the Brownfields Cleanup Program (BCP), a Remedial Investigation (RI) was performed to characterize the nature and extent of contamination at the site. The RI activities conducted on the Site as preparation for remedial efforts included the installation of four (4) wells, the advancement of fifteen (15) borings, the excavation of nineteen (19) test pits, and the collection of four (4) surface soil samples.

Generally, the RI determined that the historic use of the Site as a landfill was evident in analytical results from the initial RI identifying the widespread presence of low levels of heavy metals and Semi Volatile Organic Compounds (SVOCs) (specifically Polycyclic Aromatic Hydrocarbons (PAHs)) as the Constituents of Primary Concern (COPCs) in soil/fill across the Site, and specifically at several locations identified across the central portion of the Site where the COPC concentrations were elevated relative the rest of the Site.

Previous investigations had been conducted on portions of the BCP Site referenced as the LaSalle Reservoir Site, which generally encompassed the southeastern half of the Site (the former Buffalo Crushed Stone quarry area).

Four (4) impacted locations identified during the initial RI were subject to a supplemental remedial investigation delineating the elevated COPC impacts detected in these areas of concern. Findings from the supplemental test pit investigation of the four impacted areas of interest

confirmed that there was no evidence of significant lateral or vertical contamination surrounding the original soil boring locations. Levels of COPCs detected in the supplemental test pits indicated that concentrations of COPCs, where detected, were below site-specific soil cleanup objectives as proposed in the Final RI Report and consistent with observations of RI analytical results across the site. The heterogeneous nature of the soil/fill across the Site, and analytical results indicating widespread low-level concentrations of COPCs above the Restricted Residential SCOs throughout Site overburden, demonstrated that a source or sources of contamination found at the four original areas of concern was not present.

1.3 SITE REMEDIAL PROGRAM

The site was remediated in accordance with the NYSDEC-approved 89 LaSalle RI-IRM-AA Report dated January 2015.

The following is a summary of the Remedial Actions performed at the site:

- Excavation of soil/fill identified at four RI boring locations as significantly exceeding restricted residential SCOs, to a minimum depth of five feet or bedrock where applicable;
- Construction and maintenance of a soil cover system consisting of two feet of clean imported material, and/or impervious material (i.e., asphalt pavement, concrete sidewalks, and buildings) differentiated by a demarcation layer to prevent human exposure to remaining contaminated soil/fill remaining at the site;
- Execution and recording of an Environmental Easement to restrict land use and prevent future exposure to any contamination remaining at the site; and
- Development and implementation of a Site Management Plan (SMP) for long term management of remaining contamination as required by the Environmental Easement, which includes plans for: (1) Institutional and Engineering Controls, (2) monitoring, (3) maintenance and (4) reporting.

Remedial activities were completed at the site in February 2015 (hotspot soil/fill excavations), and between April and October 2015 installation of the Site's cover system was incrementally installed as the Site's development progressed through construction and final site restoration.

A total of 350 tons of contaminated soil/fill was excavated and removed from the four hotspot locations identified in the RI Report (Boring locations B-5, B-7, B-8, and B-9) and illustrated on Figure 5 in the SMP. The excavated hotspot locations were subsequently backfilled with excess soils excavated and stockpiled from other uncontaminated locations on the Site, primarily storm sewer and water line utility trenching locations. In addition, approximately 1,300 tons of topsoil mixed with vegetative material was also stripped from the upper three to six inches of portions of

the site and disposed of off-site. This material was not identified as exceeding the applicable SCOs, however it was not suitable for reuse on the Site as part of the final cover system.

After completion of the remedial work, some contamination was left in the subsurface at this site, which is hereafter referred to as "remaining contamination." A layer of geotextile fabric was installed as a demarcation layer in those areas of the Site where two feet of clean soil cover is the component of the cover system. This geotextile was placed on top of the subgrade soil/fill prior to placement of clean soil. At other locations on the Site where the cover system consists of impervious asphalt or concrete, a layer of geotextile was also placed between the remaining soil/fill and clean structural gravel or crushed stone fill. In areas were buildings or structures act as the final cover system, a minimum of two feet, and in most areas four feet, of clean imported material was placed prior to placement of concrete pads and the erection of structures. In the case of Building 1, clean subbase material was placed, covered with clean topsoil and seeded in the same manner as other green space on the Site, until such time the building foundations and concrete pad were poured and the topsoil and vegetative cover stripped down to the clean subbase material.

The SMP was prepared to manage remaining contamination at the site until the Environmental Easements are extinguished in accordance with ECL Article 71, Title 36. The SMP addresses the means for implementing the Institutional Controls (ICs) and Engineering Controls (ECs) that are required by the Environmental Easement for the Site.

1.4 PURPOSE OF PERIODIC REVIEW REPORT

This Periodic Review Report (PRR) presents information on the maintenance, monitoring and compliance activities performed at the 89 LaSalle Avenue Site No. C915283 covering the period from April 1, 2023 to March 30, 2024.

2 REMEDIAL SYSTEMS COMPLIANCE

2.1 GENERAL

Since remaining contaminated soil and groundwater exists beneath the site, Engineering Controls and Institutional Controls (EC/ICs) are required to protect human health and the environment.

Site specific SCOs were developed and approved based on 6NYCRR Part 375 Restricted Residential SCOs. These SCOs were employed as soil cleanup goals to achieve the remedial action objectives for the Site of minimizing the potential for exposure of remaining soil contaminants to humans and the environment. The SCOs established are soil concentration limits protective of human health and surface water quality. Achievement of the site specific SCOs was confirmed through verification sampling.

The selected Engineering Control implemented at the Site (following completion of remediation activities) was the construction and maintenance of a soil cover system consisting of two feet of clean imported material and/or impervious material (i.e., asphalt pavement, concrete sidewalks and buildings), differentiated by a demarcation layer to prevent human exposure to remaining contaminated soil/fill.

The approved SMP requires the implementation of a long-term monitoring plan that incorporates monitoring and maintenance of the Site cover system to identify evidence of excessive soil erosion to soil cover systems or deterioration of asphalt or concrete structures that might indicate that off-site transport of soil/fill is likely to occur or is occurring. In addition, annual stormwater and sediment monitoring and analysis is performed to further assess performance of the cover system.

The results of the required monitoring activities and annual inspection are presented in Section 4 "Monitoring Plan Compliance Report".

3 INSTITUTIONAL CONTROL COMPLIANCE

3.1 INTRODUCTION

3.1.1 GENERAL

Since remaining contaminated soil and groundwater exist beneath the Site, Engineering Controls and Institutional Controls (EC/ICs) are required to protect human health and the environment. The Engineering and Institutional Control Plan describes the procedures for the implementation and management of all EC/ICs at the site. The EC/IC Plan is one component of the SMP and is subject to revision by NYSDEC.

The goals of the ICs are to: (1) implement, maintain, and monitor Engineering Control systems; (2) prevent future exposure to remaining contamination by controlling disturbances of the subsurface contamination; and (3) limit the use and development of the Site to Restricted Residential uses only. Adherence to these Institutional Controls is required by the Environmental Easement and will be implemented under this Site Management Plan.

3.2 DESCRIPTION OF INSTITUTIONAL CONTROLS

The Institutional Controls are:

- Compliance with the Environmental Easements and the SMP by the Grantor and the Grantor's successors and assigns;
- All Engineering Controls must be maintained as specified in the SMP;
- All Engineering Controls on the Controlled Property must be inspected at a frequency and in a manner defined in the SMP;
- Stormwater, sediment and other environmental or public health monitoring must be performed as defined in the SMP; and
- Data and information pertinent to Site Management of the Controlled Property must be reported at the frequency and in a manner defined in the SMP.

The Site has a series of Institutional Controls in the form of site restrictions. Adherence to these Institutional Controls is required by the Environmental Easement. Site restrictions that apply to the Controlled Property are:

- The property may only be used for restricted residential use, provided that the long-term Engineering and Institutional Controls included in the SMP are employed;
- The property may not be used for a higher level of use, such as unrestricted residential use without additional remediation and amendment of the Environmental Easement, as approved by the NYSDEC;
- All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP;
- The use of the groundwater underlying the property is prohibited without treatment rendering it safe for intended use;
- Vegetable gardens and farming on the property are prohibited; and,
- The site owner or remedial party will submit to NYSDEC a written statement that certifies, under penalty of perjury, that: (1) controls employed at the Controlled Property are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC; and, (2) nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP. NYSDEC retains the right to access such Controlled Property at any time in order to evaluate the continued maintenance of any and all controls. This certification shall be submitted annually, or at an alternate frequency that NYSDEC may allow and will be made by an expert that the NYSDEC finds acceptable.

The Environmental Easement summarizing the site use restrictions and requirements for the Site was executed by the Department on December 14, 2015, and filed with the Erie County Clerk on December 15, 2015. A copy of the easement and proof of filing is provided in Appendix A of the SMP.

3.2.1 STATUS OF ICs

During the reporting period covered by this PRR, all ICs were in place and effective in meeting their objectives. There was no intrusive work performed on the BCP Site during the reporting period covered by this PRR.

There are no corrective measures required to ensure the effectiveness of ICs at this time based on the results of the monitoring and semi-annual inspection performed.

Stormwater and sediment samples for the current PRR period were collected on October 31, 2023, when stormwater effluent was present in sufficient quantity for sampling at the MH-1 structure. The next sampling event is tentatively scheduled for October 2024.

4 MONITORING PLAN COMPLIANCE REPORT

4.1 INTRODUCTION

4.1.1 GENERAL

The Monitoring Plan describes the measures for evaluating the performance and effectiveness of the remedy to reduce or mitigate contamination at the Site, the soil cover system, and all affected site media identified below. The Monitoring Plan may only be revised with the approval of NYSDEC.

4.1.2 SCHEDULE

Semi-annual monitoring and inspection of the performance of the remedy and overall reduction in contamination on-site was conducted for the first five years. On July 5, 2022, the NYSDEC approved the reduction of Site sampling and inspections from semi-annual to annual, this correspondence can be found in Appendix D.

Characterizations of the quality of stormwater and sediment generated as runoff from the Site's engineered cover system have been selected as representative Site monitoring media. Trends in contaminant levels in stormwater and sediment in the affected areas will be evaluated to determine if the remedy continues to be effective in achieving remedial goals. The monitoring and inspection program are summarized in detail in Table 4-1. The results of the monitoring performed are discussed further in Section 4.2.

Table 4-1: Monitoring/Inspection Schedule

^{*} The frequency of events will be conducted as specified until otherwise approved by NYSDEC and NYSDOH

Monitoring Program	Frequency*	Matrix	Analysis/Comments
Stormwater Discharge to City of Buffalo Storm Sewer System	Annual	Stormwater runoff and sediment (when present)	TAL Metals (Method 6020B), Semi- volatile compounds (Method 8270D SIM), Total Solids [sediment only] (SM 2540)

Site Inspection	Annual	Visually inspect entire site for cover system integrity	Prepare a detailed written description of
		and signs of unacceptable	the condition of all
		deterioration or other	cover system
		damage to cover system	components. Include
		components that may	a photographic record
		result in exposure to	of inspection areas
		contaminated soil	

4.2 MONITORING PROGRAM RESULTS

4.2.1 SURFACE WATER AND SEDIMENT MONITORING

On October 31, 2023 stormwater and sediment grab samples were collected from the manhole within 16 hours of two-day rain event totaling 0.68 inches, of which 0.24 inches fell on October 29 and 0.44 inches fell on October 30 (data from National Oceanic and Atmospheric Administration). The October 30, 2023 precipitation total reached 0.44 inches at 7:15 PM on October 30, 2023 and therefore sample collection had to be postponed to the following day.

The stormwater and associated sediment samples were collected from the discharge of Manhole 1 (designated MH-1) located at the northwest corner of the BCP Site. MH-1 subsequently discharges to the City of Buffalo storm sewer system in LaSalle Ave. The sediment sample was collected at the base of the manhole, which consisted primarily of eroded asphalt and small gravel. The samples were collected at one location in accordance with the Legacy LaSalle C915283 Site SMP.

Stormwater samples were analyzed for SVOCs and Total Metals. Sediment samples were analyzed for SVOCs, Total Metals and Total Solids. The analytical results from the October 2023 sampling event are summarized in Table 4-2. Table 4-2 presents sample detections compared to NYSDEC surface water standards (NYSDEC 1998), NYS Technical Guidance Series (T.O.Gs) Surface Water Guidance values, Class A Freshwater Sediment Guidance Values (Table 5) from the "Screening and Assessment of Contaminated Sediments" (NYSDEC 2014), and Part 375 Restricted Residential SCOs.

Detections above NYSDEC surface water standards or guidance values for the following SVOCs and metals were found in the October 2023 stormwater sample:

• benzo[a]anthracene (0.00007 ppm)

- benzo[a]pyrene (0.00009 ppm)
- benzo[b]fluoranthene (0.00019 ppm)
- benzo[k]fluoranthene (0.00005 ppm)
- chrysene (0.00011 ppm)
- Indeno[1,2,3-cd]pyrene (0.00012 ppm)
- sodium (20.5 ppm)

The SVOC detections were marginally above the TOGs 1.1.1 surface water guidance values. There are no 6 NYCRR Part 703 water quality standards promulgated for these compounds.

Sodium was detected at an elevated concentration above the groundwater quality standard and is likely attributable to run-off contributions from road salt due to previous winter road maintenance at the Site.

No exceedances of the Class A freshwater sediment guidance values or the Restricted Residential SCOs were detected in the October 2023 sediment sample.

A copy of the laboratory Analytical Reports for the stormwater and sediment analyses performed is attached in Appendix A.

Table 4-3 provides a summary of the compounds that have exceeded either a regulatory standard or guidance value (for stormwater or sediment) from 2017 through the 2023 sampling events since they began under the SMP. The table indicates that low levels of six (6) SVOCs have consistently been present in concentrations exceeding their respective NYSDEC T.O.G.S 1.1.1 Surface Water Guidance Values. The concentrations of these compounds over five of the past six sampling events have remained essentially unchanged and are consistent with background detections of SVOCs in run-off found in urban settings due to depositional contributions from fossil fuel combustion, vehicle emissions and asphalt parking areas. Exceedances of Part 703 Surface Water Quality Standards for iron and sodium have been detected in the stormwater samples for the majority of the sampling events, these compounds are associated with background soil concentrations the use of road salt in the winter months. Only one exceedance of Part 703 Surface Water Quality Standards for SVOCs [bis(2-tethylhexyl) phthalate] occurred in 2018, with none since. There have been no exceedances in the sediment samples collected of the freshwater sediment guidance values or the restricted residential SCOs since 2019.

4.3 ANNUAL SITE INSPECTION RESULTS

A Site inspection was performed on October 31, 2023, to address the reduced frequency of once per year established by the letter of approval from NYSDEC on July 5, 2022. A Site-wide inspection form was completed (Appendix B) during the inspection. The form compiles sufficient information to assess the following:

- Compliance with all ICs, including Site usage;
- General Site conditions at the time of the inspection;
- The site management activities being conducted including, where appropriate, confirmation sampling and a health and safety inspection;
- Compliance with permits and schedules included in the Operation and Maintenance Plan; and
- Confirmation that Site records are up to date.

All areas of the Site were carefully inspected to assess the condition of surface soil, asphalt, and concrete areas to determine if erosion or related deterioration is occurring that would jeopardize the integrity of the site cover including soil, asphalt or concrete structures preventing the transport of potentially contaminated soil/fill onto surrounding properties. During the inspection event, the integrity of the cover materials were found to be in excellent condition with no integrity issues observed.

A photographic log containing photos taken during the October 2023 inspection are provided in Appendix B.

4.4 SUMMARY OF INTRUSIVE ACTIVITES DURING REPORTING PERIOD

No intrusive activities were performed on-site during the period covered by this PRR

4.5 CONCLUSIONS AND RECOMMENDATIONS

At the time of the annual inspections, the Site was fully compliant with the institutional controls described in the SMP. All monitoring results and inspection results were acceptable with only low-level detection of limited SVOCs and metals in the stormwater consistent with past findings at the Site outfall stormwater discharge and no evidence of erosion of the soil cover or deteriorations of hardscape portions of the cover on the Site.

5 OVERALL CONCLUSIONS AND RECOMMENDATIONS

Based on the monitoring and inspection results described in Section 4 and conducted during the timeframe covered by this PRR, compliance with all relevant components of the SMP ICs was achieved. A copy of the completed and certified "Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form" is attached in Appendix C.

The results of the stormwater and sediment sample results after seven years of development and the overall condition of the site and integrity of the final soil cover system are indicative that the remedy performed under the BCP is achieving its intended goals of minimizing, to the extent feasible, exposure of remaining contamination to the environment through stormwater runoff and associated sediment erosion.

Legacy has received a reduction in the Site Management Plan sampling frequency and Site Inspection from semi-annual to annual starting with the 2022-2023 reporting period and that the annual sampling/inspection event occur in the fall each year when weather conditions are more conducive to collecting a representative stormwater sample. This request is based on a review of the long-term monitoring results (summarized in Table 4-3) indicating that the Site remedy and ongoing institutional controls have been successful in controlling off-site impacts and the concentrations of compounds of concern have remained low and stable since monitoring was initiated in 2017. The approval letter is attached in Appendix D.

6 REFERENCES

- 1. Golder Associates Inc., Final Engineering Report, 89 LaSalle Ave. Site, NYSDEC Site No. C915283, December 2015.
- 2. Golder Associates Inc., Site Management Plan, 89 LaSalle Ave. Site, NYSDEC Site No. C915283, prepared for Legacy LaSalle LLC, December 2015.

SIGNATURE PAGE

WSP USA INC.

Joshua Vernold

Consultant, Geologist

Ashlee Smith, P.E.

