

PHASE II ENVIRONMENTAL SITE ASSESSMENT NORTHTOWN PLAZA SHERIDAN DRIVE, EGGERT ROAD, AND BAILEY AVENUE AMHERST, NEW YORK

PREPARED FOR:

Northtown Associates LLC 33 Boylston Street, Suite 3000 Chestnut Hill, Massachusetts

PREPARED BY:

GZA GeoEnvironmental of New York Buffalo, New York

July 2014 21.0056687.10

Copyright© 2014 GZA GeoEnvironmental of New York

GZA GeoEnvironmental of New York

Engineers and Scientists

July 3, 2014 File No. 21.0056687.10

Mr. Andrew Manning Project Manager, Development Northtown Associates LLC 33 Boylston Street, Suite 3000 Chestnut Hill, Massachusetts Via email: <u>andrew.manning@wsdevelopment.com</u>

535 Washington Street 11th Floor Buffalo, New York 14203 716-685-2300 Fax: 716-685-3629 www.gza.com Re: Phase II Environmental Site Assessment Northtown Plaza Sheridan Drive, Eggert Road, and Bailey Avenue Amherst, New York

Dear Mr. Manning:

GZA GeoEnvironmental of New York (GZA) has prepared this report describing the results of our Phase II Environmental Site Assessment (Phase II ESA) at the above referenced Site. The Phase II ESA was completed to assess the suspect Recognized Environmental Conditions (RECs) identified in our report "Phase I Environmental Site Assessment, Northtown Plaza, Sheridan Drive, Eggert Road, and Bailey Avenue, Amherst, New York" dated September 2013.

The Phase II ESA has identified limited areas of historically impacted soil at the Site. Groundwater sampling did not indicate evidence of impact and the depth to groundwater is greater than 50 feet below ground surface (well below the bottom of impacted soil).

Limited areas of impacted soil have been identified in close proximity to two abandoned heating oil underground storage tanks (USTs) located on the southern and western portions of the Site. Because these USTs are no longer used, they will need to be removed or properly closed-in-place. Accessible soil impacts may be removed in conjunction with the UST closures. Samples collected to assess the impacted soils associated with the USTs were from the perimeter of visually stained area. The laboratory results did not indicate levels above Unrestricted Soil Cleanup Objectives in these samples.

There is also a limited area of soil impacted by tetrachloroethene (PCE) associated with former dry cleaner operations in the southwestern portion of the Site. PCE concentrations in two soil samples exceeded its respective Part 375 Commercial Soil Cleanup Objectives (CSCOs) and Industrial Soil Cleanup Objectives (ISCOs), which were from depths greater than 6 feet bgs. The other fifty samples analyzed were below the CSCOs.

Additional soil vapor intrusion evaluation and/or mitigation may be needed in the vacant former Manhattan Bagel units which adjoin the dry cleaner unit if the space is reoccupied.

Groundwater impacts were not identified and PCE is no longer used in the dry cleaner unit on-site.

No further action is recommended with respect to groundwater.

We trust this report satisfies your present needs. Should you have any questions or require additional information following your review, please do not hesitate to contact the undersigned.

Sincerely,

GZA GEOENVIRONMENTAL OF NEW YORK

man Bohlen

Thomas Bohlen Assistant Project Manager

romas Bohlan

for Christopher Boron Senior Project Manager

Jim Richert

for Charles D. Crealese Principal/Project Reviewer

TABLE OF CONTENTS

	Page
1.00 INTRODUCTION	1
2.00 PURPOSE AND SCOPE OF WORK	2
3.00 FIELD STUDIES	3
 3.10 SOIL PROBE INSTALLATIONS	3 6 6 7 8 9
4.00 ANALYTICAL LABORATORY TESTING	10
5.00 SUBSURFACE CONDITIONS	10
5.10 SOILS	10 10
6.00 ANALYTICAL TEST RESULTS	11
6.10 SOIL 6.20 GROUNDWATER 6.30 SOIL VAPOR INTRUSION	11 12 12
7.00 CONCLUSIONS AND RECOMMENDATIONS	13

TABLES

TABLE 1	ANALYTICAL TESTING PROGRAM SUMMARY
TABLE 2	SOIL ANALYTICAL TEST RESULTS SUMMARY
TABLE 3	GROUNDWATER ANALYTICAL TEST RESULTS SUMMARY
TABLE 4	SOIL VAPOR INTRUSION SAMPLE RESULTS SUMMARY
TABLE 5	VAPOR INTRUSION SAMPLE RESULTS COMPARED TO NYSDOH
	DECISION MATRICES

FIGURES

SITE/INVESTIGATION LOCATION PLAN
GROUNDWATER CONTOUR PLAN
SOUTHERN HEATING OIL TANK INVESTIGATION PLAN
WESTERN HEATING OIL TANK INVESTIGATION PLAN
4544 BAILEY AVE INVESTIGATION PLAN
DRY CLEANER INVESTIGATION PLAN

APPENDICES

APPENDIX A	LIMITATIONS
APPENDIX B	SOIL PROBE & TEST BORING/MONITORING WELL LOGS
APPENDIX C	GEOPHYSICAL SURVEY REPORT
APPENDIX D	ANALYTICAL TEST RESULTS

1.00 INTRODUCTION

In accordance with our January 8, 2014, March 4, 2014 and May 2, 2014 proposals, GZA GeoEnvironmental of New York (GZA) performed a Phase II Environmental Site Assessment (Phase II ESA) at the Northtown Plaza located at Sheridan Drive, Eggert Road, and Bailey Avenue in Amherst, New York (Site) for Northtown Associates, LLC (Client). A Site/Investigation Location Plan is attached as Figure 1.

BACKGROUND

GZA completed a Phase I Environmental Site Assessment¹ at the Site that identified the following suspect Recognized Environmental Conditions (RECs).

- Two abandoned heating oil underground storage tanks (USTs) in the subsurface at the Site (suspect REC #1).
- Town of Amherst Building Department records indicate that at 4544 Bailey Avenue, three 3,000 gallon gasoline USTs and one 550-gallon waste oil tank were installed on the eastern portion of the Site. No closure documentation was identified in association with these tanks (suspect REC #2).
- Northtown Cleaners at 3077 Sheridan Drive was listed as a generator of hazardous waste in due to its historic use of chlorinated solvents (suspect REC#3).
- Total Automotive Inc. at the Site address of 2125 Eggert Road, was listed on the EDR US Hist Auto Stations database. Northtown Plaza Car Wash at 2125 Eggert Road was listed on the UST and HIST UST databases (PBS registration number 9-221295) for three (3), 8,000-gallon closed unleaded gasoline USTs that were reportedly removed on October 1, 1995. Closure documentation was provided from NYSDEC. We noted that limited samples were collected from the tank excavation. The results were non-detect (suspect REC #4).
- 2131 Eggert Road, which adjoins the Site to the west, was listed on the EDR US Hist Auto Stations database. Auto Pro Center was listed from 1999 through 2000, Colden Auto Collision in 2001, and AAA Car Care in 2011 and 2012 (suspect REC #5).
- 2040 Eggert Road, which adjoins the Site to the south, was listed on the EDR US Hist Cleaners database. EDS Wash World was listed from 1999 through 2001 and Wash World Laundromat was listed in 2010 and 2011 (suspect REC #6).

It was GZA's opinion that a subsurface investigation to include subsurface soil and groundwater sampling and analyses was necessary to evaluate the presence of potentially

¹ "Phase I Environmental Site Assessment, Northtown Plaza, Sheridan Drive, Eggert Road, and Bailey Avenue, Amherst, New York" completed for WS Development Associates LLC by GZA dated September 2013.

impacted materials in the environment associated with the identified suspect RECs. As described below, the subsurface investigation was performed and concluded the majority of suspect RECs (#2, 4, 5 and 6) do not require additional action and will not be considered RECs going forward. Two of the suspect RECs (#1 and #3) were confirmed to be RECs.

2.00 PURPOSE AND SCOPE OF WORK

The purpose of this Phase II ESA was to assess if the suspect RECs identified during the Phase I ESA have affected the Site soil and/or groundwater. To accomplish this, GZA developed a scope of work based upon generally accepted engineering standard of care and practices.

GZA completed the following tasks:

- Observed a total of 51 soil probes performed by GZA's subcontractor, TREC Environmental Inc. (TREC) in January, March, and May 2014.
- Collected subsurface soil samples from soil probes continuously in 2-foot sample intervals from ground surface to depths ranging from approximately 8 to 32 feet below ground surface (bgs). Soil samples were collected using a macro-core sampler at each probe location.
- Observed the installation of three test boring/groundwater monitoring wells performed by GZA's subcontractor, Nature's Way Environmental Consultants & Contractors, Inc. (Nature's Way) in May 2014.
- Field screened soil samples recovered using an organic vapor meter (OVM) equipped with a photoionization detector (PID).
- Selected 53 soil samples for chemical analysis, which included volatile organic compounds (VOCs) via EPA Method 8260B Target Compound List (TCL), semi-volatile organic compounds (SVOCs) via EPA Method 8270C (Spills Technology and Remediation Series (STARS) list), and polychlorinated biphenyls (PCBs) via EPA Method 8082.
- Collected three groundwater samples for VOC chemical analysis via EPA Method 8260B TCL.
- Conducted soil vapor intrusion (SVI) air sampling to assess three units (GiRo Cleaners, the basement of Shopper's Choice, and the vacant Manhattan Bagel unit) which included the collection of three indoor air samples, three subslab air samples and two outdoor air samples. The air samples were tested for VOCs via EPA Method TO-15.

- GZA subcontracted with AMEC Geomatrix, Inc. (AMEC) to perform a subsurface electromagnetic geophysical survey to assess three areas of the Site for subsurface anomalies where known or potential USTs may have been located.
- GZA subcontracted with Roto Rooter to camera survey the sanitary sewer line that is located west and south of the dry cleaner unit.
 - Prepared this report, which summarizes the data collected during this Phase II ESA.

This report presents GZA's field observations, results, and opinions and is subject to the limitations presented in Appendix A, and modifications if subsequent information is developed by GZA or any other party.

3.00 FIELD STUDIES

This section describes the field studies done as part of GZA's subsurface investigation.

3.10 SOIL PROBE INSTALLATIONS

A total of 51 soil probes, designated as SP-1 through SP-51, were completed on-Site during three events as follows (see Figure 1).

- 1. Soil probes SP-1 through SP-15 were completed on January 29, 30, and 31, 2014. They were completed in readily accessible areas using a Geoprobe® 540 UB truck-mounted rig (SP-1) and a Geoprobe® 6620 DT track-mounted rig (SP-2 through SP-15).
- 2. Soil probes SP-16 through SP-26 were completed on March 30 and 31, 2014. Soil probes SP-16 and SP-17 were interior soil probes completed inside the GiRo Cleaners (dry cleaner unit) and the remaining soil probes were exterior soil probes. They were completed using a Geoprobe® 54LT Track Mounted Rig (interior probes SP-16 and SP-17) and a Geoprobe® 540 UB truck-mounted rig (exterior probes SP-18 through SP-26).
- 3. Soil probes SP-27 through SP-51 were completed May 8, 9, and 12, 2014. They were completed using a Geoprobe® 540 UB truck-mounted rig.

The soil probes were completed by driving a 2-inch diameter by 48-inch long macro-core sampler continuously at 48-inch intervals to retrieve the soil samples. Dedicated and disposable acetate sampler liners were used inside of the macro-core sampler between sample intervals. Representative portions of the recovered soils were placed in zip-lock bags for further classification and headspace analysis. Upon probe completion, the probe holes were backfilled with the soil cuttings. Concrete was used to patch the ground surface at the exterior soil probe locations.

The soil probes were completed to assess the suspect RECs identified in the Phase I ESA as discussed in the Background section of the report and for general Site coverage. The soil probe location rationale was as follows.

- SP-1 through SP-4 general Site coverage in the northern portion of the Site.
- Suspect REC #1 Two abandoned heating oil USTs. Within this report, the two heating oil USTs will be referred to as the southern heating oil UST, located south of the building near Eggert Road and western heating oil UST located on the western portion of the Site. Six soil probes, SP-33, -34, -38, -39, -40, and -41 were completed to assess the southern heating oil UST (see Figure 1 and 2). Four soil probes, SP-42, -43, -44, and -45 were completed to assess the western heating oil UST (see Figures 1 and 3). A total of 10 soil probes were completed to assess REC #1.
- Suspect REC #2 Gasoline and waste oil USTs associated with 4544 Bailey Avenue. Twelve soil probes, SP-8, -9, -10, -19, -20, -21, -27, -28, -29, 30, -31, and 32 were completed in the eastern portion of the Site at assess REC #2 (see Figures 1 and 4).
- Suspect REC #3 Former dry cleaning operations at 3077 Sheridan Drive, which is the located in the southwestern portion of the Northtown Plaza property, near Eggert Road. Sixteen soil probes (SP-5, -11, -12, -16, -17, -23, -24, -25, -26, -37, -46, -47, -48, -49, -50, and -51) and one test boring/monitoring well (MW-1) were completed to assess REC #3 (see Figures 1 and 5).
- Suspect REC #4 Former USTs located north of Total Automotive, which is located in the southwestern portion of the Site. Four soil probes (SP-13, -14, -18, and -36) and one test boring/monitoring well (MW-2) were completed to assess REC #4 (see Figure 1).
- Suspect REC #5 2131 Eggert Road, which adjoins the Site to the west, was listed on a historical automobile station database. Soil probe, SP-22 was completed to the east of 2131 Eggert Road, near the western property line of the Site (see Figure 1).
- Suspect REC #6 2040 Eggert Road was list on a historical cleaners database. Two soil probes, SP-6 and -7) were completed north of this dry cleaner location (see Figure 1).

GZA prepared soil probe and test boring/monitoring well logs summarizing the general subsurface conditions that were observed at the investigation locations. These logs provide a summary description of the soils based on our visual observations of the recovered soil's color and composition. Soil probe logs are included as Appendix B.

3.20 MONITORING WELL INSTALLATION

Three monitoring wells, designated MW-1, MW-2 and MW-3, were installed at the Site as part of the Phase II ESA (see Figure 1 and 1A). The monitoring wells were installed to assess potential groundwater contamination and estimate groundwater flow direction.

Two test borings/monitoring wells were installed in the northern portion of the Site (MW-2 and MW-3) and one test boring/monitoring well was installed west and in the vicinity of the former dry cleaner where tetrachloroethene (PCE) contamination was identified in soils.

The three monitoring wells were installed using an Acker AD 2 rotary drill rig. The test borings were advanced into the upper most water bearing zone identified, which was encountered between 53 feet bgs (MW-1) and 57 feet bgs (MW-3). The soil conditions above the water bearing zone were generally clayey soils. The monitoring wells were installed to depths of 55 feet bgs (MW-1) and 58 feet bgs (MW-2 and MW-3).

The two monitoring wells on the northern portion of the Site (MW-2 and MW-3) were drilled using 4¼-inch hollow stem augers (HSAs) to the 58 feet bgs. Water bearing zones were encountered at depths of 55 feet bgs or greater. Two-inch diameter PVC wells with a 10-foot No. 10-slotted screen (screen slots with 0.01-inch width) were installed at both locations. A #00 sand pack was installed around the monitoring well screen and extended about 2.5 to 3 feet above the top of the slotted screen. A 3-foot bentonite pellet seal was installed above the sand pack and a mix of bentonite and cement grout was used to seal the remainder of the annular space around the well to ground surface. The monitoring wells were finished at ground surface with flush mount road boxes.

Monitoring well MW-1 was also installed using an Acker AD 2. However, at this location steel casing was installed to avoid creating a potential pathway for vertical migration of the PCE identified in the vicinity of this location in soil probes SP-11 and SP-23. The initial test boring was completed to a depth of about 22 feet bgs using 6¹/₄-inch HSAs. A 4-inch diameter steel casing was installed to 22 feet bgs, grouted into place (mix of cement and bentonite) and allowed to set for about three days while drilling occurred at MW-2 and MW-3.

Upon returning to MW-1, a NW sized (3-inch) diameter steel casing with drive shoe was driven within the 4-inch casing from 22 feet bgs to approximately 55 feet bgs. The procedure to advance the 3-inch casing was as follows: A split spoon sample was collected from 22 to 24 feet bgs and then the NW sized steel casing was driven to 24 feet bgs. Then a 3-7/8-inch roller bit and water was used to remove the soil from within the 3-inch diameter steel casing. When a depth of 24 feet bgs was reached with the roller bit, another split spoon sample was collected from 24 to 26 feet bgs. The 3-inch diameter steel casing was then driven to 26 feet bgs followed by the roller bit to the same depth. This process continued to a depth of 38 feet bgs. At that depth continuous sampling was stopped and the NW casing and roller bit were used to advance the casing. Split spoon samples were collected at 45 to 47 feet bgs and 53 and 55 feet bgs. A water bearing zone was encountered around 53 feet bgs.

A 2-inch diameter well screen with pre-packed sand pack was used to install the monitoring well inside the NW casing. A 3 foot bentonite pellet seal was installed above the pre-packed sand pack and a mix of bentonite and cement grout was used to seal the remainder of the annular space between the well casing and 3-inch diameter steel casing to ground surface. The monitoring well was finished at ground surface with flush mount road boxes.

We note that once the water bearing zone was encountered, water levels inside the three bore holes were observed to be around 6 to 8 feet bgs, indicative of an artesian condition.

Soil spoils, drill water and groundwater generated from the drilling process was containerized for off-site disposal.

To assess groundwater flow direction associated with the three monitoring wells, GZA completed a relative elevation survey of the monitoring well monitoring points (top of PVC riser). A benchmark (i.e., concrete pad for gas meter at the northeast corner of Total Automotive building) was established with an arbitrary benchmark elevation of 100.00. Monitoring points of the three wells were surveyed referencing this benchmark elevation to establish their relative elevations to each other. Water level measurements were collected from the top of riser monitoring points. Figure 1A depicts a generally flat/slightly southerly groundwater flow direction based on relative elevation survey and water level measurements collected on May 23, 2014.

3.30 HEADSPACE SCREENING PROCEDURE

Following removal of the soil sample from the acetate liner (soil probes) or stainless steel split spoon (test borings) and after the initial field screening, a representative portion of each soil sample was placed in a zip-lock bag to be headspace screened. The headspace in the zip-lock bag of each collected soil sample was screened for total organic vapors using an OVM equipped with a photoionization detector with a 10.6 eV ultraviolet lamp. The OVM used was a MiniRae 3000 and was calibrated in accordance with manufacturer's recommendations. A gas standard of isobutylene at a concentration of 100 parts per million (ppm) was used for calibration. Ambient air at the Site was used to establish background organic vapor concentrations.

Headspace screening results were recorded on the soil probe and monitoring well logs included in Appendix B.

3.40 GROUNDWATER SAMPLE COLLECTION

As discussed in Section 3.20, three groundwater monitoring wells were installed into the first water bearing zone encountered at 53 to 57 feet bgs. The monitoring wells were purged of between five (MW-3) to 12 (MW-1) well volumes prior to sample collection on May 21, 2014.

Groundwater was not observed at the 51 soil probes completed at the Site, which ranged in depth from 8 to 32 feet bgs.

3.50 SOIL VAPOR INTRUSION AIR SAMPLING

Soil vapor intrusion (SVI) air sampling was completed using 1 liter canisters at three locations as part of the Phase II ESA. The dry cleaner unit and the basement of the Shoppers Choice store were sampled on March 19, 2014; and the vacant former Manhattan Bagel unit was sampled on May 8, 2014.

Product Inventory

Prior to completing the SVI air sampling in each location, GZA made observations of the sampling area for products that were stored in the vicinity that have the potential to create interference or bias in the air sampling results. No "products" were observed in the sampling areas of the three units sampled. We note that dry cleaning is no longer conducted in the dry cleaner unit but it is used as a drop-off location. However, according to the tenant, PCE is still used in their dry cleaning process. There was a significant amount of PCE cleaned clothing in the vicinity of the sampling as shown on Figure 5.

Soil Vapor Sampling

GZA collected three types of air samples as part of the SVI air sampling: indoor air (IA), sub-slab (SS) and outdoor air (background) samples. The samples were collected via methodologies identified in the New York State Department of Health (NYSDOH) Guidance for Evaluating Soil Vapor Intrusion in the State of New York, dated October 2006 (NYSDOH Guidance Document).

The SVI sampling was completed using laboratory-supplied flow regulators and 1-liter canisters. We requested the regulators be set for an approximate 8-hour duration (i.e., standard shift duration in a commercial facility).

One indoor air and one subslab sample were collected from each of the three units, as shown on Figure 5. These samples were designated Drycleaner IA and Dry Cleaner SS (from dry cleaner unit); Basement IA and Basement SS (from Shopper's Choice basement); and Manhattan IA and Manhattan SS (from the vacant former Manhattan Bagel unit).

The three indoor air samples were collected with regulators and canisters placed within the general breathing zone approximately 4 to 5 feet above the floor grade at the locations shown on Figure 5.

The three sub-slab air samples were collected from under the slab-on-grade floor within the sampling area of the specified units and within 10 feet of its respective indoor air sample location (see Figure 5). An approximate ½-inch diameter hole was drilled in the concrete floor away from drains or floor cracks. Clean, dedicated ¼-inch inner diameter tubing was placed through the hole to the bottom of the concrete slab, which varied in thickness from approximately 4 to 5-inches thick. The tubing was sealed at the floor surface with modeling clay.

A tracer gas (helium) was used to determine if the surface seal created by the modeling clay around the tubing and concrete floor was sufficient to prevent indoor air from infiltrating down into the sub-slab during the sampling. Prior to the release of helium into the enclosure, the helium detector was used to measure the background level of helium from the sub-slab. No readings above 0 parts per million (ppm) were noted.

The helium was then released into an enclosure placed over the top of the sub-slab sampling point (tubing and clay seal) to check for indoor air infiltration. A helium detector (Restek Cat. # 22839 – March 19, 2014 and Radio Detection MGD-2002 – May 8, 2014) equipped with an internal pump was used to monitor the air being drawn up from the sub-slab sample point to check whether the helium tracer gas was being drawn down into the sub-slab zone being sampled. The helium detector sample probe was placed inside the tubing, with the internal pump on the detector drawing air at a rate of approximately 0.3 liters per minute. The helium detector was operated in the continuous sample mode prior to the release of helium into the enclosure and for approximately 5 to 10 minutes after helium was released into the enclosure.

Following the release of helium into the enclosure, the highest measurement of helium within the air being drawn from the sub-slab through the detector during the test was recorded. The NYSDOH Guidance Document allows for up to 10% of the tracer gas to be detected within the sampling system and still be considered acceptable. The recorded values were less than 1% helium (10,000 ppm) and the surface seals were considered to be satisfactory for the sampling. Prior to removing the enclosure from over the sampling point, the helium detector probe was removed from the tubing and placed inside the enclosure. The helium measurement readings from inside the enclosure were recorded at each location, which ranged from 87% to 91% helium indicating sufficient helium was released into the enclosure for the testing. The sample tubing was then connected to the sub-slab sample regulators and canisters after the helium testing was completed.

A total of two outdoor air samples, designated Outdoor Air, were collected (one during each sampling event). They were collected from upwind locations the day of the sampling. On March 19th, the Outdoor Air sample was placed southeast of the building containing the dry cleaner unit as the wind direction was out of the southeast. On May 8th, the Outdoor air sample was placed east of the building containing the dry cleaner and the wind direction was out of the east. The Outdoor Air samples were collected by placing a canister on tripod at a height of approximately 4 feet above the ground surface.

3.60 GEOPHYSICAL SURVEY

GZA subcontracted AMEC to perform a subsurface electromagnetic geophysical survey at three (3) locations at the Site. The three locations surveyed are as follows.

1. Approximate 10,000 square foot area on the eastern portion of the Site in the vicinity of the former 4544 Bailey Avenue collision shop (see Figure 4).

- 2. Approximate 2,000 square foot area on the southern portion of the Site in the vicinity of the in-place heating oil UST (see Figure 2).
- 3. Approximate 1,250 square foot area on the western portion of the Site in the vicinity of the in-place heating oil UST (see Figure 3).

A reference grid was laid out in the areas of the geophysical survey to facilitate data collection along evenly spaced lines three feet apart. The grid was marked with orange and white spray paint at select coordinate locations to reference subsequent work if necessary.

AMEC used a Geonics[®] EM61 (EM61) to provide a general geophysical characterization of the Site and to assist in the delineation of potential subsurface anomalies (i.e., buried metallic or metallic-containing objects). The EM61 unit is a high sensitivity, high resolution time domain electromagnetic (TDEM) metal detector that can detect both ferrous and non-ferrous metallic objects with an investigation depth of 10 feet. The report generated by AMEC (copy included as Appendix C), provides a plan view of the geophysical survey and discusses the results. A summary of the five anomalies identified are as follows.

- Three anomalies were identified in the eastern portion of the Site in the vicinity of the former 4544 Bailey Avenue collision shop. Anomalies A, B and C are shown on Figure 4.
- One anomaly was identified in the southern portion of the Site in the vicinity of the in-place heating oil UST. Anomaly D is shown on Figure 2.
- One anomaly was also identified in the western portion of the Site in the vicinity of the in-place heating oil UST. Anomaly E is shown on Figure 3.

The results of the geophysical survey were used to conduct further investigations in May 2014 in the vicinity of the former 4544 Bailey Avenue collision shop and the investigations of the two abandoned in-place heating oil USTs. Soil probes were placed in close proximity to the five anomalies identified.

3.70 SANITARY SEWER CAMERA SURVEY

On May 5, 2014, GZA subcontracted with Roto Rooter to camera survey the sanitary sewer line that is located approximately 5 feet west and 5 feet south of the dry cleaner unit. The camera survey was completed to view the integrity of the sanitary line in the vicinity of the dry cleaner unit to evaluate if potential leakage from the sanitary sewer line could be the cause of PCE detected in soil samples collected.

Organic vapor meter (OVM) field screening and headspace readings collected from soil probe samples completed in January and March 2014 in the vicinity of the dry cleaner unit (SP-11, -16, -17, -23, -24), indicated the higher readings were at depths of 10 to 12 feet bgs.

The camera survey indicated that the line is constructed of clay tile pipe with pipe joints

located at 2 foot intervals. No significant breaks, cracks or separated joints were observed in the video. No conclusion was able to be made if the sanitary sewer was the potential source of the PCE impacts to soil.

4.00 ANALYTICAL LABORATORY TESTING

Fifty-three subsurface soil samples, three groundwater and eight air samples were submitted for analytical testing. The selected soil samples were packed in an ice-filled cooler and sent to Paradigm Environmental Services Inc., (Paradigm) located in Rochester, New York. The three groundwater samples were packed in an ice-filled cooler and delivered to TestAmerica Laboratories, Inc., (TestAmerica) located in Amherst, New York. The eight air samples were sent to Centek Laboratory in Syracuse, New York. Typical chain-ofcustody procedures were followed. Table 1 provides a summary of the analytical samples collected and the analyses completed.

5.00 SUBSURFACE CONDITIONS

5.10 SOILS

Fill material was encountered below the surface and generally consisted of sand and gravels with lesser amounts of silt and clay. Trace amounts of typical fill indicators including slag, glass, and brick were observed in the sub-base material at some investigation locations. Generally, the fill materials were 1 to 3 feet in thickness, extending to 9 feet bgs at some locations in the vicinity of the former collision shop at 4544 Bailey Avenue on the eastern portion of the Site and the two abandoned heating oil UST locations.

Native silty clay soils with lesser and various amounts of sand and gravel were observed at the soil probe and test boring locations below the fill material. The silty clay was present up to 58 feet bgs at the three test boring locations to install the monitoring wells.

5.20 GROUNDWATER

Groundwater and/or apparent saturated soil conditions were not encountered in any of the soil probes completed at the Site; which did not exceed a depth of 32 feet bgs. Three monitoring wells were installed to depths between 53 feet bgs (MW-1) to 57 feet bgs (MW-3), the depth where groundwater was encountered However, once the water bearing zone was encountered, water levels inside the wells were observed to be around 6 to 8 feet bgs, indicative of an artesian condition.

Water levels measurements collected from the three monitoring wells depict a flat/slightly southerly ground water flow direction based on relative elevation survey and water level measurements collected on May 23, 2014.

6.00 ANALYTICAL TEST RESULTS

Findings of the laboratory testing of the soil samples analyzed are presented below. The analytical laboratory report is provided in Appendix C. The analytical results for the soil samples are summarized on Table 2, groundwater samples results are included on Table 3, and the SVI air sample results are included on Table 5.

The analytical test results for the subsurface soil samples were compared to the NYSDEC Part 375 Unrestricted and Restricted Use Soil Cleanup Objectives.²

The NYSDEC Unrestricted Soil Cleanup Objectives (USCOs) represents concentrations of contaminants in soil that require no use restrictions for the protection of public health, groundwater and ecological resources. These are considered to be "pre-release" conditions by NYSDEC.

The Restricted Use Soil Cleanup Objectives (RSCOs) are applicable for the protection of public health in residential, commercial, and industrial scenarios where compounds and analytes have been identified in soil above the USCOs. The Commercial Soil Cleanup Objectives (CSCOs) were considered when evaluating the soil analytical results from the Site.

The analytical test results for the groundwater samples were compared to NYSDEC Class GA Criteria³.

The following documents were used to assess the results of the SVI air sampling:

- NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, dated October 2006 (NYSDOH Guidance Document). We note that this document also contains the Air Guideline Values (AGV) for PCE, trichloroethene and methylene chloride;
- Tetrachloroethene (PERC) in Indoor and Outdoor Air September 2013 Fact Sheet prepared by the Bureau of Toxic substance Assessment, NYSDOH; and
- Trichloroethene (TCE), in Indoor and Outdoor Air February 2005 Fact Sheet prepared by NYSDOH.

6.10 SOIL

Volatile Organic Compounds:

A total of 15 different VOCs were detected above method detection limits in 35 of the 53 soil samples selected for VOC laboratory testing (see Table 2). The detected

² 6 New York Code Rules and Regulation (6 NYCRR) Part 375 Environmental Remediation Programs, Subparts 375-12 to 375-4 & 375-6, effective December 14, 2006.

³ Groundwater criteria presented in the Division of Water Technical and Operational Guidance Series (TOGS 1.1.), dated October 1993, revised June 1998, errata January 1999 and amended April 2000 (Class GA).

concentrations of the compounds were below their Commercial Soil Cleanup Objectives (CSCO) with the exception of tetrachloroethene (PCE).

PCE was detected above method detection limits in 23 soil samples analyzed as part of the Phase II ESA. These detections of PCE are located in and around the dry cleaner unit. The detected concentrations of PCE exceeded its Unrestricted Soil Cleanup Objective (USCO) in 16 samples, the Commercial SCO (CSCO) in two sample locations (SP-23, 12 to 14 feet bgs and SP-47, 6 to 8 feet bgs) and the Industrial SCO (ISCO) in one sample location (SP-47, 6 to 8 feet bgs).

No other VOCs were detected exceeding their respective CSCOs in the other 51 soil samples collected.

Semi-Volatile Organic Compounds:

A total of nine different SVOCs were detected above method detection limits in 3 of the 28 soil samples selected for SVOC laboratory testing (see Table 2). The detected concentrations of the nine compounds were below their respective Unrestricted Soil Cleanup Objectives (USCO).

PCBs:

PCBs were not detected above method detection limits in the 12 soil samples selected for PCB laboratory testing.

We note that visual/olfactory evidence of petroleum was encountered in the vicinity of both the southern heating oil UST (SP-33) and western heating oil UST (SP-42). NYSDEC was notified of these findings on May 9, 2014 and Spill#1401409 was assigned to the Site. Samples collected to assess the impacted soils associated USTs were from the perimeter of visually stained area. The laboratory results did not indicate levels above the most conservative Unrestricted Soil Cleanup Objectives.

6.20 GROUNDWATER

Volatile Organic Compounds:

A total of six different VOCs were detected above method detection limits in the three groundwater samples sent for VOC laboratory testing (see Table 5). The detected concentrations of the six compounds were below their NYSDEC Class GA criteria.

6.30 SOIL VAPOR INTRUSION

Volatile Organic Compounds:

A total of 29 different VOCs were detected above method detection limits in the eight air samples sent for VOC laboratory testing (see Table 4) as part of the soil vapor intrusion assessment.

The shaded concentration results on Table 4 identify the compounds that exceeded their respective AGVs. PCE in the dry cleaner unit and vacant Former Manhattan Bagel Unit were the only detections that exceeded its respective AGV.

• Based on the indoor air and sub-slab samples concentrations of PCE detected within the dry cleaner unit, the decision matrices indicates that mitigation is needed to minimize the exposure scenario if the source of the indoor concentration are determined to be from a sub-slab source.

However, the dry cleaner unit contained clothing that were cleaned at an off-site location using PCE and returned to the dry cleaner unit to be picked up by customers. It is unknown if the indoor air concentration of PCE detected in the dry cleaner unit, 60 ug/m³, is due to soil vapor intrusion or to off gassing from cleaned clothes in the vicinity of the air sampling.

Because PCE is "used" in the operations associated with this unit, the NYSDOH guidance values may not be applicable as it is present in the work environment. An alternative is to compare the results to the Occupational Safety & Health Administration (OSHA) General Industry standards.

The detected concentration of PCE in the indoor sample associated with the dry cleaner unit is orders of magnitude below the OSHA standards.

- Based on the indoor air and sub-slab samples concentrations of PCE detected within the vacant former Manhattan Bagel unit, additional evaluation and/or mitigation may be needed if the space is reoccupied.
- No further action is required in the basement of the Shoppers Choice unit.

7.00 CONCLUSIONS AND RECOMMENDATIONS

In accordance with our proposals, GZA performed a Phase II Environmental Site Assessment (Phase II ESA) at the Northtown Plaza in Amherst, New York to assess the suspect RECs identified in our Phase I ESA.

Our work included the completion of 51 soil probes, installation of three groundwater monitoring wells, headspace screening of collected soil samples, soil and groundwater sample analysis, a geophysical survey, a sanitary sewer camera survey, and a soil vapor intrusion assessment.

A summary of our findings and opinions based upon the work conducted as part of this study follows.

• Subsurface soil conditions generally consisted of fill material (sand and gravels with lesser amounts of silt and clay) underlain by native silty clay to a depth of 58

feet bgs. Generally, the fill materials were 1 to 3 feet in thickness, but were encountered at thicknesses greater than 3 feet to 9.5 feet at locations in the vicinity of the former collision shop at 4544 Bailey Avenue on the eastern portion of the Site and the two abandoned heating oil UST locations.

- GZN
- Groundwater was not encountered in the shallow soil probes which extended to a depth of 32 feet bgs. Groundwater was encountered at a depth between 53 and 57 feet bgs.

Water level measurements collected from the three monitoring wells depict a southerly ground water flow direction based on relative elevation survey and water level measurements collected on May 23, 2014.

- The electromagnetic geophysical survey was completed at three locations at the Site.
 - Approximate 10,000 square foot area on the eastern portion of the Site in the vicinity of the former 4544 Bailey Avenue collision shop (see Figure 4).
 - 2. Approximate 2,000 square foot area on the southern portion of the Site in the vicinity of the in-place heating oil UST (see Figure 2).
 - 3. Approximate 1,250 square foot area on the western portion of the Site in the vicinity of the in-place heating oil UST (see Figure 3).

Three anomalies were identified in the eastern portion of the Site in the vicinity of the former 4544 Bailey Avenue collision shop. Anomalies A, B and C are shown on Figure 4.

One anomaly was identified in the southern portion of the Site in the vicinity of the in-place heating oil UST. Anomaly D is shown on Figure 2.

One anomaly was also identified in the western portion of the Site in the vicinity of the in-place heating oil UST. Anomaly E is shown on Figure 3.

The results of the geophysical survey were used to conduct further investigations in May 2014 in the vicinity of the former 4544 Bailey Avenue collision shop and the investigations of the two abandoned in-place heating oil USTs. Soil probes were placed in close proximity to the five anomalies identified to assess for potential soil contamination in their vicinity.

• Investigation activities in the vicinity of the two abandoned heating oil USTs identified visual/olfactory evidence of a petroleum release. NYSDEC was notified of these findings and Spill#1401409 was assigned to the Site. As noted below, all laboratory results were later found to be below Unrestricted Soil Cleanup Objectives.

- Investigation activities in the vicinity of the three anomalies associated with 4544 Bailey did not indicate contamination was present in this area. The soil probes did identify thicker fill material depths in these areas and no USTs were encountered.
- A camera survey was completed on a portion of the sanitary sewer line located in the vicinity, west and south, of the dry cleaner unit. The camera survey was completed to view the integrity of the sanitary line in the vicinity of the dry cleaner unit.

The camera survey indicated that the line is constructed of clay tile pipe with pipe joints located at 2 foot intervals. No significant breaks, cracks or separated joints were observed in the video.

• VOCs analyzed were below their respective Commercial Soil Cleanup Objectives (CSCO) with the exception of PCE.

PCE was detected in close proximity to the dry cleaner unit in the western portion of the Site. The detected concentrations of PCE exceeded the Unrestricted Soil Cleanup Objectives (USCO) in 16 samples, the CSCO in two sample locations (SP-23, 12 to 14 feet bgs and SP-47, 6 to 8 feet bgs) and the Industrial Soil Cleanup Objectives (ISCO) in one sample location (SP-47, 6 to 8 feet bgs).

No other VOCs were detected exceeding Soil Cleanup Objectives in the 51 soil samples collected.

- SVOCs were detected below their respective Unrestricted Soil Cleanup Objectives.
- PCBs were not detected above method detection limits in the 12 soil samples selected for PCB laboratory testing.
- VOCs detected in the groundwater were at concentrations below their respective NYSDEC Class GA criteria. No further assessment is recommended with respect to groundwater.
- PCE was the only compound detected in the indoor air above its respective AGV in the dry cleaner unit and the vacant former Manhattan Bagel unit. Because PCE is "used" in the business operations associated with the dry cleaning unit, the NYSDOH guidance values may not be applicable. The levels observed were well below OSHA levels. If the vacant space is reoccupied additional vapor evaluation and/or mitigation may be required.

The results of the Phase II ESA have identified limited areas of impacted soil in association with two of the six suspect RECs identified in the Phase I ESA: suspect REC#1 (heating oil USTs) and suspect REC#3 (dry cleaner unit) (i.e. these were confirmed to be RECs). The other four suspect RECs identified do not require additional action.

The limited areas of impacted soil associated with the two abandoned heating oil underground storage tanks (USTs) designated as REC#1 may be addressed along with the USTs as part of Site redevelopment. Samples collected to assess the impacted soils associated USTs were from the perimeter of visually stained area. The laboratory results did not indicate levels above Unrestricted Soil Cleanup Objectives in these samples.

There is also a limited area of soil impacted by PCE associated with former dry cleaner operations in the southwestern portion of the Site. PCE concentrations in two soil samples exceeded its respective Part 375 CSCO and ISCO which were from depths greater than 6 feet bgs. The other fifty samples analyzed were below their respective CSCOs.

Additional soil vapor intrusion evaluation and/or mitigation may be needed in the vacant former Manhattan Bagel units which adjoin the dry cleaner unit if the space is reoccupied.

Groundwater impacts were not identified and PCE is no longer used in the dry cleaner unit on-site.

The limited soil impacts associated with RECs #1 and #3 may be addressed in connection with redevelopment. No further action is recommended with respect to groundwater.

TABLES

Table 1Analytical Sample SummaryNorthtown PlazaAmherst, New York

		Depth/	VOCs	SVOCs	PCBs	VOCs
Location	Date Collected	Interval	EPA Method	EPA Method	EPA Method	EPA Method
		(ft bgs)	8260-TCL	8270 - STARS	8082	TO-15
SOIL SAMPLES	1	1			T	
SP-3	1/30/2014	0.5 to 2	X	X	X	
SP-5	1/30/2014	8 to 10	X	X	X	
SP-8	1/31/2014	0.5 to 2	X	X	X	
SP-8	1/31/2014	6 t0 8	X	X	X	
SP-10	1/31/2014	4 10 6	X	X	X	
SP-11 SD 11	1/31/2014	/ 10 to 12	×	X	X	
SP-11 SD 12	1/31/2014	10 to 12	× ×	X	X	
SP-12 SD 12	1/31/2014	81010	×	X	X	
SP-13	1/31/2014	4	×	X	X	-
SP-13	1/31/2014	4 to 6	× ×	X	X	-
SD 15	1/31/2014	4100	×	× v	×	
SP-16	2/20/2014	2 t0 4	X	Λ	^	
SP-10	3/30/2014	10 to 12	X			
SP-10	3/30/2014	6 to 8	X			
SP-10	3/31/2014	6 to 8	X			
SP-20	3/31/2014	4 to 6	X			
SP-20	3/31/2014	4100	X			
SP-21	3/31/2014	$\frac{4.5}{2 \text{ to } 4}$	X			
SP-22	3/31/2014	12 to 14	X			
SP-23	3/31/2014	12 to 14	X			
SP-74	3/31/2014	8 to 10	X		+	
SP-27	5/8/2014	8	x	X	+	
SP-28	5/8/2014	8	X	X		
SP-28	5/8/2014	10	X	X		
SP-29	5/8/2014	4	x	X		
SP-33	5/8/2014	35	X	X		
SP-33	5/8/2014	6	X	X		
SP-36	5/9/2014	4	X	X		
SP-37	5/9/2014	1	X			
SP-37	5/9/2014	11.9	X			
SP-38	5/9/2014	5	Х	Х		
SP-39	5/9/2014	4	Х	Х		
SP-39	5/9/2014	5	Х	Х		
SP-42	5/9/2014	7	Х	Х		
SP-42	5/9/2014	11.8	Х	Х		
SP-43	5/9/2014	4	Х	Х		
SP-43	5/9/2014	8	Х	Х		
SP-44	5/9/2014	5	Х	Х		
SP-45	5/12/2014	4 to 8	Х	Х		
SP-46	5/12/2014	0 to 2	Х			
SP-46	5/12/2014	2 to 4	Х			
SP-47	5/12/2014	6 to 8	Х			
SP-47	5/12/2014	12 to 14	Х			
SP-47	5/12/2014	18 to 20	Х			
SP-48	5/12/2014	10 to 12	Х			
SP-48	5/12/2014	18 to 20	Х			
SP-49	5/12/2014	12 to 14	Х			
SP-49	5/12/2014	18 to 20	Х			
SP-50	5/12/2014	8 to 10	Х			l
SP-51	5/12/2014	10 to 12	X			
MW-1	5/13/2014	20 to 22	X			
MW-1	5/16/2014	26 to 28	Х			<u> </u>
GROUNDWATER SAMPLES						
MW-1	5/21/2014	NA	X			
MW-2	5/21/2014	NA	X		+	
MW-2	5/21/2014	NA	Х			l
VAPOR INTRUSION SAMPI						
Drycleaner-IA-031914	3/19/2014	NA				X
Drycleaner-SS-031914	3/19/2014	NA			+	X
Basement-IA-0319-14	3/19/2014	NA				X
Basement-SS-031914	3/19/2014	NA				X
Outdoor Air-031914	3/19/2014	NA				X
Iviannattan-SS-050814	5/8/2014	NA				X
Iviannattan-IA-050814	5/8/2014	NA				X
Outdoor Air - 050814	5/8/2014	NA				X
Notes:	and as a fe					
1. It bgs = feet below grou	na surface.					
2. VUCs = Volatile Organic	Compounds.					
3. SVUCs = Semi-Volatile C	organic Compoun	ds.				
4. PCBS = Polychlorinated	pipnenyls.					
5. ICL = Target Compound	LIST.	on Control				
U. STARS = Spills Technolog	By and Remediati	on series.				
7. EPA - Environmental Pro	Stection Agency.					

TABLE 2 Soil Analytical Result Summary Northtown Plaza Amherst, New York

				-			-															
	Part 375 -	Part 375 -	Part 375 -	SP-3	SP-5	SP-8	SP-8	SP-10	SP-11	SP-11	SP-12	SP-13	SP-13	SP-14	SP-15	SP-16	SP-16	SP-18	SP-19	SP-20	SP-21	SP-22
Parameter	Unrestricted	Commercial Use	Industrial Use	0.5 to 2	8 to 10	0.5 to 2	6 to 8	4 to 6	7	10 to 12	8 to 10	4	4 to 6	4 to 6	2 to 4	10 to 12	12 to 14	6 to 8	6 to 8	4 to 6	4.5	2 to 4
	Use SCOs	SCOs	SCOs	feet bgs																		
Volatile Organic Compoun	ds - EPA Method	8260 TCL (ug/Kg)																				
2-Butanone	120	500,000	1,000,000	<	<	<	55.2	<	<	<	<	<	<	<	<	<	<	<	<	52.5	142	47
1,2-Dichlorobenzene	1,100	500,000	1,000,000	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Acetone	50	500,000	1,000,000	<	<	<	147	<	<	<	<	<	<	<	144	<	<	<	57.1	154	424	192
Benzene	60	44,000	89,000	<	<	<	<	<	<	<	<	120	11.2	<	<	<	<	<	<	<	<	<
Toluene	700	500,000	1,000,000	6.98	<	<	<	<	<	<	<	42	<	<	<	<	<	<	<	<	<	<
Ethylbenzene	1,000	390,000	780,000	<	<	<	<	<	<	<	<	151	30.2	<	<	<	<	<	<	<	<	<
m&p-Xylene	260 Note 8	500,000 Note 8	1,000,000 Note 8	6.81	<	<	<	<	<	<	<	263	<	<	<	<	<	<	<	<	<	<
o-Xylene	260 Note 8	500,000 Note 8	1,000,000 Note 8	<	<	<	<	<	<	<	<	38.3	<	<	<	<	<	<	<	<	<	<
Isopropylbenzene	NV	NV	NV	<	<	<	<	<	<	<	<	105	36.3	<	<	<	<	<	<	<	<	<
Methylcyclohexane	NV	NV	NV	9.79	<	<	<	<	<	<	<	<	51.3	<	<	<	<	<	<	<	11.1	<
Tetrachloroethene	1,300	150,000	300,000	13.7	<	<	<	<	<	33,000	23.5	<	<	<	<	4,400	1,510	<	<	<	<	<
Trichloroethene	470	200,000	400,000	<	<	<	<	<	<	<	74.1	<	<	<	<	<	<	<	<	<	<	<
cis-1,2-Dichloroethene	250	500,000	1,000,000	<	<	<	<	<	<	<	135	<	<	<	<	<	<	<	<	<	<	<
Carbon disulfide	NV	NV	NV	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	65.4	<
Cyclohexane	NV	NV	NV	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Total VOCs				37.28	<	<	202	<	<	33,000	232.6	719.3	129	<	144	4,400	1,510	<	57.1	206.5	642.5	239
Semi-Volatile Organic Com	pounds - EPA M	ethod 8270 STARS	6 (ug/Kg)																			
Naphthalene	12,000	500,000	500,000	<	<	<	<	<	<	<	<	<	<	<	<	NT						
Fluorene	30,000	500,000	500,000	<	<	<	<	<	<	<	<	<	<	<	<	NT						
Phenanthrene	100,000	500,000	500,000	<	<	<	<	<	<	<	<	<	<	<	<	NT						
Fluoranthene	100,000	500,000	500,000	<	<	<	<	<	<	<	<	<	<	<	<	NT						
Pyrene	100,000	500,000	500,000	<	<	<	<	<	<	<	<	<	<	<	<	NT						
Benzo [a] anthracene	1,000	5,600	5,600	<	<	<	<	<	<	<	<	<	<	<	<	NT						
Chrysene	1,000	56,000	56,000	<	<	<	<	<	<	<	<	<	<	<	<	NT						
Benzo [b] fluoranthene	1,000	5,600	5,600	<	<	<	<	<	<	<	<	<	<	<	<	NT						
Benzo [a] pyrene	1,000	1,000	1,000	<	<	<	<	<	<	<	<	<	<	<	<	NT						
Total SVOCs				<	<	<	<	<	<	<	<	<	<	<	<	NT						
Polychlorinated Biphenyls	- EPA Method 80)82 (ug/Kg)								_												
Total PCBs				<	<	<	<	<	<	<	<	<	<	<	<	NT						

Notes:

1. Compounds detected in one or more samples are presented on this table. Refer to Appendix D for list of all compounds included in analysis.

2. Soil analytical testing completed by Paradigm Environmental Services, Inc., in Rochester, NY.

3. ug/kg = part per billion.

4. NV = no value. NT = not tested.

5. Bold indicates value exceeds Unrestricted Use Soil Cleanup Objectives.

6. Gray shading indicates value exceeds Commerical Use Soil Cleanup Objectives.

7. Red shading indicates value exceeds Industrial Use Soil Cleanup Objectives.

8. SCO provided is for Xylene (mixed).

9. Soil cleanup objectives (SCOs) are from NYSDEC Part 375, Subpart 375-6: Unrestricted Use, Commercial Use and Industrial Soil Cleanup Objectives.

10. < indicates compound not detected above method detection limits.

11. TCL = Target Compound List. STARS = NYSDEC Spill Technology and Remediation Series (STARS) Memo #1, Petroleum-Contaminated Soil Guidance Policy, New York State Department of Environmental Conservation, August 1992.

TABLE 2 Soil Analytical Result Summary Northtown Plaza Amherst, New York

	Dort 275	Dort 275	Dort 275	SD 22	SD 22	SD 24	SD 27	CD 20	SD 20	SD 20	CD 22	CD 22	SD 26	SD 27	SD 27	CD 20	SD 20	SD 20	SD /12	SD 12	SD //2	SD 12
Parameter	Interview	Commercial Use	Industrial Lise	12 to 1/	18 to 19	8 to 10	91-27 8	31-20 8	31-20 10	51-25	35	51~55 6	51-50 A	1	-57 -11 Q	5	31-35 A	5	7	11.8	Ji ≃43 ∕I	21-4-3 Q
Turumeter		SCOs	SCOs	feet bgs	feet bgs	feet bgs	feet bgs	feet bgs	feet bgs	feet bgs	feet bgs	feet bgs	feet bgs	feet bgs	feet bgs	feet bgs	feet bgs	feet bgs	, feet bgs	feet bgs	feet bgs	feet bgs
Volatile Organic Compound	s - EPA Method	8260 TCL (ug/Kg)																				
2-Butanone	120	500,000	1,000,000	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	225	<
1,2-Dichlorobenzene	1,100	500,000	1,000,000	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Acetone	50	500,000	1,000,000	<	<	44.6	<	<	<	<	153	<	96.4	<	<	<	<	<	59.8	<	802	<
Benzene	60	44,000	89,000	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Toluene	700	500,000	1,000,000	<	<	<	<	<	<	<	10.8	<	<	<	<	<	<	<	<	<	<	<
Ethylbenzene	1,000	390,000	780,000	<	<	<	<	<	<	<	797	<	<	<	<	<	<	<	<	<	<	<
m&p-Xylene	260 Note 8	500,000 Note 8	1,000,000 Note 8	<	<	<	<	<	<	<	91.2	<	<	<	<	<	<	<	<	<	<	<
o-Xylene	260 Note 8	500,000 Note 8	1,000,000 Note 8	<	<	<	<	<	~	<	76.2	<	<	<	<	<	<	~	<	<	<	<
Isopropylbenzene	NV	NV	NV	<	<	<	<	<	<	<	840	<	<	<	<	<	<	<	13	<	162	<
Methylcyclohexane	NV	NV	NV	<	<	<	<	<	<	<	689	<	<	<	<	<	<	<	79.7	<	49.1	<
Tetrachloroethene	1,300	150,000	300,000	214,000	8,720	155	<	<	<	<	29.2	<	<	5,280	137,000	<	<	<	<	<	<	<
Trichloroethene	470	200,000	400,000	<	128	20.4	<	<	<	<	<	<	<	870	<	<	<	<	<	<	<	<
cis-1,2-Dichloroethene	250	500,000	1,000,000	<	<	223	<	<	<	<	<	<	<	343	<	<	<	<	<	<	<	<
Carbon disulfide	NV	NV	NV	<	<	<	<	<	<	<	11.9	<	<	<	<	<	<	<	<	<	<	<
Cyclohexane	NV	NV	NV	<	<	<	<	<	<	<	243	<	<	<	<	<	<	<	<	<	<	<
Total VOCs				214,000	8,848	443	<	<	<	<	2,941	<	96	6,493	137,000	<	<	<	153	<	1,238	<
Semi-Volatile Organic Comp	oounds - EPA M	ethod 8270 STARS	S (ug/Kg)																			
Naphthalene	12,000	500,000	500,000	NT	NT	NT	<	<	<	<	8,030	<	<	NT	NT	<	<	<	<	<	<	<
Fluorene	30,000	500,000	500,000	NT	NT	NT	<	<	<	<	3,780	<	<	NT	NT	<	<	<	<	<	770	<
Phenanthrene	100,000	500,000	500,000	NT	NT	NT	<	<	<	<	8,600	<	<	NT	NT	<	<	<	<	<	1,280	<
Fluoranthene	100,000	500,000	500,000	NT	NT	NT	<	<	<	<	<	<	<	NT	NT	<	<	<	<	<	<	<
Pyrene	100,000	500,000	500,000	NT	NT	NT	<	<	<	<	<	<	<	NT	NT	<	<	<	<	<	<	<
Benzo [a] anthracene	1,000	5,600	5,600	NT	NT	NT	<	<	<	<	<	<	<	NT	NT	<	<	<	<	<	<	<
Chrysene	1,000	56,000	56,000	NT	NT	NT	<	<	<	<	<	<	<	NT	NT	<	<	<	<	<	<	<
Benzo [b] fluoranthene	1,000	5,600	5,600	NT	NT	NT	<	<	<	<	<	<	<	NT	NT	<	<	<	<	<	<	<
Benzo [a] pyrene	1,000	1,000	1,000	NT	NT	NT	<	<	<	<	<	<	<	NT	NT	<	<	<	<	<	<	<
Total SVOCs				NT	NT	NT					20,410			NT	NT						2,050	
Polychlorinated Biphenyls -	olychlorinated Biphenyls - EPA Method 8082 (ug/Kg)																					
Total PCBs				NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT

Notes:

1. Compounds detected in one or more samples are presented on this table. Refer to Appendix D for list of all compounds included in analysis.

2. Soil analytical testing completed by Paradigm Environmental Services, Inc., in Rochester, NY.

3. ug/kg = part per billion.

4. NV = no value. NT = not tested.

5. **Bold** indicates value exceeds Unrestricted Use Soil Cleanup Objectives.

6. Gray shading indicates value exceeds Commerical Use Soil Cleanup Objectives.

7. Red shading indicates value exceeds Industrial Use Soil Cleanup Objectives.

8. SCO provided is for Xylene (mixed).

9. Soil cleanup objectives (SCOs) are from NYSDEC Part 375, Subpart 375-6: Unrestricted Use, Commercial Use and Industrial Soil Cleanup Objectives.

10. < indicates compound not detected above method detection limits.

11. TCL = Target Compound List. STARS = NYSDEC Spill Technology and Remediation Series (STARS) Memo #1, Petroleum-Contaminated Soil Guidance Policy, New York State Department of Environmental Conservation, August 1992.

TABLE 2 Soil Analytical Result Summary Northtown Plaza Amherst, New York

	Part 375 -	Part 375 -	Part 375 -	SP-44	SP-45	SP-46	SP-46	SP-47	SP-47	SP-47	SP-48	SP-48	SP-49	SP-49	SP-50	SP-51	MW-1	MW-1
Parameter	Unrestricted	Commercial Use	Industrial Use	5	4 to 8	0 to 2	2 to 4	6 to 8	12 to 14	18 to 20	10 to 12	18 to 20	12 to 14	18 to 20	8 to 10	10 to 12	20 to 22	26 to 28
	Use SCOs	SCOs	SCOs	feet bgs	feet bgs	feet bgs	feet bgs	feet bgs	feet bgs	feet bgs	feet bgs	feet bgs	feet bgs	feet bgs				
Volatile Organic Compoun	ds - EPA Method	1 8260 TCL (ug/Kg)																
2-Butanone	120	500,000	1,000,000	160	<	<	<	<	<	<	<	<	<	<	<	<	<	<
1,2-Dichlorobenzene	1,100	500,000	1,000,000	<	<	<	<	40 J	<	<	<	<	<	<	<	<	<	<
Acetone	50	500,000	1,000,000	564	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Benzene	60	44,000	89,000	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Toluene	700	500,000	1,000,000	<	<	<	<	50 J	<	<	<	<	<	<	<	<	<	<
Ethylbenzene	1,000	390,000	780,000	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
m&p-Xylene	260 Note 8	500,000 Note 8	1,000,000 Note 8	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
o-Xylene	260 Note 8	500,000 Note 8	1,000,000 Note 8	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Isopropylbenzene	NV	NV	NV	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Methylcyclohexane	NV	NV	NV	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Tetrachloroethene	1,300	150,000	300,000	<	<	13,000	34 J	1,100,000 D	52,000 D	15,000	15,000	48,000 D	7,800	52,000 D	940	4,200	56 J	<
Trichloroethene	470	200,000	400,000	<	<	480	<	3,700	130 J	110 J	44 J	120 J	300	140 J	45 J	<	<	<
cis-1,2-Dichloroethene	250	500,000	1,000,000	<	<	110 J	<	130 J	350	<	160 J	57 J	530	<	<	<	<	<
Carbon disulfide	NV	NV	NV	19.9	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Cyclohexane	NV	NV	NV	<	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Total VOCs				744	<	<	<	<	<	<	<	<	<	<	<	<	<	<
Semi-Volatile Organic Com	pounds - EPA M	ethod 8270 STARS	(ug/Kg)															
Naphthalene	12,000	500,000	500,000	<	<	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Fluorene	30,000	500,000	500,000	<	<	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Phenanthrene	100,000	500,000	500,000	<	170 J	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Fluoranthene	100,000	500,000	500,000	<	470	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Pyrene	100,000	500,000	500,000	<	320 J	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Benzo [a] anthracene	1,000	5,600	5,600	<	150 J	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Chrysene	1,000	56,000	56,000	<	170 J	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Benzo [b] fluoranthene	1,000	5,600	5,600	<	160 J	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Benzo [a] pyrene	1,000	1,000	1,000	<	110 J	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Total SVOCs					1,550													
Polychlorinated Biphenyls	- EPA Method 8	082 (ug/Kg)																
Total PCBs				NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT

Notes:

1. Compounds detected in one or more samples are presented on this table. Refer to Appendix D for list of all compounds included in analysis.

2. Soil analytical testing completed by Paradigm Environmental Services, Inc., in Rochester, NY.

3. ug/kg = part per billion.

4. NV = no value. NT = not tested.

5. Bold indicates value exceeds Unrestricted Use Soil Cleanup Objectives.

6. Gray shading indicates value exceeds Commerical Use Soil Cleanup Objectives.

7. Red shading indicates value exceeds Industrial Use Soil Cleanup Objectives.

8. SCO provided is for Xylene (mixed).

9. Soil cleanup objectives (SCOs) are from NYSDEC Part 375, Subpart 375-6: Unrestricted Use, Commercial Use and Industrial Soil Cleanup Objectives.

10. < indicates compound not detected above method detection limits.

11. TCL = Target Compound List. STARS = NYSDEC Spill Technology and Remediation Series (STARS) Memo #1, Petroleum-Contaminated Soil Guidance Policy, New York State Department of Environmental Conservation, August 1992.

Table 3 Groundwater Analytical Testing Results Summary Phase II Environmental Site Assessment Northtown Plaza Amherst, New York

Parameter	NYSDEC Class GA Criteria	MW-1	MW-2	MW-3							
Volatile Organic Compounds - EPA Method 8260 TCL (ug/L)											
Acetone	50	8.5 J	3.0 J	7.7 J							
Bromodichloromethane	50	0.57 J	<	<							
Carbon disulfide	NV	0.99 J	<	1.3							
Chloroform	7	1.8	<	<							
Tetrachloroethene	5	0.46 J	<	<							
Toluene	5	<	<	0.66 J							
Total VOCs	NV	12.32	<	<							

Notes:

1. Compounds detected in one or more samples are presented on this table. Refer to Appendix D for list of all compounds included in analysis.

2. Analytical testing completed by TestAmerica Laboratories, Inc., in amherst, NY.

3. New York State Department of Environmental Conservation Class GA criteria obtained from Division of Water Technical and Operational Guidance Series (TOGS 1.1.1) dated October 1993, revised June 1998, January 1999 errata sheet and April 2000 addendum.

4. J = Analyte detected below quanititation limits.

5. ug/L = part per billion (ppb).

6. Shading indicates values exceeding NYSDEC Class GA groundwater criteria.

7. < = compound was not detected above method detection limit.

TABLE 4 Soil Vapor Intrusion Air Analytical Testing Results Summary Northtown Plaza Amherst, New York

	Shopper Choice	Basement Samples	Gi-Ro D	ry Cleaner		Vacant - Former	Manhattan Bagel	
Parameter	Sub-slab	Indoor Air	Sub-slab	Indoor air	Outdoor Air	Sub-slab	Indoor air	Outdoor Air
1,1,1-Trichloroethane	<0.83	<0.83	<0.83	<0.83	<0.83	<0.83	<0.83	27
1,1-Dichloroethene	<0.60	<0.60	<0.60	<0.60	<0.60	<0.60	<0.60	3
1,2,4-Trimethylbenzene	4.1	<1.1	6.2	<1.1	<0.75	33	<1.1	0.5
1,3,5-Trimethylbenzene	1.2	<0.75	1.7	<0.75	<0.75	13	0.85	<0.75
1,4-Dioxane	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1	42
4-ethyltoluene	1.5	<0.75	2.1	<0.75	<0.75	8.2	<0.75	<0.75
Acetone	41	17	250	4.3	11	71	26	24
Benzene	35	1.7	9.4	0.68	0.62	59	0.52	0.68
Carbon disulfide	23	<0.47	1.8	<0.47	<0.47	410	0.54	<0.47
Carbon tetrachloride	<0.96	0.58	<0.96	<0.26	0.51	0.45	0.45	0.51
Chloromethane	14	1.2	<0.31	0.57	0.84	<0.31	0.94	0.84
cis-1,2-Dichloroethene	<0.60	<0.60	0.44 J	<0.60	<0.60	<0.60	<0.60	<0.60
Cyclohexane	190	<0.52	57	<0.52	<0.52	130	<0.52	<0.52
Ethylbenzene	4.2	<0.66	5.1	<0.66	<0.66	27	<0.66	<0.66
Freon 11	1.5	1.9	4.1	0.69 J	1.5	14	37	1.4
Freon 12	2.8	3.5	2.4	1.2	2.9	3.8	6.7	2.4
Heptane	220	0.96	42	0.58 J	<0.62	160	0.92	0.79
Hexane	360	0.90	44	0.54	0.47 J	170	0.97	0.61
Isopropyl alcohol	<0.37	5.3	<0.37	3.2	5.6	12	9.7	1.5
m&p-Xylene	13	0.79 J	18	0.84 J	0.93 J	88	1.3	0.79
Methyl Ethyl Ketone	<0.90	1.7	26	1.1	0.96	<1.2	2	1.6
Methyl Isobutyl Ketone	<1.2	<1.2	<1.2	<1.2	<1.2	19	<1.2	<1.2
Methylene chloride	2.0	0.64	0.71	<0.53	0.49 J	0.99	1.6	1.6
o-Xylene	4.5	<0.66	5.9	<0.66	<0.66	36	0.57	<0.66
Styrene	4.6	<0.65	5.4	<0.65	<0.65	<0.65	<0.65	<0.65
Tetrachloroethylene	43	<1.0	230	60	1.3	6,400	70	0.9
Toluene	23	2.4	19	1.7	1.5	170	2	2
Trichloroethene	1.6	<0.22	2.5	2.4	<0.22	32	0.22	<0.22
Vinyl chloride	<0.39	<0.10	<0.39	<0.10	<0.10	<0.39	<0.10	<0.10

Notes:

1. Compounds detected in one or more samples are presented in this table, with exception of 7 compounds highlighted in orange. Refer to Appendix D for list of all compounds included in analysis. Compounds highlighted in orange are subject to the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in New York State, dated October 2006, soil vapor intrusion decision matrices.

2. Air sample analytical testing completed by Centek Laboratory in Syracuse, New York.

3. ug/m^3 = microgram per cubic meter.

4. Samples collected were for an approximate 8-hour sample duration.

5. J = estimated concentration detected less than the reporting limit.

6. < = compound was not detected above reporting limit provided.

7. Bold and gray shading indicates compound action required by NYSDOH soil vapor intrusion guidance matrices or indoor air guidance values.

TABLE 5 Vapor Intrusion Sample Results Compared to NYSDOH Decision Matrices Northtown Plaza Amherst, New York

Location	Carbon Tetrachloride	Trichloroethene	Vinyl Chloride	1,1 dichloroethene	cis-1,2 dichlorethene	Tetrachloroethene	1,1,1 Trichloroethane
Basement	TPA	NFA	NFA	NFA	NFA	NFA	NFA
Drycleaner	NFA	TPA	NFA	NFA	NFA	Mitigate	NFA
Vacant - Former Manhattan Bagel	NFA	ТРА	NFA	NFA	NFA	Mitigate	NFA
inamattan Bager	/)	·/	·			<u></u>

Notes:

1) NFA = no further action.

2) TPA = take reasonable and practical actions to identify source(s) and reduce exposures.

3) Mitigate = mitigation is needed to minimize current or potential exposures associated with soil vapor intrusion.

FIGURES

UNLESS SPECIFICALLY STATED BY WRITTEN AGREEMENT, THIS DRAWING IS THE SOLE PROPERTY OF GZA GEOENVIRONMENTAL, INC. (GZA). THE INFORMATION SHOWN ON THE DRAWING IS SOLELY FOR USE BY GZA'S CLIENT OR THE CLIENT'S DESIGNATED REPRESENTATIVE FOR THE SPECIFIC PROJECT AND LOCATION IDENTIFIED ON THE DRAWING. THE DRAWING SHALL NOT BE TRANSFERRED, REUSED, COPIED, OR ALTERED IN ANY MANNER FOR USE AT ANY OTHER LOCATION OF FOR ANY OTHER PURPOSE ANSFER, REUSE, OR MODIFICATION TO THE CLIENT OR OTHERS, WITHOUT THE WRITTEN EXPRESS CONSENT OF GZA, WILL BE AT THE USER'S SOLE RISK AND WITHOUT ANY RISK OR LIABILITY TO GZA.

SHERIDAN DRIVE

150

NORTHTOWN PLAZA SHERIDAN DR, EGGERT RD, AND BAILEY AVE AMHERST, NEW YORK

PHASE II ENVIRONMENTAL SITE ASSESSMENT GROUNDWATER CONTOUR MAP

PREPARED BY:		PREPARED FOR:						
GZA Gee Engineer 535 WASHIN BUFFALO, N (716) 685-234	DEnvironmental of N.Y. s and Sclentists GTON STREET 11th FLOOR EW YORK 14203 10	NORTHTOWN ASSOCIATES, LLC						
PROJ MGR: CZB	REVIEWED BY:	CHECKED BY:	FIGURE					
DESIGNED BY:	DRAWN BY: DEW	SCALE: AS SHOWN	1 /					
DATE	PROJECT NO.	REVISION NO.	IA					
JUNE 2014	21.0056687.10		SHEET NO. 1 of 2					

LEGEND:

SP-33

APPROXIMATE LOCATION AND DESIGNATION OF COMPLETED SOIL PROBE

NOTES:

1. BASE MAP ADAPTED FROM AN AERIAL PHOTO DOWNLOADED FROM http://www.bing.com/maps/ AND FIELD OBSERVATIONS.

2. THE SIZE AND LOCATION OF EXISTING SITE FEATURES SHOULD BE CONSIDERED APPROXIMATE.

UNLESS SPECIFICALLY STATED BY WRITTEN AGREEMENT, THIS DRAWING IS THE SOLE PROPERTY OF GZA GEGENVIRONMENTAL, INC. (GZA). THE INFORMATION SHOWN ON THE DRAWING IS SOLELY FOR USE BY GZA'S CLIENT OR THE CLIENT'S DESIGNATED REPRESENTATIVE FOR THE DRAWING, THE DRAWING SHALL NOT BE TRANSFERRED, REUSED, COPIED, OR ALTERED IN ANY MANNER FOR USE TANY OTHER LOCATION OR FOR ANY OTHER PURPOSE WITHOUT THE PICOR WRITTEN CONSENT OF GZA. ANY TRANSFER, REUSE, OR MODIFICATION TO THE DRAWING BY THE CLIENT OR OTHERS, WITHOUT THE PRIOR WRITEN EXPRESS CONSENT OF GZA, WILL BE AT THE USER'S SOLE RISK AND WITHOUT ANY RISK OR LIABILITY TO GZA.

DEPARTMENT SKETCHES.

LEGEND:

APPROXIMATE LOCATION AND DESIGNATION OF COMPLETED SOIL PROBE

NOTES:

1. BASE MAP ADAPTED FROM AN AERIAL PHOTO DOWNLOADED FROM http://www.bing.com/maps/ AND FIELD OBSERVATIONS.

2. THE SIZE AND LOCATION OF EXISTING SITE FEATURES SHOULD BE CONSIDERED APPROXIMATE.

3. STATE DATABASE HAS A SPILL #980427 LISTED FOR 4544 BAILEY AVENUE FROM A NYSDOT PROJECT ALONG BAILEY AVENUE. 10 20

0

SCALE IN FEET

UNLESS SPECIFICALLY STATED BY WRITTEN AGREEMENT, THIS DRAWING IS THE SOLE PROPERTY OF GZA GEOENVIRONMENTAL, INC. (GZA). THE INFORMATION SHOWN ON THE DRAWING IS SOLELY FOR USE BY GZA'S CLIENT OR THE CLIENT'S DESIGNATED REPRESENTATIVE FOR THE SPECIFIC PROJECT AND LOCATION IDENTIFIED ON THE DRAWING. THE DRAWING SHALL NOT BE TRANSFERRED, REUSED, COPIED, OR ALTERED IN ANY MANNER FOR USE AT ANY OTHER LOCATION OR FOR ANY OTHER PURPOSE WITHOUT THE PRIOR WRITEN CONSENT OF GZA. ANY TRANSFER, REUSE, OR MODIFICATION THE PRIOR WRITEN EXPRESS CONSENT OF GZA, WILL BE AT THE USER'S SOLE RISK AND WITHOUT ANY RISK OR LIABILITY TO GZA.

APPROXIMATE LOCATION OF INDOOR AIR SAMPLE & SUB-SLAB AIR SAMPLE

MW-1 APPROXIMATE LOCATION OF GROUNDWATER MONITORING WELL

IS SOLELY FOR USE BY GZA'S CLIEN

APPENDIX A

LIMITATIONS

GEOHYDROLOGICAL LIMITATIONS

Use of Report

 GZA GeoEnvironmental, Inc. (GZA) prepared this report on behalf of, and for the exclusive use of our Client for the stated purpose(s) and location(s) identified in the Proposal for Services and/or Report. Use of this report, in whole or in part, at other locations, or for other purposes, may lead to inappropriate conclusions; and we do not accept any responsibility for the consequences of such use(s). Further, reliance by any party not expressly identified in the agreement, for any use, without our prior written permission, shall be at that party's sole risk, and without any liability to GZA.

Standard of Care

- 2. GZA's findings and conclusions are based on the work conducted as part of the Scope of Services set forth in the Proposal for Services and/or Report and reflect our professional judgment. These findings and conclusions must be considered not as scientific or engineering certainties, but rather as our professional opinions concerning the limited data gathered during the course of our work. Conditions other than described in this report may be found at the subject location(s).
- 3. GZA's services were performed using the degree of skill and care ordinarily exercised by qualified professionals performing the same type of services, at the same time, under similar conditions, at the same or a similar property. No warranty, expressed or implied, is made. Specifically, GZA does not and cannot represent that the Site contains no hazardous material, oil, or other latent condition beyond that observed by GZA during its study. Additionally, GZA makes no warranty that any response action or recommended action will achieve all of its objectives or that the findings of this study will be upheld by a local, state or federal agency.
- 4. In conducting our work, GZA relied upon certain information made available by public agencies, Client and/or others. GZA did not attempt to independently verify the accuracy or completeness of that information. Inconsistencies in this information which we have noted, if any, are discussed in the Report.

Subsurface Conditions

5. The generalized soil profile(s) provided in our Report are based on widely-spaced subsurface explorations and are intended only to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized, and were based on our assessment of subsurface conditions. The composition of strata, and the transitions between strata, may be more variable and more complex than indicated. For more specific information on soil conditions at a specific location refer to the exploration logs.

6. Water level readings have been made in test holes (as described in the Report) and monitoring wells at the specified times and under the stated conditions. These data have been reviewed and interpretations have been made in this report. Fluctuations in the level of the groundwater however occur due to temporal or spatial variations in areal recharge rates, soil heterogeneities, the presence of subsurface utilities, and/or natural or artificially induced perturbations. The observed water table may be other than indicated in the Report.

Compliance with Codes and Regulations

7. We used reasonable care in identifying and interpreting applicable codes and regulations necessary to execute our scope of work. These codes and regulations are subject to various, and possibly contradictory, interpretations. Interpretations and compliance with codes and regulations by other parties is beyond our control.

Screening and Analytical Testing

- 8. GZA collected environmental samples at the locations identified in the Report. These samples were analyzed for the specific parameters identified in the report. Additional constituents, for which analyses were not conducted, may be present in soil, groundwater, surface water, sediment and/or air. Future Site activities and uses may result in a requirement for additional testing.
- 9. Our interpretation of field screening and laboratory data is presented in the Report. Unless otherwise noted, we relied upon the laboratory's QA/QC program to validate these data.
- 10. Variations in the types and concentrations of contaminants observed at a given location or time may occur due to release mechanisms, disposal practices, changes in flow paths, and/or the influence of various physical, chemical, biological or radiological processes. Subsequently observed concentrations may be other than indicated in the Report.

Interpretation of Data

11. Our opinions are based on available information as described in the Report, and on our professional judgment. Additional observations made over time, and/or space, may not support the opinions provided in the Report.

Additional Information

12. In the event that the Client or others authorized to use this report obtain information on environmental or hazardous waste issues at the Site not contained in this report, such information shall be brought to GZA's attention forthwith. GZA will evaluate such information and, on the basis of this evaluation, may modify the conclusions stated in this report.

Additional Services

13. GZA recommends that we be retained to provide services during any future investigations, design, implementation activities, construction, and/or property development/ redevelopment at the Site. This will allow us the opportunity to: i) observe conditions and compliance with our design concepts and opinions; ii) allow for changes in the event that conditions are other than anticipated; iii) provide modifications to our design; and iv) assess the consequences of changes in technologies and/or regulations.

APPENDIX B

SOIL PROBE & TEST BORING/MONITORING WELL LOGS

CON DRIL	ITRACTOR LER	ł	TREC Environ Chad Britton	mental	BORING LOCATION See Site Plan GROUND SURFACE ELEVATION NM DATUM NA	
STA	RT DATE		1/29/2014	END DATE 1/29/2014	GZA GEOENVIRONMENTAL REPRESENTATIVE T. Bohlen	
W	ATER LEV	EL DA	ТА		TYPE OF DRILL RIG 540 UB Truck-Mounted Rig	
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER <u>2" diameter by 48" long</u>	
D				•		
Е		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	0
P T	Sample N	umbor	DEDTU			V
н	Sample IN	umber	(FT)	RECOVERT (%)		(ppm)
	S-1		0 - 4	100	Asphalt - 4-inches.	0.3
1					Fill - Dark Brown/Gray SAND, some Gravel, trace Silt, trace	
					Clay, moist.	
2					Native - Reddish Brown Silty CLAY, trace Gravel, trace Sand, moist	0.2
3						0.2
4	6.0		4 9	100		0.5
5	5-2		4 - 0	100		0.5
Ŭ						
6						
-						0.3
8						
	S-3		8 - 12	100		0.5
9						
10						
						0.5
11						
40						
12	S-4		12 - 16	100		0.5
13						
14						0.0
15						0.9
16						
17					End of soil probe at 16 feet below ground surface.	
17						
18]	
19					4	
20						
S -	Split Spo	on Sa	ample	NOTES: MiniRAE	E 3000 was used to field screen and headspace soil samples.	
C -	Rock Co	re Sa	mple	bgs = Be	elow ground surface. ppm = parts per million.	
Ger	ierai es:	1) St 2) W	ater level re	nes represent appro	oximate boundry between soil types, transitions may be gradual.	
		_, 	y occur due	to other factors that	in those present at the time measurements were made.	

CON	DNTRACTOR TREC Environmental RILLER Chad Britton				BORING LOCATION	See Site Plan		_			
DRIL	LER		Chad Britton		GROUND SURFACE ELEVATION	NM DATUM	NA	_			
STA	RT DATE		1/30/2014	END DATE 1/30/2014		SENTATIVE T. Bohlen					
W	ATER LEV			040000		Geoprobe 6620 DT Trac	k-Mounted Rig	-			
	DATE	TIVIE	WATER	CASING		2 diameter by 48 long		-			
						NA		-			
								-			
D				•							
Е		S	AMPLE INFOR	MATION	SAMPLE DE	SCRIPTION	NOTES	0			
Ρ				-				V			
т	Sample N	umber	DEPTH	RECOVERY (%)				М			
Н			(FT)					(ppm)			
	S-1		0 - 4	100	Asphalt - 4-inches.			1.1			
1					Fill - Dark Brown SAND, some Grav	el, trace Silt, trace Clay,					
2					trace Glass, trace Slag, trace Brick,	traco Gravel traco Silt mois	et				
2					Nalive - Reddish Brown Silty CLAT,	trace Graver, trace Sitt, mot	51.	0.9			
3					-			0.0			
4					-						
	S-2		4 - 8	100				0.3			
5					_						
					-						
6					-			0.2			
7					-			0.3			
					-						
8											
	S-3		8 - 12	100	1			0.6			
9											
10					4						
					-			0.5			
11					-						
12					-						
12	S-4		12 - 16	100	-			0.2			
13											
]						
14											
					-			0.3			
15					4						
16					4						
10	S-5		16 - 20	100	1			0.1			
17	20				1						
					1						
18]						
								0.1			
19					4						
					End of apil probe at 20 feet by the	aund autoas					
20 C	Snlit Sna	End of soil probe at 20 feet below ground surface.									
с.	Spiit Spit Rock Co	III Spoon Sample NOTES: MINIRAE 3000 was used to field screen and headspace soil samples.									
Ger	neral	1) St	ratification l	ines represent appr	oximate boundry between soil	types, transitions may	be gradual.				
Not	es:	2) W	ater level re	adings have been r	made at times and under condit	ions stated, fluctuation	ns of groundwater				
		ma	ay occur due	to other factors the	an those present at the time me	easurements were mad	de.				

CON DRIL	CONTRACTOR TREC Environmental DRILLER Chad Britton			mental	BORING LOCATION GROUND SURFACE ELEVATION	See Site Plan NM DATUM	NA	_
STA	RT DATE		1/30/2014	END DATE 1/30/2014	GZA GEOENVIRONMENTAL REPRES	SENTATIVE T. Bohlen		-
W	ATER LEV	EL DA	ТА	I	TYPE OF DRILL RIG	Geoprobe 6620 DT Track-Me	ounted Rig	_
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER	2" diameter by 48" long		-
						DD Direct push		-
					ROCK DRIELING METHOD	NA		-
D		_						
E		S	AMPLE INFOR	MATION	SAMPLE DE	SCRIPTION	NOTES	ο
Р								V
т	Sample N	umber	DEPTH	RECOVERY (%)				М
Н			(FT)	100				(ppm)
	S-1		0 - 4	100	Asphalt - 4-inches.	Cilt trace Class maint		1.4
1					Fill - Gray SAND, some Gravel, trace	e Sill, trace Clay, moist.		
2								
					Native - Reddish Brown Silty CLAY,	trace Gravel, trace Silt, moist.		0.4
3								
					-			
4	S-2		4 - 8	100	4			0.0
5	0-2		4-0	100	-			0.9
Ű					1			
6								
					4			0.1
7					-			
8					-			
0	S-3		8 - 12	100	-			0.1
9								
10					-			
11					4			0.2
					-			
12					1			
	S-4		12 - 16	100]			0.1
13					4			
					-			
14					-			0.1
15					1			
]			
16								
					End of soil probe at 16 feet below gro	ound surface.		
17					4			
18					-			
					1			
19]			
_					4			
20			amanla			and handon		
5- C-	Split Spc Rock Co	re Sa	ampie	INUTES: MINIRAL	= JUUU was used to field screen	and neadspace soll sam	pies.	
Ger	neral	1) St	ratification l	nes represent appr	oximate boundry between soil t	vpes, transitions may be	gradual.	
Not	es:	2) W	ater level re	adings have been r	nade at times and under conditi	ions stated, fluctuations of	of groundwater	
		ma	ay occur due	to other factors the	an those present at the time me	asurements were made.		

ENGINEERS AND SCIENTISTS

CON	ITRACTO	२	TREC Environ	mental	BORING LOCATION	See Site Plan		
DRIL	RILLER Chad Britton TART DATE 1/30/2014				GROUND SURFACE ELEVATION	NM DATUM	NA	_
STA	RT DATE		1/30/2014	END DATE 1/31/2014	GZA GEOENVIRONMENTAL REPRI	ESENTATIVIT. Bohlen		
W	ATER LEV	EL DA	TA	040000		Geoprobe 6620 DT Track-	Mounted Rig	_
	DATE	TIME	WATER	CASING		2" diameter by 48" long		-
								-
								-
D				1				
Е		S	AMPLE INFOR	MATION	SAMPLE DE	SCRIPTION	NOTES	0
Ρ					-			V
Т	Sample N	umber	DEPTH	RECOVERY (%)				М
п	S-1		(FI) 0 - 4	70	Asphalt - 4-inchos			(ppm)
1	0-1		0-4	10	Fill - Dark Brown/Grav SAND som	e Gravel trace Silt trace		0.4
					Clav. moist.			
2								
					Native - Reddish Brown Silty CLAY	', trace Gravel, trace Sand,		0.2
3					moist.			
					4			
4	S-2	,	4 - 8	100				0.2
5				100	-			0.2
Ũ								
6]			
								0.1
7					-			
					-			
8	S-3		8 - 12	100	-			0.1
9			0.1					0.1
10								
					-			0.4
11					-			
12					-			
12	S-4		12 - 16	100	Grades to: moist/wet.			0.2
13								
14								
					Grades to: moist.			0.3
15					-			
16	<u> </u>				1			
	S-5		16 - 20	100]			0.1
17								
18					4			0.2
10					-			0.3
13					1			
20								
S -	Split Spo	oon Sa	ample	NOTES: MiniRAE	E 3000 was used to field screen	and headspace soil sar	mples.	
C -	Rock Co	ore Sa	mple	bgs = Be	elow ground surface. ppm = pa	rts per million.		
Ger	neral	1) St	ratification l	ines represent appr	oximate boundry between soil t	ypes, transitions may be	e gradual.	
INOt	es:	∠) VV	ater level re	adings have been h	naue at times and under condit	ions stated, fluctuations	s or groundwater	
		111c	iy occur uue		an mose present at the time me			

ENGINEERS AND SCIENTISTS

CON	CONTRACTOR TREC Environ			mental	BORING LOCATION	See Site Plan		-
			Chad Britton		GROUND SURFACE ELEVATION		NA	-
51A \\\\			1/30/2014 TA	END DATE 1/31/2014		Septrope 6620 DT Trock Mar	inted Rig	
vv7	DATE		WATER	CASING	CASING SIZE AND DIAMETER	2" diameter by 48" long		-
					OVERBURDEN SAMPLING METH	IO Direct push		-
					ROCK DRILLING METHOD	NA		-
D								
E		S	AMPLE INFOR	MATION	SAMPLE DE	SCRIPTION	NOTES	0
Р		_	-	-				V
Т	Sample N	umber	DEPTH	RECOVERY (%)				М
н	(FT) S-6 20 - 24		(FT) 20 - 24	100	Nativo - Poddish Brown Silty CLAX	trace Gravel trace Sand		(ppm)
21	0-0		20 - 24	100	moist.	, liace Glavel, liace Salid,		0.0
22								
22								0.0
23								
24								
	S-7		24 - 28	100				0.3
25								
26								
								0.1
27								
20								
20	S-8		28 - 32	100				0.0
29								
30								
31								
32							_	
33					End of soil probe at 32 feet below g	round surface.		
55								
34								
35								
36								
37								
38								
39								
40								
40 S - 3	Split Spc	on S	ample	NOTES: MiniRAF	E 3000 was used to field screen	and headspace soil same	les.	1
C -	Rock Co	<u>re S</u> a	mple	bgs = Be	elow ground surface. ppm = pa	rts per million.		
Ger	neral	1) St	ratification li	ines represent appr	oximate boundry between soil t	ypes, transitions may be g	radual.	
Not	es:	2) W	ater level re	adings have been n	nade at times and under condit	ions stated, fluctuations of	groundwater	
		1110	y occur ude		an anose present at the time file			

START DATE 1020214 END DATE Calculation Construction Calculation Calculation <thc< th=""><th>CON DRIL</th><th>ITRACTOR .LER</th><th></th><th>TREC Environ</th><th>mental</th><th>BORING LOCATION See Site Plan GROUND SURFACE ELEVATION NM DATUM NA</th><th></th></thc<>	CON DRIL	ITRACTOR .LER		TREC Environ	mental	BORING LOCATION See Site Plan GROUND SURFACE ELEVATION NM DATUM NA	
WATER LATE TYPE OF DRULL NIS Geographe 0620 0T Track-Munit Rig DATE TIME WATER CASING OVERBURDEN SAMPLAND METHOD Direct push CASING SEX AND DAMETER CASING SEX AND DAMETER Direct push Direct push CASING SEX AND DAMETER NOTES NA E SAMPLE INFORMATION SAMPLE DESCRIPTION NOTES T Sample Number DEPTH RECOVERY (%) Notes Sample Number DEPTH RECOVERY (%) Notes Notes Notes Sample Number DEPTH RECOVERY (%) Notes Notes Notes Notes Notes Sample Number DEPTH RECOVERY (%) Notes No	STA	RT DATE		1/30/2014	END DATE 1/30/2014	GZA GEOENVIRONMENTAL REPRESENTATIVE T. Bohlen	
DATE TME WATER CASING SIZE AND PURPTION CASING SIZE AND PURPTION 0 NATE NATER CASING SIZE AND PURPTION NATER 0 SAMPLE INFORMATION NATER NATER NATER 1 0 SAMPLE DESCRIPTION NATER NATER 1 0 Applat 1-4 inches. NATER NATER 2 0 Applat 1-4 inches. Fill - Dark Brown SAMD, some Gravel, lide Sig, trace Silt, Trace City, model NATER 0 3 0 Casing Size And Dark Black Sills (CLAY, trace Gravel, lide Sig, trace Silt, Trace City, model Native Sills (CLAY, trace Gravel, lide Sig, trace Silt, Trace City, model 0 3 0 Casing Size CLAY, trace Gravel, trace Silt, Trace City, model 0 0 4 0 Casing Size CLAY, trace Gravel, trace Silt, Trace City, model base, Cardes L, Reddah Brown at 1.5 0 0 4 0 0 0 0 0 0 5 S-3 8-12 100 0 0 0 0 1 0 0 0 <td>W</td> <td>ATER LEV</td> <td>EL DA</td> <td>ТА</td> <td>1</td> <td>TYPE OF DRILL RIG Geoprobe 6620 DT Track-Mounted Rig</td> <td></td>	W	ATER LEV	EL DA	ТА	1	TYPE OF DRILL RIG Geoprobe 6620 DT Track-Mounted Rig	
Bample Number DEPTH (FT) RECOVERY (%) SAMPLE DESCRIPTION NOTES 0 1 0 0 Aphalt - 4-inches. 0		DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long	
Deck SAMPLE INFORMATION SAMPLE DESCRIPTION NOTES O 1 0 4 0 4 0							
D SAMPLE INFORMATION SAMPLE DESCRIPTION NOTES C Sample Number DEPTH RECOVERY (%) Asphalt - 4 inches. 0 1							
E SAMPLE INFORMATION SAMPLE DESCRIPTION NOTES C Sample Number DEPTH RECOVERY (%)	D				L		
P Sample Number DEPTH RECOVERY (%) N 1 0 - 4 100 Asphalt - 4-inches. 0 1	Е		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	0
T Semple Number DEPTH RECOVERY (%) M 1 0.4 100 Asphalt -4 inches. 0. 1 0.4 100 Fill - Dark Brown SAND, some Gravel, little Slag, trace Slit, 0. 2 0 0. Fill - Dark Brown SAND, some Gravel, little Slag, trace Slit, 0. 3 0 0. Fill - Dark Brown SAND, some Gravel, little Slag, trace Slit, 0. 4 0 0. Total Sand, some Gravel, little Slag, trace Slit, 0. 4 0 0. Total Sand, some Gravel, little Slag, trace Slit, 0. 4 0 0. Total Sand, some Gravel, little Slag, trace Slit, 0. 5 0 0. Total Sand, some Gravel, little Slag, trace Slit, 0. 6 0 0. 0. 0. 0. 7 0 0. 0. 0. 0. 0. 10 0 0. 0. 0. 0. 0. 0. 12 0 0. 0. 0. 0. 0. 0. 0. 13 0.	Ρ				ſ		V
R C(1) Asphalt - 4-inches. Fill - Dark Brown SAND, some Gravel, little Sig, trace Silt, Image: Case of the second	Т	Sample N	umber	DEPTH	RECOVERY (%)		Μ
0.1 0.4 100 1 0 100 2 0 100 3 0 100 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 10 0 0 11 0 0 12 0 0 13 0 0 14 0 0 10 0 0 11 0 0 12 0 0 14 0 0 15 0 0 16 0 0 17 0 0 18 0 0 19 0 0 10 0 0 14 0 0 15 0 0 16 0 0 17 0	н	S-1		(F1)	100	Asphalt - 4 inchos	(ppm)
Image Clay, model. Native - Black Stip CLAY, trace Gravel, trace Sand, Native - Black Stip CLAY, trace Gravel, trace Sand, 0. 3 - - - - 0.	1	01		0 +	100	Fill - Dark Brown SAND, some Gravel, little Slag, trace Silt,	0.5
2						A trace Clay, moist.	
Image: Size of the size o	2					Native - Black Silty CLAY, trace Gravel, trace Sand,	
3 - - - 0 4 - - - 0 5 - - 0 0 6 - - - 0 7 - - - 0 8 - - - 0 9 - - 0 0 10 - - - 0 9 - - - 0 10 - - - 0 11 - - - 0 12 - - - 0 13 - - - 0 14 - - - - 16 - - - - 18 - - - - 19 - - - - 19 - - - - 19 - - - - 19 -						moist from 1 to 1.5 feet bgs. Grades to Reddish Brown at 1.5	0.1
4 S-2 4 - 8 100 0. 5 - - - 0. 6 - - - 0. 7 - - - 0. 8 - - - 0. 9 - - - 0. 9 - - - 0. 10 - - - 0. 11 - - - 0. 12 - - - 0. 12 - - - 0. 13 - - - 0. 14 - - - 0. 14 - - - 0. 16 - - - - 18 - - - - 18 - - - - 18 - - - - 19 - - - - 18 <td>3</td> <td></td> <td></td> <td></td> <td></td> <td>feet bgs.</td> <td></td>	3					feet bgs.	
S-2 4-8 100 0. 5 - - - 0. 6 - - - 0. 7 - - - 0. 8 - - - 0. 9 - - - 0. 10 - - - 0. 11 - - - 0. 12 - - - 0. 14 - - - 0. 15 - - - 0. 16 - - - - 16 - - - - 18 - - - - 18 - - - - 19 - - - - 19 - - - - 19 - - - <td< td=""><td>4</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	4						
5 - - - - 0 6 - - - - 0 0 7 - - - - 0 0 0 9 - - - - 0 </td <td></td> <td>S-2</td> <td></td> <td>4 - 8</td> <td>100</td> <td></td> <td>0.1</td>		S-2		4 - 8	100		0.1
6	5						
6							
7	6						0.4
8 - - - 0. 9 - - - 0. 10 - - - 0. 10 - - - 0. 11 - - - 0. 12 - - - 0. 12 - - - 0. 13 - - - 0. 14 - - - 0. 15 - - - 0. 16 - - - - 18 - - - - 19 - - - - 19 - - - - 19 - - - - 19 - - - - 19 - - - - 19 - - - - 19 - - - - 19	7						0.1
8	'						
S-3 8-12 100 0. 9 - - - 0. 10 - - - 0. 11 - - - 0. 12 - - - 0. 13 - - - 0. 14 - - - 0. 14 - - - 0. 16 - - - - 0. 18 - - - - - - 19 - - - - - - - 19 -<	8						
9		S-3		8 - 12	100		0.2
10	9						
11	10						
11	10						0.1
12	11						
12							
S-4 12-16 100 0. 13	12	0.4		10 10	400		~ .
13	12	5-4		12 - 16	100		0.1
14	13						
15	14						
15							0.1
16	15						
Indext Sector Indext Sector Indext Sector Index Sector Indext Sector<	16						
17	10					End of soil probe at 16 feet below ground surface.	
18	17						
18							
19	18						
3 3	10						
20 Solution S - Split Spoon Sample NOTES: MiniRAE 3000 was used to field screen and headspace soil samples.	19						
S - Split Spoon Sample NOTES: MiniRAE 3000 was used to field screen and headspace soil samples.	20						
	S -	Split Spo	on S	ample	NOTES: MiniRA	E 3000 was used to field screen and headspace soil samples.	
C - Rock Core Sample bgs = Below ground surface. ppm = parts per million.	C -	Rock Co	re Sa	mple	bgs = Be	elow ground surface. ppm = parts per million.	
General 1) Stratification lines represent approximate boundry between soil types, transitions may be gradual.	Ger	neral	1) St	ratification li	ines represent appr	oximate boundry between soil types, transitions may be gradual.	
may occur due to other factors then these present at the time measurements were made	NUL	C 3.	2, vv ma	ater lever le	to other factors that	an those present at the time measurements were made.	

CON DRIL	CONTRACTOR TREC Environmental DRILLER Chad Britton		mental	BORING LOCATION See Site Plan GROUND SURFACE ELEVATION NM DATUM NA		
STA	RT DATE		1/30/2014	END DATE 1/30/2014	GZA GEOENVIRONMENTAL REPRESENTATIVE T. Bohlen	
W	ATER LEV	EL DA	ТА		TYPE OF DRILL RIG Geoprobe 6620 DT Track-Mounted Rig	
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long	
D						
Е		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	0
Ρ						V
Т	Sample N	umber	DEPTH	RECOVERY (%)		М
п	(FT) S-1 0 - 4 100		100	Asphalt - 4-inches	(ppm)	
1					Fill - Brown/Gray SAND, some Gravel, trace Slag, trace Silt	0.2
					trace Clay, moist.	
2					Native - Reddish Brown Silty CLAY, trace Gravel, trace Sand,	
					moist.	0
3						
4						
	S-2		4 - 8	100		0.1
5						
6						
0						0
7						-
8			0.40	100		
	S-3		8 - 12	100		0
9						
10						
						0
11						
12						
12	S-4		12 - 16	100	Grades to: moist/wet.	0.1
13						
14						0
15						0
16						
					End of soil probe at 16 feet below ground surface.	
17						
18						
19						
-						
20 S -	Solit Spa		ample	NOTES: MiniPAR	3000 was used to field screen and headspace soil samples	
с-	Rock Co	re Sa	mple	bas = Be	elow ground surface. ppm = parts per million.	
Ger	neral	1) St	ratification li	ines represent appr	oximate boundry between soil types, transitions may be gradual.	
Not	es:	2) W	ater level re	adings have been r	nade at times and under conditions stated, fluctuations of groundwater	
		ma	ay occur due	to other factors that	an those present at the time measurements were made.	

		ł	TREC Environ	mental	BORING LOCATION See Site Plan	
STA	RT DATE		1/30/2014	END DATE 1/30/2014	GZA GEOENVIRONMENTAL REPRESENTATIVE T. Bohlen	
W	ATER LEV	EL DA	TA		TYPE OF DRILL RIG Geoprobe 6620 DT Track-Mounted Rig	
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long	
					OVERBURDEN SAMPLING METHOD Direct push	
					ROCK DRILLING METHOD NA	
F		s		ΜΑΤΙΟΝ		0
P		0				v
т	Sample N	umber	DEPTH	RECOVERY (%)		М
Н			(FT)			(ppm)
	S-1		0 - 4	100	Asphalt - 4-inches.	1
1					moist	
2					Native - Reddish Brown Silty CLAY, trace Gravel, trace Sand,	
					moist.	0.2
3					4	
4						
4	S-2		4 - 8	100		0.5
5						
6						0.2
7						0.3
8						
	S-3		8 - 12	100		0.3
9						
10						
						0.9
11						
12						
	S-4		12 - 16	100		0.2
13						
14						0.2
15						0.2
16						
17					End of soil probe at 16 feet below ground surface.	
17						
18						
					4	
19					4	
20					1	
S -	Split Spc	on S	ample	NOTES: MiniRA	= 3000 was used to field screen and headspace soil samples.	
C -	Rock Co	re Sa	mple	bgs = Be	elow ground surface. ppm = parts per million.	
Ger	neral	1) St	ratification li	nes represent appr	oximate boundry between soil types, transitions may be gradual.	
INOT	65.	∠) vv m≈	ater iever rea	to other factors the	an those present at the time measurements were made.	
			.,			

CON DRIL	TRACTOR LER		TREC Environ	mental	BORING LOCATION See Site Plan GROUND SURFACE ELEVATION NM DATUM NA	
STA	RT DATE		1/31/2014	END DATE 1/31/2014	GZA GEOENVIRONMENTAL REPRESENTATIVE T. Bohlen	
W	ATER LEV	EL DA	TA		TYPE OF DRILL RIG Geoprobe 6620 DT Track-Mounted Rig	
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long	
D						
E		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES C	о
Р						v
т	Sample N	umber	DEPTH	RECOVERY (%)	N	М
Н			(FT)		(pr	pm)
	S-1		0 - 4	90	Asphalt - 4-inches. 9.).6
1					Clay, moist	
2					Native - Brown Silty CLAY, trace Gravel, trace Sand, moist.	
					2	2.7
3						
4			4.0			
5	5-2		4 - 8	80	Grades to: moist/wet. Petroleum odor observed. 4.	2
5						
6						
						1.1
7						
8	S-3		8 - 12	100	Crades to: Raddich Proven patraloum eder no longer cheanved	
q	0-0		0-12	100	Grades to. Reduish Brown, petroledin ddor no longer observed.	.2
Ũ						
10						
					0).2
11						
12						
12	S-4		12 - 16	100	o).2
13						
14						
45).2
15						
16						
					End of soil probe at 16 feet below ground surface.	
17						
18						
19			1		4 1 1	
					1	
20						
S -	Split Spo	on S	ample	NOTES: MiniRA	E 3000 was used to field screen and headspace soil samples.	
C -	Rock Co	re Sa	mple	bgs = Be	elow ground surface. ppm = parts per million.	
Ger	neral	1) St	ratification li	ines represent appr	oximate boundry between soil types, transitions may be gradual.	ļ
INUL	రం.	vv (ے ma	ater iever re av occur due	to other factors the	an those present at the time measurements were made.	
			,			

	ITRACTOR TREC Environmental			mental	BORING LOCATION See Site Plan	
STA	RT DATE		1/31/2014	END DATE 1/31/2014	GZA GEOENVIRONMENTAL REPRESENTATIVE T. Bohlen	
W	ATER LEV	EL DA	TA		TYPE OF DRILL RIG Geoprobe 6620 DT Track-Mounted Rig	
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long	
					OVERBURDEN SAMPLING METHOD Direct push	
					ROCK DRILLING METHOD NA	
р						
E		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	0
Р						V
Т	Sample N	umber	DEPTH	RECOVERY (%)		М
Н	S_1		(FT) 0 - 4	100	Apphole 4 inches	(ppm)
1	0-1		0-4	100	Fill - Brown SAND, some Gravel, trace Slag, trace Brick.	0.4
					A trace Silt, trace Clay, moist (to 1-foot bgs).	
2					Native - Black Silty CLAY, trace Gravel, trace Sand, moist/wet.	
						0.1
3						
4						
	S-2		4 - 8	100		0.1
5						
6						
0						0.1
7						
8	6.2		0 10	100	Grades to: Reddish Brown, moist.	0.4
q	3-3		0-12	100		0.1
Ũ						
10						
						0.1
11						
12						
	S-4		12 - 16	100		0.1
13						
14						
						0.2
15						
40						
16					End of soil probe at 16 feet below ground surface	
17						
18						
10					4	
13						
20					1	
S -	Split Spo	on S	ample	NOTES: MiniRA	E 3000 was used to field screen and headspace soil samples.	
C -	Rock Co	1) St	mple	bgs = Be	elow ground surface. ppm = parts per million.	
Not	es:	2) W	ater level re	adings have been r	nade at times and under conditions stated. fluctuations of aroundwater	
	-	ma	ay occur due	to other factors that	an those present at the time measurements were made.	

	NTRACTOR TREC Environmental ILLER Chad Britton			mental	BORING LOCATION Superce El EVIATION NM DATUM	
STA	RT DATE		1/31/2014	END DATE 1/31/2014	GZA GEOENVIRONMENTAL REPRESENTATIVE T. Bohlen	
W	ATER LEV	EL DA	ТА		TYPE OF DRILL RIG Geoprobe 6620 DT Track-Mounted Rig	
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long	
					OVERBURDEN SAMPLING METHOD Direct push	
D						
Е		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES C)
P	O a ser la Ni		DEDTU			/
н	Sample N	umper	DEPTH (FT)	RECOVERY (%)		Л
	S-1		0 - 4	100	Asphalt - 4-inches. 4.	.7
1					Fill - Dark Brown SAND, some Gravel, trace Brick, trace Silt	
					trace Clay, moist. 2-inches of coarse SLAG at 1.5-feet bgs.	
2					Native - Black Silty CLAY, trace Gravel, trace Sand, moist.	2
3						.5
4						
_	S-2		4 - 8	100	Grades to: Reddish Brown. 0.	.3
5					-	
6						
)
7					-	
8					-	
0	S-3		8 - 12	100		5
9						
10						0
11						,
12						
10	S-4		12 - 16	100	_)
13					-	
14						
)
15						
16					-	
					End of soil probe at 16 feet below ground surface.	
17						
					-	
18						
19					1	
						ļ
20	0 11: 0					
S -	Split Spc	on S	ample	NOTES: MiniRAI	E 3000 was used to field screen and headspace soil samples.	
Ger	neral	1) St	ratification li	ines represent appr	roximate boundry between soil types, transitions may be gradual	
Not	es:	2) W	ater level re	adings have been r	made at times and under conditions stated, fluctuations of groundwater	
		ma	ay occur due	to other factors the	an those present at the time measurements were made.	

