

Proactive by Design

GEOTECHNICA

ENVIRONMENTAL

ECOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

GZA GeoEnvironmental of NY 535 Washington Street 11th Floor Buffalo, NY 14203 T: 716.685.2300 F: 716.685.3629

VIA EMAIL

July 1, 2016 File No. 31.0056687.30

Mr. Tim Dieffenbach NYSDEC Region 9 270 Michigan Avenue Buffalo, New York 14203

Re: Interim Remedial Measures Soil and Groundwater Characterization Sampling Results Northtown Inc. (BCP Site # 915292)

Amherst, New York

Dear Mr. Dieffenbach:

On behalf of Northtown Property Owner LLC, GZA GeoEnvironmental of New York (GZA) provides this letter report of the Northtown Inc. Brownfield Cleanup Program Site (BCP Site # 915292) in Amherst, New York. In accordance with the amended Interim Remedial Measure (IRM) Work Plan which was approved by the New York State Department of Environmental Conservation (NYSDEC) on April 1, 2016, GZA collected soil and groundwater samples to supplement the site characterization.

Per the amended IRM Work Plan, GZA performed the following work:

- On May 17, 2016: collected three groundwater samples from each of the three existing groundwater monitoring wells (MW-1, MW-2, and MW-3) located on and near the BCP Site (Figure 1). The groundwater samples were collected using a peristaltic pump and low flow methods. Samples were analyzed for Target Analyte List (TAL) metals via EPA method 6010 and pesticides via EPA Method 8151. Table 1 provides a summary of samples collected and Table 2 provides a summary of groundwater analytical results. Equipment calibration certificates and field sampling forms are provided in Attachment A.
- On May 19, 2016: collected four samples of shallow subsurface soil from the three Areas of Interest (AOIs; one from AOI-1, one from AOI-2, and two from AOI-3, Figure 1). Using a direct-push drilling rig, one soil sample was collected from each of the four borings as a vertical composite sample of native/undisturbed soil. The composite samples were collected with the upper composite depth directly beneath the pavement and surface fill layer and the bottom of the composite depth being a depth of approximately six feet below ground surface. The four subsurface soil samples were analyzed for TAL metals via EPA method 6010 and pesticides via

Northtown Inc. BCP Site Amherst, New York Page | 2

EPA Method 8151. Table 1 provides a summary of samples collected and Table 3 provides a summary of soil analytical results. Attachment B includes the soil probe logs.

Groundwater Results:

As indicated on Table 2, pesticides were not detected in the groundwater samples at concentrations greater than the analytical method detection limits. Ten metals were detected in one or more of the groundwater samples at concentrations above method detection limits. Two of the 10 detected metals, magnesium and sodium, were detected at concentrations above their respective Class GA groundwater standards. Magnesium and sodium are non-toxic naturally occurring minerals which, among other of their many uses, are used as a dietary supplements.

Soil Results:

As indicated on Table 3, pesticides were not detected in the soil samples at concentrations greater than analytical method detection limits. Several metals were detected in one or more of the soil samples at concentrations above method detection limits. None of the detected metals were present at a concentration above its respective Soil Cleanup Objective for commercial site use.

Attachment C includes the data packages received from the analytical laboratory.

Please call Jim Richert at 716-844-7048 if you have any questions or require additional information.

Sincerely,

GZA GEOENVIRONMENTAL OF NEW YORK

m Richer

James J. Richert, P.G.

Senior Project Manager

Bart A. Klettke, P.E.

Principal

CC: Bart Butzig (NYSDEC)

Brad Wenskoski (NYSDOH)

Andrew Manning (Northtown Property Owner LLC)
Tim Alexander (Northtown Property Owner LLC)

Jonathan Pearlson (Goulston & Storrs)

Todd Bown (GZA)

Northtown Inc. BCP Site Amherst, New York Page | 3

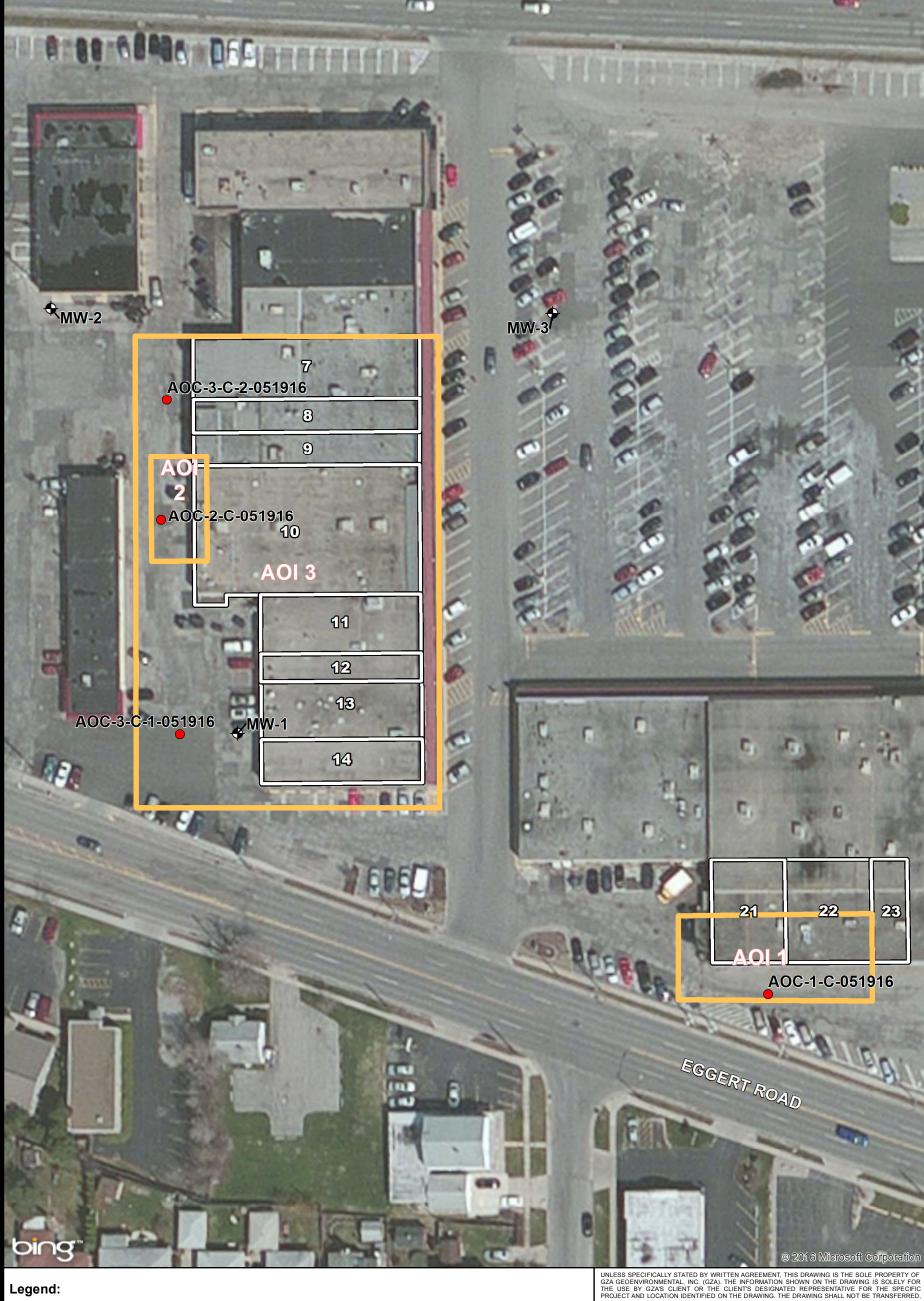
Attachments:

Figures: Figure 1 IRM Amendments Soil/Groundwater Sample Locations for TAL Metals

and Pesticides Sample Locations

Tables: Table 1 Summary of Samples Collected

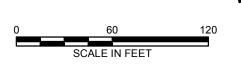
Table 2 Summary of Analytical Results – GroundwaterTable 3 Summary of Analytical Results – Subsurface Soils


Attachment A Equipment Calibration Certificates and Field Sampling Forms

Attachment B Soil Probe Logs

Attachment C Analytical Data Reports

FIGURES



- Shallow Soil Boring and Composite Subsurface Soil Sample Location
- Monitoring Well and Groundwater Sample Location

Building Layout

Approximate BCP Site Boundary -Includes AOI 1, AOI 2, and AOI 3

Source: Erie County GIS Mapping Website Notes: All features should be considered approximate

UNLESS SPECIFICALLY STATED BY WRITTEN AGREEMENT, THIS DRAWING IS THE SOLE PROPERTY OF GZA GEOENVIRONMENTAL, INC. (GZA). THE INFORMATION SHOWN ON THE DRAWING IS SOLELY FOR THE USE BY GAS CLIENT OR THE CLIENT'S DESIGNATED REPRESENTATIVE FOR THE SPECIFIC PROJECT AND LOCATION IDENTIFIED ON THE DRAWING. THE DRAWING SHALL NOT BE TRANSFERRED, REUSED, COPIED, OR ALTERED IN ANY MANNER FOR USE AT ANY OTHER LOCATION OR FOR ANY OTHER PURPOSE WITHOUT THE PRIOR WRITTEN CONSENT OF GZA, ANY TRANSFER, REUSE, OR MODIFICATION TO THE DRAWING BY THE CLIENT OR OTHERS, WITHOUT THE PRIOR WRITTEN EXPRESS CONSENT OF GZA, WILL BE AT THE USER'S SOLE RISK AND WITHOUT ANY RISK OR LIABILITY TO GZA.

NORTHTOWN INC. BCP SITE 3045 SHERIDAN DRIVE AMHERST, NEW YORK 14226

IRM AMENDMENT SOIL/GROUNDWATER **SAMPLE LOCATIONS**

GeoEnvironmental of NY Engineers and Scientists www.gza.com

PREPARED FOR: NORTHTOWN PROPERTY OWNER, LLC

PROJ MGR: JJR	REVIEWED BY: JJR	CHECKED BY: BK
DESIGNED BY: TGB	DRAWN BY: PCF	SCALE: 1 in = 60 ft
DATE:	PROJECT NO.	REVISION NO.
JUNE 2016	31.0056687.30	

FIGURE 1

TABLES

Table 1
Summary of Samples Collected
Interim Remedial Measures Soil and Groundwater Characterization Sampling Results
Northtown Inc. - BCP Site No. C915292
Amherst, New York

Location	Date Collected	Area of Interest (Soil)	Metals - TAL EPA Methods 7471B/6010C/3050B	Pesticides EPA Methods 8081B/3550C
SOIL SAMPLES				
AOC-1-C-051916	5/19/2016	AOI - 1	X	X
AOC-2-C-051916	5/19/2016	AOI - 2	X	X
C-Duplicate-051916	5/19/2016	AOI - 2	X	X
AOC-3-C-1-051916	5/19/2016	AOI - 3	X	X
AOC-3-C-2-051916	5/19/2016	AOI - J	X	X
GROUNDWATER SA	MPLES			
MW-1-051716	5/17/2016		X	X
MW-2-051716	5/17/2016	NA	X	X
MW-3-051716	5/17/2016	INA	X	X
Duplicate-051716	5/17/2016		X	X

- 1. Analytical testing completed by Paradigm Environmental Services, Inc., in Rochester, NY.
- 2. C-Duplicate-051916 is associated with sample AOC-2-C-051916.
- 3. Duplicate-051716 is associated with sample MW-3-051716.