Environmental Engineer

JV/AS

TABLES

SUMMARY OF ANALYTICAL RESULTS FOR STORMWATER SEDIMENT SAMPLES 89 LASALLE AVENUE BCP SITE # C915283 LEGACY LASALLE, LLC. **BUFFALO, NY**

Lab ID	Water Quality Standards	NYS T.O.G.S	Class A	Restricted Residential	L236448 Stormw		L236448 Sedime	
Sample ID	Surface Waters and Groundwater	1.1.1 Surface Water Guidance	Freshwater Sediment Guidance	SCOs Table 375-	MH-	1	MH-	1
Sample Date	(6 NYCRR Part 703)	Values+	Values*	6.8(b)	10/31/	23	10/31/23	
Units	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)		(ppm	1)
Semivolatile Organics (Method 8270D-SIM)							•	
2-Methylnaphthalene	NV	NV	NV	NV	ND		ND	
Acetophenone	NV	NV	NV	NV	ND		ND	
Acenaphthene	0.02	0.0053	NV	100	ND		ND	
Acenaphthylene	NV	NV	NV	100	ND		ND	
Anthracene	NV	0.0038	NV	100	0.00002	J, B	0.053	J
Benzaldehyde	NV	NV	NV	NV	ND		ND	
Benzo(a)anthracene	NV	0.000002	NV	1	0.00007	J	0.15	
Benzo(a)pyrene	NV NV	0.0000012 0.000002	NV NV	1	0.00009 0.00019	J	0.15 0.2	J
Benzo(b)fluoranthene Benzo(ghi)perylene	NV NV	0.000002 NV	NV	100	0.00019	J	0.2	J
Benzo(k)fluoranthene	NV	0.000002	NV	3.9	0.00015	J	0.14	J
Biphenyl	NV	0.000002	NV	3.9	0.00003 ND	J	ND	J
Bis(2-ethylhexyl)phthalate	0.005	NV	<360	NV	ND ND		ND ND	
Butyl benzyl phthalate	NV	0.05	NV	NV	ND		ND	
Caprolactam	NV	NV	NV	NV	ND		ND	
Carbazole	NV	NV	NV	NV	ND		0.038	J
Chrysene	NV	0.000002	NV	3.9	0.00011		0.18	
Dibenzo(a,h)anthracene	NV	NV	NV	0.33	0.00002		ND	
Dibenzofuran	NV	NV	NV	NV	ND		ND	
Di-n-butylphthalate	NV	0.05	NV	NV	ND		ND	
Di-n-octylphthalate	NV	0.05	NV	NV	ND		ND	
Diethyl phthalate	NV	0.05	NV	NV	ND		ND	
Fluoranthene	NV	0.05	NV	100	0.00019	J, B	0.42	
Fluorene	NV	0.00054	NV	100	ND		0.024	J
Hexachlorobenzene	0.00004	NV	NV	NV	ND		ND	
Indeno(1,2,3-cd)pyrene	NV	0.000002	NV	0.5	0.00012	J	0.12	J
Naphthalene Phenanthrene	0.01 NV	NV 0.005	NV NV	100 100	0.00008	J, B	ND 0.26	
Pyrene	NV	0.005	NV	100	0.00008	J, D	0.20	
Pentachlorophenol	0.001	NV	<14	6.7	0.00017	J	ND	
3-Methylphenol/4-Methylphenol	NV	NV	NV	NV	0.00073 ND	<u> </u>	ND	
Total Metals (SW 846 Method 6020 B)					.,		.,,,	
Aluminum	NV	NV	NV	NV	0.112		882	
Antimony	0.003	NV	NV	NV	0.00054	J	1.17	J
Arsenic	0.05	NV	<10	16	0.00047	J	0.431	J
Barium	1	NV	NV	400	0.00982		7.01	
Beryllium	0.011	0.003	NV	72	ND		0.056	
Cadmium	0.005	NV	<1	4.3	ND	-	ND	
Calcium	NV	NV	NV	NV	27.1		134000	
Chromium	0.05	NV	<43	180	0.00083	J	6.59	
Cobalt	0.005	NV	NV	NV	ND		1.42	J
Copper	0.2	NV	<32	270	0.00337		9.42	
Iron	0.3 0.05	NV NV	NV <36	NV 400	0.203		10200	
Lead Magnesium		A 13 /	A 13 /	A IV /	0.00127		7.55	
Manganese	0.3	NV NV	NV NV	2000	0.00533		12100 213	
Mercury	0.0007	NV	<0.2	0.81	0.00533 ND		ND	
Nickel	0.0007	NV	<23	310	0.00088	J	6.9	
Potassium	NV	NV	NV	NV	1.09	<u> </u>	224	J
Selenium	0.0046	NV	NV	180	ND		ND	-
Silver	0.05	NV	<1	180	ND		ND	
Sodium	20	NV	NV	NV	20.5		139	J
Thallium	0.008	0.0005	NV	NV	ND		ND	
Vanadium	0.014	NV	NV	NV	0.00168	J	6.4	
	NV	2	<120	10000	0.01808		23.2	

Notes & Data Qualifiers:

- Results stormwater analysis for semi-volatiles are reported for Method 8270D-SIM
 Freshwater Sediment Guidance Values for Class A Sediments. "Screening & Assessment of Contaminated Sediment",
- NYSDEC, June 2014 B = Analyte was detected in associated method blank.
- D02 = Dilution required due to sample matrix effects.
- J = Analyte detected at a level less than the reporting limit (RL) and greater than or equal to the Method Detection Limit (MDL). Concentrations within this range are estimated.

- 12.1 = Sample concentration exceeds NYSDEC Part 703 Water Quality Standards Surface Waters and Groundwater
- 2.3 = Sample concentration exceeds the TOGS 1.1.1 Surface Water Guidance values
- 0.34 = Sample concentration exceeds NYSDEC B10 Freshwater Sediment Guidance Value for Class A sediments
- 44 = Sample concentration exceeds NYSDEC Part 375 Restricted Residential Use Soil Cleanup Objectives (SCOs)
- ND = Non detectable concentration by approved analytical methods; water quality standard.
- NV = No Standard or Guidance Value Specified

Table by: JV
Checked by: AS Reviewed by: JV

SUMMARY OF STORMWATER - COMPOUNDS WITH EXCEEDANCES (2017 - 2023) 89 LASALLE AVENUE BCP SITE # C915283 LEGACY LASALLE, LLC. BUFFALO, NY

Lab ID	Water Quality Standards	NYS T.O.G.S	L1710024-01 Stormwater	L1740169-01 Stormwater 1	L1813173-01 Stormwater 1	L1915294-01 Stormwater 1	L1952404-01 Stormwater 1	L2013833 Stormwater 1
Sample ID	Surface Waters and Groundwater	1.1.1 Surface Water Guidance	MH-1	MH-1	MH-1	MH-1	MH-1	MH-1
Sample Date	(6 NYCRR Part 703)	Values+	3/31/17	11/13/17	4/16/18	4/15/19	11/5/19	3/30/20
Units	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
Semivolatile Organics (Method 8270D-SIM)								
Anthracene	NV	0.0038	ND	ND				
Benzo(a)anthracene	NV	0.000002	ND	ND	0.00004 J	ND	0.00004 J	ND
Benzo(a)pyrene	NV	0.0000012	ND	ND	0.00004 J	ND	0.00002 J	ND
Benzo(b)fluoranthene	NV	0.000002	ND	ND	0.00009 J	0.00003 J	0.00003 J	0.00003 J
Benzo(k)fluoranthene	NV	0.000002	ND	ND	ND	0.00002 J	0.00001 J	ND
Bis(2-ethylhexyl)phthalate	0.005	NV	ND	ND	0.0054	ND	0.002 J	ND
Chrysene	NV	0.000002	ND	ND	0.0000 8 J	0.00004 J	0.00002 J	0.00001 J
Indeno(1,2,3-cd)pyrene	NV	0.000002	ND	ND	ND	0.00002 J	0.00002 J	0.00002 J
Total Metals (SW 846 Method 6020 B)								
Antimony	0.003	NV	0.00044 J	0.0005 J	0.00069 J	0.00489 J	ND	ND
Cadmium	0.005	NV	0.00215	ND	0.06023	ND	0.00081	0.0001 J
Iron	0.3	NV	0.798	ND	12.1	0.0663	0.387	0.746
Lead	0.05	NV	0.00215	ND	0.06023	ND	0.00316	0.00383
Sodium	20	NV	14	1.19	12.9	65.7	1.24	27.2

Notes & Data Qualifiers:

- 1 Results stormwater analysis for semi-volatiles are reported for Method 8270D-SIM
- * Freshwater Sediment Guidance Values for Class A Sediments. "Screening & Assessment of Contaminated Sediment", NYSDEC, June 2014
- B = Analyte was detected in associated method blank.
- D02 = Dilution required due to sample matrix effects.
- J = Analyte detected at a level less than the reporting limit (RL) and greater than or equal to the Method Detection
- Limit (MDL). Concentrations within this range are estimated.

Footnotes:

- 12.1 = Sample concentration exceeds NYSDEC Part 703 Water Quality Standards Surface Waters and Groundwater
- 2.3 = Sample concentration exceeds the TOGS 1.1.1 Surface Water Guidance values
- ND = Non detectable concentration by approved analytical methods; water quality standard.
- NV = No Standard or Guidance Value Specified

SUMMARY OF STORMWATER - COMPOUNDS WITH EXCEEDANCES (2017 - 2023) 89 LASALLE AVENUE BCP SITE # C915283 LEGACY LASALLE, LLC. BUFFALO, NY

Lab ID	Water Quality Standards	NYS T.O.G.S	L1952404 Stormwat		L211555 Stormwa			L2158753 Stormwater 1		L2218463 Stormwater 1		63 ter 1	L2364484-0 Stormwater	
Sample ID	Surface Waters and Groundwater	1.1.1 Surface Water Guidance	MH-1 MH-1 11/30/20 3/28/21		MH-1 MH-1			MH-2		MH-1				
Sample Date	(6 NYCRR Part 703)	Values+			3/28/2	3/28/21 10/26/21		4/7/22		11/30/22		10/31/23		
Units	(ppm)	(ppm)	(ppm))	(ppm)	(ppm	1)	(ppm)		(ppm)	(ppm)
Semivolatile Organics (Method 8270D-SIM)														
Anthracene	NV	0.0038	0.00001	J	ND		ND		ND		0.00012		0.00002	
Benzo(a)anthracene	NV	0.000002	0.00004	J	0.00002	۲	0.00003	٦	0.00004	J	0.00019		0.00007	٦
Benzo(a)pyrene	NV	0.0000012	0.00002	J	0.00005	۲	0.00003	٦	0.00002	J	0.00018		0.00009	٦
Benzo(b)fluoranthene	NV	0.000002	0.00003	J	0.00009	J	0.00005	J, B	0.00004	J	0.00021		0.00019	
Benzo(k)fluoranthene	NV	0.000002	0.00001	J	0.00002	J	0.00002	J, B	0.00001	J	0.00005	J	0.00005	J
Bis(2-ethylhexyl)phthalate	0.005	NV	0.002	J	0.0039	J	0.0017	J	ND		ND		ND	
Chrysene	NV	0.000002	0.00002	J	0.00007	J	0.00003	J	0.00003	J	0.0002		0.00011	
Indeno(1,2,3-cd)pyrene	NV	0.000002	0.00002	J	0.00008	J	0.00003	J	0.00003	J	0.00012	J	0.00012	J
Total Metals (SW 846 Method 6020 B)														
Antimony	0.003	NV	0.00224	J	0.00082	J	0.00087	J	0.00138	J	0.00068	J	0.00054	J
Cadmium	0.005	NV	0.00011	J	0.00009	J	0.00015	J	0.00042		ND		ND	
Iron	0.3	NV	0.625		0.464		0.244		0.458		1.54		0.203	
Lead	0.05	NV	0.00307		0.00307		0.00065	J	0.00139		0.00601		0.00127	
Sodium	20	NV	3.08		34.2		1.23		8910		3220		20.5	

Notes & Data Qualifiers:

- 1 Results stormwater analysis for semi-volatiles are reported for Method 8270D-SIM
- * Freshwater Sediment Guidance Values for Class A Sediments. "Screening & Assessment of Contaminated Sediment", NYSDEC, June 2014
- B = Analyte was detected in associated method blank.
- D02 = Dilution required due to sample matrix effects.
- J = Analyte detected at a level less than the reporting limit (RL) and greater than or equal to the Method Detection Limit (MDL).
- Concentrations within this range are estimated.

Footnotes:

- 12.1 = Sample concentration exceeds NYSDEC Part 703 Water Quality Standards Surface Waters and Groundwater
- 2.3 = Sample concentration exceeds the TOGS 1.1.1 Surface Water Guidance values
- ND = Non detectable concentration by approved analytical methods; water quality standard.
- NV = No Standard or Guidance Value Specified

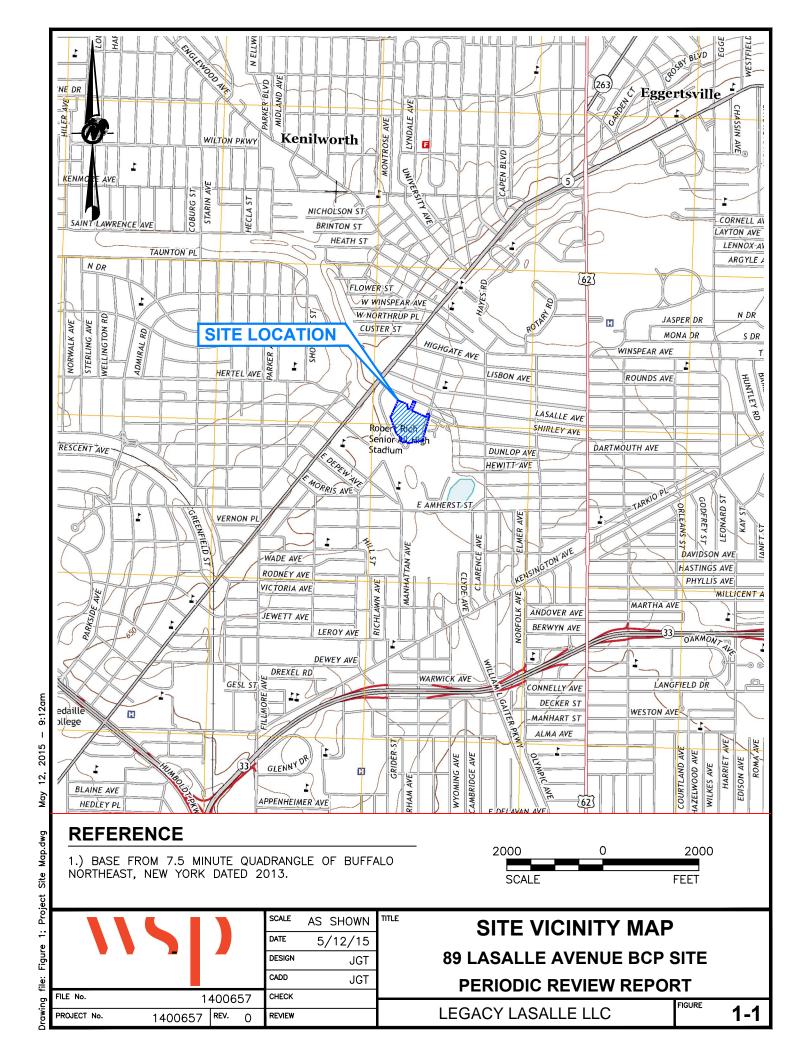
SUMMARY OF SEDIMENT SAMPLES - COMPOUNDS WITH DETECTIONS (2017 - 2023) 89 LASALLE AVENUE BCP SITE # C915283 LEGACY LASALLE, LLC. BUFFALO, NY

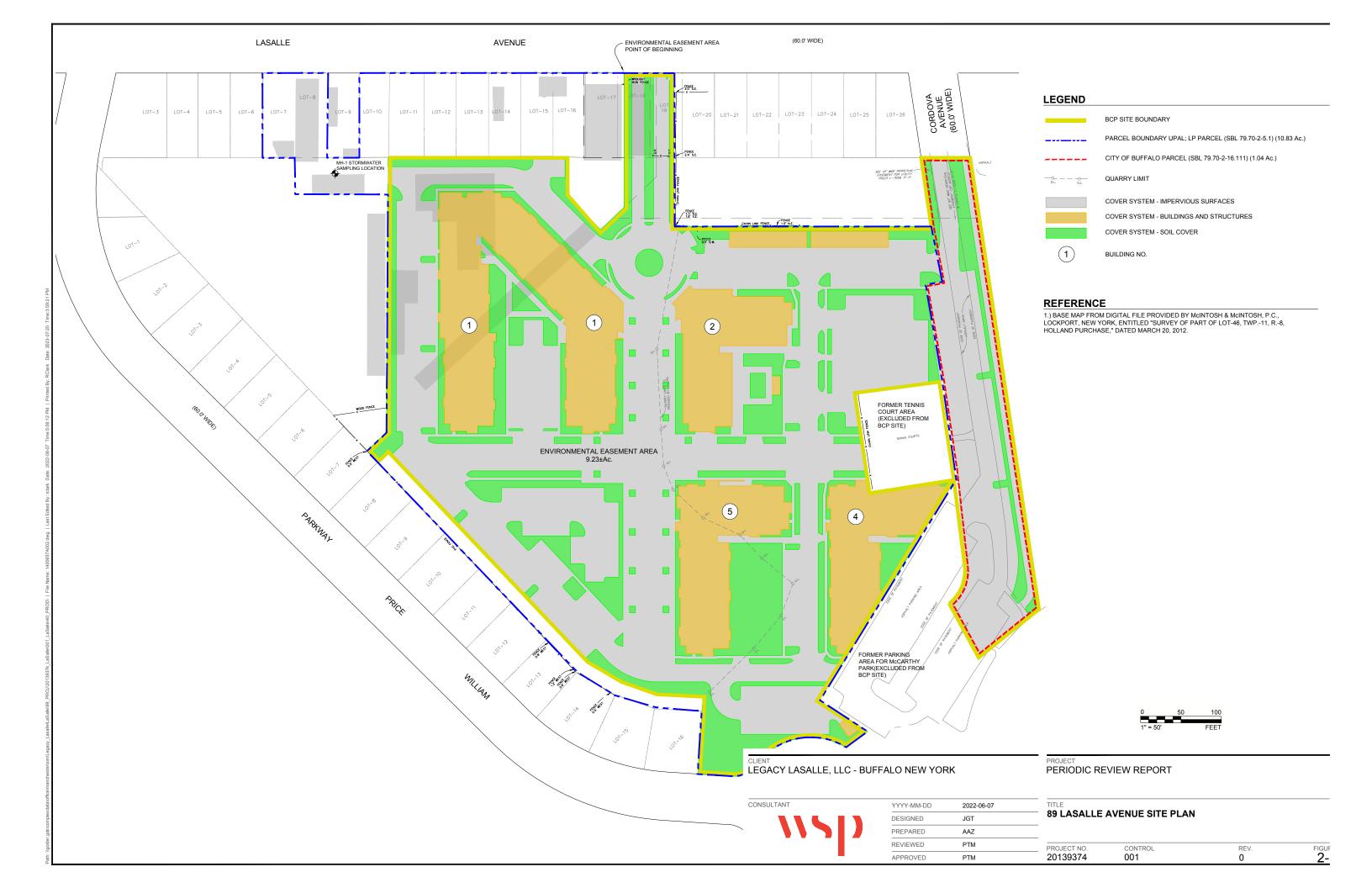
Lab ID	Class A	Restricted Residential	L1710024-02 Sediment	L1813173 Sedime		L191529 Sedime	-	L195240 Sedime		L211555 Sedime		L22184 Sedime		L22184 Sedime		L2364484-02 Sediment				
Sample ID	Freshwater Sediment Guidance	SCOs Table 375-	MH-1	MH-1		MH-1		MH-1	1	MH-1	_	MH-1		MH-1		MH-1		MH-	1	MH-1
Sample Date	Values*	6.8(b)	3/31/17	4/16/18		4/15/19		11/5/19		3/28/21		4/7/22		11/30/22		10/31/23				
Units	(ppm)	(ppm)	(ppm)	(ppm)	(ppm) (pp)	(ppm	1)	(ppm)	(ppm)	(ppm	1((ppm)				
Semivolatile Organics (Method 8270D-SIM)																				
Anthracene	NV	100	ND	ND		ND		ND				0.00001	J	ND		0.053				
Benzo(a)anthracene	NV	1	2.7	0.1		0.27		0.22		ND		0.11	J	0.048	J	0.15				
Benzo(a)pyrene	NV	1	2.1	0.11		0.28		0.21		ND		0.12	J	0.062	J	0.15 J				
Benzo(b)fluoranthene	NV	1	2.9	0.18		0.39		0.3		ND		0.2		0.1		0.2				
Benzo(k)fluoranthene	NV	3.9	1.1	0.06		0.12	J	0.073	J	ND		0.069	J	ND		0.05 J				
Bis(2-ethylhexyl)phthalate	<360	NV	0.49	0.079	J	0.24	J	ND		ND		0.098	J	ND		ND				
Chrysene	NV	3.9	2.6	0.15		0.28		0.22		ND		0.16		0.084	J	0.18				
Indeno(1,2,3-cd)pyrene	NV	0.5	1.2	0.056		0.16	J	0.15	J	ND		0.12	J	0.051	J	0.12 J				
Total Metals (SW 846 Method 6020 B)																				
Antimony	NV	NV	ND	2.47	J	1.34	J	0.742	J	ND		ND		ND		1.17 J				
Cadmium	<1	4.3	44	9.23		59.7		14.2		0.098	J	ND		0.122	J	ND				
Iron	NV	NV	9200	7920		23000		17300		3650		3460		7770		10200				
Lead	<36	400	44	9.23		59.7		14.2		5.98		3.48	J	8.47		7.55				
Sodium	NV	NV	250	292		2760		78.9		217		2460		5530		139 J				