CON DRIL	ITRACTOR .LER		TREC Environ	mental	BORING LOCATION GROUND SURFACE ELEVATION	See Site Plan NM DATUM	NA	_
STA	RT DATE			END DATE	GZA GEOENVIRONMENTAL REPRE	SENTATIVE T. Bohlen		-
W	ATER LEV	EL DA	ТА		TYPE OF DRILL RIG	Geoprobe 6620 DT Track-	Mounted Rig	_
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER	2" diameter by 48" long		_
					OVERBURDEN SAMPLING METH	OD Direct push		-
					ROCK DRILLING METHOD	NA		-
р								
E		S	AMPLE INFOR	MATION	SAMPLE DE	SCRIPTION	NOTES	0
P		-						V
т	Sample N	umber	DEPTH	RECOVERY (%)	1			М
Н			(FT)					(ppm)
	S-1		0 - 4	100	Asphalt - 4-inches.			2.1
1					Fill - Dark Brown SAND, some Grav	vel, trace Silt, trace Clay	******	
2					Motive Deddieb Brown Silty CLAX	1-foot bgs.		
2					moist	, l'ace Gravel, l'ace Sano,		04
3								0.1
					1			
4								
	S-2		4 - 8	100	_			0.8
5					-			
~					-			
6					-			73
7					-			7.0
					Green/Gray Discoloration (small are	ea approximately the size of	Sampled this green/	
8					a quarter). Slight solvent (sweet) or	dor observed.	gray discolored area .	
	S-3		8 - 12	100				2.6
9					-			
					-			
10					-			172
11					-			175
					1			
12					1			
	S-4		12 - 16	100				104
13					_			
					-			
14					- Colvent oder no langer cheenved			17
15					Solvent odor no longer observed.			1.7
10	<u> </u>				1			
16								
		-			End of soil probe at 16 feet below g	round surface.		
17					_			
					-			
18					4			
10					-			
19					1			
20								
S -	Split Spc	on S	ample	NOTES: MiniRA	E 3000 was used to field screer	n and headspace soil sa	mples.	
C -	Rock Co	re Sa	mple	bgs = B	elow ground surface. ppm = pa	arts per million.		
Ger	neral	1) St	ratification li	nes represent appi	oximate boundry between soil	types, transitions may b	e gradual.	
INOT	es:	∠) VV	ater level re	auings have been i	nade at times and under condi-	uons stated, fluctuations	s or groundwater	
		1110	iy occur ude		an alose present at the time line		/.	

		ł	TREC Environ	mental		See Site Plan	NIA	_
STA	RT DATE		1/31/2014	END DATE 1/31/2014	GROUND SURFACE ELEVATION GZA GEOENVIRONMENTAL REPRE	SENTATIVE T. Bohlen	NA	-
W	ATER LEV	EL DA	TA		TYPE OF DRILL RIG	Geoprobe 6620 DT Track	-Mounted Rig	
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER	2" diameter by 48" long		_
					OVERBURDEN SAMPLING METH	OD Direct push		_
					ROCK DRILLING METHOD	NA		-
D								
Е		S	AMPLE INFOR	MATION	SAMPLE DE	ESCRIPTION	NOTES	0
Ρ				·	4			V
Т	Sample N	umber	DEPTH	RECOVERY (%)				M
	S-1		0 - 4	100	Asphalt - 4-inches.			(ppm) 0.4
1					Fill - Dark Brown/Gray SAND, some	e Gravel, trace Slag, trace		
					Silt, trace Clay, moist.			
2					Native - Reddish Brown Silty CLAY,	, trace Gravel, trace Silt, moist	t.	0.2
3					4			0.3
Ū					-			
4								
_	S-2		4 - 8	100				0.6
5					4			
6					-			
								0.6
7					-			
8					4			
Ũ	S-3		8 - 12	100	-			1.6
9								
10								
10					4			0.6
11					-			
12	64		10 16	100				0
13	3-4		12 - 10	100	4			0
					-			
14								
45								0
15					4			
16								
					End of soil probe at 16 feet below g	round surface.		
17					-			
18					-			
19					4			
20					4			
20 S -	Split Spc	on S	ample	NOTES: MiniRAI	E 3000 was used to field screer	n and headspace soil sa	amples.	1
с -	Rock Co	re Sa	mple	bgs = Be	elow ground surface. ppm = pa	arts per million.		
Ger	neral	1) St	ratification li	ines represent appr	oximate boundry between soil	types, transitions may l	be gradual.	
Not	es:	2) W	ater level re	adings have been r	nade at times and under condition the time me	tions stated, fluctuation	is of groundwater	
		1110	iy occur ude		an mose present at the time time		c .	

	TRACTOR		TREC Environ	mental	BORING LOCATION See Site Plan	
STA	RT DATE		1/31/2014	END DATE 1/31/2014	GZA GEOENVIRONMENTAL REPRESENTATIVE T. Bohlen	
W	ATER LEV	EL DA	TA	-	TYPE OF DRILL RIG Geoprobe 6620 DT Track-Mounted Rig	
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long	ļ
D						
Е		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES 0	0
Ρ						V
Т	Sample Nu	umber	DEPTH	RECOVERY (%)		М
н	S-1		(FT)	100	Asphalt - 4-inches	,pm)
1	0.				Fill - Dark Brown/Gray SAND, some Gravel, trace Silt, trace	
					Clay, moist.	
2					Native - Gray/Black Silty CLAY, trace Gravel, trace Sand,	
					moist. 10	0.6
3						
4					Black staining from 3.5 to 4 feet bgs. Petroleum odor observed. Sample from black	
	S-2		4 - 8	100	Slight green staining from 4 to 6 feet bgs. stained interval.	0.4
5						
6						
0					Grades to: Reddish Brown, odor no longer observed.	.1
7						
8	0.0		0.40	100		
0	5-3		8 - 12	100		3.0
9						ļ
10						
					Grades to: little Sand. 0).3
11					Grades to: trace Sand.	ļ
12						ļ
	S-4		12 - 16	100] 0).1
13						
						ļ
14) 4
15						
16						ļ
17					End of soil probe at 16 feet below ground surface.	
.,						ļ
18						
19						
20						
S -	Split Spo	on S	ample	NOTES: MiniRA	E 3000 was used to field screen and headspace soil samples.	_
C -	Rock Co	re Sa	mple	bgs = Be	elow ground surface. ppm = parts per million.	
Ger	neral	1) St	ratification l	ines represent appr	oximate boundry between soil types, transitions may be gradual.	
NOT	es:	∠) VV m≘	ater level re	adings nave been r	nade at times and under conditions stated, fluctuations of groundwater	
		1110			an anece procent at the time modulements were made.	

		ł	TREC Environ	mental	BORING LOCATION SUBJECT E EVATION NM DATUM	
STA	RT DATE		1/31/2014	END DATE 1/31/2014	GZA GEOENVIRONMENTAL REPRESENTATIVE T. Bohlen	
W	ATER LEV	EL DA	TA		TYPE OF DRILL RIG Geoprobe 6620 DT Track-Mounted Rig	_
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long	
					OVERBURDEN SAMPLING METHOD Direct push	
D		-				_
Е		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES O)
Ρ					V	'
Т	Sample N	umber	DEPTH	RECOVERY (%)	M	1
н	S-1		(FT)	90	Asphalt - 4-inches 14	n) 5
1					Fill - Dark Brown/Gray SAND, some Gravel, trace Silt, trace	0
					Clay, moist.	
2					Native - Gray Silty CLAY, trace Gravel, trace Sand, moist.	
2					1. ⁻	1
3						
4						
	S-2		4 - 8	80	0.	8
5					-	
6					-	
					Grades to: Reddish Brown. 0.6	6
7						
8	S-3		8 - 12	100		4
9			0 .2			-
10						
11						1
12						
	S-4		12 - 16	100	0)
13						
14						
					0)
15						
16						
10					End of soil probe at 16 feet below ground surface.	
17						
18					4 1 1	
10					4	
13					1	
20					1	
S -	Split Spc	on S	ample	NOTES: MiniRA	E 3000 was used to field screen and headspace soil samples.	
C-	Rock Co	1) S4	mple	bgs = Be	elow ground surface. ppm = parts per million.	
Not	es:	2) W	ater level re	adings have been r	made at times and under conditions stated. fluctuations of groundwater	
	-	ma	ay occur due	to other factors that	an those present at the time measurements were made.	

CON DRIL	ITRACTOR .LER		TREC Environ	mental	BORING LOCATION GROUND SURFACE ELEVATION	See Site Plan NM DATUM	NA	
STA	RT DATE		1/31/2014	END DATE 1/31/2014	GZA GEOENVIRONMENTAL REPRE	SENTATIVE T. Bohlen		_
W	ATER LEV	EL DA	TA	I	TYPE OF DRILL RIG	Geoprobe 6620 DT Track-	Mounted Rig	_
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER	2" diameter by 48" long		_
						OD Direct push		_
								_
D								
Е		S	AMPLE INFOR	MATION	SAMPLE DE	SCRIPTION	NOTES	0
Ρ					4			V
Т	Sample N	umber	DEPTH	RECOVERY (%)				М
п	S-1		(FT) 0 - 4	100	Asphalt - 4-inches			(ppm)
1					Fill - Dark Brown/Gray SAND, some	Gravel, trace Silt, trace		0.1
					Clay, moist.			
2					Native - Gray Silty CLAY, trace Grav	vel, trace Sand, moist.		
					-			0.1
3					Sentic odor observed from 3 to 4.5 f	leet has		
4						eet bys.		
	S-2		4 - 8	100				0.3
5					Septic odor no longer observed. Gra	ades to: Reddish Brown.		
					-			
6					-			0.1
7					-			0.1
8								
	S-3		8 - 12	100	-			0.1
9					-			
10					-			
								0.3
11								
					-			
12	S-4		12 - 16	100	-			0.4
13	0 -		12 10	100	-			0.4
14								
					-			0.3
15					-			
16					-			
					End of soil probe at 16 feet below g	round surface.		
17								
					-			
18					-			
19					-			
]			
20								
S -	Split Spc	on S	ample	NOTES: MiniRA	E 3000 was used to field screer	n and headspace soil sa	mples.	
C - Ger	KOCK CO	1) St	mple ratification li	bgs = Be	elow ground surface. ppm = pa	arts per million.	e aradual	
Not	es:	2) W	ater level re	adings have been r	made at times and under condit	tions stated, fluctuations	s of groundwater	
		́та	y occur due	to other factors that	an those present at the time me	easurements were made	e.	

CON DRIL	ITRACTOR .LER	ł	TREC Environ Jim Agar	mental	BORING LOCATION See Site Plan GROUND SURFACE ELEVATION NM DATUM NA	
STA	RT DATE		3/30/2014	END DATE 3/30/14	GZA GEOENVIRONMENTAL REPRESENTATIVE T. Bohlen	
W	ATER LEV	EL DA	ТА	-	TYPE OF DRILL RIG Geoprobe 54LT Track Mounted Rig	
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long	
D				L		
Е		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	0
Ρ						V
Т	Sample N	umber	DEPTH (FT)	RECOVERY (%)		Μ
	S-1		0 - 4	70	Concrete (4-inches). Fill - Dark Brown fine SAND, trace	(ppm) 0
1					Gravel, moist (2-inches).	
					Native - Brown Silty CLAY, trace Gravel, trace Sand, moist.	
2						0
3						0
5						
4						
	S-2		4 - 8	100		1
5					4 1 1	
6						
Ŭ						5
7						
					Grades to: moist/wet.	
8	S-3		8 - 12	100		13.1
9			0.12			10.1
					Grades to: moist.	
10						
11						22.3
12						
	S-4		12 - 16	100		5.5
13						
14						
						0.4
15					4	
16						
10					End of soil probe at 16 feet below ground surface.	
17						
18					4	
19					4	
]	
20						
S -	Split Spo	on Sa	ample	NOTES: MiniRA	E 3000 was used to field screen and headspace soil samples.	
C - Ger	KOCK CO	re Sa	mple ratification li	bgs = Be	elow ground surface. ppm = parts per million.	
Not	es:	2) W	ater level re	adings have been r	nade at times and under conditions stated, fluctuations of groundwater	
		ma	y occur due	to other factors that	an those present at the time measurements were made.	

CON DRIL	ITRACTOF LER	ł	TREC Environ Jim Agar	mental	BORING LOCATION GROUND SURFACE ELEVATION	See Site Plan NM_DATUM	NA	-
STA	RT DATE		3/30/2014	END DATE 3/30/14	GZA GEOENVIRONMENTAL REPRE	SENTATIVE T. Bohlen		
W	ATER LEV	EL DA	TA	r	TYPE OF DRILL RIG	Geoprobe 54LT Track M	lounted Rig	_
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER	2" diameter by 48" long		-
						OL Direct push		-
					ROCK DRILLING WETHOD	INA		-
D								
E		S	AMPLE INFOR	MATION	SAMPLE DE	SCRIPTION	NOTES	0
Ρ								V
Т	Sample N	umber	DEPTH	RECOVERY (%)				М
Н	0.4		(FT)	05				(ppm)
4	S-1		0 - 4	25	Concrete (4-inches).	aval trace Sand maint		0
					Nalive - Blown Silly CLAT, flace Gr	avel, liace Sallu, moist.		
2					1			
								0
3								
					4			
4	S-2		4 - 8	100	-			0.2
5					-			0.2
					Grades to: moist/wet.			
6								
					4			0
7					-			
8					4			
	S-3		8 - 12	100				1.1
9								
					-			
10					Crades to maint			1.2
11					Grades to moist.			1.5
					1			
12								
	S-4		12 - 16	100	-			0.1
13					4			
14					-			
								0
15								
					-			
16					End of coil probe at 16 feet below a	round curfood		
17					End of soil probe at 10 reet below g	Tound Sunace.		
					1			
18								
					4			
19					-			
20					-			
S -	Split Spa	on Sa	ample	NOTES: MiniRA	E 3000 was used to field screen	and headspace soil sa	amples.	-
<u> </u>	Rock Co	<u>re Sa</u>	mple	bgs = Be	elow ground surface. ppm = par	ts per million.		
Ger	neral	1) St	ratification li	nes represent appr	oximate boundry between soil ty	pes, transitions may b	be gradual.	
Not	es:	2) W	ater level re	adings have been i	made at times and under condition	ons stated, fluctuation	s of groundwater	
		ma	y occur due	to other factors that	an those present at the time mea	asurements were made	Э.	

CON DRIL	ITRACTOF LER	R	TREC Environ Jim Agar	mental	BORING LOCATION See Site Plan GROUND SURFACE ELEVATION NM DATUM NA	
STA	RT DATE		3/30/2014	END DATE 3/31/14	GZA GEOENVIRONMENTAL REPRESENTATIVE T. Bohlen	
W	ATER LEV	EL DA	TA		TYPE OF DRILL RIG 540 UB Truck-Mounted Rig	
	DATE	TIME	WATER	CASING	OVERBURDEN SAMPLING METHOL Direct push	
					ROCK DRILLING METHOD NA	
D						
E		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	0
Р	Sample N	umber	DEPTH	RECOVERY (%)		V M
н	ea.npie it		(FT)			(ppm)
	S-1		0 - 4	100	Asphalt (8-inches). Fill - Dark Brown SAND and Gravel, trace Hand-augered to 4 feet	0
1					Silt, trace Clay, moist.	
~					Native - Gray/Black Silty CLAY, trace Gravel, trace Sand, moist. natural gas line.	
2					4	0
3						-
4	0.0			100	Grades to: Brown.	
F	S-2		4 - 8	100	4	0.3
Э						
6						
						0.6
7					4	
8						
0	S-3		8 - 12	100		0.2
9						
					4 1 1	
10						02
11						0.2
12			10 10	100		
13	5-4		12 - 16	100	Grades to: moist/wet.	0.4
13						
14						
					4 1 1	0.2
15						
16						
					End of soil probe at 16 feet below ground surface.	
17						
40					4	
18					4	
19					1	
20		-				
S - C -	Split Spo Rock Co	on Sa	ample	NUTES: MiniRA	SUUU was used to field screen and headspace soil samples.	
Ger	neral	1) St	ratification li	nes represent appr	oximate boundry between soil types, transitions may be gradual.	
Not	es:	2) W	ater level re	adings have been r	made at times and under conditions stated, fluctuations of groundwater	
		ma	y occur due	to other factors that	an those present at the time measurements were made.	

CON DRIL	ITRACTOF .LER	ł	TREC Environ Jim Agar	mental	BORING LOCATION See Site Plan GROUND SURFACE ELEVATION NM DATUM NA	
STA	RT DATE		3/31/2014	END DATE 3/31/14	GZA GEOENVIRONMENTAL REPRESENTATIVE T. Bohlen	
W	ATER LEV	EL DA	ТА		TYPE OF DRILL RIG 540 UB Truck-Mounted Rig	
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long	
D				L		
Е		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	0
Ρ						V
Т	Sample N	umber	DEPTH	RECOVERY (%)		М
Н	0.4		(FT)	<u> </u>		(ppm)
1	5-1		0 - 4	60	Asphalt (5-inches). Fill - Dark Brown GRAVEL and Sand, trace	0
					Ont, have only, have only, wet.	
2					Native - Gray/Black Silty CLAY, trace Gravel, trace Sand, wet.	
						0
3					4 1 1	
4					4	
4	S-2		4 - 8	20	4	0.6
5						
6					4 1 1	
7					4	0.6
					4	
8						
	S-3		8 - 12	100		0.4
9						
10					Grades to: Brown, moist.	
10					4	0
11					1	0
]	
12	-					
	S-4		12 - 16	100		0
13					Gradest to: moist/wet.	
14						
]	0
15						
10					4	
16					End of soil probe at 16 feet below ground surface	
17					Lind of soil probe at to reet below ground surface.	
18						
					4 1 1	
19					4	
20					4	
S -	Split Spo	on Sa	ample	NOTES: MiniRA	E 3000 was used to field screen and headspace soil samples.	
C -	Rock Co	re Sa	mple	bgs = Be	elow ground surface. ppm = parts per million.	
Ger	neral	1) St	ratification li	nes represent appr	oximate boundry between soil types, transitions may be gradual.	
Not	es:	2) W	ater level re	adings have been i	made at times and under conditions stated, fluctuations of groundwater	
		ma	iy occur que	to other factors that	an mose present at the time measurements were made.	

CON DRIL	TRACTOR	2	TREC Environ Jim Agar	mental	BORING LOCATION See Site Plan GROUND SURFACE ELEVATION NM DATUM NA	
STA			3/30/2014	END DATE 3/31/14	GZA GEOENVIRONMENTAL REPRESENTATIVE T. Bohlen	
W	ATER LEV	EL DA	TA	CASING	TYPE OF DRILL RIG 540 UB Truck-Mounted Rig	
	DATE		WATER	CAOINO	OVERBURDEN SAMPLING METHOL Direct push	
					ROCK DRILLING METHOD NA	
D		-				•
E		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	0 V
Т	Sample N	umber	DEPTH	RECOVERY (%)		Ň
Н			(FT)			(ppm)
	S-1		0 - 4	70	Asphalt (5-inches). Fill - Brown SAND and Gravel, trace Silt, TREC air-knife refusal	0
1					trace Clay, moist.	
2					Native - Brown Sitty CLAY, trace Gravei, trace Sand, moist. SP-20 (in area of sketched LISTs)	
-						0
3						
					4 1 1	
4	S-2		4 - 8	50	Crades to: Cray maint/wat	0
5	0-2		U	50	Grades to. Gray, moist wet.	0
6						
_					4	0
					Grades to: Brown, moist.	
8						
	S-3		8 - 12	100		0
9					4 1 1	
10					4	
10						0
11						
					4 1 1	
12	S-4		12 - 16	100		0
13			.2 .0			U
14					4 1 1	
15					4	0
15					4	
16						
					End of soil probe at 16 feet below ground surface.	0
17					4	
18					4	
10						
19						
					4	
20 S -	Split Spa		amnla	NOTES: MiniPA	E 3000 was used to field screep and headspace soil samples	
C -	Rock Co	re Sa	mple	bas = Be	elow ground surface. ppm = parts per million.	
Ger	neral	1) St	ratification li	nes represent appr	oximate boundry between soil types, transitions may be gradual.	
Not	es:	2) W	ater level rea	adings have been i	made at times and under conditions stated, fluctuations of groundwater	
		ma	y occur due	to other factors that	an those present at the time measurements were made.	

CON DRII	ITRACTOR	2	TREC Environ	mental	BORING LOCATION See Site Plan GROUND SURFACE ELEVATION NM DATUM NA	
STA	RT DATE		3/31/2014	END DATE 3/31/14	GZA GEOENVIRONMENTAL REPRESENTATIVE T. Bohlen	
W	ATER LEV	EL DA	TA		TYPE OF DRILL RIG 540 UB Truck-Mounted Rig	
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long	
D E		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	0
Р Т	Sample N	umber	DEPTH	RECOVERY (%)		M
п	S-1		0 - 4	80	Asphalt (5-inches). Fill - Dark Brown/Grav SAND and	(ppm)
1					Gravel, trace Silt, trace Clay, moist.	•
					Fill (reworked native material) - Gray/Black Silty CLAY, trace	
2					Gravel, trace Sand, moist.	
3					- I I'	2.4
0					Concrete (2-inches).	
4					Fill - Black fine SAND, trace Gravel, trace Silt, trace Clay, moist.	
	S-2		4 - 8	100	Native - Brown Silty CLAY, trace Gravel, trace Sand, moist. Black	2.6
5					discoloration and petroleum odor observed.	
6					End of black discoloration/petroleum odor.	
						0
7						
					4	
8	S-3		8 - 12	100		0
9						0
10						
11						0
12						
	S-4		12 - 16	100		0
13					4	
14						
						0
15						
16						
10					End of soil probe at 16 feet below ground surface.	
17						
18						
10					4	
13					1	
20					<u>1 </u>	
S -	Split Spo	on Sa	ample	NOTES: MiniRA	E 3000 was used to field screen and headspace soil samples.	
U - Ger	KOCK CO	re Sa	mple ratification li	bgs = Be	elow ground surface. ppm = parts per million.	
Not	es:	2) W	ater level re	adings have been i	made at times and under conditions stated. fluctuations of groundwater	
		, ma	y occur due	to other factors that	an those present at the time measurements were made.	

CON DRIL	ITRACTOF _LER	R	TREC Environ Jim Agar	mental	BORING LOCATION See Site Plan GROUND SURFACE ELEVATION NM DATUM NA	
STA	RT DATE		3/31/2014	END DATE 3/31/14	GZA GEOENVIRONMENTAL REPRESENTATIVE T. Bohlen	
W	ATER LEV	EL DA	ΤΑ		TYPE OF DRILL RIG 540 UB Truck-Mounted Rig	
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long	
					ROCK DRILLING METHOD NA	
D						
Е		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	0
P	<u> </u>					V
і н	Sample N	umber	DEPTH (FT)	RECOVERY (%)		M
	S-1		0 - 4	80	Asphalt (5-inches). Fill - Dark Brown/Gray/Black SAND	(ppm) 0
1					and Gravel, trace Silt, trace Clay, moist.	
					Native - Gray/Black Silty CLAY, trace Gravel, trace Sand, moist.	
2						
2						0
3					Grades to: Brown.	
4						
	S-2		4 - 8	100		0
5						
6						
0						0
7						
8	6.2		0 10	100		0
٩	3-3		0-12	100		0
Ŭ						
10						
						0
11						
12						
	S-4		12 - 16	100		0
13						
14						0
15			L		1	-
16						
17					End of soil probe at 16 feet below ground surface.	
17						
18						
19					4	
20					4	
S -	Split Spa	on Sa	ample	NOTES: MiniRAI	E 3000 was used to field screen and headspace soil samples.	
- C	Rock Co	re Sa	mple	bgs = Be	elow ground surface. ppm = parts per million.	
Ger	neral	1) St	ratification li	nes represent appr	oximate boundry between soil types, transitions may be gradual.	
Not	es:	2) W	ater level rea	adings have been i	nade at times and under conditions stated, fluctuations of groundwater	
		611	iy occur due	to other ractors the		

CON DRIL	TRACTOF	R	TREC Environ Jim Agar	mental	BORING LOCATION See Site Plan GROUND SURFACE ELEVATION NM DATUM NA	
STA	RT DATE		3/31/2014	END DATE 3/31/14	GZA GEOENVIRONMENTAL REPRESENTATIVE T. Bohlen	
W	ATER LEV	EL DA	ТА		TYPE OF DRILL RIG 540 UB Truck-Mounted Rig	
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long	
	#######	17:45	Dry	1" PVC		
D E		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	0
P	Somela N	umbor	DEDTU		4	V
Н	Sample N	unibei	(FT)	RECOVERT (%)		IVI (ppm)
	S-1		0 - 4	90	Asphalt (5-inches). Fill - Dark Brown fine to coarse SAND 1-inch diameter micro-	0.3
1					(3-inches).	
					Native - Brown Silty CLAY, trace Gravel, trace Sand, moist. roadbox.	
2					Bentonite chips from	07
3					Grades to: Brown Biser pipe from 0 to 4	0.7
0					feet bgs.	
4						
	S-2		4 - 8	100	10-slot screen from 4 2	20.7
5					to 18.9 feet bgs.	
6					Solvent-like odol observed.	
0					3 to 18.9 feet bgs. 2	20.5
7						
8			0.40	100	4 ,	~ ~
0	5-3		8-12	100	-1 1	8.8
9					4	
10						
					5	51.2
11					4 1 1	
12					4	
12	S-4		12 - 16	10		1.3
13						-
14					4	
15					- ⁷	1.3
10					4	
16]	
	S-5		16-19	100	Grades to: moist/wet.	68
17					4	
19					4	32
10					Bottom of well at	52
19					18.9-feet bgs.	
					Soil probe refusal at 19 feet bgs.	
20		_				
S - 1 C	Split Spc	on Sa	ample mple	NOTES: MiniRA	E 3000 was used to field screen and headspace soil samples.	
Ger	neral	<u>1) St</u>	ratification li	nes represent appr	roximate boundry between soil types, transitions may be gradual	
Not	es:	2) W	ater level re	adings have been i	made at times and under conditions stated, fluctuations of groundwater	
		ma	y occur due	to other factors that	an those present at the time measurements were made.	

CON DRIL	DNTRACTOR TREC Environmental RILLER Jim Agar			mental	BORING LOCATION See Site Plan GROUND SURFACE ELEVATION NM DATUM NA	
STA	RT DATE		3/31/2014	END DATE 3/31/14	GZA GEOENVIRONMENTAL REPRESENTATIVE T. Bohlen	
W	ATER LEV	EL DA	TA		TYPE OF DRILL RIG 540 UB Truck-Mounted Rig	
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long	
D E		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	0
Р Т Н	Sample N	umber	DEPTH (FT)	RECOVERY (%)		M (ppm)
	S-1		0 - 4	80	Asphalt (5-inches). Fill - Dark Brown SAND and Gravel, trace	4.5
1					Silt, trace Clay, trace Slag, moist.	
					Native - Brown Silty CLAY, trace Gravel, trace Sand, moist.	
2					Crades to Cray	0.2
З					Grades ID. Gray.	0.2
Ŭ						
4					Grades to: Brown.	
	S-2		4 - 8	100		17.1
5					4	
6						
						1.5
7						
					4	
8	S-3		8 - 12	100	Solvent-like odor observed.	25.6
q	0-0		0-12	100		25.0
Ŭ						
10						
					4 1 1	8.7
11					4	
12						
	S-4		12 - 16	100	End of solvent-like odor.	2.5
13						
					4 1 1	
14						0
15					1 1 1	U
16						
					End of soil probe at 16 feet below ground surface.	
17					4	
18					4 1 1	
]	
19					4 1 1	
-	ļ				4 1 1	
20 S -	Snlit Sna		amnla	NOTES: MiniPA	E 3000 was used to field screen and headenace soil samples	
с-	Rock Co	re Sa	mple	bas = Be	elow ground surface. ppm = parts per million.	
Ger	neral	1) St	ratification li	nes represent appr	oximate boundry between soil types, transitions may be gradual.	
Not	es:	2) W	ater level re	adings have been i	made at times and under conditions stated, fluctuations of groundwater	
		ma	y occur due	to other factors that	an those present at the time measurements were made.	

CON DRIL	TREC Environmental RILLER Jim Agar			mental	BORING LOCATION See Site Plan GROUND SURFACE ELEVATION NM DATUM NA	
STA	RT DATE		3/31/2014	END DATE 3/31/14	GZA GEOENVIRONMENTAL REPRESENTATIVE T. Bohlen	
W	ATER LEV	EL DA	ТА		TYPE OF DRILL RIG 540 UB Truck-Mounted Rig	
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long	
D				•		
Е		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	0
P T	Sampla N	umbor	DEDTU		4 ,	V
H	Sample N	unibei	(FT)	RECOVERT (%)		IVI
	S-1		0 - 4	90	Asphalt (5-inches). Fill - Dark Brown SAND and Gravel, trace 3	3.5
1					Silt, trace Clay, moist	
					Native - Gray Silty CLAY, trace Gravel, trace Sand, moist.	
2					Gray discoloration.	14
3					Grades to: Brown.	<i>.</i> .т
4				100	4	
F	S-2		4 - 8	100).2
5					4 1 1	
6						
).2
7					4 1 1	
8					4 1 1	
	S-3		8 - 12	100] 0).1
9]	
10					4 1 1	
10						0
11					1 1	•
]	
12						
10					End of soil probe at 12 feet below ground surface.	
13			L		4	
14]	
15					4 1 1	
16			L		4	
					1	
17					4 1 1	
40					4	
18					4 1 1	
19					1	
					4 1 1	
20	Colit Cr -				E 2000 was used to field arresp and handstass asil semples	
ъ- С-	Split Spc Rock Co	re Sa	ampie mole	bas = B	c SUUD was used to field screen and neadspace soil samples. elow ground surface, ppm = parts per million.	
Ger	neral	1) St	ratification li	nes represent appr	roximate boundry between soil types, transitions may be gradual.	
Not	es:	2) W	ater level re	adings have been i	made at times and under conditions stated, fluctuations of groundwater	
		ma	y occur due	to other factors that	an those present at the time measurements were made.	

CONTRACTOR TREE		TREC Environmental Jim Agar		BORING LOCATION See Site Plan GROUND SURFACE ELEVATION NM DATUM NA		
STA	RT DATE		3/31/2014	END DATE 3/31/14	GZA GEOENVIRONMENTAL REPRESENTATIVE T. Bohlen	
W	ATER LEV	EL DA	ТА		TYPE OF DRILL RIG 540 UB Truck-Mounted Rig	
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long	
D						
Е		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES C	С
Р	_					/
Т	Sample N	umber	DEPTH	RECOVERY (%)	N	Л
п	S-1		(- 1)	100	Asphalt (4-inches) Fill - Dark Brown SAND and Gravel trace) (mc
1	01			100	Silt, trace Clay, trace Slag, moist.	, ,
					Native - Brown Silty CLAY, trace Gravel, trace Sand, moist.	
2						
					C)
3						
4					4	
	S-2		4 - 8	100		0
5						
6						0
7					-	Ś
8						
	S-3		8 - 12	100	C)
9						
10					-	
						0
11						
12					End of soil probe at 12 feet below around surface	
13					End of son probe at 12 reer below ground surface.	
.0	L				1	ľ
14						
					4 1 1	
15					4	ľ
16					4	
					j	
17						
					4 1 1	
18					4	ľ
19					4	ľ
]	
20]	
S -	Split Spc	on S	ample	NOTES: MiniRA	E 3000 was used to field screen and headspace soil samples.	
С - Саг	KOCK CO	1) Se	imple tratification ^{li}	bgs = Be	elow ground surface. ppm = parts per million.	
Not	es:	2) W	ater level re	adings have been i	made at times and under conditions stated. fluctuations of groundwater	
		ma	ay occur due	to other factors that	an those present at the time measurements were made.	

CON DRIL	ONTRACTOR TREC Environm RILLER Justin Hofschn			mental neider	BORING LOCATION See Site Plan GROUND SURFACE ELEVATION NM DATUM NA	-			
STA	RT DATE		5/8/2014	END DATE 5/8/2014	GZA GEOENVIRONMENTAL REPRESENTATIVE T. Bohlen	-			
W	ATER LEV	EL DA	TA		TYPE OF DRILL RIG	_			
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long				
					OVERBURDEN SAMPLING METHOI Direct push	-			
					ROCK DRILLING METHOD NA	-			
		c				0			
P		0		MATION		v			
T	Sample N	umber	DEPTH	RECOVERY (%)		M			
Н			(FT)			(ppm)			
	S-1		0 - 4	40	Asphalt (4-inches). Fill - Gray GRAVEL and Sand, moist.	2.5			
1									
					4				
2					4				
2					4	0.2			
3					4				
4					Fill - Brown GRAVEL and Sand, trace Silt, trace Clay, moist.				
	S-2		4 - 8	30		1.3			
5									
					4				
6					4				
7					4	0			
'					-				
8					Grades to: wet.				
	S-3		8 - 12	90	Native - Brown Silty CLAY, trace Gravel, trace Sand, moist.	0			
9									
10					4				
					4	0			
11					-				
12					4				
	S-4		12 - 16	100		0			
13									
14					4				
15					4	U			
15					4				
16					1				
					End of soil probe at 16 feet below ground surface.				
17]				
18					4				
10					4				
19					4				
20					1				
S - 1	Split Spo	on Sa	ample	NOTES: MiniRA	E 3000 was used to field screen and headspace soil samples.	-			
C -	Rock Co	re Sa	mple	bgs = Be	elow ground surface. ppm = parts per million.				
Ger	neral	1) St	ratification li	nes represent appr	oximate boundry between soil types, transitions may be gradual.				
Not	es:	2) W	ater level re	adings have been i	made at times and under conditions stated, fluctuations of groundwater				
	may occur due to other factors than those present at the time measurements were made.								

CON DRII	ITRACTOR TREC Environmental			mental	BORING LOCATION See Site Plan GROUND SURFACE ELEVATION NM DATLIM NA	_				
STA	RT DATE		5/8/2014	END DATE 5/8/2014	GZA GEOENVIRONMENTAL REPRESENTATIVE T. Bohlen	-				
W	ATER LEVI	EL DA	ТА		TYPE OF DRILL RIG					
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long					
					OVERBURDEN SAMPLING METHOL Direct push					
					ROCK DRILLING METHOD NA	_				
р										
E		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	0				
Р						V				
Т	Sample N	umber	DEPTH	RECOVERY (%)		М				
Н	0.4		(FT)	50		(ppm)				
1	5-1		0 - 4	50	Asphalt (5-inches). Fill - Gray GRAVEL and Sand, moist.	0.8				
2										
						0.5				
3					Fill Brown CBAV/EL and Sand trace Cilt trace Clay maint					
4					Fill - Brown GRAVEL and Sano, trace Silt, trace Clay, moist.					
	S-2		4 - 8	10		0.5				
5										
					4					
6					4	12.0				
7						12.0				
					Fill - Brown fine to coarse Pea Stone, wet. Petroleum odor.					
8										
	S-3		8 - 12	100	4	2.3				
9					4					
10					Native - Brown Silty CLAY, trace Gravel, trace Sand, moist. No					
					petroleum odor.	0				
11										
10					4					
12	S-4		12 - 16	100		0				
13										
14					4					
15					4	0				
10										
16										
					End of soil probe at 16 feet below ground surface.					
17					4					
19					4 1					
10					1					
19]					
_					4 1					
20 S	Split Cr -		omolo		E 2000 was used to field earoon and bacdaness asil complete					
о- С-	Spiit Spo Rock Co	ion Sa re Sa	ampie mple	bas = Be	= source was used to nero screen and neadspace soil samples. elow ground surface, ppm = parts per million.					
Ger	neral	1) St	ratification li	nes represent appr	oximate boundry between soil types, transitions may be gradual.					
Not	es:	2) W	ater level re	adings have been r	nade at times and under conditions stated, fluctuations of groundwater					
	may occur due to other factors than those present at the time measurements were made.									

CON DRIL	ONTRACTOR TREC Enviro		TREC Environ Justin Hofschr	mental leider	BORING LOCATION See Site Plan GROUND SURFACE ELEVATION NM DATUM NA			
STA	RT DATE		5/8/2014	END DATE 5/8/2014	GZA GEOENVIRONMENTAL REPRESENTATIVE T. Bohlen			
W	ATER LEV	EL DA	TA	0.00000		_		
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long	-		
						-		
						-		
D				L.				
Е		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	0		
Ρ						V		
Т	Sample N	umber	DEPTH	RECOVERY (%)		М		
Н	0.4		(FT)	00	Assistant (Simples) Still Denois ODAV(Stand Oracle sector	(ppm)		
4	S-1		0 - 4	60	Asphalt (5-inches). Fill - Brown GRAVEL and Sand, moist.	2.6		
					•			
2								
						2.6		
3								
4	6.2		1 0	00	Native - Dark Brown/Gray Silty CLAY, trace Gravel, trace Sand,	0.0		
5	3-2		4-0	90	moist.	8.6		
Ŭ								
6								
						0		
7								
Q					Grades to: Brown.			
0	S-3		8 - 12	100		0		
9								
10								
11						0		
12								
					Refusal at 12 feet below ground surface.			
13					4			
					4			
14					4 1			
15	<u> </u>				1			
]			
16					4			
					4 1			
17					4 1			
18	<u> </u>				1			
]			
19								
					4 1			
20 S	Split Spa	on			2000 was used to field screep and headeness pail complete			
с-	Spiit Sp0 Rock Co	re Sa	ample	bas = Be	2 soud was used to nerd screen and neadspace soil samples.			
Ger	neral	1) St	ratification li	nes represent appr	oximate boundry between soil types, transitions may be gradual.			
Not	es:	2) W	ater level real	adings have been r	nade at times and under conditions stated, fluctuations of groundwater			
		ma	ay occur due	to other factors that	in those present at the time measurements were made.			

CON DRIL	ONTRACTOR TREC Environme RILLER Justin Hofschneid			mental leider	BORING LOCATION See Site Plan GROUND SURFACE ELEVATION NM DATUM NA	-
STA	RT DATE		5/8/2014	END DATE 5/8/2014	GZA GEOENVIRONMENTAL REPRESENTATIVE T. Bohlen	
W	ATER LEV			CASING	TYPE OF DRILL RIG	•
	DATE		WATER	CASING	OVERBURDEN SAMPLING METHOL Direct push	•
					ROCK DRILLING METHOD NA	•
						•
D E P		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	o v
Т Н	Sample N	umber	DEPTH (FT)	RECOVERY (%)		M (ppm)
	S-1		0 - 4	60	Asphalt (4-inches). Fill - Brown/Gray GRAVEL and Sand, trace	0.6
1					Silt, trace Clay, moist.	
2						0
3						0
Ŭ					Native - Dark Brown Silty CLAY, trace Gravel, trace Sand,	
4					moist.	
	S-2		4 - 8	100		0
5						
~						
0						0
7						Ŭ
8						
	S-3		8 - 12	100	Grades to: Brown.	0
9						
10						
10						0
11						Ŭ
12						
					Refusal at 12 feet below ground surface.	
13						
14						
15	1					
16						
17						
19					4	
10					1	
19					1	
20						
S -	Split Spo	on Sa	ample	NOTES: MiniRA	3000 was used to field screen and headspace soil samples.	
С- Саг	KOCK CO	1) St	mple	bgs = Be	elow ground sufface. ppm = parts per million.	
Not	es:	1) St 2) W	ater level re	adings have been r	nade at times and under conditions stated, fluctuations of aroundwater	
		ma	y occur due	to other factors that	in those present at the time measurements were made.	

CON DRIL	CONTRACTOR TREC Environm DRILLER Justin Hofschne		mental leider	BORING LOCATION See Site Plan GROUND SURFACE ELEVATION NM DATUM NA		
STA	RT DATE		5/8/2014	END DATE 5/8/2014	GZA GEOENVIRONMENTAL REPRESENTATIVE T. Bohlen	
W	ATER LEV	EL DA	TA		TYPE OF DRILL RIG	
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long	
					OVERBURDEN SAMPLING METHOL Direct push	
					ROCK DRILLING METHOD NA	
D						
E		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	0
Р						V
Т	Sample N	umber	DEPTH	RECOVERY (%)		М
Н			(FT)			(ppm)
4	S-1		0 - 4	20	Asphalt (4-inches). Fill - Gray GRAVEL and Sand, trace Silt	2
1					trace Clay, moist.	
2						
						0.2
3					Native - Brown Silty CLAY, trace Gravel, trace Sand, moist.	
					4	
4	S-2		4 - 8	70	Grades to: Dark Grav	0
5						ů
6						
					4	0
7					4	
8						
	S-3		8 - 12	50	Grades to: Brown.	0
9						
			-		4	
10					4	0
11					4	0
12						
					Refusal at 12 feet below ground surface.	
13					4	
14					4	
15]	
					4	
16					4	
17					4	
18						
					4 1	
19					4 1	
20					4 1	
S -	Split Spo	on Sa	ample	NOTES: MiniRAI	E 3000 was used to field screen and headspace soil samples.	
C -	Rock Co	re Sa	mple	bgs = Be	elow ground surface. ppm = parts per million.	
Ger	neral	1) St	ratification li	nes represent appr	oximate boundry between soil types, transitions may be gradual.	
Not	es:	2) W	ater level re	adings have been i	nade at times and under conditions stated, fluctuations of groundwater	
		illd	y occur uue		an mose present at the time measurements were made.	

CON DRIL	NTRACTOR TREC		TREC Environmental Justin Hofschneider		BORING LOCATION See Site Plan GROUND SURFACE ELEVATION NM DATUM NA			
STA	RT DATE		5/8/2014	END DATE 5/8/2014	GZA GEOENVIRONMENTAL REPRESENTATIVE T. Bohlen			
W.	ATER LEV			040000				
	DATE	TIVE	WATER	CASING	OVERBLIRDEN SAMPLING METHOL Direct push			
					ROCK DRILLING METHOD NA			
D E P		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	0 V		
Т Н	Sample N	umber	DEPTH (FT)	RECOVERY (%)		M (ppm)		
	S-1		0 - 4	60	Asphalt (5-inches). Fill - Brown/Gray GRAVEL and Sand, trace	6.7		
1					Slag, trace Silt, trace Clay, moist.			
					4			
2					4 1 1	3		
З					4 1 1	5		
Ŭ								
4								
	S-2		4 - 8	80		0.6		
5					Grades to: wet.			
6					Native - Dark Brown Silty CLAY, trace Gravel, trace Sand, moist			
Ŭ						1.6		
7								
8					Grades to: Brown.			
	S-3		8 - 10.5	50	4 1 1	0		
9					4			
10								
						0		
11					Refusal at 10.5 feet below ground surface.			
12					4 1 1			
13					4			
13					1			
14]			
					4 1 1			
15					4 1 1			
16					4			
10	<u> </u>				1 1			
17]			
18					4 1 1			
10					4 1 1			
19					4 1 1			
20					1			
S -	Split Spc	on S	ample	NOTES: MiniRAI	E 3000 was used to field screen and headspace soil samples.			
C -	Rock Co	re Sa	imple	bgs = Be	elow ground surface. ppm = parts per million.			
Ger	neral	1) St	ratification li	nes represent appr	oximate boundry between soil types, transitions may be gradual.			
Not	es:	2) W	ater level re	adings have been i	nade at times and under conditions stated, fluctuations of groundwater			
	may occur due to other factors than those present at the time measurements were made.							
CON DRIL	ITRACTOF LER	R	TREC Environ Justin Hofschr	mental neider	BORING LOCATION See Site Plan GROUND SURFACE ELEVATION NM_DATUM NA	_		
-------------	----------------------	-------	--------------------------------	-----------------------	--	-------		
STA	RT DATE		5/8/2014	END DATE 5/8/2014	GZA GEOENVIRONMENTAL REPRESENTATIVE T. Bohlen	_		
W	ATER LEV	EL DA	ТА	1	TYPE OF DRILL RIG	_		
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long	-		
						-		
						-		
D								
E		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	0		
Р						V		
Т	Sample N	umber	DEPTH	RECOVERY (%)		М		
Н			(FT)			(ppm)		
4	S-1		0 - 4	50	Asphalt (4-inches). Fill - Gray GRAVEL and Sand, trace Silt,	51.3		
1					trace Clay, moist.			
2								
						23.8		
3]			
					Black Staining/Sheen (2-inches), wet. Petroleum odor.			
4	0.0		4.0	100	Black Silty CLAY, trace Gravel, trace Sand, moist. Petroleum			
5	5-2		4 - 8	100	Odor.	0.9		
Э					Grades to. Brown.			
6								
					Grades to: No petroleum odor.	0.7		
7								
					4			
8	6.2		0 11	100	4			
0	5-3		8 - 11	100	4	2.2		
9								
10								
11								
					Refusal at 11 feet below ground surface.			
12					4			
40					4			
13					-			
14								
15					1 I			
					4 1			
16					4			
17					4 1			
17								
18					1			
]			
19					4 1			
~~					4			
20 S	Split Spa		amplo		E 2000 was used to field screep and headenage soil complex	1		
с- С-	Spiit Sp0 Rock Co	re Sa	ampie mple	bas = Be	Source was used to new screen and neauspace soil samples. Source and surface, ppm = parts per million.			
Ger	neral	1) St	ratification li	nes represent appr	oximate boundry between soil types, transitions may be gradual.			
Not	es:	2) W	ater level re	adings have been r	nade at times and under conditions stated, fluctuations of groundwater			
		ma	y occur due	to other factors that	an those present at the time measurements were made.			

CON DRIL	ITRACTOF .LER	R	TREC Environ Justin Hofschr	mental leider	BORING LOCATION See Site Plan GROUND SURFACE ELEVATION NM_DATUM NA	-
STA	RT DATE		5/8/2014	END DATE 5/8/2014	GZA GEOENVIRONMENTAL REPRESENTATIVE T. Bohlen	
W	ATER LEV	EL DA		04.01010		-
	DATE	TIME	WATER	CASING		-
					ROCK DRILLING METHOD NA	-
						•
DE		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	0
Р Т Н	Sample N	umber	DEPTH (FT)	RECOVERY (%)		V M (ppm)
	S-1		0 - 4	100	Asphalt (4-inches). Fill - Gray GRAVEL and Sand, trace Silt,	5.3
1					trace Clay, moist.	
2					Native - Brown Slity CLAY, trace Gravel, trace Sand, moist.	0
3						Ŭ
4						
F	S-2		4 - 8	100		0
5						
6						
						0
7						
8						
Ŭ	S-3		8 - 11.5	100		0
9						
10						
10						
11						
12					Refusal at 11.5 feet below ground surface.	
12					- I	
13						
14]	
					4	
15					4	
16					1	
17					4	
10						
10					1	
19						
					4	
20 S	Split Spa				2000 was used to field screen and headenage sell semples	
с- С-	Spiit Spo Rock Co	re Sa	ampie Imple	bas = Be	= 5000 was used to neid screen and neadspace soil samples. elow ground surface, ppm = parts per million.	
Ger	neral	1) St	ratification li	nes represent appr	oximate boundry between soil types, transitions may be gradual.	
Not	es:	2) W	ater level re	adings have been r	nade at times and under conditions stated, fluctuations of groundwater	
		ma	ay occur due	to other factors that	in those present at the time measurements were made.	

CON DRIL	ITRACTOF .LER	8	TREC Environ Justin Hofschr	mental leider	BORING LOCATION See Site Plan GROUND SURFACE ELEVATION NM DATUM	
STA	RT DATE		5/9/2014	END DATE 5/9/2014	GZA GEOENVIRONMENTAL REPRESENTATIVE T. Bohlen	
W	ATER LEV			CARING	TYPE OF DRILL RIG	
	DATE		WAIER	CASING		
D						
Е		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	0
Р			•			V
Т	Sample N	umber	DEPTH	RECOVERY (%)		М
Н			(FT)			(ppm)
	S-1		0 - 4	85	Asphalt (4-inches). Fill - Gray GRAVEL and Sand, trace Silt,	0
1					Trace Clay, molst. Grades to: wer (bottom z-inches).	
2					Native - blowin Sity CEAT, trace Gravel, trace Salid, moist.	
-						0
3						
4						
_	S-2		4 - 8	100	4 1 1	0
5						
6						
Ū						0
7						
8						
	S-3		8 - 12	100		0
9						
10						
10						0
11						
12						
	S-4		12 - 16	100		0
13					4 1 1	
1/						
14						0
15					1	
16					<u> </u>	
					Refusal at 16 feet below ground surface.	
17					4 1 1	
10					4	
10					4	
19			1		1	
]	
20						
S -	Split Spc	on S	ample	NOTES: MiniRAI	E 3000 was used to field screen and headspace soil samples.	
C -	Rock Co	re Sa	mple	bgs = Be	elow ground surface. ppm = parts per million.	
Ger	ieral	1) SI	ratification li	nes represent appr	oximate boundry between soil types, transitions may be gradual.	
INUL	63.	∠) vv m≈	ater level le	to other factors the	nace a times and under conditions stated, nucluations of groundwater an those present at the time measurements were made	
		1110	., 55551 440			

CON DRIL	ITRACTOR .LER	2	TREC Environ Justin Hofschr	mental neider	BORING LOCATION See Site Plan GROUND SURFACE ELEVATION NM DATUM NA	_
STA	RT DATE		5/9/2014	END DATE 5/9/2014	GZA GEOENVIRONMENTAL REPRESENTATIVE T. Bohlen	
W	ATER LEV		TA	040000		_
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long	_
						_
						-
D E		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	0
Ρ						V
Т Н	Sample N	umber	DEPTH (FT)	RECOVERY (%)		M (ppm)
	S-1		0 - 4	40	Asphalt (4-inches). Fill - Brown/Gray GRAVEL and Sand, trace	5.7
1					Silt, trace Clay, moist.	
					4	
2					4	0
2					4	0
3						
4					Native - Gray Silty CLAY, trace Gravel, trace Sand, moist.	
	S-2		4 - 8	100		0
5						
6						0
7						0
'						
8						
	S-3		8 - 11.7	100		0
9						
10					Crades to: Prove	
11					Glades to. blown.	
12						
					Refusal at 11.7 feet below ground surface.	
13						
14					4	
15					4 1	
13					1	
16					j l	
]	
17					4	
18					4	
10					4 1	
.5					1	
20					<u>1 </u>	
S -	Split Spo	on Sa	ample	NOTES: MiniRA	E 3000 was used to field screen and headspace soil samples.	
C -	Rock Co	re Sa	mple	bgs = Be	elow ground surface. ppm = parts per million.	
Ger	neral	1) St	ratification li	nes represent appr	oximate boundry between soil types, transitions may be gradual.	
INOT	65.	∠) VV	alei ievei lei	auings nave been f	nace at times and under conditions stated, iluctuations of groundwater	
		110	y occur ude		an anoso procent at the time meddatements were made.	

CON DRIL	ITRACTOF .LER	R	TREC Environ Justin Hofschr	mental neider	BORING LOCATION See Site Plan GROUND SURFACE ELEVATION NM_DATUM NA	-
STA	RT DATE		5/9/2014	END DATE 5/9/2014	GZA GEOENVIRONMENTAL REPRESENTATIVE T. Bohlen	
W	ATER LEV	EL DA	TA			-
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long	-
						-
						-
D						
Е		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	0
Ρ						V
Т	Sample N	umber	DEPTH	RECOVERY (%)		М
Н			(FT)			(ppm)
	S-1		0 - 4	80	Asphalt (4-inches). Fill - Brown/Gray GRAVEL and Sand, trace	20.7
1					Sidy, trace Siti, trace Clay, filloist.	
2					Native - blown Sity CLAT, trace Gravel, trace Sand, moist.	
_						0.6
3						
					4	
4				100	4	
_	S-2		4 - 8	100	4	13.6
5						
6						
						22.5
7						
					4	
8			0 11 0	100	4	10 5
0	5-3		8 - 11.9	100		13.5
9						
10						
						13.9
11						
					-	
12						
40					Refusal at 11.9 feet below ground surface.	
13					4 I	
14					1	
					j l	
15						
					4	
16					4	
17					4 1	
17						
18			1		1	
]	
19					4 1	
~~					4	
20 S	Split Spa		amplo		E 2000 was used to field screep and headenage soil complex	
о- С-	Spiil Spa Rock Co	re Sa	ampie Imple	has = Re	2 SOUD was used to here screen and neadspace soil samples. 2 soud was used to here screen and neadspace soil samples.	
Ger	neral	1) St	ratification li	nes represent appr	oximate boundry between soil types, transitions may be gradual.	
Not	es:	2) W	ater level re	adings have been r	nade at times and under conditions stated, fluctuations of groundwater	
		ma	ay occur due	to other factors that	an those present at the time measurements were made.	

CON DRIL	ITRACTOF _LER	R	TREC Environ Justin Hofschr	mental leider	BORING LOCATION See Site Plan GROUND SURFACE ELEVATION NM DATUM NA	-
STA	RT DATE		5/9/2014	END DATE 5/9/2014	GZA GEOENVIRONMENTAL REPRESENTATIVE T. Bohlen	
W	ATER LEV	EL DA	ΤΑ		TYPE OF DRILL RIG	_
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long	-
						-
					<u></u>	-
D E		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	0
Р Т Н	Sample N	umber	DEPTH (FT)	RECOVERY (%)		V M (ppm)
	S-1		0 - 4	20	Asphalt (4-inches). Fill - Brown/Gray GRAVEL and Sand, trace	9.3
1					Slag, trace Silt, trace Clay, moist.	
2					•	121
3						
4					Black Staining, Sheen, Product, and Petroleum odor. Wet.	
_	S-2		4 - 8	90		177
5					Native - Brown Silty CLAY trace Gravel trace Sand moist	
6					······································	
						23.3
7						
8						
0	S-3		8 - 11.5	100		4.0
9						
10						
11						
12					Refusal at 11.5 feet below ground surface.	
40						
13						
14						
15					4 1	
16			ļ		1	
17						
18					4 1	
]	
19						
-					4 1	
20 S -	Split Spc	on S	ample	NOTES MiniRA	I I I I I I I I I I I I I I I I I I I	1
C -	Rock Co	re Sa	mple	bgs = Be	elow ground surface. ppm = parts per million.	
Ger	neral	1) St	ratification li	nes represent appr	oximate boundry between soil types, transitions may be gradual.	
Not	es:	2) W	ater level real	adings have been r	nade at times and under conditions stated, fluctuations of groundwater	
		ma	iy occur aue	to other factors that	in mose present at the time measurements were made.	

CON DRIL	ITRACTOR LER	2	TREC Environ Justin Hofschr	mental	BORING LOCATION See Site Plan GROUND SURFACE ELEVATION NM DATUM NA	
STA	RT DATE		5/9/2014	END DATE 5/9/2014	GZA GEOENVIRONMENTAL REPRESENTATIVE T. Bohlen	_
W	ATER LEV	EL DA	ТА		TYPE OF DRILL RIG	
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long	
					OVERBURDEN SAMPLING METHOI Direct push	
					ROCK DRILLING METHOD NA	_
_						
DE		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	0
Р Т Ц	Sample N	umber	DEPTH	RECOVERY (%)		M
	S-1		0 - 4	10	Asphalt (4-inches). Fill - Brown/Grav GRAVEL and Sand. trace	(ppm) 6.2
1					Slag, trace Silt, trace Clay, moist.	
2]	
						12.6
3					4	
4	S-2		4 - 8	10	Black Staining, Sneen, and Petroleum odor. Wet.	13.4
5	02		1.0	10	Native - Brown Silty CLAY, trace Gravel, trace Sand, moist.	10.4
Ŭ						
6]	
						1.6
7					4	
					4	
8	S-3		8 - 11 5	100	-	1 /
9	00		0 11.0	100	4	1.4
Ŭ						
10						
						1.4
11					-	
					Defended 44.5 feet below moved and feet	
12					Refusal at 11.5 feet below ground surface.	
13					4	
10						
14						
15					4 1	
4.0					4 1	
16					4	
17					1 I	
					1	
18]	
					4 I	
19					4	
					4 1	
20 C	Snlit Sna		amplo		E 3000 was used to field screen and headspace soil complex	
с-	Spiit Spo Rock Co	re Sa	mole	has = Be	Source was used to nero screen and neadspace soil samples. Source soil samples. Source and surface. ppm = parts per million	
Ger	neral	1) St	ratification li	nes represent appr	oximate boundry between soil types, transitions may be gradual.	
Not	es:	2) W	ater level re	adings have been r	made at times and under conditions stated, fluctuations of groundwater	
		ma	y occur due	to other factors that	an those present at the time measurements were made.	

CON DRIL	ITRACTOF _LER	2	TREC Environ Justin Hofschr	mental neider	BORING LOCATION See Site Plan GROUND SURFACE ELEVATION NM DATUM NA	_
STA	RT DATE		5/9/2014	END DATE 5/9/2014	GZA GEOENVIRONMENTAL REPRESENTATIVE T. Bohlen	
W	ATER LEV	EL DA	TA		TYPE OF DRILL RIG	
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long	_
						-
					ROCK DRILLING METHOD NA	_
D						
E		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	0
Р						V
т	Sample N	umber	DEPTH	RECOVERY (%)		М
Н	0.4		(FT)	100		(ppm)
4	S-1		0 - 4	100	Asphalt (4-inches). Fill - Brown/Gray GRAVEL and Sand, trace	24.7
1					Native - Brown Silty CLAY, moist.	
2						
]	3.1
3						
	ļ				4 1	
4	S-2		4 - 8	100	4	12
5						
6						
_					4	0.6
7					4	
8						
					End of soil probe at 8 feet below ground surface.	
9						
10					4	
11					4	
12						
13					4	
11					4 1	
14			L		1	
15]	
					4	
16					4 1	
17					4 1	
					1	
18]	
19					4 1	
20					4 1	
20 S -	Split Spc	on S	ample	NOTES MiniRAI	E 3000 was used to field screen and headspace soil samples	-
с -	Rock Co	re Sa	mple	bgs = Be	elow ground surface. ppm = parts per million.	
Ger	neral	1) St	ratification li	nes represent appr	oximate boundry between soil types, transitions may be gradual.	
Not	es:	2) W	ater level re	adings have been r	made at times and under conditions stated, fluctuations of groundwater	
		ma	iy occur due	to other factors that	an those present at the time measurements were made.	

CON DRIL	TRACTOR TREC Environmental LER Justin Hofschneider		mental	BORING LOCATION See Site Plan GROUND SURFACE ELEVATION NM DATUM	NA	-	
STA	RT DATE		5/9/2014	END DATE 5/9/2014	GZA GEOENVIRONMENTAL REPRESENTATIVE T. Bohlen		-
W	ATER LEV	EL DA	TA		TYPE OF DRILL RIG		_
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long		_
					OVERBURDEN SAMPLING METHOL Direct push		-
					ROCK DRILLING METHOD NA		-
D							
F		S	AMPI F INFOR	MATION	SAMPLE DESCRIPTION	NOTES	0
P							v
т	Sample N	umber	DEPTH	RECOVERY (%)			М
Н			(FT)				(ppm)
	S-1		0 - 4	100	Asphalt (4-inches). Fill - Brown/Gray GRAVEL and Sand, trace		3.9
1					Slag, trace Silt, trace Clay, moist.		
2					Native - Brown Silty CLAY, trace Gravel, trace Sand, moist.		
2					-		0.8
3							
4							
	S-2		4 - 8	100	-		1.2
5					4		
6					-		
0							1.4
7							
8							
					End of soil probe at 8 feet below ground surface.		
9					-		
10					-		
10					-		
11							
]		
12							
					-		
13					-		
1⊿					4 I		
.4	1		I		1		
15]		
					1 I		
16					4		
47					4		
17					4		
18			L		1		
]		
19							
					4		
20			ample		2000 was used to field errors and bender to the		
5- C-	Split Spo Rock Co	ion Sa re Sa	ampie mole	NUTES: MINIRAL	- SUUU was used to tield screen and neadspace soil samples slow dround surface _ ppm = parts per million	5.	
Ger	neral	1) St	ratification li	nes represent appr	oximate boundry between soil types. transitions may be grad	ual.	
Not	es:	2) W	ater level re	adings have been r	nade at times and under conditions stated, fluctuations of gro	oundwater	
		ma	y occur due	to other factors that	in those present at the time measurements were made.		

CON DRIL	ITRACTOR LER	ł	TREC Environ Justin Hofschr	mental	BORING LOCATION See Site Plan GROUND SURFACE ELEVATION NM DATUM NA	-
STA	RT DATE		5/9/2014	END DATE 5/9/2014	GZA GEOENVIRONMENTAL REPRESENTATIVE T. Bohlen	
W	ATER LEV	EL DA	TA		TYPE OF DRILL RIG	
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long	_
					OVERBURDEN SAMPLING METHOL Direct push	
					ROCK DRILLING METHOD NA	
D E		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	о
Р	<u> </u>				4	V
	Sample N	umper		RECOVERY (%)		IVI
п	S 1		(F1)	20	Apphalt (4 inchas) Fill Brown/Cray CBA\/EL and Sand trace	(ppm)
	5-1		0 - 4	30	Asphalt (4-incries). Fill - Blown/Gray GRAVEL and Sand, trace	0.3
1					Sidy, face Sift, face Cidy, moist.	
2						
2					4	2.1
3						
Ŭ					Grades to: Black staining, sheen, and petroleum odor.	
4						
	S-2		4 - 8	70	Native - Brown Silty CLAY, trace Gravel, trace Sand, moist.	18.8
5					Black staining and petroleum odor.	
6						
						62.8
7					-	
					4	
8	6.2		0 11 0	100		5.0
0	5-3		8 - 11.8	100	Grades to: No black staining or petroleum odor.	5.8
9					-	
10					-	
10					4	
11						
12						
					Refusal at 11.8 feet below ground surface.	
13						
]	
14						
15					4 1	
					4	
16					4 1	
17					4 I	
17						
18						
10						
19					1	
					1	
20						
S -	Split Spo	on Sa	ample	NOTES: MiniRA	E 3000 was used to field screen and headspace soil samples.	
C -	Rock Co	re Sa	mple	bgs = Be	elow ground surface. ppm = parts per million.	
Ger	neral	1) St	ratification li	nes represent appr	oximate boundry between soil types, transitions may be gradual.	
Not	es:	2) W	ater level re	adings have been i	made at times and under conditions stated, fluctuations of groundwater	
		ma	y occur due	to other factors that	an those present at the time measurements were made.	

CON DRIL	TRACTOR	ł	TREC Environ Justin Hofschr	mental neider	BORING LOCATION See Site Plan GROUND SURFACE ELEVATION NM_DATUM NA	_
STA	RT DATE		5/9/2014	END DATE 5/9/2014	GZA GEOENVIRONMENTAL REPRESENTATIVE T. Bohlen	_
W	ATER LEV	EL DA	ТА	T	TYPE OF DRILL RIG	_
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long	_
						-
						-
D						
E		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	0
Ρ						V
Т	Sample N	umber	DEPTH	RECOVERY (%)		М
Н			(FT)			(ppm)
4	S-1		0 - 4	90	Asphalt (4-inches). Fill - Brown/Gray GRAVEL and Sand, trace	0.2
1					Siit, trace Clay, moist.	
2					Native - Brown Silty CLAY, trace Gravel, trace Sand, moist.	
						0.1
3						
					4	
4	S-2		4 - 8	100	Grades to: Gray, petroleum odor	36.9
5	01				Grades to. Gray, perioleum duoi.	00.0
6						
					4	11.1
7					4	
8					4	
Ŭ	S-3		8 - 12	100	Grades to: Brown, no petroleum odor.	0.2
9						
					4	
10					4	0
11					4	0
12						
					End of soil probe at 12 feet below ground surface.	
13					4	
					4	
14					4	
15					1 1	
16					4 1	
17					4 1	
17					4	
18						
]	
19					4 1	
20					4	
_20 S -	Split Spa	on Sí	ample	NOTES MiniPA	I I I I I I I I I I I I I I I I I I I	1
с -	Rock Co	re Sa	mple	bgs = Be	elow ground surface. ppm = parts per million.	
Ger	neral	1) St	ratification li	nes represent appr	oximate boundry between soil types, transitions may be gradual.	
Not	es:	2) W	ater level re	adings have been r	nade at times and under conditions stated, fluctuations of groundwater	
		ma	y occur due	to other factors that	an those present at the time measurements were made.	

CON DRIL	ITRACTOF LER	2	TREC Environ Justin Hofschr	mental	BORING LOCATION See Site Plan GROUND SURFACE ELEVATION NM DATUM NA	_
STA	RT DATE		5/9/2014	END DATE 5/9/2014	GZA GEOENVIRONMENTAL REPRESENTATIVE T. Bohlen	
W	ATER LEV	EL DA	ТА	1	TYPE OF DRILL RIG	_
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long	_
						-
						-
D						
E		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	0
Ρ						V
Т	Sample N	umber	DEPTH	RECOVERY (%)		М
Н			(FT)			(ppm)
	S-1		0 - 4	60	Asphalt (4-inches). Fill - Brown/Gray GRAVEL and Sand, trace	0
1					Slag, trace Silt, trace Clay, moist.	
~					4	
2					4	0.4
3					Native - Brown Silty CLAY, trace Gravel, trace Sand, moist.	••••
4						
	S-2		4 - 8	100	Grades to: Gray.	0
5					4	
6					4	
0					4	0
7					Grades to: Brown.	Ŭ
8						
					End of soil probe at 8 feet below ground surface.	
9						
					4	
10					4	
11					4	
12						
13						
					4	
14					4	
15					4 1	
10					1	
16]	
17					4 1	
			ļ		4 1	
18			ļ		4 1	
19			ļ		1	
			L		1 1	
20						
S -	Split Spc	on Sa	ample	NOTES: MiniRAI	E 3000 was used to field screen and headspace soil samples.	
C -	Rock Co	re Sa	mple	bgs = Be	elow ground surface. ppm = parts per million.	
Ger	neral	1) St	ratification li	nes represent appr	oximate boundry between soil types, transitions may be gradual.	
INOT	es:	2) VV	aler level really occur due	to other factors the	nade at times and under conditions stated, fluctuations of groundwater	
		1110	iy occur ude		an mose present at the time measurements were made.	

CON DRIL	ITRACTOR .LER	!	TREC Environ Kurt Ballfaster	mental n	BORING LOCATION See Site Plan GROUND SURFACE ELEVATION NM DATUM NA	-			
STA	RT DATE		5/12/2014	END DATE 5/12/2014	GZA GEOENVIRONMENTAL REPRESENTATIVE J. Beninati	•			
W	ATER LEV	EL DA	ТА		TYPE OF DRILL RIG				
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long	-			
						-			
						-			
D				•					
Е		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	0			
Р	<u> </u>	<u> </u>				V			
Ч	Sample N	umber	DEPTH (FT)	RECOVERY (%)		M			
	S-1		0 - 4	30	Asphalt (5-inches). Fill - Gray GRAVEL and Sand, trace	0.3			
1					Silt, trace Clay, moist.				
					Fill - Brown fine to coarse SAND, some Gravel, little Silt, moist.				
2									
3						0.3			
5									
4									
	S-2		4 - 8	30	Native - Grayish Brown Silty CLAY, trace Gravel, trace Sand,	2.2			
5					moist.				
6									
						2.2			
7									
8	S-3		8 - 12	40	Grades to: Brown, trace organics	1.8			
9						1.0			
10					-				
11						1.8			
12									
	S-4		12 - 16	80		1.2			
13									
14									
						1.2			
15					-				
16									
10				1	End of soil probe at 16 feet below ground surface.				
17									
18									
19			ļ		1				
]				
20									
S -	Split Spo	on Sa	ample	NOTES: MiniRA	E 3000 was used to field screen and headspace soil samples.				
С- Ger	ROCK CO Deral	1) St	mple ratification li	Dgs = Be	aow ground surface. ppm = parts per million. oximate boundry between soil types, transitions may be gradual				
Not	es:	 s: 2) Water level readings have been made at times and under conditions stated, fluctuations of groundwater 							
		ma	y occur due	to other factors that	in those present at the time measurements were made.				

CON DRIL	TRACTOR	!	TREC Environ Kurt Ballfaster	mental n	BORING LOCATION See Site Plan GROUND SURFACE ELEVATION NM DATUM NA	•					
STA	RT DATE		5/12/2014	END DATE 5/12/2014	GZA GEOENVIRONMENTAL REPRESENTATIVE J. Beninati						
W	ATER LEVI	EL DA	TA		TYPE OF DRILL RIG						
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long						
					OVERBURDEN SAMPLING METHOL Direct push						
						•					
П											
E		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	о					
Р						V					
Т	Sample N	umber	DEPTH	RECOVERY (%)		М					
Н			(FT)			(ppm)					
	S-1		0 - 4	40	Asphalt (2-inches). Fill - Brown fine to coarse SAND, little Silt,	9.8					
1					Fill - Gravel, moist (to 8 below ground surface).						
2					Native - Reddish Brown Silty CLAY, trace Gravel, trace Sand,						
					moist.	9.8					
3											
4	S-2		4 - 8	100	Crades to: trace Cravel trace Sand	20					
5	02		+ 0	100	Glaues ID. Itale Glavel, Itale Salid.	2.5					
6											
						2.9					
7											
8											
Ŭ	S-3		8 - 12	100		5.2					
9											
10						10					
11						1.9					
12											
	S-4		12 - 16	100		0.3					
13											
14											
.4						0.2					
15											
16											
17					End of soil probe at 16 feet below ground sufface.						
17											
18											
19					4						
20					4						
20 S -	Split Spo	on Se	ample	NOTES MiniRAF	I I I I I I I I I I I I I I I I I I I	I					
С -	Rock Co	re Sa	mple	bgs = Be	elow ground surface. ppm = parts per million.						
Ger	neral	1) St	ratification li	nes represent appr	oximate boundry between soil types, transitions may be gradual.						
Not	es:	s: 2) Water level readings have been made at times and under conditions stated, fluctuations of groundwater									
		may occur due to other factors than those present at the time measurements were made.									

	NTRACTOR TREC Environmental LLER Kurt Ballfastern			mental	BORING LOCATION See Site Plan	-
STA	LER RT DATE		5/12/2014	END DATE 5/12/2014		-
W/			TA			
	DATE		WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long	-
					OVERBURDEN SAMPLING METHOL Direct push	-
					ROCK DRILLING METHOD NA	-
						-
D						
Е		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	0
Р						V
т	Sample N	umber	DEPTH	RECOVERY (%)		М
Н			(FT)			(ppm)
	S-1		0 - 4	40	Asphalt (2-inches). Fill - Gray SAND and Gravel, trace Silt,	5.1
1					moist.	
2					Native - Reddish Brown Silty CLAY, trace Gravel, trace Sand,	40.4
2					moist.	18.4
3					•	
л					4 1	
-	S-2		4 - 8	100		67
5						0.
6						
					Pungent odor.	4,554
7						
8						
	S-3		8 - 12	100	End pungent odor.	416
9						
10						074.0
						374.2
1.1.					•	
12						
12	S-4		12 - 16	100		364.4
13						
14						
]	371.8
15					1	
16	0		40.00	400	4	0.55
4-	5-5		16 - 20	100	4	352.8
17					4	
10					4	
10					4 1	51.5
10					۱	51.5
					1	
20	h		h		End of soil probe at 20 feet below ground surface.	
S -	Split Spo	on Sa	ample	NOTES: MiniRAE	= 3000 was used to field screen and headspace soil samples.	•
C - Rock Core Sample bgs = Below ground s					elow ground surface. ppm = parts per million.	
Ger	neral	1) St	ratification li	nes represent appr	oximate boundry between soil types, transitions may be gradual.	
Not	es:	2) W	ater level re	adings have been r	nade at times and under conditions stated, fluctuations of groundwater	
		ma	y occur due	to other factors that	in those present at the time measurements were made.	

Northtown Plaza Amherst, NY Phase II ESA

CON DRIL	TRACTOR LER	1	TREC Environ Kurt Ballfaster	mental n	BORING LOCATION See Site Plan GROUND SURFACE ELEVATION NM DATUM NA	-
STA	RT DATE		5/12/2014	END DATE 5/12/2014	GZA GEOENVIRONMENTAL REPRESENTATIVE J. Beninati	-
W	ATER LEV	EL DA	TA		TYPE OF DRILL RIG	_
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long	-
						-
						-
D						
Е		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	0
Ρ				T		V
Т	Sample N	umber	DEPTH	RECOVERY (%)		М
н	S-1		(FT) 0 - 4	40	Asphalt (4-inches) Fill - Gray SAND and Grayol, trace Silt	(ppm)
1	0-1		0 - 4	+0	moist	2.1
					Native - Dark Grayish Brown Silty CLAY, trace Gravel, trace	
2					Sand, moist. Grades to: Brown at 1.5 feet below ground	
					surface.	2.4
3						
1						
-	S-2		4 - 8	100		16.1
5						
6						07.0
7						67.9
'						
8						
	S-3		8 - 12	100		220.5
9						
10						
10						286.0
11						
12						
10	S-4		12 - 16	100		196.9
13						
14						
						263.6
15						
16						
10	S-5		16 - 20	100		331.7
17						
18						
10					- I	396.6
19						
20					End of soil probe at 20 feet below ground surface.	
S -	Split Spo	on Sa	ample	NOTES: MiniRAE	3000 was used to field screen and headspace soil samples.	
C -	Rock Co	re Sa	mple	bgs = Be	elow ground surface. ppm = parts per million.	
Ger	neral	1) St	ratification li	nes represent appre	oximate boundry between soil types, transitions may be gradual.	
INOT	es.	∠) VV ma	ater level re	auings nave been r	naue at times and under conditions stated, fluctuations of groundwater in those present at the time measurements were made	
1		1110	y occur ude		a mose present at the time measurements were made.	

Northtown Plaza Amherst, NY Phase II ESA

	TRACTOR	1	TREC Environ Kurt Ballfaster	mental n	BORING LOCATION See Site Plan GROUND SURFACE ELEVATION NM DATUM NA	-
STA			5/12/2014	END DATE 5/12/2014		
	DATE		WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long OVERBURDEN SAMPLING METHOI Direct push ROCK DRILLING METHOD NA	-
D E P		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	O V
т Н	Sample N	umber	DEPTH (FT)	RECOVERY (%)		M (ppm)
	S-1		0 - 4	100	Asphalt (6-inches). Fill - Gray SAND and Gravel, trace Silt,	2.7
1					moist. Brown Silty CLAY, trace Gravel, trace Sand, moist	
2						
3						3.8
4						
5	S-2		4 - 8	100		249.6
5						
6						357.1
7						
8	S-3		8 - 12	100		362.5
9						
10						
11						284.7
12						
13	S-4		12 - 16	100		447.7
14						
15						380.6
16						
10	S-5		16 - 20	100		389.9
17						
18						378.8
19						
20	0 11: 0	_			End of soil probe at 20 feet below ground surface.	
S - 3 C -	Split Spo Rock Co	on Sa re Sa	ample mple	NOTES: MiniRAE	= 3000 was used to field screen and headspace soil samples.	
Ger	neral	1) St	ratification li	nes represent appr	oximate boundry between soil types, transitions may be gradual.	
Not	es:	2) W ma	ater level re	adings have been r to other factors tha	nade at times and under conditions stated, fluctuations of groundwater in those present at the time measurements were made.	

CON DRIL	TRACTOR LER	ł	TREC Environ Kurt Ballfaster	mental n	BORING LOCATION See Site Plan GROUND SURFACE ELEVATION NM_DATUM NA	_
STA	RT DATE		5/12/2014	END DATE 5/12/2014	GZA GEOENVIRONMENTAL REPRESENTATIVE J. Beninati	
W	ATER LEV	EL DA	ТА		TYPE OF DRILL RIG	_
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long	_
						-
						-
D						
Е		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	0
Р						V
т	Sample N	umber	DEPTH	RECOVERY (%)		М
Н	0.4		(FT)	22		(ppm)
4	5-1		0 - 4	20	Asphalt (5-inches). Fill - Gray SAND and Gravel, moist.	0.8
					Brown Silty CLAY trace Gravel trace Sand moist	
2						
						0.8
3						
4	S-2		4 - 8	20		12
5			-	-		
6						
_						1.2
8						
	S-3		8 - 12	100		84.5
9						
	-					
10						60.7
11						00.7
12						
	S-4		12 - 16	100		7.3
13						
14						
						1.8
15						
	-					
16	S-5		16 - 20	100	End of soil probe at 20 feet below ground surface	
17	0-5		10 - 20	100	Lind of soil probe at 20 reet below ground surface.	
18]	
					4	378.8
19					4	
20					4 1	
S -	Split Spo	on Sa	ample	NOTES: MiniRA	E 3000 was used to field screen and headspace soil samples.	
C -	Rock Co	re Sa	imple	bgs = Be	elow ground surface. ppm = parts per million.	
Ger	neral	1) St	ratification li	nes represent appr	oximate boundry between soil types, transitions may be gradual.	
Not	es:	2) W	ater level re	adings have been r	nade at times and under conditions stated, fluctuations of groundwater	
		ma	ay occur due	to other factors that	in those present at the time measurements were made.	

CON DRIL	TRACTOR LER	ł	TREC Environ Kurt Ballfaster	mental n	BORING LOCATION See Site Plan GROUND SURFACE ELEVATION NM DATUM NA	-
STA	RT DATE		5/12/2014	END DATE 5/12/2014	GZA GEOENVIRONMENTAL REPRESENTATIVE J. Beninati	_
W	ATER LEV	EL DA	TA	0.101110		_
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long	-
					ROCK DRILLING METHOD NA	-
						-
D E		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	0
P T	Sample N	umber	DEPTH	RECOVERY (%)		V M
Н	6.1		(FT)	20	Apphalt (Gipphas) Fill Cray SAND and Crayel trace Sit	(ppm)
1	5-1		0 - 4	20	Asphalt (o-Inches). Fill - Gray SAND and Gravel, trace Slit,	3.4
					Brownish Gray Silty CLAY, trace Gravel, trace Sand, moist.	
2						
						6.8
3						
Δ						
	S-2		4 - 8	20		4.1
5						
6						5.8
7						
8	6.2		0 10	100		
٩	5-3		8-12	100		6.4
3						
10						
						7.3
11						
12						
	S-4		12 - 16	100		3.6
13						
14						
						3.3
15						
16						
10	S-5		16 - 20	100	End of soil probe at 20 feet below ground surface.	
17					,, _,, _	
18						270.0
19						318.8
]	
20						
S - 3	Split Spo	on \overline{S}	ample	NOTES: MiniRAE	3000 was used to field screen and headspace soil samples.	
U - Ger	rock CO eral	1) St	mple ratification li	Dgs = Be	now ground surface. ppm = parts per million.	
Not	es:	2) W	ater level real	adings have been r	nade at times and under conditions stated, fluctuations of groundwater	
		ma	y occur due	to other factors that	n those present at the time measurements were made.	

		ł	Natu	re's Way, Inc		BORING LOCATION See Location Plan					
			Steve	e Gingrich	4					_	
STA	RIDATE:	5/13/14	END	DATE: 5/19/1	4	GZA GEOENVIRONMENTA	L REPRESEN		/IB/TDS		
	DATE	TIN 4 5	WATERLE	/EL DATA	NOTEO			Acker AD 2		_	
	DATE	TIME	WATER	CASING	NOTES	CASING SIZE AND DIAMET	IER	6 '/4 HSAs/4-ir	nch and 3-inch steel casing	_	
							METHOD	ASTM 1586	1.	_	
						ROCK DRILLING METHOD		Not Applicab	le	_	
_										_	
D											
E			SAME	LE		SAMPLE DESCRIPTION		WELL	WELL	0	
P							INST	ALLATION	INSTALLATION	V	
Т	BLOWS	NO.	DEPTH	N-VALUES	RECOVERY		DI	AGRAM	DESCRIPTION	M	
н	(/6")	_	(FT)	/RQD	(%)					(ppm)	
	-	S-1	0-2	28	5	Asphalt to approximately 0.5 ft bgs.					
1	20					Fill - Dark Gray SAND and Gravel,			Flush-mount road box.		
	8					trace Silt, wet.		4	 Portland cement 	0.1	
2	4										
	7	S-2	2-4	14	20	Native - Brown Silty CLAY, trace			Nominal 10" Borehole	0.1	
3	6					fine to medium Sand, moist.			from 0 to 22 ft bgs.		
	8										
4	9										
	4	S-3	4-6	18	80					47	
5	9										
	9										
6	14								Cement and bentonite		
	8	S-4	6=8	39	80	Grades to:trace fine to coarse			grout from 1.5 to 22 ft	187	
7	19					Sand.			bgs.		
	20										
8	16	-				-			 Schedule 40 PVC well 		
	6	S-5	8-10	24	50				riser to 44.7 ft bgs.	904	
9	9										
	15										
10	1/		10.10		10						
	4	S-6	10-12	30	40					2,830	
11	15										
40	10										
12	10	0.7	10.14	20	80					4 700	
12	24	3-1	12-14		80					1,760	
15	15								4" Steel Casing from		
14	16							•			
1 4	4	S-8	14-16	17	40				0 10 22 093	1,586	
15	8				-					.,	
	9										
16	10										
	6	S-9	16-18	20	60					742	
17	9										
	11										
18	14										
	12	S-10	18-20	21	5					445	
19	9										
	12										
20	16										
S - C	Split Spo	on Sa	ample	NOTES:	1) Water level	data referenced to ground surface elevation.	abt of karra		of rodo		
C - Rock Core Sample 2) BGS = below groun					2) DGO = D elO	w ground surface, $INV = INV VALUE, VVOH = Well$	ynt or nammel	1, VOR = weight	UITUUS.		
3) Background OVM re					J) DAUKYIUUNO	o www.reaulings.rangeu from o to o.5 ppm.					
Gen	eral	1) Stra	tification lines	represent an	proximate hour	dary between soil types: transitions may be ar	adual				
Note	es:	2) Wat	er level readi	ngs have beer	n made at times	and under conditions stated: fluctuations of a	roundwater				
		2) Water level readings have been made at times and under conditions stated; fluctuations of groundwater									

COI	NTRACTOR	ł	Natu	re's Way, Inc		BORING LOCATION See Location Plan				
DRI	LLER		Stev	e Gingrich		GROUND SURFACE ELEV	ATION	DA	ГИМ	_
STA	RT DATE:	5/13/14	END	DATE: 5/19/1	4	GZA GEOENVIRONMENTA	L REPRESEN	ITATIVE J	MB/TDS	
			WATER LEV	VEL DATA		TYPE OF DRILL RIG		Acker AD 2		
	DATE	TIME	WATER	CASING	NOTES	CASING SIZE AND DIAMET	TER	6 1/4 HSAs/4-	inch and 3-inch steel casing	
						OVERBURDEN SAMPLING	METHOD	ASTM 1586	;	
						ROCK DRILLING METHOD		Not Applica	ble	-
D										
Е			SAME	PLE		SAMPLE DESCRIPTION	,	WELL	0	
Р							ALLATION	V		
Т	BLOWS	NO.	DEPTH	N-VALUES	RECOVERY		DI	AGRAM	DESCRIPTION	М
Н	(/6")		(FT)	/RQD	(%)					(ppm)
	2	S-11	20-22	20	100	Brown Silty CLAY, trace fine to				14.4
21	7					coarse Sand, moist.			Schedule 40 PVC well	
	13								riser to 44.7 ft bgs.	
22	16									
	6	S-12	22-24	28	10					3.7
23	14								3" Steel Casing from	
	14								22' to 54.7' bgs	
24	19									
	5	S-13	24-26	15	80					0.3
25	6									
	9									
26	14									
	9	S-14	26-28	20	40					0
27	11									
	9									
28	10									
	4	S-15	28-30	15	40					0
29	6									
	9									
30	10	C 16	20.22	11	20					0
24	5	3-10	30-32		20					0
31	6								Coment and bentonite	
32	9							•	grout from 22 to 54 7 ft	
52	3	S-17	32-34	12	60				bas	0
33	5	0 11	02 04	12	00				bgs.	0
00	7									
34	10									
	4	S-18	34-36	11	80					0
35	4									
	7									
36	9									
	4	S-19	36-38	10	10					0
37	5									
	5									
38	8									
39										
S - Split Spoon Sample NOTES: 1) Water level data					1) Water level	data referenced to ground surface elevation.				
C -	ROCK CO	re Sa	mpie		2) BGS = below	v ground surface, NV = no value, WOH = wei	ight of hammei	r, WOR = weigh	t of rods.	
1					 Background 	OVM readings ranged from 0 to 0.3 ppm.				
Gen	General 1) Stratification lines represent approximate boundary					pary between soil types; transitions may be gr	radual.			
INOT	2) Water level readings have been made at times and under conditions stated; fluctuations of groundwater									

100	NTRACTOF	ł	Natu	re's Way, Inc		BORING LOCATION See Location Plan						
DRI	LLER		Stev	e Gingrich		GROUND SURFACE ELEV	ATION	DAT	UM	_		
STA	RT DATE:	5/13/14	END	DATE: 5/19/1	4	GZA GEOENVIRONMENTA	L REPRESENTA	TIVE JN	MB/TDS			
			WATER LEV	/EL DATA		TYPE OF DRILL RIG		Acker AD 2		_		
	DATE	TIME	WATER	CASING	NOTES	CASING SIZE AND DIAME	TER	6 ¹ / ₄ HSAs/4-ii	nch and 3-inch steel casing	_		
						OVERBURDEN SAMPLING	METHOD	ASTM 1586		_		
					-	ROCK DRILLING METHOD		Not Applicab	le	_		
D			~							~		
E			SAM	LE		SAMPLE DESCRIPTION	WE		WELL	0		
P T		NO	DEDTU				INSTALL			V		
	BLOWS	NO.		N-VALUES	RECOVERY		DIAG	KAM	DESCRIPTION	M (nnm)		
п	(/6)		(FI)	/RQD	(%)					(ppm)		
				-		Brown Silty CLAY, trace fine to						
41						coarse Sand, moist.						
10												
42												
12												
40	1											
44				<u> </u>					Schedule 40 PVC well			
								•	riser to 44.7 ft bqs.			
45												
	1	S-20	45-47	6	100					0		
46	2											
	4											
47	4											
48												
49												
50									Dec mark sand			
E 1									Pre-pack sand			
51									ft bac			
52									n bys.			
02												
53									Schedule 40 #10 slot			
	13	S-21	53-55	26	0				PVC well screen from			
54	12								44.7 to 54.7 ft bgs.			
	14											
55	22											
						Bottom of well at approximately 54.7						
56						ft bgs.						
				ļ								
57												
50												
58												
50												
53	1			<u> </u>								
60												
S - Split Spoon Sample NOTES: 1) Water level data referenced to c						data referenced to ground surface elevation.	•					
С-	C - Rock Core Sample 2) BGS = below (v ground surface, NV = no value, WOH = wei	ight of hammer, W	OR = weight	of rods.			
	3) Backgrour				3) Background	OVM readings ranged from 0 to 0.3 ppm.						
L	c) Laong can											
Gen	eral	1) Stra	tification lines	s represent ap	proximate bound	dary between soil types; transitions may be g	radual.					
Note	es:	2) Wat	er level readi	ngs have beer	n made at times	and under conditions stated; fluctuations of g	roundwater					
		may	occur due to	other feeters	than those proce	ant at the time measurements were made						

COI	NTRACTOF	t	Natu	re's Way, Inc		BORING LOCATION See Location Plan					
DRI	LLER		Steve	e Gingrich		GROUND SURFACE ELEV	ATION	DAT	UM	_	
STA	RT DATE:	5/13/14	END	DATE: 5/16/1	4	GZA GEOENVIRONMENTA	L REPRESENT	ATIVE JI	MB/TDS		
			WATER LE\	/EL DATA		TYPE OF DRILL RIG		Acker AD 2			
	DATE	TIME	WATER	CASING	NOTES	CASING SIZE AND DIAMET	TER	4 ¹ / ₄ -inch HS	SAs		
	5/14/14	8:05	4.9 ft	BGS	Tape	OVERBURDEN SAMPLING	METHOD	ASTM 1586			
	5/15/14	14:00	9.5 ft	BGS	Таре	ROCK DRILLING METHOD		Not Applicab	ble		
D											
Е			SAMF	PLE		SAMPLE DESCRIPTION	W	'ELL	WELL	0	
Р							INSTA	LLATION	INSTALLATION	V	
т	BLOWS	NO.	DEPTH	N-VALUES	RECOVERY		DIA	GRAM	DESCRIPTION	М	
н	(/6")		(FT)	/RQD	(%)					(ppm)	
	40	S-1	0-2	34	30	Asphalt to approximately 0.2 ft bos.					
1	6	-	-	_		Fill - Grav SAND and Gravel trace		ר ו ⊷⊢	Flush-mount road box		
	28					Silt moist	╵└─┐┗┥		Portland coment		
2	6					Fill - Dark Gray, Silty CLAY, trace fine			r ortiana cement	0.8	
2	12	S-2	2-4	16	25	to coarse Sand trace Glass				0.0	
3	10	02	2 7	10	25	fragments moist					
5	6					Native - Gravish Brown Silty CLAY					
4	7					trace fine to medium Sand moist				16	
4	2	S-3	4-6	13	80	Grades to: Vellowish Brown				1.0	
5	6	0.0	40	10	00	Grades to renowish brown.					
5	7										
6	8									0.1	
0	0	S-4	6-8	34	80	Grades to: trace fine to coarse Sand				0.1	
7	4	0-4	0-0	54	00	trace fine to medium Crowel					
	10				-	trace line to medium Gravei.					
	20								Sabadula 40 DV/C wall	0.0	
0	20	С. F.	0.10	22	70				riser to 40 ft bro	0.2	
	14	3-5	0-10	33	70				ilsel to 46 it bgs.		
9	14				-				Compart and hostopito		
10	19								grout from 1.5 to 12 ft	0.0	
10	10	0.0	10.10	25	100	Crades to: Brown			grout from 1.5 to 42 ft	0.2	
	14	3-0	10-12	30	100	Grades tobrown.			bgs.		
11	14							-	Nominal 9" Darahala		
10	21				-					0.4	
12	20	87	12.14	20	100				from 0 to 58 ft bgs.	0.1	
10	12	3-7	12-14	20	100						
13	12										
14	20				-					0.1	
14	20	S-8	14-16	14	50					0.1	
15	5	0-0	14-10	14							
10	۵ ۵										
16	10									0.2	
10	2	S-0	16-18	14	100					0.2	
17	6	0.0	10-10	· · ·	100						
	8										
18	17									0.1	
10	2	S-10	18-20	14	50					0.1	
10	6	0.10	10-20								
13	8										
20	11			1							
¢	Split Spr	on Sa	mnle	NOTES	1) Water level	data referenced to ground outfood aloughter			l.	-	
c		ro Sou	mnle	NUTES.	2) BCS - bolo	ware und surface NV = no volue WOL	abt of bommer		of rods		
C - ROCK Core Sample 2) BGS = below gi					2) Background (3) Background (3) Background (3) Background (3) (3) (3) (3) (3) (3) (3) (3) (3) (3)	\sim ground surface, $\sim \sim \sim$	gni or nammel,		011003.		
3) Background OVM						o vim readings ranged from 0 to 0.5 ppm.					
Ger	eral	1) Strat	tification lines	s represent an	proximate hour	dary between soil types: transitions may be ar	radual				
Note	es:	2) Wat	er level readi	ngs have beer	n made at times	and under conditions stated: fluctuations of a	roundwater				
1		mav	occur due to	other factors t	han those pres	ent at the time measurements were made.					

100	JTRACTOF	R	Natu	ire's Way, Inc		BORING LOCATION See Location Plan				
DRI'	LLER		Stev	e Gingrich		GROUND SURFACE ELEVA	TION	DATU	ML	_ '
STA	RT DATE:	5/13/14	END	DATE: 5/16/1	4	GZA GEOENVIRONMENTAL	REPRESENTATIVE	E JM	B/TDS	
[WATER LE	VEL DATA		TYPE OF DRILL RIG	Ack	ker AD 2		!
	DATE	TIME	WATER	CASING	NOTES	CASING SIZE AND DIAMETE	$\exists R \qquad \underline{4^{1}}$	4-inch HSA	As	!
	5/14/14	8:05	4.9 ft	BGS	Tape	OVERBURDEN SAMPLING M	METHOD AST	FM 1586		_ '
	5/15/14	14:00	9.5 ft	BGS	Tape	ROCK DRILLING METHOD	Not	Applicable	э	_ '
L		<u> </u>	<u> </u>	<u> </u>	['	l				!
D		·							· · · · · · · · · · · · · · · · · · ·	Τ'
Е			SAM	PLE		SAMPLE DESCRIPTION	WELL		WELL	0
Р					!	1	INSTALLATI	ION	INSTALLATION	V
т	BLOWS	NO.	DEPTH	N-VALUES	RECOVERY	1	DIAGRAN	Л	DESCRIPTION	М
н	(/6")	_'	(FT)	/RQD	(%)	II			ı	(ppm)
h	2	S-11	20-22	12	70	Brown Silty CLAY. trace fine to				0.1
21	4	<u>⊢</u>	t	+		coarse Sand trace fine to medium			i	Ŭ. 1
<u></u>	8	'	t	+		Gravel moiet			ı	!
22	11	'	t	+		Gravel, moist.			ı	!
<i>~</i>	3	S-12	22-24	15	50	4 I			ı	0.2
22	6	0-12	22-27		50	4 1			C-Lodulo 40 P\/C well	0.∠
23	0	├ ──'	───	+	·'	4 1	-	<u>//</u>		'
	10	↓ ′	───	───	'	4			riser to 40 it bys.	'
24	10	C 13	24.26	12	50	4 1			ı	
		5-13	24-20	12	00	4 1				0.1
25		 '	───	───	'	4	4		Cement and bentome	
		 '	 	_	↓ '	4 1			grout from 1.5 to 42 π	'
26	9	<u> ''''''''''''''''''''''''''''''''''''</u>	L	<u> </u>	<u> </u>	4 1			bgs.	
	2	S-14	26-28	12	100	4 1			· · · · · · ·	0.1
27	5	<u> </u>	 	<u> </u>	<u> </u>	4 1		/ →	- Nominal 8" Borehole	
1	7	<u> </u> '		_	<u> </u> '	1 1			from 0 to 58 ft bgs.	
28	11	<u> </u>	<u> </u>		<u> </u>				i	
1	1	S-15	28-30	12	40]]			i	0.1
29	5	Ľ'	Ē		['	1			i	
1	7	['			<u> </u>	1			i	
30	10	ſ'	<u> </u>		<u> </u>	1			i	
1	2	S-16	30-32	12	60	1			ı	0.1
31	5	<u> </u>		<u> </u>	<u> </u> '	1			ı	
1	7	<u>ا</u>			<u>ا</u>	1			ı	
32	9		[]	1	ļ,	1			ı	
i (1	S-17	32-34	8	0	1			ı	0.1
33	3			+	++	1			i	-
	5			+	++	1			i	
34	7	+		1	+	1 1			i	
Ĭ	1	S-18	34-36	5	100	Grades to: trace fine Sand.			i	0.1
35	1								i	· ·
Ĩ,	4	+'	t	+	·	1			i	
36	3	+'	t	+	·	1			i	
T	WOH	S-19	36-38	5	100	f I			ı	0.1
37	2		00.00		100	4 I			ı	0
°'	- 3	—	├───	+		4 I			ı	
38	3	—	├───	+		4 I			ı	
30		S-20	38-40	4	100	4 I			i	0.1
20	1	3-20	30-40		100	4 I			ı	0.1
ుర	2	↓ ′	 	+	·'	4 1			ı	
10	<u> </u>	 '	──		ب ــــــــــــــــــــــــــــــــــــ	4 1			i	
40	3		<u> </u>	<u> </u>	<u></u>	<u></u>				
s-	Split Spc	Son Sa	ample	NOTES:	1) Water level	data referenced to ground surface elevation.				
C -	ROCK UU	Jre Sai	mple		2) BGS = below	w ground surface, NV = no value, VVOH = weigr	ht of hammer, WOK	= weight o	of rods.	
1					Background	OVM readings ranged from 0 to 0.3 ppm.				
L										
Gen	eral	1) Strat	tification lines	s represent apr	proximate bound	dary between soil types; transitions may be grad	idual.			
Note	β:	2) Wat	er level readi	ings have beer	n made at times	and under conditions stated; fluctuations of gro	oundwater			
4		may	occur due to	other factors *	than those pres	ent at the time measurements were made.				

CONTRACTOR Nature's Way, Inc						BORING LOCATION See Location Plan					
DRILLER Steve Gingrich						GROUND SURFACE ELEVATION DATUM					
START DATE: 5/13/14 END DATE: 5/16/14					4	GZA GEOENVIRONMENTAL REPRESENTATIVE JMB/TDS					
			WATER LEV	/EL DATA		TYPE OF DRILL RIG Acker AD 2					
	DATE	TIME	WATER	CASING	NOTES	CASING SIZE AND DIAMET	ER 4 1/	/4-inch HSAs		_	
	5/14/14	8:05	4.9 ft	BGS	Tape	OVERBURDEN SAMPLING	METHOD AS	TM 1586		_	
	5/15/14	14:00	9.5 ft	BGS	Tape	ROCK DRILLING METHOD	Not	t Applicable		-	
							<u></u>			-	
р										T	
			SAME							0	
			5AM			SAMPLE DESCRIPTION				v	
T T	PLOW/S	NO	DEDTU	NIVALLES					DESCRIPTION	M	
	BLOWS	NO.		IN-VALUES	RECOVERT		DIAGRAM	/1	DESCRIPTION	IVI (mmm)	
н	(/6")		(F1)	/RQD	(%)					(ppm)	
	WOH	S-21	40-42	4	100	Brown Silty CLAY, trace fine Sand,					
41	1					trace fine to medium Gravel, moist.		← '	Cement and bentonite		
	3								grout from 1.5 to 42 ft	0.1	
42	4								bgs.		
	WOH	S-22	42-44	1	100						
43	WOH										
	1								Bentonite pellet seal	0.1	
44	3							1	from 42 to 45 ft bgs.		
	WOH	S-23	44-46	1	100						
45	WOH										
	1									0.1	
46	3										
	WPR	S-24	46-48	1	100						
47	WOH								Schedule 40 PVC well		
	1								riser to 48 ft bgs.	0.1	
48	4										
	WOH	S-25	48-50	1	100						
49	WOH										
	1									0.1	
50	3										
	WOH	S-26	50-52	1	100				#00 QRock sand pack		
51	WOH								from 45.5 to 58 ft bas.		
	1									0.1	
52	3										
	WOH	S-27	52-54	1	100						
53	WOH	-							Schedule 40 #10 slot		
	1								PVC well screen from	0.1	
54	3								48 to 58 ft bas	0	
	WOH	S-28	54-56	4	100						
55	1		2.00								
	3					Brown Silty CLAY, some fine to				0.1	
56	5					coarse Sand, trace fine Gravel wet				5.1	
50	5										
57						Augered from 56 to 58 ft No					
51						sample collected					
58											
50						Bottom of well at approximately 59					
50						ft bas					
59						n bys.					
60											
60	0									1	
S -	Split Spo	on Sa	imple	NOTES:	1) Water level	data referenced to ground surface elevation.					
С-	ROCK CO	re Sai	nple		2) BGS = below	w ground surface, NV = no value, WOH = weig	ght of hammer, WOR	= weight of re	ods.		
I					Background	OVM readings ranged from 0 to 0.3 ppm.					
<u> </u>											
Gen	eral	1) Strat	ification lines	s represent ap	proximate bound	dary between soil types; transitions may be gr	adual.				
Note	es:	2) Wate	er level readi	ngs have beer	n made at times	and under conditions stated; fluctuations of g	roundwater				

CONTRACTOR Nature's Way, Inc DRILLER Steve Ginorich						BORING LOCATION See Location Plan GROUND SURFACE ELEVATION DATUM				_
ST/	ART DATE:	5/15/14	ENC	DATE: 5/16/1	14	GZA GEOENVIRONMENT/	AL REPRESEN	TATIVE J	MB/TDS	- 1
h			WATER LE	VEL DATA	<u> </u>	TYPE OF DRILL RIG		Acker AD 2		
	DATE	TIME	WATER	CASING	NOTES	CASING SIZE AND DIAME	TER	4 ¹ / ₄ -inch HS	SAs	- 1
	5/15/14	14:30	7.5 ft	BGS	Таре	OVERBURDEN SAMPLING	METHOD	ASTM 1586		_ '
		<u> </u>	Ē		יו	ROCK DRILLING METHOD)	Not Applicat	Jle	_ '
L		<u> </u>	<u> </u>			<u> </u>				<u> </u>
D	i		~~~		I	1	Ι,			
E	i		SAMI	PLE	I	SAMPLE DESCRIPTION		NELL	WELL	0
				NUMBES		1				V M
Η H	BLOWC	INC.	(FT)	/RQD	(%)	1		AGRAIN	DEGONI HON	(maa)
H	v-,	+			(,	Augered continuously from ground			+	
1		+	 	+	+	surface to approx. 4 ft bgs to collect		⊐ ⊷+	Flush-mount road box.	1
		+	 	+	+	sample.			 Portland cement 	1
2	·	†		<u> </u>					-	1
	. <u> </u>	<u> </u>			<u> </u> !	Subsequent samples were collected				1
3		Ţ'	Ē	<u> </u>	יי	in 5-foot intervals. Soil material was				1
I !		 '	 	<u> </u>	<u> </u> !	continuously augered between				!
4	<u> </u>		4.6	45	<u> </u>	sample intervals.				!
5	 5	5-1	4-0	GI	50	fine to coarse Sand, trace fine to				0.2
Ĭ	10	+'	├───	+	++	medium Gravel, moist.				0.2
6	23	+		+	++					!
	·		<u> </u>	<u> </u>		1				!
7	·				<u>الــــــــ</u> ا	1				!
		<u> </u>			יו	1				'
8	- 	↓ '	Ī	<u> </u>	<u>بــــــا</u>	4			- Schedule 40 PVC well	
		 '	──		ļ	1			riser to 57.8 ft bgs.	'
э			0-11	21		1			Compart and bantonite	'
10	13	3-2	9-11	31	90	1			arout from 1.5 to 42 ft	0.1
`	18	+'	t	+	+	1			has	0
11	26	+		1	<u>├</u>	1			595.	
1	·	†	<u> </u>	<u>+</u>		1			Nominal 8" Borehole	
12	ـــــــــــــــــــــــــــــــــــــ	<u> </u>			<u> </u> '	J			from 0 to 57.8 ft bgs.	
		<u> </u>	Ē	Ţ	יי	4				
13		 '	 	_	ļ!	1				
	·	 '	──	_	≀	1				
14	5	- <u>S-3</u>	14-16	28	80	1				
15	13					1				0.1
1	15	<u></u> +	<u> </u>	<u>† </u>	<u> </u>	1				1
16	24					, I				
		Į'	Ē		' <u>ـــــا</u>	4				
17	·	 '	───		↓ ′	1				
10	·	 '	───		ļ/	1				
19	i	 '	t		₽	1				
19		+'	├ ───	+	++	1				
Ĩ	19	S-4	19-21	12	70	1				0.1
20	6		ſ <u></u>		† <u> </u> !	1				
S -	Split Spr	oon Sa	ample	NOTES:	1) Water level	data referenced to ground surface elevation.				
C -	Rock Cc	ore Sar	mple		2) BGS = below	<i>w</i> ground surface, NV = no value, WOH = we ³	ight of hammer	, WOR = weight	. of rods.	
					3) Background	OVM readings ranged from 0 to 0.3 ppm.				
	- 1	1) Otro			inste bour	the second terretions may be a	• -1			
Gen Not	erai	1) Suai 2) Wat	dification inter	3 represent app	proximate bound	dary between soll types; transitions may be gr	radual. aroundwater			
			occur due to	other factors	than those pres	ent at the time measurements were made.	Journanator			

CONTRACTOR Nature's Way, Inc						BORING LOCATION See Location Plan					
DRILLER Steve Gingrich						GROUND SURFACE ELEVATION DATUM					
START DATE: 5/15/14 END DATE: 5/16/14					4	GZA GEOENVIRONMENTAL REPRESENTATIVE JMB/TDS					
			WATER LEV	VEL DATA		TYPE OF DRILL RIG		Acker AD 2		_	
	DATE	TIME	WATER	CASING	NOTES	CASING SIZE AND DIAME	TER	4 ¹ / ₄ -inch H	SAs	_	
	5/15/14	14:30	7.5 ft	BGS	Tape	OVERBURDEN SAMPLING	METHOD	ASTM 1586		_	
						ROCK DRILLING METHOD)	Not Applical	ble	_	
-											
			CAM				10/			0	
P			SAIVIE	-LE		SAMPLE DESCRIPTION				v	
Г Т	BLOWS	NO	DEPTH	N-VALUES	RECOVERY			GRAM	DESCRIPTION	M	
н	(/6")		(FT)	/RQD	(%)		2.7.1			(ppm)	
	6	S-4	19-21	12	70	Brown Silty CLAY, trace fine to				0.1	
21	9	-	-		-	coarse Sand, trace fine to medium				0.1	
						Gravel, moist.					
22											
23									Schedule 40 PVC well		
									riser to 57.8 ft bgs.		
24	47	0.5	04.00	40							
	1/	5-5	24-26	18	60	Grades to:grayish brown.			Compart and hantanit-	0.4	
25	0							•	grout from 1.5 to 42 ft	0.1	
26	10								bas		
20	.=								590.		
27								-	Nominal 8" Borehole		
									from 0 to 57.8 ft bgs.		
28											
29											
	6	S-6	29-31	11	70						
30	5									0.1	
~	6										
31	0										
32											
02											
33											
34											
	5	S-7	34-36	14	100						
35	8									0.1	
	6										
30	0										
37											
				t							
38											
39											
	1	S-8	39-41	4	100					0.1	
40	2			10777							
S-	Split Spo	oon Sa	ample	NOTES:	1) Water level	data referenced to ground surface elevation.			4 of -ode		
<u> </u>		ne 991	npie		2) BGS = $Delo$	w ground surface, $NV = NO$ value, $VOH = Well$	ight of nammer,	work = weight	t of tods.		
I					J Dackyround	Com readings ranged norm 0 to 0.5 ppm.					
Ger	eral	1) Stra	tification lines	s represent ap	proximate boun	dary between soil types; transitions may be a	radual.				
Note	es:	2) Wat	er level readi	ings have beer	n made at times	and under conditions stated; fluctuations of g	groundwater				
Ĩ		may	occur due to	other factors t	than those prese	ent at the time measurements were made					

CONTRACTOR Nature's Way, Inc						BORING LOCATION See Location Plan				
DRI	LLER		Stev	e Gingrich		GROUND SURFACE ELEVATION DATUM				
STA	ART DATE:	5/15/14	END) DATE: 5/16/1	,4	GZA GEOENVIRONMENTAI	L REPRESENTATIVE	JMB/TDS		
	L		WATER LE	VEL DATA		TYPE OF DRILL RIG	Acker AD 2	2	_	
	DATE	TIME	WATER	CASING	NOTES		ER <u>4 '/4-inch F</u>	ISAs	_	
	5/15/14	14:30	7.5 ft	BGS	Tape		METHOD ASTM 158	<u>ô</u>	- '	
	⊢	┿	───	_	 '	ROCK DRILLING METHOD	Not Applica	able	- '	
H		<u> </u>			<i>ـــــــ</i>	ł			'	
	1		SAM		1		WELL	\A/ELL		
	1		OAINI	PLE	,	SAMPLE DESCRIPTION			V	
	PLOWS			N.VALUES		4 I		DESCRIPTION	M	
H H	(/6")	NO.	(FT)	/RQD	(%)	1		DECOMBINE	(nom	
H	2	S-8	30-41	4	100	Grouide Brown Silty CLAY, trace fine				
41	- 3	0-0	JJ-41		100	to coarse Sand, trace fine to medium		Coment and bentonite	0.1	
41		+	──	+	├ ────′	Crowel moist		arout from 1.5 to 42 ft		
42		+		+	·'	Glavel, moist.		grout nom no to te n		
		+	+	+	'	1 1		uys.	'	
43	i	+			'	1 1				
	i	+	+	+	·	1 1		Bentonite pellet seal		
44	·	+	+	+	·	1 1		from 42 to 45 ft bgs.		
 	WOH	S-9	44-49	3	100	1			0.1	
45	WOH	+	1	+	+	1			-	
i †	3			1	1 1	1				
46	3	<u>† </u>		<u> </u>	<u> </u>	1				
					· [1				
47					<u> </u>	1	. ││┡┿┿	Schedule 40 PVC well		
	ſ				Ι <u></u>	1		riser to 47.8 ft bgs.		
48					<u> </u>	1				
					<u> </u>]				
49	Ē				<u> </u>					
	WOH	S-10	49-51	5	100]			0.1	
50	2	<u> </u>	<u> </u>	_	ļ'	1				
	3	_		<u> </u>	<u> </u> '	1		#00 QRock sand pack		
51	3	_	<u> </u>		<u> </u> '	4		from 45 to 57.8 ft bgs.		
	L	—	<u> </u>	_	'	4 1				
52	 	 	_		'	4				
	 	 	_		'	4				
53	⊢	—	───		<u> </u>	4		Schedule 40 #10 Slot		
54	⊢	┿	 		·'	4		PVU Well list inum +r.u		
54	7	+ 1	54-56	12	50	Constab Brown Clovery SILT little		to 57.8 π bgs.	0.1	
55	16	3-11	54-55	42	50	fine to coarse Sand trace fine to			0.1	
Ĩ	26	+	+	+	·'	coarse Gravel moist.		Nominal 8" Borehole		
56	63	S-12	56-57.3	36	25			from 0 to 57.8 ft bgs.	0.1	
	8				+	Gravish Brown Siltv CLAY, little fine		nom o to orice	.	
57	14	+	1	+		to coarse Sand, trace fine to coarse				
1	22	+	1	1	+	Gravel, moist.				
58	50/3		1	1		Gray fine to coarse SAND, wet.				
1	[-	1	1	1 1	Auger refusal/bottom of well at	,	-		
59	[<u>† </u>			<u> </u>	approximately 57.8 ft bgs.	ı			
ļ						1	I			
60					<u> </u>	l				
S -	Split Sp	oon S;	ample	NOTES:	1) Water level	data referenced to ground surface elevation.				
с-	Rock Co	ore Sa	mple		2) BGS = belo	w ground surface, NV = no value, WOH = weiç	ght of hammer, WOR = weig'	ht of rods.		
1					3) Background	OVM readings ranged from 0 to 0.3 ppm.				
L										
Gen	neral	1) Stra	atification line	s represent ap	proximate boun	idary between soil types; transitions may be gra	adual.		-	
Note	es:	2) Wat	ter level read	ings have beer	n made at times	and under conditions stated; fluctuations of gr	roundwater			
		may	occur due to	other factors '	than those pres	ent at the time measurements were made.				