Table 2

Summary of Analytical Results - Groundwater Interim Remedial Measures Soil and Groundwater Characterization Sampling Results Northtown Inc. - BCP Site No. C915292 Amherst, New York

Sample ID	NYSDEC Class GA	MW-1-051716	MW-2-051716	MW-3-051716	Duplicate-051716
Sample Date	Groundwater Criteria	5/17/2016	5/17/2016	5/17/2016	5/17/2016
TAL Metals - EPA Methods 7471	B/6010C/3050B (mg/L) - Disso	lved			
Arsenic	0.025	0.0139	0.0104	< 0.0100	0.00542 J
Barium	1	0.216	< 0.100	< 0.100	< 0.100
Calcium	NV	320	483	490	497
Copper	0.2	0.0649	< 0.0250	< 0.0250	0.166
Lead	0.025	< 0.0100	< 0.0100	< 0.0100	0.0210
Magnesium	35	19.6	81.4	84.2	85.3
Manganese	0.3	< 0.0150	0.192	0.0939	0.0958
Potassium	NV	20.2	11.4	5.61	5.78
Sodium	20	4,850	99.0 M	94.1	93.3
Zinc	2	0.249	< 0.0600	< 0.0600	0.610
Pesticides - EPA Methods 8081B/	/3550C (mg/L)				

No analytes were detected at concentrations above the laboratory's method detection limits.

Notes:

- 1. Compounds detected in one or more samples are presented on this table. Refer to Attachment C for list of all compounds included in analysis.
- 2. Groundwater analytical testing completed by Paradigm Environmental Services, Inc., in Rochester, NY.
- 3. mg/L = milligrams per liter (parts per million).
- 4. J = Result estimated between the quantitation limit and half the quantitation limit.
- 5. NV = No Value.
- 6. M = Matrix spike recoveries outside QC limits. Matrix bias indicated.
- 7. NYSDEC Class GA Groundwater Criteria are from Division of Water Technical and Operational Guidance Series [TOGS 1.1.1], June 1998 and April 2
- 8. Duplicate-051716 is associated with sample MW-3-051716.
- 9. Gray shading indicates a concentration detected above the NYSDEC Class GA Groundwater Criteria.

Table 3

Summary of Analytical Results - Subsurface Soils Interim Remedial Measures Soil and Groundwater Characterization Sampling Results Northtown Inc. - BCP Site No. C915292 Amherst, New York

Area of Concern	NYSDEC Part 375	AOI - 1	AC	OI - 2	AO	I - 3
Sample ID	Soil Criteria (mg/kg)	AOC-1-C-051916	AOC-2-C-051916	C-Duplicate-051916	AOC-3-C-1-051916	AOC-3-C-2-051916
Sample Date	Commercial	5/19/2016	5/19/2016	5/19/2016	5/19/2016	5/19/2016
TAL Metals - EPA Methods 7471	IB/6010C/3050B (mg/Kg)					
Mercury	2.8	0.00683 J	0.0220	0.0126	0.00672 J	0.0146
Aluminum	NV	10,700	17,300	14,400	14,000 D	29,900
Arsenic	16	3.14	3.64	3.68	2.63	3.85
Barium	400	72.3	144	86.9	89.5 DM	212
Beryllium	590	0.464	0.717	0.610	0.622 D	1.30
Calcium	NV	67,800	63,200	57,700	33,600 D	15,400
Chromium	400/1,500 (hexavalent/trivalent)	13.1	19.4	16.7	15.7 D	32.6
Cobalt	NV	8.03	9.39	8.71	7.81 D	14.6
Copper	270	17.2	19.4	17.0	16.5	19.9
Iron	NV	16,200	24,000	19,600	18,900 D	37,100
Lead	1,000	10.7	17.1	16.3	11.5 M	14.0
Magnesium	NV	18,800	17,400	16,200	17,400 D	13,400
Manganese	10,000	442	684	438	729 DM	373
Nickel	310	14.7	20.0	17.5	16.6 DM	34.8
Potassium	NV	3,130	4,240	3,000	2,890 DM	5,280
Sodium	NV	1,920	2,440	978	383 DM	2,600
Vanadium	NV	24.0	34.8	30.2	28.3 DM	52.1
Zinc	10,000	78.6	81.7	72.8	65.8	79.3
Pesticides - EPA Methods 8081B/	esticides - EPA Methods 8081B/3550C (mg/Kg)					
to analytes were detected at concentrations above the laboratory's method detection limits.						

Notes:

- 1. Compounds detected in one or more samples are presented on this table. Refer to Attachment C for list of all compounds included in analysis.
- 2. Soil analytical testing completed by Paradigm Environmental Services, Inc., in Rochester, NY.
- 3. mg/kg = milligrams per kilogram (parts per million).
- 4. J = Result estimated between the quantitation limit and half the quantitation limit.
- 5. M = Matrix spike recoveries outside QC limits. Matrix bias indicated.
- 6. D = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.
- 7. NV = No Value.
- 8. Soil cleanup objectives (SCOs) are from NYSDEC Part 375, Subpart 375-6: Commercial Use Soil Cleanup Objectives.
- 9. C-Duplicate-051916 is associated with sample AOC-2-C-051916.

ATTACHMENT A

Equipment Calibration Certificates and Field Sampling Forms

Calibration Certificate

rev 8/9/11

Work Order No.: SE-031465 Date of Service: 05/17/16

Unit Under Test: RAE MiniRAE 3000 PID Handheld VOC Meter

Asset No.: FA00334

Technician: Kevin Clauss

Initials: KSC

Serial No: 592-907585

TEST	Specification	Result	
Standard Calibration	Pass/Fail	Pass	
			F:

TEST STANDARDS USED:

DESCRIPTION	LOT No./EXPIRATION DATE	QUANTITY
100 ppm Isobutylene in Air	Lot No. MAP-248-100-8 Exp.	1
	12/14/19	

TEST EQUIPMENT USED:

1201 20011 1112111 0022				
DESCRIPTION	ASSET NO.	SERIAL NO.	DATE OF	DATE CAL
			LAST CAL	DUE
	Lt.			

Test Equipment and standards are traceable to National standards.

11.7eV Lamp Installed

Calibration Certificate

rev 8/9/11

Work Order No.: SE-031420

Date of Service: 05/13/16

Unit Under Test: YSI Pro Plus Quatro, 4m pH/ORP/Cond/Temp/DO

Asset No.: FA00747

Technician: Brooke Tower

Initials: 8T

Serial No: 13E100043

TEST	Specification	Result	
Standard Calibration	Pass/Fail	Pass	

TEST STANDARDS USED:

DESCRIPTION	LOT No./EXPIRATION DATE	QUANTITY
Air Saturated Water		1
Sodium Sulfite/ Zero DO	Lot No. C473638, No exp date	1
Standard		
7.00 mS Conductivity	Lot No. 5GB1051 Exp. 2/17	1
Standard Solution		
pH 7.00 Standard Solution	Lot No. 5GI254 Exp. 9/17	1
pH 10.00 Standard Solution	Lot No. C584751 Exp. 12/17	1
pH 4.00 Standard Solution	Lot No. 5GH372, Exp. 8/17	1
ORP Standard Solution	Lot No.15G100275 exp.	1
	07/19/17	

TEST EQUIPMENT USED:

DESCRIPTION	ASSET NO.	SERIAL NO.	DATE OF LAST CAL	DATE CAL DUE

Test Equipment and standards are traceable to National standards.

Calibration Certificate

rev 8/9/11

Work Order No.: SE-031417

Date of Service: 05/13/16

Unit Under Test: Lamotte 2020WE Turbidity Meter

Asset No.: FA00413

Technician: Brooke Tower

Initials: _____

Serial No: 2606-3812

TEST	Specification	Result	
Standard Calibration	Pass/Fail	Pass	

TEST STANDARDS USED:

DESCRIPTION	LOT No./EXPIRATION DATE	QUANTITY
Turbidity Free Water		1
10 NTU AMCO Turbidity	Lot No. C576942 Exp.	1
Standard	10/31/16	
1.0 NTU AMCO Turbidity	Lot No.C582380 Exp.	1
Standard	10/31/16	14

TEST EQUIPMENT USED:

DESCRIPTION	ASSET NO.	SERIAL NO.	DATE OF	DATE CAL
			LAST CAL	DUE

Test Equipment and standards are traceable to National standards.

File: 31.0056687.30 Historical Information Boring Log Available (yes/no/attached): Installation Log Available (yes/no/attached) Summary Monitoring Well: MW-1 Ground Surface Elevation: Riser/Screen Material: PVC May 2014 Installation Date: Protective Casing Elevation: Top of Screen Depth: 44.7 feet (bgs) Installed By: Nature's Way Monitoring Point Elevation: Bottom of Screen Depth: 54.7 (bgs) **Elevation Datum:** Previous Field measurement Information Available (yes/no/attached) Ranges of Previous Field Measurements Depth to Water рΗ Specific Conductance Turbidity Color Temperature (ft) (Standard Units) (uMhos/cm) (°C) (NTU) Notes: Field Observations Parameters +/-Sampling Information На +/- 0.1 Exterior Observations: Good Sample ID: MW-1-051716 Conductivity +/- 3% Sample Time: 12:30 Temperature +/- 10% Interior Observations Good # of Sample Containers: 2 Turbidity +/- 10% Duplicate Sample ID: NA ORP +/- 10mV Sample Analysis: Metals TAL (6010) DO +/- 10% Signs of Damage/Tampering: Pesticides Locked (yes/no) Well Cap (yes/no) PID Measurement: NA Odors: None Surface Seal Intact (yes/no) Well Quality Data Date Time Depth to Cumulative Ηq Specific Temperature **Turbidity** Color Dissolved Oxygen Notes Reduction Water Volume (Standard Conductance (NTU) Oxygen (°C) Purged (uMhos/cm) Potential ft bas Units) Depth of Water: 7.30' (TOR) 1148 11.18 30.97 13.6 0.39 -221.4 5/17/2016 7.68 0 2.95 Clear 1152 7.68 0.1 11.26 30.92 13.5 31.4 Clear 0.27 -244.7 Length of Water Column: 47.4' 1157 7.68 0.1 11.24 30.47 13.4 33.7 0.24 -255.2 Depth of Well: 54.7 Clear 1202 7.68 0.2 11.24 28.75 13.4 32.1 Clear 0.20 -263.8 Sheen Observed: Y N 1207 7.68 0.3 11.16 27.33 13.4 37.2 Clear 0.18 -268.5 DNAPL Observed: Y N 1212 7.68 0.4 10.91 25.23 13.5 37.1 Clear 0.15 -269.8 Did Well Go Dry: Y N 1217 7.68 0.5 10.90 25.25 13.6 55.0 0.15 -265.9 Clear Other: 1222 7.68 0.5 10.90 25.21 13.6 57.1 Clear 0.15 -265.6