Notes & Data Qualifiers:

- 1 Results stormwater analysis for semi-volatiles are reported for Method 8270D-SIM
- * Freshwater Sediment Guidance Values for Class A Sediments. "Screening & Assessment of Contaminated Sediment", NYSDEC, June 2014
- B = Analyte was detected in associated method blank.
- D02 = Dilution required due to sample matrix effects.
 - J = Analyte detected at a level less than the reporting limit (RL) and greater than or equal to the Method Detection Limit (MDL). Concentrations within this range are estimated.

Footnotes:


0.34 = Sample concentration exceeds NYSDEC B10 Freshwater Sediment Guidance Value for Class A sediments


44 = Sample concentration exceeds NYSDEC Part 375 Restricted Residential Use Soil Cleanup Objectives (SCOs)

ND = Non detectable concentration by approved analytical methods; water quality standard.

NV = No Standard or Guidance Value Specified

FIGURES

APPENDIX A

Analytical Data Report (October 2023)

ANALYTICAL REPORT

Lab Number: L2364484

Client: WSP

40 La Riviere Drive

Suite 320

Buffalo, NY 14202

ATTN: Joshua Vernold Phone: (716) 352-9278

Project Name: 89 LASALLE BCP SITE

Project Number: 31406202.000

Report Date: 11/07/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OH (CL108), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 89 LASALLE BCP SITE

Project Number: 31406202.000

Lab Number:

L2364484

Report Date:

11/07/23

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2364484-01	MH-1 STORMWATER	WATER	89 LA SALLE AVE, BUFFALO, NY	10/31/23 11:20	10/31/23
L2364484-02	MH-1 SEDIMENT	SEDIMENT	89 LA SALLE AVE, BUFFALO, NY	10/31/23 11:24	10/31/23

L2364484

Lab Number:

Project Name: 89 LASALLE BCP SITE

Project Number: 31406202.000 **Report Date:** 11/07/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: 89 LASALLE BCP SITE Lab Number: L2364484

Project Number: 31406202.000 **Report Date:** 11/07/23

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Total Metals

L2364484-02: The sample has elevated detection limits for all elements, with the exception of mercury, due to the dilution required by the sample matrix.

The WG1847127-3 MS recoveries, performed on L2364484-02, are outside the acceptance criteria for arsenic (141%), chromium (132%), copper (165%), sodium (126%), and zinc (126%). A post digestion spike was performed and was within acceptance criteria.

The WG1847127-3 MS recoveries for aluminum (37%), calcium (0%), and iron (20400%), performed on L2364484-02, do not apply because the sample concentrations are greater than four times the spike amounts added.

The WG1847127-3 MS recovery, performed on L2364484-02, is outside the acceptance criteria for potassium (137%). A post digestion spike was performed and yielded an unacceptable recovery for potassium (131%). The serial dilution recovery was not applicable; therefore, this element fails the matrix test and the result reported in the native sample should be considered estimated.

The WG1847127-4 Laboratory Duplicate RPDs for chromium (35%), copper (43%), iron (37%), magnesium (31%), nickel (24%), and zinc (90%), performed on L2364484-02, are outside the acceptance criteria. The elevated RPDs have been attributed to the non-homogeneous nature of the native sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Jufani Morrissey-Tiffani Morrissey

Authorized Signature:

Title: Technical Director/Representative

Date: 11/07/23

ORGANICS

SEMIVOLATILES

Project Name: 89 LASALLE BCP SITE Lab Number: L2364484

Project Number: 31406202.000 **Report Date:** 11/07/23

SAMPLE RESULTS

Lab ID: L2364484-01 Date Collected: 10/31/23 11:20

Client ID: MH-1 STORMWATER Date Received: 10/31/23

Sample Location: 89 LA SALLE AVE, BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1,8270E Extraction Date: 11/02/23 01:49

Analyst: SZ

11/02/23 14:08

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - V	Vestborough Lab						
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1	
2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1	
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1	
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1	
Isophorone	ND		ug/l	5.0	1.2	1	
Nitrobenzene	ND		ug/l	2.0	0.77	1	
NDPA/DPA	ND		ug/l	2.0	0.42	1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.5	1	
Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1	
Di-n-butylphthalate	ND		ug/l	5.0	0.39	1	
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1	
Diethyl phthalate	ND		ug/l	5.0	0.38	1	
Dimethyl phthalate	ND		ug/l	5.0	1.8	1	
Biphenyl	ND		ug/l	2.0	0.46	1	
4-Chloroaniline	ND		ug/l	5.0	1.1	1	
2-Nitroaniline	ND		ug/l	5.0	0.50	1	
3-Nitroaniline	ND		ug/l	5.0	0.81	1	
4-Nitroaniline	ND		ug/l	5.0	0.80	1	
Dibenzofuran	ND		ug/l	2.0	0.50	1	
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1	
Acetophenone	ND		ug/l	5.0	0.53	1	
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1	

Project Name: 89 LASALLE BCP SITE **Lab Number:** L2364484

Project Number: 31406202.000 **Report Date:** 11/07/23

SAMPLE RESULTS

Lab ID: L2364484-01 Date Collected: 10/31/23 11:20

Client ID: MH-1 STORMWATER Date Received: 10/31/23
Sample Location: 89 LA SALLE AVE, BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westb	orough Lab					
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1
2-Chlorophenol	ND		ug/l	2.0	0.48	1
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1
2-Nitrophenol	ND		ug/l	10	0.85	1
4-Nitrophenol	ND		ug/l	10	0.67	1
2,4-Dinitrophenol	ND		ug/l	20	6.6	1
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1
Phenol	ND		ug/l	5.0	0.57	1
2-Methylphenol	ND		ug/l	5.0	0.49	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1
Carbazole	ND		ug/l	2.0	0.49	1
Atrazine	ND		ug/l	10	0.76	1
Benzaldehyde	ND		ug/l	5.0	0.53	1
Caprolactam	ND		ug/l	10	3.3	1
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	77	21-120
Phenol-d6	63	10-120
Nitrobenzene-d5	79	23-120
2-Fluorobiphenyl	79	15-120
2,4,6-Tribromophenol	81	10-120
4-Terphenyl-d14	75	41-149

Project Name: Lab Number: 89 LASALLE BCP SITE L2364484

Project Number: Report Date: 31406202.000 11/07/23

SAMPLE RESULTS

Lab ID: L2364484-01 Date Collected: 10/31/23 11:20

Date Received: Client ID: MH-1 STORMWATER 10/31/23 Sample Location: Field Prep: 89 LA SALLE AVE, BUFFALO, NY Not Specified

11/03/23 17:03

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 11/02/23 01:49 Analytical Method: 1,8270E-SIM Analytical Date:

Analyst: JJW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - V	Westborough La	b				
Acenaphthene	ND		ug/l	0.10	0.01	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	0.19		ug/l	0.10	0.02	1
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1
Naphthalene	ND		ug/l	0.10	0.05	1
Benzo(a)anthracene	0.07	J	ug/l	0.10	0.02	1
Benzo(a)pyrene	0.09	J	ug/l	0.10	0.02	1
Benzo(b)fluoranthene	0.19		ug/l	0.10	0.01	1
Benzo(k)fluoranthene	0.05	J	ug/l	0.10	0.01	1
Chrysene	0.11		ug/l	0.10	0.01	1
Acenaphthylene	ND		ug/l	0.10	0.01	1
Anthracene	0.02	J	ug/l	0.10	0.01	1
Benzo(ghi)perylene	0.15		ug/l	0.10	0.01	1
Fluorene	ND		ug/l	0.10	0.01	1
Phenanthrene	0.08	J	ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	0.02	J	ug/l	0.10	0.01	1
Indeno(1,2,3-cd)pyrene	0.12		ug/l	0.10	0.01	1
Pyrene	0.17		ug/l	0.10	0.02	1
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1
Pentachlorophenol	0.13	J	ug/l	0.80	0.01	1
Hexachlorobenzene	ND		ug/l	0.80	0.01	1
Hexachloroethane	ND		ug/l	0.80	0.06	1

Project Name: 89 LASALLE BCP SITE **Lab Number:** L2364484

Project Number: 31406202.000 **Report Date:** 11/07/23

SAMPLE RESULTS

Lab ID: L2364484-01 Date Collected: 10/31/23 11:20

Client ID: MH-1 STORMWATER Date Received: 10/31/23
Sample Location: 89 LA SALLE AVE, BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	75	21-120
Phenol-d6	63	10-120
Nitrobenzene-d5	89	23-120
2-Fluorobiphenyl	84	15-120
2,4,6-Tribromophenol	98	10-120
4-Terphenyl-d14	92	41-149

L2364484

11/07/23

11/01/23 16:24

Project Name: 89 LASALLE BCP SITE

89 LA SALLE AVE, BUFFALO, NY

Project Number: 31406202.000

L2364484-02

MH-1 SEDIMENT

SAMPLE RESULTS

Date Collected: 10/31/23 11:24

Date Received: 10/31/23

Extraction Method: EPA 3546

Lab Number:

Report Date:

Extraction Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Sediment Analytical Method: 1,8270E

Analytical Date: 11/02/23 12:32

Analyst: HNY Percent Solids: 78%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	estborough Lab						
Acenaphthene	ND		ug/kg	160	21.	1	
Hexachlorobenzene	ND		ug/kg	120	23.	1	
Bis(2-chloroethyl)ether	ND		ug/kg	190	28.	1	
2-Chloronaphthalene	ND		ug/kg	210	20.	1	
3,3'-Dichlorobenzidine	ND		ug/kg	210	55.	1	
2,4-Dinitrotoluene	ND		ug/kg	210	41.	1	
2,6-Dinitrotoluene	ND		ug/kg	210	36.	1	
Fluoranthene	420		ug/kg	120	24.	1	
4-Chlorophenyl phenyl ether	ND		ug/kg	210	22.	1	
4-Bromophenyl phenyl ether	ND		ug/kg	210	32.	1	
Bis(2-chloroisopropyl)ether	ND		ug/kg	250	35.	1	
Bis(2-chloroethoxy)methane	ND		ug/kg	220	21.	1	
Hexachlorobutadiene	ND		ug/kg	210	30.	1	
Hexachlorocyclopentadiene	ND		ug/kg	590	190	1	
Hexachloroethane	ND		ug/kg	160	34.	1	
Isophorone	ND		ug/kg	190	27.	1	
Naphthalene	ND		ug/kg	210	25.	1	
Nitrobenzene	ND		ug/kg	190	31.	1	
NDPA/DPA	ND		ug/kg	160	24.	1	
n-Nitrosodi-n-propylamine	ND		ug/kg	210	32.	1	
Bis(2-ethylhexyl)phthalate	ND		ug/kg	210	72.	1	
Butyl benzyl phthalate	ND		ug/kg	210	52.	1	
Di-n-butylphthalate	ND		ug/kg	210	39.	1	
Di-n-octylphthalate	ND		ug/kg	210	70.	1	
Diethyl phthalate	ND		ug/kg	210	19.	1	
Dimethyl phthalate	ND		ug/kg	210	44.	1	
Benzo(a)anthracene	150		ug/kg	120	23.	1	
Benzo(a)pyrene	150	J	ug/kg	160	50.	1	

Project Name: Lab Number: 89 LASALLE BCP SITE L2364484

Project Number: Report Date: 31406202.000 11/07/23

SAMPLE RESULTS

Lab ID: L2364484-02 Date Collected: 10/31/23 11:24

Client ID: Date Received: 10/31/23 MH-1 SEDIMENT

Sample Location: Field Prep: Not Specified 89 LA SALLE AVE, BUFFALO, NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	estborough Lab					
Danie (IVII consultane	000		4	400	05	4
Benzo(b)fluoranthene	200		ug/kg	120	35.	1
Benzo(k)fluoranthene	50	J	ug/kg	120	33.	1
Chrysene	180		ug/kg	120	22.	1
Acenaphthylene	ND		ug/kg	160	32.	1
Anthracene	53	J	ug/kg	120	40.	1
Benzo(ghi)perylene	140	J	ug/kg	160	24.	1
Fluorene	24	J	ug/kg	210	20.	1
Phenanthrene	260		ug/kg	120	25.	1
Dibenzo(a,h)anthracene	ND		ug/kg	120	24.	1
Indeno(1,2,3-cd)pyrene	120	J	ug/kg	160	29.	1
Pyrene	300		ug/kg	120	20.	1
Biphenyl	ND		ug/kg	470	27.	1
4-Chloroaniline	ND		ug/kg	210	38.	1
2-Nitroaniline	ND		ug/kg	210	40.	1
3-Nitroaniline	ND		ug/kg	210	39.	1
4-Nitroaniline	ND		ug/kg	210	86.	1
Dibenzofuran	ND		ug/kg	210	20.	1
2-Methylnaphthalene	ND		ug/kg	250	25.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	210	22.	1
Acetophenone	ND		ug/kg	210	26.	1
2,4,6-Trichlorophenol	ND		ug/kg	120	39.	1
p-Chloro-m-cresol	ND		ug/kg	210	31.	1
2-Chlorophenol	ND		ug/kg	210	24.	1
2,4-Dichlorophenol	ND		ug/kg	190	33.	1
2,4-Dimethylphenol	ND		ug/kg	210	68.	1
2-Nitrophenol	ND		ug/kg	450	78.	1
4-Nitrophenol	ND		ug/kg	290	84.	1
2,4-Dinitrophenol	ND		ug/kg	990	96.	1
4,6-Dinitro-o-cresol	ND		ug/kg	540	99.	1
Pentachlorophenol	ND		ug/kg	160	46.	1
Phenol	ND		ug/kg	210	31.	1
2-Methylphenol	ND		ug/kg	210	32.	1
3-Methylphenol/4-Methylphenol	ND		ug/kg	300	32.	1
2,4,5-Trichlorophenol	ND		ug/kg	210	40.	1
Carbazole	38	J	ug/kg	210	20.	1
Atrazine	ND		ug/kg	160	72.	1
Benzaldehyde	ND		ug/kg	270	56.	1
				-		

Project Name: Lab Number: 89 LASALLE BCP SITE L2364484

Project Number: 31406202.000 Report Date: 11/07/23

SAMPLE RESULTS

Lab ID: L2364484-02 Date Collected: 10/31/23 11:24

Client ID: Date Received: 10/31/23 MH-1 SEDIMENT Sample Location: Field Prep: Not Specified

89 LA SALLE AVE, BUFFALO, NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Caprolactam	ND		ug/kg	210	63.	1		
2,3,4,6-Tetrachlorophenol	ND		ug/kg	210	42.	1		

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	51		25-120
Phenol-d6	51		10-120
Nitrobenzene-d5	54		23-120
2-Fluorobiphenyl	53		30-120
2,4,6-Tribromophenol	56		10-136
4-Terphenyl-d14	44		18-120

L2364484

Lab Number:

Project Name: 89 LASALLE BCP SITE

Project Number: 31406202.000 **Report Date:** 11/07/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Extraction Method: EPA 3546
Analytical Date: 11/02/23 02:35 Extraction Date: 11/01/23 08:11