APPENDIX C

GEOPHYSICAL SURVEY REPORT

90 B John Muir Drive Amherst, New York 14228 (716) 565-0624 • Fax (716) 565-0625

May 18, 2014

Christopher Boron Senior Project Manager GZA GeoEnvironmental of New York 535 Washington Street 11th Floor Buffalo, New York 14203

Transmitted via email to: Christopher Boron [christopher.boron@gza.com]

Dear Mr. Boron:

Subject: Geophysical Survey Results 25 Acre Property, Amherst, NY

1.0 INTRODUCTION

This letter report presents the results of the geophysical investigation performed for GZA in support of their environmental investigation of a 25 acre property located in Amherst, NY (the Site). The purpose of the geophysical survey was to explore for anomalies indicative of underground storage tanks (USTs). Three areas of the property were geophysically surveyed and are referred to in this report as:

- Former Collision Shop
- Frontage of "Fancy Florist"
- UST Area

The geophysical investigation was designed to geophysically characterize the subsurface and focus a follow-up intrusive investigation, if warranted. The information provided herein is intended to assist GZA with their assessment of potential environmental concerns at the Site. AMEC Environment and Infrastructure, Inc. (Amec) performed data acquisition on May 1 and 6, 2014 utilizing timed domain electromagnetic techniques (EM61).

2.0 METHODOLOGY

A distinct reference grid was installed at each of the 3 areas investigated to facilitate data acquisition along lines spaced three feet apart. The grid was marked with orange and white spray paint with select coordinates labeled to allow subsequent work if necessary.

Christopher Boron GZA GeoEnvironmental of New York May 18, 2014 Page 2

The three areas were geophysically surveyed using the Geonics EM61. The EM61 unit is a high sensitivity, high resolution time domain electromagnetic (TDEM) metal detector that can detect both ferrous and nonferrous metallic objects. It has an approximate investigation depth of 10 feet. The processing console is contained in a backpack worn by the operator which is interfaced to a digital data logger. The transmitter and two receiver coils are located on a two-wheeled cart that is pulled by the operator.

The device's transmitter coil generates a pulsed primary EM field at a rate of 150 pulses per second, inducing eddy currents into the subsurface. The decay rates of these eddy currents are measured by two, 3.28 foot by 1.64 foot (1 meter by $\frac{1}{2}$ meter) rectangular receiver coils. By taking the measurements at a relatively long time frame after termination of the primary pulse, the response is practically independent of the survey area's terrain conductivity. Specifically, the decay rates of the eddy currents are much longer for metals than for normal soils allowing the discrimination of the two.

EM61 in use (photo not from this site)

Data are collected from the EM61's two receiver coils. One of the receiver coils is located coincident to the transmitter coil. The other receiver coil is located 1.31 feet (0.4 meters) above the transmitter coil. Data from the top receiver coil are stored on Channel 1 of a digital data logger. Data from the bottom receiver coil are stored on Channel 2 of the data logger. Channel 1 and Channel 2 data are simultaneously recorded at each station location. The instrument responses are recorded in units of milliVolts (mV). Data were recorded digitally by a data logger at approximately rate of а 2

measurements per foot along the survey lines which were spaced 3 feet apart.

3.0 RESULTS

The EM61 data for the site are shown in Figures 1 through 3. The color bar to the right of the maps indicates the colors associated with the respective measured values. Areas suspected to be free of buried metals are shown as color shades of blue. All areas exhibiting a response

Christopher Boron GZA GeoEnvironmental of New York May 18, 2014 Page 3

greater than background (0 to 30 mVolts) likely contain buried metals. These areas are depicted in shades of dark blue through yellow on the figures.

Former Collision Shop

The geophysical data for the Former Collision Shop is shown on Figure 1. Large areas of high EM response (yellow) are interpreted to likely represent re-enforced concrete either at the surface (sidewalk) or beneath the asphalt pavement. It should be noted that the presence of re-enforced concrete preclude the opportunity to offer reliable insight regarding the presence or absence of USTs beneath the slabs. Three anomalies are identified as potentially representing USTs and are labeled Anomalies A, B, and C on Figure 1. Where observed, the approximate locations of previous boring investigations were noted and marked as "GP" on the figure.

Frontage of Fancy Florist

The geophysical data for the Frontage of Fancy Florist are shown in Figure 2. Anomaly D is identified as potentially representing a UST.

UST Area

The third area investigated is a known UST area as the fill port and vent is still apparent. These data are presented in Figure 3. The vent and fill port were immediately adjacent to the building and a gas meter surrounded by protective steel posts were located immediately to the south. Anomaly E is interpreted to represent the response from the known UST. This anomaly is confounded by the affects of the adjacent metal objects noted above.

Any of the additional above background responses not identified may be significant from an environmental perspective and these geophysical data should be viewed with recognition of the limitations of the technology employed.

4.0 LIMITATIONS

The geophysical methods used during this survey are established, indirect techniques for nondestructive subsurface reconnaissance exploration. As these instruments utilize indirect methods, they are subject to inherent limitations and ambiguities. Metallic surface features (electrical wires, scrap metal, etc.) preclude reliable non-invasive data/results beneath, and in the immediate vicinity of, the surface features. Targets such as buried drums, buried tanks, Christopher Boron GZA GeoEnvironmental of New York May 18, 2014 Page 4

conduits, etc. are detectable only if they produce recognizable anomalies or patterns against the background geophysical data collected. As with any remote sensing technique, the anomalies identified during a geophysical survey should be further investigated by other techniques such as historical aerial photography, test pit excavation and/or test boring, if warranted.

Please do not hesitate to contact us if you have any questions or require additional information.

Sincerely yours, AMEC Environment and Infrastructure, Inc.

6h Futtinga

John Luttinger Senior Geophysicist

APPENDIX D

ANALYTICAL TEST RESULTS

Analytical Report For

GZA Geo Environmental of New York

For Lab Project ID

140347

Referencing

21.0056687.10

Prepared

Monday, February 10, 2014

Any noncompliant QC parameters or other notes impacting data interpretation are flagged or documented on the final report or are noted below.

Certifies that this report has been approved by the Technical Director or Designee

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Report Prepared Monday, February 10, 2014

Client:	<u>GZA (</u>	<u>Geo Environme</u>	ental of New	<u>v York</u>			
Project Reference:	21.00	56687.10					
Sample Identifier: Lab Sample ID: Matrix:	SP-3 1403 Soil	3-0.5-2-013014 347-01			Date Sampled: Date Received:	1/3 2/3	0/2014 /2014
<u>PCBs</u>							
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	Qua	<u>lifier</u>	Date Analyzed
PCB-1016			< 0.397	mg/Kg			2/4/2014
PCB-1221			< 0.397	mg/Kg			2/4/2014
PCB-1232			< 0.397	mg/Kg			2/4/2014
PCB-1242			< 0.397	mg/Kg			2/4/2014
PCB-1248			< 0.397	mg/Kg			2/4/2014
PCB-1254			< 0.397	mg/Kg			2/4/2014
PCB-1260			< 0.397	mg/Kg			2/4/2014
PCB-1262			< 0.397	mg/Kg			2/4/2014
PCB-1268			< 0.397	mg/Kg			2/4/2014
Method Refere	nce(s):	EPA 8082A EPA 3550C					
<u>Semi-Volatile Org</u>	ganics ((PAHs)					
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	Qua	lifier	Date Analyzed
Acenaphthen	ie		< 1570	ug/Kg			2/6/2014
Acenaphthyle	ene		< 1570	ug/Kg			2/6/2014
Anthracene			< 1570	ug/Kg			2/6/2014
Benzo (a) an	thracene		< 1570	ug/Kg			2/6/2014
Benzo (a) py	rene		< 1570	ug/Kg			2/6/2014
Benzo (b) flu	oranthen	e	< 1570	ug/Kg			2/6/2014
Benzo (g,h,i)	perylene		< 1570	ug/Kg			2/6/2014
Benzo (k) flu	oranthen	e	< 1570	ug/Kg			2/6/2014
Chrysene			< 1570	ug/Kg			2/6/2014
Dibenz (a,h)	anthracer	ne	< 1570	ug/Kg			2/6/2014
Fluoranthene	e		< 1570	ug/Kg			2/6/2014
Fluorene			< 1570	ug/Kg			2/6/2014
Indeno (1,2,3	8-cd) pyre	ene	< 1570	ug/Kg			2/6/2014

Client:	<u>GZA (</u>	Geo Environme	ntal of Nev	<u>v York</u>			
Project Reference:	21.00	56687.10					
Sample Identifier:	SP-3	-0.5-2-013014					
Lab Sample ID:	1403	347-01			Date Sampled:	1/3	0/2014
Matrix:	Soil				Date Received:	2/3	/2014
Naphthalene			< 1570	ug/Kg			2/6/2014
Phenanthren	e		< 1570	ug/Kg			2/6/2014
Pyrene			< 1570	ug/Kg			2/6/2014
Reporting limit e	elevated due	to sample matrix					
Method Refere	nce(s):	EPA 8270D EPA 3550C					
Data File:		S47674.D					
<u>Volatile Organics</u>	5						
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	Qual	lifier	Date Analyzed
1,1,1-Trichlo	roethane		< 6.43	ug/Kg			2/3/2014
1,1,2,2-Tetra	chloroeth	lane	< 6.43	ug/Kg			2/3/2014
1,1,2-Trichlo	roethane		< 6.43	ug/Kg			2/3/2014
1,1-Dichloro	ethane		< 6.43	ug/Kg			2/3/2014
1,1-Dichloro	ethene		< 6.43	ug/Kg			2/3/2014
1,2,3-Trichlo	robenzen	e	< 16.1	ug/Kg			2/3/2014
1,2,4-Trichlo	robenzen	e	< 16.1	ug/Kg			2/3/2014
1,2-Dibromo	-3-Chloro	propane	< 32.2	ug/Kg			2/3/2014
1,2-Dibromo	ethane		< 6.43	ug/Kg			2/3/2014
1,2-Dichloro	benzene		< 6.43	ug/Kg			2/3/2014
1,2-Dichloro	ethane		< 6.43	ug/Kg			2/3/2014
1,2-Dichloro	propane		< 6.43	ug/Kg			2/3/2014
1,3-Dichloro	benzene		< 6.43	ug/Kg			2/3/2014
1,4-Dichloro	benzene		< 6.43	ug/Kg			2/3/2014
1,4-dioxane			< 64.3	ug/Kg			2/3/2014
2-Butanone			< 32.2	ug/Kg			2/3/2014
2-Hexanone			< 16.1	ug/Kg			2/3/2014
4-Methyl-2-p	oentanone	<u>)</u>	< 16.1	ug/Kg			2/3/2014
Acetone			< 32.2	ug/Kg			2/3/2014
Benzene			< 6.43	ug/Kg			2/3/2014
Bromochloro	omethane		< 16.1	ug/Kg			2/3/2014

Client:	<u>GZA Geo Environm</u>	ental of Nev	<u>w York</u>		
Project Reference:	21.0056687.10				
Sample Identifier:	SP-3-0.5-2-013014				
Lab Sample ID:	140347-01			Date Sampled:	1/30/2014
Matrix:	Soil			Date Received:	2/3/2014
Bromodichlo	oromethane	< 6.43	ug/Kg		2/3/2014
Bromoform		< 16.1	ug/Kg		2/3/2014
Bromometha	ine	< 6.43	ug/Kg		2/3/2014
Carbon disul	fide	< 6.43	ug/Kg		2/3/2014
Carbon Tetra	achloride	< 6.43	ug/Kg		2/3/2014
Chlorobenze	ne	< 6.43	ug/Kg		2/3/2014
Chloroethan	e	< 6.43	ug/Kg		2/3/2014
Chloroform		< 6.43	ug/Kg		2/3/2014
Chlorometha	ine	< 6.43	ug/Kg		2/3/2014
cis-1,2-Dichl	oroethene	< 6.43	ug/Kg		2/3/2014
cis-1,3-Dichl	oropropene	< 6.43	ug/Kg		2/3/2014
Cyclohexane		< 32.2	ug/Kg		2/3/2014
Dibromochlo	oromethane	< 6.43	ug/Kg		2/3/2014
Dichlorodiflu	ioromethane	< 6.43	ug/Kg		2/3/2014
Ethylbenzen	e	< 6.43	ug/Kg		2/3/2014
Freon 113		< 6.43	ug/Kg		2/3/2014
Isopropylber	nzene	< 6.43	ug/Kg		2/3/2014
m,p-Xylene		6.81	ug/Kg		2/3/2014
Methyl aceta	te	< 6.43	ug/Kg		2/3/2014
Methyl tert-b	outyl Ether	< 6.43	ug/Kg		2/3/2014
Methylcycloł	nexane	9.79	ug/Kg		2/3/2014
Methylene ch	nloride	< 16.1	ug/Kg		2/3/2014
o-Xylene		< 6.43	ug/Kg		2/3/2014
Styrene		< 16.1	ug/Kg		2/3/2014
Tetrachloroe	ethene	13.7	ug/Kg		2/3/2014
Toluene		6.98	ug/Kg		2/3/2014
trans-1,2-Dic	chloroethene	< 6.43	ug/Kg		2/3/2014
trans-1,3-Dic	chloropropene	< 6.43	ug/Kg		2/3/2014
Trichloroeth	ene	< 6.43	ug/Kg		2/3/2014
Trichlorofluc	oromethane	< 6.43	ug/Kg		2/3/2014

Client:		<u>GZA G</u>	eo Environmei	ntal of Nev	<u>w York</u>		
Project Ref	ference:	21.005	6687.10				
Sample I	dentifier:	SP-3-	0.5-2-013014				
Lab Samp	ole ID:	14034	47-01			Date Sampled:	1/30/2014
Matrix:		Soil				Date Received:	2/3/2014
	Vinyl chloride			< 6.43	ug/Kg		2/3/2014
	Surrogate and inte	ernal standa	rd outliers indicate pro	bable matrix int	terference		
	Method Referenc Data File:	e(s):	EPA 8260C EPA 5035A x11070.D				

Client:	<u>GZA (</u>	Geo Environme	ntal of Nev	<u>v York</u>			
Project Reference:	21.00	56687.10					
Sample Identifier: Lab Sample ID: Matrix:	SP-5 1403 Soil	-8-10-013014 347-02			Date Sampled: Date Received:	1/3 2/3	0/2014 /2014
<u>PCBs</u>							
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	Qua	lifier	Date Analyzed
PCB-1016			< 0.401	mg/Kg			2/4/2014
PCB-1221			< 0.401	mg/Kg			2/4/2014
PCB-1232			< 0.401	mg/Kg			2/4/2014
PCB-1242			< 0.401	mg/Kg			2/4/2014
PCB-1248			< 0.401	mg/Kg			2/4/2014
PCB-1254			< 0.401	mg/Kg			2/4/2014
PCB-1260			< 0.401	mg/Kg			2/4/2014
PCB-1262			< 0.401	mg/Kg			2/4/2014
PCB-1268			< 0.401	mg/Kg			2/4/2014
Method Refere	nce(s):	EPA 8082A EPA 3550C					
<u>Semi-Volatile Org</u>	<u>ganics (</u>	PAHs)					
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	Qua	<u>lifier</u>	Date Analyzed
Acenaphthen	ie		< 309	ug/Kg			2/4/2014
Acenaphthyle	ene		< 309	ug/Kg			2/4/2014
Anthracene			< 309	ug/Kg			2/4/2014
Benzo (a) ant	thracene		< 309	ug/Kg			2/4/2014
Benzo (a) py	rene		< 309	ug/Kg			2/4/2014
Benzo (b) flu	oranthen	2	< 309	ug/Kg			2/4/2014
Benzo (g,h,i)	perylene		< 309	ug/Kg			2/4/2014
Benzo (k) flu	oranthene	9	< 309	ug/Kg			2/4/2014
Chrysene			< 309	ug/Kg			2/4/2014
Dibenz (a,h)	anthracen	e	< 309	ug/Kg			2/4/2014
Fluoranthene	9		< 309	ug/Kg			2/4/2014
Fluorene			< 309	ug/Kg			2/4/2014
Indeno (1,2,3	-cd) pyre	ne	< 309	ug/Kg			2/4/2014

Client:	<u>GZA (</u>	eo Environme	ntal of Nev	<u>v York</u>			
Project Reference:	21.00	56687.10					
Sample Identifier:	SP-5	-8-10-013014					
Lab Sample ID:	1403	347-02			Date Sampled:	1/3	0/2014
Matrix:	Soil				Date Received:	2/3	/2014
Naphthalene			< 309	ug/Kg			2/4/2014
Phenanthren	e		< 309	ug/Kg			2/4/2014
Pyrene			< 309	ug/Kg			2/4/2014
Method Refere	nce(s):	EPA 8270D EPA 3550C					
Data File:		S47632.D					
<u>Volatile Organics</u>	<u>5</u>						
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	Qua	lifier	Date Analyzed
1,1,1-Trichlo	roethane		< 9.39	ug/Kg			2/3/2014
1,1,2,2-Tetra	chloroeth	ane	< 9.39	ug/Kg			2/3/2014
1,1,2-Trichlo	roethane		< 9.39	ug/Kg			2/3/2014
1,1-Dichloro	ethane		< 9.39	ug/Kg			2/3/2014
1,1-Dichloro	ethene		< 9.39	ug/Kg			2/3/2014
1,2,3-Trichlo	robenzen	e	< 23.5	ug/Kg			2/3/2014
1,2,4-Trichlo	robenzen	e	< 23.5	ug/Kg			2/3/2014
1,2-Dibromo	-3-Chloro	propane	< 46.9	ug/Kg			2/3/2014
1,2-Dibromo	ethane		< 9.39	ug/Kg			2/3/2014
1,2-Dichloro	benzene		< 9.39	ug/Kg			2/3/2014
1,2-Dichloro	ethane		< 9.39	ug/Kg			2/3/2014
1,2-Dichloro	propane		< 9.39	ug/Kg			2/3/2014
1,3-Dichloro	benzene		< 9.39	ug/Kg			2/3/2014
1,4-Dichloro	benzene		< 9.39	ug/Kg			2/3/2014
1,4-dioxane			< 93.9	ug/Kg			2/3/2014
2-Butanone			< 46.9	ug/Kg			2/3/2014
2-Hexanone			< 23.5	ug/Kg			2/3/2014
4-Methyl-2-p	oentanone		< 23.5	ug/Kg			2/3/2014
Acetone			< 46.9	ug/Kg			2/3/2014
Benzene			< 9.39	ug/Kg			2/3/2014
Bromochloro	omethane		< 23.5	ug/Kg			2/3/2014
Bromodichlo	romethan	e	< 9.39	ug/Kg			2/3/2014

Client:	<u>GZA Geo Environme</u>	ntal of Nev	<u>w York</u>		
Project Reference:	21.0056687.10				
Sample Identifier:	SP-5-8-10-013014				
Lab Sample ID:	140347-02			Date Sampled:	1/30/2014
Matrix:	Soil			Date Received:	2/3/2014
Bromoform		< 23.5	ug/Kg		2/3/2014
Bromometha	ane	< 9.39	ug/Kg		2/3/2014
Carbon disul	fide	< 9.39	ug/Kg		2/3/2014
Carbon Tetra	achloride	< 9.39	ug/Kg		2/3/2014
Chlorobenze	ne	< 9.39	ug/Kg		2/3/2014
Chloroethan	e	< 9.39	ug/Kg		2/3/2014
Chloroform		< 9.39	ug/Kg		2/3/2014
Chlorometha	ine	< 9.39	ug/Kg		2/3/2014
cis-1,2-Dichl	oroethene	< 9.39	ug/Kg		2/3/2014
cis-1,3-Dichl	oropropene	< 9.39	ug/Kg		2/3/2014
Cyclohexane		< 46.9	ug/Kg		2/3/2014
Dibromochlo	oromethane	< 9.39	ug/Kg		2/3/2014
Dichlorodiflu	ıoromethane	< 9.39	ug/Kg		2/3/2014
Ethylbenzen	e	< 9.39	ug/Kg		2/3/2014
Freon 113		< 9.39	ug/Kg		2/3/2014
Isopropylbei	nzene	< 9.39	ug/Kg		2/3/2014
m,p-Xylene		< 9.39	ug/Kg		2/3/2014
Methyl aceta	te	< 9.39	ug/Kg		2/3/2014
Methyl tert-l	outyl Ether	< 9.39	ug/Kg		2/3/2014
Methylcyclol	hexane	< 9.39	ug/Kg		2/3/2014
Methylene cl	nloride	< 23.5	ug/Kg		2/3/2014
o-Xylene		< 9.39	ug/Kg		2/3/2014
Styrene		< 23.5	ug/Kg		2/3/2014
Tetrachloroe	ethene	< 9.39	ug/Kg		2/3/2014
Toluene		< 9.39	ug/Kg		2/3/2014
trans-1,2-Die	chloroethene	< 9.39	ug/Kg		2/3/2014
trans-1,3-Die	chloropropene	< 9.39	ug/Kg		2/3/2014
Trichloroeth	ene	< 9.39	ug/Kg		2/3/2014
Trichlorofluo	oromethane	< 9.39	ug/Kg		2/3/2014
Vinyl chlorid	le	< 9.39	ug/Kg		2/3/2014

Client:	<u>GZA Geo Environmental of New York</u>		
Project Reference:	21.0056687.10		
Sample Identifier:	SP-5-8-10-013014		
Lab Sample ID:	140347-02	Date Sampled:	1/30/2014
Matrix:	Soil	Date Received:	2/3/2014
Method Referen	nce(s): EPA 8260C		
	EPA 5035A		

Data File:

x11071.D

Client:	<u>GZA Geo Enviro</u>	nmental of New	<u> York</u>			
Project Reference:	21.0056687.10					
Sample Identifier: Lab Sample ID: Matrix:	SP-8-6-8-01311 140347-03 Soil	14		Date Sampled: Date Received:	1/3 2/3	1/2014 /2014
<u>PCBs</u>						
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qual	lifier	Date Analyzed
PCB-1016		< 0.517	mg/Kg			2/4/2014
PCB-1221		< 0.517	mg/Kg			2/4/2014
PCB-1232		< 0.517	mg/Kg			2/4/2014
PCB-1242		< 0.517	mg/Kg			2/4/2014
PCB-1248		< 0.517	mg/Kg			2/4/2014
PCB-1254		< 0.517	mg/Kg			2/4/2014
PCB-1260		< 0.517	mg/Kg			2/4/2014
PCB-1262		< 0.517	mg/Kg			2/4/2014
PCB-1268		< 0.517	mg/Kg			2/4/2014
Method Refere	nce(s): EPA 8082A EPA 3550C					
<u>Semi-Volatile Org</u>	ganics (PAHs)					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qual	<u>lifier</u>	Date Analyzed
Acenaphthen	ie	< 385	ug/Kg			2/4/2014
Acenaphthyl	ene	< 385	ug/Kg			2/4/2014
Anthracene		< 385	ug/Kg			2/4/2014
Benzo (a) an	thracene	< 385	ug/Kg			2/4/2014
Benzo (a) py	rene	< 385	ug/Kg			2/4/2014
Benzo (b) flu	oranthene	< 385	ug/Kg			2/4/2014
Benzo (g,h,i)	perylene	< 385	ug/Kg			2/4/2014
Benzo (k) flu	oranthene	< 385	ug/Kg			2/4/2014
Chrysene		< 385	ug/Kg			2/4/2014
Dibenz (a,h)	anthracene	< 385	ug/Kg			2/4/2014
Fluoranthene	e	< 385	ug/Kg			2/4/2014
Fluorene		< 385	ug/Kg			2/4/2014
Indeno (1,2,3	3-cd) pyrene	< 385	ug/Kg			2/4/2014

Client:	<u>GZA G</u>	eo Environme	ental of Nev	v York			
Project Reference:	21.005	6687.10					
Sample Identifier:	SP-8-	6-8-013114					
Lab Sample ID:	1403	47-03			Date Sampled:	1/3	1/2014
Matrix:	Soil				Date Received:	2/3	/2014
Naphthalene			< 385	ug/Kg			2/4/2014
Phenanthrene			< 385	ug/Kg			2/4/2014
Pyrene			< 385	ug/Kg			2/4/2014
Method Referenc	e(s):	EPA 8270D EPA 3550C S47633 D					
Volatile Organics		347033.0					
<u>Analyte</u>			Result	Units	Qual	lifier	Date Analyzed
1.1.1-Trichloro	ethane		< 8.29	ug/Kg			2/3/2014
1,1,2,2-Tetrach	loroetha	ine	< 8.29	ug/Kg			2/3/2014
1,1,2-Trichloro	ethane		< 8.29	ug/Kg			2/3/2014
1,1-Dichloroet	hane		< 8.29	ug/Kg			2/3/2014
1,1-Dichloroet	hene		< 8.29	ug/Kg			2/3/2014
1,2,3-Trichloro	benzene		< 20.7	ug/Kg			2/3/2014
1,2,4-Trichloro	benzene		< 20.7	ug/Kg			2/3/2014
1,2-Dibromo-3	-Chlorop	ropane	< 41.5	ug/Kg			2/3/2014
1,2-Dibromoet	hane		< 8.29	ug/Kg			2/3/2014
1,2-Dichlorobe	nzene		< 8.29	ug/Kg			2/3/2014
1,2-Dichloroet	hane		< 8.29	ug/Kg			2/3/2014
1,2-Dichloropr	opane		< 8.29	ug/Kg			2/3/2014
1,3-Dichlorobe	nzene		< 8.29	ug/Kg			2/3/2014
1,4-Dichlorobe	nzene		< 8.29	ug/Kg			2/3/2014
1,4-dioxane			< 82.9	ug/Kg			2/3/2014
2-Butanone			55.2	ug/Kg			2/3/2014
2-Hexanone			< 20.7	ug/Kg			2/3/2014
4-Methyl-2-per	ntanone		< 20.7	ug/Kg			2/3/2014
Acetone			147	ug/Kg			2/3/2014
Benzene			< 8.29	ug/Kg			2/3/2014
Bromochlorom	nethane		< 20.7	ug/Kg			2/3/2014
Bromodichloro	methan	e	< 8.29	ug/Kg			2/3/2014

Client:	<u>GZA Geo Environme</u>	ental of New	<u>v York</u>		
Project Reference:	21.0056687.10				
Sample Identifier:	SP-8-6-8-013114				
Lab Sample ID:	140347-03			Date Sampled:	1/31/2014
Matrix:	Soil			Date Received:	2/3/2014
Bromoform		< 20.7	ug/Kg		2/3/2014
Bromometha	ine	< 8.29	ug/Kg		2/3/2014
Carbon disul	fide	< 8.29	ug/Kg		2/3/2014
Carbon Tetra	ichloride	< 8.29	ug/Kg		2/3/2014
Chlorobenze	ne	< 8.29	ug/Kg		2/3/2014
Chloroethane	9	< 8.29	ug/Kg		2/3/2014
Chloroform		< 8.29	ug/Kg		2/3/2014
Chlorometha	ne	< 8.29	ug/Kg		2/3/2014
cis-1,2-Dichle	oroethene	< 8.29	ug/Kg		2/3/2014
cis-1,3-Dichle	oropropene	< 8.29	ug/Kg		2/3/2014
Cyclohexane		< 41.5	ug/Kg		2/3/2014
Dibromochlo	oromethane	< 8.29	ug/Kg		2/3/2014
Dichlorodiflu	oromethane	< 8.29	ug/Kg		2/3/2014
Ethylbenzene	e	< 8.29	ug/Kg		2/3/2014
Freon 113		< 8.29	ug/Kg		2/3/2014
Isopropylber	nzene	< 8.29	ug/Kg		2/3/2014
m,p-Xylene		< 8.29	ug/Kg		2/3/2014
Methyl aceta	te	< 8.29	ug/Kg		2/3/2014
Methyl tert-b	outyl Ether	< 8.29	ug/Kg		2/3/2014
Methylcycloł	nexane	< 8.29	ug/Kg		2/3/2014
Methylene ch	nloride	< 20.7	ug/Kg		2/3/2014
o-Xylene		< 8.29	ug/Kg		2/3/2014
Styrene		< 20.7	ug/Kg		2/3/2014
Tetrachloroe	thene	< 8.29	ug/Kg		2/3/2014
Toluene		< 8.29	ug/Kg		2/3/2014
trans-1,2-Dic	chloroethene	< 8.29	ug/Kg		2/3/2014
trans-1,3-Dic	chloropropene	< 8.29	ug/Kg		2/3/2014
Trichloroeth	ene	< 8.29	ug/Kg		2/3/2014
Trichlorofluc	oromethane	< 8.29	ug/Kg		2/3/2014
Vinyl chlorid	e	< 8.29	ug/Kg		2/3/2014

Client:	<u>GZA Geo Environmental of New York</u>		
Project Reference:	21.0056687.10		
Sample Identifier:	SP-8-6-8-013114		
Lab Sample ID:	140347-03	Date Sampled:	1/31/2014
Matrix:	Soil	Date Received:	2/3/2014
Method Refere	nce(s): EPA 8260C		
	EPA 5035A		

Data File:

x11072.D

Client:	<u>GZA G</u>	<u>eo Environme</u> i	ntal of New	<u>v York</u>			
Project Reference:	21.005	56687.10					
Sample Identifier: Lab Sample ID: Matrix:	SP-8- 1403 Soil	0.5-2-013114 47-04			Date Sampled: Date Received:	1/3 2/3	1/2014 /2014
<u>PCBs</u>							
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	Qual	lifier	Date Analyzed
PCB-1016			< 0.369	mg/Kg			2/4/2014
PCB-1221			< 0.369	mg/Kg			2/4/2014
PCB-1232			< 0.369	mg/Kg			2/4/2014
PCB-1242			< 0.369	mg/Kg			2/4/2014
PCB-1248			< 0.369	mg/Kg			2/4/2014
PCB-1254			< 0.369	mg/Kg			2/4/2014
PCB-1260			< 0.369	mg/Kg			2/4/2014
PCB-1262			< 0.369	mg/Kg			2/4/2014
PCB-1268			< 0.369	mg/Kg			2/4/2014
Method Referen	nce(s):	EPA 8082A EPA 3550C					
<u>Semi-Volatile Org</u>	<u>janics (I</u>	PAHs)					
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	Qual	lifier	Date Analyzed
Acenaphthen	e		< 1600	ug/Kg			2/4/2014
Acenaphthyle	ene		< 1600	ug/Kg			2/4/2014
Anthracene			< 1600	ug/Kg			2/4/2014
Benzo (a) ant	thracene		< 1600	ug/Kg			2/4/2014
Benzo (a) pyr	rene		< 1600	ug/Kg			2/4/2014
Benzo (b) flu	oranthene		< 1600	ug/Kg			2/4/2014
Benzo (g,h,i)	perylene		< 1600	ug/Kg			2/4/2014
Benzo (k) flu	oranthene		< 1600	ug/Kg			2/4/2014
Chrysene			< 1600	ug/Kg			2/4/2014
Dibenz (a,h) a	anthracen	е	< 1600	ug/Kg			2/4/2014
Fluoranthene	9		< 1600	ug/Kg			2/4/2014
Fluorene			< 1600	ug/Kg			2/4/2014
Indeno (1,2,3	-cd) pyrer	ie	< 1600	ug/Kg			2/4/2014

Client:	GZA Geo Environmental of New York						
Project Reference:	21.00	56687.10					
Sample Identifier:	SP-8	8-0.5-2-013114					
Lab Sample ID:	1403	347-04			Date Sampled:	1/3	1/2014
Matrix:	Soil				Date Received:	2/3	/2014
Naphthalene			< 1600	ug/Kg			2/4/2014
Phenanthrene	9		< 1600	ug/Kg			2/4/2014
Pyrene			< 1600	ug/Kg			2/4/2014
Reporting limit el	evated due	to sample matrix					
Method Referen	ce(s):	EPA 8270D EPA 3550C					
Data File: Volatilo Organico		547634.D					
<u>volutile organits</u>							
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	Qua	<u>lifier</u>	Date Analyzed
1,1,1-Trichlor	oethane		< 8.70	ug/Kg			2/3/2014
1,1,2,2-Tetrac	hloroeth	nane	< 8.70	ug/Kg			2/3/2014
1,1,2-Trichlor	oethane		< 8.70	ug/Kg			2/3/2014
1,1-Dichloroe	thane		< 8.70	ug/Kg			2/3/2014
1,1-Dichloroe	thene		< 8.70	ug/Kg			2/3/2014
1,2,3-Trichlor	obenzen	e	< 21.8	ug/Kg			2/3/2014
1,2,4-Trichlor	obenzen	e	< 21.8	ug/Kg			2/3/2014
1,2-Dibromo-	3-Chloro	propane	< 43.5	ug/Kg			2/3/2014
1,2-Dibromoe	thane		< 8.70	ug/Kg			2/3/2014
1,2-Dichlorob	enzene		< 8.70	ug/Kg			2/3/2014
1,2-Dichloroe	thane		< 8.70	ug/Kg			2/3/2014
1,2-Dichlorop	ropane		< 8.70	ug/Kg			2/3/2014
1,3-Dichlorob	enzene		< 8.70	ug/Kg			2/3/2014
1,4-Dichlorob	enzene		< 8.70	ug/Kg			2/3/2014
1,4-dioxane			< 87.0	ug/Kg			2/3/2014
2-Butanone			< 43.5	ug/Kg			2/3/2014
2-Hexanone			< 21.8	ug/Kg			2/3/2014
4-Methyl-2-pe	entanone	9	< 21.8	ug/Kg			2/3/2014
Acetone			< 43.5	ug/Kg			2/3/2014
Benzene			< 8.70	ug/Kg			2/3/2014
Bromochloroi	nethane		< 21.8	ug/Kg			2/3/2014

Client:	<u>GZA Geo Environme</u>	ntal of Nev	<u>w York</u>		
Project Reference:	21.0056687.10				
Sample Identifier:	SP-8-0.5-2-013114				
Lab Sample ID:	140347-04			Date Sampled:	1/31/2014
Matrix:	Soil			Date Received:	2/3/2014
Bromodichlo	oromethane	< 8.70	ug/Kg		2/3/2014
Bromoform		< 21.8	ug/Kg		2/3/2014
Bromometha	ine	< 8.70	ug/Kg		2/3/2014
Carbon disul	fide	< 8.70	ug/Kg		2/3/2014
Carbon Tetra	achloride	< 8.70	ug/Kg		2/3/2014
Chlorobenze	ne	< 8.70	ug/Kg		2/3/2014
Chloroethan	e	< 8.70	ug/Kg		2/3/2014
Chloroform		< 8.70	ug/Kg		2/3/2014
Chlorometha	ine	< 8.70	ug/Kg		2/3/2014
cis-1,2-Dichl	oroethene	< 8.70	ug/Kg		2/3/2014
cis-1,3-Dichl	oropropene	< 8.70	ug/Kg		2/3/2014
Cyclohexane		< 43.5	ug/Kg		2/3/2014
Dibromochlo	oromethane	< 8.70	ug/Kg		2/3/2014
Dichlorodiflu	ioromethane	< 8.70	ug/Kg		2/3/2014
Ethylbenzen	e	< 8.70	ug/Kg		2/3/2014
Freon 113		< 8.70	ug/Kg		2/3/2014
Isopropylber	nzene	< 8.70	ug/Kg		2/3/2014
m,p-Xylene		< 8.70	ug/Kg		2/3/2014
Methyl aceta	te	< 8.70	ug/Kg		2/3/2014
Methyl tert-b	outyl Ether	< 8.70	ug/Kg		2/3/2014
Methylcycloł	nexane	< 8.70	ug/Kg		2/3/2014
Methylene ch	nloride	< 21.8	ug/Kg		2/3/2014
o-Xylene		< 8.70	ug/Kg		2/3/2014
Styrene		< 21.8	ug/Kg		2/3/2014
Tetrachloroe	ethene	< 8.70	ug/Kg		2/3/2014
Toluene		< 8.70	ug/Kg		2/3/2014
trans-1,2-Dic	chloroethene	< 8.70	ug/Kg		2/3/2014
trans-1,3-Dic	chloropropene	< 8.70	ug/Kg		2/3/2014
Trichloroeth	ene	< 8.70	ug/Kg		2/3/2014
Trichlorofluc	promethane	< 8.70	ug/Kg		2/3/2014

Client:	<u>GZA (</u>	Geo Environme	ntal of Nev	<u>w York</u>		
Project Reference:	21.00	56687.10				
Sample Identifier:	SP-8	-0.5-2-013114				
Lab Sample ID:	1403	347-04			Date Sampled:	1/31/2014
Matrix:	Soil				Date Received:	2/3/2014
Vinyl chlorid	e		< 8.70	ug/Kg		2/3/2014
Method Refere	nce(s):	EPA 8260C EPA 5035A				
Data File:		x11073.D				

Client:	<u>GZA G</u>	eo Environme	ntal of Nev	<u>v York</u>			
Project Reference:	21.00	56687.10					
Sample Identifier: Lab Sample ID: Matrix:	SP-1 1403 Soil	0-4-6-013114 347-05			Date Sampled: Date Received:	1/3 2/3	1/2014 /2014
<u>PCBs</u>							
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	Qua	lifier	Date Analyzed
PCB-1016			< 0.491	mg/Kg			2/4/2014
PCB-1221			< 0.491	mg/Kg			2/4/2014
PCB-1232			< 0.491	mg/Kg			2/4/2014
PCB-1242			< 0.491	mg/Kg			2/4/2014
PCB-1248			< 0.491	mg/Kg			2/4/2014
PCB-1254			< 0.491	mg/Kg			2/4/2014
PCB-1260			< 0.491	mg/Kg			2/4/2014
PCB-1262			< 0.491	mg/Kg			2/4/2014
PCB-1268			< 0.491	mg/Kg			2/4/2014
Method Referen	nce(s):	EPA 8082A EPA 3550C					
<u>Semi-Volatile Org</u>	<u>ganics (</u>	PAHs)					
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	Qua	lifier	Date Analyzed
Acenaphthen	ie		< 365	ug/Kg			2/4/2014
Acenaphthyle	ene		< 365	ug/Kg			2/4/2014
Anthracene			< 365	ug/Kg			2/4/2014
Benzo (a) ant	thracene		< 365	ug/Kg			2/4/2014
Benzo (a) py	rene		< 365	ug/Kg			2/4/2014
Benzo (b) flu	oranthene	2	< 365	ug/Kg			2/4/2014
Benzo (g,h,i)	perylene		< 365	ug/Kg			2/4/2014
Benzo (k) flu	oranthene	9	< 365	ug/Kg			2/4/2014
Chrysene			< 365	ug/Kg			2/4/2014
Dibenz (a,h)	anthracen	e	< 365	ug/Kg			2/4/2014
Fluoranthene	e		< 365	ug/Kg			2/4/2014
Fluorene			< 365	ug/Kg			2/4/2014
Indeno (1,2,3	8-cd) pyre	ne	< 365	ug/Kg			2/4/2014

Client:	<u>GZA G</u>	<u>eo Environme</u>	ntal of Nev	<u>v York</u>			
Project Reference:	21.005	56687.10					
Sample Identifier:	SP-10)-4-6-013114					
Lab Sample ID:	1403	47-05			Date Sampled:	1/3	1/2014
Matrix:	Soil				Date Received:	2/3	/2014
Naphthalene			< 365	ug/Kg			2/4/2014
Phenanthrene			< 365	ug/Kg			2/4/2014
Pyrene			< 365	ug/Kg			2/4/2014
Method Referenc	e(s):	EPA 8270D EPA 3550C S47635 D					
Volatile Organics		517035.0					
Analyte			Result	Units	Qual	lifier	Date Analyzed
1.1.1-Trichloro	ethane		< 10.3	ug/Kg	<u> </u>		2/3/2014
1.1.2.2-Tetrach	loroetha	ane	< 10.3	ug/Kg	М		2/3/2014
1,1,2-Trichloro	ethane		< 10.3	ug/Kg	М		2/3/2014
1,1-Dichloroet	hane		< 10.3	ug/Kg			2/3/2014
1,1-Dichloroet	hene		< 10.3	ug/Kg			2/3/2014
1,2,3-Trichloro	benzene	2	< 25.7	ug/Kg			2/3/2014
1,2,4-Trichloro	benzene		< 25.7	ug/Kg			2/3/2014
1,2-Dibromo-3	-Chlorop	propane	< 51.5	ug/Kg			2/3/2014
1,2-Dibromoet	hane		< 10.3	ug/Kg			2/3/2014
1,2-Dichlorobe	nzene		< 10.3	ug/Kg	М		2/3/2014
1,2-Dichloroet	hane		< 10.3	ug/Kg	М		2/3/2014
1,2-Dichloropr	opane		< 10.3	ug/Kg			2/3/2014
1,3-Dichlorobe	nzene		< 10.3	ug/Kg	М		2/3/2014
1,4-Dichlorobe	nzene		< 10.3	ug/Kg	М		2/3/2014
1,4-dioxane			< 103	ug/Kg			2/3/2014
2-Butanone			< 51.5	ug/Kg			2/3/2014
2-Hexanone			< 25.7	ug/Kg			2/3/2014
4-Methyl-2-pe	ntanone		< 25.7	ug/Kg			2/3/2014
Acetone			< 51.5	ug/Kg			2/3/2014
Benzene			< 10.3	ug/Kg			2/3/2014
Bromochlorom	nethane		< 25.7	ug/Kg			2/3/2014
Bromodichloro	methan	е	< 10.3	ug/Kg	М		2/3/2014

Client:	<u>GZA Geo Environme</u>	ental of Nev	<u>w York</u>		
Project Reference:	21.0056687.10				
Sample Identifier:	SP-10-4-6-013114				
Lab Sample ID:	140347-05			Date Sampled:	1/31/2014
Matrix:	Soil			Date Received:	2/3/2014
Bromoform		< 25.7	ug/Kg	М	2/3/2014
Bromometha	ane	< 10.3	ug/Kg		2/3/2014
Carbon disul	fide	< 10.3	ug/Kg		2/3/2014
Carbon Tetra	achloride	< 10.3	ug/Kg		2/3/2014
Chlorobenze	ne	< 10.3	ug/Kg	М	2/3/2014
Chloroethan	e	< 10.3	ug/Kg		2/3/2014
Chloroform		< 10.3	ug/Kg	М	2/3/2014
Chlorometha	ine	< 10.3	ug/Kg		2/3/2014
cis-1,2-Dichl	oroethene	< 10.3	ug/Kg		2/3/2014
cis-1,3-Dichl	oropropene	< 10.3	ug/Kg		2/3/2014
Cyclohexane		< 51.5	ug/Kg		2/3/2014
Dibromochlo	oromethane	< 10.3	ug/Kg	М	2/3/2014
Dichlorodiflu	ioromethane	< 10.3	ug/Kg		2/3/2014
Ethylbenzen	e	< 10.3	ug/Kg		2/3/2014
Freon 113		< 10.3	ug/Kg		2/3/2014
Isopropylber	nzene	< 10.3	ug/Kg		2/3/2014
m,p-Xylene		< 10.3	ug/Kg		2/3/2014
Methyl aceta	te	< 10.3	ug/Kg		2/3/2014
Methyl tert-h	outyl Ether	< 10.3	ug/Kg		2/3/2014
Methylcyclol	hexane	< 10.3	ug/Kg		2/3/2014
Methylene ch	nloride	< 25.7	ug/Kg		2/3/2014
o-Xylene		< 10.3	ug/Kg		2/3/2014
Styrene		< 25.7	ug/Kg		2/3/2014
Tetrachloroe	ethene	< 10.3	ug/Kg		2/3/2014
Toluene		< 10.3	ug/Kg		2/3/2014
trans-1,2-Dic	chloroethene	< 10.3	ug/Kg		2/3/2014
trans-1,3-Dio	chloropropene	< 10.3	ug/Kg	М	2/3/2014
Trichloroeth	ene	< 10.3	ug/Kg		2/3/2014
Trichlorofluc	oromethane	< 10.3	ug/Kg		2/3/2014
Vinyl chlorid	e	< 10.3	ug/Kg		2/3/2014

Client:	<u>GZA Geo Environmental of New York</u>		
Project Reference:	21.0056687.10		
Sample Identifier:	SP-10-4-6-013114		
Lab Sample ID:	140347-05	Date Sampled:	1/31/2014
Matrix:	Soil	Date Received:	2/3/2014
Method Refere	nce(s): EPA 8260C		
	EPA 5035A		

Data File:

x11074.D

Client:	GZA Geo Environm	ental of New	<u>v York</u>			
Project Reference:	21.0056687.10					
Sample Identifier: Lab Sample ID: Matrix:	SP-11-7-013114 140347-06 Soil			Date Sampled: Date Received:	1/3 2/3	1/2014 /2014
<u>PCBs</u>						
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qual	<u>lifier</u>	Date Analyzed
PCB-1016		< 0.407	mg/Kg			2/4/2014
PCB-1221		< 0.407	mg/Kg			2/4/2014
PCB-1232		< 0.407	mg/Kg			2/4/2014
PCB-1242		< 0.407	mg/Kg			2/4/2014
PCB-1248		< 0.407	mg/Kg			2/4/2014
PCB-1254		< 0.407	mg/Kg			2/4/2014
PCB-1260		< 0.407	mg/Kg			2/4/2014
PCB-1262		< 0.407	mg/Kg			2/4/2014
PCB-1268		< 0.407	mg/Kg			2/4/2014
Method Refere	nce(s): EPA 8082A EPA 3550C					
<u>Semi-Volatile Org</u>	<u>ganics (PAHs)</u>					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qual	lifier	Date Analyzed
Acenaphther	ie	< 310	ug/Kg			2/4/2014
Acenaphthyl	ene	< 310	ug/Kg			2/4/2014
Anthracene		< 310	ug/Kg			2/4/2014
Benzo (a) an	thracene	< 310	ug/Kg			2/4/2014
Benzo (a) py	rene	< 310	ug/Kg			2/4/2014
Benzo (b) flu	ioranthene	< 310	ug/Kg			2/4/2014
Benzo (g,h,i)	perylene	< 310	ug/Kg			2/4/2014
Benzo (k) flu	ioranthene	< 310	ug/Kg			2/4/2014
Chrysene		< 310	ug/Kg			2/4/2014
Dibenz (a,h)	anthracene	< 310	ug/Kg			2/4/2014
Fluoranthen	e	< 310	ug/Kg			2/4/2014
Fluorene		< 310	ug/Kg			2/4/2014
Indeno (1,2,3	3-cd) pyrene	< 310	ug/Kg			2/4/2014

Client:	<u>GZA Geo Environmental of New York</u>						
Project Reference:	21.00	56687.10					
Sample Identifier:	SP-1	1-7-013114					
Lab Sample ID:	1403	847-06			Date Sampled:	1/3	1/2014
Matrix:	Soil				Date Received:	2/3	/2014
Naphthalene			< 310	ug/Kg			2/4/2014
Phenanthrene			< 310	ug/Kg			2/4/2014
Pyrene			< 310	ug/Kg			2/4/2014
Method Referenc	e(s):	EPA 8270D EPA 3550C					
Volatile Organics		347030.D					
<u>Analyte</u>			Result	Units	Qua	lifier	Date Analyzed
1 1 1-Trichloro	ethane		< 8.24	<u>υπτσ</u> 11σ/Κσ		mer	2/3/2014
1 1 2 2-Tetrach	loroeth	ane	< 8.24	11g/Kg			2/3/2014
1,1,2,2 Techaer	ethane	une	< 8.24	ug/Kg			2/3/2014
1.1-Dichloroet	hane		< 8.24	ug/Kg			2/3/2014
1,1-Dichloroet	hene		< 8.24	ug/Kg			2/3/2014
1,2,3-Trichloro	benzen	е	< 20.6	ug/Kg			2/3/2014
1,2,4-Trichloro	benzen	е	< 20.6	ug/Kg			2/3/2014
1,2-Dibromo-3	-Chloro	propane	< 41.2	ug/Kg			2/3/2014
1,2-Dibromoet	hane		< 8.24	ug/Kg			2/3/2014
1,2-Dichlorobe	nzene		< 8.24	ug/Kg			2/3/2014
1,2-Dichloroet	hane		< 8.24	ug/Kg			2/3/2014
1,2-Dichloropr	opane		< 8.24	ug/Kg			2/3/2014
1,3-Dichlorobe	nzene		< 8.24	ug/Kg			2/3/2014
1,4-Dichlorobe	nzene		< 8.24	ug/Kg			2/3/2014
1,4-dioxane			< 82.4	ug/Kg			2/3/2014
2-Butanone			< 41.2	ug/Kg			2/3/2014
2-Hexanone			< 20.6	ug/Kg			2/3/2014
4-Methyl-2-per	ntanone		< 20.6	ug/Kg			2/3/2014
Acetone			< 41.2	ug/Kg			2/3/2014
Benzene			< 8.24	ug/Kg			2/3/2014
Bromochlorom	nethane		< 20.6	ug/Kg			2/3/2014
Bromodichloro	methan	e	< 8.24	ug/Kg			2/3/2014

Client:	<u>GZA Geo Environmental of New York</u>							
Project Reference:	21.0056687.10							
Sample Identifier:	SP-11-7-013114							
Lab Sample ID:	140347-06			Date Sampled:	1/31/2014			
Matrix:	Soil			Date Received:	2/3/2014			
Bromoform		< 20.6	ug/Kg		2/3/2014			
Bromometha	ne	< 8.24	ug/Kg		2/3/2014			
Carbon disul	fide	< 8.24	ug/Kg		2/3/2014			
Carbon Tetra	chloride	< 8.24	ug/Kg		2/3/2014			
Chlorobenzer	ne	< 8.24	ug/Kg		2/3/2014			
Chloroethane	9	< 8.24	ug/Kg		2/3/2014			
Chloroform		< 8.24	ug/Kg		2/3/2014			
Chlorometha	ne	< 8.24	ug/Kg		2/3/2014			
cis-1,2-Dichle	oroethene	< 8.24	ug/Kg		2/3/2014			
cis-1,3-Dichle	oropropene	< 8.24	ug/Kg		2/3/2014			
Cyclohexane		< 41.2	ug/Kg		2/3/2014			
Dibromochlo	romethane	< 8.24	ug/Kg		2/3/2014			
Dichlorodiflu	oromethane	< 8.24	ug/Kg		2/3/2014			
Ethylbenzene	9	< 8.24	ug/Kg		2/3/2014			
Freon 113		< 8.24	ug/Kg		2/3/2014			
Isopropylben	izene	< 8.24	ug/Kg		2/3/2014			
m,p-Xylene		< 8.24	ug/Kg		2/3/2014			
Methyl aceta	te	< 8.24	ug/Kg		2/3/2014			
Methyl tert-b	outyl Ether	< 8.24	ug/Kg		2/3/2014			
Methylcycloh	iexane	< 8.24	ug/Kg		2/3/2014			
Methylene ch	lloride	< 20.6	ug/Kg		2/3/2014			
o-Xylene		< 8.24	ug/Kg		2/3/2014			
Styrene		< 20.6	ug/Kg		2/3/2014			
Tetrachloroe	thene	< 8.24	ug/Kg		2/3/2014			
Toluene		< 8.24	ug/Kg		2/3/2014			
trans-1,2-Dic	hloroethene	< 8.24	ug/Kg		2/3/2014			
trans-1,3-Dic	hloropropene	< 8.24	ug/Kg		2/3/2014			
Trichloroethe	ene	< 8.24	ug/Kg		2/3/2014			
Trichlorofluo	oromethane	< 8.24	ug/Kg		2/3/2014			
Vinyl chlorid	e	< 8.24	ug/Kg		2/3/2014			

Client:	<u>GZA Geo Environmental of New York</u>		
Project Reference:	21.0056687.10		
Sample Identifier:	SP-11-7-013114		
Lab Sample ID:	140347-06	Date Sampled:	1/31/2014
Matrix:	Soil	Date Received:	2/3/2014
Method Refere	nce(s): EPA 8260C		
	EPA 5035A		

Data File:

x11075.D

Client:	<u>GZA (</u>	Geo Environm	ental of New	<u> York</u>			
Project Reference:	21.00	56687.10					
Sample Identifier: Lab Sample ID: Matrix:	SP-11-10-12-013114 140347-07 Soil				Date Sampled: Date Received:	1/3 2/3,	1/2014 /2014
<u>PCBs</u>							
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	Qual	lifier	Date Analyzed
PCB-1016			< 0.437	mg/Kg			2/4/2014
PCB-1221			< 0.437	mg/Kg			2/4/2014
PCB-1232			< 0.437	mg/Kg			2/4/2014
PCB-1242			< 0.437	mg/Kg			2/4/2014
PCB-1248			< 0.437	mg/Kg			2/4/2014
PCB-1254			< 0.437	mg/Kg			2/4/2014
PCB-1260			< 0.437	mg/Kg			2/4/2014
PCB-1262			< 0.437	mg/Kg			2/4/2014
PCB-1268			< 0.437	mg/Kg			2/4/2014
Method Refere	nce(s):	EPA 8082A EPA 3550C					
<u>Semi-Volatile Org</u>	ganics (PAHs)					
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	Qual	<u>lifier</u>	Date Analyzed
Acenaphther	ie		< 315	ug/Kg			2/4/2014
Acenaphthyl	ene		< 315	ug/Kg			2/4/2014
Anthracene			< 315	ug/Kg			2/4/2014
Benzo (a) an	thracene		< 315	ug/Kg			2/4/2014
Benzo (a) py	rene		< 315	ug/Kg			2/4/2014
Benzo (b) flu	oranthen	e	< 315	ug/Kg			2/4/2014
Benzo (g,h,i)	perylene		< 315	ug/Kg			2/4/2014
Benzo (k) flu	oranthen	e	< 315	ug/Kg			2/4/2014
Chrysene			< 315	ug/Kg			2/4/2014
Dibenz (a,h)	anthracer	ie	< 315	ug/Kg			2/4/2014
Fluoranthene	e		< 315	ug/Kg			2/4/2014
Fluorene			< 315	ug/Kg			2/4/2014
Indeno (1,2,3	8-cd) pyre	ene	< 315	ug/Kg			2/4/2014

Client:	<u>GZA G</u>	GZA Geo Environmental of New York 21.0056687.10						
Project Reference:	21.00							
Sample Identifier:	SP-1	1-10-12-0131	14					
Lab Sample ID:	1403	847-07			Date Sampled:	1/3	1/2014	
Matrix:	Soil				Date Received:	2/3	/2014	
Naphthalene			< 315	ug/Kg			2/4/2014	
Phenanthren	e		< 315	ug/Kg			2/4/2014	
Pyrene			< 315	ug/Kg			2/4/2014	
Method Refere	nce(s):	EPA 8270D EPA 3550C						
Data File:	_	S47637.D						
<u>volatile Organics</u>	<u>S</u>							
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	Qual	lifier	Date Analyzed	
1,1,1-Trichlo	roethane		< 756	ug/Kg			2/4/2014	
1,1,2,2-Tetra	chloroeth	ane	< 756	ug/Kg			2/4/2014	
1,1,2-Trichlo	roethane		< 756	ug/Kg			2/4/2014	
1,1-Dichloro	ethane		< 756	ug/Kg			2/4/2014	
1,1-Dichloro	ethene		< 756	ug/Kg			2/4/2014	
1,2,3-Trichlo	robenzen	e	< 1890	ug/Kg			2/4/2014	
1,2,4-Trichlo	robenzen	e	< 1890	ug/Kg			2/4/2014	
1,2-Dibromo	-3-Chloro	propane	< 3780	ug/Kg			2/4/2014	
1,2-Dibromo	ethane		< 756	ug/Kg			2/4/2014	
1,2-Dichlorol	benzene		< 756	ug/Kg			2/4/2014	
1,2-Dichloroe	ethane		< 756	ug/Kg			2/4/2014	
1,2-Dichloro	propane		< 756	ug/Kg			2/4/2014	
1,3-Dichlorol	benzene		< 756	ug/Kg			2/4/2014	
1,4-Dichlorol	benzene		< 756	ug/Kg			2/4/2014	
1,4-dioxane			< 7560	ug/Kg			2/4/2014	
2-Butanone			< 3780	ug/Kg			2/4/2014	
2-Hexanone			< 1890	ug/Kg			2/4/2014	
4-Methyl-2-p	oentanone		< 1890	ug/Kg			2/4/2014	
Acetone			< 3780	ug/Kg			2/4/2014	
Benzene			< 756	ug/Kg			2/4/2014	
Bromochloro	omethane		< 1890	ug/Kg			2/4/2014	
Bromodichlo	romethan	e	< 756	ug/Kg			2/4/2014	

Client:	<u>GZA Geo Environm</u>	ental of Nev	<u>v York</u>		
Project Reference:	21.0056687.10				
Sample Identifier:	SP-11-10-12-01311	4			
Lab Sample ID:	140347-07			Date Sampled:	1/31/2014
Matrix:	Soil			Date Received:	2/3/2014
Bromoform		< 1890	ug/Kg		2/4/2014
Bromometh	ane	< 756	ug/Kg		2/4/2014
Carbon disu	lfide	< 756	ug/Kg		2/4/2014
Carbon Tetr	achloride	< 756	ug/Kg		2/4/2014
Chlorobenze	ene	< 756	ug/Kg		2/4/2014
Chloroethan	e	< 756	ug/Kg		2/4/2014
Chloroform		< 756	ug/Kg		2/4/2014
Chlorometha	ane	< 756	ug/Kg		2/4/2014
cis-1,2-Dich	loroethene	< 756	ug/Kg		2/4/2014
cis-1,3-Dich	loropropene	< 756	ug/Kg		2/4/2014
Cyclohexane		< 3780	ug/Kg		2/4/2014
Dibromochle	oromethane	< 756	ug/Kg		2/4/2014
Dichlorodif	uoromethane	< 756	ug/Kg		2/4/2014
Ethylbenzen	le	< 756	ug/Kg		2/4/2014
Freon 113		< 756	ug/Kg		2/4/2014
Isopropylbe	nzene	< 756	ug/Kg		2/4/2014
m,p-Xylene		< 756	ug/Kg		2/4/2014
Methyl aceta	ate	< 756	ug/Kg		2/4/2014
Methyl tert-	butyl Ether	< 756	ug/Kg		2/4/2014
Methylcyclo	hexane	< 756	ug/Kg		2/4/2014
Methylene c	hloride	< 1890	ug/Kg		2/4/2014
o-Xylene		< 756	ug/Kg		2/4/2014
Styrene		< 1890	ug/Kg		2/4/2014
Tetrachloro	ethene	33000	ug/Kg		2/4/2014
Toluene		< 756	ug/Kg		2/4/2014
trans-1,2-Di	chloroethene	< 756	ug/Kg		2/4/2014
trans-1,3-Di	chloropropene	< 756	ug/Kg		2/4/2014
Trichloroeth	nene	< 756	ug/Kg		2/4/2014
Trichloroflu	oromethane	< 756	ug/Kg		2/4/2014
Vinyl chloric	le	< 756	ug/Kg		2/4/2014

Client:	<u>GZA Geo Environmental of New York</u>		
Project Reference:	21.0056687.10		
Sample Identifier:	SP-11-10-12-013114		
Lab Sample ID:	140347-07	Date Sampled:	1/31/2014
Matrix:	Soil	Date Received:	2/3/2014
Method Referen	nce(s): EPA 8260C		
	EPA 5035A		

Data File:

x11099.D

Client:	GZA Geo Environmental of New York							
Project Reference:	21.0056687.10							
Sample Identifier: Lab Sample ID: Matrix:	SP-12-8-10-01 140347-08 Soil	SP-12-8-10-013114 140347-08 Soil			1/3 2/3	1/2014 /2014		
<u>PCBs</u>								
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qual	lifier	Date Analyzed		
PCB-1016		< 0.448	mg/Kg			2/4/2014		
PCB-1221		< 0.448	mg/Kg			2/4/2014		
PCB-1232		< 0.448	mg/Kg			2/4/2014		
PCB-1242		< 0.448	mg/Kg			2/4/2014		
PCB-1248		< 0.448	mg/Kg			2/4/2014		
PCB-1254		< 0.448	mg/Kg			2/4/2014		
PCB-1260		< 0.448	mg/Kg			2/4/2014		
PCB-1262		< 0.448	mg/Kg			2/4/2014		
PCB-1268		< 0.448	mg/Kg			2/4/2014		
Method Refere	ence(s): EPA 8082/ EPA 35500	A C						
<u>Semi-Volatile Org</u>	ganics (PAHs)							
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qual	<u>lifier</u>	Date Analyzed		
Acenaphther	ne	< 320	ug/Kg			2/5/2014		
Acenaphthyl	ene	< 320	ug/Kg			2/5/2014		
Anthracene		< 320	ug/Kg			2/5/2014		
Benzo (a) an	thracene	< 320	ug/Kg			2/5/2014		
Benzo (a) py	rene	< 320	ug/Kg			2/5/2014		
Benzo (b) flu	ıoranthene	< 320	ug/Kg			2/5/2014		
Benzo (g,h,i)	perylene	< 320	ug/Kg			2/5/2014		
Benzo (k) flu	ioranthene	< 320	ug/Kg			2/5/2014		
Chrysene		< 320	ug/Kg			2/5/2014		
Dibenz (a,h)	anthracene	< 320	ug/Kg			2/5/2014		
Fluoranthen	e	< 320	ug/Kg			2/5/2014		
Fluorene		< 320	ug/Kg			2/5/2014		
Indeno (1,2,3	3-cd) pyrene	< 320	ug/Kg			2/5/2014		

Client:	<u>GZA Geo Environmental of New York</u>						
Project Reference:	21.00	56687.10					
Sample Identifier:	SP-1	2-8-10-013114					
Lab Sample ID:	1403	347-08			Date Sampled:	1/3	1/2014
Matrix:	Soil				Date Received:	2/3	/2014
Naphthalene			< 320	ug/Kg			2/5/2014
Phenanthrene	2		< 320	ug/Kg			2/5/2014
Pyrene			< 320	ug/Kg			2/5/2014
Method Referen Data File:	ce(s):	EPA 8270D EPA 3550C S47638.D					
Volatile Organics							
Analyte			<u>Result</u>	<u>Units</u>	Qua	lifier	Date Analyzed
1,1,1-Trichlor	oethane		< 9.19	ug/Kg	-		2/4/2014
1,1,2,2-Tetrac	hloroeth	ane	< 9.19	ug/Kg			2/4/2014
1,1,2-Trichlor	oethane		< 9.19	ug/Kg			2/4/2014
1,1-Dichloroe	thane		< 9.19	ug/Kg			2/4/2014
1,1-Dichloroe	thene		< 9.19	ug/Kg			2/4/2014
1,2,3-Trichlor	obenzen	e	< 23.0	ug/Kg			2/4/2014
1,2,4-Trichlor	obenzen	e	< 23.0	ug/Kg			2/4/2014
1,2-Dibromo-	3-Chloro	propane	< 45.9	ug/Kg			2/4/2014
1,2-Dibromoe	thane		< 9.19	ug/Kg			2/4/2014
1,2-Dichlorob	enzene		< 9.19	ug/Kg			2/4/2014
1,2-Dichloroe	thane		< 9.19	ug/Kg			2/4/2014
1,2-Dichlorop	ropane		< 9.19	ug/Kg			2/4/2014
1,3-Dichlorob	enzene		< 9.19	ug/Kg			2/4/2014
1,4-Dichlorob	enzene		< 9.19	ug/Kg			2/4/2014
1,4-dioxane			< 91.9	ug/Kg			2/4/2014
2-Butanone			< 45.9	ug/Kg			2/4/2014
2-Hexanone			< 23.0	ug/Kg			2/4/2014
4-Methyl-2-pe	entanone		< 23.0	ug/Kg			2/4/2014
Acetone			< 45.9	ug/Kg			2/4/2014
Benzene			< 9.19	ug/Kg			2/4/2014
Bromochloron	nethane		< 23.0	ug/Kg			2/4/2014
Bromodichlor	omethan	ie	< 9.19	ug/Kg			2/4/2014

Client:	<u>GZA Geo Environme</u>	ntal of Nev	<u>w York</u>		
Project Reference:	21.0056687.10				
Sample Identifier:	SP-12-8-10-013114				
Lab Sample ID:	140347-08			Date Sampled:	1/31/2014
Matrix:	Soil			Date Received:	2/3/2014
Bromoform		< 23.0	ug/Kg		2/4/2014
Bromometha	ane	< 9.19	ug/Kg		2/4/2014
Carbon disul	fide	< 9.19	ug/Kg		2/4/2014
Carbon Tetra	achloride	< 9.19	ug/Kg		2/4/2014
Chlorobenze	ne	< 9.19	ug/Kg		2/4/2014
Chloroethan	e	< 9.19	ug/Kg		2/4/2014
Chloroform		< 9.19	ug/Kg		2/4/2014
Chlorometha	ane	< 9.19	ug/Kg		2/4/2014
cis-1,2-Dichl	oroethene	135	ug/Kg		2/4/2014
cis-1,3-Dichl	oropropene	< 9.19	ug/Kg		2/4/2014
Cyclohexane	1	< 45.9	ug/Kg		2/4/2014
Dibromochlo	oromethane	< 9.19	ug/Kg		2/4/2014
Dichlorodiflu	ıoromethane	< 9.19	ug/Kg		2/4/2014
Ethylbenzen	e	< 9.19	ug/Kg		2/4/2014
Freon 113		< 9.19	ug/Kg		2/4/2014
Isopropylber	nzene	< 9.19	ug/Kg		2/4/2014
m,p-Xylene		< 9.19	ug/Kg		2/4/2014
Methyl aceta	te	< 9.19	ug/Kg		2/4/2014
Methyl tert-l	outyl Ether	< 9.19	ug/Kg		2/4/2014
Methylcyclol	hexane	< 9.19	ug/Kg		2/4/2014
Methylene cl	hloride	< 23.0	ug/Kg		2/4/2014
o-Xylene		< 9.19	ug/Kg		2/4/2014
Styrene		< 23.0	ug/Kg		2/4/2014
Tetrachloroe	ethene	23.5	ug/Kg		2/4/2014
Toluene		< 9.19	ug/Kg		2/4/2014
trans-1,2-Die	chloroethene	< 9.19	ug/Kg		2/4/2014
trans-1,3-Die	chloropropene	< 9.19	ug/Kg		2/4/2014
Trichloroeth	ene	74.1	ug/Kg		2/4/2014
Trichlorofluo	oromethane	< 9.19	ug/Kg		2/4/2014
Vinyl chlorid	le	< 9.19	ug/Kg		2/4/2014

Client:	<u>GZA Geo Environmental of New York</u>		
Project Reference:	21.0056687.10		
Sample Identifier:	SP-12-8-10-013114		
Lab Sample ID:	140347-08	Date Sampled:	1/31/2014
Matrix:	Soil	Date Received:	2/3/2014
Method Refere	nce(s): EPA 8260C		
	EPA 5035A		

Data File:

x11092.D

Client:	<u>GZA Geo Environmental of New York</u>							
Project Reference:	21.0056687.10							
Sample Identifier: Lab Sample ID: Matrix:	SP-13-4-013114 140347-09 Soil			Date Sampled: Date Received:	1/3 2/3	1/2014 /2014		
<u>PCBs</u>								
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qual	<u>lifier</u>	Date Analyzed		
PCB-1016		< 0.436	mg/Kg			2/4/2014		
PCB-1221		< 0.436	mg/Kg			2/4/2014		
PCB-1232		< 0.436	mg/Kg			2/4/2014		
PCB-1242		< 0.436	mg/Kg			2/4/2014		
PCB-1248		< 0.436	mg/Kg			2/4/2014		
PCB-1254		< 0.436	mg/Kg			2/4/2014		
PCB-1260		< 0.436	mg/Kg			2/4/2014		
PCB-1262		< 0.436	mg/Kg			2/4/2014		
PCB-1268		< 0.436	mg/Kg			2/4/2014		
Method Refere	nce(s): EPA 8082A EPA 3550C							
<u>Semi-Volatile Org</u>	ganics (PAHs)							
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qual	lifier	Date Analyzed		
Acenaphther	ie	< 346	ug/Kg			2/5/2014		
Acenaphthyl	ene	< 346	ug/Kg			2/5/2014		
Anthracene		< 346	ug/Kg			2/5/2014		
Benzo (a) an	thracene	< 346	ug/Kg			2/5/2014		
Benzo (a) py	rene	< 346	ug/Kg			2/5/2014		
Benzo (b) flu	oranthene	< 346	ug/Kg			2/5/2014		
Benzo (g,h,i)	perylene	< 346	ug/Kg			2/5/2014		
Benzo (k) flu	oranthene	< 346	ug/Kg			2/5/2014		
Chrysene		< 346	ug/Kg			2/5/2014		
Dibenz (a,h)	anthracene	< 346	ug/Kg			2/5/2014		
Fluoranthen	e	< 346	ug/Kg			2/5/2014		
Fluorene		< 346	ug/Kg			2/5/2014		
Indeno (1,2,3	3-cd) pyrene	< 346	ug/Kg			2/5/2014		

Client:	<u>GZA G</u>	eo Environmo	ental of Nev	<u>v York</u>			
Project Reference:	21.005	56687.10					
Sample Identifier:	SP-13	3-4-013114					
Lab Sample ID:	1403	47-09			Date Sampled:	1/3	1/2014
Matrix:	Soil				Date Received:	, 2/3	, /2014
Naphthalene			< 346	ug/Kg			2/5/2014
Phenanthrene			< 346	ug/Kg			2/5/2014
Pyrene			< 346	ug/Kg			2/5/2014
Method Reference	e(s):	EPA 8270D EPA 3550C					
Volatile Organics		347039.0					
Analyto			Pocult	Unite	0.12	lifior	Data Analyzad
Analyte 111 Trichlord	othano		<u>resuit</u>	ug/Kg	Qua	inter	2 /4 /2014
1,1,1-1110100 1 1 2 2 Totrad	lorooth	220	< 12.0	ug/Kg			2/4/2014
1,1,2,2-Tetlaci	norocuia		< 12.0	ug/Kg			2/4/2014
1,1,2-Inteniore	hang		< 12.0	ug/Kg			2/4/2014
1,1-Dichloroet	hene		< 12.0	ug/Kg 11σ/Kσ			2/4/2014
1 2 3-Trichlore	henzene	2	< 31.6	11g/Kg			2/4/2014
1,2,4-Trichlor	obenzene	<u>,</u>	< 31.6	ug/Kg			2/4/2014
1.2-Dibromo-3	-Chloror	propane	< 63.2	ug/Kg			2/4/2014
1,2-Dibromoet	hane		< 12.6	ug/Kg			2/4/2014
1,2-Dichlorobe	enzene		< 12.6	ug/Kg			2/4/2014
1,2-Dichloroet	hane		< 12.6	ug/Kg			2/4/2014
1,2-Dichloropi	opane		< 12.6	ug/Kg			2/4/2014
1,3-Dichlorobe	enzene		< 12.6	ug/Kg			2/4/2014
1,4-Dichlorobe	enzene		< 12.6	ug/Kg			2/4/2014
1,4-dioxane			< 126	ug/Kg			2/4/2014
2-Butanone			< 63.2	ug/Kg			2/4/2014
2-Hexanone			< 31.6	ug/Kg			2/4/2014
4-Methyl-2-pe	ntanone		< 31.6	ug/Kg			2/4/2014
Acetone			< 63.2	ug/Kg			2/4/2014
Benzene			120	ug/Kg			2/4/2014
Bromochloron	nethane		< 31.6	ug/Kg			2/4/2014
Bromodichloro	omethan	e	< 12.6	ug/Kg			2/4/2014

Client:	GZA Geo Environme	ental of Nev	<u>w York</u>		
Project Reference:	21.0056687.10				
Sample Identifier:	SP-13-4-013114				
Lab Sample ID:	140347-09			Date Sampled:	1/31/2014
Matrix:	Soil			Date Received:	2/3/2014
Bromoform		< 31.6	ug/Kg		2/4/2014
Bromometha	ne	< 12.6	ug/Kg		2/4/2014
Carbon disul	fide	< 12.6	ug/Kg		2/4/2014
Carbon Tetra	chloride	< 12.6	ug/Kg		2/4/2014
Chlorobenzer	ne	< 12.6	ug/Kg		2/4/2014
Chloroethane	2	< 12.6	ug/Kg		2/4/2014
Chloroform		< 12.6	ug/Kg		2/4/2014
Chlorometha	ne	< 12.6	ug/Kg		2/4/2014
cis-1,2-Dichle	proethene	< 12.6	ug/Kg		2/4/2014
cis-1,3-Dichle	oropropene	< 12.6	ug/Kg		2/4/2014
Cyclohexane		< 63.2	ug/Kg		2/4/2014
Dibromochlo	romethane	< 12.6	ug/Kg		2/4/2014
Dichlorodiflu	oromethane	< 12.6	ug/Kg		2/4/2014
Ethylbenzene	2	151	ug/Kg		2/4/2014
Freon 113		< 12.6	ug/Kg		2/4/2014
Isopropylben	zene	105	ug/Kg		2/4/2014
m,p-Xylene		263	ug/Kg		2/4/2014
Methyl aceta	te	< 12.6	ug/Kg		2/4/2014
Methyl tert-b	utyl Ether	< 12.6	ug/Kg		2/4/2014
Methylcycloh	exane	< 12.6	ug/Kg		2/4/2014
Methylene ch	loride	< 31.6	ug/Kg		2/4/2014
o-Xylene		38.3	ug/Kg		2/4/2014
Styrene		< 31.6	ug/Kg		2/4/2014
Tetrachloroe	thene	< 12.6	ug/Kg		2/4/2014
Toluene		42.0	ug/Kg		2/4/2014
trans-1,2-Dic	hloroethene	< 12.6	ug/Kg		2/4/2014
trans-1,3-Dic	hloropropene	< 12.6	ug/Kg		2/4/2014
Trichloroeth	ene	< 12.6	ug/Kg		2/4/2014
Trichlorofluo	oromethane	< 12.6	ug/Kg		2/4/2014
Vinyl chlorid	e	< 12.6	ug/Kg		2/4/2014

Client:	<u>GZA Geo Environmental of New York</u>		
Project Reference:	21.0056687.10		
Sample Identifier:	SP-13-4-013114		
Lab Sample ID:	140347-09	Date Sampled:	1/31/2014
Matrix:	Soil	Date Received:	2/3/2014
Method Refere	nce(s): EPA 8260C		
	EPA 5035A		

Data File:

x11091.D

Client:	<u>GZA</u>	<u>Geo Environme</u>	ntal of Nev	<u>v York</u>			
Project Reference:	21.00	056687.10					
Sample Identifier: Lab Sample ID: Matrix:	SP-1 140 Soil	13-4-6-013114 347-10			Date Sampled: Date Received:	1/3 2/3	1/2014 /2014
<u>PCBs</u>							
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	Qua	lifier	Date Analyzed
PCB-1016			< 0.452	mg/Kg			2/4/2014
PCB-1221			< 0.452	mg/Kg			2/4/2014
PCB-1232			< 0.452	mg/Kg			2/4/2014
PCB-1242			< 0.452	mg/Kg			2/4/2014
PCB-1248			< 0.452	mg/Kg			2/4/2014
PCB-1254			< 0.452	mg/Kg			2/4/2014
PCB-1260			< 0.452	mg/Kg			2/4/2014
PCB-1262			< 0.452	mg/Kg			2/4/2014
PCB-1268			< 0.452	mg/Kg			2/4/2014
Method Referen	nce(s):	EPA 8082A EPA 3550C					
<u>Semi-Volatile Org</u>	<u>janics (</u>	(PAHs)					
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	Qua	<u>lifier</u>	Date Analyzed
Acenaphthen	e		< 347	ug/Kg			2/5/2014
Acenaphthyle	ene		< 347	ug/Kg			2/5/2014
Anthracene			< 347	ug/Kg			2/5/2014
Benzo (a) ant	thracene		< 347	ug/Kg			2/5/2014
Benzo (a) py	rene		< 347	ug/Kg			2/5/2014
Benzo (b) flu	oranthen	ne	< 347	ug/Kg			2/5/2014
Benzo (g,h,i)	perylene	2	< 347	ug/Kg			2/5/2014
Benzo (k) flu	oranthen	ie	< 347	ug/Kg			2/5/2014
Chrysene			< 347	ug/Kg			2/5/2014
Dibenz (a,h)	anthrace	ene	< 347	ug/Kg			2/5/2014
Fluoranthene	9		< 347	ug/Kg			2/5/2014
Fluorene			< 347	ug/Kg			2/5/2014
Indeno (1,2,3	-cd) pyre	ene	< 347	ug/Kg			2/5/2014

Client: <u>GZA Geo Environmental of New York</u>							
Project Reference:	21.00	56687.10					
Sample Identifier:	SP-1	3-4-6-013114					
Lab Sample ID:	1403	347-10			Date Sampled:	1/3	1/2014
Matrix:	Soil				Date Received:	2/3	/2014
Naphthalene			< 347	ug/Kg			2/5/2014
Phenanthren	e		< 347	ug/Kg			2/5/2014
Pyrene			< 347	ug/Kg			2/5/2014
Method Refere	nce(s):	EPA 8270D EPA 3550C					
Volatile Organics	,	547640.D					
<u>volutie organics</u>	<u>-</u>		Docult	Unito	Que	lifian	Data Analyzad
Analyte	wa ath an a			<u>Units</u>	Qua	inter	Date Analyzed
1,1,1-1 FICHIO	roetnane ablavaatb		< 9.00	ug/Kg			2/3/2014
1,1,2,2-Tetra	roothono	lane	< 9.00	ug/Kg			2/3/2014
1,1,2-1110110	thana		< 9.00	ug/Kg			2/3/2014
1,1-Dichlorod	othono		< 9.00	ug/Kg			2/3/2014
1,1-Dicition of	rohenzen	٥	< 22.5	ug/Kg			2/3/2014
1,2,3-1110110 1,2,4-Trichlo	robenzen	e 9	< 22.5	ug/Kg			2/3/2014
1,2,4-111cmo	-3-Chloro	propane	< 45.0	ug/Kg			2/3/2014
1,2 Dibromo	ethane	propune	< 9.00	11g/Kg			2/3/2011
1,2 Dichlorol	henzene		< 9.00	110/Ko			2/3/2011
1,2-Dichloroe	ethane		< 9.00	ug/Kg			2/3/2014
1.2-Dichloro	propane		< 9.00	ug/Kg			2/3/2014
1,3-Dichlorol	benzene		< 9.00	ug/Kg			2/3/2014
1,4-Dichlorol	benzene		< 9.00	ug/Kg			2/3/2014
1,4-dioxane			< 90.0	ug/Kg			2/3/2014
2-Butanone			< 45.0	ug/Kg			2/3/2014
2-Hexanone			< 22.5	ug/Kg			2/3/2014
4-Methyl-2-p	entanone	<u>)</u>	< 22.5	ug/Kg			2/3/2014
Acetone			< 45.0	ug/Kg			2/3/2014
Benzene			11.2	ug/Kg			2/3/2014
Bromochloro	methane		< 22.5	ug/Kg			2/3/2014
Bromodichlo	romethar	ne	< 9.00	ug/Kg			2/3/2014

Client:	<u>GZA Geo Environme</u>	ntal of Nev	<u>w York</u>		
Project Reference:	21.0056687.10				
Sample Identifier:	SP-13-4-6-013114				
Lab Sample ID:	140347-10			Date Sampled:	1/31/2014
Matrix:	Soil			Date Received:	2/3/2014
Bromoform		< 22.5	ug/Kg		2/3/2014
Bromometha	ine	< 9.00	ug/Kg		2/3/2014
Carbon disul	fide	< 9.00	ug/Kg		2/3/2014
Carbon Tetra	ichloride	< 9.00	ug/Kg		2/3/2014
Chlorobenze	ne	< 9.00	ug/Kg		2/3/2014
Chloroethan	e	< 9.00	ug/Kg		2/3/2014
Chloroform		< 9.00	ug/Kg		2/3/2014
Chlorometha	ne	< 9.00	ug/Kg		2/3/2014
cis-1,2-Dichl	oroethene	< 9.00	ug/Kg		2/3/2014
cis-1,3-Dichl	oropropene	< 9.00	ug/Kg		2/3/2014
Cyclohexane		< 45.0	ug/Kg		2/3/2014
Dibromochlo	oromethane	< 9.00	ug/Kg		2/3/2014
Dichlorodiflu	oromethane	< 9.00	ug/Kg		2/3/2014
Ethylbenzen	e	30.2	ug/Kg		2/3/2014
Freon 113		< 9.00	ug/Kg		2/3/2014
Isopropylber	nzene	36.3	ug/Kg		2/3/2014
m,p-Xylene		< 9.00	ug/Kg		2/3/2014
Methyl aceta	te	< 9.00	ug/Kg		2/3/2014
Methyl tert-b	outyl Ether	< 9.00	ug/Kg		2/3/2014
Methylcycloł	nexane	51.3	ug/Kg		2/3/2014
Methylene cł	loride	< 22.5	ug/Kg		2/3/2014
o-Xylene		< 9.00	ug/Kg		2/3/2014
Styrene		< 22.5	ug/Kg		2/3/2014
Tetrachloroe	thene	< 9.00	ug/Kg		2/3/2014
Toluene		< 9.00	ug/Kg		2/3/2014
trans-1,2-Dic	chloroethene	< 9.00	ug/Kg		2/3/2014
trans-1,3-Dic	chloropropene	< 9.00	ug/Kg		2/3/2014
Trichloroeth	ene	< 9.00	ug/Kg		2/3/2014
Trichlorofluc	oromethane	< 9.00	ug/Kg		2/3/2014
Vinyl chlorid	e	< 9.00	ug/Kg		2/3/2014

Client:	<u>GZA Geo Environmental of New York</u>		
Project Reference:	21.0056687.10		
Sample Identifier:	SP-13-4-6-013114		
Lab Sample ID:	140347-10	Date Sampled:	1/31/2014
Matrix:	Soil	Date Received:	2/3/2014
Method Refere	nce(s): EPA 8260C		
	EPA 5035A		

Data File:

x11081.D

Client:	GZA Geo Environm	ental of Nev	<u>v York</u>			
Project Reference:	21.0056687.10					
Sample Identifier: Lab Sample ID: Matrix:	SP-14-4-6-013114 140347-11 Soil			Date Sampled: Date Received:	1/3 2/3	1/2014 /2014
<u>PCBs</u>						
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qua	<u>lifier</u>	Date Analyzed
PCB-1016		< 0.437	mg/Kg			2/4/2014
PCB-1221		< 0.437	mg/Kg			2/4/2014
PCB-1232		< 0.437	mg/Kg			2/4/2014
PCB-1242		< 0.437	mg/Kg			2/4/2014
PCB-1248		< 0.437	mg/Kg			2/4/2014
PCB-1254		< 0.437	mg/Kg			2/4/2014
PCB-1260		< 0.437	mg/Kg			2/4/2014
PCB-1262		< 0.437	mg/Kg			2/4/2014
PCB-1268		< 0.437	mg/Kg			2/4/2014
Method Refere	nce(s): EPA 8082A EPA 3550C					
<u>Semi-Volatile Org</u>	ganics (PAHs)					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qua	<u>lifier</u>	Date Analyzed
Acenaphthen	ne	< 334	ug/Kg			2/5/2014
Acenaphthyle	ene	< 334	ug/Kg			2/5/2014
Anthracene		< 334	ug/Kg			2/5/2014
Benzo (a) ant	thracene	< 334	ug/Kg			2/5/2014
Benzo (a) py	rene	< 334	ug/Kg			2/5/2014
Benzo (b) flu	oranthene	< 334	ug/Kg			2/5/2014
Benzo (g,h,i)	perylene	< 334	ug/Kg			2/5/2014
Benzo (k) flu	oranthene	< 334	ug/Kg			2/5/2014
Chrysene		< 334	ug/Kg			2/5/2014
Dibenz (a,h)	anthracene	< 334	ug/Kg			2/5/2014
Fluoranthene	e	< 334	ug/Kg			2/5/2014
Fluorene		< 334	ug/Kg			2/5/2014
Indeno (1,2,3	3-cd) pyrene	< 334	ug/Kg			2/5/2014

Client:	<u>GZA G</u>	GZA Geo Environmental of New York							
Project Reference:	21.0056687.10								
Sample Identifier:	SP-1	4-4-6-013114							
Lab Sample ID:	1403	847-11			Date Sampled:	1/3	1/2014		
Matrix:	Soil				Date Received:	2/3	/2014		
Naphthalene			< 334	ug/Kg			2/5/2014		
Phenanthren	e		< 334	ug/Kg			2/5/2014		
Pyrene			< 334	ug/Kg			2/5/2014		
Method Refere	nce(s):	EPA 8270D EPA 3550C							
Data File: Volatile Organice	2	547641.D							
<u>volutile organits</u>	<u>0</u>		D						
Analyte			Result	Units	Qua	lifter	Date Analyzed		
1,1,1-Trichlo	roethane		< 8.01	ug/Kg			2/3/2014		
1,1,2,2-Tetra	chloroeth	ane	< 8.01	ug/Kg			2/3/2014		
1,1,2-1ricnio	roetnane		< 8.01	ug/Kg			2/3/2014		
1,1-Dichloro	ethane		< 8.01	ug/Kg			2/3/2014		
1,1-DICIIIOIO	rohongon	-	< 20.0	ug/Kg			2/3/2014		
1,2,3-1110110	robonzon	e	< 20.0	ug/Kg			2/3/2014		
1,2,4-1110110	2 Chlorov	propano	< 40.1	ug/Kg			2/3/2014		
1,2-Dibromo	othano	propane	< 9.01	ug/Kg			2/3/2014		
1,2-Dichlorol	henzene		< 8.01	ug/ Kg			2/3/2014		
1,2 Dichloro	ethane		< 8.01	ug/ Kg 11σ/Kσ			2/3/2011		
1,2 Dichloro	propane		< 8.01	11g/Kg			2/3/2011		
1.3-Dichloro	benzene		< 8.01	ug/Kg			2/3/2014		
1.4-Dichloro	benzene		< 8.01	ug/Kg			2/3/2014		
1,4-dioxane			< 80.1	ug/Kg			2/3/2014		
2-Butanone			< 40.1	ug/Kg			2/3/2014		
2-Hexanone			< 20.0	ug/Kg			2/3/2014		
4-Methyl-2-p	oentanone		< 20.0	ug/Kg			2/3/2014		
Acetone			< 40.1	ug/Kg			2/3/2014		
Benzene			< 8.01	ug/Kg			2/3/2014		
Bromochloro	omethane		< 20.0	ug/Kg			2/3/2014		
Bromodichlo	romethan	e	< 8.01	ug/Kg			2/3/2014		

Client:	<u>GZA Geo Environme</u>	ntal of Nev	<u>w York</u>		
Project Reference:	21.0056687.10				
Sample Identifier:	SP-14-4-6-013114				
Lab Sample ID:	140347-11			Date Sampled:	1/31/2014
Matrix:	Soil			Date Received:	2/3/2014
Bromoform		< 20.0	ug/Kg		2/3/2014
Bromometha	ane	< 8.01	ug/Kg		2/3/2014
Carbon disul	fide	< 8.01	ug/Kg		2/3/2014
Carbon Tetra	achloride	< 8.01	ug/Kg		2/3/2014
Chlorobenze	ne	< 8.01	ug/Kg		2/3/2014
Chloroethan	e	< 8.01	ug/Kg		2/3/2014
Chloroform		< 8.01	ug/Kg		2/3/2014
Chlorometha	ine	< 8.01	ug/Kg		2/3/2014
cis-1,2-Dichl	oroethene	< 8.01	ug/Kg		2/3/2014
cis-1,3-Dichl	oropropene	< 8.01	ug/Kg		2/3/2014
Cyclohexane		< 40.1	ug/Kg		2/3/2014
Dibromochlo	oromethane	< 8.01	ug/Kg		2/3/2014
Dichlorodiflu	ıoromethane	< 8.01	ug/Kg		2/3/2014
Ethylbenzen	e	< 8.01	ug/Kg		2/3/2014
Freon 113		< 8.01	ug/Kg		2/3/2014
Isopropylber	nzene	< 8.01	ug/Kg		2/3/2014
m,p-Xylene		< 8.01	ug/Kg		2/3/2014
Methyl aceta	te	< 8.01	ug/Kg		2/3/2014
Methyl tert-b	outyl Ether	< 8.01	ug/Kg		2/3/2014
Methylcyclol	nexane	< 8.01	ug/Kg		2/3/2014
Methylene cl	nloride	< 20.0	ug/Kg		2/3/2014
o-Xylene		< 8.01	ug/Kg		2/3/2014
Styrene		< 20.0	ug/Kg		2/3/2014
Tetrachloroe	ethene	< 8.01	ug/Kg		2/3/2014
Toluene		< 8.01	ug/Kg		2/3/2014
trans-1,2-Did	chloroethene	< 8.01	ug/Kg		2/3/2014
trans-1,3-Dio	chloropropene	< 8.01	ug/Kg		2/3/2014
Trichloroeth	ene	< 8.01	ug/Kg		2/3/2014
Trichlorofluo	oromethane	< 8.01	ug/Kg		2/3/2014
Vinyl chlorid	le	< 8.01	ug/Kg		2/3/2014

Client:	<u>GZA Geo Environmental of New York</u>		
Project Reference:	21.0056687.10		
Sample Identifier:	SP-14-4-6-013114		
Lab Sample ID:	140347-11	Date Sampled:	1/31/2014
Matrix:	Soil	Date Received:	2/3/2014
Method Refere	nce(s): EPA 8260C		
	EPA 5035A		

Data File:

x11082.D

Client:	<u>GZA Geo Envi</u>	ronmental of Nev	<u>v York</u>			
Project Reference:	21.0056687.10	0				
Sample Identifier: Lab Sample ID: Matrix:	SP-15-2-4-01 140347-12 Soil	3114		Date Sampled: Date Received:	1/3 2/3	1/2014 /2014
<u>PCBs</u>						
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qual	<u>lifier</u>	Date Analyzed
PCB-1016		< 0.531	mg/Kg			2/4/2014
PCB-1221		< 0.531	mg/Kg			2/4/2014
PCB-1232		< 0.531	mg/Kg			2/4/2014
PCB-1242		< 0.531	mg/Kg			2/4/2014
PCB-1248		< 0.531	mg/Kg			2/4/2014
PCB-1254		< 0.531	mg/Kg			2/4/2014
PCB-1260		< 0.531	mg/Kg			2/4/2014
PCB-1262		< 0.531	mg/Kg			2/4/2014
PCB-1268		< 0.531	mg/Kg			2/4/2014
Method Refere	nce(s): EPA 8082 EPA 3550	2A DC				
<u>Semi-Volatile Org</u>	ganics (PAHs)					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qual	<u>lifier</u>	Date Analyzed
Acenaphther	ne	< 404	ug/Kg			2/6/2014
Acenaphthyl	ene	< 404	ug/Kg			2/6/2014
Anthracene		< 404	ug/Kg			2/6/2014
Benzo (a) an	thracene	< 404	ug/Kg			2/6/2014
Benzo (a) py	rene	< 404	ug/Kg			2/6/2014
Benzo (b) flu	ioranthene	< 404	ug/Kg			2/6/2014
Benzo (g,h,i)	perylene	< 404	ug/Kg			2/6/2014
Benzo (k) flu	ioranthene	< 404	ug/Kg			2/6/2014
Chrysene		< 404	ug/Kg			2/6/2014
Dibenz (a,h)	anthracene	< 404	ug/Kg			2/6/2014
Fluoranthene	e	< 404	ug/Kg			2/6/2014
Fluorene		< 404	ug/Kg			2/6/2014
Indeno (1,2,3	3-cd) pyrene	< 404	ug/Kg			2/6/2014

Client:	<u>GZA (</u>	<u>Geo Environme</u>	ntal of Nev	<u>v York</u>			
Project Reference:	21.00	56687.10					
Sample Identifier: Lab Sample ID:	SP-1 1403	5-2-4-013114 847-12			Date Sampled:	1/3	1/2014
Matrix:	Soil				Date Received:	2/3	/2014
Naphthalene	<u>.</u>		< 404	ug/Kg			2/6/2014
Phenanthren	ie		< 404	ug/Kg			2/6/2014
Pyrene			< 404	ug/Kg			2/6/2014
Method Refere	nce(s):	EPA 8270D EPA 3550C S47673 D					
Volatile Organics	5	517075.0					
Analvte	<u>-</u>		Result	<u>Units</u>	Oua	lifier	Date Analvzed
1,1,1-Trichlo	roethane		< 9.81	ug/Kg	-		2/3/2014
1,1,2,2-Tetra	chloroeth	ane	< 9.81	ug/Kg			2/3/2014
1,1,2-Trichlo	roethane		< 9.81	ug/Kg			2/3/2014
1,1-Dichloro	ethane		< 9.81	ug/Kg			2/3/2014
1,1-Dichloro	ethene		< 9.81	ug/Kg			2/3/2014
1,2,3-Trichlo	robenzen	e	< 24.5	ug/Kg			2/3/2014
1,2,4-Trichlo	robenzen	e	< 24.5	ug/Kg			2/3/2014
1,2-Dibromo	-3-Chloro	propane	< 49.1	ug/Kg			2/3/2014
1,2-Dibromo	ethane		< 9.81	ug/Kg			2/3/2014
1,2-Dichloro	benzene		< 9.81	ug/Kg			2/3/2014
1,2-Dichloro	ethane		< 9.81	ug/Kg			2/3/2014
1,2-Dichloro	propane		< 9.81	ug/Kg			2/3/2014
1,3-Dichloro	benzene		< 9.81	ug/Kg			2/3/2014
1,4-Dichloro	benzene		< 9.81	ug/Kg			2/3/2014
1,4-dioxane			< 98.1	ug/Kg			2/3/2014
2-Butanone			< 49.1	ug/Kg			2/3/2014
2-Hexanone			< 24.5	ug/Kg			2/3/2014
4-Methyl-2-p	pentanone		< 24.5	ug/Kg			2/3/2014
Acetone			144	ug/Kg			2/3/2014
Benzene			< 9.81	ug/Kg			2/3/2014
Bromochloro	omethane		< 24.5	ug/Kg			2/3/2014
Bromodichlo	romethan	e	< 9.81	ug/Kg			2/3/2014

Client:	<u>GZA Geo Environme</u>	ntal of Nev	<u>w York</u>		
Project Reference:	21.0056687.10				
Sample Identifier:	SP-15-2-4-013114				
Lab Sample ID:	140347-12			Date Sampled:	1/31/2014
Matrix:	Soil			Date Received:	2/3/2014
Bromoform		< 24.5	ug/Kg		2/3/2014
Bromometha	ine	< 9.81	ug/Kg		2/3/2014
Carbon disul	fide	< 9.81	ug/Kg		2/3/2014
Carbon Tetra	chloride	< 9.81	ug/Kg		2/3/2014
Chlorobenze	ne	< 9.81	ug/Kg		2/3/2014
Chloroethan	9	< 9.81	ug/Kg		2/3/2014
Chloroform		< 9.81	ug/Kg		2/3/2014
Chlorometha	ine	< 9.81	ug/Kg		2/3/2014
cis-1,2-Dichl	oroethene	< 9.81	ug/Kg		2/3/2014
cis-1,3-Dichl	oropropene	< 9.81	ug/Kg		2/3/2014
Cyclohexane		< 49.1	ug/Kg		2/3/2014
Dibromochlo	oromethane	< 9.81	ug/Kg		2/3/2014
Dichlorodiflu	ioromethane	< 9.81	ug/Kg		2/3/2014
Ethylbenzen	е	< 9.81	ug/Kg		2/3/2014
Freon 113		< 9.81	ug/Kg		2/3/2014
Isopropylber	nzene	< 9.81	ug/Kg		2/3/2014
m,p-Xylene		< 9.81	ug/Kg		2/3/2014
Methyl aceta	te	< 9.81	ug/Kg		2/3/2014
Methyl tert-b	outyl Ether	< 9.81	ug/Kg		2/3/2014
Methylcycloł	nexane	< 9.81	ug/Kg		2/3/2014
Methylene ch	nloride	< 24.5	ug/Kg		2/3/2014
o-Xylene		< 9.81	ug/Kg		2/3/2014
Styrene		< 24.5	ug/Kg		2/3/2014
Tetrachloroe	thene	< 9.81	ug/Kg		2/3/2014
Toluene		< 9.81	ug/Kg		2/3/2014
trans-1,2-Dic	chloroethene	< 9.81	ug/Kg		2/3/2014
trans-1,3-Dic	chloropropene	< 9.81	ug/Kg		2/3/2014
Trichloroeth	ene	< 9.81	ug/Kg		2/3/2014
Trichlorofluc	oromethane	< 9.81	ug/Kg		2/3/2014
Vinyl chlorid	e	< 9.81	ug/Kg		2/3/2014

Client:	GZA Geo Environmental of New York				
Project Reference:	21.0056687.10				
Sample Identifier:	SP-15-2-4-013114				
Lab Sample ID:	140347-12	Date Sampled:	1/31/2014		
Matrix:	Soil	Date Received:	2/3/2014		
Method Refere	nce(s): EPA 8260C				
	EPA 5035A				

Data File:

x11083.D

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

"<" = Analyzed for but not detected at or above the quantitation limit.

"E" = Result has been estimated, calibration limit exceeded.

"Z" = See case narrative.

"D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.

"M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.

"B" = Method blank contained trace levels of analyte. Refer to included method blank report.

"J" = Result estimated between the quantitation limit and half the quantitation limit.

"L" = Laboratory Control Sample recovery outside accepted QC limits.

"P" = Concentration differs by more than 40% between the primary and secondary analytical columns.