File: 31.0056687.30 Historical Information Boring Log Available (yes/no/attached): Installation Log Available (yes/no/attached) Summary Monitoring Well: MW-2 Ground Surface Elevation: Riser/Screen Material: PVC May 2014 Installation Date: Protective Casing Elevation: Top of Screen Depth: 48 feet (bgs) Installed By: Nature's Wav Monitoring Point Elevation: Bottom of Screen Depth: 58 (bgs) **Elevation Datum:** Previous Field measurement Information Available (yes/no/attached) Ranges of Previous Field Measurements Depth to Water рΗ Specific Conductance Color Temperature Turbidity (ft) (Standard Units) (uMhos/cm) (°C) (NTU) Notes: Field Observations Parameters +/-Sampling Information На +/- 0.1 Exterior Observations: Good. Sample ID: MW-2-051716 Conductivity +/- 3% Sample Time: 1430 Temperature +/- 10% Bentonite swelled around J-Plug; removed excess bentonine and cleaned J-Plug. # of Sample Containers:6 Interior Observations Turbidity +/- 10% Duplicate Sample ID: MS/MSD ORP +/- 10mV Sample Analysis: Metals TAL (6010) DO +/- 10% Signs of Damage/Tampering: Pesticides Locked (yes/no) Well Cap (yes/no) PID Measurement: NA Odors: None Surface Seal Intact (yes/no) Well Quality Data Date Time Depth to Cumulative Ηq Specific Temperature Turbidity Color Dissolved Oxygen Notes Water Volume (Standard Conductance (NTU) Oxygen Reduction (°C) Purged (uMhos/cm) Potential ft bas Units) 1330 8.47 14.7 Overrange Brown 0.39 -139.5 Depth of Water: 7.85' (TOR) 5/17/2016 7.91 0 2.61 1342 7.91 0.2 8.47 2.71 14.2 3238 AU Brown 0.42 -69.1 Length of Water Column: 50.15' 1347 7.91 0.4 8.45 2.71 14.2 2852 AU Lt. Brwn 0.51 -78.1 Depth of Well: 58' 1352 7.91 0.6 8.23 2.70 14.0 2931 AU Lt. Brwn 0.42 -86.9 Sheen Observed: Y N 1400 7.91 0.9 8.21 2.68 14.1 2963 AU Lt. Brwn 0.47 -137.0 DNAPL Observed: Y N 1405 7.91 1.2 8.17 2.67 14.2 2617 AU Lt. Brwn 0.56 -146.8 Did Well Go Dry: Y **N** 7.91 1.5 8.17 2.67 14.2 2615 AU Lt. Brwn 0.53 -150.0 1410 Other: 1415 7.91 1.9 8.17 2.66 14.2 2610 AU Lt. Brwn 0.51 -150.7

File: 31.0056687.30 Historical Information Boring Log Available (yes/no/attached): Installation Log Available (yes/no/attached) Summary Monitoring Well: MW-3 Ground Surface Elevation: Riser/Screen Material: PVC May 2014 Installation Date: Protective Casing Elevation: Top of Screen Depth: 47.8 feet (bgs) Installed By: Nature's Way Monitoring Point Elevation: Bottom of Screen Depth: 57.8 (bgs) **Elevation Datum:** Previous Field measurement Information Available (yes/no/attached) Ranges of Previous Field Measurements Depth to Water рΗ Specific Conductance Turbidity Color Temperature (ft) (Standard Units) (uMhos/cm) (°C) (NTU) Notes: Field Observations Parameters +/-Sampling Information На +/- 0.1 Exterior Observations: Good. Sample ID: MW-3-051716 Conductivity +/- 3% Sample Time: 1545 Temperature +/- 10% Interior Observations Road box flooded - purged prior to J-plug removal. # of Sample Containers: 4 Turbidity Duplicate Sample ID: Duplicate-051716 +/- 10mV Sample Analysis: Metals TAL (6010) ORP DO +/- 10% Signs of Damage/Tampering: Pesticides Locked (yes/no) Well Cap (yes/no) PID Measurement: NA Odors: None. Surface Seal Intact (yes/no) Well Quality Data Date Time Depth to Cumulative Ηq Specific Temperature **Turbidity** Color Dissolved Oxygen Notes Reduction Water Volume (Standard Conductance (NTU) Oxygen (°C) Purged (uMhos/cm) Potential ft bas Units) Depth of Water: 6.55' (TOR) 0.0 13.6 65.0 5/17/2016 1505 6.59 8.38 3.07 50.4 Clear 1.56 1515 6.59 1.0 8.43 3.06 13.5 23.0 Clear 0.22 -131.6 Length of Water Column: 51.25' 6.59 1.5 2.99 0.16 -169.5 Depth of Well: 57.8' 1520 8.28 13.5 16.1 Clear 1525 6.59 2.0 8.27 2.95 13.5 15.5 Clear 0.13 -178.2 Sheen Observed: Y N 1530 6.59 2.5 8.25 2.90 13.5 13.4 Clear 0.11 -179.8 DNAPL Observed: Y N 1535 6.59 3.0 8.25 2.91 13.5 13.2 Clear 0.11 -179.2 Did Well Go Dry: Y N Other:

ATTACHMENT B

Soil Probe Logs

Northtown Plaza Amherst, NY IRM Additional Soil Characterization

Soil Probe: AOC-1-C-051916 SHEET 1 OF 4 FILE No. 31.0056687.30 CHECKED BY : JR

	NTRACTO	₹		ruction Co., Inc.	BORING LOCATION	AOC-1-C-051916	NIA	_
	LLER ART DATE		5/19/2016	END DATE 5/19/16	GROUND SURFACE ELEVATION GZA GEOENVIRONMENTAL REPR	NM DATUM ESENTATIVE T Boblen	NA	-
	ATER LEV	'FL DA		END DATE OF 15/10	TYPE OF DRILL RIG	GeoProbe 6610DT (Trad	ck Mounted)	
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER	2" diameter by 48" long		-
					OVERBURDEN SAMPLING METI			_
					ROCK DRILLING METHOD	NA		_
							•	
D E		S	AMPLE INFOR	RMATION	SAMPLE DI	ESCRIPTION	NOTES	0
P					9, == 2.	2001 110.1		V
Т	Sample N	lumber	DEPTH	RECOVERY (%)				М
Н			(FT)					(ppm)
	S-1		0 - 6	100	Asphalt (~4-inches) and Sub-base	(~4-inches).	Composite character-	0.0
1							ization sample taken	
					NATIVE: Brown Silty CLAY, trace	Gravel, trace Silt, moist.	1 - 6 feet bgs.	
2					_		Analyzed for Metals (TAL) and Pesticides.	
3					_		(TAL) and Testicides.	
ľ				1				
4								
5								
					_			
6					End of soil probe at aiv foot has			
7					End of soil probe at six feet bgs.			
,								
8								
9								
10					_			
11								
12								
13								
					_			
14				 	\dashv			
15	-							
13				1				
16				1				
17								
	<u> </u>				_			
18	-			+	_			
19	-							
19				 	7			
20					₹			
S-	Split Spo	on S	ample	NOTES: MiniRA	AE 3000 was used to field scree	n and headspace soil s	amples.	
	Rock Co	re Sa	mple	bgs = E	Below ground surface. ppm = pa	arts per million.		
_				inaa rankaaant ank	ravimata haundru hatusaa aail			

General 1) Stratification lines represent approximate boundry between soil types, transitions may be gradual.

Notes: 2) Water level readings have been made at times and under conditions stated, fluctuations of groundwater may occur due to other factors than those present at the time measurements were made

Northtown Plaza Amherst, NY IRM Additional Soil Characterization

Soil Probe: AOC-2-C-051916 SHEET 2 OF 4 FILE No. 31.0056687.30 CHECKED BY: JR

	ITRACTO	₹	Zoladz Constru	uction Co., Inc.	BORING LOCATION AOC-2-C-051916	
	LER		Eric Winter		GROUND SURFACE ELEVATION NM DATUM NA	
	RT DATE			END DATE 5/19/16	GZA GEOENVIRONMENTAL REPRESENTATIVE T. Bohlen	
W	ATER LEV	7		1	TYPE OF DRILL RIG GeoProbe 6610DT (Track Mounted)	
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long	
		<u> </u>			OVERBURDEN SAMPLING METHOL Direct push	
					ROCK DRILLING METHOD NA	
D			1			_
E		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	0
Р		·	ANN LE IIVI OIV	WIN (TIOI)	O WIN LE BESSIMI HON	V
	Sample N	umber	DEPTH	RECOVERY (%)		М
Н			(FT)			(ppm)
	S-1		0 - 6	100	Asphalt (~4-inches) and Sub-base (~4-inches).	0.2
1					ization sample taken	
					NATIVE: Brown Silty CLAY, trace Gravel, trace Silt, moist. 1 - 6 feet bgs.	
2					Analyzed for Metals	
					(TAL) and Pesticides.	
3						
					Duplicate sample	
4					taken at this location.	
5					1 1	
3					1	
6					1	
					End of soil probe at six feet bgs.	
7					1 '	
					1	
8						
9						
10					-	
44					-	
11					-	
12					1 1	
					1	
13						
14						
]	
15						
16						
47					-	
17					-	
18					1 1	
10					1	
19					1	
					1	
20						
S - :	Split Spo	on S	ample	NOTES: MiniRAI	E 3000 was used to field screen and headspace soil samples.	
	Rock Co	re Sa	ample	bgs = Be	elow ground surface. ppm = parts per million.	
	neral				oximate boundry between soil types, transitions may be gradual.	
Not	es:	2) W	ater level re	adings have been r	made at times and under conditions stated, fluctuations of groundwater	

Soil Probe: AOC-2-C-051916

may occur due to other factors than those present at the time measurements were made

Northtown Plaza Amherst, NY IRM Additional Soil Characterization

Soil Probe: AOC-3-C-1-051916 SHEET 3 OF 4 FILE No. 31.0056687.30 CHECKED BY : JR

	ITRACTOR LLER		Zoladz Constru Eric Winter	uction Co., Inc.	BORING LOCATION AOC-3-C-1-051916 GROUND SURFACE ELEVATION NM DATUM NA	
	RT DATE	·	5/19/2016	END DATE 5/19/16	GZA GEOENVIRONMENTAL REPRESENTATIVE T. Bohlen	
	ATER LEVI	EL DA	ГА		TYPE OF DRILL RIG GeoProbe 6610DT (Track Mounted)	
	DATE	TIME	WATER	CASING	CASING SIZE AND DIAMETER 2" diameter by 48" long	
					OVERBURDEN SAMPLING METHOI Direct push	
					ROCK DRILLING METHOD NA	
D E P		Si	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	O V
T H	Sample No	umber	DEPTH (FT)	RECOVERY (%)		M (ppm)
	S-1		0 - 6	100	Asphalt (~4-inches) and Sub-base (~4-inches). Composite character-	1.0
1					ization sample taken	
					NATIVE: Brown Silty CLAY, trace Gravel, trace Silt, moist. 1 - 6 feet bgs.	
2					Asphalt dust dragged through outside of soil core, effort Analyzed for Metals	
					made to remove for sampling. (TAL) and Pesticides.	
3					- I	
					MS/MSD samples	
4					taken at this location.	
5					-	
3					-	
6					1	
					End of soil probe at six feet bgs.	
7					1 · · · · · ·	
					1	
8						
9						
					_	
10					-	
					-	
11					-	
12					-	
12					-	
13					1	
					1	
14					1	
]	
15]	
					_	
16					_	
					-	
17					-	
40					-	
18					- 	
19					 	
19					 	
20					1	
	Split Spo	on Sa	ample	NOTES: MiniRAI	E 3000 was used to field screen and headspace soil samples.	
C -	Rock Co				elow ground surface. ppm = parts per million.	
Ger	neral				roximate boundry between soil types, transitions may be gradual.	