Analyst: IM

Semivolatile Organics by GC/MS - Westborough Lab for sample(s): 02 Batch: WG1846863-1 Acenaphthene ND ug/kg 130 17. Hexachlorobenzene ND ug/kg 98 18. Bis (2-chloroethyl)ether ND ug/kg 150 22. 2-Chloronaphthalene ND ug/kg 160 16. 3,3*-Dichlorobenzidine ND ug/kg 160 44. 2,4-Dinitrotoluene ND ug/kg 160 33. 2,6-Dinitrotoluene ND ug/kg 160 28. Flouranthene ND ug/kg 160 28. Flouranthene ND ug/kg 98 19. 4-Chlorophenyl phenyl ether ND ug/kg 160 18. 4-Bromophenyl phenyl ether ND ug/kg 160 25. Bis(2-chloroethoxy)mether ND ug/kg 200 28. Bis(2-chloroethoxy)methane ND ug/kg 180 16. Hexachlo	Parameter	Result	Qualifier	Units		RL	MDL	
Hexachlorobenzene ND	Semivolatile Organics by GC/MS	- Westborough	Lab for s	ample(s):	02	Batch:	WG1846863-1	
Bis(2-chloroethyl)ether	Acenaphthene	ND		ug/kg		130	17.	
2-Chloronaphthalene ND ug/kg 160 16. 3,3'-Dichlorobenzidine ND ug/kg 160 44. 2,4-Dinitrotoluene ND ug/kg 160 33. 2,6-Dinitrotoluene ND ug/kg 160 28. Fluoranthene ND ug/kg 98 19. 4-Chlorophenyl phenyl ether ND ug/kg 160 18. 4-Bromophenyl phenyl ether ND ug/kg 160 25. Bis(2-chloroisopropyl)ether ND ug/kg 200 28. Bis(2-chloroisopropyl)ether ND ug/kg 200 28. Bis(2-chloroisopropyl)ether ND ug/kg 160 25. Bis(2-chloroisopropyl)ether ND ug/kg 160 25. Bis(2-chloroisopropyl)ether ND ug/kg 160 24. Hexachloroisophane ND ug/kg 160 24. Hexachlorocyclopentadiene ND ug/kg 150 21.	Hexachlorobenzene	ND		ug/kg		98	18.	
3,3-Dichlorobenzidine ND	Bis(2-chloroethyl)ether	ND		ug/kg		150	22.	
2,4-Dinitrotoluene ND ug/kg 160 33. 2,6-Dinitrotoluene ND ug/kg 160 28. Fluoranthene ND ug/kg 98 19. 4-Chlorophenyl phenyl ether ND ug/kg 160 18. 4-Bromophenyl phenyl ether ND ug/kg 160 25. Bis(2-chlorosporopyl)ether ND ug/kg 200 28. Bis(2-chlorosporopyl)ether ND ug/kg 180 16. Hexachlorobutadiene ND ug/kg 160 24. Hexachlorocyclopentadiene ND ug/kg 470 150 Hexachlorocyclopentadiene ND ug/kg 130 26. Isophorone ND ug/kg 150 21. ND ug/kg 150 21. Naphthalene ND ug/kg 160 20. Nitrobenzene ND ug/kg 130 19. n-Nitrosodi-n-propylamine ND ug/kg	2-Chloronaphthalene	ND		ug/kg		160	16.	
ND	3,3'-Dichlorobenzidine	ND		ug/kg		160	44.	
Fluoranthene ND	2,4-Dinitrotoluene	ND		ug/kg		160	33.	
4-Chlorophenyl phenyl ether ND ug/kg 160 18. 4-Bromophenyl phenyl ether ND ug/kg 160 25. Bis(2-chloroisopropyl)ether ND ug/kg 200 28. Bis(2-chloroethoxy)methane ND ug/kg 180 16. Hexachlorobutadiene ND ug/kg 160 24. Hexachlorocyclopentadiene ND ug/kg 470 150 Hexachlorocyclopentadiene ND ug/kg 130 26. Isophorone ND ug/kg 150 21. Naphthalene ND ug/kg 160 20. Nitrobenzene ND ug/kg 150 24. NDPA/DPA ND ug/kg 130 19. n-Nitrosodi-n-propylamine ND ug/kg 160 25. Bis(2-ethylhexyl)phthalate ND ug/kg 160 36. Butyl benzyl phthalate ND ug/kg 160 31. Di-n-octylphthalate	2,6-Dinitrotoluene	ND		ug/kg		160	28.	
4-Bromophenyl phenyl ether ND ug/kg 160 25. Bis(2-chloroisopropyl)ether ND ug/kg 200 28. Bis(2-chloroethoxy)methane ND ug/kg 180 16. Hexachlorobutadiene ND ug/kg 160 24. Hexachlorocyclopentadiene ND ug/kg 470 150 Hexachloroethane ND ug/kg 130 26. Isophorone ND ug/kg 150 21. Naphthalene ND ug/kg 160 20. Nitrobenzene ND ug/kg 150 24. NDPA/DPA ND ug/kg 130 19. n-Nitrosodi-n-propylamine ND ug/kg 160 25. Bis(2-ethylhexyl)phthalate ND ug/kg 160 56. Butyl benzyl phthalate ND ug/kg 160 31. Di-n-butylphthalate ND ug/kg 160 36. Diethyl phthalate ND	Fluoranthene	ND		ug/kg		98	19.	
Bis(2-chloroisopropyl)ether ND ug/kg 200 28. Bis(2-chloroethoxy)methane ND ug/kg 180 16. Hexachlorobutadiene ND ug/kg 160 24. Hexachlorocyclopentadiene ND ug/kg 470 150 Hexachloroethane ND ug/kg 130 26. Isophorone ND ug/kg 150 21. Naphthalene ND ug/kg 160 20. Nitrobenzene ND ug/kg 150 24. NDPA/DPA ND ug/kg 130 19. n-Nitrosodi-n-propylamine ND ug/kg 160 25. Bis(2-ethylhexyl)phthalate ND ug/kg 160 56. Butyl benzyl phthalate ND ug/kg 160 31. Di-n-ottylphthalate ND ug/kg 160 31. Di-n-ottylphthalate ND ug/kg 160 35. Diethyl phthalate ND	4-Chlorophenyl phenyl ether	ND		ug/kg		160	18.	
Bis(2-chloroethoxy)methane ND ug/kg 180 16. Hexachlorobutadiene ND ug/kg 160 24. Hexachlorocyclopentadiene ND ug/kg 470 150 Hexachloroethane ND ug/kg 130 26. Isophorone ND ug/kg 150 21. Naphthalene ND ug/kg 160 20. Nitrobenzene ND ug/kg 150 24. NDPA/DPA ND ug/kg 130 19. n-Nitrosodi-n-propylamine ND ug/kg 160 25. Bis(2-ethylhexyl)phthalate ND ug/kg 160 56. Butyl benzyl phthalate ND ug/kg 160 41. Di-n-butylphthalate ND ug/kg 160 31. Di-n-cytylphthalate ND ug/kg 160 35. Diethyl phthalate ND ug/kg 160 35. Dimethyl phthalate ND ug/k	4-Bromophenyl phenyl ether	ND		ug/kg		160	25.	
Hexachlorobutadiene ND ug/kg 160 24. Hexachlorocyclopentadiene ND ug/kg 470 150 Hexachloroethane ND ug/kg 130 26. Isophorone ND ug/kg 150 21. Naphthalene ND ug/kg 160 20. Nitrobenzene ND ug/kg 150 24. NDPA/DPA ND ug/kg 130 19. n-Nitrosodi-n-propylamine ND ug/kg 160 25. Bis(2-ethylhexyl)phthalate ND ug/kg 160 56. Butyl benzyl phthalate ND ug/kg 160 31. Di-n-octylphthalate ND ug/kg 160 31. Di-n-octylphthalate ND ug/kg 160 35. Diethyl phthalate ND ug/kg 160 36. Diethyl phthalate ND ug/kg 160 34. Benzo(a)anthracene ND ug/kg	Bis(2-chloroisopropyl)ether	ND		ug/kg		200	28.	
Hexachlorocyclopentadiene ND ug/kg 470 150 Hexachloroethane ND ug/kg 130 26. Isophorone ND ug/kg 150 21. Naphthalene ND ug/kg 160 20. Nitrobenzene ND ug/kg 150 24. NDPA/DPA ND ug/kg 130 19. n-Nitrosodi-n-propylamine ND ug/kg 160 25. Bis(2-ethylhexyl)phthalate ND ug/kg 160 56. Butyl benzyl phthalate ND ug/kg 160 41. Di-n-butylphthalate ND ug/kg 160 31. Di-n-octylphthalate ND ug/kg 160 56. Diethyl phthalate ND ug/kg 160 31. Dimethyl phthalate ND ug/kg 160 34. Benzo(a)anthracene ND ug/kg 98 18. Benzo(a)pyrene ND ug/kg	Bis(2-chloroethoxy)methane	ND		ug/kg		180	16.	
Hexachloroethane ND ug/kg 130 26. Isophorone ND ug/kg 150 21. Naphthalene ND ug/kg 160 20. Nitrobenzene ND ug/kg 150 24. NDPA/DPA ND ug/kg 130 19. n-Nitrosodi-n-propylamine ND ug/kg 160 25. Bis(2-ethylhexyl)phthalate ND ug/kg 160 56. Butyl benzyl phthalate ND ug/kg 160 41. Di-n-butylphthalate ND ug/kg 160 31. Di-n-octylphthalate ND ug/kg 160 56. Diethyl phthalate ND ug/kg 160 31. Dimethyl phthalate ND ug/kg 160 34. Benzo(a)anthracene ND ug/kg 98 18. Benzo(a)pyrene ND ug/kg 130 40.	Hexachlorobutadiene	ND		ug/kg		160	24.	
Sophorone ND	Hexachlorocyclopentadiene	ND		ug/kg		470	150	
Naphthalene ND ug/kg 160 20. Nitrobenzene ND ug/kg 150 24. NDPA/DPA ND ug/kg 130 19. n-Nitrosodi-n-propylamine ND ug/kg 160 25. Bis(2-ethylhexyl)phthalate ND ug/kg 160 56. Butyl benzyl phthalate ND ug/kg 160 41. Di-n-butylphthalate ND ug/kg 160 31. Di-n-octylphthalate ND ug/kg 160 56. Diethyl phthalate ND ug/kg 160 15. Dimethyl phthalate ND ug/kg 160 34. Benzo(a)anthracene ND ug/kg 98 18. Benzo(a)pyrene ND ug/kg 130 40.	Hexachloroethane	ND		ug/kg		130	26.	
Nitrobenzene ND ug/kg 150 24. NDPA/DPA ND ug/kg 130 19. n-Nitrosodi-n-propylamine ND ug/kg 160 25. Bis(2-ethylhexyl)phthalate ND ug/kg 160 56. Butyl benzyl phthalate ND ug/kg 160 41. Di-n-butylphthalate ND ug/kg 160 31. Di-n-octylphthalate ND ug/kg 160 56. Diethyl phthalate ND ug/kg 160 15. Dimethyl phthalate ND ug/kg 160 34. Benzo(a)anthracene ND ug/kg 98 18. Benzo(a)pyrene ND ug/kg 130 40.	Isophorone	ND		ug/kg		150	21.	
NDPA/DPA ND ug/kg 130 19. n-Nitrosodi-n-propylamine ND ug/kg 160 25. Bis(2-ethylhexyl)phthalate ND ug/kg 160 56. Butyl benzyl phthalate ND ug/kg 160 41. Di-n-butylphthalate ND ug/kg 160 31. Di-n-octylphthalate ND ug/kg 160 56. Diethyl phthalate ND ug/kg 160 15. Dimethyl phthalate ND ug/kg 160 34. Benzo(a)anthracene ND ug/kg 98 18. Benzo(a)pyrene ND ug/kg 130 40.	Naphthalene	ND		ug/kg		160	20.	
n-Nitrosodi-n-propylamine ND ug/kg 160 25. Bis(2-ethylhexyl)phthalate ND ug/kg 160 56. Butyl benzyl phthalate ND ug/kg 160 41. Di-n-butylphthalate ND ug/kg 160 31. Di-n-octylphthalate ND ug/kg 160 56. Diethyl phthalate ND ug/kg 160 15. Dimethyl phthalate ND ug/kg 160 34. Benzo(a)anthracene ND ug/kg 98 18. Benzo(a)pyrene ND ug/kg 130 40.	Nitrobenzene	ND		ug/kg		150	24.	
Bis(2-ethylhexyl)phthalate ND ug/kg 160 56. Butyl benzyl phthalate ND ug/kg 160 41. Di-n-butylphthalate ND ug/kg 160 31. Di-n-octylphthalate ND ug/kg 160 56. Diethyl phthalate ND ug/kg 160 15. Dimethyl phthalate ND ug/kg 160 34. Benzo(a)anthracene ND ug/kg 98 18. Benzo(a)pyrene ND ug/kg 130 40.	NDPA/DPA	ND		ug/kg		130	19.	
Butyl benzyl phthalate ND ug/kg 160 41. Di-n-butylphthalate ND ug/kg 160 31. Di-n-octylphthalate ND ug/kg 160 56. Diethyl phthalate ND ug/kg 160 15. Dimethyl phthalate ND ug/kg 160 34. Benzo(a)anthracene ND ug/kg 98 18. Benzo(a)pyrene ND ug/kg 130 40.	n-Nitrosodi-n-propylamine	ND		ug/kg		160	25.	
Di-n-butylphthalate ND ug/kg 160 31. Di-n-octylphthalate ND ug/kg 160 56. Diethyl phthalate ND ug/kg 160 15. Dimethyl phthalate ND ug/kg 160 34. Benzo(a)anthracene ND ug/kg 98 18. Benzo(a)pyrene ND ug/kg 130 40.	Bis(2-ethylhexyl)phthalate	ND		ug/kg		160	56.	
Di-n-octylphthalate ND ug/kg 160 56. Diethyl phthalate ND ug/kg 160 15. Dimethyl phthalate ND ug/kg 160 34. Benzo(a)anthracene ND ug/kg 98 18. Benzo(a)pyrene ND ug/kg 130 40.	Butyl benzyl phthalate	ND		ug/kg		160	41.	
Diethyl phthalate ND ug/kg 160 15. Dimethyl phthalate ND ug/kg 160 34. Benzo(a)anthracene ND ug/kg 98 18. Benzo(a)pyrene ND ug/kg 130 40.	Di-n-butylphthalate	ND		ug/kg		160	31.	
Dimethyl phthalate ND ug/kg 160 34. Benzo(a)anthracene ND ug/kg 98 18. Benzo(a)pyrene ND ug/kg 130 40.	Di-n-octylphthalate	ND		ug/kg		160	56.	
Benzo(a)anthracene ND ug/kg 98 18. Benzo(a)pyrene ND ug/kg 130 40.	Diethyl phthalate	ND		ug/kg		160	15.	
Benzo(a)pyrene ND ug/kg 130 40.	Dimethyl phthalate	ND		ug/kg		160	34.	
	Benzo(a)anthracene	ND		ug/kg		98	18.	
Benzo(b)fluoranthene ND ug/kg 98 28.	Benzo(a)pyrene	ND		ug/kg		130	40.	
	Benzo(b)fluoranthene	ND		ug/kg		98	28.	

L2364484

Lab Number:

Project Name: 89 LASALLE BCP SITE

Project Number: 31406202.000 **Report Date:** 11/07/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Extraction Method: EPA 3546
Analytical Date: 11/02/23 02:35 Extraction Date: 11/01/23 08:11

Analyst: IM

Parameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS	- Westborough	Lab for s	sample(s):	02	Batch:	WG1846863-1	
Benzo(k)fluoranthene	ND		ug/kg		98	26.	
Chrysene	ND		ug/kg		98	17.	
Acenaphthylene	ND		ug/kg		130	25.	
Anthracene	ND		ug/kg		98	32.	
Benzo(ghi)perylene	ND		ug/kg		130	19.	
Fluorene	ND		ug/kg		160	16.	
Phenanthrene	ND		ug/kg		98	20.	
Dibenzo(a,h)anthracene	ND		ug/kg		98	19.	
Indeno(1,2,3-cd)pyrene	ND		ug/kg		130	23.	
Pyrene	ND		ug/kg		98	16.	
Biphenyl	ND		ug/kg		370	21.	
4-Chloroaniline	ND		ug/kg		160	30.	
2-Nitroaniline	ND		ug/kg		160	32.	
3-Nitroaniline	ND		ug/kg		160	31.	
4-Nitroaniline	ND		ug/kg		160	68.	
Dibenzofuran	ND		ug/kg		160	15.	
2-Methylnaphthalene	ND		ug/kg		200	20.	
1,2,4,5-Tetrachlorobenzene	ND		ug/kg		160	17.	
Acetophenone	ND		ug/kg		160	20.	
2,4,6-Trichlorophenol	ND		ug/kg		98	31.	
p-Chloro-m-cresol	ND		ug/kg		160	24.	
2-Chlorophenol	ND		ug/kg		160	19.	
2,4-Dichlorophenol	ND		ug/kg		150	26.	
2,4-Dimethylphenol	ND		ug/kg		160	54.	
2-Nitrophenol	ND		ug/kg		350	61.	
4-Nitrophenol	ND		ug/kg		230	67.	
2,4-Dinitrophenol	ND		ug/kg		780	76.	
4,6-Dinitro-o-cresol	ND		ug/kg		420	78.	
Pentachlorophenol	ND		ug/kg		130	36.	

L2364484

Project Name: 89 LASALLE BCP SITE

Report Date: **Project Number:** 31406202.000

11/07/23

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Extraction Method: EPA 3546 Analytical Date: 11/02/23 02:35 11/01/23 08:11 Extraction Date:

Analyst: IM

arameter	Result	Qualifier Units	RL	MDL
emivolatile Organics by GC/MS	S - Westborough	Lab for sample(s):	02 Batch:	WG1846863-1
Phenol	ND	ug/kg	160	25.
2-Methylphenol	ND	ug/kg	160	25.
3-Methylphenol/4-Methylphenol	ND	ug/kg	240	26.
2,4,5-Trichlorophenol	ND	ug/kg	160	31.
Carbazole	ND	ug/kg	160	16.
Atrazine	ND	ug/kg	130	57.
Benzaldehyde	ND	ug/kg	220	44.
Caprolactam	ND	ug/kg	160	50.
2,3,4,6-Tetrachlorophenol	ND	ug/kg	160	33.