Turnaround Time Availability contingent upon lab app Standard 5 day Batch QC Rush 3 day Category A Rush 2 day Category B Rush 1 day Category B Other Other please indicate: Difference	DATE COLLECTED TIME COLLECTED DATE COLLECTED TIME COLLECTED TIME COLLECTED DATE OF THE PROPERTY OF THE PROPERT	PROJECT REFERENCE
Report Supplements roval; additional fees may apply. Basic EDD NYSDEC EDD Other EDD Other EDD Desse indicate:	SP-3-0.5-2-013014 SP-3-0.5-2-013014 SP-8-6-8-013114 SP-8-6-8-013114 SP-10-4-6-013114 SP-11-7-613114 SP-12-8-10-013114 SP-13-4-613114 SP-13-4-613114	179 Lake Avenue, Rochester CHAIN CLENT: FREPORT TO: CLENT: FREE FOUT TO ANNE H ADDRESS S WITS I TO ANNE H ADDRESS S WITS I TO ANNE H COMPANY AND SAME HOUSE CHONE FLOW STATE HOUSE PHONE FLOW STATE HOUSE ATTN: FOUND STATE HOUSE ATTN: FOUND STATE HOUSE ATTN: FOUND STATE HOUSE ADDRESS STATE HOUSE STATE HOUSE ADDRESS STATE HOUSE STATE HOUSE STATE HOUSE ADDRESS STATE HOUSE STATE
I @ Lab By	X X X X X X X X X X X X X X X X X X X	NY 14608 Office (585) 647-2530 Fax (585) 647-3311 VOF CUSTODY INVOICE TO: ADDRESS: INVOICE TO: PHONE: FILENT: ATTN: STATE: ATTN: DW - Drinking Water STATE SO -
1257 Total Cost		P: Quotation #: Email: Christylur: bo Hrennets. bolden @ SD-Solid PT-Paint CK-Caulk AN
	C C C C C C C C C C C C C C C C C C C	Page 51 of 53

Turnaround Time Availability contingent upon lab ap Availability contingent upon lab ap Aush 3 day Batch QC Rush 2 day Category A Rush 1 day Other Other Other Jease indicate: Image indicate:		DATE COLLECTED TIME COLLECTED S DATE	PARADIGN
Report Supplements proval; additional fees may apply. Basic EDD NYSDEC EDD Other EDD please indicate:	SP-12-2-4-2 11210-9-4-51-45	Matrix Codes: AQ - Aqueous Liquid NQ - Non-Aqueous Liquid sample IDENTIFIER	179 Lake Avenue. CULENT JO: CULENT JOAN HE HANNEL HANNEL ADDRESS S WELLING HENNEL ADDRESS S
Sampled By Relinguished By Received By Rec		WA - Water WG - Groundwater WG - Groundwater WW - Drinking Wate WW - Wastewater WD - Drinking Wate WW - Wastewater WD - Drinking Wate	Rochester, NY 14608 Office (585) 647-2530 Fax
$\frac{1/31/14}{Date/Time}$ $\frac{1/31/14}{16}$ $\frac{1/31/14}{16}$ $\frac{1/31/14}{16}$ $\frac{1}{32}$		ALYSIS	S85) 647-3311 SE TO:
PILF.		SD - Solid WP - Wipe PT - Paint CK - Caulk	LAB PROJECT 140347 Quotation #:
		OL - OI AR - AIr PARADIGM LAB SAMPLE NUMBER	Page 52 of 53

 \sim 5+5

3073

Chain of Custody Supplement

Client:		6-2 A Geo	Completed by:	Mail
Lab Project ID	:	12/0347	Date:	2/3//4
		Sample Condition Per NELAC/ELAP 21	on Requirements 10/241/242/243/244	
Condition	N	ELAC compliance with the sample Yes	condition requirements up No	on receipt N/A
Container Type	Comments	(g 2		
Transferred to met compliant containe	hod- r			<u> </u>
Headspace (<1 mL)	Comments			
Preservation	Comments			
Chlorine Absent (<0.10 ppm per t	est strip) Comments			
Holding Time	Comments	<u> </u>		
Temperature	Comments	2°cialb	z Jenzo B/K	
Sufficient Sample	e Quantity Comments			

Analytical Report For

GZA Geo Environmental of New York

For Lab Project ID

141179

Referencing

21.0056687.10

Prepared

Tuesday, April 08, 2014

Any noncompliant QC parameters or other notes impacting data interpretation are flagged or documented on the final report or are noted below.

Certifies that this report has been approved by the Technical Director or Designee

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

Client:	<u>GZA Geo Envir</u>	onmental of	<u>f New York</u>			
Project Reference:	21.0056687.10					
Sample Identifier:	SP-16-10-12-0	33014				
Lab Sample ID:	141179-01			Date Sampled:	3/30/201	4
Matrix:	Soil			Date Received:	4/1/2014	
Volatile Organics						
Analyte		<u>Result</u>	<u>Units</u>	Qualifier	Date Analy	zed
1,1,1-Trichloroethane	2	< 50.5	ug/Kg		4/4/2014	17:41
1,1,2,2-Tetrachloroet	hane	< 50.5	ug/Kg		4/4/2014	17:41
1,1,2-Trichloroethane	2	< 50.5	ug/Kg		4/4/2014	17:41
1,1-Dichloroethane		< 50.5	ug/Kg		4/4/2014	17:41
1,1-Dichloroethene		< 50.5	ug/Kg		4/4/2014	17:41
1,2,3-Trichlorobenzer	ne	< 126	ug/Kg		4/4/2014	17:41
1,2,4-Trichlorobenzer	ne	< 126	ug/Kg		4/4/2014	17:41
1,2-Dibromo-3-Chlor	opropane	< 253	ug/Kg		4/4/2014	17:41
1,2-Dibromoethane		< 50.5	ug/Kg		4/4/2014	17:41
1,2-Dichlorobenzene		< 50.5	ug/Kg		4/4/2014	17:41
1,2-Dichloroethane		< 50.5	ug/Kg		4/4/2014	17:41
1,2-Dichloropropane		< 50.5	ug/Kg		4/4/2014	17:41
1,3-Dichlorobenzene		< 50.5	ug/Kg		4/4/2014	17:41
1,4-Dichlorobenzene		< 50.5	ug/Kg		4/4/2014	17:41
1,4-dioxane		< 505	ug/Kg		4/4/2014	17:41
2-Butanone		< 253	ug/Kg		4/4/2014	17:41
2-Hexanone		< 126	ug/Kg		4/4/2014	17:41
4-Methyl-2-pentanon	e	< 126	ug/Kg		4/4/2014	17:41
Acetone		< 253	ug/Kg		4/4/2014	17:41
Benzene		< 50.5	ug/Kg		4/4/2014	17:41
Bromochloromethane	2	< 126	ug/Kg		4/4/2014	17:41
Bromodichlorometha	ne	< 50.5	ug/Kg		4/4/2014	17:41
Bromoform		< 126	ug/Kg		4/4/2014	17:41
Bromomethane		< 50.5	ug/Kg		4/4/2014	17:41
Carbon disulfide		< 50.5	ug/Kg		4/4/2014	17:41
Carbon Tetrachloride		< 50.5	ug/Kg		4/4/2014	17:41

Client:	<u>GZA Geo Environ</u>	mental of	f <mark>New York</mark>			
Project Reference:	21.0056687.10					
Sample Identifier:	SP-16-10-12-033	014				
Lab Sample ID:	141179-01			Date Sampled:	3/30/201	4
Matrix:	Soil			Date Received:	4/1/2014	
Chlorobenzene		< 50.5	ug/Kg		4/4/2014	17:41
Chloroethane		< 50.5	ug/Kg		4/4/2014	17:41
Chloroform		< 50.5	ug/Kg		4/4/2014	17:41
Chloromethane		< 50.5	ug/Kg		4/4/2014	17:41
cis-1,2-Dichloroethen	e	< 50.5	ug/Kg		4/4/2014	17:41
cis-1,3-Dichloroprope	ene	< 50.5	ug/Kg		4/4/2014	17:41
Cyclohexane		< 253	ug/Kg		4/4/2014	17:41
Dibromochlorometha	ne	< 50.5	ug/Kg		4/4/2014	17:41
Dichlorodifluorometh	ane	< 50.5	ug/Kg		4/4/2014	17:41
Ethylbenzene		< 50.5	ug/Kg		4/4/2014	17:41
Freon 113		< 50.5	ug/Kg		4/4/2014	17:41
Isopropylbenzene		< 50.5	ug/Kg		4/4/2014	17:41
m,p-Xylene		< 50.5	ug/Kg		4/4/2014	17:41
Methyl acetate		< 50.5	ug/Kg		4/4/2014	17:41
Methyl tert-butyl Ethe	er	< 50.5	ug/Kg		4/4/2014	17:41
Methylcyclohexane		< 50.5	ug/Kg		4/4/2014	17:41
Methylene chloride		< 126	ug/Kg		4/4/2014	17:41
o-Xylene		< 50.5	ug/Kg		4/4/2014	17:41
Styrene		< 126	ug/Kg		4/4/2014	17:41
Tetrachloroethene		4400	ug/Kg		4/4/2014	17:41
Toluene		< 50.5	ug/Kg		4/4/2014	17:41
trans-1,2-Dichloroeth	ene	< 50.5	ug/Kg		4/4/2014	17:41
trans-1,3-Dichloropro	opene	< 50.5	ug/Kg		4/4/2014	17:41
Trichloroethene		< 50.5	ug/Kg		4/4/2014	17:41
Trichlorofluorometha	ine	< 50.5	ug/Kg		4/4/2014	17:41
Vinyl chloride		< 50.5	ug/Kg		4/4/2014	17:41

Client:	<u>GZA Geo Environmental of New York</u>			
Project Reference:	21.0056687.10			
Sample Identifier:	SP-16-10-12-033014			
Lab Sample ID:	141179-01	Date Sampled:	3/30/2014	
Matrix:	Soil	Date Received:	4/1/2014	

Method Reference(s): EPA 8260C EPA 5035A

x12281.D

Data File:

Any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:	<u>GZA Geo Enviro</u>	<u>imental of</u>	<u>New York</u>			
Project Reference:	21.0056687.10					
Sample Identifier:	SP-16-12-14-03	3014				
Lab Sample ID:	141179-02			Date Sampled:	3/30/201	4
Matrix:	Soil			Date Received:	4/1/2014	
Volatile Organics						
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analy	zed
1,1,1-Trichloroethane		< 100	ug/Kg		4/4/2014	18:05
1,1,2,2-Tetrachloroeth	nane	< 100	ug/Kg		4/4/2014	18:05
1,1,2-Trichloroethane		< 100	ug/Kg		4/4/2014	18:05
1,1-Dichloroethane		< 100	ug/Kg		4/4/2014	18:05
1,1-Dichloroethene		< 100	ug/Kg		4/4/2014	18:05
1,2,3-Trichlorobenzen	ie	< 250	ug/Kg		4/4/2014	18:05
1,2,4-Trichlorobenzen	ie	< 250	ug/Kg		4/4/2014	18:05
1,2-Dibromo-3-Chloro	opropane	< 501	ug/Kg		4/4/2014	18:05
1,2-Dibromoethane		< 100	ug/Kg		4/4/2014	18:05
1,2-Dichlorobenzene		< 100	ug/Kg		4/4/2014	18:05
1,2-Dichloroethane		< 100	ug/Kg		4/4/2014	18:05
1,2-Dichloropropane		< 100	ug/Kg		4/4/2014	18:05
1,3-Dichlorobenzene		< 100	ug/Kg		4/4/2014	18:05
1,4-Dichlorobenzene		< 100	ug/Kg		4/4/2014	18:05
1,4-dioxane		< 1000	ug/Kg		4/4/2014	18:05
2-Butanone		< 501	ug/Kg		4/4/2014	18:05
2-Hexanone		< 250	ug/Kg		4/4/2014	18:05
4-Methyl-2-pentanone	e	< 250	ug/Kg		4/4/2014	18:05
Acetone		< 501	ug/Kg		4/4/2014	18:05
Benzene		< 100	ug/Kg		4/4/2014	18:05
Bromochloromethane	,	< 250	ug/Kg		4/4/2014	18:05
Bromodichlorometha	ne	< 100	ug/Kg		4/4/2014	18:05
Bromoform		< 250	ug/Kg		4/4/2014	18:05
Bromomethane		< 100	ug/Kg		4/4/2014	18:05
Carbon disulfide		< 100	ug/Kg		4/4/2014	18:05
Carbon Tetrachloride		< 100	ug/Kg		4/4/2014	18:05

Client:	<u>GZA Geo Environ</u>	mental of	f <mark>New York</mark>			
Project Reference:	21.0056687.10					
Sample Identifier:	SP-16-12-14-033	014				
Lab Sample ID:	141179-02			Date Sampled:	3/30/201	4
Matrix:	Soil			Date Received:	4/1/2014	
Chlorobenzene		< 100	ug/Kg		4/4/2014	18:05
Chloroethane		< 100	ug/Kg		4/4/2014	18:05
Chloroform		< 100	ug/Kg		4/4/2014	18:05
Chloromethane		< 100	ug/Kg		4/4/2014	18:05
cis-1,2-Dichloroethen	e	< 100	ug/Kg		4/4/2014	18:05
cis-1,3-Dichloroprope	ene	< 100	ug/Kg		4/4/2014	18:05
Cyclohexane		< 501	ug/Kg		4/4/2014	18:05
Dibromochlorometha	ne	< 100	ug/Kg		4/4/2014	18:05
Dichlorodifluorometh	ane	< 100	ug/Kg		4/4/2014	18:05
Ethylbenzene		< 100	ug/Kg		4/4/2014	18:05
Freon 113		< 100	ug/Kg		4/4/2014	18:05
Isopropylbenzene		< 100	ug/Kg		4/4/2014	18:05
m,p-Xylene		< 100	ug/Kg		4/4/2014	18:05
Methyl acetate		< 100	ug/Kg		4/4/2014	18:05
Methyl tert-butyl Etho	er	< 100	ug/Kg		4/4/2014	18:05
Methylcyclohexane		< 100	ug/Kg		4/4/2014	18:05
Methylene chloride		< 250	ug/Kg		4/4/2014	18:05
o-Xylene		< 100	ug/Kg		4/4/2014	18:05
Styrene		< 250	ug/Kg		4/4/2014	18:05
Tetrachloroethene		1510	ug/Kg		4/4/2014	18:05
Toluene		< 100	ug/Kg		4/4/2014	18:05
trans-1,2-Dichloroeth	ene	< 100	ug/Kg		4/4/2014	18:05
trans-1,3-Dichloropro	opene	< 100	ug/Kg		4/4/2014	18:05
Trichloroethene		< 100	ug/Kg		4/4/2014	18:05
Trichlorofluorometha	ine	< 100	ug/Kg		4/4/2014	18:05
Vinyl chloride		< 100	ug/Kg		4/4/2014	18:05

Client:	<u>GZA Geo Environmental of New York</u>			
Project Reference:	21.0056687.10			
Sample Identifier:	SP-16-12-14-033014			
Lab Sample ID:	141179-02	Date Sampled:	3/30/2014	
Matrix:	Soil	Date Received:	4/1/2014	

Method Reference(s): EPA 8260C EPA 5035A

x12282.D

Data File:

Any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:	<u>GZA Geo Enviro</u>	onmental of	f New York			
Project Reference:	21.0056687.10					
Sample Identifier: Lab Sample ID: Matrix:	SP-18-6-8-033 141179-03 Soil	114		Date Sampled: Date Received:	3/31/201 4/1/2014	4
Volatile Organics						
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analy	zed
1,1,1-Trichloroethane		< 7.34	ug/Kg		4/6/2014	16:07
1,1,2,2-Tetrachloroet	hane	< 7.34	ug/Kg		4/6/2014	16:07
1,1,2-Trichloroethane		< 7.34	ug/Kg		4/6/2014	16:07
1,1-Dichloroethane		< 7.34	ug/Kg		4/6/2014	16:07
1,1-Dichloroethene		< 7.34	ug/Kg		4/6/2014	16:07
1,2,3-Trichlorobenzer	ne	< 18.3	ug/Kg		4/6/2014	16:07
1,2,4-Trichlorobenzer	ne	< 18.3	ug/Kg		4/6/2014	16:07
1,2-Dibromo-3-Chlore	opropane	< 36.7	ug/Kg		4/6/2014	16:07
1,2-Dibromoethane		< 7.34	ug/Kg		4/6/2014	16:07
1,2-Dichlorobenzene		< 7.34	ug/Kg		4/6/2014	16:07
1,2-Dichloroethane		< 7.34	ug/Kg		4/6/2014	16:07
1,2-Dichloropropane		< 7.34	ug/Kg		4/6/2014	16:07
1,3-Dichlorobenzene		< 7.34	ug/Kg		4/6/2014	16:07
1,4-Dichlorobenzene		< 7.34	ug/Kg		4/6/2014	16:07
1,4-dioxane		< 73.4	ug/Kg		4/6/2014	16:07
2-Butanone		< 36.7	ug/Kg		4/6/2014	16:07
2-Hexanone		< 18.3	ug/Kg		4/6/2014	16:07
4-Methyl-2-pentanon	e	< 18.3	ug/Kg		4/6/2014	16:07
Acetone		< 36.7	ug/Kg		4/6/2014	16:07
Benzene		< 7.34	ug/Kg		4/6/2014	16:07
Bromochloromethane	<u>)</u>	< 18.3	ug/Kg		4/6/2014	16:07
Bromodichlorometha	ne	< 7.34	ug/Kg		4/6/2014	16:07
Bromoform		< 18.3	ug/Kg		4/6/2014	16:07
Bromomethane		< 7.34	ug/Kg		4/6/2014	16:07
Carbon disulfide		< 7.34	ug/Kg		4/6/2014	16:07
Carbon Tetrachloride		< 7.34	ug/Kg		4/6/2014	16:07

Client:	<u>GZA Geo Environi</u>	nental of	<u>f New York</u>			
Project Reference:	21.0056687.10					
Sample Identifier:	SP-18-6-8-033114	4				
Lab Sample ID:	141179-03			Date Sampled:	3/31/201	4
Matrix:	Soil			Date Received:	4/1/2014	
Chlorobenzene		< 7.34	ug/Kg		4/6/2014	16:07
Chloroethane		< 7.34	ug/Kg		4/6/2014	16:07
Chloroform		< 7.34	ug/Kg		4/6/2014	16:07
Chloromethane		< 7.34	ug/Kg		4/6/2014	16:07
cis-1,2-Dichloroethen	e	< 7.34	ug/Kg		4/6/2014	16:07
cis-1,3-Dichloroprope	ene	< 7.34	ug/Kg		4/6/2014	16:07
Cyclohexane		< 36.7	ug/Kg		4/6/2014	16:07
Dibromochlorometha	ine	< 7.34	ug/Kg		4/6/2014	16:07
Dichlorodifluorometh	nane	< 7.34	ug/Kg		4/6/2014	16:07
Ethylbenzene		< 7.34	ug/Kg		4/6/2014	16:07
Freon 113		< 7.34	ug/Kg		4/6/2014	16:07
Isopropylbenzene		< 7.34	ug/Kg		4/6/2014	16:07
m,p-Xylene		< 7.34	ug/Kg		4/6/2014	16:07
Methyl acetate		< 7.34	ug/Kg		4/6/2014	16:07
Methyl tert-butyl Eth	er	< 7.34	ug/Kg		4/6/2014	16:07
Methylcyclohexane		< 7.34	ug/Kg		4/6/2014	16:07
Methylene chloride		< 18.3	ug/Kg		4/6/2014	16:07
o-Xylene		< 7.34	ug/Kg		4/6/2014	16:07
Styrene		< 18.3	ug/Kg		4/6/2014	16:07
Tetrachloroethene		< 7.34	ug/Kg		4/6/2014	16:07
Toluene		< 7.34	ug/Kg		4/6/2014	16:07
trans-1,2-Dichloroeth	iene	< 7.34	ug/Kg		4/6/2014	16:07
trans-1,3-Dichloropro	opene	< 7.34	ug/Kg		4/6/2014	16:07
Trichloroethene		< 7.34	ug/Kg		4/6/2014	16:07
Trichlorofluorometha	ine	< 7.34	ug/Kg		4/6/2014	16:07
Vinyl chloride		< 7.34	ug/Kg		4/6/2014	16:07

Client:	<u>GZA Geo Environmental of New York</u>		
Project Reference:	21.0056687.10		
Sample Identifier:	SP-18-6-8-033114		
Lab Sample ID:	141179-03	Date Sampled:	3/31/2014
Matrix:	Soil	Date Received:	4/1/2014

Method Reference(s): EPA 8260C EPA 5035A

x12315.D

Data File:

Any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:	<u>GZA Geo Enviro</u>	onmental of	f New York			
Project Reference:	21.0056687.10					
Sample Identifier: Lab Sample ID: Matrix:	SP-19-6-8-033 141179-04 Soil	114		Date Sampled: Date Received:	3/31/201- 4/1/2014	4
Volatile Organics						
Analyte		Result	<u>Units</u>	Qualifier	Date Analy	zed
1,1,1-Trichloroethane	2	< 8.24	ug/Kg		4/6/2014	16:31
1,1,2,2-Tetrachloroet	hane	< 8.24	ug/Kg		4/6/2014	16:31
1,1,2-Trichloroethane	2	< 8.24	ug/Kg		4/6/2014	16:31
1,1-Dichloroethane		< 8.24	ug/Kg		4/6/2014	16:31
1,1-Dichloroethene		< 8.24	ug/Kg		4/6/2014	16:31
1,2,3-Trichlorobenzer	ne	< 20.6	ug/Kg		4/6/2014	16:31
1,2,4-Trichlorobenzer	ne	< 20.6	ug/Kg		4/6/2014	16:31
1,2-Dibromo-3-Chlore	opropane	< 41.2	ug/Kg		4/6/2014	16:31
1,2-Dibromoethane		< 8.24	ug/Kg		4/6/2014	16:31
1,2-Dichlorobenzene		< 8.24	ug/Kg		4/6/2014	16:31
1,2-Dichloroethane		< 8.24	ug/Kg		4/6/2014	16:31
1,2-Dichloropropane		< 8.24	ug/Kg		4/6/2014	16:31
1,3-Dichlorobenzene		< 8.24	ug/Kg		4/6/2014	16:31
1,4-Dichlorobenzene		< 8.24	ug/Kg		4/6/2014	16:31
1,4-dioxane		< 82.4	ug/Kg		4/6/2014	16:31
2-Butanone		< 41.2	ug/Kg		4/6/2014	16:31
2-Hexanone		< 20.6	ug/Kg		4/6/2014	16:31
4-Methyl-2-pentanon	e	< 20.6	ug/Kg		4/6/2014	16:31
Acetone		57.1	ug/Kg		4/6/2014	16:31
Benzene		< 8.24	ug/Kg		4/6/2014	16:31
Bromochloromethane	<u>j</u>	< 20.6	ug/Kg		4/6/2014	16:31
Bromodichlorometha	ne	< 8.24	ug/Kg		4/6/2014	16:31
Bromoform		< 20.6	ug/Kg		4/6/2014	16:31
Bromomethane		< 8.24	ug/Kg		4/6/2014	16:31
Carbon disulfide		< 8.24	ug/Kg		4/6/2014	16:31
Carbon Tetrachloride		< 8.24	ug/Kg		4/6/2014	16:31

Client:	<u>GZA Geo Enviro</u>	nmental of	f New York			
Project Reference:	21.0056687.10					
Sample Identifier:	SP-19-6-8-033	114				
Lab Sample ID:	141179-04			Date Sampled:	3/31/2014	4
Matrix:	Soil			Date Received:	4/1/2014	
Chlorobenzene		< 8.24	ug/Kg		4/6/2014	16:31
Chloroethane		< 8.24	ug/Kg		4/6/2014	16:31
Chloroform		< 8.24	ug/Kg		4/6/2014	16:31
Chloromethane		< 8.24	ug/Kg		4/6/2014	16:31
cis-1,2-Dichloroethe	ne	< 8.24	ug/Kg		4/6/2014	16:31
cis-1,3-Dichloroprop	bene	< 8.24	ug/Kg		4/6/2014	16:31
Cyclohexane		< 41.2	ug/Kg		4/6/2014	16:31
Dibromochlorometh	ane	< 8.24	ug/Kg		4/6/2014	16:31
Dichlorodifluoromet	thane	< 8.24	ug/Kg		4/6/2014	16:31
Ethylbenzene		< 8.24	ug/Kg		4/6/2014	16:31
Freon 113		< 8.24	ug/Kg		4/6/2014	16:31
Isopropylbenzene		< 8.24	ug/Kg		4/6/2014	16:31
m,p-Xylene		< 8.24	ug/Kg		4/6/2014	16:31
Methyl acetate		< 8.24	ug/Kg		4/6/2014	16:31
Methyl tert-butyl Et	her	< 8.24	ug/Kg		4/6/2014	16:31
Methylcyclohexane		< 8.24	ug/Kg		4/6/2014	16:31
Methylene chloride		< 20.6	ug/Kg		4/6/2014	16:31
o-Xylene		< 8.24	ug/Kg		4/6/2014	16:31
Styrene		< 20.6	ug/Kg		4/6/2014	16:31
Tetrachloroethene		< 8.24	ug/Kg		4/6/2014	16:31
Toluene		< 8.24	ug/Kg		4/6/2014	16:31
trans-1,2-Dichloroet	hene	< 8.24	ug/Kg		4/6/2014	16:31
trans-1,3-Dichlorop	ropene	< 8.24	ug/Kg		4/6/2014	16:31
Trichloroethene		< 8.24	ug/Kg		4/6/2014	16:31
Trichlorofluorometh	nane	< 8.24	ug/Kg		4/6/2014	16:31
Vinyl chloride		< 8.24	ug/Kg		4/6/2014	16:31

Client:	<u>GZA Geo Environmental of New York</u>		
Project Reference:	21.0056687.10		
Sample Identifier:	SP-19-6-8-033114		
Lab Sample ID:	141179-04	Date Sampled:	3/31/2014
Matrix:	Soil	Date Received:	4/1/2014

Method Reference(s): EPA 8260C EPA 5035A

x12316.D

Data File:

Any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:	<u>GZA Geo Environ</u>	imental of	f New York			
Project Reference:	21.0056687.10					
Sample Identifier: Lab Sample ID: Matrix:	SP-20-4-6-03312 141179-05 Soil	14		Date Sampled: Date Received:	3/31/2014 4/1/2014	4
Volatile Organics						
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analy	zed
1,1,1-Trichloroethane	<u>j</u>	< 7.34	ug/Kg		4/6/2014	16:54
1,1,2,2-Tetrachloroet	hane	< 7.34	ug/Kg		4/6/2014	16:54
1,1,2-Trichloroethane	2	< 7.34	ug/Kg		4/6/2014	16:54
1,1-Dichloroethane		< 7.34	ug/Kg		4/6/2014	16:54
1,1-Dichloroethene		< 7.34	ug/Kg		4/6/2014	16:54
1,2,3-Trichlorobenzei	ne	< 18.4	ug/Kg		4/6/2014	16:54
1,2,4-Trichlorobenzei	ne	< 18.4	ug/Kg		4/6/2014	16:54
1,2-Dibromo-3-Chlor	opropane	< 36.7	ug/Kg		4/6/2014	16:54
1,2-Dibromoethane		< 7.34	ug/Kg		4/6/2014	16:54
1,2-Dichlorobenzene		< 7.34	ug/Kg		4/6/2014	16:54
1,2-Dichloroethane		< 7.34	ug/Kg		4/6/2014	16:54
1,2-Dichloropropane		< 7.34	ug/Kg		4/6/2014	16:54
1,3-Dichlorobenzene		< 7.34	ug/Kg		4/6/2014	16:54
1,4-Dichlorobenzene		< 7.34	ug/Kg		4/6/2014	16:54
1,4-dioxane		< 73.4	ug/Kg		4/6/2014	16:54
2-Butanone		52.5	ug/Kg		4/6/2014	16:54
2-Hexanone		< 18.4	ug/Kg		4/6/2014	16:54
4-Methyl-2-pentanon	e	< 18.4	ug/Kg		4/6/2014	16:54
Acetone		154	ug/Kg		4/6/2014	16:54
Benzene		< 7.34	ug/Kg		4/6/2014	16:54
Bromochloromethane	5	< 18.4	ug/Kg		4/6/2014	16:54
Bromodichlorometha	ne	< 7.34	ug/Kg		4/6/2014	16:54
Bromoform		< 18.4	ug/Kg		4/6/2014	16:54
Bromomethane		< 7.34	ug/Kg		4/6/2014	16:54
Carbon disulfide		< 7.34	ug/Kg		4/6/2014	16:54
Carbon Tetrachloride		< 7.34	ug/Kg		4/6/2014	16:54

Client:	<u>GZA Geo Enviro</u>	nmental of	f New York			
Project Reference:	21.0056687.10					
Sample Identifier:	SP-20-4-6-0331	14				
Lab Sample ID:	141179-05			Date Sampled:	3/31/201	4
Matrix:	Soil			Date Received:	4/1/2014	
Chlorobenzene		< 7.34	ug/Kg		4/6/2014	16:54
Chloroethane		< 7.34	ug/Kg		4/6/2014	16:54
Chloroform		< 7.34	ug/Kg		4/6/2014	16:54
Chloromethane		< 7.34	ug/Kg		4/6/2014	16:54
cis-1,2-Dichloroether	ne	< 7.34	ug/Kg		4/6/2014	16:54
cis-1,3-Dichloroprop	ene	< 7.34	ug/Kg		4/6/2014	16:54
Cyclohexane		< 36.7	ug/Kg		4/6/2014	16:54
Dibromochlorometha	ane	< 7.34	ug/Kg		4/6/2014	16:54
Dichlorodifluoromet	hane	< 7.34	ug/Kg		4/6/2014	16:54
Ethylbenzene		< 7.34	ug/Kg		4/6/2014	16:54
Freon 113		< 7.34	ug/Kg		4/6/2014	16:54
Isopropylbenzene		< 7.34	ug/Kg		4/6/2014	16:54
m,p-Xylene		< 7.34	ug/Kg		4/6/2014	16:54
Methyl acetate		< 7.34	ug/Kg		4/6/2014	16:54
Methyl tert-butyl Eth	er	< 7.34	ug/Kg		4/6/2014	16:54
Methylcyclohexane		< 7.34	ug/Kg		4/6/2014	16:54
Methylene chloride		< 18.4	ug/Kg		4/6/2014	16:54
o-Xylene		< 7.34	ug/Kg		4/6/2014	16:54
Styrene		< 18.4	ug/Kg		4/6/2014	16:54
Tetrachloroethene		< 7.34	ug/Kg		4/6/2014	16:54
Toluene		< 7.34	ug/Kg		4/6/2014	16:54
trans-1,2-Dichloroetl	nene	< 7.34	ug/Kg		4/6/2014	16:54
trans-1,3-Dichloropr	opene	< 7.34	ug/Kg		4/6/2014	16:54
Trichloroethene		< 7.34	ug/Kg		4/6/2014	16:54
Trichlorofluorometh	ane	< 7.34	ug/Kg		4/6/2014	16:54
Vinyl chloride		< 7.34	ug/Kg		4/6/2014	16:54

Client:	<u>GZA Geo Environmental of New York</u>		
Project Reference:	21.0056687.10		
Sample Identifier:	SP-20-4-6-033114		
Lab Sample ID:	141179-05	Date Sampled:	3/31/2014
Matrix:	Soil	Date Received:	4/1/2014

Method Reference(s): EPA 8260C EPA 5035A

x12317.D

Data File:

Any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:	<u>GZA Geo Enviro</u>	onmental of	<u>f New York</u>			
Project Reference:	21.0056687.10					
Sample Identifier: Lab Sample ID: Matrix:	SP-21-4.5-0333 141179-06 Soil	114		Date Sampled: Date Received:	3/31/201 4/1/2014	4
Volatile Organics						
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analy	zed
1,1,1-Trichloroethane	2	< 9.32	ug/Kg		4/6/2014	17:18
1,1,2,2-Tetrachloroet	hane	< 9.32	ug/Kg		4/6/2014	17:18
1,1,2-Trichloroethane	2	< 9.32	ug/Kg		4/6/2014	17:18
1,1-Dichloroethane		< 9.32	ug/Kg		4/6/2014	17:18
1,1-Dichloroethene		< 9.32	ug/Kg		4/6/2014	17:18
1,2,3-Trichlorobenze	ne	< 23.3	ug/Kg		4/6/2014	17:18
1,2,4-Trichlorobenze	ne	< 23.3	ug/Kg		4/6/2014	17:18
1,2-Dibromo-3-Chlor	opropane	< 46.6	ug/Kg		4/6/2014	17:18
1,2-Dibromoethane		< 9.32	ug/Kg		4/6/2014	17:18
1,2-Dichlorobenzene		< 9.32	ug/Kg		4/6/2014	17:18
1,2-Dichloroethane		< 9.32	ug/Kg		4/6/2014	17:18
1,2-Dichloropropane		< 9.32	ug/Kg		4/6/2014	17:18
1,3-Dichlorobenzene		< 9.32	ug/Kg		4/6/2014	17:18
1,4-Dichlorobenzene		< 9.32	ug/Kg		4/6/2014	17:18
1,4-dioxane		< 93.2	ug/Kg		4/6/2014	17:18
2-Butanone		142	ug/Kg		4/6/2014	17:18
2-Hexanone		< 23.3	ug/Kg		4/6/2014	17:18
4-Methyl-2-pentanon	e	< 23.3	ug/Kg		4/6/2014	17:18
Acetone		424	ug/Kg		4/6/2014	17:18
Benzene		< 9.32	ug/Kg		4/6/2014	17:18
Bromochloromethane	e	< 23.3	ug/Kg		4/6/2014	17:18
Bromodichlorometha	ne	< 9.32	ug/Kg		4/6/2014	17:18
Bromoform		< 23.3	ug/Kg		4/6/2014	17:18
Bromomethane		< 9.32	ug/Kg		4/6/2014	17:18
Carbon disulfide		65.4	ug/Kg		4/6/2014	17:18
Carbon Tetrachloride		< 9.32	ug/Kg		4/6/2014	17:18

Client:	<u>GZA Geo Environ</u>	mental of	<u>f New York</u>			
Project Reference:	21.0056687.10					
Sample Identifier:	SP-21-4.5-03311	4				
Lab Sample ID:	141179-06			Date Sampled:	3/31/201	4
Matrix:	Soil			Date Received:	4/1/2014	
Chlorobenzene		< 9.32	ug/Kg		4/6/2014	17:18
Chloroethane		< 9.32	ug/Kg		4/6/2014	17:18
Chloroform		< 9.32	ug/Kg		4/6/2014	17:18
Chloromethane		< 9.32	ug/Kg		4/6/2014	17:18
cis-1,2-Dichloroether	ie	< 9.32	ug/Kg		4/6/2014	17:18
cis-1,3-Dichloroprop	ene	< 9.32	ug/Kg		4/6/2014	17:18
Cyclohexane		< 46.6	ug/Kg		4/6/2014	17:18
Dibromochlorometha	ane	< 9.32	ug/Kg		4/6/2014	17:18
Dichlorodifluorometh	nane	< 9.32	ug/Kg		4/6/2014	17:18
Ethylbenzene		< 9.32	ug/Kg		4/6/2014	17:18
Freon 113		< 9.32	ug/Kg		4/6/2014	17:18
Isopropylbenzene		< 9.32	ug/Kg		4/6/2014	17:18
m,p-Xylene		< 9.32	ug/Kg		4/6/2014	17:18
Methyl acetate		< 9.32	ug/Kg		4/6/2014	17:18
Methyl tert-butyl Eth	er	< 9.32	ug/Kg		4/6/2014	17:18
Methylcyclohexane		11.1	ug/Kg		4/6/2014	17:18
Methylene chloride		< 23.3	ug/Kg		4/6/2014	17:18
o-Xylene		< 9.32	ug/Kg		4/6/2014	17:18
Styrene		< 23.3	ug/Kg		4/6/2014	17:18
Tetrachloroethene		< 9.32	ug/Kg		4/6/2014	17:18
Toluene		< 9.32	ug/Kg		4/6/2014	17:18
trans-1,2-Dichloroeth	nene	< 9.32	ug/Kg		4/6/2014	17:18
trans-1,3-Dichloropro	opene	< 9.32	ug/Kg		4/6/2014	17:18
Trichloroethene		< 9.32	ug/Kg		4/6/2014	17:18
Trichlorofluorometha	ane	< 9.32	ug/Kg		4/6/2014	17:18
Vinyl chloride		< 9.32	ug/Kg		4/6/2014	17:18

Client:	<u>GZA Geo Environmental of New York</u>		
Project Reference:	21.0056687.10		
Sample Identifier:	SP-21-4.5-033114		
Lab Sample ID:	141179-06	Date Sampled:	3/31/2014
Matrix:	Soil	Date Received:	4/1/2014

Internal standard outliers indicate probable matrix interference

Method Reference(s):	EPA 8260C
	EPA 5035A
Data File:	x12318.D
Any Volatiles soil results t 5035 guidance document	hat are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method from 11/15/2012.

Client:	<u>GZA Geo Enviro</u>	<u>imental o</u>	<u>f New York</u>			
Project Reference:	21.0056687.10					
Sample Identifier: Lab Sample ID: Matrix:	SP-22-2-4-0331 141179-07 Soil	14		Date Sampled: Date Received:	3/31/201 4/1/2014	4
Volatile Organics						
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analy	zed
1,1,1-Trichloroethane	<u>)</u>	< 9.21	ug/Kg		4/6/2014	17:42
1,1,2,2-Tetrachloroet	hane	< 9.21	ug/Kg	М	4/6/2014	17:42
1,1,2-Trichloroethane		< 9.21	ug/Kg	М	4/6/2014	17:42
1,1-Dichloroethane		< 9.21	ug/Kg		4/6/2014	17:42
1,1-Dichloroethene		< 9.21	ug/Kg		4/6/2014	17:42
1,2,3-Trichlorobenzei	ne	< 23.0	ug/Kg		4/6/2014	17:42
1,2,4-Trichlorobenzei	ne	< 23.0	ug/Kg		4/6/2014	17:42
1,2-Dibromo-3-Chlor	opropane	< 46.0	ug/Kg		4/6/2014	17:42
1,2-Dibromoethane		< 9.21	ug/Kg		4/6/2014	17:42
1,2-Dichlorobenzene		< 9.21	ug/Kg	М	4/6/2014	17:42
1,2-Dichloroethane		< 9.21	ug/Kg		4/6/2014	17:42
1,2-Dichloropropane		< 9.21	ug/Kg	М	4/6/2014	17:42
1,3-Dichlorobenzene		< 9.21	ug/Kg	М	4/6/2014	17:42
1,4-Dichlorobenzene		< 9.21	ug/Kg	М	4/6/2014	17:42
1,4-dioxane		< 92.1	ug/Kg		4/6/2014	17:42
2-Butanone		47.0	ug/Kg		4/6/2014	17:42
2-Hexanone		< 23.0	ug/Kg		4/6/2014	17:42
4-Methyl-2-pentanon	e	< 23.0	ug/Kg		4/6/2014	17:42
Acetone		192	ug/Kg		4/6/2014	17:42
Benzene		< 9.21	ug/Kg	М	4/6/2014	17:42
Bromochloromethane	ġ	< 23.0	ug/Kg		4/6/2014	17:42
Bromodichlorometha	ne	< 9.21	ug/Kg	М	4/6/2014	17:42
Bromoform		< 23.0	ug/Kg	М	4/6/2014	17:42
Bromomethane		< 9.21	ug/Kg		4/6/2014	17:42
Carbon disulfide		< 9.21	ug/Kg		4/6/2014	17:42
Carbon Tetrachloride		< 9.21	ug/Kg		4/6/2014	17:42

Client:	<u>GZA Geo Enviro</u>	nmental of	f New York			
Project Reference:	21.0056687.10					
Sample Identifier:	SP-22-2-4-033	114				
Lab Sample ID:	141179-07			Date Sampled:	3/31/201	4
Matrix:	Soil			Date Received:	4/1/2014	
Chlorobenzene		< 9.21	ug/Kg	М	4/6/2014	17:42
Chloroethane		< 9.21	ug/Kg	М	4/6/2014	17:42
Chloroform		< 9.21	ug/Kg		4/6/2014	17:42
Chloromethane		< 9.21	ug/Kg		4/6/2014	17:42
cis-1,2-Dichloroether	ie	< 9.21	ug/Kg		4/6/2014	17:42
cis-1,3-Dichloroprop	ene	< 9.21	ug/Kg	М	4/6/2014	17:42
Cyclohexane		< 46.0	ug/Kg		4/6/2014	17:42
Dibromochlorometha	ine	< 9.21	ug/Kg	М	4/6/2014	17:42
Dichlorodifluorometh	nane	< 9.21	ug/Kg		4/6/2014	17:42
Ethylbenzene		< 9.21	ug/Kg	М	4/6/2014	17:42
Freon 113		< 9.21	ug/Kg		4/6/2014	17:42
Isopropylbenzene		< 9.21	ug/Kg		4/6/2014	17:42
m,p-Xylene		< 9.21	ug/Kg		4/6/2014	17:42
Methyl acetate		< 9.21	ug/Kg		4/6/2014	17:42
Methyl tert-butyl Eth	er	< 9.21	ug/Kg		4/6/2014	17:42
Methylcyclohexane		< 9.21	ug/Kg		4/6/2014	17:42
Methylene chloride		< 23.0	ug/Kg		4/6/2014	17:42
o-Xylene		< 9.21	ug/Kg		4/6/2014	17:42
Styrene		< 23.0	ug/Kg		4/6/2014	17:42
Tetrachloroethene		< 9.21	ug/Kg	М	4/6/2014	17:42
Toluene		< 9.21	ug/Kg	М	4/6/2014	17:42
trans-1,2-Dichloroeth	iene	< 9.21	ug/Kg	М	4/6/2014	17:42
trans-1,3-Dichloropro	opene	< 9.21	ug/Kg	М	4/6/2014	17:42
Trichloroethene		< 9.21	ug/Kg	М	4/6/2014	17:42
Trichlorofluorometha	ane	< 9.21	ug/Kg		4/6/2014	17:42
Vinyl chloride		< 9.21	ug/Kg		4/6/2014	17:42

Client:	<u>GZA Geo Environmental of New York</u>		
Project Reference:	21.0056687.10		
Sample Identifier:	SP-22-2-4-033114		
Lab Sample ID:	141179-07	Date Sampled:	3/31/2014
Matrix:	Soil	Date Received:	4/1/2014

Method Reference(s): EPA 8260C EPA 5035A

x12319.D

Data File:

Any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:	<u>GZA Geo Enviro</u>	onmental of	<u>New York</u>			
Project Reference:	21.0056687.10					
Sample Identifier:	SP-23-12-14-0	33114				
Lab Sample ID:	141179-08			Date Sampled:	3/31/201	4
Matrix:	Soil			Date Received:	4/1/2014	
Volatile Organics						
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analy	<u>zed</u>
1,1,1-Trichloroethane	2	< 3180	ug/Kg		4/7/2014	23:40
1,1,2,2-Tetrachloroet	hane	< 3180	ug/Kg		4/7/2014	23:40
1,1,2-Trichloroethane	2	< 3180	ug/Kg		4/7/2014	23:40
1,1-Dichloroethane		< 3180	ug/Kg		4/7/2014	23:40
1,1-Dichloroethene		< 3180	ug/Kg		4/7/2014	23:40
1,2,3-Trichlorobenzer	ne	< 7950	ug/Kg		4/7/2014	23:40
1,2,4-Trichlorobenzei	ne	< 7950	ug/Kg		4/7/2014	23:40
1,2-Dibromo-3-Chlore	opropane	< 15900	ug/Kg		4/7/2014	23:40
1,2-Dibromoethane		< 3180	ug/Kg		4/7/2014	23:40
1,2-Dichlorobenzene		< 3180	ug/Kg		4/7/2014	23:40
1,2-Dichloroethane		< 3180	ug/Kg		4/7/2014	23:40
1,2-Dichloropropane		< 3180	ug/Kg		4/7/2014	23:40
1,3-Dichlorobenzene		< 3180	ug/Kg		4/7/2014	23:40
1,4-Dichlorobenzene		< 3180	ug/Kg		4/7/2014	23:40
1,4-dioxane		< 31800	ug/Kg		4/7/2014	23:40
2-Butanone		< 15900	ug/Kg		4/7/2014	23:40
2-Hexanone		< 7950	ug/Kg		4/7/2014	23:40
4-Methyl-2-pentanon	e	< 7950	ug/Kg		4/7/2014	23:40
Acetone		< 15900	ug/Kg		4/7/2014	23:40
Benzene		< 3180	ug/Kg		4/7/2014	23:40
Bromochloromethane	<u>)</u>	< 7950	ug/Kg		4/7/2014	23:40
Bromodichlorometha	ne	< 3180	ug/Kg		4/7/2014	23:40
Bromoform		< 7950	ug/Kg		4/7/2014	23:40
Bromomethane		< 3180	ug/Kg		4/7/2014	23:40
Carbon disulfide		< 3180	ug/Kg		4/7/2014	23:40
Carbon Tetrachloride		< 3180	ug/Kg		4/7/2014	23:40

Client:	<u>GZA Geo Enviro</u>	onmental of	<u>New York</u>			
Project Reference:	21.0056687.10					
Sample Identifier:	SP-23-12-14-03	33114				
Lab Sample ID:	141179-08			Date Sampled:	3/31/2014	4
Matrix:	Soil			Date Received:	4/1/2014	
Chlorobenzene		< 3180	ug/Kg		4/7/2014	23:40
Chloroethane		< 3180	ug/Kg		4/7/2014	23:40
Chloroform		< 3180	ug/Kg		4/7/2014	23:40
Chloromethane		< 3180	ug/Kg		4/7/2014	23:40
cis-1,2-Dichloroethe	ne	< 3180	ug/Kg		4/7/2014	23:40
cis-1,3-Dichloroprop	ene	< 3180	ug/Kg		4/7/2014	23:40
Cyclohexane		< 15900	ug/Kg		4/7/2014	23:40
Dibromochlorometh	ane	< 3180	ug/Kg		4/7/2014	23:40
Dichlorodifluoromet	hane	< 3180	ug/Kg		4/7/2014	23:40
Ethylbenzene		< 3180	ug/Kg		4/7/2014	23:40
Freon 113		< 3180	ug/Kg		4/7/2014	23:40
Isopropylbenzene		< 3180	ug/Kg		4/7/2014	23:40
m,p-Xylene		< 3180	ug/Kg		4/7/2014	23:40
Methyl acetate		< 3180	ug/Kg		4/7/2014	23:40
Methyl tert-butyl Eth	ner	< 3180	ug/Kg		4/7/2014	23:40
Methylcyclohexane		< 3180	ug/Kg		4/7/2014	23:40
Methylene chloride		< 7950	ug/Kg		4/7/2014	23:40
o-Xylene		< 3180	ug/Kg		4/7/2014	23:40
Styrene		< 7950	ug/Kg		4/7/2014	23:40
Tetrachloroethene		214000	ug/Kg		4/7/2014	23:40
Toluene		< 3180	ug/Kg		4/7/2014	23:40
trans-1,2-Dichloroet	hene	< 3180	ug/Kg		4/7/2014	23:40
trans-1,3-Dichloropr	opene	< 3180	ug/Kg		4/7/2014	23:40
Trichloroethene		< 3180	ug/Kg		4/7/2014	23:40
Trichlorofluorometh	ane	< 3180	ug/Kg		4/7/2014	23:40
Vinyl chloride		< 3180	ug/Kg		4/7/2014	23:40

Client:	<u>GZA Geo Environmental of New York</u>		
Project Reference:	21.0056687.10		
Sample Identifier:	SP-23-12-14-033114		
Lab Sample ID:	141179-08	Date Sampled:	3/31/2014
Matrix:	Soil	Date Received:	4/1/2014

Method Reference(s): EPA 8260C EPA 5035A

x12356.D

Data File:

Any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:	<u>GZA Geo Enviro</u>	nmental of	f New York			
Project Reference:	21.0056687.10					
Sample Identifier:	SP-23-18-19-03	33114				
Lab Sample ID:	141179-09			Date Sampled:	3/31/201	4
Matrix:	Soil			Date Received:	4/1/2014	
Volatile Organics						
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analy	<u>zed</u>
1,1,1-Trichloroethane	2	< 92.6	ug/Kg		4/6/2014	18:29
1,1,2,2-Tetrachloroet	hane	< 92.6	ug/Kg		4/6/2014	18:29
1,1,2-Trichloroethane	2	< 92.6	ug/Kg		4/6/2014	18:29
1,1-Dichloroethane		< 92.6	ug/Kg		4/6/2014	18:29
1,1-Dichloroethene		< 92.6	ug/Kg		4/6/2014	18:29
1,2,3-Trichlorobenzer	ne	< 232	ug/Kg		4/6/2014	18:29
1,2,4-Trichlorobenzer	ne	< 232	ug/Kg		4/6/2014	18:29
1,2-Dibromo-3-Chlor	opropane	< 463	ug/Kg		4/6/2014	18:29
1,2-Dibromoethane		< 92.6	ug/Kg		4/6/2014	18:29
1,2-Dichlorobenzene		< 92.6	ug/Kg		4/6/2014	18:29
1,2-Dichloroethane		< 92.6	ug/Kg		4/6/2014	18:29
1,2-Dichloropropane		< 92.6	ug/Kg		4/6/2014	18:29
1,3-Dichlorobenzene		< 92.6	ug/Kg		4/6/2014	18:29
1,4-Dichlorobenzene		< 92.6	ug/Kg		4/6/2014	18:29
1,4-dioxane		< 926	ug/Kg		4/6/2014	18:29
2-Butanone		< 463	ug/Kg		4/6/2014	18:29
2-Hexanone		< 232	ug/Kg		4/6/2014	18:29
4-Methyl-2-pentanon	e	< 232	ug/Kg		4/6/2014	18:29
Acetone		< 463	ug/Kg		4/6/2014	18:29
Benzene		< 92.6	ug/Kg		4/6/2014	18:29
Bromochloromethane	9	< 232	ug/Kg		4/6/2014	18:29
Bromodichlorometha	ne	< 92.6	ug/Kg		4/6/2014	18:29
Bromoform		< 232	ug/Kg		4/6/2014	18:29
Bromomethane		< 92.6	ug/Kg		4/6/2014	18:29
Carbon disulfide		< 92.6	ug/Kg		4/6/2014	18:29
Carbon Tetrachloride		< 92.6	ug/Kg		4/6/2014	18:29

Client:	<u>GZA Geo Environ</u>	mental of	f New York			
Project Reference:	21.0056687.10					
Sample Identifier:	SP-23-18-19-033	8114				
Lab Sample ID:	141179-09			Date Sampled:	3/31/2014	4
Matrix:	Soil			Date Received:	4/1/2014	
Chlorobenzene		< 92.6	ug/Kg		4/6/2014	18:29
Chloroethane		< 92.6	ug/Kg		4/6/2014	18:29
Chloroform		< 92.6	ug/Kg		4/6/2014	18:29
Chloromethane		< 92.6	ug/Kg		4/6/2014	18:29
cis-1,2-Dichloroethe	ne	< 92.6	ug/Kg		4/6/2014	18:29
cis-1,3-Dichloroprop	ene	< 92.6	ug/Kg		4/6/2014	18:29
Cyclohexane		< 463	ug/Kg		4/6/2014	18:29
Dibromochlorometha	ane	< 92.6	ug/Kg		4/6/2014	18:29
Dichlorodifluoromet	hane	< 92.6	ug/Kg		4/6/2014	18:29
Ethylbenzene		< 92.6	ug/Kg		4/6/2014	18:29
Freon 113		< 92.6	ug/Kg		4/6/2014	18:29
Isopropylbenzene		< 92.6	ug/Kg		4/6/2014	18:29
m,p-Xylene		< 92.6	ug/Kg		4/6/2014	18:29
Methyl acetate		< 92.6	ug/Kg		4/6/2014	18:29
Methyl tert-butyl Eth	ier	< 92.6	ug/Kg		4/6/2014	18:29
Methylcyclohexane		< 92.6	ug/Kg		4/6/2014	18:29
Methylene chloride		< 232	ug/Kg		4/6/2014	18:29
o-Xylene		< 92.6	ug/Kg		4/6/2014	18:29
Styrene		< 232	ug/Kg		4/6/2014	18:29
Tetrachloroethene		8720	ug/Kg		4/6/2014	18:29
Toluene		< 92.6	ug/Kg		4/6/2014	18:29
trans-1,2-Dichloroet	hene	< 92.6	ug/Kg		4/6/2014	18:29
trans-1,3-Dichloropr	opene	< 92.6	ug/Kg		4/6/2014	18:29
Trichloroethene		128	ug/Kg		4/6/2014	18:29
Trichlorofluorometh	ane	< 92.6	ug/Kg		4/6/2014	18:29
Vinyl chloride		< 92.6	ug/Kg		4/6/2014	18:29

Client:	<u>GZA Geo Environmental of New York</u>		
Project Reference:	21.0056687.10		
Sample Identifier:	SP-23-18-19-033114		
Lab Sample ID:	141179-09	Date Sampled:	3/31/2014
Matrix:	Soil	Date Received:	4/1/2014

Method Reference(s): EPA 8260C EPA 5035A x12321.D

Data File:

Any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method *5035 guidance document from 11/15/2012.*

Client:	<u>GZA Geo Enviro</u> r	<u>imental o</u>	<u>f New York</u>			
Project Reference:	21.0056687.10					
Sample Identifier:	SP-24-8-10-033	114				
Lab Sample ID:	141179-10			Date Sampled:	3/31/201	4
Matrix:	Soil			Date Received:	4/1/2014	
Volatile Organics						
Analyte		<u>Result</u>	<u>Units</u>	Qualifier	Date Analy	zed
1,1,1-Trichloroethane	9	< 6.71	ug/Kg		4/6/2014	18:05
1,1,2,2-Tetrachloroet	hane	< 6.71	ug/Kg		4/6/2014	18:05
1,1,2-Trichloroethane	9	< 6.71	ug/Kg		4/6/2014	18:05
1,1-Dichloroethane		< 6.71	ug/Kg		4/6/2014	18:05
1,1-Dichloroethene		< 6.71	ug/Kg		4/6/2014	18:05
1,2,3-Trichlorobenze	ne	< 16.8	ug/Kg		4/6/2014	18:05
1,2,4-Trichlorobenze	ne	< 16.8	ug/Kg		4/6/2014	18:05
1,2-Dibromo-3-Chlor	opropane	< 33.5	ug/Kg		4/6/2014	18:05
1,2-Dibromoethane		< 6.71	ug/Kg		4/6/2014	18:05
1,2-Dichlorobenzene		< 6.71	ug/Kg		4/6/2014	18:05
1,2-Dichloroethane		< 6.71	ug/Kg		4/6/2014	18:05
1,2-Dichloropropane		< 6.71	ug/Kg		4/6/2014	18:05
1,3-Dichlorobenzene		< 6.71	ug/Kg		4/6/2014	18:05
1,4-Dichlorobenzene		< 6.71	ug/Kg		4/6/2014	18:05
1,4-dioxane		< 67.1	ug/Kg		4/6/2014	18:05
2-Butanone		< 33.5	ug/Kg		4/6/2014	18:05
2-Hexanone		< 16.8	ug/Kg		4/6/2014	18:05
4-Methyl-2-pentanon	e	< 16.8	ug/Kg		4/6/2014	18:05
Acetone		44.6	ug/Kg		4/6/2014	18:05
Benzene		< 6.71	ug/Kg		4/6/2014	18:05
Bromochloromethane	e	< 16.8	ug/Kg		4/6/2014	18:05
Bromodichlorometha	ine	< 6.71	ug/Kg		4/6/2014	18:05
Bromoform		< 16.8	ug/Kg		4/6/2014	18:05
Bromomethane		< 6.71	ug/Kg		4/6/2014	18:05
Carbon disulfide		< 6.71	ug/Kg		4/6/2014	18:05
Carbon Tetrachloride		< 6.71	ug/Kg		4/6/2014	18:05

Client:	GZA Geo Enviror	mental of	<u>f New York</u>			
Project Reference:	21.0056687.10					
Sample Identifier:	SP-24-8-10-033	114				
Lab Sample ID:	141179-10			Date Sampled:	3/31/2014	4
Matrix:	Soil			Date Received:	4/1/2014	
Chlorobenzene		< 6.71	ug/Kg		4/6/2014	18:05
Chloroethane		< 6.71	ug/Kg		4/6/2014	18:05
Chloroform		< 6.71	ug/Kg		4/6/2014	18:05
Chloromethane		< 6.71	ug/Kg		4/6/2014	18:05
cis-1,2-Dichloroethen	e	223	ug/Kg		4/6/2014	18:05
cis-1,3-Dichloroprope	ene	< 6.71	ug/Kg		4/6/2014	18:05
Cyclohexane		< 33.5	ug/Kg		4/6/2014	18:05
Dibromochlorometha	ne	< 6.71	ug/Kg		4/6/2014	18:05
Dichlorodifluorometh	ane	< 6.71	ug/Kg		4/6/2014	18:05
Ethylbenzene		< 6.71	ug/Kg		4/6/2014	18:05
Freon 113		< 6.71	ug/Kg		4/6/2014	18:05
Isopropylbenzene		< 6.71	ug/Kg		4/6/2014	18:05
m,p-Xylene		< 6.71	ug/Kg		4/6/2014	18:05
Methyl acetate		< 6.71	ug/Kg		4/6/2014	18:05
Methyl tert-butyl Ethe	er	< 6.71	ug/Kg		4/6/2014	18:05
Methylcyclohexane		< 6.71	ug/Kg		4/6/2014	18:05
Methylene chloride		< 16.8	ug/Kg		4/6/2014	18:05
o-Xylene		< 6.71	ug/Kg		4/6/2014	18:05
Styrene		< 16.8	ug/Kg		4/6/2014	18:05
Tetrachloroethene		155	ug/Kg		4/6/2014	18:05
Toluene		< 6.71	ug/Kg		4/6/2014	18:05
trans-1,2-Dichloroeth	ene	< 6.71	ug/Kg		4/6/2014	18:05
trans-1,3-Dichloropro	pene	< 6.71	ug/Kg		4/6/2014	18:05
Trichloroethene		20.4	ug/Kg		4/6/2014	18:05
Trichlorofluorometha	ne	< 6.71	ug/Kg		4/6/2014	18:05
Vinyl chloride		9.23	ug/Kg		4/6/2014	18:05

Client:	<u>GZA Geo Environmental of New York</u>		
Project Reference:	21.0056687.10		
Sample Identifier:	SP-24-8-10-033114		
Lab Sample ID:	141179-10	Date Sampled:	3/31/2014
Matrix:	Soil	Date Received:	4/1/2014

Method Reference(s): EPA 8260C EPA 5035A

x12320.D

Data File:

Any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

"<" = Analyzed for but not detected at or above the quantitation limit.

"E" = Result has been estimated, calibration limit exceeded.

"Z" = See case narrative.

"D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.

"M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.

"B" = Method blank contained trace levels of analyte. Refer to included method blank report.

"J" = Result estimated between the quantitation limit and half the quantitation limit.

"L" = Laboratory Control Sample recovery outside accepted QC limits.

"P" = Concentration differs by more than 40% between the primary and secondary analytical columns.

					C	3		(Jeceiv		please indicate:		ndicate:	please it		e indicate:	plea
	L							Receiv							h 1 day	
			41/K						X	NTODEC EL		jory B	Categ		h 2 day	Ru
			1/12/		in the	R	1 ATMA] []	Basic EDD		QC	Batch] [1]	ndard 5 day	Sta
		Total Cost	114- JI31	S/C	<u>rapar</u>	2 2	NWQ .	- IV	у.	fees may appl	ral; additional	n lab approv	ngent upo	ability conti	Avail	
					*	>				lements	leport Supp			ind Time	Turnarou	
C	Latitude of the second				0	~	-	41152	50-0	1-8-1	8-24		N X	153		10
								71125	19-0	- 18-	SP-23		X	143		9
					9			41152	4-05	- 12-1	SP-JZ	· .3	S X	146	6	ω
27	~				0			411	50.23	2-4	SP-JJ-		<u>ү</u> Х	130	532	7
5	C				0			114	-033	. 4.5	SP-21	X	M(1016	12 Part	တ
					<u>a</u>	~		14	550	4-6-	SP-20-		8 8	095		ບາ
	(~~;					×		114	032	6-8-	50-19	• • •	0 X	090	populanti a	4
	errer 1					K		41	023	6-8.	SP-1A-		n x	1×12	5/3i/iH	ω
								7105	-D-V	-12-14	SP-16.		M X	<u>5</u> 00	Ł	N
	(~1				0		ß	14/02	-033	-10-12	SP-16		X	10 31	<i>hijo</i> ste	
BIPLE BER	PARADIC SAM NUMB	REMARKS			TCL	то япш≦сг 005 н ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч ч	×− x − > ≤ 0 0 0 0 0		N THFIER	SAMPLE IDE		מג∢ס	ст ер т 1 - кор 2 ос	TIME COLLEC	ITE COLLECTED	p
	-		SIS	STED ANALY	REQUE		-						-			
	<mark>OL</mark> - Oil AR - Air	SD - Solid WP - Wipe PT - Paint CK - Caulk	SO - Soil SL - Sludge	king Water stewater	DW - Drin WW - Wa	·	'ater iroundwater	WA - M WG - G	quid	a. tueous Liquid on-Aqueous Lio	AQ - AQ NQ - N	5	7	ブ 2 2	2	1
· Com	15 BU	Howas, bolika								oron	THIC . R			OF REF	Nord X	million , J
D'LE E	prove	Email: christopher,				PHONE:		Ø	-2.30	685	IONE: 716	 				
Page		Quotation #:	ZIP:	STATE:	V	CITY:	W	NAL AND	NATES S		m Bund	0	N.		P	
33 of	ō					ADDRESS:	19	to vit	Envis	14600		> o			- - -	
34			×	INVOICE TO					ORT TO:	REP) C	D >]	D >	
	fi som more constant	0		Y	STOL	T C C	IN OI	CHA.								
)	_	47-3311	2530 Fax (585) 6	: (585) 647-2	308 Office	ster, NY 146	/enue, Roches	179 Lake Av							

Con los

PARADIGM	<u>Chair</u>	n of Custody Supple	2 of . <u>ment</u>
Client: Lab Project ID:	GrZA 141179 Sample Conditi Per NELAC/ELAP 2	Completed by: Date: on Requirements 10/241/242/243/244	KRH
Condition	VELAC compliance with the sample Yes	condition requirements upon a	receipt N/A
Container Type Comments		5D35	>
Transferred to method- compliant container			
Headspace (<1 mL) Comments			
Preservation Comments			
Chlorine Absent (<0.10 ppm per test strip) Comments			
Holding Time Comments			
Temperature Comments	H°C	Dn ice	
Sufficient Sample Quantity Comments			

0.0110000

Analytical Report For

GZA Geo Environmental of New York

For Lab Project ID

141892

Referencing

21.0056687.10 Task 5

Prepared

Tuesday, May 20, 2014

Any noncompliant QC parameters or other notes impacting data interpretation are flagged or documented on the final report or are noted below.

Certifies that this report has been approved by the Technical Director or Designee

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

Client:	<u>GZA G</u>	eo Enviror	imental o	f New York			
Project Reference:	21.005	56687.10 Ta	ask 5				
Sample Identifier: Lab Sample ID: Matrix:	SP-27 1418 Soil	7-8-050814 92-01			Date Sampled: Date Received:	5/8/2014 5/12/2014	
Semi-Volatile Organics	s (PAH	<u>s)</u>					
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analy	<u>zed</u>
Acenaphthene			< 316	ug/Kg		5/15/2014	06:25
Acenaphthylene			< 316	ug/Kg		5/15/2014	06:25
Anthracene			< 316	ug/Kg		5/15/2014	06:25
Benzo (a) anthracene			< 316	ug/Kg		5/15/2014	06:25
Benzo (a) pyrene			< 316	ug/Kg		5/15/2014	06:25
Benzo (b) fluoranthene			< 316	ug/Kg		5/15/2014	06:25
Benzo (g,h,i) perylene			< 316	ug/Kg		5/15/2014	06:25
Benzo (k) fluoranthene			< 316	ug/Kg		5/15/2014	06:25
Chrysene			< 316	ug/Kg		5/15/2014	06:25
Dibenz (a,h) anthracene			< 316	ug/Kg		5/15/2014	06:25
Fluoranthene			< 316	ug/Kg		5/15/2014	06:25
Fluorene			< 316	ug/Kg		5/15/2014	06:25
Indeno (1,2,3-cd) pyren	e		< 316	ug/Kg		5/15/2014	06:25
Naphthalene			< 316	ug/Kg		5/15/2014	06:25
Phenanthrene			< 316	ug/Kg		5/15/2014	06:25
Pyrene			< 316	ug/Kg		5/15/2014	06:25
Method Reference Data File:	e(s):	EPA 8270D EPA 3550C S76618.D					
<u>Volatile Organics</u>							
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analy	<u>zed</u>
1,1,1-Trichloroethane			< 5.54	ug/Kg		5/14/2014	16:22
1,1,2,2-Tetrachloroetha	ne		< 5.54	ug/Kg		5/14/2014	16:22
1,1,2-Trichloroethane			< 5.54	ug/Kg		5/14/2014	16:22
1,1-Dichloroethane			< 5.54	ug/Kg		5/14/2014	16:22

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

ug/Kg

ug/Kg

< 5.54

1,1-Dichloroethene

5/14/2014

5/14/2014

16:22

Client:	GZA Geo Environn	nental o	<u>f New York</u>			
Project Reference:	21.0056687.10 Tas	sk 5				
Sample Identifier:	SP-27-8-050814					
Lab Sample ID:	141892-01			Date Sampled:	5/8/2014	
Matrix:	Soil			Date Received:	5/12/2014	
1,2,3-Trichlorobenzer	ne	< 13.9	ug/Kg		5/14/2014	16:22
1,2,4-Trichlorobenzer	ne	< 13.9	ug/Kg		5/14/2014	16:22
1,2-Dibromo-3-Chloro	opropane	< 27.7	ug/Kg		5/14/2014	16:22
1,2-Dibromoethane		< 5.54	ug/Kg		5/14/2014	16:22
1,2-Dichlorobenzene		< 5.54	ug/Kg		5/14/2014	16:22
1,2-Dichloroethane		< 5.54	ug/Kg		5/14/2014	16:22
1,2-Dichloropropane		< 5.54	ug/Kg		5/14/2014	16:22
1,3-Dichlorobenzene		< 5.54	ug/Kg		5/14/2014	16:22
1,4-Dichlorobenzene		< 5.54	ug/Kg		5/14/2014	16:22
1,4-dioxane		< 55.4	ug/Kg		5/14/2014	16:22
2-Butanone		< 27.7	ug/Kg		5/14/2014	16:22
2-Hexanone		< 13.9	ug/Kg		5/14/2014	16:22
4-Methyl-2-pentanon	e	< 13.9	ug/Kg		5/14/2014	16:22
Acetone		< 27.7	ug/Kg		5/14/2014	16:22
Benzene		< 5.54	ug/Kg		5/14/2014	16:22
Bromochloromethane		< 13.9	ug/Kg		5/14/2014	16:22
Bromodichlorometha	ne	< 5.54	ug/Kg		5/14/2014	16:22
Bromoform		< 13.9	ug/Kg		5/14/2014	16:22
Bromomethane		< 5.54	ug/Kg		5/14/2014	16:22
Carbon disulfide		< 5.54	ug/Kg		5/14/2014	16:22
Carbon Tetrachloride		< 5.54	ug/Kg		5/14/2014	16:22
Chlorobenzene		< 5.54	ug/Kg		5/14/2014	16:22
Chloroethane		< 5.54	ug/Kg		5/14/2014	16:22
Chloroform		< 5.54	ug/Kg		5/14/2014	16:22
Chloromethane		< 5.54	ug/Kg		5/14/2014	16:22
cis-1,2-Dichloroethen	e	< 5.54	ug/Kg		5/14/2014	16:22
cis-1,3-Dichloroprope	ene	< 5.54	ug/Kg		5/14/2014	16:22
Cyclohexane		< 27.7	ug/Kg		5/14/2014	16:22

Client:	<u>GZA Geo Environ</u>	mental o	<u>f New York</u>			
Project Reference:	21.0056687.10 Ta	sk 5				
Sample Identifier:	SP-27-8-050814					
Lab Sample ID:	141892-01			Date Sampled:	5/8/2014	
Matrix:	Soil			Date Received:	5/12/2014	
Dibromochlorometha	ine	< 5.54	ug/Kg		5/14/2014	16:22
Dichlorodifluorometh	nane	< 5.54	ug/Kg		5/14/2014	16:22
Ethylbenzene		< 5.54	ug/Kg		5/14/2014	16:22
Freon 113		< 5.54	ug/Kg		5/14/2014	16:22
Isopropylbenzene		< 5.54	ug/Kg		5/14/2014	16:22
m,p-Xylene		< 5.54	ug/Kg		5/14/2014	16:22
Methyl acetate		< 5.54	ug/Kg		5/14/2014	16:22
Methyl tert-butyl Eth	er	< 5.54	ug/Kg		5/14/2014	16:22
Methylcyclohexane		< 5.54	ug/Kg		5/14/2014	16:22
Methylene chloride		< 13.9	ug/Kg		5/14/2014	16:22
o-Xylene		< 5.54	ug/Kg		5/14/2014	16:22
Styrene		< 13.9	ug/Kg		5/14/2014	16:22
Tetrachloroethene		< 5.54	ug/Kg		5/14/2014	16:22
Toluene		< 5.54	ug/Kg		5/14/2014	16:22
trans-1,2-Dichloroeth	iene	< 5.54	ug/Kg		5/14/2014	16:22
trans-1,3-Dichloropro	opene	< 5.54	ug/Kg		5/14/2014	16:22
Trichloroethene		< 5.54	ug/Kg		5/14/2014	16:22
Trichlorofluorometha	ane	< 5.54	ug/Kg		5/14/2014	16:22
Vinyl chloride		< 5.54	ug/Kg		5/14/2014	16:22

Method Reference(s): EPA 8260C EPA 5035A

x13231.D

Any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Data File:

Client:	<u>GZA</u>	<u>Geo Environ</u>	mental of	f New York			
Project Reference:	21.00	56687.10 Ta	ask 5				
Sample Identifier: Lab Sample ID: Matrix:	SP-2 141 Soil	28-8-050814 892-02			Date Sampled: Date Received:	5/8/2014 5/12/2014	
Semi-Volatile Organi	ics (PA)	<u>Hs)</u>					
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analy	zed
Acenaphthene			< 341	ug/Kg		5/15/2014	08:58
Acenaphthylene			< 341	ug/Kg		5/15/2014	08:58
Anthracene			< 341	ug/Kg		5/15/2014	08:58
Benzo (a) anthracene			< 341	ug/Kg		5/15/2014	08:58
Benzo (a) pyrene			< 341	ug/Kg		5/15/2014	08:58
Benzo (b) fluoranther	ie		< 341	ug/Kg		5/15/2014	08:58
Benzo (g,h,i) perylene	1		< 341	ug/Kg		5/15/2014	08:58
Benzo (k) fluoranther	ie		< 341	ug/Kg		5/15/2014	08:58
Chrysene			< 341	ug/Kg		5/15/2014	08:58
Dibenz (a,h) anthrace	ne		< 341	ug/Kg		5/15/2014	08:58
Fluoranthene			< 341	ug/Kg		5/15/2014	08:58
Fluorene			< 341	ug/Kg		5/15/2014	08:58
Indeno (1,2,3-cd) pyro	ene		< 341	ug/Kg		5/15/2014	08:58
Naphthalene			< 341	ug/Kg		5/15/2014	08:58
Phenanthrene			< 341	ug/Kg		5/15/2014	08:58
Pyrene			< 341	ug/Kg		5/15/2014	08:58
Method Referen Data File:	nce(s):	EPA 8270D EPA 3550C S76623.D					
<u>Volatile Organics</u>							
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	Qualifier	Date Analy	<u>zed</u>
1,1,1-Trichloroethane	1		< 8.83	ug/Kg		5/14/2014	16:45
1,1,2,2-Tetrachloroet	nane		< 8.83	ug/Kg		5/14/2014	16:45
1,1,2-Trichloroethane	1		< 8.83	ug/Kg		5/14/2014	16:45
1,1-Dichloroethane			< 8.83	ug/Kg		5/14/2014	16:45

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

ug/Kg

< 8.83

1,1-Dichloroethene

5/14/2014

16:45

Client:	<u>GZA Geo Environn</u>	nental o	<u>f New York</u>			
Project Reference:	21.0056687.10 Tas	sk 5				
Sample Identifier:	SP-28-8-050814					
Lab Sample ID:	141892-02			Date Sampled:	5/8/2014	
Matrix:	Soil			Date Received:	5/12/2014	
1,2,3-Trichlorobenzer	ne	< 22.1	ug/Kg		5/14/2014	16:45
1,2,4-Trichlorobenzer	ne	< 22.1	ug/Kg		5/14/2014	16:45
1,2-Dibromo-3-Chloro	opropane	< 44.1	ug/Kg		5/14/2014	16:45
1,2-Dibromoethane		< 8.83	ug/Kg		5/14/2014	16:45
1,2-Dichlorobenzene		< 8.83	ug/Kg		5/14/2014	16:45
1,2-Dichloroethane		< 8.83	ug/Kg		5/14/2014	16:45
1,2-Dichloropropane		< 8.83	ug/Kg		5/14/2014	16:45
1,3-Dichlorobenzene		< 8.83	ug/Kg		5/14/2014	16:45
1,4-Dichlorobenzene		< 8.83	ug/Kg		5/14/2014	16:45
1,4-dioxane		< 88.3	ug/Kg		5/14/2014	16:45
2-Butanone		< 44.1	ug/Kg		5/14/2014	16:45
2-Hexanone		< 22.1	ug/Kg		5/14/2014	16:45
4-Methyl-2-pentanon	e	< 22.1	ug/Kg		5/14/2014	16:45
Acetone		< 44.1	ug/Kg		5/14/2014	16:45
Benzene		< 8.83	ug/Kg		5/14/2014	16:45
Bromochloromethane	<u>j</u>	< 22.1	ug/Kg		5/14/2014	16:45
Bromodichlorometha	ne	< 8.83	ug/Kg		5/14/2014	16:45
Bromoform		< 22.1	ug/Kg		5/14/2014	16:45
Bromomethane		< 8.83	ug/Kg		5/14/2014	16:45
Carbon disulfide		< 8.83	ug/Kg		5/14/2014	16:45
Carbon Tetrachloride		< 8.83	ug/Kg		5/14/2014	16:45
Chlorobenzene		< 8.83	ug/Kg		5/14/2014	16:45
Chloroethane		< 8.83	ug/Kg		5/14/2014	16:45
Chloroform		< 8.83	ug/Kg		5/14/2014	16:45
Chloromethane		< 8.83	ug/Kg		5/14/2014	16:45
cis-1,2-Dichloroethen	e	< 8.83	ug/Kg		5/14/2014	16:45
cis-1,3-Dichloroprope	ene	< 8.83	ug/Kg		5/14/2014	16:45
Cyclohexane		< 44.1	ug/Kg		5/14/2014	16:45

Client:	<u>GZA Geo Environ</u>	<u>mental o</u>	<u>f New York</u>			
Project Reference:	21.0056687.10 Ta	isk 5				
Sample Identifier: Lab Sample ID:	SP-28-8-050814 141892-02			Date Sampled:	5/8/2014	
Matrix:	Soil			Date Received:	5/12/2014	
Dibromochlorometha	ane	< 8.83	ug/Kg		5/14/2014	16:45
Dichlorodifluorometh	nane	< 8.83	ug/Kg		5/14/2014	16:45
Ethylbenzene		< 8.83	ug/Kg		5/14/2014	16:45
Freon 113		< 8.83	ug/Kg		5/14/2014	16:45
Isopropylbenzene		< 8.83	ug/Kg		5/14/2014	16:45
m,p-Xylene		< 8.83	ug/Kg		5/14/2014	16:45
Methyl acetate		< 8.83	ug/Kg		5/14/2014	16:45
Methyl tert-butyl Eth	er	< 8.83	ug/Kg		5/14/2014	16:45
Methylcyclohexane		< 8.83	ug/Kg		5/14/2014	16:45
Methylene chloride		< 22.1	ug/Kg		5/14/2014	16:45
o-Xylene		< 8.83	ug/Kg		5/14/2014	16:45
Styrene		< 22.1	ug/Kg		5/14/2014	16:45
Tetrachloroethene		< 8.83	ug/Kg		5/14/2014	16:45
Toluene		< 8.83	ug/Kg		5/14/2014	16:45
trans-1,2-Dichloroeth	nene	< 8.83	ug/Kg		5/14/2014	16:45
trans-1,3-Dichloropro	opene	< 8.83	ug/Kg		5/14/2014	16:45
Trichloroethene		< 8.83	ug/Kg		5/14/2014	16:45
Trichlorofluorometha	ane	< 8.83	ug/Kg		5/14/2014	16:45
Vinyl chloride		< 8.83	ug/Kg		5/14/2014	16:45

Method Reference(s): EPA 8260C EPA 5035A

x13232.D

Any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Data File:

Client:	<u>GZA (</u>	eo Enviror	imental o	f New York			
Project Reference:	21.00	56687.10 Ta	ask 5				
Sample Identifier: Lab Sample ID: Matrix:	SP-2 1418 Soil	8-10-05081 392-03	4		Date Sampled: Date Received:	5/8/2014 5/12/2014	
Semi-Volatile Organic	s (PAH	<u>ls)</u>					
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analy	<u>zed</u>
Acenaphthene			< 318	ug/Kg		5/15/2014	06:55
Acenaphthylene			< 318	ug/Kg		5/15/2014	06:55
Anthracene			< 318	ug/Kg		5/15/2014	06:55
Benzo (a) anthracene			< 318	ug/Kg		5/15/2014	06:55
Benzo (a) pyrene			< 318	ug/Kg		5/15/2014	06:55
Benzo (b) fluoranthene	9		< 318	ug/Kg		5/15/2014	06:55
Benzo (g,h,i) perylene			< 318	ug/Kg		5/15/2014	06:55
Benzo (k) fluoranthene	9		< 318	ug/Kg		5/15/2014	06:55
Chrysene			< 318	ug/Kg		5/15/2014	06:55
Dibenz (a,h) anthracen	e		< 318	ug/Kg		5/15/2014	06:55
Fluoranthene			< 318	ug/Kg		5/15/2014	06:55
Fluorene			< 318	ug/Kg		5/15/2014	06:55
Indeno (1,2,3-cd) pyrei	ne		< 318	ug/Kg		5/15/2014	06:55
Naphthalene			< 318	ug/Kg		5/15/2014	06:55
Phenanthrene			< 318	ug/Kg		5/15/2014	06:55
Pyrene			< 318	ug/Kg		5/15/2014	06:55
Method Reference Data File:	æ(s):	EPA 8270D EPA 3550C S76619.D					
<u>Volatile Organics</u>							
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analy	<u>zed</u>
1,1,1-Trichloroethane			< 7.33	ug/Kg		5/14/2014	17:09
1,1,2,2-Tetrachloroetha	ane		< 7.33	ug/Kg		5/14/2014	17:09
1,1,2-Trichloroethane			< 7.33	ug/Kg		5/14/2014	17:09
1,1-Dichloroethane			< 7.33	ug/Kg		5/14/2014	17:09

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

ug/Kg

< 7.33

1,1-Dichloroethene

5/14/2014

17:09

Client:	<u>GZA Geo Enviro</u>	onmental of	<u>New York</u>			
Project Reference:	21.0056687.10	Fask 5				
Sample Identifier:	SP-28-10-0508	14				
Lab Sample ID:	141892-03			Date Sampled:	5/8/2014	
Matrix:	Soil			Date Received:	5/12/2014	
1,2,3-Trichlorobenzer	ne	< 18.3	ug/Kg		5/14/2014	17:09
1,2,4-Trichlorobenzer	ne	< 18.3	ug/Kg		5/14/2014	17:09
1,2-Dibromo-3-Chloro	opropane	< 36.6	ug/Kg		5/14/2014	17:09
1,2-Dibromoethane		< 7.33	ug/Kg		5/14/2014	17:09
1,2-Dichlorobenzene		< 7.33	ug/Kg		5/14/2014	17:09
1,2-Dichloroethane		< 7.33	ug/Kg		5/14/2014	17:09
1,2-Dichloropropane		< 7.33	ug/Kg		5/14/2014	17:09
1,3-Dichlorobenzene		< 7.33	ug/Kg		5/14/2014	17:09
1,4-Dichlorobenzene		< 7.33	ug/Kg		5/14/2014	17:09
1,4-dioxane		< 73.3	ug/Kg		5/14/2014	17:09
2-Butanone		< 36.6	ug/Kg		5/14/2014	17:09
2-Hexanone		< 18.3	ug/Kg		5/14/2014	17:09
4-Methyl-2-pentanon	e	< 18.3	ug/Kg		5/14/2014	17:09
Acetone		< 36.6	ug/Kg		5/14/2014	17:09
Benzene		< 7.33	ug/Kg		5/14/2014	17:09
Bromochloromethane	2	< 18.3	ug/Kg		5/14/2014	17:09
Bromodichlorometha	ne	< 7.33	ug/Kg		5/14/2014	17:09
Bromoform		< 18.3	ug/Kg		5/14/2014	17:09
Bromomethane		< 7.33	ug/Kg		5/14/2014	17:09
Carbon disulfide		< 7.33	ug/Kg		5/14/2014	17:09
Carbon Tetrachloride		< 7.33	ug/Kg		5/14/2014	17:09
Chlorobenzene		< 7.33	ug/Kg		5/14/2014	17:09
Chloroethane		< 7.33	ug/Kg		5/14/2014	17:09
Chloroform		< 7.33	ug/Kg		5/14/2014	17:09
Chloromethane		< 7.33	ug/Kg		5/14/2014	17:09
cis-1,2-Dichloroethen	e	< 7.33	ug/Kg		5/14/2014	17:09
cis-1,3-Dichloroprope	ene	< 7.33	ug/Kg		5/14/2014	17:09
Cyclohexane		< 36.6	ug/Kg		5/14/2014	17:09

Client: Project Reference: Sample Identifier: Lab Sample ID: Matrix: Dibromochloromethat Dichlorodifluoromethat Dichlorodifluoromethat Ethylbenzene Freon 113 Isopropylbenzene m,p-Xylene Methyl acetate Methyl acetate Methyl tert-butyl Ethet Methylcyclohexane Methylene chloride o-Xylene Styrene Tetrachloroethene Toluene trans-1,2-Dichloroeth	<u>GZA Geo Envira</u>	nmental of	f New York			
Project Reference:	21.0056687.10	Гask 5				
Sample Identifier:	SP-28-10-0508	14				
Lab Sample ID:	141892-03			Date Sampled:	5/8/2014	
Matrix:	Soil			Date Received:	5/12/2014	
Dibromochlorometha	ine	< 7.33	ug/Kg		5/14/2014	17:09
Dichlorodifluorometh	nane	< 7.33	ug/Kg		5/14/2014	17:09
Ethylbenzene		< 7.33	ug/Kg		5/14/2014	17:09
Freon 113		< 7.33	ug/Kg		5/14/2014	17:09
Isopropylbenzene		< 7.33	ug/Kg		5/14/2014	17:09
m,p-Xylene		< 7.33	ug/Kg		5/14/2014	17:09
Methyl acetate		< 7.33	ug/Kg		5/14/2014	17:09
Methyl tert-butyl Eth	er	< 7.33	ug/Kg		5/14/2014	17:09
Methylcyclohexane		< 7.33	ug/Kg		5/14/2014	17:09
Methylene chloride		< 18.3	ug/Kg		5/14/2014	17:09
o-Xylene		< 7.33	ug/Kg		5/14/2014	17:09
Styrene		< 18.3	ug/Kg		5/14/2014	17:09
Tetrachloroethene		< 7.33	ug/Kg		5/14/2014	17:09
Toluene		< 7.33	ug/Kg		5/14/2014	17:09
trans-1,2-Dichloroeth	iene	< 7.33	ug/Kg		5/14/2014	17:09
trans-1,3-Dichloropro	opene	< 7.33	ug/Kg		5/14/2014	17:09
Trichloroethene		< 7.33	ug/Kg		5/14/2014	17:09
Trichlorofluorometha	ane	< 7.33	ug/Kg		5/14/2014	17:09
Vinyl chloride		< 7.33	ug/Kg		5/14/2014	17:09

Method Reference(s): EPA 8260C EPA 5035A

x13233.D

Any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method *5035 guidance document from 11/15/2012.*

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Data File:

Client:	<u>GZA Geo Enviro</u>	nmental o	<u>f New York</u>			
Project Reference:	21.0056687.10 1	Task 5				
Sample Identifier: Lab Sample ID: Matrix:	SP-29-4-050814 141892-04 Soil	4		Date Sampled: Date Received:	5/8/2014 5/12/2014	
Semi-Volatile Oraanics	s (PAHs)					
Analyte	/	<u>Result</u>	<u>Units</u>	<u>Oualifier</u>	Date Analy	<u>zed</u>
Acenaphthene		< 341	ug/Kg		5/15/2014	07:26
Acenaphthylene		< 341	ug/Kg		5/15/2014	07:26
Anthracene		< 341	ug/Kg		5/15/2014	07:26
Benzo (a) anthracene		< 341	ug/Kg		5/15/2014	07:26
Benzo (a) pyrene		< 341	ug/Kg		5/15/2014	07:26
Benzo (b) fluoranthene		< 341	ug/Kg		5/15/2014	07:26
Benzo (g,h,i) perylene		< 341	ug/Kg		5/15/2014	07:26
Benzo (k) fluoranthene		< 341	ug/Kg		5/15/2014	07:26
Chrysene		< 341	ug/Kg		5/15/2014	07:26
Dibenz (a,h) anthracene		< 341	ug/Kg		5/15/2014	07:26
Fluoranthene		< 341	ug/Kg		5/15/2014	07:26
Fluorene		< 341	ug/Kg		5/15/2014	07:26
Indeno (1,2,3-cd) pyren	е	< 341	ug/Kg		5/15/2014	07:26
Naphthalene		< 341	ug/Kg		5/15/2014	07:26
Phenanthrene		< 341	ug/Kg		5/15/2014	07:26
Pyrene		< 341	ug/Kg		5/15/2014	07:26
Method Reference	(s): EPA 8270D EPA 3550C					
Data File:	\$76620.D					
<u>Volatile Organics</u>						
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analy	<u>zed</u>
1,1,1-Trichloroethane		< 7.89	ug/Kg		5/14/2014	17:32
1,1,2,2-Tetrachloroetha	ne	< 7.89	ug/Kg		5/14/2014	17:32
1,1,2-Trichloroethane		< 7.89	ug/Kg		5/14/2014	17:32

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

ug/Kg

ug/Kg

< 7.89

< 7.89

1,1-Dichloroethane

1,1-Dichloroethene

5/14/2014

5/14/2014

17:32

17:32

Client:	<u>GZA Geo Environmental of New York</u>							
Project Reference:	21.0056687.10 Tas	sk 5						
Sample Identifier:	SP-29-4-050814							
Lab Sample ID:	141892-04			Date Sampled:	5/8/2014			
Matrix:	Soil			Date Received:	5/12/2014			
1,2,3-Trichlorobenzer	10	< 19.7	ug/Kg		5/14/2014	17:32		
1,2,4-Trichlorobenzer	ie	< 19.7	ug/Kg		5/14/2014	17:32		
1,2-Dibromo-3-Chloro	opropane	< 39.4	ug/Kg		5/14/2014	17:32		
1,2-Dibromoethane		< 7.89	ug/Kg		5/14/2014	17:32		
1,2-Dichlorobenzene		< 7.89	ug/Kg		5/14/2014	17:32		
1,2-Dichloroethane		< 7.89	ug/Kg		5/14/2014	17:32		
1,2-Dichloropropane		< 7.89	ug/Kg		5/14/2014	17:32		
1,3-Dichlorobenzene		< 7.89	ug/Kg		5/14/2014	17:32		
1,4-Dichlorobenzene		< 7.89	ug/Kg		5/14/2014	17:32		
1,4-dioxane		< 78.9	ug/Kg		5/14/2014	17:32		
2-Butanone		< 39.4	ug/Kg		5/14/2014	17:32		
2-Hexanone		< 19.7	ug/Kg		5/14/2014	17:32		
4-Methyl-2-pentanon	е	< 19.7	ug/Kg		5/14/2014	17:32		
Acetone		< 39.4	ug/Kg		5/14/2014	17:32		
Benzene		< 7.89	ug/Kg		5/14/2014	17:32		
Bromochloromethane	2	< 19.7	ug/Kg		5/14/2014	17:32		
Bromodichlorometha	ne	< 7.89	ug/Kg		5/14/2014	17:32		
Bromoform		< 19.7	ug/Kg		5/14/2014	17:32		
Bromomethane		< 7.89	ug/Kg		5/14/2014	17:32		
Carbon disulfide		< 7.89	ug/Kg		5/14/2014	17:32		
Carbon Tetrachloride		< 7.89	ug/Kg		5/14/2014	17:32		
Chlorobenzene		< 7.89	ug/Kg		5/14/2014	17:32		
Chloroethane		< 7.89	ug/Kg		5/14/2014	17:32		
Chloroform		< 7.89	ug/Kg		5/14/2014	17:32		
Chloromethane		< 7.89	ug/Kg		5/14/2014	17:32		
cis-1,2-Dichloroethen	e	< 7.89	ug/Kg		5/14/2014	17:32		
cis-1,3-Dichloroprope	ne	< 7.89	ug/Kg		5/14/2014	17:32		
Cyclohexane		< 39.4	ug/Kg		5/14/2014	17:32		

Client: Project Reference: Sample Identifier: Lab Sample ID: Matrix: Dibromochloromethar Dichlorodifluoromethar Dichlorodifluoromethar Ethylbenzene Freon 113 Isopropylbenzene m,p-Xylene Methyl acetate Methyl acetate Methyl tert-butyl Ethe Methyl cert-butyl Ethe Methylcyclohexane Methylene chloride o-Xylene Styrene Tetrachloroethene Toluene trans-1,2-Dichloroethete trans-1,3-Dichloropro Trichlorofluoromethar Vinyl chloride	<u>GZA Geo Environr</u>	nental of	<u>f New York</u>			
Project Reference:	21.0056687.10 Tas	sk 5				
Sample Identifier:	SP-29-4-050814					
Lab Sample ID:	141892-04			Date Sampled:	5/8/2014	
Matrix:	Soil			Date Received:	5/12/2014	
Dibromochlorometha	ne	< 7.89	ug/Kg		5/14/2014	17:32
Dichlorodifluorometh	ane	< 7.89	ug/Kg		5/14/2014	17:32
Ethylbenzene		< 7.89	ug/Kg		5/14/2014	17:32
Freon 113		< 7.89	ug/Kg		5/14/2014	17:32
Isopropylbenzene		< 7.89	ug/Kg		5/14/2014	17:32
m,p-Xylene		< 7.89	ug/Kg		5/14/2014	17:32
Methyl acetate		< 7.89	ug/Kg		5/14/2014	17:32
Methyl tert-butyl Ethe	er	< 7.89	ug/Kg		5/14/2014	17:32
Methylcyclohexane		< 7.89	ug/Kg		5/14/2014	17:32
Methylene chloride		< 19.7	ug/Kg		5/14/2014	17:32
o-Xylene		< 7.89	ug/Kg		5/14/2014	17:32
Styrene		< 19.7	ug/Kg		5/14/2014	17:32
Tetrachloroethene		< 7.89	ug/Kg		5/14/2014	17:32
Toluene		< 7.89	ug/Kg		5/14/2014	17:32
trans-1,2-Dichloroeth	ene	< 7.89	ug/Kg		5/14/2014	17:32
trans-1,3-Dichloropro	pene	< 7.89	ug/Kg		5/14/2014	17:32
Trichloroethene		< 7.89	ug/Kg		5/14/2014	17:32
Trichlorofluorometha	ne	< 7.89	ug/Kg		5/14/2014	17:32
Vinyl chloride		< 7.89	ug/Kg		5/14/2014	17:32

Method Reference(s): EPA 8260C EPA 5035A

x13234.D

Any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Data File:

Client:	<u>GZA G</u>	eo Environ	mental of	f New York			
Project Reference:	21.00	56687.10 Ta	ask 5				
Sample Identifier: Lab Sample ID: Matrix:	SP-33 1418 Soil	3-3.5-05081 992-05	4		Date Sampled: Date Received:	5/8/2014 5/12/2014	
Semi-Volatile Organic	s (PAH	<u>(s)</u>					
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analy	zed
Acenaphthene			< 3000	ug/Kg		5/15/2014	09:28
Acenaphthylene			< 3000	ug/Kg		5/15/2014	09:28
Anthracene			< 3000	ug/Kg		5/15/2014	09:28
Benzo (a) anthracene			< 3000	ug/Kg		5/15/2014	09:28
Benzo (a) pyrene			< 3000	ug/Kg		5/15/2014	09:28
Benzo (b) fluoranthene	e		< 3000	ug/Kg		5/15/2014	09:28
Benzo (g,h,i) perylene			< 3000	ug/Kg		5/15/2014	09:28
Benzo (k) fluoranthene	9		< 3000	ug/Kg		5/15/2014	09:28
Chrysene			< 3000	ug/Kg		5/15/2014	09:28
Dibenz (a,h) anthracen	e		< 3000	ug/Kg		5/15/2014	09:28
Fluoranthene			< 3000	ug/Kg		5/15/2014	09:28
Fluorene			3780	ug/Kg		5/15/2014	09:28
Indeno (1,2,3-cd) pyrei	ne		< 3000	ug/Kg		5/15/2014	09:28
Naphthalene			8030	ug/Kg		5/15/2014	09:28
Phenanthrene			8600	ug/Kg		5/15/2014	09:28
Pyrene			< 3000	ug/Kg		5/15/2014	09:28
Method Reference Data File:	æ(s):	EPA 8270D EPA 3550C S76624.D					
Volatile Organics							
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analy	<u>zed</u>
1,1,1-Trichloroethane			< 10.4	ug/Kg		5/14/2014	17:56
1,1,2,2-Tetrachloroeth	ane		< 10.4	ug/Kg		5/14/2014	17:56
1,1,2-Trichloroethane			< 10.4	ug/Kg		5/14/2014	17:56
1,1-Dichloroethane			< 10.4	ug/Kg		5/14/2014	17:56

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

ug/Kg

< 10.4

1,1-Dichloroethene

5/14/2014

17:56

Client:	<u>GZA Geo Enviro</u>	onmental of	<u>f New York</u>			
Project Reference:	21.0056687.10	Fask 5				
Sample Identifier:	SP-33-3.5-0508	314				
Lab Sample ID:	141892-05			Date Sampled:	5/8/2014	
Matrix:	Soil			Date Received:	5/12/2014	
1,2,3-Trichlorobenzei	ne	< 25.9	ug/Kg		5/14/2014	17:56
1,2,4-Trichlorobenzer	ne	< 25.9	ug/Kg		5/14/2014	17:56
1,2-Dibromo-3-Chlore	opropane	< 51.8	ug/Kg		5/14/2014	17:56
1,2-Dibromoethane		< 10.4	ug/Kg		5/14/2014	17:56
1,2-Dichlorobenzene		< 10.4	ug/Kg		5/14/2014	17:56
1,2-Dichloroethane		< 10.4	ug/Kg		5/14/2014	17:56
1,2-Dichloropropane		< 10.4	ug/Kg		5/14/2014	17:56
1,3-Dichlorobenzene		< 10.4	ug/Kg		5/14/2014	17:56
1,4-Dichlorobenzene		< 10.4	ug/Kg		5/14/2014	17:56
1,4-dioxane		< 104	ug/Kg		5/14/2014	17:56
2-Butanone		< 51.8	ug/Kg		5/14/2014	17:56
2-Hexanone		< 25.9	ug/Kg		5/14/2014	17:56
4-Methyl-2-pentanon	e	< 25.9	ug/Kg		5/14/2014	17:56
Acetone		153	ug/Kg		5/14/2014	17:56
Benzene		< 10.4	ug/Kg		5/14/2014	17:56
Bromochloromethane	9	< 25.9	ug/Kg		5/14/2014	17:56
Bromodichlorometha	ne	< 10.4	ug/Kg		5/14/2014	17:56
Bromoform		< 25.9	ug/Kg		5/14/2014	17:56
Bromomethane		< 10.4	ug/Kg		5/14/2014	17:56
Carbon disulfide		11.9	ug/Kg		5/14/2014	17:56
Carbon Tetrachloride		< 10.4	ug/Kg		5/14/2014	17:56
Chlorobenzene		< 10.4	ug/Kg		5/14/2014	17:56
Chloroethane		< 10.4	ug/Kg		5/14/2014	17:56
Chloroform		< 10.4	ug/Kg		5/14/2014	17:56
Chloromethane		< 10.4	ug/Kg		5/14/2014	17:56
cis-1,2-Dichloroethen	e	< 10.4	ug/Kg		5/14/2014	17:56
cis-1,3-Dichloroprope	ene	< 10.4	ug/Kg		5/14/2014	17:56
Cyclohexane		243	ug/Kg		5/14/2014	17:56

Client:	<u>GZA Geo Enviro</u>	nmental o	<u>f New York</u>			
Project Reference:	21.0056687.10	Гask 5				
Sample Identifier:	SP-33-3.5-0508	314				
Lab Sample ID:	141892-05			Date Sampled:	5/8/2014	
Matrix:	Soil			Date Received:	5/12/2014	
Dibromochlorometha	ine	< 10.4	ug/Kg		5/14/2014	17:56
Dichlorodifluorometh	nane	< 10.4	ug/Kg		5/14/2014	17:56
Ethylbenzene		797	ug/Kg		5/14/2014	17:56
Freon 113		< 10.4	ug/Kg		5/14/2014	17:56
Isopropylbenzene		840	ug/Kg		5/14/2014	17:56
m,p-Xylene		91.2	ug/Kg		5/14/2014	17:56
Methyl acetate		< 10.4	ug/Kg		5/14/2014	17:56
Methyl tert-butyl Eth	er	< 10.4	ug/Kg		5/14/2014	17:56
Methylcyclohexane		689	ug/Kg		5/14/2014	17:56
Methylene chloride		< 25.9	ug/Kg		5/14/2014	17:56
o-Xylene		76.2	ug/Kg		5/14/2014	17:56
Styrene		< 25.9	ug/Kg		5/14/2014	17:56
Tetrachloroethene		29.2	ug/Kg		5/14/2014	17:56
Toluene		10.8	ug/Kg		5/14/2014	17:56
trans-1,2-Dichloroeth	iene	< 10.4	ug/Kg		5/14/2014	17:56
trans-1,3-Dichloropro	opene	< 10.4	ug/Kg		5/14/2014	17:56
Trichloroethene		< 10.4	ug/Kg		5/14/2014	17:56
Trichlorofluorometha	ane	< 10.4	ug/Kg		5/14/2014	17:56
Vinyl chloride		< 10.4	ug/Kg		5/14/2014	17:56

Method Reference(s): EPA 8260C EPA 5035A

x13235.D

Any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Data File:

Client:	<u>GZA</u>	Geo Environ	mental o	f New York			
Project Reference:	21.00	56687.10 Ta	ask 5				
Sample Identifier:	SP-3	3-6-050814					
Lab Sample ID:	141	892-06			Date Sampled:	5/8/2014	
Matrix:	Soil				Date Received:	5/12/2014	
Semi-Volatile Organ	ics (PA)	<u>Hs)</u>					
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	Qualifier	Date Analy	<u>zed</u>
Acenaphthene			< 311	ug/Kg		5/15/2014	07:56
Acenaphthylene			< 311	ug/Kg		5/15/2014	07:56
Anthracene			< 311	ug/Kg		5/15/2014	07:56
Benzo (a) anthracene	!		< 311	ug/Kg		5/15/2014	07:56
Benzo (a) pyrene			< 311	ug/Kg		5/15/2014	07:56
Benzo (b) fluoranthe	ne		< 311	ug/Kg		5/15/2014	07:56
Benzo (g,h,i) peryleno	9		< 311	ug/Kg		5/15/2014	07:56
Benzo (k) fluoranthe	ne		< 311	ug/Kg		5/15/2014	07:56
Chrysene			< 311	ug/Kg		5/15/2014	07:56
Dibenz (a,h) anthrace	ene		< 311	ug/Kg		5/15/2014	07:56
Fluoranthene			< 311	ug/Kg		5/15/2014	07:56
Fluorene			< 311	ug/Kg		5/15/2014	07:56
Indeno (1,2,3-cd) pyr	ene		< 311	ug/Kg		5/15/2014	07:56
Naphthalene			< 311	ug/Kg		5/15/2014	07:56
Phenanthrene			< 311	ug/Kg		5/15/2014	07:56
Pyrene			< 311	ug/Kg		5/15/2014	07:56
Method Refere	nce(s):	EPA 8270D					
Data File:		EPA 3550C S76621.D					
<u>Volatile Organics</u>							
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analy	<u>zed</u>
1,1,1-Trichloroethane	è		< 6.95	ug/Kg		5/14/2014	18:19
1,1,2,2-Tetrachloroet	hane		< 6.95	ug/Kg		5/14/2014	18:19
1,1,2-Trichloroethane	e		< 6.95	ug/Kg		5/14/2014	18:19

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

ug/Kg

ug/Kg

< 6.95

< 6.95

1,1-Dichloroethane

1,1-Dichloroethene

5/14/2014

5/14/2014

18:19

18:19

Client:	GZA Geo Environi	nental of	<u>f New York</u>			
Project Reference:	21.0056687.10 Tas	sk 5				
Sample Identifier:	SP-33-6-050814					
Lab Sample ID:	141892-06			Date Sampled:	5/8/2014	
Matrix:	Soil			Date Received:	5/12/2014	
1,2,3-Trichlorobenzer	ie	< 17.4	ug/Kg		5/14/2014	18:19
1,2,4-Trichlorobenzer	ie	< 17.4	ug/Kg		5/14/2014	18:19
1,2-Dibromo-3-Chloro	opropane	< 34.8	ug/Kg		5/14/2014	18:19
1,2-Dibromoethane		< 6.95	ug/Kg		5/14/2014	18:19
1,2-Dichlorobenzene		< 6.95	ug/Kg		5/14/2014	18:19
1,2-Dichloroethane		< 6.95	ug/Kg		5/14/2014	18:19
1,2-Dichloropropane		< 6.95	ug/Kg		5/14/2014	18:19
1,3-Dichlorobenzene		< 6.95	ug/Kg		5/14/2014	18:19
1,4-Dichlorobenzene		< 6.95	ug/Kg		5/14/2014	18:19
1,4-dioxane		< 69.5	ug/Kg		5/14/2014	18:19
2-Butanone		< 34.8	ug/Kg		5/14/2014	18:19
2-Hexanone		< 17.4	ug/Kg		5/14/2014	18:19
4-Methyl-2-pentanon	9	< 17.4	ug/Kg		5/14/2014	18:19
Acetone		< 34.8	ug/Kg		5/14/2014	18:19
Benzene		< 6.95	ug/Kg		5/14/2014	18:19
Bromochloromethane		< 17.4	ug/Kg		5/14/2014	18:19
Bromodichlorometha	ne	< 6.95	ug/Kg		5/14/2014	18:19
Bromoform		< 17.4	ug/Kg		5/14/2014	18:19
Bromomethane		< 6.95	ug/Kg		5/14/2014	18:19
Carbon disulfide		< 6.95	ug/Kg		5/14/2014	18:19
Carbon Tetrachloride		< 6.95	ug/Kg		5/14/2014	18:19
Chlorobenzene		< 6.95	ug/Kg		5/14/2014	18:19
Chloroethane		< 6.95	ug/Kg		5/14/2014	18:19
Chloroform		< 6.95	ug/Kg		5/14/2014	18:19
Chloromethane		< 6.95	ug/Kg		5/14/2014	18:19
cis-1,2-Dichloroethen	e	< 6.95	ug/Kg		5/14/2014	18:19
cis-1,3-Dichloroprope	ne	< 6.95	ug/Kg		5/14/2014	18:19
Cyclohexane		< 34.8	ug/Kg		5/14/2014	18:19