2) Water level readings have been made at times and under conditions stated, fluctuations of groundwater

may occur due to other factors than those present at the time measurements were made

Page 3 of 4 Soil Probe: AOC-3-C-1-051916

Northtown Plaza Amherst, NY IRM Additional Soil Characterization

Soil Probe: AOC-3-C-2-051916 SHEET 4 OF 4 FILE No. 31.0056687.30 CHECKED BY: JR

	TRACTOR	2	Zoladz Constru	uction Co., Inc.	BORING LOCATION AOC-3-C-2-051916	
	LER RT DATE		5/19/2016	END DATE 5/10/16	GROUND SURFACE ELEVATION NM DATUM NA NA GZA GEOENVIRONMENTAL REPRESENTATIVE T. Bohlen	
				END DATE 5/19/16		
VV	ATER LEVI DATE	TIME	WATER	CASING	TYPE OF DRILL RIG GeoProbe 6610DT (Track Mounted) CASING SIZE AND DIAMETER 2" diameter by 48" long	
	DATE	TIIVIE	WATER	CASING	OVERBURDEN SAMPLING METHOL Direct push	
					ROCK DRILLING METHOD NA	
					THE STREET OF TH	
D			1			
E		S	AMPLE INFOR	MATION	SAMPLE DESCRIPTION NOTES	0
Р						V
Т	Sample No	umber	DEPTH	RECOVERY (%)]	М
Н			(FT)			(ppm)
	S-1		0 - 6	100	Asphalt (~4-inches) and Sub-base (~4-inches). Composite character-	0.0
1					ization sample taken	
					NATIVE: Brown Silty CLAY, trace Gravel, trace Silt, moist. 1 - 6 feet bgs.	
2					Analyzed for Metals	
					(TAL) and Pesticides.	
3					-	
					-	
4					1	
5					1	
Ŭ					1	
6						
					End of soil probe at six feet bgs.	
7						
8						
9						
4.0					-	
10					1	
11					1	
					1	
12					1	
					1	
13						
14						
15						
16					1 1	
10					1	
17					1	
					1	
18					1	
19]	
]	
20						
	Split Spo				E 3000 was used to field screen and headspace soil samples.	
C -	Rock Co	re Sa	mple		elow ground surface. ppm = parts per million.	
	neral				oximate boundry between soil types, transitions may be gradual.	
Note	ნ ბ.	∠) VV	ater level re	aumys nave been f	made at times and under conditions stated, fluctuations of groundwater	

may occur due to other factors than those present at the time measurements were made

Soil Probe: AOC-3-C-2-051916 Page 4 of 4

ATTACHMENT C

Analytical Data Reports

Client: GZA Geo Environmental of New York

Project Reference: 31.0056687.30 Task 4 Sub Task 1

Sample Identifier: AOC-3-C-2-051916

 Lab Sample ID:
 162083-01
 Date Sampled:
 5/19/2016

 Matrix:
 Soil
 Date Received:
 5/23/2016

Mercury

AnalyteResultUnitsQualifierDate AnalyzedMercury0.0146mg/Kg5/25/201612:08

Method Reference(s):EPA 7471BPreparation Date:5/25/2016Data File:Hg160525A

Client: <u>GZA Geo Environmental of New York</u>

Project Reference: 31.0056687.30 Task 4 Sub Task 1

Sample Identifier: AOC-3-C-2-051916

Lab Sample ID:162083-01Date Sampled:5/19/2016Matrix:SoilDate Received:5/23/2016

TAL Metals (ICP)

Analyte	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyz	<u>zed</u>
Aluminum	29900	mg/Kg		5/27/2016	09:54
Antimony	< 3.67	mg/Kg		5/27/2016	09:54
Arsenic	3.85	mg/Kg		5/27/2016	09:54
Barium	212	mg/Kg		5/27/2016	09:54
Beryllium	1.30	mg/Kg		5/26/2016	17:07
Cadmium	< 0.306	mg/Kg		5/27/2016	09:54
Calcium	15400	mg/Kg		5/27/2016	09:54
Chromium	32.6	mg/Kg		5/27/2016	09:54
Cobalt	14.6	mg/Kg		5/27/2016	09:54
Copper	19.9	mg/Kg		5/27/2016	09:54
Iron	37100	mg/Kg		5/26/2016	17:54
Lead	14.0	mg/Kg		5/27/2016	09:54
Magnesium	13400	mg/Kg		5/27/2016	09:54
Manganese	373	mg/Kg		5/27/2016	09:54
Nickel	34.8	mg/Kg		5/27/2016	09:54
Potassium	5280	mg/Kg		5/27/2016	09:54
Selenium	< 1.22	mg/Kg		5/26/2016	17:54
Silver	< 1.22	mg/Kg		5/26/2016	17:54
Sodium	2600	mg/Kg		5/27/2016	09:54
Thallium	< 1.53	mg/Kg		5/27/2016	09:54
Vanadium	52.1	mg/Kg		5/27/2016	09:54
Zinc	79.3	mg/Kg		5/27/2016	09:54

Method Reference(s): EPA 6010C

EPA 3050B

 Preparation Date:
 5/25/2016

 Data File:
 052716a

Client: <u>GZA Geo Environmental of New York</u>

Project Reference: 31.0056687.30 Task 4 Sub Task 1

Sample Identifier: AOC-3-C-2-051916

Lab Sample ID:162083-01Date Sampled:5/19/2016Matrix:SoilDate Received:5/23/2016

Chlorinated Pesticides

<u>Analyte</u>	<u>Result</u>	<u>Units</u>		Qualifier	Date Analy	zed
4,4-DDD	< 3.62	ug/Kg			5/25/2016	16:57
4,4-DDE	< 3.62	ug/Kg			5/25/2016	16:57
4,4-DDT	< 3.62	ug/Kg			5/25/2016	16:57
Aldrin	< 3.62	ug/Kg			5/25/2016	16:57
alpha-BHC	< 3.62	ug/Kg			5/25/2016	16:57
beta-BHC	< 3.62	ug/Kg			5/25/2016	16:57
cis-Chlordane	< 3.62	ug/Kg			5/25/2016	16:57
delta-BHC	< 3.62	ug/Kg			5/25/2016	16:57
Dieldrin	< 3.62	ug/Kg			5/25/2016	16:57
Endosulfan I	< 3.62	ug/Kg			5/25/2016	16:57
Endosulfan II	< 3.62	ug/Kg			5/25/2016	16:57
Endosulfan Sulfate	< 3.62	ug/Kg			5/25/2016	16:57
Endrin	< 3.62	ug/Kg			5/25/2016	16:57
Endrin Aldehyde	< 3.62	ug/Kg			5/25/2016	16:57
Endrin Ketone	< 3.62	ug/Kg			5/25/2016	16:57
gamma-BHC (Lindane)	< 3.62	ug/Kg			5/25/2016	16:57
Heptachlor	< 3.62	ug/Kg			5/25/2016	16:57
Heptachlor Epoxide	< 3.62	ug/Kg			5/25/2016	16:57
Methoxychlor	< 3.62	ug/Kg			5/25/2016	16:57
Toxaphene	< 36.2	ug/Kg			5/25/2016	16:57
trans-Chlordane	< 3.62	ug/Kg			5/25/2016	16:57
Surrogate	<u>Percen</u>	t Recovery	Limits	<u>Outliers</u>	Date Analy	zed
Decachlorobiphenyl (1)	!	51.3	9.5 - 93.3		5/25/2016	16:57
Tetrachloro-m-xylene (1)	3	37.1	13.2 - 96.3		5/25/2016	16:57

Method Reference(s): EPA 8081B EPA 3550C

Preparation Date: 5/25/2016

Client: GZA Geo Environmental of New York

Project Reference: 31.0056687.30 Task 4 Sub Task 1

Sample Identifier: AOC-2-C-051916

 Lab Sample ID:
 162083-02
 Date Sampled:
 5/19/2016

 Matrix:
 Soil
 Date Received:
 5/23/2016

Mercury

AnalyteResultUnitsQualifierDate AnalyzedMercury0.0220mg/Kg5/25/2016 12:22

Method Reference(s):EPA 7471BPreparation Date:5/25/2016Data File:Hg160525A

Client: <u>GZA Geo Environmental of New York</u>

Project Reference: 31.0056687.30 Task 4 Sub Task 1

Sample Identifier: AOC-2-C-051916

 Lab Sample ID:
 162083-02
 Date Sampled:
 5/19/2016

 Matrix:
 Soil
 Date Received:
 5/23/2016

TAL Metals (ICP)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Aluminum	17300	mg/Kg		5/27/2016 09:58
Antimony	< 3.47	mg/Kg		5/27/2016 09:58
Arsenic	3.64	mg/Kg		5/27/2016 09:58
Barium	144	mg/Kg		5/27/2016 09:58
Beryllium	0.717	mg/Kg		5/26/2016 17:11
Cadmium	< 0.289	mg/Kg		5/27/2016 09:58
Calcium	63200	mg/Kg		5/26/2016 12:23
Chromium	19.4	mg/Kg		5/27/2016 09:58
Cobalt	9.39	mg/Kg		5/27/2016 09:58
Copper	19.4	mg/Kg		5/27/2016 09:58
Iron	24000	mg/Kg		5/27/2016 09:58
Lead	17.1	mg/Kg		5/27/2016 09:58
Magnesium	17400	mg/Kg		5/27/2016 09:58
Manganese	684	mg/Kg		5/26/2016 17:58
Nickel	20.0	mg/Kg		5/27/2016 09:58
Potassium	4240	mg/Kg		5/27/2016 09:58
Selenium	< 1.16	mg/Kg		5/26/2016 17:58
Silver	< 1.16	mg/Kg		5/26/2016 17:58
Sodium	2440	mg/Kg		5/27/2016 09:58
Thallium	< 1.44	mg/Kg		5/27/2016 09:58
Vanadium	34.8	mg/Kg		5/27/2016 09:58
Zinc	81.7	mg/Kg		5/27/2016 09:58