Surrogate	%Recovery Quali	Acceptance fier Criteria
2-Fluorophenol	72	25-120
Phenol-d6	76	10-120
Nitrobenzene-d5	73	23-120
2-Fluorobiphenyl	74	30-120
2,4,6-Tribromophenol	76	10-136
4-Terphenyl-d14	77	18-120

L2364484

Project Name: 89 LASALLE BCP SITE Lab Number:

Project Number: 31406202.000 **Report Date:** 11/07/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Extraction Method: EPA 3510C
Analytical Date: 11/02/23 08:28 Extraction Date: 11/02/23 01:49

Analyst: LJG

arameter	Result	Qualifier	Units		RL	MDL
Semivolatile Organics by GC/MS	- Westborough	Lab for s	ample(s):	01	Batch:	WG1847238-1
Bis(2-chloroethyl)ether	ND		ug/l		2.0	0.50
3,3'-Dichlorobenzidine	ND		ug/l		5.0	1.6
2,4-Dinitrotoluene	ND		ug/l		5.0	1.2
2,6-Dinitrotoluene	ND		ug/l		5.0	0.93
4-Chlorophenyl phenyl ether	ND		ug/l		2.0	0.49
4-Bromophenyl phenyl ether	ND		ug/l		2.0	0.38
Bis(2-chloroisopropyl)ether	ND		ug/l		2.0	0.53
Bis(2-chloroethoxy)methane	ND		ug/l		5.0	0.50
Hexachlorocyclopentadiene	ND		ug/l		20	0.69
Isophorone	ND		ug/l		5.0	1.2
Nitrobenzene	ND		ug/l		2.0	0.77
NDPA/DPA	ND		ug/l		2.0	0.42
n-Nitrosodi-n-propylamine	ND		ug/l		5.0	0.64
Bis(2-ethylhexyl)phthalate	ND		ug/l		3.0	1.5
Butyl benzyl phthalate	ND		ug/l		5.0	1.2
Di-n-butylphthalate	ND		ug/l		5.0	0.39
Di-n-octylphthalate	ND		ug/l		5.0	1.3
Diethyl phthalate	ND		ug/l		5.0	0.38
Dimethyl phthalate	ND		ug/l		5.0	1.8
Biphenyl	ND		ug/l		2.0	0.46
4-Chloroaniline	ND		ug/l		5.0	1.1
2-Nitroaniline	ND		ug/l		5.0	0.50
3-Nitroaniline	ND		ug/l		5.0	0.81
4-Nitroaniline	ND		ug/l		5.0	0.80
Dibenzofuran	ND		ug/l		2.0	0.50
1,2,4,5-Tetrachlorobenzene	ND		ug/l		10	0.44
Acetophenone	ND		ug/l		5.0	0.53
2,4,6-Trichlorophenol	ND		ug/l		5.0	0.61
p-Chloro-m-cresol	ND		ug/l		2.0	0.35

L2364484

Lab Number:

Project Name: 89 LASALLE BCP SITE

Project Number: 31406202.000 **Report Date:** 11/07/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Analytical Date: 11/02/23 08:28

Analyst: LJG

Extraction Method: EPA 3510C Extraction Date: 11/02/23 01:49

arameter	Result	Qualifier	Units		RL	MDL	
emivolatile Organics by GC/MS	S - Westborough	Lab for s	ample(s):	01	Batch:	WG1847238-1	
2-Chlorophenol	ND		ug/l		2.0	0.48	
2,4-Dichlorophenol	ND		ug/l		5.0	0.41	
2,4-Dimethylphenol	ND		ug/l		5.0	1.8	
2-Nitrophenol	ND		ug/l		10	0.85	
4-Nitrophenol	ND		ug/l		10	0.67	
2,4-Dinitrophenol	ND		ug/l		20	6.6	
4,6-Dinitro-o-cresol	ND		ug/l		10	1.8	
Phenol	ND		ug/l		5.0	0.57	
2-Methylphenol	ND		ug/l		5.0	0.49	
3-Methylphenol/4-Methylphenol	ND		ug/l		5.0	0.48	
2,4,5-Trichlorophenol	ND		ug/l		5.0	0.77	
Carbazole	ND		ug/l		2.0	0.49	
Atrazine	ND		ug/l		10	0.76	
Benzaldehyde	ND		ug/l		5.0	0.53	
Caprolactam	ND		ug/l		10	3.3	
2,3,4,6-Tetrachlorophenol	ND		ug/l		5.0	0.84	

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
O Florent cod	0.4	04.400
2-Fluorophenol	64	21-120
Phenol-d6	52	10-120
Nitrobenzene-d5	68	23-120
2-Fluorobiphenyl	71	15-120
2,4,6-Tribromophenol	66	10-120
4-Terphenyl-d14	76	41-149

L2364484

Project Name: 89 LASALLE BCP SITE Lab Number:

Project Number: 31406202.000 **Report Date:** 11/07/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E-SIM Extraction Method: EPA 3510C
Analytical Date: 11/02/23 10:24 Extraction Date: 11/02/23 01:49

Analyst: AH

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS-	SIM - Westbo	rough Lab	for sample(s): 01	Batch: WG1847239-1	
Acenaphthene	ND		ug/l	0.10	0.01	
2-Chloronaphthalene	ND		ug/l	0.20	0.02	_
Fluoranthene	0.02	J	ug/l	0.10	0.02	
Hexachlorobutadiene	ND		ug/l	0.50	0.05	
Naphthalene	ND		ug/l	0.10	0.05	
Benzo(a)anthracene	ND		ug/l	0.10	0.02	
Benzo(a)pyrene	ND		ug/l	0.10	0.02	
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	
Chrysene	ND		ug/l	0.10	0.01	
Acenaphthylene	ND		ug/l	0.10	0.01	
Anthracene	0.02	J	ug/l	0.10	0.01	
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	
Fluorene	ND		ug/l	0.10	0.01	
Phenanthrene	0.03	J	ug/l	0.10	0.02	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	
Pyrene	ND		ug/l	0.10	0.02	
2-Methylnaphthalene	ND		ug/l	0.10	0.02	
Pentachlorophenol	ND		ug/l	0.80	0.01	
Hexachlorobenzene	ND		ug/l	0.80	0.01	
Hexachloroethane	ND		ug/l	0.80	0.06	

Project Name: 89 LASALLE BCP SITE **Lab Number:** L2364484

Project Number: 31406202.000 **Report Date:** 11/07/23

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270E-SIM Extraction Method: EPA 3510C
Analytical Date: 11/02/23 10:24 Extraction Date: 11/02/23 01:49

Analyst: AH

Parameter Result Qualifier Units RL MDL

Semivolatile Organics by GC/MS-SIM - Westborough Lab for sample(s): 01 Batch: WG1847239-1

		Acceptance
Surrogate	%Recovery Qua	alifier Criteria
2-Fluorophenol	68	21-120
Phenol-d6	57	10-120
Nitrobenzene-d5	82	23-120
2-Fluorobiphenyl	74	15-120
2,4,6-Tribromophenol	53	10-120
4-Terphenyl-d14	75	41-149

Project Name: 89 LASALLE BCP SITE

Project Number: 31406202.000

Lab Number: L2364484

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Semivolatile Organics by GC/MS - Westborou	ugh Lab Assoc	ated sample(s):	02 Batch:	WG1846863-2	2 WG1846863-3			
Acenaphthene	69		80		31-137	15	50	
Hexachlorobenzene	72		82		40-140	13	50	
Bis(2-chloroethyl)ether	72		78		40-140	8	50	
2-Chloronaphthalene	78		87		40-140	11	50	
3,3'-Dichlorobenzidine	69		76		40-140	10	50	
2,4-Dinitrotoluene	80		94		40-132	16	50	
2,6-Dinitrotoluene	86		99		40-140	14	50	
Fluoranthene	75		85		40-140	13	50	
4-Chlorophenyl phenyl ether	78		87		40-140	11	50	
4-Bromophenyl phenyl ether	76		86		40-140	12	50	
Bis(2-chloroisopropyl)ether	89		95		40-140	7	50	
Bis(2-chloroethoxy)methane	76		80		40-117	5	50	
Hexachlorobutadiene	84		88		40-140	5	50	
Hexachlorocyclopentadiene	67		71		40-140	6	50	
Hexachloroethane	71		78		40-140	9	50	
Isophorone	74		82		40-140	10	50	
Naphthalene	74		82		40-140	10	50	
Nitrobenzene	74		82		40-140	10	50	
NDPA/DPA	74		84		36-157	13	50	
n-Nitrosodi-n-propylamine	76		83		32-121	9	50	
Bis(2-ethylhexyl)phthalate	80		86		40-140	7	50	
Butyl benzyl phthalate	73		84		40-140	14	50	
Di-n-butylphthalate	77		82		40-140	6	50	

Project Name: 89 LASALLE BCP SITE

Project Number: 31406202.000

Lab Number: L2364484

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westboroo	ugh Lab Assoc	iated sample(s):	: 02 Batch:	WG1846863-	2 WG1846863-3		
Di-n-octylphthalate	77		84		40-140	9	50
Diethyl phthalate	75		85		40-140	13	50
Dimethyl phthalate	79		87		40-140	10	50
Benzo(a)anthracene	80		91		40-140	13	50
Benzo(a)pyrene	79		92		40-140	15	50
Benzo(b)fluoranthene	79		93		40-140	16	50
Benzo(k)fluoranthene	75		83		40-140	10	50
Chrysene	78		88		40-140	12	50
Acenaphthylene	72		82		40-140	13	50
Anthracene	75		83		40-140	10	50
Benzo(ghi)perylene	76		86		40-140	12	50
Fluorene	72		83		40-140	14	50
Phenanthrene	73		82		40-140	12	50
Dibenzo(a,h)anthracene	77		87		40-140	12	50
Indeno(1,2,3-cd)pyrene	84		95		40-140	12	50
Pyrene	73		84		35-142	14	50
Biphenyl	79		88		37-127	11	50
4-Chloroaniline	40		36	Q	40-140	11	50
2-Nitroaniline	82		98		47-134	18	50
3-Nitroaniline	56		62		26-129	10	50
4-Nitroaniline	70		86		41-125	21	50
Dibenzofuran	71		82		40-140	14	50
2-Methylnaphthalene	76		86		40-140	12	50

Project Name: 89 LASALLE BCP SITE

Project Number: 31406202.000

Lab Number: L2364484

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Semivolatile Organics by GC/MS - Westbo	rough Lab Assoc	iated sample(s):	02 Batch:	WG1846863-2	2 WG1846863-3			
1,2,4,5-Tetrachlorobenzene	84		94		40-117	11	50	
Acetophenone	83		91		14-144	9	50	
2,4,6-Trichlorophenol	91		105		30-130	14	50	
p-Chloro-m-cresol	81		91		26-103	12	50	
2-Chlorophenol	78		86		25-102	10	50	
2,4-Dichlorophenol	79		93		30-130	16	50	
2,4-Dimethylphenol	63		68		30-130	8	50	
2-Nitrophenol	88		96		30-130	9	50	
4-Nitrophenol	76		91		11-114	18	50	
2,4-Dinitrophenol	46		59		4-130	25	50	
4,6-Dinitro-o-cresol	80		94		10-130	16	50	
Pentachlorophenol	75		89		17-109	17	50	
Phenol	79		91	Q	26-90	14	50	
2-Methylphenol	74		86		30-130.	15	50	
3-Methylphenol/4-Methylphenol	76		89		30-130	16	50	
2,4,5-Trichlorophenol	87		100		30-130	14	50	
Carbazole	76		85		54-128	11	50	
Atrazine	79		89		40-140	12	50	
Benzaldehyde	83		87		40-140	5	50	
Caprolactam	95		111		15-130	16	50	
2,3,4,6-Tetrachlorophenol	84		96		40-140	13	50	

Project Name: 89 LASALLE BCP SITE

Lab Number:

L2364484

Project Number: 31406202.000

Report Date:

11/07/23

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 02 Batch: WG1846863-2 WG1846863-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	75	82	25-120
Phenol-d6	79	86	10-120
Nitrobenzene-d5	76	84	23-120
2-Fluorobiphenyl	77	85	30-120
2,4,6-Tribromophenol	81	90	10-136
4-Terphenyl-d14	75	83	18-120

Project Name: 89 LASALLE BCP SITE

Project Number: 31406202.000

Lab Number: L2364484

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westbo	orough Lab Associ	ated sample(s):	01 Batch:	WG1847238-2	2 WG1847238-3		
Bis(2-chloroethyl)ether	71		74		40-140	4	30
3,3'-Dichlorobenzidine	70		75		40-140	7	30
2,4-Dinitrotoluene	72		73		48-143	1	30
2,6-Dinitrotoluene	71		71		40-140	0	30
4-Chlorophenyl phenyl ether	70		72		40-140	3	30
4-Bromophenyl phenyl ether	68		72		40-140	6	30
Bis(2-chloroisopropyl)ether	68		75		40-140	10	30
Bis(2-chloroethoxy)methane	69		74		40-140	7	30
Hexachlorocyclopentadiene	62		63		40-140	2	30
Isophorone	70		75		40-140	7	30
Nitrobenzene	69		73		40-140	6	30
NDPA/DPA	73		76		40-140	4	30
n-Nitrosodi-n-propylamine	71		76		29-132	7	30
Bis(2-ethylhexyl)phthalate	76		82		40-140	8	30
Butyl benzyl phthalate	75		81		40-140	8	30
Di-n-butylphthalate	71		74		40-140	4	30
Di-n-octylphthalate	73		81		40-140	10	30
Diethyl phthalate	73		76		40-140	4	30
Dimethyl phthalate	72		72		40-140	0	30
Biphenyl	75		78		40-140	4	30
4-Chloroaniline	53		51		40-140	4	30
2-Nitroaniline	72		74		52-143	3	30
3-Nitroaniline	66		67		25-145	2	30

Project Name: 89 LASALLE BCP SITE

Project Number: 31406202.000

Lab Number: L2364484

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Semivolatile Organics by GC/MS - Westbo	rough Lab Assoc	iated sample(s)	: 01 Batch:	WG1847238-2	WG1847238-3			
4-Nitroaniline	73		74		51-143	1	30	
Dibenzofuran	72		73		40-140	1	30	
1,2,4,5-Tetrachlorobenzene	72		73		2-134	1	30	
Acetophenone	74		78		39-129	5	30	
2,4,6-Trichlorophenol	76		73		30-130	4	30	
p-Chloro-m-cresol	79		78		23-97	1	30	
2-Chlorophenol	70		78		27-123	11	30	
2,4-Dichlorophenol	73		77		30-130	5	30	
2,4-Dimethylphenol	72		75		30-130	4	30	
2-Nitrophenol	70		74		30-130	6	30	
4-Nitrophenol	71		70		10-80	1	30	
2,4-Dinitrophenol	70		70		20-130	0	30	
4,6-Dinitro-o-cresol	80		77		20-164	4	30	
Phenol	59		65		12-110	10	30	
2-Methylphenol	71		78		30-130	9	30	
3-Methylphenol/4-Methylphenol	75		80		30-130	6	30	
2,4,5-Trichlorophenol	75		78		30-130	4	30	
Carbazole	78		78		55-144	0	30	
Atrazine	81		78		40-140	4	30	
Benzaldehyde	75		81		40-140	8	30	
Caprolactam	36		36		10-130	0	30	
2,3,4,6-Tetrachlorophenol	74		72		40-140	3	30	

Project Name: 89 LASALLE BCP SITE

Lab Number:

L2364484

Project Number: 31406202.000

Report Date:

11/07/23

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1847238-2 WG1847238-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery	Qual	Acceptance Criteria
2-Fluorophenol	66	71		21-120
Phenol-d6	59	63		10-120
Nitrobenzene-d5	70	75		23-120
2-Fluorobiphenyl	70	71		15-120
2,4,6-Tribromophenol	75	74		10-120
4-Terphenyl-d14	70	75		41-149

Project Name: 89 LASALLE BCP SITE

Project Number: 31406202.000

Lab Number: L2364484

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS-SIM - Wes	tborough Lab A	ssociated sample(s): 01 Bat	ch: WG1847239-2 WG1847	239-3	
Acenaphthene	74	78	40-140	5	40
2-Chloronaphthalene	68	71	40-140	4	40
Fluoranthene	79	83	40-140	5	40
Hexachlorobutadiene	61	64	40-140	5	40
Naphthalene	71	74	40-140	4	40
Benzo(a)anthracene	78	82	40-140	5	40
Benzo(a)pyrene	90	95	40-140	5	40
Benzo(b)fluoranthene	84	88	40-140	5	40
Benzo(k)fluoranthene	92	98	40-140	6	40
Chrysene	82	87	40-140	6	40
Acenaphthylene	71	74	40-140	4	40
Anthracene	85	89	40-140	5	40
Benzo(ghi)perylene	86	90	40-140	5	40
Fluorene	75	78	40-140	4	40
Phenanthrene	81	85	40-140	5	40
Dibenzo(a,h)anthracene	90	96	40-140	6	40
Indeno(1,2,3-cd)pyrene	80	85	40-140	6	40
Pyrene	80	84	40-140	5	40
2-Methylnaphthalene	69	72	40-140	4	40
Pentachlorophenol	76	79	40-140	4	40
Hexachlorobenzene	72	76	40-140	5	40
Hexachloroethane	66	69	40-140	4	40

Project Name: 89 LASALLE BCP SITE

Lab Number:

L2364484

Project Number: 31406202.000

Report Date:

11/07/23

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1847239-2 WG1847239-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	71	74	21-120
Phenol-d6	63	66	10-120
Nitrobenzene-d5	82	87	23-120
2-Fluorobiphenyl	68	71	15-120
2,4,6-Tribromophenol	73	68	10-120
4-Terphenyl-d14	74	77	41-149

METALS

10/31/23 11:20

Date Collected:

Project Name: 89 LASALLE BCP SITE **Lab Number:** L2364484

Project Number: 31406202.000 **Report Date:** 11/07/23

SAMPLE RESULTS

Lab ID: L2364484-01

Client ID: MH-1 STORMWATER Date Received: 10/31/23
Sample Location: 89 LA SALLE AVE, BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Aluminum, Total	0.112		mg/l	0.0100	0.00327	1	11/02/23 09:14	11/06/23 20:22	EPA 3005A	1,6020B	WKP
Antimony, Total	0.00054	J	mg/l	0.00400	0.00042	1	11/02/23 09:14	11/06/23 20:22	EPA 3005A	1,6020B	WKP
Arsenic, Total	0.00047	J	mg/l	0.00050	0.00016	1	11/02/23 09:14	11/06/23 20:22	EPA 3005A	1,6020B	WKP
Barium, Total	0.00982		mg/l	0.00050	0.00017	1	11/02/23 09:14	11/06/23 20:22	EPA 3005A	1,6020B	WKP
Beryllium, Total	ND		mg/l	0.00050	0.00010	1	11/02/23 09:14	11/06/23 20:22	EPA 3005A	1,6020B	WKP
Cadmium, Total	ND		mg/l	0.00020	0.00005	1	11/02/23 09:14	11/06/23 20:22	EPA 3005A	1,6020B	WKP
Calcium, Total	27.1		mg/l	0.100	0.0394	1	11/02/23 09:14	11/06/23 20:22	EPA 3005A	1,6020B	WKP
Chromium, Total	0.00083	J	mg/l	0.00100	0.00017	1	11/02/23 09:14	11/06/23 20:22	EPA 3005A	1,6020B	WKP
Cobalt, Total	ND		mg/l	0.00050	0.00016	1	11/02/23 09:14	11/06/23 20:22	EPA 3005A	1,6020B	WKP
Copper, Total	0.00337		mg/l	0.00100	0.00038	1	11/02/23 09:14	11/06/23 20:22	EPA 3005A	1,6020B	WKP
Iron, Total	0.203		mg/l	0.0500	0.0191	1	11/02/23 09:14	11/06/23 20:22	EPA 3005A	1,6020B	WKP
Lead, Total	0.00127		mg/l	0.00100	0.00034	1	11/02/23 09:14	11/06/23 20:22	EPA 3005A	1,6020B	WKP
Magnesium, Total	2.01		mg/l	0.0700	0.0242	1	11/02/23 09:14	11/06/23 20:22	EPA 3005A	1,6020B	WKP
Manganese, Total	0.00533		mg/l	0.00100	0.00044	1	11/02/23 09:14	11/06/23 20:22	EPA 3005A	1,6020B	WKP
Mercury, Total	ND		mg/l	0.00020	0.00009	1	11/02/23 10:15	11/02/23 13:55	EPA 7470A	1,7470A	GMG
Nickel, Total	0.00088	J	mg/l	0.00200	0.00055	1	11/02/23 09:14	11/06/23 20:22	EPA 3005A	1,6020B	WKP
Potassium, Total	1.09		mg/l	0.100	0.0309	1	11/02/23 09:14	11/06/23 20:22	EPA 3005A	1,6020B	WKP
Selenium, Total	ND		mg/l	0.00500	0.00173	1	11/02/23 09:14	11/06/23 20:22	EPA 3005A	1,6020B	WKP
Silver, Total	ND		mg/l	0.00040	0.00016	1	11/02/23 09:14	11/06/23 20:22	EPA 3005A	1,6020B	WKP
Sodium, Total	20.5		mg/l	0.100	0.0293	1	11/02/23 09:14	11/06/23 20:22	EPA 3005A	1,6020B	WKP
Thallium, Total	ND		mg/l	0.00100	0.00014	1	11/02/23 09:14	11/06/23 20:22	EPA 3005A	1,6020B	WKP
Vanadium, Total	0.00168	J	mg/l	0.00500	0.00157	1	11/02/23 09:14	11/06/23 20:22	EPA 3005A	1,6020B	WKP
Zinc, Total	0.01808		mg/l	0.01000	0.00341	1	11/02/23 09:14	11/06/23 20:22	EPA 3005A	1,6020B	WKP

Project Name: 89 LASALLE BCP SITE Lab Number: L2364484

Project Number: 31406202.000 Report Date: 11/07/23

SAMPLE RESULTS

 Lab ID:
 L2364484-02
 Date Collected:
 10/31/23 11:24

 Client ID:
 MH-1 SEDIMENT
 Date Received:
 10/31/23

Sample Location: 89 LA SALLE AVE, BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Sediment Percent Solids: 78%

Dilution Date Date Prep **Analytical** Method Qualifier Factor **Prepared** Analyzed Method **Parameter** Result Units RL MDL Analyst Total Metals - Mansfield Lab Aluminum, Total 882 mg/kg 9.64 2.60 2 11/02/23 01:00 11/06/23 20:38 EPA 3050B 1,6010D CEY J 4.82 0.366 2 1,6010D Antimony, Total 1.17 mg/kg 11/02/23 01:00 11/05/23 17:04 EPA 3050B DHL J 2 Arsenic, Total 0.431 mg/kg 0.964 0.200 11/02/23 01:00 11/05/23 17:04 EPA 3050B 1,6010D DHL 2 Barium, Total 7.01 0.964 0.168 11/02/23 01:00 11/06/23 20:38 EPA 3050B 1,6010D CEY mg/kg 0.056 J 0.032 2 1,6010D Beryllium, Total mg/kg 0.482 11/02/23 01:00 11/05/23 17:04 EPA 3050B DHL ND 0.095 2 1,6010D DHL Cadmium, Total mg/kg 0.964 11/02/23 01:00 11/05/23 17:04 EPA 3050B 11/02/23 01:00 11/06/23 15:39 EPA 3050B Calcium, Total 134000 48.2 16.9 10 1,6010D mg/kg DHL Chromium, Total 2 1,6010D 6.59 0.964 0.093 11/02/23 01:00 11/05/23 17:04 EPA 3050B DHL mg/kg J 2 1,6010D Cobalt, Total 1.42 mg/kg 1.93 0.160 11/02/23 01:00 11/05/23 17:04 EPA 3050B DHL 2 1,6010D Copper, Total 9.42 0.964 0.249 11/02/23 01:00 11/05/23 17:04 EPA 3050B DHL mg/kg 2 1,6010D Iron, Total 10200 4.82 0.871 11/02/23 01:00 11/06/23 20:38 EPA 3050B CEY mg/kg 7.55 2 1,6010D Lead, Total mg/kg 4.82 0.258 11/02/23 01:00 11/05/23 17:04 EPA 3050B DHL Magnesium, Total 12100 9.64 1.48 2 11/02/23 01:00 11/05/23 17:04 EPA 3050B 1,6010D DHL mg/kg 0.964 0.153 2 1,6010D DHL Manganese, Total 213 mg/kg 11/02/23 01:00 11/05/23 17:04 EPA 3050B Mercury, Total ND mg/kg 0.081 0.053 1 11/02/23 02:23 11/07/23 16:53 EPA 7471B 1,7471B **GMG** Nickel, Total 6.90 2.41 0.233 2 11/02/23 01:00 11/05/23 17:04 EPA 3050B 1,6010D DHL mg/kg J 224 2 1,6010D CEY Potassium, Total mg/kg 241 13.9 11/02/23 01:00 11/06/23 20:38 EPA 3050B Selenium, Total ND mg/kg 1.93 0.249 2 11/02/23 01:00 11/05/23 17:04 EPA 3050B 1,6010D DHL Silver, Total ND mg/kg 0.482 0.273 2 11/02/23 01:00 11/05/23 17:04 EPA 3050B 1,6010D DHL J Sodium, Total 139 mg/kg 193 3.04 2 11/02/23 01:00 11/06/23 20:38 EPA 3050B 1,6010D CEY Thallium, Total ND mg/kg 1.93 0.304 2 11/02/23 01:00 11/05/23 17:04 EPA 3050B 1,6010D DHL Vanadium, Total 6.40 0.964 0.196 2 11/02/23 01:00 11/05/23 17:04 EPA 3050B 1,6010D mg/kg DHI 2 1,6010D 23.2 4.82 0.282 DHL Zinc, Total mg/kg 11/02/23 01:00 11/05/23 17:04 EPA 3050B

Project Name: 89 LASALLE BCP SITE

Project Number: 31406202.000

Lab Number:

L2364484

Report Date: 11/07/23

Method Blank Analysis Batch Quality Control

Parameter	Result Qua	alifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for samp	ple(s):	02 Batc	h: WG18	847127-	1				
Aluminum, Total	ND		mg/kg	4.00	1.08	1	11/02/23 01:00	11/06/23 15:33	1,6010D	DHL
Antimony, Total	ND		mg/kg	2.00	0.152	1	11/02/23 01:00	11/05/23 16:40	1,6010D	DHL
Arsenic, Total	ND		mg/kg	0.400	0.083	1	11/02/23 01:00	11/05/23 16:40	1,6010D	DHL
Barium, Total	ND		mg/kg	0.400	0.070	1	11/02/23 01:00	11/06/23 15:33	1,6010D	DHL
Beryllium, Total	ND		mg/kg	0.200	0.013	1	11/02/23 01:00	11/05/23 16:40	1,6010D	DHL
Cadmium, Total	ND		mg/kg	0.400	0.039	1	11/02/23 01:00	11/05/23 16:40	1,6010D	DHL
Calcium, Total	ND		mg/kg	4.00	1.40	1	11/02/23 01:00	11/06/23 15:33	1,6010D	DHL
Chromium, Total	ND		mg/kg	0.400	0.038	1	11/02/23 01:00	11/05/23 16:40	1,6010D	DHL
Cobalt, Total	ND		mg/kg	0.800	0.066	1	11/02/23 01:00	11/05/23 16:40	1,6010D	DHL
Copper, Total	ND		mg/kg	0.400	0.103	1	11/02/23 01:00	11/05/23 16:40	1,6010D	DHL
Iron, Total	0.439	J	mg/kg	2.00	0.361	1	11/02/23 01:00	11/06/23 15:33	1,6010D	DHL
Lead, Total	ND		mg/kg	2.00	0.107	1	11/02/23 01:00	11/05/23 16:40	1,6010D	DHL
Magnesium, Total	ND		mg/kg	4.00	0.616	1	11/02/23 01:00	11/05/23 16:40	1,6010D	DHL
Manganese, Total	ND		mg/kg	0.400	0.064	1	11/02/23 01:00	11/05/23 16:40	1,6010D	DHL
Nickel, Total	ND		mg/kg	1.00	0.097	1	11/02/23 01:00	11/05/23 16:40	1,6010D	DHL
Potassium, Total	ND		mg/kg	100	5.76	1	11/02/23 01:00	11/06/23 15:33	1,6010D	DHL
Selenium, Total	ND		mg/kg	0.800	0.103	1	11/02/23 01:00	11/05/23 16:40	1,6010D	DHL
Silver, Total	ND		mg/kg	0.200	0.113	1	11/02/23 01:00	11/05/23 16:40	1,6010D	DHL
Sodium, Total	ND		mg/kg	80.0	1.26	1	11/02/23 01:00	11/06/23 15:33	1,6010D	DHL
Thallium, Total	0.146	J	mg/kg	0.800	0.126	1	11/02/23 01:00	11/05/23 16:40	1,6010D	DHL
Vanadium, Total	ND		mg/kg	0.400	0.081	1	11/02/23 01:00	11/05/23 16:40	1,6010D	DHL
Zinc, Total	ND		mg/kg	2.00	0.117	1	11/02/23 01:00	11/05/23 16:40	1,6010D	DHL

Prep Information

Digestion Method: EPA 3050B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	I Analyst
Total Metals - Man	nsfield Lab for sample(s):	02 Batch	n: WG18	347131-	1				
Mercury, Total	ND	mg/kg	0.083	0.054	1	11/02/23 02:23	11/07/23 16:15	1,7471B	GMG

Project Name: 89 LASALLE BCP SITE

Project Number: 31406202.000

Lab Number:

L2364484

Report Date: 11/07/23

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 7471B

Parameter	Result Qu	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield I	Lab for sar	nple(s):	01 Batc	h: WG18	47284-1	l				
Aluminum, Total	0.00375	J	mg/l	0.0100	0.00327	1	11/02/23 09:14	11/02/23 14:01	1,6020B	SMV
Antimony, Total	ND		mg/l	0.00400	0.00042	1	11/02/23 09:14	11/02/23 14:01	1,6020B	SMV
Arsenic, Total	ND		mg/l	0.00050	0.00016	1	11/02/23 09:14	11/02/23 14:01	1,6020B	SMV
Barium, Total	ND		mg/l	0.00050	0.00017	1	11/02/23 09:14	11/02/23 14:01	1,6020B	SMV
Beryllium, Total	ND		mg/l	0.00050	0.00010	1	11/02/23 09:14	11/02/23 14:01	1,6020B	SMV
Cadmium, Total	ND		mg/l	0.00020	0.00005	1	11/02/23 09:14	11/02/23 14:01	1,6020B	SMV
Calcium, Total	ND		mg/l	0.100	0.0394	1	11/02/23 09:14	11/02/23 14:01	1,6020B	SMV
Chromium, Total	ND		mg/l	0.00100	0.00017	1	11/02/23 09:14	11/02/23 14:01	1,6020B	SMV
Cobalt, Total	ND		mg/l	0.00050	0.00016	1	11/02/23 09:14	11/02/23 14:01	1,6020B	SMV
Copper, Total	ND		mg/l	0.00100	0.00038	1	11/02/23 09:14	11/02/23 14:01	1,6020B	SMV
Iron, Total	ND		mg/l	0.0500	0.0191	1	11/02/23 09:14	11/02/23 14:01	1,6020B	SMV
Lead, Total	ND		mg/l	0.00100	0.00034	1	11/02/23 09:14	11/02/23 14:01	1,6020B	SMV
Magnesium, Total	ND		mg/l	0.0700	0.0242	1	11/02/23 09:14	11/02/23 14:01	1,6020B	SMV
Manganese, Total	0.00060	J	mg/l	0.00100	0.00044	1	11/02/23 09:14	11/02/23 14:01	1,6020B	SMV
Nickel, Total	ND		mg/l	0.00200	0.00055	1	11/02/23 09:14	11/02/23 14:01	1,6020B	SMV
Potassium, Total	ND		mg/l	0.100	0.0309	1	11/02/23 09:14	11/02/23 14:01	1,6020B	SMV
Selenium, Total	ND		mg/l	0.00500	0.00173	1	11/02/23 09:14	11/02/23 14:01	1,6020B	SMV
Silver, Total	ND		mg/l	0.00040	0.00016	1	11/02/23 09:14	11/02/23 14:01	1,6020B	SMV
Sodium, Total	ND		mg/l	0.100	0.0293	1	11/02/23 09:14	11/02/23 14:01	1,6020B	SMV
Thallium, Total	ND		mg/l	0.00100	0.00014	1	11/02/23 09:14	11/02/23 14:01	1,6020B	SMV
Vanadium, Total	ND		mg/l	0.00500	0.00157	1	11/02/23 09:14	11/02/23 14:01	1,6020B	SMV
Zinc, Total	ND		mg/l	0.01000	0.00341	1	11/02/23 09:14	11/02/23 14:01	1,6020B	SMV

Prep Information

Digestion Method: EPA 3005A

Project Name: 89 LASALLE BCP SITE

Project Number: 31406202.000

Lab Number:

L2364484

Report Date:

11/07/23

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytical Method	
Total Metals - Mansfield	Lab for sample(s):	01 Batc	h: WG18	347286-	1				
Mercury, Total	ND	mg/l	0.00020	0.00009	1	11/02/23 10:15	11/02/23 13:00	1,7470A	GMG

Prep Information

Digestion Method: EPA 7470A

Project Name: 89 LASALLE BCP SITE

Project Number: 31406202.000

Lab Number: L2364484

Parameter	LCS %Recovery		LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	(s): 02 Batch:	WG1847127-2	SRM Lot N	lumber: D11	19-540			
Aluminum, Total	79		-		48-152	-		
Antimony, Total	114		-		10-190	-		
Arsenic, Total	107		-		83-117	-		
Barium, Total	89		-		82-118	-		
Beryllium, Total	104		-		83-117	-		
Cadmium, Total	100		-		82-117	-		
Calcium, Total	92		-		81-118	-		
Chromium, Total	106		-		82-119	-		
Cobalt, Total	104		-		83-117	-		
Copper, Total	98		-		84-116	-		
Iron, Total	104		-		60-140	-		
Lead, Total	107		-		82-118	-		
Magnesium, Total	102		-		76-124	-		
Manganese, Total	104		-		82-118	-		
Nickel, Total	102		-		82-117	-		
Potassium, Total	82		-		70-130	-		
Selenium, Total	109		-		79-121	-		
Silver, Total	110		-		80-120	-		
Sodium, Total	95		-		74-126	-		
Thallium, Total	106		-		81-119	-		
Vanadium, Total	103		-		79-121	-		

Project Name: 89 LASALLE BCP SITE

Project Number: 31406202.000

Lab Number:

L2364484

Report Date:

11/07/23

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associated s	ample(s): 02 Batch: WG184	7127-2 SRM Lot Number	: D119-540		
Zinc, Total	108	-	80-120	-	
Total Metals - Mansfield Lab Associated s	ample(s): 02 Batch: WG184	7131-2 SRM Lot Number	: D119-540		
Mercury, Total	87	-	73-127	-	

Project Name: 89 LASALLE BCP SITE

Project Number: 31406202.000

Lab Number: L2364484

al Metals - Mansfield Lab Associated sar	mple(s): 01 Batch: WG18	847284-2			RPD Limits
		047204-2			
Aluminum, Total	99	-	80-120	-	
Antimony, Total	98	-	80-120	-	
Arsenic, Total	99	-	80-120	-	
Barium, Total	100	-	80-120	-	
Beryllium, Total	98	-	80-120	-	
Cadmium, Total	98	-	80-120	-	
Calcium, Total	81	-	80-120	-	
Chromium, Total	92	-	80-120	-	
Cobalt, Total	90	-	80-120	-	
Copper, Total	86	-	80-120	-	
Iron, Total	95	-	80-120	-	
Lead, Total	103	-	80-120	-	
Magnesium, Total	98	-	80-120	-	
Manganese, Total	92	-	80-120	-	
Nickel, Total	84	-	80-120	-	
Potassium, Total	95	-	80-120	-	
Selenium, Total	98	-	80-120	-	
Silver, Total	96	-	80-120	-	
Sodium, Total	100	-	80-120	-	
Thallium, Total	102	-	80-120	-	
Vanadium, Total	97	-	80-120	-	

Project Name: 89 LASALLE BCP SITE

Project Number: 31406202.000

Lab Number:

L2364484

Report Date:

11/07/23

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associate	ed sample(s): 01 Batch: WG18	347284-2			
Zinc, Total	93	-	80-120	-	
Total Metals - Mansfield Lab Associate	ed sample(s): 01 Batch: WG18	347286-2			
Mercury, Total	101	-	80-120	-	