Client: Project Reference: Sample Identifier: Lab Sample ID: Matrix: Dibromochloromethan Dichlorodifluoromethan Dichlorodifluoromethan Ethylbenzene Freon 113 Isopropylbenzene m,p-Xylene Methyl acetate Methyl tert-butyl Ethe Methyl tert-butyl Ethe Methylcyclohexane Methylene chloride o-Xylene Styrene Tetrachloroethene Toluene trans-1,2-Dichloroethor	<u>GZA Geo Environ</u>	<u>mental o</u>	<u>f New York</u>			
Project Reference:	21.0056687.10 Ta	sk 5				
Sample Identifier: Lab Sample ID:	SP-33-6-050814 141892-06			Date Sampled:	5/8/2014	
Matrix:	Soil			Date Received:	5/12/2014	
Dibromochlorometha	ine	< 6.95	ug/Kg		5/14/2014	18:19
Dichlorodifluorometh	nane	< 6.95	ug/Kg		5/14/2014	18:19
Ethylbenzene		< 6.95	ug/Kg		5/14/2014	18:19
Freon 113		< 6.95	ug/Kg		5/14/2014	18:19
Isopropylbenzene		< 6.95	ug/Kg		5/14/2014	18:19
m,p-Xylene		< 6.95	ug/Kg		5/14/2014	18:19
Methyl acetate		< 6.95	ug/Kg		5/14/2014	18:19
Methyl tert-butyl Eth	er	< 6.95	ug/Kg		5/14/2014	18:19
Methylcyclohexane		< 6.95	ug/Kg		5/14/2014	18:19
Methylene chloride		< 17.4	ug/Kg		5/14/2014	18:19
o-Xylene		< 6.95	ug/Kg		5/14/2014	18:19
Styrene		< 17.4	ug/Kg		5/14/2014	18:19
Tetrachloroethene		< 6.95	ug/Kg		5/14/2014	18:19
Toluene		< 6.95	ug/Kg		5/14/2014	18:19
trans-1,2-Dichloroeth	nene	< 6.95	ug/Kg		5/14/2014	18:19
trans-1,3-Dichloropro	opene	< 6.95	ug/Kg		5/14/2014	18:19
Trichloroethene		< 6.95	ug/Kg		5/14/2014	18:19
Trichlorofluorometha	ane	< 6.95	ug/Kg		5/14/2014	18:19
Vinyl chloride		< 6.95	ug/Kg		5/14/2014	18:19

Method Reference(s): EPA 8260C EPA 5035A

x13236.D

Any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Data File:

Client:	<u>GZA G</u>	eo Environ	mental o	<u>f New York</u>			
Project Reference:	21.005	56687.10 Ta	ask 5				
Sample Identifier: Lab Sample ID: Matrix:	SP-30 1418 Soil	5-4-050914 92-07			Date Sampled: Date Received:	5/9/2014 5/12/2014	
Semi-Volatile Organic	s (PAH	<u>(s)</u>					
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analy	zed
Acenaphthene			< 328	ug/Kg		5/15/2014	08:27
Acenaphthylene			< 328	ug/Kg		5/15/2014	08:27
Anthracene			< 328	ug/Kg		5/15/2014	08:27
Benzo (a) anthracene			< 328	ug/Kg		5/15/2014	08:27
Benzo (a) pyrene			< 328	ug/Kg		5/15/2014	08:27
Benzo (b) fluoranthene			< 328	ug/Kg		5/15/2014	08:27
Benzo (g,h,i) perylene			< 328	ug/Kg		5/15/2014	08:27
Benzo (k) fluoranthene			< 328	ug/Kg		5/15/2014	08:27
Chrysene			< 328	ug/Kg		5/15/2014	08:27
Dibenz (a,h) anthracene	9		< 328	ug/Kg		5/15/2014	08:27
Fluoranthene			< 328	ug/Kg		5/15/2014	08:27
Fluorene			< 328	ug/Kg		5/15/2014	08:27
Indeno (1,2,3-cd) pyren	e		< 328	ug/Kg		5/15/2014	08:27
Naphthalene			< 328	ug/Kg		5/15/2014	08:27
Phenanthrene			< 328	ug/Kg		5/15/2014	08:27
Pyrene			< 328	ug/Kg		5/15/2014	08:27
Method Reference Data File:	e(s):	EPA 8270D EPA 3550C S76622.D					
<u>Volatile Organics</u>							
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	Qualifier	Date Analy	<u>zed</u>
1,1,1-Trichloroethane			< 7.36	ug/Kg		5/14/2014	18:43
1,1,2,2-Tetrachloroetha	ne		< 7.36	ug/Kg		5/14/2014	18:43
1,1,2-Trichloroethane			< 7.36	ug/Kg		5/14/2014	18:43
1,1-Dichloroethane			< 7.36	ug/Kg		5/14/2014	18:43

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

ug/Kg

< 7.36

1,1-Dichloroethene

5/14/2014

18:43

Client:	GZA Geo Environn	nental of	f New York			
Project Reference:	21.0056687.10 Tas	sk 5				
Sample Identifier:	SP-36-4-050914					
Lab Sample ID:	141892-07			Date Sampled:	5/9/2014	
Matrix:	Soil			Date Received:	5/12/2014	
1,2,3-Trichlorobenzer	ne	< 18.4	ug/Kg		5/14/2014	18:43
1,2,4-Trichlorobenzer	ne	< 18.4	ug/Kg		5/14/2014	18:43
1,2-Dibromo-3-Chloro	opropane	< 36.8	ug/Kg		5/14/2014	18:43
1,2-Dibromoethane		< 7.36	ug/Kg		5/14/2014	18:43
1,2-Dichlorobenzene		< 7.36	ug/Kg		5/14/2014	18:43
1,2-Dichloroethane		< 7.36	ug/Kg		5/14/2014	18:43
1,2-Dichloropropane		< 7.36	ug/Kg		5/14/2014	18:43
1,3-Dichlorobenzene		< 7.36	ug/Kg		5/14/2014	18:43
1,4-Dichlorobenzene		< 7.36	ug/Kg		5/14/2014	18:43
1,4-dioxane		< 73.6	ug/Kg		5/14/2014	18:43
2-Butanone		< 36.8	ug/Kg		5/14/2014	18:43
2-Hexanone		< 18.4	ug/Kg		5/14/2014	18:43
4-Methyl-2-pentanon	e	< 18.4	ug/Kg		5/14/2014	18:43
Acetone		96.4	ug/Kg		5/14/2014	18:43
Benzene		< 7.36	ug/Kg		5/14/2014	18:43
Bromochloromethane	2	< 18.4	ug/Kg		5/14/2014	18:43
Bromodichlorometha	ne	< 7.36	ug/Kg		5/14/2014	18:43
Bromoform		< 18.4	ug/Kg		5/14/2014	18:43
Bromomethane		< 7.36	ug/Kg		5/14/2014	18:43
Carbon disulfide		< 7.36	ug/Kg		5/14/2014	18:43
Carbon Tetrachloride		< 7.36	ug/Kg		5/14/2014	18:43
Chlorobenzene		< 7.36	ug/Kg		5/14/2014	18:43
Chloroethane		< 7.36	ug/Kg		5/14/2014	18:43
Chloroform		< 7.36	ug/Kg		5/14/2014	18:43
Chloromethane		< 7.36	ug/Kg		5/14/2014	18:43
cis-1,2-Dichloroethen	e	< 7.36	ug/Kg		5/14/2014	18:43
cis-1,3-Dichloroprope	ene	< 7.36	ug/Kg		5/14/2014	18:43
Cyclohexane		< 36.8	ug/Kg		5/14/2014	18:43

Client: Project Reference: Sample Identifier: Lab Sample ID: Matrix: Dibromochloromethar Dichlorodifluoromethar Dichlorodifluoromethar Ethylbenzene Freon 113 Isopropylbenzene m,p-Xylene Methyl acetate Methyl tert-butyl Ethe Methyl tert-butyl Ethe Methylene chloride o-Xylene Styrene Tetrachloroethene Toluene trans-1,2-Dichloroethet trans-1,3-Dichloroproj Trichloroethene Trichlorofluoromethar Vinyl chloride	<u>GZA Geo Environ</u>	mental of	<u>f New York</u>			
Project Reference:	21.0056687.10 Ta	isk 5				
Sample Identifier:	SP-36-4-050914					
Lab Sample ID:	141892-07			Date Sampled:	5/9/2014	
Matrix:	Soil			Date Received:	5/12/2014	
Dibromochlorometha	ine	< 7.36	ug/Kg		5/14/2014	18:43
Dichlorodifluorometh	nane	< 7.36	ug/Kg		5/14/2014	18:43
Ethylbenzene		< 7.36	ug/Kg		5/14/2014	18:43
Freon 113		< 7.36	ug/Kg		5/14/2014	18:43
Isopropylbenzene		< 7.36	ug/Kg		5/14/2014	18:43
m,p-Xylene		< 7.36	ug/Kg		5/14/2014	18:43
Methyl acetate		< 7.36	ug/Kg		5/14/2014	18:43
Methyl tert-butyl Eth	er	< 7.36	ug/Kg		5/14/2014	18:43
Methylcyclohexane		< 7.36	ug/Kg		5/14/2014	18:43
Methylene chloride		< 18.4	ug/Kg		5/14/2014	18:43
o-Xylene		< 7.36	ug/Kg		5/14/2014	18:43
Styrene		< 18.4	ug/Kg		5/14/2014	18:43
Tetrachloroethene		< 7.36	ug/Kg		5/14/2014	18:43
Toluene		< 7.36	ug/Kg		5/14/2014	18:43
trans-1,2-Dichloroeth	iene	< 7.36	ug/Kg		5/14/2014	18:43
trans-1,3-Dichloropro	opene	< 7.36	ug/Kg		5/14/2014	18:43
Trichloroethene		< 7.36	ug/Kg		5/14/2014	18:43
Trichlorofluorometha	ane	< 7.36	ug/Kg		5/14/2014	18:43
Vinyl chloride		< 7.36	ug/Kg		5/14/2014	18:43

Method Reference(s): EPA 8260C EPA 5035A

x13237.D

Any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Client:	<u>GZA Geo Enviro</u>	onmental of	<u>New York</u>			
Project Reference:	21.0056687.10	Task 5				
Sample Identifier: Lab Sample ID: Matrix:	SP-37-11.9-050 141892-08 Soil	0914		Date Sampled: Date Received:	5/9/2014 5/12/2014	
Volatile Organics						
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analy	<u>zed</u>
1,1,1-Trichloroethane	2	< 2000	ug/Kg		5/15/2014	20:16
1,1,2,2-Tetrachloroet	hane	< 2000	ug/Kg		5/15/2014	20:16
1,1,2-Trichloroethane	2	< 2000	ug/Kg		5/15/2014	20:16
1,1-Dichloroethane		< 2000	ug/Kg		5/15/2014	20:16
1,1-Dichloroethene		< 2000	ug/Kg		5/15/2014	20:16
1,2,3-Trichlorobenze	ne	< 4990	ug/Kg		5/15/2014	20:16
1,2,4-Trichlorobenze	ne	< 4990	ug/Kg		5/15/2014	20:16
1,2-Dibromo-3-Chlor	opropane	< 9980	ug/Kg		5/15/2014	20:16
1,2-Dibromoethane		< 2000	ug/Kg		5/15/2014	20:16
1,2-Dichlorobenzene		< 2000	ug/Kg		5/15/2014	20:16
1,2-Dichloroethane		< 2000	ug/Kg		5/15/2014	20:16
1,2-Dichloropropane		< 2000	ug/Kg		5/15/2014	20:16
1,3-Dichlorobenzene		< 2000	ug/Kg		5/15/2014	20:16
1,4-Dichlorobenzene		< 2000	ug/Kg		5/15/2014	20:16
1,4-dioxane		< 20000	ug/Kg		5/15/2014	20:16
2-Butanone		< 9980	ug/Kg		5/15/2014	20:16
2-Hexanone		< 4990	ug/Kg		5/15/2014	20:16
4-Methyl-2-pentanon	e	< 4990	ug/Kg		5/15/2014	20:16
Acetone		< 9980	ug/Kg		5/15/2014	20:16
Benzene		< 2000	ug/Kg		5/15/2014	20:16
Bromochloromethan	9	< 4990	ug/Kg		5/15/2014	20:16
Bromodichlorometha	ne	< 2000	ug/Kg		5/15/2014	20:16
Bromoform		< 4990	ug/Kg		5/15/2014	20:16
Bromomethane		< 2000	ug/Kg		5/15/2014	20:16
Carbon disulfide		< 2000	ug/Kg		5/15/2014	20:16
Carbon Tetrachloride	!	< 2000	ug/Kg		5/15/2014	20:16

Client:	GZA Geo Enviro	<u>nmental of</u>	<u>New York</u>			
Project Reference:	21.0056687.10 T	'ask 5				
Sample Identifier:	SP-37-11.9-050	914				
Lab Sample ID:	141892-08			Date Sampled:	5/9/2014	
Matrix:	Soil			Date Received:	5/12/2014	
Chlorobenzene		< 2000	ug/Kg		5/15/2014	20:16
Chloroethane		< 2000	ug/Kg		5/15/2014	20:16
Chloroform		< 2000	ug/Kg		5/15/2014	20:16
Chloromethane		< 2000	ug/Kg		5/15/2014	20:16
cis-1,2-Dichloroethene		< 2000	ug/Kg		5/15/2014	20:16
cis-1,3-Dichloropropen	e	< 2000	ug/Kg		5/15/2014	20:16
Cyclohexane		< 9980	ug/Kg		5/15/2014	20:16
Dibromochloromethan	e	< 2000	ug/Kg		5/15/2014	20:16
Dichlorodifluorometha	ne	< 2000	ug/Kg		5/15/2014	20:16
Ethylbenzene		< 2000	ug/Kg		5/15/2014	20:16
Freon 113		< 2000	ug/Kg		5/15/2014	20:16
Isopropylbenzene		< 2000	ug/Kg		5/15/2014	20:16
m,p-Xylene		< 2000	ug/Kg		5/15/2014	20:16
Methyl acetate		< 2000	ug/Kg		5/15/2014	20:16
Methyl tert-butyl Ether		< 2000	ug/Kg		5/15/2014	20:16
Methylcyclohexane		< 2000	ug/Kg		5/15/2014	20:16
Methylene chloride		< 4990	ug/Kg		5/15/2014	20:16
o-Xylene		< 2000	ug/Kg		5/15/2014	20:16
Styrene		< 4990	ug/Kg		5/15/2014	20:16
Tetrachloroethene		137000	ug/Kg		5/15/2014	20:16
Toluene		< 2000	ug/Kg		5/15/2014	20:16
trans-1,2-Dichloroether	ne	< 2000	ug/Kg		5/15/2014	20:16
trans-1,3-Dichloroprop	ene	< 2000	ug/Kg		5/15/2014	20:16
Trichloroethene		< 2000	ug/Kg		5/15/2014	20:16
Trichlorofluoromethan	e	< 2000	ug/Kg		5/15/2014	20:16
Vinyl chloride		< 2000	ug/Kg		5/15/2014	20:16

Client:	<u>GZA Geo Environmental of New York</u>		
Project Reference:	21.0056687.10 Task 5		
Sample Identifier:	SP-37-11.9-050914		
Lab Sample ID:	141892-08	Date Sampled:	5/9/2014
Matrix:	Soil	Date Received:	5/12/2014

 Method Reference(s):
 EPA 8260C

 EPA 5035A

Data File:

x13301.D

Any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:	<u>GZA Geo Enviro</u>	nmental of	f New York			
Project Reference:	21.0056687.10 T	ask 5				
Sample Identifier: Lab Sample ID: Matrix:	SP-37-1-050914 141892-09 Soil	ŀ		Date Sampled: Date Received:	5/9/2014 5/12/2014	
Volatile Organics						
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Qualifier	Date Analy	<u>zed</u>
1,1,1-Trichloroethane	2	< 85.2	ug/Kg		5/16/2014	13:46
1,1,2,2-Tetrachloroet	hane	< 85.2	ug/Kg		5/16/2014	13:46
1,1,2-Trichloroethane	2	< 85.2	ug/Kg		5/16/2014	13:46
1,1-Dichloroethane		< 85.2	ug/Kg		5/16/2014	13:46
1,1-Dichloroethene		< 85.2	ug/Kg		5/16/2014	13:46
1,2,3-Trichlorobenze	ne	< 213	ug/Kg		5/16/2014	13:46
1,2,4-Trichlorobenze	ne	< 213	ug/Kg		5/16/2014	13:46
1,2-Dibromo-3-Chlor	opropane	< 426	ug/Kg		5/16/2014	13:46
1,2-Dibromoethane		< 85.2	ug/Kg		5/16/2014	13:46
1,2-Dichlorobenzene		< 85.2	ug/Kg		5/16/2014	13:46
1,2-Dichloroethane		< 85.2	ug/Kg		5/16/2014	13:46
1,2-Dichloropropane		< 85.2	ug/Kg		5/16/2014	13:46
1,3-Dichlorobenzene		< 85.2	ug/Kg		5/16/2014	13:46
1,4-Dichlorobenzene		< 85.2	ug/Kg		5/16/2014	13:46
1,4-dioxane		< 852	ug/Kg		5/16/2014	13:46
2-Butanone		< 426	ug/Kg		5/16/2014	13:46
2-Hexanone		< 213	ug/Kg		5/16/2014	13:46
4-Methyl-2-pentanon	e	< 213	ug/Kg		5/16/2014	13:46
Acetone		< 426	ug/Kg		5/16/2014	13:46
Benzene		< 85.2	ug/Kg		5/16/2014	13:46
Bromochloromethan	e	< 213	ug/Kg		5/16/2014	13:46
Bromodichlorometha	ine	< 85.2	ug/Kg		5/16/2014	13:46
Bromoform		< 213	ug/Kg		5/16/2014	13:46
Bromomethane		< 85.2	ug/Kg		5/16/2014	13:46
Carbon disulfide		< 85.2	ug/Kg		5/16/2014	13:46
Carbon Tetrachloride	9	< 85.2	ug/Kg		5/16/2014	13:46

Client:	GZA Geo Enviro	nmental of	f New York			
Project Reference:	21.0056687.10 T	ask 5				
Sample Identifier:	SP-37-1-050914	1				
Lab Sample ID:	141892-09			Date Sampled:	5/9/2014	
Matrix:	Soil			Date Received:	5/12/2014	
Chlorobenzene		< 85.2	ug/Kg		5/16/2014	13:46
Chloroethane		< 85.2	ug/Kg		5/16/2014	13:46
Chloroform		< 85.2	ug/Kg		5/16/2014	13:46
Chloromethane		< 85.2	ug/Kg		5/16/2014	13:46
cis-1,2-Dichloroethe	ne	343	ug/Kg		5/16/2014	13:46
cis-1,3-Dichloroprop	bene	< 85.2	ug/Kg		5/16/2014	13:46
Cyclohexane		< 426	ug/Kg		5/16/2014	13:46
Dibromochlorometh	ane	< 85.2	ug/Kg		5/16/2014	13:46
Dichlorodifluoromet	thane	< 85.2	ug/Kg		5/16/2014	13:46
Ethylbenzene		< 85.2	ug/Kg		5/16/2014	13:46
Freon 113		< 85.2	ug/Kg		5/16/2014	13:46
Isopropylbenzene		< 85.2	ug/Kg		5/16/2014	13:46
m,p-Xylene		< 85.2	ug/Kg		5/16/2014	13:46
Methyl acetate		< 85.2	ug/Kg		5/16/2014	13:46
Methyl tert-butyl Et	her	< 85.2	ug/Kg		5/16/2014	13:46
Methylcyclohexane		< 85.2	ug/Kg		5/16/2014	13:46
Methylene chloride		< 213	ug/Kg		5/16/2014	13:46
o-Xylene		< 85.2	ug/Kg		5/16/2014	13:46
Styrene		< 213	ug/Kg		5/16/2014	13:46
Tetrachloroethene		5280	ug/Kg		5/16/2014	13:46
Toluene		< 85.2	ug/Kg		5/16/2014	13:46
trans-1,2-Dichloroet	hene	< 85.2	ug/Kg		5/16/2014	13:46
trans-1,3-Dichlorop	ropene	< 85.2	ug/Kg		5/16/2014	13:46
Trichloroethene		870	ug/Kg		5/16/2014	13:46
Trichlorofluorometh	nane	< 85.2	ug/Kg		5/16/2014	13:46
Vinyl chloride		< 85.2	ug/Kg		5/16/2014	13:46

Client:	<u>GZA Geo Environmental of New York</u>		
Project Reference:	21.0056687.10 Task 5		
Sample Identifier:	SP-37-1-050914		
Lab Sample ID:	141892-09	Date Sampled:	5/9/2014
Matrix:	Soil	Date Received:	5/12/2014

 Method Reference(s):
 EPA 8260C

 EPA 5035A

Data File:

x13320.D

Any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

Client:	<u>GZA (</u>	eo Environ	mental o	<u>f New York</u>			
Project Reference:	21.00	56687.10 Ta	ask 5				
Sample Identifier:	SP-3	8-5-050914					
Lab Sample ID:	1418	892-10			Date Sampled:	5/9/2014	
Matrix:	Soil				Date Received:	5/12/2014	
Semi-Volatile Organi	cs (PAH	<u>ls)</u>					
Analyte		<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analy	zed	
Acenaphthene			< 310	ug/Kg		5/15/2014	09:59
Acenaphthylene			< 310	ug/Kg		5/15/2014	09:59
Anthracene			< 310	ug/Kg		5/15/2014	09:59
Benzo (a) anthracene			< 310	ug/Kg		5/15/2014	09:59
Benzo (a) pyrene			< 310	ug/Kg		5/15/2014	09:59
Benzo (b) fluoranther	e		< 310	ug/Kg		5/15/2014	09:59
Benzo (g,h,i) perylene			< 310	ug/Kg		5/15/2014	09:59
Benzo (k) fluoranther	e		< 310	ug/Kg		5/15/2014	09:59
Chrysene			< 310	ug/Kg		5/15/2014	09:59
Dibenz (a,h) anthrace	ne		< 310	ug/Kg		5/15/2014	09:59
Fluoranthene			< 310	ug/Kg		5/15/2014	09:59
Fluorene			< 310	ug/Kg		5/15/2014	09:59
Indeno (1,2,3-cd) pyro	ene		< 310	ug/Kg		5/15/2014	09:59
Naphthalene			< 310	ug/Kg		5/15/2014	09:59
Phenanthrene			< 310	ug/Kg		5/15/2014	09:59
Pyrene			< 310	ug/Kg		5/15/2014	09:59
Method Referen	ice(s):	EPA 8270D					
Data File:		S76625.D					
<u>Volatile Organics</u>							
Analyte			<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analy	<u>zed</u>
1,1,1-Trichloroethane			< 7.92	ug/Kg		5/15/2014	10:51
1,1,2,2-Tetrachloroet	nane		< 7.92	ug/Kg		5/15/2014	10:51
1,1,2-Trichloroethane			< 7.92	ug/Kg		5/15/2014	10:51

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

ug/Kg

ug/Kg

< 7.92

< 7.92

1,1-Dichloroethane

1,1-Dichloroethene

5/15/2014

5/15/2014

10:51

10:51

Client:	<u>GZA Geo Environr</u>	nental of	f New York			
Project Reference:	21.0056687.10 Tas	sk 5				
Sample Identifier:	SP-38-5-050914					
Lab Sample ID:	141892-10			Date Sampled:	5/9/2014	
Matrix:	Soil			Date Received:	5/12/2014	
1,2,3-Trichlorobenzer	10	< 19.8	ug/Kg		5/15/2014	10:51
1,2,4-Trichlorobenzer	ıe	< 19.8	ug/Kg		5/15/2014	10:51
1,2-Dibromo-3-Chloro	opropane	< 39.6	ug/Kg		5/15/2014	10:51
1,2-Dibromoethane		< 7.92	ug/Kg		5/15/2014	10:51
1,2-Dichlorobenzene		< 7.92	ug/Kg		5/15/2014	10:51
1,2-Dichloroethane		< 7.92	ug/Kg		5/15/2014	10:51
1,2-Dichloropropane		< 7.92	ug/Kg		5/15/2014	10:51
1,3-Dichlorobenzene		< 7.92	ug/Kg		5/15/2014	10:51
1,4-Dichlorobenzene		< 7.92	ug/Kg		5/15/2014	10:51
1,4-dioxane		< 79.2	ug/Kg		5/15/2014	10:51
2-Butanone		< 39.6	ug/Kg		5/15/2014	10:51
2-Hexanone		< 19.8	ug/Kg		5/15/2014	10:51
4-Methyl-2-pentanon	e	< 19.8	ug/Kg		5/15/2014	10:51
Acetone		< 39.6	ug/Kg		5/15/2014	10:51
Benzene		< 7.92	ug/Kg		5/15/2014	10:51
Bromochloromethane	2	< 19.8	ug/Kg		5/15/2014	10:51
Bromodichlorometha	ne	< 7.92	ug/Kg		5/15/2014	10:51
Bromoform		< 19.8	ug/Kg		5/15/2014	10:51
Bromomethane		< 7.92	ug/Kg		5/15/2014	10:51
Carbon disulfide		< 7.92	ug/Kg		5/15/2014	10:51
Carbon Tetrachloride		< 7.92	ug/Kg		5/15/2014	10:51
Chlorobenzene		< 7.92	ug/Kg		5/15/2014	10:51
Chloroethane		< 7.92	ug/Kg		5/15/2014	10:51
Chloroform		< 7.92	ug/Kg		5/15/2014	10:51
Chloromethane		< 7.92	ug/Kg		5/15/2014	10:51
cis-1,2-Dichloroethen	e	< 7.92	ug/Kg		5/15/2014	10:51
cis-1,3-Dichloroprope	ene	< 7.92	ug/Kg		5/15/2014	10:51
Cyclohexane		< 39.6	ug/Kg		5/15/2014	10:51

Client: Project Reference: Sample Identifier: Lab Sample ID: Matrix: Dibromochloromethar Dichlorodifluoromethar Dichlorodifluoromethar Ethylbenzene Freon 113 Isopropylbenzene m,p-Xylene Methyl acetate Methyl acetate Methyl tert-butyl Ethe Methyl tert-butyl Ethe Methylcyclohexane Methylene chloride o-Xylene Styrene Tetrachloroethene Toluene trans-1,2-Dichloroethet trans-1,3-Dichloroproj Trichlorofluoromethar Vinyl chloride	<u>GZA Geo Enviro</u>	nmental of	f New York			
Project Reference:	21.0056687.10	ſask 5				
Sample Identifier:	SP-38-5-05091	4				
Lab Sample ID:	141892-10			Date Sampled:	5/9/2014	
Matrix:	Soil			Date Received:	5/12/2014	
Dibromochlorometha	ane	< 7.92	ug/Kg		5/15/2014	10:51
Dichlorodifluorometh	nane	< 7.92	ug/Kg		5/15/2014	10:51
Ethylbenzene		< 7.92	ug/Kg		5/15/2014	10:51
Freon 113		< 7.92	ug/Kg		5/15/2014	10:51
Isopropylbenzene		< 7.92	ug/Kg		5/15/2014	10:51
m,p-Xylene		< 7.92	ug/Kg		5/15/2014	10:51
Methyl acetate		< 7.92	ug/Kg		5/15/2014	10:51
Methyl tert-butyl Eth	er	< 7.92	ug/Kg		5/15/2014	10:51
Methylcyclohexane		< 7.92	ug/Kg		5/15/2014	10:51
Methylene chloride		< 19.8	ug/Kg		5/15/2014	10:51
o-Xylene		< 7.92	ug/Kg		5/15/2014	10:51
Styrene		< 19.8	ug/Kg		5/15/2014	10:51
Tetrachloroethene		< 7.92	ug/Kg		5/15/2014	10:51
Toluene		< 7.92	ug/Kg		5/15/2014	10:51
trans-1,2-Dichloroeth	iene	< 7.92	ug/Kg		5/15/2014	10:51
trans-1,3-Dichloropro	opene	< 7.92	ug/Kg		5/15/2014	10:51
Trichloroethene		< 7.92	ug/Kg		5/15/2014	10:51
Trichlorofluorometha	ane	< 7.92	ug/Kg		5/15/2014	10:51
Vinyl chloride		< 7.92	ug/Kg		5/15/2014	10:51

Method Reference(s): EPA 8260C EPA 5035A

X13278.D

Any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Client:	<u>GZA G</u>	eo Environ	mental of	f New York			
Project Reference:	21.005	66687.10 Ta	ask 5				
Sample Identifier: Lab Sample ID: Matrix:	SP-39 1418 Soil)-4-050914 92-11			Date Sampled:	5/9/2014	
Comi Volatilo Ovagni		-)			Date Received.	5/12/2014	
<u>Semi-volutile Organic</u>	<u>:S [РАП.</u>	<u>sj</u>	D		0.110	.	
<u>Analyte</u>			<u>Result</u>	Units	<u>Qualifier</u>	Date Analy	<u>zed</u>
Acenaphthene			< 321	ug/Kg		5/17/2014	03:31
Acenaphthylene			< 321	ug/Kg		5/17/2014	03:31
Anthracene			< 321	ug/Kg		5/17/2014	03:31
Benzo (a) anthracene			< 321	ug/Kg		5/17/2014	03:31
Benzo (a) pyrene			< 321	ug/Kg		5/17/2014	03:31
Benzo (b) fluoranthene	9		< 321	ug/Kg		5/17/2014	03:31
Benzo (g,h,i) perylene			< 321	ug/Kg		5/17/2014	03:31
Benzo (k) fluoranthene	<u>)</u>		< 321	ug/Kg		5/17/2014	03:31
Chrysene			< 321	ug/Kg		5/17/2014	03:31
Dibenz (a,h) anthracen	e		< 321	ug/Kg		5/17/2014	03:31
Fluoranthene			< 321	ug/Kg		5/17/2014	03:31
Fluorene			< 321	ug/Kg		5/17/2014	03:31
Indeno (1,2,3-cd) pyre	ne		< 321	ug/Kg		5/17/2014	03:31
Naphthalene			< 321	ug/Kg		5/17/2014	03:31
Phenanthrene			< 321	ug/Kg		5/17/2014	03:31
Pyrene			< 321	ug/Kg		5/17/2014	03:31
Method Reference	ce(s):	EPA 8270D EPA 3550C					
Data File:		S76688.D					
<u>Volatile Organics</u>							
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analy	<u>zed</u>
1,1,1-Trichloroethane			< 7.15	ug/Kg		5/15/2014	11:14
1,1,2,2-Tetrachloroetha	ane		< 7.15	ug/Kg		5/15/2014	11:14
1,1,2-Trichloroethane			< 7.15	ug/Kg		5/15/2014	11:14

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

ug/Kg

ug/Kg

< 7.15

< 7.15

1,1-Dichloroethane

1,1-Dichloroethene

5/15/2014 11:14

11:14

5/15/2014

Client:	GZA Geo Environn	<u>nental of</u>	<u>f New York</u>			
Project Reference:	21.0056687.10 Tas	sk 5				
Sample Identifier:	SP-39-4-050914					
Lab Sample ID:	141892-11			Date Sampled:	5/9/2014	
Matrix:	Soil			Date Received:	5/12/2014	
1,2,3-Trichlorobenzer	ne	< 17.9	ug/Kg		5/15/2014	11:14
1,2,4-Trichlorobenzer	ne	< 17.9	ug/Kg		5/15/2014	11:14
1,2-Dibromo-3-Chloro	opropane	< 35.7	ug/Kg		5/15/2014	11:14
1,2-Dibromoethane		< 7.15	ug/Kg		5/15/2014	11:14
1,2-Dichlorobenzene		< 7.15	ug/Kg		5/15/2014	11:14
1,2-Dichloroethane		< 7.15	ug/Kg		5/15/2014	11:14
1,2-Dichloropropane		< 7.15	ug/Kg		5/15/2014	11:14
1,3-Dichlorobenzene		< 7.15	ug/Kg		5/15/2014	11:14
1,4-Dichlorobenzene		< 7.15	ug/Kg		5/15/2014	11:14
1,4-dioxane		< 71.5	ug/Kg		5/15/2014	11:14
2-Butanone		< 35.7	ug/Kg		5/15/2014	11:14
2-Hexanone		< 17.9	ug/Kg		5/15/2014	11:14
4-Methyl-2-pentanon	e	< 17.9	ug/Kg		5/15/2014	11:14
Acetone		< 35.7	ug/Kg		5/15/2014	11:14
Benzene		< 7.15	ug/Kg		5/15/2014	11:14
Bromochloromethane	<u>j</u>	< 17.9	ug/Kg		5/15/2014	11:14
Bromodichlorometha	ne	< 7.15	ug/Kg		5/15/2014	11:14
Bromoform		< 17.9	ug/Kg		5/15/2014	11:14
Bromomethane		< 7.15	ug/Kg		5/15/2014	11:14
Carbon disulfide		< 7.15	ug/Kg		5/15/2014	11:14
Carbon Tetrachloride		< 7.15	ug/Kg		5/15/2014	11:14
Chlorobenzene		< 7.15	ug/Kg		5/15/2014	11:14
Chloroethane		< 7.15	ug/Kg		5/15/2014	11:14
Chloroform		< 7.15	ug/Kg		5/15/2014	11:14
Chloromethane		< 7.15	ug/Kg		5/15/2014	11:14
cis-1,2-Dichloroethen	e	< 7.15	ug/Kg		5/15/2014	11:14
cis-1,3-Dichloroprope	ene	< 7.15	ug/Kg		5/15/2014	11:14
Cyclohexane		< 35.7	ug/Kg		5/15/2014	11:14

Client: Project Reference: Sample Identifier: Lab Sample ID: Matrix: Dibromochloromethan Dichlorodifluoromethan Ethylbenzene Freon 113 Isopropylbenzene	<u>GZA Geo Environmental of New York</u>									
Project Reference:	21.0056687.10	ſask 5								
Sample Identifier:	SP-39-4-05091	4								
Lab Sample ID:	141892-11			Date Sampled:	5/9/2014					
Matrix:	Soil			Date Received:	5/12/2014					
Dibromochlorometha	ane	< 7.15	ug/Kg		5/15/2014	11:14				
Dichlorodifluorometh	hane	< 7.15	ug/Kg		5/15/2014	11:14				
Ethylbenzene		< 7.15	ug/Kg		5/15/2014	11:14				
Freon 113		< 7.15	ug/Kg		5/15/2014	11:14				
Isopropylbenzene		< 7.15	ug/Kg		5/15/2014	11:14				
m,p-Xylene		< 7.15	ug/Kg		5/15/2014	11:14				
Methyl acetate		< 7.15	ug/Kg		5/15/2014	11:14				
Methyl tert-butyl Eth	er	< 7.15	ug/Kg		5/15/2014	11:14				
Methylcyclohexane		< 7.15	ug/Kg		5/15/2014	11:14				
Methylene chloride		< 17.9	ug/Kg		5/15/2014	11:14				
o-Xylene		< 7.15	ug/Kg		5/15/2014	11:14				
Styrene		< 17.9	ug/Kg		5/15/2014	11:14				
Tetrachloroethene		< 7.15	ug/Kg		5/15/2014	11:14				
Toluene		< 7.15	ug/Kg		5/15/2014	11:14				
trans-1,2-Dichloroeth	iene	< 7.15	ug/Kg		5/15/2014	11:14				
trans-1,3-Dichloropro	opene	< 7.15	ug/Kg		5/15/2014	11:14				
Trichloroethene		< 7.15	ug/Kg		5/15/2014	11:14				
Trichlorofluorometha	ane	< 7.15	ug/Kg		5/15/2014	11:14				
Vinyl chloride		< 7.15	ug/Kg		5/15/2014	11:14				

Method Reference(s): EPA 8260C EPA 5035A

X13279.D

Any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Client:	<u>GZA G</u>	<u>eo Environ</u>	mental o	f New York			
Project Reference:	21.005	66687.10 Ta	isk 5				
Sample Identifier:	SP-39	9-5-050914					
Lab Sample ID:	1418	92-12			Date Sampled:	5/9/2014	
Matrix:	Soil				Date Received:	5/12/2014	
Semi-Volatile Organic	s (PAH	<u>s)</u>					
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analy	zed
Acenaphthene			< 311	ug/Kg		5/17/2014	04:01
Acenaphthylene			< 311	ug/Kg		5/17/2014	04:01
Anthracene			< 311	ug/Kg		5/17/2014	04:01
Benzo (a) anthracene			< 311	ug/Kg		5/17/2014	04:01
Benzo (a) pyrene			< 311	ug/Kg		5/17/2014	04:01
Benzo (b) fluoranthene			< 311	ug/Kg		5/17/2014	04:01
Benzo (g,h,i) perylene			< 311	ug/Kg		5/17/2014	04:01
Benzo (k) fluoranthene			< 311	ug/Kg		5/17/2014	04:01
Chrysene			< 311	ug/Kg		5/17/2014	04:01
Dibenz (a,h) anthracen	е		< 311	ug/Kg		5/17/2014	04:01
Fluoranthene			< 311	ug/Kg		5/17/2014	04:01
Fluorene			< 311	ug/Kg		5/17/2014	04:01
Indeno (1,2,3-cd) pyrer	ne		< 311	ug/Kg		5/17/2014	04:01
Naphthalene			< 311	ug/Kg		5/17/2014	04:01
Phenanthrene			< 311	ug/Kg		5/17/2014	04:01
Pyrene			< 311	ug/Kg		5/17/2014	04:01
Method Referenc	e(s):	EPA 8270D EPA 3550C					
Data File:		S76689.D					
<u>Volatile Organics</u>							
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	Qualifier	Date Analy	<u>zed</u>
1,1,1-Trichloroethane			< 8.23	ug/Kg		5/15/2014	17:56
1,1,2,2-Tetrachloroetha	ine		< 8.23	ug/Kg		5/15/2014	17:56
1,1,2-Trichloroethane			< 8.23	ug/Kg		5/15/2014	17:56

1,1-Dichloroethene< 8.23</th>ug/Kg5/15/201417:56This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides
additional sample information, including compliance with the sample condition requirements upon receipt.

ug/Kg

< 8.23

1,1-Dichloroethane

5/15/2014

17:56

Client:	GZA Geo Environr	nental o	<u>f New York</u>			
Project Reference:	21.0056687.10 Tas	sk 5				
Sample Identifier:	SP-39-5-050914					
Lab Sample ID:	141892-12			Date Sampled:	5/9/2014	
Matrix:	Soil			Date Received:	5/12/2014	
1,2,3-Trichlorobenzer	ne	< 20.6	ug/Kg		5/15/2014	17:56
1,2,4-Trichlorobenzer	ne	< 20.6	ug/Kg		5/15/2014	17:56
1,2-Dibromo-3-Chloro	opropane	< 41.1	ug/Kg		5/15/2014	17:56
1,2-Dibromoethane		< 8.23	ug/Kg		5/15/2014	17:56
1,2-Dichlorobenzene		< 8.23	ug/Kg		5/15/2014	17:56
1,2-Dichloroethane		< 8.23	ug/Kg		5/15/2014	17:56
1,2-Dichloropropane		< 8.23	ug/Kg		5/15/2014	17:56
1,3-Dichlorobenzene		< 8.23	ug/Kg		5/15/2014	17:56
1,4-Dichlorobenzene		< 8.23	ug/Kg		5/15/2014	17:56
1,4-dioxane		< 82.3	ug/Kg		5/15/2014	17:56
2-Butanone		< 41.1	ug/Kg		5/15/2014	17:56
2-Hexanone		< 20.6	ug/Kg		5/15/2014	17:56
4-Methyl-2-pentanon	e	< 20.6	ug/Kg		5/15/2014	17:56
Acetone		< 41.1	ug/Kg		5/15/2014	17:56
Benzene		< 8.23	ug/Kg		5/15/2014	17:56
Bromochloromethane	9	< 20.6	ug/Kg		5/15/2014	17:56
Bromodichlorometha	ne	< 8.23	ug/Kg		5/15/2014	17:56
Bromoform		< 20.6	ug/Kg		5/15/2014	17:56
Bromomethane		< 8.23	ug/Kg		5/15/2014	17:56
Carbon disulfide		< 8.23	ug/Kg		5/15/2014	17:56
Carbon Tetrachloride		< 8.23	ug/Kg		5/15/2014	17:56
Chlorobenzene		< 8.23	ug/Kg		5/15/2014	17:56
Chloroethane		< 8.23	ug/Kg		5/15/2014	17:56
Chloroform		< 8.23	ug/Kg		5/15/2014	17:56
Chloromethane		< 8.23	ug/Kg		5/15/2014	17:56
cis-1,2-Dichloroethen	e	< 8.23	ug/Kg		5/15/2014	17:56
cis-1,3-Dichloroprope	ene	< 8.23	ug/Kg		5/15/2014	17:56
Cyclohexane		< 41.1	ug/Kg		5/15/2014	17:56

Client:	<u>GZA Geo Enviro</u>	<u>GZA Geo Environmental of New York</u>				
Project Reference:	21.0056687.10	Task 5				
Sample Identifier:	SP-39-5-05091	4				
Lab Sample ID:	141892-12			Date Sampled:	5/9/2014	
Matrix:	Soil			Date Received:	5/12/2014	
Dibromochlorometha	ine	< 8.23	ug/Kg		5/15/2014	17:56
Dichlorodifluorometh	nane	< 8.23	ug/Kg		5/15/2014	17:56
Ethylbenzene		< 8.23	ug/Kg		5/15/2014	17:56
Freon 113		< 8.23	ug/Kg		5/15/2014	17:56
Isopropylbenzene		< 8.23	ug/Kg		5/15/2014	17:56
m,p-Xylene		< 8.23	ug/Kg		5/15/2014	17:56
Methyl acetate		< 8.23	ug/Kg		5/15/2014	17:56
Methyl tert-butyl Eth	er	< 8.23	ug/Kg		5/15/2014	17:56
Methylcyclohexane		< 8.23	ug/Kg		5/15/2014	17:56
Methylene chloride		< 20.6	ug/Kg		5/15/2014	17:56
o-Xylene		< 8.23	ug/Kg		5/15/2014	17:56
Styrene		< 20.6	ug/Kg		5/15/2014	17:56
Tetrachloroethene		< 8.23	ug/Kg		5/15/2014	17:56
Toluene		< 8.23	ug/Kg		5/15/2014	17:56
trans-1,2-Dichloroeth	iene	< 8.23	ug/Kg		5/15/2014	17:56
trans-1,3-Dichloropro	opene	< 8.23	ug/Kg		5/15/2014	17:56
Trichloroethene		< 8.23	ug/Kg		5/15/2014	17:56
Trichlorofluorometha	ane	< 8.23	ug/Kg		5/15/2014	17:56
Vinyl chloride		< 8.23	ug/Kg		5/15/2014	17:56

Method Reference(s): EPA 8260C EPA 5035A

x13295.D

Any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Client:	<u>GZA G</u>	eo Enviror	imental o	<u>f New York</u>			
Project Reference:	21.00	56687.10 Ta	ask 5				
Sample Identifier: Lab Sample ID: Matrix:	SP-42 1418 Soil	2-7-050914 392-13			Date Sampled: Date Received:	5/9/2014 5/12/2014	
Semi-Volatile Organic	cs (PAH	<u>[s]</u>					
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	Qualifier	Date Analy	zed
Acenaphthene			< 336	ug/Kg		5/17/2014	04:32
Acenaphthylene			< 336	ug/Kg		5/17/2014	04:32
Anthracene			< 336	ug/Kg		5/17/2014	04:32
Benzo (a) anthracene			< 336	ug/Kg		5/17/2014	04:32
Benzo (a) pyrene			< 336	ug/Kg		5/17/2014	04:32
Benzo (b) fluoranthene	9		< 336	ug/Kg		5/17/2014	04:32
Benzo (g,h,i) perylene			< 336	ug/Kg		5/17/2014	04:32
Benzo (k) fluoranthene	è		< 336	ug/Kg		5/17/2014	04:32
Chrysene			< 336	ug/Kg		5/17/2014	04:32
Dibenz (a,h) anthracen	e		< 336	ug/Kg		5/17/2014	04:32
Fluoranthene			< 336	ug/Kg		5/17/2014	04:32
Fluorene			< 336	ug/Kg		5/17/2014	04:32
Indeno (1,2,3-cd) pyre	ne		< 336	ug/Kg		5/17/2014	04:32
Naphthalene			< 336	ug/Kg		5/17/2014	04:32
Phenanthrene			< 336	ug/Kg		5/17/2014	04:32
Pyrene			< 336	ug/Kg		5/17/2014	04:32
Method Reference Data File:	ce(s):	EPA 8270D EPA 3550C S76690.D					
<u>Volatile Organics</u>							
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analy	<u>zed</u>
1,1,1-Trichloroethane			< 6.69	ug/Kg		5/15/2014	18:20
1,1,2,2-Tetrachloroeth	ane		< 6.69	ug/Kg		5/15/2014	18:20
1,1,2-Trichloroethane			< 6.69	ug/Kg		5/15/2014	18:20
1,1-Dichloroethane			< 6.69	ug/Kg		5/15/2014	18:20

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

ug/Kg

ug/Kg

< 6.69

1,1-Dichloroethene

5/15/2014

5/15/2014

18:20

Client:	<u>GZA Geo Environmental of New York</u>								
Project Reference:	21.0056687.10 Tas	sk 5							
Sample Identifier:	SP-42-7-050914								
Lab Sample ID:	141892-13			Date Sampled:	5/9/2014				
Matrix:	Soil			Date Received:	5/12/2014				
1,2,3-Trichlorobenzer	ne	< 16.7	ug/Kg		5/15/2014	18:20			
1,2,4-Trichlorobenzei	ne	< 16.7	ug/Kg		5/15/2014	18:20			
1,2-Dibromo-3-Chlore	opropane	< 33.5	ug/Kg		5/15/2014	18:20			
1,2-Dibromoethane		< 6.69	ug/Kg		5/15/2014	18:20			
1,2-Dichlorobenzene		< 6.69	ug/Kg		5/15/2014	18:20			
1,2-Dichloroethane		< 6.69	ug/Kg		5/15/2014	18:20			
1,2-Dichloropropane		< 6.69	ug/Kg		5/15/2014	18:20			
1,3-Dichlorobenzene		< 6.69	ug/Kg		5/15/2014	18:20			
1,4-Dichlorobenzene		< 6.69	ug/Kg		5/15/2014	18:20			
1,4-dioxane		< 66.9	ug/Kg		5/15/2014	18:20			
2-Butanone		< 33.5	ug/Kg		5/15/2014	18:20			
2-Hexanone		< 16.7	ug/Kg		5/15/2014	18:20			
4-Methyl-2-pentanon	e	< 16.7	ug/Kg		5/15/2014	18:20			
Acetone		59.8	ug/Kg		5/15/2014	18:20			
Benzene		< 6.69	ug/Kg		5/15/2014	18:20			
Bromochloromethane	2	< 16.7	ug/Kg		5/15/2014	18:20			
Bromodichlorometha	ne	< 6.69	ug/Kg		5/15/2014	18:20			
Bromoform		< 16.7	ug/Kg		5/15/2014	18:20			
Bromomethane		< 6.69	ug/Kg		5/15/2014	18:20			
Carbon disulfide		< 6.69	ug/Kg		5/15/2014	18:20			
Carbon Tetrachloride		< 6.69	ug/Kg		5/15/2014	18:20			
Chlorobenzene		< 6.69	ug/Kg		5/15/2014	18:20			
Chloroethane		< 6.69	ug/Kg		5/15/2014	18:20			
Chloroform		< 6.69	ug/Kg		5/15/2014	18:20			
Chloromethane		< 6.69	ug/Kg		5/15/2014	18:20			
cis-1,2-Dichloroethen	e	< 6.69	ug/Kg		5/15/2014	18:20			
cis-1,3-Dichloroprope	ene	< 6.69	ug/Kg		5/15/2014	18:20			
Cyclohexane		< 33.5	ug/Kg		5/15/2014	18:20			

Client: Project Reference: Sample Identifier: Lab Sample ID: Matrix: Dibromochlorometha Dichlorodifluorometha Dichlorodifluorometha Ethylbenzene Freon 113 Isopropylbenzene m,p-Xylene Methyl acetate Methyl acetate Methyl tert-butyl Ethe Methylcyclohexane Methylene chloride o-Xylene Styrene Tetrachloroethene Toluene trans-1,2-Dichloropto Trichloroethene Trichloroethene	<u>GZA Geo Environ</u>	mental of	<u>f New York</u>			
Project Reference:	21.0056687.10 Ta	ısk 5				
Sample Identifier:	SP-42-7-050914					
Lab Sample ID:	141892-13			Date Sampled:	5/9/2014	
Matrix:	Soil			Date Received:	5/12/2014	
Dibromochlorometha	ine	< 6.69	ug/Kg		5/15/2014	18:20
Dichlorodifluorometh	nane	< 6.69	ug/Kg		5/15/2014	18:20
Ethylbenzene		< 6.69	ug/Kg		5/15/2014	18:20
Freon 113		< 6.69	ug/Kg		5/15/2014	18:20
Isopropylbenzene		13.0	ug/Kg		5/15/2014	18:20
m,p-Xylene		< 6.69	ug/Kg		5/15/2014	18:20
Methyl acetate		< 6.69	ug/Kg		5/15/2014	18:20
Methyl tert-butyl Eth	er	< 6.69	ug/Kg		5/15/2014	18:20
Methylcyclohexane		79.7	ug/Kg		5/15/2014	18:20
Methylene chloride		< 16.7	ug/Kg		5/15/2014	18:20
o-Xylene		< 6.69	ug/Kg		5/15/2014	18:20
Styrene		< 16.7	ug/Kg		5/15/2014	18:20
Tetrachloroethene		< 6.69	ug/Kg		5/15/2014	18:20
Toluene		< 6.69	ug/Kg		5/15/2014	18:20
trans-1,2-Dichloroeth	iene	< 6.69	ug/Kg		5/15/2014	18:20
trans-1,3-Dichloropro	opene	< 6.69	ug/Kg		5/15/2014	18:20
Trichloroethene		< 6.69	ug/Kg		5/15/2014	18:20
Trichlorofluorometha	ane	< 6.69	ug/Kg		5/15/2014	18:20
Vinyl chloride		< 6.69	ug/Kg		5/15/2014	18:20

Method Reference(s): EPA 8260C EPA 5035A

x13296.D

Any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Client:	<u>GZA G</u>	eo Environ	imental of	<u>f New York</u>			
Project Reference:	21.005	6687.10 Ta	ask 5				
Sample Identifier:	SP-42	-11.8-0509	914				
Lab Sample ID:	14189	92-14			Date Sampled:	5/9/2014	
Matrix:	Soil				Date Received:	5/12/2014	
Semi-Volatile Organics	s (PAHs	<u>5)</u>					
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	Qualifier	Date Analy	<u>zed</u>
Acenaphthene			< 317	ug/Kg		5/17/2014	05:03
Acenaphthylene			< 317	ug/Kg		5/17/2014	05:03
Anthracene			< 317	ug/Kg		5/17/2014	05:03
Benzo (a) anthracene			< 317	ug/Kg		5/17/2014	05:03
Benzo (a) pyrene			< 317	ug/Kg		5/17/2014	05:03
Benzo (b) fluoranthene			< 317	ug/Kg		5/17/2014	05:03
Benzo (g,h,i) perylene			< 317	ug/Kg		5/17/2014	05:03
Benzo (k) fluoranthene			< 317	ug/Kg		5/17/2014	05:03
Chrysene			< 317	ug/Kg		5/17/2014	05:03
Dibenz (a,h) anthracene	2		< 317	ug/Kg		5/17/2014	05:03
Fluoranthene			< 317	ug/Kg		5/17/2014	05:03
Fluorene			< 317	ug/Kg		5/17/2014	05:03
Indeno (1,2,3-cd) pyren	e		< 317	ug/Kg		5/17/2014	05:03
Naphthalene			< 317	ug/Kg		5/17/2014	05:03
Phenanthrene			< 317	ug/Kg		5/17/2014	05:03
Pyrene			< 317	ug/Kg		5/17/2014	05:03
Method Reference	e(s):	EPA 8270D EPA 3550C					
Data File:		S76691.D					
<u>Volatile Organics</u>							
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	Qualifier	Date Analy	<u>zed</u>
1,1,1-Trichloroethane			< 8.44	ug/Kg		5/15/2014	18:43
1,1,2,2-Tetrachloroetha	ne		< 8.44	ug/Kg		5/15/2014	18:43
1,1,2-Trichloroethane			< 8.44	ug/Kg		5/15/2014	18:43

1,1-Dichloroethene< 8.44</th>ug/Kg5/15/201418:43This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides

< 8.44

additional sample information, including compliance with the sample condition requirements upon receipt.

ug/Kg

Report Prepared Tuesday, May 20, 2014

1,1-Dichloroethane

5/15/2014

18:43

Client:	<u>GZA Geo Environmental of New York</u>								
Project Reference:	21.0056687.10	Гask 5							
Sample Identifier:	SP-42-11.8-050)914							
Lab Sample ID:	141892-14			Date Sampled:	5/9/2014				
Matrix:	Soil			Date Received:	5/12/2014				
1,2,3-Trichlorobenzen	e	< 21.1	ug/Kg		5/15/2014	18:43			
1,2,4-Trichlorobenzen	e	< 21.1	ug/Kg		5/15/2014	18:43			
1,2-Dibromo-3-Chloro	propane	< 42.2	ug/Kg		5/15/2014	18:43			
1,2-Dibromoethane		< 8.44	ug/Kg		5/15/2014	18:43			
1,2-Dichlorobenzene		< 8.44	ug/Kg		5/15/2014	18:43			
1,2-Dichloroethane		< 8.44	ug/Kg		5/15/2014	18:43			
1,2-Dichloropropane		< 8.44	ug/Kg		5/15/2014	18:43			
1,3-Dichlorobenzene		< 8.44	ug/Kg		5/15/2014	18:43			
1,4-Dichlorobenzene		< 8.44	ug/Kg		5/15/2014	18:43			
1,4-dioxane		< 84.4	ug/Kg		5/15/2014	18:43			
2-Butanone		< 42.2	ug/Kg		5/15/2014	18:43			
2-Hexanone		< 21.1	ug/Kg		5/15/2014	18:43			
4-Methyl-2-pentanone		< 21.1	ug/Kg		5/15/2014	18:43			
Acetone		< 42.2	ug/Kg		5/15/2014	18:43			
Benzene		< 8.44	ug/Kg		5/15/2014	18:43			
Bromochloromethane		< 21.1	ug/Kg		5/15/2014	18:43			
Bromodichloromethan	ie	< 8.44	ug/Kg		5/15/2014	18:43			
Bromoform		< 21.1	ug/Kg		5/15/2014	18:43			
Bromomethane		< 8.44	ug/Kg		5/15/2014	18:43			
Carbon disulfide		< 8.44	ug/Kg		5/15/2014	18:43			
Carbon Tetrachloride		< 8.44	ug/Kg		5/15/2014	18:43			
Chlorobenzene		< 8.44	ug/Kg		5/15/2014	18:43			
Chloroethane		< 8.44	ug/Kg		5/15/2014	18:43			
Chloroform		< 8.44	ug/Kg		5/15/2014	18:43			
Chloromethane		< 8.44	ug/Kg		5/15/2014	18:43			
cis-1,2-Dichloroethene	2	< 8.44	ug/Kg		5/15/2014	18:43			
cis-1,3-Dichloroproper	ne	< 8.44	ug/Kg		5/15/2014	18:43			
Cyclohexane		< 42.2	ug/Kg		5/15/2014	18:43			

Client: Project Reference: Sample Identifier: Lab Sample ID: Matrix: Dibromochlorometha Dichlorodifluorometh Ethylbenzene Freon 113 Isopropylbenzene m,p-Xylene Methyl acetate Methyl tert-butyl Eth Methylcyclohexane Methylene chloride o-Xylene Styrene Tetrachloroethene Toluene trans-1,2-Dichloropro Trichlorofluorometha Vinyl chloride	<u>GZA Geo Enviro</u>	nmental of				
Project Reference:	21.0056687.10	ſask 5				
Sample Identifier:	SP-42-11.8-050	914				
Lab Sample ID:	141892-14			Date Sampled:	5/9/2014	
Matrix:	Soil			Date Received:	5/12/2014	
Dibromochlorometha	ine	< 8.44	ug/Kg		5/15/2014	18:43
Dichlorodifluorometh	nane	< 8.44	ug/Kg		5/15/2014	18:43
Ethylbenzene		< 8.44	ug/Kg		5/15/2014	18:43
Freon 113		< 8.44	ug/Kg		5/15/2014	18:43
Isopropylbenzene		< 8.44	ug/Kg		5/15/2014	18:43
m,p-Xylene		< 8.44	ug/Kg		5/15/2014	18:43
Methyl acetate		< 8.44	ug/Kg		5/15/2014	18:43
Methyl tert-butyl Eth	er	< 8.44	ug/Kg		5/15/2014	18:43
Methylcyclohexane		< 8.44	ug/Kg		5/15/2014	18:43
Methylene chloride		< 21.1	ug/Kg		5/15/2014	18:43
o-Xylene		< 8.44	ug/Kg		5/15/2014	18:43
Styrene		< 21.1	ug/Kg		5/15/2014	18:43
Tetrachloroethene		< 8.44	ug/Kg		5/15/2014	18:43
Toluene		< 8.44	ug/Kg		5/15/2014	18:43
trans-1,2-Dichloroeth	iene	< 8.44	ug/Kg		5/15/2014	18:43
trans-1,3-Dichloropro	opene	< 8.44	ug/Kg		5/15/2014	18:43
Trichloroethene		< 8.44	ug/Kg		5/15/2014	18:43
Trichlorofluorometha	ane	< 8.44	ug/Kg		5/15/2014	18:43
Vinyl chloride		< 8.44	ug/Kg		5/15/2014	18:43

Method Reference(s): EPA 8260C

EPA 5035A x13297.D

Any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Client:	<u>GZA (</u>	Geo Environ	mental o	<u>f New York</u>			
Project Reference:	21.00	56687.10 Ta	ask 5				
Sample Identifier:	SP-4	3-4-050914					
Lab Sample ID:	141	892-15			Date Sampled:	5/9/2014	
Matrix:	Soil				Date Received:	5/12/2014	
Semi-Volatile Organi	cs (PA	<u>Hs)</u>					
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analy	zed
Acenaphthene			< 445	ug/Kg		5/17/2014	05:33
Acenaphthylene			< 445	ug/Kg		5/17/2014	05:33
Anthracene			< 445	ug/Kg		5/17/2014	05:33
Benzo (a) anthracene			< 445	ug/Kg		5/17/2014	05:33
Benzo (a) pyrene			< 445	ug/Kg		5/17/2014	05:33
Benzo (b) fluoranthen	e		< 445	ug/Kg		5/17/2014	05:33
Benzo (g,h,i) perylene			< 445	ug/Kg		5/17/2014	05:33
Benzo (k) fluoranthen	e		< 445	ug/Kg		5/17/2014	05:33
Chrysene			< 445	ug/Kg		5/17/2014	05:33
Dibenz (a,h) anthrace	ne		< 445	ug/Kg		5/17/2014	05:33
Fluoranthene			< 445	ug/Kg		5/17/2014	05:33
Fluorene			770	ug/Kg		5/17/2014	05:33
Indeno (1,2,3-cd) pyre	ene		< 445	ug/Kg		5/17/2014	05:33
Naphthalene			< 445	ug/Kg		5/17/2014	05:33
Phenanthrene			1280	ug/Kg		5/17/2014	05:33
Pyrene			< 445	ug/Kg		5/17/2014	05:33
Method Referer	ce(s):	EPA 8270D					
Data File:		EPA 3550C S76692.D					
<u>Volatile Organics</u>							
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analy	zed
1,1,1-Trichloroethane			< 12.8	ug/Kg		5/15/2014	19:06
1,1,2,2-Tetrachloroeth	nane		< 12.8	ug/Kg		5/15/2014	19:06
1,1,2-Trichloroethane			< 12.8	ug/Kg		5/15/2014	19:06

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

ug/Kg

ug/Kg

< 12.8

< 12.8

1,1-Dichloroethane

1,1-Dichloroethene

5/15/2014

5/15/2014

19:06

19:06

Client:	<u>GZA Geo Environr</u>	nental of	<u>f New York</u>			
Project Reference:	21.0056687.10 Tas	sk 5				
Sample Identifier:	SP-43-4-050914					
Lab Sample ID:	141892-15			Date Sampled:	5/9/2014	
Matrix:	Soil			Date Received:	5/12/2014	
1,2,3-Trichlorobenzer	ne	< 31.9	ug/Kg		5/15/2014	19:06
1,2,4-Trichlorobenzer	ne	< 31.9	ug/Kg		5/15/2014	19:06
1,2-Dibromo-3-Chloro	opropane	< 63.8	ug/Kg		5/15/2014	19:06
1,2-Dibromoethane		< 12.8	ug/Kg		5/15/2014	19:06
1,2-Dichlorobenzene		< 12.8	ug/Kg		5/15/2014	19:06
1,2-Dichloroethane		< 12.8	ug/Kg		5/15/2014	19:06
1,2-Dichloropropane		< 12.8	ug/Kg		5/15/2014	19:06
1,3-Dichlorobenzene		< 12.8	ug/Kg		5/15/2014	19:06
1,4-Dichlorobenzene		< 12.8	ug/Kg		5/15/2014	19:06
1,4-dioxane		< 128	ug/Kg		5/15/2014	19:06
2-Butanone		225	ug/Kg		5/15/2014	19:06
2-Hexanone		< 31.9	ug/Kg		5/15/2014	19:06
4-Methyl-2-pentanon	e	< 31.9	ug/Kg		5/15/2014	19:06
Acetone		802	ug/Kg		5/15/2014	19:06
Benzene		< 12.8	ug/Kg		5/15/2014	19:06
Bromochloromethane	2	< 31.9	ug/Kg		5/15/2014	19:06
Bromodichlorometha	ne	< 12.8	ug/Kg		5/15/2014	19:06
Bromoform		< 31.9	ug/Kg		5/15/2014	19:06
Bromomethane		< 12.8	ug/Kg		5/15/2014	19:06
Carbon disulfide		< 12.8	ug/Kg		5/15/2014	19:06
Carbon Tetrachloride		< 12.8	ug/Kg		5/15/2014	19:06
Chlorobenzene		< 12.8	ug/Kg		5/15/2014	19:06
Chloroethane		< 12.8	ug/Kg		5/15/2014	19:06
Chloroform		< 12.8	ug/Kg		5/15/2014	19:06
Chloromethane		< 12.8	ug/Kg		5/15/2014	19:06
cis-1,2-Dichloroethen	e	< 12.8	ug/Kg		5/15/2014	19:06
cis-1,3-Dichloroprope	ene	< 12.8	ug/Kg		5/15/2014	19:06
Cyclohexane		< 63.8	ug/Kg		5/15/2014	19:06

Client:	<u>GZA Geo Enviro</u>	nmental of	f New York			
Project Reference:	21.0056687.10	Fask 5				
Sample Identifier:	SP-43-4-05091	4				
Lab Sample ID:	141892-15			Date Sampled:	5/9/2014	
Matrix:	Soil			Date Received:	5/12/2014	
Dibromochlorometha	ane	< 12.8	ug/Kg		5/15/2014	19:06
Dichlorodifluorometh	nane	< 12.8	ug/Kg		5/15/2014	19:06
Ethylbenzene		< 12.8	ug/Kg		5/15/2014	19:06
Freon 113		< 12.8	ug/Kg		5/15/2014	19:06
Isopropylbenzene		162	ug/Kg		5/15/2014	19:06
m,p-Xylene		< 12.8	ug/Kg		5/15/2014	19:06
Methyl acetate		< 12.8	ug/Kg		5/15/2014	19:06
Methyl tert-butyl Eth	er	< 12.8	ug/Kg		5/15/2014	19:06
Methylcyclohexane		49.1	ug/Kg		5/15/2014	19:06
Methylene chloride		< 31.9	ug/Kg		5/15/2014	19:06
o-Xylene		< 12.8	ug/Kg		5/15/2014	19:06
Styrene		< 31.9	ug/Kg		5/15/2014	19:06
Tetrachloroethene		< 12.8	ug/Kg		5/15/2014	19:06
Toluene		< 12.8	ug/Kg		5/15/2014	19:06
trans-1,2-Dichloroeth	nene	< 12.8	ug/Kg		5/15/2014	19:06
trans-1,3-Dichloropro	opene	< 12.8	ug/Kg		5/15/2014	19:06
Trichloroethene		< 12.8	ug/Kg		5/15/2014	19:06
Trichlorofluorometha	ane	< 12.8	ug/Kg		5/15/2014	19:06
Vinyl chloride		< 12.8	ug/Kg		5/15/2014	19:06

Method Reference(s): EPA 8260C EPA 5035A

x13298.D

Any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Client:	<u>GZA G</u>	eo Environ	imental o	<u>f New York</u>			
Project Reference:	21.00	56687.10 Ta	ask 5				
Sample Identifier:	SP-4	3-8-050914					
Lab Sample ID:	1418	92-16			Date Sampled:	5/9/2014	
Matrix:	Soil				Date Received:	5/12/2014	
Semi-Volatile Organi	cs (PAH	<u>(s)</u>					
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	Qualifier	Date Analy	zed
Acenaphthene			< 316	ug/Kg		5/17/2014	06:04
Acenaphthylene			< 316	ug/Kg		5/17/2014	06:04
Anthracene			< 316	ug/Kg		5/17/2014	06:04
Benzo (a) anthracene			< 316	ug/Kg		5/17/2014	06:04
Benzo (a) pyrene			< 316	ug/Kg		5/17/2014	06:04
Benzo (b) fluoranthen	e		< 316	ug/Kg		5/17/2014	06:04
Benzo (g,h,i) perylene			< 316	ug/Kg		5/17/2014	06:04
Benzo (k) fluoranthene	9		< 316	ug/Kg		5/17/2014	06:04
Chrysene			< 316	ug/Kg		5/17/2014	06:04
Dibenz (a,h) anthracen	e		< 316	ug/Kg		5/17/2014	06:04
Fluoranthene			< 316	ug/Kg		5/17/2014	06:04
Fluorene			< 316	ug/Kg		5/17/2014	06:04
Indeno (1,2,3-cd) pyre	ne		< 316	ug/Kg		5/17/2014	06:04
Naphthalene			< 316	ug/Kg		5/17/2014	06:04
Phenanthrene			< 316	ug/Kg		5/17/2014	06:04
Pyrene			< 316	ug/Kg		5/17/2014	06:04
Method Referen	ce(s):	EPA 8270D					
Data File:		EPA 3550C S76693.D					
<u>Volatile Organics</u>							
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analy	<u>zed</u>
1,1,1-Trichloroethane			< 7.94	ug/Kg		5/15/2014	19:30
1,1,2,2-Tetrachloroeth	ane		< 7.94	ug/Kg		5/15/2014	19:30
1,1,2-Trichloroethane			< 7.94	ug/Kg		5/15/2014	19:30

1,1-Dichloroethene< 7.94</th>ug/Kg5/15/201419:30This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

ug/Kg

< 7.94

1,1-Dichloroethane

5/15/2014

19:30

<u>GZA Geo Environr</u>	nental o	<u>f New York</u>				
21.0056687.10 Tas	sk 5					
SP-43-8-050914						
141892-16			Date Sampled:	5/9/2014		
Soil			Date Received:	5/12/2014		
le	< 19.9	ug/Kg		5/15/2014	19:30	
ie	< 19.9	ug/Kg		5/15/2014	19:30	
propane	< 39.7	ug/Kg		5/15/2014	19:30	
	< 7.94	ug/Kg		5/15/2014	19:30	
	< 7.94	ug/Kg		5/15/2014	19:30	
	< 7.94	ug/Kg		5/15/2014	19:30	
	< 7.94	ug/Kg		5/15/2014	19:30	
	< 7.94	ug/Kg		5/15/2014	19:30	
	< 7.94	ug/Kg		5/15/2014	19:30	
	< 79.4	ug/Kg		5/15/2014	19:30	
	< 39.7	ug/Kg		5/15/2014	19:30	
	< 19.9	ug/Kg		5/15/2014	19:30	
9	< 19.9	ug/Kg		5/15/2014	19:30	
	< 39.7	ug/Kg		5/15/2014	19:30	
	< 7.94	ug/Kg		5/15/2014	19:30	
	< 19.9	ug/Kg		5/15/2014	19:30	
ne	< 7.94	ug/Kg		5/15/2014	19:30	
	< 19.9	ug/Kg		5/15/2014	19:30	
	< 7.94	ug/Kg		5/15/2014	19:30	
	< 7.94	ug/Kg		5/15/2014	19:30	
	< 7.94	ug/Kg		5/15/2014	19:30	
	< 7.94	ug/Kg		5/15/2014	19:30	
	< 7.94	ug/Kg		5/15/2014	19:30	
	< 7.94	ug/Kg		5/15/2014	19:30	
	< 7.94	ug/Kg		5/15/2014	19:30	
e	< 7.94	ug/Kg		5/15/2014	19:30	
ne	< 7.94	ug/Kg		5/15/2014	19:30	
	< 39.7	ug/Kg		5/15/2014	19:30	
	GZA Geo Environ 21.0056687.10 Tas SP-43-8-050914 141892-16 Soil e e propane he	GZA Geo Environmental or 21.0056687.10 Task 5 SP-43-8-050914 141892-16 Soil e <19.9	GZA Geo Environmental of New York 21.0056687.10 Task 5 SP-43-8-050914 141892-16 Soil e <19.9	GZA Geo Environmental of New York 21.00556687.10 Task 5 SP-43-8-050914 141892-16 Date Sampled: Soil Date Sampled: Soil ug/Kg e <19.9	GZA Geo Environmental of New York 21.0056687.10 Task 5 Date Sample: 5/9/2014 SP-43-8-050914 SP-43-8-050914 SP-43-8-050914 SP-43-8-050914 SP-43-8-050914 SP-43-8-050914 SP-43-8-050914 SP-43-8-050914 SP-43-8-050914 Soli Date Sample: S/19/2014 Soli Date Sample: S/19/2014 Soli S/15/2014 e S/15/2014 e S/15/2014 e S/15/2014 e S/15/2014 e S/15/2014 e S/15/2014 e S/15/2014 e S/15/2014 e S/15/2014 e S/15/2014 e S/15/2014 e <th co<="" td=""></th>	

Client:	<u>GZA Geo Enviro</u>	nmental of	<u>f New York</u>			
Project Reference:	21.0056687.10	ſask 5				
Sample Identifier:	SP-43-8-05091	4				
Lab Sample ID:	141892-16			Date Sampled:	5/9/2014	
Matrix:	Soil			Date Received:	5/12/2014	
Dibromochlorometha	ine	< 7.94	ug/Kg		5/15/2014	19:30
Dichlorodifluorometh	nane	< 7.94	ug/Kg		5/15/2014	19:30
Ethylbenzene		< 7.94	ug/Kg		5/15/2014	19:30
Freon 113		< 7.94	ug/Kg		5/15/2014	19:30
Isopropylbenzene		< 7.94	ug/Kg		5/15/2014	19:30
m,p-Xylene		< 7.94	ug/Kg		5/15/2014	19:30
Methyl acetate		< 7.94	ug/Kg		5/15/2014	19:30
Methyl tert-butyl Eth	er	< 7.94	ug/Kg		5/15/2014	19:30
Methylcyclohexane		< 7.94	ug/Kg		5/15/2014	19:30
Methylene chloride		< 19.9	ug/Kg		5/15/2014	19:30
o-Xylene		< 7.94	ug/Kg		5/15/2014	19:30
Styrene		< 19.9	ug/Kg		5/15/2014	19:30
Tetrachloroethene		< 7.94	ug/Kg		5/15/2014	19:30
Toluene		< 7.94	ug/Kg		5/15/2014	19:30
trans-1,2-Dichloroeth	iene	< 7.94	ug/Kg		5/15/2014	19:30
trans-1,3-Dichloropro	opene	< 7.94	ug/Kg		5/15/2014	19:30
Trichloroethene		< 7.94	ug/Kg		5/15/2014	19:30
Trichlorofluorometha	ane	< 7.94	ug/Kg		5/15/2014	19:30
Vinyl chloride		< 7.94	ug/Kg		5/15/2014	19:30

Method Reference(s): EPA 8260C EPA 5035A

x13299.D

Any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Client:	<u>GZA (</u>	Geo Environ	mental o	f New York			
Project Reference:	21.00	56687.10 Ta	ask 5				
Sample Identifier: Lab Sample ID: Matrix:	SP-4 1418 Soil	4-5-050914 392-17			Date Sampled: Date Received:	5/9/2014 5/12/2014	
Semi-Volatile Organi	cs (PAI	<u>Hs)</u>					
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analy	zed
Acenaphthene			< 425	ug/Kg		5/17/2014	06:34
Acenaphthylene			< 425	ug/Kg		5/17/2014	06:34
Anthracene			< 425	ug/Kg		5/17/2014	06:34
Benzo (a) anthracene			< 425	ug/Kg		5/17/2014	06:34
Benzo (a) pyrene			< 425	ug/Kg		5/17/2014	06:34
Benzo (b) fluoranthen	e		< 425	ug/Kg		5/17/2014	06:34
Benzo (g,h,i) perylene			< 425	ug/Kg		5/17/2014	06:34
Benzo (k) fluoranthen	e		< 425	ug/Kg		5/17/2014	06:34
Chrysene			< 425	ug/Kg		5/17/2014	06:34
Dibenz (a,h) anthracer	ne		< 425	ug/Kg		5/17/2014	06:34
Fluoranthene			< 425	ug/Kg		5/17/2014	06:34
Fluorene			< 425	ug/Kg		5/17/2014	06:34
Indeno (1,2,3-cd) pyre	ne		< 425	ug/Kg		5/17/2014	06:34
Naphthalene			< 425	ug/Kg		5/17/2014	06:34
Phenanthrene			< 425	ug/Kg		5/17/2014	06:34
Pyrene			< 425	ug/Kg		5/17/2014	06:34
Method Referen Data File:	ce(s):	EPA 8270D EPA 3550C S76694.D					
<u>Volatile Organics</u>							
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analy	zed
1,1,1-Trichloroethane			< 10.2	ug/Kg		5/15/2014	19:53
1,1,2,2-Tetrachloroeth	ane		< 10.2	ug/Kg		5/15/2014	19:53
1,1,2-Trichloroethane			< 10.2	ug/Kg		5/15/2014	19:53
1,1-Dichloroethane			< 10.2	ug/Kg		5/15/2014	19:53

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

ug/Kg

< 10.2

1,1-Dichloroethene

5/15/2014

19:53

Client:	<u>GZA Geo Environi</u>	nental of	<u>f New York</u>			
Project Reference:	21.0056687.10 Tas	sk 5				
Sample Identifier:	SP-44-5-050914					
Lab Sample ID:	141892-17			Date Sampled:	5/9/2014	
Matrix:	Soil			Date Received:	5/12/2014	
1,2,3-Trichlorobenzei	ne	< 25.5	ug/Kg		5/15/2014	19:53
1,2,4-Trichlorobenzei	ne	< 25.5	ug/Kg		5/15/2014	19:53
1,2-Dibromo-3-Chlore	opropane	< 51.0	ug/Kg		5/15/2014	19:53
1,2-Dibromoethane		< 10.2	ug/Kg		5/15/2014	19:53
1,2-Dichlorobenzene		< 10.2	ug/Kg		5/15/2014	19:53
1,2-Dichloroethane		< 10.2	ug/Kg		5/15/2014	19:53
1,2-Dichloropropane		< 10.2	ug/Kg		5/15/2014	19:53
1,3-Dichlorobenzene		< 10.2	ug/Kg		5/15/2014	19:53
1,4-Dichlorobenzene		< 10.2	ug/Kg		5/15/2014	19:53
1,4-dioxane		< 102	ug/Kg		5/15/2014	19:53
2-Butanone		160	ug/Kg		5/15/2014	19:53
2-Hexanone		< 25.5	ug/Kg		5/15/2014	19:53
4-Methyl-2-pentanon	e	< 25.5	ug/Kg		5/15/2014	19:53
Acetone		564	ug/Kg		5/15/2014	19:53
Benzene		< 10.2	ug/Kg		5/15/2014	19:53
Bromochloromethane	2	< 25.5	ug/Kg		5/15/2014	19:53
Bromodichlorometha	ne	< 10.2	ug/Kg		5/15/2014	19:53
Bromoform		< 25.5	ug/Kg		5/15/2014	19:53
Bromomethane		< 10.2	ug/Kg		5/15/2014	19:53
Carbon disulfide		19.9	ug/Kg		5/15/2014	19:53
Carbon Tetrachloride		< 10.2	ug/Kg		5/15/2014	19:53
Chlorobenzene		< 10.2	ug/Kg		5/15/2014	19:53
Chloroethane		< 10.2	ug/Kg		5/15/2014	19:53
Chloroform		< 10.2	ug/Kg		5/15/2014	19:53
Chloromethane		< 10.2	ug/Kg		5/15/2014	19:53
cis-1,2-Dichloroethen	e	< 10.2	ug/Kg		5/15/2014	19:53
cis-1,3-Dichloroprope	ene	< 10.2	ug/Kg		5/15/2014	19:53
Cyclohexane		< 51.0	ug/Kg		5/15/2014	19:53

Client:	<u>GZA Geo Enviro</u>	onmental of	f New York			
Project Reference:	21.0056687.10	Гask 5				
Sample Identifier:	SP-44-5-05091	4				
Lab Sample ID:	141892-17			Date Sampled:	5/9/2014	
Matrix:	Soil			Date Received:	5/12/2014	
Dibromochlorometha	ine	< 10.2	ug/Kg		5/15/2014	19:53
Dichlorodifluorometh	iane	< 10.2	ug/Kg		5/15/2014	19:53
Ethylbenzene		< 10.2	ug/Kg		5/15/2014	19:53
Freon 113		< 10.2	ug/Kg		5/15/2014	19:53
Isopropylbenzene		< 10.2	ug/Kg		5/15/2014	19:53
m,p-Xylene		< 10.2	ug/Kg		5/15/2014	19:53
Methyl acetate		< 10.2	ug/Kg		5/15/2014	19:53
Methyl tert-butyl Eth	er	< 10.2	ug/Kg		5/15/2014	19:53
Methylcyclohexane		< 10.2	ug/Kg		5/15/2014	19:53
Methylene chloride		< 25.5	ug/Kg		5/15/2014	19:53
o-Xylene		< 10.2	ug/Kg		5/15/2014	19:53
Styrene		< 25.5	ug/Kg		5/15/2014	19:53
Tetrachloroethene		< 10.2	ug/Kg		5/15/2014	19:53
Toluene		< 10.2	ug/Kg		5/15/2014	19:53
trans-1,2-Dichloroeth	iene	< 10.2	ug/Kg		5/15/2014	19:53
trans-1,3-Dichloropro	opene	< 10.2	ug/Kg		5/15/2014	19:53
Trichloroethene		< 10.2	ug/Kg		5/15/2014	19:53
Trichlorofluorometha	ane	< 10.2	ug/Kg		5/15/2014	19:53
Vinyl chloride		< 10.2	ug/Kg		5/15/2014	19:53

Method Reference(s): EPA 8260C EPA 5035A

x13300.D

Any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

"<" = Analyzed for but not detected at or above the quantitation limit.

"E" = Result has been estimated, calibration limit exceeded.

"Z" = See case narrative.

"D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.

"M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.

"B" = Method blank contained trace levels of analyte. Refer to included method blank report.

"J" = Result estimated between the quantitation limit and half the quantitation limit.

"L" = Laboratory Control Sample recovery outside accepted QC limits.

"P" = Concentration differs by more than 40% between the primary and secondary analytical columns.

	-		ų						
	∫ Date/Time		ib By	Received @ La	Other EDD		Other please indicate:		Other please indicate:
	2/14 1318	\$ 5/1:							Rush 1 day
PILE .	Date/Time		(NRM)	Received By			Category B		Rush 2 day
	Date/Time		By	Relinquished	NYSDEC EDD		Category A		Rush 3 day
	579/14	Boller	NOV.	Contraction of the second seco	Basic EDD		Batch QC	Å	Standard 5 day
Total Cost	7/5/9/14 Date/Time	118/5	Nen	L D	es may apply.	proval; additional fe	nt upon lab ap	lability continge	Ava
	1 2 1 M Summer 1 1 1	1 a front		(0	ements	Report Suppl		and Time	Turnarou
				*	The second se	and the second s	~	11.00	
Trail by all all 10	101	X			シーンクション	05, 20	< :		
0 0		× -			1-05091	- 50- 27.	× :	340	ک و
00 0		× 		12/0	11.9-15	8-37	×	19 20	8
r 0		X X		X	-4-05091	8-32-	2	0093	H11012 1
0 ~		88	~	Ĵ	-6-050S1	8.8-45 8.8-45	2	54.51	ଚ ୍
		× ×	,	814	- 3,5-052	SP- VX	S S	02S/	ප
		X	~	14	- 4-050S	96-92	X	1140	4
03			erossiene-	2	-10-05-DS	SP-J2	×	0111	ω
6 2		X		1	1-8-050A	86-4S	X	1100	2
6			~	4 30	1-8-0508/	52-25	X	0401	H1/18/12 1
		VDC SVOC	ס דד די חד ככי ט	- × s			m -1		
REMARKS NUMBER		876070 8770.	ב ≥ מחת 2 - ∠ - Z C	- ת - ⊳ ≧ m ∪ 0 Ω	SAMPLE IDENTIFIER		יס ≥ ריס ט מע∢וי	TIME COLLECTED	DATE COLLECTED
		スト REQUESTED	z D O						
SD - Solid WP - Wipe OL - Oil PT - Paint CK - Caulk AR - Air	ter SO - Soil SL - Sludge	bw - Drinking Wa	ater	WA - Water WG - Groundwa	ieous Liquid h-Aqueous Liquid	Maurix Codes AQ - Aqu NQ - Nor	Un i	A Sta	۵۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰
gza.com		- John	AIIN:		202		F. CE	NECT REFER	DO PRO
Email: CMUS toples, Downe			PHONE:	ŏ.	- CAS - 236-	PHONE: 716			
Quotation #:	STATE: ZIP:		CITY:	14703-	STATES	CILL: BUAR			Ŷ
141892			ADDRESS:		Na CA MAA	ADDRESS-35			
LAB PROJECT ID	DICE TO:	INV	CLIENT:		REPORT TO:		2	RADIG	Ţ
		JSTODY	of co	CHAIN					
1.23 tota	ax (585) 647-3311	ce (585) 647-2530 Fa	14608 Offi	nue, Rochester, NY	179 Lake Ave				:

Page 54 of 56

Ì

10.003.3

Page 55 of 56

······································

· · · · · · · · · · · · · · · · · · ·
······································
the second s
the second state of the second s

······································
· · · · · · · · · · · · · · · · · · ·
······································
\sim
N.Z

Chain of Custody Supplement

Client:	G-2A	Completed by:	554
Lab Project ID:	141892	Date:	5/12/14
	Sample Condit Per NELAC/ELAP 2	<i>ion Requirements</i> 210/241/242/243/244	
N Condition	ELAC compliance with the sample Yes	e condition requirements upon r No	eceipt N/A
Container Type Comments		X 5035	
Transferred to method- compliant container			<u> </u>
Headspace (<1 mL) Comments			
Preservation Comments			X
Chlorine Absent (<0.10 ppm per test strip) Comments			
Holding Time Comments			
Temperature Comments	I'C ind by te	imp blank	
Sufficient Sample Quantity Comments	χ		

3 of 3

ANALYTICAL REPORT

Job Number: 420-77953-2 SDG Number: 141907 Job Description: Paradigm Environmental, Inc.

For: Paradigm Environmental Services, Inc. 179 Lake Avenue Rochester, NY 14608

Attention: Jane Daloia

Meredith Ruthven

Meredith W Ruthven Customer Service Manager mruthven@envirotestlaboratories.com 05/22/2014

cc: Kathryn Hansen

NYSDOH ELAP does not certify for all parameters. EnviroTest Laboratories does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Pursuant to NELAP, this report may not be reproduced, except in full, without written approval of the laboratory. EnviroTest Laboratories Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our laboratory. All questions regarding this report should be directed to the EnviroTest Customer Service Representative.

EnviroTest Laboratories, Inc. Certifications and Approvals: NYSDOH 10142, NJDEP NY015, CTDOPH PH-0554

Comments

No additional comments.

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

Samples were recieved in bulk sample containers, therefore as per method 5035 all results below 200 ug/kg are to be considered minimium values.

Method 8260C: The laboratory control standard (LCS) for batch 75691 exceeded control limits for the analytes indicated by an asterisk (*) on the results form. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported with confidence of no false negatives.

No other analytical or quality issues were noted.

GC/MS Semi VOA

No analytical or quality issues were noted.

General Chemistry

No analytical or quality issues were noted.

Organic Prep

No analytical or quality issues were noted.

VOA Prep

No analytical or quality issues were noted.

METHOD SUMMARY

Client: Paradigm Environmental Services, Inc.

Job Number: 420-77953-2 SDG Number: 141907

Description	Lab Location	Method	Preparation Method
Matrix: Solid			
Volatile Organic Compounds by GC/MS	EnvTest	SW846 8260C	
Closed System Purge&Trap High Level	EnvTest		EPA 5035-H
Semivolatile Compounds by GC/MS	EnvTest	SW846 8270D	
Microwave Extraction	EnvTest		SW846 3546

Lab References:

EnvTest = EnviroTest

Method References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

METHOD / ANALYST SUMMARY

Client: Paradigm Environmental Services, Inc.

Job Number: 420-77953-2 SDG Number: 141907

Method	Analyst	Analyst ID
SW846 8260C	Andersen, Eric C	ECA
SW846 8270D	Labare, Alicia M	AML
EPA PercentMoisture	Goldstein, Amy	AG

SAMPLE SUMMARY

Client: Paradigm Environmental Services, Inc.

Job Number: 420-77953-2 SDG Number: 141907

		Date/Time	Date/Time
Client Sample ID	Client Matrix	Sampled	Received
SP-45-4-8-051214	Solid	05/12/2014 0915	05/21/2014 0900
SP-46-0-2-051214	Solid	05/12/2014 0945	05/21/2014 0900
SP-46-2-4-051214	Solid	05/12/2014 1010	05/21/2014 0900
SP-47-6-8-051214	Solid	05/12/2014 1134	05/21/2014 0900
SP-47-12-14-051214	Solid	05/12/2014 1130	05/21/2014 0900
SP-47-18-20-051214	Solid	05/12/2014 1132	05/21/2014 0900
SP-48-10-12-051214	Solid	05/12/2014 1740	05/21/2014 0900
SP-48-18-20-051214	Solid	05/12/2014 1315	05/21/2014 0900
SP-49-12-14-051214	Solid	05/12/2014 1450	05/21/2014 0900
SP-49-18-20-051214	Solid	05/12/2014 1745	05/21/2014 0900
SP50-8-10-051214	Solid	05/12/2014 1750	05/21/2014 0900
SP-51-10-12-051214	Solid	05/12/2014 1710	05/21/2014 0900
	Client Sample ID SP-45-4-8-051214 SP-46-0-2-051214 SP-46-2-4-051214 SP-47-6-8-051214 SP-47-12-14-051214 SP-47-18-20-051214 SP-48-10-12-051214 SP-48-18-20-051214 SP-49-18-20-051214 SP50-8-10-051214 SP-51-10-12-051214	Client Sample ID Client Matrix SP-45-4-8-051214 Solid SP-46-0-2-051214 Solid SP-46-2-4-051214 Solid SP-46-2-4-051214 Solid SP-47-6-8-051214 Solid SP-47-12-14-051214 Solid SP-47-18-20-051214 Solid SP-48-10-12-051214 Solid SP-48-18-20-051214 Solid SP-49-12-14-051214 Solid SP-49-12-14-051214 Solid SP-49-12-14-051214 Solid SP-49-12-14-051214 Solid SP-49-12-14-051214 Solid SP-50-8-10-051214 Solid SP50-8-10-051214 Solid SP-51-10-12-051214 Solid	Client Sample ID Client Matrix Sampled SP-45-4-8-051214 Solid 05/12/2014 0915 SP-46-0-2-051214 Solid 05/12/2014 0945 SP-46-0-2-051214 Solid 05/12/2014 1010 SP-46-2-4-051214 Solid 05/12/2014 1134 SP-47-6-8-051214 Solid 05/12/2014 1134 SP-47-12-14-051214 Solid 05/12/2014 1132 SP-47-18-20-051214 Solid 05/12/2014 1132 SP-48-10-12-051214 Solid 05/12/2014 1132 SP-48-18-20-051214 Solid 05/12/2014 1315 SP-49-12-14-051214 Solid 05/12/2014 1315 SP-49-12-14-051214 Solid 05/12/2014 1450 SP-49-12-14-051214 Solid 05/12/2014 1745 SP50-8-10-051214 Solid 05/12/2014 1745 SP-51-10-12-051214 Solid 05/12/2014 1750 SP-51-10-12-051214 Solid 05/12/2014 1710

Client Sample ID: Lab Sample ID:	SP-45-4-8-051214 420-77953-3			Date Si Date R Client M Percen	ampled: eceived: Matrix: t Solids:	05/12/2014 0915 05/21/2014 0900 Solid 84	
Analyte		Result/Qua	alifier	Unit	MDL	RL	Dilution
Method: 8260C				Date Analy	/zed:	05/21/2014 1333	
Prep Method: 5035-H				Date Prepa	ared:	05/21/2014 1207	
1,2,3-Trichlorobenzene		200	U	ug/Kg Dry	14	200	100
1,2,4-Trichlorobenzene		200	U	ug/Kg Dry	14	200	100
1,2-Dichlorobenzene		200	U	ug/Kg Dry	6.3	200	100
1,3,5-Trimethylbenzene		200	U	ug/Kg Dry	10	200	100
1,3-Dichlorobenzene		200	U	ug/Kg Dry	9.1	200	100
1,4-Dichlorobenzene		200	U	ug/Kg Dry	10	200	100
1,4-Dioxane		300	U	ug/Kg Dry	260	300	100
2-Hexanone		200	U	ug/Kg Dry	32	200	100
Acetone		990	U	ug/Kg Dry	42	990	100
Benzene		200	U	ug/Kg Dry	4.0	200	100
Bromoform		200	U	ug/Kg Dry	3.2	200	100
Bromomethane		200	U	ug/Kg Dry	3.0	200	100
Carbon disulfide		200	U	ug/Kg Dry	6.5	200	100
Carbon tetrachloride		200	U	ug/Kg Dry	6.3	200	100
Chlorobenzene		200	U	ug/Kg Dry	6.1	200	100
Chlorobromomethane		200	U	ug/Kg Dry	6.1	200	100
Chlorodibromomethane		200	U	ug/Kg Dry	4.8	200	100
Chloroethane		200	U	ug/Kg Dry	6.9	200	100
Chloroform		200	U	ug/Kg Dry	3.6	200	100
Chloromethane		200	U	ug/Kg Dry	4.6	200	100
cis-1,2-Dichloroethene		200	U	ug/Kg Dry	4.0	200	100
cis-1,3-Dichloropropene		200	U	ug/Kg Dry	3.6	200	100
Dibromomethane		200	U	ug/Kg Dry	6.3	200	100
Bromodichloromethane		200	U	ug/Kg Dry	1.8	200	100
Dichlorodifluoromethane	9	200	U	ug/Kg Dry	19	200	100
Ethyl methacrylate		200	U	ug/Kg Dry	3.4	200	100
Ethylbenzene		200	U	ug/Kg Dry	7.7	200	100
Isopropylbenzene		200	U	ug/Kg Dry	8.9	200	100
m-Xylene & p-Xylene		400	U	ug/Kg Dry	18	400	100
4-Methyl-2-pentanone (I	MIBK)	200	U	ug/Kg Dry	32	200	100
Methyl tert-butyl ether	,	200	U	ug/Kg Dry	3.0	200	100
Methylene Chloride		200	U	ug/Kg Dry	5.9	200	100
o-Xylene		400	U	ug/Kg Dry	5.1	400	100
Styrene		200	U	ug/Kg Dry	4.8	200	100
Tetrachloroethene		200	U	ug/Kg Dry	20	200	100
Toluene		200	U	ug/Kg Dry	4.0	200	100
trans-1,2-Dichloroethen	e	200	U	ug/Kg Dry	7.1	200	100
trans-1,3-Dichloroprope	ne	200	U	ug/Kg Dry	3.2	200	100
trans-1,4-Dichloro-2-but	ene	200	U	ug/Kg Dry	16	200	100

Client Sample ID: Lab Sample ID:	SP-45-4-8-051214 420-77953-3			Date Sa Date R Client N Percen	ampled: eceived: ⁄Iatrix: t Solids:	05/12/2014 0915 05/21/2014 0900 Solid 84	
Analyte		Result/Qua	alifier	Unit	MDL	RL	Dilution
Trichloroethene		200	U	ug/Kg Dry	7.9	200	100
Trichlorofluoromethane		200	U	ug/Kg Dry	11	200	100
Vinyl chloride		200	U	ug/Kg Dry	6.1	200	100
Xylenes, Total		400	U	ug/Kg Dry	20	400	100
1,1,1-Trichloroethane		200	U	ug/Kg Dry	4.9	200	100
Freon 113		200	U	ug/Kg Dry	5.9	200	100
1,1,2-Trichloroethane		200	U	ug/Kg Dry	6.5	200	100
1,1-Dichloroethane		200	U	ug/Kg Dry	2.8	200	100
1,1-Dichloroethene		200	U	ug/Kg Dry	6.5	200	100
1,1-Dichloropropene		200	U	ug/Kg Dry	10	200	100
1,2-Dibromo-3-Chloropr	opane	200	U	ug/Kg Dry	6.1	200	100
1,2-Dichloroethane		200	U	ug/Kg Dry	4.0	200	100
1,2-Dichloropropane		200	U	ug/Kg Dry	3.8	200	100
1,3-Dichloropropane		200	U	ug/Kg Dry	4.4	200	100
2,2-Dichloropropane		200	U	ug/Kg Dry	4.4	200	100
1,2-Dibromoethane		200	U	ug/Kg Dry	6.3	200	100
2-Butanone (MEK)		200	U	ug/Kg Dry	59	200	100
1,1,2,2-Tetrachloroethar	ie	200	U	ug/Kg Dry	4.0	200	100
1,2,3-Trichloropropane		200	U	ug/Kg Dry	4.4	200	100
Tetrahydrofuran		200	U	ug/Kg Dry	32	200	100
Surrogate						Acceptance Limits	
Toluene-d8 (Surr)		95		%		72 - 143	
1,2-Dichloroethane-d4 (Surr)	93		%		73 - 128	
4-Bromofluorobenzene		105		%		49 - 138	
Method: 8270D				Date Analy	/zed:	05/21/2014 1623	
Prep Method: 3546				Date Prepa	ared:	05/20/2014 1530	
Acenaphthene		400	U	ug/Kg Dry	120	400	1.0
Acenaphthylene		400	U	ug/Kg Dry	150	400	1.0
Anthracene		400	U	ug/Kg Dry	110	400	1.0
Benzo[a]anthracene		150	J	ug/Kg Dry	120	400	1.0
Dibenz(a,h)anthracene		400	U	ug/Kg Dry	110	400	1.0
Chrysene		170	J	ug/Kg Dry	110	400	1.0
Fluoranthene		470		ug/Kg Dry	100	400	1.0
Benzo[b]fluoranthene		160	J	ug/Kg Dry	110	400	1.0
Benzo[k]fluoranthene		400	U	ug/Kg Dry	110	400	1.0
Fluorene		400	U	ug/Kg Dry	110	400	1.0
Naphthalene		400	U	ug/Kg Dry	210	400	1.0
Benzo[g,h,i]perylene		400	U	ug/Kg Dry	120	400	1.0
Phenanthrene		170	J	ug/Kg Dry	110	400	1.0
Pyrene		320	J	ug/Kg Dry	110	400	1.0

Client Sample ID: Lab Sample ID:	SP-45-4-8-051214 420-77953-3			Date S Date F Client Perce	Sampled: Received: Matrix: nt Solids:	05/12/2014 0915 05/21/2014 0900 Solid 84	
Analyte		Result/Qu	alifier	Unit	MDL	RL	Dilution
Benzo[a]pyrene		110	J	ug/Kg Dry	100	400	1.0
Indeno[1,2,3-cd]pyrene		400	U	ug/Kg Dry	320	400	1.0
Surrogate						Acceptance Limits	
2-Fluorobiphenyl		48		%		10 - 120	
Nitrobenzene-d5		12		%		10 - 120	
Terphenyl-d14		53		%		10 - 120	

Job Number: 420-77953-2 Sdg Number: 141907

Client Sample ID: Lab Sample ID:	SP-46-0-2-051214 420-77953-4			Date S Date R Client Percer	Campled: Received: Matrix: nt Solids:	05/12/2014 0945 05/21/2014 0900 Solid 93	
Analyte		Result/Qua	lifier	Unit	MDL	RL	Dilution
Method: 8260C				Date Anal	yzed:	05/21/2014 1401	
Prep Method: 5035-H	1			Date Prep	ared:	05/21/2014 1207	
1,2,3-Trichlorobenzene		200	U	ug/Kg Dry	15	200	100
1,2,4-Trichlorobenzene		200	U	ug/Kg Dry	15	200	100
1,2-Dichlorobenzene		200	U	ug/Kg Dry	6.5	200	100
1,3,5-Trimethylbenzene	9	200	U	ug/Kg Dry	11	200	100
1,3-Dichlorobenzene		200	U	ug/Kg Dry	9.3	200	100
1,4-Dichlorobenzene		200	U	ug/Kg Dry	11	200	100
1,4-Dioxane		300	U	ug/Kg Dry	260	300	100
2-Hexanone		200	U	ug/Kg Dry	32	200	100
Acetone		1000	U	ug/Kg Dry	43	1000	100
Benzene		200	U	ug/Kg Dry	4.1	200	100
Bromoform		200	U	ug/Kg Dry	3.2	200	100
Bromomethane		200	U	ug/Kg Dry	3.0	200	100
Carbon disulfide		200	U	ug/Kg Dry	6.7	200	100
Carbon tetrachloride		200	U	ug/Kg Dry	6.5	200	100
Chlorobenzene		200	U	ug/Kg Dry	6.3	200	100
Chlorobromomethane		200	U	ug/Kg Dry	6.3	200	100
Chlorodibromomethane	9	200	U	ug/Kg Dry	4.9	200	100
Chloroethane		200	U	ug/Kg Dry	7.1	200	100
Chloroform		200	U	ug/Kg Dry	3.6	200	100
Chloromethane		200	U	ug/Kg Dry	4.7	200	100
cis-1,2-Dichloroethene		110	J	ug/Kg Dry	4.1	200	100
cis-1,3-Dichloropropene	e	200	U	ug/Kg Dry	3.6	200	100
Dibromomethane		200	U	ug/Kg Dry	6.5	200	100
Bromodichloromethane	2	200	U	ug/Kg Dry	1.8	200	100
Dichlorodifluoromethan	e	200	U	ug/Kg Dry	19	200	100
Ethyl methacrylate		200	U	ug/Kg Dry	3.4	200	100
Ethylbenzene		200	U	ug/Kg Dry	7.9	200	100
Isopropylbenzene		200	U	ug/Kg Dry	9.1	200	100
m-Xylene & p-Xylene		410	U	ug/Kg Dry	18	410	100
4-Methyl-2-pentanone	(MIBK)	200	U	ug/Kg Dry	32	200	100
Methyl tert-butyl ether		200	U	ug/Kg Dry	3.0	200	100
Methylene Chloride		200	U	ug/Kg Dry	6.1	200	100
o-Xylene		410	U	ug/Kg Dry	5.3	410	100
Styrene		200	U	ug/Kg Dry	4.9	200	100
Tetrachloroethene		13000		ug/Kg Dry	20	200	100
Toluene		200	U	ug/Kg Dry	4.1	200	100
trans-1,2-Dichloroether	ne	200	U	ug/Kg Dry	7.3	200	100
trans-1,3-Dichloroprope	ene	200	U	ug/Kg Dry	3.2	200	100
trans-1,4-Dichloro-2-bu	tene	200	U	ug/Kg Dry	16	200	100

Job Number: 420-77953-2 Sdg Number: 141907

Client Sample ID: SP-46-0-2-051214 Lab Sample ID: 420-77953-4			Date S Date R Client I Percen	ampled: 0 eceived: 0 Matrix: S t Solids: 9	5/12/2014 0945 5/21/2014 0900 olid 3	
Analyte	Result/Qua	alifier	Unit	MDL	RL	Dilution
Trichloroethene	480		ug/Kg Dry	8.1	200	100
Trichlorofluoromethane	200	U	ug/Kg Dry	11	200	100
Vinyl chloride	200	U	ug/Kg Dry	6.3	200	100
Xylenes, Total	410	U	ug/Kg Dry	20	410	100
1,1,1-Trichloroethane	200	U	ug/Kg Dry	5.1	200	100
Freon 113	200	U	ug/Kg Dry	6.1	200	100
1,1,2-Trichloroethane	200	U	ug/Kg Dry	6.7	200	100
1,1-Dichloroethane	200	U	ug/Kg Dry	2.8	200	100
1,1-Dichloroethene	200	U	ug/Kg Dry	6.7	200	100
1,1-Dichloropropene	200	U	ug/Kg Dry	10	200	100
1,2-Dibromo-3-Chloropropane	200	U	ug/Kg Dry	6.3	200	100
1,2-Dichloroethane	200	U	ug/Kg Dry	4.1	200	100
1,2-Dichloropropane	200	U	ug/Kg Dry	3.9	200	100
1,3-Dichloropropane	200	U	ug/Kg Dry	4.5	200	100
2,2-Dichloropropane	200	U	ug/Kg Dry	4.5	200	100
1,2-Dibromoethane	200	U	ug/Kg Dry	6.5	200	100
2-Butanone (MEK)	200	U	ug/Kg Dry	61	200	100
1,1,2,2-Tetrachloroethane	200	U	ug/Kg Dry	4.1	200	100
1,2,3-Trichloropropane	200	U	ug/Kg Dry	4.5	200	100
Tetrahydrofuran	200	U	ug/Kg Dry	33	200	100
Surrogate					Acceptance Limits	
Toluene-d8 (Surr)	95		%		72 - 143	
1,2-Dichloroethane-d4 (Surr)	90		%		73 - 128	
4-Bromofluorobenzene	101		%		49 - 138	