Method Reference(s): EPA 6010C

EPA 3050B

 Preparation Date:
 5/25/2016

 Data File:
 052716a

Client: <u>GZA Geo Environmental of New York</u>

Project Reference: 31.0056687.30 Task 4 Sub Task 1

Sample Identifier: AOC-2-C-051916

Lab Sample ID:162083-02Date Sampled:5/19/2016Matrix:SoilDate Received:5/23/2016

Chlorinated Pesticides

<u>Analyte</u>	Result	<u>Units</u>		Qualifier	Date Analy	zed
4,4-DDD	< 3.46	ug/Kg			5/25/2016	17:10
4,4-DDE	< 3.46	ug/Kg			5/25/2016	17:10
4,4-DDT	< 3.46	ug/Kg			5/25/2016	17:10
Aldrin	< 3.46	ug/Kg			5/25/2016	17:10
alpha-BHC	< 3.46	ug/Kg			5/25/2016	17:10
beta-BHC	< 3.46	ug/Kg			5/25/2016	17:10
cis-Chlordane	< 3.46	ug/Kg			5/25/2016	17:10
delta-BHC	< 3.46	ug/Kg			5/25/2016	17:10
Dieldrin	< 3.46	ug/Kg			5/25/2016	17:10
Endosulfan I	< 3.46	ug/Kg			5/25/2016	17:10
Endosulfan II	< 3.46	ug/Kg			5/25/2016	17:10
Endosulfan Sulfate	< 3.46	ug/Kg			5/25/2016	17:10
Endrin	< 3.46	ug/Kg			5/25/2016	17:10
Endrin Aldehyde	< 3.46	ug/Kg			5/25/2016	17:10
Endrin Ketone	< 3.46	ug/Kg			5/25/2016	17:10
gamma-BHC (Lindane)	< 3.46	ug/Kg			5/25/2016	17:10
Heptachlor	< 3.46	ug/Kg			5/25/2016	17:10
Heptachlor Epoxide	< 3.46	ug/Kg			5/25/2016	17:10
Methoxychlor	< 3.46	ug/Kg			5/25/2016	17:10
Toxaphene	< 34.6	ug/Kg			5/25/2016	17:10
trans-Chlordane	< 3.46	ug/Kg			5/25/2016	17:10
<u>Surrogate</u>	<u>Percent</u>	Recovery	<u>Limits</u>	Outliers	Date Analy	zed
Decachlorobiphenyl (1)	6	5.2	9.5 - 93.3		5/25/2016	17:10
Tetrachloro-m-xylene (1)	48	8.2	13.2 - 96.3		5/25/2016	17:10

Method Reference(s): EPA 8081B

Preparation Date: EPA 3550C 5/25/2016

Client: <u>GZA Geo Environmental of New York</u>

Project Reference: 31.0056687.30 Task 4 Sub Task 1

Sample Identifier: AOC-3-C-1-051916

 Lab Sample ID:
 162083-03
 Date Sampled:
 5/19/2016

 Matrix:
 Soil
 Date Received:
 5/23/2016

Mercury

AnalyteResultUnitsQualifierDate AnalyzedMercury0.00672mg/KgJ5/25/201612:26

Method Reference(s):EPA 7471BPreparation Date:5/25/2016Data File:Hg160525A

Client: <u>GZA Geo Environmental of New York</u>

Project Reference: 31.0056687.30 Task 4 Sub Task 1

Sample Identifier: AOC-3-C-1-051916

 Lab Sample ID:
 162083-03
 Date Sampled:
 5/19/2016

 Matrix:
 Soil
 Date Received:
 5/23/2016

TAL Metals (ICP)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Aluminum	14000	mg/Kg	D	5/27/2016 10:02
Antimony	< 2.87	mg/Kg	M	5/27/2016 10:02
Arsenic	2.63	mg/Kg		5/27/2016 10:02
Barium	89.5	mg/Kg	DM	5/27/2016 10:02
Beryllium	0.622	mg/Kg	D	5/26/2016 17:16
Cadmium	< 0.239	mg/Kg	M	5/27/2016 10:02
Calcium	33600	mg/Kg	D	5/26/2016 18:02
Chromium	15.7	mg/Kg	D	5/27/2016 10:02
Cobalt	7.81	mg/Kg	D	5/27/2016 10:02
Copper	16.5	mg/Kg		5/27/2016 10:02
Iron	18900	mg/Kg	D	5/27/2016 10:02
Lead	11.5	mg/Kg	M	5/27/2016 10:02
Magnesium	17400	mg/Kg	D	5/27/2016 10:02
Manganese	729	mg/Kg	DM	5/26/2016 18:02
Nickel	16.6	mg/Kg	DM	5/27/2016 10:02
Potassium	2890	mg/Kg	DM	5/27/2016 10:02
Selenium	< 0.957	mg/Kg		5/26/2016 18:02
Silver	< 0.957	mg/Kg		5/26/2016 18:02
Sodium	383	mg/Kg	DM	5/27/2016 10:02
Thallium	< 1.20	mg/Kg	M	5/27/2016 10:02
Vanadium	28.3	mg/Kg	DM	5/27/2016 10:02
Zinc	65.8	mg/Kg		5/27/2016 10:02

Method Reference(s): EPA 6010C

EPA 3050B

Preparation Date: 5/25/2016 **Data File:** 052716a

Client: <u>GZA Geo Environmental of New York</u>

Project Reference: 31.0056687.30 Task 4 Sub Task 1

Sample Identifier: AOC-3-C-1-051916

 Lab Sample ID:
 162083-03
 Date Sampled:
 5/19/2016

 Matrix:
 Soil
 Date Received:
 5/23/2016

Chlorinated Pesticides

<u>Analyte</u>	Result	<u>Units</u>		Qualifier	Date Analy	zed
4,4-DDD	< 3.15	ug/Kg			5/25/2016	17:24
4,4-DDE	< 3.15	ug/Kg			5/25/2016	17:24
4,4-DDT	< 3.15	ug/Kg			5/25/2016	17:24
Aldrin	< 3.15	ug/Kg		M	5/25/2016	17:24
alpha-BHC	< 3.15	ug/Kg			5/25/2016	17:24
beta-BHC	< 3.15	ug/Kg			5/25/2016	17:24
cis-Chlordane	< 3.15	ug/Kg			5/25/2016	17:24
delta-BHC	< 3.15	ug/Kg			5/25/2016	17:24
Dieldrin	< 3.15	ug/Kg			5/25/2016	17:24
Endosulfan I	< 3.15	ug/Kg			5/25/2016	17:24
Endosulfan II	< 3.15	ug/Kg			5/25/2016	17:24
Endosulfan Sulfate	< 3.15	ug/Kg			5/25/2016	17:24
Endrin	< 3.15	ug/Kg			5/25/2016	17:24
Endrin Aldehyde	< 3.15	ug/Kg			5/25/2016	17:24
Endrin Ketone	< 3.15	ug/Kg			5/25/2016	17:24
gamma-BHC (Lindane)	< 3.15	ug/Kg			5/25/2016	17:24
Heptachlor	< 3.15	ug/Kg			5/25/2016	17:24
Heptachlor Epoxide	< 3.15	ug/Kg			5/25/2016	17:24
Methoxychlor	< 3.15	ug/Kg			5/25/2016	17:24
Toxaphene	< 31.5	ug/Kg			5/25/2016	17:24
trans-Chlordane	< 3.15	ug/Kg			5/25/2016	17:24
Surrogate	Percer	ıt Recovery	Limits	Outliers	Date Analy	zed
Decachlorobiphenyl (1)		64.3	9.5 - 93.3		5/25/2016	17:24
Tetrachloro-m-xylene (1)		45.8	13.2 - 96.3		5/25/2016	17:24

Method Reference(s): EPA 8081B

EPA 3550C

Preparation Date: 5/25/2016

Client: <u>GZA Geo Environmental of New York</u>

Project Reference: 31.0056687.30 Task 4 Sub Task 1

Sample Identifier: AOC-1-C-051916

 Lab Sample ID:
 162083-04
 Date Sampled:
 5/19/2016

 Matrix:
 Soil
 Date Received:
 5/23/2016

Mercury

AnalyteResultUnitsQualifierDate AnalyzedMercury0.00683mg/KgJ5/25/201612:17

Method Reference(s):EPA 7471BPreparation Date:5/25/2016Data File:Hg160525A

Client: <u>GZA Geo Environmental of New York</u>

Project Reference: 31.0056687.30 Task 4 Sub Task 1

Sample Identifier: AOC-1-C-051916

Lab Sample ID:162083-04Date Sampled:5/19/2016Matrix:SoilDate Received:5/23/2016

TAL Metals (ICP)

Analyte	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyz	zed
Aluminum	10700	mg/Kg		5/27/2016	10:15
Antimony	< 3.35	mg/Kg		5/27/2016	10:15
Arsenic	3.14	mg/Kg		5/27/2016	10:15
Barium	72.3	mg/Kg		5/27/2016	10:15
Beryllium	0.464	mg/Kg		5/26/2016	17:37
Cadmium	< 0.279	mg/Kg		5/27/2016	10:15
Calcium	67800	mg/Kg		5/26/2016	12:40
Chromium	13.1	mg/Kg		5/27/2016	10:15
Cobalt	8.03	mg/Kg		5/27/2016	10:15
Copper	17.2	mg/Kg		5/27/2016	10:15
Iron	16200	mg/Kg		5/27/2016	10:15
Lead	10.7	mg/Kg		5/27/2016	10:15
Magnesium	18800	mg/Kg		5/27/2016	10:15
Manganese	442	mg/Kg		5/27/2016	10:15
Nickel	14.7	mg/Kg		5/27/2016	10:15
Potassium	3130	mg/Kg		5/27/2016	10:15
Selenium	< 1.12	mg/Kg		5/26/2016	18:23
Silver	< 1.12	mg/Kg		5/26/2016	18:23
Sodium	1920	mg/Kg		5/27/2016	10:15
Thallium	< 1.40	mg/Kg		5/27/2016	10:15
Vanadium	24.0	mg/Kg		5/27/2016	10:15
Zinc	78.6	mg/Kg		5/27/2016	10:15

Method Reference(s): EPA 6010C

EPA 3050B

 Preparation Date:
 5/25/2016

 Data File:
 052716a

Client: <u>GZA Geo Environmental of New York</u>

Project Reference: 31.0056687.30 Task 4 Sub Task 1

Sample Identifier: AOC-1-C-051916

Lab Sample ID:162083-04Date Sampled:5/19/2016Matrix:SoilDate Received:5/23/2016

Chlorinated Pesticides

Analyte	Result	<u>Units</u>		Qualifier	Date Analy	zed
4,4-DDD	< 3.21	ug/Kg			5/25/2016	18:03
4,4-DDE	< 3.21	ug/Kg			5/25/2016	18:03
4,4-DDT	< 3.21	ug/Kg			5/25/2016	18:03
Aldrin	< 3.21	ug/Kg			5/25/2016	18:03
alpha-BHC	< 3.21	ug/Kg			5/25/2016	18:03
beta-BHC	< 3.21	ug/Kg			5/25/2016	18:03
cis-Chlordane	< 3.21	ug/Kg			5/25/2016	18:03
delta-BHC	< 3.21	ug/Kg			5/25/2016	18:03
Dieldrin	< 3.21	ug/Kg			5/25/2016	18:03
Endosulfan I	< 3.21	ug/Kg			5/25/2016	18:03
Endosulfan II	< 3.21	ug/Kg			5/25/2016	18:03
Endosulfan Sulfate	< 3.21	ug/Kg			5/25/2016	18:03
Endrin	< 3.21	ug/Kg			5/25/2016	18:03
Endrin Aldehyde	< 3.21	ug/Kg			5/25/2016	18:03
Endrin Ketone	< 3.21	ug/Kg			5/25/2016	18:03
gamma-BHC (Lindane)	< 3.21	ug/Kg			5/25/2016	18:03
Heptachlor	< 3.21	ug/Kg			5/25/2016	18:03
Heptachlor Epoxide	< 3.21	ug/Kg			5/25/2016	18:03
Methoxychlor	< 3.21	ug/Kg			5/25/2016	18:03
Toxaphene	< 32.1	ug/Kg			5/25/2016	18:03
trans-Chlordane	< 3.21	ug/Kg			5/25/2016	18:03
<u>Surrogate</u>	Percent Recovery		<u>Limits</u>	<u>Outliers</u>	Date Analyzed	
Decachlorobiphenyl (1)	91	1.2	9.5 - 93.3		5/25/2016	18:03
Tetrachloro-m-xylene (1)	29	9.2	13.2 - 96.3		5/25/2016	18:03