Project Name: 89 LASALLE BCP SITE

Project Number: 31406202.000

Lab Number: L2364484

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD Qu	RPD _{ual} Limits
Total Metals - Mansfield Lal	b Associated sar	mple(s): 02	QC Batch	ID: WG184712	27-3	QC Sample:	L2364484-02	Client ID: MH-1	SEDIMEN	Т
Aluminum, Total	882	197	955	37	Q	-	-	75-125	-	20
Antimony, Total	1.17J	49.2	57.3	116		-	-	75-125	-	20
Arsenic, Total	0.431J	11.8	16.6	141	Q	-	-	75-125	-	20
Barium, Total	7.01	197	201	99		-	-	75-125	-	20
Beryllium, Total	0.056J	4.92	5.28	107		-	-	75-125	-	20
Cadmium, Total	ND	5.21	5.47	105		-	-	75-125	-	20
Calcium, Total	134000	983	109000	0	Q	-	-	75-125	-	20
Chromium, Total	6.59	19.7	32.5	132	Q	-	-	75-125	-	20
Cobalt, Total	1.42J	49.2	54.2	110		-	-	75-125	-	20
Copper, Total	9.42	24.6	50.0	165	Q	-	-	75-125	-	20
Iron, Total	10200	98.3	30300	20400	Q	-	-	75-125	-	20
Lead, Total	7.55	52.1	58.5	98		-	-	75-125	-	20
Magnesium, Total	12100	983	13100	102		-	-	75-125	-	20
Manganese, Total	213	49.2	272	120		-	-	75-125	-	20
Nickel, Total	6.90	49.2	63.3	115		-	-	75-125	-	20
Potassium, Total	224J	983	1350	137	Q	-	-	75-125	-	20
Selenium, Total	ND	11.8	11.4	97		-	-	75-125	-	20
Silver, Total	ND	4.92	5.52	112		-	-	75-125	-	20
Sodium, Total	139J	983	1240	126	Q	-	-	75-125	-	20
Thallium, Total	ND	11.8	11.8	100		-	-	75-125	-	20
Vanadium, Total	6.40	49.2	57.8	104		-	-	75-125	-	20

Project Name: 89 LASALLE BCP SITE

Project Number: 31406202.000

Lab Number: L2364484

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits RPD	RPD Limits
Total Metals - Mansfield Lab	Associated sam	ple(s): 02	QC Batch	ID: WG1847127-3	QC Sample	: L2364484-02	Client ID: MH-1 SEDIMENT	
Zinc, Total	23.2	49.2	85.2	126	-	-	75-125 -	20
Total Metals - Mansfield Lab	Associated sam	ple(s): 02	QC Batch	ID: WG1847131-3	QC Sample	: L2364450-01	Client ID: MS Sample	
Mercury, Total	ND	1.52	1.47	97	-	-	80-120 -	20

Project Name: 89 LASALLE BCP SITE

Project Number: 31406202.000

Lab Number: L2364484

arameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD ound	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield La	ab Associated sar	nple(s): 01	QC Batch	ID: WG1847284-3	QC	Sample	e: L2363851-01	Client ID: MS Sa	mple	
Aluminum, Total	0.0522	2	2.00	97		-	-	75-125	-	20
Antimony, Total	ND	0.5	0.5002	100		-	-	75-125	-	20
Arsenic, Total	0.00256	0.12	0.1224	100		-	-	75-125	-	20
Barium, Total	0.4275	2	2.342	96		-	-	75-125	-	20
Beryllium, Total	ND	0.05	0.05000	100		-	-	75-125	-	20
Cadmium, Total	ND	0.053	0.05086	96		-	-	75-125	-	20
Calcium, Total	260.	10	238	0	Q	-	-	75-125	-	20
Chromium, Total	0.00115	0.2	0.1836	91		-	-	75-125	-	20
Cobalt, Total	0.00053	0.5	0.4422	88		-	-	75-125	-	20
Copper, Total	0.00052J	0.25	0.2133	85		-	-	75-125	-	20
Iron, Total	30.3	1	29.7	0	Q	-	-	75-125	-	20
Lead, Total	0.00527	0.53	0.5322	99		-	-	75-125	-	20
Magnesium, Total	42.8	10	49.7	69	Q	-	-	75-125	-	20
Manganese, Total	0.9225	0.5	1.283	72	Q	-	-	75-125	-	20
Nickel, Total	ND	0.5	0.4075	82		-	-	75-125	-	20
Potassium, Total	24.9	10	32.3	74	Q	-	-	75-125	-	20
Selenium, Total	ND	0.12	0.127	106		-	-	75-125	-	20
Silver, Total	ND	0.05	0.04727	94		-	-	75-125	-	20
Sodium, Total	80.4	10	99.8	194	Q	-	-	75-125	-	20
Thallium, Total	ND	0.12	0.1165	97		-	-	75-125	-	20
Vanadium, Total	ND	0.5	0.5020	100		-	-	75-125	-	20

Project Name: 89 LASALLE BCP SITE

Project Number: 31406202.000

Lab Number:

L2364484

Report Date:

11/07/23

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab	Associated sam	ple(s): 01	QC Batch	ID: WG1847284-3	QC Sample	: L2363851-01	Client ID: MS Sa	ample	
Zinc, Total	0.00446J	0.5	0.4520	90	-	-	75-125	-	20
Total Metals - Mansfield Lab A	Associated sam	ple(s): 01	QC Batch	ID: WG1847286-3	QC Sample	: L2363851-02	Client ID: MS Sa	ample	
Mercury, Total	0.00010J	0.005	0.00469	94	-	-	75-125	-	20

Project Name: 89 LASALLE BCP SITE

Project Number: 31406202.000

Lab Number: L2364484

Rail Metals - Mansfield Lab Associated sample(s): 02 QC Batch ID: WG1847127-4 QC Sample: L2364484-02 Client ID: MH-1 SEDIMENT Antimony, Total 1.17J 1.20J mg/kg NC 20 Arsenic, Total 0.431J 3.33 mg/kg NC 20 Beryllium, Total 0.056J 0.076J mg/kg NC 20 Cadmium, Total ND ND mg/kg NC 20 Chromium, Total 6.59 9.35 mg/kg NC 20 Cobalt, Total 1.42J 1.96J mg/kg NC 20 Copper, Total 9.42 14.6 mg/kg NC 20 Lead, Total 7.55 4.81J mg/kg NC 20 Manganesium, Total 213 203 mg/kg 31 Q 20 Nickel, Total ND ND mg/kg A Q 20 Selenium, Total ND ND mg/kg NC 20 Thallium, Total ND	arameter	Native Sample Dup	plicate Sample	Units	RPD	Qual	RPD Limits
Arsenic, Total 0.431J 3.33 mg/kg NC 20 Beryllium, Total 0.056J 0.076J mg/kg NC 20 Cadmium, Total ND ND mg/kg NC 20 Chromium, Total 6.59 9.35 mg/kg NC 20 Cobalt, Total 1.42J 1.96J mg/kg NC 20 Copper, Total 9.42 14.6 mg/kg NC 20 Lead, Total 7.55 4.81J mg/kg NC 20 Magnesium, Total 12100 16600 mg/kg 31 Q 20 Nickel, Total 6.90 8.82 mg/kg 24 Q 20 Selenium, Total ND ND mg/kg NC 20 Silver, Total ND ND mg/kg NC 20 Thallium, Total ND ND mg/kg NC 20 Vanadium, Total 6.40 7.16 mg/kg	otal Metals - Mansfield Lab Associated sample(s): 02	QC Batch ID: WG1847127-4	QC Sample: I	L2364484-02 CI	ient ID: M	IH-1 SEDIN	MENT
Beryllium, Total 0.056J 0.076J mg/kg NC 20 Cadmium, Total ND ND mg/kg NC 20 Chromium, Total 6.59 9.35 mg/kg NC 20 Cobalt, Total 1.42J 1.96J mg/kg NC 20 Copper, Total 9.42 14.6 mg/kg NC 20 Lead, Total 7.55 4.81J mg/kg NC 20 Magnesium, Total 12100 16600 mg/kg 31 Q 20 Manganese, Total 213 203 mg/kg 5 20 Nickel, Total 6.90 8.82 mg/kg NC 20 Selenium, Total ND ND mg/kg NC 20 Silver, Total ND ND mg/kg NC 20 Thallium, Total ND ND mg/kg NC 20 Vanadium, Total 6.40 7.16 mg/kg 11	Antimony, Total	1.17J	1.20J	mg/kg	NC		20
Cadmium, Total ND ND mg/kg NC 20 Chromium, Total 6.59 9.35 mg/kg 35 Q 20 Cobalt, Total 1.42J 1.96J mg/kg NC 20 Copper, Total 9.42 14.6 mg/kg 43 Q 20 Lead, Total 7.55 4.81J mg/kg NC 20 Magnesium, Total 12100 16600 mg/kg 31 Q 20 Manganese, Total 213 203 mg/kg 5 20 Nickel, Total 6.90 8.82 mg/kg 24 Q 20 Selenium, Total ND ND mg/kg NC 20 Silver, Total ND ND mg/kg NC 20 Thallium, Total ND ND mg/kg NC 20 Vanadium, Total 6.40 7.16 mg/kg 11 20 Zinc, Total 23.2 61.2	Arsenic, Total	0.431J	3.33	mg/kg	NC		20
Chromium, Total 6.59 9.35 mg/kg 35 Q 20 Cobalt, Total 1.42J 1.96J mg/kg NC 20 Copper, Total 9.42 14.6 mg/kg 43 Q 20 Lead, Total 7.55 4.81J mg/kg NC 20 Magnesium, Total 12100 16600 mg/kg 31 Q 20 Manganese, Total 213 203 mg/kg 5 20 Nickel, Total 6.90 8.82 mg/kg NC 20 Selenium, Total ND ND mg/kg NC 20 Silver, Total ND ND mg/kg NC 20 Thallium, Total ND ND mg/kg NC 20 Vanadium, Total 6.40 7.16 mg/kg 11 20 Zinc, Total 23.2 61.2 mg/kg 90 Q 20	Beryllium, Total	0.056J	0.076J	mg/kg	NC		20
Cobalt, Total 1.42J 1.96J mg/kg NC 20 Copper, Total 9.42 14.6 mg/kg 43 Q 20 Lead, Total 7.55 4.81J mg/kg NC 20 Magnesium, Total 12100 16600 mg/kg 31 Q 20 Manganese, Total 213 203 mg/kg 5 20 Nickel, Total 6.90 8.82 mg/kg NC 20 Selenium, Total ND ND mg/kg NC 20 Silver, Total ND ND mg/kg NC 20 Thallium, Total ND ND mg/kg NC 20 Vanadium, Total 6.40 7.16 mg/kg NC 20 Vanadium, Total 23.2 61.2 mg/kg 90 Q 20 Associated sample(s): 02 QC Batch ID: WG1847127-4 QC Sample: L236484-02 Client ID: MH-1 SEDIMENT	Cadmium, Total	ND	ND	mg/kg	NC		20
Copper, Total 9.42 14.6 mg/kg 43 Q 20 Lead, Total 7.55 4.81J mg/kg NC 20 Magnesium, Total 12100 16600 mg/kg 31 Q 20 Manganese, Total 213 203 mg/kg 5 20 Nickel, Total 6.90 8.82 mg/kg NC 20 Selenium, Total ND ND mg/kg NC 20 Silver, Total ND ND mg/kg NC 20 Thallium, Total ND ND mg/kg NC 20 Vanadium, Total 6.40 7.16 mg/kg 11 20 Zinc, Total 23.2 61.2 mg/kg 90 Q 20	Chromium, Total	6.59	9.35	mg/kg	35	Q	20
Lead, Total 7.55 4.81J mg/kg NC 20 Magnesium, Total 12100 16600 mg/kg 31 Q 20 Manganese, Total 213 203 mg/kg 5 20 Nickel, Total 6.90 8.82 mg/kg NC 20 Selenium, Total ND ND mg/kg NC 20 Silver, Total ND ND mg/kg NC 20 Thallium, Total ND ND mg/kg NC 20 Vanadium, Total 6.40 7.16 mg/kg 11 20 Zinc, Total 23.2 61.2 mg/kg 90 Q 20	Cobalt, Total	1.42J	1.96J	mg/kg	NC		20
Magnesium, Total 12100 16600 mg/kg 31 Q 20 Manganese, Total 213 203 mg/kg 5 20 Nickel, Total 6.90 8.82 mg/kg 24 Q 20 Selenium, Total ND ND mg/kg NC 20 Silver, Total ND ND mg/kg NC 20 Thallium, Total ND ND mg/kg NC 20 Vanadium, Total 6.40 7.16 mg/kg 11 20 Zinc, Total 23.2 61.2 mg/kg 90 Q 20	Copper, Total	9.42	14.6	mg/kg	43	Q	20
Manganese, Total 213 203 mg/kg 5 20 Nickel, Total 6.90 8.82 mg/kg 24 Q 20 Selenium, Total ND ND mg/kg NC 20 Silver, Total ND ND mg/kg NC 20 Thallium, Total ND ND mg/kg NC 20 Vanadium, Total 6.40 7.16 mg/kg 11 20 Zinc, Total 23.2 61.2 mg/kg 90 Q 20	Lead, Total	7.55	4.81J	mg/kg	NC		20
Nickel, Total 6.90 8.82 mg/kg 24 Q 20 Selenium, Total ND ND MD mg/kg NC 20 Silver, Total ND ND mg/kg NC 20 Thallium, Total ND ND mg/kg NC 20 Vanadium, Total 6.40 7.16 mg/kg 11 20 Zinc, Total 23.2 61.2 mg/kg 90 Q 20	Magnesium, Total	12100	16600	mg/kg	31	Q	20
Selenium, Total ND ND mg/kg NC 20 Silver, Total ND ND mg/kg NC 20 Thallium, Total ND ND mg/kg NC 20 Vanadium, Total 6.40 7.16 mg/kg 11 20 Zinc, Total 23.2 61.2 mg/kg 90 Q 20 Metals - Mansfield Lab Associated sample(s): 02 QC Batch ID: WG1847127-4 QC Sample: L2364484-02 Client ID: MH-1 SEDIMENT	Manganese, Total	213	203	mg/kg	5		20
Silver, Total ND ND mg/kg NC 20 Thallium, Total ND ND mg/kg NC 20 Vanadium, Total 6.40 7.16 mg/kg 11 20 Zinc, Total 23.2 61.2 mg/kg 90 Q 20 stal Metals - Mansfield Lab Associated sample(s): 02 QC Batch ID: WG1847127-4 QC Sample: L2364484-02 Client ID: MH-1 SEDIMENT	Nickel, Total	6.90	8.82	mg/kg	24	Q	20
Thallium, Total ND ND mg/kg NC 20 Vanadium, Total 6.40 7.16 mg/kg 11 20 Zinc, Total 23.2 61.2 mg/kg 90 Q 20 otal Metals - Mansfield Lab Associated sample(s): 02 QC Batch ID: WG1847127-4 QC Sample: L2364484-02 Client ID: MH-1 SEDIMENT	Selenium, Total	ND	ND	mg/kg	NC		20
Vanadium, Total 6.40 7.16 mg/kg 11 20 Zinc, Total 23.2 61.2 mg/kg 90 Q 20 otal Metals - Mansfield Lab Associated sample(s): 02 QC Batch ID: WG1847127-4 QC Sample: L2364484-02 Client ID: MH-1 SEDIMENT	Silver, Total	ND	ND	mg/kg	NC		20
Zinc, Total 23.2 61.2 mg/kg 90 Q 20 etal Metals - Mansfield Lab Associated sample(s): 02 QC Batch ID: WG1847127-4 QC Sample: L2364484-02 Client ID: MH-1 SEDIMENT	Thallium, Total	ND	ND	mg/kg	NC		20
otal Metals - Mansfield Lab Associated sample(s): 02 QC Batch ID: WG1847127-4 QC Sample: L2364484-02 Client ID: MH-1 SEDIMENT	Vanadium, Total	6.40	7.16	mg/kg	11		20
	Zinc, Total	23.2	61.2	mg/kg	90	Q	20
Calcium, Total 134000 140000 mg/kg 4 20	otal Metals - Mansfield Lab Associated sample(s): 02	QC Batch ID: WG1847127-4	QC Sample: I	L2364484-02 CI	ient ID: M	IH-1 SEDIN	MENT
	Calcium, Total	134000	140000	mg/kg	4		20

Project Name: 89 LASALLE BCP SITE

Project Number: 31406202.000

Lab Number: L2364484

Parameter	Native Sample D	uplicate Sample	Units	RPD	RP	D Limits
Total Metals - Mansfield Lab Associated sample(s): 02	QC Batch ID: WG1847127-	-4 QC Sample:	L2364484-02	Client ID:	MH-1 SEDIMENT	
Aluminum, Total	882	831	mg/kg	6		20
Barium, Total	7.01	5.92	mg/kg	17		20
Iron, Total	10200	14900	mg/kg	37	Q	20
Potassium, Total	224J	260	mg/kg	NC		20
Sodium, Total	139J	154J	mg/kg	NC		20
Total Metals - Mansfield Lab Associated sample(s): 02	QC Batch ID: WG1847131-	-4 QC Sample:	L2364450-01	Client ID:	DUP Sample	
Mercury, Total	ND	ND	mg/kg	NC		20

Project Name: 89 LASALLE BCP SITE

Project Number: 31406202.000

Lab Number: L2364484

arameter	Native Sample D	uplicate Sample	Units	RPD	RPD Limits
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1847284	-4 QC Sample:	L2363851-01	Client ID: [DUP Sample
Aluminum, Total	0.0522	0.0534	mg/l	2	20
Antimony, Total	ND	ND	mg/l	NC	20
Arsenic, Total	0.00256	0.00211	mg/l	19	20
Barium, Total	0.4275	0.4090	mg/l	4	20
Beryllium, Total	ND	ND	mg/l	NC	20
Cadmium, Total	ND	ND	mg/l	NC	20
Calcium, Total	260.	231	mg/l	12	20
Chromium, Total	0.00115	0.00064J	mg/l	NC	20
Cobalt, Total	0.00053	0.00047J	mg/l	NC	20
Copper, Total	0.00052J	0.00046J	mg/l	NC	20
Iron, Total	30.3	27.4	mg/l	10	20
Lead, Total	0.00527	0.00478	mg/l	10	20
Magnesium, Total	42.8	37.8	mg/l	12	20
Manganese, Total	0.9225	0.8184	mg/l	12	20
Nickel, Total	ND	ND	mg/l	NC	20
Potassium, Total	24.9	22.5	mg/l	10	20
Selenium, Total	ND	ND	mg/l	NC	20
Silver, Total	ND	ND	mg/l	NC	20
Sodium, Total	80.4	71.2	mg/l	12	20

Project Name: 89 LASALLE BCP SITE

Project Number: 31406202.000

Lab Number: L2364484

Parameter	Native Sample Dup	olicate Sample	Units	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1847284-4	QC Sample:	L2363851-01	Client ID: DU	P Sample
Thallium, Total	ND	0.00032J	mg/l	NC	20
Vanadium, Total	ND	ND	mg/l	NC	20
Zinc, Total	0.00446J	0.00405J	mg/l	NC	20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1847286-4	QC Sample:	L2363851-02	Client ID: DU	P Sample
Mercury, Total	0.00010J	ND	mg/l	NC	20

Lab Serial Dilution Analysis Batch Quality Control

Project Name: 89 LASALLE BCP SITE

Project Number: 31406202.000

Lab Number: L2364484 **Report Date:** 11/07/23

SEDIMENT 20
20
20
SEDIMENT
20
SEDIMENT
20
20

INORGANICS & MISCELLANEOUS

Project Name: 89 LASALLE BCP SITE Lab Number: L2364484

Project Number: 31406202.000 **Report Date:** 11/07/23

SAMPLE RESULTS

Lab ID: L2364484-02 Date Collected: 10/31/23 11:24

Client ID: MH-1 SEDIMENT Date Received: 10/31/23
Sample Location: 89 LA SALLE AVE, BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Sediment

Parameter	Result Qua	lifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab								
Solids, Total	78.1	%	0.100	NA	1	-	11/02/23 01:03	121,2540G	WJM

Lab Duplicate Analysis

Batch Quality Control

Lab Number: **Project Name:** 89 LASALLE BCP SITE L2364484

11/07/23 **Project Number:** Report Date: 31406202.000

Parameter	Native Sample	Duplicate Sam	ple Units	RPD	Qual RPD Limi	ts
General Chemistry - Westborough Lab	Associated sample(s): 02 QC Batch ID:	WG1847224-1	QC Sample: L	2363813-08	Client ID: DUP Sample	
Solids, Total	53.3	53.2	%	0	20	

Lab Number: L2364484

Report Date: 11/07/23

Sample Receipt and Container Information

Were project specific reporting limits specified?