Analyte Result/Qualifier Unit MDL RL Dittoin Method: £260C Date Analyzet: 05/21/2014 14/29 05/21/2014 14/29 12,3-Trichlorobenzene 160 U ug/Kg Dry 12 160 100 1,2-Chrichlorobenzene 160 U ug/Kg Dry 5.3 160 100 1,3-Drimethylbenzene 160 U ug/Kg Dry 7.6 160 100 1,3-Drimethylbenzene 160 U ug/Kg Dry 7.6 160 100 1,4-Dickorobenzene 160 U ug/Kg Dry 7.6 160 100 1,4-Dickore 250 U ug/Kg Dry 2.6 160 100 2-Hoxanne 280 U ug/Kg Dry 3.5 160 100 Bromomethane 160 U ug/Kg Dry 5.4 160 100 Carbon tetrachloride 160 U ug/Kg Dry 5.1 160 100 Ca	Client Sample ID: Lab Sample ID:	SP-46-2-4-051214 420-77953-5			Date S Date R Client I Percen	ampled: eceived: Matrix: t Solids:	05/12/2014 1010 05/21/2014 0900 Solid 91	
Method: 5280C Date Analyzed: 05/21/2014 14/29 Prog Method: 5033 H 05/21/2014 1207 1,2.3-Trichilorobenzene 160 U ug/Kg Dry 12 160 100 1,2.2-Irichilorobenzene 160 U ug/Kg Dry 5.3 160 100 1,3.5-TrimeHybenzene 160 U ug/Kg Dry 7.6 160 100 1,3.5-TrimeHybenzene 160 U ug/Kg Dry 2.6 160 100 1,4-Dicklorobenzene 160 U ug/Kg Dry 2.6 160 100 2-Hexanone 160 U ug/Kg Dry 3.5 160 100 Berzene 160 U ug/Kg Dry 2.6 160 100 Bromomethane 160 U ug/Kg Dry 3.3 160 100 Carbon tetracholde 160 U ug/Kg Dry 5.1 160 100 Cheroberzene 160 U ug/Kg Dry <td< th=""><th>Analyte</th><th></th><th>Result/Qua</th><th>alifier</th><th>Unit</th><th>MDL</th><th>RL</th><th>Dilution</th></td<>	Analyte		Result/Qua	alifier	Unit	MDL	RL	Dilution
Prep Method: 5035-H Date Prepared: 05/21/2014 1207 1.2,A-Trichlorobenzene 160 U ug/Kg Dry 12 160 100 1.2,A-Trichlorobenzene 160 U ug/Kg Dry 5.3 160 100 1.2-Dichlorobenzene 160 U ug/Kg Dry 5.7 160 100 1.3-Dichlorobenzene 160 U ug/Kg Dry 7.6 160 100 1.4-Dickhorobenzene 160 U ug/Kg Dry 2.7 160 100 2-Hexanone 160 U ug/Kg Dry 3.3 160 100 2-Hexanone 160 U ug/Kg Dry 3.3 160 100 Benzene 160 U ug/Kg Dry 5.4 160 100 Carbon disufide 160 U ug/Kg Dry 5.3 160 100 Carbon disufide 160 U ug/Kg Dry 5.1 160 100 Carbon disufide 160	Method: 8260C				Date Analy	/zed:	05/21/2014 1429	
1,2,3-Trichlorobenzene 160 U ug/Kg Dry 12 160 100 1,2,4-Trichlorobenzene 160 U ug/Kg Dry 5.3 160 100 1,3,5-Trinnethylbenzene 160 U ug/Kg Dry 5.7 160 100 1,3-Trinnethylbenzene 160 U ug/Kg Dry 8.7 160 100 1,4-Dichlorobenzene 160 U ug/Kg Dry 8.7 160 100 1,4-Dichlorobenzene 160 U ug/Kg Dry 26 160 100 2-Hexanone 160 U ug/Kg Dry 3.3 160 100 Benzene 160 U ug/Kg Dry 2.5 160 100 Bromoform 160 U ug/Kg Dry 5.3 160 100 Carbon disulfide 160 U ug/Kg Dry 5.1 160 100 Chiorobornomethane 160 U ug/Kg Dry 5.1 160 100 Chiorobornomethane 160 U ug/Kg Dry 3.0 160 100	Prep Method: 5035-H	l			Date Prep	ared:	05/21/2014 1207	
1,2,4-Trichlorobenzene 160 U ug/Kg Dry 12 160 100 1,2-Dichlorobenzene 160 U ug/Kg Dry 8.7 160 100 1,3-Dirmethylbenzene 160 U ug/Kg Dry 8.7 160 100 1,4-Dichlorobenzene 160 U ug/Kg Dry 8.7 160 100 1,4-Dicxane 250 U ug/Kg Dry 2.6 160 100 2-Hexanone 160 U ug/Kg Dry 3.5 160 100 Acetone 820 U ug/Kg Dry 3.5 160 100 Bromoferm 160 U ug/Kg Dry 2.6 160 100 Carbon disulfide 160 U ug/Kg Dry 5.4 160 100 Carbon disulfide 160 U ug/Kg Dry 5.1 160 100 Chlorobenzene 160 U ug/Kg Dry 5.1 160 100 Chlorobertane 160 U ug/Kg Dry 5.3 160 100 Chlor	1,2,3-Trichlorobenzene		160	U	ug/Kg Dry	12	160	100
1.2-Dichlorobenzene 160 U ug/Kg Dry 5.3 160 100 1.3-5-Trimethylbenzene 160 U ug/Kg Dry 8.7 160 100 1.4-Dichlorobenzene 160 U ug/Kg Dry 8.7 160 100 1.4-Dichlorobenzene 160 U ug/Kg Dry 8.7 160 100 1.4-Dichlorobenzene 160 U ug/Kg Dry 26 160 100 2-Hexanone 160 U ug/Kg Dry 3.3 160 100 Bernene 160 U ug/Kg Dry 2.6 160 100 Bromoform 160 U ug/Kg Dry 5.3 160 100 Carbon tetrachloride 160 U ug/Kg Dry 5.1 160 100 Chlorobenzene 160 U ug/Kg Dry 5.1 160 100 Chlorobenzene 160 U ug/Kg Dry 5.1 160 100 Chlorobenzene 160 U ug/Kg Dry 3.0 160 100 <	1,2,4-Trichlorobenzene		160	U	ug/Kg Dry	12	160	100
1,3.5-Trimethylbenzene 160 U ug/kg Dry 8.7 160 100 1,3.5-Ichlorobenzene 160 U ug/kg Dry 7.6 160 100 1,4-Dichlorobenzene 160 U ug/kg Dry 8.7 160 100 1,4-Dichlorobenzene 250 U ug/kg Dry 250 160 100 2-Hexanone 260 U ug/kg Dry 35 820 100 Benzene 160 U ug/kg Dry 3.3 160 100 Bromonethane 160 U ug/kg Dry 2.5 160 100 Carbon tetrachoride 160 U ug/kg Dry 5.1 160 100 Chlorobenzene 160 U ug/kg Dry 5.1 160 100 Chlorobenzene 160 U ug/kg Dry 5.1 160 100 Chlorobenzene 160 U ug/kg Dry 5.8 160 100 Chlorobenzene 160 U ug/kg Dry 3.8 160 100	1,2-Dichlorobenzene		160	U	ug/Kg Dry	5.3	160	100
1.3-Dichlorobenzene 160 U ug/kg Dry 7.6 160 100 1.4-Dickhorobenzene 160 U ug/kg Dry 210 250 100 2-Hexanone 160 U ug/kg Dry 26 160 100 2-Hexanone 160 U ug/kg Dry 35 820 100 Benzene 160 U ug/kg Dry 33 160 100 Berzene 160 U ug/kg Dry 2.6 160 100 Bromoform 160 U ug/kg Dry 5.3 160 100 Carbon disulfde 160 U ug/kg Dry 5.1 160 100 Chorobromomethane 160 U ug/kg Dry 5.1 160 100 Chlorobromomethane 160 U ug/kg Dry 3.0 160 100 Chlorobromomethane 160 U ug/kg Dry 3.8 160 100 Chlorobromomethane 160 U ug/kg Dry 3.3 160 100 Chlorororm	1,3,5-Trimethylbenzene		160	U	ug/Kg Dry	8.7	160	100
1.4-Dichlorobenzene 160 U ug/kg Dry 8.7 160 100 1.4-Dicknane 250 U ug/kg Dry 26 160 100 Acetone 820 U ug/kg Dry 35 820 100 Benzene 160 U ug/kg Dry 3.3 160 100 Bromoferm 160 U ug/kg Dry 2.6 160 100 Bromonethane 160 U ug/kg Dry 2.5 160 100 Carbon disulfide 160 U ug/kg Dry 5.1 160 100 Chlorobenzene 160 U ug/kg Dry 5.1 160 100 Chlorobromomethane 160 U ug/kg Dry 5.1 160 100 Chlorobromomethane 160 U ug/kg Dry 5.8 160 100 Chlorobromomethane 160 U ug/kg Dry 3.3 160 100 Chloroform 160 U ug/kg Dry 3.3 160 100 Chloroform	1,3-Dichlorobenzene		160	U	ug/Kg Dry	7.6	160	100
1.4-Dioxane 250 U ug/rg Dry 210 250 100 2-Hexanone 160 U ug/rg Dry 26 160 100 Acetone 820 U ug/rg Dry 35 820 100 Benzene 160 U ug/rg Dry 3.3 160 100 Bromorethane 160 U ug/rg Dry 2.6 160 100 Carbon disulfide 160 U ug/rg Dry 5.4 160 100 Carbon tetrachloride 160 U ug/rg Dry 5.1 160 100 Chlorobenzene 160 U ug/rg Dry 5.1 160 100 Chlorobenzene 160 U ug/rg Dry 5.8 160 100 Chlorobenane 160 U ug/rg Dry 3.8 160 100 Chlorobenane 160 U ug/rg Dry 3.8 160 100 Chlorobenane 160 U ug/rg Dry 3.3 160 100 Chlorobenane 160	1,4-Dichlorobenzene		160	U	ug/Kg Dry	8.7	160	100
2-Hexanone 160 U ug/Kg Dry 26 160 100 Acetone 820 U ug/Kg Dry 35 820 100 Benzene 160 U ug/Kg Dry 3.3 160 100 Bromoform 160 U ug/Kg Dry 2.6 160 100 Carbon disulfide 160 U ug/Kg Dry 5.3 160 100 Carbon tetrachloride 160 U ug/Kg Dry 5.1 160 100 Chlorobenzene 160 U ug/Kg Dry 5.1 160 100 Chlorobfromomethane 160 U ug/Kg Dry 5.8 160 100 Chlorobfromomethane 160 U ug/Kg Dry 3.8 160 100 Chlorobfromomethane 160 U ug/Kg Dry 3.8 160 100 Chlorobfrom 160 U ug/Kg Dry 3.3 160 100 Dibromomethane 160 <td>1,4-Dioxane</td> <td></td> <td>250</td> <td>U</td> <td>ug/Kg Dry</td> <td>210</td> <td>250</td> <td>100</td>	1,4-Dioxane		250	U	ug/Kg Dry	210	250	100
Acetone 820 U ug/Kg Dry 35 820 100 Benzene 160 U ug/Kg Dry 3.3 160 100 Bromomethane 160 U ug/Kg Dry 2.6 160 100 Carbon disulfide 160 U ug/Kg Dry 2.5 160 100 Carbon tetrachloride 160 U ug/Kg Dry 5.3 160 100 Chlorobenzene 160 U ug/Kg Dry 5.1 160 100 Chlorobenzene 160 U ug/Kg Dry 5.1 160 100 Chlorobermomethane 160 U ug/Kg Dry 5.8 160 100 Chloroform 160 U ug/Kg Dry 3.0 160 100 Chloroform 160 U ug/Kg Dry 3.8 160 100 Cibloropropene 160 U ug/Kg Dry 1.5 160 100 Dichlorodifluoromethane 160 <td>2-Hexanone</td> <td></td> <td>160</td> <td>U</td> <td>ug/Kg Dry</td> <td>26</td> <td>160</td> <td>100</td>	2-Hexanone		160	U	ug/Kg Dry	26	160	100
Benzene 160 U ug/Kg Dry 3.3 160 100 Bromoform 160 U ug/Kg Dry 2.6 160 100 Bromorethane 160 U ug/Kg Dry 2.5 160 100 Carbon disulfide 160 U ug/Kg Dry 5.4 160 100 Carbon disulfide 160 U ug/Kg Dry 5.1 160 100 Chiorobromomethane 160 U ug/Kg Dry 5.1 160 100 Chiorobromomethane 160 U ug/Kg Dry 5.8 160 100 Chiorobromomethane 160 U ug/Kg Dry 3.8 160 100 Chiorobromomethane 160 U ug/Kg Dry 3.8 160 100 Chiorobromomethane 160 U ug/Kg Dry 3.3 160 100 Dibromomethane 160 U ug/Kg Dry 1.5 160 100 Dibromomethane	Acetone		820	U	ug/Kg Dry	35	820	100
Bromoform 160 U ug/Kg Dry 2.6 160 100 Bromomethane 160 U ug/Kg Dry 2.5 160 100 Carbon disulfide 160 U ug/Kg Dry 5.4 160 100 Carbon tetrachloride 160 U ug/Kg Dry 5.1 160 100 Chlorobenzene 160 U ug/Kg Dry 5.1 160 100 Chlorobromomethane 160 U ug/Kg Dry 5.1 160 100 Chlorodbromomethane 160 U ug/Kg Dry 3.8 160 100 Chlorodbromomethane 160 U ug/Kg Dry 3.8 160 100 Chlorodbrane 160 U ug/Kg Dry 3.3 160 100 Cis-1.2-Dichloroethene 160 U ug/Kg Dry 3.3 160 100 Dichorodfluoromethane 160 U ug/Kg Dry 1.5 160 100 Ethyl	Benzene		160	U	ug/Kg Dry	3.3	160	100
Bromomethane 160 U ug/Kg Dry 2.5 160 100 Carbon disulfide 160 U ug/Kg Dry 5.4 160 100 Carbon tetrachloride 160 U ug/Kg Dry 5.3 160 100 Chlorobenzene 160 U ug/Kg Dry 5.1 160 100 Chloroberzene 160 U ug/Kg Dry 5.1 160 100 Chlorobermomethane 160 U ug/Kg Dry 5.8 160 100 Chloroform 160 U ug/Kg Dry 3.8 160 100 Chloroform 160 U ug/Kg Dry 3.3 160 100 Chloroform 160 U ug/Kg Dry 3.3 160 100 Dibromomethane 160 U ug/Kg Dry 3.3 160 100 Dibromomethane 160 U ug/Kg Dry 1.5 160 100 Ethylenzenk 160 <td>Bromoform</td> <td></td> <td>160</td> <td>U</td> <td>ug/Kg Dry</td> <td>2.6</td> <td>160</td> <td>100</td>	Bromoform		160	U	ug/Kg Dry	2.6	160	100
Carbon disulfide 160 U ug/Kg Dry 5.4 160 100 Carbon tetrachloride 160 U ug/Kg Dry 5.3 160 100 Chlorobenzene 160 U ug/Kg Dry 5.1 160 100 Chlorobromethane 160 U ug/Kg Dry 5.1 160 100 Chlorobromethane 160 U ug/Kg Dry 5.8 160 100 Chlorobromethane 160 U ug/Kg Dry 3.8 160 100 Chloroform 160 U ug/Kg Dry 3.3 160 100 Chloroform 160 U ug/Kg Dry 3.3 160 100 cis-1,2-Dichloroethene 160 U ug/Kg Dry 3.3 160 100 Dibromomethane 160 U ug/Kg Dry 5.3 160 100 Bromodichloromethane 160 U ug/Kg Dry 2.8 160 100 Etholoroptlen	Bromomethane		160	U	ug/Kg Dry	2.5	160	100
Carbon tetrachloride 160 U ug/kg Dry 5.3 160 100 Chlorobenzene 160 U ug/kg Dry 5.1 160 100 Chlorobromomethane 160 U ug/kg Dry 5.1 160 100 Chlorodibromomethane 160 U ug/kg Dry 5.8 160 100 Chlorodibromomethane 160 U ug/kg Dry 5.8 160 100 Chlorodibromomethane 160 U ug/kg Dry 3.8 160 100 Chlorodithane 160 U ug/kg Dry 3.8 160 100 cis-1.3-Dichloropthene 160 U ug/kg Dry 3.3 160 100 Dibromomethane 160 U ug/kg Dry 5.3 160 100 Dichlorodifluoromethane 160 U ug/kg Dry 1.5 160 100 Ethyl benzene 160 U ug/kg Dry 2.8 160 100	Carbon disulfide		160	U	ug/Kg Dry	5.4	160	100
Chlorobenzene 160 U ug/kg Dry 5.1 160 100 Chlorobromomethane 160 U ug/kg Dry 5.1 160 100 Chlorodibromomethane 160 U ug/kg Dry 5.1 160 100 Chlorodibromomethane 160 U ug/kg Dry 5.8 160 100 Chloroform 160 U ug/kg Dry 3.8 160 100 Chloroform 160 U ug/kg Dry 3.8 160 100 Chloroform 160 U ug/kg Dry 3.3 160 100 cis-1,2-Dichloroethene 160 U ug/kg Dry 3.3 160 100 Dibromomethane 160 U ug/kg Dry 5.3 160 100 Dichlorodifluoromethane 160 U ug/kg Dry 1.5 160 100 Ethyl methacrylate 160 U ug/kg Dry 2.8 160 100 Isopropy	Carbon tetrachloride		160	U	ug/Kg Dry	5.3	160	100
Chlorobromomethane 160 U ug/Kg Dry 5.1 160 100 Chlorodibromomethane 160 U ug/Kg Dry 4.0 160 100 Chlorodibromomethane 160 U ug/Kg Dry 5.8 160 100 Chlorodibromomethane 160 U ug/Kg Dry 3.0 160 100 Chlorodibromethane 160 U ug/Kg Dry 3.8 160 100 cis-1,2-Dichloropthene 160 U ug/Kg Dry 3.3 160 100 cis-1,3-Dichloropropene 160 U ug/Kg Dry 5.3 160 100 Dibromomethane 160 U ug/Kg Dry 1.5 160 100 Dichlorodifluoromethane 160 U ug/Kg Dry 1.6 100 100 Ethyl methacrylate 160 U ug/Kg Dry 7.4 160 100 Isopropylbenzene 160 U ug/Kg Dry 7.4 160 100 <	Chlorobenzene		160	U	ug/Kg Dry	5.1	160	100
Chlorodibromomethane 160 U ug/Kg Dry 4.0 160 100 Chloroethane 160 U ug/Kg Dry 5.8 160 100 Chloroofrm 160 U ug/Kg Dry 3.0 160 100 Chloroofrm 160 U ug/Kg Dry 3.8 160 100 Chloroothane 160 U ug/Kg Dry 3.3 160 100 cis-1,3-Dichlorooppene 160 U ug/Kg Dry 3.3 160 100 Dibromomethane 160 U ug/Kg Dry 5.3 160 100 Bromodichloromethane 160 U ug/Kg Dry 1.5 160 100 Ethyl methacrylate 160 U ug/Kg Dry 2.8 160 100 Ethylbenzene 160 U ug/Kg Dry 7.4 160 100 Isopropylbenzene 160 U ug/Kg Dry 2.5 160 100 m-Xylene & p-Xylene<	Chlorobromomethane		160	U	ug/Kg Dry	5.1	160	100
Chloroethane 160 U ug/Kg Dry 5.8 160 100 Chloroform 160 U ug/Kg Dry 3.0 160 100 Chloroform 160 U ug/Kg Dry 3.8 160 100 Chloromethane 160 U ug/Kg Dry 3.8 160 100 cis-1,3-Dichloroethene 160 U ug/Kg Dry 3.3 160 100 Dibromomethane 160 U ug/Kg Dry 3.3 160 100 Dibromomethane 160 U ug/Kg Dry 1.5 160 100 Dichorodifluoromethane 160 U ug/Kg Dry 1.6 160 100 Ethyl methacrylate 160 U ug/Kg Dry 2.8 160 100 Isopropylbenzene 160 U ug/Kg Dry 7.4 160 100 m-Xylene & p-Xylene 330 U ug/Kg Dry 2.5 160 100 Methyl-2-pentano	Chlorodibromomethane		160	U	ug/Kg Dry	4.0	160	100
Chloroform 160 U ug/Kg Dry 3.0 160 100 Chloromethane 160 U ug/Kg Dry 3.8 160 100 cis-1,2-Dichloroethene 160 U ug/Kg Dry 3.3 160 100 cis-1,3-Dichloropropene 160 U ug/Kg Dry 3.3 160 100 Dibromomethane 160 U ug/Kg Dry 3.3 160 100 Dichorodifluoromethane 160 U ug/Kg Dry 5.3 160 100 Dichlorodifluoromethane 160 U ug/Kg Dry 1.5 160 100 Ethyl methacrylate 160 U ug/Kg Dry 2.8 160 100 Ethylenzene 160 U ug/Kg Dry 7.4 160 100 Isopropylbenzene 160 U ug/Kg Dry 2.5 160 100 Methyl-2-pentanone (MIBK) 160 U ug/Kg Dry 2.5 160 100	Chloroethane		160	U	ug/Kg Dry	5.8	160	100
Chloromethane 160 U ug/Kg Dry 3.8 160 100 cis-1,2-Dichloroethene 160 U ug/Kg Dry 3.3 160 100 cis-1,3-Dichloropropene 160 U ug/Kg Dry 3.0 160 100 Dibromomethane 160 U ug/Kg Dry 5.3 160 100 Dichloromethane 160 U ug/Kg Dry 1.5 160 100 Dichloromethane 160 U ug/Kg Dry 1.6 160 100 Ethyl methacrylate 160 U ug/Kg Dry 2.8 160 100 Ethylbenzene 160 U ug/Kg Dry 6.4 160 100 Isopropylbenzene 160 U ug/Kg Dry 7.4 160 100 M-Xylene & p-Xylene 330 U ug/Kg Dry 2.5 160 100 Methyl-2-pentanone (MIBK) 160 U ug/Kg Dry 4.9 160 100	Chloroform		160	U	ug/Kg Dry	3.0	160	100
cis-1,2-Dichloroethene 160 U ug/Kg Dry 3.3 160 100 cis-1,3-Dichloropropene 160 U ug/Kg Dry 3.0 160 100 Dibromomethane 160 U ug/Kg Dry 5.3 160 100 Bromodichloromethane 160 U ug/Kg Dry 1.5 160 100 Dichlorodifluoromethane 160 U ug/Kg Dry 1.6 160 100 Ethyl methacrylate 160 U ug/Kg Dry 2.8 160 100 Ethyl methacrylate 160 U ug/Kg Dry 7.4 160 100 Isopropylbenzene 160 U ug/Kg Dry 2.5 160 100 Methyl-2-pentanone (MIBK) 160 U ug/Kg Dry 2.5 160 100 Methylene Chloride 160 U ug/Kg Dry 4.3 330 100 A-Methyl-2-pentanone (MIBK) 160 U ug/Kg Dry 4.3 330 100 Methylene Chloride 160 U ug/Kg Dry 4.3	Chloromethane		160	U	ug/Kg Dry	3.8	160	100
cis-1,3-Dichloropropene 160 U ug/Kg Dry 3.0 160 100 Dibromomethane 160 U ug/Kg Dry 5.3 160 100 Bromodichloromethane 160 U ug/Kg Dry 1.5 160 100 Dichlorodifluoromethane 160 U ug/Kg Dry 1.5 160 100 Ethyl methacrylate 160 U ug/Kg Dry 2.8 160 100 Ethyl methacrylate 160 U ug/Kg Dry 6.4 160 100 Isopropylbenzene 160 U ug/Kg Dry 7.4 160 100 Isopropylbenzene 160 U ug/Kg Dry 15 330 100 4-Methyl-2-pentanone (MIBK) 160 U ug/Kg Dry 2.5 160 100 Methylene Chloride 160 U ug/Kg Dry 4.3 330 100 Activel ether 160 U ug/Kg Dry 4.3 330 100 Styrene 330 U ug/Kg Dry 4.3 330 100 </td <td>cis-1.2-Dichloroethene</td> <td></td> <td>160</td> <td>U</td> <td>ua/Ka Drv</td> <td>3.3</td> <td>160</td> <td>100</td>	cis-1.2-Dichloroethene		160	U	ua/Ka Drv	3.3	160	100
Dibronomethane 160 U ug/Kg Dry 5.3 160 100 Bromodichloromethane 160 U ug/Kg Dry 1.5 160 100 Dichlorodifluoromethane 160 U ug/Kg Dry 16 160 100 Ethyl methacrylate 160 U ug/Kg Dry 2.8 160 100 Ethyl methacrylate 160 U ug/Kg Dry 6.4 160 100 Ethyl benzene 160 U ug/Kg Dry 7.4 160 100 Isopropylbenzene 160 U ug/Kg Dry 15 330 100 4-Methyl-2-pentanone (MIBK) 160 U ug/Kg Dry 2.5 160 100 Methyl tert-butyl ether 160 U ug/Kg Dry 4.3 330 100 Styrene 330 U ug/Kg Dry 4.3 330 100 Styrene 160 U ug/Kg Dry 4.0 160 100 To	cis-1,3-Dichloropropene	9	160	U	ug/Kg Dry	3.0	160	100
Bromodichloromethane 160 U ug/Kg Dry 1.5 160 100 Dichlorodifluoromethane 160 U ug/Kg Dry 16 160 100 Ethyl methacrylate 160 U ug/Kg Dry 2.8 160 100 Ethyl methacrylate 160 U ug/Kg Dry 6.4 160 100 Isopropylbenzene 160 U ug/Kg Dry 7.4 160 100 m-Xylene & p-Xylene 330 U ug/Kg Dry 15 330 100 4-Methyl-2-pentanone (MIBK) 160 U ug/Kg Dry 2.5 160 100 Methyl tert-butyl ether 160 U ug/Kg Dry 4.9 160 100 o-Xylene 330 U ug/Kg Dry 4.9 160 100 o-Xylene 160 U ug/Kg Dry 4.3 330 100 Styrene 160 U ug/Kg Dry 4.0 160 100 Tetrachloroethene 34 J ug/Kg Dry 3.3 160 100 <td>Dibromomethane</td> <td></td> <td>160</td> <td>U</td> <td>ua/Ka Drv</td> <td>5.3</td> <td>160</td> <td>100</td>	Dibromomethane		160	U	ua/Ka Drv	5.3	160	100
Dichlorodifluoromethane 160 U ug/Kg Dry 16 160 100 Ethyl methacrylate 160 U ug/Kg Dry 2.8 160 100 Ethyl methacrylate 160 U ug/Kg Dry 2.8 160 100 Ethylbenzene 160 U ug/Kg Dry 6.4 160 100 Isopropylbenzene 160 U ug/Kg Dry 7.4 160 100 m-Xylene & p-Xylene 330 U ug/Kg Dry 15 330 100 4-Methyl-2-pentanone (MIBK) 160 U ug/Kg Dry 2.5 160 100 Methyl tert-butyl ether 160 U ug/Kg Dry 4.9 160 100 O-Xylene 330 U ug/Kg Dry 4.3 330 100 Styrene 160 U ug/Kg Dry 16 160 100 Tetrachloroethene 34 J ug/Kg Dry 3.3 160 100 tr	Bromodichloromethane		160	U	ua/Ka Drv	1.5	160	100
Ethyl methacrylate 160 U ug/Kg Dry 2.8 160 100 Ethyl methacrylate 160 U ug/Kg Dry 6.4 160 100 Isopropylbenzene 160 U ug/Kg Dry 6.4 160 100 Isopropylbenzene 160 U ug/Kg Dry 7.4 160 100 m-Xylene & p-Xylene 330 U ug/Kg Dry 15 330 100 4-Methyl-2-pentanone (MIBK) 160 U ug/Kg Dry 26 160 100 Methyl tert-butyl ether 160 U ug/Kg Dry 2.5 160 100 Methylene Chloride 160 U ug/Kg Dry 4.3 330 100 o-Xylene 330 U ug/Kg Dry 4.3 330 100 Styrene 160 U ug/Kg Dry 4.0 160 100 Tetrachloroethene 34 J ug/Kg Dry 3.3 160 100 trans-1,2-Dichloroethene 160 U ug/Kg Dry 5.9 160 100	Dichlorodifluoromethan	e	160	U	ua/Ka Drv	16	160	100
Ethylbenzene 160 U ug/Kg Dry 6.4 160 100 Isopropylbenzene 160 U ug/Kg Dry 7.4 160 100 m-Xylene & p-Xylene 330 U ug/Kg Dry 15 330 100 4-Methyl-2-pentanone (MIBK) 160 U ug/Kg Dry 26 160 100 Methyl tert-butyl ether 160 U ug/Kg Dry 2.5 160 100 Methylene Chloride 160 U ug/Kg Dry 4.9 160 100 o-Xylene 330 U ug/Kg Dry 4.3 330 100 Styrene 160 U ug/Kg Dry 4.0 160 100 Styrene 160 U ug/Kg Dry 4.0 160 100 Toluene 160 U ug/Kg Dry 3.3 160 100 trans-1,2-Dichloroethene 160 U ug/Kg Dry 5.9 160 100 trans-1,3-Dichloropropene 160 U ug/Kg Dry 5.9 160 100 <tr< td=""><td>Ethyl methacrylate</td><td></td><td>160</td><td>U</td><td>ua/Ka Drv</td><td>2.8</td><td>160</td><td>100</td></tr<>	Ethyl methacrylate		160	U	ua/Ka Drv	2.8	160	100
Isopropylbenzene 160 U ug/kg Dry 7.4 160 100 m-Xylene & p-Xylene 330 U ug/kg Dry 15 330 100 4-Methyl-2-pentanone (MIBK) 160 U ug/kg Dry 26 160 100 Methyl tert-butyl ether 160 U ug/kg Dry 2.5 160 100 Methylene Chloride 160 U ug/kg Dry 4.9 160 100 o-Xylene 330 U ug/kg Dry 4.3 330 100 o-Xylene 160 U ug/kg Dry 4.3 330 100 o-Xylene 160 U ug/kg Dry 4.0 160 100 o-Xylene 330 U ug/kg Dry 4.3 330 100 Styrene 160 U ug/kg Dry 16 160 100 Tetrachloroethene 34 J ug/kg Dry 3.3 160 100 trans-1,2-Dichloroethene 160 U ug/kg Dry 5.9 160 100	Ethylbenzene		160	Ū	ua/Ka Drv	6.4	160	100
m-Xylene & p-Xylene 330 U ug/Kg Dry 15 330 100 4-Methyl-2-pentanone (MIBK) 160 U ug/Kg Dry 26 160 100 Methyl tert-butyl ether 160 U ug/Kg Dry 2.5 160 100 Methylene Chloride 160 U ug/Kg Dry 2.5 160 100 o-Xylene 330 U ug/Kg Dry 4.9 160 100 o-Xylene 330 U ug/Kg Dry 4.3 330 100 Styrene 160 U ug/Kg Dry 4.0 160 100 Tetrachloroethene 34 J ug/Kg Dry 16 160 100 Toluene 160 U ug/Kg Dry 3.3 160 100 trans-1,2-Dichloroethene 160 U ug/Kg Dry 5.9 160 100 trans-1,3-Dichloropropene 160 U ug/Kg Dry 2.6 160 100 trans-1 4-Dichloro-2-butene 160 U ug/Kg Dry 13 160 100	Isopropylbenzene		160	U	ua/Ka Drv	7.4	160	100
4-Methyl-2-pentanone (MIBK) 160 U ug/Kg Dry 26 160 100 Methyl tert-butyl ether 160 U ug/Kg Dry 2.5 160 100 Methyl tert-butyl ether 160 U ug/Kg Dry 2.5 160 100 Methyl tert-butyl ether 160 U ug/Kg Dry 2.5 160 100 Methylene Chloride 160 U ug/Kg Dry 4.9 160 100 o-Xylene 330 U ug/Kg Dry 4.3 330 100 Styrene 160 U ug/Kg Dry 4.0 160 100 Tetrachloroethene 34 J ug/Kg Dry 16 160 100 Toluene 160 U ug/Kg Dry 3.3 160 100 trans-1,2-Dichloroethene 160 U ug/Kg Dry 5.9 160 100 trans-1,3-Dichloropropene 160 U ug/Kg Dry 2.6 160 100 trans-1 4-Dichloro-2-butene 160 U ug/Kg Dry 13 160	m-Xvlene & p-Xvlene		330	U	ua/Ka Drv	15	330	100
Methyl tert-butyl ether 160 U ug/Kg Dry 2.5 160 100 Methyl tert-butyl ether 160 U ug/Kg Dry 4.9 160 100 Methylene Chloride 160 U ug/Kg Dry 4.9 160 100 o-Xylene 330 U ug/Kg Dry 4.3 330 100 Styrene 160 U ug/Kg Dry 4.0 160 100 Tetrachloroethene 34 J ug/Kg Dry 16 160 100 Toluene 160 U ug/Kg Dry 3.3 160 100 trans-1,2-Dichloroethene 160 U ug/Kg Dry 5.9 160 100 trans-1,3-Dichloropropene 160 U ug/Kg Dry 2.6 160 100 trans-1 4-Dichloro-2-butene 160 U ug/Kg Dry 13 160 100	4-Methyl-2-pentanone (MIBK)	160	U	ua/Ka Drv	26	160	100
Methylene Chloride 160 U ug/Kg Dry 4.9 160 100 o-Xylene 330 U ug/Kg Dry 4.3 330 100 Styrene 160 U ug/Kg Dry 4.3 330 100 Tetrachloroethene 160 U ug/Kg Dry 4.0 160 100 Toluene 160 U ug/Kg Dry 16 160 100 trans-1,2-Dichloroethene 160 U ug/Kg Dry 3.3 160 100 trans-1,3-Dichloropropene 160 U ug/Kg Dry 5.9 160 100 trans-1,4-Dichloro-2-butene 160 U ug/Kg Dry 2.6 160 100	Methyl tert-butyl ether	,	160	U	ua/Ka Drv	2.5	160	100
o-Xylene 330 U ug/Kg Dry 4.3 330 100 Styrene 160 U ug/Kg Dry 4.0 160 100 Tetrachloroethene 34 J ug/Kg Dry 16 160 100 Toluene 160 U ug/Kg Dry 3.3 160 100 trans-1,2-Dichloroethene 160 U ug/Kg Dry 5.9 160 100 trans-1,3-Dichloropropene 160 U ug/Kg Dry 2.6 160 100 trans-1,4-Dichloro-2-butene 160 U ug/Kg Dry 13 160 100	Methylene Chloride		160	U	ua/Ka Drv	4.9	160	100
Styrene 160 U ug/Kg Dry 4.0 160 100 Tetrachloroethene 34 J ug/Kg Dry 16 160 100 Toluene 160 U ug/Kg Dry 16 160 100 trans-1,2-Dichloroethene 160 U ug/Kg Dry 3.3 160 100 trans-1,3-Dichloropropene 160 U ug/Kg Dry 5.9 160 100 trans-1,4-Dichloro-2-butene 160 U ug/Kg Dry 2.6 160 100	o-Xvlene		330	Ŭ	ug/Ka Dry	4.3	330	100
Tetrachloroethene 34 J ug/Kg Dry 16 160 100 Toluene 160 U ug/Kg Dry 3.3 160 100 trans-1,2-Dichloroethene 160 U ug/Kg Dry 5.9 160 100 trans-1,3-Dichloropropene 160 U ug/Kg Dry 2.6 160 100 trans-1,4-Dichloro-2-butene 160 U ug/Kg Dry 13 160 100	Styrene		160	U	ua/Ka Drv	4.0	160	100
Toluene 160 U ug/Kg Dry 3.3 160 100 trans-1,2-Dichloroethene 160 U ug/Kg Dry 5.9 160 100 trans-1,3-Dichloropropene 160 U ug/Kg Dry 2.6 160 100 trans-1,4-Dichloro-2-butene 160 U ug/Kg Dry 2.6 160 100	Tetrachloroethene		34	J	ug/Ka Dry	16	160	100
trans-1,2-Dichloroethene 160 U ug/Kg Dry 5.9 160 100 trans-1,3-Dichloropropene 160 U ug/Kg Dry 2.6 160 100 trans-1,4-Dichloro-2-butene 160 U ug/Kg Dry 2.6 160 100	Toluene		160	Ű.	ug/Ka Drv	3.3	160	100
trans-1,3-Dichloropropene 160 U ug/Kg Dry 2.6 160 100 trans-1 4-Dichloro-2-butene 160 U ug/Kg Dry 13 160 100	trans-1 2-Dichloroethen	e	160	Ŭ	ug/Ka Dry	5.9	160	100
trans-1 4-Dichloro-2-butene 160 160 100 100 100 100 100	trans-1 3-Dichloroprope	- ne	160	U U	ug/Ka Drv	2.6	160	100
	trans-1.4-Dichloro-2-but	tene	160	Ŭ	ug/Ka Drv	13	160	100

Client Sample ID: Lab Sample ID:	SP-46-2-4-051214 420-77953-5			Date S Date R Client I Percer	ampled: eceived: Matrix: tt Solids:	05/12/2014 1010 05/21/2014 0900 Solid 91	
Analyte		Result/Qua	alifier	Unit	MDL	RL	Dilution
Trichloroethene		160	U	ug/Kg Dry	6.6	160	100
Trichlorofluoromethane	9	160	U	ug/Kg Dry	9.1	160	100
Vinyl chloride		160	U	ug/Kg Dry	5.1	160	100
Xylenes, Total		330	U	ug/Kg Dry	16	330	100
1,1,1-Trichloroethane		160	U	ug/Kg Dry	4.1	160	100
Freon 113		160	U	ug/Kg Dry	4.9	160	100
1,1,2-Trichloroethane		160	U	ug/Kg Dry	5.4	160	100
1,1-Dichloroethane		160	U	ug/Kg Dry	2.3	160	100
1,1-Dichloroethene		160	U	ug/Kg Dry	5.4	160	100
1,1-Dichloropropene		160	U	ug/Kg Dry	8.4	160	100
1,2-Dibromo-3-Chlorop	propane	160	U	ug/Kg Dry	5.1	160	100
1,2-Dichloroethane		160	U	ug/Kg Dry	3.3	160	100
1,2-Dichloropropane		160	U	ug/Kg Dry	3.1	160	100
1,3-Dichloropropane		160	U	ug/Kg Dry	3.6	160	100
2,2-Dichloropropane		160	U	ug/Kg Dry	3.6	160	100
1,2-Dibromoethane		160	U	ug/Kg Dry	5.3	160	100
2-Butanone (MEK)		160	U	ug/Kg Dry	49	160	100
1,1,2,2-Tetrachloroetha	ane	160	U	ug/Kg Dry	3.3	160	100
1,2,3-Trichloropropane	:	160	U	ug/Kg Dry	3.6	160	100
Tetrahydrofuran		160	U	ug/Kg Dry	27	160	100
Surrogate						Acceptance Limits	
Toluene-d8 (Surr)		95		%		72 - 143	
1,2-Dichloroethane-d4	(Surr)	93		%		73 - 128	
4-Bromofluorobenzene	9	104		%		49 - 138	

Client Sample ID: Lab Sample ID:	SP-47-6-8-051214 420-77953-6			Date S Date R Client I Percen	ampled: eceived: Matrix: tt Solids:	05/12/2014 1134 05/21/2014 0900 Solid 90	
Analyte		Result/Qual	ifier	Unit	MDL	RL	Dilution
Method: 8260C				Date Analy	yzed:	05/21/2014 1457	
Prep Method: 5035-H				Date Prep	ared:	05/21/2014 1207	
1,2,3-Trichlorobenzene		160	U	ug/Kg Dry	12	160	100
1,2,4-Trichlorobenzene		160	U	ug/Kg Dry	12	160	100
1,2-Dichlorobenzene		40	J	ug/Kg Dry	5.3	160	100
1,3,5-Trimethylbenzene		160	U	ug/Kg Dry	8.7	160	100
1,3-Dichlorobenzene		160	U	ug/Kg Dry	7.6	160	100
1,4-Dichlorobenzene		160	U	ug/Kg Dry	8.7	160	100
1,4-Dioxane		250	U	ug/Kg Dry	210	250	100
2-Hexanone		160	U	ug/Kg Dry	26	160	100
Acetone		820	U	ug/Kg Dry	35	820	100
Benzene		160	U	ug/Kg Dry	3.3	160	100
Bromoform		160	U	ug/Kg Dry	2.6	160	100
Bromomethane		160	U	ug/Kg Dry	2.5	160	100
Carbon disulfide		160	U	ug/Kg Dry	5.4	160	100
Carbon tetrachloride		160	U	ug/Kg Dry	5.3	160	100
Chlorobenzene		160	U	ug/Kg Dry	5.1	160	100
Chlorobromomethane		160	U	ug/Kg Dry	5.1	160	100
Chlorodibromomethane		160	U	ug/Kg Dry	3.9	160	100
Chloroethane		160	U	ug/Kg Dry	5.8	160	100
Chloroform		160	U	ug/Kg Dry	3.0	160	100
Chloromethane		160	U	ug/Kg Dry	3.8	160	100
cis-1,2-Dichloroethene		130	J	ug/Kg Dry	3.3	160	100
cis-1,3-Dichloropropene		160	U	ug/Kg Dry	3.0	160	100
Dibromomethane		160	U	ug/Kg Dry	5.3	160	100
Bromodichloromethane		160	U	ug/Kg Dry	1.5	160	100
Dichlorodifluoromethane	9	160	U	ug/Kg Dry	16	160	100
Ethyl methacrylate		160	U	ug/Kg Dry	2.8	160	100
Ethylbenzene		160	U	ug/Kg Dry	6.4	160	100
Isopropylbenzene		160	U	ug/Kg Dry	7.4	160	100
m-Xylene & p-Xylene		330	U	ug/Kg Dry	15	330	100
4-Methyl-2-pentanone (I	MIBK)	160	U	ug/Kg Dry	26	160	100
Methyl tert-butyl ether		160	U	ug/Kg Dry	2.5	160	100
Methylene Chloride		160	U	ug/Kg Dry	4.9	160	100
o-Xylene		330	U	ug/Kg Dry	4.3	330	100
Styrene		160	U	ug/Kg Dry	3.9	160	100
Tetrachloroethene		690000	Е	ug/Kg Dry	16	160	100
Toluene		50	J	ug/Kg Dry	3.3	160	100
trans-1,2-Dichloroethen	е	160	U	ug/Kg Dry	5.9	160	100
trans-1,3-Dichloroprope	ne	160	U	ug/Kg Dry	2.6	160	100
trans-1,4-Dichloro-2-but	ene	160	U	ug/Kg Dry	13	160	100

Job Number: 420-77953-2 Sdg Number: 141907

Client Sample ID: SP-47-6-8-051214 Lab Sample ID: 420-77953-6			Date S Date R Client I Percen	ampled: 0 eceived: 0 Matrix: 5 t Solids: 9	05/12/2014 1134 05/21/2014 0900 Solid 90	
Analyte	Result/Quali	fier	Unit	MDL	RL	Dilution
Trichloroethene	3700		ug/Kg Dry	6.6	160	100
Trichlorofluoromethane	160	U	ug/Kg Dry	9.0	160	100
Vinyl chloride	160	U	ug/Kg Dry	5.1	160	100
Xylenes, Total	330	U	ug/Kg Dry	16	330	100
1,1,1-Trichloroethane	160	U	ug/Kg Dry	4.1	160	100
Freon 113	160	U	ug/Kg Dry	4.9	160	100
1,1,2-Trichloroethane	160	U	ug/Kg Dry	5.4	160	100
1,1-Dichloroethane	160	U	ug/Kg Dry	2.3	160	100
1,1-Dichloroethene	160	U	ug/Kg Dry	5.4	160	100
1,1-Dichloropropene	160	U	ug/Kg Dry	8.4	160	100
1,2-Dibromo-3-Chloropropane	160	U	ug/Kg Dry	5.1	160	100
1,2-Dichloroethane	160	U	ug/Kg Dry	3.3	160	100
1,2-Dichloropropane	160	U	ug/Kg Dry	3.1	160	100
1,3-Dichloropropane	160	U	ug/Kg Dry	3.6	160	100
2,2-Dichloropropane	160	U	ug/Kg Dry	3.6	160	100
1,2-Dibromoethane	160	U	ug/Kg Dry	5.3	160	100
2-Butanone (MEK)	160	U	ug/Kg Dry	49	160	100
1,1,2,2-Tetrachloroethane	160	U	ug/Kg Dry	3.3	160	100
1,2,3-Trichloropropane	160	U	ug/Kg Dry	3.6	160	100
Tetrahydrofuran	160	U	ug/Kg Dry	27	160	100
Surrogate					Acceptance Limits	
Toluene-d8 (Surr)	94		%		72 - 143	
1,2-Dichloroethane-d4 (Surr)	86		%		73 - 128	
4-Bromofluorobenzene	102		%		49 - 138	
Method: 8260C Run Type: DL Prep Method: 5035-H Tetrachloroethene	1100000	D	Date Analy Date Prep ug/Kg Drv	/zed: 0 ared: 0 1600	05/21/2014 1652 05/21/2014 1207 16000	10000

Analyte Result/Qualifier Unit MDL RL Diutoin Method: £280C Date Prepared: 05/21/2014 15/11 712-3-Trichlorobenzane 180 U ug/Kg Dry 13 180 100 1.2-Urichlorobenzane 180 U ug/Kg Dry 5.7 180 100 1.3-Strimethylbenzene 180 U ug/Kg Dry 8.1 180 100 1.3-Dichlorobenzene 180 U ug/Kg Dry 8.1 180 100 1.4-Dichlorobenzene 180 U ug/Kg Dry 2.8 180 100 1.4-Dichlorobenzene 180 U ug/Kg Dry 2.8 180 100 2-Hexanone 200 U ug/Kg Dry 3.5 180 100 Beromethane 180 U ug/Kg Dry 5.5 180 100 Carbon tetrachloride 180 U ug/Kg Dry 5.5 180 100 Chorobaromethane 180	Client Sample ID: Lab Sample ID:	SP-47-12-14-051214 420-77953-7			Date Sampled: 0 Date Received: 0 Client Matrix: 9 Percent Solids: 9		05/12/2014 05/21/2014 Solid 88	05/12/2014 1130 05/21/2014 0900 Solid 88		
Method: 3280C Date Analyzed: 05/21/2014 15/41 Prep Method: 50.53 + H 05/21/2014 1207 1.2.3-Trichlorobenzene 180 U ug/Kg Dry 13 180 100 1.2-Dichlorobenzene 180 U ug/Kg Dry 9.7 180 100 1.3-Dichlorobenzene 180 U ug/Kg Dry 9.4 180 100 1.3-Dichlorobenzene 180 U ug/Kg Dry 9.4 180 100 1.4-Dicklorobenzene 180 U ug/Kg Dry 2.8 180 100 2-Hexanone 180 U ug/Kg Dry 2.8 180 100 Beromenthane 180 U ug/Kg Dry 2.7 180 100 Bromorethane 180 U ug/Kg Dry 5.5 180 100 Carbon tetracholde 180 U ug/Kg Dry 5.5 180 100 Chorothornomethane 180 U ug/Kg Dry	Analyte		Result/Qual	lifier	Unit	MDL	F	٦L	Dilution	
Prop Method: 50521/2014 1207 1.2.3-Trichlorobenzene 180 U ug/Kg Dry 13 180 100 1.2.4-Trichlorobenzene 180 U ug/Kg Dry 5.7 180 100 1.3-Drindhylbenzene 180 U ug/Kg Dry 9.4 180 100 1.3-Dichlorobenzene 180 U ug/Kg Dry 9.4 180 100 1.4-Dickhorobenzene 180 U ug/Kg Dry 230 270 100 1.4-Dickhorobenzene 180 U ug/Kg Dry 23 180 100 2-Hexanone 180 U ug/Kg Dry 3.5 180 100 Bernene 180 U ug/Kg Dry 2.8 180 100 Carbon disulfide 180 U ug/Kg Dry 5.5 180 100 Carbon disulfide 180 U ug/Kg Dry 5.5 180 100 Chiorobramomethane 180 U ug/Kg Dry </th <th>Method: 8260C</th> <th></th> <th></th> <th></th> <th>Date Analy</th> <th>/zed:</th> <th>05/21/2014</th> <th>1541</th> <th></th>	Method: 8260C				Date Analy	/zed:	05/21/2014	1541		
1,2,3-Trichlorobenzene 180 U ug/Kg Dry 13 180 100 1,2,4-Trichlorobenzene 180 U ug/Kg Dry 5,7 180 100 1,3-Drichlorobenzene 180 U ug/Kg Dry 5,7 180 100 1,3-Drichlorobenzene 180 U ug/Kg Dry 8.1 180 100 1,4-Dicknobenzene 180 U ug/Kg Dry 28 180 100 1,4-Dicknane 270 U* ug/Kg Dry 28 180 100 2-Hexanone 180 U ug/Kg Dry 28 180 100 Benzene 180 U ug/Kg Dry 2.8 180 100 Bromoform 180 U ug/Kg Dry 2.8 180 100 Carbon disulfde 180 U ug/Kg Dry 5.5 180 100 Chlorobenzene 180 U ug/Kg Dry 5.5 180 100 Chlorobenzene 180 U ug/Kg Dry 3.5 180 100 Ca	Prep Method: 5035-H	l			Date Prepa	ared:	05/21/2014	1207		
1.2.4.Tichklorobenzene 180 U ug/Kg Dry 13 180 100 1.3.Dichklorobenzene 180 U ug/Kg Dry 5.7 180 100 1.3.Dichklorobenzene 180 U ug/Kg Dry 9.4 180 100 1.3.Dichklorobenzene 180 U ug/Kg Dry 9.4 180 100 1.4.Dicklorobenzene 180 U ug/Kg Dry 230 270 100 2.Hexanone 180 U ug/Kg Dry 3.5 180 100 Benzene 180 U ug/Kg Dry 2.8 180 100 Bromonethane 180 U ug/Kg Dry 5.7 180 100 Carbon disulfide 180 U ug/Kg Dry 5.5 180 100 Chloroberzene 180 U ug/Kg Dry 5.5 180 100 Chloroberane 180 U ug/Kg Dry 5.5 180 100 Chloroberane 180 U ug/Kg Dry 3.2 180 100 <	1,2,3-Trichlorobenzene		180	U	ug/Kg Dry	13	1	180	100	
1,2-Dichlorobenzene 180 U ug/Kg Dry 5.7 180 100 1,3.5-Trimethylbenzene 180 U ug/Kg Dry 9.4 180 100 1,4-Dichlorobenzene 180 U ug/Kg Dry 9.4 180 100 1,4-Dicknee 270 U* ug/Kg Dry 230 270 100 2-Hexanone 180 U ug/Kg Dry 28 180 100 Acetone 880 U ug/Kg Dry 3.5 180 100 Berzene 180 U ug/Kg Dry 2.8 180 100 Bromoform 180 U ug/Kg Dry 5.8 180 100 Carbon disulfde 180 U ug/Kg Dry 5.5 180 100 Chiorobornomethane 180 U ug/Kg Dry 5.5 180 100 Chiorobornomethane 180 U ug/Kg Dry 4.2 180 100 Chiorobornomethane 180 U ug/Kg Dry 3.2 180 100 Chioro	1,2,4-Trichlorobenzene		180	U	ug/Kg Dry	13	1	180	100	
1,3.5-Timethylbenzene 180 U ug/kg Dry 9.4 180 100 1.3-Dichlorobenzene 180 U ug/kg Dry 9.4 180 100 1.4-Dichorobenzene 180 U ug/kg Dry 9.4 180 100 1.4-Dichorobenzene 180 U ug/kg Dry 28 180 100 Acetone 880 U ug/kg Dry 3.5 180 100 Bromoform 180 U ug/kg Dry 2.8 180 100 Bromoform 180 U ug/kg Dry 2.7 180 100 Carbon tetrachloride 180 U ug/kg Dry 5.7 180 100 Chiorobenzene 180 U ug/kg Dry 5.5 180 100 Chiorobenzene 180 U ug/kg Dry 4.2 180 100 Chiorobenzene 180 U ug/kg Dry 4.2 180 100 Chiorobenzene 180 U ug/kg Dry 3.5 180 100 Chiorob	1,2-Dichlorobenzene		180	U	ug/Kg Dry	5.7	1	180	100	
1,3-Dichlorobenzene 180 U ug/kg Dry 8.1 180 100 1,4-Dichlorobenzene 180 U ug/kg Dry 230 270 100 2-Hexanone 180 U ug/kg Dry 230 270 100 2-Hexanone 180 U ug/kg Dry 37 880 100 Benzene 180 U ug/kg Dry 3.5 180 100 Bromorform 180 U ug/kg Dry 2.8 180 100 Carbon disulfde 180 U ug/kg Dry 5.8 180 100 Carbon disulfde 180 U ug/kg Dry 5.5 180 100 Chorobornomethane 180 U ug/kg Dry 5.5 180 100 Chlorobornomethane 180 U ug/kg Dry 3.2 180 100 Chlorobornomethane 180 U ug/kg Dry 3.2 180 100 Chlorobornomethane 180 U ug/kg Dry 3.5 180 100 Chlo	1,3,5-Trimethylbenzene		180	U	ug/Kg Dry	9.4	1	180	100	
1,4-Dickhorobenzene 180 U ug/Kg Dry 9.4 180 100 1,4-Dickxane 270 U* ug/Kg Dry 230 270 100 2-Hexanone 180 U ug/Kg Dry 28 180 100 Acetone 880 U ug/Kg Dry 3.5 180 100 Bromoform 180 U ug/Kg Dry 2.8 180 100 Bromoform 180 U ug/Kg Dry 2.8 180 100 Carbon tetrachloride 180 U ug/Kg Dry 5.7 180 100 Chlorobromomethane 180 U ug/Kg Dry 5.5 180 100 Chlorobromomethane 180 U ug/Kg Dry 5.5 180 100 Chlorobromomethane 180 U ug/Kg Dry 3.2 180 100 Chlorobromomethane 180 U ug/Kg Dry 3.2 180 100 Chlorobromomethane 180 U ug/Kg Dry 3.2 180 100 Chl	1,3-Dichlorobenzene		180	U	ug/Kg Dry	8.1	1	180	100	
1.4-Dioxane 270 U* ug/Kg Dry 230 270 100 2-Hexanone 180 U ug/Kg Dry 28 180 100 Acetone 880 U ug/Kg Dry 37 880 100 Benzene 180 U ug/Kg Dry 3.5 180 100 Bromomethane 180 U ug/Kg Dry 2.7 180 100 Carbon disulfide 180 U ug/Kg Dry 5.5 180 100 Chorobenzene 180 U ug/Kg Dry 5.5 180 100 Chlorobenzene 180 U ug/Kg Dry 5.5 180 100 Chlorobenzene 180 U ug/Kg Dry 5.5 180 100 Chlorobenane 180 U ug/Kg Dry 3.2 180 100 Chlorobenane 180 U ug/Kg Dry 3.5 180 100 cis-1.2-Dichloroptopene 180 U ug/Kg Dry 3.6 180 100 Dibromodifuloromethane	1,4-Dichlorobenzene		180	U	ug/Kg Dry	9.4	1	180	100	
2-Hexanone 180 U ug/Kg Dry 28 180 100 Acetone 880 U ug/Kg Dry 37 880 100 Benzene 180 U ug/Kg Dry 3.5 180 100 Bromoform 180 U ug/Kg Dry 2.8 180 100 Carbon disulfide 180 U ug/Kg Dry 5.8 180 100 Carbon disulfide 180 U ug/Kg Dry 5.5 180 100 Charbon settifie 180 U ug/Kg Dry 5.5 180 100 Chiorobromomethane 180 U ug/Kg Dry 5.5 180 100 Chiorobromomethane 180 U ug/Kg Dry 4.2 180 100 Chiorobromomethane 180 U ug/Kg Dry 3.5 180 100 Chiorobromomethane 180 U ug/Kg Dry 3.5 180 100 Chiorobromomethane 180 U ug/Kg Dry 3.5 180 100 Dibromomet	1,4-Dioxane		270	U *	ug/Kg Dry	230	2	270	100	
Acetone 880 U ug/kg Dry 3.7 880 100 Benzene 180 U ug/kg Dry 3.5 180 100 Bromoform 180 U ug/kg Dry 2.8 180 100 Bromomethane 180 U ug/kg Dry 2.8 180 100 Carbon disulfide 180 U ug/kg Dry 5.7 180 100 Carbon tetrachloride 180 U ug/kg Dry 5.5 180 100 Chloroberzene 180 U ug/kg Dry 4.2 180 100 Chlorodthoromomethane 180 U ug/kg Dry 4.2 180 100 Chlorodthane 180 U ug/kg Dry 3.2 180 100 Chlorothane 180 U ug/kg Dry 3.5 180 100 cis-1.2-Dichlorothene 350 ug/kg Dry 3.5 180 100 Cis-1.2-Dichlorothene 180 U ug/kg Dry 1.6 180 100 Dichlorodifluoromethane <td>2-Hexanone</td> <td></td> <td>180</td> <td>U</td> <td>ug/Kg Dry</td> <td>28</td> <td>1</td> <td>180</td> <td>100</td>	2-Hexanone		180	U	ug/Kg Dry	28	1	180	100	
Benzene 180 U ug/Kg Dry 3.5 180 100 Bromoform 180 U ug/Kg Dry 2.8 180 100 Bromoform 180 U ug/Kg Dry 2.7 180 100 Carbon disulfide 180 U ug/Kg Dry 5.8 180 100 Carbon tetrachloride 180 U ug/Kg Dry 5.5 180 100 Chlorobornomethane 180 U ug/Kg Dry 5.5 180 100 Chlorobornomethane 180 U ug/Kg Dry 4.2 180 100 Chlorobornomethane 180 U ug/Kg Dry 3.2 180 100 Chloroform 180 U ug/Kg Dry 3.5 180 100 cis-1.3-Dichloropropene 180 U ug/Kg Dry 3.2 180 100 Dibromomethane 180 U ug/Kg Dry 1.6 180 100 Dichlorodifluoromethane<	Acetone		880	U	ug/Kg Dry	37	8	380	100	
Bromoform 180 U ug/Kg Dry 2.8 180 100 Bromomethane 180 U* ug/Kg Dry 2.7 180 100 Carbon disulfide 180 U ug/Kg Dry 5.8 180 100 Carbon tetrachloride 180 U ug/Kg Dry 5.5 180 100 Chlorobbromomethane 180 U ug/Kg Dry 5.5 180 100 Chlorobbromomethane 180 U ug/Kg Dry 4.2 180 100 Chlorobbromomethane 180 U ug/Kg Dry 4.2 180 100 Chlorobbromomethane 180 U ug/Kg Dry 3.2 180 100 Chlorobbromethane 180 U ug/Kg Dry 3.5 180 100 cis-1,3-Dichloropropene 180 U ug/Kg Dry 3.6 180 100 Dichorodifluoromethane 180 U ug/Kg Dry 1.6 180 100	Benzene		180	U	ug/Kg Dry	3.5	1	180	100	
Bromomethane 180 U* ug/Kg Dry 2.7 180 100 Carbon disulfide 180 U ug/Kg Dry 5.8 180 100 Carbon tetrachloride 180 U ug/Kg Dry 5.5 180 100 Chloroberzene 180 U ug/Kg Dry 5.5 180 100 Chlorobiromomethane 180 U ug/Kg Dry 5.5 180 100 Chlorobromomethane 180 U ug/Kg Dry 4.2 180 100 Chloroform 180 U ug/Kg Dry 3.2 180 100 Chloroform 180 U ug/Kg Dry 3.5 180 100 Cis-1,3-Dichloroptene 180 U ug/Kg Dry 3.5 180 100 Dibroromethane 180 U ug/Kg Dry 5.7 180 100 Ethylenzene 180 U ug/Kg Dry 3.0 180 100 Ethylenzene	Bromoform		180	U	ug/Kg Dry	2.8	1	180	100	
Carbon disulfide 180 U ug/Kg Dry 5.8 180 100 Carbon tetrachloride 180 U ug/Kg Dry 5.7 180 100 Chlorobenzene 180 U ug/Kg Dry 5.5 180 100 Chlorobrommethane 180 U ug/Kg Dry 5.5 180 100 Chlorobrommethane 180 U ug/Kg Dry 6.2 180 100 Chlorobrommethane 180 U ug/Kg Dry 3.2 180 100 Chlorodiforom 180 U ug/Kg Dry 3.5 180 100 Chlorodifhane 180 U ug/Kg Dry 3.5 180 100 cis-1,2-Dichloroethene 350 ug/Kg Dry 3.5 180 100 Dibromomethane 180 U ug/Kg Dry 3.6 180 100 Dichlorodifluoromethane 180 U ug/Kg Dry 3.0 180 100 Ethyl methacrylate </td <td>Bromomethane</td> <td></td> <td>180</td> <td>U *</td> <td>ug/Kg Dry</td> <td>2.7</td> <td>1</td> <td>180</td> <td>100</td>	Bromomethane		180	U *	ug/Kg Dry	2.7	1	180	100	
Carbon tetrachloride 180 U ug/kg Dry 5.7 180 100 Chlorobenzene 180 U ug/kg Dry 5.5 180 100 Chlorobromomethane 180 U ug/kg Dry 5.5 180 100 Chlorodibromomethane 180 U ug/kg Dry 4.2 180 100 Chlorodibromomethane 180 U* ug/kg Dry 6.2 180 100 Chlorodibromomethane 180 U ug/kg Dry 3.2 180 100 Chlorodibromomethane 180 U ug/kg Dry 3.5 180 100 cis-1,2-Dichloroptene 180 U ug/kg Dry 3.5 180 100 Dibromomethane 180 U ug/kg Dry 3.7 180 100 Dichlorodifluoromethane 180 U ug/kg Dry 1.6 180 100 Ethyl methacrylate 180 U ug/kg Dry 8.0 180 100	Carbon disulfide		180	U	ug/Kg Dry	5.8	1	180	100	
Chlorobenzene 180 U ug/kg Dry 5.5 180 100 Chlorobromomethane 180 U ug/kg Dry 5.5 180 100 Chlorobromomethane 180 U ug/kg Dry 4.2 180 100 Chloroform 180 U ug/kg Dry 6.2 180 100 Chloroform 180 U ug/kg Dry 3.2 180 100 Chloroform 180 U ug/kg Dry 3.5 180 100 Chloroform 180 U ug/kg Dry 3.5 180 100 cis-1,2-Dichloroethene 350 ug/kg Dry 3.5 180 100 Dibromomethane 180 U ug/kg Dry 3.7 180 100 Dichorodifluoromethane 180 U ug/kg Dry 1.6 180 100 Ethyl methacrylate 180 U ug/kg Dry 6.9 180 100 Isopropylbenzene 180 <td>Carbon tetrachloride</td> <td></td> <td>180</td> <td>U</td> <td>ug/Kg Dry</td> <td>5.7</td> <td>1</td> <td>180</td> <td>100</td>	Carbon tetrachloride		180	U	ug/Kg Dry	5.7	1	180	100	
Chlorobromomethane 180 U ug/Kg Dry 5.5 180 100 Chlorodibromomethane 180 U ug/Kg Dry 4.2 180 100 Chlorodibromomethane 180 U* ug/Kg Dry 6.2 180 100 Chlorodibromomethane 180 U ug/Kg Dry 3.2 180 100 Chlorodibromethane 180 U ug/Kg Dry 3.5 180 100 cis-1,2-Dichloropthene 350 ug/Kg Dry 3.5 180 100 cis-1,3-Dichloropropene 180 U ug/Kg Dry 3.7 180 100 Dibromomethane 180 U ug/Kg Dry 1.6 180 100 Dichlorodifluoromethane 180 U ug/Kg Dry 1.7 180 100 Ethyl methacrylate 180 U ug/Kg Dry 8.9 180 100 Isopropylbenzene 180 U ug/Kg Dry 8.9 180 100	Chlorobenzene		180	U	ug/Kg Dry	5.5	1	180	100	
Chlorodibromomethane 180 U ug/Kg Dry 4.2 180 100 Chloroethane 180 U* ug/Kg Dry 6.2 180 100 Chloroofrm 180 U ug/Kg Dry 3.2 180 100 Chloroothane 180 U ug/Kg Dry 3.1 180 100 cis-1,2-Dichloroothene 350 ug/Kg Dry 3.5 180 100 cis-1,3-Dichloroppene 180 U ug/Kg Dry 3.5 180 100 Dibromomethane 180 U ug/Kg Dry 3.5 180 100 Bromodichloromethane 180 U ug/Kg Dry 1.6 180 100 Ethyl methacrylate 180 U ug/Kg Dry 3.0 180 100 Ethyl methacrylate 180 U ug/Kg Dry 8.0 180 100 Isopropylbenzene 180 U ug/Kg Dry 8.0 180 100 m-Xylene & p-Xylene </td <td>Chlorobromomethane</td> <td></td> <td>180</td> <td>U</td> <td>ug/Kg Dry</td> <td>5.5</td> <td>1</td> <td>180</td> <td>100</td>	Chlorobromomethane		180	U	ug/Kg Dry	5.5	1	180	100	
Chloroethane 180 U* ug/Kg Dry 6.2 180 100 Chloroform 180 U ug/Kg Dry 3.2 180 100 Chloroform 180 U ug/Kg Dry 3.1 180 100 Chloromethane 180 U ug/Kg Dry 3.2 180 100 cis-1,2-Dichloroethene 350 ug/Kg Dry 3.5 180 100 Dibromomethane 180 U ug/Kg Dry 3.2 180 100 Bromodichloromethane 180 U ug/Kg Dry 1.6 180 100 Dichlorodifluoromethane 180 U ug/Kg Dry 3.0 180 100 Ethyl methacrylate 180 U ug/Kg Dry 3.0 180 100 Espropylbenzene 180 U ug/Kg Dry 8.0 180 100 Isopropylbenzene 180 U ug/Kg Dry 2.7 180 100 Methyl er-butyl ether	Chlorodibromomethane		180	U	ug/Kg Dry	4.2	1	180	100	
Chloroform 180 U ug/Kg Dry 3.2 180 100 Chloromethane 180 U ug/Kg Dry 4.1 180 100 cis-1,2-Dichloroethene 350 ug/Kg Dry 3.5 180 100 cis-1,3-Dichloropropene 180 U ug/Kg Dry 3.2 180 100 Dibromomethane 180 U ug/Kg Dry 3.5 180 100 Dichlorodifluoromethane 180 U ug/Kg Dry 5.7 180 100 Ethyl methacrylate 180 U ug/Kg Dry 1.6 180 100 Ethyl methacrylate 180 U ug/Kg Dry 3.0 180 100 Ethyl methacrylate 180 U ug/Kg Dry 6.9 180 100 Isopropylbenzene 180 U ug/Kg Dry 2.7 180 100 Methyl-2-pentanone (MIBK) 180 U ug/Kg Dry 5.3 180 100 O-Xyl	Chloroethane		180	U *	ug/Kg Dry	6.2	1	180	100	
Chloromethane 180 U ug/Kg Dry 4.1 180 100 cis-1,2-Dichloroethene 350 ug/Kg Dry 3.5 180 100 cis-1,3-Dichloropropene 180 U ug/Kg Dry 3.2 180 100 Dibromomethane 180 U ug/Kg Dry 5.7 180 100 Bromodichloromethane 180 U ug/Kg Dry 1.6 180 100 Dichloromethane 180 U ug/Kg Dry 1.6 180 100 Ethyl methacrylate 180 U ug/Kg Dry 3.0 180 100 Ethylbenzene 180 U ug/Kg Dry 6.9 180 100 Isopropylbenzene 180 U ug/Kg Dry 8.0 180 100 Methyl-2-pentanone (MIBK) 180 U ug/Kg Dry 2.7 180 100 Methylene Chloride 180 U ug/Kg Dry 5.3 180 100 O-Xylene<	Chloroform		180	U	ug/Kg Dry	3.2	1	180	100	
cis-1,2-Dichloroethene 350 ug/Kg Dry 3.5 180 100 cis-1,3-Dichloropropene 180 U ug/Kg Dry 3.2 180 100 Dibromomethane 180 U ug/Kg Dry 5.7 180 100 Bromodichloromethane 180 U ug/Kg Dry 1.6 180 100 Dichlorodifluoromethane 180 U ug/Kg Dry 1.7 180 100 Ethyl methacrylate 180 U ug/Kg Dry 3.0 180 100 Ethyl methacrylate 180 U ug/Kg Dry 3.0 180 100 Isopropylbenzene 180 U ug/Kg Dry 8.0 180 100 Isopropylbenzene 180 U ug/Kg Dry 8.0 180 100 Methyl-2-pentanone (MIBK) 180 U ug/Kg Dry 2.7 180 100 Methylene Chloride 180 U ug/Kg Dry 5.3 180 100 o-Xylene 350 U ug/Kg Dry 4.6 350 100	Chloromethane		180	U	ug/Kg Dry	4.1	1	180	100	
cis-1,3-Dichloropropene 180 U ug/Kg Dry 3.2 180 100 Dibromomethane 180 U ug/Kg Dry 5.7 180 100 Bromodichloromethane 180 U ug/Kg Dry 1.6 180 100 Dichlorodifluoromethane 180 U ug/Kg Dry 1.7 180 100 Ethyl methacrylate 180 U ug/Kg Dry 3.0 180 100 Ethyl methacrylate 180 U ug/Kg Dry 3.0 180 100 Ethylbenzene 180 U ug/Kg Dry 6.9 180 100 Isopropylbenzene 180 U ug/Kg Dry 8.0 180 100 m-Xylene & p-Xylene 350 U ug/Kg Dry 2.8 180 100 4-Methyl-2-pentanone (MIBK) 180 U ug/Kg Dry 2.7 180 100 Methyl tert-butyl ether 180 U ug/Kg Dry 5.3 180 100 Styrene 350 U ug/Kg Dry 4.6 350 <	cis-1,2-Dichloroethene		350		ug/Kg Dry	3.5	1	180	100	
Dibronmethane 180 U ug/Kg Dry 5.7 180 100 Bromodichloromethane 180 U ug/Kg Dry 1.6 180 100 Dichlorodifluoromethane 180 U ug/Kg Dry 1.7 180 100 Ethyl methacrylate 180 U ug/Kg Dry 3.0 180 100 Ethylbenzene 180 U ug/Kg Dry 6.9 180 100 Isopropylbenzene 180 U ug/Kg Dry 8.0 180 100 Methyl-2-pentanone (MIBK) 180 U ug/Kg Dry 2.8 180 100 Methyl-2-pentanone (MIBK) 180 U ug/Kg Dry 2.7 180 100 Methylene Chloride 180 U ug/Kg Dry 5.3 180 100 o-Xylene 350 U ug/Kg Dry 4.6 350 100 Styrene 180 U ug/Kg Dry 1.8 180 100 T	cis-1,3-Dichloropropene	2	180	U	ug/Kg Dry	3.2	1	180	100	
Bromodichloromethane 180 U ug/Kg Dry 1.6 180 100 Dichlorodifluoromethane 180 U ug/Kg Dry 17 180 100 Ethyl methacrylate 180 U ug/Kg Dry 3.0 180 100 Ethyl methacrylate 180 U ug/Kg Dry 3.0 180 100 Isopropylbenzene 180 U ug/Kg Dry 6.9 180 100 m-Xylene & p-Xylene 350 U ug/Kg Dry 8.0 180 100 4-Methyl-2-pentanone (MIBK) 180 U ug/Kg Dry 28 180 100 Methyl tert-butyl ether 180 U ug/Kg Dry 2.7 180 100 Methylene Chloride 180 U ug/Kg Dry 4.6 350 100 o-Xylene 350 U ug/Kg Dry 4.6 350 100 Styrene 180 U ug/Kg Dry 4.6 350 100 Toluene 180 U ug/Kg Dry 18 180 100 <td>Dibromomethane</td> <td></td> <td>180</td> <td>U</td> <td>ua/Ka Drv</td> <td>5.7</td> <td>1</td> <td>180</td> <td>100</td>	Dibromomethane		180	U	ua/Ka Drv	5.7	1	180	100	
Dichlorodifluoromethane 180 U ug/Kg Dry 17 180 100 Ethyl methacrylate 180 U ug/Kg Dry 3.0 180 100 Ethyl methacrylate 180 U ug/Kg Dry 3.0 180 100 Ethyl methacrylate 180 U ug/Kg Dry 6.9 180 100 Isopropylbenzene 180 U ug/Kg Dry 8.0 180 100 m-Xylene & p-Xylene 350 U ug/Kg Dry 16 350 100 4-Methyl-2-pentanone (MIBK) 180 U ug/Kg Dry 2.7 180 100 Methyl tert-butyl ether 180 U ug/Kg Dry 5.3 180 100 Methylene Chloride 180 U ug/Kg Dry 4.6 350 100 Styrene 180 U ug/Kg Dry 4.6 350 100 Tetrachloroethene 180 U ug/Kg Dry 18 180 100 Toluene 180 U ug/Kg Dry 3.5 180 100	Bromodichloromethane		180	Ū	ua/Ka Drv	1.6		180	100	
Ethyl methacrylate180Uug/Kg Dry3.0180100Ethyl methacrylate180Uug/Kg Dry6.9180100Isopropylbenzene180Uug/Kg Dry8.0180100m-Xylene & p-Xylene350Uug/Kg Dry163501004-Methyl-2-pentanone (MIBK)180Uug/Kg Dry28180100Methyl tert-butyl ether180Uug/Kg Dry2.7180100Methylene Chloride180Uug/Kg Dry5.3180100o-Xylene350Uug/Kg Dry5.3180100O-Xylene350Uug/Kg Dry4.6350100Styrene180Uug/Kg Dry4.6350100Tetrachloroethene180Uug/Kg Dry18180100Toluene180Uug/Kg Dry3.5180100trans-1,2-Dichloroethene180Uug/Kg Dry2.8180100trans-1,3-Dichloropropene180Uug/Kg Dry2.8180100trans-1,4-Dichloro-2-butene180Uug/Kg Dry2.8180100	Dichlorodifluoromethan	0	180	U	ua/Ka Drv	17	1	180	100	
Ethylbenzene180Uug/Kg Dry6.9180100Isopropylbenzene180Uug/Kg Dry8.0180100m-Xylene & p-Xylene350Uug/Kg Dry163501004-Methyl-2-pentanone (MIBK)180Uug/Kg Dry28180100Methyl tert-butyl ether180Uug/Kg Dry2.7180100Methylene Chloride180Uug/Kg Dry5.3180100o-Xylene350Uug/Kg Dry4.6350100Styrene180Uug/Kg Dry4.6350100Tetrachloroethene180Uug/Kg Dry4.2180100Toluene180Uug/Kg Dry3.5180100trans-1,2-Dichloroethene180Uug/Kg Dry3.5180100trans-1,3-Dichloropropene180Uug/Kg Dry2.8180100trans-1,4-Dichloro-2-butene180Uug/Kg Dry2.8180100	Ethyl methacrylate		180	Ū	ua/Ka Drv	3.0		180	100	
Isopropylbenzene 180 U ug/Kg Dry 8.0 180 100 m-Xylene & p-Xylene 350 U ug/Kg Dry 16 350 100 4-Methyl-2-pentanone (MIBK) 180 U ug/Kg Dry 28 180 100 Methyl tert-butyl ether 180 U ug/Kg Dry 2.7 180 100 Methylene Chloride 180 U ug/Kg Dry 5.3 180 100 o-Xylene 350 U ug/Kg Dry 5.3 180 100 o-Xylene 350 U ug/Kg Dry 4.6 350 100 Styrene 180 U ug/Kg Dry 4.2 180 100 Tetrachloroethene 48000 E ug/Kg Dry 18 180 100 Toluene 180 U ug/Kg Dry 3.5 180 100 trans-1,2-Dichloroethene 180 U ug/Kg Dry 2.8 180 100 trans-1,3-Dichloropropene 180 U ug/Kg Dry 2.8 180 100	Ethylbenzene		180	Ū	ua/Ka Drv	6.9		180	100	
m-Xylene & p-Xylene 350 U ug/Kg Dry 16 350 100 4-Methyl-2-pentanone (MIBK) 180 U ug/Kg Dry 28 180 100 Methyl tert-butyl ether 180 U ug/Kg Dry 2.7 180 100 Methylene Chloride 180 U ug/Kg Dry 5.3 180 100 o-Xylene 350 U ug/Kg Dry 5.3 180 100 o-Xylene 350 U ug/Kg Dry 4.6 350 100 Styrene 180 U ug/Kg Dry 4.2 180 100 Tetrachloroethene 48000 E ug/Kg Dry 18 180 100 Toluene 180 U ug/Kg Dry 3.5 180 100 trans-1,2-Dichloroethene 180 U ug/Kg Dry 6.4 180 100 trans-1,3-Dichloropropene 180 U ug/Kg Dry 2.8 180 100 trans-1,4-Dichloro-2-butene 180 U ug/Kg Dry 14 180 100	Isopropylbenzene		180	U	ua/Ka Drv	8.0		180	100	
4-Methyl-2-pentanone (MIBK) 180 U ug/Kg Dry 28 180 100 Methyl tert-butyl ether 180 U ug/Kg Dry 2.7 180 100 Methylene Chloride 180 U ug/Kg Dry 5.3 180 100 o-Xylene 350 U ug/Kg Dry 4.6 350 100 Styrene 180 U ug/Kg Dry 4.2 180 100 Tetrachloroethene 48000 E ug/Kg Dry 18 180 100 Toluene 180 U ug/Kg Dry 3.5 180 100 trans-1,2-Dichloroethene 180 U ug/Kg Dry 3.5 180 100 trans-1,3-Dichloropropene 180 U ug/Kg Dry 2.8 180 100 trans-1,4-Dichloro-2-butene 180 U ug/Kg Dry 2.8 180 100	m-Xvlene & p-Xvlene		350	Ū	ua/Ka Drv	16	3	350	100	
Methyl tert-butyl ether 180 U ug/Kg Dry 2.7 180 100 Methyl tert-butyl ether 180 U ug/Kg Dry 5.3 180 100 Methylene Chloride 180 U ug/Kg Dry 5.3 180 100 o-Xylene 350 U ug/Kg Dry 4.6 350 100 Styrene 180 U ug/Kg Dry 4.2 180 100 Tetrachloroethene 48000 E ug/Kg Dry 18 180 100 Toluene 180 U ug/Kg Dry 3.5 180 100 trans-1,2-Dichloroethene 180 U ug/Kg Dry 3.5 180 100 trans-1,3-Dichloropropene 180 U ug/Kg Dry 2.8 180 100 trans-1,4-Dichloro-2-butene 180 U ug/Kg Dry 2.8 180 100	4-Methyl-2-pentanone (MIBK)	180	U	ua/Ka Drv	28		180	100	
Methylene Chloride 180 U ug/Kg Dry 5.3 180 100 o-Xylene 350 U ug/Kg Dry 4.6 350 100 Styrene 180 U ug/Kg Dry 4.6 350 100 Tetrachloroethene 48000 E ug/Kg Dry 18 180 100 Toluene 180 U ug/Kg Dry 3.5 180 100 trans-1,2-Dichloroethene 180 U ug/Kg Dry 3.5 180 100 trans-1,3-Dichloropropene 180 U ug/Kg Dry 2.8 180 100 trans-1,4-Dichloro-2-butene 180 U ug/Kg Dry 14 180 100	Methyl tert-butyl ether	,	180	U	ua/Ka Drv	2.7		180	100	
o-Xylene 350 U ug/Kg Dry 4.6 350 100 Styrene 180 U ug/Kg Dry 4.6 350 100 Styrene 180 U ug/Kg Dry 4.2 180 100 Tetrachloroethene 48000 E ug/Kg Dry 18 180 100 Toluene 180 U ug/Kg Dry 3.5 180 100 trans-1,2-Dichloroethene 180 U ug/Kg Dry 6.4 180 100 trans-1,3-Dichloropropene 180 U ug/Kg Dry 2.8 180 100 trans-1,4-Dichloro-2-butene 180 U ug/Kg Dry 14 180 100	Methylene Chloride		180	Ū	ua/Ka Drv	5.3		180	100	
Styrene 180 U ug/Kg Dry 4.2 180 100 Tetrachloroethene 48000 E ug/Kg Dry 18 180 100 Toluene 180 U ug/Kg Dry 18 180 100 trans-1,2-Dichloroethene 180 U ug/Kg Dry 3.5 180 100 trans-1,3-Dichloropropene 180 U ug/Kg Dry 6.4 180 100 trans-1,4-Dichloro-2-butene 180 U ug/Kg Dry 14 180 100	o-Xvlene		350	U	ug/Ka Dry	4.6	3	350	100	
Tetrachloroethene 48000 E ug/Kg Dry 18 180 100 Toluene 180 U ug/Kg Dry 3.5 180 100 trans-1,2-Dichloroethene 180 U ug/Kg Dry 6.4 180 100 trans-1,3-Dichloropropene 180 U ug/Kg Dry 2.8 180 100 trans-1,4-Dichloro-2-butene 180 U ug/Kg Dry 14 180 100	Styrene		180	U	ua/Ka Drv	4.2		180	100	
Toluene 180 U ug/Kg Dry 3.5 180 100 trans-1,2-Dichloroethene 180 U ug/Kg Dry 6.4 180 100 trans-1,3-Dichloropropene 180 U ug/Kg Dry 2.8 180 100 trans-1,4-Dichloro-2-butene 180 U ug/Kg Dry 14 180 100	Tetrachloroethene		48000	E	ug/Ka Drv	18	-	180	100	
trans-1,2-Dichloroethene 180 U ug/Kg Dry 6.4 180 100 trans-1,3-Dichloropropene 180 U ug/Kg Dry 2.8 180 100 trans-1,4-Dichloro-2-butene 180 U ug/Kg Dry 14 180 100	Toluene		180	_ U	ug/Ka Drv	3.5	1	180	100	
trans-1,3-Dichloropropene 180 U ug/Kg Dry 2.8 180 100 trans-1,4-Dichloro-2-butene 180 U ug/Kg Dry 14 180 100	trans-1.2-Dichloroethen	e	180	Ŭ	ug/Ka Drv	6.4	-	180	100	
trans-1,4-Dichloro-2-butene 180 U ua/Ka Drv 14 180 100	trans-1 3-Dichloroprope	- ne	180	Ŭ	ug/Ka Drv	2.8	1	180	100	
	trans-1.4-Dichloro-2-but	tene	180	Ū	ua/Ka Drv	14		180	100	

Client Sample ID: SP-47-12-14-051214 Lab Sample ID: 420-77953-7			Date Sa Date Re Client M Percent	ampled: eceived: /latrix: t Solids:	05/12/2014 1130 05/21/2014 0900 Solid 88	
Analyte	Result/Qua	lifier	Unit	MDL	RL	Dilution
Trichloroethene	130	J	ug/Kg Dry	7.1	180	100
Trichlorofluoromethane	180	U	ug/Kg Dry	9.7	180	100
Vinyl chloride	180	U	ug/Kg Dry	5.5	180	100
Xylenes, Total	350	U	ug/Kg Dry	18	350	100
1,1,1-Trichloroethane	180	U	ug/Kg Dry	4.4	180	100
Freon 113	180	U	ug/Kg Dry	5.3	180	100
1,1,2-Trichloroethane	180	U	ug/Kg Dry	5.8	180	100
1,1-Dichloroethane	180	U	ug/Kg Dry	2.5	180	100
1,1-Dichloroethene	180	U	ug/Kg Dry	5.8	180	100
1,1-Dichloropropene	180	U	ug/Kg Dry	9.0	180	100
1,2-Dibromo-3-Chloropropane	180	U	ug/Kg Dry	5.5	180	100
1,2-Dichloroethane	180	U	ug/Kg Dry	3.5	180	100
1,2-Dichloropropane	180	U	ug/Kg Dry	3.4	180	100
1,3-Dichloropropane	180	U	ug/Kg Dry	3.9	180	100
2,2-Dichloropropane	180	U	ug/Kg Dry	3.9	180	100
1,2-Dibromoethane	180	U	ug/Kg Dry	5.7	180	100
2-Butanone (MEK)	180	U	ug/Kg Dry	53	180	100
1,1,2,2-Tetrachloroethane	180	U	ug/Kg Dry	3.5	180	100
1,2,3-Trichloropropane	180	U	ug/Kg Dry	3.9	180	100
Tetrahydrofuran	180	U	ug/Kg Dry	29	180	100
Surrogate					Acceptance Limits	
Toluene-d8 (Surr)	88		%		72 - 143	
1,2-Dichloroethane-d4 (Surr)	83		%		73 - 128	
4-Bromofluorobenzene	90		%		49 - 138	
Method: 8260C Run Type: DL Prep Method: 5035-H Tetrachloroethene	52000	D	Date Analy Date Prepa ug/Kg Dry	zed: ared: 180	05/21/2014 1616 05/21/2014 1207 1800	1000

Client Sample ID: SP-47-18-20-051214 Lab Sample ID: 420-77953-8			Date Sa Date Re Client M Percent	ampled: eceived: latrix: Solids:	05/12/2014 05/21/2014 Solid 89	14 1132 14 0900	
Analyte	Result/Qual	ifier	Unit	MDL		RL	Dilution
Method: 8260C			Date Analy	zed:	05/21/2014	1938	
Prep Methoa: 5035-H	220		Date Prepa	areo:	03/21/2014	1207	100
1,2,3-Trichlorobenzene	220	0	ug/Kg Dry	10		220	100
1,2,4-1 richlorobenzene	220	U	ug/Kg Dry	16		220	100
1,2-Dichlorobenzene	220	U	ug/Kg Dry	6.9		220	100
1,3,5-Trimethyldenzene	220	0	ug/Kg Dry	11		220	100
	220	0	ug/Kg Dry	9.9		220	100
1,4-Dichlorobenzene	220	U	ug/Kg Dry	11		220	100
1,4-Dioxane	320	0	ug/Kg Dry	280		320	100
2-Hexanone	220	U	ug/Kg Dry	35		220	100
Acetone	1100	U	ug/Kg Dry	45		1100	100
Benzene	220	U	ug/Kg Dry	4.3		220	100
Bromotorm	220	U	ug/Kg Dry	3.5		220	100
Bromomethane	220	U	ug/Kg Dry	3.2		220	100
Carbon disulfide	220	U	ug/Kg Dry	7.1		220	100
Carbon tetrachloride	220	U	ug/Kg Dry	6.9		220	100
Chlorobenzene	220	U	ug/Kg Dry	6.7		220	100
Chlorobromomethane	220	U	ug/Kg Dry	6.7		220	100
Chlorodibromomethane	220	U	ug/Kg Dry	5.2		220	100
Chloroethane	220	U	ug/Kg Dry	7.6		220	100
Chloroform	220	U	ug/Kg Dry	3.9		220	100
Chloromethane	220	U	ug/Kg Dry	5.0		220	100
cis-1,2-Dichloroethene	220	U	ug/Kg Dry	4.3		220	100
cis-1,3-Dichloropropene	220	U	ug/Kg Dry	3.9		220	100
Dibromomethane	220	U	ug/Kg Dry	6.9		220	100
Bromodichloromethane	220	U	ug/Kg Dry	1.9		220	100
Dichlorodifluoromethane	220	U	ug/Kg Dry	21		220	100
Ethyl methacrylate	220	U	ug/Kg Dry	3.7		220	100
Ethylbenzene	220	U	ug/Kg Dry	8.4		220	100
Isopropylbenzene	220	U	ug/Kg Dry	9.7		220	100
m-Xylene & p-Xylene	430	U	ug/Kg Dry	19		430	100
4-Methyl-2-pentanone (MIBK)	220	U	ug/Kg Dry	35		220	100
Methyl tert-butyl ether	220	U	ug/Kg Dry	3.2		220	100
Methylene Chloride	220	U	ug/Kg Dry	6.5		220	100
o-Xvlene	430	U	ua/Ka Drv	5.6		430	100
Styrene	220	U	ua/Ka Drv	5.2		220	100
Tetrachloroethene	15000		ug/Ka Drv	22		220	100
Toluene	220	U	ua/Ka Drv	4.3		220	100
trans-1.2-Dichloroethene	220	Ŭ	ua/Ka Drv	7.8		220	100
trans-1.3-Dichloropropene	220	Ū	ua/Ka Drv	3.5		220	100
trans-1,4-Dichloro-2-butene	220	Ū	ug/Kg Drv	17		220	100

Client Sample ID: SP-47-18-20-051214 Lab Sample ID: 420-77953-8				Date S Date R Client M Percen	ampled: eceived: ⁄latrix: t Solids:	05/12/2014 1132 05/21/2014 0900 Solid 89	
Analyte		Result/Qua	alifier	Unit	MDL	RL	Dilution
Trichloroethene		110	J	ug/Kg Dry	8.6	220	100
Trichlorofluoromethane	9	220	U	ug/Kg Dry	12	220	100
Vinyl chloride		220	U	ug/Kg Dry	6.7	220	100
Xylenes, Total		430	U	ug/Kg Dry	22	430	100
1,1,1-Trichloroethane		220	U	ug/Kg Dry	5.4	220	100
Freon 113		220	U	ug/Kg Dry	6.5	220	100
1,1,2-Trichloroethane		220	U	ug/Kg Dry	7.1	220	100
1,1-Dichloroethane		220	U	ug/Kg Dry	3.0	220	100
1,1-Dichloroethene		220	U	ug/Kg Dry	7.1	220	100
1,1-Dichloropropene		220	U	ug/Kg Dry	11	220	100
1,2-Dibromo-3-Chlorop	oropane	220	U	ug/Kg Dry	6.7	220	100
1,2-Dichloroethane		220	U	ug/Kg Dry	4.3	220	100
1,2-Dichloropropane		220	U	ug/Kg Dry	4.1	220	100
1,3-Dichloropropane		220	U	ug/Kg Dry	4.8	220	100
2,2-Dichloropropane		220	U	ug/Kg Dry	4.8	220	100
1,2-Dibromoethane		220	U	ug/Kg Dry	6.9	220	100
2-Butanone (MEK)		220	U	ug/Kg Dry	65	220	100
1,1,2,2-Tetrachloroetha	ane	220	U	ug/Kg Dry	4.3	220	100
1,2,3-Trichloropropane		220	U	ug/Kg Dry	4.8	220	100
Tetrahydrofuran		220	U	ug/Kg Dry	35	220	100
Surrogate						Acceptance Limits	
Toluene-d8 (Surr)		95		%		72 - 143	
1,2-Dichloroethane-d4	(Surr)	92		%		73 - 128	
4-Bromofluorobenzene		100		%		49 - 138	

Client Sample ID: Lab Sample ID:	SP-48-10-12-051214 420-77953-9			Date Sa Date Re Client M Percent	ampled: eceived: /atrix: t Solids:	05/12/2014 05/21/2014 Solid 88	1740 0900	
Analyte		Result/Qua	lifier	Unit	MDL		RL	Dilution
Method: 8260C				Date Analy	zed:	05/21/2014	1650	
Prep Method: 5035-H				Date Prepa	ared:	05/21/2014	1207	
1,2,3-Trichlorobenzene		180	U	ug/Kg Dry	13		180	100
1,2,4-Trichlorobenzene		180	U	ug/Kg Dry	13		180	100
1,2-Dichlorobenzene		180	U	ug/Kg Dry	5.6		180	100
1,3,5-Trimethylbenzene		180	U	ug/Kg Dry	9.3		180	100
1,3-Dichlorobenzene		180	U	ug/Kg Dry	8.1		180	100
1,4-Dichlorobenzene		180	U	ug/Kg Dry	9.3		180	100
1,4-Dioxane		260	U	ug/Kg Dry	230		260	100
2-Hexanone		180	U	ug/Kg Dry	28		180	100
Acetone		880	U	ug/Kg Dry	37		880	100
Benzene		180	U	ug/Kg Dry	3.5		180	100
Bromoform		180	U	ug/Kg Dry	2.8		180	100
Bromomethane		180	U	ug/Kg Dry	2.6		180	100
Carbon disulfide		180	U	ug/Kg Dry	5.8		180	100
Carbon tetrachloride		180	U	ug/Kg Dry	5.6		180	100
Chlorobenzene		180	U	ug/Kg Dry	5.4		180	100
Chlorobromomethane		180	U	ug/Kg Dry	5.4		180	100
Chlorodibromomethane		180	U	ug/Kg Dry	4.2		180	100
Chloroethane		180	U	ug/Kg Dry	6.1		180	100
Chloroform		180	U	ug/Kg Dry	3.2		180	100
Chloromethane		180	U	ug/Kg Dry	4.0		180	100
cis-1,2-Dichloroethene		160	J	ug/Kg Dry	3.5		180	100
cis-1,3-Dichloropropene		180	U	ug/Kg Dry	3.2		180	100
Dibromomethane		180	U	ug/Kg Dry	5.6		180	100
Bromodichloromethane		180	U	ug/Kg Dry	1.6		180	100
Dichlorodifluoromethane	2	180	U	ug/Kg Dry	17		180	100
Ethyl methacrylate		180	U	ug/Kg Dry	3.0		180	100
Ethvlbenzene		180	U	ua/Ka Drv	6.8		180	100
Isopropylbenzene		180	U	ug/Kg Dry	7.9		180	100
m-Xylene & p-Xylene		350	U	ug/Kg Dry	16		350	100
4-Methyl-2-pentanone (I	MIBK)	180	U	ua/Ka Drv	28		180	100
Methyl tert-butyl ether	,	180	U	ug/Kg Dry	2.6		180	100
Methylene Chloride		180	U	ua/Ka Drv	5.3		180	100
o-Xvlene		350	U	ua/Ka Drv	4.6		350	100
Styrene		180	U	ug/Kg Dry	4.2		180	100
Tetrachloroethene		15000		ua/Ka Drv	18		180	100
Toluene		180	U	ug/Ka Drv	3.5		180	100
trans-1,2-Dichloroethene	e	180	U	ug/Kg Drv	6.3		180	100
trans-1,3-Dichloroprope	ne	180	U	ug/Ka Drv	2.8		180	100
trans-1,4-Dichloro-2-but	ene	180	U	ug/Kg Dry	14		180	100

Client Sample ID: SP-48-10-12-051214 Lab Sample ID: 420-77953-9				Date S Date F Client Percer	ampled: Received: Matrix: nt Solids:	05/12/2014 1740 05/21/2014 0900 Solid 88	
Analyte		Result/Qua	alifier	Unit	MDL	RL	Dilution
Trichloroethene		44	J	ug/Kg Dry	7.0	180	100
Trichlorofluoromethane		180	U	ug/Kg Dry	9.7	180	100
Vinyl chloride		180	U	ug/Kg Dry	5.4	180	100
Xylenes, Total		350	U	ug/Kg Dry	18	350	100
1,1,1-Trichloroethane		180	U	ug/Kg Dry	4.4	180	100
Freon 113		180	U	ug/Kg Dry	5.3	180	100
1,1,2-Trichloroethane		180	U	ug/Kg Dry	5.8	180	100
1,1-Dichloroethane		180	U	ug/Kg Dry	2.5	180	100
1,1-Dichloroethene		180	U	ug/Kg Dry	5.8	180	100
1,1-Dichloropropene		180	U	ug/Kg Dry	9.0	180	100
1,2-Dibromo-3-Chlorop	opane	180	U	ug/Kg Dry	5.4	180	100
1,2-Dichloroethane		180	U	ug/Kg Dry	3.5	180	100
1,2-Dichloropropane		180	U	ug/Kg Dry	3.3	180	100
1,3-Dichloropropane		180	U	ug/Kg Dry	3.9	180	100
2,2-Dichloropropane		180	U	ug/Kg Dry	3.9	180	100
1,2-Dibromoethane		180	U	ug/Kg Dry	5.6	180	100
2-Butanone (MEK)		180	U	ug/Kg Dry	53	180	100
1,1,2,2-Tetrachloroetha	ne	180	U	ug/Kg Dry	3.5	180	100
1,2,3-Trichloropropane		180	U	ug/Kg Dry	3.9	180	100
Tetrahydrofuran		180	U	ug/Kg Dry	29	180	100
Surrogate						Acceptance Limits	
Toluene-d8 (Surr)		93		%		72 - 143	
1,2-Dichloroethane-d4	Surr)	93		%		73 - 128	
4-Bromofluorobenzene		102		%		49 - 138	