Method Reference(s): EPA 8081B

EPA 3550C

Preparation Date: 5/25/2016

Client: GZA Geo Environmental of New York

Project Reference: 31.0056687.30 Task 4 Sub Task 1

Sample Identifier: Soil-C-Duplicate-051916

 Lab Sample ID:
 162083-05
 Date Sampled:
 5/19/2016

 Matrix:
 Soil
 Date Received:
 5/23/2016

<u>Mercury</u>

AnalyteResultUnitsQualifierDate AnalyzedMercury0.0126mg/Kg5/25/2016 12:20

Method Reference(s):EPA 7471BPreparation Date:5/25/2016Data File:Hg160525A

Client: **GZA Geo Environmental of New York**

Project Reference: 31.0056687.30 Task 4 Sub Task 1

Soil-C-Duplicate-051916 Sample Identifier:

Date Sampled: Lab Sample ID: 162083-05 5/19/2016 **Date Received: Matrix:** Soil 5/23/2016

TAL Metals (ICP)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Aluminum	14400	mg/Kg		5/27/2016 10:19
Antimony	< 3.30	mg/Kg		5/27/2016 10:19
Arsenic	3.68	mg/Kg		5/27/2016 10:19
Barium	86.9	mg/Kg		5/27/2016 10:19
Beryllium	0.610	mg/Kg		5/26/2016 17:41
Cadmium	< 0.275	mg/Kg		5/27/2016 10:19
Calcium	57700	mg/Kg		5/26/2016 12:45
Chromium	16.7	mg/Kg		5/27/2016 10:19
Cobalt	8.71	mg/Kg		5/27/2016 10:19
Copper	17.0	mg/Kg		5/27/2016 10:19
Iron	19600	mg/Kg		5/27/2016 10:19
Lead	16.3	mg/Kg		5/27/2016 10:19
Magnesium	16200	mg/Kg		5/27/2016 10:19
Manganese	438	mg/Kg		5/27/2016 10:19
Nickel	17.5	mg/Kg		5/27/2016 10:19
Potassium	3000	mg/Kg		5/27/2016 10:19
Selenium	< 1.10	mg/Kg		5/26/2016 18:28
Silver	< 1.10	mg/Kg		5/26/2016 18:28
Sodium	978	mg/Kg		5/27/2016 10:19
Thallium	< 1.37	mg/Kg		5/27/2016 10:19
Vanadium	30.2	mg/Kg		5/27/2016 10:19
Zinc	72.8	mg/Kg		5/27/2016 10:19

Method Reference(s): EPA 6010C EPA 3050B

Preparation Date: 5/25/2016 Data File: 052716a

Client: <u>GZA Geo Environmental of New York</u>

Project Reference: 31.0056687.30 Task 4 Sub Task 1

Sample Identifier: Soil-C-Duplicate-051916

 Lab Sample ID:
 162083-05
 Date Sampled:
 5/19/2016

 Matrix:
 Soil
 Date Received:
 5/23/2016

Chlorinated Pesticides

Analyte	<u>Result</u>	<u>Units</u>		Qualifier	Date Analy	<u>zed</u>
4,4-DDD	< 3.25	ug/Kg			5/25/2016	18:17
4,4-DDE	< 3.25	ug/Kg			5/25/2016	18:17
4,4-DDT	< 3.25	ug/Kg			5/25/2016	18:17
Aldrin	< 3.25	ug/Kg			5/25/2016	18:17
alpha-BHC	< 3.25	ug/Kg			5/25/2016	18:17
beta-BHC	< 3.25	ug/Kg			5/25/2016	18:17
cis-Chlordane	< 3.25	ug/Kg			5/25/2016	18:17
delta-BHC	< 3.25	ug/Kg			5/25/2016	18:17
Dieldrin	< 3.25	ug/Kg			5/25/2016	18:17
Endosulfan I	< 3.25	ug/Kg			5/25/2016	18:17
Endosulfan II	< 3.25	ug/Kg			5/25/2016	18:17
Endosulfan Sulfate	< 3.25	ug/Kg			5/25/2016	18:17
Endrin	< 3.25	ug/Kg			5/25/2016	18:17
Endrin Aldehyde	< 3.25	ug/Kg			5/25/2016	18:17
Endrin Ketone	< 3.25	ug/Kg			5/25/2016	18:17
gamma-BHC (Lindane)	< 3.25	ug/Kg			5/25/2016	18:17
Heptachlor	< 3.25	ug/Kg			5/25/2016	18:17
Heptachlor Epoxide	< 3.25	ug/Kg			5/25/2016	18:17
Methoxychlor	< 3.25	ug/Kg			5/25/2016	18:17
Toxaphene	< 32.5	ug/Kg			5/25/2016	18:17
trans-Chlordane	< 3.25	ug/Kg			5/25/2016	18:17
<u>Surrogate</u>	Percent	Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
Decachlorobiphenyl (1)	6	6.4	9.5 - 93.3		5/25/2016	18:17
Tetrachloro-m-xylene (1)	2	5.4	13.2 - 96.3		5/25/2016	18:17

Method Reference(s): EPA 8081B EPA 3550C

Preparation Date: 5/25/2016

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

- "<" = Analyzed for but not detected at or above the quantitation limit.
- "E" = Result has been estimated, calibration limit exceeded.
- "Z" = See case narrative.
- "D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.
- "M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.
- "B" = Method blank contained trace levels of analyte. Refer to included method blank report.
- "J" = Result estimated between the quantitation limit and half the quantitation limit.
- "L" = Laboratory Control Sample recovery outside accepted QC limits.
- "P" = Concentration differs by more than 40% between the primary and secondary analytical columns.
- "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.
- "*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted.
- "(1)" = Indicates data from primary column used for QC calculation.
- "A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.
- "F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written. between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, term, or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.

Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.

Scope and Compensation. LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB will use LAB default method for all tests unless specified otherwise on the Work Order.

Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.

Prices.

Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.

Limitations of Liability.

In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to reperform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services.

LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results.

All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB.

Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any

environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.

Hazard Disclosure.

Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.

Sample Handling.

Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on the

Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these

LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.

Legal Responsibility. LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.

Assignment.

LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.

Force Majeure.

LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.

Law.

This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

CHAIN OF CUSTODY

	Other please indicate date needed:	Rush 1 day	Rush 2 day	Rush 3 day	10 day	Standard 5 day	Availab	Turnaround Time						31				3/19/16	DATE COLLECTED		石水大工	PROJE				TO TO
						B	ility contingent	nd Time	A N	,	111		7 1 1 1	١	1530	150	15 SH	E W	TIME		Subtaski	PROJECT REFERENCE	-			RADIGM
	Other please indicate package needed:		Category B	Category A	Batch QC	None Required	upon lab appro	71					3.0	X	7,	X	X	Z	m → − ω Ο υ ≤ Ο Ω		rskl	NCE				
	Other EDD Other EDD needed:	,	i R	NYSDEC EDD X	Basic EDD	None Required	Availability contingent upon lab approval; additional fees may apply.	Report Supplements	a i	- I	- 100 - 10 - 10 - 10 - 10 - 10 - 10 - 10			Soil-C-Duplicate	100-1-6-0519	AOC-3-6-1-057	AQ-2-C-0519	ARC-3-6-2-05191	SAMPLE IDENTIFIER		AQ - Aqueous Liquid NQ - Non-Aqueous Liquid	Matrix Codes: Richart	105 P-SE9 - 912 - 300	OTT BUNGA 6 STATES	hings	CLIENT: 63A Aco Enuira
	By signing this form	Received @ Lab By	Necewed by	12 ×	Relinquished By	Sampled By	TBahlen					4	per vi	039%	16 1 1	916 34	16 11	6 30/3	X − X − X − X − X − X − X − X − X − X −		WA - Water WG - Groundwater	ATTN:	PHONE:	ZIPAOS CITY:	ADDRESS:	omera CLIENT:
	By signing this form, client agrees to Paradigm Terms and Conditions (reverse).			15/		7	5/19/16					- 1	Der 1:50-1/60 5/24/16		× ×	XX			TAL Modals Pesticides	REQUESTED ANA	DW - Drinking Water WW - Wastewater	- <u>0</u>		STATE:		Same
See addit	adigm Terms and Co		DateMilme	17:	ate/Time	Date/Time	1530	Near	10,01							/sw	persample	1 1/5		LYSIS	SO - Soil SL - Sludge			:: ZIP:	I.	Ċ
See additional page for sample conditions	nditions (reverse).		7.18	8	Č	Total Cost:	a Qiri	to Rasa 2	cell by serve	i ti			11 12			Ď	labels 60	MAN	REMARKS		SD - Solid WP - PT - Paint CK -	James . Ticher	Email:	Quotation #:	762083	LAB PI
inle conditions						H		mily with	les stablle in		X.	- 15 - 15		20	04	03	80 11/26/s	0	PARADIGM LAB SAMPLE NUMBER		WP - Wipe OL - Oil CK - Caulk AR - Air	Ches Tess				LAB PROJECT ID
					L			22	anterri										æ æ			Los Bason				

Chain of Custody Supplement

Client:	GEA GEO Environmental	Completed by:	6 lenn Pezzulo
Lab Project ID:	162083	Date:	5/23/16
	Sample Condition Re Per NELAC/ELAP 210/241		
Condition	NELAC compliance with the sample condi Yes	ition requirements upo No	on receipt N/A
Container Type Comment	as		
Transferred to method- compliant container			
Headspace (<1 mL) Comments	s		
Preservation Comments	s		
Chlorine Absent (<0.10 ppm per test strip) Comments	s		
Holding Time Comments	s		
Temperature Comments	S/20/16 14:15		
Sufficient Sample Quantity Comments			
×			

Client: GZA Geo Environmental of New York

Project Reference: 31.0056687.30 Task 4 Sub Task 1

Sample Identifier: MW-1-051716

Lab Sample ID:162008-01Date Sampled:5/17/2016Matrix:GroundwaterDate Received:5/18/2016

Dissolved Mercury

AnalyteResultUnitsQualifierDate AnalyzedMercury< 0.000200</td>mg/L5/20/201614:12

Method Reference(s):EPA 7470APreparation Date:5/19/2016Data File:Hg160520A

Client: <u>GZA Geo Environmental of New York</u>

Project Reference: 31.0056687.30 Task 4 Sub Task 1

Sample Identifier: MW-1-051716

Lab Sample ID:162008-01Date Sampled:5/17/2016Matrix:GroundwaterDate Received:5/18/2016