89 LASALLE BCP SITE

YES

Cooler Information

Project Name:

Cooler Custody Seal

A Absent

Project Number: 31406202.000

Container Info	ormation		Initial	Final Temp Frozen					
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2364484-01A	Plastic 250ml HNO3 preserved	A	<2	<2	3.8	Y	Absent		FE-6020T(180),SE-6020T(180),BA-6020T(180),TL-6020T(180),K-6020T(180),CA-6020T(180),NI-6020T(180),CR-6020T(180),ZN-6020T(180),PB-6020T(180),CU-6020T(180),BE-6020T(180),MN-6020T(180),BE-6020T(180),V-6020T(180),SB-6020T(180),AS-6020T(180),AL-6020T(180),AG-6020T(180),CD-6020T(180),HG-T(28),MG-6020T(180),CD-6020T(180),HG-T(28),MG-6020T(180),CO-6020T(180)
L2364484-01B	Amber 250ml unpreserved	Α	7	7	3.8	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2364484-01C	Amber 250ml unpreserved	Α	7	7	3.8	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2364484-02A	Plastic 2oz unpreserved for TS	Α	NA		3.8	Υ	Absent		TS(7)
L2364484-02B	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		3.8	Y	Absent		BE-TI(180),BA-TI(180),AS-TI(180),AG-TI(180),NI-TI(180),CR-TI(180),TL-TI(180),AL-TI(180),SE-TI(180),PB-TI(180),SB-TI(180),ZN-TI(180),CU-TI(180),V-TI(180),CO-TI(180),MG-TI(180),FE-TI(180),HG-T(28),MN-TI(180),NA-TI(180),K-TI(180),CD-TI(180),CD-TI(180)
L2364484-02C	Glass 120ml/4oz unpreserved	Α	NA		3.8	Υ	Absent		NYTCL-8270(14)

Project Name: Lab Number: 89 LASALLE BCP SITE L2364484

Project Number: 31406202.000 **Report Date:** 11/07/23

GLOSSARY

Acronyms

DL

LCSD

LOQ

MS

- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

Laboratory Control Sample Duplicate: Refer to LCS.

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.) - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

> - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:89 LASALLE BCP SITELab Number:L2364484Project Number:31406202.000Report Date:11/07/23

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benzo(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit
 (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:89 LASALLE BCP SITELab Number:L2364484Project Number:31406202.000Report Date:11/07/23

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:89 LASALLE BCP SITELab Number:L2364484Project Number:31406202.000Report Date:11/07/23

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 20

Published Date: 6/16/2023 4:52:28 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; 4-Ethyltoluene, Az

EPA 8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables).

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Service Centers Mahwah, NJ 07430: 35 Whitner Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co Project Information Project Name: 89 Project Location: 89	Nay poper Ave, Suite 1 La Salle	BCP Si		f !	Deli	in verable ASP				ASP-I	23 B S (4 File	e)	ALPHA Job # L2364484 Billing Information Same as Client Info
Client Information		Project # 314662					1 =	Othe			_				
Client: WSP US	A Foce	(Use Project name as Pr					Regu	ılatory	Requi	remer	nt	-	1	7.5	Disposal Site Information
Address: 40 La Ri	view DR #320	Project Manager: To	OSHUA V	VERNAD				NY TO		ds	=	NY Pa			Please identify below location of applicable disposal facilities.
Phone: 716-83 Fax:	Phone: 716-835-1229 Turn-4			ALPHAQuote #: 446637 Turn-Around Time Standard Due Date: Rush (only if pre approved) # of Days: AWQ Standards NY Restricted Use NY Unrestricted Use NYC Sewer Discharge					, –	Other			Disposal Facility: NJ NY Other:		
These samples have b	peen previously analyze	ed by Alpha					ANA	LYSIS		Н					Sample Filtration
Other project specific	c requirements/comm						1CL-8276	1 Hg, Tat Mutal		CL STD-51ML	Hg/Meteds				Done Lab to do Preservation Lab to do (Please Specify below)
ALPHA Lab ID (Lab Use Only)	Sar	mple ID	5-07200	ection	Sample Matrix	Sampler's Initials	アフ	Total	10	NATO	Total				Samuel Sa
A STATE OF THE PARTY OF THE PAR			Date	Time		CONTROL OF STREET		_	,	_	1	\dashv	-	-	Sample Specific Comments
-02 -02	MH-1 Storma		10/31/23	1129	soil	75	1	1	-	2	-		7		No SAMPLES 1st 2 3
	P = Plastic	Westboro: Certification No Mansfield: Certification No				tainer Type		A A		A A	P				Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not
F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃	B = Bacteria Cup C = Cube O = Other E = Encore D = BOD Bottle	Relinquished B		Date/ 10/31/23 10/31/23			m	ed By			10	Date/13i/2	3 12:		start until any ambiguities are resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS. (See reverse side.)

APPENDIX B

Site-Wide Inspection Forms & Photo Logs – October 2023

89 LaSalle Avenue BCP

Buffalo, New York

NYSDEC Site Number: C915283

ANNUAL INSPECTION FORM

Inspection Item Description	Frequency	Comments	Corrective Action (If Required)
Site Cover Systems: - Soil Cover	Annually		•
- Asphalt Paved Areas			
 Concrete Sidewalks and other concrete structures Other (if applicable) 			
Document specific locations and nature of condition issue if any observed.			
Stormwater – Manhole Discharge Sampling Location General Condition	Annually		
Excavation Work Locations – General Conditions	Per Occurrence		
			Jewil

PHOTOGRAPHIC LOG							
ANNUAL INSPECTION OCTOBER 2023	89 LaSALLE AVENUE BCP PRR SITE NO. C915283	US0030223.6099					

Photo No.

Date 10/31/2023

MH-1 Sampling location (facing northwest)

Photo No.

2

Date 10/31/2023

MH-1 Sampling location (facing north)

PHOTOGRAPHIC LOG							
ANNUAL INSPECTION OCTOBER 2023	89 LaSALLE AVENUE BCP PRR SITE NO. C915283	US0030223.6099					

Photo No. Date

3 10/31/2023

MH-1 Sampling location (facing west)

Photo No. Date
4 10/31/2023

MH-1 Sampling location

MH-1 Sampling location (facing east, upgradient)

PHOTOGRAPHIC LOG						
ANNUAL INSPECTION	89 LaSALLE AVENUE BCP PRR					
OCTOBER 2023	SITE NO. C915283	US0030223.6099				

Photo No. Date
5 10/31/2023

North of Building 1 (facing east)

Photo No. Date
6 10/31/2023

Parking lot south of Building 1

Parking lot south of Building 1 (facing north)

PHOTOGRAPHIC LOG						
ANNUAL INSPECTION OCTOBER 2023	89 LaSALLE AVENUE BCP PRR SITE NO. C915283	US0030223.6099				

Photo No.

Date

10/31/2023

Vegetated soil cover between Building 5 and Building 4. (facing north)

Photo No.

8

Date

10/31/2023

Southeast of Building 4 (facing north)

PHOTOGRAPHIC LOG						
ANNUAL INSPECTION	89 LaSALLE AVENUE BCP PRR	1100070007.000				
OCTOBER 2023	SITE NO. C915283	US0030223.6099				

Perimeter of BCP Site boundary

Perimeter of BCP Site boundary, south of Building 5 (facing south)

Photo No. Date
10 10/31/2023

Parking lot south of Building 1 (facing west)

PHOTOGRAPHIC LOG						
ANNUAL INSPECTION OCTOBER 2023	89 LaSALLE AVENUE BCP PRR SITE NO. C915283	US0030223.6099				
OCTOBER 2023	SITE NO. C913263					

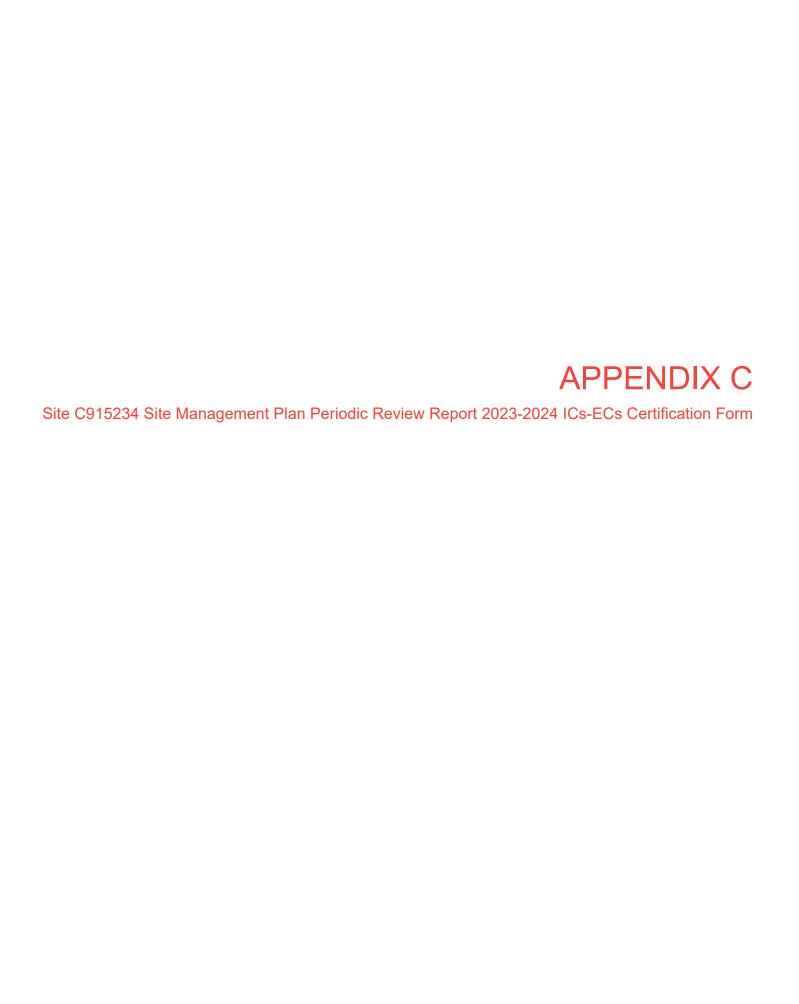
 Photo No.
 Date

 11
 10/31/2023

Vegetated soil cover at parking lot west of Building 2 (facing southwest)

 Photo No.
 Date

 12
 10/31/2023


Vegetated soil cover north of traffic circle (facing northwest)

PHOTOGRAPHIC LOG			
ANNUAL INSPECTION	89 LaSALLE AVENUE BCP PRR	1100070007.000	
OCTOBER 2023	SITE NO. C915283	US0030223.6099	

Photo No.	Date
13	10/31/2023
	y asphalt particles
	ecumulated and
	bottom of MH-1.
	e of "sediment" collected.
Sample	conceted.

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	e No.	C915283	Site Details		Box 1	
Sit	e Name 89	LaSalle Avenue Site				
City Co	e Address: 8 y/Town: Bu unty:Erie e Acreage: 9		Zip Code: 14212			
Re	porting Perio	od: March 30, 2023 to M	arch 30, 2024			
					YES	NO
1.	Is the infor	mation above correct?				
	If NO, inclu	ide handwritten above or	on a separate sheet.			
2.		or all of the site property nendment during this Re	been sold, subdivided, me porting Period?	erged, or undergone a		
3.		peen any change of use RR 375-1.11(d))?	at the site during this Repo	orting Period		
4.	•	ederal, state, and/or loca e property during this Re	al permits (e.g., building, disporting Period?	scharge) been issued		
			s 2 thru 4, include docum			
5.	Is the site of	currently undergoing dev	elopment?			
					Box 2	
					YES	NO
6.		ent site use consistent wi Residential, Commercial	th the use(s) listed below? , and Industrial			
7.	Are all ICs	in place and functioning	as designed?			
	IF TI		QUESTION 6 OR 7 IS NO, HE REST OF THIS FORM.	_	nd	
A Corrective Measures Work Plan must be submitted along with this form to address these issues.						
Sig	nature of Ow	vner, Remedial Party or De	esignated Representative	 Date		

		Box 2A	
		YES	NO
8.	Has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid?		
	If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.		
9.	Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years)		
	If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.		

SITE NO. C915283 Box 3

Description of Institutional Controls

Parcel Owner Institutional Control

Portion of 79.70-2-16.111 City of Buffalo DPW

Ground Water Use Restriction Soil Management Plan Landuse Restriction Monitoring Plan Site Management Plan

IC/EC Plan

- 1. Prohibition of groundwater use.
- 2. Land use restricted to Restricted Residential, Commercial or Industrial purposes.
- 3. Soil Management for any future intrusive work.

Portion of 79.70-2-5.1 Legacy UPAL, L.P.

Ground Water Use Restriction Soil Management Plan Landuse Restriction Monitoring Plan Site Management Plan

IC/EC Plan

- 1. Prohibition of groundwater use.
- 2. Land use restricted to Restricted Residential, Commercial or Industrial purposes.
- 3. Soil Management for any future intrusive work.

Box 4

Description of Engineering Controls

Parcel Engineering Control

Portion of 79.70-2-16.111

Cover System

- 1. Monitoring and maintenance of the cover system.
- 2. Semi-annual storm water and sediment monitoring.

Portion of 79.70-2-5.1

Cover System

- 1. Monitoring and maintenance of the cover system.
- 2. Semi-annual storm water and sediment monitoring.

Box :	5
-------	---

	Periodic Review Report (PRR) Certification Statements				
1.	I certify by checking "YES" below that:				
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;				
	 b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete. 	l			
	YES NO				
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:				
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;				
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;				
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;				
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and				
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.				
	YES NO				
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.				
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.				
	Signature of Owner, Remedial Party or Designated Representative Date				

IC CERTIFICATIONS SITE NO. C915283

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I at	
print name	print business address
am certifying as	(Owner or Remedial Party)
for the Site named in the Site Details Section	on of this form.
Jen Joul	
Signature of Owner, Remedial Party, or Des Rendering Certification	signated Representative Date

EC CERTIFICATIONS

Box 7

Qualified Environmental Professional Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Ashlee Smith	WSP USA, Inc. 40 La Riviere Drive, #320 at Buffalo, NY 14202	
print name	print business address	
am certifying as a Qualified Enviror	mental Professional for the	
Signature of Qualified Environment		

NYSDEC Sampling and Site Inspection Frequency Modification Letter

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Region 9 700 Delaware Avenue, Buffalo, NY 14209 P: (716) 851-7220 | F: (716) 851-7226 www.dec.ny.gov

July 5, 2022

Frank Chinnici Legacy UPAL, L.P. 250 Ramsdell Avenue Buffalo, NY 14216

Re: Site Management (SM) –

Periodic Review Report (PRR) Response Letter

89 LaSalle Avenue, Buffalo Erie County, Site No.: C915283

Dear Frank Chinnici (as the Certifying Party):

The Department has reviewed your Periodic Review Report (PRR) and IC/EC Certification for following period: March 30, 2021 to March 30, 2022. The Department hereby accepts the PRR and IC/EC Certification.

The frequency of Periodic Reviews for this site is 1 year, your next PRR is due on April 30, 2023. You will receive a reminder letter and updated certification form 75-days prior to the due date. Regardless of receipt or not, of the reminder notice, the next PRR including the signed certification form, is still due on the date specified above.

The NYSDEC and NYSDOH have assessed the surface water and sediment sampling data and concur the frequency of the sampling and site inspections be modified from semi-annual to annual.

If you have any questions, or need additional forms, please contact me at (716) 851-7220 or e-mail: taylor.monnin@dec.ny.gov.

Sincerely,

Taylor Monnin

Assistant Engineer

Andrea Caprio - NYSDEC ec: Gregory Rys - NYSDOH

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Region 9 700 Delaware Avenue, Buffalo, NY 14209 P: (716) 851-7220 | F: (716) 851-7226 www.dec.ny.gov

> Charlotte Bethoney - NYSDOH Patrick Martin - WSP USA Inc. Michael Finn - City of Buffalo Jason Paannen - City of Buffalo