Analyte Result/Qualifier Unit MDL RL Diduction Method: £280C Date Prepared: 05/21/2014 1207 12.3-Trichlorobenzane 200 U ug/Kg Dry 15 200 100 1.2-Ucinchlorobenzane 200 U ug/Kg Dry 6.5 200 100 1.3-Strimethylbenzene 200 U ug/Kg Dry 9.4 200 100 1.3-Dichlorobenzene 200 U ug/Kg Dry 9.4 200 100 1.4-Dichlorobenzene 200 U ug/Kg Dry 3.3 200 100 1.4-Dichlorobenzene 200 U ug/Kg Dry 3.3 200 100 1.4-Dichlorobenzene 200 U ug/Kg Dry 3.3 200 100 2.4-Exanone 200 U ug/Kg Dry 3.3 200 100 Bromorethane 200 U ug/Kg Dry 6.5 200 100 Carbon tetrachioride 200	Client Sample ID: Lab Sample ID:	SP-48-18-20-051214 420-77953-10		Date Sampled: Date Received: Client Matrix: Percent Solids:		05/12/2014 131 05/21/2014 090 Solid 88	5 00	
Method: 3280C Date Analyzed: 05/21/2014 1718 Prop Method: 5053-H 05/21/2014 1207 1.2.3-Trickhorobenzene 200 U ug/Kg Dry 15 200 100 1.2-Dichkorobenzene 200 U ug/Kg Dry 15 200 100 1.3-Diricht/blonzene 200 U ug/Kg Dry 94 200 100 1.3-Dichkorobenzene 200 U ug/Kg Dry 34 200 100 1.4-Dickhorobenzene 200 U ug/Kg Dry 33 200 100 1.4-Dickhorobenzene 200 U ug/Kg Dry 43 1000 100 2-Hexanone 200 U ug/Kg Dry 3.1 200 100 Bromorethane 200 U ug/Kg Dry 6.7 200 100 Carbon tetracholde 200 U ug/Kg Dry 6.3 200 100 Chromorethane 200 U ug/Kg Dry <	Analyte		Result/Qua	lifier	Unit	MDL	RL	Dilution
Prep Method: Bate Prepared: US212014 1207 1.2.3-Trichlorobenzene 200 U ug/kg Dry 15 200 100 1.2.3-Trichlorobenzene 200 U ug/kg Dry 15 200 100 1.3-Drindright/benzene 200 U ug/kg Dry 11 200 100 1.3-Dichlorobenzene 200 U ug/kg Dry 94 200 100 1.4-Dickhorobenzene 200 U ug/kg Dry 20 100 1.4-Dickhorobenzene 200 U ug/kg Dry 20 100 1.4-Dickhorobenzene 200 U ug/kg Dry 33 200 100 2-Hexanone 200 U ug/kg Dry 3.3 200 100 Benzene 200 U ug/kg Dry 3.3 200 100 Carbon tetrachloide 200 U ug/kg Dry 6.3 200 100 Chiorobtramomethane 200 U ug/kg Dry 7.1 200 100<	Method: 8260C				Date Analy	zed:	05/21/2014 171	8
1,2,4-Tichlorobenzene 200 U ug/Kg Dry 15 200 100 1,2,4-Tichlorobenzene 200 U ug/Kg Dry 6.5 200 100 1,3-5-Tinmethylbenzene 200 U ug/Kg Dry 6.5 200 100 1,3-5-Tinmethylbenzene 200 U ug/Kg Dry 9.4 200 100 1,4-Dichlorobenzene 200 U ug/Kg Dry 33 200 100 1,4-Dickane 200 U ug/Kg Dry 33 200 100 2-Hexanone 200 U ug/Kg Dry 3.3 200 100 Benzene 200 U ug/Kg Dry 3.3 200 100 Bromoform 200 U ug/Kg Dry 3.3 200 100 Carbon disulfde 200 U ug/Kg Dry 6.5 200 100 Chlorobenzene 200 U ug/Kg Dry 6.3 200 100 Chlorobenzene 200 U ug/Kg Dry 7.1 200 100 <td< th=""><th>Prep Method: 5035-H</th><th>l</th><th></th><th></th><th>Date Prepa</th><th>ared:</th><th>05/21/2014 120</th><th>)7</th></td<>	Prep Method: 5035-H	l			Date Prepa	ared:	05/21/2014 120)7
1,2-A:Trichlorobenzene 200 U ug/Kg Dry 15 200 100 1,3-Dichlorobenzene 200 U ug/Kg Dry 11 200 100 1,3-Dichlorobenzene 200 U ug/Kg Dry 11 200 100 1,4-Dichlorobenzene 200 U ug/Kg Dry 260 310 100 1,4-Dichlorobenzene 300 U ug/Kg Dry 260 310 100 2-Hexanone 200 U ug/Kg Dry 4.3 1000 100 Senzene 200 U ug/Kg Dry 3.3 200 100 Bromomethane 200 U ug/Kg Dry 6.5 200 100 Carbon tetrachioride 200 U ug/Kg Dry 6.5 200 100 Chiorobenzene 200 U ug/Kg Dry 6.5 200 100 Carbon tetrachioride 200 U ug/Kg Dry 6.3 200 100 Chiorobenzene 200 U ug/Kg Dry 7.1 200 100 <tr< td=""><td>1,2,3-Trichlorobenzene</td><td></td><td>200</td><td>U</td><td>ug/Kg Dry</td><td>15</td><td>200</td><td>100</td></tr<>	1,2,3-Trichlorobenzene		200	U	ug/Kg Dry	15	200	100
1.2-Dichlorobenzene 200 U ug/Kg Dry 6.5 200 100 1.3-Dichlorobenzene 200 U ug/Kg Dry 9.4 200 100 1.4-Dichlorobenzene 200 U ug/Kg Dry 9.4 200 100 1.4-Dickname 310 U ug/Kg Dry 260 310 100 2-Hexanone 200 U ug/Kg Dry 33 200 100 Acetone 1000 U ug/Kg Dry 4.1 200 100 Benzene 200 U ug/Kg Dry 4.1 200 100 Bromoform 200 U ug/Kg Dry 6.5 200 100 Carbon disulfde 200 U ug/Kg Dry 6.5 200 100 Chiorobomomethane 200 U ug/Kg Dry 6.3 200 100 Chiorobomomethane 200 U ug/Kg Dry 4.7 200 100 Chiorobomomethane 200 U ug/Kg Dry 4.7 200 100 Chiorodinom	1,2,4-Trichlorobenzene		200	U	ug/Kg Dry	15	200	100
1,3.5-Timethylbenzene 200 U ug/kg Dry 9.4 200 100 1.4-Dichlorobenzene 200 U ug/kg Dry 11 200 100 1.4-Dichlorobenzene 200 U ug/kg Dry 11 200 100 1.4-Dichlorobenzene 200 U ug/kg Dry 33 200 100 2-Hexanone 200 U ug/kg Dry 43 1000 100 Bernene 200 U ug/kg Dry 3.1 200 100 Bromoform 200 U ug/kg Dry 3.1 200 100 Carbon tetrachloride 200 U ug/kg Dry 6.5 200 100 Chorobromomethane 200 U ug/kg Dry 6.3 200 100 Chlorobromomethane 200 U ug/kg Dry 4.9 200 100 Chlorobromomethane 200 U ug/kg Dry 3.7 200 100 Chlorobromomethane 200 U ug/kg Dry 3.7 200 100 <t< td=""><td>1,2-Dichlorobenzene</td><td></td><td>200</td><td>U</td><td>ug/Kg Dry</td><td>6.5</td><td>200</td><td>100</td></t<>	1,2-Dichlorobenzene		200	U	ug/Kg Dry	6.5	200	100
1,3-Dichlorobenzene 200 U ug/kg Dry 9.4 200 100 1,4-Dichlorobenzene 200 U ug/kg Dry 260 310 100 2-Hexanone 200 U ug/kg Dry 33 200 100 2-Hexanone 200 U ug/kg Dry 43 1000 100 Benzene 200 U ug/kg Dry 4.1 200 100 Bromoform 200 U ug/kg Dry 3.3 200 100 Bromoform 200 U ug/kg Dry 3.1 200 100 Carbon disulfde 200 U ug/kg Dry 6.7 200 100 Carbon disulfde 200 U ug/kg Dry 6.3 200 100 Chlorobenzene 200 U ug/kg Dry 7.1 200 100 Chlorobenzene 200 U ug/kg Dry 3.7 200 100 Chlorobenzene 200 U ug/kg Dry 3.7 200 100 Chlorobenzene <td< td=""><td>1,3,5-Trimethylbenzene</td><td></td><td>200</td><td>U</td><td>ug/Kg Dry</td><td>11</td><td>200</td><td>100</td></td<>	1,3,5-Trimethylbenzene		200	U	ug/Kg Dry	11	200	100
1,4-Dickhorobenzene 200 U ug/Kg Dry 11 200 100 1,4-Dickane 310 U ug/Kg Dry 260 310 100 2-Hexanone 200 U ug/Kg Dry 43 1000 100 Benzene 200 U ug/Kg Dry 4.1 200 100 Bromoform 200 U ug/Kg Dry 3.3 200 100 Bromomethane 200 U ug/Kg Dry 6.7 200 100 Carbon tetrachloride 200 U ug/Kg Dry 6.3 200 100 Chlorobenzene 200 U ug/Kg Dry 6.3 200 100 Chlorobromomethane 200 U ug/Kg Dry 6.3 200 100 Chlorobromomethane 200 U ug/Kg Dry 4.9 200 100 Chlorobromomethane 200 U ug/Kg Dry 3.7 200 100 Chlorobromomethane 200 U ug/Kg Dry 3.7 200 100 Chlorob	1,3-Dichlorobenzene		200	U	ug/Kg Dry	9.4	200	100
1.4-Dioxane 310 U ug/Kg Dry 260 310 100 2-Hexanone 200 U ug/Kg Dry 33 200 100 Acetone 1000 U ug/Kg Dry 4.1 200 100 Benzene 200 U ug/Kg Dry 3.1 200 100 Bromomethane 200 U ug/Kg Dry 6.7 200 100 Carbon disulfide 200 U ug/Kg Dry 6.7 200 100 Chorobenzene 200 U ug/Kg Dry 6.3 200 100 Chlorobenzene 200 U ug/Kg Dry 6.3 200 100 Chlorobtromomethane 200 U ug/Kg Dry 7.1 200 100 Chlorothane 200 U ug/Kg Dry 3.7 200 100 Chlorothane 200 U ug/Kg Dry 4.1 200 100 Chlorothane 200 U ug/Kg Dry 3.7 200 100 Cish1.2-Dichlorothene 20	1,4-Dichlorobenzene		200	U	ug/Kg Dry	11	200	100
2-Hexanone 200 U ug/Kg Dry 33 200 100 Acetone 1000 U ug/Kg Dry 4.1 200 100 Benzene 200 U ug/Kg Dry 3.3 200 100 Bromoform 200 U ug/Kg Dry 3.1 200 100 Carbon disulfide 200 U ug/Kg Dry 6.7 200 100 Carbon disulfide 200 U ug/Kg Dry 6.3 200 100 Chiorobromomethane 200 U ug/Kg Dry 4.9 200 100 Chiorobromomethane 200 U ug/Kg Dry 4.9 200 100 Chiorobromomethane 200 U ug/Kg Dry 4.7 200 100 Chiorobromomethane 200 U ug/Kg Dry 4.1 200 100 Chiorobromomethane 200 U ug/Kg Dry 4.1 200 100 Cibiororothane <td< td=""><td>1,4-Dioxane</td><td></td><td>310</td><td>U</td><td>ug/Kg Dry</td><td>260</td><td>310</td><td>100</td></td<>	1,4-Dioxane		310	U	ug/Kg Dry	260	310	100
Acetone 1000 U ug/Kg Dry 4.1 1000 100 Benzene 200 U ug/Kg Dry 4.1 200 100 Bromoform 200 U ug/Kg Dry 3.3 200 100 Bromomethane 200 U ug/Kg Dry 6.7 200 100 Carbon disulfide 200 U ug/Kg Dry 6.5 200 100 Chlorobenzene 200 U ug/Kg Dry 6.3 200 100 Chlorobromomethane 200 U ug/Kg Dry 4.3 200 100 Chlorothromomethane 200 U ug/Kg Dry 4.3 200 100 Chlorothrane 200 U ug/Kg Dry 7.1 200 100 Chlorothrane 200 U ug/Kg Dry 4.1 200 100 cis-1.3-Dichlorothrene 57 J ug/Kg Dry 1.8 200 100 Dichlorodifluoromethane <	2-Hexanone		200	U	ug/Kg Dry	33	200	100
Benzene200Uug/kg Dry4.1200100Bromorform200Uug/kg Dry3.3200100Bromorethane200Uug/kg Dry3.1200100Carbon disulfide200Uug/kg Dry6.7200100Carbon tetrachloride200Uug/kg Dry6.3200100Chlorobornomethane200Uug/kg Dry6.3200100Chlorobornomethane200Uug/kg Dry7.9200100Chlorobornomethane200Uug/kg Dry7.1200100Chlorobornomethane200Uug/kg Dry3.7200100Chlorobromethane200Uug/kg Dry4.1200100Chlorobromethane200Uug/kg Dry3.7200100Chlorobromethane200Uug/kg Dry3.7200100Chlorobropropene200Uug/kg Dry3.7200100Dibromomethane200Uug/kg Dry3.7200100Dichlorodifluoromethane200Uug/kg Dry3.7200100Dichlorodifluoromethane200Uug/kg Dry3.5200100Ethyl hethacrylate200Uug/kg Dry3.5200100Ethyl hethacrylate200Uug/kg Dry3.3200100Isopropylbenzene200U <td>Acetone</td> <td></td> <td>1000</td> <td>U</td> <td>ug/Kg Dry</td> <td>43</td> <td>1000</td> <td>0 100</td>	Acetone		1000	U	ug/Kg Dry	43	1000	0 100
Bromoform 200 U ug/Kg Dry 3.3 200 100 Bromomethane 200 U ug/Kg Dry 3.1 200 100 Carbon disulfide 200 U ug/Kg Dry 6.7 200 100 Carbon tetrachloride 200 U ug/Kg Dry 6.3 200 100 Chlorobbromomethane 200 U ug/Kg Dry 4.9 200 100 Chlorobbromomethane 200 U ug/Kg Dry 7.1 200 100 Chlorobbromomethane 200 U ug/Kg Dry 4.7 200 100 Chlorobbromomethane 200 U ug/Kg Dry 4.1 200 100 Chlorobbromethane 200 U ug/Kg Dry 4.1 200 100 cis-1,3-Dichloropropene 200 U ug/Kg Dry 3.5 200 100 Dichlorodifluoromethane 200 U ug/Kg Dry 1.8 200 100	Benzene		200	U	ug/Kg Dry	4.1	200	100
Bromomethane 200 U ug/Kg Dry 3.1 200 100 Carbon disulfide 200 U ug/Kg Dry 6.7 200 100 Carbon tetrachloride 200 U ug/Kg Dry 6.3 200 100 Chloroberzene 200 U ug/Kg Dry 6.3 200 100 Chlorobiromomethane 200 U ug/Kg Dry 4.9 200 100 Chloroboromethane 200 U ug/Kg Dry 7.1 200 100 Chloroform 200 U ug/Kg Dry 4.7 200 100 Chloroform 200 U ug/Kg Dry 4.1 200 100 Cis-1,3-Dichloroptene 200 U ug/Kg Dry 6.5 200 100 Dibromomethane 200 U ug/Kg Dry 1.8 200 100 Bromodichloromethane 200 U ug/Kg Dry 3.5 200 100 Ethylbenzene </td <td>Bromoform</td> <td></td> <td>200</td> <td>U</td> <td>ug/Kg Dry</td> <td>3.3</td> <td>200</td> <td>100</td>	Bromoform		200	U	ug/Kg Dry	3.3	200	100
Carbon disulfide 200 U ug/Kg Dry 6.7 200 100 Carbon tetrachloride 200 U ug/Kg Dry 6.5 200 100 Chlorobenzene 200 U ug/Kg Dry 6.3 200 100 Chlorobrommethane 200 U ug/Kg Dry 6.3 200 100 Chlorobrommethane 200 U ug/Kg Dry 7.1 200 100 Chlorobrom 200 U ug/Kg Dry 3.7 200 100 Chlorodithroe 200 U ug/Kg Dry 3.7 200 100 Chlorodithroe 200 U ug/Kg Dry 3.7 200 100 cis-1,2-Dichloroethene 57 J ug/Kg Dry 3.7 200 100 Dibromomethane 200 U ug/Kg Dry 1.8 200 100 Brondichloromethane 200 U ug/Kg Dry 3.5 200 100 Ethyl methacr	Bromomethane		200	U	ug/Kg Dry	3.1	200	100
Carbon tetrachloride 200 U ug/Kg Dry 6.5 200 100 Chlorobenzene 200 U ug/Kg Dry 6.3 200 100 Chlorodibromomethane 200 U ug/Kg Dry 6.3 200 100 Chlorodibromomethane 200 U ug/Kg Dry 4.9 200 100 Chlorodibromomethane 200 U ug/Kg Dry 3.7 200 100 Chlorodibromomethane 200 U ug/Kg Dry 3.7 200 100 Chloroform 200 U ug/Kg Dry 3.7 200 100 cis-1,2-Dichloroptene 200 U ug/Kg Dry 3.7 200 100 Dibromomethane 200 U ug/Kg Dry 3.7 200 100 Dichlorodifluoromethane 200 U ug/Kg Dry 1.8 200 100 Ethyl methacrylate 200 U ug/Kg Dry 3.5 200 100	Carbon disulfide		200	U	ug/Kg Dry	6.7	200	100
Chlorobenzene 200 U ug/Kg Dry 6.3 200 100 Chlorobromomethane 200 U ug/Kg Dry 6.3 200 100 Chlorobromomethane 200 U ug/Kg Dry 4.9 200 100 Chlorobromomethane 200 U ug/Kg Dry 7.1 200 100 Chloroform 200 U ug/Kg Dry 3.7 200 100 Chloroform 200 U ug/Kg Dry 4.1 200 100 cis-1,2-Dichloroptene 200 U ug/Kg Dry 3.7 200 100 bironomethane 200 U ug/Kg Dry 6.5 200 100 Dichorotifuoromethane 200 U ug/Kg Dry 1.8 200 100 Ethyl methacrylate 200 U ug/Kg Dry 3.5 200 100 Isopropylbenzene 200 U ug/Kg Dry 3.8 410 100 -Xylene &	Carbon tetrachloride		200	U	ug/Kg Dry	6.5	200	100
Chlorobromomethane 200 U ug/Kg Dry 6.3 200 100 Chlorodibromomethane 200 U ug/Kg Dry 4.9 200 100 Chlorodibromomethane 200 U ug/Kg Dry 7.1 200 100 Chloroform 200 U ug/Kg Dry 3.7 200 100 Chloroform 200 U ug/Kg Dry 4.1 200 100 cis-1,2-Dichloroptopene 200 U ug/Kg Dry 6.5 200 100 Dibromomethane 200 U ug/Kg Dry 6.5 200 100 Bromodichloromethane 200 U ug/Kg Dry 1.8 200 100 Dichlorodiflucromethane 200 U ug/Kg Dry 7.9 200 100 Ethyl methacrylate 200 U ug/Kg Dry 7.9 200 100 Isopropylbenzene 200 U ug/Kg Dry 3.3 200 100	Chlorobenzene		200	U	ug/Kg Dry	6.3	200	100
Chlorodibromomethane 200 U ug/Kg Dry 4.9 200 100 Chloroethane 200 U ug/Kg Dry 7.1 200 100 Chloroofrm 200 U ug/Kg Dry 3.7 200 100 Chloroothane 200 U ug/Kg Dry 4.7 200 100 cis-1,2-Dichloroothene 57 J ug/Kg Dry 3.7 200 100 cis-1,3-Dichloropopene 200 U ug/Kg Dry 3.7 200 100 Dichoromethane 200 U ug/Kg Dry 3.7 200 100 Bromodichloromethane 200 U ug/Kg Dry 1.8 200 100 Ethyl methacrylate 200 U ug/Kg Dry 3.5 200 100 Isopropylbenzene 200 U ug/Kg Dry 3.3 200 100 Isopropylbenzene 200 U ug/Kg Dry 3.1 200 100 Methy	Chlorobromomethane		200	U	ug/Kg Dry	6.3	200	100
Chloroethane 200 U ug/Kg Dry 7.1 200 100 Chloroform 200 U ug/Kg Dry 3.7 200 100 Chloroform 200 U ug/Kg Dry 4.7 200 100 cis-1,2-Dichloroethene 57 J ug/Kg Dry 4.1 200 100 Dibromomethane 200 U ug/Kg Dry 3.7 200 100 Dibromomethane 200 U ug/Kg Dry 6.5 200 100 Dichloroethane 200 U ug/Kg Dry 1.8 200 100 Dichlorodifluoromethane 200 U ug/Kg Dry 3.5 200 100 Ethyl methacrylate 200 U ug/Kg Dry 3.5 200 100 Isopropylbenzene 200 U ug/Kg Dry 3.3 200 100 Isopropylbenzene 200 U ug/Kg Dry 3.1 200 100 Isopropylbenzene </td <td>Chlorodibromomethane</td> <td></td> <td>200</td> <td>U</td> <td>ug/Kg Dry</td> <td>4.9</td> <td>200</td> <td>100</td>	Chlorodibromomethane		200	U	ug/Kg Dry	4.9	200	100
Chloroform 200 U ug/Kg Dry 3.7 200 100 Chloromethane 200 U ug/Kg Dry 4.7 200 100 cis-1,2-Dichloroethene 57 J ug/Kg Dry 4.1 200 100 cis-1,3-Dichloropropene 200 U ug/Kg Dry 3.7 200 100 Dibromomethane 200 U ug/Kg Dry 3.7 200 100 Dichlorodifluoromethane 200 U ug/Kg Dry 1.8 200 100 Ethyl methacrylate 200 U ug/Kg Dry 3.5 200 100 Ethyl methacrylate 200 U ug/Kg Dry 3.5 200 100 Isopropylbenzene 200 U ug/Kg Dry 3.5 200 100 Isopropylbenzene 200 U ug/Kg Dry 3.3 200 100 4-Methyl-2-pentanone (MIBK) 200 U ug/Kg Dry 3.1 200 100	Chloroethane		200	U	ug/Kg Dry	7.1	200	100
Chloromethane 200 U ug/kg Dry 4.7 200 100 cis-1,2-Dichloroethene 57 J ug/kg Dry 4.1 200 100 cis-1,3-Dichloropropene 200 U ug/kg Dry 3.7 200 100 Dibromomethane 200 U ug/kg Dry 6.5 200 100 Bromodichloromethane 200 U ug/kg Dry 1.8 200 100 Dichloromethane 200 U ug/kg Dry 1.8 200 100 Ethyl methacrylate 200 U ug/kg Dry 3.5 200 100 Ethylbenzene 200 U ug/kg Dry 7.9 200 100 Isopropylbenzene 200 U ug/kg Dry 3.3 200 100 -Xylene & p-Xylene 410 U ug/kg Dry 3.1 200 100 Methyl ert-butyl ether 200 U ug/kg Dry 5.3 410 100	Chloroform		200	U	ug/Kg Dry	3.7	200	100
cis-1,2-Dichloroethene 57 J ug/Kg Dry 4.1 200 100 cis-1,3-Dichloropropene 200 U ug/Kg Dry 3.7 200 100 Dibromomethane 200 U ug/Kg Dry 6.5 200 100 Bromodichloromethane 200 U ug/Kg Dry 1.8 200 100 Dichlorodifluoromethane 200 U ug/Kg Dry 3.5 200 100 Ethyl methacrylate 200 U ug/Kg Dry 3.5 200 100 Ethylbenzene 200 U ug/Kg Dry 9.2 200 100 Isopropylbenzene 200 U ug/Kg Dry 9.2 200 100	Chloromethane		200	U	ug/Kg Dry	4.7	200	100
cis-1,3-Dichloropropene 200 U ug/Kg Dry 3.7 200 100 Dibromomethane 200 U ug/Kg Dry 6.5 200 100 Bromodichloromethane 200 U ug/Kg Dry 1.8 200 100 Dichlorodifluoromethane 200 U ug/Kg Dry 1.8 200 100 Ethyl methacrylate 200 U ug/Kg Dry 3.5 200 100 Ethyl methacrylate 200 U ug/Kg Dry 3.5 200 100 Ethylbenzene 200 U ug/Kg Dry 7.9 200 100 Isopropylbenzene 200 U ug/Kg Dry 9.2 200 100 m-Xylene & p-Xylene 410 U ug/Kg Dry 3.3 200 100 4-Methyl-2-pentanone (MIBK) 200 U ug/Kg Dry 3.1 200 100 Methyl tert-butyl ether 200 U ug/Kg Dry 5.3 410 100 Styrene 200 U ug/Kg Dry 5.3 410 <	cis-1,2-Dichloroethene		57	J	ug/Kg Dry	4.1	200	100
Dibromomethane 200 U ug/Kg Dry 6.5 200 100 Bromodichloromethane 200 U ug/Kg Dry 1.8 200 100 Dichlorodifluoromethane 200 U ug/Kg Dry 1.8 200 100 Ethyl methacrylate 200 U ug/Kg Dry 3.5 200 100 Ethylbenzene 200 U ug/Kg Dry 7.9 200 100 Isopropylbenzene 200 U ug/Kg Dry 9.2 200 100 -Xylene & p-Xylene 410 U ug/Kg Dry 33 200 100 4-Methyl-2-pentanone (MIBK) 200 U ug/Kg Dry 3.1 200 100 Methyl tert-butyl ether 200 U ug/Kg Dry 6.1 200 100 Nethylene Chloride 200 U ug/Kg Dry 5.3 410 100 Styrene 200 U ug/Kg Dry 5.3 410 100	cis-1,3-Dichloropropene		200	U	ug/Kg Dry	3.7	200	100
Bromodichloromethane 200 U ug/Kg Dry 1.8 200 100 Dichlorodifluoromethane 200 U ug/Kg Dry 19 200 100 Ethyl methacrylate 200 U ug/Kg Dry 3.5 200 100 Ethyl methacrylate 200 U ug/Kg Dry 7.9 200 100 Isopropylbenzene 200 U ug/Kg Dry 7.9 200 100 m-Xylene & p-Xylene 410 U ug/Kg Dry 18 410 100 4-Methyl-2-pentanone (MIBK) 200 U ug/Kg Dry 3.3 200 100 Methyl tert-butyl ether 200 U ug/Kg Dry 3.1 200 100 o-Xylene 200 U ug/Kg Dry 5.3 410 100 Styrene 200 U ug/Kg Dry 5.3 410 100 Tetrachloroethene 57000 E ug/Kg Dry 4.9 200 100	Dibromomethane		200	U	ug/Kg Dry	6.5	200	100
Dichlorodifluoromethane 200 U ug/Kg Dry 19 200 100 Ethyl methacrylate 200 U ug/Kg Dry 3.5 200 100 Ethylbenzene 200 U ug/Kg Dry 7.9 200 100 Isopropylbenzene 200 U ug/Kg Dry 9.2 200 100 m-Xylene & p-Xylene 410 U ug/Kg Dry 18 410 100 4-Methyl-2-pentanone (MIBK) 200 U ug/Kg Dry 3.1 200 100 Methyl tert-butyl ether 200 U ug/Kg Dry 6.1 200 100 o-Xylene 410 U ug/Kg Dry 5.3 410 100 o-Xylene 200 U ug/Kg Dry 5.3 410 100 Styrene 200 U ug/Kg Dry 4.9 200 100 Toluene 200 U ug/Kg Dry 7.3 200 100 trans-1,3-Dichloropr	Bromodichloromethane		200	U	ug/Kg Dry	1.8	200	100
Ethyl methacrylate200Uug/Kg Dry3.5200100Ethylbenzene200Uug/Kg Dry7.9200100Isopropylbenzene200Uug/Kg Dry9.2200100m-Xylene & p-Xylene410Uug/Kg Dry184101004-Methyl-2-pentanone (MIBK)200Uug/Kg Dry33200100Methyl tert-butyl ether200Uug/Kg Dry3.12001000-Xylene200Uug/Kg Dry5.34101000-Xylene410Uug/Kg Dry5.34101000-Xylene200Uug/Kg Dry5.34101005tyrene200Uug/Kg Dry4.9200100Tetrachloroethene57000Eug/Kg Dry4.1200100Toluene200Uug/Kg Dry7.3200100trans-1,2-Dichloroethene200Uug/Kg Dry3.3200100trans-1,3-Dichloropropene200Uug/Kg Dry3.3200100trans-1,4-Dichloro-2-butene200Uug/Kg Dry3.3200100	Dichlorodifluoromethan	9	200	U	ug/Kg Dry	19	200	100
Ethylbenzene200Uug/Kg Dry7.9200100Isopropylbenzene200Uug/Kg Dry9.2200100m-Xylene & p-Xylene410Uug/Kg Dry184101004-Methyl-2-pentanone (MIBK)200Uug/Kg Dry33200100Methyl tert-butyl ether200Uug/Kg Dry3.1200100Methylene Chloride200Uug/Kg Dry6.1200100o-Xylene410Uug/Kg Dry5.3410100Styrene200Uug/Kg Dry4.9200100Tetrachloroethene57000Eug/Kg Dry20200100Toluene200Uug/Kg Dry4.1200100trans-1,2-Dichloroethene200Uug/Kg Dry7.3200100trans-1,3-Dichloropropene200Uug/Kg Dry3.3200100trans-1,4-Dichloro-2-butene200Uug/Kg Dry3.3200100	Ethyl methacrylate		200	U	ug/Kg Dry	3.5	200	100
Isopropylbenzene 200 U ug/Kg Dry 9.2 200 100 m-Xylene & p-Xylene 410 U ug/Kg Dry 18 410 100 4-Methyl-2-pentanone (MIBK) 200 U ug/Kg Dry 33 200 100 Methyl tert-butyl ether 200 U ug/Kg Dry 33 200 100 Methylene Chloride 200 U ug/Kg Dry 3.1 200 100 o-Xylene 410 U ug/Kg Dry 6.1 200 100 o-Xylene 410 U ug/Kg Dry 5.3 410 100 Styrene 200 U ug/Kg Dry 5.3 410 100 Tetrachloroethene 57000 E ug/Kg Dry 200 100 Toluene 200 U ug/Kg Dry 4.1 200 100 trans-1,2-Dichloroethene 200 U ug/Kg Dry 7.3 200 100 trans-1,3-Dichloropropene 200 U ug/Kg Dry 3.3 200 100	Ethylbenzene		200	U	ua/Ka Drv	7.9	200	100
m-Xylene & p-Xylene410Uug/Kg Dry184101004-Methyl-2-pentanone (MIBK)200Uug/Kg Dry33200100Methyl tert-butyl ether200Uug/Kg Dry3.1200100Methylene Chloride200Uug/Kg Dry6.1200100o-Xylene410Uug/Kg Dry5.3410100Styrene200Uug/Kg Dry5.3410100Tetrachloroethene57000Eug/Kg Dry20200100Toluene200Uug/Kg Dry4.1200100trans-1,2-Dichloroethene200Uug/Kg Dry7.3200100trans-1,3-Dichloropropene200Uug/Kg Dry3.3200100trans-1,4-Dichloro-2-butene200Uug/Kg Dry3.3200100	Isopropylbenzene		200	U	ug/Kg Dry	9.2	200	100
4-Methyl-2-pentanone (MIBK) 200 U ug/Kg Dry 33 200 100 Methyl tert-butyl ether 200 U ug/Kg Dry 3.1 200 100 Methylene Chloride 200 U ug/Kg Dry 6.1 200 100 o-Xylene 410 U ug/Kg Dry 5.3 410 100 Styrene 200 U ug/Kg Dry 5.3 410 100 Tetrachloroethene 57000 E ug/Kg Dry 200 100 Toluene 200 U ug/Kg Dry 4.1 200 100 trans-1,2-Dichloroethene 200 U ug/Kg Dry 4.1 200 100 trans-1,3-Dichloropropene 200 U ug/Kg Dry 7.3 200 100 trans-1,4-Dichloro-2-butene 200 U ug/Kg Dry 3.3 200 100	m-Xylene & p-Xylene		410	U	ug/Kg Dry	18	410	100
Methyl tert-butyl ether 200 U ug/Kg Dry 3.1 200 100 Methylene Chloride 200 U ug/Kg Dry 6.1 200 100 o-Xylene 410 U ug/Kg Dry 5.3 410 100 Styrene 200 U ug/Kg Dry 5.3 410 100 Tetrachloroethene 57000 E ug/Kg Dry 200 100 Toluene 200 U ug/Kg Dry 4.1 200 100 trans-1,2-Dichloroethene 200 U ug/Kg Dry 7.3 200 100 trans-1,3-Dichloropropene 200 U ug/Kg Dry 3.3 200 100 trans-1,4-Dichloro-2-butene 200 U ug/Kg Dry 3.3 200 100	4-Methyl-2-pentanone (MIBK)	200	U	ua/Ka Drv	33	200	100
Methylene Chloride 200 U ug/Kg Dry 6.1 200 100 o-Xylene 410 U ug/Kg Dry 5.3 410 100 Styrene 200 U ug/Kg Dry 5.3 410 100 Styrene 200 U ug/Kg Dry 4.9 200 100 Tetrachloroethene 57000 E ug/Kg Dry 20 200 100 Toluene 200 U ug/Kg Dry 4.1 200 100 trans-1,2-Dichloroethene 200 U ug/Kg Dry 7.3 200 100 trans-1,3-Dichloropropene 200 U ug/Kg Dry 3.3 200 100 trans-1,4-Dichloro-2-butene 200 U ug/Kg Dry 3.3 200 100	Methyl tert-butyl ether	,	200	U	ua/Ka Drv	3.1	200	100
o-Xylene 410 U ug/Kg Dry 5.3 410 100 Styrene 200 U ug/Kg Dry 4.9 200 100 Tetrachloroethene 57000 E ug/Kg Dry 20 200 100 Toluene 200 U ug/Kg Dry 4.1 200 100 trans-1,2-Dichloroethene 200 U ug/Kg Dry 7.3 200 100 trans-1,3-Dichloropropene 200 U ug/Kg Dry 3.3 200 100 trans-1,4-Dichloro-2-butene 200 U ug/Kg Dry 16 200 100	Methylene Chloride		200	U	ua/Ka Drv	6.1	200	100
Styrene 200 U ug/Kg Dry 4.9 200 100 Tetrachloroethene 57000 E ug/Kg Dry 200 100 Toluene 200 U ug/Kg Dry 20 200 100 trans-1,2-Dichloroethene 200 U ug/Kg Dry 4.1 200 100 trans-1,3-Dichloropropene 200 U ug/Kg Dry 7.3 200 100 trans-1,4-Dichloro-2-butene 200 U ug/Kg Dry 3.3 200 100	o-Xvlene		410	U	ua/Ka Drv	5.3	410	100
Tetrachloroethene 57000 E ug/Kg Dry 20 200 100 Toluene 200 U ug/Kg Dry 4.1 200 100 trans-1,2-Dichloroethene 200 U ug/Kg Dry 7.3 200 100 trans-1,3-Dichloropropene 200 U ug/Kg Dry 3.3 200 100 trans-1,4-Dichloro-2-butene 200 U ug/Kg Dry 16 200 100	Styrene		200	U	ua/Ka Drv	4.9	200	100
Toluene 200 U ug/Kg Dry 4.1 200 100 trans-1,2-Dichloroethene 200 U ug/Kg Dry 7.3 200 100 trans-1,3-Dichloropropene 200 U ug/Kg Dry 3.3 200 100 trans-1,4-Dichloro-2-butene 200 U ug/Kg Dry 16 200 100	Tetrachloroethene		57000	F	ua/Ka Drv	20	200	100
trans-1,2-Dichloroethene 200 U ug/Kg Dry 7.3 200 100 trans-1,3-Dichloropropene 200 U ug/Kg Dry 3.3 200 100 trans-1,4-Dichloro-2-butene 200 U ug/Kg Dry 16 200 100	Toluene		200	- U	ua/Ka Drv	 4 1	200	100
trans-1,3-Dichloropropene 200 U ug/Kg Dry 3.3 200 100 trans-1,4-Dichloro-2-butene 200 U ug/Kg Dry 16 200 100	trans-1.2-Dichloroethen	e	200	Ű	ug/Ka Drv	7.3	200	100
trans-1,4-Dichloro-2-butene 200 U ua/Ka Drv 16 200 100	trans-1 3-Dichloroprope	- ne	200	U U	ua/Ka Drv	3.3	200	100
	trans-1.4-Dichloro-2-but	tene	200	U	ua/Ka Drv	16	200	100

Client Sample ID: SP-48-18-20-051214 Lab Sample ID: 420-77953-10			Date Sa Date R Client M Percen	ampled: eceived: ⁄latrix: t Solids:	05/12/2014 1315 05/21/2014 0900 Solid 88		
Analyte	Result/Qua	lifier	Unit	MDL	RL	Dilution	
Trichloroethene	120	J	ug/Kg Dry	8.2	200	100	
Trichlorofluoromethane	200	U	ug/Kg Dry	11	200	100	
Vinyl chloride	200	U	ug/Kg Dry	6.3	200	100	
Xylenes, Total	410	U	ug/Kg Dry	20	410	100	
1,1,1-Trichloroethane	200	U	ug/Kg Dry	5.1	200	100	
Freon 113	200	U	ug/Kg Dry	6.1	200	100	
1,1,2-Trichloroethane	200	U	ug/Kg Dry	6.7	200	100	
1,1-Dichloroethane	200	U	ug/Kg Dry	2.9	200	100	
1,1-Dichloroethene	200	U	ug/Kg Dry	6.7	200	100	
1,1-Dichloropropene	200	U	ug/Kg Dry	10	200	100	
1,2-Dibromo-3-Chloropropane	200	U	ug/Kg Dry	6.3	200	100	
1,2-Dichloroethane	200	U	ug/Kg Dry	4.1	200	100	
1,2-Dichloropropane	200	U	ug/Kg Dry	3.9	200	100	
1,3-Dichloropropane	200	U	ug/Kg Dry	4.5	200	100	
2,2-Dichloropropane	200	U	ug/Kg Dry	4.5	200	100	
1,2-Dibromoethane	200	U	ug/Kg Dry	6.5	200	100	
2-Butanone (MEK)	200	U	ug/Kg Dry	61	200	100	
1,1,2,2-Tetrachloroethane	200	U	ug/Kg Dry	4.1	200	100	
1,2,3-Trichloropropane	200	U	ug/Kg Dry	4.5	200	100	
Tetrahydrofuran	200	U	ug/Kg Dry	33	200	100	
Surrogate					Acceptance Limits		
Toluene-d8 (Surr)	93		%		72 - 143		
1,2-Dichloroethane-d4 (Surr)	92		%		73 - 128		
4-Bromofluorobenzene	103		%		49 - 138		
Method: 8260C Run Type: DL Prep Method: 5035-H Tetrachloroethene	48000	D	Date Analy Date Prepa ug/Kg Dry	vzed: ared: 200	05/21/2014 2006 05/21/2014 1207 2000	1000	

Client Sample ID: Lab Sample ID:	SP-49-12-14-051214 420-77953-11			Date Si Date R Client M Percen	Date Sampled: 0 Date Received: 0 Client Matrix: 9 Percent Solids: 8		05/12/2014 1450 05/21/2014 0900 Solid 88		
Analyte		Result/Qua	lifier	Unit	MDL		RL	Dilution	
Method: 8260C				Date Analy	zed:	05/21/2014	1746		
Prep Method: 5035-H	l			Date Prepa	ared:	05/21/2014	1207		
1,2,3-Trichlorobenzene		180	U	ug/Kg Dry	13		180	100	
1,2,4-Trichlorobenzene		180	U	ug/Kg Dry	13		180	100	
1,2-Dichlorobenzene		180	U	ug/Kg Dry	5.7		180	100	
1,3,5-Trimethylbenzene		180	U	ug/Kg Dry	9.5		180	100	
1,3-Dichlorobenzene		180	U	ug/Kg Dry	8.2		180	100	
1,4-Dichlorobenzene		180	U	ug/Kg Dry	9.5		180	100	
1,4-Dioxane		270	U	ug/Kg Dry	230	:	270	100	
2-Hexanone		180	U	ug/Kg Dry	29		180	100	
Acetone		890	U	ug/Kg Dry	38		890	100	
Benzene		180	U	ug/Kg Dry	3.6		180	100	
Bromoform		180	U	ug/Kg Dry	2.9		180	100	
Bromomethane		180	U	ug/Kg Dry	2.7		180	100	
Carbon disulfide		180	U	ug/Kg Dry	5.9		180	100	
Carbon tetrachloride		180	U	ug/Kg Dry	5.7		180	100	
Chlorobenzene		180	U	ug/Kg Dry	5.5		180	100	
Chlorobromomethane		180	U	ug/Kg Dry	5.5		180	100	
Chlorodibromomethane		180	U	ug/Kg Dry	4.3		180	100	
Chloroethane		180	U	ua/Ka Drv	6.3		180	100	
Chloroform		180	U	ug/Kg Dry	3.2		180	100	
Chloromethane		180	U	ua/Ka Drv	4.1		180	100	
cis-1.2-Dichloroethene		530		ua/Ka Drv	3.6		180	100	
cis-1.3-Dichloropropene		180	U	ua/Ka Drv	3.2		180	100	
Dibromomethane		180	U	ua/Ka Drv	5.7		180	100	
Bromodichloromethane		180	U	ua/Ka Dry	1.6		180	100	
Dichlorodifluoromethan	a	180	Ŭ	ua/Ka Drv	17		180	100	
Ethyl methacrylate	-	180	U	ua/Ka Dry	3.0		180	100	
Ethylbenzene		180	U	ua/Ka Dry	7.0		180	100	
Isopropylbenzene		180	Ŭ	ug/Kg Dry	8.0		180	100	
m-Xvlene & n-Xvlene		360	U	ua/Ka Dry	16		360	100	
4-Methyl-2-pentanone (MIBK)	180	Ŭ	ug/Kg Dry	29		180	100	
Methyl tert-butyl ether		180	Ŭ	ug/Kg Dry	27		180	100	
Methylene Chloride		180	U	ua/Ka Dry	54		180	100	
o-Xvlene		360	U U	ug/Kg Dry	4.6		360	100	
Styrene		180	Ŭ	ug/Kg Dry	4.3		180	100	
Tetrachloroethene		7800	2	ua/Ka Drv	18		180	100	
Toluene		180	11		3.6		180	100	
trans-1 2-Dichloroethen	e	180	U U	ug/Kg Dry	6.4		180	100	
trans-1 3-Dichloroprope	~ ne	180	11	ug/Kg Dry	2 Q		180	100	
trans-1 4-Dichloro-2-bu	tene	180	11	ug/Kg Dry	14		180	100	
		100	0	uging Diy	1-7		100	100	

Client Sample ID: Lab Sample ID:	SP-49-12-14-051214 420-77953-11			Date S Date F Client Percer	Sampled: Received: Matrix: nt Solids:	05/12/2014 1450 05/21/2014 0900 Solid 88	
Analyte		Result/Qua	alifier	Unit	MDL	RL	Dilution
Trichloroethene		300		ug/Kg Dry	7.2	180	100
Trichlorofluoromethane	•	180	U	ug/Kg Dry	9.8	180	100
Vinyl chloride		180	U	ug/Kg Dry	5.5	180	100
Xylenes, Total		360	U	ug/Kg Dry	18	360	100
1,1,1-Trichloroethane		180	U	ug/Kg Dry	4.5	180	100
Freon 113		180	U	ug/Kg Dry	5.4	180	100
1,1,2-Trichloroethane		180	U	ug/Kg Dry	5.9	180	100
1,1-Dichloroethane		180	U	ug/Kg Dry	2.5	180	100
1,1-Dichloroethene		180	U	ug/Kg Dry	5.9	180	100
1,1-Dichloropropene		180	U	ug/Kg Dry	9.1	180	100
1,2-Dibromo-3-Chlorop	ropane	180	U	ug/Kg Dry	5.5	180	100
1,2-Dichloroethane		180	U	ug/Kg Dry	3.6	180	100
1,2-Dichloropropane		180	U	ug/Kg Dry	3.4	180	100
1,3-Dichloropropane		180	U	ug/Kg Dry	3.9	180	100
2,2-Dichloropropane		180	U	ug/Kg Dry	3.9	180	100
1,2-Dibromoethane		180	U	ug/Kg Dry	5.7	180	100
2-Butanone (MEK)		180	U	ug/Kg Dry	54	180	100
1,1,2,2-Tetrachloroetha	ine	180	U	ug/Kg Dry	3.6	180	100
1,2,3-Trichloropropane		180	U	ug/Kg Dry	3.9	180	100
Tetrahydrofuran		180	U	ug/Kg Dry	29	180	100
Surrogate						Acceptance Limits	
Toluene-d8 (Surr)		93		%		72 - 143	
1,2-Dichloroethane-d4	(Surr)	92		%		73 - 128	
4-Bromofluorobenzene		102		%		49 - 138	

Client Sample ID: Lab Sample ID:	SS-49-18-20-051214 420-77953-12			Date Si Date R Client M Percen	Date Sampled: 0 Date Received: 0 Client Matrix: 5 Percent Solids: 5		05/12/2014 1745 05/21/2014 0900 Solid 91		
Analyte		Result/Qua	lifier	Unit	MDL		RL	Dilution	
Method: 8260C				Date Analy	zed:	05/21/2014	1814		
Prep Method: 5035-H	l			Date Prepa	ared:	05/21/2014	1207		
1,2,3-Trichlorobenzene		160	U	ug/Kg Dry	12		160	100	
1,2,4-Trichlorobenzene		160	U	ug/Kg Dry	12		160	100	
1,2-Dichlorobenzene		160	U	ug/Kg Dry	5.2		160	100	
1,3,5-Trimethylbenzene		160	U	ug/Kg Dry	8.5		160	100	
1,3-Dichlorobenzene		160	U	ug/Kg Dry	7.4		160	100	
1,4-Dichlorobenzene		160	U	ug/Kg Dry	8.5		160	100	
1,4-Dioxane		240	U	ug/Kg Dry	210		240	100	
2-Hexanone		160	U	ug/Kg Dry	26		160	100	
Acetone		810	U	ug/Kg Dry	34		810	100	
Benzene		160	U	ug/Kg Dry	3.2		160	100	
Bromoform		160	U	ug/Kg Dry	2.6		160	100	
Bromomethane		160	U	ug/Kg Dry	2.4		160	100	
Carbon disulfide		160	U	ug/Kg Dry	5.3		160	100	
Carbon tetrachloride		160	U	ug/Kg Dry	5.2		160	100	
Chlorobenzene		160	U	ug/Kg Dry	5.0		160	100	
Chlorobromomethane		160	U	ug/Kg Dry	5.0		160	100	
Chlorodibromomethane		160	U	ug/Kg Dry	3.9		160	100	
Chloroethane		160	U	ua/Ka Drv	5.6		160	100	
Chloroform		160	U	ug/Kg Dry	2.9		160	100	
Chloromethane		160	U	ua/Ka Drv	3.7		160	100	
cis-1.2-Dichloroethene		160	U	ua/Ka Drv	3.2		160	100	
cis-1.3-Dichloropropene		160	U	ua/Ka Drv	2.9		160	100	
Dibromomethane		160	U	ua/Ka Drv	5.2		160	100	
Bromodichloromethane		160	Ŭ	ua/Ka Dry	14		160	100	
Dichlorodifluoromethan	a	160	Ŭ	ua/Ka Drv	15		160	100	
Ethyl methacrylate	-	160	Ŭ	ua/Ka Dry	27		160	100	
Ethylbenzene		160	Ŭ	ua/Ka Dry	6.3		160	100	
Isopropylbenzene		160	Ŭ	ug/Kg Dry	7.2		160	100	
m-Xvlene & n-Xvlene		320	Ŭ	ua/Ka Dry	14		320	100	
4-Methyl-2-pentanone (MIBK)	160	Ŭ	ug/Kg Dry	26		160	100	
Methyl tert-butyl ether		160	Ŭ	ug/Kg Dry	24		160	100	
Methylene Chloride		160	Ŭ	ua/Ka Dry	4.8		160	100	
o-Xvlene		320	U U	ug/Kg Dry	4.2		320	100	
Styrene		160	Ŭ	ug/Kg Dry	3.9		160	100	
Tetrachloroethene		55000	F	ua/Ka Drv	16		160	100	
Toluene		160	-		3.2		160	100	
trans-1 2-Dichloroethen	٩	160	11	ug/Kg Dry	5.2 5.8		160	100	
trans-1.3-Dichloroprope	~ ne	160	11	ug/Kg Dry	2.6		160	100	
trans-1 4-Dichloro-2-but	tene	160	11	ug/Kg Dry	13		160	100	
aans-1, 1 -Dichiol0-2-Du		100	0	uging Diy	10		.00	100	

	Result/Qualifie	r	11					
Analyte	140		Unit		MDL		RL	Dilution
Trichloroethene		J	ug/Kg	Dry	6.4		160	100
Trichlorofluoromethane	160	U	ug/Kg	Dry	8.9		160	100
Vinyl chloride	160	U	ug/Kg	Dry	5.0		160	100
Xylenes, Total	320	U	ug/Kg	Dry	16		320	100
1,1,1-Trichloroethane	160	U	ug/Kg	Dry	4.0		160	100
Freon 113	160	U	ug/Kg	Dry	4.8		160	100
1,1,2-Trichloroethane	160	U	ug/Kg	Dry	5.3		160	100
1,1-Dichloroethane	160	U	ug/Kg	Dry	2.3		160	100
1,1-Dichloroethene	160	U	ug/Kg	Dry	5.3		160	100
1,1-Dichloropropene	160	U	ug/Kg	Dry	8.2		160	100
1,2-Dibromo-3-Chloropropane	160	U	ug/Kg	Dry	5.0		160	100
1,2-Dichloroethane	160	U	ug/Kg	Dry	3.2		160	100
1,2-Dichloropropane	160	U	ug/Kg	Dry	3.1		160	100
1,3-Dichloropropane	160	U	ug/Kg	Dry	3.5		160	100
2,2-Dichloropropane	160	U	ug/Kg	Dry	3.5		160	100
1,2-Dibromoethane	160	U	ug/Kg	Dry	5.2		160	100
2-Butanone (MEK)	160	U	ug/Kg	Dry	48		160	100
1,1,2,2-Tetrachloroethane	160	U	ug/Kg	Dry	3.2		160	100
1,2,3-Trichloropropane	160	U	ug/Kg	Dry	3.5		160	100
Tetrahydrofuran	160	U	ug/Kg	Dry	26		160	100
Surrogate						Acceptan	ce Limits	
Toluene-d8 (Surr)	94		%			72	2 - 143	
1,2-Dichloroethane-d4 (Surr)	91		%			73	8 - 128	
4-Bromofluorobenzene	103		%			49	9 - 138	
Method: 8260C Run Type: DL Prep Method: 5035-H Tetrachloroethene	52000	D	Da Da ug/Ko	ate Analyzeo ate Prepareo Drv	d: d: 320	05/21/2014 05/21/2014	2102 1207 3200	2000

Client Sample ID: Lab Sample ID:	SP-50-8-10-051214 420-77953-13			Date Sa Date R Client M Percen	ampled: eceived: Matrix: t Solids:	05/12/2014 1750 05/21/2014 0900 Solid 89	
Analyte		Result/Qua	alifier	Unit	MDL	RL	Dilution
Method: 8260C				Date Analy	/zed:	05/21/2014 1842	
Prep Method: 5035-H				Date Prepa	ared:	05/21/2014 1207	
1,2,3-Trichlorobenzene		170	U	ug/Kg Dry	13	170	100
1,2,4-Trichlorobenzene		170	U	ug/Kg Dry	13	170	100
1,2-Dichlorobenzene		170	U	ug/Kg Dry	5.6	170	100
1,3,5-Trimethylbenzene		170	U	ug/Kg Dry	9.2	170	100
1,3-Dichlorobenzene		170	U	ug/Kg Dry	8.0	170	100
1,4-Dichlorobenzene		170	U	ug/Kg Dry	9.2	170	100
1,4-Dioxane		260	U	ug/Kg Dry	230	260	100
2-Hexanone		170	U	ug/Kg Dry	28	170	100
Acetone		870	U	ug/Kg Dry	37	870	100
Benzene		170	U	ug/Kg Dry	3.5	170	100
Bromoform		170	U	ug/Kg Dry	2.8	170	100
Bromomethane		170	U	ug/Kg Dry	2.6	170	100
Carbon disulfide		170	U	ug/Kg Dry	5.7	170	100
Carbon tetrachloride		170	U	ug/Kg Dry	5.6	170	100
Chlorobenzene		170	U	ug/Kg Dry	5.4	170	100
Chlorobromomethane		170	U	ug/Kg Dry	5.4	170	100
Chlorodibromomethane		170	U	ug/Kg Dry	4.2	170	100
Chloroethane		170	U	ug/Kg Dry	6.1	170	100
Chloroform		170	U	ug/Kg Dry	3.1	170	100
Chloromethane		170	U	ug/Kg Dry	4.0	170	100
cis-1,2-Dichloroethene		170	U	ug/Kg Dry	3.5	170	100
cis-1,3-Dichloropropene		170	U	ug/Kg Dry	3.1	170	100
Dibromomethane		170	U	ug/Kg Dry	5.6	170	100
Bromodichloromethane		170	U	ug/Kg Dry	1.6	170	100
Dichlorodifluoromethane	9	170	U	ug/Kg Dry	17	170	100
Ethyl methacrylate		170	U	ug/Kg Dry	3.0	170	100
Ethylbenzene		170	U	ug/Kg Dry	6.8	170	100
Isopropylbenzene		170	U	ug/Kg Dry	7.8	170	100
m-Xylene & p-Xylene		350	U	ug/Kg Dry	16	350	100
4-Methyl-2-pentanone (I	MIBK)	170	U	ug/Kg Dry	28	170	100
Methyl tert-butyl ether	,	170	U	ug/Kg Dry	2.6	170	100
Methylene Chloride		170	U	ug/Kg Dry	5.2	170	100
o-Xvlene		350	U	ua/Ka Drv	4.5	350	100
Styrene		170	U	ug/Kg Dry	4.2	170	100
Tetrachloroethene		940		ua/Ka Drv	17	170	100
Toluene		170	U	ug/Ka Drv	3.5	170	100
trans-1,2-Dichloroethen	e	170	U	ug/Ka Drv	6.3	170	100
trans-1,3-Dichloroprope	ne	170	U	ug/Ka Drv	2.8	170	100
trans-1,4-Dichloro-2-but	ene	170	U	ug/Kg Dry	14	170	100

Client Sample ID: Lab Sample ID:	SP-50-8-10-051214 420-77953-13			Date S Date R Client I Percer	ampled: eceived: Matrix: tt Solids:	05/12/2014 1750 05/21/2014 0900 Solid 89	
Analyte		Result/Qu	alifier	Unit	MDL	RL	Dilution
Trichloroethene		45	J	ug/Kg Dry	7.0	170	100
Trichlorofluoromethane	9	170	U	ug/Kg Dry	9.6	170	100
Vinyl chloride		170	U	ug/Kg Dry	5.4	170	100
Xylenes, Total		350	U	ug/Kg Dry	17	350	100
1,1,1-Trichloroethane		170	U	ug/Kg Dry	4.3	170	100
Freon 113		170	U	ug/Kg Dry	5.2	170	100
1,1,2-Trichloroethane		170	U	ug/Kg Dry	5.7	170	100
1,1-Dichloroethane		170	U	ug/Kg Dry	2.4	170	100
1,1-Dichloroethene		170	U	ug/Kg Dry	5.7	170	100
1,1-Dichloropropene		170	U	ug/Kg Dry	8.9	170	100
1,2-Dibromo-3-Chlorop	propane	170	U	ug/Kg Dry	5.4	170	100
1,2-Dichloroethane		170	U	ug/Kg Dry	3.5	170	100
1,2-Dichloropropane		170	U	ug/Kg Dry	3.3	170	100
1,3-Dichloropropane		170	U	ug/Kg Dry	3.8	170	100
2,2-Dichloropropane		170	U	ug/Kg Dry	3.8	170	100
1,2-Dibromoethane		170	U	ug/Kg Dry	5.6	170	100
2-Butanone (MEK)		170	U	ug/Kg Dry	52	170	100
1,1,2,2-Tetrachloroetha	ane	170	U	ug/Kg Dry	3.5	170	100
1,2,3-Trichloropropane	•	170	U	ug/Kg Dry	3.8	170	100
Tetrahydrofuran		170	U	ug/Kg Dry	29	170	100
Surrogate						Acceptance Limits	
Toluene-d8 (Surr)		95		%		72 - 143	
1,2-Dichloroethane-d4	(Surr)	87		%		73 - 128	
4-Bromofluorobenzene	9	100		%		49 - 138	

Analyte Result/Qualifier Unit MDL RL Dilutoria Method: £3260C Date Prepared: 05/21/2014 190 0 1.2.3-Trichlorobenzene 190 U ug/Kg Dry 14 190 100 1.2.4-Trichlorobenzene 190 U ug/Kg Dry 6.1 190 100 1.3.5-TrimetHybenzene 190 U ug/Kg Dry 8.8 190 100 1.3.5-TrimetHybenzene 190 U ug/Kg Dry 8.8 190 100 1.4-Dioxane 290 U ug/Kg Dry 3.8 190 100 2-Hexanone 290 U ug/Kg Dry 3.8 190 100 Beromehane 190 U ug/Kg Dry 3.8 190 100 Bromorehane 190 U ug/Kg Dry 3.8 190 100 Carbon terzance 190 U ug/Kg Dry 5.9 190 100 Carbon terzance 190	Client Sample ID: Lab Sample ID:	SP-51-10-12-051214 420-77953-14			Date S Date R Client I Percen	ampled: eceived: Matrix: t Solids:	05/12/2014 05/21/2014 Solid 85	1710 0900	
Method: 3280C Date Analyzed: 05/21/2014 1910 7:pol/horbenzene 190 U ug/Kq Dry 14 190 100 1.2.3-Trichlorobenzene 190 U ug/Kq Dry 14 190 100 1.2-Dichlorobenzene 190 U ug/Kq Dry 14 190 100 1.3-Dichlorobenzene 190 U ug/Kq Dry 10 190 100 1.3-Dichlorobenzene 190 U ug/Kq Dry 250 290 100 1.4-Dicklorobenzene 190 U ug/Kq Dry 250 290 100 2-Hexanone 190 U ug/Kq Dry 3.8 190 100 Bromorethane 190 U ug/Kq Dry 3.8 190 100 Bromorethane 190 U ug/Kq Dry 5.9 190 100 Carbon tetracholde 190 U ug/Kq Dry 5.9 190 100 Chorothoromethane 190 <th>Analyte</th> <th></th> <th>Result/Qua</th> <th>lifier</th> <th>Unit</th> <th>MDL</th> <th>I</th> <th>RL</th> <th>Dilution</th>	Analyte		Result/Qua	lifier	Unit	MDL	I	RL	Dilution
Prop Method: E035-11 0521/2014 1207 1.2.3-Trichlorobenzene 190 U ug/Kg Dry 14 190 100 1.2.4-Trichlorobenzene 190 U ug/Kg Dry 6.1 190 100 1.3-StrimeHylebnezne 190 U ug/Kg Dry 6.1 190 100 1.3-StrimeHylebnezne 190 U ug/Kg Dry 8.8 190 100 1.4-Dickhorobenzene 190 U ug/Kg Dry 2.50 280 100 1.4-Dickhorobenzene 190 U ug/Kg Dry 3.1 190 100 2-Hexanone 190 U ug/Kg Dry 3.8 190 100 Benzene 190 U ug/Kg Dry 3.1 190 100 Carbon disulfide 190 U ug/Kg Dry 5.9 190 100 Chiorobenzene 190 U ug/Kg Dry 5.9 190 100 Chiorobrinomethane 190 U <th>Method: 8260C</th> <th></th> <th></th> <th></th> <th>Date Analy</th> <th>/zed:</th> <th>05/21/2014</th> <th>1910</th> <th></th>	Method: 8260C				Date Analy	/zed:	05/21/2014	1910	
1,2,3-Trichlorobenzene 190 U ug/Kg Dry 14 190 100 1,2,4-Trichlorobenzene 190 U ug/Kg Dry 6.1 190 100 1,3-Drichlorobenzene 190 U ug/Kg Dry 6.1 190 100 1,3-Drichlorobenzene 190 U ug/Kg Dry 8.8 190 100 1,4-Dicknobenzene 190 U ug/Kg Dry 10 190 100 1,4-Dicknane 290 U ug/Kg Dry 31 190 100 2-Hexanone 190 U ug/Kg Dry 3.8 190 100 Benzene 190 U ug/Kg Dry 3.1 190 100 Bromoform 190 U ug/Kg Dry 3.1 190 100 Carbon disulfde 190 U ug/Kg Dry 5.9 190 100 Carbon disulfde 190 U ug/Kg Dry 5.9 190 100 Chlorobromethane 190 U ug/Kg Dry 3.4 190 100 <	Prep Method: 5035-H	l			Date Prepa	ared:	05/21/2014	1207	
1,2,4-Trichlorobenzene 190 U ug/Kg Dry 14 190 100 1,3-Dichlorobenzene 190 U ug/Kg Dry 6.1 190 100 1,3-Dichlorobenzene 190 U ug/Kg Dry 10 190 100 1,4-Dichlorobenzene 190 U ug/Kg Dry 250 290 100 1,4-Dichlorobenzene 190 U ug/Kg Dry 250 290 100 1,4-Dichlorobenzene 190 U ug/Kg Dry 31 190 100 2-Hexanone 190 U ug/Kg Dry 3.8 190 100 Benzene 190 U ug/Kg Dry 3.1 190 100 Bromomethane 190 U ug/Kg Dry 6.3 190 100 Carbon tetrachloride 190 U ug/Kg Dry 5.9 190 100 Chloroberane 190 U ug/Kg Dry 6.7 190 100 Chloroberane 190 U ug/Kg Dry 3.4 190 100	1,2,3-Trichlorobenzene		190	U	ug/Kg Dry	14		190	100
1.2-Dichlorobenzene 190 U ug/Kg Dry 6.1 190 100 1.3-Dichlorobenzene 190 U ug/Kg Dry 8.8 190 100 1.4-Dichlorobenzene 190 U ug/Kg Dry 8.8 190 100 1.4-Dickname 290 U ug/Kg Dry 250 290 100 2-Hexanone 190 U ug/Kg Dry 3.1 190 100 Acetone 960 U ug/Kg Dry 3.8 190 100 Benzene 190 U ug/Kg Dry 3.1 190 100 Bromoform 190 U ug/Kg Dry 6.3 190 100 Carbon disulfde 190 U ug/Kg Dry 6.1 190 100 Chiorobomomethane 190 U ug/Kg Dry 5.9 190 100 Chiorobomomethane 190 U ug/Kg Dry 4.4 190 100 Chiorobomomethane 190 U ug/Kg Dry 3.4 190 100 Chiorobomom	1,2,4-Trichlorobenzene		190	U	ug/Kg Dry	14		190	100
1,3.5-Trimethylbenzene 190 U ug/kg Dry 10 190 100 1.3-Dichlorobenzene 190 U ug/kg Dry 10 190 100 1.4-Dichlorobenzene 190 U ug/kg Dry 10 190 100 1.4-Dichlorobenzene 190 U ug/kg Dry 31 190 100 Acetone 960 U ug/kg Dry 3.8 190 100 Bromoform 190 U ug/kg Dry 3.8 190 100 Bromoform 190 U ug/kg Dry 3.8 190 100 Carbon tetrachloride 190 U ug/kg Dry 6.1 190 100 Chlorobhormomethane 190 U ug/kg Dry 5.9 190 100 Chlorobhormomethane 190 U ug/kg Dry 4.6 190 100 Chlorobhormomethane 190 U ug/kg Dry 3.4 190 100 Chlorobhormomethane 190 U ug/kg Dry 3.8 190 100	1,2-Dichlorobenzene		190	U	ug/Kg Dry	6.1		190	100
1,3-Dichlorobenzene 190 U ug/kg Dry 8.8 190 100 1,4-Dichlorobenzene 190 U ug/kg Dry 250 290 100 2-Hexanone 190 U ug/kg Dry 31 190 100 2-Hexanone 190 U ug/kg Dry 31 190 100 Acetone 190 U ug/kg Dry 3.8 190 100 Benzene 190 U ug/kg Dry 3.1 190 100 Bromoform 190 U ug/kg Dry 3.1 190 100 Carbon disulfde 190 U ug/kg Dry 6.3 190 100 Carbon disulfde 190 U ug/kg Dry 5.9 190 100 Chlorobenzene 190 U ug/kg Dry 5.9 190 100 Chlorobenzene 190 U ug/kg Dry 3.4 190 100 Chlorobenzene 190 U ug/kg Dry 3.4 190 100 Chlorobenzene 19	1,3,5-Trimethylbenzene		190	U	ug/Kg Dry	10		190	100
1,4-Dickhorobenzene 190 U ug/Kg Dry 10 190 100 1,4-Dickane 290 U ug/Kg Dry 250 290 100 2-Hexanone 190 U ug/Kg Dry 31 190 100 Acetone 960 U ug/Kg Dry 3.8 190 100 Bromoform 190 U ug/Kg Dry 3.1 190 100 Bromomethane 190 U ug/Kg Dry 6.3 190 100 Carbon tetrachloride 190 U ug/Kg Dry 6.1 190 100 Chlorobbromomethane 190 U ug/Kg Dry 5.9 190 100 Chlorobbromomethane 190 U ug/Kg Dry 4.6 190 100 Chlorobbromomethane 190 U ug/Kg Dry 3.4 190 100 Chlorobbromomethane 190 U ug/Kg Dry 3.4 190 100 Chlorobbromomethane 190 U ug/Kg Dry 3.4 190 100 <t< td=""><td>1,3-Dichlorobenzene</td><td></td><td>190</td><td>U</td><td>ug/Kg Dry</td><td>8.8</td><td></td><td>190</td><td>100</td></t<>	1,3-Dichlorobenzene		190	U	ug/Kg Dry	8.8		190	100
1.4-Dioxane 290 U ug/Kg Dry 250 290 100 2-Hexanone 190 U ug/Kg Dry 31 190 100 Acetone 960 U ug/Kg Dry 40 960 100 Benzene 190 U ug/Kg Dry 3.8 190 100 Bromomethane 190 U ug/Kg Dry 2.9 190 100 Carbon disulfide 190 U ug/Kg Dry 6.3 190 100 Choroberzene 190 U ug/Kg Dry 5.9 190 100 Chloroberzene 190 U ug/Kg Dry 5.9 190 100 Chlorobtromomethane 190 U ug/Kg Dry 6.7 190 100 Chlorothrane 190 U ug/Kg Dry 3.4 190 100 Chlorothrane 190 U ug/Kg Dry 3.4 190 100 Chlorothrane 190 U ug/Kg Dry 3.4 190 100 Chlorothrane 190	1,4-Dichlorobenzene		190	U	ug/Kg Dry	10		190	100
2-Hexanone 190 U ug/Kg Dry 31 190 100 Acetone 960 U ug/Kg Dry 40 960 100 Bernzene 190 U ug/Kg Dry 3.8 190 100 Bromoform 190 U ug/Kg Dry 2.9 190 100 Carbon disulfide 190 U ug/Kg Dry 6.3 190 100 Carbon disulfide 190 U ug/Kg Dry 6.1 190 100 Charobenzene 190 U ug/Kg Dry 5.9 190 100 Chlorobromomethane 190 U ug/Kg Dry 5.7 190 100 Chlorobromomethane 190 U ug/Kg Dry 3.4 190 100 Dibromomethan	1,4-Dioxane		290	U	ug/Kg Dry	250	:	290	100
Acetone 960 U ug/Kg Dry 40 960 100 Benzene 190 U ug/Kg Dry 3.8 190 100 Bromoform 190 U ug/Kg Dry 3.1 190 100 Bromomethane 190 U ug/Kg Dry 6.3 190 100 Carbon disulfide 190 U ug/Kg Dry 6.1 190 100 Chlorobenzene 190 U ug/Kg Dry 5.9 190 100 Chlorobtromomethane 190 U ug/Kg Dry 4.6 190 100 Chlorothrane 190 U ug/Kg Dry 4.6 190 100 Chlorothrane 190 U ug/Kg Dry 3.4 190 100 Chlorothrane 190 U ug/Kg Dry 3.4 190 100 cis-1.2-Dichlorothene 190 U ug/Kg Dry 3.4 190 100 Dichlorodifluoromethane 190 <td>2-Hexanone</td> <td></td> <td>190</td> <td>U</td> <td>ug/Kg Dry</td> <td>31</td> <td></td> <td>190</td> <td>100</td>	2-Hexanone		190	U	ug/Kg Dry	31		190	100
Benzene 190 U ug/Kg Dry 3.8 190 100 Bromoform 190 U ug/Kg Dry 3.1 190 100 Bromomethane 190 U ug/Kg Dry 6.3 190 100 Carbon disulfide 190 U ug/Kg Dry 6.1 190 100 Chorobenzene 190 U ug/Kg Dry 5.9 190 100 Chiorobenomethane 190 U ug/Kg Dry 5.9 190 100 Chiorobromomethane 190 U ug/Kg Dry 3.4 190 100 Chioroform 190 U ug/Kg Dry 3.4 190 100 Chioroform 190 U ug/Kg Dry 3.4 190 100 Chioromethane 190 U ug/Kg Dry 3.4 190 100 cis-1.3-Dichioropene 190 U ug/Kg Dry 3.4 190 100 Dibromomethane 190	Acetone		960	U	ug/Kg Dry	40	9	960	100
Bromoform 190 U ug/Kg Dry 3.1 190 100 Bromomethane 190 U ug/Kg Dry 2.9 190 100 Carbon disulfide 190 U ug/Kg Dry 6.3 190 100 Carbon tetrachloride 190 U ug/Kg Dry 5.9 190 100 Chlorobbromomethane 190 U ug/Kg Dry 5.9 190 100 Chlorobbromomethane 190 U ug/Kg Dry 6.7 190 100 Chlorobbromomethane 190 U ug/Kg Dry 3.4 190 100 Chlorobbromomethane 190 U ug/Kg Dry 3.4 190 100 Chlorobbromethane 190 U ug/Kg Dry 3.4 190 100 cis-1,3-Dichloropropene 190 U ug/Kg Dry 3.4 190 100 Dichorodifluoromethane 190 U ug/Kg Dry 3.3 190 100	Benzene		190	U	ug/Kg Dry	3.8		190	100
Bromomethane 190 U ug/Kg Dry 2.9 190 100 Carbon disulfide 190 U ug/Kg Dry 6.3 190 100 Carbon tetrachloride 190 U ug/Kg Dry 6.1 190 100 Chloroberzene 190 U ug/Kg Dry 5.9 190 100 Chlorobiromomethane 190 U ug/Kg Dry 5.9 190 100 Chlorobiromomethane 190 U ug/Kg Dry 6.7 190 100 Chloroform 190 U ug/Kg Dry 3.4 190 100 Chloroform 190 U ug/Kg Dry 3.8 190 100 Cis-1,3-Dichloroptene 190 U ug/Kg Dry 3.4 190 100 Dibromomethane 190 U ug/Kg Dry 3.4 190 100 Bromodichloromethane 190 U ug/Kg Dry 3.3 190 100 Ethylbenzene	Bromoform		190	U	ug/Kg Dry	3.1		190	100
Carbon disulfide 190 U ug/Kg Dry 6.3 190 100 Carbon tetrachloride 190 U ug/Kg Dry 6.1 190 100 Chlorobenzene 190 U ug/Kg Dry 5.9 190 100 Chlorobinomethane 190 U ug/Kg Dry 5.9 190 100 Chlorodibromomethane 190 U ug/Kg Dry 6.7 190 100 Chlorodibromomethane 190 U ug/Kg Dry 3.4 190 100 Chlorodibromomethane 190 U ug/Kg Dry 3.4 190 100 Chloroform 190 U ug/Kg Dry 3.4 190 100 cis-1,2-Dichloroethene 190 U ug/Kg Dry 3.4 190 100 Dibromomethane 190 U ug/Kg Dry 3.7 190 100 Erkly methacrylate 190 U ug/Kg Dry 3.3 190 100	Bromomethane		190	U	ug/Kg Dry	2.9		190	100
Carbon tetrachloride 190 U ug/Kg Dry 6.1 190 100 Chlorobenzene 190 U ug/Kg Dry 5.9 190 100 Chlorobiromomethane 190 U ug/Kg Dry 5.9 190 100 Chlorodibromomethane 190 U ug/Kg Dry 4.6 190 100 Chlorodibromomethane 190 U ug/Kg Dry 3.4 190 100 Chlorodibromomethane 190 U ug/Kg Dry 3.8 190 100 Chlorodibromomethane 190 U ug/Kg Dry 3.4 190 100 cis-1,2-Dichloroptnepene 190 U ug/Kg Dry 3.4 190 100 Dibromomethane 190 U ug/Kg Dry 1.7 190 100 Dichlorodifluoromethane 190 U ug/Kg Dry 3.3 190 100 Ethyl methacrylate 190 U ug/Kg Dry 7.5 190 100 </td <td>Carbon disulfide</td> <td></td> <td>190</td> <td>U</td> <td>ug/Kg Dry</td> <td>6.3</td> <td></td> <td>190</td> <td>100</td>	Carbon disulfide		190	U	ug/Kg Dry	6.3		190	100
Chlorobenzene 190 U ug/Kg Dry 5.9 190 100 Chlorobromomethane 190 U ug/Kg Dry 5.9 190 100 Chlorobromomethane 190 U ug/Kg Dry 4.6 190 100 Chlorobromomethane 190 U ug/Kg Dry 6.7 190 100 Chlorobrom 190 U ug/Kg Dry 3.4 190 100 Chlorobrom 190 U ug/Kg Dry 3.8 190 100 Chlorobrethane 190 U ug/Kg Dry 3.4 190 100 cis-1,2-Dichloroptopene 190 U ug/Kg Dry 3.8 190 100 Dibromomethane 190 U ug/Kg Dry 6.1 190 100 Dichlorodifluoromethane 190 U ug/Kg Dry 3.3 190 100 Ethyl methacrylate 190 U ug/Kg Dry 7.5 190 100 Isoprop	Carbon tetrachloride		190	U	ug/Kg Dry	6.1		190	100
Chlorobromomethane 190 U ug/Kg Dry 5.9 190 100 Chlorodibromomethane 190 U ug/Kg Dry 4.6 190 100 Chlorodibromomethane 190 U ug/Kg Dry 6.7 190 100 Chloroform 190 U ug/Kg Dry 3.4 190 100 Chloroform 190 U ug/Kg Dry 3.4 190 100 cis-1,2-Dichloropthene 190 U ug/Kg Dry 3.4 190 100 cis-1,3-Dichloropropene 190 U ug/Kg Dry 6.1 190 100 Dibromomethane 190 U ug/Kg Dry 1.8 190 100 Dichlorodifluoromethane 190 U ug/Kg Dry 3.3 190 100 Ethyl methacrylate 190 U ug/Kg Dry 7.5 190 100 Isopropylbenzene 190 U ug/Kg Dry 3.3 190 100	Chlorobenzene		190	U	ug/Kg Dry	5.9		190	100
Chlorodibromomethane 190 U ug/Kg Dry 4.6 190 100 Chloroethane 190 U ug/Kg Dry 6.7 190 100 Chloroofrm 190 U ug/Kg Dry 3.4 190 100 Chloroothane 190 U ug/Kg Dry 3.4 190 100 cis-1,2-Dichloroothene 190 U ug/Kg Dry 3.8 190 100 cis-1,3-Dichloroppene 190 U ug/Kg Dry 3.4 190 100 Dibromomethane 190 U ug/Kg Dry 3.4 190 100 Dichlorooffluoromethane 190 U ug/Kg Dry 3.4 190 100 Dichlorodifluoromethane 190 U ug/Kg Dry 1.8 190 100 Ethyl methacrylate 190 U ug/Kg Dry 3.3 190 100 Esporeylbenzene 190 U ug/Kg Dry 3.1 190 100	Chlorobromomethane		190	U	ug/Kg Dry	5.9		190	100
Chloroethane 190 U ug/Kg Dry 6.7 190 100 Chloroform 190 U ug/Kg Dry 3.4 190 100 Chloroform 190 U ug/Kg Dry 3.4 190 100 Chloromethane 190 U ug/Kg Dry 3.4 190 100 cis-1,2-Dichloroethene 190 U ug/Kg Dry 3.4 190 100 Dibromomethane 190 U ug/Kg Dry 3.4 190 100 Dibromomethane 190 U ug/Kg Dry 1.7 190 100 Dichlorodifluoromethane 190 U ug/Kg Dry 3.3 190 100 Ethyl methacrylate 190 U ug/Kg Dry 3.3 190 100 Espropylbenzene 190 U ug/Kg Dry 3.6 190 100 Isopropylbenzene 190 U ug/Kg Dry 3.1 190 100 Hylene & p-Xylene </td <td>Chlorodibromomethane</td> <td></td> <td>190</td> <td>U</td> <td>ug/Kg Dry</td> <td>4.6</td> <td></td> <td>190</td> <td>100</td>	Chlorodibromomethane		190	U	ug/Kg Dry	4.6		190	100
Chloroform 190 U ug/Kg Dry 3.4 190 100 Chloromethane 190 U ug/Kg Dry 4.4 190 100 cis-1,2-Dichloroethene 190 U ug/Kg Dry 3.8 190 100 cis-1,3-Dichloropropene 190 U ug/Kg Dry 3.4 190 100 Dibromomethane 190 U ug/Kg Dry 3.4 190 100 Dibromomethane 190 U ug/Kg Dry 6.1 190 100 Dichlorodifluoromethane 190 U ug/Kg Dry 1.7 190 100 Ethyl methacrylate 190 U ug/Kg Dry 3.3 190 100 Ethyl methacrylate 190 U ug/Kg Dry 7.5 190 100 Isopropylbenzene 190 U ug/Kg Dry 7.5 190 100 Methyl-2-pentanone (MIBK) 190 U ug/Kg Dry 3.1 190 100	Chloroethane		190	U	ug/Kg Dry	6.7		190	100
Chloromethane 190 U ug/kg Dry 4.4 190 100 cis-1,2-Dichloroethene 190 U ug/kg Dry 3.8 190 100 cis-1,3-Dichloropropene 190 U ug/kg Dry 3.4 190 100 Dibromomethane 190 U ug/kg Dry 6.1 190 100 Bromodichloromethane 190 U ug/kg Dry 1.7 190 100 Dichloromethane 190 U ug/kg Dry 3.3 190 100 Ethyl methacrylate 190 U ug/kg Dry 3.3 190 100 Ethyl benzene 190 U ug/kg Dry 7.5 190 100 Isopropylbenzene 190 U ug/kg Dry 3.6 190 100 Methyl-2-pentanone (MIBK) 190 U ug/kg Dry 3.7 190 100 Methylene Chloride 190 U ug/kg Dry 5.7 190 100	Chloroform		190	U	ug/Kg Dry	3.4		190	100
cis-1,2-Dichloroethene 190 U ug/Kg Dry 3.8 190 100 cis-1,3-Dichloropropene 190 U ug/Kg Dry 3.4 190 100 Dibromomethane 190 U ug/Kg Dry 6.1 190 100 Bromodichloromethane 190 U ug/Kg Dry 1.7 190 100 Dichlorodifluoromethane 190 U ug/Kg Dry 3.3 190 100 Ethyl methacrylate 190 U ug/Kg Dry 3.3 190 100 Ethylbenzene 190 U ug/Kg Dry 7.5 190 100 Isopropylbenzene 190 U ug/Kg Dry 8.6 190 100 m-Xylene & p-Xylene 380 U ug/Kg Dry 31 190 100 Methyl-2-pentanone (MIBK) 190 U ug/Kg Dry 5.7 190 100 Methylene Chloride 190 U ug/Kg Dry 5.0 380 100 O-Xylene 380 U ug/Kg Dry 5.0 380	Chloromethane		190	U	ug/Kg Dry	4.4		190	100
cis-1,3-Dichloropropene 190 U ug/Kg Dry 3.4 190 100 Dibromomethane 190 U ug/Kg Dry 6.1 190 100 Bromodichloromethane 190 U ug/Kg Dry 1.7 190 100 Dichlorodifluoromethane 190 U ug/Kg Dry 1.8 190 100 Ethyl methacrylate 190 U ug/Kg Dry 3.3 190 100 Ethyl methacrylate 190 U ug/Kg Dry 3.3 190 100 Ethylbenzene 190 U ug/Kg Dry 7.5 190 100 Isopropylbenzene 190 U ug/Kg Dry 8.6 190 100 m-Xylene & p-Xylene 380 U ug/Kg Dry 31 190 100 4-Methyl-2-pentanone (MIBK) 190 U ug/Kg Dry 5.7 190 100 Methyl tert-butyl ether 190 U ug/Kg Dry 5.7 190 100 O-Xylene 380 U ug/Kg Dry 5.0 380 <	cis-1,2-Dichloroethene		190	U	ug/Kg Dry	3.8		190	100
Dibromomethane 190 U ug/Kg Dry 6.1 190 100 Bromodichloromethane 190 U ug/Kg Dry 1.7 190 100 Dichlorodifluoromethane 190 U ug/Kg Dry 1.8 190 100 Ethyl methacrylate 190 U ug/Kg Dry 3.3 190 100 Ethyl methacrylate 190 U ug/Kg Dry 3.3 190 100 Ethyl methacrylate 190 U ug/Kg Dry 7.5 190 100 Ethylbenzene 190 U ug/Kg Dry 8.6 190 100 Isopropylbenzene 190 U ug/Kg Dry 3.1 190 100 Methyl-2-pentanone (MIBK) 190 U ug/Kg Dry 3.1 190 100 Methyl tert-butyl ether 190 U ug/Kg Dry 5.7 190 100 O-Xylene 380 U ug/Kg Dry 5.0 380 100 Styr	cis-1,3-Dichloropropene	9	190	U	ug/Kg Dry	3.4		190	100
Bromodichloromethane 190 U ug/Kg Dry 1.7 190 100 Dichlorodifluoromethane 190 U ug/Kg Dry 18 190 100 Ethyl methacrylate 190 U ug/Kg Dry 3.3 190 100 Ethyl methacrylate 190 U ug/Kg Dry 3.3 190 100 Ethyl methacrylate 190 U ug/Kg Dry 7.5 190 100 Isopropylbenzene 190 U ug/Kg Dry 8.6 190 100 m-Xylene & p-Xylene 380 U ug/Kg Dry 17 380 100 4-Methyl-2-pentanone (MIBK) 190 U ug/Kg Dry 31 190 100 Methylene Chloride 190 U ug/Kg Dry 5.7 190 100 o-Xylene 380 U ug/Kg Dry 5.0 380 100 Styrene 190 U ug/Kg Dry 1.6 190 100 <	Dibromomethane		190	U	ug/Kg Dry	6.1		190	100
Dichlorodifluoromethane 190 U ug/Kg Dry 18 190 100 Ethyl methacrylate 190 U ug/Kg Dry 3.3 190 100 Ethyl methacrylate 190 U ug/Kg Dry 3.3 190 100 Ethylbenzene 190 U ug/Kg Dry 7.5 190 100 Isopropylbenzene 190 U ug/Kg Dry 8.6 190 100 m-Xylene & p-Xylene 380 U ug/Kg Dry 31 190 100 4-Methyl-2-pentanone (MIBK) 190 U ug/Kg Dry 2.9 190 100 Methyl tert-butyl ether 190 U ug/Kg Dry 5.7 190 100 Methylene Chloride 190 U ug/Kg Dry 5.0 380 100 o-Xylene 380 U ug/Kg Dry 5.0 380 100 Styrene 190 U ug/Kg Dry 3.8 190 100 <td< td=""><td>Bromodichloromethane</td><td></td><td>190</td><td>U</td><td>ua/Ka Drv</td><td>1.7</td><td></td><td>190</td><td>100</td></td<>	Bromodichloromethane		190	U	ua/Ka Drv	1.7		190	100
Ethyl methacrylate190Uug/Kg Dry3.3190100Ethylbenzene190Uug/Kg Dry7.5190100Isopropylbenzene190Uug/Kg Dry8.6190100m-Xylene & p-Xylene380Uug/Kg Dry173801004-Methyl-2-pentanone (MIBK)190Uug/Kg Dry31190100Methyl tert-butyl ether190Uug/Kg Dry2.9190100Methylene Chloride190Uug/Kg Dry5.7190100o-Xylene380Uug/Kg Dry5.0380100Styrene190Uug/Kg Dry5.0380100Tetrachloroethene4200ug/Kg Dry4.6190100Toluene190Uug/Kg Dry3.8190100trans-1,2-Dichloroethene190Uug/Kg Dry3.8190100trans-1,3-Dichloropropene190Uug/Kg Dry3.1190100trans-1,4-Dichloro-2-butene190Uug/Kg Dry3.1190100	Dichlorodifluoromethan	e	190	U	ug/Kg Dry	18		190	100
Ethylbenzene 190 U ug/Kg Dry 7.5 190 100 Isopropylbenzene 190 U ug/Kg Dry 8.6 190 100 m-Xylene & p-Xylene 380 U ug/Kg Dry 17 380 100 4-Methyl-2-pentanone (MIBK) 190 U ug/Kg Dry 31 190 100 Methyl tert-butyl ether 190 U ug/Kg Dry 2.9 190 100 Methylene Chloride 190 U ug/Kg Dry 5.7 190 100 o-Xylene 380 U ug/Kg Dry 5.7 190 100 o-Xylene 380 U ug/Kg Dry 5.0 380 100 Styrene 190 U ug/Kg Dry 4.6 190 100 Toluene 190 U ug/Kg Dry 3.8 190 100 trans-1,2-Dichloroethene 190 U ug/Kg Dry 3.8 190 100 trans-1,3-Dichloropropene 190 U ug/Kg Dry 3.1 190 100 <t< td=""><td>Ethvl methacrvlate</td><td></td><td>190</td><td>U</td><td>ua/Ka Drv</td><td>3.3</td><td></td><td>190</td><td>100</td></t<>	Ethvl methacrvlate		190	U	ua/Ka Drv	3.3		190	100
Isopropylbenzene 190 U ug/Kg Dry 8.6 190 100 m-Xylene & p-Xylene 380 U ug/Kg Dry 17 380 100 4-Methyl-2-pentanone (MIBK) 190 U ug/Kg Dry 31 190 100 Methyl tert-butyl ether 190 U ug/Kg Dry 2.9 190 100 Methylene Chloride 190 U ug/Kg Dry 5.7 190 100 o-Xylene 380 U ug/Kg Dry 5.0 380 100 o-Xylene 190 U ug/Kg Dry 5.0 380 100 Styrene 190 U ug/Kg Dry 4.6 190 100 Toluene 190 U ug/Kg Dry 19 190 100 trans-1,2-Dichloroethene 190 U ug/Kg Dry 3.8 190 100 trans-1,3-Dichloropropene 190 U ug/Kg Dry 3.1 190 100 trans-1,4-Dichloro-2-butene 190 U ug/Kg Dry 3.1 190 100	Ethylbenzene		190	U	ua/Ka Drv	7.5		190	100
m-Xylene & p-Xylene 380 U ug/Kg Dry 17 380 100 4-Methyl-2-pentanone (MIBK) 190 U ug/Kg Dry 31 190 100 Methyl tert-butyl ether 190 U ug/Kg Dry 2.9 190 100 Methylene Chloride 190 U ug/Kg Dry 5.7 190 100 o-Xylene 380 U ug/Kg Dry 5.0 380 100 Styrene 190 U ug/Kg Dry 5.0 380 100 Styrene 190 U ug/Kg Dry 4.6 190 100 Tetrachloroethene 4200 ug/Kg Dry 19 190 100 Toluene 190 U ug/Kg Dry 3.8 190 100 trans-1,2-Dichloroethene 190 U ug/Kg Dry 3.8 190 100 trans-1,3-Dichloropropene 190 U ug/Kg Dry 3.1 190 100 trans-1,4-Dichloro-2-butene 190 U ug/Kg Dry 3.1 190 100 <td>Isopropylbenzene</td> <td></td> <td>190</td> <td>U</td> <td>ua/Ka Drv</td> <td>8.6</td> <td></td> <td>190</td> <td>100</td>	Isopropylbenzene		190	U	ua/Ka Drv	8.6		190	100
4-Methyl-2-pentanone (MIBK) 190 U ug/Kg Dry 31 190 100 Methyl tert-butyl ether 190 U ug/Kg Dry 2.9 190 100 Methylene Chloride 190 U ug/Kg Dry 5.7 190 100 o-Xylene 380 U ug/Kg Dry 5.0 380 100 Styrene 190 U ug/Kg Dry 4.6 190 100 Tetrachloroethene 4200 ug/Kg Dry 19 190 100 Toluene 190 U ug/Kg Dry 3.8 190 100 trans-1,2-Dichloroethene 190 U ug/Kg Dry 3.8 190 100 trans-1,3-Dichloropropene 190 U ug/Kg Dry 3.1 190 100 trans-1,4-Dichloro-2-butene 190 U ug/Kg Dry 3.1 190 100	m-Xvlene & p-Xvlene		380	U	ua/Ka Drv	17	:	380	100
Methyl tert-butyl ether 190 U ug/Kg Dry 2.9 190 100 Methyl tert-butyl ether 190 U ug/Kg Dry 5.7 190 100 Methylene Chloride 190 U ug/Kg Dry 5.7 190 100 o-Xylene 380 U ug/Kg Dry 5.0 380 100 Styrene 190 U ug/Kg Dry 4.6 190 100 Tetrachloroethene 4200 ug/Kg Dry 19 190 100 Toluene 190 U ug/Kg Dry 3.8 190 100 trans-1,2-Dichloroethene 190 U ug/Kg Dry 3.8 190 100 trans-1,3-Dichloropropene 190 U ug/Kg Dry 3.1 190 100 trans-1,4-Dichloro-2-butene 190 U ug/Kg Dry 3.1 190 100	4-Methyl-2-pentanone (MIBK)	190	Ŭ	ua/Ka Drv	31		190	100
Methylene Chloride 190 U ug/Kg Dry 5.7 190 100 o-Xylene 380 U ug/Kg Dry 5.0 380 100 Styrene 190 U ug/Kg Dry 5.0 380 100 Styrene 190 U ug/Kg Dry 4.6 190 100 Tetrachloroethene 4200 ug/Kg Dry 19 190 100 Toluene 190 U ug/Kg Dry 3.8 190 100 trans-1,2-Dichloroethene 190 U ug/Kg Dry 3.8 190 100 trans-1,3-Dichloropropene 190 U ug/Kg Dry 3.1 190 100 trans-1,4-Dichloro-2-butene 190 U ug/Kg Dry 3.1 190 100	Methyl tert-butyl ether	,	190	U	ua/Ka Drv	2.9		190	100
o-Xylene 380 U ug/Kg Dry 5.0 380 100 Styrene 190 U ug/Kg Dry 4.6 190 100 Tetrachloroethene 4200 ug/Kg Dry 19 190 100 Toluene 190 U ug/Kg Dry 3.8 190 100 trans-1,2-Dichloroethene 190 U ug/Kg Dry 3.8 190 100 trans-1,3-Dichloropropene 190 U ug/Kg Dry 3.1 190 100 trans-1,4-Dichloro-2-butene 190 U ug/Kg Dry 3.1 190 100	Methylene Chloride		190	Ŭ	ua/Ka Drv	5.7		190	100
Styrene 190 U ug/Kg Dry 4.6 190 100 Tetrachloroethene 4200 ug/Kg Dry 19 190 100 Toluene 190 U ug/Kg Dry 3.8 190 100 trans-1,2-Dichloroethene 190 U ug/Kg Dry 3.8 190 100 trans-1,3-Dichloropropene 190 U ug/Kg Dry 3.1 190 100 trans-1,4-Dichloro-2-butene 190 U ug/Kg Dry 3.1 190 100	o-Xvlene		380	U	ua/Ka Drv	5.0	-	380	100
Tetrachloroethene 4200 ug/Kg Dry 19 190 100 Toluene 190 U ug/Kg Dry 3.8 190 100 trans-1,2-Dichloroethene 190 U ug/Kg Dry 6.9 190 100 trans-1,3-Dichloropropene 190 U ug/Kg Dry 3.1 190 100 trans-1,4-Dichloro-2-butene 190 U ug/Kg Dry 15 190 100	Styrene		190	Ŭ	ug/Ka Dry	4.6		190	100
Toluene 190 U ug/Kg Dry 3.8 190 100 trans-1,2-Dichloroethene 190 U ug/Kg Dry 6.9 190 100 trans-1,3-Dichloropropene 190 U ug/Kg Dry 3.1 190 100 trans-1,4-Dichloro-2-butene 190 U ug/Kg Dry 15 190 100	Tetrachloroethene		4200	2	ug/Ka Drv	19		190	100
trans-1,2-Dichloroethene 190 U ug/Kg Dry 6.9 190 100 trans-1,3-Dichloropropene 190 U ug/Kg Dry 3.1 190 100 trans-1,4-Dichloro-2-butene 190 U ug/Kg Dry 15 190 100	Toluene		190	U	ug/Ka Dry	3.8		190	100
trans-1,3-Dichloropropene 190 U ug/Kg Dry 3.1 190 100 trans-1,4-Dichloro-2-butene 190 U ug/Kg Dry 3.1 190 100	trans-1 2-Dichloroethen	e	190	U U	ug/Ka Drv	6.9		190	100
trans-1,4-Dichloro-2-butene 190 U ua/Ka Drv 15 190 100	trans-1 3-Dichloroprope	ne Ine	190	U U	ug/Ka Dry	3.1		190	100
	trans-1.4-Dichloro-2-bu	tene	190	IJ	ug/Ka Drv	15		190	100

Client Sample ID: Lab Sample ID:	SP-51-10-12-051214 420-77953-14			Date S Date R Client M Percen	ampled: eceived: Matrix: t Solids:	05/12/2014 1710 05/21/2014 0900 Solid 85	
Analyte		Result/Qua	alifier	Unit	MDL	RL	Dilution
Trichloroethene		190	U	ug/Kg Dry	7.6	190	100
Trichlorofluoromethane)	190	U	ug/Kg Dry	11	190	100
Vinyl chloride		190	U	ug/Kg Dry	5.9	190	100
Xylenes, Total		380	U	ug/Kg Dry	19	380	100
1,1,1-Trichloroethane		190	U	ug/Kg Dry	4.8	190	100
Freon 113		190	U	ug/Kg Dry	5.7	190	100
1,1,2-Trichloroethane		190	U	ug/Kg Dry	6.3	190	100
1,1-Dichloroethane		190	U	ug/Kg Dry	2.7	190	100
1,1-Dichloroethene		190	U	ug/Kg Dry	6.3	190	100
1,1-Dichloropropene		190	U	ug/Kg Dry	9.8	190	100
1,2-Dibromo-3-Chlorop	propane	190	U	ug/Kg Dry	5.9	190	100
1,2-Dichloroethane		190	U	ug/Kg Dry	3.8	190	100
1,2-Dichloropropane		190	U	ug/Kg Dry	3.6	190	100
1,3-Dichloropropane		190	U	ug/Kg Dry	4.2	190	100
2,2-Dichloropropane		190	U	ug/Kg Dry	4.2	190	100
1,2-Dibromoethane		190	U	ug/Kg Dry	6.1	190	100
2-Butanone (MEK)		190	U	ug/Kg Dry	57	190	100
1,1,2,2-Tetrachloroetha	ane	190	U	ug/Kg Dry	3.8	190	100
1,2,3-Trichloropropane		190	U	ug/Kg Dry	4.2	190	100
Tetrahydrofuran		190	U	ug/Kg Dry	31	190	100
Surrogate						Acceptance Limits	
Toluene-d8 (Surr)		94		%		72 - 143	
1,2-Dichloroethane-d4	(Surr)	91		%		73 - 128	
4-Bromofluorobenzene	9	99		%		49 - 138	

DATA REPORTING QUALIFIERS

Client: Paradigm Environmental Services, Inc.

Job Number: 420-77953-2 Sdg Number: 141907

Lab Section	Qualifier	Description
GC/MS VOA		
	*	LCS or LCSD exceeds the control limits
	D	Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a dilution may be flagged with a D.
	E	Result exceeded calibration range, secondary dilution required.
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
	U	The analyte was analyzed for but not detected at or above the stated limit.
GC/MS Semi VOA		
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
	U	The analyte was analyzed for but not detected at or above the stated limit.

Definitions and Glossary

Client: Paradigm Environmental Services, Inc.

Abbreviation	These commonly used abbreviations may or may not be present in this report.
%R	Percent Recovery
DL, RA, RE	Indicates a Dilution, Reanalysis or Reextraction.
EPA	United States Environmental Protection Agency
MDL	Method Detection Limit - an estimate of the minimum amount of a substance that an analytical process can reliably detect. A MDL is analyte- and matrix-specific and may be laboratory-dependent.
ND	Not detected at the reporting limit (or MDL if shown).
QC	Quality Control
RL	Reporting Limit - the minimum quantitation levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence.
RPD	Relative Percent Difference - a measure of the relative difference between two points

179 Lake Avenue, Rochester, NY 14608 Office (585) 647-2530 Fax (585) 647-3311

Sto

Control Contro Control Control Control Control Control	A CONTRACTOR OF A CONTRACTOR O		REPORT TO:			, INVOIC	E TO:			
Proteinses Contents Contens Contents Contents	A DESCRIPTION OF A DESC	COMPANY	Paradigm Enviror	imental	COMPANY	: Same		LAB PROJECT #: CLI	ENT PROJECT #:	
OR. SAVE: PRA Date Date <thd< th=""><th></th><th>ADDRESS</th><th></th><th></th><th>ADDRESS</th><th></th><th></th><th></th><th></th></thd<>		ADDRESS			ADDRESS					
Protein Ante Protein Ante Protein Ante Merclith Dillinan Ante Ante Ante Ante Ante Ante Ante<	1	CITY:	STATE:	ZIP:	CITY:		STATE: ZIP: 4	TURNAROUND TIME: (WORK	ING DAYS)	
Полости миетати име: Али. Кате Налеел Али. Кате Налеел Али. Кате Налеел Али. Мелбціл Шіплал Д. <)	PHONE:	FAX:		PHONE:	FA	2		STD OTH	
converts Please email results to khansen@paradigmenv.com Date Due: 5 Image: Sevent colspan="2">REQUESTED ANALYSIS REQUESTED ANALYSIS NAT REQUESTED ANALYSIS DATE The sevent results to khansen@paradigmenv.com Date Due: 5 Image: Sevent results the sevent results to khansen@paradigmenv.com Date Due: 5 Image: Sevent results to khansen@paradigmenv.com Date Colsparadigmenv.com <th colspan<="" td=""><td>PROJECT NAME/SITE NAME:</td><td>ATTN:</td><td>Kate Hansen</td><td></td><td>ATTN:</td><td>Meridith Dillma</td><td>-</td><td></td><td></td></th>	<td>PROJECT NAME/SITE NAME:</td> <td>ATTN:</td> <td>Kate Hansen</td> <td></td> <td>ATTN:</td> <td>Meridith Dillma</td> <td>-</td> <td></td> <td></td>	PROJECT NAME/SITE NAME:	ATTN:	Kate Hansen		ATTN:	Meridith Dillma	-		
Acconstruction Acconst		COMMENT	s: Please email result	ts to khansen@	paradigm	env.com and jdaloi	a@paradigmenv.com	Date Due: $5/27$		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		語いたい時にはない	The second se			REQUESTED AI	VALYSIS	South States and States and	Contraction of the other	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	DATE TIME	いつぎょつぷー F m	SAMPLE LOCATION/FIEL	9	2021-4-202 0021-4-202	5-245 OL78 7720778		REMARKS	PARADIGM LAB SAMPLE NUMBE	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	15/12/14 0915		10 - LOBIHI	Sui		· XX				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2 0945		20- 1		-					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3 1010		- 0 3		-		+		a	
5 $ 132$ -05 $ 1$ $ 132$ $ 132$ $ 132$ $ 135$ $ 135$ $ 1142$ $ 11455$ $ 1145$	4 1134		501		-					
6 $ 132$ 0 0 1 <th< td=""><td>5 1130</td><td></td><td>- 05</td><td>*</td><td>1</td><td></td><td>1</td><td></td><td></td></th<>	5 1130		- 05	*	1		1			
7 1740 -b7 1 -b7 1 -b7 1 -b7 1 -b7 1 -b7 1 -b7 -b7 1 -b7 -b7 -b7 1 -b7 -b1	6 1132		no-		~					
8 135 -08 1 1 135 -08 1 1 135 -09 1 <	CHLI 1		Lar		_					
9 1450 -09 1 <td>1315</td> <td></td> <td>-08</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>	1315		-08		-					
10 1745 10 1745 10 10 1745 10 105 10 105<	9 IH 50		-00		~	y.				
*Lab USE ONLY BELOW THIS LINE** Sample Condition: Per NELAC/ELAP 210/241/242/243/244 Complete Condition: Per NELAC/ELAP 210/241/242/243/244 Comments Container Type: V Total Comments Container Type: Y Other Comments Container Type: Y Other Comments Y Other Total Comments Y Other Plate/Time PLF Comments Y N Date/Time Plate/Time Comments Y N Date/Time PLF Comments Y N Date/Time Plate/Time Comments Y N Date/Time Plate/Time Comments Y N Date/Time Plate/Time <th colspa<="" td=""><td>10 V 1745.</td><td></td><td>1- 10</td><td>7</td><td>1</td><td></td><td></td><td></td><td></td></th>	<td>10 V 1745.</td> <td></td> <td>1- 10</td> <td>7</td> <td>1</td> <td></td> <td></td> <td></td> <td></td>	10 V 1745.		1- 10	7	1				
Comments Container Type: Y N Client Client Collent Comments Container Type: Y N Sampled By $A = A + A + A + A + A + A + A + A + A + $	**LAB USE ONLY BEL	OW THIS LINE**	1014 A							
Container Type: Y N Client Client Total Comments: Preservation: Y N Sampled By Date/Time Total Comments: Preservation: Y N N Kelinquished By Kalinquished By N V V V Comments: Holding Time: Y N N Received By Model Pate/Time P.I.F. Comments: Temperature: 7.5 Y N Date/Time P.I.F.	Receipt Pa	rameter	NELAC Compliance		1					
Preservation: Y N X M S/7 o/ 14 1600 Comments: Holding Time: Y N Relinquished By Date/Time Comments: Temperature: 7.5 Y N PLF	Contrainer Comments:	Type:	л И И	Cli Sampled By	ent	4.	Date/Time	· Total Cost:	1	
Comments Holding Time: Y N Comments Temperature: 7,5 Y Comments 7,5 Y N	Presêrva Comments:	tion:	 	Relinquishe	C/A	5/20/	14 16つい Date/Time	-		
Temperature: 7.5 V N N DUCTOR R. S/24/14 900	Holding T Comments:	ime:	2 2 2	Received By	5	36. 14	Date/Time	P.I.F.		
Kecelved @ Lab by Date/Time	Tempera	ture: "7.5	× DN	Received @	UNTOON Lab By	3	Sauly 9	8		

Page 33 of 34

9

LOGIN SAMPLE RECEIPT CHECK LIST

Client: Paradigm Environmental Services, Inc.

Job Number: 420-77953-2 SDG Number: 141907

Login Number: 77953

Question	T/F/NA	Comment
Samples were collected by ETL employee as per SOP-SAM-1	NA	
The cooler's custody seal, if present, is intact.	NA	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is recorded.	True	7.5 C
Cooler Temp. is within method specified range.(0-6 C PW, 0-8 C NPW, or BAC <10 C $$	True	
If false, was sample received on ice within 6 hours of collection.	NA	
Based on above criteria cooler temperature is acceptable.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	NA	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

Analytical Report For

GZA Geo Environmental of New York

For Lab Project ID

142032

Referencing

21.0056687.10 TASK 5

Prepared

Tuesday, May 27, 2014

Any noncompliant QC parameters or other notes impacting data interpretation are flagged or documented on the final report or are noted below:

Portions of the attached report reflect data that has been subcontracted and is presented in its original form.

Certifies that this report has been approved by the Technical Director or Designee

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

- 5 5 Q

Lab Project ID: 142032

Client:	GZA Geo Enviror	<u>imental o</u>	f New Yor	<u>k</u>		
Project Reference:	21.0056687.10 T	ASK 5				
Sample Identifier:	WC-MW-2/MW-	3-COMP				
Lab Sample ID:	142032-01			Date Sampled:	5/15/2014	
Matrix:	TCLP Extract			Date Received:	5/19/2014	
TCLP Semi-Volatile Org	ganics					
<u>Analyte</u>		<u>Result</u>	<u>Units</u>	Regulatory Limit Qualifier	Date Analy	zed
1,4-Dichlorobenzene		< 40.0	ug/L	7500	5/27/2014	14:12
2,4,5-Trichlorophenol		< 80.0	ug/L	400000	5/27/2014	14:12
2,4,6-Trichlorophenol		< 40.0	ug/L	2000	5/27/2014	14:12
2,4-Dinitrotoluene		< 40.0	ug/L	130	5/27/2014	14:12
Cresols (as m,p,o-Cresol)	< 80.0	ug/L	200000	5/27/2014	14:12
Hexachlorobenzene		< 40.0	ug/L	130	5/27/2014	14:12
Hexachlorobutadiene		< 40.0	ug/L	500	5/27/2014	14:12
Hexachloroethane		< 40.0	ug/L	3000	5/27/2014	14:12
Nitrobenzene		< 40.0	ug/L	2000	5/27/2014	14:12
Pentachlorophenol		< 80.0	ug/L	100000	5/27/2014	14:12
Pyridine		< 40.0	ug/L	5000	5/27/2014	14:12
Method Reference	e(s): EPA 8270D EPA 1311 / 3	510C				
Data File:	S76906.D					
TCLP Volatile Organic	<u>2</u>					
Analyte		Result	<u>Units</u>	Regulatory Limit Qualifier	Date Analy	zed
1,1-Dichloroethene		< 20.0	ug/L	700	5/21/2014	21:47
1,2-Dichloroethane		< 20.0	ug/L	500	5/21/2014	21:47
2-Butanone		< 100	ug/L	200000	5/21/2014	21:47
Benzene		< 20.0	ug/L	500	5/21/2014	21:47
Carbon Tetrachloride		< 20.0	ug/L	500	5/21/2014	21:47
Chlorobenzene		< 20.0	ug/L	100000	5/21/2014	21:47
Chloroform		< 20.0	ug/L	6000	5/21/2014	21:47
Tetrachloroethene		< 20.0	ug/L	700	5/21/2014	21:47
Trichloroethene		< 20.0	ug/L	500	5/21/2014	21:47
Vinyl chloride		< 20.0	ug/L	200	5/21/2014	21:47

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Lab Project ID: 142032

Client:	<u>GZA (</u>	<u>Geo Environmental of New York</u>		
Project Reference:	21.00	56687.10 TASK 5		
Sample Identifier:	WC-I	MW-2/MW-3-COMP		
Lab Sample ID:14203Matrix:TCLP		032-01	Date Sampled:	5/15/2014
		P Extract	Date Received:	5/19/2014
Method Refer	ence(s):	EPA 8260C		
Data File:		EPA 1311 / 5030 x13496 D		
Data i noi		11017012		

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

					Lab Project ID:	142032	
Client:	<u>GZA G</u>	eo Environ	mental of	f New Yor	<u>k</u>		
Project Reference:	21.00	56687.10 TA	ASK 5				
Sample Identifier:	WC-I	MV-1-COMP					
Lab Sample ID:	1420	32-02			Date Sampled:	5/16/2014	
Matrix:	TCLF	PExtract			Date Received:	5/19/2014	
TCLP Semi-Volatile Or	ganics	ĩ					
<u>Analyte</u>			<u>Result</u>	<u>Units</u>	Regulatory Limit Qualifier	Date Analy	<u>zed</u>
1,4-Dichlorobenzene			< 40.0	ug/L	7500	5/27/2014	14:43
2,4,5-Trichlorophenol			< 80.0	ug/L	400000	5/27/2014	14:43
2,4,6-Trichlorophenol			< 40.0	ug/L	2000	5/27/2014	14:43
2,4-Dinitrotoluene			< 40.0	ug/L	130	5/27/2014	14:43
Cresols (as m,p,o-Creso	l)		< 80.0	ug/L	200000	5/27/2014	14:43
Hexachlorobenzene			< 40.0	ug/L	130	5/27/2014	14:43
Hexachlorobutadiene			< 40.0	ug/L	500	5/27/2014	14:43
Hexachloroethane			< 40.0	ug/L	3000	5/27/2014	14:43
Nitrobenzene			< 40.0	ug/L	2000	5/27/2014	14:43
Pentachlorophenol			< 80.0	ug/L	100000	5/27/2014	14:43
Pyridine			< 40.0	ug/L	5000	5/27/2014	14:43
Method Reference	e(s):	EPA 8270D	100				
Data File:		EPA 1311 / 35 S76907.D	100				
<u>TCLP Volatile Organic</u>	<u>s</u>						
Analyte			<u>Result</u>	<u>Units</u>	Regulatory Limit Qualifier	Date Analy	zed
1,1-Dichloroethene			< 20.0	ug/L	700	5/21/2014	22:09
1,2-Dichloroethane			< 20.0	ug/L	500	5/21/2014	22:09
2-Butanone			< 100	ug/L	200000	5/21/2014	22:09
Benzene			< 20.0	ug/L	500	5/21/2014	22:09
Carbon Tetrachloride			< 20.0	ug/L	500	5/21/2014	22:09
Chlorobenzene			< 20.0	ug/L	100000	5/21/2014	22:09
Chloroform			< 20.0	ug/L	6000	5/21/2014	22:09

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

ug/L

ug/L

ug/L

700

500

200

550

< 20.0

< 20.0

Tetrachloroethene

Trichloroethene

Vinyl chloride

5/21/2014

5/21/2014

5/21/2014

22:09

22:09

22:09

Lab Project ID: 142032

Client:	<u>GZA G</u>	eo Environmental of New York		
Project Reference:	21.00	56687.10 TASK 5		
Sample Identifier:	WC-I	MV-1-COMP		
Lab Sample ID: 1420		32-02	Date Sampled:	5/16/2014
Matrix:	TCLF	'Extract	Date Received:	5/19/2014
Method Refe	rence(s):	EPA 8260C EPA 1311 / 5030		
Data File:		x13497.D		

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

- "<" = Analyzed for but not detected at or above the quantitation limit.
- *"E" = Result has been estimated, calibration limit exceeded.*

"Z" = See case narrative.

"D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.

"M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.

"B" = Method blank contained trace levels of analyte. Refer to included method blank report.

"J" = Result estimated between the quantitation limit and half the quantitation limit.

"L" = Laboratory Control Sample recovery outside accepted QC limits.

"P" = Concentration differs by more than 40% between the primary and secondary analytical columns.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Turnaround Time Availability contingent upon lab ap Standard 5 day Batch QC Rush 3 day Category A Rush 2 day Category B Rush 1 day Other Dother Other please indicate: Other	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DATE COLLECTED TIME COLLECTED TIME COLLECTED	PARADIGM
Report Supplements proval; additional fees may apply: Basic EDD Other EDD Ot	MC-HW2/MW-3-CAM MW-1-20-22-05131 MW-1-20-22-05131	ATTN: Matrix Codes: AQ - Aqueous Liquid NQ - Non-Aqueous Liquid SAMPLE IDENTIFIER	179 Lake Avenue 179 Lake Avenue CLIENT: CTA CODE STATE: CLIENT: CTA CODE STATE: CLIENT: CTA CODE STATE: CLIENT: CTA CODE STATE: PHONE: THE SYSTE: E
Sampled By Relinquished By Received By Rec		X-RHAZ WG-Groundwater WG-Groundwater WW-Drinking W WW-Wastewate WW-Wastewate TUP VXXS TUP VXXS TUP SOLO TUP SOLO TUP SOLO TUP SOLO	A, Rochester, NY 14608 Office (585) 647-2530 F CHAIN OF CUSTODY CLIENT: INV CLIENT: C CLIENT: C CLIENT: C CLIENT: C CITY: C CHONE: C
DateTime BateTime DateTime DateTime DateTime MG/14 DateTime Relinquished Relinquished BateTime Relinquished SAL		Ater SO - Soil SD - So SL - Sludge PT - PP	ax (585) 647-3311 OICE TO: STATE: ZIP: Quot
PIF Total Cost	x they blue 0 1	REMARKS	SUGULAB PROJECT ID 2007 LAB PROJECT ID 2007 LA

······································
the second
the second se
· 24
······································

Chain of Custody Supplement

Client:		G-2A	Completed by: ¥	nolylail				
Lab Project IE):	142032	Date:	5/19/14				
Sample Condition Requirements Per NELAC/ELAP 210/241/242/243/244								
Condition	N	ELAC compliance with the sample Yes	condition requirements upon No	n receipt N/A				
Container Type		L.Y.	¥ 035 03					
	Comments	ot 26-3, 02-26-3	03-16-2	04-16-2				
Transferred to me compliant contain	thod- er							
Headspace (<1 mL)	Comments							
Preservation								
	Comments							
Chlorine Absent (<0.10 ppm per t	test strip) Comments							
Holding Time	Comments							
Temperature	Comments	m°cicel by	en B/h					
Sufficient Sample	e Quantity		₽ 					
	comments							

262

ANALYTICAL REPORT

Job Number: 420-77953-1 SDG Number: 142032 Job Description: Paradigm Environmental, Inc.