Dissolved TAL Metals (ICP)

Analyte	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyz	<u>æd</u>
Aluminum	< 0.200	mg/L		5/23/2016	11:38
Antimony	< 0.0600	mg/L		5/23/2016	11:38
Arsenic	0.0139	mg/L		5/23/2016	11:38
Barium	0.216	mg/L		5/23/2016	11:38
Beryllium	< 0.00500	mg/L		5/23/2016	11:38
Cadmium	< 0.00500	mg/L		5/23/2016	11:38
Calcium	320	mg/L		5/23/2016	11:38
Chromium	< 0.0100	mg/L		5/23/2016	11:38
Cobalt	< 0.0500	mg/L		5/23/2016	11:38
Copper	0.0649	mg/L		5/23/2016	11:38
Iron	< 0.100	mg/L		5/23/2016	11:38
Lead	< 0.0100	mg/L		5/23/2016	11:38
Magnesium	19.6	mg/L		5/23/2016	11:38
Manganese	< 0.0150	mg/L		5/23/2016	11:38
Nickel	< 0.0400	mg/L		5/23/2016	11:38
Potassium	20.2	mg/L		5/23/2016	11:38
Selenium	< 0.0100	mg/L		5/23/2016	11:38
Silver	< 0.0100	mg/L		5/23/2016	11:38
Sodium	4850	mg/L		5/25/2016	10:00
Thallium	< 0.0250	mg/L		5/23/2016	11:38
Vanadium	< 0.0250	mg/L		5/23/2016	11:38
Zinc	0.249	mg/L		5/23/2016	11:38

Method Reference(s): EPA 6010C

EPA 3005A

Preparation Date: 5/19/2016 **Data File:** 052316a

Client: <u>GZA Geo Environmental of New York</u>

Project Reference: 31.0056687.30 Task 4 Sub Task 1

Sample Identifier: MW-1-051716

Lab Sample ID:162008-01Date Sampled:5/17/2016Matrix:GroundwaterDate Received:5/18/2016

Chlorinated Pesticides

<u>Analyte</u>	Result	<u>Units</u>		Qualifier	Date Analyz	zed
4,4-DDD	< 0.100	ug/L			5/23/2016	14:48
4,4-DDE	< 0.100	ug/L			5/23/2016	14:48
4,4-DDT	< 0.100	ug/L			5/23/2016	14:48
Aldrin	< 0.100	ug/L			5/23/2016	14:48
alpha-BHC	< 0.100	ug/L			5/23/2016	14:48
beta-BHC	< 0.100	ug/L			5/23/2016	14:48
cis-Chlordane	< 0.100	ug/L			5/23/2016	14:48
delta-BHC	< 0.100	ug/L			5/23/2016	14:48
Dieldrin	< 0.100	ug/L			5/23/2016	14:48
Endosulfan I	< 0.100	ug/L			5/23/2016	14:48
Endosulfan II	< 0.100	ug/L			5/23/2016	14:48
Endosulfan Sulfate	< 0.100	ug/L			5/23/2016	14:48
Endrin	< 0.100	ug/L			5/23/2016	14:48
Endrin Aldehyde	< 0.100	ug/L			5/23/2016	14:48
Endrin Ketone	< 0.100	ug/L			5/23/2016	14:48
gamma-BHC (Lindane)	< 0.100	ug/L			5/23/2016	14:48
Heptachlor	< 0.100	ug/L			5/23/2016	14:48
Heptachlor Epoxide	< 0.100	ug/L			5/23/2016	14:48
Methoxychlor	< 0.100	ug/L			5/23/2016	14:48
Toxaphene	< 1.00	ug/L			5/23/2016	14:48
trans-Chlordane	< 0.100	ug/L			5/23/2016	14:48
Surrogate	Percent	Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analyz	zed
Decachlorobiphenyl (1)	63	3.7	21.8 - 126		5/23/2016	14:48
Tetrachloro-m-xylene (1)	60	0.8	0 - 95.4		5/23/2016	14:48

Method Reference(s): EPA 8081B

Preparation Date: EPA 3510C 5/23/2016

Client: GZA Geo Environmental of New York

Project Reference: 31.0056687.30 Task 4 Sub Task 1

Sample Identifier: MW-2-051716

Lab Sample ID:162008-02Date Sampled:5/17/2016Matrix:GroundwaterDate Received:5/18/2016

Dissolved Mercury

 Analyte
 Result
 Units
 Qualifier
 Date Analyzed

 Mercury
 < 0.000200</td>
 mg/L
 5/20/2016
 14:16

Method Reference(s):EPA 7470APreparation Date:5/19/2016Data File:Hg160520A

Client: <u>GZA Geo Environmental of New York</u>

Project Reference: 31.0056687.30 Task 4 Sub Task 1

Sample Identifier: MW-2-051716

Lab Sample ID:162008-02Date Sampled:5/17/2016Matrix:GroundwaterDate Received:5/18/2016

Dissolved TAL Metals (ICP)

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed
Aluminum	< 0.200	mg/L		5/23/2016 11:42
Antimony	< 0.0600	mg/L		5/23/2016 11:42
Arsenic	0.0104	mg/L		5/23/2016 11:42
Barium	< 0.100	mg/L		5/23/2016 11:42
Beryllium	< 0.00500	mg/L		5/23/2016 11:42
Cadmium	< 0.00500	mg/L		5/23/2016 11:42
Calcium	483	mg/L		5/23/2016 11:42
Chromium	< 0.0100	mg/L		5/23/2016 11:42
Cobalt	< 0.0500	mg/L		5/23/2016 11:42
Copper	< 0.0250	mg/L		5/23/2016 11:42
Iron	< 0.100	mg/L		5/23/2016 11:42
Lead	< 0.0100	mg/L		5/23/2016 11:42
Magnesium	81.4	mg/L		5/23/2016 11:42
Manganese	0.192	mg/L		5/23/2016 11:42
Nickel	< 0.0400	mg/L		5/23/2016 11:42
Potassium	11.4	mg/L		5/23/2016 11:42
Selenium	< 0.0100	mg/L		5/23/2016 11:42
Silver	< 0.0100	mg/L		5/23/2016 11:42
Sodium	99.0	mg/L	M	5/23/2016 11:42
Thallium	< 0.0250	mg/L		5/23/2016 11:42
Vanadium	< 0.0250	mg/L		5/23/2016 11:42
Zinc	< 0.0600	mg/L		5/23/2016 11:42

Method Reference(s): EPA 6010C

EPA 3005A

Preparation Date: 5/19/2016 **Data File:** 052316a

Client: <u>GZA Geo Environmental of New York</u>

Project Reference: 31.0056687.30 Task 4 Sub Task 1

Sample Identifier: MW-2-051716

Lab Sample ID:162008-02Date Sampled:5/17/2016Matrix:GroundwaterDate Received:5/18/2016

Chlorinated Pesticides

<u>Analyte</u>	<u>Result</u>	<u>Units</u>		Qualifier	Date Analy	<u>zed</u>
4,4-DDD	< 0.100	ug/L			5/23/2016	15:01
4,4-DDE	< 0.100	ug/L			5/23/2016	15:01
4,4-DDT	< 0.100	ug/L			5/23/2016	15:01
Aldrin	< 0.100	ug/L			5/23/2016	15:01
alpha-BHC	< 0.100	ug/L			5/23/2016	15:01
beta-BHC	< 0.100	ug/L			5/23/2016	15:01
cis-Chlordane	< 0.100	ug/L			5/23/2016	15:01
delta-BHC	< 0.100	ug/L			5/23/2016	15:01
Dieldrin	< 0.100	ug/L			5/23/2016	15:01
Endosulfan I	< 0.100	ug/L			5/23/2016	15:01
Endosulfan II	< 0.100	ug/L			5/23/2016	15:01
Endosulfan Sulfate	< 0.100	ug/L			5/23/2016	15:01
Endrin	< 0.100	ug/L			5/23/2016	15:01
Endrin Aldehyde	< 0.100	ug/L			5/23/2016	15:01
Endrin Ketone	< 0.100	ug/L			5/23/2016	15:01
gamma-BHC (Lindane)	< 0.100	ug/L			5/23/2016	15:01
Heptachlor	< 0.100	ug/L			5/23/2016	15:01
Heptachlor Epoxide	< 0.100	ug/L			5/23/2016	15:01
Methoxychlor	< 0.100	ug/L			5/23/2016	15:01
Toxaphene	< 1.00	ug/L			5/23/2016	15:01
trans-Chlordane	< 0.100	ug/L			5/23/2016	15:01
Surrogate	Percent	Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
Decachlorobiphenyl (1)	10).6	21.8 - 126	*	5/23/2016	15:01
Tetrachloro-m-xylene (1)	86	5.5	0 - 95.4		5/23/2016	15:01

Method Reference(s): EPA 8081B

Preparation Date: EPA 3510C 5/23/2016

Client: GZA Geo Environmental of New York

Project Reference: 31.0056687.30 Task 4 Sub Task 1

Sample Identifier: MW-3-051716

Lab Sample ID:162008-03Date Sampled:5/17/2016Matrix:GroundwaterDate Received:5/18/2016

Dissolved Mercury

AnalyteResultUnitsQualifierDate AnalyzedMercury< 0.000200</td>mg/L5/20/201614:26

Method Reference(s):EPA 7470APreparation Date:5/19/2016Data File:Hg160520A

Client: <u>GZA Geo Environmental of New York</u>

Project Reference: 31.0056687.30 Task 4 Sub Task 1

Sample Identifier: MW-3-051716

Lab Sample ID:162008-03Date Sampled:5/17/2016Matrix:GroundwaterDate Received:5/18/2016

Dissolved TAL Metals (ICP)

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed
Aluminum	< 0.200	mg/L		5/23/2016 11:55
Antimony	< 0.0600	mg/L		5/23/2016 11:55
Arsenic	< 0.0100	mg/L		5/23/2016 11:55
Barium	< 0.100	mg/L		5/23/2016 11:55
Beryllium	< 0.00500	mg/L		5/23/2016 11:55
Cadmium	< 0.00500	mg/L		5/23/2016 11:55
Calcium	490	mg/L		5/23/2016 11:55
Chromium	< 0.0100	mg/L		5/23/2016 11:55
Cobalt	< 0.0500	mg/L		5/23/2016 11:55
Copper	< 0.0250	mg/L		5/23/2016 11:55
Iron	< 0.100	mg/L		5/23/2016 11:55
Lead	< 0.0100	mg/L		5/23/2016 11:55
Magnesium	84.2	mg/L		5/23/2016 11:55
Manganese	0.0939	mg/L		5/23/2016 11:55
Nickel	< 0.0400	mg/L		5/23/2016 11:55
Potassium	5.61	mg/L		5/23/2016 11:55
Selenium	< 0.0100	mg/L		5/23/2016 11:55
Silver	< 0.0100	mg/L		5/23/2016 11:55
Sodium	94.1	mg/L		5/23/2016 11:55
Thallium	< 0.0250	mg/L		5/23/2016 11:55
Vanadium	< 0.0250	mg/L		5/23/2016 11:55
Zinc	< 0.0600	mg/L		5/23/2016 11:55