For: Paradigm Environmental Services, Inc. 179 Lake Avenue Rochester, NY 14608

Attention: Jane Daloia

Meredith Ruthven

Meredith W Ruthven Customer Service Manager mruthven@envirotestlaboratories.com 05/22/2014

cc: Kathryn Hansen

NYSDOH ELAP does not certify for all parameters. EnviroTest Laboratories does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Pursuant to NELAP, this report may not be reproduced, except in full, without written approval of the laboratory. EnviroTest Laboratories Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our laboratory. All questions regarding this report should be directed to the EnviroTest Customer Service Representative.

EnviroTest Laboratories, Inc. Certifications and Approvals: NYSDOH 10142, NJDEP NY015, CTDOPH PH-0554

Comments

No additional comments.

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

Samples were recieved in bulk sample containers, therefore as per method 5035 all results below 200 ug/kg are to be considered minimium values.

No analytical or quality issues were noted.

General Chemistry

No analytical or quality issues were noted.

VOA Prep

No analytical or quality issues were noted.

METHOD SUMMARY

Client: Paradigm Environmental Services, Inc.

Job Number: 420-77953-1 SDG Number: 142032

Description	Lab Location	Method	Preparation Method
Matrix: Solid			
Volatile Organic Compounds by GC/MS Closed System Purge&Trap High Level	EnvTest EnvTest	SW846 8260C	EPA 5035-H
Lab References:			
EnvTest = EnviroTest			
Method References:			

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

METHOD / ANALYST SUMMARY

Client: Paradigm Environmental Services, Inc.

Job Number: 420-77953-1 SDG Number: 142032

Method	Analyst	Analyst ID
SW846 8260C	Andersen, Eric C	ECA
EPA PercentMoisture	Goldstein, Amy	AG

SAMPLE SUMMARY

Client: Paradigm Environmental Services, Inc.

Job Number: 420-77953-1 SDG Number: 142032

			Date/Time	Date/Time
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received
420-77953-1	MW-1-20-22-051314	Solid	05/13/2014 1140	05/21/2014 0900
420-77953-2	MW-1-26-28-051614	Solid	05/16/2014 1200	05/21/2014 0900

Client Sample ID: Lab Sample ID:	MW-1-20-22-051314 420-77953-1			Date Sa Date R Client M Percen	ampled: eceived: Matrix: t Solids:	05/13/2014 05/21/2014 Solid 90	1140 0900	
Analyte		Result/Qua	alifier	Unit	MDL		RL	Dilution
Method: 8260C				Date Analy	vzed:	05/21/2014	1237	
Prep Method: 5035-H				Date Prepa	ared:	05/21/2014	1207	
1,2,3-Trichlorobenzene		190	U	ug/Kg Dry	14		190	100
1,2,4-Trichlorobenzene		190	U	ug/Kg Dry	14		190	100
1,2-Dichlorobenzene		190	U	ug/Kg Dry	6.0		190	100
1,3,5-Trimethylbenzene		190	U	ug/Kg Dry	10		190	100
1,3-Dichlorobenzene		190	U	ug/Kg Dry	8.7		190	100
1,4-Dichlorobenzene		190	U	ug/Kg Dry	10		190	100
1,4-Dioxane		280	U	ug/Kg Dry	250		280	100
2-Hexanone		190	U	ug/Kg Dry	30		190	100
Acetone		940	U	ug/Kg Dry	40		940	100
Benzene		190	U	ug/Kg Dry	3.8		190	100
Bromoform		190	U	ug/Kg Dry	3.0		190	100
Bromomethane		190	U	ug/Kg Dry	2.8		190	100
Carbon disulfide		190	U	ug/Kg Dry	6.2		190	100
Carbon tetrachloride		190	U	ug/Kg Dry	6.0		190	100
Chlorobenzene		190	U	ug/Kg Dry	5.8		190	100
Chlorobromomethane		190	U	ug/Kg Dry	5.8		190	100
Chlorodibromomethane		190	U	ug/Kg Dry	4.5		190	100
Chloroethane		190	U	ug/Kg Dry	6.6		190	100
Chloroform		190	U	ug/Kg Dry	3.4		190	100
Chloromethane		190	U	ug/Kg Dry	4.3		190	100
cis-1.2-Dichloroethene		190	U	ua/Ka Drv	3.8		190	100
cis-1,3-Dichloropropene		190	U	ug/Kg Dry	3.4		190	100
Dibromomethane		190	U	ua/Ka Drv	6.0		190	100
Bromodichloromethane		190	U	ua/Ka Drv	1.7		190	100
Dichlorodifluoromethan	9	190	U	ua/Ka Drv	18		190	100
Ethyl methacrylate		190	U	ua/Ka Drv	32		190	100
Ethylbenzene		190	U	ua/Ka Drv	7.4		190	100
Isopropylbenzene		190	Ŭ	ua/Ka Drv	8.5		190	100
m-Xvlene & p-Xvlene		380	U	ua/Ka Drv	17		380	100
4-Methyl-2-pentanone (MIBK)	190	Ŭ	ua/Ka Dry	30		190	100
Methyl tert-butyl ether		190	Ŭ	ua/Ka Drv	2.8		190	100
Methylene Chloride		190	U	ua/Ka Drv	5.7		190	100
o-Xvlene		380	Ŭ	ua/Ka Dry	4.9		380	100
Styrene		190	Ŭ	ua/Ka Drv	4.5		190	100
Tetrachloroethene		56		ua/Ka Dry	19		190	100
Toluene		190	U	ug/Ka Dry	3.8		190	100
trans-1 2-Dichloroethen	e	190	U U	ug/Ka Dry	6.8		190	100
trans-1 3-Dichloroprope	- ne	190	11	ug/Ka Dry	3.0		190	100
trans-1 4-Dichloro-2-but	ene	190		ug/Ka Dry	15		190	100
1310 I,- DIGINOIO-2-DU		100	0	aging biy	10			100

Client Sample ID: Lab Sample ID:	MW-1-20-22-051314 420-77953-1			Date S Date R Client I Percer	ampled: Received: Matrix: ht Solids:	05/13/2014 1140 05/21/2014 0900 Solid 90	
Analyte		Result/Qu	alifier	Unit	MDL	RL	Dilution
Trichloroethene		190	U	ug/Kg Dry	7.5	190	100
Trichlorofluoromethane	9	190	U	ug/Kg Dry	10	190	100
Vinyl chloride		190	U	ug/Kg Dry	5.8	190	100
Xylenes, Total		380	U	ug/Kg Dry	19	380	100
1,1,1-Trichloroethane		190	U	ug/Kg Dry	4.7	190	100
Freon 113		190	U	ug/Kg Dry	5.7	190	100
1,1,2-Trichloroethane		190	U	ug/Kg Dry	6.2	190	100
1,1-Dichloroethane		190	U	ug/Kg Dry	2.6	190	100
1,1-Dichloroethene		190	U	ug/Kg Dry	6.2	190	100
1,1-Dichloropropene		190	U	ug/Kg Dry	9.6	190	100
1,2-Dibromo-3-Chlorop	propane	190	U	ug/Kg Dry	5.8	190	100
1,2-Dichloroethane		190	U	ug/Kg Dry	3.8	190	100
1,2-Dichloropropane		190	U	ug/Kg Dry	3.6	190	100
1,3-Dichloropropane		190	U	ug/Kg Dry	4.1	190	100
2,2-Dichloropropane		190	U	ug/Kg Dry	4.1	190	100
1,2-Dibromoethane		190	U	ug/Kg Dry	6.0	190	100
2-Butanone (MEK)		190	U	ug/Kg Dry	57	190	100
1,1,2,2-Tetrachloroetha	ane	190	U	ug/Kg Dry	3.8	190	100
1,2,3-Trichloropropane		190	U	ug/Kg Dry	4.1	190	100
Tetrahydrofuran		190	U	ug/Kg Dry	31	190	100
Surrogate						Acceptance Limits	
Toluene-d8 (Surr)		96		%		72 - 143	
1,2-Dichloroethane-d4	(Surr)	94		%		73 - 128	
4-Bromofluorobenzene	9	106		%		49 - 138	

Client Sample ID: Lab Sample ID:	MW-1-26-28-051614 420-77953-2			Date Sampled: Date Received: Client Matrix: Percent Solids:		05/16/2014 1200 05/21/2014 0900 Solid 87	
Analyte		Result/Qua	alifier	Unit	MDL	RL	Dilution
Method: 8260C				Date Analy	zed:	05/21/2014 1304	
Prep Method: 5035-H				Date Prepa	ared:	05/21/2014 1207	
1,2,3-Trichlorobenzene		180	U	ug/Kg Dry	13	180	100
1,2,4-Trichlorobenzene		180	U	ug/Kg Dry	13	180	100
1,2-Dichlorobenzene		180	U	ug/Kg Dry	5.9	180	100
1,3,5-Trimethylbenzene		180	U	ug/Kg Dry	9.7	180	100
1,3-Dichlorobenzene		180	U	ug/Kg Dry	8.4	180	100
1,4-Dichlorobenzene		180	U	ug/Kg Dry	9.7	180	100
1,4-Dioxane		270	U	ug/Kg Dry	240	270	100
2-Hexanone		180	U	ug/Kg Dry	29	180	100
Acetone		920	U	ug/Kg Dry	38	920	100
Benzene		180	U	ug/Kg Dry	3.7	180	100
Bromoform		180	U	ug/Kg Dry	2.9	180	100
Bromomethane		180	U	ug/Kg Dry	2.7	180	100
Carbon disulfide		180	U	ug/Kg Dry	6.0	180	100
Carbon tetrachloride		180	U	ug/Kg Dry	5.9	180	100
Chlorobenzene		180	U	ug/Kg Dry	5.7	180	100
Chlorobromomethane		180	U	ug/Kg Dry	5.7	180	100
Chlorodibromomethane		180	U	ug/Kg Dry	4.4	180	100
Chloroethane		180	U	ug/Kg Dry	6.4	180	100
Chloroform		180	U	ug/Kg Dry	3.3	180	100
Chloromethane		180	U	ug/Kg Dry	4.2	180	100
cis-1,2-Dichloroethene		180	U	ug/Kg Dry	3.7	180	100
cis-1,3-Dichloropropene		180	U	ug/Kg Dry	3.3	180	100
Dibromomethane		180	U	ug/Kg Dry	5.9	180	100
Bromodichloromethane		180	U	ug/Kg Dry	1.6	180	100
Dichlorodifluoromethane)	180	U	ug/Kg Dry	17	180	100
Ethyl methacrylate		180	U	ug/Kg Dry	3.1	180	100
Ethylbenzene		180	U	ug/Kg Dry	7.1	180	100
Isopropylbenzene		180	U	ug/Kg Dry	8.2	180	100
m-Xylene & p-Xylene		370	U	ug/Kg Dry	16	370	100
4-Methyl-2-pentanone (I	MIBK)	180	U	ug/Kg Dry	29	180	100
Methyl tert-butyl ether	,	180	U	ug/Kg Dry	2.7	180	100
Methylene Chloride		180	U	ug/Kg Dry	5.5	180	100
o-Xylene		370	U	ug/Kg Dry	4.8	370	100
Styrene		180	U	ug/Kg Dry	4.4	180	100
Tetrachloroethene		180	U	ug/Kg Dry	18	180	100
Toluene		180	U	ug/Kg Dry	3.7	180	100
trans-1,2-Dichloroethene	9	180	U	ug/Kg Drv	6.6	180	100
trans-1,3-Dichloroprope	ne	180	U	ug/Kg Drv	2.9	180	100
trans-1,4-Dichloro-2-but	ene	180	U	ug/Kg Dry	15	180	100

Client Sample ID: Lab Sample ID:	MW-1-26-28-051614 420-77953-2			Date S Date R Client M Percen	ampled: eceived: ⁄latrix: t Solids:	05/16/2014 1200 05/21/2014 0900 Solid 87	
Analyte		Result/Qua	alifier	Unit	MDL	RL	Dilution
Trichloroethene		180	U	ug/Kg Dry	7.3	180	100
Trichlorofluoromethane	9	180	U	ug/Kg Dry	10	180	100
Vinyl chloride		180	U	ug/Kg Dry	5.7	180	100
Xylenes, Total		370	U	ug/Kg Dry	18	370	100
1,1,1-Trichloroethane		180	U	ug/Kg Dry	4.6	180	100
Freon 113		180	U	ug/Kg Dry	5.5	180	100
1,1,2-Trichloroethane		180	U	ug/Kg Dry	6.0	180	100
1,1-Dichloroethane		180	U	ug/Kg Dry	2.6	180	100
1,1-Dichloroethene		180	U	ug/Kg Dry	6.0	180	100
1,1-Dichloropropene		180	U	ug/Kg Dry	9.3	180	100
1,2-Dibromo-3-Chlorop	propane	180	U	ug/Kg Dry	5.7	180	100
1,2-Dichloroethane		180	U	ug/Kg Dry	3.7	180	100
1,2-Dichloropropane		180	U	ug/Kg Dry	3.5	180	100
1,3-Dichloropropane		180	U	ug/Kg Dry	4.0	180	100
2,2-Dichloropropane		180	U	ug/Kg Dry	4.0	180	100
1,2-Dibromoethane		180	U	ug/Kg Dry	5.9	180	100
2-Butanone (MEK)		180	U	ug/Kg Dry	55	180	100
1,1,2,2-Tetrachloroetha	ane	180	U	ug/Kg Dry	3.7	180	100
1,2,3-Trichloropropane		180	U	ug/Kg Dry	4.0	180	100
Tetrahydrofuran		180	U	ug/Kg Dry	30	180	100
Surrogate						Acceptance Limits	
Toluene-d8 (Surr)		96		%		72 - 143	
1,2-Dichloroethane-d4	(Surr)	90		%		73 - 128	
4-Bromofluorobenzene	9	101		%		49 - 138	

DATA REPORTING QUALIFIERS

Client: Paradigm Environmental Services, Inc.

Job Number: 420-77953-1 Sdg Number: 142032

Lab Section	Qualifier	Description
GC/MS VOA		
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
	U	The analyte was analyzed for but not detected at or above the stated limit.

Definitions and Glossary

Client: Paradigm Environmental Services, Inc.

Abbreviation	These commonly used abbreviations may or may not be present in this report.
%R	Percent Recovery
DL, RA, RE	Indicates a Dilution, Reanalysis or Reextraction.
EPA	United States Environmental Protection Agency
MDL	Method Detection Limit - an estimate of the minimum amount of a substance that an analytical process can reliably detect. A MDL is analyte- and matrix-specific and may be laboratory-dependent.
ND	Not detected at the reporting limit (or MDL if shown).
QC	Quality Control
RL	Reporting Limit - the minimum quantitation levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence.
RPD	Relative Percent Difference - a measure of the relative difference between two points

179 Lake Avenue, Rochester, NY 14608 Office (585) 647-2530 Fax (585) 647-3311

1.5

				E LET				
NAVIE	PARIFIN.	1000	REPORT TO:		INVOICE TO:			
		COMPANY	Paradigm Environmental		COMPANY: Same		LAB PROJECT #: CL	JENT PROJECT #:
		ADDRESS			ADDRESS:			
J	1	CITY:	STATE: 2	Ъ;	CITY: STATE:	ZIP: 4	TURNAROUND TIME: (WOR!	(ING DAYS)
		PHONE:	FAX:		PHONE: FAX:			STD OTHER
PROJECT NAME/SITE	E NAME:	ATTN:	Kate Hansen		ATTN: Meridith Dillman			5
		COMMEN	rs: Please email results to khar	sen@pa	radigmenv.com and jdaloia@para	idigmenv.com	Date Due: Ho	0
					REQUESTED ANALYS	S]
DATE	Time Time Time Time Time Time Time Time	ଅ × ଅ	SAMPLE LOCATION/FIELD ID	∑ < ⊢ Ľ – X	NDT UUSS N N N N N N N N N N N N N N N N N N		REMARKS	PARADIGM LAB SAMPLE NUMBER
1513	0,111		\$ 142D27-03	0	· X ~			
L25110	12.00		2032 - DH	5	X -			
3								-
4								
5								
9								
7								
8								
Ø	ŵ.				p			
10								
LAB USE C	INLY BELOW THIS I	LINE	131744	State State			And the state of the second	
	Receipt Parameter		NELAC Compliance		(B. 10)			
Comments:	Container Type:		۲ Sam	Clien pled By	Date/T	ime / /	Total Cost	•
Comments:	Presërvation:			Del	WHAT OUNDA	5 2 0 L	,20071 +	
Comments:	Holding Time:		Y N N	eived By	Date/T	ime	- B.LF.	
Comments:	Temperature:	10	× N N	CLUT eived@La	BBY SIZI		00	
		1		Sdn	2LII XIANNY	857 171	2	

05/22/2014 Page 20 of 21

٩

LOGIN SAMPLE RECEIPT CHECK LIST

Client: Paradigm Environmental Services, Inc.

Job Number: 420-77953-1 SDG Number: 142032

Login Number: 77953

Question	T/F/NA	Comment
Samples were collected by ETL employee as per SOP-SAM-1	NA	
The cooler's custody seal, if present, is intact.	NA	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is recorded.	True	7.5 C
Cooler Temp. is within method specified range.(0-6 C PW, 0-8 C NPW, or BAC <10 C $$	True	
If false, was sample received on ice within 6 hours of collection.	NA	
Based on above criteria cooler temperature is acceptable.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	NA	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-60301-1

Client Project/Site: Northtown Plaza Phase II, NY

For:

GZA GeoEnvironmental, Inc. 535 Washington Street 11th Floor Buffalo, New York 14203

Attn: Mr. Christopher Boron

Authorized for release by: 5/22/2014 5:35:49 PM Rebecca Jones, Project Management Assistant I rebecca.jones@testamericainc.com

Designee for

Melissa Deyo, Project Manager I (716)504-9874 melissa.deyo@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	13
Lab Chronicle	14
Certification Summary	15
Method Summary	16
Sample Summary	17
Chain of Custody	18
Receipt Checklists	19

3

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	 5
Glossary		 6
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CNF	Contains no Free Liquid	8
DER	Duplicate error ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	9
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

Job ID: 480-60301-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-60301-1

Receipt

The samples were received on 5/21/2014 4:05 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.4° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Detection Summary

Client: GZA GeoEnvironmental, Inc. Project/Site: Northtown Plaza Phase II, NY

Carbon disulfide

Toluene

Client Sample ID: MW-1						La	ab	Sample II	D: 480-60301-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	8.5	J	10	3.0	ug/L	1	_	8260C	Total/NA
Bromodichloromethane	0.57	J	1.0	0.39	ug/L	1		8260C	Total/NA
Carbon disulfide	0.99	J	1.0	0.19	ug/L	1		8260C	Total/NA
Chloroform	1.8		1.0	0.34	ug/L	1		8260C	Total/NA
Tetrachloroethene	0.46	J	1.0	0.36	ug/L	1		8260C	Total/NA
Client Sample ID: MW-2						La	ab	Sample II): 480-60301-2
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	3.0	J	10	3.0	ug/L	1	_	8260C	Total/NA
Client Sample ID: MW-3						La	ab	Sample II	0: 480-60301-3
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	7.7	J	10	3.0	ug/L	1	_	8260C	Total/NA

1.0

1.0

0.19 ug/L

0.51 ug/L

1

1

8260C

8260C

Total/NA

Total/NA

1.3

0.66 J

Client Sample ID: MW-1

Date Collected: 05/21/14 14:30 Date Received: 05/21/14 16:05

Method: 8260C - Volatile Organic Analyte	Compounds I Result	by GC/MS Qualifier	RL	MDL	Unit	D Pr	epared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			05/22/14 06:27	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			05/22/14 06:27	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			05/22/14 06:27	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			05/22/14 06:27	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			05/22/14 06:27	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			05/22/14 06:27	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			05/22/14 06:27	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			05/22/14 06:27	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			05/22/14 06:27	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			05/22/14 06:27	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			05/22/14 06:27	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			05/22/14 06:27	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			05/22/14 06:27	
2-Butanone (MEK)	ND		10	1.3	ug/L			05/22/14 06:27	1
2-Hexanone	ND		5.0	1.2	ug/L			05/22/14 06:27	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			05/22/14 06:27	
Acetone	8.5	J	10	3.0	ug/L			05/22/14 06:27	1
Benzene	ND		1.0	0.41	ug/L			05/22/14 06:27	1
Bromodichloromethane	0.57	J	1.0	0.39	ug/L			05/22/14 06:27	1
Bromoform	ND		1.0	0.26	ug/L			05/22/14 06:27	1
Bromomethane	ND		1.0	0.69	ug/L			05/22/14 06:27	1
Carbon disulfide	0.99	J	1.0	0.19	ug/L			05/22/14 06:27	
Carbon tetrachloride	ND		1.0	0.27	ua/L			05/22/14 06:27	1
Chlorobenzene	ND		1.0	0.75	ua/L			05/22/14 06:27	1
Dibromochloromethane	ND		1.0	0.32	ug/L			05/22/14 06:27	
Chloroethane	ND		1.0	0.32	ug/L			05/22/14 06:27	1
Chloroform	1.8		1.0	0.34	ua/L			05/22/14 06:27	1
Chloromethane	ND		1.0	0.35	ua/L			05/22/14 06:27	
cis-1.2-Dichloroethene	ND		1.0	0.81	ua/L			05/22/14 06:27	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			05/22/14 06:27	1
Cyclohexane	ND		1.0	0.18	ug/L			05/22/14 06:27	
Dichlorodifluoromethane	ND		1.0	0.68	ua/L			05/22/14 06:27	1
Ethylbenzene	ND		1.0	0.74	ua/L			05/22/14 06:27	1
1.2-Dibromoethane	ND		1.0	0.73	ua/L			05/22/14 06:27	1
Isopropylbenzene	ND		1.0	0.79	ua/L			05/22/14 06:27	1
Methyl acetate	ND		2.5	0.50	ua/L			05/22/14 06:27	1
Methyl tert-butyl ether	ND		1.0	0.16	ua/L			05/22/14 06:27	
Methylcyclohexane	ND		1.0	0.16	ua/L			05/22/14 06:27	1
Methylene Chloride	ND		1.0	0.44	ua/L			05/22/14 06:27	1
Styrene	ND		1.0	0.73	ua/L			05/22/14 06:27	
Tetrachloroethene	0.46	а	1.0	0.36	ua/l			05/22/14 06:27	1
Toluene	ND	-	1.0	0.51	ua/L			05/22/14 06:27	1
trans-1.2-Dichloroethene	ND		1.0	0.90	ua/L			05/22/14 06:27	
trans-1.3-Dichloropropene	ND		1.0	0.37	ua/L			05/22/14 06:27	1
Trichloroethene	ND		1.0	0.46	ua/L			05/22/14 06:27	1
Trichlorofluoromethane	ND		1.0	0.88	ua/L			05/22/14 06:27	· · · · · · · · · · · · 1
Vinvl chloride	ND		1.0	0.00	ug/l			05/22/14 06:27	1
Xylenes Total			20	0.00 AA 0				05/22/14 06:27	1
Ayiches, Iulai	ND		2.0	0.00	uy/L			05/22/14 00.21	I

Lab Sample ID: 480-60301-1 Matrix: Water

> 9 10 11

13

TestAmerica Buffalo

Styrene

Lab Sample ID: 480-60301-1 Matrix: Water

6

Date Received: 05/21/14 16:05									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)			71 - 126			-	•	05/22/14 06:27	1
1,2-Dichloroethane-d4 (Surr)	136		66 - 137					05/22/14 06:27	1
4-Bromofluorobenzene (Surr)	94		73 - 120					05/22/14 06:27	1
Client Sample ID: MW-2							Lab San	nole ID: 480-6	0301-2
Date Collected: 05/21/14 15:20								Matrix	c Water
Date Received: 05/21/14 16:05								Wath	. Water
Method: 8260C - Volatile Organi	c Compounds Result	by GC/MS Qualifier	RI	мы	Unit	п	Prenared	Analyzed	Dil Fac
1 1 1-Trichloroethane			1.0	0.82			Ticparca	05/22/14 06:50	1
1 1 2 2-Tetrachloroethane			1.0	0.02	ug/L			05/22/14 06:50	1
1 1 2-Trichloroethane			1.0	0.21	ug/L			05/22/14 06:50	1
1 1 2-Trichloro-1 2 2-trifluoroethane			1.0	0.20	ug/L			05/22/14 06:50	
1 1 Dichloroothano			1.0	0.31	ug/L			05/22/14 06:50	1
1,1 Dichloroethane			1.0	0.30	ug/L			05/22/14 06:50	1
1, 1-Dichlorobenzene			1.0	0.29	ug/L			05/22/14 06:50	
1,2,4- Michioloberizene			1.0	0.41	ug/L			05/22/14 06:50	1
1,2-Diblomo-3-Chioropropane			1.0	0.39	ug/L			05/22/14 00:50	1
1,2-Dichloroothana			1.0	0.79	uy/L			05/22/14 00:50	ا • • • • • • •
	ND		1.0	0.21	ug/L			05/22/14 06:50	-
	ND		1.0	0.72	ug/L			05/22/14 06:50	-
	ND		1.0	0.76	ug/L			05/22/14 06.50	
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			05/22/14 06:50	1
	ND		10	1.3	ug/L			05/22/14 06:50	1
	ND		5.0	1.2	ug/L			05/22/14 06:50	
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			05/22/14 06:50	1
Acetone	3.0	J	10	3.0	ug/L			05/22/14 06:50	1
Benzene	ND		1.0	0.41	ug/L			05/22/14 06:50	
Bromodichloromethane	ND		1.0	0.39	ug/L			05/22/14 06:50	1
Bromoform	ND		1.0	0.26	ug/L			05/22/14 06:50	1
Bromomethane	ND		1.0	0.69	ug/L			05/22/14 06:50	1
Carbon disulfide	ND		1.0	0.19	ug/L			05/22/14 06:50	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			05/22/14 06:50	1
Chlorobenzene	ND		1.0	0.75	ug/L			05/22/14 06:50	1
Dibromochloromethane	ND		1.0	0.32	ug/L			05/22/14 06:50	1
Chloroethane	ND		1.0	0.32	ug/L			05/22/14 06:50	1
Chloroform	ND		1.0	0.34	ug/L			05/22/14 06:50	1
Chloromethane	ND		1.0	0.35	ug/L			05/22/14 06:50	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			05/22/14 06:50	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			05/22/14 06:50	1
Cyclohexane	ND		1.0	0.18	ug/L			05/22/14 06:50	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			05/22/14 06:50	1
Ethylbenzene	ND		1.0	0.74	ug/L			05/22/14 06:50	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			05/22/14 06:50	1
Isopropylbenzene	ND		1.0	0.79	ug/L			05/22/14 06:50	1
Methyl acetate	ND		2.5	0.50	ug/L			05/22/14 06:50	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			05/22/14 06:50	1
Methylcyclohexane	ND		1.0	0.16	ug/L			05/22/14 06:50	1
Methylene Chloride	ND		1.0	0.44	ug/L			05/22/14 06:50	1

TestAmerica Buffalo

1

05/22/14 06:50

1.0

0.73 ug/L

ND

RL

1.0

1.0

1.0

1.0

1.0

1.0

1.0

2.0

Limits

71 - 126

66 - 137

73 - 120

MDL Unit

0.36 ug/L

0.51 ug/L

0.90 ug/L

0.37 ug/L

0.46 ug/L

0.88 ug/L

0.90 ug/L

0.66 ug/L

D

Prepared

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Result Qualifier

ND

ND

ND

ND

ND

ND

ND

ND

104

132

94

%Recovery

Qualifier

Client Sample ID: MW-2 Date Collected: 05/21/14 15:20 Date Received: 05/21/14 16:05

Analyte

Toluene

Tetrachloroethene

Trichloroethene

Vinyl chloride

Xylenes, Total

Toluene-d8 (Surr)

Surrogate

trans-1,2-Dichloroethene

Trichlorofluoromethane

trans-1,3-Dichloropropene

TestAmerica Job ID: 480-60301-1

Lab Sample ID: 480-60301-2 Matrix: Water

Analyzed

05/22/14 06:50

05/22/14 06:50

05/22/14 06:50

05/22/14 06:50

05/22/14 06:50

05/22/14 06:50

05/22/14 06:50

05/22/14 06:50

Dil Fac

1

1

1

1

1

1

1

1

Prepared	Analyzed	Dil Fac		
	05/22/14 06:50	1		
	05/22/14 06:50	1		
	05/22/14 06:50	1		

Lab Sample ID: 480-60301-3 Matrix: Water

Client Sample ID: MW-3 Date Collected: 05/21/14 15:00 Date Received: 05/21/14 16:05

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			05/22/14 07:15	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			05/22/14 07:15	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			05/22/14 07:15	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			05/22/14 07:15	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			05/22/14 07:15	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			05/22/14 07:15	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			05/22/14 07:15	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			05/22/14 07:15	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			05/22/14 07:15	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			05/22/14 07:15	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			05/22/14 07:15	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			05/22/14 07:15	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L		05/22/14 07:15		1
2-Butanone (MEK)	ND		10	1.3	ug/L			05/22/14 07:15	1
2-Hexanone	ND		5.0	1.2	ug/L			05/22/14 07:15	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			05/22/14 07:15	1
Acetone	7.7	J	10	3.0	ug/L			05/22/14 07:15	1
Benzene	ND		1.0	0.41	ug/L			05/22/14 07:15	1
Bromodichloromethane	ND		1.0	0.39	ug/L			05/22/14 07:15	1
Bromoform	ND		1.0	0.26	ug/L			05/22/14 07:15	1
Bromomethane	ND		1.0	0.69	ug/L			05/22/14 07:15	1
Carbon disulfide	1.3		1.0	0.19	ug/L			05/22/14 07:15	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			05/22/14 07:15	1
Chlorobenzene	ND		1.0	0.75	ug/L			05/22/14 07:15	1
Dibromochloromethane	ND		1.0	0.32	ug/L			05/22/14 07:15	1
Chloroethane	ND		1.0	0.32	ug/L			05/22/14 07:15	1
Chloroform	ND		1.0	0.34	ug/L			05/22/14 07:15	1
Chloromethane	ND		1.0	0.35	ug/L			05/22/14 07:15	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			05/22/14 07:15	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			05/22/14 07:15	1

TestAmerica Buffalo

Client Sample ID: MW-3 Date Collected: 05/21/14 15:00 Date Received: 05/21/14 16:05

TestAmerica Job ID: 480-60301-1

Lab Sample ID: 480-60301-3 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyclohexane	ND		1.0	0.18	ug/L			05/22/14 07:15	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L		05/22/14 07:15		1
Ethylbenzene	ND		1.0	0.74	ug/L			05/22/14 07:15	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			05/22/14 07:15	1
Isopropylbenzene	ND		1.0	0.79	ug/L			05/22/14 07:15	1
Methyl acetate	ND		2.5	0.50	ug/L			05/22/14 07:15	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			05/22/14 07:15	1
Methylcyclohexane	ND		1.0	0.16	ug/L		05/22/14 07:15		1
Methylene Chloride	ND		1.0	0.44	ug/L		05/22/14 07:15		1
Styrene	ND		1.0	0.73	ug/L		05/22/14 07:15		1
Tetrachloroethene	ND		1.0	0.36	ug/L		05/22/14 07:15		1
Toluene	0.66	J	1.0	0.51	ug/L		05/22/14 07:15		1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			05/22/14 07:15	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			05/22/14 07:15	1
Trichloroethene	ND		1.0	0.46	ug/L			05/22/14 07:15	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			05/22/14 07:15	1
Vinyl chloride	ND		1.0	0.90	ug/L			05/22/14 07:15	1
Xylenes, Total	ND		2.0	0.66	ug/L			05/22/14 07:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	104		71 - 126			-		05/22/14 07:15	1
1,2-Dichloroethane-d4 (Surr)	136		66 - 137					05/22/14 07:15	1
4-Bromofluorobenzene (Surr)	93		73 - 120					05/22/14 07:15	1

109

103

118

124

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Control Sample

Method Blank

M	a	tri	ix:	W	a	ter

Lab Sample ID 480-60301-1 480-60301-2 480-60301-3 LCS 480-183432/5

MB 480-183432/7

				Prep Type: Total/NA
			Percent Surr	ogate Recovery (Acceptance Limits)
	TOL	12DCE	BFB	
Client Sample ID	(71-126)	(66-137)	(73-120)	
MW-1	104	136	94	
MW-2	104	132	94	
MW-3	104	136	93	

103

98

Surrogate Legend

TOL = Toluene-d8 (Surr)

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TestAmerica Buffalo

Client Sample ID: Method Blank

2 3 4 5

	9
	3

Method: 8260C - Volatile Organic Compounds by GC/MS

|--|

Matrix: Water								Prep Type: T	'otal/NA
Analysis Batch: 183432									
	МВ	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			05/21/14 23:58	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			05/21/14 23:58	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			05/21/14 23:58	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			05/21/14 23:58	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			05/21/14 23:58	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			05/21/14 23:58	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			05/21/14 23:58	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			05/21/14 23:58	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			05/21/14 23:58	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			05/21/14 23:58	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			05/21/14 23:58	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			05/21/14 23:58	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			05/21/14 23:58	1
2-Butanone (MEK)	ND		10	1.3	ug/L			05/21/14 23:58	1
2-Hexanone	ND		5.0	1.2	ug/L			05/21/14 23:58	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			05/21/14 23:58	1
Acetone	ND		10	3.0	ug/L			05/21/14 23:58	1
Benzene	ND		1.0	0.41	ug/L			05/21/14 23:58	1
Bromodichloromethane	ND		1.0	0.39	ug/L			05/21/14 23:58	1
Bromoform	ND		1.0	0.26	ug/L			05/21/14 23:58	1
Bromomethane	ND		1.0	0.69	ug/L			05/21/14 23:58	1
Carbon disulfide	ND		1.0	0.19	ug/L			05/21/14 23:58	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			05/21/14 23:58	1
Chlorobenzene	ND		1.0	0.75	ug/L			05/21/14 23:58	1
Dibromochloromethane	ND		1.0	0.32	ug/L			05/21/14 23:58	1
Chloroethane	ND		1.0	0.32	ug/L			05/21/14 23:58	1
Chloroform	ND		1.0	0.34	ug/L			05/21/14 23:58	1
Chloromethane	ND		1.0	0.35	ug/L			05/21/14 23:58	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			05/21/14 23:58	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			05/21/14 23:58	1
Cyclohexane	ND		1.0	0.18	ug/L			05/21/14 23:58	1
Dichlorodifluoromethane	ND		1.0	0.68	ua/L			05/21/14 23:58	1
Ethylbenzene	ND		1.0	0.74	ug/L			05/21/14 23:58	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			05/21/14 23:58	
Isopropylbenzene	ND		1.0	0.79	ua/L			05/21/14 23:58	1
Methyl acetate	ND		2.5	0.50	ua/L			05/21/14 23:58	1
Methyl tert-butyl ether	ND		1.0	0.16	ua/L			05/21/14 23:58	1
Methylcvclohexane	ND		1.0	0.16	ua/L			05/21/14 23:58	1
Methylene Chloride	ND		1.0	0.44	ua/L			05/21/14 23:58	1
Styrene	ND		1.0	0.73	ua/L			05/21/14 23:58	1
Tetrachloroethene	ND		1.0	0.36	ua/L			05/21/14 23:58	1
Toluene	ND		1.0	0.51	ug/l			05/21/14 23:58	. 1
trans-1.2-Dichloroethene			1.0	0.90	ua/L			05/21/14 23:58	· · · · · · · · 1
trans-1.3-Dichloropropene			1.0	0.37	ua/L			05/21/14 23:58	1
Trichloroethene			1.0	0.46	ua/I			05/21/14 23:58	1
Trichlorofluoromethane			1.0	00 0 88	uα/I			05/21/14 23:58	· · · · · · · · · · · · · · · · · · ·
Vinyl chloride			1.0	0.00 N QN	~ .			05/21/14 23:58	1
Xvlenes Total			2.0	0.00	ua/l			05/21/14 23:58	1
			2.0	0.00	~g, _			00/L I/ IT 20.00	

TestAmerica Buffalo

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

118

103

Lab Sample ID: MB 480-183432/7 Client Sample IE						Sample ID: Metho	d Blank			
Matrix: Water									Prep Type: 1	Total/NA
Analysis Batch: 183432										
	М	в мв								
Surrogate	%Recover	y Qualifier	Limits				P	repared	Analyzed	Dil Fac
Toluene-d8 (Surr)	10	3	71 - 126						05/21/14 23:58	1
1,2-Dichloroethane-d4 (Surr)	12	4	66 - 137						05/21/14 23:58	1
4-Bromofluorobenzene (Surr)	9	8	73 - 120						05/21/14 23:58	1
Lab Sample ID: LCS 480-183	8432/5						Client	Sample	ID: Lab Control	Sample
Matrix: Water									Prep Type: 1	fotal/NA
Analysis Batch: 183432										
			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane			25.0	24.7		ug/L		99	71 - 129	
1,1-Dichloroethene			25.0	19.7		ug/L		79	58 - 121	
1,2-Dichlorobenzene			25.0	26.0		ug/L		104	80 - 124	
1,2-Dichloroethane			25.0	27.6		ug/L		110	75 - 127	
Benzene			25.0	24.3		ug/L		97	71 ₋ 124	
Chlorobenzene			25.0	24.8		ug/L		99	72 - 120	
cis-1,2-Dichloroethene			25.0	25.3		ug/L		101	74 ₋ 124	
Ethylbenzene			25.0	25.7		ug/L		103	77 _ 123	
Methyl tert-butyl ether			25.0	24.2		ug/L		97	64 - 127	
Tetrachloroethene			25.0	23.7		ug/L		95	74 - 122	
Toluene			25.0	24.3		ug/L		97	80 - 122	
trans-1,2-Dichloroethene			25.0	23.8		ug/L		95	73 - 127	
Trichloroethene			25.0	25.1		ug/L		100	74 - 123	
	LCS LC	s								
Surrogate	%Recovery Qu	ıalifier	Limits							
Toluene-d8 (Surr)	109		71 - 126							

66 - 137

73 - 120

GC/MS VOA

Analysis Batch: 183432

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method Prep Batch
480-60301-1	MW-1	Total/NA	Water	8260C
480-60301-2	MW-2	Total/NA	Water	8260C
480-60301-3	MW-3	Total/NA	Water	8260C
LCS 480-183432/5	Lab Control Sample	Total/NA	Water	8260C
MB 480-183432/7	Method Blank	Total/NA	Water	8260C

DD 1D. 460-60301-1	TestAmerica Job						Phase II, NY	thtown Plaza	Project/Site: No
D: 480-60301-1	Lab Sample IE							e ID: MW-1	Client Sampl
Matrix: Water							80	05/21/14 14:3	Date Collected:
							5	05/21/14 16:0	Date Received:
			Prepared	Batch	Dilution		Batch	Batch	
	Lab	Analyst	or Analyzed	Number	Factor	Run	Method	Туре	Prep Type
	TAL BUF	GTG	05/22/14 06:27	183432	1		8260C	Analysis	Total/NA
D: 480-60301-2	Lab Sample ID							e ID: MW-2	Client Sampl
Matrix: Water							20	05/21/14 15:2	Date Collected:
							5	05/21/14 16:0	Date Received:
			Prepared	Batch	Dilution		Batch	Batch	_
	Lab	Analyst	or Analyzed	Number	Factor	Run	Method	Туре	Prep Type
	TAL BUF	GTG	05/22/14 06:50	183432	1		8260C	Analysis	Total/NA
D: 480-60301-3	Lab Sample ID							e ID: MW-3	Client Sampl
Matrix: Water							0	05/21/14 15:0	Date Collected:
							5	05/21/14 16:0	Date Received:
			Prepared	Batch	Dilution		Batch	Batch	
	Lab	Analyst	or Analyzed	Number	Factor	Run	Method	Туре	Prep Type
				100100			00000	Amelia	
): 480-60301-1 Matrix: Water): 480-60301-2 Matrix: Water): 480-60301-3 Matrix: Water	Lab Sample ID: 480-60301-1 Matrix: Water Lab Sample ID: 480-60301-2 Matrix: Water Lab Sample ID: 480-60301-2 Matrix: Water Lab Sample ID: 480-60301-3 Matrix: Water	Analyst Lab GTG TAL BUF Lab Sample ID: 480-60301-2 Matrix: Water Analyst Lab TAL BUF Lab Sample ID: 480-60301-2 Matrix: Water Analyst Lab Analyst Lab Analyst Lab Analyst Lab Analyst Lab Analyst Lab Analyst Lab	Test-finence dob ib. 400 coort i Lab Sample ID: 480-60301-1 Matrix: Water Prepared Lab 05/22/14 06:27 GTG Lab Lab Sample ID: 480-60301-2 Matrix: Water Prepared Lab Control of the second state of the second sta	Batch Prepared Number or Analyzed 183432 05/22/14 06:27 Analyst Lab Lab Sample ID: 480-60301-1 Matrix: Water Lab 183432 05/22/14 06:27 GTG Lab Sample ID: 480-60301-2 Matrix: Water Batch Prepared Number or Analyzed 183432 05/22/14 06:50 Analyst Lab Lab Sample ID: 480-60301-2 Matrix: Water Lab Sample ID: 480-60301-3 Matrix: Water Batch Prepared Batch Prepared Batch Prepared Matrix: Water	Dilution Batch Prepared 05/22/14 06:27 Analyst Lab 1 183432 05/22/14 06:27 GTG TAL BUF Lab Sample ID: 480-60301-2 Matrix: Water Dilution Batch Prepared TAL BUF Dilution Batch Prepared TAL BUF Dilution Batch Prepared Matrix: Water Dilution Batch Prepared TAL BUF Lab Sample ID: 480-60301-2 Matrix: Water Matrix: Water Dilution Batch Prepared TAL BUF Lab Sample ID: 480-60301-3 Matrix: Water Matrix: Water Dilution Batch Prepared TAL BUF Lab Sample ID: 480-60301-3 Matrix: Water Matrix: Water	Run Dilution 1 Batch Number 1 Prepared or Analyzed 05/22/14 06:27 Analyst GTG Lab TAL BUF Lab Sample ID: 480-60301-2 Matrix: Water Lab Sample ID: 480-60301-2 Matrix: Water Run Factor 1 Number 1 or Analyzed 05/22/14 06:50 Analyst GTG Lab Lab Sample ID: 480-60301-2 Matrix: Water Matrix: Water Lab Dilution Batch 1 Prepared 05/22/14 06:50 Analyst GTG Lab TAL BUF Lab Dilution Batch 1 Prepared 05/22/14 06:50 Analyst GTG Lab TAL BUF Lab Dilution Batch 1 Prepared 05/22/14 06:50 Analyst Analyst CTAL BUF Lab	Batch Dilution Batch Prepared Batch Method Run Factor 1 183432 05/22/14 06:27 Analyst Lab Sample ID: 480-60301-1 Method Run Factor 1 183432 05/22/14 06:27 GTG TAL BUF	Analysis Batch Batch Prepared Matrix: Water 05/21/14 16:05 05/22/14 06:27 Analysi Lab Lab analysis 8260C 1 1 183432 05/22/14 06:27 Analysi Lab e ID: MW-2 Method Run Factor Number or Analyzed Analysi Lab e ID: MW-2 Lab Sample ID: 480-60301-2 Matrix: Water Matrix: Water 05/21/14 15:20 05/22/14 06:27 GTG TAL BUF Batch Batch Batch Prepared Matrix: Water 05/21/14 16:05 05/21/14 16:05 Dilution Batch Prepared Type Method Run Factor Number or Analyzed Analyst Lab analysis 8260C 1 183432 05/22/14 06:50 GTG TAL BUF e ID: MW-3 Caracter Number or Analyzed Analyst Lab Sample ID: 480-60301-3 05/21/14 15:00 Matrix: Water 05/21/14 06:50 GTG TAL BUF Matrix: Water 05/21/14 16:05 Dilution <t< td=""></t<>

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Client: GZA GeoEnvironmental, Inc. Project/Site: Northtown Plaza Phase II, NY

Laboratory: TestAmerica Buffalo

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
New York	NELAP	2	10026	03-31-15

TestAmerica Buffalo

Client: GZA GeoEnvironmental, Inc. Project/Site: Northtown Plaza Phase II, NY

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Sample Summary

Client: GZA GeoEnvironmental, Inc. Project/Site: Northtown Plaza Phase II, NY TestAmerica Job ID: 480-60301-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-60301-1	MW-1	Water	05/21/14 14:30	05/21/14 16:05
480-60301-2	MW-2	Water	05/21/14 15:20	05/21/14 16:05
480-60301-3	MW-3	Water	05/21/14 15:00	05/21/14 16:05 5
				8
				9
				13

TestAmerica Buffalo
n of Custody	Chain of Custody Number 240931 Page 1 of 1	Special Instructions/ Conditions of Receipt			sessed if samples are retained	$\frac{Date}{\sum_{Date} 2i (u)} \frac{1}{16!} \frac{Date}{Date}$	Date Date Date Date
FAME R IN ENVIRONM	Lab Number	Analysis (Attach list if more space is needed)			(A fee may be as	ive For Months longer than 1 mo	67891 4137
Temperature on Receipt	Project Manager Christing Net Borton Talephone Number (Area Code) Fax Number Nilu) 570 - 5990 - 2211 #	Site-Contact Lab Contact Carrier/Waybill Number Matrix Containers &	ЭДА У HOBN - HOBN - IJH X SONH - FOSZH - Soldury - IIOS - JHOS - Snoanby X IV -		Sample Disposal	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Date Time A Heccled By Time A
Chain of Custody Record	Client BZA Ceo Environimental of NY Address Washington SC (1th PlooF	Che L La Code State State Zap 2006 Project Name and Location (State) NN 14203 North Equin Plaza Plaza La L NY Contract Purchase Order/Quote No.	Sample I.D. No. and Description (containers for each sample may be combined on one line) Date MM-1 5-31-14 / MM-2 7-41-14	MW-3 5-01-14/	Possible Hazard Identification	Non-Hazard Flammable Skin Imitant Poison B Turn Around Time Required Imitant Poison B Poison B 24 Hours X 48 Hours 7 Days 14 Days 21 Days 1 Perimeters By MM 21 Days 21 Days 2. Relinquished By 2. Hours By MM 21 Days	3. Relinquished By Comments DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with

_

Client: GZA GeoEnvironmental, Inc.

Login Number: 60301 List Number: 1

Creator: Stau, Brandon M

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	gza
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

List Source: TestAmerica Buffalo

Date: 31-Mar-14

CLIENT:GZA GeoEnvironmental, Inc.Client Sample ID:Basement-SS-031914Lab Order:C1403046Tag Number:137.1154Project:Northtown PlazaCollection Date:3/19/2014Lab ID:C1403046-001AMatrix:AIR

Analyses	Result	**Limit Qu	ial Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.83	0.83	ug/m3	1	3/25/2014 11:56:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	3/25/2014 11:56:00 PM
1,1,2-Trichloroethane	< 0.83	0.83	ug/m3	1	3/25/2014 11:56:00 PM
1,1-Dichloroethane	< 0.62	0.62	ug/m3	1	3/25/2014 11:56:00 PM
1,1-Dichloroethene	< 0.60	0.60	ug/m3	1	3/25/2014 11:56:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/m3	1	3/25/2014 11:56:00 PM
1,2,4-Trimethylbenzene	4.1	0.75	ug/m3	1	3/25/2014 11:56:00 PM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	3/25/2014 11:56:00 PM
1,2-Dichlorobenzene	< 0.92	0.92	ug/m3	1	3/25/2014 11:56:00 PM
1,2-Dichloroethane	< 0.62	0.62	ug/m3	1	3/25/2014 11:56:00 PM
1,2-Dichloropropane	< 0.70	0.70	ug/m3	1	3/25/2014 11:56:00 PM
1,3,5-Trimethylbenzene	1.2	0.75	ug/m3	1	3/25/2014 11:56:00 PM
1,3-butadiene	< 0.34	0.34	ug/m3	1	3/25/2014 11:56:00 PM
1,3-Dichlorobenzene	< 0.92	0.92	ug/m3	1	3/25/2014 11:56:00 PM
1,4-Dichlorobenzene	< 0.92	0.92	ug/m3	1	3/25/2014 11:56:00 PM
1,4-Dioxane	< 1.1	1.1	ug/m3	1	3/25/2014 11:56:00 PM
2,2,4-trimethylpentane	< 0.71	0.71	ug/m3	1	3/25/2014 11:56:00 PM
4-ethyltoluene	1.5	0.75	ug/m3	1	3/25/2014 11:56:00 PM
Acetone	41	7.2	ug/m3	10	3/26/2014 11:33:00 PM
Allyl chloride	< 0.48	0.48	ug/m3	1	3/25/2014 11:56:00 PM
Benzene	35	4.9	ug/m3	10	3/26/2014 11:33:00 PM
Benzyl chloride	< 0.88	0.88	ug/m3	1	3/25/2014 11:56:00 PM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	3/25/2014 11:56:00 PM
Bromoform	< 1.6	1.6	ug/m3	1	3/25/2014 11:56:00 PM
Bromomethane	< 0.59	0.59	ug/m3	1	3/25/2014 11:56:00 PM
Carbon disulfide	23	4.7	ug/m3	10	3/26/2014 11:33:00 PM
Carbon tetrachloride	< 0.96	0.96	ug/m3	1	3/25/2014 11:56:00 PM
Chlorobenzene	< 0.70	0.70	ug/m3	1	3/25/2014 11:56:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	3/25/2014 11:56:00 PM
Chloroform	< 0.74	0.74	ug/m3	1	3/25/2014 11:56:00 PM
Chloromethane	14	3.1	ug/m3	10	3/26/2014 11:33:00 PM
cis-1,2-Dichloroethene	< 0.60	0.60	ug/m3	1	3/25/2014 11:56:00 PM
cis-1,3-Dichloropropene	< 0.69	0.69	ug/m3	1	3/25/2014 11:56:00 PM
Cyclohexane	190	49	ug/m3	90	3/27/2014 12:09:00 AM
Dibromochloromethane	< 1.3	1.3	ug/m3	1	3/25/2014 11:56:00 PM
Ethyl acetate	< 0.92	0.92	ug/m3	1	3/25/2014 11:56:00 PM
Ethylbenzene	4.2	0.66	ug/m3	1	3/25/2014 11:56:00 PM
Freon 11	1.5	0.86	ug/m3	1	3/25/2014 11:56:00 PM
Freon 113	< 1.2	1.2	ug/m3	1	3/25/2014 11:56:00 PM
Freon 114	< 1.1	1.1	ug/m3	1	3/25/2014 11:56:00 PM

Qualifiers: ** Reporting Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

. Results reported are not blank corrected

E Value above quantitation range

J Analyte detected at or below quantitation limits

Date: 31-Mar-14

CLIENT:GZA GeoEnvironmental, Inc.Client Sample ID:Basement-SS-031914Lab Order:C1403046Tag Number:137.1154Project:Northtown PlazaCollection Date:3/19/2014Lab ID:C1403046-001AMatrix:AIR

Analyses	Result	**Limit Q	ual Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-1	5		Analyst: RJP
Freon 12	2.8	0.75	ug/m3	1	3/25/2014 11:56:00 PM
Heptane	220	58	ug/m3	90	3/27/2014 12:09:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6	ug/m3	1	3/25/2014 11:56:00 PM
Hexane	360	50	ug/m3	90	3/27/2014 12:09:00 AM
Isopropyl alcohol	< 0.37	0.37	ug/m3	1	3/25/2014 11:56:00 PM
m&p-Xylene	13	1.3	ug/m3	1	3/25/2014 11:56:00 PM
Methyl Butyl Ketone	< 1.2	1.2	ug/m3	1	3/25/2014 11:56:00 PM
Methyl Ethyl Ketone	< 0.90	0.90	ug/m3	1	3/25/2014 11:56:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2	ug/m3	1	3/25/2014 11:56:00 PM
Methyl tert-butyl ether	< 0.55	0.55	ug/m3	1	3/25/2014 11:56:00 PM
Methylene chloride	2.0	0.53	ug/m3	1	3/25/2014 11:56:00 PM
o-Xylene	4.5	0.66	ug/m3	1	3/25/2014 11:56:00 PM
Propylene	< 0.26	0.26	ug/m3	1	3/25/2014 11:56:00 PM
Styrene	4.6	0.65	ug/m3	1	3/25/2014 11:56:00 PM
Tetrachloroethylene	43	10	ug/m3	10	3/26/2014 11:33:00 PM
Tetrahydrofuran	< 0.45	0.45	ug/m3	1	3/25/2014 11:56:00 PM
Toluene	23	5.7	ug/m3	10	3/26/2014 11:33:00 PM
trans-1,2-Dichloroethene	< 0.60	0.60	ug/m3	1	3/25/2014 11:56:00 PM
trans-1,3-Dichloropropene	< 0.69	0.69	ug/m3	1	3/25/2014 11:56:00 PM
Trichloroethene	1.6	0.82	ug/m3	1	3/25/2014 11:56:00 PM
Vinyl acetate	< 0.54	0.54	ug/m3	1	3/25/2014 11:56:00 PM
Vinyl Bromide	< 0.67	0.67	ug/m3	1	3/25/2014 11:56:00 PM
Vinyl chloride	< 0.39	0.39	ug/m3	1	3/25/2014 11:56:00 PM

Qualifiers:	**	Reporting Limit		Results reported are not blank corrected	
	В	Analyte detected in the associated Method Blank	E	Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected at or below quantitation limits	
	JN	Non-routine analyte. Quantitation estimated.	ND	ND Not Detected at the Reporting Limit	
	S	Spike Recovery outside accepted recovery limits	overy limits		Page 2 of 10

Date: 31-Mar-14

CLIENT:	GZA GeoEnvironmental, Inc.	Client Sample ID:	Basement-IA-031914
Lab Order:	C1403046	Tag Number:	545.265
Project:	Northtown Plaza	Collection Date:	3/19/2014
Lab ID:	C1403046-002A	Matrix:	AIR

Analyses	Result	**Limit Qua	al Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.83	0.83	ug/m3	1	3/25/2014 9:56:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	3/25/2014 9:56:00 PM
1,1,2-Trichloroethane	< 0.83	0.83	ug/m3	1	3/25/2014 9:56:00 PM
1,1-Dichloroethane	< 0.62	0.62	ug/m3	1	3/25/2014 9:56:00 PM
1,1-Dichloroethene	< 0.60	0.60	ug/m3	1	3/25/2014 9:56:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/m3	1	3/25/2014 9:56:00 PM
1,2,4-Trimethylbenzene	< 0.75	0.75	ug/m3	1	3/25/2014 9:56:00 PM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	3/25/2014 9:56:00 PM
1,2-Dichlorobenzene	< 0.92	0.92	ug/m3	1	3/25/2014 9:56:00 PM
1,2-Dichloroethane	< 0.62	0.62	ug/m3	1	3/25/2014 9:56:00 PM
1,2-Dichloropropane	< 0.70	0.70	ug/m3	1	3/25/2014 9:56:00 PM
1,3,5-Trimethylbenzene	< 0.75	0.75	ug/m3	1	3/25/2014 9:56:00 PM
1,3-butadiene	< 0.34	0.34	ug/m3	1	3/25/2014 9:56:00 PM
1,3-Dichlorobenzene	< 0.92	0.92	ug/m3	1	3/25/2014 9:56:00 PM
1,4-Dichlorobenzene	< 0.92	0.92	ug/m3	1	3/25/2014 9:56:00 PM
1,4-Dioxane	< 1.1	1.1	ug/m3	1	3/25/2014 9:56:00 PM
2,2,4-trimethylpentane	< 0.71	0.71	ug/m3	1	3/25/2014 9:56:00 PM
4-ethyltoluene	< 0.75	0.75	ug/m3	1	3/25/2014 9:56:00 PM
Acetone	17	7.2	ug/m3	10	3/26/2014 9:39:00 PM
Allyl chloride	< 0.48	0.48	ug/m3	1	3/25/2014 9:56:00 PM
Benzene	1.7	0.49	ug/m3	1	3/25/2014 9:56:00 PM
Benzyl chloride	< 0.88	0.88	ug/m3	1	3/25/2014 9:56:00 PM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	3/25/2014 9:56:00 PM
Bromoform	< 1.6	1.6	ug/m3	1	3/25/2014 9:56:00 PM
Bromomethane	< 0.59	0.59	ug/m3	1	3/25/2014 9:56:00 PM
Carbon disulfide	< 0.47	0.47	ug/m3	1	3/25/2014 9:56:00 PM
Carbon tetrachloride	0.58	0.26	ug/m3	1	3/25/2014 9:56:00 PM
Chlorobenzene	< 0.70	0.70	ug/m3	1	3/25/2014 9:56:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	3/25/2014 9:56:00 PM
Chloroform	< 0.74	0.74	ug/m3	1	3/25/2014 9:56:00 PM
Chloromethane	1.2	0.31	ug/m3	1	3/25/2014 9:56:00 PM
cis-1,2-Dichloroethene	< 0.60	0.60	ug/m3	1	3/25/2014 9:56:00 PM
cis-1,3-Dichloropropene	< 0.69	0.69	ug/m3	1	3/25/2014 9:56:00 PM
Cyclohexane	< 0.52	0.52	ug/m3	1	3/25/2014 9:56:00 PM
Dibromochloromethane	< 1.3	1.3	ug/m3	1	3/25/2014 9:56:00 PM
Ethyl acetate	< 0.92	0.92	ug/m3	1	3/25/2014 9:56:00 PM
Ethylbenzene	< 0.66	0.66	ug/m3	1	3/25/2014 9:56:00 PM
Freon 11	1.9	0.86	ug/m3	1	3/25/2014 9:56:00 PM
Freon 113	< 1.2	1.2	ug/m3	1	3/25/2014 9:56:00 PM
Freon 114	< 1.1	1.1	ug/m3	1	3/25/2014 9:56:00 PM

Qualifiers: ** Reporting Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

. Results reported are not blank corrected

E Value above quantitation range

J Analyte detected at or below quantitation limits

Date: 31-Mar-14

CLIENT:	GZA GeoEnvironmental, Inc.	Client Sample ID: Basement-IA-031914
Lab Order:	C1403046	Tag Number: 545.265
Project:	Northtown Plaza	Collection Date: 3/19/2014
Lab ID:	C1403046-002A	Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		то	-15			Analyst: RJP
Freon 12	3.5	0.75		ug/m3	1	3/25/2014 9:56:00 PM
Heptane	0.96	0.62		ug/m3	1	3/25/2014 9:56:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	3/25/2014 9:56:00 PM
Hexane	0.90	0.54		ug/m3	1	3/25/2014 9:56:00 PM
Isopropyl alcohol	5.3	0.37		ug/m3	1	3/25/2014 9:56:00 PM
m&p-Xylene	0.79	1.3	J	ug/m3	1	3/25/2014 9:56:00 PM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	3/25/2014 9:56:00 PM
Methyl Ethyl Ketone	1.7	0.90		ug/m3	1	3/25/2014 9:56:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	3/25/2014 9:56:00 PM
Methyl tert-butyl ether	< 0.55	0.55		ug/m3	1	3/25/2014 9:56:00 PM
Methylene chloride	0.64	0.53		ug/m3	1	3/25/2014 9:56:00 PM
o-Xylene	< 0.66	0.66		ug/m3	1	3/25/2014 9:56:00 PM
Propylene	< 0.26	0.26		ug/m3	1	3/25/2014 9:56:00 PM
Styrene	< 0.65	0.65		ug/m3	1	3/25/2014 9:56:00 PM
Tetrachloroethylene	< 1.0	1.0		ug/m3	1	3/25/2014 9:56:00 PM
Tetrahydrofuran	< 0.45	0.45		ug/m3	1	3/25/2014 9:56:00 PM
Toluene	2.4	0.57		ug/m3	1	3/25/2014 9:56:00 PM
trans-1,2-Dichloroethene	< 0.60	0.60		ug/m3	1	3/25/2014 9:56:00 PM
trans-1,3-Dichloropropene	< 0.69	0.69		ug/m3	1	3/25/2014 9:56:00 PM
Trichloroethene	< 0.22	0.22		ug/m3	1	3/25/2014 9:56:00 PM
Vinyl acetate	< 0.54	0.54		ug/m3	1	3/25/2014 9:56:00 PM
Vinyl Bromide	< 0.67	0.67		ug/m3	1	3/25/2014 9:56:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	3/25/2014 9:56:00 PM

Qualifiers:	**	Reporting Limit		Results reported are not blank corrected	
	В	Analyte detected in the associated Method Blank	Е	Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	J	J Analyte detected at or below quantitation limits	
	JN Non-routine analyte. Quantitation estimated.		ND	Not Detected at the Reporting Limit	D
	S	Spike Recovery outside accepted recovery limits			Page 4 of 10

Date: 31-Mar-14

CLIENT:	GZA GeoEnvironmental, Inc.	Client Sample ID: Drycleaner-SS-031914
Lab Order:	C1403046	Tag Number: 457.1153
Project:	Northtown Plaza	Collection Date: 3/19/2014
Lab ID:	C1403046-003A	Matrix: AIR

Analyses	Result	**Limit Qu	al Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.83	0.83	ug/m3	1	3/26/2014 12:34:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	3/26/2014 12:34:00 AM
1,1,2-Trichloroethane	< 0.83	0.83	ug/m3	1	3/26/2014 12:34:00 AM
1,1-Dichloroethane	< 0.62	0.62	ug/m3	1	3/26/2014 12:34:00 AM
1,1-Dichloroethene	< 0.60	0.60	ug/m3	1	3/26/2014 12:34:00 AM
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/m3	1	3/26/2014 12:34:00 AM
1,2,4-Trimethylbenzene	6.2	0.75	ug/m3	1	3/26/2014 12:34:00 AM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	3/26/2014 12:34:00 AM
1,2-Dichlorobenzene	< 0.92	0.92	ug/m3	1	3/26/2014 12:34:00 AM
1,2-Dichloroethane	< 0.62	0.62	ug/m3	1	3/26/2014 12:34:00 AM
1,2-Dichloropropane	< 0.70	0.70	ug/m3	1	3/26/2014 12:34:00 AM
1,3,5-Trimethylbenzene	1.7	0.75	ug/m3	1	3/26/2014 12:34:00 AM
1,3-butadiene	< 0.34	0.34	ug/m3	1	3/26/2014 12:34:00 AM
1,3-Dichlorobenzene	< 0.92	0.92	ug/m3	1	3/26/2014 12:34:00 AM
1,4-Dichlorobenzene	< 0.92	0.92	ug/m3	1	3/26/2014 12:34:00 AM
1,4-Dioxane	< 1.1	1.1	ug/m3	1	3/26/2014 12:34:00 AM
2,2,4-trimethylpentane	< 0.71	0.71	ug/m3	1	3/26/2014 12:34:00 AM
4-ethyltoluene	2.1	0.75	ug/m3	1	3/26/2014 12:34:00 AM
Acetone	250	65	ug/m3	90	3/27/2014 1:24:00 AM
Allyl chloride	< 0.48	0.48	ug/m3	1	3/26/2014 12:34:00 AM
Benzene	9.4	4.9	ug/m3	10	3/27/2014 12:47:00 AM
Benzyl chloride	< 0.88	0.88	ug/m3	1	3/26/2014 12:34:00 AM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	3/26/2014 12:34:00 AM
Bromoform	< 1.6	1.6	ug/m3	1	3/26/2014 12:34:00 AM
Bromomethane	< 0.59	0.59	ug/m3	1	3/26/2014 12:34:00 AM
Carbon disulfide	1.8	0.47	ug/m3	1	3/26/2014 12:34:00 AM
Carbon tetrachloride	< 0.96	0.96	ug/m3	1	3/26/2014 12:34:00 AM
Chlorobenzene	< 0.70	0.70	ug/m3	1	3/26/2014 12:34:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	3/26/2014 12:34:00 AM
Chloroform	< 0.74	0.74	ug/m3	1	3/26/2014 12:34:00 AM
Chloromethane	< 0.31	0.31	ug/m3	1	3/26/2014 12:34:00 AM
cis-1,2-Dichloroethene	0.44	0.60	l ug/m3	1	3/26/2014 12:34:00 AM
cis-1,3-Dichloropropene	< 0.69	0.69	ug/m3	1	3/26/2014 12:34:00 AM
Cyclohexane	57	5.2	ug/m3	10	3/27/2014 12:47:00 AM
Dibromochloromethane	< 1.3	1.3	ug/m3	1	3/26/2014 12:34:00 AM
Ethyl acetate	< 0.92	0.92	ug/m3	1	3/26/2014 12:34:00 AM
Ethylbenzene	5.1	0.66	ug/m3	1	3/26/2014 12:34:00 AM
Freon 11	4.1	0.86	ug/m3	1	3/26/2014 12:34:00 AM
Freon 113	< 1.2	1.2	ug/m3	1	3/26/2014 12:34:00 AM
Freon 114	< 1.1	1.1	ug/m3	1	3/26/2014 12:34:00 AM

Qualifiers: ** Reporting Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

. Results reported are not blank corrected

E Value above quantitation range

J Analyte detected at or below quantitation limits

Date: 31-Mar-14

CLIENT:	GZA GeoEnvironmental, Inc.	Client Sample ID: Drycleaner-SS-031914
Lab Order:	C1403046	Tag Number: 457.1153
Project:	Northtown Plaza	Collection Date: 3/19/2014
Lab ID:	C1403046-003A	Matrix: AIR

Analyses	Result	**Limit	Qual Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		то	-15		Analyst: RJP
Freon 12	2.4	0.75	ug/m3	1	3/26/2014 12:34:00 AM
Heptane	42	6.2	ug/m3	10	3/27/2014 12:47:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6	ug/m3	1	3/26/2014 12:34:00 AM
Hexane	44	5.4	ug/m3	10	3/27/2014 12:47:00 AM
Isopropyl alcohol	< 0.37	0.37	ug/m3	1	3/26/2014 12:34:00 AM
m&p-Xylene	18	1.3	ug/m3	1	3/26/2014 12:34:00 AM
Methyl Butyl Ketone	< 1.2	1.2	ug/m3	1	3/26/2014 12:34:00 AM
Methyl Ethyl Ketone	26	9.0	ug/m3	10	3/27/2014 12:47:00 AM
Methyl Isobutyl Ketone	< 1.2	1.2	ug/m3	1	3/26/2014 12:34:00 AM
Methyl tert-butyl ether	< 0.55	0.55	ug/m3	1	3/26/2014 12:34:00 AM
Methylene chloride	0.71	0.53	ug/m3	1	3/26/2014 12:34:00 AM
o-Xylene	5.9	0.66	ug/m3	1	3/26/2014 12:34:00 AM
Propylene	< 0.26	0.26	ug/m3	1	3/26/2014 12:34:00 AM
Styrene	5.4	0.65	ug/m3	1	3/26/2014 12:34:00 AM
Tetrachloroethylene	230	97	ug/m3	90	3/27/2014 1:24:00 AM
Tetrahydrofuran	< 0.45	0.45	ug/m3	1	3/26/2014 12:34:00 AM
Toluene	19	5.7	ug/m3	10	3/27/2014 12:47:00 AM
trans-1,2-Dichloroethene	< 0.60	0.60	ug/m3	1	3/26/2014 12:34:00 AM
trans-1,3-Dichloropropene	< 0.69	0.69	ug/m3	1	3/26/2014 12:34:00 AM
Trichloroethene	2.5	0.82	ug/m3	1	3/26/2014 12:34:00 AM
Vinyl acetate	< 0.54	0.54	ug/m3	1	3/26/2014 12:34:00 AM
Vinyl Bromide	< 0.67	0.67	ug/m3	1	3/26/2014 12:34:00 AM
Vinyl chloride	< 0.39	0.39	ug/m3	1	3/26/2014 12:34:00 AM

Qualifiers:	**	Reporting Limit		Results reported are not blank corrected	
	В	Analyte detected in the associated Method Blank	Е	Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	J	J Analyte detected at or below quantitation limits	
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Reporting Limit	
	S	Spike Recovery outside accepted recovery limits			Page 6 of 10

Date: 31-Mar-14

CLIENT:	GZA GeoEnvironmental, Inc.	Client Sample ID:	Drycleaner-IA-031914
Lab Order:	C1403046	Tag Number:	188.406
Project:	Northtown Plaza	Collection Date:	3/19/2014
Lab ID:	C1403046-004A	Matrix:	AIR

Analyses	Result	**Limit Qua	al Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.83	0.83	ug/m3	1	3/25/2014 10:36:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	3/25/2014 10:36:00 PM
1,1,2-Trichloroethane	< 0.83	0.83	ug/m3	1	3/25/2014 10:36:00 PM
1,1-Dichloroethane	< 0.62	0.62	ug/m3	1	3/25/2014 10:36:00 PM
1,1-Dichloroethene	< 0.60	0.60	ug/m3	1	3/25/2014 10:36:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/m3	1	3/25/2014 10:36:00 PM
1,2,4-Trimethylbenzene	< 0.75	0.75	ug/m3	1	3/25/2014 10:36:00 PM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	3/25/2014 10:36:00 PM
1,2-Dichlorobenzene	< 0.92	0.92	ug/m3	1	3/25/2014 10:36:00 PM
1,2-Dichloroethane	< 0.62	0.62	ug/m3	1	3/25/2014 10:36:00 PM
1,2-Dichloropropane	< 0.70	0.70	ug/m3	1	3/25/2014 10:36:00 PM
1,3,5-Trimethylbenzene	< 0.75	0.75	ug/m3	1	3/25/2014 10:36:00 PM
1,3-butadiene	< 0.34	0.34	ug/m3	1	3/25/2014 10:36:00 PM
1,3-Dichlorobenzene	< 0.92	0.92	ug/m3	1	3/25/2014 10:36:00 PM
1,4-Dichlorobenzene	< 0.92	0.92	ug/m3	1	3/25/2014 10:36:00 PM
1,4-Dioxane	< 1.1	1.1	ug/m3	1	3/25/2014 10:36:00 PM
2,2,4-trimethylpentane	< 0.71	0.71	ug/m3	1	3/25/2014 10:36:00 PM
4-ethyltoluene	< 0.75	0.75	ug/m3	1	3/25/2014 10:36:00 PM
Acetone	4.3	2.9	ug/m3	4	3/27/2014 2:37:00 PM
Allyl chloride	< 0.48	0.48	ug/m3	1	3/25/2014 10:36:00 PM
Benzene	0.68	0.49	ug/m3	1	3/25/2014 10:36:00 PM
Benzyl chloride	< 0.88	0.88	ug/m3	1	3/25/2014 10:36:00 PM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	3/25/2014 10:36:00 PM
Bromoform	< 1.6	1.6	ug/m3	1	3/25/2014 10:36:00 PM
Bromomethane	< 0.59	0.59	ug/m3	1	3/25/2014 10:36:00 PM
Carbon disulfide	< 0.47	0.47	ug/m3	1	3/25/2014 10:36:00 PM
Carbon tetrachloride	< 0.26	0.26	ug/m3	1	3/25/2014 10:36:00 PM
Chlorobenzene	< 0.70	0.70	ug/m3	1	3/25/2014 10:36:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	3/25/2014 10:36:00 PM
Chloroform	< 0.74	0.74	ug/m3	1	3/25/2014 10:36:00 PM
Chloromethane	0.57	0.31	ug/m3	1	3/25/2014 10:36:00 PM
cis-1,2-Dichloroethene	< 0.60	0.60	ug/m3	1	3/25/2014 10:36:00 PM
cis-1,3-Dichloropropene	< 0.69	0.69	ug/m3	1	3/25/2014 10:36:00 PM
Cyclohexane	< 0.52	0.52	ug/m3	1	3/25/2014 10:36:00 PM
Dibromochloromethane	< 1.3	1.3	ug/m3	1	3/25/2014 10:36:00 PM
Ethyl acetate	< 0.92	0.92	ug/m3	1	3/25/2014 10:36:00 PM
Ethylbenzene	< 0.66	0.66	ug/m3	1	3/25/2014 10:36:00 PM
Freon 11	0.69	0.86 J	ug/m3	1	3/25/2014 10:36:00 PM
Freon 113	< 1.2	1.2	ug/m3	1	3/25/2014 10:36:00 PM
Freon 114	< 1.1	1.1	ug/m3	1	3/25/2014 10:36:00 PM

Qualifiers: ** Reporting Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

. Results reported are not blank corrected

E Value above quantitation range

J Analyte detected at or below quantitation limits

Date: 31-Mar-14

CLIENT:	GZA GeoEnvironmental, Inc.	Client Sample ID: Drycleaner-IA-031914
Lab Order:	C1403046	Tag Number: 188.406
Project:	Northtown Plaza	Collection Date: 3/19/2014
Lab ID:	C1403046-004A	Matrix: AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-	·15			Analyst: RJP
Freon 12	1.2	0.75		ug/m3	1	3/25/2014 10:36:00 PM
Heptane	0.58	0.62	J	ug/m3	1	3/25/2014 10:36:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	3/25/2014 10:36:00 PM
Hexane	0.54	0.54		ug/m3	1	3/25/2014 10:36:00 PM
Isopropyl alcohol	3.2	1.5		ug/m3	4	3/27/2014 2:37:00 PM
m&p-Xylene	0.84	1.3	J	ug/m3	1	3/25/2014 10:36:00 PM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	3/25/2014 10:36:00 PM
Methyl Ethyl Ketone	1.1	0.90		ug/m3	1	3/25/2014 10:36:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	3/25/2014 10:36:00 PM
Methyl tert-butyl ether	< 0.55	0.55		ug/m3	1	3/25/2014 10:36:00 PM
Methylene chloride	< 0.53	0.53		ug/m3	1	3/25/2014 10:36:00 PM
o-Xylene	< 0.66	0.66		ug/m3	1	3/25/2014 10:36:00 PM
Propylene	< 0.26	0.26		ug/m3	1	3/25/2014 10:36:00 PM
Styrene	< 0.65	0.65		ug/m3	1	3/25/2014 10:36:00 PM
Tetrachloroethylene	60	4.1		ug/m3	4	3/27/2014 2:37:00 PM
Tetrahydrofuran	< 0.45	0.45		ug/m3	1	3/25/2014 10:36:00 PM
Toluene	1.7	0.57		ug/m3	1	3/25/2014 10:36:00 PM
trans-1,2-Dichloroethene	< 0.60	0.60		ug/m3	1	3/25/2014 10:36:00 PM
trans-1,3-Dichloropropene	< 0.69	0.69		ug/m3	1	3/25/2014 10:36:00 PM
Trichloroethene	2.4	0.22		ug/m3	1	3/25/2014 10:36:00 PM
Vinyl acetate	< 0.54	0.54		ug/m3	1	3/25/2014 10:36:00 PM
Vinyl Bromide	< 0.67	0.67		ug/m3	1	3/25/2014 10:36:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	3/25/2014 10:36:00 PM

Qualifiers:	**	Reporting Limit		Results reported are not blank corrected	
	В	Analyte detected in the associated Method Blank	Е	Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	J	J Analyte detected at or below quantitation limits	
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Reporting Limit	D
	S	Spike Recovery outside accepted recovery limits			Page 8 of 10

Date: 31-Mar-14

CLIENT:	GZA GeoEnvironmental, Inc.	Client Sample ID:	Outdoor Air-031914
Lab Order:	C1403046	Tag Number:	1178.249
Project:	Northtown Plaza	Collection Date:	3/19/2014
Lab ID:	C1403046-005A	Matrix:	AIR

Analyses	Result	**Limit Qua	al Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.83	0.83	ug/m3	1	3/31/2014 12:50:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	3/31/2014 12:50:00 PM
1,1,2-Trichloroethane	< 0.83	0.83	ug/m3	1	3/31/2014 12:50:00 PM
1,1-Dichloroethane	< 0.62	0.62	ug/m3	1	3/31/2014 12:50:00 PM
1,1-Dichloroethene	< 0.60	0.60	ug/m3	1	3/31/2014 12:50:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/m3	1	3/31/2014 12:50:00 PM
1,2,4-Trimethylbenzene	< 0.75	0.75	ug/m3	1	3/31/2014 12:50:00 PM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	3/31/2014 12:50:00 PM
1,2-Dichlorobenzene	< 0.92	0.92	ug/m3	1	3/31/2014 12:50:00 PM
1,2-Dichloroethane	< 0.62	0.62	ug/m3	1	3/31/2014 12:50:00 PM
1,2-Dichloropropane	< 0.70	0.70	ug/m3	1	3/31/2014 12:50:00 PM
1,3,5-Trimethylbenzene	< 0.75	0.75	ug/m3	1	3/31/2014 12:50:00 PM
1,3-butadiene	< 0.34	0.34	ug/m3	1	3/31/2014 12:50:00 PM
1,3-Dichlorobenzene	< 0.92	0.92	ug/m3	1	3/31/2014 12:50:00 PM
1,4-Dichlorobenzene	< 0.92	0.92	ug/m3	1	3/31/2014 12:50:00 PM
1,4-Dioxane	< 1.1	1.1	ug/m3	1	3/31/2014 12:50:00 PM
2,2,4-trimethylpentane	< 0.71	0.71	ug/m3	1	3/31/2014 12:50:00 PM
4-ethyltoluene	< 0.75	0.75	ug/m3	1	3/31/2014 12:50:00 PM
Acetone	11	3.6	ug/m3	5	3/31/2014 1:30:00 PM
Allyl chloride	< 0.48	0.48	ug/m3	1	3/31/2014 12:50:00 PM
Benzene	0.62	0.49	ug/m3	1	3/31/2014 12:50:00 PM
Benzyl chloride	< 0.88	0.88	ug/m3	1	3/31/2014 12:50:00 PM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	3/31/2014 12:50:00 PM
Bromoform	< 1.6	1.6	ug/m3	1	3/31/2014 12:50:00 PM
Bromomethane	< 0.59	0.59	ug/m3	1	3/31/2014 12:50:00 PM
Carbon disulfide	< 0.47	0.47	ug/m3	1	3/31/2014 12:50:00 PM
Carbon tetrachloride	0.51	0.26	ug/m3	1	3/31/2014 12:50:00 PM
Chlorobenzene	< 0.70	0.70	ug/m3	1	3/31/2014 12:50:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	3/31/2014 12:50:00 PM
Chloroform	< 0.74	0.74	ug/m3	1	3/31/2014 12:50:00 PM
Chloromethane	0.84	0.31	ug/m3	1	3/31/2014 12:50:00 PM
cis-1,2-Dichloroethene	< 0.60	0.60	ug/m3	1	3/31/2014 12:50:00 PM
cis-1,3-Dichloropropene	< 0.69	0.69	ug/m3	1	3/31/2014 12:50:00 PM
Cyclohexane	< 0.52	0.52	ug/m3	1	3/31/2014 12:50:00 PM
Dibromochloromethane	< 1.3	1.3	ug/m3	1	3/31/2014 12:50:00 PM
Ethyl acetate	< 0.92	0.92	ug/m3	1	3/31/2014 12:50:00 PM
Ethylbenzene	< 0.66	0.66	ug/m3	1	3/31/2014 12:50:00 PM
Freon 11	1.5	0.86	ug/m3	1	3/31/2014 12:50:00 PM
Freon 113	< 1.2	1.2	ug/m3	1	3/31/2014 12:50:00 PM
Freon 114	< 1.1	1.1	ug/m3	1	3/31/2014 12:50:00 PM

Qualifiers: ** Reporting Limit

В Analyte detected in the associated Method Blank Н Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S

Spike Recovery outside accepted recovery limits

Results reported are not blank corrected .

Е Value above quantitation range

J Analyte detected at or below quantitation limits

Date: 31-Mar-14

CLIENT:	GZA GeoEnvironmental, Inc.	Client Sample ID:	Outdoor Air-031914
Lab Order:	C1403046	Tag Number:	1178.249
Project:	Northtown Plaza	Collection Date:	3/19/2014
Lab ID:	C1403046-005A	Matrix:	AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC	TO-15					Analyst: RJP
Freon 12	2.9	0.75		ug/m3	1	3/31/2014 12:50:00 PM
Heptane	< 0.62	0.62		ug/m3	1	3/31/2014 12:50:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	3/31/2014 12:50:00 PM
Hexane	0.47	0.54	J	ug/m3	1	3/31/2014 12:50:00 PM
Isopropyl alcohol	5.6	1.9		ug/m3	5	3/31/2014 1:30:00 PM
m&p-Xylene	0.93	1.3	J	ug/m3	1	3/31/2014 12:50:00 PM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	3/31/2014 12:50:00 PM
Methyl Ethyl Ketone	0.96	0.90		ug/m3	1	3/31/2014 12:50:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	3/31/2014 12:50:00 PM
Methyl tert-butyl ether	< 0.55	0.55		ug/m3	1	3/31/2014 12:50:00 PM
Methylene chloride	0.49	0.53	J	ug/m3	1	3/31/2014 12:50:00 PM
o-Xylene	< 0.66	0.66		ug/m3	1	3/31/2014 12:50:00 PM
Propylene	< 0.26	0.26		ug/m3	1	3/31/2014 12:50:00 PM
Styrene	< 0.65	0.65		ug/m3	1	3/31/2014 12:50:00 PM
Tetrachloroethylene	1.3	1.0		ug/m3	1	3/31/2014 12:50:00 PM
Tetrahydrofuran	< 0.45	0.45		ug/m3	1	3/31/2014 12:50:00 PM
Toluene	1.5	0.57		ug/m3	1	3/31/2014 12:50:00 PM
trans-1,2-Dichloroethene	< 0.60	0.60		ug/m3	1	3/31/2014 12:50:00 PM
trans-1,3-Dichloropropene	< 0.69	0.69		ug/m3	1	3/31/2014 12:50:00 PM
Trichloroethene	< 0.22	0.22		ug/m3	1	3/31/2014 12:50:00 PM
Vinyl acetate	< 0.54	0.54		ug/m3	1	3/31/2014 12:50:00 PM
Vinyl Bromide	< 0.67	0.67		ug/m3	1	3/31/2014 12:50:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	3/31/2014 12:50:00 PM

Qualifiers:	**	Reporting Limit		Results reported are not blank corrected	
	В	Analyte detected in the associated Method Blank	Е	Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected at or below quantitation	n limits
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Reporting Limit	D 10 010
	S	Spike Recovery outside accepted recovery limits			Page 10 of 10

Date: 16-May-14

CLIENT:	GZA GeoEnvironmental, Inc.	Client Sample ID:	Manhattan-SS-050814
Lab Order:	C1405025	Tag Number:	96.256
Project:	Northtown Plaza	Collection Date:	5/8/2014
Lab ID:	C1405025-001A	Matrix:	AIR

Analyses	Result	**Limit Qu	ual Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15		TO-15	5		Analyst: RJP
1,1,1-Trichloroethane	< 0.83	0.83	ug/m3	1	5/12/2014 5:46:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	5/12/2014 5:46:00 PM
1,1,2-Trichloroethane	< 0.83	0.83	ug/m3	1	5/12/2014 5:46:00 PM
1,1-Dichloroethane	< 0.62	0.62	ug/m3	1	5/12/2014 5:46:00 PM
1,1-Dichloroethene	< 0.60	0.60	ug/m3	1	5/12/2014 5:46:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/m3	1	5/12/2014 5:46:00 PM
1,2,4-Trimethylbenzene	33	7.5	ug/m3	10	5/13/2014 10:10:00 AM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	5/12/2014 5:46:00 PM
1,2-Dichlorobenzene	< 0.92	0.92	ug/m3	1	5/12/2014 5:46:00 PM
1,2-Dichloroethane	< 0.62	0.62	ug/m3	1	5/12/2014 5:46:00 PM
1,2-Dichloropropane	< 0.70	0.70	ug/m3	1	5/12/2014 5:46:00 PM
1,3,5-Trimethylbenzene	13	7.5	ug/m3	10	5/13/2014 10:10:00 AM
1,3-butadiene	< 0.34	0.34	ug/m3	1	5/12/2014 5:46:00 PM
1,3-Dichlorobenzene	< 0.92	0.92	ug/m3	1	5/12/2014 5:46:00 PM
1,4-Dichlorobenzene	< 0.92	0.92	ug/m3	1	5/12/2014 5:46:00 PM
1,4-Dioxane	< 1.1	1.1	ug/m3	1	5/12/2014 5:46:00 PM
2,2,4-trimethylpentane	< 0.71	0.71	ug/m3	1	5/12/2014 5:46:00 PM
4-ethyltoluene	8.2	0.75	ug/m3	1	5/12/2014 5:46:00 PM
Acetone	71	29	ug/m3	40	5/13/2014 11:26:00 AM
Allyl chloride	< 0.48	0.48	ug/m3	1	5/12/2014 5:46:00 PM
Benzene	59	4.9	ug/m3	10	5/13/2014 10:10:00 AM
Benzyl chloride	< 0.88	0.88	ug/m3	1	5/12/2014 5:46:00 PM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	5/12/2014 5:46:00 PM
Bromoform	< 1.6	1.6	ug/m3	1	5/12/2014 5:46:00 PM
Bromomethane	< 0.59	0.59	ug/m3	1	5/12/2014 5:46:00 PM
Carbon disulfide	410	30	ug/m3	64	5/13/2014 7:44:00 PM
Carbon tetrachloride	0.45	0.96	J ug/m3	1	5/12/2014 5:46:00 PM
Chlorobenzene	< 0.70	0.70	ug/m3	1	5/12/2014 5:46:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	5/12/2014 5:46:00 PM
Chloroform	< 0.74	0.74	ug/m3	1	5/12/2014 5:46:00 PM
Chloromethane	< 0.31	0.31	ug/m3	1	5/12/2014 5:46:00 PM
cis-1,2-Dichloroethene	< 0.60	0.60	ug/m3	1	5/12/2014 5:46:00 PM
cis-1,3-Dichloropropene	< 0.69	0.69	ug/m3	1	5/12/2014 5:46:00 PM
Cyclohexane	130	21	ug/m3	40	5/13/2014 11:26:00 AM
Dibromochloromethane	< 1.3	1.3	ug/m3	1	5/12/2014 5:46:00 PM
Ethyl acetate	< 0.92	0.92	ug/m3	1	5/12/2014 5:46:00 PM
Ethylbenzene	27	6.6	ug/m3	10	5/13/2014 10:10:00 AM
Freon 11	14	8.6	ug/m3	10	5/13/2014 10:10:00 AM
Freon 113	< 1.2	1.2	ug/m3	1	5/12/2014 5:46:00 PM
Freon 114	< 1.1	1.1	ug/m3	1	5/12/2014 5:46:00 PM

Qualifiers: ** Reporting Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

. Results reported are not blank corrected

E Value above quantitation range

J Analyte detected at or below quantitation limits

Date: *16-May-14*

CLIENT:	GZA GeoEnvironmental, Inc.	Client Sample ID: Manhattan-SS-050814	
Lab Order:	C1405025	Tag Number: 96.256	
Project:	Northtown Plaza	Collection Date: 5/8/2014	
Lab ID:	C1405025-001A	Matrix: AIR	

Analyses	Result	**Limit	Qual Units	DF	Date Analyzed
1UG/M3 BY METHOD TO15	TO-15				Analyst: RJP
Freon 12	3.8	0.75	ug/m3	1	5/12/2014 5:46:00 PM
Heptane	160	25	ug/m3	40	5/13/2014 11:26:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6	ug/m3	1	5/12/2014 5:46:00 PM
Hexane	170	21	ug/m3	40	5/13/2014 11:26:00 AM
Isopropyl alcohol	12	3.7	ug/m3	10	5/13/2014 10:10:00 AM
m&p-Xylene	88	53	ug/m3	40	5/13/2014 11:26:00 AM
Methyl Butyl Ketone	< 1.2	1.2	ug/m3	1	5/12/2014 5:46:00 PM
Methyl Ethyl Ketone	< 0.90	0.90	ug/m3	1	5/12/2014 5:46:00 PM
Methyl Isobutyl Ketone	19	12	ug/m3	10	5/13/2014 10:10:00 AM
Methyl tert-butyl ether	< 0.55	0.55	ug/m3	1	5/12/2014 5:46:00 PM
Methylene chloride	0.99	0.53	ug/m3	1	5/12/2014 5:46:00 PM
o-Xylene	36	6.6	ug/m3	10	5/13/2014 10:10:00 AM
Propylene	< 0.26	0.26	ug/m3	1	5/12/2014 5:46:00 PM
Styrene	< 0.65	0.65	ug/m3	1	5/12/2014 5:46:00 PM
Tetrachloroethylene	13000	660	E ug/m3	640	5/13/2014 6:56:00 PM
Tetrahydrofuran	< 0.45	0.45	ug/m3	1	5/12/2014 5:46:00 PM
Toluene	170	23	ug/m3	40	5/13/2014 11:26:00 AM
trans-1,2-Dichloroethene	< 0.60	0.60	ug/m3	1	5/12/2014 5:46:00 PM
trans-1,3-Dichloropropene	< 0.69	0.69	ug/m3	1	5/12/2014 5:46:00 PM
Trichloroethene	32	8.2	ug/m3	10	5/13/2014 10:10:00 AM
Vinyl acetate	< 0.54	0.54	ug/m3	1	5/12/2014 5:46:00 PM
Vinyl Bromide	< 0.67	0.67	ug/m3	1	5/12/2014 5:46:00 PM
Vinyl chloride	< 0.39	0.39	ug/m3	1	5/12/2014 5:46:00 PM
NOTES:					

E - Estimated value. The amount exceeds the linear working range of the instrument. See TO-15 for final results.

5PPB BY METHOD TO15		TO-15	Analyst: LL		
Tetrachloroethylene	6400	1100	ug/m3	32	5/15/2014

Qualifiers:	**	Reporting Limit		Results reported are not blank corrected	
	В	Analyte detected in the associated Method Blank	Е	Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected at or below quantitation	limits
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Reporting Limit	
	S	Spike Recovery outside accepted recovery limits			Page 2 of 6

Date: 16-May-14

CLIENT:	GZA GeoEnvironmental, Inc.	Client Sample ID:	Manhattan-IA-050814
Lab Order:	C1405025	Tag Number:	202.402
Project:	Northtown Plaza	Collection Date:	5/8/2014
Lab ID:	C1405025-002A	Matrix:	AIR

Analyses	Result	**Limit Qu	ual Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15	5		Analyst: RJP
1,1,1-Trichloroethane	< 0.83	0.83	ug/m3	1	5/12/2014 6:28:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	5/12/2014 6:28:00 PM
1,1,2-Trichloroethane	< 0.83	0.83	ug/m3	1	5/12/2014 6:28:00 PM
1,1-Dichloroethane	< 0.62	0.62	ug/m3	1	5/12/2014 6:28:00 PM
1,1-Dichloroethene	< 0.60	0.60	ug/m3	1	5/12/2014 6:28:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/m3	1	5/12/2014 6:28:00 PM
1,2,4-Trimethylbenzene	2.0	0.75	ug/m3	1	5/12/2014 6:28:00 PM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	5/12/2014 6:28:00 PM
1,2-Dichlorobenzene	< 0.92	0.92	ug/m3	1	5/12/2014 6:28:00 PM
1,2-Dichloroethane	< 0.62	0.62	ug/m3	1	5/12/2014 6:28:00 PM
1,2-Dichloropropane	< 0.70	0.70	ug/m3	1	5/12/2014 6:28:00 PM
1,3,5-Trimethylbenzene	0.85	0.75	ug/m3	1	5/12/2014 6:28:00 PM
1,3-butadiene	< 0.34	0.34	ug/m3	1	5/12/2014 6:28:00 PM
1,3-Dichlorobenzene	< 0.92	0.92	ug/m3	1	5/12/2014 6:28:00 PM
1,4-Dichlorobenzene	< 0.92	0.92	ug/m3	1	5/12/2014 6:28:00 PM
1,4-Dioxane	< 1.1	1.1	ug/m3	1	5/12/2014 6:28:00 PM
2,2,4-trimethylpentane	< 0.71	0.71	ug/m3	1	5/12/2014 6:28:00 PM
4-ethyltoluene	< 0.75	0.75	ug/m3	1	5/12/2014 6:28:00 PM
Acetone	26	7.2	ug/m3	10	5/13/2014 10:48:00 AM
Allyl chloride	< 0.48	0.48	ug/m3	1	5/12/2014 6:28:00 PM
Benzene	0.52	0.49	ug/m3	1	5/12/2014 6:28:00 PM
Benzyl chloride	< 0.88	0.88	ug/m3	1	5/12/2014 6:28:00 PM
Bromodichloromethane	< 1.0	1.0	ug/m3	1	5/12/2014 6:28:00 PM
Bromoform	< 1.6	1.6	ug/m3	1	5/12/2014 6:28:00 PM
Bromomethane	< 0.59	0.59	ug/m3	1	5/12/2014 6:28:00 PM
Carbon disulfide	0.54	0.47	ug/m3	1	5/12/2014 6:28:00 PM
Carbon tetrachloride	0.45	0.26	ug/m3	1	5/12/2014 6:28:00 PM
Chlorobenzene	< 0.70	0.70	ug/m3	1	5/12/2014 6:28:00 PM
Chloroethane	< 0.40	0.40	ug/m3	1	5/12/2014 6:28:00 PM
Chloroform	< 0.74	0.74	ug/m3	1	5/12/2014 6:28:00 PM
Chloromethane	0.94	0.31	ug/m3	1	5/12/2014 6:28:00 PM
cis-1,2-Dichloroethene	< 0.60	0.60	ug/m3	1	5/12/2014 6:28:00 PM
cis-1,3-Dichloropropene	< 0.69	0.69	ug/m3	1	5/12/2014 6:28:00 PM
Cyclohexane	< 0.52	0.52	ug/m3	1	5/12/2014 6:28:00 PM
Dibromochloromethane	< 1.3	1.3	ug/m3	1	5/12/2014 6:28:00 PM
Ethyl acetate	0.70	0.92	J ug/m3	1	5/12/2014 6:28:00 PM
Ethylbenzene	< 0.66	0.66	ug/m3	1	5/12/2014 6:28:00 PM
Freon 11	37	8.6	ug/m3	10	5/13/2014 10:48:00 AM
Freon 113	< 1.2	1.2	ug/m3	1	5/12/2014 6:28:00 PM
Freon 114	< 1.1	1.1	ug/m3	1	5/12/2014 6:28:00 PM

Qualifiers: ** Reporting Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

. Results reported are not blank corrected

E Value above quantitation range

J Analyte detected at or below quantitation limits

Date: *16-May-14*

of 6

CLIENT:	GZA GeoEnvironmental, Inc.	Client Sample ID: Manhattan-IA-050814	
Lab Order:	C1405025	Tag Number: 202.402	
Project:	Northtown Plaza	Collection Date: 5/8/2014	
Lab ID:	C1405025-002A	Matrix: AIR	

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC	TO-15					Analyst: RJP
Freon 12	6.7	0.75		ug/m3	1	5/12/2014 6:28:00 PM
Heptane	0.92	0.62		ug/m3	1	5/12/2014 6:28:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	5/12/2014 6:28:00 PM
Hexane	0.97	0.54		ug/m3	1	5/12/2014 6:28:00 PM
Isopropyl alcohol	9.7	3.7		ug/m3	10	5/13/2014 10:48:00 AM
m&p-Xylene	1.3	1.3	J	ug/m3	1	5/12/2014 6:28:00 PM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	5/12/2014 6:28:00 PM
Methyl Ethyl Ketone	2.0	0.90		ug/m3	1	5/12/2014 6:28:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	5/12/2014 6:28:00 PM
Methyl tert-butyl ether	< 0.55	0.55		ug/m3	1	5/12/2014 6:28:00 PM
Methylene chloride	1.6	0.53		ug/m3	1	5/12/2014 6:28:00 PM
o-Xylene	0.57	0.66	J	ug/m3	1	5/12/2014 6:28:00 PM
Propylene	< 0.26	0.26		ug/m3	1	5/12/2014 6:28:00 PM
Styrene	< 0.65	0.65		ug/m3	1	5/12/2014 6:28:00 PM
Tetrachloroethylene	70	10		ug/m3	10	5/13/2014 10:48:00 AM
Tetrahydrofuran	< 0.45	0.45		ug/m3	1	5/12/2014 6:28:00 PM
Toluene	2.0	0.57		ug/m3	1	5/12/2014 6:28:00 PM
trans-1,2-Dichloroethene	< 0.60	0.60		ug/m3	1	5/12/2014 6:28:00 PM
trans-1,3-Dichloropropene	< 0.69	0.69		ug/m3	1	5/12/2014 6:28:00 PM
Trichloroethene	0.22	0.22		ug/m3	1	5/12/2014 6:28:00 PM
Vinyl acetate	< 0.54	0.54		ug/m3	1	5/12/2014 6:28:00 PM
Vinyl Bromide	< 0.67	0.67		ug/m3	1	5/12/2014 6:28:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	5/12/2014 6:28:00 PM

Qualifiers:	**	Reporting Limit		Results reported are not blank corrected
	В	Analyte detected in the associated Method Blank	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected at or below quantitation limits
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Reporting Limit
	S	Spike Recovery outside accepted recovery limits		Page 4

Date: 16-May-14

CLIENT:	GZA GeoEnvironmental, Inc.	Client Sample ID:	Outdoor Air-050814
Lab Order:	C1405025	Tag Number:	136.277
Project:	Northtown Plaza	Collection Date:	5/8/2014
Lab ID:	C1405025-003A	Matrix:	AIR

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		то)-15			Analyst: RJP
1,1,1-Trichloroethane	27	8.3		ug/m3	10	5/13/2014 4:42:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	5/12/2014 5:05:00 PM
1,1,2-Trichloroethane	< 0.83	0.83		ug/m3	1	5/12/2014 5:05:00 PM
1,1-Dichloroethane	2.3	0.62		ug/m3	1	5/12/2014 5:05:00 PM
1,1-Dichloroethene	3.0	0.60		ug/m3	1	5/12/2014 5:05:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	5/12/2014 5:05:00 PM
1,2,4-Trimethylbenzene	0.50	0.75	J	ug/m3	1	5/12/2014 5:05:00 PM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	5/12/2014 5:05:00 PM
1,2-Dichlorobenzene	< 0.92	0.92		ug/m3	1	5/12/2014 5:05:00 PM
1,2-Dichloroethane	< 0.62	0.62		ug/m3	1	5/12/2014 5:05:00 PM
1,2-Dichloropropane	< 0.70	0.70		ug/m3	1	5/12/2014 5:05:00 PM
1,3,5-Trimethylbenzene	< 0.75	0.75		ug/m3	1	5/12/2014 5:05:00 PM
1,3-butadiene	< 0.34	0.34		ug/m3	1	5/12/2014 5:05:00 PM
1,3-Dichlorobenzene	< 0.92	0.92		ug/m3	1	5/12/2014 5:05:00 PM
1,4-Dichlorobenzene	< 0.92	0.92		ug/m3	1	5/12/2014 5:05:00 PM
1,4-Dioxane	42	11		ug/m3	10	5/13/2014 4:42:00 PM
2,2,4-trimethylpentane	< 0.71	0.71		ug/m3	1	5/12/2014 5:05:00 PM
4-ethyltoluene	< 0.75	0.75		ug/m3	1	5/12/2014 5:05:00 PM
Acetone	24	7.2		ug/m3	10	5/13/2014 4:42:00 PM
Allyl chloride	< 0.48	0.48		ug/m3	1	5/12/2014 5:05:00 PM
Benzene	0.68	0.49		ug/m3	1	5/12/2014 5:05:00 PM
Benzyl chloride	< 0.88	0.88		ug/m3	1	5/12/2014 5:05:00 PM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	5/12/2014 5:05:00 PM
Bromoform	< 1.6	1.6		ug/m3	1	5/12/2014 5:05:00 PM
Bromomethane	< 0.59	0.59		ug/m3	1	5/12/2014 5:05:00 PM
Carbon disulfide	< 0.47	0.47		ug/m3	1	5/12/2014 5:05:00 PM
Carbon tetrachloride	0.51	0.26		ug/m3	1	5/12/2014 5:05:00 PM
Chlorobenzene	< 0.70	0.70		ug/m3	1	5/12/2014 5:05:00 PM
Chloroethane	< 0.40	0.40		ug/m3	1	5/12/2014 5:05:00 PM
Chloroform	< 0.74	0.74		ug/m3	1	5/12/2014 5:05:00 PM
Chloromethane	0.84	0.31		ug/m3	1	5/12/2014 5:05:00 PM
cis-1,2-Dichloroethene	< 0.60	0.60		ug/m3	1	5/12/2014 5:05:00 PM
cis-1,3-Dichloropropene	< 0.69	0.69		ug/m3	1	5/12/2014 5:05:00 PM
Cyclohexane	< 0.52	0.52		ug/m3	1	5/12/2014 5:05:00 PM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	5/12/2014 5:05:00 PM
Ethyl acetate	< 0.92	0.92		ug/m3	1	5/12/2014 5:05:00 PM
Ethylbenzene	< 0.66	0.66		ug/m3	1	5/12/2014 5:05:00 PM
Freon 11	1.4	0.86		ug/m3	1	5/12/2014 5:05:00 PM
Freon 113	< 1.2	1.2		ug/m3	1	5/12/2014 5:05:00 PM
Freon 114	< 1.1	1.1		ug/m3	1	5/12/2014 5:05:00 PM

Qualifiers: ** Reporting Limit

Reporting Limit

B Analyte detected in the associated Method BlankH Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

. Results reported are not blank corrected

E Value above quantitation range

J Analyte detected at or below quantitation limits

Date: *16-May-14*

of 6

CLIENT:	GZA GeoEnvironmental, Inc.	Client Sample ID: Outdoor Air-050814	
Lab Order:	C1405025	Tag Number: 136.277	
Project:	Northtown Plaza	Collection Date: 5/8/2014	
Lab ID:	C1405025-003A	Matrix: AIR	

Analyses	Result	**Limit	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.25UG/M3 CT-TCE-VC		TO-15				Analyst: RJP
Freon 12	2.4	0.75		ug/m3	1	5/12/2014 5:05:00 PM
Heptane	0.79	0.62		ug/m3	1	5/12/2014 5:05:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	5/12/2014 5:05:00 PM
Hexane	0.61	0.54		ug/m3	1	5/12/2014 5:05:00 PM
Isopropyl alcohol	1.5	0.37		ug/m3	1	5/12/2014 5:05:00 PM
m&p-Xylene	0.79	1.3	J	ug/m3	1	5/12/2014 5:05:00 PM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	5/12/2014 5:05:00 PM
Methyl Ethyl Ketone	1.6	0.90		ug/m3	1	5/12/2014 5:05:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	5/12/2014 5:05:00 PM
Methyl tert-butyl ether	< 0.55	0.55		ug/m3	1	5/12/2014 5:05:00 PM
Methylene chloride	1.6	0.53		ug/m3	1	5/12/2014 5:05:00 PM
o-Xylene	< 0.66	0.66		ug/m3	1	5/12/2014 5:05:00 PM
Propylene	< 0.26	0.26		ug/m3	1	5/12/2014 5:05:00 PM
Styrene	< 0.65	0.65		ug/m3	1	5/12/2014 5:05:00 PM
Tetrachloroethylene	0.90	1.0	J	ug/m3	1	5/12/2014 5:05:00 PM
Tetrahydrofuran	< 0.45	0.45		ug/m3	1	5/12/2014 5:05:00 PM
Toluene	2.0	0.57		ug/m3	1	5/12/2014 5:05:00 PM
trans-1,2-Dichloroethene	< 0.60	0.60		ug/m3	1	5/12/2014 5:05:00 PM
trans-1,3-Dichloropropene	< 0.69	0.69		ug/m3	1	5/12/2014 5:05:00 PM
Trichloroethene	< 0.22	0.22		ug/m3	1	5/12/2014 5:05:00 PM
Vinyl acetate	< 0.54	0.54		ug/m3	1	5/12/2014 5:05:00 PM
Vinyl Bromide	< 0.67	0.67		ug/m3	1	5/12/2014 5:05:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	5/12/2014 5:05:00 PM

Qualifiers:	**	Reporting Limit		Results reported are not blank corrected
	В	Analyte detected in the associated Method Blank	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected at or below quantitation limits
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Reporting Limit
	S	Spike Recovery outside accepted recovery limits		Page