Method Reference(s): EPA 6010C

EPA 3005A **Preparation Date:** 5/19/2016 **Data File:** 052316a

Client: <u>GZA Geo Environmental of New York</u>

Project Reference: 31.0056687.30 Task 4 Sub Task 1

Sample Identifier: MW-3-051716

Lab Sample ID:162008-03Date Sampled:5/17/2016Matrix:GroundwaterDate Received:5/18/2016

Chlorinated Pesticides

Analyte	<u>Result</u>	<u>Units</u>		Qualifier	Date Analy	<u>zed</u>
4,4-DDD	< 0.100	ug/L			5/23/2016	15:42
4,4-DDE	< 0.100	ug/L			5/23/2016	15:42
4,4-DDT	< 0.100	ug/L			5/23/2016	15:42
Aldrin	< 0.100	ug/L			5/23/2016	15:42
alpha-BHC	< 0.100	ug/L			5/23/2016	15:42
beta-BHC	< 0.100	ug/L			5/23/2016	15:42
cis-Chlordane	< 0.100	ug/L			5/23/2016	15:42
delta-BHC	< 0.100	ug/L			5/23/2016	15:42
Dieldrin	< 0.100	ug/L			5/23/2016	15:42
Endosulfan I	< 0.100	ug/L			5/23/2016	15:42
Endosulfan II	< 0.100	ug/L			5/23/2016	15:42
Endosulfan Sulfate	< 0.100	ug/L			5/23/2016	15:42
Endrin	< 0.100	ug/L			5/23/2016	15:42
Endrin Aldehyde	< 0.100	ug/L			5/23/2016	15:42
Endrin Ketone	< 0.100	ug/L			5/23/2016	15:42
gamma-BHC (Lindane)	< 0.100	ug/L			5/23/2016	15:42
Heptachlor	< 0.100	ug/L			5/23/2016	15:42
Heptachlor Epoxide	< 0.100	ug/L			5/23/2016	15:42
Methoxychlor	< 0.100	ug/L			5/23/2016	15:42
Toxaphene	< 1.00	ug/L			5/23/2016	15:42
trans-Chlordane	< 0.100	ug/L			5/23/2016	15:42
<u>Surrogate</u>	Percent	t Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
Decachlorobiphenyl (1)	7	1.6	21.8 - 126		5/23/2016	15:42
Tetrachloro-m-xylene (1)	7	2.3	0 - 95.4		5/23/2016	15:42

Method Reference(s): EPA 8081B EPA 3510C

Preparation Date: 5/23/2016

Client: GZA Geo Environmental of New York

Project Reference: 31.0056687.30 Task 4 Sub Task 1

Sample Identifier: Duplicate-051716

Lab Sample ID:162008-04Date Sampled:5/17/2016Matrix:GroundwaterDate Received:5/18/2016

Dissolved Mercury

AnalyteResultUnitsQualifierDate AnalyzedMercury< 0.000200</td>mg/L5/20/201614:36

Method Reference(s):EPA 7470APreparation Date:5/19/2016Data File:Hg160520A

Client: **GZA Geo Environmental of New York**

Project Reference: 31.0056687.30 Task 4 Sub Task 1

Sample Identifier: Duplicate-051716

Lab Sample ID: 162008-04 Date Sampled: 5/17/2016 **Date Received: Matrix:** Groundwater 5/18/2016

Dissolved TAL Metals (ICP)

Analyte	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Aluminum	< 0.200	mg/L		5/23/2016 12:00
Antimony	< 0.0600	mg/L		5/23/2016 12:00
Arsenic	0.00542	mg/L	J	5/23/2016 12:00
Barium	< 0.100	mg/L		5/23/2016 12:00
Beryllium	< 0.00500	mg/L		5/23/2016 12:00
Cadmium	< 0.00500	mg/L		5/23/2016 12:00
Calcium	497	mg/L		5/23/2016 12:00
Chromium	< 0.0100	mg/L		5/23/2016 12:00
Cobalt	< 0.0500	mg/L		5/23/2016 12:00
Copper	0.166	mg/L		5/23/2016 12:00
Iron	< 0.100	mg/L		5/23/2016 12:00
Lead	0.0210	mg/L		5/23/2016 12:00
Magnesium	85.3	mg/L		5/23/2016 12:00
Manganese	0.0958	mg/L		5/23/2016 12:00
Nickel	< 0.0400	mg/L		5/23/2016 12:00
Potassium	5.78	mg/L		5/23/2016 12:00
Selenium	< 0.0100	mg/L		5/23/2016 12:00
Silver	< 0.0100	mg/L		5/23/2016 12:00
Sodium	93.3	mg/L		5/23/2016 12:00
Thallium	< 0.0250	mg/L		5/23/2016 12:00
Vanadium	< 0.0250	mg/L		5/23/2016 12:00
Zinc	0.610	mg/L		5/23/2016 12:00

Method Reference(s): EPA 6010C EPA 3005A

Preparation Date: 5/19/2016 Data File: 052316a

Client: <u>GZA Geo Environmental of New York</u>

Project Reference: 31.0056687.30 Task 4 Sub Task 1

Sample Identifier: Duplicate-051716

Lab Sample ID:162008-04Date Sampled:5/17/2016Matrix:GroundwaterDate Received:5/18/2016

Chlorinated Pesticides

Analyte	Result	<u>Units</u>		Qualifier	Date Analy	<u>zed</u>
4,4-DDD	< 0.100	ug/L			5/23/2016	15:55
4,4-DDE	< 0.100	ug/L			5/23/2016	15:55
4,4-DDT	< 0.100	ug/L			5/23/2016	15:55
Aldrin	< 0.100	ug/L			5/23/2016	15:55
alpha-BHC	< 0.100	ug/L			5/23/2016	15:55
beta-BHC	< 0.100	ug/L			5/23/2016	15:55
cis-Chlordane	< 0.100	ug/L			5/23/2016	15:55
delta-BHC	< 0.100	ug/L			5/23/2016	15:55
Dieldrin	< 0.100	ug/L			5/23/2016	15:55
Endosulfan I	< 0.100	ug/L			5/23/2016	15:55
Endosulfan II	< 0.100	ug/L			5/23/2016	15:55
Endosulfan Sulfate	< 0.100	ug/L			5/23/2016	15:55
Endrin	< 0.100	ug/L			5/23/2016	15:55
Endrin Aldehyde	< 0.100	ug/L			5/23/2016	15:55
Endrin Ketone	< 0.100	ug/L			5/23/2016	15:55
gamma-BHC (Lindane)	< 0.100	ug/L			5/23/2016	15:55
Heptachlor	< 0.100	ug/L			5/23/2016	15:55
Heptachlor Epoxide	< 0.100	ug/L			5/23/2016	15:55
Methoxychlor	< 0.100	ug/L			5/23/2016	15:55
Toxaphene	< 1.00	ug/L			5/23/2016	15:55
trans-Chlordane	< 0.100	ug/L			5/23/2016	15:55
<u>Surrogate</u>	Percent	Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
Decachlorobiphenyl (1)	7	1.2	21.8 - 126		5/23/2016	15:55
Tetrachloro-m-xylene (1)	7	5.5	0 - 95.4		5/23/2016	15:55

Method Reference(s): EPA 8081B

EPA 3510C

Preparation Date: 5/23/2016

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

- "<" = Analyzed for but not detected at or above the quantitation limit.
- "E" = Result has been estimated, calibration limit exceeded.
- "Z" = See case narrative.
- "D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.
- "M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.
- "B" = Method blank contained trace levels of analyte. Refer to included method blank report.
- "J" = Result estimated between the quantitation limit and half the quantitation limit.
- "L" = Laboratory Control Sample recovery outside accepted QC limits.
- "P" = Concentration differs by more than 40% between the primary and secondary analytical columns.
- "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.
- "*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted.
- "(1)" = Indicates data from primary column used for QC calculation.
- $"A" = denotes \ a \ parameter \ for \ which \ ELAP \ does \ not \ offer \ approval \ as \ part \ of \ their \ laboratory \ certification \ program.$
- "F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written. between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, term, or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.

Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.

Scope and Compensation. LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB will use LAB default method for all tests unless specified otherwise on the Work Order.

Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.

Prices.

Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.

Limitations of Liability.

In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to reperform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services.

LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results.

All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB.

Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any

environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.

Hazard Disclosure.

Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.

Sample Handling.

Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on the

Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these

LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.

Legal Responsibility. LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.

Assignment.

LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.

Force Majeure.

LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.

Law.

This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

CHAIN OF CUSTODY

/かり

	Other Other Other Other please indicate package needed:	Rush 1 day	Rush 2 day Category B	Rush 3 day Category A	10 day Batch QC	Standard 5 day None Required	Availability contingent upon lab approval; additional fees may apply.	Turnaround Time Report Supplements						Y NIN TY	1545 X MW- 3-	1 JUSD X MW-J-	1-MW X OEC! (MEN/S	DATE COLLECTED TIME COLLECTED COLLECTED F A F F F F F F F F F F F		TSt 4 Subtok1	PROJECT REFERENCE 31,0056687,30 Matrix Codes	HONE: 716	city: By 4	
	Other EDD By signing this fo	Received @ Lab By	Received By	NYSDEC EDD Jun les	Basic EDD Relinquished By	None Required Sample By	l h	lements		I I				7/4/30-40	3/4/50	0 1 (VSW/SW) 914150	C BM 3/4/50-	SAMPLE IDENTIFIER A C M		AQ - Aqueous Liquid WA - Water NQ - Non-Aqueous Liquid WG - Groundwater	ichert	-625-1300 PHONE	86 SIDES /2303 CITY	
0	By signing this form, client agrees to Paradigm Terms and Conditions (reverse).	Date/Time	Date/Time	Just 5/17/16 (Pate/Time	Date/lime	550MEN 5/17/16	7	400			4	,	X	72	× .	2	Metals TA Pesticides	REQUESTED ANALYSIS	DW - Drinking Water SO - Soil WW - Wastewater SL - Sludge		NE:	STATE: ZIP:	
Spood ditional page for complete and it.		1120	P.I.F.	730	0/16/0	Total Cost:	1	in any see infact moderail	inples		118/16	for Dissolved minls.		AFO		Samo of	FILTER MEDIS OIA	PARADIGM LAB REMARKS SAMPLE NUMBER		SD-Solid WP-Wipe OL-Oil PT-Paint CK-Caulk AR-Air	James richerleg & com	5	Quotation #:	

Chain of Custody Supplement

Client:	GZA Geo Environmental	Completed by:	Glenn Pezzulo
Lab Project ID:	162008	Date:	5/18/16
Sample Condition Requirements Per NELAC/ELAP 210/241/242/243/244			
NELAC compliance with the sample condition requirements upon receipt Condition Yes No N/A			
Container Type			
Comments			
Transferred to method- compliant container			
Headspace (<1 mL) Comments			
Preservation Comments			
Chlorine Absent (<0.10 ppm per test strip) Comments			
Holding Time Comments	<u> </u>		
Temperature Comments	4°Ciced 5/18/16 1	 4:55	Metals
Sufficient Sample Quantity Comments			
			Marie and the second se